FLOW-3D 해석용컴퓨터 선택 가이드

Hardware Selection for FLOW-3D Products – FLOW-3D

2020-09-08 업데이트 / ㈜에스티아이씨앤디 솔루션사업부

In this blog, Flow Science’s IT Manager Matthew Taylor breaks down the different hardware components and suggests some ideal configurations for getting the most out of your FLOW-3D products.

본 자료는 Flow Science의 IT 매니저 Matthew Taylor가 작성한 자료를 기반으로 STI C&D에서 일부 자료를 보완한 자료입니다. 본 자료를 통해 FLOW-3D 사용자는 최상의 해석용 컴퓨터를 선택할 때 도움을 받을 수 있을 것으로 기대합니다.

수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.

따라서 수치해석용 컴퓨터의 선정을 위해서 단위 시간당 시스템이 처리하는 작업의 수나 처리량, 응답시간, 평균 대기 시간 등의 요소를 복합적으로 검토하여 결정하게 됩니다.

또한 수치해석에 적합한 성능을 가진 컴퓨터를 선별하는 방법으로 CPU 계산 처리속도인 Flops/sec 성능도 중요하지만 수치해석을 수행할 때 방대한 계산 결과를 디스크에 저장하고, 해석결과를 분석할 때는 그래픽 성능도 크게 좌우하기 때문에 SSD 디스크와 그래픽카드에도 관심을 가져야 합니다.

FLOW SCIENCE, INC. 에서는 일반적인 FLOW-3D를 지원하는 최소 컴퓨터 사양과 O/S 플랫폼 가이드를 제시하지만, 도입 담당자의 경우, 최상의 조건에서 해석 업무를 수행해야 하기 때문에 가능하면 최고의 성능을 제공하는 해석용 장비 도입이 필요합니다. 이 자료는 2020 현재 FLOW-3D 제품을 효과적으로 사용하기 위한 하드웨어 선택에 대해 사전에 검토되어야 할 내용들에 대해 자세히 설명합니다. 그리고 실행 중인 시뮬레이션 유형에 따라 다양한 구성에 대한 몇 가지 아이디어를 제공합니다.

CPU의 선택

CPU는 전반적인 성능에 큰 영향을 미치며, 대부분의 경우 컴퓨터의 가장 중요한 구성 요소입니다. 그러나 데스크탑 프로세서를 구입할 때가 되면 인텔과 AMD의 모델 번호와 사양이 어려워 보일 것입니다.
그리고, CPU 성능을 평가하는 방법에 의해 가장 좋은 CPU를 고른다고 해도 보드와, 메모리, 주변 Chip 등 여러가지 조건에 의해 성능이 달라질 수 있기 때문에 성능평가 결과를 기준으로 시스템을 구입할 경우, 단일 CPU나 부품으로 순위가 정해진 자료보다는 시스템 전체를 대상으로 평가한 순위표를 보고 선정하는 지혜가 필요합니다.

고급 사용자를 위한 하이엔드 CPU 시장은 AMD Ryzen Threadripper 3970X(Cores: 32 Threads: 64), AMD Ryzen Threadripper 3990X (Cores: 64 Threads: 128)Intel Xeon Gold 6248R (@3GHz Cores: 24 Threads: 48) , Intel 18코어 i9-10980XE가 장악하고 있다. 특히 AMD 제품이 인텔의 최상위 제품을 가격에서 압도한다. 모든 코어를 다 활용할 정도로 어마어마한 프로덕션 수준의 워크로드를 다루는 게 아니라면 보통 이 정도 수준의 CPU까지는 필요하지 않다. 하지만 필요할 경우를 대비해 말해두자면 AMD 두 제품 모두 눈부시게 빠른 게이밍 속도를 보장할 것이다. ‘파 크라이 5’처럼 쓰레드리퍼만의 멀티 다이 아키텍처 때문에 반응이 느린 게임도 있지만 어디까지나 극소수의 예외에 불과하다. editor@itworld.co.kr

2020-08-20일 현재

<출처> https://www.cpubenchmark.net/high_end_cpus.html

CPU 성능 분석 방법

부동소수점 계산을 하는 수치해석과 밀접한 Computer의 연산 성능 벤치마크 방법은 대표적으로 널리 사용되는 아래와 같은 방법이 있습니다.

FLOW-3D의 CFD 솔버 성능은 CPU의 부동 소수점 성능에 전적으로 좌우되기 때문에 계산 집약적인 프로그램입니다. FlowSight 또한 CPU에 크게 의존합니다. 현재 출시된 사용 가능한 모든 CPU를 벤치마킹할 수는 없지만 상대적인 성능을 합리적으로 비교할 수는 있습니다.

특히, 수치해석 분야에서 주어진 CPU에 대해 FLOW-3D 성능을 추정하거나 여러 CPU 옵션 간의 성능을 비교하기 위한 최상의 옵션은 Standard Performance Evaluation Corporation의 SPEC CPU2017 벤치마크(현재까지 개발된 가장 최신 평가기준임)이며, 특히 SPECspeed 2017 Floating Point 결과가 CFD Solver 성능을 매우 잘 예측합니다.

이는 유료 벤치마크이므로 제공된 결과는 모든 CPU 테스트 결과를 제공하지 않습니다. 보통 제조사가 ASUS, Dell, Lenovo, HP, Huawei 정도의 제품에 대해 RAM이 많은 멀티 소켓 Intel Xeon 기계와 같은 값비싼 구성으로 된 장비 결과들을 제공합니다.

CPU 비교를 위한 또 다른 옵션은 Passmark Software의 CPU 벤치마크입니다. PerformanceTest 제품군은 유료 소프트웨어이지만 무료 평가판을 사용할 수 있습니다. 대부분의 CPU는 저렴한 옵션을 포함하여 나열됩니다. 부동 소수점 성능은 전체 벤치마크의 한 측면에 불과하지만 다양한 워크로드에서 전반적인 성능을 제대로 테스트합니다.

예산을 결정하고 해당 예산에 해당하는 CPU를 선택한 후에는 벤치마크를 사용하여 가격에 가장 적합한 성능을 결정할 수 있습니다.

<참고>

SPEC의 벤치 마크https://www.spec.org/benchmarks.html#cpu )

SPEC CPU 2017 (현재까지 가장 최근에 개발된 CPU 성능측정 기준)

다른 컴퓨터 시스템에서 컴퓨팅 계산에 대한 집약적인 워크로드를 비교하는데 사용할 수 있는 성능 측정을 제공하도록 설계된 SPEC CPU 2017에는 SPECspeed 2017 정수, SPECspeed 2017 부동 소수점, SPECrate 2017 정수 및 SPECrate 2017 부동 소수점의 4 가지 제품군으로 구성된 43 개의 벤치 마크가 포함되어 있습니다. SPEC CPU 2017에는 에너지 소비 측정을 위한 선택적 메트릭도 포함되어 있습니다.

<SPEC CPU 벤치마크 보고서>

벤치마크 결과보고서는 제조사별, 모델별로 테스트한 결과를 아래 사이트에 가면 볼 수 있습니다.

https://www.spec.org/cgi-bin/osgresults

<보고서 샘플>

  • SPEC CPU 2017

Designed to provide performance measurements that can be used to compare compute-intensive workloads on different computer systems, SPEC CPU 2017 contains 43 benchmarks organized into four suites: SPECspeed 2017 Integer, SPECspeed 2017 Floating Point, SPECrate 2017 Integer, and SPECrate 2017 Floating Point. SPEC CPU 2017 also includes an optional metric for measuring energy consumption.

클럭 대 코어

일반적으로 클럭 속도가 높은 칩은 CPU 코어를 더 적게 포함합니다. FLOW-3D는 병렬화가 잘되어 있지만, 디스크 쓰기와 같이 일부 작업은 기본적으로 단일 스레드 방식으로 수행됩니다. 따라서 데이터 출력이 빈번하거나 큰 시뮬레이션은 종종 더 많은 코어가 아닌, 더 높은 클럭 속도를 활용합니다. 마찬가지로 코어 및 소켓의 다중 스레딩은 오버헤드를 발생시키므로 작은 문제의 해석일 경우 사용되는 코어 수를 제한하면 성능이 향상될 수 있습니다.

CPU 아키텍처

CPU 아키텍처는 중요합니다. 최신 CPU는 일반적으로 사이클당 더 많은 기능을 제공합니다. 즉, 현재 세대의 CPU는 일반적으로 동일한 클럭 속도에서 이전 CPU보다 성능이 우수합니다. 또한 전력 효율이 높아져 와트당 성능이 향상될 수 있습니다. Flow Science에는 구형 멀티 소켓 12, 16, 24 코어 Xeon보다 성능이 뛰어난 최근 세대 10~12 Core i9 CPU 시스템을 보유하고 있습니다.

오버클럭

해석용 장비에서는 CPU를 오버클럭 하지 않는 것이 좋습니다. 하드웨어를 다년간의 투자라고 생각한다면, 오버클럭화는 발열을 증가시켜 수명을 단축시킵니다. CPU에 따라 안정성도 저하될 수 있습니다. CPU를 오버클럭 할 때는 세심한 열 관리가 권장됩니다.

하이퍼스레딩

<이미지출처:https://gameabout.com/krum3/4586040>

하이퍼스레딩은 물리적으로 1개의 CPU를 가상으로 2개의 CPU처럼 작동하게 하는 기술로 파이프라인의 단계수가 많고 각 단계의 길이가 짧을때 유리합니다. 다만 수치해석 처럼 모든 코어의 CPU를 100% 사용중인 장시간 수행 시뮬레이션은 일반적으로 Hyper Threading이 비활성화 된 상태에서 더 잘 수행됩니다. FLOW-3D는 100% CPU 사용률이 일반적이므로 새 하드웨어를 구성할 때 Hyper Threading을 비활성화하는 것이 좋습니다. 설정은 시스템의 BIOS 설정에서 수행합니다.

몇 가지 워크로드의 경우에는 Hyper Threading을 사용하여 약간 더 나은 성능을 보이는 경우가 있습니다. 따라서, 최상의 런타임을 위해서는 두 가지 구성중에서 어느 구성이 더 적합한지 시뮬레이션 유형을 테스트하는 것이 좋습니다.

스케일링

여러 코어를 사용할 때 성능은 선형적이지 않습니다. 예를 들어 12 코어 CPU에서 24 코어 CPU로 업그레이드해도 시뮬레이션 런타임이 절반으로 줄어들지 않습니다. 시뮬레이션 유형에 따라 16~32개 이상의 CPU 코어를 선택할 때는 FLOW-3D 및 FLOW-3D CAST의 HPC 버전을 사용하거나 FLOW-3D CLOUD로 이동하는 것을 고려하여야 합니다.

AMD Ryzen 또는 Epyc CPU

AMD는 일부 CPU로 벤치마크 차트를 석권하고 있으며 그 가격은 매우 경쟁력이 있습니다. FLOW SCIENCE, INC. 에서는 소수의 AMD CPU로 FLOW-3D를 테스트했습니다. 현재 Epyc CPU는 이상적이지 않고 Ryzen은 성능이 상당히 우수합니다. 발열은 여전히 신중하게 다뤄져야 할 문제입니다. 현재 32 코어 옵션에 영향을 주는 Windows 버그가 초기 버전에서 성능을 크게 저하시키는 것으로 알려져 있습니다. Bug Fix가 되었는지 업데이트 하여 확인하고, 해결되지 않은 경우 이러한 CPU에는 Linux를 권장됩니다.

<관련 기사>

https://www.techspot.com/news/78122-report-software-fix-can-double-threadripper-2990wx-performance.html

Graphics 고려 사항

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다.

특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.

원격데스크탑 사용시 고려 사항

Flow Science는 nVidia 드라이버 버전이 341.05 이상인 nVidia Quadro K, M 또는 P 시리즈 그래픽 하드웨어를 권장합니다. 이 카드와 드라이버 조합을 사용하면 원격 데스크톱 연결이 완전한 3D 가속 기능을 갖춘 기본 하드웨어에서 자동으로 실행됩니다.

원격 데스크톱 세션에 연결할 때 nVidia Quadro 그래픽 카드가 설치되어 있지 않으면 Windows는 소프트웨어 렌더링을 사용합니다. 이는 FLOW-3D 및 FlowSight 모두 성능에 부정적인 영향을 미칩니다. FLOW-3D 가 소프트웨어 렌더링을 사용하고 있는지 확인하려면 FLOW-3D 도움말 메뉴에서 정보를 선택하십시오. GDI Generic을 소프트웨어 렌더링으로 사용하는 경우 GL_RENDERER 항목에 표시됩니다.

하드웨어 렌더링을 활성화하는 몇 가지 옵션이 있습니다. 쉬운 방법 중 하나는 실제 콘솔에서 FLOW-3D를 시작한 다음 원격 데스크톱 세션을 연결하는 것입니다. Nice Software DCV 와 같은 일부 VNC 소프트웨어는 기본적으로 하드웨어 렌더링을 사용합니다.

RAM 고려 사항

프로세서 코어당 최소 4GB의 RAM은 FLOW-3D의 좋은 출발입니다. FlowSight POST Processor를 사용하여 후처리 작업을 할 경우 상당한 양의 RAM을 사용하는 것이 좋습니다.

현재 주력제품인 DDR4보다 2배 빠른 DDR5가 곧 출시된다는 소식도 있습니다.

일반적으로 FLOW-3D를 이용하여 해석을 할 경우 격자(Mesh)수에 따라 소요되는 적정 메모리 크기는 아래와 같습니다.페이지 보기

  • 초대형 (2억개 이상의 셀) : 최소 128GB
  • 대형 (60 ~ 1억 5천만 셀) : 64 ~ 128GB
  • 중간 (30-60백만 셀) : 32-64GB
  • 작음 (3 천만 셀 이하) : 최소 32GB

HDD 고려 사항

수치해석은 해석결과 파일의 데이터 양이 매우 크기 때문에 읽고 쓰는데, 속도면에서 매우 빠른 SSD를 적용하면 성능면에서 큰 도움이 됩니다. 다만 SSD 가격이 비싸서 가성비 측면을 고려하여 적정수준에서 결정이 필요합니다.

CPU와 저장장치 간 데이터가 오고 가는 통로가 그림과 같이 3가지 방식이 있습니다. 이를 인터페이스라 부르며 SSD는 흔히 PCI-Express 와 SATA 통로를 이용합니다.

흔히 말하는 NVMe는 PCI-Express3.0 지원 SSD의 경우 SSD에 최적화된 NVMe (NonVolatile Memory Express) 전송 프로토콜을 사용합니다. 주의할 점은 MVMe중에서 SATA3 방식도 있기 때문에 잘 구별하여 구입하시기 바랍니다.

그리고 SSD를 선택할 경우에도 SSD 종류 중에서 PCI Express 타입은 매우 빠르고 가격이 고가였지만 최근에는 많이 저렴해졌습니다. 따라서 예산 범위내에서 NVMe SSD등 가장 효과적인 선택을 하는 것이 좋습니다.
( 참고 : 해석용 컴퓨터 SSD 고르기 참조 )

기존의 물리적인 하드 디스크의 경우, 디스크에 기록된 데이터를 읽기 위해서는 데이터를 읽어내는 헤드(바늘)가 물리적으로 데이터가 기록된 위치까지 이동해야 하므로 이동에 일정한 시간이 소요됩니다. (이러한 시간을 지연시간, 혹은 레이턴시 등으로 부름) 따라서 하드 디스크의 경우 데이터를 읽기 위한 요청이 주어진 뒤에 데이터를 실제로 읽기까지 일정한 시간이 소요되는데, 이 시간을 일정한 한계(약 10ms)이하로 줄이는 것이 불가능에 가까우며, 데이터가 플래터에 실제 기록된 위치에 따라서 이러한 데이터에의 접근시간 역시 차이가 나게 됩니다.

하지만 HDD의 최대 강점은 가격대비 용량입니다. 현재 상용화되어 판매하는 대용량 HDD는 12TB ~ 15TB가 공급되고 있으며, 이는 데이터 저장이나 백업용으로 가장 좋은 선택이 됩니다.
결론적으로 데이터를 직접 읽고 쓰는 드라이브는 SSD를 사용하고 보관하는 용도의 드라이브는 기존의 HDD를 사용하는 방법이 효과적인 선택이 될 수 있습니다.

페이지 보기

FLOW-3D CAST Bibliography

FLOW-3D CAST bibliography

아래는 FSI의 금속 주조 참고 문헌에 수록된 기술 논문 모음입니다. 이 모든 논문에는 FLOW-3D CAST 해석 결과가 수록되어 있습니다. FLOW-3D CAST를 사용하여 금속 주조 산업의 응용 프로그램을 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

Below is a collection of technical papers in our Metal Casting Bibliography. All of these papers feature FLOW-3D CAST results. Learn more about how FLOW-3D CAST can be used to successfully simulate applications for the Metal Casting Industry.

33-20     Eric Riedel, Martin Liepe Stefan Scharf, Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum, Metals, 10.4; 476, 2020. doi.org/10.3390/met10040476

20-20   Wu Yue, Li Zhuo and Lu Rong, Simulation and visual tester verification of solid propellant slurry vacuum plate casting, Propellants, Explosives, Pyrotechnics, 2020. doi.org/10.1002/prep.201900411

17-20   C.A. Jones, M.R. Jolly, A.E.W. Jarfors and M. Irwin, An experimental characterization of thermophysical properties of a porous ceramic shell used in the investment casting process, Supplimental Proceedings, pp. 1095-1105, TMS 2020 149th Annual Meeting and Exhibition, San Diego, CA, February 23-27, 2020. doi.org/10.1007/978-3-030-36296-6_102

12-20   Franz Josef Feikus, Paul Bernsteiner, Ricardo Fernández Gutiérrez and Michal Luszczak , Further development of electric motor housings, MTZ Worldwide, 81, pp. 38-43, 2020. doi.org/10.1007/s38313-019-0176-z

09-20   Mingfan Qi, Yonglin Kang, Yuzhao Xu, Zhumabieke Wulabieke and Jingyuan Li, A novel rheological high pressure die-casting process for preparing large thin-walled Al–Si–Fe–Mg–Sr alloy with high heat conductivity, high plasticity and medium strength, Materials Science and Engineering: A, 776, art. no. 139040, 2020. doi.org/10.1016/j.msea.2020.139040

07-20   Stefan Heugenhauser, Erhard Kaschnitz and Peter Schumacher, Development of an aluminum compound casting process – Experiments and numerical simulations, Journal of Materials Processing Technology, 279, art. no. 116578, 2020. doi.org/10.1016/j.jmatprotec.2019.116578

05-20   Michail Papanikolaou, Emanuele Pagone, Mark Jolly and Konstantinos Salonitis, Numerical simulation and evaluation of Campbell running and gating systems, Metals, 10.1, art. no. 68, 2020. doi.org/10.3390/met10010068

102-19   Ferencz Peti and Gabriela Strnad, The effect of squeeze pin dimension and operational parameters on material homogeneity of aluminium high pressure die cast parts, Acta Marisiensis. Seria Technologica, 16.2, 2019. doi.org/0.2478/amset-2019-0010

94-19   E. Riedel, I. Horn, N. Stein, H. Stein, R. Bahr, and S. Scharf, Ultrasonic treatment: a clean technology that supports sustainability incasting processes, Procedia, 26th CIRP Life Cycle Engineering (LCE) Conference, Indianapolis, Indiana, USA, May 7-9, 2019. 

93-19   Adrian V. Catalina, Liping Xue, Charles A. Monroe, Robin D. Foley, and John A. Griffin, Modeling and Simulation of Microstructure and Mechanical Properties of AlSi- and AlCu-based Alloys, Transactions, 123rd Metalcasting Congress, Atlanta, GA, USA, April 27-30, 2019. 

84-19   Arun Prabhakar, Michail Papanikolaou, Konstantinos Salonitis, and Mark Jolly, Sand casting of sheet lead: numerical simulation of metal flow and solidification, The International Journal of Advanced Manufacturing Technology, pp. 1-13, 2019. doi.org/10.1007/s00170-019-04522-3

72-19   Santosh Reddy Sama, Eric Macdonald, Robert Voigt, and Guha Manogharan, Measurement of metal velocity in sand casting during mold filling, Metals, 9:1079, 2019. doi.org/10.3390/met9101079

71-19   Sebastian Findeisen, Robin Van Der Auwera, Michael Heuser, and Franz-Josef Wöstmann, Gießtechnische Fertigung von E-Motorengehäusen mit interner Kühling (Casting production of electric motor housings with internal cooling), Geisserei, 106, pp. 72-78, 2019 (in German).

58-19     Von Malte Leonhard, Matthias Todte, and Jörg Schäffer, Realistic simulation of the combustion of exothermic feeders, Casting, No. 2, pp. 28-32, 2019. In English and German.

52-19     S. Lakkum and P. Kowitwarangkul, Numerical investigations on the effect of gas flow rate in the gas stirred ladle with dual plugs, International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi.org/10.1088/1757-899X/526/1/012028

47-19     Bing Zhou, Shuai Lu, Kaile Xu, Chun Xu, and Zhanyong Wang, Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling, International Journal of Metalcasting, Online edition, pp. 1-13, 2019. doi.org/10.1007/s40962-019-00357-6

31-19     Zihao Yuan, Zhipeng Guo, and S.M. Xiong, Skin layer of A380 aluminium alloy die castings and its blistering during solution treatment, Journal of Materials Science & Technology, Vol. 35, No. 9, pp. 1906-1916, 2019. doi.org/10.1016/j.jmst.2019.05.011

25-19     Stefano Mascetti, Raul Pirovano, and Giulio Timelli, Interazione metallo liquido/stampo: Il fenomeno della metallizzazione, La Metallurgia Italiana, No. 4, pp. 44-50, 2019. In Italian.

20-19     Fu-Yuan Hsu, Campbellology for runner system design, Shape Casting: The Minerals, Metals & Materials Series, pp. 187-199, 2019. doi.org/10.1007/978-3-030-06034-3_19

19-19     Chengcheng Lyu, Michail Papanikolaou, and Mark Jolly, Numerical process modelling and simulation of Campbell running systems designs, Shape Casting: The Minerals, Metals & Materials Series, pp. 53-64, 2019. doi.org/10.1007/978-3-030-06034-3_5

18-19     Adrian V. Catalina, Liping Xue, and Charles Monroe, A solidification model with application to AlSi-based alloys, Shape Casting: The Minerals, Metals & Materials Series, pp. 201-213, 2019. doi.org/10.1007/978-3-030-06034-3_20

17-19     Fu-Yuan Hsu and Yu-Hung Chen, The validation of feeder modeling for ductile iron castings, Shape Casting: The Minerals, Metals & Materials Series, pp. 227-238, 2019. doi.org/10.1007/978-3-030-06034-3_22

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

02-19   Jingying Sun, Qichi Le, Li Fu, Jing Bai, Johannes Tretter, Klaus Herbold and Hongwei Huo, Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting-process, Journal of Materials Processing Technology, Vol. 266, pp. 274-282, 2019. doi.org/10.1016/j.jmatprotec.2018.11.016

92-18   Fast, Flexible… More Versatile, Foundry Management Technology, March, 2018. 

82-18   Xu Zhao, Ping Wang, Tao Li, Bo-yu Zhang, Peng Wang, Guan-zhou Wang and Shi-qi Lu, Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation, China Foundry, Vol. 15, no. 6, pp. 436-442, 2018. doi: 10.1007/s41230-018-8052-z

80-18   Michail Papanikolaou, Emanuele Pagone, Konstantinos Salonitis, Mark Jolly and Charalampos Makatsoris, A computational framework towards energy efficient casting processes, Sustainable Design and Manufacturing 2018: Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SDM-18), Gold Coast, Australia, June 24-26 2018, SIST 130, pp. 263-276, 2019. doi.org/10.1007/978-3-030-04290-5_27

64-18   Vasilios Fourlakidis, Ilia Belov and Attila Diószegi, Strength prediction for pearlitic lamellar graphite iron: Model validation, Metals, Vol. 8, No. 9, 2018. doi.org/10.3390/met8090684

51-18   Xue-feng Zhu, Bao-yi Yu, Li Zheng, Bo-ning Yu, Qiang Li, Shu-ning Lü and Hao Zhang, Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting, China Foundry, vol. 15, no. 3, pp.196-202, 2018. doi.org/10.1007/s41230-018-7256-6

47-18   Santosh Reddy Sama, Jiayi Wang and Guha Manogharan, Non-conventional mold design for metal casting using 3D sand-printing, Journal of Manufacturing Processes, vol. 34-B, pp. 765-775, 2018. doi.org/10.1016/j.jmapro.2018.03.049

42-18   M. Koru and O. Serçe, The Effects of Thermal and Dynamical Parameters and Vacuum Application on Porosity in High-Pressure Die Casting of A383 Al-Alloy, International Journal of Metalcasting, pp. 1-17, 2018. doi.org/10.1007/s40962-018-0214-7

41-18   Abhilash Viswanath, S. Savithri, U.T.S. Pillai, Similitude analysis on flow characteristics of water, A356 and AM50 alloys during LPC process, Journal of Materials Processing Technology, vol. 257, pp. 270-277, 2018. doi.org/10.1016/j.jmatprotec.2018.02.031

29-18   Seyboldt, Christoph and Liewald, Mathias, Investigation on thixojoining to produce hybrid components with intermetallic phase, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi.org/10.1063/1.5034992

28-18   Laura Schomer, Mathias Liewald and Kim Rouven Riedmüller, Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi.org/10.1063/1.5034991

41-17   Y. N. Wu et al., Numerical Simulation on Filling Optimization of Copper Rotor for High Efficient Electric Motors in Die Casting Process, Materials Science Forum, Vol. 898, pp. 1163-1170, 2017.

12-17   A.M.  Zarubin and O.A. Zarubina, Controlling the flow rate of melt in gravity die casting of aluminum alloys, Liteynoe Proizvodstvo (Casting Manufacturing), pp 16-20, 6, 2017. In Russian.

10-17   A.Y. Korotchenko, Y.V. Golenkov, M.V. Tverskoy and D.E. Khilkov, Simulation of the Flow of Metal Mixtures in the Mold, Liteynoe Proizvodstvo (Casting Manufacturing), pp 18-22, 5, 2017. In Russian.

08-17   Morteza Morakabian Esfahani, Esmaeil Hajjari, Ali Farzadi and Seyed Reza Alavi Zaree, Prediction of the contact time through modeling of heat transfer and fluid flow in compound casting process of Al/Mg light metals, Journal of Materials Research, © Materials Research Society 2017

04-17   Huihui Liu, Xiongwei He and Peng Guo, Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment, AIP Conference Proceedings 1829, 020037 (2017); doi.org/10.1063/1.4979769.

100-16  Robert Watson, New numerical techniques to quantify and predict the effect of entrainment defects, applied to high pressure die casting, PhD Thesis: University of Birmingham, 2016.

88-16   M.C. Carter, T. Kauffung, L. Weyenberg and C. Peters, Low Pressure Die Casting Simulation Discovery through Short Shot, Cast Expo & Metal Casting Congress, April 16-19, 2016, Minneapolis, MN, Copyright 2016 American Foundry Society.

61-16   M. Koru and O. Serçe, Experimental and numerical determination of casting mold interfacial heat transfer coefficient in the high pressure die casting of a 360 aluminum alloy, ACTA PHYSICA POLONICA A, Vol. 129 (2016)

59-16   R. Pirovano and S. Mascetti, Tracking of collapsed bubbles during a filling simulation, La Metallurgia Italiana – n. 6 2016

43-16   Kevin Lee, Understanding shell cracking during de-wax process in investment casting, Ph.D Thesis: University of Birmingham, School of Engineering, Department of Chemical Engineering, 2016.

35-16   Konstantinos Salonitis, Mark Jolly, Binxu Zeng, and Hamid Mehrabi, Improvements in energy consumption and environmental impact by novel single shot melting process for casting, Journal of Cleaner Production, doi.org/10.1016/j.jclepro.2016.06.165, Open Access funded by Engineering and Physical Sciences Research Council, June 29, 2016

20-16   Fu-Yuan Hsu, Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum, Metallurgical and Materials Transactions B, 2016, Band: 47, Heft 3, 1634-1648.

15-16   Mingfan Qia, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Lib,and Weirong Li, A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys, Journal of Materials Processing Technology 234 (2016) 353–367

112-15   José Miguel Gonçalves Ledo Belo da Costa, Optimization of filling systems for low pressure by FLOW-3D, Dissertação de mestrado integrado em Engenharia Mecânica, 2015.

89-15   B.W. Zhu, L.X. Li, X. Liu, L.Q. Zhang and R. Xu, Effect of Viscosity Measurement Method to Simulate High Pressure Die Casting of Thin-Wall AlSi10MnMg Alloy Castings, Journal of Materials Engineering and Performance, Published online, November 2015, doi.org/10.1007/s11665-015-1783-8, © ASM International.

88-15   Peng Zhang, Zhenming Li, Baoliang Liu, Wenjiang Ding and Liming Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Materials Science & Engineering A651(2016)376–390, Available online, November 2015.

83-15   Zu-Qi Hu, Xin-Jian Zhang and Shu-Sen Wu, Microstructure, Mechanical Properties and Die-Filling Behavior of High-Performance Die-Cast Al–Mg–Si–Mn Alloy, Acta Metall. Sin. (Engl. Lett.), doi.org/10.1007/s40195-015-0332-7, © The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015.

82-15   J. Müller, L. Xue, M.C. Carter, C. Thoma, M. Fehlbier and M. Todte, A Die Spray Cooling Model for Thermal Die Cycling Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

81-15   M. T. Murray, L.F. Hansen, L. Chilcott, E. Li and A.M. Murray, Case Studies in the Use of Simulation- Improved Yield and Reduced Time to Market, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

80-15   R. Bhola, S. Chandra and D. Souders, Predicting Castability of Thin-Walled Parts for the HPDC Process Using Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

76-15   Prosenjit Das, Sudip K. Samanta, Shashank Tiwari and Pradip Dutta, Die Filling Behaviour of Semi Solid A356 Al Alloy Slurry During Rheo Pressure Die Casting, Transactions of the Indian Institute of Metals, pp 1-6, October 2015

74-15   Murat KORU and Orhan SERÇE, Yüksek Basınçlı Döküm Prosesinde Enjeksiyon Parametrelerine Bağlı Olarak Döküm Simülasyon, Cumhuriyet University Faculty of Science, Science Journal (CSJ), Vol. 36, No: 5 (2015) ISSN: 1300-1949, May 2015

69-15   A. Viswanath, S. Sivaraman, U. T. S. Pillai, Computer Simulation of Low Pressure Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 45-48, September 2015

68-15   J. Aneesh Kumar, K. Krishnakumar and S. Savithri, Computer Simulation of Centrifugal Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 53-56, September 2015

59-15   F. Hosseini Yekta and S. A. Sadough Vanini, Simulation of the flow of semi-solid steel alloy using an enhanced model, Metals and Materials International, August 2015.

44-15   Ulrich E. Klotz, Tiziana Heiss and Dario Tiberto, Platinum investment casting material properties, casting simulation and optimum process parameters, Jewelry Technology Forum 2015

41-15   M. Barkhudarov and R. Pirovano, Minimizing Air Entrainment in High Pressure Die Casting Shot Sleeves, GIFA 2015, Düsseldorf, Germany

40-15   M. Todte, A. Fent, and H. Lang, Simulation in support of the development of innovative processes in the casting industry, GIFA 2015, Düsseldorf, Germany

19-15   Bruce Morey, Virtual casting improves powertrain design, Automotive Engineering, SAE International, March 2015.

15-15   K.S. Oh, J.D. Lee, S.J. Kim and J.Y. Choi, Development of a large ingot continuous caster, Metall. Res. Technol. 112, 203 (2015) © EDP Sciences, 2015, doi.org/10.1051/metal/2015006, www.metallurgical-research.org

14-15   Tiziana Heiss, Ulrich E. Klotz and Dario Tiberto, Platinum Investment Casting, Part I: Simulation and Experimental Study of the Casting Process, Johnson Matthey Technol. Rev., 2015, 59, (2), 95, doi.org/10.1595/205651315×687399

138-14 Christopher Thoma, Wolfram Volk, Ruben Heid, Klaus Dilger, Gregor Banner and Harald Eibisch, Simulation-based prediction of the fracture elongation as a failure criterion for thin-walled high-pressure die casting components, International Journal of Metalcasting, Vol. 8, No. 4, pp. 47-54, 2014. doi.org/10.1007/BF03355594

107-14  Mehran Seyed Ahmadi, Dissolution of Si in Molten Al with Gas Injection, ProQuest Dissertations And Theses; Thesis (Ph.D.), University of Toronto (Canada), 2014; Publication Number: AAT 3637106; ISBN: 9781321195231; Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.; 191 p.

99-14   R. Bhola and S. Chandra, Predicting Castability for Thin-Walled HPDC Parts, Foundry Management Technology, December 2014

92-14   Warren Bishenden and Changhua Huang, Venting design and process optimization of die casting process for structural components; Part II: Venting design and process optimization, Die Casting Engineer, November 2014

90-14   Ken’ichi Kanazawa, Ken’ichi Yano, Jun’ichi Ogura, and Yasunori Nemoto, Optimum Runner Design for Die-Casting using CFD Simulations and Verification with Water-Model Experiments, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE2014, November 14-20, 2014, Montreal, Quebec, Canada, IMECE2014-37419

89-14   P. Kapranos, C. Carney, A. Pola, and M. Jolly, Advanced Casting Methodologies: Investment Casting, Centrifugal Casting, Squeeze Casting, Metal Spinning, and Batch Casting, In Comprehensive Materials Processing; McGeough, J., Ed.; 2014, Elsevier Ltd., 2014; Vol. 5, pp 39–67.

77-14   Andrei Y. Korotchenko, Development of Scientific and Technological Approaches to Casting Net-Shaped Castings in Sand Molds Free of Shrinkage Defects and Hot Tears, Post-doctoral thesis: Russian State Technological University, 2014. In Russian.

69-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Predicting, Preventing Core Gas Defects in Steel Castings, Modern Casting, September 2014

68-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Numerical Simulation of Core Gas Defects in Steel Castings, Copyright 2014 American Foundry Society, 118th Metalcasting Congress, April 8 – 11, 2014, Schaumburg, IL

51-14   Jesus M. Blanco, Primitivo Carranza, Rafael Pintos, Pedro Arriaga, and Lakhdar Remaki, Identification of Defects Originated during the Filling of Cast Pieces through Particles Modelling, 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), E. Oñate, J. Oliver and A. Huerta (Eds)

47-14   B. Vijaya Ramnatha, C.Elanchezhiana, Vishal Chandrasekhar, A. Arun Kumarb, S. Mohamed Asif, G. Riyaz Mohamed, D. Vinodh Raj , C .Suresh Kumar, Analysis and Optimization of Gating System for Commutator End Bracket, Procedia Materials Science 6 ( 2014 ) 1312 – 1328, 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014)

42-14  Bing Zhou, Yong-lin Kang, Guo-ming Zhu, Jun-zhen Gao, Ming-fan Qi, and Huan-huan Zhang, Forced convection rheoforming process for preparation of 7075 aluminum alloy semisolid slurry and its numerical simulation, Trans. Nonferrous Met. Soc. China 24(2014) 1109−1116

37-14    A. Karwinski, W. Lesniewski, P. Wieliczko, and M. Malysza, Casting of Titanium Alloys in Centrifugal Induction Furnaces, Archives of Metallurgy and Materials, Volume 59, Issue 1, doi.org/10.2478/amm-2014-0068, 2014.

26-14    Bing Zhou, Yonglin Kang, Mingfan Qi, Huanhuan Zhang and Guoming ZhuR-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy, Materials 2014, 7, 3084-3105; doi.org/10.3390/ma7043084

20-14  Johannes Hartmann, Tobias Fiegl, Carolin Körner, Aluminum integral foams with tailored density profile by adapted blowing agents, Applied Physics A, doi.org/10.1007/s00339-014-8377-4, March 2014.

19-14    A.Y. Korotchenko, N.A. Nikiforova, E.D. Demjanov, N.C. Larichev, The Influence of the Filling Conditions on the Service Properties of the Part Side Frame, Russian Foundryman, 1 (January), pp 40-43, 2014. In Russian.

11-14 B. Fuchs and C. Körner, Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process, Progress in Computational Fluid Dynamics, Vol. 14, No. 1, 2014, Copyright © 2014 Inderscience Enterprises Ltd.

08-14 FY Hsu, SW Wang, and HJ Lin, The External and Internal Shrinkages in Aluminum Gravity Castings, Shape Casting: 5th International Symposium 2014. Available online at Google Books

103-13  B. Fuchs, H. Eibisch and C. Körner, Core Viability Simulation for Salt Core Technology in High-Pressure Die Casting, International Journal of Metalcasting, July 2013, Volume 7, Issue 3, pp 39–45

94-13    Randall S. Fielding, J. Crapps, C. Unal, and J.R.Kennedy, Metallic Fuel Casting Development and Parameter Optimization Simulations, International Conference on Fast reators and Related Fuel Cycles (FR13), 4-7 March 2013, Paris France

90-13  A. Karwińskia, M. Małyszaa, A. Tchórza, A. Gila, B. Lipowska, Integration of Computer Tomography and Simulation Analysis in Evaluation of Quality of Ceramic-Carbon Bonded Foam Filter, Archives of Foundry Engineering, doi.org/10.2478/afe-2013-0084, Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences, ISSN, (2299-2944), Volume 13, Issue 4/2013

88-13  Litie and Metallurgia (Casting and Metallurgy), 3 (72), 2013, N.V.Sletova, I.N.Volnov, S.P.Zadrutsky, V.A.Chaikin, Modeling of the Process of Removing Non-metallic Inclusions in Aluminum Alloys Using the FLOW-3D program, pp 138-140. In Russian.

85-13    Michał Szucki,Tomasz Goraj, Janusz Lelito, Józef S. Suchy, Numerical Analysis of Solid Particles Flow in Liquid Metal, XXXVII International Scientific Conference Foundryman’ Day 2013, Krakow, 28-29 November 2013

84-13  Körner, C., Schwankl, M., Himmler, D., Aluminum-Aluminum compound castings by electroless deposited zinc layers, Journal of Materials Processing Technology (2014), doi.org/10.1016/j.jmatprotec.2013.12.01483-13.

77-13  Antonio Armillotta & Raffaello Baraggi & Simone Fasoli, SLM tooling for die casting with conformal cooling channels, The International Journal of Advanced Manufacturing Technology, doi.org/10.1007/s00170-013-5523-7, December 2013.

64-13   Johannes Hartmann, Christina Blümel, Stefan Ernst, Tobias Fiegl, Karl-Ernst Wirth, Carolin Körner, Aluminum integral foam castings with microcellular cores by nano-functionalization, J Mater Sci, doi.org/10.1007/s10853-013-7668-z, September 2013.

46-13  Nicholas P. Orenstein, 3D Flow and Temperature Analysis of Filling a Plutonium Mold, LA-UR-13-25537, Approved for public release; distribution is unlimited. Los Alamos Annual Student Symposium 2013, 2013-07-24 (Rev.1)

42-13   Yang Yue, William D. Griffiths, and Nick R. Green, Modelling of the Effects of Entrainment Defects on Mechanical Properties in a Cast Al-Si-Mg Alloy, Materials Science Forum, 765, 225, 2013.

39-13  J. Crapps, D.S. DeCroix, J.D Galloway, D.A. Korzekwa, R. Aikin, R. Fielding, R. Kennedy, C. Unal, Separate effects identification via casting process modeling for experimental measurement of U-Pu-Zr alloys, Journal of Nuclear Materials, 15 July 2013.

35-13   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, © Die Casting Engineer, July 2013.

34-13  Martin Lagler, Use of Simulation to Predict the Viability of Salt Cores in the HPDC Process – Shot Curve as a Decisive Criterion, © Die Casting Engineer, July 2013.

24-13    I.N.Volnov, Optimizatsia Liteynoi Tekhnologii, (Casting Technology Optimization), Liteyshik Rossii (Russian Foundryman), 3, 2013, 27-29. In Russian

23-13  M.R. Barkhudarov, I.N. Volnov, Minimizatsia Zakhvata Vozdukha v Kamere Pressovania pri Litie pod Davleniem, (Minimization of Air Entrainment in the Shot Sleeve During High Pressure Die Casting), Liteyshik Rossii (Russian Foundryman), 3, 2013, 30-34. In Russian

09-13  M.C. Carter and L. Xue, Simulating the Parameters that Affect Core Gas Defects in Metal Castings, Copyright 2012 American Foundry Society, Presented at the 2013 CastExpo, St. Louis, Missouri, April 2013

08-13  C. Reilly, N.R. Green, M.R. Jolly, J.-C. Gebelin, The Modelling Of Oxide Film Entrainment In Casting Systems Using Computational Modelling, Applied Mathematical Modelling, http://dx.doi.org/10.1016/j.apm.2013.03.061, April 2013.

03-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part II. Model validation and parametric study, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.061.

02-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part I: Model development using lubrication approximation, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.060.

116-12  Jufu Jianga, Ying Wang, Gang Chena, Jun Liua, Yuanfa Li and Shoujing Luo, “Comparison of mechanical properties and microstructure of AZ91D alloy motorcycle wheels formed by die casting and double control forming, Materials & Design, Volume 40, September 2012, Pages 541-549.

107-12  F.K. Arslan, A.H. Hatman, S.Ö. Ertürk, E. Güner, B. Güner, An Evaluation for Fundamentals of Die Casting Materials Selection and Design, IMMC’16 International Metallurgy & Materials Congress, Istanbul, Turkey, 2012.

103-12 WU Shu-sen, ZHONG Gu, AN Ping, WAN Li, H. NAKAE, Microstructural characteristics of Al−20Si−2Cu−0.4Mg−1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment, Transactions of Nonferrous Metals Society of China, 22 (2012) 2863-2870, November 2012. Full paper available online.

109-12 Alexandre Reikher, Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation, Ph.D. Thesis: The University of Wisconsin Milwaukee, Engineering Department (2012) Theses and Dissertations. Paper 65.

97-12 Hong Zhou and Li Heng Luo, Filling Pattern of Step Gating System in Lost Foam Casting Process and its Application, Advanced Materials Research, Volumes 602-604, Progress in Materials and Processes, 1916-1921, December 2012.

93-12  Liangchi Zhang, Chunliang Zhang, Jeng-Haur Horng and Zichen Chen, Functions of Step Gating System in the Lost Foam Casting Process, Advanced Materials Research, 591-593, 940, DOI: 10.4028/www.scientific.net/AMR.591-593.940, November 2012.

91-12  Hong Yan, Jian Bin Zhu, Ping Shan, Numerical Simulation on Rheo-Diecasting of Magnesium Matrix Composites, 10.4028/www.scientific.net/SSP.192-193.287, Solid State Phenomena, 192-193, 287.

89-12  Alexandre Reikher and Krishna M. Pillai, A Fast Numerical Simulation for Modeling Simultaneous Metal Flow and Solidification in Thin Cavities Using the Lubrication Approximation, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 63:2, 75-100, November 2012.

82-12  Jufu Jiang, Gang Chen, Ying Wang, Zhiming Du, Weiwei Shan, and Yuanfa Li, Microstructure and mechanical properties of thin-wall and high-rib parts of AM60B Mg alloy formed by double control forming and die casting under the optimal conditions, Journal of Alloys and Compounds, http://dx.doi.org/10.1016/j.jallcom.2012.10.086, October 2012.

78-12   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

77-12  Y. Wang, K. Kabiri-Bamoradian and R.A. Miller, Rheological behavior models of metal matrix alloys in semi-solid casting process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

76-12  A. Reikher and H. Gerber, Analysis of Solidification Parameters During the Die Cast Process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

75-12 R.A. Miller, Y. Wang and K. Kabiri-Bamoradian, Estimating Cavity Fill Time, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012Indianapolis, IN.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

55-12  Hejun Li, Pengyun Wang, Lehua Qi, Hansong Zuo, Songyi Zhong, Xianghui Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Computational Materials Science, Volume 65, December 2012, Pages 291–301.

52-12 Hongbing Ji, Yixin Chen and Shengzhou Chen, Numerical Simulation of Inner-Outer Couple Cooling Slab Continuous Casting in the Filling Process, Advanced Materials Research (Volumes 557-559), Advanced Materials and Processes II, pp. 2257-2260, July 2012.

47-12    Petri Väyrynen, Lauri Holappa, and Seppo Louhenkilpi, Simulation of Melting of Alloying Materials in Steel Ladle, SCANMET IV – 4th International Conference on Process Development in Iron and Steelmaking, Lulea, Sweden, June 10-13, 2012.

46-12  Bin Zhang and Dave Salee, Metal Flow and Heat Transfer in Billet DC Casting Using Wagstaff® Optifill™ Metal Distribution Systems, 5th International Metal Quality Workshop, United Arab Emirates Dubai, March 18-22, 2012.

45-12 D.R. Gunasegaram, M. Givord, R.G. O’Donnell and B.R. Finnin, Improvements engineered in UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner geometry and plunger velocity, Materials Science & Engineering.

44-12    Antoni Drys and Stefano Mascetti, Aluminum Casting Simulations, Desktop Engineering, September 2012

42-12   Huizhen Duan, Jiangnan Shen and Yanping Li, Comparative analysis of HPDC process of an auto part with ProCAST and FLOW-3D, Applied Mechanics and Materials Vols. 184-185 (2012) pp 90-94, Online available since 2012/Jun/14 at www.scientific.net, © (2012) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.184-185.90.

41-12    Deniece R. Korzekwa, Cameron M. Knapp, David A. Korzekwa, and John W. Gibbs, Co-Design – Fabrication of Unalloyed Plutonium, LA-UR-12-23441, MDI Summer Research Group Workshop Advanced Manufacturing, 2012-07-25/2012-07-26 (Los Alamos, New Mexico, United States)

29-12  Dario Tiberto and Ulrich E. Klotz, Computer simulation applied to jewellery casting: challenges, results and future possibilities, IOP Conf. Ser.: Mater. Sci. Eng.33 012008. Full paper available at IOP.

28-12  Y Yue and N R Green, Modelling of different entrainment mechanisms and their influences on the mechanical reliability of Al-Si castings, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33,012072.Full paper available at IOP.

27-12  E Kaschnitz, Numerical simulation of centrifugal casting of pipes, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33 012031, Issue 1. Full paper available at IOP.

15-12  C. Reilly, N.R Green, M.R. Jolly, The Present State Of Modeling Entrainment Defects In The Shape Casting Process, Applied Mathematical Modelling, Available online 27 April 2012, ISSN 0307-904X, 10.1016/j.apm.2012.04.032.

12-12   Andrei Starobin, Tony Hirt, Hubert Lang, and Matthias Todte, Core drying simulation and validation, International Foundry Research, GIESSEREIFORSCHUNG 64 (2012) No. 1, ISSN 0046-5933, pp 2-5

10-12  H. Vladimir Martínez and Marco F. Valencia (2012). Semisolid Processing of Al/β-SiC Composites by Mechanical Stirring Casting and High Pressure Die Casting, Recent Researches in Metallurgical Engineering – From Extraction to Forming, Dr Mohammad Nusheh (Ed.), ISBN: 978-953-51-0356-1, InTech

07-12     Amir H. G. Isfahani and James M. Brethour, Simulating Thermal Stresses and Cooling Deformations, Die Casting Engineer, March 2012

06-12   Shuisheng Xie, Youfeng He and Xujun Mi, Study on Semi-solid Magnesium Alloys Slurry Preparation and Continuous Roll-casting Process, Magnesium Alloys – Design, Processing and Properties, ISBN: 978-953-307-520-4, InTech.

04-12 J. Spangenberg, N. Roussel, J.H. Hattel, H. Stang, J. Skocek, M.R. Geiker, Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2012.01.007, February 2012.

01-12   Lee, B., Baek, U., and Han, J., Optimization of Gating System Design for Die Casting of Thin Magnesium Alloy-Based Multi-Cavity LCD Housings, Journal of Materials Engineering and Performance, Springer New York, Issn: 1059-9495, 10.1007/s11665-011-0111-1, Volume 1 / 1992 – Volume 21 / 2012. Available online at Springer Link.

104-11  Fu-Yuan Hsu and Huey Jiuan Lin, Foam Filters Used in Gravity Casting, Metall and Materi Trans B (2011) 42: 1110. doi:10.1007/s11663-011-9548-8.

99-11    Eduardo Trejo, Centrifugal Casting of an Aluminium Alloy, thesis: Doctor of Philosophy, Metallurgy and Materials School of Engineering University of Birmingham, October 2011. Full paper available upon request.

93-11  Olga Kononova, Andrejs Krasnikovs ,Videvuds Lapsa,Jurijs Kalinka and Angelina Galushchak, Internal Structure Formation in High Strength Fiber Concrete during Casting, World Academy of Science, Engineering and Technology 59 2011

76-11  J. Hartmann, A. Trepper, and C. Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials 2011, Volume 13 (2011) No. 11, © Wiley-VCH

71-11  Fu-Yuan Hsu and Yao-Ming Yang Confluence Weld in an Aluminum Gravity Casting, Journal of Materials Processing Technology, Available online 23 November 2011, ISSN 0924-0136, 10.1016/j.jmatprotec.2011.11.006.

65-11     V.A. Chaikin, A.V. Chaikin, I.N.Volnov, A Study of the Process of Late Modification Using Simulation, in Zagotovitelnye Proizvodstva v Mashinostroenii, 10, 2011, 8-12. In Russian.

54-11  Ngadia Taha Niane and Jean-Pierre Michalet, Validation of Foundry Process for Aluminum Parts with FLOW-3D Software, Proceedings of the 2011 International Symposium on Liquid Metal Processing and Casting, 2011.

51-11    A. Reikher and H. Gerber, Calculation of the Die Cast parameters of the Thin Wall Aluminum Cast Part, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

50-11   Y. Wang, K. Kabiri-Bamoradian, and R.A. Miller, Runner design optimization based on CFD simulation for a die with multiple cavities, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

48-11 A. Karwiński, W. Leśniewski, S. Pysz, P. Wieliczko, The technology of precision casting of titanium alloys by centrifugal process, Archives of Foundry Engineering, ISSN: 1897-3310), Volume 11, Issue 3/2011, 73-80, 2011.

46-11  Daniel Einsiedler, Entwicklung einer Simulationsmethodik zur Simulation von Strömungs- und Trocknungsvorgängen bei Kernfertigungsprozessen mittels CFD (Development of a simulation methodology for simulating flow and drying operations in core production processes using CFD), MSc thesis at Technical University of Aalen in Germany (Hochschule Aalen), 2011.

44-11  Bin Zhang and Craig Shaber, Aluminum Ingot Thermal Stress Development Modeling of the Wagstaff® EpsilonTM Rolling Ingot DC Casting System during the Start-up Phase, Materials Science Forum Vol. 693 (2011) pp 196-207, © 2011 Trans Tech Publications, July, 2011.

43-11 Vu Nguyen, Patrick Rohan, John Grandfield, Alex Levin, Kevin Naidoo, Kurt Oswald, Guillaume Girard, Ben Harker, and Joe Rea, Implementation of CASTfill low-dross pouring system for ingot casting, Materials Science Forum Vol. 693 (2011) pp 227-234, © 2011 Trans Tech Publications, July, 2011.

40-11  A. Starobin, D. Goettsch, M. Walker, D. Burch, Gas Pressure in Aluminum Block Water Jacket Cores, © 2011 American Foundry Society, International Journal of Metalcasting/Summer 2011

37-11 Ferencz Peti, Lucian Grama, Analyze of the Possible Causes of Porosity Type Defects in Aluminum High Pressure Diecast Parts, Scientific Bulletin of the Petru Maior University of Targu Mures, Vol. 8 (XXV) no. 1, 2011, ISSN 1841-9267

31-11  Johannes Hartmann, André Trepper, Carolin Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials, 13: n/a. doi: 10.1002/adem.201100035, June 2011.

27-11  A. Pari, Optimization of HPDC Process using Flow Simulation Case Studies, Die Casting Engineer, July 2011

26-11    A. Reikher, H. Gerber, Calculation of the Die Cast Parameters of the Thin Wall Aluminum Die Casting Part, Die Casting Engineer, July 2011

21-11 Thang Nguyen, Vu Nguyen, Morris Murray, Gary Savage, John Carrig, Modelling Die Filling in Ultra-Thin Aluminium Castings, Materials Science Forum (Volume 690), Light Metals Technology V, pp 107-111, 10.4028/www.scientific.net/MSF.690.107, June 2011.

19-11 Jon Spangenberg, Cem Celal Tutum, Jesper Henri Hattel, Nicolas Roussel, Metter Rica Geiker, Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study, © IEEE Congress on Evolutionary Computation, 2011, New Orleans, USA

16-11  A. Starobin, C.W. Hirt, H. Lang, and M. Todte, Core Drying Simulation and Validations, AFS Proceedings 2011, © American Foundry Society, Presented at the 115th Metalcasting Congress, Schaumburg, Illinois, April 2011.

15-11  J. J. Hernández-Ortega, R. Zamora, J. López, and F. Faura, Numerical Analysis of Air Pressure Effects on the Flow Pattern during the Filling of a Vertical Die Cavity, AIP Conf. Proc., Volume 1353, pp. 1238-1243, The 14th International Esaform Conference on Material Forming: Esaform 2011; doi:10.1063/1.3589686, May 2011. Available online.

10-11 Abbas A. Khalaf and Sumanth Shankar, Favorable Environment for Nondentric Morphology in Controlled Diffusion Solidification, DOI: 10.1007/s11661-011-0641-z, © The Minerals, Metals & Materials Society and ASM International 2011, Metallurgical and Materials Transactions A, March 11, 2011.

08-11 Hai Peng Li, Chun Yong Liang, Li Hui Wang, Hong Shui Wang, Numerical Simulation of Casting Process for Gray Iron Butterfly Valve, Advanced Materials Research, 189-193, 260, February 2011.

04-11  C.W. Hirt, Predicting Core Shooting, Drying and Defect Development, Foundry Management & Technology, January 2011.

76-10  Zhizhong Sun, Henry Hu, Alfred Yu, Numerical Simulation and Experimental Study of Squeeze Casting Magnesium Alloy AM50, Magnesium Technology 2010, 2010 TMS Annual Meeting & ExhibitionFebruary 14-18, 2010, Seattle, WA.

68-10  A. Reikher, H. Gerber, K.M. Pillai, T.-C. Jen, Natural Convection—An Overlooked Phenomenon of the Solidification Process, Die Casting Engineer, January 2010

54-10    Andrea Bernardoni, Andrea Borsi, Stefano Mascetti, Alessandro Incognito and Matteo Corrado, Fonderia Leonardo aveva ragione! L’enorme cavallo dedicato a Francesco Sforza era materialmente realizzabile, A&C – Analisis e Calcolo, Giugno 2010. In  Italian.

48-10  J. J. Hernández-Ortega, R. Zamora, J. Palacios, J. López and F. Faura, An Experimental and Numerical Study of Flow Patterns and Air Entrapment Phenomena During the Filling of a Vertical Die Cavity, J. Manuf. Sci. Eng., October 2010, Volume 132, Issue 5, 05101, doi:10.1115/1.4002535.

47-10  A.V. Chaikin, I.N. Volnov, and V.A. Chaikin, Development of Dispersible Mixed Inoculant Compositions Using the FLOW-3D Program, Liteinoe Proizvodstvo, October, 2010, in Russian.

42-10  H. Lakshmi, M.C. Vinay Kumar, Raghunath, P. Kumar, V. Ramanarayanan, K.S.S. Murthy, P. Dutta, Induction reheating of A356.2 aluminum alloy and thixocasting as automobile component, Transactions of Nonferrous Metals Society of China 20(20101) s961-s967.

41-10  Pamela J. Waterman, Understanding Core-Gas Defects, Desktop Engineering, October 2010. Available online at Desktop Engineering. Also published in the Foundry Trade Journal, November 2010.

39-10  Liu Zheng, Jia Yingying, Mao Pingli, Li Yang, Wang Feng, Wang Hong, Zhou Le, Visualization of Die Casting Magnesium Alloy Steering Bracket, Special Casting & Nonferrous Alloys, ISSN: 1001-2249, CN: 42-1148/TG, 2010-04. In Chinese.

37-10  Morris Murray, Lars Feldager Hansen, and Carl Reinhardt, I Have Defects – Now What, Die Casting Engineer, September 2010

36-10  Stefano Mascetti, Using Flow Analysis Software to Optimize Piston Velocity for an HPDC Process, Die Casting Engineer, September 2010. Also available in Italian: Ottimizzare la velocita del pistone in pressofusione.  A & C, Analisi e Calcolo, Anno XII, n. 42, Gennaio 2011, ISSN 1128-3874.

32-10  Guan Hai Yan, Sheng Dun Zhao, Zheng Hui Sha, Parameters Optimization of Semisolid Diecasting Process for Air-Conditioner’s Triple Valve in HPb59-1 Alloy, Advanced Materials Research (Volumes 129 – 131), Vol. Material and Manufacturing Technology, pp. 936-941, DOI: 10.4028/www.scientific.net/AMR.129-131.936, August 2010.

29-10 Zheng Peng, Xu Jun, Zhang Zhifeng, Bai Yuelong, and Shi Likai, Numerical Simulation of Filling of Rheo-diecasting A357 Aluminum Alloy, Special Casting & Nonferrous Alloys, DOI: CNKI:SUN:TZZZ.0.2010-01-024, 2010.

27-10 For an Aerospace Diecasting, Littler Uses Simulation to Reveal Defects, and Win a New Order, Foundry Management & Technology, July 2010

23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

15-10 David H. Kirkwood, Michel Suery, Plato Kapranos, Helen V. Atkinson, and Kenneth P. Young, Semi-solid Processing of Alloys, 2010, XII, 172 p. 103 illus., 19 in color., Hardcover ISBN: 978-3-642-00705-7.

09-10  Shannon Wetzel, Fullfilling Da Vinci’s Dream, Modern Casting, April 2010.

08-10 B.I. Semenov, K.M. Kushtarov, Semi-solid Manufacturing of Castings, New Industrial Technologies, Publication of Moscow State Technical University n.a. N.E. Bauman, 2009 (in Russian)

07-10 Carl Reilly, Development Of Quantitative Casting Quality Assessment Criteria Using Process Modelling, thesis: The University of Birmingham, March 2010 (Available upon request)

06-10 A. Pari, Optimization of HPDC Process using Flow Simulation – Case Studies, CastExpo ’10, NADCA, Orlando, Florida, March 2010

05-10 M.C. Carter, S. Palit, and M. Littler, Characterizing Flow Losses Occurring in Air Vents and Ejector Pins in High Pressure Die Castings, CastExpo ’10, NADCA, Orlando, Florida, March 2010

04-10 Pamela Waterman, Simulating Porosity Factors, Foundry Management Technology, March 2010, Article available at Foundry Management Technology

03-10 C. Reilly, M.R. Jolly, N.R. Green, JC Gebelin, Assessment of Casting Filling by Modeling Surface Entrainment Events Using CFD, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

02-10 P. Väyrynen, S. Wang, J. Laine and S.Louhenkilpi, Control of Fluid Flow, Heat Transfer and Inclusions in Continuous Casting – CFD and Neural Network Studies, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

60-09   Somlak Wannarumon, and Marco Actis Grande, Comparisons of Computer Fluid Dynamic Software Programs applied to Jewelry Investment Casting Process, World Academy of Science, Engineering and Technology 55 2009.

59-09   Marco Actis Grande and Somlak Wannarumon, Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations, World Academy of Science, Engineering and Technology, Vol:3 2009-07-24

56-09  Jozef Kasala, Ondrej Híreš, Rudolf Pernis, Start-up Phase Modeling of Semi Continuous Casting Process of Brass Billets, Metal 2009, 19.-21.5.2009

51-09  In-Ting Hong, Huan-Chien Tung, Chun-Hao Chiu and Hung-Shang Huang, Effect of Casting Parameters on Microstructure and Casting Quality of Si-Al Alloy for Vacuum Sputtering, China Steel Technical Report, No. 22, pp. 33-40, 2009.

42-09  P. Väyrynen, S. Wang, S. Louhenkilpi and L. Holappa, Modeling and Removal of Inclusions in Continuous Casting, Materials Science & Technology 2009 Conference & Exhibition, Pittsburgh, Pennsylvania, USA, October 25-29, 2009

41-09 O.Smirnov, P.Väyrynen, A.Kravchenko and S.Louhenkilpi, Modern Methods of Modeling Fluid Flow and Inclusions Motion in Tundish Bath – General View, Proceedings of Steelsim 2009 – 3rd International Conference on Simulation and Modelling of Metallurgical Processes in Steelmaking, Leoben, Austria, September 8-10, 2009

21-09 A. Pari, Case Studies – Optimization of HPDC Process Using Flow Simulation, Die Casting Engineer, July 2009

20-09 M. Sirvio, M. Wos, Casting directly from a computer model by using advanced simulation software, FLOW-3D Cast, Archives of Foundry Engineering Volume 9, Issue 1/2009, 79-82

19-09 Andrei Starobin, C.W. Hirt, D. Goettsch, A Model for Binder Gas Generation and Transport in Sand Cores and Molds, Modeling of Casting, Welding, and Solidification Processes XII, TMS (The Minerals, Metals & Minerals Society), June 2009

11-09 Michael Barkhudarov, Minimizing Air Entrainment in a Shot Sleeve during Slow-Shot Stage, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

10-09 A. Reikher, H. Gerber, Application of One-Dimensional Numerical Simulation to Optimize Process Parameters of a Thin-Wall Casting in High Pressure Die Casting, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

7-09 Andrei Starobin, Simulation of Core Gas Evolution and Flow, presented at the North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

6-09 A.Pari, Optimization of HPDC PROCESS: Case Studies, North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

2-09 C. Reilly, N.R. Green and M.R. Jolly, Oxide Entrainment Structures in Horizontal Running Systems, TMS 2009, San Francisco, California, February 2009

30-08 I.N.Volnov, Computer Modeling of Casting of Pipe Fittings, © 2008, Pipe Fittings, 5 (38), 2008. Russian version

28-08 A.V.Chaikin, I.N.Volnov, V.A.Chaikin, Y.A.Ukhanov, N.R.Petrov, Analysis of the Efficiency of Alloy Modifiers Using Statistics and Modeling, © 2008, Liteyshik Rossii (Russian Foundryman), October, 2008

27-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Castings, American Foundry Society, © 2008, AFS Lost Foam Conference, Asheville, North Carolina, October, 2008

25-08 FMT Staff, Forecasting Core Gas Pressures with Computer Simulation, Foundry Management and Technology, October 28, 2008 © 2008 Penton Media, Inc. Online article

24-08 Core and Mold Gas Evolution, Foundry Management and Technology, January 24, 2008 (excerpted from the FM&T May 2007 issue) © 2008 Penton Media, Inc.

22-08 Mark Littler, Simulation Eliminates Die Casting Scrap, Modern Casting/September 2008

21-08 X. Chen, D. Penumadu, Permeability Measurement and Numerical Modeling for Refractory Porous Materials, AFS Transactions © 2008 American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

20-08 Rolf Krack, Using Solidification Simulations for Optimising Die Cooling Systems, FTJ July/August 2008

19-08 Mark Littler, Simulation Software Eliminates Die Casting Scrap, ECS Casting Innovations, July/August 2008

13-08 T. Yoshimura, K. Yano, T. Fukui, S. Yamamoto, S. Nishido, M. Watanabe and Y. Nemoto, Optimum Design of Die Casting Plunger Tip Considering Air Entrainment, Proceedings of 10th Asian Foundry Congress (AFC10), Nagoya, Japan, May 2008

08-08 Stephen Instone, Andreas Buchholz and Gerd-Ulrich Gruen, Inclusion Transport Phenomena in Casting Furnaces, Light Metals 2008, TMS (The Minerals, Metals & Materials Society), 2008

07-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Casting, AFS Transactions 2008 © American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

06-08 A. Reikher, H. Gerber and A. Starobin, Multi-Stage Plunger Deceleration System, CastExpo ’08, NADCA, Atlanta, Georgia, May 2008

05-08 Amol Palekar, Andrei Starobin, Alexander Reikher, Die-casting end-of-fill and drop forge viscometer flow transients examined with a coupled-motion numerical model, 68th World Foundry Congress, Chennai, India, February 2008

03-08 Petri J. Väyrynen, Sami K. Vapalahti and Seppo J. Louhenkilpi, On Validation of Mathematical Fluid Flow Models for Simulation of Tundish Water Models and Industrial Examples, AISTech 2008, May 2008

53-07   A. Kermanpur, Sh. Mahmoudi and A. Hajipour, Three-dimensional Numerical Simulation of Metal Flow and Solidification in the Multi-cavity Casting Moulds of Automotive Components, International Journal of Iron & Steel Society of Iran, Article 2, Volume 4, Issue 1, Summer and Autumn 2007, pages 8-15.

36-07 Duque Mesa A. F., Herrera J., Cruz L.J., Fernández G.P. y Martínez H.V., Caracterización Defectológica de Piezas Fundida por Lost Foam Casting Mediante Simulación Numérica, 8° Congreso Iberoamericano de Ingenieria Mecanica, Cusco, Peru, 23 al 25 de Octubre de 2007 (in Spanish)

27-07 A.Y. Korotchenko, A.M. Zarubin, I.A.Korotchenko, Modeling of High Pressure Die Casting Filling, Russian Foundryman, December 2007, pp 15-19. (in Russian)

26-07 I.N. Volnov, Modeling of Casting Processes with Variable Geometry, Russian Foundryman, November 2007, pp 27-30. (in Russian)

16-07 P. Väyrynen, S. Vapalahti, S. Louhenkilpi, L. Chatburn, M. Clark, T. Wagner, Tundish Flow Model Tuning and Validation – Steady State and Transient Casting Situations, STEELSIM 2007, Graz/Seggau, Austria, September 12-14 2007

11-07 Marco Actis Grande, Computer Simulation of the Investment Casting Process – Widening of the Filling Step, Santa Fe Symposium on Jewelry Manufacturing Technology, May 2007

09-07 Alexandre Reikher and Michael Barkhudarov, Casting: An Analytical Approach, Springer, 1st edition, August 2007, Hardcover ISBN: 978-1-84628-849-4. U.S. Order FormEurope Order Form.

07-07 I.N. Volnov, Casting Modeling Systems – Current State, Problems and Perspectives, (in Russian), Liteyshik Rossii (Russian Foundryman), June 2007

05-07 A.N. Turchin, D.G. Eskin, and L. Katgerman, Solidification under Forced-Flow Conditions in a Shallow Cavity, DOI: 10.1007/s1161-007-9183-9, © The Minerals, Metals & Materials Society and ASM International 2007

04-07 A.N. Turchin, M. Zuijderwijk, J. Pool, D.G. Eskin, and L. Katgerman, Feathery grain growth during solidification under forced flow conditions, © Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. DOI: 10.1016/j.actamat.2007.02.030, April 2007

03-07 S. Kuyucak, Sponsored Research – Clean Steel Casting Production—Evaluation of Laboratory Castings, Transactions of the American Foundry Society, Volume 115, 111th Metalcasting Congress, May 2007

02-07 Fu-Yuan Hsu, Mark R. Jolly and John Campbell, The Design of L-Shaped Runners for Gravity Casting, Shape Casting: 2nd International Symposium, Edited by Paul N. Crepeau, Murat Tiryakioðlu and John Campbell, TMS (The Minerals, Metals & Materials Society), Orlando, FL, Feb 2007

30-06 X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Simulation of EPS foam decomposition in the lost foam casting process, Journal of Materials Processing Technology 182 (2007) 333–342, © 2006 Elsevier B.V. All rights reserved.

25-06 Michael Barkhudarov and Gengsheng Wei, Modeling Casting on the Move, Modern Casting, August 2006; Modeling of Casting Processes with Variable Geometry, Russian Foundryman, December 2007, pp 10-15. (in Russian)

24-06 P. Scarber, Jr. and C.E. Bates, Simulation of Core Gas Production During Mold Fill, © 2006 American Foundry Society

7-06 M.Y.Smirnov, Y.V.Golenkov, Manufacturing of Cast Iron Bath Tubs Castings using Vacuum-Process in Russia, Russia’s Foundryman, July 2006. In Russian.

6-06 M. Barkhudarov, and G. Wei, Modeling of the Coupled Motion of Rigid Bodies in Liquid Metal, Modeling of Casting, Welding and Advanced Solidification Processes – XI, May 28 – June 2, 2006, Opio, France, eds. Ch.-A. Gandin and M. Bellet, pp 71-78, 2006.

2-06 J.-C. Gebelin, M.R. Jolly and F.-Y. Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, Int. J. Cast Met. Res., 2006, Vol.19 No.1

1-06 Michael Barkhudarov, Using Simulation to Control Microporosity Reduces Die Iterations, Die Casting Engineer, January 2006, pp. 52-54

30-05 H. Xue, K. Kabiri-Bamoradian, R.A. Miller, Modeling Dynamic Cavity Pressure and Impact Spike in Die Casting, Cast Expo ’05, April 16-19, 2005

22-05 Blas Melissari & Stavros A. Argyropoulous, Measurement of Magnitude and Direction of Velocity in High-Temperature Liquid Metals; Part I, Mathematical Modeling, Metallurgical and Materials Transactions B, Volume 36B, October 2005, pp. 691-700

21-05 M.R. Jolly, State of the Art Review of Use of Modeling Software for Casting, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 337-346

20-05 J-C Gebelin, M.R. Jolly & F-Y Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 355-364

19-05 F-Y Hsu, M.R. Jolly & J Campbell, Vortex Gate Design for Gravity Castings, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 73-82

18-05 M.R. Jolly, Modelling the Investment Casting Process: Problems and Successes, Japanese Foundry Society, JFS, Tokyo, Sept. 2005

13-05 Xiaogang Yang, Xiaobing Huang, Xiaojun Dai, John Campbell and Joe Tatler, Numerical Modelling of the Entrainment of Oxide Film Defects in Filling of Aluminium Alloy Castings, International Journal of Cast Metals Research, 17 (6), 2004, 321-331

10-05 Carlos Evaristo Esparza, Martha P. Guerro-Mata, Roger Z. Ríos-Mercado, Optimal Design of Gating Systems by Gradient Search Methods, Computational Materials Science, October 2005

6-05 Birgit Hummler-Schaufler, Fritz Hirning, Jurgen Schaufler, A World First for Hatz Diesel and Schaufler Tooling, Die Casting Engineer, May 2005, pp. 18-21

4-05 Rolf Krack, The W35 Topic—A World First, Die Casting World, March 2005, pp. 16-17

3-05 Joerg Frei, Casting Simulations Speed Up Development, Die Casting World, March 2005, p. 14

2-05 David Goettsch and Michael Barkhudarov, Analysis and Optimization of the Transient Stage of Stopper-Rod Pour, Shape Casting: The John Campbell Symposium, The Minerals, Metals & Materials Society, 2005

36-04  Ik Min Park, Il Dong Choi, Yong Ho Park, Development of Light-Weight Al Scroll Compressor for Car Air Conditioner, Materials Science Forum, Designing, Processing and Properties of Advanced Engineering Materials, 449-452, 149, March 2004.

32-04 D.H. Kirkwood and P.J Ward, Numerical Modelling of Semi-Solid Flow under Processing Conditions, steel research int. 75 (2004), No. 8/9

30-04 Haijing Mao, A Numerical Study of Externally Solidified Products in the Cold Chamber Die Casting Process, thesis: The Ohio State University, 2004 (Available upon request)

28-04 Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Supplement to the Welding Journal, June 2004.

23-04 State of the Art Use of Computational Modelling in the Foundry Industry, 3rd International Conference Computational Modelling of Materials III, Sicily, Italy, June 2004, Advances in Science and Technology,  Eds P. Vincenzini & A Lami, Techna Group Srl, Italy, ISBN: 88-86538-46-4, Part B, pp 479-490

22-04 Jerry Fireman, Computer Simulation Helps Reduce Scrap, Die Casting Engineer, May 2004, pp. 46-49

21-04 Joerg Frei, Simulation—A Safe and Quick Way to Good Components, Aluminium World, Volume 3, Issue 2, pp. 42-43

20-04 J.-C. Gebelin, M.R. Jolly, A. M. Cendrowicz, J. Cirre and S. Blackburn, Simulation of Die Filling for the Wax Injection Process – Part II Numerical Simulation, Metallurgical and Materials Transactions, Volume 35B, August 2004

14-04 Sayavur I. Bakhtiyarov, Charles H. Sherwin, and Ruel A. Overfelt, Hot Distortion Studies In Phenolic Urethane Cold Box System, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

13-04 Sayavur I. Bakhtiyarov and Ruel A. Overfelt, First V-Process Casting of Magnesium, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

5-04 C. Schlumpberger & B. Hummler-Schaufler, Produktentwicklung auf hohem Niveau (Product Development on a High Level), Druckguss Praxis, January 2004, pp 39-42 (in German).

3-04 Charles Bates, Dealing with Defects, Foundry Management and Technology, February 2004, pp 23-25

1-04 Laihua Wang, Thang Nguyen, Gary Savage and Cameron Davidson, Thermal and Flow Modeling of Ladling and Injection in High Pressure Die Casting Process, International Journal of Cast Metals Research, vol. 16 No 4 2003, pp 409-417

2-03 J-C Gebelin, AM Cendrowicz, MR Jolly, Modeling of the Wax Injection Process for the Investment Casting Process – Prediction of Defects, presented at the Third International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, December 10-12, 2003, Melbourne, Australia, pp. 415-420

29-03 C. W. Hirt, Modeling Shrinkage Induced Micro-porosity, Flow Science Technical Note (FSI-03-TN66)

28-03 Thixoforming at the University of Sheffield, Diecasting World, September 2003, pp 11-12

26-03 William Walkington, Gas Porosity-A Guide to Correcting the Problems, NADCA Publication: 516

22-03 G F Yao, C W Hirt, and M Barkhudarov, Development of a Numerical Approach for Simulation of Sand Blowing and Core Formation, in Modeling of Casting, Welding, and Advanced Solidification Process-X”, Ed. By Stefanescu et al pp. 633-639, 2003

21-03 E F Brush Jr, S P Midson, W G Walkington, D T Peters, J G Cowie, Porosity Control in Copper Rotor Die Castings, NADCA Indianapolis Convention Center, Indianapolis, IN September 15-18, 2003, T03-046

12-03 J-C Gebelin & M.R. Jolly, Modeling Filters in Light Alloy Casting Processes,  Trans AFS, 2002, 110, pp. 109-120

11-03 M.R. Jolly, Casting Simulation – How Well Do Reality and Virtual Casting Match – A State of the Art Review, Intl. J. Cast Metals Research, 2002, 14, pp. 303-313

10-03 Gebelin., J-C and Jolly, M.R., Modeling of the Investment Casting Process, Journal of  Materials Processing Tech., Vol. 135/2-3, pp. 291 – 300

9-03 Cox, M, Harding, R.A. and Campbell, J., Optimised Running System Design for Bottom Filled Aluminium Alloy 2L99 Investment Castings, J. Mat. Sci. Tech., May 2003, Vol. 19, pp. 613-625

8-03 Von Alexander Schrey and Regina Reek, Numerische Simulation der Kernherstellung, (Numerical Simulation of Core Blowing), Giesserei, June 2003, pp. 64-68 (in German)

7-03 J. Zuidema Jr., L Katgerman, Cyclone separation of particles in aluminum DC Casting, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 607-614

6-03 Jean-Christophe Gebelin and Mark Jolly, Numerical Modeling of Metal Flow Through Filters, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 431-438

5-03 N.W. Lai, W.D. Griffiths and J. Campbell, Modelling of the Potential for Oxide Film Entrainment in Light Metal Alloy Castings, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 415-422

21-02 Boris Lukezic, Case History: Process Modeling Solves Die Design Problems, Modern Casting, February 2003, P 59

20-02 C.W. Hirt and M.R. Barkhudarov, Predicting Defects in Lost Foam Castings, Modern Casting, December 2002, pp 31-33

19-02 Mark Jolly, Mike Cox, Ric Harding, Bill Griffiths and John Campbell, Quiescent Filling Applied to Investment Castings, Modern Casting, December 2002 pp. 36-38

18-02 Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Foundry Management and Technology, October 2002, pp 13-15

17-02 G Messmer, Simulation of a Thixoforging Process of Aluminum Alloys with FLOW-3D, Institute for Metal Forming Technology, University of Stuttgart

16-02 Barkhudarov, Michael, Computer Simulation of Lost Foam Process, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 319-324

15-02 Barkhudarov, Michael, Computer Simulation of Inclusion Tracking, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 341-346

14-02 Barkhudarov, Michael, Advanced Simulation of the Flow and Heat Transfer of an Alternator Housing, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 219-228

8-02 Sayavur I. Bakhtiyarov, and Ruel A. Overfelt, Experimental and Numerical Study of Bonded Sand-Air Two-Phase Flow in PUA Process, Auburn University, 2002 American Foundry Society, AFS Transactions 02-091, Kansas City, MO

7-02 A Habibollah Zadeh, and J Campbell, Metal Flow Through a Filter System, University of Birmingham, 2002 American Foundry Society, AFS Transactions 02-020, Kansas City, MO

6-02 Phil Ward, and Helen Atkinson, Final Report for EPSRC Project: Modeling of Thixotropic Flow of Metal Alloys into a Die, GR/M17334/01, March 2002, University of Sheffield

5-02 S. I. Bakhtiyarov and R. A. Overfelt, Numerical and Experimental Study of Aluminum Casting in Vacuum-sealed Step Molding, Auburn University, 2002 American Foundry Society, AFS Transactions 02-050, Kansas City, MO

4-02 J. C. Gebelin and M. R. Jolly, Modelling Filters in Light Alloy Casting Processes, University of Birmingham, 2002 American Foundry Society AFS Transactions 02-079, Kansas City, MO

3-02 Mark Jolly, Mike Cox, Jean-Christophe Gebelin, Sam Jones, and Alex Cendrowicz, Fundamentals of Investment Casting (FOCAST), Modelling the Investment Casting Process, Some preliminary results from the UK Research Programme, IRC in Materials, University of Birmingham, UK, AFS2001

49-01   Hua Bai and Brian G. Thomas, Bubble formation during horizontal gas injection into downward-flowing liquid, Metallurgical and Materials Transactions B, Vol. 32, No. 6, pp. 1143-1159, 2001. doi.org/10.1007/s11663-001-0102-y

45-01 Jan Zuidema; Laurens Katgerman; Ivo J. Opstelten;Jan M. Rabenberg, Secondary Cooling in DC Casting: Modelling and Experimental Results, TMS 2001, New Orleans, Louisianna, February 11-15, 2001

43-01 James Andrew Yurko, Fluid Flow Behavior of Semi-Solid Aluminum at High Shear Rates,Ph.D. thesis; Massachusetts Institute of Technology, June 2001. Abstract only; full thesis available at http://dspace.mit.edu/handle/1721.1/8451 (for a fee).

33-01 Juang, S.H., CAE Application on Design of Die Casting Dies, 2001 Conference on CAE Technology and Application, Hsin-Chu, Taiwan, November 2001, (article in Chinese with English-language abstract)

32-01 Juang, S.H. and C. M. Wang, Effect of Feeding Geometry on Flow Characteristics of Magnesium Die Casting by Numerical Analysis, The Preceedings of 6th FADMA Conference, Taipei, Taiwan, July 2001, Chinese language with English abstract

26-01 C. W. Hirt., Predicting Defects in Lost Foam Castings, December 13, 2001

21-01 P. Scarber Jr., Using Liquid Free Surface Areas as a Predictor of Reoxidation Tendency in Metal Alloy Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

20-01 P. Scarber Jr., J. Griffin, and C. E. Bates, The Effect of Gating and Pouring Practice on Reoxidation of Steel Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

19-01 L. Wang, T. Nguyen, M. Murray, Simulation of Flow Pattern and Temperature Profile in the Shot Sleeve of a High Pressure Die Casting Process, CSIRO Manufacturing Science and Technology, Melbourne, Victoria, Australia, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, To1-014

18-01 Rajiv Shivpuri, Venkatesh Sankararaman, Kaustubh Kulkarni, An Approach at Optimizing the Ingate Design for Reducing Filling and Shrinkage Defects, The Ohio State University, Columbus, OH, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, TO1-052

5-01 Michael Barkhudarov, Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Diecasting World, March 2001, pp. 5-6

2-01 J. Grindling, Customized CFD Codes to Simulate Casting of Thermosets in Full 3D, Electrical Manufacturing and Coil Winding 2000 Conference, October 31-November 2, 20

20-00 Richard Schuhmann, John Carrig, Thang Nguyen, Arne Dahle, Comparison of Water Analogue Modelling and Numerical Simulation Using Real-Time X-Ray Flow Data in Gravity Die Casting, Australian Die Casting Association Die Casting 2000 Conference, September 3-6, 2000, Melbourne, Victoria, Australia

15-00 M. Sirvio, Vainola, J. Vartianinen, M. Vuorinen, J. Orkas, and S. Devenyi, Fluid Flow Analysis for Designing Gating of Aluminum Castings, Proc. NADCA Conf., Rosemont, IL, Nov 6-8, 1999

14-00 X. Yang, M. Jolly, and J. Campbell, Reduction of Surface Turbulence during Filling of Sand Castings Using a Vortex-flow Runner, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

13-00 H. S. H. Lo and J. Campbell, The Modeling of Ceramic Foam Filters, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

12-00 M. R. Jolly, H. S. H. Lo, M. Turan and J. Campbell, Use of Simulation Tools in the Practical Development of a Method for Manufacture of Cast Iron Camshafts,” Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August, 2000

14-99 J Koke, and M Modigell, Time-Dependent Rheological Properties of Semi-solid Metal Alloys, Institute of Chemical Engineering, Aachen University of Technology, Mechanics of Time-Dependent Materials 3: 15-30, 1999

12-99 Grun, Gerd-Ulrich, Schneider, Wolfgang, Ray, Steven, Marthinusen, Jan-Olaf, Recent Improvements in Ceramic Foam Filter Design by Coupled Heat and Fluid Flow Modeling, Proc TMS Annual Meeting, 1999, pp. 1041-1047

10-99 Bongcheol Park and Jerald R. Brevick, Computer Flow Modeling of Cavity Pre-fill Effects in High Pressure Die Casting, NADCA Proceedings, Cleveland T99-011, November, 1999

8-99 Brad Guthrie, Simulation Reduces Aluminum Die Casting Cost by Reducing Volume, Die Casting Engineer Magazine, September/October 1999, pp. 78-81

7-99 Fred L. Church, Virtual Reality Predicts Cast Metal Flow, Modern Metals, September, 1999, pp. 67F-J

19-98 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Numerical Modeling of Fluid Flow Phenomena in the Launder-integrated Tool Within Casting Unit Development, Proc TMS Annual Meeting, 1998, pp. 1175-1182

18-98 X. Yang & J. Campbell, Liquid Metal Flow in a Pouring Basin, Int. J. Cast Metals Res, 1998, 10, pp. 239-253

15-98 R. Van Tol, Mould Filling of Horizontal Thin-Wall Castings, Delft University Press, The Netherlands, 1998

14-98 J. Daughtery and K. A. Williams, Thermal Modeling of Mold Material Candidates for Copper Pressure Die Casting of the Induction Motor Rotor Structure, Proc. Int’l Workshop on Permanent Mold Casting of Copper-Based Alloys, Ottawa, Ontario, Canada, Oct. 15-16, 1998

10-98 C. W. Hirt, and M.R. Barkhudarov, Lost Foam Casting Simulation with Defect Prediction, Flow Science Inc, presented at Modeling of Casting, Welding and Advanced Solidification Processes VIII Conference, June 7-12, 1998, Catamaran Hotel, San Diego, California

9-98 M. R. Barkhudarov and C. W. Hirt, Tracking Defects, Flow Science Inc, presented at the 1st International Aluminum Casting Technology Symposium, 12-14 October 1998, Rosemont, IL

5-98 J. Righi, Computer Simulation Helps Eliminate Porosity, Die Casting Management Magazine, pp. 36-38, January 1998

3-98 P. Kapranos, M. R. Barkhudarov, D. H. Kirkwood, Modeling of Structural Breakdown during Rapid Compression of Semi-Solid Alloy Slugs, Dept. Engineering Materials, The University of Sheffield, Sheffield S1 3JD, U.K. and Flow Science Inc, USA, Presented at the 5th International Conference Semi-Solid Processing of Alloys and Composites, Colorado School of Mines, Golden, CO, 23-25 June 1998

1-98 U. Jerichow, T. Altan, and P. R. Sahm, Semi Solid Metal Forming of Aluminum Alloys-The Effect of Process Variables Upon Material Flow, Cavity Fill and Mechanical Properties, The Ohio State University, Columbus, OH, published in Die Casting Engineer, p. 26, Jan/Feb 1998

8-97 Michael Barkhudarov, High Pressure Die Casting Simulation Using FLOW-3D, Die Casting Engineer, 1997

15-97 M. R. Barkhudarov, Advanced Simulation of the Flow and Heat Transfer Process in Simultaneous Engineering, Flow Science report, presented at the Casting 1997 – International ADI and Simulation Conference, Helsinki, Finland, May 28-30, 1997

14-97 M. Ranganathan and R. Shivpuri, Reducing Scrap and Increasing Die Life in Low Pressure Die Casting through Flow Simulation and Accelerated Testing, Dept. Welding and Systems Engineering, Ohio State University, Columbus, OH, presented at 19th International Die Casting Congress & Exposition, November 3-6, 1997

13-97 J. Koke, Modellierung und Simulation der Fließeigenschaften teilerstarrter Metallegierungen, Livt Information, Institut für Verfahrenstechnik, RWTH Aachen, October 1997

10-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics – Part 2 Fiber Orientation, Body-in-White Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 6, June 1997

9-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics. Part 1 – Injection Pressures and Flow, Manufacturing Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 3, March 1997

8-97 H. Grazzini and D. Nesa, Thermophysical Properties, Casting Simulation and Experiments for a Stainless Steel, AT Systemes (Renault) report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

7-97 R. Van Tol, L. Katgerman and H. E. A. Van den Akker, Horizontal Mould Filling of a Thin Wall Aluminum Casting, Laboratory of Materials report, Delft University, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

6-97 M. R. Barkhudarov, Is Fluid Flow Important for Predicting Solidification, Flow Science report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

22-96 Grun, Gerd-Ulrich & Schneider, Wolfgang, 3-D Modeling of the Start-up Phase of DC Casting of Sheet Ingots, Proc TMS Annual Meeting, 1996, pp. 971-981

9-96 M. R. Barkhudarov and C. W. Hirt, Thixotropic Flow Effects under Conditions of Strong Shear, Flow Science report FSI96-00-2, to be presented at the “Materials Week ’96” TMS Conference, Cincinnati, OH, 7-10 October 1996

4-96 C. W. Hirt, A Computational Model for the Lost Foam Process, Flow Science final report, February 1996 (FSI-96-57-R2)

3-96 M. R. Barkhudarov, C. L. Bronisz, C. W. Hirt, Three-Dimensional Thixotropic Flow Model, Flow Science report, FSI-96-00-1, published in the proceedings of (pp. 110- 114) and presented at the 4th International Conference on Semi-Solid Processing of Alloys and Composites, The University of Sheffield, 19-21 June 1996

1-96 M. R. Barkhudarov, J. Beech, K. Chang, and S. B. Chin, Numerical Simulation of Metal/Mould Interfacial Heat Transfer in Casting, Dept. Mech. & Process Engineering, Dept. Engineering Materials, University of Sheffield and Flow Science Inc, 9th Int. Symposium on Transport Phenomena in Thermal-Fluid Engineering, June 25-28, 1996, Singapore

11-95 Barkhudarov, M. R., Hirt, C.W., Casting Simulation Mold Filling and Solidification-Benchmark Calculations Using FLOW-3D, Modeling of Casting, Welding, and Advanced Solidification Processes VII, pp 935-946

10-95 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Optimal Design of a Distribution Pan for Level Pour Casting, Proc TMS Annual Meeting, 1995, pp. 1061-1070

9-95 E. Masuda, I. Itoh, K. Haraguchi, Application of Mold Filling Simulation to Die Casting Processes, Honda Engineering Co., Ltd., Tochigi, Japan, presented at the Modelling of Casting, Welding and Advanced Solidification Processes VII, The Minerals, Metals & Materials Society, 1995

6-95 K. Venkatesan, Experimental and Numerical Investigation of the Effect of Process Parameters on the Erosive Wear of Die Casting Dies, presented for Ph.D. degree at Ohio State University, 1995

5-95 J. Righi, A. F. LaCamera, S. A. Jones, W. G. Truckner, T. N. Rouns, Integration of Experience and Simulation Based Understanding in the Die Design Process, Alcoa Technical Center, Alcoa Center, PA 15069, presented by the North American Die Casting Association, 1995

2-95 K. Venkatesan and R. Shivpuri, Numerical Simulation and Comparison with Water Modeling Studies of the Inertia Dominated Cavity Filling in Die Casting, NUMIFORM, 1995

1-95 K. Venkatesan and R. Shivpuri, Numerical Investigation of the Effect of Gate Velocity and Gate Size on the Quality of Die Casting Parts, NAMRC, 1995.

15-94 D. Liang, Y. Bayraktar, S. A. Moir, M. Barkhudarov, and H. Jones, Primary Silicon Segregation During Isothermal Holding of Hypereutectic AI-18.3%Si Alloy in the Freezing Range, Dept. of Engr. Materials, U. of Sheffield, Metals and Materials, February 1994

13-94 Deniece Korzekwa and Paul Dunn, A Combined Experimental and Modeling Approach to Uranium Casting, Materials Division, Los Alamos National Laboratory, presented at the Symposium on Liquid Metal Processing and Casting, El Dorado Hotel, Santa Fe, New Mexico, 1994

12-94 R. van Tol, H. E. A. van den Akker and L. Katgerman, CFD Study of the Mould Filling of a Horizontal Thin Wall Aluminum Casting, Delft University of Technology, Delft, The Netherlands, HTD-Vol. 284/AMD-Vol. 182, Transport Phenomena in Solidification, ASME 1994

11-94 M. R. Barkhudarov and K. A. Williams, Simulation of ‘Surface Turbulence’ Fluid Phenomena During the Mold Filling Phase of Gravity Castings, Flow Science Technical Note #41, November 1994 (FSI-94-TN41)

10-94 M. R. Barkhudarov and S. B. Chin, Stability of a Numerical Algorithm for Gas Bubble Modelling, University of Sheffield, Sheffield, U.K., International Journal for Numerical Methods in Fluids, Vol. 19, 415-437 (1994)

16-93 K. Venkatesan and R. Shivpuri, Numerical Simulation of Die Cavity Filling in Die Castings and an Evaluation of Process Parameters on Die Wear, Dept. of Industrial Systems Engineering, Presented by: N.A. Die Casting Association, Cleveland, Ohio, October 18-21, 1993

15-93 K. Venkatesen and R. Shivpuri, Numerical Modeling of Filling and Solidification for Improved Quality of Die Casting: A Literature Survey (Chapters II and III), Engineering Research Center for Net Shape Manufacturing, Report C-93-07, August 1993, Ohio State University

1-93 P-E Persson, Computer Simulation of the Solidification of a Hub Carrier for the Volvo 800 Series, AB Volvo Technological Development, Metals Laboratory, Technical Report No. LM 500014E, Jan. 1993

13-92 D. R. Korzekwa, M. A. K. Lewis, Experimentation and Simulation of Gravity Fed Lead Castings, in proceedings of a TMS Symposium on Concurrent Engineering Approach to Materials Processing, S. N. Dwivedi, A. J. Paul and F. R. Dax, eds., TMS-AIME Warrendale, p. 155 (1992)

12-92 M. A. K. Lewis, Near-Net-Shaiconpe Casting Simulation and Experimentation, MST 1992 Review, Los Alamos National Laboratory

2-92 M. R. Barkhudarov, H. You, J. Beech, S. B. Chin, D. H. Kirkwood, Validation and Development of FLOW-3D for Casting, School of Materials, University of Sheffield, Sheffield, UK, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

1-92 D. R. Korzekwa and L. A. Jacobson, Los Alamos National Laboratory and C.W. Hirt, Flow Science Inc, Modeling Planar Flow Casting with FLOW-3D, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

12-91 R. Shivpuri, M. Kuthirakulathu, and M. Mittal, Nonisothermal 3-D Finite Difference Simulation of Cavity Filling during the Die Casting Process, Dept. Industrial and Systems Engineering, Ohio State University, presented at the 1991 Winter Annual ASME Meeting, Atlanta, GA, Dec. 1-6, 1991

3-91 C. W. Hirt, FLOW-3D Study of the Importance of Fluid Momentum in Mold Filling, presented at the 18th Annual Automotive Materials Symposium, Michigan State University, Lansing, MI, May 1-2, 1991 (FSI-91-00-2)

11-90 N. Saluja, O.J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Melts, accepted in J. Appl. Physics, 1990

10-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Molds in Continuous Castings, presented at the 6th Iron and Steel Congress of the Iron and Steel Institute of Japan, Nagoya, Japan, October 1990

9-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, Fluid Flow in Phenomena in the Electromagnetic Stirring of Continuous Casting Systems, Part I. The Behavior of a Cylindrically Shaped, Laboratory Scale Installation, accepted for publication in Steel Research, 1990

8-89 C. W. Hirt, Gravity-Fed Casting, Flow Science Technical Note #20, July 1989 (FSI-89-TN20)

6-89 E. W. M. Hansen and F. Syvertsen, Numerical Simulation of Flow Behaviour in Moldfilling for Casting Analysis, SINTEF-Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology, Trondheim, Norway, Report No. STS20 A89001, June 1989

1-88 C. W. Hirt and R. P. Harper, Modeling Tests for Casting Processes, Flow Science report, Jan. 1988 (FSI-88-38-01)

2-87 C. W. Hirt, Addition of a Solidification/Melting Model to FLOW-3D, Flow Science report, April 1987 (FSI-87-33-1)

고성능 컴퓨터(HPC)에 대한 이해

본 자료는 수치해석을 업무로 수행하는 엔지니어들의 고성능 컴퓨터에 대한 이해를 돕기 위해 https://www.amd.com/ko/technologies/hpc-explained 를 인용한 자료입니다.
본 자료의 모든 저작권은 https://www.amd.com에 있습니다.

고성능 컴퓨팅 안내

신약 개발에 걸리는 기간이 수년에서 수일로 단축된다고 상상해 보십시오. 고성능 컴퓨팅(HPC)은 시뮬레이션, 모델 및 분석을 통해 이러한 유형은 물론 기타 첨단 과학 문제를 해결할 수 있습니다. 이러한 시스템은 세계의 여러 주요 문제에 대한 해결책을 제공하여 “4차 산업혁명”으로 가는 길을 제시합니다.1 HPC 시스템은 이미 다음과 같은 용도로 사용되고 있습니다.

  • 여러 유형의 암과 기타 질병 퇴치를 위한 신약 화합물 개발 및 시험2
  • 방탄복과 같은 신소재 개발을 위한 분자 역학 시뮬레이션3
  • 영향을 받는 지역사회가 더 효과적으로 대비하도록 돕기 위한 중요한 기상 변화 예측4

슈퍼컴퓨터는 최첨단 HPC 시스템을 대표합니다. 슈퍼컴퓨터의 고유한 역량은 기능의 발전에 따라 시간이 지나면서 변화하는 표준에 좌우됩니다. 단일 슈퍼컴퓨팅 클러스터에는 수만 개의 프로세서가 포함될 수 있으며 세계 최고 성능의 최고가 시스템의 가격은 1억 달러 이상에 달합니다.5

HPC의 작동 방식

HPC에서 정보를 처리하는 두 가지 주요 방법:

직렬 처리를 중앙 처리 장치(CPU)에서 수행합니다. 일반적으로 각 CPU 코어에서 한 번에 한 작업만 처리합니다. CPU는 운영체제 및 기본적인 애플리케이션(예: 워드 프로세싱, 사무 생산성)과 같은 기능에 있어 필수적입니다.serial processing chart

병렬 처리를 여러 CPU 또는 그래픽 처리 장치(GPU)를 통해 수행할 수 있습니다. 원래는 전용 그래픽 용으로 개발된 GPU는 데이터 매트릭스(예: 화면 픽셀)에 대해 동시에 여러 산술 연산을 수행할 수 있습니다. GPU는 수많은 데이터 계층에서 동시에 작업할 수 있기 때문에 동영상에서 객체를 인식하는 것과 같은 머신 러닝(ML) 애플리케이션 작업에서 병렬 처리를 수행하는 데 적합합니다.parallel processing chart

슈퍼컴퓨팅의 잠재력을 극대화하기 위해서는 다양한 시스템 아키텍처가 필요합니다. 대부분의 HPC 시스템은 초고대역폭 상호 연결을 통해 여러 프로세서 및 메모리 모듈을 취합하여 병렬 처리를 지원합니다. 일부 HPC 시스템은 CPU와 GPU를 결합하는 데 이를 이기종 컴퓨팅이라고 합니다.

컴퓨터의 컴퓨팅 성능은 “FLOPS”(초당 부동 소수점 연산)라는 단위로 측정됩니다. 2019년 초반 현재 최고 수준의 슈퍼 컴퓨터는 143.5페타FLOPS(143 × 1015)를 처리할 수 있습니다. 페타스케일라고 하는 이러한 수준의 슈퍼컴퓨터는 천조 이상의 FLOPS를 수행합니다. 그에 비해, 하이엔드 게이밍 데스크탑은 속도가 1/1,000배 미만으로 약 200기가FLOPS(1 × 109)를 처리하는 데 그칩니다. 프로세싱과 처리 성능 모두에서 슈퍼컴퓨팅 혁신이 이루어지면 머지않아 엑사스케일 수준의 슈퍼컴퓨팅으로 발전하여 페타스케일보다 약 1,000배 빠른 속도가 실현될 것입니다. 이는 엑사스케일 슈퍼컴퓨터가 초당 1018(또는 10억 x 10억)의 연산을 수행할 수 있음을 의미합니다.evolution processing power

“FLOPS”는 이론적 처리 속도를 나타냅니다 – 프로세서에 지속적으로 데이터를 전송하는 데 필요한 속도를 파악합니다. 그러므로, 데이터 처리율이 반드시 시스템 디자인에 반영되어야 합니다. 프로세싱 노드 간 상호 연결과 함께 시스템 메모리가 데이터의 프로세서 도달 속도에 영향을 줍니다.supercomputer representative power

차세대 슈퍼컴퓨터가 구현하는 1 exaFLOP의 처리 성능은 5,000,000대에 달하는 데스크탑 컴퓨터의 성능에 필적합니다.*

*각 데스크탑의 처리 성능을 200기가FLOPS로 가정

스마트한 용어

  • 고성능 컴퓨팅 (HPC): 단일 컴퓨터(예: 1개의 CPU + 8개의 GPU)부터 세계적 수준의 슈퍼컴퓨터를 아우르는 폭넓은 범위의 강력한 컴퓨팅 시스템
  • 슈퍼컴퓨터: 진화하는 성능 표준에 기반한 최고 수준의 HPC
  • 이기종 컴퓨팅: 직렬(CPU) 및 병렬(GPU) 처리 기능을 최적화하는 HPC 아키텍처
  • 메모리: 데이터에 신속하게 액세스하기 위해 HPC 시스템에서 데이터가 저장되는 위치
  • 인터커넥트: 프로세싱 노드 간 통신을 지원하는 시스템 계층, 여러 수준의 상호 연결이 슈퍼컴퓨터 내에 존재
  • 페타스케일: 초당 1,000조(1015)의 계산을 수행하기 위해 설계된 슈퍼컴퓨터
  • 엑사스케일: 초당 100경(1018)의 계산을 수행하기 위해 설계된 슈퍼컴퓨터

새로운 이용 사례

기술 수준이 향상되면서, HPC는 더욱 폭넓은 기능으로 확장되었습니다. 오늘날 처리 능력과 메모리가 그 어느 때보다 향상되어 보다 복잡한 문제를 해결할 수 있게 되었습니다.

  • 머신 러닝: 인공지능(AI), 머신 러닝(ML)의 하위집합으로서 수행 지침을 수동적으로 받아들이는 대신 스스로 학습할 수 있는 시스템을 말합니다. HPC 시스템은 사진에서 흑색 종을 감지하는 암 연구와 같이 방대한 양의 데이터를 분석하는 높은 수준의 ML에 사용할 수 있습니다.6
  • 빅 데이터 분석: 학술, 과학, 금융, 비즈니스, 의료, 사이버 보안 및 정부 애플리케이션 부문의 연구 및 문제 해결을 보완하기 위해 대량의 데이터 세트를 신속하게 비교하고 상관 관계를 분석합니다. 이 작업에는 대규모 처리 및 컴퓨팅 기능이 필요합니다. 매년 50페타바이트의 임무 데이터가 생성되는 NASA에서는 슈퍼컴퓨팅을 활용해 관측을 분석하고 방대한 정보를 바탕으로 시뮬레이션을 실행합니다.7
  • 고급 모델링 및 시뮬레이션: 기업은 초기 단계에서 물리적 구축을 수행하지 않고도, 고급 모델링 및 시뮬레이션을 통해 혁신적인 제품을 더 빨리 출시하고 시간, 재료 및 인건비를 절약할 수 있습니다. HPC 모델링 및 시뮬레이션은 신약 개발 및 시험, 자동차 및 항공 우주 설계, 기후 예측/기상 관측, 에너지 애플리케이션 부문에서 활용됩니다.8

AMD가 엑사스케일에 대한 드라이브를 실현하는 방식

미국에너지국(DOE)/버클리 연구소(Berkeley Lab), 로렌스 리버모어 국립 연구소(U.S. Lawrence Livermore National Laboratory), 슈투트가르트 대학(University of Stuttgart) 및 CSC(핀란드 IT 과학 센터)의 최신 시스템과 같은 세계 최고 성능의 슈퍼컴퓨터가 바로 AMD 기술에 기반합니다.9

가까운 미래에 엑사스케일 수준의 최적의 슈퍼컴퓨터 설계를 실현하기 위해서는 더욱 강력한 처리 성능 및 프로세싱 기능(CPU 및 GPU 모두에서)이 필요합니다. 고성능 컴퓨팅과 그래픽 기술 부문 모두에서 업계 리더인 AMD는 HPC 시스템을 최적화하는 데 있어 몇 가지 고유한 이점을 제시합니다. 미국에너지국(DOE)에서 추진하는 엑사스케일 컴퓨팅 프로젝트의 일환으로, AMD는 미국 최초로 엑사스케일 수준의 슈퍼컴퓨터를 개발하기 위한 기술을 발전시키기 위해 미국 정부와 파트너십을 맺었습니다.10 이 작업에는 CPU 및 GPU 마이크로아키텍처, 메모리 시스템, 구성 요소 통합 및 고속 인터커넥트에 중점을 둔 연구가 포함되었습니다.

exascale desktop icon데스크탑

지역 전력망에 대한 하나의 동적 시나리오를 실시간으로 시뮬레이션합니다.

petascale iconn페타스케일

국가 전력망에 대한 수만 개의 동적 시나리오를 실시간으로 시뮬레이션합니다.

exascale  icon엑사스케일

전 세계 전력망에 대한 수백만 개의 동적 시나리오를 생성 및 수요에 관한 정의되지 않은 변수를 적용해 실시간으로 시뮬레이션합니다.

미래로 나아가는 힘과 자유

엑사스케일 컴퓨팅은 맞춤형 의료, 탄소 포집, 천체 물리학, 시장 경제학 및 바이오 연료 분야의 발전에 기여할 잠재성이 있습니다. 전문가들이 날씨를 더 정확히 예측하고, 더 복잡한 수학적 문제를 해결하며, 우주의 더 먼 곳까지 탐험하고, 에너지 절감형 전력망을 구축하는 데 도움이 될 것입니다.11 차세대 슈퍼컴퓨팅을 위한 공동의 노력과 이러한 시스템이 사회에 기여할 수 있는 긍정적인 영향을 바탕으로, AMD는 미래의 컴퓨팅 시스템의 성능, 에너지 효율성, 신뢰성 및 프로그래밍의 향상을 위한 연구와 자원에 주력하고 있습니다.

자세히 알아보기: https://www.amd.com/hpc

수치해석에 유용한 SSD (메모리디스크) 가이드

본 자료는 ITWORLD 기사에서 2020년 6월과 4월 자료에서 발췌 인용된 자료입니다. (출처 : www.itworld.co.kr)

수치해석을 하는 경우 계산과정에서 생성되는 결과 파일 사이즈는 매우 크기 때문에, 빠른 디스크 속도는 사용자의 총 해석시간을 줄이는데 큰 도움이 됩니다.

수치해석에서 SSD가 필요한가?

수치해석 업무를 담당하는 사용자에게 SSD가 필요한가? 한마디로 말하면 수치해석을 하는 모든 사람은 보유하고 있는 수치해석 장비의 디스크를 SSD로 업그레이드하는 것이 좋다. 가장 빠른 기계식 하드 드라이브도 SSD 속도에는 미치지 못한다.

기존 노트북, 또는 데스크톱의 하드 드라이브를 SSD로 교체하면 완전히 새로운 시스템처럼 느낄 수 있다. 수치해석을 하는 사용자는 SSD를 구입하는 것은 컴퓨터를 업그레이드하는데 가장 적합한 옵션이다.

SSD는 기계식 하드 드라이브보다 기가바이트 당 비용이 더 많이 들기 때문에 초 고용량으로 제공되지 않는 경우가 많다. 속도와 저장 공간이 필요한 경우, 128GB 나 256GB의 SSD를 구입해 부팅 드라이브로 사용하고, 기존 하드 드라이브를 PC의 보조 저장 장치로 사용하면 최선의 선택이 된다.

하드 드라이브는 가격 대비 용량 측면에서 여전히 큰 이점을 제공하며, 자주 사용되지 않는 데이터를 저장하는 용도로 적합하다. 그러나 운영체제, 프로그램, 자주 사용하는 데이터에는 보유하고 있는 시스템이 지원한다면 NVMe SSD, 지원하지 않는다면 SATA SSD를 사용하는 것이 좋다.

아래 그래프를 보면 SSD를 왜 사용해야 하는지 명확해진다.

SATA SSD vs. NVMe SSD

시장에 SATA SSD와 NVMe SSD가 아직 공존하는 데는 이유가 있다. 메모리 기반 SSD의 잠재력을 감안할 때 결국 새로운 버스와 프로토콜이 필요할 수밖에 없으리란 점은 초기부터 명확했다. 그러나 초창기 SSD는 비교적 속도가 느렸으므로 기존 SATA 스토리지 인프라를 사용하는 편이 훨씬 더 편리했다.

SATA 버스는 버전 3.3에 이르러 16Gbps까지 발전했지만 거의 모든 상용 제품은 여전히 6Gbps에 머물러 있다(오버헤드를 더해 대략 550MBps). 버전 3.3이라 해도 현재 SSD 기술, 특히 RAID 구성으로 낼 수 있는 속도에 비하면 한참 느리다.

그 다음으로 등장한 방법은 역시 기존 기술이지만 대역폭이 훨씬 더 높은 버스 기술인 PCI 익스프레스, 즉 PCIe 활용이다. PCIe는 그래픽 및 기타 애드온 카드를 위한 기본 데이터 전송 계층이다. 3.x 세대 PCIe는 복수의 레인(대부분의 PC에서 최대 16개)을 제공하며, 각 레인은 1GBps(985MBps)에 가까운 속도로 작동한다.

PCIe는 썬더볼트 인터페이스의 기반이기도 하다. 썬더볼트는 게임용 외장 그래픽 카드, 그리고 내장 NVMe와 거의 대등한 속도를 내는 외장형 NVMe 스토리지에서 진가를 발휘하기 시작했다. 많은 사용자들이 이제 느끼고 있지만, 인텔이 썬더볼트를 버리지 않은 것은 현명한 판단이었다.

물론 PCIe 스토리지는 NVMe보다 몇 년 전에 나왔다. 그러나 이전 솔루션은 SATA, SCSI, AHCI와 같은 하드 드라이브가 스토리지 기술의 정점이었던 시절에 개발된 오래된 데이터 전송 프로토콜에 발목을 잡혔다. NVMe는 저지연 명령과 다수의 큐(최대 6만 4,000개)를 제공함으로써 스토리지의 발목을 잡았던 제약을 없앤다. 지속적인 원을 그리며 데이터가 기록되는 하드 드라이브와 달리 SSD에서는 마치 산탄처럼 데이터가 흩어져 저장되므로 특히 후자, 즉 다수의 큐가 큰 효과를 발휘한다.

SSD 선택 시 유의해서 봐야할 것

물론 저장 용량과 가격이 중요하다. 또한 긴 보증기간은 조기 데이터 사망에 대한 우려를 완화시킬 수 있다. 대부분의 SSD 제조업체는 3년 보증을 제공하며 일부 더 좋은 모델은 5년을 보증한다. 그러나 이전 세대의 SSD와는 달리, 몇 년 전에 혹독한 내구성 테스트로 입증한 것처럼 최신 SSD는 일반 소비자가 어지간히 사용해서는 마모되지 않는다.

가장 유의해야 할 것은 SSD를 PC에 연결하는 데 사용되는 기술이다.

  • SATA: 연결 유형과 전송 프로토콜을 나타내며, 대부분의 2.5인치 및 3.5인치 하드 드라이브와 SSD를 PC에 연결한다. SATA III 속도는 약 600MBps에 달할 수 있으며, 대부분의 현대 드라이브는 최대 속도를 제공한다.
  • PCIe: 이 인터페이스는 컴퓨터의 4개의 PCIe 레인을 활용해 SATA 속도를 훨씬 능가해 거의 4GBps를 제공한다(PCIe 3세대). 이런 파괴적인 속도는 강력한 NVMe 드라이브와 잘 어울린다. 메인보드의 PCIe 레인과 M.2 슬롯 모두 PCIe 인터페이스를 지원하도록 유선으로 연결할 수 있으며, “검정” M.2 드라이브를 PCIe 레인에 슬롯화할 수 있는 어댑터를 구입할 수 있다.
  • NVMe: 비휘발성 메모리 익스프레스(Non-Volatile Memory Express) 기술은 PCIe의 풍부한 대역폭을 활용해 SATA 기반 드라이브를 비교조차 못할 정도로 매우 빠른 SSD를 만든다. NVMe에 대해 더 자세히 알고 싶다면 여기를 클릭하라.
  • M.2: 설명이 쉽지 않다. 많은 사람이 M.2 드라이브가 모두 NVMe 기술과 PCIe 속도를 사용한다고 생각하지만 사실이 아니다. M.2는 단순히 폼 팩터에 불과하다. 물론 대부분의 M.2 SSD는 NVMe를 사용하지만 일부는 여전히 SATA를 사용한다. 많은 최신 울트라북이 저장을 위해 M.2를 사용한다.
  • U.2 및 mSATA: mSATA 및 U.2 SSD에서도 문제가 발생할 수 있지만, 이 형식을 지원하는 메인보드와 제품 가용성은 드물다. M.2가 대중화되기 전에 일부 구형 울트라북에 mSATA가 포함되어 있으며, 필요할 경우 드라이브를 사용할 수 있다.  

물론 속도도 중요하지만, 대부분의 최신 SSD는 SATA III 인터페이스를 지원한다. 그러나 전부 다 그런 것은 아니다.

ITWORLD : 6월 업데이트 | 2020년 최고의 SSD 선택 가이드

스토리지 PCWorld SSD(Solid-State Drive)로 전환하는 것은 PC에 가장 적합한 업그레이드다. SSD을 통해 PC는 부팅 시간이 짧아지고, 프로그램 및 게임 로드 속도가 빨라지는 등, 일반적으로 컴퓨터 속도가 빨라진다. 



그러나 모든 SSD가 동일한 것은 아니다. 최고의 SSD는 저렴한 가격으로 견고한 성능을 제공한다. 가격이 문제가 되지 않을 경우, 엄청난 속도의 빠른 읽기 및 쓰기 속도를 제공한다. 

많은 SSD가 2.5인치 폼 팩터로 제공되며 기존 하드 드라이브에서 사용하는 것과 동일한 SATA 포트를 통해 PC와 통신한다. 그러나 최첨단 NVMe(Non-Volatile Memory Express) 드라이브는 메인보드의 M.2에 직접 연결하는 작은 스틱 형태의 SSD다. PCIe 어댑터에 장착되는 이 드라이브는 구입하기 전에 메인보드에 슬롯이 있는지 확인해야 한다. 그래픽 카드나 사운드 카드처럼 메인보드에 꽂을 수 있는 SSD와 미래형 3D 크로스포인트(3D XPoint) 드라이브 등이 등장함에 따라 완벽한 SSD를 선택하는 것은 예전처럼 간단하지 않다. 

그래서 이 가이드가 필요하다. 본지는 사용자 상황에 적합한 SSD를 찾기 위해 수많은 SSD를 테스트했다. 본지가 선정한 최고 인기 제품과, SSD 선택 시 무엇을 봐야 하는지 알아보도록 하자. 


최신 SSD 소식 

  • 지난해 가을, AMD의 라이젠(Ryzen) 3000 CPU가 최첨단 PCIe 4.0 스토리지 지원을 받아 출시됐지만, 그 지원은 고가의 X570 메인보드에만 국한됐다. 이제 곧, B550 메인보드는 동일한 기능을 일반인에게도 제공할 것이며, 오래된 라이젠 칩과도 호환될 것이다. 6월 16일에 발표할 것이다.   
  • X박스 시리즈 X의 초고속 스토리지 기술의 중추인 다이렉트스토리지(DirectStorage)가 윈도우에 등장한다. 마이크로소프트는 다이렉트스토리지 자체에 대해 자세히 다루지 않았지만, X박스 시리즈 X의 ‘벨로시티 스토리지(Velocity Storage)’는 정말 인상적이다. 


대부분 사용자를 위한 최고의 SSD 

SK 하이닉스 골드(SK Hynix Gold) S31 SATA SSD 

ⓒ SK Hynix

실제 시장에서 등장한 SK 하이닉스의 첫 번째 SSD는 본지가 테스트한 것 가운데 가장 빠른 SATA 드라이브임을 입증했다. 사실 SK 하이닉스는 세계에서 가장 큰 반도체 공급업체 가운데 하나로, 모든 기술을 갖고 있다. 골드 S31 가격은 적당하며 아주 좋은 드라이브다.  

삼성의 주력인 EVO SSD 제품군은 2014년 이래로 줄곧 본지의 권장 목록에서 1위를 차지했으며, 현재 삼성 860 EVO는 여전히 속도, 가격, 호환성 및 5년 보증 및 뛰어난 마법사 관리 소프트웨어의 안정성 등 조화를 원하는 사람들에게 좋은 옵션이다. 하지만 최근 새롭게 출시되는 신제품에 의해 왕좌에서 내려왔는데, 이 신인은 사실 전혀 새로운 존재는 아니었다.   

대부분의 사람은 SK 하이닉스 골드 S31을 구입하는 것이 좋다. 본지가 테스트한 가장 빠른 SATA SSD 가운데 하나일뿐만 아니라 가격도 적절하다. 

250GB 드라이브의 경우 46달러, 500GB 드라이브의 경우 64달러, 대규모 1TB 드라이브의 경우 125달러인 골드 S31은 삼성의 제품군(500GB 90달러, 1TB 모델 140달러)보다 훨씬 저렴하다. 골드 S31은 실제 48GB 복사 테스트에서 지속적인 읽기와 쓰기 작업을 위해 테스트한 드라이브 가운데 가장 빠른 드라이브임을 증명했다. 

SK 하이닉스는 정확히 제품 이름이 아니기 때문에 브랜드 자체에 대해 조금 딴지를 걸 수도 있다. 그럼에도 불구하고 SK 하이닉스는 지구상에서 가장 큰 반도체 제조업체 가운데 하나다. SK 하이닉스는 시작부터 NAND 및 컨트롤러 기술을 개발해왔으며, 수많은 대형 컴퓨터 업체의 SSD 제조업체였지만 판매선상에는 자리하지 못했다. 이제 그 선상에 섰고, 결과는 훌륭했다. 

좀 더 큰 저장 용량을 원하는 사용자라면 비싸긴 하지만 삼성 860 EVO가 1TB, 2TB, 4TB 모델을 제공하고 있다. SK 하이닉스도 골드 S31 1TB 버전을 약 110달러에 제공했지만 현재는 사용할 수 없다(이 제품은 미국에서만 출시됐으며 국내에서는 해외 직구로만 구입할 수 있다. 편집자 주). 

 
가성비 최고의 SSD 

애드링크(AddLink) S22 QLC SATA 2.5인치 SSD

ⓒ Addlink 

애드링크 S22 QLC는 장시간 쓰기 작업 중에도 속도가 느려지지 않는다. 또한 SSD 치고는 매우 싸다. 몇 가지 문제가 있음에도 불구하고 본지는 이 제품을 가성비 최고의 SSD로 선정했다. 

기존의 MLC(Multi-Level Cell) 및 TLC (Triple-Level Cell) SSD 가격이 급락하면서 제조업체는 SSD 가격을 더욱 낮추는 새로운 형태의 QLC(Quick-Level Cell) 드라이브를 출시했다. 이 새로운 기술을 통해 SSD 제조업체는 하드 드라이브와 같은 용량의 SSD를 출시함과 동시에 매우 빠른 SSD 속도에 근접하게 됐다. 

여전히 최고인 삼성 860 QVO를 포함한 QLC 드라이브의 1세대는 수십 기가바이트의 데이터를 한번에 전송하면, 쓰기 속도가 하드드라이브 수준으로 떨어졌다. 하지만 애드링크 S22 QLC SSD는 그렇지 않다. 기존 TLC SSD가 QLC 드라이브에 비해 속도 우위를 유지하지만 애드링크 S22의 경우, 이런 한계를 벗어난 데다가 가격은 512GB 63달러, 1TB 104달러에 불과하다. SK하이닉스 S31 또한 이제 거의 같은 속도라는 점은 주목할 필요가 있다. 

대량의 데이터를 한번에 이동할 계획이 없고, 더 많은 공간이 필요하다면, 삼성 860 QVO는 여전히 훌륭한 옵션이다. 실제로 애드링크의 SSD보다 조금 더 빠르다. 그러나 아마존에서 1TB는 128달러, 2TB는 250달러, 5TB는 480달러로 더 비싸다. 더 낮은 용량은 판매되지 않는다. 

그러나 더 빠르고 새로운 NVMe M.2 드라이브를 지원하는 새로운 메인 보드가 있다면 무엇을 선택해야 할까? 


최고의 NVMe SSD 

WD 블루 SN550 NVMe M.2 SSD 

ⓒ WD

100달러짜리 1TB 드라이브는 마음에 들기 쉽다. 특히 블루 SN550은 SN500보다 눈에 띄게 향상되어 거의 모든 사람에게 만족을 준다. 약간의 빈약한 SLC 캐시가 약점이긴 하지만 250GB 용량은 950MBps 쓰기 속도를 갖고 있다는 점이다. 본지는 1TB 버전을 클럭킹해 1.75GBps를 기록한 바 있다. 

성능이 가장 중요한 경우, 삼성 970 프로 또는 시게이트 파이어쿠다(Seagate FireCuda) 510이 가장 빠른 NVMe SSD이긴 하지만, 대부분의 사람은 웨스턴디지털 블루 SN550 NVMe SSD를 구입하는 것이 좋다.  

WD SSD는 NVMe 드라이브 가운데 가장 화려하지도, 앞서 언급한 대안만큼 빠르지도 않다. 하지만 비용이 훨씬 저렴하다. WD 블루 SN550은 보급형 가격(250GB 55달러, 500GB 70달러, 1TB 110달러)에도 불구하고 다른 할인된 NVMe 드라이브와는 성능에서는 조금의 차이가 있다. 신뢰성이 뛰어나고 잘 알려진 유명 브랜드의 제품으로 평균 5년 이상의 보증 기간을 제공한다. 

조금 더 뛰어난 성능을 원한다면, 애드링크 S70 NVMe SSD가 또 다른 훌륭한 옵션이다. 본지는 WD 드라이브보다 성능을 약간 선호하지만, 애드링크 SSD는 가격 인상 이후, 약 15달러가 더 비싸졌으며, WD 블루 SN550의 성능은 일상적인 컴퓨터 사용자에게 충분하다고 판단했다. 애드링크는 WD만큼 잘 알려져 있진 않지만 해당 제품에 대해 5년 보증을 제공한다. 


가장 빠른 SSD 

인텔 옵테인(Intel Optane) SSD 905P 

ⓒ Intel

인텔 SSD 905P는 본지가 테스트한 가장 빠른 NVMe 드라이브 가운데 하나였으며, 가장 비싼 드라이브이기도 하다. 그러나 내구성이 매우 우수하다는 평가를 받고 있다. 많은 양의 데이터를 작성하는 경우, 구입할만한 가치가 있다.  

성능이 가장 중요하고 가격을 생각하지 않는다면, 인텔의 옵테인 SSD 905P는 구매할 수 있는 최고의 SSD다. 이 드라이브는 다른 SSD와 같은 기존 NAND 기술을 사용하지 않고 마이크론과 인텔이 개발한 미래형 3D 크로스포인트(3D Xpoint) 기술을 기반으로 만들어졌다. 

하지만 실질적인 측면에서 옵테인 SSD 900P는 스토리지 벤치마크를 완벽하게 통과해 NAND SSD가 제공하는 약 200TBW에 비해 엄청나게 많은 8,750TBW을 자랑한다. 만약 이것이 사실이라면, 이 초고속 드라이브는 기본적으로 압도적이며, 엄청나게 좋아보인다. 

그러나 최고의 성능이 누리는 권리에 대한 대가를 지불해야 한다. 인텔 옵테인 SSD 905P는 280GB 390달러, 480GB의 경우 599달러, 1.5TB의 경우 1,130달러이며, U.2 및 PCIe 카드 형태로 제공되는 등 몇 가지 추가 옵션이 있다. 

또한 NVMe SSD보다 훨씬 비싸다. 이런 특성으로 인해 인텔 SSD는 대량의 데이터를 정기적으로 이동하는 곳에는 가장 효과적이다. 또한 옵테인 SSD 900P는 실제로 NVMe 프로토콜을 사용해 PC와 통신하기 때문에 몇 가지 추가 기준을 충족시켜야 부팅이 가능하다.    

이 제품보다 한 단계 떨어진 인텔 옵테인 SSD 900P는 905P의 미디어처 버전과 유사하지만 더 낮은 용량과 가격에서도 기존 SSD를 능가한다(280GB 버전 390달러, 480GB 모델 599달러로 대부분의 NVMe 드라이브보다 훨씬 비싸다). 

AMD의 뛰어난 라이젠 3000 시리즈 프로세서가 최첨단 기술을 지원함에 따라 초고속 PCIe 4.0 SSD가 출시되기 시작했다. 이에는 고급 AMD X570 메인보드가 필요하다. 초기 평가를 통해 실제 환경에서 대용량 파일을 이동할 때 실질적인 이점만 얻을 수 있다는 것을 알 수 있지만, 여기서 언급된 기존 PCIe 4.0 SSD보다 훨씬 빠른 속도를 약속한다. 

커세어(Corsair), 기가바이트(Gigabyte), 세이브런트(Sabrent)는 사용 가능한 첫 번째 PCIe 4.0 SSD를 출시했으며, 1TB 모델과 비슷한 성능을 약 200달러에 제공했다. 그러나 본지는 아직 이 제품들에 대해 테스트하지 않았다. 


구입전 사용자가 알아야 할 NVMe SSD  

NVMe 드라이브는 구입하기 전에 어떤 특징을 갖고 있는지 알고 있어야 한다. 표준 SATA SSD는 이미 PC 부팅 시간과 로딩 시간을 대폭 단축하고 훨씬 저렴하다. NVMe 드라이브는 특히 대량으로 데이터를 정기적으로 전송하는 경우, 삼성 960 프로와 같은 M.2 폼 팩터나 또는 PCIe 드라이브를 가장 많은 효과를 누릴 수 있다. 그렇지 않으면 NVMe 드라이브는 가격만 비쌀뿐 가치도 없다.  

ⓒ Brad Chacos

NVMe SSD를 구입하기로 결정한 경우, PC에서 SSD를 처리할 수 있는지 확인해야 한다. 이는 비교적 새로운 기술이므로, 지난 몇 년 내에 제작한 메인보드만이 M.2 연결이 가능하다. 스카이레이크 시대의 AMD 라이젠과 주류 인텔 칩을 고려하라. PCIe 어댑터에 탑재된 NVMe SSD는 M.2 채택이 확산되기 전인 초기에 널리 사용됐지만 지금은 매우 드물다. NVMe SSD를 구입하기 전에 실제로 NVMe를 사용할 수 있는지 확인하고 최대한 활용하기 위해서는 4개의 PCIe 레인이 필요하다는 점에 유의해야 한다. 

NVMe 드라이브를 최대한 활용하려면 운영체제를 실행해야 하기 때문에 드라이브를 인식하고 부팅할 수 있는 시스템이 있어야 한다. 지난 1~2년 전에 구입한 PC는 NVMe 드라이브에서 부팅하는데 아무런 문제가 없지만, 좀 더 오래된 메인보드는 지원하지 않을 수 있다. 구글에서 자신의 메인보드를 검색하고 NVMe 부팅을 지원하는지 확인하라. 보드의 BIOS 업데이트를 설치해야 할 수도 있다. 하드웨어가 NVMe SSD에서 부팅할 수 없는 경우에도 보조 드라이브로 사용할 수 있어야 한다.  

editor@itworld.co.kr

2019년 소개된 강력한 PC 하드웨어 소개

고성능 컴퓨팅(HPC)

고성능 컴퓨팅(HPC)은 과학, 공학 또는 거대한 비지니스 요구 사항들을 해결하기 위해, 우리가 흔히 사용하는 일반적인 데스크탑 컴퓨터나 워크스테이션보다 훨씬 더 높은 성능을 발휘하도록 컴퓨팅 파워를 결합하여 고성능을 발휘하도록 하는 것을 의미합니다.
시뮬레이션이나 분석과 같은 HPC  워크로드는 계산 속도, 메모리 사용 및 데이터 관리가 매우 중요합니다.
클러스터나 슈퍼컴퓨터라고도 불리는 일반적인 HPC 시스템은 고속의 네트워크에 연결된 다수의 서버를 이용한 확장을 통해, 여러 애플리케이션들을 병렬 실행하도록 설계됩니다.
HPC 시스템에는 관련 소프트웨어, 도구, 구성요소, 스토리지 및 서비스가 포함된 경우가 많습니다.

고성능 컴퓨팅은 일반적으로

  • 100Gbps의 초고속 네트워킹
  • 확장 가능한 고성능 스토리지
  • 고성능 컴퓨팅 소프트웨어 스텍 (최근에는 거의 Linux가 대세로 자리 잡음)
  • 에너지 효율성
  • GPU 가속지원

등이 핵심 성능지표로 고려되어 개발됩니다.
이러한 컴퓨터는 매우 고가이고 특별한 관리환경과 전문가들이 필요하여, 일반인들은 쉽게 접하기가 어렵습니다.
그러나 최근에는 시스템 구성은 전문가들이 하고, 시스템 사용은 일반 엔지니어들이 사용할 수 있도록 UI나 시스템 사용환경이 많이 편리해져서 대기업이나 국책 연구기관의 연구원들이 쉽게 사용할 수 있는 기반이 많이 갖추어져 있습니다.

이러한 HPC와는 스케일 규모면에서는 차이가 많지만, 최근에는 단일 컴퓨터에서도 많은 core로 구성된, 수퍼컴에 가까운 단일 컴퓨팅 고성능 PC가 판매되고 있습니다.
따라서 본 기사에서는 고성능 PC 하드웨어를 통해 수치해석을 수행할 수 있는 전세계의 최신 컴퓨터 기술을 소개하는 PC 기반 하드웨어 기사를 소개합니다.
본 기사는 itworld 에서 작성된 자료입니다.

AMD 라이젠 3000 리뷰 | 인텔의 시대를 끝내러 왔다

2019.07.09
업데이트 기사에서는 성능 테스트 결과 중 3D 뷰포트와 시너지 시네스코어(Cinescore) 성능 결과를 더했다. 또한, 게임 외적인 이유로 데이터에 나타나지 않았던 파 크라이(Far Cry) 5와 데우스 엑스: 맨카인드 유나이티드(Deus Ex: Mankind United)에서의 구형 라이젠 칩 게이밍 벤치마크 차트도 추가했다.

AMD의 12코어 라이젠 9 3900X CPU 리뷰를 한마디로 요약한 문장은 이렇지 않을까?“와, 이 CPU 진짜 빠르다.”

그러나 결론만 보기는 아쉽다. 라이젠 9 3900X는 1GHz를 처음으로 넘어섰던 AMD의 오리지널 K7 애슬론 시리즈 CPU, 데스크톱 PC의 64비트 시대를 열었던 애슬론 64 CPU만큼이나 중요한, 시장을 바꾸는 CPU가 될 물건이기 때문이다.

라이젠 9 3900X가 앞으로 저런 제품이 세운 위대함을 달성하기 어려울 것이라고 생각할지 모른다. 이전 세대의 무시무시한 게이밍 성능 지표를 모두 넘어서는 정도는 아니다. 그러나 발매 직후의 혼란이 가라앉으면 AMD 라이젠 3000 시리즈는 단숨에 가장 인기 있는 CPU가 될 것이다.

라이젠 3000 시리즈는 어찌됐든 7나노 공정으로 생산된 최초의 사용자 x86 칩이다. 인텔의 현재 데스크톱 칩은 모두 아직도 14나노 공정으로 제작된다. 올해 말쯤 되어야 10나노 공정으로의 이전이 시작될 것이다. AMD가 7나노 공정에 먼저 도달한 것을 부러워하면서 말이다.

기술적인 우위를 바탕으로 AMD는 라이젠 3000을 위해 재설계된 2세대 젠 코어를 발표했다. 이전 라이젠 2000 시리즈에 비해 부동 소수점 성능이 2배 증가했고, 클럭당 명령어 처리 횟수가 15% 향상되었다.

AMD는 명령 프리-패치를 개선했고, 명령 캐시를 한층 강화했고, 마이크로-op 캐시를 2배로 늘렸다고 말했다. AMD는 부동 소수점 성능을 2배로 늘린 것에 더해 이제 AVX-256까지 도입했다(256비트 고급 벡터 확장). 인텔 코어는 AVX-512이다. 오늘날 AVX는 주로 동영상 인코딩 분야에 영향을 주지만, 다른 분야에서도 진가를 발휘한다.

AMD는 기본적으로 라이젠 3000 칩에서 L3 캐시를 2배 늘리고, 이것을 게임 캐시라고 부르면서 애플과 비슷한 마케팅을 펼치고 있다. 라이젠 9 3900X에서 70MB를 차지하는 이 캐시는 라이젠 3000 시리즈의 메모리 지연성을 크게 줄인다. 또 CPU의 게이밍 성능을 극적으로 향상한다. 그래서 게임 캐시라고 부르면서 일반 사용자의 이해를 돕고 있다.  게임 캐시는 애플리케이션 성능 개선에도 유용하지만, 앱 캐시라고 불렀을 때 기뻐할 사람은 아무도 없을 테니까.

라이젠 3000 시리즈에는 7나노 CCD가 2개 들어간다. ⓒAMD

코어와 함께 칩셋 설계도 크게 손을 보았다. 처음의 젠 기반 라이젠은 메모리 및 PCIe 컨트롤러가 인피니티 패브릭으로 결합된 2개의 14 나노 CCD를 특징으로 했다. 젠 2에 기반한 라이젠 3000은 메모리 컨트롤러와 PCIe 4.0 컨트롤러를 별개의 IO 다이로 분리한다. 7나노 연산 코어와 달리 IO 다이는 12나노 공정으로 제작된다. 이는 CPU의 전체 원가 절감에 기여한다. 7나노 공정 웨이퍼가 훨씬 가치 있는데, AMD의 팹 협력사인 TSMC가 IO 다를 제작에 사용하지 않아도 되기 때문이다.

여기서 중요한 질문은 GPU가 제한 요소가 아닌 상황에서, 오랫동안 라이젠 성능의 발목을 잡았던 게이밍 문제가 마침내 해소되었느냐는 것이다. 차이는 이제 매우 근소해졌다. 심지어 엔비디아의 무자비하게 빠른 RTX 2080 Ti를 구동하더라도 거의 99% 문제가 없을 것이다.

PCIe4.0?!

그렇다. PCIe4.0이다. PCIe의 차세대 버전 PCIe4.0은 기본적으로 클럭 속도와 스루풋을 PCIe3.0보다 2배로 늘린다. AMD가 PCIe4.0으로 이동한 것도 또 한가지 유리한 점이다. 인텔은 CPU에서 PCIe3.0 속도로 정체되어 있고, 마찬가지로 엔비디아도 PCIe3.0 기반 GPU만을 보유한 상황이다.

현재 PCIe 4.0 실제 성능은 SSD를 제외하고 손쉽게 구현하기 어려울 것이다. 그러나 새 표준은 PC에서 더 많은 경로와 더 많은 포트를 지원한다. PCIe4.0 SSD의 혜택을 원한다면 AMD의 라이젠 3000과 새 X570 칩셋이 유일한 수단이다.

PCIe의 설명 자료는 여기서 소개한다(all about PCIe 4.0). 개발 초기 단계인 PCIe5.0과 PCIe6.0이 동시에 존재해 혼란을 준다면, 초기 사양이 실제 하드웨어로 구현되기까지는 시간이 걸린다는 점을 기억하기 바란다. 기본적으로 PCIe 4.0가 현재의 유일한 해법이고, AMD는 이 성과를 자랑할만하다.

가격

아직 가격이 남았다. 인텔의 플래그십 제품인 8코어의 코어 i9-9900K는 488달러인 반면, 더 빠르지는 않더라도 최소한 같다고 주장하는 AMD의 12코어는 499달러에 RGB 쿨러를 더했다.

AMD 라이젠 3000 제품군은 가격으로 인텔 제품을 압박한다. ⓒAMD

쓰레드당 가격은 AMD가 인텔보다 우세하다. 각종 CPU의 쓰레드당 가격 차트를 보면 라이젠 9 3900X는 쓰레드당 21달러이고, 코어 i9-9900K는 31달러로 게임이 되지 않는 지경이다.

ⓒAMD

그러나 쓰레드당 가격, 환상적인 7나노 공정도 성능이 뒷받침되지 않는다면 가치가 없다. 그럼 이제부터 라이젠 9 3900X가 얼마나 빠른지 살펴보자.

테스트 방법

이번 리뷰에는 대표적 CPU 3개를 선택했다. AMD의 2세대 라이젠 7 2700X가 테스트의 기준으로 활용된다. 두 번째는 최고의 경쟁자인 488달러의 인텔의 코어 i9-9900K이다. 마지막은 AMD의 499달러짜리 라이젠 9 3900K이다.

CPU는 나란히 테스트되었다. 라이젠 7 2700X는 MSI X470 게이밍 M7 AC에, 코어 i9-9900K는 아수스 막스무스 XI 히어로에, 라이젠 9 3900X는 MSI X5700 가드라이크에 각각 탑재했다.

그래픽의 경우 초반 CPU와 게임 테스트는 파운더스 에디션 지포스 GTX 1080를 사용하였다. 추가적 게임 테스트에서는 파운더스 에디션 지포스 RTX2080 Ti 카드를 이용하였다.

세 PC 모두 최신 UEFI/BIOS와 드라이버를 이용하고, 윈도우 10 프로페셔널 1903을 새로 설치하였다. 윈도우 버전은 특히 중요하다. AMD가 이제 버전 1903에 스케줄 최적화가 포함되어 라이젠 3000에서 더 효율적으로 쓰레드를 전송할 수 있다고 말했기 때문이다.

기억할 점은 AMD의 CPU는 CPU 코어의 작은 집단과 빠른 속도를 갖도록 구축되지만 CPU 코어 집단 사이의 액세스 속도는 더 느리다는 것이다. 구 버전 윈도우에서 스케줄러는 클러스터 내의 한 집단으로 한 쓰레드를 전송한다. 윈도우는 멀티 다이 설계를 감안하여 설계되지 않았기 때문에 두 번째 쓰레드를 다른 CPU 코어 클러스터로 전송할 것이고 이는 성능을 낮추는 원인이 된다.

단순히 두 쓰레드를 같은 CPU 코어 클러스터로 전송하는 경우가 아니면, 두 코어 클러스터 사이의 교차를 처리해야 하기 때문에 속도가 느려지는 것이다. 이제 이 문제가 해소되었다. 윈도우 1903은 가능한 경우 동일한 CPU 코어 클러스터로 쓰레드를 전송할 것이다. AMD의 주장에 따르면 윈도우의 변화를 통해 최대 15%의 성능 향상을 가져올 수 있다. 다만, 모든 애플리케이션에서 적용되는 것은 아니므로 애플리케이션마다 차이가 있을 것이라고 전했다.

ⓒAMD

세 빌드에서 모두 듀얼 채널 모드의 DDR4를 동일하게 이용했지만, 한 가지 차이를 두었다. 코어i9-9900K와 라이젠 7 2700X는 16GB DDR4/3200 CL 14를 이용했고, 라이젠 9 3900K는 16GB DDR4/3600 CL 15를 이용했다. 라이젠 9를 최적의 메모리 클럭인 3,600MHz로 테스트하고 싶었기 때문이다. 3,200 MHz에서도 역시 테스트할 예정이다. 시간적 제약으로 인해 먼저 DDR4/3600 성능만 제시하고, 시간이 허락하면 DDR4/3200 테스트 결과를 추가로 업데이트할 예정이다. 그러나 AMD가 PCWorld에 밝힌 바에 따르면 DDR4/3200CL14는 DDR4/3600CL15에 비해 성능에서 큰 차이가 없다고 한다.

여기서 다른 변수는 저장 공간이다. 라이젠 7과 코어 i9은 초고속 MLC 기반의 삼성 960 프로 512GB SSD을 사용해 PCIe3의 3세대 속도로 테스트되었다. 라이젠 9 3900X는 PCIe4.0을 지원하는 최초의 CPU이자 플랫폼이다. PCIe4.0은 새 플랫폼의 핵심 기능이므로 CPU의 PCI 레인으로 직접 연결된 2TB의 커세어 MP600 PCIe 4.0 SSD를 이용하였다. 이번에 PCWorld가 실행한 테스트에서 스토리지는 CPU 성능에 영향을 주지 않을 것이다.

커세어 MP600 ⓒAMD

MCE인가, 아닌가?

코어 i9-9900K 리뷰와 마찬가지로 이번에도 ‘다중 코어 강화(Multi-Core Enhancement, MCE)’ 기능을 이용할 것인지를 놓고 의견이 엇갈렸다. MCE는 메인보드 지원 기능으로, 인텔 ‘K’ CPU를 더 높은 클럭 속도로 실행한다. 하지만, 전력 소비도 더 크고 열도 더 많이 발생한다. MCE는 기술적으로 인텔의 표준 규격을 넘긴 ‘오버클럭’으로 간주된다.

그렇다면 이 기능을 끄면 되지 않느냐고 생각할 수 있을 것이다. 그런데 문제는 거의 모든 중급 이상의 인텔 메인보드는 즉시 사용할 수 있도록 MCE가 자동으로 설정되어 있다는 점이다. 이 기능을 끈 상태로 새 CPU를 테스트한 결과는 대부분의 사용자가 경험하게 될 코어 i9-9900K의 진정한 속도와는 거리가 멀 것이다.

켠 상태로 두는 것은 더 난감하다. 왜냐하면 메인보드 업체마다 이 설정을 조금씩 다르게 구현하기 때문이다. MCE가 켜진 상태에서 성능을 정확히 측정할 수 있는 쉬운 방법은 없다.

결국 인텔 CPU에 대해 MCE를 끈 채로 테스트를 했고, AMD의 유사한 정밀 부스트 오버드라이브(Precision Boost Overdrive) 역시 끈 상태로 테스트했다. 다른 기사에서 이 부분을 한층 깊이 있게 다룰 것이다. 그러나 현재까지는 MCE를 끈 채 인텔 CPU를 실행하는 것은 PBO를 끈 채 AMD CPU를 실행하는 것보다 인텔 CPU에 훨씬 불리하다는 점은 유의해야 한다.

그렇다면 이제부터 차트의 세계로 나가도록 하자.

라이젠 9 3900x 3D 모델링 성능

12코어 CPU가 8코어를 쉽게 압도할 것이라는 점은 그다지 놀랍지 않다. ⓒIDG
라이젠 9 3900X의 싱글 쓰레드 성능이 인상적이다. ⓒIDG
시네벤치 R20으로 옮겨가면 라이젠 9 3900X의 싱글 쓰레드 성능이 더 돋보인다. ⓒIDG
라이젠 9 3900X가 인텔 코어 i9를 멀티 쓰레드 성능에서 압도하는 것은 어쩌면 당연하다. ⓒIDG
코로나 모델러 테스트 결과도 8코어보다 12코어 성능이 더 높게 나왔다. ⓒIDG
비슷한 결과다. V레이 넥스트 테스트에서도 다른 모델링 앱과 별반 다르지 않은 결과를 냈다. ⓒIDG
ⓒIDG
놀랍지도 않다. 라이젠 9가 코어 i9을 가지고 노는 수준이다. ⓒIDG
5GHz 클럭이라는 강점을 지닌 코어 i9가 라이젠 9를 싱글 쓰레드로 설정된 POV레이 테스트에서 근소하게 앞섰다. ⓒIDG
H.265 코덱을 활용한 4K 인코딩 작업에서도 라이젠 9 3900X가 월등했다. ⓒ

라이젠 9 3900X 인코딩 성능

라이젠 9 3900X는 H.265 코덱을 사용한 4K 인코딩에서 코어i9를 간단히 앞질렀다. ⓒIDG
시너지 시네스코어 10.4 테스트에서도 라이젠 9의 성능이 코어 i9 칩을 상당히 앞섰다. ⓒIDG
프리미어 CC 2019 작업에서는 코어 i9가 더 우세하다. ⓒIDG
프리미어 HEVC 인코더 프로젝트에서도 코어 i9가 우세했지만 차이는 조금 줄어들었다. ⓒIDG

포토샵 성능 테스트

포토샵 성능에서는 라이젠 9 2900X가 근소하게 앞섰다. ⓒIDG

압축 테스트

압축 테스트 결과. 라이젠 9 3900X와 라이젠 7 2700X의 성능 차가 크다. ⓒIDG
WinRAR결과는 좋게도 나쁘게도 해석할 수 있다. 라이젠 7 2700X 결과에서 보듯, WinRAR는 전통적으로 인텔 CPU와 상성이 좋았는데, 라이젠 9 3900X가 코어 i9와 크게 차이나지 않는 수준의 결과를 냈다. ⓒIDG
7ZIP 압축 테스트에서의 싱글 쓰레드 성능은 코어 i9가 조금 더 앞섰다. ⓒIDG
멀티쓰레드 성능은 라이젠 9가 압도적이었다. ⓒIDG
압축 풀기 테스트는 전통적으로 성능 확인의 정수이자 CPU가 브랜치 오예측을 얼마나 잘 감당하는지와 관련이 있었다.  ⓒIDG​​​​​
7Zip 압축 풀기 테스트에서는 3개 제품이 모두 엇비슷한 성능을 나타냈다. 가장 우수한 것은 코어 i9였다. ⓒIDG

라이젠 9 3900X의 게이밍 성능 테스트

섀도우 오브 툼 레이더는 1,920×1,080 해상도에서 플레이했는데도 GPU에 의한 병목 현상이 나타났다. ⓒIDG
최신 게임을 플레이할 때는 두 제품 모두 빠른 GPU가 필요하다. ⓒIDG
조금 더 오래된 라이즈 오브 더 툼레이더로 옮겨 가면 역시 구형인 지포스 GTX 1080 FE가 병목 현상임을 알 수 있다. ⓒIDG
라이젠 9 3900X가 코어 i9를 앞서지는 못했지만, 차이는 아주 근소하다. ⓒIDG
ⓒIDG
파 크라이 5는 코어 i9가 라이젠 시리즈를 앞선 성능을 보인 게임 중 하나다. ⓒIDG
데우스 엑스 맨카인드 디바이디드 결과. 라이젠 7과 라이젠 9의 차이에서 게임 성능 개선 폭을 짐작할 수 있다.  ⓒIDG
레인보우 식스 시지 결과 ⓒIDG
CPU 포커스드 테스트 결과는 전적으로 CPU 테스트나 다름 없다. 지포스 GTX 1080과 RTX 2080Ti에서의 프레임 차이가 거의 없었기 때문이다.  ⓒIDG

결론

1쓰레드에서 24 쓰레드까지의 시네벤치 테스트로 리뷰를 마치고 싶다. 시네벤치 R20은 3D 모델링 벤치마크로서 게이밍 성능이나 여타 애플리케이션 성능을 예측하지 않는다. 그러나 수많은 게임과 애플리케이션이 현대 CPU의 쓰레드를 모두 활용하는 혜택을 누릴 수는 없다. 그런 면에서 시네벤치 R20이 가치가 있다. CPU를 1개 쓰레드에서 시작해 끝까지 로딩 했을 때의 성능을 살펴볼 수 있기 때문이다.

아래의 차트에서 AMD는 통상적으로 차트 우측에서 두드러진다. 거의 언제나 인텔 칩에 비해 코어 수에서 우세하기 때문이다.

반면 인텔은 통상적으로 우측에서는 패배하지만, 좌측에서는 승리한다. 인텔 칩은 AMD 칩에 비해 클럭 속도와 IPC가 우세하기 때문이다. 인텔의 코어 칩이 강점을 지닌 부분은 기본적으로 여기뿐이다. 대다수 애플리케이션과 게임은 차트의 좌측에 있는 성능에 의존한다. 라이젠 9 3900K와 코어 i9-9900K 사이의 차트를 보면 그 강점은 이제 사라졌다.

시네벤치 r20을 1쓰레드에서 24쓰레드까지 돌리자, 전 구간에서 라이젠 9 3900x의 진정한 강점이 드러났다. ⓒIDG

동일 데이터를 다른 관점으로 보기 위해 성능 우세 정도를 비율로 보여주는 차트를 만들었다. 차트에서 알 수 있듯이 12코어는 8코어를 간단히 압도한다.

이번에도 인텔의 코어 i9에 있어 가장 나쁜 소식은 차트의 좌측에 있다. 여기서도 인텔의 우위가 사라졌다. 두 CPU는 6쓰레드까지 거의 대등하고 이후부터 라이젠 9가 앞서기 시작한다.

라이젠 9는 8쓰레드 이후부터 코어 수로 인텔 코어 i9를 제압했다. ⓒIDG

쓰레드 수가 적은 경우를 봐도 라이젠 9 3900K는 언제나 코어 i9 9900K만큼이나 빠르다. 이는 기본적으로 이제 코어 i9을 사야 할 이유가 거의 없음을 의미한다. 남은 이유도 분명 존재하지만, 고급 CPU를 구입하려는 사용자 10명 중 9명은 라이젠 9 3900X를 선택할 것이 틀림없다. editor@itworld.co.kr


컴퓨텍스 2018에서 소개된 강력한 PC 하드웨어 소개

본 기사는 PCWorld 및 itworld에서 부분 발췌된 내용입니다.

컴퓨텍스 2018에서는 게이밍이 뜨겁다.
PC의 핵심 칩들이 크게 발전하면서 성능을 크게 높였다.

스레드리퍼(Threadripper) 2 인텔의 발표 직후, AMD는 32코어 64스레드 플래그십인 스레드리퍼 2를 소개하면서 코어 전쟁에 불을 붙였다. 새 24코어 CPU도 출시되며 새 칩들은 2세대 라이젠(Ryzen)과 같은 기본 기술에 기초하여 개발되었다. 또한 AMD는 쿨러 마스터와 협력하여 32코어의 온도를 관리할 수 있는 거대한 공냉식 쿨러인 레이스 리퍼(Wraith Ripper)를 제작했다.

AMD를 전격 채용한 에이서 헬리오스(Acer Helios) 500 컴퓨텍스에서 AMD의 기술이 예상치 못한 곳에서 공개되었다. AMD를 전격 채용한 이 모델에는 6코어 12스레드 라이젠 7 2700 데스크톱 프로세서뿐만이 아니라 라데온 베가(Radeon Vega) 56 그래픽이 탑재되어 있으며, 외장 베가 GPU가 탑재된 노트북은 이번이 처음이다. 에이서는 이 노트북에 144Hz 프리싱크 디스플레이를 매치하여 베가의 성능을 최대한 발휘할 수 있도록 했다.

MSI 노트북(치터(Cheater) 모드 적용) MSI는 컴퓨텍스에서 모든 가격 대의 노트북을 선보였다. MSI가 엔비디아 GTX 1050 그래픽을 내장한 프레스티지(Prestige) PS42가 있다. 매우 인상적일 것이며 기록을 달성할 수 있을지 기대된다. 보급형의 경우 MSI GF63은 999달러란 저렴한 가격에 6코어 8세대 인텔 코어 CPU와 GTX 1050이 내장되어 있다.

독특한 에이수스 노트북 에이수스는 컴퓨텍스에서 프로젝트 프리코그 외에도 혁신적인 하드웨어를 선보였다. 또한 기본적으로 트랙패드(Trackpad)를 상황에 따라 PC용 보조 화면으로 변신시키는 “스크린패드(ScreenPad)” 기술이 포함된 젠북 프로(ZenBook Pro) 15의 새로운 버전을 공개했다.

2017년 수치해석 분야에 기대되는 최신 컴퓨터 소식

수치해석을 하는 많은 분들은 대부분 시간과의 전쟁을 치루고 있습니다.
좀 더 빨리, 좀 더 상세한 결과를 얻어야 하기 때문에, 많은 분들이 예산이 허락하는 한 성능 좋은 컴퓨터를 확보하는 것이 최대의 목표가 되고 있습니다.

한 동안 AMD가 인텔의 경쟁자로 존재하면서 두 회사는 선의의 성능 경쟁을 치열하게 전개해 왔는데, AMD가 서서히 경쟁력을 잃고 있다가 최근에 젠 CPU를 통해 다시 경쟁에 불을 지피고 있습니다.
여기에 두 회사의 최신 주력 CPU 의 내용을 기사에서 인용하여 소개합니다.


인텔, 18코어 36스레드 갖춘 코어 i9 칩 발표 “AMD 쓰레드리퍼와 전면전” (기사 출처 : itworld)

인텔이 코어 i9을 무기로 본격적인 AMD와의 전쟁에 돌입했다. 인텔은 30일 대만 컴퓨텍스에서 하이엔드 PC시장에서 AMD의 16코어 32스레드 스레드리퍼(Threadripper)와 경쟁할 18코어 36스레드의 ‘몬스터 마이크로프로세서’를 발표했다.

이 프로세서에는 코어 i9 익스트림 에디션 i9-7980XE라는 이름이 붙었다. 첫 번째 테라플롭(Teraflop) 데스크톱 PC프로세스로 아주 고가이다. 올해 말 출하되는 프로세서의 가격은 1,999달러이다. 한 단계 낮은 코어 i9 제품군 제품들은 가격이 조금 더 저렴하다. 10코어, 12코어, 14코어, 16코어로 구성된 코어 i9 X 시리즈 가격은 999~1,699달러 사이다. 모두 스카이레이크 기반 프로세스이며, 기존 브로드웰-E보다 높은 성능을 제공한다. 인텔에 따르면, 싱글스레드 앱은 15%, 멀티스레드는 10% 빠르다.

인텔은 ‘베이진 폴스(Basin Falls)”라는 코드 네임을 가진 코어 i9 X 시리즈가 너무 비싼 사람들을 위해 3종의 새로운 코어 i7 X 시리즈 칩(339~599달러)과 1종의 쿼드 코어 코어 i5(242달러)도 공개했다. 인텔은 몇 주 이내에 신제품 칩을 출하할 예정이라고 설명했다.

대부분의 코어 i9칩에 터보 부스트 맥스 기술 업데이트(Updated Turbo Boost Max Technology) 3.0이 탑재될 예정이다. 터보 부스트 맥스는 칩이 최고의 코어 2개를 파악하고, 필요할 때 가변적으로 속도를 높여 오버클러킹을 하는 기능이다. 옵테인 메모리도 지원한다. 인텔은 130개 이상의 옵테인 지원 메인보드가 출시될 예정이라고 설명했다.

신제품 165W, 140W, 112W 칩은 역시 새로운 소켓인 R4에 맞춰 설계되어 있다. 2,066핀 LGA 소켓과 호환되는 인텔 칩셋은 X299가 유일하다.

다시 한번, 인텔과 AMD가 제대로 한 판 붙을 전망이다. 둘 중 누가 승리할지 지켜보는 사용자들의 관심도 뜨겁다. 인텔은 코어 i9을 발표하면서 하이엔드 시장에 공격적으로 접근했다. AMD도 스레드리퍼의 10코어, 12코어, 14코어 버전과 가격을 공개할 수밖에 없는 실정이다. 인텔이 먼저 패를 공개했다. 게임은 이제부터가 시작이다.

인텔의 새 코어 i9 칩은 모든 PC관련 제품이 전시되는 종합 전시회로 발전한 컴퓨텍스에서 가장 중요한 발표 중 하나로 꼽혔다. 기대되는 소식은 아직 많이 남아있다. 홍보 담당자에 따르면, 인텔 경영진이 차세대 10nm 칩인 캐논 레이크에 대해 발표할 예정이라고 한다. 기존 케이비 레이크 칩보다 30% 높은 성능을 자랑하는 제품이다.

또, HTC 바이브 VR 헤드셋을 WiGig 기술을 이용해 무선 연결하는 기술에 대해 더 자세한 정보가 발표될 계획이다. 인텔과 HTC는 지난 1월 CES에서 파트너십 체결을 발표했다. 인텔은 또 8월부터 컴퓨트 카드(Compute Card)를 출시한다고 발표할 계획이다.

코어 i9의 속도와 피드
클록 속도가 4GHz를 넘으면서, 제조업체들이 직면한 도전 과제는 추가된 코어를 모두 사용하는 방법을 찾는 것이었다. 앞서 링크된 기사에서 설명했듯, 하나의 프로세스 코어만 집중적으로 사용하는 게임들이 여전히 많다. 인텔은 게임 플레이는 물론, 게임에 이용하지 않는 다른 코어로 트위치나 유튜브 스트리밍을 인코딩하고, 더 나아가 백그라운드에서 음악도 재생할 수 있는 새로운 세대의 ‘스트리머(Streamer)’로 눈길을 돌렸다. 인텔은 이런 동시다발 작업에 ‘메가태스킹’이라는 명칭을 붙였다. 이 회사는 이를 갈수록 증가하는 코어 수에 맞게 ‘수요’를 유지하는 아주 좋은 방법으로 판단하고 있다.

이와 관련, X시리즈 마케팅 매니저인 토니 베라는 “게이머가 콘텐츠 창작자로 변모하는 추세”라고 강조했다.

제품 가격은 자연스럽게 최고 2,000달러로 아주 비싸고, 경제력이 있거나 기업의 후원을 받는 사용자만 최신 코어 i9 제품들을 구입할 수 있을 전망이다. 다음은 제품 별 가격과 코어, 스레드 수를 정리한 내용이다.

Core i9-7980XE: 18코어/ 36스레드, 1,999달러
Core i9-7960X: 16코어/ 32스레드, 1,699달러
Core i9-7940X: 14코어/ 28스레드, 1,399달러
Core i9-7920X: 12코어/ 24스레드, 1,199달러
Core i9-7900X (3.3GHz): 10코어/ 20스레드, 999달러

인텔은 또 한정된 예산에 제약 받는 사용자를 대상으로 3종의 새로운 코어 i7 X 시리즈 칩을 판매할 계획이다.

Core i7 7820X (3.6GHZ), 8코어/ 16스레드, 599달러
Core i7-7800X (3.5GHz), 6코어/ 12스레드, 389달러
Core i7-7740X (4.3GHz), 4코어/ 8스레드, 339달러
케이비 레이크 코어에 맞춰 설계된 i7-7740X를 제외한 모든 칩이 인텔의 ‘스카이레이크-X’에 기반을 두고 있다.

새 칩에서 가장 큰 관심을 끄는 기능은 터보 부스트 맥스 기술 업데이트 3.0이다. 고든 마 웅이 인텔 브로드웰-E 리뷰에서 설명한 것처럼, 터보 부스트 맥스 기술 3.0은 (칩에 따라 차이가 있지만) 최고의 코어를 식별한다. 그리고 CPU 집약적 싱글 스레드 애플리케이션을 이 코어로 연결해 전체 성능을 향상한다.
또, 최고의 코어 2개를 식별하고, 가장 CPU 집약적인 스레드에 할당한다. 더 많은 코어를 더 효과적으로 활용하는 게임과 애플리케이션에 도움을 주는 기능이다. 그러나 이 새로운 기능을 탑재하지 않은 칩도 있다. 새 6코어, 2종의 4코어 X시리즈 칩이 여기에 포함된다.

다음은 속도와 피드를 요약 설명한 표다.

오버클럭이 포인트
인텔은 새 X시리즈에 공냉 쿨러를 추천하지 않는다. 인텔은 165W와 140W의 새 칩이 방출할 열을 효과적으로 냉각시킬 수 있는 TS13X 쿨러를 판매할 예정이다.

TS13X는 PG(Propylene Glycol)을 이용, 열을 73.84-CFM 팬으로 보낸다. 이 팬의 소음은 21~35dBA이고, 회전 속도는 800~2,200rpm이다. 별도 판매될 TS13X의 가격은 85~100달러 사이이다.

인텔은 또 XTU(Extreme Tuning Utility)를 이용, 코어 당 오버클러킹과 전압 조절을 계속 지원할 계획이다. AVX 512 비율 오프셋, 메모리 전압 조절, PEG/DMI 오버클러킹 등 새 기능이 포함되어 있다.
또 ‘성능 튜닝 보증 서비스(Performance tuning protection plan)’를 제공할 계획이다. 이는 오버클로킹 사용자를 위한 일종의 ‘보험’이다. 칩이 고장 날 경우, 1회 교체를 해주는 보증 서비스이며, 두 번째부터는 유료로 진행된다.

데이터 전송 성능을 향상한 새 X299 칩셋
테라플롭급 연산력을 갖춘 PC의 경우, 다른 부품과의 데이터 전송 성능이 아주 중요하다. x299 칩셋은 최신 DMI 3.0을 도입해 SATA 3.0포트와 USB 포트 연결 대역폭을 2배로 증가시킨다. X299 칩셋에는 최대 8개의 SATA 3.0포트, 10개의 USB 3.0 포트가 장착되어 있다. 기존 X99 칩셋의 USB 3.0포트 수는 최대 6개였다.

브로드웰-E X99 칩셋은 8개의 PCIe 레인을 지원했었다. 그러나 X299은 최대 24개의 PCIe 3.0 레인을 지원한다. 고속 PCIe NVM3 드라이브 등 추가 PCIe를 CPU와 연결된 PCI3에 직접 연결할 수 있다. 코어가 10개 이상인 CPU의 경우, 최대 44개의 PCIe 3.0 레인을 이용할 수 있다.

X299는 속도가 빨라진 DDR4-2066을 지원한다. 그러나 어느 정도 RAM 용량을 지원하는지 확실하지 않다. 인텔은 캐시 계층(Cache Hierarchy)을 조정했다. 이를 통해 개별 프로세서 근처에 더 많은 캐시를 배치하는 방법보다 캐시 크기를 더 많이 줄일 수 있다. 인텔은 새로운 캐시의 ‘히트(Hit)’ 레이트가 더 높다고 설명한다. 칩 크기를 줄였지만 캐시 성능을 유지할 수 있었다는 의미이다.

이번 신제품 소식은 코어 i9, 코어 i7 X 시리즈 사용자 모두 크게 기뻐할 기능 및 성능 향상이다. 메인보드와 PC 제조사도 하이엔드 시장에서 수익을 증대하기 위해 코어 i9 제품들을 출시할 것으로 예상된다. 이번 주 컴퓨텍스에서 전해질 더 많은 소식에 사용자들의 관심이 쏠리고 있다. editor@itworld.co.kr


2018년 인텔 6코어 코어 i9 CPU 발표

본 기사는 itworld.co.kr 기사를 인용하였습니다.

아래 기사를 보면 이젠 해석용 컴퓨터도 고성능 노트북으로 가능하게 되어 가는 것 같습니다. ItWorld의 기사를 게재합니다.

인텔의 새로운 6코어 모바일 코어 i9 칩은 가장 빠른 노트북 CPU로, 새로운 코어 i9-8950HK의 기본 클럭 속도는 2.9GHz이며 여기에 “열 속도 가속(Thermal Velocity Boost)”이라는 신기술을 사용해 최대 4.8GHz까지 올라간다. 새로운 언락 8세대 코어 i9를 최상위 제품으로, 그 아래에 5개의 신형 코어 i5와 코어 i7 고성능 모바일 H 시리즈 칩, 그리고 저전력 시스템을 위한 4개의 U 시리즈 코어 칩이 포진한다. 모두 14나노 커피레이크 칩이다. 인텔은 새로운 데스크톱 코어 프로세서 제품군과 노트북 PC 내의 하드 드라이브 성능을 강화하는 옵테인 메모리 내장을 나타내기 위한 브랜드 로고(코어 i7+)도 새로 발표했다.

인텔에 따르면 코어 i9는 7세대 코어 프로세서에 비해 게임 프레임 재생률 기준 최대 41% 더 우수하며, 게임 플레이 스트리밍 및 녹화 성능은 32% 더 빠르다. 인텔은 새로운 코어 i9는 언락 상태로 제공되므로 게임 PC 제조 업계에서 5GHz 시스템도 출시하게 될 것이라고 밝혔다. 옵테인 메모리가 포함되면 성능 향상 폭은 더욱 커진다. 다만 인텔이 성능 비교에 사용한 7세대 시스템에는 SSD가 아닌 느린 기계식 하드 드라이브가 탑재돼 있어 SSD에서의 성능 향상이 어느 정도인지는 정확히 알 수 없다.

인텔 프리미엄 및 게이밍 노트북 부문 총괄 책임자인 프레드릭 햄버거는 “코어 i9는 인텔이 지금까지 발표한 가장 빠른 게이밍 프로세서”라며, “데스크톱에 거의 근접한 성능을 노트북에서 얻을 수 있다”고 강조했다.

새로운 모바일 코어 칩은 인텔이 스펙터 및 멜트다운 취약점을 수정하기 위해 패치한 소프트웨어 완화책을 지원한다(이후 나올 하드웨어 재설계는 적용되지 않는다). 인텔 측은 제시된 성능 수치가 이러한 완화책으로 인한 성능 감소를 반영한 것이라고 밝혔다.

인텔이 출시하는 모든 모바일 프로세스가 그렇듯이, 중요한 점은 가격이다. 인텔은 보통 모바일 칩 가격을 공개하지 않으며, 이번에도 마찬가지다. 다만 새로운 제품군 중에서 코어 i9 칩의 경우 게임 노트북 중에서도 상위 기종에만 들어갈 것으로 보인다. 그 외의 다른 칩은 훨씬 더 폭넓게 보급될 전망이다.

인텔 코어 H 시리즈 CPU

인텔은 현재 폭발적으로 성장 중인 PC 게임 시장을 노골적으로 정조준하고 있다. 햄버거는 인텔 코어 칩을 내장한 일반 판매용 게임 노트북이 전년 대비 45% 성장했다고 말했다.

인텔의 새로운 45W H 시리즈에는 각각 2종의 새로운 코어 i7과 코어 i5 칩 및 신형 제온이 포함된다. 사실 모바일 코어 i9 칩은 제온 E-2186과 상당히 흡사해 보인다. 클럭 속도, 코어 수, 열 설계 전력 등이 동일하다. 그러나 코어 i9의 클럭 속도는 완전히 언락된 상태로 제공된다. 코어 i9의 가격이 너무 부담스럽다면, 동일한 6개의 코어와 12개 쓰레드를 탑재한 새로운 코어 i7-8850H이 있다.

새로 출시되는 칩은 모두 인텔이 노트북을 대상으로 밀고 있는 옵테인 메모리를 지원하며, 기업용 시스템을 위한 vPro 기술이 옵션으로 제공된다.
인텔의 라데온 RX 베가(“케이비레이크-G”) 칩은 울트라북 수준에서 1080p 성능을 제공하도록 설계됐지만, 신형 8세대 코어 i9 칩은 햄버거의 표현대로라면 “머슬북(Musclebook)”에 맞게 설계돼 노트북에서 얻을 수 있는 절대적인 최고의 성능을 제공한다. 햄버거는 “이 칩으로 만족할 수 없다면 어떤 칩으로도 만족하지 못할 것”이라고 덧붙였다.

Intel

인텔은 이번에 처음으로 이른바 “열 속도 가속” 기능을 포함했다. 이 기능은 클럭 속도를 정상보다 더 높여준다. 평상시 코어 i9-8950HK에서 터보 부스트가 활성화된 후 최대 클럭 속도는 4.6GHz다. 그러나 햄버거는 칩의 온도가 충분히 낮은 상태에서 최대 속도로 작동 중이라면, 클럭 속도가 한층 더 올라간다면서 단일 코어를 200MHz 더 높여 4.8GHz로 작동하거나 모든 코어를 약 100MHz 높여 작동하게 된다고 설명했다.

다만 햄버거는 열 속도 가속 기술이 “자동적인 기능이 아닌 기회에 따라 작동하는 기능”이며, 인텔은 시스템 온도 섭씨 50도 이하에서 이 기능이 작동하도록 설계했다고 거듭 강조했다. 햄버거는 “OEM 파트너와 함께 전력 성능을 최적화하고 열 특성을 조정해 성능을 더 끌어올리기 위해 많은 시간을 투자했다”면서 “지금의 추세는 가장 얇게 만들기 위해 성능을 희생하는 게 아니라, 더 오래 지속되는 더 얇은 규격에 더 효율적인 성능을 집어넣는 것”이라고 말했다.

인텔 코어 U 시리즈 CPU

성능은 좀 낮아도 배터리가 오래 가는 제품을 찾는 사용자를 위해 인텔은 새로운 U 시리즈 칩 4종도 함께 출시했다. 28W TDP 저전력 8세대 코어 칩은 모두 4코어 8스레드 구성이 적용되며 모바일 구성의 옵테인 메모리 기술을 지원한다.

Intel

모든 칩은 인텔이 선보인 새로운 300 시리즈 칩셋인 H370, H310, Q370, B360에 연결된다. 또한 인텔 대변인에 따르면 모든 칩은 향상된 오디오 및 I/O, 기가비트 처리량을 갖춘 통합 인텔 802.11ac 와이파이, 10Gbit/s 통합 2세대 USB 3.1 I/O 등 플랫폼 수준에서 더 많은 기능을 제공한다.

게이밍 노트북 판매가 “폭증”하고 시장 성장에 보조를 맞춰 유통업체들도 매장 진열대에서 이런 제품의 비중을 계속 늘리고 있다. 인텔도 투자를 지속할 계획이다. 게이밍 노트북에서 코어 수를 늘리고 5GHz 벽을 돌파하게 되면 인텔은 성능의 한계를 확실히 더 높이게 될 것이다.  editor@itworld.co.kr

원문보기:
http://www.itworld.co.kr/news/108803#csidx218d62dae70faefa8f8cdc4efd8ea92 


AMD 마이크로아키텍처 (기사 출처 : itworld)

AMD 라이젠 3월 2일 출시…코어 i7보다 가격도 성능도 “우세”

Mark Hachman | PCWorld

“40% 성능 향상”이라는 말은 보수적인 자체 평가였다. AMD는 첫 번째 라이젠 프로세서 3가지를 오는 3월 2일 출시할 계획이라고 밝혔다. 인텔 코어 제품군을 능가하는 성능으로 기대를 받고 있는 라이젠 프로세서는 가격도 절반 가까이 저렴하다.

22일 열린 라이젠 출시 행사에서 발표에 나선 AMD 임원들은 인텔 코어 i7을 공략하기 위한 세 가지 데스크톱용 CPU를 공개했다. 신형 라이젠 CPU는 여러 곳의 주요 메인보드 업체와 전문가용 맞춤형 PC 업체가 지원한다. 특히 AMD는 신형 라이젠 프로세서가 더 적은 비용으로 더 높은 성능을 제공한다는 점을 강조했다. 최고 성능 제품인 라이젠 7 1800X는 인텔의 1,000달러짜리 코어 i7-6900K의 절반에도 못 미치는 가격이지만, 성능은 더 뛰어나다.

인텔과 마찬가지로 AMD의 라이젠 프로세서 역시 역시 3가지 제품군으로 구성되어 있는데, 고급형 라이젠 7, 중급형 라이젠 5, 가장 저렴한 보급형 라이젠 3이 그것이다. AMD는 고성능 라이젠 7부터 먼저 출시하는데, 1800X(499달러), 1700X(399달러), 1700(329달러)의 세 가지 모델이다. 라이젠 5와 라이젠 3은 올해 하반기에 출시할 예정인데, 구체적인 출시 일정은 밝히지 않았다.

이번 행사 직전까지 공개되지 않은 라이젠 관련 정보는 가격과 정확한 출시일이었다. 애널리스트들은 AMD가 그간의 실책을 모두 개선한 것 같다고 평가했으며, 인텔은 자칫 기반이 되는 PC용 마이크로프로세서 시장의 점유율을 잃을 수 있는 위험에 처했다. 물론 인텔도 대응책은 있다. 가격 인하도 그중 하나일 가능성이 있고, 더 많은 코어를 가진 신제품이나 옵테인 기술을 적극 내세우는 것도 방법이 될 수 있다.

인텔이 지난 1월 케이비 레이크 칩 40가지를 대대적으로 출시한 것과는 달리 AMD는 서두르지 않고 있다. 이번에 출시된 라이젠 7 칩의 세부 사양을 살펴보자.

Mark Hachman

라이젠 7 1800X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.6GHz, 부스트 모드에서는 4GHz로 동작한다. 499달러 1800X의 대응 제품은 8코어 인텔 코어 i7-6900K로 무려 1,089달러짜리이다. AMD에 따르면, 1800X는 시네벤치 상에서 단일 쓰레드 점수가 162로 동점을 기록했다. 하지만 코어를 모두 구동하자 1,601점으로 6900K보다 9% 높은 점수를 기록했다.

라이젠 7 1700X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.4GHz, 부스트 모드에서는 3.8GHz로 동작한다. AMD에 따르면, 399달러 1700X는 시네벤치 멀티코어 벤치마크 테스트에서 1,537점을 기록해 6900K보다 4% 높은 성능을 보였다.

라이젠 7 1700. 655와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3GHz, 부스트 모드에서는 3.7GHz로 동작한다. AMD에 따르면, 1700은 시네벤치 멀티코어 테스트에서 1,410점으로 339달러짜리 코어 i7 7700K보다 46% 더 높은 성능을 기록했다. 핸드브레이크 비디오 인코딩 테스트에서는 1700은 61.8초를, 7700K는 71.8초를 기록했다.

Mark Hachman

AMD에 따르면 라이젠 7 1700은 신형 레이스 스파이어(Wraith Spire) 쿨러를 기본 쿨러로 제공해 소음이 32데시벨에 불과하다.

라이젠의 눈에 띄는 성능 향상에는 설계팀의 역할이 컸다. AMD는 자사의 목표 중 하나가 젠 아키텍처의 클럭당 명령어 처리수(IPC, instructions per clock)를 40% 늘리는 것이라고 밝힌 바 있다. 그리고 실제로 AMD는 IPC를 52% 향상했다. CEO 리사 수는 “단지 목표를 맞춘 것이 아니라 크게 초과 달성했다”라고 강조했다. editor@itworld.co.kr

원문보기:
http://www.itworld.co.kr/news/103594#csidx36e903474b838daa0638fbf87957a25


CFD 업무에 종사하는 사람들은 빠른 컴퓨터는 갖고 싶은 품목1위가 아닐까 싶습니다.
최근에는 소위 슈퍼컴퓨터라 불릴만한 성능을 가진 데스크탑 CPU 의 발전이 놀라운데, 이번에 AMD에서 발표한 CPU도 놀라울 정도의 가벽 대비 성능을 자랑하는 CPU를 발표하였습니다.
저렴한 비용으로 책상위의 슈퍼컴을 장만할 수 있는 기회가 오고 있는 것 같습니다.
아래 ITWOLD에서 2018.08.07에 게재한 기사를 인용 소개합니다.

AMD 32코어 쓰레드리퍼, 코어수와 가격으로 인텔에 정면 승부

Gordon Mah Ung | PCWorld
자료출처 : 본 기사는 ITWORLD의 기사를 인용게재한 내용입니다. (원문보기)
AMD가 2세대 라이젠 쓰레드리퍼(Ryzen Threadrippers, 또는 쓰레드리퍼 2)를 공식 발표했다. 코어수도 놀랍지만 가격이 인텔을 정조준하고 있다.

2세대 라이젠 쓰레드리퍼 2990WX는 32코어 64쓰레드로, 권장 가격은 1,799달러(뉴에그나 아마존 예약 주문 가격)이다. 물론 엄청난 가격이지만, 인텔의 최상위 제품과 비교하면 상당히 저렴하다. 지난 해 출시된 인텔의 코어 i9-7980XE는 18코어 제품이지만 가격은 2,000달러이다.

쓰레드당 가격으로 따지면, 인텔의 코어 i9-7980XE는 약 55달러인데 반해 쓰레드리퍼 2는 약 28달러에 불과하다.

IDG
마치 대형 할인판매점과 같다. 쓰레드가 많을수록, 쓰레드당 가격은 떨어진다.

32코어 2990WX는 주력 제품이며, AMD는 다음과 같은 다양한 쓰레드리퍼 제품을 발표했다.

– 2세대 라이젠 쓰레드리퍼 2920X, 12코어 24쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.3GHz, 가격 649달러.
– 2세대 라이젠 쓰레드리퍼 2950X, 16코어 32쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.4GHz, 가격 899달러.
– 2세대 라이젠 쓰레드리퍼 2970WX, 24코어 48쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,299달러.
– 2세대 라이젠 쓰레드리퍼 2990WX, 32코어 64쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,799달러.

32코어 쓰레드리퍼 2990WX는 현재 예약 주문이 가능하며, 정식 출하일은 8월 13일로 예상된다. 16코어 2950X의 출시일은 8월 31일이며, 나머지 24코어, 12코어 제품은 10월에 출시된다.

2세대 쓰레드리퍼는 모두 AMD가 올해 초 2세대 라이젠 칩과 함께 내놓은 향상된 12나노 젠+ 아키텍처를 기반으로 한다. 또한 모든 CPU는 기존 X399 메인보드와 호환되며, 구형 CPU 없이도 BIOS 업데이트를 지원한다.

신형 CPU는 1세대 제품과 비교해 확연한 성능 향상을 제공하며, 동급 인텔 제품과의 비교를 불허한다. AMD는 32코어 쓰레드리퍼 2990WX가 시네벤치 R15를 기준으로 인텔의 18코어 코어 i9-7980XE보다 50% 더 빠르다고 밝혔다. POV-Ray 같은 다른 멀티쓰레드 기반 테스트에서도 47% 앞섰다.

모델명에 추가된 W
사실 AMD가 일부 2세대 쓰레드리퍼의 모델명에 W를 추가한 것도 이 때문이다. AMD는 많은 애플리케이션과 게임이 쓰레드나 코어수보다는 더 높은 클럭속도를 선호한다며, W가 없는 두 모델은 바로 이런 사용자를 위한 것이라고 설명했다.

24코어와 32코어 제품의 모델명에 WX를 붙인 것은 이들 CPU가 창작자나 혁신가를 정조준하고 있음을 나타내기 위한 것이다. 즉 W가 추가된 모델은 픽셀이나 프레임, 그리고 광선을 극한까지 추구하는 사람들을 위한 것으로, 이들은 가능한 많은 코어와 쓰레드를 필요로 한다.

주요 이정표
일반 소비자용 CPU에 32코어를 도입하면서 CPU 전쟁은 새로운 전기를 맞이한다. 불과 2년 전, 인텔은 10코어 코어 i7-6950X를 무려 1,723달러에 출시했는데, 지금은 32코어 CPU가 1,799달러에 나왔다.

IDG
날로 치열해지는 코어 전쟁

조만간 나올 인텔의 대응 기대
물론 인텔이 한가로이 앉아 레모네이드나 홀짝거리는 것은 아니지만, 경쟁은 치열하다. AMD가 지난 컴퓨텍스에서 32코어 괴물을 공개하기 하루 전날, 인텔은 28코어에 클럭속도 5GHz짜리 괴물을 소개했다. 이 제품은 올해말 출시될 것으로 예상된다.

인텔의 문제는 이 CPU의 시연을 솔직하게 보여주지 않은 것이다. 인텔 임원은 28코어 CPU가 5GHz로 동작한다고 밝혔지만, 이를 위해 산업용 수랭 시스템을 사용했는지를 밝히지 않았다. 나중에 인텔은 시연이란 것이 언제나 그렇듯이 오버클러킹 시연처럼 가능성을 확인하기 위한 것이라고 설명했다.

이런 논란과 관계없이 AMD 쓰레드리퍼 2990WX는 몇 개월 먼저 출시된 상태이다. 더구나 인텔이 28코어 CPU를 어떤가격에 판매해야 AMD의 신작과 경쟁할 수 있을지도 의문이다. 기업 사용자와의 형평성이 걸림돌이 되는데, 현재 28코어 제온 플래티넘 8176의 가격은 8,719달러이다.

기존 워크스테이션 고객을 걱정할 필요가 없는 AMD는 다시 한 번 가격 파괴 전략을 펼치고있다. 이런 식으로 AMD는 인텔과 코어와 가격으로 정면 대결하기를 원하지만, 인텔은 이런 직접 대결을 최대한 피하고자 한다.  editor@itworld.co.kr

컴퓨텍스 2018에서 소개된 강력한 PC 하드웨어 소개

고성능 컴퓨팅(HPC)

고성능 컴퓨팅(HPC)는 과학, 공학 또는 거대한 비지니스 요구 사항들을 해결하기 위해 일반적인 데스크탑 컴퓨터나 워크스테이션보다 훨씬 더 높은 성능을 발휘하도록 컴퓨팅 파워를 결합하는 것을 의미합니다.
시뮬레이션이나 분석과 같은 HPC 워크로드는 계산, 메모리 사용 및 데이터 관리가 매우 중요합니다.
클러스터나 슈퍼컴퓨터라고도 불리는 일반적인 HPC 시스템은 고속의 네트워크에 연결된 다수의 서버를 이용한 확장을 통해 여러 애플리케이션들을 병렬 실행하도록 설계됩니다.
HPC 시스템에는 관련 소프트웨어, 도구, 구성요소, 스토리지 및 서비스가 포함된 경우가 많습니다.

고성능 컴퓨팅은 일반적으로

– 100Gbps의 초고속 네트워킹
– 확장 가능한 고성능 스토리지
– 고성능 컴퓨팅 소프트웨어 스텍 (최근에는 거의 Linux가 대세로 자리 잡음)
– 에너지 효율성
– GPU 가속지원

등이 핵심 성능지표로 개발됩니다.

HPC와는 스케일 규모면에서는 차이가 많지만 단일 컴퓨팅 기반에서 뛰어난 성능을 발휘하는 고성능 PC 하드웨어를 중심으로  전세계의 최신 컴퓨터 기술을 소개하는 컴퓨덱스에서 발표된 2018년  PC 기반 하드웨어 소개의 일부 기사를 소개합니다.

컴퓨텍스 2018에서 소개된 강력한 PC 하드웨어 소개

본 기사는 PCWorld 및 itworld에서 부분 발췌된 내용입니다.

컴퓨텍스 2018에서는 게이밍이 뜨겁다.
PC의 핵심 칩들이 크게 발전하면서 성능을 크게 높였다.

스레드리퍼(Threadripper) 2 인텔의 발표 직후, AMD는 32코어 64스레드 플래그십인 스레드리퍼 2를 소개하면서 코어 전쟁에 불을 붙였다. 새 24코어 CPU도 출시되며 새 칩들은 2세대 라이젠(Ryzen)과 같은 기본 기술에 기초하여 개발되었다. 또한 AMD는 쿨러 마스터와 협력하여 32코어의 온도를 관리할 수 있는 거대한 공냉식 쿨러인 레이스 리퍼(Wraith Ripper)를 제작했다.

AMD를 전격 채용한 에이서 헬리오스(Acer Helios) 500 컴퓨텍스에서 AMD의 기술이 예상치 못한 곳에서 공개되었다. AMD를 전격 채용한 이 모델에는 6코어 12스레드 라이젠 7 2700 데스크톱 프로세서뿐만이 아니라 라데온 베가(Radeon Vega) 56 그래픽이 탑재되어 있으며, 외장 베가 GPU가 탑재된 노트북은 이번이 처음이다. 에이서는 이 노트북에 144Hz 프리싱크 디스플레이를 매치하여 베가의 성능을 최대한 발휘할 수 있도록 했다.

MSI 노트북(치터(Cheater) 모드 적용) MSI는 컴퓨텍스에서 모든 가격 대의 노트북을 선보였다. MSI가 엔비디아 GTX 1050 그래픽을 내장한 프레스티지(Prestige) PS42가 있다. 매우 인상적일 것이며 기록을 달성할 수 있을지 기대된다. 보급형의 경우 MSI GF63은 999달러란 저렴한 가격에 6코어 8세대 인텔 코어 CPU와 GTX 1050이 내장되어 있다.

독특한 에이수스 노트북 에이수스는 컴퓨텍스에서 프로젝트 프리코그 외에도 혁신적인 하드웨어를 선보였다. 또한 기본적으로 트랙패드(Trackpad)를 상황에 따라 PC용 보조 화면으로 변신시키는 “스크린패드(ScreenPad)” 기술이 포함된 젠북 프로(ZenBook Pro) 15의 새로운 버전을 공개했다.

 

2017년 수치해석 분야에 기대되는 최신 컴퓨터 소식

수치해석을 하는 많은 분들은 대부분 시간과의 전쟁을 치루고 있습니다.
좀 더 빨리, 좀 더 상세한 결과를 얻어야 하기 때문에, 많은 분들이 예산이 허락하는 한 성능 좋은 컴퓨터를 확보하는 것이 최대의 목표가 되고 있습니다.

한 동안 AMD가 인텔의 경쟁자로 존재하면서 두 회사는 선의의 성능 경쟁을 치열하게 전개해 왔는데, AMD가 서서히 경쟁력을 잃고 있다가 최근에 젠 CPU를 통해 다시 경쟁에 불을 지피고 있습니다.
여기에 두 회사의 최신 주력 CPU 의 내용을 기사에서 인용하여 소개합니다.


인텔, 18코어 36스레드 갖춘 코어 i9 칩 발표 “AMD 쓰레드리퍼와 전면전” (기사 출처 : itworld)

인텔이 코어 i9을 무기로 본격적인 AMD와의 전쟁에 돌입했다. 인텔은 30일 대만 컴퓨텍스에서 하이엔드 PC시장에서 AMD의 16코어 32스레드 스레드리퍼(Threadripper)와 경쟁할 18코어 36스레드의 ‘몬스터 마이크로프로세서’를 발표했다.

이 프로세서에는 코어 i9 익스트림 에디션 i9-7980XE라는 이름이 붙었다. 첫 번째 테라플롭(Teraflop) 데스크톱 PC프로세스로 아주 고가이다. 올해 말 출하되는 프로세서의 가격은 1,999달러이다. 한 단계 낮은 코어 i9 제품군 제품들은 가격이 조금 더 저렴하다. 10코어, 12코어, 14코어, 16코어로 구성된 코어 i9 X 시리즈 가격은 999~1,699달러 사이다. 모두 스카이레이크 기반 프로세스이며, 기존 브로드웰-E보다 높은 성능을 제공한다. 인텔에 따르면, 싱글스레드 앱은 15%, 멀티스레드는 10% 빠르다.

인텔은 ‘베이진 폴스(Basin Falls)”라는 코드 네임을 가진 코어 i9 X 시리즈가 너무 비싼 사람들을 위해 3종의 새로운 코어 i7 X 시리즈 칩(339~599달러)과 1종의 쿼드 코어 코어 i5(242달러)도 공개했다. 인텔은 몇 주 이내에 신제품 칩을 출하할 예정이라고 설명했다.

대부분의 코어 i9칩에 터보 부스트 맥스 기술 업데이트(Updated Turbo Boost Max Technology) 3.0이 탑재될 예정이다. 터보 부스트 맥스는 칩이 최고의 코어 2개를 파악하고, 필요할 때 가변적으로 속도를 높여 오버클러킹을 하는 기능이다. 옵테인 메모리도 지원한다. 인텔은 130개 이상의 옵테인 지원 메인보드가 출시될 예정이라고 설명했다.

신제품 165W, 140W, 112W 칩은 역시 새로운 소켓인 R4에 맞춰 설계되어 있다. 2,066핀 LGA 소켓과 호환되는 인텔 칩셋은 X299가 유일하다.

다시 한번, 인텔과 AMD가 제대로 한 판 붙을 전망이다. 둘 중 누가 승리할지 지켜보는 사용자들의 관심도 뜨겁다. 인텔은 코어 i9을 발표하면서 하이엔드 시장에 공격적으로 접근했다. AMD도 스레드리퍼의 10코어, 12코어, 14코어 버전과 가격을 공개할 수밖에 없는 실정이다. 인텔이 먼저 패를 공개했다. 게임은 이제부터가 시작이다.

인텔의 새 코어 i9 칩은 모든 PC관련 제품이 전시되는 종합 전시회로 발전한 컴퓨텍스에서 가장 중요한 발표 중 하나로 꼽혔다. 기대되는 소식은 아직 많이 남아있다. 홍보 담당자에 따르면, 인텔 경영진이 차세대 10nm 칩인 캐논 레이크에 대해 발표할 예정이라고 한다. 기존 케이비 레이크 칩보다 30% 높은 성능을 자랑하는 제품이다.

또, HTC 바이브 VR 헤드셋을 WiGig 기술을 이용해 무선 연결하는 기술에 대해 더 자세한 정보가 발표될 계획이다. 인텔과 HTC는 지난 1월 CES에서 파트너십 체결을 발표했다. 인텔은 또 8월부터 컴퓨트 카드(Compute Card)를 출시한다고 발표할 계획이다.

코어 i9의 속도와 피드
클록 속도가 4GHz를 넘으면서, 제조업체들이 직면한 도전 과제는 추가된 코어를 모두 사용하는 방법을 찾는 것이었다. 앞서 링크된 기사에서 설명했듯, 하나의 프로세스 코어만 집중적으로 사용하는 게임들이 여전히 많다. 인텔은 게임 플레이는 물론, 게임에 이용하지 않는 다른 코어로 트위치나 유튜브 스트리밍을 인코딩하고, 더 나아가 백그라운드에서 음악도 재생할 수 있는 새로운 세대의 ‘스트리머(Streamer)’로 눈길을 돌렸다. 인텔은 이런 동시다발 작업에 ‘메가태스킹’이라는 명칭을 붙였다. 이 회사는 이를 갈수록 증가하는 코어 수에 맞게 ‘수요’를 유지하는 아주 좋은 방법으로 판단하고 있다.

이와 관련, X시리즈 마케팅 매니저인 토니 베라는 “게이머가 콘텐츠 창작자로 변모하는 추세”라고 강조했다.

제품 가격은 자연스럽게 최고 2,000달러로 아주 비싸고, 경제력이 있거나 기업의 후원을 받는 사용자만 최신 코어 i9 제품들을 구입할 수 있을 전망이다. 다음은 제품 별 가격과 코어, 스레드 수를 정리한 내용이다.

Core i9-7980XE: 18코어/ 36스레드, 1,999달러
Core i9-7960X: 16코어/ 32스레드, 1,699달러
Core i9-7940X: 14코어/ 28스레드, 1,399달러
Core i9-7920X: 12코어/ 24스레드, 1,199달러
Core i9-7900X (3.3GHz): 10코어/ 20스레드, 999달러

인텔은 또 한정된 예산에 제약 받는 사용자를 대상으로 3종의 새로운 코어 i7 X 시리즈 칩을 판매할 계획이다.

Core i7 7820X (3.6GHZ), 8코어/ 16스레드, 599달러
Core i7-7800X (3.5GHz), 6코어/ 12스레드, 389달러
Core i7-7740X (4.3GHz), 4코어/ 8스레드, 339달러
케이비 레이크 코어에 맞춰 설계된 i7-7740X를 제외한 모든 칩이 인텔의 ‘스카이레이크-X’에 기반을 두고 있다.

새 칩에서 가장 큰 관심을 끄는 기능은 터보 부스트 맥스 기술 업데이트 3.0이다. 고든 마 웅이 인텔 브로드웰-E 리뷰에서 설명한 것처럼, 터보 부스트 맥스 기술 3.0은 (칩에 따라 차이가 있지만) 최고의 코어를 식별한다. 그리고 CPU 집약적 싱글 스레드 애플리케이션을 이 코어로 연결해 전체 성능을 향상한다.
또, 최고의 코어 2개를 식별하고, 가장 CPU 집약적인 스레드에 할당한다. 더 많은 코어를 더 효과적으로 활용하는 게임과 애플리케이션에 도움을 주는 기능이다. 그러나 이 새로운 기능을 탑재하지 않은 칩도 있다. 새 6코어, 2종의 4코어 X시리즈 칩이 여기에 포함된다.

다음은 속도와 피드를 요약 설명한 표다.

오버클럭이 포인트
인텔은 새 X시리즈에 공냉 쿨러를 추천하지 않는다. 인텔은 165W와 140W의 새 칩이 방출할 열을 효과적으로 냉각시킬 수 있는 TS13X 쿨러를 판매할 예정이다.

TS13X는 PG(Propylene Glycol)을 이용, 열을 73.84-CFM 팬으로 보낸다. 이 팬의 소음은 21~35dBA이고, 회전 속도는 800~2,200rpm이다. 별도 판매될 TS13X의 가격은 85~100달러 사이이다.

인텔은 또 XTU(Extreme Tuning Utility)를 이용, 코어 당 오버클러킹과 전압 조절을 계속 지원할 계획이다. AVX 512 비율 오프셋, 메모리 전압 조절, PEG/DMI 오버클러킹 등 새 기능이 포함되어 있다.
또 ‘성능 튜닝 보증 서비스(Performance tuning protection plan)’를 제공할 계획이다. 이는 오버클로킹 사용자를 위한 일종의 ‘보험’이다. 칩이 고장 날 경우, 1회 교체를 해주는 보증 서비스이며, 두 번째부터는 유료로 진행된다.

데이터 전송 성능을 향상한 새 X299 칩셋
테라플롭급 연산력을 갖춘 PC의 경우, 다른 부품과의 데이터 전송 성능이 아주 중요하다. x299 칩셋은 최신 DMI 3.0을 도입해 SATA 3.0포트와 USB 포트 연결 대역폭을 2배로 증가시킨다. X299 칩셋에는 최대 8개의 SATA 3.0포트, 10개의 USB 3.0 포트가 장착되어 있다. 기존 X99 칩셋의 USB 3.0포트 수는 최대 6개였다.

브로드웰-E X99 칩셋은 8개의 PCIe 레인을 지원했었다. 그러나 X299은 최대 24개의 PCIe 3.0 레인을 지원한다. 고속 PCIe NVM3 드라이브 등 추가 PCIe를 CPU와 연결된 PCI3에 직접 연결할 수 있다. 코어가 10개 이상인 CPU의 경우, 최대 44개의 PCIe 3.0 레인을 이용할 수 있다.

X299는 속도가 빨라진 DDR4-2066을 지원한다. 그러나 어느 정도 RAM 용량을 지원하는지 확실하지 않다. 인텔은 캐시 계층(Cache Hierarchy)을 조정했다. 이를 통해 개별 프로세서 근처에 더 많은 캐시를 배치하는 방법보다 캐시 크기를 더 많이 줄일 수 있다. 인텔은 새로운 캐시의 ‘히트(Hit)’ 레이트가 더 높다고 설명한다. 칩 크기를 줄였지만 캐시 성능을 유지할 수 있었다는 의미이다.

이번 신제품 소식은 코어 i9, 코어 i7 X 시리즈 사용자 모두 크게 기뻐할 기능 및 성능 향상이다. 메인보드와 PC 제조사도 하이엔드 시장에서 수익을 증대하기 위해 코어 i9 제품들을 출시할 것으로 예상된다. 이번 주 컴퓨텍스에서 전해질 더 많은 소식에 사용자들의 관심이 쏠리고 있다. editor@itworld.co.kr


AMD 마이크로아키텍처 (기사 출처 : itworld)

AMD 라이젠 3월 2일 출시…코어 i7보다 가격도 성능도 “우세”

Mark Hachman | PCWorld

“40% 성능 향상”이라는 말은 보수적인 자체 평가였다. AMD는 첫 번째 라이젠 프로세서 3가지를 오는 3월 2일 출시할 계획이라고 밝혔다. 인텔 코어 제품군을 능가하는 성능으로 기대를 받고 있는 라이젠 프로세서는 가격도 절반 가까이 저렴하다.

22일 열린 라이젠 출시 행사에서 발표에 나선 AMD 임원들은 인텔 코어 i7을 공략하기 위한 세 가지 데스크톱용 CPU를 공개했다. 신형 라이젠 CPU는 여러 곳의 주요 메인보드 업체와 전문가용 맞춤형 PC 업체가 지원한다. 특히 AMD는 신형 라이젠 프로세서가 더 적은 비용으로 더 높은 성능을 제공한다는 점을 강조했다. 최고 성능 제품인 라이젠 7 1800X는 인텔의 1,000달러짜리 코어 i7-6900K의 절반에도 못 미치는 가격이지만, 성능은 더 뛰어나다.

인텔과 마찬가지로 AMD의 라이젠 프로세서 역시 역시 3가지 제품군으로 구성되어 있는데, 고급형 라이젠 7, 중급형 라이젠 5, 가장 저렴한 보급형 라이젠 3이 그것이다. AMD는 고성능 라이젠 7부터 먼저 출시하는데, 1800X(499달러), 1700X(399달러), 1700(329달러)의 세 가지 모델이다. 라이젠 5와 라이젠 3은 올해 하반기에 출시할 예정인데, 구체적인 출시 일정은 밝히지 않았다.

이번 행사 직전까지 공개되지 않은 라이젠 관련 정보는 가격과 정확한 출시일이었다. 애널리스트들은 AMD가 그간의 실책을 모두 개선한 것 같다고 평가했으며, 인텔은 자칫 기반이 되는 PC용 마이크로프로세서 시장의 점유율을 잃을 수 있는 위험에 처했다. 물론 인텔도 대응책은 있다. 가격 인하도 그중 하나일 가능성이 있고, 더 많은 코어를 가진 신제품이나 옵테인 기술을 적극 내세우는 것도 방법이 될 수 있다.

인텔이 지난 1월 케이비 레이크 칩 40가지를 대대적으로 출시한 것과는 달리 AMD는 서두르지 않고 있다. 이번에 출시된 라이젠 7 칩의 세부 사양을 살펴보자.

Mark Hachman

라이젠 7 1800X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.6GHz, 부스트 모드에서는 4GHz로 동작한다. 499달러 1800X의 대응 제품은 8코어 인텔 코어 i7-6900K로 무려 1,089달러짜리이다. AMD에 따르면, 1800X는 시네벤치 상에서 단일 쓰레드 점수가 162로 동점을 기록했다. 하지만 코어를 모두 구동하자 1,601점으로 6900K보다 9% 높은 점수를 기록했다.

라이젠 7 1700X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.4GHz, 부스트 모드에서는 3.8GHz로 동작한다. AMD에 따르면, 399달러 1700X는 시네벤치 멀티코어 벤치마크 테스트에서 1,537점을 기록해 6900K보다 4% 높은 성능을 보였다.

라이젠 7 1700. 655와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3GHz, 부스트 모드에서는 3.7GHz로 동작한다. AMD에 따르면, 1700은 시네벤치 멀티코어 테스트에서 1,410점으로 339달러짜리 코어 i7 7700K보다 46% 더 높은 성능을 기록했다. 핸드브레이크 비디오 인코딩 테스트에서는 1700은 61.8초를, 7700K는 71.8초를 기록했다.

Mark Hachman

AMD에 따르면 라이젠 7 1700은 신형 레이스 스파이어(Wraith Spire) 쿨러를 기본 쿨러로 제공해 소음이 32데시벨에 불과하다.

라이젠의 눈에 띄는 성능 향상에는 설계팀의 역할이 컸다. AMD는 자사의 목표 중 하나가 젠 아키텍처의 클럭당 명령어 처리수(IPC, instructions per clock)를 40% 늘리는 것이라고 밝힌 바 있다. 그리고 실제로 AMD는 IPC를 52% 향상했다. CEO 리사 수는 “단지 목표를 맞춘 것이 아니라 크게 초과 달성했다”라고 강조했다. editor@itworld.co.kr

 

원문보기:
http://www.itworld.co.kr/news/103594#csidx36e903474b838daa0638fbf87957a25

FLOW-3D Platforms

FLOW-3D Supported Platforms

FLOW-3D 는 64-bit Windows 와 Linux 플랫폼에서 사용가능합니다.


Supported Operating Systems

1) Processors

–  x86-64 (Intel/AMD) 프로세스를 지원합니다.

2) Operating Systems

– 64-bit Windows 7, Windows 8, Windows 8.1, Windows 10, Windows Server 2008, and Windows Server 2012
– 64-bit Red Hat Enterprise Linux 6, Red Hat Enterprise Linux 7 and SUSE 11*
– Windows 및 Linux에 대한 시뮬레이션 시간은 대등합니다. 사용자가 사용하기 편리한 운영 체제를 선택하면 됩니다.

*FLOW-3D 버전 11.0.3부터 SUSE 리눅스는 더 이상 지원되지 않는 플랫폼입니다. 문제 발생시 Flow Science의 배포판인 RedHat 과 Novell enterprise-class Linux distributions (예 : Fedora, Scientific Linux, Debian, Ubuntu )등 “호환” 리눅스 배포판에 FLOW-3D를 설치 한 사용자에 대한 지원만 제공됩니다.

FLOW-3D / MP Requirements

FLOW-3D / MP 버전 사용에 관심이 있으신 경우 홈페이지의 FLOW-3D / MP에 대한 소개 페이지에서 하드웨어 및 운영 체제에 대한 자세한 정보를 찾을 수 있습니다..

Graphics Support

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다. 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.

License Server Software

FLOW-3D 라이선스를 관리하기 위해 FLEXlm을 사용합니다. 만약 Windows network에서 FLEXlm floating manager를 사용한다면 network server로 Microsoft Windows 7, 8, 8.1, Server 2008, 또는 Server 2012 와 hardware key (dongle)를 사용하여야 합니다.

Memory and Processor Speed

프로세서 코어 당 최소 2GB의 RAM을 권장합니다. 예를 들어, 두 개의 6 코어 CPU가 있을 경우 워크스테이션의 메모리는 최소 24 GB가 있어야합니다. 필요한 RAM의 양은 해석 대상 문제에 매우 의존적입니다. 큰 도메인 또는 복잡한 형상에서 좋은 해상도를 원하는 시뮬레이션은 필요한 최소한 RAM보다 훨씬 더 많은 RAM이 필요합니다. 메모리 속도는 시뮬레이션 시간에 영향을 작게 밥지만 통상적으로 1333MHz 또는 1600 MHz이면 충분합니다.

Custom Developer Tools

Flow Science가 표준 설치의 일부로 배포하는 서브 루틴을 사용자가 Fortran 코드로 커스터마이즈 개발하고자 할 경우 현재 국내에 보급된 버전의 경우 Intel Fortran Compiler 2013용 라이센스가 필요합니다. Windows 운영 체제를 실행하는 사용자는 Visual Studio 2010 또는 Visual Studio 2013이 필요합니다.

향후 업그레이드 되는 버전의 경우 다음과 같이 변경됨을 참고하시기 바랍니다.

1. 다음 주요 릴리스인 FLOW-3D v12.1FLOW-3D CAST v5.1
Intel® FORTRAN 컴파일러 버전 19.0.3.203 빌드 20190206(윈도우즈) 및 버전 19.0.3.19 빌드 20190206(리눅스) 를 사용해야 합니다.

사용자가 Solver의 Custom Code를 개발하여 사용하기를 원하는 Windows 사용자들은 Microsoft Visual Studio 2017 Professional이 필요합니다.

2. 현재 버전인 FLOW-3D v12.0 FLOW-3D CAST v5.0과 그에 대한 후속 업데이트는 Intel® FORTRAN 버전 16.0.1 및 Microsoft Visual Studio 2010/2013 Professional을 통해 계속 사용되는 것을 유의하십시오.

이 내용은 Solver에 대해 제공된 소스 코드를 수정하고 다시 컴파일(즉, 사용자 정의)하는 커스텀 코드 개발 사용자에게만 적용됩니다. 솔버를 사용자 정의하여 개발하지 않을 경우 어떠한 조치도 필요하지 않습니다. 이 컴파일러 업데이트에 대해 궁금한 점이 있으면 언제든지 flow3d@stikorea.co.kr 로 문의하십시오.