Deniz Velioglu Sogut ,Erdinc Sogut ,Ali Farhadzadeh,Tian-Jian Hsu

Abstract

The present study evaluates the performance of two numerical approaches in estimating non-equilibrium scour patterns around a non-slender square structure subjected to a transient wave, by comparing numerical findings with experimental data. This study also investigates the impact of the structure’s positioning on bed evolution, analyzing configurations where the structure is either attached to the sidewall or positioned at the centerline of the wave flume. The first numerical method treats sediment particles as a distinct continuum phase, directly solving the continuity and momentum equations for both sediment and fluid phases. The second method estimates sediment transport using the quadratic law of bottom shear stress, yielding robust predictions of bed evolution through meticulous calibration and validation. The findings reveal that both methods underestimate vortex-induced near-bed vertical velocities. Deposits formed along vortex trajectories are overestimated by the first method, while the second method satisfactorily predicts the bed evolution beneath these paths. Scour holes caused by wave impingement tend to backfill as the flow intensity diminishes. The second method cannot sufficiently capture this backfilling, whereas the first method adequately reflects the phenomenon. Overall, this study highlights significant variations in the predictive capabilities of both methods in regard to the evolution of non-equilibrium scour at low Keulegan–Carpenter numbers.

Keywords

Keulegan-Carpenter number, Solitary wave, non slender, wave-structure interaction, FLOW-3D, WedWaveFoam

Mohammad Nazari-Sharabian, Aliasghar Nazari-Sharabian, Moses Karakouzian, Mehrdad Karami

Abstract

Scour is defined as the erosive action of flowing water, as well as the excavating and carrying away materials from beds and banks of streams, and from the vicinity of bridge foundations, which is one of the main causes of river bridge failures. In the present study, implementing a numerical approach, and using the FLOW-3D model that works based on the finite volume method (FVM), the applicability of using sacrificial piles in different configurations in front of a bridge pier as countermeasures against scouring is investigated. In this regard, the numerical model was calibrated based on an experimental study on scouring around an unprotected circular river bridge pier. In simulations, the bridge pier and sacrificial piles were circular, and the riverbed was sandy. In all scenarios, the flow rate was constant and equal to 45 L/s. Furthermore, one to five sacrificial piles were placed in front of the pier in different locations for each scenario. Implementation of the sacrificial piles proved to be effective in substantially reducing the scour depths. The results showed that although scouring occurred in the entire area around the pier, the maximum and minimum scour depths were observed on the sides (using three sacrificial piles located upstream, at three and five times the pier diameter) and in the back (using five sacrificial piles located upstream, at four, six, and eight times the pier diameter) of the pier. Moreover, among scenarios where single piles were installed in front of the pier, installing them at a distance of five times the pier diameter was more effective in reducing scour depths. For other scenarios, in which three piles and five piles were installed, distances of six and four times the pier diameter for the three piles scenario, and four, six, and eight times the pier diameter for the five piles scenario were most effective.

Keywords

Scouring; River Bridges; Sacrificial Piles; Finite Volume Method (FVM); FLOW-3D.

References

Karakouzian, Chavez, Hayes, and Nazari-Sharabian. “Bulbous Pier: An Alternative to Bridge Pier Extensions as a Countermeasure Against Bridge Deck Splashing.” Fluids 4, no. 3 (July 24, 2019): 140. doi:10.3390/fluids4030140.

Karami, Mehrdad, Abdorreza Kabiri-Samani, Mohammad Nazari-Sharabian, and Moses Karakouzian. “Investigating the Effects of Transient Flow in Concrete-Lined Pressure Tunnels, and Developing a New Analytical Formula for Pressure Wave Velocity.” Tunnelling and Underground Space Technology 91 (September 2019): 102992. doi:10.1016/j.tust.2019.102992.

Karakouzian, Moses, Mohammad Nazari-Sharabian, and Mehrdad Karami. “Effect of Overburden Height on Hydraulic Fracturing of Concrete-Lined Pressure Tunnels Excavated in Intact Rock: A Numerical Study.” Fluids 4, no. 2 (June 19, 2019): 112. doi:10.3390/fluids4020112.

Chiew, Yee-Meng. “Scour protection at bridge piers.” Journal of Hydraulic Engineering 118, no. 9 (1992): 1260-1269. doi:10.1061/(ASCE)0733-9429(1992)118:9(1260).

Shen, Hsieh Wen, Verne R. Schneider, and Susumu Karaki. “Local scour around bridge piers.” Journal of the Hydraulics Division (1969): 1919-1940.

Richardson, E.V., and Davis, S.R. “Evaluating Scour at Bridges”. Hydraulic Engineering Circular. (2001), 18 (HEC-18), Report no. FHWA NHI 01–001, U.S. Department of Transportation, Federal Highway Administration, Washington, DC, USA.

Elsaeed, Gamal, Hossam Elsersawy, and Mohammad Ibrahim. “Scour Evaluation for the Nile River Bends on Rosetta Branch.” Advances in Research 5, no. 2 (January 10, 2015): 1–15. doi:10.9734/air/2015/17380.

Chang, Wen-Yi, Jihn-Sung Lai, and Chin-Lien Yen. “Evolution of scour depth at circular bridge piers.” Journal of Hydraulic Engineering 130, no. 9 (2004): 905-913. doi:10.1061/(ASCE)0733-9429(2004)130:9(905).

Unger, Jens, and Willi H. Hager. “Riprap failure at circular bridge piers.” Journal of Hydraulic Engineering 132, no. 4 (2006): 354-362. doi:10.1061/(ASCE)0733-9429(2006)132:4(354).

Abdeldayem, Ahmed W., Gamal H. Elsaeed, and Ahmed A. Ghareeb. “The effect of pile group arrangements on local scour using numerical models.” Advances in Natural and Applied Sciences 5, no. 2 (2011): 141-146.

Sheppard, D. M., B. Melville, and H. Demir. “Evaluation of Existing Equations for Local Scour at Bridge Piers.” Journal of Hydraulic Engineering 140, no. 1 (January 2014): 14–23. doi:10.1061/(asce)hy.1943-7900.0000800.

Melville, Bruce W., and Anna C. Hadfield. “Use of sacrificial piles as pier scour countermeasures.” Journal of Hydraulic Engineering 125, no. 11 (1999): 1221-1224. doi:10.1061/(ASCE)0733-9429(1999)125:11(1221).

Yao, Weidong, Hongwei An, Scott Draper, Liang Cheng, and John M. Harris. “Experimental Investigation of Local Scour Around Submerged Piles in Steady Current.” Coastal Engineering 142 (December 2018): 27–41. doi:10.1016/j.coastaleng.2018.08.015.

Link, Oscar, Marcelo García, Alonso Pizarro, Hernán Alcayaga, and Sebastián Palma. “Local Scour and Sediment Deposition at Bridge Piers During Floods.” Journal of Hydraulic Engineering 146, no. 3 (March 2020): 04020003. doi:10.1061/(asce)hy.1943-7900.0001696.

Khan, Mujahid, Mohammad Tufail, Muhammad Fahad, Hazi Muhammad Azmathullah, Muhammad Sagheer Aslam, Fayaz Ahmad Khan, and Asif Khan. “Experimental analysis of bridge pier scour pattern.” Journal of Engineering and Applied Sciences 36, no. 1 (2017): 1-12.

Yang, Yifan, Bruce W. Melville, D. M. Sheppard, and Asaad Y. Shamseldin. “Clear-Water Local Scour at Skewed Complex Bridge Piers.” Journal of Hydraulic Engineering 144, no. 6 (June 2018): 04018019. doi:10.1061/(asce)hy.1943-7900.0001458.

Moussa, Yasser Abdallah Mohamed, Tarek Hemdan Nasr-Allah, and Amera Abd-Elhasseb. “Studying the Effect of Partial Blockage on Multi-Vents Bridge Pier Scour Experimentally and Numerically.” Ain Shams Engineering Journal 9, no. 4 (December 2018): 1439–1450. doi:10.1016/j.asej.2016.09.010.

Guan, Dawei, Yee-Meng Chiew, Maoxing Wei, and Shih-Chun Hsieh. “Characterization of Horseshoe Vortex in a Developing Scour Hole at a Cylindrical Bridge Pier.” International Journal of Sediment Research 34, no. 2 (April 2019): 118–124. doi:10.1016/j.ijsrc.2018.07.001.

Dougherty, E.M. “CFD Analysis of Bridge Pier Geometry on Local Scour Potential” (2019). LSU Master’s Theses. 5031.

Vijayasree, B. A., T. I. Eldho, B. S. Mazumder, and N. Ahmad. “Influence of Bridge Pier Shape on Flow Field and Scour Geometry.” International Journal of River Basin Management 17, no. 1 (November 10, 2017): 109–129. doi:10.1080/15715124.2017.1394315.

Farooq, Rashid, and Abdul Razzaq Ghumman. “Impact Assessment of Pier Shape and Modifications on Scouring Around Bridge Pier.” Water 11, no. 9 (August 23, 2019): 1761. doi:10.3390/w11091761.

Link, Oscar, Cristian Castillo, Alonso Pizarro, Alejandro Rojas, Bernd Ettmer, Cristián Escauriaza, and Salvatore Manfreda. “A Model of Bridge Pier Scour During Flood Waves.” Journal of Hydraulic Research 55, no. 3 (November 18, 2016): 310–323. doi:10.1080/00221686.2016.1252802.

Karakouzian, Moses, Mehrdad Karami, Mohammad Nazari-Sharabian, and Sajjad Ahmad. “Flow-Induced Stresses and Displacements in Jointed Concrete Pipes Installed by Pipe Jacking Method.” Fluids 4, no. 1 (February 21, 2019): 34. doi:10.3390/fluids4010034.

Flow Science, Inc. FLOW-3D User’s Manual, Flow Science (2018).

Brethour, J. Modeling Sediment Scour. Flow Science, Santa Fe, NM. (2003).

Brethour, James, and Jeff Burnham. “Modeling sediment erosion and deposition with the FLOW-3D sedimentation & scour model.” Flow Science Technical Note, FSI-10-TN85 (2010): 1-22.

Balouchi, M., and Chamani, M.R. “Investigating the Effect of using a Collar around a Bridge Pier, on the Shape of the Scour Hole”. Proceedings of the First International Conference on Dams and Hydropower (2012) (In Persian).

Bayon, Arnau, Daniel Valero, Rafael García-Bartual, Francisco José Vallés-Morán, and P. Amparo López-Jiménez. “Performance Assessment of OpenFOAM and FLOW-3D in the Numerical Modeling of a Low Reynolds Number Hydraulic Jump.” Environmental Modelling & Software 80 (June 2016): 322–335. doi:10.1016/j.envsoft.2016.02.018.

Aminoroayaie Yamini, O., S. Hooman Mousavi, M. R. Kavianpour, and Azin Movahedi. “Numerical Modeling of Sediment Scouring Phenomenon Around the Offshore Wind Turbine Pile in Marine Environment.” Environmental Earth Sciences 77, no. 23 (November 24, 2018). doi:10.1007/s12665-018-7967-4.

Nazari-Sharabian, Mohammad, Masoud Taheriyoun, Sajjad Ahmad, Moses Karakouzian, and Azadeh Ahmadi. “Water Quality Modeling of Mahabad Dam Watershed–Reservoir System under Climate Change Conditions, Using SWAT and System Dynamics.” Water 11, no. 2 (February 24, 2019): 394. doi:10.3390/w11020394.

Mary Kathryn Walker Florida Institute of Technology, mwalker2022@my.fit.edu

Robert J. Weaver, Ph.D. Associate Professor Ocean Engineering and Marine Sciences Major Advisor

Chungkuk Jin, Ph.D. Assistant Professor Ocean Engineering and Marine Sciences

Kelli Z. Hunsucker, Ph.D. Assistant Professor Ocean Engineering and Marine Sciences

Richard B. Aronson, Ph.D. Professor and Department Head Ocean Engineering and Marine Sciences

Abstract

모노파일은 해상 풍력 터빈 건설에 사용되며 일반적으로 설계 수명은 25~50년입니다. 모노파일은 수명 주기 동안 부식성 염수 환경에 노출되어 구조물을 빠르게 분해하는 전기화학적 산화 공정을 용이하게 합니다. 이 공정은 모노파일을 보호 장벽으로 코팅하고 음극 보호 기술을 구현하여 완화할 수 있습니다.

역사적으로 모노파일 설계자는 파일 내부가 완전히 밀봉되고 전기화학적 부식 공정이 결국 사용 가능한 모든 산소를 소모하여 반응을 중단시킬 것이라고 가정했습니다. 그러나 도관을 위해 파일 벽에 만든 관통부는 종종 누출되어 신선하고 산소화된 물이 내부 공간으로 유입되었습니다.

표준 부식 방지 기술을 보다 효과적으로 적용할 수 있는 산소화된 환경으로 내부 공간을 재고하는 새로운 모노파일 설계가 연구되고 있습니다. 이러한 새로운 모노파일은 간조대 또는 조간대 수준에서 벽에 천공이 있어 신선하고 산소화된 물이 구조물을 통해 흐를 수 있습니다.

이러한 천공은 또한 구조물의 파도 하중을 줄일 수 있습니다. 유체 역학적 하중 감소의 크기는 천공의 크기와 방향에 따라 달라집니다. 이 연구에서는 천공의 크기에 따른 모노파일의 힘 감소 분석에서 전산 유체 역학(CFD)의 적용 가능성을 연구하고 주어진 파도의 접근 각도 변화의 효과를 분석했습니다.

모노파일의 힘 감소를 결정하기 위해 이론적 3D 모델을 제작하여 FLOW-3D® HYDRO를 사용하여 테스트했으며, 천공되지 않은 모노파일을 제어로 사용했습니다. 이론적 데이터를 수집한 후, 동일한 종류의 천공이 있는 물리적 스케일 모델을 파도 탱크를 사용하여 테스트하여 이론적 모델의 타당성을 확인했습니다.

CFD 시뮬레이션은 물리적 모델의 10% 이내, 이전 연구의 5% 이내에 있는 것으로 나타났습니다. 물리적 모델과 시뮬레이션 모델을 검증한 후, 천공의 크기가 파도 하중 감소에 뚜렷한 영향을 미치고 주어진 파도의 접근 각도에 대한 테스트를 수행할 수 있음을 발견했습니다.

접근 각도의 변화는 모노파일을 15°씩 회전하여 시뮬레이션했습니다. 이 논문에 제시된 데이터는 모노파일의 방향이 통계적으로 유의하지 않으며 천공 모노파일의 설계 고려 사항이 되어서는 안 된다는 것을 시사합니다.

또한 파도 하중 감소와 구조적 안정성 사이의 균형을 찾기 위해 천공의 크기와 모양에 대한 연구를 계속하는 것이 좋습니다.

Monopiles are used in the construction of offshore wind turbines and typically have a design life of 25 to 50 years. Over their lifecycle, monopiles are exposed to a corrosive saltwater environment, facilitating a galvanic oxidation process that quickly degrades the structure. This process can be mitigated by coating the monopile in a protective barrier and implementing cathodic protection techniques. Historically, monopile designers assumed the interior of the pile would be completely sealed and the galvanic corrosion process would eventually consume all the available oxygen, halting the reaction. However, penetrations made in the pile wall for conduit often leaked and allowed fresh, oxygenated water to enter the interior space. New monopile designs are being researched that reconsider the interior space as an oxygenated environment where standard corrosion protection techniques can be more effectively applied. These new monopiles have perforations through the wall at intertidal or subtidal levels to allow fresh, oxygenated water to flow through the structure. These perforations can also reduce wave loads on the structure. The magnitude of the hydrodynamic load reduction depends on the size and orientation of the perforations. This research studied the applicability of computational fluid dynamics (CFD) in analysis of force reduction on monopiles in relation to size of a perforation and to analyze the effect of variation in approach angle of a given wave. To determine the force reduction on the monopile, theoretical 3D models were produced and tested using FLOW-3D® HYDRO with an unperforated monopile used as the control. After the theoretical data was collected, physical scale models with the same variety of perforations were tested using a wave tank to determine the validity of the theoretical models. The CFD simulations were found to be within 10% of the physical models and within 5% of previous research. After the physical and simulated models were validated, it was found that the size of the perforations has a distinct impact on the wave load reduction and testing for differing approach angles of a given wave could be conducted. The variation in approach angle was simulated by rotating the monopile in 15° increments. The data presented in this paper suggests that the orientation of the monopile is not statistically significant and should not be a design consideration for perforated monopiles. It is also suggested to continue the study on the size and shape of the perforations to find the balance between wave load reduction and structural stability.

References Andersen, J., Abrahamsen, R., Andersen, T., Andersen, M., Baun, T., & Neubauer, J. (2020). Wave Load Mitigation by Perforation of Monopiles. Journal of Marine Science and Engineering, 8(5), 352. https://doi.org/10.3390/jmse8050352 Bakker A. (2008) Lectures on Applied Computational Fluid Dynamics. www.bakker.org. Bustamante, A., Vera-Tudela, L., & Kühn, M. (2015). Evaluation of wind farm effects on fatigue loads of an individual wind turbine at the EnBW baltic 1 offshore wind farm. Journal of Physics: Conference Series, 625, 012020. https://doi.org/10.1088/1742-6596/625/1/012020 Chakrabarti SK. Hydrodynamics of offshore structures. Springer Verlag;1987. Christiansen, R. (2020). Living Docks: Structural Implications and Determination of Force Coefficients of Oyster Mats on Dock Pilings in the Indian River Lagoon [Master’s Thesis, Florida Institute of Technology]. Clauss, G. (1992). Offshore Structures, Volume 1, Conceptual Design and Hydromechanics. Springer, London, UK. COMSOL Multiphysics® v. 6.1. www.comsol.com. COMSOL AB, Stockholm, Sweden. Delwiche, A. & Tavares, I. (2017). Retrofit Strategy using Aluminum Anodes for the Internal section of Windturbine Monopiles. NACE Internation Corrosion Conference & Expo, Paper no. 8955. Det Norske Veritas (2014) Fatigue design of offshore steel structures. Norway. 70 Det Norske Veritas (1989). Rules for the Classification of Fixed Offshore Installations. Technical report, DNV, Hovik, Norway. DNV. (2011). DNV-RP-C203 Fatigue Design of Offshore Steel Structures (tech. rep.). http://www.dnv.com Elger, D. F., LeBret, B. A., Crowe, C. T., & Roberson, J. A. (2022). Engineering fluid mechanics. John Wiley & Sons, Inc. FLOW-3D® Version 12.0 Users Manual (2018). FLOW-3D [Computer software]. Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com Gaertner, Evan, Jennifer Rinker, Latha Sethuraman, Frederik Zahle, Benjamin Andersen, Garrett Barter, Nikhar Abbas, Fanzhong Meng, Pietro Bortolotti, Witold Skrzypinski, George Scott, Roland Feil, Henrik Bredmose, Katherine Dykes, Matt Shields, Christopher Allen, and Anthony Viselli. (2020). Definition of the IEA 15-Megawatt Offshore Reference Wind. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5000-

https://www.nrel.gov/docs/fy20osti/75698.pdf Goodisman, Jerry (2001). “Observations on Lemon Cells”. Journal of Chemical Education. 78 (4): 516–518. Bibcode:2001JChEd..78..516G. doi:10.1021/ed078p516. Goodisman notes that many chemistry textbooks use an incorrect model for a cell with zinc and copper electrodes in an acidic electrolyte Hilbert, L.R. & Black, Anders & Andersen, F. & Mathiesen, Troels. (2011). Inspection and monitoring of corrosion inside monopile foundations for offshore wind turbines. European Corrosion Congress 2011, EUROCORR

3. 2187-2201. H. J. Landau, “Sampling, data transmission, and the Nyquist rate,” in Proceedings of the IEEE, vol. 55, no. 10, pp. 1701-1706, Oct. 1967, doi: 10.1109/PROC.1967.5962. 71 Journee, J. M., and W. W. Massie. Offshore Hydrodynamics, First Edition. Delft University of Technology, 2001. Keulegan, G. H., and L. H. Carpenter. “Forces on Cylinders and Plates in an Oscillating Fluid.” Journal of Research of the National Bureau of Standards, vol. 60, no. 5, 1958, pp. 423–40. Lahlou, O. (2019). Experimental and Numerical Analysis of the Drag Force on Surfboards with Different Shapes (thesis). L. H. Holthuijsen. Waves in Oceanic and Coastal Waters. Cam-bridge University Press, 2007. doi:10.1017/cbo9780511618536. MacCamy, R.C., Fuchs, R.A.: Wave Forces on Piles: a Diffraction Theory. Corps of Engineers Washington DC Beach Erosion Board (1954) M. M. Maher and G. Swain, “The Corrosion and Biofouling Characteristics of Sealed vs. Perforated Offshore Monopile Interiors Experiment Design Comparing Corrosion and Environment Inside Steel Pipe,” OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 2018, pp. 1-4, doi: 10.1109/OCEANS.2018.8604522. Morison, J. R.; O’Brien, M. P.; Johnson, J. W.; Schaaf, S. A. (1950), “The force exerted by surface waves on piles”, Petroleum Transactions, American Institute of Mining Engineers, 189 (5): 149–154, doi:10.2118/950149-G Paluzzi, Alexander John, “Effects of Perforations on Internal Cathodic Protection and Recruitment of Marine Organisms to Steel Pipes” (2023). Theses and Dissertations. 1403. https://repository.fit.edu/etd/1403 Ploeg, J.V.D. (2021). Perforation of monopiles to reduce hydrodynamic loads and enable use in deep waters [Master’s Thesis, Delft University of Technology] Institutional Repository at Delft University of Technology. http://resolver.tudelft.nl/uuid:91eada6f-4f2b-4ae6-be59-2b5ff0590c6f. 72 Shi, W., Zhang, S., Michailides, C., Zhang, L., Zhang, P., & Li, X. (2023). Experimental investigation of the hydrodynamic effects of breaking waves on monopiles in model scale. Journal of Marine Science and Technology, 28(1), 314–325. https://doi.org/10.1007/s00773-023-00926-9 Santamaria Gonzalez, G.A. (2023) Advantages and Challenges of Perforated Monopiles in Deep Water Sites [Master’s Thesis, Delft University of Technology] Institutional Repository at Delft University of Technology. http://resolver.tudelft.nl/uuid:490791b6-a912-4bac-a007-f77012c01107 Sarpkaya, T. and Isaacson, M. (1981). Mechanics of Wave Forces on Offshore Structures. Number ISBN 0-442-25402-4. Van Nostrand Reinhold Company Inc., New York. Tang, Y., Shi, W., Ning, D., You, J., & Michailides, C. (2020). Effects of spilling and plunging type breaking waves acting on large monopile offshore wind turbines. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00427 Teja, R. (2021, June 25). Wheatstone bridge: Working, examples, applications. ElectronicsHub. https://www.electronicshub.org/wheatstone-bridge/ The MathWorks Inc. (2022). MATLAB version: 9.13.0 (R2022b), Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com Wave gauges. Edinburgh Designs. (2016). http://www4.edesign.co.uk/product/wavegauges/ Wilberts, F. (2017). MEASUREMENT DRIVEN FATIGUE ASSESSMENT OF OFFSHORE WIND TURBINE FOUNDATIONS (Master’s Thesis, Uppsala University).

Waqed H. Hassan^{}| Zahraa Mohammad Fadhe^{*}| Rifqa F. Thiab^{}| Karrar Mahdi^{} Civil Engineering Department, Faculty of Engineering, University of Warith Al-Anbiyaa, Kerbala 56001, Iraq Civil Engineering Department, Faculty of Engineering, University of Kerbala, Kerbala 56001, Iraq Corresponding Author Email: Waqed.hammed@uowa.edu.iq

OPEN ACCESS

Abstract:

This work investigates numerically a local scour moves in irregular waves around tripods. It is constructed and proven to use the numerical model of the seabed-tripod-fluid with an RNG k turbulence model. The present numerical model then examines the flow velocity distribution and scour characteristics. After that, the suggested computational model Flow-3D is a useful tool for analyzing and forecasting the maximum scour development and the flow field in random waves around tripods. The scour values affecting the foundations of the tripod must be studied and calculated, as this phenomenon directly and negatively affects the structure of the structure and its design life. The lower diagonal braces and the main column act as blockages, increasing the flow accelerations underneath them. This increases the number of particles that are moved, which in turn creates strong scouring in the area. The numerical model has a good agreement with the experimental model, with a maximum percentage of error of 10% between the experimental and numerical models. In addition, Based on dimensional analysis parameters, an empirical equation has been devised to forecast scour depth with flow depth, median size ratio, Keulegan-Carpenter (Kc), Froud number flow, and wave velocity that the results obtained in this research at various flow velocities and flow depths demonstrated that the maximum scour depth rate depended on wave height with rising velocities and decreasing particle sizes (d_{50}) and the scour depth attains its steady-current value for V_{w} < 0.75. As the Froude number rises, the maximum scour depth will be large.

Keywords:

local scour, tripod foundation, Flow-3D, waves

1. Introduction

New energy sources have been used by mankind since they become industrialized. The main energy sources have traditionally been timber, coal, oil, and gas, but advances in the science of new energies, such as nuclear energy, have emerged [1, 2]. Clean and renewable energy such as offshore wind has grown significantly during the past few decades. There are numerous different types of foundations regarding offshore wind turbines (OWTs), comprising the tripod, jacket, gravity foundation, suction anchor (or bucket), and monopile [3, 4]. When the water depth is less than 30 meters, Offshore wind farms usually employ the monopile type [4]. Engineers must deal with the wind’s scouring phenomenon turbine foundations when planning and designing wind turbines for an offshore environment [5]. Waves and currents generate scour, this is the erosion of soil near a submerged foundation and at its location [6]. To predict the regional scour depth at a bridge pier, Jalal et al. [7-10] developed an original gene expression algorithm using artificial neural networks. Three monopiles, one main column, and several diagonal braces connecting the monopiles to the main column make up the tripod foundation, which has more complicated shapes than a single pile. The design of the foundation may have an impact on scour depth and scour development since the foundation’s form affects the flow field [11, 12]. Stahlmann [4] conducted several field investigations. He discovered that the main column is where the greatest scour depth occurred. Under the main column is where the maximum scour depth occurs in all experiments. The estimated findings show that higher wave heights correspond to higher flow velocities, indicating that a deeper scour depth is correlated with finer silt granularity [13] recommends as the design value for a single pile. These findings support the assertion that a tripod may cause the seabed to scour more severely than a single pile. The geography of the scour is significantly more influenced by the KC value (Keulegan–Carpenter number)

The capability of computer hardware and software has made computational fluid dynamics (CFD) quite popular to predict the behavior of fluid flow in industrial and environmental applications has increased significantly in recent years [14].

Finding an acceptable piece of land for the turbine’s construction and designing the turbine pile precisely for the local conditions are the biggest challenges. Another concern related to working in a marine environment is the effect of sea waves and currents on turbine piles and foundations. The earth surrounding the turbine’s pile is scoured by the waves, which also render the pile unstable.

In this research, the main objective is to investigate numerically a local scour around tripods in random waves. It is constructed and proven to use the tripod numerical model. The present numerical model is then used to examine the flow velocity distribution and scour characteristics.

2. Numerical Model

To simulate the scouring process around the tripod foundation, the CFD code Flow-3D was employed. By using the fractional area/volume method, it may highlight the intricate boundaries of the solution domain (FAVOR).

This model was tested and validated utilizing data derived experimentally from Schendel et al. [15] and Sumer and Fredsøe [6]. 200 runs were performed at different values of parameters.

2.1 Momentum equations

The incompressible viscous fluid motion is described by the three RANS equations listed below [16]:

where, respectively, u, v, and w represent the x, y, and z flow velocity components; volume fraction (VF), area fraction (A_{i}; I=x, y, z), water density (f), viscous force (f_{i}), and body force (G_{i}) are all used in the formula.

2.2 Model of turbulence

Several turbulence models would be combined to solve the momentum equations. A two-equation model of turbulence is the RNG k-model, which has a high efficiency and accuracy in computing the near-wall flow field. Therefore, the flow field surrounding tripods was captured using the RNG k-model.

2.3 Model of sediment scour

2.3.1 Induction and deposition

Eq. (4) can be used to determine the particle entrainment lift velocity [17].

α𝛼_{i }is the Induction parameter, n_{s} the normal vector is parallel to the seafloor, and for the present numerical model, n_{s}=(0,0,1), θ𝜃_{cr} is the essential Shields variable, g is the accelerated by gravity, d_{i} is the size of the particles, ρ_{i} is species density in beds, and d_{∗} The diameter of particles without dimensions; these values can be obtained in Eq. (5).

f_{b}is the essential particle packing percentage, q_{b}, i is the bed load transportation rate, and c_{b}, I the percentage of sand by volume i. These variables can be found in Eq. (9), Eq. (10), f_{b}, δ𝛿_{i} the bed load thickness.

In this paper, after the calibration of numerous trials, the selection of parameters for sediment scour is crucial. Maximum packing fraction is 0.64 with a shields number of 0.05, entrainment coefficient of 0.018, the mass density of 2650, bed load coefficient of 12, and entrainment coefficient of 0.01.

3. Model Setup

To investigate the scour characteristics near tripods in random waves, the seabed-tripod-fluid numerical model was created as shown in Figure 1. The tripod basis, a seabed, and fluid and porous medium were all components of the model. The seabed was 240 meters long, 40 meters wide, and three meters high. It had a median diameter of d_{50} and was composed of uniformly fine sand. The 2.5-meter main column diameter D. The base of the main column was three dimensions above the original seabed. The center of the seafloor was where the tripod was, 130 meters from the offshore and 110 meters from the onshore. To prevent wave reflection, the porous media were positioned above the seabed on the onshore side.

Figure 1. An illustration of the numerical model for the seabed-tripod-fluid

3.1 Generation of meshes

Figure 2 displays the model’s mesh for the Flow-3D software grid. The current model made use of two different mesh types: global mesh grid and nested mesh grid. A mesh grid with the following measurements was created by the global hexahedra mesh grid: 240m length, 40m width, and 32m height. Around the tripod, a finer nested mesh grid was made, with dimensions of 0 to 32m on the z-axis, 10 to 30 m on the x-axis, and 25 to 15 m on the y-axis. This improved the calculation’s precision and mesh quality.

To increase calculation efficiency, the top side, The model’s two x-z plane sides, as well as the symmetry boundaries, were all specified. For u, v, w=0, the bottom boundary wall was picked. The offshore end of the wave boundary was put upstream. For the wave border, random waves were generated using the wave spectrum from the Joint North Sea Wave Project (JONSWAP). Boundary conditions are shown in Figure 3.

Figure 3. Boundary conditions of the typical problem

The wave spectrum peak enhancement factor (=3.3 for this work) and can be used to express the unidirectional JONSWAP frequency spectrum.

3.3 Mesh sensitivity

Before doing additional research into scour traits and scour depth forecasting, mesh sensitivity analysis is essential. Three different mesh grid sizes were selected for this section: Mesh 1 has a 0.45 by 0.45 nested fine mesh and a 0.6 by 0.6 global mesh size. Mesh 2 has a 0.4 global mesh size and a 0.35 nested fine mesh size, while Mesh 3 has a 0.25 global mesh size and a nested fine mesh size of 0.15. Comparing the relative fine mesh size (such as Mesh 2 or Mesh 3) to the relatively coarse mesh size (such as Mesh 1), a larger scour depth was seen; this shows that a finer mesh size can more precisely represent the scouring and flow field action around a tripod. Significantly, a lower mesh size necessitates a time commitment and a more difficult computer configuration. Depending on the sensitivity of the mesh guideline utilized by Pang et al., when Mesh 2 is applied, the findings converge and the mesh size is independent [20]. In the next sections, scouring the area surrounding the tripod was calculated using Mesh 2 to ensure accuracy and reduce computation time. The working segment generates a total of 14, 800,324 cells.

3.4 Model validation

Comparisons between the predicted outcomes from the current model and to confirm that the current numerical model is accurate and suitably modified, experimental data from Sumer and Fredsøe [6] and Schendel et al. [15] were used. For the experimental results of Run 05, Run 15, and Run 22 from Sumer and Fredsøe [6], the experimental A9, A13, A17, A25, A26, and A27 results from Schendel et al. [15], and the numerical results from the current model are shown in Figure 4. The present model had d_{50}=0.051cm, the height of the water wave(h)=10m, and wave velocity=0.854 m.s^{-1}.

Figure 5. Comparison of the present study’s maximum scour depth with that authored by Sumer and Fredsøe [6] and Schendel et al. [15]

According to Figure 5, the highest discrepancy between the numerical results and experimental data is about 10%, showing that overall, there is good agreement between them. The ability of the current numerical model to accurately depict the scour process and forecast the maximum scour depth (S) near foundations is demonstrated by this. Errors in the simulation were reduced by using the calibrated values of the parameter. Considering these results, a suggested simulated scouring utilizing a Flow-3D numerical model is confirmed as a superior way for precisely forecasting the maximum scour depth near a tripod foundation in random waves.

3.5 Dimensional analysis

The variables found in this study as having the greatest impacts, variables related to flow, fluid, bed sediment, flume shape, and duration all had an impact on local scouring depth (t). Hence, scour depth (S) can be seen as a function of these factors, shown as:

With the aid of dimensional analysis, the 14-dimensional parameters in Eq. (11) were reduced to 6 dimensionless variables using Buckingham’s -theorem. D, V, and were therefore set as repetition parameters and others as constants, allowing for the ignoring of their influence. Eq. (12) thus illustrates the relationship between the effect of the non-dimensional components on the depth of scour surrounding a tripod base.

(12)

\frac{S}{D}=f\left(\frac{h}{D}, \frac{d 50}{D}, \frac{V}{V W}, F r, K c\right)

where, SD𝑆𝐷 are scoured depth ratio, VVw𝑉𝑉𝑤 is flow wave velocity, d50D𝑑50𝐷 median size ratio, $Fr representstheFroudnumber,and𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑠𝑡ℎ𝑒𝐹𝑟𝑜𝑢𝑑𝑛𝑢𝑚𝑏𝑒𝑟,𝑎𝑛𝑑Kc$is the Keulegan-Carpenter.

4. Result and Discussion

4.1 Development of scour

Similar to how the physical model was used, this numerical model was also used. The numerical model’s boundary conditions and other crucial variables that directly influence the outcomes were applied (flow depth, median particle size (d_{50}), and wave velocity). After the initial 0-300 s, the scour rate reduced as the scour holes grew quickly. The scour depths steadied for about 1800 seconds before reaching an asymptotic value. The findings of scour depth with time are displayed in Figure 6.

4.2 Features of scour

Early on (t=400s), the scour hole began to appear beneath the main column and then began to extend along the diagonal bracing connecting to the wall-facing pile. Gradually, the geography of the scour; of these results is similar to the experimental observations of Stahlmann [4] and Aminoroayaie Yamini et al. [1]. As the waves reached the tripod, there was an enhanced flow acceleration underneath the main column and the lower diagonal braces as a result of the obstructing effects of the structural elements. More particles are mobilized and transported due to the enhanced near-bed flow velocity, it also increases bed shear stress, turbulence, and scour at the site. In comparison to a single pile, the main column and structural components of the tripod have a significant impact on the flow velocity distribution and, consequently, the scour process and morphology. The main column and seabed are separated by a gap, therefore the flow across the gap may aid in scouring. The scour hole first emerged beneath the main column and subsequently expanded along the lower structural components, both Aminoroayaie Yamini et al. [1] and Stahlmann [4] made this claim. Around the tripod, there are several different scour morphologies and the flow velocity distribution as shown in Figures 7 and 8.

Figure 8. Random waves of flow velocity distribution around a tripod

4.3 Wave velocity’s (V_{w}) impact on scour depth

In this study’s section, we looked at how variations in wave current velocity affected the scouring depth. Bed scour pattern modification could result from an increase or decrease in waves. As a result, the backflow area produced within the pile would become stronger, which would increase the depth of the sediment scour. The quantity of current turbulence is the primary cause of the relationship between wave height and bed scour value. The current velocity has increased the extent to which the turbulence energy has changed and increased in strength now present. It should be mentioned that in this instance, the Jon swap spectrum random waves are chosen. The scour depth attains its steady-current value for Vw<0.75, Figure 9 (a) shows that effect. When (V) represents the mean velocity=0.5 m.s^{-1}.

Figure 9. Main effects on maximum scour depth (S_{max}) as a function of column diameter (D)

4.4 Impact of a median particle (d_{50}) on scour depth

In this section of the study, we looked into how variations in particle size affected how the bed profile changed. The values of various particle diameters are defined in the numerical model for each run numerical modeling, and the conditions under which changes in particle diameter have an impact on the bed scour profile are derived. Based on Figure 9 (b), the findings of the numerical modeling show that as particle diameter increases the maximum scour depth caused by wave contact decreases. When (d_{50}) is the diameter of Sediment (d_{50}). The Shatt Al-Arab soil near Basra, Iraq, was used to produce a variety of varied diameters.

4.5 Impact of wave height and flow depth (h) on scour depth

One of the main elements affecting the scour profile brought on by the interaction of the wave and current with the piles of the wind turbines is the height of the wave surrounding the turbine pile causing more turbulence to develop there. The velocity towards the bottom and the bed both vary as the turbulence around the pile is increased, modifying the scour profile close to the pile. According to the results of the numerical modeling, the depth of scour will increase as water depth and wave height in random waves increase as shown in Figure 9 (c).

4.6 Froude number’s (Fr) impact on scour depth

No matter what the spacing ratio, the Figure 9 shows that the Froude number rises, and the maximum scour depth often rises as well increases in Figure 9 (d). Additionally, it is crucial to keep in mind that only a small portion of the findings regarding the spacing ratios with the smallest values. Due to the velocity acceleration in the presence of a larger Froude number, the range of edge scour downstream is greater than that of upstream. Moreover, the scouring phenomena occur in the region farthest from the tripod, perhaps as a result of the turbulence brought on by the collision of the tripod’s pile. Generally, as the Froude number rises, so does the deposition height and scour depth.

4.7 Keulegan-Carpenter (KC) number

The geography of the scour is significantly more influenced by the KC value. Greater KC causes a deeper equilibrium scour because an increase in KC lengthens the horseshoe vortex’s duration and intensifies it as shown in Figure 10.

The result can be attributed to the fact that wave superposition reduced the crucial KC for the initiation of the scour, particularly under small KC conditions. The primary variable in the equation used to calculate This is the depth of the scouring hole at the bed. The following expression is used to calculate the Keulegan-Carpenter number:

Kc=Vw∗TpD𝐾𝑐=𝑉𝑤∗𝑇𝑝𝐷 (13)

where, the wave period is T_{p} and the wave velocity is shown by V_{w}_{.}

Figure 10. Relationship between the relative maximum scour depth and KC

5. Conclusion

(1) The existing seabed-tripod-fluid numerical model is capable of faithfully reproducing the scour process and the flow field around tripods, suggesting that it may be used to predict the scour around tripods in random waves.

(2) Their results obtained in this research at various flow velocities and flow depths demonstrated that the maximum scour depth rate depended on wave height with rising velocities and decreasing particle sizes (d_{50}).

(3) A diagonal brace and the main column act as blockages, increasing the flow accelerations underneath them. This raises the magnitude of the disturbance and the shear stress on the seafloor, which in turn causes a greater number of particles to be mobilized and conveyed, as a result, causes more severe scour at the location.

(4) The Froude number and the scouring process are closely related. In general, as the Froude number rises, so does the maximum scour depth and scour range. The highest maximum scour depth always coincides with the bigger Froude number with the shortest spacing ratio.

Since the issue is that there aren’t many experiments or studies that are relevant to this subject, therefore we had to rely on the monopile criteria. Therefore, to gain a deeper knowledge of the scouring effect surrounding the tripod in random waves, further numerical research exploring numerous soil, foundation, and construction elements as well as upcoming physical model tests will be beneficial.

Nomenclature

CFD

Computational fluid dynamics

FAVOR

Fractional Area/Volume Obstacle Representation

VOF

Volume of Fluid

RNG

Renormalized Group

OWTs

Offshore wind turbines

Greek Symbols

ε, ω

Dissipation rate of the turbulent kinetic energy, m^{2}s^{-3}

Subscripts

d_{50}

Median particle size

V_{f}

Volume fraction

G_{T}

Turbulent energy of buoyancy

K_{T}

Turbulent velocity

P_{T}

Kinetic energy of the turbulence

Α_{i}

Induction parameter

n_{s}

Induction parameter

ΘΘ_{cr}

The essential Shields variable

D_{i}

Diameter of sediment

d_{∗}

The diameter of particles without dimensions

µ_{f}

Dynamic viscosity of the fluid

q_{b},_{i}

The bed load transportation rate

C_{s,i}

Sand particle’s concentration of mass

D

Diameter of pile

D_{f}

Diffusivity

D

Diameter of main column

Fr

Froud number

Kc

Keulegan–Carpenter number

G

Acceleration of gravity g

H

Flow depth

Vw

Wave Velocity

V

Mean Velocity

Tp

Wave Period

S

Scour depth

References

[1] Aminoroayaie Yamini, O., Mousavi, S.H., Kavianpour, M.R., Movahedi, A. (2018). Numerical modeling of sediment scouring phenomenon around the offshore wind turbine pile in marine environment. Environmental Earth Sciences, 77: 1-15. https://doi.org/10.1007/s12665-018-7967-4

[2] Hassan, W.H., Hashim, F.S. (2020). The effect of climate change on the maximum temperature in Southwest Iraq using HadCM3 and CanESM2 modelling. SN Applied Sciences, 2(9): 1494. https://doi.org/10.1007/s42452-020-03302-z

[3] Fazeres-Ferradosa, T., Rosa-Santos, P., Taveira-Pinto, F., Pavlou, D., Gao, F.P., Carvalho, H., Oliveira-Pinto, S. (2020). Preface: Advanced research on offshore structures and foundation design part 2. In Proceedings of the Institution of Civil Engineers-Maritime Engineering. Thomas Telford Ltd, 173(4): 96-99. https://doi.org/10.1680/jmaen.2020.173.4.96

[4] Stahlmann, A. (2013). Numerical and experimental modeling of scour at foundation structures for offshore wind turbines. In ISOPE International Ocean and Polar Engineering Conference. ISOPE, pp. ISOPE-I.

[5] Petersen, T.U., Sumer, B.M., Fredsøe, J. (2014). Edge scour at scour protections around offshore wind turbine foundations. In 7th International Conference on Scour and Erosion. CRC Press, pp. 587-592.

[6] Sumer, B.M., Fredsøe, J. (2001). Scour around pile in combined waves and current. Journal of Hydraulic Engineering, 127(5): 403-411. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(403)

[7] Jalal, H.K., Hassan, W.H. (2020). Effect of bridge pier shape on depth of scour. In IOP Conference Series: Materials Science and Engineering. IOP Publishing, 671(1): 012001. https://doi.org/10.1088/1757-899X/671/1/012001

[8] Hassan, W.H., Jalal, H.K. (2021). Prediction of the depth of local scouring at a bridge pier using a gene expression programming method. SN Applied Sciences, 3(2): 159. https://doi.org/10.1007/s42452-020-04124-9

[9] Jalal, H.K., Hassan, W.H. (2020). Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software. In IOP Conference Series: Materials Science and Engineering. IOP Publishing, 745(1): 012150. https://doi.org/10.1088/1757-899X/745/1/012150

[10] Hassan, W.H., Attea, Z.H., Mohammed, S.S. (2020). Optimum layout design of sewer networks by hybrid genetic algorithm. Journal of Applied Water Engineering and Research, 8(2): 108-124. https://doi.org/10.1080/23249676.2020.1761897

[11] Hassan, W.H., Hussein, H.H., Alshammari, M.H., Jalal, H.K., Rasheed, S.E. (2022). Evaluation of gene expression programming and artificial neural networks in PyTorch for the prediction of local scour depth around a bridge pier. Results in Engineering, 13: 100353. https://doi.org/10.1016/j.rineng.2022.100353

[12] Hassan, W.H., Hh, H., Mohammed, S.S., Jalal, H.K., Nile, B.K. (2021). Evaluation of gene expression programming to predict the local scour depth around a bridge pier. Journal of Engineering Science and Technology, 16(2): 1232-1243. https://doi.org/10.1016/j.rineng.2022.100353

[13] Nerland, C. (2010). Offshore wind energy: Balancing risk and reward. In Proceedings of the Canadian Wind Energy Association’s 2010 Annual Conference and Exhibition, Canada, p. 2000.

[14] Hassan, W.H., Nile, B.K., Mahdi, K., Wesseling, J., Ritsema, C. (2021). A feasibility assessment of potential artificial recharge for increasing agricultural areas in the kerbala desert in Iraq using numerical groundwater modeling. Water, 13(22): 3167. https://doi.org/10.3390/w13223167

[15] Schendel, A., Welzel, M., Schlurmann, T., Hsu, T.W. (2020). Scour around a monopile induced by directionally spread irregular waves in combination with oblique currents. Coastal Engineering, 161: 103751. https://doi.org/10.1016/j.coastaleng.2020.103751

[16] Yakhot, V., Orszag, S.A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing, 1(1): 3-51. https://doi.org/10.1007/BF01061452

[17] Mastbergen, D.R., Van Den Berg, J.H. (2003). Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology, 50(4): 625-637. https://doi.org/10.1046/j.1365-3091.2003.00554.x

[18] Soulsby, R. (1997). Dynamics of marine sands. https://doi.org/10.1680/doms.25844

[19] Van Rijn, L.C. (1984). Sediment transport, part I: Bed load transport. Journal of Hydraulic Engineering, 110(10): 1431-1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)

[20] Pang, A.L.J., Skote, M., Lim, S.Y., Gullman-Strand, J., Morgan, N. (2016). A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents. Applied Ocean Research, 57: 114-124. https://doi.org/10.1016/j.apor.2016.02.010

This paper conducts a three-dimensional numerical analysis on the surges generated by landslides of different water entry scales, and analyzes the characteristics of surge disasters induced by landslides of different water entry scales, such as surge height, surge speed, and bank climbing height. Meanwhile, the impact of surges caused by landslides of different water entry scales on the dam is explored.

The FLOW-3D numerical simulation method is employed to simulate and analyze the entire process of landslide instability, surge formation and propagation, surge climbing, and surge backflow. The results show that the maximum climbing height of the surge generated by the 3. 1 million m~3 landslide of water entry is 54. 5 m on the opposite bank, and the surge height in front of the dam is 6. 69 m.

The surge has a small area of overflow at the right bank dam shoulder. The surge generated by the 0. 8 million m~3 landslide of water entry has a maximum climbing height of 26. 00 m on the opposite bank, and the surge height in front of the dam is 5. 38 m, without influence exerted by the surge on the dam safety. The results indicate that the induced surge caused by 3. 1×10~6 m~3 landslide of water entry is more catastrophic than that brought by 0. 8×10~6 m~3 landslide of water entry.

•Landslide travel distance is considered for the first time in a predictive equation.

•Predictive equation derived from databases using 3D physical and numerical modeling.

•The equation was successfully tested on the 2018 Anak Krakatau tsunami event.

•The developed equation using three-dimensional data exhibits a 91 % fitting quality.

Abstract

Landslide tsunamis, responsible for thousands of deaths and significant damage in recent years, necessitate the allocation of sufficient time and resources for studying these extreme natural hazards. This study offers a step change in the field by conducting a large number of three-dimensional numerical experiments, validated by physical tests, to develop a predictive equation for the maximum initial amplitude of tsunamis generated by subaerial landslides. We first conducted a few 3D physical experiments in a wave basin which were then applied for the validation of a 3D numerical model based on the Flow3D-HYDRO package. Consequently, we delivered 100 simulations using the validated model by varying parameters such as landslide volume, water depth, slope angle and travel distance. This large database was subsequently employed to develop a predictive equation for the maximum initial tsunami amplitude. For the first time, we considered travel distance as an independent parameter for developing the predictive equation, which can significantly improve the predication accuracy. The predictive equation was tested for the case of the 2018 Anak Krakatau subaerial landslide tsunami and produced satisfactory results.

The Anak Krakatau landslide tsunami on 22nd December 2018 was a stark reminder of the dangers posed by subaerial landslide tsunamis (Ren et al., 2020; Mulia et al. 2020a; Borrero et al., 2020; Heidarzadeh et al., 2020; Grilli et al., 2021). The collapse of the volcano’s southwest side into the ocean triggered a tsunami that struck the Sunda Strait, leading to approximately 450 fatalities (Syamsidik et al., 2020; Mulia et al., 2020b) (Fig. 1). As shown in Fig. 1, landslide tsunamis (both submarine and subaerial) have been responsible for thousands of deaths and significant damage to coastal communities worldwide. These incidents underscored the critical need for advanced research into landslide-generated waves to aid in hazard prediction and mitigation. This is further emphasized by recent events such as the 28th of November 2020 landslide tsunami in the southern coast mountains of British Columbia (Canada), where an 18 million m^{3} rockslide generated a massive tsunami, with over 100 m wave run-up, causing significant environmental and infrastructural damage (Geertsema et al., 2022).

Physical modelling and numerical simulation are crucial tools in the study of landslide-induced waves due to their ability to replicate and analyse the complex dynamics of landslide events (Kim et al., 2020). In two-dimensional (2D) modelling, the discrepancy between dimensions can lead to an artificial overestimation of wave amplification (e.g., Heller and Spinneken, 2015). This limitation is overcome with 3D modelling, which enables the scaled-down representation of landslide-generated waves while avoiding the simplifications inherent in 2D approaches (Erosi et al., 2019). Another advantage of 3D modelling in studying landslide-generated waves is its ability to accurately depict the complex dynamics of wave propagation, including lateral and radial spreading from the slide impact zone, a feature unattainable with 2D models (Heller and Spinneken, 2015).

Physical experiments in tsunami research, as presented by authors such as Romano et al. (2020), McFall and Fritz (2016), and Heller and Spinneken (2015), have supported 3D modelling works through validation and calibration of the numerical models to capture the complexities of wave generation and propagation. Numerical modelling has increasingly complemented experimental approach in tsunami research due to the latter’s time and resource-intensive nature, particularly for 3D models (Li et al., 2019; Kim et al., 2021). Various numerical approaches have been employed, from Eulerian and Lagrangian frameworks to depth-averaged and Navier–Stokes models, enhancing our understanding of tsunami dynamics (Si et al., 2018; Grilli et al., 2019; Heidarzadeh et al., 2017, 2020; Iorio et al., 2021; Zhang et al., 2021; Kirby et al., 2022; Wang et al., 2021, 2022; Hu et al., 2022). The sophisticated numerical techniques, including the Particle Finite Element Method and the Immersed Boundary Method, have also shown promising results in modelling highly dynamic landslide scenarios (Mulligan et al., 2020; Chen et al., 2020). Among these methods and techniques, FLOW-3D HYDRO stands out in simulating landslide-generated tsunami waves due to its sophisticated technical features such as offering Tru Volume of Fluid (VOF) method for precise free surface tracking (e.g., Sabeti and Heidarzadeh 2022a). TruVOF distinguishes itself through a split Lagrangian approach, adeptly reducing cumulative volume errors in wave simulations by dynamically updating cell volume fractions and areas with each time step. Its intelligent adaptation of time step size ensures precise capture of evolving free surfaces, offering unparalleled accuracy in modelling complex fluid interfaces and behaviour (Flow Science, 2023).

Predictive equations play a crucial role in assessing the potential hazards associated with landslide-generated tsunami waves due to their ability to provide risk assessment and warnings. These equations can offer swift and reasonable evaluations of potential tsunami impacts in the absence of detailed numerical simulations, which can be time-consuming and expensive to produce. Among multiple factors and parameters within a landslide tsunami generation, the initial maximum wave amplitude (Fig. 1) stands out due to its critical role. While it is most likely that the initial wave generated by a landslide will have the highest amplitude, it is crucial to clarify that the term “initial maximum wave amplitude” refers to the highest amplitude within the first set of impulse waves. This parameter is essential in determining the tsunami’s impact severity, with higher amplitudes signalling a greater destructive potential (Sabeti and Heidarzadeh 2022a). Additionally, it plays a significant role in tsunami modelling, aiding in the prediction of wave propagation and the assessment of potential impacts.

In this study, we initially validate the FLOW-3D HYDRO model through a series of physical experiments conducted in a 3D wave tank at University of Bath (UK). Upon confirmation of the model’s accuracy, we use it to systematically vary parameters namely landslide volume, water depth, slope angle, and travel distance, creating an extensive database. Alongside this, we perform a sensitivity analysis on these variables to discern their impacts on the initial maximum wave amplitude. The generated database was consequently applied to derive a non-dimensional predictive equation aimed at estimating the initial maximum wave amplitude in real-world landslide tsunami events.

Two innovations of this study are: (i) The predictive equation of this study is based on a large number of 3D experiments whereas most of the previous equations were based on 2D results, and (ii) For the first time, the travel distance is included in the predictive equation as an independent parameter. To evaluate the performance of our predictive equation, we applied it to a previous real-world subaerial landslide tsunami, i.e., the Anak Krakatau 2018 event. Furthermore, we compare the performance of our predictive equation with other existing equations.

2. Data and methods

The methodology applied in this research is a combination of physical and numerical modelling. Limited physical modelling was performed in a 3D wave basin at the University of Bath (UK) to provide data for calibration and validation of the numerical model. After calibration and validation, the numerical model was employed to model a large number of landslide tsunami scenarios which allowed us to develop a database for deriving a predictive equation.

2.1. Physical experiments

To validate our numerical model, we conducted a series of physical experiments including two sets in a 3D wave basin at University of Bath, measuring 2.50 m in length (W_{L}), 2.60 m in width (W_{W}), and 0.60 m in height (W_{H}) (Fig. 2a). Conducting two distinct sets of experiments (Table 1), each with different setups (travel distance, location, and water depth), provided a robust framework for validation of the numerical model. For wave measurement, we employed a twin wire wave gauge from HR Wallingford (https://equipit.hrwallingford.com). In these experiments, we used a concrete prism solid block, the dimensions of which are outlined in Table 2. In our experiments, we employed a concrete prism solid block with a density of 2600 kg/m^{3}, chosen for its similarity to the natural density of landslides, akin to those observed with the 2018 Anak Krakatau tsunami, where the landslide composition is predominantly solid rather than granular. The block’s form has also been endorsed in prior studies (Watts, 1998; Najafi-Jilani and Ataie-Ashtiani, 2008) as a suitable surrogate for modelling landslide-induced waves. A key aspect of our methodology was addressing scale effects, following the guidelines proposed by Heller et al. (2008) as it is described in Table 1. To enhance the reliability and accuracy of our experimental data, we conducted each physical experiment three times which revealed all three experimental waveforms were identical. This repetition was aimed at minimizing potential errors and inconsistencies in laboratory measurements.

Table 1. The locations and other information of the laboratory setups for making landslide-generated waves in the physical wave basin. This table details the specific parameters for each setup, including slope range (α), slide volume (V), kinematic viscosity (ν), water depth (h), travel distance (D), surface tension coefficient of water (σ), Reynolds number (R), Weber number (W), and the precise coordinates of the wave gauges (WG).

The acceptable ranges for avoiding scale effects are based on the study by Heller et al. (2008).⁎⁎

The Reynolds number (R) is given by g^{0.5}h^{1.5}/ν, with ν denoting the kinematic viscosity. The Weber number (W) is W = ρgh^{2}/σ, where σ represents surface tension coefficient and ρ = 1000kg/m^{3} is the density of water. In our experiments, conducted at a water temperature of approximately 20 °C, the kinematic viscosity (ν) and the surface tension coefficient of water (σ) are 1.01 × 10^{−6} m²/s and 0.073 N/m, respectively (Kestin et al., 1978).

Table 2. Specifications of the solid block used in physical experiments for generating subaerial landslides in the laboratory.

Solid-block attributes

Property metrics

Geometric shape

Slide width (b_{s})

0.26 m

Slide length (l_{s})

0.20 m

Slide thickness (s)

0.10 m

Slide volume (V)

2.60 × 10^{−3} m^{3}

Specific gravity, (γ_{s})

2.60

Slide weight (m_{s})

6.86 kg

2.2. Numerical simulations applying FLOW-3D hydro

The detailed theoretical framework encompassing the governing equations, the computational methodologies employed, and the specific techniques used for tracking the water surface in these simulations are thoroughly detailed in the study by Sabeti et al. (2024). Here, we briefly explain some of the numerical details. We defined a uniform mesh for our flow domain, carefully crafted with a fine spatial resolution of 0.005 m (i.e., grid size). The dimensions of the numerical model directly matched those of our wave basin used in the physical experiment, being 2.60 m wide, 0.60 m deep, and 2.50 m long (Fig. 2). This design ensures comprehensive coverage of the study area. The output intervals of the numerical model are set at 0.02 s. This timing is consistent with the sampling rates of wave gauges used in laboratory settings. The friction coefficient in the FLOW-3D HYDRO is designated as 0.45. This value corresponds to the Coulombic friction measurements obtained in the laboratory, ensuring that the simulation accurately reflects real-world physical interactions.

In order to simulate the landslide motion, we applied coupled motion objects in FLOW-3D-HYDRO where the dynamics are predominantly driven by gravity and surface friction. This methodology stands in contrast to other models that necessitate explicit inputs of force and torque. This approach ensures that the simulation more accurately reflects the natural movement of landslides, which is heavily reliant on gravitational force and the interaction between sliding surfaces. The stability of the numerical simulations is governed by the Courant Number criterion (Courant et al., 1928), which dictates the maximum time step (Δt) for a given mesh size (Δx) and flow speed (U). According to Courant et al. (1928), this number is required to stay below one to ensure stability of numerical simulations. In our simulations, the Courant number is always maintained below one.

In alignment with the parameters of physical experiments, we set the fluid within the mesh to water, characterized by a density of 1000 kg/m³ at a temperature of 20 °C. Furthermore, we defined the top, front, and back surfaces of the mesh as symmetry planes. The remaining surfaces are designated as wall types, incorporating no-slip conditions to accurately simulate the interaction between the fluid and the boundaries. In terms of selection of an appropriate turbulence model, we selected the k–ω model that showed a better performance than other turbulence methods (e.g., Renormalization-Group) in a previous study (Sabeti et al., 2024). The simulations are conducted using a PC Intel® Core™ i7-10510U CPU with a frequency of 1.80 GHz, and a 16 GB RAM. On this PC, completion of a 3-s simulation required approximately 12.5 h.

2.3. Validation

The FLOW-3D HYDRO numerical model was validated using the two physical experiments (Fig. 3) outlined in Table 1. The level of agreement between observations (O_{i}) and simulations (S_{i}) is examined using the following equation:(1)�=|��−����|×100where ε represents the mismatch error, O_{i} denotes the observed laboratory values, and S_{i} represents the simulated values from the FLOW-3D HYDRO model. The results of this validation process revealed that our model could replicate the waves generated in the physical experiments with a reasonable degree of mismatch (ε): 14 % for Lab 1 and 8 % for Lab 2 experiments, respectively (Fig. 3). These values indicate that while the model is not perfect, it provides a sufficiently close approximation of the real-world phenomena.

In terms of mesh efficiency, we varied the mesh size to study sensitivity of the numerical results to mesh size. First, by halving the mesh size and then by doubling it, we repeated the modelling by keeping other parameters unchanged. This analysis guided that a mesh size of ∆x = 0.005 m is the most effective for the setup of this study. The total number of computational cells applying mesh size of 0.005 m is 9.269 × 10^{6}.

2.4. The dataset

The validated numerical model was employed to conduct 100 simulations, incorporating variations in four key landslide parameters namely water depth, slope angle, slide volume, and travel distance. This methodical approach was essential for a thorough sensitivity analysis of these variables, and for the creation of a detailed database to develop a predictive equation for maximum initial tsunami amplitude. Within the model, 15 distinct slide volumes were established, ranging from 0.10 × 10^{−3} m^{3} to 6.25 × 10^{−3} m^{3} (Table 3). The slope angle varied between 35° and 55°, and water depth ranged from 0.24 m to 0.27 m. The travel distance of the landslides was varied, spanning from 0.04 m to 0.07 m. Detailed configurations of each simulation, along with the maximum initial wave amplitudes and dominant wave periods are provided in Table 4.

Table 3. Geometrical information of the 15 solid blocks used in numerical modelling for generating landslide tsunamis. Parameters are: l_{s}, slide length; b_{s}, slide width; s, slide thickness; γ_{s}, specific gravity; and V, slide volume.

Solid block

l_{s} (m)

b_{s} (m)

s (m)

V (m^{3})

γ_{s}

Block-1

0.310

0.260

0.155

6.25 × 10^{−3}

2.60

Block-2

0.300

0.260

0.150

5.85 × 10^{−3}

2.60

Block-3

0.280

0.260

0.140

5.10 × 10^{−3}

2.60

Block-4

0.260

0.260

0.130

4.39 × 10^{−3}

2.60

Block-5

0.240

0.260

0.120

3.74 × 10^{−3}

2.60

Block-6

0.220

0.260

0.110

3.15 × 10^{−3}

2.60

Block-7

0.200

0.260

0.100

2.60 × 10^{−3}

2.60

Block-8

0.180

0.260

0.090

2.11 × 10^{−3}

2.60

Block-9

0.160

0.260

0.080

1.66 × 10^{−3}

2.60

Block-10

0.140

0.260

0.070

1.27 × 10^{−3}

2.60

Block-11

0.120

0.260

0.060

0.93 × 10^{−3}

2.60

Block-12

0.100

0.260

0.050

0.65 × 10^{−3}

2.60

Block-13

0.080

0.260

0.040

0.41 × 10^{−3}

2.60

Block-14

0.060

0.260

0.030

0.23 × 10^{−3}

2.60

Block-15

0.040

0.260

0.020

0.10 × 10^{−3}

2.60

Table 4. The numerical simulation for the 100 tests performed in this study for subaerial solid-block landslide-generated waves. Parameters are a_{M}, maximum wave amplitude; α, slope angle; h, water depth; D, travel distance; and T, dominant wave period. The location of the wave gauge is X=1.030 m, Y=1.210 m, and Z=0.050 m. The properties of various solid blocks are presented in Table 3.

Test-

Block No

α (°)

h (m)

D (m)

T(s)

a_{M} (m)

1

Block-7

45

0.246

0.029

0.510

0.0153

2

Block-7

45

0.246

0.030

0.505

0.0154

3

Block-7

45

0.246

0.031

0.505

0.0156

4

Block-7

45

0.246

0.032

0.505

0.0158

5

Block-7

45

0.246

0.033

0.505

0.0159

6

Block-7

45

0.246

0.034

0.505

0.0160

7

Block-7

45

0.246

0.035

0.505

0.0162

8

Block-7

45

0.246

0.036

0.505

0.0166

9

Block-7

45

0.246

0.037

0.505

0.0167

10

Block-7

45

0.246

0.038

0.505

0.0172

11

Block-7

45

0.246

0.039

0.505

0.0178

12

Block-7

45

0.246

0.040

0.505

0.0179

13

Block-7

45

0.246

0.041

0.505

0.0181

14

Block-7

45

0.246

0.042

0.505

0.0183

15

Block-7

45

0.246

0.043

0.505

0.0190

16

Block-7

45

0.246

0.044

0.505

0.0197

17

Block-7

45

0.246

0.045

0.505

0.0199

18

Block-7

45

0.246

0.046

0.505

0.0201

19

Block-7

45

0.246

0.047

0.505

0.0191

20

Block-7

45

0.246

0.048

0.505

0.0217

21

Block-7

45

0.246

0.049

0.505

0.0220

22

Block-7

45

0.246

0.050

0.505

0.0226

23

Block-7

45

0.246

0.051

0.505

0.0236

24

Block-7

45

0.246

0.052

0.505

0.0239

25

Block-7

45

0.246

0.053

0.510

0.0240

26

Block-7

45

0.246

0.054

0.505

0.0241

27

Block-7

45

0.246

0.055

0.505

0.0246

28

Block-7

45

0.246

0.056

0.505

0.0247

29

Block-7

45

0.246

0.057

0.505

0.0248

30

Block-7

45

0.246

0.058

0.505

0.0249

31

Block-7

45

0.246

0.059

0.505

0.0251

32

Block-7

45

0.246

0.060

0.505

0.0257

33

Block-1

45

0.246

0.045

0.505

0.0319

34

Block-2

45

0.246

0.045

0.505

0.0294

35

Block-3

45

0.246

0.045

0.505

0.0282

36

Block-4

45

0.246

0.045

0.505

0.0262

37

Block-5

45

0.246

0.045

0.505

0.0243

38

Block-6

45

0.246

0.045

0.505

0.0223

39

Block-7

45

0.246

0.045

0.505

0.0196

40

Block-8

45

0.246

0.045

0.505

0.0197

41

Block-9

45

0.246

0.045

0.505

0.0198

42

Block-10

45

0.246

0.045

0.505

0.0184

43

Block-11

45

0.246

0.045

0.505

0.0173

44

Block-12

45

0.246

0.045

0.505

0.0165

45

Block-13

45

0.246

0.045

0.404

0.0153

46

Block-14

45

0.246

0.045

0.404

0.0124

47

Block-15

45

0.246

0.045

0.505

0.0066

48

Block-7

45

0.202

0.045

0.404

0.0220

49

Block-7

45

0.204

0.045

0.404

0.0219

50

Block-7

45

0.206

0.045

0.404

0.0218

51

Block-7

45

0.208

0.045

0.404

0.0217

52

Block-7

45

0.210

0.045

0.404

0.0216

53

Block-7

45

0.212

0.045

0.404

0.0215

54

Block-7

45

0.214

0.045

0.505

0.0214

55

Block-7

45

0.216

0.045

0.505

0.0214

56

Block-7

45

0.218

0.045

0.505

0.0213

57

Block-7

45

0.220

0.045

0.505

0.0212

58

Block-7

45

0.222

0.045

0.505

0.0211

59

Block-7

45

0.224

0.045

0.505

0.0208

60

Block-7

45

0.226

0.045

0.505

0.0203

61

Block-7

45

0.228

0.045

0.505

0.0202

62

Block-7

45

0.230

0.045

0.505

0.0201

63

Block-7

45

0.232

0.045

0.505

0.0201

64

Block-7

45

0.234

0.045

0.505

0.0200

65

Block-7

45

0.236

0.045

0.505

0.0199

66

Block-7

45

0.238

0.045

0.404

0.0196

67

Block-7

45

0.240

0.045

0.404

0.0194

68

Block-7

45

0.242

0.045

0.404

0.0193

69

Block-7

45

0.244

0.045

0.404

0.0192

70

Block-7

45

0.246

0.045

0.505

0.0190

71

Block-7

45

0.248

0.045

0.505

0.0189

72

Block-7

45

0.250

0.045

0.505

0.0187

73

Block-7

45

0.252

0.045

0.505

0.0187

74

Block-7

45

0.254

0.045

0.505

0.0186

75

Block-7

45

0.256

0.045

0.505

0.0184

76

Block-7

45

0.258

0.045

0.505

0.0182

77

Block-7

45

0.259

0.045

0.505

0.0183

78

Block-7

45

0.260

0.045

0.505

0.0191

79

Block-7

45

0.261

0.045

0.505

0.0192

80

Block-7

45

0.262

0.045

0.505

0.0194

81

Block-7

45

0.263

0.045

0.505

0.0195

82

Block-7

45

0.264

0.045

0.505

0.0195

83

Block-7

45

0.265

0.045

0.505

0.0197

84

Block-7

45

0.266

0.045

0.505

0.0197

85

Block-7

45

0.267

0.045

0.505

0.0198

86

Block-7

45

0.270

0.045

0.505

0.0199

87

Block-7

30

0.246

0.045

0.505

0.0101

88

Block-7

35

0.246

0.045

0.505

0.0107

89

Block-7

36

0.246

0.045

0.505

0.0111

90

Block-7

37

0.246

0.045

0.505

0.0116

91

Block-7

38

0.246

0.045

0.505

0.0117

92

Block-7

39

0.246

0.045

0.505

0.0119

93

Block-7

40

0.246

0.045

0.505

0.0121

94

Block-7

41

0.246

0.045

0.505

0.0127

95

Block-7

42

0.246

0.045

0.404

0.0154

96

Block-7

43

0.246

0.045

0.404

0.0157

97

Block-7

44

0.246

0.045

0.404

0.0162

98

Block-7

45

0.246

0.045

0.505

0.0197

99

Block-7

50

0.246

0.045

0.505

0.0221

100

Block-7

55

0.246

0.045

0.505

0.0233

In all these 100 simulations, the wave gauge was consistently positioned at coordinates X=1.09 m, Y=1.21 m, and Z=0.05 m. The dominant wave period for each simulation was determined using the Fast Fourier Transform (FFT) function in MATLAB (MathWorks, 2023). Furthermore, the classification of wave types was carried out using a wave categorization graph according to Sorensen (2010), as shown in Fig. 4a. The results indicate that the majority of the simulated waves are on the border between intermediate and deep-water waves, and they are categorized as Stokes waves (Fig. 4a). Four sample waveforms from our 100 numerical experiments are provided in Fig. 4b.

The dataset in Table 4 was used to derive a new predictive equation that incorporates travel distance for the first time to estimate the initial maximum tsunami amplitude. In developing this equation, a genetic algorithm optimization technique was implemented using MATLAB (MathWorks 2023). This advanced approach entailed the use of genetic algorithms (GAs), an evolutionary algorithm type inspired by natural selection processes (MathWorks, 2023). This technique is iterative, involving selection, crossover, and mutation processes to evolve solutions over several generations. The goal was to identify the optimal coefficients and powers for each landslide parameter in the predictive equation, ensuring a robust and reliable model for estimating maximum wave amplitudes. Genetic Algorithms excel at optimizing complex models by navigating through extensive combinations of coefficients and exponents. GAs effectively identify highly suitable solutions for the non-linear and complex relationships between inputs (e.g., slide volume, slope angle, travel distance, water depth) and the output (i.e., maximum initial wave amplitude, a_{M}). MATLAB’s computational environment enhances this process, providing robust tools for GA to adapt and evolve solutions iteratively, ensuring the precision of the predictive model (Onnen et al., 1997). This approach leverages MATLAB’s capabilities to fine-tune parameters dynamically, achieving an optimal equation that accurately estimates a_{M}. It is important to highlight that the nondimensionalized version of this dataset is employed to develop a predictive equation which enables the equation to reproduce the maximum initial wave amplitude (a_{M}) for various subaerial landslide cases, independent of their dimensional differences (e.g., Heler and Hager 2014; Heller and Spinneken 2015; Sabeti and Heidarzadeh 2022b). For this nondimensionalization, we employed the water depth (h) to nondimensionalize the slide volume (V/h^{3}) and travel distance (D/h). The slide thickness (s) was applied to nondimensionalize the water depth (h/s).

2.5. Landslide velocity

In discussing the critical role of landslide velocity for simulating landslide-generated waves, we focus on the mechanisms of landslide motion and the techniques used to record landslide velocity in our simulations (Fig. 5). Also, we examine how these methods were applied in two distinct scenarios: Lab 1 and Lab 2 (see Table 1 for their details). Regarding the process of landslide movement, a slide starts from a stationary state, gaining momentum under the influence of gravity and this acceleration continues until the landslide collides with water, leading to a significant reduction in its speed before eventually coming to a stop (Fig. 5) (e.g., Panizzo et al. 2005).

To measure the landslide’s velocity in our simulations, we attached a probe at the centre of the slide, which supplied a time series of the velocity data. The slide’s velocity (v_{s}) peaks at the moment it enters the water (Fig. 5), a point referred to as the impact time (t_{Imp}). Following this initial impact, the slides continue their underwater movement, eventually coming to a complete halt (t_{Stop}). Given the results in Fig. 5, it can be seen that Lab 1, with its longer travel distance (0.070 m), exhibits a higher peak velocity of 1.89 m/s. This increase in velocity is attributed to the extended travel distance allowing more time for the slide to accelerate under gravity. Whereas Lab 2, featuring a shorter travel distance (0.045 m), records a lower peak velocity of 1.78 m/s. This difference underscores how travel distance significantly influences the dynamics of landslide motion. After reaching the peak, both profiles show a sharp decrease in velocity, marking the transition to submarine motion until the slides come to a complete stop (t_{Stop}). There are noticeable differences observable in Fig. 5 between the Lab-1 and Lab-2 simulations, including the peaks at 0.3 s . These variations might stem from the placement of the wave gauge, which differs slightly in each scenario, as well as the water depth’s minor discrepancies and, the travel distance.

2.6. Effect of air entrainment

In this section we examine whether it is required to consider air entrainment for our modelling or not as the FLOW-3D HYDRO package is capable of modelling air entrainment. The process of air entrainment in water during a landslide tsunami and its subsequent transport involve two key components: the quantification of air entrainment at the water surface, and the simulation of the air’s transport within the fluid (Hirt, 2003). FLOW-3D HYDRO employs the air entrainment model to compute the volume of air entrained at the water’s surface utilizing three approaches: a constant density model, a variable density model accounting for bulking, and a buoyancy model that adds the Drift-FLUX mechanism to variable density conditions (Flow Science, 2023). The calculation of the entrainment rate is based on the following equation:(2)�������=������[2(��−�����−2�/���)]1/2where parameters are: V_{air}, volume of air; C_{air}, entrainment rate coefficient; A_{s}, surface area of fluid; ρ, fluid density; k, turbulent kinetic energy; g_{n}, gravity normal to surface; L_{t}, turbulent length scale; and σ, surface tension coefficient. The value of k is directly computed from the Reynolds-averaged Navier-Stokes (RANS) (k–w) calculations in our model.

In this study, we selected the variable density + Drift-FLUX model, which effectively captures the dynamics of phase separation and automatically activates the constant density and variable density models. This method simplifies the air-water mixture, treating it as a single, homogeneous fluid within each computational cell. For the phase volume fractions f_{1}and f_{2}, the velocities are expressed in terms of the mixture and relative velocities, denoted as u and u_{r}, respectively, as follows:(3)��1��+�.(�1�)=��1��+�.(�1�)−�.(�1�2��)=0(4)��2��+�.(�2�)=��2��+�.(�2�)−�.(�1�2��)=0

The outcomes from this simulation are displayed in Fig. 6, which indicates that the influence of air entrainment on the generated wave amplitude is approximately 2 %. A value of 0.02 for the entrained air volume fraction means that, in the simulated fluid, approximately 2 % of the volume is composed of entrained air. In other words, for every unit volume of the fluid-air mixture at that location, 2 % is air and the remaining 98 % is water. The configuration of Test-17 (Table 4) was employed for this simulation. While the effect of air entrainment is anticipated to be more significant in models of granular landslide-generated waves (Fritz, 2002), in our simulations we opted not to incorporate this module due to its negligible impact on the results.

3. Results

In this section, we begin by presenting a sequence of our 3D simulations capturing different time steps to illustrate the generation process of landslide-generated waves. Subsequently, we derive a new predictive equation to estimate the maximum initial wave amplitude of landslide-generated waves and assess its performance.

3.1. Wave generation and propagation

To demonstrate the wave generation process in our simulation, we reference Test-17 from Table 4, where we employed Block-7 (Tables 3, 4). In this configuration, the slope angle was set to 45°, with a water depth of 0.246 m and a travel distance at 0.045 m (Fig. 7). At 0.220 s, the initial impact of the moving slide on the water is depicted, marking the onset of the wave generation process (Fig. 7a). Disturbances are localized to the immediate area of impact, with the rest of the water surface remaining undisturbed. At this time, a maximum water particle velocity of 1.0 m/s – 1.2 m/s is seen around the impact zone (Fig. 7d). Moving to 0.320 s, the development of the wave becomes apparent as energy transfer from the landslide to the water creates outwardly radiating waves with maximum water particle velocity of up to around 1.6 m/s – 1.8 m/s (Fig. 7b, e). By the time 0.670 s, the wave has fully developed and is propagating away from the impact point exhibiting maximum water particle velocity of up to 2.0 m/s – 2.1 m/s. Concentric wave fronts are visible, moving outwards in all directions, with a colour gradient signifying the highest wave amplitude near the point of landslide entry, diminishing with distance (Fig. 7c, f).

3.2. Influence of landslide parameters on tsunami amplitude

In this section, we investigate the effects of various landslide parameters namely slide volume (V), water depth (h), slipe angle (α) and travel distance (D) on the maximum initial wave amplitude (a_{M}). Fig. 8 presents the outcome of these analyses. According to Fig. 8, the slide volume, slope angle, and travel distance exhibit a direct relationship with the wave amplitude, meaning that as these parameters increase, so does the amplitude. Conversely, water depth is inversely related to the maximum initial wave amplitude, suggesting that the deeper the water depth, the smaller the maximum wave amplitude will be (Fig. 8b).

Fig. 8a highlights the pronounced impact of slide volume on the a_{M}, demonstrating a direct correlation between the two variables. For instance, in the range of slide volumes we modelled (Fig. 8a), The smallest slide volume tested, measuring 0.10 × 10^{−3} m^{3}, generated a low initial wave amplitude (a_{M}= 0.0066 m) (Table 4). In contrast, the largest volume tested, 6.25 × 10^{−3} m^{3}, resulted in a significantly higher initial wave amplitude (a_{M}= 0.0319 m) (Table 4). The extremities of these results emphasize the slide volume’s paramount impact on wave amplitude, further elucidated by their positions as the smallest and largest a_{M} values across all conducted tests (Table 4). This is corroborated by findings from the literature (e.g., Murty, 2003), which align with the observed trend in our simulations.

The slope angle’s influence on a_{M} was smooth. A steady increase of wave amplitude was observed as the slope angle increased (Fig. 8c). In examining travel distance, an anomaly was identified. At a travel distance of 0.047 m, there was an unexpected dip in a_{M}, which deviates from the general increasing trend associated with longer travel distances. This singular instance could potentially be attributed to a numerical error. Beyond this point, the expected pattern of increasing a_{M} with longer travel distances resumes, suggesting that the anomaly at 0.047 m is an outlier in an otherwise consistent trend, and thus this single data point was overlooked while deriving the predictive equation. Regarding the inverse relationship between water depth and wave amplitude, our result (Fig. 8b) is consistent with previous reports by Fritz et al. (2003), (2004), and Watts et al. (2005).

The insights from Fig. 8 informed the architecture of the predictive equation in the next Section, with slide volume, travel distance, and slope angle being multiplicatively linked to wave amplitude underscoring their direct correlations with wave amplitude. Conversely, water depth is incorporated as a divisor, representing its inverse relationship with wave amplitude. This structure encapsulates the dynamics between the landslide parameters and their influence on the maximum initial wave amplitude as discussed in more detail in the next Section.

3.3. Predictive equation

Building on our sensitivity analysis of landslide parameters, as detailed in Section 3.2, and utilizing our nondimensional dataset, we have derived a new predictive equation as follows:(5)��/ℎ=0.015(tan�)0.10(�ℎ3)0.90(�ℎ)0.10(ℎ�)−0.11where, V is sliding volume, h is water depth, α is slope angle, and s is landslide thickness. It is important to note that this equation is valid only for subaerial solid-block landslide tsunamis as all our experiments were for this type of waves. The performance of this equation in predicting simulation data is demonstrated by the satisfactory alignment of data points around a 45° line, indicating its accuracy and reliability with regard to the experimental dataset (Fig. 9). The quality of fit between the dataset and Eq. (5) is 91 % indicating that Eq. (5) represents the dataset very well. Table 5 presents Eq. (5) alongside four other similar equations previously published. Two significant distinctions between our Eq. (5) and these others are: (i) Eq. (5) is derived from 3D experiments, whereas the other four equations are based on 2D experiments. (ii) Unlike the other equations, our Eq. (5) incorporates travel distance as an independent parameter.

Table 5. Performance comparison among our newly-developed equation and existing equations for estimating the maximum initial amplitude (a_{M}) of the 2018 Anak Krakatau subaerial landslide tsunami. Parameters: a_{M}, initial maximum wave amplitude; h, water depth; v_{s}, landslide velocity; V, slide volume; b_{s}, slide width; l_{s}, slide length; s, slide thickness; α, slope angle; and ����, volume of the final immersed landslide. We considered ����= V as the slide volume.

Geometrical and kinematic parameters of the 2018 Anak Krakatau subaerial landslide based on Heidarzadeh et al. (2020), Grilli et al. (2019) and Grilli et al. (2021): V=2.11 × 10^{7} m^{3}, h= 50 m; s= 114 m; α= 45°; l_{s}=1250 m; b_{s}= 2700 m; v_{s}=44.9 m/s; D= 2500 m; a_{M}= 100 m −150 m.⁎⁎

a_{M}= An average value of a_{M} = 134 m is considered in this study.⁎⁎⁎

The equation of Bolin et al. (2014) is based on the reformatted one reported by Lindstrøm (2016).⁎⁎⁎⁎

Error is calculated using Eq. (1), where the calculated a_{M} is assumed as the simulated value.

Additionally, we evaluated the performance of this equation using the real-world data from the 2018 Anak Krakatau subaerial landslide tsunami. Based on previous studies (Heidarzadeh et al., 2020; Grilli et al., 2019, 2021), we were able to provide a list of parameters for the subaerial landslide and associated tsunami for the 2018 Anak Krakatau event (see footnote of Table 5). We note that the data of the 2018 Anak Krakatau event was not used while deriving Eq. (5). The results indicate that Eq. (5) predicts the initial amplitude of the 2018 Anak Krakatau tsunami as being 130 m indicating an error of 2.9 % compared to the reported average amplitude of 134 m for this event. This performance indicates an improvement compared to the previous equation reported by Sabeti and Heidarzadeh (2022a) (Table 5). In contrast, the equations from Robbe-Saule et al. (2021) and Bolin et al. (2014) demonstrate higher discrepancies of 4200 % and 77 %, respectively (Table 5). Although Noda’s (1970) equation reproduces the tsunami amplitude of 134 m accurately (Table 5), it is crucial to consider its limitations, notably not accounting for parameters such as slope angle and travel distance.

It is essential to recognize that both travel distance and slope angle significantly affect wave amplitude. In our model, captured in Eq. (5), we integrate the slope angle (α) through the tangent function, i.e., tan α. This choice diverges from traditional physical interpretations that often employ the cosine or sine function (e.g., Heller and Hager, 2014; Watts et al., 2003). We opted for the tangent function because it more effectively reflects the direct impact of slope steepness on wave generation, yielding superior estimations compared to conventional methods.

The significance of this study lies in its application of both physical and numerical 3D experiments and the derivation of a predictive equation based on 3D results. Prior research, e.g. Heller et al. (2016), has reported notable discrepancies between 2D and 3D wave amplitudes, highlighting the important role of 3D experiments. It is worth noting that the suitability of applying an equation derived from either 2D or 3D data depends on the specific geometry and characteristics inherent in the problem being addressed. For instance, in the case of a long, narrow dam reservoir, an equation derived from 2D data would likely be more suitable. In such contexts, the primary dynamics of interest such as flow patterns and potential wave propagation are predominantly two-dimensional, occurring along the length and depth of the reservoir. This simplification to 2D for narrow dam reservoirs allows for more accurate modelling of these dynamics.

This study specifically investigates waves initiated by landslides, focusing on those characterized as solid blocks instead of granular flows, with slope angles confined to a range of 25° to 60°. We acknowledge the additional complexities encountered in real-world scenarios, such as dynamic density and velocity of landslides, which could affect the estimations. The developed equation in this study is specifically designed to predict the maximum initial amplitude of tsunamis for the aforementioned specified ranges and types of landslides.

4. Conclusions

Both physical and numerical experiments were undertaken in a 3D wave basin to study solid-block landslide-generated waves and to formulate a predictive equation for their maximum initial wave amplitude. At the beginning, two physical experiments were performed to validate and calibrate a 3D numerical model, which was subsequently utilized to generate 100 experiments by varying different landslide parameters. The generated database was then used to derive a predictive equation for the maximum initial wave amplitude of landslide tsunamis. The main features and outcomes are:

•The predictive equation of this study is exclusively derived from 3D data and exhibits a fitting quality of 91 % when applied to the database.

•For the first time, landslide travel distance was considered in the predictive equation. This inclusion provides more accuracy and flexibility for applying the equation.

•To further evaluate the performance of the predictive equation, it was applied to a real-world subaerial landslide tsunami (i.e., the 2018 Anak Krakatau event) and delivered satisfactory performance.

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

RS is supported by the Leverhulme Trust Grant No. RPG-2022-306. MH is funded by open funding of State Key Lab of Hydraulics and Mountain River Engineering, Sichuan University, grant number SKHL2101. We acknowledge University of Bath Institutional Open Access Fund. MH is also funded by the Great Britain Sasakawa Foundation grant no. 6217 (awarded in 2023).

Acknowledgements

Authors are sincerely grateful to the laboratory technician team, particularly Mr William Bazeley, at the Faculty of Engineering, University of Bath for their support during the laboratory physical modelling of this research. We appreciate the valuable insights provided by Mr. Brian Fox (Senior CFD Engineer at Flow Science, Inc.) regarding air entrainment modelling in FLOW-3D HYDRO. We acknowledge University of Bath Institutional Open Access Fund.

Data availability

All data used in this study are given in the body of the article.

References

Baptista et al., 2020M.A. Baptista, J.M. Miranda, R. Omira, I. El-HussainStudy of the 24 September 2013 Oman Sea tsunami using linear shallow water inversionArab. J. Geosci., 13 (14) (2020), p. 606View in ScopusGoogle Scholar

Bolin et al., 2014H. Bolin, Y. Yueping, C. Xiaoting, L. Guangning, W. Sichang, J. ZhibingExperimental modeling of tsunamis generated by subaerial landslides: two case studies of the Three Gorges Reservoir, ChinaEnviron. Earth Sci., 71 (2014), pp. 3813-3825View at publisher CrossRefView in ScopusGoogle Scholar

Borrero et al., 2020J.C. Borrero, T. Solihuddin, H.M. Fritz, P.J. Lynett, G.S. Prasetya, V. Skanavis, S. Husrin, Kushendratno, W. Kongko, D.C. Istiyanto, A. DaulatField survey and numerical modelling of the December 22, 2018, Anak Krakatau TsunamiPure Appl. Geophys, 177 (2020), pp. 2457-2475View at publisher CrossRefView in ScopusGoogle Scholar

Ersoy et al., 2019H. Ersoy, M. Karahan, K. Gelişli, A. Akgün, T. Anılan, M.O. Sünnetci, B.K. YahşiModelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulationEng. Geol., 249 (2019), pp. 112-128View PDFView articleView in ScopusGoogle Scholar

Fritz et al., 2004H.M. Fritz, W.H. Hager, H.E. MinorNear field characteristics of landslide generated impulse wavesJ. Waterw. Port Coastal Ocean Eng., 130 (6) (2004), pp. 287-302View in ScopusGoogle Scholar

Geertsema et al., 2022M. Geertsema, B. Menounos, G. Bullard, J.L. Carrivick, J.J. Clague, C. Dai, D. Donati, G. Ekstrom, J.M. Jackson, P. Lynett, M. PichierriThe 28 Nov 2020 landslide, tsunami, and outburst flood – a hazard cascade associated with rapid deglaciation at Elliot Creek, BC, CanadaGeophys. Res. Lett., 49 (6) (2022)Google Scholar

Grilli et al., 2021S.T. Grilli, C. Zhang, J.T. Kirby, A.R. Grilli, D.R. Tappin, S.F.L. Watt, J.E. Hunt, A. Novellino, S. Engwell, M.E.M. Nurshal, M. AbdurrachmanModeling of the Dec. 22nd, 2018, Anak Krakatau volcano lateral collapse and tsunami based on recent field surveys: comparison with observed tsunami impactMar. Geol., 440 (2021), Article 106566View PDFView articleView in ScopusGoogle Scholar

Grilli et al., 2019S.T. Grilli, D.R. Tappin, S. Carey, S.F. Watt, S.N. Ward, A.R. Grilli, S.L. Engwell, C. Zhang, J.T. Kirby, L. Schambach, M. MuinModelling of the tsunami from the Dec. 22, 2018, lateral collapse of Anak Krakatau volcano in the Sunda Straits, IndonesiaSci. Rep., 9 (1) (2019), p. 11946 View at publisher This article is free to access.View in ScopusGoogle Scholar

Heidarzadeh et al., 2023M. Heidarzadeh, A.R. Gusman, I.E. MuliaThe landslide source of the eastern Mediterranean tsunami on 6 Feb 2023 following the Mw 7.8 Kahramanmaraş (Türkiye) inland earthquakeGeosci. Lett., 10 (1) (2023), p. 50 View at publisher This article is free to access.View in ScopusGoogle Scholar

Heidarzadeh et al., 2020M. Heidarzadeh, T. Ishibe, O. Sandanbata, A. Muhari, A.B. WijanartoNumerical modeling of the subaerial landslide source of the 22 Dec 2018 Anak Krakatoa volcanic tsunami, IndonesiaOcean. Eng., 195 (2020), Article 106733View PDFView articleView in ScopusGoogle Scholar

Heidarzadeh et al., 2017M. Heidarzadeh, T. Harada, K. Satake, T. Ishibe, T. TakagawaTsunamis from strike-slip earthquakes in the Wharton Basin, northeast Indian Ocean: March 2016 M w7. 8 event and its relationship with the April 2012 M w 8.6 eventGeophys. J. Int., 211 (3) (2017), pp. 1601-1612, 10.1093/gji/ggx395 View at publisher This article is free to access.View in ScopusGoogle Scholar

Heller et al., 2016V. Heller, M. Bruggemann, J. Spinneken, B.D. RogersComposite modelling of subaerial landslide–tsunamis in different water body geometries and novel insight into slide and wave kinematicsCoastal Eng., 109 (2016), pp. 20-41View PDFView articleView in ScopusGoogle Scholar

Hirt, 2003C.W. HirtModeling Turbulent Entrainment of Air at a Free SurfaceFlow Science, Inc (2003)Google Scholar

Hu et al., 2023G. Hu, K. Satake, L. Li, P. DuOrigins of the tsunami following the 2023 Turkey–Syria earthquakeGeophys. Res. Lett., 50 (18) (2023)Google Scholar

Hu et al., 2022G. Hu, W. Feng, Y. Wang, L. Li, X. He, Ç. Karakaş, Y. TianSource characteristics and exacerbated tsunami hazard of the 2020 Mw 6.9 Samos earthquake in Eastern Aegean SeaJ. Geophys. Res., 127 (5) (2022)e2022JB023961Google Scholar

Kim et al., 2020G.B. Kim, W. Cheng, R.C. Sunny, J.J. Horrillo, B.C. McFall, F. Mohammed, H.M. Fritz, J. Beget, Z. KowalikThree-dimensional landslide generated tsunamis: numerical and physical model comparisonsLandslides, 17 (2020), pp. 1145-1161View at publisher CrossRefView in ScopusGoogle Scholar

Kirby et al., 2022J.T. Kirby, S.T. Grilli, J. Horrillo, P.L.F. Liu, D. Nicolsky, S. Abadie, B. Ataie-Ashtiani, M.J. Castro, L. Clous, C. Escalante, I. Fine, J.M. González-Vida, F. Løvholt, P. Lynett, G. Ma, J. Macías, S. Ortega, F. Shi, S. Yavari-Ramshe, C. ZhangValidation and inter-comparison of models for landslide tsunami generationOcean Model., 170 (2022), Article 101943View PDFView articleView in ScopusGoogle Scholar

McFall and Fritz, 2016B.C. McFall, H.M. FritzPhysical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopesProc. R. Soc. A. Math. Phys. Eng. Sci., 472 (2188) (2016), Article 20160052View at publisher CrossRefGoogle Scholar

Mulia et al., 2020aI.E. Mulia, S. Watada, T.C. Ho, K. Satake, Y. Wang, A. AditiyaSimulation of the 2018 tsunami due to the flank failure of Anak Krakatau volcano and implication for future observing systemsGeophys. Res. Lett., 47 (14) (2020), Article e2020GL087334 View at publisher This article is free to access.View in ScopusGoogle Scholar

Mulia et al., 2020bI.E. Mulia, S. Watada, T.C. Ho, K. Satake, Y. Wang, A. AditiyaSimulation of the 2018 tsunami due to the flank failure of Anak Krakatau volcano and implication for future observing systemsGeophys. Res. Lett., 47 (14) (2020)Google Scholar

Mulligan et al., 2020R.P. Mulligan, A. Franci, M.A. Celigueta, W.A. TakeSimulations of landslide wave generation and propagation using the particle finite element methodJ. Geophys. Res. Oceans, 125 (6) (2020)Google Scholar

Ren et al., 2020Z. Ren, Y. Wang, P. Wang, J. Hou, Y. Gao, L. ZhaoNumerical study of the triggering mechanism of the 2018 Anak Krakatau tsunami: eruption or collapsed landslide?Nat. Hazards, 102 (2020), pp. 1-13View in ScopusGoogle Scholar

Robbe-Saule et al., 2021M. Robbe-Saule, C. Morize, Y. Bertho, A. Sauret, A. Hildenbrand, P. GondretFrom laboratory experiments to geophysical tsunamis generated by subaerial landslidesSci. Rep., 11 (1) (2021), pp. 1-9Google Scholar

Sabeti et al. 2024R. Sabeti, M. Heidarzadeh, A. Romano, G. Barajas Ojeda, J.L. LaraThree-Dimensional Simulations of Subaerial Landslide-Generated Waves: Comparing OpenFOAM and FLOW-3D HYDRO ModelsPure Appl. Geophys. (2024), 10.1007/s00024-024-03443-x View at publisher This article is free to access.Google Scholar

Sorensen, 2010R.M. SorensenBasic Coastal Engineering(3rd edition), Springer Science & Business Media (2010), p. 324Google Scholar

Syamsidik et al., 2020Benazir Syamsidik, M. Luthfi, A. Suppasri, L.K. ComfortThe 22 December 2018 Mount Anak Krakatau volcanogenic tsunami on Sunda Strait coasts, Indonesia: tsunami and damage characteristicsNat. Hazards Earth Syst. Sci., 20 (2) (2020), pp. 549-565View in ScopusGoogle Scholar

Synolakis et al., 2002C.E. Synolakis, J.P. Bardet, J.C. Borrero, H.L. Davies, E.A. Okal, E.A. Silver, D.R. TappinThe slump origin of the 1998 Papua New Guinea tsunamiProc. R. Soc. Lond. A Math. Phys. Eng. Sci., 45 (2002), pp. 763-789View in ScopusGoogle Scholar

Wang et al., 2022Y. Wang, H.Y. Su, Z. Ren, Y. MaSource properties and resonance characteristics of the tsunami generated by the 2021 M 8.2 Alaska earthquakeJ. Geophys. Res. Oceans, 127 (3) (2022), Article e2021JC018308 View at publisher This article is free to access.View in ScopusGoogle Scholar

Watts et al., 2005P. Watts, S.T. Grilli, D.R. Tappin, G.J. FryerTsunami generation by submarine mass failure. II: predictive equations and case studiesJ. Waterw. Port Coast. Ocean Eng., 131 (6) (2005), pp. 298-310View in ScopusGoogle Scholar

Watts, 1998P. WattsWavemaker curves for tsunamis generated by underwater landslidesJ. Waterw. Port. Coast. Ocean. Eng., 124 (3) (1998), pp. 127-137Google Scholar

Zhang et al., 2021C. Zhang, J.T. Kirby, F. Shi, G. Ma, S.T. GrilliA two-layer non-hydrostatic landslide model for tsunami generation on irregular bathymetry. 2. Numerical discretization and model validationOcean Model., 160 (2021), Article 101769View PDFView articleView in ScopusGoogle Scholar

Minxi Zhang^{a,b}, Hanyan Zhao^{c}, Dongliang Zhao ^{d}, Shaolin Yue^{e}, Huan Zhou^{e},Xudong Zhao^{a} , Carlo Gualtieri^{f}, Guoliang Yu^{a,b,∗} ^{a }SKLOE, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China ^{b }KLMIES, MOE, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China ^{c }Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510610, China ^{d }CCCC Second Harbor Engineering Co., Ltd., Wuhan 430040, China ^{e }CCCC Road & Bridge Special Engineering Co., Ltd, Wuhan 430071, China ^{f }Department of Structures for Engineering and Architecture, University of Naples Federico II, Italy

Abstract

Local scour at a pile or pier in current or wave environments threats the safety of the upper structure all over the world. The application of a net-like matt as a scour protection cover at the pile or pier was proposed. The matt weakens and diffuses the flow in the local scour pit and thus reduces local scour while enhances sediment deposition. Numerical simulations were carried out to investigate the flow at the pile covered by the matt. The simulation results were used to optimize the thickness dt (2.6d95 ∼ 17.9d95) and opening size dn (7.7d95 ∼ 28.2d95) of the matt. It was found that the matt significantly reduced the local velocity and dissipated the vortex at the pile, substantially reduced the extent of local scour. The smaller the opening size of the matt, the more effective was the flow diffusion at the bed, and smaller bed shear stress was observed at the pile. For the flow conditions considered in this study, a matt with a relative thickness of T = 7.7 and relative opening size of S = 7.7 could be effective in scour protection.

조류 또는 파도 환경에서 파일이나 부두의 국지적인 세굴은 전 세계적으로 상부 구조물의 안전을 위협합니다. 파일이나 교각의 세굴 방지 덮개로 그물 모양의 매트를 적용하는 것이 제안되었습니다.

매트는 국부 세굴 구덩이의 흐름을 약화시키고 확산시켜 국부 세굴을 감소시키는 동시에 퇴적물 퇴적을 향상시킵니다. 매트로 덮인 파일의 흐름을 조사하기 위해 수치 시뮬레이션이 수행되었습니다.

시뮬레이션 결과는 매트의 두께 dt(2.6d95 ∼ 17.9d95)와 개구부 크기 dn(7.7d95 ∼ 28.2d95)을 최적화하는 데 사용되었습니다. 매트는 국부 속도를 크게 감소시키고 말뚝의 와류를 소멸시켜 국부 세굴 정도를 크게 감소시키는 것으로 나타났습니다.

매트의 개구부 크기가 작을수록 층에서의 흐름 확산이 더 효과적이었으며 파일에서 더 작은 층 전단 응력이 관찰되었습니다.

본 연구에서 고려한 유동 조건의 경우 상대 두께 T = 7.7, 상대 개구부 크기 S = 7.7을 갖는 매트가 세굴 방지에 효과적일 수 있습니다.

Keywords

Numerical simulation, Pile foundation, Local scour, Protective measure, Net-like matt

[1] C. He, Mod. Transp. Technol. 17 (3) (2020) 46–59 in Chinese. [2] X. Wen, D. Zhang, J. Tianjin Univ. 54 (10) (2021) 998–1007 (Science and Technology)in Chinese. [3] M. Zhang, H. Sun, W. Yao, G. Yu, Ocean Eng. 265 (2020) 112652, doi:10.1016/j. oceaneng.2022.112652. [4] K. Wardhana, F.C. Hadipriono, J. Perform. Constr. Fac. 17 (3) (2003) 144–150, doi:10.1061/(ASCE)0887-3828(2003)17:3(144). [5] R. Ettema, G. Constantinescu, B.W. Melville, J. Hydraul. Eng. 143 (9) (2017) 03117006, doi:10.1061/(ASCE)HY.1943-7900.0001330. [6] C. Valela, C.D. Rennie, I. Nistor, Int. J. Sediment Res. 37 (1) (2021) 37–46, doi:10.1016/j.ijsrc.2021.04.004. [7] B.W. Melville, A.J. Sutherland, J. Hydraul. Eng. 114 (10) (1988) 1210–1226, doi:10.1061/(ASCE)0733-9429(1988)114:10(1210). [8] E.V. Richardson, S.R. Davis, Evaluating Scour At Bridges, 4th ed., United States Department of Transportation, Federal Highway Administration, Washington, DC., 2001. [9] D.M. Sheppard, B. Melville, H. Demir, J. Hydraul. Eng. 140 (1) (2014) 14–23, doi:10.1061/(ASCE)HY.1943-7900.0000800. [10] A.O. Aksoy, G. Bombar, T. Arkis, M.S. Guney, J. Hydrol. Hydromech. 65 (1) (2017) 26–34. [11] D.T. Bui, A. Shirzadi, A. Amini, et al., Sustainability 12 (3) (2020) 1063, doi:10. 3390/su12031063. [12] B.M. Sumer, J. Fredsoe, The Mechanics of Scour in Marine Environments. World Advanced Series on Ocean Engineering, 17, World Scientific, Singapore, 2002. [13] J. Unger, W.H. Hager, Exp. Fluids 42 (1) (2007) 1–19. [14] G. Kirkil, S.G. Constantinescu, R. Ettema, J. Hydraul. Eng. 134 (5) (2008) 82–84, doi:10.1061/(ASCE)0733-9429(2008)134:5(572). [15] B. Dargahi, J. Hydraul. Eng. 116 (10) (1990) 1197–1214. [16] A. Bestawy, T. Eltahawy, A. Alsaluli, M. Alqurashi, Water Supply 20 (3) (2020) 1006–1015, doi:10.2166/ws.2020.022. [17] Y.M. Chiew, J. Hydraul. Eng. 118 (9) (1992) 1260–1269. [18] D. Bertoldi, R. Kilgore, in: Hydraulic Engineering ’93, ASCE, San Francisco, California, United States, 1993, pp. 1385–1390. [19] Y.M. Chiew, J. Hydraul. Eng. 121 (9) (1997) 635–642. [20] C.S. Lauchlan, B.W. Melville, J. Hydraul. Eng. 127 (5) (2001) 412–418, doi:10. 1061/(ASCE)0733-9429(2001)127:5(412). [21] P.F. Lagasse, P.E. Clopper, L.W. Zevenbergen, L.G. Girard, National Cooperative Highway Research Program (NCHRPReport 593), Countermeasures to protect bridge piers from scour, Washington, DC, NCHRP, 2007. [22] S. Jiang, Z. Zhou, J. Ou, J. Sediment Res. (4) (2013) 63–67 in Chinese. [23] A. Galan, G. Simarro, G. Sanchez-Serrano, J. Hydraul. Eng. 141 (6) (2015) 06015004, doi:10.1061/(ASCE)HY.1943-7900.0001003. [24] Z. Zhang, H. Ding, J. Liu, Ocean Eng. 33 (2) (2015) 77–83 in Chinese. [25] C. Valela, C.N. Whittaker, C.D. Rennie, I. Nistor, B.W. Melville, J. Hydraul. Eng. 148 (3) (2022) 04022002 10.1061/%28ASCE%29HY.1943-7900.0001967. [26] B.W. Melville, A.C. Hadfield, J. Hydraul. Eng. 6 (2) (1999) 1221–1224, doi:10. 1061/(ASCE)0733-9429(1999)125:11(1221). [27] V. Kumar, K.G. Rangaraju, N. Vittal, J. Hydraul. Eng. 125 (12) (1999) 1302–1305. [28] A.M. Yasser, K.S. Yasser, M.A. Abdel-Azim, Alex. Eng. J. 54 (2) (2015) 197–203, doi:10.1016/j.aej.2015.03.004. [29] S. Khaple, P.R. Hanmaiahgari, R. Gaudio, S. Dey, Acta Geophys. 65 (2017) 957– 975, doi:10.1007/s11600-017-0084-z. [30] C. Valela, I. Nistor, C.D. Rennie, in: Proceedings of the 6th International Disaster Mitigation Specialty Conference, Fredericton, Canada, Canadian Society for Civil Engineering, 2018, pp. 235–244. [31] A. Tafarojnoruz, R. Gaudio, F. Calomino, J. Hydraul. Eng. 138 (3) (2012) 297– 305, doi:10.1061/(ASCE)HY.1943-7900.0000512. [32] H. Tang, S. Fang, Y. Zhou, K. Cai, Y.M. Chiew, S.Y. Lim, N.S. Cheng, in: Proceedings of the 2nd International Conference Scour and Erosion (ICSE-2), Singapore. Singapore, Nanyang Technological University, 2004. [33] W. Zhang, Y. Li, X. Wang, Z. Sun, J. Sichuan Univ. 06 (2005) 34–40 (Engineering Science Edition)in Chinese. [34] S. Yang, B. Shi, Trans. Oceanol. Limnol. 5 (2017) 43–47 in Chinese. [35] H. Wang, F. Si, G. Lou, W. Yang, G. Yu, J. Waterw. Port Coast. Ocean Eng. 141 (1) (2015) 04014030, doi:10.1061/(ASCE)WW.1943-5460.0000270. [36] L.D. Meyer, S.M. Dabney, W.C. Harmon, Trans. ASAE 38 (3) (1995) 809–815. [37] G. Spyreas, B.W. Wilm, A.E. Plocher, D.M. Ketzner, J.W. Matthews, J.L. Ellis, E.J. Heske, Biol. Invasions 12 (5) (2010) 1253–1267, doi:10.1007/ s10530-009-9544-y. [38] T. Lambrechts, S. François, S. Lutts, R. Muñoz-Carpena, C.L. Bielders, J. Hydrol. 511 (2014) 800–810, doi:10.1016/j.jhydrol.2014.02.030. [39] G. Yu, Dynamic Embedded Anchor with High Frequency Micro Amplitude Vibrations. CN patent No: ZL200810038546.0, 2008. [40] X. Chen, M. Zhang, G. Yu, Ocean Eng. 236 (2021) 109315, doi:10.1016/j. oceaneng.2021.109315. [41] F. Gumgum, M.S. Guney, in: Proceedings of the 6th International Conference Engineering and Natural Sciences (ICENS), Serbia, Belgrade, 2020. [42] H. Zhao, S. Yue, H. Zhou, M. Zhang, G. Yu, Ocean Eng. 40 (5) (2022) 111–120 in Chinese. [43] B. Blocken, C. Gualtieri, Environ. Modell. Softw. 33 (2012) 1–22, doi:10.1016/j. envsoft.2012.02.001. [44] N.D. Bennett, B.F. Croke, G. Guariso, et al., Modell. Softw. 40 (2013) 1–20, doi:10.1016/j.envsoft.2012.09.011. [45] X. Zhao, Effectiveness and Mechanism of Lattice On Sedimentation and Anti-Erosion of Local Scour Hole At Piers, Shanghai Jiao Tong University, Shanghai, China, 2023. [46] M. Zhang, G. Yu, Water Resour. Res. 53 (9) (2017) 7798–7815, doi:10.1002/ 2017WR021066.

Tungsten carbide was manufactured by picosecond laser in this study. Shapes of the ablated craters evolved from parabolic-like (less than 10 pulses) to Gaussian-like (more than 500 pulses) as the pulse number increased. The shape changes were closely associated with the discontinuous diameter expansion of ablated crater. To explain these phenomena, two thresholds were identified: an upper threshold of 0.129 J/cm^{2} and a lower threshold of 0.099 J/cm^{2}. When the laser energy exceeded the upper threshold, ablation occurred under the laser-energy-dominated mode. When the laser energy fell between the upper and lower thresholds, ablation occurred under the cumulative-effect-dominated mode. The transition of ablation mode contributed to the diameter expansion and shape change. In addition, elemental composition varied significantly at the ablated crater and heat-affected zone (HAZ), which were related to the degrees of reactions that occurred at different distances from the laser. Finally, surface hardness decreased from base material (32.52 GPa) to edge of crater (11.59 GPa) due to the escape of unpaired interstitial C atoms from the grain boundaries.

References

1Sun JL, Zhao J, Huang ZF, Yan K, Shen X, Xing J, et al. A review on binderless tungsten carbide: development and application. Nano-Micro Lett. 2020; 12(1): 37.ViewPubMedWeb of Science®Google Scholar

2Katiyar PK. A comprehensive review on synergy effect between corrosion and wear of cemented tungsten carbide tool bits: a mechanistic approach. Int J Refract Met Hard Mat. 2020; 92: 18.ViewCASWeb of Science®Google Scholar

3Sun JL, Zhao J, Gong F, Ni XY, Li ZL. Development and application of WC-based alloys bonded with alternative binder phase. Crit Rev Solid State Mat Sci. 2019; 44(3): 211–238.ViewCASWeb of Science®Google Scholar

4Lopez JML, Bakrania A, Coupland J, Marimuthu S. Droplet assisted laser micromachining of hard ceramics. J Eur Ceram Soc. 2016; 36(11): 2689–2694.ViewWeb of Science®Google Scholar

5Chen FJ, Yin SH, Huang H, Homori H, Wang Y, Fan YF, et al. Profile error compensation in ultra-precision grinding of aspheric surfaces with on-machine measurement. Int J Mach Tools Manuf. 2010; 50(5): 480–486.ViewWeb of Science®Google Scholar

6Guo B, Zhao QL. On-machine dry electric discharge truing of diamond wheels for micro-structured surfaces grinding. Int J Mach Tools Manuf. 2015; 88: 62–70.ViewWeb of Science®Google Scholar

7Sciti D, Zoli L, Silvestroni L, Cecere A, Di Martino GD, Savino R. Design, fabrication and high velocity oxy-fuel torch tests of a Cf-ZrB_{2}-fiber nozzle to evaluate its potential in rocket motors. Mater Des. 2016; 109: 709–717.ViewCASWeb of Science®Google Scholar

8Jiang G, Minhao G, Zhiguang Z, Xiaohua L, Nai MLS, Jun W. On the machining of selective laser melting CoCrFeMnNi high-entropy alloy. Mater Des. 2018; 153: 211–220.ViewWeb of Science®Google Scholar

10Ali B, Litvinyuk IV, Rybachuk M. Femtosecond laser micromachining of diamond: current research status, applications and challenges. Carbon. 2021; 179: 209–226.ViewCASWeb of Science®Google Scholar

11Sansone M, De Bonis A, Santagata A, Rau JV, Galasso A, Teghil R. Pulsed laser ablation and deposition of niobium carbide. Appl Surf Sci. 2016; 374: 112–116.ViewCASWeb of Science®Google Scholar

12Wang HP, Guan YC, Zheng HY, Hong MH. Controllable fabrication of metallic micro/nano hybrid structuring surface for antireflection by picosecond laser direct writing. Appl Surf Sci. 2019; 471: 347–354.ViewCASWeb of Science®Google Scholar

13Jiangyou L, Zhijian H, Caixia Z, Xiaozhu X, Zuo C, Peiyang Z, et al. Hierarchical micro- and nanostructures induced by nanosecond laser on copper for superhydrophobicity, ultralow water adhesion and frost resistance. Mater Des. 2018; 155: 185–193.ViewWeb of Science®Google Scholar

14Zemaitis A, Gecys P, Barkauskas M, Raciukaitis G, Gedvilas M. Highly-efficient laser ablation of copper by bursts of ultrashort tuneable (fs-ps) pulses. Sci Rep. 2019; 9: 8.ViewPubMedWeb of Science®Google Scholar

15Basler C, Brandenburg A, Michalik K, Mory D. Comparison of laser pulse duration for the spatially resolved measurement of coating thickness with laser-induced breakdown spectroscopy. Sensors. 2019; 19(19): 10.ViewWeb of Science®Google Scholar

16Qin Z, Xiang H, Liu J, Zeng X. High-performance oil-water separation polytetrafluoroethylene membranes prepared by picosecond laser direct ablation and drilling. Mater Des. 2019; 184:108200.ViewCASWeb of Science®Google Scholar

17Eberle G, Wegener K. Ablation study of WC and PCD composites using 10 picosecond and 1 nanosecond pulse durations at green and infrared wavelengths. In: 8th International Conference on Laser Assisted Net Shape Engineering (LANE); 2014 Sep 08–11, Furth, Germany. Amsterdam: Elsevier Science; 2014. p. 951–962.Google Scholar

18Boerner P, Zandonadi G, Eberle G, Wegener K. Experimental and modelling investigations into the laser ablation with picosecond pulses at second harmonics. In: Conference on laser-based micro- and nanoprocessing IX; 2015 Feb 10–12 San Francisco, CA. Bellingham: SPIE, the international society for optics and photonics; 2015. p. 19–31.Google Scholar

19Urbina JPC, Daniel C, Emmelmann C. Experimental and analytical investigation of cemented tungsten carbide ultra-short pulse laser ablation. In: 7th International WLT conference on Lasers in Manufacturing (LiM), 2013 May 13–16, Munich, Germany. Amsterdam: Elsevier Science; 2013. p. 752–758.Google Scholar

20Stankevic V, Cermak A, Mikalauskas S, Kozmin P, Indrisiunas S, Raciukaitis G. Processing of ultra-hard materials with picosecond pulses: from research work to industrial applications. J Laser Appl. 2018; 30(3): 7.ViewWeb of Science®Google Scholar

21Lickschat P, Metzner D, Weissmantel S. Fundamental investigations of ultrashort pulsed laser ablation on stainless steel and cemented tungsten carbide. Int J Adv Manuf Technol. 2020; 109(3–4): 1167–1175.ViewWeb of Science®Google Scholar

22Ouyang JL, Mativenga PT, Liu Z, Li L. Energy consumption and process characteristics of picosecond laser de-coating of cutting tools. J Cleaner Prod. 2021; 290: 10.ViewWeb of Science®Google Scholar

23Metzner D, Lickschat P, Weissmantel S. Laser micromachining of silicon and cemented tungsten carbide using picosecond laser pulses in burst mode: ablation mechanisms and heat accumulation. Appl Phys A-Mater Sci Process. 2019; 125(7): 8.ViewWeb of Science®Google Scholar

24Marimuthu S, Dunleavey J, Smith B. Picosecond laser machining of tungsten carbide. Int J Refract Met Hard Mat. 2020; 92: 9.ViewWeb of Science®Google Scholar

25Mensink K, Penilla EH, Martinez-Torres P, Cuando-Espitia N, Mathaudhu S, Aguilar G. High repetition rate femtosecond laser heat accumulation and ablation thresholds in cobalt-binder and binderless tungsten carbides. J Mater Process Technol. 2019; 266: 388–396.ViewCASWeb of Science®Google Scholar

26Miley G, Osman F, Hora H, Badziak J, Rohlena K, Jungwirth K, et al. Plasma block acceleration by ps-TW laser irradiation. In High-Power Laser Ablation V: SPIE; 2004. p. 973–986.Google Scholar

27Alidokht SA, Yue S, Chromik RR. Effect of WC morphology on dry sliding wear behavior of cold-sprayed Ni–WC composite coatings. Surf Coat Technol. 2019; 357: 849–863.ViewCASWeb of Science®Google Scholar

28Gao D, Li YH. An improved Gaussian laser beam probability distribution simulation based on Monte Carlo method. Mod Phys Lett B. 2020; 34(36): 9.ViewWeb of Science®Google Scholar

29Garcia-Lechuga M, Puerto D, Fuentes-Edfuf Y, Solis J, Siegel J. Ultrafast moving-spot microscopy: birth and growth of laser-induced periodic surface structures. ACS Photonics. 2016; 3(10): 1961–1967.ViewCASWeb of Science®Google Scholar

30Bashir S, Rafique MS, Nathala CSR, Ajami A, Husinsky W. SEM and Raman spectroscopy analyses of laser-induced periodic surface structures grown by ethanol-assisted femtosecond laser ablation of chromium. Radiat Eff Defects Solids. 2015; 170(5): 414–428.ViewCASWeb of Science®Google Scholar

31Erfanmanesh M, Abdollah-Pour H, Mohammadian-Semnani H, Shoja-Razavi R. Kinetics and oxidation behavior of laser clad WC–Co and Ni/WC–Co coatings. Ceram Int. 2018; 44(11): 12805–12814.ViewCASWeb of Science®Google Scholar

32Petisme MVG, Johansson SAE, Wahnstrom G. A computational study of interfaces in WC–Co cemented carbides. Model Simul Mater Sci Eng. 2015; 23(4): 29.ViewWeb of Science®Google Scholar

33Kornaus K, Raczka M, Gubernat A, Zientara D. Pressureless sintering of binderless tungsten carbide. J Eur Ceram Soc. 2017; 37(15): 4567–4576.ViewCASWeb of Science®Google Scholar

34Kong XS, You YW, Xia JH, Liu CS, Fang QF, Luo GN, et al. First principles study of intrinsic defects in hexagonal tungsten carbide. J Nucl Mater. 2010; 406(3): 323–329.ViewCASWeb of Science®Google Scholar

35Wu X, Shen JY, Jiang F, Wu HR, Li L. Study on the oxidation of WC–Co cemented carbide under different conditions. Int J Refract Met Hard Mat. 2021; 94: 8.ViewWeb of Science®Google Scholar

37Juslin N, Erhart P, Traskelin P, Nord J, Henriksson KOE, Nordlund K, et al. Analytical interatomic potential for modeling nonequilibrium processes in the W–C–H system. J Appl Phys. 2005; 98(12): 12.ViewWeb of Science®Google Scholar

38Sevy A, Huffaker RF, Morse MD. Bond dissociation energies of tungsten molecules: WC, WSi, WS, WSe, and WCl. J Phys Chem A. 2017; 121(49): 9446–9457.ViewCASPubMedWeb of Science®Google Scholar

39Burr PA, Oliver SX. Formation and migration of point defects in tungsten carbide: unveiling the sluggish bulk self-diffusivity of WC. J Eur Ceram Soc. 2019; 39(2–3): 165–172.ViewCASWeb of Science®Google Scholar

40Tahara M, Kim HY, Inamura T, Hosoda H, Miyazaki S. Role of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Nb alloy. J Alloys Compd. 2013; 577: S404–S407.ViewCASWeb of Science®Google Scholar

This work investigates numerically a local scour moves in irregular waves around tripods. It is constructed and proven to use the numerical model of the seabed-tripodfluid with an RNG k turbulence model. The present numerical model then examines the flow velocity distribution and scour characteristics. After that, the suggested computational model Flow-3D is a useful tool for analyzing and forecasting the maximum scour development and the flow field in random waves around tripods. The scour values affecting the foundations of the tripod must be studied and calculated, as this phenomenon directly and negatively affects the structure of the structure and its design life. The lower diagonal braces and the main column act as blockages, increasing the flow accelerations underneath them. This increases the number of particles that are moved, which in turn creates strong scouring in the area. The numerical model has a good agreement with the experimental model, with a maximum percentage of error of 10% between the experimental and numerical models. In addition, Based on dimensional analysis parameters, an empirical equation has been devised to forecast scour depth with flow depth, median size ratio, Keulegan-Carpenter (Kc), Froud number flow, and wave velocity that the results obtained in this research at various flow velocities and flow depths demonstrated that the maximum scour depth rate depended on wave height with rising velocities and decreasing particle sizes (d50) and the scour depth attains its steady-current value for Vw < 0.75. As the Froude number rises, the maximum scour depth will be large.

Formation of a quasi-steady molten pool is one of the necessary conditions for achieving excellent quality in many laser processes. The influences of distribution characteristics of powder sizes on quasi-stability of the molten pool shape during single-track powder bed fusion-laser beam (PBF-LB) of molybdenum and the underlying mechanism were investigated.

The feasibility of improving quasi-stability of the molten pool shape by increasing the laser energy conduction effect and preheating was explored. Results show that an increase in the range of powder sizes does not significantly influence the average laser energy conduction effect in PBF-LB process. Whereas, it intensifies fluctuations of the transient laser energy conduction effect.

It also leads to fluctuations of the replenishment rate of metals, difficulty in formation of the quasi-steady molten pool, and increased probability of incomplete fusion and pores defects. As the laser power rises, the laser energy conduction effect increases, which improves the quasi-stability of the molten pool shape. When increasing the laser scanning speed, the laser energy conduction effect grows.

However, because the molten pool size reduces due to the decreased heat input, the replenishment rate of metals of the molten pool fluctuates more obviously and the quasi-stability of the molten pool shape gets worse. On the whole, the laser energy conduction effect in the PBF-LB process of Mo is low (20-40%). The main factor that affects quasi-stability of the molten pool shape is the amount of energy input per unit length of the scanning path, rather than the laser energy conduction effect.

Moreover, substrate preheating can not only enlarge the molten pool size, particularly the length, but also reduce non-uniformity and discontinuity of surface morphologies of clad metals and inhibit incomplete fusion and pores defects.

준안정 용융 풀의 형성은 많은 레이저 공정에서 우수한 품질을 달성하는 데 필요한 조건 중 하나입니다. 몰리브덴의 단일 트랙 분말층 융합 레이저 빔(PBF-LB) 동안 용융 풀 형태의 준안정성에 대한 분말 크기 분포 특성의 영향과 그 기본 메커니즘을 조사했습니다.

레이저 에너지 전도 효과와 예열을 증가시켜 용융 풀 형태의 준안정성을 향상시키는 타당성을 조사했습니다. 결과는 분말 크기 범위의 증가가 PBF-LB 공정의 평균 레이저 에너지 전도 효과에 큰 영향을 미치지 않음을 보여줍니다. 반면, 과도 레이저 에너지 전도 효과의 변동이 강화됩니다.

이는 또한 금속 보충 속도의 변동, 준안정 용융 풀 형성의 어려움, 불완전 융합 및 기공 결함 가능성 증가로 이어집니다. 레이저 출력이 증가함에 따라 레이저 에너지 전도 효과가 증가하여 용융 풀 모양의 준 안정성이 향상됩니다. 레이저 스캐닝 속도를 높이면 레이저 에너지 전도 효과가 커집니다.

그러나 열 입력 감소로 인해 용융 풀 크기가 줄어들기 때문에 용융 풀의 금속 보충 속도의 변동이 더욱 뚜렷해지고 용융 풀 형태의 준안정성이 악화됩니다.

전체적으로 Mo의 PBF-LB 공정에서 레이저 에너지 전도 효과는 낮다(20~40%). 용융 풀 형상의 준안정성에 영향을 미치는 주요 요인은 레이저 에너지 전도 효과보다는 스캐닝 경로의 단위 길이당 입력되는 에너지의 양입니다.

또한 기판 예열은 용융 풀 크기, 특히 길이를 확대할 수 있을 뿐만 아니라 클래드 금속 표면 형태의 불균일성과 불연속성을 줄이고 불완전한 융합 및 기공 결함을 억제합니다.

M. Sharifitabar, F.O. Sadeq, and M.S. Afarani, Synthesis and Kinetic Study of Mo (Si, Al)2 Coatings on the Surface of Molybdenum Through Hot Dipping into a Commercial Al-12 wt.% Si Alloy Melt, Surf. Interfaces, 2021, 24, p 101044.ArticleCASGoogle Scholar

Z. Zhang, X. Li, and H. Dong, Response of a Molybdenum Alloy to Plasma Nitriding, Int. J. Refract. Met. Hard Mater., 2018, 72, p 388–395.ArticleCASGoogle Scholar

C. Tan, K. Zhou, M. Kuang, W. Ma, and T. Kuang, Microstructural Characterization and Properties of Selective Laser Melted Maraging Steel with Different Build Directions, Sci. Technol. Adv. Mater., 2018, 19(1), p 746–758.ArticleCASGoogle Scholar

C. Tan, F. Weng, S. Sui, Y. Chew, and G. Bi, Progress and Perspectives in Laser Additive Manufacturing of Key Aeroengine Materials, Int. J. Mach. Tools Manuf, 2021, 170, p 103804.ArticleGoogle Scholar

S.A. Khairallah and A. Anderson, Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder, J. Mater. Process. Technol., 2014, 214(11), p 2627–2636.ArticleCASGoogle Scholar

S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones, Acta Mater., 2016, 108, p 36–45.ArticleCASADSGoogle Scholar

K.Q. Le, C. Tang, and C.H. Wong, On the Study of Keyhole-Mode Melting in Selective Laser Melting Process, Int. J. Therm. Sci., 2019, 145, p 105992.ArticleGoogle Scholar

M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, and J.H. Hattel, Keyhole-Induced Porosities in Laser-Based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-Fidelity Modelling and Experimental Validation, Addit. Manuf., 2019, 30, p 100835.CASGoogle Scholar

B. Liu, G. Fang, L. Lei, and X. Yan, Predicting the Porosity Defects in Selective Laser Melting (SLM) by Molten Pool Geometry, Int. J. Mech. Sci., 2022, 228, p 107478.ArticleGoogle Scholar

W. Ge, J.Y.H. Fuh, and S.J. Na, Numerical Modelling of Keyhole Formation in Selective Laser Melting of Ti6Al4V, J. Manuf. Process., 2021, 62, p 646–654.ArticleGoogle Scholar

W. Ge, S. Han, S.J. Na, and J.Y.H. Fuh, Numerical Modelling of Surface Morphology in Selective Laser Melting, Comput. Mater. Sci., 2021, 186, p 110062.ArticleGoogle Scholar

Y.-C. Wu, C.-H. San, C.-H. Chang, H.-J. Lin, R. Marwan, S. Baba, and W.-S. Hwang, Numerical Modeling of Melt-Pool Behavior In Selective Laser Melting with Random Powder Distribution and Experimental Validation, J. Mater. Process. Technol., 2018, 254, p 72–78.ArticleGoogle Scholar

C. Tang, J.L. Tan, and C.H. Wong, A Numerical Investigation on the Physical Mechanisms of Single Track Defects in Selective Laser Melting, Int. J. Heat Mass Transf., 2018, 126, p 957–968.ArticleCASGoogle Scholar

X. Zhou, X. Liu, D. Zhang, Z. Shen, and W. Liu, Balling Phenomena in Selective Laser Melted Tungsten, J. Mater. Process. Technol., 2015, 222, p 33–42.ArticleCASGoogle Scholar

J.D.K. Monroy and J. Ciurana, Study of the Pore Formation on CoCrMo Alloys by Selective Laser Melting Manufacturing Process, Procedia Eng., 2013, 63, p 361–369.ArticleCASGoogle Scholar

L. Kaserer, J. Braun, J. Stajkovic, K.H. Leitz, B. Tabernig, P. Singer, I. Letofsky-Papst, H. Kestler, and G. Leichtfried, Fully Dense and Crack Free Molybdenum Manufactured by Selective Laser Melting Through Alloying with Carbon, Int. J. Refract. Met. Hard Mater., 2019, 84, p 105000.ArticleCASGoogle Scholar

T.B.T. Majumdar, E.M.C. Ribeiro, J.E. Frith, and N. Birbilis, Understanding the Effects of PBF Process Parameter Interplay on Ti-6Al-4V Surface Properties, PLoS ONE, 2019, 14, p e0221198.ArticleCASPubMedPubMed CentralGoogle Scholar

A.K.J.-R. Poulin, P. Terriault, and V. Brailovski, Long Fatigue Crack Propagation Behavior of Laser Powder Bed-Fused Inconel 625 with Intentionally- Seeded Porosity, Int. J. Fatigue, 2019, 127, p 144–156.ArticleCASGoogle Scholar

P. Rebesan, M. Ballan, M. Bonesso, A. Campagnolo, S. Corradetti, R. Dima, C. Gennari, G.A. Longo, S. Mancin, M. Manzolaro, G. Meneghetti, A. Pepato, E. Visconti, and M. Vedani, Pure Molybdenum Manufactured by Laser Powder Bed Fusion: Thermal and Mechanical Characterization at Room and High Temperature, Addit. Manuf., 2021, 47, p 102277.CASGoogle Scholar

D. Wang, C. Yu, J. Ma, W. Liu, and Z. Shen, Densification and Crack Suppression in Selective Laser Melting of Pure Molybdenum, Mater. Des., 2017, 129, p 44–52.ArticleCASGoogle Scholar

K.-H. Leitz, P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L.S. Sigl, Multi-physical Simulation of Selective Laser Melting, Met. Powder Rep., 2017, 72, p 331–338.ArticleGoogle Scholar

D.G.J. Zhang, Y. Yang, H. Zhang, H. Chen, D. Dai, and K. Lin, Influence of Particle Size on Laser Absorption and Scanning Track Formation Mechanisms of Pure Tungsten Powder During Selective Laser Melting, Engineering, 2019, 5, p 736–745.ArticleCASGoogle Scholar

L. Caprio, A.G. Demir, and B. Previtali, Influence of Pulsed and Continuous Wave Emission on Melting Efficiency in Selective Laser Melting, J. Mater. Process. Technol., 2019, 266, p 429–441.ArticleCASGoogle Scholar

D. Gu, M. Xia, and D. Dai, On the Role of Powder Flow Behavior in Fluid Thermodynamics and Laser Processability of Ni-based Composites by Selective Laser Melting, Int. J. Mach. Tools Manuf, 2018, 137, p 67–78.ArticleGoogle Scholar

W.-I. Cho, S.-J. Na, C. Thomy, and F. Vollertsen, Numerical Simulation of Molten Pool Dynamics in High Power Disk Laser Welding, J. Mater. Process. Technol., 2012, 212(1), p 262–275.ArticleCASGoogle Scholar

S.W. Han, J. Ahn, and S.J. Na, A Study on Ray Tracing Method for CFD Simulations of Laser Keyhole Welding: Progressive Search Method, Weld. World, 2016, 60, p 247–258.ArticleCASGoogle Scholar

W. Ge, S. Han, Y. Fang, J. Cheon, and S.J. Na, Mechanism of Surface Morphology in Electron Beam Melting of Ti6Al4V Based on Computational Flow Patterns, Appl. Surf. Sci., 2017, 419, p 150–158.ArticleCASADSGoogle Scholar

W.-I. Cho, S.-J. Na, C. Thomy, and F. Vollertsen, Numerical Simulation of Molten Pool Dynamics in High Power Disk Laser Welding, J. Mater. Process. Technol., 2012, 212, p 262–275.ArticleCASGoogle Scholar

W. Ma, J. Ning, L.-J. Zhang, and S.-J. Na, Regulation of Microstructures and Properties of Molybdenum-Silicon-Boron Alloy Subjected to Selective Laser Melting, J. Manuf. Process., 2021, 69, p 593–601.ArticleGoogle Scholar

S. Haeri, Y. Wang, O. Ghita, and J. Sun, Discrete Element Simulation and Experimental Study of Powder Spreading Process in Additive Manufacturing, Powder Technol., 2016, 306, p 45–54.ArticleGoogle Scholar

D. Yao, X. Liu, J. Wang, W. Fan, M. Li, H. Fu, H. Zhang, X. Yang, Q. Zou, and X. An, Numerical Insights on the Spreading of Practical 316 L Stainless Steel Powder in SLM Additive Manufacturing, Powder Technol., 2021, 390, p 197–208.ArticleCASGoogle Scholar

S. Vock, B. Klöden, A. Kirchner, T. Weißgärber, and B. Kieback, Powders for Powder Bed Fusion: A Review, Prog. Addit. Manuf., 2019, 4, p 383–397.ArticleGoogle Scholar

X. Luo, C. Yang, Z.Q. Fu, L.H. Liu, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, and Y.Y. Li, Achieving Ultrahigh-Strength in Beta-Type Titanium Alloy by Controlling the Melt Pool Mode in Selective Laser Melting, Mater. Sci. Eng. A, 2021, 823, p 141731.ArticleCASGoogle Scholar

J. Braun, L. Kaserer, J. Stajkovic, K.-H. Leitz, B. Tabernig, P. Singer, P. Leibenguth, C. Gspan, H. Kestler, and G. Leichtfried, Molybdenum and Tungsten Manufactured by Selective Laser Melting: Analysis of Defect Structure and Solidification Mechanisms, Int. J. Refract. Met. Hard Mater., 2019, 84, p 104999.ArticleCASGoogle Scholar

L. Kaserera, J. Brauna, J. Stajkovica, K.-H. Leitzb, B. Tabernigb, P. Singerb, I. Letofsky-Papstc, H. Kestlerb, and G. Leichtfried, Fully Dense and Crack Free Molybdenum Manufactured by Selective Laser Melting Through Alloying with Carbon, Int. J. Refract Metal Hard Mater., 2019, 84, p 105000.ArticleGoogle Scholar

Alireza Khoshkonesh^{1}, Blaise Nsom^{2}, Saeid Okhravi^{3}*, Fariba Ahmadi Dehrashid^{4}, Payam Heidarian^{5}, Silvia DiFrancesco^{6} ^{1 }Department of Geography, School of Social Sciences, History, and Philosophy, Birkbeck University of London, London, UK. ^{2} Université de Bretagne Occidentale. IRDL/UBO UMR CNRS 6027. Rue de Kergoat, 29285 Brest, France. ^{3} Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104, Bratislava, Slovak Republic. ^{4}Department of Water Science and Engineering, Faculty of Agriculture, Bu-Ali Sina University, 65178-38695, Hamedan, Iran. ^{5 }Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy.^{ } ^{6}Niccol`o Cusano University, via Don C. Gnocchi 3, 00166 Rome, Italy. * Corresponding author. Tel.: +421-944624921. E-mail: saeid.okhravi@savba.sk

Abstract

This study aimed to comprehensively investigate the influence of substrate level difference and material composition on dam break wave evolution over two different erodible beds. Utilizing the Volume of Fluid (VOF) method, we tracked free surface advection and reproduced wave evolution using experimental data from the literature. For model validation, a comprehensive sensitivity analysis encompassed mesh resolution, turbulence simulation methods, and bed load transport equations. The implementation of Large Eddy Simulation (LES), non-equilibrium sediment flux, and van Rijn’s (1984) bed load formula yielded higher accuracy compared to alternative approaches. The findings emphasize the significant effect of substrate level difference and material composition on dam break morphodynamic characteristics. Decreasing substrate level disparity led to reduced flow velocity, wavefront progression, free surface height, substrate erosion, and other pertinent parameters. Initial air entrapment proved substantial at the wavefront, illustrating pronounced air-water interaction along the bottom interface. The Shields parameter experienced a one-third reduction as substrate level difference quadrupled, with the highest near-bed concentration observed at the wavefront. This research provides fresh insights into the complex interplay of factors governing dam break wave propagation and morphological changes, advancing our comprehension of this intricate phenomenon.

이 연구는 두 개의 서로 다른 침식층에 대한 댐 파괴파 진화에 대한 기질 수준 차이와 재료 구성의 영향을 종합적으로 조사하는 것을 목표로 했습니다. VOF(유체량) 방법을 활용하여 자유 표면 이류를 추적하고 문헌의 실험 데이터를 사용하여 파동 진화를 재현했습니다.

모델 검증을 위해 메쉬 해상도, 난류 시뮬레이션 방법 및 침대 하중 전달 방정식을 포함하는 포괄적인 민감도 분석을 수행했습니다. LES(Large Eddy Simulation), 비평형 퇴적물 플럭스 및 van Rijn(1984)의 하상 부하 공식의 구현은 대체 접근 방식에 비해 더 높은 정확도를 산출했습니다.

연구 결과는 댐 붕괴 형태역학적 특성에 대한 기질 수준 차이와 재료 구성의 중요한 영향을 강조합니다. 기판 수준 차이가 감소하면 유속, 파면 진행, 자유 표면 높이, 기판 침식 및 기타 관련 매개변수가 감소했습니다.

초기 공기 포집은 파면에서 상당한 것으로 입증되었으며, 이는 바닥 경계면을 따라 뚜렷한 공기-물 상호 작용을 보여줍니다. 기판 레벨 차이가 4배로 증가함에 따라 Shields 매개변수는 1/3로 감소했으며, 파면에서 가장 높은 베드 근처 농도가 관찰되었습니다.

이 연구는 댐 파괴파 전파와 형태학적 변화를 지배하는 요인들의 복잡한 상호 작용에 대한 새로운 통찰력을 제공하여 이 복잡한 현상에 대한 이해를 향상시킵니다.

Aleixo, R., Soares-Frazão, S., Zech, Y., 2010. Velocity profiles in dam-break flows: water and sediment layers. In: Proc. Int. Conf. on Fluvial Hydraulics “River Flow 2010”, pp. 533–540. An, S., Ku, H., Julien, P.Y., 2015. Numerical modelling of local scour caused by submerged jets. Maejo Int. J. Sci. Technol., 9, 3, 328–343. Bahmanpouri, F., Daliri, M., Khoshkonesh, A., Namin, M.M., Buccino, M., 2021. Bed compaction effect on dam break flow over erodible bed; experimental and numerical modeling. J. Hydrol., 594, 125645. https://doi.org/10.1016/j.jhydrol.2020.125645 Baklanov, A., 2007. Environmental risk and assessment modelling – scientific needs and expected advancements. In: Ebel, A., Davitashvili, T. (Eds.): Air, Water and Soil Quality Modelling for Risk and Impact Assessment Springer, Dordrecht, pp. 29–44. Biscarini, C., Di Francesco, S., Nardi, F., Manciola, P., 2013. Detailed simulation of complex hydraulic problems with macroscopic and mesoscopic mathematical methods. Math. Probl. Eng., 928309. https://doi.org/10.1155/2013/928309 Cao, Z., Pender, G., Wallis, S., Carling, P., 2004. Computational dam-break hydraulics over erodible sediment bed. J. Hydraul. Eng., 130, 7, 689–703. Catucci, D., Briganti, R., Heller, V., 2021. Numerical validation of novel scaling laws for air entrainment in water. Proc. R. Soc. A, 477, 2255,20210339. https://doi.org/10.1098/rspa.2021.0339 Dehrashid, F.A., Heidari, M., Rahimi, H., Khoshkonesh, A., Yuan, S., Tang, X., Lu, C., Wang, X., 2023. CFD modeling the flow dynamics in an open channel with double-layered vegetation. Model. Earth Syst. Environ., 9, 1, 543–555. Desombre, J., Morichon, D., Mory, M., 2013. RANS v2-f simulation of a swash event: Detailed flow structure. Coastal Eng., 71, 1–12. Dodangeh, E., Afzalimehr, H., 2022. Incipient motion of sediment particles in the presence of bed forms under decelerating and accelerating flows. J. Hydrol. Hydromech., 70, 1, 89–102. Dong, Z., Wang, J., Vetsch, D.F., Boes, R.M., Tan, G., 2019. Numerical simulation of air entrainment on stepped spillways. In: E-proceedings of the 38th IAHR World Congress (pp. 1494). September 1–6, 2019, Panama City, Panama. DOI: 10.3850/38WC092019-0755 Flow3D [computer software]. 2023. Santa Fe, NM: Flow Science, Inc. Fraccarollo, L., Capart, H., 2002. Riemann wave description of erosional dam-break flows. J. Fluid Mech., 461, 183–228. Gu, Z., Wang, T., Meng, W., Yu, C.H., An, R., 2023. Numerical investigation of silted-up dam-break flow with different silted-up sediment heights. Water Supply, 23, 2, 599–614. Gualtieri, P., De Felice, S., Pasquino, V., Doria, G.P., 2018. Use of conventional flow resistance equations and a model for the Nikuradse roughness in vegetated flows at high submergence. J. Hydrol. Hydromech., 66, 1, 107–120. Heller, V., 2011. Scale effects in physical hydraulic engineering models. J. Hydraul. Res., 49, 3, 293–306. Hirt, C.W., 2003. Modeling turbulent entrainment of air at a free surface. Flow Science, Inc. Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39, 1, 201– 225. Issakhov, A., Zhandaulet, Y., Nogaeva, A., 2018. Numerical simulation of dam break flow for various forms of the obstacle by VOF method. Int. J. Multiphase Flow, 109, 191–206. Khayyer, A., Gotoh, H., 2010. On particle-based simulation of a dam break over a wet bed. J. Hydraul. Res., 48, 2, 238–249. Khoshkonesh, A., Daliri, M., Riaz, K., Dehrashid, F.A., Bahmanpouri, F., Di Francesco, S., 2022. Dam-break flow dynamics over a stepped channel with vegetation. J. Hydrol., 613,128395. https://doi.org/10.1016/j.jhydrol.2022.128395 Khoshkonesh, A., Nsom, B., Gohari, S., Banejad, H., 2019. A comprehensive study on dam-break flow over dry and wet beds. Ocean Eng., 188, 106279. https://doi.org/10.1016/j.oceaneng.2019.106279 Khoshkonesh, A., Sadeghi, S.H., Gohari, S., Karimpour, S., Oodi, S., Di Francesco, S., 2023. Study of dam-break flow over a vegetated channel with and without a drop. Water Resour. Manage., 37, 5, 2107–2123. Khosravi, K., Chegini, A.H.N., Cooper, J., Mao, L., Habibnejad, M., Shahedi, K., Binns, A., 2021. A laboratory investigation of bedload transport of gravel sediments under dam break flow. Int. J. Sediment Res., 36, 2, 229–234. Kim, Y., Zhou, Z., Hsu, T.J., Puleo, J.A., 2017. Large eddy simulation of dam‐break‐driven swash on a rough‐planar beach. J. Geophys. Res.: Oceans, 122, 2, 1274–1296. Kocaman, S., Ozmen-Cagatay, H., 2012. The effect of lateral channel contraction on dam break flows: Laboratory experiment. J. Hydrol., 432, 145–153. Leal, J.G., Ferreira, R.M., Cardoso, A.H., 2006. Dam-break wavefront celerity. J. Hydraul. Eng., 132, 1, 69–76. Leal, J.G.A.B., Ferreira, R.M., Cardoso, A.H., 2003. Dam-break wave propagation over a cohesionless erodible bed. In: Proc. 30rd IAHR Congress, 100, 261–268. Li, Y. L., Ma, Y., Deng, R., Jiang, D.P., Hu, Z., 2019. Research on dam-break induced tsunami bore acting on the triangular breakwater based on high order 3D CLSVOF-THINC/WLICIBM approaching. Ocean Eng., 182, 645–659. Li, Y.L., Yu, C.H., 2019. Research on dam-break flow induced front wave impacting a vertical wall based on the CLSVOF and level set methods. Ocean Eng., 178, 442–462. Mei, S., Chen, S., Zhong, Q., Shan, Y., 2022. Detailed numerical modeling for breach hydrograph and morphology evolution during landslide dam breaching. Landslides, 19, 12, 2925–2949. Meng, W., Yu, C.H., Li, J., An, R., 2022. Three-dimensional simulation of silted-up dam-break flow striking a rigid structure. Ocean Eng., 261, 112042. https://doi.org/10.1016/j.oceaneng.2022.112042 Meyer-Peter, E., Müller, R., 1948. Formulas for bed-load transport. In: IAHSR 2nd meeting, Stockholm, appendix 2. IAHR. Nielsen, P., 1984. Field measurements of time-averaged suspended sediment concentrations under waves. Coastal Eng., 8, 1, 51–72. Nielsen, P., 2018. Bed shear stress, surface shape and velocity field near the tips of dam-breaks, tsunami and wave runup. Coastal Eng., 138, 126–131. Nsom, B., Latrache, N., Ramifidisoa, L., Khoshkonesh, A., 2019. Analytical solution to the stability of gravity-driven stratified flow of two liquids over an inclined plane. In: 24th French Mechanics Congress in Brest. Brest, p. 244178. Nsom, B., Ravelo, B., Ndong, W., 2008. Flow regimes in horizontal viscous dam-break flow of Cayous mud. Appl. Rheol., 18, 4, 43577-1. https://doi.org/10.1515/arh-2008-0012 Oguzhan, S., Aksoy, A.O., 2020. Experimental investigation of the effect of vegetation on dam break flood waves. J. Hydrol. Hydromech., 68, 3, 231–241. Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2022. Effects of bedmaterial gradation on clear water scour at single and group of piles. J. Hydrol. Hydromech., 70, 1, 114–127. Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2023. Numerical modeling of local scour of non-uniform graded sediment for two arrangements of pile groups. Int. J. Sediment Res., 38, 4, 597–614. Parambath, A., 2010. Impact of tsunamis on near shore wind power units. Master’s Thesis. Texas A&M University. Available electronically from https://hdl.handle.net/1969.1/ETD-TAMU2010-12-8919 Pintado-Patiño, J.C., Puleo, J.A., Krafft, D., Torres-Freyermuth, A.,

Hydrodynamics and sediment transport under a dambreak-driven swash: An experimental study. Coastal Eng., 170,

https://doi.org/10.1016/j.coastaleng.2021.103986 Riaz, K., Aslam, H.M.S., Yaseen, M.W., Ahmad, H.H., Khoshkonesh, A., Noshin, S., 2022. Flood frequency analysis and hydraulic design of bridge at Mashan on river Kunhar. Arch. Hydroengineering Environ. Mech., 69, 1, 1–12. Ritter, A., 1892. Die Fortpflanzung der Wasserwellen. Zeitschrift des Vereines Deutscher Ingenieure, 36, 33, 947–954. (In German.) Smagorinsky, J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev., 91, 3, 99–164. Soulsby, R.L., 1997. Dynamics of marine sands: a manual for practical applications. Oceanogr. Lit. Rev., 9, 44, 947. Spinewine, B., Capart, H., 2013. Intense bed-load due to a sudden dam-break. J. Fluid Mech., 731, 579–614. Van Rijn, L.C., 1984. Sediment transport, part I: bed load transport. J. Hydraul. Eng., 110, 10, 1431–1456. Vosoughi, F., Rakhshandehroo, G., Nikoo, M.R., Sadegh, M.,

Experimental study and numerical verification of silted-up dam break. J. Hydrol., 590, 125267. https://doi.org/10.1016/j.jhydrol.2020.125267 Wu, W., Wang, S.S., 2008. One-dimensional explicit finite-volume model for sediment transport. J. Hydraul. Res., 46, 1, 87–98. Xu, T., Huai, W., Liu, H., 2023. MPS-based simulation of dam-break wave propagation over wet beds with a sediment layer. Ocean Eng., 281, 115035. https://doi.org/10.1016/j.oceaneng.2023.115035 Yang, S., Yang, W., Qin, S., Li, Q., Yang, B., 2018. Numerical study on characteristics of dam-break wave. Ocean Eng., 159, 358–371. Yao, G.F., 2004. Development of new pressure-velocity solvers in FLOW-3D. Flow Science, Inc., USA.

In order to comprehensively reveal the evolutionary dynamics of the molten pool and the state of motion of the fluid during the high-precision laser powder bed fusion (HP-LPBF) process, this study aims to deeply investigate the specific manifestations of the multiphase flow, solidification phenomena, and heat transfer during the process by means of numerical simulation methods. Numerical simulation models of SS316L single-layer HP-LPBF formation with single and double tracks were constructed using the discrete element method and the computational fluid dynamics method. The effects of various factors such as Marangoni convection, surface tension, vapor recoil, gravity, thermal convection, thermal radiation, and evaporative heat dissipation on the heat and mass transfer in the molten pool have been paid attention to during the model construction process. The results show that the molten pool exhibits a “comet” shape, in which the temperature gradient at the front end of the pool is significantly larger than that at the tail end, with the highest temperature gradient up to 1.69 × 10^{8} K/s. It is also found that the depth of the second track is larger than that of the first one, and the process parameter window has been determined preliminarily. In addition, the application of HP-LPBF technology helps to reduce the surface roughness and minimize the forming size.

Laser powder bed fusion (LPBF) has become a research hotspot in the field of additive manufacturing of metals due to its advantages of high-dimensional accuracy, good surface quality, high density, and high material utilization.^{1,2} With the rapid development of electronics, medical, automotive, biotechnology, energy, communication, and optics, the demand for microfabrication technology is increasing day by day.^{3} High-precision laser powder bed fusion (HP-LPBF) is one of the key manufacturing technologies for tiny parts in the fields of electronics, medical, automotive, biotechnology, energy, communication, and optics because of its process characteristics such as small focal spot diameter, small powder particle size, and thin powder layup layer thickness.^{4–13} Compared with LPBF, HP-LPBF has the significant advantages of smaller focal spot diameter, smaller powder particle size, and thinner layer thickness. These advantages make HP-LPBF perform better in producing micro-fine parts, high surface quality, and parts with excellent mechanical properties.

HP-LPBF is in the exploratory stage, and researchers have already done some exploratory studies on the focal spot diameter, the amount of defocusing, and the powder particle size. In order to explore the influence of changing the laser focal spot diameter on the LPBF process characteristics of the law, Wildman et al.^{14} studied five groups of different focal spot diameter LPBF forming 316L stainless steel (SS316L) processing effect, the smallest focal spot diameter of 26 μm, and the results confirm that changing the focal spot diameter can be achieved to achieve the energy control, so as to control the quality of forming. Subsequently, Mclouth et al.^{15} proposed the laser out-of-focus amount (focal spot diameter) parameter, which characterizes the distance between the forming plane and the laser focal plane. The laser energy density was controlled by varying the defocusing amount while keeping the laser parameters constant. Sample preparation at different focal positions was investigated, and their microstructures were characterized. The results show that the samples at the focal plane have finer microstructure than those away from the focal plane, which is the effect of higher power density and smaller focal spot diameter. In order to explore the influence of changing the powder particle size on the characteristics of the LPBF process, Qian et al.^{16} carried out single-track scanning simulations on powder beds with average powder particle sizes of 70 and 40 μm, respectively, and the results showed that the melt tracks sizes were close to each other under the same process parameters for the two particle-size distributions and that the molten pool of powder beds with small particles was more elongated and the edges of the melt tracks were relatively flat. In order to explore the superiority of HP-LPBF technology, Xu et al.^{17} conducted a comparative analysis of HP-LPBF and conventional LPBF of SS316L. The results showed that the average surface roughness of the top surface after forming by HP-LPBF could reach 3.40 μm. Once again, it was verified that HP-LPBF had higher forming quality than conventional LPBF. On this basis, Wei et al.^{6} comparatively analyzed the effects of different laser focal spot diameters on different powder particle sizes formed by LPBF. The results showed that the smaller the laser focal spot diameter, the fewer the defects on the top and side surfaces. The above research results confirm that reducing the laser focal spot diameter can obtain higher energy density and thus better forming quality.

LPBF involves a variety of complex systems and mechanisms, and the final quality of the part is influenced by a large number of process parameters.^{18–24} Some research results have shown that there are more than 50 factors affecting the quality of the specimen. The influencing factors are mainly categorized into three main groups: (1) laser parameters, (2) powder parameters, and (3) equipment parameters, which interact with each other to determine the final specimen quality. With the continuous development of technologies such as computational materials science and computational fluid dynamics (CFD), the method of studying the influence of different factors on the forming quality of LPBF forming process has been shifted from time-consuming and laborious experimental characterization to the use of numerical simulation methods. As a result, more and more researchers are adopting this approach for their studies. Currently, numerical simulation studies on LPBF are mainly focused on the exploration of molten pool, temperature distribution, and residual stresses.

Finite element simulation based on continuum mechanics and free surface fluid flow modeling based on fluid dynamics are two common approaches to study the behavior of LPBF molten pool.^{25–28} Finite element simulation focuses on the temperature and thermal stress fields, treats the powder bed as a continuum, and determines the molten pool size by plotting the elemental temperature above the melting point. In contrast, fluid dynamics modeling can simulate the 2D or 3D morphology of the metal powder pile and obtain the powder size and distribution by certain algorithms.^{29} The flow in the molten pool is mainly affected by recoil pressure and the Marangoni effect. By simulating the molten pool formation, it is possible to predict defects, molten pool shape, and flow characteristics, as well as the effect of process parameters on the molten pool geometry.^{30–34} In addition, other researchers have been conducted to optimize the laser processing parameters through different simulation methods and experimental data.^{35–46} Crystal growth during solidification is studied to further understand the effect of laser parameters on dendritic morphology and solute segregation.^{47–54} A multi-scale system has been developed to describe the fused deposition process during 3D printing, which is combined with the conductive heat transfer model and the dendritic solidification model.^{55,56}

Relevant scholars have adopted various different methods for simulation, such as sequential coupling theory,^{57} Lagrangian and Eulerian thermal models,^{58} birth–death element method,^{25} and finite element method,^{59} in order to reveal the physical phenomena of the laser melting process and optimize the process parameters. Luo et al.^{60} compared the LPBF temperature field and molten pool under double ellipsoidal and Gaussian heat sources by ANSYS APDL and found that the diffusion of the laser energy in the powder significantly affects the molten pool size and the temperature field.

The thermal stresses obtained from the simulation correlate with the actual cracks,^{61} and local preheating can effectively reduce the residual stresses.^{62} A three-dimensional thermodynamic finite element model investigated the temperature and stress variations during laser-assisted fabrication and found that powder-to-solid conversion increases the temperature gradient, stresses, and warpage.^{63} Other scholars have predicted residual stresses and part deflection for LPBF specimens and investigated the effects of deposition pattern, heat, laser power, and scanning strategy on residual stresses, noting that high-temperature gradients lead to higher residual stresses.^{64–67}

In short, the process of LPBF forming SS316L is extremely complex and usually involves drastic multi-scale physicochemical changes that will only take place on a very small scale. Existing literature employs DEM-based mesoscopic-scale numerical simulations to investigate the effects of process parameters on the molten pool dynamics of LPBF-formed SS316L. However, a few studies have been reported on the key mechanisms of heating and solidification, spatter, and convective behavior of the molten pool of HP-LPBF-formed SS316L with small laser focal spot diameters. In this paper, the geometrical properties of coarse and fine powder particles under three-dimensional conditions were first calculated using DEM. Then, numerical simulation models for single-track and double-track cases in the single-layer HP-LPBF forming SS316L process were developed at mesoscopic scale using the CFD method. The flow genesis of the melt in the single-track and double-track molten pools is discussed, and their 3D morphology and dimensional characteristics are discussed. In addition, the effects of laser process parameters, powder particle size, and laser focal spot diameter on the temperature field, characterization information, and defects in the molten pool are discussed.

II. MODELING

A. 3D powder bed modeling

HP-LPBF is an advanced processing technique for preparing target parts layer by layer stacking, the process of which involves repetitive spreading and melting of powders. In this process, both the powder spreading and the morphology of the powder bed are closely related to the results of the subsequent melting process, while the melted surface also affects the uniform distribution of the next layer of powder. For this reason, this chapter focuses on the modeling of the physical action during the powder spreading process and the theory of DEM to establish the numerical model of the powder bed, so as to lay a solid foundation for the accuracy of volume of fluid (VOF) and CFD.

1. DEM

DEM is a numerical technique for calculating the interaction of a large number of particles, which calculates the forces and motions of the spheres by considering each powder sphere as an independent unit. The motion of the powder particles follows the laws of classical Newtonian mechanics, including translational and rotational,^{38,68–70} which are expressed as follows:����¨=���+∑��ij,

(1)����¨=∑�(�ij×�ij),

(2)

where �� is the mass of unit particle i in kg, ��¨ is the advective acceleration in m/s^{2}, And g is the gravitational acceleration in m/s^{2}. �ij is the force in contact with the neighboring particle � in N. �� is the rotational inertia of the unit particle � in kg · m^{2}. ��¨ is the unit particle � angular acceleration in rad/s^{2}. �ij is the vector pointing from unit particle � to the contact point of neighboring particle �.

Equations (1) and (2) can be used to calculate the velocity and angular velocity variations of powder particles to determine their positions and velocities. A three-dimensional powder bed model of SS316L was developed using DEM. The powder particles are assumed to be perfect spheres, and the substrate and walls are assumed to be rigid. To describe the contact between the powder particles and between the particles and the substrate, a non-slip Hertz–Mindlin nonlinear spring-damping model^{71} was used with the following expression:�hz=��������+��[(�����ij−�eff����)−(�����+�eff����)],

(3)

where �hz is the force calculated using the Hertzian in M. �� and �� are the radius of unit particles � and � in m, respectively. �� is the overlap size of the two powder particles in m. ��, �� are the elastic constants in the normal and tangential directions, respectively. �ij is the unit vector connecting the centerlines of the two powder particles. �eff is the effective mass of the two powder particles in kg. �� and �� are the viscoelastic damping constants in the normal and tangential directions, respectively. �� and �� are the components of the relative velocities of the two powder particles. ��� is the displacement vector between two spherical particles. The schematic diagram of overlapping powder particles is shown in Fig. 1.

Schematic diagram of overlapping powder particles.

Because the particle size of the powder used for HP-LPBF is much smaller than 100 μm, the effect of van der Waals forces must be considered. Therefore, the cohesive force �jkr of the Hertz–Mindlin model was used instead of van der Waals forces,^{72} with the following expression:�jkr=−4��0�*�1.5+4�*3�*�3,

(4)1�*=(1−��2)��+(1−��2)��,

(5)1�*=1��+1��,

(6)

where �* is the equivalent Young’s modulus in GPa; �* is the equivalent particle radius in m; �0 is the surface energy of the powder particles in J/m^{2}; α is the contact radius in m; �� and �� are the Young’s modulus of the unit particles � and �, respectively, in GPa; and �� and �� are the Poisson’s ratio of the unit particles � and �, respectively.

2. Model building

Figure 2 shows a 3D powder bed model generated using DEM with a coarse powder geometry of 1000 × 400 × 30 μm^{3}. The powder layer thickness is 30 μm, and the powder bed porosity is 40%. The average particle size of this spherical powder is 31.7 μm and is normally distributed in the range of 15–53 μm. The geometry of the fine powder was 1000 × 400 × 20 μm^{3}, with a layer thickness of 20 μm, and the powder bed porosity of 40%. The average particle size of this spherical powder is 11.5 μm and is normally distributed in the range of 5–25 μm. After the 3D powder bed model is generated, it needs to be imported into the CFD simulation software for calculation, and the imported geometric model is shown in Fig. 3. This geometric model is mainly composed of three parts: protective gas, powder bed, and substrate. Under the premise of ensuring the accuracy of the calculation, the mesh size is set to 3 μm, and the total number of coarse powder meshes is 1 704 940. The total number of fine powder meshes is 3 982 250.

Geometric modeling of the powder bed computational domain: (a) coarse powder, (b) fine powder.

B. Modeling of fluid mechanics simulation

In order to solve the flow, melting, and solidification problems involved in HP-LPBF molten pool, the study must follow the three governing equations of conservation of mass, conservation of energy, and conservation of momentum.^{73} The VOF method, which is the most widely used in fluid dynamics, is used to solve the molten pool dynamics model.

1. VOF

VOF is a method for tracking the free interface between the gas and liquid phases on the molten pool surface. The core idea of the method is to define a volume fraction function F within each grid, indicating the proportion of the grid space occupied by the material, 0 ≤ F ≤ 1 in Fig. 4. Specifically, when F = 0, the grid is empty and belongs to the gas-phase region; when F = 1, the grid is completely filled with material and belongs to the liquid-phase region; and when 0 < F < 1, the grid contains free surfaces and belongs to the mixed region. The direction normal to the free surface is the direction of the fastest change in the volume fraction F (the direction of the gradient of the volume fraction), and the direction of the gradient of the volume fraction can be calculated from the values of the volume fractions in the neighboring grids.^{74} The equations controlling the VOF are expressed as follows:𝛻����+�⋅(��→)=0,

(7)

where t is the time in s and �→ is the liquid velocity in m/s.

The material parameters of the mixing zone are altered due to the inclusion of both the gas and liquid phases. Therefore, in order to represent the density of the mixing zone, the average density �¯ is used, which is expressed as follows:^{72}�¯=(1−�1)�gas+�1�metal,

(8)

where �1 is the proportion of liquid phase, �gas is the density of protective gas in kg/m^{3}, and �metal is the density of metal in kg/m^{3}.

2. Control equations and boundary conditions

Figure 5 is a schematic diagram of the HP-LPBF melting process. First, the laser light strikes a localized area of the material and rapidly heats up the area. Next, the energy absorbed in the region is diffused through a variety of pathways (heat conduction, heat convection, and surface radiation), and this process triggers complex phase transition phenomena (melting, evaporation, and solidification). In metals undergoing melting, the driving forces include surface tension and the Marangoni effect, recoil due to evaporation, and buoyancy due to gravity and uneven density. The above physical phenomena interact with each other and do not occur independently.

Laser heat sourceThe Gaussian surface heat source model is used as the laser heat source model with the following expression:�=2�0����2exp(−2�12��2),(9)where � is the heat flow density in W/m^{2}, �0 is the absorption rate of SS316L, �� is the radius of the laser focal spot in m, and �1 is the radial distance from the center of the laser focal spot in m. The laser focal spot can be used for a wide range of applications.

Energy absorptionThe formula for calculating the laser absorption �0 of SS316L is as follows:�0=0.365(�0[1+�0(�−20)]/�)0.5,(10)where �0 is the direct current resistivity of SS316L at 20 °C in Ω m, �0 is the resistance temperature coefficient in ppm/°C, � is the temperature in °C, and � is the laser wavelength in m.

Heat transferThe basic principle of heat transfer is conservation of energy, which is expressed as follows:𝛻𝛻𝛻�(��)��+�·(��→�)=�·(�0����)+��,(11)where � is the density of liquid phase SS316L in kg/m^{3}, �� is the specific heat capacity of SS316L in J/(kg K), 𝛻� is the gradient operator, t is the time in s, T is the temperature in K, 𝛻�� is the temperature gradient, �→ is the velocity vector, �0 is the coefficient of thermal conduction of SS316L in W/(m K), and �� is the thermal energy dissipation term in the molten pool.

Molten pool flowThe following three conditions need to be satisfied for the molten pool to flow:

Conservation of mass with the following expression:𝛻�·(��→)=0.(12)

Conservation of momentum (Navier–Stokes equation) with the following expression:𝛻𝛻𝛻𝛻���→��+�(�→·�)�→=�·[−pI+�(��→+(��→)�)]+�,(13)where � is the pressure in Pa exerted on the liquid phase SS316L microelement, � is the unit matrix, � is the fluid viscosity in N s/m^{2}, and � is the volumetric force (gravity, atmospheric pressure, surface tension, vapor recoil, and the Marangoni effect).

Surface tension and the Marangoni effectThe effect of temperature on the surface tension coefficient is considered and set as a linear relationship with the following expression:�=�0−��dT(�−��),(14)where � is the surface tension of the molten pool at temperature T in N/m, �� is the melting temperature of SS316L in K, �0 is the surface tension of the molten pool at temperature �� in Pa, and σdσ/ dT is the surface tension temperature coefficient in N/(m K).In general, surface tension decreases with increasing temperature. A temperature gradient causes a gradient in surface tension that drives the liquid to flow, known as the Marangoni effect.

Metal vapor recoilAt higher input energy densities, the maximum temperature of the molten pool surface reaches the evaporation temperature of the material, and a gasification recoil pressure occurs vertically downward toward the molten pool surface, which will be the dominant driving force for the molten pool flow.^{75} The expression is as follows:��=0.54�� exp ���−���0���,(15)where �� is the gasification recoil pressure in Pa, �� is the ambient pressure in kPa, �� is the latent heat of evaporation in J/kg, �0 is the gas constant in J/(mol K), T is the surface temperature of the molten pool in K, and T_{e} is the evaporation temperature in K.

Solid–liquid–gas phase transitionWhen the laser hits the powder layer, the powder goes through three stages: heating, melting, and solidification. During the solidification phase, mutual transformations between solid, liquid, and gaseous states occur. At this point, the latent heat of phase transition absorbed or released during the phase transition needs to be considered.^{68} The phase transition is represented based on the relationship between energy and temperature with the following expression:�=�����,(�<��),�(��)+�−����−����,(��<�<��)�(��)+(�−��)����,(��<�),,(16)where �� and �� are solid and liquid phase density, respectively, of SS316L in kg/m^{3}. �� and �� unit volume of solid and liquid phase-specific heat capacity, respectively, of SS316L in J/(kg K). �� and ��, respectively, are the solidification temperature and melting temperature of SS316L in K. �� is the latent heat of the phase transition of SS316L melting in J/kg.

3. Assumptions

The CFD model was computed using the commercial software package FLOW-3D.^{76} In order to simplify the calculation and solution process while ensuring the accuracy of the results, the model makes the following assumptions:

It is assumed that the effects of thermal stress and material solid-phase thermal expansion on the calculation results are negligible.

The molten pool flow is assumed to be a Newtonian incompressible laminar flow, while the effects of liquid thermal expansion and density on the results are neglected.

It is assumed that the surface tension can be simplified to an equivalent pressure acting on the free surface of the molten pool, and the effect of chemical composition on the results is negligible.

Neglecting the effect of the gas flow field on the molten pool.

The mass loss due to evaporation of the liquid metal is not considered.

The influence of the plasma effect of the molten metal on the calculation results is neglected.

It is worth noting that the formulation of assumptions requires a trade-off between accuracy and computational efficiency. In the above models, some physical phenomena that have a small effect or high difficulty on the calculation results are simplified or ignored. Such simplifications make numerical simulations more efficient and computationally tractable, while still yielding accurate results.

4. Initial conditions

The preheating temperature of the substrate was set to 393 K, at which time all materials were in the solid state and the flow rate was zero.

5. Material parameters

The material used is SS316L and the relevant parameters required for numerical simulations are shown in Table I.^{46,77,78}

TABLE I.

SS316L-related parameters.

Property

Symbol

Value

Density of solid metal (kg/m^{3})

�metal

7980

Solid phase line temperature (K)

��

1658

Liquid phase line temperature (K)

��

1723

Vaporization temperature (K)

��

3090

Latent heat of melting ( J/kg)

��

2.60×105

Latent heat of evaporation ( J/kg)

��

7.45×106

Surface tension of liquid phase (N /m)

�

1.60

Liquid metal viscosity (kg/m s)

��

6×10−3

Gaseous metal viscosity (kg/m s)

�gas

1.85×10−5

Temperature coefficient of surface tension (N/m K)

��/�T

0.80×10−3

Molar mass ( kg/mol)

M

0.05 593

Emissivity

�

0.26

Laser absorption

�0

0.35

Ambient pressure (kPa)

��

101 325

Ambient temperature (K)

�0

300

Stefan–Boltzmann constant (W/m^{2} K^{4})

�

5.67×10−8

Thermal conductivity of metals ( W/m K)

�

24.55

Density of protective gas (kg/m^{3})

�gas

1.25

Coefficient of thermal expansion (/K)

��

16×10−6

Generalized gas constant ( J/mol K)

R

8.314

III. RESULTS AND DISCUSSION

With the objective of studying in depth the evolutionary patterns of single-track and double-track molten pool development, detailed observations were made for certain specific locations in the model, as shown in Fig. 6. In this figure, P1 and P2 represent the longitudinal tangents to the centers of the two melt tracks in the XZ plane, while L1 is the transverse profile in the YZ plane. The scanning direction is positive and negative along the X axis. Points A and B are the locations of the centers of the molten pool of the first and second melt tracks, respectively (x = 1.995 × 10^{−4}, y = 5 × 10^{−7}, and z = −4.85 × 10^{−5}).

A series of single-track molten pool simulation experiments were carried out in order to investigate the influence law of laser power as well as scanning speed on the HP-LPBF process. Figure 7 demonstrates the evolution of the 3D morphology and temperature field of the single-track molten pool in the time period of 50–500 μs under a laser power of 100 W and a scanning speed of 800 mm/s. The powder bed is in the natural cooling state. When t = 50 μs, the powder is heated by the laser heat and rapidly melts and settles to form the initial molten pool. This process is accompanied by partial melting of the substrate and solidification together with the melted powder. The molten pool rapidly expands with increasing width, depth, length, and temperature, as shown in Fig. 7(a). When t = 150 μs, the molten pool expands more obviously, and the temperature starts to transfer to the surrounding area, forming a heat-affected zone. At this point, the width of the molten pool tends to stabilize, and the temperature in the center of the molten pool has reached its peak and remains largely stable. However, the phenomenon of molten pool spatter was also observed in this process, as shown in Fig. 7(b). As time advances, when t = 300 μs, solidification begins to occur at the tail of the molten pool, and tiny ripples are produced on the solidified surface. This is due to the fact that the melt flows toward the region with large temperature gradient under the influence of Marangoni convection and solidifies together with the melt at the end of the bath. At this point, the temperature gradient at the front of the bath is significantly larger than at the end. While the width of the molten pool was gradually reduced, the shape of the molten pool was gradually changed to a “comet” shape. In addition, a slight depression was observed at the top of the bath because the peak temperature at the surface of the bath reached the evaporation temperature, which resulted in a recoil pressure perpendicular to the surface of the bath downward, creating a depressed region. As the laser focal spot moves and is paired with the Marangoni convection of the melt, these recessed areas will be filled in as shown in Fig. 7(c). It has been shown that the depressed regions are the result of the coupled effect of Marangoni convection, recoil pressure, and surface tension.^{79} By t = 500 μs, the width and height of the molten pool stabilize and show a “comet” shape in Fig. 7(d).

Single-track molten pool process: (a) t = 50 ��, (b) t = 150 ��, (c) t = 300 ��, (d) t = 500 ��.

Figure 8 depicts the velocity vector diagram of the P1 profile in a single-track molten pool, the length of the arrows represents the magnitude of the velocity, and the maximum velocity is about 2.36 m/s. When t = 50 μs, the molten pool takes shape, and the velocities at the two ends of the pool are the largest. The variation of the velocities at the front end is especially more significant in Fig. 8(a). As the time advances to t = 150 μs, the molten pool expands rapidly, in which the velocity at the tail increases and changes more significantly, while the velocity at the front is relatively small. At this stage, the melt moves backward from the center of the molten pool, which in turn expands the molten pool area. The melt at the back end of the molten pool center flows backward along the edge of the molten pool surface and then converges along the edge of the molten pool to the bottom center, rising to form a closed loop. Similarly, a similar closed loop is formed at the front end of the center of the bath, but with a shorter path. However, a large portion of the melt in the center of the closed loop formed at the front end of the bath is in a nearly stationary state. The main cause of this melt flow phenomenon is the effect of temperature gradient and surface tension (the Marangoni effect), as shown in Figs. 8(b) and 8(e). This dynamic behavior of the melt tends to form an “elliptical” pool. At t = 300 μs, the tendency of the above two melt flows to close the loop is more prominent and faster in Fig. 8(c). When t = 500 μs, the velocity vector of the molten pool shows a stable trend, and the closed loop of melt flow also remains stable. With the gradual laser focal spot movement, the melt is gradually solidified at its tail, and finally, a continuous and stable single track is formed in Fig. 8(d).

Vector plot of single-track molten pool velocity in XZ longitudinal section: (a) t = 50 ��, (b) t = 150 ��, (c) t = 300 ��, (d) t = 500 ��, (e) molten pool flow.

In order to explore in depth the transient evolution of the molten pool, the evolution of the single-track temperature field and the melt flow was monitored in the YZ cross section. Figure 9(a) shows the state of the powder bed at the initial moment. When t = 250 μs, the laser focal spot acts on the powder bed and the powder starts to melt and gradually collects in the molten pool. At this time, the substrate will also start to melt, and the melt flow mainly moves in the downward and outward directions and the velocity is maximum at the edges in Fig. 9(b). When t = 300 μs, the width and depth of the molten pool increase due to the recoil pressure. At this time, the melt flows more slowly at the center, but the direction of motion is still downward in Fig. 9(c). When t = 350 μs, the width and depth of the molten pool further increase, at which time the intensity of the melt flow reaches its peak and the direction of motion remains the same in Fig. 9(d). When t = 400 μs, the melt starts to move upward, and the surrounding powder or molten material gradually fills up, causing the surface of the molten pool to begin to flatten. At this time, the maximum velocity of the melt is at the center of the bath, while the velocity at the edge is close to zero, and the edge of the melt starts to solidify in Fig. 9(e). When t = 450 μs, the melt continues to move upward, forming a convex surface of the melt track. However, the melt movement slows down, as shown in Fig. 9(f). When t = 500 μs, the melt further moves upward and its speed gradually becomes smaller. At the same time, the melt solidifies further, as shown in Fig. 9(g). When t = 550 μs, the melt track is basically formed into a single track with a similar “mountain” shape. At this stage, the velocity is close to zero only at the center of the molten pool, and the flow behavior of the melt is poor in Fig. 9(h). At t = 600 μs, the melt stops moving and solidification is rapidly completed. Up to this point, a single track is formed in Fig. 9(i). During the laser action on the powder bed, the substrate melts and combines with the molten state powder. The powder-to-powder fusion is like the convergence of water droplets, which are rapidly fused by surface tension. However, the fusion between the molten state powder and the substrate occurs driven by surface tension, and the molten powder around the molten pool is pulled toward the substrate (a wetting effect occurs), which ultimately results in the formation of a monolithic whole.^{38,80,81}

Evolution of single-track molten pool temperature and melt flow in the YZ cross section: (a) t = 0 ��, (b) t = 250 ��, (c) t = 300 ��, (d) t = 350 ��, (e) t = 400 ��, (f) t = 450 ��, (g) t = 500 ��, (h) t = 550 ��, (i) t = 600 ��.

The wetting ability between the liquid metal and the solid substrate in the molten pool directly affects the degree of balling of the melt,^{82,83} and the wetting ability can be measured by the contact angle of a single track in Fig. 10. A smaller value of contact angle represents better wettability. The contact angle α can be calculated by�=�1−�22,

(17)

where �1 and �2 are the contact angles of the left and right regions, respectively.

Relevant studies have confirmed that the wettability is better at a contact angle α around or below 40°.^{84} After measurement, a single-track contact angle α of about 33° was obtained under this process parameter, which further confirms the good wettability.

B. Double-track simulation

In order to deeply investigate the influence of hatch spacing on the characteristics of the HP-LPBF process, a series of double-track molten pool simulation experiments were systematically carried out. Figure 11 shows in detail the dynamic changes of the 3D morphology and temperature field of the double-track molten pool in the time period of 2050–2500 μs under the conditions of laser power of 100 W, scanning speed of 800 mm/s, and hatch spacing of 0.06 mm. By comparing the study with Fig. 7, it is observed that the basic characteristics of the 3D morphology and temperature field of the second track are similar to those of the first track. However, there are subtle differences between them. The first track exhibits a basically symmetric shape, but the second track morphology shows a slight deviation influenced by the difference in thermal diffusion rate between the solidified metal and the powder. Otherwise, the other characteristic information is almost the same as that of the first track. Figure 12 shows the velocity vector plot of the P2 profile in the double-track molten pool, with a maximum velocity of about 2.63 m/s. The melt dynamics at both ends of the pool are more stable at t = 2050 μs, where the maximum rate of the second track is only 1/3 of that of the first one. Other than that, the rest of the information is almost no significant difference from the characteristic information of the first track. Figure 13 demonstrates a detailed observation of the double-track temperature field and melts flow in the YZ cross section, and a comparative study with Fig. 9 reveals that the width of the second track is slightly wider. In addition, after the melt direction shifts from bottom to top, the first track undergoes four time periods (50 μs) to reach full solidification, while the second track takes five time periods. This is due to the presence of significant heat buildup in the powder bed after the forming of the first track, resulting in a longer dynamic time of the melt and an increased molten pool lifetime. In conclusion, the level of specimen forming can be significantly optimized by adjusting the laser power and hatch spacing.

Evolution of double-track molten pool temperature and melt flow in the YZ cross section: (a) t = 2250 ��, (b) t = 2300 ��, (c) t = 2350 ��, (d) t = 2400 ��, (e) t = 2450 ��, (f) t = 2500 ��, (g) t = 2550 ��, (h) t = 2600 ��, (i) t = 2650 ��.

In order to quantitatively detect the molten pool dimensions as well as the remolten region dimensions, the molten pool characterization information in Fig. 14 is constructed by drawing the boundary on the YZ cross section based on the isothermal surface of the liquid phase line. It can be observed that the heights of the first track and second track are basically the same, but the depth of the second track increases relative to the first track. The molten pool width is mainly positively correlated with the laser power as well as the scanning speed (the laser line energy density �). However, the remelted zone width is negatively correlated with the hatch spacing (the overlapping ratio). Overall, the forming quality of the specimens can be directly influenced by adjusting the laser power, scanning speed, and hatch spacing.

Double-track molten pool characterization information on YZ cross section.

In order to study the variation rule of the temperature in the center of the molten pool with time, Fig. 15 demonstrates the temperature variation curves with time for two reference points, A and B. Among them, the red dotted line indicates the liquid phase line temperature of SS316L. From the figure, it can be seen that the maximum temperature at the center of the molten pool in the first track is lower than that in the second track, which is mainly due to the heat accumulation generated after passing through the first track. The maximum temperature gradient was calculated to be 1.69 × 10^{8} K/s. When the laser scanned the first track, the temperature in the center of the molten pool of the second track increased slightly. Similarly, when the laser scanned the second track, a similar situation existed in the first track. Since the temperature gradient in the second track is larger than that in the first track, the residence time of the liquid phase in the molten pool of the first track is longer than that of the second track.

Temperature profiles as a function of time for two reference points A and B.

C. Simulation analysis of molten pool under different process parameters

In order to deeply investigate the effects of various process parameters on the mesoscopic-scale temperature field, molten pool characteristic information and defects of HP-LPBF, numerical simulation experiments on mesoscopic-scale laser power, scanning speed, and hatch spacing of double-track molten pools were carried out.

1. Laser power

Figure 16 shows the effects of different laser power on the morphology and temperature field of the double-track molten pool at a scanning speed of 800 mm/s and a hatch spacing of 0.06 mm. When P = 50 W, a smaller molten pool is formed due to the lower heat generated by the Gaussian light source per unit time. This leads to a smaller track width, which results in adjacent track not lapping properly and the presence of a large number of unmelted powder particles, resulting in an increase in the number of defects, such as pores in the specimen. The surface of the track is relatively flat, and the depth is small. In addition, the temperature gradient before and after the molten pool was large, and the depression location appeared at the biased front end in Fig. 16(a). When P = 100 W, the surface of the track is flat and smooth with excellent lap. Due to the Marangoni effect, the velocity field of the molten pool is in the form of “vortex,” and the melt has good fluidity, and the maximum velocity reaches 2.15 m/s in Fig. 16(b). When P = 200 W, the heat generated by the Gaussian light source per unit time is too large, resulting in the melt rapidly reaching the evaporation temperature, generating a huge recoil pressure, forming a large molten pool, and the surface of the track is obviously raised. The melt movement is intense, especially the closed loop at the center end of the molten pool. At this time, the depth and width of the molten pool are large, leading to the expansion of the remolten region and the increased chance of the appearance of porosity defects in Fig. 16(c). The results show that at low laser power, the surface tension in the molten pool is dominant. At high laser power, recoil pressure is its main role.

Simulation results of double-track molten pool under different laser powers: (a) P = 50 W, (b) P = 100 W, (c) P = 200 W.

Table II shows the effect of different laser powers on the characteristic information of the double-track molten pool at a scanning speed of 800 mm/s and a hatch spacing of 0.06 mm. The negative overlapping ratio in the table indicates that the melt tracks are not lapped, and 26/29 indicates the melt depth of the first track/second track. It can be seen that with the increase in laser power, the melt depth, melt width, melt height, and remelted zone show a gradual increase. At the same time, the overlapping ratio also increases. Especially in the process of laser power from 50 to 200 W, the melting depth and melting width increased the most, which increased nearly 2 and 1.5 times, respectively. Meanwhile, the overlapping ratio also increases with the increase in laser power, which indicates that the melting and fusion of materials are better at high laser power. On the other hand, the dimensions of the molten pool did not change uniformly with the change of laser power. Specifically, the depth-to-width ratio of the molten pool increased from about 0.30 to 0.39 during the increase from 50 to 120 W, which further indicates that the effective heat transfer in the vertical direction is greater than that in the horizontal direction with the increase in laser power. This dimensional response to laser power is mainly affected by the recoil pressure and also by the difference in the densification degree between the powder layer and the metal substrate. In addition, according to the experimental results, the contact angle shows a tendency to increase and then decrease during the process of laser power increase, and always stays within the range of less than 33°. Therefore, in practical applications, it is necessary to select the appropriate laser power according to the specific needs in order to achieve the best processing results.

TABLE II.

Double-track molten pool characterization information at different laser powers.

Laser power (W)

Depth (μm)

Width (μm)

Height (μm)

Remolten region (μm)

Overlapping ratio (%)

Contact angle (°)

50

16

54

11

/

−10

23

100

26/29

74

14

18

23.33

33

200

37/45

116

21

52

93.33

28

2. Scanning speed

Figure 17 demonstrates the effect of different scanning speeds on the morphology and temperature field of the double-track molten pool at a laser power of 100 W and a hatch spacing of 0.06 mm. With the gradual increase in scanning speed, the surface morphology of the molten pool evolves from circular to elliptical. When � = 200 mm/s, the slow scanning speed causes the material to absorb too much heat, which is very easy to trigger the overburning phenomenon. At this point, the molten pool is larger and the surface morphology is uneven. This situation is consistent with the previously discussed scenario with high laser power in Fig. 17(a). However, when � = 1600 mm/s, the scanning speed is too fast, resulting in the material not being able to absorb sufficient heat, which triggers the powder particles that fail to melt completely to have a direct effect on the bonding of the melt to the substrate. At this time, the molten pool volume is relatively small and the neighboring melt track cannot lap properly. This result is consistent with the previously discussed case of low laser power in Fig. 17(b). Overall, the ratio of the laser power to the scanning speed (the line energy density �) has a direct effect on the temperature field and surface morphology of the molten pool.

Simulation results of double-track molten pool under different scanning speed: (a) � = 200 mm/s, (b) � = 1600 mm/s.

Table III shows the effects of different scanning speed on the characteristic information of the double-track molten pool under the condition of laser power of 100 W and hatch spacing of 0.06 mm. It can be seen that the scanning speed has a significant effect on the melt depth, melt width, melt height, remolten region, and overlapping ratio. With the increase in scanning speed, the melt depth, melt width, melt height, remelted zone, and overlapping ratio show a gradual decreasing trend. Among them, the melt depth and melt width decreased faster, while the melt height and remolten region decreased relatively slowly. In addition, when the scanning speed was increased from 200 to 800 mm/s, the decreasing speeds of melt depth and melt width were significantly accelerated, while the decreasing speeds of overlapping ratio were relatively slow. When the scanning speed was further increased to 1600 mm/s, the decreasing speeds of melt depth and melt width were further accelerated, and the un-lapped condition of the melt channel also appeared. In addition, the contact angle increases and then decreases with the scanning speed, and both are lower than 33°. Therefore, when selecting the scanning speed, it is necessary to make reasonable trade-offs according to the specific situation, and take into account the factors of melt depth, melt width, melt height, remolten region, and overlapping ratio, in order to achieve the best processing results.

TABLE III.

Double-track molten pool characterization information at different scanning speeds.

Scanning speed (mm/s)

Depth (μm)

Width (μm)

Height (μm)

Remolten region (μm)

Overlapping ratio (%)

Contact angle (°)

200

55/68

182

19/32

124

203.33

22

1600

13

50

11

/

−16.67

31

3. Hatch spacing

Figure 18 shows the effect of different hatch spacing on the morphology and temperature field of the double-track molten pool under the condition of laser power of 100 W and scanning speed of 800 mm/s. The surface morphology and temperature field of the first track and second track are basically the same, but slightly different. The first track shows a basically symmetric morphology along the scanning direction, while the second track shows a slight offset due to the difference in the heat transfer rate between the solidified material and the powder particles. When the hatch spacing is too small, the overlapping ratio increases and the probability of defects caused by remelting phenomenon grows. When the hatch spacing is too large, the neighboring melt track cannot overlap properly, and the powder particles are not completely melted, leading to an increase in the number of holes. In conclusion, the ratio of the line energy density � to the hatch spacing (the volume energy density E) has a significant effect on the temperature field and surface morphology of the molten pool.

Simulation results of double-track molten pool under different hatch spacings: (a) H = 0.03 mm, (b) H = 0.12 mm.

Table IV shows the effects of different hatch spacing on the characteristic information of the double-track molten pool under the condition of laser power of 100 W and scanning speed of 800 mm/s. It can be seen that the hatch spacing has little effect on the melt depth, melt width, and melt height, but has some effect on the remolten region. With the gradual expansion of hatch spacing, the remolten region shows a gradual decrease. At the same time, the overlapping ratio also decreased with the increase in hatch spacing. In addition, it is observed that the contact angle shows a tendency to increase and then remain stable when the hatch spacing increases, which has a more limited effect on it. Therefore, trade-offs and decisions need to be made on a case-by-case basis when selecting the hatch spacing.

TABLE IV.

Double-track molten pool characterization information at different hatch spacings.

Hatch spacing (mm)

Depth (μm)

Width (μm)

Height (μm)

Remolten region (μm)

Overlapping ratio (%)

Contact angle (°)

0.03

25/27

82

14

59

173.33

30

0.12

26

78

14

/

−35

33

In summary, the laser power, scanning speed, and hatch spacing have a significant effect on the formation of the molten pool, and the correct selection of these three process parameters is crucial to ensure the forming quality. In addition, the melt depth of the second track is slightly larger than that of the first track at higher line energy density � and volume energy density E. This is mainly due to the fact that a large amount of heat accumulation is generated after the first track, forming a larger molten pool volume, which leads to an increase in the melt depth.

D. Simulation analysis of molten pool with powder particle size and laser focal spot diameter

Figure 19 demonstrates the effect of different powder particle sizes and laser focal spot diameters on the morphology and temperature field of the double-track molten pool under a laser power of 100 W, a scanning speed of 800 mm/s, and a hatch spacing of 0.06 mm. In the process of melting coarse powder with small laser focal spot diameter, the laser energy cannot completely melt the larger powder particles, resulting in their partial melting and further generating excessive pore defects. The larger powder particles tend to generate zigzag molten pool edges, which cause an increase in the roughness of the melt track surface. In addition, the molten pool is also prone to generate the present spatter phenomenon, which can directly affect the quality of forming. The volume of the formed molten pool is relatively small, while the melt depth, melt width, and melt height are all smaller relative to the fine powder in Fig. 19(a). In the process of melting fine powders with a large laser focal spot diameter, the laser energy is able to melt the fine powder particles sufficiently, even to the point of overmelting. This results in a large number of fine spatters being generated at the edge of the molten pool, which causes porosity defects in the melt track in Fig. 19(b). In addition, the maximum velocity of the molten pool is larger for large powder particle sizes compared to small powder particle sizes, which indicates that the temperature gradient in the molten pool is larger for large powder particle sizes and the melt motion is more intense. However, the size of the laser focal spot diameter has a relatively small effect on the melt motion. However, a larger focal spot diameter induces a larger melt volume with greater depth, width, and height. In conclusion, a small powder size helps to reduce the surface roughness of the specimen, and a small laser spot diameter reduces the minimum forming size of a single track.

Simulation results of double-track molten pool with different powder particle size and laser focal spot diameter: (a) focal spot = 25 μm, coarse powder, (b) focal spot = 80 μm, fine powder.

Table V shows the maximum temperature gradient at the reference point for different powder sizes and laser focal spot diameters. As can be seen from the table, the maximum temperature gradient is lower than that of HP-LPBF for both coarse powders with a small laser spot diameter and fine powders with a large spot diameter, a phenomenon that leads to an increase in the heat transfer rate of HP-LPBF, which in turn leads to a corresponding increase in the cooling rate and, ultimately, to the formation of finer microstructures.

TABLE V.

Maximum temperature gradient at the reference point for different powder particle sizes and laser focal spot diameters.

Laser power (W)

Scanning speed (mm/s)

Hatch spacing (mm)

Average powder size (μm)

Laser focal spot diameter (μm)

Maximum temperature gradient (×10^{7} K/s)

100

800

0.06

31.7

25

7.89

11.5

80

7.11

IV. CONCLUSIONS

In this study, the geometrical characteristics of 3D coarse and fine powder particles were first calculated using DEM and then numerical simulations of single track and double track in the process of forming SS316L from monolayer HP-LPBF at mesoscopic scale were developed using CFD method. The effects of Marangoni convection, surface tension, recoil pressure, gravity, thermal convection, thermal radiation, and evaporative heat dissipation on the heat and mass transfer in the molten pool were considered in this model. The effects of laser power, scanning speed, and hatch spacing on the dynamics of the single-track and double-track molten pools, as well as on other characteristic information, were investigated. The effects of the powder particle size on the molten pool were investigated comparatively with the laser focal spot diameter. The main conclusions are as follows:

The results show that the temperature gradient at the front of the molten pool is significantly larger than that at the tail, and the molten pool exhibits a “comet” morphology. At the top of the molten pool, there is a slightly concave region, which is the result of the coupling of Marangoni convection, recoil pressure, and surface tension. The melt flow forms two closed loops, which are mainly influenced by temperature gradients and surface tension. This special dynamic behavior of the melt tends to form an “elliptical” molten pool and an almost “mountain” shape in single-track forming.

The basic characteristics of the three-dimensional morphology and temperature field of the second track are similar to those of the first track, but there are subtle differences. The first track exhibits a basically symmetrical shape; however, due to the difference in thermal diffusion rates between the solidified metal and the powder, a slight asymmetry in the molten pool morphology of the second track occurs. After forming through the first track, there is a significant heat buildup in the powder bed, resulting in a longer dynamic time of the melt, which increases the life of the molten pool. The heights of the first track and second track remained essentially the same, but the depth of the second track was greater relative to the first track. In addition, the maximum temperature gradient was 1.69 × 10^{8} K/s during HP-LPBF forming.

At low laser power, the surface tension in the molten pool plays a dominant role. At high laser power, recoil pressure becomes the main influencing factor. With the increase of laser power, the effective heat transfer in the vertical direction is superior to that in the horizontal direction. With the gradual increase of scanning speed, the surface morphology of the molten pool evolves from circular to elliptical. In addition, the scanning speed has a significant effect on the melt depth, melt width, melt height, remolten region, and overlapping ratio. Too large or too small hatch spacing will lead to remelting or non-lap phenomenon, which in turn causes the formation of defects.

When using a small laser focal spot diameter, it is difficult to completely melt large powder particle sizes, resulting in partial melting and excessive porosity generation. At the same time, large powder particles produce curved edges of the molten pool, resulting in increased surface roughness of the melt track. In addition, spatter occurs, which directly affects the forming quality. At small focal spot diameters, the molten pool volume is relatively small, and the melt depth, the melt width, and the melt height are correspondingly small. Taken together, the small powder particle size helps to reduce surface roughness, while the small spot diameter reduces the forming size.

REFERENCES

S. L. Sing and W. Y. Yeong , “ Laser powder bed fusion for metal additive manufacturing: Perspectives on recent developments,” Virtual Phys. Prototyping. 15, 359–370 (2020).https://doi.org/10.1080/17452759.2020.1779999 Google ScholarCrossref

A. M. Khorasani , I. G. Jithin , J. K. Veetil , and A. H. Ghasemi , “ A review of technological improvements in laser-based powder bed fusion of metal printers,” Int. J. Adv. Manuf. Technol. 108, 191–209 (2020).https://doi.org/10.1007/s00170-020-05361-3 Google ScholarCrossref

Y. Qin , A. Brockett , Y. Ma , A. Razali , J. Zhao , C. Harrison , W. Pan , X. Dai , and D. Loziak , “ Micro-manufacturing: Research, technology outcomes and development issues,” Int. J. Adv. Manuf. Technol. 47, 821–837 (2010).https://doi.org/10.1007/s00170-009-2411-2 Google ScholarCrossref

B. Nagarajan , Z. Hu , X. Song , W. Zhai , and J. Wei , “ Development of micro selective laser melting: The state of the art and future perspectives,” Engineering. 5, 702–720 (2019).https://doi.org/10.1016/j.eng.2019.07.002 Google ScholarCrossref

Y. Wei , G. Chen , W. Li , Y. Zhou , Z. Nie , J. Xu , and W. Zhou , “ Micro selective laser melting of SS316L: Single tracks, defects, microstructures and thermal/mechanical properties,” Opt. Laser Technol. 145, 107469 (2022).https://doi.org/10.1016/j.optlastec.2021.107469 Google ScholarCrossref

Y. Wei , G. Chen , W. Li , M. Li , Y. Zhou , Z. Nie , and J. Xu , “ Process optimization of micro selective laser melting and comparison of different laser diameter for forming different powder,” Opt. Laser Technol. 150, 107953 (2022).https://doi.org/10.1016/j.optlastec.2022.107953 Google ScholarCrossref

H. Zhiheng , B. Nagarajan , X. Song , R. Huang , W. Zhai , and J. Wei , “ Formation of SS316L single tracks in micro selective laser melting: Surface, geometry, and defects,” Adv. Mater. Sci. Eng. 2019, 9451406.https://doi.org/10.1155/2019/9451406 Crossref

B. Nagarajan , Z. Hu , S. Gao , X. Song , R. Huang , M. Seita , and J. Wei , “ Effect of in-situ laser remelting on the microstructure of SS316L fabricated by micro selective laser melting,” in Advanced Surface Enhancement, edited by Sho Itoh and Shashwat Shukla , Lecture Notes in Mechanical Engineering ( Springer Singapore, Singapore, 2020), pp. 330–336. Google ScholarCrossref

H. Zhiheng , B. Nagarajan , X. Song , R. Huang , W. Zhai , and J. Wei , “ Tailoring surface roughness of micro selective laser melted SS316L by in-situ laser remelting,” in Advanced Surface Enhancement, edited by Sho Itoh and Shashwat Shukla , Lecture Notes in Mechanical Engineering ( Springer Singapore, Singapore, 2020), pp. 337–343. Google Scholar

J. Fu , Z. Hu , X. Song , W. Zhai , Y. Long , H. Li , and M. Fu , “ Micro selective laser melting of NiTi shape memory alloy: Defects, microstructures and thermal/mechanical properties,” Opt. Laser Technol. 131, 106374 (2020).https://doi.org/10.1016/j.optlastec.2020.106374 Google ScholarCrossref

E. Abele and M. Kniepkamp , “ Analysis and optimisation of vertical surface roughness in micro selective laser melting,” Surf. Topogr.: Metrol. Prop. 3, 034007 (2015).https://doi.org/10.1088/2051-672X/3/3/034007 Google ScholarCrossref

S. Qu , J. Ding , J. Fu , M. Fu , B. Zhang , and X. Song , “ High-precision laser powder bed fusion processing of pure copper,” Addit. Manuf. 48, 102417 (2021).https://doi.org/10.1016/j.addma.2021.102417 Google ScholarCrossref

Y. Wei , G. Chen , M. Li , W. Li , Y. Zhou , J. Xu , and Z. wei , “ High-precision laser powder bed fusion of 18Ni300 maraging steel and its SiC reinforcement composite materials,” J. Manuf. Process. 84, 750–763 (2022).https://doi.org/10.1016/j.jmapro.2022.10.049 Google ScholarCrossref

B. Liu , R. Wildman , T. Christopher , I. Ashcroft , and H. Richard , “ Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process,” in 2011 International Solid Freeform Fabrication Symposium ( University of Texas at Austin, 2011). Google Scholar

T. D. McLouth , G. E. Bean , D. B. Witkin , S. D. Sitzman , P. M. Adams , D. N. Patel , W. Park , J.-M. Yang , and R. J. Zaldivar , “ The effect of laser focus shift on microstructural variation of Inconel 718 produced by selective laser melting,” Mater. Des. 149, 205–213 (2018).https://doi.org/10.1016/j.matdes.2018.04.019 Google ScholarCrossref

Y. Qian , Y. Wentao , and L. Feng , “ Mesoscopic simulations of powder bed fusion: Research progresses and conditions,” Electromachining Mould 06, 46–52 (2017).https://doi.org/10.3969/j.issn.1009-279X.2017.06.012 Google Scholar

J. Fu , S. Qu , J. Ding , X. Song , and M. W. Fu , “ Comparison of the microstructure, mechanical properties and distortion of stainless Steel 316L fabricated by micro and conventional laser powder bed fusion,” Addit. Manuf. 44, 102067 (2021).https://doi.org/10.1016/j.addma.2021.102067 Google ScholarCrossref

N. T. Aboulkhair , I. Maskery , C. Tuck , I. Ashcroft , and N. M. Everitt , “ The microstructure and mechanical properties of selectively laser Melted AlSi10Mg: The effect of a conventional T6-like heat treatment,” Mater. Sci. Eng. A 667, 139–146 (2016).https://doi.org/10.1016/j.msea.2016.04.092 Google ScholarCrossref

S. Y. Chen , J. C. Huang , C. T. Pan , C. H. Lin , T. L. Yang , Y. S. Huang , C. H. Ou , L. Y. Chen , D. Y. Lin , H. K. Lin , T. H. Li , J. S. C. Jang , and C. C. Yang , “ Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting,” J. Alloys Compd. 713, 248–254 (2017).https://doi.org/10.1016/j.jallcom.2017.04.190 Google ScholarCrossref

Y. Bai , Y. Yang , D. Wang , and M. Zhang , “ Influence mechanism of parameters process and mechanical properties evolution mechanism of Maraging steel 300 by selective laser melting,” Mater. Sci. Eng. A 703, 116–123 (2017).https://doi.org/10.1016/j.msea.2017.06.033 Google ScholarCrossref

Y. Bai , Y. Yang , Z. Xiao , M. Zhang , and D. Wang , “ Process optimization and mechanical property evolution of AlSiMg0.75 by selective laser melting,” Mater. Des. 140, 257–266 (2018).https://doi.org/10.1016/j.matdes.2017.11.045 Google ScholarCrossref

Y. Liu , M. Zhang , W. Shi , Y. Ma , and J. Yang , “ Study on performance optimization of 316L stainless steel parts by high-efficiency selective laser melting,” Opt. Laser Technol. 138, 106872 (2021).https://doi.org/10.1016/j.optlastec.2020.106872 Google ScholarCrossref

D. Gu , Y.-C. Hagedorn , W. Meiners , G. Meng , R. J. S. Batista , K. Wissenbach , and R. Poprawe , “ Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium,” Acta Mater. 60, 3849–3860 (2012).https://doi.org/10.1016/j.actamat.2012.04.006 Google ScholarCrossref

N. Read , W. Wang , K. Essa , and M. M. Attallah , “ Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Mater. Des. 65, 417–424 (2015).https://doi.org/10.1016/j.matdes.2014.09.044 Google ScholarCrossref

I. A. Roberts , C. J. Wang , R. Esterlein , M. Stanford , and D. J. Mynors , “ A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing,” Int. J. Mach. Tools Manuf. 49(12–13), 916–923 (2009).https://doi.org/10.1016/j.ijmachtools.2009.07.004 Google ScholarCrossref

K. Dai and L. Shaw , “ Finite element analysis of the effect of volume shrinkage during laser densification,” Acta Mater. 53(18), 4743–4754 (2005).https://doi.org/10.1016/j.actamat.2005.06.014 Google ScholarCrossref

K. Carolin , E. Attar , and P. Heinl , “ Mesoscopic simulation of selective beam melting processes,” J. Mater. Process. Technol. 211(6), 978–987 (2011).https://doi.org/10.1016/j.jmatprotec.2010.12.016 Google ScholarCrossref

F.-J. Gürtler , M. Karg , K.-H. Leitz , and M. Schmidt , “ Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method,” Phys. Procedia 41, 881–886 (2013).https://doi.org/10.1016/j.phpro.2013.03.162 Google ScholarCrossref

P. Meakin and R. Jullien , “ Restructuring effects in the rain model for random deposition,” J. Phys. France 48(10), 1651–1662 (1987).https://doi.org/10.1051/jphys:0198700480100165100 Google ScholarCrossref

J-m Wang , G-h Liu , Y-l Fang , and W-k Li , “ Marangoni effect in nonequilibrium multiphase system of material processing,” Rev. Chem. Eng. 32(5), 551–585 (2016).https://doi.org/10.1515/revce-2015-0067 Google ScholarCrossref

W. Ye , S. Zhang , L. L. Mendez , M. Farias , J. Li , B. Xu , P. Li , and Y. Zhang , “ Numerical simulation of the melting and alloying processes of elemental titanium and boron powders using selective laser alloying,” J. Manuf. Process. 64, 1235–1247 (2021).https://doi.org/10.1016/j.jmapro.2021.02.044 Google ScholarCrossref

U. S. Bertoli , A. J. Wolfer , M. J. Matthews , J.-P. R. Delplanque , and J. M. Schoenung , “ On the limitations of volumetric energy density as a design parameter for selective laser melting,” Mater. Des. 113, 331–340 (2017).https://doi.org/10.1016/j.matdes.2016.10.037 Google ScholarCrossref

W. E. King , H. D. Barth , V. M. Castillo , G. F. Gallegos , J. W. Gibbs , D. E. Hahn , C. Kamath , and A. M. Rubenchik , “ Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing,” J. Mater. Process. Technol. 214(12), 2915–2925 (2014).https://doi.org/10.1016/j.jmatprotec.2014.06.005 Google ScholarCrossref

L. Cao , “ Numerical simulation of the impact of laying powder on selective laser melting single-pass formation,” Int. J. Heat Mass Transfer 141, 1036–1048 (2019).https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.053 Google ScholarCrossref

L. Huang , X. Hua , D. Wu , and F. Li , “ Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel,” J. Mater. Process. Technol. 252, 421–431 (2018).https://doi.org/10.1016/j.jmatprotec.2017.10.011 Google ScholarCrossref

K. Q. Le , C. Tang , and C. H. Wong , “ On the study of keyhole-mode melting in selective laser melting process,” Int. J. Therm. Sci. 145, 105992 (2019).https://doi.org/10.1016/j.ijthermalsci.2019.105992 Google ScholarCrossref

J.-H. Cho and S.-J. Na , “ Theoretical analysis of keyhole dynamics in polarized laser drilling,” J. Phys. D: Appl. Phys. 40(24), 7638 (2007).https://doi.org/10.1088/0022-3727/40/24/007 Google ScholarCrossref

W. Ye , “ Mechanism analysis of selective laser melting and metallurgy process based on base element powder of titanium and boron,” Ph.D. dissertation ( Nanchang University, 2021). Google Scholar

R. Ammer , M. Markl , U. Ljungblad , C. Körner , and U. Rüde , “ Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method,” Comput. Math. Appl. 67(2), 318–330 (2014).https://doi.org/10.1016/j.camwa.2013.10.001 Google ScholarCrossref

H. Chen , Q. Wei , S. Wen , Z. Li , and Y. Shi , “ Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method,” Int. J. Mach. Tools Manuf. 123, 146–159 (2017).https://doi.org/10.1016/j.ijmachtools.2017.08.004 Google ScholarCrossref

F. Verhaeghe , T. Craeghs , J. Heulens , and L. Pandelaers , “ A pragmatic model for selective laser melting with evaporation,” Acta Mater. 57(20), 6006–6012 (2009).https://doi.org/10.1016/j.actamat.2009.08.027 Google ScholarCrossref

C. H. Fu and Y. B. Guo , “ Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V,” J. Manuf. Sci. Eng. 136(6), 061004 (2014).https://doi.org/10.1115/1.4028539 Google ScholarCrossref

Y. Xiang , Z. Shuzhe , L. Junfeng , W. Zhengying , Y. Lixiang , and J. Lihao , “ Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V,” J. Zhejiang Univ. (Eng. Sci.) 53(11), 2102–2109 + 2117 (2019).https://doi.org/10.3785/j.issn.1008-973X.2019.11.007 Google Scholar

Q. He , H. Xia , J. Liu , X. Ao , and S. Lin , “ Modeling and numerical studies of selective laser melting: Multiphase flow, solidification and heat transfer,” Mater. Des. 196, 109115 (2020).https://doi.org/10.1016/j.matdes.2020.109115 Google ScholarCrossref

L. Cao , “ Mesoscopic-scale numerical simulation including the influence of process parameters on SLM single-layer multi-pass formation,” Metall. Mater. Trans. A 51, 4130–4145 (2020).https://doi.org/10.1007/s11661-020-05831-z Google ScholarCrossref

L. Cao , “ Mesoscopic-scale numerical investigation including the influence of process parameters on LPBF multi-layer multi-path formation,” Comput. Model. Eng. Sci. 126(1), 5–23 (2021).https://doi.org/10.32604/cmes.2021.014693 Google ScholarCrossref

H. Yin and S. D. Felicelli , “ Dendrite growth simulation during solidification in the LENS process,” Acta Mater. 58(4), 1455–1465 (2010).https://doi.org/10.1016/j.actamat.2009.10.053 Google ScholarCrossref

P. Nie , O. A. Ojo , and Z. Li , “ Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy,” Acta Mater. 77, 85–95 (2014).https://doi.org/10.1016/j.actamat.2014.05.039 Google ScholarCrossref

Z. Liu and H. Qi , “ Effects of substrate crystallographic orientations on crystal growth and microstructure formation in laser powder deposition of nickel-based superalloy,” Acta Mater. 87, 248–258 (2015).https://doi.org/10.1016/j.actamat.2014.12.046 Google ScholarCrossref

L. Wei , L. Xin , W. Meng , and H. Weidong , “ Cellular automaton simulation of the molten pool of laser solid forming process,” Acta Phys. Sin. 64(01), 018103–018363 (2015).https://doi.org/10.7498/aps.64.018103 Google ScholarCrossref

R. Acharya , J. A. Sharon , and A. Staroselsky , “ Prediction of microstructure in laser powder bed fusion process,” Acta Mater. 124, 360–371 (2017).https://doi.org/10.1016/j.actamat.2016.11.018 Google ScholarCrossref

M. R. Rolchigo and R. LeSar , “ Modeling of binary alloy solidification under conditions representative of additive manufacturing,” Comput. Mater. Sci. 150, 535–545 (2018).https://doi.org/10.1016/j.commatsci.2018.04.004 Google ScholarCrossref

S. Geng , P. Jiang , L. Guo , X. Gao , and G. Mi , “ Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys,” Int. J. Heat Mass Transfer 149, 119252 (2020).https://doi.org/10.1016/j.ijheatmasstransfer.2019.119252 Google ScholarCrossref

W. L. Wang , W. Q. Liu , X. Yang , R. R. Xu , and Q. Y. Dai , “ Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy,” J. Mater. Sci. Technol. 119, 11–24 (2022).https://doi.org/10.1016/j.jmst.2021.12.029 Google ScholarCrossref

Q. Xia , J. Yang , and Y. Li , “ On the conservative phase-field method with the N-component incompressible flows,” Phys. Fluids 35, 012120 (2023).https://doi.org/10.1063/5.0135490 Google ScholarCrossref

Q. Xia , G. Sun , J. Kim , and Y. Li , “ Multi-scale modeling and simulation of additive manufacturing based on fused deposition technique,” Phys. Fluids 35, 034116 (2023).https://doi.org/10.1063/5.0141316 Google ScholarCrossref

A. Hussein , L. Hao , C. Yan , and R. Everson , “ Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting,” Mater. Des. 52, 638–647 (2013).https://doi.org/10.1016/j.matdes.2013.05.070 Google ScholarCrossref

J. Ding , P. Colegrove , J. Mehnen , S. Ganguly , P. M. Sequeira Almeida , F. Wang , and S. Williams , “ Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts,” Comput. Mater. Sci. 50(12), 3315–3322 (2011).https://doi.org/10.1016/j.commatsci.2011.06.023 Google ScholarCrossref

Y. Du , X. You , F. Qiao , L. Guo , and Z. Liu , “ A model for predicting the temperature field during selective laser melting,” Results Phys. 12, 52–60 (2019).https://doi.org/10.1016/j.rinp.2018.11.031 Google ScholarCrossref

X. Luo , M. Liu , L. Zhenhua , H. Li , and J. Shen , “ Effect of different heat-source models on calculated temperature field of selective laser melted 18Ni300,” Chin. J. Lasers 48(14), 1402005–1402062 (2021).https://doi.org/10.3788/CJL202148.1402005 Google ScholarCrossref

J. F. Li , L. Li , and F. H. Stott , “ Thermal stresses and their implication on cracking during laser melting of ceramic materials,” Acta Mater. 52(14), 4385–4398 (2004).https://doi.org/10.1016/j.actamat.2004.06.005 Google ScholarCrossref

P. Aggarangsi and J. L. Beuth , “ Localized preheating approaches for reducing residual stress in additive manufacturing,” paper presented at the 2006 International Solid Freeform Fabrication Symposium, The University of Texas in Austin on August 14–16, 2006.

K. Dai and L. Shaw , “ Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders,” Acta Mater. 52(1), 69–80 (2004).https://doi.org/10.1016/j.actamat.2003.08.028 Google ScholarCrossref

A. H. Nickel , D. M. Barnett , and F. B. Prinz , “ Thermal stresses and deposition patterns in layered manufacturing,” Mater. Sci. Eng. A 317(1–2), 59–64 (2001).https://doi.org/10.1016/S0921-5093(01)01179-0 Google ScholarCrossref

M. F. Zaeh and G. Branner , “ Investigations on residual stresses and deformations in selective laser melting,” Prod. Eng. 4(1), 35–45 (2010).https://doi.org/10.1007/s11740-009-0192-y Google ScholarCrossref

P. Bian , J. Shi , Y. Liu , and Y. Xie , “ Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel,” Opt. Laser Technol. 132, 106477 (2020).https://doi.org/10.1016/j.optlastec.2020.106477 Google ScholarCrossref

B. M. Marques , C. M. Andrade , D. M. Neto , M. C. Oliveira , J. L. Alves , and L. F. Menezes , “ Numerical analysis of residual stresses in parts produced by selective laser melting process,” Procedia Manuf. 47, 1170–1177 (2020).https://doi.org/10.1016/j.promfg.2020.04.167 Google ScholarCrossref

W. Mu , “ Numerical simulation of SLM forming process and research and prediction of forming properties,” MA thesis ( Anhui Jianzhu University, 2022). Google Scholar

Y. Zhang , “ Multi-scale multi-physics modeling of laser powder bed fusion process of metallic materials with experiment validation,” Ph.D. dissertation ( Purdue University, 2018). Google Scholar

Y. Qian , “ Mesoscopic simulation studies of key processing issues for powder bed fusion technology,” Ph.D. dissertation ( Tsinghua University, 2019). Google Scholar

N. V. Brilliantov , S. Frank , J.-M. Hertzsch , and T. Pöschel , “ Model for collisions in granular gases,” Phys. Rev. E 53(5), 5382–5392 (1996).https://doi.org/10.1103/PhysRevE.53.5382 Google ScholarCrossref

Z. Xiao , “ Research on microscale selective laser melting process of high strength pure copper specimens,” MA thesis ( Hunan University, 2022). Google Scholar

Z. Li , K. Mukai , M. Zeze , and K. C. Mills , “ Determination of the surface tension of liquid stainless steel,” J. Mater. Sci. 40(9–10), 2191–2195 (2005).https://doi.org/10.1007/s10853-005-1931-x Google ScholarCrossref

R. Scardovelli and S. Zaleski , “ Analytical relations connecting linear interfaces and volume fractions in rectangular grids,” J. Comput. Phys. 164(1), 228–237 (2000).https://doi.org/10.1006/jcph.2000.6567 Google ScholarCrossref

D.-W. Cho , W.-I. Cho , and S.-J. Na , “ Modeling and simulation of arc: Laser and hybrid welding process,” J. Manuf. Process. 16(1), 26–55 (2014).https://doi.org/10.1016/j.jmapro.2013.06.012 Google ScholarCrossref 76.Flow3D. Version 11.1.0: User Manual ( FlowScience, Santa Fe, NM, USA, 2015).

Y. Tian , L. Yang , D. Zhao , Y. Huang , and J. Pan , “ Numerical analysis of powder bed generation and single track forming for selective laser melting of ss316l stainless steel,” J. Manuf. Process. 58, 964–974 (2020).https://doi.org/10.1016/j.jmapro.2020.09.002 Google ScholarCrossref

C. Tang , K. Q. Le , and C. H. Wong , “ Physics of humping formation in laser powder bed fusion,” Int. J. Heat Mass Transfer 149, 119172 (2020).https://doi.org/10.1016/j.ijheatmasstransfer.2019.119172 Google ScholarCrossref

L. Cao , “ Mesoscopic-scale simulation of pore evolution during laser powder bed fusion process,” Comput. Mater. Sci. 179, 109686 (2020).https://doi.org/10.1016/j.commatsci.2020.109686 Google ScholarCrossref

R. Li , J. Liu , Y. Shi , W. Li , and W. Jiang , “ Balling behavior of stainless steel and nickel powder during selective laser melting process,” Int. J. Adv. Manuf. Technol. 59(9–12), 1025–1035 (2012).https://doi.org/10.1007/s00170-011-3566-1 Google ScholarCrossref

S. A. Khairallah and A. Anderson , “ Mesoscopic simulation model of selective laser melting of stainless steel powder,” J. Mater. Process. Technol. 214(11), 2627–2636 (2014).https://doi.org/10.1016/j.jmatprotec.2014.06.001 Google ScholarCrossref

J. Liu , D. Gu , H. Chen , D. Dai , and H. Zhang , “ Influence of substrate surface morphology on wetting behavior of tracks during selective laser melting of aluminum-based alloys,” J. Zhejiang Univ. Sci. A 19(2), 111–121 (2018).https://doi.org/10.1631/jzus.A1700599 Google ScholarCrossref

L. Li , J. Li , and T. Fan , “ Phase-field modeling of wetting and balling dynamics in powder bed fusion process,” Phys. Fluids 33, 042116 (2021).https://doi.org/10.1063/5.0046771 Google ScholarCrossref

X. Nie , Z. Hu , H. Zhu , Z. Hu , L. Ke , and X. Zeng , “ Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: from single tracks to cubic samples,” J. Mater. Process. Technol. 256, 69–77 (2018).https://doi.org/10.1016/j.jmatprotec.2018.01.030 Google ScholarCrossref

험프 웨어는 수위 제어 및 배출 측정을 위한 기존의 수력 구조물 중 하나입니다. 상류 및 하류 경사로의 경사는 자유 및 침수 흐름 조건 모두에서 험프 웨어의 성능에 영향을 미치는 설계 매개변수입니다.

침수된 험프보의 유출 특성 및 수위 변화에 대한 램프 경사 및 유출의 영향을 조사하기 위해 일련의 수치 시뮬레이션이 수행되었습니다. 1V:1H에서 1V:5H까지의 5개 램프 경사를 다양한 업스트림 방전에서 테스트했습니다.

수치모델의 검증을 위해 수치결과를 실험실 데이터와 비교하였다. 수면수위 예측과 유출계수의 시뮬레이션 불일치는 각각 전체 범위의 ±10%와 ±5% 이내였습니다.

모듈 한계 및 방전 감소 계수의 변화에 대한 램프 경사의 영향을 연구했습니다. 험프보의 경사로 경사가 증가함에 따라 상대적으로 높은 침수율에서 모듈러 한계가 발생함을 알 수 있었다.

침수 시작은 방류 수위를 작은 증분으로 조심스럽게 증가시켜 모델링되었으며 그 결과는 모듈 한계의 고전적인 정의와 비교되었습니다. 램프 경사와 방전이 증가함에 따라 모듈러 한계가 증가하는 것으로 밝혀졌지만, 모듈러 한계의 고전적인 정의는 모듈러 한계가 방전과 무관하다는 것을 나타냅니다.

Hump weir 하류의 속도와 와류장은 램프 경사에 의해 제어되는 와류 구조 형성을 나타냅니다. 에너지 손실은 수치 출력으로부터 계산되었으며 정규화된 에너지 손실은 침수에 따라 선형적으로 감소하는 것으로 나타났습니다.

Hump weirs are amongst conventional hydraulic structures for water level control and discharge measurement. The slope in the upstream and downstream ramps is a design parameter that affects the performance of Hump weirs in both free and submerged flow conditions. A series of numerical simulations was performed to investigate the effects of ramp slope and discharge on discharge characteristics and water level variations of submerged Hump weirs. Five ramp slopes ranging from 1V:1H to 1V:5H were tested at different upstream discharges. The numerical results were compared with the laboratory data for verifications of the numerical model. The simulation discrepancies in prediction of water surface level and discharge coefficient were within ±10 % and ±5 % of the full range, respectively. The effects of ramp slope on variations of modular limit and discharge reduction factor were studied. It was found that the modular limit occurred at relatively higher submergence ratios as the ramp slope in Hump weirs increased. The onset of submergence was modeled by carefully increasing tailwater level with small increments and the results were compared with the classic definition of modular limit. It was found that the modular limit increases with increasing the ramp slope and discharge while the classic definition of modular limit indicated that the modular limit is independent of the discharge. The velocity and vortex fields in the downstream of Hump weirs indicated the formation vortex structure, which is controlled by the ramp slope. The energy losses were calculated from the numerical outputs, and it was found that the normalized energy losses decreased linearly with submergence.

Weirs have been utilized predominantly for discharge measurement, flow diversion, and water level control in open channels, irrigation canal, and natural streams due to their simplicity of operation and accuracy. Several research studies have been conducted to determine the head-discharge relationship in weirs as one of the most common hydraulic structures for flow measurement (Rajaratnam and Muralidhar, 1969 [[1], [2], [3]]; Vatankhah, 2010, [[4], [5], [6]]; b [[7], [8], [9]]; Azimi and Seyed Hakim, 2019; Salehi et al., 2019; Salehi and Azimi, 2019, [10]. Weirs in general are classified into two major categories named as sharp-crested weirs and weirs of finite-crest length (Rajaratnam and Muralidhar, 1969; [11]. Sharp-crested weirs are typically used for flow measurement in small irrigation canals and laboratory flumes. In contrast, weirs of finite crest length are more suitable for water level control and flow diversion in rivers and natural streams [7,[12], [13], [14]].

The head-discharge relationship in sharp-crested weirs is developed by employing energy equation between two sections in the upstream and downstream of the weir and integration of the velocity profile at the crest of the weir as:

where Q_{f} is the free flow discharge, B is the channel width, g is the acceleration due to gravity, h_{o} is the water head in free-flow condition, and C_{d} is the discharge coefficient. Rehbock [15] proposed a linear correlation between discharge coefficient and the ratio of water head, h_{o}, and the weir height, P as C_{d} = 0.605 + 0.08 (h_{o}/P).

Upstream and/or downstream ramp(s) can be added to sharp-crested weirs to enhance the structural stability of the weir. A sharp-crested weir with upstream and/or downstream ramp(s) are known as triangular weirs in the literature. Triangular weirs with both upstream and downstream ramps are also known as Hump weirs and are first introduced in the experimental study of Bazin [16]. The ramps are constructed upstream and downstream of sharp-crested weirs to enhance the weir’s structural integrity and improve the hydraulic performance of the weir. In free-flow condition, the discharge coefficient of Hump weirs increases with increasing downstream ramp slope but decreases as upstream ramp slope increases (Azimi et al., 2013).

The hydraulic performance of weirs is evaluated in both free and submerged flow conditions. In free flow condition, water freely flows over weirs since the downstream water level is lower than that of the crest level of the weir. Channel blockage or flood in the downstream of weirs can raise the tailwater level, t. As tailwater passes the crest elevation in sharp-crested weirs, the upstream flow decelerates due to the excess pressure force in the downstream and the upstream water level increases. The onset of water level raise due to tailwater raise is called the modular limit. Once the tailwater level passes the modular limit, the weir is submerged. In sharp-crested weirs, the submerged flow regime may occur even before the tailwater reaches the crest elevation [8,14], whereas, in weirs of finite crest length, the upstream water level remains unchanged even if the tailwater raises above the crest elevation and it normally causes submergence once the tailwater level passes the critical depth at the crest of the weir [7,17]. The degree of submergence can be estimated by careful observation of the water surface profile. Observations of water surface at different submergence levels indicated two distinct flow patterns in submerged sharp-crested weirs that was initially classified as impinging jet and surface flow regimes [14]. [8] analyzed the variations of water surface profiles over submerged sharp-crested weirs with different submergence ratios and defined four distinct regimes of impinging jet, surface jump, surface wave, and surface jet.

[18] characterized the onset of submergence by defining the modular limit as a stage when the free flow head increases by +1 mm due to tailwater rise. The definition of modular limit is somewhat arbitrary, and it is difficult to identify for large discharges because the upstream water surface begins to fluctuate. This definition did not consider the effects of channel and weir geometries. The experimental data in triangular weirs and weirs finite-crest length with upstream and downstream ramp(s) revealed that the modular limit varied with the ratio of the free-flow head to the total streamwise length of the weir [17]. Weirs of finite crest length with upstream and downstream ramps are known as embankment weirs in literature [1,19,20] and Azimi et al., 2013) [19]. conducted two series of laboratory experiments to study the hydraulics of submerged embankment weirs with the upstream and downstream ramps of 1V:1H and 1V:2H. Empirical correlations were proposed to directly estimate the flow discharge in submerged embankment weirs for t/h > 0.7 where h is the water head in submerged flow condition. He found that the free flow discharge is a function of upstream water head, but the submerged discharge is a function of submergence level, t/h [21]. studied the hydraulics of four embankment weirs with different weir heights ranging from 0.09 m to 0.36 m. It was found that submerged embankments with a higher h_{o}/P, where P is the height of the weir, have a smaller discharge reduction due to submergence. Effects of crest length in embankment weirs with both upstream and downstream ramps of 1V:2H was studied in both free and submerged flow conditions [1]. It was found that the modular limit in submerged embankment weirs decreased linearly with the relative crest length, H_{o}/(H_{o} + L), where H_{o} is the total head and L is the crest length.

In submerged flow condition, the performance of weirs is quantified by the discharge reduction factor, ψ, which is a ratio of the submerged discharge, Q_{s}, to the corresponding free-flow discharge, Q_{f}, based on the upstream head, h [12]. In submerged-flow conditions, flow discharge can be estimated as:��=���

[1] proposed a formula to predict ψ that could be used for embankment weirs with different crest lengths ranging from 0 to 0.3 m as:�=(1−��)�where n is an exponent varying from 4 to 7 and Y_{t} is the normalized submergence defined as:��=�ℎ−[0.85−(0.5��+�)]1−[0.85−(0.5��+�)]where H is the total upstream head in submerged-flow conditions [7]. proposed a simpler formula to predict ψ for weirs of finite-crest length as:�=[1−(�ℎ)�]�where m and n are exponents varying for different types of weirs. Hakim and Azimi (2017) employed regression analysis to propose values of n = 0.25 and m = 0.28 (h_{o}/L)^{−2.425} for triangular weirs.

The discharge capacity of weirs decreases in submerged flow condition and the onset of submergence occurs at the modular limit. Therefore, the determination of modular limit in weirs with different geometries is critical to understanding the sensitivity of a particular weir model with tailwater level variations. The available definition of modular limit as when head water raises by +1 mm due to tailwater rise does not consider the effects of channel and weir geometries. Therefore, a new and more accurate definition of modular limit is proposed in this study to consider the effect of other geometry and approaching flow parameters. The second objective of this study is to evaluate the effects of upstream and downstream ramps and ramps slopes on the hydraulic performance of submerged Hump weirs. The flow patterns, velocity distributions, and energy dissipation rates were extracted from validated numerical data to better understand the discharge reduction mechanism in Hump weirs in both free and submerged flow conditions.

Section snippets

Governing equations

Numerical simulation has been employed as an efficient and effective method to analyze free surface flow problems and in particular investigating on the hydraulics of flow over weirs [22]. The weir models were developed in numerical domain and the water pressure and velocity field were simulated by employing the FLOW-3D solver (Flow Science, Inc., Santa Fe, USA). The numerical results were validated with the laboratory measurements and the effects of ramps slopes on the performance of Hump

Verification of numerical model

The experimental observations of Bazin [16,17] were used for model validation in free and submerged flow conditions, respectively. The weir height in the study of Bazin was P = 0.5 m and two ramp slopes of 1V:1H and 1V:2H were tested. The bed and sides of the channel were made of glass, and the roughness distribution of the bed and walls were uniform. The Hump weir models in the study of Seyed Hakim and Azimi (2017) had a weir height of 0.076 m and ramp slopes of 1V:2H in both upstream and

Conclusions

A series of numerical simulations was performed to study the hydraulics and velocity pattern downstream of a Hump weir with symmetrical ramp slopes. Effects of ramp slope and discharge on formation of modular limit and in submerged flow condition were tested by conducting a series of numerical simulations on Hump weirs with ramp slopes varying from 1V:1H to 1V:5H. A comparison between numerical results and experimental data indicated that the proposed numerical model is accurate with a mean

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References (33)

H.M. Fritz et al.Hydraulics of embankment weirsJ. Hydraul. Eng.(1998)

P.K. Swamee et al.Viscosity and surface tension effects on rectangular weirsThe ISH Journal of Hydraulic Engineering(2001)

R. BaddourHead-discharge equation for the sharp-crested polynomial weirJ. Irrigat. Drain. Eng.(2008)

A.R. VatankhahHead-discharge equation for sharp-crested weir with piecewise-linear sidesJ. Irrigat. Drain. Eng.(2012)

A.H. Azimi et al.A note on sharp-crested weirs and weirs of finite crest lengthCan. J. Civ. Eng.(2012)

A.H. Azimi et al.Discharge characteristics of weirs of finite crest length with upstream and downstream rampsJ. Irrigat. Drain. Eng.(2013)

A.H. Azimi et al.Submerged flows over rectangular weirs of finite crest lengthJ. Irrigat. Drain. Eng.(2014)

A.H. Azimi et al.Water surface characteristics of submerged rectangular sharp-crested weirsJ. Hydraul. Eng.(2016)

M. Bijankhan et al.Experimental study and numerical simulation of inclined rectangular weirsJ. Irrigat. Drain. Eng.(2018)

A.H. AzimiAn Introduction to Hydraulic Structure” in Water Engineering Modeling and Mathematic Tools(2021)

Moon, Y.-K.; Yoo, C.-I.; Lee, J.-M.; Lee, S.-H., and Yoon, H.-S., 2023. Evaluation of pedestrian safety for wave overtopping by ship-induced waves in waterfront revetment. In: Lee, J.L.; Lee, H.; Min, B.I.; Chang, J.-I.; Cho, G.T.; Yoon, J.-S., and Lee, J. (eds.), Multidisciplinary Approaches to Coastal and Marine Management. Journal of Coastal Research, Special Issue No. 116, pp. 314-318. Charlotte (North Carolina), ISSN 0749-0208.

In the past, Busan North Port was redeveloped as a commercial and cultural center as its competitiveness declined as a conventional port and the need for urban regeneration in the old city center was raised. In particular, the waterfront and leisure space were created between the marina and the international passenger terminal for sustainable urban development from Busan North Port Redevelopment Project. However, since there is a high possibility of ship-induced wave due to large cruise ships and speeding vessels, and it is necessary to study the safety of pedestrians on sloping revetments with easy access to the shore. In addition, there is no study on the systematic standard setting to secure pedestrian safety due to generation of wave overtopping caused by ship-induced wave. Therefore, this study performed scenario of generation by ship-induced wave from simulation using Flow 3D based on the data of Lee (2022), who analyzed the 5-year ship operation data that entered Busan Port and suggested the scenario of the occurrence of the sailing frequency. At this time, based on the result of calculating the vertical revetment, the relative wave overtopping volume of the sloping revetment, which simplified the waterfront space, was compared, and the minimum safety distance concept for pedestrian safety was presented by analyzing the distance at which the maximum wave overtopping from the shoreline occurred.

과거에 부산 노스 포트 (Busan North Port)는 경쟁력이 기존의 항구로 감소하고 구시대의 도시 재생의 필요성이 높아짐에 따라 상업 및 문화 센터로 재개발되었습니다. 특히, 워터 프론트와 레저 공간은 마리나와 국제 여객 터미널 사이에 Busan North Port 재개발 프로젝트의 지속 가능한 도시 개발을위한 국제 여객 터미널 사이에 만들어졌습니다.

그러나 대형 유람선과 과속 선박으로 인한 선박으로 인한 파도의 가능성이 높기 때문에 해안에 쉽게 접근 할 수있는 보행자의 보행자의 안전을 연구해야합니다. 또한, 선박으로 인한 파도로 인한 파도의 생성으로 인해 보행자 안전을 확보하기위한 체계적인 표준 설정에 대한 연구는 없습니다.

따라서 이 연구는 부산 포트에 입력 한 5 년의 선박 운영 데이터를 분석하고 항해 빈도. 이 시점에서 수직 회귀 계산의 결과에 따라, 워터 프론트 공간을 단순화 한 경사 회귀의 상대적 파도를 과도하게 비교하고, 보행자 안전을위한 최소 안전 거리 개념은 거리를 분석함으로써 제시되었다. 해안선에서 오버 팅하는 최대 파도가 발생했습니다.

Assessing the interaction of waves and porous offshore structures such as rubble mound breakwaters plays a critical role in designing such structures optimally. This study focused on the effect of the geometric parameters of a sloped rubble mound breakwater, including the shape of the armour, method of its arrangement, and the breakwater slope. Thus, three main design criteria, including the wave reflection coefficient (K_{r}), transmission coefficient (K_{t}), and depreciation wave energy coefficient (K_{d}), are discussed. Based on the results, a decrease in wavelength reduced the K_{r} and increased the K_{t} and K_{d}. The rubble mound breakwater with the Coreloc armour layer could exhibit the lowest K_{r} compared to other armour geometries. In addition, a decrease in the breakwater slope reduced the K_{r} and K_{d} by 3.4 and 1.25%, respectively. In addition, a decrease in the breakwater slope from 33 to 25° increased the wave breaking height by 6.1% on average. Further, a decrease in the breakwater slope reduced the intensity of turbulence depreciation. Finally, the armour geometry and arrangement of armour layers on the breakwater with its different slopes affect the wave behaviour and interaction between the wave and breakwater. Thus, layering on the breakwater and the correct use of the geometric shapes of the armour should be considered when designing such structures.

파도와 잔해 더미 방파제와 같은 다공성 해양 구조물의 상호 작용을 평가하는 것은 이러한 구조물을 최적으로 설계하는 데 중요한 역할을 합니다. 본 연구는 경사진 잔해 둔덕 방파제의 기하학적 매개변수의 효과에 초점을 맞추었는데, 여기에는 갑옷의 형태, 배치 방법, 방파제 경사 등이 포함된다. 따라서 파동 반사 계수(K_{r}), 투과 계수(K_{t}) 및 감가상각파 에너지 계수(K_{d})에 대해 논의합니다. 결과에 따르면 파장이 감소하면 K가 감소합니다._{r}그리고 K를 증가시켰습니다_{t} 및 K_{d}. Coreloc 장갑 층이 있는 잔해 언덕 방파제는 가장 낮은 K를 나타낼 수 있습니다._{r} 다른 갑옷 형상과 비교했습니다. 또한 방파제 경사가 감소하여 K가 감소했습니다._{r} 및 K_{d} 각각 3.4%, 1.25% 증가했다. 또한 방파제 경사가 33°에서 25°로 감소하여 파도 파쇄 높이가 평균 6.1% 증가했습니다. 또한, 방파제 경사의 감소는 난류 감가상각의 강도를 감소시켰다. 마지막으로, 경사가 다른 방파제의 장갑 형상과 장갑 층의 배열은 파도 거동과 파도와 방파제 사이의 상호 작용에 영향을 미칩니다. 따라서 이러한 구조를 설계 할 때 방파제에 층을 쌓고 갑옷의 기하학적 모양을 올바르게 사용하는 것을 고려해야합니다.

Keywords

Rubble mound breakwater

Computational fluid dynamics

Armour layer

Wave reflection coefficient

Wave transmission coefficient

Wave energy dissipation coefficient

References

Sollitt, C.K.; Cross, R.H.: Wave transmission through permeable breakwaters. In Coastal Engineering. pp. 1827–1846. (1973)

Sulisz, W.: Wave reflection and transmission at permeable breakwaters of arbitrary cross-section. Coast. Eng. 9(4), 371–386 (1985)ArticleGoogle Scholar

Kobayashi, N.; Wurjanto, A.: Numerical model for waves on rough permeable slopes. J. Coast. Res.149–166. (1990)

Wurjanto, A.; Kobayashi, N.: Irregular wave reflection and runup on permeable slopes. J. Waterw. Port Coast. Ocean Eng. 119(5), 537–557 (1993)ArticleGoogle Scholar

van Gent, M.R.: Numerical modelling of wave interaction with dynamically stable structures. In Coastal Engineering 1996. pp. 1930–1943. (1997)

Liu, P.L.F.; Wen, J.: Nonlinear diffusive surface waves in porous media. J. Fluid Mech. 347, 119–139 (1997)ArticleMathSciNetMATHGoogle Scholar

Troch, P.; De Rouck, J.: Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters. In Coastal Engineering. pp. 1638–1649. (1999)

Liu, P.L.F.; Lin, P.; Chang, K.A.; Sakakiyama, T.: Numerical modeling of wave interaction with porous structures. J. Waterw. Port Coast. Ocean Eng. 125(6), 322–330 (1999)ArticleGoogle Scholar

Abdolmaleki, K.; Thiagarajan, K.P.; Morris-Thomas, M.T.: Simulation of the dam break problem and impact flows using a Navier-Stokes solver. Simulation 13, 17 (2004)Google Scholar

Higuera, P.; Lara, J.L.; Losada, I.J.: Realistic wave generation and active wave absorption for Navier-Stokes models: application to OpenFOAM®. Coast. Eng. 71, 102–118 (2013)ArticleGoogle Scholar

Higuera, P.; Lara, J.L.; Losada, I.J.: Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part II: application. Coast. Eng. 83, 259–270 (2014)ArticleGoogle Scholar

Dentale, F.; Donnarumma, G.; Carratelli, E.P.; Reale, F.: A numerical method to analyze the interaction between sea waves and rubble mound emerged breakwaters. WSEAS Trans. Fluid Mech 10, 106–116 (2015)Google Scholar

Dentale, F.; Reale, F.; Di Leo, A.; Carratelli, E.P.: A CFD approach to rubble mound breakwater design. Int. J. Naval Archit. Ocean Eng. 10(5), 644–650 (2018)ArticleGoogle Scholar

Koley, S.: Wave transmission through multilayered porous breakwater under regular and irregular incident waves. Eng. Anal. Bound. Elem. 108, 393–401 (2019)ArticleMathSciNetMATHGoogle Scholar

Koley, S.; Panduranga, K.; Almashan, N.; Neelamani, S.; Al-Ragum, A.: Numerical and experimental modeling of water wave interaction with rubble mound offshore porous breakwaters. Ocean Eng. 218, 108218 (2020)ArticleGoogle Scholar

Pourteimouri, P.; Hejazi, K.: Development of an integrated numerical model for simulating wave interaction with permeable submerged breakwaters using extended Navier-Stokes equations. J. Mar. Sci. Eng. 8(2), 87 (2020)ArticleGoogle Scholar

Cao, D.; Yuan, J.; Chen, H.: Towards modelling wave-induced forces on an armour layer unit of rubble mound coastal revetments. Ocean Eng. 239, 109811 (2021)ArticleGoogle Scholar

Díaz-Carrasco, P.; Eldrup, M.R.; Andersen, T.L.: Advance in wave reflection estimation for rubble mound breakwaters: the importance of the relative water depth. Coast. Eng. 168, 103921 (2021)ArticleGoogle Scholar

Vieira, F.; Taveira-Pinto, F.; Rosa-Santos, P.: Damage evolution in single-layer cube armoured breakwaters with a regular placement pattern. Coast. Eng. 169, 103943 (2021)ArticleGoogle Scholar

Booshi, S.; Ketabdari, M.J.: Modeling of solitary wave interaction with emerged porous breakwater using PLIC-VOF method. Ocean Eng. 241, 110041 (2021)ArticleGoogle Scholar

Aristodemo, F.; Filianoti, P.; Tripepi, G.; Gurnari, L.; Ghaderi, A.: On the energy transmission by a submerged barrier interacting with a solitary wave. Appl. Ocean Res. 122, 103123 (2022)ArticleGoogle Scholar

Teixeira, P.R.; Didier, E.: Numerical analysis of performance of an oscillating water column wave energy converter inserted into a composite breakwater with rubble mound foundation. Ocean Eng. 278, 114421 (2023)ArticleGoogle Scholar

Burgan, H.I.: Numerical modeling of structural irregularities on unsymmetrical buildings. Tehnički vjesnik 28(3), 856–861 (2021)Google Scholar

Jones, I.P.: CFDS-Flow3D user guide. (1994)

Al Shaikhli, H.I.; Khassaf, S.I.: Stepped mound breakwater simulation by using flow 3D. Eurasian J. Eng. Technol. 6, 60–68 (2022)Google Scholar

Hirt, C.W.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)ArticleMATHGoogle Scholar

Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Aricò, C.: Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses. Water 13(5), 674 (2021)ArticleGoogle Scholar

Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 4(7), 1510–1520 (1992)ArticleMathSciNetMATHGoogle Scholar

Van der Meer, J.W.; Stam, C.J.M.: Wave runup on smooth and rock slopes of coastal structures. J. Waterw. Port Coast. Ocean Eng. 118(5), 534–550 (1992)ArticleGoogle Scholar

Goda, Y.; Suzuki, Y. Estimation of incident and reflected waves in random wave experiments. In: ASCE, Proceedings of 15th International Conference on Coastal Engineering, (Honolulu, Hawaii). vol. 1, pp. 828–845. (1976)

Zanuttigh, B.; Van der Meer, J.W.: Wave reflection from coastal structures. In: AA.VV., Proceedings of the XXX International Conference on Coastal Engineering, World Scientific, (San Diego, CA, USA, September 2006). pp. 4337–4349. (2006)

Seelig W.N.; Ahrens J.P.: Estimation of wave reflection and energy dissipation coefficients for beaches, revetments, and breakwaters. CERC, Technical Paper, Fort Belvoir. vol. 81, p. 41 (1981)

Mase, H.: Random wave runup height on gentle slope. J. Waterw. Port Coast. Ocean Eng. 115(5), 649–661 (1989)ArticleGoogle Scholar

해저 퇴적물 흐름은 퇴적물을 심해로 운반하는 주요 수단 중 하나이며, 종종 장거리를 이동하고 수십 또는 수백 킬로미터에 걸쳐 상당한 양의 퇴적물을 운반합니다. 그것의 강력한 파괴력은 종종 이동 과정에서 잠수함 유틸리티에 심각한 손상을 초래합니다.

퇴적물 흐름의 퇴적물 농도는 주변 해수와의 밀도차를 결정하며, 이 밀도 차이는 퇴적물 흐름의 흐름 능력을 결정하여 이송된 퇴적물의 최종 퇴적 위치에 영향을 미칩니다. 본 논문에서는 다양한 미사 및 점토 중량비(미사/점토 비율이라고 함)를 갖는 다양한 퇴적물 농도의 퇴적물 흐름을 수로 테스트를 통해 연구합니다.

우리의 테스트 결과는 특정 퇴적물 구성에 대해 퇴적물 흐름이 가장 빠르게 이동하는 임계 퇴적물 농도가 있음을 나타냅니다. 4가지 미사/점토 비율 각각에 대한 임계 퇴적물 농도와 이에 상응하는 최대 속도가 구해집니다. 결과는 점토 함량이 임계 퇴적물 농도와 선형적으로 음의 상관 관계가 있음을 나타냅니다.

퇴적물 농도가 증가함에 따라 퇴적물의 흐름 거동은 흐름 상태에서 붕괴된 상태로 변환되고 흐름 거동이 변화하는 두 탁한 현탁액의 유체 특성은 모두 Bingham 유체입니다.

또한 본 논문에서는 퇴적물 흐름 내 입자 배열을 분석하여 위에서 언급한 결과에 대한 미시적 설명도 제공합니다.

Submarine sediment flows is one of the main means for transporting sediment to the deep sea, often traveling long-distance and transporting significant volumes of sediment for tens or even hundreds of kilometers. Its strong destructive force often causes serious damage to submarine utilities on its course of movement. The sediment concentration of the sediment flow determines its density difference with the ambient seawater, and this density difference determines the flow ability of the sediment flow, and thus affects the final deposition locations of the transported sediment. In this paper, sediment flows of different sediment concentration with various silt and clay weight ratios (referred to as silt/clay ratio) are studied using flume tests. Our test results indicate that there is a critical sediment concentration at which sediment flows travel the fastest for a specific sediment composition. The critical sediment concentrations and their corresponding maximum velocities for each of the four silt/clay ratios are obtained. The results further indicate that the clay content is linearly negatively correlated with the critical sediment concentration. As the sediment concentration increases, the flow behaviors of sediment flows transform from the flow state to the collapsed state, and the fluid properties of the two turbid suspensions with changing flow behaviors are both Bingham fluids. Additionally, this paper also provides a microscopic explanation of the above-mentioned results by analyzing the arrangement of particles within the sediment flow.

Introduction

Submarine sediment flows are important carriers for sea floor sediment movement and may carry and transport significant volumes of sediment for tens or even hundreds of kilometers (Prior et al., 1987; Pirmez and Imran, 2003; Zhang et al., 2018). Earthquakes, storms, and floods may all trigger submarine sediment flow events (Hsu et al., 2008; Piper and Normark, 2009; Pope et al., 2017b; Gavey et al., 2017). Sediment flows have strong forces during the movement, which will cause great harm to submarine structures such as cables and pipelines (Pope et al., 2017a). It was first confirmed that the cable breaking event caused by the sediment flow occurred in 1929. The sediment flow triggered by the Grand Banks earthquake damaged 12 cables. According to the time sequence of the cable breaking, the maximum velocity of the sediment flow is as high as 28 m/s (Heezen and Ewing, 1952; Kuenen, 1952; Heezen et al., 1954). Subsequent research shows that the lowest turbidity velocity that can break the cable also needs to reach 19 m/s (Piper et al., 1988). Since then, there have been many damage events of submarine cables and oil and gas pipelines caused by sediment flows in the world (Hsu et al., 2008; Carter et al., 2012; Cattaneo et al., 2012; Carter et al., 2014). During its movement, the sediment flow will gradually deposit a large amount of sediment carried by it along the way, that is, the deposition process of the sediment flow. On the one hand, this process brings a large amount of terrestrial nutrients and other materials to the ocean, while on the other hand, it causes damage and burial to benthic organisms, thus forming the largest sedimentary accumulation on Earth – submarine fans, which are highly likely to become good reservoirs for oil and gas resources (Daly, 1936; Yuan et al., 2010; Wu et al., 2022). The study on sediment flows (such as, the study of flow velocity and the forces acting on seabed structures) can provide important references for the safe design of seabed structures, the protection of submarine ecosystems, and exploration of turbidity sediments related oil and gas deposits. Therefore, it is of great significance to study the movement of sediment flows.

The sediment flow, as a highly sediment-concentrated fluid flowing on the sea floor, has a dense bottom layer and a dilute turbulent cloud. Observations at the Monterey Canyon indicated that the sediment flow can maintain its movement over long distances if its bottom has a relatively high sediment concentration. This dense bottom layer can be very destructive along its movement path to any facilities on the sea floor (Paull et al., 2018; Heerema et al., 2020; Wang et al., 2020). The sediment flow mentioned in this research paper is the general term of sediment density flow.

The sediment flow, which occurs on the seafloor, has the potential to cause erosion along its path. In this process, the suspended sediment is replenished, allowing the sediment flow to maintain its continuous flow capacity (Zhao et al., 2018). The dynamic force of sediment flow movement stem from its own gravity and density difference with surrounding water. In cases that the gravity drive of the slope is absent (on a flat sea floor), the flow velocity and distance of sediment flows are essentially determined by the sediment composition and concentration of the sediment flows as previous studies have demonstrated. Ilstad et al. (2004) conducted underwater flow tests in a sloped tank and employed high speed video camera to perform particle tracking. The results indicated that the premixed sand-rich and clay-rich slurries demonstrated different flow velocity and flow behavior. Using mixed kaolinite(d50 = 6 μm) and silica flour(d50 = 9 μm) in three compositions with total volumetric concentration ranged 22% or 28%, Felix and Peakall (2006) carried out underwater flow tests in a 5° slope Perspex channel and found that the flow ability of sediment flows is different depending on sediment compositions and concentrations. Sumner et al. (2009) used annular flume experiments to investigate the depositional dynamics and deposits of waning sediment-laden flows, finding that decelerating fast flows with fixed sand content and variable mud content resulted in four different deposit types. Chowdhury and Testik (2011) used lock-exchange tank, and experimented the kaolin clay sediment flows in the concentration range of 25–350 g/L, and predicted the fluid mud sediment flows propagation characteristics, but this study focused on giving sediment flows propagate phase transition time parameters, and is limited to clay. Lv et al. (2017) found through experiments that the rheological properties and flow behavior of kaolin clay (d50 = 3.7 μm) sediment flows were correlated to clay concentrations. In the field monitoring conducted by Liu et al. (2023) at the Manila Trench in the South China Sea in 2021, significant differences in the velocity, movement distance, and flow morphology of turbidity currents were observed. These differences may be attributed to variations in the particle composition of the turbidity currents.

On low and gentle slopes, although sediment flow with sand as the main sediment composition moves faster, it is difficult to propagate over long distances because sand has greater settling velocity and subaqueous angle of repose. Whereas the sediment flows with silt and clay as main composition may maintain relatively stable currents. Although its movement speed is slow, it has the ability to propagate over long distances because of the low settling rate of the fine particles (Ilstad et al., 2004; Liu et al., 2023). In a field observation at the Gaoping submarine canyon, the sediments collected from the sediment flows exhibited grain size gradation and the sediment was mostly composed of silt and clay (Liu et al., 2012). At the largest deltas in the world, for instance, the Mississippi River Delta, the sediments are mainly composed of silt and clay, which generally distributed along the coast in a wide range and provided the sediment sources for further distribution. The sediment flows originated and transported sediment from the coast to the deep sea are therefore share the same sediment compositions as delta sediments. To study the sediment flows composed of silt and clay is of great importance.

The sediment concentration of the sediment flows determines the density difference between the sediment flows and the ambient water and plays a key role in its flow ability. For the sediment flow with sediment composed of silt and clay, low sediment concentration means low density and therefore leads to low flow ability; however, although high sediment concentration results in high density, since there is cohesion between fine particles, it changes fluid properties and leads to low flow ability as well. Therefore, there should be a critical sediment concentration with mixed composition of silt and clay, at which the sediment flow maintains its strongest flow capacity and have the highest movement speed. In other words, the two characteristics of particle diameter and concentration of the sediment flow determine its own motion ability, which, if occurs, may become the most destructive force to submarine structures.

The objectives of this work was to study how the sediment composition (measured in relative weight of silt and clay, and referred as silt/clay ratio) and sediment concentration affect flow ability and behavior of the sediment flows, and to quantify the critical sediment concentration at which the sediment flows reached the greatest flow velocity under the experiment setting. We used straight flume without slope and conducted a series of flume tests with varying sediment compositions (silt-rich or clay-rich) and concentrations (96 to 1212 g/L). Each sediment flow sample was tested and analyzed for rheological properties using a rheometer, in order to characterize the relationship between flow behavior and rheological properties. Combined with the particle diameter, density and viscosity characteristics of the sediment flows measured in the experiment, a numerical modeling study is conducted, which are mutually validated with the experimental results.

The sediment concentration determines the arrangements of the sediment particles in the turbid suspension, and the arrangement impacts the fluid properties of the turbid suspension. The microscopic mode of particle arrangement in the turbid suspension can be constructed to further analyze the relationship between the fluid properties of turbid suspension and the flow behaviors of the sediment flow, and then characterize the critical sediment concentration at which the sediment flow runs the fastest. A simplified microscopic model of particle arrangement in turbid suspension was constructed to analyze the microscopic arrangement characteristics of sediment particles in turbid suspension with the fastest velocity.

Section snippets

Equipment and materials

The sediment flows flow experiments were performed in a Perspex channel with smooth transparent walls. The layout and dimensions of the experimental set-up were shown in Fig. 1. The bottom of the channel was flat and straight, and a gate was arranged to separate the two tanks. In order to study the flow capacity of turbidity currents from the perspective of their own composition (particle size distribution and concentration), we used a straight channel instead of an inclined one, to avoid any

Relationship between sediment flow flow velocity and sediment concentration

After the sediment flow is generated, its movement in the first half (50 cm) of the channel is relatively stable, and there is obvious shock diffusion in the second half. The reason is that the excitation wave (similar to the surge) will be formed during the sediment flow movement, and its speed is much faster than the speed of the sediment flow head. When the excitation wave reaches the tail of the channel, it will be reflected, thus affecting the subsequent flow of the sediment flow.

Sediment flows motion simulation based on FLOW-3D

As a relatively mature 3D fluid simulation software, FLOW-3D can accurately predict the free surface flow, and has been used to simulate the movement process of sediment flows for many times (Heimsund, 2007). The model adopted in this paper is RNG turbulence model, which can better deal with the flow with high strain rate and is suitable for the simulation of sediment flows with variable shape during movement. The governing equations of the numerical model involved include continuity equation,

Conclusions

In this study, we conducted a series of sediment flow flume tests with mixed silt and clay sediment samples in four silt/clay ratios on a flat slope. Rheological measurements were carried out on turbid suspension samples and microstructure analysis of the sediment particle arrangements was conducted, we concluded that:

(1)The flow velocity of the sediment flow is controlled by the sediment concentration and its own particle diameter composition, the flow velocity increased with the increase of the

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant no. 42206055]; the National Natural Science Foundation of China [Grant no. 41976049]; and the National Natural Science Foundation of China [Grant no. 42272327].

R.A. BagnoldAuto-suspension of transported sediment; turbidity currentsProc. R. Soc. Lond.(1962)

L. Carter et al.Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore TaiwanGeophys. Res. Lett.(2012)

L. Carter et al.Insights into submarine geohazards from breaks in subsea telecommunication cablesOceanography(2014)

A. Cattaneo et al.Searching for the seafloor signature of the 21 May 2003 Boumerdès earthquake offshore Central AlgeriaNat. Hazard. Earth. Sys.(2012)

S. ChoiLayer-averaged modeling of two-dimensional turbidity currents with a dissipative; galerkin finite element method; part i, formulation and application exampleJ. Hydraul. Res.(1998)

S.U. Choi et al.k-ε Turbulence modeling of density currents developing two dimensionally on a slopeJ. Hydraul. Eng.(2002)

R.A. DalyOrigin of submarine canyonsAm. J. Sci.(1936)

M. Felix et al.Transformation of debris flows into turbidity currents : mechanisms inferred from laboratory experimentsSedimentology(2006)

F.H. Harlow et al.Turbulence transport equationsPhys. Fluids(1967)

G.J. Heerema et al.What determines the downstream evolution of turbidity currents?Earth Planet. Sci. Lett.(2020)

There are more references available in the full text version of this article.

Sous la direction de : Marc Jolin, directeur de recherche Benoit Bissonnette, codirecteur de recherche

Modélisation de l’écoulement du béton frais

Abstract

현재의 기후 비상 사태와 기후 변화에 관한 다양한 과학적 보고서를 고려할 때 인간이 만든 오염을 대폭 줄이는 것은 필수적이며 심지어 중요합니다. 최신 IPCC(기후변화에 관한 정부 간 패널) 보고서(2022)는 2030년까지 배출량을 절반으로 줄여야 함을 나타내며, 지구 보존을 위해 즉각적인 조치를 취해야 한다고 강력히 강조합니다.

이러한 의미에서 콘크리트 생산 산업은 전체 인간 이산화탄소 배출량의 4~8%를 담당하고 있으므로 환경에 미치는 영향을 줄이기 위한 진화가 시급히 필요합니다.

본 연구의 주요 목적은 이미 사용 가능한 기술적 품질 관리 도구를 사용하여 생산을 최적화하고 혼합 시간을 단축하며 콘크리트 폐기물을 줄이기 위한 신뢰할 수 있고 활용 가능한 수치 모델을 개발함으로써 이러한 산업 전환에 참여하는 것입니다.

실제로, 혼합 트럭 내부의 신선한 콘크리트의 거동과 흐름 프로파일을 더 잘 이해할 수 있는 수치 시뮬레이션을 개발하면 혼합 시간과 비용을 더욱 최적화할 수 있으므로 매우 유망합니다. 이러한 복잡한 수치 도구를 활용할 수 있으려면 수치 시뮬레이션을 검증, 특성화 및 보정하기 위해 기본 신 콘크리트 흐름 모델의 구현이 필수적입니다.

이 논문에서는 세 가지 단순 유동 모델의 개발이 논의되고 얻은 결과는 신선한 콘크리트 유동의 수치적 거동을 검증하는 데 사용됩니다. 이러한 각 모델은 강점과 약점을 갖고 있으며, 신선한 콘크리트의 유변학과 유동 거동을 훨씬 더 잘 이해할 수 있는 수치 작업 환경을 만드는 데 기여합니다.

따라서 이 연구 프로젝트는 새로운 콘크리트 생산의 완전한 모델링을 위한 진정한 관문입니다.

In view of the current climate emergency and the various scientific reports on climate change, it is essential and even vital to drastically reduce man-made pollution. The latest IPCC (Intergovernmental Panel on Climate Change) report (2022) indicates that emissions must be halved by 2030 and strongly emphasizes the need to act immediately to preserve the planet. In this sense, the concrete production industry is responsible for 4-8% of total human carbon dioxide emissions and therefore urgently needs to evolve to reduce its environmental impact. The main objective of this study is to participate in this industrial transition by developing a reliable and exploitable numerical model to optimize the production, reduce mixing time and also reduce concrete waste by using technological quality control tools already available. Indeed, developing a numerical simulation allowing to better understand the behavior and flow profiles of fresh concrete inside a mixing-truck is extremely promising as it allows for further optimization of mixing times and costs. In order to be able to exploit such a complex numerical tool, the implementation of elementary fresh concrete flow models is essential to validate, characterize and calibrate the numerical simulations. In this thesis, the development of three simple flow models is discussed and the results obtained are used to validate the numerical behavior of fresh concrete flow. Each of these models has strengths and weaknesses and contributes to the creation of a numerical working environment that provides a much better understanding of the rheology and flow behavior of fresh concrete. This research project is therefore a real gateway to a full modelling of fresh concrete production.

Amziane, S., Ferraris, C. F., & Koehler, E. (2006). Feasibility of Using a Concrete Mixing Truck as a Rheometer. Anderson, J. D. (1991). Fundamentals of aerodynamics. McGraw-Hill. Balmforth, N. J., Craster, R. V., & Sassi, R. (2002). Shallow viscoplastic flow on an inclined plane. Journal of Fluid Mechanics, 470, 1-29. https://doi.org/10.1017/S0022112002001660 Banfill, P., Beaupré, D., Chapdelaine, F., de Larrard, F., Domone, P., Nachbaur, L., Sedran, T., Wallevik, O., & Wallevik, J. E. (2000). Comparison of concrete rheometers International tests at LCPC (Nantes, France) in October 2000. In NIST. Baracu T. (2012). Computational analysis of the flow around a cylinder and of the drag force. Barreto, D., & Leak, J. (2020). A guide to modeling the geotechnical behavior of soils using the discrete element method. In Modeling in Geotechnical Engineering (p. 79-100). Elsevier. https://doi.org/10.1016/B978-0-12-821205-9.00016-2 Baudez, J. C., Chabot, F., & Coussot, P. (2002). Rheological interpretation of the slump test. Applied Rheology, 12(3), 133-141. https://doi.org/10.1515/arh-2002- 0008 Beaupre, D. (2012). Mixer-mounted probe measures concrete workability. Berger, X. (2023). Proposition de recherche et préparation orale de doctorat (GCI8084). Bergeron, P. (1953). Considérations sur les facteurs influençant l’usure due au transport hydraulique de matériaux solides. Application plus particulière aux machines. https://www.persee.fr/doc/jhydr_0000-0001_1953_act_2_1_3256 Bingham, E. (1922). Fluidity and Plasticity (Digitized by the Internet Archive in 2007). http://www.archive.org/details/fluidityplasticiOObinguoft Bruschi, G., Nishioka, T., Tsang, K., & Wang, R. (2003). A comparison of analytical methods drag coefficient of a cylinder.

Caceres, E. C. (2019). Impact de la rhéologie des matériaux cimentaires sur l’aspect des parements et les procédés de mise en place. https://tel.archivesouvertes.fr/tel-01982159 Chanson, H., Jarny, ; S, & Coussot, P. (2006). Dam Break Wave of Thixotropic Fluid. https://doi.org/10.1061/ASCE0733-94292006132:3280 Chi, Z. P., Yang, H., Li, R., & Sun, Q. C. (2021). Measurements of unconfined fresh concrete flow on a slope using spatial filtering velocimetry. Powder Technology, 393, 349-356. https://doi.org/10.1016/j.powtec.2021.07.088 Cochard, S., & Ancey, C. (2009). Experimental investigation of the spreading of viscoplastic fluids on inclined planes. Journal of Non-Newtonian Fluid Mechanics, 158(1-3), 73-84. https://doi.org/10.1016/j.jnnfm.2008.08.007 Coussot, Philippe., & Ancey, C. (Christophe). (1999). Rhéophysique des pâtes et des suspensions. EDP Sciences. CSA Group. (2019). CSA A23.1:19 / CSA A23.2:19 : Concrete materials and methods of concret construction / Test methods and standard practices for concrete. Daczko, J. A. (2000). A proposal for measuring rheology of production concrete. De Larrard, F. (1999). Structures granulaires et formulation des bétons. http://www.lcpc.fr/betonlabpro De Larrard, F., Ferraris, C. F., & Sedran, T. (1998). Fresh concrete: A HerscheIBulkley material (Vol. 31). Domone P.L.J., J. J. (1999). Properties of mortar for self-compacting concrete. RILEM, 109-120. El-Reedy, M. (2009). Advanced Materials and Techniques for Reinforced Concrete Structures. Emborg M. (1999). Rheology tests for self-compacting concrete – how useful are they for the design of concrete mix for full-scale production. Fall A. (2008). Rhéophysique des fluides complexes : Ecoulement et Blocage de suspensions concentrées. https://www.researchgate.net/publication/30515545 Ferraris, C. F., Brower, L. E., Beaupré, D., Chapdelaine, F., Domone, P., Koehler, E., Shen, L., Sonebi, M., Struble, L., Tepke, D., Wallevik, O., & Wallevik, J. E.

(2003). Comparison of concrete rheometers: International tests at MB. https://doi.org/10.6028/NIST.IR.7154 Ferraris, C. F., & de Larrard, F. (1998a). Rhéologie du béton frais remanié III – L’essai au cône d’Abrams modifié. Ferraris, C. F., & de Larrard, F. (1998b, février). NISTIR 6094 Testing and modelling of fresh concrete rheology. NISTIR 6094. https://ciks.cbt.nist.gov/~garbocz/rheologyNISTIR/FR97html.htm Fischedick, M., Roy, J., Abdel-Aziz, A., Acquaye Ghana, A., Allwood, J., Baiocchi, G., Clift, R., Nenov, V., Yetano Roche Spain, M., Roy, J., Abdel-Aziz, A., Acquaye, A., Allwood, J. M., Ceron, J., Geng, Y., Kheshgi, H., Lanza, A., Perczyk, D., Price, L., … Minx, J. (2014). Climate Change 2014. Fox R., & McDonald A. (2004). Introduction to fluid mechanics. Franco Correa I.-D. (2019). Étude tribologique à hautes températures de matériaux céramiques structurés à différentes échelles. GIEC. (2022). Climate Change 2022 : Mitigation of Climate Change. www.ipcc.ch Gouvernement du Canada. (2021, mai 31). Déclaration commune : L’industrie canadienne du ciment et le gouvernement du Canada annoncent un partenariat. https://www.ic.gc.ca/eic/site/icgc.nsf/fra/07730.html Grenier, M. (1998). Microstructure et résistance à l’usure de revêtements crées par fusion laser avec gaz réactifs sur du titane. Herschel, W. H., & Bulkley, R. (1926). Konsistenzmessungen von GummiBenzollösungen. Kolloid-Zeitschrift, 39(4), 291-300. https://doi.org/10.1007/BF01432034 Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. https://doi.org/https://doi.org/10.1016/0021-9991(81)90145-5 Hoornahad, H., & Koenders, E. A. B. (2012). Simulation of the slump test based on the discrete element method (DEM). Advanced Materials Research, 446-449, 3766-3773. https://doi.org/10.4028/www.scientific.net/AMR.446-449.3766

Hu, C., de Larrard, F., Sedran, T., Boulay, C., Bosd, F., & Deflorenne, F. (1996). Validation of BTRHEOM, the new rheometer for soft-to-fluid concrete. In Materials and Structures/Mat~riaux et Constructions (Vol. 29). Jeong, S. W., Locat, J., Leroueil, S., & Malet, J. P. (2007). Rheological properties of fine-grained sediments in modeling submarine mass movements: The role of texture. Submarine Mass Movements and Their Consequences, 3rd International Symposium, 191-198. https://doi.org/10.1007/978-1-4020-6512- 5_20 Kabagire, K. D. (2018). Modélisation expérimentale et analytique des propriétés rhéologiques des bétons autoplaçants. Katopodes, N. D. (2019). Volume of Fluid Method. In Free-Surface Flow (p. 766-802). Elsevier. https://doi.org/10.1016/b978-0-12-815485-4.00018-8 Khayat. (2008). Personnal Communication. Kosmatka, S. (2011). Dosage et contrôle des mélanges de béton (8ème édition). Li, H., Wu, A., & Cheng, H. (2022). Generalized models of slump and spread in combination for higher precision in yield stress determination. Cement and Concrete Research, 159. https://doi.org/10.1016/j.cemconres.2022.106863 Massey, B., & Smith, J. (2012). Mechanics of fluids 9ème édition. Mokéddem, S. (2014). Contrôle de la rhéologie d’un béton et de son évolution lors du malaxage par des mesures en ligne à l’aide de la sonde Viscoprobe. https://tel.archives-ouvertes.fr/tel-00993153 Munson, B. R., & Young, D. R. (2006). Fundamental of Fluid Mechanics (5th éd.). Munson, M., Young, M. , & Okiishi, M. (2020). Mécanique des fluides (8ème édition). Murata, J., & Kikukawa, H. (1992). Viscosity Equation for Fresh Concrete. Nakayama, Y., & Boucher, R. F. (2000). Introduction to fluid mechanics. ButterworthHeinemann. Němeček, J. (2021). Numerical simulation of slump flow test of cement paste composites. Acta Polytechnica CTU Proceedings, 30, 58-62. https://doi.org/10.14311/APP.2021.30.0058 Nikitin, K. D., Olshanskii, M. A., Terekhov, K. M., & Vassilevski, Y. V. (2011). A numerical method for the simulation of free surface flows of viscoplastic fluid in

3D. Journal of Computational Mathematics, 29(6), 605-622. https://doi.org/10.4208/jcm.1109-m11si01 Noh, W. F., & Woodward, P. (1976). SLIC (Simple Line Interface Calculation). Odabas, D. (2018). Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy. IOP Conference Series: Materials Science and Engineering, 295(1). https://doi.org/10.1088/1757-899X/295/1/012008 Pintaude, G. (s. d.). Characteristics of Abrasive Particles and Their Implications on Wear. www.intechopen.com Poullain, P. (2003). Étude comparative de l’écoulement d’un fluide viscoplastique dans une maquette de malaxeur pour béton. R. J. Cattolica. (2003). Experiment F2: Water Tunnel. In MAE171A/175A Mechanical Engineering Laboratory Manual (Winter Quarter). Raper, R. M. (1966). Drag force and pressure distribution on cylindrical protuberances immersed in a turbulent channel flow. RMCAO. (2013). CSA A23.2-5C: Concrete Basics Slump Test. Roques, A., & School, H. (2006). High resolution seismic imaging applied to the geometrical characterization of very high voltage electric pylons. https://www.researchgate.net/publication/281566156 Roussel, N. (2006). Correlation between yield stress and slump: Comparison between numerical simulations and concrete rheometers results. Materials and Structures/Materiaux et Constructions, 39(4), 501-509. https://doi.org/10.1617/s11527-005-9035-2 Roussel, N., & Coussot, P. (2005). “Fifty-cent rheometer” for yield stress measurements: From slump to spreading flow. Journal of Rheology, 49(3), 705-718. https://doi.org/10.1122/1.1879041 Roussel, N., Geiker, M. R., Dufour, F., Thrane, L. N., & Szabo, P. (2007). Computational modeling of concrete flow: General overview. Cement and Concrete Research, 37(9), 1298-1307. https://doi.org/10.1016/j.cemconres.2007.06.007 Schaer, N. (2019). Modélisation des écoulements à surface libre de fluides nonnewtoniens. https://theses.hal.science/tel-02166968

Schowalter, W. R., & Christensen, G. (1998). Toward a rationalization of the slump test for fresh concrete: Comparisons of calculations and experiments. Journal of Rheology, 42(4), 865-870. https://doi.org/10.1122/1.550905 Sofiane Amziane, Chiara F. Ferraris, & Eric P. Koehler. (2005). Measurement of Workability of Fresh Concrete Using a Mixing Truck. Journal of Research of the National Institute of Standards Technology, 55-56. Sooraj, P., Agrawal, A., & Sharma, A. (2018). Measurement of Drag Coefficient for an Elliptical Cylinder. Journal of Energy and Environmental Sustainability, 5, 1-7. https://doi.org/10.47469/jees.2018.v05.100050 Stachowiak G. (2006). Wear – Materials, Mechanisms and Pratice. Stachowiak G.W. (1993). Tribology Series (Vol. 24, p. 557-612). Elsevier. Tattersall, G., & Banfill, P. F. G. (1983). The rheology of fresh concrete. The European Guidelines for Self-Compacting Concrete Specification, Production and Use « The European Guidelines for Self Compacting Concrete ». (2005). www.efnarc.org University College London. (2010). Pressure around a cylinder and cylinder drag. Van Oudheusden, B. W., Scarano, F., Roosenboom, E. W. M., Casimiri, E. W. F., & Souverein, L. J. (2007). Evaluation of integral forces and pressure fields from planar velocimetry data for incompressible and compressible flows. Experiments in Fluids, 43(2-3), 153-162. https://doi.org/10.1007/s00348-007- 0261-y Vasilic, K., Gram, A., & Wallevik, J. E. (2019). Numerical simulation of fresh concrete flow: Insight and challenges. RILEM Technical Letters, 4, 57-66. https://doi.org/10.21809/rilemtechlett.2019.92 Viccione, G., Ferlisi, S., & Marra, E. (2010). A numerical investigation of the interaction between debris flows and defense barriers. http://www.unisa.it/docenti/giacomoviccione/en/index Wallevik J. (2006). Relation between the Bingham parameters and slump. Wallevik, J. E. (2006). Relationship between the Bingham parameters and slump. Cement and Concrete Research, 36(7), 1214-1221. https://doi.org/10.1016/j.cemconres.2006.03.001

Wallevik, J. E., & Wallevik, O. H. (2020). Concrete mixing truck as a rheometer. Cement and Concrete Research, 127. https://doi.org/10.1016/j.cemconres.2019.105930

Analysis on inundation characteristics by compound external forces in coastal areas

연안 지역의 복합 외력에 의한 침수 특성 분석

Taeuk Kang^{a}, Dongkyun Sun^{b}, Sangho Lee^{c*} 강 태욱^{a}, 선 동균^{b}, 이 상호^{c*}

^{a}Research Professor, Disaster Prevention Research Institute, Pukyong National University, Busan, Korea ^{b}Researcher, Disaster Prevention Research Institute, Pukyong National University, Busan, Korea ^{c}Professor, Department of Civil Engineering, Pukyong National University, Busan, Korea ^{a}부경대학교 방재연구소 전임연구교수 ^{b}부경대학교 방재연구소 연구원 ^{c}부경대학교 공과대학 토목공학과 교수 *Corresponding Author

ABSTRACT

연안 지역은 강우, 조위, 월파 등 여러가지 외력에 의해 침수가 발생될 수 있다. 이에 이 연구에서는 연안 지역에서 발생될 수 있는 단일 및 복합 외력에 의한 지역별 침수 특성을 분석하였다. 연구에서 고려한 외력은 강우와 폭풍 해일에 의한 조위 및 월파이고, 분석 대상지역은 남해안 및 서해안의 4개 지역이다. 유역의 강우-유출 및 2차원 지표면 침수 분석에는 XP-SWMM이 사용되었고, 폭풍 해일에 의한 외력인 조위 및 월파량 산정에는 ADCSWAN (ADCIRC와 UnSWAN) 모형과 FLOW-3D 모형이 각각 활용되었다. 단일 외력을 이용한 분석 결과, 대부분의 연안 지역에서는 강우에 의한 침수 영향보다 폭풍 해일에 의한 침수 영향이 크게 나타났다. 복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였다. 다만, 특정 지역에서는 복합 외력을 고려함에 따라 단일 외력만을 고려한 침수모의에서 나타나지 않았던 새로운 침수 영역이 발생하기도 하였다. 이러한 지역의 침수 피해 저감을 위해서는 복합 외력을 고려한 분석이 요구되는 것으로 판단되었다.

키워드

연안 지역

침수 분석

강우

폭풍 해일

복합 외력

The various external forces can cause inundation in coastal areas. This study is to analyze regional characteristics caused by single or compound external forces that can occur in coastal areas. Storm surge (tide level and wave overtopping) and rainfall were considered as the external forces in this study. The inundation analysis were applied to four coastal areas, located on the west and south coast in Republic of Korea. XP-SWMM was used to simulate rainfall-runoff phenomena and 2D ground surface inundation for watershed. A coupled model of ADCIRC and SWAN (ADCSWAN) was used to analyze tide level by storm surge and the FLOW-3D model was used to estimate wave overtopping. As a result of using a single external force, the inundation influence due to storm surge in most of the coastal areas was greater than rainfall. The results of using compound external forces were quite similar to those combined using one external force independently. However, a case of considering compound external forces sometimes created new inundation areas that didn’t appear when considering only a single external force. The analysis considering compound external forces was required to reduce inundation damage in these areas.

우리나라는 반도에 위치하여 삼면이 바다로 둘러싸여 있는 지리적 특성을 가지고 있다. 이에 따라 해양 산업을 중심으로 부산, 인천, 울산 등 대규모의 광역도시가 발달하였을 뿐만 아니라, 창원, 포항, 군산, 목포, 여수 등의 중․소규모 도시들도 발달되어 있다. 또한, 최근에는 연안 지역이 바다를 전망으로 하는 입지 조건을 가지고 있어 개발 선호도가 높고, 이에 따라 부산시 해운대의 마린시티, 엘시티와 같은 주거 및 상업시설의 개발이 지속되고 있다(Kang et al., 2019b).

한편, 최근 기후변화에 따른 지구 온난화 현상으로 평균 해수면이 상승하고, 해수면 온도도 상승하면서 태풍 및 강우의 강도가 커지고 있어 전 세계적으로 자연 재해로 인한 피해가 증가하고 있다(Kim et al., 2016). 실제로 2020년에는 최장기간의 장마가 발생하여 부산, 울산은 물론, 전국에서 50명의 인명 피해와 3,489세대의 이재민이 발생하였다^{1)}. 특히, 연안 지역은 강우, 만조 시 해수면 상승, 폭풍 해일(storm surge)에 의한 월파(wave overtopping) 등 복합적인 외력(compound external forces)에 의해 침수될 수 있다(Lee et al., 2020). 일례로, 2016년 태풍 차바 시 부산시 해운대구의 마린시티는 강우와 폭풍 해일에 의한 월파가 발생함에 따라 대규모 침수를 유발하였다(Kang et al., 2019b). 또한, 2020년 7월 23일에 부산에서는 시간당 81.6 mm의 집중호우와 약최고고조위를 상회하는 만조가 동시에 발생하였고, 이로 인해 감조 하천인 동천의 수위가 크게 상승하여 하천이 범람하였다(KSCE, 2021).

연안 지역의 복합 외력을 고려한 침수 분석에 관한 사례로서, 우선 강우와 조위를 고려한 연구 사례는 다음과 같다. Han et al. (2014)은 XP-SWMM을 이용하여 창원시 배수 구역을 대상으로 침수 모의를 수행하였는데, 연안 도시의 침수 모의에는 조위의 영향을 반드시 고려해야 함을 제시하였다. Choi et al. (2018a)은 경남 사천시 선구동 일대에 대하여 초과 강우 및 해수면 상승 시나리오를 조합하여 침수 분석을 수행하였다. Choi et al. (2018b)은 XP-SWMM을 이용하여 여수시 연등천 및 여수시청 지역에 대하여 강우 시나리오와 해수위 상승 시나리오를 고려한 복합 원인에 의한 침수 모의를 수행하여 홍수예경보 기준표를 작성하였다. 한편, 강우, 조위, 월파를 고려한 연구 사례로서, Song et al. (2017)은 부산시 해운대구 수영만 일원에 대하여 XP-SWMM으로 월파량의 적용 유무에 따른 침수 면적을 비교하였다. Suh and Kim (2018)은 부산시 마린시티 지역을 대상으로 태풍 차바 때 EurOtop의 경험식을 ADSWAN에 적용하여 월파량을 반영하였다. Chen et al. (2017)은 TELEMAC-2D 및 SWMM을 기반으로 한 극한 강우, 월파 및 조위를 고려하여 중국 해안 원자력 발전소의 침수를 예측하고 분석하기 위한 결합 모델을 개발한 바 있다. 한편, Lee et al. (2020)은 수리‧수문학 분야와 해양공학 분야에서 사용되는 물리 모형의 기술적 연계를 통해 연안 지역의 침수 모의의 재현성을 높였다.

상기의 연구들은 공통적으로 연안 지역에 대하여 복합 외력을 고려했을 때 발생되는 침수 현상의 재현 또는 예측을 목적으로 수행되었다. 이 연구는 이와 차별하여 복합 외력을 고려하는 경우 나타날 수 있는 연안 지역의 침수 특성 분석을 목적으로 수행되었다. 이를 위해 단일 외력을 독립적으로 고려했을 때 발생되는 침수 양상과 동시에 고려하는 경우의 침수 현상을 비교, 분석하였다. 복합 외력에 의한 지역적 침수 특성 분석은 우리나라 남해안과 서해안에 위치한 4개 지역에 대하여 적용되었다.

연안 지역의 침수는 크게 세 가지의 메카니즘으로 발생될 수 있다. 우선, 연안 지역은 바다와 인접하고 있기 때문에 그 영향을 직접적으로 받는다. Kim (2018)에 의하면, 연안 지역의 침수는 폭풍 해일에 의해 상승한 조위와 월파로 인해 발생될 수 있다(Table 1). 특히, 경상남도의 창원과 통영, 인천광역시의 소래포구 어시장 등 남해안 및 서해안 지역의 일부는 백중사리, 슈퍼문(super moon) 등 만조 시 조위의 상승으로 인한 침수가 발생하는 지역이 존재한다(Kang et al., 2019a). 두 번째는 강우에 의한 내수 침수 발생이다. ME (2011)에서는 도시 지역의 우수 관거를 10 ~ 30년 빈도로 계획하도록 지정하고 있고, 펌프 시설은 30 ~ 50년 빈도의 홍수를 배수시킬 수 있도록 정하고 있다. 하지만 최근에는 기후변화의 영향으로 도시 지역 배수시설의 설계 빈도를 초과하는 강우가 빈번하게 나타나고 있다. 실제로 2016년의 태풍 차바 시 울산 기상관측소에 관측된 시간 최대 강우량은 106.0 mm로서, 이는 300년 빈도 이상의 강우량에 해당하였다(Kang et al., 2019a). 따라서 배수시설의 설계 빈도 이상의 강우는 연안 도시 지역의 침수를 유발할 수 있다. 세 번째, 하천이 인접한 연안 도시에서는 하천의 범람으로 인해 침수가 발생할 수 있다. 하천의 경우, 기본계획이 수립되기는 하지만, 설계 빈도를 상회하는 강우의 발생, 제방, 수문 등 홍수 방어시설의 기능 저하, 예산 등의 문제로 하천기본계획 이행의 지연 등에 의해 범람할 가능성이 존재한다.

Table 1.

Type of natural hazard damage in coastal areas (Kim, 2018)

Item

Risk factor

Facilities damage

∙ Breaking of coastal facilities by wave – Breakwater, revetment, lighters wharf etc. ∙ Local scouring at the toe of the structures by wave ∙ Road collapse by wave overtopping

Inundation damage

∙ Inundation damage by wave overtopping ∙ Inundation of coastal lowlands by storm surge

Erosion damage

∙ Backshore erosion due to high swell waves ∙ Shoreline changes caused by construction of coastal erosion control structure ∙ Sediment transport due to the construction of artificial structures

상기의 내용을 종합하면, 연안 지역은 조위 및 월파에 의한 침수, 강우에 의한 내수 침수, 하천 범람에 의한 침수로 구분될 수 있다. 이 연구에서는 폭풍 해일에 의한 조위 상승 및 월파와 강우를 연안 지역의 침수 유발 외력으로 고려하였다. 하천 범람의 경우, 상대적으로 사례가 희소하여 제외하였다.

2.2 복합 외력을 고려한 침수 모의 방법

이 연구에서는 조위 및 월파와 강우를 연안 지역의 침수 발생에 관한 외력 조건으로 고려하였다. 따라서 해당 외력 조건을 고려하여 침수 분석을 수행할 수 있어야 한다. 이와 관련하여 Lee et al. (2020)은 Fig. 1과 같이 수리‧수문 및 해양공학 분야에서 사용되는 물리 기반 모형의 연계를 통해 조위, 월파, 강우를 고려한 침수 분석 방법을 제시하였고, 이 연구에서는 해당 방법을 이용하였다.

Fig. 1.

Connection among the models for inundation analysis in coastal areas (Lee et al., 2020)

우선, 태풍에 의해 발생되는 폭풍 해일의 영향을 분석하기 위해서는 태풍에 의해 발생되는 기압 강하, 해상풍, 진행 속도 등을 고려하여 해수면의 변화 양상 및 조석-해일-파랑을 충분히 재현 가능해야 한다. 이 연구에서는 국내․외에서 검증 및 공인된 폭풍 해일 모형인 ADCIRC 모형과 파랑 모형인 UnSWAN이 결합된 ADCSWAN (coupled model of ADCIRC and UnSWAN)을 이용하였다. 정수압 가정의 ADCSWAN은 월파량 산정에 단순 경험식을 적용하는 단점이 있지만 넓은 영역을 모의할 수 있고, FLOW-3D는 해안선의 경계를 고해상도로 재현이 가능하다. 이에 연구에서는 먼 바다 영역에 대해서는 ADCSWAN을 이용하여 분석하였고, 연안 주변의 바다 영역과 월파량 산정에 대해서는 FLOW-3D 모형을 이용하였다. 한편, 연안 지역의 침수 모의를 위해서는 유역에서 발생하는 강우-유출 현상과 우수 관거 등의 배수 체계에 대한 분석이 가능해야 한다. 또한, 배수 체계로부터 범람한 물이 지표면을 따라 흘러가는 현상을 해석할 수 있어야 하고, 바다의 조위 및 월파량을 경계조건으로 반영할 수 있어야 한다. 이 연구에서는 이러한 현상을 모의할 수 있고, 도시 침수 모의에 활용도가 높은 XP-SWMM을 이용하였다.

2.3 침수 분석 대상지역

연구의 대상지역은 조위 및 월파에 의한 침수와 강우에 의한 내수 침수의 영향이 복합적으로 발생할 수 있는 남해안과 서해안에 위치한 4개 지역이다. Table 2는 침수 분석 대상지역을 정리하여 나타낸 표이고, Fig. 2는 각 지역의 유역 경계를 나타낸 그림이다.

Table 2.

Target region for inundation analysis

Classification

Administrative district

Target region

Area (km^{2})

Main cause of inundation

Pump facility

Number of major outfall

The south coast

Haundae-gu, Busan

Marine City area

0.53

Wave overtopping

–

9

Haundae-gu, Busan

Centum City area

4.76

Poor interior drainage at high tide level

1

2

The west coast

Gunsan

Jungang-dong area

0.79

Poor interior drainage at high tide level

2

3

Boryeong

Ocheon Port area

0.41

High tide level

–

5

Fig. 2.

Watershed area

남해안의 분석 대상지역 중 부산시 해운대구의 마린시티는 바다 조망을 중심으로 조성된 주거지 및 상업시설 중심의 개발지역이다. 마린시티는 2016년 태풍 차바 및 2018년 태풍 콩레이 등 태풍 내습 시 월파에 의한 해수 월류로 인해 도로 및 상가 일부가 침수를 겪은 지역이다. 부산시 해운대구의 센텀시티는 과거 수영만 매립지였던 곳에 조성된 주거지 및 상업시설 중심의 신도시 지역이다. 센텀시티 유역의 북쪽은 해발고도 El. 634 m의 장산이 위치하는 등 산지 특성도 가지고 있어 상대적으로 유역 면적이 넓고, 배수시설의 규모도 크고 복잡하다. 하지만 수영강 하구의 저지대 지역에 위치함에 따라 강우 시 내수 배제가 불량하고, 특히 만조 시 침수가 잦은 지역이다.

서해안 분석 대상지역 중 전라북도 군산시의 중앙동 일원은 군산시 내항 내측에 조성된 구도시로서, 금강 및 경포천 하구에 위치하는 저지대이다. 이에 따라 군산시 풍수해저감종합계획에서는 해당 지역을 3개의 영역으로 구분하여 내수재해 위험지구(영동지구, 중동지구, 경암지구)로 지정하였고, 이 연구에서는 해당 지역을 모두 고려하였다. 한편, 군산시 중앙동 일원은 특히, 만조 시 내수 배제가 매우 불량하여 2개의 펌프시설이 운영되고 있다. 충청남도 보령시의 오천면에 위치한 오천항은 배후의 산지를 포함한 소규모 유역에 위치한다. 서해안의 특성에 따라 조석 간만의 차가 크고, 특히 태풍 내습 시 폭풍 해일에 의한 침수가 잦은 지역이다. 산지의 강우-유출수는 복개된 2개의 수로를 통해 바다로 배제되고, 상가들이 위치한 연안 주변 지역에는 강우-유출수 배제를 위한 3개의 배수 체계가 구성되어 있다.

^{}3. 연구 결과

3.1 침수 모의 모형 구축

XP-SWMM을 이용하여 분석 대상지역별 침수 모의 모형을 구축하였다. 적절한 침수 분석 수행을 위해 지역별 수치지형도, 도시 공간 정보 시스템(urban information system, UIS), 하수 관망도 등의 수치 자료와 현장 조사를 통해 유역의 배수 체계를 구성하였다. 그리고 2차원 침수 분석을 위해 무인 드론 및 육상 라이다(LiDAR) 측량을 수행하여 평면해상도가 1 m 이하인 고해상도 수치지형모형(digital terrain model, DTM)을 구성하였고, 침수 모의 격자를 생성하였다.

Fig. 3은 XP-SWMM의 상세 구축 사례로서 부산시 마린시티 배수 유역에 대한 소유역 및 관거 분할 등을 통해 구성한 배수 체계와 고해상도 측량 결과를 이용하여 구성한 수치표면모형(digital surface model, DSM)을 나타낸다. Fig. 4는 각 대상지역에 대해 XP-SWMM을 이용하여 구축한 침수 모의 모형을 나타낸다. 침수 분석을 위해서는 침수 모의 영역에 대한 설정이 필요한데, 다수의 사전 모의를 통해 유역 내에서 침수가 발생되는 지역을 검토하여 결정하였다.

Fig. 3.

Analysis of watershed drainage system and high-resolution survey for Marine City

Fig. 4.

Simulation model for inundation analysis by target region using XP-SWMM

복합 외력에 의한 침수 영향을 검토하기 위해서는 외력 조건에 대한 빈도와 지속기간의 설정이 필요하다. 이 연구에서는 재해 현상이 충분히 나타날 수 있도록 강우와 조위 및 월파의 빈도를 모두 100년으로 설정하였다. 이때, 조위와 월파량의 산정에는 만조(약최고고조위) 시, 100년 빈도에 해당하는 태풍 내습에 따른 폭풍 해일의 발생 조건을 고려하였다.

지역별 강우 발생 특성과 유역 특성을 고려하기 위해 MOIS (2017)의 방재성능목표 기준에 따라 임계 지속기간을 결정하여 대상지역별 강우의 지속기간으로 설정하였다. 이때, 강우의 시간 분포는 MLTM (2011)의 Huff 3분위를 이용하였다. 그리고 조위와 월파의 경우, 일반적인 폭풍 해일의 지속기간을 고려하여 5시간으로 결정하였다. 한편, 침수 모의를 위한 계산 시간 간격, 2차원 모의 격자 등의 입력자료는 분석 대상지역의 유역 규모와 침수 분석 대상 영역을 고려하여 결정하였다. 참고로 침수 분석에 사용된 수치지형모형은 1 m 급의 고해상도로 구성되었지만, 2차원 침수 모의 격자의 크기는 지역별로 3 ~ 4 m이다. 이는 연구에서 사용된 XP-SWMM의 격자 수(100,000개) 제약에 따른 설정이나, Sun (2021)은 민감도 분석을 통해 2차원 침수 분석을 위한 적정 격자 크기를 3 ~ 4.5 m로 제시한 바 있다.

Table 3은 이 연구에서 설정한 침수 모의 조건과 분석 방법을 정리하여 나타낸 표이다.

Table 3.

Simulation condition and method

Classification

Target region

Simulation condition

Simulation method

Rainfall

Storm surge

Simulation time interval

2D grid size

Return period

Duration

Temporal distribution

Return period

Duration

Watershed routing

Channel routing

2D inundation

The south coast

Marine City area

100 yr

1 hr

3^{rd} quartile of Huff’s method

100

5 hr

5 min

10 sec

1 sec

3 m

Centum City area

1 hr

100

5 min

10 sec

1 sec

4 m

The west coast

Jungang-dong area

2 hr

100

5 min

10 sec

1 sec

3.5 m

Ocheon Port area

1 hr

100

1 min

10 sec

1 sec

3 m

3.2.2 복합 재해의 동시 고려

이 연구의 대상지역들은 모두 소규모의 해안가 도시지역이고, 이러한 지역에 대한 강우의 임계지속기간은 1시간 ~ 2시간이나, 이 연구에서 분석한 폭풍 해일의 지속기간은 5시간으로 강우의 지속기간과 폭풍 해일의 지속기간이 상이하다. 이에 이 연구에서는 서로 다른 지속기간을 가진 강우와 폭풍 해일 또는 조위를 고려하기 위해 강우의 중심과 폭풍 해일의 중심이 동일한 시간에 위치하도록 설정하였다(Fig. 5).

XP-SWMM은 폭풍 해일이 지속되는 5시간 전체를 모의하도록 설정하였고, 폭풍 해일이 가장 큰 시점에 강우의 중심이 위치하도록 강우 발생 시기를 결정하였다. 다만, 부산 마린시티의 경우, 폭풍 해일에 의한 피해가 주로 월파에 의해 발생되므로 강우의 중심과 월파의 중심을 일치시켰고(Fig. 5(a)), 상대적으로 조위의 영향이 큰 3개 지역은 강우의 중심과 조위의 중심을 맞추었다. Fig. 5(b)는 군산시 중앙동 지역의 복합 외력에 의한 침수 분석에 사용된 강우와 조위의 조합이다.

한편, 100년 빈도의 확률강우량만을 고려한 침수 분석에서는 유역 유출부의 경계조건으로 우수 관거의 설계 조건을 고려하여 약최고고조위가 일정하게 유지되도록 설정하였다.

Fig. 5.

Consideration of external force conditions with different durations

3.2.3 XP-SWMM의 월파량 고려

XP-SWMM에 ADCSWAN 및 FLOW-3D 모형에 의해 산정된 월파량을 입력하기 위해 해안가 지역에 절점을 생성하여 월파 현상을 구현하였다. XP-SWMM에서 월파량을 입력하기 위한 절점의 위치는 FLOW-3D 모형에서 월파량을 산정한 격자의 중심 위치이다.

Fig. 6(a)는 마린시티 지역에 대한 월파량 입력 지점을 나타낸 것으로서, 유역 경계 주변에 동일 간격으로 원으로 표시한 지점들이 해당된다. Fig. 6(b)는 XP-SWMM에 월파량 입력 지점들을 반영하고, 하나의 절점에 월파량 시계열을 입력한 화면을 나타낸다.

Fig. 6.

Considering wave overtopping on XP-SWMM

3.3 침수 모의 결과

3.3.1 단일 외력에 의한 침수 모의 결과

Fig. 7은 단일 외력을 고려한 지역별 침수 모의 결과이다. 즉, Fig. 7의 왼쪽 그림들은 지역별로 100년 빈도 강우에 의한 침수 모의 결과를 나타내고, Fig. 7의 오른쪽 그림들은 만조 시 100년 빈도 폭풍 해일에 의한 침수 모의 결과이다. 대체로 강우에 의한 침수 영역은 유역 중․상류 지역의 유역 전반에 걸쳐 발생하였고, 폭풍 해일에 의한 침수 영역은 해안가 전면부에 위치하는 것을 볼 수 있다. 이는 폭풍 해일에 의한 조위 상승과 월파의 영향이 상류로 갈수록 감소하기 때문이다.

한편, 4개 지역 모두에서 공통적으로 강우에 비해 폭풍 해일에 의한 침수 영향이 상대적으로 크게 분석되었다. 이러한 결과는 연안 지역의 경우, 폭풍 해일에 대비한 침수 피해 저감 노력이 보다 중요함을 의미한다.

Fig. 7.

Simulation results by single external force (left: rainfall, right: storm surge)

3.3.2 복합 외력에 의한 침수 모의 결과

Fig. 8은 복합 외력을 고려한 지역별 침수 모의 결과이다. 즉, 강우 및 폭풍 해일을 동시에 고려함에 따라 발생된 침수 영역을 나타낸다. 복합 외력을 고려하는 경우, 단일 외력만을 고려한 분석 결과(Fig. 7)보다 침수 영역은 넓어졌고, 침수심은 깊어졌다.

복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였고, 이는 일반적으로 예상할 수 있는 결과이다. 주목할만한 결과는 군산시 중앙동의 침수 분석에서 나타났다. 즉, 군산시 중앙동의 경우, 단일 외력만을 고려한 침수 모의 결과에서 나타나지 않았던 새로운 침수 영역이 발생하였다(Fig. 8(c)). 이와 관련된 상세 내용은 3.4절의 고찰에서 기술하였다.

Fig. 8.

Simulation results by compound external forces

3.4 결과 고찰

외력 조건별 침수의 영향을 정량적으로 비교하기 위해 침수 면적을 이용하였다. 이 연구에서는 강우만에 의해 유발된 침수 면적을 기준(기준값: 1)으로 하고, 폭풍 해일(조위+월파량)에 의한 침수 면적과 복합 외력에 의한 침수 면적의 상대적 비율로 분석하였다(Table 4).

Table 4.

Impact evaluation for inundation area by external force

Condition

Marine City, Busan

Centum City, Busan

Jungang-dong area, Gunsan

Ocheon Port area, Boryeong

Inundation area (km^{2})

Rate

Inundation area (km^{2})

Rate

Inundation area (km^{2})

Rate

Inundation area (km^{2})

Rate

Single external force

Rainfall (①)

0.0164

1.0

0.0759

1.0

0.0457

1.0

0.0175

1.0

Storm surge (②)

0.0363

2.21

0.0685

0.90

0.1463

3.20

0.0412

2.35

Compound external forces

Combination (①+②)

0.0524

3.19

0.1505

1.98

0.2632

5.76

0.0473

2.70

분석 결과, 부산 센텀시티를 제외한 3개 지역은 모두 폭풍 해일에 의한 침수 면적이 강우에 의한 침수 면적에 비해 2.2 ~ 3.2배 넓은 것으로 분석되었다. 한편, 복합 외력에 의한 침수 면적은 마린시티와 센텀시티의 경우, 각각의 외력에 의한 침수 면적의 합과 유사하게 나타났다. 이는 각각의 외력에 의한 침수 영역이 상이하여 거의 중복되지 않음을 의미한다. 반면에, 오천항에서는 각각의 외력에 의한 침수 면적의 합이 복합 외력에 의한 면적보다 크게 나타났다. 이는 오천항의 경우, 유역면적이 작고 배수 체계가 비교적 단순하여 강우와 폭풍 해일에 의한 침수 영역이 중복되기 때문인 것으로 분석되었다(Fig. 7(d)).

군산시 중앙동 일대의 경우, 복합 외력에 의한 침수 면적이 각각의 독립적인 외력 조건에 의한 침수 면적의 합에 비해 37.1% 크게 나타났다. 이러한 현상의 원인을 분석하기 위해 복합 외력 조건에서만 나타난 우수 관거(Fig. 8(c)의 A 구간)에 대하여 종단을 검토하였다(Fig. 9). Fig. 9(a)는 강우만에 의해 분석된 우수 관거 내 흐름 종단을 나타내고, Fig. 9(b)는 폭풍 해일만에 의한 우수 관거의 종단이다. 그림을 통해 각각의 독립적인 외력 조건 하에서는 해당 구간에서 침수가 발생되지 않은 것을 볼 수 있다. 다만, 강우만을 고려하더라도 우수 관거는 만관이 된 상태를 확인할 수 있다(Fig. 9(a)). 반면에, 만관 상태에서 폭풍 해일이 함께 고려됨에 따라 해수 범람과 조위 상승에 의해 우수 배제가 불량하게 되었고, 이로 인해 침수가 유발된 것으로 분석되었다(Fig. 9(c)). 따라서 이러한 지역은 복합 외력에 대한 취약지구로 판단할 수 있고, 단일 외력의 고려만으로는 침수를 예상하기 어려운 지역임을 알 수 있다.

Fig. 9.

A part of drainage profiles by external force in Jungang-dong area, Gunsan

^{}4. 결 론

이 연구에서는 외력 조건에 따른 연안 지역의 침수 특성을 분석하였다. 연구에서 고려된 외력 조건은 두 가지로서 강우와 폭풍 해일(조위와 월파)이다. 분석 대상 연안 지역으로는 남해안에 위치하는 2개 지역(부산시 해운대구의 마린시티와 센텀시티)과 서해안의 2개 지역(군산시 중앙동 일원 및 보령시 오천항)이 선정되었다.

복합 외력을 고려한 연안 지역의 침수 모의를 위해서는 유역의 강우-유출 현상과 바다의 조위 및 월파량을 경계조건으로 반영할 수 있는 침수 모의 모형이 요구되는데, 이 연구에서는 XP-SWMM을 이용하였다. 한편, 조위 및 월파량 산정에는 ADCSWAN (ADCIRC와 UnSWAN) 및 FLOW-3D 모형이 이용되었다.

연안 지역별 침수 모의는 100년 빈도의 강우와 폭풍 해일을 독립적으로 고려한 경우와 복합적으로 고려한 경우를 구분하여 수행되었다. 우선, 외력을 독립적으로 고려한 결과, 대체로 폭풍 해일만 고려한 경우가 강우만 고려한 경우에 비해 침수 영향이 크게 나타났다. 따라서 연안 지역의 경우, 폭풍 해일에 의한 침수 피해 방지 계획이 상대적으로 중요한 것으로 분석되었다. 두 번째, 복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였다. 다만, 특정 지역에서는 복합 외력을 고려함에 따라 단일 외력만을 고려한 침수 모의에서 나타나지 않았던 새로운 침수 영역이 발생하기도 하였다. 이러한 결과는 독립적인 외력 조건에서는 우수 관거가 만관 또는 그 이하의 상태가 되지만, 두 가지의 외력이 동시에 고려됨에 따라 우수 관거의 통수능 한계를 초과하여 나타났다. 이러한 지역은 복합 외력에 대한 취약지구로 판단되었고, 해당 지역의 적절한 침수 방지 대책 수립을 위해서는 복합적인 외력 조건이 고려되어야 함을 시사하였다.

현행, 자연재해저감종합계획에서는 침수와 관련된 재해 원인 지역을 내수재해, 해안재해, 하천재해 등으로 구분하고 있다. 하지만 이 연구에서 검토된 바와 같이, 연안 지역의 침수 원인은 복합적으로 나타날 뿐만 아니라, 복합 외력을 고려함에 따라 추가적으로 나타날 수 있는 침수 위험 지역도 존재한다. 따라서 기존의 획일적인 재해 원인의 구분보다는 지역의 특성에 맞는 복합적인 재해 원인을 검토할 필요가 있음을 제안한다.

Acknowledgements

본 논문은 행정안전부 극한 재난대응 기반기술 개발사업의 일환인 “해안가 복합재난 위험지역 피해저감 기술개발(연구과제번호: 2018-MOIS31-008)”의 지원으로 수행되었습니다.

References

1

Chen, X., Ji, P., Wu, Y., and Zhao, L. (2017). “Coupling simulation of overland flooding and underground network drainage in a coastal nuclear power plant.” Nuclear Engineering and Design, Vol. 325, pp. 129-134. 10.1016/j.nucengdes.2017.09.028

2

Choi, G., Song, Y., and Lee, J. (2018a). “Analysis of flood occurrence type according to complex characteristics of coastal cities.” 2018 Conference of the Korean Society of Hazard Mitigation, KOSHAM, p. 180.

3

Choi, J., Park, K., Choi, S., and Jun, H. (2018b). “A forecasting and alarm system for reducing damage from inland inundation in coastal urban areas: A case study of Yeosu City.” Journal of Korean Society of Hazard Mitigation, Vol. 18, No. 7, pp. 475-484. 10.9798/KOSHAM.2018.18.7.475

4

Han, H., Kim, Y., Kang, N., and, Kim, H.S. (2014). “Inundation analysis of a coastal urban area considering tide level.” 2014 Conference of Korean Society of Civil Engineers, KSCE, pp. 1507-1508.

5

Kang, T., Lee, S., and Sun, D. (2019a). “A technical review for reducing inundation damage to high-rise and underground-linked complex buildings in Coastal Areas (1): Proposal for analytical method.” Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 35-43. 10.9798/KOSHAM.2019.19.5.35

6

Kang, T., Lee, S., Choi, H., and Yoon, S. (2019b). “A technical review for reducing inundation damage to high-rise and underground-linked complex buildings in coastal areas (2): Case analysis for application.” Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 45-53. 10.9798/KOSHAM.2019.19.5.45

7

Kim, J.O., Kim, J.Y., and Lee, W.H. (2016). “Analysis on complex disaster information contents for building disaster map of coastal cities.” Journal of the Korean Association of Geographic Information Studies, Vol. 19, No. 3, pp. 43-60. 10.11108/kagis.2016.19.3.043

8

Kim, P.J. (2018). Improvement measures on the risk area designation of coastal disaster in consideration of natural hazards. Ph.D. dissertation, Chonnam National University.

9

Korean Society of Civil Engineers (KSCE) (2021). A report on the cause analysis and countermeasures establishment for Dongcheon flooding and lowland inundation. Busan/Ulsan, Gyungnam branch.

10

Lee, S., Kang, T., Sun, D., and Park, J.J. (2020). “Enhancing an analysis method of compound flooding in coastal areas by linking flow simulation models of coasts and watershed.” Sustainability, Vol. 12, No. 16, 6572. 10.3390/su12166572

11

Ministry of Environment (ME) (2011). Standard for sewerage facilities. Korea Water and Wastewater Works Association.

12

Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). Improvement and complementary research for probability rainfall.

13

Ministry of the Interior and Safety (MOIS) (2017). Criteria for establishment and operation of disaster prevention performance target by region: Considering future climate change impacts.

14

Song, Y., Joo, J., Lee, J., and Park, M. (2017). “A study on estimation of inundation area in coastal urban area applying wave overtopping.” Journal of Korean Society of Hazard Mitigation, Vol. 17, No. 2, pp. 501-510. 10.9798/KOSHAM.2017.17.2.501

15

Suh, S.W., and Kim, H.J. (2018). “Simulation of wave overtopping and inundation over a dike caused by Typhoon Chaba at Marine City, Busan, Korea.” Journal of Coastal Research, Vol. 85, pp. 711-715.

16

Sun, D. (2021). Sensitivity analysis of XP-SWMM for inundation analysis in coastal area. M.Sc. Thesis, Pukyong National University.

Received: 10 June 2023 / Revised: 19 June 2023 / Accepted: 27 June 2023 / Published: 1 July 2023(This article belongs to the Section Ocean Engineering)

일부 수식이 손상되어 표시될 수 있습니다. 이 경우 원문을 참조하시기 바랍니다.

Abstract

Local scouring might result in the spanning of submarine cables, endangering their mechanical and electrical properties. In this contribution, a three-dimensional computational fluid dynamics simulation model is developed using FLOW-3D, and the scouring process of semi-exposed submarine cables is investigated. The effects of the sediment critical Shields number, sediment density, and ocean current velocity on local scouring are discussed, and variation rules for the submarine cables’ spanning time are provided. The results indicate that three scouring holes are formed around the submarine cables. The location of the bottom of the holes corresponds to that of the maximum shear velocity. The continuous development of scouring holes at the wake position leads to the spanning of the submarine cables. The increase in the sediment’s critical Shields number and sediment density, as well as the decrease in the ocean current velocity, will extend the time for maintaining the stability of the upstream scouring hole and retard the development velocity of the wake position and downstream scouring holes. The spanning time has a cubic relationship with the sediment’s critical Shields number, a linear relationship with the sediment density, and an exponential relationship with the ocean current velocity. In this paper, the local scouring process of semi-exposed submarine cables is studied, which provides a theoretical basis for the operation and maintenance of submarine cables.

As a key piece of equipment in cross-sea power grids, submarine cables are widely used to connect autonomous power grids, supply power to islands or offshore platforms, and transmit electric power generated by marine renewable energy installations to onshore substations [1]. Once submarine cables break down due to natural disasters or human-made damage, the normal operation of other marine electric power equipment connected to them may be affected. These chain reactions will cause great economic losses and serious social impacts [2].

To protect submarine cables, they are usually buried 1 to 3 m below the seabed [3]. However, submarine cables are still confronted with potential threats from the complex subsea environment. Under the influence of fishing, anchor damage, ocean current scouring, and other factors, the sediment above submarine cables will always inevitably migrate. When a submarine cable is partially exposed, the scouring at this position will be exacerbated; eventually, it will cause the submarine cable to span. According to a field investigation of the 500 kV oil-filled submarine cable that is part of the Hainan networking system, the total length of the span is 49 m [4]. Under strong ocean currents, spanning submarine cables may experience vortex-induced vibrations. Fatigue stress caused by vortex-induced vibrations may lead to metal sheath rupture [5], which endangers the mechanical and electrical properties of submarine cables. Therefore, understanding the local scouring processes of partially exposed submarine cables is crucial for predicting scouring patterns. This is the basis for developing effective operation and maintenance strategies for submarine cables.

The mechanism and influencing factors of sediment erosion have been examined by researchers around the world. In 1988, Sumer [6] conducted experiments to show that the shedding vortex in the wake of a pipeline would increase the Shields parameter by 3–4 times, which would result in severe scouring. In 1991, Chiew [7] performed experiments to prove that the maximum scouring depth could be obtained when the pipeline was located on a flat bed and was scoured by a unidirectional water flow. Based on the test results, they provided a prediction formula for the maximum scouring depth. In 2003, Mastbergen [8] proposed a one-dimensional, steady-state numerical model of turbidity currents, which considered the negative pore pressures in the seabed. The calculated results of this model were basically consistent with the actual scouring of a submarine canyon. In 2007, Dey [9] presented a semitheoretical model for the computation of the maximum clear-water scour depth below underwater pipelines in uniform sediments under a steady flow, and the predicted scour depth in clear water satisfactorily agreed with the observed values. In 2008, Dey [10] conducted experiments on clear-water scour below underwater pipelines under a steady flow and obtained a variation pattern of the depth of the scouring hole. In 2008, Liang [11] used a two-dimensional numerical simulation to study the scouring process of a tube bundle under the action of currents and waves. They discovered that, compared with the scouring of a single tube, the scouring depth of the tube bundle was deeper, and the scouring time was longer. In 2012, Yang [12] found that placing rubber sheets under pipes can greatly accelerate their self-burial. The rubber sheets had the best performance when their length was about 1.5 times the size of the pipe. In 2020, Li [13] investigated the two-dimensional local scour beneath two submarine pipelines in tandem under wave-plus-current conditions via numerical simulation. They found that for conditions involving waves plus a low-strength current, the scour pattern beneath the two pipelines behaved like that in the pure-wave condition. Conversely, when the current had equal strength to the wave-induced flow, the scour pattern beneath the two pipelines resembled that in the pure-current condition. In 2020, Guan [14] studied and discussed the interactive coupling effects among a vibrating pipeline, flow field, and scour process through experiments, and the experimental data showed that the evolution of the scour hole had significant influences on the pipeline vibrations. In 2021, Liu [15] developed a two-dimensional finite element numerical model and researched the local scour around a vibrating pipeline. The numerical results showed that the maximum vibration amplitude of the pipeline could reach about 1.2 times diameter, and the maximum scour depth occurred on the wake side of the vibrating pipeline. In 2021, Huang [16] carried out two-dimensional numerical simulations to investigate the scour beneath a single pipeline and piggyback pipelines subjected to an oscillatory flow condition at a KC number of 11 and captured typical steady-streaming structures around the pipelines due to the oscillatory flow condition. In 2021, Cui [17] investigated the characteristics of the riverbed scour profile for a pipeline buried at different depths under the condition of riverbed sediments with different particle sizes. The results indicated that, in general, the equilibrium scour depth changed in a spoon shape with the gradual increase in the embedment ratio. In 2022, Li [18] used numerical simulation to study the influence of the burial depth of partially buried pipelines on the surrounding flow field, but they did not investigate the scour depth. In 2022, Zhu [19] performed experiments to prove that the scour hole propagation rate under a pipeline decreases with an increasing pipeline embedment ratio and rises with the KC number. In 2022, Najafzadeh [20] proposed equations for the prediction of the scouring propagation rate around pipelines due to currents based on a machine learning model, and the prediction results were consistent with the experimental data. In 2023, Ma [21] used the computational fluid dynamics coarse-grained discrete element method to simulate the scour process around a pipeline. The results showed that this method can effectively reduce the considerable need for computing resources and excessive computation time. In 2023, through numerical simulations, Hu [22] discovered that the water velocity and the pipeline diameter had a significant effect on the depth of scouring.

In the preceding works, the researchers investigated the mechanism of sediment scouring and the effect of various factors on the local scouring of submarine pipelines. However, submarine cables are buried beneath the seabed, while submarine pipelines are erected above the seabed. The difference in laying methods leads to a large discrepancy between their local scouring processes. Therefore, the conclusions of the above investigations are not applicable to the local scouring of submarine cables. Currently, there is no report on the research of the local scouring of partially exposed submarine cables.

In this paper, a three-dimensional computational fluid dynamics (CFD) finite element model, based on two-phase flow, is established using FLOW-3D. The local scouring process of semi-exposed submarine cables under steady-state ocean currents is studied, and the variation rules of the depth and the shape of the scouring holes, as well as the shear velocity with time, are obtained. By setting different critical Shields numbers of the sediment, different sediment densities, and different ocean current velocities, the change rule of the scouring holes’ development rate and the time required for the spanning of submarine cables are explored.

2. Sediment Scouring Model

In the sediment scouring model, the sediment is set as the dispersed particle, which is regarded as a kind of quasifluid. In this context, sediment scouring is considered as a two-phase flow process between the liquid phase and solid particle phase. The sediment in this process is further divided into two categories: one is suspended in the fluid, and the other is deposited on the bottom.When the local Shields number of sediment is greater than the critical Shields number, the deposited sediment will be transformed into the suspended sediment under the action of ocean currents. The calculation formulae of the local Shields numbers θ and the critical Shields numbers

ρ_{f} is the fluid density, g is the acceleration of gravity, d

_{50} is the median size of sediment, and μ is the dynamic viscosity of sediment.And each sediment particle suspended in the fluid obeys the equations for mass conservation and energy conservation

c_{s} is the concentration of the sediment particle,

𝑢�¯ is the mean velocity vector of the fluid and the sediment particle,

u_{s} is the velocity of the sediment particle,

f_{s} is the volume fraction of the sediment particle, P is the pressure, F is the volumetric and viscous force, K is the drag force, and

u_{r} is the relative velocity.

3. Numerical Setup and Modeling

In this paper, a three-dimensional submarine cable local scouring simulation model is established by FLOW-3D. Based on the numerical simulation, the process of the submarine cable, which gradually changes from semi-exposed to the spanning state under the steady-state ocean current, is studied. The geometric modeling, the mesh division, the physical field setup, and the grid independent test of CFD numerical model are as follows.

3.1. Geometric Modeling and Mesh Division

A three-dimensional (3D) numerical model of the local scouring of a semi-exposed submarine cable is established, which is shown in Figure 1. The dimensions of the model are marked in Figure 1. The inlet direction of the ocean current is defined as the upstream of the submarine cable (referred to as upstream), and the outlet direction of the ocean current is defined as the downstream of the submarine cable (referred to as downstream).

Figure 1. Three-dimensional finite element model of local scouring of semi-exposed submarine cable.

The submarine cable with a diameter of 0.2 m is positioned on sediment that is initially in a semi-exposed state. When the length of the span is short, the submarine cable will not show obvious deformation due to gravity or scouring from the ocean current. Therefore, the submarine cable surface is set as the fixed boundary. The model’s left boundary is set as the inlet, the right boundary is set as the outlet, the front and rear boundaries are set as symmetry, and the bottom boundary is set as the non-slip wall. Since the water depth above the submarine cable is more than 0.6 m in practice, the top boundary of the model is also set as symmetry. The sediment near the inlet and the outlet will be carried by ocean currents, which leads to the abnormal scouring terrain. At each end of the sediment, a baffle (thickness of 3 cm) is installed to ensure that the simulation results can reflect the real situation.

Due to the fact that the flow field around the semi-exposed submarine cable is not a simple two-dimensional symmetrical distribution, it should be solved by three-dimensional numerical simulation. Considering the accuracy and efficiency of the calculation, the size of mesh is set to 0.02 m. The total number of meshes after the dissection is 133,254.

3.2. Physical Field Setup

The CFD finite element model contains four physical field modules: sediment scouring module, gravity and non-inertial reference frame module, density evaluation module, and viscosity and turbulence module. In this paper, the renormalization group (RNG) k–ε turbulence model is used, which has high computational accuracy for turbulent vortices. Therefore, this turbulence model is suitable for calculating the sediment scouring process around the semi-exposed submarine cable [25]. The key parameters of the numerical simulation are referring to the survey results of submarine sediments in the Korean Peninsula [26], as listed in Table 1.Table 1. Key parameters of numerical simulation.

3.3. Mesh Independent Test

In order to eliminate errors caused by the quantity of grids in the calculation process, two sizes of mesh are set on the validation model, and the scour profiles under different mesh sizes are compared. The validation model is shown in Figure 2, and the scouring terrain under different mesh size is given in Figure 3.

Figure 2. Validation model.

Figure 3. Scouring terrain under different mesh sizes.

It can be seen from Figure 3 that with the increase in the number of meshes, the scouring terrain of the verification model changes slightly, and the scouring depth is basically unchanged. Considering the accuracy of the numerical simulation and the calculation’s time cost, it is reasonable to consider setting the mesh size to 0.02 m.

4. Results and Analysis

4.1. Analysis of Local Scouring Process

Based on the CFD finite element numerical simulation, the local scouring process of the submarine cable under the steady-state ocean current is analyzed. The end time of the simulation is 9 h, the initial time step is 0.01 s, and the fluid velocity is 0.40 m/s. Simulation results are saved every minute. Figure 4 illustrates the scouring terrain around the semi-exposed submarine cable, which has been scoured by the steady-state current for 5 h.

Figure 4. Scouring terrain around semi-exposed submarine cable (scour for 5 h).

As can be seen from Figure 4, three scouring holes were separately formed in the upstream wake position and downstream of the semi-exposed submarine cable. The scouring holes are labeled according to their locations. The variation of the scouring terrain around the semi-exposed submarine cable over time is given in Figure 5. The red circle in the picture corresponds to the position of the submarine cable, and the red box in the legend marks the time when the submarine cable is spanning.

Figure 5. Variation of scouring terrain around semi-exposed submarine cable adapted to time.

From Figure 5, in the first hour of scouring, the upstream (−0.5 m to −0.1 m) and downstream (0.43 m to 1.5 m) scouring holes appeared. The upstream scouring hole was relatively flat with depth of 0.04 m. The depth of the downstream scouring hole increased with the increase in distance, and the maximum depth was 0.13 m. The scouring hole that developed at the wake position was very shallow, and its depth was only 0.007 m.

In the second hour of scouring, the upstream scouring hole’s depth remained nearly constant. The depth of the downstream scouring hole only increased by 0.002 m. The scouring hole at the wake position developed steadily, and its depth increased from 0.007 m to 0.014 m.

The upstream and downstream scouring holes did not continue to develop during the third to the sixth hour. Compared to the first two hours, the development of scouring holes at the wake position accelerated significantly, with an average growth rate of 0.028 m/h. The growth rate in the fifth hour of the scouring hole at the wake position was slightly faster than the other times. After 6 h of scouring, the sediment on the right side of the submarine cable had been hollowed out.

In the seventh and the eighth hour of scouring, the upstream scouring hole’s depth increased slightly, the downstream scouring hole still remained stable, and the depth of the scouring hole at wake position increased by 0.019 m. The sediment under the submarine cable was gradually eroded as well. By the end of the eighth hour, the lower right part of the submarine cable had been exposed to water as well.

At 8 h 21 min of the scouring, the submarine cable was completely spanned, and the scouring holes were connected to each other. Within the next 10 min, the development of the scouring holes sped up significantly, and the maximum depth of scouring holes increased greatly to 0.27 m.

In reference [17], researchers have studied the local scouring process of semi-buried pipelines in sandy riverbeds through experiments. The test results show that the scouring process can be divided into a start-up stage, micropore formation stage, extension stage, and equilibrium stage. In this paper, the first three stages are simulated, and the results are in good agreement with the experiment, which proves the accuracy of the present numerical model.

In this research, the velocity of ocean currents at the sediment surface is defined as the shear velocity, which plays an important role in the process of local scouring. Figure 6 provides visual data on how the shear velocity varies over time.

Figure 6. Shear velocity changes in the scouring process.

The semi-exposed submarine cable protrudes from the seabed, which makes the shear velocity of its surface much higher than other locations. After the submarine cable is spanned, the shear velocity of the scouring hole surface below it is taken. This is the reason for the sudden change of shear velocity at the submarine cable’s location in Figure 6.The shear velocity in the initial state of the upstream scouring hole is obviously greater than in subsequent times. After 1 h of scouring, the shear velocity in the upstream scouring hole rapidly decreased from 1.1 × 10

^{−2} m/s to 3.98 × 10

^{−3} m/s and remained stable until the end of the sixth hour. This phenomenon explains why the upstream scouring hole developed rapidly in the first hour but remained stable for the following 5 h.The shear velocity in the downstream scouring hole reduced at first and then increased; its initial value was 1.41 × 10

^{−2} m/s. It took approximately 5 h for the shear velocity to stabilize, and the stable shear velocity was 2.26 × 10

^{−3} m/s. Therefore, compared with the upstream scouring hole, the downstream scouring hole was deeper and required more time to reach stability.The initial shear velocity in the scouring hole at the wake position was only 7.1 × 10

^{−3} m/s, which almost does not change in the first hour. This leads to a very slow development of the scouring hole at the wake position in the early stages. The maximum shear velocity in this scouring hole gradually increased to 1.05 × 10

^{−2} m/s from the second to the fifth hour, and then decreased to 6.61 × 10

^{−3} m/s by the end of the eighth hour. This is why the scouring hole at the wake position grows fastest around the fifth hour. Consistent with the pattern of change in the scouring hole’s terrain, the location of the maximal shear velocity also shifted to the right with time.

The shear velocity of all three scouring holes rose dramatically in the last hour. Combined with the terrain in Figure 5, this can be attributed to the complete spanning of the submarine cable.

From Equations (3)–(5), one can see the movement of the sediment is related directly with the sediment’s critical Shields number, sediment density, and ocean current velocity. Based on the parameters in Table 1, the influence of the above parameters on the local scouring process of semi-exposed submarine cables will be discussed.

4.2. Influence Factors

4.2.1. Sediment’s Critical Shields Number

The sediment’s critical Shields number

θ_{cr} is set as 0.02, 0.03, 0.04, 0.05, 0.06, and 0.07, and the variations of scouring terrain over time under each

Figure 7. Influence of sediment’s critical Shields number

θ_{cr} on local scouring around semi-exposed submarine cable: (a

) θ_{cr} = 0.02; (b

) θ_{cr} = 0.03; (c

) θ_{cr} = 0.04; (d

) θ_{cr} = 0.05; (e

) θ_{cr} = 0.06; and (f

) θ_{cr} = 0.07.From Figure 7, one can see that a change in

θ_{cr} will affect the depth of the upstream scouring hole and the development speed of the scouring hole at the wake position, but it will have no significant impact on the expansion of the downstream scouring hole.Under conditions of different

θ_{cr}, the upstream scouring hole will reach a temporary plateau within 1 h, at which time the stable depth will be about 0.04 m. When

θ_{cr} ≤ 0.05, the upstream scouring hole will continue to expand after a few hours. The stable time is obviously affected by

θ_{cr}, which will gradually increase from 1 h to 11 h with the increase in

θ_{cr}. The terrain of the upstream scouring hole will gradually convert to deep on the left and to shallow on the right. Since the scouring hole at the wake position has not been stable, its state at the time of submarine cable spanning is studied emphatically. In the whole process of scouring, the scouring hole at the wake position continues to develop and does not reach a stable state. With the increase in

θ_{cr}, the development velocity of the scouring hole at the wake position will decrease considerably. Its average evolution velocity decreases from 3.88 cm/h to 1.62 cm/h, and its depth decreases from 21.9 cm to 18.8 cm. Under the condition of each

θ_{cr}, the downstream scouring hole will stabilize within 1 h, and the stable depth will be basically unchanged (all about 13.5 cm).As

θ_{cr} increases, so does the sediment’s ability to withstand shearing forces, which will cause it to become increasingly difficult to be eroded or carried away by ocean currents. This effect has been directly reflected in the depth of scouring holes (upstream and wake position). Due to the blocking effect of semi-exposed submarine cables, the wake is elongated, which is why the downstream scouring hole develops before the scouring hole at the wake position and quickly reaches a stable state. However, due to the high wake intensity, this process is not significantly affected by the change of

θ_{cr}.

4.2.2. Sediment Density

The density of sediment

ρ_{s} is set as 1550 kg/m

^{3}, 1600 kg/m

^{3}, 1650 kg/m

^{3}, 1700 kg/m

^{3}, 1750 kg/m

^{3}, and 1800 kg/m

^{3}, and the variation of scouring terrain over time under each

ρ_{s} will also affect the depth of the upstream scouring hole and the development speed of the scouring hole at the wake position. In addition, it can even have an impact on the downstream scouring hole depth.Under different

ρ_{s} conditions, the upstream scouring hole will always reach a temporary stable state in 1 h, at which time the stable depth will be 0.04 m. When

ρ_{s} ≤ 1750 kg/m

^{3}, the upstream scouring hole will continue to expand after a few hours. The stabilization time of upstream scouring hole is more clearly affected by

ρ_{s}, which will gradually increase from 3 h to 13 h with the increase in

ρ_{s}. The terrain of the upstream scouring hole will gradually change to deep on the left and to shallow on the right. Since the scouring hole at the wake position has not been stable, its state at the time of the submarine cable spanning is studied emphatically, too. In the whole process of scouring, the scouring hole at the wake position continues to develop and does not reach a stable state. When

ρ_{s} is large, the development rate of scouring hole obviously decreased with time. With the increase in

ρ_{s}, the development velocity of the scouring hole at the wake position reduces from 3.38 cm/h to 1.14 cm/h, and the depth of this scouring hole declines from 20 cm to 15 cm. As

ρ_{s} increases, the stabilization time of the downstream scouring hole increases from less than 1 h to about 2 h, but the stabilization depth of the downstream scouring hole remains essentially the same (all around 13.5 cm).As can be seen from Equation (1), the increase in

ρ_{s} will reduce the Shields number, thus weakening the shear action of the sediment by the ocean current, which explains the extension of the stability time of the upstream scouring hole. At the same time, with the increase in the depth of scouring hole at the wake position, its shear velocity will decreases. Therefore, under a larger

ρ_{s} value, the development speed of scouring hole at the wake position will decrease significantly with time. Possibly for the same reason,

ρ_{s} can affect the development rate of downstream scouring hole.

4.2.3. Ocean Current Velocity

The ocean current velocity v is set as 0.35 m/s, 0.40 m/s, 0.45 m/s, 0.50 m/s, 0.55 m/s, and 0.60 m/s. Figure 9 presents the variation in scouring terrain with time for each v.

Figure 9. Influence of ocean current velocity v on local scouring around semi-exposed submarine cable: (a) v = 0.35 m/s; (b) v = 0.40 m/s; (c) v = 0.45 m/s; (d) v = 0.50 m/s; (e) v = 0.55 m/s; and (f) v = 0.60 m/s.

Changes in v affect the depth of the upstream and downstream scouring holes, as well as the development velocity of the wake position and downstream scouring holes.

When v ≤ 0.45 m/s, the upstream scouring hole will reach a temporary stable state within 1 h, at which point the stable depth will be 0.04 m. The stabilization time of the upstream scouring hole is affected by v, which will gradually decrease from 15 h to 3 h with the increase in v. When v > 0.45 m/s, the upstream scouring hole is going to expand continuously. With the increase in v, its average development velocity increases from 6.68 cm/h to 8.66 cm/h, and its terrain changes to deep on the left and to shallow on the right. When the submarine cable is spanning, special attention should be paid to the depth of the scouring hole at the wake position. Throughout whole scouring process, the scouring hole at the wake position continues to develop and does not reach a stable state. With the increase in v, the depth of scouring hole at the wake position will increase from 14 cm to 20 cm, and the average development velocity will increase from 0.91 cm/h to 10.43 cm/h. As v increases, the time required to stabilize the downstream scouring hole is shortened from 1to 2 h to less than 1 h, but the stable depth is remains nearly constant at 13.5 cm.

An increase in v will increase the shear velocity. Therefore, when the depth of the scouring hole increases, the shear velocity in the hole will also increase, which can deepen both the upstream and downstream scouring hole. According to Equation (1), the Shields number is proportional to the square of the shear velocity. The increase in shear velocity significantly intensifies local scouring, which increases the development rate of scouring holes at the wake position and downstream.

4.3. Variation Rule of Spanning Time

In this paper, the spanning time is defined as the time taken for a semi-exposed submarine cable (initial state) to become a spanning submarine cable. Figure 10 illustrates the effect of the above parameters on the spanning time of the semi-exposed submarine cable.

Figure 10. Influence of different parameters on spanning time of the semi-exposed submarine cable: (a) Sediment critical Shields number; (b) Sediment density; and (c) Ocean current velocity.From Figure 10a, the spanning time monotonically increases with the increase in the critical Shields number of sediment. However, the slope of the curve decreases first and then increases, and the inflection point is at

θ_{cr} = 4.59 × 10

^{−2}. The relationship between spanning time t and sediment’s critical Shields number

θ_{cr} can be formulated by a cubic function as shown in Equation (6):

𝑡=−2.98+6.76𝜃𝑐𝑟−1.45𝜃2𝑐𝑟+0.11𝜃3𝑐𝑟.�=−2.98+6.76���−1.45���2+0.11���3.(6)It can be seen from Figure 10b that with the increase in the sediment density, the spanning time increases monotonically and linearly. The relationship between the spanning time t and the sediment’s density

ρ_{s} can be formulated by the first order function as shown in Equation (7):

𝑡=−41.59+30.54𝜌𝑠.�=−41.59+30.54��.(7)Figure 10c shows that with the increase in the ocean current velocity, the spanning time decreases monotonically. The slope of the curve increases with the increase in the ocean current velocity, so it can be considered that there is saturation of the ocean current velocity effect. The relationship between the spanning time t and the ocean current velocity v can be formulated by the exponential function

𝑡=0.15𝑣−4.38.�=0.15�−4.38.(8)

5. Conclusions

In this paper, a three-dimensional CFD finite element numerical simulation model is established, which is used to research the local scouring process of the semi-exposed submarine cable under the steady-state ocean current. The relationship between shear velocity and scouring terrain is discussed, the influence of sediment critical Shields number, sediment density and ocean current velocity on the local scouring process is analyzed, and the variation rules of the spanning time of the semi-exposed submarine cable is given. The conclusions are as follows:

Under the steady-state ocean currents, scouring holes will be formed at the upstream, wake position and downstream of the semi-exposed submarine cable. The upstream and downstream scouring holes develop faster, which will reach a temporary stable state at about 1 h after the start of the scouring. The scouring hole at the wake position will continue to expand at a slower rate and eventually lead to the spanning of the submarine cable.

There is a close relationship between the distribution of shear velocity and the scouring terrain. As the local scouring process occurs, the location of the maximum shear velocity within the scouring hole shifts and causes the bottom of the hole to move as well.

When the sediment’s critical Shields number and density are significantly large and ocean current velocity is sufficiently low, the duration of the stable state of the upstream scouring hole will be prolonged, and the average development velocity of the scouring holes at the wake position and downstream will be reduced.

The relationship between the spanning time and the critical Shields number θ_{cr} can be formulated as a cubic function, in which the curve’s inflection point is θ_{cr} = 4.59 × 10^{−2}. The relationship between spanning time and sediment density can be formulated as a linear function. The relationship between spanning time and ocean current velocity can be formulated by exponential function.

Based on the conclusions of this paper, even when it is too late to take measures or when the exposed position of the submarine cable cannot be located, the degree of burial depth development still can be predicted. This prediction is important for the operation and maintenance of the submarine cable. However, the study still leaves something to be desired. Only the local scouring process under the steady-state ocean current was studied, which is an extreme condition. In practice, exposed submarine cables are more likely to be scoured by reciprocating ocean currents. In the future, we will investigate the local scouring of submarine cables under the reciprocating ocean current.

Author Contributions

Conceptualization, Y.H. and Q.L.; methodology, Q.L., P.Z. and H.T.; software, Q.L.; validation, Q.L., L.C. and W.T.; writing—original draft preparation, Q.L.; writing—review and editing, Y.H. and Q.L.; supervision, Y.H. and L.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the [Smart Grid Joint Fund Key Project between National Natural Science Foundation of China and State Grid Corporation] grant number [U1766220].

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data supporting the reported results cannot be shared at this time, as they have been used in producing more publications on this research.

Acknowledgments

This work is supported by the Smart Grid Joint Fund Key Project of the National Natural Science Foundation of China and State Grid Corporation (Grant No. U1766220).

Conflicts of Interest

The authors declare no conflict of interest.

References

Taormina, B.; Bald, J.; Want, A.; Thouzeau, G.; Lejart, M.; Desroy, N.; Carlier, A. A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions. Renew. Sust. Energ. Rev.2018, 96, 380–391. [Google Scholar] [CrossRef]

Gulski, E.; Anders, G.J.; Jogen, R.A.; Parciak, J.; Siemiński, J.; Piesowicz, E.; Paszkiewicz, S.; Irska, I. Discussion of electrical and thermal aspects of offshore wind farms’ power cables reliability. Renew. Sust. Energ. Rev.2021, 151, 111580. [Google Scholar] [CrossRef]

Wang, W.; Yan, X.; Li, S.; Zhang, L.; Ouyang, J.; Ni, X. Failure of submarine cables used in high-voltage power transmission: Characteristics, mechanisms, key issues and prospects. IET Gener. Transm. Distrib.2021, 15, 1387–1402. [Google Scholar] [CrossRef]

Chen, H.; Chen, Z.; Lu, H.; Wu, C.; Liang, J. Protection method for submarine cable detection and exposed suspension problem in Qiongzhou straits. Telecom Pow. Technol.2019, 36, 60–61+63. [Google Scholar]

Zhu, J.; Ren, B.; Dong, P.; Chen, W. Vortex-induced vibrations of a free spanning submarine power cable. Ocean Eng.2023, 272, 113792. [Google Scholar] [CrossRef]

Sumer, B.M.; Jensen, H.R.; Mao, Y.; Fredsøe, J. Effect of lee-wake on scour below pipelines in current. J. Waterw. Port Coast. Ocean. Eng.1988, 114, 599–614. [Google Scholar] [CrossRef]

Chiew, Y.M. Prediction of maximum scour depth at submarine pipelines. J. Hydraul. Eng.1991, 117, 452–466. [Google Scholar] [CrossRef]

Mastbergen, D.R.; Vandenberg, J.H. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology2003, 50, 625–637. [Google Scholar] [CrossRef]

Dey, S.; Singh, N.P. Clear-water scour below underwater pipelines under steady flow. J. Hydraul. Eng.2008, 134, 588–600. [Google Scholar] [CrossRef]

Liang, D.; Cheng, L. Numerical study of scour around a pipeline bundle. Proc. Inst. Civil Eng. Mar. Eng.2008, 161, 89–95. [Google Scholar] [CrossRef]

Yang, L.; Guo, Y.; Shi, B.; Kuang, C.; Xu, W.; Cao, S. Study of scour around submarine pipeline with a rubber plate or rigid spoiler in wave conditions. J. Waterw. Port Coast. Ocean Eng.2012, 138, 484–490. [Google Scholar] [CrossRef]

Li, Y.; Ong, M.C.; Fuhrman, D.R.; Larsen, B.E. Numerical investigation of wave-plus-current induced scour beneath two submarine pipelines in tandem. Coast. Eng.2020, 156, 103619. [Google Scholar] [CrossRef]

Guan, D.; Hsieh, S.C.; Chiew, Y.M.; Low, Y.M.; Wei, M. Local scour and flow characteristics around pipeline subjected to vortex-induced vibrations. J. Hydraul. Eng.2020, 146, 04019048. [Google Scholar] [CrossRef]

Liu, M.M.; Jin, X.; Wang, L.; Yang, F.; Tang, J. Numerical investigation of local scour around a vibrating pipeline under steady currents. Ocean Eng.2021, 221, 108546. [Google Scholar] [CrossRef]

Huang, J.; Yin, G.; Ong, M.C.; Myrhaug, D.; Jia, X. Numerical investigation of scour beneath pipelines subjected to an oscillatory flow condition. J. Mar. Sci. Eng.2021, 9, 1102. [Google Scholar] [CrossRef]

Cui, F.; Du, Y.; Hao, X.; Peng, S.; Bao, Z.; Peng, S. Experimental study on local scour and related mechanical effects at river-crossing underwater oil and gas pipelines. Adv. Civ. Eng.2021, 2021, 6689212. [Google Scholar] [CrossRef]

Li, B.; Ma, H. Scouring mechanism of suspended and partially-buried pipelines under steady flow. Coast. Eng.2022, 177, 104201. [Google Scholar] [CrossRef]

Najafzadeh, M.; Oliveto, G. Scour propagation rates around offshore pipelines exposed to currents by applying data-driven models. Water2022, 14, 493. [Google Scholar] [CrossRef]

Zhu, Y.; Xie, L.; Wong, T.; Su, T. Development of three-dimensional scour below pipelines in regular waves. J. Mar. Sci. Eng.2022, 10, 124. [Google Scholar] [CrossRef]

Ma, H.; Li, B. CFD-CGDEM coupling model for scour process simulation of submarine pipelines. Ocean Eng.2023, 271, 113789. [Google Scholar] [CrossRef]

Hu, K.; Bai, X.; Vaz, M.A. Numerical simulation on the local scour processing and influencing factors of submarine pipeline. J. Mar. Sci. Eng.2023, 11, 234. [Google Scholar] [CrossRef]

Yang, B.; Gao, F.; Wu, Y. Experimental study on local scour of sandy seabed under submarine pipeline in unidirectional currents. Eng. Mech.2008, 25, 206–210. [Google Scholar]

Cheng, Y.; Wang, X.; Luo, W.; Huang, X.; Lyu, X. Experimental study of local scour around a downstream inclined pile under combined waves and current. Adv. Eng. Sci.2021, 53, 64–71. [Google Scholar]

Lu, Y.; Zhou, L.; Shen, X. Different turbulence models for simulating a liquid-liquid hydro cyclone. J. Tsinghua Univ.2001, 41, 105–109. [Google Scholar]

Yun, D.H.; Kim, Y.T. Experimental study on settlement and scour characteristics of artificial reef with different reinforcement type and soil type. Geotext. Geomembr.2018, 46, 448–454. [Google Scholar] [CrossRef]

Field observations provide valuable data regarding nearshore tsunami impact, yet only in inundation areas where tsunami waves have already flooded. Therefore, tsunami modeling is essential to understand tsunami behavior and prepare for tsunami inundation. It is necessary that all numerical models used in tsunami emergency planning be subject to benchmark tests for validation and verification. This study focuses on two numerical codes, NAMI DANCE and FLOW-3D^{®}, for validation and performance comparison. NAMI DANCE is an in-house tsunami numerical model developed by the Ocean Engineering Research Center of Middle East Technical University, Turkey and Laboratory of Special Research Bureau for Automation of Marine Research, Russia. FLOW-3D^{®} is a general purpose computational fluid dynamics software, which was developed by scientists who pioneered in the design of the Volume-of-Fluid technique. The codes are validated and their performances are compared via analytical, experimental and field benchmark problems, which are documented in the ‘‘Proceedings and Results of the 2011 National Tsunami Hazard Mitigation Program (NTHMP) Model Benchmarking Workshop’’ and the ‘‘Proceedings and Results of the NTHMP 2015 Tsunami Current Modeling Workshop”. The variations between the numerical solutions of these two models are evaluated through statistical error analysis.

현장 관찰은 연안 쓰나미 영향에 관한 귀중한 데이터를 제공하지만 쓰나미 파도가 이미 범람한 침수 지역에서만 가능합니다. 따라서 쓰나미 모델링은 쓰나미 행동을 이해하고 쓰나미 범람에 대비하는 데 필수적입니다.

쓰나미 비상 계획에 사용되는 모든 수치 모델은 검증 및 검증을 위한 벤치마크 테스트를 받아야 합니다. 이 연구는 검증 및 성능 비교를 위해 NAMI DANCE 및 FLOW-3D®의 두 가지 숫자 코드에 중점을 둡니다.

NAMI DANCE는 터키 중동 기술 대학의 해양 공학 연구 센터와 러시아 해양 연구 자동화를 위한 특별 조사국 연구소에서 개발한 사내 쓰나미 수치 모델입니다. FLOW-3D®는 Volume-of-Fluid 기술의 설계를 개척한 과학자들이 개발한 범용 전산 유체 역학 소프트웨어입니다.

코드의 유효성이 검증되고 분석, 실험 및 현장 벤치마크 문제를 통해 코드의 성능이 비교되며, 이는 ‘2011년 NTHMP(National Tsunami Hazard Mitigation Program) 모델 벤치마킹 워크숍의 절차 및 결과’와 ”절차 및 NTHMP 2015 쓰나미 현재 모델링 워크숍 결과”. 이 두 모델의 수치 해 사이의 변동은 통계적 오류 분석을 통해 평가됩니다.

Apotsos, A., Buckley, M., Gelfenbaum, G., Jafe, B., & Vatvani, D. (2011). Nearshore tsunami inundation and sediment transport modeling: towards model validation and application. Pure and Applied Geophysics,168(11), 2097–2119. https://doi.org/10.1007/s00024-011-0291-5.ArticleGoogle Scholar

Barberopoulou, A., Legg, M. R., & Gica, E. (2015). Time evolution of man-made harbor modifications in San Diego: effects on Tsunamis. Journal of Marine Science and Engineering,3, 1382–1403.ArticleGoogle Scholar

Basu, D., Green, S., Das, K., Janetzke, R. and Stamatakos, J. (2009). Numerical Simulation of Surface Waves Generated by a Subaerial Landslide at Lituya Bay, Alaska. Proceedings of 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, Hawaii, USA.

Briggs, M. J., Synolakis, C. E., Harkins, G. S., & Green, D. R. (1995). Laboratory experiments of tsunami run-up on a circular island. Pure and Applied Geophysics,144(3/4), 569–593.ArticleGoogle Scholar

Cheung, K. F., Bai, Y., & Yamazaki, Y. (2013). Surges around the Hawaiian Islands from the 2011 Tohoku Tsunami. Journal of Geophysical Research: Oceans,118, 5703–5719. https://doi.org/10.1002/jgrc.20413.Google Scholar

Choi, B. H., Dong, C. K., Pelinovsky, E., & Woo, S. B. (2007). Three-dimensional Simulation of Tsunami Run-up Around Conical Island. Coastal Engineering,54, 618–629.ArticleGoogle Scholar

Cox, D., T. Tomita, P. Lynett, R.A., Holman. (2008). Tsunami Inundation with Macroroughness in the Constructed Environment. Proceedings of 31st International Conference on Coastal Engineering, ASCE, pp. 1421–1432.

Flow Science. (2002). FLOW-3D User’s Manual.

Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics,39, 201–225.ArticleGoogle Scholar

Horrillo, J., Grilli, S. T., Nicolsky, D., Roeber, V., & Zang, J. (2015). Performance benchmarking Tsunami models for NTHMP’s inundation mapping activities. Pure and Applied Geophysics,172, 869–884.ArticleGoogle Scholar

Kim, K. O., Kim, D. C., Choi, B.-H., Jung, T. K., Yuk, J. H., & Pelinovsky, E. (2015). The role of diffraction effects in extreme run-up inundation at Okushiri Island due to 1993 Tsunami. Natural Hazards and Earth Systems Sciences,15, 747–755.ArticleGoogle Scholar

Liu, P. L.-F. (1994). Model equations for wave propagations from deep to shallow water. (P.-F. Liu, Ed.) Advances in Coastal and Ocean Engineering, 1, 125–158.

Liu, P. L.-F., Yeh, H., & Synolakis, C. E. (2008). Advanced numerical models for simulating Tsunami waves and run-up. Advances in Coastal and Ocean Engineering,10, 344.Google Scholar

Lynett, P. J., Gately, K., Wilson, R., Montoya, L., Arcas, D., Aytore, B., et al. (2017). Inter-model analysis of Tsunami-induced coastal currents. Ocean Modelling,114, 14–32.ArticleGoogle Scholar

Lynett, P. J., Wu, T.-R., & Liu, P. L.-F. (2002). Modeling wave run-up with depth-integrated equations. Coastal Engineering,46(2), 89–107.ArticleGoogle Scholar

Macias, J., Castro, M. J., Ortega, S., Escalante, C., & Gonzalez-Vida, J. M. (2017). Performance benchmarking of Tsunami-HySEA model for nthmp’s inundation mapping activities. Pure and Applied Geophysics,174, 3147–3183.ArticleGoogle Scholar

Matsuyama, M., & Tanaka, H. (2001). An experimental study of the highest run-up height in the 1993 Hokkaidō Nansei-Oki Earthquake Tsunami. Proceedings of ITS,2001, 879–889.Google Scholar

National Tsunami Hazard Mitigation Program. 2012. Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. Boulder: U.S. Department of Commerce/NOAA/NTHMP; (NOAA Special Report). p. 436.

National Tsunami Hazard Mitigation Program. (2017). Proceedings and Results of the National Tsunami Hazard Mitigation Program 2015 Tsunami Current Modeling Workshop, February 9-10, 2015, Portland, Oregon: compiled by Patrick Lynett and Rick Wilson, p 194.

Necmioglu, O., & Ozel, N. M. (2014). An earthquake source sensitivity analysis for Tsunami propagation in the Eastern Mediterranean. Oceanography,27(2), 76–85.ArticleGoogle Scholar

Nichols, B.D. and Hirt, C.W. (1975). Methods for Calculating Multi-Dimensional, Transient Free Surface Flows Past Bodies. Proceedings of 1st International Conference Num. Ship Hydrodynamics. Gaithersburg.

Nicolsky, D. J., Suleimani, E. N., & Hansen, R. A. (2011). Validation and verification of a numerical model for Tsunami propagation and run-up. Pure and Applied Geophysics,168(6), 1199–1222.ArticleGoogle Scholar

Park, H., Cox, D. T., Lynett, P. J., Wiebe, D. M., & Shin, S. (2013). Tsunami inundation modeling in constructed environments: a physical and numerical comparison of free-surface elevation, velocity, and momentum flux. Coastal Engineering,79, 9–21.ArticleGoogle Scholar

Patel, V. M., Dholakia, M. B., & Singh, A. P. (2016). Emergency preparedness in the case of Makran Tsunami: a case study on Tsunami risk visualization for the Western Parts of Gujarat, India. Geomatics Natural Hazard and Risk,7(2), 826–842.ArticleGoogle Scholar

Pelinovsky, E., Kim, D.-C., Kim, K.-O., & Choi, B.-H. (2013). Three-dimensional simulation of extreme run-up heights during the 2004 Indonesian and 2011 Japanese Tsunamis. Vienna: EGU General Assembly.Google Scholar

Rueben, M., Holman, R., Cox, D., Shin, S., Killian, J., & Stanley, J. (2011). Optical measurements of Tsunami inundation through an urban waterfront modeled in a large-scale laboratory basin. Coastal Engineering,58, 229–238.ArticleGoogle Scholar

Shuto, N. (1991). Numerical simulation of Tsunamis—its present and near future. Natural Hazards,4, 171–191.ArticleGoogle Scholar

Synolakis, C. E. (1986). The run-up of long waves. Ph.D. Thesis. California Institute of Technology, Pasadena, California.

Synolakis, C. E., Bernard, E. N., Titov, V. V., Kanoglu, U. & Gonzalez, F. (2007). Standards, criteria, and procedures for NOAA evaluation of Tsunami Numerical Models. 55 p. Seattle, Washington: NOAA OAR Special Report, Contribution No 3053, NOAA/OAR/PMEL.

Synolakis, C. E., Bernard, E. N., Titov, V. V., Kanoglu, U., & Gonzalez, F. I. (2008). Validation and verification of Tsunami numerical models. Pure and Applied Geophysics,165, 2197–2228.ArticleGoogle Scholar

Tolkova, E. (2014). Land-water boundary treatment for a tsunami model with dimensional splitting. Pure and Applied Geophysics,171(9), 2289–2314.ArticleGoogle Scholar

Velioglu, D. (2017). Advanced two- and three-dimensional Tsunami models: benchmarking and validation. Ph.D. Thesis. Middle East Technical University, Ankara.

Velioglu, D., Kian, R., Yalciner, A.C. and Zaytsev, A. (2016). Performance assessment of NAMI DANCE in Tsunami evolution and currents using a benchmark problem. (R. Signell, Ed.) J. Mar. Sci. Eng., 4(3), 49.

Wu, T. (2001). A unified theory for modeling water waves. Advances in Applied Mechanics,37, 1–88.ArticleGoogle Scholar

Wu, N.-J., Hsiao, S.-C., Chen, H.-H., & Yang, R.-Y. (2016). The study on solitary waves generated by a piston-type wave maker. Ocean Engineering,117, 114–129.ArticleGoogle Scholar

Yalciner, A. C., Dogan, P. and Sukru. E. (2005). December 26 2004, Indian Ocean Tsunami Field Survey, North of Sumatra Island. UNESCO.

Yalciner, A. C., Gülkan, P., Dilmen, I., Aytore, B., Ayca, A., Insel, I., et al. (2014). Evaluation of Tsunami scenarios For Western Peloponnese, Greece. Bollettino di Geofisica Teorica ed Applicata,55, 485–500.Google Scholar

Yen, B. C. (1991). Hydraulic resistance in open channels. In B. C. Yen (Ed.), Channel flow resistance: centennial of manning’s formula (pp. 1–135). Highlands Ranch: Water Resource Publications.Google Scholar

Zaitsev, A. I., Kovalev, D. P., Kurkin, A. A., Levin, B. V., Pelinovskii, E. N., Chernov, A. G., et al. (2009). The Tsunami on Sakhalin on August 2, 2007: mareograph evidence and numerical simulation. Tikhookeanskaya Geologiya,28, 30–35.Google Scholar

The authors wish to thank Dr. Andrey Zaytsev due to his undeniable contributions to the development of in-house numerical model, NAMI DANCE. The Turkish branch of Flow Science, Inc. is also acknowledged. Finally, the National Tsunami Hazard Mitigation Program (NTHMP), who provided most of the benchmark data, is appreciated. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Author notes

Deniz Velioglu SogutPresent address: 1212 Computer Science, Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA

Authors and Affiliations

Middle East Technical University, 06800, Ankara, TurkeyDeniz Velioglu Sogut & Ahmet Cevdet Yalciner

Velioglu Sogut, D., Yalciner, A.C. Performance Comparison of NAMI DANCE and FLOW-3D^{®} Models in Tsunami Propagation, Inundation and Currents using NTHMP Benchmark Problems. Pure Appl. Geophys.176, 3115–3153 (2019). https://doi.org/10.1007/s00024-018-1907-9

A series of numerical simulation were conducted to study the local scour around umbrella suction anchor foundation (USAF) under random waves. In this study, the validation was carried out firstly to verify the accuracy of the present model. Furthermore, the scour evolution and scour mechanism were analyzed respectively. In addition, two revised models were proposed to predict the equilibrium scour depth S_{eq} around USAF. At last, a parametric study was carried out to study the effects of the Froude number F_{r} and Euler number E_{u} for the S_{eq.} The results indicate that the present numerical model is accurate and reasonable for depicting the scour morphology under random waves. The revised Raaijmakers’s model shows good agreement with the simulating results of the present study when KC_{s,p} < 8. The predicting results of the revised stochastic model are the most favorable for n = 10 when KC_{rms,a} < 4. The higher F_{r} and E_{u} both lead to the more intensive horseshoe vortex and larger S_{eq}.

The rapid expansion of cities tends to cause social and economic problems, such as environmental pollution and traffic jam. As a kind of clean energy, offshore wind power has developed rapidly in recent years. The foundation of offshore wind turbine (OWT) supports the upper tower, and suffers the cyclic loading induced by waves, tides and winds, which exerts a vital influence on the OWT system. The types of OWT foundation include the fixed and floating foundation, and the fixed foundation was used usually for nearshore wind turbine. After the construction of fixed foundation, the hydrodynamic field changes in the vicinity of the foundation, leading to the horseshoe vortex formation and streamline compression at the upside and sides of foundation respectively [1,2,3,4]. As a result, the neighboring soil would be carried away by the shear stress induced by vortex, and the scour hole would emerge in the vicinity of foundation. The scour holes increase the cantilever length, and weaken the lateral bearing capacity of foundation [5,6,7,8,9]. Moreover, the natural frequency of OWT system increases with the increase of cantilever length, causing the resonance occurs when the system natural frequency equals the wave or wind frequency [10,11,12]. Given that, an innovative foundation called umbrella suction anchor foundation (USAF) has been designed for nearshore wind power. The previous studies indicated the USAF was characterized by the favorable lateral bearing capacity with the low cost [6,13,14]. The close-up of USAF is shown in Figure 1, and it includes six parts: 1-interal buckets, 2-external skirt, 3-anchor ring, 4-anchor branch, 5-supporting rod, 6-telescopic hook. The detailed description and application method of USAF can be found in reference [13].

Figure 1. The close-up of umbrella suction anchor foundation (USAF).

Numerical and experimental investigations of scour around OWT foundation under steady currents and waves have been extensively studied by many researchers [1,2,15,16,17,18,19,20,21,22,23,24]. The seabed scour can be classified as two types according to Shields parameter θ, i.e., clear bed scour (θ < θ_{cr}) or live bed scour (θ > θ_{cr}). Due to the set of foundation, the adverse hydraulic pressure gradient exists at upstream foundation edges, resulting in the streamline separation between boundary layer flow and seabed. The separating boundary layer ascended at upstream anchor edges and developed into the horseshoe vortex. Then, the horseshoe vortex moved downstream gradually along the periphery of the anchor, and the vortex shed off continually at the lee-side of the anchor, i.e., wake vortex. The core of wake vortex is a negative pressure center, liking a vacuum cleaner. Hence, the soil particles were swirled into the negative pressure core and carried away by wake vortexes. At the same time, the onset of scour at rear side occurred. Finally, the wake vortex became downflow when the turbulence energy could not support the survival of wake vortex. According to Tavouktsoglou et al. [25], the scale of pile wall boundary layer is proportional to 1/ln(R_{d}) (R_{d} is pile Reynolds), which means the turbulence intensity induced by the flow-structure interaction would decrease with R_{d} increases, but the effects of R_{d} can be neglected only if the flow around the foundation is fully turbulent [26]. According to previous studies [1,15,27,28,29,30,31,32], the scour development around pile foundation under waves was significantly influenced by Shields parameter θ and KC number simultaneously (calculated by Equation (1)). Sand ripples widely existed around pile under waves in the case of live bed scour, and the scour morphology is related with θ and KC. Compared with θ, KC has a greater influence on the scour morphology [21,27,28]. The influence mechanism of KC on the scour around the pile is reflected in two aspects: the horseshoe vortex at upstream and wake vortex shedding at downstream.

KC=UwmTD��=�wm��(1)

where, U_{wm} is the maximum velocity of the undisturbed wave-induced oscillatory flow at the sea bottom above the wave boundary layer, T is wave period, and D is pile diameter.

There are two prerequisites to satisfy the formation of horseshoe vortex at upstream pile edges: (1) the incoming flow boundary layer with sufficient thickness and (2) the magnitude of upstream adverse pressure gradient making the boundary layer separating [1,15,16,18,20]. The smaller KC results the lower adverse pressure gradient, and the boundary layer cannot separate, herein, there is almost no horseshoe vortex emerging at upside of pile. Sumer et al. [1,15] carried out several sets of wave flume experiments under regular and irregular waves respectively, and the experiment results show that there is no horseshoe vortex when KC is less than 6. While the scale and lifespan of horseshoe vortex increase evidently with the increase of KC when KC is larger than 6. Moreover, the wake vortex contributes to the scour at lee-side of pile. Similar with the case of horseshoe vortex, there is no wake vortex when KC is less than 6. The wake vortex is mainly responsible for scour around pile when KC is greater than 6 and less than O(100), while horseshoe vortex controls scour nearly when KC is greater than O(100).

Sumer et al. [1] found that the equilibrium scour depth was nil around pile when KC was less than 6 under regular waves for live bed scour, while the equilibrium scour depth increased with the increase of KC. Based on that, Sumer proposed an equilibrium scour depth predicting equation (Equation (2)). Carreiras et al. [33] revised Sumer’s equation with m = 0.06 for nonlinear waves. Different with the findings of Sumer et al. [1] and Carreiras et al. [33], Corvaro et al. [21] found the scour still occurred for KC ≈ 4, and proposed the revised equilibrium scour depth predicting equation (Equation (3)) for KC > 4.

Rudolph and Bos [2] conducted a series of wave flume experiments to investigate the scour depth around monopile under waves only, waves and currents combined respectively, indicting KC was one of key parameters in influencing equilibrium scour depth, and proposed the equilibrium scour depth predicting equation (Equation (4)) for low KC (1 < KC < 10). Through analyzing the extensive data from published literatures, Raaijmakers and Rudolph [34] developed the equilibrium scour depth predicting equation (Equation (5)) for low KC, which was suitable for waves only, waves and currents combined. Khalfin [35] carried out several sets of wave flume experiments to study scour development around monopile, and proposed the equilibrium scour depth predicting equation (Equation (6)) for low KC (0.1 < KC < 3.5). Different with above equations, the Khalfin’s equation considers the Shields parameter θ and KC number simultaneously in predicting equilibrium scour depth. The flow reversal occurred under through in one wave period, so sand particles would be carried away from lee-side of pile to upside, resulting in sand particles backfilled into the upstream scour hole [20,29]. Considering the backfilling effects, Zanke et al. [36] proposed the equilibrium scour depth predicting equation (Equation (7)) around pile by theoretical analysis, and the equation is suitable for the whole range of KC number under regular waves and currents combined.

where, γ is safety factor, depending on design process, typically γ = 1.5, K_{wave} is correction factor considering wave action, K_{hw} is correction factor considering water depth.

where, n is the 1/n’th highest wave for random waves

For predicting equilibrium scour depth under irregular waves, i.e., random waves, Sumer and Fredsøe [16] found it’s suitable to take Equation (2) to predict equilibrium scour depth around pile under random waves with the root-mean-square (RMS) value of near-bed orbital velocity amplitude U_{m} and peak wave period T_{P} to calculate KC. Khalfin [35] recommended the RMS wave height H_{rms} and peak wave period T_{P} were used to calculate KC for Equation (6). References [37,38,39,40] developed a series of stochastic theoretical models to predict equilibrium scour depth around pile under random waves, nonlinear random waves plus currents respectively. The stochastic approach thought the 1/n’th highest wave were responsible for scour in vicinity of pile under random waves, and the KC was calculated in Equation (8) with U_{m} and mean zero-crossing wave period T_{z}. The results calculated by Equation (8) agree well with experimental values of Sumer and Fredsøe [16] if the 1/10′th highest wave was used. To author’s knowledge, the stochastic approach proposed by Myrhaug and Rue [37] is the only theoretical model to predict equilibrium scour depth around pile under random waves for the whole range of KC number in published documents. Other methods of predicting scour depth under random waves are mainly originated from the equation for regular waves-only, waves and currents combined, which are limited to the large KC number, such as KC > 6 for Equation (2) and KC > 4 for Equation (3) respectively. However, situations with relatively low KC number (KC < 4) often occur in reality, for example, monopile or suction anchor for OWT foundations in ocean environment. Moreover, local scour around OWT foundations under random waves has not yet been investigated fully. Therefore, further study are still needed in the aspect of scour around OWT foundations with low KC number under random waves. Given that, this study presents the scour sediment model around umbrella suction anchor foundation (USAF) under random waves. In this study, a comparison of equilibrium scour depth around USAF between this present numerical models and the previous theoretical models and experimental results was presented firstly. Then, this study gave a comprehensive analysis for the scour mechanisms around USAF. After that, two revised models were proposed according to the model of Raaijmakers and Rudolph [34] and the stochastic model developed by Myrhaug and Rue [37] respectively to predict the equilibrium scour depth. Finally, a parametric study was conducted to study the effects of the Froude number (F_{r}) and Euler number (E_{u}) to equilibrium scour depth respectively.

2. Numerical Method

2.1. Governing Equations of Flow

The following equations adopted in present model are already available in Flow 3D software. The authors used these theoretical equations to simulate scour in random waves without modification. The incompressible viscous fluid motion satisfies the Reynolds-averaged Navier-Stokes (RANS) equation, so the present numerical model solves RANS equations:

where, V_{F} is the volume fraction; u, v, and w are the velocity components in x, y, z direction respectively with Cartesian coordinates; A_{i} is the area fraction; ρ_{f} is the fluid density, f_{i} is the viscous fluid acceleration, G_{i} is the fluid body acceleration (i = x, y, z).

2.2. Turbulent Model

The turbulence closure is available by the turbulent model, such as one-equation, the one-equation k-ε model, the standard k-ε model, RNG k-ε turbulent model and large eddy simulation (LES) model. The LES model requires very fine mesh grid, so the computational time is large, which hinders the LES model application in engineering. The RNG k-ε model can reduce computational time greatly with high accuracy in the near-wall region. Furthermore, the RNG k-ε model computes the maximum turbulent mixing length dynamically in simulating sediment scour model. Therefore, the RNG k-ε model was adopted to study the scour around anchor under random waves [41,42].

where, k_{T} is specific kinetic energy involved with turbulent velocity, G_{T} is the turbulent energy generated by buoyancy; ε_{T} is the turbulent energy dissipating rate, P_{T} is the turbulent energy, Diff_{ε} and Diff_{kT} are diffusion terms associated with V_{F}, A_{i}; CDIS1, CDIS2 and CDIS3 are dimensionless parameters, and CDIS1, CDIS3 have default values of 1.42, 0.2 respectively. CDIS2 can be obtained from P_{T} and k_{T}.

2.3. Sediment Scour Model

The sand particles may suffer four processes under waves, i.e., entrainment, bed load transport, suspended load transport, and deposition, so the sediment scour model should depict the above processes efficiently. In present numerical simulation, the sediment scour model includes the following aspects:

2.3.1. Entrainment and Deposition

The combination of entrainment and deposition determines the net scour rate of seabed in present sediment scour model. The entrainment lift velocity of sand particles was calculated as [43]:

where, α_{i} is the entrainment parameter, n_{s} is the outward point perpendicular to the seabed, d_{*} is the dimensionless diameter of sand particles, which was calculated by Equation (15), θ_{cr} is the critical Shields parameter, g is the gravity acceleration, d_{i} is the diameter of sand particles, ρ_{i} is the density of seabed species.

In Equation (14), the entrainment parameter α_{i} confirms the rate at which sediment erodes when the given shear stress is larger than the critical shear stress, and the recommended value 0.018 was adopted according to the experimental data of Mastbergen and Von den Berg [43]. n_{s} is the outward pointing normal to the seabed interface, and n_{s} = (0,0,1) according to the Cartesian coordinates used in present numerical model.

The shields parameter was obtained from the following equation:

θ=U2f,m(ρi/ρf−1)gd50�=�f,m2(��/�f−1)��50(16)

where, U_{f,m} is the maximum value of the near-bed friction velocity; d_{50} is the median diameter of sand particles. The detailed calculation procedure of θ was available in Soulsby [44].

The critical shields parameter θ_{cr} was obtained from the Equation (17) [44]

The sand particles begin to deposit on seabed when the turbulence energy weaken and cann’t support the particles suspending. The setting velocity of the particles was calculated from the following equation [44]:

This is called bed load transport when the sand particles roll or bounce over the seabed and always have contact with seabed. The bed load transport velocity was computed by [45]:

where, q_{b,i} is the bed load transport rate, which was obtained from Equation (20), δ_{i} is the bed load thickness, which was calculated by Equation (21), c_{b,i} is the volume fraction of sand i in the multiple species, f_{b} is the critical packing fraction of the seabed.

where, C_{s,i} is the suspended sand particles mass concentration of sand i in the multiple species, u_{s,i} is the sand particles velocity of sand i, D_{f} is the diffusivity.

The velocity of sand i in the multiple species could be obtained from the following equation:

where, u¯�¯ is the velocity of mixed fluid-particles, which can be calculated by the RANS equation with turbulence model, c_{s,i} is the suspended sand particles volume concentration, which was computed from Equation (24).

cs,i=Cs,iρi�s,�=�s,���(24)

3. Model Setup

The seabed-USAF-wave three-dimensional scour numerical model was built using Flow-3D software. As shown in Figure 2, the model includes sandy seabed, USAF model, sea water, two baffles and porous media. The dimensions of USAF are shown in Table 1. The sandy bed (210 m in length, 30 m in width and 11 m in height) is made up of uniform fine sand with median diameter d_{50} = 0.041 cm. The USAF model includes upper steel tube with the length of 20 m, which was installed in the middle of seabed. The location of USAF is positioned at 140 m from the upstream inflow boundary and 70 m from the downstream outflow boundary. Two baffles were installed at two ends of seabed. In order to eliminate the wave reflection basically, the porous media was set at the outflow side on the seabed.

Figure 2. (a) The sketch of seabed-USAF-wave three-dimensional model; (b) boundary condation:Wv-wave boundary, S-symmetric boundary, O-outflow boundary; (c) USAF model.

Table 1. Numerical simulating cases.

3.1. Mesh Geometric Dimensions

In the simulation of the scour under the random waves, the model includes the umbrella suction anchor foundation, seabed and fluid. As shown in Figure 3, the model mesh includes global mesh grid and nested mesh grid, and the total number of grids is 1,812,000. The basic procedure for building mesh grid consists of two steps. Step 1: Divide the global mesh using regular hexahedron with size of 0.6 × 0.6. The global mesh area is cubic box, embracing the seabed and whole fluid volume, and the dimensions are 210 m in length, 30 m in width and 32 m in height. The details of determining the grid size can see the following mesh sensitivity section. Step 2: Set nested fine mesh grid in vicinity of the USAF with size of 0.3 × 0.3 so as to shorten the computation cost and improve the calculation accuracy. The encryption range is −15 m to 15 m in x direction, −15 m to 15 m in y direction and 0 m to 32 m in z direction, respectively. In order to accurately capture the free-surface dynamics, such as the fluid-air interface, the volume of fluid (VOF) method was adopted for tracking the free water surface. One specific algorithm called FAVORTM (Fractional Area/Volume Obstacle Representation) was used to define the fractional face areas and fractional volumes of the cells which are open to fluid flow.

Figure 3. The sketch of mesh grid.

3.2. Boundary Conditions

As shown in Figure 2, the initial fluid length is 210 m as long as seabed. A wave boundary was specified at the upstream offshore end. The details of determining the random wave spectrum can see the following wave parameters section. The outflow boundary was set at the downstream onshore end. The symmetry boundary was used at the top and two sides of the model. The symmetric boundaries were the better strategy to improve the computation efficiency and save the calculation cost [46]. At the seabed bottom, the wall boundary was adopted, which means the u = v = w= 0. Besides, the upper steel tube of USAF was set as no-slip condition.

3.3. Wave Parameters

The random waves with JONSWAP wave spectrum were used for all simulations as realistic representation of offshore conditions. The unidirectional JONSWAP frequency spectrum was described as [47]:

where, α is wave energy scale parameter, which is calculated by Equation (26), ω is frequency, ω_{p} is wave spectrum peak frequency, which can be obtained from Equation (27). γ is wave spectrum peak enhancement factor, in this study γ = 3.3. σ is spectral width factor, σ equals 0.07 for ω ≤ ω_{p} and 0.09 for ω > ω_{p} respectively.

α=0.0076(gXU2)−0.22�=0.0076(���2)−0.22(26)

ωp=22(gU)(gXU2)−0.33�p=22(��)(���2)−0.33(27)

where, X is fetch length, U is average wind velocity at 10 m height from mean sea level.

In present numerical model, the input key parameters include X and U for wave boundary with JONSWAP wave spectrum. The objective wave height and period are available by different combinations of X and U. In this study, we designed 9 cases with different wave heights, periods and water depths for simulating scour around USAF under random waves (see Table 2). For random waves, the wave steepness ε and Ursell number U_{r} were acquired form Equations (28) and (29) respectively

ε=2πgHsT2a�=2���s�a2(28)

Ur=Hsk2h3w�r=�s�2ℎw3(29)

where, H_{s} is significant wave height, T_{a} is average wave period, k is wave number, h_{w} is water depth. The Shield parameter θ satisfies θ_{>}θ_{cr} for all simulations in current study, indicating the live bed scour prevails.

Table 2. Numerical simulating cases.

3.4. Mesh Sensitivity

In this section, a mesh sensitivity analysis was conducted to investigate the influence of mesh grid size to results and make sure the calculation is mesh size independent and converged. Three mesh grid size were chosen: Mesh 1—global mesh grid size of 0.75 × 0.75, nested fine mesh grid size of 0.4 × 0.4, and total number of grids 1,724,000, Mesh 2—global mesh grid size of 0.6 × 0.6, nested fine mesh grid size of 0.3 × 0.3, and total number of grids 1,812,000, Mesh 3—global mesh grid size of 0.4 × 0.4, nested fine mesh grid size of 0.2 × 0.2, and total number of grids 1,932,000. The near-bed shear velocity U_{*} is an important factor for influencing scour process [1,15], so U_{*} at the position of (4,0,11.12) was evaluated under three mesh sizes. As the Figure 4 shown, the maximum error of shear velocity ∆U_{*1,2} is about 39.8% between the mesh 1 and mesh 2, and 4.8% between the mesh 2 and mesh 3. According to the mesh sensitivity criterion adopted by Pang et al. [48], it’s reasonable to think the results are mesh size independent and converged with mesh 2. Additionally, the present model was built according to prototype size, and the mesh size used in present model is larger than the mesh size adopted by Higueira et al. [49] and Corvaro et al. [50]. If we choose the smallest cell size, it will take too much time. For example, the simulation with Mesh3 required about 260 h by using a computer with Intel Xeon Scalable Gold 4214 CPU @24 Cores, 2.2 GHz and 64.00 GB RAM. Therefore, in this case, considering calculation accuracy and computation efficiency, the mesh 2 was chosen for all the simulation in this study.

Figure 4. Comparison of near-bed shear velocity U_{*} with different mesh grid size.

The nested mesh block was adopted for seabed in vicinity of the USAF, which was overlapped with the global mesh block. When two mesh blocks overlap each other, the governing equations are by default solved on the mesh block with smaller average cell size (i.e., higher grid resolution). It is should be noted that the Flow 3D software used the moving mesh captures the scour evolution and automatically adjusts the time step size to be as large as possible without exceeding any of the stability limits, affecting accuracy, or unduly increasing the effort required to enforce the continuity condition [51].

3.5. Model Validation

In order to verify the reliability of the present model, the results of present study were compared with the experimental data of Khosronejad et al. [52]. The experiment was conducted in an open channel with a slender vertical pile under unidirectional currents. The comparison of scour development between the present results and the experimental results is shown in Figure 5. The Figure 5 reveals that the present results agree well with the experimental data of Khosronejad et al. [52]. In the first stage, the scour depth increases rapidly. After that, the scour depth achieves a maximum value gradually. The equilibrium scour depth calculated by the present model is basically corresponding with the experimental results of Khosronejad et al. [52], although scour depth in the present model is slightly larger than the experimental results at initial stage.

Figure 5. Comparison of time evolution of scour between the present study and Khosronejad et al. [52], Petersen et al. [17].

Secondly, another comparison was further conducted between the results of present study and the experimental data of Petersen et al. [17]. The experiment was carried out in a flume with a circular vertical pile in combined waves and current. Figure 4 shows a comparison of time evolution of scour depth between the simulating and the experimental results. As Figure 5 indicates, the scour depth in this study has good overall agreement with the experimental results proposed in Petersen et al. [17]. The equilibrium scour depth calculated by the present model is 0.399 m, which equals to the experimental value basically. Overall, the above verifications prove the present model is accurate and capable in dealing with sediment scour under waves.

In addition, in order to calibrate and validate the present model for hydrodynamic parameters, the comparison of water surface elevation was carried out with laboratory experiments conducted by Stahlmann [53] for wave gauge No. 3. The Figure 6 depicts the surface wave profiles between experiments and numerical model results. The comparison indicates that there is a good agreement between the model results and experimental values, especially the locations of wave crest and trough. Comparison of the surface elevation instructs the present model has an acceptable relative error, and the model is a calibrated in terms of the hydrodynamic parameters.

Figure 6. Comparison of surface elevation between the present study and Stahlmann [53].

Finally, another comparison was conducted for equilibrium scour depth or maximum scour depth under random waves with the experimental data of Sumer and Fredsøe [16] and Schendel et al. [22]. The Figure 7 shows the comparison between the numerical results and experimental data of Run01, Run05, Run21 and Run22 in Sumer and Fredsøe [16] and test A05 and A09 in Schendel et al. [22]. As shown in Figure 7, the equilibrium scour depth or maximum scour depth distributed within the ±30 error lines basically, meaning the reliability and accuracy of present model for predicting equilibrium scour depth around foundation in random waves. However, compared with the experimental values, the present model overestimated the equilibrium scour depth generally. Given that, a calibration for scour depth was carried out by multiplying the mean reduced coefficient 0.85 in following section.

Figure 7. Comparison of equilibrium (or maximum) scour depth between the present study and Sumer and Fredsøe [16], Schendel et al. [22].

Through the various examination for hydrodynamic and morphology parameters, it can be concluded that the present model is a validated and calibrated model for scour under random waves. Thus, the present numerical model would be utilized for scour simulation around foundation under random waves.

4. Numerical Results and Discussions

4.1. Scour Evolution

Figure 8 displays the scour evolution for case 1–9. As shown in Figure 8a, the scour depth increased rapidly at the initial stage, and then slowed down at the transition stage, which attributes to the backfilling occurred in scour holes under live bed scour condition, resulting in the net scour decreasing. Finally, the scour reached the equilibrium state when the amount of sediment backfilling equaled to that of scouring in the scour holes, i.e., the net scour transport rate was nil. Sumer and Fredsøe [16] proposed the following formula for the scour development under waves

St=Seq(1−exp(−t/Tc))�t=�eq(1−exp(−�/�c))(30)

where T_{c} is time scale of scour process.

Figure 8. Time evolution of scour for case 1–9: (a) Case 1–5; (b) Case 6–9.

The computing time is 3600 s and the scour development curves in Figure 8 kept fluctuating, meaning it’s still not in equilibrium scour stage in these cases. According to Sumer and Fredsøe [16], the equilibrium scour depth can be acquired by fitting the data with Equation (30). From Figure 8, it can be seen that the scour evolution obtained from Equation (30) is consistent with the present study basically at initial stage, but the scour depth predicted by Equation (30) developed slightly faster than the simulating results and the Equation (30) overestimated the scour depth to some extent. Overall, the whole tendency of the results calculated by Equation (30) agrees well with the simulating results of the present study, which means the Equation (30) is applicable to depict the scour evolution around USAF under random waves.

4.2. Scour Mechanism under Random Waves

The scour morphology and scour evolution around USAF are similar under random waves in case 1~9. Taking case 7 as an example, the scour morphology is shown in Figure 9.

Figure 9. Scour morphology under different times for case 7.

From Figure 9, at the initial stage (t < 1200 s), the scour occurred at upstream foundation edges between neighboring anchor branches. The maximum scour depth appeared at the lee-side of the USAF. Correspondingly, the sediments deposited at the periphery of the USAF, and the location of the maximum accretion depth was positioned at an angle of about 45° symmetrically with respect to the wave propagating direction in the lee-side of the USAF. After that, when t > 2400 s, the location of the maximum scour depth shifted to the upside of the USAF at an angle of about 45° with respect to the wave propagating direction.

According to previous studies [1,15,16,19,30,31], the horseshoe vortex, streamline compression and wake vortex shedding were responsible for scour around foundation. The Figure 10 displays the distribution of flow velocity in vicinity of foundation, which reflects the evolving processes of horseshoe vertex.

Figure 10. Velocity profile around USAF: (a) Flow runup and down stream at upstream anchor edges; (b) Horseshoe vortex at upstream anchor edges; (c) Flow reversal during wave through stage at lee side.

As shown in Figure 10, the inflow tripped to the upstream edges of the USAF and it was blocked by the upper tube of USAF. Then, the downflow formed the horizontal axis clockwise vortex and rolled on the seabed bypassing the tube, that is, the horseshoe vortex (Figure 11). The Figure 12 displays the turbulence intensity around the tube on the seabed. From Figure 12, it can be seen that the turbulence intensity was high-intensity with respect to the region of horseshoe vortex. This phenomenon occurred because of drastic water flow momentum exchanging in the horseshoe vortex. As a result, it created the prominent shear stress on the seabed, causing the local scour at the upstream edges of USAF. Besides, the horseshoe vortex moved downstream gradually along the periphery of the tube and the wake vortex shed off continually at the lee-side of the USAF, i.e., wake vortex.

Figure 11. Sketch of scour mechanism around USAF under random waves.

Figure 12. Turbulence intensity: (a) Turbulence intensity of horseshoe vortex; (b) Turbulence intensity of wake vortex; (c) Turbulence intensity of accretion area.

The core of wake vortex is a negative pressure center, liking a vacuum cleaner [11,42]. Hence, the soil particles were swirled into the negative pressure core and carried away by wake vortex. At the same time, the onset of scour at rear side occurred. Finally, the wake vortex became downflow at the downside of USAF. As is shown in Figure 12, the turbulence intensity was low where the downflow occurred at lee-side, which means the turbulence energy may not be able to support the survival of wake vortex, leading to accretion happening. As mentioned in previous section, the formation of horseshoe vortex was dependent with adverse pressure gradient at upside of foundation. As shown in Figure 13, the evaluated range of pressure distribution is −15 m to 15 m in x direction. The t = 450 s and t = 1800 s indicate that the wave crest and trough arrived at the upside and lee-side of the foundation respectively, and the t = 350 s was neither the wave crest nor trough. The adverse gradient pressure reached the maximum value at t = 450 s corresponding to the wave crest phase. In this case, it’s helpful for the wave boundary separating fully from seabed, which leads to the formation of horseshoe vortex with high turbulence intensity. Therefore, the horseshoe vortex is responsible for the local scour between neighboring anchor branches at upside of USAF. What’s more, due to the combination of the horseshoe vortex and streamline compression, the maximum scour depth occurred at the upside of the USAF with an angle of about 45° corresponding to the wave propagating direction. This is consistent with the findings of Pang et al. [48] and Sumer et al. [1,15] in case of regular waves. At the wave trough phase (t = 1800 s), the pressure gradient became positive at upstream USAF edges, which hindered the separating of wave boundary from seabed. In the meantime, the flow reversal occurred (Figure 10) and the adverse gradient pressure appeared at downstream USAF edges, but the magnitude of adverse gradient pressure at lee-side was lower than the upstream gradient pressure under wave crest. In this way, the intensity of horseshoe vortex behind the USAF under wave trough was low, which explains the difference of scour depth at upstream and downstream, i.e., the scour asymmetry. In other words, the scour asymmetry at upside and downside of USAF was attributed to wave asymmetry for random waves, and the phenomenon became more evident for nonlinear waves [21]. Briefly speaking, the vortex system at wave crest phase was mainly related to the scour process around USAF under random waves.

Figure 13. Pressure distribution around USAF.

4.3. Equilibrium Scour Depth

The KC number is a key parameter for horseshoe vortex emerging and evolving under waves. According to Equation (1), when pile diameter D is fixed, the KC depends on the maximum near-bed velocity U_{wm} and wave period T. For random waves, the U_{wm} can be denoted by the root-mean-square (RMS) value of near-bed velocity amplitude U_{wm,rms} or the significant value of near-bed velocity amplitude U_{wm,s}. The U_{wm,rms} and U_{wm,s} for all simulating cases of the present study are listed in Table 3 and Table 4. The T can be denoted by the mean up zero-crossing wave period T_{a}, peak wave period T_{p}, significant wave period T_{s}, the maximum wave period T_{m}, 1/10′th highest wave period T_{n = 1/10} and 1/5′th highest wave period T_{n = 1/5} for random waves, so the different combinations of U_{wm} and T will acquire different KC. The Table 3 and Table 4 list 12 types of KC, for example, the KC_{rms,s} was calculated by U_{wm,rms} and T_{s}. Sumer and Fredsøe [16] conducted a series of wave flume experiments to investigate the scour depth around monopile under random waves, and found the equilibrium scour depth predicting equation (Equation (2)) for regular waves was applicable for random waves with KC_{rms,p}. It should be noted that the Equation (2) is only suitable for KC > 6 under regular waves or KC_{rms,p} > 6 under random waves.

Table 3.U_{wm,rms} and KC for case 1~9.

Table 4.U_{wm,s} and KC for case 1~9.

Raaijmakers and Rudolph [34] proposed the equilibrium scour depth predicting model (Equation (5)) around pile under waves, which is suitable for low KC. The format of Equation (5) is similar with the formula proposed by Breusers [54], which can predict the equilibrium scour depth around pile at different scour stages. In order to verify the applicability of Raaijmakers’s model for predicting the equilibrium scour depth around USAF under random waves, a validation of the equilibrium scour depth S_{eq} between the present study and Raaijmakers’s equation was conducted. The position where the scour depth S_{eq} was evaluated is the location of the maximum scour depth, and it was depicted in Figure 14. The Figure 15 displays the comparison of S_{eq} with different KC between the present study and Raaijmakers’s model.

Figure 14. Sketch of the position where the S_{eq} was evaluated.

Figure 15. Comparison of the equilibrium scour depth between the present model and the model of Raaijmakers and Rudolph [34]: (a) KC_{rms,s}, KC_{rms,a}; (b) KC_{rms,p}, KC_{rms,m}; (c) KC_{rms,n = 1/10}, KC_{rms,n = 1/5}; (d) KC_{s,s}, KC_{s,a}; (e) KC_{s,p}, KC_{s,m}; (f) KC_{s,n = 1/10}, KC_{s,n = 1/5}.

As shown in Figure 15, there is an error in predicting S_{eq} between the present study and Raaijmakers’s model, and Raaijmakers’s model underestimates the results generally. Although the error exists, the varying trend of S_{eq} with KC obtained from Raaijmakers’s model is consistent with the present study basically. What’s more, the error is minimum and the Raaijmakers’s model is of relatively high accuracy for predicting scour around USAF under random waves by using KC_{s,p}. Based on this, a further revision was made to eliminate the error as much as possible, i.e., add the deviation value ∆S/D in the Raaijmakers’s model. The revised equilibrium scour depth predicting equation based on Raaijmakers’s model can be written as

As the Figure 16 shown, through trial-calculation, when ∆S/D = 0.05, the results calculated by Equation (31) show good agreement with the simulating results of the present study. The maximum error is about 18.2% and the engineering requirements have been met basically. In order to further verify the accuracy of the revised model for large KC (KC_{s,p} > 4) under random waves, a validation between the revised model and the previous experimental results [21]. The experiment was conducted in a flume (50 m in length, 1.0 m in width and 1.3 m in height) with a slender vertical pile (D = 0.1 m) under random waves. The seabed is composed of 0.13 m deep layer of sand with d_{50} = 0.6 mm and the water depth is 0.5 m for all tests. The significant wave height is 0.12~0.21 m and the KC_{s,p} is 5.52~11.38. The comparison between the predicting results by Equation (31) and the experimental results of Corvaro et al. [21] is shown in Figure 17. From Figure 17, the experimental data evenly distributes around the predicted results and the prediction accuracy is favorable when KC_{s,p} < 8. However, the gap between the predicting results and experimental data becomes large and the Equation (31) overestimates the equilibrium scour depth to some extent when KC_{s,p} > 8.

Figure 16. Comparison of S_{eq} between the simulating results and the predicting values by Equation (31).

Figure 17. Comparison of S_{eq}/D between the Experimental results of Corvaro et al. [21] and the predicting values by Equation (31).

In ocean environment, the waves are composed of a train of sinusoidal waves with different frequencies and amplitudes. The energy of constituent waves with very large and very small frequencies is relatively low, and the energy of waves is mainly concentrated in a certain range of moderate frequencies. Myrhaug and Rue [37] thought the 1/n’th highest wave was responsible for scour and proposed the stochastic model to predict the equilibrium scour depth around pile under random waves for full range of KC. Noteworthy is that the KC was denoted by KC_{rms,a} in the stochastic model. To verify the application of the stochastic model for predicting scour depth around USAF, a validation between the simulating results of present study and predicting results by the stochastic model with n = 2,3,5,10,20,500 was carried out respectively.

As shown in Figure 18, compared with the simulating results, the stochastic model underestimates the equilibrium scour depth around USAF generally. Although the error exists, the varying trend of S_{eq} with KC_{rms,a} obtained from the stochastic model is consistent with the present study basically. What’s more, the gap between the predicting values by stochastic model and the simulating results decreases with the increase of n, but for large n, for example n = 500, the varying trend diverges between the predicting values and simulating results, meaning it’s not feasible only by increasing n in stochastic model to predict the equilibrium scour depth around USAF.

Figure 18. Comparison of S_{eq} between the simulating results and the predicting values by Equation (8).

The Figure 19 lists the deviation value ∆S_{eq}/D′ between the predicting values and simulating results with different KC_{rms,a} and n. Then, fitted the relationship between the ∆S′and n under different KC_{rms,a}, and the fitting curve can be written by Equation (32). The revised stochastic model (Equation (33)) can be acquired by adding ∆S_{eq}/D′ to Equation (8).

The comparison between the predicting results by Equation (33) and the simulating results of present study is shown in Figure 20. According to the Figure 20, the varying trend of S_{eq} with KC_{rms,a} obtained from the stochastic model is consistent with the present study basically. Compared with predicting results by the stochastic model, the results calculated by Equation (33) is favorable. Moreover, comparison with simulating results indicates that the predicting results are the most favorable for n = 10, which is consistent with the findings of Myrhaug and Rue [37] for equilibrium scour depth predicting around slender pile in case of random waves.

Figure 20. Comparison of S_{eq} between the simulating results and the predicting values by Equation (33).

In order to further verify the accuracy of the Equation (33) for large KC (KC_{rms,a} > 4) under random waves, a validation was conducted between the Equation (33) and the previous experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21]. The details of experiments conducted by Corvaro et al. [21] were described in above section. Sumer and Fredsøe [16] investigated the local scour around pile under random waves. The experiments were conducted in a wave basin with a slender vertical pile (D = 0.032, 0.055 m). The seabed is composed of 0.14 m deep layer of sand with d_{50} = 0.2 mm and the water depth was maintained at 0.5 m. The JONSWAP wave spectrum was used and the KC_{rms,a} was 5.29~16.95. The comparison between the predicting results by Equation (33) and the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21] are shown in Figure 21. From Figure 21, contrary to the case of low KC_{rms,a} (KC_{rms,a} < 4), the error between the predicting values and experimental results increases with decreasing of n for KC_{rms,a} > 4. Therefore, the predicting results are the most favorable for n = 2 when KC_{rms,a} > 4.

Figure 21. Comparison of S_{eq} between the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21] and the predicting values by Equation (33).

Noteworthy is that the present model was built according to prototype size, so the errors between the numerical results and experimental data of References [16,21] may be attribute to the scale effects. In laboratory experiments on scouring process, it is typically impossible to ensure a rigorous similarity of all physical parameters between the model and prototype structure, leading to the scale effects in the laboratory experiments. To avoid a cohesive behaviour, the bed material was not scaled geometrically according to model scale. As a consequence, the relatively large-scaled sediments sizes may result in the overestimation of bed load transport and underestimation of suspended load transport compared with field conditions. What’s more, the disproportional scaled sediment presumably lead to the difference of bed roughness between the model and prototype, and thus large influences for wave boundary layer on the seabed and scour process. Besides, according to Corvaro et al. [21] and Schendel et al. [55], the pile Reynolds numbers and Froude numbers both affect the scour depth for the condition of non fully developed turbulent flow in laboratory experiments.

4.4. Parametric Study

4.4.1. Influence of Froude Number

As described above, the set of foundation leads to the adverse pressure gradient appearing at upstream, leading to the wave boundary layer separating from seabed, then horseshoe vortex formatting and the horseshoe vortex are mainly responsible for scour around foundation (see Figure 22). The Froude number F_{r} is the key parameter to influence the scale and intensity of horseshoe vortex. The F_{r} under waves can be calculated by the following formula [42]

Fr=UwgD−−−√�r=�w��(34)

where U_{w} is the mean water particle velocity during 1/4 cycle of wave oscillation, obtained from the following formula. Noteworthy is that the root-mean-square (RMS) value of near-bed velocity amplitude U_{wm,rms} is used for calculating U_{wm}.

Figure 22. Sketch of flow field at upstream USAF edges.

Tavouktsoglou et al. [25] proposed the following formula between F_{r} and the vertical location of the stagnation y

yh∝Fer�ℎ∝�r�(36)

where e is constant.

The Figure 23 displays the relationship between S_{eq}/D and F_{r} of the present study. In order to compare with the simulating results, the experimental data of Corvaro et al. [21] was also depicted in Figure 23. As shown in Figure 23, the equilibrium scour depth appears a logarithmic increase as F_{r} increases and approaches the mathematical asymptotic value, which is also consistent with the experimental results of Corvaro et al. [21]. According to Figure 24, the adverse pressure gradient pressure at upstream USAF edges increases with the increase of F_{r}, which is benefit for the wave boundary layer separating from seabed, resulting in the high-intensity horseshoe vortex, hence, causing intensive scour around USAF. Based on the previous study of Tavouktsoglou et al. [25] for scour around pile under currents, the high F_{r} leads to the stagnation point is closer to the mean sea level for shallow water, causing the stronger downflow kinetic energy. As mentioned in previous section, the energy of downflow at upstream makes up the energy of the subsequent horseshoe vortex, so the stronger downflow kinetic energy results in the more intensive horseshoe vortex. Therefore, the higher F_{r} leads to the more intensive horseshoe vortex by influencing the position of stagnation point y presumably. Qi and Gao [19] carried out a series of flume tests to investigate the scour around pile under regular waves, and proposed the fitting formula between S_{eq}/D and F_{r} as following

lg(Seq/D)=Aexp(B/Fr)+Clg(�eq/�)=�exp(�/�r)+�(37)

where A, B and C are constant.

Figure 23. The fitting curve between S_{eq}/D and F_{r}.

Figure 24. Sketch of adverse pressure gradient at upstream USAF edges.

Took the Equation (37) to fit the simulating results with A = −0.002, B = 0.686 and C = −0.808, and the results are shown in Figure 23. From Figure 23, the simulating results evenly distribute around the Equation (37) and the varying trend of S_{eq}/D and F_{r} in present study is consistent with Equation (37) basically, meaning the Equation (37) is applicable to express the relationship of S_{eq}/D with F_{r} around USAF under random waves.

4.4.2. Influence of Euler Number

The Euler number E_{u} is the influencing factor for the hydrodynamic field around foundation. The E_{u} under waves can be calculated by the following formula. The E_{u} can be represented by the Equation (38) for uniform cylinders [25]. The root-mean-square (RMS) value of near-bed velocity amplitude U_{m,rms} is used for calculating U_{m}.

Eu=U2mgD�u=�m2��(38)

where U_{m} is depth-averaged flow velocity.

The Figure 25 displays the relationship between S_{eq}/D and E_{u} of the present study. In order to compare with the simulating results, the experimental data of Sumer and Fredsøe [16] and Corvaro et al. [21] were also plotted in Figure 25. As shown in Figure 25, similar with the varying trend of S_{eq}/D and F_{r}, the equilibrium scour depth appears a logarithmic increase as E_{u} increases and approaches the mathematical asymptotic value, which is also consistent with the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21]. According to Figure 24, the adverse pressure gradient pressure at upstream USAF edges increases with the increasing of E_{u}, which is benefit for the wave boundary layer separating from seabed, inducing the high-intensity horseshoe vortex, hence, causing intensive scour around USAF.

Figure 25. The fitting curve between S_{eq}/D and E_{u}.

Therefore, the variation of F_{r} and E_{u} reflect the magnitude of adverse pressure gradient pressure at upstream. Given that, the Equation (37) also was used to fit the simulating results with A = 8.875, B = 0.078 and C = −9.601, and the results are shown in Figure 25. From Figure 25, the simulating results evenly distribute around the Equation (37) and the varying trend of S_{eq}/D and E_{u} in present study is consistent with Equation (37) basically, meaning the Equation (37) is also applicable to express the relationship of S_{eq}/D with E_{u} around USAF under random waves. Additionally, according to the above description of F_{r}, it can be inferred that the higher F_{r} and E_{u} both lead to the more intensive horseshoe vortex by influencing the position of stagnation point y presumably.

5. Conclusions

A series of numerical models were established to investigate the local scour around umbrella suction anchor foundation (USAF) under random waves. The numerical model was validated for hydrodynamic and morphology parameters by comparing with the experimental data of Khosronejad et al. [52], Petersen et al. [17], Sumer and Fredsøe [16] and Schendel et al. [22]. Based on the simulating results, the scour evolution and scour mechanisms around USAF under random waves were analyzed respectively. Two revised models were proposed according to the model of Raaijmakers and Rudolph [34] and the stochastic model developed by Myrhaug and Rue [37] to predict the equilibrium scour depth around USAF under random waves. Finally, a parametric study was carried out with the present model to study the effects of the Froude number F_{r} and Euler number E_{u} to the equilibrium scour depth around USAF under random waves. The main conclusions can be described as follows.(1)

The packed sediment scour model and the RNG k−ε turbulence model were used to simulate the sand particles transport processes and the flow field around UASF respectively. The scour evolution obtained by the present model agrees well with the experimental results of Khosronejad et al. [52], Petersen et al. [17], Sumer and Fredsøe [16] and Schendel et al. [22], which indicates that the present model is accurate and reasonable for depicting the scour morphology around UASF under random waves.(2)

The vortex system at wave crest phase is mainly related to the scour process around USAF under random waves. The maximum scour depth appeared at the lee-side of the USAF at the initial stage (t < 1200 s). Subsequently, when t > 2400 s, the location of the maximum scour depth shifted to the upside of the USAF at an angle of about 45° with respect to the wave propagating direction.(3)

The error is negligible and the Raaijmakers’s model is of relatively high accuracy for predicting scour around USAF under random waves when KC is calculated by KC_{s,p}. Given that, a further revision model (Equation (31)) was proposed according to Raaijmakers’s model to predict the equilibrium scour depth around USAF under random waves and it shows good agreement with the simulating results of the present study when KC_{s,p} < 8.(4)

Another further revision model (Equation (33)) was proposed according to the stochastic model established by Myrhaug and Rue [37] to predict the equilibrium scour depth around USAF under random waves, and the predicting results are the most favorable for n = 10 when KC_{rms,a} < 4. However, contrary to the case of low KC_{rms,a}, the predicting results are the most favorable for n = 2 when KC_{rms,a} > 4 by the comparison with experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21].(5)

The same formula (Equation (37)) is applicable to express the relationship of S_{eq}/D with E_{u} or F_{r}, and it can be inferred that the higher F_{r} and E_{u} both lead to the more intensive horseshoe vortex and larger S_{eq.}

Author Contributions

Conceptualization, H.L. (Hongjun Liu); Data curation, R.H. and P.Y.; Formal analysis, X.W. and H.L. (Hao Leng); Funding acquisition, X.W.; Writing—original draft, R.H. and P.Y.; Writing—review & editing, X.W. and H.L. (Hao Leng); The final manuscript has been approved by all the authors. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Fundamental Research Funds for the Central Universities (grant number 202061027) and the National Natural Science Foundation of China (grant number 41572247).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

References

Sumer, B.M.; Fredsøe, J.; Christiansen, N. Scour Around Vertical Pile in Waves. J. Waterw. Port. Coast. Ocean Eng.1992, 118, 15–31. [Google Scholar] [CrossRef]

Rudolph, D.; Bos, K. Scour around a monopile under combined wave-current conditions and low KC-numbers. In Proceedings of the 6th International Conference on Scour and Erosion, Amsterdam, The Netherlands, 1–3 November 2006; pp. 582–588. [Google Scholar]

Nielsen, A.W.; Liu, X.; Sumer, B.M.; Fredsøe, J. Flow and bed shear stresses in scour protections around a pile in a current. Coast. Eng.2013, 72, 20–38. [Google Scholar] [CrossRef]

Ahmad, N.; Bihs, H.; Myrhaug, D.; Kamath, A.; Arntsen, Ø.A. Three-dimensional numerical modelling of wave-induced scour around piles in a side-by-side arrangement. Coast. Eng.2018, 138, 132–151. [Google Scholar] [CrossRef]

Li, H.; Ong, M.C.; Leira, B.J.; Myrhaug, D. Effects of Soil Profile Variation and Scour on Structural Response of an Offshore Monopile Wind Turbine. J. Offshore Mech. Arct. Eng.2018, 140, 042001. [Google Scholar] [CrossRef]

Li, H.; Liu, H.; Liu, S. Dynamic analysis of umbrella suction anchor foundation embedded in seabed for offshore wind turbines. Géoméch. Energy Environ.2017, 10, 12–20. [Google Scholar] [CrossRef]

Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Vanem, E.; Carvalho, H.; Correia, J.A.F.D.O. Editorial: Advanced research on offshore structures and foundation design: Part 1. Proc. Inst. Civ. Eng. Marit. Eng.2019, 172, 118–123. [Google Scholar] [CrossRef]

Chavez, C.E.A.; Stratigaki, V.; Wu, M.; Troch, P.; Schendel, A.; Welzel, M.; Villanueva, R.; Schlurmann, T.; De Vos, L.; Kisacik, D.; et al. Large-Scale Experiments to Improve Monopile Scour Protection Design Adapted to Climate Change—The PROTEUS Project. Energies2019, 12, 1709. [Google Scholar] [CrossRef][Green Version]

Wu, M.; De Vos, L.; Chavez, C.E.A.; Stratigaki, V.; Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Troch, P. Large Scale Experimental Study of the Scour Protection Damage Around a Monopile Foundation Under Combined Wave and Current Conditions. J. Mar. Sci. Eng.2020, 8, 417. [Google Scholar] [CrossRef]

Sørensen, S.P.H.; Ibsen, L.B. Assessment of foundation design for offshore monopiles unprotected against scour. Ocean Eng.2013, 63, 17–25. [Google Scholar] [CrossRef]

Prendergast, L.; Gavin, K.; Doherty, P. An investigation into the effect of scour on the natural frequency of an offshore wind turbine. Ocean Eng.2015, 101, 1–11. [Google Scholar] [CrossRef][Green Version]

Fazeres-Ferradosa, T.; Chambel, J.; Taveira-Pinto, F.; Rosa-Santos, P.; Taveira-Pinto, F.; Giannini, G.; Haerens, P. Scour Protections for Offshore Foundations of Marine Energy Harvesting Technologies: A Review. J. Mar. Sci. Eng.2021, 9, 297. [Google Scholar] [CrossRef]

Yang, Q.; Yu, P.; Liu, Y.; Liu, H.; Zhang, P.; Wang, Q. Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents. Ocean Eng.2020, 202, 106701. [Google Scholar] [CrossRef]

Yu, P.; Hu, R.; Yang, J.; Liu, H. Numerical investigation of local scour around USAF with different hydraulic conditions under currents and waves. Ocean Eng.2020, 213, 107696. [Google Scholar] [CrossRef]

Sumer, B.M.; Christiansen, N.; Fredsøe, J. The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves. J. Fluid Mech.1997, 332, 41–70. [Google Scholar] [CrossRef]

Sumer, B.M.; Fredsøe, J. Scour around Pile in Combined Waves and Current. J. Hydraul. Eng.2001, 127, 403–411. [Google Scholar] [CrossRef]

Petersen, T.U.; Sumer, B.M.; Fredsøe, J. Time scale of scour around a pile in combined waves and current. In Proceedings of the 6th International Conference on Scour and Erosion, Paris, France, 27–31 August 2012. [Google Scholar]

Petersen, T.U.; Sumer, B.M.; Fredsøe, J.; Raaijmakers, T.C.; Schouten, J.-J. Edge scour at scour protections around piles in the marine environment—Laboratory and field investigation. Coast. Eng.2015, 106, 42–72. [Google Scholar] [CrossRef]

Qi, W.; Gao, F. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci. China Ser. E Technol. Sci.2014, 57, 1030–1039. [Google Scholar] [CrossRef][Green Version]

Corvaro, S.; Marini, F.; Mancinelli, A.; Lorenzoni, C.; Brocchini, M. Hydro- and Morpho-dynamics Induced by a Vertical Slender Pile under Regular and Random Waves. J. Waterw. Port. Coast. Ocean Eng.2018, 144, 04018018. [Google Scholar] [CrossRef]

Schendel, A.; Welzel, M.; Schlurmann, T.; Hsu, T.-W. Scour around a monopile induced by directionally spread irregular waves in combination with oblique currents. Coast. Eng.2020, 161, 103751. [Google Scholar] [CrossRef]

Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Romão, X.; Reis, M.; das Neves, L. Reliability assessment of offshore dynamic scour protections using copulas. Wind. Eng.2018, 43, 506–538. [Google Scholar] [CrossRef]

Fazeres-Ferradosa, T.; Welzel, M.; Schendel, A.; Baelus, L.; Santos, P.R.; Pinto, F.T. Extended characterization of damage in rubble mound scour protections. Coast. Eng.2020, 158, 103671. [Google Scholar] [CrossRef]

Ettema, R.; Melville, B.; Barkdoll, B. Scale Effect in Pier-Scour Experiments. J. Hydraul. Eng.1998, 124, 639–642. [Google Scholar] [CrossRef]

Umeda, S. Scour Regime and Scour Depth around a Pile in Waves. J. Coast. Res. Spec. Issue2011, 64, 845–849. [Google Scholar]

Umeda, S. Scour process around monopiles during various phases of sea storms. J. Coast. Res.2013, 165, 1599–1604. [Google Scholar] [CrossRef]

Baykal, C.; Sumer, B.; Fuhrman, D.R.; Jacobsen, N.; Fredsøe, J. Numerical simulation of scour and backfilling processes around a circular pile in waves. Coast. Eng.2017, 122, 87–107. [Google Scholar] [CrossRef][Green Version]

Miles, J.; Martin, T.; Goddard, L. Current and wave effects around windfarm monopile foundations. Coast. Eng.2017, 121, 167–178. [Google Scholar] [CrossRef][Green Version]

Miozzi, M.; Corvaro, S.; Pereira, F.A.; Brocchini, M. Wave-induced morphodynamics and sediment transport around a slender vertical cylinder. Adv. Water Resour.2019, 129, 263–280. [Google Scholar] [CrossRef]

Yu, T.; Zhang, Y.; Zhang, S.; Shi, Z.; Chen, X.; Xu, Y.; Tang, Y. Experimental study on scour around a composite bucket foundation due to waves and current. Ocean Eng.2019, 189, 106302. [Google Scholar] [CrossRef]

Carreiras, J.; Larroudé, P.; Seabra-Santos, F.; Mory, M. Wave Scour Around Piles. In Proceedings of the Coastal Engineering 2000, American Society of Civil Engineers (ASCE), Sydney, Australia, 16–21 July 2000; pp. 1860–1870. [Google Scholar]

Raaijmakers, T.; Rudolph, D. Time-dependent scour development under combined current and waves conditions—Laboratory experiments with online monitoring technique. In Proceedings of the 4th International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008; pp. 152–161. [Google Scholar]

Khalfin, I.S. Modeling and calculation of bed score around large-diameter vertical cylinder under wave action. Water Resour.2007, 34, 357. [Google Scholar] [CrossRef][Green Version]

Zanke, U.C.; Hsu, T.-W.; Roland, A.; Link, O.; Diab, R. Equilibrium scour depths around piles in noncohesive sediments under currents and waves. Coast. Eng.2011, 58, 986–991. [Google Scholar] [CrossRef]

Myrhaug, D.; Rue, H. Scour below pipelines and around vertical piles in random waves. Coast. Eng.2003, 48, 227–242. [Google Scholar] [CrossRef]

Myrhaug, D.; Ong, M.C.; Føien, H.; Gjengedal, C.; Leira, B.J. Scour below pipelines and around vertical piles due to second-order random waves plus a current. Ocean Eng.2009, 36, 605–616. [Google Scholar] [CrossRef]

Myrhaug, D.; Ong, M.C. Random wave-induced onshore scour characteristics around submerged breakwaters using a stochastic method. Ocean Eng.2010, 37, 1233–1238. [Google Scholar] [CrossRef]

Ong, M.C.; Myrhaug, D.; Hesten, P. Scour around vertical piles due to long-crested and short-crested nonlinear random waves plus a current. Coast. Eng.2013, 73, 106–114. [Google Scholar] [CrossRef]

Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput.1986, 1, 3–51. [Google Scholar] [CrossRef]

Yakhot, V.; Smith, L.M. The renormalization group, the e-expansion and derivation of turbulence models. J. Sci. Comput.1992, 7, 35–61. [Google Scholar] [CrossRef]

Mastbergen, D.R.; Berg, J.V.D. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology2003, 50, 625–637. [Google Scholar] [CrossRef]

Soulsby, R. Dynamics of Marine Sands; Thomas Telford Ltd.: London, UK, 1998. [Google Scholar] [CrossRef]

Van Rijn, L.C. Sediment Transport, Part I: Bed Load Transport. J. Hydraul. Eng.1984, 110, 1431–1456. [Google Scholar] [CrossRef][Green Version]

Zhang, Q.; Zhou, X.-L.; Wang, J.-H. Numerical investigation of local scour around three adjacent piles with different arrangements under current. Ocean Eng.2017, 142, 625–638. [Google Scholar] [CrossRef]

Yu, Y.X.; Liu, S.X. Random Wave and Its Applications to Engineering, 4th ed.; Dalian University of Technology Press: Dalian, China, 2011. [Google Scholar]

Pang, A.; Skote, M.; Lim, S.; Gullman-Strand, J.; Morgan, N. A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents. Appl. Ocean Res.2016, 57, 114–124. [Google Scholar] [CrossRef]

Higuera, P.; Lara, J.L.; Losada, I.J. Three-dimensional interaction of waves and porous coastal structures using Open-FOAM®. Part I: Formulation and validation. Coast. Eng.2014, 83, 243–258. [Google Scholar] [CrossRef]

Corvaro, S.; Crivellini, A.; Marini, F.; Cimarelli, A.; Capitanelli, L.; Mancinelli, A. Experimental and Numerical Analysis of the Hydrodynamics around a Vertical Cylinder in Waves. J. Mar. Sci. Eng.2019, 7, 453. [Google Scholar] [CrossRef][Green Version]

Flow3D User Manual, version 11.0.3; Flow Science, Inc.: Santa Fe, NM, USA, 2013.

Khosronejad, A.; Kang, S.; Sotiropoulos, F. Experimental and computational investigation of local scour around bridge piers. Adv. Water Resour.2012, 37, 73–85. [Google Scholar] [CrossRef]

Stahlmann, A. Experimental and Numerical Modeling of Scour at Foundation Structures for Offshore Wind Turbines. Ph.D. Thesis, Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz Universität Hannover, Hannover, Germany, 2013. [Google Scholar]

Breusers, H.N.C.; Nicollet, G.; Shen, H. Local Scour Around Cylindrical Piers. J. Hydraul. Res.1977, 15, 211–252. [Google Scholar] [CrossRef]

Schendel, A.; Hildebrandt, A.; Goseberg, N.; Schlurmann, T. Processes and evolution of scour around a monopile induced by tidal currents. Coast. Eng.2018, 139, 65–84. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hu, R.; Liu, H.; Leng, H.; Yu, P.; Wang, X. Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves. J. Mar. Sci. Eng.2021, 9, 886. https://doi.org/10.3390/jmse9080886

AMA Style

Hu R, Liu H, Leng H, Yu P, Wang X. Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves. Journal of Marine Science and Engineering. 2021; 9(8):886. https://doi.org/10.3390/jmse9080886Chicago/Turabian Style

Hu, Ruigeng, Hongjun Liu, Hao Leng, Peng Yu, and Xiuhai Wang. 2021. “Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves” Journal of Marine Science and Engineering 9, no. 8: 886. https://doi.org/10.3390/jmse9080886

Find Other Styles

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

For more information on the journal statistics, click here.

Multiple requests from the same IP address are counted as one view.

이 논문은 비대칭 인보드, 비대칭 아웃보드 및 다양한 스태거/분리 위치에서의 대칭을 포함하는 세 가지 대안적인 측면 선체 형태를 가진 웨이브 피어싱 3동선의 저항 성능에 대한 실험적 조사 결과를 제시했습니다.

모델 테스트는 0.225에서 0.60까지의 Froude 수에서 삼동선 축소 모형을 사용하여 National Iranian Marine Laboratory(NIMALA) 예인 탱크에서 수행되었습니다.

결과는 측면 선체를 주 선체 트랜섬의 앞쪽으로 이동함으로써 삼동선의 총 저항 계수가 감소하는 것으로 나타났습니다.

또한 조사 결과, 측면 선체의 대칭 형태가 3개의 측면 선체 형태 중 전체 저항에 대한 성능이 가장 우수한 것으로 나타났습니다. 본 연구의 결과는 저항 관점에서 측면 선체 구성을 선택하는 데 유용합니다.

Keywords

Resistance performance

Wave-piercing trimaran

Seakeeping characteristics

Side hull symmetry

Model test

Experimental study

References

Ackers BB, Thad JM, Tredennick OW, Landen CH, Miller EJ, Sodowsky JP, Hadler JB (1997) An investigation of the resistance characteristics of powered trimaran side-hull configurations. SNAME Transactions 105:349–373Google Scholar

ASME (2005) Test uncertainty, The American society of mechanical engineers performance test code, American Society of Mechanical Engineers, No. PTC 19. 1–2005, New York

Chen Y, Yang L, Xie Y, Yu S (2016) The research on characteristic parameters and resistance chart of operation and maintenance trimaran in the sea. Polish Maritime Research 23(s1):20–24. https://doi.org/10.1515/pomr-2016-0041ArticleGoogle Scholar

Claire M, Andrea M (2014) Resistance analysis for a trimaran. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering 8(1):7–15Google Scholar

Doctors L, Scrace R (2003) The optimization of trimaran side hull position for minimum resistance. Seventh International Conference on Fast Transportation (FAST 2003), Ischia, Italy, 1–12

Ghadimi P, Nazemian A, Ghadimi A (2019) Numerical scrutiny of the influence of side hulls arrangement on the motion of a Trimaran vessel in regular waves through CFD analysis. Journal of the Brazilian Society of Mechanical Sciences and Engineering 41(1):1–10. https://doi.org/10.1007/s40430-018-1505-xArticleGoogle Scholar

Hafez K, El-Kot A-R (2011) Comparative analysis of the separation variation influence on the hydrodynamic performance of a high speed trimaran. Journal of Marine Science and Application 10(4):377–393. https://doi.org/10.1007/s11804-011-1083-0ArticleGoogle Scholar

Hafez KA, El-Kot AA (2012) Comparative investigation of the stagger variation influence on the hydrodynamic interference of high speed trimaran. Alexandria Engineering Journal 51(3):153–169. https://doi.org/10.1016/j.aej.2012.02.002ArticleGoogle Scholar

Hashimoto H, Amano S, Umeda N, Matsuda A (2011) Influence of side-hull positions on dynamic behaviors of a trimaran running in following and stern quartering seas. Proceedings of the 21th International Conference on Offshore and Polar Engineering, 573–580

ITTC (2014) Testing and extrapolation methods in resistance towing tank tests, Recommended Procedures, 7.5–02–02–01

Iqbal M, Utama IKAP (2014) An investigation into the effect of water depth on the resistance components of trimaran configuration. Proceedings of the 9th International Conference on Marine Technology, Surabaya

Lewis EV (1988) Principles of Naval Architecture. The Society of Naval Architects and Marine Engineers III: 323–324

Luhulima RB, Utama I, Sulisetyono A (2016) Experimental investigation into the resistance components of displacement trimaran at various lateral spacing. International Journal of Engineering Research & Science (IJOER) 2:21–29Google Scholar

Luhulima RB (2017) An Investigation into the resistance of displacement trimaran: a comparative analysis between experimental and CFD approaches. International Journal of Mechanical Engineering (IJME) 6:9–18Google Scholar

Molland AF, Turnock SR, Hudson DA (2011) Ship resistance and propulsion: practical estimation of ship propulsive power. Cambridge University Press, 544.

Verna S, Khan K, Praveen PC (2012) Trimaran hull form optimization, using ship flow. International Journal of Innovative Research and Development 1(10):5–15

Yanuar Y, Gunawan G, Talahatu MA, Indrawati RT, Jamaluddin A (2013) Resistance analysis of unsymmetrical trimaran model with outboard side hulls configuration. Journal of Marine Science and Application 12(3):293–297ArticleGoogle Scholar

Yanuar Y, Gunawan G, Talahatu MA, Indrawati RT, Jamaluddin A (2015a) Resistance reduction on trimaran ship model by biopolymer of eel slime. Journal of Naval Architecture and Marine Engineering 12(2):95–102. https://doi.org/10.3329/jname.v12i2.19549ArticleGoogle Scholar

Yanuar Y, Gunawan G, Waskito KT, Jamaluddin A (2015b) Experimental study resistances of asymmetrical Pentamaran model with separation and staggered hull variation of inner side-hulls. International Journal of Fluid Mechanics Research 42(1):82–94. https://doi.org/10.1615/interjfluidmechres.v42.i1.60ArticleGoogle Scholar

Zhang L, Zhang JN, Shang YC (2019) A potential flow theory and boundary layer theory based hybrid method for waterjet propulsion. Journal of Marine Science and Engineering 7(4):113–132. https://doi.org/10.3390/jmse7040113ArticleGoogle Scholar

Mahdi Feizbahr,^{1}Navid Tonekaboni,^{2}Guang-Jun Jiang,^{3,4}and Hong-Xia Chen^{3,4} Academic Editor: Mohammad Yazdi

Abstract

강을 따라 식생은 조도를 증가시키고 평균 유속을 감소시키며, 유동 에너지를 감소시키고 강 횡단면의 유속 프로파일을 변경합니다. 자연의 많은 운하와 강은 홍수 동안 초목으로 덮여 있습니다. 운하의 조도는 식물의 영향을 많이 받기 때문에 홍수시 유동저항에 큰 영향을 미친다. 식물로 인한 흐름에 대한 거칠기 저항은 흐름 조건과 식물에 따라 달라지므로 모델은 유속, 유속 깊이 및 수로를 따라 식생 유형의 영향을 고려하여 유속을 시뮬레이션해야 합니다. 총 48개의 모델을 시뮬레이션하여 근관의 거칠기 효과를 조사했습니다. 결과는 속도를 높임으로써 베드 속도를 감소시키는 식생의 영향이 무시할만하다는 것을 나타냅니다.

Abstract

Vegetation along the river increases the roughness and reduces the average flow velocity, reduces flow energy, and changes the flow velocity profile in the cross section of the river. Many canals and rivers in nature are covered with vegetation during the floods. Canal’s roughness is strongly affected by plants and therefore it has a great effect on flow resistance during flood. Roughness resistance against the flow due to the plants depends on the flow conditions and plant, so the model should simulate the current velocity by considering the effects of velocity, depth of flow, and type of vegetation along the canal. Total of 48 models have been simulated to investigate the effect of roughness in the canal. The results indicated that, by enhancing the velocity, the effect of vegetation in decreasing the bed velocity is negligible, while when the current has lower speed, the effect of vegetation on decreasing the bed velocity is obviously considerable.

1. Introduction

Considering the impact of each variable is a very popular field within the analytical and statistical methods and intelligent systems [1–14]. This can help research for better modeling considering the relation of variables or interaction of them toward reaching a better condition for the objective function in control and engineering [15–27]. Consequently, it is necessary to study the effects of the passive factors on the active domain [28–36]. Because of the effect of vegetation on reducing the discharge capacity of rivers [37], pruning plants was necessary to improve the condition of rivers. One of the important effects of vegetation in river protection is the action of roots, which cause soil consolidation and soil structure improvement and, by enhancing the shear strength of soil, increase the resistance of canal walls against the erosive force of water. The outer limbs of the plant increase the roughness of the canal walls and reduce the flow velocity and deplete the flow energy in vicinity of the walls. Vegetation by reducing the shear stress of the canal bed reduces flood discharge and sedimentation in the intervals between vegetation and increases the stability of the walls [38–41].

One of the main factors influencing the speed, depth, and extent of flood in this method is Manning’s roughness coefficient. On the other hand, soil cover [42], especially vegetation, is one of the most determining factors in Manning’s roughness coefficient. Therefore, it is expected that those seasonal changes in the vegetation of the region will play an important role in the calculated value of Manning’s roughness coefficient and ultimately in predicting the flood wave behavior [43–45]. The roughness caused by plants’ resistance to flood current depends on the flow and plant conditions. Flow conditions include depth and velocity of the plant, and plant conditions include plant type, hardness or flexibility, dimensions, density, and shape of the plant [46]. In general, the issue discussed in this research is the optimization of flood-induced flow in canals by considering the effect of vegetation-induced roughness. Therefore, the effect of plants on the roughness coefficient and canal transmission coefficient and in consequence the flow depth should be evaluated [47, 48].

Current resistance is generally known by its roughness coefficient. The equation that is mainly used in this field is Manning equation. The ratio of shear velocity to average current velocity is another form of current resistance. The reason for using the ratio is that it is dimensionless and has a strong theoretical basis. The reason for using Manning roughness coefficient is its pervasiveness. According to Freeman et al. [49], the Manning roughness coefficient for plants was calculated according to the Kouwen and Unny [50] method for incremental resistance. This method involves increasing the roughness for various surface and plant irregularities. Manning’s roughness coefficient has all the factors affecting the resistance of the canal. Therefore, the appropriate way to more accurately estimate this coefficient is to know the factors affecting this coefficient [51].

To calculate the flow rate, velocity, and depth of flow in canals as well as flood and sediment estimation, it is important to evaluate the flow resistance. To determine the flow resistance in open ducts, Manning, Chézy, and Darcy–Weisbach relations are used [52]. In these relations, there are parameters such as Manning’s roughness coefficient (n), Chézy roughness coefficient (C), and Darcy–Weisbach coefficient (f). All three of these coefficients are a kind of flow resistance coefficient that is widely used in the equations governing flow in rivers [53].

The three relations that express the relationship between the average flow velocity (V) and the resistance and geometric and hydraulic coefficients of the canal are as follows:where n, f, and c are Manning, Darcy–Weisbach, and Chézy coefficients, respectively. V = average flow velocity, R = hydraulic radius, S_{f} = slope of energy line, which in uniform flow is equal to the slope of the canal bed, = gravitational acceleration, and K_{n} is a coefficient whose value is equal to 1 in the SI system and 1.486 in the English system. The coefficients of resistance in equations (1) to (3) are related as follows:

Based on the boundary layer theory, the flow resistance for rough substrates is determined from the following general relation:where f = Darcy–Weisbach coefficient of friction, y = flow depth, K_{s} = bed roughness size, and A = constant coefficient.

On the other hand, the relationship between the Darcy–Weisbach coefficient of friction and the shear velocity of the flow is as follows:

By using equation (6), equation (5) is converted as follows:

Investigation on the effect of vegetation arrangement on shear velocity of flow in laboratory conditions showed that, with increasing the shear Reynolds number (), the numerical value of the ratio also increases; in other words the amount of roughness coefficient increases with a slight difference in the cases without vegetation, checkered arrangement, and cross arrangement, respectively [54].

Roughness in river vegetation is simulated in mathematical models with a variable floor slope flume by different densities and discharges. The vegetation considered submerged in the bed of the flume. Results showed that, with increasing vegetation density, canal roughness and flow shear speed increase and with increasing flow rate and depth, Manning’s roughness coefficient decreases. Factors affecting the roughness caused by vegetation include the effect of plant density and arrangement on flow resistance, the effect of flow velocity on flow resistance, and the effect of depth [45, 55].

One of the works that has been done on the effect of vegetation on the roughness coefficient is Darby [56] study, which investigates a flood wave model that considers all the effects of vegetation on the roughness coefficient. There are currently two methods for estimating vegetation roughness. One method is to add the thrust force effect to Manning’s equation [47, 57, 58] and the other method is to increase the canal bed roughness (Manning-Strickler coefficient) [45, 59–61]. These two methods provide acceptable results in models designed to simulate floodplain flow. Wang et al. [62] simulate the floodplain with submerged vegetation using these two methods and to increase the accuracy of the results, they suggested using the effective height of the plant under running water instead of using the actual height of the plant. Freeman et al. [49] provided equations for determining the coefficient of vegetation roughness under different conditions. Lee et al. [63] proposed a method for calculating the Manning coefficient using the flow velocity ratio at different depths. Much research has been done on the Manning roughness coefficient in rivers, and researchers [49, 63–66] sought to obtain a specific number for n to use in river engineering. However, since the depth and geometric conditions of rivers are completely variable in different places, the values of Manning roughness coefficient have changed subsequently, and it has not been possible to choose a fixed number. In river engineering software, the Manning roughness coefficient is determined only for specific and constant conditions or normal flow. Lee et al. [63] stated that seasonal conditions, density, and type of vegetation should also be considered. Hydraulic roughness and Manning roughness coefficient n of the plant were obtained by estimating the total Manning roughness coefficient from the matching of the measured water surface curve and water surface height. The following equation is used for the flow surface curve:where is the depth of water change, S_{0} is the slope of the canal floor, Sf is the slope of the energy line, and Fr is the Froude number which is obtained from the following equation:where D is the characteristic length of the canal. Flood flow velocity is one of the important parameters of flood waves, which is very important in calculating the water level profile and energy consumption. In the cases where there are many limitations for researchers due to the wide range of experimental dimensions and the variety of design parameters, the use of numerical methods that are able to estimate the rest of the unknown results with acceptable accuracy is economically justified.

FLOW-3D software uses Finite Difference Method (FDM) for numerical solution of two-dimensional and three-dimensional flow. This software is dedicated to computational fluid dynamics (CFD) and is provided by Flow Science [67]. The flow is divided into networks with tubular cells. For each cell there are values of dependent variables and all variables are calculated in the center of the cell, except for the velocity, which is calculated at the center of the cell. In this software, two numerical techniques have been used for geometric simulation, FAVOR™ (Fractional-Area-Volume-Obstacle-Representation) and the VOF (Volume-of-Fluid) method. The equations used at this model for this research include the principle of mass survival and the magnitude of motion as follows. The fluid motion equations in three dimensions, including the Navier–Stokes equations with some additional terms, are as follows:where are mass accelerations in the directions x, y, z and are viscosity accelerations in the directions x, y, z and are obtained from the following equations:

Shear stresses in equation (11) are obtained from the following equations:

The standard model is used for high Reynolds currents, but in this model, RNG theory allows the analytical differential formula to be used for the effective viscosity that occurs at low Reynolds numbers. Therefore, the RNG model can be used for low and high Reynolds currents.

Weather changes are high and this affects many factors continuously. The presence of vegetation in any area reduces the velocity of surface flows and prevents soil erosion, so vegetation will have a significant impact on reducing destructive floods. One of the methods of erosion protection in floodplain watersheds is the use of biological methods. The presence of vegetation in watersheds reduces the flow rate during floods and prevents soil erosion. The external organs of plants increase the roughness and decrease the velocity of water flow and thus reduce its shear stress energy. One of the important factors with which the hydraulic resistance of plants is expressed is the roughness coefficient. Measuring the roughness coefficient of plants and investigating their effect on reducing velocity and shear stress of flow is of special importance.

Roughness coefficients in canals are affected by two main factors, namely, flow conditions and vegetation characteristics [68]. So far, much research has been done on the effect of the roughness factor created by vegetation, but the issue of plant density has received less attention. For this purpose, this study was conducted to investigate the effect of vegetation density on flow velocity changes.

In a study conducted using a software model on three density modes in the submerged state effect on flow velocity changes in 48 different modes was investigated (Table 1).

Table 1

The studied models.

The number of cells used in this simulation is equal to 1955888 cells. The boundary conditions were introduced to the model as a constant speed and depth (Figure 1). At the output boundary, due to the presence of supercritical current, no parameter for the current is considered. Absolute roughness for floors and walls was introduced to the model (Figure 1). In this case, the flow was assumed to be nonviscous and air entry into the flow was not considered. After seconds, this model reached a convergence accuracy of .

Figure 1

The simulated model and its boundary conditions.

Due to the fact that it is not possible to model the vegetation in FLOW-3D software, in this research, the vegetation of small soft plants was studied so that Manning’s coefficients can be entered into the canal bed in the form of roughness coefficients obtained from the studies of Chow [69] in similar conditions. In practice, in such modeling, the effect of plant height is eliminated due to the small height of herbaceous plants, and modeling can provide relatively acceptable results in these conditions.

48 models with input velocities proportional to the height of the regular semihexagonal canal were considered to create supercritical conditions. Manning coefficients were applied based on Chow [69] studies in order to control the canal bed. Speed profiles were drawn and discussed.

Any control and simulation system has some inputs that we should determine to test any technology [70–77]. Determination and true implementation of such parameters is one of the key steps of any simulation [23, 78–81] and computing procedure [82–86]. The input current is created by applying the flow rate through the VFR (Volume Flow Rate) option and the output flow is considered Output and for other borders the Symmetry option is considered.

Simulation of the models and checking their action and responses and observing how a process behaves is one of the accepted methods in engineering and science [87, 88]. For verification of FLOW-3D software, the results of computer simulations are compared with laboratory measurements and according to the values of computational error, convergence error, and the time required for convergence, the most appropriate option for real-time simulation is selected (Figures 2 and 3 ).

Figure 2

Modeling the plant with cylindrical tubes at the bottom of the canal.

Figure 3

Velocity profiles in positions 2 and 5.

The canal is 7 meters long, 0.5 meters wide, and 0.8 meters deep. This test was used to validate the application of the software to predict the flow rate parameters. In this experiment, instead of using the plant, cylindrical pipes were used in the bottom of the canal.

The conditions of this modeling are similar to the laboratory conditions and the boundary conditions used in the laboratory were used for numerical modeling. The critical flow enters the simulation model from the upstream boundary, so in the upstream boundary conditions, critical velocity and depth are considered. The flow at the downstream boundary is supercritical, so no parameters are applied to the downstream boundary.

The software well predicts the process of changing the speed profile in the open canal along with the considered obstacles. The error in the calculated speed values can be due to the complexity of the flow and the interaction of the turbulence caused by the roughness of the floor with the turbulence caused by the three-dimensional cycles in the hydraulic jump. As a result, the software is able to predict the speed distribution in open canals.

2. Modeling Results

After analyzing the models, the results were shown in graphs (Figures 4–14 ). The total number of experiments in this study was 48 due to the limitations of modeling.

Flow velocity profiles for canals with a depth of 1 m and flow velocities of 3–3.3 m/s. Canal with a depth of 1 meter and a flow velocity of (a) 3 meters per second, (b) 3.1 meters per second, (c) 3.2 meters per second, and (d) 3.3 meters per second.

Figure 5

Canal diagram with a depth of 1 meter and a flow rate of 3 meters per second.

Figure 6

Canal diagram with a depth of 1 meter and a flow rate of 3.1 meters per second.

Figure 7

Canal diagram with a depth of 1 meter and a flow rate of 3.2 meters per second.

Figure 8

Canal diagram with a depth of 1 meter and a flow rate of 3.3 meters per second.

Flow velocity profiles for canals with a depth of 2 m and flow velocities of 4–4.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

Figure 10

Canal diagram with a depth of 2 meters and a flow rate of 4 meters per second.

Figure 11

Canal diagram with a depth of 2 meters and a flow rate of 4.1 meters per second.

Figure 12

Canal diagram with a depth of 2 meters and a flow rate of 4.2 meters per second.

Figure 13

Canal diagram with a depth of 2 meters and a flow rate of 4.3 meters per second.

Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

To investigate the effects of roughness with flow velocity, the trend of flow velocity changes at different depths and with supercritical flow to a Froude number proportional to the depth of the section has been obtained.

According to the velocity profiles of Figure 5, it can be seen that, with the increasing of Manning’s coefficient, the canal bed speed decreases.

According to Figures 5 to 8, it can be found that, with increasing the Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the models 1 to 12, which can be justified by increasing the speed and of course increasing the Froude number.

According to Figure 10, we see that, with increasing Manning’s coefficient, the canal bed speed decreases.

According to Figure 11, we see that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5–10, which can be justified by increasing the speed and, of course, increasing the Froude number.

With increasing Manning’s coefficient, the canal bed speed decreases (Figure 12). But this deceleration is more noticeable than the deceleration of the higher models (Figures 5–8 and 10, 11), which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 13, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5 to 12, which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 15, with increasing Manning’s coefficient, the canal bed speed decreases.

Figure 15

Canal diagram with a depth of 3 meters and a flow rate of 5 meters per second.

According to Figure 16, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher model, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 16

Canal diagram with a depth of 3 meters and a flow rate of 5.1 meters per second.

According to Figure 17, it is clear that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 17

Canal diagram with a depth of 3 meters and a flow rate of 5.2 meters per second.

According to Figure 18, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 18

Canal diagram with a depth of 3 meters and a flow rate of 5.3 meters per second.

According to Figure 19, it can be seen that the vegetation placed in front of the flow input velocity has negligible effect on the reduction of velocity, which of course can be justified due to the flexibility of the vegetation. The only unusual thing is the unexpected decrease in floor speed of 3 m/s compared to higher speeds.

Comparison of velocity profiles with the same plant densities (depth 1 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 1 m; (b) plant densities of 50%, depth 1 m; and (c) plant densities of 75%, depth 1 m.

According to Figure 20, by increasing the speed of vegetation, the effect of vegetation on reducing the flow rate becomes more noticeable. And the role of input current does not have much effect in reducing speed.

Comparison of velocity profiles with the same plant densities (depth 2 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 2 m; (b) plant densities of 50%, depth 2 m; and (c) plant densities of 75%, depth 2 m.

According to Figure 21, it can be seen that, with increasing speed, the effect of vegetation on reducing the bed flow rate becomes more noticeable and the role of the input current does not have much effect. In general, it can be seen that, by increasing the speed of the input current, the slope of the profiles increases from the bed to the water surface and due to the fact that, in software, the roughness coefficient applies to the channel floor only in the boundary conditions, this can be perfectly justified. Of course, it can be noted that, due to the flexible conditions of the vegetation of the bed, this modeling can show acceptable results for such grasses in the canal floor. In the next directions, we may try application of swarm-based optimization methods for modeling and finding the most effective factors in this research [2, 7, 8, 15, 18, 89–94]. In future, we can also apply the simulation logic and software of this research for other domains such as power engineering [95–99].

Comparison of velocity profiles with the same plant densities (depth 3 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 3 m; (b) plant densities of 50%, depth 3 m; and (c) plant densities of 75%, depth 3 m.

3. Conclusion

The effects of vegetation on the flood canal were investigated by numerical modeling with FLOW-3D software. After analyzing the results, the following conclusions were reached:(i)Increasing the density of vegetation reduces the velocity of the canal floor but has no effect on the velocity of the canal surface.(ii)Increasing the Froude number is directly related to increasing the speed of the canal floor.(iii)In the canal with a depth of one meter, a sudden increase in speed can be observed from the lowest speed and higher speed, which is justified by the sudden increase in Froude number.(iv)As the inlet flow rate increases, the slope of the profiles from the bed to the water surface increases.(v)By reducing the Froude number, the effect of vegetation on reducing the flow bed rate becomes more noticeable. And the input velocity in reducing the velocity of the canal floor does not have much effect.(vi)At a flow rate between 3 and 3.3 meters per second due to the shallow depth of the canal and the higher landing number a more critical area is observed in which the flow bed velocity in this area is between 2.86 and 3.1 m/s.(vii)Due to the critical flow velocity and the slight effect of the roughness of the horseshoe vortex floor, it is not visible and is only partially observed in models 1-2-3 and 21.(viii)As the flow rate increases, the effect of vegetation on the rate of bed reduction decreases.(ix)In conditions where less current intensity is passing, vegetation has a greater effect on reducing current intensity and energy consumption increases.(x)In the case of using the flow rate of 0.8 cubic meters per second, the velocity distribution and flow regime show about 20% more energy consumption than in the case of using the flow rate of 1.3 cubic meters per second.

Nomenclature

n:

Manning’s roughness coefficient

C:

Chézy roughness coefficient

f:

Darcy–Weisbach coefficient

V:

Flow velocity

R:

Hydraulic radius

g:

Gravitational acceleration

y:

Flow depth

Ks:

Bed roughness

A:

Constant coefficient

:

Reynolds number

∂y/∂x:

Depth of water change

S_{0}:

Slope of the canal floor

Sf:

Slope of energy line

Fr:

Froude number

D:

Characteristic length of the canal

G:

Mass acceleration

:

Shear stresses.

Data Availability

All data are included within the paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

H. Yu, L. Jie, W. Gui et al., “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 20, pp. 1–29, 2020.View at: Publisher Site | Google Scholar

X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar

J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, Article ID 106684, 2021.View at: Publisher Site | Google Scholar

C. Yu, M. Chen, K. Chen et al., “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 4, pp. 1–28, 2021.View at: Publisher Site | Google Scholar

W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 8, Article ID 106728, 2020.View at: Google Scholar

J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, Article ID 106642, 2021.View at: Publisher Site | Google Scholar

Y. Zhang, R. Liu, X. Wang et al., “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 430, 2020.View at: Google Scholar

H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar

J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar

C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar

X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar

M. Wang, H. Chen, B. Yang et al., “Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses,” Neurocomputing, vol. 267, pp. 69–84, 2017.View at: Publisher Site | Google Scholar

L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging satellite and gauge precipitation,” Journal of Hydrology, vol. 558, pp. 275–289, 2018.View at: Publisher Site | Google Scholar

F. J. Golrokh, G. Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, 2020.View at: Google Scholar

D. Zhao, L. Lei, F. Yu et al., “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 8, Article ID 106510, 2020.View at: Google Scholar

Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 517, pp. 1–30, 2020.View at: Publisher Site | Google Scholar

L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar

L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar

X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar

Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.View at: Publisher Site | Google Scholar

M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, Article ID 105946, 2020.View at: Publisher Site | Google Scholar

Y. Chen, J. Li, H. Lu, and P. Yan, “Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains,” Journal of Cleaner Production, vol. 278, Article ID 123209, 2020.View at: Google Scholar

H. Tang, Y. Xu, A. Lin et al., “Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers,” IEEE Access, vol. 8, pp. 35546–35562, 2020.View at: Publisher Site | Google Scholar

H.-J. Ma and G.-H. Yang, “Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3240–3255, 2015.View at: Google Scholar

H.-J. Ma and L.-X. Xu, “Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory,” IEEE Transactions on Automatic Control, vol. 66, 2020.View at: Google Scholar

H. J. Ma, L. X. Xu, and G. H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Cybernetics, vol. 51, pp. 1–16, 2019.View at: Publisher Site | Google Scholar

J. Hu, M. Wang, C. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,” Science China Technological Sciences, vol. 63, no. 1, pp. 65–72, 2020.View at: Publisher Site | Google Scholar

C. Zhang, H. Li, Y. Qian, C. Chen, and X. Zhou, “Locality-constrained discriminative matrix regression for robust face identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–15, 2020.View at: Publisher Site | Google Scholar

X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar

X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, 2020.View at: Google Scholar

X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 03, p. 1, 2020.View at: Publisher Site | Google Scholar

X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 197-198, Article ID 103003, 2020.View at: Publisher Site | Google Scholar

X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, p. 1, 2020.View at: Publisher Site | Google Scholar

L. He, J. Shen, and Y. Zhang, “Ecological vulnerability assessment for ecological conservation and environmental management,” Journal of Environmental Management, vol. 206, pp. 1115–1125, 2018.View at: Publisher Site | Google Scholar

Y. Chen, W. Zheng, W. Li, and Y. Huang, “Large group Activity security risk assessment and risk early warning based on random forest algorithm,” Pattern Recognition Letters, vol. 144, pp. 1–5, 2021.View at: Publisher Site | Google Scholar

J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, and Q. Pan, “Object traversing by monocular UAV in outdoor environment,” Asian Journal of Control, vol. 25, 2020.View at: Google Scholar

P. Tian, H. Lu, W. Feng, Y. Guan, and Y. Xue, “Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin,” Catena, vol. 187, Article ID 104340, 2020.View at: Publisher Site | Google Scholar

A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud, and R. C. Sidle, “Desirable plant root traits for protecting natural and engineered slopes against landslides,” Plant and Soil, vol. 324, no. 1, pp. 1–30, 2009.View at: Publisher Site | Google Scholar

T. B. Devi, A. Sharma, and B. Kumar, “Studies on emergent flow over vegetative channel bed with downward seepage,” Hydrological Sciences Journal, vol. 62, no. 3, pp. 408–420, 2017.View at: Google Scholar

G. Ireland, M. Volpi, and G. Petropoulos, “Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood,” Remote Sensing, vol. 7, no. 3, pp. 3372–3399, 2015.View at: Publisher Site | Google Scholar

L. Goodarzi and S. Javadi, “Assessment of aquifer vulnerability using the DRASTIC model; a case study of the Dezful-Andimeshk Aquifer,” Computational Research Progress in Applied Science & Engineering, vol. 2, no. 1, pp. 17–22, 2016.View at: Google Scholar

K. Zhang, Q. Wang, L. Chao et al., “Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China,” Journal of Hydrology, vol. 574, pp. 903–914, 2019.View at: Publisher Site | Google Scholar

L. De Doncker, P. Troch, R. Verhoeven, K. Bal, P. Meire, and J. Quintelier, “Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river,” Environmental Fluid Mechanics, vol. 9, no. 5, pp. 549–567, 2009.View at: Publisher Site | Google Scholar

M. Fathi-Moghadam and K. Drikvandi, “Manning roughness coefficient for rivers and flood plains with non-submerged vegetation,” International Journal of Hydraulic Engineering, vol. 1, no. 1, pp. 1–4, 2012.View at: Google Scholar

F.-C. Wu, H. W. Shen, and Y.-J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, vol. 125, no. 9, pp. 934–942, 1999.View at: Publisher Site | Google Scholar

M. K. Wood, “Rangeland vegetation-hydrologic interactions,” in Vegetation Science Applications for Rangeland Analysis and Management, vol. 3, pp. 469–491, Springer, 1988.View at: Publisher Site | Google Scholar

C. Wilson, O. Yagci, H.-P. Rauch, and N. Olsen, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, vol. 327, no. 1-2, pp. 13–21, 2006.View at: Publisher Site | Google Scholar

R. Yazarloo, M. Khamehchian, and M. R. Nikoodel, “Observational-computational 3d engineering geological model and geotechnical characteristics of young sediments of golestan province,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar

G. E. Freeman, W. H. Rahmeyer, and R. R. Copeland, “Determination of resistance due to shrubs and woody vegetation,” International Journal of River Basin Management, vol. 19, 2000.View at: Google Scholar

N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” Journal of the Hydraulics Division, vol. 99, no. 5, pp. 713–728, 1973.View at: Publisher Site | Google Scholar

S. Hosseini and J. Abrishami, Open Channel Hydraulics, Elsevier, Amsterdam, Netherlands, 2007.

C. S. James, A. L. Birkhead, A. A. Jordanova, and J. J. O’Sullivan, “Flow resistance of emergent vegetation,” Journal of Hydraulic Research, vol. 42, no. 4, pp. 390–398, 2004.View at: Publisher Site |