Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.

Computer Simulation of Centrifugal Casting Process using FLOW-3D

Aneesh Kumar J1, a, K. Krishnakumar1, b and S. Savithri2, c 1 Department of Mechanical Engineering, College of Engineering, Thiruvananthapuram, Kerala, 2 Computational Modelling& Simulation Division, Process Engineering & Environmental Technology Division CSIR-National Institute for Interdisciplinary Science & Technology
Thiruvananthapuram, Kerala, India.
a aneesh82kj@gmail.com, b kkk@cet.ac.in, c sivakumarsavi@gmail.com, ssavithri@niist.res.in Key words: Mold filling, centrifugal casting process, computer simulation, FLOW- 3D™

Abstract

원심 주조 공정은 기능적으로 등급이 지정된 재료, 즉 구성 요소 간에 밀도 차이가 큰 복합 재료 또는 금속 재료를 생산하는 데 사용되는 잠재적인 제조 기술 중 하나입니다. 이 공정에서 유체 흐름이 중요한 역할을 하며 복잡한 흐름 공정을 이해하는 것은 결함 없는 주물을 생산하는 데 필수입니다. 금형이 고속으로 회전하고 금형 벽이 불투명하기 때문에 흐름 패턴을 실시간으로 시각화하는 것은 불가능합니다. 따라서 현재 연구에서는 상용 CFD 코드 FLOW-3D™를 사용하여 수직 원심 주조 공정 중 단순 중공 원통형 주조에 대한 금형 충전 시퀀스를 시뮬레이션했습니다. 수직 원심주조 공정 중 다양한 방사 속도가 충전 패턴에 미치는 영향을 조사하고 있습니다.

Centrifugal casting process is one of the potential manufacturing techniques used for producing functionally graded materials viz., composite materials or metallic materials which have high differences of density among constituents. In this process, the fluid flow plays a major role and understanding the complex flow process is a must for the production of defect-free castings. Since the mold spins at a high velocity and the mold wall being opaque, it is impossible to visualise the flow patterns in real time. Hence, in the present work, the commercial CFD code FLOW-3D™, has been used to simulate the mold filling sequence for a simple hollow cylindrical casting during vertical centrifugal casting process. Effect of various spinning velocities on the fill pattern during vertical centrifugal casting process is being investigated.

Figure 1: (a) Mold geometry and (b) Computational mesh
Figure 1: (a) Mold geometry and (b) Computational mesh
Figure 2: Experimental data on height of
vertex formed [8]  / Figure 3: Vertex height as a function of time
Figure 2: Experimental data on height of vertex formed [8]/Figure 3: Vertex height as a function of time
Figure 4: Free surface contours for water model at 10 s, 15 s and 20 s.
Figure 4: Free surface contours for water model at 10 s, 15 s and 20 s.
Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.
Figure 5: 3D & 2D views of simulated fill sequence of a hollow cylinder at 1000 rpm and 1500 rpm at various time intervals during filling.

References

[1] W. Shi-Ping, L. Chang-yun, G. Jing-jie, S. Yan-qing, L. Xiu-qiao, F. Heng-zhi, Numerical simulation and
experimental investigation of two filling methods in vertical centrifugal casting, Trans. Nonferrous Met. Soc.
China 16 (2006) 1035-1040.
10.1016/s1003-6326(06)60373-7
[2] G. Chirita, D. Soares, F.S. Silva, Advantages of the centrifugal casting technique for the production of
structural components with Al-Si alloys, Mater. Des. 29 (2008) 20-27.
10.1016/j.matdes.2006.12.011
[3] A. Kermanpur, Sh. Mahmoudi, A. Hajipour, Numerical simulation of metal flow and solidification in the
multi-cavity casting moulds of automotive components, J. Mater. Proc. Tech. 206 (208) 62-68.
10.1016/j.jmatprotec.2007.12.004
[4] D. McBride et. al. Complex free surface flows in centrifugal casting: Computational modelling and
validation experiments, Computers & Fluids 82 (2013) 63-72.
10.1016/j.compfluid.2013.04.021

Figure 4. Field gate discharge experiment.

FLOW-3D Model Development for the Analysis of the Flow Characteristics of Downstream Hydraulic Structures

하류 유압 구조물의 유동 특성 분석을 위한 FLOW-3D 모델 개발

Beom-Jin Kim 1, Jae-Hong Hwang 2 and Byunghyun Kim 3,*
1 Advanced Structures and Seismic Safety Research Division, Korea Atomic Energy Research Institute,
Daejeon 34057, Korea
2 Korea Water Resources Corporation (K-Water), Daejeon 34350, Korea
3 Department of Civil Engineering, Kyungpook National University, Daegu 41566, Korea

  • Correspondence: bhkimc@knu.ac.kr; Tel.: +82-53-950-7819

Abstract

Hydraulic structures installed in rivers inevitably create a water level difference between upstream and downstream regions. The potential energy due to this difference in water level is converted into kinetic energy, causing high-velocity flow and hydraulic jumps in the river. As a result, problems such as scouring and sloping downstream may occur around the hydraulic structures. In this study, a FLOW-3D model was constructed to perform a numerical analysis of the ChangnyeongHaman weir in the Republic of Korea. The constructed model was verified based on surface velocity measurements from a field gate operation experiment. In the simulation results, the flow discharge differed from the measured value by 9–15 m3/s, from which the accuracy was evaluated to be 82–87%. The flow velocity was evaluated with an accuracy of 92% from a difference of 0.01 to 0.16 m/s. Following this verification, a flow analysis of the hydraulic structures was performed according to boundary conditions and operation conditions for numerous scenarios. Since 2018, the ChangnyeongHaman weir gate has been fully opened due to the implementation of Korea’s eco-environmental policy; therefore, in this study, the actual gate operation history data prior to 2018 was applied and evaluated. The evaluation conditions were a 50% open gate condition and the flow discharge of two cases with a large difference in water level. As a result of the analysis, the actual operating conditions showed that the velocity and the Froude number were lower than the optimal conditions, confirming that the selected design was appropriate. It was also found that in the bed protection section, the average flow velocity was high when the water level difference was large, whereas the bottom velocity was high when the gate opening was large. Ultimately, through the reviewed status survey data in this study, the downstream flow characteristics of hydraulic structures along with adequacy verification techniques, optimal design techniques such as procedures for design, and important considerations were derived. Based on the current results, the constructed FLOW-3D-based model can be applied to creating or updating flow analysis guidelines for future repair and reinforcement measures as well as hydraulic structure design.

하천에 설치되는 수력구조물은 필연적으로 상류와 하류의 수위차를 발생시킨다. 이러한 수위차로 인한 위치에너지는 운동에너지로 변환되어 하천의 고속유동과 수압점프를 일으킨다. 그 결과 수력구조물 주변에서 하류의 세굴, 경사 등의 문제가 발생할 수 있다.

본 연구에서는 대한민국 창녕함안보의 수치해석을 위해 FLOW-3D 모델을 구축하였다. 구축된 모델은 현장 게이트 작동 실험에서 표면 속도 측정을 기반으로 검증되었습니다.

시뮬레이션 결과에서 유량은 측정값과 9~15 m3/s 차이가 나고 정확도는 82~87%로 평가되었다. 유속은 0.01~0.16m/s의 차이에서 92%의 정확도로 평가되었습니다.

검증 후 다양한 시나리오에 대한 경계조건 및 운전조건에 따른 수리구조물의 유동해석을 수행하였다. 2018년부터 창녕함안보 문은 한국의 친환경 정책 시행으로 전면 개방되었습니다.

따라서 본 연구에서는 2018년 이전의 실제 게이트 운영 이력 데이터를 적용하여 평가하였다. 평가조건은 50% open gate 조건과 수위차가 큰 2가지 경우의 유수방류로 하였다. 해석 결과 실제 운전조건은 속도와 Froude수가 최적조건보다 낮아 선정된 설계가 적합함을 확인하였다.

또한 베드보호구간에서는 수위차가 크면 평균유속이 높고, 수문개구가 크면 저저유속이 높은 것으로 나타났다. 최종적으로 본 연구에서 검토한 실태조사 자료를 통해 적정성 검증기법과 함께 수력구조물의 하류 유동특성, 설계절차 등 최적 설계기법 및 중요 고려사항을 도출하였다.

현재의 결과를 바탕으로 구축된 FLOW-3D 기반 모델은 수력구조 설계뿐만 아니라 향후 보수 및 보강 조치를 위한 유동해석 가이드라인 생성 또는 업데이트에 적용할 수 있습니다.

Figure 1. Effect of downstream riverbed erosion according to the type of weir foundation.
Figure 1. Effect of downstream riverbed erosion according to the type of weir foundation.
Figure 2. Changnyeong-Haman weir depth survey results (June 2015)
Figure 2. Changnyeong-Haman weir depth survey results (June 2015)
Figure 4. Field gate discharge experiment.
Figure 4. Field gate discharge experiment.
Figure 16. Analysis results for Case 7 and Case 8
Figure 16. Analysis results for Case 7 and Case 8

References

  1. Wanoschek, R.; Hager, W.H. Hydraulic jump in trapezoidal channel. J. Hydraul. Res. 1989, 27, 429–446. [CrossRef]
  2. Bohr, T.; Dimon, P.; Putkaradze, V. Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 1993, 254, 635–648.
    [CrossRef]
  3. Chanson, H.; Brattberg, T. Experimental study of the air–water shear flow in a hydraulic jump. Int. J. Multiph. Flow 2000, 26,
    583–607. [CrossRef]
  4. Dhamotharan, S.; Gulliver, J.S.; Stefan, H.G. Unsteady one-dimensional settling of suspended sediment. Water Resour. Res. 1981,
    17, 1125–1132. [CrossRef]
  5. Ziegler, C.K.; Nisbet, B.S. Long-term simulation of fine-grained sediment transport in large reservoir. J. Hydraul. Eng. 1995, 121,
    773–781. [CrossRef]
  6. Olsen, N.R.B. Two-dimensional numerical modelling of flushing processes in water reservoirs. J. Hydraul. Res. 1999, 37, 3–16.
    [CrossRef]
  7. Saad, N.Y.; Fattouh, E.M. Hydraulic characteristics of flow over weirs with circular openings. Ain Shams Eng. J. 2017, 8, 515–522.
    [CrossRef]
  8. Bagheri, S.; Kabiri-Samani, A.R. Hydraulic Characteristics of flow over the streamlined weirs. Modares Civ. Eng. J. 2018, 17, 29–42.
  9. Hussain, Z.; Khan, S.; Ullah, A.; Ayaz, M.; Ahmad, I.; Mashwani, W.K.; Chu, Y.-M. Extension of optimal homotopy asymptotic
    method with use of Daftardar–Jeffery polynomials to Hirota–Satsuma coupled system of Korteweg–de Vries equations. Open
    Phys. 2020, 18, 916–924. [CrossRef]
  10. Arifeen, S.U.; Haq, S.; Ghafoor, A.; Ullah, A.; Kumam, P.; Chaipanya, P. Numerical solutions of higher order boundary value
    problems via wavelet approach. Adv. Differ. Equ. 2021, 2021, 347. [CrossRef]
  11. Sharafati, A.; Haghbin, M.; Motta, D.; Yaseen, Z.M. The application of soft computing models and empirical formulations for
    hydraulic structure scouring depth simulation: A comprehensive review, assessment and possible future research direction. Arch.
    Comput. Methods Eng. 2021, 28, 423–447. [CrossRef]
  12. Khan, S.; Selim, M.M.; Khan, A.; Ullah, A.; Abdeljawad, T.; Ayaz, M.; Mashwani, W.K. On the analysis of the non-Newtonian
    fluid flow past a stretching/shrinking permeable surface with heat and mass transfer. Coatings 2021, 11, 566. [CrossRef]
  13. Khan, S.; Selim, M.M.; Gepreel, K.A.; Ullah, A.; Ayaz, M.; Mashwani, W.K.; Khan, E. An analytical investigation of the mixed
    convective Casson fluid flow past a yawed cylinder with heat transfer analysis. Open Phys. 2021, 19, 341–351. [CrossRef]
  14. Ullah, A.; Selim, M.M.; Abdeljawad, T.; Ayaz, M.; Mlaiki, N.; Ghafoor, A. A Magnetite–Water-Based Nanofluid Three-Dimensional
    Thin Film Flow on an Inclined Rotating Surface with Non-Linear Thermal Radiations and Couple Stress Effects. Energies 2021,
    14, 5531. [CrossRef]
  15. Aamir, M.; Ahmad, Z.; Pandey, M.; Khan, M.A.; Aldrees, A.; Mohamed, A. The Effect of Rough Rigid Apron on Scour Downstream
    of Sluice Gates. Water 2022, 14, 2223. [CrossRef]
  16. Gharebagh, B.A.; Bazargan, J.; Mohammadi, M. Experimental Investigation of Bed Scour Rate in Flood Conditions. Environ. Water
    Eng. 2022, in press. [CrossRef]
  17. Laishram, K.; Devi, T.T.; Singh, N.B. Experimental Comparison of Hydraulic Jump Characteristics and Energy Dissipation
    Between Sluice Gate and Radial Gate. In Innovative Trends in Hydrological and Environmental Systems; Springer: Berlin/Heidelberg,
    Germany, 2022; pp. 207–218.
  18. Varaki, M.E.; Sedaghati, M.; Sabet, B.S. Effect of apron length on local scour at the downstream of grade control structures with
    labyrinth planform. Arab. J. Geosci. 2022, 15, 1240. [CrossRef]
  19. Rizk, D.; Ullah, A.; Elattar, S.; Alharbi, K.A.M.; Sohail, M.; Khan, R.; Khan, A.; Mlaiki, N. Impact of the KKL Correlation Model on
    the Activation of Thermal Energy for the Hybrid Nanofluid (GO+ ZnO+ Water) Flow through Permeable Vertically Rotating
    Surface. Energies 2022, 15, 2872. [CrossRef]
  20. Kim, K.H.; Choi, G.W.; Jo, J.B. An Experimental Study on the Stream Flow by Discharge Ratio. Korea Water Resour. Assoc. Acad.
    Conf. 2005, 05b, 377–382.
  21. Lee, D.S.; Yeo, H.G. An Experimental Study for Determination of the Material Diameter of Riprap Bed Protection Structure. Korea
    Water Resour. Assoc. Acad. Conf. 2005, 05b, 1036–1039.
  22. Choi, G.W.; Byeon, S.J.; Kim, Y.G.; Cho, S.U. The Flow Characteristic Variation by Installing a Movable Weir having Water
    Drainage Equipment on the Bottom. J. Korean Soc. Hazard Mitig. 2008, 8, 117–122.
  23. Jung, J.G. An Experimental Study for Estimation of Bed Protection Length. J. Korean Wetl. Soc. 2011, 13, 677–686.
  24. Kim, S.H.; Kim, W.; Lee, E.R.; Choi, G.H. Analysis of Hydraulic Effects of Singok Submerged Weir in the Lower Han River. J.
    Korean Water Resour. Assoc. 2005, 38, 401–413. [CrossRef]
  25. Kim, J.H.; Sim, M.P.; Choi, G.W.; Oh, J.M. Hydraulic Analysis of Air Entrainment by Weir Types. J. Korean Water Resour. Assoc.
    2003, 36, 971–984. [CrossRef]
  26. Jeong, S.; Yeo, C.G.; Yun, G.S.; Lee, S.O. Analysis of Characteristics for Bank Scour around Low Dam using 3D Numerical
    Simulation. Korean Soc. Hazard Mitig. Acad. Conf. 2011, 02a, 102.
  27. Son, A.R.; Kim, B.H.; Moon, B.R.; Han, G.Y. An Analysis of Bed Change Characteristics by Bed Protection Work. J. Korean Soc. Civ.
    Eng. 2015, 35, 821–834.
  28. French, R.H.; French, R.H. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1985; ISBN 0070221340.
Serife Yurdagul Kumcu−2−KSCE Journal of Civil Engineeringthe use of CFD for the assessment of a design, as well as screeningand optimizing of hydraulic structures and cofferdam layouts. Theyconclude that CFD has been successful in optimizing the finalconceptual configuration for the hydraulics design of the project,but recommend that physical modeling still be used as a finalconfirmation.This paper provides experimental studies performed on Kav akDam and analyses the stability of spillway design by usingFLOW-3D model. It compares the hydraulic model tests withFLOW-3D simulation results and gives information on howaccurately a commercially available Computational Fluid Dynamic(CFD) model can predict the spillway discharge capacity andpressure distribution along the spillway bottom surface. 2. Physical ModelA 1/50-scaled undistorted physical model of the Kavsak Damspillway and stilling basin was built and tested at the HydraulicModel Laboratory of State Hydraulic Works of Turkey (DSI).The model was constructed of plexiglas and was fabricated toconform to the distinctive shape of an ogee crest. The spillwayhas 45.8 m in width and 57 m long with a bottom slope of 125%.The length of the stilling basin is about 90 m. During model tests,flow velocities were measured with an ultrasonic flow meter.Pressures on the spillway were measured using a piezometerssçTable 1. Upstream and Downstream Operating Conditions of theKavsak DamRun Upstream reservoir elevation (m)Downstream tailwater elevation (m)1 306.55 168.002 311.35 174.503 314.00 178.904 316.50 182.55Fig. 1. (a) Original Project Design and Final Project Design after Experimental Investigations and Flow Measurement Sections at theApproach, (b) Top View Experimentally Modified Approach in the Laboratory, (c) Side View of the Experimentally Modified Approachin the Laboratory

Investigation of flow over spillway modeling and comparison between experimental data and CFD analysis

여수로 모델링 및 실험 데이터와 CFD 해석의 비교에 대한 조사

DOI:10.1007/s12205-016-1257-z

Authors:

Serife Yurdagul Kumcu at Necmettin Erbakan Üniversitesi

Serife Yurdagul Kumcu

Abstract and Figures

As a part of design process for hydro-electric generating stations, hydraulic engineers typically conduct some form of model testing. The desired outcome from the testing can vary considerably depending on the specific situation, but often characteristics such as velocity patterns, discharge rating curves, water surface profiles, and pressures at various locations are measured. Due to recent advances in computational power and numerical techniques, it is now also possible to obtain much of this information through numerical modeling. In this paper, hydraulic characteristics of Kavsak Dam and Hydroelectric Power Plant (HEPP), which are under construction and built for producing energy in Turkey, were investigated experimentally by physical model studies. The 1/50-scaled physical model was used in conducting experiments. Flow depth, discharge and pressure data were recorded for different flow conditions. Serious modification was made on the original project with the experimental study. In order to evaluate the capability of the computational fluid dynamics on modeling spillway flow a comparative study was made by using results obtained from physical modeling and Computational Fluid Dynamics (CFD) simulation. A commercially available CFD program, which solves the Reynolds-averaged Navier-Stokes (RANS) equations, was used to model the numerical model setup by defining cells where the flow is partially or completely restricted in the computational space. Discharge rating curves, velocity patterns and pressures were used to compare the results of the physical model and the numerical model. It was shown that there is reasonably good agreement between the physical and numerical models in flow characteristics.

수력 발전소 설계 프로세스의 일부로 수력 엔지니어는 일반적으로 어떤 형태의 모델 테스트를 수행합니다. 테스트에서 원하는 결과는 특정 상황에 따라 상당히 다를 수 있지만 속도 패턴, 방전 등급 곡선, 수면 프로파일 및 다양한 위치에서의 압력과 같은 특성이 측정되는 경우가 많습니다. 최근 계산 능력과 수치 기법의 발전으로 인해 이제는 수치 모델링을 통해 이러한 정보의 대부분을 얻을 수도 있습니다.

본 논문에서는 터키에서 에너지 생산을 위해 건설 중인 Kavsak 댐과 수력발전소(HEPP)의 수력학적 특성을 물리적 모델 연구를 통해 실험적으로 조사하였다. 1/50 스케일의 물리적 모델이 실험 수행에 사용되었습니다. 다양한 흐름 조건에 대해 흐름 깊이, 배출 및 압력 데이터가 기록되었습니다. 실험 연구를 통해 원래 프로젝트에 대대적인 수정이 이루어졌습니다.

배수로 흐름 모델링에 대한 전산유체역학의 능력을 평가하기 위해 물리적 모델링과 전산유체역학(CFD) 시뮬레이션 결과를 이용하여 비교 연구를 수행하였습니다. RANS(Reynolds-averaged Navier-Stokes) 방정식을 푸는 상업적으로 이용 가능한 CFD 프로그램은 흐름이 계산 공간에서 부분적으로 또는 완전히 제한되는 셀을 정의하여 수치 모델 설정을 모델링하는 데 사용되었습니다.

물리적 모델과 수치 모델의 결과를 비교하기 위해 배출 등급 곡선, 속도 패턴 및 압력을 사용했습니다. 유동 특성에서 물리적 모델과 수치 모델 간에 상당히 좋은 일치가 있는 것으로 나타났습니다.

Serife Yurdagul Kumcu−2−KSCE Journal of Civil Engineeringthe use of CFD for the assessment of a design, as well as screeningand optimizing of hydraulic structures and cofferdam layouts. Theyconclude that CFD has been successful in optimizing the finalconceptual configuration for the hydraulics design of the project,but recommend that physical modeling still be used as a finalconfirmation.This paper provides experimental studies performed on Kav akDam and analyses the stability of spillway design by usingFLOW-3D model. It compares the hydraulic model tests withFLOW-3D simulation results and gives information on howaccurately a commercially available Computational Fluid Dynamic(CFD) model can predict the spillway discharge capacity andpressure distribution along the spillway bottom surface. 2. Physical ModelA 1/50-scaled undistorted physical model of the Kavsak Damspillway and stilling basin was built and tested at the HydraulicModel Laboratory of State Hydraulic Works of Turkey (DSI).The model was constructed of plexiglas and was fabricated toconform to the distinctive shape of an ogee crest. The spillwayhas 45.8 m in width and 57 m long with a bottom slope of 125%.The length of the stilling basin is about 90 m. During model tests,flow velocities were measured with an ultrasonic flow meter.Pressures on the spillway were measured using a piezometerssçTable 1. Upstream and Downstream Operating Conditions of theKavsak DamRun Upstream reservoir elevation (m)Downstream tailwater elevation (m)1 306.55 168.002 311.35 174.503 314.00 178.904 316.50 182.55Fig. 1. (a) Original Project Design and Final Project Design after Experimental Investigations and Flow Measurement Sections at theApproach, (b) Top View Experimentally Modified Approach in the Laboratory, (c) Side View of the Experimentally Modified Approachin the Laboratory
Serife Yurdagul Kumcu−2−KSCE Journal of Civil Engineeringthe use of CFD for the assessment of a design, as well as screeningand optimizing of hydraulic structures and cofferdam layouts. Theyconclude that CFD has been successful in optimizing the finalconceptual configuration for the hydraulics design of the project,but recommend that physical modeling still be used as a finalconfirmation.This paper provides experimental studies performed on Kav akDam and analyses the stability of spillway design by usingFLOW-3D model. It compares the hydraulic model tests withFLOW-3D simulation results and gives information on howaccurately a commercially available Computational Fluid Dynamic(CFD) model can predict the spillway discharge capacity andpressure distribution along the spillway bottom surface. 2. Physical ModelA 1/50-scaled undistorted physical model of the Kavsak Damspillway and stilling basin was built and tested at the HydraulicModel Laboratory of State Hydraulic Works of Turkey (DSI).The model was constructed of plexiglas and was fabricated toconform to the distinctive shape of an ogee crest. The spillwayhas 45.8 m in width and 57 m long with a bottom slope of 125%.The length of the stilling basin is about 90 m. During model tests,flow velocities were measured with an ultrasonic flow meter.Pressures on the spillway were measured using a piezometerssçTable 1. Upstream and Downstream Operating Conditions of theKavsak DamRun Upstream reservoir elevation (m)Downstream tailwater elevation (m)1 306.55 168.002 311.35 174.503 314.00 178.904 316.50 182.55Fig. 1. (a) Original Project Design and Final Project Design after Experimental Investigations and Flow Measurement Sections at theApproach, (b) Top View Experimentally Modified Approach in the Laboratory, (c) Side View of the Experimentally Modified Approachin the Laboratory

References

Bureau of Reclamation (1977). Design of small dams, U.S. Government Printing Office, Washington, D.C., U.S.

Bureau of Reclamation (1990). Cavitation in chute and spillways, Engineering Monograph, No.42, U.S. Chanel, P. G. (2008). An evaluation of computational fluid dynamics for

spillway modeling, MSc Thesis, University of Manitoba Winnipeg, Manitoba, Canada.

Chanson, H. (2002). The hydraulics of stepped chutes and spillways,Balkema, Lisse, The Netherlands.

Chanson, H. and Gonzalez, C. A. (2005). “Physical modeling and scale effects of air-water flows on stepped spillways.” Journal of Zhejiang University Science, Vol. 6A, No. 3, pp. 243-250.

Demiroz, E. (1986). “Specifications of aeration structures which are added to the spillways.” DSI Report, HI-754, DSI-TAKK Publications, Ankara, Turkey.

Erfanain-Azmoudeh, M. H. and Kamanbedast, A. A. (2013). “Determine the appropriate location of aerator system on gotvandoliadam’s spillway using Flow 3D.” American-Eurasian J. Agric. & Environ. Sci., Vol. 13, No. 3, pp. 378-383, DOI: 10.5829/idosi.aejaes.2013. 13.03. 458.

Falvey, H. T. (1990). Cavitation in chutes and spillways, Engineering Monograph 42 Water Resources Technical Publication US Printing Office, Bureau of Reclamation, Denver.

Flow-3D User ’s Manual (2012). Flow science, Inc., Santa Fe, N.M.

Hirt, C. W. (1992). “Volume-fraction techniques: Powerful tools for flow

modeling.” Flow Science Report, No. FSI-92-00-02, Flow Science, Inc., Santa Fe, N.M.

Hirt C. W. and Nichols B. D. (1981). “Volume of Fluid (VOF) method for the dynamics of free boundaries.”Jornal of Computational Physics, Vol. 39, pp. 201-225, DOI: 10.1016/0021-9991(81)90145-5.

Hirt, C. W. and Sicilian, J. M. (1985). “A Porosity technique for the definition of obstacles in rectangular cell meshes.” Proceedings of the 4th International Conference on Ship Hydro-dynamics, 24-27 September 1985, National Academic of Sciences, Washington DC.

Ho, D., Boyes, K., Donohoo, S., and Cooper, B. (2003). “Numerical flow analysis for spillways.” 43rd ANCOLD Conference, Hobart, Tas m a nia .

Johnson, M. C. and Savage, B. M. (2006). “Physical and numerical comparison of flow over ogee spillway in the presence of tailwater.”

Journal of Hydraulic Engineering, Vol. 132, No. 12, pp. 1353-135, DOI: 10.1061/(ASCE)0733-9429.

Kim, S. D., Lee, H. J., and An, S. D. (2010). “Improvement of hydraulic stability for spillway using CFD model.” Int. Journal of the Physical Sciences, Vol. 5, No. 6, pp. 774-780.

Kokpinar, M. A. and Gogus, M. (2002). “High speed jet flows over spillway aerators.” Canadian Journal of Civil Engineering, Vol. 29, No. 6, pp. 885-898, DOI: 10.1139/l02-088.

Kumcu, S. Y. (2010). Hydraulic model studies of Kavsak Dam and HEPP, DSI Report, HI-1005, DSI-TAKK Publications, Ankara, Turkey.

Margeirsson, B. (2007). Computational modeling of flow over a spillway, MSc Thesis, Chalmers University of Technology, Gothenburg, Sweden.

Nichols, B. D. and Hirt, C. W. (1975). “Methods for calculating multi-dimensional, transient free surface flows past bodies.” Proc. First Intern. Conf. Num., Ship Hydrodynamics, Gaithersburg, ML.

Savage, B. M. and Johnson, M. C. (2001). “Flow over ogee spillway: Physical and numerical model case study.” Journal of Hydraulic Engineering, ASCE, Vol. 127, No. 8, pp. 640-649, DOI: 10.1061/(ASCE)0733-9429.

Souders, D. T. and Hirt, C. W. (2004). “Modeling entrainment of air at turbulent free surfaces.” Critical Transitions in Water and Environmental resources Management, pp. 1-10.

entürk, F. (1994). Hydraulics of dams and reservoirs, Water Resources Publication Colorado, USA.

Teklemariam, E., Korbaylo, B, Groeneveld, J., Sydor, K., and Fuchs, D. (2001). Optimization of hydraulic design using computational fluid dynamics, Waterpower XII, Salt Lake City, Utah.

Teklemariam, E., Shumilak, B., Sydor, K., Murray, D., Fuchs, D., and Holder, G. (2008). “An integral approach using both physical and computational modeling can be beneficial in addressing the full range of hydraulic design issues.” CDA Annual Conference, Winnipeg, Canada.

Usta, E. (2014). Numerical investigation of hydraulic characteristics of Laleli Dam spillway and comparison with physical model study, Master Thesis, Middle East Technical University, Ankara, Turkey.

Versteeg, H. K. and Malalasekera, W. (1996). An introduction to computational fluid dynamics, Longman Scientific and Technical, Longman Group Limited, Harlow, England.

Vischer, D. L. and Hager, W. H. (1997). Dam hydraulics, J. Wiley & Sons Ltd., England.

Wagner, W. E. (1967). “Glen Canyon diversion tunnel outlets.” J. Hydraulic Division, ASCE, Vol. 93, No. HY6, pp. 113-134.

Willey, J., Ewing, T., Wark, B., and Lesleighter, E. (2012). Comple-mentary use of physical and numerical modeling techniques in spillway design refinement, Commission Internationale Des Grands Barrages, Kyoto, June 2012.

Sketch of approach channel and spillway of the Kamal-Saleh dam

CFD modeling of flow pattern in spillway’s approach channel

Sustainable Water Resources Management volume 1, pages245–251 (2015)Cite this article

Abstract

Analysis of behavior and hydraulic characteristics of flow over the dam spillway is a complicated task that takes lots of money and time in water engineering projects planning. To model those hydraulic characteristics, several methods such as physical and numerical methods can be used. Nowadays, by utilizing new methods in computational fluid dynamics (CFD) and by the development of fast computers, the numerical methods have become accessible for use in the analysis of such sophisticated flows. The CFD softwares have the capability to analyze two- and three-dimensional flow fields. In this paper, the flow pattern at the guide wall of the Kamal-Saleh dam was modeled by Flow 3D. The results show that the current geometry of the left wall causes instability in the flow pattern and making secondary and vortex flow at beginning approach channel. This shape of guide wall reduced the performance of weir to remove the peak flood discharge.

댐 여수로 흐름의 거동 및 수리학적 특성 분석은 물 공학 프로젝트 계획에 많은 비용과 시간이 소요되는 복잡한 작업입니다. 이러한 수력학적 특성을 모델링하기 위해 물리적, 수치적 방법과 같은 여러 가지 방법을 사용할 수 있습니다. 요즘에는 전산유체역학(CFD)의 새로운 방법을 활용하고 빠른 컴퓨터의 개발로 이러한 정교한 흐름의 해석에 수치 방법을 사용할 수 있게 되었습니다. CFD 소프트웨어에는 2차원 및 3차원 유동장을 분석하는 기능이 있습니다. 본 논문에서는 Kamal-Saleh 댐 유도벽의 흐름 패턴을 Flow 3D로 모델링하였다. 결과는 왼쪽 벽의 현재 형상이 흐름 패턴의 불안정성을 유발하고 시작 접근 채널에서 2차 및 와류 흐름을 만드는 것을 보여줍니다. 이러한 형태의 안내벽은 첨두방류량을 제거하기 위해 둑의 성능을 저하시켰다.

Introduction

Spillways are one of the main structures used in the dam projects. Design of the spillway in all types of dams, specifically earthen dams is important because the inability of the spillway to remove probable maximum flood (PMF) discharge may cause overflow of water which ultimately leads to destruction of the dam (Das and Saikia et al. 2009; E 2013 and Novak et al. 2007). So study on the hydraulic characteristics of this structure is important. Hydraulic properties of spillway including flow pattern at the entrance of the guide walls and along the chute. Moreover, estimating the values of velocity and pressure parameters of flow along the chute is very important (Chanson 2004; Chatila and Tabbara 2004). The purpose of the study on the flow pattern is the effect of wall geometry on the creation transverse waves, flow instability, rotating and reciprocating flow through the inlet of spillway and its chute (Parsaie and Haghiabi 2015ab; Parsaie et al. 2015; Wang and Jiang 2010). The purpose of study on the values of velocity and pressure is to calculate the potential of the structure to occurrence of phenomena such as cavitation (Fattor and Bacchiega 2009; Ma et al. 2010). Sometimes, it can be seen that the spillway design parameters of pressure and velocity are very suitable, but geometry is considered not suitable for conducting walls causing unstable flow pattern over the spillway, rotating flows at the beginning of the spillway and its design reduced the flood discharge capacity (Fattor and Bacchiega 2009). Study on spillway is usually conducted using physical models (Su et al. 2009; Suprapto 2013; Wang and Chen 2009; Wang and Jiang 2010). But recently, with advances in the field of computational fluid dynamics (CFD), study on hydraulic characteristics of this structure has been done with these techniques (Chatila and Tabbara 2004; Zhenwei et al. 2012). Using the CFD as a powerful technique for modeling the hydraulic structures can reduce the time and cost of experiments (Tabbara et al. 2005). In CFD field, the Navier–Stokes equation is solved by powerful numerical methods such as finite element method and finite volumes (Kim and Park 2005; Zhenwei et al. 2012). In order to obtain closed-form Navier–Stokes equations turbulence models, such k − ε and Re-Normalisation Group (RNG) models have been presented. To use the technique of computational fluid dynamics, software packages such as Fluent and Flow 3D, etc., are provided. Recently, these two software packages have been widely used in hydraulic engineering because the performance and their accuracy are very suitable (Gessler 2005; Kim 2007; Kim et al. 2012; Milési and Causse 2014; Montagna et al. 2011). In this paper, to assess the flow pattern at Kamal-Saleh guide wall, numerical method has been used. All the stages of numerical modeling were conducted in the Flow 3D software.

Materials and methods

Firstly, a three-dimensional model was constructed according to two-dimensional map that was prepared for designing the spillway. Then a small model was prepared with scale of 1:80 and entered into the Flow 3D software; all stages of the model construction was conducted in AutoCAD 3D. Flow 3D software numerically solved the Navier–Stokes equation by finite volume method. Below is a brief reference on the equations that used in the software. Figure 1 shows the 3D sketch of Kamal-Saleh spillway and Fig. 2 shows the uploading file of the Kamal-Saleh spillway in Flow 3D software.

figure 1
Fig. 1
figure 2
Fig. 2

Review of the governing equations in software Flow 3D

Continuity equation at three-dimensional Cartesian coordinates is given as Eq (1).

vf∂ρ∂t+∂∂x(uAx)+∂∂x(vAy)+∂∂x(wAz)=PSORρ,vf∂ρ∂t+∂∂x(uAx)+∂∂x(vAy)+∂∂x(wAz)=PSORρ,

(1)

where uvz are velocity component in the x, y, z direction; A xA yA z cross-sectional area of the flow; ρ fluid density; PSOR the source term; v f is the volume fraction of the fluid and three-dimensional momentum equations given in Eq (2).

∂u∂t+1vf(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)=−1ρ∂P∂x+Gx+fx∂v∂t+1vf(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)=−1ρ∂P∂y+Gy+fy∂w∂t+1vf(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)=−1ρ∂P∂y+Gz+fz,∂u∂t+1vf(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)=−1ρ∂P∂x+Gx+fx∂v∂t+1vf(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)=−1ρ∂P∂y+Gy+fy∂w∂t+1vf(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)=−1ρ∂P∂y+Gz+fz,

(2)

where P is the fluid pressure; G xG yG z the acceleration created by body fluids; f xf yf z viscosity acceleration in three dimensions and v f is related to the volume of fluid, defined by Eq. (3). For modeling of free surface profile the VOF technique based on the volume fraction of the computational cells has been used. Since the volume fraction F represents the amount of fluid in each cell, it takes value between 0 and 1.

∂F∂t+1vf[∂∂x(FAxu)+∂∂y(FAyv)+∂∂y(FAzw)]=0∂F∂t+1vf[∂∂x(FAxu)+∂∂y(FAyv)+∂∂y(FAzw)]=0

(3)

Turbulence models

Flow 3D offers five types of turbulence models: Prantl mixing length, k − ε equation, RNG models, Large eddy simulation model. Turbulence models that have been proposed recently are based on Reynolds-averaged Navier–Stokes equations. This approach involves statistical methods to extract an averaged equation related to the turbulence quantities.

Steps of solving a problem in Flow 3D software

(1) Preparing the 3D model of spillway by AutoCAD software. (2) Uploading the file of 3D model in Flow 3D software and defining the problem in the software and checking the final mesh. (3) Choosing the basic equations that should be solved. (4) Defining the characteristics of fluid. (5) Defining the boundary conditions; it is notable that this software has a wide range of boundary conditions. (6) Initializing the flow field. (7) Adjusting the output. (8) Adjusting the control parameters, choice of the calculation method and solution formula. (9) Start of calculation. Figure 1 shows the 3D model of the Kamal-Saleh spillway; in this figure, geometry of the left and right guide wall is shown.

Figure 2 shows the uploading of the 3D spillway dam in Flow 3D software. Moreover, in this figure the considered boundary condition in software is shown. At the entrance and end of spillway, the flow rate or fluid elevation and outflow was considered as BC. The bottom of spillway was considered as wall and left and right as symmetry.

Model calibration

Calibration of the Flow 3D for modeling the effect of geometry of guide wall on the flow pattern is included for comparing the results of Flow 3D with measured water surface profile. Calibration the Flow 3D software could be conducted in two ways: first, changing the value of upstream boundary conditions is continued until the results of water surface profile of the Flow 3D along the spillway successfully covered the measurement water surface profile; second is the assessment the mesh sensitivity. Analyzing the size of mesh is a trial-and-error process where the size of mesh is evaluated form the largest to the smallest. With fining the size of mesh the accuracy of model is increased; whereas, the cost of computation is increased. In this research, the value of upstream boundary condition was adjusted with measured data during the experimental studies on the scaled model and the mesh size was equal to 1 × 1 × 1 cm3.

Results and discussion

The behavior of water in spillway is strongly affected by the flow pattern at the entrance of the spillway, the flow pattern formation at the entrance is affected by the guide wall, and choice of an optimized form for the guide wall has a great effect on rising the ability of spillway for easy passing the PMF, so any nonuniformity in flow in the approach channel can cause reduction of spillway capacity, reduction in discharge coefficient of spillway, and even probability of cavitation. Optimizing the flow guiding walls (in terms of length, angle and radius) can cause the loss of turbulence and flow disturbances on spillway. For this purpose, initially geometry proposed for model for the discharge of spillway dam, Kamal-Saleh, 80, 100, and 120 (L/s) were surveyed. These discharges of flow were considered with regard to the flood return period, 5, 100 and 1000 years. Geometric properties of the conducting guidance wall are given in Table 1.Table 1 Characteristics and dimensions of the guidance walls tested

Full size table

Results of the CFD simulation for passing the flow rate 80 (L/s) are shown in Fig. 3. Figure 3 shows the secondary flow and vortex at the left guide wall.

figure 3
Fig. 3

For giving more information about flow pattern at the left and right guide wall, Fig. 4 shows the flow pattern at the right side guide wall and Fig. 5 shows the flow pattern at the left side guide wall.

figure 4
Fig. 4
figure 5
Fig. 5

With regard to Figs. 4 and 5 and observing the streamlines, at discharge equal to 80 (L/s), the right wall has suitable performance but the left wall has no suitable performance and the left wall of the geometric design creates a secondary and circular flow, and vortex motion in the beginning of the entrance of spillway that creates cross waves at the beginning of spillway. By increasing the flow rate (Q = 100 L/s), at the inlet spillway secondary flows and vortex were removed, but the streamline is severely distorted. Results of the guide wall performances at the Q = 100 (L/s) are shown in Fig. 6.

figure 6
Fig. 6

Also more information about the performance of each guide wall can be derived from Figs. 7 and 8. These figures uphold that the secondary and vortex flows were removed, but the streamlines were fully diverted specifically near the left side guide wall.

figure 7
Fig. 7
figure 8
Fig. 8

As mentioned in the past, these secondary and vortex flows and diversion in streamline cause nonuniformity and create cross wave through the spillway. Figure 9 shows the cross waves at the crest of the spillway.

figure 9
Fig. 9

The performance of guide walls at the Q = 120 (L/s) also was assessed. The result of simulation is shown in Fig. 10. Figures 11 and 12 show a more clear view of the streamlines near to right and left side guide wall, respectively. As seen in Fig. 12, the left side wall still causes vortex flow and creation of and diversion in streamline.

figure 10
Fig. 10
figure 11
Fig. 11
figure 12
Fig. 12

The results of the affected left side guide wall shape on the cross wave creation are shown in Fig. 13. As seen from Fig. 3, the left side guide wall also causes cross wave at the spillway crest.

figure 13
Fig. 13

As can be seen clearly in Figs. 9 and 13, by moving from the left side to the right side of the spillway, the cross waves and the nonuniformity in flow is removed. By reviewing Figs. 9 and 13, it is found that the right side guide wall removes the cross waves and nonuniformity. With this point as aim, a geometry similar to the right side guide wall was considered instead of the left side guide wall. The result of simulation for Q = 120 (L/s) is shown in Fig. 14. As seen from this figure, the proposed geometry for the left side wall has suitable performance smoothly passing the flow through the approach channel and spillway.

figure 14
Fig. 14

More information about the proposed shape for the left guide wall is shown in Fig. 15. As seen from this figure, this shape has suitable performance for removing the cross waves and vortex flows.

figure 15
Fig. 15

Figure 16 shows the cross section of flow at the crest of spillway. As seen in this figure, the proposed shape for the left side guide wall is suitable for removing the cross waves and secondary flows.

figure 16
Fig. 16

Conclusion

Analysis of behavior and hydraulic properties of flow over the spillway dam is a complicated task which is cost and time intensive. Several techniques suitable to the purposes of study have been undertaken in this research. Physical modeling, usage of expert experience, usage of mathematical models on simulation flow in one-dimensional, two-dimensional and three-dimensional techniques, are some of the techniques utilized to study this phenomenon. The results of the modeling show that the CFD technique is a suitable tool for simulating the flow pattern in the guide wall. Using this tools helps the designer for developing the optimal shape for hydraulic structure which the flow pattern through them are important.

References

  • Chanson H (2004) 19—Design of weirs and spillways. In: Chanson H (ed) Hydraulics of open channel flow, 2nd edn. Butterworth-Heinemann, Oxford, pp 391–430Chapter Google Scholar 
  • Chatila J, Tabbara M (2004) Computational modeling of flow over an ogee spillway. Comput Struct 82:1805–1812Article Google Scholar 
  • Das MM, Saikia MD (2009) Irrigation and water power engineering. PHI Learning, New DelhiGoogle Scholar 
  • E, Department Of Army: U.S. Army Corps (2013) Hydraulic Design of Spillways. BiblioBazaar, CharlestonGoogle Scholar 
  • Fattor C, Bacchiega J (2009) Design conditions for morning-glory spillways: application to potrerillos dam spillway. Adv Water Res Hydraul Eng Springer, Berlin, pp 2123–2128Google Scholar 
  • Gessler D (2005) CFD modeling of spillway performance. Impacts Glob Clim Change. doi:10.1061/40792(173)398
  • Kim D-G (2007) Numerical analysis of free flow past a sluice gate. KSCE J Civ Eng 11:127–132Article Google Scholar 
  • Kim D, Park J (2005) Analysis of flow structure over ogee-spillway in consideration of scale and roughness effects by using CFD model. KSCE J Civ Eng 9:161–169Article Google Scholar 
  • Kim S, Yu K, Yoon B, Lim Y (2012) A numerical study on hydraulic characteristics in the ice Harbor-type fishway. KSCE J Civ Eng 16:265–272Article Google Scholar 
  • Ma X-D, Dai G-Q, Yang Q, Li G-J, Zhao L (2010) Analysis of influence factors of cavity length in the spillway tunnel downstream of middle gate chamber outlet with sudden lateral enlargement and vertical drop aerator. J Hydrodyn Ser B 22:680–686Article Google Scholar 
  • Milési G, Causse S (2014) 3D numerical modeling of a side-channel spillway. In: Gourbesville P, Cunge J, Caignaert G (eds) Advances in hydroinformatics. Springer, Singapore, pp 487–498Chapter Google Scholar 
  • Montagna F, Bellotti G, Di Risio M (2011) 3D numerical modeling of landslide-generated tsunamis around a conical island. Nat Hazards 58:591–608Article Google Scholar 
  • Novak P, Moffat AIB, Nalluri C, Narayanan R (2007) Hydraulic structures. Taylor & Francis, LondonGoogle Scholar 
  • Parsaie A, Haghiabi A (2015a) Computational modeling of pollution transmission in rivers. Appl Water Sci. doi:10.1007/s13201-015-0319-6
  • Parsaie A, Haghiabi A (2015b) The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir. Water Res Manag 29:973–985Article Google Scholar 
  • Parsaie A, Yonesi H, Najafian S (2015) Predictive modeling of discharge in compound open channel by support vector machine technique. Model Earth Syst Environ 1:1–6Article Google Scholar 
  • Su P-L, Liao H-S, Qiu Y, Li CJ (2009) Experimental study on a new type of aerator in spillway with low Froude number and mild slope flow. J Hydrodyn Ser B 21:415–422Article Google Scholar 
  • Suprapto M (2013) Increase spillway capacity using Labyrinth Weir. Procedia Eng 54:440–446Article Google Scholar 
  • Tabbara M, Chatila J, Awwad R (2005) Computational simulation of flow over stepped spillways. Comput Struct 83:2215–2224Article Google Scholar 
  • Wang J, Chen H (2009) Experimental study of elimination of vortices along guide wall of bank spillway. Adv Water Res Hydraul Eng Springer, Berlin, pp 2059–2063Google Scholar 
  • Wang Y, Jiang C (2010) Investigation of the surface vortex in a spillway tunnel intake. Tsinghua Sci Technol 15:561–565Article Google Scholar 
  • Zhenwei MU, Zhiyan Z, Tao Z (2012) Numerical simulation of 3-D flow field of spillway based on VOF method. Procedia Eng 28:808–812Article Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Water Engineering, Lorestan University, Khorram Abad, IranAbbas Parsaie, Amir Hamzeh Haghiabi & Amir Moradinejad

Corresponding author

Correspondence to Abbas Parsaie.

Reprints and Permissions

About this article

Cite this article

Parsaie, A., Haghiabi, A.H. & Moradinejad, A. CFD modeling of flow pattern in spillway’s approach channel. Sustain. Water Resour. Manag. 1, 245–251 (2015). https://doi.org/10.1007/s40899-015-0020-9

Download citation

  • Received28 April 2015
  • Accepted28 August 2015
  • Published15 September 2015
  • Issue DateSeptember 2015
  • DOIhttps://doi.org/10.1007/s40899-015-0020-9

Share this article

Anyone you share the following link with will be able to read this content:Get shareable link

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Approach channel
  • Kamal-Saleh dam
  • Guide wall
  • Flow pattern
  • Numerical modeling
  • Flow 3D software
    Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.

    BC Hydro Assesses Spillway Hydraulics with FLOW-3D

    by Faizal Yusuf, M.A.Sc., P.Eng.
    Specialist Engineer in the Hydrotechnical Department at BC Hydro

    BC Hydro, a public electric utility in British Columbia, uses FLOW-3D to investigate complex hydraulics issues at several existing dams and to assist in the design and optimization of proposed facilities.

    Faizal Yusuf, M.A.Sc., P.Eng., Specialist Engineer in the Hydrotechnical department at BC Hydro, presents three case studies that highlight the application of FLOW-3D to different types of spillways and the importance of reliable prototype or physical hydraulic model data for numerical model calibration.

    W.A.C. Bennett Dam
    At W.A.C. Bennett Dam, differences in the spillway geometry between the physical hydraulic model from the 1960s and the prototype make it difficult to draw reliable conclusions on shock wave formation and chute capacity from physical model test results. The magnitude of shock waves in the concrete-lined spillway chute are strongly influenced by a 44% reduction in the chute width downstream of the three radial gates at the headworks, as well as the relative openings of the radial gates. The shock waves lead to locally higher water levels that have caused overtopping of the chute walls under certain historical operations.Prototype spill tests for discharges up to 2,865 m3/s were performed in 2012 to provide surveyed water surface profiles along chute walls, 3D laser scans of the water surface in the chute and video of flow patterns for FLOW-3D model calibration. Excellent agreement was obtained between the numerical model and field observations, particularly for the location and height of the first shock wave at the chute walls (Figure 1).

    W.A.C에서 Bennett Dam, 1960년대의 물리적 수력학 모델과 프로토타입 사이의 여수로 형상의 차이로 인해 물리적 모델 테스트 결과에서 충격파 형성 및 슈트 용량에 대한 신뢰할 수 있는 결론을 도출하기 어렵습니다. 콘크리트 라이닝 방수로 낙하산의 충격파 크기는 방사형 게이트의 상대적인 개구부뿐만 아니라 헤드워크에 있는 3개의 방사형 게이트 하류의 슈트 폭이 44% 감소함에 따라 크게 영향을 받습니다. 충격파는 특정 역사적 작업에서 슈트 벽의 범람을 야기한 국부적으로 더 높은 수위로 이어집니다. 최대 2,865m3/s의 배출에 대한 프로토타입 유출 테스트가 2012년에 수행되어 슈트 벽을 따라 조사된 수면 프로필, 3D 레이저 스캔을 제공했습니다. FLOW-3D 모델 보정을 위한 슈트의 수면 및 흐름 패턴 비디오. 특히 슈트 벽에서 첫 번째 충격파의 위치와 높이에 대해 수치 모델과 현장 관찰 간에 탁월한 일치가 이루어졌습니다(그림 1).
    Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway.
    Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway.

    The calibrated FLOW-3D model confirmed that the design flood could be safely passed without overtopping the spillway chute walls as long as all three radial gates are opened as prescribed in existing operating orders with the outer gates open more than the inner gate.

    The CFD model also provided insight into the concrete damage in the spillway chute. Cavitation indices computed from FLOW-3D simulation results were compared with empirical data from the USBR and found to be consistent with the historical performance of the spillway. The numerical analysis supported field inspections, which concluded that deterioration of the concrete conditions in the chute is likely not due to cavitation.

    Strathcona Dam
    FLOW-3D was used to investigate poor approach conditions and uncertainties with the rating curves for Strathcona Dam spillway, which includes three vertical lift gates on the right abutment of the dam. The rating curves for Strathcona spillway were developed from a combination of empirical adjustments and limited physical hydraulic model testing in a flume that did not include geometry of the piers and abutments.

    Numerical model testing and calibration was based on comparisons with prototype spill observations from 1982 when all three gates were fully open, resulting in a large depression in the water surface upstream of the leftmost bay (Figure 2). The approach flow to the leftmost bay is distorted by water flowing parallel to the dam axis and plunging over the concrete retaining wall adjacent to the upstream slope of the earthfill dam. The flow enters the other two bays much more smoothly. In addition to very similar flow patterns produced in the numerical model compared to the prototype, simulated water levels at the gate section matched 1982 field measurements to within 0.1 m.

    보정된 FLOW-3D 모델은 외부 게이트가 내부 게이트보다 더 많이 열려 있는 기존 운영 명령에 규정된 대로 3개의 방사형 게이트가 모두 열리는 한 여수로 낙하산 벽을 넘지 않고 설계 홍수를 안전하게 통과할 수 있음을 확인했습니다.

    CFD 모델은 방수로 낙하산의 콘크리트 손상에 대한 통찰력도 제공했습니다. FLOW-3D 시뮬레이션 결과에서 계산된 캐비테이션 지수는 USBR의 경험적 데이터와 비교되었으며 여수로의 역사적 성능과 일치하는 것으로 나타났습니다. 수치 분석은 현장 검사를 지원했으며, 슈트의 콘크리트 상태 악화는 캐비테이션 때문이 아닐 가능성이 높다고 결론지었습니다.

    Strathcona 댐
    FLOW-3D는 Strathcona Dam 여수로에 대한 등급 곡선을 사용하여 열악한 접근 조건과 불확실성을 조사하는 데 사용되었습니다. 여기에는 댐의 오른쪽 접합부에 3개의 수직 리프트 게이트가 포함되어 있습니다. Strathcona 여수로에 대한 등급 곡선은 경험적 조정과 교각 및 교대의 형상을 포함하지 않는 수로에서 제한된 물리적 수리 모델 테스트의 조합으로 개발되었습니다.

    수치 모델 테스트 및 보정은 세 개의 수문이 모두 완전히 개방된 1982년의 프로토타입 유출 관측과의 비교를 기반으로 했으며, 그 결과 가장 왼쪽 만의 상류 수면에 큰 함몰이 발생했습니다(그림 2). 최좌단 만으로의 접근 흐름은 댐 축과 평행하게 흐르는 물과 흙채움댐의 상류 경사면에 인접한 콘크리트 옹벽 위로 떨어지는 물에 의해 왜곡됩니다. 흐름은 훨씬 더 원활하게 다른 두 베이로 들어갑니다. 프로토타입과 비교하여 수치 모델에서 생성된 매우 유사한 흐름 패턴 외에도 게이트 섹션에서 시뮬레이션된 수위는 1982년 현장 측정과 0.1m 이내로 일치했습니다.

    Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.
    Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.

    The calibrated CFD model produces discharges within 5% of the spillway rating curve for the reservoir’s normal operating range with all gates fully open. However, at higher reservoir levels, which may occur during passage of large floods (as shown in Figure 3), the difference between simulated discharges and the rating curves are greater than 10% as the physical model testing with simplified geometry and empirical corrections did not adequately represent the complex approach flow patterns. The FLOW-3D model provided further insight into the accuracy of rating curves for individual bays, gated conditions and the transition between orifice and free surface flow.

    보정된 CFD 모델은 모든 게이트가 완전히 열린 상태에서 저수지의 정상 작동 범위에 대한 여수로 등급 곡선의 5% 이내에서 배출을 생성합니다. 그러나 대규모 홍수가 통과하는 동안 발생할 수 있는 더 높은 저수지 수위에서는(그림 3 참조) 단순화된 기하학과 경험적 수정을 사용한 물리적 모델 테스트가 그렇지 않았기 때문에 모의 배출과 등급 곡선 간의 차이는 10% 이상입니다. 복잡한 접근 흐름 패턴을 적절하게 표현합니다. FLOW-3D 모델은 개별 베이, 게이트 조건 및 오리피스와 자유 표면 흐름 사이의 전환에 대한 등급 곡선의 정확도에 대한 추가 통찰력을 제공했습니다.

    Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.
    Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.

    John Hart Dam
    The John Hart concrete dam will be modified to include a new free crest spillway to be situated between an existing gated spillway and a low level outlet structure that is currently under construction. Significant improvements in the design of the proposed spillway were made through a systematic optimization process using FLOW-3D.

    The preliminary design of the free crest spillway was based on engineering hydraulic design guides. Concrete apron blocks are intended to protect the rock at the toe of the dam. A new right training wall will guide the flow from the new spillway towards the tailrace pool and protect the low level outlet structure from spillway discharges.

    FLOW-3D model results for the initial and optimized design of the new spillway are shown in Figure 4. CFD analysis led to a 10% increase in discharge capacity, significant decrease in roadway impingement above the spillway crest and improved flow patterns including up to a 5 m reduction in water levels along the proposed right wall. Physical hydraulic model testing will be used to confirm the proposed design.

    존 하트 댐
    John Hart 콘크리트 댐은 현재 건설 중인 기존 배수로와 저층 배수로 사이에 위치할 새로운 자유 마루 배수로를 포함하도록 수정될 것입니다. FLOW-3D를 사용한 체계적인 최적화 프로세스를 통해 제안된 여수로 설계의 상당한 개선이 이루어졌습니다.

    자유 마루 여수로의 예비 설계는 엔지니어링 수력학 설계 가이드를 기반으로 했습니다. 콘크리트 앞치마 블록은 댐 선단부의 암석을 보호하기 위한 것입니다. 새로운 오른쪽 훈련 벽은 새 여수로에서 테일레이스 풀로 흐름을 안내하고 여수로 배출로부터 낮은 수준의 배출구 구조를 보호합니다.

    새 여수로의 초기 및 최적화된 설계에 대한 FLOW-3D 모델 결과는 그림 4에 나와 있습니다. CFD 분석을 통해 방류 용량이 10% 증가하고 여수로 마루 위의 도로 충돌이 크게 감소했으며 최대 제안된 오른쪽 벽을 따라 수위가 5m 감소합니다. 제안된 설계를 확인하기 위해 물리적 수압 모델 테스트가 사용됩니다.

    Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.
    Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.

    Conclusion

    BC Hydro has been using FLOW-3D to investigate a wide range of challenging hydraulics problems for different types of spillways and water conveyance structures leading to a greatly improved understanding of flow patterns and performance. Prototype data and reliable physical hydraulic model testing are used whenever possible to improve confidence in the numerical model results.

    다양한 유형의 여수로 및 물 수송 구조로 인해 흐름 패턴 및 성능에 대한 이해가 크게 향상되었습니다. 프로토타입 데이터와 신뢰할 수 있는 물리적 유압 모델 테스트는 수치 모델 결과의 신뢰도를 향상시키기 위해 가능할 때마다 사용됩니다.

    About Flow Science, Inc.
    Based in Santa Fe, New Mexico USA, Flow Science was founded in 1980 by Dr. C. W. (Tony) Hirt, who was one of the principals in pioneering the “Volume-of-Fluid” or VOF method while working at the Los Alamos National Lab. FLOW-3D is a direct descendant of this work, and in the subsequent years, we have increased its sophistication with TruVOF, boasting pioneering improvements in the speed and accuracy of tracking distinct liquid/gas interfaces. Today, Flow Science products offer complete multiphysics simulation with diverse modeling capabilities including fluid-structure interaction, 6-DoF moving objects, and multiphase flows. From inception, our vision has been to provide our customers with excellence in flow modeling software and services.

    Fig. 1. Schematic of the hydrogen storage vessel.

    Simulation and evaluation of a hydrogen storage system using hydrogen storage alloy for a chemical CO2 fixation and utilization system

    화학적 CO 2 고정 및 이용 시스템 을 위한 수소 저장 합금을 이용한 수소 저장 시스템의 시뮬레이션 및 평가

    K.NishimuraaC.InazumiaK.OgurobI.UeharacY.ItohdS.FujitanidI.YonezudaResearch Institute of Innovative Technology for the Earth, Ikeda City, Osaka 563-8577, JapanbOsaka National Research Institute, 1-8-31, Midorigaoka, Ikeda City, Osaka 563-8577, JapancToyama Industrial Technology Center, 150, Futagami-machi, Takaoka City, Toyama 933-0981, JapandSanyo Electric Co. Ltd, 1-18-13, Hashiridani, Hirakata-City, Osaka 573-8534, Japan

    https://doi.org/10.1016/S0360-3199(00)00008-2Get rights and content

    Abstract

    Two-dimensional model and simulation programs for designing a hydrogen storage vessel using hydrogen absorbing alloy with tubular heat exchanger were developed with the “Flow-3D” program in which physical properties of the hydrogen storage alloy were incorporated. The calculated results showed good agreement with experimental data obtained from 10 Nm3 scale hydrogen storage vessel with MmNi4.64Al0.36 alloy. It was concluded that this simulation program could be an adequate tool to design a practical scale hydrogen storage system for hydrogen from solid polymer electrolyte water electrolysis and to evaluate its hydrogen storage performance.

    관형 열교환기를 갖는 수소흡수합금을 이용한 수소저장용기 설계를 위한 2차원 모델 및 시뮬레이션 프로그램은 수소저장합금의 물성을 반영한 “Flow-3D” 프로그램으로 개발하였다. 계산된 결과는 MmNi 4.64 Al 0.36 합금 이 있는 10 Nm 3 규모의 수소 저장 용기 에서 얻은 실험 데이터와 잘 일치하는 것으로 나타났습니다. 이 시뮬레이션 프로그램은 고체 고분자 전해질 물 전기분해에서 수소를 위한 실용적인 규모의 수소 저장 시스템을 설계하고 수소 저장 성능을 평가하는 데 적절한 도구가 될 수 있다는 결론을 내렸습니다.

      Keywords

      Hydrogen storage alloy, Chemical CO2 fixation and utilization systems, Simulation, Hydrogen storage vessel

      Fig. 1. Schematic of the hydrogen storage vessel.
      Fig. 1. Schematic of the hydrogen storage vessel.
      Fig. 2. Cross-section of the reaction bed, tube exchangers and thermocouples (A±L).
      Fig. 2. Cross-section of the reaction bed, tube exchangers and thermocouples (A±L).

      References

      [1] Masuda S. In: Book of abstracts of second international conference on carbon dioxide removal, 1994. p. 24±7.
      [2] Mayer U, Groll M, Supper W. J Less-Common Metals 1987;131:235±44.
      [3] Choi H, Mills AF. Int J Heat Mass Transfer 1990;33:1281±8.
      [4] Sun DW, Deng SJ. J Less-Common Metals 1989;155:271±9.
      [5] Sun DW, Deng SJ. Int J Hydrogen Energy 1990;15:807± 16.
      [6] Jemini A, Nasrallah B. Int J Hydrogen Energy 1995;20:43±52.
      [7] Fisher PW, Watson JS. Int J Hydrogen Energy 1983;8:109±19.
      [8] Suda S, Kobayashi N, Morishita E, Takemoto N. J Less-Common Metals 1983;89:325±32.
      [9] Fujitani S, Nakamura H, Furukawa A, Nasako K, Satoh K, Imoto T, Saito T, Yonezu I. Z Phys Chem Bd
      1993;179:27.
      [10] Hahne E, Kallweit J. Int J Hydrogen Energy 1998;23:107±14.
      [11] Pons M, Dantzer P. J Less-Common Metals 1991;172(174):1147±56.
      [12] Pons M, Dantzer P, Guilleminot JJ. Int J Heat Mass Transfer 1993;36:2635±46.
      [13] Evance MJB, Everett DH. J Less-Common Metals 1976;49:13.
      [14] Pons M, Dantzer P. Int J Hydrogen Energy 1994;19:611±6.

      Fig. 8. Comparison of the wave pattern for : (a) Ship wave only; (b) Ship wave in the presence of a following current.

      균일한 해류가 존재하는 선박 파도의 수치 시뮬레이션

      Numerical simulation of ship waves in the presence of a uniform current

      CongfangAiYuxiangMaLeiSunGuohaiDongState Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China

      Highlights

      • Ship waves in the presence of a uniform current are studied by a non-hydrostatic model.

      • Effects of a following current on characteristic wave parameters are investigated.

      • Effects of an opposing current on characteristic wave parameters are investigated.

      • The response of the maximum water level elevation to the ship draft is discussed.

      Abstract

      이 논문은 균일한 해류가 존재할 때 선박파의 생성 및 전파를 시뮬레이션하기 위한 비정역학적 모델을 제시합니다. 선박 선체의 움직임을 표현하기 위해 움직이는 압력장 방법이 모델에 통합되었습니다.

      뒤따르거나 반대 방향의 균일한 흐름이 있는 경우의 선박 파도의 수치 결과를 흐름이 없는 선박 파도의 수치 결과와 비교합니다. 추종 또는 반대 균일 전류가 존재할 때 계산된 첨단선 각도는 분석 솔루션과 잘 일치합니다. 추종 균일 전류와 반대 균일 전류가 특성파 매개변수에 미치는 영향을 제시하고 논의합니다.

      선박 흘수에 대한 최대 수위 상승의 응답은 추종 또는 반대의 균일한 흐름이 있는 경우에도 표시되며 흐름이 없는 선박 파도의 응답과 비교됩니다. 선박 선체 측면의 최대 수위 상승은 Froude 수 Fr’=Us/gh의 특정 범위에 대해 다음과 같은 균일한 흐름의 존재에 의해 증가될 수 있음이 밝혀졌습니다.

      여기서 Us는 선박 속도이고 h는 물입니다. 깊이. 균일한 해류를 무시하면 추종류나 반대류가 존재할 때 선박 흘수에 대한 최대 수위 상승의 응답이 과소평가될 수 있습니다.

      본 연구는 선박파의 해석에 있어 균일한 해류의 영향을 고려해야 함을 시사합니다.

      This paper presents a non-hydrostatic model to simulate the generation and propagation of ship waves in the presence of a uniform current. A moving pressure field method is incorporated into the model to represent the movement of a ship hull. Numerical results of ship waves in the presence of a following or an opposing uniform current are compared with those of ship waves without current. The calculated cusp-line angles in the presence of a following or opposing uniform current agree well with analytical solutions. The effects of a following uniform current and an opposing uniform current on the characteristic wave parameters are presented and discussed. The response of the maximum water level elevation to the ship draft is also presented in the presence of a following or an opposing uniform current and is compared with that for ship waves without current. It is found that the maximum water level elevation lateral to the ship hull can be increased by the presence of a following uniform current for a certain range of Froude numbers Fr′=Us/gh, where Us is the ship speed and h is the water depth. If the uniform current is neglected, the response of the maximum water level elevation to the ship draft in the presence of a following or an opposing current can be underestimated. The present study indicates that the effect of a uniform current should be considered in the analysis of ship waves.

      Keywords

      Ship waves, Non-hydrostatic model, Following current, Opposing current, Wave parameters

      1. Introduction

      Similar to wind waves, ships sailing across the sea can also create free-surface undulations ranging from ripples to waves of large size (Grue, 20172020). Ship waves can cause sediment suspension and engineering structures damage and even pose a threat to flora and fauna living near the embankments of waterways (Dempwolff et al., 2022). It is quite important to understand ship waves in various environments. The study of ship waves has been conducted over a century. A large amount of research (Almström et al., 2021Bayraktar and Beji, 2013David et al., 2017Ertekin et al., 1986Gourlay, 2001Havelock, 1908Lee and Lee, 2019Samaras and Karambas, 2021Shi et al., 2018) focused on the generation and propagation of ship waves without current. When a ship navigates in the sea or in a river where tidal flows or river flows always exist, the effect of currents should be taken into account. However, the effect of currents on the characteristic parameters of ship waves is still unclear, because very few publications have been presented on this topic.

      Over the past two decades, many two-dimensional (2D) Boussinesq-type models (Bayraktar and Beji, 2013Dam et al., 2008David et al., 2017Samaras and Karambas, 2021Shi et al., 2018) were developed to examine ship waves. For example, Bayraktar and Beji (2013) solved Boussinesq equations with improved dispersion characteristics to simulate ship waves due to a moving pressure field. David et al. (2017) employed a Boussinesq-type model to investigate the effects of the pressure field and its propagation speed on characteristic wave parameters. All of these Boussinesq-type models aimed to simulate ship waves without current except for that of Dam et al. (2008), who investigated the effect of currents on the maximum wave height of ship waves in a narrow channel.

      In addition to Boussinesq-type models, numerical models based on the Navier-Stokes equations (NSE) or Euler equations are also capable of resolving ship waves. Lee and Lee (20192021) employed the FLOW-3D model to simulate ship waves without current and ship waves in the presence of a uniform current to confirm their equations for ship wave crests. FLOW-3D is a computational fluid dynamics (CFD) software based on the NSE, and the volume of fluid (VOF) method is used to capture the moving free surface. However, VOF-based NSE models are computationally expensive due to the treatment of the free surface. To efficiently track the free surface, non-hydrostatic models employ the so-called free surface equation and can be solved efficiently. One pioneering application for the simulation of ship waves by the non-hydrostatic model was initiated by Ma (2012) and named XBeach. Recently, Almström et al. (2021) validated XBeach with improved dispersive behavior by comparison with field measurements. XBeach employed in Almström et al. (2021) is a 2-layer non-hydrostatic model and is accurate up to Kh=4 for the linear dispersion relation (de Ridder et al., 2020), where K=2π/L is the wavenumber. L is the wavelength, and h is the still water depth. However, no applications of non-hydrostatic models on the simulation of ship waves in the presence of a uniform current have been published. For more advances in the numerical modelling of ship waves, the reader is referred to Dempwolff et al. (2022).

      This paper investigates ship waves in the presence of a uniform current by using a non-hydrostatic model (Ai et al., 2019), in which a moving pressure field method is incorporated to represent the movement of a ship hull. The model solves the incompressible Euler equations by using a semi-implicit algorithm and is associated with iterating to solve the Poisson equation. The model with two, three and five layers is accurate up to Kh= 7, 15 and 40, respectively (Ai et al., 2019) in resolving the linear dispersion relation. To the best of our knowledge, ship waves in the presence of currents have been studied theoretically (Benjamin et al., 2017Ellingsen, 2014Li and Ellingsen, 2016Li et al., 2019.) and numerically (Dam et al., 2008Lee and Lee, 20192021). However, no publications have presented the effects of a uniform current on characteristic wave parameters except for Dam et al. (2008), who investigated only the effect of currents on the maximum wave height in a narrow channel for the narrow relative Froude number Fr=(Us−Uc)/gh ranging from 0.47 to 0.76, where Us is the ship speed and Uc is the current velocity. To reveal the effect of currents on the characteristic parameters of ship waves, the main objectives of this paper are (1) to validate the capability of the proposed model to resolve ship waves in the presence of a uniform current, (2) to investigate the effects of a following or an opposing current on characteristic wave parameters including the maximum water level elevation and the leading wave period in the ship wave train, (3) to show the differences in characteristic wave parameters between ship waves in the presence of a uniform current and those without current when the same relative Froude number Fr is specified, and (4) to examine the response of the maximum water level elevation to the ship draft in the presence of a uniform current.

      The remainder of this paper is organized as follows. The non-hydrostatic model for ship waves is described in Section 2. Section 3 presents numerical validations for ship waves. Numerical results and discussions about the effects of a uniform current on characteristic wave parameters are provided in Section 4, and a conclusion is presented in Section 5.

      2. Non-hydrostatic model for ship waves

      2.1. Governing equations

      The 3D incompressible Euler equations are expressed in the following form:(1)∂u∂x+∂v∂y+∂w∂z=0(2)∂u∂t+∂u2∂x+∂uv∂y+∂uw∂z=−∂p∂x(3)∂v∂t+∂uv∂x+∂v2∂y+∂vw∂z=−∂p∂y(4)∂w∂t+∂uw∂x+∂vw∂y+∂w2∂z=−∂p∂z−gwhere t is the time; u(x,y,z,t), v(x,y,z,t) and w(x,y,z,t) are the velocity components in the horizontal x, y and vertical z directions, respectively; p(x,y,z,t) is the pressure divided by a constant reference density; and g is the gravitational acceleration.

      The pressure p(x,y,z,t) can be expressed as(5)p=ps+g(η−z)+qwhere ps(x,y,t) is the pressure at the free surface, η(x,y,t) is the free surface elevation, and q(x,y,z,t) is the non-hydrostatic pressure.

      η(x,y,t) is calculated by the following free-surface equation:(6)∂η∂t+∂∂x∫−hηudz+∂∂y∫−hηvdz=0where z=−h(x,y) is the bottom surface.

      To generate ship waves, ps(x,y,t) is determined by the following slender-body type pressure field (Bayraktar and Beji, 2013David et al., 2017Samaras and Karambas, 2021):

      For −L/2≤x’≤L/2,−B/2≤y’≤B/2(7)ps(x,y,t)|t=0=pm[1−cL(x′/L)4][1−cB(y′/B)2]exp⁡[−a(y′/B)2]where x′=x−x0 and y′=y−y0. (x0,y0) is the center of the pressure field, pm is the peak pressure defined at (x0,y0), and L and B are the lengthwise and breadthwise parameters, respectively. cL, cB and a are set to 16, 2 and 16, respectively.

      2.2. Numerical algorithms

      In this study, the generation of ship waves is incorporated into the semi-implicit non-hydrostatic model developed by Ai et al. (2019). The 3D grid system used in the model is built from horizontal rectangular grids by adding horizontal layers. The horizontal layers are distributed uniformly along the water depth, which means the layer thickness is defined by Δz=(η+h)/Nz, where Nz is the number of horizontal layers.

      In the solution procedure, the first step is to generate ship waves by implementing Eq. (7) together with the prescribed ship track. In the second step, Eqs. (1)(2)(3)(4) are solved by the pressure correction method, which can be subdivided into three stages. The first stage is to compute intermediate velocities un+1/2, vn+1/2, and wn+1/2 by solving Eqs. (2)(3)(4), which contain the non-hydrostatic pressure at the preceding time level. In the second stage, the Poisson equation for the non-hydrostatic pressure correction term is solved on the graphics processing unit (GPU) in conjunction with the conjugate gradient method. The third stage is to compute the new velocities un+1, vn+1, and wn+1 by correcting the intermediate values after including the non-hydrostatic pressure correction term. In the discretization of Eqs. (2)(3), the gradient terms of the water surface ∂η/∂x and ∂η/∂y are discretized by means of the semi-implicit method (Vitousek and Fringer, 2013), in which the implicitness factor θ=0.5 is used. The model is second-order accurate in time for free-surface flows. More details about the model can be found in Ai et al. (2019).

      3. Model validation

      In this section, we validate the proposed model in resolving ship waves. The numerical experimental conditions are provided in Table 1 and Table 2. In Table 2, Case A with the current velocity of Uc = 0.0 m/s represents ship waves without current. Both Case B and Case C correspond to the cases in the presence of a following current, while Case D and Case E represent the cases in the presence of an opposing current. The current velocities are chosen based on the observed currents at 40.886° N, 121.812° E, which is in the Liaohe Estuary. The measured data were collected from 14:00 on September 18 (GMT + 08:00) to 19:00 on September 19 in 2021. The maximum flood velocity is 1.457 m/s, and the maximum ebb velocity is −1.478 m/s. The chosen current velocities are between the maximum flood velocity and the maximum ebb velocity.

      Table 1. Summary of ship speeds.

      CaseWater depth h (m)Ship speed Us (m/s)Froude number Fr′=Us/gh
      16.04.570.6
      26.05.350.7
      36.06.150.8
      46.06.900.9
      56.07.0930.925
      66.07.280.95
      76.07.4760.975
      86.07.861.025
      96.08.061.05
      106.08.2431.075
      116.08.451.1
      126.09.201.2
      136.09.971.3
      146.010.751.4
      156.011.501.5
      166.012.301.6
      176.013.051.7
      186.013.801.8
      196.014.601.9
      206.015.352.0

      Table 2. Summary of current velocities.

      CaseABCDE
      Current velocity
      Uc (m/s)
      0.00.51.0−0.5−1.0

      Notably, the Froude number Fr′=Us/gh presented in Table 1 is defined by the ship speed Us only and is different from the relative Froude number Fr when a uniform current is presented. According to the theory of Lee and Lee (2021), with the same relative Froude number, the cusp-line angles in the presence of a following or an opposing uniform current are identical to those without current. As a result, for the test cases presented in Table 1Table 2, all calculated cusp-line angles follow the analytical solution of Havelock (1908), when the relative Froude number Fr is introduced.

      As shown in Fig. 1, the dimensions of the computational domain are −420≤x≤420 m and −200≤y≤200 m, which are similar to those of David et al. (2017). The ship track follows the x axis and ranges from −384 m to 384 m. The ship hull is represented by Eq. (7), in which the length L and the beam B are set to 14.0 m and 7.0 m, respectively, and the peak pressure value is pm= 5000 Pa. In the numerical simulations, grid convergence tests reveal that the horizontal grid spacing of Δx=Δy= 1.0 m and two horizontal layers are adequate. The numerical results with different numbers of horizontal layers are shown in the Appendix.

      Fig. 1

      Fig. 2Fig. 3 compare the calculated cusp-line angles θc with the analytical solutions of Havelock (1908) for ship waves in the presence of a following uniform current and an opposing uniform current, respectively. The calculated cusp-line angles without current are also depicted in Fig. 2Fig. 3. All calculated cusp-line angles are in good agreement with the analytical solutions, except that the model tends to underpredict the cusp-line angle for 0.9<Fr<1.0. Notably, a similar underprediction of the cusp-line angle can also be found in David et al. (2017).

      Fig. 2
      Fig. 3

      4. Results and discussions

      This section presents the effects of a following current and opposing current on the maximum water level elevation and the leading wave period in the wave train based on the test cases presented in Table 1Table 2. Moreover, the response of the maximum water level elevation to the ship draft in the presence of a uniform current is examined.

      4.1. Effects of a following current on characteristic wave parameters

      To present the effect of a following current on the maximum wave height, the variations of the maximum water level elevation ηmax with the Froude number Fr′ at gauge points G1 and G2 are depicted in Fig. 4. The positions of gauge points G1 and G2 are shown in Fig. 1. The maximum water level elevation is an analogue to the maximum wave height and is presented in this study, because maximum wave heights at different positions away from the ship track vary throughout the wave train (David et al., 2017). In general, the variations of ηmax with the Froude number Fr′ in the three cases show a similar behavior, in which with the increase in Fr′, ηmax increases and then decreases. The presence of the following currents decreases ηmax for Fr′≤0.8 and Fr′≥1.2. Specifically, the following currents have a significant effect on ηmax for Fr′≤0.8. Notably, ηmax can be increased by the presence of the following currents for 0.9≤Fr′≤1.1. Compared with Case A, at location G1 ηmax is amplified 1.25 times at Fr′=0.925 in Case B and 1.31 times at Fr′=1.025 in Case C. Similarly, at location G2 ηmax is amplified 1.15 times at Fr′=1.025 in Case B and 1.11 times at Fr′=1.075 in Case C. The fact that ηmax can be increased by the presence of a following current for 0.9≤Fr′≤1.1 implies that if a following uniform current is neglected, then ηmax may be underestimated.

      Fig. 4

      To show the effect of a following current on the wave period, Fig. 5 depicts the variation of the leading wave period Tp in the wave train at gauge point G2 with the Froude number Fr′. Similar to David et al. (2017), Tp is defined by the wave period of the first wave with a leading trough in the wave train. The leading wave periods for Fr′= 0.6 and 0.7 were not given in Case B and Case C, because the leading wave heights for Fr′= 0.6 and 0.7 are too small to discern the leading wave periods. Compared with Case A, the presence of a following current leads to a larger Tp for 0.925≤Fr′≤1.1 and a smaller Tp for Fr′≥1.3. For Fr′= 0.8 and 0.9, Tp in Case B is larger than that in Case A and Tp in Case C is smaller than that in Case A. In all three cases, Tp decreases with increasing Fr′ for Fr′>1.0. However, this decreasing trend becomes very gentle after Fr′≥1.4. Notably, as shown in Fig. 5, Fr′=1.2 tends to be a transition point at which the following currents have a very limited effect on Tp. Moreover, before the transition point, Tp in Case B and Case C are larger than that in Case A (only for 0.925≤Fr′≤1.2), but after the transition point the reverse is true.

      Fig. 5

      As mentioned previously, the cusp-line angles for ship waves in the presence of a following or an opposing current are identical to those for ship waves only with the same relative Froude number Fr. However, with the same Fr, the characteristic parameters of ship waves in the presence of a following or an opposing current are quite different from those of ship waves without current. Fig. 6 shows the variations of the maximum water level elevation ηmax with Fr at gauge points G1 and G2 for ship waves in the presence of a following uniform current. Overall, the relationship curves between ηmax and Fr in Case B and Case C are lower than those in Case A. It is inferred that with the same Fr, ηmax in the presence of a following current is smaller than that without current. Fig. 7 shows the variation of the leading wave period Tp in the wave train at gauge point G2 with Fr for ship waves in the presence of a following uniform current. The overall relationship curves between Tp and Fr in Case B and Case C are also lower than those in Case A for 0.9≤Fr≤2.0. It can be inferred that with the same Fr, Tp in the presence of a following current is smaller than that without current for Fr≥0.9.

      Fig. 6
      Fig. 7

      To compare the numerical results between the case of ship waves only and the case of ship waves in the presence of a following current with the same Fr, Fig. 8 shows the wave patterns for Fr=1.2. To obtain the case of ship waves in the presence of a following current with Fr=1.2, the ship speed Us=9.7 m/s and the current velocity Uc=0.5 m/s are adopted. Fig. 8 indicates that both the calculated cusp-line angles for the case of Us=9.2 m/s and Uc=0.0 m/s and the case of Us=9.7 m/s and Uc=0.5 m/s are equal to 56.5°, which follows the theory of Lee and Lee (2021)Fig. 9 depicts the comparison of the time histories of the free surface elevation at gauge point G2 for Fr=1.2 between the case of ship waves only and the case of ship waves in the presence of a following current. The time when the ship wave just arrived at gauge point G2 is defined as t′=0. Both the maximum water level elevation and the leading wave period in the case of Us=9.2 m/s and Uc=0.0 m/s are larger than those in the case of Us=9.7 m/s and Uc=0.5 m/s, which is consistent with the inferences based on Fig. 6Fig. 7.

      Fig. 8
      Fig. 8. Comparison of the wave pattern for Fr=1.2: (a) Ship wave only; (b) Ship wave in the presence of a following current.
      Fig. 9
      Fig. 9. Comparison of the time histories of the free surface elevation at gauge point G2 for between case of ship waves only and case of ship waves in the presence of a following current.

      Fig. 10 shows the response of the maximum water level elevation ηmax to the ship draft at gauge point G2 for Fr′= 1.2 in the presence of a following uniform current. pm ranges from 2500 Pa to 40,000 Pa with an interval of Δp= 2500 Pa pm0= 2500 Pa represents a reference case. ηmax0 denotes the maximum water level elevation corresponding to the case of pm0= 2500 Pa. The best-fit linear trend lines obtained by linear regression analysis for the three responses are also depicted in Fig. 10. In general, all responses of ηmax to the ship draft show a linear relationship. The coefficients of determination for the three linear trend lines are R2= 0.9901, 0.9941 and 0.9991 for Case A, Case B and Case C, respectively. R2 is used to measure how close the numerical results are to the linear trend lines. The closer R2 is to 1.0, the more linear the numerical results tend to be. As a result, the relationship curve between ηmax and the ship draft in the presence of a following uniform current tends to be more linear than that without current. Notably, with the increase in pmpm0, ηmax increases faster in Case B and Case C than Case A. This implies that neglecting the following currents can lead to the underestimation of the response of ηmax to the ship draft.

      Fig. 10

      4.2. Effects of an opposing current on characteristic wave parameters

      Fig. 11 shows the variations of the maximum water level elevation ηmax with the Froude number Fr′ at gauge points G1 and G2 for ship waves in the presence of an opposing uniform current. The presence of opposing uniform currents leads to a significant reduction in ηmax at the two gauge points for 0.6≤Fr′≤2.0. Especially for Fr′=0.6, the decrease in ηmax is up to 73.8% in Case D and 78.4% in Case E at location G1 and up to 93.8% in Case D and 95.3% in Case E at location G2 when compared with Case A. Fig. 12 shows the variations of the leading wave period Tp at gauge point G2 with the Froude number Fr′ for ship waves in the presence of an opposing uniform current. The leading wave periods for Fr′= 0.6 and 0.7 were also not provided in Case D and Case E due to the small leading wave heights. In general, Tp decreases with increasing Fr′ in Case D and Case E for 0.8≤Fr′≤2.0. Tp in Case D and Case E are larger than that in Case A for Fr′≥1.0.

      Fig. 11
      Fig. 12

      Fig. 13 depicts the variations of the maximum water level elevation ηmax with the relative Froude number Fr at gauge points G1 and G2 for ship waves in the presence of an opposing uniform current. Similar to Case B and Case C shown in Fig. 6, the overall relationship curves between ηmax and Fr in Case D and Case E are lower than those in Case A. This implies that with the same Fr, ηmax in the presence of an opposing current is also smaller than that without current. Fig. 14 depicts the variations of the leading wave period Tp in the wave train at gauge point G2 with Fr for ship waves in the presence of an opposing uniform current. Similar to Case B and Case C shown in Fig. 7, the overall relationship curves between Tp and Fr in Case D and Case E are lower than those in Case A for 0.9≤Fr≤2.0. This also implies that with the same Fr, Tp in the presence of an opposing current is smaller than that without current.

      Fig. 13
      Fig. 14

      Fig. 15 shows a comparison of the wave pattern for Fr=1.2 between the case of ship waves only and the case of ship waves in the presence of an opposing current. The case of the ship wave in the presence of an opposing current with Fr=1.2 is obtained by setting the ship speed Us=8.7 m/s and the current velocity Uc=−0.5 m/s. As expected (Lee and Lee, 2021), both calculated cusp-line angles are identical. Fig. 16 depicts the comparison of the time histories of the free surface elevation at gauge point G2 for Fr=1.2 between the case of ship waves only and the case of ship waves in the presence of an opposing current. The maximum water level elevation in the case of Us=9.2 m/s and Uc=0.0 m/s is larger than that in the case of Us=8.7 m/s and Uc=−0.5 m/s, while the reverse is true for the leading wave period. Fig. 16 is consistent with the inferences based on Fig. 13Fig. 14.

      Fig. 15
      Fig. 16

      Fig. 17 depicts the response of the maximum water level elevation ηmax to the ship draft at gauge point G2 for Fr′= 1.2 in the presence of an opposing uniform current. Similarly, the response of ηmax to the ship draft in the presence of an opposing uniform current shows a linear relationship. The coefficients of determination for the three linear trend lines are R2= 0.9901, 0.9955 and 0.9987 for Case A, Case D and Case E, respectively. This indicates that the relationship curve between ηmax and the ship draft in the presence of an opposing uniform current also tends to be more linear than that without current. In addition, ηmax increases faster with increasing pmpm0 in Case D and Case E than Case A, implying that the response of ηmax to the ship draft can also be underestimated by neglecting opposing currents.

      Fig. 17

      5. Conclusions

      A non-hydrostatic model incorporating a moving pressure field method was used to investigate characteristic wave parameters for ship waves in the presence of a uniform current. The calculated cusp-line angles for ship waves in the presence of a following or an opposing uniform current were in good agreement with analytical solutions, demonstrating that the proposed model can accurately resolve ship waves in the presence of a uniform current.

      The model results showed that the presence of a following current can result in an increase in the maximum water level elevation ηmax for 0.9≤Fr′≤1.1, while the presence of an opposing current leads to a significant reduction in ηmax for 0.6≤Fr′≤2.0. The leading wave period Tp can be increased for 0.925≤Fr′≤1.2 and reduced for Fr′≥1.3 due to the presence of a following current. However, the presence of an opposing current leads to an increase in Tp for Fr′≥1.0.

      Although with the same relative Froude number Fr, the cusp-line angles for ship waves in the presence of a following or an opposing current are identical to those for ship waves without current, the maximum water level elevation ηmax and leading wave period Tp in the presence of a following or an opposing current are quite different from those without current. The present model results imply that with the same Fr, ηmax in the presence of a following or an opposing current is smaller than that without current for Fr≥0.6, and Tp in the presence of a following or an opposing current is smaller than that without current for Fr≥0.9.

      The response of ηmax to the ship draft in the presence of a following current or an opposing current is similar to that without current and shows a linear relationship. However, the presence of a following or an opposing uniform current results in more linear responses of ηmax to the ship draft. Moreover, more rapid responses of ηmax to the ship draft are obtained when a following current or an opposing current is presented. This implies that the response of ηmax to the ship draft in the presence of a following current or an opposing current can be underestimated if the uniform current is neglected.

      The present results have implications for ships sailing across estuarine and coastal environments, where river flows or tidal flows are significant. In these environments, ship waves can be larger than expected and the response of the maximum water level elevation to the ship draft may be more remarkable. The effect of a uniform current should be considered in the analysis of ship waves.

      The present study considered only slender-body type ships. For different hull shapes, the effects of a uniform current on characteristic wave parameters need to be further investigated. Moreover, the effects of an oblique uniform current on ship waves need to be examined in future work.

      CRediT authorship contribution statement

      Congfang Ai: Conceptualization, Methodology, Software, Validation, Writing – original draft, Funding acquisition. Yuxiang Ma: Conceptualization, Methodology, Funding acquisition, Writing – review & editing. Lei Sun: Conceptualization, Methodology. Guohai Dong: Supervision, Funding acquisition.

      Declaration of competing interest

      The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

      Acknowledgments

      This research is financially supported by the National Natural Science Foundation of China (Grant No. 521712485172010501051979029), LiaoNing Revitalization Talents Program (Grant No. XLYC1807010) and the Fundamental Research Funds for the Central Universities (Grant No. DUT21LK01).

      Appendix. Numerical results with different numbers of horizontal layers

      Fig. 18 shows comparisons of the time histories of the free surface elevation at gauge point G1 for Case B and Fr′= 1.2 between the three sets of numerical results with different numbers of horizontal layers. The maximum water level elevations ηmax obtained by Nz= 3 and 4 are 0.24% and 0.35% larger than ηmax with Nz= 2, respectively. Correspondingly, the leading wave periods Tp obtained by Nz= 3 and 4 are 0.45% and 0.55% larger than Tp with Nz= 2, respectively. In general, the three sets of numerical results are very close. To reduce the computational cost, two horizontal layers Nz= 2 were chosen for this study.

      Fig. 18

      Data availability

      Data will be made available on request.

      References

      Ai et al., 2019

      C. Ai, Y. Ma, C. Yuan, G. Dong

      Development and assessment of semi-implicit nonhydrostatic models for surface water waves

      Ocean Model., 144 (2019), Article 101489

      ArticleDownload PDFView Record in ScopusGoogle ScholarAlmström et al., 2021

      B. Almström, D. Roelvink, M. Larson

      Predicting ship waves in sheltered waterways – an application of XBeach to the Stockholm Archipelago, Sweden

      Coast. Eng., 170 (2021), Article 104026

      ArticleDownload PDFView Record in ScopusGoogle ScholarBayraktar and Beji, 2013

      D. Bayraktar, S. Beji

      Numerical simulation of waves generated by a moving pressure field

      Ocean Eng., 59 (2013), pp. 231-239

      Google ScholarBenjamin et al., 2017

      K. Benjamin, B.K. Smelzer, S.A. Ellingsen

      Surface waves on currents with arbitrary vertical shear

      Phys. Fluids, 29 (2017), Article 047102

      Google ScholarDam et al., 2008

      K.T. Dam, K. Tanimoto, E. Fatimah

      Investigation of ship waves in a narrow channel

      J. Mar. Sci. Technol., 13 (2008), pp. 223-230 View PDF

      CrossRefView Record in ScopusGoogle ScholarDavid et al., 2017

      C.G. David, V. Roeber, N. Goseberg, T. Schlurmann

      Generation and propagation of ship-borne waves – solutions from a Boussinesq-type model

      Coast. Eng., 127 (2017), pp. 170-187

      ArticleDownload PDFView Record in ScopusGoogle Scholarde Ridder et al., 2020

      M.P. de Ridder, P.B. Smit, A. van Dongeren, R. McCall, K. Nederhoff, A.J.H.M. Reniers

      Efficient two-layer non-hydrostatic wave model with accurate dispersive behaviour

      Coast. Eng., 164 (2020), Article 103808

      Google ScholarDempwolff et al., 2022

      L.-C. Dempwolff, G. Melling, C. Windt, O. Lojek, T. Martin, I. Holzwarth, H. Bihs, N. Goseberg

      Loads and effects of ship-generated, drawdown waves in confined waterways – a review of current knowledge and methods

      J. Coast. Hydraul. Struct., 2 (2022), pp. 2-46

      Google ScholarEllingsen, 2014

      S.A. Ellingsen

      Ship waves in the presence of uniform vorticity

      J. Fluid Mech., 742 (2014), p. R2

      View Record in ScopusGoogle ScholarErtekin et al., 1986

      R.C. Ertekin, W.C. Webster, J.V. Wehausen

      Waves caused by a moving disturbance in a shallow channel of finite width

      J. Fluid Mech., 169 (1986), pp. 275-292

      View Record in ScopusGoogle ScholarGrue, 2017

      J. Grue

      Ship generated mini-tsunamis

      J. Fluid Mech., 816 (2017), pp. 142-166 View PDF

      CrossRefView Record in ScopusGoogle ScholarGrue, 2020

      J. Grue

      Mini-tsunamis made by ship moving across a depth change

      J. Waterw. Port, Coast. Ocean Eng., 146 (2020), Article 04020023

      View Record in ScopusGoogle ScholarGourlay, 2001

      T.P. Gourlay

      The supercritical bore produced by a high-speed ship in a channel

      J. Fluid Mech., 434 (2001), pp. 399-409 View PDF

      CrossRefView Record in ScopusGoogle ScholarHavelock, 1908

      T.H. Havelock

      The propagation of groups of waves in dispersive media with application to waves on water produced by a travelling disturbance

      Proc. Royal Soc. London Series A (1908), pp. 398-430

      Google ScholarLee and Lee, 2019

      B.W. Lee, C. Lee

      Equation for ship wave crests in the entire range of water depths

      Coast. Eng., 153 (2019), Article 103542

      ArticleDownload PDFView Record in ScopusGoogle ScholarLee and Lee, 2021

      B.W. Lee, C. Lee

      Equation for ship wave crests in a uniform current in the entire range of water depths

      Coast. Eng., 167 (2021), Article 103900

      ArticleDownload PDFView Record in ScopusGoogle ScholarLi and Ellingsen, 2016

      Y. Li, S.A. Ellingsen

      Ship waves on uniform shear current at finite depth: wave resistance and critical velocity

      J. Fluid Mech., 791 (2016), pp. 539-567 View PDF

      CrossRefView Record in ScopusGoogle ScholarLi et al., 2019

      Y. Li, B.K. Smeltzer, S.A. Ellingsen

      Transient wave resistance upon a real shear current

      Eur. J. Mech. B Fluid, 73 (2019), pp. 180-192

      ArticleDownload PDFCrossRefView Record in ScopusGoogle ScholarMa, 2012

      H. Ma

      Passing Ship Effects in a 2DH Non- Hydrostatic Flow Model

      UNESCO-IHE, Delft, The Netherlands (2012)

      Google ScholarSamaras and Karambas, 2021

      A.G. Samaras, T.V. Karambas

      Numerical simulation of ship-borne waves using a 2DH post-Boussinesq model

      Appl. Math. Model., 89 (2021), pp. 1547-1556

      ArticleDownload PDFView Record in ScopusGoogle ScholarShi et al., 2018

      F. Shi, M. Malej, J.M. Smith, J.T. Kirby

      Breaking of ship bores in a Boussinesq-type ship-wake model

      Coast. Eng., 132 (2018), pp. 1-12

      ArticleDownload PDFCrossRefView Record in ScopusGoogle ScholarVitousek and Fringer, 2013

      S. Vitousek, O.B. Fringer

      Stability and consistency of nonhydrostatic free-surface models using the semi-implicit θ-method

      Int. J. Numer. Methods Fluid., 72 (2013), pp. 550-582 View PDF

      CrossRefView Record in ScopusGoogle Scholar

      Numerical analysis of energy dissipator options using computational fluid dynamics modeling — a case study of Mirani Dam

      전산 유체 역학 모델링을 사용한 에너지 소산자 옵션의 수치적 해석 — Mirani 댐의 사례 연구

      Arabian Journal of Geosciences volume 15, Article number: 1614 (2022) Cite this article

      Abstract

      이 연구에서 FLOW 3D 전산 유체 역학(CFD) 소프트웨어를 사용하여 파키스탄 Mirani 댐 방수로에 대한 에너지 소산 옵션으로 미국 매립지(USBR) 유형 II 및 USBR 유형 III 유역의 성능을 추정했습니다. 3D Reynolds 평균 Navier-Stokes 방정식이 해결되었으며, 여기에는 여수로 위의 자유 표면 흐름을 캡처하기 위해 공기 유입, 밀도 평가 및 드리프트-플럭스에 대한 하위 그리드 모델이 포함되었습니다. 본 연구에서는 5가지 모델을 고려하였다. 첫 번째 모델에는 길이가 39.5m인 USBR 유형 II 정수기가 있습니다. 두 번째 모델에는 길이가 44.2m인 USBR 유형 II 정수기가 있습니다. 3번째와 4 번째모델에는 길이가 각각 48.8m인 USBR 유형 II 정수조와 39.5m의 USBR 유형 III 정수조가 있습니다. 다섯 번째 모델은 네 번째 모델과 동일하지만 마찰 및 슈트 블록 높이가 0.3m 증가했습니다. 최상의 FLOW 3D 모델 조건을 설정하기 위해 메쉬 민감도 분석을 수행했으며 메쉬 크기 0.9m에서 최소 오차를 산출했습니다. 세 가지 경계 조건 세트가 테스트되었으며 최소 오류를 제공하는 세트가 사용되었습니다. 수치적 검증은 USBR 유형 II( L = 48.8m), USBR 유형 III( L = 35.5m) 및 USBR 유형 III 의 물리적 모델 에너지 소산을 0.3m 블록 단위로 비교하여 수행되었습니다( L= 35.5m). 통계 분석 결과 평균 오차는 2.5%, RMSE(제곱 평균 제곱근 오차) 지수는 3% 미만이었습니다. 수리학적 및 경제성 분석을 바탕으로 4 번째 모델이 최적화된 에너지 소산기로 밝혀졌습니다. 흡수된 에너지 백분율 측면에서 물리적 모델과 수치적 모델 간의 최대 차이는 5% 미만인 것으로 나타났습니다.

      In this study, the FLOW 3D computational fluid dynamics (CFD) software was used to estimate the performance of the United States Bureau of Reclamation (USBR) type II and USBR type III stilling basins as energy dissipation options for the Mirani Dam spillway, Pakistan. The 3D Reynolds-averaged Navier–Stokes equations were solved, which included sub-grid models for air entrainment, density evaluation, and drift–flux, to capture free-surface flow over the spillway. Five models were considered in this research. The first model has a USBR type II stilling basin with a length of 39.5 m. The second model has a USBR type II stilling basin with a length of 44.2 m. The 3rd and 4th models have a USBR type II stilling basin with a length of 48.8 m and a 39.5 m USBR type III stilling basin, respectively. The fifth model is identical to the fourth, but the friction and chute block heights have been increased by 0.3 m. To set up the best FLOW 3D model conditions, mesh sensitivity analysis was performed, which yielded a minimum error at a mesh size of 0.9 m. Three sets of boundary conditions were tested and the set that gave the minimum error was employed. Numerical validation was done by comparing the physical model energy dissipation of USBR type II (L = 48.8 m), USBR type III (L =35.5 m), and USBR type III with 0.3-m increments in blocks (L = 35.5 m). The statistical analysis gave an average error of 2.5% and a RMSE (root mean square error) index of less than 3%. Based on hydraulics and economic analysis, the 4th model was found to be an optimized energy dissipator. The maximum difference between the physical and numerical models in terms of percentage energy absorbed was found to be less than 5%.

      Keywords

      • Numerical modeling
      • Spillway
      • Hydraulic jump
      • Energy dissipation
      • FLOW 3D

      References

      • Abbasi S, Fatemi S, Ghaderi A, Di Francesco S (2021) The effect of geometric parameters of the antivortex on a triangular labyrinth side weir. Water (Switzerland) 13(1). https://doi.org/10.3390/w13010014
      • Amorim JCC, Amante RCR, Barbosa VD (2015) Experimental and numerical modeling of flow in a stilling basin. Proceedings of the 36th IAHR World Congress 28 June–3 July, the Hague, the Netherlands, 1, 1–6
      • Asaram D, Deepamkar G, Singh G, Vishal K, Akshay K (2016) Energy dissipation by using different slopes of ogee spillway. Int J Eng Res Gen Sci 4(3):18–22Google Scholar 
      • Boes RM, Hager WH (2003) Hydraulic design of stepped spillways. J Hydraul Eng 129(9):671–679. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:9(671)Article Google Scholar 
      • Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng Trans ASME 130(7):0780011–0780014. https://doi.org/10.1115/1.2960953Article Google Scholar 
      • Chen Q, Dai G, Liu H (2002) Volume of fluid model for turbulence numerical simulation of stepped spillway overflow. J Hydraul Eng 128(7):683–688. 10.1061/共ASCE兲0733-9429共2002兲128:7共683兲 CE
      • Damiron R (2015) CFD modelling of dam spillway aerator. Lund University Sweden
      • Dunlop SL, Willig IA, Paul GE (2016) Cabinet Gorge Dam spillway modifications for TDG abatement – design evolution and field performance. 6th International Symposium on Hydraulic Structures: Hydraulic Structures and Water System Management, ISHS 2016, 3650628160, 460–470. 10.15142/T3650628160853
      • Fleit G, Baranya S, Bihs H (2018) CFD modeling of varied flow conditions over an ogee-weir. Period Polytech Civ Eng 62(1):26–32. https://doi.org/10.3311/PPci.10821Article Google Scholar 
      • Frizell KW, Frizell KH (2015) Guidelines for hydraulic design of stepped spillways. Hydraulic Laboratory Report HL-2015-06, May
      • Ghaderi A, Abbasi S (2021) Experimental and numerical study of the effects of geometric appendance elements on energy dissipation over stepped spillway. Water (Switzerland) 13(7). https://doi.org/10.3390/w13070957
      • Ghaderi A, Dasineh M, Aristodemo F, Ghahramanzadeh A (2020) Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J Hydroinform 22(6):1554–1572. https://doi.org/10.2166/HYDRO.2020.298Article Google Scholar 
      • Güven A, Mahmood AH (2021) Numerical investigation of flow characteristics over stepped spillways. Water Sci Technol Water Supply 21(3):1344–1355. https://doi.org/10.2166/ws.2020.283Article Google Scholar 
      • Herrera-Granados O, Kostecki SW (2016) Numerical and physical modeling of water flow over the ogee weir of the new Niedów barrage. J Hydrol Hydromech 64(1):67–74. https://doi.org/10.1515/johh-2016-0013Article Google Scholar 
      • Ho DKH, Riddette KM (2010) Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Aust J Civ Eng 6(1):81–104. https://doi.org/10.1080/14488353.2010.11463946Article Google Scholar 
      • Kocaer Ö, Yarar A (2020) Experimental and numerical investigation of flow over ogee spillway. Water Resour Manag 34(13):3949–3965. https://doi.org/10.1007/s11269-020-02558-9Article Google Scholar 
      • Kumcu SY (2017) Investigation of flow over spillway modeling and comparison between experimental data and CFD analysis. KSCE J Civ Eng 21(3):994–1003. https://doi.org/10.1007/s12205-016-1257-zArticle Google Scholar 
      • Li S, Li Q, Yang J (2019) CFD modelling of a stepped spillway with various step layouts. Math Prob Eng 2019:1–12. https://doi.org/10.1155/2019/6215739Article Google Scholar 
      • Muthukumaran N, Prince Arulraj G (2020) Experimental investigation on augmenting the discharge over ogee spillways with nanocement. Civ Eng Archit 8(5):838–845. https://doi.org/10.13189/cea.2020.080511Article Google Scholar 
      • Naderi V, Farsadizadeh D, Lin C, Gaskin S (2019) A 3D study of an air-core vortex using HSPIV and flow visualization. Arab J Sci Eng 44(10):8573–8584. https://doi.org/10.1007/s13369-019-03764-3Article Google Scholar 
      • Nangare PB, Kote AS (2017) Experimental investigation of an ogee stepped spillway with plain and slotted roller bucket for energy dissipation. Int J Civ Eng Technol 8(8):1549–1555Google Scholar 
      • Parsaie A, Moradinejad A, Haghiabi AH (2018) Numerical modeling of flow pattern in spillway approach channel. Jordan J Civ Eng 12(1):1–9Google Scholar 
      • Pasbani Khiavi M, Ali Ghorbani M, Yusefi M (2021) Numerical investigation of the energy dissipation process in stepped spillways using finite volume method. J Irrig Water Eng 11(4):22–37Google Scholar 
      • Peng Y, Zhang X, Yuan H, Li X, Xie C, Yang S, Bai Z (2019) Energy dissipation in stepped spillways with different horizontal face angles. Energies 12(23). https://doi.org/10.3390/en12234469
      • Raza A, Wan W, Mehmood K (2021) Stepped spillway slope effect on air entrainment and inception point location. Water (Switzerland) 13(10). https://doi.org/10.3390/w13101428
      • Reeve DE, Zuhaira AA, Karunarathna H (2019) Computational investigation of hydraulic performance variation with geometry in gabion stepped spillways. Water Sci Eng 12(1):62–72. https://doi.org/10.1016/j.wse.2019.04.002Article Google Scholar 
      • Rice CE, Kadavy KC (1996) Model study of a roller compacted concrete stepped spillway. J Hydraul Eng 122(6):292–297. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:6(292)Article Google Scholar 
      • Rong Y, Zhang T, Peng L, Feng P (2019) Three-dimensional numerical simulation of dam discharge and flood routing in Wudu reservoir. Water (Switzerland) 11(10). https://doi.org/10.3390/w11102157
      • Saqib N, Akbar M, Pan H, Ou G, Mohsin M, Ali A, Amin A (2022) Numerical analysis of pressure profiles and energy dissipation across stepped spillways having curved risers. Appl Sci 12(448):1–18Google Scholar 
      • Saqib N, Ansari K, Babar M (2021) Analysis of pressure profiles and energy dissipation across stepped spillways having curved treads using computational fluid dynamics. Intl Conf Adv Mech Eng :1–10
      • Saqib Nu, Akbar M, Huali P, Guoqiang O (2022) Numerical investigation of pressure profiles and energy dissipation across the stepped spillway having curved treads using FLOW 3D. Arab J Geosci 15(1):1363–1400. https://doi.org/10.1007/s12517-022-10505-8Article Google Scholar 
      • Sarkardeh H, Marosi M, Roshan R (2015) Stepped spillway optimization through numerical and physical modeling. Int J Energy Environ 6(6):597–606Google Scholar 
      • Serafeim A, Avgeris V, Hrissanthou V (2015) Experimental and numerical modeling of flow over a spillway. Eur Water Publ 14(2015):55–59. https://doi.org/10.15224/978-1-63248-042-2-11Article Google Scholar 
      • Sorensen RM (1986) Stepped spillway model investigation. J Hydraul Eng I(12):1461–1472. https://ascelibrary.org/doi/full/10.1061/%28ASCE%290733-
      • Tabbara M, Chatila J, Awwad R (2005) Computational simulation of flow over stepped spillways. Comput Struct 83(27):2215–2224. https://doi.org/10.1016/j.compstruc.2005.04.005Article Google Scholar 
      • Valero D, Bung DB, Crookston BM, Matos J (2016) Numerical investigation of USBR type III stilling basin performance downstream of smooth and stepped spillways. 6th International Symposium on Hydraulic Structures: Hydraulic Structures and Water System Management, ISHS 2016, 3406281608, 635–646. https://doi.org/10.15142/T340628160853
      • Versteeg H, Malalasekera W (1979) An introduction to computational fluid mechanics. (Vol. 2). https://doi.org/10.1016/0010-4655(80)90010-7
      • WAPDA model studies cell, IRI Lahore (2003) Mirani Dam Project hydraulic model studies for the spillway. November 2003
      • Yakhot V, Orszag S (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1(1):3–51Article Google Scholar 

      이종 금속 인터커넥트의 펄스 레이저 용접을 위한 가공 매개변수 최적화

      Optimization of processing parameters for pulsed laser welding of dissimilar metal interconnects

      본 논문은 독자의 편의를 위해 기계번역된 내용이어서 자세한 내용은 원문을 참고하시기 바랍니다.

      NguyenThi TienaYu-LungLoabM.Mohsin RazaaCheng-YenChencChi-PinChiuc

      aNational Cheng Kung University, Department of Mechanical Engineering, Tainan, Taiwan

      bNational Cheng Kung University, Academy of Innovative Semiconductor and Sustainable Manufacturing, Tainan, Taiwan

      cJum-bo Co., Ltd, Xinshi District, Tainan, Taiwan

      Abstract

      워블 전략이 포함된 펄스 레이저 용접(PLW) 방법을 사용하여 알루미늄 및 구리 이종 랩 조인트의 제조를 위한 최적의 가공 매개변수에 대해 실험 및 수치 조사가 수행됩니다. 피크 레이저 출력과 접선 용접 속도의 대표적인 조합 43개를 선택하기 위해 원형 패킹 설계 알고리즘이 먼저 사용됩니다.

      선택한 매개변수는 PLW 프로세스의 전산유체역학(CFD) 모델에 제공되어 용융 풀 형상(즉, 인터페이스 폭 및 침투 깊이) 및 구리 농도를 예측합니다. 시뮬레이션 결과는 설계 공간 내에서 PLW 매개변수의 모든 조합에 대한 용융 풀 형상 및 구리 농도를 예측하기 위해 3개의 대리 모델을 교육하는 데 사용됩니다.

      마지막으로, 대체 모델을 사용하여 구성된 처리 맵은 용융 영역에 균열이나 기공이 없고 향상된 기계적 및 전기적 특성이 있는 이종 조인트를 생성하는 PLW 매개변수를 결정하기 위해 세 가지 품질 기준에 따라 필터링됩니다.

      제안된 최적화 접근법의 타당성은 최적의 용접 매개변수를 사용하여 생성된 실험 샘플의 전단 강도, 금속간 화합물(IMC) 형성 및 전기 접촉 저항을 평가하여 입증됩니다.

      결과는 최적의 매개변수가 1209N의 높은 전단 강도와 86µΩ의 낮은 전기 접촉 저항을 생성함을 확인합니다. 또한 용융 영역에는 균열 및 기공과 같은 결함이 없습니다.

      An experimental and numerical investigation is performed into the optimal processing parameters for the fabrication of aluminum and copper dissimilar lap joints using a pulsed laser welding (PLW) method with a wobble strategy. A circle packing design algorithm is first employed to select 43 representative combinations of the peak laser power and tangential welding speed. The selected parameters are then supplied to a computational fluidic dynamics (CFD) model of the PLW process to predict the melt pool geometry (i.e., interface width and penetration depth) and copper concentration. The simulation results are used to train three surrogate models to predict the melt pool geometry and copper concentration for any combination of the PLW parameters within the design space. Finally, the processing maps constructed using the surrogate models are filtered in accordance with three quality criteria to determine the PLW parameters that produce dissimilar joints with no cracks or pores in the fusion zone and enhanced mechanical and electrical properties. The validity of the proposed optimization approach is demonstrated by evaluating the shear strength, intermetallic compound (IMC) formation, and electrical contact resistance of experimental samples produced using the optimal welding parameters. The results confirm that the optimal parameters yield a high shear strength of 1209 N and a low electrical contact resistance of 86 µΩ. Moreover, the fusion zone is free of defects, such as cracks and pores.

      Fig. 1. Schematic illustration of Al-Cu lap-joint arrangement
      Fig. 1. Schematic illustration of Al-Cu lap-joint arrangement
      Fig. 2. Machine setup (MFQS-150W_1500W
      Fig. 2. Machine setup (MFQS-150W_1500W
      Fig. 5. Lap-shear mechanical tests: (a) experimental setup and specimen dimensions, and (b) two different failures of lap-joint welding.
N. Thi Tien et al.
      Fig. 5. Lap-shear mechanical tests: (a) experimental setup and specimen dimensions, and (b) two different failures of lap-joint welding. N. Thi Tien et al.
      Fig. 9. Simulation and experimental results for melt pool profile. (a) Simulation results for melt pool cross-section, and (b) OM image of melt pool cross-section.
(Note that laser processing parameter of 830 W and 565 mm/s is chosen.).
      Fig. 9. Simulation and experimental results for melt pool profile. (a) Simulation results for melt pool cross-section, and (b) OM image of melt pool cross-section. (Note that laser processing parameter of 830 W and 565 mm/s is chosen.).

      References

      [1]

      G. Santos

      Road transport and CO2 emissions: What are the challenges?

      Transport Policy, 59 (2017), pp. 71-74

      ArticleDownload PDFView Record in ScopusGoogle Scholar[2]

      A. Das, D. Li, D. Williams, D. Greenwood

      Joining technologies for automotive battery systems manufacturing

      World Electric Veh. J., 9 (2) (2018), p. 22 View PDF

      CrossRefGoogle Scholar[3]

      M. Zwicker, M. Moghadam, W. Zhang, C. Nielsen

      Automotive battery pack manufacturing–a review of battery to tab joining

      J. Adv. Joining Process., 1 (2020), Article 100017

      ArticleDownload PDFView Record in ScopusGoogle Scholar[4]

      T. Mai, A. Spowage

      Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium

      Mater. Sci. Eng. A, 374 (1–2) (2004), pp. 224-233

      ArticleDownload PDFView Record in ScopusGoogle Scholar[5]

      S.S. Lee, T.H. Kim, S.J. Hu, W.W. Cai, J. Li, J.A. Abell

      Characterization of joint quality in ultrasonic welding of battery tabs

      International Manufacturing Science and Engineering Conference, vol. 54990, American Society of Mechanical Engineers (2012), pp. 249-261

      Google Scholar[6]

      Y. Zhou, P. Gorman, W. Tan, K. Ely

      Weldability of thin sheet metals during small-scale resistance spot welding using an alternating-current power supply

      J. Electron. Mater., 29 (9) (2000), pp. 1090-1099 View PDF

      CrossRefView Record in ScopusGoogle Scholar[7]

      S. Katayama

      Handbook of laser welding technologies

      Elsevier (2013)

      Google Scholar[8]

      A. Sadeghian, N. Iqbal

      A review on dissimilar laser welding of steel-copper, steel-aluminum, aluminum-copper, and steel-nickel for electric vehicle battery manufacturing

      Opt. Laser Technol., 146 (2022), Article 107595

      ArticleDownload PDFView Record in ScopusGoogle Scholar[9]

      M.J. Brand, P.A. Schmidt, M.F. Zaeh, A. Jossen

      Welding techniques for battery cells and resulting electrical contact resistances

      J. Storage Mater., 1 (2015), pp. 7-14

      ArticleDownload PDFView Record in ScopusGoogle Scholar[10]

      M. Jarwitz, F. Fetzer, R. Weber, T. Graf

      Weld seam geometry and electrical resistance of laser-welded, aluminum-copper dissimilar joints produced with spatial beam oscillation

      Metals, 8 (7) (2018), p. 510 View PDF

      CrossRefView Record in ScopusGoogle Scholar[11]S. Smith, J. Blackburn, M. Gittos, P. de Bono, and P. Hilton, “Welding of dissimilar metallic materials using a scanned laser beam,” in International Congress on Applications of Lasers & Electro-Optics, 2013, vol. 2013, no. 1: Laser Institute of America, pp. 493-502.

      Google Scholar[12]

      P. Schmitz, J.B. Habedank, M.F. Zaeh

      Spike laser welding for the electrical connection of cylindrical lithium-ion batteries

      J. Laser Appl., 30 (1) (2018), Article 012004 View PDF

      CrossRefView Record in ScopusGoogle Scholar[13]

      P. Kah, C. Vimalraj, J. Martikainen, R. Suoranta

      Factors influencing Al-Cu weld properties by intermetallic compound formation

      Int. J. Mech. Mater. Eng., 10 (1) (2015), pp. 1-13

      Google Scholar[14]

      Z. Lei, X. Zhang, J. Liu, P. Li

      Interfacial microstructure and reaction mechanism with various weld fillers on laser welding-brazing of Al/Cu lap joint

      J. Manuf. Process., 67 (2021), pp. 226-240

      ArticleDownload PDFView Record in ScopusGoogle Scholar[15]

      T. Solchenbach, P. Plapper

      Mechanical characteristics of laser braze-welded aluminium–copper connections

      Opt. Laser Technol., 54 (2013), pp. 249-256

      ArticleDownload PDFView Record in ScopusGoogle Scholar[16]

      T. Solchenbach, P. Plapper, W. Cai

      Electrical performance of laser braze-welded aluminum–copper interconnects

      J. Manuf. Process., 16 (2) (2014), pp. 183-189

      ArticleDownload PDFView Record in ScopusGoogle Scholar[17]

      S.J. Lee, H. Nakamura, Y. Kawahito, S. Katayama

      Effect of welding speed on microstructural and mechanical properties of laser lap weld joints in dissimilar Al and Cu sheets

      Sci. Technol. Weld. Join., 19 (2) (2014), pp. 111-118

      Google Scholar[18]

      Z. Xue, S. Hu, D. Zuo, W. Cai, D. Lee, K.-A. Elijah Jr

      Molten pool characterization of laser lap welded copper and aluminum

      J. Phys. D Appl. Phys., 46 (49) (2013), Article 495501 View PDF

      CrossRefView Record in ScopusGoogle Scholar[19]

      S. Zhao, G. Yu, X. He, Y. Zhang, W. Ning

      Numerical simulation and experimental investigation of laser overlap welding of Ti6Al4V and 42CrMo

      J. Mater. Process. Technol., 211 (3) (2011), pp. 530-537

      ArticleDownload PDFView Record in ScopusGoogle Scholar[20]

      W. Huang, H. Wang, T. Rinker, W. Tan

      Investigation of metal mixing in laser keyhole welding of dissimilar metals

      Mater. Des., 195 (2020), Article 109056

      ArticleDownload PDFView Record in ScopusGoogle Scholar[21]

      E. Kaiser, G. Ambrosy, E. Papastathopoulos

      Welding strategies for joining copper and aluminum by fast oscillating, high quality laser beam

      High-Power Laser Materials Processing: Applications, Diagnostics, and Systems IX, vol. 11273, International Society for Optics and Photonics (2020), p. 112730C

      View Record in ScopusGoogle Scholar[22]

      V. Dimatteo, A. Ascari, A. Fortunato

      Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials (Al-Cu and Cu-Al): Process optimization and characterization

      J. Manuf. Process., 44 (2019), pp. 158-165

      ArticleDownload PDFView Record in ScopusGoogle Scholar[23]

      V. Dimatteo, A. Ascari, E. Liverani, A. Fortunato

      Experimental investigation on the effect of spot diameter on continuous-wave laser welding of copper and aluminum thin sheets for battery manufacturing

      Opt. Laser Technol., 145 (2022), Article 107495

      ArticleDownload PDFView Record in ScopusGoogle Scholar[24]

      D. Wu, X. Hua, F. Li, L. Huang

      Understanding of spatter formation in fiber laser welding of 5083 aluminum alloy

      Int. J. Heat Mass Transf., 113 (2017), pp. 730-740

      ArticleDownload PDFView Record in ScopusGoogle Scholar[25]

      R. Ducharme, K. Williams, P. Kapadia, J. Dowden, B. Steen, M. Glowacki

      The laser welding of thin metal sheets: an integrated keyhole and weld pool model with supporting experiments

      J. Phys. D Appl. Phys., 27 (8) (1994), p. 1619 View PDF

      CrossRefView Record in ScopusGoogle Scholar[26]

      C.W. Hirt, B.D. Nichols

      Volume of fluid (VOF) method for the dynamics of free boundaries

      J. Comput. Phys., 39 (1) (1981), pp. 201-225

      ArticleDownload PDFGoogle Scholar[27]

      W. Piekarska, M. Kubiak

      Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process

      Int. J. Heat Mass Transf., 54 (23–24) (2011), pp. 4966-4974

      ArticleDownload PDFView Record in ScopusGoogle Scholar[28]J. Zhou, H.-L. Tsai, and P.-C. Wang, “Transport phenomena and keyhole dynamics during pulsed laser welding,” 2006.

      Google Scholar[29]

      D. Harrison, D. Yan, S. Blairs

      The surface tension of liquid copper

      J. Chem. Thermodyn., 9 (12) (1977), pp. 1111-1119

      ArticleDownload PDFView Record in ScopusGoogle Scholar[30]

      M. Leitner, T. Leitner, A. Schmon, K. Aziz, G. Pottlacher

      Thermophysical properties of liquid aluminum

      Metall. Mater. Trans. A, 48 (6) (2017), pp. 3036-3045 View PDF

      This article is free to access.

      CrossRefView Record in ScopusGoogle Scholar[31]

      H.-C. Tran, Y.-L. Lo

      Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process

      Int. J. Adv. Manuf. Technol., 105 (10) (2019), pp. 4443-4460 View PDF

      CrossRefView Record in ScopusGoogle Scholar[32]A. Ascari, A. Fortunato, E. Liverani, and A. Lutey, “Application of different pulsed laser sources to dissimilar welding of Cu and Al alloys,” in Proceedings of Lasers in Manufacturing Conference (LIM), 2019.

      Google Scholar[33]

      A. Fortunato, A. Ascari

      Laser welding of thin copper and aluminum sheets: feasibility and challenges in continuous-wave welding of dissimilar metals

      Lasers in Manufacturing and Materials Processing, 6 (2) (2019), pp. 136-157 View PDF

      CrossRefView Record in ScopusGoogle Scholar[34]

      A. Boucherit, M.-N. Avettand-Fènoël, R. Taillard

      Effect of a Zn interlayer on dissimilar FSSW of Al and Cu

      Mater. Des., 124 (2017), pp. 87-99

      ArticleDownload PDFView Record in ScopusGoogle Scholar[35]

      N. Kumar, I. Masters, A. Das

      In-depth evaluation of laser-welded similar and dissimilar material tab-to-busbar electrical interconnects for electric vehicle battery pack

      J. Manuf. Process., 70 (2021), pp. 78-96

      ArticleDownload PDFView Record in ScopusGoogle Scholar[36]

      M. Abbasi, A.K. Taheri, M. Salehi

      Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process

      J. Alloy. Compd., 319 (1–2) (2001), pp. 233-241

      ArticleDownload PDFGoogle Scholar[37]

      D. Zuo, S. Hu, J. Shen, Z. Xue

      Intermediate layer characterization and fracture behavior of laser-welded copper/aluminum metal joints

      Mater. Des., 58 (2014), pp. 357-362

      ArticleDownload PDFView Record in ScopusGoogle Scholar[38]

      S. Yan, Y. Shi

      Influence of Ni interlayer on microstructure and mechanical properties of laser welded joint of Al/Cu bimetal

      J. Manuf. Process., 59 (2020), pp. 343-354

      ArticleDownload PDFView Record in ScopusGoogle Scholar[39]

      S. Yan, Y. Shi

      Influence of laser power on microstructure and mechanical property of laser-welded Al/Cu dissimilar lap joints

      J. Manuf. Process., 45 (2019), pp. 312-321

      ArticleDownload PDFView Record in ScopusGoogle Scholar

      Effect of tailwater depth on non-cohesive earth dam failure due to overtopping

      Effect of tailwater depth on non-cohesive earth dam failure due to overtopping

      범람으로 인한 비점착성 흙댐 붕괴에 대한 테일워터 깊이의 영향

      ShaimaaAmanaMohamedAbdelrazek RezkbRabieaNasrc

      Abstract

      본 연구에서는 범람으로 인한 토사댐 붕괴에 대한 테일워터 깊이의 영향을 실험적으로 조사하였다. 테일워터 깊이의 네 가지 다른 값을 검사합니다. 각 실험에 대해 댐 수심 측량 프로파일의 진화, 고장 기간, 침식 체적 및 유출 수위곡선을 관찰하고 기록합니다.

      결과는 tailwater 깊이를 늘리면 고장 시간이 최대 57% 감소하고 상대적으로 침식된 마루 높이가 최대 77.6% 감소한다는 것을 보여줍니다. 또한 상대 배수 깊이가 3, 4, 5인 경우 누적 침식 체적의 감소는 각각 23, 36.5 및 75%인 반면 최대 유출량의 감소는 각각 7, 14 및 17.35%입니다.

      실험 결과는 침식 과정을 복제할 때 Flow 3D 소프트웨어의 성능을 평가하는 데 활용됩니다. 수치 모델은 비응집성 흙댐의 침식 과정을 성공적으로 시뮬레이션합니다.

      The influence of tailwater depth on earth dam failure due to overtopping is investigated experimentally in this work. Four different values of tailwater depths are examined. For each experiment, the evolution of the dam bathymetry profile, the duration of failure, the eroded volume, and the outflow hydrograph are observed and recorded. The results reveal that increasing the tailwater depth reduces the time of failure by up to 57% and decreases the relative eroded crest height by up to 77.6%. In addition, for relative tailwater depths equal to 3, 4, and 5, the reduction in the cumulative eroded volume is 23, 36.5, and 75%, while the reduction in peak discharge is 7, 14, and 17.35%, respectively. The experimental results are utilized to evaluate the performance of the Flow 3D software in replicating the erosion process. The numerical model successfully simulates the erosion process of non-cohesive earth dams.

      Keywords

      Earth dam, Eroded volume, Flow 3D model, Non-cohesive soil, Overtopping failure, Tailwater depth

      Notation

      d50

      Mean partical diameterWc

      Optimum water contentZo

      Dam height (cm)do

      Tailwater depth (cm)Zeroded

      Eroded height of the dam measured at distance of 0.7 m from the dam heel (cm)t

      Total time of failure (sec)t1

      Time of crest width erosion (sec)Zcrest

      The crest height (cm)Vtotal

      Total volume of the dam (m3)Veroded

      Cumulative eroded volume (m3)RMSE

      The statistical variable root- mean- square errord

      Degree of agreement indexyu.s.

      The upstream water depth (cm)yd.s

      The downstream water depth (cm)H

      Water surface elevation over sharp crested weir (cm)Q

      Outflow discharge (liter/sec)Qpeak

      Peak discharge (liter/sec)

      1. Introduction

      Earth dams are compacted structures composed of natural materials that are usually mined or quarried from local locations. The failures of the earth dams have proven to be deadly, destructive, and costly. According to People’s Daily, two earthen dams, Yong’an Dam and Xinfa Dam located in Hulun Buir City in North China’s Inner Mongolia failed on 2021, due to a surge in the water level of the Nuomin River caused by heavy rain. The dam breach affected 16,660 people, flooded 325,622 mu of farmland (21708.1 ha), and destroyed 22 bridges, 124 culverts, and 15.6 km of roadways. Also, the failure of south fork dam (earth and rock fill dam) near Johnstown on 1889 is considered the worst U.S dam disaster in terms of loss of life. The dam was overtopped and washed away due to unexpected heavy rains, releasing 20 million tons of water which destroyed Johnstown and resulted in 2209 deaths, [1][2]. Piping or shear sliding, failure due to natural factors, and failure due to overtopping are all possible causes of earth dam failure. However, overtopping failure is the most frequent cause of dam failure. According to The International Committee on Large Dams (ICOLD, 1995), and [3], more than one-third of the total known dam failures were caused by dam overtopping.

      Overtopping occurs as the result of insufficient flood design or freeboard in some cases. Extreme rainstorms can cause floods which can overtop the dam and cause it to fail. The size and geometry of the reservoir or the dam (side slopes, top width, height, etc.), the homogeneity of the material used in the construction of the dam, overtopping depth, and the presence or absence of tailwater are all elements that influence this type of failure which will be illustrated in the following literature. Overtopping failures of earth dams may be divided into several failure mechanisms based on the material composition and the inner structure of the dam. For cohesive earth dams because of low permeability, no seepage exists on the slopes. Erosion often begins at the earth dam toe during turbulent erosion and moves upstream, undercutting the slope, causing the removal of large chunks of materials. While for non-cohesive earth dams the downstream face of the dam flattens progressively and is often said to rotate around a point near the downstream toe [4][5][6] In the last few decades, the study of failures due to overtopping has gained popularity among researchers. The overtopping failure, in fact, has been widely investigated in coastal and river hydraulics and morpho dynamic. In addition, several laboratory experimental studies have been conducted in this field in order to better understand different involved factors. Also, many numerical types of research have been conducted to investigate the process of overtopping failure as well as the elements that influence this type of failure.

      Tabrizi et al. [5] conducted a series of embankment overtopping tests to find the effect of compaction on the failure of a homogenous sand embankment. A plane breach process occurred across the flume width due to the narrow flume width. They measured the downstream hydrographs and embankment surface profile for every case. They concluded that the peak discharge decreased with a high compaction level, while the time to peak increased. Kansoh et al. [6] studied experimentally the failure of compacted homogeneous non-cohesive earthen embankment due to overtopping. They investigated the influence of different shape parameters including the downstream slope, the crest width, and the height of the embankment on the erosion process. The erosion process was initiated by carving a pilot channel into the embankment crest. They evaluated the time of embankment failure for different shape parameters. They concluded that the failure time increases with increasing the downstream slope and the crest width. Zhu et al. [7] investigated experimentally the breaching of five embankments, one constructed with pure sand, and four with different sand-silt–clay mixtures. The erosion pattern was similar across the flume width. They stated that for cohesive soil mixtures the head cut erosion was the most important factor that affected the breach growth, while for non-cohesive soil the breach erosion was affected by shear erosion.

      Amaral et al. [8] studied experimentally the failure by overtopping for two embankments built from silt sand material. They studied the effect of the degree of compaction of the embankment and the geometry of the pilot channel carved at the centre of the dam crest. They studied two shapes of pilot channel a rectangular shape and triangular shape. They stated that the breach development is influenced by a higher degree of compaction, however, the pilot channel geometry did not influence the breach’s final form. Bereta et al. [9] studied experimentally the breach formation of five dam models, three of them were homogenous clay soil while two were sandy-clay mixtures. The erosion process was initiated by cutting a pilot channel at the centre of the dam crest. They observed the initiation of erosion, flow shear erosion, sidewall bottom erosion, and distinguished the soil mechanical slope mass failure from the head cut vertically and laterally during these tests. Verma et al. [10] investigated experimentally a two-dimensional erosion phenomenon due to overtopping by using a wooden fuse plug model and five different soils. They concluded that the erosion process was affected mostly by cohesiveness and degree of compaction. For cohesive soils, a head cut erosion was observed, while for non-cohesive soils surface erosion occurred gradually. Also, the dimensions of fuse plug, type of fill material, reservoir capacity, and inflow were found to affect the behaviour of the overall breaching process.

      Wu and Qin [11] studied the effect of adding coarse grains to the downstream face of a non-cohesive dam as a result of tailings deposition. The process of overtopping during tailings dam failures is analyzed and its effect on delaying the dam-break process and disaster mitigation are investigated. They found that the tested protective measures decreased the breach area, the maximum breaching flow discharge and flow velocity, and the downstream inundated area. Khankandi et al. [12] studied experimentally the effect of reservoir geometry on dam break flow in case of dry and wet bed conditions. They considered four different reservoir shapes, a long reservoir, a wide, a trapezoidal shaped and one with a 90◦ bend all with identical water volume and horizontal bed. The dam break is simulated by the sudden gate removal using a pneumatic jack. They measured the variation of water level over time with ultrasonic sensors and flow velocity component with an acoustic Doppler velocimeter. Also, the experimental results of water level variation are compared with Ritters solution (1892) [13]. They stated that for dry bed condition the long and 90 bend reservoirs results are close to the analytical solution by ritter also in these two shapes a 1D flow is noticed. However, for wide and trapezoidal reservoirs a 2D effect is significant due to flow contraction at channel entrance.

      Rifai et al. [14] conducted a series of experiments to investigate the effect of tailwater depth on the outflow discharge and breach geometry during non-cohesive homogenous fluvial dikes overtopping failure. They cut an initial notch in the crest at 0.8 m from the upstream end of the dike to initiate overtopping. They compared their results to previous experiments under different main channel inflow discharges combined with a free floodplain. They divided the dike breaching process into three stages: gradual start of overtopping flow resulting in slow initiation of dike erosion, deepening and widening breach due to large flow depth and velocity, finally the flow depth starts stabilizing at its minimal level with or without sustained breach expansion. They stated that breach discharge has lower values than in free floodplain tests. Jiang [15] studied the effect of bed slope on breach parameters and peak discharge in non-cohesive embankment failure. An initial triangular breach with a depth and width of 4 cm was pre-set on one side of the dam. He stated that peak discharge increases with the increase of bed slope and then decreases.

      Ozmen-cagatay et al. [16] studied experimentally flood wave propagation resulted from a sudden dam break event. For dam-break modelling, they used a mechanism that permitted the rapid removal of a vertical plate with a thickness of 4 mm and made of rigid plastic. They conducted three tests, one with dry bed condition and two tests with tailwater depths equal 0.025 m and 0.1 m respectively. They recorded the free surface profile during initial stages of dam break by using digital image processing. Finally, they compared the experimental results with the with a commercially available VOF-based CFD program solving the Reynolds-averaged Navier –Stokes equations (RANS) with the k– Ɛ turbulence model and the shallow water equations (SWEs). They concluded that Wave breaking was delayed with increasing the tailwater depth to initial reservoir depth ratio. They also stated that the SWE approach is sufficient more to represent dam break flows for wet bed condition. Evangelista [17] investigated experimentally and numerically using a depth-integrated two-phase model, the erosion of sand dike caused by the impact of a dam break wave. The dam break is simulated by a sudden opening of an upstream reservoir gate resulting in the overtopping of a downstream trapezoidal sand dike. The evolution of the water wave caused from the gate opening and dike erosion process are recorded by using a computer-controlled camera. The experimental results demonstrated that the progression of the wave front and dike erosion have a considerable influence on each other during the process. In addition, the dike constructed from fine sands was more resistant to erosion than the one built with coarse sand. They also stated that the numerical model can is capable of accurately predicting wave front position and dike erosion. Also, Di Cristo et al. [18] studied the effect of dam break wave propagation on a sand embankment both experimentally and numerically using a two-phase shallow-water model. The evolution of free surface and of the embankment bottom are recorded and used in numerical model assessment. They stated that the model allows reasonable simulation of the experimental trends of the free surface elevation regardeless of the geofailure operator.

      Lots of numerical models have been developed over the past few years to simulate the dam break flooding problem. A one-dimensional model, such as Hec-Ras, DAMBRK and MIKE 11, ect. A two-dimensional model such as iRIC Nay2DH is used in earth embankment breach simulation. Other researchers studied the failure process numerically using (3D) computational fluid dynamics (CFD) models, such as FLOW-3D, and FLUENT. Goharnejad et al. [19] determined the outflow hydrograph which results from the embankment dam break due to overtopping. Hu et al. [20] performed a comparison between Flow-3D and MIKE3 FM numerical models in simulating a dam break event under dry and wet bed conditions with different tailwater depths. Kaurav et al. [21] simulated a planar dam breach process due to overtopping. They conducted a sensitivity analysis to find the effect of dam material, dam height, downstream slope, crest width, and inlet discharge on the erosion process and peak discharge through breach. They concluded that downstream slope has a significant influence on breaching process. Yusof et al. [22] studied the effect of embankment sediment sizes and inflow rates on breaching geometric and hydrodynamic parameters. They stated that the peak outflow hydrograph increases with increasing sediment size and inflow rates while time of failure decreases.

      In the present work, the effect of tailwater depth on earth dam failure during overtopping is studied experimentally. The relation between the eroded volume of the dam and the tailwater depth is presented. Also, the percentage of reduction in peak discharge due to tailwater existence is calculated. An assessment of Flow 3D software performance in simulating the erosion process during earth dam failure is introduced. The statistical variable root- mean- square error, RMSE, and the agreement degree index, d, are used in model assessment.

      2. Material and methods

      The tests are conducted in a straight rectangular flume in the laboratory of Irrigation Engineering and Hydraulics Department, Faculty of Engineering, Alexandria University, Egypt. The flume dimensions are 10 m long, 0.86 m wide, and 0.5 m deep. The front part of the flume is connected to a storage basin 1 m long by 0.86 m wide. The storage basin is connected to a collecting tank for water recirculation during the experiments as shown in Fig. 1Fig. 2. A sharp-crested weir is placed at a distance of 4 m downstream the constructed dam to keep a constant tailwater depth in each experiment and to measure the outflow discharge.

      To measure the eroded volume with time a rods technique is used. This technique consists of two parallel wooden plates with 10 cm distance in between and five rows of stainless-steel rods passing vertically through the wooden plates at a spacing of 20 cm distributed across flume width. Each row consists of four rods with 15 cm spacing between them. Also, a graph board is provided to measure the drop in each rod with time as shown in Fig. 3Fig. 4. After dam construction the rods are carefully rested on the dam, with the first line of rods resting in the middle of the dam crest and then a constant distance of 15 cm between rods lines is maintained.

      A soil sample is taken and tested in the laboratory of the soil mechanics to find the soil geotechnical parameters. The soil particle size distribution is also determined by sieve analysis as shown in Fig. 5. The soil mean diameter d50,equals 0.38 mm and internal friction angle equals 32.6°.

      2.1. Experimental procedures

      To investigate the effect of the tailwater depth (do), the tailwater depth is changed four times 5, 15, 20, and 25 cm on the sand dam model. The dam profile is 35 cm height, with crest width = 15 cm, the dam base width is 155 cm, and the upstream and downstream slopes are 2:1 as shown in Fig. 6. The dam dimensions are set as the flume permitted to allow observation of the dam erosion process under the available flume dimensions and conditions. All of the conducted experiments have the same dimensions and configurations.

      The optimum water content, Wc, from the standard proctor test is found to be 8 % and the maximum dry unit weight is 19.42 kN/m3. The soil and water are mixed thoroughly to ensure consistency and then placed on three horizontal layers. Each layer is compacted according to ASTM standard with 25 blows by using a rammer (27 cm × 20.5 cm) weighing 4 kg. Special attention is paid to the compaction of the soil to guarantee the repeatability of the tests.

      After placing and compacting the three layers, the dam slopes are trimmed carefully to form the trapezoidal shape of the dam. A small triangular pilot channel with 1 cm height and 1:1 side slopes is cut into the dam crest to initiate the erosion process. The position of triangular pilot channel is presented in Fig. 1. Three digital video cameras with a resolution of 1920 × 1080 pixels and a frame rate of 60 fps are placed in three different locations. One camera on one side of the flume to record the progress of the dam profile during erosion. Another to track the water level over the sharp-crested rectangular weir placed at the downstream end of the flume. And the third camera is placed above the flume at the downstream side of the dam and in front of the rods to record the drop of the tip of the rods with time as shown previously in Fig. 1.

      Before starting the experiment, the water is pumped into the storage basin by using pump with capacity 360 m3/hr, and then into the upstream section of the flume. The upstream boundary is an inflow condition. The flow discharge provided to the storage basin is kept at a constant rate of 6 L/sec for all experiments, while the downstream boundary is an outflow boundary condition.

      Also, the required tailwater depth for each experiment is filled to the desired depth. A dye container valve is opened to color the water upstream of the dam to make it easy to distinguish the dam profile from the water profile. A wooden board is placed just upstream of the dam to prevent water from overtopping the dam until the water level rises to a certain level above the dam crest and then the wooden board is removed slowly to start the experiment.

      2.2. Repeatability

      To verify the accuracy of the results, each experiment is repeated two times under the same conditions. Fig. 7 shows the relative eroded crest height, Zeroded / Zo, with time for 5 cm tailwater depth. From the Figure, it can be noticed that results for all runs are consistent, and accuracy is achieved.

      3. Numerical model

      The commercially available numerical model, Flow 3D is used to simulate the dam failure due to overtopping for the cases of 15 cm, 20 cm and 25 cm tailwater depths. For numerical model calibration, experimental results for dam surface evolution are used. The numerical model is calibrated for selection of the optimal turbulence model (RNG, K-e, and k-w) and sediment scour equations (Van Rin, Meyer- peter and Muller, and Nielsen) that produce the best results. In this, the flow field is solved by the RNG turbulence model, and the van Rijn equation is used for the sediment scour model. A geometry file is imported before applying the mesh.

      A Mesh sensitivity is analyzed and checked for various cell sizes, and it is found that decreasing the cell size significantly increases the simulation time with insignificant differences in the result. It is noticed that the most important factor influencing cell size selection is the value of the dam’s upstream and downstream slopes. For example, the slopes in the dam model are 2:1, thus the cell size ratio in X and Z directions should be 2:1 as well. The cell size in a mesh block is set to be 0.02 m, 0.025 m, and 0.01 m in X, Y and Z directions respectively.

      In the numerical computations, the boundary conditions employed are the walls for sidewalls and the channel bottom. The pressure boundary condition is applied at the top, at the air–water interface, to account for atmospheric pressure on the free surface. The upstream boundary is volume flow rate while the downstream boundary is outflow discharge.

      The initial condition is a fluid region, which is used to define fluid areas both upstream and downstream of the dam. To assess the model accuracy, the statistical variable root- mean- square error, RMSE, and the agreement degree index, d, are calculated as(1)RMSE=1N∑i=1N(Pi-Mi)2(2)d=1-∑Mi-Pi2∑Mi-M¯+Pi-P¯2

      where N is the number of samples, Pi and Mi are the models and experimental values, P and M are the means of the model and experimental values. The best fit between the experimental and model results would have an RMSE = 0 and degree of agreement, d = 1.

      4. Results of experimental work

      The results of the total time of failure, t (defined as the time from when the water begins to overtop the dam crest until the erosion reaches a steady state, when no erosion occurs), time of crest width erosion t1, cumulative eroded volume Veroded, and peak discharge Qpeak for each experiment are listed in Table 1. The case of 5 cm tailwater depth is considered as a reference case in this work.

      Table 1. Results of experimental work.

      Tailwater depth, do (cm)Total time of failure, t (sec)Time of crest width erosion, t1 (sec)cumulative eroded volume, Veroded (m3)Peak discharge, Qpeak (liter/sec)
      5255220.2113.12
      15165300.1612.19
      20140340.1311.29
      25110390.0510.84

      5. Discussion

      5.1. Side erosion

      The evolution of the bathymetry of the erosion line recorded by the video camera1. The videos are split into frames (60 frames/sec) by the Free Video to JPG Converter v.5.063 build and then converted into an excel spreadsheet using MATLAB code as shown in Fig. 8.

      Fig. 9 shows a sample of numerical model output. Fig. 10Fig. 11Fig. 12 show a dam profile development for different time steps from both experimental and numerical model, for tailwater depths equal 15 cm, 20 cm and 25 cm. Also, the values of RMSE and d for each figure are presented. The comparison shows that the Flow 3D software can simulate the erosion process of non-cohesive earth dam during overtopping with an RMSE value equals 0.023, 0.0218, and 0.0167 and degree of agreement, d, equals 0.95, 0.968, and 0.988 for relative tailwater depths, do/(do)ref, = 3, 4 and 5, respectively. The low values of RMSE and high values of d show that the Flow 3D can effectively simulate the erosion process. From Fig. 10Fig. 11Fig. 12, it can be noticed that the model is not capable of reproducing the head cut, while it can simulate well the degradation of the crest height with a minor difference from experimental work. The reason of this could be due to inability of simulation of all physical conditions which exists in the experimental work, such as channel friction and the grain size distribution of the dam soil which is surely has a great effect on the erosion process and breach development. In the experimental work the grain size distribution is shown in Fig. 5, while the numerical model considers that the soil is uniform and exactly 50 % of the dam particles diameter are equal to the d50 value. Another reason is that the model is not considering the increased resistance of the dam due to the apparent cohesion which happens due to dam saturation [23].

      It is clear from both the experimental and numerical results that for a 5 cm tailwater depth, do/(do)ref = 1.0, erosion begins near the dam toe and continues upward on the downstream slope until it reaches the crest. After eroding the crest width, the crest is lowered, resulting in increased flow rates and the speeding up of the erosion process. While for relative tailwater depths, do/(do)ref = 3, 4, and 5 erosion starts at the point of intersection between the downstream slope and tailwater. The existence of tailwater works as an energy dissipater for the falling water which reduces the erosion process and prevents the dam from failure as shown in Fig. 13. It is found that the time of the failure decreases with increasing the tailwater depth because most of the dam height is being submerged with water which decreases the erosion process. The reduction in time of failure from the referenced case is found to be 35.3, 45, and 57 % for relative tailwater depth, do /(do)ref equals 3, 4, and 5, respectively.

      The relation between the relative eroded crest height, Zeroded /Zo, with time is drawn as shown in Fig. 14. It is found that the relative eroded crest height decreases with increasing tailwater depth by 10, 41, and 77.6 % for relative tailwater depth, do /(do)ref equals 3, 4, and 5, respectively. The time required for the erosion of the crest width, t1, is calculated for each experiment. The relation between relative tailwater depth and relative time of crest width erosion is shown in Fig. 15. It is found that the time of crest width erosion increases linearly with increasing, do /Zo. The percent of increase is 36.4, 54.5 and 77.3 % for relative tailwater depth, do /(do)ref = 3, 4 and 5, respectively.

      Crest height, Zcrest is calculated from the experimental results and the Flow 3D results for relative tailwater depths, do/(do)ref, = 3, 4, and 5. A relation between relative crest height, Zcrest/Zo with time from experimental and numerical results is presented in Fig. 16. From Fig. 16, it is seen that there is a good consistency between the results of numerical model and the experimental results in the case of tracking the erosion of the crest height with time.

      5.2. Upstream and downstream water depths

      It is noticed that at the beginning of the erosion process, both upstream and downstream water depths increase linearly with time as long as erosion of the crest height did not take place. However, when the crest height starts to lower the upstream water depth decreases with time while the downstream water depth increases. At the end of the experiment, the two depths are nearly equal. A relation between relative downstream and upstream water depths with time is drawn for each experiment as shown in Fig. 17.

      5.3. Eroded volume

      A MATLAB code is used to calculate the cumulative eroded volume every time interval for each experiment. The total volume of the dam, Vtotal is 0.256 m3. The cumulative eroded volume, Veroded is 0.21, 0.16, 0.13, and 0.05 m3 for tailwater depths, do = 5, 15, 20, and 25 cm, respectively. Fig. 18 presents the relation between cumulative eroded volume, Veroded and time. From Fig. 18, it is observed that the cumulative eroded volume decreases with increasing the tailwater depth. The reduction in cumulative eroded volume is 23, 36.5, and 75 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The relative remained volume of the dam equals 0.18, 0.375, 0.492, and 0.8 for tailwater depths = 5, 15, 20, and 25 cm, respectively. Fig. 19 shows a relation between relative tailwater depth and relative cumulative eroded volume from experimental results. From that figure, it is noticed that the eroded volume decreases exponentially with increasing relative tailwater depth.

      5.4. The outflow discharge

      The inflow discharge provided to the storage tank is maintained constant for all experiments. The water surface elevation, H, over the sharp-crested weir placed at the downstream side is recorded by the video camera 2. For each experiment, the outflow discharge is then calculated by using the sharp-crested rectangular weir equation every 10 sec.

      The outflow discharge is found to increase rapidly until it reaches its peak then it decreases until it is constant. For high values of tailwater depths, the peak discharge becomes less than that in the case of small tailwater depth as shown in Fig. 20 which agrees well with the results of Rifai et al. [14] The reduction in peak discharge is 7, 14, and 17.35 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively.

      The scenario presented in this article in which the tailwater depth rises due to unexpected heavy rainfall, is investigated to find the effect of rising tailwater depth on earth dam failure. The results revealed that rising tailwater depth positively affects the process of dam failure in terms of preventing the dam from complete failure and reducing the outflow discharge.

      6. Conclusions

      The effect of tailwater depth on earth dam failure due to overtopping is investigated experimentally in this work. The study focuses on the effect of tailwater depth on side erosion, upstream and downstream water depths, eroded volume, outflow hydrograph, and duration of the failure process. The Flow 3D numerical software is used to simulate the dam failure, and a comparison is made between the experimental and numerical results to find the ability of this software to simulate the erosion process. The following are the results of the investigation:

      The existence of tailwater with high depths prevents the dam from completely collapsing thereby turning it into a broad crested weir. The failure time decreases with increasing the tailwater depth and the reduction from the reference case is found to be 35.3, 45, and 57 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The difference between the upstream and downstream water depths decreases with time till it became almost negligible at the end of the experiment. The reduction in cumulative eroded volume is 23, 36.5, and 75 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The peak discharge decreases by 7, 14, and 17.35 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The relative eroded crest height decreases linearly with increasing the tailwater depth by 10, 41, and 77.6 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The numerical model can reproduce the erosion process with a minor deviation from the experimental results, particularly in terms of tracking the degradation of the crest height with time.

      Declaration of Competing Interest

      The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

      Reference

      [1]

      D. McCullough

      The Johnstown Flood

      Simon and Schuster, NY (1968)

      Google Scholar[2]Rose AT. The influence of dam failures on dam safety laws in Pennsylvania. Association of State Dam Safety Officials Annual Conference 2013, Dam Safety 2013. 2013;1:738–56.

      Google Scholar[3]

      M. Foster, R. Fell, M. Spannagle

      The statistics of embankment dam failures and accidents

      Can Geotech J, 37 (5) (2000), pp. 1000-1024, 10.1139/t00-030 View PDF

      View Record in ScopusGoogle Scholar[4]Pickert, G., Jirka, G., Bieberstein, A., Brauns, J. Soil/water interaction during the breaching process of overtopped embankments. In: Greco, M., Carravetta, A., Morte, R.D. (Eds.), Proceedings of the Conference River-Flow 2004, Balkema.

      Google Scholar[5]

      A. Asghari Tabrizi, E. Elalfy, M. Elkholy, M.H. Chaudhry, J. Imran

      Effects of compaction on embankment breach due to overtopping

      J Hydraul Res, 55 (2) (2017), pp. 236-247, 10.1080/00221686.2016.1238014 View PDF

      View Record in ScopusGoogle Scholar[6]

      R.M. Kansoh, M. Elkholy, G. Abo-Zaid

      Effect of Shape Parameters on Failure of Earthen Embankment due to Overtopping

      KSCE J Civ Eng, 24 (5) (2020), pp. 1476-1485, 10.1007/s12205-020-1107-x View PDF

      View Record in ScopusGoogle Scholar[7]

      YongHui Zhu, P.J. Visser, J.K. Vrijling, GuangQian Wang

      Experimental investigation on breaching of embankments

      Experimental investigation on breaching of embankments, 54 (1) (2011), pp. 148-155 View PDF

      CrossRefView Record in ScopusGoogle Scholar[8]Amaral S, Jónatas R, Bento AM, Palma J, Viseu T, Cardoso R, et al. Failure by overtopping of earth dams. Quantification of the discharge hydrograph. Proceedings of the 3rd IAHR Europe Congress: 14-15 April 2014, Portugal. 2014;(1):182–93.

      Google Scholar[9]

      G. Bereta, P. Hui, H. Kai, L. Guang, P. Kefan, Y.Z. Zhao

      Experimental study of cohesive embankment dam breach formation due to overtopping

      Periodica Polytechnica Civil Engineering, 64 (1) (2020), pp. 198-211, 10.3311/PPci.14565 View PDF

      View Record in ScopusGoogle Scholar[10]

      D.K. Verma, B. Setia, V.K. Arora

      Experimental study of breaching of an earthen dam using a fuse plug model

      Int J Eng Trans A, 30 (4) (2017), pp. 479-485, 10.5829/idosi.ije.2017.30.04a.04 View PDF

      View Record in ScopusGoogle Scholar[11]Wu T, Qin J. Experimental Study of a Tailings Impoundment Dam Failure Due to Overtopping. Mine Water and the Environment [Internet]. 2018;37(2):272–80. Available from: doi: 10.1007/s10230-018-0529-x.

      Google Scholar[12]

      A. Feizi Khankandi, A. Tahershamsi, S. Soares-Frazo

      Experimental investigation of reservoir geometry effect on dam-break flow

      J Hydraul Res, 50 (4) (2012), pp. 376-387 View PDF

      CrossRefView Record in ScopusGoogle Scholar[13]

      A. Ritter

      Die Fortpflanzung der Wasserwellen (The propagation of water waves)

      Zeitschrift Verein Deutscher Ingenieure, 36 (33) (1892), pp. 947-954

      [in German]

      View Record in ScopusGoogle Scholar[14]

      I. Rifai, K. El Kadi Abderrezzak, S. Erpicum, P. Archambeau, D. Violeau, M. Pirotton, et al.

      Floodplain Backwater Effect on Overtopping Induced Fluvial Dike Failure

      Water Resour Res, 54 (11) (2018), pp. 9060-9073 View PDF

      This article is free to access.

      CrossRefView Record in ScopusGoogle Scholar[15]

      X. Jiang

      Laboratory Experiments on Breaching Characteristics of Natural Dams on Sloping Beds

      Advances in Civil Engineering, 2019 (2019), pp. 1-14

      View Record in ScopusGoogle Scholar[16]

      H. Ozmen-Cagatay, S. Kocaman

      Dam-break flows during initial stage using SWE and RANS approaches

      J Hydraul Res, 48 (5) (2010), pp. 603-611 View PDF

      CrossRefView Record in ScopusGoogle Scholar[17]

      S. Evangelista

      Experiments and numerical simulations of dike erosion due to a wave impact

      Water (Switzerland), 7 (10) (2015), pp. 5831-5848 View PDF

      CrossRefView Record in ScopusGoogle Scholar[18]

      C. Di Cristo, S. Evangelista, M. Greco, M. Iervolino, A. Leopardi, A. Vacca

      Dam-break waves over an erodible embankment: experiments and simulations

      J Hydraul Res, 56 (2) (2018), pp. 196-210 View PDF

      CrossRefView Record in ScopusGoogle Scholar[19]Goharnejad H, Sm M, Zn M, Sadeghi L, Abadi K. Numerical Modeling and Evaluation of Embankment Dam Break Phenomenon (Case Study : Taleghan Dam) ISSN : 2319-9873. 2016;5(3):104–11.

      Google Scholar[20]Hu H, Zhang J, Li T. Dam-Break Flows : Comparison between Flow-3D , MIKE 3 FM , and Analytical Solutions with Experimental Data. 2018;1–24. doi: 10.3390/app8122456.

      Google Scholar[21]

      R. Kaurav, P.K. Mohapatra, D. Ph

      Studying the Peak Discharge through a Planar Dam Breach, 145 (6) (2019), pp. 1-8 View PDF

      CrossRef[22]

      Z.M. Yusof, Z.A.L. Shirling, A.K.A. Wahab, Z. Ismail, S. Amerudin

      A hydrodynamic model of an embankment breaching due to overtopping flow using FLOW-3D

      IOP Conference Series: Earth and Environmental Science, 920 (1) (2021)

      Google Scholar[23]

      G. Pickert, V. Weitbrecht, A. Bieberstein

      Breaching of overtopped river embankments controlled by apparent cohesion

      J Hydraul Res, 49 (2) (Apr. 2011), pp. 143-156, 10.1080/00221686.2011.552468 View PDF

      View Record in ScopusGoogle Scholar

      Cited by (0)

      My name is Shaimaa Ibrahim Mohamed Aman and I am a teaching assistant in Irrigation and Hydraulics department, Faculty of Engineering, Alexandria University. I graduated from the Faculty of Engineering, Alexandria University in 2013. I had my MSc in Irrigation and Hydraulic Engineering in 2017. My research interests lie in the area of earth dam Failures.

      Peer review under responsibility of Ain Shams University.

      © 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University.

      Extratropical cyclone damage to the seawall in Dawlish, UK: eyewitness accounts, sea level analysis and numerical modelling

      영국 Dawlish의 방파제에 대한 온대 저기압 피해: 목격자 설명, 해수면 분석 및 수치 모델링

      Extratropical cyclone damage to the seawall in Dawlish, UK: eyewitness accounts, sea level analysis and numerical modelling

      Natural Hazards (2022)Cite this article

      Abstract

      2014년 2월 영국 해협(영국)과 특히 Dawlish에 영향을 미친 온대 저기압 폭풍 사슬은 남서부 지역과 영국의 나머지 지역을 연결하는 주요 철도에 심각한 피해를 입혔습니다.

      이 사건으로 라인이 두 달 동안 폐쇄되어 5천만 파운드의 피해와 12억 파운드의 경제적 손실이 발생했습니다. 이 연구에서는 폭풍의 파괴력을 해독하기 위해 목격자 계정을 수집하고 해수면 데이터를 분석하며 수치 모델링을 수행합니다.

      우리의 분석에 따르면 이벤트의 재난 관리는 성공적이고 효율적이었으며 폭풍 전과 도중에 인명과 재산을 구하기 위해 즉각적인 조치를 취했습니다. 파도 부이 분석에 따르면 주기가 4–8, 8–12 및 20–25초인 복잡한 삼중 봉우리 바다 상태가 존재하는 반면, 조위계 기록에 따르면 최대 0.8m의 상당한 파도와 최대 1.5m의 파도 성분이 나타났습니다.

      이벤트에서 가능한 기여 요인으로 결합된 진폭. 최대 286 KN의 상당한 임펄스 파동이 손상의 시작 원인일 가능성이 가장 높았습니다. 수직 벽의 반사는 파동 진폭의 보강 간섭을 일으켜 파고가 증가하고 최대 16.1m3/s/m(벽의 미터 너비당)의 상당한 오버탑핑을 초래했습니다.

      이 정보와 우리의 공학적 판단을 통해 우리는 이 사고 동안 다중 위험 계단식 실패의 가장 가능성 있는 순서는 다음과 같다고 결론을 내립니다. 조적 파괴로 이어지는 파도 충격력, 충전물 손실 및 연속적인 조수에 따른 구조물 파괴.

      The February 2014 extratropical cyclonic storm chain, which impacted the English Channel (UK) and Dawlish in particular, caused significant damage to the main railway connecting the south-west region to the rest of the UK. The incident caused the line to be closed for two months, £50 million of damage and an estimated £1.2bn of economic loss. In this study, we collate eyewitness accounts, analyse sea level data and conduct numerical modelling in order to decipher the destructive forces of the storm. Our analysis reveals that the disaster management of the event was successful and efficient with immediate actions taken to save lives and property before and during the storm. Wave buoy analysis showed that a complex triple peak sea state with periods at 4–8, 8–12 and 20–25 s was present, while tide gauge records indicated that significant surge of up to 0.8 m and wave components of up to 1.5 m amplitude combined as likely contributing factors in the event. Significant impulsive wave force of up to 286 KN was the most likely initiating cause of the damage. Reflections off the vertical wall caused constructive interference of the wave amplitudes that led to increased wave height and significant overtopping of up to 16.1 m3/s/m (per metre width of wall). With this information and our engineering judgement, we conclude that the most probable sequence of multi-hazard cascading failure during this incident was: wave impact force leading to masonry failure, loss of infill and failure of the structure following successive tides.

      Introduction

      The progress of climate change and increasing sea levels has started to have wide ranging effects on critical engineering infrastructure (Shakou et al. 2019). The meteorological effects of increased atmospheric instability linked to warming seas mean we may be experiencing more frequent extreme storm events and more frequent series or chains of events, as well as an increase in the force of these events, a phenomenon called storminess (Mölter et al. 2016; Feser et al. 2014). Features of more extreme weather events in extratropical latitudes (30°–60°, north and south of the equator) include increased gusting winds, more frequent storm squalls, increased prolonged precipitation and rapid changes in atmospheric pressure and more frequent and significant storm surges (Dacre and Pinto 2020). A recent example of these events impacting the UK with simultaneous significant damage to coastal infrastructure was the extratropical cyclonic storm chain of winter 2013/2014 (Masselink et al. 2016; Adams and Heidarzadeh 2021). The cluster of storms had a profound effect on both coastal and inland infrastructure, bringing widespread flooding events and large insurance claims (RMS 2014).

      The extreme storms of February 2014, which had a catastrophic effect on the seawall of the south Devon stretch of the UK’s south-west mainline, caused a two-month closure of the line and significant disruption to the local and regional economy (Fig. 1b) (Network Rail 2014; Dawson et al. 2016; Adams and Heidarzadeh 2021). Restoration costs were £35 m, and economic effects to the south-west region of England were estimated up to £1.2bn (Peninsula Rail Taskforce 2016). Adams and Heidarzadeh (2021) investigated the disparate cascading failure mechanisms which played a part in the failure of the railway through Dawlish and attempted to put these in the context of the historical records of infrastructure damage on the line. Subsequent severe storms in 2016 in the region have continued to cause damage and disruption to the line in the years since 2014 (Met Office 2016). Following the events of 2014, Network Rail Footnote1 who owns the network has undertaken a resilience study. As a result, it has proposed a £400 m refurbishment of the civil engineering assets that support the railway (Fig. 1) (Network Rail 2014). The new seawall structure (Fig. 1a,c), which is constructed of pre-cast concrete sections, encases the existing Brunel seawall (named after the project lead engineer, Isambard Kingdom Brunel) and has been improved with piled reinforced concrete foundations. It is now over 2 m taller to increase the available crest freeboard and incorporates wave return features to minimise wave overtopping. The project aims to increase both the resilience of the assets to extreme weather events as well as maintain or improve amenity value of the coastline for residents and visitors.

      figure 1
      Fig. 1

      In this work, we return to the Brunel seawall and the damage it sustained during the 2014 storms which affected the assets on the evening of the 4th and daytime of the 5th of February and eventually resulted in a prolonged closure of the line. The motivation for this research is to analyse and model the damage made to the seawall and explain the damage mechanisms in order to improve the resilience of many similar coastal structures in the UK and worldwide. The innovation of this work is the multidisciplinary approach that we take comprising a combination of analysis of eyewitness accounts (social science), sea level and wave data analysis (physical science) as well as numerical modelling and engineering judgement (engineering sciences). We investigate the contemporary wave climate and sea levels by interrogating the real-time tide gauge and wave buoys installed along the south-west coast of the English Channel. We then model a typical masonry seawall (Fig. 2), applying the computational fluid dynamics package FLOW3D-Hydro,Footnote2 to quantify the magnitude of impact forces that the seawall would have experienced leading to its failure. We triangulate this information to determine the probable sequence of failures that led to the disaster in 2014.

      figure 2
      Fig. 2

      Data and methods

      Our data comprise eyewitness accounts, sea level records from coastal tide gauges and offshore wave buoys as well as structural details of the seawall. As for methodology, we analyse eyewitness data, process and investigate sea level records through Fourier transform and conduct numerical simulations using the Flow3D-Hydro package (Flow Science 2022). Details of the data and methodology are provided in the following.

      Eyewitness data

      The scale of damage to the seawall and its effects led the local community to document the first-hand accounts of those most closely affected by the storms including residents, local businesses, emergency responders, politicians and engineering contractors involved in the post-storm restoration work. These records now form a permanent exhibition in the local museum in DawlishFootnote3, and some of these accounts have been transcribed into a DVD account of the disaster (Dawlish Museum 2015). We have gathered data from the Dawlish Museum, national and international news reports, social media tweets and videos. Table 1 provides a summary of the eyewitness accounts. Overall, 26 entries have been collected around the time of the incident. Our analysis of the eyewitness data is provided in the third column of Table 1 and is expanded in Sect. 3.Table 1 Eyewitness accounts of damage to the Dawlish railway due to the February 2014 storm and our interpretations

      Full size table

      Sea level data and wave environment

      Our sea level data are a collection of three tide gauge stations (Newlyn, Devonport and Swanage Pier—Fig. 5a) owned and operated by the UK National Tide and Sea Level FacilityFootnote4 for the Environment Agency and four offshore wave buoys (Dawlish, West Bay, Torbay and Chesil Beach—Fig. 6a). The tide gauge sites are all fitted with POL-EKO (www.pol-eko.com.pl) data loggers. Newlyn has a Munro float gauge with one full tide and one mid-tide pneumatic bubbler system. Devonport has a three-channel data pneumatic bubbler system, and Swanage Pier consists of a pneumatic gauge. Each has a sampling interval of 15 min, except for Swanage Pier which has a sampling interval of 10 min. The tide gauges are located within the port areas, whereas the offshore wave buoys are situated approximately 2—3.3 km from the coast at water depths of 10–15 m. The wave buoys are all Datawell Wavemaker Mk III unitsFootnote5 and come with sampling interval of 0.78 s. The buoys have a maximum saturation amplitude of 20.5 m for recording the incident waves which implies that every wave larger than this threshold will be recorded at 20.5 m. The data are provided by the British Oceanographic Data CentreFootnote6 for tide gauges and the Channel Coastal ObservatoryFootnote7 for wave buoys.

      Sea level analysis

      The sea level data underwent quality control to remove outliers and spikes as well as gaps in data (e.g. Heidarzadeh et al. 2022; Heidarzadeh and Satake 2015). We processed the time series of the sea level data using the Matlab signal processing tool (MathWorks 2018). For calculations of the tidal signals, we applied the tidal package TIDALFIT (Grinsted 2008), which is based on fitting tidal harmonics to the observed sea level data. To calculate the surge signals, we applied a 30-min moving average filter to the de-tided data in order to remove all wind, swell and infra-gravity waves from the time series. Based on the surge analysis and the variations of the surge component before the time period of the incident, an error margin of approximately ± 10 cm is identified for our surge analysis. Spectral analysis of the wave buoy data is performed using the fast Fourier transform (FFT) of Matlab package (Mathworks 2018).

      Numerical modelling

      Numerical modelling of wave-structure interaction is conducted using the computational fluid dynamics package Flow3D-Hydro version 1.1 (Flow Science 2022). Flow3D-Hydro solves the transient Navier–Stokes equations of conservation of mass and momentum using a finite difference method and on Eulerian and Lagrangian frameworks (Flow Science 2022). The aforementioned governing equations are:

      ∇.u=0∇.u=0

      (1)

      ∂u∂t+u.∇u=−∇Pρ+υ∇2u+g∂u∂t+u.∇u=−∇Pρ+υ∇2u+g

      (2)

      where uu is the velocity vector, PP is the pressure, ρρ is the water density, υυ is the kinematic viscosity and gg is the gravitational acceleration. A Fractional Area/Volume Obstacle Representation (FAVOR) is adapted in Flow3D-Hydro, which applies solid boundaries within the Eulerian grid and calculates the fraction of areas and volume in partially blocked volume in order to compute flows on corresponding boundaries (Hirt and Nichols 1981). We validated the numerical modelling through comparing the results with Sainflou’s analytical equation for the design of vertical seawalls (Sainflou 1928; Ackhurst 2020), which is as follows:

      pd=ρgHcoshk(d+z)coshkdcosσtpd=ρgHcoshk(d+z)coshkdcosσt

      (3)

      where pdpd is the hydrodynamic pressure, ρρ is the water density, gg is the gravitational acceleration, HH is the wave height, dd is the water depth, kk is the wavenumber, zz is the difference in still water level and mean water level, σσ is the angular frequency and tt is the time. The Sainflou’s equation (Eq. 3) is used to calculate the dynamic pressure from wave action, which is combined with static pressure on the seawall.

      Using Flow3D-Hydro, a model of the Dawlish seawall was made with a computational domain which is 250.0 m in length, 15.0 m in height and 0.375 m in width (Fig. 3a). The computational domain was discretised using a single uniform grid with a mesh size of 0.125 m. The model has a wave boundary at the left side of the domain (x-min), an outflow boundary on the right side (x-max), a symmetry boundary at the bottom (z-min) and a wall boundary at the top (z-max). A wall boundary implies that water or waves are unable to pass through the boundary, whereas a symmetry boundary means that the two edges of the boundary are identical and therefore there is no flow through it. The water is considered incompressible in our model. For volume of fluid advection for the wave boundary (i.e. the left-side boundary) in our simulations, we utilised the “Split Lagrangian Method”, which guarantees the best accuracy (Flow Science, 2022).

      figure 3
      Fig. 3

      The stability of the numerical scheme is controlled and maintained through checking the Courant number (CC) as given in the following:

      C=VΔtΔxC=VΔtΔx

      (4)

      where VV is the velocity of the flow, ΔtΔt is the time step and ΔxΔx is the spatial step (i.e. grid size). For stability and convergence of the numerical simulations, the Courant number must be sufficiently below one (Courant et al. 1928). This is maintained by a careful adjustment of the ΔxΔx and ΔtΔt selections. Flow3D-Hydro applies a dynamic Courant number, meaning the program adjusts the value of time step (ΔtΔt) during the simulations to achieve a balance between accuracy of results and speed of simulation. In our simulation, the time step was in the range ΔtΔt = 0.0051—0.051 s.

      In order to achieve the most efficient mesh resolution, we varied cell size for five values of ΔxΔx = 0.1 m, 0.125 m, 0.15 m, 0.175 m and 0.20 m. Simulations were performed for all mesh sizes, and the results were compared in terms of convergence, stability and speed of simulation (Fig. 3). A linear wave with an amplitude of 1.5 m and a period of 6 s was used for these optimisation simulations. We considered wave time histories at two gauges A and B and recorded the waves from simulations using different mesh sizes (Fig. 3). Although the results are close (Fig. 3), some limited deviations are observed for larger mesh sizes of 0.20 m and 0.175 m. We therefore selected mesh size of 0.125 m as the optimum, giving an extra safety margin as a conservative solution.

      The pressure from the incident waves on the vertical wall is validated in our model by comparing them with the analytical equation of Sainflou (1928), Eq. (3), which is one of the most common set of equations for design of coastal structures (Fig. 4). The model was tested by running a linear wave of period 6 s and wave amplitude of 1.5 m against the wall, with a still water level of 4.5 m. It can be seen that the model results are very close to those from analytical equations of Sainflou (1928), indicating that our numerical model is accurately modelling the wave-structure interaction (Fig. 4).

      figure 4
      Fig. 4

      Eyewitness account analysis

      Contemporary reporting of the 4th and 5th February 2014 storms by the main national news outlets in the UK highlights the extreme nature of the events and the significant damage and disruption they were likely to have on the communities of the south-west of England. In interviews, this was reinforced by Network Rail engineers who, even at this early stage, were forecasting remedial engineering works to last for at least 6 weeks. One week later, following subsequent storms the cascading nature of the events was obvious. Multiple breaches of the seawall had taken place with up to 35 separate landslide events and significant damage to parapet walls along the coastal route also were reported. Residents of the area reported extreme effects of the storm, one likening it to an earthquake and reporting water ingress through doors windows and even through vertical chimneys (Table 1). This suggests extreme wave overtopping volumes and large wave impact forces. One resident described the structural effects as: “the house was jumping up and down on its footings”.

      Disaster management plans were quickly and effectively put into action by the local council, police service and National Rail. A major incident was declared, and decisions regarding evacuation of the residents under threat were taken around 2100 h on the night of 4th February when reports of initial damage to the seawall were received (Table 1). Local hotels were asked to provide short-term refuge to residents while local leisure facilities were prepared to accept residents later that evening. Initial repair work to the railway line was hampered by successive high spring tides and storms in the following days although significant progress was still made when weather conditions permitted (Table 1).

      Sea level observations and spectral analysis

      The results of surge and wave analyses are presented in Figs. 5 and 6. A surge height of up to 0.8 m was recorded in the examined tide gauge stations (Fig. 5b-d). Two main episodes of high surge heights are identified: the first surge started on 3rd February 2014 at 03:00 (UTC) and lasted until 4th of February 2014 at 00:00; the second event occurred in the period 4th February 2014 15:00 to 5th February 2014 at 17:00 (Fig. 5b-d). These data imply surge durations of 21 h and 26 h for the first and the second events, respectively. Based on the surge data in Fig. 5, we note that the storm event of early February 2014 and the associated surges was a relatively powerful one, which impacted at least 230 km of the south coast of England, from Land’s End to Weymouth, with large surge heights.

      figure 5
      Fig. 5
      figure 6
      Fig. 6

      Based on wave buoy records, the maximum recorded amplitudes are at least 20.5 m in Dawlish and West Bay, 1.9 m in Tor Bay and 4.9 m in Chesil (Fig. 6a-b). The buoys at Tor Bay and Chesil recorded dual peak period bands of 4–8 and 8–12 s, whereas at Dawlish and West Bay registered triple peak period bands at 4–8, 8–12 and 20–25 s (Fig. 6c, d). It is important to note that the long-period waves at 20–25 s occur with short durations (approximately 2 min) while the waves at the other two bands of 4–8 and 8–12 s appear to be present at all times during the storm event.

      The wave component at the period band of 4–8 s can be most likely attributed to normal coastal waves while the one at 8–12 s, which is longer, is most likely the swell component of the storm. Regarding the third component of the waves with long period of 20 -25 s, which occurs with short durations of 2 min, there are two hypotheses; it is either the result of a local (port and harbour) and regional (the Lyme Bay) oscillations (eg. Rabinovich 1997; Heidarzadeh and Satake 2014; Wang et al. 1992), or due to an abnormally long swell. To test the first hypothesis, we consider various water bodies such as Lyme Bay (approximate dimensions of 70 km × 20 km with an average water depth of 30 m; Fig. 6), several local bays (approximate dimensions of 3.6 km × 0.6 km with an average water depth of 6 m) and harbours (approximate dimensions of 0.5 km × 0.5 km with an average water depth of 4 m). Their water depths are based on the online Marine navigation website.Footnote8 According to Rabinovich (2010), the oscillation modes of a semi-enclosed rectangle basin are given by the following equation:

      Tmn=2gd−−√[(m2L)2+(nW)2]−1/2Tmn=2gd[(m2L)2+(nW)2]−1/2

      (5)

      where TmnTmn is the oscillation period, gg is the gravitational acceleration, dd is the water depth, LL is the length of the basin, WW is the width of the basin, m=1,2,3,…m=1,2,3,… and n=0,1,2,3,…n=0,1,2,3,…; mm and nn are the counters of the different modes. Applying Eq. (5) to the aforementioned water bodies results in oscillation modes of at least 5 min, which is far longer than the observed period of 20–25 s. Therefore, we rule out the first hypothesis and infer that the long period of 20–25 s is most likely a long swell wave coming from distant sources. As discussed by Rabinovich (1997) and Wang et al. (2022), comparison between sea level spectra before and after the incident is a useful method to distinguish the spectrum of the weather event. A visual inspection of Fig. 6 reveals that the forcing at the period band of 20–25 s is non-existent before the incident.

      Numerical simulations of wave loading and overtopping

      Based on the results of sea level data analyses in the previous section (Fig. 6), we use a dual peak wave spectrum with peak periods of 10.0 s and 25.0 s for numerical simulations because such a wave would be comprised of the most energetic signals of the storm. For variations of water depth (2.0–4.0 m), coastal wave amplitude (0.5–1.5 m) (Fig. 7) and storm surge height (0.5–0.8 m) (Fig. 5), we developed 20 scenarios (Scn) which we used in numerical simulations (Table 2). Data during the incident indicated that water depth was up to the crest level of the seawall (approximately 4 m water depth); therefore, we varied water depth from 2 to 4 m in our simulation scenarios. Regarding wave amplitudes, we referred to the variations at a nearby tide gauge station (West Bay) which showed wave amplitude up to 1.2 m (Fig. 7). Therefore, wave amplitude was varied from 0.5 m to 1.5 m by considering a factor a safety of 25% for the maximum wave amplitude. As for the storm surge component, time series of storm surges calculated at three coastal stations adjacent to Dawlish showed that it was in the range of 0.5 m to 0.8 m (Fig. 5). These 20 scenarios would help to study uncertainties associated with wave amplitudes and pressures. Figure 8 shows snapshots of wave propagation and impacts on the seawall at different times.

      figure 7
      Fig. 7

      Table 2 The 20 scenarios considered for numerical simulations in this study

      Full size table

      figure 8
      Fig. 8

      Results of wave amplitude simulations

      Large wave amplitudes can induce significant wave forcing on the structure and cause overtopping of the seawall, which could eventually cascade to other hazards such as erosion of the backfill and scour (Adams and Heidarzadeh, 2021). The first 10 scenarios of our modelling efforts are for the same incident wave amplitudes of 0.5 m, which occur at different water depths (2.0–4.0 m) and storm surge heights (0.5–0.8 m) (Table 2 and Fig. 9). This is because we aim at studying the impacts of effective water depth (deff—the sum of mean sea level and surge height) on the time histories of wave amplitudes as the storm evolves. As seen in Fig. 9a, by decreasing effective water depth, wave amplitude increases. For example, for Scn-1 with effective depth of 4.5 m, the maximum amplitude of the first wave is 1.6 m, whereas it is 2.9 m for Scn-2 with effective depth of 3.5 m. However, due to intensive reflections and interferences of the waves in front of the vertical seawall, such a relationship is barely seen for the second and the third wave peaks. It is important to note that the later peaks (second or third) produce the largest waves rather than the first wave. Extraordinary wave amplifications are seen for the Scn-2 (deff = 3.5 m) and Scn-7 (deff = 3.3 m), where the corresponding wave amplitudes are 4.5 m and 3.7 m, respectively. This may indicate that the effective water depth of deff = 3.3–3.5 m is possibly a critical water depth for this structure resulting in maximum wave amplitudes under similar storms. In the second wave impact, the combined wave height (i.e. the wave amplitude plus the effective water depth), which is ultimately an indicator of wave overtopping, shows that the largest wave heights are generated by Scn-2, 7 and 8 (Fig. 9a) with effective water depths of 3.5 m, 3.3 m and 3.8 m and combined heights of 8.0 m, 7.0 m and 6.9 m (Fig. 9b). Since the height of seawall is 5.4 m, the combined wave heights for Scn-2, 7 and 8 are greater than the crest height of the seawall by 2.6 m, 1.6 m and 1.5 m, respectively, which indicates wave overtopping.

      figure 9
      Fig. 9

      For scenarios 11–20 (Fig. 10), with incident wave amplitudes of 1.5 m (Table 2), the largest wave amplitudes are produced by Scn-17 (deff = 3.3 m), Scn-13 (deff = 2.5 m) and Scn-12 (deff = 3.5 m), which are 5.6 m, 5.1 m and 4.5 m. The maximum combined wave heights belong to Scn-11 (deff = 4.5 m) and Scn-17 (deff = 3.3 m), with combined wave heights of 9.0 m and 8.9 m (Fig. 10b), which are greater than the crest height of the seawall by 4.6 m and 3.5 m, respectively.

      figure 10
      Fig. 10

      Our simulations for all 20 scenarios reveal that the first wave is not always the largest and wave interactions, reflections and interferences play major roles in amplifying the waves in front of the seawall. This is primarily because the wall is fully vertical and therefore has a reflection coefficient of close to one (i.e. full reflection). Simulations show that the combined wave height is up to 4.6 m higher than the crest height of the wall, implying that severe overtopping would be expected.

      Results of wave loading calculations

      The pressure calculations for scenarios 1–10 are given in Fig. 11 and those of scenarios 11–20 in Fig. 12. The total pressure distribution in Figs. 1112 mostly follows a triangular shape with maximum pressure at the seafloor as expected from the Sainflou (1928) design equations. These pressure plots comprise both static (due to mean sea level in front of the wall) and dynamic (combined effects of surge and wave) pressures. For incident wave amplitudes of 0.5 m (Fig. 11), the maximum wave pressure varies in the range of 35–63 kPa. At the sea surface, it is in the range of 4–20 kPa (Fig. 11). For some scenarios (Scn-2 and 7), the pressure distribution deviates from a triangular shape and shows larger pressures at the top, which is attributed to the wave impacts and partial breaking at the sea surface. This adds an additional triangle-shaped pressure distribution at the sea surface elevation consistent with the design procedure developed by Goda (2000) for braking waves. The maximum force on the seawall due to scenarios 1–10, which is calculated by integrating the maximum pressure distribution over the wave-facing surface of the seawall, is in the range of 92–190 KN (Table 2).

      figure 11
      Fig. 11
      figure 12
      Fig. 12

      For scenarios 11–20, with incident wave amplitude of 1.5 m, wave pressures of 45–78 kPa and 7–120 kPa, for  the bottom and top of the wall, respectively, were observed (Fig. 12). Most of the plots show a triangular pressure distribution, except for Scn-11 and 15. A significant increase in wave impact pressure is seen for Scn-15 at the top of the structure, where a maximum pressure of approximately 120 kPa is produced while other scenarios give a pressure of 7–32 kPa for the sea surface. In other words, the pressure from Scn-15 is approximately four times larger than the other scenarios. Such a significant increase of the pressure at the top is most likely attributed to the breaking wave impact loads as detailed by Goda (2000) and Cuomo et al. (2010). The wave simulation snapshots in Fig. 8 show that the wave breaks before reaching the wall. The maximum force due to scenarios 11–20 is 120–286 KN.

      The breaking wave impacts peaking at 286 KN in our simulations suggest destabilisation of the upper masonry blocks, probably by grout malfunction. This significant impact force initiated the failure of the seawall which in turn caused extensive ballast erosion. Wave impact damage was proposed by Adams and Heidarzadeh (2021) as one of the primary mechanisms in the 2014 Dawlish disaster. In the multi-hazard risk model proposed by these authors, damage mechanism III (failure pathway 5 in Adams and Heidarzadeh, 2021) was characterised by wave impact force causing damage to the masonry elements, leading to failure of the upper sections of the seawall and loss of infill material. As blocks were removed, access to the track bed was increased for inbound waves allowing infill material from behind the seawall to be fluidised and subsequently removed by backwash. The loss of infill material critically compromised the stability of the seawall and directly led to structural failure. In parallel, significant wave overtopping (discussed in the next section) led to ballast washout and cascaded, in combination with masonry damage, to catastrophic failure of the wall and suspension of the rails in mid-air (Fig. 1b), leaving the railway inoperable for two months.

      Wave Overtopping

      The two most important factors contributing to the 2014 Dawlish railway catastrophe were wave impact forces and overtopping. Figure 13 gives the instantaneous overtopping rates for different scenarios, which experienced overtopping. It can be seen that the overtopping rates range from 0.5 m3/s/m to 16.1 m3/s/m (Fig. 13). Time histories of the wave overtopping rates show that the phenomenon occurs intermittently, and each time lasts 1.0–7.0 s. It is clear that the longer the overtopping time, the larger the volume of the water poured on the structure. The largest wave overtopping rates of 16.1 m3/s/m and 14.4 m3/s/m belong to Scn-20 and 11, respectively. These are the two scenarios that also give the largest combined wave heights (Fig. 10b).

      figure 13
      Fig. 13

      The cumulative overtopping curves (Figs. 1415) show the total water volume overtopped the structure during the entire simulation time. This is an important hazard factor as it determines the level of soil saturation, water pore pressure in the soil and soil erosion (Van der Meer et al. 2018). The maximum volume belongs to Scn-20, which is 65.0 m3/m (m-cubed of water per metre length of the wall). The overtopping volumes are 42.7 m3/m for Scn-11 and 28.8 m3/m for Scn-19. The overtopping volume is in the range of 0.7–65.0 m3/m for all scenarios.

      figure 14
      Fig. 14
      figure 15
      Fig. 15

      For comparison, we compare our modelling results with those estimated using empirical equations. For the case of the Dawlish seawall, we apply the equation proposed by Van Der Meer et al. (2018) to estimate wave overtopping rates, based on a set of decision criteria which are the influence of foreshore, vertical wall, possible breaking waves and low freeboard:

      qgH3m−−−−√=0.0155(Hmhs)12e(−2.2RcHm)qgHm3=0.0155(Hmhs)12e(−2.2RcHm)

      (6)

      where qq is the mean overtopping rate per metre length of the seawall (m3/s/m), gg is the acceleration due to gravity, HmHm is the incident wave height at the toe of the structure, RcRc is the wall crest height above mean sea level, hshs is the deep-water significant wave height and e(x)e(x) is the exponential function. It is noted that Eq. (6) is valid for 0.1<RcHm<1.350.1<RcHm<1.35. For the case of the Dawlish seawall and considering the scenarios with larger incident wave amplitude of 1.5 m (hshs= 1.5 m), the incident wave height at the toe of the structure is HmHm = 2.2—5.6 m, and the wall crest height above mean sea level is RcRc = 0.6–2.9 m. As a result, Eq. (6) gives mean overtopping rates up to approximately 2.9 m3/s/m. A visual inspection of simulated overtopping rates in Fig. 13 for Scn 11–20 shows that the mean value of the simulated overtopping rates (Fig. 13) is close to estimates using Eq. (6).

      Discussion and conclusions

      We applied a combination of eyewitness account analysis, sea level data analysis and numerical modelling in combination with our engineering judgement to explain the damage to the Dawlish railway seawall in February 2014. Main findings are:

      • Eyewitness data analysis showed that the extreme nature of the event was well forecasted in the hours prior to the storm impact; however, the magnitude of the risks to the structures was not well understood. Multiple hazards were activated simultaneously, and the effects cascaded to amplify the damage. Disaster management was effective, exemplified by the establishment of an emergency rendezvous point and temporary evacuation centre during the storm, indicating a high level of hazard awareness and preparedness.
      • Based on sea level data analysis, we identified triple peak period bands at 4–8, 8–12 and 20–25 s in the sea level data. Storm surge heights and wave oscillations were up to 0.8 m and 1.5 m, respectively.
      • Based on the numerical simulations of 20 scenarios with different water depths, incident wave amplitudes, surge heights and peak periods, we found that the wave oscillations at the foot of the seawall result in multiple wave interactions and interferences. Consequently, large wave amplitudes, up to 4.6 m higher than the height of the seawall, were generated and overtopped the wall. Extreme impulsive wave impact forces of up to 286 KN were generated by the waves interacting with the seawall.
      • We measured maximum wave overtopping rates of 0.5–16.1 m3/s/m for our scenarios. The cumulative overtopping water volumes per metre length of the wall were 0.7–65.0 m3/m.
      • Analysis of all the evidence combined with our engineering judgement suggests that the most likely initiating cause of the failure was impulsive wave impact forces destabilising one or more grouted joints between adjacent masonry blocks in the wall. Maximum observed pressures of 286 KN in our simulations are four times greater in magnitude than background pressures leading to block removal and initiating failure. Therefore, the sequence of cascading events was :1) impulsive wave impact force causing damage to masonry, 2) failure of the upper sections of the seawall, 3) loss of infill resulting in a reduction of structural strength in the landward direction, 4) ballast washout as wave overtopping and inbound wave activity increased and 5) progressive structural failure following successive tides.

      From a risk mitigation point of view, the stability of the seawall in the face of future energetic cyclonic storm events and sea level rise will become a critical factor in protecting the rail network. Mitigation efforts will involve significant infrastructure investment to strengthen the civil engineering assets combined with improved hazard warning systems consisting of meteorological forecasting and real-time wave observations and instrumentation. These efforts must take into account the amenity value of coastal railway infrastructure to local communities and the significant number of tourists who visit every year. In this regard, public awareness and active engagement in the planning and execution of the project will be crucial in order to secure local stakeholder support for the significant infrastructure project that will be required for future resilience.

      Notes

      1. https://www.networkrail.co.uk/..
      2. https://www.flow3d.com/products/flow-3d-hydro/.
      3. https://www.devonmuseums.net/Dawlish-Museum/Devon-Museums/.
      4. https://ntslf.org/.
      5. https://www.datawell.nl/Products/Buoys/DirectionalWaveriderMkIII.aspx.
      6. https://www.bodc.ac.uk/.
      7. https://coastalmonitoring.org/cco/.
      8. https://webapp.navionics.com/#boating@8&key=iactHlwfP.

      References

      Download references

      Acknowledgements

      We are grateful to Brunel University London for administering the scholarship awarded to KA. The Flow3D-Hydro used in this research for numerical modelling is licenced to Brunel University London through an academic programme contract. We sincerely thank Prof Harsh Gupta (Editor-in-Chief) and two anonymous reviewers for their constructive review comments.

      Funding

      This project was funded by the UK Engineering and Physical Sciences Research Council (EPSRC) through a PhD scholarship to Keith Adams.

      Author information

      Authors and Affiliations

      1. Department of Civil and Environmental Engineering, Brunel University London, Uxbridge, UB8 3PH, UKKeith Adams
      2. Department of Architecture and Civil Engineering, University of Bath, Bath, BA2 7AY, UKMohammad Heidarzadeh

      Corresponding author

      Correspondence to Keith Adams.

      Ethics declarations

      Conflict of interest

      The authors have no relevant financial or non-financial interests to disclose.

      Availability of data

      All data used in this study are provided in the body of the article.

      Additional information

      Publisher’s Note

      Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

      Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

      Reprints and Permissions

      About this article

      Verify currency and authenticity via CrossMark

      Cite this article

      Adams, K., Heidarzadeh, M. Extratropical cyclone damage to the seawall in Dawlish, UK: eyewitness accounts, sea level analysis and numerical modelling. Nat Hazards (2022). https://doi.org/10.1007/s11069-022-05692-2

      Download citation

      • Received17 May 2022
      • Accepted17 October 2022
      • Published14 November 2022
      • DOIhttps://doi.org/10.1007/s11069-022-05692-2

      Share this article

      Anyone you share the following link with will be able to read this content:Get shareable link

      Provided by the Springer Nature SharedIt content-sharing initiative

      Keywords

      • Storm surge
      • Cyclone
      • Railway
      • Climate change
      • Infrastructure
      • Resilience
      Dissipating Culvert End Design for Erosion Control Using CFD Platform FLOW-3D Numerical Simulation Modeling

      CFD 플랫폼 FLOW-3D 수치 시뮬레이션 모델링을 사용한 침식 제어를 위한 분산 암거 종단 설계

      Dissipating Culvert End Design for Erosion Control Using CFD Platform FLOW-3D Numerical Simulation Modeling

      Saman Mostafazadeh-Fard

      Graduate Research Assistant, Dept. of Civil Engineering, New Mexico State Univ., P.O. Box 30001, MSC 3CE, Las Cruces, NM 88003-8001 (corresponding author). Email: samanmzf@nmsu.edu

      Zohrab Samani

      Professor, Dept. of Civil Engineering, New Mexico State Univ., P.O. Box 30001, MSC 3CE, Las Cruces, NM 88003-8001. Email: zsamani@nmsu.edu

      Abstract

      추상적인
      암거 끝에서 나오는 고속 흐름으로 인한 하류 침식 및 세굴은 수력 엔지니어가 직면한 주요 문제 중 하나입니다. 본 논문의 주요 목적은 일반적인 암거 단부에서 나오는 고속 흐름으로 인한 하류 침식 및 세굴의 위험을 줄일 수 있는 분산 암거 단부 설계를 개발하는 것이었습니다. 이를 위해 전산 유체 역학(CFD) 플랫폼 FLOW-3D 버전 11.1.0 코드를 실험 실행[결정 계수 R2>0.90 및 평균 제곱근 오차(RMSE)<1.9 cm]을 기반으로 보정 및 검증했습니다. 그런 다음 코드를 사용하여 두 가지 대안적인 소멸 암거 끝 설계(ALT 1 및 ALT 2)를 개발하고 하류 침식 및 세굴 완화 가능성을 분석했습니다. 각각의 출수유속과 운동에너지를 측정하여 전형적인 암거단부(대조)유량과 비교하였다. 결과에 따르면 제어 흐름에서의 질량 평균 유체 평균 운동 에너지는 1.37 j/kg2로 기록되었으며, ALT 1 및 ALT 2 흐름에서 각각 0.83 및 0.73 j/kg2로 측정되었습니다. 따라서 제어 흐름 하에서 하류 샌드박스 매스의 제거는 ALT 1 및 ALT 2 흐름에 비해 각각 약 11.1% 및 4.2% 더 높았습니다. FLOW-3D 코드는 암거 끝 흐름과 하류 침식을 예측하고 하류 침식을 줄일 수 있는 잠재적 소산 암거 끝을 설계하는 데 사용할 수 있습니다.

      Downstream erosion and scouring caused by high-velocity flow issuing from culvert ends are one of the main problems faced by hydraulic engineers. The main objective of this paper was to develop a dissipating culvert end design that can reduce the risk of downstream erosion and scour caused by high-velocity flow issuing from typical culvert ends. For this purpose, the computational fluid dynamics (CFD) platform FLOW-3D version 11.1.0 code was calibrated and validated based on the experimental runs [coefficient of determination R2>0.90R2>0.90 and root mean square error (RMSE)<1.9  cm(RMSE)<1.9  cm]. Two alternative dissipating culvert end designs (ALT 1 and ALT 2) were then developed using the code, and their potential in mitigation of downstream erosion and scouring was analyzed. The issuing flow velocity and kinetic energy for each were measured and compared with typical culvert end (control) flow. According to the results, mass averaged fluid mean kinetic energy in the control flow was recorded at 1.37  j/kg21.37  j/kg2 and was measured at 0.83 and 0.73  j/kg20.73  j/kg2 in ALT 1 and ALT 2 flows, respectively. Accordingly, the removal of downstream sandbox mass under control flow was approximately 11.1% and 4.2% higher compared with ALT 1 and ALT 2 flows, respectively. FLOW-3D code can be used to predict culvert end flow and downstream erosion and to design potential dissipating culvert ends that can reduce downstream erosion.

      Dissipating Culvert End Design for Erosion Control Using CFD Platform FLOW-3D Numerical Simulation Modeling
      Dissipating Culvert End Design for Erosion Control Using CFD Platform FLOW-3D Numerical Simulation Modeling
      Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing

      레이저 금속 적층 제조 중 나노 입자로 에너지 효율 증가

      Minglei Quo bQilin Guo a bLuis IzetEscano a bAli Nabaa a bKamel Fezzaa cLianyi Chen a b

      레이저 금속 적층 제조(AM) 공정의 낮은 에너지 효율은 대규모 산업 생산에서 잠재적인 지속 가능성 문제입니다. 레이저 용융을 위한 에너지 효율의 명시적 조사는 용융 금속의 불투명한 특성으로 인해 매우 어려운 용융 풀 치수 및 증기 내림의 직접적인 특성화를 요구합니다. 

      여기에서 우리는 현장 고속 고에너지 x-선 이미징에 의해 Al6061의 레이저 분말 베드 융합(LPBF) 동안 증기 강하 및 용융 풀 형성에 대한 TiC 나노 입자의 효과에 대한 직접적인 관찰 및 정량화를 보고합니다. 정량 결과를 바탕으로, 우리는 Al6061의 LPBF 동안 TiC 나노 입자가 있거나 없을 때 레이저 용융 에너지 효율(여기서 재료를 용융하는 데 필요한 에너지 대 레이저 빔에 의해 전달되는 에너지의 비율로 정의)을 계산했습니다. 

      결과는 TiC 나노 입자를 Al6061에 추가하면 레이저 용융 에너지 효율이 크게 증가한다는 것을 보여줍니다(평균 114% 증가, 312에서 521% 증가). W 레이저 출력, 0.4m  /s 스캔 속도). 체계적인 특성 측정, 시뮬레이션 및 x-선 이미징 연구를 통해 우리는 처음으로 세 가지 메커니즘이 함께 작동하여 레이저 용융 에너지 효율을 향상시킨다는 것을 확인할 수 있었습니다.

      (1) TiC 나노 입자를 추가하면 흡수율이 증가합니다. (2) TiC 나노입자를 추가하면 열전도율이 감소하고, (3) TiC 나노입자를 추가하면 더 낮은 레이저 출력에서 ​​증기 억제 및 다중 반사를 시작할 수 있습니다(즉, 키홀링에 대한 레이저 출력 임계값을 낮춤). 

      여기서 보고한 Al6061의 LPBF 동안 레이저 용융 에너지 효율을 증가시키기 위해 TiC 나노입자를 사용하는 방법 및 메커니즘은 보다 에너지 효율적인 레이저 금속 AM을 위한 공급원료 재료의 개발을 안내할 수 있습니다.

      The low energy efficiency of the laser metal additive manufacturing (AM) process is a potential sustainability concern for large-scale industrial production. Explicit investigation of the energy efficiency for laser melting requires the direct characterization of melt pool dimension and vapor depression, which is very difficult due to the opaque nature of the molten metal. Here we report the direct observation and quantification of effects of the TiC nanoparticles on the vapor depression and melt pool formation during laser powder bed fusion (LPBF) of Al6061 by in-situ high-speed high-energy x-ray imaging. Based on the quantification results, we calculated the laser melting energy efficiency (defined here as the ratio of the energy needed to melt the material to the energy delivered by the laser beam) with and without TiC nanoparticles during LPBF of Al6061. The results show that adding TiC nanoparticles into Al6061 leads to a significant increase of laser melting energy efficiency (114% increase on average, 521% increase under 312 W laser power, 0.4 m/s scan speed). Systematic property measurement, simulation, and x-ray imaging studies enable us, for the first time, to identify that three mechanisms work together to enhance the laser melting energy efficiency: (1) adding TiC nanoparticles increases the absorptivity; (2) adding TiC nanoparticles decreases the thermal conductivity, and (3) adding TiC nanoparticles enables the initiation of vapor depression and multiple reflection at lower laser power (i.e., lowers the laser power threshold for keyholing). The method and mechanisms of using TiC nanoparticles to increase the laser melting energy efficiency during LPBF of Al6061 we reported here may guide the development of feedstock materials for more energy efficient laser metal AM.

      Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing
      Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing

      Keywords

      Additive manufacturing

      laser powder bed fusion

      energy efficiency

      keyhole

      melt pool

      x-ray imaging

      metal matrix nanocomposites

      The failure propagation of weakly stable sediment: A reason for the formation of high-velocity turbidity currents in submarine canyons

      약한 안정 퇴적물의 실패 전파: 해저 협곡에서 고속 탁도 흐름이 형성되는 이유

      Abstract

      Abstract해저 협곡에서 탁도의 장거리 이동은 많은 양의 퇴적물을 심해 평원으로 운반할 수 있습니다. 이전 연구에서는 5.9~28.0m/s 범위의 다중 케이블 손상 이벤트에서 파생된 탁도 전류 속도와 0.15~7.2m/s 사이의 현장 관찰 결과에서 명백한 차이가 있음을 보여줍니다. 따라서 해저 환경의 탁한 유체가 해저 협곡을 고속으로 장거리로 흐를 수 있는지에 대한 질문이 남아 있습니다. 연구실 시험의 결합을 통해 해저협곡의 탁류의 고속 및 장거리 운동을 설명하기 위해 약안정 퇴적물 기반의 새로운 모델(약안정 퇴적물에 대한 파손 전파 모델 제안, 줄여서 WSS-PFP 모델)을 제안합니다. 및 수치 아날로그. 이 모델은 두 가지 메커니즘을 기반으로 합니다. 1) 원래 탁도류는 약하게 안정한 퇴적층의 불안정화를 촉발하고 연질 퇴적물의 불안정화 및 하류 방향으로의 이동을 촉진하고 2) 원래 탁도류가 협곡으로 이동할 때 형성되는 여기파가 불안정화로 이어진다. 하류 방향으로 약하게 안정한 퇴적물의 수송. 제안된 모델은 심해 퇴적, 오염 물질 이동 및 광 케이블 손상 연구를 위한 동적 프로세스 해석을 제공할 것입니다.

      The long-distance movement of turbidity currents in submarine canyons can transport large amounts of sediment to deep-sea plains. Previous studies show obvious differences in the turbidity current velocities derived from the multiple cables damage events ranging from 5.9 to 28.0 m/s and those of field observations between 0.15 and 7.2 m/s. Therefore, questions remain regarding whether a turbid fluid in an undersea environment can flow through a submarine canyon for a long distance at a high speed. A new model based on weakly stable sediment is proposed (proposed failure propagation model for weakly stable sediments, WSS-PFP model for short) to explain the high-speed and long-range motion of turbidity currents in submarine canyons through the combination of laboratory tests and numerical analogs. The model is based on two mechanisms: 1) the original turbidity current triggers the destabilization of the weakly stable sediment bed and promotes the destabilization and transport of the soft sediment in the downstream direction and 2) the excitation wave that forms when the original turbidity current moves into the canyon leads to the destabilization and transport of the weakly stable sediment in the downstream direction. The proposed model will provide dynamic process interpretation for the study of deep-sea deposition, pollutant transport, and optical cable damage.

      Keyword

      • turbidity current
      • excitation wave
      • dense basal layer
      • velocity
      • WSS-PFP model

      References

      Download references

      Acknowledgment

      We thank Hanru WU from Ocean University of China for his help in thesis writing, and Hao TIAN and Chenxi WANG from Ocean University of China for their helps in the preparation of the experimental materials. Guohui XU is responsible for the development of the initial concept, processing of test data, and management of coauthor contributions to the paper; Yupeng REN for the experiment setup and drafting of the paper; Yi ZHANG and Xingbei XU for the simulation part of the experiment; Houjie WANG for writing guidance; Zhiyuan CHEN for the experiment setup.

      Author information

      Authors and Affiliations

      1. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao, 266100, ChinaYupeng Ren, Yi Zhang, Guohui Xu, Xingbei Xu & Zhiyuan Chen
      2. Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, ChinaYupeng Ren & Houjie Wang
      3. Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao, 266100, ChinaYi Zhang, Guohui Xu, Xingbei Xu & Zhiyuan Chen

      Corresponding author

      Correspondence to Guohui Xu.

      Additional information

      Supported by the National Natural Science Foundation of China (Nos. 41976049, 41720104001) and the Taishan Scholar Project of Shandong Province (No. TS20190913), and the Fundamental Research Funds for the Central Universities (No. 202061028)

      Data Availability Statement

      The datasets generated and/or analyzed during the current study are available from the corresponding author upon reasonable request.

      Reprints and Permissions

      About this article

      Cite this article

      Ren, Y., Zhang, Y., Xu, G. et al. The failure propagation of weakly stable sediment: A reason for the formation of high-velocity turbidity currents in submarine canyons. J. Ocean. Limnol. (2022). https://doi.org/10.1007/s00343-022-1285-0

      Fig. 1. (a) Dimensions of the casting with runners (unit: mm), (b) a melt flow simulation using Flow-3D software together with Reilly's model[44], predicted that a large amount of bifilms (denoted by the black particles) would be contained in the final casting. (c) A solidification simulation using Pro-cast software showed that no shrinkage defect was contained in the final casting.

      AZ91 합금 주물 내 연행 결함에 대한 캐리어 가스의 영향

      TianLiabJ.M.T.DaviesaXiangzhenZhuc
      aUniversity of Birmingham, Birmingham B15 2TT, United Kingdom
      bGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United Kingdom
      cBrunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Ln, London, Uxbridge UB8 3PH, United Kingdom

      Abstract

      An entrainment defect (also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final castings. Previous publications, carried out with Al-alloy castings, reported that this trapped gas could be subsequently consumed by the reaction with the surrounding melt, thus reducing the void volume and negative effect of entrainment defects. Compared with Al-alloys, the entrapped gas within Mg-alloy might be more efficiently consumed due to the relatively high reactivity of magnesium. However, research into the entrainment defects within Mg alloys has been significantly limited. In the present work, AZ91 alloy castings were produced under different carrier gas atmospheres (i.e., SF6/CO2, SF6/air). The evolution processes of the entrainment defects contained in AZ91 alloy were suggested according to the microstructure inspections and thermodynamic calculations. The defects formed in the different atmospheres have a similar sandwich-like structure, but their oxide films contained different combinations of compounds. The use of carrier gases, which were associated with different entrained-gas consumption rates, affected the reproducibility of AZ91 castings.

      연행 결함(이중 산화막 결함 또는 이중막이라고도 함)은 경합금 용융물에 잠길 때 갇힌 가스를 포함하는 공극으로 작용하여 최종 주물의 품질과 재현성을 저하시킵니다. Al-합금 주물을 사용하여 수행된 이전 간행물에서는 이 갇힌 가스가 주변 용융물과의 반응에 의해 후속적으로 소모되어 공극 부피와 연행 결함의 부정적인 영향을 줄일 수 있다고 보고했습니다. Al-합금에 비해 마그네슘의 상대적으로 높은 반응성으로 인해 Mg-합금 내에 포집된 가스가 더 효율적으로 소모될 수 있습니다. 그러나 Mg 합금 내 연행 결함에 대한 연구는 상당히 제한적이었습니다. 현재 작업에서 AZ91 합금 주물은 다양한 캐리어 가스 분위기(즉, SF6/CO2, SF6/공기)에서 생산되었습니다. AZ91 합금에 포함된 연행 결함의 진화 과정은 미세 조직 검사 및 열역학 계산에 따라 제안되었습니다. 서로 다른 분위기에서 형성된 결함은 유사한 샌드위치 구조를 갖지만 산화막에는 서로 다른 화합물 조합이 포함되어 있습니다. 다른 동반 가스 소비율과 관련된 운반 가스의 사용은 AZ91 주물의 재현성에 영향을 미쳤습니다.

      Keywords

      Magnesium alloy, Casting, Oxide film, Bifilm, Entrainment defect, Reproducibility

      1. Introduction

      As the lightest structural metal available on Earth, magnesium became one of the most attractive light metals over the last few decades. The magnesium industry has consequently experienced a rapid development in the last 20 years [1,2], indicating a large growth in demand for Mg alloys all over the world. Nowadays, the use of Mg alloys can be found in the fields of automobiles, aerospace, electronics and etc.[3,4]. It has been predicted that the global consumption of Mg metals will further increase in the future, especially in the automotive industry, as the energy efficiency requirement of both traditional and electric vehicles further push manufactures lightweight their design [3,5,6].

      The sustained growth in demand for Mg alloys motivated a wide interest in the improvement of the quality and mechanical properties of Mg-alloy castings. During a Mg-alloy casting process, surface turbulence of the melt can lead to the entrapment of a doubled-over surface film containing a small quantity of the surrounding atmosphere, thus forming an entrainment defect (also known as a double oxide film defect or bifilm) [7][8][9][10]. The random size, quantity, orientation, and placement of entrainment defects are widely accepted to be significant factors linked to the variation of casting properties [7]. In addition, Peng et al. [11] found that entrained oxides films in AZ91 alloy melt acted as filters to Al8Mn5 particles, trapping them as they settle. Mackie et al. [12] further suggested that entrained oxide films can act to trawl the intermetallic particles, causing them to cluster and form extremely large defects. The clustering of intermetallic compounds made the entrainment defects more detrimental for the casting properties.

      Most of the previous studies regarding entrainment defects were carried out on Al-alloys [7,[13][14][15][16][17][18], and a few potential methods have been suggested for diminishing their negative effect on the quality of Al-alloy castings. Nyahumwa et al.,[16] shows that the void volume within entrainment defects could be reduced by a hot isostatic pressing (HIP) process. Campbell [7] suggested the entrained gas within the defects could be consumed due to reaction with the surrounding melt, which was further verified by Raiszedeh and Griffiths [19].The effect of the entrained gas consumption on the mechanical properties of Al-alloy castings has been investigated by [8,9], suggesting that the consumption of the entrained gas promoted the improvement of the casting reproducibility.

      Compared with the investigation concerning the defects within Al-alloys, research into the entrainment defects within Mg-alloys has been significantly limited. The existence of entrainment defects has been demonstrated in Mg-alloy castings [20,21], but their behaviour, evolution, as well as entrained gas consumption are still not clear.

      In a Mg-alloy casting process, the melt is usually protected by a cover gas to avoid magnesium ignition. The cavities of sand or investment moulds are accordingly required to be flushed with the cover gas prior to the melt pouring [22]. Therefore, the entrained gas within Mg-alloy castings should contain the cover gas used in the casting process, rather than air only, which may complicate the structure and evolution of the corresponding entrainment defects.

      SF6 is a typical cover gas widely used for Mg-alloy casting processes [23][24][25]. Although this cover gas has been restricted to use in European Mg-alloy foundries, a commercial report has pointed out that this cover is still popular in global Mg-alloy industry, especially in the countries which dominated the global Mg-alloy production, such as China, Brazil, India, etc. [26]. In addition, a survey in academic publications also showed that this cover gas was widely used in recent Mg-alloy studies [27]. The protective mechanism of SF6 cover gas (i.e., the reaction between liquid Mg-alloy and SF6 cover gas) has been investigated by several previous researchers, but the formation process of the surface oxide film is still not clearly understood, and even some published results are conflicting with each other. In early 1970s, Fruehling [28] found that the surface film formed under SF6 was MgO mainly with traces of fluorides, and suggested that SF6 was absorbed in the Mg-alloy surface film. Couling [29] further noticed that the absorbed SF6 reacted with the Mg-alloy melt to form MgF2. In last 20 years, different structures of the Mg-alloy surface films have been reported, as detailed below.(1)

      Single-layered film. Cashion [30,31] used X-ray Photoelectron Spectroscopy (XPS) and Auger Spectroscopy (AES) to identify the surface film as MgO and MgF2. He also found that composition of the film was constant throughout the thickness and the whole experimental holding time. The film observed by Cashion had a single-layered structure created from a holding time from 10 min to 100 min.(2)

      Double-layered film. Aarstad et. al [32] reported a doubled-layered surface oxide film in 2003. They observed several well-distributed MgF2 particles attached to the preliminary MgO film and grew until they covered 25–50% of the total surface area. The inward diffusion of F through the outer MgO film was the driving force for the evolution process. This double-layered structure was also supported by Xiong’s group [25,33] and Shih et al. [34].(3)

      Triple-layered film. The triple-layered film and its evolution process were reported in 2002 by Pettersen [35]. Pettersen found that the initial surface film was a MgO phase and then gradually evolved to the stable MgF2 phase by the inward diffusion of F. In the final stage, the film has a triple-layered structure with a thin O-rich interlayer between the thick top and bottom MgF2 layers.(4)

      Oxide film consisted of discrete particles. Wang et al [36] stirred the Mg-alloy surface film into the melt under a SF6 cover gas, and then inspect the entrained surface film after the solidification. They found that the entrained surface films were not continues as the protective surface films reported by other researchers but composed of discrete particles. The young oxide film was composed of MgO nano-sized oxide particles, while the old oxide films consist of coarse particles (about 1  µm in average size) on one side that contained fluorides and nitrides.

      The oxide films of a Mg-alloy melt surface or an entrained gas are both formed due to the reaction between liquid Mg-alloy and the cover gas, thus the above-mentioned research regarding the Mg-alloy surface film gives valuable insights into the evolution of entrainment defects. The protective mechanism of SF6 cover gas (i.e., formation of a Mg-alloy surface film) therefore indicated a potential complicated evolution process of the corresponding entrainment defects.

      However, it should be noted that the formation of a surface film on a Mg-alloy melt is in a different situation to the consumption of an entrained gas that is submerged into the melt. For example, a sufficient amount of cover gas was supported during the surface film formation in the studies previously mentioned, which suppressed the depletion of the cover gas. In contrast, the amount of entrained gas within a Mg-alloy melt is finite, and the entrained gas may become fully depleted. Mirak [37] introduced 3.5%SF6/air bubbles into a pure Mg-alloy melt solidifying in a specially designed permanent mould. It was found that the gas bubbles were entirely consumed, and the corresponding oxide film was a mixture of MgO and MgF2. However, the nucleation sites (such as the MgF2 spots observed by Aarstad [32] and Xiong [25,33]) were not observed. Mirak also speculated that the MgF2 formed prior to MgO in the oxide film based on the composition analysis, which was opposite to the surface film formation process reported in previous literatures (i.e., MgO formed prior to MgF2). Mirak’s work indicated that the oxide-film formation of an entrained gas may be quite different from that of surface films, but he did not reveal the structure and evolution of the oxide films.

      In addition, the use of carrier gas in the cover gases also influenced the reaction between the cover gas and the liquid Mg-alloy. SF6/air required a higher content of SF6 than did a SF6/CO2 carrier gas [38], to avoid the ignition of molten magnesium, revealing different gas-consumption rates. Liang et.al [39] suggested that carbon was formed in the surface film when CO2 was used as a carrier gas, which was different from the films formed in SF6/air. An investigation into Mg combustion [40] reported a detection of Mg2C3 in the Mg-alloy sample after burning in CO2, which not only supported Liang’s results, but also indicated a potential formation of Mg carbides in double oxide film defects.

      The work reported here is an investigation into the behaviour and evolution of entrainment defects formed in AZ91 Mg-alloy castings, protected by different cover gases (i.e., SF6/air and SF6/CO2). These carrier gases have different protectability for liquid Mg alloy, which may be therefore associated with different consumption rates and evolution processes of the corresponding entrained gases. The effect of the entrained-gas consumption on the reproducibility of AZ91 castings was also studied.

      2. Experiment

      2.1. Melting and casting

      Three kilograms AZ91 alloy was melted in a mild steel crucible at 700 ± 5 °C. The composition of the AZ91 alloy has been shown in Table 1. Prior to heating, all oxide scale on the ingot surface was removed by machining. The cover gases used were 0.5%SF6/air or 0.5%SF6/CO2 (vol.%) at a flow rate of 6 L/min for different castings. The melt was degassed by argon with a flow rate of 0.3 L/min for 15 min [41,42], and then poured into sand moulds. Prior to pouring, the sand mould cavity was flushed with the cover gas for 20 min [22]. The residual melt (around 1 kg) was solidified in the crucible.

      Table 1. Composition (wt.%) of the AZ91 alloy used in this study.

      AlZnMnSiFeNiMg
      9.40.610.150.020.0050.0017Residual

      Fig. 1(a) shows the dimensions of the casting with runners. A top-filling system was deliberately used to generate entrainment defects in the final castings. Green and Campbell [7,43] suggested that a top-filling system caused more entrainment events (i.e., bifilms) during a casting process, compared with a bottom-filling system. A melt flow simulation (Flow-3D software) of this mould, using Reilly’s model [44] regarding the entrainment events, also predicted that a large amount of bifilms would be contained in the final casting (denoted by the black particles in Fig. 1b).

      Fig. 1. (a) Dimensions of the casting with runners (unit: mm), (b) a melt flow simulation using Flow-3D software together with Reilly's model[44], predicted that a large amount of bifilms (denoted by the black particles) would be contained in the final casting. (c) A solidification simulation using Pro-cast software showed that no shrinkage defect was contained in the final casting.

      Shrinkage defects also affect the mechanical properties and reproducibility of castings. Since this study focused on the effect of bifilms on the casting quality, the mould has been deliberately designed to avoid generating shrinkage defects. A solidification simulation using ProCAST software showed that no shrinkage defect would be contained in the final casting, as shown in Fig. 1c. The casting soundness has also been confirmed using a real time X-ray prior to the test bar machining.

      The sand moulds were made from resin-bonded silica sand, containing 1wt. % PEPSET 5230 resin and 1wt. % PEPSET 5112 catalyst. The sand also contained 2 wt.% Na2SiF6 to act as an inhibitor [45]. The pouring temperature was 700 ± 5 °C. After the solidification, a section of the runner bars was sent to the Sci-Lab Analytical Ltd for a H-content analysis (LECO analysis), and all the H-content measurements were carried out on the 5th day after the casting process. Each of the castings was machined into 40 test bars for a tensile strength test, using a Zwick 1484 tensile test machine with a clip extensometer. The fracture surfaces of the broken test bars were examined using Scanning Electron Microscope (SEM, Philips JEOL7000) with an accelerating voltage of 5–15 kV. The fractured test bars, residual Mg-alloy solidified in the crucible, and the casting runners were then sectioned, polished and also inspected using the same SEM. The cross-section of the oxide film found on the test-bar fracture surface was exposed by the Focused Ion Beam milling technique (FIB), using a CFEI Quanta 3D FEG FIB-SEM. The oxide film required to be analysed was coated with a platinum layer. Then, a gallium ion beam, accelerated to 30 kV, milled the material substrate surrounding the platinum coated area to expose the cross section of the oxide film. EDS analysis of the oxide film’s cross section was carried out using the FIB equipment at accelerating voltage of 30 kV.

      2.2. Oxidation cell

      As previously mentioned, several past researchers investigated the protective film formed on a Mg-alloy melt surface [38,39,[46][47][48][49][50][51][52]. During these experiments, the amount of cover gas used was sufficient, thus suppressing the depletion of fluorides in the cover gas. The experiment described in this section used a sealed oxidation cell, which limited the supply of cover gas, to study the evolution of the oxide films of entrainment defects. The cover gas contained in the oxidation cell was regarded as large-size “entrained bubble”.

      As shown in Fig. 2, the main body of the oxidation cell was a closed-end mild steel tube which had an inner length of 400 mm, and an inner diameter of 32 mm. A water-cooled copper tube was wrapped around the upper section of the cell. When the tube was heated, the cooling system created a temperature difference between the upper and lower sections, causing the interior gas to convect within the tube. The temperature was monitored by a type-K thermocouple located at the top of the crucible. Nie et al. [53] suggested that the SF6 cover gas would react with the steel wall of the holding furnace when they investigated the surface film of a Mg-alloy melt. To avoid this reaction, the interior surface of the steel oxidation cell (shown in Fig. 2) and the upper half section of the thermocouple were coated with boron nitride (the Mg-alloy was not in contact with boron nitride).

      Fig. 2. Schematic of the oxidation cell used to study the evolution of the oxide films of the entrainment defects (unit mm).

      During the experiment, a block of solid AZ91 alloy was placed in a magnesia crucible located at the bottom of the oxidation cell. The cell was heated to 100 °C in an electric resistance furnace under a gas flow rate of 1 L/min. The cell was held at this temperature for 20 min, to replace the original trapped atmosphere (i.e. air). Then, the oxidation cell was further heated to 700 °C, melting the AZ91 sample. The gas inlet and exit valves were then closed, creating a sealed environment for oxidation under a limited supply of cover gas. The oxidation cell was then held at 700 ± 10 °C for periods of time from 5 min to 30 min in 5-min intervals. At the end of each holding time, the cell was quenched in water. After cooling to room temperature, the oxidised sample was sectioned, polished, and subsequently examined by SEM.

      3. Results

      3.1. Structure and composition of the entrainment defects formed in SF6/air

      The structure and composition of the entrainment defect formed in the AZ91 castings under a cover gas of 0.5%SF6/air was observed by SEM and EDS. The results indicate that there exist two types of entrainment defects which are sketched in Fig. 3: (1) Type A defect whose oxide film has a traditional single-layered structure and (2) Type B defect, whose oxide film has two layers. The details of these defects were introduced in the following. Here it should be noticed that, as the entrainment defects are also known as biofilms or double oxide film, the oxide films of Type B defect were referred to as “multi-layered oxide film” or “multi-layered structure” in the present work to avoid a confusing description such as “the double-layered oxide film of a double oxide film defect”.

      Fig. 3. Schematic of the different types of entrainment defects found in AZ91 castings. (a) Type A defect with a single-layered oxide film and (b) Type B defect with two-layered oxide film.

      Fig. 4(a-b) shows a Type A defect having a compact single-layered oxide film with about 0.4 µm thickness. Oxygen, fluorine, magnesium and aluminium were detected in this film (Fig. 4c). It is speculated that oxide film is the mixture of fluoride and oxide of magnesium and aluminium. The detection of fluorine revealed that an entrained cover gas was contained in the formation of this defect. That is to say that the pores shown in Fig. 4(a) were not shrinkage defects or hydrogen porosity, but entrainment defects. The detection of aluminium was different with Xiong and Wang’s previous study [47,48], which showed that no aluminium was contained in their surface film of an AZ91 melt protected by a SF6 cover gas. Sulphur could not be clearly recognized in the element map, but there was a S-peak in the corresponding ESD spectrum.

      Fig. 4. (a) A Type A entrainment defect formed in SF6/air and having a single-layered oxide film, (b) the oxide film of this defect, (c) SEM-EDS element maps (using Philips JEOL7000) corresponding to the area highlighted in (b).

      Fig. 5(a-b) shows a Type B entrainment defect having a multi-layered oxide film. The compact outer layers of the oxide films were enriched with fluorine and oxygen (Fig. 5c), while their relatively porous inner layers were only enriched with oxygen (i.e., poor in fluorine) and partly grew together, thus forming a sandwich-like structure. Therefore, it is speculated that the outer layer is the mixture of fluoride and oxide, while the inner layer is mainly oxide. Sulphur could only be recognized in the EDX spectrum and could not be clearly identified in the element map, which might be due to the small S-content in the cover gas (i.e., 0.5% volume content of SF6 in the cover gas). In this oxide film, aluminium was contained in the outer layer of this oxide film but could not be clearly detected in the inner layer. Moreover, the distribution of Al seems to be uneven. It can be found that, in the right side of the defect, aluminium exists in the film but its concentration can not be identified to be higher than the matrix. However, there is a small area with much higher aluminium concentration in the left side of the defect. Such an uneven distribution of aluminium was also observed in other defects (shown in the following), and it is the result of the formation of some oxide particles in or under the film.

      Fig. 5. (a) A Type B entrainment defect formed in SF6/air and having a multi-layered oxide film, (b) the oxide films of this defect have grown together, (c) SEM-EDS element maps (using Philips JEOL7000) corresponding to the area shown in (b).

      Figs. 4 and 5 show cross sectional observations of the entrainment defects formed in the AZ91 alloy sample cast under a cover gas of SF6/air. It is not sufficient to characterize the entrainment defects only by the figures observed from the two-dimensional section. To have a further understanding, the surface of the entrainment defects (i.e. the oxide film) was further studied by observing the fracture surface of the test bars.

      Fig. 6(a) shows fracture surfaces of an AZ91 alloy tensile test bar produced in SF6/air. Symmetrical dark regions can be seen on both sides of the fracture surfaces. Fig. 6(b) shows boundaries between the dark and bright regions. The bright region consisted of jagged and broken features, while the surface of the dark region was relatively smooth and flat. In addition, the EDS results (Fig. 6c-d and Table 2) show that fluorine, oxygen, sulphur, and nitrogen were only detected in the dark regions, indicating that the dark regions were surface protective films entrained into the melt. Therefore, it could be suggested that the dark regions were an entrainment defect with consideration of their symmetrical nature. Similar defects on fracture surfaces of Al-alloy castings have been previously reported [7]Nitrides were only found in the oxide films on the test-bar fracture surfaces but never detected in the cross-sectional samples shown in Figs. 4 and 5. An underlying reason is that the nitrides contained in these samples may have hydrolysed during the sample polishing process [54].

      Fig. 6. (a) A pair of the fracture surfaces of a AZ91 alloy tensile test bar produced under a cover gas of SF6/air. The dimension of the fracture surface is 5 mm × 6 mm, (b) a section of the boundary between the dark and bright regions shown in (a), (c-d) EDS spectrum of the (c) bright regions and (d) dark regions, (e) schematic of an entrainment defect contained in a test bar.

      Table 2. EDS results (wt.%) corresponding to the regions shown in Fig. 6 (cover gas: SF6/air).

      Empty CellCOMgFAlZnSN
      Dark region in Fig. 6(b)3.481.3279.130.4713.630.570.080.73
      Bright region in Fig. 6(b)3.5884.4811.250.68

      In conjunction with the cross-sectional observation of the defects shown in Figs. 4 and 5, the structure of an entrainment defect contained in a tensile test bar was sketched as shown in Fig. 6(e). The defect contained an entrained gas enclosed by its oxide film, creating a void section inside the test bar. When the tensile force applied on the defect during the fracture process, the crack was initiated at the void section and propagated along the entrainment defect, since cracks would be propagated along the weakest path [55]. Therefore, when the test bar was finally fractured, the oxide films of entrainment defect appeared on both fracture surfaces of the test bar, as shown in Fig. 6(a).

      3.2. Structure and composition of the entrainment defects formed in SF6/CO2

      Similar to the entrainment defect formed in SF6/air, the defects formed under a cover gas of 0.5%SF6/CO2 also had two types of oxide films (i.e., single-layered and multi-layered types). Fig. 7(a) shows an example of the entrainment defects containing a multi-layered oxide film. A magnified observation to the defect (Fig. 7b) shows that the inner layers of the oxide films had grown together, presenting a sandwich-like structure, which was similar to the defects formed in an atmosphere of SF6/air (Fig. 5b). An EDS spectrum (Fig. 7c) revealed that the joint area (inner layer) of this sandwich-like structure mainly contained magnesium oxides. Peaks of fluorine, sulphur, and aluminium were recognized in this EDS spectrum, but their amount was relatively small. In contrast, the outer layers of the oxide films were compact and composed of a mixture of fluorides and oxides (Fig. 7d-e).

      Fig. 7. (a) An example of entrainment defects formed in SF6/CO2 and having a multi-layered oxide film, (b) magnified observation of the defect, showing the inner layer of the oxide films has grown together, (c) EDS spectrum of the point denoted in (b), (d) outer layer of the oxide film, (e) SEM-EDS element maps (using Philips JEOL7000) corresponding to the area shown in (d).

      Fig. 8(a) shows an entrainment defect on the fracture surfaces of an AZ91 alloy tensile test bar, which was produced in an atmosphere of 0.5%SF6/CO2. The corresponding EDS results (Table 3) showed that oxide film contained fluorides and oxides. Sulphur and nitrogen were not detected. Besides, a magnified observation (Fig. 8b) indicated spots on the oxide film surface. The diameter of the spots ranged from hundreds of nanometres to a few micron meters.

      Fig. 8. (a) A pair of the fracture surfaces of a AZ91 alloy tensile test bar, produced in an atmosphere of SF6/CO2. The dimension of the fracture surface is 5 mm × 6 mm, (b) surface appearance of the oxide films on the fracture surfaces, showing spots on the film surface.

      To further reveal the structure and composition of the oxide film clearly, the cross-section of the oxide film on a test-bar fracture surface was onsite exposed using the FIB technique (Fig. 9). As shown in Fig. 9a, a continuous oxide film was found between the platinum coating layer and the Mg-Al alloy substrate. Fig. 9 (b-c) shows a magnified observation to oxide films, indicating a multi-layered structure (denoted by the red box in Fig. 9c). The bottom layer was enriched with fluorine and oxygen and should be the mixture of fluoride and oxide, which was similar to the “outer layer” shown in Figs. 5 and 7, while the only-oxygen-enriched top layer was similar to the “inner layer” shown in Figs. 5 and 7.

      Fig. 9. (a) A cross-sectional observation of the oxide film on the fracture surface of the AZ91 casting produced in SF6/CO2, exposed by FIB, (b) a magnified observation of area highlighted in (a), and (c) SEM-EDS elements map of the area shown in (b), obtained by CFEI Quanta 3D FEG FIB-SEM.

      Except the continuous film, some individual particles were also observed in or below the continuous film, as shown in Fig. 9. An Al-enriched particle was detected in the left side of the oxide film shown in Fig. 9b and might be speculated to be spinel Mg2AlO4 because it also contains abundant magnesium and oxygen elements. The existing of such Mg2AlO4 particles is responsible for the high concentration of aluminium in small areas of the observed film and the uneven distribution of aluminium, as shown in Fig. 5(c). Here it should be emphasized that, although the other part of the bottom layer of the continuous oxide film contains less aluminium than this Al-enriched particle, the Fig. 9c indicated that the amount of aluminium in this bottom layer was still non-negligible, especially when comparing with the outer layer of the film. Below the right side of the oxide film shown in Fig. 9b, a particle was detected and speculated to be MgO because it is rich in Mg and O. According to Wang’s result [56], lots of discrete MgO particles can be formed on the surface of the Mg melt by the oxidation of Mg melt and Mg vapor. The MgO particles observed in our present work may be formed due to the same reasons. While, due to the differences in experimental conditions, less Mg melt can be vapored or react with O2, thus only a few of MgO particles formed in our work. An enrichment of carbon was also found in the film, revealing that CO2 was able to react with the melt, thus forming carbon or carbides. This carbon concentration was consistent with the relatively high carbon content of the oxide film shown in Table 3 (i.e., the dark region). In the area next to the oxide film.

      Table 3. EDS results (wt.%) corresponding to the regions shown in Fig. 8 (cover gas: SF6/ CO2).

      Empty CellCOMgFAlZnSN
      Dark region in Fig. 8(a)7.253.6469.823.827.030.86
      Bright region in Fig. 8(a)2.100.4482.8313.261.36

      This cross-sectional observation of the oxide film on a test bar fracture surface (Fig. 9) further verified the schematic of the entrainment defect shown in Fig. 6(e). The entrainment defects formed in different atmospheres of SF6/CO2 and SF6/air had similar structures, but their compositions were different.

      3.3. Evolution of the oxide films in the oxidation cell

      The results in Section 3.1 and 3.2 have shown the structures and compositions of entrainment defects formed in AZ91 castings under cover gases of SF6/air and SF6/CO2. Different stages of the oxidation reaction may lead to the different structures and compositions of entrainment defects. Although Campbell has conjectured that an entrained gas may react with the surrounding melt, it is rarely reported that the reaction occurring between the Mg-alloy melt and entrapped cover gas. Previous researchers normally focus on the reaction between a Mg-alloy melt and the cover gas in an open environment [38,39,[46][47][48][49][50][51][52], which was different from the situation of a cover gas trapped into the melt. To further understand the formation of the entrainment defect in an AZ91 alloy, the evolution process of oxide films of the entrainment defect was further studied using an oxidation cell.

      Fig. 10 (a and d) shows a surface film held for 5 min in the oxidation cell, protected by 0.5%SF6/air. There was only one single layer consisting of fluoride and oxide (MgF2 and MgO). In this surface film. Sulphur was detected in the EDS spectrum, but its amount was too small to be recognized in the element map. The structure and composition of this oxide film was similar to the single-layered films of entrainment defects shown in Fig. 4.

      Fig. 10. Oxide films formed in the oxidation cell under a cover gas of 0.5%SF6/air and held at 700 °C for (a) 5 min; (b) 10 min; (c) 30 min, and (d-f) the SEM-EDS element maps (using Philips JEOL7000) corresponding to the oxide film shown in (a-c) respectively, (d) 5 min; (e) 10 min; (f) 30 min. The red points in (c and f) are the location references, denoting the boundary of the F-enriched layer in different element maps.

      After a holding time of 10 min, a thin (O, S)-enriched top layer (around 700 nm) appeared upon the preliminary F-enriched film, forming a multi-layered structure, as shown in Fig. 10(b and e). The thickness of the (O, S)-enriched top layer increased with increased holding time. As shown in Fig. 10(c and f), the oxide film held for 30 min also had a multi-layered structure, but the thickness of its (O, S)-enriched top layer (around 2.5 µm) was higher than the that of the 10-min oxide film. The multi-layered oxide films shown in Fig. 10(b-c) presented a similar appearance to the films of the sandwich-like defect shown in Fig. 5.

      The different structures of the oxide films shown in Fig. 10 indicated that fluorides in the cover gas would be preferentially consumed due to the reaction with the AZ91 alloy melt. After the depletion of fluorides, the residual cover gas reacted further with the liquid AZ91 alloy, forming the top (O, S)-enriched layer in the oxide film. Therefore, the different structures and compositions of entrainment defects shown in Figs. 4 and 5 may be due to an ongoing oxidation reaction between melt and entrapped cover gas.

      This multi-layered structure has not been reported in previous publications concerning the protective surface film formed on a Mg-alloy melt [38,[46][47][48][49][50][51]. This may be due to the fact that previous researchers carried out their experiments with an un-limited amount of cover gas, creating a situation where the fluorides in the cover gas were not able to become depleted. Therefore, the oxide film of an entrainment defect had behaviour traits similar to the oxide films shown in Fig. 10, but different from the oxide films formed on the Mg-alloy melt surface reported in [38,[46][47][48][49][50][51].

      Similar with the oxide films held in SF6/air, the oxide films formed in SF6/CO2 also had different structures with different holding times in the oxidation cell. Fig. 11(a) shows an oxide film, held on an AZ91 melt surface under a cover gas of 0.5%SF6/CO2 for 5 min. This film had a single-layered structure consisting of MgF2. The existence of MgO could not be confirmed in this film. After the holding time of 30 min, the film had a multi-layered structure; the inner layer was of a compact and uniform appearance and composed of MgF2, while the outer layer is the mixture of MgF2 and MgO. Sulphur was not detected in this film, which was different from the surface film formed in 0.5%SF6/air. Therefore, fluorides in the cover gas of 0.5%SF6/CO2 were also preferentially consumed at an early stage of the film growth process. Compared with the film formed in SF6/air, the MgO in film formed in SF6/CO2 appeared later and sulphide did not appear within 30 min. It may mean that the formation and evolution of film in SF6/air is faster than SF6/CO2. CO2 may have subsequently reacted with the melt to form MgO, while sulphur-containing compounds accumulated in the cover gas and reacted to form sulphide in very late stage (may after 30 min in oxidation cell).

      Fig. 11. Oxide films formed in the oxidation cell under a cover gas of 0.5%SF6/CO2, and their SEM-EDS element maps (using Philips JEOL7000). They were held at 700 °C for (a) 5 min; (b) 30 min. The red points in (b) are the location references, denoting the boundary between the top and bottom layers in the oxide film.

      4. Discussion

      4.1. Evolution of entrainment defects formed in SF6/air

      HSC software from Outokumpu HSC Chemistry for Windows (http://www.hsc-chemistry.net/) was used to carry out thermodynamic calculations needed to explore the reactions which might occur between the trapped gases and liquid AZ91 alloy. The solutions to the calculations suggest which products are most likely to form in the reaction process between a small amount of cover gas (i.e., the amount within a trapped bubble) and the AZ91-alloy melt.

      In the trials, the pressure was set to 1 atm, and the temperature set to 700 °C. The amount of the cover gas was assumed to be 7 × 10−7 kg, with a volume of approximately 0.57 cm3 (3.14 × 10−8 kmol) for 0.5%SF6/air, and 0.35 cm3 (3.12 × 10−8 kmol) for 0.5%SF6/CO2. The amount of the AZ91 alloy melt in contact with the trapped gas was assumed to be sufficient to complete all reactions. The decomposition products of SF6 were SF5, SF4, SF3, SF2, F2, S(g), S2(g) and F(g) [57][58][59][60].

      Fig. 12 shows the equilibrium diagram of the thermodynamic calculation of the reaction between the AZ91 alloy and 0.5%SF6/air. In the diagram, the reactants and products with less than 10−15 kmol have not been shown, as this was 5 orders of magnitude less than the amount of SF6 present (≈ 1.57 × 10−10 kmol) and therefore would not affect the observed process in a practical way.

      Fig. 12. An equilibrium diagram for the reaction between 7e-7 kg 0.5%SF6/air and a sufficient amount of AZ91 alloy. The X axis is the amount of AZ91 alloy melt having reacted with the entrained gas, and the vertical Y-axis is the amount of the reactants and products.

      This reaction process could be divided into 3 stages.

      Stage 1: The formation of fluorides. the AZ91 melt preferentially reacted with SF6 and its decomposition products, producing MgF2, AlF3, and ZnF2. However, the amount of ZnF2 may have been too small to be detected practically (1.25 × 10−12 kmol of ZnF2 compared with 3 × 10−10 kmol of MgF2), which may be the reason why Zn was not detected in any the oxide films shown in Sections 3.13.3. Meanwhile, sulphur accumulated in the residual gas as SO2.

      Stage 2: The formation of oxides. After the liquid AZ91 alloy had depleted all the available fluorides in the entrapped gas, the amount of AlF3 and ZnF2 quickly reduced due to a reaction with Mg. O2(g) and SO2 reacted with the AZ91 melt, forming MgO, Al2O3, MgAl2O4, ZnO, ZnSO4 and MgSO4. However, the amount of ZnO and ZnSO4 would have been too small to be found practically by EDS (e.g. 9.5 × 10−12 kmol of ZnO,1.38 × 10−14 kmol of ZnSO4, in contrast to 4.68 × 10−10 kmol of MgF2, when the amount of AZ91 on the X-axis is 2.5 × 10−9 kmol). In the experimental cases, the concentration of F in the cover gas is very low, whole the concentration f O is much higher. Therefore, the stage 1 and 2, i.e, the formation of fluoride and oxide may happen simultaneously at the beginning of the reaction, resulting in the formation of a singer-layered mixture of fluoride and oxide, as shown in Figs. 4 and 10(a). While an inner layer consisted of oxides but fluorides could form after the complete depletion of F element in the cover gas.

      Stages 1- 2 theoretically verified the formation process of the multi-layered structure shown in Fig. 10.

      The amount of MgAl2O4 and Al2O3 in the oxide film was of a sufficient amount to be detected, which was consistent with the oxide films shown in Fig. 4. However, the existence of aluminium could not be recognized in the oxide films grown in the oxidation cell, as shown in Fig. 10. This absence of Al may be due to the following reactions between the surface film and AZ91 alloy melt:(1)

      Al2O3 + 3Mg + = 3MgO + 2Al, △G(700 °C) = -119.82 kJ/mol(2)

      Mg + MgAl2O4 = MgO + Al, △G(700 °C) =-106.34 kJ/molwhich could not be simulated by the HSC software since the thermodynamic calculation was carried out under an assumption that the reactants were in full contact with each other. However, in a practical process, the AZ91 melt and the cover gas would not be able to be in contact with each other completely, due to the existence of the protective surface film.

      Stage 3: The formation of Sulphide and nitride. After a holding time of 30 min, the gas-phase fluorides and oxides in the oxidation cell had become depleted, allowing the melt reaction with the residual gas, forming an additional sulphur-enriched layer upon the initial F-enriched or (F, O)-enriched surface film, thus resulting in the observed multi-layered structure shown in Fig. 10 (b and c). Besides, nitrogen reacted with the AZ91 melt until all reactions were completed. The oxide film shown in Fig. 6 may correspond to this reaction stage due to its nitride content. However, the results shows that the nitrides were not detected in the polished samples shown in Figs. 4 and 5, but only found on the test bar fracture surfaces. The nitrides may have hydrolysed during the sample preparation process, as follows [54]:(3)

      Mg3N2 + 6H2O =3Mg(OH)2 + 2NH3↑(4)

      AlN+ 3H2O =Al(OH)3 + NH3

      In addition, Schmidt et al. [61] found that Mg3N2 and AlN could react to form ternary nitrides (Mg3AlnNn+2, n= 1, 2, 3…). HSC software did not contain the database of ternary nitrides, and it could not be added into the calculation. The oxide films in this stage may also contain ternary nitrides.

      4.2. Evolution of entrainment defects formed in SF6/CO2

      Fig. 13 shows the results of the thermodynamic calculation between AZ91 alloy and 0.5%SF6/CO2. This reaction processes can also be divided into three stages.

      Fig. 13. An equilibrium diagram for the reaction between 7e-7 kg 0.5%SF6/CO2 and a sufficient amount of AZ91 alloy. The X axis denotes the amount of Mg alloy melt having reacted with the entrained gas, and the vertical Y-axis denotes the amounts of the reactants and products.

      Stage 1: The formation of fluorides. SF6 and its decomposition products were consumed by the AZ91 melt, forming MgF2, AlF3, and ZnF2. As in the reaction of AZ91 in 0.5%SF6/air, the amount of ZnF2 was too small to be detected practically (1.51 × 10−13 kmol of ZnF2 compared with 2.67 × 10−10 kmol of MgF2). Sulphur accumulated in the residual trapped gas as S2(g) and a portion of the S2(g) reacted with CO2, to form SO2 and CO. The products in this reaction stage were consistent with the film shown in Fig. 11(a), which had a single layer structure that contained fluorides only.

      Stage 2: The formation of oxides. AlF3 and ZnF2 reacted with the Mg in the AZ91 melt, forming MgF2, Al and Zn. The SO2 began to be consumed, producing oxides in the surface film and S2(g) in the cover gas. Meanwhile, the CO2 directly reacted with the AZ91 melt, forming CO, MgO, ZnO, and Al2O3. The oxide films shown in Figs. 9 and 11(b) may correspond to this reaction stage due to their oxygen-enriched layer and multi-layered structure.

      The CO in the cover gas could further react with the AZ91 melt, producing C. This carbon may further react with Mg to form Mg carbides, when the temperature reduced (during solidification period) [62]. This may be the reason for the high carbon content in the oxide film shown in Figs. 89. Liang et al. [39] also reported carbon-detection in an AZ91 alloy surface film protected by SO2/CO2. The produced Al2O3 may be further combined with MgO, forming MgAl2O4 [63]. As discussed in Section 4.1, the alumina and spinel can react with Mg, causing an absence of aluminium in the surface films, as shown in Fig. 11.

      Stage 3: The formation of Sulphide. the AZ91 melt began to consume S2(g) in the residual entrapped gas, forming ZnS and MgS. These reactions did not occur until the last stage of the reaction process, which could be the reason why the S-content in the defect shown Fig. 7(c) was small.

      In summary, thermodynamic calculations indicate that the AZ91 melt will react with the cover gas to form fluorides firstly, then oxides and sulphides in the last. The oxide film in the different reaction stages would have different structures and compositions.

      4.3. Effect of the carrier gases on consumption of the entrained gas and the reproducibility of AZ91 castings

      The evolution processes of entrainment defects, formed in SF6/air and SF6/CO2, have been suggested in Sections 4.1 and 4.2. The theoretical calculations were verified with respect to the corresponding oxide films found in practical samples. The atmosphere within an entrainment defect could be efficiently consumed due to the reaction with liquid Mg-alloy, in a scenario dissimilar to the Al-alloy system (i.e., nitrogen in an entrained air bubble would not efficiently react with Al-alloy melt [64,65], however, nitrogen would be more readily consumed in liquid Mg alloys, commonly referred to as “nitrogen burning” [66]).

      The reaction between the entrained gas and the surrounding liquid Mg-alloy converted the entrained gas into solid compounds (e.g. MgO) within the oxide film, thus reducing the void volume of the entrainment defect and hence probably causing a collapse of the defect (e.g., if an entrained gas of air was depleted by the surrounding liquid Mg-alloy, under an assumption that the melt temperature is 700 °C and the depth of liquid Mg-alloy is 10 cm, the total volume of the final solid products would be 0.044% of the initial volume taken by the entrapped air).

      The relationship between the void volume reduction of entrainment defects and the corresponding casting properties has been widely studied in Al-alloy castings. Nyahumwa and Campbell [16] reported that the Hot Isostatic Pressing (HIP) process caused the entrainment defects in Al-alloy castings to collapse and their oxide surfaces forced into contact. The fatigue lives of their castings were improved after HIP. Nyahumwa and Campbell [16] also suggested a potential bonding of the double oxide films that were in contact with each other, but there was no direct evidence to support this. This binding phenomenon was further investigated by Aryafar et.al.[8], who re-melted two Al-alloy bars with oxide skins in a steel tube and then carried out a tensile strength test on the solidified sample. They found that the oxide skins of the Al-alloy bars strongly bonded with each other and became even stronger with an extension of the melt holding time, indicating a potential “healing” phenomenon due to the consumption of the entrained gas within the double oxide film structure. In addition, Raidszadeh and Griffiths [9,19] successfully reduced the negative effect of entrainment defects on the reproducibility of Al-alloy castings, by extending the melt holding time before solidification, which allowed the entrained gas to have a longer time to react with the surrounding melt.

      With consideration of the previous work mentioned, the consumption of the entrained gas in Mg-alloy castings may diminish the negative effect of entrainment defects in the following two ways.

      (1) Bonding phenomenon of the double oxide films. The sandwich-like structure shown in Fig. 5 and 7 indicated a potential bonding of the double oxide film structure. However, more evidence is required to quantify the increase in strength due to the bonding of the oxide films.

      (2) Void volume reduction of entrainment defects. The positive effect of void-volume reduction on the quality of castings has been widely demonstrated by the HIP process [67]. As the evolution processes discussed in Section 4.14.2, the oxide films of entrainment defects can grow together due to an ongoing reaction between the entrained gas and surrounding AZ91 alloy melt. The volume of the final solid products was significant small compared with the entrained gas (i.e., 0.044% as previously mentioned).

      Therefore, the consumption rate of the entrained gas (i.e., the growth rate of oxide films) may be a critical parameter for improving the quality of AZ91 alloy castings. The oxide film growth rate in the oxidization cell was accordingly further investigated.

      Fig. 14 shows a comparison of the surface film growth rates in different cover gases (i.e., 0.5%SF6/air and 0.5%SF6/CO2). 15 random points on each sample were selected for film thickness measurements. The 95% confidence interval (95%CI) was computed under an assumption that the variation of the film thickness followed a Gaussian distribution. It can be seen that all the surface films formed in 0.5%SF6/air grew faster than those formed in 0.5%SF6/CO2. The different growth rates suggested that the entrained-gas consumption rate of 0.5%SF6/air was higher than that of 0.5%SF6/CO2, which was more beneficial for the consumption of the entrained gas.

      Fig. 14. A comparison of the AZ91 alloy oxide film growth rates in 0.5%SF6/air and 0.5%SF6/CO2

      It should be noted that, in the oxidation cell, the contact area of liquid AZ91 alloy and cover gas (i.e. the size of the crucible) was relatively small with consideration of the large volume of melt and gas. Consequently, the holding time for the oxide film growth within the oxidation cell was comparatively long (i.e., 5–30 min). However, the entrainment defects contained in a real casting are comparatively very small (i.e., a few microns size as shown in Figs. 36, and [7]), and the entrained gas is fully enclosed by the surrounding melt, creating a relatively large contact area. Hence the reaction time for cover gas and the AZ91 alloy melt may be comparatively short. In addition, the solidification time of real Mg-alloy sand castings can be a few minutes (e.g. Guo [68] reported that a Mg-alloy sand casting with 60 mm diameter required 4 min to be solidified). Therefore, it can be expected that an entrained gas trapped during an Mg-alloy melt pouring process will be readily consumed by the surrounding melt, especially for sand castings and large-size castings, where solidification times are long.

      Therefore, the different cover gases (0.5%SF6/air and 0.5%SF6/CO2) associated with different consumption rates of the entrained gases may affect the reproducibility of the final castings. To verify this assumption, the AZ91 castings produced in 0.5%SF6/air and 0.5%SF6/CO2 were machined into test bars for mechanical evaluation. A Weibull analysis was carried out using both linear least square (LLS) method and non-linear least square (non-LLS) method [69].

      Fig. 15(a-b) shows a traditional 2-p linearized Weibull plot of the UTS and elongation of the AZ91 alloy castings, obtained by the LLS method. The estimator used is P= (i-0.5)/N, which was suggested to cause the lowest bias among all the popular estimators [69,70]. The casting produced in SF6/air has an UTS Weibull moduli of 16.9, and an elongation Weibull moduli of 5.0. In contrast, the UTS and elongation Weibull modulus of the casting produced in SF6/CO2 are 7.7 and 2.7 respectively, suggesting that the reproducibility of the casting protected by SF6/CO2 were much lower than that produced in SF6/air.

      Fig. 15. The Weibull modulus of AZ91 castings produced in different atmospheres, estimated by (a-b) the linear least square method, (c-d) the non-linear least square method, where SSR is the sum of residual squares.

      In addition, the author’s previous publication [69] demonstrated a shortcoming of the linearized Weibull plots, which may cause a higher bias and incorrect R2 interruption of the Weibull estimation. A Non-LLS Weibull estimation was therefore carried out, as shown in Fig. 15 (c-d). The UTS Weibull modulus of the SF6/air casting was 20.8, while the casting produced under SF6/CO2 had a lower UTS Weibull modulus of 11.4, showing a clear difference in their reproducibility. In addition, the SF6/air elongation (El%) dataset also had a Weibull modulus (shape = 5.8) higher than the elongation dataset of SF6/CO2 (shape = 3.1). Therefore, both the LLS and Non-LLS estimations suggested that the SF6/air casting has a higher reproducibility than the SF6/CO2 casting. It supports the method that the use of air instead of CO2 contributes to a quicker consumption of the entrained gas, which may reduce the void volume within the defects. Therefore, the use of 0.5%SF6/air instead of 0.5%SF6/CO2 (which increased the consumption rate of the entrained gas) improved the reproducibility of the AZ91 castings.

      However, it should be noted that not all the Mg-alloy foundries followed the casting process used in present work. The Mg-alloy melt in present work was degassed, thus reducing the effect of hydrogen on the consumption of the entrained gas (i.e., hydrogen could diffuse into the entrained gas, potentially suppressing the depletion of the entrained gas [7,71,72]). In contrast, in Mg-alloy foundries, the Mg-alloy melt is not normally degassed, since it was widely believed that there is not a ‘gas problem’ when casting magnesium and hence no significant change in tensile properties [73]. Although studies have shown the negative effect of hydrogen on the mechanical properties of Mg-alloy castings [41,42,73], a degassing process is still not very popular in Mg-alloy foundries.

      Moreover, in present work, the sand mould cavity was flushed with the SF6 cover gas prior to pouring [22]. However, not all the Mg-alloy foundries flushed the mould cavity in this way. For example, the Stone Foundry Ltd (UK) used sulphur powder instead of the cover-gas flushing. The entrained gas within their castings may be SO2/air, rather than the protective gas.

      Therefore, although the results in present work have shown that using air instead of CO2 improved the reproducibility of the final casting, it still requires further investigations to confirm the effect of carrier gases with respect to different industrial Mg-alloy casting processes.

      7. Conclusion

      Entrainment defects formed in an AZ91 alloy were observed. Their oxide films had two types of structure: single-layered and multi-layered. The multi-layered oxide film can grow together forming a sandwich-like structure in the final casting.2.

      Both the experimental results and the theoretical thermodynamic calculations demonstrated that fluorides in the trapped gas were depleted prior to the consumption of sulphur. A three-stage evolution process of the double oxide film defects has been suggested. The oxide films contained different combinations of compounds, depending on the evolution stage. The defects formed in SF6/air had a similar structure to those formed in SF6/CO2, but the compositions of their oxide films were different. The oxide-film formation and evolution process of the entrainment defects were different from that of the Mg-alloy surface films previous reported (i.e., MgO formed prior to MgF2).3.

      The growth rate of the oxide film was demonstrated to be greater under SF6/air than SF6/CO2, contributing to a quicker consumption of the damaging entrapped gas. The reproducibility of an AZ91 alloy casting improved when using SF6/air instead of SF6/CO2.

      Acknowledgements

      The authors acknowledge funding from the EPSRC LiME grant EP/H026177/1, and the help from Dr W.D. Griffiths and Mr. Adrian Carden (University of Birmingham). The casting work was carried out in University of Birmingham.

      Reference

      [1]

      M.K. McNutt, SALAZAR K.

      Magnesium, Compounds & Metal, U.S. Geological Survey and U.S. Department of the Interior

      Reston, Virginia (2013)

      Google Scholar[2]

      Magnesium

      Compounds & Metal, U.S. Geological Survey and U.S. Department of the Interior

      (1996)

      Google Scholar[3]

      I. Ostrovsky, Y. Henn

      ASTEC’07 International Conference-New Challenges in Aeronautics, Moscow (2007), pp. 1-5

      Aug 19-22

      View Record in ScopusGoogle Scholar[4]

      Y. Wan, B. Tang, Y. Gao, L. Tang, G. Sha, B. Zhang, N. Liang, C. Liu, S. Jiang, Z. Chen, X. Guo, Y. Zhao

      Acta Mater., 200 (2020), pp. 274-286

      ArticleDownload PDFView Record in Scopus[5]

      J.T.J. Burd, E.A. Moore, H. Ezzat, R. Kirchain, R. Roth

      Appl. Energy, 283 (2021), Article 116269

      ArticleDownload PDFView Record in Scopus[6]

      A.M. Lewis, J.C. Kelly, G.A. Keoleian

      Appl. Energy, 126 (2014), pp. 13-20

      ArticleDownload PDFView Record in Scopus[7]

      J. Campbell

      Castings

      Butterworth-Heinemann, Oxford (2004)

      Google Scholar[8]

      M. Aryafar, R. Raiszadeh, A. Shalbafzadeh

      J. Mater. Sci., 45 (2010), pp. 3041-3051 View PDF

      CrossRefView Record in Scopus[9]

      R. Raiszadeh, W.D. Griffiths

      Metall. Mater. Trans. B-Process Metall. Mater. Process. Sci., 42 (2011), pp. 133-143 View PDF

      CrossRefView Record in Scopus[10]

      R. Raiszadeh, W.D. Griffiths

      J. Alloy. Compd., 491 (2010), pp. 575-580

      ArticleDownload PDFView Record in Scopus[11]

      L. Peng, G. Zeng, T.C. Su, H. Yasuda, K. Nogita, C.M. Gourlay

      JOM, 71 (2019), pp. 2235-2244 View PDF

      CrossRefView Record in Scopus[12]

      S. Ganguly, A.K. Mondal, S. Sarkar, A. Basu, S. Kumar, C. Blawert

      Corros. Sci., 166 (2020)[13]

      G.E. Bozchaloei, N. Varahram, P. Davami, S.K. Kim

      Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 548 (2012), pp. 99-105

      View Record in Scopus[14]

      S. Fox, J. Campbell

      Scr. Mater., 43 (2000), pp. 881-886

      ArticleDownload PDFView Record in Scopus[15]

      M. Cox, R.A. Harding, J. Campbell

      Mater. Sci. Technol., 19 (2003), pp. 613-625

      View Record in Scopus[16]

      C. Nyahumwa, N.R. Green, J. Campbell

      Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 32 (2001), pp. 349-358

      View Record in Scopus[17]

      A. Ardekhani, R. Raiszadeh

      J. Mater. Eng. Perform., 21 (2012), pp. 1352-1362 View PDF

      CrossRefView Record in Scopus[18]

      X. Dai, X. Yang, J. Campbell, J. Wood

      Mater. Sci. Technol., 20 (2004), pp. 505-513

      View Record in Scopus[19]

      E.M. Elgallad, M.F. Ibrahim, H.W. Doty, F.H. Samuel

      Philos. Mag., 98 (2018), pp. 1337-1359 View PDF

      CrossRefView Record in Scopus[20]

      W.D. Griffiths, N.W. Lai

      Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 38A (2007), pp. 190-196 View PDF

      CrossRefView Record in Scopus[21]

      A.R. Mirak, M. Divandari, S.M.A. Boutorabi, J. Campbell

      Int. J. Cast Met. Res., 20 (2007), pp. 215-220 View PDF

      CrossRefView Record in Scopus[22]

      C. Cingi

      Laboratory of Foundry Engineering

      Helsinki University of Technology, Espoo, Finland (2006)

      Google Scholar[23]

      Y. Jia, J. Hou, H. Wang, Q. Le, Q. Lan, X. Chen, L. Bao

      J. Mater. Process. Technol., 278 (2020), Article 116542

      ArticleDownload PDFView Record in Scopus[24]

      S. Ouyang, G. Yang, H. Qin, S. Luo, L. Xiao, W. Jie

      Mater. Sci. Eng. A, 780 (2020), Article 139138

      ArticleDownload PDFView Record in Scopus[25]

      S.-m. Xiong, X.-F. Wang

      Trans. Nonferrous Met. Soc. China, 20 (2010), pp. 1228-1234

      ArticleDownload PDFView Record in Scopus[26]

      G.V. Research

      Grand View Research

      (2018)

      USA

      Google Scholar[27]

      T. Li, J. Davies

      Metall. Mater. Trans. A, 51 (2020), pp. 5389-5400 View PDF

      CrossRefView Record in Scopus[28]J.F. Fruehling, The University of Michigan, 1970.

      Google Scholar[29]

      S. Couling

      36th Annual World Conference on Magnesium, Norway (1979), pp. 54-57

      View Record in ScopusGoogle Scholar[30]

      S. Cashion, N. Ricketts, P. Hayes

      J. Light Met., 2 (2002), pp. 43-47

      ArticleDownload PDFView Record in Scopus[31]

      S. Cashion, N. Ricketts, P. Hayes

      J. Light Met., 2 (2002), pp. 37-42

      ArticleDownload PDFView Record in Scopus[32]

      K. Aarstad, G. Tranell, G. Pettersen, T.A. Engh

      Various Techniques to Study the Surface of Magnesium Protected by SF6

      TMS (2003)

      Google Scholar[33]

      S.-M. Xiong, X.-L. Liu

      Metall. Mater. Trans. A, 38 (2007), pp. 428-434 View PDF

      CrossRefView Record in Scopus[34]

      T.-S. Shih, J.-B. Liu, P.-S. Wei

      Mater. Chem. Phys., 104 (2007), pp. 497-504

      ArticleDownload PDFView Record in Scopus[35]

      G. Pettersen, E. Øvrelid, G. Tranell, J. Fenstad, H. Gjestland

      Mater. Sci. Eng. A, 332 (2002), pp. 285-294

      ArticleDownload PDFView Record in Scopus[36]

      H. Bo, L.B. Liu, Z.P. Jin

      J. Alloy. Compd., 490 (2010), pp. 318-325

      ArticleDownload PDFView Record in Scopus[37]

      A. Mirak, C. Davidson, J. Taylor

      Corros. Sci., 52 (2010), pp. 1992-2000

      ArticleDownload PDFView Record in Scopus[38]

      B.D. Lee, U.H. Beak, K.W. Lee, G.S. Han, J.W. Han

      Mater. Trans., 54 (2013), pp. 66-73 View PDF

      View Record in Scopus[39]

      W.Z. Liang, Q. Gao, F. Chen, H.H. Liu, Z.H. Zhao

      China Foundry, 9 (2012), pp. 226-230 View PDF

      CrossRef[40]

      U.I. Gol’dshleger, E.Y. Shafirovich

      Combust. Explos. Shock Waves, 35 (1999), pp. 637-644[41]

      A. Elsayed, S.L. Sin, E. Vandersluis, J. Hill, S. Ahmad, C. Ravindran, S. Amer Foundry

      Trans. Am. Foundry Soc., 120 (2012), pp. 423-429[42]

      E. Zhang, G.J. Wang, Z.C. Hu

      Mater. Sci. Technol., 26 (2010), pp. 1253-1258

      View Record in Scopus[43]

      N.R. Green, J. Campbell

      Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 173 (1993), pp. 261-266

      ArticleDownload PDFView Record in Scopus[44]

      C Reilly, MR Jolly, NR Green

      Proceedings of MCWASP XII – 12th Modelling of Casting, Welding and Advanced Solidifcation Processes, Vancouver, Canada (2009)

      Google Scholar[45]H.E. Friedrich, B.L. Mordike, Springer, Germany, 2006.

      Google Scholar[46]

      C. Zheng, B.R. Qin, X.B. Lou

      Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies, ASME (2010), pp. 383-388

      Mimt 2010 View PDF

      CrossRefView Record in ScopusGoogle Scholar[47]

      S.M. Xiong, X.F. Wang

      Trans. Nonferrous Met. Soc. China, 20 (2010), pp. 1228-1234

      ArticleDownload PDFView Record in Scopus[48]

      S.M. Xiong, X.L. Liu

      Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 38A (2007), pp. 428-434 View PDF

      CrossRefView Record in Scopus[49]

      T.S. Shih, J.B. Liu, P.S. Wei

      Mater. Chem. Phys., 104 (2007), pp. 497-504

      ArticleDownload PDFView Record in Scopus[50]

      K. Aarstad, G. Tranell, G. Pettersen, T.A. Engh

      Magn. Technol. (2003), pp. 5-10[51]

      G. Pettersen, E. Ovrelid, G. Tranell, J. Fenstad, H. Gjestland

      Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 332 (2002), pp. 285-294

      ArticleDownload PDFView Record in Scopus[52]

      X.F. Wang, S.M. Xiong

      Corros. Sci., 66 (2013), pp. 300-307

      ArticleDownload PDFView Record in Scopus[53]

      S.H. Nie, S.M. Xiong, B.C. Liu

      Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 422 (2006), pp. 346-351

      ArticleDownload PDFView Record in Scopus[54]

      C. Bauer, A. Mogessie, U. Galovsky

      Zeitschrift Fur Metallkunde, 97 (2006), pp. 164-168 View PDF

      CrossRef[55]

      Q.G. Wang, D. Apelian, D.A. Lados

      J. Light Met., 1 (2001), pp. 73-84

      ArticleDownload PDFView Record in Scopus[56]

      S. Wang, Y. Wang, Q. Ramasse, Z. Fan

      Metall. Mater. Trans. A, 51 (2020), pp. 2957-2974[57]

      S. Hayashi, W. Minami, T. Oguchi, H.J. Kim

      Kag. Kog. Ronbunshu, 35 (2009), pp. 411-415 View PDF

      CrossRefView Record in Scopus[58]

      K. Aarstad

      Norwegian University of Science and Technology

      (2004)

      Google Scholar[59]

      R.L. Wilkins

      J. Chem. Phys., 51 (1969), p. 853

      -&

      View Record in Scopus[60]

      O. Kubaschewski, K. Hesselemam

      Thermo-Chemical Properties of Inorganic Substances

      Springer-Verlag, Belin (1991)

      Google Scholar[61]

      R. Schmidt, M. Strobele, K. Eichele, H.J. Meyer

      Eur. J. Inorg. Chem. (2017), pp. 2727-2735 View PDF

      CrossRefView Record in Scopus[62]

      B. Hu, Y. Du, H. Xu, W. Sun, W.W. Zhang, D. Zhao

      J. Min. Metall. Sect. B-Metall., 46 (2010), pp. 97-103

      View Record in Scopus[63]

      O. Salas, H. Ni, V. Jayaram, K.C. Vlach, C.G. Levi, R. Mehrabian

      J. Mater. Res., 6 (1991), pp. 1964-1981

      View Record in Scopus[64]

      S.S.S. Kumari, U.T.S. Pillai, B.C. Pai

      J. Alloy. Compd., 509 (2011), pp. 2503-2509

      ArticleDownload PDFView Record in Scopus[65]

      H. Scholz, P. Greil

      J. Mater. Sci., 26 (1991), pp. 669-677

      View Record in Scopus[66]

      P. Biedenkopf, A. Karger, M. Laukotter, W. Schneider

      Magn. Technol., 2005 (2005), pp. 39-42

      View Record in Scopus[67]

      H.V. Atkinson, S. Davies

      Metall. Mater. Trans. A, 31 (2000), pp. 2981-3000 View PDF

      CrossRefView Record in Scopus[68]

      E.J. Guo, L. Wang, Y.C. Feng, L.P. Wang, Y.H. Chen

      J. Therm. Anal. Calorim., 135 (2019), pp. 2001-2008 View PDF

      CrossRefView Record in Scopus[69]

      T. Li, W.D. Griffiths, J. Chen

      Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 48A (2017), pp. 5516-5528 View PDF

      CrossRefView Record in Scopus[70]

      M. Tiryakioglu, D. Hudak

      J. Mater. Sci., 42 (2007), pp. 10173-10179 View PDF

      CrossRefView Record in Scopus[71]

      Y. Yue, W.D. Griffiths, J.L. Fife, N.R. Green

      Proceedings of the 1st International Conference on 3d Materials Science (2012), pp. 131-136 View PDF

      CrossRefView Record in ScopusGoogle Scholar[72]

      R. Raiszadeh, W.D. Griffiths

      Metall. Mater. Trans. B-Process Metall. Mater. Process. Sci., 37 (2006), pp. 865-871

      View Record in Scopus[73]

      Z.C. Hu, E.L. Zhang, S.Y. Zeng

      Mater. Sci. Technol., 24 (2008), pp. 1304-1308 View PDF

      CrossRefView Record in Scopus

      Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.

      알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

      린 첸 가오 양 미시 옹 장 춘밍 왕
      Lin Chen , Gaoyang Mi , Xiong Zhang , Chunming Wang *
      중국 우한시 화중과학기술대학 재료공학부, 430074

      Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

      Abstract

      A numerical model of 1.5 mm 6061/5182 aluminum alloys thin sheets lap joints under laser sinusoidal oscillation (sine) welding and laser welding (SLW) weld was developed to simulate temperature distribution and melt flow. Unlike the common energy distribution of SLW, the sinusoidal oscillation of laser beam greatly homogenized the energy distribution and reduced the energy peak. The energy peaks were located at both sides of the sine weld, resulting in the tooth-shaped sectional formation. This paper illustrated the effect of the temperature gradient (G) and solidification rate (R) on the solidification microstructure by simulation. Results indicated that the center of the sine weld had a wider area with low G/R, promoting the formation of a wider equiaxed grain zone, and the columnar grains were slenderer because of greater GR. The porosity-free and non-penetration welds were obtained by the laser sinusoidal oscillation. The reasons were that the molten pool volume was enlarged, the volume proportion of keyhole was reduced and the turbulence in the molten pool was gentled, which was observed by the high-speed imaging and simulation results of melt flow. The tensile test of both welds showed a tensile fracture form along the fusion line, and the tensile strength of sine weld was significantly better than that of the SLW weld. This was because that the wider equiaxed grain area reduced the tendency of cracks and the finer grain size close to the fracture location. Defect-free and excellent welds are of great significance to the new energy vehicles industry.

      온도 분포 및 용융 흐름을 시뮬레이션하기 위해 레이저 사인파 진동 (사인) 용접 및 레이저 용접 (SLW) 용접에서 1.5mm 6061/5182 알루미늄 합금 박판 랩 조인트 의 수치 모델이 개발되었습니다. SLW의 일반적인 에너지 분포와 달리 레이저 빔의 사인파 진동은 에너지 분포를 크게 균질화하고 에너지 피크를 줄였습니다. 에너지 피크는 사인 용접의 양쪽에 위치하여 톱니 모양의 단면이 형성되었습니다. 이 논문은 온도 구배(G)와 응고 속도 의 영향을 설명했습니다.(R) 시뮬레이션에 의한 응고 미세 구조. 결과는 사인 용접의 중심이 낮은 G/R로 더 넓은 영역을 가짐으로써 더 넓은 등축 결정립 영역의 형성을 촉진하고 더 큰 GR로 인해 주상 결정립 이 더 가늘다는 것을 나타냅니다. 다공성 및 비관통 용접은 레이저 사인파 진동에 의해 얻어졌습니다. 그 이유는 용융 풀의 부피가 확대되고 열쇠 구멍의 부피 비율이 감소하며 용융 풀의 난류가 완만해졌기 때문이며, 이는 용융 흐름의 고속 이미징 및 시뮬레이션 결과에서 관찰되었습니다. 두 용접부 의 인장시험 은 융착선을 따라 인장파괴형태를인장강도사인 용접의 경우 SLW 용접보다 훨씬 우수했습니다. 이는 등축 결정립 영역이 넓을수록 균열 경향이 감소하고 파단 위치에 근접한 입자 크기가 미세 하기 때문입니다. 결함이 없고 우수한 용접은 신에너지 자동차 산업에 매우 중요합니다.

      Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.
      Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.
      Fig. 2. Finite element mesh.
      Fig. 2. Finite element mesh.
      Fig. 3. Weld morphologies of cross-section and upper surface for the two welds: (a) sine pattern weld; (b) SLW weld.
      Fig. 3. Weld morphologies of cross-section and upper surface for the two welds: (a) sine pattern weld; (b) SLW weld.
      Fig. 4. Calculation of laser energy distribution: (a)-(c) sine pattern weld; (d)-(f) SLW weld.
      Fig. 4. Calculation of laser energy distribution: (a)-(c) sine pattern weld; (d)-(f) SLW weld.
      Fig. 5. The partially melted region of zone A.
      Fig. 5. The partially melted region of zone A.
      Fig. 6. The simulated profiles of melted region for the two welds: (a) SLW weld; (b) sine pattern weld.
      Fig. 6. The simulated profiles of melted region for the two welds: (a) SLW weld; (b) sine pattern weld.
      Fig. 7. The temperature field simulation results of cross section for sine pattern weld.
      Fig. 7. The temperature field simulation results of cross section for sine pattern weld.
      Fig. 8. Dynamic behavior of the molten pool at the same time interval of 0.004 s within one oscillating period: (a) SLW weld; (b) sine pattern weld.
      Fig. 8. Dynamic behavior of the molten pool at the same time interval of 0.004 s within one oscillating period: (a) SLW weld; (b) sine pattern weld.
      Fig. 9. The temperature field and flow field of the molten pool for the SLW weld: (a)~(f) t = 80 ms~100 ms.
      Fig. 9. The temperature field and flow field of the molten pool for the SLW weld: (a)~(f) t = 80 ms~100 ms.
      Fig. 10. The temperature field and flow field of the molten pool for the sine pattern weld: (a)~(f) t = 151 ms~171 ms.
      Fig. 10. The temperature field and flow field of the molten pool for the sine pattern weld: (a)~(f) t = 151 ms~171 ms.
      Fig. 11. The evolution of the molten pool volume and keyhole depth within one period.
      Fig. 11. The evolution of the molten pool volume and keyhole depth within one period.
      Fig. 12. The X-ray inspection results for the two welds: (a) SLW weld, (b) sine pattern weld.
      Fig. 12. The X-ray inspection results for the two welds: (a) SLW weld, (b) sine pattern weld.
      Fig. 13. Comparison of the solidification parameters for sine and SLW patterns: (a) the temperature field simulated results of the molten pool upper surfaces; (b) temperature gradient G and solidification rate R along the molten pool boundary isotherm from weld centerline to the fusion boundary; (c) G/R; (d) GR.
      Fig. 13. Comparison of the solidification parameters for sine and SLW patterns: (a) the temperature field simulated results of the molten pool upper surfaces; (b) temperature gradient G and solidification rate R along the molten pool boundary isotherm from weld centerline to the fusion boundary; (c) G/R; (d) GR.
      Fig. 14. The EBSD results of equiaxed grain zone in the weld center of: (a) sine pattern weld; (b) SLW weld; (c) grain size.
      Fig. 14. The EBSD results of equiaxed grain zone in the weld center of: (a) sine pattern weld; (b) SLW weld; (c) grain size.
      Fig. 15. (a) EBSD results of horizontal sections of SLW weld and sine pattern weld; (b) The columnar crystal widths of SLW weld and sine pattern weld.
      Fig. 15. (a) EBSD results of horizontal sections of SLW weld and sine pattern weld; (b) The columnar crystal widths of SLW weld and sine pattern weld.
      Fig. 16. (a) The tensile test results of the two welds; (b) Fracture location of SLW weld; (b) Fracture location of sine pattern weld.
      Fig. 16. (a) The tensile test results of the two welds; (b) Fracture location of SLW weld; (b) Fracture location of sine pattern weld.

      Keywords

      Laser welding, Sinusoidal oscillating, Energy distribution, Numerical simulation, Molten pool flow, Grain structure

      References

      Chen, X., 2014. Study on laser-MAG Hybrid Weaving Welding Charateristics. Master
      thesis. Harbin Institute of Technology, China.
      Chen, G., Wang, B., Mao, S., Zhong, P., He, J., 2019. Research on the “∞”-shaped laser
      scanning welding process for aluminum alloy. Opt. Laser Technol. 115, 32–41.
      Cho, W.-I., Na, S.-J., Cho, M.-H., Lee, J.-S., 2010. Numerical study of alloying element
      distribution in CO2 laser–GMA hybrid welding. Comput. Mater. Sci. 49, 792–800.
      Cho, W.-I., Na, S.-J., Thomy, C., Vollertsen, F., 2012. Numerical simulation of molten
      pool dynamics in high power disk laser welding. J. Mater. Process. Technol. 212,
      262–275.
      Das, A., Butterworth, I., Masters, I., Williams, D., 2018. Microstructure and mechanical
      properties of gap-bridged remote laser welded (RLW) automotive grade AA 5182
      joints. Mater. Charact. 145, 697–712.
      Fetzer, F., Sommer, M., Weber, R., Weberpals, J.-P., Graf, T., 2018. Reduction of pores by
      means of laser beam oscillation during remote welding of AlMgSi. Opt. Lasers Eng.
      108, 68–77.
      Geng, S., Jiang, P., Shao, X., Guo, L., Gao, X., 2020. Heat transfer and fluid flow and their
      effects on the solidification microstructure in full-penetration laser welding of
      aluminum sheet. J. Mater. Sci. Technol. 46, 50–63.
      Hagenlocher, C., Sommer, M., Fetzer, F., Weber, R., Graf, T., 2018a. Optimization of the
      solidification conditions by means of beam oscillation during laser beam welding of
      aluminum. Mater. Des. 160, 1178–1185.
      Hagenlocher, C., Weller, D., Weber, R., Graf, T., 2018b. Reduction of the hot cracking
      susceptibility of laser beam welds in AlMgSi alloys by increasing the number of grain
      boundaries. Sci. Technol. Weld. Join. 24, 313–319.
      Hagenlocher, C., Fetzer, F., Weller, D., Weber, R., Graf, T., 2019. Explicit analytical
      expressions for the influence of welding parameters on the grain structure of laser
      beam welds in aluminium alloys. Mater. Des. 174, 107791.
      Han, X., Tang, X., Wang, T., Shao, C., Lu, F., Cui, H., 2018. Role of ambient pressure in
      keyhole dynamics based on beam transmission path method for laser welding on Al
      alloy. Int. J. Adv. Manuf. Technol. 99, 1639–1651.
      Hao, K., Li, G., Gao, M., Zeng, X., 2015. Weld formation mechanism of fiber laser
      oscillating welding of austenitic stainless steel. J. Mater. Process. Technol. 225,
      77–83.
      Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free
      boundaries. J. Comput. Phys. 39, 201–225.
      Jiang, Z., Chen, X., Li, H., Lei, Z., Chen, Y., Wu, S., Wang, Y., 2020. Grain refinement and
      laser energy distribution during laser oscillating welding of Invar alloy. Mater. Des.
      186, 108195.
      Kaplan, A., 1994. A model of deep penetration laser welding based on calculation of the
      keyhole profile. J. Phys. D Appl. Phys. 27, 1805–1814.
      Kou, S., 2002. Welding Metallurgy, 2nd ed. Wiley-Interscience, New Jersey, USA.
      Kuryntsev, S.V., Gilmutdinov, A.K., 2015. The effect of laser beam wobbling mode in
      welding process for structural steels. Int. J. Adv. Manuf. Technol. 81, 1683–1691.
      Li, P., Nie, F., Dong, H., Li, S., Yang, G., Zhang, H., 2018. Pulse MIG welding of 6061-T6/
      A356-T6 aluminum alloy dissimilar T-joint. J. Mater. Eng. Perform. 27, 4760–4769.
      Liu, T., Mu, Z., Hu, R., Pang, S., 2019. Sinusoidal oscillating laser welding of 7075
      aluminum alloy: hydrodynamics, porosity formation and optimization. Int. J. Heat
      Mass Transf. 140, 346–358.
      Seto, N., Katayama, S., Matsunawa, A., 2000. High-speed simultaneous observation of
      plasma and keyhole behavior during high power CO2 laser welding: effect of
      shielding gas on porosity formation. J. Laser Appl. 12, 245–250.
      Tang, Z., Vollertsen, F., 2014. Influence of grain refinement on hot cracking in laser
      welding of aluminum. Weld. World 58, 355–366.
      Wang, L., Gao, M., Zhang, C., Zeng, X., 2016. Effect of beam oscillating pattern on weld
      characterization of laser welding of AA6061-T6 aluminum alloy. Mater. Des. 108,
      707–717.
      Wang, L., Gao, M., Zeng, X., 2018. Experiment and prediction of weld morphology for
      laser oscillating welding of AA6061 aluminium alloy. Sci. Technol. Weld. Join. 24,
      334–341.
      Yamazaki, Y., Abe, Y., Hioki, Y., Nakatani, M., Kitagawa, A., Nakata, K., 2016.
      Fundamental study of narrow-gap welding with oscillation laser beam. Weld. Int. 30,
      699–707.
      Yuan, Z., Tu, Y., Yuan, T., Zhang, Y., Huang, Y., 2021. Size effects on mechanical
      properties of pure industrial aluminum sheet for micro/meso scale plastic
      deformation: experiment and modeling. J. Alloys. Compd. 859, 157752.
      Zou, J., 2016. Characteristics of laser scanning welding process for 5A06 aluminum alloy
      thick plate with narrow gap. Materials Processing Engineering. Harbin Welding
      Institute, China. Master thesis.

      Fig. 8. Variation of water surface profile (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.

      Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale

      WenjunLiuaBoWangaYakunGuobaState Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, ChinabFaculty of Engineering & Informatics, University of Bradford, BD7 1DP, UK

      Highlights

      경사진 습윤층에서 댐파괴유동과 FFavre 파를 수치적으로 조사하였다.
      수직 대 수평 속도의 비율이 먼저 정량화됩니다.
      유동 상태는 유상 경사가 큰 후기 단계에서 크게 변경됩니다.
      Favre 파도는 수직 속도와 수직 가속도에 큰 영향을 미칩니다.
      베드 전단응력의 변화는 베드 기울기와 꼬리물의 영향을 받습니다.

      Abstract

      The bed slope and the tailwater depth are two important ones among the factors that affect the propagation of the dam-break flood and Favre waves. Most previous studies have only focused on the macroscopic characteristics of the dam-break flows or Favre waves under the condition of horizontal bed, rather than the internal movement characteristics in sloped channel. The present study applies two numerical models, namely, large eddy simulation (LES) and shallow water equations (SWEs) models embedded in the CFD software package FLOW-3D to analyze the internal movement characteristics of the dam-break flows and Favre waves, such as water level, the velocity distribution, the fluid particles acceleration and the bed shear stress, under the different bed slopes and water depth ratios. The results under the conditions considered in this study show that there is a flow state transition in the flow evolution for the steep bed slope even in water depth ratio α = 0.1 (α is the ratio of the tailwater depth to the reservoir water depth). The flow state transition shows that the wavefront changes from a breaking state to undular. Such flow transition is not observed for the horizontal slope and mild bed slope. The existence of the Favre waves leads to a significant increase of the vertical velocity and the vertical acceleration. In this situation, the SWEs model has poor prediction. Analysis reveals that the variation of the maximum bed shear stress is affected by both the bed slope and tailwater depth. Under the same bed slope (e.g., S0 = 0.02), the maximum bed shear stress position develops downstream of the dam when α = 0.1, while it develops towards the end of the reservoir when α = 0.7. For the same water depth ratio (e.g., α = 0.7), the maximum bed shear stress position always locates within the reservoir at S0 = 0.02, while it appears in the downstream of the dam for S0 = 0 and 0.003 after the flow evolves for a while. The comparison between the numerical simulation and experimental measurements shows that the LES model can predict the internal movement characteristics with satisfactory accuracy. This study improves the understanding of the effect of both the bed slope and the tailwater depth on the internal movement characteristics of the dam-break flows and Favre waves, which also provides a valuable reference for determining the flood embankment height and designing the channel bed anti-scouring facility.

      Fig. 1. Sketch of related variables involved in shallow water model.
      Fig. 1. Sketch of related variables involved in shallow water model.
      Fig. 2. Flume model in numerical simulation.
      Fig. 2. Flume model in numerical simulation.
      Fig. 3. Grid sensitivity analysis (a) water surface profile; (b) velocity profile.
      Fig. 3. Grid sensitivity analysis (a) water surface profile; (b) velocity profile.
      Fig. 4. Sketch of experimental set-up for validating the velocity profile.
      Fig. 4. Sketch of experimental set-up for validating the velocity profile.
      Fig. 5. Sketch of experimental set-up for validating the bed shear stress.
      Fig. 5. Sketch of experimental set-up for validating the bed shear stress.
      Fig. 6. Model validation results (a) variation of the velocity profile; (b) error value of the velocity profile; (c) variation of the bed shear stress; (d) error value of the bed shear stress.
      Fig. 6. Model validation results (a) variation of the velocity profile; (b) error value of the velocity profile; (c) variation of the bed shear stress; (d) error value of the bed shear stress.
      Fig. 7. Schematic diagram of regional division.
      Fig. 7. Schematic diagram of regional division.
      Fig. 8. Variation of water surface profile (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 8. Variation of water surface profile (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 8. (continued).
      Fig. 8. (continued).
      Fig. 8. (continued).
      Fig. 8. (continued).
      Fig. 8. (continued).
      Fig. 8. (continued).
      Fig. 9. Froude number for α = 0.1 (a) variation with time; (b) variation with wavefront position.
      Fig. 9. Froude number for α = 0.1 (a) variation with time; (b) variation with wavefront position.
      Fig. 10. Characteristics of velocity distribution (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 10. Characteristics of velocity distribution (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 11. Average proportion of the vertical velocity (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 11. Average proportion of the vertical velocity (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 12. Bed shear stress distribution (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 12. Bed shear stress distribution (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 12. (continued).
      Fig. 12. (continued).
      Fig. 13. Variation of the maximum bed shear stress position with time (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 13. Variation of the maximum bed shear stress position with time (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 14. Time when the maximum bed shear stress appears at different positions (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 14. Time when the maximum bed shear stress appears at different positions (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 15. Movement characteristics of the fluid particles (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 15. Movement characteristics of the fluid particles (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.
      Fig. 15. (continued).
      Fig. 15. (continued).

      Keywords

      Dam-break flow, Bed slope, Wet bed, Velocity profile, Bed shear stress, Large eddy simulation

      References

      Barnes, M.P., Baldock, T.E. 2006. Bed shear stress measurements in dam break and swash
      flows. Proceedings of International Conference on Civil and Environmental
      Engineering. Hiroshima University, Japan, 28–29 September.
      Biscarini, C., Francesco, S.D., Manciola, P., 2010. CFD modelling approach for dam break
      flow studies. Hydrol. Earth Syst. Sc. 14, 705–718. https://doi.org/10.5194/hess-14-
      705-2010.
      Fig. 15. (continued).
      W. Liu et al.
      Journal of Hydrology 602 (2021) 126752
      19
      Bristeau, M.-O., Goutal, N., Sainte-Marie, J., 2011. Numerical simulations of a nonhydrostatic shallow water model. Comput. Fluids. 47 (1), 51–64. https://doi.org/
      10.1016/j.compfluid.2011.02.013.
      Bung, D.B., Hildebrandt, A., Oertel, M., Schlenkhoff, A., Schlurmann, T. 2008. Bore
      propagation over a submerged horizontal plate by physical and numerical
      simulation. Proc. 31st Intl.Conf. Coastal Eng., Hamburg, Germany, 3542–3553.
      Cantero-Chinchilla, F.N., Castro-Orgaz, O., Dey, S., Ayuso, J.L., 2016. Nonhydrostatic
      dam break flows. I: physical equations and numerical schemes. J. Hydraul. Eng. 142
      (12), 04016068. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001205.
      Castro-Orgaz, O., Chanson, H., 2020. Undular and broken surges in dam-break flows: A
      review of wave breaking strategies in a boussinesq-type framework. Environ. Fluid
      Mech. 154 https://doi.org/10.1007/s10652-020-09749-3.
      Chang, T.-J., Kao, H.-M., Chang, K.-H., Hsu, M.-H., 2011. Numerical simulation of
      shallow-water dam break flows in open channels using smoothed particle
      hydrodynamics. J. Hydrol. 408 (1-2), 78–90. https://doi.org/10.1016/j.
      jhydrol.2011.07.023.
      Chen, H., Xu, W., Deng, J., Xue, Y., Li, J., 2009. Experimental investigation of pressure
      load exerted on a downstream dam by dam-break flow. J. Hydraul. Eng. 140,
      199–207. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000743.
      Favre H. 1935. Etude th´eorique et exp´erimentale des ondes de translation dans les
      canaux d´ecouverts. Dunod, Paris. (in French).
      Flow Science Inc. 2016. Flow-3D User’s Manuals. Santa Fe NM.
      Fraccarollo, L., Toro, E.F., 1995. Experimental and numerical assessment of the shallow
      water model for two-dimensional dam-break type problems. J. Hydraul. Res. 33 (6),
      843–864. https://doi.org/10.1080/00221689509498555.
      Guo, Y., Wu, X., Pan, C., Zhang, J., 2012. Numerical simulation of the tidal flow and
      suspended sediment transport in the qiantang estuary. J Waterw. Port Coastal. 138
      (3), 192–202. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000118.
      Guo, Y., Zhang, Z., Shi, B., 2014. Numerical simulation of gravity current descending a
      slope into a linearly stratified environment. J. Hydraulic Eng. 140 (12), 04014061.
      https://doi.org/10.1061/(ASCE)HY.1943-7900.0000936.
      Khosronejad, A., Kang, S., Flora, K., 2019. Fully coupled free-surface flow and sediment
      transport modelling of flash floods in a desert stream in the mojave desert, california.
      Hydrol. Process 33 (21), 2772–2791. https://doi.org/10.1002/hyp.v33.2110.1002/
      hyp.13527.
      Khosronejad, A., Arabi, M.G., Angelidis, D., Bagherizadeh, E., Flora, K., Farhadzadeh, A.,
      2020a. A comparative study of rigid-lid and level-set methods for LES of openchannel flows: morphodynamics. Environ. Fluid Mech. 20 (1), 145–164. https://doi.
      org/10.1007/s10652-019-09703-y.
      Khosronejad, A., Flora, K., Zhang, Z.X., Kang, S., 2020b. Large-eddy simulation of flash
      flood propagation and sediment transport in a dry-bed desert stream. Int. J.
      Sediment Res. 35 (6), 576–586. https://doi.org/10.1016/j.ijsrc.2020.02.002.
      Khoshkonesh, A., Nsom, B., Gohari, S., Banejad, H., 2019. A comprehensive study of dam
      break over the dry and wet beds. Ocean Eng. 188, 106279.1–106279.18. https://doi.
      org/10.1016/j.oceaneng.2019.106279.
      Kocaman, S., Ozmen-Cagatay, H., 2012. The effect of lateral channel contraction on dam
      break flows: laboratory experiment. J. Hydrol. 432–433, 145–153. https://doi.org/
      10.1016/j.jhydrol.2012.02.035.
      Kocaman, S., Ozmen-Cagatay, H., 2015. Investigation of dam-break induced shock waves
      impact on a vertical wall. J. Hydrol. 525, 1–12. https://doi.org/10.1016/j.
      jhydrol.2015.03.040.
      LaRocque, L.A., Imran, J., Chaudhry, M.H., 2013a. Experimental and numerical
      investigations of two-dimensional dam-break flows. J. Hydraul. Eng. 139 (6),
      569–579. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000705.
      Larocque, L.A., Imran, J., Chaudhry, M.H., 2013b. 3D numerical simulation of partial
      breach dam-break flow using the LES and k-ε turbulence models. J. Hydraul. Res. 51,
      145–157. https://doi.org/10.1080/00221686.2012.734862.
      Lauber, G., Hager, W.H., 1998a. Experiments to dam break wave: Horizontal channel.
      J. Hydraul. Res. 36 (3), 291–307. https://doi.org/10.1080/00221689809498620.
      Lauber, G., Hager, W.H., 1998b. Experiments to dam break wave: Sloping channel.
      J. Hydraul. Res. 36 (5), 761–773. https://doi.org/10.1080/00221689809498601.
      Leal, J.G., Ferreira, R.M., Cardoso, A.H., 2006. Dam-break wave-front celerity.
      J. Hydraul. Eng. 132 (1), 69–76. https://doi.org/10.1061/(ASCE)0733-9429(2006)
      132:1(69).
      Liu, W., Wang, B., Guo, Y., Zhang, J., Chen, Y., 2020. Experimental investigation on the
      effects of bed slope and tailwater on dam-break flows. J. Hydrol. 590, 125256.
      https://doi.org/10.1016/j.jhydrol.2020.125256.
      Marche, C., Beauchemin P. EL Kayloubi, A. 1995. Etude num´erique et exp´erimentale des
      ondes secondaires de Favre cons´ecutives a la rupture d’un harrage. Can. J. Civil Eng.
      22, 793–801, (in French). https://doi.org/10.1139/l95-089.
      Marra, D., Earl, T., Ancey, C. 2011. Experimental investigations of dam break flows down
      an inclined channel. Proceedings of the 34th World Congress of the International
      Association for Hydro-Environment Research and Engineering: 33rd Hydrology and
      Water Resources Symposium and 10th Conference on Hydraulics in Water
      Engineering, Brisbane, Australia.
      Marsooli, R., Wu, W., 2014. 3-D finite-volume model of dam-break flow over uneven
      beds based on vof method. Adv. Water Resour. 70, 104–117. https://doi.org/
      10.1016/j.advwatres.2014.04.020.
      Miller, S., Chaudhry, M.H., 1989. Dam-break flows in curved channel. J. Hydraul. Eng.
      115 (11), 1465–1478. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:11
      (1465).
      Mohapatra, P.K., Chaudhry, M.H., 2004. Numerical solution of Boussinesq equations to
      simulate dam-break flows. J. Hydraul. Eng. 130 (2), 156–159. https://doi.org/
      10.1061/(ASCE)0733-9429(2004)130:2(156).
      Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves:
      laboratory versus VOF. J. Hydraul. Res. 50 (1), 89–97. https://doi.org/10.1080/
      00221686.2011.639981.
      Ozmen-Cagatay, H., Kocaman, S., 2012. Investigation of dam-break flow over abruptly
      contracting channel with trapezoidal-shaped lateral obstacles. J. Fluids Eng. 134,
      081204 https://doi.org/10.1115/1.4007154.
      Ozmen-Cagatay, H., Kocaman, S., Guzel, H., 2014. Investigation of dam-break flood
      waves in a dry channel with a hump. J. Hydro-environ. Res. 8 (3), 304–315. https://
      doi.org/10.1016/j.jher.2014.01.005.
      Park, I.R., Kim, K.S., Kim, J., Van, S.H., 2012. Numerical investigation of the effects of
      turbulence intensity on dam-break flows. Ocean Eng. 42, 176–187. https://doi.org/
      10.1016/j.oceaneng.2012.01.005.
      Peregrine, D.H., 1966. Calculations of the development of an undular bore. J. Fluid
      Mech. 25 (2), 321–330. https://doi.org/10.1017/S0022112066001678.
      Savic, L.j., Holly, F.M., 1993. Dam break flood waves computed by modified Godunov
      method. J. Hydraul. Res. 31 (2), 187–204. https://doi.org/10.1080/
      00221689309498844.
      Shigematsu, T., Liu, P., Oda, K., 2004. Numerical modeling of the initial stages of dambreak waves. J. Hydraul. Res. 42 (2), 183–195. https://doi.org/10.1080/
      00221686.2004.9628303.
      Smagorinsky, J., 1963. General circulation experiments with the primitive equations.
      Part I: the basic experiment. Mon. Weather Rev. 91, 99–164. https://doi.org/
      10.1126/science.27.693.594.
      Soares-Frazao, S., Zech, Y., 2002. Undular bores and secondary waves – Experiments and
      hybrid finite-volume modeling. J. Hydraul. Res. 40, 33–43. https://doi.org/
      10.1080/00221680209499871.
      Stansby, P.K., Chegini, A., Barnes, T.C.D., 1998. The initial stages of dam-break flow.
      J. Fluid Mech. 370, 203–220. https://doi.org/10.1017/022112098001918.
      Treske, A., 1994. Undular bores (favre-waves) in open channels – experimental studies.
      J. Hydraul. Res. 32 (3), 355–370. https://doi.org/10.1080/00221689409498738.
      Wang, B., Chen, Y., Wu, C., Dong, J., Ma, X., Song, J., 2016. A semi-analytical approach
      for predicting peak discharge of floods caused by embankment dam failures. Hydrol.
      Process 30 (20), 3682–3691. https://doi.org/10.1002/hyp.v30.2010.1002/
      hyp.10896.
      Wang, B., Chen, Y., Wu, C., Peng, Y., Ma, X., Song, J., 2017. Analytical solution of dambreak flood wave propagation in a dry sloped channel with an irregular-shaped
      cross-section. J. Hydro-environ. Res. 14, 93–104. https://doi.org/10.1016/j.
      jher.2016.11.003.
      Wang, B., Chen, Y., Wu, C., Peng, Y., Song, J., Liu, W., Liu, X., 2018. Empirical and semianalytical models for predicting peak outflows caused by embankment dam failures.
      J. Hydrol. 562, 692–702. https://doi.org/10.1016/j.jhydrol.2018.05.049.
      Wang, B., Zhang, J., Chen, Y., Peng, Y., Liu, X., Liu, W., 2019. Comparison of measured
      dam-break flood waves in triangular and rectangular channels. J. Hydrol. 575,
      690–703. https://doi.org/10.1016/j.jhydrol.2019.05.081.
      Wang, B., Liu, W., Zhang, J., Chen, Y., Wu, C., Peng, Y., Wu, Z., Liu, X., Yang, S., 2020a.
      Enhancement of semi-theoretical models for predicting peak discharges in breached
      embankment dams. Environ. Fluid Mech. 20 (4), 885–904. https://doi.org/10.1007/
      s10652-019-09730-9.
      Wang, B., Chen, Y., Peng, Y., Zhang, J., Guo, Y., 2020b. Analytical solution of shallow
      water equations for ideal dam-break flood along a wet bed slope. J. Hydraul. Eng.
      146 (2), 06019020. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001683.
      Wang, B., Liu, W., Wang, W., Zhang, J., Chen, Y., Peng, Y., Liu, X., Yang, S., 2020c.
      Experimental and numerical investigations of similarity for dam-break flows on wet
      bed. J. Hydrol. 583, 124598. https://doi.org/10.1016/j.jhydrol.2020.124598.
      Wang, B., Liu, X., Zhang, J., Guo, Y., Chen, Y., Peng, Y., Liu, W., Yang, S., Zhang, F.,
      2020d. Analytical and experimental investigations of dam-break flows in triangular
      channels with wet-bed conditions. J. Hydraul. Eng. 146 (10), 04020070. https://doi.
      org/10.1061/(ASCE)HY.1943-7900.0001808.
      Wu, W., Wang, S., 2007. One-dimensional modeling of dam-break flow over movable
      beds. J. Hydraul. Eng. 133 (1), 48–58. https://doi.org/10.1061/(ASCE)0733-9429
      (2007)133:1(48).
      Xia, J., Lin, B., Falconer, R.A., Wang, G., 2010. Modelling dam-break flows over mobile
      beds using a 2d coupled approach. Adv. Water Resour. 33 (2), 171–183. https://doi.
      org/10.1016/j.advwatres.2009.11.004.
      Yang, S., Yang, W., Qin, S., Li, Q., Yang, B., 2018a. Numerical study on characteristics of
      dam-break wave. Ocean Eng. 159, 358–371. https://doi.org/10.1016/j.
      oceaneng.2018.04.011.
      Yang, S., Yang, W., Qin, S., Li, Q., 2018b. Comparative study on calculation methods of
      dam-break wave. J. Hydraul. Res. 57 (5), 702–714. https://doi.org/10.1080/
      00221686.2018.1494057.

      Fig. 1. Schematic figure showing the PREP with additional gas flowing on the end face of electrode.

      플라즈마 회전 전극 공정 중 분말 형성에 대한 공정 매개변수 및 냉각 가스의 영향

      Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process

      Yujie Cuia Yufan Zhaoa1 Haruko Numatab Kenta Yamanakaa Huakang Biana Kenta Aoyagia AkihikoChibaa
      aInstitute for Materials Research, Tohoku University, Sendai 980-8577, JapanbDepartment of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai 980-8577, Japan

      Highlights

      •The limitation of increasing the rotational speed in decreasing powder size was clarified.

      •Cooling and disturbance effects varied with the gas flowing rate.

      •Inclined angle of the residual electrode end face affected powder formation.

      •Additional cooling gas flowing could be applied to control powder size.

      Abstract

      The plasma rotating electrode process (PREP) is rapidly becoming an important powder fabrication method in additive manufacturing. However, the low production rate of fine PREP powder limits the development of PREP. Herein, we investigated different factors affecting powder formation during PREP by combining experimental methods and numerical simulations. The limitation of increasing the rotation electrode speed in decreasing powder size is attributed to the increased probability of adjacent droplets recombining and the decreased tendency of granulation. The effects of additional Ar/He gas flowing on the rotational electrode on powder formation is determined through the cooling effect, the disturbance effect, and the inclined effect of the residual electrode end face simultaneously. A smaller-sized powder was obtained in the He atmosphere owing to the larger inclined angle of the residual electrode end face compared to the Ar atmosphere. Our research highlights the route for the fabrication of smaller-sized powders using PREP.

      플라즈마 회전 전극 공정(PREP)은 적층 제조 에서 중요한 분말 제조 방법으로 빠르게 자리잡고 있습니다. 그러나 미세한 PREP 분말의 낮은 생산율은 PREP의 개발을 제한합니다. 여기에서 우리는 실험 방법과 수치 시뮬레이션을 결합하여 PREP 동안 분말 형성에 영향을 미치는 다양한 요인을 조사했습니다. 분말 크기 감소에서 회전 전극 속도 증가의 한계는 인접한 액적 재결합 확률 증가 및 과립화 경향 감소에 기인합니다.. 회전 전극에 흐르는 추가 Ar/He 가스가 분말 형성에 미치는 영향은 냉각 효과, 외란 효과 및 잔류 전극 단면의 경사 효과를 통해 동시에 결정됩니다. He 분위기에서는 Ar 분위기에 비해 잔류 전극 단면의 경사각이 크기 때문에 더 작은 크기의 분말이 얻어졌다. 우리의 연구는 PREP를 사용하여 더 작은 크기의 분말을 제조하는 경로를 강조합니다.

      Keywords

      Plasma rotating electrode process

      Ti-6Al-4 V alloy, Rotating speed, Numerical simulation, Gas flowing, Powder size

      Introduction

      With the development of additive manufacturing, there has been a significant increase in high-quality powder production demand [1,2]. The initial powder characteristics are closely related to the uniform powder spreading [3,4], packing density [5], and layer thickness observed during additive manufacturing [6], thus determining the mechanical properties of the additive manufactured parts [7,8]. Gas atomization (GA) [9–11], centrifugal atomization (CA) [12–15], and the plasma rotating electrode process (PREP) are three important powder fabrication methods.

      Currently, GA is the dominant powder fabrication method used in additive manufacturing [16] for the fabrication of a wide range of alloys [11]. GA produces powders by impinging a liquid metal stream to droplets through a high-speed gas flow of nitrogen, argon, or helium. With relatively low energy consumption and a high fraction of fine powders, GA has become the most popular powder manufacturing technology for AM.

      The entrapped gas pores are generally formed in the powder after solidification during GA, in which the molten metal is impacted by a high-speed atomization gas jet. In addition, satellites are formed in GA powder when fine particles adhere to partially molten particles.

      The gas pores of GA powder result in porosity generation in the additive manufactured parts, which in turn deteriorates its mechanical properties because pores can become crack initiation sites [17]. In CA, a molten metal stream is poured directly onto an atomizer disc spinning at a high rotational speed. A thin film is formed on the surface of the disc, which breaks into small droplets due to the centrifugal force. Metal powder is obtained when these droplets solidify.

      Compared with GA powder, CA powder exhibits higher sphericity, lower impurity content, fewer satellites, and narrower particle size distribution [12]. However, very high speed is required to obtain fine powder by CA. In PREP, the molten metal, melted using the plasma arc, is ejected from the rotating rod through centrifugal force. Compared with GA powder, PREP-produced powders also have higher sphericity and fewer pores and satellites [18].

      For instance, PREP-fabricated Ti6Al-4 V alloy powder with a powder size below 150 μm exhibits lower porosity than gas-atomized powder [19], which decreases the porosity of additive manufactured parts. Furthermore, the process window during electron beam melting was broadened using PREP powder compared to GA powder in Inconel 718 alloy [20] owing to the higher sphericity of the PREP powder.

      In summary, PREP powder exhibits many advantages and is highly recommended for powder-based additive manufacturing and direct energy deposition-type additive manufacturing. However, the low production rate of fine PREP powder limits the widespread application of PREP powder in additive manufacturing.

      Although increasing the rotating speed is an effective method to decrease the powder size [21,22], the reduction in powder size becomes smaller with the increased rotating speed [23]. The occurrence of limiting effects has not been fully clarified yet.

      Moreover, the powder size can be decreased by increasing the rotating electrode diameter [24]. However, these methods are quite demanding for the PREP equipment. For instance, it is costly to revise the PREP equipment to meet the demand of further increasing the rotating speed or electrode diameter.

      Accordingly, more feasible methods should be developed to further decrease the PREP powder size. Another factor that influences powder formation is the melting rate [25]. It has been reported that increasing the melting rate decreases the powder size of Inconel 718 alloy [26].

      In contrast, the powder size of SUS316 alloy was decreased by decreasing the plasma current within certain ranges. This was ascribed to the formation of larger-sized droplets from fluid strips with increased thickness and spatial density at higher plasma currents [27]. The powder size of NiTi alloy also decreases at lower melting rates [28]. Consequently, altering the melting rate, varied with the plasma current, is expected to regulate the PREP powder size.

      Furthermore, gas flowing has a significant influence on powder formation [27,29–31]. On one hand, the disturbance effect of gas flowing promotes fluid granulation, which in turn contributes to the formation of smaller-sized powder [27]. On the other hand, the cooling effect of gas flowing facilitates the formation of large-sized powder due to increased viscosity and surface tension. However, there is a lack of systematic research on the effect of different gas flowing on powder formation during PREP.

      Herein, the authors systematically studied the effects of rotating speed, electrode diameter, plasma current, and gas flowing on the formation of Ti-6Al-4 V alloy powder during PREP as additive manufactured Ti-6Al-4 V alloy exhibits great application potential [32]. Numerical simulations were conducted to explain why increasing the rotating speed is not effective in decreasing powder size when the rotation speed reaches a certain level. In addition, the different factors incited by the Ar/He gas flowing on powder formation were clarified.

      Fig. 1. Schematic figure showing the PREP with additional gas flowing on the end face of electrode.
      Fig. 1. Schematic figure showing the PREP with additional gas flowing on the end face of electrode.

      References

      [1] W. Ding, G. Chen, M. Qin, Y. He, X. Qu, Low-cost Ti powders for additive manufacturing treated by fluidized bed, Powder Technol. 350 (2019) 117–122, https://doi.org/
      10.1016/j.powtec.2019.03.042.
      [2] W.S.W. Harun, M.S.I.N. Kamariah, N. Muhamad, S.A.C. Ghani, F. Ahmad, Z. Mohamed,
      A review of powder additive manufacturing processes for metallic biomaterials,
      Powder Technol. 327 (2018) 128–151, https://doi.org/10.1016/j.powtec.2017.12.
      058.
      [3] M. Ahmed, M. Pasha, W. Nan, M. Ghadiri, A simple method for assessing powder
      spreadability for additive manufacturing, Powder Technol. 367 (2020) 671–679,
      https://doi.org/10.1016/j.powtec.2020.04.033.
      [4] W. Nan, M. Pasha, M. Ghadiri, Numerical simulation of particle flow and segregation
      during roller spreading process in additive manufacturing, Powder Technol. 364
      (2020) 811–821, https://doi.org/10.1016/j.powtec.2019.12.023.
      [5] A. Averardi, C. Cola, S.E. Zeltmann, N. Gupta, Effect of particle size distribution on the
      packing of powder beds : a critical discussion relevant to additive manufacturing,
      Mater. Today Commun. 24 (2020) 100964, https://doi.org/10.1016/j.mtcomm.
      2020.100964.
      [6] K. Riener, N. Albrecht, S. Ziegelmeier, R. Ramakrishnan, L. Haferkamp, A.B. Spierings,
      G.J. Leichtfried, Influence of particle size distribution and morphology on the properties of the powder feedstock as well as of AlSi10Mg parts produced by laser powder bed fusion (LPBF), Addit. Manuf. 34 (2020) 101286, https://doi.org/10.1016/j.
      addma.2020.101286.
      [7] W.S.W. Harun, N.S. Manam, M.S.I.N. Kamariah, S. Sharif, A.H. Zulkifly, I. Ahmad, H.
      Miura, A review of powdered additive manufacturing techniques for Ti-6Al-4V biomedical applications, Powder Technol. 331 (2018) 74–97, https://doi.org/10.1016/j.
      powtec.2018.03.010.
      [8] A.T. Sutton, C.S. Kriewall, M.C. Leu, J.W. Newkirk, Powder characterisation techniques and effects of powder characteristics on part properties in powder-bed fusion processes, Virtual Phys. Prototyp. 12 (2017) (2017) 3–29, https://doi.org/10.
      1080/17452759.2016.1250605.
      [9] G. Chen, Q. Zhou, S.Y. Zhao, J.O. Yin, P. Tan, Z.F. Li, Y. Ge, J. Wang, H.P. Tang, A pore
      morphological study of gas-atomized Ti-6Al-4V powders by scanning electron microscopy and synchrotron X-ray computed tomography, Powder Technol. 330
      (2018) 425–430, https://doi.org/10.1016/j.powtec.2018.02.053.
      [10] Y. Feng, T. Qiu, Preparation, characterization and microwave absorbing properties of
      FeNi alloy prepared by gas atomization method, J. Alloys Compd. 513 (2012)
      455–459, https://doi.org/10.1016/j.jallcom.2011.10.079.

      [11] I.E. Anderson, R.L. Terpstra, Progress toward gas atomization processing with increased uniformity and control, Mater. Sci. Eng. A 326 (2002) 101–109, https://
      doi.org/10.1016/S0921-5093(01)01427-7.
      [12] P. Phairote, T. Plookphol, S. Wisutmethangoon, Design and development of a centrifugal atomizer for producing zinc metal powder, Int. J. Appl. Phys. Math. 2 (2012)
      77–82, https://doi.org/10.7763/IJAPM.2012.V2.58.
      [13] L. Tian, I. Anderson, T. Riedemann, A. Russell, Production of fine calcium powders by
      centrifugal atomization with rotating quench bath, Powder Technol. 308 (2017)
      84–93, https://doi.org/10.1016/j.powtec.2016.12.011.
      [14] M. Eslamian, J. Rak, N. Ashgriz, Preparation of aluminum/silicon carbide metal matrix composites using centrifugal atomization, Powder Technol. 184 (2008) 11–20,
      https://doi.org/10.1016/j.powtec.2007.07.045.
      [15] T. Plookphol, S. Wisutmethangoon, S. Gonsrang, Influence of process parameters on
      SAC305 lead-free solder powder produced by centrifugal atomization, Powder
      Technol. 214 (2011) 506–512, https://doi.org/10.1016/j.powtec.2011.09.015.
      [16] M.Z. Gao, B. Ludwig, T.A. Palmer, Impact of atomization gas on characteristics of austenitic stainless steel powder feedstocks for additive manufacturing, Powder
      Technol. 383 (2021) 30–42, https://doi.org/10.1016/j.powtec.2020.12.005.
      [17] X. Shui, K. Yamanaka, M. Mori, Y. Nagata, A. Chiba, Effects of post-processing on cyclic fatigue response of a titanium alloy additively manufactured by electron beam
      melting, Mater. Sci. Eng. A 680 (2017) 239–248, https://doi.org/10.1016/j.msea.
      2016.10.059.
      [18] C. Wang, X.H. Zhao, Y.C. Ma, Q.X. Wang, Y.J. Lai, S.J. Liang, Study of the spherical
      HoCu powders prepared by supreme-speed plasma rotating electrode process,
      Powder Metallurgy Technology 38 (3) (2020) 227–233, https://doi.org/10.19591/
      j.cnki.cn11-1974/tf.2020.03.011 (in Chinese).
      [19] G. Chen, S.Y. Zhao, P. Tan, J. Wang, C.S. Xiang, H.P. Tang, A comparative study of Ti6Al-4V powders for additive manufacturing by gas atomization, plasma rotating
      electrode process and plasma atomization, Powder Technol. 333 (2018) 38–46,
      https://doi.org/10.1016/j.powtec.2018.04.013.
      [20] Y. Zhao, K. Aoyagi, Y. Daino, K. Yamanaka, A. Chiba, Significance of powder feedstock
      characteristics in defect suppression of additively manufactured Inconel 718, Addit.
      Manuf. 34 (2020) 101277, https://doi.org/10.1016/j.addma.2020.101277.
      [21] Y. Nie, J. Tang, B. Yang, Q. Lei, S. Yu, Y. Li, Comparison in characteristic and atomization behavior of metallic powders produced by plasma rotating electrode process,
      Adv. Powder Technol. 31 (2020) 2152–2160, https://doi.org/10.1016/j.apt.2020.03.
      006.
      [22] Y. Cui, Y. Zhao, H. Numata, H. Bian, K. Wako, K. Yamanaka, K. Aoyagi, C. Zhang, A.
      Chiba, Effects of plasma rotating electrode process parameters on the particle size
      distribution and microstructure of Ti-6Al-4 V alloy powder, Powder Technol 376
      (2020) 363–372, https://doi.org/10.1016/j.powtec.2020.08.027.
      [23] J. Tang, Y. Nie, Q. Lei, Y. Li, Characteristics and atomization behavior of Ti-6Al-4V
      powder produced by plasma rotating electrode process Adv, Powder Technol. 10
      (2019) 2330–2337, https://doi.org/10.1016/j.apt.2019.07.015.
      [24] M. Zdujić, D. Uskoković, Production of atomized metal and alloy powders by the rotating electrode process, Sov. Powder Metall. Met. Ceram. 29 (1990) 673–683,
      https://doi.org/10.1007/BF00795571.
      [25] L. Zhang, Y. Zhao, Particle size distribution of tin powder produced by centrifugal
      atomisation using rotating cups, Powder Technol. 318 (2017) 62–67, https://doi.
      org/10.1016/j.powtec.2017.05.038.
      [26] Y. Liu, S. Liang, Z. Han, J. Song, Q. Wang, A novel model of calculating particle sizes in
      plasma rotating electrode process for superalloys, Powder Technol. 336 (2018)
      406–414, https://doi.org/10.1016/j.powtec.2018.06.002.
      [27] Y. Zhao, Y. Cui, H. Numata, H. Bian, K. Wako, K. Yamanaka, Centrifugal granulation
      behavior in metallic powder fabrication by plasma rotating electrode process, Sci.
      Rep. (2020) 1–15, https://doi.org/10.1038/s41598-020-75503-w.
      [28] T. Hsu, C. Wei, L. Wu, Y. Li, A. Chiba, M. Tsai, Nitinol powders generate from plasma
      rotation electrode process provide clean powder for biomedical devices used with
      suitable size, spheroid surface and pure composition, Sci. Rep. 8 (2018) 1–8,
      https://doi.org/10.1038/s41598-018-32101-1.
      [29] M. Wei, S. Chen, M. Sun, J. Liang, C. Liu, M. Wang, Atomization simulation and preparation of 24CrNiMoY alloy steel powder using VIGA technology at high gas pressure, Powder Technol. 367 (2020) 724–739, https://doi.org/10.1016/j.powtec.
      2020.04.030.
      [30] Y. Tan, X. Zhu, X.Y. He, B. Ding, H. Wang, Q. Liao, H. Li, Granulation characteristics of
      molten blast furnace slag by hybrid centrifugal-air blast technique, Powder Technol.
      323 (2018) 176–185, https://doi.org/10.1016/j.powtec.2017.09.040.
      [31] P. Xu, D.H. Liu, J. Hu, G.Y. Lin, Synthesis of Ni-Ti composite powder by radio frequency plasma spheroidization process, Nonferrous Metals Science and Engineering
      39 (1) (2020) 67–71 , (in Chinese) 10.13264/j.cnki.ysjskx.2020.01.011.
      [32] H. Mehboob, F. Tarlochan, A. Mehboob, S.H. Chang, S. Ramesh, W.S.W. Harun, K.
      Kadirgama, A novel design, analysis and 3D printing of Ti-6Al-4V alloy bioinspired porous femoral stem, J. Mater. Sci. Mater. Med. 31 (2020) 78, https://doi.
      org/10.1007/s10856-020-06420-7.
      [33] FLOW-3D® Version 11.2 [Computer software]. , Flow Science, Inc., Santa Fe, NM,
      2017https://www.flow3d.com.
      [34] M. Boivineau, C. Cagran, D. Doytier, V. Eyraud, M.H. Nadal, B. Wilthan, G. Pottlacher,
      Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy, Int. J.
      Thermophys. 27 (2006) 507–529, https://doi.org/10.1007/PL00021868.
      [35] J. Liu, Q. Qin, Q. Yu, The effect of size distribution of slag particles obtained in dry
      granulation on blast furnace slag cement strength, Powder Technol. 362 (2020)
      32–36, https://doi.org/10.1016/j.powtec.2019.11.115.
      [36] M. Tanaka, S. Tashiro, A study of thermal pinch effect of welding arcs, J. Japan Weld.
      Soc. 25 (2007) 336–342, https://doi.org/10.2207/qjjws.25.336 (in Japanese).
      [37] T. Kamiya, A. Kayano, Disintegration of viscous fluid in the ligament state purged
      from a rotating disk, J. Chem. Eng. JAPAN. 4 (1971) 364–369, https://doi.org/10.
      1252/jcej.4.364.
      [38] T. Kamiya, An analysis of the ligament-type disintegration of thin liquid film at the
      edge of a rotating disk, J. Chem. Eng. Japan. 5 (1972) 391–396, https://doi.org/10.
      1252/jcej.5.391.
      [39] J. Burns, C. Ramshaw, R. Jachuck, Measurement of liquid film thickness and the determination of spin-up radius on a rotating disc using an electrical resistance technique, Chem. Eng. Sci. 58 (2003) 2245–2253, https://doi.org/10.1016/S0009-2509
      (03)00091-5.
      [40] J. Rauscher, R. Kelly, J. Cole, An asymptotic solution for the laminar flow of a thin film
      on a rotating disk, J. Appl. Mech. Trans. ASME 40 (1973) 43–47, https://doi.org/10.
      1115/1.3422970

      Fig. 9. Simulated separation regions for surface mounted cylinder

      Investigation on the Local Scour Beneath Piggyback Pipelines Under Clear-Water Conditions

      China Ocean Engineering volume 35, pages422–431 (2021)Cite this article

      Abstract

      피기백 파이프라인은 2개의 파이프로 구성되어 2차 라인이 2개의 파이프 사이의 길이가 고정된 거리로 메인 파이프에 탑승합니다. 새로운 전략은 단일 흐름 라인 대신 연안 지역에서 활용됩니다.

      이와 관련하여 정상 전류에서 피기백 파이프라인 아래의 세굴 효과를 조사하는 실험 및 수치 연구는 소수에 불과합니다. 따라서 본 연구에서는 수치모사 및 실험적 실험을 통해 관직경, 관간격 등 정류에 의한 세굴에 영향을 미치는 요인을 살펴보고자 합니다.

      따라서 연구의 첫 번째 단계에서 단일 파이프를 설치하고 실험식의 결과와 결과를 비교하기 위해 실험실에서 테스트했습니다. 실험적 검증을 마친 후, 피기백 파이프라인도 조립하여 안정된 전류 조건에서 정련을 연구했습니다. 파이프 사이의 간격을 늘리면 최대 세굴 깊이가 감소한다는 결론이 내려졌습니다.

      그러나 작은 파이프의 직경이 증가하면 최대 세굴 깊이가 커집니다. 둘째, 본 연구의 수치적 조사에 적합한 도구인 FLOW-3D 소프트웨어를 사용하여 수치해석을 수행하였습니다.

      마지막으로, 수치 결과를 해당 실험 데이터와 비교했으며, 이들 사이에 비교적 좋은 일치가 달성되었습니다.

      A piggyback pipeline consists of two pipes such that the secondary line rides on the main pipe with a fixed distance between two pipes in length. The novel strategy is utilized in offshore areas instead of a single flow line. In this regard, there are only a handful of experimental and numerical studies investigating the effect of scour below a piggyback pipeline under steady current. Hence, this study focuses on examining the influential factors on scouring due to steady current including the pipe diameter and the gap between pipes through numerical simulations and experimental tests. Accordingly, at the first phase of the research, a single pipe was established and tested in laboratory to compare the results with those of an empirical equation. After finishing experimental verifications, piggyback pipelines were also assembled to study the scouring under steady current conditions. It was concluded that by increasing the gap distance between the pipes, the maximum scour depth decreases; however, an increase in the small pipe’s diameter results in a larger maximum scour depth. Secondly, numerical simulations were carried out using the FLOW-3D software which was found to be a suitable tool for the numerical investigation of this study. Finally, the numerical results have been compared with the corresponding experimental data and a relatively good agreement was achieved between them.

      This is a preview of subscription content, access via your institution.

      Fig. 1.   (a) Arrangement of piggyback pipeline, (b) Plan view of experimental flume.
      Fig. 1. (a) Arrangement of piggyback pipeline, (b) Plan view of experimental flume.
      Fig. 3.   Initial photos of two mounted piggyback pipelines in experimental setup for d/D=0.25.
      Fig. 3. Initial photos of two mounted piggyback pipelines in experimental setup for d/D=0.25.
      Fig. 9.     Simulated  separation  regions  for  surface  mounted  cylinder
      Fig. 9. Simulated separation regions for surface mounted cylinder

      References

      • Alfonsi, G., Lauria, A. and Primavera, L., 2012. Structures of a viscous-wave flow around a large-diameter circular cylinder, Journal of Flow Visualization and Image Processing, 19(4), 323–354.Article Google Scholar 
      • Brørs, B., 1999. Numerical modeling of flow and scour at pipelines, Journal of Hydraulic Engineering, 125(5), 511–523.Article Google Scholar 
      • Cheng, L., Yeow, K., Zang, Z.P. and Li, F.J., 2014. 3D scour below pipelines under waves and combined waves and currents, Coastal Engineering, 83(5), 137–149.Article Google Scholar 
      • Chiew, Y.M., 1991. Prediction of maximum scour depth at submarine pipelines, Journal of Hydraulic Engineering, 117(4), 452–466.Article Google Scholar 
      • Dey, S. and Singh, N.P., 2007. Clear-water scour depth below underwater pipelines, Journal of Hydro-Environment Research, 1(2), 157–162.Article Google Scholar 
      • Flow Science, 2015. Flow-3D Solver, Version 11.1.1.3 win64 2015, Interface version 11.1.0.22 11/2/2015.
      • Fredsøe, J. and Deigaard, R., 1992. Mechanics of Coastal Sediment Transport, Advanced Series on Ocean Engineering: Volume 3, World Scientific, Singapore.Book Google Scholar 
      • Hatipoglu, F. and Avci, I., 2003. Flow around a partly buried cylinder in a steady current, Ocean Engineering, 30(2), 239–249.Article Google Scholar 
      • Hosseini, D., Hakimzadeh, H. and Ghiassi, R., 2005. Numerical and experimental modeling of scour around submarine pipeline due to currents, Pipelines 2005, Houston, Texas, United States, pp. 793–802.
      • Kumar, V., Ranga Raju, K.G. and Vittal, N., 1999. Reduction of local scour around bridge piers using slots and collars, Journal of Hydraulic Engineering, 125(12), 1302–1305.Article Google Scholar 
      • Lauria, A., Calomino, F., Alfonsi, G. and D’Ippolito, A., 2020. Discharge coefficients for sluice gates set in weirs at different upstream wall inclinations, Water, 12(1), 245.Article Google Scholar 
      • Myrhaug, D., Ong, M.C., Føien, H., Gjengedal, C. and Leira, B.J., 2009. Scour below pipelines and around vertical piles due to second-order random waves plus a current, Ocean Engineering, 36(8), 605–616.Article Google Scholar 
      • Olsen, N.R.B., 2012. Numerical Modelling and Hydraulics, Department of Hydraulic and Environmental Engineering the Norwegian University of Science and Technology, Trondheim, Norway.Google Scholar 
      • Postacchini, M. and Brocchini, M., 2015. Scour depth under pipelines placed on weakly cohesive soils, Applied Ocean Research, 52, 73–79.Article Google Scholar 
      • Richardson, E.V. and Davis, S.R., 1995. Evaluating Scour at Bridges, Third Edition, Office of Technology Applications, HTA-22, Federal Highway Administration, U.S. Department of Transportation, Washington, DC, USA.Google Scholar 
      • Sudhan, C.M., Sundar, V. and Rao, S.N., 2002. Wave induced forces around buried pipelines, Ocean Engineering, 29(5), 533–544.Article Google Scholar 
      • Sumer, B.M., Truelsen, C., Sichmann, T. and Fredsøe, J., 2001a. Onset of scour below pipelines and self-burial, Coastal Engineering, 42(4), 313–335.Article Google Scholar 
      • Sumer, B.M., Whitehouse, R.J.S. and Tørum, A., 2001b. Scour around coastal structures: A summary of recent research, Coastal Engineering, 44(2), 153–190.Article Google Scholar 
      • Sumer, B.M. and Fredsøe, J., 2002. The mechanics of scour in the marine environment, in Advanced Series on Ocean Engineering: Volume 17, World Scientific, Singapore.Google Scholar 
      • Yang, H., Ni, H. and Zhu, X.H., 2007. An applicable replacement bundled pipeline structure for offshore marginal oilfield development, Shipbuilding of China, 48, 563–570. (in Chinese)Google Scholar 
      • Zakeri, A., Høeg, K. and Nadim, F., 2009. Submarine debris flow impact on pipelines-Part II: Numerical analysis, Coastal Engineering, 56(1), 1–10.Article Google Scholar 
      • Zang, Z.P. and Gao, F.P., 2014. Steady current induced vibration of near-bed piggyback pipelines: Configuration effects on VIV suppression, Applied Ocean Research, 46, 62–69.Article Google Scholar 
      • Zhang, X.L., Xu, C.S. and Han, Y., 2015. Three-dimensional poroelasto-plastic model for wave-induced seabed response around submarine pipeline, Soil Dynamics and Earthquake Engineering, 69, 163–171.Article Google Scholar 
      • Zhao, E.J., Shi, B., Qu, K., Dong, W.B. and Zhang, J., 2018. Experimental and numerical investigation of local scour around submarine piggyback pipeline under steady current, Journal of Ocean University of China, 17(2), 244–256.Article Google Scholar 
      • Zhao, M. and Cheng, L., 2008. Numerical modeling of local scour below a piggyback pipeline in currents, Journal of Hydraulic Engineering, 134(10), 1452–1463.Article Google Scholar 
      • Zhou, X.L., Wang, J.H., Zhang, J. and Jeng, D.S., 2014. Wave and current induced seabed response around a submarine pipeline in an anisotropic seabed, Ocean Engineering, 75, 112–127.Article Google Scholar 
      Flow Field in a Sloped Channel with Damaged and Undamaged Piers: Numerical and Experimental Studies

      Flow Field in a Sloped Channel with Damaged and Undamaged Piers: Numerical and Experimental Studies

      Ehsan OveiciOmid Tayari & Navid Jalalkamali
      KSCE Journal of Civil Engineering volume 25, pages4240–4251 (2021)Cite this article

      Abstract

      본 논문은 경사가 완만한 수로에서 손상되거나 손상되지 않은 교각 주변의 유동 패턴을 분석했습니다. 실험은 길이가 12m이고 기울기가 0.008인 직선 수로에서 수행되었습니다. Acoustic Doppler Velocimeter(ADV)를 이용하여 3차원 유속 데이터를 수집하였고, 그 결과를 PIV(Particle Image Velocimetry) 데이터와 분석하여 비교하였습니다.

      다중 블록 옵션이 있는 취수구의 퇴적물 시뮬레이션(SSIIM)은 이 연구에서 흐름의 수치 시뮬레이션을 위해 통합되었습니다. 일반적으로 비교에서 얻은 결과는 수치 데이터와 실험 데이터 간의 적절한 일치를 나타냅니다. 결과는 모든 경우에 수로 입구에서 2m 거리에서 기복적 수압 점프가 발생했음을 보여주었습니다.

      경사진 수로의 최대 베드 전단응력은 2개의 손상 및 손상되지 않은 교각을 설치하기 위한 수평 수로의 12배였습니다. 이와 같은 경사수로 교각의 위치에 따라 상류측 수위는 수평수로의 유사한 조건에 비해 72.5% 감소한 반면, 이 감소량은 경사면에서 다른 경우에 비해 8.3% 감소하였다. 채널 또한 두 교각이 있는 경우 최대 Froude 수는 수평 수로의 5.7배였습니다.

      This paper analyzed the flow pattern around damaged and undamaged bridge piers in a channel with a mild slope. The experiments were carried out on a straight channel with a length of 12 meters and a slope of 0.008. Acoustic Doppler velocimeter (ADV) was employed to collect three-dimensional flow velocity data, and the results were analyzed and compared with particle image velocimetry (PIV) data. Sediment Simulation in Intakes with Multiblock option (SSIIM) was incorporated for the numerical simulation of the flow in this study. Generally, the results obtained from the comparisons referred to the appropriate agreement between the numerical and the experimental data. The results showed that an undular hydraulic jump occurred at a distance of two meters from the channel entrance in every case; the maximum bed shear stress in the sloped channel was 12 times that in a horizontal channel for installing two damaged and undamaged piers. With this position of the piers in the sloped channel, the upstream water level underwent a 72.5% reduction compared to similar conditions in a horizontal channel, while the amount of this water level decrease was equal to 8.3% compared to the other cases in a sloped channel. In addition, with the presence of both piers, the maximum Froude number was 5.7 times that in a horizontal channel.

      This is a preview of subscription content, access via your institution.

      References

      Download references

      The Study of the effect of step penetration depth on exchanges between surface and subsurface fluxes

      The Study of the effect of step penetration depth on exchanges between surface and subsurface fluxes

      Authors

      1 irrigation department, university of Tehran

      2 Dep. of Water Engineering, Faculty of Water and Soil, Gorgan University of Agricultural Sciences and Natural Resources, Golestan.

      3 Assistant Professor, Department of Irrigation and Reclamation Engineering, Faculty of Agricultural Engineering and Technology, University College of Agriculture and Natural Resources, University of Tehran, P. O. Box 4111, Karaj, 31587-77871, Iran.

      Abstract

      The exchange of surface and subsurface flows in riverbeds, especially upstream of control structures as an important ecological area, is very important and noteworthy. The natural morphology of rivers and various in-stream structures along the flow path are important factors in the formation of such flows. Since the in-stream structures in the flow path have a more controlled and effective role than the morphology of rivers in the formation of these exchanges, in this study the effect of the penetration depth of these structures in the porous bed on the characteristics of exchange flows through experiments and Numerical simulation has been investigated. The experiments were performed in a flume with a length of 10 m, width of 20 cm, depth of 30 cm and a slope of 0.01, for three different penetration depths. Potassium permanganate detector was used for tracking the flow. In addition, to obtain exchange flow characteristics; the mainstream and the exchange pattern were simulated by particle tracking method using Flow 3D software. The results showed that in the Reynolds range 1020 to 3450, with increasing the penetration depth of the structure from 0.09 to 0.13 m, the retention time of the exchange flow increases up to 6.6%. In addition, the length of the effect of the structure up to 9%, the length of the exchange path up to 4.6% and the penetration depth of the exchange increases up to 7.7% while the exchange rate decreases to 22%. Therefore, in order to increase the exchange rate, it is recommended to use a structure with a lower penetration depth and to increase the retention time, a structure with a greater penetration depth is recommended.

      중요한 생태 지역으로서 특히 제어 구조물의 상류 하천 바닥에서 지표 및 지하 흐름의 교환은 매우 중요하고 주목할 만합니다. 하천의 자연적 형태와 유동 경로를 따라 흐르는 다양한 하천 구조는 이러한 유동 형성에 중요한 요소입니다.

      흐름 경로의 유류 구조는 이러한 교환의 형성에서 강의 형태보다 더 제어되고 효과적인 역할을 하기 때문에 본 연구에서는 다공성 층에서 이러한 구조의 침투 깊이가 교환의 특성에 미치는 영향 실험과 수치 시뮬레이션을 통한 흐름이 조사되었습니다.

      실험은 길이 10m, 너비 20cm, 깊이 30cm, 기울기 0.01의 수로에서 세 가지 다른 침투 깊이에 대해 수행되었습니다. 흐름을 추적하기 위해 과망간산 칼륨 검출기가 사용되었습니다. 또한, 교환 흐름 특성을 얻기 위해; Flow 3D 소프트웨어를 사용하여 입자 추적 방법으로 주류 및 교환 패턴을 시뮬레이션했습니다.

      결과는 Reynolds 범위 1020 ~ 3450에서 구조물의 침투 깊이가 0.09에서 0.13m로 증가함에 따라 교환 흐름의 체류 시간이 최대 6.6%까지 증가함을 보여주었습니다. 또한 구조의 효과 길이는 최대 9%, 교환 경로의 길이는 최대 4.6%, 교환의 침투 깊이는 최대 7.7%까지 증가하는 반면 환율은 22%로 감소합니다.

      따라서 환율을 높이기 위해서는 침투깊이가 낮은 구조를 사용하는 것이 좋으며, 머무름 시간을 늘리기 위해서는 침투깊이가 큰 구조를 사용하는 것이 좋습니다.

      Keywords

      Fig. 1. Model geometry with the computational domain, extrusion nozzle, toolpath, and boundary conditions. The model is presented while printing the fifth layer.

      재료 압출 적층 제조에서 증착된 층의 안정성 및 변형

      Md Tusher Mollah Raphaël 사령관 Marcin P. Serdeczny David B. Pedersen Jon Spangenberg덴마크 공과 대학 기계 공학과, Kgs. 덴마크 링비

      2020년 12월 22일 접수, 2021년 5월 1일 수정, 2021년 7월 15일 수락, 2021년 7월 21일 온라인 사용 가능, 기록 버전 2021년 8월 17일 .

      Abstract

      이 문서는 재료 압출 적층 제조 에서 여러 레이어를 인쇄하는 동안 증착 흐름의 전산 유체 역학 시뮬레이션 을 제공합니다 개발된 모델은 증착된 레이어의 형태를 예측하고 점소성 재료 를 인쇄하는 동안 레이어 변형을 캡처합니다 . 물리학은 일반화된 뉴턴 유체 로 공식화된 Bingham 구성 모델의 연속성 및 운동량 방정식에 의해 제어됩니다. . 증착된 층의 단면 모양이 예측되고 재료의 다양한 구성 매개변수에 대해 층의 변형이 연구됩니다. 층의 변형은 인쇄물의 정수압과 압출시 압출압력으로 인한 것임을 알 수 있다. 시뮬레이션에 따르면 항복 응력이 높을수록 변형이 적은 인쇄물이 생성되는 반면 플라스틱 점도 가 높을수록 증착된 레이어에서변형이 커 집니다 . 또한, 인쇄 속도, 압출 속도 의 영향, 층 높이 및 인쇄된 층의 변형에 대한 노즐 직경을 조사합니다. 마지막으로, 이 모델은 후속 인쇄된 레이어의 정수압 및 압출 압력을 지원하기 위해 증착 후 점소성 재료가 요구하는 항복 응력의 필요한 증가에 대한 보수적인 추정치를 제공합니다.

      This paper presents computational fluid dynamics simulations of the deposition flow during printing of multiple layers in material extrusion additive manufacturing. The developed model predicts the morphology of the deposited layers and captures the layer deformations during the printing of viscoplastic materials. The physics is governed by the continuity and momentum equations with the Bingham constitutive model, formulated as a generalized Newtonian fluid. The cross-sectional shapes of the deposited layers are predicted, and the deformation of layers is studied for different constitutive parameters of the material. It is shown that the deformation of layers is due to the hydrostatic pressure of the printed material, as well as the extrusion pressure during the extrusion. The simulations show that a higher yield stress results in prints with less deformations, while a higher plastic viscosity leads to larger deformations in the deposited layers. Moreover, the influence of the printing speed, extrusion speed, layer height, and nozzle diameter on the deformation of the printed layers is investigated. Finally, the model provides a conservative estimate of the required increase in yield stress that a viscoplastic material demands after deposition in order to support the hydrostatic and extrusion pressure of the subsequently printed layers.

      Fig. 1. Model geometry with the computational domain, extrusion nozzle, toolpath, and boundary conditions. The model is presented while printing the fifth layer.
      Fig. 1. Model geometry with the computational domain, extrusion nozzle, toolpath, and boundary conditions. The model is presented while printing the fifth layer.

      키워드

      점성 플라스틱 재료, 재료 압출 적층 제조(MEX-AM), 다층 증착, 전산유체역학(CFD), 변형 제어
      Viscoplastic Materials, Material Extrusion Additive Manufacturing (MEX-AM), Multiple-Layers Deposition, Computational Fluid Dynamics (CFD), Deformation Control

      Introduction

      Three-dimensional printing of viscoplastic materials has grown in popularity over the recent years, due to the success of Material Extrusion Additive Manufacturing (MEX-AM) [1]. Viscoplastic materials, such as ceramic pastes [2,3], hydrogels [4], thermosets [5], and concrete [6], behave like solids when the applied load is below their yield stress, and like a fluid when the applied load exceeds their yield stress [7]. Viscoplastic materials are typically used in MEX-AM techniques such as Robocasting [8], and 3D concrete printing [9,10]. The differences between these technologies lie in the processing of the material before the extrusion and in the printing scale (from microscale to big area additive manufacturing). In these extrusion-based technologies, the structure is fabricated in a layer-by-layer approach onto a solid surface/support [11, 12]. During the process, the material is typically deposited on top of the previously printed layers that may be already solidified (wet-on-dry printing) or still deformable (wet-on-wet printing) [1]. In wet-on-wet printing, control over the deformation of layers is important for the stability and geometrical accuracy of the prints. If the material is too liquid after the deposition, it cannot support the pressure of the subsequently deposited layers. On the other hand, the material flowability is a necessity during extrusion through the nozzle. Several experimental studies have been performed to analyze the physics of the extrusion and deposition of viscoplastic materials, as reviewed in Refs. [13–16]. The experimental measurements can be supplemented with Computational Fluid Dynamics (CFD) simulations to gain a more complete picture of MEX-AM. A review of the CFD studies within the material processing and deposition in 3D concrete printing was presented by Roussel et al. [17]. Wolfs et al. [18] predicted numerically the failure-deformation of a cylindrical structure due to the self-weight by calculating the stiffness and strength of the individual layers. It was found that the deformations can take place in all layers, however the most critical deformation occurs in the bottom layer. Comminal et al. [19,20] presented three-dimensional simulations of the material deposition in MEX-AM, where the fluid was approximated as Newtonian. Subsequently, the model was experimentally validated in Ref. [21] for polymer-based MEX-AM, and extended to simulate the deposition of multiple layers in Ref. [22], where the previously printed material was assumed solid. Xia et al. [23] simulated the influence of the viscoelastic effects on the shape of deposited layers in MEX-AM. A numerical model for simulating the deposition of a viscoplastic material was recently presented and experimentally validated in Refs. [24] and [25]. These studies focused on predicting the cross-sectional shape of a single printed layer for different processing conditions (relative printing speed, and layer height). Despite these research efforts, a limited number of studies have focused on investigating the material deformations in wet-on-wet printing when multiple layers are deposited on top of each other. This paper presents CFD simulations of the extrusion-deposition flow of a viscoplastic material for several subsequent layers (viz. three- and five-layers). The material is continuously printed one layer over another on a fixed solid surface. The rheology of the viscoplastic material is approximated by the Bingham constitutive equation that is formulated using the Generalized Newtonian Fluid (GNF) model. The CFD model is used to predict the cross-sectional shapes of the layers and their deformations while printing the next layers on top. Moreover, the simulations are used to quantify the extrusion pressure applied by the deposited material on the substrate, and the previously printed layers. Numerically, it is investigated how the process parameters (i.e., the extrusion speed, printing speed, nozzle diameter, and layer height) and the material rheology affect the deformations of the deposited layers. Section 2 describes the methodology of the study. Section 3 presents and discusses the results. The study is summarized and concluded in Section 4.

      References

      [1] R.A. Buswell, W.R. Leal De Silva, S.Z. Jones, J. Dirrenberger, 3D printing using
      concrete extrusion: a roadmap for research, Cem. Concr. Res. 112 (2018) 37–49.
      [2] Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of
      ceramics: a review, J. Eur. Ceram. Soc. 39 (4) (2019) 661–687.
      [3] A. Bellini, L. Shor, S.I. Guceri, New developments in fused deposition modeling of
      ceramics, Rapid Prototyp. J. 11 (4) (2005) 214–220.
      [4] S. Aktas, D.M. Kalyon, B.M. Marín-Santib´
      anez, ˜ J. P´erez-Gonzalez, ´ Shear viscosity
      and wall slip behavior of a viscoplastic hydrogel, J. Rheol. 58 (2) (2014) 513–535.
      [5] J. Lindahl, A. Hassen, S. Romberg, B. Hedger, P. Hedger Jr., M. Walch, T. Deluca,
      W. Morrison, P. Kim, A. Roschli, D. Nuttall, Large-scale Additive Manufacturing
      with Reactive Polymers, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United
      States), 2018.
      [6] V.N. Nerella, V. Mechtcherine, Studying the printability of fresh concrete for
      formwork-free Concrete onsite 3D Printing Technology (CONPrint3D), 3D Concr.
      Print. Technol. (2019) 333–347.
      [7] C. Tiu, J. Guo, P.H.T. Uhlherr, Yielding behaviour of viscoplastic materials, J. Ind.
      Eng. Chem. 12 (5) (2006) 653–662.
      [8] B. Dietemann, F. Bosna, M. Lorenz, N. Travitzky, H. Kruggel-Emden, T. Kraft,
      C. Bierwisch, Modeling robocasting with smoothed particle hydrodynamics:
      printing gapspanning filaments, Addit. Manuf. 36 (2020), 101488.
      [9] B. Khoshnevis, R. Russell, H. Kwon, S. Bukkapatnam, Contour crafting – a layered
      fabrication, Spec. Issue IEEE Robot. Autom. Mag. 8 (3) (2001) 33–42.
      [10] D. Asprone, F. Auricchio, C. Menna, V. Mercuri, 3D printing of reinforced concrete
      elements: technology and design approach, Constr. Build. Mater. 165 (2018)
      218–231.
      [11] J. Jiang, Y. Ma, Path planning strategies to optimize accuracy, quality, build time
      and material use in additive manufacturing: a review, Micromachines 11 (7)
      (2020) 633.
      [12] J. Jiang, A novel fabrication strategy for additive manufacturing processes,
      J. Clean. Prod. 272 (2020), 122916.
      [13] F. Bos, R. Wolfs, Z. Ahmed, T. Salet, Additive manufacturing of concrete in
      construction: potentials and challenges, Virtual Phys. Prototyp. 11 (3) (2016)
      209–225.
      [14] P. Wu, J. Wang, X. Wang, A critical review of the use of 3-D printing in the
      construction industry, Autom. Constr. 68 (2016) 21–31.
      [15] T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing
      (3D printing): a review of materials, methods, applications and challenges,
      Compos. Part B: Eng. 143 (2018) 172–196.
      [16] M. Valente, A. Sibai, M. Sambucci, Extrusion-based additive manufacturing of
      concrete products: revolutionizing and remodeling the construction industry,
      J. Compos. Sci. 3 (3) (2019) 88.
      [17] N. Roussel, J. Spangenberg, J. Wallevik, R. Wolfs, Numerical simulations of
      concrete processing: from standard formative casting to additive manufacturing,
      Cem. Concr. Res. 135 (2020), 106075.
      [18] R.J.M. Wolfs, F.P. Bos, T.A.M. Salet, Early age mechanical behaviour of 3D printed
      concrete: numerical modelling and experimental testing, Cem. Concr. Res. 106
      (2018) 103–116.
      [19] R. Comminal, M.P. Serdeczny, D.B. Pedersen, J. Spangenberg, Numerical modeling
      of the strand deposition flow in extrusion-based additive manufacturing, Addit.
      Manuf. 20 (2018) 68–76.
      [20] R. Comminal, M.P. Serdeczny, D.B. Pedersen, J. Spangenberg, Numerical modeling
      of the material deposition and contouring precision in fused deposition modeling,
      in Proceedings of the 29th Annual International Solid Freeform Fabrication
      Symposium, Austin, TX, USA, 2018, pp. 1855–1864.
      [21] M.P. Serdeczny, R. Comminal, D.B. Pedersen, J. Spangenberg, Experimental
      validation of a numerical model for the strand shape in material extrusion additive
      manufacturing, Addit. Manuf. 24 (2018) 145–153.
      [22] M.P. Serdeczny, R. Comminal, D.B. Pedersen, J. Spangenberg, Numerical
      simulations of the mesostructure formation in material extrusion additive
      manufacturing, Addit. Manuf. 28 (2019) 419–429.
      [23] H. Xia, J. Lu, G. Tryggvason, A numerical study of the effect of viscoelastic stresses
      in fused filament fabrication, Comput. Methods Appl. Mech. Eng. 346 (2019)
      242–259.
      [24] R. Comminal, W.R.L. da Silva, T.J. Andersen, H. Stang, J. Spangenberg, Influence
      of processing parameters on the layer geometry in 3D concrete printing:
      experiments and modelling, in: Proceedings of the Second RILEM International
      Conference on Concrete and Digital Fabrication, vol. 28, 2020, pp. 852–862.
      [25] R. Comminal, W.R.L. da Silva, T.J. Andersen, H. Stang, J. Spangenberg, Modelling
      of 3D concrete printing based on computational fluid dynamics, Cem. Concr. Res.
      38 (2020), 106256.
      [26] E.C. Bingham, An investigation of the laws of plastic flow, US Bur. Stand. Bull. 13
      (1916) 309–352.
      [27] N. Casson, A flow equation for pigment-oil suspensions of the printing ink type,
      Rheol. Disperse Syst. (1959) 84–104.
      [28] W.H. Herschel, R. Bulkley, Konsistenzmessungen von Gummi-Benzollosungen, ¨
      Kolloid Z. 39 (1926) 291–300.
      [29] “FLOW-3D | We solve The World’s Toughest CFD Problems,” FLOW SCIENCE.
      〈https://www.flow3d.com/〉. (Accessed 27 June 2020).
      [30] S. Jacobsen, R. Cepuritis, Y. Peng, M.R. Geiker, J. Spangenberg, Visualizing and
      simulating flow conditions in concrete form filling using pigments, Constr. Build.
      Mater. 49 (2013) 328–342.
      [31] E.J. O’Donovan, R.I. Tanner, Numerical study of the Bingham squeeze film
      problem, J. Non-Newton. Fluid Mech. 15 (1) (1984) 75–83.
      [32] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free
      boundaries, J. Comput. Phys. 39 (1) (1981) 201–225.
      [33] R. Comminal, J. Spangenberg, J.H. Hattel, Cellwise conservative unsplit advection
      for the volume of fluid method, J. Comput. Phys. 283 (2015) 582–608.
      [34] A. Negar, S. Nazarian, N.A. Meisel, J.P. Duarte, Experimental prediction of material
      deformation in large-scale additive manufacturing of concrete, Addit. Manuf. 37
      (2021), 101656.

      Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).

      Application of Computational Fluid Dynamics in Chlorine-Dynamics Modeling of In-Situ Chlorination Systems for Cooling Systems

      Jongchan Yi 1, Jonghun Lee 1, Mohd Amiruddin Fikri 2,3, Byoung-In Sang 4 and Hyunook Kim 1,*

      Abstract

      염소화는 상대적인 효율성과 저렴한 비용으로 인해 발전소 냉각 시스템에서 생물학적 오염을 제어하는​​데 선호되는 방법입니다. 해안 지역에 발전소가 있는 경우 바닷물을 사용하여 현장에서 염소를 전기화학적으로 생성할 수 있습니다. 이를 현장 전기염소화라고 합니다. 이 접근 방식은 유해한 염소화 부산물이 적고 염소를 저장할 필요가 없다는 점을 포함하여 몇 가지 장점이 있습니다. 그럼에도 불구하고, 이 전기화학적 공정은 실제로는 아직 초기 단계에 있습니다. 이 연구에서는 파일럿 규모 냉각 시스템에서 염소 붕괴를 시뮬레이션하기 위해 병렬 1차 동역학을 적용했습니다. 붕괴가 취수관을 따라 발생하기 때문에 동역학은 전산유체역학(CFD) 코드에 통합되었으며, 이후에 파이프의 염소 거동을 시뮬레이션하는데 적용되었습니다. 실험과 시뮬레이션 데이터는 강한 난류가 형성되는 조건하에서도 파이프 벽을 따라 염소 농도가 점진적인 것으로 나타났습니다. 염소가 중간보다 파이프 표면을 따라 훨씬 더 집중적으로 남아 있다는 사실은 전기 염소화를 기반으로 하는 시스템의 전체 염소 요구량을 감소시킬 수 있었습니다. 현장 전기 염소화 방식의 냉각 시스템은 직접 주입 방식에 필요한 염소 사용량의 1/3만 소비했습니다. 따라서 현장 전기염소화는 해안 지역의 발전소에서 바이오파울링 제어를 위한 비용 효율적이고 환경 친화적인 접근 방식으로 사용될 수 있다고 결론지었습니다.

      Chlorination is the preferred method to control biofouling in a power plant cooling system due to its comparative effectiveness and low cost. If a power plant is located in a coastal area, chlorine can be electrochemically generated in-situ using seawater, which is called in-situ electrochlorination; this approach has several advantages including fewer harmful chlorination byproducts and no need for chlorine storage. Nonetheless, this electrochemical process is still in its infancy in practice. In this study, a parallel first-order kinetics was applied to simulate chlorine decay in a pilot-scale cooling system. Since the decay occurs along the water-intake pipe, the kinetics was incorporated into computational fluid dynamics (CFD) codes, which were subsequently applied to simulate chlorine behavior in the pipe. The experiment and the simulation data indicated that chlorine concentrations along the pipe wall were incremental, even under the condition where a strong turbulent flow was formed. The fact that chlorine remained much more concentrated along the pipe surface than in the middle allowed for the reduction of the overall chlorine demand of the system based on the electro-chlorination. The cooling system, with an in-situ electro-chlorination, consumed only 1/3 of the chlorine dose demanded by the direct injection method. Therefore, it was concluded that in-situ electro-chlorination could serve as a cost-effective and environmentally friendly approach for biofouling control at power plants on coastal areas.

      Keywords

      computational fluid dynamics; power plant; cooling system; electro-chlorination; insitu chlorination

      Figure 1. Electrodes and batch experiment set-up. (a) Two cylindrical electrodes used in this study. (b) Batch experiment set-up for kinetic tests.
      Figure 1. Electrodes and batch experiment set-up. (a) Two cylindrical electrodes used in this study. (b) Batch experiment set-up for kinetic tests.
      Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).
      Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).
      Figure 3. Free chlorine decay curves in seawater with different TOC and initial chlorine concentration. Each line represents the predicted concentration of chlorine under a given condition. (a) Artificial seawater solution with 1 mg L−1 of TOC; (b) artificial seawater solution with 2 mg L−1 of TOC; (c) artificial seawater solution with 3 mg L−1 of TOC; (d) West Sea water (1.3 mg L−1 of TOC).
      Figure 3. Free chlorine decay curves in seawater with different TOC and initial chlorine concentration. Each line represents the predicted concentration of chlorine under a given condition. (a) Artificial seawater solution with 1 mg L−1 of TOC; (b) artificial seawater solution with 2 mg L−1 of TOC; (c) artificial seawater solution with 3 mg L−1 of TOC; (d) West Sea water (1.3 mg L−1 of TOC).
      Figure 4. Correlation between model and experimental data in the chlorine kinetics using seawater.
      Figure 4. Correlation between model and experimental data in the chlorine kinetics using seawater.
      Figure 5. Free chlorine concentrations in West Sea water under different current conditions in an insitu electro-chlorination system.
      Figure 5. Free chlorine concentrations in West Sea water under different current conditions in an insitu electro-chlorination system.
      Figure 6. Free chlorine distribution along the sampling ports under different flow rates. Each dot represents experimental data, and each point on the black line is the expected chlorine concentration obtained from computational fluid dynamics (CFD) simulation with a parallel first-order decay model. The red-dotted line is the desirable concentration at the given flow rate: (a) 600 L min−1 of flow rate, (b) 700 L min−1 of flow rate, (c) 800 L min−1 of flow rate, (d) 900 L min−1 of flow rate.
      Figure 6. Free chlorine distribution along the sampling ports under different flow rates. Each dot represents experimental data, and each point on the black line is the expected chlorine concentration obtained from computational fluid dynamics (CFD) simulation with a parallel first-order decay model. The red-dotted line is the desirable concentration at the given flow rate: (a) 600 L min−1 of flow rate, (b) 700 L min−1 of flow rate, (c) 800 L min−1 of flow rate, (d) 900 L min−1 of flow rate.
      Figure 7. Fluid contour images from CFD simulation of the electro-chlorination experiment. Inlet flow rate is 800 L min−1. Outlet pressure was set to 10.8 kPa. (a) Chlorine concentration; (b) expanded view of electrode side in image (a); (c) velocity magnitude; (d) pressure.
      Figure 7. Fluid contour images from CFD simulation of the electro-chlorination experiment. Inlet flow rate is 800 L min−1. Outlet pressure was set to 10.8 kPa. (a) Chlorine concentration; (b) expanded view of electrode side in image (a); (c) velocity magnitude; (d) pressure.
      Figure 8. Chlorine concentration contour in the simulation of full-scale in-situ electro-chlorination with different cathode positions. The pipe diameter is 2 m and the flow rate is 14 m3 s−1. The figure shows 10 m of the pipeline. (a) The simulation result when the cathode is placed on the surface of the pipe wall. (b) The simulation result when the cathode is placed on the inside of the pipe with 100 mm of distance from the pipe wall.
      Figure 8. Chlorine concentration contour in the simulation of full-scale in-situ electro-chlorination with different cathode positions. The pipe diameter is 2 m and the flow rate is 14 m3 s−1. The figure shows 10 m of the pipeline. (a) The simulation result when the cathode is placed on the surface of the pipe wall. (b) The simulation result when the cathode is placed on the inside of the pipe with 100 mm of distance from the pipe wall.
      Figure 9. Comparison of in-situ electro-chlorination and direct chlorine injection in full-scale applications. (a) Estimated chlorine concentrations along the pipe surface. (b) Relative chlorine demands.
      Figure 9. Comparison of in-situ electro-chlorination and direct chlorine injection in full-scale applications. (a) Estimated chlorine concentrations along the pipe surface. (b) Relative chlorine demands.

      References

      1. Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature. Environ. Res. Lett. 2012, 7, 045802.
      2. Pan, S.-Y.; Snyder, S.W.; Packman, A.I.; Lin, Y.J.; Chiang, P.-C. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus 2018, 1, 26–41.
      3. Feeley, T.J., III; Skone, T.J.; Stiegel, G.J., Jr.; McNemar, A.; Nemeth, M.; Schimmoller, B.; Murphy, J.T.;
        Manfredo, L. Water: A critical resource in the thermoelectric power industry. Energy 2008, 33, 1–11.
      4. World Nuclear Association. World Nuclear Performance Report 2016; World Nuclear Association: London, UK, 2016.
      5. Pugh, S.; Hewitt, G.; Müller-Steinhagen, H. Fouling during the use of seawater as coolant—The development of a user guide. Heat Transf. Eng. 2005, 26, 35–43.
      6. Satpathy, K.K.; Mohanty, A.K.; Sahu, G.; Biswas, S.; Prasad, M.; Slvanayagam, M. Biofouling and its control in seawater cooled power plant cooling water system—A review. Nucl. Power 2010, 17, 191–242.
      7. Cristiani, P.; Perboni, G. Antifouling strategies and corrosion control in cooling circuits. Bioelectrochemistry 2014, 97, 120–126.
      8. Walker, M.E.; Safari, I.; Theregowda, R.B.; Hsieh, M.-K.; Abbasian, J.; Arastoopour, H.; Dzombak, D.A.; Miller, D.C. Economic impact of condenser fouling in existing thermoelectric power plants. Energy 2012,44, 429–437.
      9. Yi, J.; Ahn, Y.; Hong, M.; Kim, G.-H.; Shabnam, N.; Jeon, B.; Sang, B.-I.; Kim, H. Comparison between OCl−-Injection and In Situ Electrochlorination in the Formation of Chlorate and Perchlorate in Seawater. Appl.Sci. 2019, 9, 229.
      10. Xue, Y.; Zhao, J.; Qiu, R.; Zheng, J.; Lin, C.; Ma, B.; Wang, P. In Situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater. Appl. Surf. Sci. 2015, 357, 60–68.
      11. Mahfouz, A.B.; Atilhan, S.; Batchelor, B.; Linke, P.; Abdel-Wahab, A.; El-Halwagi, M.M. Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants. Clean Technol. Environ. Policy 2011, 13, 783–796.
      12. Rubio, D.; López-Galindo, C.; Casanueva, J.F.; Nebot, E. Monitoring and assessment of an industrial antifouling treatment. Seasonal effects and influence of water velocity in an open once-through seawater cooling system. Appl. Therm. Eng. 2014, 67, 378–387.
      13. European Integrated Pollution Prevention and Control (IPPC) Bureau, European Commission. Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems December 2001; European Commission, Tech. Rep: Brussels, Belgium, 2001.
      14. Venkatesan R.; Murthy P. S. Macrofouling Control in Power Plants. In Springer Series on Biofilms; Springer: Berlin/Heidelberg, Germany, 2008.
      15. Kastl, G.; Fisher, I.; Jegatheesan, V. Evaluation of chlorine decay kinetics expressions for drinking water distribution systems modelling. J. Water Supply Res. Technol. AQUA 1999, 48, 219–226.
      16. Fisher, I.; Kastl, G.; Sathasivan, A.; Cook, D.; Seneverathne, L. General model of chlorine decay in blends of surface waters, desalinated water, and groundwaters. J. Environ. Eng. 2015, 141, 04015039.
      17. Fisher, I.; Kastl, G.; Sathasivan, A.; Jegatheesan, V. Suitability of chlorine bulk decay models for planning and management of water distribution systems. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1843–1882.
      18. Fisher, I.; Kastl, G.; Sathasivan, A. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Res. 2011, 45, 4896–4908.
      19. Haas, C.N.; Karra, S. Kinetics of wastewater chlorine demand exertion. J. (Water Pollut. Control Fed.) 1984, 56, 170–173.
      20. Zeng, J.; Jiang, Z.; Chen, Q.; Zheng, P.; Huang, Y. The decay kinetics of residual chlorine in cooling seawater simulation experiments. Acta Oceanol. Sin. 2009, 28, 54–59.
      21. Saeed, S.; Prakash, S.; Deb, N.; Campbell, R.; Kolluru, V.; Febbo, E.; Dupont, J. Development of a sitespecific kinetic model for chlorine decay and the formation of chlorination by-products in seawater. J. Mar. Sci. Eng. 2015, 3, 772–792.
      22. Al Heboos, S.; Licskó, I. Application and comparison of two chlorine decay models for predicting bulk chlorine residuals. Period. Polytech. Civ. Eng. 2017, 61, 7–13.
      23. Shadloo, M.S.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34.
      24. Wols, B.; Hofman, J.; Uijttewaal, W.; Rietveld, L.; Van Dijk, J. Evaluation of different disinfection calculation methods using CFD. Environ. Model. Softw. 2010, 25, 573–582.
      25. Angeloudis, A.; Stoesser, T.; Falconer, R.A. Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Res. 2014, 60, 118–129.
      26. Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58,71–85.
      27. Lim, Y.H.; Deering, D.D. In Modeling Chlorine Residual in a Ground Water Supply Tank for a Small Community in Cold Conditions, World Environmental and Water Resources Congress 2017; American Society of Civil Engineers: Reston, Virginia, USA, 2017; pp. 124–138.
      28. Hernández-Cervantes, D.; Delgado-Galván, X.; Nava, J.L.; López-Jiménez, P.A.; Rosales, M.; Mora Rodríguez, J. Validation of a computational fluid dynamics model for a novel residence time distribution analysis in mixing at cross-junctions. Water 2018, 10, 733.
      29. Hua, F.; West, J.; Barker, R.; Forster, C. Modelling of chlorine decay in municipal water supplies. Water Res. 1999, 33, 2735–2746.
      30. Jonkergouw, P.M.; Khu, S.-T.; Savic, D.A.; Zhong, D.; Hou, X.Q.; Zhao, H.-B. A variable rate coefficient chlorine decay model. Environ. Sci. Technol. 2009, 43, 408–414.
      31. Nejjari, F.; Puig, V.; Pérez, R.; Quevedo, J.; Cugueró, M.; Sanz, G.; Mirats, J. Chlorine decay model calibration and comparison: Application to a real water network. Procedia Eng. 2014, 70, 1221–1230.
      32. Kohpaei, A.J.; Sathasivan, A.; Aboutalebi, H. Effectiveness of parallel second order model over second and first order models. Desalin. Water Treat. 2011, 32, 107–114.
      33. Powell, J.C.; Hallam, N.B.; West, J.R.; Forster, C.F.; Simms, J. Factors which control bulk chlorine decay rates. Water Res. 2000, 34, 117–126.
      34. Clark, R.M.; Sivaganesan, M. Predicting chlorine residuals in drinking water: Second order model. J. Water Resour. Plan. Manag. 2002, 128, 152–161.
      35. Li, X.; Li, C.; Bayier, M.; Zhao, T.; Zhang, T.; Chen, X.; Mao, X. Desalinated seawater into pilot-scale drinking water distribution system: Chlorine decay and trihalomethanes formation. Desalin. Water Treat. 2016, 57,19149–19159.
      36. United States Environmental Protection Agency (EPA). Chlorine, Total Residual (Spectrophotometric, DPD); EPA-NERL: 330.5; EPA: Cincinnati, OH, USA, 1978.
      37. Polman, H.; Verhaart, F.; Bruijs, M. Impact of biofouling in intake pipes on the hydraulics and efficiency of pumping capacity. Desalin. Water Treat. 2013, 51, 997–1003.
      38. Rajagopal, S.; Van der Velde, G.; Van der Gaag, M.; Jenner, H.A. How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res. 2003, 37, 329–338.
      39. Bruijs, M.C.; Venhuis, L.P.; Daal, L. Global Experiences in Optimizing Biofouling Control through PulseChlorination®. 2017. Available online: https://www.researchgate.net/publication/318561645_Global_Experiences_in_Optimizing_Biofouling_Co ntrol_through_Pulse-ChlorinationR (accessed on 1 May 2020).
      40. Kim, H.; Hao, O.J.; McAvoy, T.J. Comparison between model-and pH/ORP-based process control for an AAA system. Tamkang J. Sci. Eng. 2000, 3, 165–172.
      41. Brdys, M.; Chang, T.; Duzinkiewicz, K. Intelligent Model Predictive Control of Chlorine Residuals in Water Distribution Systems, Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges. In Proceedings of the ASCE Water Resource Engineering and Water Resources Planning and Management, July 30–August 2, 2000; pp. 1–11
      Fig 2(b) Observed velocity field for aspect ratio 0.25(Sukhodolov 2002)

      고정 베드의 불침투성 토양에서 흐름 패턴의 수치 시뮬레이션

      NUMERICAL SIMULATION OF FLOW PATTERN IN SERIES OF IMPERMEABLE GROYNES IN FIXED BED

      Kafle, Mukesh Raj1
      1Asst. Professor, Department of Civil Engineering, Institute of Engineering, Pulchowk Campus, Nepal
      Email: mkafle@pcampus.edu.np

      Abstract

      This paper presents a numerical simulation of recirculating flow patterns in groyne fields. Moreover, it entails the concept determination of proper spacing of vertical unsubmerged and impermeable groynesin seriesto control the bank erosion. Flow pattern between the groynes varies along their space. The flow in groyne field may significantly affect the flow change, bed change, bank erosion and condition of habitat. In this regard, an assessment of flow along the space of groynes will yield important data needed to diversify the object of groyne installation. So, knowledge about determination of the proper spacing of groynes in groyne field is important. Space of vertical groynes was set from 1.5 to 10 times the length of groynes. The velocity field between groynes was simulated by using Computational Fluid Dynamics (CFD) model Nays 2D. Simulated velocity field was compared with existing experimentaldata for the same parameter, which agreed satisfactorily. Based on simulated results,the optimal spacing of vertical groynes to control the bank erosion was recommended.

      이 논문은 groyne 필드에서 재순환 흐름 패턴의 수치 시뮬레이션을 제공합니다. 더욱이, 그것은 제방 침식을 제어하기 위해 수직 비침수 및 불침투성 그로이네신 시리즈의 적절한 간격의 개념 결정을 수반합니다. groynes 사이의 흐름 패턴은 공간에 따라 다릅니다. groyne field의 흐름은 흐름 변화, 하상 변화, 제방 침식 및 서식지 상태에 중대한 영향을 미칠 수 있습니다. 이와 관련하여, groyne 공간을 따른 흐름의 평가는 groyne 설치 대상을 다양화하는 데 필요한 중요한 데이터를 산출할 것입니다. 따라서, groyne field에서 groyne의 적절한 간격 결정에 대한 지식이 중요합니다. 수직 여백의 간격은 여아 길이의 1.5배에서 10배 사이로 설정하였다. groyne 사이의 속도장은 CFD(Computational Fluid Dynamics) 모델 Nays 2D를 사용하여 시뮬레이션되었습니다. 시뮬레이션된 속도장은 동일한 매개변수에 대해 기존 실험 데이터와 비교되었으며 만족스럽게 일치했습니다. 모의 결과를 바탕으로 제방 침식을 억제하기 위한 최적의 수직 제방 간격을 제안하였다.

      1. Introduction
        Spur dikes or groynes are used to protect river banks from erosion and also keep the channel
        navigable.Depending upon the flow characteristics, spur-dikes may be classified as submerged and unsubmerged. Also, based on the permeability, spur dikes are further classified as permeable and
        impermeable. Herein, un-submerged !impermeable spur dikes are dealt. These structures are built from the river bank into the stream flow and usually built in group. Construction of groyne against the flow causes significant changes in flow pattern in channel. Those changes may result in scour phenomenon around groynes which may lead structure instability and changes in river morphology. Moreover, in series of groynes, spacing of groynes leads different types of recirculating flow patterns.Therefore, investigating the characteristics of flow pattern around groynes have been a great interest in river engineering. Numerous researchers like Sukhodolov et al. (2002), Hao Zhang et al.(2009), Beheshti (2010), Duan (2009), Naji(2010), Karami(2011) made a variety of experiments in order to determine the flow pattern around groynes. Most of these researchers studied effect of single groyne, while using series of groynes is more effective in protection of rivers. Besides experimental studies, variety of CFD models have been developed for computing flow pattern around hydraulic structures; like Fluent, Flow 3D, Nays 2D, Nays CUBE and SSIIM. In this study, Nays 2D numerical modelling has been used to investigate flow and recirculating pattern around a series of groynes and streamlines including components of velocities.
      1. Flow pattern in groyne fields
        Under conditions where the groynes are not submerged, the groyne fields are not really part of the wetted cross section of a river. Because of that, the flow pattern in the groyne-field is not directly the result of the discharge in the main channel. Reducing the main stream velocity has no effect on the flow pattern itself, whereas lowering the water level does (Uijttewaal et al.2001). Moreover, the flow pattern inside a groyne field may change with the change of its geometry, location along the river (inner curve, outer curve, or straight part), and/ or the groynes orientation( Przedwojski et al.1995). However, there is an indirect effect of the discharge on the flow pattern in the groyne field. Because of the flow that is diverted from the main channel into the groyne fields, water flows into the groyne field with low velocity through the downstream half of the interfacial section between the groyne field and the main channel. This water flows back to the main channel through a small width of, just downstream the upstream groyne of the groyne field ( Termes et al.1991). Flow separates on a groyne head and forms a secondary flow represented by a large scale vortex with a vertical axis of rotation called primary gyre. Deflection of the flow inside the groyne field by banks and upstream groynes leads to the development of a secondary gyre with an opposite direction of rotation to the primary gyre. Location, mutual interactions, and energy exchange between gyres are the factors that create a specific recirculation pattern, and, consequently assuming correspondence with sedimentation processes, they define deposition patterns.
      2. Model Formulation
        The CFD model selected for this study is the publically available software NAYS 2D (iRIC 2.0), which is an analytical solver for calculation of unsteady two-dimensional plane flow and riverbed deformation using boundary-fitted coordinates within general curvilinear coordinates. A numerical channel of length 8.0m and width 0.9m was created with grid size of 0.01m im stream wise and 0.03m in cross stream directions. Groynes or spur dikes of length 0.15 and width 0.01m were chosen in series. Groyne field with various aspect ratio (b/x) 0.7, 0.25, 0.17, 0.125 and 0.10, where b=length of spur dike, x=spacing of two dikes. Discharge of 0.0175 m3 /s was applied. For boundary conditions, water surface at downstream and velocity at upstream were considered as uniform flow. Relaxation coefficient for water surface calculation was considered as 0.8. For the finite-difference method, the CIP method was applied to the advection terms in equations of motion. For the turbulent field calculation, Constant eddy viscosity, Zero-equation model and k-G models were applied and compared. The model!s accuracy in predicting the velocity magnitudes is evaluated using statistical parameters- mean absolute error (MAE), mean square error(MSE), and root mean square error (RMSE). The comparison of results shows the importance of selecting an appropriate turbulence model in simulating flow field around a spur dike. From the comparison, k-I model is found superior over zero energy model and eddy viscosity model. So, k-I model is chosen as appropriate turbulence closure model.
      3. Model!s Validation
        The capability of CFD model Nays 2D to simulate the velocity field and recirculation pattern in groyne field was compared with experimental data of laboratory experiments by Sukhodolov et al. (2002). The numerical simulation was validated for aspect ratio (R=b/x=0.7) and R=0.25. For aspect ratio R=0.7, one gyre system occupies the whole area of the groyne field. The areas with lower-than-average velocity values are clearly seen in the central part of the gyre and near its corners. Velocities increase towards the margins of the gyre. For aspect ratio R=0.25, two gyre velocity fields were observed in the groyne field. In the downstream part of the groyne field a large gyre, covering two-thirds of the area is clearly visible. The left part(upstream) contains second gyre rotating much more slowly and in the direction opposed to the primary gyre. The simulated and observed velocity field pattern and gyre found satisfactorily agreed. Now, after validation, the model was used for further analysis of velocity field for various aspect ratios.
      Fig 2(b) Observed velocity field for aspect ratio 0.25(Sukhodolov 2002)
      Fig 2(b) Observed velocity field for aspect ratio 0.25(Sukhodolov 2002)
      1. Results and Discussions
        The calibrated model was applied to five different cases of un-submerged and impermeable groyne fields with aspect ratios R=0.70,0.25,0.17,0.125 & 0.10 and flow pattern was numerically simulated. For aspect ratio R=0.7 i.e x/b=1.5, Fig 1(a) only one lateral primary gyre was formed inside the groyne field. The circulation pattern in this case is distinguished by the main flow that is deflected outside the groyne field. The developed primary gyre prevents the main flow from penetrating the groyne field. Therefore, this pattern is desirable for navigation purposes as a continuous deep channel is maintained along the face of the groyne field. Simulated velocity pattern satisfactorily agrees with the observed velocity field Fig 1(b) for the same aspect ratio by Sukhodolov (2002). The spacing of the groyne was further increased maintaining aspect ratio R= 0.25 i. e x/b=4 Fig 2(a) and flow pattern inside the groyne field was simulated. In this case, in the downstream part of the groyne field, a primary gyre occupying almost two-third area was formed. In addition, deflection of the flow inside the groyne field by banks and upstream groynes leads to the development of a secondary gyre with an opposite direction of rotation to the primary gyre covering almost one-third part of the groyne field. Likewise in the first case, the main current is maintained deflected outside the groyne field. Simulated velocity pattern satisfactorily agrees with the observed velocity field Fig 2(b) for the same aspect ratio by Sukhodolov (2002). The spacing of the groyne was further increased maintaining aspect ratio R=0.17 i.e x/b=6. In this case the flow pattern was similar to the aspect ratio R=0.25. The spacing of the groynes was further increased maintaining aspect ratio R=0.125 i. e x/b=8. In this case, similar to the previous scenarios two longitudinal gyres but with different positions are formed. The main current is directed in to the groyne field (Fig 3) creating a much more stronger eddy near the upstream groyne and greater turbulence along the upstream face and at the groyne lower head. As the spacing between groynes increased maintaining aspect ratio R=0.10 i. e x/b=10 (Fig 4), still primary and secondary gyres are generated. The formed gyres deflect the main flow thus preventing to enter in to the groyne field in upstream part. However, in the downstream of the primary gyre and just upstream of the second groyne, the flow attacks the bank directly. The resultant velocity profiles at the deflected region y/b=3 were plotted and how the spacing of second groyne affect the result was analyzed. Spacing of groynes makes little change in upstream resultant velocity. However, in the deflected region, its effect is significant. Higher value of spacing of groyne leads higher average deviation in resultant velocity. For aspect ratio R=0.7, the average deviation estimated as 0.02%. In the case of aspect ratio R=0.25, this value was reached to 1.57%. Further increment of spacing i. e decreasing the aspect ratio R=0.17, average deviation was found 3.82%. For the aspect ratio R=0.125, that value was estimated as 4.16%.
      2. Conclusions
        Geometry of the groyne fields; width and length of the groyne field mainly cause the specific flow patterns including number and shape of eddies or gyres. Eddies developed inside the groyne field deflects the main flow preventing it entering into the dead zone. An aspect ratio close to unity gives rise to a single eddy. A smaller aspect ratio (higher spacing between groynes) gives room to two stationary eddies, a large one called primary eddy, in the downstream part of the groyne field, and a smaller secondary eddy emerges near the upstream groyne. The extreme long groyne field -case of length to width ratio of larger thaneight shows penetration of main flow into the groyne field. The two eddies remain in a relatively stable position, while the main flow zone starts to penetrate into groyne field further downstream. In all cases, there is an eddy detaches from the upstream groyne tip that travels along the main channel groyne field interface and eventually merges with the primary eddy. The simulated results indicate that the spacing of groynes or spur dikes from the controlling of bank erosion point of view should be limited within six times the length of groyne.
      Fig 3 Computed velocity field for aspect ratio 0.125
      Fig 3 Computed velocity field for aspect ratio 0.125
      Fig 4 Computed velocity field for aspect ratio 0.10
      Fig 4 Computed velocity field for aspect ratio 0.10
      Fig 5 Resultant velocity profiles at y/b=3
      Fig 5 Resultant velocity profiles at y/b=3
      Fig 5 Resultant velocity profiles at y/b=3
      Fig 5 Resultant velocity profiles at y/b=3

      References

      1. Holtz, K.P  Numerical simulation of recirculating flow at groynes.Å Computer Methods in Water Resources, Vol 2, No 2 (1991).
      2. Hossein, Bassar; Abdollah, Ardeshir; Hojat, Karami.  Numerical simulation of flow pattern around spur dikes series in rigid bed.Å 9th international congress on civil engineering, May 8- 10,2012, Isfahan University of Technology (IUT) , Isfahan, Iran (2012).
      3. Kang, J.G; Yeo, H.K; Kim,S.J An experimental study on a characteristics of flow around groyne area by install conditions.Å www.SciRP.org/journal/eng(2012).
      4. Shimizu,Y; Nelson,JIntroduction of Nays solver in iRIC.Åwww.i-ric.org(2012).
      5. Sukhodolov, A. Uijttewaal, W. S. J., and Engelhardt, C. On the correspondence between morphological and hydro dynamical patterns of groyne fields.Å Earth Surf. Processes Landforms, 27(3) (2002).
      6. Uijttewall, W.S.J; Lehman,D; VanMazijk,A.  Exchange process between a river and its groyne fields-model experiments.Å Journal of Hydraulic Engineering, ASCE, 127(11) (2001).
      7. Uijttewall, W.S.J Groyne field velocity patterns determined with particle tracking
        velocimetryÅ.28th IAHR congress, Graz, Austria (1999).
      8. Yossef, Mohamed  Flow details near groynes: Experimental investigations.Å Journal of Hydraulic Engineering, ASCE, 137 (2011).
      Fig. 1. Modified Timelli mold design.

      Characterization of properties of Vanadium, Boron and Strontium addition on HPDC of A360 alloy

      A360 합금의 HPDC에 대한 바나듐, 붕소 및 스트론튬 첨가 특성 특성

      OzenGursoya
      MuratColakb
      KazimTurc
      DeryaDispinarde

      aUniversity of Padova, Department of Management and Engineering, Vicenza, Italy
      bUniversity of Bayburt, Mechanical Engineering, Bayburt, Turkey
      cAtilim University, Metallurgical and Materials Engineering, Ankara, Turkey
      dIstanbul Technical University, Metallurgical and Materials Engineering, Istanbul, Turkey
      eCenter for Critical and Functional Materials, ITU, Istanbul, Turkey

      ABSTRACT

      The demand for lighter weight decreased thickness and higher strength has become the focal point in the
      automotive industry. In order to meet such requirements, the addition of several alloying elements has been started to be investigated. In this work, the additions of V, B, and Sr on feedability and tensile properties of A360 has been studied. A mold design that consisted of test bars has been produced. Initially, a simulation was carried out to optimize the runners, filling, and solidification parameters. Following the tests, it was found that V addition revealed the highest UTS but low elongation at fracture, while B addition exhibited visa verse. On the other hand, impact energy was higher with B additions.

      더 가벼운 무게의 감소된 두께와 더 높은 강도에 대한 요구는 자동차 산업의 초점이 되었습니다. 이러한 요구 사항을 충족하기 위해 여러 합금 원소의 추가가 조사되기 시작했습니다. 이 연구에서는 A360의 이송성 및 인장 특성에 대한 V, B 및 Sr의 첨가가 연구되었습니다. 시험봉으로 구성된 금형 설계가 제작되었습니다. 처음에는 러너, 충전 및 응고 매개변수를 최적화하기 위해 시뮬레이션이 수행되었습니다. 시험 결과, V 첨가는 UTS가 가장 높지만 파단 연신율은 낮았고, B 첨가는 visa verse를 나타냈다. 반면에 충격 에너지는 B 첨가에서 더 높았다.

      Fig. 1. Modified Timelli mold design.
      Fig. 1. Modified Timelli mold design.
      Fig. 2. Microstructural images (a) unmodified alloy, (b) Sr modified, (c) V added, (d) B added.
      Fig. 2. Microstructural images (a) unmodified alloy, (b) Sr modified, (c) V added, (d) B added.
      Fig. 3. Effect of Sr and V addition on the tensile properties of A360
      Fig. 3. Effect of Sr and V addition on the tensile properties of A360
      Fig. 4. Effect of Sr and B addition on the tensile properties of A360.
      Fig. 4. Effect of Sr and B addition on the tensile properties of A360.
      Fig. 5. Bubbles chart of tensile properties values obtained from Weibull statistics. | Fig. 6. Effect of Sr, V and B addition on the impact properties of A360.
      Fig. 5. Bubbles chart of tensile properties values obtained from Weibull statistics.
      Fig. 6. Effect of Sr, V and B addition on the impact properties of A360.
      Fig. 7. SEM images on the fracture surfaces (a) V added, (b) B added.
      Fig. 7. SEM images on the fracture surfaces (a) V added, (b) B added.

      References

      [1] A. Johanson, Effect of Vanadium on Grain Refinement of Aluminium, Institutt for
      materialteknologi, 2013.
      [2] D.G. McCartney, Grain refining of aluminium and its alloys using inoculants, Int.
      Mater. Rev. 34 (1) (1989) 247–260.
      [3] M.T. Di Giovanni, The Influence of Ni and V Trace Elements on the High
      Temperature Tensile Properties of A356 Aluminium Foundry Alloy, Institutt for
      materialteknologi, 2014.
      [4] D. Casari, T.H. Ludwig, M. Merlin, L. Arnberg, G.L. Garagnani, The effect of Ni and
      V trace elements on the mechanical properties of A356 aluminium foundry alloy in
      as-cast and T6 heat treated conditions, Mater. Sci. Eng., A 610 (2014) 414–426.
      [5] D. Casari, T.H. Ludwig, M. Merlin, L. Arnberg, G.L. Garagnani, Impact behavior of
      A356 foundry alloys in the presence of trace elements Ni and V, J. Mater. Eng.
      Perform. 24 (2) (2015) 894–908.
      [6] T.H. Ludwig, P.L. Schaffer, L. Arnberg, Influence of some trace elements on
      solidification path and microstructure of Al-Si foundry alloys, Metall. Mater. Trans.
      44 (8) (2013) 3783–3796.
      [7] H.A. Elhadari, H.A. Patel, D.L. Chen, W. Kasprzak, Tensile and fatigue properties of
      a cast aluminum alloy with Ti, Zr and V additions, Mater. Sci. Eng., A 528 (28)
      (2011) 8128–8138.
      [8] Y. Wu, H. Liao, K. Zhou, “Effect of minor addition of vanadium on mechanical
      properties and microstructures of as-extruded near eutectic Al–Si–Mg alloy, Mater.
      Sci. Eng., A 602 (2014) 41–48.
      [9] E.S. Dæhlen, The Effect of Vanadium on AlFeSi-Intermetallic Phases in a
      Hypoeutectic Al-Si Foundry Alloy, Institutt for materialteknologi, 2013.
      [10] B. Lin, H. Li, R. Xu, H. Xiao, W. Zhang, S. Li, Effects of vanadium on modification of
      iron-rich intermetallics and mechanical properties in A356 cast alloys with 1.5 wt.
      % Fe, J. Mater. Eng. Perform. 28 (1) (2019) 475–484.
      [11] P.A. Tøndel, G. Halvorsen, L. Arnberg, Grain refinement of hypoeutectic Al-Si
      foundry alloys by addition of boron containing silicon metal, Light Met. (1993)
      783.
      [12] Z. Chen, et al., Grain refinement of hypoeutectic Al-Si alloys with B, Acta Mater.
      120 (2016) 168–178.
      [13] T. Wang, Z. Chen, H. Fu, J. Xu, Y. Fu, T. Li, “Grain refining potency of Al–B master
      alloy on pure aluminum, Scripta Mater. 64 (12) (2011) 1121–1124.
      [14] M. Gorny, ´ G. Sikora, M. Kawalec, Effect of titanium and boron on the stability of
      grain refinement of Al-Cu alloy, Arch. Foundry Eng. 16 (2016).
      [15] O. ¨ Gürsoy, E. Erzi, D. Dıs¸pınar, Ti grain refinement myth and cleanliness of A356
      melt, in: Shape Casting, Springer, 2019, pp. 125–130.
      [16] D. Dispinar, A. Nordmark, J. Voje, L. Arnberg, Influence of hydrogen content and
      bi-film index on feeding behaviour of Al-7Si, in: 138th TMS Annual Meeting, Shape
      Casting, 3rd International Symposium, San Francisco, California, USA, 2009,
      pp. 63–70. February 2009.
      [17] M. Uludag, ˘ R. Çetin, D. Dıs¸pınar, Observation of hot tearing in Sr-B modified A356
      alloy, Arch. Foundry Eng. 17 (2017).
      [18] X.L. Cui, Y.Y. Wu, T. Gao, X.F. Liu, “Preparation of a novel Al–3B–5Sr master alloy
      and its modification and refinement performance on A356 alloy, J. Alloys Compd.
      615 (2014) 906–911.
      [19] F. Wang, Z. Liu, D. Qiu, J.A. Taylor, M.A. Easton, M.-X. Zhang, Revisiting the role
      of peritectics in grain refinement of Al alloys, Acta Mater. 61 (1) (2013) 360–370.
      [20] M. Akhtar, A. Khajuria, Effects of prior austenite grain size on impression creep and
      microstructure in simulated heat affected zones of boron modified P91 steels,
      Mater. Chem. Phys. 249 (2020) 122847.
      [21] M. Akhtar, A. Khajuria, Probing true creep-hardening interaction in weld simulated
      heat affected zone of P91 steels, J. Manuf. Process. 46 (2019) 345–356.
      [22] E.M. Schulson, T.P. Weihs, I. Baker, H.J. Frost, J.A. Horton, Grain boundary
      accommodation of slip in Ni3Al containing boron, Acta Metall. 34 (7) (1986)
      1395–1399.
      [23] I. Baker, E.M. Schulson, J.R. Michael, The effect of boron on the chemistry of grain
      boundaries in stoichiometric Ni3Al, Philos. Mag. A B 57 (3) (Mar. 1988) 379–385.
      [24] S. Zhu, et al., Influences of nickel and vanadium impurities on microstructure of
      aluminum alloys, JOM (J. Occup. Med.) 65 (5) (2013) 584–592.
      [25] D.J. Beerntsen, Effect of vanadium and zirconium on the formation of CrAI 7
      primary crystals in 7075 aluminum alloy, Metall. Mater. Trans. B 8 (3) (1977)
      687–688.
      [26] G. Timelli, A. Fabrizi, S. Capuzzi, F. Bonollo, S. Ferraro, The role of Cr additions
      and Fe-rich compounds on microstructural features and impact toughness of
      AlSi9Cu3 (Fe) diecasting alloys, Mater. Sci. Eng., A 603 (2014) 58–68.
      [27] S. Kirtay, D. Dispinar, Effect of ranking selection on the Weibull modulus
      estimation, Gazi Univ. J. Sci. 25 (1) (2012) 175–187.
      [28] J. Rakhmonov, G. Timelli, F. Bonollo, “The effect of transition elements on hightemperature mechanical properties of Al–Si foundry alloys–A review, Adv. Eng.
      Mater. 18 (7) (2016) 1096–1105.

      What’s New – FLOW-3D 2022R1

      FLOW-3D 제품의 새로운 2022R1 버전은 Flow Science가 FLOW-3D , FLOW-3D CAST 및 FLOW-3D HYDRO 에 대해 동일한 버전명을 채택 했음을 의미합니다. 2022R1은 FLOW-3D 제품을 위한 통합 코드 베이스로의 전환을 나타내며, 이를 통해 사용자는 최신 버전 개발이 준비되는 즉시 더 빠른 릴리스 버전을 만나실 수 있습니다.

      2022R1 릴리스는 상세한 cutcell 표현이라고 하는 FAVOR™ 방법의 확장, 테마 솔버 기본값이 있는 시뮬레이션 템플릿 도입, 이동하는 액적/기포 소스, 새로운 축 펌프 모델, 능동 시뮬레이션 제어 기능에 대한 확장, 사용자는 두 개의 독립 변수를 기반으로 복잡한 속성 종속성을 지정하고 VOF-to-particle 개발과 같은 추가 수치 기능을 지정하여 분해되는 유체 영역의 질량 보존을 개선할 수 있습니다. 간소화된 GUI 개선 사항에는 재설계된 물리 대화 상자, 새로운 초기 조건 위젯, 더 쉽고 빠르고 오류 없는 시뮬레이션 설정을 위해 재설계된 출력 및 지오메트리 위젯이 포함됩니다.

      상세한 Cutcell 표현 – FAVOR ™ 의 확장

      FAVOR™ 방법은 일반 데카르트 그리드에서 면적 및 부피 분율을 사용하여 솔리드 형상을 구현하는 방법입니다. 이를 통해 FLOW-3D 는 구조화되지 않은 body-fitted mesh에 의존하지 않고 솔리드의 복잡한 형상과 주변의 유체 흐름을 효율적으로 시뮬레이션할 수 있습니다. 상당한 계산상의 이점에도 불구하고 FAVOR™ 방법의 한 가지 문제는 고체 표면을 따라 벽 전단 응력을 계산할 때는 문제가 발생할 수도 있었습니다. 그러나, 상세한 cutcell  표현이라고 하는 FAVOR™의 확장은 벽 전단 응력 계산을 크게 개선하여 솔리드 표면 근처의 유체 유동 해석에서 상당한 개선을 가져옵니다.

      detailed cutcell 표현 의 검증뿐만 아니라 advanced numerics 에 대해 자세히 알아보십시오 .

      정체점으로부터의 각도
      상세한 컷셀 표현

      Tabular Properties

      점도 및 표면 장력과 같은 재료 속성은 온도, 밀도, 변형률 또는 오염 물질 농도와 같은 것을 나타내는 사용자 정의 스칼라 양과 같은 흐름 조건에 따라 달라질 수 있습니다. 이러한 속성을 기능적 형태에 맞추려면 특히 속성이 둘 이상의 독립 변수에 종속되는 경우 복잡한 곡선 맞춤이 필요할 수 있습니다. FLOW-3D 의 새로운 Tabular Properties 기능은  사용자가 최대 2개의 독립 변수를 사용하여 테이블 형식으로 유체 속성을 정의할 수 있습니다. 예를 들어, 표면 장력은 오염 물질 농도 및 온도에 대한 복잡한 비선형 종속성을 설명하기 위해 실험 데이터에서 표로 만들 수 있으며, 점도는 변형률 속도 및 온도에 대한 종속성을 나타내기 위해 실험 데이터에서 표로 만들 수 있습니다. 사용자는 표 속성 대화 상자에서 단일 변수 또는 두 개의 변수 종속성을 입력할 수 있습니다.

      점도는 고체 함량(밀도)과 변형률의 함수로 정의됩니다. 이 예에서 조밀한 유체 영역은 시간이 0일 때 조밀한 침전된 유체 영역과 위쪽에 맑은 물이 있는 정지된 풀로 미끄러져 내려갑니다.

      표 속성
      이 대화 상자는 표 속성 기능을 사용하여 변형률 및 온도의 함수로 점도를 정의하는 방법을 보여줍니다. 세 가지 다른 온도에 대한 변형률의 함수로서의 점도에 대한 값이 대화 상자의 오른쪽에 표시되고 그래프로 표시됩니다.

      Expanded Active Simulation Control

      능동 시뮬레이션 제어(ASC) 는 Probe로 지정한 부분의 흐름 정보를 기반으로 시뮬레이션을 제어하는 ​​데 매우 유용합니다. 이번 릴리스에서 ASC는 일반 이력 데이터, 플럭스 표면 및 sampling volumes의 흐름 정보를 기반으로 추가 제어를 허용하도록 확장되었습니다.

      포인트 프로브에 비해 플럭스 표면 및 샘플링 볼륨의 장점 중 하나는 포인트 기반이 아닌 표면 또는 볼륨에 대해 평균화된 정보를 제공할 수 있다는 것입니다. 어떤 상황에서는 표면 기반 및 볼륨 기반 정보가 시뮬레이션에서 관심 있는 동작을 더 잘 나타낼 수 있습니다.

      이 새로운 기능을 통해 사용자는 다음을 수행할 수 있습니다.

      • 제어 볼륨의 온도가 임계값을 초과하거나 아래로 떨어지면 시뮬레이션을 종료합니다.
      • 샘플링 볼륨의 난류 에너지를 기반으로 노즐에서 충전 속도를 제어합니다.
      • 자속 평면의 평균 속도를 기반으로 출력 주파수를 제어합니다.
      • 샘플링 볼륨의 채우기 비율이 사용자가 지정한 값에 도달하면 시뮬레이션을 종료합니다.

      이 예에서 극저온 탱크 공급 파이프의 펌프(진한 회색 직사각형)는 일정한 유속으로 추진제 탱크에서 액체 산소를 끌어옵니다. 액체 산소가 배출됨에 따라 얼리지의 압력이 지정된 값 아래로 떨어질 때 활성 시뮬레이션 제어에 의해 질량/운동량 소스(상단의 회색 막대)가 트리거됩니다. 얼리지 압력이 지정된 값 이상으로 상승하면 가압이 꺼집니다.

      VOF to Particles

      FLOW-3D 에서 복잡한 자유표면을 추적하는 VOF 방법의 정확성과 견고성은 유체 입자와 결합하여 향상되었습니다. VOF 입자라고 하는 새로운 입자 종류는 VOF 기능 대신 사용되어, 계산 영역에서 작은 유체 인대와 액적을 추적하여 유체 부피와 운동량을 더 잘 보존할 수 있습니다. 중력 제어 프로세스에서 더 높은 시간 단계 크기도 예상할 수 있습니다. VOF 유체는 특정 조건이 충족되면 특정 시간과 위치에서 자동으로 VOF 입자로 변환됩니다. 그런 다음 입자 모션은 Lagrangian 입자 모델을 사용하여 계산되고 입자는 유체에 다시 들어갈 때 VOF 표현으로 다시 변환됩니다.

      입자-FLOW-3D 2022R1에 대한 VOF
      입자에 대한 VOF

      Axial Pump Model

      FLOW-3D의 새로운 Axial Pump Model을 통해 사용자는 시뮬레이션에서 Axial Pump의 실제 효과를 구현할 수 있습니다. 펌프 동작과 관련하여 두 가지 옵션이 있습니다. 첫 번째 옵션은 유체가 지정된 속도로 이동하도록 펌프를 통한 체적 유량 또는 유속을 규정하는 것입니다. 이 옵션은 펌프에 작동 유량이 제공될 때 적합합니다. 두 번째 옵션은 펌프 성능 곡선을 기반으로 펌프 작동에 대한 보다 완전한 정의를 제공합니다. 이 경우 사용자는 펌프 성능 곡선의 선형 근사치를 정의하여 펌프를 통과하는 유량이 펌프 전체의 압력 강하에 따라 달라지도록 할 수 있습니다. 이 구성에서 펌프의 일반적인 동작은 다음과 같이 표시됩니다.

      축 펌프 설정
      GUI의 팬/임펠러 구성요소
      축 펌프 설정
      GUI의 축 펌프 구성 요소

      Droplet/Bubble Source Model | 액적/기포 소스 모델

      FLOW-3D 는 처음 개발된 이후 로 표면 장력 작용에 따라 진화하는 유체 모양을 시뮬레이션하기 위해 노즐 및 기타 오리피스 모양에서 분사되는 액적을 모델링하는 데 사용되었습니다. 그러나 기판에 대한 액적의 영향만 관심이 있기 때문에 노즐을 떠날 때 액적의 모양을 시뮬레이션할 필요가 없는 경우가 있습니다. 또한, 유체에서 기포의 이동을 모델링하는 것은 흥미로울 수 있지만 기포의 시작은 아닙니다. 새로운 액적/기포 소스 모델은 이와 같은 경우에 유용합니다.

      이 예에서 액적 소스는 원형 패턴으로 이동하면서 액적을 10m/s의 속도로 다공성 매체로 아래쪽으로 토출하여 링 모양 디자인을 만듭니다.

      방울/거품 설정
      사용자 인터페이스에서 액적/기포 소스 설정

      Simulation Templates

      새로운 시뮬레이션 템플릿은 자유 표면이 있는 하나의 유체에 대해 비압축성 흐름 또는 2개의 유체 압축성 시뮬레이션과 같은 주어진 모델링 프레임워크를 기반으로 중요한 매개변수를 미리 로드합니다. 새로운 시뮬레이션이 생성되면 FLOW-3D 에서 가장 일반적으로 모델링된 사례를 다루는 6개의 템플릿이 포함된 대화 상자가 사용자에게 표시됩니다 . ‘없음’ 옵션을 사용하면 고급 사용자가 특수 수치 설정을 적용할 수 있도록 빈 슬레이트로 시작할 수 있습니다. 템플릿을 사용하면 모델 설정 프로세스를 신속하게 처리하고 사용자가 실수를 하거나 매개변수 정의를 잊어버리는 것을 방지할 수 있습니다.

      시뮬레이션 템플릿
      GUI의 새로운 시뮬레이션 템플릿

      추가 솔버 기능

      추가 솔버 기능에는 비뉴턴 유체에 대한 Herschel-Bulkley 모델 및 분해되기 쉬운 유체 영역에 대한 질량 보존을 개선하기 위한 기체-공동 변환, 다중 이벤트 동작 및 이벤트 옵션 지원을 포함한 확장된 질량-운동량 소스 프로브 이벤트가 포함됩니다. 동반된 공기의 부피 분율과 용질 농도에 대한 것입니다.

      솔버 기능
      Herschel-Bulkley 모델
      솔버 기능
      활성 시뮬레이션 질량 운동량 소스 이벤트

      GUI 개선

      WSIWYN 설계 접근 방식을 사용한 간소화된 GUI 개선에는 재설계된 물리 및 초기 조건 대화 상자, 더 쉽고 빠르며 오류 없는 시뮬레이션 설정을 위해 재설계된 출력 및 지오메트리 위젯이 포함됩니다.

      초기 조건 위젯

      초기 조건 위젯은 초기 유체 및 기체 영역 설정을 개선하여 더 쉽고 빠르게 만듭니다. 새로운 디자인에서는 전역, 영역 및 포인터 개체가 별도의 탭에 배치되어 설정을 훨씬 더 명확하게 볼 수 있습니다.

      초기 조건
      초기 조건 – 지역
      초기 조건 - 정수압
      초기 조건 – 정수압
      초기 조건
      초기 조건 – 포인터

      출력 위젯

      재설계된 출력 위젯을 통해 사용자는 시뮬레이션 결과 파일에서 어떤 출력을 사용할 수 있는지 정확히 확인할 수 있으며, 하나의 간결한 보기에서 다시 시작 및 선택한 데이터 출력을 명확히 알 수 있습니다.

      출력 위젯
      재설계된 공간 출력 위젯
      출력 위젯
      출력 위젯 – 지오메트리 데이터
      출력 위젯
      공간 데이터가 기록될 때 출력을 강제 실행하면 기록 및 공간 데이터 출력에 대한 동기화된 출력이 사용자에게 제공됩니다.

      대화형 지오메트리 생성 및 편집

      대화형 지오메트리 생성 및 편집 기능이 그 어느 때보다 향상되었으며 이제 다음이 포함됩니다.

      • 회전, 이동 및 크기 조정을 포함한 새로운 대화형 도구 선택이 가능합니다.
      • 작업을 클릭하고 수정할 지오메트리를 선택하여 회전, 이동 또는 크기 조정 모드를 시작합니다.
      • 위쪽 화살표 아이콘을 클릭하거나 ESC 키를 누르면 일반 선택 모드로 돌아갑니다.

      Geometry Widget

      기하학 위젯은 이제 다양한 속성 그룹을 결합하고 관련 항목을 함께 배치하는 WYSIWYN 디자인 접근 방식을 사용하여 더 쉽고 빠르게 탐색할 수 있습니다.

      기하학 위젯
      지오메트리 위젯

      Easier Access to Help

      이제 물리 대화 상자 내에서 클릭 한 번으로 관련 문서, 자습서 및 도움말 다이어그램에 액세스할 수 있습니다.

      더 쉽게 도움을 받을 수 있습니다
      물리학 대화상자

      간소화된 물리 대화 상자

      사용자가 시뮬레이션을 더 빠르게 설정하고 설정 오류를 줄일 수 있도록 많은 물리 대화 상자가 간소화되었습니다.

      거품 및 상 변화
      Bubble and phase change model
      공기 유입
      Air entrainment model
      드리프트 플럭스
      Drift flux model
      Fig. 4. Meshed quarter aluminum model with HAZ regions and support steel plates.

      Benchmark study on slamming response of flat-stiffened plates considering fluid-structure interaction

      유체-구조 상호작용을 고려한 평판 보강판의 슬래밍 응답에 대한 벤치마크 연구

      Dac DungTruongabBeom-SeonJangaCarl-ErikJansoncJonas W.RingsbergcYasuhiraYamadadKotaTakamotofYasumiKawamuraeHan-BaekJua
      aResearch Institute of Marine Systems Engineering, Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul, South Korea
      bDepartment of Engineering Mechanics, Nha Trang University, Nha Trang, Viet Nam
      cDivision of Marine Technology, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden
      dNational Maritime Research Institute, National Institute of Maritime, Port and Aviation Technology, Tokyo, Japan
      eDepartment of Systems Design for Ocean-Space, Yokohama National University, Kanagawa, Japan
      fDepartment of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan

      ABSTRACT

      이 논문은 해양구조물의 평보강판의 슬래밍 반응에 대한 벤치마크 연구를 제시합니다. 목표는 유체-구조 상호작용(FSI) 시뮬레이션 방법론, 모델링 기술 및 슬래밍 압력 예측에 대한 기존 연구원의 경험을 비교하는 것이었습니다.

      수치 FSI 시뮬레이션을 위해 가장 일반적인 상용 소프트웨어 패키지를 사용하는 3개의 연구 그룹(예: LS-Dyna ALE, LS-Dyna ICFD, ANSYS CFX 및 Star-CCM+/ABAQUS)이 이 연구에 참여했습니다.

      공개 문헌에서 입수할 수 있는 경량 선박과 같은 바닥 구조의 평평한 강화 알루미늄 판에 대한 습식 낙하 시험 데이터는 FSI 모델링의 검증에 활용되었습니다. 형상 모델 및 재료 속성을 포함한 실험 조건의 요약은 시뮬레이션 전에 참가자에게 배포되었습니다.

      충돌 속도와 강판의 강성이 슬래밍 응답에 미치는 영향을 조사하기 위해 해양 설비에 사용되는 실제 치수를 갖는 평판 보강 강판에 대한 매개변수 연구를 수행했습니다. 보강판에 작용하는 전체 수직력에 대한 FE 시뮬레이션 결과와 이러한 힘에 대한 구조적 반응을 참가자로부터 획득하여 분석 및 비교하였다.

      앞서 언급한 상용 FSI 소프트웨어 패키지를 사용하여 슬래밍 부하에 대한 신뢰할 수 있고 정확한 예측을 평가했습니다. 또한 FSI 시뮬레이션에서 관찰된 동일한 영구 처짐을 초래하는 등가 정적 슬래밍 압력을 보고하고 분류 표준 DNV에서 제안한 해석 모델 및 슬래밍 압력 계산을 위한 기존 실험 데이터와 비교했습니다.

      연구 결과는 등가 하중 모델이 물 충돌 속도와 플레이트 강성에 의존한다는 것을 보여주었습니다. 즉, 등가정압계수는 충돌속도가 증가함에 따라 감소하고 충돌구조가 더 단단해지면 증가한다.

      This paper presents a benchmark study on the slamming responses of offshore structures’ flat-stiffened plates. The objective was to compare the fluid-structure interaction (FSI) simulation methodologies, modeling techniques, and established researchers’ experiences in predicting slamming pressure. Three research groups employing the most common commercial software packages for numerical FSI simulations (i.e. LS-Dyna ALE, LS-Dyna ICFD, ANSYS CFX, and Star-CCM+/ABAQUS) participated in this study. Wet drop test data on flat-stiffened aluminum plates of light-ship-like bottom structures available in the open literature was utilized for validation of the FSI modeling. A summary of the experimental conditions including the geometry model and material properties, was distributed to the participants prior to their simulations. A parametric study on flat-stiffened steel plates having actual scantlings used in marine installations was performed to investigate the effect of impact velocity and plate rigidity on slamming response. The FE simulation results for the total vertical forces acting on the stiffened plates and their structural responses to those forces, as obtained from the participants, were analyzed and compared. The reliable and accurate predictions of slamming loads using the aforementioned commercial FSI software packages were evaluated. Additionally, equivalent static slamming pressures resulting in the same permanent deflections, as observed from the FSI simulations, were reported and compared with analytical models proposed by the Classification Standards DNV and existing experimental data for calculation of the slamming pressure. The study results showed that the equivalent load model depends on the water impact velocity and plate rigidity; that is, the equivalent static pressure coefficient decreases with an increase in impact velocity, and increases when impacting structures become stiffer.

      Fig. 4. Meshed quarter aluminum model with HAZ regions and support steel plates.
      Fig. 4. Meshed quarter aluminum model with HAZ regions and support steel plates.
      Fig. 6. (a) Boundary conditions of water hitting case and (b) water jets at end of the simulation.
      Fig. 6. (a) Boundary conditions of water hitting case and (b) water jets at end of the simulation.
      Fig. 7. Comparison of prediction and test results for deflection time history of (a) D1 and (b) D2 for Vi = 2.3 m/s.
      Fig. 7. Comparison of prediction and test results for deflection time history of (a) D1 and (b) D2 for Vi = 2.3 m/s.
      Fig. 8. Comparison of prediction and test results for maximum deflection with different impact velocities.
      Fig. 8. Comparison of prediction and test results for maximum deflection with different impact velocities.
      Fig. 16. Boundary conditions applied to present FSI simulations (Sym. denotes symmetric, and Cons. denotes constrained)
      Fig. 16. Boundary conditions applied to present FSI simulations (Sym. denotes symmetric, and Cons. denotes constrained)
      Fig. 24. Distribution of deflections at moment of maximum deflection in: (a) LS-Dyna ALE, (b) Star-CCM+/ABAQUS, (c) ANSYS CFD, and (d) LSDyna ICFD (unit: m).

      Keywords

      Benchmark studyEquivalent static pressureFlat-stiffened plateFluid-structure interactionPermanent deflectionSlamming pressure coefficient

      References

      [1] Von Karman TH. The impact on seaplane floats during landing. Washington, DC: National Advisory Committee for Aeronautics; 1929. Technical note No.: 321.
      [2] Wagner VH. Über Stoß- und Gleitvorgange ¨ an der Oberflache ¨ von Flüssigkeiten. Z Angew Math Mech 1932;12(4):193–215.
      [3] Chuang SL. Experiments on flat-bottom slamming. J Ship Res 1966;10:10–7.
      [4] Chuang SL. Investigation of impact of rigid and elastic bodies with water. Report for Department of the Navy. Washington, DC: United States Department of the
      Navy; 1970. Report No.: 3248.
      [5] Mori K. Response of the bottom plate of high-speed crafts under impulsive water pressure. J Soc Nav Archit Jpn 1977;142:297–305 [Japanese].
      [6] Cheon JS, Jang BS, Yim KH, Lee HSD, Koo BY, Ju HB. A study on slamming pressure on a flat stiffened plate considering fluid–structure interaction. J Mar Sci
      Technol 2016;21:309–24.
      [7] Truong DD, Jang BS, Ju HB, Han SW. Prediction of slamming pressure considering fluid-structure interaction. Part I: Numerical simulations. Ships Offshore
      Struct. https://doi.org/10.1080/17445302.2020.1816732.
      [8] Truong DD, Jang BS, Ju HB, Han SW. Prediction of slamming pressure considering fluid-structure interaction. Part II: Derivation of empirical formulations. Mar
      Struct. https://doi.org/10.1016/j.marstruc.2019.102700.
      [9] Greenhow M, Lin W. Numerical simulation of nonlinear free surface flows generated by wedge entry and wave maker motions. In: Proceedings of the 4th
      international conference on numerical ship hydrodynamics, Washington, DC; 1985.
      [10] Sun H, Faltinsen OM. Water impact of horizontal circular cylinders and cylindrical shells. Appl Ocean Res 2006;28(5):299–311.
      [11] Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Royal Astronomical Society 1977;181:375–89.
      [12] Shao S. Incompressible SPH simulation of water entry of a free-falling object. Int J Numer Methods Fluid 2009;59(1):91–115.
      [13] Souli M, Ouahsine A, Lewin L. ALE formulation for fluid-structure interaction problems. Comput Methods Appl Mech Eng 2000;190(5):659–75.
      [14] Livermore Software Technology Corporation (LSTC). ICFD theory manual incompressible fluid solver in LS-DYNA. Livermore Software Technology Corporation;

      [15] Livermore Software Technology Corporation (LSTC). LS-DYNA theoretical manual. Livermore Software Technology Corporation; 2006.
      [16] FLOW-3D user’s manual. 2018., version 12.0.
      [17] Cd-adapco. STAR-CCM+ User’s manual. 2012., version 7.06.
      [18] ANSYS fluent user’s guide. 2015.
      [19] ANSYS CFX user’s guide. 2014.
      [20] Abaqus user’s manual, version 6.13. SIMULIA; 2013.
      [21] Luo HB, Hu J, Guedes Soares C. Numerical simulation of hydroelastic responses of flat stiffened panels under slamming loads. In: Proceedings of the 29th
      international conference on ocean, offshore and arctic engineering (OMAE2010); 2010 [Shanghai, China].[22] Yamada Y, Takami T, Oka M. Numerical study on the slamming impact of wedge shaped obstacles considering fluid-structure interaction (FSI). In: Proceedings
      of the 22nd international offshore and polar engineering conference (ISOPE2012); 2012 [Rhodes, Greece].
      [23] Luo HB, Wang H, Guedes Soares C. Numerical and experimental study of hydrodynamic impact and elastic response of one free-drop wedge with stiffened
      panels. Ocean Eng 2012;40:1–14.
      [24] Sun H, Wang DY. Experimental and numerical analysis of hydrodynamic impact on stiffened side of three dimensional elastic stiffened plates. Adv Mech Eng
      2018;10(4):1–23.
      [25] Ma S, Mahfuz H. Finite element simulation of composite ship structures with fluid structure interaction. Ocean Eng 2012;52:52–9.
      [26] LSTC. Turek & hron’s FSI benchmark problem. 2012.
      [27] Califano A, Brinchmann K. Evaluation of loads during a free-fall lifeboat drop. In: Proceedings of the ASME 32nd international conference on ocean, offshore
      and arctic engineering (OMAE2013); 2013 [Nantes, France].
      [28] LSTC. 3D fluid elastic body interaction problem. 2014.
      [29] Yamada Y, Takamoto K, Nakanishi T, Ma C, Komoriyama Y. Numerical study on the slamming impact of stiffened flat panel using ICFD method – effect of
      structural rigidity on the slamming impact. In: Proceedings of the ASME 39th international conference on ocean, offshore and arctic engineering (OMAE2020);
      2020 [Florida, USA].
      [30] Nicolici S, Bilegan RM. Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks in flexible tanks. Nucl Eng Des 2013;258:51–6.
      [31] DNV. DNV-RP-C205 environmental conditions and environmental loads. Det Norske Veritas; October 2010.
      [32] Ahmed YM. Numerical simulation for the free surface flow around a complex ship hull form at different froude numbers. Alex Eng J 2011;50(3):229–35.
      [33] Ghadimi P, Feizi Chekab MA, Dashtimanesh A. Numerical simulation of water entry of different arbitrary bow sections. J Nav Architect Mar Eng 2014;11:
      117–29.
      [34] Park BW, Cho S-R. Simple design formulae for predicting the residual damage of unstiffened and stiffened plates under explosive loadings. Int J Impact Eng
      2006;32:1721–36.
      [35] Truong DD, Shin HK, Cho S-R. Permanent set evolution of aluminium-alloy plates due to repeated impulsive pressure loadings induced by slamming. J Mar Sci
      Technol 2018;23:580–95.
      [36] Jones N. Structural impact. first ed. Cambridge, UK: Cambridge University Press; 1989.
      [37] Zha Y, Moan T. Ultimate strength of stiffened aluminium panels with predominantly torsional failure modes. Thin-Walled Struct 2001;39:631–48.
      [38] Sensharma P, Collette M, Harrington J. Effect of welded properties on aluminum structures. Ship Structure Committee SSC-4 2010.
      [39] ABS. Guide for slamming loads and strength assessment for vessels. 2011.
      [40] Villavicencio R, Sutherland L, Guedes Soares C. Numerical simulation of transversely impacted, clamped circular aluminium plates. Ships Offshore Struct 2012;7(1):31–45.
      [41] Material properties database. https://www.varmintal.com/aengr.htm, Assessed date: 16 May 2020.
      [42] Ringsberg JW, Andri´c J, Heggelund SE, Homma N, Huang YT, Jang BS, et al. Report of the ISSC technical committee II.1 on quasi-static response. In:
      Kaminski ML, Rigo P, editors. Proceedings of the 20th international ship and offshore structures congress (ISSC 2018), vol. 1. IOS Press BV; 2018. p. 226–31.
      [43] Shin HK, Kim S-C, Cho S-R. Experimental investigations on slamming impacts by drop tests. J Soc Nav Archit Korea 2010;47(3):410–20 [Korean].
      [44] Huera-Huarte FJ, Jeon D, Gharib M. Experimental investigation of water slamming loads on panels. Ocean Eng 2011;38:1347–55.

      Obrázek 44: Barevné rozlišení proudnic dle rychlosti

      Abstract

      졸업 논문의 목표는 보스코비체 댐의 계획된 방수로의 흐름을 수치적으로 모델링하는 것입니다. 이 졸업 논문은 유형과 프로필에 따라 기본 여수로를 설명하고 나눕니다. 비상용 배수로도 언급되어 있습니다. 그런 다음 논문에서는 범람량 계산에 대한 설명, 수학적 모델링 및 사용된 난류 모델에 대한 설명을 소개합니다. 다음 부분은 Boskovice 댐의 기술적 설명, AutoCAD 2020 소프트웨어에서 방수로 및 방수로 슈트의 가상 3D 모델 생성 및 Blender 소프트웨어에서 모델의 제어 및 수정과 관련되어 있습니다. 논문 말미에는 Flow-3D 소프트웨어를 통해 얻은 유동의 수치적 모델링 결과와 BUT 토목공학부 수구조연구소에서 시행한 수리학적 모델 연구와 비교한 결과를 언급하였다.

      The goal of the diploma thesis is the numerical modelling of flow in planned spillway of the Boskovice dam. In the introduction of this diploma thesis are described and divided basic spillways according to their types and profiles. There are also mentioned emergency spillways. Then the thesis introduces the description of calculation of overflow quantity, the description of mathematic modelling and used turbulent models. The next part is concerned with the technical description of the Boskovice dam, the creation of virtual 3D model of spillway and spillway chute in the AutoCAD 2020 software and concerned with the control and revision of model in the Blender software. In the end of the thesis are mentioned results of numeric modelling of flow gained from the Flow-3D software and the comparison of results with the research of hydraulic model implemented at Water structures institute of Faculty of Civil Engineering of BUT.

      AuthorSvoboda, Jiří
      TitleNumerické modelování proudění v bezpečnostním přelivu: Numerical modeling of flow in spilway
      URLhttp://hdl.handle.net/11012/195970
      Publication Date2021
      Date Accessioned2021-02-05 08:03:49
      University/PublisherBrno University of Technology
      AbstractThe goal of the diploma thesis is the numerical modelling of flow in planned spillway of the Boskovice dam. In the introduction of this diploma thesis are described and divided basic spillways according to their types and profiles. There are also mentioned emergency spillways. Then the thesis introduces the description of calculation of overflow quantity, the description of mathematic modelling and used turbulent models. The next part is concerned with the technical description of the Boskovice dam, the creation of virtual 3D model of spillway and spillway chute in the AutoCAD 2020 software and concerned with the control and revision of model in the Blender software. In the end of the thesis are mentioned results of numeric modelling of flow gained from the Flow-3D software and the comparison of results with the research of hydraulic model implemented at Water structures institute of Faculty of Civil Engineering of BUT.
      Subjects/KeywordsBezpečnostní přeliv; numerický model; 3D model; FLOW-3D; VD Boskovice; sypaná kamenitá hráz.; Spillway; numerical model; 3D model; FLOW-3D; Boskovice dam; rockfill dam.
      ContributorsJandora, Jan (advisor); Holomek, Petr (referee)
      Languagecs
      RightsStandardní licenční smlouva – přístup k plnému textu bez omezení
      Country of Publicationcz
      Record IDhandle:11012/195970
      Repositorybrno-tech
      Date Indexed2021-12-08
      Note[mark] A;
      Obrázek 18: Kašnový čelní bezpečnostní přeliv [24]
      OFigure 18: Fountain front safety spillway [24]
      Obrázek 20: Skluz a divergentní vývar bezpečnostního objektu VD Boskovice [24]
      Figure 20: Slip and divergent broth of the security building VD Boskovice [24]
      Obrázek 22: Půdorys bezpečnostního přelivu a části skluzu VD Boskovice [12]
      Obrázek 22: Půdorys bezpečnostního přelivu a části skluzu VD Boskovice [12]
      Obrázek 23: Podélný řez BP a spadiště v rovině symetrie [12]
      Figure 23: Longitudinal section BP and drop in the plane of symmetry [12]
      Obrázek 44: Barevné rozlišení proudnic dle rychlosti
      Figure 44: Color resolution of jets according to speed
      Obrázek 45: Průběh hladiny ve Flow-3D bez zobrazeného 3D modelu
      Figure 45: Flow profile in Flow-3D without 3D model displayed
      Figure 47: Level course on the physical model [22]
      Figure 47: Level course on the physical model [22]

      References

      [1] JANDORA, Jan a Jan ŠULC. Hydraulika: Modul 01. Brno: AKADEMICKÉ
      NAKLADATELSTVÍ CERM, 2007. ISBN 978-80-7204-512-9.
      [2] BOOR, B., J. KUNŠTÁTSKÝ a C. PATOČKA. Hydraulika pro vodohospodářské
      stavby. Praha: SNTL, 1968. ISBN 04-710-68.
      [3] STARA, Vlastimil a Helena KOUTKOVÁ. 3. Vodohospodářská konference
      s mezinárodní účastí: Součinitel přepadu přelivu s kruhově zaoblenou korunou
      z fyzikálních experimentů. Brno, 2003. ISBN 80-86433-26-9.
      [4] ŘÍHA, Jaromír. Hydrotechnické stavby II: Modul 01 Přehrady. Studijní opora. FAST
      VUT v Brně 2006.
      [5] JANDORA, Jan. Matematické modelování ve vodním hospodářství. VUT v Brně, 2008.
      [6] KŘÍŽ, Tomáš. Manipulační řád pro vodní dílo Boskovice na toku Bělá v km 7,400. Brno,
      2020.
      [7] ŠULC, Jan a Michal ŽOUŽELA. Hydraulický modelový výzkum bezpečnostního objektu
      VD Boskovice na ÚVS Stavební fakulty VUT v Brně. Výzkumná zpráva, LVV-ÚVSFAST VUT v Brně, 2013
      [8] Autodesk® AutoCAD® 2020 [Počítačový software]. (2019). https://www.autodesk.cz/
      [9] Blender v2.90 [Počítačový software]. (2020). https://www.blender.org/
      [10] FLOW-3D® verze 11.0.4 [Počítačový software]. (2015). Santa Fe, NM: Flow Science,
      Inc. https://www.flow3d.com
      [11] Why FLOW-3D? Flow-3D [online]. [cit. 2020-11-03]. Dostupné z:
      https://www.flow3d.com/products/flow-3d/why-flow-3d/
      [12] Podklady poskytnuté Ing. Petrem Holomkem (Povodí Moravy, s. p.)
      [13] CHANSON, H. a J.S. MONTES. Journal of Irrigation and Drainage Engineering:
      Overflow Characteristics of Circular Weirs: Effcets of Inflow Conditions. 3. Reston: The
      American Society of Civil Engineers, 1998. ISBN 0733-9437.
      [14] KRATOCHVÍL, Jiří, Miloš JANDA a Vlastimil STARA. Projektování přehrad:
      Komplexní projekt HT. Brno: Vysoké učení technické v Brně, 1988.
      [15] STUDNIČKA, Tomáš. Matematické modelování odlehčovacích komor na stokových
      sítích. Brno, 2013. Disertační práce. Vysoké učení technické v Brně, Fakulta stavební.
      Vedoucí práce Ing. Petr Prax, Ph.D.
      [16] ŘÍHA, Jaromír. Hydraulika podzemních vod: Modul 01. Studijní opora. FAST VUT
      v Brně 2006.

      [17] ArcMap Desktop 10.5 Version: 10.5.0.6491, [Počítačový software]. (2016). Copyright ©
      1995-2016 Esri
      [18] VD Boskovice. Povodí Moravy [online]. Media Age Digital, s.r.o., 2010-2020. [cit. 2020-
      09-08]. Dostupné z: http://www.pmo.cz/cz/o-podniku/vodni-dila/boskovice/.
      [19] DESATOVÁ, Martina. Numerické modelování proudění v bezpečnostním přelivu
      vybraného vodního díla. Brno, 2020. Diplomová práce. Vysoké učení technické v Brně,
      Fakulta stavební, Ústav vodních staveb. Vedoucí práce doc. Ing. Jan Jandora, Ph.D.
      [20] HOLINKA, Matouš. Numerické modelování proudění v bezpečnostním objektu vodního
      díla. Brno, 2017. Diplomová práce. Vysoké učení technické v Brně, Fakulta stavební,
      Ústav vodních staveb. Vedoucí práce doc. Ing. Jan Jandora, Ph.D.
      [21] KŘIVOHLÁVEK, Roman. Numerické modelování proudění v bezpečnostním přelivu
      vodního díla Letovice. Brno, 2018. Diplomová práce. Vysoké učení technické v Brně,
      Fakulta stavební, Ústav vodních staveb. Vedoucí práce doc. Ing. Jan Jandora, Ph.D.
      [22] ŠULC, Jan, Podklady k přednáškám předmětu CR053 Bezpečnostní objekty
      hydrotechnických staveb. Brno, 2020.
      [23] HOLEČEK, Miroslav. Hydraulika přelivu sypaných přehrad. Praha, 2006. České vysoké
      učení technické v Praze, Fakulta stavební, Katedra hydrotechniky.
      [24] Místní šetření dne 17. 12. 2020 za účasti Bc. Jiří Svoboda a Milan Coufal
      (Povodí Moravy, s. p.).
      [25] JANDORA, Jan, Podklady k přednáškám předmětu CR005 Matematické modelování ve
      vodním hospodářství. Brno, 2020.
      [26] KOZUBKOVÁ, Milada, Modelování proudění tekutin, FLUENT, CFX. Vysoká škola
      Báňská Technická univerzita Ostrava, 2008.

      Fig. 5. The predicted shapes of initial breach (a) Rectangular (b) V-notch. Fig. 6. Dam breaching stages.

      Investigating the peak outflow through a spatial embankment dam breach

      공간적 제방댐 붕괴를 통한 최대 유출량 조사

      Mahmoud T.GhonimMagdy H.MowafyMohamed N.SalemAshrafJatwaryFaculty of Engineering, Zagazig University, Zagazig 44519, Egypt

      Abstract

      Investigating the breach outflow hydrograph is an essential task to conduct mitigation plans and flood warnings. In the present study, the spatial dam breach is simulated by using a three-dimensional computational fluid dynamics model, FLOW-3D. The model parameters were adjusted by making a comparison with a previous experimental model. The different parameters (initial breach shape, dimensions, location, and dam slopes) are studied to investigate their effects on dam breaching. The results indicate that these parameters have a significant impact. The maximum erosion rate and peak outflow for the rectangular shape are higher than those for the V-notch by 8.85% and 5%, respectively. Increasing breach width or decreasing depth by 5% leads to increasing maximum erosion rate by 11% and 15%, respectively. Increasing the downstream slope angle by 4° leads to an increase in both peak outflow and maximum erosion rate by 2.0% and 6.0%, respectively.

      유출 유출 수문곡선을 조사하는 것은 완화 계획 및 홍수 경보를 수행하는 데 필수적인 작업입니다. 본 연구에서는 3차원 전산유체역학 모델인 FLOW-3D를 사용하여 공간 댐 붕괴를 시뮬레이션합니다. 이전 실험 모델과 비교하여 모델 매개변수를 조정했습니다.

      다양한 매개변수(초기 붕괴 형태, 치수, 위치 및 댐 경사)가 댐 붕괴에 미치는 영향을 조사하기 위해 연구됩니다. 결과는 이러한 매개변수가 상당한 영향을 미친다는 것을 나타냅니다. 직사각형 형태의 최대 침식율과 최대 유출량은 V-notch보다 각각 8.85%, 5% 높게 나타났습니다.

      위반 폭을 늘리거나 깊이를 5% 줄이면 최대 침식률이 각각 11% 및 15% 증가합니다. 하류 경사각을 4° 증가시키면 최대 유출량과 최대 침식률이 각각 2.0% 및 6.0% 증가합니다.

      Keywords

      Spatial dam breach; FLOW-3D; Overtopping erosion; Computational fluid dynamics (CFD)

      1. Introduction

      There are many purposes for dam construction, such as protection from flood disasters, water storage, and power generationEmbankment failures may have a catastrophic impact on lives and infrastructure in the downstream regions. One of the most common causes of embankment dam failure is overtopping. Once the overtopping of the dam begins, the breach formation will start in the dam body then end with the dam failure. This failure occurs within a very short time, which threatens to be very dangerous. Therefore, understanding and modeling the embankment breaching processes is essential for conducting mitigation plans, flood warnings, and forecasting flood damage.

      The analysis of the dam breaching process is implemented by different techniques: comparative methods, empirical models with dimensional and dimensionless solutions, physical-based models, and parametric models. These models were described in detail [1]Parametric modeling is commonly used to simulate breach growth as a time-dependent linear process and calculate outflow discharge from the breach using hydraulics principles [2]. Alhasan et al. [3] presented a simple one-dimensional mathematical model and a computer code to simulate the dam breaching process. These models were validated by small dams breaching during the floods in 2002 in the Czech Republic. Fread [4] developed an erosion model (BREACH) based on hydraulics principles, sediment transport, and soil mechanics to estimate breach size, time of formation, and outflow discharge. Říha et al. [5] investigated the dam break process for a cascade of small dams using a simple parametric model for piping and overtopping erosion, as well as a 2D shallow-water flow model for the flood in downstream areas. Goodarzi et al. [6] implemented mathematical and statistical methods to assess the effect of inflows and wind speeds on the dam’s overtopping failure.

      Dam breaching studies can be divided into two main modes of erosion. The first mode is called “planar dam breach” where the flow overtops the whole dam width. While the second mode is called “spatial dam breach” where the flow overtops through the initial pilot channel (i.e., a channel created in the dam body). Therefore, the erosion will be in both vertical and horizontal directions [7].

      The erosion process through the embankment dams occurs due to the shear stress applied by water flows. The dam breaching evolution can be divided into three stages [8][9], but Y. Yang et al. [10] divided the breach development into five stages: Stage I, the seepage erosion; Stage II, the initial breach formation; Stage III, the head erosion; Stage IV, the breach expansion; and Stage V, the re-equilibrium of the river channel through the breach. Many experimental tests have been carried out on non-cohesive embankment dams with an initial breach to examine the effect of upstream inflow discharges on the longitudinal profile evolution and the time to inflection point [11].

      Zhang et al. [12] studied the effect of changing downstream slope angle, sediment grain size, and dam crest length on erosion rates. They noticed that increasing dam crest length and decreasing downstream slope angle lead to decreasing sediment transport rate. While the increase in sediment grain size leads to an increased sediment transport rate at the initial stages. Höeg et al. [13] presented a series of field tests to investigate the stability of embankment dams made of various materials. Overtopping and piping were among the failure tests carried out for the dams composed of homogeneous rock-fill, clay, or gravel with a height of up to 6.0 m. Hakimzadeh et al. [14] constructed 40 homogeneous cohesive and non-cohesive embankment dams to study the effect of changing sediment diameter and dam height on the breaching process. They also used genetic programming (GP) to estimate the breach outflow. Refaiy et al. [15] studied different scenarios for the downstream drain geometry, such as length, height, and angle, to minimize the effect of piping phenomena and therefore increase dam safety.

      Zhu et al. [16] examined the effect of headcut erosion on dam breach growth, especially in the case of cohesive dams. They found that the breach growth in non-cohesive embankments is slower than cohesive embankments due to the little effect of headcut. Schmocker and Hager [7] proposed a relationship for estimating peak outflow from the dam breach process.(1)QpQin-1=1.7exp-20hc23d5013H0

      where: Qp = peak outflow discharge.

      Qin = inflow discharge.

      hc = critical flow depth.

      d50 = mean sediment diameter.

      Ho = initial dam height.

      Yu et al. [17] carried out an experimental study for homogeneous non-cohesive embankment dams in a 180° bending rectangular flume to determine the effect of overtopping flows on breaching formation. They found that the main factors influencing breach formation are water level, river discharge, and embankment material diameter.

      Wu et al. [18] carried out a series of experiments to investigate the effect of breaching geometry on both non-cohesive and cohesive embankment dams in a U-bend flume due to overtopping flows. In the case of non-cohesive embankments, the non-symmetrical lateral expansion was noticed during the breach formation. This expansion was described by a coefficient ranging from 2.7 to 3.3.

      The numerical models of the dam breach can be categorized according to different parameters, such as flow dimensions (1D, 2D, or 3D), flow governing equations, and solution methods. The 1D models are mainly used to predict the outflow hydrograph from the dam breach. Saberi et al. [19] applied the 1D Saint-Venant equation, which is solved by the finite difference method to investigate the outflow hydrograph during dam overtopping failure. Because of the ability to study dam profile evolution and breach formation, 2D models are more applicable than 1D models. Guan et al. [20] and Wu et al. [21] employed both 2D shallow water equations (SWEs) and sediment erosion equations, which are solved by the finite volume method to study the effect of the dam’s geometry parameters on outflow hydrograph and dam profile evolution. Wang et al. [22] also proposed a second-order hybrid-type of total variation diminishing (TVD) finite-difference to estimate the breach outflow by solving the 2D (SWEs). The accuracy of (SWEs) for both vertical flow contraction and surface roughness has been assessed [23]. They noted that the accuracy of (SWEs) is acceptable for milder slopes, but in the case of steeper slopes, modelers should be more careful. Generally, the accuracy of 2D models is still low, especially with velocity distribution over the flow depth, lateral momentum exchange, density-driven flows, and bottom friction [24]. Therefore, 3D models are preferred. Larocque et al. [25] and Yang et al. [26] started to use three-dimensional (3D) models that depend on the Reynolds-averaged Navier-Stokes (RANS) equations.

      Previous experimental studies concluded that there is no clear relationship between the peak outflow from the dam breach and the initial breach characteristics. Some of these studies depend on the sharp-crested weir fixed at the end of the flume to determine the peak outflow from the breach, which leads to a decrease in the accuracy of outflow calculations at the microscale. The main goals of this study are to carry out a numerical simulation for a spatial dam breach due to overtopping flows by using (FLOW-3D) software to find an empirical equation for the peak outflow discharge from the breach and determine the worst-case that leads to accelerating the dam breaching process.

      2. Numerical simulation

      The current study for spatial dam breach is simulated by using (FLOW-3D) software [27], which is a powerful computational fluid dynamics (CFD) program.

      2.1. Geometric presentations

      A stereolithographic (STL) file is prepared for each change in the initial breach geometry and dimensions. The CAD program is useful for creating solid objects and converting them to STL format, as shown in Fig. 1.

      2.2. Governing equations

      The governing equations for water flow are three-dimensional Reynolds Averaged Navier-Stokes equations (RANS).

      The continuity equation:(2)∂ui∂xi=0

      The momentum equation:(3)∂ui∂t+1VFuj∂ui∂xj=1ρ∂∂xj-pδij+ν∂ui∂xj+∂uj∂xi-ρu`iu`j¯

      where u is time-averaged velocity,ν is kinematic viscosity, VF is fractional volume open to flow, p is averaged pressure and -u`iu`j¯ are components of Reynold’s stress. The Volume of Fluid (VOF) technique is used to simulate the free surface profile. Hirt et al. [28] presented the VOF algorithm, which employs the function (F) to express the occupancy of each grid cell with fluid. The value of (F) varies from zero to unity. Zero value refers to no fluid in the grid cell, while the unity value refers to the grid cell being fully occupied with fluid. The free surface is formed in the grid cells having (F) values between zero and unity.(4)∂F∂t+1VF∂∂xFAxu+∂∂yFAyv+∂∂zFAzw=0

      where (u, v, w) are the velocity components in (x, y, z) coordinates, respectively, and (AxAyAz) are the area fractions.

      2.3. Boundary and initial conditions

      To improve the accuracy of the results, the boundary conditions should be carefully determined. In this study, two mesh blocks are used to minimize the time consumed in the simulation. The boundary conditions for mesh block 1 are as follows: The inlet and sides boundaries are defined as a wall boundary condition (wall boundary condition is usually used for bound fluid by solid regions. In the case of viscous flows, no-slip means that the tangential velocity is equal to the wall velocity and the normal velocity is zero), the outlet is defined as a symmetry boundary condition (symmetry boundary condition is usually used to reduce computational effort during CFD simulation. This condition allows the flow to be transferred from one mesh block to another. No inputs are required for this boundary condition except that its location should be defined accurately), the bottom boundary is defined as a uniform flow rate boundary condition, and the top boundary is defined as a specific pressure boundary condition with assigned atmospheric pressure. The boundary conditions for mesh block 2 are as follows: The inlet is defined as a symmetry boundary condition, the outlet is defined as a free flow boundary condition, the bottom and sides boundaries are defined as a wall boundary condition, and the top boundary is defined as a specific pressure boundary condition with assigned atmospheric pressure as shown in Fig. 2. The initial conditions required to be set for the fluid (i.e., water) inside of the domain include configuration, temperature, velocities, and pressure distribution. The configuration of water depends on the dimensions and shape of the dam reservoir. While the other conditions have been assigned as follows: temperature is normal water temperature (25 °c) and pressure distribution is hydrostatic with no initial velocity.

      2.4. Numerical method

      FLOW-3D uses the finite volume method (FVM) to solve the governing equation (Reynolds-averaged Navier-Stokes) over the computational domain. A finite-volume method is an Eulerian approach for representing and evaluating partial differential equations in algebraic equations form [29]. At discrete points on the mesh geometry, values are determined. Finite volume expresses a small volume surrounding each node point on a mesh. In this method, the divergence theorem is used to convert volume integrals with a divergence term to surface integrals. After that, these terms are evaluated as fluxes at each finite volume’s surfaces.

      2.5. Turbulent models

      Turbulence is the chaotic, unstable motion of fluids that occurs when there are insufficient stabilizing viscous forces. In FLOW-3D, there are six turbulence models available: the Prandtl mixing length model, the one-equation turbulent energy model, the two-equation (k – ε) model, the Renormalization-Group (RNG) model, the two-equation (k – ω) models, and a large eddy simulation (LES) model. For simulating flow motion, the RNG model is adopted to simulate the motion behavior better than the k – ε and k – ω.

      models [30]. The RNG model consists of two main equations for the turbulent kinetic energy KT and its dissipation.εT(5)∂kT∂t+1VFuAx∂kT∂x+vAy∂kT∂y+wAz∂kT∂z=PT+GT+DiffKT-εT(6)∂εT∂t+1VFuAx∂εT∂x+vAy∂εT∂y+wAz∂εT∂z=C1.εTKTPT+c3.GT+Diffε-c2εT2kT

      where KT is the turbulent kinetic energy, PT is the turbulent kinetic energy production, GT is the buoyancy turbulence energy, εT is the turbulent energy dissipation rate, DiffKT and Diffε are terms of diffusion, c1, c2 and c3 are dimensionless parameters, in which c1 and c3 have a constant value of 1.42 and 0.2, respectively, c2 is computed from the turbulent kinetic energy (KT) and turbulent production (PT) terms.

      2.6. Sediment scour model

      The sediment scour model available in FLOW-3D can calculate all the sediment transport processes including Entrainment transport, Bedload transport, Suspended transport, and Deposition. The erosion process starts once the water flows remove the grains from the packed bed and carry them into suspension. It happens when the applied shear stress by water flows exceeds critical shear stress. This process is represented by entrainment transport in the numerical model. After entrained, the grains carried by water flow are represented by suspended load transport. After that, some suspended grains resort to settling because of the combined effect of gravity, buoyancy, and friction. This process is described through a deposition. Finally, the grains sliding motions are represented by bedload transport in the model. For the entrainment process, the shear stress applied by the fluid motion on the packed bed surface is calculated using the standard wall function as shown in Eq.7.(7)ks,i=Cs,i∗d50

      where ks,i is the Nikuradse roughness and Cs,i is a user-defined coefficient. The critical bed shear stress is defined by a dimensionless parameter called the critical shields number as expressed in Eq.8.(8)θcr,i=τcr,i‖g‖diρi-ρf

      where θcr,i is the critical shields number, τcr,i is the critical bed shear stress, g is the absolute value of gravity acceleration, di is the diameter of the sediment grain, ρi is the density of the sediment species (i) and ρf is the density of the fluid. The value of the critical shields number is determined according to the Soulsby-Whitehouse equation.(9)θcr,i=0.31+1.2d∗,i+0.0551-exp-0.02d∗,i

      where d∗,i is the dimensionless diameter of the sediment, given by Eq.10.(10)d∗,i=diρfρi-ρf‖g‖μf213

      where μf is the fluid dynamic viscosity. For the sloping bed interface, the value of the critical shields number is modified according to Eq.11.(11)θ`cr,i=θcr,icosψsinβ+cos2βtan2φi-sin2ψsin2βtanφi

      where θ`cr,i is the modified critical shields number, φi is the angle of repose for the sediment, β is the angle of bed slope and ψ is the angle between the flow and the upslope direction. The effects of the rolling, hopping, and sliding motions of grains along the packed bed surface are taken by the bedload transport process. The volumetric bedload transport rate (qb,i) per width of the bed is expressed in Eq.12.(12)qb,i=Φi‖g‖ρi-ρfρfdi312

      where Φi is the dimensionless bedload transport rate is calculated by using Meyer Peter and Müller equation.(13)Φi=βMPM,iθi-θ`cr,i1.5cb,i

      where βMPM,i is the Meyer Peter and Müller user-defined coefficient and cb,i is the volume fraction of species i in the bed material. The suspended load transport is calculated as shown in Eq.14.(14)∂Cs,i∂t+∇∙Cs,ius,i=∇∙∇DCs,i

      where Cs,i is the suspended sediment mass concentration, D is the diffusivity, and us,i is the grain velocity of species i. Entrainment and deposition are two opposing processes that take place at the same time. The lifting and settling velocities for both entrainment and deposition processes are calculated according to Eq.15 and Eq.16, respectively.(15)ulifting,i=αid∗,i0.3θi-θ`cr,igdiρiρf-1(16)usettling,i=υfdi10.362+1.049d∗,i3-10.36

      where αi is the entrainment coefficient of species i and υf is the kinematic viscosity of the fluid.

      2.7. Grid type

      Using simple rectangular orthogonal elements in planes and hexahedral in volumes in the (FLOW-3D) program makes the mesh generation process easier, decreases the required memory, and improves numerical accuracy. Two mesh blocks were used in a joined form with a size ratio of 2:1. The first mesh block is coarser, which contains the reservoir water, and the second mesh block is finer, which contains the dam. For achieving accuracy and efficiency in results, the mesh size is determined by using a grid convergence test. The optimum uniform cell size for the first mesh block is 0.012 m and for the second mesh block is 0.006 m.

      2.8. Time step

      The maximum time step size is determined by using a Courant number, which controls the distance that the flow will travel during the simulation time step. In this study, the Courant number was taken equal to 0.25 to prevent the flow from traveling through more than one cell in the time step. Based on the Courant number, a maximum time step value of 0.00075 s was determined.

      2.9. Numerical model validation

      The numerical model accuracy was achieved by comparing the numerical model results with previous experimental results. The experimental study of Schmocker and Hager [7] was based on 31 tests with changes in six parameters (d50, Ho, Bo, Lk, XD, and Qin). All experimental tests were conducted in a straight open glass-sided flume. The horizontal flume has a rectangular cross-section with a width of 0.4 m and a height of 0.7 m. The flume was provided with a flow straightener and an intake with a length of 0.66 m. All tested dams were inserted at various distances (XD) from the intake. Test No.1 from this experimental program was chosen to validate the numerical model. The different parameters used in test No.1 are as follows:

      (1) uniform sediment with a mean diameter (d50 = 0.31 mm), (2) Ho = 0.2 m, (3) Bo = 0.2 m, (4) Lk = 0.1 m,

      (5) XD = 1.0 m, (6) Qin = 6.0 lit/s, (7) Su and Sd = 2:1, (8) mass density (ρs = 2650 kg/m3(9) Homogenous and non-cohesive embankment dam. As shown in Fig. 2, the simulation is contained within a rectangular grid with dimensions: 3.56 m in the x-direction (where 0.66 m is used as inlet, 0.9 m as dam base width, and 1.0 m as outlet), in y-direction 0.2 m (dam length), and in the z-direction 0.3 m, which represents the dam height (0.2 m) with a free distance (0.1 m) above the dam. There are two main reasons that this experimental program is preferred for the validation process. The first reason is that this program deals with homogenous, non-cohesive soil, which is available in FLOW-3D. The second reason is that this program deals with small-scale models which saves time for numerical simulation. Finally, some important assumptions were considered during the validation process. The flow is assumed to be incompressible, viscous, turbulent, and three-dimensional.

      By comparing dam profiles at different time instants for the experimental test with the current numerical model, it appears that the numerical model gives good agreement as shown in Fig. 3 and Fig. 4, with an average error percentage of 9% between the experimental results and the numerical model.

      3. Analysis and discussions

      The current model is used to study the effects of different parameters such as (initial breach shapes, dimensions, locations, upstream and downstream dam slopes) on the peak outflow discharge, QP, time of peak outflow, tP, and rate of erosion, E.

      This study consists of a group of scenarios. The first scenario is changing the shapes of the initial breach according to Singh [1], the most predicted shapes are rectangular and V-notch as shown in Fig. 5. The second scenario is changing the initial breach dimensions (i.e., width and depth). While the third scenario is changing the location of the initial breach. Eventually, the last scenario is changing the upstream and downstream dam slopes.

      All scenarios of this study were carried out under the same conditions such as inflow discharge value (Qin=1.0lit/s), dimensions of the tested dam, where dam height (Ho=0.20m), crest width.

      (Lk=0.1m), dam length (Bo=0.20m), and homogenous & non-cohesive soil with a mean diameter (d50=0.31mm).

      3.1. Dam breaching process evolution

      The dam breaching process is a very complex process due to the quick changes in hydrodynamic conditions during dam failure. The dam breaching process starts once water flows reach the downstream face of the dam. During the initial stage of dam breaching, the erosion process is relatively quiet due to low velocities of flow. As water flows continuously, erosion rates increase, especially in two main zones: the crest and the downstream face. As soon as the dam crest is totally eroded, the water levels in the dam reservoir decrease rapidly, accompanied by excessive erosion in the dam body. The erosion process continues until the water levels in the dam reservoir equal the remaining height of the dam.

      According to Zhou et al. [11], the breaching process consists of three main stages. The first stage starts with beginning overtopping flow, then ends when the erosion point directed upstream and reached the inflection point at the inflection time (ti). The second stage starts from the end of the stage1 until the occurrence of peak outflow discharge at the peak outflow time (tP). The third stage starts from the end of the stage2 until the value of outflow discharge becomes the same as the value of inflow discharge at the final time (tf). The outflow discharge from the dam breach increases rapidly during stage1 and stage2 because of the large dam storage capacity (i.e., the dam reservoir is totally full of water) and excessive erosion. While at stage3, the outflow values start to decrease slowly because most of the dam’s storage capacity was run out. The end of stage3 indicates that the dam storage capacity was totally run out, so the outflow equalized with the inflow discharge as shown in Fig. 6 and Fig. 7.

      3.2. The effect of initial breach shape

      To identify the effect of the initial breach shape on the evolution of the dam breaching process. Three tests were carried out with different cross-section areas for each shape. The initial breach is created at the center of the dam crest. Each test had an ID to make the process of arranging data easier. The rectangular shape had an ID (Rec5h & 5b), which means that its depth and width are equal to 5% of the dam height, and the V-notch shape had an ID (V-noch5h & 1:1) which means that its depth is equal to 5% of the dam height and its side slope is equal to 1:1. The comparison between rectangular and V-notch shapes is done by calculating the ratio between maximum dam height at different times (ZMax) to the initial dam height (Ho), rate of erosion, and hydrograph of outflow discharge for each test. The rectangular shape achieves maximum erosion rate and minimum inflection time, in addition to a rapid decrease in the dam reservoir levels. Therefore, the dam breaching is faster in the case of a rectangular shape than in a V-notch shape, which has the same cross-section area as shown in Fig. 8.

      Also, by comparing the hydrograph for each test, the peak outflow discharge value in the case of a rectangular shape is higher than the V-notch shape by 5% and the time of peak outflow for the rectangular shape is shorter than the V-notch shape by 9% as shown in Fig. 9.

      3.3. The effect of initial breach dimensions

      The results of the comparison between the different initial breach shapes indicate that the worst initial breach shape is rectangular, so the second scenario from this study concentrated on studying the effect of a change in the initial rectangular breach dimensions. Groups of tests were carried out with different depths and widths for the rectangular initial breach. The first group had a depth of 5% from the dam height and with three different widths of 5,10, and 15% from the dam height, the second group had a depth of 10% with three different widths of 5,10, and 15%, the third group had a depth of 15% with three different widths of 5,10, and 15% and the final group had a width of 15% with three different heights of 5, 10, and 15% for a rectangular breach shape. The comparison was made as in the previous section to determine the worst case that leads to the quick dam failure as shown in Fig. 10.

      The results show that the (Rec 5 h&15b) test achieves a maximum erosion rate for a shorter period of time and a minimum ratio for (Zmax / Ho) as shown in Fig. 10, which leads to accelerating the dam failure process. The dam breaching process is faster with the minimum initial breach depth and maximum initial breach width. In the case of a minimum initial breach depth, the retained head of water in the dam reservoir is high and the crest width at the bottom of the initial breach (L`K) is small, so the erosion point reaches the inflection point rapidly. While in the case of the maximum initial breach width, the erosion perimeter is large.

      3.4. The effect of initial breach location

      The results of the comparison between the different initial rectangular breach dimensions indicate that the worst initial breach dimension is (Rec 5 h&15b), so the third scenario from this study concentrated on studying the effect of a change in the initial breach location. Three locations were checked to determine the worst case for the dam failure process. The first location is at the center of the dam crest, which was named “Center”, the second location is at mid-distance between the dam center and dam edge, which was named “Mid”, and the third location is at the dam edge, which was named “Edge” as shown in Fig. 11. According to this scenario, the results indicate that the time of peak outflow discharge (tP) is the same in the three cases, but the maximum value of the peak outflow discharge occurs at the center location. The difference in the peak outflow values between the three cases is relatively small as shown in Fig. 12.

      The rates of erosion were also studied for the three cases. The results show that the maximum erosion rate occurs at the center location as shown in Fig. 13. By making a comparison between the three cases for the dam storage volume. The results show that the center location had the minimum values for the dam storage volume, which means that a large amount of water has passed to the downstream area as shown in Fig. 14. According to these results, the center location leads to increased erosion rate and accelerated dam failure process compared with the two other cases. Because the erosion occurs on both sides, but in the case of edge location, the erosion occurs on one side.

      3.5. The effect of upstream and downstream dam slopes

      The results of the comparison between the different initial rectangular breach locations indicate that the worst initial breach location is the center location, so the fourth scenario from this study concentrated on studying the effect of a change in the upstream (Su) and downstream (Sd) dam slopes. Three slopes were checked individually for both upstream and downstream slopes to determine the worst case for the dam failure process. The first slope value is (2H:1V), the second slope value is (2.5H:1V), and the third slope value is (3H:1V). According to this scenario, the results show that the decreasing downstream slope angle leads to increasing time of peak outflow discharge (tP) and decreasing value of peak outflow discharge. The difference in the peak outflow values between the three cases for the downstream slope is 2%, as shown in Fig. 15, but changing the upstream slope has a negligible impact on the peak outflow discharge and its time as shown in Fig. 16.

      The rates of erosion were also studied in the three cases for both upstream and downstream slopes. The results show that the maximum erosion rate increases by 6.0% with an increasing downstream slope angle by 4°, as shown in Fig. 17. The results also indicate that the erosion rates aren’t affected by increasing or decreasing the upstream slope angle, as shown in Fig. 18. According to these results, increasing the downstream slope angle leads to increased erosion rate and accelerated dam failure process compared with the upstream slope angle. Because of increasing shear stress applied by water flows in case of increasing downstream slope.

      According to all previous scenarios, the dimensionless peak outflow discharge QPQin is presented for a fixed dam height (Ho) and inflow discharge (Qin). Fig. 19 illustrates the relationship between QP∗=QPQin and.

      Lr=ho2/3∗bo2/3Ho. The deduced relationship achieves R2=0.96.(17)QP∗=2.2807exp-2.804∗Lr

      4. Conclusions

      A spatial dam breaching process was simulated by using FLOW-3D Software. The validation process was performed by making a comparison between the simulated results of dam profiles and the dam profiles obtained by Schmocker and Hager [7] in their experimental study. And also, the peak outflow value recorded an error percentage of 12% between the numerical model and the experimental study. This model was used to study the effect of initial breach shape, dimensions, location, and dam slopes on peak outflow discharge, time of peak outflow, and the erosion process. By using the parameters obtained from the validation process, the results of this study can be summarized in eight points as follows.1.

      The rectangular initial breach shape leads to an accelerating dam failure process compared with the V-notch.2.

      The value of peak outflow discharge in the case of a rectangular initial breach is higher than the V-notch shape by 5%.3.

      The time of peak outflow discharge for a rectangular initial breach is shorter than the V-notch shape by 9%.4.

      The minimum depth and maximum width for the initial breach achieve maximum erosion rates (increasing breach width, b0, or decreasing breach depth, h0, by 5% from the dam height leads to an increase in the maximum rate of erosion by 11% and 15%, respectively), so the dam failure is rapid.5.

      The center location of the initial breach leads to an accelerating dam failure compared with the edge location.6.

      The initial breach location has a negligible effect on the peak outflow discharge value and its time.7.

      Increasing the downstream slope angle by 4° leads to an increase in both peak outflow discharge and maximum rate of erosion by 2.0% and 6.0%, respectively.8.

      The upstream slope has a negligible effect on the dam breaching process.

      References

      [1]V. SinghDam breach modeling technologySpringer Science & Business Media (1996)Google Scholar[2]Wahl TL. Prediction of embankment dam breach parameters: a literature review and needs assessment. 1998.Google Scholar[3]Z. Alhasan, J. Jandora, J. ŘíhaStudy of dam-break due to overtopping of four small dams in the Czech RepublicActa Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63 (3) (2015), pp. 717-729 View PDFCrossRefView Record in ScopusGoogle Scholar[4]D. FreadBREACH, an erosion model for earthen dam failures: Hydrologic Research LaboratoryNOAA, National Weather Service (1988)Google Scholar[5]J. Říha, S. Kotaška, L. PetrulaDam Break Modeling in a Cascade of Small Earthen Dams: Case Study of the Čižina River in the Czech RepublicWater, 12 (8) (2020), p. 2309, 10.3390/w12082309 View PDFView Record in ScopusGoogle Scholar[6]E. Goodarzi, L. Teang Shui, M. ZiaeiDam overtopping risk using probabilistic concepts–Case study: The Meijaran DamIran Ain Shams Eng J, 4 (2) (2013), pp. 185-197ArticleDownload PDFView Record in ScopusGoogle Scholar[7]L. Schmocker, W.H. HagerPlane dike-breach due to overtopping: effects of sediment, dike height and dischargeJ Hydraul Res, 50 (6) (2012), pp. 576-586 View PDFCrossRefView Record in ScopusGoogle Scholar[8]J.S. Walder, R.M. Iverson, J.W. Godt, M. Logan, S.A. SolovitzControls on the breach geometry and flood hydrograph during overtopping of noncohesive earthen damsWater Resour Res, 51 (8) (2015), pp. 6701-6724View Record in ScopusGoogle Scholar[9]H. Wei, M. Yu, D. Wang, Y. LiOvertopping breaching of river levees constructed with cohesive sedimentsNat Hazards Earth Syst Sci, 16 (7) (2016), pp. 1541-1551 View PDFCrossRefView Record in ScopusGoogle Scholar[10]Y. Yang, S.-Y. Cao, K.-J. Yang, W.-P. LiYang K-j, Li W-p. Experimental study of breach process of landslide dams by overtopping and its initiation mechanismsJ Hydrodynamics, 27 (6) (2015), pp. 872-883ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[11]G.G.D. Zhou, M. Zhou, M.S. Shrestha, D. Song, C.E. Choi, K.F.E. Cui, et al.Experimental investigation on the longitudinal evolution of landslide dam breaching and outburst floodsGeomorphology, 334 (2019), pp. 29-43ArticleDownload PDFView Record in ScopusGoogle Scholar[12]J. Zhang, Z.-x. Guo, S.-y. CaoYang F-g. Experimental study on scour and erosion of blocked damWater Sci Eng, 5 (2012), pp. 219-229ArticleDownload PDFView Record in ScopusGoogle Scholar[13]K. Höeg, A. Løvoll, K. VaskinnStability and breaching of embankment dams: Field tests on 6 m high damsInt J Hydropower Dams, 11 (2004), pp. 88-92View Record in ScopusGoogle Scholar[14]H. Hakimzadeh, V. Nourani, A.B. AminiGenetic programming simulation of dam breach hydrograph and peak outflow dischargeJ Hydrol Eng, 19 (4) (2014), pp. 757-768View Record in ScopusGoogle Scholar[15]A.R. Refaiy, N.M. AboulAtta, N.Y. Saad, D.A. El-MollaModeling the effect of downstream drain geometry on seepage through earth damsAin Shams Eng J, 12 (3) (2021), pp. 2511-2531ArticleDownload PDFView Record in ScopusGoogle Scholar[16]Y. Zhu, P.J. Visser, J.K. Vrijling, G. WangExperimental investigation on breaching of embankmentsScience China Technological Sci, 54 (1) (2011), pp. 148-155 View PDFCrossRefView Record in ScopusGoogle Scholar[17]M.-H. Yu, H.-Y. Wei, Y.-J. Liang, Y. ZhaoInvestigation of non-cohesive levee breach by overtopping flowJ Hydrodyn, 25 (4) (2013), pp. 572-579ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[18]S. Wu, M. Yu, H. Wei, Y. Liang, J. ZengNon-symmetrical levee breaching processes in a channel bend due to overtoppingInt J Sedim Res, 33 (2) (2018), pp. 208-215ArticleDownload PDFView Record in ScopusGoogle Scholar[19]O. Saberi, G. ZenzNumerical investigation on 1D and 2D embankment dams failure due to overtopping flowInt J Hydraulic Engineering, 5 (2016), pp. 9-18View Record in ScopusGoogle Scholar[20]M. Guan, N.G. Wright, P.A. Sleigh2D Process-Based Morphodynamic Model for Flooding by Noncohesive Dyke BreachJ Hydraul Eng, 140 (7) (2014), p. 04014022, 10.1061/(ASCE)HY.1943-7900.0000861 View PDFView Record in ScopusGoogle Scholar[21]W. Wu, R. Marsooli, Z. HeDepth-Averaged Two-Dimensional Model of Unsteady Flow and Sediment Transport due to Noncohesive Embankment Break/BreachingJ Hydraul Eng, 138 (6) (2012), pp. 503-516View Record in ScopusGoogle Scholar[22]Z. Wang, D.S. BowlesThree-dimensional non-cohesive earthen dam breach model. Part 1: Theory and methodologyAdv Water Resour, 29 (10) (2006), pp. 1528-1545ArticleDownload PDFView Record in ScopusGoogle Scholar[23]Říha J, Duchan D, Zachoval Z, Erpicum S, Archambeau P, Pirotton M, et al. Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs. J Hydrology Hydromechanics. 2019;67:322-8.Google Scholar[24]C.B. VreugdenhilNumerical methods for shallow-water flowSpringer Science & Business Media (1994)Google Scholar[25]L.A. Larocque, J. Imran, M.H. Chaudhry3D numerical simulation of partial breach dam-break flow using the LES and k–∊ turbulence modelsJ Hydraul Res, 51 (2) (2013), pp. 145-157 View PDFCrossRefView Record in ScopusGoogle Scholar[26]C. Yang, B. Lin, C. Jiang, Y. LiuPredicting near-field dam-break flow and impact force using a 3D modelJ Hydraul Res, 48 (6) (2010), pp. 784-792 View PDFCrossRefView Record in ScopusGoogle Scholar[27]FLOW-3D. Version 11.1.1 Flow Science, Inc., Santa Fe, NM. https://wwwflow3dcom.Google Scholar[28]C.W. Hirt, B.D. NicholsVolume of fluid (VOF) method for the dynamics of free boundariesJ Comput Phys, 39 (1) (1981), pp. 201-225ArticleDownload PDFGoogle Scholar[29]S.V. PatankarNumerical heat transfer and fluid flow, Hemisphere PublCorp, New York, 58 (1980), p. 288View Record in ScopusGoogle Scholar[30]M. Alemi, R. MaiaNumerical simulation of the flow and local scour process around single and complex bridge piersInt J Civil Eng, 16 (5) (2018), pp. 475-487 View PDFCrossRefView Record in ScopusGoogle Scholar

      Effect of roughness on separation zone dimensions.

      Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes

      조도 계수 및 역전 수준 변화가 개선된 90도 측면 분출구에서의 유동에 대한 실험적 및 수치적 연구

      Maryam BagheriSeyed M. Ali ZomorodianMasih ZolghadrH. Md. AzamathullaC. Venkata Siva Rama Prasad

      Abstract

      측면 분기기(흡입구)의 상류 측에서 흐름 분리는 분기기 입구에서 와류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 출력 용량 및 효율성을 감소시킵니다. 따라서 분리지대의 크기를 파악하고 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다. 본 연구에서는 분리 구역의 치수를 줄이기 위한 방법으로 7가지 유형의 거칠기 요소를 분기구 입구에 설치하고 4가지 다른 배출(총 84번의 실험을 수행)과 함께 3개의 서로 다른 베드 반전 레벨을 조사했습니다. 또한 3D CFD(Computational Fluid Dynamics) 모델을 사용하여 분리 영역의 흐름 패턴과 치수를 평가했습니다. 결과는 거칠기 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면, 드롭 구현 효과는 사용된 거칠기 계수를 기반으로 이 영역을 다르게 축소할 수 있음을 보여주었습니다. 두 가지 방법을 결합하면 분리 영역 치수를 최대 63%까지 줄일 수 있습니다.

      Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance. It reduces the effective width of flow, turnout capacity and efficiency. Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions. Installation of 7 types of roughening elements at the turnout entrance and 3 different bed invert levels, with 4 different discharges (making a total of 84 experiments) were examined in this study as a method to reduce the dimensions of the separation zone. Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone. Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.

      HIGHLIGHTS

      Listen

      • Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance.
      • Installation of 7 types of roughening elements at the turnout entrance and 3 different bed level inverts were investigated.
      • Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow.
      • Combining both methods can reduce the separation zone dimensions by up to 63%.
      Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes
      Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes

      Keywords

      discharge ratioflow separation zoneintakethree dimensional simulation

      INTRODUCTION

      Listen

      Turnouts or intakes are amongst the oldest and most widely used hydraulic structures in irrigation networks. Turnouts are also used in water distribution, transmission networks, power generation facilities, and waste water treatment plants etc. The flows that enter a turnout have a strong momentum in the direction of the main waterway and that is why flow separation occurs inside the turnout. The horizontal vortex formed in the separation area is a suitable place for accumulation and deposition of sediments. The separation zone is a vulnerable area for sedimentation and for reduction of effective flow due to a contracted flow region in the lateral channel. Sedimentaion in the entrance of the intake can gradually be transfered into the lateral channel and decrease the capacity of the higher order channels over time (Jalili et al. 2011). On the other hand, the existence of coarse-grained materials causes erosion and destruction of the waterway side walls and bottom. In addition, sedimentation creates conditions for vegetation to take root and damage the waterway cover, which causes water to leak from its perimeter. Therefore, it is important to investigate the pattern of the flow separation area in turnouts and provide solutions to reduce the dimensions of this area.

      The three-dimensional flow structure at turnouts is quite complex. In an experimental study by Neary & Odgaard (1993) in a 90-degree water turnout it was found that the secondary currents and separation zone varies from the bed to the water surface. They also found that at a 90-degree water turnout, the bed roughness and discharge ratio play a critical role in flow structure. They asserted that an explanation of sediment behavior at a diversion entrance requires a comprehensive understanding of 3D flow patterns around the lateral-channel entrance. In addition, they suggested that there is a strong similarity between flow in a channel bend and a diversion channel, and that this similarity can rationalize the use of bend flow models for estimation of 3D flow structures in diversion channels.

      Some of the distinctive characteristics of dividing flow in a turnout include a zone of separation immediately near the entrance of the lateral turnout (separation zone), a contracted flow region in the branch channel (contracted flow), and a stagnation point near the downstream corner of the junction (stagnation zone). In the region downstream of the junction, along the continuous far wall, separation due to flow expansion may occur (Ramamurthy et al. 2007), that is, a separation zone. This can both reduce the turnout efficiency and the effective width of flow while increasing the sediment deposition in the turnout entrance (Jalili et al. 2011). Installation of submerged vanes in the turnout entrance is a method which is already applied to reduce the size of flow separation zones. The separation zone draws sediments and floating materials into themselves. This reduces effective cross-section area and reduces transmission capacity. These results have also been obtained in past studies, including by Ramamurthy et al. (2007) and in Jalili et al. (201