World Users Conference 2021

FLOW-3D World Users Conference

World Users Conference 2021
World Users Conference 2021

FLOW-3D World Users Conference 는 2021 년 6 월 7 일부터 9 일 까지 독일 뮌헨 의 Maritim Hotel 에서 개최됩니다 . 세계에서 가장 유명한 회사 및 기관의 엔지니어, 연구원 및 과학자와 함께 시뮬레이션 기술을 연마하고 새로운 모델링 접근 방식을 탐색하며 최신 소프트웨어 개발에 대해 알아보십시오. 이 컨퍼런스에는 금속 주조 및 물 및 환경 응용 프로그램 트랙, 고급 교육 세션, 고객의 심층 기술 프레젠테이션, Flow Science의 선임 기술 직원이 발표 한 최신 제품 개발이 포함됩니다. 이 컨퍼런스는 Flow Science Deutschland 가 공동 주최합니다 .

우리는 BMW의 Hubert Lang이 컨퍼런스 기조 연설자가 될 것이라는 점을 매우 기쁘게 생각합니다.초록을 요청하십시오!온라인 등록

기조 연설 발표! 

Hubert Lang, BMW, 기조 연설자
Hubert Lang, BMW, FLOW-3D 세계 사용자 컨퍼런스 2021의 기조 연설자

 BMW에서 15 년 동안  FLOW-3D 사용

Hubert Lang은 Landshut University of Applied Sciences에서 자동차 공학에 중점을두고 기계 공학을 전공했습니다. 1998 년에 그는 Landshut에있는 BMW의 Light Metal Foundry에서 도구 설계 부서에서 일하면서 6 기통 엔진용 주조 도구 개발을 감독했습니다. 2005 년에 Hubert는 파운드리의 시뮬레이션 부서로 옮겨 FLOW-3D 의 금속 주조 기능을 소개 받았습니다 . 그 이후로 그는 시뮬레이션의 분야에서 FLOW-3D 사용에 있어 상당한 확장을 이끌었습니다 .

오늘날 BMW는 모래 주조, 영구 금형 중력 주조, 저압 다이캐스팅, 고압 다이캐스팅 및 로스트 폼 주조에 FLOW-3D 를 사용합니다 . FLOW-3D 는 또한 코어 건조 모델 개발을 통한 모래 코어용 무기 바인더 시스템 개발 지원과 같은 BMW의 여러 특수 프로젝트에도 적용되었습니다. (실린더 라이너 코팅 중 열 입력 계산; 주입기 주조 절차를위한 주조 형상의 개발, 그리고 주조 도구를위한 냉각 시스템의 레이아웃과 치수 등)

BMW 박물관 투어

컨퍼런스 제공의 일환으로 BMW 박물관 투어를 제공하게되어 기쁘게 생각합니다  . 투어는 6 월 8 일 화요일 기술 진행 후 17:30에 진행됩니다 . 컨퍼런스 등록을 하시면 투어에 등록 하실 수 있습니다 .

BMW 박물관 투어
BMW Welt 건물의 외부 건축 세부 사항.

컨퍼런스 정보

중요한 날짜들

  • 2 월 25 일 : 초록 마감
  • 3 월 11 일 : 초록 수락
  • 5 월 3 일 : 프레젠테이션 마감
  • 6 월 7 일 : 고급 교육 세션
  • 6 월 7 일 : 개막식
  • 6 월 8 일 : BMW 박물관 견학
  • 6 월 8 일 : 컨퍼런스 디너

등록비

  • 컨퍼런스 1 일 및 2 일 : 300 €
  • 컨퍼런스 첫째 날 : 200 €
  • 컨퍼런스 둘째 날 : 200 €
  • 손님 수수료 : 50 €
  • 오프닝 리셉션 : 등록에 포함
  • BMW 투어 : 등록에 포함
  • 컨퍼런스 디너 : 등록에 포함

고급 교육 주제

해당 분야의 선임 기술 직원과 전문가가 가르치는 고급 교육 주제  에는 FLOW-3D  CAST 및 FLOW-3D  AM 사용자를 위한 Version Up 세미나와 문제 해결 기술 및 애플리케이션에 초점을 맞춘 세션이 포함됩니다. 이 과정은 응용 프로그램에 관계없이 모든 사람이 문제 해결 세션에 참여할 수 있도록 설계되었습니다. 온라인으로 등록 할 때 이러한 교육 세션에 등록 할 수 있습니다 .

교육 시간 및 비용

  • 6 월 7 일 – 13:00 – 14:00 – 버전 업 : FLOW-3D CAST  – 100 €
  • 6 월 7 일 – 14:00 – 15:00 – 버전 업 : FLOW-3D AM  – 100 €
  • 6 월 7 일 – 13:00 – 15:00 – 시립 신청 – 200 €
  • 6 월 7 일 – 15:00 – 17:00 – 문제 해결 – 200 유로

고급 교육 주제

초록 요청

경험을 공유하고 성공 사례를 제시하며 FLOW-3D  사용자 커뮤니티와 당사의 선임 기술 직원 으로부터 소중한 피드백을 얻으십시오  . 다음 응용 프로그램에 초점을 맞춘 주제를 포함한 모든 주제에 대한 초록을 환영합니다.

  • 금속 주조
  • 첨가제 제조
  • 토목 및 시립 유압
  • 소비재
  • 마이크로 / 나노 / 바이오 플루이 딕스
  • 에너지
  • 항공 우주
  • 자동차
  • 코팅
  • 해안 공학
  • 해상
  • 일반 응용

초록에는 제목, 저자 및 200 단어 설명이 포함되어야합니다. 새로운 초록 마감일은 2021 년 2 월 25 일입니다. 초록을 info@flow3d.com으로 이메일을 보내주십시오 .

발표자에게는 등록 및 교육비가 면제됩니다.

발표자 정보

각 발표자는 Q & A를 포함하여 30 분의 강연 시간을 갖게됩니다. 모든 프레젠테이션은 컨퍼런스 참석자에게 배포되며 컨퍼런스가 끝난 후 웹 사이트를 통해 배포됩니다. 이 회의에는 전체 논문이 필요하지 않습니다. 컨퍼런스 발표에 대해 궁금한 점이 있으시면 연락 주시기 바랍니다  . Flow Science Deutschland는 각 트랙에 대해 Best Presentation Awards를 후원합니다.

컨퍼런스 디너

아우 구 스티 너 켈러 컨퍼런스 디너

이 컨퍼런스 만찬은 항상 ​​인기있는 Augustiner-Keller 에서 개최됩니다  . 모든 컨퍼런스 참석자와 그들의 손님은 6 월 8 일 화요일에 아름답고 유명한 비어 가든에서 독일 전통 축제에 초대됩니다. 회의 만찬은 BMW 투어 이후에 진행됩니다.

비어 가르 텐

여행

컨퍼런스 호텔

마리 팀 호텔 뮌헨
+49 (0) 89 55235-0
info.mun@maritim.de

뮌헨

뮌헨의 모든 것

뮌헨 도시지도 다운로드

High Pressure Die Casting Workspace, 고압다이캐스팅

High Pressure Die Casting Workspace Highlights

  • 주입 정확도가 탁월합니다.
  • 전체 프로세스 모델링에는 고급 환기, PQ2 및 스프레이 냉각이 포함됩니다.
  • 동적 시뮬레이션 제어를 통해 동적 런타임 프로세스를 제어할 수 있습니다.
  • 최첨단 알루미늄 실리콘 합금 고형화입니다.

고압 다이 캐스팅 Workspace

고압 다이 캐스팅 Workspace은 엔지니어가 FLOW-3D CAST를 사용하여, 고압 다이 캐스팅 제품을 성공적으로 모델링할 수 있도록 설계된 직관적인 모델링 환경입니다.

FLOW-3D CAST v5.1은 첨단 다이 열 제어, 기계 파라미터 모델링,주입 및 배압 조건의 정확한 해석기능과 결합된 샷 슬리브 모션의 완전한 제어는 가장 까다로운 HPDC 시뮬레이션에 필요한 최적화된 솔루션입니다. HPDC Workspace에는 진보된 미세수축공 예측 및 후처리 기능 외에도 Al-Si 및 Al-Cu 기반 합금에 대한 최첨단 화학 기반 응고 및 재료 강도 모델이 포함되어 있습니다.

모델링된 프로세스

  • 고압 다이 주조
 

유연한 메시

  • FAVOR™ 간단한 메쉬 생성 도구
  • 멀티 블록 메시
  • 중첩 메시
 

다이 열 관리

  • 열 다이 사이클링
  • 열 포화도
  • 전체 열 전달 모델링
  • 스마트 냉각 채널 제어
  • 스프레이 냉각 경로 모델링
 

고급 응고

  • 다공성 예측
  • 수축
  • 핫스팟 식별
  • 기계적 특성 예측
  • 미세 구조 예측
 

국자 모션

  • 자유 모션 정의 6도
 

진공 및 환기

  • 대화형 프로브 배치
  • 지역 및 손실 계수 계산기
 

충전 정확도

  • 느리고 빠른 샷 모델링
  • 강화 압력 효과
  • 가스 및 버블 함정
  • 표면 산화물 계산
  • RNG 및 레 난류 모델
  • 역압력
 

결함 예측

  • 매크로 및 마이크로 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석
 

표면 결함 분석

  • PQ2 분석
  • 프로브 기반 트리거
  • 열 제어
  • 진공 및 환기 제어
 

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 나란히 시뮬레이션 결과 비교
  • 용융 온도, 고체 분획 측정을 위한 센서
  • 파티클 트레이서
  • 배치 후 처리
  • 보고서 생성

HPDC Part 1 – Thermal Die Cycling

Design workflow의 유연성


냉각 채널

  • 냉각 채널 기능
    -냉각 채널 제어
    -에너지 제거
    -열전대
    -시간 제어
    -HTC 계산기
    -HTC 데이터베이스

Thermal Die Cycle을 사용하는 이유

  • 다이캐스팅 시설의 표준 실무
  • 고품질의 부품을 얻기 위해서는 금형 온도가 중요
  • 급격한 온도 구배는 최종 주조제품에 다이 조각을 뒤틀리게하고 치수도 부정확해질 수 있음

시뮬레이션이 어떻게 도움이 되는가

  • 다이 전체의 열 분포 최적화
  • 냉각 채널의 효율성 평가
    -배치 및 전체 온도 제거에 대한 안목
  • 스프레이 냉각을 정확하게 모델링
    -다이 표면의 과도된 히트 맵
  • 필요한 온도까지 다이캐스팅 시간을 대폭 감소
  • TDC 스테이지 시간 단축 가능

FLOW-3D Cast 의 TDC 스테이지


스프레이 냉각

  • shot 사이에서 다이를 냉각하는데 사용
  • 적절한 다이의 성능을 보장
  • 프로그래밍이 가능한 로봇으로 수행

스프레이 냉각을 정확하게 모델링하는 것이 중요한 이유

  • 오래된 스프레이 모델은 전체 다이 캐비티에 걸친 일정한 HTC를 가정
    -공간적으로 변화하는 다이 냉각을 포착할 수 없음
    -시뮬레이션 파라미터를 설정하기 어려움
    -스프레이 냉각 디자인을 최적화할 수 없음

스프레이 냉각


Permanent Mold

Permanent Mold

영구 금형과 모래 금형의 차이점은 영구 금형을 재사용 할 수 있다는 것입니다. 금형을 재사용하는 주조 공정에는 중력, 경동, 저압 다이캐스팅 및 고압 다이 캐스팅이 포함됩니다. 영구 금형에는 금속과 흑연의 두 가지 유형이 있고 몰드 유형의 사용은 주조 금속에 달려 있습니다. 금속 주형에 사용되는 주조 금속은 알루미늄, 구리 합금, 아연 및 마그네슘을 포함합니다. 흑연 주형에 사용되는 주조 금속은 강 및 철입니다. 또한 내부 공동을 생성하기 위해 샌드 코어를 사용하는 반영구적인 금형이 있습니다. FLOW-3D CAST는 금형의 충진, 응고 및 열응력과 관련된 주조 결함을 포착하여 처음 프로세스를 올바르게 설계하고 궁극적으로 시간과 비용을 절약 할 수 있습니다.

Simulation of a low pressure die casting showing the filling temperature of a tire rim.

 

Customer Examples of Permanent Mold Castings

Courtesy Peugeot PSA Courtesy Littler Diecast Courtesy SANDEN Manufacturing

FLOW-3D CAST Suites

FLOW-3D CAST Suites

FLOW-3D CAST v5 comes in Suites of relevant casting processes: 

HIGH PRESSURE DIE CASTING SUITE

Process Workspace

High Pressure Die Casting

Features

Thermal Die Cycling
– Cooling/heating channels
– Spray cooling
Filling
– Shot sleeve with Plunger
– Shot motion
– Ladles, stoppers
– Venting efficiency
– PQ^2 analysis
– HPDC machine database
Solidification
– Squeeze pins
Cooling


PERMANENT MOLD CASTING SUITE

Process Workspaces

Permanent Mold Casting
Low Pressure Die Casting
Tilt Pour Casting

Features

Thermal Die Cycling
– Cooling/heating channels
Filling
– Tilt pouring
Solidification
– Squeeze pins
Cooling


SAND CASTING SUITE

Process Workspaces

Sand Casting
Low Pressure Sand Casting

Features

Filling
– Permeable molds
– Moisture evaporation in molds
– Gas generation in cores
– Ladle model
Solidification
– Exothermic sleeves
– Chills
– Cast iron solidification
Cooling


LOST FOAM CASTING SUITE

Process Workspaces

Lost Foam
Sand Casting
Low Pressure Sand Casting

Features

Filling
– Permeable molds
– Moisture evaporation in molds
– Gas generation in cores
– Ladle model
– Lost foam pattern evaporation models (Fast model and Full model)
– Lost foam defect prediction
Solidification
– Exothermic sleeves
– Chills
– Cast iron solidification
Cooling

 


ALL SUITES INCLUDE THESE CORE FEATURES:

Solver Engine

  • TruVOF – The most accurate filling simulation tool in the industry
  • Heat transfer and solidification
  • Shrinkage – Rapid Shrinkage model and Shrinkage with flow model
  • Temperature dependent properties
  • Multi-block meshing including conforming meshes
  • Turbulence models
  • Non-Newtonian viscosity (shear thinning/thickening, thixotropic)
  • Flow tracers
  • Active Simulation Control with Global Conditions
  • Surface tension model
  • Thermal stress analysis with warpage
  • General moving geometry w/6 DOF

FlowSight

  • Multi-case analysis
  • Porosity analysis tool

Defect Prediction Tools

  • Gas entrainment model
  • Thermal Modulus output
  • Hot Spot identification
  • Micro and macro porosity prediction
  • Surface defect prediction
  • Shrinkage
  • Cavitation and Cavitation Potential
  • Particle models (Inclusion modeling, collapsed bubble tracking)

User Conveniences

  • Process-oriented workspaces
  • Configurable Simulation Monitor
  • Metal and solid material databases
  • Heat transfer database
  • Filter database
  • Remote solving queues
  • Quick Analyze/Display tool

ALL NEW FLOW-3D CAST v5

ALL NEW FLOW-3D CAST v5

HPC version of FLOW-3D CAST v5 releasedALL NEW FLOW-3D CAST v5 는 금속 주조 시뮬레이션 및 공정 모델링에 있어 큰 발전입니다. 이제 FLOW-3D CAST는 시뮬레이션 할 프로세스를 선택할 수 있으며, 소프트웨어는 적절한 프로세스 매개 변수, 지오메트리 유형 및 합리적인 기본 값을 제공합니다. 이렇게 하면 시뮬레이션 설정이 상당히 간소화됩니다. 또한 FLOW-3D CAST의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계 주기를 단축하고 비용을 절감하는 통찰력을 제공합니다. 대표적인 개발 기능으로 응고 시뮬레이션을 위한 열 계수 및 핫 스팟 식별 출력, 갇혀 있는 가스를 식별하고 환기 효율을 예측하기 위한 결함 채우기 도구 등이 포함됩니다. 그리고 더 빠르고 더 강력한 압력과 및 응력 해소 기능이 모두 포함합니다.

ALL NEW FLOW-3D CAST v5 는 관련 프로세스가 포함된 Suite제품으로 제공됩니다. 영구 금형 제품군은 중력 다이 캐스팅, 저압 다이캐스팅(LPDC), 틸트 주입 주조와 같은 프로세스 작업 공간을 포함합니다. 각 프로세스에 대해 사용자 인터페이스는 특정 프로세스와 관련된 내용만 표시합니다. 모래 주조 Suite에는 중력 사형 주조 및 저압 사형 주조(LPSC)와 같은 프로세스가 포함되어 있습니다. 소실 폼 제품 군에는 사형 주조 Suite의 모든 것과 소실 폼 공정 작업 공간이 포함됩니다. HPDC 제품군은 열 응력 및 변형을 포함하여 고압 다이 캐스팅과 관련된 모든 것을 포함합니다. 각 프로세스 작업 공간 내에서 채우기, 응고 및 냉각과 같은 하위 프로세스는 서로 연결된 시뮬레이션으로, 처음부터 끝까지 차례로 전체 프로세스를 모델링 합니다. 사용자가 그것을 작업장 바닥에서 하는 것처럼. 사용자는 레들을 용융 풀 안에 담갔다가, 숏 슬리브 또는 주입 컵에 옮겨, 전체 이동 및 주입과 같은 단계를 포함하도록 프로세스를 확장할 수 있습니다. LPDC의 경우 프로세스 엔지니어는 도가니의 가압 및 금속 흐름을 주형으로 모델링 할 수 있습니다.  FLOW-3D CAST v5를 사용하면 가능성이 무한해 집니다.

WYSIWYN Process Workspaces

What-You-See-Is-What-You-Need (WYSIWYN) 프로세스 작업 공간은 FLOW-3D CAST의 다기능성을 간소화하여 사용 편의성과 탁월한 솔루션입니다. 대부분의 인터페이스는 사용자가 제공해야 하는 정보만을 요구하고, 사용자 설계 원칙을 적용하여 단순화되었습니다.

FLOW-3D CAST v4.2에 도입된 프로세스 중심 작업 공간은 중력 다이 주조, 저압 주조 및 경사 주입, 모래 등과 같은 영구 금형 공정으로 확장되었습니다. 중력 모래 주조, 저압 모래 주조 및 소실 폼과 같은 주조 공정 지속적인 주조, 투자 주조, 모래 코어 제작, 원심 주조를 포함한 더 많은 공정 작업 공간이 현재 진행 중에 있습니다.

Simulation setup is simplified by only showing the components applicable for a given process.

Types of casting components available in a HPDC simulation. Mold pieces available in a high pressure die casting include cover and ejector dies, sliders, and shot sleeves.

Defect Prediction / 결함 예측

Identify Filling Defects using Particles  결함 예측 및 입자를 이용한 주입 결함 식별

파티클을 사용하는 FLOW-3D CAST v5를 통해 유입된 가스로 인한 충전 결함을 식별하는 것이 훨씬 쉬워 졌습니다. 결함을 식별하기가 훨씬 용이할 뿐만 아니라, 결함 예측에 따른 계산 비용도 크게 절감되었습니다.

붕괴된 가스 지역을 나타내는 보이드 입자가 도입되었습니다. 이전에 붕괴된 가스 영역은 너무 압축되어 수치 메쉬에서 해결할 수 없으면 시뮬레이션에서 사라졌습니다. 보이드 입자는 작은 기포처럼 작용하며 드래그와 압력을 통해 금속과 상호 작용합니다. 주변의 금속 압력에 따라 크기가 변하며, 주입이 끝난 후 최종 위치를 보면 공기 침투 및 산화물로 인한 잠재적인 결함이 있음을 알 수 있습니다.

Predict filling defects caused by entrapped gas using the Particle Model.

Metal/Wall Contact Time 금속/벽 접촉 시간

벽면 접촉 시간은 금형 표면에서 다른 부위보다 금속에 더 오래 노출된 부위를 식별하는 데 유용합니다. 금속 접촉 시간은 금속이 고체 구성 요소와 접촉한 시간을 나타냅니다. 예를 들어 모래 입자가 핵분해 부위의 역할을 하기 때문에 미세 먼지가 발생할 수 있습니다. 개별 솔리드 구성 요소와의 금속 접촉 시간 출력이 모든 구성 요소와의 접촉 시간을 포함하도록 확장되었습니다. 접촉 시간 계산은 출력 탭에서 벽 접촉 시간을 선택하여 활성화합니다.

Identify solidification defects with the new Thermal Modulus output.

Solidification Defect Identification 응고 결함 식별

일반적으로 라이저 크기 조정에 사용되는 열 모듈은 이제 응고 시뮬레이션에서 출력됩니다.

Risers will likely need to be placed on the circled regions.

Hot Spots  핫 스팟

또 다른 결과인 “핫 스팟”은 라이저를 찾고 크기를 조정하며, 응고 관련 결함의 가능성을 식별하는 데 유용합니다. 핫 스팟은 최종적으로 응고된 부위를 나타냅니다. 이것들은 입자들로 표현되고 뜨거운 점 크기에 의해 색깔이 변하기도 합니다. 라이저는 핫 스팟 크기가 가장 큰 곳에 배치해야 합니다.

Porosity Analysis Tool

FlowSight의 새로운 Porosity Analysis Tool은 실제적인 측면에서 porosity-related 결점을 식별합니다. 결점은 이제 순 볼륨, 최대 선형 범위, 모양 인자 및 total count로 식별됩니다.

New defect identification tools allow users to analyze porosity.

Arbitrary 2D Clips 임의 2D 클립

기능 지향적인 2D 클립은 결함을 찾기 위해 전면적으로 살펴 볼 때 유용합니다. 이전에는 클립에 표시된 금속 영역이 솔리드에 의해 점유된 셀로 확장되었습니다. 잡식의 FLOW-3D CAST v5에서 이 클립은 구성 요소를 숨기는 옵션을 선택해야만 열린 공간(예:주조 부품)의 금속을 보여 줄 수 있습니다.

Intensification Pressure 강화 압력

고압 주조 시뮬레이션에 지정된 강화 압력은 이제 매크로 및 마이크로 Porosity모델 모두에 결합되어 형성 사이의 보다 현실적인 관계를 형성합니다. 이러한 결함의 크기 및 플런저에 의해 가해지는 압력의 크기입니다.

Adjusting Shrinkage Porosity 수축 기공 조절

사용자가 금속의 특성을 수정할 필요 없이 수축 다공성의 양과 크기를 미세 조정할 수 있도록 수축 조정 계수가 추가되었습니다. 계수를 사용하면 응고 중에 체적 수축의 양을 전화로 설정하거나 줄일 수 있습니다.

Gas Pressure and Venting Efficiency  가스 압력 및 밴트 효율성 검토

사용자가 충전 결함을 식별하고 다이캐스트에서 밴트 시스템을 설계하는 데 도움을 주기 위해 마지막 국부적인 가스 압력 및 밴트 효율성 검토 결과가 주조 시뮬레이션 출력에 추가되었습니다. 가스 압력은 셀이 금속으로 채워지기 전에 셀의 마지막 보이드 압력을 기록하며, 밴트 효율은 환기구를 배치하는 것이 밴트 위치에서 공기를 배출하는 데 가장 효율적인 영역을 보여 줍니다.

Databases 데이터베이스

주조 공정에서 일반적으로 사용되는 정보의 데이터베이스는 설정 오류를 줄이고 시뮬레이션 workflow 를 개선합니다.

Configurable Simulation Monitor 구성 가능한 시뮬레이션 모니터

시뮬레이션을 실행할 때 발생하는 중요하지만 종종 힘든 작업은 시뮬레이션을 모니터링하는 것입니다. FLOW-3D CAST를 사용하면 다음과 같은 일반적인 시뮬레이션 목표를 모니터링할 수 있습니다.

  • 게이트 속도
    주형 내 고상 분율
    최저/최고 용탕 온도 및 금형 온도
    다양한 프로브 위치에서의 온도
    시뮬레이션 진단(예:시간 스텝, 안정성 한계)

Plotting Capabilities  Plotting기능

이제 시뮬레이션 관리자에는 더 많은 플롯 기능이 포함됩니다. 플롯은 사용자가 구성할 수 있으며 구성은 다른 시뮬레이션에서 사용하기 위해 데이터베이스에 저장됩니다. 사용자는 시뮬레이션 런타임 그래프와 history-data 에서 모니터링할 이력 데이터 변수를 지정할 수 있습니다. 다중 변수를 각 그래프에 입력합니다.

Conforming Meshes

임의 형상의 활성 계산 영역을 정의할 수 있도록 적합한 메쉬 기능이 확장되었습니다. 이는 메쉬 블록이 준수할 수 있는 열린 볼륨과 솔리드 볼륨을 모두 포함하여 계산 도메인의 영역을 정의하는 meshing구성 요소라고 하는 새로운 유형의 지오메트리 구성 요소를 사용합니다.
메쉬 블록은 냉각 채널이나 공동에 선택적으로 조합할 수 있어 사용자가 이러한 기하학적 객체에 대해 최적의 해상도를 선택할 수 있습니다. 이제 확인할 수 있는 메쉬가 FAVORize 탭에 표시될 수 있습니다.

Summary Views of Components/Cooling Channels

FLOW-3D CAST v5의 인터페이스는 주조 시뮬레이션에서 다양한 형상 구성 요소를 꽉 차게 보여줍니다. 2개의 새로운 형상 요약 뷰인 구성 요소 요약 뷰와 냉각 채널 요약 뷰는 기하학적 구성 요소 및 냉각 채널의 플라이 아웃을 제공하여 사용자가 신속하게 수행할 수 있도록 합니다. 중요 설정을 한 눈에 파악하고 필요한 경우 변경 할 수 있습니다.

Under the Hood

FLOW-3D CAST의 많은 강력한 구성 요소들은 Solver Engine이라고 부르는 것 들에서 중요합니다. 아래에서는 이면에서 무거운 작업을 수행하는 데 도움이 되는 몇가지 중요한 사항을 설명합니다.

Thermal Die Cycling (TDC) Model TDC(열 다이 사이클)모델

열 다이 사이클 시뮬레이션의 주입/응고 단계는 균일하지 않은 캐비티 온도를 사용하여 개선할 수 있습니다. 이제 캐비티에 있는 금속의 초기 온도는 재시작 중에 채우기 시뮬레이션을 통해 지정하거나 초기 유체 영역을 사용하는 사용자 정의 분포에서 지정할 수 있습니다. 이 기능은 옵션으로 사용할 수 있는 균일한 초기 금속 온도에 비해 다이 사이클링의 열해석의 정확성과 현실성을 높여줍니다.

Melt temperatures in the casting cavity read from a filling simulation are applied to ejector die during filling/solidification stage of thermal die cycling simulation.

Heat Transfer Coefficient Calculator for Spray Cooling 분사 냉각을 위한 열 전달 계수 계산기

스프레이 유체와 다이 표면 사이의 열 전달 계수(HTC)를 추정하는 것은 어려운 일입니다. 계산 또는 측정을 통해 값을 사용할 수 있는 경우 사용자는 이러한 값을 스프레이 거리 및 각도의 함수로 직접 지정할 수 있습니다. 새로운 기능을 통해 노즐의 스프레이 액의 유량을 기준으로 HTC를 동적으로 계산할 수 있습니다. 단일 조정 계수를 통해 스프레이 유출량을 기준으로 HTC를 미세 조정할 수 있습니다.

FLOW-3D CAST 소개

FLOW-3D CAST

FLOW-3D CAST는 광범위한 금속 주조 공정을 위한 완벽한 해석 솔루션을 제공합니다. 시뮬레이션을 통해 다양한 종류의 다공성, 표면 산화물, 공기 및 기포, 열 응력 및 변형 등과 같은 다양한 결함을 추적하면서, 주조 부품의 충진 및 응고에 대한 상세한 통찰력을 제공합니다. 금형을 분석하거나 FLOW-3D CAST로 코어의 가스 처리 같은 열 특성 및 기타 특성을 제거 할 수 있습니다.

최적화된 시뮬레이션을 통한 설계는 생산 현장에서의 개발 시간이 단축되고 출시 시간이 단축되며 생산량이 늘어나게 됩니다. FLOW-3D CAST는 담당자가 새로운 주조 공정 또는 합금을 배치 할 때 설계 및 개발 비용을 절감 할 수 있습니다.

직관적이고 편의성 높은 사용자 인터페이스를 결합한 FLOW-3D CAST는 성공적인 프로젝트를 통해 충진 및 응고 결함에 대한 정확한 예측을 제공합니다. 공정 요구 사항에 가장 적합한 샌드 캐스팅, 금형 주조 및 고압 다이 캐스팅을 사용할 수 있습니다.

High Performance Computing: in-House or in the Cloud

대규모 시뮬레이션의 경우 많은 계산 시간이 필요하게 되는데 이를 극복하기 위한 최고의 컴퓨팅 성능이 필요하십니까? FLOW-3D CAST는 필요 시 고성능 클라우드 컴퓨팅 환경인 클러스터 버전으로 손 쉽게 전활할 수 있습니다.

Courtesy Littler Diecasting Corporation

금속 주조 애플리케이션은 매우 어려운 시뮬레이션 중 하나입니다. 관련된 물리학의 복잡성과 적용 범위, 박막 주조, 주조 장비 정교함 등 고객의 높은 눈높이가 증가함에 따라 FLOW-3D CAST도 이를 충족하기 위한 다양한 솔루션과 기능을 제공합니다. 사형 주조, LPDC, HPDC, LostForm, 원심주조 등 FLOW-3D CAST사용자 인터페이스 안에는 고유의 전용 모델링 워크 플로우가 있습니다.

FLOW-3D CAST는 매우 정확한 흐름과 응고 결과를 통해 표면 산화물, 발생 기포, 매크로 및 미세 극성을 포함한 중요한 주조 결함을 포착할 수 있습니다. 다른 고유한 모델링 기능으로는 로봇 스프레이 냉각 및 윤활을 모델링 할 수 있는 열 다이 사이클링, 샷 슬리브 흐름 프로파일, 압착 핀 및 열 스트레스가 있습니다.

Customer Case Studies

금속 주물의 결함 식별, 보다 가볍고 강한 주조 부품을 위한 새로운 재료로 부품 설계 또는 최적 설계를 위한 반복 설계 작업은 다음과 같은 방법 중 일부입니다. 고객은 당사의 소프트웨어를 사용하여 작업 요구 사항을 충족하고 폐기율을 줄이고 시장 진출 시간을 단축하며 경쟁 업체보다 앞서 나감으로써 조직을 위한 비용을 절감합니다.

“ The more you can do on a computer ahead of time, the better. It all comes down to saving time.”

“컴퓨터에서 좀 더 많은 것을 할 수 있으면 더욱 좋습니다. 모든 것은 시간 절약에 달려있습니다.”

– Elizabeth Ryder of Graham-White Manufacturing Co.

FLOW-3D의 활용 및 설계 적용 사례 (3)

주조, 기계 분야의 활용

주조 분야 사용자들에게 제공되는 FLOW-3D 제품은 주조해석에 전문화된 FLOW-3D Cast이다. 이는 범용인 FLOW-3D를 주조분야에만 국한시켜 이 분야의 사용자가 가장 쉽게 접근, 활용할 수 있도록 사용자 환경을 재구성하였고, 공정 설계자로부터 전문 해석자까지 제품을 사용하는데 어려움이 없도록 최대한 접근성을 높여 개발되었다. <그림 1>은 FLOW-3D Cast의 GUI와 그에 따른 절차 설명을 간단히 보여주고 있다. 

그림 1. FLOW-3D Cast의 GUI

FLOW-3D Cast는 대표적으로 고압 다이캐스팅, 저압 다이캐스팅, 경동주조, 중력주조, 중자성형 등 거의 주조 전분야에 대한 해석을 수행할 수 있으며, 주조 합금과 금형, 몰드 모두에 대해 유동 및 열응력 솔루션을 제공해 줄뿐만 아니라, 제품 생산 시 발생하는 불량 문제 등을 빠르게 파악하고 개선해 나갈 수 있는 방향을 제시해 줄 수 있다.
FLOW-3D Cast의 각 기능에는 앞서 말한 주조 과정에서 사용되는 공정을 모델링할 수 있도록 개발되었고, 정확한 유동과 응고 결과는 물론 제품의 표면산화물, 혼입된 공기, 매크로 및 마이크로 기공, 수축공과 같은 중요한 주조 결함을 포착할 수 있는 기능이 탑재되어 있다. 또 다른 독특한 모델링 기능으로는 로봇 스프레이 냉각을 적용할 수 있는 열 다이 사이클링 기능 및 샷 슬리브 흐름 프로필, 스퀴즈 핀 및 열응력을 모델링할 수 있는 기능도 탑재되어 있다.


그림 2. FLOW-3D Cast의 주조해석 종류

이번 호에서는 대표적인 실물 예제로 여러 주조 공법 중 고압 다이캐스팅, 중력주조의 실례를 들어 설명하고 제철 및 제강 공정에서 활용된 몇 가지 사례를 덧붙여 소개하고자 한다.

1. 고압 다이캐스팅 해석
FLOW-3D Cast가 수행할 수 있는 주조 분야 중 대표적인 주조 해석은 용탕의 충진 현상이 최대 관점인 고압 다이캐스팅 해석이다. 고압 다이캐스팅은 FLOW-3D Cast 내의 GMO(General Moving Object)라는 기능을 이용하여 플런저 운동에 의한 슬리브 내의 용탕(액체화된 용융된 금속)을 제품 캐비티 안에 고속으로 밀어 넣는 공정이다. FLOW-3D Cast는 용탕의 충진 과정뿐 아니라 온도, 압력, 속도 등 사용자가 원하는 결과들을 얻을 수 있으며, 또한 용탕의 충진 과정에서 불가피하게 나타날 수 있는 표면 산화물의 생성, 혼입된 공기로 인한 미세 기공의 생성, 응고 과정 중의 수축공 등 다양한  불량 원인을 찾아 준다.
해석 사례로서 센터 블록이라는 실제 제품에 대해서 고압 다이캐스팅 해석을 수행하여 충진 및 응고 해석을 수행하여 보았다. 이 제품은 각종 유압장치들이 연결되는 부품으로 기밀성이 필수적인 제품이다. 기존에는 사각형의 알루미늄 덩어리를 가공하여 제품을 생산하였으나, 생산성 면에서 매우 뛰어나고 가벼운 고압 다이캐스팅 공법을 적용하여 생산하고 있다.

그림 3. 센터 블록의 제품 형상

다운로드 : [ 3회_201803_analysis_flow3d ]

작성자 | 조애령_에스티아이C&D 솔루션 사업부 차장
이메일 | joal@stikorea.co.kr
홈페이지 | www.flow3d.co.kr

출처 : CAD&Graphics 2018년 03월호

FLOW-3D CAST 사양

FLOW-3D CAST Feature

CAST virtual foundry conference banner

Active Simulation Control

실행중인 해석의 제어 파라미터는 History probes에서 사용자가 정의한 조건에 따라, 런타임 동안에 자동으로 변경 될 수 있습니다. History probes에 의해 기록된 시뮬레이션 변수는 경계 조건, mass source 및 General Moving Object 기능을 이용하여, 시간에 따른 개체의 동작을 제어하기 위해 사용될 수있습니다. 예를 들어, 고압다이캐스팅 해석에서 게이트에 설정한 History probes에 유체가 도달하면, 그 정보를 캡처하는 데이터 출력 주파수를 증가시켜 플런저의 속도를 고속으로 자동 전환 될 수있습니다. 고압다이캐스팅 해석은 유체가 게이트에 도달 할 때 자동으로 고속 전환됩니다. 이 프로세스는 새로운 실행 시뮬레이션 제어 기능을 통해 자동으로 진행됩니다. 저속 구간에서 플런저의 움직임은 trigger 슬리브의 용융물에 혼입되는 공기의 양을 최소화하기 위해 Barkhudarov 방법 1을 사용하여 계산됩니다. 이 결과는 훨씬 더 높은 품질의 주조품이 나올수 있도록 설계하는데 도움이 될 수 있습니다. Read the development note > Read the blog post >

Batch Postprocessing & Report Generation

Batch 후처리 및 보고서 생성은 해석 결과 분석시 사용자의 해석 처리 시간을 절약하기 위해 개발되었습니다. Batch 후처리는, 해석이 완료된 후, 사용자가 애니메이션, 시나리오, 그래프, 텍스트 데이터 시리즈를 정의하여 자동으로 생성되도록 할 수 있습니다. 그래픽 요청은 백그라운드에서 FlowSight를 실행하여 처리되도록 FLOW-3D Cast에 정의되어 있습니다. 원하는 해석 결과를 생성할 수 있는 컨텍스트 파일을 사용하면 Batch 후처리 기능을 사용할 수 있습니다. Batch 후처리가 완료되면, 사용자는 쉽게 자신의 관리자, 동료, 또는 클라이언트에 보낼 수있는 HTML5 형식의 완벽한 기능을 갖춘 보고서를 만들 수 있습니다. 이미지 및 동영상도 보고서에 포함 할 수 있고, 사용자는 텍스트, 캡션, 참고 문헌의 형식을 완벽하게 제어 하고 유지할 수 있습니다. Read the blog post >

Metal Casting Models

Squeeze Pin Model

스퀴즈 핀은 주조시 주입 공급이 어려운 영역에서, 응고하는 동안 금속 수축을 보상하기 위해 사용되는 실제의 다이 캐스팅 머신의 동작을 모델링하는 해석을 할 수 있습니다. 스퀴즈 핀은 선택된 표면에 cylinderical squeeze pin을 추가하여, STL 파일 또는 대화식으로 생성 될 수 있습니다. Read the development note >

Intensification Pressure Model

새로운 플런저 타입 형상이 추가 되었습니다. 강화된 압력 조건으로 macro-shrinkage 와 micro-porosity 제거를 지정할 수 있습니다.

Thermal Die Cycling model

FLOW-3D Cast v4.1's full process thermal die cycling model

다이싸이클링 (Thermal die cycling, TDC) 모델에 새로운 두 가지의 단계가 추가되었습니다. 금형이 열린 상태에서 제품이 여전히 금형 내부에 있는 ejection 단계와, 금형이 닫혔지만 사출 바로전의 preparation 단계가 추가되었습니다. 또한, 마지막 싸이클만이 아닌 모든 금형 싸이클 모두 수렴된 결과를 전달하기 위해 TDC 솔버가 성능 손실 없이 최적화 되었습니다. Read the blog post >

Valves and Vents

Modeling valves and vents in FLOW-3D Cast v4.1

밸브와 밴트의 외부 압력과 온도는 이제 사용자가 다이 캐스팅 공정에서 충진중에 보다 실제적인 동작을 정의 할 수 있도록, 시간의 표 함수로서 정의 할 수있습니다. 밸브 및 벤트의 압력 및 온도는 프로세스 설계 단계에서 유용한 제품 내부에 설정된 프로브에 의해 제어 될 수 있습니다.

PQ2 Diagram

PQ2다이어그램의 사용은 사용자가 더 나은 슬리브의 플런저 실제 움직임과 유사하게 적용 할 수 있습니다. 새로운 기능은 실제 공정 변수가 아직 알려져 있지 않았을 때 다이캐스팅 설계 단계 중에 특히 유용합니다. Read the blog post >

Cooling Channels

냉각 채널은 금형 각각의 냉각 유로에 의해 제거되거나 추가된 열의 총량에 의해 제어 될 수 있습니다. Read the development note >

Air Entrainment Model

Air entrainment 모델에 compressibility를 입력하는 새로운 옵션이 추가되었습니다. 고압 다이캐스팅의 충진 공정과 같은 경우, 공기 압축성은 유체 압력의 변화로 인한 유체의 흐름에 중요한 인자가 됩니다.
 

Cavitation Model

캐비테이션 모델은 유동 조건의 더 넓은 범위에 걸쳐 유체의 캐비테이션 거동을 나타내도록 개선되었습니다. 캐비테이션 생성에 대한 새로운 옵션은 경험적 관계를 기반으로, 기존의 일정한 속도로 생성되는 방식에서 보완되었습니다. 새로운 passive gas model 옵션은 open bubbles이 아닌 유체내에 cavitationg gas를 추적하여, 계산에 필요한 격자와 계산시간을 줄일 수 있습니다. Read the development note >

Two-fluid Phase Change Model

Two-fluid phase change model 은 과냉각을 포함하도록 확장되었습니다. 일정한 과냉각 온도를 정의하고 가스 온도가 응축이 일어나기 전에 포화점 이하로 내려갈 수 있게 함으로써 구현됩니다.

Simulation Results and Analysis

Simulation Results File Editor

사용자가 FLOW-3D Cast v4.1 결과 파일들을 병합 및 제거 할 수 있는 편집 유틸리티

Linking flsgrf.* files

Restart 해석 결과 파일들(flsgrf.*)은 FlowSight 에서 하나의 연속적인 애니메이션 결과를 표시하기 위해 restart source 결과로 링크될 수 있습니다.

Fluid/wall Contact Time

A new spatial quantity has been added to the solution output that stores the time that metal spent in contact with each geometric component, as well as the time spent by each component with metal.

용탕이 각 geometry 컴포넌트를 접촉한 시간과 각 컴포넌트가 용탕과의 접촉 시간을 나타내는 새로운 공간적 양이 해석 아웃풋에 추가 되었습니다.

Performance and Usability

Calculators

열전달 계수, 열 침투 깊이, 밸브 손실 계수, 슬리브에 용탕량(깊이), 플런저의 속도를 계산할 수 있는 Calculators 기능이 Model Setup 창에서 바로 가능해졌습니다. 또한 유틸리티 메뉴에서도 가능합니다.

Thermal Die Cycling

Heat transfer database in FLOW-3D Cast v4.1

열전달 계수 데이터베이스와 각 싸이클 단계들이 입력되어있어 간편하게 다이싸이클링 해석을 하실 수 있습니다.

GMRES Pressure Solver

GMRES pressure solver의 속도가 솔버 데이터 구조의 최적화로 인해 2배까지 향상되었습니다. 이로 인해 메모리 사용량이 20% 미만으로 증가할 수 있습니다. Read the blog post >

Sampling Volumes

Sampling volume 기능은 STL로 정의할 수 있습니다. 각 sampling volume에 의해 계산된 양들의 목록은 유체의 부피, 최대/최소 온도, 파티클의 갯수와 같은 전체 해석 영역에 대해 모두 같은 양이 되도록 확장되었습니다.

 

FSI/TSE Model

구조분석 모델의 성능이 부분적인 coupling으로 해석 솔버의 병렬화와 최적화를 통해 향상되었습니다.

Workspaces

Workspaces 를 이전에 설치된 FLOW-3D에서 가져올 수 있습니다. Workspaces 와 사용자가 선택한 시뮬레이션들을 복사할 수 있습니다.

Expanded Simulation Pre-check

Simulation pre-check 기능은 preprocessor checks를 포함하고, 문제가 발생하는 경우 링크됩니다.

Improved Transparency

Depth-peeling 옵션은 transparent geometries 를 좀 더 잘 표현하고, v4.0보다 10배 빨라졌습니다.

Interactive Tools

Baffles, history probes, void/fluid pointers, valves, mass-momentum sources, squeeze pins에 대한 새로운 대화형 생성 기능이 추가되었습니다. 또한 probing과 clipping 도구들이 대화형으로 개선되었습니다.

General Enable/Disable

모든 objects (e.g., mesh blocks)은 활성화/비활성화 할 수 있습니다.

Estimated Remaining Simulation Time

솔버 메세지 파일에 short-print로 추정된 잔여 해석 시간이 추가 되었습니다.

Tabular Data

테이블 형식의 데이터에서 선택된 데이터를 마우스 오른쪽 버튼을 클릭하여 csv파일 또는 외부 파일에 복사, 저장할 수 있습니다.

1 23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

스퀴즈(압착) 핀 / Squeeze Pins

스퀴즈(압착) 핀 / Squeeze Pins

주조의 복잡성이 증가함에 따라, 게이팅 및 피딩 시스템 및 적절한 다이 온도 관리가 최적화되어 있음에도 불구하고, 대부분의 경우 절삭유 부족으로 인한 다공성 수축이 불가피합니다. 고압 및 영구 몰드 주조에서 수축 다공성을 감소시키기 위해 국부적으로 금속을 압착하는 데 압착 핀이 자주 사용됩니다. 그러나 스퀴즈 핀의 효과는 압착의 타이밍과 위치에 따라 크게 좌우됩니다. 이러한 실제 시나리오를 예측하기 위해 스퀴즈 핀 모델이 FLOW-3D 버전 11.1 및 FLOW-3D Cast v4.1에서 개발되어 스퀴즈 핀 프로세스 매개 변수를 설계하고 최적화하는 데 도움을 줍니다.

주조물의 복잡성이 증가함에 따라 최적화된 탕구계 및 공급 시스템과 적절한 다이 온도 관리에도 불구하고, 많은 부품에서 불량한 공급으로 인한 수축 다공성이 불가피한 경우가 많습니다.

고압 및 영구 금형 주물에서는 squeeze 핀을 사용하여 금속을 국부적으로 눌러 수축 다공성을 낮추는 경우가 많습니다. 단, squeeze 핀의 효과는 그 배치와 가압 시기에 따라 크게 달라집니다. 이러한 실제 시나리오를 예측하기 위해 FLOW-3D에서 스퀴즈 핀 프로세스 매개 변수를 설계하고 최적화하는데 도움이 되는 스퀴즈 핀 모델이 개발되었습니다 .

Squeeze Pin Model in FLOW-3D

스퀴즈 핀 모델은 규정 된 moving objects model 을 기반으로하며 열 전달 및 응고 역학 고려 사항을 기반으로하는 단순 수축 모델과 함께 작동합니다. 활성화되면 스퀴즈 핀이 인접한 액체 금속의 수축량을 감지하고 해당 부피를 정확하게 보정하기 위해 이동합니다. 스퀴즈 핀은 최대 허용 거리를 벗어나거나 표면에 너무 많은 굳은 금속을 만나면 멈 춥니 다. 핀에 대한 힘을 정의 할 수 있으며 금속 압력으로 변환됩니다. 그 압력은  thermal stress evolution 및 미세 다공성 모델과 함께 사용할 수 있습니다 .

스퀴즈 핀의 활성화 타이밍은 모델의 구성 요소입니다. 이 모델은 몇 가지 유연한 활성화 제어를 제공합니다. 스퀴즈 핀은 Active Simulation Control 이벤트에 의해 사용자가 지정한 시간에 활성화되거나 자동으로 활성화되도록 설정할 수 있습니다. 후자의 경우 다음 조건이 충족되면 스퀴즈 핀이 활성화됩니다.

  1. 핀은 액체 영역에 인접 해 있습니다.
  2. 핀 사이의 경쟁을 피하기 위해 핀이 인접한 액체 경로를 통해 다른 핀에 연결되어 있지 않습니다.
  3. 인접한 액체 영역에는 게이트가 응고 된 금속으로 밀봉되기 전에 금속이 캐비티 밖으로 밀려 나올 수있는 자유 표면이 없습니다.

자동 활성화 제어는 핀의 정확한 타이밍을 알 수없는 설계 단계에서 유용합니다. 이 경우 핀 활성화 시간은 모델 출력의 일부입니다.

버전 11.1의 새로운 기능인 Active Simulation Control을 사용하여 다이캐스팅 기계에서 실제 스퀴즈 핀 제어 시스템을 모방 할 수 있습니다. 이를 통해 사용자는 주조의 다른 부분에있는 솔루션을 기반으로 핀 타이밍에 더 많은 제어 및 개선을 추가 할 수 있습니다.

Squeeze Pin Model Applications

  • 주물에서 공급이 어려운 부분의 다공성을 줄이거 나 제거하는 스퀴즈 핀의 효과 시뮬레이션
  • 숏 슬리브 피스톤은 응고 수축을 보상하고 강화 압력을 적용하기 위해 응고 중에 스퀴즈 핀으로 정의 할 수 있습니다.
  • 기존 스퀴즈 핀 설계 검증
  • 스퀴즈 핀 배치 최적화
  • 스퀴즈 핀 활성화 타이밍 최적화
  • 실제 다이캐스팅 기계에서 스퀴즈 핀 제어 검증 및 최적화

Sample Results

Squeeze pin configuration

2-캐비티 고압 다이 캐스트에 대한 사례 연구가 수행되었습니다.  두 세트의 시뮬레이션이 실행되었습니다. 하나는 스퀴즈 핀이없는 것이고 다른 하나는 스퀴즈 핀이있는 것입니다. 스퀴즈 핀의 구성은 그림 1에 나와 있습니다. 스퀴즈 핀은 두 개의 주조 부품 각각의 중앙에 배치됩니다. 이 스퀴즈 핀은 자동으로 활성화되도록 설정됩니다. 플런저는 충전 완료 즉시 활성화되도록 설정되는 압착 핀으로도 정의됩니다. 결과 수축 분포는 그림 2에 나와 있습니다. 스퀴즈 핀에 의한 수축 감소는 주물 중앙과 비스킷 중앙에서 분명합니다. 두 시뮬레이션의 총 매크로 수축도 비교되고 그림 3에 그려져 있는데, 이는 스퀴즈 핀에 의한 극적인 수축 감소를 정량적으로 보여줍니다.

Shrinkage distribution squeeze pin model

핀 활성화 시간은 그림 4와 같이 화면, HD3MSG, HD3OUT 및 REPORT 파일에 기록됩니다. 시간 정보는 고압 다이캐스팅 기계에서 스퀴즈 핀 제어 매개 변수로 직접 사용할 수 있습니다. 또한 각 스퀴즈 핀의 이동 거리와 변위량도 일반 이력 데이터에 기록되어 각 스퀴즈 핀의 효과를 확인하는 데 사용할 수 있습니다. 그림 5와 같이 각 스퀴즈 핀의 이동 거리가 표시됩니다. 플런저는 미리 정해진대로 시뮬레이션 시작시 즉시 움직이고, 플런저 근처가 마지막 응고 영역이고 가장 큰 수축을 생성한다는 사실로 인해 가장 멀리 그리고 가장 길게 움직이는 것을 볼 수 있습니다. 두 개의 주조 부품 각각의 중앙에 정의 된 두 개의 스퀴즈 핀이 동시에 활성화됩니다.주조 및 압착 핀 구성의 대칭으로 인해 거의 동일한 거리를 이동했습니다.

Macro-shrinkage volume comparison with and without squeeze pins
Figure 3. Macro-shrinkage volume comparison with and without squeeze pins.
Pin activation output
Figure 4. The output of the pin’s activation in HD3MSG file.
The traveled distance of each squeeze pin
Figure 5. The traveled distance of each squeeze pin.

주조의 복잡성이 증가함에 따라 최적화된 게이팅 및 공급 시스템과 적절한 다이 온도 관리에도 불구하고 공급 불량으로 인한 수축 다공성은 종종 큰 부품 섹션에서 불가피합니다. 고압 및 영구 주형 주조에서 수축 공극률을 줄이기 위해 금속을 국부적으로 누르는데 스퀴즈 핀이 자주 사용됩니다. 그러나 스퀴즈 핀의 효과는 위치와 가압 타이밍에 따라 크게 달라집니다. 이러한 실제 시나리오를 예측하기 위해 FLOW-3D  에서 스퀴즈핀 프로세스 매개 변수를 설계하고 최적화하는 데 도움 이되는 스퀴즈핀 모델이 개발되었습니다 .

공기 갇힘 / Air Entrapment

공기 갇힘 / Air Entrapment

FLOW-3D  의 공기 혼입 모델은 중력 주조 공정과 같은 금속 주조 시스템에서 발생하는 갇힌 공기의 양을 추정하는데 사용됩니다. 이는 단순한 물리적 메커니즘을 기반으로하므로 고압 다이 캐스팅 공정과 같은 다른 금속 주조 시스템에서 발생하는 혼입 공기의 양을 추정하는 데에도 사용할 수 있습니다. 최근 모델에 더 많은 물리적 세부 사항이 추가되어 기포 형태로 가정되는 동반 공기가 부력으로 인해 주변 액체 금속에서 상승하고 심지어 자유 표면에 도달하면 액체를 떠나는 것으로 모델링 할 수 있습니다.

고객 사례

Littler Diecast Co.

A380에 캐스팅 된 지지대. 공기 흡입에 의해 착색됩니다. Littler Diecast Co.의 예

Deco Products

Caster Wheel Leg part의 4 가지 시뮬레이션 사례. 이 부품들은 아연 합금 # 5로 만들어져 있습니다. 데코 제품의 예.

Shiloh Industries

동반 된 공기의 비율로 착색 된 전면 기어 하우징, 380 다이캐스팅 합금. Shiloh Industries의 예.
이 모델에 대한 더 자세한 정보는 Air Entrainment 의 Flow Science Report를 다운로드하십시오.

Excel 엔지니어링 프로그램 개발

Excel Engineering 프로그램 개발

Excel은 매우 유용하게 사용되는 훌륭한 프로그램 입니다. Excel을 매일 사용하지만 손이 너무 많이 가는 업무는 Excel 자동화를 통해 쉽게 고된 업무에서 벗어날 수 있습니다. 또한 복잡한 수식연결이나 과거에 개발된 엔지니어링 프로그램도 편리하게 개선할 수 있습니다.

업무 수행시 또는 연구개발에 필요한 Excel 자동화 프로그램 개발이 필요하신 경우 언제든지 연락주시기 바랍니다.

솔루션 개발팀 : 02-2026-0451

생산기술연구원 경량소재 다이캐스팅용 금형설계 웹기반 주조계산수식 설계지원 프로그램
주조 기술 공학용 개발 프로그램 Library
냉각 능력 설계 계산 Lib
Gate 방안 검토
불량요인 분석, 수축율 검증 모듈 등 다수

HPDC (High Pressure Die Casting, 고압다이캐스팅)

HPDC (High Pressure Die Casting, 고압다이캐스팅)

주조 기술 중 하나인 고압 다이 캐스팅 해석시 다른 많은 주조해석 소프트웨어에서 큰 문제들이 나타납니다. 충진되어야 할 부분은 대부분 매우 얇은 두께를 가지고 있어서 형상 구현에 필요한 격자의 수가 크게 증가되어야 합니다. 무엇보다도 금속은 높은 압력과 매우 빠른 속도로 금형안의 빈 공간에 충진됩니다. 금형 내부로 분사되고 비산하는 유동은 이 과정에서 혼입 된 공기로 인한 기포결함, 제품이 완전히 충진되기 전에 냉각이 시작하면서 발생하는 탕주름과 산화물 결함으로 이어질 수 있습니다.  FLOW-3D는 실질적인 금형 충진 해석의 정밀도를 향상시키기 위해 정확성이 고도로 향상된 TruVOF™ 추적기법과 복잡한 형상을 모델링하는FAVOR ™ 기법을 포함하고 있습니다. 또한 FLOW-3D는 혼입 된 공기, 열 응력, 미세 결함 영역을 검출하기 위한 다양한 모델을 가지고 있습니다.

Thermal Die Cycling (금형온도분포,  금형싸이클링)

Die cycling 해석은 다이캐스팅 금형이 수천 개의 제품 생산에 반복적으로 사용되기 때문에 고압 다이 캐스팅에 필수적인 공정입니다. 생산시 모든 주조품에 대해서 동일한 금형 온도를 유지하는 것은 매우 중요한데, 이는 금형온도에 따라 주조품의 결괌이 발생할 수 있기 때문입니다. FLOW-3D는 다이캐스팅 싸이클에서 발생하는  금형 가열(충진, 응고), 스프레이, 에어 블로우로부터 온도 분포를 해석하므로 사용자는 냉각 채널의 위치를 정확하고 효과적으로 예측할 수 있습니다.

Shot Sleeve Optimization (슬리브 유동 최적화)

고압다이캐스팅에서 슬리브는 금형 속에 용탕을 빠르게 밀어넣는 데 사용됩니다. 일반적으로 슬리브는 수평으로 위치되고, 용탕은 슬리브 상면의 주입구를 통해 부어집니다. 플런저는 금형 반대편에서 슬리브를 통해 금형 안쪽으로 용탕을 밀어 넣게 됩니다. 적절하게 설계된  플런저 이동조건은 슬리브 내부의 공기 혼입을 최소화하고 슬리브에서의 응고를 피하기 위해 가능한 한 빨리 금형에 용탕을 충진하게 설계되어야 합니다. 하지만,  피스톤이 너무 빨리 이동하는 경우, 슬리브 내에서 용탕의 겹침현상이 발생하여 주조품에 공기 갇힘 결함이 나타날 수 있습니다. FLOW-3D는 다이캐스팅 해석시 플런저 이동에 따른 슬리브 내부의 유동을 실제와 동일하게 반영하여 이와 같은 기포 결함을 최소화할 수 있습니다.

Filling Simulations (충진해석)

고압 다이 캐스팅을 해석할 때, 가장 어려운 과제는 고압 및 고속으로 금형에 충진되는 용탕의 유동을 정확하게 추적하는 것입니다. 많은 주조해석 소프트웨어에서 용탕의 분사와 비산을 정확하게 모사하지 못하는 것이 제품의 결함 예측에 가장 큰 장애물이됩니다. FLOW-3D의 TruVOF™ method는 설계 엔지니어들이 금형내부에서 최적의 유동 패턴을 유도하기 위해 게이트의 위치를 확인하고, 오버 플로우의 위치를 확인하는데 핵심적인 역할을 할 수 있습니다.

Modeling Solidification (응고모델링)


Courtesy of Littler Diecast Corporation

FLOW-3D는 엔지니어로 하여금 최종 제품의 품질에 영향을 미칠 수 있는 내부 기공(porosity)의 발생을 알수 있도록 합니다. FLOW-3D는 2원계합금(binary alloy)의 편석(segregation)을 해석할 수 있습니다. 해석에 의한 온도 이력은 냉금(chill)  또는 냉각라인(cooling line)이 추가되거나 수정 될 필요가 있는지, 초기 용탕 온도를 변경해야 하는지 등을 결정하는데 도움을 줍니다. FLOW-3D는 내부 미세수축공의 형성, 열응력 및 2원계합금의 편석을 예측할 수 있습니다.

HPDC Videos

Die Erosion Defects (다이캐스팅 금형침식 및 결함)

Die Erosion Defects (다이캐스팅 금형침식 및 결함)

FLOW-3D는 고압 다이캐스팅의 충진해석 시 공동현상(cavitation)으로 인한 금형 침식 결함(die erosion defect)을 정확히 예측할 수 있습니다. 충진 시 매우 빠른 유동 면에서 용탕압력(Metal pressure)가 금형재료의 증기압(metal vapor pressure) 아래 떨어질 수 있습니다 이는 공동현상과(cavitation)과 침식(erosion)을 일으키게 됩니다. 공동현상으로 인한 침식결함을 예측하는 간단한 방법은 실제로는 공동현상을 재현하지 않고 공동현상의 가능성을 예측하는 것 입니다. FLOW-3D는 cavitation pressure와 국지적인 용탕 압력의 차이를 관찰함으로써 잠재적으로 공동현상(cavitation)이 나타날 수 있는 영역을 계산할 수 있습니다. 지정된 어떤 위치에서 캐비테이션 이나 금형 부침식에 대한 가능성은 이 두 압력의 차이가 큰 경우에 존재하는 것으로 해석됩니다. 금형 침식이 가장 있을 만한 곳의 신뢰할 수 있는 지표는 이 차이가 가장 큰 값을 가지는 국소적인 “hot spot” 입니다.

제품 소개 요청

FLOW-3D 소개 요청

    회사/기관명* :
    제목* :
    성명* :
    이메일 주소* :
    연락 전화번호* :
    내용 :

    산업 분야별 해석 사례

    FLOW-3D 를 이용한 각각의 산업분야 적용 가능성을 살펴보십시오.
    경험이 풍부한 당사 FLOW-3D  Engineer가 귀하의 궁금하신 사항에 대해 언제든지 답변해 드립니다.

    주조분야
    • Gravity Pour 중력 주조
    • High Pressure Die Casting 고압 다이캐스팅
    • Tilt Casting 경동 주조
    • Centrifugal Casting 원심 주조
    • Investment Casting 정밀 주조
    • Vacuum Casting 진공 주조
    • Continuous Casting 연속 주조
    • Lost Foam Casting 소실 모형 주조
    • Fill and Defects Tracking 용탕 주입 및 결함 추적
    • Solidification and Shrinkage 응고 및 수축 해석
    • Thermal Stress Evolution and Deformation 열응력 및 변형 해석
    물 및 환경 응용 분야
    • Wastewater Treatment and Recovery 폐수 처리 및 복구
    • Pump Stations 펌프장
    • Dams, Weirs, Spillways 댐, 위어, 여수로
    • River Hydraulics 강 유역
    • Inundation & Flooding 침수 및 범람
    • Open Channel Flow 개수로 흐름
    • Sediment and Scour 퇴적 및 세굴(쇄굴)
    • Plumes, Hydraulic Zones of Influence 기둥, 수리 영향 구역
    • Coastal and Critical Infrastructure Wave Run-Up 연안 및 핵심 인프라 웨이브 런업

    에너지 분야
    • Fuel/cargo sloshing in oceangoing containers 해양 컨테이너 용 연료 /화물 슬로싱
    • Offshore platform wave effects 근해 플랫폼 파 영향
    • Separation devices undergoing 6 DOF motion 6 자유도 운동을하는 분리 장치
    • Wave energy converters 파동 에너지 변환기
    미세유체
    • Continuous-Flow 연속 흐름
    • Droplet, Digital 물방울, 디지털
    • Molecular Biology 분자 생물학
    • Opto-Microfluidics 광 마이크로 유체
    • Cell Behavior 세포 행동
    • Fuel Cells 연료 전지들
    용접 제조
    • Laser Welding 레이저 용접
    • Laser Metal Deposition 레이저 금속 증착
    • Additive Manufacturing 첨가제 제조
    • Multi-Layer Build 다중 레이어 빌드
    • Polymer 3D Printing 폴리머 3D 프린팅
    코팅 분야
    • Curtain Coating 커튼 코팅
    • Dip Coating 딥 코팅
    • Gravure Printing 그라비아 코팅
    • Roll Coating 롤 코팅
    • Slide Coating 슬라이드 코팅
    • Slot Coating 슬롯 코팅
    • Contact Insights 접촉면 분석
    연안 / 해양분야
    • Breakwater Structures 방파제 구조물
    • Offshore Structures 항만 연안 구조물
    • Ship Hydrodynamics 선박 유체 역학
    • Sloshing & Slamming 슬로싱 & 슬래 밍
    • Tsunamis 쓰나미 해석
    생명공학 분야
    • Active Mixing 액티브 믹싱
    • Chemical Reactions 화학 반응
    • Dissolution 용해
    • Drug Delivery 약물 전달
    • Drug Particles 마약 입자
    • Microdispensers 마이크로 디스펜서
    • Passive Mixing 패시브 믹싱
    • Piezo Driven Pumps 피에조 구동 펌프
    자동차 분야
    • Fuel Tanks 연료 탱크
    • Early Fuel Shut-Off 초기 연료 차단
    • Gear Interaction 기어 상호 작용
    • Filters 필터
    • Degas Bottles 병의 가스제거
    우주 항공 분야
    • Sloshing Dynamics 슬로싱 동역학
    • Electric Charge Distribution 전기 충전 배분
    • PMDs PMD