Best Ultrabooks and Premium Laptops 2021

FLOW-3D 해석용 노트북 선택 가이드

2023년 01월 11일

본 자료는 IT WORLD에서 인용한 자료입니다.

일반적으로 수치해석을 주 업무로 사용하는 경우 노트북을 사용하는 경우는 그리 많지 않습니다. 그 이유는 CPU 성능을 100%로 사용하는 해석 프로그램의 특성상 발열과 부품의 성능 측면에서 데스크탑이나 HPC의 성능을 따라 가기는 어렵기 때문입니다.

그럼에도 불구하고, 이동 편의성이나 발표,  Demo 등의 업무 필요성이 자주 있는 경우, 또는 계산 시간이 짧은 경량 해석을 주로 하는 경우, 노트북이 주는 이점이 크기 때문에 수치해석용 노트북을 고려하기도 합니다.

보통 수치해석용 컴퓨터를 검토하는 경우 CPU의 Core수나 클럭, 메모리, 그래픽카드 등을 신중하게 검토하게 되는데 모든 것이 예산과 직결되어 있기 때문입니다.  따라서 해석용 컴퓨터 구매 시 어떤 것을 선정 우선순위에 두는지에 따라 사양이 달라지게 됩니다.

해석용으로 노트북을 고려하는 경우, 보통 CPU의 클럭은 비교적 선택 기준이 명확합니다. 메모리 또한 용량에 따라 가격이 정해지기 때문에 이것도 비교적 명확합니다. 나머지 가격에 가장 큰 영향을 주는 것이 그래픽카드인데, 이는 그래픽 카드의 경우 일반적인 게임용이나 포토샵으로 일반적인 이미지 처리 작업을 수행하는 그래픽카드와 3차원 CAD/CAE에 사용되는 업무용 그래픽 카드는 명확하게 분리되어 있고, 이는 가격 측면에서 매우 차이가 많이 납니다.

통상 게임용 그래픽카드는 수치해석의 경우 POST 작업시 문제가 발생하는 경우가 종종 발생하기 때문에 일반적으로 선택 우선 순위에서 충분한 확인을 한 후 구입하는 것이 좋습니다.

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 적합합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 NVIDIA의 Quadro K 시리즈와 AMD의 Fire Pro W 시리즈입니다.

특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

MSI, CES 2023서 인텔 코어 i9-13980HX 탑재 노트북 벤치마크 공개

2023.01.11

Mark Hachman  | PCWorld

MSI가 새로운 노트북 CPU 벤치마크, 그리고 그 CPU가 내장돼 있는 신제품 노트북 제품군을 모두 CES 2023에서 공개했다. CES에서 인텔은 노트북용 13세대 코어 칩, 코드명 랩터 레이크와 핵심 제품인 코어 i9-13980HX를 발표했다.

ⓒ PCWorld

새로운 노트북용 13세대 코어 칩이 게임 플레이에서 12% 더 빠르다는 정도의 약간의 정보는 이미 알려져 있다. 사용자가 기다리는 것은 실제 CPU가 탑재된 노트북에서의 성능이지만 보통 벤치마크는 제품 출시가 임박해서야 공개되는 것이 보통이다. 올해는 다르다.

CES 2023에서 MSI는 인텔 최고급 제품군인 코어 i9-13980HX 프로세서가 탑재된 타이탄 GT77 HX과 레이더 GE78 HX를 공개했다. 이례적으로 여기에 더해 PCI 익스프레서 5 SSD의 실제 성능을 측정하는 크리스털디스크마크, 모바일 프로세서 실행 속도를 측정하는 시네벤치 벤치마크 점수도 함께 제공했다. 다음 영상의 결과부터 말하자면 인텔 최신 프로세서를 큰 폭으로 따돌릴 만한 수치다.

https://www.youtube.com/embed/3kvrOIEOUlw

ⓒ PCWorld

MSI는 레이더 GE78 HX 외에도 레이더 GE68 HX 그리고 게이밍 노트북 같지 않은 외관의 스텔스 16 스튜디오, 스텔스 14, 사이보그 14 등 2023년에 출시될 다른 노트북도 전시했다. 오래된 PC 애호가라면 MSI 노트북 전면을 장식한 화려한 복고풍의 라이트 브라이트(Lite Brite) LED를 반가워할지도 모른다. 바닥면 섀시가 투명한 플라스틱 소재로 MSI 로고가 새겨져 있는 제품도 있다. 상세한 가격, 출시일, 사양 등은 추후 공개 예정이다.
editor@itworld.co.kr 

원문보기:
https://www.itworld.co.kr/news/272199#csidx870364b15ea6aa28b53a990bc5c0697 

‘코어 i7 vs. 코어 i9’ 나에게 맞는 고성능 노트북 CP

2021.06.14

고성능 노트북을 구매할 때는 코어 i7과 코어 i9 사이에서 선택의 갈림길에 서게 된다. 코어 i7 CPU도 강력하지만 코어 i9는 최고의 성능을 위해 만들어진 CPU이며 보통 그에 상응하는 높은 가격대로 판매된다.

CPU에 초점을 둔다면 관건은 성능이다. 성능을 좌우하는 두 가지 주요소는 CPU의 동작 클록 속도(MHz), 그리고 탑재된 연산 코어의 수다. 그러나 노트북에서 한 가지 중요한 제약 요소는 냉각이다. 냉각이 제대로 되지 않으면 고성능도 쓸모가 없다. 가장 적합한 노트북 CPU를 결정하는 데 도움이 되도록 인텔의 지난 3개 세대 CPU의 코어 i7과 i9에 대한 정보를 모았다. 최신 세대부터 시작해 역순으로 살펴보자.

11세대: 코어 i9 vs. 코어 i7

인텔의 11세대 타이거 레이크(Tiger Lake) H는 한 가지 큰 이정표를 달성했다. 인텔이 2015년부터 H급 CPU에 사용해 온 14nm 공정을 마침내 최신 10nm 슈퍼핀(SuperFin) 공정으로 바꾼 것이다. 오랫동안 기다려온 변화다.

인텔이 자랑할 만한 10nm 고성능 칩을 내놓자 타이거 레이크 H를 장착한 노트북도 속속 발표됐다. 얇고 가볍고 예상외로 가격도 저렴한 에이서 프레데터 트라이톤(Acer Predator Triton) 300 SE를 포함해 일부는 벌써 매장에 출시됐다. 모든 타이거 레이크 H 칩이 8코어 CPU라는 점도 달라진 부분이다. 이전 세대의 경우 같은 제품군 내에서 코어 수에 차이를 둬 성능 기대치를 구분했다.

클록 차이도 크지 않다. 코어 i7-11800H의 최대 클록은 4.6GHz, 코어 i9-11980HK는 5GHz로, 클록 속도 증가폭은 약 8.6% 차이다. 나쁘지 않은 수치지만 둘 다 8코어 CPU임을 고려하면 대부분의 사용자에게 코어 i9는 큰 매력은 없다.

다만 코어 i9에 유리한 부분을 하나 더 꼽자면 코어 i9-11980HK가 65W의 열설계전력(TDP)을 옵션으로 제공한다는 점이다. 높은 TDP는 최상위 코어 i9에만 제공되는데, 이는 전력 및 냉각 요구사항을 충족하는 노트북에서는 코어 i7 버전보다 더 높은 지속 클록 속도를 제공할 수 있음을 의미한다.

대신 이런 노트북은 두껍고 크기도 클 가능성이 높다. 따라서 두 개의 얇은 랩톱 중에서(하나는 코어 i9, 하나는 코어 i7) 고민하는 사람에겐 열 및 전력 측면의 여유분은 두께와 크기를 희생할 만큼의 가치는 없을 것이다.

*11세대의 승자: 대부분의 사용자에게 코어 i7

10세대: 코어 i9 vs. 코어 i7

인텔은 10세대 코멧 레이크(Comet Lake) H 제품군에서 14nm를 고수했다. 그 대신 코어 i9 CPU 외에 코어 i7에도 8코어 CPU를 도입, 사용자가 비싼 최상위 CPU를 사지 않고도 더 뛰어난 성능을 누릴 수 있게 했다.

11세대 노트북이 나오기 시작했지만 10세대 CPU 제품 중에서도 아직 괜찮은 제품이 많다. 예를 들어 MSI GE76 게이밍 노트북은 빠른 CPU와 고성능 155W GPU를 탑재했고, 전면 모서리에는 RGB 라이트가 달려 있다.

11세대 칩과 마찬가지로 코어와 클록 속도의 차이가 크지 않으므로 대부분의 사용자에게 코어 i7과 코어 i9 간의 차이는 미미하다. 코어 i9-10980HK의 최대 부스트 클록은 5.3GHz, 코어 i7-10870H는 5GHz로, 두 칩의 차이는 약 6%다. PC를 최대 한계까지 사용해야 하는 경우가 아니라면 더 비싼 비용을 들여 10세대 코어 i9를 구매할 이유가 없다.

*10세대 승자: 대부분의 사용자에게 코어 i7

9세대: 코어 i9 대 코어 i7

인텔은 9세대 커피 레이크 리프레시(Coffee Lake Refresh) 노트북 H급 CPU에서 14nm 공정을 계속 유지했다. 코어 i9는 더 높은 클록 속도(최대 5GHz)를 제공하며 8개의 CPU 코어를 탑재했다. 물론 이 칩은 2년 전에 출시됐지만 인텔이 설계를 도운 XPG 제니아(Xenia) 15 등 아직 괜찮은 게이밍 노트북이 있다. 얇고 가볍고 빠르며 엔비디아 RTX GPU를 내장했다.

8코어 4.8GHz 코어 i9-9880HK와 4.6GHz 6코어 코어 i7-9850의 클록 속도 차이는 약 4%로, 실제 사용 시 유의미한 차이로 이어지는 경우는 극소수다. 두 CPU 모두 기업용 노트북에 많이 사용됐다. 대부분의 소비자용 노트북에는 8코어 5GHz 코어 i9-9880HK와 6코어 4.5GHz 코어 i7-9750H가 탑재됐다. 이 두 CPU의 클록 차이는 약 11%로, 이 정도면 유의미한 차이지만 마찬가지로 대부분의 경우 실제로 체감하기는 어렵다.

그러나 코어 수의 차이는 멀티 스레드 애플리케이션에서 큰 체감 효과로 이어지는 경우가 많다. 3D 모델링 테스트인 씨네벤치(Cinebench) R20에서 코어 i9-9980HK를 탑재한 구형 XPS 15의 점수는 코어 i7-9750H를 탑재한 게이밍 노트북보다 42% 더 높았다. 8코어 코어 i9의 발열을 심화하는 무거운 부하에서는 성능 차이가 약 7%로 줄어들었다. 여기에는 노트북의 설계가 큰 영향을 미칠 것이다. 어쨌든 일부 상황에서는 8코어가 6코어보다 유리하다.

또한 수치해석의 경우 결과를 분석하는 작업중의 많은 부분이 POST 작업으로 그래픽처리가 필요하다. 따라서 아래 영상편집을 위한 노트북에 대한 자료도 선택에 도움이 될것으로 보인다.

영상 편집을 위한 최고의 노트북 9선

Brad Chacos, Ashley Biancuzzo, Sam Singleton | PCWorld

2022.12.29

영상을 편집하다 보면 컴퓨터의 여러 리소스를 집약적으로 사용하기 마련이다. 그래서 영상 편집은 대부분 데스크톱 PC에서 하는 경우가 많지만, 노트북에서 영상을 편집하려 한다면 PC만큼 강력한 사양이 뒷받침되어야 한다. 

ⓒ Gordon Mah Ung / IDG

영상 편집용 노트북을 구매할 때 가장 비싼 제품을 선택할 필요는 없다. 사용 환경에 맞게 프로세서, 디스플레이의 품질, 포트 종류 등을 다양하게 고려해야 한다. 다음은 영상 편집에 최적화된 노트북 제품이다. 추천 제품을 확인한 후 영상 편집용 노트북을 테스트하는 팁도 참고하자. 

1. 영상 편집용 최고의 노트북, 델 XPS 17(2022)

ⓒ  IDG

장점
• 가격 대비 강력한 기능
• 밝고 풍부한 색채의 대형 디스플레이
• 썬더볼트 4 포트 4개 제공
• 긴 배터리 수명 
• 시중에서 가장 빠른 GPU인 RTX 3060

단점
• 무겁고 두꺼움
• 평범한 키보드
• USB-A, HDMI, 이더넷 미지원

델 XPS 17(2022)이야말로 콘텐츠 제작에 최적화된 노트북이다. 인텔 12세대 코어 i7-12700H 프로세서 및 엔비디아 지포스 RTX 3060는 편집을 위한 뛰어난 성능을 제공한다. 1TB SSD도 함께 지원되기에 데이터를 옮길 때도 편하다. 

XPS 17은 SD카드 리더, 여러 썬더볼트 4 포트, 3840×2400 해상도의 17인치 터치스크린 패널, 16:10 화면 비율과 같은 영상 편집자에게 필요한 기능을 포함한다. 무게도 2.5kg 대로 비교적 가볍다. 배터리 지속 시간은 한번 충전 시 11시간인데, 이전 XPS 17 버전보다 1시간 이상 늘어난 수치다. 

2. 영상 편집에 최적화된 스크린, 델 XPS 15 9520

ⓒ  IDG

장점
• 뛰어난 OLED 디스플레이
• 견고하고 멋진 섀시(Chassis)
• 강력한 오디오
• 넓은 키보드 및 터치패드

단점
• 다소 부족한 화면 크기
• 실망스러운 배터리 수명
• 시대에 뒤떨어진 웹캠
• 제한된 포트

델 XPS 15 9520은 놀라운 OLED 디스플레이를 갖추고 있으며, 최신 인텔 코어 i7-12700H CPU 및 지포스 RTX 3050 Ti 그래픽이 탑재되어 있다. 컨텐츠 제작 및 영상 편집용으로 가장 선호하는 제품이다. 시스템도 좋지만 투박하면서 금속 소재로 이루어진 외관이 특히 매력적이다. 

15인치 노트북이지만 매일 갖고 다니기에 다소 무거운 것은 단점이다. XPS 17 모델에서 제공되는 포트도 일부 없다. 그러나 멋진 OLED 디스플레이가 단연 돋보이며, 3456X2160 해상도, 16:10 화면 비율, 그리고 매우 선명하고 정확한 색상을 갖추고 있어 좋다. 

3. 최고의 듀얼 모니터 지원, 에이수스 젠북 프로 14 듀오 올레드

ⓒ IDG

장점
• 놀라운 기본 디스플레이와 보기 쉬운 보조 디스플레이 
• 탁월한 I/O 옵션 및 무선 연결
• 콘텐츠 제작에 알맞은 CPU 및 GPU 성능 

단점
• 생산성 노트북 치고는 부족한 배터리 수명
• 작고 어색하게 배치된 트랙패드
• 닿기 어려운 포트 위치

에이수스 젠북 프로 14 듀오(Asus Zenbook Pro 14 Duo OLED)는 일반적이지 않은 노트북이다. 일단 사양은 코어 i7 프로세서, 지포스 RTX 3050 그래픽, 16GB DDR5 메모리, 빠른 1TB NVMe SSD를 포함해 상당한 성능을 자랑한다. 또한 초광도의 547니트로 빛을 발하는 한편 DCI-P3 색영역의 100%를 커버하는 14.5인치 4K 터치 OLED 패널을 갖추고 있다. 사실상 콘텐츠 제작자를 위해 만들어진 제품이라 볼 수 있다.

가장 흥미로운 부분은 키보드 바로 위에 위치한 12.7인치 2880×864 스크린이다. 윈도우에서는 해당 모니터를 보조 모니터로 간주하며, 사용자는 번들로 제공된 에이수스 소프트웨어를 사용해 트랙패드로 사용하거나 어도비 앱을 위한 터치 제어 패널을 표시할 수 있다. 어떤 작업이든 유용하게 써먹을 수 있다.

젠북 프로 14 듀오 올레드는 기본적으로 휴대용이자 중간급 워크스테이션이다. 단, 배터리 수명은 평균 수준이기 때문에 중요한 작업 수행이 필요한 경우, 반드시 충전 케이블을 가지고 다녀야 한다. 그럼에도 불구하고 젠북 프로 14 듀오 올레드는 3D 렌더링 및 인코딩과 같은 작업에서 탁월한 성능을 보여 콘텐츠 제작자들에게 맞춤화 된 컴퓨터이다. 듀얼 스크린은 역대 최고의 기능이다.

4. 영상 편집하기 좋은 포터블 노트북, 레이저 블레이드 14(2021)

ⓒ IDG

장점
• AAA 게임에서 뛰어난 성능
• 훌륭한 QHD 패널
• 유난히 적은 소음 

단점
• 700g으로 무거운 AC 어댑터
• 비싼 가격
• 썬더볼트 4 미지원

휴대성이 핵심 고려 사항이라면, 레이저 블레이드 14(Razer Blade 14) (2021)를 선택해 보자. 노트북 두께는 1.5cm, 무게는 1.7kg에 불과해 비슷한 수준의 노트북보다 훨씬 가볍다. 사양은 AMD의 8-코어 라이젠 9 5900HX CPU, 엔비디아의 8GB 지포스 RTX 3080, 1TB NVMe SSD, 16GB 메모리를 탑재하고 있어 사양도 매우 좋다. 

그러나 휴대성을 대가로 몇 가지 이점을 포기해야 할 수 있다. 일단 14인치 IPS 등급 스크린은 공장에서 보정된 상태로 제공되지만, 최대 해상도는 2560×1440다. 또 풀 DCI-P3 색영역을 지원하지만 4K 영상 편집은 불가능하다. 거기에 레이저 블레이드 14는 SD 카드 슬롯도 없다. 다만 편집 및 렌더링을 위한 강력한 성능을 갖추고 있고 가방에 쉽게 넣을 수 있는 제품인 것은 분명하다. 

5. 배터리 수명이 긴 노트북, 델 인스피론 16

ⓒ Dell

장점
• 넉넉한 16인치 16:10 디스플레이
• 긴 배터리 수명
• 경쟁력 있는 애플리케이션 성능 
• 편안한 키보드 및 거대한 터치패드 
• 쿼드 스피커(Quad speakers)

단점
• GPU 업그레이드 어려움
• 512GB SSD 초과 불가
• 태블릿 모드에서는 어색하게 느껴질 수 있는 큰 스크린 

긴 배터리 수명을 가장 최우선으로 고려한다면, 델 인스피론 16(Dell Inspiron 16)을 살펴보자. 콘텐츠 제작 작업을 하며테스트해보니, 인스피론 16은 한 번 충전으로 16.5시간 동안 이용할 수 있다. 외부에서 작업을 마음껏 편집할 수 있는 시간이다. 그러나 무거운 배터리로 인해 무게가 2.1 kg에 달하므로 갖고 다니기에 적합한 제품은 아니다. 

가격은 저렴한 편이나 몇 가지 단점이 있다. 일단 인텔 코어 i7-1260P CPU, 인텔 아이리스 Xe 그래픽, 16GB 램, 512GB SSD 스토리지를 탑재하고 있다. 이 정도 사양으로 영상 편집 프로젝트 대부분을 작업할 수 있으나, 스토리지 용량이 부족하기 때문에 영상 파일을 저장할 경우 외장 드라이브가 필요하다. 그러나 델 인스피론 16이 진정으로 빛을 발하는 부분은 단연 배터리 수명이다. 또한 강력한 쿼드 스피커 시스템도 사용해 보면 만족할 것이다. 포트의 경우, USB 타입-C 2개, USB-A 3.2 Gen 1 1개, HDMI 1개, SD 카드 리더 1개, 3.5mm 오디오 잭 1개가 제공된다. 

6. 게이밍과 영상 편집 모두에 적합한 노트북, MSI GE76 레이더

ⓒ MSI

장점
• 뛰어난 성능을 발휘하는 12세대 코어 i9-12900HK
• 팬 소음을 크게 줄이는 AI 성능 모드
• 1080p 웹캠과 훌륭한 마이크 및 오디오로 우수한 화상 회의 경험 제공

단점
• 동일한 유형의 세 번째 버전
• 어수선한 UI
• 비싼 가격 

사양이 제일 좋은 제품을 찾고 있을 경우, 크고 무거운 게이밍 노트북을 선택해 보자. MSI GE76 레이더(Raider)는 강력한 14-코어 인텔 코어 i9-12900HK 칩, 175와트의 엔비디아 RTX 3080 Ti가 탑재됐고, 충분한 내부 냉각 성능 덕분에 UL의 프로시온(Procyon) 벤치마크의 어도비 프리미어 테스트에서 다른 노트북보다 훨씬 뛰어난 성능을 보였다. MSI GE76 레이더는 심지어 고속 카드 전송을 위해 PCle 버스에 연결된 SD 익스프레스(SD Express) 카드 리더도 갖추고 있다.

동일한 제품의 작년 모델은 게이머 중심의 360Hz 1080p 디스플레이를 지원한다. 영상 편집 과정에서는 그닥 이상적이지 않은 사양이다. 그러나 2022년의 12UHS 고급 버전은 4K, 120Hz 패널을 추가했는데, 이 패널은 콘텐츠 생성에 맞춰 튜닝 되지는 않았으나 17.3인치의 넓은 스크린 크기이기에 영상 편집자에게 꽤 유용하다. 

7. 가성비 좋은 노트북, HP 엔비 14t-eb000(2021) 

ⓒ IDG

장점
• 높은 가격 대비 우수한 성능
• 환상적인 배터리 수명
• 성능 조절이 감지되지 않을 정도의 저소음 팬 
• 썬더볼트 4 지원

단점
• 약간 특이한 키보드 레이아웃
• 비효율적인 웹캠의 시그니처 기능

가장 빠른 영상 편집 및 렌더링을 원할 경우 하드웨어에 더 많은 비용을 들여야 하지만, 예산이 넉넉하지 않을 때가 있다. 이때 HP 엔비(Envy) 14 14t-eb000) (2021)를 이용해보면 좋다. 가격은 상대적으로 저렴한 편이고 견고한 기본 컨텐츠 제작에 유용하다. 

엔트리 레벨의 지포스 GTX 1650 Ti GPU 및 코어 i5-1135G7 프로세서는 그 자체로 업계 최고 제품은 아니다. 하지만 일반적인 편집 작업을 충분히 수행할 수 있는 사양이다. 분명 가성비 좋은 제품이다. 14인치 1900×1200 디스플레이는 16:10 화면 비율로 생산성을 향상하고, 공장 색 보정과 DCI-P3는 지원하지 않지만 100% sRGB 지원을 제공한다. 그뿐만 아니라, HP 엔비 14의 경우 중요한 SD 카드 및 썬더볼트 포트가 포함되며, 놀라울 정도로 조용하게 실행된다. 

8. 컨텐츠 제작에 알맞은 또다른 게이밍 노트북, 에이수스 ROG 제피러스 S17

장점
• 뛰어난 CPU 및 GPU 성능
• 강력하고 혁신적인 디자인
• 편안한 맞춤형 키보드

단점
• 약간의 압력이 필요한 트랙패드
• 상당히 높은 가격

에이수스 ROG 제피러스(Zephyrus) S17은 영상 편집자의 궁극적인 꿈이다. 이 노트북은 초고속 GPU 및 CPU 성능과 함께 120Hz 화면 재생률을 갖춘 놀라운 17.3인치 4K 디스플레이를 탑재하고 있다. 견고한 전면 금속 섀시, 6개의 스피커 사운드 시스템 및 맞춤형 키보드는 프리미엄급 경험을 더욱 향상한다. 거기다 SD 카드 슬롯 및 풍부한 썬더볼트 포트가 포함되어 있어 더욱 좋다. 그러나 이를 위해 상당한 비용을 지불해야 한다. 예산이 넉넉하고 최상의 제품을 원한다면 제피루스 S17을 선택하면 된다. 

9. 강력한 휴대성을 가진 노트북, XPG 제니아 15 KC 

ⓒ XPG 

장점
• 가벼운 무게
• 조용함
• 상대적으로 빠른 속도

단점
• 중간 수준 이하의 RGB
• 평범한 오디오 성능
• 느린 SD 카드 리더 

사양이 좋은 노트북의 경우, 대부분 부피가 크고 무거워서 종종 2.2kg 또는 2.7kg를 넘기도 한다. XPG 제니아 15 KC(XPG Xenia 15 KC)만은 예외다. XPG 제니아 15 KC의 무게는 1.8kg가 조금 넘는 수준으로, 타제품에 비해 상당히 가볍다. 또한 소음도 별로 없다. 원래 게이밍 노트북 자체가 소음이 크기에 비교해보면 큰 장점이 될 수 있다. 1440p 디스플레이와 상대적으로 느린 SD 카드 리더 성능으로 인해 일부 콘텐츠 제작자들이 구매를 주저할 수 있으나, 조용하고 휴대하기 좋은 제품을 찾고 있다면 제니아 15 KC가 좋은 선택지다. 

영상 편집 노트북 구매 시 고려 사항

영상 편집 노트북 구매 시 고려해야 할 가장 중요한 사항은 CPU 및 GPU다. 하드웨어가 빨라질수록 편집 속도도 빨라진다. 필자는 UL 프로시온 영상 편집 테스트(UL Procyon Video Editing Test)를 통해 속도를 테스트해보았다. 이 벤치마크는 2개의 서로 다른 영상 프로젝트를 가져와 색상 그레이딩 및 전환과 같은 시각적 효과를 적용한 다음, 1080p와 4K 모두에서 H.264, H.265를 사용해 내보내는 작업을 어도비 프리미어가 수행하도록 한다. 

ⓒ Gordon Mah Ung / IDG

성능은 인텔의 11세대 프로세서를 실행하는 크고 무거운 노트북에서 가장 높았고, AMD의 비피 라이젠 9(beefy Ryzen 9) 프로세서를 탑재한 노트북이 바로 뒤를 이었다. 10세대 인텔 칩은 여전히 상당한 점수를 기록하고 있다. 위의 차트에는 없으나 새로운 인텔 12세대 노트북은 더 빨리 실행된다. 최고 성능의 노트북은 모두 최신 인텔 CPU 및 엔비디아의 RTX 30 시리즈 GPU를 결합했는데, 두 기업 모두 어도비 성능 최적화에 많은 시간 및 리소스를 투자했기 때문에 놀라운 일은 아니다. 

GPU는 어도비 프리미어 프로에서 CPU보다 더 중요하지만, 매우 빠르게 수확체감 지점에 다다른다. 최고급 RTX 3080 그래픽을 사용하는 노트북은 RTX 3060 그래픽을 사용하는 노트북보다 영상 편집 속도가 더 빠르나, 속도 차이가 크지는 않다. 델 XPS 17 9710의 점수를 살펴보면, 지포스 RTX 3060 노트북 GPU는 MSI GE76 레이더의 가장 빠른 RTX 3080보다 14% 더 느릴 수 있다. 특히 GE76 레이더가 델 노트북에 비해 얼마나 더 크고 두꺼운지를 고려할 때 수치가 크지는 않다.

일반적으로 그래픽과 영상 편집을 위해 적어도 RTX 3060을 갖추는 것을 권장한다. 그러나 영상 편집은 워크플로에 크게 의존한다. 특정 작업 및 도구는 CPU 집약적이거나 프리미어보다 GPU에 더 의존할 수 있다. 이 경우 원하는 요소의 우선순위를 조정하길 바란다. 앞서 언급한 목록은 기본적으로 여러 요소를 종합적으로 고려해서 만든 내용이다.

인텔 및 엔비디아는 각각 퀵 싱크(Quick Sync) 및 쿠다(CUDA)와 같은 도구를 구축하는 데 수년을 보냈고, 이로 인해 많은 영상 편집 앱의 속도는 크게 향상될 수 있다. AMD 하드웨어는 영상 편집에 적합하나 특히 워크플로가 공급업체별 소프트웨어 최적화에 의존하는 경우, 특별한 이유가 없는 한 인텔 및 엔비디아를 사용하는 것을 추천한다. 

영상 촬영 ⓒ Gordon Mah Ung/IDG

그러나 내부 기능만 신경 써서는 안된다. PC월드의 영상 디렉터인 아담 패트릭 머레이는 “영상 편집에 이상적인 노트북에는 카메라로 촬영 중 영상 파일을 저장하는 SD 카드 리더가 포함되어 있다”라고 강조한다. 또한 머레이는 영상 편집에 이상적인 게임용 노트북에서 흔히 볼 수 있는 초고속 1080p 패널보다 4k, 60Hz 패널을 갖춘 노트북을 선택할 것을 추천한다.

4K 영상을 잘 편집하려면 4K 패널이 필요하며, 초고속 화면 재생률은 게임에서처럼 영상 편집에는 아무런 의미가 없다. 예를 들어, 개인 유튜브 채널용으로 일상적인 영상만 만드는 경우 색상 정확도가 중요하지 않을 수 있다. 그러나 색상 정확도가 중요할 경우, 델타 E < 2 색상 정확도와 더불어 DCI-P3 색 영역 지원은 필수적이다. 

게임용 노트북은 사양이 좋지만 콘텐츠 제작용으로는 조금 부족해 보일 수 있다. 게임용과 콘텐츠 제작용으로 함께 쓰는 노트북을 원한다면, 게임용으로 노트북 한 대를 구매하고, 색상을 정확히 파악하기 위한 모니터를 추가로 구매하는 것도 방법이다. 
editor@itworld.co.kr

원문보기:
https://www.itworld.co.kr/topnews/269913#csidxa12f167cd9eef5abfb1b6d099fb54ea 

그래픽 카드

AMD FirePro Naver Shopping 검색 결과

2021-12-15 기준

현재 NVIDIA Quadro pro graphic card : 네이버 쇼핑 (naver.com)

코어가 많은 그래픽카드의 경우 가격이 상상 이상으로 높습니다. 빠르면 빠를수록 좋겠지만 어디까지나 예산에 맞춰 구매를 해야 하는 현실을 감안할 수 밖에 없는 것 같습니다.

한가지 유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 모델에 따라 다르기는 하지만, 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상이어야 하고 1GB이상을 권장합니다.


2021-12-15 현재 그래픽카드의 성능 순위는 위와 다음과 같습니다.
출처: https://www.videocardbenchmark.net/high_end_gpus.html

주요 Notebook

출시된 모든 그래픽 카드가 노트북용으로 장착되어 출시되지는 않기 때문에, 현재 오픈마켓 검색서비스를 제공하는 네이버에서 Lenovo Quadro 그래픽카드를 사용하는 노트북을 검색하면 아래와 같습니다. 검색 시점에 따라 상위 그래픽카드를 장착한 노트북의 대략적인 가격을 볼 수 있을 것입니다.

<검색 방법>
네이버 쇼핑 검색 키워드 : 컴퓨터 제조사 + 그래픽카드 모델 + NoteBook 형태로 검색
Lenovo quadro notebook or HP quadro notebook 또는 Lenovo firepro notebook or HP firepro notebook


( 2021-12-15기준)

대부분 검색 시점에 따라 최신 CPU와 최신 그래픽카드를 선택하여 검색을 하면 예산에 적당한 노트북을 자신에게 맞는 최상의 노트북을 어렵지 않게 선택할 수 있습니다.

(주)에스티아이씨앤디 솔루션사업부

FLOW-3D 수치해석용 컴퓨터 선택 가이드 (update)

Hardware Selection for FLOW-3D Products – FLOW-3D

부분 업데이트 / ㈜에스티아이씨앤디 솔루션사업부

In this blog, Flow Science’s IT Manager Matthew Taylor breaks down the different hardware components and suggests some ideal configurations for getting the most out of your FLOW-3D products.

개요

본 자료는 Flow Science의 IT 매니저 Matthew Taylor가 작성한 자료를 기반으로 STI C&D에서 일부 자료를 보완한 자료입니다. 본 자료를 통해 FLOW-3D 사용자는 최상의 해석용 컴퓨터를 선택할 때 도움을 받을 수 있을 것으로 기대합니다.

수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.

따라서 수치해석용 컴퓨터의 선정을 위해서 단위 시간당 시스템이 처리하는 작업의 수나 처리량, 응답시간, 평균 대기 시간 등의 요소를 복합적으로 검토하여 결정하게 됩니다.

또한 수치해석에 적합한 성능을 가진 컴퓨터를 선별하는 방법으로 CPU 계산 처리속도인 Flops/sec 성능도 중요하지만 수치해석을 수행할 때 방대한 계산 결과를 디스크에 저장하고, 해석결과를 분석할 때는 그래픽 성능도 크게 좌우하기 때문에 SSD 디스크와 그래픽카드에도 관심을 가져야 합니다.

FLOW SCIENCE, INC. 에서는 일반적인 FLOW-3D를 지원하는 최소 컴퓨터 사양과 O/S 플랫폼 가이드를 제시하지만, 도입 담당자의 경우, 최상의 조건에서 해석 업무를 수행해야 하기 때문에 가능하면 최고의 성능을 제공하는 해석용 장비 도입이 필요합니다. 이 자료는 2022년 현재 FLOW-3D 제품을 효과적으로 사용하기 위한 하드웨어 선택에 대해 사전에 검토되어야 할 내용들에 대해 자세히 설명합니다. 그리고 실행 중인 시뮬레이션 유형에 따라 다양한 구성에 대한 몇 가지 아이디어를 제공합니다.

CPU 최신 뉴스

2024년 04월 01일 기준

CPU Benchmarks
이미지 출처 : https://www.cpubenchmark.net/high_end_cpus.html

CPU의 선택

CPU는 전반적인 성능에 큰 영향을 미치며, 대부분의 경우 컴퓨터의 가장 중요한 구성 요소입니다. 그러나 데스크탑 프로세서를 구입할 때가 되면 Intel 과 AMD의 모델 번호와 사양을 이해하는 것이 어려워 보일 것입니다.
그리고, CPU 성능을 평가하는 방법에 의해 가장 좋은 CPU를 고른다고 해도 보드와, 메모리, 주변 Chip 등 여러가지 조건에 의해 성능이 달라질 수 있기 때문에 성능평가 결과를 기준으로 시스템을 구입할 경우, 단일 CPU나 부품으로 순위가 정해진 자료보다는 시스템 전체를 대상으로 평가한 순위표를 보고 선정하는 지혜가 필요합니다.

PassMark - CPU Mark
High End CPUs
Updated 31st of March 2024
PassMark – CPU Mark High End CPUs Updated 31st of March 2024

<출처>https://www.cpubenchmark.net/high_end_cpus.html

수치해석을 수행하는 CPU의 경우 예산에 따라 Core가 많지 않은 CPU를 구매해야 하는 경우도 있을 수 있습니다. 보통 Core가 많다고 해석 속도가 선형으로 증가하지는 않으며, 해석 케이스에 따라 적정 Core수가 있습니다. 이 경우 예산에 맞는 성능 대비 최상의 코어 수가 있을 수 있기 때문에 Single thread Performance 도 매우 중요합니다. 아래 성능 도표를 참조하여 예산에 맞는 최적 CPU를 찾는데 도움을 받을 수 있습니다.

CPU 성능 분석 방법

부동소수점 계산을 하는 수치해석과 밀접한 Computer의 연산 성능 벤치마크 방법은 대표적으로 널리 사용되는 아래와 같은 방법이 있습니다.

FLOW-3D의 CFD 솔버 성능은 CPU의 부동 소수점 성능에 전적으로 좌우되기 때문에 계산 집약적인 프로그램입니다. 현재 출시된 사용 가능한 모든 CPU를 벤치마킹할 수는 없지만 상대적인 성능을 합리적으로 비교할 수는 있습니다.

특히, 수치해석 분야에서 주어진 CPU에 대해 FLOW-3D 성능을 추정하거나 여러 CPU 옵션 간의 성능을 비교하기 위한 최상의 옵션은 Standard Performance Evaluation Corporation의 SPEC CPU2017 벤치마크(현재까지 개발된 가장 최신 평가기준임)이며, 특히 SPECspeed 2017 Floating Point 결과가 CFD Solver 성능을 매우 잘 예측합니다.

이는 유료 벤치마크이므로 제공된 결과는 모든 CPU 테스트 결과를 제공하지 않습니다. 보통 제조사가 ASUS, Dell, Lenovo, HP, Huawei 정도의 제품에 대해 RAM이 많은 멀티 소켓 Intel Xeon 기계와 같은 값비싼 구성으로 된 장비 결과들을 제공합니다.

CPU 비교를 위한 또 다른 옵션은 Passmark Software의 CPU 벤치마크입니다. PerformanceTest 제품군은 유료 소프트웨어이지만 무료 평가판을 사용할 수 있습니다. 대부분의 CPU는 저렴한 옵션을 포함하여 나열됩니다. 부동 소수점 성능은 전체 벤치마크의 한 측면에 불과하지만 다양한 워크로드에서 전반적인 성능을 제대로 테스트합니다.

예산을 결정하고 해당 예산에 해당하는 CPU를 선택한 후에는 벤치마크를 사용하여 가격에 가장 적합한 성능을 결정할 수 있습니다.

<참고>

SPEC의 벤치 마크https://www.spec.org/benchmarks.html#cpu )

SPEC CPU 2017 (현재까지 가장 최근에 개발된 CPU 성능측정 기준)

다른 컴퓨터 시스템에서 컴퓨팅 계산에 대한 집약적인 워크로드를 비교하는데 사용할 수 있는 성능 측정을 제공하도록 설계된 SPEC CPU 2017에는 SPECspeed 2017 정수, SPECspeed 2017 부동 소수점, SPECrate 2017 정수 및 SPECrate 2017 부동 소수점의 4 가지 제품군으로 구성된 43 개의 벤치 마크가 포함되어 있습니다. SPEC CPU 2017에는 에너지 소비 측정을 위한 선택적 메트릭도 포함되어 있습니다.

<SPEC CPU 벤치마크 보고서>

벤치마크 결과보고서는 제조사별, 모델별로 테스트한 결과를 아래 사이트에 가면 볼 수 있습니다.

https://www.spec.org/cgi-bin/osgresults

<보고서 샘플>

  • SPEC CPU 2017

Designed to provide performance measurements that can be used to compare compute-intensive workloads on different computer systems, SPEC CPU 2017 contains 43 benchmarks organized into four suites: SPECspeed 2017 Integer, SPECspeed 2017 Floating Point, SPECrate 2017 Integer, and SPECrate 2017 Floating Point. SPEC CPU 2017 also includes an optional metric for measuring energy consumption.

클럭 대 코어

일반적으로 클럭 속도가 높은 칩은 CPU 코어를 더 적게 포함합니다. FLOW-3D는 병렬화가 잘되어 있지만, 디스크 쓰기와 같이 일부 작업은 기본적으로 단일 스레드 방식으로 수행됩니다. 따라서 데이터 출력이 빈번하거나 큰 시뮬레이션은 종종 더 많은 코어가 아닌, 더 높은 클럭 속도를 활용합니다. 마찬가지로 코어 및 소켓의 다중 스레딩은 오버헤드를 발생시키므로 작은 문제의 해석일 경우 사용되는 코어 수를 제한하면 성능이 향상될 수 있습니다.

CPU 아키텍처

CPU 아키텍처는 중요합니다. 최신 CPU는 일반적으로 사이클당 더 많은 기능을 제공합니다. 즉, 현재 세대의 CPU는 일반적으로 동일한 클럭 속도에서 이전 CPU보다 성능이 우수합니다. 또한 전력 효율이 높아져 와트당 성능이 향상될 수 있습니다. Flow Science에는 구형 멀티 소켓 12, 16, 24 코어 Xeon보다 성능이 뛰어난 최근 세대 10~12 Core i9 CPU 시스템을 보유하고 있습니다.

오버클럭

해석용 장비에서는 CPU를 오버클럭 하지 않는 것이 좋습니다. 하드웨어를 다년간의 투자라고 생각한다면, 오버클럭화는 발열을 증가시켜 수명을 단축시킵니다. CPU에 따라 안정성도 저하될 수 있습니다. CPU를 오버클럭 할 때는 세심한 열 관리가 권장됩니다.

하이퍼스레딩

<이미지출처:https://gameabout.com/krum3/4586040>

하이퍼스레딩은 물리적으로 1개의 CPU를 가상으로 2개의 CPU처럼 작동하게 하는 기술로 파이프라인의 단계수가 많고 각 단계의 길이가 짧을때 유리합니다. 다만 수치해석 처럼 모든 코어의 CPU를 100% 사용중인 장시간 수행 시뮬레이션은 일반적으로 Hyper Threading이 비활성화 된 상태에서 더 잘 수행됩니다. FLOW-3D는 100% CPU 사용률이 일반적이므로 새 하드웨어를 구성할 때 Hyper Threading을 비활성화하는 것이 좋습니다. 설정은 시스템의 BIOS 설정에서 수행합니다.

몇 가지 워크로드의 경우에는 Hyper Threading을 사용하여 약간 더 나은 성능을 보이는 경우가 있습니다. 따라서, 최상의 런타임을 위해서는 두 가지 구성중에서 어느 구성이 더 적합한지 시뮬레이션 유형을 테스트하는 것이 좋습니다.

스케일링

여러 코어를 사용할 때 성능은 선형적이지 않습니다. 예를 들어 12 코어 CPU에서 24 코어 CPU로 업그레이드해도 시뮬레이션 런타임이 절반으로 줄어들지 않습니다. 시뮬레이션 유형에 따라 16~32개 이상의 CPU 코어를 선택할 때는 FLOW-3D 및 FLOW-3D CAST의 HPC 버전을 사용하거나 FLOW-3D CLOUD로 이동하는 것을 고려하여야 합니다.

AMD Ryzen 또는 Epyc CPU

AMD는 일부 CPU로 벤치마크 차트를 석권하고 있으며 그 가격은 매우 경쟁력이 있습니다. FLOW SCIENCE, INC. 에서는 소수의 AMD CPU로 FLOW-3D를 테스트했습니다. 현재 Epyc CPU는 이상적이지 않고 Ryzen은 성능이 상당히 우수합니다. 발열은 여전히 신중하게 다뤄져야 할 문제입니다.

<관련 기사>

https://www.techspot.com/news/78122-report-software-fix-can-double-threadripper-2990wx-performance.html

Graphics 고려 사항

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다.

특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.

PassMark - G3D Mark
High End Videocards
PassMark – G3D Mark High End Videocards

출처 : https://www.videocardbenchmark.net/high_end_gpus.html

원격데스크탑 사용시 고려 사항

Flow Science는 nVidia 드라이버 버전이 341.05 이상인 nVidia Quadro K, M 또는 P 시리즈 그래픽 하드웨어를 권장합니다. 이 카드와 드라이버 조합을 사용하면 원격 데스크톱 연결이 완전한 3D 가속 기능을 갖춘 기본 하드웨어에서 자동으로 실행됩니다.

원격 데스크톱 세션에 연결할 때 nVidia Quadro 그래픽 카드가 설치되어 있지 않으면 Windows는 소프트웨어 렌더링을 사용합니다. FLOW-3D 가 소프트웨어 렌더링을 사용하고 있는지 확인하려면 FLOW-3D 도움말 메뉴에서 정보를 선택하십시오. GDI Generic을 소프트웨어 렌더링으로 사용하는 경우 GL_RENDERER 항목에 표시됩니다.

하드웨어 렌더링을 활성화하는 몇 가지 옵션이 있습니다. 쉬운 방법 중 하나는 실제 콘솔에서 FLOW-3D를 시작한 다음 원격 데스크톱 세션을 연결하는 것입니다. Nice Software DCV 와 같은 일부 VNC 소프트웨어는 기본적으로 하드웨어 렌더링을 사용합니다.

RAM 고려 사항

프로세서 코어당 최소 4GB의 RAM은 FLOW-3D의 좋은 출발입니다. POST Processor를 사용하여 후처리 작업을 할 경우 충분한 양의 RAM을 사용하는 것이 좋습니다.

현재 주력제품인 DDR4보다 2배 빠른 DDR5가 곧 출시된다는 소식도 있습니다.

일반적으로 FLOW-3D를 이용하여 해석을 할 경우 격자(Mesh)수에 따라 소요되는 적정 메모리 크기는 아래와 같습니다.페이지 보기

  • 초대형 (2억개 이상의 셀) : 최소 128GB
  • 대형 (60 ~ 1억 5천만 셀) : 64 ~ 128GB
  • 중간 (30-60백만 셀) : 32-64GB
  • 작음 (3 천만 셀 이하) : 최소 32GB

HDD 고려 사항

수치해석은 해석결과 파일의 데이터 양이 매우 크기 때문에 읽고 쓰는데, 속도면에서 매우 빠른 SSD를 적용하면 성능면에서 큰 도움이 됩니다. 다만 SSD 가격이 비싸서 가성비 측면을 고려하여 적정수준에서 결정이 필요합니다.

CPU와 저장장치 간 데이터가 오고 가는 통로가 그림과 같이 3가지 방식이 있습니다. 이를 인터페이스라 부르며 SSD는 흔히 PCI-Express 와 SATA 통로를 이용합니다.

흔히 말하는 NVMe는 PCI-Express3.0 지원 SSD의 경우 SSD에 최적화된 NVMe (NonVolatile Memory Express) 전송 프로토콜을 사용합니다. 주의할 점은 MVMe중에서 SATA3 방식도 있기 때문에 잘 구별하여 구입하시기 바랍니다.

그리고 SSD를 선택할 경우에도 SSD 종류 중에서 PCI Express 타입은 매우 빠르고 가격이 고가였지만 최근에는 많이 저렴해졌습니다. 따라서 예산 범위내에서 NVMe SSD등 가장 효과적인 선택을 하는 것이 좋습니다.
( 참고 : 해석용 컴퓨터 SSD 고르기 참조 )

기존의 물리적인 하드 디스크의 경우, 디스크에 기록된 데이터를 읽기 위해서는 데이터를 읽어내는 헤드(바늘)가 물리적으로 데이터가 기록된 위치까지 이동해야 하므로 이동에 일정한 시간이 소요됩니다. (이러한 시간을 지연시간, 혹은 레이턴시 등으로 부름) 따라서 하드 디스크의 경우 데이터를 읽기 위한 요청이 주어진 뒤에 데이터를 실제로 읽기까지 일정한 시간이 소요되는데, 이 시간을 일정한 한계(약 10ms)이하로 줄이는 것이 불가능에 가까우며, 데이터가 플래터에 실제 기록된 위치에 따라서 이러한 데이터에의 접근시간 역시 차이가 나게 됩니다.

하지만 HDD의 최대 강점은 가격대비 용량입니다. 현재 상용화되어 판매하는 대용량 HDD는 12TB ~ 15TB가 공급되고 있으며, 이는 데이터 저장이나 백업용으로 가장 좋은 선택이 됩니다.
결론적으로 데이터를 직접 읽고 쓰는 드라이브는 SSD를 사용하고 보관하는 용도의 드라이브는 기존의 HDD를 사용하는 방법이 효과적인 선택이 될 수 있습니다.

PassMark – Disk Rating High End Drives

PassMark - Disk Rating
High End Drives
PassMark – Disk Rating High End Drives

출처 : https://www.harddrivebenchmark.net/high_end_drives.html

상기 벤치마크 테스트는 테스트 조건에 따라 그 성능 곡선이 달라질 수 있기 때문에 조건을 확인할 필요가 있습니다. 예를 들어 Windows7, windows8, windows10 , windows11 모두에서 테스트한 결과를 평균한 점수와 자신이 사용할 컴퓨터 O/S에서 테스트한 결과는 다를 수 있습니다. 상기 결과에 대한 테스트 환경에 대한 내용은 아래 사이트를 참고하시기 바랍니다.

참고 : 테스트 환경

페이지 보기

Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

다공성 미디어 및 나노유체에 의해 강화된 수집기로 태양광 CCHP 시스템의 최적화

Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid


Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4

Abstract

태양열 집열기의 낮은 효율은 CCHP(Solar Combined Cooling, Heating, and Power) 사이클의 문제점 중 하나로 언급될 수 있습니다. 태양계를 개선하기 위해 나노유체와 다공성 매체가 태양열 집열기에 사용됩니다.

다공성 매질과 나노입자를 사용하는 장점 중 하나는 동일한 조건에서 더 많은 에너지를 흡수할 수 있다는 것입니다. 이 연구에서는 평균 일사량이 1b인 따뜻하고 건조한 지역의 600 m2 건물의 전기, 냉방 및 난방을 생성하기 위해 다공성 매질과 나노유체를 사용하여 태양열 냉난방 복합 발전(SCCHP) 시스템을 최적화했습니다.

본 논문에서는 침전물이 형성되지 않는 lb = 820 w/m2(이란) 정도까지 다공성 물질에서 나노유체의 최적량을 계산하였다. 이 연구에서 태양열 집열기는 구리 다공성 매체(95% 다공성)와 CuO 및 Al2O3 나노 유체로 향상되었습니다.

나노유체의 0.1%-0.6%가 작동 유체로 물에 추가되었습니다. 나노유체의 0.5%가 태양열 집열기 및 SCCHP 시스템에서 가장 높은 에너지 및 엑서지 효율 향상으로 이어지는 것으로 밝혀졌습니다.

본 연구에서 포물선형 집열기(PTC)의 최대 에너지 및 엑서지 효율은 각각 74.19% 및 32.6%입니다. 그림 1은 태양 CCHP의 주기를 정확하게 설명하기 위한 그래픽 초록으로 언급될 수 있습니다.

The low efficiency of solar collectors can be mentioned as one of the problems in solar combined cooling, heating, and power (CCHP) cycles. For improving solar systems, nanofluid and porous media are used in solar collectors. One of the advantages of using porous media and nanoparticles is to absorb more energy under the same conditions. In this research, a solar combined cooling, heating, and power (SCCHP) system has been optimized by porous media and nanofluid for generating electricity, cooling, and heating of a 600 m2 building in a warm and dry region with average solar radiation of Ib = 820 w/m2 in Iran. In this paper, the optimal amount of nanofluid in porous materials has been calculated to the extent that no sediment is formed. In this study, solar collectors were enhanced with copper porous media (95% porosity) and CuO and Al2O3 nanofluids. 0.1%–0.6% of the nanofluids were added to water as working fluids; it is found that 0.5% of the nanofluids lead to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Maximum energy and exergy efficiency of parabolic thermal collector (PTC) riches in this study are 74.19% and 32.6%, respectively. Figure 1 can be mentioned as a graphical abstract for accurately describing the cycle of solar CCHP.

1. Introduction

Due to the increase in energy consumption, the use of clean energy is one of the important goals of human societies. In the last four decades, the use of cogeneration cycles has increased significantly due to high efficiency. Among clean energy, the use of solar energy has become more popular due to its greater availability [1]. Low efficiency of energy production, transmission, and distribution system makes a new system to generate simultaneously electricity, heating, and cooling as an essential solution to be widely used. The low efficiency of the electricity generation, transmission, and distribution system makes the CCHP system a basic solution to eliminate waste of energy. CCHP system consists of a prime mover (PM), a power generator, a heat recovery system (produce extra heating/cooling/power), and thermal energy storage (TES) [2]. Solar combined cooling, heating, and power (SCCHP) has been started three decades ago. SCCHP is a system that receives its propulsive force from solar energy; in this cycle, solar collectors play the role of propulsive for generating power in this system [3].

Increasing the rate of energy consumption in the whole world because of the low efficiency of energy production, transmission, and distribution system causes a new cogeneration system to generate electricity, heating, and cooling energy as an essential solution to be widely used. Building energy utilization fundamentally includes power required for lighting, home electrical appliances, warming and cooling of building inside, and boiling water. Domestic usage contributes to an average of 35% of the world’s total energy consumption [4].

Due to the availability of solar energy in all areas, solar collectors can be used to obtain the propulsive power required for the CCHP cycle. Solar energy is the main source of energy in renewable applications. For selecting a suitable area to use solar collectors, annual sunshine hours, the number of sunny days, minus temperature and frosty days, and the windy status of the region are essentially considered [5]. Iran, with an average of more than 300 sunny days, is one of the suitable countries to use solar energy. Due to the fact that most of the solar radiation is in the southern regions of Iran, also the concentration of cities is low in these areas, and transmission lines are far apart, one of the best options is to use CCHP cycles based on solar collectors [6]. One of the major problems of solar collectors is their low efficiency [7]. Low efficiency increases the area of collectors, which increases the initial cost of solar systems and of course increases the initial payback period. To increase the efficiency of solar collectors and improve their performance, porous materials and nanofluids are used to increase their workability.

There are two ways to increase the efficiency of solar collectors and mechanical and fluid improvement. In the first method, using porous materials or helical filaments inside the collector pipes causes turbulence of the flow and increases heat transfer. In the second method, using nanofluids or salt and other materials increases the heat transfer of water. The use of porous materials has grown up immensely over the past twenty years. Porous materials, especially copper porous foam, are widely used in solar collectors. Due to the high contact surface area, porous media are appropriate candidates for solar collectors [8]. A number of researchers investigated Solar System performance in accordance with energy and exergy analyses. Zhai et al. [9] reviewed the performance of a small solar-powered system in which the energy efficiency was 44.7% and the electrical efficiency was 16.9%.

Abbasi et al. [10] proposed an innovative multiobjective optimization to optimize the design of a cogeneration system. Results showed the CCHP system based on an internal diesel combustion engine was the applicable alternative at all regions with different climates. The diesel engine can supply the electrical requirement of 31.0% and heating demand of 3.8% for building.

Jiang et al. [11] combined the experiment and simulation together to analyze the performance of a cogeneration system. Moreover, some research focused on CCHP systems using solar energy. It integrated sustainable and renewable technologies in the CCHP, like PV, Stirling engine, and parabolic trough collector (PTC) [21215].

Wang et al. [16] optimized a cogeneration solar cooling system with a Rankine cycle and ejector to reach the maximum total system efficiency of 55.9%. Jing et al. analyzed a big-scale building with the SCCHP system and auxiliary heaters to produced electrical, cooling, and heating power. The maximum energy efficiency reported in their work is 46.6% [17]. Various optimization methods have been used to improve the cogeneration system, minimum system size, and performance, such as genetic algorithm [1819].

Hirasawa et al. [20] investigated the effect of using porous media to reduce thermal waste in solar systems. They used the high-porosity metal foam on top of the flat plate solar collector and observed that thermal waste decreased by 7% due to natural heat transfer. Many researchers study the efficiency improvement of the solar collector by changing the collector’s shapes or working fluids. However, the most effective method is the use of nanofluids in the solar collector as working fluid [21]. In the experimental study done by Jouybari et al. [22], the efficiency enhancement up to 8.1% was achieved by adding nanofluid in a flat plate collector. In this research, by adding porous materials to the solar collector, collector efficiency increased up to 92% in a low flow regime. Subramani et al. [23] analyzed the thermal performance of the parabolic solar collector with Al2O3 nanofluid. They conducted their experiments with Reynolds number range 2401 to 7202 and mass flow rate 0.0083 to 0.05 kg/s. The maximum efficiency improvement in this experiment was 56% at 0.05 kg/s mass flow rate.

Shojaeizadeh et al. [24] investigated the analysis of the second law of thermodynamic on the flat plate solar collector using Al2O3/water nanofluid. Their research showed that energy efficiency rose up to 1.9% and the exergy efficiency increased by a maximum of 0.72% compared to pure water. Tiwari et al. [25] researched on the thermal performance of solar flat plate collectors for working fluid water with different nanofluids. The result showed that using 1.5% (optimum) particle volume fraction of Al2O3 nanofluid as an absorbing medium causes the thermal efficiency to enhance up to 31.64%.

The effect of porous media and nanofluids on solar collectors has already been investigated in the literature but the SCCHP system with a collector embedded by both porous media and nanofluid for enhancing the ratio of nanoparticle in nanofluid for preventing sedimentation was not discussed. In this research, the amount of energy and exergy of the solar CCHP cycles with parabolic solar collectors in both base and improved modes with a porous material (copper foam with 95% porosity) and nanofluid with different ratios of nanoparticles was calculated. In the first step, it is planned to design a CCHP system based on the required load, and, in the next step, it will analyze the energy and exergy of the system in a basic and optimize mode. In the optimize mode, enhanced solar collectors with porous material and nanofluid in different ratios (0.1%–0.7%) were used to optimize the ratio of nanofluids to prevent sedimentation.

2. Cycle Description

CCHP is one of the methods to enhance energy efficiency and reduce energy loss and costs. The SCCHP system used a solar collector as a prime mover of the cogeneration system and assisted the boiler to generate vapor for the turbine. Hot water flows from the expander to the absorption chiller in summer or to the radiator or fan coil in winter. Finally, before the hot water wants to flow back to the storage tank, it flows inside a heat exchanger for generating domestic hot water [26].

For designing of solar cogeneration system and its analysis, it is necessary to calculate the electrical, heating (heating load is the load required for the production of warm water and space heating), and cooling load required for the case study considered in a residential building with an area of 600 m2 in the warm region of Iran (Zahedan). In Table 1, the average of the required loads is shown for the different months of a year (average of electrical, heating, and cooling load calculated with CARRIER software).Table 1 The average amount of electric charges, heating load, and cooling load used in the different months of the year in the city of Zahedan for a residential building with 600 m2.

According to Table 1, the maximum magnitude of heating, cooling, and electrical loads is used to calculate the cogeneration system. The maximum electric load is 96 kW, the maximum amount of heating load is 62 kW, and the maximum cooling load is 118 kW. Since the calculated loads are average, all loads increased up to 10% for the confidence coefficient. With the obtained values, the solar collector area and other cogeneration system components are calculated. The cogeneration cycle is capable of producing 105 kW electric power, 140 kW cooling capacity, and 100 kW heating power.

2.1. System Analysis Equations

An analysis is done by considering the following assumptions:(1)The system operates under steady-state conditions(2)The system is designed for the warm region of Iran (Zahedan) with average solar radiation Ib = 820 w/m2(3)The pressure drops in heat exchangers, separators, storage tanks, and pipes are ignored(4)The pressure drop is negligible in all processes and no expectable chemical reactions occurred in the processes(5)Potential, kinetic, and chemical exergy are not considered due to their insignificance(6)Pumps have been discontinued due to insignificance throughout the process(7)All components are assumed adiabatic

Schematic shape of the cogeneration cycle is shown in Figure 1 and all data are given in Table 2.

Figure 1 Schematic shape of the cogeneration cycle.Table 2 Temperature and humidity of different points of system.

Based on the first law of thermodynamic, energy analysis is based on the following steps.

First of all, the estimated solar radiation energy on collector has been calculated:where α is the heat transfer enhancement coefficient based on porous materials added to the collector’s pipes. The coefficient α is increased by the porosity percentage, the type of porous material (in this case, copper with a porosity percentage of 95), and the flow of fluid to the collector equation.

Collector efficiency is going to be calculated by the following equation [9]:

Total energy received by the collector is given by [9]

Also, the auxiliary boiler heat load is [2]

Energy consumed from vapor to expander is calculated by [2]

The power output form by the screw expander [9]:

The efficiency of the expander is 80% in this case [11].

In this step, cooling and heating loads were calculated and then, the required heating load to reach sanitary hot water will be calculated as follows:

First step: calculating the cooling load with the following equation [9]:

Second step: calculating heating loads [9]:

Then, calculating the required loud for sanitary hot water will be [9]

According to the above-mentioned equations, efficiency is [9]

In the third step, calculated exergy analysis as follows.

First, the received exergy collector from the sun is calculated [9]:

In the previous equation, f is the constant of air dilution.

The received exergy from the collector is [9]

In the case of using natural gas in an auxiliary heater, the gas exergy is calculated from the following equation [12]:

Delivering exergy from vapor to expander is calculated with the following equation [9]:

In the fourth step, the exergy in cooling and heating is calculated by the following equation:

Cooling exergy in summer is calculated [9]:

Heating exergy in winter is calculated [9]:

In the last step based on thermodynamic second law, exergy efficiency has been calculated from the following equation and the above-mentioned calculated loads [9]:

3. Porous Media

The porous medium that filled the test section is copper foam with a porosity of 95%. The foams are determined in Figure 2 and also detailed thermophysical parameters and dimensions are shown in Table 3.

Figure 2 Copper foam with a porosity of 95%.Table 3 Thermophysical parameters and dimensions of copper foam.

In solar collectors, copper porous materials are suitable for use at low temperatures and have an easier and faster manufacturing process than ceramic porous materials. Due to the high coefficient conductivity of copper, the use of copper metallic foam to increase heat transfer is certainly more efficient in solar collectors.

Porous media and nanofluid in solar collector’s pipes were simulated in FLOW-3D software using the finite-difference method [27]. Nanoparticles Al2O3 and CUO are mostly used in solar collector enhancement. In this research, different concentrations of nanofluid are added to the parabolic solar collectors with porous materials (copper foam with porosity of 95%) to achieve maximum heat transfer in the porous materials before sedimentation. After analyzing PTC pipes with the nanofluid flow in FLOW-3D software, for energy and exergy efficiency analysis, Carrier software results were used as EES software input. Simulation PTC with porous media inside collector pipe and nanofluids sedimentation is shown in Figure 3.

Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

3.1. Nano Fluid

In this research, copper and silver nanofluids (Al2O3, CuO) have been added with percentages of 0.1%–0.7% as the working fluids. The nanoparticle properties are given in Table 4. Also, system constant parameters are presented in Table 4, which are available as default input in the EES software.Table 4 Properties of the nanoparticles [9].

System constant parameters for input in the software are shown in Table 5.Table 5 System constant parameters.

The thermal properties of the nanofluid can be obtained from equations (18)–(21). The basic fluid properties are indicated by the index (bf) and the properties of the nanoparticle silver with the index (np).

The density of the mixture is shown in the following equation [28]:where ρ is density and ϕ is the nanoparticles volume fraction.

The specific heat capacity is calculated from the following equation [29]:

The thermal conductivity of the nanofluid is calculated from the following equation [29]:

The parameter β is the ratio of the nanolayer thickness to the original particle radius and, usually, this parameter is taken equal to 0.1 for the calculated thermal conductivity of the nanofluids.

The mixture viscosity is calculated as follows [30]:

In all equations, instead of water properties, working fluids with nanofluid are used. All of the above equations and parameters are entered in the EES software for calculating the energy and exergy of solar collectors and the SCCHP cycle. All calculation repeats for both nanofluids with different concentrations of nanofluid in the solar collector’s pipe.

4. Results and Discussion

In the present study, relations were written according to Wang et al. [16] and the system analysis was performed to ensure the correctness of the code. The energy and exergy charts are plotted based on the main values of the paper and are shown in Figures 4 and 5. The error rate in this simulation is 1.07%.

Figure 4 Verification charts of energy analysis results.

Figure 5 Verification charts of exergy analysis results.

We may also investigate the application of machine learning paradigms [3141] and various hybrid, advanced optimization approaches that are enhanced in terms of exploration and intensification [4255], and intelligent model studies [5661] as well, for example, methods such as particle swarm optimizer (PSO) [6062], differential search (DS) [63], ant colony optimizer (ACO) [616465], Harris hawks optimizer (HHO) [66], grey wolf optimizer (GWO) [5367], differential evolution (DE) [6869], and other fusion and boosted systems [4146485054557071].

At the first step, the collector is modified with porous copper foam material. 14 cases have been considered for the analysis of the SCCHP system (Table 6). It should be noted that the adding of porous media causes an additional pressure drop inside the collector [922263072]. All fourteen cases use copper foam with a porosity of 95 percent. To simulate the effect of porous materials and nanofluids, the first solar PTC pipes have been simulated in the FLOW-3D software and then porous media (copper foam with porosity of 95%) and fluid flow with nanoparticles (AL2O3 and CUO) are generated in the software. After analyzing PTC pipes in FLOW-3D software, for analyzing energy and exergy efficiency, software outputs were used as EES software input for optimization ratio of sedimentation and calculating energy and exergy analyses.Table 6 Collectors with different percentages of nanofluids and porous media.

In this research, an enhanced solar collector with both porous media and Nanofluid is investigated. In the present study, 0.1–0.5% CuO and Al2O3 concentration were added to the collector fully filled by porous media to achieve maximum energy and exergy efficiencies of solar CCHP systems. All steps of the investigation are shown in Table 6.

Energy and exergy analyses of parabolic solar collectors and SCCHP systems are shown in Figures 6 and 7.

Figure 6 Energy and exergy efficiencies of the PTC with porous media and nanofluid.

Figure 7 Energy and exergy efficiency of the SCCHP.

Results show that the highest energy and exergy efficiencies are 74.19% and 32.6%, respectively, that is achieved in Step 12 (parabolic collectors with filled porous media and 0.5% Al2O3). In the second step, the maximum energy efficiency of SCCHP systems with fourteen steps of simulation are shown in Figure 7.

In the second step, where 0.1, −0.6% of the nanofluids were added, it is found that 0.5% leads to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Using concentrations more than 0.5% leads to sediment in the solar collector’s pipe and a decrease of porosity in the pipe [73]. According to Figure 7, maximum energy and exergy efficiencies of SCCHP are achieved in Step 12. In this step energy efficiency is 54.49% and exergy efficiency is 18.29%. In steps 13 and 14, with increasing concentration of CUO and Al2O3 nanofluid solution in porous materials, decreasing of energy and exergy efficiency of PTC and SCCHP system at the same time happened. This decrease in efficiency is due to the formation of sediment in the porous material. Calculations and simulations have shown that porous materials more than 0.5% nanofluids inside the collector pipe cause sediment and disturb the porosity of porous materials and pressure drop and reduce the coefficient of performance of the cogeneration system. Most experience showed that CUO and AL2O3 nanofluids with less than 0.6% percent solution are used in the investigation on the solar collectors at low temperatures and discharges [74]. One of the important points of this research is that the best ratio of nanofluids in the solar collector with a low temperature is 0.5% (AL2O3 and CUO); with this replacement, the cost of solar collectors and SCCHP cycle is reduced.

5. Conclusion and Future Directions

In the present study, ways for increasing the efficiency of solar collectors in order to enhance the efficiency of the SCCHP cycle are examined. The research is aimed at adding both porous materials and nanofluids for estimating the best ratio of nanofluid for enhanced solar collector and protecting sedimentation in porous media. By adding porous materials (copper foam with porosity of 95%) and 0.5% nanofluids together, high efficiency in solar parabolic collectors can be achieved. The novelty in this research is the addition of both nanofluids and porous materials and calculating the best ratio for preventing sedimentation and pressure drop in solar collector’s pipe. In this study, it was observed that, by adding 0.5% of AL2O3 nanofluid in working fluids, the energy efficiency of PTC rises to 74.19% and exergy efficiency is grown up to 32.6%. In SCCHP cycle, energy efficiency is 54.49% and exergy efficiency is 18.29%.

In this research, parabolic solar collectors fully filled by porous media (copper foam with a porosity of 95) are investigated. In the next step, parabolic solar collectors in the SCCHP cycle were simultaneously filled by porous media and different percentages of Al2O3 and CuO nanofluid. At this step, values of 0.1% to 0.6% of each nanofluid were added to the working fluid, and the efficiency of the energy and exergy of the collectors and the SCCHP cycle were determined. In this case, nanofluid and the porous media were used together in the solar collector and maximum efficiency achieved. 0.5% of both nanofluids were used to achieve the biggest efficiency enhancement.

In the present study, as expected, the highest efficiency is for the parabolic solar collector fully filled by porous material (copper foam with a porosity of 95%) and 0.5% Al2O3. Results of the present study are as follows:(1)The average enhancement of collectors’ efficiency using porous media and nanofluids is 28%.(2)Solutions with 0.1 to 0.5% of nanofluids (CuO and Al2O3) are used to prevent collectors from sediment occurrence in porous media.(3)Collector of solar cogeneration cycles that is enhanced by both porous media and nanofluid has higher efficiency, and the stability of output temperature is more as well.(4)By using 0.6% of the nanofluids in the enhanced parabolic solar collectors with copper porous materials, sedimentation occurs and makes a high-pressure drop in the solar collector’s pipe which causes decrease in energy efficiency.(5)Average enhancement of SCCHP cycle efficiency is enhanced by both porous media and nanofluid 13%.

Nomenclature

:Solar radiation
a:Heat transfer augmentation coefficient
A:Solar collector area
Bf:Basic fluid
:Specific heat capacity of the nanofluid
F:Constant of air dilution
:Thermal conductivity of the nanofluid
:Thermal conductivity of the basic fluid
:Viscosity of the nanofluid
:Viscosity of the basic fluid
:Collector efficiency
:Collector energy receives
:Auxiliary boiler heat
:Expander energy
:Gas energy
:Screw expander work
:Cooling load, in kilowatts
:Heating load, in kilowatts
:Solar radiation energy on collector, in Joule
:Sanitary hot water load
Np:Nanoparticle
:Energy efficiency
:Heat exchanger efficiency
:Sun exergy
:Collector exergy
:Natural gas exergy
:Expander exergy
:Cooling exergy
:Heating exergy
:Exergy efficiency
:Steam mass flow rate
:Hot water mass flow rate
:Specific heat capacity of water
:Power output form by the screw expander
Tam:Average ambient temperature
:Density of the mixture.

Greek symbols

ρ:Density
ϕ:Nanoparticles volume fraction
β:Ratio of the nanolayer thickness.

Abbreviations

CCHP:Combined cooling, heating, and power
EES:Engineering equation solver.

Data Availability

For this study, data were generated by CARRIER software for the average electrical, heating, and cooling load of a residential building with 600 m2 in the city of Zahedan, Iran.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. A. Fudholi and K. Sopian, “Review on solar collector for agricultural produce,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 9, no. 1, p. 414, 2018.View at: Publisher Site | Google Scholar
  2. G. Yang and X. Zhai, “Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies,” Applied Thermal Engineering, vol. 133, pp. 327–340, 2018.View at: Publisher Site | Google Scholar
  3. J. Wang, Z. Han, and Z. Guan, “Hybrid solar-assisted combined cooling, heating, and power systems: a review,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110256, 2020.View at: Publisher Site | Google Scholar
  4. Y. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Applied Energy, vol. 104, pp. 538–553, 2013.View at: Publisher Site | Google Scholar
  5. J. M. Hassan, Q. J. Abdul-Ghafour, and M. F. Mohammed, “CFD simulation of enhancement techniques in flat plate solar water collectors,” Al-Nahrain Journal for Engineering Sciences, vol. 20, no. 3, pp. 751–761, 2017.View at: Google Scholar
  6. M. Jahangiri, O. Nematollahi, A. Haghani, H. A. Raiesi, and A. Alidadi Shamsabadi, “An optimization of energy cost of clean hybrid solar-wind power plants in Iran,” International Journal of Green Energy, vol. 16, no. 15, pp. 1422–1435, 2019.View at: Publisher Site | Google Scholar
  7. I. H. Yılmaz and A. Mwesigye, “Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review,” Applied Energy, vol. 225, pp. 135–174, 2018.View at: Google Scholar
  8. F. Wang, J. Tan, and Z. Wang, “Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas,” Energy Conversion and Management, vol. 83, pp. 159–166, 2014.View at: Publisher Site | Google Scholar
  9. H. Zhai, Y. J. Dai, J. Y. Wu, and R. Z. Wang, “Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas,” Applied Energy, vol. 86, no. 9, pp. 1395–1404, 2009.View at: Publisher Site | Google Scholar
  10. M. H. Abbasi, H. Sayyaadi, and M. Tahmasbzadebaie, “A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application,” Applied Thermal Engineering, vol. 135, pp. 389–405, 2018.View at: Google Scholar
  11. R. Jiang, F. G. F. Qin, X. Yang, S. Huang, and B. Chen, “Performance analysis of a liquid absorption dehumidifier driven by jacket-cooling water of a diesel engine in a CCHP system,” Energy and Buildings, vol. 163, pp. 70–78, 2018.View at: Publisher Site | Google Scholar
  12. F. A. Boyaghchi and M. Chavoshi, “Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC,” Solar Energy, vol. 166, pp. 351–370, 2018.View at: Publisher Site | Google Scholar
  13. F. A. Boyaghchi and M. Chavoshi, “Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts,” Applied Thermal Engineering, vol. 112, pp. 660–675, 2017.View at: Publisher Site | Google Scholar
  14. B. Su, W. Han, Y. Chen, Z. Wang, W. Qu, and H. Jin, “Performance optimization of a solar assisted CCHP based on biogas reforming,” Energy Conversion and Management, vol. 171, pp. 604–617, 2018.View at: Publisher Site | Google Scholar
  15. F. A. Al-Sulaiman, F. Hamdullahpur, and I. Dincer, “Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production,” Renewable Energy, vol. 48, pp. 161–172, 2012.View at: Publisher Site | Google Scholar
  16. J. Wang, Y. Dai, L. Gao, and S. Ma, “A new combined cooling, heating and power system driven by solar energy,” Renewable Energy, vol. 34, no. 12, pp. 2780–2788, 2009.View at: Publisher Site | Google Scholar
  17. Y.-Y. Jing, H. Bai, J.-J. Wang, and L. Liu, “Life cycle assessment of a solar combined cooling heating and power system in different operation strategies,” Applied Energy, vol. 92, pp. 843–853, 2012.View at: Publisher Site | Google Scholar
  18. J.-J. Wang, Y.-Y. Jing, and C.-F. Zhang, “Optimization of capacity and operation for CCHP system by genetic algorithm,” Applied Energy, vol. 87, no. 4, pp. 1325–1335, 2010.View at: Publisher Site | Google Scholar
  19. L. Ali, “LDA–GA–SVM: improved hepatocellular carcinoma prediction through dimensionality reduction and genetically optimized support vector machine,” Neural Computing and Applications, vol. 87, pp. 1–10, 2020.View at: Google Scholar
  20. S. Hirasawa, R. Tsubota, T. Kawanami, and K. Shirai, “Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium,” Solar Energy, vol. 97, pp. 305–313, 2013.View at: Publisher Site | Google Scholar
  21. E. Bellos, C. Tzivanidis, and Z. Said, “A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors,” Sustainable Energy Technologies and Assessments, vol. 39, p. 100714, 2020.View at: Publisher Site | Google Scholar
  22. H. J. Jouybari, S. Saedodin, A. Zamzamian, M. E. Nimvari, and S. Wongwises, “Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study,” Renewable Energy, vol. 114, pp. 1407–1418, 2017.View at: Publisher Site | Google Scholar
  23. J. Subramani, P. K. Nagarajan, S. Wongwises, S. A. El-Agouz, and R. Sathyamurthy, “Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids,” Environmental Progress & Sustainable Energy, vol. 37, no. 3, pp. 1149–1159, 2018.View at: Publisher Site | Google Scholar
  24. E. Shojaeizadeh, F. Veysi, and A. Kamandi, “Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based Flat-plate solar collector,” Energy and Buildings, vol. 101, pp. 12–23, 2015.View at: Publisher Site | Google Scholar
  25. A. K. Tiwari, P. Ghosh, and J. Sarkar, “Solar water heating using nanofluids–a comprehensive overview and environmental impact analysis,” International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 3, pp. 221–224, 2013.View at: Google Scholar
  26. D. R. Rajendran, E. Ganapathy Sundaram, P. Jawahar, V. Sivakumar, O. Mahian, and E. Bellos, “Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design,” Journal of Thermal Analysis and Calorimetry, vol. 140, no. 1, pp. 33–51, 2020.View at: Publisher Site | Google Scholar
  27. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Google Scholar
  28. K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” International Journal of Heat and Mass Transfer, vol. 54, no. 19-20, pp. 4410–4428, 2011.View at: Publisher Site | Google Scholar
  29. K. Farhana, K. Kadirgama, M. M. Rahman et al., “Improvement in the performance of solar collectors with nanofluids – a state-of-the-art review,” Nano-Structures & Nano-Objects, vol. 18, p. 100276, 2019.View at: Publisher Site | Google Scholar
  30. M. Turkyilmazoglu, “Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models,” European Journal of Mechanics-B/Fluids, vol. 65, pp. 184–191, 2017.View at: Publisher Site | Google Scholar
  31. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 2020, 2020.View at: Google Scholar
  32. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, M. Fan, D. Wang, P. Zhou, and D. Tao, “Top-k feature selection framework using robust 0-1 integer programming,” IEEE Transactions on Neural Networks and Learning Systems, vol. 1, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  34. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  35. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
  36. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 1, 2020.View at: Google Scholar
  37. M. Mirmozaffari, “Machine learning algorithms based on an optimization model,” 2020.View at: Google Scholar
  38. M. Mirmozaffari, M. Yazdani, A. Boskabadi, H. Ahady Dolatsara, K. Kabirifar, and N. Amiri Golilarz, “A novel machine learning approach combined with optimization models for eco-efficiency evaluation,” Applied Sciences, vol. 10, no. 15, p. 5210, 2020.View at: Publisher Site | Google Scholar
  39. M. Vosoogha and A. Addeh, “An intelligent power prediction method for wind energy generation based on optimized fuzzy system,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 5, pp. 34–43, 2019.View at: Google Scholar
  40. A. Javadi, N. Mikaeilvand, and H. Hosseinzdeh, “Presenting a new method to solve partial differential equations using a group search optimizer method (GSO),” Computational Research Progress in Applied Science and Engineering, vol. 4, no. 1, pp. 22–26, 2018.View at: Google Scholar
  41. F. J. Golrokh, Gohar Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, pp. 1–8, 2020.View at: Google Scholar
  42. H. Yu, “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 1, pp. 1–29, 2020.View at: Google Scholar
  43. C. Yu, “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 1, pp. 1–28, 2021.View at: Google Scholar
  44. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 1, p. 106728, 2020.View at: Google Scholar
  45. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, p. 106642, 2021.View at: Publisher Site | Google Scholar
  46. Y. Zhang, “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 1, 2020.View at: Google Scholar
  47. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 1, pp. 1–30, 2020.View at: Google Scholar
  48. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  49. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  50. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  51. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  52. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  53. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  54. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, 2020.View at: Publisher Site | Google Scholar
  55. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  56. R. U. Khan, X. Zhang, R. Kumar, A. Sharif, N. A. Golilarz, and M. Alazab, “An adaptive multi-layer botnet detection technique using machine learning classifiers,” Applied Sciences, vol. 9, no. 11, p. 2375, 2019.View at: Publisher Site | Google Scholar
  57. A. Addeh, A. Khormali, and N. A. Golilarz, “Control chart pattern recognition using RBF neural network with new training algorithm and practical features,” ISA Transactions, vol. 79, pp. 202–216, 2018.View at: Publisher Site | Google Scholar
  58. N. Amiri Golilarz, H. Gao, R. Kumar, L. Ali, Y. Fu, and C. Li, “Adaptive wavelet based MRI brain image de-noising,” Frontiers in Neuroscience, vol. 14, p. 728, 2020.View at: Publisher Site | Google Scholar
  59. N. A. Golilarz, H. Gao, and H. Demirel, “Satellite image de-noising with Harris hawks meta heuristic optimization algorithm and improved adaptive generalized Gaussian distribution threshold function,” IEEE Access, vol. 7, pp. 57459–57468, 2019.View at: Publisher Site | Google Scholar
  60. M. Eisazadeh and J. Rezapour, “Multi-objective optimization of the composite sheets using PSO algorithm,” 2017.View at: Google Scholar
  61. I. Bargegol, M. Nikookar, R. V. Nezafat, E. J. Lashkami, and A. M. Roshandeh, “Timing optimization of signalized intersections using shockwave theory by genetic algorithm,” Computational Research Progress in Applied Science & Engineering, vol. 1, pp. 160–167, 2015.View at: Google Scholar
  62. B. Bai, Z. Guo, C. Zhou, W. Zhang, and J. Zhang, “Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering,” Information Sciences, vol. 546, pp. 42–59, 2021.View at: Publisher Site | Google Scholar
  63. J. Liu, C. Wu, G. Wu, and X. Wang, “A novel differential search algorithm and applications for structure design,” Applied Mathematics and Computation, vol. 268, pp. 246–269, 2015.View at: Publisher Site | Google Scholar
  64. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  65. D. Zhao, “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 24, p. 106510, 2020.View at: Google Scholar
  66. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  67. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, p. 106684, 2021.View at: Publisher Site | Google Scholar
  68. G. Sun, B. Yang, Z. Yang, and G. Xu, “An adaptive differential evolution with combined strategy for global numerical optimization,” Soft Computing, vol. 24, pp. 1–20, 2019.View at: Google Scholar
  69. G. Sun, C. Li, and L. Deng, “An adaptive regeneration framework based on search space adjustment for differential evolution,” Neural Computing and Applications, vol. 24, pp. 1–17, 2021.View at: Google Scholar
  70. A. Addeh and M. Iri, “Brain tumor type classification using deep features of MRI images and optimized RBFNN,” ENG Transactions, vol. 2, pp. 1–7, 2021.View at: Google Scholar
  71. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” Soft Computing, vol. 1, pp. 1–8, 2020.View at: Google Scholar
  72. H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” Journal of Solar Energy Engineering, vol. 131, no. 4, 2009.View at: Publisher Site | Google Scholar
  73. S. Rashidi, M. Bovand, and J. A. Esfahani, “Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis,” Energy Conversion and Management, vol. 103, pp. 726–738, 2015.View at: Publisher Site | Google Scholar
  74. N. Akram, R. Sadri, S. N. Kazi et al., “A comprehensive review on nanofluid operated solar flat plate collectors,” Journal of Thermal Analysis and Calorimetry, vol. 139, no. 2, pp. 1309–1343, 2020.View at: Publisher Site | Google Scholar
Forming characteristics and control method of weld bead for GMAW on curved surface

곡면에 GMAW용 용접 비드의 형성 특성 및 제어 방법

Forming characteristics and control method of weld bead for GMAW on curved surface

The International Journal of Advanced Manufacturing Technology (2021)Cite this article

Abstract

곡면에서 GMAW 기반 적층 가공의 용접 성형 특성은 중력의 영향을 크게 받습니다. 성형면의 경사각이 크면 혹 비드(hump bead)와 같은 심각한 결함이 발생합니다.

본 논문에서는 양생면에서 용접 비드 형성의 형성 특성과 제어 방법을 연구하기 위해 용접 용융 풀 유동 역학의 전산 모델을 수립하고 제안된 모델을 검증하기 위해 증착 실험을 수행하였습니다.

결과는 용접 비드 경사각(α)이 증가함에 따라 역류의 속도가 증가하고 상향 용접의 경우 α > 60°일 때 불규칙한 험프 결함이 나타나는 것으로 나타났습니다.

상부 과잉 액체의 하향 압착력과 하부 상향 유동의 반동력과 표면장력 사이의 상호작용은 용접 혹 형성의 주요 요인이었다. 하향 용접의 경우 양호한 형태를 얻을 수 있었으며, 용접 비드 경사각이 증가함에 따라 용접 높이는 감소하고 용접 폭은 증가하였습니다.

하향 및 상향 용접을 위한 곡면의 용융 거동 및 성형 특성을 기반으로 험프 결함을 제어하기 위해 위브 용접을 통한 증착 방법을 제안하였습니다.

성형 궤적의 변화로 인해 용접 방향의 중력 성분이 크게 감소하여 용융 풀 흐름의 안정성이 향상되었으며 복잡한 표면에서 안정적이고 일관된 용접 비드를 얻는 데 유리했습니다.

하향 용접과 상향 용접 사이의 단일 비드의 치수 편차는 7% 이내였으며 하향 및 상향 혼합 혼합 비드 중첩 증착에서 비드의 변동 편차는 0.45로 GMAW 기반 적층 제조 공정에서 허용될 수 있었습니다.

이러한 발견은 GMAW를 기반으로 하는 곡선 적층 적층 제조의 용접 비드 형성 제어에 기여했습니다.

The weld forming characteristics of GMAW-based additive manufacturing on curved surface are dramatically influenced by gravity. Large inclined angle of the forming surface would lead to severe defects such as hump bead. In this paper, a computational model of welding molten pool flow dynamics was established to research the forming characteristic and control method of weld bead forming on cured surface, and deposition experiments were conducted to verify the proposed model. Results indicated that the velocity of backward flows increased with the increase of weld bead tilt angle (α) and irregular hump defects appeared when α > 60° for upward welding. The interaction between the downward squeezing force of the excess liquid at the top and the recoil force of the upward flow at the bottom and the surface tension were primary factors for welding hump formation. For downward welding, a good morphology shape could be obtained, and the weld height decreased and the weld width increased with the increase of weld bead tilt angle. Based on the molten behaviors and forming characteristics on curved surface for downward and upward welding, the method of deposition with weave welding was proposed to control hump defects. Gravity component in the welding direction was significantly reduced due to the change of forming trajectory, which improved the stability of the molten pool flow and was beneficial to obtain stable and consistent weld bead on complex surface. The dimensional deviations of the single bead between downward and upward welding were within 7% and the fluctuation deviation of the bead in multi-bead overlapping deposition with mixing downward and upward welding was 0.45, which could be acceptable in GMAW-based additive manufacturing process. These findings contributed to the weld bead forming control of curve layered additive manufacturing based on GMAW.

Keywords

  • Molten pool behaviors
  • GMAW-based WAAM
  • Deposition with weave welding
  • Welding on curved surface
  • Fig. 1extended data figure 1
  • Fig. 2extended data figure 2
  • Fig. 3extended data figure 3
  • Fig. 4extended data figure 4
  • Fig. 5extended data figure 5
  • Fig. 6extended data figure 6
  • Fig. 7extended data figure 7
  • Fig. 8extended data figure 8
  • Fig. 9extended data figure 9
  • Fig. 10extended data figure 10
  • Fig. 11extended data figure 11
  • Fig. 12extended data figure 12
  • Fig. 13extended data figure 13
  • Fig. 14extended data figure 14
  • Fig. 15extended data figure 15
  • Fig. 16extended data figure 16
  • Fig. 17extended data figure 17
  • Fig. 18extended data figure 18
  • Fig. 19extended data figure 19
  • Fig. 20extended data figure 20
  • Fig. 21extended data figure 21
  • Fig. 22extended data figure 22
  • Fig. 23extended data figure 23
  • Fig. 24extended data figure 24
  • Fig. 25extended data figure 25
  • Fig. 26extended data figure 26
  • Fig. 27extended data figure 27
  • Fig. 28extended data figure 28
  • Fig. 29extended data figure 29
  • Fig. 30extended data figure 30
  • Fig. 31extended data figure 31
  • Fig. 32extended data figure 32
  • Fig. 33extended data figure 33
  • Fig. 34extended data figure 34
  • Fig. 35extended data figure 35
  • Fig. 36extended data figure 36
  • Fig. 37extended data figure 37
  • Fig. 38extended data figure 38

References

  1. 1.Williams SW, Martina F, Addison AC, Ding J, Pardal G, Colegrove P (2016) Wire + arc additive manufacturing. Mater Sci Technol (United Kingdom) 32:641–647. https://doi.org/10.1179/1743284715Y.0000000073Article Google Scholar 
  2. 2.Pan ZX, Ding DH, Wu BT, Cuiuri D, Li HJ, Norrish J (2018) Arc welding processes for additive manufacturing: a review. In: Transactions on intelligent welding manufacturing. Springer Singapore, pp 3–24. https://doi.org/10.1007/978-981-10-5355-9_1
  3. 3.Panchagnula JS, Simhambhatla S (2018) Manufacture of complex thin-walled metallic objects using weld-deposition based additive manufacturing. Robot Comput Integr Manuf 49:194–203. https://doi.org/10.1016/j.rcim.2017.06.003Article Google Scholar 
  4. 4.Lu S, Zhou J, Zhang JS (2015) Optimization of welding thickness on casting-steel surface for production of forging die. Int J Adv Manuf Technol 76:1411–1419. https://doi.org/10.1007/s00170-014-6371-9Article Google Scholar 
  5. 5.Huang B, Singamneni SB (2015) Curved layer adaptive slicing (CLAS) for fused deposition modelling. Rapid Prototyp J 21:354–367. https://doi.org/10.1108/RPJ-06-2013-0059Article Google Scholar 
  6. 6.Jin Y, Du J, He Y, Fu GQ (2017) Modeling and process planning for curved layer fused deposition. Int J Adv Manuf Technol 91:273–285. https://doi.org/10.1007/s00170-016-9743-5Article Google Scholar 
  7. 7.Xie FB, Chen LF, Li ZY, Tang K (2020) Path smoothing and feed rate planning for robotic curved layer additive manufacturing. Robot Comput Integr Manuf 65. https://doi.org/10.1016/j.rcim.2020.101967
  8. 8.Ding YY, Dwivedi R, Kovacevic R (2017) Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Comput Integr Manuf 44:67–76. https://doi.org/10.1016/j.rcim.2016.08.008Article Google Scholar 
  9. 9.Cho DW, Na SJ (2015) Molten pool behaviors for second pass V-groove GMAW. Int J Heat Mass Transf 88:945–956. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.021Article Google Scholar 
  10. 10.Cho DW, Na SJ, Cho MH, Lee JS (2013) A study on V-groove GMAW for various welding positions. J Mater Process Technol 213:1640–1652. https://doi.org/10.1016/j.jmatprotec.2013.02.015Article Google Scholar 
  11. 11.Hejripour F, Valentine DT, Aidun DK (2018) Study of mass transport in cold wire deposition for wire arc additive manufacturing. Int J Heat Mass Transf 125:471–484. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.092Article Google Scholar 
  12. 12.Yuan L, Pan ZX, Ding DH, He FY, Duin SV, Li HJ, Li WH (2020) Investigation of humping phenomenon for the multi-directional robotic wire and arc additive manufacturing. Robot Comput Integr Manuf 63. https://doi.org/10.1016/j.rcim.2019.101916
  13. 13.Nguyen MC, Medale M, Asserin O, Gounand S, Gilles P (2017) Sensitivity to welding positions and parameters in GTA welding with a 3D multiphysics numerical model. Numer Heat Transf Part A Appl 71:233–249. https://doi.org/10.1080/10407782.2016.1264747Article Google Scholar 
  14. 14.Gu H, Li L (2019) Computational fluid dynamic simulation of gravity and pressure effects in laser metal deposition for potential additive manufacturing in space. Int J Heat Mass Transf 140:51–65. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.081Article Google Scholar 
  15. 15.Cho MH, Farson DF (2007) Understanding bead hump formation in gas metal arc welding using a numerical simulation. Metall Mater Trans B Process Metall Mater Process Sci 38:305–319. https://doi.org/10.1007/s11663-007-9034-5Article Google Scholar 
  16. 16.Nguyen TC, Weckman DC, Johnson DA, Kerr HW (2005) The humping phenomenon during high speed gas metal arc welding. Sci Technol Weld Join 10:447–459. https://doi.org/10.1179/174329305X44134Article Google Scholar 
  17. 17.Philip Y, Xu ZY, Wang Y, Wang R, Ye X (2019) Investigation of humping defect formation in a lap joint at a high-speed hybrid laser-GMA welding. Results Phys 13. https://doi.org/10.1016/j.rinp.2019.102341
  18. 18.Hu ZQ, Qin XP, Shao T, Liu HM (2018) Understanding and overcoming of abnormity at start and end of the weld bead in additive manufacturing with GMAW. Int J Adv Manuf Technol 95:2357–2368. https://doi.org/10.1007/s00170-017-1392-9Article Google Scholar 
  19. 19.Tang SY, Wang GL, Huang C, Li RS, Zhou SY, Zhang HO (2020) Investigation, modeling and optimization of abnormal areas of weld beads in wire and arc additive manufacturing. Rapid Prototyp J 26:1183–1195. https://doi.org/10.1108/RPJ-08-2019-0229Article Google Scholar 
  20. 20.Bai X, Colegrove P, Ding J, Zhou XM, Diao CL, Bridgeman P, Honnige JR, Zhang HO, Williams S (2018) Numerical analysis of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int J Heat Mass Transf 124:504–516. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.085Article Google Scholar 
  21. 21.Siewert E, Schein J, Forster G (2013) Determination of enthalpy, temperature, surface tension and geometry of the material transfer in PGMAW for the system argon-iron. J Phys D Appl Phys 46. https://doi.org/10.1088/0022-3727/46/22/224008
  22. 22.Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15:299–305. https://doi.org/10.1007/BF02667333Article Google Scholar 
  23. 23.Fachinotti VD, Cardona A (2008) Semi-analytical solution of the thermal field induced by a moving double-ellipsoidal welding heat source in a semi-infinite body. Mec Comput XXVII:1519–1530
  24. 24.Nguyen NT, Mai YW, Simpson S, Ohta A (2004) Analytical approximate solution for double ellipsoidal heat source in finite thick plate. Weld J 83:82–93Google Scholar 
  25. 25.Goldak J, Chakravarti A, Bibby M (1985) A double ellipsoid finite element model for welding heat sources. IIW Doc. No. 212-603-85
  26. 26.Gu Y, Li YD, Yong Y, Xu FL, Su LF (2019) Determination of parameters of double-ellipsoidal heat source model based on optimization method. Weld World 63:365–376. https://doi.org/10.1007/s40194-018-00678-wArticle Google Scholar 
  27. 27.Wu CS, Tsao KC (1990) Modelling the three-dimensional fluid flow and heat transfer in a moving weld pool. Eng Comput 7:241–248. https://doi.org/10.1108/eb023811Article Google Scholar 
  28. 28.Zhan XH, Liu XB, Wei YH, Chen JC, Chen J, Liu HB (2017) Microstructure and property characteristics of thick Invar alloy plate joints using weave bead welding. J Mater Process Technol 244:97–105. https://doi.org/10.1016/j.jmatprotec.2017.01.014Article Google Scholar 
  29. 29.Zhan XH, Zhang D, Liu XB, Chen J, Wei YH, Liu RP (2017) Comparison between weave bead welding and multi-layer multi-pass welding for thick plate Invar steel. Int J Adv Manuf Technol 88:2211–2225. https://doi.org/10.1007/s00170-016-8926-4Article Google Scholar 
  30. 30.Xu GX, Li L, Wang JY, Zhu J, Li PF (2018) Study of weld formation in swing arc narrow gap vertical GMA welding by numerical modeling and experiment. Int J Adv Manuf Technol 96:1905–1917. https://doi.org/10.1007/s00170-018-1729-zArticle Google Scholar 
  31. 31.Li YZ, Sun YF, Han QL, Zhang GJ, Horvath I (2018) Enhanced beads overlapping model for wire and arc additive manufacturing of multi-layer multi-bead metallic parts. J Mater Process Technol 252:838–848. https://doi.org/10.1016/j.jmatprotec.2017.10.017Article Google Scholar 
Intel CPU i9

해석용 컴퓨터 CPU에 대한 이해 및 선택 방법

last update : 2021-12-15

자료출처 : 본 기사는 PCWorld Australia의 내용과 www.itworld.co.kr의 기사를 기반으로 일부 가필하여 게재한 내용입니다.

해석용 컴퓨터를 선정하기 위해서는 가장 먼저 선택해야 하는 것이 있다. AMD인가, 인텔인가? 두 업체는 CPU 시장의 양대산맥과도 같다. 인텔이 새롭게 출시한 12세대 앨더 레이크 CPU 시리즈가 벤치마크 기록을 깼지만, 지난해 출시된 AMD의 라이젠 5000 아키텍처를 고수하거나, 다른 신제품을 기다릴만한 이유도 있다. 인텔과 AMD CPU를 자세히 살펴보자.

ⓒ Gordon Mah Ung


비교 대상 제품 

2021.11.09

PC 조립 부품을 예산 기준으로 결정하고, 반도체 수급난에서 CPU를 정가에 구매할 수 있다고 가정했을 때, 인텔과 AMD 제품 선택지를 몇 가지로 압축할 수 있다.

인텔성능/효율 코어쓰레드가격
Core i9 12900K/KF8/824590달러/570달러
Core i7 12700K/KF8/420410달러/390달러
Core i5 12600K/KF6/416290달러/270달러
AMD  성능 코어 쓰레드    가격   
Ryzen 9 5950X1632800달러
Ryzen 9 5900X1224550달러
Ryzen 7 5800X816450달러
Ryzen 5 5600X612300달러

비교적 저렴한 인텔 CPU인 F 시리즈는 통합 그래픽카드가 없어 별도의 GPU가 필요하다. 라이젠 프로세서는 외장 그래픽카드와 짝을 이루어야 한다. 인텔이 ‘한 방’을 노리고 있기 때문에 이 비교에서는 최상급인 16코어 라이젠 9 5950X도 함께 살펴볼 예정이다. 12900KF가 최대 8코어이기 때문에 라이젠 9 5950X와 직접적인 비교 대상은 아니지만, 인텔은 AMD와 꽤 대등하게 싸우고 있다. CPU에만 80만원을 지출할 계획이라면 더 큰 파워 서플라이가 필요하다.

인텔 코어 CPU 에 대한 이해

인텔 코어 CPU에 대한 자료를 찾아보면 쿼드(Quad) 코어, 하이퍼-스레딩(Hyper-Threading), 터보-부스팅(Turbo-Boosting), 캐시(Cache) 크기 같은 용어를 많이 볼 수 있다.
인텔 코어 i3, i5, i7, i9는 각각 어떻게 다를까?
칩셋에는 세대가 있는데, 세대의 의미와 차이는 무엇일까?
하이퍼-스레딩은 무엇이고 클럭 속도는 어느 정도가 적합할까?

새 프로세서를 구입하기 전에 먼저 현재 사용하고 있는 인텔 CPU를 이해해보자.
지금 내 PC 성능이 어느 정도인지 알기 위해서이다.
가장 빠른 방법은 제어판 > 시스템 및 보안 항목에서 시스템을 선택하는 것이다.

여기에서 현재 PC에 설치된 CPU, RAM, 운영체제 정보를 확인할 수 있다.
프로세서 아래에 현재 설치된 인텔 CPU가 무엇인지, 인텔 코어 i7-4790, 인텔 코어 i7-8500U 같은 모델명을 확인할 수 있을 것이다. 또 Ghz가 단위인 CPU 클럭 속도를 알 수 있다. 나중에 이와 관련해 더 자세히 설명을 하겠다.

일단 CPU부터 알아보자.
CPU 모델명에는 숫자가 많아 어려워 보이지만, 이 숫자가 무슨 의미인지 이해하는 것은 어려운 일이 아니다.

모델명의 앞 부분인 “인텔 코어”는 인텔이 만든 코어 시리즈 프로세스 중 하나라는 의미다. 코어는 인텔에서 가장 크고, 인기있는 제품군이다. 따라서 많은 인텔 제품 데스크톱과 노트북 컴퓨터에서 인텔 코어라는 표기를 발견할 수 있다.

참고 : 인텔은 셀룰론(Celeron), 펜티엄(Pentium), 제온(Xeon) 등 다양한 프로세스 제품군을 판매하고 있지만, 이 기사는 인텔 코어 프로세스에 초점을 맞춘다.

그 다음 “i7”은 CPU 내부 마이크로 아키텍처 디자인의 종류이다.
자동차가 클래스와 엔진 종류로 나눠지는 것과 비슷하다. 이들 ‘엔진’이 하는 일은 동일하다. 그러나 차량 브랜드에 따라 일을 하는 방법이 다르다.
인텔의 경우 코어 브랜드 CPU의 클래스인 i3, i5, i7이 각각 사양이 다르다. 여기서 사양이란 코어의 수, 클럭 속도, 캐시 크기, 터보 부스트 2.0과 하이퍼스레딩 같은 고급 기능 지원 여부를 말한다.
코어 i5와 i7 데스크톱 프로세서는 통상 쿼드 코어(코어가 4개)이고, 로우엔드(저가) 코어 i3 데스크톱 프로세스는 듀얼 코어(코어가 2개)다.

이제 SKU와 세대에 대해 알아보자. 앞서 예로 들은 “4790”으로 설명하겠다.
첫 번째 숫자인 “4”는 CPU의 세대이고, “790”는 일종의 일련번호, 또는 ID 번호이다. 즉 인텔 코어 i7이 4세대 CPU라는 이야기이다.

그런데 ‘접미사’가 붙는 경우가 있다. 위에서 예로 든 모델에는 접미사가 없지만 “Intel Core i7-8650U” 같이 끝에 접미사가 붙은 모델이 있다. 여기에서 “U”는 “Ultra Low Power(초저전력)”를 의미한다.
인텔은 모델명에 다양한 접미사를 사용하는데 세대에 따라 의미가 바뀌는 경우가 있다. 따라서 현재 사용하고 있는 CPU 모델을 정확히 해석하려면 링크된 인텔의 ‘접미사 목록’ 페이지를 참고하자.

CPU의 세대는 중요할까?

꽤 중요하다. 간단히 말해, 그리고 일반적으로 세대가 높을 수록, 즉 새로울 수록 더 좋다. 하지만 세대별로 개선된 정도는 각기 다르다.

인텔에 따르면, 최신 8세대 인텔 코어 프로세스는 7세대보다 최대 40%까지 성능이 향상됐다. 물론 비교 대상에 따라 성능 향상치가 크게 다르다. SKU가 세대별로 다를 수 있기 때문이다. 예를 들어, 인텔 코어 i7-8850U는 있지만 인텔 코어 i7-7850U는 없다.

세대가 높을 수록 최신 프로세서라는 것이 기본 원칙이다. 더 발전한 기술과 설계의 이점을 누릴 수 있다는 의미이며, PC 성능도 따라서 향상될 것이다.

코어가 많을 수록 좋을까?
간단히 대답하면, 일반적으로 코어 수가 적은 것보다 많은 것이 좋다. 코어가 1개인 프로세서는 한 번에 스레드 1개만 처리할 수 있다. 그리고 코어가 2개인 프로세서는 2개를, 코어가 4개인 쿼드 코어 프로세서는 4개를 처리할 수 있다.

그렇다면 스레드(Thread)는 무엇일까? 아주 간단히 설명하면, 스레드는 특정 프로그램에서 나와 프로세서를 통과하는 연속된 데이터 데이터 흐름을 말한다. PC의 모든 것은 프로세서를 통과하는 스레드로 귀결된다.

즉, 논리적으로 코어가 많을 수록 한 번에 처리할 수 있는 스레드가 많다. PC가 더 빠르고 효율적으로 데이터를 처리하고 명령을 실행할 수 있다는 이야기이다. 그러나 새 CPU를 조사하면서 코어 수에만 초점을 맞추면 자칫 코어 수만큼 중요한 수치인 클럭 속도를 무시할 위험이 있다.

CPU의 각 코어에는 Ghz가 단위인 클럭 속도가 있다. 클럭 속도는 CPU 실행 속도다. 클럭 속도가 빠를 수록, CPU가 한 번에 처리 및 실행할 수 있는 명령이 많다.

클럭 속도는 통상 높을 수록 더 좋다. 그러나 발열과 관련된 제약 때문에 프로세서의 코어 수가 많을 수록 클럭 속도가 낮은 경향이 있다. 이런 이유로 코어 수가 많은 PC가 최고의 성능을 발휘하지 못하는 경우도 있다.
그렇다면 가장 알맞은 클럭 속도는 어느 정도일까?


클럭 속도는 PC로 하려는 일에 따라 달라진다. 일부 애플리케이션은 싱글스레드로 실행된다. 반면, 여러 스레드를 활용하도록 만들어진 애플리케이션도 있다. 비디오 렌더링이나 일부 게임 환경이 여기에 해당된다. 이 경우, 코어 수가 많은 프로세서가 클럭 속도가 높지만 코어가 하나인 프로세스보다 성능이 훨씬 더 높다.
수치해석의 경우는 계산량이 많은 큰 해석의 경우 멀티코어가 훨씬 유리하다.

웹 브라우징 같은 일상적인 작업에서는 클럭 속도가 높은 i5 프로세서가 i7보다 가격 대비 성능이 훨씬 더 높다는 의미이다. 즉, 코어 수가 많은 프로세서보다 클럭 속도는 높고 코어 수가 적은 프로세서를 구입하는 것이 훨씬 경제적인 대안이 될 수도 있다.

하이퍼-스레딩이란?

앞서 언급했듯, 일반적으로 프로세서 코어 하나가 한 번에 하나의 스레드만 처리할 수 있다. 즉, CPU가 듀얼 코어라면 동시에 처리할 수 있는 스레드가 2개다. 그러나 인텔은 하이퍼-스레딩이라는 기술을 개발해 도입했다. 가상으로 운영체제가 인식하는 코어를 2배 증가시키는 방법으로 하나의 코어가 동시에 여러 스레드를 처리할 수 있는 기술이다.

즉 i5의 물리적 코어 수는 4개이지만, 여러 스레드를 지원하는 애플리케이션을 실행시키면 하이퍼-스레딩이 코어 수를 가상으로 2배 늘려서 성능을 크게 향상하는 방법이다.

터보 부스트(Turbo Boost)란?

인텔의 터보 부스트는 프로세서가 필요한 경우 동적으로 클럭 속도를 높이는 기능이다. 터부 부스트로 높을 수 있는 최대 클럭 속도는 활성 코어의 수, 추정되는 전류 및 전력 소모량, 프로세서 온도에 따라 달라진다.

알기 쉽게 설명하면, 인텔 터보 부스트 기술은 사용자의 프로세서 사용 현황을 모니터링, 프로세서가 ‘열 설계 전력’의 최대치에 얼마나 가까이 도달했는지 판단한 후 적절한 수준으로 클럭 속도를 높인다. 기본적으로 가장 적절하고 우수한 클럭 속도와 코어 수를 제공한다.

현재 터보 부스트 테크놀로지 2.0 버전이 사용되고 있으며, 여러 다양한 7세대 및 8세대 인텔 코어 i7과 i5 CPU에서 이를 지원한다.

i3, i5, i7, i9 프로세서 중 하나를 선택하기 전에 클럭 속도, 코어 수와 함께 기억해야 할 한 가지가 또 있다.

캐시 크기

CPU가 동일한 데이터를 계속 사용하는 경우, CPU는 이 데이터를 프로세서의 일부분인 캐시라는 곳에 저장된다. 캐시는 RAM과 비슷하다. 그러나 메인보드가 아닌 CPU에 구축되어 있어 훨씬 더 빠르다.
캐시 크기가 크면 더 빨리 더 많은 데이터에 액세스 할 수 있다. 클럭 속도 및 코어 수와 다르게, 캐시 크기는 무조건 클 수록 더 좋다. 메모리가 많을 수록 CPU 성능이 향상된다.

7세대 코어 i3 및 코어 i5 프로세서 U 및 Y 시리즈 캐시 크기는 3MB, 4MB이다. 코어 i7의 캐시 크기는 4MB이다. 현재 8세대 프로세서의 캐시 메모리는 6MB, 8MB, 9MB, 12MB이다.

코어 i3, i5, i7, i9의 차이점은 무엇일까?
일반적으로 코어 i7은 코어 i5, 코어 i5는 코어 i3보다 나은 프로세서이다. 코어 i7의 코어 수는 7개가 아니다. 코어 i3 역시 코어 수가 3개가 아니다. 코어 수나 클럭 속도가 아닌 상대적인 연산력의 차이를 알려주는 수치다.

2017년 출시된 코어 i9 시리즈는 고가의 고성능 프로세서이다. 최상급인 코어 i9-7980X의 코어 수와 클럭 속도는 18개와 2.6GHz, 한 번에 처리할 수 있는 스레드는 32개이다. 가장 저렴한 코어 i9-7900X의 경우 각각 10코어, 3.3GHz(기본 클럭 속도), 20 스레드이다.

수치해석 측면에서 구입해야 할 컴퓨터를 고려한다면 CPU 성능은 현재 최신코어인 i7과 i9을 구입하는 것이 원하는 성능을 정확히 제공하는 CPU를 선택하는 방법이지만 예산과 성능이라는 선택의 문제가 존재한다.

editor@itworld.co.kr


AMD CPU 에 대한 이해

썸네일
썸네일

AMD CPU 이름 규칙 및 코드명, 종류, 세대, 소켓 알아보기

AMD 1600, AMD 2400G, Athlon 240GE, AMD 3990X 등 AMD에 다양한 종류의, 다양한 모델명을 가진 cpu들이 있습니다. AMD cpu, apu의 종류와 세대, 소켓에 대해서 알아보도록 하며 이 글에서는 2017년 3월 3일 이후 나온 ‘라이젠’ 시리즈의 cpu, apu에 대해서만 다루도록 하겠습니다.

AMD 라이젠 시리즈는 현재 3세대까지 출시되었으며, 크게 일반 cpu, 하이엔드 cpu(스레드리퍼), 일반 APU, 모바일 APU으로 나뉩니다. 또한 소켓은 현재까지 나온 cpu 중 하이엔드 cpu를 제외한 cpu는 모두 am4소켓입니다.

AMD CPU 이름 규칙

이름 규칙

 

이름 규칙

AMD 라이젠 시리즈는 ‘AMD 라이젠 7 1700X’를 예로 들면, 앞의 ‘AMD’는 회사 이름을 나타내며

뒤에 ‘라이젠 7’은 성능을 나타냅니다.
‘라이젠 3’은 메인스트림,
‘라이젠 5’는 고성능,
‘라이젠 7’은 최고 성능입니다.

그리고 뒤에 ‘1’은 세대를 나타냅니다.
‘1700’은 Zen 1세대이며,
‘AMD 라이젠 5 2400G’와 같이 APU는 기존 세대에 비해 조금 개선되긴 했지만, 다음 세대 정도까지에 개선은 아니라서 세대는 같지만, ‘400G’앞에 붙는 숫자는 1이 더해져서 나옵니다.

그리고 두번째 자리 ‘7’은 성능을 나타냅니다.
‘2,3’은 메인스트림,
‘4,5,6’은 고성능,
‘7,8’은 최고 성능입니다.

그리고 세네번째 자리는 세세한 기능의, 세세한 성능의 변화 정도로 생각하시면 됩니다.

출처: https://minikupa.com/52 [미니쿠파]

 

인텔 코어 i9-12900K 리뷰 | 왕좌 탈환 노리는 ‘인텔의 귀환’

2021.11.09

Gordon Mah Ung | PCWorld구원 서사를 좋아하지 않는 사람은 없다. 인텔 12세대 코어 i9-12900K는 오랫동안 회자될 귀환 이야기의 주인공이다. 한때 강력하고 득의양양했던 챔피언은 수 년 전 부활한 AMD 라이젠 프로세서의 손에 굴욕적인 패배를 겪었고 어떻게 해서든 다시 한번 싸울 방법을 찾아 마침내 승리를 외치려고 한다. 이제 카메라가 페이드아웃 되면서 엔딩 크레딧으로 넘어간 셈이다.

인생이나 기술은 그런 헐리우드식 결말을 맺기 어렵지만, 인텔 코어 i9-12900K는 그런 드라마의 주인공 역할을 상당히 잘 해낸 것 같다. 지난 몇 년 동안 AMD 프로세서에 두들겨 맞은 후 태어난 12900K는 경쟁 제품인 라이젠 9 5950X보다 훨씬 더 나은 CPU로 더 많은 사용자에게 활용 가능성을 안겼다. 화끈한 KO 승리를 거둔 것은 전혀 아니지만, 인텔 12세대 앨더 레이크 프로세서의 뛰어난 장점과 기능을 고려할 때 바로 오늘 구입할 수 있는 하이엔드 데스크톱 프로세서다. 

ⓒ Gordon Mah Ung


12세대 앨더 레이크는 어떤 CPU?

인텔 12세대 앨더 레이크는 근본적으로 인텔 7 공정을 기반으로 만들어진 하이브리드 CPU 설계다. 사실 이것만으로도 엄청난 일이다. 14나노 트랜지스터 기술에 5년 이상을 허비한 끝에, 앨더 레이크는 마침내 하나의 노드를 뛰어넘었다. (기존 10나노 공정이 리브랜드된 후 인텔 7이라는 이름으로 불린다.)

새롭게 설계된 고성능 CPU 코어와 더 작아진 효율 코어를 혼합하여 성능 대 전력 비율의 균형을 최적화했다. 완전히 재설계된 큰 코어를 가진 인텔의 첫 번째 인텔 7 프로세스 데스크톱 CPU라고 이해하는 것이 가장 쉽다. 그리고 여기에 더해 여러 개의 나머지 효율성 코어 성능이 이전 10세대 코어만큼 우수하다. 또한, 12세대 앨더 레이크는 PCIe 5.0, DDR5 메모리, LGA1700 소켓을 비롯해 새로운 표준을 다수 지원한다.

ⓒ Intel

CPU 렌더링 성능

인텔의 전통점 강점이 아니었던 3D 렌더링과 모델링부터 시작하자. 지금까지는 PC에서 3D 모델링 애플리케이션 실사용자가 많지 않아서, 이들 전문 애플리케이션의 실행 성능에 큰 의미를 두지 않았다는 것이 인텔의 주장이었다. 라이젠 CPU의 눈부신 성능에 뒤지는 경우에만 렌더링 성능에서 피벗을 뺐다는 점에 주목하는 사람도 많다.

맥슨 시네벤치 R23부터 시작한다. 맥슨 시네마4D 애플리케이션에 사용되는 렌더링 엔진 테스트이며, 같은 렌더링 엔진이 일부 어도비 애플리케이션에도 내장되어 있다.

최신 버전은 10분 쓰로틀링 테스트를 기본값으로 제안한다. 인텔 10세대, 11세대 칩과 윈도우 11 환경을 테스트한 결과는 없지만, 윈도우 10과 10코어 코어 i9-10900K가 1만 4,336점을 받았고 8코어 코어 i9-11900K는 1만 6,264점을 받았다. 사실 둘 다 2만 2,168점을 받은 AMD 12코어 라이젠 9 5900X과는 상대가 되지 않는다. 그래서 굳이 16코어 라이젠 9 5950X와 비교할 필요가 없었다.

눈길을 끄는 것은 코어 i9-12900K의 긴 파란 막대다. 인텔이 앨더 레이크에서 추구한 하이브리드 설계를 추구하는 것에 여러 가지 말이 많았지만, 12900K는 오랫동안 라이젠의 홈그라운드였던 렌더링 벤치마크에서 AMD의 1, 2위 CPU를 아주 약간이나마 능가해 호사가의 입을 단속한다.

ⓒ IDG

하지만 인텔이 옳다. 모든 CPU 코어와 쓰레드를 다 쓰는 애플리케이션을 사용하는 사람은 그다지 많지 않다. 따라서 시네벤치로 단일 쓰레드 성능을 살펴보는 것도 중요하다. 시네벤치 멀티코어 성능은 라이트룸 클래식 올코어 영상 인코딩이나 사진 내보내기 성능을 알려주고, 시네벤치 R23 단일 쓰레드 성능은 그보다는 오피스나 포토샵 실행에 조금 더 가깝다. 다시 한번 강조하지만, 코어 i9-10900K와 윈도우 11 결과는 없지만, 10세대 제품의 기존 점수는 1,325점, 11세대 제품은 1,640점을 기록한 AMD 라이젠과 비슷한 수준이다.

그러나 인텔 최신 성능 코어는 라이젠 9 5950X보다 성능이 19% 높고, 구형 10세대 칩보다 31%나 나아져 당혹스러울 정도였다. 맥북 프로 M1 맥스와 앨더 레이크를 비교하면 어떨지를 궁금해 하는 이에게 알려주자면, 앨더 레이크가 우세하다. 모바일 칩과 데스크톱 칩을 비교하는 단일 쓰레드 성능 테스트에서 12세대 앨더 레이크 CPU는 애플 최신 M1 칩보다 약 20%나 더 빨랐다. 물론 인텔 제품은 노트북용 칩이 아니었지만, 인텔 12세대 CPU를 탑재한 노트북이 출시되면 충분히 맥북 프로의 경쟁자가 될 것이다.

ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG

압축 성능

CPU의 압축 성능은 인기있고 무료인 7-Zip 내부 벤치마크로 측정했다. 벤치마크는 CPU 쓰레드 수를 살펴보고 테스트하면서 자체적으로 여러 번 스풀링을 반복한다. 압축 테스트에서는 코어를 전부 사용하는 경우 압축 성능에서 24%, 압축 해제 성능에서 35% 더 높은 수치를 보여준 라이젠이 가장 큰 승자다.

7-cpu.com에 따르면, 압축 측면에서는 메모리 지연 시간, 데이터 캐시의 크기 및 TLB(translation look ahead buffer)가 중요한 반면, 압축을 풀 때는 정수 및 분기 예측 실패 패널티(branch misprediction penalties)가 중요하다. 결국, 실제 애플리케이션으로 파일 압축하거나 압축을 푸는 것은 보통 단일 쓰레드에 의존하기 때문에 멀티 쓰레드 성능과의 상관 관계는 이론에 그친다고 할 수 있다.

12세대 코어 i9의 문제는 심지어 압축 성능도 화려하지 않다는 것이다. 실제로 11세대 코어 i9은 윈도우 10 단일 쓰레드 성능에서 7,916으로 약간 더 빠르다. 간단히 요약하면 라이젠 9이 7-zip 테스트에서 압축 성능 우위를 유지했다. 이견은 있을 수 없다. 일부는 초기 DDR5 메모리의 지연 시간과 7-Zip이 특별한 명령을 사용하지 않는 이유도 있겠지만, 어쨌든 압축 테스트에서는 라이젠이 승리했다.

ⓒ IDG

인코딩 성능

CPU 인코딩 테스트는 무료이자 오픈소스인 핸드브레이크 트랜스코더/인코더를 사용하여 무료이자 오픈소스인 4K 티어스 오브 스틸(Tears of Steel) 영상을 H.265 코덱과 1080p 해상도로 변환하는 작업을 수행한다. 라이젠 9은 인코딩을 약 6% 더 빨리 끝내면서 다시 1위를 차지했다. 압도적인 승리는 아니지만 어쨌거나 1등이다. 

ⓒ IDG

합성 테스트

이제 긱벤치 5로 옮겨간다. 이 테스트는 21개의 작은 개별 루프로 구성된 합성 벤치마크인데, 개발자인 프라이메이트 랩스(Primate Labs)는 텍스트 렌더링에서 HDR, 기계 언어 및 암호화 성능에 이르기까지 모든 분야에서 인기있는 애플리케이션을 모델링했다고 한다. 긱벤치는 과거 논란의 중심에 있었지만, 여전히 인기가 높은 벤치마크다. 3D 렌더링과 압축, 인코딩 등에서 순위가 오르내렸던 코어 i9-12900K는 라이젠 9 5950X보다 8%가량 

긱벤치 벤치마크는 과거에 논란의 대상이 되었지만, 오늘날에는 비난받지 않고서 어떤 테스트를 유지하는 것이 어렵다. 하지만 이 제품은 어리석게도 인기가 있고, 당신이 긱벤치 5에 대해 어떻게 생각하든 간에, 사람들은 CPU가 거기에서 어떻게 작동하는지 보고 싶어한다. 3D 렌더링, 압축 및 인코딩을 어느 정도 반복한 결과, 인텔 코어 i9-12900K가 라이젠 9 5950X보다 약 8% 앞서는 것으로 나타났다.

ⓒ IDG
ⓒ IDG

콘텐츠 제작 성능 

전체 점수는 코어 i9-12900K가 라이젠 9 59050X에 비해 4% 더 앞선다. 프로시언 2.0은 이미지 보정(retouch)와 일괄 내보내기라는 2가지 방식으로 결과를 나눈다. 프로시언에 따르면, 이미지 보정에서는 기본적으로 12세대 코어 i9과 라이젠 9이 동점이었다. 주로 라이트룸 클래식 사진 내보내기 성능을 시험한 일괄 처리에서는 코어 i9가 최대 5%까지 앞섰다. 라이트룸 사진 내보내기가 멀티코어 성능에 의존하는 경향이 크기 때문에 마지막 결과에 놀랐다. 라이젠 9의 승리를 예상했기 때문이다. 결과는 그렇지 않았다. 

ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG
ⓒ IDG

AI 성능

ⓒ IDG
ⓒ IDG

실생활 성능

비싼 컴퓨터로 인디 영화를 위한 특수 효과를 만들거나 이국적인 여행에서 찍은 사진을 편집하는 것을 상상하기 쉽지만, 세상 일의 대다수는 청구서를 지불하는 지루한 작업과 더 연관이 깊다. 따라서 마이크로소프트 오피스 성능을 UL의 프로시언 2.0 오피스 생산성 테스트를로 측정했다. 어도비와 마찬가지로, 다루는 마이크로소프트 워드, 엑셀, 파워포인트 및 아웃룩에서 고품질 미디어를 많이 다루는 작업을 대상으로 한다. 현실이 지루한 것처럼, 이런 작업이 가장 현실적이라고 할 수 있을 것이다.

오피스나 사무적이고 딱딱한 아웃룩 성능에 열광하는 사람에게는 라이젠보다 16% 빠른 코어 i9-12900K가 유리한 것으로 나타났다. 개별 애플리케이션을 결과에 따르면 12세대 코어 i9는 워드에서 14%, 엑셀에서 19%, 파워포인트에서 10%, 아웃룩에서 19% 더 빠르다. 

ⓒ IDG
ⓒ IDG

게이밍 성능

첫 번째 차트의 수직 축 눈금은 60와트에서 340와트까지를 표시하며, 0은 시간 수평 축을 의미한다. 먼저 모든 코어를 사용하여 시네벤치 R20을 실행했는데, 12900K(빨간색) 막대가 320와트의 총소비량까지 올라간 것을 볼 수 있다. 이것은 거의 라이젠 9 5950X(보라색)의 최대치보다 거의 100와트 더 많다. 약 45% 더 많은 양이다. 일단 모든 코어에 대해 두 칩 모두 시네벤치를 완료하면, 단일 코어나 쓰레드를 사용하여 칩을 실행한다. 이제 115와트 범위의 12세대 코어 i9의 총 시스템 전력을 볼 수 있는데, 라이젠 9가 약 10와트를 더 소비한다. 코어 i9가 테스트를 더 빨리 끝내고 라이젠 9 시스템보다 더 적은 전력을 사용한 것도 확인할 수 있다. 

ⓒ IDG

전력 소비

ⓒ IDG
ⓒ IDG

쓰레드 스케일링

인텔의 11세대부터 12세대까지의 세대별 성능 변화는 경이롭다. 단일 쓰레드를 사용함으로써 코어 i9-12900K는 이전 제품보다 42% 더 빠르며 그 속도에서 조금 올라간다. 8개 쓰레드에서 최신 세대의 코어 i9 최대치를 기록할 때 12세대 코어 i9은 놀랍게도 82% 더 빠르다. 지난 3월 출시된 11세대 칩과 비교하면 완전히 놀라운 변화다. 직접 전력 양을 추적해보지는 않았지만, 이전 11세대 코어 i9-11900K는 시네벤치 R20 실행에 거의 380와트 가까이를 사용한 반면, 12세대 코어 i9는 약 320와트를 사용했다. 따라서, 12세대 코어는 훨씬 적은 전력을 사용하면서도 훨씬 더 빠르다.

ⓒ IDG
ⓒ IDG

인텔 코어 i9-12900K, 결론

조금 의외일지도 모르겠다. 최고의 CPU라는 것은 존재하지 않는다는 것이 결론이다.

그보다는 특정 요구에 가장 적합한 CPU가 곧 최고의 CPU다. 이 긴 벤치마크는 각 요구사항을 6개 부문으로 나눠 각 분야에서 어떤 칩이 승리했는지를 확인했다. 인텔에 좋은 소식은 거의 모든 부문에서 좋은 위치를 차지하고 있다는 것이다.

렌더링 / 하이쓰레드 카운트 
하이 쓰레드 카운트 애플리케이션 및 렌더링에서 코어 i9-12900K는 시네벤치 R23 테스트에서 가까스로 승리라는 결과를 냈지만, 다른 CPU 렌더링 테스트에서는 훨씬 미묘한 결과가 나왔다. 솔직히 90% 렌더링 PC용 칩을 선택한다면, 라이젠 9 5950X가 아마 더 나은 선택일 것이다. 
승리 : 라이젠 9 5950X.

콘텐츠 제작
앞서 살펴본 바와 같이, 콘텐츠 제작은 단순히 쓰레드가 제일 많기만 하면 되는 작업이 아니고, 12세대 코어 i9은 라이젠 9 5950X보다 더 많은 역량을 증명했다. 포토샵, 라이트룸 클래식, 프리미어 프로를 주로 다룬다면 인텔이 더 나은 선택이 될 것이다. 
승리 : 코어 i9-12900K.

실생활
오피스 생산성과 크롬의 벤치마크를 통해 반응성이 더 높은 것이 인텔 CPU라는 점을 확인했다. 물론 결과에 동의하지만 동시에 라이젠 9 5950X도 두 사용례를 모두 잘 처리할 수 있다고도 믿는다. 아웃룩, 워드 실행이나 인터넷 검색이 주 작업인 하이엔드 데스크톱을 조립할 경우 약간 등급을 낮춰도 될 것 같다.
승리: 코어 i9-12900K.

게이밍
실제 게임 플레이에서 차이를 보려면 CPU보다 GPU에 더 집중해야 한다. 그렇지만 게임 테스트에서 인텔 12세대 코어 i9은 분명히 라이젠보다 점수가 높거나 거의 동점이었다. 의심의 여지없이 최고의 게임용 CPU다. 하지만 어느 쪽을 택해도 좋은 선택이다.
승리 : 코어 i9-12900K.

기능
인텔 12세대 플랫폼은 PCIe 5.0 및 DDR5 메모리라는 새로운 세계를 열었다. 또한, 필요한 경우 썬더볼트를 사용할 수 있고 와이파이 6E까지도 통합되어 있다. 물론, DDR5의 가치가 없다고 말하는 이들도 있고 그런 주장에도 이유가 있겠지만, 인텔로서는 충분히 새로운 점이 있다. 
승리 : 코어 i9-12900K.

가치
아직도 AMD 라이젠 9 5950X가 그리 대단한 가치가 없다고 생각하는 사람도 있고, 그 전 해에 2,000달러나 했던 CPU와 성능이 동등한데도 가격이 750달러에 불과한 것을 칭찬하는 사람도 있다. 만약 라이젠 9의 가격이 터무니없이 저렴하다고 생각하는 쪽이라면, 589달러라는 코어 i9-12900K의 공격적인 가격표를 보고 당장 구매하겠다고 소리칠 것이다. 하지만 이 가격은 대량 구매시 적용되는 값이다. 그렇지만 전통적으로 대량구매 가격은 초기 수요가 확정되면 시중가와 몇 달러 차이 나지 않는다. 그렇다. 여기서 가격 대비 가치가 높은 제품은 인텔이다. 그야말로 해가 서쪽에서 뜰 기세다.
승리 : 코어 i9-12900K.

코어 i9-12900K는 위대한 과거 명성을 회복하고 다시 왕좌를 탈환하려고 나섰다. 앨더 레이크는 기다릴 가치가 충분했다. 인텔에게 박수를 보낸다, 브라보. editor@itworld.co.kr 

Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).

Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions

레이저 파우더 베드 융합 오버행 영역에서 표면 거칠기의 원인에 대한 실험 및 수치 조사

Shaochuan Feng,Amar M. Kamat,Soheil Sabooni &Yutao PeiPages S66-S84 | Received 18 Jan 2021, Accepted 25 Feb 2021, Published online: 10 Mar 2021

ABSTRACT

Surface roughness of laser powder bed fusion (L-PBF) printed overhang regions is a major contributor to deteriorated shape accuracy/surface quality. This study investigates the mechanisms behind the evolution of surface roughness (Ra) in overhang regions. The evolution of surface morphology is the result of a combination of border track contour, powder adhesion, warp deformation, and dross formation, which is strongly related to the overhang angle (θ). When 0° ≤ θ ≤ 15°, the overhang angle does not affect Ra significantly since only a small area of the melt pool boundaries contacts the powder bed resulting in slight powder adhesion. When 15° < θ ≤ 50°, powder adhesion is enhanced by the melt pool sinking and the increased contact area between the melt pool boundary and powder bed. When θ > 50°, large waviness of the overhang contour, adhesion of powder clusters, severe warp deformation and dross formation increase Ra sharply.

레이저 파우더 베드 퓨전 (L-PBF) 프린팅 오버행 영역의 표면 거칠기는 형상 정확도 / 표면 품질 저하의 주요 원인입니다. 이 연구 는 오버행 영역에서 표면 거칠기 (Ra ) 의 진화 뒤에 있는 메커니즘을 조사합니다 . 표면 형태의 진화는 오버행 각도 ( θ ) 와 밀접한 관련이있는 경계 트랙 윤곽, 분말 접착, 뒤틀림 변형 및 드로스 형성의 조합의 결과입니다 . 0° ≤  θ  ≤ 15° 인 경우 , 용융풀 경계의 작은 영역 만 분말 베드와 접촉하여 약간의 분말 접착이 발생하기 때문에 오버행 각도가 R a에 큰 영향을 주지 않습니다 . 15° < θ 일 때  ≤ 50°, 용융 풀 싱킹 및 용융 풀 경계와 분말 베드 사이의 증가된 접촉 면적으로 분말 접착력이 향상됩니다. θ  > 50° 일 때 오버행 윤곽의 큰 파형, 분말 클러스터의 접착, 심한 휨 변형 및 드 로스 형성이 Ra 급격히 증가 합니다.

KEYWORDS: Laser powder bed fusion (L-PBF), melt pool dynamics, overhang region, shape deviation, surface roughness

1. Introduction

레이저 분말 베드 융합 (L-PBF)은 첨단 적층 제조 (AM) 기술로, 집중된 레이저 빔을 사용하여 금속 분말을 선택적으로 융합하여 슬라이스 된 3D 컴퓨터 지원에 따라 층별로 3 차원 (3D) 금속 부품을 구축합니다. 설계 (CAD) 모델 (Chatham, Long 및 Williams 2019 ; Tan, Zhu 및 Zhou 2020 ). 재료가 인쇄 층 아래에 ​​존재하는지 여부에 따라 인쇄 영역은 각각 솔리드 영역 또는 돌출 영역으로 분류 될 수 있습니다. 따라서 오버행 영역은 고체 기판이 아니라 분말 베드 바로 위에 건설되는 특수 구조입니다 (Patterson, Messimer 및 Farrington 2017). 오버행 영역은지지 구조를 포함하거나 포함하지 않고 구축 할 수 있으며, 지지대가있는 돌출 영역의 L-PBF는 지지체가 더 낮은 밀도로 구축된다는 점을 제외 하고 (Wang and Chou 2018 ) 고체 기판의 공정과 유사합니다 (따라서 기계적 강도가 낮기 때문에 L-PBF 공정 후 기계적으로 쉽게 제거 할 수 있습니다. 따라서지지 구조로 인쇄 된 오버행 영역은 L-PBF 공정 후 지지물 제거, 연삭 및 연마와 같은 추가 후 처리 단계가 필요합니다.

수평 내부 채널의 제작과 같은 일부 특정 경우에는 공정 후 지지대를 제거하기가 어려우므로 채널 상단 절반의 돌출부 영역을 지지대없이 건설해야합니다 (Hopkinson and Dickens 2000 ). 수평 내부 채널에 사용할 수없는지지 구조 외에도 내부 표면, 특히 등각 냉각 채널 (Feng, Kamat 및 Pei 2021 ) 에서 발생하는 복잡한 3D 채널 네트워크의 경우 표면 마감 프로세스를 구현하는 것도 어렵습니다 . 결과적으로 오버행 영역은 (i) 잔류 응력에 의한 변형, (ii) 계단 효과 (Kuo et al. 2020 ; Li et al. 2020 )로 인해 설계된 모양에서 벗어날 수 있습니다 .) 및 (iii) 원하지 않는 분말 소결로 인한 향상된 표면 거칠기; 여기서, 앞의 두 요소는 일반적으로 mm 길이 스케일에서 ‘매크로’편차로 분류되고 후자는 일반적으로 µm 길이 스케일에서 ‘마이크로’편차로 인식됩니다.

열 응력에 의한 변형은 오버행 영역에서 발생하는 중요한 문제입니다 (Patterson, Messimer 및 Farrington 2017 ). 국부적 인 용융 / 냉각은 용융 풀 내부 및 주변에서 큰 온도 구배를 유도하여 응고 된 층에 집중적 인 열 응력을 유발합니다. 열 응력에 의한 뒤틀림은 고체 영역을 현저하게 변형하지 않습니다. 이러한 영역은 아래의 여러 레이어에 의해 제한되기 때문입니다. 반면에 오버행 영역은 구속되지 않고 공정 중 응력 완화로 인해 상당한 변형이 발생합니다 (Kamat 및 Pei 2019 ). 더욱이 용융 깊이는 레이어 두께보다 큽니다 (이전 레이어도 재용 해되어 빌드 된 레이어간에 충분한 결합을 보장하기 때문입니다 [Yadroitsev et al. 2013 ; Kamath et al.2014 ]),응고 된 두께가 설계된 두께보다 크기 때문에형태 편차 (예 : 드 로스 [Charles et al. 2020 ; Feng et al. 2020 ])가 발생합니다. 마이크로 스케일에서 인쇄 된 표면 (R a 및 S a ∼ 10 μm)은 기계적으로 가공 된 표면보다 거칠다 (Duval-Chaneac et al. 2018 ; Wen et al. 2018 ). 이 문제는고형화 된 용융 풀의 가장자리에 부착 된 용융되지 않은 분말의 결과로 표면 거칠기 (R a )가 일반적으로 약 20 μm인 오버행 영역에서 특히 심각합니다 (Mazur et al. 2016 ; Pakkanen et al. 2016 ).

오버행 각도 ( θ , 빌드 방향과 관련하여 측정)는 오버행 영역의 뒤틀림 편향과 표면 거칠기에 영향을 미치는 중요한 매개 변수입니다 (Kamat and Pei 2019 ; Mingear et al. 2019 ). θ ∼ 45 ° 의 오버행 각도 는 일반적으로지지 구조없이 오버행 영역을 인쇄 할 수있는 임계 값으로 합의됩니다 (Pakkanen et al. 2016 ; Kadirgama et al. 2018 ). θ 일 때이 임계 값보다 크면 오버행 영역을 허용 가능한 표면 품질로 인쇄 할 수 없습니다. 오버행 각도 외에도 레이저 매개 변수 (레이저 에너지 밀도와 관련된)는 용융 풀의 모양 / 크기 및 용융 풀 역학에 영향을줌으로써 오버행 영역의 표면 거칠기에 영향을줍니다 (Wang et al. 2013 ; Mingear et al . 2019 ).

용융 풀 역학은 고체 (Shrestha 및 Chou 2018 ) 및 오버행 (Le et al. 2020 ) 영역 모두에서 수행되는 L-PBF 공정을 포함한 레이저 재료 가공의 일반적인 물리적 현상입니다 . 용융 풀 모양, 크기 및 냉각 속도는 잔류 응력으로 인한 변형과 ​​표면 거칠기에 모두 영향을 미치므로 처리 매개 변수와 표면 형태 / 품질 사이의 다리 역할을하며 용융 풀을 이해하기 위해 수치 시뮬레이션을 사용하여 추가 조사를 수행 할 수 있습니다. 거동과 표면 거칠기에 미치는 영향. 현재까지 고체 영역의 L-PBF 동안 용융 풀 동작을 시뮬레이션하기 위해 여러 연구가 수행되었습니다. 유한 요소 방법 (FEM)과 같은 시뮬레이션 기술 (Roberts et al. 2009 ; Du et al.2019 ), 유한 차분 법 (FDM) (Wu et al. 2018 ), 전산 유체 역학 (CFD) (Lee and Zhang 2016 ), 임의의 Lagrangian-Eulerian 방법 (ALE) (Khairallah and Anderson 2014 )을 사용하여 증발 반동 압력 (Hu et al. 2018 ) 및 Marangoni 대류 (Zhang et al. 2018 ) 현상을포함하는 열 전달 (온도 장) 및 물질 전달 (용융 흐름) 프로세스. 또한 이산 요소법 (DEM)을 사용하여 무작위 분산 분말 베드를 생성했습니다 (Lee and Zhang 2016 ; Wu et al. 2018 ). 이 모델은 분말 규모의 L-PBF 공정을 시뮬레이션했습니다 (Khairallah et al. 2016) 메조 스케일 (Khairallah 및 Anderson 2014 ), 단일 트랙 (Leitz et al. 2017 )에서 다중 트랙 (Foroozmehr et al. 2016 ) 및 다중 레이어 (Huang, Khamesee 및 Toyserkani 2019 )로.

그러나 결과적인 표면 거칠기를 결정하는 오버행 영역의 용융 풀 역학은 문헌에서 거의 관심을받지 못했습니다. 솔리드 영역의 L-PBF에 대한 기존 시뮬레이션 모델이 어느 정도 참조가 될 수 있지만 오버행 영역과 솔리드 영역 간의 용융 풀 역학에는 상당한 차이가 있습니다. 오버행 영역에서 용융 금속은 분말 입자 사이의 틈새로 아래로 흘러 용융 풀이 다공성 분말 베드가 제공하는 약한 지지체 아래로 가라 앉습니다. 이것은 중력과 표면 장력의 영향이 용융 풀의 결과적인 모양 / 크기를 결정하는 데 중요하며, 결과적으로 오버행 영역의 마이크로 스케일 형태의 진화에 중요합니다. 또한 분말 입자 사이의 공극, 열 조건 (예 : 에너지 흡수,2019 ; Karimi et al. 2020 ; 노래와 영 2020 ). 표면 거칠기는 (마이크로) 형상 편차를 증가시킬뿐만 아니라 주기적 하중 동안 미세 균열의 시작 지점 역할을함으로써 기계적 강도를 저하시킵니다 (Günther et al. 2018 ). 오버행 영역의 높은 표면 거칠기는 (마이크로) 정확도 / 품질에 대한 엄격한 요구 사항이있는 부품 제조에서 L-PBF의 적용을 제한합니다.

본 연구는 실험 및 시뮬레이션 연구를 사용하여 오버행 영역 (지지물없이 제작)의 미세 형상 편차 형성 메커니즘과 표면 거칠기의 기원을 체계적이고 포괄적으로 조사합니다. 결합 된 DEM-CFD 시뮬레이션 모델은 경계 트랙 윤곽, 분말 접착 및 뒤틀림 변형의 효과를 고려하여 오버행 영역의 용융 풀 역학과 표면 형태의 형성 메커니즘을 나타 내기 위해 개발되었습니다. 표면 거칠기 R의 시뮬레이션 및 단일 요인 L-PBF 인쇄 실험을 사용하여 오버행 각도의 함수로 연구됩니다. 용융 풀의 침몰과 관련된 오버행 영역에서 분말 접착의 세 가지 메커니즘이 식별되고 자세히 설명됩니다. 마지막으로, 인쇄 된 오버행 영역에서 높은 표면 거칠기 문제를 완화 할 수 있는 잠재적 솔루션에 대해 간략하게 설명합니다.

The shape and size of the L-PBF printed samples are illustrated in Figure 1
The shape and size of the L-PBF printed samples are illustrated in Figure 1
Figure 2. Borders in the overhang region depending on the overhang angle θ
Figure 2. Borders in the overhang region depending on the overhang angle θ
Figure 3. (a) Profile of the volumetric heat source, (b) the model geometry of single-track printing on a solid substrate (unit: µm), and (c) the comparison of melt pool dimensions obtained from the experiment (right half) and simulation (left half) for a calibrated optical penetration depth of 110 µm (laser power 200 W and scan speed 800 mm/s, solidified layer thickness 30 µm, powder size 10–45 µm).
Figure 3. (a) Profile of the volumetric heat source, (b) the model geometry of single-track printing on a solid substrate (unit: µm), and (c) the comparison of melt pool dimensions obtained from the experiment (right half) and simulation (left half) for a calibrated optical penetration depth of 110 µm (laser power 200 W and scan speed 800 mm/s, solidified layer thickness 30 µm, powder size 10–45 µm).
Figure 4. The model geometry of an overhang being L-PBF processed: (a) 3D view and (b) right view.
Figure 4. The model geometry of an overhang being L-PBF processed: (a) 3D view and (b) right view.
Figure 5. The cross-sectional contour of border tracks in a 45° overhang region.
Figure 5. The cross-sectional contour of border tracks in a 45° overhang region.
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).
Figure 7. The overhang contour is contributed by (a) only outer borders when θ ≤ 60° (b) both inner borders and outer borders when θ > 60°.
Figure 7. The overhang contour is contributed by (a) only outer borders when θ ≤ 60° (b) both inner borders and outer borders when θ > 60°.
Figure 8. Schematic of powder adhesion on a 45° overhang region.
Figure 8. Schematic of powder adhesion on a 45° overhang region.
Figure 9. The L-PBF printed samples with various overhang angle (a) θ = 0° (cube), (b) θ = 30°, (c) θ = 45°, (d) θ = 55° and (e) θ = 60°.
Figure 9. The L-PBF printed samples with various overhang angle (a) θ = 0° (cube), (b) θ = 30°, (c) θ = 45°, (d) θ = 55° and (e) θ = 60°.
Figure 10. Two mechanisms of powder adhesion related to the overhang angle: (a) simulation-predicted, θ = 45°; (b) simulation-predicted, θ = 60°; (c, e) optical micrographs, θ = 45°; (d, f) optical micrographs, θ = 60°. (e) and (f) are partial enlargement of (c) and (d), respectively.
Figure 10. Two mechanisms of powder adhesion related to the overhang angle: (a) simulation-predicted, θ = 45°; (b) simulation-predicted, θ = 60°; (c, e) optical micrographs, θ = 45°; (d, f) optical micrographs, θ = 60°. (e) and (f) are partial enlargement of (c) and (d), respectively.
Figure 11. Simulation-predicted surface morphology in the overhang region at different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45°, (d) θ = 60° and (e) θ = 80° (Blue solid lines: simulation-predicted contour; red dashed lines: the planar profile of designed overhang region specified by the overhang angles).
Figure 11. Simulation-predicted surface morphology in the overhang region at different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45°, (d) θ = 60° and (e) θ = 80° (Blue solid lines: simulation-predicted contour; red dashed lines: the planar profile of designed overhang region specified by the overhang angles).
Figure 12. Effect of overhang angle on surface roughness Ra in overhang regions
Figure 12. Effect of overhang angle on surface roughness Ra in overhang regions
Figure 13. Surface morphology of L-PBF printed overhang regions with different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45° and (d) θ = 60° (overhang border parameters: P = 100 W, v = 1000 mm/s).
Figure 13. Surface morphology of L-PBF printed overhang regions with different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45° and (d) θ = 60° (overhang border parameters: P = 100 W, v = 1000 mm/s).
Figure 14. Effect of (a) laser power (scan speed = 1000 mm/s) and (b) scan speed (lase power = 100 W) on surface roughness Ra in overhang regions (θ = 45°, laser power and scan speed referred to overhang border parameters, and the other process parameters are listed in Table 2).
Figure 14. Effect of (a) laser power (scan speed = 1000 mm/s) and (b) scan speed (lase power = 100 W) on surface roughness Ra in overhang regions (θ = 45°, laser power and scan speed referred to overhang border parameters, and the other process parameters are listed in Table 2).

References

  • Cai, Chao, Chrupcala Radoslaw, Jinliang Zhang, Qian Yan, Shifeng Wen, Bo Song, and Yusheng Shi. 2019. “In-Situ Preparation and Formation of TiB/Ti-6Al-4V Nanocomposite via Laser Additive Manufacturing: Microstructure Evolution and Tribological Behavior.” Powder Technology 342: 73–84. doi:10.1016/j.powtec.2018.09.088. [Crossref], [Web of Science ®], [Google Scholar]
  • Cai, Chao, Wei Shian Tey, Jiayao Chen, Wei Zhu, Xingjian Liu, Tong Liu, Lihua Zhao, and Kun Zhou. 2021. “Comparative Study on 3D Printing of Polyamide 12 by Selective Laser Sintering and Multi Jet Fusion.” Journal of Materials Processing Technology 288 (August 2020): 116882. doi:10.1016/j.jmatprotec.2020.116882. [Crossref], [Web of Science ®], [Google Scholar]
  • Cai, Chao, Xu Wu, Wan Liu, Wei Zhu, Hui Chen, Jasper Dong Qiu Chua, Chen Nan Sun, Jie Liu, Qingsong Wei, and Yusheng Shi. 2020. “Selective Laser Melting of Near-α Titanium Alloy Ti-6Al-2Zr-1Mo-1V: Parameter Optimization, Heat Treatment and Mechanical Performance.” Journal of Materials Science and Technology 57: 51–64. doi:10.1016/j.jmst.2020.05.004. [Crossref], [Web of Science ®], [Google Scholar]
  • Charles, Amal, Ahmed Elkaseer, Lore Thijs, and Steffen G. Scholz. 2020. “Dimensional Errors Due to Overhanging Features in Laser Powder Bed Fusion Parts Made of Ti-6Al-4V.” Applied Sciences 10 (7): 2416. doi:10.3390/app10072416. [Crossref], [Google Scholar]
  • Chatham, Camden A., Timothy E. Long, and Christopher B. Williams. 2019. “A Review of the Process Physics and Material Screening Methods for Polymer Powder Bed Fusion Additive Manufacturing.” Progress in Polymer Science 93: 68–95. doi:10.1016/j.progpolymsci.2019.03.003. [Crossref], [Web of Science ®], [Google Scholar]
  • Du, Yang, Xinyu You, Fengbin Qiao, Lijie Guo, and Zhengwu Liu. 2019. “A Model for Predicting the Temperature Field during Selective Laser Melting.” Results in Physics 12 (November 2018): 52–60. doi:10.1016/j.rinp.2018.11.031. [Crossref], [Web of Science ®], [Google Scholar]
  • Duval-Chaneac, M. S., S. Han, C. Claudin, F. Salvatore, J. Bajolet, and J. Rech. 2018. “Experimental Study on Finishing of Internal Laser Melting (SLM) Surface with Abrasive Flow Machining (AFM).” Precision Engineering 54 (July 2017): 1–6. doi:10.1016/j.precisioneng.2018.03.006. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Shijie Chen, Amar M. Kamat, Ru Zhang, Mingji Huang, and Liangcai Hu. 2020. “Investigation on Shape Deviation of Horizontal Interior Circular Channels Fabricated by Laser Powder Bed Fusion.” Additive Manufacturing 36 (December): 101585. doi:10.1016/j.addma.2020.101585. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Chuanzhen Huang, Jun Wang, Hongtao Zhu, Peng Yao, and Zhanqiang Liu. 2017. “An Analytical Model for the Prediction of Temperature Distribution and Evolution in Hybrid Laser-Waterjet Micro-Machining.” Precision Engineering 47: 33–45. doi:10.1016/j.precisioneng.2016.07.002. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Amar M. Kamat, and Yutao Pei. 2021. “Design and Fabrication of Conformal Cooling Channels in Molds: Review and Progress Updates.” International Journal of Heat and Mass Transfer. doi:10.1016/j.ijheatmasstransfer.2021.121082. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Flow-3D V11.2 Documentation. 2016. Flow Science, Inc. [Crossref], [Google Scholar]
  • Foroozmehr, Ali, Mohsen Badrossamay, Ehsan Foroozmehr, and Sa’id Golabi. 2016. “Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed.” Materials and Design 89: 255–263. doi:10.1016/j.matdes.2015.10.002. [Crossref], [Web of Science ®], [Google Scholar]
  • “Geometrical Product Specifications (GPS) — Surface Texture: Profile Method — Rules and Procedures for the Assessment of Surface Texture (ISO 4288).” 1996. International Organization for Standardization. https://www.iso.org/standard/2096.html. [Google Scholar]
  • Günther, Johannes, Stefan Leuders, Peter Koppa, Thomas Tröster, Sebastian Henkel, Horst Biermann, and Thomas Niendorf. 2018. “On the Effect of Internal Channels and Surface Roughness on the High-Cycle Fatigue Performance of Ti-6Al-4V Processed by SLM.” Materials & Design 143: 1–11. doi:10.1016/j.matdes.2018.01.042. [Crossref], [Web of Science ®], [Google Scholar]
  • Hopkinson, Neil, and Phill Dickens. 2000. “Conformal Cooling and Heating Channels Using Laser Sintered Tools.” In Solid Freeform Fabrication Conference, 490–497. Texas. doi:10.26153/tsw/3075. [Crossref], [Google Scholar]
  • Hu, Zhiheng, Haihong Zhu, Changchun Zhang, Hu Zhang, Ting Qi, and Xiaoyan Zeng. 2018. “Contact Angle Evolution during Selective Laser Melting.” Materials and Design 139: 304–313. doi:10.1016/j.matdes.2017.11.002. [Crossref], [Web of Science ®], [Google Scholar]
  • Hu, Cheng, Kejia Zhuang, Jian Weng, and Donglin Pu. 2019. “Three-Dimensional Analytical Modeling of Cutting Temperature for Round Insert Considering Semi-Infinite Boundary and Non-Uniform Heat Partition.” International Journal of Mechanical Sciences 155 (October 2018): 536–553. doi:10.1016/j.ijmecsci.2019.03.019. [Crossref], [Web of Science ®], [Google Scholar]
  • Huang, Yuze, Mir Behrad Khamesee, and Ehsan Toyserkani. 2019. “A New Physics-Based Model for Laser Directed Energy Deposition (Powder-Fed Additive Manufacturing): From Single-Track to Multi-Track and Multi-Layer.” Optics & Laser Technology 109 (August 2018): 584–599. doi:10.1016/j.optlastec.2018.08.015. [Crossref], [Web of Science ®], [Google Scholar]
  • Kadirgama, K., W. S. W. Harun, F. Tarlochan, M. Samykano, D. Ramasamy, Mohd Zaidi Azir, and H. Mehboob. 2018. “Statistical and Optimize of Lattice Structures with Selective Laser Melting (SLM) of Ti6AL4V Material.” International Journal of Advanced Manufacturing Technology 97 (1–4): 495–510. doi:10.1007/s00170-018-1913-1. [Crossref], [Web of Science ®], [Google Scholar]
  • Kamat, Amar M, and Yutao Pei. 2019. “An Analytical Method to Predict and Compensate for Residual Stress-Induced Deformation in Overhanging Regions of Internal Channels Fabricated Using Powder Bed Fusion.” Additive Manufacturing 29 (March): 100796. doi:10.1016/j.addma.2019.100796. [Crossref], [Web of Science ®], [Google Scholar]
  • Kamath, Chandrika, Bassem El-Dasher, Gilbert F. Gallegos, Wayne E. King, and Aaron Sisto. 2014. “Density of Additively-Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers up to 400 W.” International Journal of Advanced Manufacturing Technology 74 (1–4): 65–78. doi:10.1007/s00170-014-5954-9. [Crossref], [Web of Science ®], [Google Scholar]
  • Karimi, J., C. Suryanarayana, I. Okulov, and K. G. Prashanth. 2020. “Selective Laser Melting of Ti6Al4V: Effect of Laser Re-Melting.” Materials Science and Engineering A (July): 140558. doi:10.1016/j.msea.2020.140558. [Crossref], [Web of Science ®], [Google Scholar]
  • Khairallah, Saad A., and Andy Anderson. 2014. “Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder.” Journal of Materials Processing Technology 214 (11): 2627–2636. doi:10.1016/j.jmatprotec.2014.06.001. [Crossref], [Web of Science ®], [Google Scholar]
  • Khairallah, Saad A., Andrew T. Anderson, Alexander Rubenchik, and Wayne E. King. 2016. “Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones.” Edited by Adedeji B. Badiru, Vhance V. Valencia, and David Liu. Acta Materialia 108 (April): 36–45. doi:10.1016/j.actamat.2016.02.014. [Crossref], [Web of Science ®], [Google Scholar]
  • Kuo, C. N., C. K. Chua, P. C. Peng, Y. W. Chen, S. L. Sing, S. Huang, and Y. L. Su. 2020. “Microstructure Evolution and Mechanical Property Response via 3D Printing Parameter Development of Al–Sc Alloy.” Virtual and Physical Prototyping 15 (1): 120–129. doi:10.1080/17452759.2019.1698967. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Le, K. Q., C. H. Wong, K. H. G. Chua, C. Tang, and H. Du. 2020. “Discontinuity of Overhanging Melt Track in Selective Laser Melting Process.” International Journal of Heat and Mass Transfer 162 (December): 120284. doi:10.1016/j.ijheatmasstransfer.2020.120284. [Crossref], [Web of Science ®], [Google Scholar]
  • Lee, Y. S., and W. Zhang. 2016. “Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion.” Additive Manufacturing 12: 178–188. doi:10.1016/j.addma.2016.05.003. [Crossref], [Web of Science ®], [Google Scholar]
  • Leitz, K. H., P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L. S. Sigl. 2017. “Multi-Physical Simulation of Selective Laser Melting.” Metal Powder Report 72 (5): 331–338. doi:10.1016/j.mprp.2016.04.004. [Crossref], [Google Scholar]
  • Li, Jian, Jing Hu, Yi Zhu, Xiaowen Yu, Mengfei Yu, and Huayong Yang. 2020. “Surface Roughness Control of Root Analogue Dental Implants Fabricated Using Selective Laser Melting.” Additive Manufacturing 34 (September 2019): 101283. doi:10.1016/j.addma.2020.101283. [Crossref], [Web of Science ®], [Google Scholar]
  • Li, Yingli, Kun Zhou, Pengfei Tan, Shu Beng Tor, Chee Kai Chua, and Kah Fai Leong. 2018. “Modeling Temperature and Residual Stress Fields in Selective Laser Melting.” International Journal of Mechanical Sciences 136 (February): 24–35. doi:10.1016/j.ijmecsci.2017.12.001. [Crossref], [Web of Science ®], [Google Scholar]
  • Mazur, MacIej, Martin Leary, Matthew McMillan, Joe Elambasseril, and Milan Brandt. 2016. “SLM Additive Manufacture of H13 Tool Steel with Conformal Cooling and Structural Lattices.” Rapid Prototyping Journal 22 (3): 504–518. doi:10.1108/RPJ-06-2014-0075. [Crossref], [Web of Science ®], [Google Scholar]
  • Mingear, Jacob, Bing Zhang, Darren Hartl, and Alaa Elwany. 2019. “Effect of Process Parameters and Electropolishing on the Surface Roughness of Interior Channels in Additively Manufactured Nickel-Titanium Shape Memory Alloy Actuators.” Additive Manufacturing 27 (October 2018): 565–575. doi:10.1016/j.addma.2019.03.027. [Crossref], [Web of Science ®], [Google Scholar]
  • Pakkanen, Jukka, Flaviana Calignano, Francesco Trevisan, Massimo Lorusso, Elisa Paola Ambrosio, Diego Manfredi, and Paolo Fino. 2016. “Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys.” Metallurgical and Materials Transactions A 47 (8): 3837–3844. doi:10.1007/s11661-016-3478-7. [Crossref], [Web of Science ®], [Google Scholar]
  • Patterson, Albert E., Sherri L. Messimer, and Phillip A. Farrington. 2017. “Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need.” Technologies 5 (4): 15. doi:10.3390/technologies5020015. [Crossref], [Web of Science ®], [Google Scholar]
  • Roberts, I. A., C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors. 2009. “A Three-Dimensional Finite Element Analysis of the Temperature Field during Laser Melting of Metal Powders in Additive Layer Manufacturing.” International Journal of Machine Tools and Manufacture 49 (12–13): 916–923. doi:10.1016/j.ijmachtools.2009.07.004. [Crossref], [Web of Science ®], [Google Scholar]
  • Shrestha, Subin, and Kevin Chou. 2018. “Computational Analysis of Thermo-Fluid Dynamics with Metallic Powder in SLM.” In CFD Modeling and Simulation in Materials Processing 2018, edited by Laurentiu Nastac, Koulis Pericleous, Adrian S. Sabau, Lifeng Zhang, and Brian G. Thomas, 85–95. Cham, Switzerland: Springer Nature. doi:10.1007/978-3-319-72059-3_9. [Crossref], [Google Scholar]
  • Sing, S. L., and W. Y. Yeong. 2020. “Laser Powder Bed Fusion for Metal Additive Manufacturing: Perspectives on Recent Developments.” Virtual and Physical Prototyping 15 (3): 359–370. doi:10.1080/17452759.2020.1779999. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Šmilauer, Václav, Emanuele Catalano, Bruno Chareyre, Sergei Dorofeenko, Jérôme Duriez, Nolan Dyck, Jan Eliáš, et al. 2015. Yade Documentation. 2nd ed. The Yade Project. doi:10.5281/zenodo.34073. [Crossref], [Google Scholar]
  • Tan, Pengfei, Fei Shen, Biao Li, and Kun Zhou. 2019. “A Thermo-Metallurgical-Mechanical Model for Selective Laser Melting of Ti6Al4V.” Materials & Design 168 (April): 107642. doi:10.1016/j.matdes.2019.107642. [Crossref], [Web of Science ®], [Google Scholar]
  • Tan, Lisa Jiaying, Wei Zhu, and Kun Zhou. 2020. “Recent Progress on Polymer Materials for Additive Manufacturing.” Advanced Functional Materials 30 (43): 1–54. doi:10.1002/adfm.202003062. [Crossref], [Web of Science ®], [Google Scholar]
  • Wang, Xiaoqing, and Kevin Chou. 2018. “Effect of Support Structures on Ti-6Al-4V Overhang Parts Fabricated by Powder Bed Fusion Electron Beam Additive Manufacturing.” Journal of Materials Processing Technology 257 (February): 65–78. doi:10.1016/j.jmatprotec.2018.02.038. [Crossref], [Web of Science ®], [Google Scholar]
  • Wang, Di, Yongqiang Yang, Ziheng Yi, and Xubin Su. 2013. “Research on the Fabricating Quality Optimization of the Overhanging Surface in SLM Process.” International Journal of Advanced Manufacturing Technology 65 (9–12): 1471–1484. doi:10.1007/s00170-012-4271-4. [Crossref], [Web of Science ®], [Google Scholar]
  • Wen, Peng, Maximilian Voshage, Lucas Jauer, Yanzhe Chen, Yu Qin, Reinhart Poprawe, and Johannes Henrich Schleifenbaum. 2018. “Laser Additive Manufacturing of Zn Metal Parts for Biodegradable Applications: Processing, Formation Quality and Mechanical Properties.” Materials and Design 155: 36–45. doi:10.1016/j.matdes.2018.05.057. [Crossref], [Web of Science ®], [Google Scholar]
  • Wu, Yu-che, Cheng-hung San, Chih-hsiang Chang, Huey-jiuan Lin, Raed Marwan, Shuhei Baba, and Weng-Sing Hwang. 2018. “Numerical Modeling of Melt-Pool Behavior in Selective Laser Melting with Random Powder Distribution and Experimental Validation.” Journal of Materials Processing Technology 254 (November 2017): 72–78. doi:10.1016/j.jmatprotec.2017.11.032. [Crossref], [Web of Science ®], [Google Scholar]
  • Yadroitsev, I., P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov. 2013. “Energy Input Effect on Morphology and Microstructure of Selective Laser Melting Single Track from Metallic Powder.” Journal of Materials Processing Technology 213 (4): 606–613. doi:10.1016/j.jmatprotec.2012.11.014. [Crossref], [Web of Science ®], [Google Scholar]
  • Yu, Wenhui, Swee Leong Sing, Chee Kai Chua, and Xuelei Tian. 2019. “Influence of Re-Melting on Surface Roughness and Porosity of AlSi10Mg Parts Fabricated by Selective Laser Melting.” Journal of Alloys and Compounds 792: 574–581. doi:10.1016/j.jallcom.2019.04.017. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhang, Dongyun, Pudan Zhang, Zhen Liu, Zhe Feng, Chengjie Wang, and Yanwu Guo. 2018. “Thermofluid Field of Molten Pool and Its Effects during Selective Laser Melting (SLM) of Inconel 718 Alloy.” Additive Manufacturing 21 (100): 567–578. doi:10.1016/j.addma.2018.03.031. [Crossref], [Web of Science ®], [Google Scholar]
EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG

FLOW-3D POST, 그래픽 카드, 멀티모니터

좋은 하드웨어는 향상된 FLOW-3D POST 경험을 제공

FLOW Science, inc의 최첨단 POST Processor인 FLOW-3D POST를 최대한 활용하려면 좋은 하드웨어가 있어야 합니다. 이 블로그에서 소프트웨어 엔지니어링의 GUI 개발자/관리자인 Stephen Sanchez는 이러한 하드웨어 권장 사항에 따라 최적의 FLOW-3D POST 경험을 얻을 수 있는 방법에 대해 정보를 제공 합니다.

고품질 그래픽 하드웨어

최소 3GB의 VRAM 이 있는 그래픽 카드로 시작하는 것이 좋습니다 . 이것은 많은 볼륨 렌더링을 수행할 경우 특히 중요합니다. 볼륨 렌더링은 FLOW-3D POST 의 고급 기능으로 iso-surface가 아닌 유체 도메인 전체에서 변수의 세부 사항을 시각화합니다. 이 기능은 매우 통찰력 있지만 후 처리 중에 효과적으로 사용하려면 좋은 하드웨어가 필요합니다.

다음으로 Intel 통합 그래픽을 기본 그래픽 하드웨어로 사용해서는 안됩니다. 인텔 통합 그래픽은 전용 그래픽 하드웨어가 있는 랩톱에서도 대부분의 랩톱에서 일반적입니다(자세한 내용은 아래 참조). 

대부분의 FLOW-3D POST 기능은 이 구성에서 작동하지 않으므로 Intel 통합 그래픽을 지원하지 않습니다. 

FLOW-3D POST 는 NVIDIA 그래픽 카드 와 함께 사용할 때 가장 잘 수행됩니다. FLOW-3D POST 가 잘 작동하는 것으로 확인되었으므로 Maxwell 아키텍처 제품군 이상의 NVIDIA 그래픽 하드웨어를 적극 권장 합니다. 

NVIDIA Quadro 카드는 가장 안정적인 것으로 입증되었습니다. 고급 AMD 카드도 작동해야 하지만 NVIDIA 하드웨어 및 드라이버만큼 안정적이지 않다는 사실을 발견 했으므로 항상 AMD보다 NVIDIA를 권장합니다.

Nvidia 그래픽 카드

노트북의 듀얼 그래픽 카드 – 간단하지만 숨겨진 솔루션

이제 많은 노트북에 NVIDIA 그래픽 카드와 Intel 통합 그래픽 간에 전환 할 수 있는 기능이 있습니다. NVIDIA 카드로 FLOW-3D POST 가 실행되고 있는지 확인하는 것이 중요합니다 . NVIDIA 제어판을 통해 NVIDIA 카드로 노트북을 강제로 실행할 수 있습니다.

그래픽 카드를 Nvidia로 전환

비디오 드라이버 업데이트

비디오 드라이버가 업데이트 되었는지 확인하는 것이 좋습니다. FLOW-3D POST 에서 비디오 드라이버를 업데이트하여 쉽게 해결할 수 있는 아티팩트 및 디스플레이 문제에 대한 보고가 있었습니다 . 비디오 드라이버를 최신 상태로 유지하는 것은 이러한 문제를 방지하는 좋은 방법입니다.

RAM, RAM, RAM!

메모리가 충분하지 않으면 시뮬레이션 후 처리가 불가능할뿐만 아니라 메모리 요구 사항을 인식하는 것이 중요합니다. 최대 10 배의 성능 저하로 이어질 수 있습니다! FLOW-3D POST 에 필요한 RAM 양은 여러 요소, 특히 시뮬레이션 크기에 따라 다릅니다. 사용자에게 최대한의 유연성을 제공하기 위해 메시의 셀 수에 따라 다음과 같은 RAM 권장 사항이 있습니다.

  • 초대형 (2 억 개 이상의 셀) : 최소 128GB
  • 대용량 (6 천 ~ 1 억 5 천만 셀) : 64-128GB
  • 중간 (3 천만 ~ 6 천만 셀) : 32-64GB
  • 소형 (3,000 만 셀 이하) : 최소 32GB

FLOW-3D POST 는 메모리 집약적 일 수 있습니다. 실행할 시뮬레이션 크기에 대한 대략적인 아이디어가 있는 경우, 이 지침을 가능한 한 잘 따르는 것이 좋습니다. 즉, 유연성을 극대화하고 가장 원활한 FLOW-3D POST 경험을 보장하기 위해 문제 크기에 관계없이 가능한 한 많은 RAM을 확보하는 것이 좋습니다.


그래픽 카드를 업그레이드 교체 설치하는 방법

그래픽 카드를 업그레이드하는 것은 성능 향상을 위한 좋은 방법이다. 그래픽 카드 업그레이드를 통해 시각적으로 고사양을 요구하는 POST 작업을 쉽게 소화할 수 있는 컴퓨터로 진화할 수 있다. 

업그레이드를 위한 그래픽 카드 구매시 고려 사항, 기존 PC에 적합한가? 

원하는 그래픽 카드를 결정하는 것은 복잡하고 미묘한 문제다. AMD와 엔비디아는 200달러 미만에서부터 최대 1,500달러에 이르는 지포스(GeForce) RTX 3090에 이르기까지 거의 모든 예산에 대한 선택지를 제공하기 때문이다.

카드의 소음, 발열, 전력 소비 등과 같은 사항을 고려할 수 있겠지만, 일반적으로는 비용 대비 가장 큰 효과를 제공하는 그래픽 카드를 원한다.

컴퓨터가 새 그래픽 카드를 지원하는 적절한 하드웨어인지 확인한다. 

사용자가 겪는 가장 일반적인 문제는 부적절한 파워 서플라이(power supply)다. 충분한 전력을 공급할 수 없거나 사용 가능한 PCI-E 전원 커넥터가 충분하지 않을 수 있다. 필자의 경험상 파워 서플라이는 적어도 제조업체에서 권장하는 파워 서플라이의 요구 사항을 충족해야 한다. 예를 들어, 350W를 소비하는 지포스 GTX 3090을 구입했다면 8핀 전원 커넥터 한 쌍과 함께 엔비디아에서 제안한 최소 750W의 전력 공급 장치를 갖춰야 한다. 

현재 파워 서플라이가 얼마나 많은 전력을 제공하는지 알아보려면 PC 본체를 열고 모든 파워 서플라이에 기본 정보가 나열된 표준 식별 스티커를 확인하면 된다. 또한 사용 가능한 6핀 및 8핀 PCI-E 커넥터의 수를 확인할 수 있다. 

ⓒ Thomas Ryan 파워서플라이
ⓒ Thomas Ryan 파워서플라이

마지막으로 본체 내부에 새 그래픽 카드를 넣을 충분한 공간이 있는지 확인한다. 일부 고급 그래픽 카드는 길이가 상당히 길어 30Cm 이상일 수 있으며, 확장 슬롯이 2개 또는 3개가 될 수 있다. 해당 그래픽 카드의 실제 크기는 제조업체 웹사이트에서 찾을 수 있다. 

여기까지 해결했다면 이제 본격적으로 설치 작업에 착수한다. 


생각보다 간단한 그래픽 카드 설치 작업

그래픽 카드 설치에는 새 그래픽 카드, 컴퓨터, 그리고 십자 드라이버 3가지만 있으면 된다. 설치하기 전 PC를 끄고 전원 플러그를 뽑는다. 

기존 GPU를 제거해야 하는 경우가 아니면, 먼저 프로세서의 방열판에 가장 가까운 긴 PCI-E x16 슬롯을 찾아야 한다. 이 슬롯은 메인보드의 첫 번째 또는 두 번째 확장 슬롯이다. 

이 슬롯에 접근을 차단하는 느슨한 전선이 없는지 확인한다. 기존 그래픽 카드를 교체하는 경우, 연결된 케이블을 모두 분리하고, PC 본체 후면 내부에 고정 브래킷에서 나사를 제거한 다음, 카드를 제거한다. 대부분의 메인보드에는 그래픽 카드를 제자리에 고정하는 PCI-E 슬롯 끝에 작은 플라스틱 걸쇠(latch)가 있다. 이 걸쇠를 눌러 이전 그래픽 카드의 잠금을 해제하고 분리한다.

ⓒ Thomas Ryan PCI-E x16 슬롯에 설치
ⓒ Thomas Ryan PCI-E x16 슬롯에 설치

이제 새 그래픽 카드를 개방형 PCI-E x16 슬롯에 설치할 수 있다. 카드를 슬롯에 완전히 삽입한 다음, PCI-E 슬롯 끝에 있는 플라스틱 걸쇠를 눌러 제자리에 고정한다. 그런 다음 나사를 사용해 그래픽 카드의 금속 고정 브래킷을 PC 본체에 고정한다. 덮개 브래킷 또는 이전 그래픽 카드를 고정했던 나사를 재사용할 수 있다. 

ⓒ Thomas Ryan 그래픽 카드에는 추가 전원 커넥터 연결
ⓒ Thomas Ryan 그래픽 카드에는 추가 전원 커넥터 연결

대부분의 게임용 그래픽 카드에는 추가 전원 커넥터가 필요하다. 추가 전원이 필요한 경우, 해당 PCI-E 전원 케이블을 연결했는지 확인한다. 전원이 제대로 공급되지 않으면 그래픽 카드가 제대로 작동하지 않는다. 이 PCI-E 전원 케이블을 연결하지 않으면 PC 자체가 부팅되지 않을 수 있다.  

그래픽 카드를 고정하고 난 후, 전원을 켠 상태에서 본체 측면 패널을 제자리로 밀어넣고 디스플레이 케이블을 새 그래픽 카드에 연결해 작업을 완료한다. 이제 컴퓨터를 켠다. 

이제 그래픽 카드의 소프트웨어를 업그레이드할 단계가 왔다. 

새 그래픽 카드가 이전 카드와 동일한 브랜드일 경우에는 절차가 간단하다. 제조업체의 웹사이트로 이동해 운영체제에 맞는 최신 드라이버 패키지를 다운로드한다. 그래픽 드라이버는 일반적으로 약 500MB로, 상당히 크다. 인터넷 연결 속도에 따라 다운로드하는 데 시간이 걸릴 수도 있다. 드라이버를 설치하고 컴퓨터를 다시 시작하면 이제 새 그래픽 카드가 제공하는 부드럽고 매끄러운 프레임 속도를 즐길 수 있다.
  
그래픽 카드 제조업체가 바뀐 경우(인털에서 AMD로, 혹은 AMD에서 인텔로), 새 그래픽 카드용 드라이버를 설치하기 전에 이전 그래픽 드라이버를 제거하고 컴퓨터를 다시 시작해야 한다. 이전 드라이버를 제거하지 않으면 새 드라이버와 충돌할 수 있다. 

editor@itworld.co.kr 기사 일부 발췌 인용

그래픽 카드 GPU 온도 확인하는 방법

그래픽 카드 온도 확인은 아주 쉽다. 윈도우에서 바로 온도를 확인할 수 있는 내장 도구도 추가됐다. 또한, 무료 GPU 모니터링 도구가 많이 있고 그중 대다수가 온도를 측정해준다. 조금 더 자세히 알아보자.

ⓒ MARK HACHMAN / IDG 그래픽카드 온도 확인
ⓒ MARK HACHMAN / IDG 그래픽카드 온도 확인

마이크로소프트가 윈도우 10 2020년 5월 업데이트에서 GPU 온도 모니터링 툴을 작업 관리자에 추가했다. 무려 24년이나 걸렸다.

Ctrl+Shift+Esc를 열어 작업 관리자 대화창을 열거나 Ctrl+Alt+Delete에서 ‘작업 관리자’를 선택하거나 윈도우 시작 메뉴 아이콘을 오른쪽 클릭해서 ‘작업 관리자’를 선택한다. 여기에서 ‘성능’ 탭으로 들어가면 왼쪽에 GPU를 확인할 수 있을 것이다. 윈도우 10 2020년 5월 업데이트 혹은 그 이후 버전의 윈도우가 설치되어 있을 때만 사용할 수 있는 기능이다.

하지만 이 기능은 매우 단순하다. 시간 흐름에 따른 온도 변화를 추적하지 않고, 현재의 온도만을 보여준다. 그리고 업무를 하거나 오버클럭 조정 중에 작업 관리자를 여는 것도 귀찮을 수 있다. 마침내 윈도우에 GPU 온도를 확인할 수 있는 기능이 들어간 것은 환영하지만, 뒤이어 설명할 서드파티 도구가 훨씬 더 나은 GPU 온도 확인 옵션을 제공한다.

AMD 라데온 그래픽 카드 사용자가 라데온 세팅(Radeon Setting) 앱을 최신 버전으로 유지하고 있다면 방법은 쉽다. 2017년 AMD는 시각 설정을 변경할 수 있는 라데온 오버레이(Radeon Overlay)를 출시했다. 여기에도 GPU 온도와 다른 중요한 정보를 확인할 수 있는 성능 모니터 기능이 있다.

프로그램을 활성화하려면 Alt+R 키를 눌러 라데온 오버레이를 불러온다. 성능 모니터링 섹션에서 원하는 탭을 선택한다. Ctrl+Shift + 0을 눌러서 성능 모니터링 도구 설정을 단독으로 불러올 수 있다.

라데온 세팅 앱에서 오버클럭 도구인 와트맨(Wattman)으로 이동해 GPU 온도를 확인할 수 있다. 윈도우 바탕 화면을 우클릭하고, 라데온 설정을 선택한 후 게이밍(Gaming) > 글로벌 세팅(Global Setting) > 글로벌 와트맨(Global Wattman) 항목으로 이동한다. 도구를 사용해 지나친 오버클럭으로 그래픽 카드를 날려버리지 않겠다고 서약한 후에는 와트맨에 액세스하고 GPU 온도, 그리고 그래프 형태로 된 핵심적 통계 수치를 볼 수 있다. 여기까지가 전부다.

라데온 사용자가 아닌 사람도 많을 것이다. 스팀의 하드웨어 설문 조사는 전체 응답자 PC 중 75%가 엔비디아 지포스 그래픽 카드를 탑재했다는 결과를 발표했다. 그리고 지포스 익스피리언스 소프트웨어는 GPU 온도 확인 기능을 제공하지 않아서 서드파티 소프트웨어의 손을 빌려야 한다.

그래픽 카드 제조 업체는 보통 GPU 오버 클럭을 위한 특수한 소프트웨어를 제공한다. 이 도구에는 라데온 오버레이처럼 가장 중요한 측정을 실행할 때 OSD(On-Screen Display)를 지속하는 옵션 등이 있다. 여러 종류 중에서 가장 추천하는 것은 다재다능함을 갖춘 MSI의 애프터버너(Afterburner) 도구다. 이 제품은 오랫동안 인기를 얻었는데 엔비디아 지포스, AMD 라데온 그래픽 카드 두 제품 모두에서 잘 작동하고, 반길 만한 다른 기능도 더했다.

IDG HWInfo는 언제나 누구에게나 적합한 모니터링 프로그램
IDG HWInfo는 언제나 누구에게나 적합한 모니터링 프로그램

GPU 온도에 전혀 관심이 없다면? 그렇다면 시스템의 온도 센서를 보여주는 모니터링 소프트웨어를 설치하면 편리할 것이다. HWInfo는 언제나 누구에게나 적합한 모니터링 프로그램으로, PC의 모든 부품의 가상 스냅샷을 보여준다. 스피드팬(SpeedFan) 과 오픈 하드웨어 모니터(Open Hardware Monitor)도 신뢰할 만한 서드파티 앱이다.

‘착한’ GPU 온도는 몇 도?

이제 그래픽 카드를 모니터링하는 소프트웨어를 갖췄다. 하지만 화면을 채우는 숫자는 맥락이 없이는 아무것도 아니다. 그래픽 카드 온도는 어디까지 괜찮은 것일까?

쉬운 대답은 없다. 제품마다 다르다. 이럴 때는 구글이 친구가 된다. 대다수 칩은 섭씨 90도 중반에도 작동하고, 게이밍 노트북에서도 90도까지 온도가 올라가는 경우가 흔히 있다. 그러나 일반 데스크톱 PC 온도가 90도 이상으로 올라간다면 구조 신호나 다름없다. 공기 흐름이 원활한 GPU 1대 시스템에서는 80도 이상 올라가면 위험하다. 팬이 여러 개 달린 커스텀 그래픽 카드는 무거운 워크로드 하에서도 60~70도가 적당하고, 수냉쿨러가 달린 GPU라면 온도가 더 낮아야 할 것이다.

그래픽 카드가 최근 5년 안에 생산된 제품이고 90도 이상으로 뜨거워진다면, 또는 최근 몇 주간 온도가 급격히 상승했다면 다음의 냉각 방법을 고려해보자.


그래픽 카드 온도 낮추는 법

그래픽 카드 온도가 높아졌을 때 하드웨어 업그레이드에 돈을 들이지 않고 개선하지 않기란 어렵다. 그러나 돈을 쏟아붓기 전에 정말 그래야 하는지 필요성을 점검해 보자. 다시 한번 강조하지만 그래픽 카드는 뜨거운 온도를 버틸 수 있도록 설계되어 있다. PC가 무거운 게임이나 영상 편집 중에 강제 종료되는 경우가 아니라면 아마도 걱정할 필요가 없을 것이다.

우선, 시스템의 케이블을 깨끗하게 정리해 GPU 주변의 공기가 원활하게 순환되는지 확인하라. 케이블이 깔끔하게 정리됐다면 케이스에 팬을 추가하는 것도 고려한다. 모든 PC는 최적의 성능을 위해 공기를 빨아들이고 내보내는 팬이 여럿 달려 있는데, POST PC라면 팬은 더 많아야 한다. 저렴한 팬은 10달러부터 구입할 수 있고, RGB 조명이 붙은 화려한 제품은 조금 더 가격이 높다.

마지막으로, GPU와 히트싱크의 써멀 페이스트가 오래되어 말라 있다면 효율이 떨어질 수 있다. 특히 오래된 그래픽 카드라면 더더욱 그렇다. 그리고 아주 드문 경우지만 품질이 좋지 않은 써멀 페이스트가 발라져서 출시되는 경우도 있다. 다른 방법이 모두 효과가 없다면 써멀 페이스트를 다시 바르는 것을 시도해보자. 그러나 과정이 매우 어려울 수 있고 카드마다 조금씩 다르고, 잘못 손댈 경우 사용자 보증 기한의 보호를 받을 수 없게 된다. 

온도를 확실하게 낮추려면 수랭 쿨러를 위한 쿨링 시스템을 고려한다. 대다수 사용자에게는 지나친 모험이지만 대부분 수냉쿨러는 발열과 노이즈 감소 효과가 확실하고 공기 냉각에 있어 병목 현상도 없다.


“업무 효율 향상의 기본” 멀티 모니터 구축 가이드

듀얼 모니터를 사용하면 업무 생산성이 높아진다는 연구 결과가 있지만, 모니터가 많을수록 생산성이 높아지는지 여부에 대해서는 아직 이렇다 할 근거는 없다. 그러나 업무 생산성을 생각하지 않더라도 모니터를 여러 대(3대~6대까지) 사용하는 것은 멋진 일이며, 많은 화면을 봐야 하는 엔지니어는 정말 필요할지도 모른다.

모니터를 세로로 세워두면 긴 문서를 볼 때 스크롤을 적게 해도 된다는 장점이 있다. 멀티 디스플레이 환경을 구축하기 위해 고려해야 할 모든 것들을 살펴보겠다.

멀티 모니터 구축 가이드(www.itworld.co.kr)
멀티 모니터 구축 가이드(www.itworld.co.kr)

1단계 : 그래픽 카드 확인하기

보조 모니터를 구입하기 전에 컴퓨터가 물리적으로 이 모든 모니터들을 감당할 수 있을지 점검해 봐야 한다. 가장 쉬운 방법은 PC의 뒷면을 보고, 그래픽 포트(DVI, HDMI, 디스플레이포트, VGA 등)가 몇 개나 있는지 확인하는 것이다.

별도의 그래픽 카드가 없다면 포트를 2개밖에 발견하지 못할 것이다. 그래픽이 통합된 대부분의 마더보드는 모니터 2개 밖에 설치하지 못한다. 별도의 그래픽 카드가 있다면, 마더보드의 포트를 제외하고 최소 3개의 포트를 발견할 수 있을 것이다.

팁 : 마더보드와 별도 그래픽 카드의 포트를 모두 이용해서 멀티 모니터를 설치할 수도 있지만, 이 경우 성능 저하와 모니터끼리의 속도 차이가 발생할 것이다. 그래도 이렇게 하고 싶다면, PC의 BIOS에서 Configuration > Video > Integrated graphics 로 진입한 다음, ‘always enable’로 설정한다.

그러나 별도의 그래픽 카드에 3개 이상의 포트가 있다고 해서 이것을 모두 동시에 사용할 수 있다는 의미는 아니다. 예를 들어서 구형 엔비디아 카드는 포트가 2개 이상이어도 하나의 카드에 모니터를 2개 이상 연결할 수 없다. 자신의 그래픽 카드가 멀티 모니터를 지원하는지 판단하는 가장 좋은 방법은 그래픽 카드 모델명을 찾아서 원하는 모니터 개수와 함께 검색하는 것이다. 예를 들어, ‘엔비디아 GTX 1660 모니터 4대’라고 검색하면 된다.

EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG
EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG

그래픽 카드가 원하는 만큼 충분히 모니터를 지원할 수 있으면 좋지만, 그렇지 않다면 추가 그래픽 카드를 구입해야 한다. 그래픽 카드를 추가로 구입하기 전 타워 안에 충분한 공간(PCI 슬롯)이 있는지, 전원 공급은 충분한지 확인해야 한다.

멀티 모니터용으로만 그래픽 카드를 구입한다면 최신 그래픽 카드 중에서도 저렴한 옵션을 선택하는 것이 좋다. 

아니면 멀티 스트리밍이 지원되는 디스플레이포트를 탑재한 신형 모니터를 사용하는 방법도 있다. 그래픽 카드의 디스플레이포트 1.2에 연결하고, 디스플레이포트 케이블을 사용해 다음 모니터로 연결하는 것이다. 모니터의 크기나 해상도가 같지 않아도 된다. 뷰소닉(ViewSonic)의 VP2468이 이런 제품 중 하나다. 아마존에서 약 210달러에 판매되는 이 24인치 모니터는 디스플레이포트 아웃 외에도 프리미엄 IPS 스크린, 아주 얇은 베젤 등 멀티 모니터 설정에 이상적인 특징을 제공한다.

2단계 : 모니터 선택하기 

그래픽 카드에 대해서 파악했다면 이제 추가 모니터를 구입할 차례다. 사용자에 따라서 기존에 사용하고 있는 모니터, 책상 크기, 추가 모니터 용도 등에 따라서 완벽한 모니터가 달라질 것이다.

필자의 경우, 이미 24인치 모니터 2대를 가지고 있었기 때문에 중앙에 설치할 더 큰 모니터가 필요해서 27인치 모니터를 선택했다. 게임을 하지 않기 때문에 모니터 크기 차이는 상관없었다. 하지만 사용자에 따라서 멀티 모니터로 POST를 하거나 동영상을 보기 위해서는 이러한 구성보다 같은 모니터를 연결하는 것이 더 좋을 것이다.

모니터를 구입하기 전에 PC와 모니터의 포트 호환성을 설펴야 한다. DVI-HDMI 혹은 디스플레이포트-DVI 등 전환해주는 케이블을 이용할 수도 있지만 다소 귀찮다. 그러나 PC나 모니터에 VGA 포트가 있다면, 교체를 권한다. VGA는 아날로그 커넥터이기 때문에 선명도가 떨어진다.

3단계 : PC설정

모니터를 구입하고 나면 PC에 연결하고 PC의 전원을 켠다. 이것으로 모니터 설치가 끝났다. 하지만 완전히 끝난 것은 아니다.

윈도우가 멀티 모니터 환경에서 잘 동작하게 만들어야 하는데, 윈도우 7이나 윈도우 8 사용자라면 바탕화면에서 오른쪽 클릭하고 ‘화면 해상도’를 선택한다. 윈도우 10 사용자라면 ‘디스플레이 설정’을 클릭한다. 그러면 디스플레이를 정렬할 수 있는 창이 나타난다.

ⓒ ITWorld 디스플레이 설정
ⓒ ITWorld 디스플레이 설정

여기서 모니터들이 모두 탐지되는지 확인할 수 있다. ‘식별’을 클릭하면 각 디스플레이에 큰 숫자가 나타난다. 주 모니터(작업 표시줄과 시작 버튼이 나타나는 모니터)로 사용할 모니터에 1번이 나타나야 하는데, 원하는 것을 선택한 다음 아래 여러 디스플레이 설정에서 ‘이 디스플레이를 주 모니터로 만들기’를 클릭한다. 그 다음 ‘다중 디스플레이’ 드롭다운 메뉴에서 복제할 것인지 확장할 것인지를 선택하면 되는데, 대부분의 경우 ‘디스플레이 확장’이 적합하다.

GPU 제어판에서도 다중 모니터를 설정할 수 있다. 바탕화면에서 오른쪽 클릭을 하고 엔비디아, AMD, 인텔 등 그래픽 제조사의 제어판 메뉴를 열어 윈도우와 유사한 방식으로 디스플레이를 설정할 수 있다.

멀티 디스플레이를 구축할 경우에는 같은 모델을 이용하는 것이 해상도나 선명도, 색보정 등의 문제가 발생하지 않아 ‘끊김 없는’ 경험을 할 수 있다.

삼성 870 EVO SATA

수치해석에 유용한 SSD (메모리디스크) 2021 가이드

본 자료는 ITWORLD 기사에서 2021년 3월과 05일 자료와 2021년 12월 14일 자료에서 발췌 인용된 자료입니다. (출처 : www.itworld.co.kr)

수치해석을 하는 경우 계산과정에서 생성되는 결과 파일 사이즈는 매우 크기 때문에, 빠른 디스크 속도는 사용자의 총 해석시간을 줄이는데 큰 도움이 됩니다.

수치해석에서 SSD가 필요한가?

수치해석 업무를 담당하는 사용자에게 SSD가 필요한가? 한마디로 말하면 수치해석을 하는 모든 사람은 보유하고 있는 수치해석 장비의 디스크를 SSD로 업그레이드하는 것이 좋다. 가장 빠른 기계식 하드 드라이브도 SSD 속도에는 미치지 못한다.

기존 노트북, 또는 데스크톱의 하드 드라이브를 SSD로 교체하면 완전히 새로운 시스템처럼 느낄 수 있다. 수치해석을 하는 사용자는 SSD를 구입하는 것은 컴퓨터를 업그레이드하는데 가장 적합한 옵션이다.

SSD는 기계식 하드 드라이브보다 기가바이트 당 비용이 더 많이 들기 때문에 초 고용량으로 제공되지 않는 경우가 많다. 속도와 저장 공간이 필요한 경우, 128GB 나 256GB의 SSD를 구입해 부팅 드라이브로 사용하고, 기존 하드 드라이브를 PC의 보조 저장 장치로 사용하면 최선의 선택이 된다.

하드 드라이브는 가격 대비 용량 측면에서 여전히 큰 이점을 제공하며, 자주 사용되지 않는 데이터를 저장하는 용도로 적합하다. 그러나 운영체제, 프로그램, 자주 사용하는 데이터에는 보유하고 있는 시스템이 지원한다면 NVMe SSD, 지원하지 않는다면 SATA SSD를 사용하는 것이 좋다.

아래 그래프를 보면 SSD를 왜 사용해야 하는지 명확해진다.

SSD Speed compare
SSD Speed compare

NVMe/M.2/SATA SSD 비교 정리

 NVMe SSDM.2 SSDSATA SSD
속도PCIe 3.0
최대 3,500MBps

PCIe 4.0
최대 7,500MBps


 
SATA
최대 550MBps

NVMe PCIe 3.0
최대 3,500MBps

NVMe PCIe 4.0
최대 7,500MBps
최대 550MBps






 
폼팩터 종류M.2
U.2*
PCIe 카드*
*일반적이지 않은 종류
N/A


 
2.5인치 드라이브
M.2

 
인터페이스 종류N/A
 
SATA
NVMe
N/A
 
장점속도가 빠름공간을 덜 차지함속도와 가격의 균형
단점가격이 비쌈

 
SATA M.2가
2.5인치 SATA보다
비싼 경우가 있음
속도가 느리고
공간을 많이 차지함
 

SATA SSD vs. NVMe SSD

시장에 SATA SSD와 NVMe SSD가 아직 공존하는 데는 이유가 있다. 메모리 기반 SSD의 잠재력을 감안할 때 결국 새로운 버스와 프로토콜이 필요할 수밖에 없으리란 점은 초기부터 명확했다. 그러나 초창기 SSD는 비교적 속도가 느렸으므로 기존 SATA 스토리지 인프라를 사용하는 편이 훨씬 더 편리했다.

SATA 버스는 버전 3.3에 이르러 16Gbps까지 발전했지만 거의 모든 상용 제품은 여전히 6Gbps에 머물러 있다(오버헤드를 더해 대략 550MBps). 버전 3.3이라 해도 현재 SSD 기술, 특히 RAID 구성으로 낼 수 있는 속도에 비하면 한참 느리다.

그 다음으로 등장한 방법은 역시 기존 기술이지만 대역폭이 훨씬 더 높은 버스 기술인 PCI 익스프레스, 즉 PCIe 활용이다. PCIe는 그래픽 및 기타 애드온 카드를 위한 기본 데이터 전송 계층이다. 3.x 세대 PCIe는 복수의 레인(대부분의 PC에서 최대 16개)을 제공하며, 각 레인은 1GBps(985MBps)에 가까운 속도로 작동한다.

PCIe는 썬더볼트 인터페이스의 기반이기도 하다. 썬더볼트는 게임용 외장 그래픽 카드, 그리고 내장 NVMe와 거의 대등한 속도를 내는 외장형 NVMe 스토리지에서 진가를 발휘하기 시작했다. 많은 사용자들이 이제 느끼고 있지만, 인텔이 썬더볼트를 버리지 않은 것은 현명한 판단이었다.

물론 PCIe 스토리지는 NVMe보다 몇 년 전에 나왔다. 그러나 이전 솔루션은 SATA, SCSI, AHCI와 같은 하드 드라이브가 스토리지 기술의 정점이었던 시절에 개발된 오래된 데이터 전송 프로토콜에 발목을 잡혔다. NVMe는 저지연 명령과 다수의 큐(최대 6만 4,000개)를 제공함으로써 스토리지의 발목을 잡았던 제약을 없앤다. 지속적인 원을 그리며 데이터가 기록되는 하드 드라이브와 달리 SSD에서는 마치 산탄처럼 데이터가 흩어져 저장되므로 특히 후자, 즉 다수의 큐가 큰 효과를 발휘한다.

가격 : NVMe > SATA

예상했겠지만, SSD는 속도가 빠를수록 가격이 비싸다. 시중에 판매되는 1TB SATA SSD의 가격은 10만 원 초반대이며, 1TB NVMe PCIe 3.0 드라이브의 가격은 10만 원 중후반대다. 1TB PCIe 4.0 드라이브 가격은 10만 원 초반대부터 20만 원대까지 다양하다. 조금 저렴한 1TB PCIe 4.0 드라이브는 최대 속도가 5,000MBps 정도다.

폼팩터 종류에 따라 가격 차이가 나지는 않는다. 2.5인치 SATA SSD와 M.2 모델의 가격이 동일한 경우가 대부분이다. 가끔 2.5인치 모델이 M.2 모델보다 저렴한 경우가 있는데, 일반적이지는 않다.

SSD 선택 시 유의해서 봐야할 것

물론 저장 용량과 가격이 중요하다. 또한 긴 보증기간은 조기 데이터 사망에 대한 우려를 완화시킬 수 있다. 대부분의 SSD 제조업체는 3년 보증을 제공하며 일부 더 좋은 모델은 5년을 보증한다. 그러나 이전 세대의 SSD와는 달리, 몇 년 전에 혹독한 내구성 테스트로 입증한 것처럼 최신 SSD는 일반 소비자가 어지간히 사용해서는 마모되지 않는다.

SSD는 NVMe 혹은 SATA를 사용해 PC의 나머지 부분과 통신한다. 일반적으로 SATA는 NVMe보다 속도가 느리다. 반면 M.2는 사실상 폼팩터에 가까우므로 시중에는 NVMe M.2 SSD와 SATA M.2 SSD가 모두 출시되어 있다. 

다만 제품 광고나 설명서에서 가끔 NVMe 드라이브임을 나타내기 위해 ‘M.2 SSD’라는 표현을 사용하고, 2.5인치 폼팩터 SSD임을 나타내기 위해 ‘SATA SSD’라는 표현을 사용한다. 따라서 ‘M.2 SSD’나 ‘SATA SSD’라는 표현을 액면 그대로 받아들이면 안 된다. 반드시 기술 사양을 확인하고 노트북 또는 데스크톱 PC의 스토리지 드라이브의 대략적인 속도를 확인해야 한다.

유의해야 할 것은 SSD를 PC에 연결하는 데 사용되는 기술이다.

  • SATA: 연결 유형과 전송 프로토콜을 나타내며, 대부분의 2.5인치 및 3.5인치 하드 드라이브와 SSD를 PC에 연결한다. SATA III 속도는 약 600MBps에 달할 수 있으며, 대부분의 현대 드라이브는 최대 속도를 제공한다.
  • PCIe: 이 인터페이스는 컴퓨터의 4개의 PCIe 레인을 활용해 SATA 속도를 훨씬 능가해 거의 4GBps를 제공한다(PCIe 3세대). 이런 파괴적인 속도는 강력한 NVMe 드라이브와 잘 어울린다. 메인보드의 PCIe 레인과 M.2 슬롯 모두 PCIe 인터페이스를 지원하도록 유선으로 연결할 수 있으며, “검정” M.2 드라이브를 PCIe 레인에 슬롯화할 수 있는 어댑터를 구입할 수 있다.
  • NVMe: 비휘발성 메모리 익스프레스(Non-Volatile Memory Express) 기술은 PCIe의 풍부한 대역폭을 활용해 SATA 기반 드라이브를 비교조차 못할 정도로 매우 빠른 SSD를 만든다. NVMe에 대해 더 자세히 알고 싶다면 여기를 클릭하라.
  • M.2: 설명이 쉽지 않다. 많은 사람이 M.2 드라이브가 모두 NVMe 기술과 PCIe 속도를 사용한다고 생각하지만 사실이 아니다. M.2는 단순히 폼 팩터에 불과하다. 물론 대부분의 M.2 SSD는 NVMe를 사용하지만 일부는 여전히 SATA를 사용한다. 많은 최신 울트라북이 저장을 위해 M.2를 사용한다.
  • U.2 및 mSATA: mSATA 및 U.2 SSD에서도 문제가 발생할 수 있지만, 이 형식을 지원하는 메인보드와 제품 가용성은 드물다. M.2가 대중화되기 전에 일부 구형 울트라북에 mSATA가 포함되어 있으며, 필요할 경우 드라이브를 사용할 수 있다.  

물론 속도도 중요하지만, 대부분의 최신 SSD는 SATA III 인터페이스를 지원한다. 그러나 전부 다 그런 것은 아니다.

구입전 사용자가 알아야 할 NVMe SSD

NVMe 드라이브는 구입하기 전에 어떤 특징을 갖고 있는지 알고 있어야 한다. 표준 SATA SSD는 이미 PC 부팅 시간과 로딩 시간을 대폭 단축하고 훨씬 저렴하다. NVMe 드라이브는 특히 대량으로 데이터를 정기적으로 전송하는 경우, 삼성 960 프로와 같은 M.2 폼 팩터나 또는 PCIe 드라이브가 가장 많은 효과를 누릴 수 있다. 그렇지 않으면 NVMe 드라이브는 가격만 비쌀뿐 가치도 없다.  

NVMe SSD를 구입하기로 결정한 경우, PC에서 SSD를 처리할 수 있는지 확인해야 한다. 이는 비교적 새로운 기술이므로, 지난 몇 년 내에 제작한 메인보드만이 M.2 연결이 가능하다. 스카이레이크 시대의 AMD 라이젠과 주류 인텔 칩을 고려하라. PCIe 어댑터에 탑재된 NVMe SSD는 M.2 채택이 확산되기 전인 초기에 널리 사용됐지만 지금은 매우 드물다. NVMe SSD를 구입하기 전에 실제로 NVMe를 사용할 수 있는지 확인하고 최대한 활용하기 위해서는 4개의 PCIe 레인이 필요하다는 점에 유의해야 한다. 

NVMe 드라이브를 최대한 활용하려면 운영체제를 실행해야 하기 때문에 드라이브를 인식하고 부팅할 수 있는 시스템이 있어야 한다. 지난 1~2년 전에 구입한 PC는 NVMe 드라이브에서 부팅하는데 아무런 문제가 없지만, 좀 더 오래된 메인보드는 지원하지 않을 수 있다. 구글에서 자신의 메인보드를 검색하고 NVMe 부팅을 지원하는지 확인하라. 보드의 BIOS 업데이트를 설치해야 할 수도 있다. 하드웨어가 NVMe SSD에서 부팅할 수 없는 경우에도 보조 드라이브로 사용할 수 있어야 한다.  

2021 최고의 SSD 선택 가이드

Brad Chacos | PCWorldSSD(Solid-State Drive)로 전환하는 것은 PC를 위한 최상의 업그레이드다. SSD는 긴 부팅 시간을 없애고, 프로그램과 게임 로드 속도를 높이는 등 일반적으로 컴퓨터를 빠르게 한다. 그러나 모든 SSD가 동일한 것은 아니다. 최고의 SSD는 합리적인 가격으로 훌륭한 성능을 제공한다. 가격에 고민하지 않을 경우, 놀라울 정도의 빠른 읽기 및 쓰기 속도를 제공하는 제품도 있다. 

대부분 사용자를 위한 최고의 SSD: SK 하이닉스 골드 S31 SATA SSD  
가성비 최고의 SSD: 애드링크 S22 QLC SATA 2.5인치 SSD 
최고의 NVME SSD: SK 하이닉스 골드 P31 M.2 NVMe SSD(1TB) 
최고의 PCIe 4.0 SSD: 삼성 980 프로 PCIe 4.0 NVMe SSD(1TB)

많은 SSD가 2.5인치 폼 팩터로 제공되며 기존 하드 드라이브에서 사용하는 것과 동일한 SATA 포트를 통해 PC와 통신한다. 그러나 최첨단 NVMe(Non-Volatile Memory Express) 드라이브는 메인보드의 M.2에 직접 연결하는 작은 스틱 형태의 SSD다. PCIe 어댑터에 장착되는 이 드라이브는 구입하기 전에 메인보드에 슬롯이 있는지 확인해야 한다. 그래픽 카드나 사운드 카드처럼 메인보드에 꽂을 수 있는 SSD와 미래형 3D 크로스포인트(3D XPoint) 드라이브 등이 등장함에 따라 완벽한 SSD를 선택하는 것은 예전처럼 간단하지 않다. 

그래서 이 가이드가 필요하다. 본지는 사용자 상황에 적합한 SSD를 찾기 위해 수많은 SSD를 테스트했다. 본지가 선정한 최고 인기 제품과 SSD 선택 시 무엇을 고려해야 하는지 알아보자. 참고로, 이번 가이드는 내장형 SSD만 적용한 것이다. 


최신 SSD 뉴스

  • 구입해야 하는 SSD에 대한 가이드를 확인하고, 각 시스템에서 가장 적합한 SSD의 종류에 대해 알아보자. 
  • 인텔은 모든 데스크톱 소비자 버전의 옵테인(Optane) 드라이브를 단종시켰지만, 이 기술은 노트북과 서버에 그대로 남아있다. 옵테인 SSD는 엄청난 랜덤 액세스 성능과 놀라운 내구성을 제공했지만, 용량이 제한적이면서도 가격은 매우 높았다. 향후 노트북에서 느린 NAND SSD 속도를 높이기 위한 캐싱 형태의 기능으로 사용될 것이다. 
  • 스토리지 제조업체는 공급망 문제로 인해 출시 후 구성 요소를 조정하는 경우가 많지만, 한 PC하드웨어 전문매체는 최근 에이데이타(Adata)가 훨씬 느린 버전으로 XPG 8200 프로의 컨트롤러를 교체한 것을 포착했다.  


대부분 사용자를 위한 최고의 SSD, SK 하이닉스 골드 S31 SATA SSD 

ⓒ SK Hynix

삼성의 주력인 EVO SSD 제품군은 2014년 이래로 줄곧 본지의 권장 목록에서 1위를 차지했으며, 현재 삼성 860 EVO는 여전히 속도, 가격, 호환성 및 5년 보증 및 뛰어난 마법사 관리 소프트웨어의 안정성 등 조화를 원하는 사람들에게 좋은 선택지다. 그러나 대부분의 사람들은 SK 하이닉스 골드 S31을 사는 것이 낫다. 

골드 S31은 지금까지 본지가 테스트 한 가장 빠른 SATA SSD 가운데 하나일뿐만 아니라 동급 최강의 870 EVO와 견줄 수 있을만한 거리에 있다. 하지만 이 드라이브의 가격은 놀랍다. 250GB 드라이브의 경우 44달러, 500GB 드라이브의 경우 57달러, 1TB의 경우 105달러인 골드 S31은 500GB 모델에 70달러를 청구하는 삼성 제품보다 훨씬 저렴하다(국내에서는 1T 13만 5,000원, 500G 7만 5,000원, 250G 4만 8,000원에 판매하고 있다. 편집자 주). .

리뷰 당시 본지는 “실제 48GB 사본 테스트 수행시 골드 S31은 지속적인 읽기 및 쓰기 작업에서 테스트한 제품 가운데 가장 빠른 드라이브임을 입증했다”라고 평가했다. 이 제품은 이 평가로 충분하다.

SK 하이닉스는 정확히 제품 이름이 아니기 때문에 브랜드 자체에 대해 조금 딴지를 걸 수도 있다. 그럼에도 불구하고 SK 하이닉스는 지구상에서 가장 큰 반도체 제조업체 가운데 하나다. SK 하이닉스는 시작부터 NAND 및 컨트롤러 기술을 개발해왔으며, 수많은 컴퓨터 업체의 SSD 제조업체였지만 판매선상에는 자리하지 못했다. 이제 그 선상에 섰고, 결과는 훌륭했다. 

더 큰 용량이 필요하거나 단순히 검증된 브랜드를 고수하고 싶다면, 250GB, 500GB, 1TB 및 2TB 모델로 제공하는 삼성 870 EVO를 선택하면 된다. 이 제품은 SK 하이닉스보다 조금 더 빠르지만, 그 대가로 비용이 더 많이 든다. 삼성 870 EVO는 대부분의 SSD에 비해 매우 매력적이고 저렴한 패키지를 제공하고 있기 때문에 골드 S31이 얼마나 더 좋은 것인지 알 수 있다. 삼성 870 QVO는 1TB에서 무려 8TB에 이르는 용량을 가진 또 다른 강력한 경쟁 제품이지만 다음 세션에서 논의할 것이다.


가성비 최고의 SSD: 애드링크(AddLink) S22 QLC SATA 2.5인치 SSD

ⓒ Addlink

매우 저렴한 가격에 훌륭한 성능을 제공하는 SK하이닉스 골드 S31은 최고의 가성비 SSD로, 대부분의 사용자에게 최고의 SSD다. 하지만 어떤 이유로든 골드 S31에 관심이 없는 이들에겐 더 많은 선택지가 있다. 

이제 기존의 MLC(Multi-Level Cell)와 TLC(Triple-Level Cell) SSD 가격이 급락함에 따라 제조업체는 SSD 가격을 더욱 낮출 수 있는 새로운 QLC(Quad-Level Cell) 드라이브를 출시했다. 

이 새로운 기술을 통해 제조업체는 매우 빠른 SSD에 버금가는 속도와 함께 하드 드라이브와 같은 수준의 용량을 가진 SSD를 출시할 수 있었다. 다만 삼성 860 QVO를 포함한 1차 QLC 드라이브는 수십 기가바이트의 데이터를 한번에 전송할 때 쓰기 속도가 하드 드라이브 수준으로 떨어졌다. 

애드링크(Addlink) S22 QLC SSD는 이 같은 어려움을 겪지 않는다. 기존 TLC SSD는 여전히 QLC 드라이브에 비해 속도 우위를 유지하고 있지만, 애드링크 S22는 512GB에 59달러, 1TB에 99달러의 저렴한 가격에 판매하고 있다. 하지만 SK 하이닉스 골드 S31이 거의 같은 금액으로 판매되고 있다는 사실에 주목할 필요가 있다. 

대량의 데이터를 한번에 이동할 계획이 없고, 더 많은 저장공간이 필요하다면 삼성의 2세대 QLC 제품인 삼성 870 QVO가 좋은 선택이다. 실제로 애드링크의 SSD보다 조금 더 빠르다. 그러나 아마존에서 1TB가 110달러, 2TB의 경우 205달러, 4TB 450달러, 8TB 900달러로 더 비싸다. 1TB보다 적은 용량은 판매하지 않는다. 구형 삼성 860 QVO도 여전히 좋은 선택이긴 하지만 최신 870 QVO는 모든 면에서 최고다.

하지만 메인보드가 더 빠르고 새로운 NVMe M.2 드라이브를 지원한다면 선택지는 달라진다. 


최고의 NVMe SSD: SK 하이닉스 골드 P31 M.2 NVMe SSD(1TB) 

ⓒ SK Hynix

성능이 가장 중요하다면 삼성 970 프로 또는 씨게이트 파이어쿠다(Seagate FireCuda) 510이 가장 빠른 NVMe SSD이지만, 대부분의 사람은 SK 하이닉스 골드 P31을 구입하는 것이 좋다. SK 하이닉스는 가성비 범주에서 전체 SSD를 장악하고 있다. 

SK 하이닉스 골드 P31은 128비트 TLC NAND를 탑재한 최초의 NVMe SSD이며, 96 NAND 레이어를 사용하는 다른 제품들을 뛰어넘었다. 본지가 테스트한 모델은 크리스탈디스크마크(CrystalDiskMark) 6와 AS SSD의 종합 벤치마크에서도 완전히 인정받았으며, 보도자료에서 주장했던 3.5Gbps 읽기 및 쓰기 속도에 거의 도달했다.

또한 실제 48GB 및 450GB 파일 전송 테스트에서 더 비싼 SSD에 비교했을 때도 뒤지지 않았다. SK 하이닉스 골드 P31은 최상급 드라이브처럼 작동하지만, 저렴한 드라이브보다 조금 더 비쌀 뿐이다. 500G 제품은 75달러에, 1TB 제품은 125달러에 구입할 수 있다(국내에서는 1T 19만 8,000원, 500G 9만 8,000원에 판매하고 있다. 편집자 주). 

마이크론 크루셜(Crucial) P5는 비용 효율적인 NVMe SSD로, 만약 SK 하이닉스 골드 P31이 없었다면, 최고의 선택지가 될 수 있었다. 하지만 골드 P31가 조금 더 빠르고, 조금 더 저렴하다. 그래도 크루셜 P5는 대안 제품이 될 수 있다.

하지만 예산이 빠듯하다면, 약간 더 적은 비용으로 매력적인 선택지를 찾을 수 있다. 웨스턴 디지털 블루(Western Digital Blue) SN550 NVMe SSD는 앞서 언급한 제품처럼 빠르거나 화려한 성능을 갖고 있진 않다. 하지만 가격이 훨씬 저렴하다. 250GB의 경우 45달러, 500GB의 경우 65달러, 1TB의 경우 130달러와 같은 보급형 가격에도 불구하고 WD 블루 SN550은 고가의 제품 성능을 충분히 발휘할 수 있다. 신뢰성에 대한 좋은 이력을 가진 기존 브랜드를 이은 제품이며, 평균보다 긴 5년 보증을 제공한다. 


또 다른 훌륭한 NVMe SSD 

– 애드링크 S70 NVMe SSD: 좀 더 높은 성능을 원한다면 애드링크(Addlink) S70 NVMe SSD 또한 탁월한 선택지가 될 수 있다. 이 제품은 WD 드라이브보다 성능이 약간 우수하다. 하지만 본지는 이 제품의 가격이 인상된 후부터는 일상적인 컴퓨터 사용자에게 WD 블루 SN550을 추천한다. 애드링크는 WD만큼 잘 알려져 있지 않지만, S70 NVMe SSD에 대해 5년 보증을 제공한다.  

– PNY XLR8 CS 3030: 이 제품은 좋은 가격에 빠른 성능을 제공하는 또 다른 선택지다. 하지만 일상적인 사용에는 탁월하지만, 긴 쓰기 작업에서는 수렁에 빠질 수 있다.

– 에이데이타의 XPG SX8200 프로와 킹스톤(Kingston) KC2500: 더 빠른 속도를 위해 좀더 많은 비용을 써도 괜찮다면 삼성 970 프로 수준의 성능을 지닌 에이데이타의 XPG SX8200 프로와 킹스톤 KC2500도 있다. 킹스톤 KC2500은 한번의 테스트에서 최고 등급에 도달하지 못했지만, 항상 선두권을 유지하고 있었다. 경쟁 제품과 거의 동일한 가격으로 구입할 수 있으며, 고성능 NVMe SSD를 구입하는 경우 고려해볼 만한 제품이다. 

새로운 유형의 대용량 SSD 덕분에 충분한 저장용량과 함께 엄청난 NVMe 속도를 얻을 수 있게 됐지만, 이에 대한 비용은 감수해야 한다. OWC 아우라 P12는 NVMe 평균 이상의 쓰기 성능과 4TB 제품을 929달러에 제공한다. 최고의 세이브런트 로켓(Sabrent Rocket) Q는 최고의 성능과 놀라운 8TB 용량으로 모든 것을 만족시키지만, 1,500달러라는 놀라운 가격이 기다리고 있다. 최첨단은 저렴하지 않다.


최고의 PCIe 4.0 SSD: 삼성 980 프로 PCIe 4.0 NVMe SSD(1TB)

ⓒ samsung

대부분의 NVMe SSD는 표준 PCIe 3.0 인터페이스를 사용하지만, 최첨단 기술을 지원하는 일부 제품에는 훨씬 더 빠른 PCIe 4.0 드라이브가 있다. 현재 AMD의 라이젠 3000 프로세서만 PCIe 4.0을 지원하며 X570 또는 B550 메인보드에 장착하는 경우에만 지원한다. 하지만 이 기준을 충족하면 PCIe 4.0 SSD는 가장 빠른 PCIe 3.0 NVMe SSD가 따라오지 못할 성능을 보여준다. 

커세어(Corsair), 기가바이트(Gigabyte), 세이브런트는 최초의 PCIe 4.0 SSD를 출시했으며, 모두 약 200달러에 1TB 용량과 유사한 성능을 제공했다. 하지만 본지가 선정한 최고의 PCIe 4.0 SSD는 조금 더 비싸다. 

본지는 최근에서야 PCIe 4.0 SSD 테스트를 추가했지만, 지금까지 테스트한 제품 가운데 최고는 삼성 980 프로였다. 이 제품은 테스트에서 삼성이 주장한 7Gbps 읽기 속도와 5Gbps 쓰기 속도를 초과했다. 이 제품은 실제 파일 전송 테스트를 통과했지만, 450GB 전송 테스트에서 발견한 것처럼 막대한 양의 데이터를 전송하는 경우 속도가 약간 느려질 수 있다. 하지만 대부분의 사용자가 SSD를 이렇게 힘들게 다루진 않는다.

하지만 모든 성능은 프리미엄급이다. 그럼에도 불구하고 250GB 90달러, 500GB 150달러, 1TB 용량은 230달러이다. 

WD 블랙 SN850은 삼성 980 프로의 성능에 뒤처져 있지만, 거의 같은 가격으로 판매한다. 본지는 리뷰에서 “최강의 단일 SSD PCIe4 스토리지 성능을 찾는다면 어느 쪽도 문제가 되지 않을 것”이라고 평가했다. 

 

PCIe 4.0 속도가 빠른 SSD를 원하지만 삼성의 동급 최고의 성능을 위해 많은 비용을 소비하고 싶지 않다면 XPG 겜믹스 S50 라이트를 고려한다. 본지는 “XPG 겜믹스 S50 라이트는 우리가 테스트한 최초의  PCIe 4 SSD로, 차세대라는 추가 비용이 들지 않는다. 실제로 시스템을 실행하는 시스템에서는 삼성 980 프로와 차이를 구분하기 어려울 것이다”라고 설명했다.  

겜믹스 S50 라이트는 1TB의 경우 140달러, 2TB의 경우 260달러다.


NVMe SSD 설정시 알아야 할 사항

NVMe 드라이브는 구입하기 전에 어떤 특징을 갖고 있는지 알고 있어야 한다. 표준 SATA SSD는 이미 PC 부팅 시간과 로딩 시간을 대폭 단축하고 훨씬 저렴하다. NVMe 드라이브는 특히 대량으로 데이터를 정기적으로 전송하는 경우, 삼성 960 프로와 같은 M.2 폼 팩터나 또는 PCIe 드라이브를 가장 많은 효과를 누릴 수 있다. 그렇지 않으면 NVMe 드라이브는 가격만 비쌀뿐 가치도 없다.  

NVMe SSD를 구입하기로 결정한 경우, PC에서 SSD를 처리할 수 있는지 확인해야 한다. 이는 비교적 새로운 기술이므로, 지난 몇 년 내에 제작한 메인보드만 M.2 연결이 가능하다. 스카이레이크 시대의 AMD 라이젠과 주류 인텔 칩을 고려한다. PCIe 어댑터에 탑재된 NVMe SSD는 M.2 채택이 확산되기 전인 초기에 널리 사용됐지만 지금은 매우 드물다. NVMe SSD를 구입하기 전에 실제로 NVMe를 사용할 수 있는지 확인하고 최대한 활용하기 위해서는 4개의 PCIe 레인이 필요하다는 점에 유의해야 한다. 

NVMe 드라이브를 최대한 활용하려면 운영체제를 실행해야 하므로 드라이브를 인식하고 부팅할 수 있는 시스템이 있어야 한다. 지난 1~2년동안 구입한 PC라면 NVMe 드라이브를 부팅하는 데 문제가 없어야하지만, 이전 메인보드에서는 지원이 어려울 수 있다. 구글에서 메인보드를 검색하고 NVMe에서 부팅을 지원하는지 확인한다. 보드에서 BIOS 업데이트를 설치해야 할 수도 있다. 하드웨어가 NVMe SSD에서 부팅할 수 없는 경우에도 시스템은 이를 보조 드라이브로 사용할 수 있어야 한다. 


SSD 선택에서 고려해야 할 것

물론 저장 용량과 가격이 중요하다. 또한 긴 보증기간은 조기 데이터 사망에 대한 우려를 완화시킬 수 있다. 대부분의 SSD 제조업체는 3년 보증을 제공하며 일부 더 좋은 모델은 5년을 보증한다. 그러나 이전 세대의 SSD와는 달리, 몇 년 전에 혹독한 내구성 테스트로 입증한 것처럼 최신 SSD는 일반 소비자가 어지간히 사용해서는 마모되지 않는다.

가장 유의해야 할 것은 SSD를 PC에 연결하는 데 사용되는 기술이다.
– SATA: 연결 유형과 전송 프로토콜을 나타내며, 대부분의 2.5인치 및 3.5인치 하드 드라이브와 SSD를 PC에 연결한다. SATA III 속도는 약 600MBps에 달할 수 있으며, 대부분의 현대 드라이브는 최대 속도를 제공한다. 

– PCIe: 이 인터페이스는 컴퓨터의 4개의 PCIe 레인을 활용해 SATA 속도를 훨씬 능가해 거의 4GBps를 제공한다(PCIe 3세대). 이런 파괴적인 속도는 강력한 NVMe 드라이브와 잘 어울린다. 메인보드의 PCIe 레인과 M.2 슬롯 모두 PCIe 인터페이스를 지원하도록 유선으로 연결할 수 있으며, M.2 드라이브를 PCIe 레인에 슬롯화할 수 있는 어댑터를 구입할 수 있다. 

– NVMe: 비휘발성 메모리 익스프레스(Non-Volatile Memory Express) 기술은 PCIe의 풍부한 대역폭을 활용해 SATA 기반 드라이브와는 비교조차 못할 정도로 매우 빠른 SSD를 만든다. NVMe에 대해 더 자세히 알고 싶다면 여기를 클릭하라.  

– M.2: 설명이 쉽지 않다. 많은 사람이 M.2 드라이브가 모두 NVMe 기술과 PCIe 속도를 사용한다고 생각하지만 사실이 아니다. M.2는 단순히 폼 팩터에 불과하다. 물론 대부분의 M.2 SSD는 NVMe를 사용하지만 일부는 여전히 SATA를 사용한다. 많은 최신 울트라북이 저장을 위해 M.2를 사용한다. 

– U.2 및 mSATA: mSATA 및 U.2 SSD에서도 문제가 발생할 수 있지만, 이 형식을 지원하는 메인보드와 제품 가용성은 드물다. M.2가 대중화되기 전에 일부 구형 울트라북에 mSATA가 포함되어 있으며, 필요할 경우 드라이브를 사용할 수 있다.  

물론 속도도 중요하지만, 대부분의 최신 SSD는 SATA 3 인터페이스를 지원한다. 그러나 전부 다 그런 것은 아니다.


SSD vs. 하드 드라이브 

SSD가 필요한가? “필요하다.” 본지는 모든 사람이 SSD로 업그레이드할 것으로 진심으로 권장한다. 가장 빠른 기계식 하드드라이브도 SSD 속도에는 미치지 못한다. 기존 노트북, 데스크톱의 하드드라이브를 SSD로 교체하면 완전히 새로운 시스템처럼 느낄 수 있다. SSD를 구입하는 것은 컴퓨터를 업그레이드하는 데 가장 적합한 선택이다. 

SSD는 기계식 하드드라이브보다 기가바이트 당 저장 비용이 많이 들기 때문에 대용량으로 제공하지 않는 경우가 많다. 속도와 저장 공간이 동시에 필요한 경우, 128GB 크루셜 BX300과 같은 제한된 용량의 SSD를 구입해 부팅 드라이브로 사용하고, 기존 하드드라이브를 PC의 보조 저장장치로 설정한다. 프로그램을 부팅 드라이브에 넣고 미디어 및 기타 파일을 하드드라이브에 저장하면 준비가 다 된 것이다. editor@itworld.co.kr 

FLOW-3D 수치해석 프로그램 Supported Platforms 보기

FLOW-3D CAST Bibliography

FLOW-3D CAST bibliography

아래는 FSI의 금속 주조 참고 문헌에 수록된 기술 논문 모음입니다. 이 모든 논문에는 FLOW-3D CAST 해석 결과가 수록되어 있습니다. FLOW-3D CAST를 사용하여 금속 주조 산업의 응용 프로그램을 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

Below is a collection of technical papers in our Metal Casting Bibliography. All of these papers feature FLOW-3D CAST results. Learn more about how FLOW-3D CAST can be used to successfully simulate applications for the Metal Casting Industry.

33-20     Eric Riedel, Martin Liepe Stefan Scharf, Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum, Metals, 10.4; 476, 2020. doi.org/10.3390/met10040476

20-20   Wu Yue, Li Zhuo and Lu Rong, Simulation and visual tester verification of solid propellant slurry vacuum plate casting, Propellants, Explosives, Pyrotechnics, 2020. doi.org/10.1002/prep.201900411

17-20   C.A. Jones, M.R. Jolly, A.E.W. Jarfors and M. Irwin, An experimental characterization of thermophysical properties of a porous ceramic shell used in the investment casting process, Supplimental Proceedings, pp. 1095-1105, TMS 2020 149th Annual Meeting and Exhibition, San Diego, CA, February 23-27, 2020. doi.org/10.1007/978-3-030-36296-6_102

12-20   Franz Josef Feikus, Paul Bernsteiner, Ricardo Fernández Gutiérrez and Michal Luszczak , Further development of electric motor housings, MTZ Worldwide, 81, pp. 38-43, 2020. doi.org/10.1007/s38313-019-0176-z

09-20   Mingfan Qi, Yonglin Kang, Yuzhao Xu, Zhumabieke Wulabieke and Jingyuan Li, A novel rheological high pressure die-casting process for preparing large thin-walled Al–Si–Fe–Mg–Sr alloy with high heat conductivity, high plasticity and medium strength, Materials Science and Engineering: A, 776, art. no. 139040, 2020. doi.org/10.1016/j.msea.2020.139040

07-20   Stefan Heugenhauser, Erhard Kaschnitz and Peter Schumacher, Development of an aluminum compound casting process – Experiments and numerical simulations, Journal of Materials Processing Technology, 279, art. no. 116578, 2020. doi.org/10.1016/j.jmatprotec.2019.116578

05-20   Michail Papanikolaou, Emanuele Pagone, Mark Jolly and Konstantinos Salonitis, Numerical simulation and evaluation of Campbell running and gating systems, Metals, 10.1, art. no. 68, 2020. doi.org/10.3390/met10010068

102-19   Ferencz Peti and Gabriela Strnad, The effect of squeeze pin dimension and operational parameters on material homogeneity of aluminium high pressure die cast parts, Acta Marisiensis. Seria Technologica, 16.2, 2019. doi.org/0.2478/amset-2019-0010

94-19   E. Riedel, I. Horn, N. Stein, H. Stein, R. Bahr, and S. Scharf, Ultrasonic treatment: a clean technology that supports sustainability incasting processes, Procedia, 26th CIRP Life Cycle Engineering (LCE) Conference, Indianapolis, Indiana, USA, May 7-9, 2019. 

93-19   Adrian V. Catalina, Liping Xue, Charles A. Monroe, Robin D. Foley, and John A. Griffin, Modeling and Simulation of Microstructure and Mechanical Properties of AlSi- and AlCu-based Alloys, Transactions, 123rd Metalcasting Congress, Atlanta, GA, USA, April 27-30, 2019. 

84-19   Arun Prabhakar, Michail Papanikolaou, Konstantinos Salonitis, and Mark Jolly, Sand casting of sheet lead: numerical simulation of metal flow and solidification, The International Journal of Advanced Manufacturing Technology, pp. 1-13, 2019. doi.org/10.1007/s00170-019-04522-3

72-19   Santosh Reddy Sama, Eric Macdonald, Robert Voigt, and Guha Manogharan, Measurement of metal velocity in sand casting during mold filling, Metals, 9:1079, 2019. doi.org/10.3390/met9101079

71-19   Sebastian Findeisen, Robin Van Der Auwera, Michael Heuser, and Franz-Josef Wöstmann, Gießtechnische Fertigung von E-Motorengehäusen mit interner Kühling (Casting production of electric motor housings with internal cooling), Geisserei, 106, pp. 72-78, 2019 (in German).

58-19     Von Malte Leonhard, Matthias Todte, and Jörg Schäffer, Realistic simulation of the combustion of exothermic feeders, Casting, No. 2, pp. 28-32, 2019. In English and German.

52-19     S. Lakkum and P. Kowitwarangkul, Numerical investigations on the effect of gas flow rate in the gas stirred ladle with dual plugs, International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi.org/10.1088/1757-899X/526/1/012028

47-19     Bing Zhou, Shuai Lu, Kaile Xu, Chun Xu, and Zhanyong Wang, Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling, International Journal of Metalcasting, Online edition, pp. 1-13, 2019. doi.org/10.1007/s40962-019-00357-6

31-19     Zihao Yuan, Zhipeng Guo, and S.M. Xiong, Skin layer of A380 aluminium alloy die castings and its blistering during solution treatment, Journal of Materials Science & Technology, Vol. 35, No. 9, pp. 1906-1916, 2019. doi.org/10.1016/j.jmst.2019.05.011

25-19     Stefano Mascetti, Raul Pirovano, and Giulio Timelli, Interazione metallo liquido/stampo: Il fenomeno della metallizzazione, La Metallurgia Italiana, No. 4, pp. 44-50, 2019. In Italian.

20-19     Fu-Yuan Hsu, Campbellology for runner system design, Shape Casting: The Minerals, Metals & Materials Series, pp. 187-199, 2019. doi.org/10.1007/978-3-030-06034-3_19

19-19     Chengcheng Lyu, Michail Papanikolaou, and Mark Jolly, Numerical process modelling and simulation of Campbell running systems designs, Shape Casting: The Minerals, Metals & Materials Series, pp. 53-64, 2019. doi.org/10.1007/978-3-030-06034-3_5

18-19     Adrian V. Catalina, Liping Xue, and Charles Monroe, A solidification model with application to AlSi-based alloys, Shape Casting: The Minerals, Metals & Materials Series, pp. 201-213, 2019. doi.org/10.1007/978-3-030-06034-3_20

17-19     Fu-Yuan Hsu and Yu-Hung Chen, The validation of feeder modeling for ductile iron castings, Shape Casting: The Minerals, Metals & Materials Series, pp. 227-238, 2019. doi.org/10.1007/978-3-030-06034-3_22

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

02-19   Jingying Sun, Qichi Le, Li Fu, Jing Bai, Johannes Tretter, Klaus Herbold and Hongwei Huo, Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting-process, Journal of Materials Processing Technology, Vol. 266, pp. 274-282, 2019. doi.org/10.1016/j.jmatprotec.2018.11.016

92-18   Fast, Flexible… More Versatile, Foundry Management Technology, March, 2018. 

82-18   Xu Zhao, Ping Wang, Tao Li, Bo-yu Zhang, Peng Wang, Guan-zhou Wang and Shi-qi Lu, Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation, China Foundry, Vol. 15, no. 6, pp. 436-442, 2018. doi: 10.1007/s41230-018-8052-z

80-18   Michail Papanikolaou, Emanuele Pagone, Konstantinos Salonitis, Mark Jolly and Charalampos Makatsoris, A computational framework towards energy efficient casting processes, Sustainable Design and Manufacturing 2018: Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SDM-18), Gold Coast, Australia, June 24-26 2018, SIST 130, pp. 263-276, 2019. doi.org/10.1007/978-3-030-04290-5_27

64-18   Vasilios Fourlakidis, Ilia Belov and Attila Diószegi, Strength prediction for pearlitic lamellar graphite iron: Model validation, Metals, Vol. 8, No. 9, 2018. doi.org/10.3390/met8090684

51-18   Xue-feng Zhu, Bao-yi Yu, Li Zheng, Bo-ning Yu, Qiang Li, Shu-ning Lü and Hao Zhang, Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting, China Foundry, vol. 15, no. 3, pp.196-202, 2018. doi.org/10.1007/s41230-018-7256-6

47-18   Santosh Reddy Sama, Jiayi Wang and Guha Manogharan, Non-conventional mold design for metal casting using 3D sand-printing, Journal of Manufacturing Processes, vol. 34-B, pp. 765-775, 2018. doi.org/10.1016/j.jmapro.2018.03.049

42-18   M. Koru and O. Serçe, The Effects of Thermal and Dynamical Parameters and Vacuum Application on Porosity in High-Pressure Die Casting of A383 Al-Alloy, International Journal of Metalcasting, pp. 1-17, 2018. doi.org/10.1007/s40962-018-0214-7

41-18   Abhilash Viswanath, S. Savithri, U.T.S. Pillai, Similitude analysis on flow characteristics of water, A356 and AM50 alloys during LPC process, Journal of Materials Processing Technology, vol. 257, pp. 270-277, 2018. doi.org/10.1016/j.jmatprotec.2018.02.031

29-18   Seyboldt, Christoph and Liewald, Mathias, Investigation on thixojoining to produce hybrid components with intermetallic phase, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi.org/10.1063/1.5034992

28-18   Laura Schomer, Mathias Liewald and Kim Rouven Riedmüller, Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi.org/10.1063/1.5034991

41-17   Y. N. Wu et al., Numerical Simulation on Filling Optimization of Copper Rotor for High Efficient Electric Motors in Die Casting Process, Materials Science Forum, Vol. 898, pp. 1163-1170, 2017.

12-17   A.M.  Zarubin and O.A. Zarubina, Controlling the flow rate of melt in gravity die casting of aluminum alloys, Liteynoe Proizvodstvo (Casting Manufacturing), pp 16-20, 6, 2017. In Russian.

10-17   A.Y. Korotchenko, Y.V. Golenkov, M.V. Tverskoy and D.E. Khilkov, Simulation of the Flow of Metal Mixtures in the Mold, Liteynoe Proizvodstvo (Casting Manufacturing), pp 18-22, 5, 2017. In Russian.

08-17   Morteza Morakabian Esfahani, Esmaeil Hajjari, Ali Farzadi and Seyed Reza Alavi Zaree, Prediction of the contact time through modeling of heat transfer and fluid flow in compound casting process of Al/Mg light metals, Journal of Materials Research, © Materials Research Society 2017

04-17   Huihui Liu, Xiongwei He and Peng Guo, Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment, AIP Conference Proceedings 1829, 020037 (2017); doi.org/10.1063/1.4979769.

100-16  Robert Watson, New numerical techniques to quantify and predict the effect of entrainment defects, applied to high pressure die casting, PhD Thesis: University of Birmingham, 2016.

88-16   M.C. Carter, T. Kauffung, L. Weyenberg and C. Peters, Low Pressure Die Casting Simulation Discovery through Short Shot, Cast Expo & Metal Casting Congress, April 16-19, 2016, Minneapolis, MN, Copyright 2016 American Foundry Society.

61-16   M. Koru and O. Serçe, Experimental and numerical determination of casting mold interfacial heat transfer coefficient in the high pressure die casting of a 360 aluminum alloy, ACTA PHYSICA POLONICA A, Vol. 129 (2016)

59-16   R. Pirovano and S. Mascetti, Tracking of collapsed bubbles during a filling simulation, La Metallurgia Italiana – n. 6 2016

43-16   Kevin Lee, Understanding shell cracking during de-wax process in investment casting, Ph.D Thesis: University of Birmingham, School of Engineering, Department of Chemical Engineering, 2016.

35-16   Konstantinos Salonitis, Mark Jolly, Binxu Zeng, and Hamid Mehrabi, Improvements in energy consumption and environmental impact by novel single shot melting process for casting, Journal of Cleaner Production, doi.org/10.1016/j.jclepro.2016.06.165, Open Access funded by Engineering and Physical Sciences Research Council, June 29, 2016

20-16   Fu-Yuan Hsu, Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum, Metallurgical and Materials Transactions B, 2016, Band: 47, Heft 3, 1634-1648.

15-16   Mingfan Qia, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Lib,and Weirong Li, A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys, Journal of Materials Processing Technology 234 (2016) 353–367

112-15   José Miguel Gonçalves Ledo Belo da Costa, Optimization of filling systems for low pressure by FLOW-3D, Dissertação de mestrado integrado em Engenharia Mecânica, 2015.

89-15   B.W. Zhu, L.X. Li, X. Liu, L.Q. Zhang and R. Xu, Effect of Viscosity Measurement Method to Simulate High Pressure Die Casting of Thin-Wall AlSi10MnMg Alloy Castings, Journal of Materials Engineering and Performance, Published online, November 2015, doi.org/10.1007/s11665-015-1783-8, © ASM International.

88-15   Peng Zhang, Zhenming Li, Baoliang Liu, Wenjiang Ding and Liming Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Materials Science & Engineering A651(2016)376–390, Available online, November 2015.

83-15   Zu-Qi Hu, Xin-Jian Zhang and Shu-Sen Wu, Microstructure, Mechanical Properties and Die-Filling Behavior of High-Performance Die-Cast Al–Mg–Si–Mn Alloy, Acta Metall. Sin. (Engl. Lett.), doi.org/10.1007/s40195-015-0332-7, © The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015.

82-15   J. Müller, L. Xue, M.C. Carter, C. Thoma, M. Fehlbier and M. Todte, A Die Spray Cooling Model for Thermal Die Cycling Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

81-15   M. T. Murray, L.F. Hansen, L. Chilcott, E. Li and A.M. Murray, Case Studies in the Use of Simulation- Improved Yield and Reduced Time to Market, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

80-15   R. Bhola, S. Chandra and D. Souders, Predicting Castability of Thin-Walled Parts for the HPDC Process Using Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

76-15   Prosenjit Das, Sudip K. Samanta, Shashank Tiwari and Pradip Dutta, Die Filling Behaviour of Semi Solid A356 Al Alloy Slurry During Rheo Pressure Die Casting, Transactions of the Indian Institute of Metals, pp 1-6, October 2015

74-15   Murat KORU and Orhan SERÇE, Yüksek Basınçlı Döküm Prosesinde Enjeksiyon Parametrelerine Bağlı Olarak Döküm Simülasyon, Cumhuriyet University Faculty of Science, Science Journal (CSJ), Vol. 36, No: 5 (2015) ISSN: 1300-1949, May 2015

69-15   A. Viswanath, S. Sivaraman, U. T. S. Pillai, Computer Simulation of Low Pressure Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 45-48, September 2015

68-15   J. Aneesh Kumar, K. Krishnakumar and S. Savithri, Computer Simulation of Centrifugal Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 53-56, September 2015

59-15   F. Hosseini Yekta and S. A. Sadough Vanini, Simulation of the flow of semi-solid steel alloy using an enhanced model, Metals and Materials International, August 2015.

44-15   Ulrich E. Klotz, Tiziana Heiss and Dario Tiberto, Platinum investment casting material properties, casting simulation and optimum process parameters, Jewelry Technology Forum 2015

41-15   M. Barkhudarov and R. Pirovano, Minimizing Air Entrainment in High Pressure Die Casting Shot Sleeves, GIFA 2015, Düsseldorf, Germany

40-15   M. Todte, A. Fent, and H. Lang, Simulation in support of the development of innovative processes in the casting industry, GIFA 2015, Düsseldorf, Germany

19-15   Bruce Morey, Virtual casting improves powertrain design, Automotive Engineering, SAE International, March 2015.

15-15   K.S. Oh, J.D. Lee, S.J. Kim and J.Y. Choi, Development of a large ingot continuous caster, Metall. Res. Technol. 112, 203 (2015) © EDP Sciences, 2015, doi.org/10.1051/metal/2015006, www.metallurgical-research.org

14-15   Tiziana Heiss, Ulrich E. Klotz and Dario Tiberto, Platinum Investment Casting, Part I: Simulation and Experimental Study of the Casting Process, Johnson Matthey Technol. Rev., 2015, 59, (2), 95, doi.org/10.1595/205651315×687399

138-14 Christopher Thoma, Wolfram Volk, Ruben Heid, Klaus Dilger, Gregor Banner and Harald Eibisch, Simulation-based prediction of the fracture elongation as a failure criterion for thin-walled high-pressure die casting components, International Journal of Metalcasting, Vol. 8, No. 4, pp. 47-54, 2014. doi.org/10.1007/BF03355594

107-14  Mehran Seyed Ahmadi, Dissolution of Si in Molten Al with Gas Injection, ProQuest Dissertations And Theses; Thesis (Ph.D.), University of Toronto (Canada), 2014; Publication Number: AAT 3637106; ISBN: 9781321195231; Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.; 191 p.

99-14   R. Bhola and S. Chandra, Predicting Castability for Thin-Walled HPDC Parts, Foundry Management Technology, December 2014

92-14   Warren Bishenden and Changhua Huang, Venting design and process optimization of die casting process for structural components; Part II: Venting design and process optimization, Die Casting Engineer, November 2014

90-14   Ken’ichi Kanazawa, Ken’ichi Yano, Jun’ichi Ogura, and Yasunori Nemoto, Optimum Runner Design for Die-Casting using CFD Simulations and Verification with Water-Model Experiments, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE2014, November 14-20, 2014, Montreal, Quebec, Canada, IMECE2014-37419

89-14   P. Kapranos, C. Carney, A. Pola, and M. Jolly, Advanced Casting Methodologies: Investment Casting, Centrifugal Casting, Squeeze Casting, Metal Spinning, and Batch Casting, In Comprehensive Materials Processing; McGeough, J., Ed.; 2014, Elsevier Ltd., 2014; Vol. 5, pp 39–67.

77-14   Andrei Y. Korotchenko, Development of Scientific and Technological Approaches to Casting Net-Shaped Castings in Sand Molds Free of Shrinkage Defects and Hot Tears, Post-doctoral thesis: Russian State Technological University, 2014. In Russian.

69-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Predicting, Preventing Core Gas Defects in Steel Castings, Modern Casting, September 2014

68-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Numerical Simulation of Core Gas Defects in Steel Castings, Copyright 2014 American Foundry Society, 118th Metalcasting Congress, April 8 – 11, 2014, Schaumburg, IL

51-14   Jesus M. Blanco, Primitivo Carranza, Rafael Pintos, Pedro Arriaga, and Lakhdar Remaki, Identification of Defects Originated during the Filling of Cast Pieces through Particles Modelling, 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), E. Oñate, J. Oliver and A. Huerta (Eds)

47-14   B. Vijaya Ramnatha, C.Elanchezhiana, Vishal Chandrasekhar, A. Arun Kumarb, S. Mohamed Asif, G. Riyaz Mohamed, D. Vinodh Raj , C .Suresh Kumar, Analysis and Optimization of Gating System for Commutator End Bracket, Procedia Materials Science 6 ( 2014 ) 1312 – 1328, 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014)

42-14  Bing Zhou, Yong-lin Kang, Guo-ming Zhu, Jun-zhen Gao, Ming-fan Qi, and Huan-huan Zhang, Forced convection rheoforming process for preparation of 7075 aluminum alloy semisolid slurry and its numerical simulation, Trans. Nonferrous Met. Soc. China 24(2014) 1109−1116

37-14    A. Karwinski, W. Lesniewski, P. Wieliczko, and M. Malysza, Casting of Titanium Alloys in Centrifugal Induction Furnaces, Archives of Metallurgy and Materials, Volume 59, Issue 1, doi.org/10.2478/amm-2014-0068, 2014.

26-14    Bing Zhou, Yonglin Kang, Mingfan Qi, Huanhuan Zhang and Guoming ZhuR-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy, Materials 2014, 7, 3084-3105; doi.org/10.3390/ma7043084

20-14  Johannes Hartmann, Tobias Fiegl, Carolin Körner, Aluminum integral foams with tailored density profile by adapted blowing agents, Applied Physics A, doi.org/10.1007/s00339-014-8377-4, March 2014.

19-14    A.Y. Korotchenko, N.A. Nikiforova, E.D. Demjanov, N.C. Larichev, The Influence of the Filling Conditions on the Service Properties of the Part Side Frame, Russian Foundryman, 1 (January), pp 40-43, 2014. In Russian.

11-14 B. Fuchs and C. Körner, Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process, Progress in Computational Fluid Dynamics, Vol. 14, No. 1, 2014, Copyright © 2014 Inderscience Enterprises Ltd.

08-14 FY Hsu, SW Wang, and HJ Lin, The External and Internal Shrinkages in Aluminum Gravity Castings, Shape Casting: 5th International Symposium 2014. Available online at Google Books

103-13  B. Fuchs, H. Eibisch and C. Körner, Core Viability Simulation for Salt Core Technology in High-Pressure Die Casting, International Journal of Metalcasting, July 2013, Volume 7, Issue 3, pp 39–45

94-13    Randall S. Fielding, J. Crapps, C. Unal, and J.R.Kennedy, Metallic Fuel Casting Development and Parameter Optimization Simulations, International Conference on Fast reators and Related Fuel Cycles (FR13), 4-7 March 2013, Paris France

90-13  A. Karwińskia, M. Małyszaa, A. Tchórza, A. Gila, B. Lipowska, Integration of Computer Tomography and Simulation Analysis in Evaluation of Quality of Ceramic-Carbon Bonded Foam Filter, Archives of Foundry Engineering, doi.org/10.2478/afe-2013-0084, Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences, ISSN, (2299-2944), Volume 13, Issue 4/2013

88-13  Litie and Metallurgia (Casting and Metallurgy), 3 (72), 2013, N.V.Sletova, I.N.Volnov, S.P.Zadrutsky, V.A.Chaikin, Modeling of the Process of Removing Non-metallic Inclusions in Aluminum Alloys Using the FLOW-3D program, pp 138-140. In Russian.

85-13    Michał Szucki,Tomasz Goraj, Janusz Lelito, Józef S. Suchy, Numerical Analysis of Solid Particles Flow in Liquid Metal, XXXVII International Scientific Conference Foundryman’ Day 2013, Krakow, 28-29 November 2013

84-13  Körner, C., Schwankl, M., Himmler, D., Aluminum-Aluminum compound castings by electroless deposited zinc layers, Journal of Materials Processing Technology (2014), doi.org/10.1016/j.jmatprotec.2013.12.01483-13.

77-13  Antonio Armillotta & Raffaello Baraggi & Simone Fasoli, SLM tooling for die casting with conformal cooling channels, The International Journal of Advanced Manufacturing Technology, doi.org/10.1007/s00170-013-5523-7, December 2013.

64-13   Johannes Hartmann, Christina Blümel, Stefan Ernst, Tobias Fiegl, Karl-Ernst Wirth, Carolin Körner, Aluminum integral foam castings with microcellular cores by nano-functionalization, J Mater Sci, doi.org/10.1007/s10853-013-7668-z, September 2013.

46-13  Nicholas P. Orenstein, 3D Flow and Temperature Analysis of Filling a Plutonium Mold, LA-UR-13-25537, Approved for public release; distribution is unlimited. Los Alamos Annual Student Symposium 2013, 2013-07-24 (Rev.1)

42-13   Yang Yue, William D. Griffiths, and Nick R. Green, Modelling of the Effects of Entrainment Defects on Mechanical Properties in a Cast Al-Si-Mg Alloy, Materials Science Forum, 765, 225, 2013.

39-13  J. Crapps, D.S. DeCroix, J.D Galloway, D.A. Korzekwa, R. Aikin, R. Fielding, R. Kennedy, C. Unal, Separate effects identification via casting process modeling for experimental measurement of U-Pu-Zr alloys, Journal of Nuclear Materials, 15 July 2013.

35-13   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, © Die Casting Engineer, July 2013.

34-13  Martin Lagler, Use of Simulation to Predict the Viability of Salt Cores in the HPDC Process – Shot Curve as a Decisive Criterion, © Die Casting Engineer, July 2013.

24-13    I.N.Volnov, Optimizatsia Liteynoi Tekhnologii, (Casting Technology Optimization), Liteyshik Rossii (Russian Foundryman), 3, 2013, 27-29. In Russian

23-13  M.R. Barkhudarov, I.N. Volnov, Minimizatsia Zakhvata Vozdukha v Kamere Pressovania pri Litie pod Davleniem, (Minimization of Air Entrainment in the Shot Sleeve During High Pressure Die Casting), Liteyshik Rossii (Russian Foundryman), 3, 2013, 30-34. In Russian

09-13  M.C. Carter and L. Xue, Simulating the Parameters that Affect Core Gas Defects in Metal Castings, Copyright 2012 American Foundry Society, Presented at the 2013 CastExpo, St. Louis, Missouri, April 2013

08-13  C. Reilly, N.R. Green, M.R. Jolly, J.-C. Gebelin, The Modelling Of Oxide Film Entrainment In Casting Systems Using Computational Modelling, Applied Mathematical Modelling, http://dx.doi.org/10.1016/j.apm.2013.03.061, April 2013.

03-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part II. Model validation and parametric study, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.061.

02-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part I: Model development using lubrication approximation, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.060.

116-12  Jufu Jianga, Ying Wang, Gang Chena, Jun Liua, Yuanfa Li and Shoujing Luo, “Comparison of mechanical properties and microstructure of AZ91D alloy motorcycle wheels formed by die casting and double control forming, Materials & Design, Volume 40, September 2012, Pages 541-549.

107-12  F.K. Arslan, A.H. Hatman, S.Ö. Ertürk, E. Güner, B. Güner, An Evaluation for Fundamentals of Die Casting Materials Selection and Design, IMMC’16 International Metallurgy & Materials Congress, Istanbul, Turkey, 2012.

103-12 WU Shu-sen, ZHONG Gu, AN Ping, WAN Li, H. NAKAE, Microstructural characteristics of Al−20Si−2Cu−0.4Mg−1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment, Transactions of Nonferrous Metals Society of China, 22 (2012) 2863-2870, November 2012. Full paper available online.

109-12 Alexandre Reikher, Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation, Ph.D. Thesis: The University of Wisconsin Milwaukee, Engineering Department (2012) Theses and Dissertations. Paper 65.

97-12 Hong Zhou and Li Heng Luo, Filling Pattern of Step Gating System in Lost Foam Casting Process and its Application, Advanced Materials Research, Volumes 602-604, Progress in Materials and Processes, 1916-1921, December 2012.

93-12  Liangchi Zhang, Chunliang Zhang, Jeng-Haur Horng and Zichen Chen, Functions of Step Gating System in the Lost Foam Casting Process, Advanced Materials Research, 591-593, 940, DOI: 10.4028/www.scientific.net/AMR.591-593.940, November 2012.

91-12  Hong Yan, Jian Bin Zhu, Ping Shan, Numerical Simulation on Rheo-Diecasting of Magnesium Matrix Composites, 10.4028/www.scientific.net/SSP.192-193.287, Solid State Phenomena, 192-193, 287.

89-12  Alexandre Reikher and Krishna M. Pillai, A Fast Numerical Simulation for Modeling Simultaneous Metal Flow and Solidification in Thin Cavities Using the Lubrication Approximation, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 63:2, 75-100, November 2012.

82-12  Jufu Jiang, Gang Chen, Ying Wang, Zhiming Du, Weiwei Shan, and Yuanfa Li, Microstructure and mechanical properties of thin-wall and high-rib parts of AM60B Mg alloy formed by double control forming and die casting under the optimal conditions, Journal of Alloys and Compounds, http://dx.doi.org/10.1016/j.jallcom.2012.10.086, October 2012.

78-12   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

77-12  Y. Wang, K. Kabiri-Bamoradian and R.A. Miller, Rheological behavior models of metal matrix alloys in semi-solid casting process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

76-12  A. Reikher and H. Gerber, Analysis of Solidification Parameters During the Die Cast Process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

75-12 R.A. Miller, Y. Wang and K. Kabiri-Bamoradian, Estimating Cavity Fill Time, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012Indianapolis, IN.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

55-12  Hejun Li, Pengyun Wang, Lehua Qi, Hansong Zuo, Songyi Zhong, Xianghui Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Computational Materials Science, Volume 65, December 2012, Pages 291–301.

52-12 Hongbing Ji, Yixin Chen and Shengzhou Chen, Numerical Simulation of Inner-Outer Couple Cooling Slab Continuous Casting in the Filling Process, Advanced Materials Research (Volumes 557-559), Advanced Materials and Processes II, pp. 2257-2260, July 2012.

47-12    Petri Väyrynen, Lauri Holappa, and Seppo Louhenkilpi, Simulation of Melting of Alloying Materials in Steel Ladle, SCANMET IV – 4th International Conference on Process Development in Iron and Steelmaking, Lulea, Sweden, June 10-13, 2012.

46-12  Bin Zhang and Dave Salee, Metal Flow and Heat Transfer in Billet DC Casting Using Wagstaff® Optifill™ Metal Distribution Systems, 5th International Metal Quality Workshop, United Arab Emirates Dubai, March 18-22, 2012.

45-12 D.R. Gunasegaram, M. Givord, R.G. O’Donnell and B.R. Finnin, Improvements engineered in UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner geometry and plunger velocity, Materials Science & Engineering.

44-12    Antoni Drys and Stefano Mascetti, Aluminum Casting Simulations, Desktop Engineering, September 2012

42-12   Huizhen Duan, Jiangnan Shen and Yanping Li, Comparative analysis of HPDC process of an auto part with ProCAST and FLOW-3D, Applied Mechanics and Materials Vols. 184-185 (2012) pp 90-94, Online available since 2012/Jun/14 at www.scientific.net, © (2012) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.184-185.90.

41-12    Deniece R. Korzekwa, Cameron M. Knapp, David A. Korzekwa, and John W. Gibbs, Co-Design – Fabrication of Unalloyed Plutonium, LA-UR-12-23441, MDI Summer Research Group Workshop Advanced Manufacturing, 2012-07-25/2012-07-26 (Los Alamos, New Mexico, United States)

29-12  Dario Tiberto and Ulrich E. Klotz, Computer simulation applied to jewellery casting: challenges, results and future possibilities, IOP Conf. Ser.: Mater. Sci. Eng.33 012008. Full paper available at IOP.

28-12  Y Yue and N R Green, Modelling of different entrainment mechanisms and their influences on the mechanical reliability of Al-Si castings, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33,012072.Full paper available at IOP.

27-12  E Kaschnitz, Numerical simulation of centrifugal casting of pipes, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33 012031, Issue 1. Full paper available at IOP.

15-12  C. Reilly, N.R Green, M.R. Jolly, The Present State Of Modeling Entrainment Defects In The Shape Casting Process, Applied Mathematical Modelling, Available online 27 April 2012, ISSN 0307-904X, 10.1016/j.apm.2012.04.032.

12-12   Andrei Starobin, Tony Hirt, Hubert Lang, and Matthias Todte, Core drying simulation and validation, International Foundry Research, GIESSEREIFORSCHUNG 64 (2012) No. 1, ISSN 0046-5933, pp 2-5

10-12  H. Vladimir Martínez and Marco F. Valencia (2012). Semisolid Processing of Al/β-SiC Composites by Mechanical Stirring Casting and High Pressure Die Casting, Recent Researches in Metallurgical Engineering – From Extraction to Forming, Dr Mohammad Nusheh (Ed.), ISBN: 978-953-51-0356-1, InTech

07-12     Amir H. G. Isfahani and James M. Brethour, Simulating Thermal Stresses and Cooling Deformations, Die Casting Engineer, March 2012

06-12   Shuisheng Xie, Youfeng He and Xujun Mi, Study on Semi-solid Magnesium Alloys Slurry Preparation and Continuous Roll-casting Process, Magnesium Alloys – Design, Processing and Properties, ISBN: 978-953-307-520-4, InTech.

04-12 J. Spangenberg, N. Roussel, J.H. Hattel, H. Stang, J. Skocek, M.R. Geiker, Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2012.01.007, February 2012.

01-12   Lee, B., Baek, U., and Han, J., Optimization of Gating System Design for Die Casting of Thin Magnesium Alloy-Based Multi-Cavity LCD Housings, Journal of Materials Engineering and Performance, Springer New York, Issn: 1059-9495, 10.1007/s11665-011-0111-1, Volume 1 / 1992 – Volume 21 / 2012. Available online at Springer Link.

104-11  Fu-Yuan Hsu and Huey Jiuan Lin, Foam Filters Used in Gravity Casting, Metall and Materi Trans B (2011) 42: 1110. doi:10.1007/s11663-011-9548-8.

99-11    Eduardo Trejo, Centrifugal Casting of an Aluminium Alloy, thesis: Doctor of Philosophy, Metallurgy and Materials School of Engineering University of Birmingham, October 2011. Full paper available upon request.

93-11  Olga Kononova, Andrejs Krasnikovs ,Videvuds Lapsa,Jurijs Kalinka and Angelina Galushchak, Internal Structure Formation in High Strength Fiber Concrete during Casting, World Academy of Science, Engineering and Technology 59 2011

76-11  J. Hartmann, A. Trepper, and C. Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials 2011, Volume 13 (2011) No. 11, © Wiley-VCH

71-11  Fu-Yuan Hsu and Yao-Ming Yang Confluence Weld in an Aluminum Gravity Casting, Journal of Materials Processing Technology, Available online 23 November 2011, ISSN 0924-0136, 10.1016/j.jmatprotec.2011.11.006.

65-11     V.A. Chaikin, A.V. Chaikin, I.N.Volnov, A Study of the Process of Late Modification Using Simulation, in Zagotovitelnye Proizvodstva v Mashinostroenii, 10, 2011, 8-12. In Russian.

54-11  Ngadia Taha Niane and Jean-Pierre Michalet, Validation of Foundry Process for Aluminum Parts with FLOW-3D Software, Proceedings of the 2011 International Symposium on Liquid Metal Processing and Casting, 2011.

51-11    A. Reikher and H. Gerber, Calculation of the Die Cast parameters of the Thin Wall Aluminum Cast Part, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

50-11   Y. Wang, K. Kabiri-Bamoradian, and R.A. Miller, Runner design optimization based on CFD simulation for a die with multiple cavities, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

48-11 A. Karwiński, W. Leśniewski, S. Pysz, P. Wieliczko, The technology of precision casting of titanium alloys by centrifugal process, Archives of Foundry Engineering, ISSN: 1897-3310), Volume 11, Issue 3/2011, 73-80, 2011.

46-11  Daniel Einsiedler, Entwicklung einer Simulationsmethodik zur Simulation von Strömungs- und Trocknungsvorgängen bei Kernfertigungsprozessen mittels CFD (Development of a simulation methodology for simulating flow and drying operations in core production processes using CFD), MSc thesis at Technical University of Aalen in Germany (Hochschule Aalen), 2011.

44-11  Bin Zhang and Craig Shaber, Aluminum Ingot Thermal Stress Development Modeling of the Wagstaff® EpsilonTM Rolling Ingot DC Casting System during the Start-up Phase, Materials Science Forum Vol. 693 (2011) pp 196-207, © 2011 Trans Tech Publications, July, 2011.

43-11 Vu Nguyen, Patrick Rohan, John Grandfield, Alex Levin, Kevin Naidoo, Kurt Oswald, Guillaume Girard, Ben Harker, and Joe Rea, Implementation of CASTfill low-dross pouring system for ingot casting, Materials Science Forum Vol. 693 (2011) pp 227-234, © 2011 Trans Tech Publications, July, 2011.

40-11  A. Starobin, D. Goettsch, M. Walker, D. Burch, Gas Pressure in Aluminum Block Water Jacket Cores, © 2011 American Foundry Society, International Journal of Metalcasting/Summer 2011

37-11 Ferencz Peti, Lucian Grama, Analyze of the Possible Causes of Porosity Type Defects in Aluminum High Pressure Diecast Parts, Scientific Bulletin of the Petru Maior University of Targu Mures, Vol. 8 (XXV) no. 1, 2011, ISSN 1841-9267

31-11  Johannes Hartmann, André Trepper, Carolin Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials, 13: n/a. doi: 10.1002/adem.201100035, June 2011.

27-11  A. Pari, Optimization of HPDC Process using Flow Simulation Case Studies, Die Casting Engineer, July 2011

26-11    A. Reikher, H. Gerber, Calculation of the Die Cast Parameters of the Thin Wall Aluminum Die Casting Part, Die Casting Engineer, July 2011

21-11 Thang Nguyen, Vu Nguyen, Morris Murray, Gary Savage, John Carrig, Modelling Die Filling in Ultra-Thin Aluminium Castings, Materials Science Forum (Volume 690), Light Metals Technology V, pp 107-111, 10.4028/www.scientific.net/MSF.690.107, June 2011.

19-11 Jon Spangenberg, Cem Celal Tutum, Jesper Henri Hattel, Nicolas Roussel, Metter Rica Geiker, Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study, © IEEE Congress on Evolutionary Computation, 2011, New Orleans, USA

16-11  A. Starobin, C.W. Hirt, H. Lang, and M. Todte, Core Drying Simulation and Validations, AFS Proceedings 2011, © American Foundry Society, Presented at the 115th Metalcasting Congress, Schaumburg, Illinois, April 2011.

15-11  J. J. Hernández-Ortega, R. Zamora, J. López, and F. Faura, Numerical Analysis of Air Pressure Effects on the Flow Pattern during the Filling of a Vertical Die Cavity, AIP Conf. Proc., Volume 1353, pp. 1238-1243, The 14th International Esaform Conference on Material Forming: Esaform 2011; doi:10.1063/1.3589686, May 2011. Available online.

10-11 Abbas A. Khalaf and Sumanth Shankar, Favorable Environment for Nondentric Morphology in Controlled Diffusion Solidification, DOI: 10.1007/s11661-011-0641-z, © The Minerals, Metals & Materials Society and ASM International 2011, Metallurgical and Materials Transactions A, March 11, 2011.

08-11 Hai Peng Li, Chun Yong Liang, Li Hui Wang, Hong Shui Wang, Numerical Simulation of Casting Process for Gray Iron Butterfly Valve, Advanced Materials Research, 189-193, 260, February 2011.

04-11  C.W. Hirt, Predicting Core Shooting, Drying and Defect Development, Foundry Management & Technology, January 2011.

76-10  Zhizhong Sun, Henry Hu, Alfred Yu, Numerical Simulation and Experimental Study of Squeeze Casting Magnesium Alloy AM50, Magnesium Technology 2010, 2010 TMS Annual Meeting & ExhibitionFebruary 14-18, 2010, Seattle, WA.

68-10  A. Reikher, H. Gerber, K.M. Pillai, T.-C. Jen, Natural Convection—An Overlooked Phenomenon of the Solidification Process, Die Casting Engineer, January 2010

54-10    Andrea Bernardoni, Andrea Borsi, Stefano Mascetti, Alessandro Incognito and Matteo Corrado, Fonderia Leonardo aveva ragione! L’enorme cavallo dedicato a Francesco Sforza era materialmente realizzabile, A&C – Analisis e Calcolo, Giugno 2010. In  Italian.

48-10  J. J. Hernández-Ortega, R. Zamora, J. Palacios, J. López and F. Faura, An Experimental and Numerical Study of Flow Patterns and Air Entrapment Phenomena During the Filling of a Vertical Die Cavity, J. Manuf. Sci. Eng., October 2010, Volume 132, Issue 5, 05101, doi:10.1115/1.4002535.

47-10  A.V. Chaikin, I.N. Volnov, and V.A. Chaikin, Development of Dispersible Mixed Inoculant Compositions Using the FLOW-3D Program, Liteinoe Proizvodstvo, October, 2010, in Russian.

42-10  H. Lakshmi, M.C. Vinay Kumar, Raghunath, P. Kumar, V. Ramanarayanan, K.S.S. Murthy, P. Dutta, Induction reheating of A356.2 aluminum alloy and thixocasting as automobile component, Transactions of Nonferrous Metals Society of China 20(20101) s961-s967.

41-10  Pamela J. Waterman, Understanding Core-Gas Defects, Desktop Engineering, October 2010. Available online at Desktop Engineering. Also published in the Foundry Trade Journal, November 2010.

39-10  Liu Zheng, Jia Yingying, Mao Pingli, Li Yang, Wang Feng, Wang Hong, Zhou Le, Visualization of Die Casting Magnesium Alloy Steering Bracket, Special Casting & Nonferrous Alloys, ISSN: 1001-2249, CN: 42-1148/TG, 2010-04. In Chinese.

37-10  Morris Murray, Lars Feldager Hansen, and Carl Reinhardt, I Have Defects – Now What, Die Casting Engineer, September 2010

36-10  Stefano Mascetti, Using Flow Analysis Software to Optimize Piston Velocity for an HPDC Process, Die Casting Engineer, September 2010. Also available in Italian: Ottimizzare la velocita del pistone in pressofusione.  A & C, Analisi e Calcolo, Anno XII, n. 42, Gennaio 2011, ISSN 1128-3874.

32-10  Guan Hai Yan, Sheng Dun Zhao, Zheng Hui Sha, Parameters Optimization of Semisolid Diecasting Process for Air-Conditioner’s Triple Valve in HPb59-1 Alloy, Advanced Materials Research (Volumes 129 – 131), Vol. Material and Manufacturing Technology, pp. 936-941, DOI: 10.4028/www.scientific.net/AMR.129-131.936, August 2010.

29-10 Zheng Peng, Xu Jun, Zhang Zhifeng, Bai Yuelong, and Shi Likai, Numerical Simulation of Filling of Rheo-diecasting A357 Aluminum Alloy, Special Casting & Nonferrous Alloys, DOI: CNKI:SUN:TZZZ.0.2010-01-024, 2010.

27-10 For an Aerospace Diecasting, Littler Uses Simulation to Reveal Defects, and Win a New Order, Foundry Management & Technology, July 2010

23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

15-10 David H. Kirkwood, Michel Suery, Plato Kapranos, Helen V. Atkinson, and Kenneth P. Young, Semi-solid Processing of Alloys, 2010, XII, 172 p. 103 illus., 19 in color., Hardcover ISBN: 978-3-642-00705-7.

09-10  Shannon Wetzel, Fullfilling Da Vinci’s Dream, Modern Casting, April 2010.

08-10 B.I. Semenov, K.M. Kushtarov, Semi-solid Manufacturing of Castings, New Industrial Technologies, Publication of Moscow State Technical University n.a. N.E. Bauman, 2009 (in Russian)

07-10 Carl Reilly, Development Of Quantitative Casting Quality Assessment Criteria Using Process Modelling, thesis: The University of Birmingham, March 2010 (Available upon request)

06-10 A. Pari, Optimization of HPDC Process using Flow Simulation – Case Studies, CastExpo ’10, NADCA, Orlando, Florida, March 2010

05-10 M.C. Carter, S. Palit, and M. Littler, Characterizing Flow Losses Occurring in Air Vents and Ejector Pins in High Pressure Die Castings, CastExpo ’10, NADCA, Orlando, Florida, March 2010

04-10 Pamela Waterman, Simulating Porosity Factors, Foundry Management Technology, March 2010, Article available at Foundry Management Technology

03-10 C. Reilly, M.R. Jolly, N.R. Green, JC Gebelin, Assessment of Casting Filling by Modeling Surface Entrainment Events Using CFD, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

02-10 P. Väyrynen, S. Wang, J. Laine and S.Louhenkilpi, Control of Fluid Flow, Heat Transfer and Inclusions in Continuous Casting – CFD and Neural Network Studies, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

60-09   Somlak Wannarumon, and Marco Actis Grande, Comparisons of Computer Fluid Dynamic Software Programs applied to Jewelry Investment Casting Process, World Academy of Science, Engineering and Technology 55 2009.

59-09   Marco Actis Grande and Somlak Wannarumon, Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations, World Academy of Science, Engineering and Technology, Vol:3 2009-07-24

56-09  Jozef Kasala, Ondrej Híreš, Rudolf Pernis, Start-up Phase Modeling of Semi Continuous Casting Process of Brass Billets, Metal 2009, 19.-21.5.2009

51-09  In-Ting Hong, Huan-Chien Tung, Chun-Hao Chiu and Hung-Shang Huang, Effect of Casting Parameters on Microstructure and Casting Quality of Si-Al Alloy for Vacuum Sputtering, China Steel Technical Report, No. 22, pp. 33-40, 2009.

42-09  P. Väyrynen, S. Wang, S. Louhenkilpi and L. Holappa, Modeling and Removal of Inclusions in Continuous Casting, Materials Science & Technology 2009 Conference & Exhibition, Pittsburgh, Pennsylvania, USA, October 25-29, 2009

41-09 O.Smirnov, P.Väyrynen, A.Kravchenko and S.Louhenkilpi, Modern Methods of Modeling Fluid Flow and Inclusions Motion in Tundish Bath – General View, Proceedings of Steelsim 2009 – 3rd International Conference on Simulation and Modelling of Metallurgical Processes in Steelmaking, Leoben, Austria, September 8-10, 2009

21-09 A. Pari, Case Studies – Optimization of HPDC Process Using Flow Simulation, Die Casting Engineer, July 2009

20-09 M. Sirvio, M. Wos, Casting directly from a computer model by using advanced simulation software, FLOW-3D Cast, Archives of Foundry Engineering Volume 9, Issue 1/2009, 79-82

19-09 Andrei Starobin, C.W. Hirt, D. Goettsch, A Model for Binder Gas Generation and Transport in Sand Cores and Molds, Modeling of Casting, Welding, and Solidification Processes XII, TMS (The Minerals, Metals & Minerals Society), June 2009

11-09 Michael Barkhudarov, Minimizing Air Entrainment in a Shot Sleeve during Slow-Shot Stage, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

10-09 A. Reikher, H. Gerber, Application of One-Dimensional Numerical Simulation to Optimize Process Parameters of a Thin-Wall Casting in High Pressure Die Casting, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

7-09 Andrei Starobin, Simulation of Core Gas Evolution and Flow, presented at the North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

6-09 A.Pari, Optimization of HPDC PROCESS: Case Studies, North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

2-09 C. Reilly, N.R. Green and M.R. Jolly, Oxide Entrainment Structures in Horizontal Running Systems, TMS 2009, San Francisco, California, February 2009

30-08 I.N.Volnov, Computer Modeling of Casting of Pipe Fittings, © 2008, Pipe Fittings, 5 (38), 2008. Russian version

28-08 A.V.Chaikin, I.N.Volnov, V.A.Chaikin, Y.A.Ukhanov, N.R.Petrov, Analysis of the Efficiency of Alloy Modifiers Using Statistics and Modeling, © 2008, Liteyshik Rossii (Russian Foundryman), October, 2008

27-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Castings, American Foundry Society, © 2008, AFS Lost Foam Conference, Asheville, North Carolina, October, 2008

25-08 FMT Staff, Forecasting Core Gas Pressures with Computer Simulation, Foundry Management and Technology, October 28, 2008 © 2008 Penton Media, Inc. Online article

24-08 Core and Mold Gas Evolution, Foundry Management and Technology, January 24, 2008 (excerpted from the FM&T May 2007 issue) © 2008 Penton Media, Inc.

22-08 Mark Littler, Simulation Eliminates Die Casting Scrap, Modern Casting/September 2008

21-08 X. Chen, D. Penumadu, Permeability Measurement and Numerical Modeling for Refractory Porous Materials, AFS Transactions © 2008 American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

20-08 Rolf Krack, Using Solidification Simulations for Optimising Die Cooling Systems, FTJ July/August 2008

19-08 Mark Littler, Simulation Software Eliminates Die Casting Scrap, ECS Casting Innovations, July/August 2008

13-08 T. Yoshimura, K. Yano, T. Fukui, S. Yamamoto, S. Nishido, M. Watanabe and Y. Nemoto, Optimum Design of Die Casting Plunger Tip Considering Air Entrainment, Proceedings of 10th Asian Foundry Congress (AFC10), Nagoya, Japan, May 2008

08-08 Stephen Instone, Andreas Buchholz and Gerd-Ulrich Gruen, Inclusion Transport Phenomena in Casting Furnaces, Light Metals 2008, TMS (The Minerals, Metals & Materials Society), 2008

07-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Casting, AFS Transactions 2008 © American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

06-08 A. Reikher, H. Gerber and A. Starobin, Multi-Stage Plunger Deceleration System, CastExpo ’08, NADCA, Atlanta, Georgia, May 2008

05-08 Amol Palekar, Andrei Starobin, Alexander Reikher, Die-casting end-of-fill and drop forge viscometer flow transients examined with a coupled-motion numerical model, 68th World Foundry Congress, Chennai, India, February 2008

03-08 Petri J. Väyrynen, Sami K. Vapalahti and Seppo J. Louhenkilpi, On Validation of Mathematical Fluid Flow Models for Simulation of Tundish Water Models and Industrial Examples, AISTech 2008, May 2008

53-07   A. Kermanpur, Sh. Mahmoudi and A. Hajipour, Three-dimensional Numerical Simulation of Metal Flow and Solidification in the Multi-cavity Casting Moulds of Automotive Components, International Journal of Iron & Steel Society of Iran, Article 2, Volume 4, Issue 1, Summer and Autumn 2007, pages 8-15.

36-07 Duque Mesa A. F., Herrera J., Cruz L.J., Fernández G.P. y Martínez H.V., Caracterización Defectológica de Piezas Fundida por Lost Foam Casting Mediante Simulación Numérica, 8° Congreso Iberoamericano de Ingenieria Mecanica, Cusco, Peru, 23 al 25 de Octubre de 2007 (in Spanish)

27-07 A.Y. Korotchenko, A.M. Zarubin, I.A.Korotchenko, Modeling of High Pressure Die Casting Filling, Russian Foundryman, December 2007, pp 15-19. (in Russian)

26-07 I.N. Volnov, Modeling of Casting Processes with Variable Geometry, Russian Foundryman, November 2007, pp 27-30. (in Russian)

16-07 P. Väyrynen, S. Vapalahti, S. Louhenkilpi, L. Chatburn, M. Clark, T. Wagner, Tundish Flow Model Tuning and Validation – Steady State and Transient Casting Situations, STEELSIM 2007, Graz/Seggau, Austria, September 12-14 2007

11-07 Marco Actis Grande, Computer Simulation of the Investment Casting Process – Widening of the Filling Step, Santa Fe Symposium on Jewelry Manufacturing Technology, May 2007

09-07 Alexandre Reikher and Michael Barkhudarov, Casting: An Analytical Approach, Springer, 1st edition, August 2007, Hardcover ISBN: 978-1-84628-849-4. U.S. Order Form; Europe Order Form.

07-07 I.N. Volnov, Casting Modeling Systems – Current State, Problems and Perspectives, (in Russian), Liteyshik Rossii (Russian Foundryman), June 2007

05-07 A.N. Turchin, D.G. Eskin, and L. Katgerman, Solidification under Forced-Flow Conditions in a Shallow Cavity, DOI: 10.1007/s1161-007-9183-9, © The Minerals, Metals & Materials Society and ASM International 2007

04-07 A.N. Turchin, M. Zuijderwijk, J. Pool, D.G. Eskin, and L. Katgerman, Feathery grain growth during solidification under forced flow conditions, © Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. DOI: 10.1016/j.actamat.2007.02.030, April 2007

03-07 S. Kuyucak, Sponsored Research – Clean Steel Casting Production—Evaluation of Laboratory Castings, Transactions of the American Foundry Society, Volume 115, 111th Metalcasting Congress, May 2007

02-07 Fu-Yuan Hsu, Mark R. Jolly and John Campbell, The Design of L-Shaped Runners for Gravity Casting, Shape Casting: 2nd International Symposium, Edited by Paul N. Crepeau, Murat Tiryakioðlu and John Campbell, TMS (The Minerals, Metals & Materials Society), Orlando, FL, Feb 2007

30-06 X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Simulation of EPS foam decomposition in the lost foam casting process, Journal of Materials Processing Technology 182 (2007) 333–342, © 2006 Elsevier B.V. All rights reserved.

25-06 Michael Barkhudarov and Gengsheng Wei, Modeling Casting on the Move, Modern Casting, August 2006; Modeling of Casting Processes with Variable Geometry, Russian Foundryman, December 2007, pp 10-15. (in Russian)

24-06 P. Scarber, Jr. and C.E. Bates, Simulation of Core Gas Production During Mold Fill, © 2006 American Foundry Society

7-06 M.Y.Smirnov, Y.V.Golenkov, Manufacturing of Cast Iron Bath Tubs Castings using Vacuum-Process in Russia, Russia’s Foundryman, July 2006. In Russian.

6-06 M. Barkhudarov, and G. Wei, Modeling of the Coupled Motion of Rigid Bodies in Liquid Metal, Modeling of Casting, Welding and Advanced Solidification Processes – XI, May 28 – June 2, 2006, Opio, France, eds. Ch.-A. Gandin and M. Bellet, pp 71-78, 2006.

2-06 J.-C. Gebelin, M.R. Jolly and F.-Y. Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, Int. J. Cast Met. Res., 2006, Vol.19 No.1

1-06 Michael Barkhudarov, Using Simulation to Control Microporosity Reduces Die Iterations, Die Casting Engineer, January 2006, pp. 52-54

30-05 H. Xue, K. Kabiri-Bamoradian, R.A. Miller, Modeling Dynamic Cavity Pressure and Impact Spike in Die Casting, Cast Expo ’05, April 16-19, 2005

22-05 Blas Melissari & Stavros A. Argyropoulous, Measurement of Magnitude and Direction of Velocity in High-Temperature Liquid Metals; Part I, Mathematical Modeling, Metallurgical and Materials Transactions B, Volume 36B, October 2005, pp. 691-700

21-05 M.R. Jolly, State of the Art Review of Use of Modeling Software for Casting, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 337-346

20-05 J-C Gebelin, M.R. Jolly & F-Y Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 355-364

19-05 F-Y Hsu, M.R. Jolly & J Campbell, Vortex Gate Design for Gravity Castings, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 73-82

18-05 M.R. Jolly, Modelling the Investment Casting Process: Problems and Successes, Japanese Foundry Society, JFS, Tokyo, Sept. 2005

13-05 Xiaogang Yang, Xiaobing Huang, Xiaojun Dai, John Campbell and Joe Tatler, Numerical Modelling of the Entrainment of Oxide Film Defects in Filling of Aluminium Alloy Castings, International Journal of Cast Metals Research, 17 (6), 2004, 321-331

10-05 Carlos Evaristo Esparza, Martha P. Guerro-Mata, Roger Z. Ríos-Mercado, Optimal Design of Gating Systems by Gradient Search Methods, Computational Materials Science, October 2005

6-05 Birgit Hummler-Schaufler, Fritz Hirning, Jurgen Schaufler, A World First for Hatz Diesel and Schaufler Tooling, Die Casting Engineer, May 2005, pp. 18-21

4-05 Rolf Krack, The W35 Topic—A World First, Die Casting World, March 2005, pp. 16-17

3-05 Joerg Frei, Casting Simulations Speed Up Development, Die Casting World, March 2005, p. 14

2-05 David Goettsch and Michael Barkhudarov, Analysis and Optimization of the Transient Stage of Stopper-Rod Pour, Shape Casting: The John Campbell Symposium, The Minerals, Metals & Materials Society, 2005

36-04  Ik Min Park, Il Dong Choi, Yong Ho Park, Development of Light-Weight Al Scroll Compressor for Car Air Conditioner, Materials Science Forum, Designing, Processing and Properties of Advanced Engineering Materials, 449-452, 149, March 2004.

32-04 D.H. Kirkwood and P.J Ward, Numerical Modelling of Semi-Solid Flow under Processing Conditions, steel research int. 75 (2004), No. 8/9

30-04 Haijing Mao, A Numerical Study of Externally Solidified Products in the Cold Chamber Die Casting Process, thesis: The Ohio State University, 2004 (Available upon request)

28-04 Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Supplement to the Welding Journal, June 2004.

23-04 State of the Art Use of Computational Modelling in the Foundry Industry, 3rd International Conference Computational Modelling of Materials III, Sicily, Italy, June 2004, Advances in Science and Technology,  Eds P. Vincenzini & A Lami, Techna Group Srl, Italy, ISBN: 88-86538-46-4, Part B, pp 479-490

22-04 Jerry Fireman, Computer Simulation Helps Reduce Scrap, Die Casting Engineer, May 2004, pp. 46-49

21-04 Joerg Frei, Simulation—A Safe and Quick Way to Good Components, Aluminium World, Volume 3, Issue 2, pp. 42-43

20-04 J.-C. Gebelin, M.R. Jolly, A. M. Cendrowicz, J. Cirre and S. Blackburn, Simulation of Die Filling for the Wax Injection Process – Part II Numerical Simulation, Metallurgical and Materials Transactions, Volume 35B, August 2004

14-04 Sayavur I. Bakhtiyarov, Charles H. Sherwin, and Ruel A. Overfelt, Hot Distortion Studies In Phenolic Urethane Cold Box System, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

13-04 Sayavur I. Bakhtiyarov and Ruel A. Overfelt, First V-Process Casting of Magnesium, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

5-04 C. Schlumpberger & B. Hummler-Schaufler, Produktentwicklung auf hohem Niveau (Product Development on a High Level), Druckguss Praxis, January 2004, pp 39-42 (in German).

3-04 Charles Bates, Dealing with Defects, Foundry Management and Technology, February 2004, pp 23-25

1-04 Laihua Wang, Thang Nguyen, Gary Savage and Cameron Davidson, Thermal and Flow Modeling of Ladling and Injection in High Pressure Die Casting Process, International Journal of Cast Metals Research, vol. 16 No 4 2003, pp 409-417

2-03 J-C Gebelin, AM Cendrowicz, MR Jolly, Modeling of the Wax Injection Process for the Investment Casting Process – Prediction of Defects, presented at the Third International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, December 10-12, 2003, Melbourne, Australia, pp. 415-420

29-03 C. W. Hirt, Modeling Shrinkage Induced Micro-porosity, Flow Science Technical Note (FSI-03-TN66)

28-03 Thixoforming at the University of Sheffield, Diecasting World, September 2003, pp 11-12

26-03 William Walkington, Gas Porosity-A Guide to Correcting the Problems, NADCA Publication: 516

22-03 G F Yao, C W Hirt, and M Barkhudarov, Development of a Numerical Approach for Simulation of Sand Blowing and Core Formation, in Modeling of Casting, Welding, and Advanced Solidification Process-X”, Ed. By Stefanescu et al pp. 633-639, 2003

21-03 E F Brush Jr, S P Midson, W G Walkington, D T Peters, J G Cowie, Porosity Control in Copper Rotor Die Castings, NADCA Indianapolis Convention Center, Indianapolis, IN September 15-18, 2003, T03-046

12-03 J-C Gebelin & M.R. Jolly, Modeling Filters in Light Alloy Casting Processes,  Trans AFS, 2002, 110, pp. 109-120

11-03 M.R. Jolly, Casting Simulation – How Well Do Reality and Virtual Casting Match – A State of the Art Review, Intl. J. Cast Metals Research, 2002, 14, pp. 303-313

10-03 Gebelin., J-C and Jolly, M.R., Modeling of the Investment Casting Process, Journal of  Materials Processing Tech., Vol. 135/2-3, pp. 291 – 300

9-03 Cox, M, Harding, R.A. and Campbell, J., Optimised Running System Design for Bottom Filled Aluminium Alloy 2L99 Investment Castings, J. Mat. Sci. Tech., May 2003, Vol. 19, pp. 613-625

8-03 Von Alexander Schrey and Regina Reek, Numerische Simulation der Kernherstellung, (Numerical Simulation of Core Blowing), Giesserei, June 2003, pp. 64-68 (in German)

7-03 J. Zuidema Jr., L Katgerman, Cyclone separation of particles in aluminum DC Casting, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 607-614

6-03 Jean-Christophe Gebelin and Mark Jolly, Numerical Modeling of Metal Flow Through Filters, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 431-438

5-03 N.W. Lai, W.D. Griffiths and J. Campbell, Modelling of the Potential for Oxide Film Entrainment in Light Metal Alloy Castings, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 415-422

21-02 Boris Lukezic, Case History: Process Modeling Solves Die Design Problems, Modern Casting, February 2003, P 59

20-02 C.W. Hirt and M.R. Barkhudarov, Predicting Defects in Lost Foam Castings, Modern Casting, December 2002, pp 31-33

19-02 Mark Jolly, Mike Cox, Ric Harding, Bill Griffiths and John Campbell, Quiescent Filling Applied to Investment Castings, Modern Casting, December 2002 pp. 36-38

18-02 Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Foundry Management and Technology, October 2002, pp 13-15

17-02 G Messmer, Simulation of a Thixoforging Process of Aluminum Alloys with FLOW-3D, Institute for Metal Forming Technology, University of Stuttgart

16-02 Barkhudarov, Michael, Computer Simulation of Lost Foam Process, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 319-324

15-02 Barkhudarov, Michael, Computer Simulation of Inclusion Tracking, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 341-346

14-02 Barkhudarov, Michael, Advanced Simulation of the Flow and Heat Transfer of an Alternator Housing, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 219-228

8-02 Sayavur I. Bakhtiyarov, and Ruel A. Overfelt, Experimental and Numerical Study of Bonded Sand-Air Two-Phase Flow in PUA Process, Auburn University, 2002 American Foundry Society, AFS Transactions 02-091, Kansas City, MO

7-02 A Habibollah Zadeh, and J Campbell, Metal Flow Through a Filter System, University of Birmingham, 2002 American Foundry Society, AFS Transactions 02-020, Kansas City, MO

6-02 Phil Ward, and Helen Atkinson, Final Report for EPSRC Project: Modeling of Thixotropic Flow of Metal Alloys into a Die, GR/M17334/01, March 2002, University of Sheffield

5-02 S. I. Bakhtiyarov and R. A. Overfelt, Numerical and Experimental Study of Aluminum Casting in Vacuum-sealed Step Molding, Auburn University, 2002 American Foundry Society, AFS Transactions 02-050, Kansas City, MO

4-02 J. C. Gebelin and M. R. Jolly, Modelling Filters in Light Alloy Casting Processes, University of Birmingham, 2002 American Foundry Society AFS Transactions 02-079, Kansas City, MO

3-02 Mark Jolly, Mike Cox, Jean-Christophe Gebelin, Sam Jones, and Alex Cendrowicz, Fundamentals of Investment Casting (FOCAST), Modelling the Investment Casting Process, Some preliminary results from the UK Research Programme, IRC in Materials, University of Birmingham, UK, AFS2001

49-01   Hua Bai and Brian G. Thomas, Bubble formation during horizontal gas injection into downward-flowing liquid, Metallurgical and Materials Transactions B, Vol. 32, No. 6, pp. 1143-1159, 2001. doi.org/10.1007/s11663-001-0102-y

45-01 Jan Zuidema; Laurens Katgerman; Ivo J. Opstelten;Jan M. Rabenberg, Secondary Cooling in DC Casting: Modelling and Experimental Results, TMS 2001, New Orleans, Louisianna, February 11-15, 2001

43-01 James Andrew Yurko, Fluid Flow Behavior of Semi-Solid Aluminum at High Shear Rates,Ph.D. thesis; Massachusetts Institute of Technology, June 2001. Abstract only; full thesis available at http://dspace.mit.edu/handle/1721.1/8451 (for a fee).

33-01 Juang, S.H., CAE Application on Design of Die Casting Dies, 2001 Conference on CAE Technology and Application, Hsin-Chu, Taiwan, November 2001, (article in Chinese with English-language abstract)

32-01 Juang, S.H. and C. M. Wang, Effect of Feeding Geometry on Flow Characteristics of Magnesium Die Casting by Numerical Analysis, The Preceedings of 6th FADMA Conference, Taipei, Taiwan, July 2001, Chinese language with English abstract

26-01 C. W. Hirt., Predicting Defects in Lost Foam Castings, December 13, 2001

21-01 P. Scarber Jr., Using Liquid Free Surface Areas as a Predictor of Reoxidation Tendency in Metal Alloy Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

20-01 P. Scarber Jr., J. Griffin, and C. E. Bates, The Effect of Gating and Pouring Practice on Reoxidation of Steel Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

19-01 L. Wang, T. Nguyen, M. Murray, Simulation of Flow Pattern and Temperature Profile in the Shot Sleeve of a High Pressure Die Casting Process, CSIRO Manufacturing Science and Technology, Melbourne, Victoria, Australia, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, To1-014

18-01 Rajiv Shivpuri, Venkatesh Sankararaman, Kaustubh Kulkarni, An Approach at Optimizing the Ingate Design for Reducing Filling and Shrinkage Defects, The Ohio State University, Columbus, OH, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, TO1-052

5-01 Michael Barkhudarov, Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Diecasting World, March 2001, pp. 5-6

2-01 J. Grindling, Customized CFD Codes to Simulate Casting of Thermosets in Full 3D, Electrical Manufacturing and Coil Winding 2000 Conference, October 31-November 2, 20

20-00 Richard Schuhmann, John Carrig, Thang Nguyen, Arne Dahle, Comparison of Water Analogue Modelling and Numerical Simulation Using Real-Time X-Ray Flow Data in Gravity Die Casting, Australian Die Casting Association Die Casting 2000 Conference, September 3-6, 2000, Melbourne, Victoria, Australia

15-00 M. Sirvio, Vainola, J. Vartianinen, M. Vuorinen, J. Orkas, and S. Devenyi, Fluid Flow Analysis for Designing Gating of Aluminum Castings, Proc. NADCA Conf., Rosemont, IL, Nov 6-8, 1999

14-00 X. Yang, M. Jolly, and J. Campbell, Reduction of Surface Turbulence during Filling of Sand Castings Using a Vortex-flow Runner, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

13-00 H. S. H. Lo and J. Campbell, The Modeling of Ceramic Foam Filters, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

12-00 M. R. Jolly, H. S. H. Lo, M. Turan and J. Campbell, Use of Simulation Tools in the Practical Development of a Method for Manufacture of Cast Iron Camshafts,” Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August, 2000

14-99 J Koke, and M Modigell, Time-Dependent Rheological Properties of Semi-solid Metal Alloys, Institute of Chemical Engineering, Aachen University of Technology, Mechanics of Time-Dependent Materials 3: 15-30, 1999

12-99 Grun, Gerd-Ulrich, Schneider, Wolfgang, Ray, Steven, Marthinusen, Jan-Olaf, Recent Improvements in Ceramic Foam Filter Design by Coupled Heat and Fluid Flow Modeling, Proc TMS Annual Meeting, 1999, pp. 1041-1047

10-99 Bongcheol Park and Jerald R. Brevick, Computer Flow Modeling of Cavity Pre-fill Effects in High Pressure Die Casting, NADCA Proceedings, Cleveland T99-011, November, 1999

8-99 Brad Guthrie, Simulation Reduces Aluminum Die Casting Cost by Reducing Volume, Die Casting Engineer Magazine, September/October 1999, pp. 78-81

7-99 Fred L. Church, Virtual Reality Predicts Cast Metal Flow, Modern Metals, September, 1999, pp. 67F-J

19-98 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Numerical Modeling of Fluid Flow Phenomena in the Launder-integrated Tool Within Casting Unit Development, Proc TMS Annual Meeting, 1998, pp. 1175-1182

18-98 X. Yang & J. Campbell, Liquid Metal Flow in a Pouring Basin, Int. J. Cast Metals Res, 1998, 10, pp. 239-253

15-98 R. Van Tol, Mould Filling of Horizontal Thin-Wall Castings, Delft University Press, The Netherlands, 1998

14-98 J. Daughtery and K. A. Williams, Thermal Modeling of Mold Material Candidates for Copper Pressure Die Casting of the Induction Motor Rotor Structure, Proc. Int’l Workshop on Permanent Mold Casting of Copper-Based Alloys, Ottawa, Ontario, Canada, Oct. 15-16, 1998

10-98 C. W. Hirt, and M.R. Barkhudarov, Lost Foam Casting Simulation with Defect Prediction, Flow Science Inc, presented at Modeling of Casting, Welding and Advanced Solidification Processes VIII Conference, June 7-12, 1998, Catamaran Hotel, San Diego, California

9-98 M. R. Barkhudarov and C. W. Hirt, Tracking Defects, Flow Science Inc, presented at the 1st International Aluminum Casting Technology Symposium, 12-14 October 1998, Rosemont, IL

5-98 J. Righi, Computer Simulation Helps Eliminate Porosity, Die Casting Management Magazine, pp. 36-38, January 1998

3-98 P. Kapranos, M. R. Barkhudarov, D. H. Kirkwood, Modeling of Structural Breakdown during Rapid Compression of Semi-Solid Alloy Slugs, Dept. Engineering Materials, The University of Sheffield, Sheffield S1 3JD, U.K. and Flow Science Inc, USA, Presented at the 5th International Conference Semi-Solid Processing of Alloys and Composites, Colorado School of Mines, Golden, CO, 23-25 June 1998

1-98 U. Jerichow, T. Altan, and P. R. Sahm, Semi Solid Metal Forming of Aluminum Alloys-The Effect of Process Variables Upon Material Flow, Cavity Fill and Mechanical Properties, The Ohio State University, Columbus, OH, published in Die Casting Engineer, p. 26, Jan/Feb 1998

8-97 Michael Barkhudarov, High Pressure Die Casting Simulation Using FLOW-3D, Die Casting Engineer, 1997

15-97 M. R. Barkhudarov, Advanced Simulation of the Flow and Heat Transfer Process in Simultaneous Engineering, Flow Science report, presented at the Casting 1997 – International ADI and Simulation Conference, Helsinki, Finland, May 28-30, 1997

14-97 M. Ranganathan and R. Shivpuri, Reducing Scrap and Increasing Die Life in Low Pressure Die Casting through Flow Simulation and Accelerated Testing, Dept. Welding and Systems Engineering, Ohio State University, Columbus, OH, presented at 19th International Die Casting Congress & Exposition, November 3-6, 1997

13-97 J. Koke, Modellierung und Simulation der Fließeigenschaften teilerstarrter Metallegierungen, Livt Information, Institut für Verfahrenstechnik, RWTH Aachen, October 1997

10-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics – Part 2 Fiber Orientation, Body-in-White Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 6, June 1997

9-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics. Part 1 – Injection Pressures and Flow, Manufacturing Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 3, March 1997

8-97 H. Grazzini and D. Nesa, Thermophysical Properties, Casting Simulation and Experiments for a Stainless Steel, AT Systemes (Renault) report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

7-97 R. Van Tol, L. Katgerman and H. E. A. Van den Akker, Horizontal Mould Filling of a Thin Wall Aluminum Casting, Laboratory of Materials report, Delft University, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

6-97 M. R. Barkhudarov, Is Fluid Flow Important for Predicting Solidification, Flow Science report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

22-96 Grun, Gerd-Ulrich & Schneider, Wolfgang, 3-D Modeling of the Start-up Phase of DC Casting of Sheet Ingots, Proc TMS Annual Meeting, 1996, pp. 971-981

9-96 M. R. Barkhudarov and C. W. Hirt, Thixotropic Flow Effects under Conditions of Strong Shear, Flow Science report FSI96-00-2, to be presented at the “Materials Week ’96” TMS Conference, Cincinnati, OH, 7-10 October 1996

4-96 C. W. Hirt, A Computational Model for the Lost Foam Process, Flow Science final report, February 1996 (FSI-96-57-R2)

3-96 M. R. Barkhudarov, C. L. Bronisz, C. W. Hirt, Three-Dimensional Thixotropic Flow Model, Flow Science report, FSI-96-00-1, published in the proceedings of (pp. 110- 114) and presented at the 4th International Conference on Semi-Solid Processing of Alloys and Composites, The University of Sheffield, 19-21 June 1996

1-96 M. R. Barkhudarov, J. Beech, K. Chang, and S. B. Chin, Numerical Simulation of Metal/Mould Interfacial Heat Transfer in Casting, Dept. Mech. & Process Engineering, Dept. Engineering Materials, University of Sheffield and Flow Science Inc, 9th Int. Symposium on Transport Phenomena in Thermal-Fluid Engineering, June 25-28, 1996, Singapore

11-95 Barkhudarov, M. R., Hirt, C.W., Casting Simulation Mold Filling and Solidification-Benchmark Calculations Using FLOW-3D, Modeling of Casting, Welding, and Advanced Solidification Processes VII, pp 935-946

10-95 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Optimal Design of a Distribution Pan for Level Pour Casting, Proc TMS Annual Meeting, 1995, pp. 1061-1070

9-95 E. Masuda, I. Itoh, K. Haraguchi, Application of Mold Filling Simulation to Die Casting Processes, Honda Engineering Co., Ltd., Tochigi, Japan, presented at the Modelling of Casting, Welding and Advanced Solidification Processes VII, The Minerals, Metals & Materials Society, 1995

6-95 K. Venkatesan, Experimental and Numerical Investigation of the Effect of Process Parameters on the Erosive Wear of Die Casting Dies, presented for Ph.D. degree at Ohio State University, 1995

5-95 J. Righi, A. F. LaCamera, S. A. Jones, W. G. Truckner, T. N. Rouns, Integration of Experience and Simulation Based Understanding in the Die Design Process, Alcoa Technical Center, Alcoa Center, PA 15069, presented by the North American Die Casting Association, 1995

2-95 K. Venkatesan and R. Shivpuri, Numerical Simulation and Comparison with Water Modeling Studies of the Inertia Dominated Cavity Filling in Die Casting, NUMIFORM, 1995

1-95 K. Venkatesan and R. Shivpuri, Numerical Investigation of the Effect of Gate Velocity and Gate Size on the Quality of Die Casting Parts, NAMRC, 1995.

15-94 D. Liang, Y. Bayraktar, S. A. Moir, M. Barkhudarov, and H. Jones, Primary Silicon Segregation During Isothermal Holding of Hypereutectic AI-18.3%Si Alloy in the Freezing Range, Dept. of Engr. Materials, U. of Sheffield, Metals and Materials, February 1994

13-94 Deniece Korzekwa and Paul Dunn, A Combined Experimental and Modeling Approach to Uranium Casting, Materials Division, Los Alamos National Laboratory, presented at the Symposium on Liquid Metal Processing and Casting, El Dorado Hotel, Santa Fe, New Mexico, 1994

12-94 R. van Tol, H. E. A. van den Akker and L. Katgerman, CFD Study of the Mould Filling of a Horizontal Thin Wall Aluminum Casting, Delft University of Technology, Delft, The Netherlands, HTD-Vol. 284/AMD-Vol. 182, Transport Phenomena in Solidification, ASME 1994

11-94 M. R. Barkhudarov and K. A. Williams, Simulation of ‘Surface Turbulence’ Fluid Phenomena During the Mold Filling Phase of Gravity Castings, Flow Science Technical Note #41, November 1994 (FSI-94-TN41)

10-94 M. R. Barkhudarov and S. B. Chin, Stability of a Numerical Algorithm for Gas Bubble Modelling, University of Sheffield, Sheffield, U.K., International Journal for Numerical Methods in Fluids, Vol. 19, 415-437 (1994)

16-93 K. Venkatesan and R. Shivpuri, Numerical Simulation of Die Cavity Filling in Die Castings and an Evaluation of Process Parameters on Die Wear, Dept. of Industrial Systems Engineering, Presented by: N.A. Die Casting Association, Cleveland, Ohio, October 18-21, 1993

15-93 K. Venkatesen and R. Shivpuri, Numerical Modeling of Filling and Solidification for Improved Quality of Die Casting: A Literature Survey (Chapters II and III), Engineering Research Center for Net Shape Manufacturing, Report C-93-07, August 1993, Ohio State University

1-93 P-E Persson, Computer Simulation of the Solidification of a Hub Carrier for the Volvo 800 Series, AB Volvo Technological Development, Metals Laboratory, Technical Report No. LM 500014E, Jan. 1993

13-92 D. R. Korzekwa, M. A. K. Lewis, Experimentation and Simulation of Gravity Fed Lead Castings, in proceedings of a TMS Symposium on Concurrent Engineering Approach to Materials Processing, S. N. Dwivedi, A. J. Paul and F. R. Dax, eds., TMS-AIME Warrendale, p. 155 (1992)

12-92 M. A. K. Lewis, Near-Net-Shaiconpe Casting Simulation and Experimentation, MST 1992 Review, Los Alamos National Laboratory

2-92 M. R. Barkhudarov, H. You, J. Beech, S. B. Chin, D. H. Kirkwood, Validation and Development of FLOW-3D for Casting, School of Materials, University of Sheffield, Sheffield, UK, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

1-92 D. R. Korzekwa and L. A. Jacobson, Los Alamos National Laboratory and C.W. Hirt, Flow Science Inc, Modeling Planar Flow Casting with FLOW-3D, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

12-91 R. Shivpuri, M. Kuthirakulathu, and M. Mittal, Nonisothermal 3-D Finite Difference Simulation of Cavity Filling during the Die Casting Process, Dept. Industrial and Systems Engineering, Ohio State University, presented at the 1991 Winter Annual ASME Meeting, Atlanta, GA, Dec. 1-6, 1991

3-91 C. W. Hirt, FLOW-3D Study of the Importance of Fluid Momentum in Mold Filling, presented at the 18th Annual Automotive Materials Symposium, Michigan State University, Lansing, MI, May 1-2, 1991 (FSI-91-00-2)

11-90 N. Saluja, O.J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Melts, accepted in J. Appl. Physics, 1990

10-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Molds in Continuous Castings, presented at the 6th Iron and Steel Congress of the Iron and Steel Institute of Japan, Nagoya, Japan, October 1990

9-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, Fluid Flow in Phenomena in the Electromagnetic Stirring of Continuous Casting Systems, Part I. The Behavior of a Cylindrically Shaped, Laboratory Scale Installation, accepted for publication in Steel Research, 1990

8-89 C. W. Hirt, Gravity-Fed Casting, Flow Science Technical Note #20, July 1989 (FSI-89-TN20)

6-89 E. W. M. Hansen and F. Syvertsen, Numerical Simulation of Flow Behaviour in Moldfilling for Casting Analysis, SINTEF-Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology, Trondheim, Norway, Report No. STS20 A89001, June 1989

1-88 C. W. Hirt and R. P. Harper, Modeling Tests for Casting Processes, Flow Science report, Jan. 1988 (FSI-88-38-01)

2-87 C. W. Hirt, Addition of a Solidification/Melting Model to FLOW-3D, Flow Science report, April 1987 (FSI-87-33-1)

고성능 컴퓨터(HPC)에 대한 이해

본 자료는 수치해석을 업무로 수행하는 엔지니어들의 고성능 컴퓨터에 대한 이해를 돕기 위해 https://www.amd.com/ko/technologies/hpc-explained 를 인용한 자료입니다.
본 자료의 모든 저작권은 https://www.amd.com에 있습니다.

고성능 컴퓨팅 안내

신약 개발에 걸리는 기간이 수년에서 수일로 단축된다고 상상해 보십시오. 고성능 컴퓨팅(HPC)은 시뮬레이션, 모델 및 분석을 통해 이러한 유형은 물론 기타 첨단 과학 문제를 해결할 수 있습니다. 이러한 시스템은 세계의 여러 주요 문제에 대한 해결책을 제공하여 “4차 산업혁명”으로 가는 길을 제시합니다.1 HPC 시스템은 이미 다음과 같은 용도로 사용되고 있습니다.

  • 여러 유형의 암과 기타 질병 퇴치를 위한 신약 화합물 개발 및 시험2
  • 방탄복과 같은 신소재 개발을 위한 분자 역학 시뮬레이션3
  • 영향을 받는 지역사회가 더 효과적으로 대비하도록 돕기 위한 중요한 기상 변화 예측4

슈퍼컴퓨터는 최첨단 HPC 시스템을 대표합니다. 슈퍼컴퓨터의 고유한 역량은 기능의 발전에 따라 시간이 지나면서 변화하는 표준에 좌우됩니다. 단일 슈퍼컴퓨팅 클러스터에는 수만 개의 프로세서가 포함될 수 있으며 세계 최고 성능의 최고가 시스템의 가격은 1억 달러 이상에 달합니다.5

HPC의 작동 방식

HPC에서 정보를 처리하는 두 가지 주요 방법:

직렬 처리를 중앙 처리 장치(CPU)에서 수행합니다. 일반적으로 각 CPU 코어에서 한 번에 한 작업만 처리합니다. CPU는 운영체제 및 기본적인 애플리케이션(예: 워드 프로세싱, 사무 생산성)과 같은 기능에 있어 필수적입니다.serial processing chart

병렬 처리를 여러 CPU 또는 그래픽 처리 장치(GPU)를 통해 수행할 수 있습니다. 원래는 전용 그래픽 용으로 개발된 GPU는 데이터 매트릭스(예: 화면 픽셀)에 대해 동시에 여러 산술 연산을 수행할 수 있습니다. GPU는 수많은 데이터 계층에서 동시에 작업할 수 있기 때문에 동영상에서 객체를 인식하는 것과 같은 머신 러닝(ML) 애플리케이션 작업에서 병렬 처리를 수행하는 데 적합합니다.parallel processing chart

슈퍼컴퓨팅의 잠재력을 극대화하기 위해서는 다양한 시스템 아키텍처가 필요합니다. 대부분의 HPC 시스템은 초고대역폭 상호 연결을 통해 여러 프로세서 및 메모리 모듈을 취합하여 병렬 처리를 지원합니다. 일부 HPC 시스템은 CPU와 GPU를 결합하는 데 이를 이기종 컴퓨팅이라고 합니다.

컴퓨터의 컴퓨팅 성능은 “FLOPS”(초당 부동 소수점 연산)라는 단위로 측정됩니다. 2019년 초반 현재 최고 수준의 슈퍼 컴퓨터는 143.5페타FLOPS(143 × 1015)를 처리할 수 있습니다. 페타스케일라고 하는 이러한 수준의 슈퍼컴퓨터는 천조 이상의 FLOPS를 수행합니다. 그에 비해, 하이엔드 게이밍 데스크탑은 속도가 1/1,000배 미만으로 약 200기가FLOPS(1 × 109)를 처리하는 데 그칩니다. 프로세싱과 처리 성능 모두에서 슈퍼컴퓨팅 혁신이 이루어지면 머지않아 엑사스케일 수준의 슈퍼컴퓨팅으로 발전하여 페타스케일보다 약 1,000배 빠른 속도가 실현될 것입니다. 이는 엑사스케일 슈퍼컴퓨터가 초당 1018(또는 10억 x 10억)의 연산을 수행할 수 있음을 의미합니다.evolution processing power

“FLOPS”는 이론적 처리 속도를 나타냅니다 – 프로세서에 지속적으로 데이터를 전송하는 데 필요한 속도를 파악합니다. 그러므로, 데이터 처리율이 반드시 시스템 디자인에 반영되어야 합니다. 프로세싱 노드 간 상호 연결과 함께 시스템 메모리가 데이터의 프로세서 도달 속도에 영향을 줍니다.supercomputer representative power

차세대 슈퍼컴퓨터가 구현하는 1 exaFLOP의 처리 성능은 5,000,000대에 달하는 데스크탑 컴퓨터의 성능에 필적합니다.*

*각 데스크탑의 처리 성능을 200기가FLOPS로 가정

스마트한 용어

  • 고성능 컴퓨팅 (HPC): 단일 컴퓨터(예: 1개의 CPU + 8개의 GPU)부터 세계적 수준의 슈퍼컴퓨터를 아우르는 폭넓은 범위의 강력한 컴퓨팅 시스템
  • 슈퍼컴퓨터: 진화하는 성능 표준에 기반한 최고 수준의 HPC
  • 이기종 컴퓨팅: 직렬(CPU) 및 병렬(GPU) 처리 기능을 최적화하는 HPC 아키텍처
  • 메모리: 데이터에 신속하게 액세스하기 위해 HPC 시스템에서 데이터가 저장되는 위치
  • 인터커넥트: 프로세싱 노드 간 통신을 지원하는 시스템 계층, 여러 수준의 상호 연결이 슈퍼컴퓨터 내에 존재
  • 페타스케일: 초당 1,000조(1015)의 계산을 수행하기 위해 설계된 슈퍼컴퓨터
  • 엑사스케일: 초당 100경(1018)의 계산을 수행하기 위해 설계된 슈퍼컴퓨터

새로운 이용 사례

기술 수준이 향상되면서, HPC는 더욱 폭넓은 기능으로 확장되었습니다. 오늘날 처리 능력과 메모리가 그 어느 때보다 향상되어 보다 복잡한 문제를 해결할 수 있게 되었습니다.

  • 머신 러닝: 인공지능(AI), 머신 러닝(ML)의 하위집합으로서 수행 지침을 수동적으로 받아들이는 대신 스스로 학습할 수 있는 시스템을 말합니다. HPC 시스템은 사진에서 흑색 종을 감지하는 암 연구와 같이 방대한 양의 데이터를 분석하는 높은 수준의 ML에 사용할 수 있습니다.6
  • 빅 데이터 분석: 학술, 과학, 금융, 비즈니스, 의료, 사이버 보안 및 정부 애플리케이션 부문의 연구 및 문제 해결을 보완하기 위해 대량의 데이터 세트를 신속하게 비교하고 상관 관계를 분석합니다. 이 작업에는 대규모 처리 및 컴퓨팅 기능이 필요합니다. 매년 50페타바이트의 임무 데이터가 생성되는 NASA에서는 슈퍼컴퓨팅을 활용해 관측을 분석하고 방대한 정보를 바탕으로 시뮬레이션을 실행합니다.7
  • 고급 모델링 및 시뮬레이션: 기업은 초기 단계에서 물리적 구축을 수행하지 않고도, 고급 모델링 및 시뮬레이션을 통해 혁신적인 제품을 더 빨리 출시하고 시간, 재료 및 인건비를 절약할 수 있습니다. HPC 모델링 및 시뮬레이션은 신약 개발 및 시험, 자동차 및 항공 우주 설계, 기후 예측/기상 관측, 에너지 애플리케이션 부문에서 활용됩니다.8

AMD가 엑사스케일에 대한 드라이브를 실현하는 방식

미국에너지국(DOE)/버클리 연구소(Berkeley Lab), 로렌스 리버모어 국립 연구소(U.S. Lawrence Livermore National Laboratory), 슈투트가르트 대학(University of Stuttgart) 및 CSC(핀란드 IT 과학 센터)의 최신 시스템과 같은 세계 최고 성능의 슈퍼컴퓨터가 바로 AMD 기술에 기반합니다.9

가까운 미래에 엑사스케일 수준의 최적의 슈퍼컴퓨터 설계를 실현하기 위해서는 더욱 강력한 처리 성능 및 프로세싱 기능(CPU 및 GPU 모두에서)이 필요합니다. 고성능 컴퓨팅과 그래픽 기술 부문 모두에서 업계 리더인 AMD는 HPC 시스템을 최적화하는 데 있어 몇 가지 고유한 이점을 제시합니다. 미국에너지국(DOE)에서 추진하는 엑사스케일 컴퓨팅 프로젝트의 일환으로, AMD는 미국 최초로 엑사스케일 수준의 슈퍼컴퓨터를 개발하기 위한 기술을 발전시키기 위해 미국 정부와 파트너십을 맺었습니다.10 이 작업에는 CPU 및 GPU 마이크로아키텍처, 메모리 시스템, 구성 요소 통합 및 고속 인터커넥트에 중점을 둔 연구가 포함되었습니다.

exascale desktop icon데스크탑

지역 전력망에 대한 하나의 동적 시나리오를 실시간으로 시뮬레이션합니다.

petascale iconn페타스케일

국가 전력망에 대한 수만 개의 동적 시나리오를 실시간으로 시뮬레이션합니다.

exascale  icon엑사스케일

전 세계 전력망에 대한 수백만 개의 동적 시나리오를 생성 및 수요에 관한 정의되지 않은 변수를 적용해 실시간으로 시뮬레이션합니다.

미래로 나아가는 힘과 자유

엑사스케일 컴퓨팅은 맞춤형 의료, 탄소 포집, 천체 물리학, 시장 경제학 및 바이오 연료 분야의 발전에 기여할 잠재성이 있습니다. 전문가들이 날씨를 더 정확히 예측하고, 더 복잡한 수학적 문제를 해결하며, 우주의 더 먼 곳까지 탐험하고, 에너지 절감형 전력망을 구축하는 데 도움이 될 것입니다.11 차세대 슈퍼컴퓨팅을 위한 공동의 노력과 이러한 시스템이 사회에 기여할 수 있는 긍정적인 영향을 바탕으로, AMD는 미래의 컴퓨팅 시스템의 성능, 에너지 효율성, 신뢰성 및 프로그래밍의 향상을 위한 연구와 자원에 주력하고 있습니다.

자세히 알아보기: https://www.amd.com/hpc

2019년 소개된 강력한 PC 하드웨어 소개

고성능 컴퓨팅(HPC)

고성능 컴퓨팅(HPC)은 과학, 공학 또는 거대한 비지니스 요구 사항들을 해결하기 위해, 우리가 흔히 사용하는 일반적인 데스크탑 컴퓨터나 워크스테이션보다 훨씬 더 높은 성능을 발휘하도록 컴퓨팅 파워를 결합하여 고성능을 발휘하도록 하는 것을 의미합니다.
시뮬레이션이나 분석과 같은 HPC  워크로드는 계산 속도, 메모리 사용 및 데이터 관리가 매우 중요합니다.
클러스터나 슈퍼컴퓨터라고도 불리는 일반적인 HPC 시스템은 고속의 네트워크에 연결된 다수의 서버를 이용한 확장을 통해, 여러 애플리케이션들을 병렬 실행하도록 설계됩니다.
HPC 시스템에는 관련 소프트웨어, 도구, 구성요소, 스토리지 및 서비스가 포함된 경우가 많습니다.

고성능 컴퓨팅은 일반적으로

  • 100Gbps의 초고속 네트워킹
  • 확장 가능한 고성능 스토리지
  • 고성능 컴퓨팅 소프트웨어 스텍 (최근에는 거의 Linux가 대세로 자리 잡음)
  • 에너지 효율성
  • GPU 가속지원

등이 핵심 성능지표로 고려되어 개발됩니다.
이러한 컴퓨터는 매우 고가이고 특별한 관리환경과 전문가들이 필요하여, 일반인들은 쉽게 접하기가 어렵습니다.
그러나 최근에는 시스템 구성은 전문가들이 하고, 시스템 사용은 일반 엔지니어들이 사용할 수 있도록 UI나 시스템 사용환경이 많이 편리해져서 대기업이나 국책 연구기관의 연구원들이 쉽게 사용할 수 있는 기반이 많이 갖추어져 있습니다.

이러한 HPC와는 스케일 규모면에서는 차이가 많지만, 최근에는 단일 컴퓨터에서도 많은 core로 구성된, 수퍼컴에 가까운 단일 컴퓨팅 고성능 PC가 판매되고 있습니다.
따라서 본 기사에서는 고성능 PC 하드웨어를 통해 수치해석을 수행할 수 있는 전세계의 최신 컴퓨터 기술을 소개하는 PC 기반 하드웨어 기사를 소개합니다.
본 기사는 itworld 에서 작성된 자료입니다.

AMD 라이젠 3000 리뷰 | 인텔의 시대를 끝내러 왔다

2019.07.09
업데이트 기사에서는 성능 테스트 결과 중 3D 뷰포트와 시너지 시네스코어(Cinescore) 성능 결과를 더했다. 또한, 게임 외적인 이유로 데이터에 나타나지 않았던 파 크라이(Far Cry) 5와 데우스 엑스: 맨카인드 유나이티드(Deus Ex: Mankind United)에서의 구형 라이젠 칩 게이밍 벤치마크 차트도 추가했다.

AMD의 12코어 라이젠 9 3900X CPU 리뷰를 한마디로 요약한 문장은 이렇지 않을까?“와, 이 CPU 진짜 빠르다.”

그러나 결론만 보기는 아쉽다. 라이젠 9 3900X는 1GHz를 처음으로 넘어섰던 AMD의 오리지널 K7 애슬론 시리즈 CPU, 데스크톱 PC의 64비트 시대를 열었던 애슬론 64 CPU만큼이나 중요한, 시장을 바꾸는 CPU가 될 물건이기 때문이다.

라이젠 9 3900X가 앞으로 저런 제품이 세운 위대함을 달성하기 어려울 것이라고 생각할지 모른다. 이전 세대의 무시무시한 게이밍 성능 지표를 모두 넘어서는 정도는 아니다. 그러나 발매 직후의 혼란이 가라앉으면 AMD 라이젠 3000 시리즈는 단숨에 가장 인기 있는 CPU가 될 것이다.

라이젠 3000 시리즈는 어찌됐든 7나노 공정으로 생산된 최초의 사용자 x86 칩이다. 인텔의 현재 데스크톱 칩은 모두 아직도 14나노 공정으로 제작된다. 올해 말쯤 되어야 10나노 공정으로의 이전이 시작될 것이다. AMD가 7나노 공정에 먼저 도달한 것을 부러워하면서 말이다.

기술적인 우위를 바탕으로 AMD는 라이젠 3000을 위해 재설계된 2세대 젠 코어를 발표했다. 이전 라이젠 2000 시리즈에 비해 부동 소수점 성능이 2배 증가했고, 클럭당 명령어 처리 횟수가 15% 향상되었다.

AMD는 명령 프리-패치를 개선했고, 명령 캐시를 한층 강화했고, 마이크로-op 캐시를 2배로 늘렸다고 말했다. AMD는 부동 소수점 성능을 2배로 늘린 것에 더해 이제 AVX-256까지 도입했다(256비트 고급 벡터 확장). 인텔 코어는 AVX-512이다. 오늘날 AVX는 주로 동영상 인코딩 분야에 영향을 주지만, 다른 분야에서도 진가를 발휘한다.

AMD는 기본적으로 라이젠 3000 칩에서 L3 캐시를 2배 늘리고, 이것을 게임 캐시라고 부르면서 애플과 비슷한 마케팅을 펼치고 있다. 라이젠 9 3900X에서 70MB를 차지하는 이 캐시는 라이젠 3000 시리즈의 메모리 지연성을 크게 줄인다. 또 CPU의 게이밍 성능을 극적으로 향상한다. 그래서 게임 캐시라고 부르면서 일반 사용자의 이해를 돕고 있다.  게임 캐시는 애플리케이션 성능 개선에도 유용하지만, 앱 캐시라고 불렀을 때 기뻐할 사람은 아무도 없을 테니까.

라이젠 3000 시리즈에는 7나노 CCD가 2개 들어간다. ⓒAMD

코어와 함께 칩셋 설계도 크게 손을 보았다. 처음의 젠 기반 라이젠은 메모리 및 PCIe 컨트롤러가 인피니티 패브릭으로 결합된 2개의 14 나노 CCD를 특징으로 했다. 젠 2에 기반한 라이젠 3000은 메모리 컨트롤러와 PCIe 4.0 컨트롤러를 별개의 IO 다이로 분리한다. 7나노 연산 코어와 달리 IO 다이는 12나노 공정으로 제작된다. 이는 CPU의 전체 원가 절감에 기여한다. 7나노 공정 웨이퍼가 훨씬 가치 있는데, AMD의 팹 협력사인 TSMC가 IO 다를 제작에 사용하지 않아도 되기 때문이다.

여기서 중요한 질문은 GPU가 제한 요소가 아닌 상황에서, 오랫동안 라이젠 성능의 발목을 잡았던 게이밍 문제가 마침내 해소되었느냐는 것이다. 차이는 이제 매우 근소해졌다. 심지어 엔비디아의 무자비하게 빠른 RTX 2080 Ti를 구동하더라도 거의 99% 문제가 없을 것이다.

PCIe4.0?!

그렇다. PCIe4.0이다. PCIe의 차세대 버전 PCIe4.0은 기본적으로 클럭 속도와 스루풋을 PCIe3.0보다 2배로 늘린다. AMD가 PCIe4.0으로 이동한 것도 또 한가지 유리한 점이다. 인텔은 CPU에서 PCIe3.0 속도로 정체되어 있고, 마찬가지로 엔비디아도 PCIe3.0 기반 GPU만을 보유한 상황이다.

현재 PCIe 4.0 실제 성능은 SSD를 제외하고 손쉽게 구현하기 어려울 것이다. 그러나 새 표준은 PC에서 더 많은 경로와 더 많은 포트를 지원한다. PCIe4.0 SSD의 혜택을 원한다면 AMD의 라이젠 3000과 새 X570 칩셋이 유일한 수단이다.

PCIe의 설명 자료는 여기서 소개한다(all about PCIe 4.0). 개발 초기 단계인 PCIe5.0과 PCIe6.0이 동시에 존재해 혼란을 준다면, 초기 사양이 실제 하드웨어로 구현되기까지는 시간이 걸린다는 점을 기억하기 바란다. 기본적으로 PCIe 4.0가 현재의 유일한 해법이고, AMD는 이 성과를 자랑할만하다.

가격

아직 가격이 남았다. 인텔의 플래그십 제품인 8코어의 코어 i9-9900K는 488달러인 반면, 더 빠르지는 않더라도 최소한 같다고 주장하는 AMD의 12코어는 499달러에 RGB 쿨러를 더했다.

AMD 라이젠 3000 제품군은 가격으로 인텔 제품을 압박한다. ⓒAMD

쓰레드당 가격은 AMD가 인텔보다 우세하다. 각종 CPU의 쓰레드당 가격 차트를 보면 라이젠 9 3900X는 쓰레드당 21달러이고, 코어 i9-9900K는 31달러로 게임이 되지 않는 지경이다.

ⓒAMD

그러나 쓰레드당 가격, 환상적인 7나노 공정도 성능이 뒷받침되지 않는다면 가치가 없다. 그럼 이제부터 라이젠 9 3900X가 얼마나 빠른지 살펴보자.

테스트 방법

이번 리뷰에는 대표적 CPU 3개를 선택했다. AMD의 2세대 라이젠 7 2700X가 테스트의 기준으로 활용된다. 두 번째는 최고의 경쟁자인 488달러의 인텔의 코어 i9-9900K이다. 마지막은 AMD의 499달러짜리 라이젠 9 3900K이다.

CPU는 나란히 테스트되었다. 라이젠 7 2700X는 MSI X470 게이밍 M7 AC에, 코어 i9-9900K는 아수스 막스무스 XI 히어로에, 라이젠 9 3900X는 MSI X5700 가드라이크에 각각 탑재했다.

그래픽의 경우 초반 CPU와 게임 테스트는 파운더스 에디션 지포스 GTX 1080를 사용하였다. 추가적 게임 테스트에서는 파운더스 에디션 지포스 RTX2080 Ti 카드를 이용하였다.

세 PC 모두 최신 UEFI/BIOS와 드라이버를 이용하고, 윈도우 10 프로페셔널 1903을 새로 설치하였다. 윈도우 버전은 특히 중요하다. AMD가 이제 버전 1903에 스케줄 최적화가 포함되어 라이젠 3000에서 더 효율적으로 쓰레드를 전송할 수 있다고 말했기 때문이다.

기억할 점은 AMD의 CPU는 CPU 코어의 작은 집단과 빠른 속도를 갖도록 구축되지만 CPU 코어 집단 사이의 액세스 속도는 더 느리다는 것이다. 구 버전 윈도우에서 스케줄러는 클러스터 내의 한 집단으로 한 쓰레드를 전송한다. 윈도우는 멀티 다이 설계를 감안하여 설계되지 않았기 때문에 두 번째 쓰레드를 다른 CPU 코어 클러스터로 전송할 것이고 이는 성능을 낮추는 원인이 된다.

단순히 두 쓰레드를 같은 CPU 코어 클러스터로 전송하는 경우가 아니면, 두 코어 클러스터 사이의 교차를 처리해야 하기 때문에 속도가 느려지는 것이다. 이제 이 문제가 해소되었다. 윈도우 1903은 가능한 경우 동일한 CPU 코어 클러스터로 쓰레드를 전송할 것이다. AMD의 주장에 따르면 윈도우의 변화를 통해 최대 15%의 성능 향상을 가져올 수 있다. 다만, 모든 애플리케이션에서 적용되는 것은 아니므로 애플리케이션마다 차이가 있을 것이라고 전했다.

ⓒAMD

세 빌드에서 모두 듀얼 채널 모드의 DDR4를 동일하게 이용했지만, 한 가지 차이를 두었다. 코어i9-9900K와 라이젠 7 2700X는 16GB DDR4/3200 CL 14를 이용했고, 라이젠 9 3900K는 16GB DDR4/3600 CL 15를 이용했다. 라이젠 9를 최적의 메모리 클럭인 3,600MHz로 테스트하고 싶었기 때문이다. 3,200 MHz에서도 역시 테스트할 예정이다. 시간적 제약으로 인해 먼저 DDR4/3600 성능만 제시하고, 시간이 허락하면 DDR4/3200 테스트 결과를 추가로 업데이트할 예정이다. 그러나 AMD가 PCWorld에 밝힌 바에 따르면 DDR4/3200CL14는 DDR4/3600CL15에 비해 성능에서 큰 차이가 없다고 한다.

여기서 다른 변수는 저장 공간이다. 라이젠 7과 코어 i9은 초고속 MLC 기반의 삼성 960 프로 512GB SSD을 사용해 PCIe3의 3세대 속도로 테스트되었다. 라이젠 9 3900X는 PCIe4.0을 지원하는 최초의 CPU이자 플랫폼이다. PCIe4.0은 새 플랫폼의 핵심 기능이므로 CPU의 PCI 레인으로 직접 연결된 2TB의 커세어 MP600 PCIe 4.0 SSD를 이용하였다. 이번에 PCWorld가 실행한 테스트에서 스토리지는 CPU 성능에 영향을 주지 않을 것이다.

커세어 MP600 ⓒAMD

MCE인가, 아닌가?

코어 i9-9900K 리뷰와 마찬가지로 이번에도 ‘다중 코어 강화(Multi-Core Enhancement, MCE)’ 기능을 이용할 것인지를 놓고 의견이 엇갈렸다. MCE는 메인보드 지원 기능으로, 인텔 ‘K’ CPU를 더 높은 클럭 속도로 실행한다. 하지만, 전력 소비도 더 크고 열도 더 많이 발생한다. MCE는 기술적으로 인텔의 표준 규격을 넘긴 ‘오버클럭’으로 간주된다.

그렇다면 이 기능을 끄면 되지 않느냐고 생각할 수 있을 것이다. 그런데 문제는 거의 모든 중급 이상의 인텔 메인보드는 즉시 사용할 수 있도록 MCE가 자동으로 설정되어 있다는 점이다. 이 기능을 끈 상태로 새 CPU를 테스트한 결과는 대부분의 사용자가 경험하게 될 코어 i9-9900K의 진정한 속도와는 거리가 멀 것이다.

켠 상태로 두는 것은 더 난감하다. 왜냐하면 메인보드 업체마다 이 설정을 조금씩 다르게 구현하기 때문이다. MCE가 켜진 상태에서 성능을 정확히 측정할 수 있는 쉬운 방법은 없다.

결국 인텔 CPU에 대해 MCE를 끈 채로 테스트를 했고, AMD의 유사한 정밀 부스트 오버드라이브(Precision Boost Overdrive) 역시 끈 상태로 테스트했다. 다른 기사에서 이 부분을 한층 깊이 있게 다룰 것이다. 그러나 현재까지는 MCE를 끈 채 인텔 CPU를 실행하는 것은 PBO를 끈 채 AMD CPU를 실행하는 것보다 인텔 CPU에 훨씬 불리하다는 점은 유의해야 한다.

그렇다면 이제부터 차트의 세계로 나가도록 하자.

라이젠 9 3900x 3D 모델링 성능

12코어 CPU가 8코어를 쉽게 압도할 것이라는 점은 그다지 놀랍지 않다. ⓒIDG
라이젠 9 3900X의 싱글 쓰레드 성능이 인상적이다. ⓒIDG
시네벤치 R20으로 옮겨가면 라이젠 9 3900X의 싱글 쓰레드 성능이 더 돋보인다. ⓒIDG
라이젠 9 3900X가 인텔 코어 i9를 멀티 쓰레드 성능에서 압도하는 것은 어쩌면 당연하다. ⓒIDG
코로나 모델러 테스트 결과도 8코어보다 12코어 성능이 더 높게 나왔다. ⓒIDG
비슷한 결과다. V레이 넥스트 테스트에서도 다른 모델링 앱과 별반 다르지 않은 결과를 냈다. ⓒIDG
ⓒIDG
놀랍지도 않다. 라이젠 9가 코어 i9을 가지고 노는 수준이다. ⓒIDG
5GHz 클럭이라는 강점을 지닌 코어 i9가 라이젠 9를 싱글 쓰레드로 설정된 POV레이 테스트에서 근소하게 앞섰다. ⓒIDG
H.265 코덱을 활용한 4K 인코딩 작업에서도 라이젠 9 3900X가 월등했다. ⓒ

라이젠 9 3900X 인코딩 성능

라이젠 9 3900X는 H.265 코덱을 사용한 4K 인코딩에서 코어i9를 간단히 앞질렀다. ⓒIDG
시너지 시네스코어 10.4 테스트에서도 라이젠 9의 성능이 코어 i9 칩을 상당히 앞섰다. ⓒIDG
프리미어 CC 2019 작업에서는 코어 i9가 더 우세하다. ⓒIDG
프리미어 HEVC 인코더 프로젝트에서도 코어 i9가 우세했지만 차이는 조금 줄어들었다. ⓒIDG

포토샵 성능 테스트

포토샵 성능에서는 라이젠 9 2900X가 근소하게 앞섰다. ⓒIDG

압축 테스트

압축 테스트 결과. 라이젠 9 3900X와 라이젠 7 2700X의 성능 차가 크다. ⓒIDG
WinRAR결과는 좋게도 나쁘게도 해석할 수 있다. 라이젠 7 2700X 결과에서 보듯, WinRAR는 전통적으로 인텔 CPU와 상성이 좋았는데, 라이젠 9 3900X가 코어 i9와 크게 차이나지 않는 수준의 결과를 냈다. ⓒIDG
7ZIP 압축 테스트에서의 싱글 쓰레드 성능은 코어 i9가 조금 더 앞섰다. ⓒIDG
멀티쓰레드 성능은 라이젠 9가 압도적이었다. ⓒIDG
압축 풀기 테스트는 전통적으로 성능 확인의 정수이자 CPU가 브랜치 오예측을 얼마나 잘 감당하는지와 관련이 있었다.  ⓒIDG​​​​​
7Zip 압축 풀기 테스트에서는 3개 제품이 모두 엇비슷한 성능을 나타냈다. 가장 우수한 것은 코어 i9였다. ⓒIDG

라이젠 9 3900X의 게이밍 성능 테스트

섀도우 오브 툼 레이더는 1,920×1,080 해상도에서 플레이했는데도 GPU에 의한 병목 현상이 나타났다. ⓒIDG
최신 게임을 플레이할 때는 두 제품 모두 빠른 GPU가 필요하다. ⓒIDG
조금 더 오래된 라이즈 오브 더 툼레이더로 옮겨 가면 역시 구형인 지포스 GTX 1080 FE가 병목 현상임을 알 수 있다. ⓒIDG
라이젠 9 3900X가 코어 i9를 앞서지는 못했지만, 차이는 아주 근소하다. ⓒIDG
ⓒIDG
파 크라이 5는 코어 i9가 라이젠 시리즈를 앞선 성능을 보인 게임 중 하나다. ⓒIDG
데우스 엑스 맨카인드 디바이디드 결과. 라이젠 7과 라이젠 9의 차이에서 게임 성능 개선 폭을 짐작할 수 있다.  ⓒIDG
레인보우 식스 시지 결과 ⓒIDG
CPU 포커스드 테스트 결과는 전적으로 CPU 테스트나 다름 없다. 지포스 GTX 1080과 RTX 2080Ti에서의 프레임 차이가 거의 없었기 때문이다.  ⓒIDG

결론

1쓰레드에서 24 쓰레드까지의 시네벤치 테스트로 리뷰를 마치고 싶다. 시네벤치 R20은 3D 모델링 벤치마크로서 게이밍 성능이나 여타 애플리케이션 성능을 예측하지 않는다. 그러나 수많은 게임과 애플리케이션이 현대 CPU의 쓰레드를 모두 활용하는 혜택을 누릴 수는 없다. 그런 면에서 시네벤치 R20이 가치가 있다. CPU를 1개 쓰레드에서 시작해 끝까지 로딩 했을 때의 성능을 살펴볼 수 있기 때문이다.

아래의 차트에서 AMD는 통상적으로 차트 우측에서 두드러진다. 거의 언제나 인텔 칩에 비해 코어 수에서 우세하기 때문이다.

반면 인텔은 통상적으로 우측에서는 패배하지만, 좌측에서는 승리한다. 인텔 칩은 AMD 칩에 비해 클럭 속도와 IPC가 우세하기 때문이다. 인텔의 코어 칩이 강점을 지닌 부분은 기본적으로 여기뿐이다. 대다수 애플리케이션과 게임은 차트의 좌측에 있는 성능에 의존한다. 라이젠 9 3900K와 코어 i9-9900K 사이의 차트를 보면 그 강점은 이제 사라졌다.

시네벤치 r20을 1쓰레드에서 24쓰레드까지 돌리자, 전 구간에서 라이젠 9 3900x의 진정한 강점이 드러났다. ⓒIDG

동일 데이터를 다른 관점으로 보기 위해 성능 우세 정도를 비율로 보여주는 차트를 만들었다. 차트에서 알 수 있듯이 12코어는 8코어를 간단히 압도한다.

이번에도 인텔의 코어 i9에 있어 가장 나쁜 소식은 차트의 좌측에 있다. 여기서도 인텔의 우위가 사라졌다. 두 CPU는 6쓰레드까지 거의 대등하고 이후부터 라이젠 9가 앞서기 시작한다.

라이젠 9는 8쓰레드 이후부터 코어 수로 인텔 코어 i9를 제압했다. ⓒIDG

쓰레드 수가 적은 경우를 봐도 라이젠 9 3900K는 언제나 코어 i9 9900K만큼이나 빠르다. 이는 기본적으로 이제 코어 i9을 사야 할 이유가 거의 없음을 의미한다. 남은 이유도 분명 존재하지만, 고급 CPU를 구입하려는 사용자 10명 중 9명은 라이젠 9 3900X를 선택할 것이 틀림없다. editor@itworld.co.kr


컴퓨텍스 2018에서 소개된 강력한 PC 하드웨어 소개

본 기사는 PCWorld 및 itworld에서 부분 발췌된 내용입니다.

컴퓨텍스 2018에서는 게이밍이 뜨겁다.
PC의 핵심 칩들이 크게 발전하면서 성능을 크게 높였다.

스레드리퍼(Threadripper) 2 인텔의 발표 직후, AMD는 32코어 64스레드 플래그십인 스레드리퍼 2를 소개하면서 코어 전쟁에 불을 붙였다. 새 24코어 CPU도 출시되며 새 칩들은 2세대 라이젠(Ryzen)과 같은 기본 기술에 기초하여 개발되었다. 또한 AMD는 쿨러 마스터와 협력하여 32코어의 온도를 관리할 수 있는 거대한 공냉식 쿨러인 레이스 리퍼(Wraith Ripper)를 제작했다.

AMD를 전격 채용한 에이서 헬리오스(Acer Helios) 500 컴퓨텍스에서 AMD의 기술이 예상치 못한 곳에서 공개되었다. AMD를 전격 채용한 이 모델에는 6코어 12스레드 라이젠 7 2700 데스크톱 프로세서뿐만이 아니라 라데온 베가(Radeon Vega) 56 그래픽이 탑재되어 있으며, 외장 베가 GPU가 탑재된 노트북은 이번이 처음이다. 에이서는 이 노트북에 144Hz 프리싱크 디스플레이를 매치하여 베가의 성능을 최대한 발휘할 수 있도록 했다.

MSI 노트북(치터(Cheater) 모드 적용) MSI는 컴퓨텍스에서 모든 가격 대의 노트북을 선보였다. MSI가 엔비디아 GTX 1050 그래픽을 내장한 프레스티지(Prestige) PS42가 있다. 매우 인상적일 것이며 기록을 달성할 수 있을지 기대된다. 보급형의 경우 MSI GF63은 999달러란 저렴한 가격에 6코어 8세대 인텔 코어 CPU와 GTX 1050이 내장되어 있다.

독특한 에이수스 노트북 에이수스는 컴퓨텍스에서 프로젝트 프리코그 외에도 혁신적인 하드웨어를 선보였다. 또한 기본적으로 트랙패드(Trackpad)를 상황에 따라 PC용 보조 화면으로 변신시키는 “스크린패드(ScreenPad)” 기술이 포함된 젠북 프로(ZenBook Pro) 15의 새로운 버전을 공개했다.

2017년 수치해석 분야에 기대되는 최신 컴퓨터 소식

수치해석을 하는 많은 분들은 대부분 시간과의 전쟁을 치루고 있습니다.
좀 더 빨리, 좀 더 상세한 결과를 얻어야 하기 때문에, 많은 분들이 예산이 허락하는 한 성능 좋은 컴퓨터를 확보하는 것이 최대의 목표가 되고 있습니다.

한 동안 AMD가 인텔의 경쟁자로 존재하면서 두 회사는 선의의 성능 경쟁을 치열하게 전개해 왔는데, AMD가 서서히 경쟁력을 잃고 있다가 최근에 젠 CPU를 통해 다시 경쟁에 불을 지피고 있습니다.
여기에 두 회사의 최신 주력 CPU 의 내용을 기사에서 인용하여 소개합니다.


인텔, 18코어 36스레드 갖춘 코어 i9 칩 발표 “AMD 쓰레드리퍼와 전면전” (기사 출처 : itworld)

인텔이 코어 i9을 무기로 본격적인 AMD와의 전쟁에 돌입했다. 인텔은 30일 대만 컴퓨텍스에서 하이엔드 PC시장에서 AMD의 16코어 32스레드 스레드리퍼(Threadripper)와 경쟁할 18코어 36스레드의 ‘몬스터 마이크로프로세서’를 발표했다.

이 프로세서에는 코어 i9 익스트림 에디션 i9-7980XE라는 이름이 붙었다. 첫 번째 테라플롭(Teraflop) 데스크톱 PC프로세스로 아주 고가이다. 올해 말 출하되는 프로세서의 가격은 1,999달러이다. 한 단계 낮은 코어 i9 제품군 제품들은 가격이 조금 더 저렴하다. 10코어, 12코어, 14코어, 16코어로 구성된 코어 i9 X 시리즈 가격은 999~1,699달러 사이다. 모두 스카이레이크 기반 프로세스이며, 기존 브로드웰-E보다 높은 성능을 제공한다. 인텔에 따르면, 싱글스레드 앱은 15%, 멀티스레드는 10% 빠르다.

인텔은 ‘베이진 폴스(Basin Falls)”라는 코드 네임을 가진 코어 i9 X 시리즈가 너무 비싼 사람들을 위해 3종의 새로운 코어 i7 X 시리즈 칩(339~599달러)과 1종의 쿼드 코어 코어 i5(242달러)도 공개했다. 인텔은 몇 주 이내에 신제품 칩을 출하할 예정이라고 설명했다.

대부분의 코어 i9칩에 터보 부스트 맥스 기술 업데이트(Updated Turbo Boost Max Technology) 3.0이 탑재될 예정이다. 터보 부스트 맥스는 칩이 최고의 코어 2개를 파악하고, 필요할 때 가변적으로 속도를 높여 오버클러킹을 하는 기능이다. 옵테인 메모리도 지원한다. 인텔은 130개 이상의 옵테인 지원 메인보드가 출시될 예정이라고 설명했다.

신제품 165W, 140W, 112W 칩은 역시 새로운 소켓인 R4에 맞춰 설계되어 있다. 2,066핀 LGA 소켓과 호환되는 인텔 칩셋은 X299가 유일하다.

다시 한번, 인텔과 AMD가 제대로 한 판 붙을 전망이다. 둘 중 누가 승리할지 지켜보는 사용자들의 관심도 뜨겁다. 인텔은 코어 i9을 발표하면서 하이엔드 시장에 공격적으로 접근했다. AMD도 스레드리퍼의 10코어, 12코어, 14코어 버전과 가격을 공개할 수밖에 없는 실정이다. 인텔이 먼저 패를 공개했다. 게임은 이제부터가 시작이다.

인텔의 새 코어 i9 칩은 모든 PC관련 제품이 전시되는 종합 전시회로 발전한 컴퓨텍스에서 가장 중요한 발표 중 하나로 꼽혔다. 기대되는 소식은 아직 많이 남아있다. 홍보 담당자에 따르면, 인텔 경영진이 차세대 10nm 칩인 캐논 레이크에 대해 발표할 예정이라고 한다. 기존 케이비 레이크 칩보다 30% 높은 성능을 자랑하는 제품이다.

또, HTC 바이브 VR 헤드셋을 WiGig 기술을 이용해 무선 연결하는 기술에 대해 더 자세한 정보가 발표될 계획이다. 인텔과 HTC는 지난 1월 CES에서 파트너십 체결을 발표했다. 인텔은 또 8월부터 컴퓨트 카드(Compute Card)를 출시한다고 발표할 계획이다.

코어 i9의 속도와 피드
클록 속도가 4GHz를 넘으면서, 제조업체들이 직면한 도전 과제는 추가된 코어를 모두 사용하는 방법을 찾는 것이었다. 앞서 링크된 기사에서 설명했듯, 하나의 프로세스 코어만 집중적으로 사용하는 게임들이 여전히 많다. 인텔은 게임 플레이는 물론, 게임에 이용하지 않는 다른 코어로 트위치나 유튜브 스트리밍을 인코딩하고, 더 나아가 백그라운드에서 음악도 재생할 수 있는 새로운 세대의 ‘스트리머(Streamer)’로 눈길을 돌렸다. 인텔은 이런 동시다발 작업에 ‘메가태스킹’이라는 명칭을 붙였다. 이 회사는 이를 갈수록 증가하는 코어 수에 맞게 ‘수요’를 유지하는 아주 좋은 방법으로 판단하고 있다.

이와 관련, X시리즈 마케팅 매니저인 토니 베라는 “게이머가 콘텐츠 창작자로 변모하는 추세”라고 강조했다.

제품 가격은 자연스럽게 최고 2,000달러로 아주 비싸고, 경제력이 있거나 기업의 후원을 받는 사용자만 최신 코어 i9 제품들을 구입할 수 있을 전망이다. 다음은 제품 별 가격과 코어, 스레드 수를 정리한 내용이다.

Core i9-7980XE: 18코어/ 36스레드, 1,999달러
Core i9-7960X: 16코어/ 32스레드, 1,699달러
Core i9-7940X: 14코어/ 28스레드, 1,399달러
Core i9-7920X: 12코어/ 24스레드, 1,199달러
Core i9-7900X (3.3GHz): 10코어/ 20스레드, 999달러

인텔은 또 한정된 예산에 제약 받는 사용자를 대상으로 3종의 새로운 코어 i7 X 시리즈 칩을 판매할 계획이다.

Core i7 7820X (3.6GHZ), 8코어/ 16스레드, 599달러
Core i7-7800X (3.5GHz), 6코어/ 12스레드, 389달러
Core i7-7740X (4.3GHz), 4코어/ 8스레드, 339달러
케이비 레이크 코어에 맞춰 설계된 i7-7740X를 제외한 모든 칩이 인텔의 ‘스카이레이크-X’에 기반을 두고 있다.

새 칩에서 가장 큰 관심을 끄는 기능은 터보 부스트 맥스 기술 업데이트 3.0이다. 고든 마 웅이 인텔 브로드웰-E 리뷰에서 설명한 것처럼, 터보 부스트 맥스 기술 3.0은 (칩에 따라 차이가 있지만) 최고의 코어를 식별한다. 그리고 CPU 집약적 싱글 스레드 애플리케이션을 이 코어로 연결해 전체 성능을 향상한다.
또, 최고의 코어 2개를 식별하고, 가장 CPU 집약적인 스레드에 할당한다. 더 많은 코어를 더 효과적으로 활용하는 게임과 애플리케이션에 도움을 주는 기능이다. 그러나 이 새로운 기능을 탑재하지 않은 칩도 있다. 새 6코어, 2종의 4코어 X시리즈 칩이 여기에 포함된다.

다음은 속도와 피드를 요약 설명한 표다.

오버클럭이 포인트
인텔은 새 X시리즈에 공냉 쿨러를 추천하지 않는다. 인텔은 165W와 140W의 새 칩이 방출할 열을 효과적으로 냉각시킬 수 있는 TS13X 쿨러를 판매할 예정이다.

TS13X는 PG(Propylene Glycol)을 이용, 열을 73.84-CFM 팬으로 보낸다. 이 팬의 소음은 21~35dBA이고, 회전 속도는 800~2,200rpm이다. 별도 판매될 TS13X의 가격은 85~100달러 사이이다.

인텔은 또 XTU(Extreme Tuning Utility)를 이용, 코어 당 오버클러킹과 전압 조절을 계속 지원할 계획이다. AVX 512 비율 오프셋, 메모리 전압 조절, PEG/DMI 오버클러킹 등 새 기능이 포함되어 있다.
또 ‘성능 튜닝 보증 서비스(Performance tuning protection plan)’를 제공할 계획이다. 이는 오버클로킹 사용자를 위한 일종의 ‘보험’이다. 칩이 고장 날 경우, 1회 교체를 해주는 보증 서비스이며, 두 번째부터는 유료로 진행된다.

데이터 전송 성능을 향상한 새 X299 칩셋
테라플롭급 연산력을 갖춘 PC의 경우, 다른 부품과의 데이터 전송 성능이 아주 중요하다. x299 칩셋은 최신 DMI 3.0을 도입해 SATA 3.0포트와 USB 포트 연결 대역폭을 2배로 증가시킨다. X299 칩셋에는 최대 8개의 SATA 3.0포트, 10개의 USB 3.0 포트가 장착되어 있다. 기존 X99 칩셋의 USB 3.0포트 수는 최대 6개였다.

브로드웰-E X99 칩셋은 8개의 PCIe 레인을 지원했었다. 그러나 X299은 최대 24개의 PCIe 3.0 레인을 지원한다. 고속 PCIe NVM3 드라이브 등 추가 PCIe를 CPU와 연결된 PCI3에 직접 연결할 수 있다. 코어가 10개 이상인 CPU의 경우, 최대 44개의 PCIe 3.0 레인을 이용할 수 있다.

X299는 속도가 빨라진 DDR4-2066을 지원한다. 그러나 어느 정도 RAM 용량을 지원하는지 확실하지 않다. 인텔은 캐시 계층(Cache Hierarchy)을 조정했다. 이를 통해 개별 프로세서 근처에 더 많은 캐시를 배치하는 방법보다 캐시 크기를 더 많이 줄일 수 있다. 인텔은 새로운 캐시의 ‘히트(Hit)’ 레이트가 더 높다고 설명한다. 칩 크기를 줄였지만 캐시 성능을 유지할 수 있었다는 의미이다.

이번 신제품 소식은 코어 i9, 코어 i7 X 시리즈 사용자 모두 크게 기뻐할 기능 및 성능 향상이다. 메인보드와 PC 제조사도 하이엔드 시장에서 수익을 증대하기 위해 코어 i9 제품들을 출시할 것으로 예상된다. 이번 주 컴퓨텍스에서 전해질 더 많은 소식에 사용자들의 관심이 쏠리고 있다. editor@itworld.co.kr


2018년 인텔 6코어 코어 i9 CPU 발표

본 기사는 itworld.co.kr 기사를 인용하였습니다.

아래 기사를 보면 이젠 해석용 컴퓨터도 고성능 노트북으로 가능하게 되어 가는 것 같습니다. ItWorld의 기사를 게재합니다.

인텔의 새로운 6코어 모바일 코어 i9 칩은 가장 빠른 노트북 CPU로, 새로운 코어 i9-8950HK의 기본 클럭 속도는 2.9GHz이며 여기에 “열 속도 가속(Thermal Velocity Boost)”이라는 신기술을 사용해 최대 4.8GHz까지 올라간다. 새로운 언락 8세대 코어 i9를 최상위 제품으로, 그 아래에 5개의 신형 코어 i5와 코어 i7 고성능 모바일 H 시리즈 칩, 그리고 저전력 시스템을 위한 4개의 U 시리즈 코어 칩이 포진한다. 모두 14나노 커피레이크 칩이다. 인텔은 새로운 데스크톱 코어 프로세서 제품군과 노트북 PC 내의 하드 드라이브 성능을 강화하는 옵테인 메모리 내장을 나타내기 위한 브랜드 로고(코어 i7+)도 새로 발표했다.

인텔에 따르면 코어 i9는 7세대 코어 프로세서에 비해 게임 프레임 재생률 기준 최대 41% 더 우수하며, 게임 플레이 스트리밍 및 녹화 성능은 32% 더 빠르다. 인텔은 새로운 코어 i9는 언락 상태로 제공되므로 게임 PC 제조 업계에서 5GHz 시스템도 출시하게 될 것이라고 밝혔다. 옵테인 메모리가 포함되면 성능 향상 폭은 더욱 커진다. 다만 인텔이 성능 비교에 사용한 7세대 시스템에는 SSD가 아닌 느린 기계식 하드 드라이브가 탑재돼 있어 SSD에서의 성능 향상이 어느 정도인지는 정확히 알 수 없다.

인텔 프리미엄 및 게이밍 노트북 부문 총괄 책임자인 프레드릭 햄버거는 “코어 i9는 인텔이 지금까지 발표한 가장 빠른 게이밍 프로세서”라며, “데스크톱에 거의 근접한 성능을 노트북에서 얻을 수 있다”고 강조했다.

새로운 모바일 코어 칩은 인텔이 스펙터 및 멜트다운 취약점을 수정하기 위해 패치한 소프트웨어 완화책을 지원한다(이후 나올 하드웨어 재설계는 적용되지 않는다). 인텔 측은 제시된 성능 수치가 이러한 완화책으로 인한 성능 감소를 반영한 것이라고 밝혔다.

인텔이 출시하는 모든 모바일 프로세스가 그렇듯이, 중요한 점은 가격이다. 인텔은 보통 모바일 칩 가격을 공개하지 않으며, 이번에도 마찬가지다. 다만 새로운 제품군 중에서 코어 i9 칩의 경우 게임 노트북 중에서도 상위 기종에만 들어갈 것으로 보인다. 그 외의 다른 칩은 훨씬 더 폭넓게 보급될 전망이다.

인텔 코어 H 시리즈 CPU

인텔은 현재 폭발적으로 성장 중인 PC 게임 시장을 노골적으로 정조준하고 있다. 햄버거는 인텔 코어 칩을 내장한 일반 판매용 게임 노트북이 전년 대비 45% 성장했다고 말했다.

인텔의 새로운 45W H 시리즈에는 각각 2종의 새로운 코어 i7과 코어 i5 칩 및 신형 제온이 포함된다. 사실 모바일 코어 i9 칩은 제온 E-2186과 상당히 흡사해 보인다. 클럭 속도, 코어 수, 열 설계 전력 등이 동일하다. 그러나 코어 i9의 클럭 속도는 완전히 언락된 상태로 제공된다. 코어 i9의 가격이 너무 부담스럽다면, 동일한 6개의 코어와 12개 쓰레드를 탑재한 새로운 코어 i7-8850H이 있다.

새로 출시되는 칩은 모두 인텔이 노트북을 대상으로 밀고 있는 옵테인 메모리를 지원하며, 기업용 시스템을 위한 vPro 기술이 옵션으로 제공된다.
인텔의 라데온 RX 베가(“케이비레이크-G”) 칩은 울트라북 수준에서 1080p 성능을 제공하도록 설계됐지만, 신형 8세대 코어 i9 칩은 햄버거의 표현대로라면 “머슬북(Musclebook)”에 맞게 설계돼 노트북에서 얻을 수 있는 절대적인 최고의 성능을 제공한다. 햄버거는 “이 칩으로 만족할 수 없다면 어떤 칩으로도 만족하지 못할 것”이라고 덧붙였다.

Intel

인텔은 이번에 처음으로 이른바 “열 속도 가속” 기능을 포함했다. 이 기능은 클럭 속도를 정상보다 더 높여준다. 평상시 코어 i9-8950HK에서 터보 부스트가 활성화된 후 최대 클럭 속도는 4.6GHz다. 그러나 햄버거는 칩의 온도가 충분히 낮은 상태에서 최대 속도로 작동 중이라면, 클럭 속도가 한층 더 올라간다면서 단일 코어를 200MHz 더 높여 4.8GHz로 작동하거나 모든 코어를 약 100MHz 높여 작동하게 된다고 설명했다.

다만 햄버거는 열 속도 가속 기술이 “자동적인 기능이 아닌 기회에 따라 작동하는 기능”이며, 인텔은 시스템 온도 섭씨 50도 이하에서 이 기능이 작동하도록 설계했다고 거듭 강조했다. 햄버거는 “OEM 파트너와 함께 전력 성능을 최적화하고 열 특성을 조정해 성능을 더 끌어올리기 위해 많은 시간을 투자했다”면서 “지금의 추세는 가장 얇게 만들기 위해 성능을 희생하는 게 아니라, 더 오래 지속되는 더 얇은 규격에 더 효율적인 성능을 집어넣는 것”이라고 말했다.

인텔 코어 U 시리즈 CPU

성능은 좀 낮아도 배터리가 오래 가는 제품을 찾는 사용자를 위해 인텔은 새로운 U 시리즈 칩 4종도 함께 출시했다. 28W TDP 저전력 8세대 코어 칩은 모두 4코어 8스레드 구성이 적용되며 모바일 구성의 옵테인 메모리 기술을 지원한다.

Intel

모든 칩은 인텔이 선보인 새로운 300 시리즈 칩셋인 H370, H310, Q370, B360에 연결된다. 또한 인텔 대변인에 따르면 모든 칩은 향상된 오디오 및 I/O, 기가비트 처리량을 갖춘 통합 인텔 802.11ac 와이파이, 10Gbit/s 통합 2세대 USB 3.1 I/O 등 플랫폼 수준에서 더 많은 기능을 제공한다.

게이밍 노트북 판매가 “폭증”하고 시장 성장에 보조를 맞춰 유통업체들도 매장 진열대에서 이런 제품의 비중을 계속 늘리고 있다. 인텔도 투자를 지속할 계획이다. 게이밍 노트북에서 코어 수를 늘리고 5GHz 벽을 돌파하게 되면 인텔은 성능의 한계를 확실히 더 높이게 될 것이다.  editor@itworld.co.kr

원문보기:
http://www.itworld.co.kr/news/108803#csidx218d62dae70faefa8f8cdc4efd8ea92 


AMD 마이크로아키텍처 (기사 출처 : itworld)

AMD 라이젠 3월 2일 출시…코어 i7보다 가격도 성능도 “우세”

Mark Hachman | PCWorld

“40% 성능 향상”이라는 말은 보수적인 자체 평가였다. AMD는 첫 번째 라이젠 프로세서 3가지를 오는 3월 2일 출시할 계획이라고 밝혔다. 인텔 코어 제품군을 능가하는 성능으로 기대를 받고 있는 라이젠 프로세서는 가격도 절반 가까이 저렴하다.

22일 열린 라이젠 출시 행사에서 발표에 나선 AMD 임원들은 인텔 코어 i7을 공략하기 위한 세 가지 데스크톱용 CPU를 공개했다. 신형 라이젠 CPU는 여러 곳의 주요 메인보드 업체와 전문가용 맞춤형 PC 업체가 지원한다. 특히 AMD는 신형 라이젠 프로세서가 더 적은 비용으로 더 높은 성능을 제공한다는 점을 강조했다. 최고 성능 제품인 라이젠 7 1800X는 인텔의 1,000달러짜리 코어 i7-6900K의 절반에도 못 미치는 가격이지만, 성능은 더 뛰어나다.

인텔과 마찬가지로 AMD의 라이젠 프로세서 역시 역시 3가지 제품군으로 구성되어 있는데, 고급형 라이젠 7, 중급형 라이젠 5, 가장 저렴한 보급형 라이젠 3이 그것이다. AMD는 고성능 라이젠 7부터 먼저 출시하는데, 1800X(499달러), 1700X(399달러), 1700(329달러)의 세 가지 모델이다. 라이젠 5와 라이젠 3은 올해 하반기에 출시할 예정인데, 구체적인 출시 일정은 밝히지 않았다.

이번 행사 직전까지 공개되지 않은 라이젠 관련 정보는 가격과 정확한 출시일이었다. 애널리스트들은 AMD가 그간의 실책을 모두 개선한 것 같다고 평가했으며, 인텔은 자칫 기반이 되는 PC용 마이크로프로세서 시장의 점유율을 잃을 수 있는 위험에 처했다. 물론 인텔도 대응책은 있다. 가격 인하도 그중 하나일 가능성이 있고, 더 많은 코어를 가진 신제품이나 옵테인 기술을 적극 내세우는 것도 방법이 될 수 있다.

인텔이 지난 1월 케이비 레이크 칩 40가지를 대대적으로 출시한 것과는 달리 AMD는 서두르지 않고 있다. 이번에 출시된 라이젠 7 칩의 세부 사양을 살펴보자.

Mark Hachman

라이젠 7 1800X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.6GHz, 부스트 모드에서는 4GHz로 동작한다. 499달러 1800X의 대응 제품은 8코어 인텔 코어 i7-6900K로 무려 1,089달러짜리이다. AMD에 따르면, 1800X는 시네벤치 상에서 단일 쓰레드 점수가 162로 동점을 기록했다. 하지만 코어를 모두 구동하자 1,601점으로 6900K보다 9% 높은 점수를 기록했다.

라이젠 7 1700X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.4GHz, 부스트 모드에서는 3.8GHz로 동작한다. AMD에 따르면, 399달러 1700X는 시네벤치 멀티코어 벤치마크 테스트에서 1,537점을 기록해 6900K보다 4% 높은 성능을 보였다.

라이젠 7 1700. 655와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3GHz, 부스트 모드에서는 3.7GHz로 동작한다. AMD에 따르면, 1700은 시네벤치 멀티코어 테스트에서 1,410점으로 339달러짜리 코어 i7 7700K보다 46% 더 높은 성능을 기록했다. 핸드브레이크 비디오 인코딩 테스트에서는 1700은 61.8초를, 7700K는 71.8초를 기록했다.

Mark Hachman

AMD에 따르면 라이젠 7 1700은 신형 레이스 스파이어(Wraith Spire) 쿨러를 기본 쿨러로 제공해 소음이 32데시벨에 불과하다.

라이젠의 눈에 띄는 성능 향상에는 설계팀의 역할이 컸다. AMD는 자사의 목표 중 하나가 젠 아키텍처의 클럭당 명령어 처리수(IPC, instructions per clock)를 40% 늘리는 것이라고 밝힌 바 있다. 그리고 실제로 AMD는 IPC를 52% 향상했다. CEO 리사 수는 “단지 목표를 맞춘 것이 아니라 크게 초과 달성했다”라고 강조했다. editor@itworld.co.kr

원문보기:
http://www.itworld.co.kr/news/103594#csidx36e903474b838daa0638fbf87957a25


CFD 업무에 종사하는 사람들은 빠른 컴퓨터는 갖고 싶은 품목1위가 아닐까 싶습니다.
최근에는 소위 슈퍼컴퓨터라 불릴만한 성능을 가진 데스크탑 CPU 의 발전이 놀라운데, 이번에 AMD에서 발표한 CPU도 놀라울 정도의 가벽 대비 성능을 자랑하는 CPU를 발표하였습니다.
저렴한 비용으로 책상위의 슈퍼컴을 장만할 수 있는 기회가 오고 있는 것 같습니다.
아래 ITWOLD에서 2018.08.07에 게재한 기사를 인용 소개합니다.

AMD 32코어 쓰레드리퍼, 코어수와 가격으로 인텔에 정면 승부

Gordon Mah Ung | PCWorld
자료출처 : 본 기사는 ITWORLD의 기사를 인용게재한 내용입니다. (원문보기)
AMD가 2세대 라이젠 쓰레드리퍼(Ryzen Threadrippers, 또는 쓰레드리퍼 2)를 공식 발표했다. 코어수도 놀랍지만 가격이 인텔을 정조준하고 있다.

2세대 라이젠 쓰레드리퍼 2990WX는 32코어 64쓰레드로, 권장 가격은 1,799달러(뉴에그나 아마존 예약 주문 가격)이다. 물론 엄청난 가격이지만, 인텔의 최상위 제품과 비교하면 상당히 저렴하다. 지난 해 출시된 인텔의 코어 i9-7980XE는 18코어 제품이지만 가격은 2,000달러이다.

쓰레드당 가격으로 따지면, 인텔의 코어 i9-7980XE는 약 55달러인데 반해 쓰레드리퍼 2는 약 28달러에 불과하다.

IDG
마치 대형 할인판매점과 같다. 쓰레드가 많을수록, 쓰레드당 가격은 떨어진다.

32코어 2990WX는 주력 제품이며, AMD는 다음과 같은 다양한 쓰레드리퍼 제품을 발표했다.

– 2세대 라이젠 쓰레드리퍼 2920X, 12코어 24쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.3GHz, 가격 649달러.
– 2세대 라이젠 쓰레드리퍼 2950X, 16코어 32쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.4GHz, 가격 899달러.
– 2세대 라이젠 쓰레드리퍼 2970WX, 24코어 48쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,299달러.
– 2세대 라이젠 쓰레드리퍼 2990WX, 32코어 64쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,799달러.

32코어 쓰레드리퍼 2990WX는 현재 예약 주문이 가능하며, 정식 출하일은 8월 13일로 예상된다. 16코어 2950X의 출시일은 8월 31일이며, 나머지 24코어, 12코어 제품은 10월에 출시된다.

2세대 쓰레드리퍼는 모두 AMD가 올해 초 2세대 라이젠 칩과 함께 내놓은 향상된 12나노 젠+ 아키텍처를 기반으로 한다. 또한 모든 CPU는 기존 X399 메인보드와 호환되며, 구형 CPU 없이도 BIOS 업데이트를 지원한다.

신형 CPU는 1세대 제품과 비교해 확연한 성능 향상을 제공하며, 동급 인텔 제품과의 비교를 불허한다. AMD는 32코어 쓰레드리퍼 2990WX가 시네벤치 R15를 기준으로 인텔의 18코어 코어 i9-7980XE보다 50% 더 빠르다고 밝혔다. POV-Ray 같은 다른 멀티쓰레드 기반 테스트에서도 47% 앞섰다.

모델명에 추가된 W
사실 AMD가 일부 2세대 쓰레드리퍼의 모델명에 W를 추가한 것도 이 때문이다. AMD는 많은 애플리케이션과 게임이 쓰레드나 코어수보다는 더 높은 클럭속도를 선호한다며, W가 없는 두 모델은 바로 이런 사용자를 위한 것이라고 설명했다.

24코어와 32코어 제품의 모델명에 WX를 붙인 것은 이들 CPU가 창작자나 혁신가를 정조준하고 있음을 나타내기 위한 것이다. 즉 W가 추가된 모델은 픽셀이나 프레임, 그리고 광선을 극한까지 추구하는 사람들을 위한 것으로, 이들은 가능한 많은 코어와 쓰레드를 필요로 한다.

주요 이정표
일반 소비자용 CPU에 32코어를 도입하면서 CPU 전쟁은 새로운 전기를 맞이한다. 불과 2년 전, 인텔은 10코어 코어 i7-6950X를 무려 1,723달러에 출시했는데, 지금은 32코어 CPU가 1,799달러에 나왔다.

IDG
날로 치열해지는 코어 전쟁

조만간 나올 인텔의 대응 기대
물론 인텔이 한가로이 앉아 레모네이드나 홀짝거리는 것은 아니지만, 경쟁은 치열하다. AMD가 지난 컴퓨텍스에서 32코어 괴물을 공개하기 하루 전날, 인텔은 28코어에 클럭속도 5GHz짜리 괴물을 소개했다. 이 제품은 올해말 출시될 것으로 예상된다.

인텔의 문제는 이 CPU의 시연을 솔직하게 보여주지 않은 것이다. 인텔 임원은 28코어 CPU가 5GHz로 동작한다고 밝혔지만, 이를 위해 산업용 수랭 시스템을 사용했는지를 밝히지 않았다. 나중에 인텔은 시연이란 것이 언제나 그렇듯이 오버클러킹 시연처럼 가능성을 확인하기 위한 것이라고 설명했다.

이런 논란과 관계없이 AMD 쓰레드리퍼 2990WX는 몇 개월 먼저 출시된 상태이다. 더구나 인텔이 28코어 CPU를 어떤가격에 판매해야 AMD의 신작과 경쟁할 수 있을지도 의문이다. 기업 사용자와의 형평성이 걸림돌이 되는데, 현재 28코어 제온 플래티넘 8176의 가격은 8,719달러이다.

기존 워크스테이션 고객을 걱정할 필요가 없는 AMD는 다시 한 번 가격 파괴 전략을 펼치고있다. 이런 식으로 AMD는 인텔과 코어와 가격으로 정면 대결하기를 원하지만, 인텔은 이런 직접 대결을 최대한 피하고자 한다.  editor@itworld.co.kr

Aerial Landslide Generated Wave Simulations

Aerial Landslide Generated Wave Simulations

Aerial Landslide Generated Wave(ALGW)는 수역에 영향을 미치는 빠른 슬라이드의 결과이다. 이것은 암석에 의해 생성된 작은 파도 이거나, 3000만 입방 미터의 암석으로 인한 500m를 초과하는 파도 일 수도 있다.
공학적 관점에서 보면 ALGW는 근접한 해안을 따라 인간이 거주하는 인구/자산이 있는 수역에서 발생할 때 큰 관심을 가진다. 여기서 파동이 발생하면 해안선이 파손되고 홍수가 날수 있으며, 댐붕괴로 인한 사망까지 일으킬 수 있다(Müller-Salzburg, 1987). 결과적으로, ALGW에 의해 야기되는 최대 파도 상승을 예측하는 것은 경제적, 환경적, 안전상의 이유로 매우 중요합니다.
안타깝게도 분석적인 솔루션이 없는 매우 복잡한 문제로, 유체 역학적인 측면에서뿐만 아니라 지질학적인 관점(즉, 크기/기하학적인 슬라이드의 밀도 프로파일)에서도 마찬가지입니다. 이와 같이, 대부분의 현장 별 ALGW 최대 파형 예측은 확장된 물리적 모델을 사용하여 평가되었다. 일부는 전산유체역학(CFD) 소프트웨어를 기반으로 할 수도 있지만 비용이 많이 들며, 특히 풀 스케일 3차원 문제의 경우 정확성에 대한 논쟁의 대상이 되고 있습니다.
그러나 컴퓨터 하드웨어와 CFD소프트웨어가 계속 발전함에 따라 이제 CFD를 사용하여 ALGW를 실제로 시뮬레이션할 수 있게 되었습니다. 이와 같이 본 연구는 고 충실도의 물리적 모델 데이터를 FLOW-3D와 비교하여 ALGW를 CFD시뮬레이션을 검증하기 위한 지속적인 노력으로 진척시키는 것을 목표로 한다.
다음 절에서는 실제 및 수치 모델 설정에 대한 개요를 제공한다. 뿐만 아니라, 생성된 데이터와 간단한 비교를 제공한다.

Experimental Setup
물리적 실험은 Northwest Hydraulic Consultants 노스 밴쿠버, 캐나다 실험실에서 만들어졌고 실험을 거쳤다. 그것은 30° 경사의 서쪽 벽을 가진 0.5미터 폭의 수로, 45°의 경사진 동쪽 벽, 그리고 두개의 북쪽과 남쪽 측면에 수직 벽, 그리고 1.025m의 수평 단면을 가진 0.610m 너비의 수로로 구성되었다. ALGW를 생성하고 평가하기 위해, 45° 경사 노즈를 가진 0.177×0.305×0.305m의 아크릴 박스를 사용한 6초 시험을 사용했다.
이 슬라이드를 놓았을 때, 슬라이드는 (중력에 의해) 0.607m 심층수에 충돌하기 전에 서쪽 경사면에서 0.768m 아래로 이동했다. 그 후, 물을 통해 또 다른 1.05m를 이동하여 정지 블록을 치기 시작했다. 슬라이드 가속 및 변위뿐만 아니라 파고 높이는 6 초 실험 전체에 대해 100Hz의 주파수에서 기록되었다. 이 데이터를 수집하는 데 사용 된 도구는 다음과 같다.

  • 컴퓨터화된 데이터 수집 시스템
  • 슬라이드의 시간에 따라 이동 한 거리를 측정하는 문자열 가변 저항기
  • 슬라이드 가속도를 측정하는 1 차원 가속도계
  • 물의 주요 본체 내에 배치 된 3 개의 1 차원 커패시턴스 웨이브 – 프로브
  • 웨이브 런업을 캡처하기 위해 동쪽 경사면을 따라 사용되는 저항 사다리꼴 웨이브 프로브
  • 타이밍 스위치 캡처 슬라이드 릴리스 시간 사용
  • 흑백 비디오 카메라

테스트가 반복 가능하고 오작동이 발생하지 않았는지 확인하기 위해 테스트를 5 번 반복하고 각 장비에 대해 평균을 구했다.

Numerical Model Setup
물리적 실험의 전산화 된 3 차원 모델을 제작한 STL 파일을 FLOW-3D로 가져왔다. 일단 FLOW-3D에 들어간 3D 모델은 약 1,370 만개의 0.0075m 크기의 정사각형 셀로 이산화되었고, 벽을 둘러싸고있는 6 개의면 각각에 ‘wall’경계가 사용되었다.
슬라이드를 일반적인 이동 물체로 설정하고, 물리 모델로부터 수집 된 데이터(즉, 가속 및 변위 데이터의 후 처리)에 기초하여 속도가 주어졌다. 동서면 경사면의 표면 거칠기는 0.00025m으로 설정되었다. 모델링 된 유체는 293k의 물이었고, 동적 RNG 난류 모델이 기본 설정과 함께 사용되었다(implicit pressure solve; and, explicit viscous stress, free surface pressure, advection, moving object/fluid coupling solvers).
물리적 모델과 마찬가지로 FLOW-3D는 6 초의 시간을 시뮬레이트하지만 실제 모델과 같이 매 0.01 초가 아닌 0.02 초마다 데이터를 저장하였다(데이터 관리 관점에서 선택하였음).

Result

FLOW-3D 실험의 결과는 그림에 나와 있다. 4개의 웨이브 각각에 대해 실험 시간 동안 파고를 보여준다. 이와 같이, 제시된 파도 높이는 단순히 flume을 통해 전파되는 파도의 구현(즉, 2 차원의 경우에서 볼 수있는 것)이 아니라 오히려 여러 파도의 상호 작용으로 인한 파도 높이를 초래한다.

  • 슬라이드 충격시 발생하는 충격파(1차 신호)
  • 슬라이드 뒤의 충격파 충돌(2차 신호)
  • 북쪽, 동쪽, 서쪽 및 남쪽 벽에서의 웨이브 반사(3차 신호)

또한 길이 방향의 FLOW-3D 데이터(중심선에서)를 실제 모델 비디오 위에 겹쳐서 자유 표면의 FLOW-3D 글로벌 예측을 평가했다. 이것은 아래의 동영상에서 볼 수 있다.
그림과 위의 비디오를 보면 FLOW-3D 데이터가 웨이브 프로브 1, 2 및 3의 경우 물리적 데이터를 매우 잘 일치한다는 것을 알 수 있다. 하지만 웨이브 프로브 4에 대해서는 정확도가 떨어진다.
FLOW-3D 시간 데이터와 관련된 오류는 각 웨이브 프로브에 대한 RMSE (root-mean-square-error)를 취하여 평가된다.

Discussion
이 조사에서 실제 모델의 고 충실도 데이터는 ALGW로 최대 파도 상승에 대한 FLOW-3D 예측과 비교되었다. RNG 모형의 기본 설정을 사용하여 FLOW-3D는 주요 수역 내에서 파고를 정확하게 재현 할 수 있었다. 그러나 최대 파동은 약 43%가 넘었다.
최대 웨이브 런업을 줄이기 위해 몇 가지 대안인 FLOW-3D 물리 설정이 사용되었다. 그러나 43 % 이하로 떨어지는 것은 불가능했다. 이러한 대체 시뮬레이션에 대한 주목할만한 관찰은 다음과 같다.

  • first-order momentum advection scheme의 0.01m 메쉬는 최대 파동 상승 오차가 96% 인 반면 동일하게 0.0075m 메쉬의 오차는 130%였다. 그러나 second-order로 변경하면 0.01 m 및 0.0075 m 메시의 경우 각각 55% 및 43%의 오차가 발생한다. 또한 메쉬 셀 크기를 0.005m으로 줄이면 80%의 오차가 발생한다.
  • 이 테스트 케이스에서 가장 중요한 매개 변수는 momentum advection scheme이다. 평균적으로 second-order를 사용하면 first-order대비 오차가 약 50% 감소한다.
  • FLOW-3D의 MP 버전을 사용하여 0.005m의 메쉬 셀 크기를 사용해야 한다. 해석 시 CPU 시간은 33 시간이었다. 비교를 위해 FLOW-3D의 SMP 버전은 0.0075m의 메쉬 셀 크기로 시뮬레이션을 실행하는 데 26시간이 필요했지만 MP 버전은 4.5시간 밖에 걸리지 않았다.

[1] 3.5GHz 8 코어 AMD FX-8320 프로세서에서 약 6초의 시뮬레이션 시간이 대략 26시간 소요되었다.

References
Fritz, H. M., Hager, W. H., & Minor, H.-E. (2004). Near Field Characteristics of Landslide Generated Impulse Waves. Journal of Waterway, Port, Coastal & Ocean Engineering, 130(6), 287–302. doi:10.1061/(ASCE)0733-950X(2004)130:6(287)
Miller, D. J. (1960). Giant Waves in Lituya Bay Alaska (Geological Survey Professional Paper No. 354-C). Washington, D.C.: United States Government Printing Office.
Müller-Salzburg, L. (1987). The Vajont catastrophe— A personal review. Engineering Geology, 24(1–4), 423–444. doi:10.1016/0013-7952(87)90078-0

수치해석 담당자가 궁금한 현재 살 수 있는 최강 성능의 PC 하드웨어

수치해석 업무를 담당하는 엔지니어들은 항상 시간에 쫒기며 산다고 해도 과언은 아니다. 새로운 강력한 컴퓨터를 갖는 것이 항상 소원이 되가는 수치해석 엔지니어에게 유용한 정보를 제공합니다.
아래에 한국 ITWORLD에서 PCWorld의 기사를 번역 게시한 기사를 소개합니다.

현재 살 수 있는 최강 성능의 PC 하드웨어

PCWorld
PC의 장점 가운데 하나는 뛰어난 유연성이다. 다양한 형태와 크기, 제조업체 및 모델을 갖춘 수많은 하드웨어가 있기 때문에 구매자가 아무리 돈이 많더라도 혼선이 생기게 마련이다. 이번 기사에서 AMD의 괴물 같은 스레드리퍼(Threadripper) 칩에서부터 지포스 RTX 2080 Ti에 이르기까지 오늘날 구입할 수 있는 최고 성능의 PC 구성 요소를 소개한다.

Credit: Gordon Mah Ung/IDG

CPU
PC의 핵심은 프로세서다. AMD의 32코어, 64 스레드 라이젠 스레드리퍼 2990WX만큼 강력한 CPU는 없다(아마존 1,750달러). 다만 비즈니스 및 데이터센터 장비는 일반 소비자용보다 더 강력하다.

이 CPU는 인텔 18코어 대표작인 코어 i9-7980XE(아마존 2,000달러)보다 거의 2배 많은 코어와 쓰레드를 갖고 있음에도 200달러 이상 싸다. 인텔의 코어는 개별적으로는 더 빠르지만, 2990WX의 엄청난 코어 수를 제대로 활용할 수 있다면 그 어떤 것도 비교할 수 없다.

최상의 PC 게임 성능을 원한다면 코어 i7-8700K(아마존 350달러)가 가장 적합한 프로세스로, 6코어, 12쓰레드는 3.7GHz와 4.7GHz 사이에서 동작하면서 인텔의 18코어보다 훨씬 더 높은 성능이다.

바로 지금 사용할 수 있는 것을 구매한다면, 첫번째 코어 i7-8086K(이 칩은 창립 40주년을 기념해 만들어졌다)은 싱글 쓰레드 애플리케이션에서 5GHz로 출시된 최초의 인텔 칩이다. 또한 수동으로 오버클럭된 경우, 모든 코어에서 5GHz를 기록하는 것이 확실하다. 그러나 표준 성능은 훨씬 저렴한 8700K와 유사하다. 이 칩은 5만 개만 만들어졌다. 뉴에그, 아마존, 베스트바이에서 425달러에 판매하고 있다.

Credit: Gordon Mah Ung

메인보드
프로세서를 골랐다면 메인보드 유형을 알 수 있다. 스레드리퍼 칩은 AMD의 X399 메인보드와 호환된다. 본지는 MSI MEG X399 크리에이션(Creation)(뉴에그 499달러)으로, 스레드리퍼 2990WX를 검토했다. 이 메인보드는 연결성이 좋으며 스틱 형태의 SSD를 냉각할 M.2 프로저 히트싱크, 견고한 전력 공급 시스템을 자랑한다.

여기에서는 간략하게 정리하고 AMD X399 메인보드에 대한 자세한 내용은 여기에서 확인하라.

Credit: MSI

메모리
인텔의 X99 플랫폼은 64GB RAM 한계를 넘어섰으며 DDR4는 이전보다 더 빠른 메모리를 지원한다. 128GB 키트까지 보장하는 3,200MHz 커세어 도미네이터 플레티넘(Corsair Dominator Platinum) 메모리(아마존 1,750달러), 세계에서 가장 큰 RAM 디스크를 만든 이유는 무엇일까. 적절한 속도를 느끼고 싶다면 벤전스(Vengeance) LPX DDR4의 16GB 키트(아마존 430달러)가 적합하다.

이렇게 많은 RAM을 가진 PC를 가질 적절한 이유가 없다는 점에서 이 가격은 단점이 될 수 있다. 용량이 더 작은 키트나 다른 공급업체의 제품을 선택하더라도 DDR3가 아닌 DDR4 메모리여야 한다. X299 메인보드는 최첨단이다.

Credit: Gordon Mah Ung

그래픽 카드
지금 당장 가장 강력한 그래픽 카드를 구입해야 한다면, 대부분의 게임 사용자는 지포스 GTX 1080Ti 또는 EVGA GTX Ti SC2(아마존 670달러)와 같은 맞춤형 오버클럭킹 버전을 선택할 것이다. 이 제품은 GTX 1080보다 25~35% 더 빠르며 4K 해상도로 60fps를 기록할 수 있는 최초의 저렴한 일반 소비자용 그래픽 카드로, 이미 많은 게임에서 적절하게 호환을 이뤘다.

그러나 조금 시간적 여유가 있다면 지금 이를 살 필요는 없다. 엔비디아는 이미 차세대 지포스 RTX 2080 Ti의 예약 구매 신청을 받고 있다. 이는 전작을 날려버릴 준비가 됐다. 2080 Ti 제품의 리뷰는 아직 나오지 않았지만 9월 20일이면 출시된다. 가능한 한 본지의 리뷰를 읽어 검토하고 사전 예약을 해도 늦지 않다.

Credit: Brad Chacos/IDG

모니터
그래픽카드에 큰 돈을 쓸 계획이라면, 하이엔드 디스플레이도 원할 것이다. 하이엔드 디스플레이의 경우, 기본적으로 G싱크(G-Sync) HDR 디스플레이라는 걸출한 제품이 있다.

에이서 프레데터(Acer Predator) X27, 에이수스(Asus) ROG 스위프트(Swift) PG27UQ(뉴에그 각각 2,000달러) 또한 최대 144Hz로, 고급스러운 27인치 4K 패널이다. 말 그대로 이 패널들은 384개 백라이트 영역과 함께 최대 1,000니트의 밝기로 HDR(High-Dynamic Range) 영상을 지원한다. 비-HDR 콘텐츠 또한 아름답게 보인다. 이 모니터는 어도비RGB(AdobeRGB) 색역의 99%를 차지하고 지싱크는 게임 플레이를 부드럽게 해준다.

Credit: Martyn Williams/IDG

주 스토리지
스토리지는 다양한 옵션을 제공한다. 4TB 삼성 860 EVO(아마존 1,400달러)와 WD 골드(아마존 500달러)는 각각 소비자용 SSD와 HDD 시장에서 최고의 성능을 자랑하는데, 본지의 리뷰에서 최고 점수를 받았다.

삼성의 SSD는 분명히 빠르지만 많은 비용이 든다. WD 골드의 7,200rpm 플래터는 기계식 하드드라이브에서 놀라운 엑세스 속도를 제공한다. 이 제품은 같은 가격 제품대에서는 찾아볼 수 없는 엔터프라이즈급 기능으로 자랑한다.

Credit: Western Digital

급속 스토리지
저장 용량과 상관없이 순수하게 속도가 주요 목표라면 좋은 제품이 있다. 약간의 공간에 대한 대가로, 사용자는 M.2 PCI-e NVMe SSD의 엄청난 전송 속도를 즐길 수 있다. 4TB 삼성 960 프로(뉴에그 1,50달러)는 크리스탈디스크마크(CrystalDiskMark) 리뷰에서 읽기 속도가 3.5GBps를 훨씬 웃도는 가장 빠른 드라이브 가운데 하나다.

이 제품을 부팅 드라이브로 삼으면 지연에 대해 걱정할 필요가 없다. 시간 절약을 위해 아주 많은 비용을 투자하는 것이 부담스럽다면 1TB WD 블랙 3D NVMe(아마존 450달러)를 대신 사용하자.

또한 인텔의 혁신적인 옵테인 900P SSD(뉴에그 600달러)는 삼성이 독차지하는 시장에 타격을 가하고 작은 파일을 많이 읽을 때 엄청난 성능을 자랑하지만 280GB 및 480GB 용량으로만 제공한다.

다른 제품을 찾고자 한다면 본지의 “나에게 맞는” SSD 선택 가이드 2018에서 최고의 SSD를 찾을 수 있을 것이다.

Credit: Samsung

사운드카드
PC의 다른 부분에 엄청난 비용을 지불했다면 최고 수준의 오디오에도 투자할 수 있을 것이다. 크리에이티브 테크놀로지의 사운드블라스트(Sound Blaster)X AE-5(아마존 150달러)는 32비트, 384KHz ESS ES9016K2M SABRE32 Ultra DAC 칩셋을 사용한다. 가격은 기본적으로 고가의 전문 사운드 장치에서 볼 수 있는 DAC 수준이다.

이 제품은 최초의 프리미엄 일반 소비자용 사운드카드로, 5.1 아날로그 서라운드 사운드, 600 옴 헤드셋까지 구동할 수 있는 듀얼 앰프 Xamp, RGB 조명 등을 제공한다.

Credit: Gordon Mah Ung/IDG

전원공급장치
현재 인텔 프로세서와 엔비디아 그래픽카드의 놀라운 전력 효율성으로 인해 대부분의 단일 GPU 시스템은 아마도 600W 이상의 전원공급장치를 필요로 하지 않을 것이다.
그러나 이번 기사는 최상의 제품에 관한 것이기에 최고 전원공급장치를 소개한다. 여러 개의 그래픽 카드를 사용하거나 미래 확장을 위해 공간을 확보하길 원한다면, 이 제품을 사용해도 좋다.

커세어(Corsair) AX1500i(아마존 450달러)는 본질적으로 전력 공급에 있어 모범적이다. 요즘 코인 채굴작업으로 인해 수요가 많아 종종 재고가 없을 수 있다. 이 모듈식 커세어 AX1500i PSU는 최첨단 디지털 제어시스템 덕분에 모든 면에서 완벽한 등급을 자랑한다. 최근 커세어는 한단계 진보한 AX1600i(뉴에그 500달러)도 발표했다.

이번 기사에서 설명한 바와 같이 유사한 장비를 설치하고 하나 또는 2개의 그래픽 카드를 사용할 경우, 좀더 낮은 전원 공급장치를 구입할 수 있다.

editor@itworld.co.kr

CFD 업무에 종사하는 사람들에게 희소식인 최신 컴퓨터 CPU 소식

CFD 업무에 종사하는 사람들은 빠른 컴퓨터는 갖고 싶은 품목1위가 아닐까 싶습니다.
최근에는 소위 슈퍼컴퓨터라 불릴만한 성능을 가진 데스크탑 CPU 의 발전이 놀라운데, 이번에 AMD에서 발표한 CPU도 놀라울 정도의 가벽 대비 성능을 자랑하는 CPU를 발표하였습니다.
저렴한 비용으로 책상위의 슈퍼컴을 장만할 수 있는 기회가 오고 있는 것 같습니다.
아레에 ITWOLD에서 게재한 기사를 인용 소개합니다.

AMD 32코어 쓰레드리퍼, 코어수와 가격으로 인텔에 정면 승부

Gordon Mah Ung | PCWorld
자료출처 : 본 기사는 ITWORLD의 기사를 인용게재한 내용입니다. (http://www.itworld.co.kr/insight/110307)
AMD가 2세대 라이젠 쓰레드리퍼(Ryzen Threadrippers, 또는 쓰레드리퍼 2)를 공식 발표했다. 코어수도 놀랍지만 가격이 인텔을 정조준하고 있다.

2세대 라이젠 쓰레드리퍼 2990WX는 32코어 64쓰레드로, 권장 가격은 1,799달러(뉴에그나 아마존 예약 주문 가격)이다. 물론 엄청난 가격이지만, 인텔의 최상위 제품과 비교하면 상당히 저렴하다. 지난 해 출시된 인텔의 코어 i9-7980XE는 18코어 제품이지만 가격은 2,000달러이다.

쓰레드당 가격으로 따지면, 인텔의 코어 i9-7980XE는 약 55달러인데 반해 쓰레드리퍼 2는 약 28달러에 불과하다.

IDG
마치 대형 할인판매점과 같다. 쓰레드가 많을수록, 쓰레드당 가격은 떨어진다.

32코어 2990WX는 주력 제품이며, AMD는 다음과 같은 다양한 쓰레드리퍼 제품을 발표했다.

– 2세대 라이젠 쓰레드리퍼 2920X, 12코어 24쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.3GHz, 가격 649달러.
– 2세대 라이젠 쓰레드리퍼 2950X, 16코어 32쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.4GHz, 가격 899달러.
– 2세대 라이젠 쓰레드리퍼 2970WX, 24코어 48쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,299달러.
– 2세대 라이젠 쓰레드리퍼 2990WX, 32코어 64쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,799달러.

32코어 쓰레드리퍼 2990WX는 현재 예약 주문이 가능하며, 정식 출하일은 8월 13일로 예상된다. 16코어 2950X의 출시일은 8월 31일이며, 나머지 24코어, 12코어 제품은 10월에 출시된다.

2세대 쓰레드리퍼는 모두 AMD가 올해 초 2세대 라이젠 칩과 함께 내놓은 향상된 12나노 젠+ 아키텍처를 기반으로 한다. 또한 모든 CPU는 기존 X399 메인보드와 호환되며, 구형 CPU 없이도 BIOS 업데이트를 지원한다.

신형 CPU는 1세대 제품과 비교해 확연한 성능 향상을 제공하며, 동급 인텔 제품과의 비교를 불허한다. AMD는 32코어 쓰레드리퍼 2990WX가 시네벤치 R15를 기준으로 인텔의 18코어 코어 i9-7980XE보다 50% 더 빠르다고 밝혔다. POV-Ray 같은 다른 멀티쓰레드 기반 테스트에서도 47% 앞섰다.

모델명에 추가된 W
사실 AMD가 일부 2세대 쓰레드리퍼의 모델명에 W를 추가한 것도 이 때문이다. AMD는 많은 애플리케이션과 게임이 쓰레드나 코어수보다는 더 높은 클럭속도를 선호한다며, W가 없는 두 모델은 바로 이런 사용자를 위한 것이라고 설명했다.

24코어와 32코어 제품의 모델명에 WX를 붙인 것은 이들 CPU가 창작자나 혁신가를 정조준하고 있음을 나타내기 위한 것이다. 즉 W가 추가된 모델은 픽셀이나 프레임, 그리고 광선을 극한까지 추구하는 사람들을 위한 것으로, 이들은 가능한 많은 코어와 쓰레드를 필요로 한다.

주요 이정표
일반 소비자용 CPU에 32코어를 도입하면서 CPU 전쟁은 새로운 전기를 맞이한다. 불과 2년 전, 인텔은 10코어 코어 i7-6950X를 무려 1,723달러에 출시했는데, 지금은 32코어 CPU가 1,799달러에 나왔다.

IDG
날로 치열해지는 코어 전쟁

조만간 나올 인텔의 대응 기대
물론 인텔이 한가로이 앉아 레모네이드나 홀짝거리는 것은 아니지만, 경쟁은 치열하다. AMD가 지난 컴퓨텍스에서 32코어 괴물을 공개하기 하루 전날, 인텔은 28코어에 클럭속도 5GHz짜리 괴물을 소개했다. 이 제품은 올해말 출시될 것으로 예상된다.

인텔의 문제는 이 CPU의 시연을 솔직하게 보여주지 않은 것이다. 인텔 임원은 28코어 CPU가 5GHz로 동작한다고 밝혔지만, 이를 위해 산업용 수랭 시스템을 사용했는지를 밝히지 않았다. 나중에 인텔은 시연이란 것이 언제나 그렇듯이 오버클러킹 시연처럼 가능성을 확인하기 위한 것이라고 설명했다.

이런 논란과 관계없이 AMD 쓰레드리퍼 2990WX는 몇 개월 먼저 출시된 상태이다. 더구나 인텔이 28코어 CPU를 어떤가격에 판매해야 AMD의 신작과 경쟁할 수 있을지도 의문이다. 기업 사용자와의 형평성이 걸림돌이 되는데, 현재 28코어 제온 플래티넘 8176의 가격은 8,719달러이다.

기존 워크스테이션 고객을 걱정할 필요가 없는 AMD는 다시 한 번 가격 파괴 전략을 펼치고 있다. 이런 식으로 AMD는 인텔과 코어와 가격으로 정면 대결하기를 원하지만, 인텔은 이런 직접 대결을 최대한 피하고자 한다.  editor@itworld.co.kr

FLOW-3D 해석용 컴퓨터 안내 – 2018년 2분기 업데이트

FLOW-3D 수치해석용 컴퓨터 선택 가이드

수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.

따라서 수치해석용 컴퓨터의 선정을 위해서 단위 시간당 시스템이 처리하는 작업의 수나 처리량, 응답시간, 평균 대기 시간 등의 요소를 복합적으로 검토하여 결정하게 됩니다.

또한 수치해석에 적합한 성능을 가진 컴퓨터를 선별하는 방법으로 CPU 계산 처리속도인 Flops/sec 성능도 중요하지만 수치해석을 수행할 때 방대한 계산 결과를 디스크에 저장하고, 해석결과를 분석할 때는 그래픽 성능도 크게 좌우하기 때문에 SSD 디스크와 그래픽카드에도 관심을 가져야 합니다.

현재 고성능컴퓨터는 장기적인 전망으로 보는 Quantum Computing, DNA-based Computing, Optical Computing 등의 미래의 컴퓨팅 기술과 단기적인 고성능 컴퓨터 기술인  Symmetric -Multi Processing 기술과 MPP(Massively Pallel Processing)기술이 일반화되고 있습니다. (아래 그림 참조)

일반적으로 슈퍼컴퓨터로 불리는 고성능 HPC는 규모가 큰 운영관리시설과 전문인력이 필요하고 매우 고가이기 때문에, 실제 업무를 수행하는 대부분의 기업이나 기관에서는 단일 SMP 컴퓨터를 많이 사용하고 있습니다.

FLOW-3D에 적합한 일반적인 최소 권장사양은 아래 사양을 참고하시면 됩니다.

다만, 가능하면 최신 CPU의 고성능, 저전력 등 최신기술이 반영된 제품을 선택하는 것은 언제나 투자비와 연관되어 있기 때문에 항상 고민의 대상인 것은 틀림없는것 같습니다.

1) Processors

– FLOW-3D는  x86-64 (Intel/AMD) 프로세스를 지원합니다.

CPU는 전반적인 성능에 큰 영향을 미치며, 대부분의 경우 컴퓨터의 가장 중요한 구성 요소입니다. 그러나 데스크탑 프로세서를 구입할 때가되면 인텔과 AMD의 모델 번호와 사양이 어려워 보일 것입니다.
그리고, CPU 성능을 평가하는 방법에 의해 가장 좋은 CPU를 고른다고 해도 보드와, 메모리, 주변 Chip 등 여러가지 조건에 의해 성능이 달라질 수 있기 때문에 성능평가 결과를 기준으로 시스템을 구입할 경우, 단일 CPU나 부품으로 순위가 정해진 자료보다는 시스템 전체를 대상으로 평가한 순위표를 보고 선정하는 지혜가 필요합니다.

부동소숫점 계산을 하는 수치해석과 밀접한 Computer의 연산 성능 벤치마크 방법은 대표적으로 널리 사용되는 아래와 같은 방법이 있습니다.

2) Operating Systems
  • 64-bit Windows 7, Windows 8, Windows 8.1, Windows 10, Windows Server 2008, and Windows Server 2012
  • 64-bit Red Hat Enterprise Linux 6, Red Hat Enterprise Linux 7 and SUSE 11*

Windows 및 Linux에 대한 시뮬레이션 시간은 대등합니다. 사용자가 사용하기 편리한 운영 체제를 선택하면 됩니다.

3) Graphics Support
FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다. 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.
4) Memory and Processor Speed

프로세서 코어 당 최소 2GB의 RAM을 권장합니다. 예를 들어, 두 개의 6 코어 CPU가 있을 경우 워크스테이션의 메모리는 최소 24 GB가 있어야합니다. 필요한 RAM의 양은 해석 대상 문제에 매우 의존적입니다. 큰 도메인 또는 복잡한 형상에서 좋은 해상도를 원하는 시뮬레이션은 필요한 최소한 RAM보다 훨씬 더 많은 RAM이 필요합니다. 메모리 속도는 시뮬레이션 시간에 영향을 적게 받지만 통상적으로 1333MHz 또는 1600 MHz이면 충분합니다.

5) HDD

수치해석은 해석결과 데이터 양이 매우 크기 때문에 읽고 쓰는데 속도면에서 매우 빠른 SSD를 적용하면 성능면에서 큰 도움이 됩니다. 다만 SSD 가격이 비싸서 가성비 측면을 고려하여 적정수준에서 결정이 필요합니다.
그리고 SSD를 선택할 경우에도 SSD 종류 중에서 PCI Express 타입은 매우 빠르지만 가격 또한 매우 고가이므로 예산 범위내에서 선택을 고민해야 합니다.

기존의 물리적인 하드 디스크의 경우, 디스크에 기록된 데이터를 읽기 위해서는 데이터를 읽어내는 헤드(바늘)가 물리적으로 데이터가 기록된 위치까지 이동해야 하므로 이동에 일정한 시간이 소요됩니다. (이러한 시간을 지연시간, 혹은 레이턴시 등으로 부름) 따라서 하드 디스크의 경우 데이터를 읽기 위한 요청이 주어진 뒤에 데이터를 실제로 읽기 까지 일정한 시간이 소요되는데, 이 시간을 일정한 한계(약 10ms)이하로 줄이는 것이 불가능에 가까우며, 데이터가 플래터에 실제 기록된 위치에 따라서 이러한 데이터에의 접근시간 역시 차이가 나게 됩니다.

하지만 HDD의 최대 강점은 가격대비 용량입니다. 현재 상용화되어 판매하는 대용량 HDD는 12TB ~ 15TB가 공급되고 있으며, 이는 데이터 저장이나 백업용으로 가장 좋은 선택이 됩니다.
결론적으로 데이터를 직접 읽고 쓰는 드라이브는 SSD를 사용하고 보관하는 용도의 드라이브는 기존의 HDD를 사용하는 방법이 효과적인 선택이 될 수 있습니다.

컴퓨텍스 2018에서 소개된 강력한 PC 하드웨어 소개

고성능 컴퓨팅(HPC)

고성능 컴퓨팅(HPC)는 과학, 공학 또는 거대한 비지니스 요구 사항들을 해결하기 위해 일반적인 데스크탑 컴퓨터나 워크스테이션보다 훨씬 더 높은 성능을 발휘하도록 컴퓨팅 파워를 결합하는 것을 의미합니다.
시뮬레이션이나 분석과 같은 HPC 워크로드는 계산, 메모리 사용 및 데이터 관리가 매우 중요합니다.
클러스터나 슈퍼컴퓨터라고도 불리는 일반적인 HPC 시스템은 고속의 네트워크에 연결된 다수의 서버를 이용한 확장을 통해 여러 애플리케이션들을 병렬 실행하도록 설계됩니다.
HPC 시스템에는 관련 소프트웨어, 도구, 구성요소, 스토리지 및 서비스가 포함된 경우가 많습니다.

고성능 컴퓨팅은 일반적으로

– 100Gbps의 초고속 네트워킹
– 확장 가능한 고성능 스토리지
– 고성능 컴퓨팅 소프트웨어 스텍 (최근에는 거의 Linux가 대세로 자리 잡음)
– 에너지 효율성
– GPU 가속지원

등이 핵심 성능지표로 개발됩니다.

HPC와는 스케일 규모면에서는 차이가 많지만 단일 컴퓨팅 기반에서 뛰어난 성능을 발휘하는 고성능 PC 하드웨어를 중심으로  전세계의 최신 컴퓨터 기술을 소개하는 컴퓨덱스에서 발표된 2018년  PC 기반 하드웨어 소개의 일부 기사를 소개합니다.

컴퓨텍스 2018에서 소개된 강력한 PC 하드웨어 소개

본 기사는 PCWorld 및 itworld에서 부분 발췌된 내용입니다.

컴퓨텍스 2018에서는 게이밍이 뜨겁다.
PC의 핵심 칩들이 크게 발전하면서 성능을 크게 높였다.

스레드리퍼(Threadripper) 2 인텔의 발표 직후, AMD는 32코어 64스레드 플래그십인 스레드리퍼 2를 소개하면서 코어 전쟁에 불을 붙였다. 새 24코어 CPU도 출시되며 새 칩들은 2세대 라이젠(Ryzen)과 같은 기본 기술에 기초하여 개발되었다. 또한 AMD는 쿨러 마스터와 협력하여 32코어의 온도를 관리할 수 있는 거대한 공냉식 쿨러인 레이스 리퍼(Wraith Ripper)를 제작했다.

AMD를 전격 채용한 에이서 헬리오스(Acer Helios) 500 컴퓨텍스에서 AMD의 기술이 예상치 못한 곳에서 공개되었다. AMD를 전격 채용한 이 모델에는 6코어 12스레드 라이젠 7 2700 데스크톱 프로세서뿐만이 아니라 라데온 베가(Radeon Vega) 56 그래픽이 탑재되어 있으며, 외장 베가 GPU가 탑재된 노트북은 이번이 처음이다. 에이서는 이 노트북에 144Hz 프리싱크 디스플레이를 매치하여 베가의 성능을 최대한 발휘할 수 있도록 했다.

MSI 노트북(치터(Cheater) 모드 적용) MSI는 컴퓨텍스에서 모든 가격 대의 노트북을 선보였다. MSI가 엔비디아 GTX 1050 그래픽을 내장한 프레스티지(Prestige) PS42가 있다. 매우 인상적일 것이며 기록을 달성할 수 있을지 기대된다. 보급형의 경우 MSI GF63은 999달러란 저렴한 가격에 6코어 8세대 인텔 코어 CPU와 GTX 1050이 내장되어 있다.

독특한 에이수스 노트북 에이수스는 컴퓨텍스에서 프로젝트 프리코그 외에도 혁신적인 하드웨어를 선보였다. 또한 기본적으로 트랙패드(Trackpad)를 상황에 따라 PC용 보조 화면으로 변신시키는 “스크린패드(ScreenPad)” 기술이 포함된 젠북 프로(ZenBook Pro) 15의 새로운 버전을 공개했다.

 

2017년 수치해석 분야에 기대되는 최신 컴퓨터 소식

수치해석을 하는 많은 분들은 대부분 시간과의 전쟁을 치루고 있습니다.
좀 더 빨리, 좀 더 상세한 결과를 얻어야 하기 때문에, 많은 분들이 예산이 허락하는 한 성능 좋은 컴퓨터를 확보하는 것이 최대의 목표가 되고 있습니다.

한 동안 AMD가 인텔의 경쟁자로 존재하면서 두 회사는 선의의 성능 경쟁을 치열하게 전개해 왔는데, AMD가 서서히 경쟁력을 잃고 있다가 최근에 젠 CPU를 통해 다시 경쟁에 불을 지피고 있습니다.
여기에 두 회사의 최신 주력 CPU 의 내용을 기사에서 인용하여 소개합니다.


인텔, 18코어 36스레드 갖춘 코어 i9 칩 발표 “AMD 쓰레드리퍼와 전면전” (기사 출처 : itworld)

인텔이 코어 i9을 무기로 본격적인 AMD와의 전쟁에 돌입했다. 인텔은 30일 대만 컴퓨텍스에서 하이엔드 PC시장에서 AMD의 16코어 32스레드 스레드리퍼(Threadripper)와 경쟁할 18코어 36스레드의 ‘몬스터 마이크로프로세서’를 발표했다.

이 프로세서에는 코어 i9 익스트림 에디션 i9-7980XE라는 이름이 붙었다. 첫 번째 테라플롭(Teraflop) 데스크톱 PC프로세스로 아주 고가이다. 올해 말 출하되는 프로세서의 가격은 1,999달러이다. 한 단계 낮은 코어 i9 제품군 제품들은 가격이 조금 더 저렴하다. 10코어, 12코어, 14코어, 16코어로 구성된 코어 i9 X 시리즈 가격은 999~1,699달러 사이다. 모두 스카이레이크 기반 프로세스이며, 기존 브로드웰-E보다 높은 성능을 제공한다. 인텔에 따르면, 싱글스레드 앱은 15%, 멀티스레드는 10% 빠르다.

인텔은 ‘베이진 폴스(Basin Falls)”라는 코드 네임을 가진 코어 i9 X 시리즈가 너무 비싼 사람들을 위해 3종의 새로운 코어 i7 X 시리즈 칩(339~599달러)과 1종의 쿼드 코어 코어 i5(242달러)도 공개했다. 인텔은 몇 주 이내에 신제품 칩을 출하할 예정이라고 설명했다.

대부분의 코어 i9칩에 터보 부스트 맥스 기술 업데이트(Updated Turbo Boost Max Technology) 3.0이 탑재될 예정이다. 터보 부스트 맥스는 칩이 최고의 코어 2개를 파악하고, 필요할 때 가변적으로 속도를 높여 오버클러킹을 하는 기능이다. 옵테인 메모리도 지원한다. 인텔은 130개 이상의 옵테인 지원 메인보드가 출시될 예정이라고 설명했다.

신제품 165W, 140W, 112W 칩은 역시 새로운 소켓인 R4에 맞춰 설계되어 있다. 2,066핀 LGA 소켓과 호환되는 인텔 칩셋은 X299가 유일하다.

다시 한번, 인텔과 AMD가 제대로 한 판 붙을 전망이다. 둘 중 누가 승리할지 지켜보는 사용자들의 관심도 뜨겁다. 인텔은 코어 i9을 발표하면서 하이엔드 시장에 공격적으로 접근했다. AMD도 스레드리퍼의 10코어, 12코어, 14코어 버전과 가격을 공개할 수밖에 없는 실정이다. 인텔이 먼저 패를 공개했다. 게임은 이제부터가 시작이다.

인텔의 새 코어 i9 칩은 모든 PC관련 제품이 전시되는 종합 전시회로 발전한 컴퓨텍스에서 가장 중요한 발표 중 하나로 꼽혔다. 기대되는 소식은 아직 많이 남아있다. 홍보 담당자에 따르면, 인텔 경영진이 차세대 10nm 칩인 캐논 레이크에 대해 발표할 예정이라고 한다. 기존 케이비 레이크 칩보다 30% 높은 성능을 자랑하는 제품이다.

또, HTC 바이브 VR 헤드셋을 WiGig 기술을 이용해 무선 연결하는 기술에 대해 더 자세한 정보가 발표될 계획이다. 인텔과 HTC는 지난 1월 CES에서 파트너십 체결을 발표했다. 인텔은 또 8월부터 컴퓨트 카드(Compute Card)를 출시한다고 발표할 계획이다.

코어 i9의 속도와 피드
클록 속도가 4GHz를 넘으면서, 제조업체들이 직면한 도전 과제는 추가된 코어를 모두 사용하는 방법을 찾는 것이었다. 앞서 링크된 기사에서 설명했듯, 하나의 프로세스 코어만 집중적으로 사용하는 게임들이 여전히 많다. 인텔은 게임 플레이는 물론, 게임에 이용하지 않는 다른 코어로 트위치나 유튜브 스트리밍을 인코딩하고, 더 나아가 백그라운드에서 음악도 재생할 수 있는 새로운 세대의 ‘스트리머(Streamer)’로 눈길을 돌렸다. 인텔은 이런 동시다발 작업에 ‘메가태스킹’이라는 명칭을 붙였다. 이 회사는 이를 갈수록 증가하는 코어 수에 맞게 ‘수요’를 유지하는 아주 좋은 방법으로 판단하고 있다.

이와 관련, X시리즈 마케팅 매니저인 토니 베라는 “게이머가 콘텐츠 창작자로 변모하는 추세”라고 강조했다.

제품 가격은 자연스럽게 최고 2,000달러로 아주 비싸고, 경제력이 있거나 기업의 후원을 받는 사용자만 최신 코어 i9 제품들을 구입할 수 있을 전망이다. 다음은 제품 별 가격과 코어, 스레드 수를 정리한 내용이다.

Core i9-7980XE: 18코어/ 36스레드, 1,999달러
Core i9-7960X: 16코어/ 32스레드, 1,699달러
Core i9-7940X: 14코어/ 28스레드, 1,399달러
Core i9-7920X: 12코어/ 24스레드, 1,199달러
Core i9-7900X (3.3GHz): 10코어/ 20스레드, 999달러

인텔은 또 한정된 예산에 제약 받는 사용자를 대상으로 3종의 새로운 코어 i7 X 시리즈 칩을 판매할 계획이다.

Core i7 7820X (3.6GHZ), 8코어/ 16스레드, 599달러
Core i7-7800X (3.5GHz), 6코어/ 12스레드, 389달러
Core i7-7740X (4.3GHz), 4코어/ 8스레드, 339달러
케이비 레이크 코어에 맞춰 설계된 i7-7740X를 제외한 모든 칩이 인텔의 ‘스카이레이크-X’에 기반을 두고 있다.

새 칩에서 가장 큰 관심을 끄는 기능은 터보 부스트 맥스 기술 업데이트 3.0이다. 고든 마 웅이 인텔 브로드웰-E 리뷰에서 설명한 것처럼, 터보 부스트 맥스 기술 3.0은 (칩에 따라 차이가 있지만) 최고의 코어를 식별한다. 그리고 CPU 집약적 싱글 스레드 애플리케이션을 이 코어로 연결해 전체 성능을 향상한다.
또, 최고의 코어 2개를 식별하고, 가장 CPU 집약적인 스레드에 할당한다. 더 많은 코어를 더 효과적으로 활용하는 게임과 애플리케이션에 도움을 주는 기능이다. 그러나 이 새로운 기능을 탑재하지 않은 칩도 있다. 새 6코어, 2종의 4코어 X시리즈 칩이 여기에 포함된다.

다음은 속도와 피드를 요약 설명한 표다.

오버클럭이 포인트
인텔은 새 X시리즈에 공냉 쿨러를 추천하지 않는다. 인텔은 165W와 140W의 새 칩이 방출할 열을 효과적으로 냉각시킬 수 있는 TS13X 쿨러를 판매할 예정이다.

TS13X는 PG(Propylene Glycol)을 이용, 열을 73.84-CFM 팬으로 보낸다. 이 팬의 소음은 21~35dBA이고, 회전 속도는 800~2,200rpm이다. 별도 판매될 TS13X의 가격은 85~100달러 사이이다.

인텔은 또 XTU(Extreme Tuning Utility)를 이용, 코어 당 오버클러킹과 전압 조절을 계속 지원할 계획이다. AVX 512 비율 오프셋, 메모리 전압 조절, PEG/DMI 오버클러킹 등 새 기능이 포함되어 있다.
또 ‘성능 튜닝 보증 서비스(Performance tuning protection plan)’를 제공할 계획이다. 이는 오버클로킹 사용자를 위한 일종의 ‘보험’이다. 칩이 고장 날 경우, 1회 교체를 해주는 보증 서비스이며, 두 번째부터는 유료로 진행된다.

데이터 전송 성능을 향상한 새 X299 칩셋
테라플롭급 연산력을 갖춘 PC의 경우, 다른 부품과의 데이터 전송 성능이 아주 중요하다. x299 칩셋은 최신 DMI 3.0을 도입해 SATA 3.0포트와 USB 포트 연결 대역폭을 2배로 증가시킨다. X299 칩셋에는 최대 8개의 SATA 3.0포트, 10개의 USB 3.0 포트가 장착되어 있다. 기존 X99 칩셋의 USB 3.0포트 수는 최대 6개였다.

브로드웰-E X99 칩셋은 8개의 PCIe 레인을 지원했었다. 그러나 X299은 최대 24개의 PCIe 3.0 레인을 지원한다. 고속 PCIe NVM3 드라이브 등 추가 PCIe를 CPU와 연결된 PCI3에 직접 연결할 수 있다. 코어가 10개 이상인 CPU의 경우, 최대 44개의 PCIe 3.0 레인을 이용할 수 있다.

X299는 속도가 빨라진 DDR4-2066을 지원한다. 그러나 어느 정도 RAM 용량을 지원하는지 확실하지 않다. 인텔은 캐시 계층(Cache Hierarchy)을 조정했다. 이를 통해 개별 프로세서 근처에 더 많은 캐시를 배치하는 방법보다 캐시 크기를 더 많이 줄일 수 있다. 인텔은 새로운 캐시의 ‘히트(Hit)’ 레이트가 더 높다고 설명한다. 칩 크기를 줄였지만 캐시 성능을 유지할 수 있었다는 의미이다.

이번 신제품 소식은 코어 i9, 코어 i7 X 시리즈 사용자 모두 크게 기뻐할 기능 및 성능 향상이다. 메인보드와 PC 제조사도 하이엔드 시장에서 수익을 증대하기 위해 코어 i9 제품들을 출시할 것으로 예상된다. 이번 주 컴퓨텍스에서 전해질 더 많은 소식에 사용자들의 관심이 쏠리고 있다. editor@itworld.co.kr


AMD 마이크로아키텍처 (기사 출처 : itworld)

AMD 라이젠 3월 2일 출시…코어 i7보다 가격도 성능도 “우세”

Mark Hachman | PCWorld

“40% 성능 향상”이라는 말은 보수적인 자체 평가였다. AMD는 첫 번째 라이젠 프로세서 3가지를 오는 3월 2일 출시할 계획이라고 밝혔다. 인텔 코어 제품군을 능가하는 성능으로 기대를 받고 있는 라이젠 프로세서는 가격도 절반 가까이 저렴하다.

22일 열린 라이젠 출시 행사에서 발표에 나선 AMD 임원들은 인텔 코어 i7을 공략하기 위한 세 가지 데스크톱용 CPU를 공개했다. 신형 라이젠 CPU는 여러 곳의 주요 메인보드 업체와 전문가용 맞춤형 PC 업체가 지원한다. 특히 AMD는 신형 라이젠 프로세서가 더 적은 비용으로 더 높은 성능을 제공한다는 점을 강조했다. 최고 성능 제품인 라이젠 7 1800X는 인텔의 1,000달러짜리 코어 i7-6900K의 절반에도 못 미치는 가격이지만, 성능은 더 뛰어나다.

인텔과 마찬가지로 AMD의 라이젠 프로세서 역시 역시 3가지 제품군으로 구성되어 있는데, 고급형 라이젠 7, 중급형 라이젠 5, 가장 저렴한 보급형 라이젠 3이 그것이다. AMD는 고성능 라이젠 7부터 먼저 출시하는데, 1800X(499달러), 1700X(399달러), 1700(329달러)의 세 가지 모델이다. 라이젠 5와 라이젠 3은 올해 하반기에 출시할 예정인데, 구체적인 출시 일정은 밝히지 않았다.

이번 행사 직전까지 공개되지 않은 라이젠 관련 정보는 가격과 정확한 출시일이었다. 애널리스트들은 AMD가 그간의 실책을 모두 개선한 것 같다고 평가했으며, 인텔은 자칫 기반이 되는 PC용 마이크로프로세서 시장의 점유율을 잃을 수 있는 위험에 처했다. 물론 인텔도 대응책은 있다. 가격 인하도 그중 하나일 가능성이 있고, 더 많은 코어를 가진 신제품이나 옵테인 기술을 적극 내세우는 것도 방법이 될 수 있다.

인텔이 지난 1월 케이비 레이크 칩 40가지를 대대적으로 출시한 것과는 달리 AMD는 서두르지 않고 있다. 이번에 출시된 라이젠 7 칩의 세부 사양을 살펴보자.

Mark Hachman

라이젠 7 1800X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.6GHz, 부스트 모드에서는 4GHz로 동작한다. 499달러 1800X의 대응 제품은 8코어 인텔 코어 i7-6900K로 무려 1,089달러짜리이다. AMD에 따르면, 1800X는 시네벤치 상에서 단일 쓰레드 점수가 162로 동점을 기록했다. 하지만 코어를 모두 구동하자 1,601점으로 6900K보다 9% 높은 점수를 기록했다.

라이젠 7 1700X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.4GHz, 부스트 모드에서는 3.8GHz로 동작한다. AMD에 따르면, 399달러 1700X는 시네벤치 멀티코어 벤치마크 테스트에서 1,537점을 기록해 6900K보다 4% 높은 성능을 보였다.

라이젠 7 1700. 655와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3GHz, 부스트 모드에서는 3.7GHz로 동작한다. AMD에 따르면, 1700은 시네벤치 멀티코어 테스트에서 1,410점으로 339달러짜리 코어 i7 7700K보다 46% 더 높은 성능을 기록했다. 핸드브레이크 비디오 인코딩 테스트에서는 1700은 61.8초를, 7700K는 71.8초를 기록했다.

Mark Hachman

AMD에 따르면 라이젠 7 1700은 신형 레이스 스파이어(Wraith Spire) 쿨러를 기본 쿨러로 제공해 소음이 32데시벨에 불과하다.

라이젠의 눈에 띄는 성능 향상에는 설계팀의 역할이 컸다. AMD는 자사의 목표 중 하나가 젠 아키텍처의 클럭당 명령어 처리수(IPC, instructions per clock)를 40% 늘리는 것이라고 밝힌 바 있다. 그리고 실제로 AMD는 IPC를 52% 향상했다. CEO 리사 수는 “단지 목표를 맞춘 것이 아니라 크게 초과 달성했다”라고 강조했다. editor@itworld.co.kr

 

원문보기:
http://www.itworld.co.kr/news/103594#csidx36e903474b838daa0638fbf87957a25

Coating Bibliography

아래는 코팅 참고 문헌의 기술 문서 모음입니다. 
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. FLOW-3D를 사용하여 코팅 공정을 성공적으로 시뮬레이션  하는 방법에 대해 자세히 알아보십시오.

Coating Bibliography

2024년 8월 12일 Update

Below is a collection of technical papers in our Coating Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate coating processes.

130-22   Md Didarul Islam, Himendra Perera, Benjamin Black, Matthew Phillips, Muh-Jang Chen, Greyson Hodges, Allyce Jackman, Yuxuan Liu, Chang-Jin Kim, Mohammed Zikry, Saad Khan, Yong Zhu, Mark Pankow, Jong Eun Ryu, Template-free scalable fabrication of linearly periodic microstructures by controlling ribbing defects phenomenon in forward roll coating for multifunctional applications, Advanced Materials Interfaces, 9.27; 2201237, 2022. doi.org/10.1002/admi.202201237

03-21   Delong Jia, Peng Yi, Yancong Liu, Jiawei Sun, Shengbo Yue, Qi Zhao, Effect of laser­ textured groove wall interface on molybdenum coating diffusion and metallurgical bonding, Surface and Coatings Technology, 405; 126561, 2021. doi.org/10.1016/j.surfcoat.2020.126561

50-19     Peng Yi, Delong Jia, Xianghua Zhan, Pengun Xu, and Javad Mostaghimi, Coating solidification mechanism during plasma-sprayed filling the laser textured grooves, International Journal of Heat and Mass Transfer, Vol. 142, 2019. doi:10.1016/j.ijheatmasstransfer.2019.118451

01-19   Jelena Dinic and Vivek Sharma, Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method, Physics of Fluids, Vol. 31, 2019. doi: 10.1063/1.5061715

85-18   Zia Jang, Oliver Litfin and Antonio Delgado, A semi-analytical approach for prediction of volume flow rate in nip-fed reverse roll coating process, Proceedings in Applied Mathematics and Mechanics, Vol. 18, no. 1, Special Issue: 89th Annual Meeting of the International Association of Applied Mathematics and Mechanics, 2018. doi: 10.1002/pamm.201800317

80-14   Hiroaki Koyama, Kazuhiro Fukada, Yoshitaka Murakami, Satoshi Inoue, and Tatsuya Shimoda, Investigation of Roll-to-Sheet Imprinting for the Fabrication of Thin-film Transistor Electrodes, IEICE TRAN, ELECTRON, VOL.E97-C, NO.11, November 2014

46-14   Isabell Vogeler, Andreas Olbers, Bettina Willinger and Antonio Delgado, Numerical investigation of the onset of air entrainment in forward roll coating, 17th International Coating Science and Technology Symposium September 7-10, 2014 San Diego, CA, USA

17-12  Chi-Feng Lin, Bo-Kai Wang, Carlos Tiu and Ta-Jo Liu, On the Pinning of Downstream Meniscus for Slot Die Coating, Advances in Polymer Technology, Vol. 00, No. 0, 1-9 (2012) © 2012 Wiley Periodicals, Inc. Available online at Wiley.

01-11  Reid Chesterfield, Andrew Johnson, Charlie Lang, Matthew Stainer, and Jonathan Ziebarth, Solution-Coating Technology for AMOLED Displays, Information Display Magazine, 1/11 0362-0972/01/2011-024 © SID 2011.

61-09 Yi-Rong Chang, Chi-Feng Lin and Ta-Jo Liu, Start-up of slot die coating, Polymer Engineering and Science, Vol. 49, pp. 1158-1167, 2009. doi:10.1002/pen.21360

26-06  James M. Brethour, 3-D transient simulation of viscoelastic coating flows, 13th International Coating Science and Technology Symposium, September 2006, Denver, Colorado

19-06  Ivosevic, M., Cairncross, R. A., and Knight, R., 3D Predictions of Thermally Sprayed Polymer Splats Modeling Particle Acceleration, Heating and Deformation on Impact with a Flat Substrate, Int. J. of Heat and Mass Transfer, 49, pp. 3285 – 3297, 2006

9-06  M. Ivosevic, R. A. Cairncross, R. Knight, T. E. Twardowski, V. Gupta, Drexel University, Philadelphia, PA; J. A. Baldoni, Duke University, Durham, NC, Effect of Substrate Roughness on Splatting Behavior of HVOF Sprayed Polymer Particles Modeling and Experiments, International Thermal Spray Conference, Seattle, WA, May 2006.

26-05  Ivosevic, M., Cairncross, R. A., Knight, R., Impact Modeling of Thermally Sprayed Polymer Particles, Proc. International Thermal Spray Conference [ITSC-2005], Eds., DVS/IIW/ASM-TSS, Basel, Switzerland, May 2005.

11-05  Brethour, J., Simulation of Viscoelastic Coating Flows with a Volume-of-fluid Technique, in Proceedings of the 6th European Coating Symposium, Bradford, UK, 2005

1-05 C.W. Hirt, Electro-Hydrodynamics of Semi-Conductive Fluids: With Application to Electro-Spraying, Flow Science Technical Note #70, FSI-05-TN70

38-04 K.H. Ho and Y.Y. Zhao, Modelling thermal development of liquid metal flow on rotating disc in centrifugal atomisation, Materials Science and Engineering, A365, pp. 336-340, 2004. doi:10.1016/j.msea.2003.09.044

30-04  M. Ivosevic, R.A. Cairncross, and R. Knight, Impact Modeling of HVOF Sprayed Polymer Particles, Presented at the 12th International Coating Science and Technology Symposium, Rochester, New York, September 23-25, 2004

29-04  J.M. Brethour and C.W. Hirt, Stains Arising from Dried Liquid Drops, Presented at the 12th International Coating Science and Technology Symposium, Rochester, New York, September 23-25, 2004

20-03  James Brethour, Filling and Emptying of Gravure Cells–A CFD Analysis, Convertech Pacific October 2002, Vol. 10, No 4, p 34-37

4-03   M. Toivakka, Numerical Investigation of Droplet Impact Spreading in Spray Coating of Paper, In Proceedings of 2003 TAPPI 8th Advanced Coating Fundamentals Symposium, TAPPI Press, Atlanta, 2003

28-02  J.M. Brethour and H. Benkreira, Filling and Emptying of Gravure Cells—Experiment and CFD Comparison, 11th International Coating Science and Technology Symposium, September 23-25, 2002, Minneapolis, Minnesota

22-02  Hirt, C.W., and Brethour, J.M., Contact Line on Rough Surfaces with Application to Air Entrainment, Presented at the 11th International Coating Science and Technology Symposium, September 23-25, 2002, Minneapolis, Minnesota. Unpublished.

17-01  J. M. Brethour, C. W. Hirt, Moving Contact Lines on Rough Surfaces, 4th European Coating Symposium, 2001, Belgium

16-01  J. M. Brethour, Filling and Emptying of Gravure Cells–-A CFD Analysis, proceedings of the 4th European Coating Symposium 2001, October 1-4, 2001, Brussels, Belgium

26-00 Ronald H. Miller and Gary S. Strumolo, A Self-Consistent Transient Paint Simulation, Proceedings of IMEC2000: 2000 ASME International Mechanical Engineering Congress and Exposition, November 2000, Orlando, Florida

6-99  C. W. Hirt, Direct Computation of Dynamic Contact Angles and Contact Lines, ECC99 Coating Conference, Erlangen, Germany (FSI-99-00-2), Sept. 1999

7-98 J. E. Richardson and Y. Becker, Three-Dimensional Simulation of Slot Coating Edge Effects, Flow Science Inc, and Polaroid Corporation, presented at the 9th International Coating Science and Technology Symposium, Newark, DE, May 18-20, 1998

6-98  C. W. Hirt and E. Choinski, Simulation of the Wet-Start Process in Slot Coating, Flow Science Inc, and Polaroid Corporation, presented at the 9th International Coating Science and Technology Symposium, Newark, DE, May 18-20, 1998

3-97  C. W. Hirt and J. E. Richardson of Flow Science Inc, and K.S. Chen, Sandia National Laboratory, Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique, presented at the 50th Annual Conference of the Society for Imaging and Science Technology, Boston, MA 18-23 May 1997

2-96 C. W. Hirt, K. S. Chen, Simulation of Slide-Coating Flows Using a Fixed Grid and a Volume-of-Fluid Front-Tracking Technique, presented a the 8th International Coating Process Science & Technology Symposium, February 25-29, 1996, New Orleans, LA

Metal Casting Bibliography

다음은 금속 주조 참고 문헌의 기술 문서 모음입니다. 
이 모든 논문은 FLOW-3D  CAST  결과를 포함하고 있습니다. FLOW-3D  CAST 를 사용하여 금속 주조 산업의 어플리케이션을 성공적으로 시뮬레이션  하는 방법에 대해 자세히 알아보십시오.

2024년 8월 12일 Update

46-24 Masyrukan, Irwan Mawarda, Sunardi Wiyono, Bibit Sugito, Ummi Kultsum, Dessy Ade Pratiwi, Desi Gustiani, Nur Annisa Istiqamah, The effect of differences in in-gate diameter size on the structure and mechanical properties of aluminum (Al) castings in pipe products with a red sand mold, AIP Conference Proceedings, 2838.1; 2024. doi.org/10.1063/5.0185773

43-24 German Alberto Barragán De Los Rios, Silvio Andrés Salazar Martínez, Emigdio Mendoza Fandiño, Patricia Fernández-Morales, Numerical simulation of aluminum foams by space holder infiltration, International Journal of Metalcasting, 2024. doi.org/10.1007/s40962-024-01287-8

40-24 Bin Zhang, Gary P. Grealy, Thermomechanical modeling on AirSlip® billet DC casting of high-strength crack-prone aluminum alloys, Light Metals 2024, Eds. S. Wagstaff, pp. 1015-1025, 2024. doi.org/10.1007/978-3-031-50308-5_128

35-24 Balaji Chandrakanth, Ved Prakash, Adwaita Maiti, Diya Mukherjee, Development of triply periodic minimal surface (TPMS) inspired structured cast iron foams through casting route, International Journal of Metalcasting, 2024. doi.org/10.1007/s40962-023-01247-8

19-24   Diya Mukherjee, Himadri Roy, Balaji Chandrakanth, Nilrudra Mandal, Sudip Kumar Samanta, Manidipto Mukherjee, Enhancing properties of Al-Zn-Mg-Cu alloy through microalloying and heat treatment, Materials Chemistry and Physics, 314; 128881, 2024. doi.org/10.1016/j.matchemphys.2024.128881

46-24 Masyrukan, Irwan Mawarda, Sunardi Wiyono, Bibit Sugito, Ummi Kultsum, Dessy Ade Pratiwi, Desi Gustiani, Nur Annisa Istiqamah, The effect of differences in in-gate diameter size on the structure and mechanical properties of aluminum (Al) castings in pipe products with a red sand mold, AIP Conference Proceedings, 2838.1; 2024. doi.org/10.1063/5.0185773

43-24 German Alberto Barragán De Los Rios, Silvio Andrés Salazar Martínez, Emigdio Mendoza Fandiño, Patricia Fernández-Morales, Numerical simulation of aluminum foams by space holder infiltration, International Journal of Metalcasting, 2024. doi.org/10.1007/s40962-024-01287-8

40-24 Bin Zhang, Gary P. Grealy, Thermomechanical modeling on AirSlip® billet DC casting of high-strength crack-prone aluminum alloys, Light Metals 2024, Eds. S. Wagstaff, pp. 1015-1025, 2024. doi.org/10.1007/978-3-031-50308-5_128

35-24 Balaji Chandrakanth, Ved Prakash, Adwaita Maiti, Diya Mukherjee, Development of triply periodic minimal surface (TPMS) inspired structured cast iron foams through casting route, International Journal of Metalcasting, 2024. doi.org/10.1007/s40962-023-01247-8

19-24   Diya Mukherjee, Himadri Roy, Balaji Chandrakanth, Nilrudra Mandal, Sudip Kumar Samanta, Manidipto Mukherjee, Enhancing properties of Al-Zn-Mg-Cu alloy through microalloying and heat treatment, Materials Chemistry and Physics, 314; 128881, 2024. doi.org/10.1016/j.matchemphys.2024.128881

181-23   Daichi Minamide, Ken’ichi Yano, Masahiro Sano, Takahiro Aoki, Overflow design system to decrease gas defects considering the direction of molten metal flow, 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), pp. 1-6, 2023. doi.org/10.1109/ICECCME57830.2023.10253413

102-23 Daichi Minamide, Ken’ichi Yano, Masahiro Sano, Takahiro Aoki, Automatic design of overflow system for preventing gas defects by considering the direction of molten metal flow, Computer-Aided Design, 163; 103586, 2023. doi.org/10.1016/j.cad.2023.103586

87-23 Prosenjit Das, Optimisation of melt pouring temperature and low superheat casting of Al-15Mg2Si-4.5Si composite, International Journal of Cast Metals Research, 36.1-3; 2023. doi.org/10.1080/13640461.2023.2211895

60-23   Yuanhao Gu, Feng Wang, Jian Jiao, Zhi Wang, Le Zhou, Pingli Mao, Zheng Liu, Study on semisolid rheo-diecasting process, microstructure and mechanical properties of Mg-6Al-1Ca-0.5Sb alloy with high solid fraction, International Journal of Metalcasting, 2023. doi.org/10.1007/s40962-023-01001-0

48-23   Patricia Fernández‑Morales, Lauramaría Echeverrí, Emigdio Mendoza Fandiño, Alejandro Alberto Zuleta Gil, Replication casting and additive manufacturing for fabrication of cellular aluminum with periodic topology: optimization by CFD simulation, The International Journal of Advanced Manufacturing Technology, 26; pp. 1789-1797, 2023. doi.org/10.1007/s00170-023-11124-7

45-23   Daniel Martinez, Philip King, Santosh Reddy Sama, Jay Sim, Hakan Toykoc, Guha Manogharan, Effect of freezing range on reducing casting defects through 3D sand-printed mold designs, The International Journal of Advanced Manufacturing Technology, 2023. doi.org/10.1007/s00170-023-11112-x

38-23   Emanuele Pagone, Christopher Jones, John Forde, William Shaw, Mark Jolly, Konstantinos Salonitis, Defect minimization in vacuum-assisted plaster mould investment casting through simulation of high-value aluminium alloy components, TMS 2023: Light Metals, pp. 1078-1086, 2023.

33-23   Philip King, Guha Manogharan, Novel experimental method for metal flow analysis using open molds for sand casting, International Journal of Metalcasting, 2023. doi.org/10.1007/s40962-023-00966-2

32-23   Sujeet Kumar Gautam, Himadri Roy, Aditya Kumar Lohar, Sudip Kumar Samanta, Studies on mold filling behavior of Al–10.5Si–1.7Cu Al alloy during rheo pressure die casting system, International Journal of Metalcasting, 2023. doi.org/10.1007/s40962-023-00958-2

31-23   Anand Kumbhare, Prasenjit Biswas, Anil Bisen, Chandan Choudary, Investigation of effect of the rheological parameters on the flow behavior of ADC12 Al alloy in rheo-pressure die casting, International Journal of Metalcasting, 2023. doi.org/10.1007/s40962-023-00962-6

24-23   Natalia Raźny, Anna Dmitruk, Maria Serdechnova, Carsten Blawert, Joanna Ludwiczak, Krzysztof Naplocha, The performance of thermally conductive tree-like cast aluminum structures in PCM-based storage units, International Communications in Heat and Mass Transfer, 142; 106606, 2023. doi.org/10.1016/j.icheatmasstransfer.2022.106606

172-22 J. Yokesh Kumar, S. Gopi, K.S. Amirthagadeswaran, Redesigning and numerical simulation of gating system to reduce cold shut defect in submersible pump part castings, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2022. doi.org/10.1177/0954408922114218

125-22   Maximilian Erber, Tobias Rosnitschek, Christoph Hartmann, Bettina Alber-Laukant, Stephan Tremmel, Wolfram Volk, Geometry-based assurance of directional solidification for complex topology-optimized castings using the medial axis transform, Computer-Aided Design, 152; 103394, 2022. doi.org/10.1016/j.cad.2022.103394

74-22    Vasilios Fourlakidis, Ilia Belov, Attila Diószeg, Experimental model of the pearlite interlamellar spacing in lamellar graphite iron, Tecnologia em Metalurgia, Materiais e Mineração, 19; e2634, 2022. doi.org/10.4322/2176-1523.20222634

71-22   M. G. Mahmoud, Amr Abdelghany, Serag Salem, Numerical simulation of door lock plates castings produced by high pressure die casting process, International Journal of Metalcasting, 2022. doi.org/10.1007/s40962-022-00797-7

70-22   Andreas Schilling, Daniel Schmidt, Jakob Glück, Niklas Schwenke, Husam Sharabi, Martin Fehlbier, About the impact on gravity cast salt cores in high pressure die casting and rheocasting, Simulation Modelling Practice and Theory, 119; 102585, 2022. doi.org/10.1016/j.simpat.2022.102585

52-22   Manthan Dhisale, Jitesh Vasavada, Asim Tewari, An approach to optimize cooling channel parameters of low pressure die casting process for reducing shrinkage porosity in aluminium alloy wheels, Materials Today: Proceedings, in print, 2022. doi.org/10.1016/j.matpr.2022.03.478

44-22   Zihan Lang, Feng Wang, Wei Wang, Zhi Wang, Le Zhou, Pingli Mao, Zheng Liu, Numerical simulation and experimental study on semi-solid forming process of 319s aluminum alloy test bar, International Journal of Metalcasting, 2022. doi.org/10.1007/s40962-022-00788-8

32-22   Elisa Fracchia, Federico Simone Gobber, Claudio Mus, Raul Pirovino, Mario Russo, The local squeeze technology for challenging aluminium HPDC automotive components, Light Metals, pp. 772-778, 2022. doi.org/10.1007/978-3-030-92529-1_102

141-21   O. Ayer, O. Kaya, Mould design optimisation by FEM, Journal of Physics: Conference Series, 2130; 012021, 2021. doi.org/10.1088/1742-6596/2130/1/012021

117-21   I. Rajkumar, N. Rajini, T. Ram Prabhu, Sikiru O. Ismail, Suchart Siengchin, Faruq Mohammad, Hamad A. Al-Lohedan , Applicability of angular orientations of gating designs to quality of sand casting components using two-cavity mould set-up, Transactions of the Indian Institute of Metals, 2021. doi.org/10.1007/s12666-021-02434-z

106-21   M. Ahmed, E. Riedel, M. Kovalko, A. Volochko, R. Bähr, A. Nofal, Ultrafine ductile and austempered ductile irons by solidification in ultrasonic field, International Journal of Metalcasting, 2021. doi.org/10.1007/s40962-021-00683-8

97-21   J. Glueck, A. Schilling, N. Schwenke, A. Fros, M.Fehlbier, Efficiency and agility of a liquid CO2 cooling system for molten metal systems, Case Studies in Thermal Engineering, 28; 101485, 2021. doi.org/10.1016/j.csite.2021.101485

82-21   Giulia Scampone, Raul Pirovano, Stefano Mascetti, Giulio Timelli, Experimental and numerical investigations of oxide-related defects in Al alloy gravity die castings, The International Journal of Advanced Manufacturing Technology, 117; pp. 1765-1780, 2021. doi.org/10.1007/s00170-021-07680-5

74-21   Shuyang Ren, Feng Wang, Jingying Sun, Zheng Liu, Pingli Mao, Gating system design based on numerical simulation and production experiment verification of aluminum alloy bracket fabricated by semi-solid rheo-die casting process, International Journal of Metalcasting, 2021. doi.org/10.1007/s40962-021-00648-x

69-21   Ozen Gursoy, Murat Colak, Kazim Tur, Derya Dispinar, Characterization of properties of Vanadium, Boron and Strontium addition on HPDC of A360 alloy, Materials Chemistry and Physics, 271; 124931, 2021. doi.org/10.1016/j.matchemphys.2021.124931

54-21   K. Munpakdee, P. Ninpetch, S. Otarawanna, R. Canyook, P. Kowitwarangkul, Effect of feed sprue size on porosity defects in Platinum 950 centrifugal investment casting via numerical modelling, IOP Conference Series: Materials Science and Engineering, 11th TSME-International Conference on Mechanical Engineering, Ubon Ratchathani, Thailand, December 1-4, 2020, 1137; 012021, 2021. doi.org/10.1088/1757-899X/1137/1/012021/

44-21   Yunxiang Zhang, Haidong Zhao, Fei Liu, Microstructure characteristics and mechanical properties improvement of gravity cast Al-7Si-0.4Mg alloys with Zr additions, Materials Characterization, 176; 111117, 2021. doi.org/10.1016/j.matchar.2021.111117

05-21   Heqian Song, Lunyong Zhang, Fuyang Cao, Xu Gu, Jianfei Sun, Oxide bifilm defects in aluminum alloy castings, Materials Letters, 285; 129089, 2021. doi.org/10.1016/j.matlet.2020.129089

127-20   Eric Riedel, Niklas Bergedieck, Stefan Scharf, CFD simulation based investigation of cavitation cynamics during high intensity ultrasonic treatment of A356, Metals, 10.11; 1529, 2020. doi.org/10.3390/met10111529

86-20       Malte Leonhard, Matthias Todte, Jörg Schäfer, Realistic simulation of the combustion of exothermic feeders, Modern Casting, August 2020; pp. 35-40, 2020. (See also 58-19)

52-20       Mingfan Qi, Yonglin Kang, Jingyuan Li, Zhumabieke Wulabieke, Yuzhao Xu, Yangde Li, Aisen Liu, Junchen Chen, Microstructures refinement and mechanical properties enhancement of aluminum and magnesium alloys by combining distributary-confluence channel process for semisolid slurry preparation with high pressure die-casting, Journal of Materials Processing Technology, 285; 116800, 2020. doi.org/10.1016/j.jmatprotec.2020.116800

46-20       Yasushi Iwata, Shuxin Dong, Yoshio Sugiyama, Jun Yaokawa, Melt permeability changes during solidification of aluminum alloys and application to feeding simulation for die castings, Materials Transactions, 61.7; pp. 1381-1386, 2020. doi.org/10.2320/matertrans.F-M2020822

45-20       Daniel Bernal, Xabier Chamorro, Iñaki Hurtado, Iñaki Madariaga, Effect of boron content and cooling rate on the microstructure and boride formation of β-solidifying γ-TiAl TNM alloy, Metals, 10.5; 698, 2020. doi.org/10.3390/met10050698

33-20     Eric Riedel, Martin Liepe Stefan Scharf, Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum, Metals, 10.4; 476, 2020. doi.org/10.3390/met10040476

20-20   Wu Yue, Li Zhuo and Lu Rong, Simulation and visual tester verification of solid propellant slurry vacuum plate casting, Propellants, Explosives, Pyrotechnics, 2020. doi.org/10.1002/prep.201900411

17-20   C.A. Jones, M.R. Jolly, A.E.W. Jarfors and M. Irwin, An experimental characterization of thermophysical properties of a porous ceramic shell used in the investment casting process, Supplimental Proceedings, pp. 1095-1105, TMS 2020 149th Annual Meeting and Exhibition, San Diego, CA, February 23-27, 2020. doi.org/10.1007/978-3-030-36296-6_102

12-20   Franz Josef Feikus, Paul Bernsteiner, Ricardo Fernández Gutiérrez and Michal Luszczak , Further development of electric motor housings, MTZ Worldwide, 81, pp. 38-43, 2020. doi.org/10.1007/s38313-019-0176-z

09-20   Mingfan Qi, Yonglin Kang, Yuzhao Xu, Zhumabieke Wulabieke and Jingyuan Li, A novel rheological high pressure die-casting process for preparing large thin-walled Al–Si–Fe–Mg–Sr alloy with high heat conductivity, high plasticity and medium strength, Materials Science and Engineering: A, 776, art. no. 139040, 2020. doi.org/10.1016/j.msea.2020.139040

07-20   Stefan Heugenhauser, Erhard Kaschnitz and Peter Schumacher, Development of an aluminum compound casting process – Experiments and numerical simulations, Journal of Materials Processing Technology, 279, art. no. 116578, 2020. doi.org/10.1016/j.jmatprotec.2019.116578

05-20   Michail Papanikolaou, Emanuele Pagone, Mark Jolly and Konstantinos Salonitis, Numerical simulation and evaluation of Campbell running and gating systems, Metals, 10.1, art. no. 68, 2020. doi.org/10.3390/met10010068

102-19   Ferencz Peti and Gabriela Strnad, The effect of squeeze pin dimension and operational parameters on material homogeneity of aluminium high pressure die cast parts, Acta Marisiensis. Seria Technologica, 16.2, 2019. doi.org/0.2478/amset-2019-0010

94-19   E. Riedel, I. Horn, N. Stein, H. Stein, R. Bahr, and S. Scharf, Ultrasonic treatment: a clean technology that supports sustainability incasting processes, Procedia, 26th CIRP Life Cycle Engineering (LCE) Conference, Indianapolis, Indiana, USA, May 7-9, 2019.

93-19   Adrian V. Catalina, Liping Xue, Charles A. Monroe, Robin D. Foley, and John A. Griffin, Modeling and Simulation of Microstructure and Mechanical Properties of AlSi- and AlCu-based Alloys, Transactions, 123rd Metalcasting Congress, Atlanta, GA, USA, April 27-30, 2019.

84-19   Arun Prabhakar, Michail Papanikolaou, Konstantinos Salonitis, and Mark Jolly, Sand casting of sheet lead: numerical simulation of metal flow and solidification, The International Journal of Advanced Manufacturing Technology, pp. 1-13, 2019. doi:10.1007/s00170-019-04522-3

72-19   Santosh Reddy Sama, Eric Macdonald, Robert Voigt, and Guha Manogharan, Measurement of metal velocity in sand casting during mold filling, Metals, 9:1079, 2019. doi:10.3390/met9101079

71-19   Sebastian Findeisen, Robin Van Der Auwera, Michael Heuser, and Franz-Josef Wöstmann, Gießtechnische Fertigung von E-Motorengehäusen mit interner Kühling (Casting production of electric motor housings with internal cooling), Geisserei, 106, pp. 72-78, 2019 (in German).

58-19     Von Malte Leonhard, Matthias Todte, and Jörg Schäffer, Realistic simulation of the combustion of exothermic feeders, Casting, No. 2, pp. 28-32, 2019. In English and German.

52-19     S. Lakkum and P. Kowitwarangkul, Numerical investigations on the effect of gas flow rate in the gas stirred ladle with dual plugs, International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi: 10.1088/1757-899X/526/1/012028

47-19     Bing Zhou, Shuai Lu, Kaile Xu, Chun Xu, and Zhanyong Wang, Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling, International Journal of Metalcasting, Online edition, pp. 1-13, 2019. doi: 10.1007/s40962-019-00357-6

31-19     Zihao Yuan, Zhipeng Guo, and S.M. Xiong, Skin layer of A380 aluminium alloy die castings and its blistering during solution treatment, Journal of Materials Science & Technology, Vol. 35, No. 9, pp. 1906-1916, 2019. doi: 10.1016/j.jmst.2019.05.011

25-19     Stefano Mascetti, Raul Pirovano, and Giulio Timelli, Interazione metallo liquido/stampo: Il fenomeno della metallizzazione, La Metallurgia Italiana, No. 4, pp. 44-50, 2019. In Italian.

20-19     Fu-Yuan Hsu, Campbellology for runner system design, Shape Casting: The Minerals, Metals & Materials Series, pp. 187-199, 2019. doi: 10.1007/978-3-030-06034-3_19

19-19     Chengcheng Lyu, Michail Papanikolaou, and Mark Jolly, Numerical process modelling and simulation of Campbell running systems designs, Shape Casting: The Minerals, Metals & Materials Series, pp. 53-64, 2019. doi: 10.1007/978-3-030-06034-3_5

18-19     Adrian V. Catalina, Liping Xue, and Charles Monroe, A solidification model with application to AlSi-based alloys, Shape Casting: The Minerals, Metals & Materials Series, pp. 201-213, 2019. doi: 10.1007/978-3-030-06034-3_20

17-19     Fu-Yuan Hsu and Yu-Hung Chen, The validation of feeder modeling for ductile iron castings, Shape Casting: The Minerals, Metals & Materials Series, pp. 227-238, 2019. doi: 10.1007/978-3-030-06034-3_22

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi: 10.1016/j.addma.2018.12.009

02-19   Jingying Sun, Qichi Le, Li Fu, Jing Bai, Johannes Tretter, Klaus Herbold and Hongwei Huo, Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting-process, Journal of Materials Processing Technology, Vol. 266, pp. 274-282, 2019. doi: 10.1016/j.jmatprotec.2018.11.016

82-18   Xu Zhao, Ping Wang, Tao Li, Bo-yu Zhang, Peng Wang, Guan-zhou Wang and Shi-qi Lu, Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation, China Foundry, Vol. 15, no. 6, pp. 436-442, 2018. doi: 10.1007/s41230-018-8052-z

80-18   Michail Papanikolaou, Emanuele Pagone, Konstantinos Salonitis, Mark Jolly and Charalampos Makatsoris, A computational framework towards energy efficient casting processes, Sustainable Design and Manufacturing 2018: Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SDM-18), Gold Coast, Australia, June 24-26 2018, SIST 130, pp. 263-276, 2019. doi: 10.1007/978-3-030-04290-5_27

64-18   Vasilios Fourlakidis, Ilia Belov and Attila Diószegi, Strength prediction for pearlitic lamellar graphite iron: Model validation, Metals, Vol. 8, No. 9, 2018. doi: 10.3390/met8090684

51-18   Xue-feng Zhu, Bao-yi Yu, Li Zheng, Bo-ning Yu, Qiang Li, Shu-ning Lü and Hao Zhang, Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting, China Foundry, vol. 15, no. 3, pp.196-202, 2018. doi: 10.1007/s41230-018-7256-6

47-18   Santosh Reddy Sama, Jiayi Wang and Guha Manogharan, Non-conventional mold design for metal casting using 3D sand-printing, Journal of Manufacturing Processes, vol. 34-B, pp. 765-775, 2018. doi: 10.1016/j.jmapro.2018.03.049

42-18   M. Koru and O. Serçe, The Effects of Thermal and Dynamical Parameters and Vacuum Application on Porosity in High-Pressure Die Casting of A383 Al-Alloy, International Journal of Metalcasting, pp. 1-17, 2018. /doi: 10.1007/s40962-018-0214-7

41-18   Abhilash Viswanath, S. Savithri, U.T.S. Pillai, Similitude analysis on flow characteristics of water, A356 and AM50 alloys during LPC process, Journal of Materials Processing Technology, vol. 257, pp. 270-277, 2018. doi: 10.1016/j.jmatprotec.2018.02.031

29-18   Seyboldt, Christoph and Liewald, Mathias, Investigation on thixojoining to produce hybrid components with intermetallic phase, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi: 10.1063/1.5034992

28-18   Laura Schomer, Mathias Liewald and Kim Rouven Riedmüller, Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi: 10.1063/1.5034991

41-17   Y. N. Wu et al., Numerical Simulation on Filling Optimization of Copper Rotor for High Efficient Electric Motors in Die Casting Process, Materials Science Forum, Vol. 898, pp. 1163-1170, 2017.

12-17   A.M.  Zarubin and O.A. Zarubina, Controlling the flow rate of melt in gravity die casting of aluminum alloys, Liteynoe Proizvodstvo (Casting Manufacturing), pp 16-20, 6, 2017. In Russian.

10-17   A.Y. Korotchenko, Y.V. Golenkov, M.V. Tverskoy and D.E. Khilkov, Simulation of the Flow of Metal Mixtures in the Mold, Liteynoe Proizvodstvo (Casting Manufacturing), pp 18-22, 5, 2017. In Russian.

08-17   Morteza Morakabian Esfahani, Esmaeil Hajjari, Ali Farzadi and Seyed Reza Alavi Zaree, Prediction of the contact time through modeling of heat transfer and fluid flow in compound casting process of Al/Mg light metals, Journal of Materials Research, © Materials Research Society 2017

04-17   Huihui Liu, Xiongwei He and Peng Guo, Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment, AIP Conference Proceedings 1829, 020037 (2017); doi: 10.1063/1.4979769.

100-16  Robert Watson, New numerical techniques to quantify and predict the effect of entrainment defects, applied to high pressure die casting, PhD Thesis: University of Birmingham, 2016.

88-16   M.C. Carter, T. Kauffung, L. Weyenberg and C. Peters, Low Pressure Die Casting Simulation Discovery through Short Shot, Cast Expo & Metal Casting Congress, April 16-19, 2016, Minneapolis, MN, Copyright 2016 American Foundry Society.

61-16   M. Koru and O. Serçe, Experimental and numerical determination of casting mold interfacial heat transfer coefficient in the high pressure die casting of a 360 aluminum alloy, ACTA PHYSICA POLONICA A, Vol. 129 (2016)

59-16   R. Pirovano and S. Mascetti, Tracking of collapsed bubbles during a filling simulation, La Metallurgia Italiana – n. 6 2016

43-16   Kevin Lee, Understanding shell cracking during de-wax process in investment casting, Ph.D Thesis: University of Birmingham, School of Engineering, Department of Chemical Engineering, 2016.

35-16   Konstantinos Salonitis, Mark Jolly, Binxu Zeng, and Hamid Mehrabi, Improvements in energy consumption and environmental impact by novel single shot melting process for casting, Journal of Cleaner Production, doi:10.1016/j.jclepro.2016.06.165, Open Access funded by Engineering and Physical Sciences Research Council, June 29, 2016

20-16   Fu-Yuan Hsu, Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum, Metallurgical and Materials Transactions B, 2016, Band: 47, Heft 3, 1634-1648.

15-16   Mingfan Qia, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Lib,and Weirong Li, A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys, Journal of Materials Processing Technology 234 (2016) 353–367

112-15   José Miguel Gonçalves Ledo Belo da Costa, Optimization of filling systems for low pressure by FLOW-3D, Dissertação de mestrado integrado em Engenharia Mecânica, http://hdl.handle.net/1822/40132, 2015

89-15   B.W. Zhu, L.X. Li, X. Liu, L.Q. Zhang and R. Xu, Effect of Viscosity Measurement Method to Simulate High Pressure Die Casting of Thin-Wall AlSi10MnMg Alloy Castings, Journal of Materials Engineering and Performance, Published online, November 2015, DOI: 10.1007/s11665-015-1783-8, © ASM International.

88-15   Peng Zhang, Zhenming Li, Baoliang Liu, Wenjiang Ding and Liming Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Materials Science & Engineering A651(2016)376–390, Available online, November 2015.

83-15   Zu-Qi Hu, Xin-Jian Zhang and Shu-Sen Wu, Microstructure, Mechanical Properties and Die-Filling Behavior of High-Performance Die-Cast Al–Mg–Si–Mn Alloy, Acta Metall. Sin. (Engl. Lett.), DOI 10.1007/s40195-015-0332-7, © The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015.

82-15   J. Müller, L. Xue, M.C. Carter, C. Thoma, M. Fehlbier and M. Todte, A Die Spray Cooling Model for Thermal Die Cycling Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

81-15   M. T. Murray, L.F. Hansen, L. Chilcott, E. Li and A.M. Murray, Case Studies in the Use of Simulation- Improved Yield and Reduced Time to Market, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

80-15   R. Bhola, S. Chandra and D. Souders, Predicting Castability of Thin-Walled Parts for the HPDC Process Using Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

76-15   Prosenjit Das, Sudip K. Samanta, Shashank Tiwari and Pradip Dutta, Die Filling Behaviour of Semi Solid A356 Al Alloy Slurry During Rheo Pressure Die Casting, Transactions of the Indian Institute of Metals, pp 1-6, October 2015

74-15   Murat KORU and Orhan SERÇE, Yüksek Basınçlı Döküm Prosesinde Enjeksiyon Parametrelerine Bağlı Olarak Döküm Simülasyon, Cumhuriyet University Faculty of Science, Science Journal (CSJ), Vol. 36, No: 5 (2015) ISSN: 1300-1949, May 2015

69-15   A. Viswanath, S. Sivaraman, U. T. S. Pillai, Computer Simulation of Low Pressure Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 45-48, September 2015

68-15   J. Aneesh Kumar, K. Krishnakumar and S. Savithri, Computer Simulation of Centrifugal Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 53-56, September 2015

59-15   F. Hosseini Yekta and S. A. Sadough Vanini, Simulation of the flow of semi-solid steel alloy using an enhanced model, Metals and Materials International, August 2015.

44-15   Ulrich E. Klotz, Tiziana Heiss and Dario Tiberto, Platinum investment casting material properties, casting simulation and optimum process parameters, Jewelry Technology Forum 2015

41-15   M. Barkhudarov and R. Pirovano, Minimizing Air Entrainment in High Pressure Die Casting Shot Sleeves, GIFA 2015, Düsseldorf, Germany

40-15   M. Todte, A. Fent, and H. Lang, Simulation in support of the development of innovative processes in the casting industry, GIFA 2015, Düsseldorf, Germany

19-15   Bruce Morey, Virtual casting improves powertrain design, Automotive Engineering, SAE International, March 2015.

15-15   K.S. Oh, J.D. Lee, S.J. Kim and J.Y. Choi, Development of a large ingot continuous caster, Metall. Res. Technol. 112, 203 (2015) © EDP Sciences, 2015, DOI: 10.1051/metal/2015006, www.metallurgical-research.org

14-15   Tiziana Heiss, Ulrich E. Klotz and Dario Tiberto, Platinum Investment Casting, Part I: Simulation and Experimental Study of the Casting Process, Johnson Matthey Technol. Rev., 2015, 59, (2), 95, doi:10.1595/205651315×687399

138-14 Christopher Thoma, Wolfram Volk, Ruben Heid, Klaus Dilger, Gregor Banner and Harald Eibisch, Simulation-based prediction of the fracture elongation as a failure criterion for thin-walled high-pressure die casting components, International Journal of Metalcasting, Vol. 8, No. 4, pp. 47-54, 2014. doi:10.1007/BF03355594

107-14  Mehran Seyed Ahmadi, Dissolution of Si in Molten Al with Gas Injection, ProQuest Dissertations And Theses; Thesis (Ph.D.), University of Toronto (Canada), 2014; Publication Number: AAT 3637106; ISBN: 9781321195231; Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.; 191 p.

99-14   R. Bhola and S. Chandra, Predicting Castability for Thin-Walled HPDC Parts, Foundry Management Technology, December 2014

92-14   Warren Bishenden and Changhua Huang, Venting design and process optimization of die casting process for structural components; Part II: Venting design and process optimization, Die Casting Engineer, November 2014

90-14   Ken’ichi Kanazawa, Ken’ichi Yano, Jun’ichi Ogura, and Yasunori Nemoto, Optimum Runner Design for Die-Casting using CFD Simulations and Verification with Water-Model Experiments, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE2014, November 14-20, 2014, Montreal, Quebec, Canada, IMECE2014-37419

89-14   P. Kapranos, C. Carney, A. Pola, and M. Jolly, Advanced Casting Methodologies: Investment Casting, Centrifugal Casting, Squeeze Casting, Metal Spinning, and Batch Casting, In Comprehensive Materials Processing; McGeough, J., Ed.; 2014, Elsevier Ltd., 2014; Vol. 5, pp 39–67.

77-14   Andrei Y. Korotchenko, Development of Scientific and Technological Approaches to Casting Net-Shaped Castings in Sand Molds Free of Shrinkage Defects and Hot Tears, Post-doctoral thesis: Russian State Technological University, 2014. In Russian.

69-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Predicting, Preventing Core Gas Defects in Steel Castings, Modern Casting, September 2014

68-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Numerical Simulation of Core Gas Defects in Steel Castings, Copyright 2014 American Foundry Society, 118th Metalcasting Congress, April 8 – 11, 2014, Schaumburg, IL

51-14   Jesus M. Blanco, Primitivo Carranza, Rafael Pintos, Pedro Arriaga, and Lakhdar Remaki, Identification of Defects Originated during the Filling of Cast Pieces through Particles Modelling, 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), E. Oñate, J. Oliver and A. Huerta (Eds)

47-14   B. Vijaya Ramnatha, C.Elanchezhiana, Vishal Chandrasekhar, A. Arun Kumarb, S. Mohamed Asif, G. Riyaz Mohamed, D. Vinodh Raj , C .Suresh Kumar, Analysis and Optimization of Gating System for Commutator End Bracket, Procedia Materials Science 6 ( 2014 ) 1312 – 1328, 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014)

42-14  Bing Zhou, Yong-lin Kang, Guo-ming Zhu, Jun-zhen Gao, Ming-fan Qi, and Huan-huan Zhang, Forced convection rheoforming process for preparation of 7075 aluminum alloy semisolid slurry and its numerical simulation, Trans. Nonferrous Met. Soc. China 24(2014) 1109−1116

37-14    A. Karwinski, W. Lesniewski, P. Wieliczko, and M. Malysza, Casting of Titanium Alloys in Centrifugal Induction Furnaces, Archives of Metallurgy and Materials, Volume 59, Issue 1, DOI: 10.2478/amm-2014-0068, 2014.

26-14    Bing Zhou, Yonglin Kang, Mingfan Qi, Huanhuan Zhang and Guoming ZhuR-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy, Materials 2014, 7, 3084-3105; doi:10.3390/ma7043084

20-14  Johannes Hartmann, Tobias Fiegl, Carolin Körner, Aluminum integral foams with tailored density profile by adapted blowing agents, Applied Physics A, 10.1007/s00339-014-8377-4, March 2014.

19-14    A.Y. Korotchenko, N.A. Nikiforova, E.D. Demjanov, N.C. Larichev, The Influence of the Filling Conditions on the Service Properties of the Part Side Frame, Russian Foundryman, 1 (January), pp 40-43, 2014. In Russian.

11-14 B. Fuchs and C. Körner, Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process, Progress in Computational Fluid Dynamics, Vol. 14, No. 1, 2014, Copyright © 2014 Inderscience Enterprises Ltd.

08-14 FY Hsu, SW Wang, and HJ Lin, The External and Internal Shrinkages in Aluminum Gravity Castings, Shape Casting: 5th International Symposium 2014. Available online at Google Books

103-13  B. Fuchs, H. Eibisch and C. Körner, Core Viability Simulation for Salt Core Technology in High-Pressure Die Casting, International Journal of Metalcasting, July 2013, Volume 7, Issue 3, pp 39–45

94-13    Randall S. Fielding, J. Crapps, C. Unal, and J.R.Kennedy, Metallic Fuel Casting Development and Parameter Optimization Simulations, International Conference on Fast reators and Related Fuel Cycles (FR13), 4-7 March 2013, Paris France

90-13  A. Karwińskia, M. Małyszaa, A. Tchórza, A. Gila, B. Lipowska, Integration of Computer Tomography and Simulation Analysis in Evaluation of Quality of Ceramic-Carbon Bonded Foam Filter, Archives of Foundry Engineering, DOI: 10.2478/afe-2013-0084, Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences, ISSN, (2299-2944), Volume 13, Issue 4/2013

88-13  Litie and Metallurgia (Casting and Metallurgy), 3 (72), 2013, N.V.Sletova, I.N.Volnov, S.P.Zadrutsky, V.A.Chaikin, Modeling of the Process of Removing Non-metallic Inclusions in Aluminum Alloys Using the FLOW-3D program, pp 138-140. In Russian.

85-13    Michał Szucki,Tomasz Goraj, Janusz Lelito, Józef S. Suchy, Numerical Analysis of Solid Particles Flow in Liquid Metal, XXXVII International Scientific Conference Foundryman’ Day 2013, Krakow, 28-29 November 2013

84-13  Körner, C., Schwankl, M., Himmler, D., Aluminum-Aluminum compound castings by electroless deposited zinc layers, Journal of Materials Processing Technology (2014), http://dx.doi.org/10.1016/j.jmatprotec.2013.12.01483-13.

77-13  Antonio Armillotta & Raffaello Baraggi & Simone Fasoli, SLM tooling for die casting with conformal cooling channels, The International Journal of Advanced Manufacturing Technology, DOI 10.1007/s00170-013-5523-7, December 2013.

64-13   Johannes Hartmann, Christina Blümel, Stefan Ernst, Tobias Fiegl, Karl-Ernst Wirth, Carolin Körner, Aluminum integral foam castings with microcellular cores by nano-functionalization, J Mater Sci, DOI: 10.1007/s10853-013-7668-z, September 2013.

46-13  Nicholas P. Orenstein, 3D Flow and Temperature Analysis of Filling a Plutonium Mold, LA-UR-13-25537, Approved for public release; distribution is unlimited. Los Alamos Annual Student Symposium 2013, 2013-07-24 (Rev.1)

42-13   Yang Yue, William D. Griffiths, and Nick R. Green, Modelling of the Effects of Entrainment Defects on Mechanical Properties in a Cast Al-Si-Mg Alloy, Materials Science Forum, 765, 225, 2013.

39-13  J. Crapps, D.S. DeCroix, J.D Galloway, D.A. Korzekwa, R. Aikin, R. Fielding, R. Kennedy, C. Unal, Separate effects identification via casting process modeling for experimental measurement of U-Pu-Zr alloys, Journal of Nuclear Materials, 15 July 2013.

35-13   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, © Die Casting Engineer, July 2013.

34-13  Martin Lagler, Use of Simulation to Predict the Viability of Salt Cores in the HPDC Process – Shot Curve as a Decisive Criterion, © Die Casting Engineer, July 2013.

24-13    I.N.Volnov, Optimizatsia Liteynoi Tekhnologii, (Casting Technology Optimization), Liteyshik Rossii (Russian Foundryman), 3, 2013, 27-29. In Russian

23-13  M.R. Barkhudarov, I.N. Volnov, Minimizatsia Zakhvata Vozdukha v Kamere Pressovania pri Litie pod Davleniem, (Minimization of Air Entrainment in the Shot Sleeve During High Pressure Die Casting), Liteyshik Rossii (Russian Foundryman), 3, 2013, 30-34. In Russian

09-13  M.C. Carter and L. Xue, Simulating the Parameters that Affect Core Gas Defects in Metal Castings, Copyright 2012 American Foundry Society, Presented at the 2013 CastExpo, St. Louis, Missouri, April 2013

08-13  C. Reilly, N.R. Green, M.R. Jolly, J.-C. Gebelin, The Modelling Of Oxide Film Entrainment In Casting Systems Using Computational Modelling, Applied Mathematical Modelling, http://dx.doi.org/10.1016/j.apm.2013.03.061, April 2013.

03-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part II. Model validation and parametric study, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.061.

02-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part I: Model development using lubrication approximation, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.060.

116-12  Jufu Jianga, Ying Wang, Gang Chena, Jun Liua, Yuanfa Li and Shoujing Luo, “Comparison of mechanical properties and microstructure of AZ91D alloy motorcycle wheels formed by die casting and double control forming, Materials & Design, Volume 40, September 2012, Pages 541-549.

107-12  F.K. Arslan, A.H. Hatman, S.Ö. Ertürk, E. Güner, B. Güner, An Evaluation for Fundamentals of Die Casting Materials Selection and Design, IMMC’16 International Metallurgy & Materials Congress, Istanbul, Turkey, 2012.

103-12 WU Shu-sen, ZHONG Gu, AN Ping, WAN Li, H. NAKAE, Microstructural characteristics of Al−20Si−2Cu−0.4Mg−1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment, Transactions of Nonferrous Metals Society of China, 22 (2012) 2863-2870, November 2012. Full paper available online.

109-12 Alexandre Reikher, Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation, Ph.D. Thesis: The University of Wisconsin Milwaukee, Engineering Department (2012) Theses and Dissertations. Paper 65.

97-12 Hong Zhou and Li Heng Luo, Filling Pattern of Step Gating System in Lost Foam Casting Process and its Application, Advanced Materials Research, Volumes 602-604, Progress in Materials and Processes, 1916-1921, December 2012.

93-12  Liangchi Zhang, Chunliang Zhang, Jeng-Haur Horng and Zichen Chen, Functions of Step Gating System in the Lost Foam Casting Process, Advanced Materials Research, 591-593, 940, DOI: 10.4028/www.scientific.net/AMR.591-593.940, November 2012.

91-12  Hong Yan, Jian Bin Zhu, Ping Shan, Numerical Simulation on Rheo-Diecasting of Magnesium Matrix Composites, 10.4028/www.scientific.net/SSP.192-193.287, Solid State Phenomena, 192-193, 287.

89-12  Alexandre Reikher and Krishna M. Pillai, A Fast Numerical Simulation for Modeling Simultaneous Metal Flow and Solidification in Thin Cavities Using the Lubrication Approximation, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 63:2, 75-100, November 2012.

82-12  Jufu Jiang, Gang Chen, Ying Wang, Zhiming Du, Weiwei Shan, and Yuanfa Li, Microstructure and mechanical properties of thin-wall and high-rib parts of AM60B Mg alloy formed by double control forming and die casting under the optimal conditions, Journal of Alloys and Compounds, http://dx.doi.org/10.1016/j.jallcom.2012.10.086, October 2012.

78-12   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

77-12  Y. Wang, K. Kabiri-Bamoradian and R.A. Miller, Rheological behavior models of metal matrix alloys in semi-solid casting process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

76-12  A. Reikher and H. Gerber, Analysis of Solidification Parameters During the Die Cast Process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

75-12 R.A. Miller, Y. Wang and K. Kabiri-Bamoradian, Estimating Cavity Fill Time, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012Indianapolis, IN.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

55-12  Hejun Li, Pengyun Wang, Lehua Qi, Hansong Zuo, Songyi Zhong, Xianghui Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Computational Materials Science, Volume 65, December 2012, Pages 291–301.

52-12 Hongbing Ji, Yixin Chen and Shengzhou Chen, Numerical Simulation of Inner-Outer Couple Cooling Slab Continuous Casting in the Filling Process, Advanced Materials Research (Volumes 557-559), Advanced Materials and Processes II, pp. 2257-2260, July 2012.

47-12    Petri Väyrynen, Lauri Holappa, and Seppo Louhenkilpi, Simulation of Melting of Alloying Materials in Steel Ladle, SCANMET IV – 4th International Conference on Process Development in Iron and Steelmaking, Lulea, Sweden, June 10-13, 2012.

46-12  Bin Zhang and Dave Salee, Metal Flow and Heat Transfer in Billet DC Casting Using Wagstaff® Optifill™ Metal Distribution Systems, 5th International Metal Quality Workshop, United Arab Emirates Dubai, March 18-22, 2012.

45-12 D.R. Gunasegaram, M. Givord, R.G. O’Donnell and B.R. Finnin, Improvements engineered in UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner geometry and plunger velocity, Materials Science & Engineering.

44-12    Antoni Drys and Stefano Mascetti, Aluminum Casting Simulations, Desktop Engineering, September 2012

42-12   Huizhen Duan, Jiangnan Shen and Yanping Li, Comparative analysis of HPDC process of an auto part with ProCAST and FLOW-3D, Applied Mechanics and Materials Vols. 184-185 (2012) pp 90-94, Online available since 2012/Jun/14 at www.scientific.net, © (2012) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.184-185.90.

41-12    Deniece R. Korzekwa, Cameron M. Knapp, David A. Korzekwa, and John W. Gibbs, Co-Design – Fabrication of Unalloyed Plutonium, LA-UR-12-23441, MDI Summer Research Group Workshop Advanced Manufacturing, 2012-07-25/2012-07-26 (Los Alamos, New Mexico, United States)

29-12  Dario Tiberto and Ulrich E. Klotz, Computer simulation applied to jewellery casting: challenges, results and future possibilities, IOP Conf. Ser.: Mater. Sci. Eng.33 012008. Full paper available at IOP.

28-12  Y Yue and N R Green, Modelling of different entrainment mechanisms and their influences on the mechanical reliability of Al-Si castings, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33,012072.Full paper available at IOP.

27-12  E Kaschnitz, Numerical simulation of centrifugal casting of pipes, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33 012031, Issue 1. Full paper available at IOP.

15-12  C. Reilly, N.R Green, M.R. Jolly, The Present State Of Modeling Entrainment Defects In The Shape Casting Process, Applied Mathematical Modelling, Available online 27 April 2012, ISSN 0307-904X, 10.1016/j.apm.2012.04.032.

12-12   Andrei Starobin, Tony Hirt, Hubert Lang, and Matthias Todte, Core drying simulation and validation, International Foundry Research, GIESSEREIFORSCHUNG 64 (2012) No. 1, ISSN 0046-5933, pp 2-5

10-12  H. Vladimir Martínez and Marco F. Valencia (2012). Semisolid Processing of Al/β-SiC Composites by Mechanical Stirring Casting and High Pressure Die Casting, Recent Researches in Metallurgical Engineering – From Extraction to Forming, Dr Mohammad Nusheh (Ed.), ISBN: 978-953-51-0356-1, InTech

07-12     Amir H. G. Isfahani and James M. Brethour, Simulating Thermal Stresses and Cooling Deformations, Die Casting Engineer, March 2012

06-12   Shuisheng Xie, Youfeng He and Xujun Mi, Study on Semi-solid Magnesium Alloys Slurry Preparation and Continuous Roll-casting Process, Magnesium Alloys – Design, Processing and Properties, ISBN: 978-953-307-520-4, InTech.

04-12 J. Spangenberg, N. Roussel, J.H. Hattel, H. Stang, J. Skocek, M.R. Geiker, Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2012.01.007, February 2012.

01-12   Lee, B., Baek, U., and Han, J., Optimization of Gating System Design for Die Casting of Thin Magnesium Alloy-Based Multi-Cavity LCD Housings, Journal of Materials Engineering and Performance, Springer New York, Issn: 1059-9495, 10.1007/s11665-011-0111-1, Volume 1 / 1992 – Volume 21 / 2012. Available online at Springer Link.

104-11  Fu-Yuan Hsu and Huey Jiuan Lin, Foam Filters Used in Gravity Casting, Metall and Materi Trans B (2011) 42: 1110. doi:10.1007/s11663-011-9548-8.

99-11    Eduardo Trejo, Centrifugal Casting of an Aluminium Alloy, thesis: Doctor of Philosophy, Metallurgy and Materials School of Engineering University of Birmingham, October 2011. Full paper available upon request.

93-11  Olga Kononova, Andrejs Krasnikovs ,Videvuds Lapsa,Jurijs Kalinka and Angelina Galushchak, Internal Structure Formation in High Strength Fiber Concrete during Casting, World Academy of Science, Engineering and Technology 59 2011

76-11  J. Hartmann, A. Trepper, and C. Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials 2011, Volume 13 (2011) No. 11, © Wiley-VCH

71-11  Fu-Yuan Hsu and Yao-Ming Yang Confluence Weld in an Aluminum Gravity Casting, Journal of Materials Processing Technology, Available online 23 November 2011, ISSN 0924-0136, 10.1016/j.jmatprotec.2011.11.006.

65-11     V.A. Chaikin, A.V. Chaikin, I.N.Volnov, A Study of the Process of Late Modification Using Simulation, in Zagotovitelnye Proizvodstva v Mashinostroenii, 10, 2011, 8-12. In Russian.

54-11  Ngadia Taha Niane and Jean-Pierre Michalet, Validation of Foundry Process for Aluminum Parts with FLOW-3D Software, Proceedings of the 2011 International Symposium on Liquid Metal Processing and Casting, 2011.

51-11    A. Reikher and H. Gerber, Calculation of the Die Cast parameters of the Thin Wall Aluminum Cast Part, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

50-11   Y. Wang, K. Kabiri-Bamoradian, and R.A. Miller, Runner design optimization based on CFD simulation for a die with multiple cavities, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

48-11 A. Karwiński, W. Leśniewski, S. Pysz, P. Wieliczko, The technology of precision casting of titanium alloys by centrifugal process, Archives of Foundry Engineering, ISSN: 1897-3310), Volume 11, Issue 3/2011, 73-80, 2011.

46-11  Daniel Einsiedler, Entwicklung einer Simulationsmethodik zur Simulation von Strömungs- und Trocknungsvorgängen bei Kernfertigungsprozessen mittels CFD (Development of a simulation methodology for simulating flow and drying operations in core production processes using CFD), MSc thesis at Technical University of Aalen in Germany (Hochschule Aalen), 2011.

44-11  Bin Zhang and Craig Shaber, Aluminum Ingot Thermal Stress Development Modeling of the Wagstaff® EpsilonTM Rolling Ingot DC Casting System during the Start-up Phase, Materials Science Forum Vol. 693 (2011) pp 196-207, © 2011 Trans Tech Publications, July, 2011.

43-11 Vu Nguyen, Patrick Rohan, John Grandfield, Alex Levin, Kevin Naidoo, Kurt Oswald, Guillaume Girard, Ben Harker, and Joe Rea, Implementation of CASTfill low-dross pouring system for ingot casting, Materials Science Forum Vol. 693 (2011) pp 227-234, © 2011 Trans Tech Publications, July, 2011.

40-11  A. Starobin, D. Goettsch, M. Walker, D. Burch, Gas Pressure in Aluminum Block Water Jacket Cores, © 2011 American Foundry Society, International Journal of Metalcasting/Summer 2011

37-11 Ferencz Peti, Lucian Grama, Analyze of the Possible Causes of Porosity Type Defects in Aluminum High Pressure Diecast Parts, Scientific Bulletin of the Petru Maior University of Targu Mures, Vol. 8 (XXV) no. 1, 2011, ISSN 1841-9267

31-11  Johannes Hartmann, André Trepper, Carolin Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials, 13: n/a. doi: 10.1002/adem.201100035, June 2011.

27-11  A. Pari, Optimization of HPDC Process using Flow Simulation Case Studies, Die Casting Engineer, July 2011

26-11    A. Reikher, H. Gerber, Calculation of the Die Cast Parameters of the Thin Wall Aluminum Die Casting Part, Die Casting Engineer, July 2011

21-11 Thang Nguyen, Vu Nguyen, Morris Murray, Gary Savage, John Carrig, Modelling Die Filling in Ultra-Thin Aluminium Castings, Materials Science Forum (Volume 690), Light Metals Technology V, pp 107-111, 10.4028/www.scientific.net/MSF.690.107, June 2011.

19-11 Jon Spangenberg, Cem Celal Tutum, Jesper Henri Hattel, Nicolas Roussel, Metter Rica Geiker, Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study, © IEEE Congress on Evolutionary Computation, 2011, New Orleans, USA

16-11  A. Starobin, C.W. Hirt, H. Lang, and M. Todte, Core Drying Simulation and Validations, AFS Proceedings 2011, © American Foundry Society, Presented at the 115th Metalcasting Congress, Schaumburg, Illinois, April 2011.

15-11  J. J. Hernández-Ortega, R. Zamora, J. López, and F. Faura, Numerical Analysis of Air Pressure Effects on the Flow Pattern during the Filling of a Vertical Die Cavity, AIP Conf. Proc., Volume 1353, pp. 1238-1243, The 14th International Esaform Conference on Material Forming: Esaform 2011; doi:10.1063/1.3589686, May 2011. Available online.

10-11 Abbas A. Khalaf and Sumanth Shankar, Favorable Environment for Nondentric Morphology in Controlled Diffusion Solidification, DOI: 10.1007/s11661-011-0641-z, © The Minerals, Metals & Materials Society and ASM International 2011, Metallurgical and Materials Transactions A, March 11, 2011.

08-11 Hai Peng Li, Chun Yong Liang, Li Hui Wang, Hong Shui Wang, Numerical Simulation of Casting Process for Gray Iron Butterfly Valve, Advanced Materials Research, 189-193, 260, February 2011.

04-11  C.W. Hirt, Predicting Core Shooting, Drying and Defect Development, Foundry Management & Technology, January 2011.

76-10  Zhizhong Sun, Henry Hu, Alfred Yu, Numerical Simulation and Experimental Study of Squeeze Casting Magnesium Alloy AM50, Magnesium Technology 2010, 2010 TMS Annual Meeting & ExhibitionFebruary 14-18, 2010, Seattle, WA.

68-10  A. Reikher, H. Gerber, K.M. Pillai, T.-C. Jen, Natural Convection—An Overlooked Phenomenon of the Solidification Process, Die Casting Engineer, January 2010

54-10    Andrea Bernardoni, Andrea Borsi, Stefano Mascetti, Alessandro Incognito and Matteo Corrado, Fonderia Leonardo aveva ragione! L’enorme cavallo dedicato a Francesco Sforza era materialmente realizzabile, A&C – Analisis e Calcolo, Giugno 2010. In  Italian.

48-10  J. J. Hernández-Ortega, R. Zamora, J. Palacios, J. López and F. Faura, An Experimental and Numerical Study of Flow Patterns and Air Entrapment Phenomena During the Filling of a Vertical Die Cavity, J. Manuf. Sci. Eng., October 2010, Volume 132, Issue 5, 05101, doi:10.1115/1.4002535.

47-10  A.V. Chaikin, I.N. Volnov, and V.A. Chaikin, Development of Dispersible Mixed Inoculant Compositions Using the FLOW-3D Program, Liteinoe Proizvodstvo, October, 2010, in Russian.

42-10  H. Lakshmi, M.C. Vinay Kumar, Raghunath, P. Kumar, V. Ramanarayanan, K.S.S. Murthy, P. Dutta, Induction reheating of A356.2 aluminum alloy and thixocasting as automobile component, Transactions of Nonferrous Metals Society of China 20(20101) s961-s967.

41-10  Pamela J. Waterman, Understanding Core-Gas Defects, Desktop Engineering, October 2010. Available online at Desktop Engineering. Also published in the Foundry Trade Journal, November 2010.

39-10  Liu Zheng, Jia Yingying, Mao Pingli, Li Yang, Wang Feng, Wang Hong, Zhou Le, Visualization of Die Casting Magnesium Alloy Steering Bracket, Special Casting & Nonferrous Alloys, ISSN: 1001-2249, CN: 42-1148/TG, 2010-04. In Chinese.

37-10  Morris Murray, Lars Feldager Hansen, and Carl Reinhardt, I Have Defects – Now What, Die Casting Engineer, September 2010

36-10  Stefano Mascetti, Using Flow Analysis Software to Optimize Piston Velocity for an HPDC Process, Die Casting Engineer, September 2010. Also available in Italian: Ottimizzare la velocita del pistone in pressofusione.  A & C, Analisi e Calcolo, Anno XII, n. 42, Gennaio 2011, ISSN 1128-3874.

32-10  Guan Hai Yan, Sheng Dun Zhao, Zheng Hui Sha, Parameters Optimization of Semisolid Diecasting Process for Air-Conditioner’s Triple Valve in HPb59-1 Alloy, Advanced Materials Research (Volumes 129 – 131), Vol. Material and Manufacturing Technology, pp. 936-941, DOI: 10.4028/www.scientific.net/AMR.129-131.936, August 2010.

29-10 Zheng Peng, Xu Jun, Zhang Zhifeng, Bai Yuelong, and Shi Likai, Numerical Simulation of Filling of Rheo-diecasting A357 Aluminum Alloy, Special Casting & Nonferrous Alloys, DOI: CNKI:SUN:TZZZ.0.2010-01-024, 2010.

27-10 For an Aerospace Diecasting, Littler Uses Simulation to Reveal Defects, and Win a New Order, Foundry Management & Technology, July 2010

23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

15-10 David H. Kirkwood, Michel Suery, Plato Kapranos, Helen V. Atkinson, and Kenneth P. Young, Semi-solid Processing of Alloys, 2010, XII, 172 p. 103 illus., 19 in color., Hardcover ISBN: 978-3-642-00705-7.

09-10  Shannon Wetzel, Fullfilling Da Vinci’s Dream, Modern Casting, April 2010.

08-10 B.I. Semenov, K.M. Kushtarov, Semi-solid Manufacturing of Castings, New Industrial Technologies, Publication of Moscow State Technical University n.a. N.E. Bauman, 2009 (in Russian)

07-10 Carl Reilly, Development Of Quantitative Casting Quality Assessment Criteria Using Process Modelling, thesis: The University of Birmingham, March 2010 (Available upon request)

06-10 A. Pari, Optimization of HPDC Process using Flow Simulation – Case Studies, CastExpo ’10, NADCA, Orlando, Florida, March 2010

05-10 M.C. Carter, S. Palit, and M. Littler, Characterizing Flow Losses Occurring in Air Vents and Ejector Pins in High Pressure Die Castings, CastExpo ’10, NADCA, Orlando, Florida, March 2010

04-10 Pamela Waterman, Simulating Porosity Factors, Foundry Management Technology, March 2010, Article available at Foundry Management Technology

03-10 C. Reilly, M.R. Jolly, N.R. Green, JC Gebelin, Assessment of Casting Filling by Modeling Surface Entrainment Events Using CFD, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

02-10 P. Väyrynen, S. Wang, J. Laine and S.Louhenkilpi, Control of Fluid Flow, Heat Transfer and Inclusions in Continuous Casting – CFD and Neural Network Studies, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

60-09   Somlak Wannarumon, and Marco Actis Grande, Comparisons of Computer Fluid Dynamic Software Programs applied to Jewelry Investment Casting Process, World Academy of Science, Engineering and Technology 55 2009.

59-09   Marco Actis Grande and Somlak Wannarumon, Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations, World Academy of Science, Engineering and Technology, Vol:3 2009-07-24

56-09  Jozef Kasala, Ondrej Híreš, Rudolf Pernis, Start-up Phase Modeling of Semi Continuous Casting Process of Brass Billets, Metal 2009, 19.-21.5.2009

51-09  In-Ting Hong, Huan-Chien Tung, Chun-Hao Chiu and Hung-Shang Huang, Effect of Casting Parameters on Microstructure and Casting Quality of Si-Al Alloy for Vacuum Sputtering, China Steel Technical Report, No. 22, pp. 33-40, 2009.

42-09  P. Väyrynen, S. Wang, S. Louhenkilpi and L. Holappa, Modeling and Removal of Inclusions in Continuous Casting, Materials Science & Technology 2009 Conference & Exhibition, Pittsburgh, Pennsylvania, USA, October 25-29, 2009

41-09 O.Smirnov, P.Väyrynen, A.Kravchenko and S.Louhenkilpi, Modern Methods of Modeling Fluid Flow and Inclusions Motion in Tundish Bath – General View, Proceedings of Steelsim 2009 – 3rd International Conference on Simulation and Modelling of Metallurgical Processes in Steelmaking, Leoben, Austria, September 8-10, 2009

21-09 A. Pari, Case Studies – Optimization of HPDC Process Using Flow Simulation, Die Casting Engineer, July 2009

20-09 M. Sirvio, M. Wos, Casting directly from a computer model by using advanced simulation software, FLOW-3D Cast, Archives of Foundry Engineering Volume 9, Issue 1/2009, 79-82

19-09 Andrei Starobin, C.W. Hirt, D. Goettsch, A Model for Binder Gas Generation and Transport in Sand Cores and Molds, Modeling of Casting, Welding, and Solidification Processes XII, TMS (The Minerals, Metals & Minerals Society), June 2009

11-09 Michael Barkhudarov, Minimizing Air Entrainment in a Shot Sleeve during Slow-Shot Stage, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

10-09 A. Reikher, H. Gerber, Application of One-Dimensional Numerical Simulation to Optimize Process Parameters of a Thin-Wall Casting in High Pressure Die Casting, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

7-09 Andrei Starobin, Simulation of Core Gas Evolution and Flow, presented at the North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

6-09 A.Pari, Optimization of HPDC PROCESS: Case Studies, North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

2-09 C. Reilly, N.R. Green and M.R. Jolly, Oxide Entrainment Structures in Horizontal Running Systems, TMS 2009, San Francisco, California, February 2009

30-08 I.N.Volnov, Computer Modeling of Casting of Pipe Fittings, © 2008, Pipe Fittings, 5 (38), 2008. Russian version

28-08 A.V.Chaikin, I.N.Volnov, V.A.Chaikin, Y.A.Ukhanov, N.R.Petrov, Analysis of the Efficiency of Alloy Modifiers Using Statistics and Modeling, © 2008, Liteyshik Rossii (Russian Foundryman), October, 2008

27-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Castings, American Foundry Society, © 2008, AFS Lost Foam Conference, Asheville, North Carolina, October, 2008

25-08 FMT Staff, Forecasting Core Gas Pressures with Computer Simulation, Foundry Management and Technology, October 28, 2008 © 2008 Penton Media, Inc. Online article

24-08 Core and Mold Gas Evolution, Foundry Management and Technology, January 24, 2008 (excerpted from the FM&T May 2007 issue) © 2008 Penton Media, Inc.

22-08 Mark Littler, Simulation Eliminates Die Casting Scrap, Modern Casting/September 2008

21-08 X. Chen, D. Penumadu, Permeability Measurement and Numerical Modeling for Refractory Porous Materials, AFS Transactions © 2008 American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

20-08 Rolf Krack, Using Solidification Simulations for Optimising Die Cooling Systems, FTJ July/August 2008

19-08 Mark Littler, Simulation Software Eliminates Die Casting Scrap, ECS Casting Innovations, July/August 2008

13-08 T. Yoshimura, K. Yano, T. Fukui, S. Yamamoto, S. Nishido, M. Watanabe and Y. Nemoto, Optimum Design of Die Casting Plunger Tip Considering Air Entrainment, Proceedings of 10th Asian Foundry Congress (AFC10), Nagoya, Japan, May 2008

08-08 Stephen Instone, Andreas Buchholz and Gerd-Ulrich Gruen, Inclusion Transport Phenomena in Casting Furnaces, Light Metals 2008, TMS (The Minerals, Metals & Materials Society), 2008

07-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Casting, AFS Transactions 2008 © American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

06-08 A. Reikher, H. Gerber and A. Starobin, Multi-Stage Plunger Deceleration System, CastExpo ’08, NADCA, Atlanta, Georgia, May 2008

05-08 Amol Palekar, Andrei Starobin, Alexander Reikher, Die-casting end-of-fill and drop forge viscometer flow transients examined with a coupled-motion numerical model, 68th World Foundry Congress, Chennai, India, February 2008

03-08 Petri J. Väyrynen, Sami K. Vapalahti and Seppo J. Louhenkilpi, On Validation of Mathematical Fluid Flow Models for Simulation of Tundish Water Models and Industrial Examples, AISTech 2008, May 2008

53-07   A. Kermanpur, Sh. Mahmoudi and A. Hajipour, Three-dimensional Numerical Simulation of Metal Flow and Solidification in the Multi-cavity Casting Moulds of Automotive Components, International Journal of Iron & Steel Society of Iran, Article 2, Volume 4, Issue 1, Summer and Autumn 2007, pages 8-15.

36-07 Duque Mesa A. F., Herrera J., Cruz L.J., Fernández G.P. y Martínez H.V., Caracterización Defectológica de Piezas Fundida por Lost Foam Casting Mediante Simulación Numérica, 8° Congreso Iberoamericano de Ingenieria Mecanica, Cusco, Peru, 23 al 25 de Octubre de 2007 (in Spanish)

27-07 A.Y. Korotchenko, A.M. Zarubin, I.A.Korotchenko, Modeling of High Pressure Die Casting Filling, Russian Foundryman, December 2007, pp 15-19. (in Russian)

26-07 I.N. Volnov, Modeling of Casting Processes with Variable Geometry, Russian Foundryman, November 2007, pp 27-30. (in Russian)

16-07 P. Väyrynen, S. Vapalahti, S. Louhenkilpi, L. Chatburn, M. Clark, T. Wagner, Tundish Flow Model Tuning and Validation – Steady State and Transient Casting Situations, STEELSIM 2007, Graz/Seggau, Austria, September 12-14 2007

11-07 Marco Actis Grande, Computer Simulation of the Investment Casting Process – Widening of the Filling Step, Santa Fe Symposium on Jewelry Manufacturing Technology, May 2007

09-07 Alexandre Reikher and Michael Barkhudarov, Casting: An Analytical Approach, Springer, 1st edition, August 2007, Hardcover ISBN: 978-1-84628-849-4. U.S. Order Form; Europe Order Form.

07-07 I.N. Volnov, Casting Modeling Systems – Current State, Problems and Perspectives, (in Russian), Liteyshik Rossii (Russian Foundryman), June 2007

05-07 A.N. Turchin, D.G. Eskin, and L. Katgerman, Solidification under Forced-Flow Conditions in a Shallow Cavity, DOI: 10.1007/s1161-007-9183-9, © The Minerals, Metals & Materials Society and ASM International 2007

04-07 A.N. Turchin, M. Zuijderwijk, J. Pool, D.G. Eskin, and L. Katgerman, Feathery grain growth during solidification under forced flow conditions, © Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. DOI: 10.1016/j.actamat.2007.02.030, April 2007

03-07 S. Kuyucak, Sponsored Research – Clean Steel Casting Production—Evaluation of Laboratory Castings, Transactions of the American Foundry Society, Volume 115, 111th Metalcasting Congress, May 2007

02-07 Fu-Yuan Hsu, Mark R. Jolly and John Campbell, The Design of L-Shaped Runners for Gravity Casting, Shape Casting: 2nd International Symposium, Edited by Paul N. Crepeau, Murat Tiryakioðlu and John Campbell, TMS (The Minerals, Metals & Materials Society), Orlando, FL, Feb 2007

30-06 X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Simulation of EPS foam decomposition in the lost foam casting process, Journal of Materials Processing Technology 182 (2007) 333–342, © 2006 Elsevier B.V. All rights reserved.

25-06 Michael Barkhudarov and Gengsheng Wei, Modeling Casting on the Move, Modern Casting, August 2006; Modeling of Casting Processes with Variable Geometry, Russian Foundryman, December 2007, pp 10-15. (in Russian)

24-06 P. Scarber, Jr. and C.E. Bates, Simulation of Core Gas Production During Mold Fill, © 2006 American Foundry Society

7-06 M.Y.Smirnov, Y.V.Golenkov, Manufacturing of Cast Iron Bath Tubs Castings using Vacuum-Process in Russia, Russia’s Foundryman, July 2006. In Russian.

6-06 M. Barkhudarov, and G. Wei, Modeling of the Coupled Motion of Rigid Bodies in Liquid Metal, Modeling of Casting, Welding and Advanced Solidification Processes – XI, May 28 – June 2, 2006, Opio, France, eds. Ch.-A. Gandin and M. Bellet, pp 71-78, 2006.

2-06 J.-C. Gebelin, M.R. Jolly and F.-Y. Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, Int. J. Cast Met. Res., 2006, Vol.19 No.1

1-06 Michael Barkhudarov, Using Simulation to Control Microporosity Reduces Die Iterations, Die Casting Engineer, January 2006, pp. 52-54

30-05 H. Xue, K. Kabiri-Bamoradian, R.A. Miller, Modeling Dynamic Cavity Pressure and Impact Spike in Die Casting, Cast Expo ’05, April 16-19, 2005

22-05 Blas Melissari & Stavros A. Argyropoulous, Measurement of Magnitude and Direction of Velocity in High-Temperature Liquid Metals; Part I, Mathematical Modeling, Metallurgical and Materials Transactions B, Volume 36B, October 2005, pp. 691-700

21-05 M.R. Jolly, State of the Art Review of Use of Modeling Software for Casting, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 337-346

20-05 J-C Gebelin, M.R. Jolly & F-Y Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 355-364

19-05 F-Y Hsu, M.R. Jolly & J Campbell, Vortex Gate Design for Gravity Castings, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 73-82

18-05 M.R. Jolly, Modelling the Investment Casting Process: Problems and Successes, Japanese Foundry Society, JFS, Tokyo, Sept. 2005

13-05 Xiaogang Yang, Xiaobing Huang, Xiaojun Dai, John Campbell and Joe Tatler, Numerical Modelling of the Entrainment of Oxide Film Defects in Filling of Aluminium Alloy Castings, International Journal of Cast Metals Research, 17 (6), 2004, 321-331

10-05 Carlos Evaristo Esparza, Martha P. Guerro-Mata, Roger Z. Ríos-Mercado, Optimal Design of Gating Systems by Gradient Search Methods, Computational Materials Science, October 2005

6-05 Birgit Hummler-Schaufler, Fritz Hirning, Jurgen Schaufler, A World First for Hatz Diesel and Schaufler Tooling, Die Casting Engineer, May 2005, pp. 18-21

4-05 Rolf Krack, The W35 Topic—A World First, Die Casting World, March 2005, pp. 16-17

3-05 Joerg Frei, Casting Simulations Speed Up Development, Die Casting World, March 2005, p. 14

2-05 David Goettsch and Michael Barkhudarov, Analysis and Optimization of the Transient Stage of Stopper-Rod Pour, Shape Casting: The John Campbell Symposium, The Minerals, Metals & Materials Society, 2005

36-04  Ik Min Park, Il Dong Choi, Yong Ho Park, Development of Light-Weight Al Scroll Compressor for Car Air Conditioner, Materials Science Forum, Designing, Processing and Properties of Advanced Engineering Materials, 449-452, 149, March 2004.

32-04 D.H. Kirkwood and P.J Ward, Numerical Modelling of Semi-Solid Flow under Processing Conditions, steel research int. 75 (2004), No. 8/9

30-04 Haijing Mao, A Numerical Study of Externally Solidified Products in the Cold Chamber Die Casting Process, thesis: The Ohio State University, 2004 (Available upon request)

28-04 Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Supplement to the Welding Journal, June 2004.

23-04 State of the Art Use of Computational Modelling in the Foundry Industry, 3rd International Conference Computational Modelling of Materials III, Sicily, Italy, June 2004, Advances in Science and Technology,  Eds P. Vincenzini & A Lami, Techna Group Srl, Italy, ISBN: 88-86538-46-4, Part B, pp 479-490

22-04 Jerry Fireman, Computer Simulation Helps Reduce Scrap, Die Casting Engineer, May 2004, pp. 46-49

21-04 Joerg Frei, Simulation—A Safe and Quick Way to Good Components, Aluminium World, Volume 3, Issue 2, pp. 42-43

20-04 J.-C. Gebelin, M.R. Jolly, A. M. Cendrowicz, J. Cirre and S. Blackburn, Simulation of Die Filling for the Wax Injection Process – Part II Numerical Simulation, Metallurgical and Materials Transactions, Volume 35B, August 2004

14-04 Sayavur I. Bakhtiyarov, Charles H. Sherwin, and Ruel A. Overfelt, Hot Distortion Studies In Phenolic Urethane Cold Box System, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

13-04 Sayavur I. Bakhtiyarov and Ruel A. Overfelt, First V-Process Casting of Magnesium, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

5-04 C. Schlumpberger & B. Hummler-Schaufler, Produktentwicklung auf hohem Niveau (Product Development on a High Level), Druckguss Praxis, January 2004, pp 39-42 (in German).

3-04 Charles Bates, Dealing with Defects, Foundry Management and Technology, February 2004, pp 23-25

1-04 Laihua Wang, Thang Nguyen, Gary Savage and Cameron Davidson, Thermal and Flow Modeling of Ladling and Injection in High Pressure Die Casting Process, International Journal of Cast Metals Research, vol. 16 No 4 2003, pp 409-417

2-03 J-C Gebelin, AM Cendrowicz, MR Jolly, Modeling of the Wax Injection Process for the Investment Casting Process – Prediction of Defects, presented at the Third International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, December 10-12, 2003, Melbourne, Australia, pp. 415-420

29-03 C. W. Hirt, Modeling Shrinkage Induced Micro-porosity, Flow Science Technical Note (FSI-03-TN66)

28-03 Thixoforming at the University of Sheffield, Diecasting World, September 2003, pp 11-12

26-03 William Walkington, Gas Porosity-A Guide to Correcting the Problems, NADCA Publication: 516

22-03 G F Yao, C W Hirt, and M Barkhudarov, Development of a Numerical Approach for Simulation of Sand Blowing and Core Formation, in Modeling of Casting, Welding, and Advanced Solidification Process-X”, Ed. By Stefanescu et al pp. 633-639, 2003

21-03 E F Brush Jr, S P Midson, W G Walkington, D T Peters, J G Cowie, Porosity Control in Copper Rotor Die Castings, NADCA Indianapolis Convention Center, Indianapolis, IN September 15-18, 2003, T03-046

12-03 J-C Gebelin & M.R. Jolly, Modeling Filters in Light Alloy Casting Processes,  Trans AFS, 2002, 110, pp. 109-120

11-03 M.R. Jolly, Casting Simulation – How Well Do Reality and Virtual Casting Match – A State of the Art Review, Intl. J. Cast Metals Research, 2002, 14, pp. 303-313

10-03 Gebelin., J-C and Jolly, M.R., Modeling of the Investment Casting Process, Journal of  Materials Processing Tech., Vol. 135/2-3, pp. 291 – 300

9-03 Cox, M, Harding, R.A. and Campbell, J., Optimised Running System Design for Bottom Filled Aluminium Alloy 2L99 Investment Castings, J. Mat. Sci. Tech., May 2003, Vol. 19, pp. 613-625

8-03 Von Alexander Schrey and Regina Reek, Numerische Simulation der Kernherstellung, (Numerical Simulation of Core Blowing), Giesserei, June 2003, pp. 64-68 (in German)

7-03 J. Zuidema Jr., L Katgerman, Cyclone separation of particles in aluminum DC Casting, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 607-614

6-03 Jean-Christophe Gebelin and Mark Jolly, Numerical Modeling of Metal Flow Through Filters, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 431-438

5-03 N.W. Lai, W.D. Griffiths and J. Campbell, Modelling of the Potential for Oxide Film Entrainment in Light Metal Alloy Castings, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 415-422

21-02 Boris Lukezic, Case History: Process Modeling Solves Die Design Problems, Modern Casting, February 2003, P 59

20-02 C.W. Hirt and M.R. Barkhudarov, Predicting Defects in Lost Foam Castings, Modern Casting, December 2002, pp 31-33

19-02 Mark Jolly, Mike Cox, Ric Harding, Bill Griffiths and John Campbell, Quiescent Filling Applied to Investment Castings, Modern Casting, December 2002 pp. 36-38

18-02 Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Foundry Management and Technology, October 2002, pp 13-15

17-02 G Messmer, Simulation of a Thixoforging Process of Aluminum Alloys with FLOW-3D, Institute for Metal Forming Technology, University of Stuttgart

16-02 Barkhudarov, Michael, Computer Simulation of Lost Foam Process, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 319-324

15-02 Barkhudarov, Michael, Computer Simulation of Inclusion Tracking, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 341-346

14-02 Barkhudarov, Michael, Advanced Simulation of the Flow and Heat Transfer of an Alternator Housing, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 219-228

8-02 Sayavur I. Bakhtiyarov, and Ruel A. Overfelt, Experimental and Numerical Study of Bonded Sand-Air Two-Phase Flow in PUA Process, Auburn University, 2002 American Foundry Society, AFS Transactions 02-091, Kansas City, MO

7-02 A Habibollah Zadeh, and J Campbell, Metal Flow Through a Filter System, University of Birmingham, 2002 American Foundry Society, AFS Transactions 02-020, Kansas City, MO

6-02 Phil Ward, and Helen Atkinson, Final Report for EPSRC Project: Modeling of Thixotropic Flow of Metal Alloys into a Die, GR/M17334/01, March 2002, University of Sheffield

5-02 S. I. Bakhtiyarov and R. A. Overfelt, Numerical and Experimental Study of Aluminum Casting in Vacuum-sealed Step Molding, Auburn University, 2002 American Foundry Society, AFS Transactions 02-050, Kansas City, MO

4-02 J. C. Gebelin and M. R. Jolly, Modelling Filters in Light Alloy Casting Processes, University of Birmingham, 2002 American Foundry Society AFS Transactions 02-079, Kansas City, MO

3-02 Mark Jolly, Mike Cox, Jean-Christophe Gebelin, Sam Jones, and Alex Cendrowicz, Fundamentals of Investment Casting (FOCAST), Modelling the Investment Casting Process, Some preliminary results from the UK Research Programme, IRC in Materials, University of Birmingham, UK, AFS2001

49-01   Hua Bai and Brian G. Thomas, Bubble formation during horizontal gas injection into downward-flowing liquid, Metallurgical and Materials Transactions B, Vol. 32, No. 6, pp. 1143-1159, 2001. doi.org/10.1007/s11663-001-0102-y

45-01 Jan Zuidema; Laurens Katgerman; Ivo J. Opstelten;Jan M. Rabenberg, Secondary Cooling in DC Casting: Modelling and Experimental Results, TMS 2001, New Orleans, Louisianna, February 11-15, 2001

43-01 James Andrew Yurko, Fluid Flow Behavior of Semi-Solid Aluminum at High Shear Rates,Ph.D. thesis; Massachusetts Institute of Technology, June 2001. Abstract only; full thesis available at http://dspace.mit.edu/handle/1721.1/8451 (for a fee).

33-01 Juang, S.H., CAE Application on Design of Die Casting Dies, 2001 Conference on CAE Technology and Application, Hsin-Chu, Taiwan, November 2001, (article in Chinese with English-language abstract)

32-01 Juang, S.H. and C. M. Wang, Effect of Feeding Geometry on Flow Characteristics of Magnesium Die Casting by Numerical Analysis, The Preceedings of 6th FADMA Conference, Taipei, Taiwan, July 2001, Chinese language with English abstract

26-01 C. W. Hirt., Predicting Defects in Lost Foam Castings, December 13, 2001

21-01 P. Scarber Jr., Using Liquid Free Surface Areas as a Predictor of Reoxidation Tendency in Metal Alloy Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

20-01 P. Scarber Jr., J. Griffin, and C. E. Bates, The Effect of Gating and Pouring Practice on Reoxidation of Steel Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

19-01 L. Wang, T. Nguyen, M. Murray, Simulation of Flow Pattern and Temperature Profile in the Shot Sleeve of a High Pressure Die Casting Process, CSIRO Manufacturing Science and Technology, Melbourne, Victoria, Australia, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, To1-014

18-01 Rajiv Shivpuri, Venkatesh Sankararaman, Kaustubh Kulkarni, An Approach at Optimizing the Ingate Design for Reducing Filling and Shrinkage Defects, The Ohio State University, Columbus, OH, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, TO1-052

5-01 Michael Barkhudarov, Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Diecasting World, March 2001, pp. 5-6

2-01 J. Grindling, Customized CFD Codes to Simulate Casting of Thermosets in Full 3D, Electrical Manufacturing and Coil Winding 2000 Conference, October 31-November 2, 20

20-00 Richard Schuhmann, John Carrig, Thang Nguyen, Arne Dahle, Comparison of Water Analogue Modelling and Numerical Simulation Using Real-Time X-Ray Flow Data in Gravity Die Casting, Australian Die Casting Association Die Casting 2000 Conference, September 3-6, 2000, Melbourne, Victoria, Australia

15-00 M. Sirvio, Vainola, J. Vartianinen, M. Vuorinen, J. Orkas, and S. Devenyi, Fluid Flow Analysis for Designing Gating of Aluminum Castings, Proc. NADCA Conf., Rosemont, IL, Nov 6-8, 1999

14-00 X. Yang, M. Jolly, and J. Campbell, Reduction of Surface Turbulence during Filling of Sand Castings Using a Vortex-flow Runner, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

13-00 H. S. H. Lo and J. Campbell, The Modeling of Ceramic Foam Filters, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

12-00 M. R. Jolly, H. S. H. Lo, M. Turan and J. Campbell, Use of Simulation Tools in the Practical Development of a Method for Manufacture of Cast Iron Camshafts,” Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August, 2000

14-99 J Koke, and M Modigell, Time-Dependent Rheological Properties of Semi-solid Metal Alloys, Institute of Chemical Engineering, Aachen University of Technology, Mechanics of Time-Dependent Materials 3: 15-30, 1999

12-99 Grun, Gerd-Ulrich, Schneider, Wolfgang, Ray, Steven, Marthinusen, Jan-Olaf, Recent Improvements in Ceramic Foam Filter Design by Coupled Heat and Fluid Flow Modeling, Proc TMS Annual Meeting, 1999, pp. 1041-1047

10-99 Bongcheol Park and Jerald R. Brevick, Computer Flow Modeling of Cavity Pre-fill Effects in High Pressure Die Casting, NADCA Proceedings, Cleveland T99-011, November, 1999

8-99 Brad Guthrie, Simulation Reduces Aluminum Die Casting Cost by Reducing Volume, Die Casting Engineer Magazine, September/October 1999, pp. 78-81

7-99 Fred L. Church, Virtual Reality Predicts Cast Metal Flow, Modern Metals, September, 1999, pp. 67F-J

19-98 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Numerical Modeling of Fluid Flow Phenomena in the Launder-integrated Tool Within Casting Unit Development, Proc TMS Annual Meeting, 1998, pp. 1175-1182

18-98 X. Yang & J. Campbell, Liquid Metal Flow in a Pouring Basin, Int. J. Cast Metals Res, 1998, 10, pp. 239-253

15-98 R. Van Tol, Mould Filling of Horizontal Thin-Wall Castings, Delft University Press, The Netherlands, 1998

14-98 J. Daughtery and K. A. Williams, Thermal Modeling of Mold Material Candidates for Copper Pressure Die Casting of the Induction Motor Rotor Structure, Proc. Int’l Workshop on Permanent Mold Casting of Copper-Based Alloys, Ottawa, Ontario, Canada, Oct. 15-16, 1998

10-98 C. W. Hirt, and M.R. Barkhudarov, Lost Foam Casting Simulation with Defect Prediction, Flow Science Inc, presented at Modeling of Casting, Welding and Advanced Solidification Processes VIII Conference, June 7-12, 1998, Catamaran Hotel, San Diego, California

9-98 M. R. Barkhudarov and C. W. Hirt, Tracking Defects, Flow Science Inc, presented at the 1st International Aluminum Casting Technology Symposium, 12-14 October 1998, Rosemont, IL

5-98 J. Righi, Computer Simulation Helps Eliminate Porosity, Die Casting Management Magazine, pp. 36-38, January 1998

3-98 P. Kapranos, M. R. Barkhudarov, D. H. Kirkwood, Modeling of Structural Breakdown during Rapid Compression of Semi-Solid Alloy Slugs, Dept. Engineering Materials, The University of Sheffield, Sheffield S1 3JD, U.K. and Flow Science Inc, USA, Presented at the 5th International Conference Semi-Solid Processing of Alloys and Composites, Colorado School of Mines, Golden, CO, 23-25 June 1998

1-98 U. Jerichow, T. Altan, and P. R. Sahm, Semi Solid Metal Forming of Aluminum Alloys-The Effect of Process Variables Upon Material Flow, Cavity Fill and Mechanical Properties, The Ohio State University, Columbus, OH, published in Die Casting Engineer, p. 26, Jan/Feb 1998

8-97 Michael Barkhudarov, High Pressure Die Casting Simulation Using FLOW-3D, Die Casting Engineer, 1997

15-97 M. R. Barkhudarov, Advanced Simulation of the Flow and Heat Transfer Process in Simultaneous Engineering, Flow Science report, presented at the Casting 1997 – International ADI and Simulation Conference, Helsinki, Finland, May 28-30, 1997

14-97 M. Ranganathan and R. Shivpuri, Reducing Scrap and Increasing Die Life in Low Pressure Die Casting through Flow Simulation and Accelerated Testing, Dept. Welding and Systems Engineering, Ohio State University, Columbus, OH, presented at 19th International Die Casting Congress & Exposition, November 3-6, 1997

13-97 J. Koke, Modellierung und Simulation der Fließeigenschaften teilerstarrter Metallegierungen, Livt Information, Institut für Verfahrenstechnik, RWTH Aachen, October 1997

10-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics – Part 2 Fiber Orientation, Body-in-White Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 6, June 1997

9-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics. Part 1 – Injection Pressures and Flow, Manufacturing Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 3, March 1997

8-97 H. Grazzini and D. Nesa, Thermophysical Properties, Casting Simulation and Experiments for a Stainless Steel, AT Systemes (Renault) report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

7-97 R. Van Tol, L. Katgerman and H. E. A. Van den Akker, Horizontal Mould Filling of a Thin Wall Aluminum Casting, Laboratory of Materials report, Delft University, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

6-97 M. R. Barkhudarov, Is Fluid Flow Important for Predicting Solidification, Flow Science report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

22-96 Grun, Gerd-Ulrich & Schneider, Wolfgang, 3-D Modeling of the Start-up Phase of DC Casting of Sheet Ingots, Proc TMS Annual Meeting, 1996, pp. 971-981

9-96 M. R. Barkhudarov and C. W. Hirt, Thixotropic Flow Effects under Conditions of Strong Shear, Flow Science report FSI96-00-2, to be presented at the “Materials Week ’96” TMS Conference, Cincinnati, OH, 7-10 October 1996

4-96 C. W. Hirt, A Computational Model for the Lost Foam Process, Flow Science final report, February 1996 (FSI-96-57-R2)

3-96 M. R. Barkhudarov, C. L. Bronisz, C. W. Hirt, Three-Dimensional Thixotropic Flow Model, Flow Science report, FSI-96-00-1, published in the proceedings of (pp. 110- 114) and presented at the 4th International Conference on Semi-Solid Processing of Alloys and Composites, The University of Sheffield, 19-21 June 1996

1-96 M. R. Barkhudarov, J. Beech, K. Chang, and S. B. Chin, Numerical Simulation of Metal/Mould Interfacial Heat Transfer in Casting, Dept. Mech. & Process Engineering, Dept. Engineering Materials, University of Sheffield and Flow Science Inc, 9th Int. Symposium on Transport Phenomena in Thermal-Fluid Engineering, June 25-28, 1996, Singapore

11-95 Barkhudarov, M. R., Hirt, C.W., Casting Simulation Mold Filling and Solidification-Benchmark Calculations Using FLOW-3D, Modeling of Casting, Welding, and Advanced Solidification Processes VII, pp 935-946

10-95 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Optimal Design of a Distribution Pan for Level Pour Casting, Proc TMS Annual Meeting, 1995, pp. 1061-1070

9-95 E. Masuda, I. Itoh, K. Haraguchi, Application of Mold Filling Simulation to Die Casting Processes, Honda Engineering Co., Ltd., Tochigi, Japan, presented at the Modelling of Casting, Welding and Advanced Solidification Processes VII, The Minerals, Metals & Materials Society, 1995

6-95 K. Venkatesan, Experimental and Numerical Investigation of the Effect of Process Parameters on the Erosive Wear of Die Casting Dies, presented for Ph.D. degree at Ohio State University, 1995

5-95 J. Righi, A. F. LaCamera, S. A. Jones, W. G. Truckner, T. N. Rouns, Integration of Experience and Simulation Based Understanding in the Die Design Process, Alcoa Technical Center, Alcoa Center, PA 15069, presented by the North American Die Casting Association, 1995

2-95 K. Venkatesan and R. Shivpuri, Numerical Simulation and Comparison with Water Modeling Studies of the Inertia Dominated Cavity Filling in Die Casting, NUMIFORM, 1995

1-95 K. Venkatesan and R. Shivpuri, Numerical Investigation of the Effect of Gate Velocity and Gate Size on the Quality of Die Casting Parts, NAMRC, 1995.

15-94 D. Liang, Y. Bayraktar, S. A. Moir, M. Barkhudarov, and H. Jones, Primary Silicon Segregation During Isothermal Holding of Hypereutectic AI-18.3%Si Alloy in the Freezing Range, Dept. of Engr. Materials, U. of Sheffield, Metals and Materials, February 1994

13-94 Deniece Korzekwa and Paul Dunn, A Combined Experimental and Modeling Approach to Uranium Casting, Materials Division, Los Alamos National Laboratory, presented at the Symposium on Liquid Metal Processing and Casting, El Dorado Hotel, Santa Fe, New Mexico, 1994

12-94 R. van Tol, H. E. A. van den Akker and L. Katgerman, CFD Study of the Mould Filling of a Horizontal Thin Wall Aluminum Casting, Delft University of Technology, Delft, The Netherlands, HTD-Vol. 284/AMD-Vol. 182, Transport Phenomena in Solidification, ASME 1994

11-94 M. R. Barkhudarov and K. A. Williams, Simulation of ‘Surface Turbulence’ Fluid Phenomena During the Mold Filling Phase of Gravity Castings, Flow Science Technical Note #41, November 1994 (FSI-94-TN41)

10-94 M. R. Barkhudarov and S. B. Chin, Stability of a Numerical Algorithm for Gas Bubble Modelling, University of Sheffield, Sheffield, U.K., International Journal for Numerical Methods in Fluids, Vol. 19, 415-437 (1994)

16-93 K. Venkatesan and R. Shivpuri, Numerical Simulation of Die Cavity Filling in Die Castings and an Evaluation of Process Parameters on Die Wear, Dept. of Industrial Systems Engineering, Presented by: N.A. Die Casting Association, Cleveland, Ohio, October 18-21, 1993

15-93 K. Venkatesen and R. Shivpuri, Numerical Modeling of Filling and Solidification for Improved Quality of Die Casting: A Literature Survey (Chapters II and III), Engineering Research Center for Net Shape Manufacturing, Report C-93-07, August 1993, Ohio State University

1-93 P-E Persson, Computer Simulation of the Solidification of a Hub Carrier for the Volvo 800 Series, AB Volvo Technological Development, Metals Laboratory, Technical Report No. LM 500014E, Jan. 1993

13-92 D. R. Korzekwa, M. A. K. Lewis, Experimentation and Simulation of Gravity Fed Lead Castings, in proceedings of a TMS Symposium on Concurrent Engineering Approach to Materials Processing, S. N. Dwivedi, A. J. Paul and F. R. Dax, eds., TMS-AIME Warrendale, p. 155 (1992)

12-92 M. A. K. Lewis, Near-Net-Shaiconpe Casting Simulation and Experimentation, MST 1992 Review, Los Alamos National Laboratory

2-92 M. R. Barkhudarov, H. You, J. Beech, S. B. Chin, D. H. Kirkwood, Validation and Development of FLOW-3D for Casting, School of Materials, University of Sheffield, Sheffield, UK, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

1-92 D. R. Korzekwa and L. A. Jacobson, Los Alamos National Laboratory and C.W. Hirt, Flow Science Inc, Modeling Planar Flow Casting with FLOW-3D, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

12-91 R. Shivpuri, M. Kuthirakulathu, and M. Mittal, Nonisothermal 3-D Finite Difference Simulation of Cavity Filling during the Die Casting Process, Dept. Industrial and Systems Engineering, Ohio State University, presented at the 1991 Winter Annual ASME Meeting, Atlanta, GA, Dec. 1-6, 1991

3-91 C. W. Hirt, FLOW-3D Study of the Importance of Fluid Momentum in Mold Filling, presented at the 18th Annual Automotive Materials Symposium, Michigan State University, Lansing, MI, May 1-2, 1991 (FSI-91-00-2)

11-90 N. Saluja, O.J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Melts, accepted in J. Appl. Physics, 1990

10-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Molds in Continuous Castings, presented at the 6th Iron and Steel Congress of the Iron and Steel Institute of Japan, Nagoya, Japan, October 1990

9-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, Fluid Flow in Phenomena in the Electromagnetic Stirring of Continuous Casting Systems, Part I. The Behavior of a Cylindrically Shaped, Laboratory Scale Installation, accepted for publication in Steel Research, 1990

8-89 C. W. Hirt, Gravity-Fed Casting, Flow Science Technical Note #20, July 1989 (FSI-89-TN20)

6-89 E. W. M. Hansen and F. Syvertsen, Numerical Simulation of Flow Behaviour in Moldfilling for Casting Analysis, SINTEF-Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology, Trondheim, Norway, Report No. STS20 A89001, June 1989

1-88 C. W. Hirt and R. P. Harper, Modeling Tests for Casting Processes, Flow Science report, Jan. 1988 (FSI-88-38-01)

2-87 C. W. Hirt, Addition of a Solidification/Melting Model to FLOW-3D, Flow Science report, April 1987 (FSI-87-33-1)

FLOW-3D Platforms

FLOW-3D Supported Platforms

FLOW-3D 는 64-bit Windows 와 Linux 플랫폼에서 사용가능합니다.


Supported Operating Systems

1) Processors

–  x86-64 (Intel/AMD) 프로세스를 지원합니다.

2) Operating Systems

– 64-bit Windows 7, Windows 8, Windows 8.1, Windows 10, Windows Server 2008, and Windows Server 2012
– 64-bit Red Hat Enterprise Linux 6, Red Hat Enterprise Linux 7 and SUSE 11*
– Windows 및 Linux에 대한 시뮬레이션 시간은 대등합니다. 사용자가 사용하기 편리한 운영 체제를 선택하면 됩니다.

*FLOW-3D 버전 11.0.3부터 SUSE 리눅스는 더 이상 지원되지 않는 플랫폼입니다. 문제 발생시 Flow Science의 배포판인 RedHat 과 Novell enterprise-class Linux distributions (예 : Fedora, Scientific Linux, Debian, Ubuntu )등 “호환” 리눅스 배포판에 FLOW-3D를 설치 한 사용자에 대한 지원만 제공됩니다.

FLOW-3D / MP Requirements

FLOW-3D / MP 버전 사용에 관심이 있으신 경우 홈페이지의 FLOW-3D / MP에 대한 소개 페이지에서 하드웨어 및 운영 체제에 대한 자세한 정보를 찾을 수 있습니다..

Graphics Support

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다. 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.

License Server Software

FLOW-3D 라이선스를 관리하기 위해 FLEXlm을 사용합니다. 만약 Windows network에서 FLEXlm floating manager를 사용한다면 network server로 Microsoft Windows 7, 8, 8.1, Server 2008, 또는 Server 2012 와 hardware key (dongle)를 사용하여야 합니다.

Memory and Processor Speed

프로세서 코어 당 최소 2GB의 RAM을 권장합니다. 예를 들어, 두 개의 6 코어 CPU가 있을 경우 워크스테이션의 메모리는 최소 24 GB가 있어야합니다. 필요한 RAM의 양은 해석 대상 문제에 매우 의존적입니다. 큰 도메인 또는 복잡한 형상에서 좋은 해상도를 원하는 시뮬레이션은 필요한 최소한 RAM보다 훨씬 더 많은 RAM이 필요합니다. 메모리 속도는 시뮬레이션 시간에 영향을 작게 밥지만 통상적으로 1333MHz 또는 1600 MHz이면 충분합니다.

Custom Developer Tools

Flow Science가 표준 설치의 일부로 배포하는 서브 루틴을 사용자가 Fortran 코드로 커스터마이즈 개발하고자 할 경우 현재 국내에 보급된 버전의 경우 Intel Fortran Compiler 2013용 라이센스가 필요합니다. Windows 운영 체제를 실행하는 사용자는 Visual Studio 2010 또는 Visual Studio 2013이 필요합니다.

향후 업그레이드 되는 버전의 경우 다음과 같이 변경됨을 참고하시기 바랍니다.

1. 다음 주요 릴리스인 FLOW-3D v12.1FLOW-3D CAST v5.1
Intel® FORTRAN 컴파일러 버전 19.0.3.203 빌드 20190206(윈도우즈) 및 버전 19.0.3.19 빌드 20190206(리눅스) 를 사용해야 합니다.

사용자가 Solver의 Custom Code를 개발하여 사용하기를 원하는 Windows 사용자들은 Microsoft Visual Studio 2017 Professional이 필요합니다.

2. 현재 버전인 FLOW-3D v12.0 FLOW-3D CAST v5.0과 그에 대한 후속 업데이트는 Intel® FORTRAN 버전 16.0.1 및 Microsoft Visual Studio 2010/2013 Professional을 통해 계속 사용되는 것을 유의하십시오.

이 내용은 Solver에 대해 제공된 소스 코드를 수정하고 다시 컴파일(즉, 사용자 정의)하는 커스텀 코드 개발 사용자에게만 적용됩니다. 솔버를 사용자 정의하여 개발하지 않을 경우 어떠한 조치도 필요하지 않습니다. 이 컴파일러 업데이트에 대해 궁금한 점이 있으면 언제든지 flow3d@stikorea.co.kr 로 문의하십시오.