Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process

Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process

반고체 레오 다이 캐스팅 공정으로 제작된 알루미늄 합금 브래킷의 수치 시뮬레이션 및 생산 실험 검증을 기반으로 한 게이팅 시스템 설계

International Journal of Metalcasting volume 16, pages878–893 (2022)Cite this article


In this study a gating system including sprue, runner and overflows for semi-solid rheocasting of aluminum alloy was designed by means of numerical simulations with a commercial software. The effects of pouring temperature, mold temperature and injection speed on the filling process performance of semi-solid die casting were studied. Based on orthogonal test analysis, the optimal die casting process parameters were selected, which were metal pouring temperature 590 °C, mold temperature 260 °C and injection velocity 0.5 m/s. Semi-solid slurry preparation process of Swirled Enthalpy Equilibration Device (SEED) was used for die casting production experiment. Aluminum alloy semi-solid bracket components were successfully produced with the key die casting process parameters selected, which was consistent with the simulation result. The design of semi-solid gating system was further verified by observing and analyzing the microstructure of different zones of the casting. The characteristic parameters, particle size and shape factor of microstructure of the produced semi-solid casting showed that the semi-solid aluminum alloy components are of good quality.

이 연구에서 알루미늄 합금의 반고체 레오캐스팅을 위한 스프루, 러너 및 오버플로를 포함하는 게이팅 시스템은 상용 소프트웨어를 사용한 수치 시뮬레이션을 통해 설계되었습니다. 주입 온도, 금형 온도 및 사출 속도가 반고체 다이캐스팅의 충전 공정 성능에 미치는 영향을 연구했습니다. 직교 테스트 분석을 기반으로 금속 주입 온도 590°C, 금형 온도 260°C 및 사출 속도 0.5m/s인 최적의 다이 캐스팅 공정 매개변수가 선택되었습니다. Swirled Enthalpy Equilibration Device(SEED)의 반고체 슬러리 제조 공정을 다이캐스팅 생산 실험에 사용하였다. 알루미늄 합금 반고체 브래킷 구성 요소는 시뮬레이션 결과와 일치하는 주요 다이 캐스팅 공정 매개변수를 선택하여 성공적으로 생산되었습니다. 반고체 게이팅 시스템의 설계는 주조의 다른 영역의 미세 구조를 관찰하고 분석하여 추가로 검증되었습니다. 생산된 반고체 주조물의 특성 매개변수, 입자 크기 및 미세 구조의 형상 계수는 반고체 알루미늄 합금 부품의 품질이 양호함을 보여주었습니다.

Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process
Gating System Design Based on Numerical Simulation and Production Experiment Verification of Aluminum Alloy Bracket Fabricated by Semi-solid Rheo-Die Casting Process


  1. G. Li, H. Lu, X. Hu et al., Current progress in rheoforming of wrought aluminum alloys: a review. Met. Open Access Metall. J. 10(2), 238 (2020)CAS Google Scholar 
  2. G. Eisaabadi, A. Nouri, Effect of Sr on the microstructure of electromagnetically stirred semi-solid hypoeutectic Al–Si alloys. Int. J. Metalcast. 12, 292–297 (2018). Article Google Scholar 
  3. C. Xghab, D. Qza, E. Spma et al., Blistering in semi-solid die casting of aluminium alloys and its avoidance. Acta Mater. 124, 446–455 (2017)Article Google Scholar 
  4. M. Modigell, J. Koke, Rheological modelling on semi-solid metal alloys and simulation of thixocasting processes. J. Mater. Process. Technol. 111(1–3), 53–58 (2001)CAS Article Google Scholar 
  5. A. Pola, M. Tocci, P. Kapranos, Microstructure and properties of semi-solid aluminum alloys: a literature review. Met. Open Access Metall. J. 8(3), 181 (2018)Google Scholar 
  6. M.C. Flemings, Behavior of metal alloys in the semisolid state. Metall. Trans. B 22, 269–293 (1991). Google Scholar 
  7. Q. Zhu, Semi-solid moulding: competition to cast and machine from forging in making automotive complex components. Trans. Nonferrous Met. Soc. China 20, 1042–1047 (2010)Article Google Scholar 
  8. K. Prapasajchavet, Y. Harada, S. Kumai, Microstructure analysis of Al–5.5 at.%Mg alloy semi-solid slurry by Weck’s reagent. Int. J. Metalcast. 11(1), 123 (2017). Google Scholar 
  9. P. Das, S.K. Samanta, S. Tiwari, P. Dutta, Die filling behaviour of semi solid A356 Al alloy slurry during rheo pressure die casting. Trans. Indian Inst. Met. 68(6), 1215–1220 (2015). Article Google Scholar 
  10. B. Zhou, S. Lu, K. Xu et al., Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling. Int. J. Metalcast. 14(2), 396–408 (2019). Article Google Scholar 
  11. S. Ji, Z. Fan, Solidification behavior of Sn–15 wt Pct Pb alloy under a high shear rate and high intensity of turbulence during semisolid processing. Metall. Mater. Trans. A. 33(11), 3511–3520 (2002). Google Scholar 
  12. P. Kapranos, P.J. Ward, H.V. Atkinson, D.H. Kirkwood, Near net shaping by semi-solid metal processing. Mater. Des. 21, 387–394 (2000). Google Scholar 
  13. H.V. Atkinson, Alloys for semi-solid processing. Solid State Phenom. 192–193, 16–27 (2013)Google Scholar 
  14. L. Rogal, Critical assessment: opportunities in developing semi-solid processing: aluminium, magnesium, and high-temperature alloys. Mater. Sci. Technol. Mst A Publ. Inst. Met. 33, 759–764 (2017)CAS Article Google Scholar 
  15. H. Guo, Rheo-diecasting process for semi-solid aluminum alloys. J. Wuhan Univ. Technol. Mater. Sci. Ed. 22(004), 590–595 (2007)CAS Article Google Scholar 
  16. T. Chucheep, J. Wannasin, R. Canyook, T. Rattanochaikul, S. Janudom, S. Wisutmethangoon, M.C. Flemings, Characterization of flow behavior of semi-solid slurries with low solid fractions. Metall. Mater. Trans. A 44(10), 4754–4763 (2013)CAS Article Google Scholar 
  17. M. Li, Y.D. Li, W.L. Yang et al., Effects of forming processes on microstructures and mechanical properties of A356 aluminum alloy prepared by self-inoculation method. Mater. Res. 22(3) (2019)
  18. P. Côté, M.E. Larouche, X.G. Chen et al., New developments with the SEED technology. Solid State Phenom. 192(3), 373–378 (2012)Article Google Scholar 
  19. I. Dumanić, S. Jozić, D. Bajić et al., Optimization of semi-solid high-pressure die casting process by computer simulation, Taguchi method and grey relational analysis. Inter Metalcast. 15, 108–118 (2021). Google Scholar 
  20. Y. Bai et al., Numerical simulation on the rheo-diecasting of the semi-solid A356 aluminum alloy. Int. J. Miner. Metall. Mater. 16, 422 (2009). Article Google Scholar 
  21. B.C. Bhunia, Studies on die filling of A356 Al alloy and development of a steering knuckle component using rheo pressure die casting system. J. Mater. Process. Technol. 271, 293–311 (2019). Article Google Scholar 
  22. A. Guo, J. Zhao, C. Xu et al., Effects of pouring temperature and electromagnetic stirring on porosity and mechanical properties of A357 aluminum alloy rheo-diecasting. J. Mater. Eng. Perform. (2018). Google Scholar 
  23. C.G. Kang, S.M. Lee, B.M. Kim, A study of die design of semi-solid die casting according to gate shape and solid fraction. J. Mater. Process. Technol. 204(1–3), 8–21 (2008)CAS Article Google Scholar 
  24. Z. Liu, W. Mao, T. Wan et al., Study on semi-solid A380 aluminum alloy slurry prepared by water-cooling serpentine channel and its rheo-diecasting. Met. Mater. Int. (2020). Google Scholar 
  25. Z.Y. Liu, W.M. Mao, W.P. Wang et al., Investigation of rheo-diecasting mold filling of semi-solid A380 aluminum alloy slurry. Int. J. Miner. Metall. Mater. 24(006), 691–700 (2017)CAS Article Google Scholar 
  26. M. Arif, M.Z. Omar, N. Muhamad et al., Microstructural evolution of solid-solution-treated Zn–22Al in the semisolid state. J. Mater. Sci. Technol. 29(008), 765–774 (2013)CAS Article Google Scholar 


  • semi-solid rheo-die casting
  • gating system
  • process parameters
  • numerical simulation
  • microstructure
Figure 1. Steady-state shear stress a as a function of shear rate y in Sn-Pb alloy [10).

Numerical Modelling of Semi-Solid Flow under Processing Conditions

처리조건에서의 반고체유동의 수치모델링

David H. Kirkwood and Philip J. Ward
Department of Engineering Materials, University of Sheffield, Sheffield I UK

Keywords: semi-solid alloys, thixotropy, flow modelling.


During the industrial process of semi-solid forming (or thixoforming) of alloy slurries, typically the operation of die filling takes around 0.1s.
During this time period the alloy slug is transformed from a solid-like structure capable of maintaining its shape, into a liquid-like slurry able
to fill a complex die cavity: this involves a decrease in viscosity of some 6 orders of magnitUde. Many attempts to measure thixotropic breakdown experimentally in alloy slurries have relied on the use of concentric cylindrical viscometers in which viscosity changes have been followed after shear rate changes over times above 1s to in excess of 1000 s, which have little relevance to actual processing conditions and therefore to modelling of flow in industrial practice. The present paper is an attempt to abstract thixotropic breakdown rates from rapid compression tests between parallel plates moving together at velocities of around 1mis, similar to industrial conditions. From this analysis, a model of slurry flow has been developed in which rapid thixotropic breakdown of the slurry occurs at high shear rates.

합금 슬러리의 반고체 성형 (또는 틱소 성형)의 산업 공정 동안, 일반적으로 다이 충진 작업은 약 0.1 초가 걸립니다.
이 기간 동안 합금 슬러그는 모양을 유지할 수있는 고체와 같은 구조에서 액체와 같은 슬러리로 변형됩니다.
복잡한 다이 캐비티를 채우기 위해 : 이것은 약 6 차의 마그 니트 점도 감소를 포함합니다. 합금 슬러리에서 실험적으로 요 변성 파괴를 측정하려는 많은 시도는 전단 속도가 1 초 이상에서 1000 초 이상으로 변화 한 후 점도 변화가 뒤 따르는 동심원 원통형 점도계의 사용에 의존하여 실제 가공 조건과는 거의 관련이 없습니다. 따라서 산업 현장에서 흐름 모델링에. 본 논문은 산업 조건과 유사하게 약 1mis의 속도로 함께 이동하는 평행 판 사이의 빠른 압축 테스트에서 요 변성 파괴 율을 추상화하려는 시도입니다. 이 분석으로부터 슬러리의 급속한 요 변성 분해가 높은 전단 속도에서 발생하는 슬러리 흐름 모델이 개발되었습니다.


기존의 다이캐스팅을 위한 다이 설계는 과거에 예비 테스트 및 조정과 함께 축적 된 실무 경험의 문제였으며, 단기 실행, 랩, 다공성 등과 같은 결함을 제거하기 위해 다이 캐스트 제품을 검사했습니다. 이것은 모두 비용이 많이 드는 절차입니다.

시간과 비용, 그리고 프로세스의 컴퓨터 모델링은 이를 줄이거 나 없애기 위해 많은 운영자에 의해 개발되었습니다. 반고체 가공 (thixoforming)에서는 반고체 합금 슬러리의 전단이 내부 구조를 파괴하여 충전 작업 중 시간이 지남에 따라 점도가 낮아짐으로 발생하는 비 뉴턴 점도로 인해 모델링 문제가 더욱 어려워집니다.

시스템 전체에서 균일하지 않습니다. 충전 중에 발생하는 추가 응고로 인해 문제가 더욱 복잡해집니다. 빠른 충전으로 인해 이 단계에서 매우 작은 것으로 간주되기 때문에 현재 분석에서는 무시되었습니다.

우리 모델의 또 다른 한계는 슬러리가 균질한 물질로 거동 한다는 가정이며, 이는 어느 지점에서나 단일 점도로 설명될 수 있습니다. 이것은 빠른 전단의 고려 사항과 정상적인 요 변형성 조건 내에서 0.6 미만의 고형분을 분별하는 것으로 제한합니다.


Figure 1. Steady-state shear stress a as a function of shear rate y in Sn-Pb alloy [10).
Figure 1. Steady-state shear stress a as a function of shear rate y in Sn-Pb alloy [10).
Figure 2. Equilibrium viscosity as a function of shear rate in Sn-Pb alloy, fraction solid:0.36, fitted to Cross Model.
Figure 2. Equilibrium viscosity as a function of shear rate in Sn-Pb alloy, fraction solid:0.36, fitted to Cross Model.
Figure 3. Cheng Diagram: shear stress vs. shear rate.
Figure 3. Cheng Diagram: shear stress vs. shear rate.
Figure 4. Reciprocal of experimental breakdown time vs. y 1.3 for Sn-Pb alloy
Figure 4. Reciprocal of experimental breakdown time vs. y 1.3 for Sn-Pb alloy
Figure 5. Relaxation time, T, as a function of shear rate; see also figure 4, Fs =0.36.
Figure 5. Relaxation time, T, as a function of shear rate; see also figure 4, Fs =0.36.
Figure 6. Experimental and modelled results for compression test on AI-A356 alloy at two temperatures.
Figure 6. Experimental and modelled results for compression test on AI-A356 alloy at two temperatures.
Table 1. Calculated parameters for the breakdown in compression tests [20].
Table 1. Calculated parameters for the breakdown in compression tests [20].
Figure 7. Drop-forge results from Yurko and Flemings [7].
Figure 7. Drop-forge results from Yurko and Flemings [7].
Figure 8. Prediction of FLOW-3D®.
Figure 8. Prediction of FLOW-3D®.


y에서 전단 된 반고체 슬러리의 틱소 트로픽 분해에 대한 속도 방정식은 다음과 같은 형식으로 제안됩니다. T = l / (a ​​+ uym), 여기서 T는 급속 분해 또는 유사 정상 상태 구조에 대한 특성 시간이며, 밴드 m은 상수입니다. 이 관계는 제한된 범위의 전단 속도에서 Sn-Pb 합금의 전단 속도 점프에 의해 실험적으로 확인되었습니다.

이 파괴율 방정식은 AI-Si 합금의 반고체 슬러그에 대한 빠른 압축 테스트에서 실험적으로 얻은 힘-변위 곡선을 시뮬레이션하기 위해 FLOW-3D® (버전 8.2 : FlowScience Inc.)에 도입되었습니다. 담금 시간과 다른 압축 속도에서. 이 분석의 결과는 모든 경우에 요 변성 거동이 관련되어 있음을 나타내지만, 5 분 동안 담근 후 (산업 관행에서와 같이) 구조가 크게 분해되었으며 초기에는 낮은 전단 속도 영역에서 흐름이 뉴턴에 가깝습니다.

파괴율은 100 S-I 이상의 전단율에서 극적으로 증가하는 것으로 가정 됩니다. 이 예측은 높은 전단 속도에서 더 세심한 작업에 의해 테스트되어야 하지만 평균 전단 속도가 1300 sol까지 생성된 드롭 단조 실험에 의해 뒷받침되는 것으로 보입니다 [7].


[I] T.Y Liu, H.Y. Atkinson, PJ. Ward, D.H. Kirkwood: Metall.Mater.TransA, 34A (2003), 409/17.
[2] A. Zavaliangos and A. Lawley: J. Mater. Eng. Perfonn., 4 (1995),40/47.
[3] M.R. Barkhudarov, e.L. Bronisz, e.w. Hirt: ProcAth Int. Conf. onSemi-solid Processing of Alloys and Composites,1996, Sheffield,p.llO.
[4] W.R.Loue, M.Suery, J.L.Querbes: Proc.2ndInt.Conf.on Semi-solidProcessing of Alloys and Composites,1992, Cambridge MA , pp266-75.
[5] P.Kapranos, D.H.Kirkwood, M.R. Barkhudarov: Proc.5th Int. Conf.on Semi-solid Processing of Alloys and Composites, Golden, Colorado,1998. pp.II-19.
[6] T.Y. Liu, H.Y. Atkinson, P. Kapranos, D.H. Kirkwood, S.G. Hogg:Metall. Mater. Trans A, 34A (2003), 1545/54.
[7] J.A. Yurko and M.e. Flemings: Metall. Mater. Trans A, 33A (2002),2737/46.
[8] M. Modigell and J. Koke: Mechanics of Time Dependent Materials, 3(1999), 15/30.
[9] Y. Laxmanan and M.e. Flemings: Metall. Trans. A, IIA( 1980),1927/36.
[IO]A.R.A Mclelland, N.G. Henderson, H.Y. Atkinson, D.H. Kirkwood:Mater. Sci. Eng., A232 (1997), 110/18.
[II] H.A. Barnes: 1. Non-Newtonian Fluid Mech., 81 (1999),133n8.
[12]A.N. Alexandrou, E. Due , Y. Entov: 1. Non-Newtonian Fluid Mech.,96 (2001), 383/403.
[13]C.L. Martin, P. Kumar and S. Brown: Acta Mat. Mater., 42 (1994),3603/14.
[14]C. Quaak, L. Katgennan and W.H. Kool: Proc. 4th Conf. on Semi-solid Processing of Alloys and Composites, 1996, Sheffield, pp.35/39.
[15]D.C-H. Cheng: Int. Journal Cosmetic Science, 9 (1987), pp.151/91.
[16]An Introduction to Rheology: H.A. Barnes, J.F. Hutton and K Walters,Elsevier, Amsterdam, 1989.
[17]A.M. de Figueredo, A. Kato and M.e. Flemings: Proc.6th Int. Conf.on Semi-solid Processing of Alloys and Composites, 2000, Turin,477/82.
[18]1.y’ Chen and Z. Fan: Mater. Sci. Tech., 18 (2002), 237/42.
[19]Z. Fan: Int. Mater. Rev., 47 (2002), No.2, 49/85.
[20]D.H. Kirkwood and P.J. Ward: Proc. 8th Int. Conf. on Semi-solid Processing of Alloys and Composites, 2004, Cyprus. To be published.

Fig. 2 Temperature distributions of oil pans (Cycling)

내열마그네슘 합금을 이용한 자동차용 오일팬의 다이캐스팅 공정 연구

A Study on Die Casting Process of the Automobile Oil Pan Using the Heat Resistant Magnesium Alloy

한국자동차공학회논문집 = Transactions of the Korean Society of Automotive Engineersv.17 no.3 = no.99 , 2009년, pp.45 – 53  신현우 (두원공과대학 메카트로닉스과 ) ;  정연준 ( 현대자동차(주) ) ;  강승구 ( 인지AMT(주))


Die casting process of Mg alloys for high temperature applications was studied to produce an engine oil pan. The aim of this paper is to evaluate die casting processes of the Aluminium oil pan and in parallel to apply new Mg alloy for die casting the oil pan. Temperature distributions of the die and flow pattern of the alloys in cavity were simulated to diecast a new Mg alloy by the flow simulation software. Dies have to be modified according to material characteristics because melting temperature and heat capacity are different. We changed the shape and position of runner, gate, vent hole and overflow by the simulation results. After several trial and error, oil pans of AE44 and MRI153M Mg alloys are produced successfully without defect. Sleeve filling ratio, cavity filling time and shot speed of die casting machine are important parameter to minimize the defect for die casting Magnesium alloy.

Keywords: 오일팬 , 내열마그네슘합금, 알루미늄 합금,  다이캐스팅, 유동해석


크랭크케이스의 하부에 부착되는 오일팬은 오일 펌프에 의해 펌핑된 오일이 윤활작용을 마치고 다시 모이는 부품이다. 오일의 온도에 의해 가열되므로 일반적으로 사용되는 마그네슘 합금인 AZ나 AM계열의 합금은 사용이 불가하며 내열소재의 적용이 불가피하다.

현재 ADC12종 알루미늄 오일팬 둥이 적용되고 있으며, 이를 마그네슘으로 대체할 경우 밀도가 알루미늄 2.8g/cm3‘, 마그네슘 1.8g/cm3‘이므로 약 35%의 경량화가 가능하다고 단순하게 말할 수 있다.

그러나 탄성계수는 알루미늄 73GPa이 고 마그네슘 45GPa이므로 외부 하중을 지지하고 있는 부품의 경우는 단순한 재질의 변경만으로는 알루미늄과 같은 정도의 강성을 나타내지 못하므로 형상의 변경 등을 통한 설계 최적화가 요구된다.

마그네슘은 현재까지 개발된 여러 가지 구조용 합금들 중에서 최소의 밀도를 가지고 있으며 동시에 우수한 비강도 및 비탄성 계수를 가지고 있다.1.2)

그러나 이러한 우수한 특성을 가지는 마그네슘 합금은 경쟁 재료에 비해 절대 강도 및 인성이 낮으며 고온에서 인장 강도가 급격히 감소하고 내부식 성능이 떨어지는 등의 문제점이 있다. 현재까지 자동차 부품 중 마그네슘 합금은 Cylinder head cover, Steering wheel, Instrument panel, Seat frame 등 비교적 내열성이 요구되지 않는 부분에만 한정적으로 적용되고 있다.
자동차 산업에서 좀 더 많은 부품에 마그네슘 합금을 적용하기 위해서는 내열성을 향상 시키고 고온강도를 향상시키기 위한 새로운 합금의 개발이 이루어져야 한다. 최근 마그네슘 합금개발에 대한 연구동향은 비교적 저가인 원소를 값비싼 원소가 첨가된 합금계에 부분적으로 첨가하거나 대체함으로써 비슷한 내열 특성을 가지는 합금을 개발하고,34) 이를 자동차 산업이나 전자 산업의 내열 부품 적용으로 확대하기 위하여 진행되고 있다. 현재 마그네슘 내열 부품은 선진국에서 자동차 부품으로 개발되고 있으나6-8)

국내에서는 아직 자동차 부품에 폭 넓게 적용되고 있지 않다. 그러므로 국내 자동차 산업이 치열한 국제 시장에서 생존하기 위해서는 마그네슘 합금의 내열 부품 제조기술을 조기에 개발하여 선진국보다 기술적, 경제적 우위를 확보하는 것이 절실히 요구된다.

본 연구에서는 내열 마그네슘합금을 이용하여 알루미늄 오일팬을 대체할 수 있는 새로운 오일팬의 개발올 위한 적절한 다이캐스팅 공정방안을 도출하고자 한다.


Fig. 1 Current Al oil pan and cooling lines
Fig. 1 Current Al oil pan and cooling lines
Fig. 2 Temperature distributions of oil pans (Cycling)
Fig. 2 Temperature distributions of oil pans (Cycling)
Fig. 3 Developed Mg oil pan and cooling lines
Fig. 3 Developed Mg oil pan and cooling lines
Fig. 4 Temperature distributions of Mg oil pan for new cooling lines (Cycling)
Fig. 4 Temperature distributions of Mg oil pan for new cooling lines (Cycling)
Fig. 5 Filling pattern of current Al oil pan
Fig. 5 Filling pattern of current Al oil pan
Fig. 11 Temperature distribution at t-=1.825sec
Fig. 11 Temperature distribution at t-=1.825sec



오일팬은 엔진 내부에서 순환되어 돌아오는 오일의 열을 외부로 발산하는 냉각기능 및 엔진으로부터 발생하는 소음이 외부로 전달되지 않도록 소음을 차단하는 역할을 수행하는 매우 중요한 부품 중의 하나이다. 본 연구에서는 현재 개발 중에 있는 새로운 내열 마그네슘 합금을 이용하여 현재 사용하고 있는 알루미늄 오일팬을 대체할 마그네슘 오일팬을 개발하고 시험 생산하였으며 다음과 같은 결론을 얻었다.

  1. 알루미늄 합금과 마그네슘 합금의 단위 부피당 열 용량은 각각 3.07x10J/m/K, 2.38x10J/m/K로서 동일 주조 조건 시 응고 속도 차이가 제품 성형에 영향을 미칠 것으로 예상되었으며, 주조해석 및 제품분석을 통해 확인하였다. 따라서 주조 조건에 가장 큰 영향을 미치는 것으로 확인된 용탕, 금형온도, 주조속도 등을 변경하여 최적 주조공정 조건을 확립하였다.
  2. 제품 및 시험편 성형에 영향을 미치는 것으로 확인된 런너의 곡률 반경을 증대시키고 게이트의 갯수 및 오버플로우 위치와 형상을 조절함으로서 제품 및 시험편의 용탕 흐름을 원활하게 조절 할 수 있었다.
  3. MRI153M 합금은 AE44 합금에 비해 응고 시작점에서 완료점까지의 응고시간이 길어 응고 완료 후, 내부 수축기포가 보다 많이 관찰되었다.
    따라서 MRI153M 합금 주조시 슬리브 충진율, 게이트 통과속도, 충진시간 등을 달리하여 최적 주조 품을 생산할 수 있었다.


  1. W. Sebastian, K. Droder and S. Schumann, Properties and Processing of Magnesium Wrought Products for Automotive Applications; Conference Paper at Magnesium Alloys and Their Applications,Munich, Germany, 2000 
  2. J. Hwang and D. Kang, “FE Analysis on the press forging of AZ31 Magnesium alloys,” Transactions ofKSAE, Vo1.14, No.1, pp.86-91, 2006  원문보기 
  3. S. Koike, K. Washizu, S. Tanaka, K. Kikawa and T. Baba, “Development of Lightweight Oil Pans Made of a Heat-Resistant Magnesium Alloy for Hybrid Engines,” SAE 2000-01-1117, 2000 
  4. D.M. Kim, H.S. Kim and S.I. Park, “Magnesium for Automotive Application,” Journal ofKSAE, Vo1.18, No.5, pp.53-67, 1996 
  5. P. Lyon, J. F. King and K. Nuttal, “A New Magnesium HPDC Alloy for Elevated Temperature Use,” Proceedings of the 3rd International Magnesium Conference, ed. G. W. Lorimer, Manchester, UK, pp.1 0-12, 1996 
  6. S. Schumann and H. Friedrich, The Use ofMg in Cars – Today and in Future, Conference Paper at Mg Alloys and Their Applications, Wolfsburg, Germany, 1998 
  7. F. von Buch, S. Schumann, H. Friedrich, E. Aghion, B. Bronfin, B. L. Mordike, M. Bamberger and D. Eliezer, “New Die Casting Alloy MRI 153 for Power Train Applications,” Magnesium Technology 2002, pp.61-68, 2002 
  8. M.C. Kang and K.Y. Sohn, “The Trend and Prospects of Magnesium Alloys Consumption for Automotive Parts in Europe,” Proceedings of KSAE Autumn Conference, pp.1569-l576, 2003 

FLOW-3D 유틸리티 프로그램 안내

이 문서에서는 FLOW-3D에서 사용할 수 있는 일부 Utility Program에 대해 설명합니다. 유틸리티 프로그램의 목적은 시뮬레이션을 수행할 때 반드시 필요한 것은 아니지만 특정 작업을 쉽게 수행할 수 있도록 돕는 것입니다. 각 개별 유틸리티의 사용법은 다음과 같습니다.

  1. 파일 변환 및 STL 품질 검사 도구

FLOW-3D는 중립 형식인 STL파일 형식만 지원하며 대부분의 CAD 패키지에서 STL형식을 지원하지만 형상을 STL형식으로 만들 수 없는 이유가 있을 수 있습니다. 이로 인해 FLOW-3D 사용자는 여러 파일 변환 유틸리티를 사용할 필요가 있을 수 있습니다. 또한 STL 파일 품질을 확인하는데 사용할 수 있는 여러 유틸리티도 사용할 수 있습니다. 아래 나열된 이러한 유틸리티는 다음 섹션에서 자세히 설명합니다.

  • Cad2Stl : 다양한 CAD 형식에서 변환 파일을 사용하는.STL파일
  • Topo2STL : 파일을topo형식에서.STL파일로 변환하는 데 사용
  • MiniMagics :.STL파일의 오류를 확인하는 데 사용
  • qAdmesh :.STL파일의 오류를 확인하고 사소한 문제를 해결하는데 사용


Cad2Stl 은 다른 CAD 파일 형식을 FLOW-3D에서 사용되는 STL 파일 형식으로 변환하기 위한 파일 변환 도구입니다. Cad2Stl 은 다음 파일 형식을 STL 형식으로 변환합니다.

  • Autodesk 3D Max :.3ds
  • Autodesk 별명 :.obj
  • IGES: .igs,.iges
  • BREP :.brep
  • 단계 : .stp,.step
  • 아바쿠스 6.2+ :.inp
  • NASTRAN :.blk
  • Marc Mentat : 고정 형식과 쉼표로 구분.dat

Cad2Stl 은 파일에서 역 법선 벡터를 보정하는 기능도 있습니다. 이 유틸리티는 유지 보수 계약이 유효한 모든 FLOW-3D 고객에게 무료로 제공되며 FLOW-3D Usre Site의 유틸리티 페이지에서 다운로드 할 수 있습니다.

Cad2Stl 은 Flow Science Japan에서 FLOW-3D 사용자를 위해 개발되었습니다 .

Cad2Stl Program
  1. 변환 목록에 변환할 파일 추가
    • 추가 -변환 목록에 파일을 추가합니다.
    • 제거 -변환 목록에서 파일을 제거합니다. 제거하려면 변환 목록에서 파일을 강조 표시하고 제거를 선택하십시오.
    • 기본적으로 파일 이름은 import file 이름과 일치하는 CAD파일을 STL파일 이름으로 지정하는데 변경이 필요하면 더블 클릭하고 이름을 바꾸면 변경할 수 있습니다.
  2. 구체화 옵션을 사용하여 STL 파일의 품질을 선택하십시오. 선택하고 볼 수 있는 네 가지 수준의 정확도가 있습니다. 파일이 변환될 때마다 STL로 작성된 파일이 표시되므로 사용자가 만족스럽거나 더 높은 수준의 세분화가 필요한지 여부를 결정할 수 있습니다. 정확성이 향상되면 파일 크기는 증가하지만 처리 시간은 크게 증가하지 않습니다. 다른 파일 형식을 한 번에 로드하고 변환할 수 있습니다. 또한 변환 프로세스가 완료되면 파일을 로드하고 표시하기 위한 대화 상자가 열립니다. 이것은 BREP, IGES및 STEP 파일 형식에만 적용됩니다.
  3. 원하는 작업을 선택하십시오. 다른 파일 형식을 한 번에 로드하고 변환할 수 있습니다. 또한 변환 프로세스가 완료되면 파일을 로드하고 표시하기 위한 대화 상자가 열립니다.
    • 변환 -파일을 변환합니다. 한 파일을 변환하려면 로드할 파일 목록에서 해당 파일을 강조 표시하여 변환하십시오.
    • 모두 변환 -모든 파일을 변환
    • 표시 -변환된 파일을 강조 표시합니다
    • 면 방향 수정 -일반 수정 루틴
    • 변환 목록 숨기기 -더 나은 부품 표시를 위해 보기 화면을 증가 시킵니다.
    • 와이어 프레임 오버레이 -각 STL 패싯의 패싯 모서리를 오버레이 합니다. 이것은 오른쪽 하단의 확인란입니다.
    • 로그 지우기 – 변환 로그 텍스트 상자에 대한 모든 데이터 출력을 지웁니다.
  4. 종료 -프로그램을 닫습니다


qAdmesh는 .STL파일에 오류 가 있는지 확인하는 도구이며 연결이 끊어진 패싯, 반전된 법선, 연결이 끊어진 패싯 및 누락된 패싯과 같은 사소한 문제를 해결하는 데 사용할 수 있습니다. qAdmesh를 시작하려면:

  • GUI에서: Model Setup 탭의 Tools ‣ qAdmesh로 이동하십시오.
  • Windows: 바탕 화면 아이콘을 클릭하거나 시작 메뉴에서 FLOW-3D v12.0 폴더의 형상 도구 하위 디렉토리에 있는 Admesh 항목으로 이동하십시오.
  • Linux의 경우: $F3D_HOME/utilities/qAdmesh을 실행하십시오.

명령: qAdmesh를 열고 찾아보기 버튼을 사용하여 지오메트리 파일을 로드 하십시오. 문제를 해결하고 수정 사항으로 새 형상 파일을 생성하려면 기본 옵션을 그대로 두고 출력 유형을 선택하고 새 형상 파일의 경로를 지정하십시오. 이진 STL 은 ASCII STL 옵션 보다 작은 파일을 생성하므로 권장됩니다 (이진 및 ASCII 형식 만 FLOW-3D 로 인식됨). 그런 다음 적용을 클릭하여 파일을 확인하고 수정하십시오.

qAdmesh program
qAdmesh program

qAdmesh의 출력은 인터페이스의 메시지 섹션에 표시됩니다. 출력에는 감지된 오류와 출력 옵션이 선택된 경우 이러한 문제점을 해결하기 위해 수행할 조치가 표시됩니다.

사용자 정의 검사 옵션은 파일을 고정할 때 프로그램이 어떤 작업을 수행하는지에 대한 자세한 제어를 제공할 수 있습니다. 또한 변형 및 공차 탭에는 .STL 파일의 회전, 미러링, 크기 조정, 변환 및 병합 기능을 제공하는 옵션이 있습니다.

qAdmesh는 무료 유틸리티입니다만 FSI에서 지원하지 않습니다. qAdmesh가 문제를 해결하는 능력은 심각도에 따라 다릅니다. 문제의 수가 증가함에 따라 qAdmesh 가 문제를 해결할 수 있는 가능성이 줄어 듭니다. 문제를 해결할 수 없는 경우 CAD 패키지를 사용하여  .STL 파일을 재생성 하는 것이 좋습니다.


MiniMagics 는 무료 STL파일 시각화 및 복구 유틸리티입니다. 설치는 FLOW-3D 홈 디렉토리 의 Utilites 폴더에서 찾을 수 있으며 파일 분석 및 복구를 위한 유용한 도구로 qAdmesh에서 수행된 수정 사항을 시각화하거나 qAdmesh의 대안으로 사용할 수 있습니다.


  • Topo2STL

FLOW-3D가 지원하는 유일한 CAD 파일 형식은 .STL이지만 형식을 포함하여 다른 형식의 지형 데이터를 갖는 것은 드문 일이 아닙니다. Topo2STL의 유틸리티로 변환할 수 있습니다. Topo2STL 은 Windows 시스템에서만 사용 가능하며 유틸리티 드롭 다운 메뉴에서 액세스 할 수 있습니다.


  1. 지형 파일은 다음 형식의 ASCII 파일입니다. 각 선은 점을 나타내며 동일한 단위 시스템에서 3 개의 좌표 (일반적으로 피트 또는 미터)를 포함합니다. 좌표는 공백으로 구분됩니다. 선의 좌표 순서는 XYZ 여야 합니다. 여기서 Z는 표고입니다. 두 좌표는 동일한 XY 점을 공유할 수 없습니다. 포인트의 순서 (파일의 줄)는 중요하지 않습니다. 좌표를 포함하지 않는 머리글 줄이나 꼬리 줄이 없어야 합니다.
  2. Topo2stl.exe유틸리티가 추출된 위치에 있는 파일을 실행하여 Topo2STL에 액세스 할 수 있습니다.
  3. 유틸리티를 시작하면 변환할 파일을 선택하라는 topo 파일 찾아보기 창이 나타납니다. 파일 찾아보기 창을 이용하여 파일을 선택합니다.
  4. topo파일이 선택되면, Topo2STL의 창이 나타나고, X, Y의 범위와 Z 계산할 topo데이터 익스텐트가 계산되면 Topo 데이터 익스텐트 및 데이터의 총 포인트 수에 대한 정보가 Information: Topo data extents 아래에 표시됩니다.
  1. 변환에 필요한 사용자 입력은 공간 분해능 및 STL 최소 Z 좌표입니다. 기본적으로 공간 해상도는 0.002 * min (X 범위, Y 범위)이고 STL 최소 Z 좌표는 ZMIN-(ZMAX-ZMIN)입니다. 여기서 ZMIN 및 ZMAX는 Topo 데이터의 범위입니다.
    • 공간 해상도는 STL 파일을 생성하는 동안 Topo 데이터가 얼마나 정밀하게 분석되는지 제어합니다.
    • STL 최소 Z 좌표는 Topo 데이터의 ZMAX보다 작은 값이어야 합니다. 이것은 STL파일의 최소 ​​Z 두께를 효과적으로 설정합니다.
  2. Browse 버튼은 파일 출력 위치를 설정하는 데 사용할 수 있습니다.
  3. 변환을 클릭하면 변환 프로세스가 시작됩니다. 이 시점에서 변환 취소를 사용하여 변환이 완료되거나 종료될 때까지 Topo2STL 창을 닫을 수 없습니다.
  1. 변환이 완료 (또는 종료)되면 변환 단추가 변환 추가로 변경되어 사용자가 변환할 다른 Topo 파일을 선택할 수 있습니다.
  1. FSAI를 사용한 유한 요소 메쉬 파일 형식 변환

FSAI의 도구에서 유한 요소 메시를 변환하는 유틸리티입니다 Abaqus6.2 이후 형식과 NASTRAN 벌크 형식에 사용되는 형식을 변환하는 FSAI는 유틸리티 드롭 다운 메뉴에서 액세스 할 수 있습니다. FSAI를 사용하려면 다음을 수행하십시오. EXODUS II

  • 적절한 모드에서 유틸리티를 엽니다 (초기 메쉬의 Abaqus 형식인지 NASTRAN 형식인지 여부에 따라 다름 )
  • 파일에서 생성 필드에서 입력 유한 요소 메쉬를 찾습니다.
  • 생성된 파일 위치 필드에서 원하는 출력 위치를 찾으십시오.
  • 생성된 파일 이름 필드에서 원하는 출력 파일 이름을 설정하십시오.
  • 생성을 누릅니다.


이 FSAI 프로그램을 사용하려면 FLOW-3D 와 별개의 라이센스가 필요합니다. 자세한 내용은 FLOW-3D 영업 담당자에게 문의하십시오.

  1. 계산기

유틸리티 드롭 다운 메뉴에 여러 계산기가 추가되어 알려진 매개 변수 (예: 유체 속성 등)를 기반으로 입력 수량을 추정할 수 있습니다. 사용 가능한 계산기는 다음을 계산합니다.

  • 냉각 채널의 열전달 계수
  • 재료 특성 및 시뮬레이션 시간에 따른 열 침투 깊이
  • 샷 슬리브의 유체 높이
  • 고압 다이캐스팅을 위한 피스톤 속도
  • 밸브 압력 계수
  1. MPDB (Material Properties Database) 확장

MPDB (Material Properties Database)는 FLOW-3D 와 별도로 Flow Science, Inc 에서 구입할 수 있는 타사 데이터베이스입니다. 여기에는 문헌의 다양한 온도 의존성 고체 재료 특성이 포함되어 있습니다. FLOW-3D 용 MPDB는 사용자가 FLOW-3D의 기본 데이터베이스와 호환되는 파일 형식을 내보낼 수 있도록 하여 데이터를 FLOW-3D 로 편리하게 가져올 수 있는 MPDB 독점 버전입니다. MPDB의 재료 특성은 대부분 고체상입니다. 따라서 FLOW-3D 모든 모델 고체 특성을 요구하는 데이터, 특히 유체 구조 상호 작용, 응고 및 열 응력 진화 모델을 활용할 수 있습니다.

MPDB는 다양한 형식으로 데이터를 내보낼 수 있는 독립형 데이터베이스로 사용될 수 있습니다. MPDB에 대한 일반적인 지침은 JAHM Software, Inc.를 방문하십시오. 여기에서는 FLOW-3D 와 함께 MPDB를 사용하는 방법에 대한 지침을 제공합니다. FLOW-3D 와 제대로 통합하려면 MPDB 용 실행 파일이 Windows와 Linux에 있어야 합니다. 실행 파일은 FLOW-3D GUI에 의해 감지되며 재료 메뉴 아래 MPDB에서 재료 가져오기 메뉴 항목 이 활성화됩니다. 이러한 조건 중 하나라도 충족되지 않으면 FLOW-3D GUI를 통해 액세스 할 수 없습니다. MPDB%F3D_HOME%\Utilities$F3D_HOME/UtilitiesMPDB_for_FLOW-3D


material를 클릭 MPDB에서 가져오기 및 사용자 인터페이스 MPDB는 별도의 창에서 열립니다. 재료는 주요 요소로 분류되었습니다. Materials 탭, 테이블에서 요소를 마우스 오른쪽 버튼으로 클릭하여, 사용자는 해당 요소를 포함하는 물질의 목록을 볼 수 있습니다.

(Material Properties Database)
(Material Properties Database)

예를 들어 다음 그림은 철 (Fe)이 포함된 데이터베이스의 재료 목록을 보여줍니다.


사용자는 다른 합금, 세라믹, 유리 또는 기타 분류되지 않은 재료를 분류하는 다른 탭으로 전환할 수도 있습니다. 다음 그림은 Al & Cu 합금 목록을 보여줍니다.

FLOW-3D MPDB(Fe,Ni - 1006 (UNS G10060))
FLOW-3D MPDB(Fe,Ni – 1006 (UNS G10060))

재료가 식별되면 재료를 두 번 클릭하면 해당 재료에 사용할 수 있는 속성 목록이 있는 별도의 창이 나타납니다. 예를 들어 Fe 및 Ni 합금에서 1006 (UNS G10060)을 엽니다. 이러한 속성이 모두 FLOW-3D에 사용되는 것은 아닙니다.

FLOW-3D MPDB(1006(UNS G10060))
FLOW-3D MPDB(1006(UNS G10060))

각 속성은 이 창의 오른쪽에서 선택할 수 있는 다른 형식으로 파일에 표시, 플로팅 또는 저장할 수 있습니다. 그러나 이러한 속성 중 일부가 FLOW-3D 로 인식되는 것은 아닙니다. 

FLOW-3D 와 호환되는 파일 형식을 생성하려면 재료 창을 닫고 FLOW-3D/SolidWorks/ANSYS 메뉴에서 시작하십시오. 재료의 특성으로 FLOW-3D로 가져올 수 있는 세 가지 파일 형식이 있습니다.  유체 데이터베이스 형식(.f3d_dbf 확장), 고체 데이터베이스 형식 (.f3d_dbs 확장), 일반 쉼표로 구분된 값(CSV형식)으로 부터 시뮬레이션에 적합한 FLOW-3D 호환 형식을 선택하십시오. MPDB의 재료는 대부분 고체이지만 사용자가 응고된 유체의 특성을 가져오려면 FLOW-3D에서 응고된 유체 특성이 유체 특성의 일부이므로 Fluids 데이터베이스 형식을 선택해야 합니다. 솔리드 및 유체 데이터베이스 파일 형식과 파일은 현재 사용자의 문서 폴더와 Windows 및 Linux에 저장됩니다.

CSV<My Documents>\FLOW-3D\gui\MaterialsDatabase/home/<user>/FLOW-3D/gui/MaterialsDatabase

이러한 위치는 FLOW-3D의 데이터베이스가 사용자 정의 재료를 찾는 곳입니다. MPDB에서 이러한 위치로 내보낸 모든 자료는 FLOW-3D의 기본 데이터베이스에 의해 선택됩니다.

1006 (UNS G10060) 철 합금을 선택하십시오.


이전에 사용 가능했던 일부 특성은 FLOW-3D 와 관련이 없기 때문에 사용 불가능 합니다. 각 속성이 처리되자 마자 플롯 되거나 해당 데이터가 표시되면 참조 및 메모 섹션이 활성화됩니다. 참조 탭 속성에서 찍은 위치를 나타내는 참고 섹션은 일반적으로 데이터의 구성과 정확성에 관한 사항이 포함되어 있습니다. 

온도에 따른 특성의 동작을 이해하는 데 도움이 되도록 각 특성을 플롯 할 수 있습니다. 또한 데이터의 유효성에 대한 경고가 있을 수 있습니다. 

예를 들어 열전도도를 먼저 플로팅하면 저온 경고가 표시됩니다. 온도의 함수로 플롯을 표시하기 전에 .f3d_dbs파일을 쓰려면 데이터베이스에 추가 버튼을 클릭하고 다음 창에서 파일에 쓸 속성을 ​​선택하십시오. 사용 가능한 단계에 대한 속성을 선택할 수 있습니다. 속성이 선택되면 데이터 쓰기 및 닫기를 클릭하십시오. 

재료 창을 닫습니다. FLOW-3D/SolidWorks/ANSYS 메뉴에서 데이터베이스를 닫습니다.

FLOW-3D MPDB(Low temperature warning)
FLOW-3D MPDB(Low temperature warning)
FLOW-3D MPDB(Temperature Plot)
FLOW-3D MPDB(Temperature Plot)

.f3d_dbs파일을 쓰려면 데이터베이스에 추가 버튼을 클릭하고 다음 창에서 파일에 쓸 속성을 ​​선택하십시오. 사용 가능한 단계에 대한 속성을 선택할 수 있습니다. 속성이 선택되면 데이터 쓰기 및 닫기를 클릭하십시오. 재료 창을 닫습니다. FLOW-3D/SolidWorks/ANSYS 메뉴에서 데이터베이스를 닫습니다.

경우에 따라 재료에 사용자에게 필요한 속성이 없습니다. 데이터베이스에 사용 가능한 속성을 추가한 후 이러한 상황에서 누락된 속성은 유사한 속성을 가진 합금 (사용자의 위험 부담)에서 얻을 수 있습니다. 데이터베이스가 열려있는 동안 FLOW-3D에서 사용될 하나의 재료에 대해 속성을 혼합하고 일치시킬 수 있습니다.

FLOW-3D MPDB(Select properties to write to file)
FLOW-3D MPDB(Select properties to write to file)

데이터베이스를 닫은 후 파일 이름을 묻는 메시지가 사용자에게 표시됩니다. 기본값은 MPDB 가 재료에 지정하는 것입니다. FLOW-3D 가 재료를 사용자 정의 재료로 인식하도록 파일의 위치와 확장자가 미리 설정되어 있습니다.

FLOW-3D MPDB(File locate position)
FLOW-3D MPDB(File locate position)

CSV파일을 선택한 경우에도 동일한 프로세스가 적용됩니다. 데이터가 파일에 기록되면 각 테이블 형식 속성 창의 값 가져오기 버튼에서 데이터를 검색할 수 있습니다.

첫 번째 열은 항상 온도입니다.

FLOW-3D MPDB(csv file)
FLOW-3D MPDB(csv file)
  1. grfedit를 사용하여 flsgrf 파일 편집

명령 줄 유틸리티이므로 runscript와 같은 적절한 환경에서 실행해야 합니다 ( Runscripts 사용 참조 ).

Runscripts 사용

실행 스크립트는 작업 문제 디렉토리에서 실행되도록 설계되었습니다. 스크립트는 $F3D_HOME/local디렉토리에 있습니다. 스크립트를 사용하려면 다음 환경 변수를 설정해야합니다.

  • F3D_HOMEFLOW-3D 설치 디렉터리 의 경로를 지정합니다 .
  • F3DTKNUX_LICENSE_FILEFLOW-3D 라이선스 서버 의 위치를 ​​지정 합니다.
  • PATHPATH포함하도록 환경 변수를 수정해야합니다. $F3D_HOME/local그렇지 않으면 실행 스크립트를 찾을 수 없습니다.
  • F3D_VERSION: 사용할 솔버 버전을 지정합니다. 유효한 옵션은 double배정 밀도 버전 및 prehyd사용자 지정 배정 밀도 솔버입니다.

명령 줄에서 실행하려면 :

  1. 명령 프롬프트 또는 터미널을 엽니 다.
  2. 필요한 환경 변수를 설정하십시오.
    • Windows : FLOW-3D 를 시작하는 데 사용되는 배치 파일에서 환경을 복사하여 수행 할 수 있습니다 . 배치 파일의 내용은 FLOW-3D 아이콘 을 마우스 오른쪽 버튼으로 클릭 하고 편집을 선택 하여 액세스 할 수 있습니다 .
    • Linux : 설치 디렉토리 에서 파일을 flow3dvars.sh가져옵니다 local.
  3. 솔버가 실행중인 디렉토리로 변경하십시오.
  4. 원하는 runscript 명령을 입력하십시오. runhyd <ext2>

  • grfedit를 연 후 사용자에게 소스 파일 (flsgrf.*데이터가 복사될 파일)의 경로를 묻는 메시지가 표시됩니다. 파일의 전체 경로 (예 c:\users\username\FLOW-3D\simulation\flsgrf.simulation:)를 입력하고 <enter>를 누르십시오.
  • 이제, 파일 입력 확장의 목표 예를 들어, (데이터를 기록할 위치로 파일) 파일을 new_output. 데이터가 파일에 기록됩니다 c:\users\username\FLOW-3D\simulation\flsgrf.new_output. 대상 파일이 존재하면 파일을 덮어쓰거나 대상 파일에 데이터를 추가하라는 메시지가 표시됩니다. 대상 파일의 시간보다 늦게 시뮬레이션 시간을 가진 소스 파일 편집 만 추가됩니다.
  • 이 시점에서 프로그램은 어떤 히스토리 데이터 편집, 데이터 편집 재시작 및 대상 파일에 쓰기 위해 선택된 데이터 편집을 묻습니다. 프롬프트에 따라 작성할 데이터 편집을 선택하십시오.
  • 대상 파일을 작성한 후 프로그램이 닫히고 다른 flsgrf.*파일처럼 사용할 수 있습니다.


  • grfedit는 FLOW-3D v11.1 이상에서 작성된 결과 파일에서만 작동합니다.
  • 소스 flsgrf.*파일은 grfedit에 의해 수정되지 않습니다
  • FLOW-3D/MP의 출력 파일로 작업할 때는 flsgrf1의 위로 flsgrf 교체 하십시오 .
  • 소스 및 대상 파일 모두에 허용되는 유일한 이름은 flsgrf및 flsgrf1입니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

World Users Conference 2021

FLOW-3D World Users Conference

World Users Conference 2021
World Users Conference 2021

FLOW-3D World Users Conference 는 2021 년 6 월 7 일부터 9 일 까지 독일 뮌헨 의 Maritim Hotel 에서 개최됩니다 . 세계에서 가장 유명한 회사 및 기관의 엔지니어, 연구원 및 과학자와 함께 시뮬레이션 기술을 연마하고 새로운 모델링 접근 방식을 탐색하며 최신 소프트웨어 개발에 대해 알아보십시오. 이 컨퍼런스에는 금속 주조 및 물 및 환경 응용 프로그램 트랙, 고급 교육 세션, 고객의 심층 기술 프레젠테이션, Flow Science의 선임 기술 직원이 발표 한 최신 제품 개발이 포함됩니다. 이 컨퍼런스는 Flow Science Deutschland 가 공동 주최합니다 .

우리는 BMW의 Hubert Lang이 컨퍼런스 기조 연설자가 될 것이라는 점을 매우 기쁘게 생각합니다.초록을 요청하십시오!온라인 등록

기조 연설 발표! 

Hubert Lang, BMW, 기조 연설자
Hubert Lang, BMW, FLOW-3D 세계 사용자 컨퍼런스 2021의 기조 연설자

 BMW에서 15 년 동안  FLOW-3D 사용

Hubert Lang은 Landshut University of Applied Sciences에서 자동차 공학에 중점을두고 기계 공학을 전공했습니다. 1998 년에 그는 Landshut에있는 BMW의 Light Metal Foundry에서 도구 설계 부서에서 일하면서 6 기통 엔진용 주조 도구 개발을 감독했습니다. 2005 년에 Hubert는 파운드리의 시뮬레이션 부서로 옮겨 FLOW-3D 의 금속 주조 기능을 소개 받았습니다 . 그 이후로 그는 시뮬레이션의 분야에서 FLOW-3D 사용에 있어 상당한 확장을 이끌었습니다 .

오늘날 BMW는 모래 주조, 영구 금형 중력 주조, 저압 다이캐스팅, 고압 다이캐스팅 및 로스트 폼 주조에 FLOW-3D 를 사용합니다 . FLOW-3D 는 또한 코어 건조 모델 개발을 통한 모래 코어용 무기 바인더 시스템 개발 지원과 같은 BMW의 여러 특수 프로젝트에도 적용되었습니다. (실린더 라이너 코팅 중 열 입력 계산; 주입기 주조 절차를위한 주조 형상의 개발, 그리고 주조 도구를위한 냉각 시스템의 레이아웃과 치수 등)

BMW 박물관 투어

컨퍼런스 제공의 일환으로 BMW 박물관 투어를 제공하게되어 기쁘게 생각합니다  . 투어는 6 월 8 일 화요일 기술 진행 후 17:30에 진행됩니다 . 컨퍼런스 등록을 하시면 투어에 등록 하실 수 있습니다 .

BMW 박물관 투어
BMW Welt 건물의 외부 건축 세부 사항.

컨퍼런스 정보

중요한 날짜들

  • 2 월 25 일 : 초록 마감
  • 3 월 11 일 : 초록 수락
  • 5 월 3 일 : 프레젠테이션 마감
  • 6 월 7 일 : 고급 교육 세션
  • 6 월 7 일 : 개막식
  • 6 월 8 일 : BMW 박물관 견학
  • 6 월 8 일 : 컨퍼런스 디너


  • 컨퍼런스 1 일 및 2 일 : 300 €
  • 컨퍼런스 첫째 날 : 200 €
  • 컨퍼런스 둘째 날 : 200 €
  • 손님 수수료 : 50 €
  • 오프닝 리셉션 : 등록에 포함
  • BMW 투어 : 등록에 포함
  • 컨퍼런스 디너 : 등록에 포함

고급 교육 주제

해당 분야의 선임 기술 직원과 전문가가 가르치는 고급 교육 주제  에는 FLOW-3D  CAST 및 FLOW-3D  AM 사용자를 위한 Version Up 세미나와 문제 해결 기술 및 애플리케이션에 초점을 맞춘 세션이 포함됩니다. 이 과정은 응용 프로그램에 관계없이 모든 사람이 문제 해결 세션에 참여할 수 있도록 설계되었습니다. 온라인으로 등록 할 때 이러한 교육 세션에 등록 할 수 있습니다 .

교육 시간 및 비용

  • 6 월 7 일 – 13:00 – 14:00 – 버전 업 : FLOW-3D CAST  – 100 €
  • 6 월 7 일 – 14:00 – 15:00 – 버전 업 : FLOW-3D AM  – 100 €
  • 6 월 7 일 – 13:00 – 15:00 – 시립 신청 – 200 €
  • 6 월 7 일 – 15:00 – 17:00 – 문제 해결 – 200 유로

고급 교육 주제

초록 요청

경험을 공유하고 성공 사례를 제시하며 FLOW-3D  사용자 커뮤니티와 당사의 선임 기술 직원 으로부터 소중한 피드백을 얻으십시오  . 다음 응용 프로그램에 초점을 맞춘 주제를 포함한 모든 주제에 대한 초록을 환영합니다.

  • 금속 주조
  • 첨가제 제조
  • 토목 및 시립 유압
  • 소비재
  • 마이크로 / 나노 / 바이오 플루이 딕스
  • 에너지
  • 항공 우주
  • 자동차
  • 코팅
  • 해안 공학
  • 해상
  • 일반 응용

초록에는 제목, 저자 및 200 단어 설명이 포함되어야합니다. 새로운 초록 마감일은 2021 년 2 월 25 일입니다. 초록을 info@flow3d.com으로 이메일을 보내주십시오 .

발표자에게는 등록 및 교육비가 면제됩니다.

발표자 정보

각 발표자는 Q & A를 포함하여 30 분의 강연 시간을 갖게됩니다. 모든 프레젠테이션은 컨퍼런스 참석자에게 배포되며 컨퍼런스가 끝난 후 웹 사이트를 통해 배포됩니다. 이 회의에는 전체 논문이 필요하지 않습니다. 컨퍼런스 발표에 대해 궁금한 점이 있으시면 연락 주시기 바랍니다  . Flow Science Deutschland는 각 트랙에 대해 Best Presentation Awards를 후원합니다.

컨퍼런스 디너

아우 구 스티 너 켈러 컨퍼런스 디너

이 컨퍼런스 만찬은 항상 ​​인기있는 Augustiner-Keller 에서 개최됩니다  . 모든 컨퍼런스 참석자와 그들의 손님은 6 월 8 일 화요일에 아름답고 유명한 비어 가든에서 독일 전통 축제에 초대됩니다. 회의 만찬은 BMW 투어 이후에 진행됩니다.

비어 가르 텐


컨퍼런스 호텔

마리 팀 호텔 뮌헨
+49 (0) 89 55235-0


뮌헨의 모든 것

뮌헨 도시지도 다운로드

High Pressure Die Casting Workspace, 고압다이캐스팅

High Pressure Die Casting Workspace Highlights

  • 주입 정확도가 탁월합니다.
  • 전체 프로세스 모델링에는 고급 환기, PQ2 및 스프레이 냉각이 포함됩니다.
  • 동적 시뮬레이션 제어를 통해 동적 런타임 프로세스를 제어할 수 있습니다.
  • 최첨단 알루미늄 실리콘 합금 고형화입니다.

고압 다이 캐스팅 Workspace

고압 다이 캐스팅 Workspace은 엔지니어가 FLOW-3D CAST를 사용하여, 고압 다이 캐스팅 제품을 성공적으로 모델링할 수 있도록 설계된 직관적인 모델링 환경입니다.

FLOW-3D CAST v5.1은 첨단 다이 열 제어, 기계 파라미터 모델링,주입 및 배압 조건의 정확한 해석기능과 결합된 샷 슬리브 모션의 완전한 제어는 가장 까다로운 HPDC 시뮬레이션에 필요한 최적화된 솔루션입니다. HPDC Workspace에는 진보된 미세수축공 예측 및 후처리 기능 외에도 Al-Si 및 Al-Cu 기반 합금에 대한 최첨단 화학 기반 응고 및 재료 강도 모델이 포함되어 있습니다.

모델링된 프로세스

  • 고압 다이 주조

유연한 메시

  • FAVOR™ 간단한 메쉬 생성 도구
  • 멀티 블록 메시
  • 중첩 메시

다이 열 관리

  • 열 다이 사이클링
  • 열 포화도
  • 전체 열 전달 모델링
  • 스마트 냉각 채널 제어
  • 스프레이 냉각 경로 모델링

고급 응고

  • 다공성 예측
  • 수축
  • 핫스팟 식별
  • 기계적 특성 예측
  • 미세 구조 예측

국자 모션

  • 자유 모션 정의 6도

진공 및 환기

  • 대화형 프로브 배치
  • 지역 및 손실 계수 계산기

충전 정확도

  • 느리고 빠른 샷 모델링
  • 강화 압력 효과
  • 가스 및 버블 함정
  • 표면 산화물 계산
  • RNG 및 레 난류 모델
  • 역압력

결함 예측

  • 매크로 및 마이크로 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석

표면 결함 분석

  • PQ2 분석
  • 프로브 기반 트리거
  • 열 제어
  • 진공 및 환기 제어

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 나란히 시뮬레이션 결과 비교
  • 용융 온도, 고체 분획 측정을 위한 센서
  • 파티클 트레이서
  • 배치 후 처리
  • 보고서 생성

HPDC Part 1 – Thermal Die Cycling

Design workflow의 유연성

냉각 채널

  • 냉각 채널 기능
    -냉각 채널 제어
    -에너지 제거
    -시간 제어
    -HTC 계산기
    -HTC 데이터베이스

Thermal Die Cycle을 사용하는 이유

  • 다이캐스팅 시설의 표준 실무
  • 고품질의 부품을 얻기 위해서는 금형 온도가 중요
  • 급격한 온도 구배는 최종 주조제품에 다이 조각을 뒤틀리게하고 치수도 부정확해질 수 있음

시뮬레이션이 어떻게 도움이 되는가

  • 다이 전체의 열 분포 최적화
  • 냉각 채널의 효율성 평가
    -배치 및 전체 온도 제거에 대한 안목
  • 스프레이 냉각을 정확하게 모델링
    -다이 표면의 과도된 히트 맵
  • 필요한 온도까지 다이캐스팅 시간을 대폭 감소
  • TDC 스테이지 시간 단축 가능

FLOW-3D Cast 의 TDC 스테이지

스프레이 냉각

  • shot 사이에서 다이를 냉각하는데 사용
  • 적절한 다이의 성능을 보장
  • 프로그래밍이 가능한 로봇으로 수행

스프레이 냉각을 정확하게 모델링하는 것이 중요한 이유

  • 오래된 스프레이 모델은 전체 다이 캐비티에 걸친 일정한 HTC를 가정
    -공간적으로 변화하는 다이 냉각을 포착할 수 없음
    -시뮬레이션 파라미터를 설정하기 어려움
    -스프레이 냉각 디자인을 최적화할 수 없음

스프레이 냉각

High pressure die casting workspace:Advanced simulation options / 고압 다이캐스팅 workspace : 고급 시뮬레이션 옵션

고압 다이 캐스팅의 이점

  • 고압 다이캐스팅 기술은 매우 큰 경합금 부품을 대량으로 생산가능
  • 높은 정밀도, 우수한 표면 조도, 우수한 균일성 및 최적의 기계적 특성
  • 고압 다이캐스팅 공정은 또한 얇은 벽을 가진 부품과 스크류 및 라이너와 같은 다른 유형의 인서트를 가진 “공동 주조된”부품을 생산하여 제품 자체의 필수 부품이 될 수 있음

PQ2 해석

  • 다이 캐스팅 기의 기능과 게이트 속도를 일치시키는 표준 절차
  • 작동 시간은 충전 시간, 게이트 속도 및 금속 압력 등에 따라 다름
  • 기계 기능 내에서 유지되도록 샷 프로파일의 속도 변경
  • 정확한 샷 슬리브 모델링
  • No adjustment
  • With adjustment


Thermal die cycling

Spray cooling model

Filling with shot sleeve – fast shot activation

Solidification and porosity prediction

A Low Pressure Die Casting Validation at Versevo/Versevo에서의 저압 다이캐스팅 검증

작성자 :

저압 다이캐스팅(Low Pressure Die Casting)의 정의

  • 저압(0 – 15psi)의 공기를 사용하여 금속을 튜브에 주조물로 밀어 넣는 공정
  • 높은 금속 강도(충진 제어를 통한 야금 품질 제어)
  • 높은 수율(Runner시스템이나 Riser가 없는 마킹이 적음)
  • 복잡한 모양 제조 가능

위 사진은 LPDC 부품을 만드는데 사용된 Kurtz 기계입니다.
다이는 탱크에 주입관이 부착된 두 플레이트 사이에 위치합니다.

For this casting there are three stages of pressure:

ㆍ 1st Stage

– Pre-fill pressure which is the first height shown

ㆍ 2nd Stage

– Pressure required to fill the casting

ㆍ 3rd Stage

– Pressurization (intensification) above fill pressure to prevent shrinkage

수치 해석

  • LPDC(저압 다이캐스팅) 시뮬레이션 시 고려해야 할 파라미터는 응고 항력계수, 열전달 계수 및 정확한 충진 압력입니다.
  • 충진 튜브가 없는 시뮬레이션의 경우 해석시간이 절약되고 정확도도 크게 떨어지지 않습니다.

LPDC(저압 다이캐스팅) 시뮬레이션 해석 조건

  • Metal : Al356 (초기 온도 : 섭씨723도)
  • Filler tube : Ceramic(초기 온도 : 섭씨 700도)
  • Die : H-13(초기 온도 : 섭씨 400도)

해석 결과

Hydrostatic head pressure 을 사용하여 채우는데 필요한 압력을 결정함으로써, 제품 개발에 성공하여 “시뮬레이션의 뛰어난 유효성 확인!”

고압 다이캐스팅 문제 해결을 위한 설계 개선 사례

이 기사의 내용은 Littler Diecast Corporation 의 Mark Littler가 제공했습니다.

고압 다이 캐스팅 주조업체인 Littler Diecast 회사는 최근 항공 우주 분야에 사용될 제품을 위한 전기 스위치 프레임을 재 설계하고 다이캐스팅 할 수 있었습니다. 이전에는 다른 제조업체에 위탁 생산을 했지만 많은 주조 결함 문제가 있었으며 낮은 스크랩 비율을 달성하기 위해 새로운 디자인이 필요했습니다. Littler Diecast는 이 문제에 대한 사전 지식없이 FLOW-3D를 이용한 CFD 시뮬레이션을 통해 결함을 찾아 낼 수 있었습니다. 이것은 그들이 수주에 성공할 수 있을 만큼 고객에게 충분한 인상을 주었습니다.

  1. 문제 파악

문제가 된 제품 스위치는 A380 알루미늄으로 주조되며, 크기는 약 1 ¼”x 1”x 1/2”입니다. Littler Diecast는 다공성 공기 갇힘 문제가 플레이트와 기둥의 두 위치에서 부품 결함을 유발하고 있음을 발견했습니다. 이것은 고객에 의해 확인되었습니다. 부품이 충진되는 방식으로 인해 각 위치에 구멍이 형성되었습니다. 용탕 흐름은 그림1과 같이 단일 게이트를 통해 유입되어 플레이트의 먼쪽으로 분사된 다음, 백 채우기를 하여, 초기 응고로 인해 항상 배출되지 않은 에어 포켓을 포집합니다. 기둥에서도 동일한 문제가 발견되었습니다. 유체가 가장 먼 곳까지 분사된 다음 역류하여 파팅 라인을 통해 배출되지 않는 공기가 갇히게 됩니다.

다공성 문제를 보여주는 원래 부품의 X-ray 사진

그림 1: 단일 게이트를 사용한 원래 디자인 (속도 분포)

그림 2: 게이트가 3개인 최종 디자인(속도 분포)

  1. 오리지널 부품 디자인

부품의 원래 디자인에는 다른 문제들이 있었습니다. 잠금 와셔의 슬롯 주위와 플레이트 바닥의 씰링 표면에는 많은 다이 부식이 있었습니다. 부품의 모서리에 있는 오버플로는 결함이 밖으로 유출될 정도로 크지 않았습니다.

FLOW-3D를 사용하여, Littler Diecast는 유동 현상을 분석하고 시각적으로 분석할 수 있었습니다. 이러한 작은 부품의 경우, 얇은 부위의 빠른 냉각으로 인해 조기 응고가 문제가 됩니다. 유동이 부품을 가로 질러 분사되는 경우, 용탕이 냉각되고 공기 갇힘이 생성되어 더 많은 시간이 걸립니다. 가장 뜨거운 용탕이 마지막에 주입되는 것이 가장 좋습니다. 이를 염두에 두고 Littler Diecast는 많은 아이디어를 테스트하고 문제 발생 가능성을 최소화하는 디자인을 만들었습니다.

  1. 최종 부품 설계

세 가지 주요 설계 변경 후 부품 품질이 크게 향상되었습니다. 먼저, 게이트 및 러너를 재 설계하여 유체가 완전히 새로운 방향으로 3개의 게이트를 통해 유입되었습니다. 이는 더 큰 오버플로를 생성하는 두 번째 설계 변경과 결합하여 플레이트에 역류 현상이 훨씬 줄어들어 가장 뜨거운 용탕이 마지막으로 유입될 수 있음을 의미했습니다. 셋째, 게이트의 접근 각도와 위치가 변경되어 기둥의 역류를 방지하는데 도움이 되었습니다.

이 새로운 디자인은 또한 새로운 툴에서 다이 침식의 가능성을 줄였습니다. 대신, 기둥의 중앙 구멍에 사용되는 코어 핀으로 유체가 분출됩니다. 코어 핀은 쉽게 교할 수 있어서 다이를 수리하는 것보다 훨씬 빠르고 비용이 적게 듭니다. 이로 인해 많은 비용이 소모되는 다이 수정을 피할 수 있게 되어 엔지니어링 프로세스가 개선되었습니다.

  1. 물리적 검증

Littler Diecast는 생산 시설을 시험 가동한 short shots, x-ray 및 파괴 검사를 통해 디자인 변경 사항을 확인할 수 있었습니다. 짧은 샷은 균형 잡힌 러너를 보여주었고 x-ray에는 기포가 보이지 않았습니다. 파괴 시험은 기포가 없는 일관된 결정입자 구조를 보여주었으며, 이는 주조 결함이 아니라 재료의 강도에 기인한 것으로 입증되었습니다.

작업 현장에서 가져온 샘플 (최종 부품의 다른 각도에서 X-Rays)


FLOW-3D 교육 안내



FLOW-3D 분야별 교육 과정 안내

  • 교육 과정명 : 수리 분야

댐, 하천의 여수로, 수문 등 구조물 설계 및 방류, 월류 등 흐름 검토를 하기 위한 유동 해석 방법을 소개하는 교육 과정입니다. 유입 조건(수위, 유량 등)과 유출 조건에 따른 방류량 및 유속, 압력 분포 등 유체의 흐름을 검토를 할 수 있도록 관련 예제를 통해 적절한 기능을 습득하실 수 있습니다.

  • 교육 과정명 : 수처리 분야

정수처리 및 하수처리 공정에서 각 시설물들의 특성에 맞는 최적 운영조건 검토 및 설계 검토을 위한 유동해석 방법을 소개하는 교육 과정입니다. 취수부터 시작하여 혼화지, 분배수로, 응집지, 침전지, 여과지, 정수지, 협기조, 호기조, 소독조 등 각 공정별 유동 특성을 검토하기 위한 해석 모델을 설정하는 방법에 대해 알려드립니다.

  • 교육 과정명 : 주조 분야

주조 분야 사용자들이 쉽게 접근할 수 있도록 각 공정별로 해석 절차 및 해석 방법을 소개하는 교육 과정입니다. 고압다이캐스팅, 저압다이캐스팅, 경동주조, 중력주조, 원심주조, 정밀주조 등 주조 공법 별 관련 예제를 통해 적절한 기능들을 습득할 수 있도록 도와 드립니다.

  • 교육 과정명 : Micro/Bio/Nano Fluidics 분야

점성력 및 모세관력 같은 유체 표면에 작용하는 힘이 지배적인 미세 유동의 특성을 정확하게 표현할 수 있는 해석 방법에 대해 소개하는 교육 과정입니다. 열적, 전기적 물리 현상을 구현할 수 있도록 관련 예제와 함께 해석 방법을 알려드립니다.

  • 교육 과정명 : 코팅 분야 과정

코팅 공정에 따른 코팅액의 두께, 균일도, 유동 특성 분석을 위한 해석 방법을 소개하는 교육 과정입니다. Slide coating, Dip coating, Spin coating, Curtain coating, Slot coating, Roll coating, Gravure coating 등 각 공정별 예제와 함께 적절한 기능을 습득하실 수 있도록 도와 드립니다.

  • 교육 과정명 : 레이저 용접 분야

레이저 용접 해석을 하기 위한 물리 모델과 용접 조건들을 설정하는 방법에 대해 소개하는 교육 과정입니다. 해석을 통해 용접 공정을 최적화할 수 있도록 관련 예제와 함께 적절한 기능들을 습득할 수 있도록 도와 드립니다.

  • 교육 과정명 : 3D프린팅 분야 과정

Powder Bed Fusion(PBF)와 Directed Energy Deposition(DED) 공정에 대한 해석 방법을 소개하는 교육 과정입니다. 파우더 적층 및 레이저 빔을 조사하면서 동시에 금속 파우더 용융지가 적층되는 공정을 해석하는 방법을 관련 예제와 함께 습득하실 수 있습니다.

  • 교육 과정명 : 해양/항만 분야

해안, 항만, 해양 구조물에 대한 파랑의 영향 및 유체의 수위, 유속, 압력의 영향을 예측할 수 있는 해석 방법을 소개하는 과정입니다. 항주파, 슬로싱, 계류 등 해안, 해양, 에너지, 플랜트 분야 구조물 설계 및 검토에 필요한 유동해석을 하실 수 있는 방법을 알려드립니다. 각 현상에 대한 적절한 예제를 통해 기능을 습득하실 수 있습니다.

  • 교육 과정명 : 우주/항공 분야

항공기 및 우주선의 연료 탱크와 추진체 관리장치의 내부 유동, 엔진 및 터빈 노즐 내부의 유동해석을 하실 수 있도록 관련 메뉴에 대한 설명, 설정 방법을 소개하는 과정입니다. 경계조건 설정, Mesh 방법 등 유동해석을 위한 기본적인 내용과 함께 관련 예제를 통해 기능들을 습득하실 수 있습니다.

고객 맞춤형 과정

상기 과정 이외의 경우 고객의 사업 업무 환경에 적합한 사례를 중심으로 맞춤형 교육을 실시합니다. 필요하신 부분이 있으시면 언제든지 교육 담당자에게 연락하여 협의해 주시기 바랍니다.

고객센터 및 교육 담당자

  • 전화 : 02)2026-0450, 02)2026-0455
  • 이메일 :

교육 일정 안내

Education Banner

교육은 매월 정해진 일정에 시행되는 정기 교육과 고객의 요청에 의해 시행되는 비정기 교육이 있습니다. 비정기 교육은 별도문의 바랍니다.

1. 연간교육 일정

2. 교육 내용 : FLOW-3D Basic

  1. FLOW-3D 소개 및 이론
    • FLOW-3D 소개  – 연혁, 특징 등
    • FLOW-3D 기본 개념
      • VOF
      • FAVOR
    • 해석사례 리뷰
  2. GUI 소개 및 사용법
    • 해석 모델 작성법  – 물리 모델 설정
      • 모델 형상 정의
      • 격자 분할
      • 초기 유체 지정
      • 경계 조건 설정
    • 해석 결과 분석 방법  – 해석 모델 설명
  3. 해석 모델 작성 실습
    • 해석 모델 작성 실습  – 격자 분할
      • 물리 모델 설정
      • 모델 형상 및 초기 조건 정의
      • 경계 조건 설정
      • 해석 과정 모니터링
      • 해석 결과 분석
    • 질의 응답 및 토의

3. 교육 과정 : FLOW-3D Advanced

  1. Physics Ⅰ
    • Density evaluation
    • Drift flux
    • Scalars
    • Sediment scour
    • Shallow water
  2. Physics Ⅱ
    • Gravity and non-inertial reference frame
    • Heat transfer
    • Moving objects
    • Solidification
  3. FLOW-3D POST (Post-processor)
    • FLOW-3D POST 소개
    • Interface Basics
    • 예제 실습

FLOW-3D 교육 신청 방법 안내

  • 교육 신청은 홈페이지의 교육 신청 창에서 최소 3일 전에 신청합니다.
  • 모든 교육과정은 신청 인원이 2인 이상일때 개설되며, 선착순 마감입니다.
  • 교육 신청을 완료하시면, 신청시 입력하신 메일주소로 교육 담당자가 확인 메일을 보내드립니다.
  • 교육 시간은 Basic : 오전10시~오후5시, Advanced : 오후1시30분~오후5시30분까지입니다.
  • 교육비 안내
    • FLOW-3D, FLOW-3D CAST, FLOW-3D HYDRO Basic (2일) : 기업 66만원, 학생 55만원
    • FLOW-3D WELD/AM Basic 레이저용접, 3D 프린팅(2일) : 기업 88만원, 학생 66만원
    • FLOW-3D Advanced (1일) : 기업 33만원, 학생 25만원
    • 상기 가격은 부가세 포함 가격입니다.
  • 교육비는 현금(계좌이체)로 납부 가능하며, 교재 및 중식이 제공됩니다.
  • 세금계산서 발급을 위해 사업자등록증 또는 신분증 사본을 함께 첨부하여 신청해 주시기 바랍니다.
  • 교육 종료 후 이메일로 수료증이 발급됩니다.
고객센터 및 교육 담당자
  • 전화 : 02)2026-0450, 02)2026-0455
  • 이메일 :
교육 장소 안내
  • 지하철 1호선/가산디지털단지역 (8번출구), 지하철 7호선/가산디지털단지역 (5번출구)
  • 우림라이온스밸리 B동 302호 또는 교육장
  • 당사 건물에 주차할 경우 무료 주차 1시간만 지원되오니, 가능하면 대중교통을 이용해 주시기 바랍니다.
오시는 길

FLOW-3D World Users Conference 2023


What's New in FLOW-3D CAST 2023R2
What's New in FLOW-3D POST 2023R2
New results file format, New visualization capabilities, Better quantification of model outputs, Improved ray tracing, Representing flow fields with Surface LIC, Animated streamlines
FLOW-3D WELD Oscillation Welding
FLOW-3D WELD Oscillation Welding
Offering high resolution analysis of oscillation welding techniques and ensuring stable melt pool dynamics.
FLOW-3D WELD Laser Beam Shaping
FLOW-3D WELD Laser Beam Shaping
Understand the role of laser beam shaping on melt pool dynamics and keyhole stability.
What's New in FLOW-3D HYDRO 2023R2
What's New in FLOW-3D HYDRO 2023R2
New results file format, Turbulence model improvements, Hydrostatic pressure initialization, Expanded terrain representation support
What's New in FLOW-3D CAST 2023R2
What's New in FLOW-3D CAST 2023R2
New results file format, Hydrostatic pressure initialization, New Thermal Die Cycling (TDC) model, Expanded PQ2 analysis, Mold erosion prediction, Die soldering prediction....
FLOW-3D WELD Dissimilar Metals
Account for the laser power, heat flux profile and material properties of dissimilar metals.
What's New in FLOW-3D 2023R2
What's New in FLOW-3D 2023R2
New results file format, Turbulence model improvements, Compressible flow solver performance
FLOW-3D WELD Spot & Seam Weld
FLOW-3D WELD Spot & Seam Weld
Optimize laser power, pulse duration and pulse repetition rate process parameters.
FLOW-3D WELD Laser Brazing
Simulate the laser brazing process while considering the geometrical dimensions of the parts being joined.
FLOW-3D AM Laser Power Bed Fusion
Capture complex multiphysics phenomena for LPBF processes to achieve better builds
FLOW-3D WELD Keyhole Welding
Understand the role of laser beam shaping on melt pool dynamics and keyhole stability.
FLOW-3D WELD Laser Cladding
Analyze the effects of process parameters on the strength and uniformity of the clad part.
FLOW-3D AM Directed Energy Deposition
Gain insight into complex melt pool dynamics using the powerful and flexible particle model
FLOW-3D WELD Laser Soldering
Analyze laser soldering at the microscale while capturing complex multiphysics.
FLOW-3D AM Binder Jetting
Optimize binder jetting simulations through process parameters and material properties


FLOW-3D는 오늘날 복잡한 자유 표면 및 제한된 흐름 문제를 분석하는 데 사용할 수 있는 가장 강력한 도구 중 하나입니다. 사용하기 쉬운 모델링 인터페이스를 제공하며 지난 15년 이상 제가 작업한 수력 발전, 환경, 수자원 및 처리 관련 프로젝트의 설계에 필수적인 도구였습니다. Flow Science의 기술 지원 팀과 개발자는 함께 작업하기 쉽고, 조언을 제공하고, 코드의 잠재적 개선 사항에 대한 사용자의 의견을 듣고, 발생하는 문제를 신속하게 해결하고자 합니다. Flow Science의 전체 팀은 함께 일하기에 훌륭했고 모든 엔지니어에게 훌륭한 자원입니다.

FLOW-3D is one of the most powerful tools available to analyze complex free surface and confined flow problems out there today. It provides an easy-to-use modeling interface and has been an integral tool in the design of hydroelectric, environmental, water resource and treatment related projects I’ve worked on over the last 15+ years. Flow Science’s technical support team and developers are easy to work with and are eager to provide advice, hear input from its users on potential enhancements to the code as well as quickly resolving issues that arise. The entire team at Flow Science have been great to work with and are a great resource to all engineers.
FLOW-3D CAST는 우리의 품질 프로그램에 엄청난 자산이었습니다. 6가지 주조 시뮬레이션 소프트웨어를 평가한 후 Howell Foundry는 FLOW-3D CAST를 구매하기로 결정했습니다. 이 결정의 일부 요인에는 설정 다양성, 비용 및 가장 중요한 시뮬레이션의 현실 정확도가 포함됩니다. 업데이트된 결과 뷰어와 결합된 FLOW-3D CAST 의 강력한 시뮬레이션 기능은 가장 복잡한 작업에서 특히 첫 번째 타설에서 고품질 주조를 보장하는 데 도움이 되었습니다.

FLOW-3D CAST has been a tremendous asset to our quality program. After having evaluated six different casting simulation software, Howell Foundry made the decision to purchase FLOW-3D CAST. Some of the factors in this decision include its setup versatility, cost, and most importantly its accuracy of the simulation to reality. FLOW-3D CAST’s powerful simulation ability coupled with its updated results viewer has been especially helpful on our most complex jobs to make sure we have a quality casting on the first pour.
우리는 FLOW-3D를 사용하여 지난 20년 동안 많은 소모성 발사체 시스템에 대한 추진제 슬로시 및 풀스루 시뮬레이션을 개발했습니다. 보다 최근에는 Flow Science 지원 직원이 차량 기동으로 인한 ullage collapse effects를 포착하기 위해 극저온 추진제 탱크 시뮬레이션에 열 전달을 추가하는 데 중요한 역할을 했습니다.

We have used FLOW-3D to develop propellant slosh and pull-through simulations for a number of expendable launch vehicle systems over the last 20 years. More recently, the Flow Science support staff has been instrumental in helping us add heat transfer to cryogenic propellant tank simulations in order to capture ullage collapse effects due to vehicle maneuvers.
저는 연구 및 산업 응용 분야에서 유체 흐름 문제를 해결하는 데 15년 이상 FLOW-3D를 사용해 왔습니다 . 우리는 강 및 해안 구조물, 수처리 장치, 댐, 여수로, 깊은 터널 및 CSO 전환 구조물의 설계에 이 소프트웨어를 광범위하게 사용합니다. FLOW-3D는 수치 솔버 기술, 클라우드 컴퓨팅, 전처리 및 후처리 도구의 최신 기술을 통합하여 고객에게 상당한 시간과 비용을 절감합니다. FLOW-3D 영업 및 기술 지원 팀은 훌륭합니다!

I have used FLOW-3D for over 15 years solving fluid flow problems in research and industrial applications. We use the software extensively in the design of river and coastal structures, water treatment units, dams, spillways, deep tunnels, and CSO diversion structures. FLOW-3D integrates state of the art in numerical solver techniques, cloud computing, pre- and post-processing tools resulting in substantial time and cost savings to our clients. FLOW-3D sales and technical support teams are excellent!
FLOW-3D 는 다른 소프트웨어로 시각화하거나 정량화하기 어려운 복잡한 유압 문제에 대한 통찰력을 제공하는 정교한 도구입니다. 정교함에도 불구하고 소프트웨어는 매우 사용자 친화적이며 Flow Science는 훌륭한 문서와 기술 지원을 제공합니다. FLOW-3D 모델 에서 얻은 결과는고객과 사내 비모델러 모두에게 깊은 인상을 남겼습니다.
FLOW-3D is a sophisticated tool that provides insight into complex hydraulic problems that would be difficult to visualize or quantify with other software. Despite the sophistication, the software is very user friendly, and Flow Science provide great documentation and technical support. The results we have obtained from our FLOW-3D models have impressed both our clients and non-modelers in-house.
4C-Technologies에서 우리는 거의 35년 동안 다양한 소프트웨어 흐름 시뮬레이션 솔루션을 사용하는 선구자였습니다. 다양한 금속 합금으로 주조된 HPDC 부품에서 부품 설계 및 도구/러너 설계를 최적화합니다. 2008년부터 우리는 FLOW-3D를 사용하여 지금까지 최고의 정확도를 제공하는 것으로 나타났습니다. 또한 FLOW-3D 팀 의 지원은 탁월합니다.

At 4C-Technologies we have been pioneers in using various software flow simulation solutions for nearly 35 years. We optimize part designs and tool/runner designs on casted HPDC parts in various metal alloys. Since 2008 we have solely been using FLOW-3D as it turned out to give by far the best accuracy. Furthermore, the support from the FLOW-3D team is outstanding.
20년 이상 FLOW-3D 와 함께 CFD 분석을 사용하면서 우리의 신뢰 수준은 이제 일반 연구 목적 및 최종 설계 응용 프로그램에 CFD 모델링을 사용하는 데 확신을 가질 정도로 높아졌습니다. 이 소프트웨어는 개념적 세부 사항과 구성을 신속하게 변경할 수 있는 유연성을 제공하여 설계를 단계적으로 진행할 수 있도록 합니다.

From using CFD analysis with FLOW-3D for over twenty years, our level of trust has increased to the point that we are now confident in using CFD modeling for general study purposes and final design applications. The software gives us flexibility to quickly change conceptual details and configurations allowing the design to advance in stages.
우리는 FLOW-3D AM을 사용하여 기초 과학의 경계를 발전시켜 왔습니다 . FLOW-3D AM은 다중 합금 3D 프린팅 중 복잡한 현상을 지배하는 물리학에 대한 우리의 가설을 테스트하는 훌륭한 도구였습니다. FLOW-3D AM은 우리가 열 프로필의 진화와 관련된 물질 전달 및 복잡한 적층 구조에서 열 응력의 발달을 이해하는 데 도움이 되었습니다.

We have been using FLOW-3D AM to advance the boundaries of fundamental science. FLOW-3D AM has been a great tool to test our hypotheses about the physics governing complex phenomena during multi-alloy 3D printing. FLOW-3D AM has helped us understand the evolution of thermal profiles and the associated mass transport and development of thermal stresses in complicated additively-built structures.
FLOW-3D 는 많은 응용 프로그램이 있는 강력한 도구입니다. 우리는 FLOW-3D를 사용하여 물 전환 구조의 흐름과 수력을 효과적으로 해결했습니다. 우리는 또한 제안된 물고기 통로를 통한 물 흐름을 모델링했습니다. 우리는 정확성, 계산 속도, 특히 사용자 친화적인 GUI에 깊은 인상을 받았습니다. 그리고 우리 고객들은 모델 출력과 포스트 프로세서에 의해 생성된 애니메이션에 깊은 인상을 받았습니다. 우리는 또한 매우 반응이 좋은 지원 직원에게 감사합니다.

FLOW-3D is a powerful tool with many applications. We used FLOW-3D to effectively resolve flow through and hydraulic forces on a water diversion structure. We also modeled water flow through a proposed fish passage. We have been impressed with the accuracy, computational speed, and especially the user friendly GUI. And, our clients have been impressed with the model output, as well as, animations created by the post-processer. We are also appreciative of the highly responsive support staff.
수년에 걸쳐 FLOW-3D는 기존의 유압 모델링 도구로는 해결하기 매우 어려웠을 복잡한 유압 문제를 해결하는 데 도움을 주었습니다. 우리는 FLOW-3D 팀에게 매우 감사합니다 . 그들은 수년에 걸쳐 지속적으로 소프트웨어를 개선해 왔으며 우리의 요구에 매우 신속하게 대응해 왔습니다.

Over the years, FLOW-3D has helped us solve complex hydraulic problems that would have otherwise been very difficult to solve with conventional hydraulic modeling tools. We are very thankful to the team at FLOW-3D. They have constantly been making the software better over the years, and have been very responsive to our needs.
FLOW-3D 는 당사의 우주 공학 연구 및 개발 프로세스에서 필수적인 도구입니다. FLOW-3D는 극저온 연료 역학의 프로세스를 더 잘 이해하여 질량을 줄이고 발사기 성능을 향상시키는데 도움이 됩니다.

FLOW-3D is an essential tool in our space engineering research & development process. FLOW-3D helps us better understand processes in cryogenic fuel dynamics, leading to savings in mass and improved launcher performance.


FLOW-3D HYDRO Workshops

FLOW-3D HYDRO Workshops
Register for a FLOW-3D HYDRO workshop

FLOW-3D HYDRO Discovery Workshop Dates:

  • June 27
  • July 18
  • August 22
  • September 19
  • October 17
  • November 14

FLOW-3D HYDRO Local Workshop Dates:

  • September 12, 2024 | 9:00am – 4:00pm

Civil & Environmental Consultants, Inc.

Knoxville, TN

Host a FLOW-3D HYDRO Local Workshop 

2024년 제13회 한국유체공학학술대회

2024년 제13회 한국유체공학학술대회
FLOW-3D가 제13회 한국유체공학학술대회(13th National Congress on Fluids Engineering, 13NCFE)에 참여합니다.
2024년 제13회 한국유체공학학술대회
제13회 한국유체공학학술대회
  • 행사명: 제 13회 한국유체공학학술대회 (The 13th National Congress on Fluids Engineering)
  • 개최일자 : 2024. 7. 24. (수) ~ 26.(금) (3일간)
  • 개최장소 : 대전컨벤션센터(DCC
  • 주 관 : 대한조선학회
  • 공동주최 : 대한기계학회, 대한설비공학회, 대한조선학회, 순환기의공학회, 한국가시화정보학회, 한국군사과학기술학회, 한국기상학회, 한국액체미립화학회, 한국염색가공학회, 한국원자력학회, 한국유체기계학회, 한국자동차공학회, 한국전산유체공학회, 한국추진공학회, 한국풍공학회, 한국풍력에너지학회, 한국항공우주학회, 한국해안·해양공학회, 한국해양공학회, 한국해양환경·에너지학회

기술자료 & News

Fig 1. (a) The Location of the Bahman Shir dam (upstream), (b) Bahman Shir dam (downstream dam) and (c) Mared Dam. Note: The borders of the countries are not exact.

Initial Maintenance Notes about the First River Ship Lock in Iran

M.T. Mansouri Kia1,2, H.R. Sheibani 3, A. Hoback 41 Manager of Dam and Power Plant Construction, Khuzestan Water and Power Authority (KWPA), Ahwaz, Iran.2 Ph.D., Department of Civil Engineering, Payame ...
Figure 3 – Free surface views. Bottom left: k-ε RNG model. Bottom right: LES.

Physical Modeling and CFD Comparison: Case Study of a HydroCombined Power Station in Spillway Mode

물리적 모델링 및 CFD 비교: 방수로 모드의 HydroCombined 발전소 사례 연구 Gonzalo Duró, Mariano De Dios, Alfredo López, Sergio O. Liscia ABSTRACT This study presents comparisons between the results of ...
Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition

Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition

텅스텐 카바이드의 초고속 레이저 제거: 임계값 범위의 정량화 및 특징 전환 해석 Xiong Zhang, Chunjin Wang, Benny C. F. Cheung, Gaoyang Mi, Chunming WangFirst published: 07 February 2024 Abstract Tungsten carbide was manufactured by ...
Numerical Investigation of the Local Scour for Tripod Pile Foundation.

Numerical Investigation of the Local Scour for Tripod Pile Foundation.

Hassan, Waqed H.; Fadhe, Zahraa Mohammad; Thiab, Rifqa F.; Mahdi, Karrar 초록 This work investigates numerically a local scour moves in irregular waves around tripods. It is constructed and proven ...
Embankment Dams Overtopping Breach: A Numerical Investigation of Hydraulic Results

Embankment Dams Overtopping Breach: A Numerical Investigation of Hydraulic Results

Mahdi Ebrahimi, Mirali Mohammadi, Sayed Mohammad Hadi Meshkati & Farhad Imanshoar Abstract The overtopping breach is the most probable reason of embankment dam failures. Hence, the investigation of the mentioned phenomenon is one of ...
Figure 1: Scheme of liquid metal printing process

Effect of Aging Heat Treatment in an Al-4008 Produced byLiquid Metal Printing

C. M. LadeiroDepartment of Metallurgical and Materials Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. RobertoFrias, 4200-465 PORTO, Portugal ( ORCID 0009-0003-8587-2309F. L. NunesDepartment of Metallurgical and Materials Engineering, ...
Figure (17): Stream Lines Indicating Average Flow Speed in the Model with Various Nose shapes, Measured at Mid-Depth and at the Flow Surface Level, at a Flow Rate of 78 Liters per Second.

Conducting experimental and numerical studies to analyze theimpact of the base nose shape on flow hydraulics in PKW weirusing FLOW-3D

FLOW-3D를 사용하여 PKW 둑의 흐름 수력학에 대한 베이스 노즈 모양의 영향을 분석하기 위한 실험 및 수치 연구 수행 Behshad Mardasi 1Rasoul Ilkhanipour Zeynali 2Majid Heydari 3 Abstract Weirs are essential ...
그림 12: 시간 경과에 따른 속도 카운터: 30초 그림 13: 시간 경과에 따른 속도 카운터: 20초

Gemelo digital del puente de Kalix: cargas estructurales de futuros eventos climáticos extremos

Kalix Bridge 디지털 트윈: 미래 극한 기후 현상으로 인한 구조적 부하 Este documento está relacionado con un proyecto en curso para el cual se está desarrollando e implementando un gemelo ...


번역된 기고 제목: 해류의 영향에 따른 어뢰 앵커 설치의 유체 역학 특성에 대한 수치 분석 Translated title of the contribution: NUMERICAL ANALYSIS OF THE HYDRODYNAMICS CHARACTERISTICS OF TORPEDO ANCHOR INSTALLATION ...

Discharge Coefficient of a Two-Rectangle Compound Weir combined with a Semicircular Gate beneath it under Various Hydraulic and Geometric Conditions

다양한 수력학적 및 기하학적 조건에서 아래에 반원형 게이트가 결합된 두 개의 직사각형 복합 웨어의 배수 계수 ABSTRACT Two-component composite hydraulic structures are commonly employed in irrigation systems. The first component, ...
The impacts of profile concavity on turbidite deposits: Insights from the submarine canyons on global continental margins

The impacts of profile concavity on turbidite deposits: Insights from the submarine canyons on global continental margins

프로필 오목부가 탁도 퇴적물에 미치는 영향: 전 세계 대륙 경계에 대한 해저 협곡의 통찰력 Kaiqi Yu a, Elda Miramontes bc, Matthieu J.B. Cartigny d, Yuping Yang a, Jingping Xu aaDepartment of Ocean Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Rd., ...
Fig. 3. Free surface and substrate profiles in all Sp and Ls cases at t = 1 s, t = 3 s, and t = 5 s, arranged left to right (note: the colour contours correspond to the horizontal component of the flow velocity (u), expressed in m/s).

Numerical investigation of dam break flow over erodible beds with diverse substrate level variations

다양한 기질 수준 변화를 갖는 침식성 층 위의 댐 파손 흐름에 대한 수치 조사 Alireza Khoshkonesh1, Blaise Nsom2, Saeid Okhravi3*, Fariba Ahmadi Dehrashid4, Payam Heidarian5,Silvia DiFrancesco61 Department of Geography, School ...
그림 10. 수문이 고르지 않게 열리는 경우의 시뮬레이션 결과

홍수 시즌에 하수구를 운영할 때 흐름 회로를 제어하는 ​​기술, 푸토코무네 제방을 통해 제방에 적용

요약 대규모 홍수 구호 작업에 대한 일반적인 흐름 회로 현상의 영향은 많은 보고서에서 연구되었으며 비교적 자세하게 연구되었습니다. 그러나 유량 변동이 제방 암거 작동에 미치는 악영향에 대해서는 많이 언급되지 않았습니다. 실제 ...
Figure 3. The simulated temperature distribution and single-layer multi-track isothermograms of LPBF Hastelloy X, located at the bottom of the powder bed, are presented for various laser energy densities. (a) depicts the single-point temperature distribution at the bottom of the powder bed, followed by the isothermograms corresponding to laser energy densities of (b) 31 J/mm3 , (c) 43 J/mm3 , (d) 53 J/mm3 , (e) 67 J/mm3 , and (f) 91 J/mm3 .

An integrated multiscale simulation guiding the processing optimisation for additively manufactured nickel-based superalloys

적층 가공된 니켈 기반 초합금의 가공 최적화를 안내하는 통합 멀티스케일 시뮬레이션 Xing He, Bing Yang, Decheng Kong, Kunjie Dai, Xiaoqing Ni, Zhanghua Chen& Chaofang Dong ABSTRACT Microstructural defects in laser ...
FLOW-3D World Users Conference 2024

FLOW-3D World Users Conference 2024

FLOW-3D World Users Conference 2024 에 전 세계 고객을 초대합니다. 이 컨퍼런스는 독일 함부르크의 Steigenberger Hotel Hamburg 에서 2024년 6월 10~12일에 개최됩니다 . 세계에서 가장 유명한 기업 및 기관의 동료 ...
Figure 5. Simulation of the molten pool under low-speed scanning (1.06 m/s). (a) Sequential solidification of the molten pool at the end of the melt track for laser powers of 190 and 340 W, respectively. (b) Recoil pressure on the molten pool at the keyhole for laser powers of 190 and 340 W, respectively. (c) The force diagram of the melt at the back of the keyhole at t = 750 μs in case B. (d) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case A. (e) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case B.

Revealing formation mechanism of end of processdepression in laser powder bed fusion by multiphysics meso-scale simulation

다중물리 메조 규모 시뮬레이션을 통해 레이저 분말층 융합에서 공정 종료의 함몰 형성 메커니즘 공개 Haodong Chen a,b, Xin Lin a,b,c, Yajing Sund, Shuhao Wanga,b, Kunpeng Zhu a,b,c and Binbin Dana,b ...