CFD Simulation of an exhaust system in chainsaw cutting test room
Área de Concentração: Energia e Fenômenos de Transporte Orientador: Prof. Diogo Elias da Vinha Andrade Comissão de Avaliação: Profa . Letícia Jenisch Rodrigues Prof. Francis Henrique Ramos França Prof. Paulo Smith Schneider
Abstract
The objective of the present work is to improve an exhaust system for a chain saw cutting test room through a fluid dynamic computational simulation (CFD). The purpose of the designed system is to remove combustion gases, such as carbon monoxide (CO), which is extremely toxic, colourless and inodorous. The current system consists of a set of exhaust fans, a hood and an insufflation set. From experimental tests, the input data of the simulation were collected to define the variables and boundary conditions such as volumetric flow of CO, its temperature and density and the supply of fresh air in the room. The necessary means of instrumentation are presented so that it is possible to obtain the correlation with the results of the simulation and, once validated, a study of mesh refinement was carried out. With this, the possible solutions to the problem are evaluated through a case study involving the geometry of the hood and the exhaust and insufflation systems. By changing the hood geometry, the most satisfactory result was obtained for the problem, as it was shown to be able to remove all CO from the room, respecting the proposed operational limits.
현재 연구의 목적은 유체 역학 계산 시뮬레이션(CFD)을 통해 체인 톱 절단 시험실의 배기 시스템을 개선하는 것입니다. 설계된 시스템의 목적은 매우 유독하고 무색이며 냄새가 나는 일산화탄소(CO)와 같은 연소 가스를 제거하는 것입니다. 현재 시스템은 배기 팬 세트, 후드 및 흡입 세트로 구성됩니다. 실험 테스트에서 시뮬레이션의 입력 데이터는 CO의 체적 유량, 온도 및 밀도, 실내의 신선한 공기 공급과 같은 변수 및 경계 조건을 정의하기 위해 수집되었습니다. 시뮬레이션 결과와의 상관관계를 얻을 수 있도록 필요한 계측 수단을 제시하고 검증 후 메쉬 미세화 연구를 수행했습니다. 이를 통해 후드의 기하학적 구조와 배기 및 흡입 시스템과 관련된 사례 연구를 통해 문제에 대한 가능한 솔루션을 평가합니다. 후드 형상을 변경함으로써 제안된 작동 한계를 준수하면서 실내에서 모든 CO를 제거할 수 있는 것으로 나타났기 때문에 문제에 대해 가장 만족스러운 결과를 얻었습니다.
Keywords
carbon monoxide, exhaust system, CFD simulation.
Figura 3.2 – Geometria simplificada da sala de testes da primeira versão.Figura 3.4 – Velocidade nos sensores de velocidade para verificar independência de malha
para cada refino após 20 s do acionamento da motosserra.Figura 3.4 – Velocidade nos sensores de velocidade para verificar independência de malha
para cada refino após 20 s do acionamento da motosserra.Figura 3.5 – Vista em detalhe da coifa e os elementos que a compõe.Figura 3.6 – Geometrias das versões simuladas do Teste de Casos.Figura 4.1 – Concentração de CO medida pelos sensores da simulação.Figura 4.2 – Plano indicando os três cortes realizados na simulação para as superfícies de
contorno sendo (1) a altura do escape da máquina, (2) a altura dos detectores de CO e (3) a
altura dos exaustoresFigura 4.3 – Superfície de contorno de velocidades a 1,3 m do piso após 20 s de
acionamento da motosserra.Figura 4.4 – Superfície de contorno de velocidades a 1,5 m do piso após 20 s de
acionamento da motosserra.
Figura 4.5 – Superfície de contorno de velocidades a 3,9 m do piso após 20 s de
acionamento da motosserra.Figura 4.6 – Superfície de contorno de massas específicas a 1,3 m do piso após 20 s de
acionamento da motosserra.Figura 4.7 – Superfície de contorno de massas específicas a 1,5 m do piso após 20 s de
acionamento da motosserra.
Figura 4.8 – Superfície de contorno de massas específicas a 3,9 m do piso após 20 s de
acionamento da motosserra.
Figura 4.9 – Volume total de monóxido ao longo do tempo na sala.Figura 4.9 – Vazão volumétrica de CO ao longo do tempo através da superfície de
controle. As linhas contínuas representam curvas de ajuste aos dados simulados.
REFERENCIAS
CROWL, Daniel A.; LOUVAR, Joseph F. Chemical process safety: fundamentals with applications. Second Edition, Pearson Education, 2001. BURNETT, J.; CHAN, M. Y. Criteria for air quality in enclosed car parks. Em: Proceedings of the Institution of Civil Engineers-Transport. Thomas Telford-ICE Virtual Library, 1997. Disponível em: < http://www.icevirtuallibrary.com/doi/10.1680/itran.1997.29379> SITTISAK, P.; CHARINPANITKUL T.; CHALERMSINSUWAN, B. Enhancement of carbon monoxide removal in an underground car park using ventilation system with single and twin jet fans. Em: Tunnelling and Underground Space Technology. Volume 97, 2020. VERSTEEG, H.K.; MALALASEKERA, W. Computational Fluid Dynamics: The Finite Volume Method. Second Edition, Pearson Education, 2007. BULIŃSKA, A.; POPIOŁEK, Z.; BULIŃSKI, Z.; Experimentally validated CFD analysis on sampling region determination of average indoor carbon dioxide concentration in occupied space. Em: Building and Environment. Volume 72, 2014. KARIMI, H.; RIAZI, B.; MOHHAMMADI, M. Application of Computational Fluid Dynamics in the Simulation of Carbon Monoxide Distribution, a Case Study: Sayad Underground Tunnel in Tehran. Disponível em: YAKHOT, V.; ORSZAG, S. Renormalization group analysis of turbulence. I. Basic theory. Journal of scientific computing, v. 1, n. 1, p. 3-51, 1986. VAN HOOFF, T.; BLOCKEN, B. CFD evaluation of natural ventilation of indoor environments by the concentration decay method: CO2 gas dispersion from a semi-enclosed stadium. Building and Environment, v. 61, p. 1-17, 2013. Disponível em: < https://www.sciencedirect.com/science/article/pii/S0360132312003216> YANG, L., YE, M., HE, B. CFD simulation research on residential indoor air quality. Em Science of The Total Environment. Volume 472, 2014. Disponível em: < https://www.sciencedirect.com/science/article/pii/S0048969713014228> Flow-3D. Flow-3D User’s Guide. Versão 12, 2020. LAUNDER, B. E. e SPALDING, D. B. The numerical computation of turbulent flows. Em Computer Methods in Applied Mechanics and Engineering, vol. 3, 1974. pp. 269-289 MALISKA, Clovis R. Transferência de Calor e Mecânica dos Fluidos Computacional: fundamentos e coordenadas generalizadas. Segunda Edição. Rio de Janeiro, LTC, 2004. ROACHE, P. J. Perspective: A Method for Uniform Reporting of Grid Refinement Studies, Journal of Fluids Engineering, Vol. 116, 1994; 405-413.
The 130 m high Ilarion Dam is built on the Aliakmon River in northern Greece. The dam has two spillways with ski jumps at their ends and a plunge pool to cushion the impact of the jets. This pool has suered signicant scouring during several oods in recent years. In order to determine a reliable protection measure, a 1:55 scale model and a numerical model with FLOW-3D® were created. The hydrodynamic behaviour of the ow in the plunge pool and in the spillways as well as the trajectory of the jets could be determined. The numerical modelling showed that it was probably not the impact of the jet that caused the most of the scouring but the resulting recirculation current. The ow in the plunge pool is thus highly asymmetric and a vortex forms when only one of the two spillways is operating. This vortex results in an eective ow rate in the basin that is three times greater than the ow rate from the spillway. A simple solution to this problem is to operate both spillways symmetrically. A modication of the geometry of the ski jump bucket to increase the impact surface of the jet and thus reduce its scouring potential was also investigated.
Auteur(e)s : Romain Van Mol Encadrement : Dr Giovanni De Cesare 1
1 Plateforme de Constructions Hydrauliques (PL-LCH), EPFL
130m 높이의 Ilarion 댐은 북부 그리스의 Aliakmon 강에 건설되었습니다. 댐에는 끝에 스키 점프가 있는 2개의 여수로와 제트기의 충격을 완충하는 플런지 풀이 있습니다. 이 웅덩이는 최근 몇 년 동안 상당한 수질 피해를 입었습니다. 신뢰할 수 있는 보호 조치를 결정하기 위해 1:55 스케일 모델과 FLOW-3D®를 사용한 수치 모델이 생성되었습니다. 플런지 풀과 여수로에서의 유류의 유체역학적 거동과 제트의 궤적이 결정될 수 있었습니다. 수치 모델링은 아마도 대부분의 정련을 일으킨 제트의 영향이 아니라 결과적인 재순환 전류임을 보여주었습니다. 따라서 플런지 풀의 흐름은 매우 비대칭이며 두 개의 배수로 중 하나만 작동할 때 소용돌이가 형성됩니다. 이 와류는 배수로의 유량보다 3배 더 큰 유역의 유효 유량을 초래합니다. 이 문제에 대한 간단한 해결책은 양쪽 배수로를 대칭적으로 운영하는 것입니다. 제트기의 충돌 표면을 증가시키고 이에 따라 세척 가능성을 줄이기 위해 스키 점프 버킷의 기하학적 구조를 수정하는 것도 조사되었습니다.
Fig. 1. General view of the Ilarion Dam (image from YouTube
Fig. 2. Topography before the 2013 flood (left) and after the 2015 flood (right)Fig. 3. Top view of the velocity vectors at 293.5 m.a.s.l. for a total discharge of
500 m3
/s with only one spillway operational (left) and with two spillways
operational (right); the water is coloured according to its velocity in m/s
Conclusions
The two spillways of the Ilarion Dam in Greece were studied by numerical modelling with FLOW-3D®. The study focused on the hydrodynamic behaviour of the flow in the plunge pool. It was found that the recirculation current in the plunge pool is a problematic phenomenon. This creates an effective discharge more than 3 times larger than the one expected. A simple and cost-effective solution is to operate the spillways symmetrically. However, this may not always be possible for any given flood discharge. Indeed, the opening range of the gates may be limited for reasons of operability or vibration of the gates.
Simulation of Dam-Break Flood Wave and Inundation Mapping: A Case study of Attabad Lake
Wasim Karam1, Fayaz A. Khan2, Muhammad Alam3, Sajjad Ali4 1Lab. Engineer, Department of Civil Engineering, University of Engineering and Technology Mardan, Pakistan, wasim10karam@gmail.com 2Assistant Professor, National Institute of Urban Infrastructure Planning, University of Engineering and Technology Peshawar, Pakistan, fayazuet@yahoo.com 3,4Assistant Professor, Department of Civil Engineering, University of Engineering and Technology Mardan, Pakistan, emalam82@gmail.com, sajjadali@uetmardan.edu.pk
ABSTRACT
산사태 또는 제방 댐의 파손 연구는 구성이 불확실하고 자연적이며 재해에 대해 적절하게 설계되지 않았기 때문에 다른 자연적 사건에 대한 대응 지식이 부족하기 때문에 더 중요합니다. 이 논문은 댐 파괴의 수력학적 모델링의 다양한 방법을 개선하는 것을 목표로 합니다.
현재 이 연구에서 Attabad 호수의 댐 붕괴는 전산 유체 역학 기술을 사용하여 시뮬레이션됩니다. 수치 모델(FLOW-3D)은 Reynolds 평균 Navier-Stoke 방정식을 완전히 3D로 풀어서 다양한 단면에서의 피크 유량 깊이, 피크 속도, 피크 방전, 피크 깊이까지의 시간 및 피크 방전까지의 시간을 예측하기 위해 개발되었습니다.
표준 RNG 난류 모델을 사용하여 난류를 시뮬레이션한 다음 마을의 흐름에 대한 홍수 범람 지도와 속도 벡터를 그립니다. 결과는 Hunza 강의 수로를 통해 모델링된 홍수파의 대부분이 Hunza 강의 범람원에 포함되지만 Hunza 강의 범람원 내부에 위치한 Miaun 및 chalat와 같은 일부 마을의 경우 더 높은 위험에 있음을 보여줍니다.
그러나 이들 마을의 예상 홍수 도달 시간은 각각 31분과 44분으로 인구를 안전한 지역으로 대피시키기에 충분한 시간인 반면, 알리 아바드에 인접한 하산 아바드와 같은 일부 마을의 경우 침수 위험이 더 높은 반면 마을의 예상 홍수 도착 시간은 12분으로 인구 대피에 충분하지 않으므로 홍수 억제를 위한 추가 홍수 보호 구조가 필요합니다.
최고속도의 추정치는 하천평야의 더 높은 전단응력, 심한 침식의 위험, 농경지 피해, 주거지 및 형태학적 변화가 예상됨을 의미한다. 댐 파손 분석(예: 최고 깊이, 최고 속도, 홍수 도달 시간 및 홍수 범람 지도)은 향후 위험 분석 및 홍수 관리의 지침으로만 사용해야 합니다.
Figure 2: Case Study Location on Map of PakistanFigure 3: Lake Condition 3 months after LandslideFigure 5: 3D Model from the Merged DEMFigure 7: Free Surface Elevation relative to local originFigure 8: Model of lake referenced over Google Earth ImageFigure 9: Meshing in the 3D Terrain ModelFigure 10: Flow Depth Hydrographs of the downstream villages
(A) Karim Abad (B) Ghulmet (C) Thol (D) Chalat (E) Nomal Figure 11: Flow Hydrograph at Karim Abad and Nomal BridgeFigure 12: Flood Inundation Map of Karim AbadFigure 13: Flood Inundation Map of GhulmetFigure 14: Flood Inundation Map of ChalatFigure 15: Velocity Vectors of flow at Karim AbadFigure 16: Velocity Vectors of Flow at GhulmetFigure 17: Velocity Vectors of Flow at Chalat
REFERENCES
[1]. Zhang, L. & Peng, M. & Chang, D.S. & Xu, Y. (2015). Dam Failure Mechanisms and Risk Assessment, First Ed. John Wiley and Sons, Singapore 473 pp. 10.1002/9781118558522. [2]. T. L. Wahl, “Dam Breach Modeling – an Overview of Analysis Methods,” 2nd Jt. Fed. Interagency Conf. Las Vegas, NV, pp. 1–12, 2010. [3]. Khosravi K. “Dam Break Analysis and Flood Inundation Mapping : The Case Study of Sefid-Rud Dam,” no. August 2019. DOI: 10.1016/B978-0-12-815998-9.00031-2 [4]. Robb, D. M., & Vasquez, J. A. (2015). Numerical simulation of dam-break flows using depth-averaged hydrodynamic and three-dimensional CFD models. 22nd Canadian Hydrotechnical Conference, (June). [5]. Mohammad Rostami, M. S. (2015). Human Life Saving by Simulation of Dam Break using Flow-3D. Trend in Life Sciences, 4(3), 308–316 [6]. Gharbi, M., Soualmia, A., Dartus, D., & Masbernat, L. (2016). Comparison of 1D and 2D hydraulic models for floods simulation on the Medjerda River in Tunisia. Journal of Materials and Environmental Science, 7(8), 3017–3026. https://doi.org/10.1080/153 [7]. Andrei, A., Robert, B., & Erika, B. (2017). Numerical Limitations of 1D Hydraulic Models Using MIKE11 or HEC-RAS software – A case study of Baraolt River, Romania. IOP Conference Series: Materials Science and Engineering, 245(7). https://doi.org/10.1088/1757-899X/245/7/072010 [8]. Henderson, F.M. (1966). Open Channel Flow. MacMillan Company, New York, USA, P. No 304-313 [9]. Betsholtz, A., & Nordlöf, B. (2017). Potentials and limitations of 1D, 2D and coupled 1D-2D flood modeling in HEC-RAS. Lund University, 128. https://doi.org/10.1016/S0300-9440(03)00139-5 [10].Ozmen-Cagatay, H., & Kocaman, S. (2011). Dam-break flow in the presence of obstacle: Experiment and CFD simulation. Engineering Applications of Computational Fluid Mechanics, 5(4), 541–552. https://doi.org/10.1080/19942060.2011.11015393 [11].Toombes, L., & Chanson, H. (2011). Numerical Limitations of Hydraulic Models. 10th Hydraulics Conference, (July), 2322–2329. https://doi.org/10.1016/j.jalz.2016.06.1613 [12].Zarein, M. (2015). Modeling Dam-Break Flows Using a 3d Mike 3 Flow Model, (January). [13].George, A. C., & Nair, B. T. (2015). Dam Break Analysis Using BOSS DAMBRK. Aquatic Procedia, 4(Icwrcoe), 853–860. https://doi.org/10.1016/j.aqpro.2015.02.10 [14].S. Roga and K. M. Pandey, “Computational Analysis of Supersonic Flow Regime Using Ramp Injector with Standard K- ω Turbulence Model” .World Academy of research in Science and Engineering, vol. 2, no. 1, pp. 31–40, 2013.http:// doi.org/10.1.1.348.5862.
Liril D.SilviaDinesh K.ChandrakercSumanaGhoshaArup KDasb aDepartment of Chemical Engineering, Indian Institute of Technology, Roorkee, India bDepartment of Mechanical Engineering, Indian Institute of Technology, Roorkee, India cReactor Engineering Division, Bhabha Atomic Research Centre, Mumbai, India
Abstract
Present work reports numerical understanding of interfacial dynamics during co-flow of vapor and liquid phases of water inside a typical Boiling Water Reactor (BWR), consisting of a nuclear fuel rod bundle assembly of 7 pins in a circular array. Two representative spacings between rods in a circular array are used to carry out the simulation. In literature, flow boiling in a nuclear reactor is dealt with mechanistic models or averaged equations. Hence, in the present study using the Volume of Fluid (VOF) based multiphase model, a detailed numerical understanding of breaking and making in interfaces during flow boiling in BWR is targeted. Our work will portray near realistic vapor bubble and liquid flow dynamics in rod bundle scenario. Constant wall heat flux for fuel rod and uniform velocity of the liquid at the inlet patch is applied as a boundary condition. The saturation properties of water are taken at 30 bar pressure. Flow boiling stages involving bubble nucleation, growth, merging, local dry-out, rewetting with liquid patches, and complete dry-out are illustrated. The dry-out phenomenon with no liquid presence is numerically observed with phase fraction contours at various axial cut-sections. The quantification of the liquid phase fraction at different axial planes is plotted over time, emphasizing the progressive dry-out mechanism. A comparison of liquid-vapor distribution for inner and outer rods reveals that the inner rod’s dry-out occurs sooner than that of the outer rod. The heat transfer coefficient to identify the heat dissipation capacity of each case is also reported.
현재 작업은 원형 배열에 있는 7개의 핀으로 구성된 핵연료봉 다발 어셈블리로 구성된 일반적인 끓는 물 원자로(BWR) 내부의 물의 증기 및 액체상의 동시 흐름 동안 계면 역학에 대한 수치적 이해를 보고합니다.
원형 배열의 막대 사이에 두 개의 대표적인 간격이 시뮬레이션을 수행하는 데 사용됩니다. 문헌에서 원자로의 유동 비등은 기계론적 모델 또는 평균 방정식으로 처리됩니다.
따라서 VOF(Volume of Fluid) 기반 다상 모델을 사용하는 본 연구에서는 BWR에서 유동 비등 동안 계면의 파괴 및 생성에 대한 자세한 수치적 이해를 목표로 합니다.
우리의 작업은 막대 번들 시나리오에서 거의 사실적인 증기 기포 및 액체 흐름 역학을 묘사합니다. 연료봉에 대한 일정한 벽 열유속과 입구 패치에서 액체의 균일한 속도가 경계 조건으로 적용됩니다. 물의 포화 특성은 30bar 압력에서 취합니다.
기포 핵 생성, 성장, 병합, 국소 건조, 액체 패치로 재습윤 및 완전한 건조를 포함하는 유동 비등 단계가 설명됩니다. 액체가 존재하지 않는 건조 현상은 다양한 축 단면에서 위상 분율 윤곽으로 수치적으로 관찰됩니다.
다른 축 평면에서 액상 분율의 정량화는 점진적인 건조 메커니즘을 강조하면서 시간이 지남에 따라 표시됩니다. 내부 막대와 외부 막대의 액-증기 분포를 비교하면 내부 막대의 건조가 외부 막대보다 더 빨리 발생함을 알 수 있습니다. 각 경우의 방열 용량을 식별하기 위한 열 전달 계수도 보고됩니다.
Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulationFig. 2. (a-c) dimensions and mesh configuration for G = 6 mm; (d-f) dimensions and mesh configuration for G = 0.6 mm
Fig. 3. Simulating the effect of spacer (a) Spacer configuration around rod bundle (b) Mesh structure in spacer zone (c) Distribution of vapor bubbles in a rod bundle with
spacer (d) Liquid phase fraction comparison for geometry with and without spacer (e,f,g) Wall temperature comparison for geometry with and without spacer; WS: With
Spacer, WOS: Without Spacer; Temperature in the y-axis is in (f) and (g) is same as (e).Fig. 4. Validation of the present numerical model with crossflow boiling over a heated cylindrical rod [40]
Fig. 5. Grid-Independent study in terms of vapor volume in 1/4th of computational domainFig. 6. Interface contour for G = 6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; they are showing nucleation, growth, merging, and pseudo-steady-state condition.Fig. 7. Interface contours for G = 0.6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; It shows dry-out at pseudo-steady-state near the exit Fig. 8. Vapor-liquid distribution across various distant cross-sections (Black color indicates liquid; Gray color indicates vapor); Magnification factor: 1 × (for a and b),
1.5 × (for c and d)
Fig. 21. Two-phase flow mixture velocity (u¯z); for G = 6 mm, r = 5 means location at inner heated wall and r = 25 means location at outer adiabatic wall; for G = 0.66
mm, r = 5 means location at inner heated wall and r = 16.6 mm means location at outer adiabatic wall.
References
[1] J. Würtz, An Experimental and Theoretical Investigation of Annular Steam-Water Flow in Tubes and Annuli at 30 to 90 Bar, Risø National Laboratory, Roskilde, 1978. [2] W. Tian, A. Myint, Z. Li, S. Qiu, G.H. Su, D. Jia, Experimental study on dryout point in vertical narrow annulus under low flow conditions, in: International Conference on Nuclear Engineering, 4689, 2004, pp. 643–648. Jan 1Vol. [3] K.M. Becker, C.H. Ling, S. Hedberg, G. Strand, An experimental investigation of post dryout heat transfer, R. Inst. Technol. (1983). [4] K.M. Becker, A Burnout Correlation for Flow of Boiling Water in Vertical Rod Bundles, AB Atomenergi, 1967. [5] Jr J.R. Barbosa, G.F. Hewitt, S.M. Richardson, High-speed visualisation of nucleate boiling in vertical annular flow, Int. J. Heat Mass Transf. 46 (26) (2003) 5153–5160 1, doi:10.1016/S0017-9310(03)00255-2. [6] Y. Mizutani, A. Tomiyama, S. Hosokawa, A. Sou, Y. Kudo, K. Mishima, Twophase flow patterns in a four by four rod bundle, J. Nucl. Sci. Technol. 44 (6) (2007) 894–901 1, doi:10.1080/18811248.2007.9711327. [7] S.S. Paranjape, Two-Phase Flow Interfacial Structures in a Rod Bundle Geometry, Purdue University, 2009. [8] D. Lavicka, J. Polansky, Model of the cooling of a nuclear reactor fuel rod, Multiph. Sci. Technol. 25 (2-4) (2013), doi:10.1615/MultScienTechn.v25.i2-4.90. [9] M. Thurgood, J. Kelly, T. Guidotti, R. Kohrt, K. Crowell, Tech. rep., Pacific Northwest National Laboratory, 1983. [10] S. Sugawara, Droplet deposition and entrainment modeling based on the three-fluid model, Nucl. Eng. Des. 122 (1-3) (1990) 67–84, doi:10.1016/ 0029-5493(90)90197-6. [11] C. Adamsson, J.M. Le Corre, Modeling and validation of a mechanistic tool (MEFISTO) for the prediction of critical power in BWR fuel assemblies, Nucl. Eng. Des. 241 (8) (2011) 2843–2858, doi:10.1016/j.nucengdes.2011.01.033. [12] S. Talebi, H. Kazeminejad, A mathematical approach to predict dryout in a rod bundle, Nucl. Eng. Des. 249 (2012) 348–356, doi:10.1016/j.nucengdes.2012.04. 016. [13] H. Anglart, O. Nylund, N. Kurul, M.Z. Podowski, CFD prediction of flow and phase distribution in fuel assemblies with spacers, Nucl. Eng. Des. 177 (1-3) (1997) 215–228, doi:10.1016/S0029-5493(97)00195-7. [14] H. Li, H. Anglart, CFD model of diabatic annular two-phase flow using the Eulerian–Lagrangian approach, Ann. Nucl. Energy 77 (2015) 415–424, doi:10. 1016/j.anucene.2014.12.002. [15] G. Sorokin, A. Sorokin, Experimental and numerical investigation of liquid metal boiling in fuel subassemblies under natural circulation conditions, Prog. Nucl. Energy 47 (1-4) (2005) 656–663, doi:10.1016/j.pnucene.2005. 05.069. [16] W.D. Pointer, A. Tentner, T. Sofu, D. Weber, S. Lo, A. Splawski, Eulerian two-phase computational fluid dynamics for boiling water reactor core analysis, Joint International Topical Meeting on Mathematics and Computation and Supercomputing in Nuclear Applications (M and C± SNA), 2007. [17] K. Podila, Y. Rao, CFD modelling of supercritical water flow and heat transfer in a 2 × 2 fuel rod bundle, Nucl. Eng. Des. 301 (2016) 279–289, doi:10.1016/j. nucengdes.2016.03.019. [18] H. Pothukuchi, S. Kelm, B.S. Patnaik, B.V. Prasad, H.J. Allelein, Numerical investigation of subcooled flow boiling in an annulus under the influence of eccentricity, Appl. Therm. Eng. 129 (2018) 1604–1617, doi:10.1016/j.applthermaleng. 2017.10.105. [19] H. Pothukuchi, S. Kelm, B.S. Patnaik, B.V. Prasad, H.J. Allelein, CFD modeling of critical heat flux in flow boiling: validation and assessment of closure models, Appl. Therm. Eng. 150 (2019) 651–665, doi:10.1016/j.applthermaleng.2019.01. 030. [20] W. Fan, H. Li, H. Anglart, A study of rewetting and conjugate heat transfer influence on dryout and post-dryout phenomena with a multi-domain coupled CFD approach, Int. J. Heat Mass Transf. 163 (2020) 120503, doi:10.1016/j. ijheatmasstransfer.2020.120503. [21] R. Zhang, T. Cong, G. Su, J. Wang, S. Qiu, Investigation on the critical heat flux in typical 5 by 5 rod bundle at conditions prototypical of PWR based on CFD methodology, Appl. Therm. Eng. 179 (2020) 115582, doi:10.1016/j. applthermaleng.2020.115582.
[22] L.D. Silvi, A. Saha, D.K. Chandraker, S. Ghosh, A.K. Das, Numerical analysis of pre-dryout sequences through the route of interfacial evolution in annular gasliquid two-phase flow with phase change, Chem. Eng. Sci. 212 (2020) 115356, doi:10.1016/j.ces.2019.115356. [23] L.D. Silvi, D.K. Chandraker, S. Ghosh, A.K. Das, On-route to dryout through sequential interfacial dynamics in annular flow boiling around temperature and heat flux controlled heater rod, Chem. Eng. Sci. 229 (2021) 116014, doi:10.1016/ j.ces.2020.116014. [24] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (2) (1992) 335–354, doi:10.1016/0021-9991(92) 90240-Y. [25] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER, J. Comput. Phys. 113 (1) (1994) 134–147, doi:10.1006/jcph.1994.1123. [26] I. Tanasawa, Advances in condensation heat transfer, Ad. Heat Transf. 21 (1991) 55–139 Vol, doi:10.1016/S0065-2717(08)70334-4. [27] V.H. Del Valle, D.B. Kenning, Subcooled flow boiling at high heat flux, Int. J. Heat Mass Transf. 28 (10) (1985) 1907–1920, doi:10.1016/0017-9310(85) 90213-3. [28] B. Matzner, G.M. Latter, Reduced pressure drop space for boiling water reactor fuel bundles, US Patent US5375154A, (1993) [29] C. Unal, O. Badr, K. Tuzla, J.C. Chen, S. Neti, Pressure drop at rod-bundle spacers in the post-CHF dispersed flow regime, Int. J. Multiphase Flow 20 (3) (1994) 515–522, doi:10.1016/0301-9322(94)90025-6. [30] D.K. Chandraker, A.K. Nayak, V.P. Krishnan, Effect of spacer on the dryout of BWR fuel rod assemblies, Nucl. Eng. Des. 294 (2015), doi:10.1016/j.nucengdes. 2015.09.004. [31] S.K Verma, S.L. Sinha, D.K. Chandraker, A comprehensive review of the spacer effect on performance of nuclear fuel bundle using computational fluid dynamics methodology, Mater. Today: Proc. 4 (2017) 100030–110034, doi:10. 1016/j.matpr.2017.06.315. [32] S.K Verma, S.L. Sinha, D.K. Chandraker, Experimental investigation on the effect of space on the turbulent mixing in vertical pressure tube-type boiling water reactor, Nucl. Sci. Eng. 190 (2) (2018), doi:10.1080/00295639.2017.1413874. [33] T. Zhang, Y. Liu, Numerical investigation of flow and heat transfer characteristics of subcooled boiling in a single rod channel with/without spacer grid, Case Stud. Therm. Eng. 20 (2020) 100644, doi:10.1016/j.csite.2020.100644. [34] K.M. Becker, G. Hernborg, M. Bode, O. Eriksson, Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters, AB Atomenergi (1965). [35] A. Saha, A.K. Das, Numerical study of boiling around wires and influence of active or passive neighbours on vapour film dynamics, Int. J. Heat Mass Transf. 130 (2019) 440–454, doi:10.1016/j.ijheatmasstransfer.2018.10.117. [36] M. Reimann, U. Grigull, Heat transfer with free convection and film boiling in the critical area of water and carbon dioxide, Heat Mass Transf. 8 (1975) 229– 239, doi:10.1007/BF01002151. [37] M.S. Plesset, S.A. Zwick, The growth of vapor bubbles in superheated liquids, J. Appl. Phys. 25 (4) (1954) 493–500, doi:10.1063/1.1721668. [38] N. Samkhaniani, M.R. Ansari, Numerical simulation of superheated vapor bubble rising in stagnant liquid, Heat Mass Transf. 53 (9) (2017) 2885–2899, doi:10.1007/S00231-017-2031-6. [39] N. Samkhaniani, M.R. Ansari, The evaluation of the diffuse interface method for phase change simulations using OpenFOAM, Heat Transf. Asian Res. 46 (8) (2017) 1173–1203, doi:10.1002/htj.21268. [40] P. Goel, A.K. Nayak, M.K. Das, J.B. Joshi, Bubble departure characteristics in a horizontal tube bundle under cross flow conditions, Int. J. Multiph. Flow 100 (2018) 143–154, doi:10.1016/j.ijmultiphaseflow.2017.12.013. [41] K.M. Becker, J. Engstorm, B.Scholin Nylund, B. Sodequist, Analysis of the dryout incident in the Oskarshamn 2 boiling water reactor, Int. J. Multiph. Flow 16 (6) (1990) 959–974, doi:10.1016/0301-9322(90)90101-N. [42] H.G. Weller, A New Approach to VOF-Based Interface Capturing Methods for Incompressible and Compressible Flow, A New Approach to VOF-Based Interface Capturing Methods for Incompressible and Compressible Flow, 4, OpenCFD Ltd., 2008 Report TR/HGW. [43] G. Boeing, Visual analysis of nonlinear dynamical systems: chaos, fractals, selfsimilarity and the limits of prediction, Systems 4 (4) (2016) 37, doi:10.3390/ systems4040037.
Dac DungTruongabBeom-SeonJangaCarl-ErikJansoncJonas W.RingsbergcYasuhiraYamadadKotaTakamotofYasumiKawamuraeHan-BaekJua aResearch Institute of Marine Systems Engineering, Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul, South Korea bDepartment of Engineering Mechanics, Nha Trang University, Nha Trang, Viet Nam cDivision of Marine Technology, Department of Mechanics and Maritime Sciences, Chalmers University of Technology, Gothenburg, Sweden dNational Maritime Research Institute, National Institute of Maritime, Port and Aviation Technology, Tokyo, Japan eDepartment of Systems Design for Ocean-Space, Yokohama National University, Kanagawa, Japan fDepartment of Mechanical Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
ABSTRACT
이 논문은 해양구조물의 평보강판의 슬래밍 반응에 대한 벤치마크 연구를 제시합니다. 목표는 유체-구조 상호작용(FSI) 시뮬레이션 방법론, 모델링 기술 및 슬래밍 압력 예측에 대한 기존 연구원의 경험을 비교하는 것이었습니다.
수치 FSI 시뮬레이션을 위해 가장 일반적인 상용 소프트웨어 패키지를 사용하는 3개의 연구 그룹(예: LS-Dyna ALE, LS-Dyna ICFD, ANSYS CFX 및 Star-CCM+/ABAQUS)이 이 연구에 참여했습니다.
공개 문헌에서 입수할 수 있는 경량 선박과 같은 바닥 구조의 평평한 강화 알루미늄 판에 대한 습식 낙하 시험 데이터는 FSI 모델링의 검증에 활용되었습니다. 형상 모델 및 재료 속성을 포함한 실험 조건의 요약은 시뮬레이션 전에 참가자에게 배포되었습니다.
충돌 속도와 강판의 강성이 슬래밍 응답에 미치는 영향을 조사하기 위해 해양 설비에 사용되는 실제 치수를 갖는 평판 보강 강판에 대한 매개변수 연구를 수행했습니다. 보강판에 작용하는 전체 수직력에 대한 FE 시뮬레이션 결과와 이러한 힘에 대한 구조적 반응을 참가자로부터 획득하여 분석 및 비교하였다.
앞서 언급한 상용 FSI 소프트웨어 패키지를 사용하여 슬래밍 부하에 대한 신뢰할 수 있고 정확한 예측을 평가했습니다. 또한 FSI 시뮬레이션에서 관찰된 동일한 영구 처짐을 초래하는 등가 정적 슬래밍 압력을 보고하고 분류 표준 DNV에서 제안한 해석 모델 및 슬래밍 압력 계산을 위한 기존 실험 데이터와 비교했습니다.
연구 결과는 등가 하중 모델이 물 충돌 속도와 플레이트 강성에 의존한다는 것을 보여주었습니다. 즉, 등가정압계수는 충돌속도가 증가함에 따라 감소하고 충돌구조가 더 단단해지면 증가한다.
This paper presents a benchmark study on the slamming responses of offshore structures’ flat-stiffened plates. The objective was to compare the fluid-structure interaction (FSI) simulation methodologies, modeling techniques, and established researchers’ experiences in predicting slamming pressure. Three research groups employing the most common commercial software packages for numerical FSI simulations (i.e. LS-Dyna ALE, LS-Dyna ICFD, ANSYS CFX, and Star-CCM+/ABAQUS) participated in this study. Wet drop test data on flat-stiffened aluminum plates of light-ship-like bottom structures available in the open literature was utilized for validation of the FSI modeling. A summary of the experimental conditions including the geometry model and material properties, was distributed to the participants prior to their simulations. A parametric study on flat-stiffened steel plates having actual scantlings used in marine installations was performed to investigate the effect of impact velocity and plate rigidity on slamming response. The FE simulation results for the total vertical forces acting on the stiffened plates and their structural responses to those forces, as obtained from the participants, were analyzed and compared. The reliable and accurate predictions of slamming loads using the aforementioned commercial FSI software packages were evaluated. Additionally, equivalent static slamming pressures resulting in the same permanent deflections, as observed from the FSI simulations, were reported and compared with analytical models proposed by the Classification Standards DNV and existing experimental data for calculation of the slamming pressure. The study results showed that the equivalent load model depends on the water impact velocity and plate rigidity; that is, the equivalent static pressure coefficient decreases with an increase in impact velocity, and increases when impacting structures become stiffer.
Fig. 4. Meshed quarter aluminum model with HAZ regions and support steel plates.Fig. 6. (a) Boundary conditions of water hitting case and (b) water jets at end of the simulation.Fig. 7. Comparison of prediction and test results for deflection time history of (a) D1 and (b) D2 for Vi = 2.3 m/s.Fig. 8. Comparison of prediction and test results for maximum deflection with different impact velocities.Fig. 16. Boundary conditions applied to present FSI simulations (Sym. denotes symmetric, and Cons. denotes constrained)Fig. 24. Distribution of deflections at moment of maximum deflection in: (a) LS-Dyna ALE, (b) Star-CCM+/ABAQUS, (c) ANSYS CFD, and (d) LSDyna ICFD (unit: m).
[1] Von Karman TH. The impact on seaplane floats during landing. Washington, DC: National Advisory Committee for Aeronautics; 1929. Technical note No.: 321. [2] Wagner VH. Über Stoß- und Gleitvorgange ¨ an der Oberflache ¨ von Flüssigkeiten. Z Angew Math Mech 1932;12(4):193–215. [3] Chuang SL. Experiments on flat-bottom slamming. J Ship Res 1966;10:10–7. [4] Chuang SL. Investigation of impact of rigid and elastic bodies with water. Report for Department of the Navy. Washington, DC: United States Department of the Navy; 1970. Report No.: 3248. [5] Mori K. Response of the bottom plate of high-speed crafts under impulsive water pressure. J Soc Nav Archit Jpn 1977;142:297–305 [Japanese]. [6] Cheon JS, Jang BS, Yim KH, Lee HSD, Koo BY, Ju HB. A study on slamming pressure on a flat stiffened plate considering fluid–structure interaction. J Mar Sci Technol 2016;21:309–24. [7] Truong DD, Jang BS, Ju HB, Han SW. Prediction of slamming pressure considering fluid-structure interaction. Part I: Numerical simulations. Ships Offshore Struct. https://doi.org/10.1080/17445302.2020.1816732. [8] Truong DD, Jang BS, Ju HB, Han SW. Prediction of slamming pressure considering fluid-structure interaction. Part II: Derivation of empirical formulations. Mar Struct. https://doi.org/10.1016/j.marstruc.2019.102700. [9] Greenhow M, Lin W. Numerical simulation of nonlinear free surface flows generated by wedge entry and wave maker motions. In: Proceedings of the 4th international conference on numerical ship hydrodynamics, Washington, DC; 1985. [10] Sun H, Faltinsen OM. Water impact of horizontal circular cylinders and cylindrical shells. Appl Ocean Res 2006;28(5):299–311. [11] Gingold RA, Monaghan JJ. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Royal Astronomical Society 1977;181:375–89. [12] Shao S. Incompressible SPH simulation of water entry of a free-falling object. Int J Numer Methods Fluid 2009;59(1):91–115. [13] Souli M, Ouahsine A, Lewin L. ALE formulation for fluid-structure interaction problems. Comput Methods Appl Mech Eng 2000;190(5):659–75. [14] Livermore Software Technology Corporation (LSTC). ICFD theory manual incompressible fluid solver in LS-DYNA. Livermore Software Technology Corporation;
[15] Livermore Software Technology Corporation (LSTC). LS-DYNA theoretical manual. Livermore Software Technology Corporation; 2006. [16] FLOW-3D user’s manual. 2018., version 12.0. [17] Cd-adapco. STAR-CCM+ User’s manual. 2012., version 7.06. [18] ANSYS fluent user’s guide. 2015. [19] ANSYS CFX user’s guide. 2014. [20] Abaqus user’s manual, version 6.13. SIMULIA; 2013. [21] Luo HB, Hu J, Guedes Soares C. Numerical simulation of hydroelastic responses of flat stiffened panels under slamming loads. In: Proceedings of the 29th international conference on ocean, offshore and arctic engineering (OMAE2010); 2010 [Shanghai, China].[22] Yamada Y, Takami T, Oka M. Numerical study on the slamming impact of wedge shaped obstacles considering fluid-structure interaction (FSI). In: Proceedings of the 22nd international offshore and polar engineering conference (ISOPE2012); 2012 [Rhodes, Greece]. [23] Luo HB, Wang H, Guedes Soares C. Numerical and experimental study of hydrodynamic impact and elastic response of one free-drop wedge with stiffened panels. Ocean Eng 2012;40:1–14. [24] Sun H, Wang DY. Experimental and numerical analysis of hydrodynamic impact on stiffened side of three dimensional elastic stiffened plates. Adv Mech Eng 2018;10(4):1–23. [25] Ma S, Mahfuz H. Finite element simulation of composite ship structures with fluid structure interaction. Ocean Eng 2012;52:52–9. [26] LSTC. Turek & hron’s FSI benchmark problem. 2012. [27] Califano A, Brinchmann K. Evaluation of loads during a free-fall lifeboat drop. In: Proceedings of the ASME 32nd international conference on ocean, offshore and arctic engineering (OMAE2013); 2013 [Nantes, France]. [28] LSTC. 3D fluid elastic body interaction problem. 2014. [29] Yamada Y, Takamoto K, Nakanishi T, Ma C, Komoriyama Y. Numerical study on the slamming impact of stiffened flat panel using ICFD method – effect of structural rigidity on the slamming impact. In: Proceedings of the ASME 39th international conference on ocean, offshore and arctic engineering (OMAE2020); 2020 [Florida, USA]. [30] Nicolici S, Bilegan RM. Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks in flexible tanks. Nucl Eng Des 2013;258:51–6. [31] DNV. DNV-RP-C205 environmental conditions and environmental loads. Det Norske Veritas; October 2010. [32] Ahmed YM. Numerical simulation for the free surface flow around a complex ship hull form at different froude numbers. Alex Eng J 2011;50(3):229–35. [33] Ghadimi P, Feizi Chekab MA, Dashtimanesh A. Numerical simulation of water entry of different arbitrary bow sections. J Nav Architect Mar Eng 2014;11: 117–29. [34] Park BW, Cho S-R. Simple design formulae for predicting the residual damage of unstiffened and stiffened plates under explosive loadings. Int J Impact Eng 2006;32:1721–36. [35] Truong DD, Shin HK, Cho S-R. Permanent set evolution of aluminium-alloy plates due to repeated impulsive pressure loadings induced by slamming. J Mar Sci Technol 2018;23:580–95. [36] Jones N. Structural impact. first ed. Cambridge, UK: Cambridge University Press; 1989. [37] Zha Y, Moan T. Ultimate strength of stiffened aluminium panels with predominantly torsional failure modes. Thin-Walled Struct 2001;39:631–48. [38] Sensharma P, Collette M, Harrington J. Effect of welded properties on aluminum structures. Ship Structure Committee SSC-4 2010. [39] ABS. Guide for slamming loads and strength assessment for vessels. 2011. [40] Villavicencio R, Sutherland L, Guedes Soares C. Numerical simulation of transversely impacted, clamped circular aluminium plates. Ships Offshore Struct 2012;7(1):31–45. [41] Material properties database. https://www.varmintal.com/aengr.htm, Assessed date: 16 May 2020. [42] Ringsberg JW, Andri´c J, Heggelund SE, Homma N, Huang YT, Jang BS, et al. Report of the ISSC technical committee II.1 on quasi-static response. In: Kaminski ML, Rigo P, editors. Proceedings of the 20th international ship and offshore structures congress (ISSC 2018), vol. 1. IOS Press BV; 2018. p. 226–31. [43] Shin HK, Kim S-C, Cho S-R. Experimental investigations on slamming impacts by drop tests. J Soc Nav Archit Korea 2010;47(3):410–20 [Korean]. [44] Huera-Huarte FJ, Jeon D, Gharib M. Experimental investigation of water slamming loads on panels. Ocean Eng 2011;38:1347–55.
졸업 논문의 목표는 보스코비체 댐의 계획된 방수로의 흐름을 수치적으로 모델링하는 것입니다. 이 졸업 논문은 유형과 프로필에 따라 기본 여수로를 설명하고 나눕니다. 비상용 배수로도 언급되어 있습니다. 그런 다음 논문에서는 범람량 계산에 대한 설명, 수학적 모델링 및 사용된 난류 모델에 대한 설명을 소개합니다. 다음 부분은 Boskovice 댐의 기술적 설명, AutoCAD 2020 소프트웨어에서 방수로 및 방수로 슈트의 가상 3D 모델 생성 및 Blender 소프트웨어에서 모델의 제어 및 수정과 관련되어 있습니다. 논문 말미에는 Flow-3D 소프트웨어를 통해 얻은 유동의 수치적 모델링 결과와 BUT 토목공학부 수구조연구소에서 시행한 수리학적 모델 연구와 비교한 결과를 언급하였다.
The goal of the diploma thesis is the numerical modelling of flow in planned spillway of the Boskovice dam. In the introduction of this diploma thesis are described and divided basic spillways according to their types and profiles. There are also mentioned emergency spillways. Then the thesis introduces the description of calculation of overflow quantity, the description of mathematic modelling and used turbulent models. The next part is concerned with the technical description of the Boskovice dam, the creation of virtual 3D model of spillway and spillway chute in the AutoCAD 2020 software and concerned with the control and revision of model in the Blender software. In the end of the thesis are mentioned results of numeric modelling of flow gained from the Flow-3D software and the comparison of results with the research of hydraulic model implemented at Water structures institute of Faculty of Civil Engineering of BUT.
Author
Svoboda, Jiří
Title
Numerické modelování proudění v bezpečnostním přelivu: Numerical modeling of flow in spilway
The goal of the diploma thesis is the numerical modelling of flow in planned spillway of the Boskovice dam. In the introduction of this diploma thesis are described and divided basic spillways according to their types and profiles. There are also mentioned emergency spillways. Then the thesis introduces the description of calculation of overflow quantity, the description of mathematic modelling and used turbulent models. The next part is concerned with the technical description of the Boskovice dam, the creation of virtual 3D model of spillway and spillway chute in the AutoCAD 2020 software and concerned with the control and revision of model in the Blender software. In the end of the thesis are mentioned results of numeric modelling of flow gained from the Flow-3D software and the comparison of results with the research of hydraulic model implemented at Water structures institute of Faculty of Civil Engineering of BUT.
Subjects/Keywords
Bezpečnostní přeliv; numerický model; 3D model; FLOW-3D; VD Boskovice; sypaná kamenitá hráz.; Spillway; numerical model; 3D model; FLOW-3D; Boskovice dam; rockfill dam.
Contributors
Jandora, Jan (advisor); Holomek, Petr (referee)
Language
cs
Rights
Standardní licenční smlouva – přístup k plnému textu bez omezení
OFigure 18: Fountain front safety spillway [24]Figure 20: Slip and divergent broth of the security building VD Boskovice [24]Obrázek 22: Půdorys bezpečnostního přelivu a části skluzu VD Boskovice [12]Figure 23: Longitudinal section BP and drop in the plane of symmetry [12]Figure 44: Color resolution of jets according to speedFigure 45: Flow profile in Flow-3D without 3D model displayedFigure 47: Level course on the physical model [22]
References
[1] JANDORA, Jan a Jan ŠULC. Hydraulika: Modul 01. Brno: AKADEMICKÉ NAKLADATELSTVÍ CERM, 2007. ISBN 978-80-7204-512-9. [2] BOOR, B., J. KUNŠTÁTSKÝ a C. PATOČKA. Hydraulika pro vodohospodářské stavby. Praha: SNTL, 1968. ISBN 04-710-68. [3] STARA, Vlastimil a Helena KOUTKOVÁ. 3. Vodohospodářská konference s mezinárodní účastí: Součinitel přepadu přelivu s kruhově zaoblenou korunou z fyzikálních experimentů. Brno, 2003. ISBN 80-86433-26-9. [4] ŘÍHA, Jaromír. Hydrotechnické stavby II: Modul 01 Přehrady. Studijní opora. FAST VUT v Brně 2006. [5] JANDORA, Jan. Matematické modelování ve vodním hospodářství. VUT v Brně, 2008. [6] KŘÍŽ, Tomáš. Manipulační řád pro vodní dílo Boskovice na toku Bělá v km 7,400. Brno, 2020. [7] ŠULC, Jan a Michal ŽOUŽELA. Hydraulický modelový výzkum bezpečnostního objektu VD Boskovice na ÚVS Stavební fakulty VUT v Brně. Výzkumná zpráva, LVV-ÚVSFAST VUT v Brně, 2013 [8] Autodesk® AutoCAD® 2020 [Počítačový software]. (2019). https://www.autodesk.cz/ [9] Blender v2.90 [Počítačový software]. (2020). https://www.blender.org/ [10] FLOW-3D® verze 11.0.4 [Počítačový software]. (2015). Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com [11] Why FLOW-3D? Flow-3D [online]. [cit. 2020-11-03]. Dostupné z: https://www.flow3d.com/products/flow-3d/why-flow-3d/ [12] Podklady poskytnuté Ing. Petrem Holomkem (Povodí Moravy, s. p.) [13] CHANSON, H. a J.S. MONTES. Journal of Irrigation and Drainage Engineering: Overflow Characteristics of Circular Weirs: Effcets of Inflow Conditions. 3. Reston: The American Society of Civil Engineers, 1998. ISBN 0733-9437. [14] KRATOCHVÍL, Jiří, Miloš JANDA a Vlastimil STARA. Projektování přehrad: Komplexní projekt HT. Brno: Vysoké učení technické v Brně, 1988. [15] STUDNIČKA, Tomáš. Matematické modelování odlehčovacích komor na stokových sítích. Brno, 2013. Disertační práce. Vysoké učení technické v Brně, Fakulta stavební. Vedoucí práce Ing. Petr Prax, Ph.D. [16] ŘÍHA, Jaromír. Hydraulika podzemních vod: Modul 01. Studijní opora. FAST VUT v Brně 2006.
Investigating the breach outflow hydrograph is an essential task to conduct mitigation plans and flood warnings. In the present study, the spatial dam breach is simulated by using a three-dimensional computational fluid dynamics model, FLOW-3D. The model parameters were adjusted by making a comparison with a previous experimental model. The different parameters (initial breach shape, dimensions, location, and dam slopes) are studied to investigate their effects on dam breaching. The results indicate that these parameters have a significant impact. The maximum erosion rate and peak outflow for the rectangular shape are higher than those for the V-notch by 8.85% and 5%, respectively. Increasing breach width or decreasing depth by 5% leads to increasing maximum erosion rate by 11% and 15%, respectively. Increasing the downstream slope angle by 4° leads to an increase in both peak outflow and maximum erosion rate by 2.0% and 6.0%, respectively.
유출 유출 수문곡선을 조사하는 것은 완화 계획 및 홍수 경보를 수행하는 데 필수적인 작업입니다. 본 연구에서는 3차원 전산유체역학 모델인 FLOW-3D를 사용하여 공간 댐 붕괴를 시뮬레이션합니다. 이전 실험 모델과 비교하여 모델 매개변수를 조정했습니다.
다양한 매개변수(초기 붕괴 형태, 치수, 위치 및 댐 경사)가 댐 붕괴에 미치는 영향을 조사하기 위해 연구됩니다. 결과는 이러한 매개변수가 상당한 영향을 미친다는 것을 나타냅니다. 직사각형 형태의 최대 침식율과 최대 유출량은 V-notch보다 각각 8.85%, 5% 높게 나타났습니다.
위반 폭을 늘리거나 깊이를 5% 줄이면 최대 침식률이 각각 11% 및 15% 증가합니다. 하류 경사각을 4° 증가시키면 최대 유출량과 최대 침식률이 각각 2.0% 및 6.0% 증가합니다.
Keywords
Spatial dam breach; FLOW-3D; Overtopping erosion; Computational fluid dynamics (CFD)
1. Introduction
There are many purposes for dam construction, such as protection from flood disasters, water storage, and power generation. Embankment failures may have a catastrophic impact on lives and infrastructure in the downstream regions. One of the most common causes of embankment dam failure is overtopping. Once the overtopping of the dam begins, the breach formation will start in the dam body then end with the dam failure. This failure occurs within a very short time, which threatens to be very dangerous. Therefore, understanding and modeling the embankment breaching processes is essential for conducting mitigation plans, flood warnings, and forecasting flood damage.
The analysis of the dam breaching process is implemented by different techniques: comparative methods, empirical models with dimensional and dimensionless solutions, physical-based models, and parametric models. These models were described in detail [1]. Parametric modeling is commonly used to simulate breach growth as a time-dependent linear process and calculate outflow discharge from the breach using hydraulics principles [2]. Alhasan et al. [3] presented a simple one-dimensional mathematical model and a computer code to simulate the dam breaching process. These models were validated by small dams breaching during the floods in 2002 in the Czech Republic. Fread [4] developed an erosion model (BREACH) based on hydraulics principles, sediment transport, and soil mechanics to estimate breach size, time of formation, and outflow discharge. Říha et al. [5] investigated the dam break process for a cascade of small dams using a simple parametric model for piping and overtopping erosion, as well as a 2D shallow-water flow model for the flood in downstream areas. Goodarzi et al. [6] implemented mathematical and statistical methods to assess the effect of inflows and wind speeds on the dam’s overtopping failure.
Dam breaching studies can be divided into two main modes of erosion. The first mode is called “planar dam breach” where the flow overtops the whole dam width. While the second mode is called “spatial dam breach” where the flow overtops through the initial pilot channel (i.e., a channel created in the dam body). Therefore, the erosion will be in both vertical and horizontal directions [7].
The erosion process through the embankment dams occurs due to the shear stress applied by water flows. The dam breaching evolution can be divided into three stages [8], [9], but Y. Yang et al. [10] divided the breach development into five stages: Stage I, the seepage erosion; Stage II, the initial breach formation; Stage III, the head erosion; Stage IV, the breach expansion; and Stage V, the re-equilibrium of the river channel through the breach. Many experimental tests have been carried out on non-cohesive embankment dams with an initial breach to examine the effect of upstream inflow discharges on the longitudinal profile evolution and the time to inflection point[11].
Zhang et al. [12] studied the effect of changing downstream slope angle, sediment grain size, and dam crest length on erosion rates. They noticed that increasing dam crest length and decreasing downstream slope angle lead to decreasing sediment transport rate. While the increase in sediment grain size leads to an increased sediment transport rate at the initial stages. Höeg et al. [13] presented a series of field tests to investigate the stability of embankment dams made of various materials. Overtopping and piping were among the failure tests carried out for the dams composed of homogeneous rock-fill, clay, or gravel with a height of up to 6.0 m. Hakimzadeh et al. [14] constructed 40 homogeneous cohesive and non-cohesive embankment dams to study the effect of changing sediment diameter and dam height on the breaching process. They also used genetic programming (GP) to estimate the breach outflow. Refaiy et al. [15] studied different scenarios for the downstream drain geometry, such as length, height, and angle, to minimize the effect of piping phenomena and therefore increase dam safety.
Zhu et al. [16] examined the effect of headcut erosion on dam breach growth, especially in the case of cohesive dams. They found that the breach growth in non-cohesive embankments is slower than cohesive embankments due to the little effect of headcut. Schmocker and Hager [7] proposed a relationship for estimating peak outflow from the dam breach process.(1)QpQin-1=1.7exp-20hc23d5013H0
where: Qp = peak outflow discharge.
Qin = inflow discharge.
hc = critical flow depth.
d50 = mean sediment diameter.
Ho = initial dam height.
Yu et al. [17] carried out an experimental study for homogeneous non-cohesive embankment dams in a 180° bending rectangular flume to determine the effect of overtopping flows on breaching formation. They found that the main factors influencing breach formation are water level, river discharge, and embankment material diameter.
Wu et al. [18] carried out a series of experiments to investigate the effect of breaching geometry on both non-cohesive and cohesive embankment dams in a U-bend flume due to overtopping flows. In the case of non-cohesive embankments, the non-symmetrical lateral expansion was noticed during the breach formation. This expansion was described by a coefficient ranging from 2.7 to 3.3.
The numerical models of the dam breach can be categorized according to different parameters, such as flow dimensions (1D, 2D, or 3D), flow governing equations, and solution methods. The 1D models are mainly used to predict the outflow hydrograph from the dam breach. Saberi et al. [19] applied the 1D Saint-Venant equation, which is solved by the finite difference method to investigate the outflow hydrograph during dam overtopping failure. Because of the ability to study dam profile evolution and breach formation, 2D models are more applicable than 1D models. Guan et al. [20] and Wu et al. [21] employed both 2D shallow water equations (SWEs) and sediment erosion equations, which are solved by the finite volume method to study the effect of the dam’s geometry parameters on outflow hydrograph and dam profile evolution. Wang et al. [22] also proposed a second-order hybrid-type of total variation diminishing (TVD) finite-difference to estimate the breach outflow by solving the 2D (SWEs). The accuracy of (SWEs) for both vertical flow contraction and surface roughness has been assessed [23]. They noted that the accuracy of (SWEs) is acceptable for milder slopes, but in the case of steeper slopes, modelers should be more careful. Generally, the accuracy of 2D models is still low, especially with velocity distribution over the flow depth, lateral momentum exchange, density-driven flows, and bottom friction[24]. Therefore, 3D models are preferred. Larocque et al. [25] and Yang et al. [26] started to use three-dimensional (3D) models that depend on the Reynolds-averaged Navier-Stokes (RANS) equations.
Previous experimental studies concluded that there is no clear relationship between the peak outflow from the dam breach and the initial breach characteristics. Some of these studies depend on the sharp-crested weir fixed at the end of the flume to determine the peak outflow from the breach, which leads to a decrease in the accuracy of outflow calculations at the microscale. The main goals of this study are to carry out a numerical simulation for a spatial dam breach due to overtopping flows by using (FLOW-3D) software to find an empirical equation for the peak outflow discharge from the breach and determine the worst-case that leads to accelerating the dam breaching process.
2. Numerical simulation
The current study for spatial dam breach is simulated by using (FLOW-3D) software [27], which is a powerful computational fluid dynamics (CFD) program.
2.1. Geometric presentations
A stereolithographic (STL) file is prepared for each change in the initial breach geometry and dimensions. The CAD program is useful for creating solid objects and converting them to STL format, as shown in Fig. 1.
2.2. Governing equations
The governing equations for water flow are three-dimensional Reynolds Averaged Navier-Stokes equations (RANS).
The momentum equation:(3)∂ui∂t+1VFuj∂ui∂xj=1ρ∂∂xj-pδij+ν∂ui∂xj+∂uj∂xi-ρu`iu`j¯
where u is time-averaged velocity,ν is kinematic viscosity, VF is fractional volume open to flow, p is averaged pressure and -u`iu`j¯ are components of Reynold’s stress. The Volume of Fluid (VOF) technique is used to simulate the free surface profile. Hirt et al. [28] presented the VOF algorithm, which employs the function (F) to express the occupancy of each grid cell with fluid. The value of (F) varies from zero to unity. Zero value refers to no fluid in the grid cell, while the unity value refers to the grid cell being fully occupied with fluid. The free surface is formed in the grid cells having (F) values between zero and unity.(4)∂F∂t+1VF∂∂xFAxu+∂∂yFAyv+∂∂zFAzw=0
where (u, v, w) are the velocity components in (x, y, z) coordinates, respectively, and (Ax, Ay, Az) are the area fractions.
2.3. Boundary and initial conditions
To improve the accuracy of the results, the boundary conditions should be carefully determined. In this study, two mesh blocks are used to minimize the time consumed in the simulation. The boundary conditions for mesh block 1 are as follows: The inlet and sides boundaries are defined as a wall boundary condition (wall boundary condition is usually used for bound fluid by solid regions. In the case of viscous flows, no-slip means that the tangential velocity is equal to the wall velocity and the normal velocity is zero), the outlet is defined as a symmetry boundary condition (symmetry boundary condition is usually used to reduce computational effort during CFD simulation. This condition allows the flow to be transferred from one mesh block to another. No inputs are required for this boundary condition except that its location should be defined accurately), the bottom boundary is defined as a uniform flow rate boundary condition, and the top boundary is defined as a specific pressure boundary condition with assigned atmospheric pressure. The boundary conditions for mesh block 2 are as follows: The inlet is defined as a symmetry boundary condition, the outlet is defined as a free flow boundary condition, the bottom and sides boundaries are defined as a wall boundary condition, and the top boundary is defined as a specific pressure boundary condition with assigned atmospheric pressure as shown in Fig. 2. The initial conditions required to be set for the fluid (i.e., water) inside of the domain include configuration, temperature, velocities, and pressure distribution. The configuration of water depends on the dimensions and shape of the dam reservoir. While the other conditions have been assigned as follows: temperature is normal water temperature (25 °c) and pressure distribution is hydrostatic with no initial velocity.
2.4. Numerical method
FLOW-3D uses the finite volume method (FVM) to solve the governing equation (Reynolds-averaged Navier-Stokes) over the computational domain. A finite-volume method is an Eulerian approach for representing and evaluating partial differential equations in algebraic equations form [29]. At discrete points on the mesh geometry, values are determined. Finite volume expresses a small volume surrounding each node point on a mesh. In this method, the divergence theorem is used to convert volume integrals with a divergence term to surface integrals. After that, these terms are evaluated as fluxes at each finite volume’s surfaces.
2.5. Turbulent models
Turbulence is the chaotic, unstable motion of fluids that occurs when there are insufficient stabilizing viscous forces. In FLOW-3D, there are six turbulence models available: the Prandtl mixing length model, the one-equation turbulent energy model, the two-equation (k – ε) model, the Renormalization-Group (RNG) model, the two-equation (k – ω) models, and a large eddy simulation (LES) model. For simulating flow motion, the RNG model is adopted to simulate the motion behavior better than the k – ε and k – ω.
models [30]. The RNG model consists of two main equations for the turbulent kinetic energy KT and its dissipation.εT(5)∂kT∂t+1VFuAx∂kT∂x+vAy∂kT∂y+wAz∂kT∂z=PT+GT+DiffKT-εT(6)∂εT∂t+1VFuAx∂εT∂x+vAy∂εT∂y+wAz∂εT∂z=C1.εTKTPT+c3.GT+Diffε-c2εT2kT
where KT is the turbulent kinetic energy, PT is the turbulent kinetic energy production, GT is the buoyancy turbulence energy, εT is the turbulent energy dissipation rate, DiffKT and Diffε are terms of diffusion, c1, c2 and c3 are dimensionless parameters, in which c1 and c3 have a constant value of 1.42 and 0.2, respectively, c2 is computed from the turbulent kinetic energy (KT) and turbulent production (PT) terms.
2.6. Sediment scour model
The sediment scour model available in FLOW-3D can calculate all the sediment transport processes including Entrainment transport, Bedload transport, Suspended transport, and Deposition. The erosion process starts once the water flows remove the grains from the packed bed and carry them into suspension. It happens when the applied shear stress by water flows exceeds critical shear stress. This process is represented by entrainment transport in the numerical model. After entrained, the grains carried by water flow are represented by suspended load transport. After that, some suspended grains resort to settling because of the combined effect of gravity, buoyancy, and friction. This process is described through a deposition. Finally, the grains sliding motions are represented by bedload transport in the model. For the entrainment process, the shear stress applied by the fluid motion on the packed bed surface is calculated using the standard wall function as shown in Eq.7.(7)ks,i=Cs,i∗d50
where ks,i is the Nikuradse roughness and Cs,i is a user-defined coefficient. The critical bed shear stress is defined by a dimensionless parameter called the critical shields number as expressed in Eq.8.(8)θcr,i=τcr,i‖g‖diρi-ρf
where θcr,i is the critical shields number, τcr,i is the critical bed shear stress, g is the absolute value of gravity acceleration, di is the diameter of the sediment grain, ρi is the density of the sediment species (i) and ρf is the density of the fluid. The value of the critical shields number is determined according to the Soulsby-Whitehouse equation.(9)θcr,i=0.31+1.2d∗,i+0.0551-exp-0.02d∗,i
where d∗,i is the dimensionless diameter of the sediment, given by Eq.10.(10)d∗,i=diρfρi-ρf‖g‖μf213
where μf is the fluid dynamic viscosity. For the sloping bed interface, the value of the critical shields number is modified according to Eq.11.(11)θ`cr,i=θcr,icosψsinβ+cos2βtan2φi-sin2ψsin2βtanφi
where θ`cr,i is the modified critical shields number, φi is the angle of repose for the sediment, β is the angle of bed slope and ψ is the angle between the flow and the upslope direction. The effects of the rolling, hopping, and sliding motions of grains along the packed bed surface are taken by the bedload transport process. The volumetric bedload transport rate (qb,i) per width of the bed is expressed in Eq.12.(12)qb,i=Φi‖g‖ρi-ρfρfdi312
where Φi is the dimensionless bedload transport rate is calculated by using Meyer Peter and Müller equation.(13)Φi=βMPM,iθi-θ`cr,i1.5cb,i
where βMPM,i is the Meyer Peter and Müller user-defined coefficient and cb,i is the volume fraction of species i in the bed material. The suspended load transport is calculated as shown in Eq.14.(14)∂Cs,i∂t+∇∙Cs,ius,i=∇∙∇DCs,i
where Cs,i is the suspended sediment mass concentration, D is the diffusivity, and us,i is the grain velocity of species i. Entrainment and deposition are two opposing processes that take place at the same time. The lifting and settling velocities for both entrainment and deposition processes are calculated according to Eq.15 and Eq.16, respectively.(15)ulifting,i=αid∗,i0.3θi-θ`cr,igdiρiρf-1(16)usettling,i=υfdi10.362+1.049d∗,i3-10.36
where αi is the entrainment coefficient of species i and υf is the kinematic viscosity of the fluid.
2.7. Grid type
Using simple rectangular orthogonal elements in planes and hexahedral in volumes in the (FLOW-3D) program makes the mesh generation process easier, decreases the required memory, and improves numerical accuracy. Two mesh blocks were used in a joined form with a size ratio of 2:1. The first mesh block is coarser, which contains the reservoir water, and the second mesh block is finer, which contains the dam. For achieving accuracy and efficiency in results, the mesh size is determined by using a grid convergence test. The optimum uniform cell size for the first mesh block is 0.012 m and for the second mesh block is 0.006 m.
2.8. Time step
The maximum time step size is determined by using a Courant number, which controls the distance that the flow will travel during the simulation time step. In this study, the Courant number was taken equal to 0.25 to prevent the flow from traveling through more than one cell in the time step. Based on the Courant number, a maximum time step value of 0.00075 s was determined.
2.9. Numerical model validation
The numerical model accuracy was achieved by comparing the numerical model results with previous experimental results. The experimental study of Schmocker and Hager [7] was based on 31 tests with changes in six parameters (d50, Ho, Bo, Lk, XD, and Qin). All experimental tests were conducted in a straight open glass-sided flume. The horizontal flume has a rectangular cross-section with a width of 0.4 m and a height of 0.7 m. The flume was provided with a flow straightener and an intake with a length of 0.66 m. All tested dams were inserted at various distances (XD) from the intake. Test No.1 from this experimental program was chosen to validate the numerical model. The different parameters used in test No.1 are as follows:
(1) uniform sediment with a mean diameter (d50 = 0.31 mm), (2) Ho = 0.2 m, (3) Bo = 0.2 m, (4) Lk = 0.1 m,
(5) XD = 1.0 m, (6) Qin = 6.0 lit/s, (7) Su and Sd = 2:1, (8) mass density (ρs = 2650 kg/m3) (9) Homogenous and non-cohesive embankment dam. As shown in Fig. 2, the simulation is contained within a rectangular grid with dimensions: 3.56 m in the x-direction (where 0.66 m is used as inlet, 0.9 m as dam base width, and 1.0 m as outlet), in y-direction 0.2 m (dam length), and in the z-direction 0.3 m, which represents the dam height (0.2 m) with a free distance (0.1 m) above the dam. There are two main reasons that this experimental program is preferred for the validation process. The first reason is that this program deals with homogenous, non-cohesive soil, which is available in FLOW-3D. The second reason is that this program deals with small-scale models which saves time for numerical simulation. Finally, some important assumptions were considered during the validation process. The flow is assumed to be incompressible, viscous, turbulent, and three-dimensional.
By comparing dam profiles at different time instants for the experimental test with the current numerical model, it appears that the numerical model gives good agreement as shown in Fig. 3 and Fig. 4, with an average error percentage of 9% between the experimental results and the numerical model.
3. Analysis and discussions
The current model is used to study the effects of different parameters such as (initial breach shapes, dimensions, locations, upstream and downstream dam slopes) on the peak outflow discharge, QP, time of peak outflow, tP, and rate of erosion, E.
This study consists of a group of scenarios. The first scenario is changing the shapes of the initial breach according to Singh [1], the most predicted shapes are rectangular and V-notch as shown in Fig. 5. The second scenario is changing the initial breach dimensions (i.e., width and depth). While the third scenario is changing the location of the initial breach. Eventually, the last scenario is changing the upstream and downstream dam slopes.
All scenarios of this study were carried out under the same conditions such as inflow discharge value (Qin=1.0lit/s), dimensions of the tested dam, where dam height (Ho=0.20m), crest width.
(Lk=0.1m), dam length (Bo=0.20m), and homogenous & non-cohesive soil with a mean diameter (d50=0.31mm).
3.1. Dam breaching process evolution
The dam breaching process is a very complex process due to the quick changes in hydrodynamic conditions during dam failure. The dam breaching process starts once water flows reach the downstream face of the dam. During the initial stage of dam breaching, the erosion process is relatively quiet due to low velocities of flow. As water flows continuously, erosion rates increase, especially in two main zones: the crest and the downstream face. As soon as the dam crest is totally eroded, the water levels in the dam reservoir decrease rapidly, accompanied by excessive erosion in the dam body. The erosion process continues until the water levels in the dam reservoir equal the remaining height of the dam.
According to Zhou et al. [11], the breaching process consists of three main stages. The first stage starts with beginning overtopping flow, then ends when the erosion point directed upstream and reached the inflection point at the inflection time (ti). The second stage starts from the end of the stage1 until the occurrence of peak outflow discharge at the peak outflow time (tP). The third stage starts from the end of the stage2 until the value of outflow discharge becomes the same as the value of inflow discharge at the final time (tf). The outflow discharge from the dam breach increases rapidly during stage1 and stage2 because of the large dam storage capacity (i.e., the dam reservoir is totally full of water) and excessive erosion. While at stage3, the outflow values start to decrease slowly because most of the dam’s storage capacity was run out. The end of stage3 indicates that the dam storage capacity was totally run out, so the outflow equalized with the inflow discharge as shown in Fig. 6 and Fig. 7.
3.2. The effect of initial breach shape
To identify the effect of the initial breach shape on the evolution of the dam breaching process. Three tests were carried out with different cross-section areas for each shape. The initial breach is created at the center of the dam crest. Each test had an ID to make the process of arranging data easier. The rectangular shape had an ID (Rec5h & 5b), which means that its depth and width are equal to 5% of the dam height, and the V-notch shape had an ID (V-noch5h & 1:1) which means that its depth is equal to 5% of the dam height and its side slope is equal to 1:1. The comparison between rectangular and V-notch shapes is done by calculating the ratio between maximum dam height at different times (ZMax) to the initial dam height (Ho), rate of erosion, and hydrograph of outflow discharge for each test. The rectangular shape achieves maximum erosion rate and minimum inflection time, in addition to a rapid decrease in the dam reservoir levels. Therefore, the dam breaching is faster in the case of a rectangular shape than in a V-notch shape, which has the same cross-section area as shown in Fig. 8.
Also, by comparing the hydrograph for each test, the peak outflow discharge value in the case of a rectangular shape is higher than the V-notch shape by 5% and the time of peak outflow for the rectangular shape is shorter than the V-notch shape by 9% as shown in Fig. 9.
3.3. The effect of initial breach dimensions
The results of the comparison between the different initial breach shapes indicate that the worst initial breach shape is rectangular, so the second scenario from this study concentrated on studying the effect of a change in the initial rectangular breach dimensions. Groups of tests were carried out with different depths and widths for the rectangular initial breach. The first group had a depth of 5% from the dam height and with three different widths of 5,10, and 15% from the dam height, the second group had a depth of 10% with three different widths of 5,10, and 15%, the third group had a depth of 15% with three different widths of 5,10, and 15% and the final group had a width of 15% with three different heights of 5, 10, and 15% for a rectangular breach shape. The comparison was made as in the previous section to determine the worst case that leads to the quick dam failure as shown in Fig. 10.
The results show that the (Rec 5 h&15b) test achieves a maximum erosion rate for a shorter period of time and a minimum ratio for (Zmax / Ho) as shown in Fig. 10, which leads to accelerating the dam failure process. The dam breaching process is faster with the minimum initial breach depth and maximum initial breach width. In the case of a minimum initial breach depth, the retained head of water in the dam reservoir is high and the crest width at the bottom of the initial breach (L`K) is small, so the erosion point reaches the inflection point rapidly. While in the case of the maximum initial breach width, the erosion perimeter is large.
3.4. The effect of initial breach location
The results of the comparison between the different initial rectangular breach dimensions indicate that the worst initial breach dimension is (Rec 5 h&15b), so the third scenario from this study concentrated on studying the effect of a change in the initial breach location. Three locations were checked to determine the worst case for the dam failure process. The first location is at the center of the dam crest, which was named “Center”, the second location is at mid-distance between the dam center and dam edge, which was named “Mid”, and the third location is at the dam edge, which was named “Edge” as shown in Fig. 11. According to this scenario, the results indicate that the time of peak outflow discharge (tP) is the same in the three cases, but the maximum value of the peak outflow discharge occurs at the center location. The difference in the peak outflow values between the three cases is relatively small as shown in Fig. 12.
The rates of erosion were also studied for the three cases. The results show that the maximum erosion rate occurs at the center location as shown in Fig. 13. By making a comparison between the three cases for the dam storage volume. The results show that the center location had the minimum values for the dam storage volume, which means that a large amount of water has passed to the downstream area as shown in Fig. 14. According to these results, the center location leads to increased erosion rate and accelerated dam failure process compared with the two other cases. Because the erosion occurs on both sides, but in the case of edge location, the erosion occurs on one side.
3.5. The effect of upstream and downstream dam slopes
The results of the comparison between the different initial rectangular breach locations indicate that the worst initial breach location is the center location, so the fourth scenario from this study concentrated on studying the effect of a change in the upstream (Su) and downstream (Sd) dam slopes. Three slopes were checked individually for both upstream and downstream slopes to determine the worst case for the dam failure process. The first slope value is (2H:1V), the second slope value is (2.5H:1V), and the third slope value is (3H:1V). According to this scenario, the results show that the decreasing downstream slope angle leads to increasing time of peak outflow discharge (tP) and decreasing value of peak outflow discharge. The difference in the peak outflow values between the three cases for the downstream slope is 2%, as shown in Fig. 15, but changing the upstream slope has a negligible impact on the peak outflow discharge and its time as shown in Fig. 16.
The rates of erosion were also studied in the three cases for both upstream and downstream slopes. The results show that the maximum erosion rate increases by 6.0% with an increasing downstream slope angle by 4°, as shown in Fig. 17. The results also indicate that the erosion rates aren’t affected by increasing or decreasing the upstream slope angle, as shown in Fig. 18. According to these results, increasing the downstream slope angle leads to increased erosion rate and accelerated dam failure process compared with the upstream slope angle. Because of increasing shear stress applied by water flows in case of increasing downstream slope.
According to all previous scenarios, the dimensionless peak outflow discharge QPQin is presented for a fixed dam height (Ho) and inflow discharge (Qin). Fig. 19 illustrates the relationship between QP∗=QPQin and.
Lr=ho2/3∗bo2/3Ho. The deduced relationship achieves R2=0.96.(17)QP∗=2.2807exp-2.804∗Lr
4. Conclusions
A spatial dam breaching process was simulated by using FLOW-3D Software. The validation process was performed by making a comparison between the simulated results of dam profiles and the dam profiles obtained by Schmocker and Hager [7] in their experimental study. And also, the peak outflow value recorded an error percentage of 12% between the numerical model and the experimental study. This model was used to study the effect of initial breach shape, dimensions, location, and dam slopes on peak outflow discharge, time of peak outflow, and the erosion process. By using the parameters obtained from the validation process, the results of this study can be summarized in eight points as follows.1.
The rectangular initial breach shape leads to an accelerating dam failure process compared with the V-notch.2.
The value of peak outflow discharge in the case of a rectangular initial breach is higher than the V-notch shape by 5%.3.
The time of peak outflow discharge for a rectangular initial breach is shorter than the V-notch shape by 9%.4.
The minimum depth and maximum width for the initial breach achieve maximum erosion rates (increasing breach width, b0, or decreasing breach depth, h0, by 5% from the dam height leads to an increase in the maximum rate of erosion by 11% and 15%, respectively), so the dam failure is rapid.5.
The center location of the initial breach leads to an accelerating dam failure compared with the edge location.6.
The initial breach location has a negligible effect on the peak outflow discharge value and its time.7.
Increasing the downstream slope angle by 4° leads to an increase in both peak outflow discharge and maximum rate of erosion by 2.0% and 6.0%, respectively.8.
The upstream slope has a negligible effect on the dam breaching process.
References
[1]V. SinghDam breach modeling technologySpringer Science & Business Media (1996)Google Scholar[2]Wahl TL. Prediction of embankment dam breach parameters: a literature review and needs assessment. 1998.Google Scholar[3]Z. Alhasan, J. Jandora, J. ŘíhaStudy of dam-break due to overtopping of four small dams in the Czech RepublicActa Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63 (3) (2015), pp. 717-729 View PDFCrossRefView Record in ScopusGoogle Scholar[4]D. FreadBREACH, an erosion model for earthen dam failures: Hydrologic Research LaboratoryNOAA, National Weather Service (1988)Google Scholar[5]J. Říha, S. Kotaška, L. PetrulaDam Break Modeling in a Cascade of Small Earthen Dams: Case Study of the Čižina River in the Czech RepublicWater, 12 (8) (2020), p. 2309, 10.3390/w12082309 View PDFView Record in ScopusGoogle Scholar[6]E. Goodarzi, L. Teang Shui, M. ZiaeiDam overtopping risk using probabilistic concepts–Case study: The Meijaran DamIran Ain Shams Eng J, 4 (2) (2013), pp. 185-197ArticleDownload PDFView Record in ScopusGoogle Scholar[7]L. Schmocker, W.H. HagerPlane dike-breach due to overtopping: effects of sediment, dike height and dischargeJ Hydraul Res, 50 (6) (2012), pp. 576-586 View PDFCrossRefView Record in ScopusGoogle Scholar[8]J.S. Walder, R.M. Iverson, J.W. Godt, M. Logan, S.A. SolovitzControls on the breach geometry and flood hydrograph during overtopping of noncohesive earthen damsWater Resour Res, 51 (8) (2015), pp. 6701-6724View Record in ScopusGoogle Scholar[9]H. Wei, M. Yu, D. Wang, Y. LiOvertopping breaching of river levees constructed with cohesive sedimentsNat Hazards Earth Syst Sci, 16 (7) (2016), pp. 1541-1551 View PDFCrossRefView Record in ScopusGoogle Scholar[10]Y. Yang, S.-Y. Cao, K.-J. Yang, W.-P. LiYang K-j, Li W-p. Experimental study of breach process of landslide dams by overtopping and its initiation mechanismsJ Hydrodynamics, 27 (6) (2015), pp. 872-883ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[11]G.G.D. Zhou, M. Zhou, M.S. Shrestha, D. Song, C.E. Choi, K.F.E. Cui, et al.Experimental investigation on the longitudinal evolution of landslide dam breaching and outburst floodsGeomorphology, 334 (2019), pp. 29-43ArticleDownload PDFView Record in ScopusGoogle Scholar[12]J. Zhang, Z.-x. Guo, S.-y. CaoYang F-g. Experimental study on scour and erosion of blocked damWater Sci Eng, 5 (2012), pp. 219-229ArticleDownload PDFView Record in ScopusGoogle Scholar[13]K. Höeg, A. Løvoll, K. VaskinnStability and breaching of embankment dams: Field tests on 6 m high damsInt J Hydropower Dams, 11 (2004), pp. 88-92View Record in ScopusGoogle Scholar[14]H. Hakimzadeh, V. Nourani, A.B. AminiGenetic programming simulation of dam breach hydrograph and peak outflow dischargeJ Hydrol Eng, 19 (4) (2014), pp. 757-768View Record in ScopusGoogle Scholar[15]A.R. Refaiy, N.M. AboulAtta, N.Y. Saad, D.A. El-MollaModeling the effect of downstream drain geometry on seepage through earth damsAin Shams Eng J, 12 (3) (2021), pp. 2511-2531ArticleDownload PDFView Record in ScopusGoogle Scholar[16]Y. Zhu, P.J. Visser, J.K. Vrijling, G. WangExperimental investigation on breaching of embankmentsScience China Technological Sci, 54 (1) (2011), pp. 148-155 View PDFCrossRefView Record in ScopusGoogle Scholar[17]M.-H. Yu, H.-Y. Wei, Y.-J. Liang, Y. ZhaoInvestigation of non-cohesive levee breach by overtopping flowJ Hydrodyn, 25 (4) (2013), pp. 572-579ArticleDownload PDFCrossRefView Record in ScopusGoogle Scholar[18]S. Wu, M. Yu, H. Wei, Y. Liang, J. ZengNon-symmetrical levee breaching processes in a channel bend due to overtoppingInt J Sedim Res, 33 (2) (2018), pp. 208-215ArticleDownload PDFView Record in ScopusGoogle Scholar[19]O. Saberi, G. ZenzNumerical investigation on 1D and 2D embankment dams failure due to overtopping flowInt J Hydraulic Engineering, 5 (2016), pp. 9-18View Record in ScopusGoogle Scholar[20]M. Guan, N.G. Wright, P.A. Sleigh2D Process-Based Morphodynamic Model for Flooding by Noncohesive Dyke BreachJ Hydraul Eng, 140 (7) (2014), p. 04014022, 10.1061/(ASCE)HY.1943-7900.0000861 View PDFView Record in ScopusGoogle Scholar[21]W. Wu, R. Marsooli, Z. HeDepth-Averaged Two-Dimensional Model of Unsteady Flow and Sediment Transport due to Noncohesive Embankment Break/BreachingJ Hydraul Eng, 138 (6) (2012), pp. 503-516View Record in ScopusGoogle Scholar[22]Z. Wang, D.S. BowlesThree-dimensional non-cohesive earthen dam breach model. Part 1: Theory and methodologyAdv Water Resour, 29 (10) (2006), pp. 1528-1545ArticleDownload PDFView Record in ScopusGoogle Scholar[23]Říha J, Duchan D, Zachoval Z, Erpicum S, Archambeau P, Pirotton M, et al. Performance of a shallow-water model for simulating flow over trapezoidal broad-crested weirs. J Hydrology Hydromechanics. 2019;67:322-8.Google Scholar[24]C.B. VreugdenhilNumerical methods for shallow-water flowSpringer Science & Business Media (1994)Google Scholar[25]L.A. Larocque, J. Imran, M.H. Chaudhry3D numerical simulation of partial breach dam-break flow using the LES and k–∊ turbulence modelsJ Hydraul Res, 51 (2) (2013), pp. 145-157 View PDFCrossRefView Record in ScopusGoogle Scholar[26]C. Yang, B. Lin, C. Jiang, Y. LiuPredicting near-field dam-break flow and impact force using a 3D modelJ Hydraul Res, 48 (6) (2010), pp. 784-792 View PDFCrossRefView Record in ScopusGoogle Scholar[27]FLOW-3D. Version 11.1.1 Flow Science, Inc., Santa Fe, NM. https://wwwflow3dcom.Google Scholar[28]C.W. Hirt, B.D. NicholsVolume of fluid (VOF) method for the dynamics of free boundariesJ Comput Phys, 39 (1) (1981), pp. 201-225ArticleDownload PDFGoogle Scholar[29]S.V. PatankarNumerical heat transfer and fluid flow, Hemisphere PublCorp, New York, 58 (1980), p. 288View Record in ScopusGoogle Scholar[30]M. Alemi, R. MaiaNumerical simulation of the flow and local scour process around single and complex bridge piersInt J Civil Eng, 16 (5) (2018), pp. 475-487 View PDFCrossRefView Record in ScopusGoogle Scholar
M. Bayat* , V. K. Nadimpalli, J. H. Hattel 1Department of Mechanical Engineering, Technical University of Denmark (DTU), Produktionstorvet 425, Kgs. 2800, Lyngby, Denmark
ABSTRACT
L-PBF(Laser Powder Bed Fusion)는 다양한 산업 분야에서 많은 관심을 받았으며, 주로 기존 제조 기술을 사용하여 만들 수 없었던 복잡한 토폴로지 최적화 구성 요소를 구현하는 잘 알려진 능력 덕분입니다. . 펄스 L-PBF(PL-PBF)에서 레이저의 시간적 프로파일은 주기 지속 시간과 듀티 주기 중 하나 또는 둘 다를 수정하여 변조할 수 있습니다. 따라서 레이저의 시간적 프로파일은 향후 적용을 위해 이 프로세스를 더 잘 제어할 수 있는 길을 열어주는 새로운 프로세스 매개변수로 간주될 수 있습니다. 따라서 이 작업에서 우리는 레이저의 시간적 프로파일을 변경하는 것이 PL-PBF 공정에서 용융 풀 조건과 트랙의 최종 모양 및 형상에 어떻게 영향을 미칠 수 있는지 조사하는 것을 목표로 합니다. 이와 관련하여 본 논문에서는 CFD(Computational Fluid Dynamics) 소프트웨어 패키지인 Flow-3D를 기반으로 하는 316-L 스테인리스강 PL-PBF 공정의 다중물리 수치 모델을 개발하고 이 모델을 사용하여 열과 유체를 시뮬레이션합니다. 다양한 펄스 모드에서 공정 과정 중 용융 풀 내부에서 발생하는 유동 조건. 따라서 고정된 레이저 듀티 사이클(50%)이 있는 레이저 주기 지속 시간이 용융 풀의 모양과 크기 및 최종 트랙 형태에 미치는 영향을 연구하기 위해 매개변수 연구가 수행됩니다. 더 긴 주기 기간에서 더 많은 재료가 더 큰 용융 풀 내에서 변위됨에 따라 용융 풀의 후류에 더 눈에 띄는 혹이 형성되며, 동시에 더 심각한 반동 압력을 받습니다. 또한 시뮬레이션에서 50% 듀티 사이클에서 1000μs에서 형성된 보다 대칭적인 용융 풀과 비교하여 400μs 사이클 주기에서 더 긴 용융 풀이 형성된다는 것이 관찰되었습니다. 풀 볼륨은 1000μs의 경우 더 큽니다. 매개변수 연구는 연속 트랙과 파손된 트랙 PL-PBF 사이의 경계를 설명하며, 여기서 연속 트랙은 항상 소량의 용융 재료를 유지함으로써 유지됩니다.
English Abstract
Laser Powder Bed Fusion (L-PBF) has attracted a lot of attention from various industrial sectors and mainly thanks to its well-proven well-known capacity of realizing complex topology-optimized components that have so far been impossible to make using conventional manufacturing techniques. In Pulsed L-PBF (PL-PBF), the laser’s temporal profile can be modulated via modifying either or both the cycle duration and the duty cycle. Thus, the laser’s temporal profile could be considered as a new process parameter that paves the way for a better control of this process for future applications. Therefore, in this work we aim to investigate how changing the laser’s temporal profile can affect the melt pool conditions and the final shape and geometry of a track in the PL-PBF process. In this respect, in this paper a multiphysics numerical model of the PL-PBF process of 316-L stainless steel is developed based on the computational fluid dynamics (CFD) software package Flow-3D and the model is used to simulate the heat and fluid flow conditions occurring inside the melt pool during the course of the process at different pulsing modes. Thus, a parametric study is carried out to study the influence of the laser’s cycle duration with a fixed laser duty cycle (50 %) on the shape and size of the melt pool and the final track morphology. It is noticed that at longer cycle periods, more noticeable humps form at the wake of the melt pool as more material is displaced within bigger melt pools, which are at the same time subjected to more significant recoil pressures. It is also observed in the simulations that at 50 % duty cycle, longer melt pools form at 400 μs cycle period compared to the more symmetrical melt pools formed at 1000 μs, primarily because of shorter laser off-times in the former, even though melt pool volume is bigger for the 1000 μs case. The parameteric study illustrates the boundary between a continuous track and a broken track PL-PBF wherein the continuous track is retained by always maintaining a small volume of molten material.
Figure 1: Front and side views of the computational domain. Note that the region along z and from -100 μm to +50 μm is void.Figure 2: Temperature contours and melt pool border lines at different times for the 50 % duty cycle case: (a) – (c) Δtcycle =
400 μs, (d) – (f) Δtcycle = 1000 μs and (g) – (i) Δtcycle = 3000 μs.
Figure 3: Plot of melt pool volume versus time for four cases including continuous wave laser as well as 50 % duty cycle at
400 μs, 1000 μs and 3000 μs.
CONCLUSIONS
In this work a CFD model of the modulated PL-PBF process of stainless steel 316-L is developed in the commercial software package Flow-3D. The model involves physics such as solidification, melting, evaporation, convection, laser-material interaction, capillarity, Marangoni effect and the recoil pressure effect. In the current study, a parametric study is carried out to understand how the change in the cycle period duration affects the melt pool’s thermo-fluid conditions during the modulated PL-PBF process. It is observed that at the pulse mode with 50 % duty cycle and 400 μs cycle period, an overlapped chain of humps form at the wake of the melt pool and at a spatial frequency of occurrence of about 78 μm. Furthermore and as expected, it is noted that the melt pool volume, the size of the hump as well as the crater size at the end of the track, increase with increase in the cycle period duration, as more material is re-deposited at the back of the melt pool and that itself is caused by more pronounced recoil pressures. Moreover, it is noticed that due to the short off-time period of the laser in the 400 μs cycle period case, there is always an amount of liquid metal left from the previous cycle, at the time the new cycle starts. This is found to be the main reason why longer and elongated melt pools form at 400 μs cycle period, compared to the bigger, shorter and more symmetrical-like melt pools forming at the 1000 μs case. In this study PL-PBF single tracks including the broken track and the continuous track examples were studied to illustrate the boundary of this transition at a given laser scan parameter setting. At higher scan speeds, it is expected that the Plateau–Rayleigh instability will compete with the pulsing behavior to change the transition boundary between a broken and continuous track, which is suggested as future work from this study.
REFERENCES
[1] T. Craeghs, L. Thijs, F. Verhaeghe, J.-P. Kruth, J. Van Humbeeck, A study of the microstructural evolution during selective laser melting of Ti–6Al–4V, Acta Mater. 58 (2010) 3303–3312. https://doi.org/10.1016/j.actamat.2010.02.004. [2] J. Liu, A.T. Gaynor, S. Chen, Z. Kang, K. Suresh, A. Takezawa, L. Li, J. Kato, J. Tang, C.C.L. Wang, L. Cheng, X. Liang, A.C. To, Current and future trends in topology optimization for additive manufacturing, (2018) 2457–2483. [3] M. Bayat, W. Dong, J. Thorborg, A.C. To, J.H. Hattel, A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies, Addit. Manuf. 47 (2021). https://doi.org/10.1016/j.addma.2021.102278. [4] A. Foroozmehr, M. Badrossamay, E. Foroozmehr, S. Golabi, Finite Element Simulation of Selective Laser Melting process considering Optical Penetration Depth of laser in powder bed, Mater. Des. 89 (2016) 255–263. https://doi.org/10.1016/j.matdes.2015.10.002. [5] Y.S. Lee, W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Addit. Manuf. 12 (2016) 178–188. https://doi.org/10.1016/j.addma.2016.05.003. [6] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones, Acta Mater. 108 (2016) 36–45. https://doi.org/10.1016/j.actamat.2016.02.014. [7] M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, J.H. Hattel, Keyholeinduced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation, Addit. Manuf. 30 (2019). https://doi.org/10.1016/j.addma.2019.100835. [8] A. Charles, M. Bayat, A. Elkaseer, L. Thijs, J.H. Hattel, S. Scholz, Elucidation of dross formation in laser powder bed fusion at down-facing surfaces: phenomenon-oriented multiphysics simulation and experimental validation, Addit. Manuf. Under revi (2021). [9] M. Bayat, V.K. Nadimpalli, D.B. Pedersen, J.H. Hattel, A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys, Int. J. Heat Mass Transf. 166 (2021) 120766. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120766. [10] J.D. Roehling, S.A. Khairallah, Y. Shen, A. Bayramian, C.D. Boley, A.M. Rubenchik, J. Demuth, N. Duanmu, M.J. Matthews, Physics of large-area pulsed laser powder bed fusion, Addit. Manuf. 46 (2021) https://doi.org/10.1016/j.addma.2021.102186. [11] M. Zheng, L. Wei, J. Chen, Q. Zhang, J. Li, S. Sui, G. Wang, W. Huang, Surface morphology evolution during pulsed selective laser melting: Numerical and experimental investigations, Appl. Surf. Sci. 496 (2019) 143649. https://doi.org/10.1016/j.apsusc.2019.143649. [12] M. Bayat, V.K. Nadimpalli, D.B. Pedersen, J.H. Hattel, A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys, Int. J. Heat Mass Transf. 166 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120766.
측면 분기기(흡입구)의 상류 측에서 흐름 분리는 분기기 입구에서 와류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 출력 용량 및 효율성을 감소시킵니다. 따라서 분리지대의 크기를 파악하고 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다. 본 연구에서는 분리 구역의 치수를 줄이기 위한 방법으로 7가지 유형의 거칠기 요소를 분기구 입구에 설치하고 4가지 다른 배출(총 84번의 실험을 수행)과 함께 3개의 서로 다른 베드 반전 레벨을 조사했습니다. 또한 3D CFD(Computational Fluid Dynamics) 모델을 사용하여 분리 영역의 흐름 패턴과 치수를 평가했습니다. 결과는 거칠기 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면, 드롭 구현 효과는 사용된 거칠기 계수를 기반으로 이 영역을 다르게 축소할 수 있음을 보여주었습니다. 두 가지 방법을 결합하면 분리 영역 치수를 최대 63%까지 줄일 수 있습니다.
Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance. It reduces the effective width of flow, turnout capacity and efficiency. Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions. Installation of 7 types of roughening elements at the turnout entrance and 3 different bed invert levels, with 4 different discharges (making a total of 84 experiments) were examined in this study as a method to reduce the dimensions of the separation zone. Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone. Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.
Turnouts or intakes are amongst the oldest and most widely used hydraulic structures in irrigation networks. Turnouts are also used in water distribution, transmission networks, power generation facilities, and waste water treatment plants etc. The flows that enter a turnout have a strong momentum in the direction of the main waterway and that is why flow separation occurs inside the turnout. The horizontal vortex formed in the separation area is a suitable place for accumulation and deposition of sediments. The separation zone is a vulnerable area for sedimentation and for reduction of effective flow due to a contracted flow region in the lateral channel. Sedimentaion in the entrance of the intake can gradually be transfered into the lateral channel and decrease the capacity of the higher order channels over time (Jalili et al. 2011). On the other hand, the existence of coarse-grained materials causes erosion and destruction of the waterway side walls and bottom. In addition, sedimentation creates conditions for vegetation to take root and damage the waterway cover, which causes water to leak from its perimeter. Therefore, it is important to investigate the pattern of the flow separation area in turnouts and provide solutions to reduce the dimensions of this area.
The three-dimensional flow structure at turnouts is quite complex. In an experimental study by Neary & Odgaard (1993) in a 90-degree water turnout it was found that the secondary currents and separation zone varies from the bed to the water surface. They also found that at a 90-degree water turnout, the bed roughness and discharge ratio play a critical role in flow structure. They asserted that an explanation of sediment behavior at a diversion entrance requires a comprehensive understanding of 3D flow patterns around the lateral-channel entrance. In addition, they suggested that there is a strong similarity between flow in a channel bend and a diversion channel, and that this similarity can rationalize the use of bend flow models for estimation of 3D flow structures in diversion channels.
Some of the distinctive characteristics of dividing flow in a turnout include a zone of separation immediately near the entrance of the lateral turnout (separation zone), a contracted flow region in the branch channel (contracted flow), and a stagnation point near the downstream corner of the junction (stagnation zone). In the region downstream of the junction, along the continuous far wall, separation due to flow expansion may occur (Ramamurthy et al. 2007), that is, a separation zone. This can both reduce the turnout efficiency and the effective width of flow while increasing the sediment deposition in the turnout entrance (Jalili et al. 2011). Installation of submerged vanes in the turnout entrance is a method which is already applied to reduce the size of flow separation zones. The separation zone draws sediments and floating materials into themselves. This reduces effective cross-section area and reduces transmission capacity. These results have also been obtained in past studies, including by Ramamurthy et al. (2007) and in Jalili et al. (2011). Submerged vanes (Iowa vanes) are designed in order to modify the near-bed flow pattern and bed-sediment motion in the transverse direction of the river. The vanes are installed vertically on the channel bed, at an angle of attack which is usually oriented at 10–25 degrees to the local primary flow direction. Vane height is typically 0.2–0.5 times the local water depth during design flow conditions and vane length is 2–3 times its height (Odgaard & Wang 1991). They are vortex-generating devices that generate secondary circulation, thereby redistributing sediment within the channel cross section. Several factors affect the flow separation zone such as the ratio of lateral turnout discharge to main channel discharge, angle of lateral channel with respect to the main channel flow direction and size of applied submerged vanes. Nakato et al. (1990) found that sediment management using submerged vanes in the turnout entrance to Station 3 of the Council Bluffs plant, located on the Missouri River, is applicable and efficient. The results show submerged vanes are an appropriate solution for reduction of sediment deposition in a turnout entrance. The flow was treated as 3D and tests results were obtained for the flow characteristics of dividing flows in a 90-degree sharp-edged, junction. The main and lateral channel were rectangular with the same dimensions (Ramamurthy et al., 2007).
Keshavarzi & Habibi (2005) carried out experiments on intake with angles of 45, 67, 79 and 90 degrees in different discharge ratios and reported the optimum angle for inlet flow with the lowest flow separation area to be about 55 degrees. The predicted flow characteristics were validated using experimental data. The results indicated that the width and length of the separation zone increases with the increase in the discharge ratio Qr (ratio of outflow per unit width in the turnout to inflow per unit width in the main channel).
Abbasi et al. (2004) performed experiments to investigate the dimensions of the flow separation zone at a lateral turnout entrance. They demonstrated that the length and width of the separation zone decreases with the increasing ratio of lateral turn-out discharge. They also found that with a reducing angle of lateral turnout, the length of the separation zone scales up and width of separation zone reduces. Then they compared their observations with results of Kasthuri & Pundarikanthan (1987) who conducted some experiments in an open-channel junction formed by channels of equal width and an angle of lateral 90 degree turnout, which showed the dimensions of the separation zone in their experiments to be smaller than in previous studies. Kasthuri & Pundarikanthan (1987) studied vortex and flow separation dimensions at the entrance of a 90 degree channel. Results showed that increasing the diversion discharge ratio can reduce the length and width of the vortex area. They also showed that the length and width of the vortex area remain constant at diversion ratios greater than 0.7. Karami Moghaddam & Keshavarzi (2007) analyzed the flow characteristics in turnouts with angles of 55 and 90 degrees. They reported that the dimensions of the separation zone decrease by increasing the discharge ratio and reducing the turnout angle with respect to the main channel. Studies about flow separation zone can be found in Jalili et al. (2011), Nikbin & Borghei (2011), Seyedian et al. (2008).
Jamshidi et al. (2016) measured the dimensions of a flow separation zone in the presence of submerged vanes with five arrangements (parallel, stagger, compound, piney and butterflies). Results showed that the ratio of the width to the length of the separation zone (shape index) was between 0.2 and 0.28 for all arrangements.
Karami et al. (2017) developed a 3D computational fluid dynamic (CFD) code which was calibrated by measured data. They used the model to evaluate flow pattern, diversion ratio of discharge, strength of the secondary flow, and dimensions of the vortex inside the channel in various dikes and submerged vane installation scenarios. Results showed that the diversion ratio of discharge in the diversion channel is dependent on the width of the flow separation area in the main channel. A dike, perpendicular to the flow, doubles the ratio of diverted discharge and reduces the suspended sediment load compared with the base-line situation by creating outer arch conditions. In addition, increasing the longitudinal distance between vanes increases the velocity gradient between the vanes and leads to a more severe erosion of the bed near the vanes.Figure 1VIEW LARGEDOWNLOAD SLIDE
Laboratory channel dimensions.
Al-Zubaidy & Hilo (2021) used the Navier–Stokes equation to study the flow of incompressible fluids. Using the CFD software ANSYS Fluent 19.2, 3D flow patterns were simulated at a diversion channel. Their results showed good agreement using the comparison between the experimental and numerical results when the k-omega turbulence viscous model was employed. Simulation of the flow pattern was then done at the lateral channel junction using a variety of geometry designs. These improvements included changing the intake’s inclination angle and chamfering and rounding the inner corner of the intake mouth instead of the sharp edge. Flow parameters at the diversion including velocity streamlines, bed shear stress, and separation zone dimensions were computed in their study. The findings demonstrated that changing the 90° lateral intake geometry can improve the flow pattern and bed shear stress at the intake junction. Consequently, sedimentation and erosion problems are reduced. According to the conclusions of their study, a branching angle of 30° to 45° is the best configuration for increasing branching channel discharge, lowering branching channel sediment concentration.
The review of the literature shows that most of the studies deal with turnout angle, discharge ratio and implementation of vanes as techniques to reduce the area of the separation zone. This study examines the effect of roughness coefficient and drop implementation at the entrance of a 90-degree lateral turnout on the dimensions of the separation zone. As far as the authors are aware, these two variables have never been studied as a remedy to decrease the separation zone dimensions whilst enhancing turnout efficiency. Additionally, a three-dimensional numerical model is applied to simulate the flow pattern around the turnout. The numerical results are verified against experimental data.
The experiments were conducted in a 90 degree dividing flow laboratory channel. The main channel is 15 m long, 0.5 m wide and 0.4 m high and the branch channel is 3 m long, 0.35 m wide and 0.4 m high, as shown in Figure 1. The tests were carried out at 9.65 m from the beginning of the flume and were far enough from the inlet, so we were sure that the flow was fully developed. According to Kirkgöz & Ardiçlioğlu (1997) the length of the developing region would be approximantly 65 and 72 times the flow depth. In this study, the depth is 9 cm, which makes this condition.
Both the main and lateral channel had a slope of 0.0003 with side walls of concrete. A 100 hp pump discharged the water into a stilling basin at the entrance of the main flume. The discharge was measured using an ultrasonic discharge meter around the discharge pipe. Eighty-four experiments in total were carried out at range of 0.1<Fr<0.4 (Froude numbers in main channel and upstream of turnout). The depth of water in the main channel in the experiments was 9 cm, in which case the effect of surface tension can be considered; according to research by Zolghadr & Shafai Bejestan (2020) and Zolghadr et al. (2021), when the water depth is more than 6 cm, the effect of surface tension is reduced and can be ignored given that the separation phenomenon occurs in the boundary layer, the height of the roughness creates disturbances in growth and development of the boundary layer and, as a result, separation growth is also faced with disruption and its dimensions grow less compared to smooth surfaces. Similar conditions occur in case of drop implementation. A disturbance occurs in the growth of the boundary layer and as a result the separation zone dimensions decrease. In order to investigate the effect of roughness coefficient and drop implementation on the separation zone dimensions, four different discharges (16, 18, 21, 23 l/s) in subcritical conditions, seven Manning (Strickler) roughness coefficients (0.009, 0.011, 0.017, 0.023, 0.028, 0.030, 0.032) as shown in Figure 2 and three invert elevation differences between the main channel and lateral turnout invert (0, 5 and 10 cm) at the entrance of the turnout were considered. The Manning roughness coefficient values were selected based on available and feasible values for real conditions, so that 0.009 is equivalent to galvanized sheet roughness and selected for the baseline tests. 0.011 is for concrete with neat surface, 0.017 and 0.023 are for unfinished and gunite concrete respectively. 0.030 and 0.032 values are for concrete on irregular excavated rock (Chow 1959). The roughness coefficients were created by gluing sediment particles on a thin galvanized sheet which was installed at the upstream side of the lateral turnout. The values of roughness coefficients were calculated based on the Manning-Strickler formula. For this purpose, some uniformly graded sediment samples were prepared and the Manning roughness coefficient of each sample was determined with respect to the median size (D50) value pasted into the Manning-Strickler formula. Some KMnO4 was sifted in the main channel upstream to visualize and measure the dimensions of the separation zone. Consequently, when KMnO4 approached the lateral turnout a photo of the separation zone was taken from a top view. All the experiments were recorded and several photos were taken during the experiment after stablishment of steady flow conditions. The photos were then imported to AutoCAD to measure the separation zone dimensions. Because all the shooting was done with a high-definition camera and it was possible to zoom in, the results are very accurate.Figure 2VIEW LARGEDOWNLOAD SLIDE
Roughness plates.
The velocity values were also recorded by a one-dimensional velocity meter at 15 cm distance from the turnout entrance and in transverse direction (perpendicular to the flow direction).
The water level was also measured by depth gauges with a accuracy of 0.1 mm, and velocity in one direction with a single-dimensional KENEK LP 1100 with an accuracy of ±0.02 m/s (0–1 m/s), ± 0.04 m/s (1–2 m/s), ± 0.08 m/s (2–4 m/s), ±0.10 m/s (4–5 m/s).
Numerical simulation
ListenA FLOW-3D numerical model was utilized as a solver of the Navier-Stokes equation to simulate the three-dimensional flow field at the entrance of the turnout. The governing equations included continuity momentum equations. The continuity equation, regardless of the density of the fluid in the form of Cartesian coordinates x, y, and z, is as follows:
(1)where u, v, and w represent the velocity components in the x, y, and z directions, respectively; Ax, Ay, and Az are the surface flow fractions in the x, y, and z directions, respectively; VF denotes flow volume fraction; r is the density of the fluid; t is time; and Rsor refers to the source of the mass. Equations (2)–(4) show momentum equations in x, y and z dimensions respectively :
(2)
(3)
(4)where Gx, Gy, and Gz are the accelerations caused by gravity in the x, y, and z directions, respectively; and fx, fy, and fz are the accelerations caused by viscosity in the x, y, and z directions, respectively.
The turbulence models used in this study were the renormalized group (RNG) models. Evaluation of the concordance of the mentioned models with experimental studies showed that the RNG model provides more accurate results.
Two blocks of mesh were used to simulate the main channels and lateral turnout. The meshes were denser in the vicinity of the entrance of the turnout in order to increase the accuracy of computations. Boundary conditions for the main mesh block included inflow for the channel entrance (volumetric flow rate), outflow for the channel exit, ‘wall’ for the bed and the right boundary and ‘symmetry’ for the top (free surface) and left boundaries (turnout). The side wall roughness coefficient was given to the software as the Manning number in surface roughness of any component. Considering the restrictions in the available processor, a main mesh block with appropriate mesh size was defined to simulate the main flow field in the channel, while the nested mesh-block technique was utilized to create a very dense solution field near the roughness plate in order to provide accurate results around the plates and near the entrance of the lateral turnout. This technique reduced the number of required mesh elements by up to 60% in comparison with the method in which the mesh size of the main solution field was decreased to the required extent.
The numerical outputs are verified against experimental data. The hydraulic characteristics of the experiment are shown in Table 1.Table 1
During the experiments, the dimensions of the separation zone were recorded with an HD camera. Some photos were imported to AutoCad software. Then, the separation zones dimensions were measured and compared in different scenarios.
At the beginning, the flow pattern in the separation zone for four different hydraulic conditions was studied for seven different Manning roughness coefficients from 0.009 to 0.032. To compare the obtained results, roughness of 0.009 was considered as the base line. The percentage of reduction in separation zone area in different roughness coefficients is shown in Figure 3. According to this figure, by increasing the roughness of the turnout side wall, the separation zone area ratio reduces (ratio of separation zone area to turnout area). In other words, in any desired Froud number, the highest dimensions of the separation zone area are related to the lowest roughness coefficients. In Figure 3, ‘A’ is the area of the separation zone and ‘Ai’ represents the total area of the turnout.Figure 3VIEW LARGEDOWNLOAD SLIDE
Effect of roughness on separation zone dimensions.
It should be mentioned that the separation zone dimensions change with depth, so that the area is larger at the surface than near the bed. This study measured the dimensions of this area at the surface. Figure 4 show exactly where the roughness elements were located.Figure 5VIEW LARGEDOWNLOAD SLIDE
Comparison of separation zone for n=0.023 and n=0.032.
Figure 5 shows images of the separation zone at n=0.023 and n=0.032 as examples, and show that the separation area at n=0.032 is smaller than that of n=0.023.
The difference between the effect of the two 0.032 and 0.030 roughnesses is minor. In other words, the dimensions of the separation zone decreased by increasing roughness up to 0.030 and then remained with negligable changes.
In the next step, the effect of intake invert relative to the main stream (drop) on the dimensions of the separation zone was investigated. To do this, three different invert levels were considered: (1) without drop; (2) a 5 cm drop between the main canal and intake canal; and (3) a 10 cm drop between the main canal and intake canal. The without drop mode was considered as the control state. Figure 6 shows the effect of drop implementation on separation zone dimensions. Tables 2 and 3 show the reduced percentage of separation zone areas in 5 and 10 cm drop compared to no drop conditions as the base line. It was found that the best results were obtained when a 10 cm drop was implemented.Table 2
Decrease percentage of separation zone area in 5 cm drop
Fr
n=0.011
n=0.017
n=0.023
n=0.028
n=0.030
n=0.032
0.08
10.56
11.06
25.27
33.03
35.57
36.5
0.121
7.66
11.14
11.88
15.93
34.59
36.25
0.353
1.38
2.63
8.17
14.39
31.20
31.29
0.362
3
11.54
19.56
25.73
37.89
38.31
Table 3
Decrease percentage of separation zone area in 10 cm drop
Effect of drop implementation on separation zone dimensions.
The combined effect of drop and roughness is shown in Figure 7. According to this figure, by installing a drop structure at the entrance of the intake, the dimensions of the separation zone scales down in any desired roughness coefficient. Results indicated that by increasing the roughness coefficient or drop implementation individually, the separation zone area decreases up to 38 and 25% respectively. However, employing both techniques simultaneously can reduce the separation zone area up to 63% (Table 4). The reason for the reduction of the dimensions of the separation zone area by drop implementation can be attributed to the increase of discharge ratio. This reduces the dimensions of the separation zone area.Table 4
Reduction in percentage of combined effect of roughness and 10 cm drop
Combined effect of roughness and drop on separation zone dimensions.
This method increases the discharge ratio (ratio of turnout to main channel discharge). The results are compatible with the literature. Some other researchers reported that increasing the discharge ratio can scale down the separation zone dimensions (Karami Moghaddam & Keshavarzi 2007; Ramamurthy et al. 2007). However, these researchers employed other methods to enhance the discharge ratio. Drop implementation is simple and applicable in practice, since there is normally an elevation difference between the main and lateral canal in irrigation networks to ensure gravity flow occurance.
Table 4 depicts the decrease in percentage of the separation zone compared to base line conditions in different arrangements of the combined tests.Figure 8VIEW LARGEDOWNLOAD SLIDE
Velocity profiles for various roughness coefficients along turnout width.
A comparison between the proposed methods introduced in this paper and traditional methods such as installation of submerged vanes, and changing the inlet geometry (angle, radius) was performed. Figure 8 shows the comparison of the results. The comparison shows that the new techniques can be highly influential and still practical. In this research, with no change in structural geometry (enhancement of roughness coefficient) or minor changes with respect to drop implementation, the dimensions of the separation zone are decreased noticeably. The velocity values were also recorded by a one-dimensional velocity meter at 15 cm distance from the turnout entrance and in a transverse direction (perpendicular to the flow direction). The results are shown in Figure 9.Figure 9VIEW LARGEDOWNLOAD SLIDE
Effect of roughness on separation zone dimensions in numerical study.
This study examined the flow patterns around the entrance of a diversion channel due to various wall roughnesses in the diversion channel. Results indicated that increasing the discharge ratio in the main channel and diversion channel reduces the area of the separation zone in the diversion channel.Figure 10VIEW LARGEDOWNLOAD SLIDE
Comparision of the vortex area (software output) for three roughnesses (0.009, 0.023 and 0.032).A laboratory and numerical error rate of 0.2605 was calculated from the following formula,
where Uexp is the experimental result, Unum is the numerical result, and N is the number of data.
Figure 9 shows the effect of roughness on separation zone dimensions in numerical study. Figure 10 compares the vortex area (software output) for three roughnesses, 0.009, 0.023 and 0.032 and Figure 11 shows the flow lines (tecplot output) that indicate the effect of roughness on flow in the separation zone. Numerical analysis shows that by increasing the roughness coefficient, the dimensions of the separation zone area decrease, as shown in Figure 10 where the separation zone area at n=0.032 is less than the separation zone area at n=0.009.Figure 11VIEW LARGEDOWNLOAD SLIDE
Comparison of vortex area in 3D mode (tecplot output) with two roughnesses (a) 0.009 and (b) 0.032.Figure 12VIEW LARGEDOWNLOAD SLIDE
Velocity vector for flow condition Q1/422 l/s, near surface.
The velocities intensified moving midway toward the turnout showing that the effective area is scaled down. The velocity values were almost equal to zero near the side walls as expected. As shown in Figure 12 the approach vortex area velocity decreases. Experimental and numerical measured velocity at x=0.15 m of the diversion channel compared in Figure 13 shows that away from the separation zone area, the velocity increases. All longitudinal velocity contours near the vortex area are distinctly different between different roughnesses. The separation zone is larger at less roughness both in length and width.Figure 13VIEW LARGEDOWNLOAD SLIDE
This study introduces practical and feasible methods for enhancing turnout efficiency by reducing the separation zone dimensions. Increasing the roughness coefficient and implementation of inlet drop were considered as remedies for reduction of separation zone dimensions. A data set has been compiled that fully describes the complex, 3D flow conditions present in a 90 degree turnout channel for selected flow conditions. The aim of this numerical model was to compare the results of a laboratory model in the area of the separation zone and velocity. Results showed that enhancing roughness coefficient reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%. Further research is proposed to investigate the effect of roughness and drop implementation on sedimentation pattern at lateral turnouts. The dimensions of the separation zone decreases with the increase of the non-dimensional parameter, due to the reduction ratio of turnout discharge increasing in all the experiments.
This method increases the discharge ratio (ratio of turnout to main channel discharge). The results are compatible with the literature. Other researchers have reported that intensifying the discharge ratio can scale down the separation zone dimensions (Karami Moghaddam & Keshavarzi 2007; Ramamurthy et al. 2007). However, they employed other methods to enhance the discharge ratio. Employing both techniques simultaneously can decrease the separation zone dimensions up to 63%. A comparison between the new methods introduced in this paper and traditional methods such as installation of submerged vanes, and changing the inlet geometry (angle, radius) was performed. The comparison shows that the new techniques can be highly influential and still practical. The numerical and laboratory models are in good agreement and show that the method used in this study has been effective in reducing the separation area. This method is simple, economical and can prevent sediment deposition in the intake canal. Results show that CFD prediction of the fluid through the separation zone at the canal intake can be predicted reasonably well and the RNG model offers the best results in terms of predictability.
Using an improved Carreau constitutive model, a numerical simulation of the casting process of a type of solid propellant slurry vacuum plate casting was carried out using the Flow3D software. Through the flow process in the orifice flow channel and the combustion chamber, the flow velocity of the slurry passing through the plate flow channel was quantitatively analyzed, and the viscosity, shear rate, and leveling characteristics of the slurry in the combustion chamber were qualitatively analyzed and predicted. The pouring time, pouring quality, and flow state predicted by the numerical simulation were verified using a visual tester consisting of a vacuum plate casting system in which a pouring experiment was carried out. Studies have shown that HTPB three-component propellant slurry is a typical yielding pseudoplastic fluid. When the slurry flows through the flower plate and the airfoil, the fluid shear rate reaches its maximum value and the viscosity of the slurry decreases. The visual pouring platform was built and the experiment was controlled according to the numerically-calculated parameters, ensuring the same casting speed. The comparison between the predicted casting quality and the one obtained in the verification test resulted in an error less than 10 %. Moreover, the error between the simulated casting completion time and the process verification test result was also no more than 10 %. Last, the flow state of the slurry during the simulation was consistent with the one during the experimental test. The overall leveling of the slurry in the combustion chamber was adequate and no relatively large holes and flaws developed during the pouring process.
개선된 Carreau 구성 모델을 사용하여 FLOW-3D 소프트웨어를 사용하여 고체 추진제 슬러리 진공판 유형의 Casting Process에 대한 수치 시뮬레이션을 수행했습니다. 오리피스 유로와 연소실에서의 유동과정을 통해 판 유로를 통과하는 슬러리의 유속을 정량적으로 분석하고, 연소실에서 슬러리의 점도, 전단율, 레벨링 특성을 정성적으로 분석하하고, 예측하였습니다.
타설시간, 타설품질, 수치해석으로 예측된 유동상태는 타설실험을 수행한 진공판주조시스템으로 구성된 비주얼 테스터를 이용하여 검증하였습니다.
연구에 따르면 HTPB 3성분 추진제 슬러리는 전형적인 생성 가소성 유체입니다. 슬러리가 플라워 플레이트와 에어포일을 통과할 때 유체 전단율이 최대값에 도달하고 슬러리의 점도가 감소합니다.
시각적 주입 플랫폼이 구축되었고 동일한 주조 속도를 보장하기 위해 수치적으로 계산된 매개변수에 따라 실험이 제어되었습니다. 예측된 casting 품질과 검증 테스트에서 얻은 품질을 비교한 결과 10 % 미만의 오류가 발생했습니다.
또한 모의 casting 완료시간과 공정검증시험 결과의 오차도 10 % 이하로 나타났습니다.
마지막으로 시뮬레이션 중 슬러리의 흐름 상태는 실험 테스트 시와 일치하였다. 연소실에서 슬러리의 전체 레벨링은 적절했으며 주입 과정에서 상대적으로 큰 구멍과 결함이 발생하지 않았습니다.
Figure 1. The equipment used in the vacuum flower-plate pouring
process.Figure 2. Calculation model.Figure 3. Grid block division unit.Figure 4. Circular section of the speed cloud.Figure 5. Viscosity and shear rate distribution cloud pattern flowing
through the plate holes.Figure 6. Circular section of the viscosity and shear-rate clouds.Figure 7. Volume fraction cloud chart at different time.Figure 8. Experimental program.Figure 9. Emulation experimental device.Figure 10. Visualization of the flow state of the pulp inside the tester.
References
[1] B. M. Bandgar, V. N. Krishnamurthy, T. Mukundan, K. C. Sharma, Mathematical Modeling of Rheological Properties of HydroxylTerminated Polybutadiene Binder and Dioctyl Adipate Plasticizer, J. Appl. Polym. Sci. 2002, 85, 1002–1007. [2] B. Thiyyarkandy, M. Jain, G. S. Dombe, M. Mehilal, P. P. Singh, B. Bhattacharya, Numerical Studies on Flow Behavior of Composite Propellant Slurry during Vacuum Casting, J.Aerosp.Technol. Manage. 2012, 4, 197–203. [3] T. Shimada, H. Habu, Y. Seike, S. Ooya, H. Miyachi, M. Ishikawa, X-Ray Visualization Measurement of Slurry Flow in Solid Propellant Casting, Flow Meas. Instrum. 2007, 18, 235–240. [4] Y. Damianou, G. C. Georgiou, On Poiseuille Flows of a Bingham Plastic with Pressure-Dependent Rheological Parameters, J. Non-Newtonian Fluid Mech. 2017, 250, 1–7. [5] S. Sadasivan, S. K. Arumugam, M. Aggarwal, Numerical Simulation of Diffuser of a Gas Turbine using the Actuator Disc Model, J.Appl. Fluid Mech. 2019, 12, 77–84. [6] M. Acosta, V. L. Wiesner, C. J. Martinez, R. W. Trice, J. P. Youngblood, Effect of Polyvinylpyrrolidone Additions on the Rheology of Aqueous, Highly Loaded Alumina Suspensions, J. Am. Ceram. Soc. 2013, 96, 1372–1382. [7] Y. Wu, Numerical Simulation and Experiment Study of Flower Plate Pouring System for Solid Propellant, Chin. J. Expl. Propell. 2017, 41, 506–511. [8] T. M. G. Chu, J. W. Halloran, High-Temperature Flow Behavior of Ceramic Suspensions, J. Am. Ceram. Soc. 2004, 83, 2189– 2195. [9] T. Kaully, A. Siegmann, D. Shacham, Rheology of Highly Filled Natural CaCO3 Composites. I. Effects of Solid Loading and Particle Size Distribution on Capillary Rheometry, Polym. Compos. 2007, 28, 512–523. [10] M. M. Rueda, M.-C. Auscher, R. Fulchiron, T. Périé, G. Martin, P. Sonntag, P. Cassagnau, Rheology and Applications of Highly Filled Polymers: A Review of Current Understanding, Prog. Polym. Sci. 2017, 66, 22–53. [11] F. Soltani, Ü. Yilmazer, Slip Velocity and Slip Layer Thickness in Flow of Concentrated Suspensions, J. Appl. Polym. Sci. 1998, 70, 515–522.
[12] E. Landsem, T. L. Jensen, F. K. Hansen. E. Unneberg, T. E. Kristensen, Neutral Polymeric Bonding Agents (NPBA) and Their Use in Smokeless Composite Rocket Propellants Based on HMX-GAP-BuNENA. Propellants, Explos., Pyrotech.. 2012, 37, 581–589. [13] J. Mewis, N. J. Wagner, Colloidal Suspension Rheology, Cambridge University Press, 2011. [14] D. M. Kalyon, An Overview of the Rheological Behavior and Characterization of Energetic Formulations: Ramifications on Safety and Product Quality, J. Energ. Mater. 2006, 24, 213–245. [15] H. Ohshima, Effective Viscosity of a Concentrated Suspension of Uncharged Spherical Soft Particles, Langmuir 2010, 26, 6287–6294.
Chendi Zhang1 , Yuncheng Xu1,2, Marwan A Hassan3 , Mengzhen Xu1 , Pukang He1 1State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, 100084, China. 2 College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100081, China. 5 3Department of Geography, University of British Columbia, 1984 West Mall, Vancouver BC, V6T1Z2, Canada. Correspondence to: Chendi Zhang (chendinorthwest@163.com) and Mengzhen Xu (mzxu@mail.tsinghua.edu.cn)
Abstract
스텝 풀 시스템은 계류의 일반적인 기반이며 전 세계의 하천 복원 프로젝트에 활용되었습니다. 스텝 풀 장치는 스텝 풀 기능의 형태학적 진화 및 안정성과 밀접하게 상호 작용하는 것으로 보고된 매우 균일하지 않은 수력 특성을 나타냅니다.
그러나 스텝 풀 형태에 대한 3차원 수리학의 자세한 정보는 측정의 어려움으로 인해 부족했습니다. 이러한 지식 격차를 메우기 위해 SfM(Structure from Motion) 및 CFD(Computational Fluid Dynamics) 기술을 기반으로 하이브리드 모델을 구축했습니다. 이 모델은 CFD 시뮬레이션을 위한 입력으로 6가지 유속의 자연석으로 만든 인공 스텝 풀 장치가 있는 침대 표면의 3D 재구성을 사용했습니다.
하이브리드 모델은 스텝 풀 장치에 대한 3D 흐름 구조의 고해상도 시각화를 제공하는 데 성공했습니다. 결과는 계단 아래의 흐름 영역의 분할, 즉 수면에서의 통합 점프, 침대 근처의 줄무늬 후류 및 그 사이의 고속 제트를 보여줍니다.
수영장에서 난류 에너지의 매우 불균일한 분포가 밝혀졌으며 비슷한 용량을 가진 두 개의 에너지 소산기가 수영장에 공존하는 것으로 나타났습니다. 흐름 증가에 따른 풀 세굴 개발은 점프 및 후류 와류의 확장으로 이어지지만 이러한 증가는 스텝 풀 실패에 대한 임계 조건에 가까운 높은 흐름에서 점프에 대해 멈춥니다.
음의 경사면에서 발달된 곡물 20 클러스터와 같은 미세 지반은 국부 수력학에 상당한 영향을 주지만 이러한 영향은 수영장 바닥에서 억제됩니다. 스텝 스톤의 항력은 가장 높은 흐름이 사용되기 전에 배출과 함께 증가하는 반면 양력은 더 큰 크기와 더 넓은 범위를 갖습니다. 우리의 결과는 계단 풀 형태의 복잡한 흐름 특성을 조사할 때 물리적 및 수치적 모델링을 결합한 하이브리드 모델 접근 방식의 가능성과 큰 잠재력을 강조합니다.
Step-pool systems are common bedforms in mountain streams and have been utilized in river restoration projects around the world. Step-pool units exhibit highly non-uniform hydraulic characteristics which have been reported to closely 10 interact with the morphological evolution and stability of step-pool features. However, detailed information of the threedimensional hydraulics for step-pool morphology has been scarce due to the difficulty of measurement. To fill in this knowledge gap, we established a hybrid model based on the technologies of Structure from Motion (SfM) and computational fluid dynamics (CFD). The model used 3D reconstructions of bed surfaces with an artificial step-pool unit built by natural stones at six flow rates as inputs for CFD simulations. The hybrid model succeeded in providing high-resolution visualization 15 of 3D flow structures for the step-pool unit. The results illustrate the segmentation of flow regimes below the step, i.e., the integral jump at the water surface, streaky wake vortexes near the bed, and high-speed jets in between. The highly non-uniform distribution of turbulence energy in the pool has been revealed and two energy dissipaters with comparable capacity are found to co-exist in the pool. Pool scour development under flow increase leads to the expansion of the jump and wake vortexes but this increase stops for the jump at high flows close to the critical condition for step-pool failure. The micro-bedforms as grain 20 clusters developed on the negative slope affect the local hydraulics significantly but this influence is suppressed at pool bottom. The drag forces on the step stones increase with discharge before the highest flow is used while the lift force has a larger magnitude and wider varying range. Our results highlight the feasibility and great potential of the hybrid model approach combining physical and numerical modeling in investigating the complex flow characteristics of step-pool morphology.
Figure 1: Workflow of the hybrid modeling. SfM-MVS refers to the technology of Structure from Motion with Multi View Stereo.
DSM is short for digital surface model. RNG-VOF is short for Renormalized Group (RNG) k-ε turbulence model coupled with
Volume of Fluid method. Figure 2: Flume experiment settings in Zhang et al., (2020): (a) the artificially built-up step-pool model using natural stones, with
stone number labelled; (b) the unsteady hydrograph of the run of CIFR (continually-increasing-flow-rate) T2 used in this study.Figure 3: Setup of the CFD model: (a) three-dimensional digital surface model (DSM) of the step-pool unit by structure from motion
with multi view stereo (SfM-MVS) method as the input to the 3D computational fluid dynamics (CFD) modeling; (b) extruded bed
160 surface model connected to the extra downstream component (in purple blue) and rectangular columns to fill leaks (in green), with
the boundary conditions shown on mesh planes; (c) recognized geometry with mesh grids of two mesh blocks shown where MS is
short for mesh size; (d) sampling volumes to capture the flow forces acting on each step stone at X, Y, and Z directions; and (e) an
example for the simulated 3D flow over the step-pool unit colored by velocity magnitude at the discharge of 49.9 L/s. The
abbreviations for boundary conditions in (b) are: V for specified velocity; C for continuative; P for specific pressure; and W for wall
165 condition. The contraction section in Figure (e) refers to the edge between the jet and jump at water surface. Figure 4: Distribution of time-averaged velocity magnitude (VM_mean) and vectors in three longitudinal sections. The section at Y = 0 cm goes across the keystone while the other two (Y = -18 and 13.5 cm) are located at the step stones beside the keystone with lower top elevations. Q refers to the discharge at the inlet of the computational domain. The spacing for X, Y, and Z axes are all 10 cm in the plots.Figure 5: Distribution of time-averaged flow velocity at five cross sections which are set according to the reference section (x0). The
reference cross section x0 is located at the downstream end of the keystone (KS). The five sections are located at 18 cm and 6 cm
upstream of the reference section (x0-18 and x0-6), and 2 cm, 15 cm and 40 cm downstream of the reference section (x0+2, x0+15,
x0+40). The spacing for X, Y, and Z axes are all 10 cm in the plots.Figure 6: Distribution of the time-averaged turbulence kinetic energy (TKE) at the five cross sections same with Figure 3.
Figure 7: Boxplots for the distributions of the mass-averaged flow kinetic energy (KE, panels a-f), turbulence kinetic energy (TKE,
panels g-l), and turbulent dissipation (εT, panels m-r) in the pool for all the six tested discharges (the plots at the same discharge are
in the same row). The mass-averaged values were calculated every 2 cm in the streamwise direction. The flow direction is from left
to right in all the plots. The general locations of the contraction section for all the flow rates are marked by the dashed lines, except
for Q = 5 L/s when the jump is located too close to the step. The longitudinal distance taken up by negative slope in the pool for the
inspected range is shown by shaded area in each plot.Figure 8: Instantaneous flow structures extracted using the Q-criterion (Qcriterion=1200) and colored by the magnitude of flow velocity. Figure 9: Time-averaged dynamic pressure (DP_mean) on the bed surface in the step-pool model under the two highest discharges,
with the step numbers marked. The negative values in the plots result from the setting of standard atmospheric pressure = 0 Pa,
whose absolute value is 1.013×105 Pa.Figure 10: Time-averaged shear stress (SS_mean) on bed surface in the step-pool model, with the step numbers marked. The
standard atmospheric pressure is set as 0 Pa.Figure 11: Variation of fluid force components and magnitude of resultant flow force acting on step stones with flow rate. The stone
4 is the keystone. Stone numbers are consistent with those in Fig. 9-10. The upper limit of the sampling volumes for flow force
calculation is higher than water surface while the lower limit is set at 3 cm lower than the keystone crest. Figure 12: Variation of drag (CD) and lift (CL) coefficient of the step stones along with flow rate. Stone numbers are consistent with
those in Fig. 8-9. KS is short for keystone. The negative values of CD correspond to the drag forces towards the upstream while the
negative values of CL correspond to lift forces pointing downwards.Figure 13: Longitudinal distributions of section-averaged and -integral turbulent kinetic energy (TKE) for the jump and wake
vortexes at the largest three discharges. The flow direction is from left to right in all the plots. The general locations of the contraction
sections under the three flow rates are marked by dashed lines in figures (d) to (f).Figure A1: Water surface profiles of the simulations with different mesh sizes at the discharge of 43.6 L/s at the longitudinal sections
at: (a) Y = 24.5 cm (left boundary); (b) Y = 0.3 cm (middle section); (c) Y = -24.5 cm (right boundary). MS is short for mesh size.
The flow direction is from left to right in each plot.Figure A2: Contours of velocity magnitude in the longitudinal section at Y = 0 cm at different mesh sizes (MSs) under the flow
condition with the discharge of 43.6 L/s: (a) 0.50 cm; (b) 0.375 cm; (c) 0.30 cm; (d) 0.27 cm; (e) 0.25 cm; (f) 0.24 cm. The flow direction
is from left to right.Figure A3: Measurements of water surfaces (orange lines) used in model verification: (a) water surface profiles from both sides of
the flume; (b) upstream edge of the jump regime from top view. KS refers to keystone in figure (b).Figure A15. Figure (a) shows the locations of the cross sections and target coarse grains at Q = 49.9 L/s. Figures (b) to (e) show the
distribution of velocity magnitude (VM_mean) in the four chosen cross sections: (a) x0+8.0; (b) x0+14.0; (c) x0+21.5; (d) x0+42.5.
G1 to G6 refer to 6 protruding grains in the micro-bedforms in the pool.Figure A16. The distribution of turbulent kinetic energy (TKE) in the same cross sections as in figure S15: (a) x0+8.0; (b) x0+14.0;
(c) x0+21.5; (d) x0+42.5.
References
720 Aberle, J. and Smart, G. M: The influence of roughness structure on flow resistance on steep slopes, J. Hydraul. Res., 41(3), 259-269, https://doi.org/10.1080/00221680309499971, 2003. Abrahams, A. D., Li, G., and Atkinson, J. F.: Step-pool streams: Adjustment to maximum flow resistance. Water Resour. Res., 31(10), 2593-2602, https://doi.org/10.1029/95WR01957, 1995. Adrian, R. J.: Twenty years of particle image velocimetry. Exp. Fluids, 39(2), 159-169, https://doi.org/10.1007/s00348-005- 725 0991-7 2005. Chanson, H.: Hydraulic design of stepped spillways and downstream energy dissipators. Dam Eng., 11(4), 205-242, 2001. Chartrand, S. M., Jellinek, M., Whiting, P. J., and Stamm, J.: Geometric scaling of step-pools in mountain streams: Observations and implications, Geomorphology, 129(1-2), 141-151, https://doi.org/10.1016/j.geomorph.2011.01.020, 2011. 730 Chen, Y., DiBiase, R. A., McCarroll, N., and Liu, X.: Quantifying flow resistance in mountain streams using computational fluid dynamics modeling over structure‐from‐motion photogrammetry‐derived microtopography, Earth Surf. Proc. Land., 44(10), 1973-1987, https://doi.org/10.1002/esp.4624, 2019. Church, M. and Zimmermann, A.: Form and stability of step‐pool channels: Research progress, Water Resour. Res., 43(3), W03415, https://doi.org/10.1029/2006WR005037, 2007. 735 Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., and Ranzuglia, G.: Meshlab: an open-source mesh processing tool, in: Eurographics Italian chapter conference, Salerno, Italy, 2-4 July 2008, 129-136, 2008.
Comiti, F., Andreoli, A., and Lenzi, M. A.: Morphological effects of local scouring in step-pool streams, Earth Surf. Proc. Land., 30(12), 1567-1581, https://doi.org/10.1002/esp.1217, 2005. Comiti, F., Cadol, D., and Wohl, E.: Flow regimes, bed morphology, and flow resistance in self‐formed step-pool 740 channels, Water Resour. Res., 45(4), 546-550, https://doi.org/10.1029/2008WR007259, 2009. Dudunake, T., Tonina, D., Reeder, W. J., and Monsalve, A.: Local and reach‐scale hyporheic flow response from boulder ‐ induced geomorphic changes, Water Resour. Res., 56, e2020WR027719, https://doi.org/10.1029/2020WR027719, 2020. Flow Science.: Flow-3D Version 11.2 User Manual, Flow Science, Inc., Los Alamos, 2016. Gibson, S., Heath, R., Abraham, D., and Schoellhamer, D.: Visualization and analysis of temporal trends of sand infiltration 745 into a gravel bed, Water Resour. Res., 47(12), W12601, https://doi.org/10.1029/2011WR010486, 2011. Hassan, M. A., Tonina, D., Beckie, R. D., and Kinnear, M.: The effects of discharge and slope on hyporheic flow in step‐pool morphologies, Hydrol. Process., 29(3), 419-433, https://doi.org/10.1002/hyp.10155, 2015. Hirt, C. W. and Nichols, B. D.: Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys., 39, 201-225, https://doi.org/10.1016/0021-9991(81)90145-5, 1981. 750 Javernick L., Brasington J., and Caruso B.: Modeling the topography of shallow braided rivers using structure-from-motion photogrammetry, Geomorphology, 213(4), 166-182, https://doi.org/10.1016/j.geomorph.2014.01.006, 2014. Lai, Y. G., Smith, D. L., Bandrowski, D. J., Xu, Y., Woodley, C. M., and Schnell, K.: Development of a CFD model and procedure for flows through in-stream structures, J. Appl. Water Eng. Res., 1-15, https://doi.org/10.1080/23249676.2021.1964388, 2021. 755 Lenzi, M. A.: Step-pool evolution in the Rio Cordon, northeastern Italy, Earth Surf. Proc. Land., 26(9), 991-1008, https://doi.org/10.1002/esp.239, 2001. Lenzi, M. A.: Stream bed stabilization using boulder check dams that mimic step-pool morphology features in Northern Italy, Geomorphology, 45(3-4), 243-260, https://doi.org/10.1016/S0169-555X(01)00157-X, 2002. Lenzi, M. A., Marion, A., and Comiti, F.: Local scouring at grade‐control structures in alluvial mountain rivers, Water Resour. 760 Res., 39(7), 1176, https://doi:10.1029/2002WR001815, 2003. Li, W., Wang Z., Li, Z., Zhang, C., and Lv, L.: Study on hydraulic characteristics of step-pool system, Adv. Water Sci., 25(3), 374-382, https://doi.org/10.14042/j.cnki.32.1309.2014.03.012, 2014. (In Chinese with English abstract) Maas, H. G., Gruen, A., and Papantoniou, D.: Particle tracking velocimetry in three-dimensional flows, Exp. Fluids, 15(2), 133-146. https://doi.org/10.1007/BF00223406, 1993.
765 Montgomery, D. R. and Buffington, J. M.: Channel-reach morphology in mountain drainage basins, Geol. Soc. Am. Bul., 109(5), 596-611, https://doi.org/10.1130/0016-7606(1997)109<0596:CRMIMD>2.3.CO;2, 1997. Morgan J. A., Brogan D. J., and Nelson P. A.: Application of structure-from-motion photogrammetry in laboratory flumes, Geomorphology, 276(1), 125-143, https://doi.org/10.1016/j.geomorph.2016.10.021, 2017. Recking, A., Leduc, P., Liébault, F., and Church, M.: A field investigation of the influence of sediment supply on step-pool 770 morphology and stability. Geomorphology, 139, 53-66, https://doi.org/10.1016/j.geomorph.2011.09.024, 2012. Roth, M. S., Jähnel, C., Stamm, J., and Schneider, L. K.: Turbulent eddy identification of a meander and vertical-slot fishways in numerical models applying the IPOS-framework, J. Ecohydraulics, 1-20, https://doi.org/10.1080/24705357.2020.1869916, 2020. Saletti, M. and Hassan, M. A.: Width variations control the development of grain structuring in steep step‐pool dominated 775 streams: insight from flume experiments, Earth Surf. Proc. Land., 45(6), 1430-1440, https://doi.org/10.1002/esp.4815, 2020. Smith, D. P., Kortman, S. R., Caudillo, A. M., Kwan‐Davis, R. L., Wandke, J. J., Klein, J. W., Gennaro, M. C. S., Bogdan, M. A., and Vannerus, P. A.: Controls on large boulder mobility in an ‘auto-naturalized’ constructed step-pool river: San Clemente Reroute and Dam Removal Project, Carmel River, California, USA, Earth Surf. Proc. Land., 45(9), 1990-2003, 780 https://doi.org/10.1002/esp.4860, 2020. Thappeta, S. K., Bhallamudi, S. M., Fiener, P., and Narasimhan, B.: Resistance in Steep Open Channels due to Randomly Distributed Macroroughness Elements at Large Froude Numbers, J. Hydraul. Eng., 22(12), 04017052, https://doi.org/10.1061/(ASCE)HE.1943-5584.0001587, 2017. Thappeta, S. K., Bhallamudi, S. M., Chandra, V., Fiener, P., and Baki, A. B. M.: Energy loss in steep open channels with step785 pools, Water, 13(1), 72, https://doi.org/10.3390/w13010072, 2021. Turowski, J. M., Yager, E. M., Badoux, A., Rickenmann, D., and Molnar, P.: The impact of exceptional events on erosion, bedload transport and channel stability in a step-pool channel, Earth Surf. Proc. Land., 34(12), 1661-1673, https://doi.org/10.1002/esp.1855, 2009. Vallé, B. L. and Pasternack, G. B.: Air concentrations of submerged and unsubmerged hydraulic jumps in a bedrock step‐pool 790 channel, J. Geophys. Res.-Earth, 111(F3), F03016. https://doi:10.1029/2004JF000140, 2006. Waldon, M. G.: Estimation of average stream velocity, J. Hydraul. Eng., 130(11), 1119-1122. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:11(1119), 2004. Wang, Z., Melching, C., Duan, X., and Yu, G.: Ecological and hydraulic studies of step-pool systems, J. Hydraul. Eng., 135(9), 705-717, https://doi.org/10.1061/(ASCE)0733-9429(2009)135:9(705), 2009
795 Wang, Z., Qi, L., and Wang, X.: A prototype experiment of debris flow control with energy dissipation structures, Nat. Hazards, 60(3), 971-989, https://doi.org/10.1007/s11069-011-9878-5, 2012. Weichert, R. B.: Bed Morphology and Stability in Steep Open Channels, Ph.D. Dissertation, No. 16316. ETH Zurich, Switzerland, 247pp., 2005. Wilcox, A. C., Wohl, E. E., Comiti, F., and Mao, L.: Hydraulics, morphology, and energy dissipation in an alpine step‐pool 800 channel, Water Resour. Res., 47(7), W07514, https://doi.org/10.1029/2010WR010192, 2011. Wohl, E. E. and Thompson, D. M.: Velocity characteristics along a small step–pool channel. Earth Surf. Proc. Land., 25(4), 353-367, https://doi.org/10.1002/(SICI)1096-9837(200004)25:4<353::AID-ESP59>3.0.CO;2-5, 2000. Wu, S. and Rajaratnam, N.: Impinging jet and surface flow regimes at drop. J. Hydraul. Res., 36(1), 69-74, https://doi.org/10.1080/00221689809498378, 1998. 805 Xu, Y. and Liu, X.: 3D computational modeling of stream flow resistance due to large woody debris, in: Proceedings of the 8th International Conference on Fluvial Hydraulics, St. Louis, USA, 11-14, Jul, 2346-2353, 2016. Xu, Y. and Liu, X.: Effects of different in-stream structure representations in computational fluid dynamics models—Taking engineered log jams (ELJ) as an example, Water, 9(2), 110, https://doi.org/10.3390/w9020110, 2017. Zeng, Y. X., Ismail, H., and Liu, X.: Flow Decomposition Method Based on Computational Fluid Dynamics for Rock Weir 810 Head-Discharge Relationship. J. Irrig. Drain. Eng., 147(8), 04021030, https://doi.org/10.1061/(ASCE)IR.1943- 4774.0001584, 2021. Zhang, C., Wang, Z., and Li, Z.: A physically-based model of individual step-pool stability in mountain streams, in: Proceedings of the 13th International Symposium on River Sedimentation, Stuttgart, Germany, 801-809, 2016. Zhang, C., Xu, M., Hassan, M. A., Chartrand, S. M., and Wang, Z.: Experimental study on the stability and failure of individual 815 step-pool, Geomorphology, 311, 51-62, https://doi.org/10.1016/j.geomorph.2018.03.023, 2018. Zhang, C., Xu, M., Hassan, M. A., Chartrand, S. M., Wang, Z., and Ma, Z.: Experiment on morphological and hydraulic adjustments of step‐pool unit to flow increase, Earth Surf. Proc. Land., 45(2), 280-294, https://doi.org/10.1002/esp.4722, 2020. Zimmermann A., E.: Flow resistance in steep streams: An experimental study, Water Resour. Res., 46, W09536, 820 https://doi.org/10.1029/2009WR007913, 2010. Zimmermann A. E., Salleti M., Zhang C., Hassan M. A.: Step-pool Channel Features, in: Treatise on Geomorphology (2nd Edition), vol. 9, Fluvial Geomorphology, edited by: Shroder, J. (Editor in Chief), Wohl, E. (Ed.), Elsevier, Amsterdam, Netherlands, https://doi.org/10.1016/B978-0-12-818234-5.00004-3, 2020.
하천횡단구조물이 하천설계기준(2009)대로 설계되었음에도 불구하고, 하류부에서 물받이공 및 바닥보호공의 피해가 발생하여, 구조물 본체에 대한 안전성이 현저하 게 낮아지고 있는 실정이다. 하천설계기준이 상류부의 수리특성을 반영하였다고 하나 하류부의 수리특성인 유속의 변동 성분 또는 압력의 변동성분까지 고려하고 있지는 않다. 현재 많은 선행연구에서 이러한 난류적 특성이 구조물에 미치는 영 향에 대해 제시하고 있는 실정이며, 국내 하천에서의 피해 또한 이와 관련이 있다 고 판단된다. 이에 본 연구에서는 난류성분 특히 압력의 변동성분이 물받이공과 바닥보호공에 미치는 영향을 정량적으로 분석하여, 하천 횡단구조물의 치수 안전 성 증대에 기여하고자 한다. 물받이공과 바닥보호공에 미치는 압력의 변동성분 (pressure fluctuation) 영향을 분석하기 위해 크게 3가지로 연구내용을 분류하였 다. 첫 번째는 압력의 변동으로 순간적인 음압구배(adversed pressure gradient) 가 발생할 경우 바닥보호공의 사석 및 블록이 이탈하는 것이다. 이를 확인하기 위 해 정밀한 압력 측정장치를 통해 압력변이를 측정하여, 사석의 이탈 가능성을 검 토할 것이며, 최종적으로 이탈에 대한 한계조건을 도출할 것이다. 두 번째는 압력 의 변동이 물받이공의 진동을 유발시켜 이를 지지하고 있는 지반에 다짐효과를 가 져와 물받이공과 지반사이에 공극이 발생하는 경우이다. 이러한 공극으로 물받이 공은 자중 및 물의 압력을 받게 되어, 결국 휨에 의한 파괴가 발생할 가능성이 있 게 된다. 본 연구에서는 실험을 통하여 압력의 변동과 물받이공의 진동을 동시에 측정하여, 진동이 발생하지 않을 최소 두께를 제시할 것이다. 세 번째는 압력변이 로 인한 물받이공의 진동이 피로파괴로 연결되는 경우이다. 이 현상 또한 수리실 험을 통해 압력변이-피로파괴의 관계를 정량적으로 분석하여, 한계 조건을 제시할 것이다. 본 연구는 국내 보 및 낙차공에서 발생하는 다양한 Jet의 특성을 수리실 험으로 재현해야 하며, 이를 위해 평면 Jet 분사기(plane Jet injector)를 고안/ 제작하여, 효율적인 수리실험을 수행할 것이다. 또한 3차원 수치해석을 통해 실제 스케일에 적용함으로써 연구결과의 활용도 및 적용성을 높이고자 한다.
Keywords
압력변이, 물받이공, 바닥보호공, 난류, 진동
그림 1 하천횡단구조물 하류부 횡단구조물 파괴그림 2. 시간에 따른 압력의 변동 양상 및 정의
그림 3. 하천횡단구조물 하류부 도수현상시 발생하는 압력변이 분포도, Fr=8.0
상태이며, 바닥(slab)에 양압과 음압이 지속적으로 작용한다. (Fiorotto &
Rinaldo, 2010)
그림 4. 파괴 개념그림 6. PIV 측정 원리(www.photonics.com)그림 7. LED회로판 및 BIV기법 기본개념그림 8. BIV측정기법을 적용한 순간이미지 (Lin et al., 2012)그림 9. 감세공의 분류그림 17 수리실헐 수로시설: (a) 전체수로전경, (b) Weir 보를 포함한 측면도, (c) 도수조건
실험전경 그림 18 수리실험 개요도그림 127 난류모형별 압력 Data (측정위치는 그림 125 참조)그림 128 RNG 모형을 이용한 수치모의 결과그림 129 LES 모형을 이용한 수치모의 결과그림 130 압력 Data의 필터링그림 134 Case 1의 흐름특성 분포도 및 그래프
한국건설기술연구원 (2014) 입자영상유속계(PIV)를 이용한 하천구조물 주변 유동해석 기법 개발
한국건설기술연구원 (2017) 보와 하상유지공의 안전성 확보를 위한 물받이와 바닥보호공의 성능평가 기법에 대한 원천기술개발
국토기술연구센터 (1998) 하상유지공의 구조설계 지침.
감사원 (2013) 감사원 결과보고서- 4대강살리기 사업 주요시설물 품질 밑 수질관리 실태. 국토해양부 (2009) 전국 하천횡단 구조물 설치현황 및 어도 실태조사 보고서.
국토해양부 (2012) 보도자료-준공대비 점검결과, 4대강 보 안전 재확인. 국토해양부 (2012) 국가 및 지방하천 종합정비 마스터플랜.
국토교통성 (2008) 하천사방기술기준.
농림부 (1996). 농업생산기반정비사업계획 설계기
류권규(역자) (2009). 난류의 수치모의(원저자 : 梶島岳夫, 1999). 류권규, 마리안 머스테, 로버트 에테마, 윤병만 (2006). “난류 중 부유사의 속도 지체 측정.” 한국수자원학회논문집, 제39권, 제2호, pp.99-108. 배재현, 이경훈, 신종근, 양용수, 이주희 (2011). “입자영상유속계를 이용한 은어의 유영능력 측정.” 제47권, 제4호, pp.411-418. 우효섭 (2001). 하천수리학. 청문각. 한국수자원학회 (2009). 하천설계기준해설. 한국건설기술연구원 (2014) 입자영상유속계(PIV)를 이용한 하천구조물 주변 유동해석 기법 개발 한국건설기술연구원 (2017) 보와 하상유지공의 안전성 확보를 위한 물받이와 바닥보호공의 성능평가 기법에 대한 원천기술개발
Adrian, R. J., Meinhart, C. D., & Tomkins, C. D. (2000). Vortex organization in the outer region of the turbulent boundary layer. Journal of Fluid Mechanics, 422, 1-54. Anderson, T. W., & Darling, D. A. (1954). A test of goodness of fit. Journal of the American statistical association, 49(268), 765-769. Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609. Barjastehmaleki, S., Fiorotto, V., & Caroni, E. (2016). Spillway stilling basins lining design via Taylor hypothesis. Journal of Hydraulic Engineering, 142(6), 04016010. Beheshti, M. R., Khosrojerdi, A., & Borghei, S. M. (2013). Experimental study of air-water turbulent flow structures on stepped spillways. International Journal of Physical Sciences, 8(25), 1362-1370. Bligh, W. G. (1910). Dams, barrages and weirs on porous foundations. Engineering News, 64(26), 708-710. Bowers, C. E., &Tsai, F. Y. (1969). Fluctuating pressure in spillway stilling basins. Journal of the Hydraulics Division, 95(6), 2071-2080. Brater, E. F., King, H. W., Lindell, J. E., & Wei, C. Y. (1976). Handbook of hydraulics for the solution of hydraulic engineering problems (Vol. 7). New York: McGraw-Hill. Castillo, L. G., Carrillo, J. M., & Sordo-Ward, Á. (2014). Simulation of overflow nappe impingement jets. Journal of Hydroinformatics, 16(4), 922-940
Lin, C., Hsieh, S. C., Lin, I. J., Chang, K. A., & Raikar, R. V. (2012). Flow property and self-similarity in steady hydraulic jumps. Experiments in Fluids, 53(5), 1591-1616
Chanson, H. (1999). The Hydraulics of Open Channel Flow: An Introduction. Physical Modelling of Hydraulics. Chow, V. T. (1959). Open-Channel Hydraulics, McGraw Hill Book Company, Inc., New York. Christensen, B. A. (1984). “Analysis of Partially Filled Circular Storm Sewers.” J. of Hydraulic Engineering, ASCE, Vol. 110, No. 8. El-Ragaby, A., El-Salakawy, E., and Benmokrane, B., “Fatigue Life Evaluation of Concrete Bridge Deck Slabs Reinforced with Glass FRP Composite Bars,” Journal of Composites for Construction, ASCE, Vol. 11, No. 3, 2007, pp. 258-268. (doi: http://dx.doi.org/10.1061/(ASCE) 1090-0268(2007)11:3(258), Fiorotto, V., & Rinaldo, A. (1992). Turbulent pressure fluctuations under hydraulic jumps. Journal of Hydraulic Research, 30(4), 499-520. Flow Science (2015). FLOW-3D User Manual(Release 11.1.0), Los Alamos, New Mexico. González-Betancourt, M. (2016). Uplift force and momenta on a slab subjected to hydraulic jump. Dyna, 83(199), 124-133. Grinstein, L., & Lipsey, S. I. (2001). Encyclopedia of mathematics education. Routledge. Grubbs, F. E., & Beck, G. (1972). Extension of sample sizes and percentage points for significance tests of outlying observations. Technometrics, 14(4), 847-854. Gylltoft K. (1983): Fracture mechanics models for fatigue in concrete structures. Doctoral thesis / Tekniska högskolan i Luleå, 25D, Luleå, 210 pp. Herlina, H. and Jirka, G. H. (2008). “Experiments on gas transfer near the air-water interface in a grid-stirred tank.” Journal of Fluid Mechanics, 594, pp.183-208. IACWD (Interagency Advisory Committee on Water Data). (1982). Guidelines for determining flood flow frequency. Bulletin 17B. JIRKA, G. H. (2008). Experiments on gas transfer at the air–water interface induced by oscillating grid turbulence. Journal of Fluid Mechanics, 594, 183-208. Kadota, A., Suzuki, K., Rummel, A. C., Weitbrecht, V., & Jirka, G. H. (2007). Shallow flow visualization around a single groyne. In Proc. of 7th International Symposium of Particle Image Velocimetry (CD-ROM). Kazemi, F., Khodashenas, S. R., & Sarkardeh, H. (2016). Experimental study of pressure fluctuation in stilling basins. International Journal of Civil Engineering, 14(1), 13-21. Klowak, C., Memon, A., and Mufti, A., “Static and fatigue investigation of second generation steel-free bridge decks,” Cement & Concrete Composites, ScienceDirect, Elsevier, Vol. 28, No.
10, 2006, pp. 890-897. (doi: http://dx.doi.org/10.1016/j.cemconcomp.2006.07.019), Koca, K., Noss, C., Anlanger, C., Brand, A., & Lorke, A. (2017). Performance of the Vectrino Profiler at the sediment–water interface. Journal of Hydraulic Research, 55(4), 573-581. Kolmogorov, A. (1933). Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari, Giorn., 4, 83-91. Leon, A., & Alnahit, A. (2016). A Remotely Controlled Siphon System for Dynamic Water Storage Management. Lin, C., Hsieh, S., Chang, K. and Raikar, R. (2012). “Flow property and self-similarity in steady hydraulic jumps.” Experiments in Fluid, 53, pp. 1591-1616. Lopardo, R., Fattor, C. A., Casado, J. M. and Lopardo, M. C. (2004). “Aspects of vibration and fatigue of materials related to coherent structures of macroturbulent flows” International Conference on Hydraulic of Dams and River Structures. Lopardo, R. A., & Romagnoli, M. (2009). Pressure and velocity fluctuations in stilling basins. In Advances in Water Resources and Hydraulic Engineering (pp. 2093-2098). Springer, Berlin, Heidelberg. Sanchez, P. A., Ramirez, G. E., Vergara, R., & Minguillo, F. (1973). Performance of Sulfur-Coated Urea Under Intermittently Flooded Rice Culture in Peru 1. Soil Science Society of America Journal, 37(5), 789-792. Matsui, S., Tokai, D., Higashiyama, H., and Mizukoshi, M., “Fatigue Durability of Fiber Reinforced Concrete Decks Under Running Wheel Load,” Proceedings 3rd International Conference on Concrete Under Severe Conditions, Ed. N. Banthia, Vancouver, Canada, 2001, pp. 982-991., Mohammadi, S. F., Galgoul, N. S., Starossek, U., & Videiro, P. M. (2016). An efficient time domain fatigue analysis and its comparison to spectral fatigue assessment for an offshore jacket structure. Marine Structures, 49, 97-115. Pothof, I. (2011). Co-current air-water flow in downward sloping pipes. Stichting Deltares Pothof, I. W. M., & Clemens, F. H. L. R. (2011). Experimental study of air–water flow in downward sloping pipes. International journal of multiphase flow, 37(3), 278-292. Ryu, Y., Chang, K. A., & Lim, H. J. (2005). Use of bubble image velocimetry for measurement of plunging wave impinging on structure and associated greenwater. Measurement Science and Technology, 16(10), 1945. Sanjou, M., & Nezu, I. (2009). Turbulence structure and coherent motion in meandering compound open-channel flows. Journal of Hydraulic Research, 47(5), 598-610. Sargison, J. E., & Percy, A. (2009). Hydraulics of broad-crested weirs with varying side slopes. Journal of irrigation and drainage engineering, 135(1), 115-118.
Sobani, A. (2014). Pressure fluctuations on the slabs of stilling basins under hydraulic jump. Song, Y., Chang, K, Ryu, Y. and Kwon, S. (2013). “ Experimental study on flow kinematics and impact pressure in liquid sloshing.”, Experiments in Fluid, 54, pp. 1592. Stagonas, D., Lara, J. L., Losada, I. J., Higuera, P., Jaime, F. F., & Muller, G. (2014). Large scale measurements of wave loads and mapping of impact pressure distribution at the underside of wave recurves. In Proceedings of the HYDRALAB IV Joint User Meeting. Toso, J. W., & Bowers, C. E. (1988). Extreme pressures in hydraulic-jump stilling basins. Journal of Hydraulic Engineering, 114(8), 829-843. Youn, S. G. and Chang, S. P., “Behavior of Composite Bridge Decks Subjected to Static and Fatigue Loading,” Structural Journal, ACI Technical paper, Title No. 95-S23, 1998, pp. 249-258. (doi: http://dx.doi.org/10.14359/543),
The effect of triangular prismatic elements on the hydraulic performance of stepped spillways in the skimming flow regime: an experimental study and numerical modeling
계단식 여수로는 댐의 여수로 위로 흐르는 큰 물의 에너지를 분산시키는 비용 효율적인 유압 구조입니다. 이 연구에서는 삼각주형 요소(TPE)가 계단식 배수로의 수력 성능에 미치는 영향에 초점을 맞췄습니다. 9개의 계단식 배수로 모델이 TPE의 다양한 모양과 레이아웃으로 실험 및 수치적으로 조사되었습니다. 적절한 난류 모델을 채택하려면 RNG k – ε 및 표준 k – ε모델을 활용했습니다. 계산 모델 결과는 계단 표면의 속도 분포 및 압력 프로파일을 포함하여 실험 사례의 계단 여수로에 대한 복잡한 흐름을 만족스럽게 시뮬레이션했습니다. 결과는 계단식 여수로에 TPE를 설치하는 것이 캐비테이션 효과를 줄이는 효과적인 방법이 될 수 있음을 나타냅니다. 계단식 여수로에 TPE를 설치하면 에너지 소실률이 최대 54% 증가했습니다. 계단식 배수로의 성능은 TPE가 더 가깝게 배치되었을 때 개선되었습니다. 또한, 실험 데이터를 이용하여 거칠기 계수( f )와 임계 깊이 대 단차 거칠기( yc / k )의 비율 사이의 관계를 높은 정확도로 얻었다.
Figure 1 | General schematics of laboratory flume facilities.Figure 2 | Different layouts of the selected TPE in the experimental study (y1 and y2 are initial, and sequent depths of hydraulic jump).Figure 3 | Geometry and alignment of TPE in the numerical study.Figure 5 | Comparison of turbulence models in Flow-3D.Figure 6 | Sequent water depths versus unit flow rate in standard stepped spillways and stepped spillways with triangular TPEs of types A
and B.Figure 7 | Energy dissipation for the standard stepped spillway and the stepped spillway with TPEs.Figure 8 | Positions of measurement points to investigate the pressure and velocity distributions on the stepped spillwayFigure 9 | Velocity distributions on the vertical surface of step number 4.Figure 10 | Contour lines of the static pressure (Pa) for the standard form of the stepped spillway with discharge of 60 liters/second.Figure 11 | Pressure distribution on the vertical surface of the fourth step.
Figure 12 | Horizontal profile of the pressure distribution on the floor of step 4.Figure 13 | Roughness coefficient changes with various unit discharges for stepped spillways.Figure 14 | Variations of sequent depth of downstream with various unit discharges for stepped spillways.Figure 15 | Energy dissipation rate changes with various unit discharges for different stepped spillways.Figure 16 | Roughness coefficients (f ) versus the critical depth to the step roughness ratio (yc/K).
REFERENCES
Abbasi, S. & Kamanbedast, A. A. 2012 Investigation of effect of changes in dimension and hydraulic of stepped spillways for maximization energy dissipation. World Applied Sciences Journal 18 (2), 261–267. Arjenaki, M. O. & Sanayei, H. R. Z. 2020 Numerical investigation of energy dissipation rate in stepped spillways with lateral slopes using experimental model development approach. Modeling Earth Systems and Environment 1–12. Attarian, A., Hosseini, K., Abdi, H. & Hosseini, M. 2014 The effect of the step height on energy dissipation in stepped spillways using numerical simulation. Arabian Journal for Science and Engineering 39 (4), 2587–2594. Azhdary Moghaddam, M. 1997 The Hydraulics of Flow on Stepped Ogee-Profile Spillways. Doctoral Dissertation, University of Ottawa, Canada. Bakhtyar, R. & Barry, D. A. 2009 Optimization of cascade stilling basins using GA and PSO approaches. Journal of Hydroinformatics 11 (2), 119–132. Barani, G. A., Rahnama, M. B. & Sohrabipoor, N. 2005 Investigation of flow energy dissipation over different stepped spillways. American Journal of Applied Sciences 2 (6), 1101–1105. Boes, R. M. & Hager, W. H. 2003 Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679. Chamani, M. R. & Rajaratnam, N. 1994 Jet flow on stepped spillways. Journal of Hydraulic Engineering 120 (2), 254–259. Chanson, H. 1994 Comparison of energy dissipation between nappe and skimming flow regimes on stepped chutes. Journal of Hydraulic Research 32 (2), 213–218. Felder, S., Guenther, P. & Chanson, H. 2012 Air-Water Flow Properties and Energy Dissipation on Stepped Spillways: A Physical Study of Several Pooled Stepped Configurations. No. CH87/12. School of Civil Engineering, The University of Queensland. Harlow, F. H. & Nakayama, P. I. 1968 Transport of Turbulence Energy Decay Rate. No. LA-3854. Los Alamos Scientific Lab, N. Mex. Hekmatzadeh, A. A., Papari, S. & Amiri, S. M. 2018 Investigation of energy dissipation on various configurations of stepped spillways considering several RANS turbulence models. Iranian Journal of Science and Technology, Transactions of Civil Engineering 42 (2), 97–109. Henderson, F. M. 1966 Open Channel Flow. MacMillan Company, New York. Kavian Pour, M. R. & Masoumi, H. R. 2008 New approach for estimating of energy dissipation over stepped spillways. International Journal of Civil Engineering 6 (3), 230–237. Li, S., Li, Q. & Yang, J. 2019 CFD modelling of a stepped spillway with various step layouts. Mathematical Problems in Engineering. Li, S., Yang, J. & Li, Q. 2020 Numerical modelling of air-water flows over a stepped spillway with chamfers and cavity blockages. KSCE Journal of Civil Engineering 24 (1), 99–109. Moghadam, M. K., Amini, A. & Moghadam, E. K. 2020 Numerical study of energy dissipation and block barriers in stepped spillways. Journal of Hydroinformatics. Morovati, K., Eghbalzadeh, A. & Javan, M. 2016 Numerical investigation of the configuration of the pools on the flow pattern passing over pooled stepped spillway in skimming flow regime. Acta Mechanic Journal 227, 353–366. Parsaie, A. & Haghiabi, A. H. 2019 The hydraulic investigation of circular crested stepped spillway. Flow Measurement and Instrumentation 70, 101624. Peng, Y., Zhang, X., Yuan, H., Li, X., Xie, C., Yang, S. & Bai, Z. 2019 Energy dissipation in stepped spillways with different horizontal face angles. Energies 12 (23), 4469. Roushangar, K., Foroudi, A. & Saneie, M. 2019 Influential parameters on submerged discharge capacity of converging ogee spillways based on experimental study and machine learning-based modeling. Journal of Hydroinformatics 21 (3), 474–492. Sarkardeh, H., Marosi, M. & Roshan, R. 2015 Stepped spillway optimization through numerical and physical modeling. International Journal of Energy and Environment 6 (6), 597. Shahheydari, H., Nodoshan, E. J., Barati, R. & Moghadam, M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182. Tabari, M. M. R. & Tavakoli, S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science and Engineering 41 (4), 1215–1224. Toombes, L. & Chanson, H. 2000 Air-water flow and gas transfer at aeration cascades: a comparative study of smooth and stepped chutes. In Proceedings of the International Workshop on Hydraulics of Stepped Spillways, Zurich, Switzerland, pp. 22–24. Torabi, H., Parsaie, A., Yonesi, H. & Mozafari, E. 2018 Energy dissipation on rough stepped spillways. Iranian Journal of Science and Technology, Transactions of Civil Engineering 42 (3), 325–330. Wüthrich, D. & Chanson, H. 2014 Hydraulics, air entrainment, and energy dissipation on a Gabion stepped weir. Journal of Hydraulic Engineering 140 (9), 04014046. Yakhot, V. & Orszag, S. A. 1986 Renormalization group analysis of turbulence. I. Basic theory. Journal of Scientific Computing 1 (1), 3–51. Yakhot, V. & Smith, L. M. 1992 The renormalization group, the ɛ-expansion and derivation of turbulence models. Journal of Scientific Computing 7 (1), 35–61.
Maryam Bagheria, Seyed M. Ali Zomorodianb, Masih Zolghadrc, H. MD. Azamathulla d,* and C. Venkata Siva Rama Prasade a Hydraulic Structures, Department of Water Engineering, Shiraz University, Shiraz, Iran b Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, Iran c Department of Water Sciences Engineering, College of Agriculture, Jahrom University, Jahrom, Iran dCivil & Environmental Engineering, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad eDepartment of Civil Engineering, St. Peters Engineering College, Hyderabad, India *Corresponding author. E-mail: azmatheditor@gmail.com
ABSTRACT
Flow separation at the upstream side of the lateral turnouts (intakes) is a critical issue causing eddy currents at the turn-out entrance. It reduces the effective width of flow, turn-out capacity and efficiency.
Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions. Installation of 7 types of roughening elements at the turn-out entrance and 3 different bed level inverts, with 4 different discharges (total of 84 experiments) were examined in this study as a method to reduce the dimensions of the separation zone.
Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone. Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.
측면 분기기(흡입구)의 상류 측에서 흐름 분리는 분기기 입구에서 와류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 턴아웃 용량 및 효율성을 감소시킵니다. 따라서 분리지대의 크기를 파악하고 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다.
이 연구에서는 분리 구역의 치수를 줄이기 위한 방법으로 4가지 다른 배출(총 84개 실험)과 함께 7가지 유형의 조면화 요소를 출구 입구에 설치하고 3가지 서로 다른 베드 레벨 반전 장치를 조사했습니다.
또한 3D CFD(Computational Fluid Dynamics) 모델을 사용하여 분리 영역의 흐름 패턴과 치수를 평가했습니다. 결과는 거칠기 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면 드롭 구현 효과는 사용된 거칠기 계수를 기반으로 이 영역을 다르게 축소할 수 있음을 보여주었습니다.
두 가지 방법을 결합하면 분리 영역 치수를 최대 63%까지 줄일 수 있습니다.
Key words
discharge ratio, flow separation zone, intake, three dimensional simulation
Experimental and numerical study of flow at a 90 degree lateral turn-out with enhanced
roughness coefficient and invert elevation changesFigure 2 | Roughness plates.Figure 3 | Effect of roughness on separation zone dimensionsFigure 4 | Effect of roughness on separation zone dimensions.Figure 5 | Comparison of separation zone for n¼0.023 and n¼0.032.Figure 6 | Effect of drop implementation on separation zone dimensionsFigure 7 | Combined effect of roughness and drop on separation zone dimensionsFigure 8 | Non- dimensional Length of separation zone (Lr) variations against relative unit discharge per width (qr) in present study compared
with other methods.Figure 9 | Velocity profiles for various roughness coefficients along turn-out width.Figure 10 | Effect of roughness on sepration zone dimensions in numerical studyFigure 11 | Comparision of the vortex area (software output) with three roughness (0.009, 0.023 and 0.032).Figure 12 | Comparison of vortex area in 3D mode (tecplot output) with two roughness (a) 0.009 and (b) 0.032Figure 13 | Velocity vector for flow condition Q¼22 l/s, Near surface.Figure 14 | Exprimental and numerical measured velocity.
REFERENCES
Abbasi, A., Ghodsian, M., Habibi, M. & Salehi Neishabouri, S. A. 2004 Experimental investigation on dimensions of flow separation zone at lateral intakeentrance. Research & Construction; Pajouhesh va Sazandegi (in Persian) 62, 38–44. Al-Zubaidy, R. & Hilo, A. 2021 Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD). Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.11.172. Jalili, H., Hosseinzadeh Dalir, A. & Farsadizadeh, D. 2011 Effect of intake geometry on the sediment transport and flow pattern at lateral. Iranian Water Research Journal(InPersian) 5 (9), 1–10. Jamshidi, A., Farsadizadeh, D. & Hosseinzadeh Dalir, A. 2016 Variations of flow separation zone at lateral intakes entrance using submerged vanes. Journal of Civil Engineering Urban 6 (3), 54–63. Journal homepage. Available from: www.ojceu.ir/main. Karami Moghaddam, K. & Keshavarzi, A. 2007 Investigation of flow structure in lateral intakes 55° and 900 ° with rounded entrance edge. In: 03 National Congress on Civil Engineering University of Tabriz. (In Persian). Available from: https://civilica.com/doc/16317. Karami, H., Farzin, S., Sadrabadi, M. T. & Moazeni, H. 2017 Simulation of flow pattern at rectangular lateral intake with different dike and submerged vane scenarios. Journal of Water Science and Engineering 10 (3), 246–255. https://doi.org/10.1016/j.wse.2017.10.001. Kasthuri, B. & Pundarikanthan, N. V. 1987 Discussion on separation zone at open- channel junction. Journal of Hydraulic Engineering 113 (4), 543–548. Keshavarzi, A. & Habibi, L. 2005 Optimizing water intake angle by flow separation analysis. Journal of Irrigation and Drain 54, 543–552. https://doi.org/10.1002/ird.207. Kirkgöz, M. S. & Ardiçlioğ lu, M. 1997 Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering 1099–1105. 10.1061/(ASCE)0733-9429(1997)123:12(1099). Nakato, T., Kennedy, J. F. & Bauerly, D. 1990 Pumpstation intake-shoaling control with submerge vanes. Journal of Hydraulic Engineering. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(119).
Neary, V. S., Sotiropoulos, F. & Odgaard, A. J. 1999 Three-dimensional numerical model of lateral-intake in flows. Journal of Hydraulic Engineering. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:2(126). Nikbin, S. & Borghei, S. M. 2011 Experimental investigation of submerged vanes effect on dimensions of flow separation zone at 90° openchannel junction. In: 06rd National Congress on Civil Engineering University of Semnan. (In Persian). Available from: https:// civilica.com/doc/120494. Odgaard, J. A. & Wang, Y. 1991 Sediment management with submerged vanes, I: theory. Journal of Hydraulic Engineering 117 (3), 267–283. Ouyang, H. T. 2009 Investigation on the dimensions and shape of a submerged vane for sediment management in alluvial channels. Journal of Hydraulic Engineering. https://doi.org/10.1061/(ASCE)0733-9429(2009)135:3(209). Ramamurthy, A. S., Junying, Q. & Diep, V. 2007 Numerical and experimental study of dividing open-channel flows. Journal of Hydraulic Engineering. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135). Samimi Behbahan, T. 2011 Laboratory investigation of submerged vane shapes effect on river banks protection. Australian Journal of Basic and Applied Sciences 5 (12), 1402–1407. Seyedian, S., Karami Moghaddam, K. & Shafai Begestan, M. 2008 Determine the optimal radius in lateral intakes 55° and 90° using variation of flow velocity. In: 07th Iranian Hydraulic Conference. Power & Water University of Technology (PWUT) (in Persian). Available from: https://civilica.com/doc/56251. Zolghadr, M. & Shafai Bejestan, M. 2020 Six legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments. International Journal of River Basin Management. doi: 10.1080/15715124.2020.1726357. Zolghadr, M., Zomorodian, S. M. A., Shabani, R. & Azamatulla Md., H. 2020 Migration of sand mining pit in rivers: an experimental, numerical and case study. Measurement. https://doi.org/10.1016/j.measurement.2020.108944.
본 연구에서는 LW(Labyrinth Weir)와 PKW(Piano Key Weir)가 결합된 T자형 웨어(TSW)라는 새로운 비선형 웨어를 도입하여 수압 성능을 비교하였다.
PKW. 입구 키, 출구 키 또는 두 키 모두에서 수직 벽의 존재에 따라 TSW 위어는 각각 A, B 또는 C 유형 웨어로 분류되었습니다. 다른 TSW 사례의 흐름 패턴을 분석하고 배출 계수 곡선을 제공했습니다. 또한 테스트된 둑의 유체역학을 정확하게 연구하기 위해 FLOW-3D 소프트웨어를 사용하여 3D 수치 시뮬레이션을 수행했습니다.
결과는 출구 키(C-TSW 유형)의 상류에 수직 벽을 삽입하는 것이 PKW의 유압 성능에 미미한 영향을 미치는 것으로 나타났습니다. B-TSW의 토출계수는 PKW 대비 최대 16% 증가하였으며, Ht/p 0.45까지 수직벽의 성능향상 효과 증가 B-TSW는 유지되었습니다.
실험적 및 수치적 실험을 통해 가장 높은 방전 용량을 갖는 B-TSW에서 수직벽의 최적 높이비(Pd/P)는 0.4로 결정되었다.
In the present study, a new nonlinear weir called the T-shaped weir (TSW), which is a combination of the labyrinth weir (LW) and the piano key weir (PKW), was introduced, and its hydraulic performance was compared with the PKW. Based on the presence of the vertical walls at the inlet key, outlet key, or both keys, the TSW weirs were classified as type A, B, or C weirs, respectively. The flow pattern of different TSW cases was analyzed, and the discharge coefficient curves were provided. Furthermore, to accurately study the hydrodynamics of the tested weirs, 3D numerical simulations were performed using the FLOW-3D software. The results showed that inserting a vertical wall at the upstream of the outlet keys (C-TSW type) has a negligible effect on the hydraulic performance of the PKW. A maximum increase of 16% occurred in the discharge coefficient of the B-TSW in comparison to the PKW, and up to a head to height ratio (Ht/p) of 0.45, the effect of the vertical wall on increasing the performance of the B-TSW was maintained. Based on the experimental and numerical tests, the optimal height ratio of the vertical wall (Pd/P) in B-TSW with highest discharge capacity was determined to be equal to 0.4.
Figure 2 Idea and details of T-shaped weir.Figure 19. Water surface profile at the middle part of the inlet key for H/P = 0.4.Figure 21 Transverse water surface profile in the outlet key of tested weirs for H/P = 0.4.
REFERENCES
Anderson R. M. & Tullis B. P. 2011 Influence of Piano Key Weirs Geometry on Discharge. In Labyrinth and Piano Key Weirs – PKW 2011. CRC Press, Leiden, pp. 75–80.
Bremer F. L. & Oertel M. 2017 Numerical investigation of wall thickness influence on Piano key Weir discharge coefficients: A preliminary study. In Labyrinth and Piano Key Weirs III – PKW 2017. CRC Press, London, UK, pp. 101–108.
Cicero G. M., Delisle J. R., Lefebvre V. & Vermeulen J. 2013 Experimental and Numerical Study of the Hydraulic Performance of A Trapezoidal PKW. In Labyrinths and Piano Key Weirs PKW 2013. CRC Press, Boca Raton, FL, pp. 265–272.
Crookston B., Anderson R. M. & Tullis B. P. 2017 Free-flow discharge estimation method for piano key weir geometries. Journal of Hydro-Environment Research 19, 60–167.
Lefebvre V., Vermeulen J. & Blancher B. 2013 Influence of Geometrical Parameters on PK-Weirs Discharge with 3D Numerical Analysis. In: Labyrinth and Piano key Weirs II – PKW 2013. CRC Press, London, pp. 49–56.
Lempérière F. & Ouamane A. 2003 The piano keys weir: a new cost-effective solution for spillways. International Journal on Hydropower & Dams 10 (5), 144–149.
Machiels O., Erpicum S., Archambeau P., Dewals B. J. & Pirotton M. 2011 Influence of piano key weir height on its discharge capacity. In Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B, pp. 59–66.
Paxson G. & Savage B. 2006 Labyrinth spillways: comparison of two popular USA design methods and consideration of non-standard approach conditions and geometries. Division of Civil Engineering, p.37.
Pralong J., Vermeulen J., Blancher B., Laugier F., Erpicum S., Machiels O., Pirotton M., Boillat J.-L., Leite Ribeiro M. & Schleiss A. 2011a A naming convention for the Piano Key Weirs geometrical parameters. In Labyrinth and Piano key Weirs – PKW 2011. CRC Press, London, pp. 271–278.
Pralong J., Montarros F., Blancher B. & Laugier F. 2011b A sensitivity analysis of Piano Key Weirs geometrical parameters based on 3D numerical modelling. In Labyrinth and Piano key Weirs – PKW 2011. CRC Press, London, pp. 133–139.
Ribeiro M. L., Bieri M., Boillat J. L., Schleiss A., Delorme F. & Laugier F. 2009 Hydraulic capacity improvement of existing spillways–design of a piano key weir. In Proceedings (on CD) of the 23rd Congress of the Int. Commission on Large Dams CIGB-ICOLD, Brasilia, Vol. 2, No. CONF, pp. 100–118.
이중 여수로 간섭은 여수로가 서로 가깝게 배치될 때 수압 성능의 손실을 나타냅니다. 배수로 간섭은 물리적 실험과 수치 시뮬레이션을 모두 사용하여 조사됩니다.
이중 여수로 구성의 4개 물리적 모델의 단계 및 배출 측정값을 한국의 4개 댐 부지에서 Flow-3D 계산 결과와 비교합니다.
두 개의 배수로를 함께 사용하는 것을 각 배수로의 단일 작동과 비교합니다. 두 여수로를 동시에 운영할 경우 두 여수로를 통한 총 유량은 최대 7.6%까지 감소합니다.
간섭 계수는 단계 He가 설계 단계 Hd를 초과하고 두 배수로를 분리하는 거리 D가 배수로 너비 W에 비해 짧을 때 가장 중요합니다. 매개변수 DHd/WHe는 계산 및 측정된 간섭 계수와 매우 잘 관련됩니다.
안동댐 설계방류에 대한 홍수경로 예시는 간섭계수를 적용한 경우와 적용하지 않은 경우 저수지 수위의 차이가 42cm임을 보여줍니다. 결과적으로 댐 안전을 위해 추가 여수로의 너비(간섭 계수 포함)를 늘려야 합니다.
Dual spillway interference refers to the loss of hydraulic performance of spillways when they are placed close together. Spillway interference is examined using both physical experiments and numerical simulations. Stage and discharge measurements from four physical models with dual spillways configurations are compared to the Flow-3D computational results at four dam sites in South Korea. The conjunctive use of two spillways is compared with the singular operation of each spillway. When both spillways are operated at the same time, the total flow rate through the two spillways is reduced by up to 7.6%. Interference coefficients are most significant when the stage Heexceeds the design stage Hd and when the distance D separating two spillways is short compared to the spillway width W. The parameter DHd/WHecorrelates very well with the calculated and measured interference coefficients. A flood routing example for the design discharge at Andong dam shows a 42 cm difference in reservoir water level with and without application of the interference coefficient. Consequently, the width of additional spillways (including the interference coefficient) should be increased for dam safety.
Fig. 1. Definition sketch for dual spillwaysFig. 2. Stage-discharge rating curves for dual spillway operations.Fig. 3. Physical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; and (d) Juam-1Fig. 4. Numerical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; (d) Juam-1; (e) Andong-3; (f) Imha-2; (g) Imha-3; and
(h) Juam-3.Fig. 4. (Continued.)Fig. 5. Meshes and calculation domain for numerical modeling of
Andong dam.Fig. 6. Stage-discharge rating curve for existing and additional spillways (Andong-1): (a) existing spillway; (b) additional spillway; and (c) dual
spillway simulations.Fig. 7. Discharge comparison of physical experiments and numerical
simulations. The upper panel is the comparative result for the existing
spillway (ES) and the lower panel is for the additional spillway (AS) at
four dams.Fig. 8. Interference coefficients for dual spillways simulations with
various scenarios.Fig. 9. Regression model for the distance-width ratio (D=W) and head
ratio (Hd=He) by dual spillway simulationsFig. 10. Physical and numerical model validation: (a) numerical modeling; (b) solids of overflow weir of the spillway; and (c) physical models of
reservoir and spillwayFig. 11. Interference coefficients for dual spillways operations with
various scenarios. The dashed lines indicate the results of the validation
model with dual conditions of 1 þ 2, 1 þ 4, 1 þ 6, 3 þ 4, and 4 þ 5.Fig. 12. Results of reservoir operations under the PMF at Andong dam.
References
Cassidy, J. J. 1965. “Irrotational flow over spillways of finite height.” J. Eng. Mech. Div. 91 (6): 155–173. Chanel, P., and J. Doering. 2008. “Assessment of spillway modeling using computational fluid dynamics.” Can. J. Civ. Eng. 35 (12): 1481–1485. https://doi.org/10.1139/L08-094. Chow, V. T. 1959. Open-channel hydraulics, 365–380. New York: McGraw-Hill. Ho, D., B. Cooper, K. Riddette, and S. Donohoo. 2006. “Application of numerical modelling to spillways in Australia.” In Proc., Int. Symp. on Dams in the Societies of the 21st Century, 22nd Int. Congress on Large Dams (ICOLD), edited by L. Berga, et al. London: Taylor & Francis. Huff, F. A. 1967. “Time distribution of rainfall in heavy storms.” Water Resour. Res. 3 (4): 1007–1019. https://doi.org/10.1029/WR003i004 p01007. Kim, D. G., and J. H. Park. 2005. “Analysis of flow structure over ogeespillway in consideration of scale and roughness effects by using CFD model.” KSCE J. Civ. Eng. 9 (2): 161–169. https://doi.org/10.1007 /BF02829067. Koutsunis, N. A. 2015. “Impact of climatic changes on downstream hydraulic geometry and its influence on flood hydrograph routing—Applied to the bluestone dam watershed.” M.S. degree, Dept. of Civil and Environmental Engineering, Colorado State Univ. Lee, J. H., and P. Y. Julien. 2016a. “ENSO impacts on temperature over South Korea.” Int. J. Climatol. 36 (11): 3651. https://doi.org/10.1002 /joc.4581. Lee, J. H., and P. Y. Julien. 2016b. “Teleconnections of the ENSO and South Korean precipitation patterns.” J. Hydrol. 534: 237–250. https://doi.org/10.1016/j.jhydrol.2016.01.011. Lee, J. H., and P. Y. Julien. 2017. “Influence of the El Nino/southern ˜ oscillation on South Korean streamflow variability.” Hydrol. Processes 31 (12): 2162–2178. https://doi.org/10.1002/hyp.11168. Li, S., S. Cain, N. Wosnik, C. Miller, H. Kocahan, and R. Wyckoff. 2011. “Numerical modeling of probable maximum flood flowing through a system of spillways.” J. Hydraul. Eng. 137 (1): 66–74. https://doi.org /10.1061/(ASCE)HY.1943-7900.0000279. MOCT (Ministry of Construction and Transportation). 2003. Hydraulic model study of Soyanggang multipurpose dam auxiliary spillway. [In Korean.] Governing City, South Korea: MOCT. Olsen, N. R., and H. M. Kjellesvig. 1998. “Three-dimensional numerical flow modeling for estimation of spillway capacity.” J. Hydraul. Res. 36 (5): 775–784. https://doi.org/10.1080/00221689809498602. Savage, B. M., and M. C. Johnson. 2001. “Flow over ogee spillway: Physical and numerical model case study.” J. Hydraul. Eng. 127 (8): 640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640). USACE (US Army Corps of Engineers). 2008. Hydrologic modeling system HEC-HMS, user’s manual version 3.2. Davis, CA: USACE. USBR (US Bureau of Reclamation). 1980. Hydraulic laboratory techniques: A water resources technical publication. Denver: US Dept. of the Interior, Bureau of Reclamation. Yakhot, V., and S. A. Orszag. 1986. “Renormalization group analysis of turbulence. I: Basic theory.” J. Sci. Comput. 1 (1): 3–51. https://doi .org/10.1007/BF01061452. Yakhot, V., and L. M. Smith. 1992. “The renormalization group, the e-expansion and derivation of turbulence models.” J. Sci. Comput. 7 (1): 35–61. https://doi.org/10.1007/BF01060210. Zeng, J., L. Zhang, M. Ansar, E. Damisse, and J. A. Gonzalez-Castro. 2017. “Applications of computational fluid dynamics to flow ratings at prototype spillways and weirs. I: Data generation and validation.” J. Irrig. Drain. Eng. 143 (1): 04016072. https://doi.org/10.1061/(ASCE)IR .1943-4774.0001112.
캐비테이션은 고속 및 과난류 흐름에서 수리 구조물에 손상을 입히고 구멍을 만드는 현상입니다. 본 연구에서는 Siah-Bishe 배수로의 계단식 급수 공식을 Flow-3D 소프트웨어를 통해 시뮬레이션하고 물리적 모델과 비교합니다.
이 소프트웨어는 자유 표면과 복잡한 형상의 불안정한 3D 흐름 문제를 분석하는 정확한 도구입니다. 유한체적법을 통해 질량, 운동량, 에너지 보존 공식을 풀어 문제를 해결합니다.
본 연구에서는 여수로의 시작, 끝, 끝 부분의 압력 매개변수를 연구하고 일부 부분에서 음압이 관찰됩니다. 이 압력은 캐비테이션을 일으킬 수 있습니다. 본 연구는 Flow-3D로 모델링된 물리적 모델과 유한체적법 간의 대응 결과를 보여준다.
Cavitation is a phenomenon which damages and makes hole in hydraulic structure in high velocity and over-turbulent flows. In this research, stepped fast water formula of Siah-Bishe spillway is stimulated via Flow-3D software and compared with physical model. This software is an accurate tool in analyzing unsteady 3D flow problems with free surface and complex geometry. It solves problems by solving conservation of mass formulas, momentum and energy viafinite volume method. In this study, pressure parameter at the beginning, end and along the spillway is studied and negative pressure is observed in some parts. This pressure can make cavitation. The study shows the results of correspondence between physical model and finite volume method modeled by Flow-3D.
Electricité de Tahiti(GDF Suez) 댐의 재건이라는 틀 내에서 Coyne et Bellier는 진단과 Tahiti 댐의 전반적인 연구를 수행했습니다.
Tahinu는 프랑스령 폴리네시아의 Tahiti 섬에 위치한 37m 높이의 수력 발전 댐입니다. 수문학적 연구의 검토와 프랑스 표준의 적용은 최대 설계 홍수를 500에서 644 m3/s(+30%)로 증가시켰습니다.
먼저 측수로 여수로(마루 길이 60m)의 1D 수치 모델링을 수행하여 배수 용량을 평가했습니다. 결론은 마루댐과 배수로 수로 측벽의 오버토핑을 유발할 수 있는 배수로의 용량이 충분하지 않다는 것이었습니다.
그런 다음 이러한 결과를 확인하고 배수로의 특정 구성(정원 아래의 접근 속도와 깊이의 불균일한 분포, 측면 채널 단면의 불규칙한 기하학, 잠긴 둑, 곡선 채널 배수로)을 고려하기 위해, 3D 수치 모델링은 Flow 3D®로 수행되었습니다.
시뮬레이션은 1D 모델(흐름의 일반적인 패턴, 상류 저수지 수위)보다 더 정확한 결과를 보여주었습니다. 이에 따라 댐 능선의 높이와 여수로 측벽을 설계 및 최적화하여 안전을 위한 충분한 freeboards을 확보하도록 하였습니다.
Within the framework of the rehabilitation of Electricité de Tahiti (GDF Suez) dams, Coyne et Bellier carried out a diagnosis and an overall study of the Tahinu dam. Tahinu is a 37-m-high earthfill hydroelectric dam, located in the island of Tahiti, French Polynesia. The review of the hydrological study and the application of French standards lead to increase the peak design flood from 500 to 644 m3/s (+30 %). First, a 1D numerical modeling of the side-channel spillway (crest length 60 m) was performed to assess its discharge capacity. The conclusion was an insufficient capacity of the spillway that might induce an overtopping of the crest dam and of the sidewalls of the spillway channel. Then, to confirm these results and to take into account the specific configuration of the spillway (non-uniform distribution of the approach velocity and depth below crest, irregular geometry of the side-channel cross section, submerged weir, curved channel spillway), a 3D numerical modeling was carried out with Flow 3D®. Simulations showed more accurate results than 1D model (general pattern of the flow, upstream reservoir level). Consequently, heightenings of the dam crest and the sidewalls of the spillway channel were designed and optimized to secure sufficient freeboards for safety.
Cite this chapter as:Milési G., Causse S. (2014) 3D Numerical Modeling of a Side-Channel Spillway. In: Gourbesville P., Cunge J., Caignaert G. (eds) Advances in Hydroinformatics. Springer Hydrogeology. Springer, Singapore. https://doi.org/10.1007/978-981-4451-42-0_39
First Online12 November 2013
DOI : https://doi.org/10.1007/978-981-4451-42-0_39
Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid
Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4
Abstract
태양열 집열기의 낮은 효율은 CCHP(Solar Combined Cooling, Heating, and Power) 사이클의 문제점 중 하나로 언급될 수 있습니다. 태양계를 개선하기 위해 나노유체와 다공성 매체가 태양열 집열기에 사용됩니다.
다공성 매질과 나노입자를 사용하는 장점 중 하나는 동일한 조건에서 더 많은 에너지를 흡수할 수 있다는 것입니다. 이 연구에서는 평균 일사량이 1b인 따뜻하고 건조한 지역의 600 m2 건물의 전기, 냉방 및 난방을 생성하기 위해 다공성 매질과 나노유체를 사용하여 태양열 냉난방 복합 발전(SCCHP) 시스템을 최적화했습니다.
본 논문에서는 침전물이 형성되지 않는 lb = 820 w/m2(이란) 정도까지 다공성 물질에서 나노유체의 최적량을 계산하였다. 이 연구에서 태양열 집열기는 구리 다공성 매체(95% 다공성)와 CuO 및 Al2O3 나노 유체로 향상되었습니다.
나노유체의 0.1%-0.6%가 작동 유체로 물에 추가되었습니다. 나노유체의 0.5%가 태양열 집열기 및 SCCHP 시스템에서 가장 높은 에너지 및 엑서지 효율 향상으로 이어지는 것으로 밝혀졌습니다.
본 연구에서 포물선형 집열기(PTC)의 최대 에너지 및 엑서지 효율은 각각 74.19% 및 32.6%입니다. 그림 1은 태양 CCHP의 주기를 정확하게 설명하기 위한 그래픽 초록으로 언급될 수 있습니다.
The low efficiency of solar collectors can be mentioned as one of the problems in solar combined cooling, heating, and power (CCHP) cycles. For improving solar systems, nanofluid and porous media are used in solar collectors. One of the advantages of using porous media and nanoparticles is to absorb more energy under the same conditions. In this research, a solar combined cooling, heating, and power (SCCHP) system has been optimized by porous media and nanofluid for generating electricity, cooling, and heating of a 600 m2 building in a warm and dry region with average solar radiation of Ib = 820 w/m2 in Iran. In this paper, the optimal amount of nanofluid in porous materials has been calculated to the extent that no sediment is formed. In this study, solar collectors were enhanced with copper porous media (95% porosity) and CuO and Al2O3 nanofluids. 0.1%–0.6% of the nanofluids were added to water as working fluids; it is found that 0.5% of the nanofluids lead to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Maximum energy and exergy efficiency of parabolic thermal collector (PTC) riches in this study are 74.19% and 32.6%, respectively. Figure 1 can be mentioned as a graphical abstract for accurately describing the cycle of solar CCHP.
1. Introduction
Due to the increase in energy consumption, the use of clean energy is one of the important goals of human societies. In the last four decades, the use of cogeneration cycles has increased significantly due to high efficiency. Among clean energy, the use of solar energy has become more popular due to its greater availability [1]. Low efficiency of energy production, transmission, and distribution system makes a new system to generate simultaneously electricity, heating, and cooling as an essential solution to be widely used. The low efficiency of the electricity generation, transmission, and distribution system makes the CCHP system a basic solution to eliminate waste of energy. CCHP system consists of a prime mover (PM), a power generator, a heat recovery system (produce extra heating/cooling/power), and thermal energy storage (TES) [2]. Solar combined cooling, heating, and power (SCCHP) has been started three decades ago. SCCHP is a system that receives its propulsive force from solar energy; in this cycle, solar collectors play the role of propulsive for generating power in this system [3].
Increasing the rate of energy consumption in the whole world because of the low efficiency of energy production, transmission, and distribution system causes a new cogeneration system to generate electricity, heating, and cooling energy as an essential solution to be widely used. Building energy utilization fundamentally includes power required for lighting, home electrical appliances, warming and cooling of building inside, and boiling water. Domestic usage contributes to an average of 35% of the world’s total energy consumption [4].
Due to the availability of solar energy in all areas, solar collectors can be used to obtain the propulsive power required for the CCHP cycle. Solar energy is the main source of energy in renewable applications. For selecting a suitable area to use solar collectors, annual sunshine hours, the number of sunny days, minus temperature and frosty days, and the windy status of the region are essentially considered [5]. Iran, with an average of more than 300 sunny days, is one of the suitable countries to use solar energy. Due to the fact that most of the solar radiation is in the southern regions of Iran, also the concentration of cities is low in these areas, and transmission lines are far apart, one of the best options is to use CCHP cycles based on solar collectors [6]. One of the major problems of solar collectors is their low efficiency [7]. Low efficiency increases the area of collectors, which increases the initial cost of solar systems and of course increases the initial payback period. To increase the efficiency of solar collectors and improve their performance, porous materials and nanofluids are used to increase their workability.
There are two ways to increase the efficiency of solar collectors and mechanical and fluid improvement. In the first method, using porous materials or helical filaments inside the collector pipes causes turbulence of the flow and increases heat transfer. In the second method, using nanofluids or salt and other materials increases the heat transfer of water. The use of porous materials has grown up immensely over the past twenty years. Porous materials, especially copper porous foam, are widely used in solar collectors. Due to the high contact surface area, porous media are appropriate candidates for solar collectors [8]. A number of researchers investigated Solar System performance in accordance with energy and exergy analyses. Zhai et al. [9] reviewed the performance of a small solar-powered system in which the energy efficiency was 44.7% and the electrical efficiency was 16.9%.
Abbasi et al. [10] proposed an innovative multiobjective optimization to optimize the design of a cogeneration system. Results showed the CCHP system based on an internal diesel combustion engine was the applicable alternative at all regions with different climates. The diesel engine can supply the electrical requirement of 31.0% and heating demand of 3.8% for building.
Jiang et al. [11] combined the experiment and simulation together to analyze the performance of a cogeneration system. Moreover, some research focused on CCHP systems using solar energy. It integrated sustainable and renewable technologies in the CCHP, like PV, Stirling engine, and parabolic trough collector (PTC) [2, 12–15].
Wang et al. [16] optimized a cogeneration solar cooling system with a Rankine cycle and ejector to reach the maximum total system efficiency of 55.9%. Jing et al. analyzed a big-scale building with the SCCHP system and auxiliary heaters to produced electrical, cooling, and heating power. The maximum energy efficiency reported in their work is 46.6% [17]. Various optimization methods have been used to improve the cogeneration system, minimum system size, and performance, such as genetic algorithm [18, 19].
Hirasawa et al. [20] investigated the effect of using porous media to reduce thermal waste in solar systems. They used the high-porosity metal foam on top of the flat plate solar collector and observed that thermal waste decreased by 7% due to natural heat transfer. Many researchers study the efficiency improvement of the solar collector by changing the collector’s shapes or working fluids. However, the most effective method is the use of nanofluids in the solar collector as working fluid [21]. In the experimental study done by Jouybari et al. [22], the efficiency enhancement up to 8.1% was achieved by adding nanofluid in a flat plate collector. In this research, by adding porous materials to the solar collector, collector efficiency increased up to 92% in a low flow regime. Subramani et al. [23] analyzed the thermal performance of the parabolic solar collector with Al2O3 nanofluid. They conducted their experiments with Reynolds number range 2401 to 7202 and mass flow rate 0.0083 to 0.05 kg/s. The maximum efficiency improvement in this experiment was 56% at 0.05 kg/s mass flow rate.
Shojaeizadeh et al. [24] investigated the analysis of the second law of thermodynamic on the flat plate solar collector using Al2O3/water nanofluid. Their research showed that energy efficiency rose up to 1.9% and the exergy efficiency increased by a maximum of 0.72% compared to pure water. Tiwari et al. [25] researched on the thermal performance of solar flat plate collectors for working fluid water with different nanofluids. The result showed that using 1.5% (optimum) particle volume fraction of Al2O3 nanofluid as an absorbing medium causes the thermal efficiency to enhance up to 31.64%.
The effect of porous media and nanofluids on solar collectors has already been investigated in the literature but the SCCHP system with a collector embedded by both porous media and nanofluid for enhancing the ratio of nanoparticle in nanofluid for preventing sedimentation was not discussed. In this research, the amount of energy and exergy of the solar CCHP cycles with parabolic solar collectors in both base and improved modes with a porous material (copper foam with 95% porosity) and nanofluid with different ratios of nanoparticles was calculated. In the first step, it is planned to design a CCHP system based on the required load, and, in the next step, it will analyze the energy and exergy of the system in a basic and optimize mode. In the optimize mode, enhanced solar collectors with porous material and nanofluid in different ratios (0.1%–0.7%) were used to optimize the ratio of nanofluids to prevent sedimentation.
2. Cycle Description
CCHP is one of the methods to enhance energy efficiency and reduce energy loss and costs. The SCCHP system used a solar collector as a prime mover of the cogeneration system and assisted the boiler to generate vapor for the turbine. Hot water flows from the expander to the absorption chiller in summer or to the radiator or fan coil in winter. Finally, before the hot water wants to flow back to the storage tank, it flows inside a heat exchanger for generating domestic hot water [26].
For designing of solar cogeneration system and its analysis, it is necessary to calculate the electrical, heating (heating load is the load required for the production of warm water and space heating), and cooling load required for the case study considered in a residential building with an area of 600 m2 in the warm region of Iran (Zahedan). In Table 1, the average of the required loads is shown for the different months of a year (average of electrical, heating, and cooling load calculated with CARRIER software).Table 1The average amount of electric charges, heating load, and cooling load used in the different months of the year in the city of Zahedan for a residential building with 600 m2.
According to Table 1, the maximum magnitude of heating, cooling, and electrical loads is used to calculate the cogeneration system. The maximum electric load is 96 kW, the maximum amount of heating load is 62 kW, and the maximum cooling load is 118 kW. Since the calculated loads are average, all loads increased up to 10% for the confidence coefficient. With the obtained values, the solar collector area and other cogeneration system components are calculated. The cogeneration cycle is capable of producing 105 kW electric power, 140 kW cooling capacity, and 100 kW heating power.
2.1. System Analysis Equations
An analysis is done by considering the following assumptions:(1)The system operates under steady-state conditions(2)The system is designed for the warm region of Iran (Zahedan) with average solar radiation Ib = 820 w/m2(3)The pressure drops in heat exchangers, separators, storage tanks, and pipes are ignored(4)The pressure drop is negligible in all processes and no expectable chemical reactions occurred in the processes(5)Potential, kinetic, and chemical exergy are not considered due to their insignificance(6)Pumps have been discontinued due to insignificance throughout the process(7)All components are assumed adiabatic
Schematic shape of the cogeneration cycle is shown in Figure 1 and all data are given in Table 2.
Figure 1Schematic shape of the cogeneration cycle.Table 2Temperature and humidity of different points of system.
Based on the first law of thermodynamic, energy analysis is based on the following steps.
First of all, the estimated solar radiation energy on collector has been calculated:where α is the heat transfer enhancement coefficient based on porous materials added to the collector’s pipes. The coefficient α is increased by the porosity percentage, the type of porous material (in this case, copper with a porosity percentage of 95), and the flow of fluid to the collector equation.
Collector efficiency is going to be calculated by the following equation [9]:
Total energy received by the collector is given by [9]
In the last step based on thermodynamic second law, exergy efficiency has been calculated from the following equation and the above-mentioned calculated loads [9]:
3. Porous Media
The porous medium that filled the test section is copper foam with a porosity of 95%. The foams are determined in Figure 2 and also detailed thermophysical parameters and dimensions are shown in Table 3.
Figure 2Copper foam with a porosity of 95%.Table 3Thermophysical parameters and dimensions of copper foam.
In solar collectors, copper porous materials are suitable for use at low temperatures and have an easier and faster manufacturing process than ceramic porous materials. Due to the high coefficient conductivity of copper, the use of copper metallic foam to increase heat transfer is certainly more efficient in solar collectors.
Porous media and nanofluid in solar collector’s pipes were simulated in FLOW-3D software using the finite-difference method [27]. Nanoparticles Al2O3 and CUO are mostly used in solar collector enhancement. In this research, different concentrations of nanofluid are added to the parabolic solar collectors with porous materials (copper foam with porosity of 95%) to achieve maximum heat transfer in the porous materials before sedimentation. After analyzing PTC pipes with the nanofluid flow in FLOW-3D software, for energy and exergy efficiency analysis, Carrier software results were used as EES software input. Simulation PTC with porous media inside collector pipe and nanofluids sedimentation is shown in Figure 3.
Figure 3Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.
3.1. Nano Fluid
In this research, copper and silver nanofluids (Al2O3, CuO) have been added with percentages of 0.1%–0.7% as the working fluids. The nanoparticle properties are given in Table 4. Also, system constant parameters are presented in Table 4, which are available as default input in the EES software.Table 4Properties of the nanoparticles [9].
System constant parameters for input in the software are shown in Table 5.Table 5System constant parameters.
The thermal properties of the nanofluid can be obtained from equations (18)–(21). The basic fluid properties are indicated by the index (bf) and the properties of the nanoparticle silver with the index (np).
The density of the mixture is shown in the following equation [28]:where ρ is density and ϕ is the nanoparticles volume fraction.
The specific heat capacity is calculated from the following equation [29]:
The thermal conductivity of the nanofluid is calculated from the following equation [29]:
The parameter β is the ratio of the nanolayer thickness to the original particle radius and, usually, this parameter is taken equal to 0.1 for the calculated thermal conductivity of the nanofluids.
The mixture viscosity is calculated as follows [30]:
In all equations, instead of water properties, working fluids with nanofluid are used. All of the above equations and parameters are entered in the EES software for calculating the energy and exergy of solar collectors and the SCCHP cycle. All calculation repeats for both nanofluids with different concentrations of nanofluid in the solar collector’s pipe.
4. Results and Discussion
In the present study, relations were written according to Wang et al. [16] and the system analysis was performed to ensure the correctness of the code. The energy and exergy charts are plotted based on the main values of the paper and are shown in Figures 4 and 5. The error rate in this simulation is 1.07%.
Figure 4Verification charts of energy analysis results.
Figure 5Verification charts of exergy analysis results.
We may also investigate the application of machine learning paradigms [31–41] and various hybrid, advanced optimization approaches that are enhanced in terms of exploration and intensification [42–55], and intelligent model studies [56–61] as well, for example, methods such as particle swarm optimizer (PSO) [60, 62], differential search (DS) [63], ant colony optimizer (ACO) [61, 64, 65], Harris hawks optimizer (HHO) [66], grey wolf optimizer (GWO) [53, 67], differential evolution (DE) [68, 69], and other fusion and boosted systems [41, 46, 48, 50, 54, 55, 70, 71].
At the first step, the collector is modified with porous copper foam material. 14 cases have been considered for the analysis of the SCCHP system (Table 6). It should be noted that the adding of porous media causes an additional pressure drop inside the collector [9, 22–26, 30, 72]. All fourteen cases use copper foam with a porosity of 95 percent. To simulate the effect of porous materials and nanofluids, the first solar PTC pipes have been simulated in the FLOW-3D software and then porous media (copper foam with porosity of 95%) and fluid flow with nanoparticles (AL2O3 and CUO) are generated in the software. After analyzing PTC pipes in FLOW-3D software, for analyzing energy and exergy efficiency, software outputs were used as EES software input for optimization ratio of sedimentation and calculating energy and exergy analyses.Table 6Collectors with different percentages of nanofluids and porous media.
In this research, an enhanced solar collector with both porous media and Nanofluid is investigated. In the present study, 0.1–0.5% CuO and Al2O3 concentration were added to the collector fully filled by porous media to achieve maximum energy and exergy efficiencies of solar CCHP systems. All steps of the investigation are shown in Table 6.
Energy and exergy analyses of parabolic solar collectors and SCCHP systems are shown in Figures 6 and 7.
Figure 6Energy and exergy efficiencies of the PTC with porous media and nanofluid.
Figure 7Energy and exergy efficiency of the SCCHP.
Results show that the highest energy and exergy efficiencies are 74.19% and 32.6%, respectively, that is achieved in Step 12 (parabolic collectors with filled porous media and 0.5% Al2O3). In the second step, the maximum energy efficiency of SCCHP systems with fourteen steps of simulation are shown in Figure 7.
In the second step, where 0.1, −0.6% of the nanofluids were added, it is found that 0.5% leads to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Using concentrations more than 0.5% leads to sediment in the solar collector’s pipe and a decrease of porosity in the pipe [73]. According to Figure 7, maximum energy and exergy efficiencies of SCCHP are achieved in Step 12. In this step energy efficiency is 54.49% and exergy efficiency is 18.29%. In steps 13 and 14, with increasing concentration of CUO and Al2O3 nanofluid solution in porous materials, decreasing of energy and exergy efficiency of PTC and SCCHP system at the same time happened. This decrease in efficiency is due to the formation of sediment in the porous material. Calculations and simulations have shown that porous materials more than 0.5% nanofluids inside the collector pipe cause sediment and disturb the porosity of porous materials and pressure drop and reduce the coefficient of performance of the cogeneration system. Most experience showed that CUO and AL2O3 nanofluids with less than 0.6% percent solution are used in the investigation on the solar collectors at low temperatures and discharges [74]. One of the important points of this research is that the best ratio of nanofluids in the solar collector with a low temperature is 0.5% (AL2O3 and CUO); with this replacement, the cost of solar collectors and SCCHP cycle is reduced.
5. Conclusion and Future Directions
In the present study, ways for increasing the efficiency of solar collectors in order to enhance the efficiency of the SCCHP cycle are examined. The research is aimed at adding both porous materials and nanofluids for estimating the best ratio of nanofluid for enhanced solar collector and protecting sedimentation in porous media. By adding porous materials (copper foam with porosity of 95%) and 0.5% nanofluids together, high efficiency in solar parabolic collectors can be achieved. The novelty in this research is the addition of both nanofluids and porous materials and calculating the best ratio for preventing sedimentation and pressure drop in solar collector’s pipe. In this study, it was observed that, by adding 0.5% of AL2O3 nanofluid in working fluids, the energy efficiency of PTC rises to 74.19% and exergy efficiency is grown up to 32.6%. In SCCHP cycle, energy efficiency is 54.49% and exergy efficiency is 18.29%.
In this research, parabolic solar collectors fully filled by porous media (copper foam with a porosity of 95) are investigated. In the next step, parabolic solar collectors in the SCCHP cycle were simultaneously filled by porous media and different percentages of Al2O3 and CuO nanofluid. At this step, values of 0.1% to 0.6% of each nanofluid were added to the working fluid, and the efficiency of the energy and exergy of the collectors and the SCCHP cycle were determined. In this case, nanofluid and the porous media were used together in the solar collector and maximum efficiency achieved. 0.5% of both nanofluids were used to achieve the biggest efficiency enhancement.
In the present study, as expected, the highest efficiency is for the parabolic solar collector fully filled by porous material (copper foam with a porosity of 95%) and 0.5% Al2O3. Results of the present study are as follows:(1)The average enhancement of collectors’ efficiency using porous media and nanofluids is 28%.(2)Solutions with 0.1 to 0.5% of nanofluids (CuO and Al2O3) are used to prevent collectors from sediment occurrence in porous media.(3)Collector of solar cogeneration cycles that is enhanced by both porous media and nanofluid has higher efficiency, and the stability of output temperature is more as well.(4)By using 0.6% of the nanofluids in the enhanced parabolic solar collectors with copper porous materials, sedimentation occurs and makes a high-pressure drop in the solar collector’s pipe which causes decrease in energy efficiency.(5)Average enhancement of SCCHP cycle efficiency is enhanced by both porous media and nanofluid 13%.
Nomenclature
:
Solar radiation
a:
Heat transfer augmentation coefficient
A:
Solar collector area
Bf:
Basic fluid
:
Specific heat capacity of the nanofluid
F:
Constant of air dilution
:
Thermal conductivity of the nanofluid
:
Thermal conductivity of the basic fluid
:
Viscosity of the nanofluid
:
Viscosity of the basic fluid
:
Collector efficiency
:
Collector energy receives
:
Auxiliary boiler heat
:
Expander energy
:
Gas energy
:
Screw expander work
:
Cooling load, in kilowatts
:
Heating load, in kilowatts
:
Solar radiation energy on collector, in Joule
:
Sanitary hot water load
Np:
Nanoparticle
:
Energy efficiency
:
Heat exchanger efficiency
:
Sun exergy
:
Collector exergy
:
Natural gas exergy
:
Expander exergy
:
Cooling exergy
:
Heating exergy
:
Exergy efficiency
:
Steam mass flow rate
:
Hot water mass flow rate
:
Specific heat capacity of water
:
Power output form by the screw expander
Tam:
Average ambient temperature
:
Density of the mixture.
Greek symbols
ρ:
Density
ϕ:
Nanoparticles volume fraction
β:
Ratio of the nanolayer thickness.
Abbreviations
CCHP:
Combined cooling, heating, and power
EES:
Engineering equation solver.
Data Availability
For this study, data were generated by CARRIER software for the average electrical, heating, and cooling load of a residential building with 600 m2 in the city of Zahedan, Iran.
Conflicts of Interest
The authors declare that they have no conflicts of interest.
Acknowledgments
This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.
References
A. Fudholi and K. Sopian, “Review on solar collector for agricultural produce,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 9, no. 1, p. 414, 2018.View at: Publisher Site | Google Scholar
G. Yang and X. Zhai, “Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies,” Applied Thermal Engineering, vol. 133, pp. 327–340, 2018.View at: Publisher Site | Google Scholar
J. Wang, Z. Han, and Z. Guan, “Hybrid solar-assisted combined cooling, heating, and power systems: a review,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110256, 2020.View at: Publisher Site | Google Scholar
Y. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Applied Energy, vol. 104, pp. 538–553, 2013.View at: Publisher Site | Google Scholar
J. M. Hassan, Q. J. Abdul-Ghafour, and M. F. Mohammed, “CFD simulation of enhancement techniques in flat plate solar water collectors,” Al-Nahrain Journal for Engineering Sciences, vol. 20, no. 3, pp. 751–761, 2017.View at: Google Scholar
M. Jahangiri, O. Nematollahi, A. Haghani, H. A. Raiesi, and A. Alidadi Shamsabadi, “An optimization of energy cost of clean hybrid solar-wind power plants in Iran,” International Journal of Green Energy, vol. 16, no. 15, pp. 1422–1435, 2019.View at: Publisher Site | Google Scholar
I. H. Yılmaz and A. Mwesigye, “Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review,” Applied Energy, vol. 225, pp. 135–174, 2018.View at: Google Scholar
F. Wang, J. Tan, and Z. Wang, “Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas,” Energy Conversion and Management, vol. 83, pp. 159–166, 2014.View at: Publisher Site | Google Scholar
H. Zhai, Y. J. Dai, J. Y. Wu, and R. Z. Wang, “Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas,” Applied Energy, vol. 86, no. 9, pp. 1395–1404, 2009.View at: Publisher Site | Google Scholar
M. H. Abbasi, H. Sayyaadi, and M. Tahmasbzadebaie, “A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application,” Applied Thermal Engineering, vol. 135, pp. 389–405, 2018.View at: Google Scholar
R. Jiang, F. G. F. Qin, X. Yang, S. Huang, and B. Chen, “Performance analysis of a liquid absorption dehumidifier driven by jacket-cooling water of a diesel engine in a CCHP system,” Energy and Buildings, vol. 163, pp. 70–78, 2018.View at: Publisher Site | Google Scholar
F. A. Boyaghchi and M. Chavoshi, “Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC,” Solar Energy, vol. 166, pp. 351–370, 2018.View at: Publisher Site | Google Scholar
F. A. Boyaghchi and M. Chavoshi, “Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts,” Applied Thermal Engineering, vol. 112, pp. 660–675, 2017.View at: Publisher Site | Google Scholar
B. Su, W. Han, Y. Chen, Z. Wang, W. Qu, and H. Jin, “Performance optimization of a solar assisted CCHP based on biogas reforming,” Energy Conversion and Management, vol. 171, pp. 604–617, 2018.View at: Publisher Site | Google Scholar
F. A. Al-Sulaiman, F. Hamdullahpur, and I. Dincer, “Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production,” Renewable Energy, vol. 48, pp. 161–172, 2012.View at: Publisher Site | Google Scholar
J. Wang, Y. Dai, L. Gao, and S. Ma, “A new combined cooling, heating and power system driven by solar energy,” Renewable Energy, vol. 34, no. 12, pp. 2780–2788, 2009.View at: Publisher Site | Google Scholar
Y.-Y. Jing, H. Bai, J.-J. Wang, and L. Liu, “Life cycle assessment of a solar combined cooling heating and power system in different operation strategies,” Applied Energy, vol. 92, pp. 843–853, 2012.View at: Publisher Site | Google Scholar
J.-J. Wang, Y.-Y. Jing, and C.-F. Zhang, “Optimization of capacity and operation for CCHP system by genetic algorithm,” Applied Energy, vol. 87, no. 4, pp. 1325–1335, 2010.View at: Publisher Site | Google Scholar
L. Ali, “LDA–GA–SVM: improved hepatocellular carcinoma prediction through dimensionality reduction and genetically optimized support vector machine,” Neural Computing and Applications, vol. 87, pp. 1–10, 2020.View at: Google Scholar
S. Hirasawa, R. Tsubota, T. Kawanami, and K. Shirai, “Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium,” Solar Energy, vol. 97, pp. 305–313, 2013.View at: Publisher Site | Google Scholar
E. Bellos, C. Tzivanidis, and Z. Said, “A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors,” Sustainable Energy Technologies and Assessments, vol. 39, p. 100714, 2020.View at: Publisher Site | Google Scholar
H. J. Jouybari, S. Saedodin, A. Zamzamian, M. E. Nimvari, and S. Wongwises, “Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study,” Renewable Energy, vol. 114, pp. 1407–1418, 2017.View at: Publisher Site | Google Scholar
J. Subramani, P. K. Nagarajan, S. Wongwises, S. A. El-Agouz, and R. Sathyamurthy, “Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids,” Environmental Progress & Sustainable Energy, vol. 37, no. 3, pp. 1149–1159, 2018.View at: Publisher Site | Google Scholar
E. Shojaeizadeh, F. Veysi, and A. Kamandi, “Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based Flat-plate solar collector,” Energy and Buildings, vol. 101, pp. 12–23, 2015.View at: Publisher Site | Google Scholar
A. K. Tiwari, P. Ghosh, and J. Sarkar, “Solar water heating using nanofluids–a comprehensive overview and environmental impact analysis,” International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 3, pp. 221–224, 2013.View at: Google Scholar
D. R. Rajendran, E. Ganapathy Sundaram, P. Jawahar, V. Sivakumar, O. Mahian, and E. Bellos, “Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design,” Journal of Thermal Analysis and Calorimetry, vol. 140, no. 1, pp. 33–51, 2020.View at: Publisher Site | Google Scholar
M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Google Scholar
K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” International Journal of Heat and Mass Transfer, vol. 54, no. 19-20, pp. 4410–4428, 2011.View at: Publisher Site | Google Scholar
K. Farhana, K. Kadirgama, M. M. Rahman et al., “Improvement in the performance of solar collectors with nanofluids – a state-of-the-art review,” Nano-Structures & Nano-Objects, vol. 18, p. 100276, 2019.View at: Publisher Site | Google Scholar
M. Turkyilmazoglu, “Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models,” European Journal of Mechanics-B/Fluids, vol. 65, pp. 184–191, 2017.View at: Publisher Site | Google Scholar
X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 2020, 2020.View at: Google Scholar
X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
X. Zhang, M. Fan, D. Wang, P. Zhou, and D. Tao, “Top-k feature selection framework using robust 0-1 integer programming,” IEEE Transactions on Neural Networks and Learning Systems, vol. 1, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 1, 2020.View at: Google Scholar
M. Mirmozaffari, “Machine learning algorithms based on an optimization model,” 2020.View at: Google Scholar
M. Mirmozaffari, M. Yazdani, A. Boskabadi, H. Ahady Dolatsara, K. Kabirifar, and N. Amiri Golilarz, “A novel machine learning approach combined with optimization models for eco-efficiency evaluation,” Applied Sciences, vol. 10, no. 15, p. 5210, 2020.View at: Publisher Site | Google Scholar
M. Vosoogha and A. Addeh, “An intelligent power prediction method for wind energy generation based on optimized fuzzy system,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 5, pp. 34–43, 2019.View at: Google Scholar
A. Javadi, N. Mikaeilvand, and H. Hosseinzdeh, “Presenting a new method to solve partial differential equations using a group search optimizer method (GSO),” Computational Research Progress in Applied Science and Engineering, vol. 4, no. 1, pp. 22–26, 2018.View at: Google Scholar
F. J. Golrokh, Gohar Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, pp. 1–8, 2020.View at: Google Scholar
H. Yu, “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 1, pp. 1–29, 2020.View at: Google Scholar
C. Yu, “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 1, pp. 1–28, 2021.View at: Google Scholar
W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 1, p. 106728, 2020.View at: Google Scholar
J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, p. 106642, 2021.View at: Publisher Site | Google Scholar
Y. Zhang, “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 1, 2020.View at: Google Scholar
Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 1, pp. 1–30, 2020.View at: Google Scholar
H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, 2020.View at: Publisher Site | Google Scholar
X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
R. U. Khan, X. Zhang, R. Kumar, A. Sharif, N. A. Golilarz, and M. Alazab, “An adaptive multi-layer botnet detection technique using machine learning classifiers,” Applied Sciences, vol. 9, no. 11, p. 2375, 2019.View at: Publisher Site | Google Scholar
A. Addeh, A. Khormali, and N. A. Golilarz, “Control chart pattern recognition using RBF neural network with new training algorithm and practical features,” ISA Transactions, vol. 79, pp. 202–216, 2018.View at: Publisher Site | Google Scholar
N. Amiri Golilarz, H. Gao, R. Kumar, L. Ali, Y. Fu, and C. Li, “Adaptive wavelet based MRI brain image de-noising,” Frontiers in Neuroscience, vol. 14, p. 728, 2020.View at: Publisher Site | Google Scholar
N. A. Golilarz, H. Gao, and H. Demirel, “Satellite image de-noising with Harris hawks meta heuristic optimization algorithm and improved adaptive generalized Gaussian distribution threshold function,” IEEE Access, vol. 7, pp. 57459–57468, 2019.View at: Publisher Site | Google Scholar
M. Eisazadeh and J. Rezapour, “Multi-objective optimization of the composite sheets using PSO algorithm,” 2017.View at: Google Scholar
I. Bargegol, M. Nikookar, R. V. Nezafat, E. J. Lashkami, and A. M. Roshandeh, “Timing optimization of signalized intersections using shockwave theory by genetic algorithm,” Computational Research Progress in Applied Science & Engineering, vol. 1, pp. 160–167, 2015.View at: Google Scholar
B. Bai, Z. Guo, C. Zhou, W. Zhang, and J. Zhang, “Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering,” Information Sciences, vol. 546, pp. 42–59, 2021.View at: Publisher Site | Google Scholar
J. Liu, C. Wu, G. Wu, and X. Wang, “A novel differential search algorithm and applications for structure design,” Applied Mathematics and Computation, vol. 268, pp. 246–269, 2015.View at: Publisher Site | Google Scholar
X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
D. Zhao, “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 24, p. 106510, 2020.View at: Google Scholar
H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, p. 106684, 2021.View at: Publisher Site | Google Scholar
G. Sun, B. Yang, Z. Yang, and G. Xu, “An adaptive differential evolution with combined strategy for global numerical optimization,” Soft Computing, vol. 24, pp. 1–20, 2019.View at: Google Scholar
G. Sun, C. Li, and L. Deng, “An adaptive regeneration framework based on search space adjustment for differential evolution,” Neural Computing and Applications, vol. 24, pp. 1–17, 2021.View at: Google Scholar
A. Addeh and M. Iri, “Brain tumor type classification using deep features of MRI images and optimized RBFNN,” ENG Transactions, vol. 2, pp. 1–7, 2021.View at: Google Scholar
F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” Soft Computing, vol. 1, pp. 1–8, 2020.View at: Google Scholar
H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” Journal of Solar Energy Engineering, vol. 131, no. 4, 2009.View at: Publisher Site | Google Scholar
S. Rashidi, M. Bovand, and J. A. Esfahani, “Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis,” Energy Conversion and Management, vol. 103, pp. 726–738, 2015.View at: Publisher Site | Google Scholar
N. Akram, R. Sadri, S. N. Kazi et al., “A comprehensive review on nanofluid operated solar flat plate collectors,” Journal of Thermal Analysis and Calorimetry, vol. 139, no. 2, pp. 1309–1343, 2020.View at: Publisher Site | Google Scholar
이 논문에서는 Rijke 튜브 내부의 시간 종속 유동장의 실험 연구 및 계산 시뮬레이션에서 진행한 결과를 제시하고 해석합니다. 기존의 추측과 스케일링 분석을 기반으로 한 이론적 논의가 진행됩니다. 주요 결과에는 열 구동 진동에서 중요한 역할을 하는 것으로 보이는 유사성 매개변수가 포함됩니다. 이 매개변수는 열 섭동을 속도, 압력 및 특성 길이의 제곱과 관련시킵니다. 열 진동을 압력 및 속도 진동의 결합된 효과에 기인하는 간단한 이론은 계산, 실험 및 스케일링 고려 사항을 통해 논의됩니다. 이전의 분석 이론은 열 진동을 속도 또는 압력 진동에 연결했기 때문에 현재 분석 모델은 기존 추측에 동의하고 조정합니다. Rayleigh 기준에 따라 열원은 Rijke-tube 하단에서 1/4의 임계 거리에 위치해야 공명이 발생합니다. 이 관찰은 결합이 최대화되는 임계점이 음향 속도와 압력의 곱인 음향 강도가 가장 큰 공간 위치에 해당하기 때문에 제안된 해석을 확인합니다. 수치 시뮬레이션은 Rijke 튜브 내부의 압력 진동이 열 입력이 증가함에 따라 기하급수적으로 증가한다는 것을 보여줍니다. 충분히 작은 열 입력으로 음향 싱크가 소스를 초과하고 음향 감쇠가 발생합니다. 열 입력이 임계 임계값 이상으로 증가하면 음향 싱크가 불충분해져서 내부 에너지 축적으로 인해 빠른 음향 증폭이 발생합니다.
In this paper, results proceeding from experimental studies and computational simulations of the time-dependent flowfield inside a Rijke tube are presented and interpreted. A theoretical discussion based on existing speculations and scaling analyses is carried out. The main results include a similarity parameter that appears to play an important role in the heat driven oscillations. This parameter relates heat perturbations to velocity, pressure, and the square of a characteristic length. A simple theory that attributes heat oscillations to the combined effects of pressure and velocity oscillations is discussed via computational, experimental, and scaling considerations. Since previous analytical theories link heat oscillations to either velocity or pressure oscillations, the current analytical model agrees with and reconciles between existing speculations. In compliance with the Rayleigh criterion, it is found that the heat source must be positioned at a critical distance of 1/4 from the Rijke-tube lower end for resonance to occur. This observation confirms our proposed interpretation since the critical point where coupling is maximized corresponds to a spatial location where the acoustic intensity, product of both acoustic velocities and pressures, is largest. Numerical simulations show that pressure oscillations inside the Rijke tube grow exponentially with increasing heat input With a sufficiently small heat input, the acoustic sinks exceed the sources and acoustic damping takes place. When the heat input is augmented beyond a critical threshold, acoustic sinks become insufficient causing rapid acoustic amplification by virtue of internal energy accumulation.
Fig. 2 Schematic diagram of the experimental
Rijke tubeA novel investigation of the thermoacoustic field inside a Rijke tube
References
‘Entezam, B., Majdalani, J., and Van Moorhem, W. K., “Modeling of a Rijke-Tube Pulse Combustor Using Computational Fluid Dynamics,” AIAA Paper 97-2718, Seattle, WA, July 1997.
2George, W., and Reethof, G., “On the Fragility of Acoustically Agglomerated Submicron Fly Ash Particles,” Journal of Vibration, Acoustics, Stress, and Reliability in Design, Vol. 108, July 1986, pp. 322-329. 3Tiwary R., and Reethof, G., “Hydrodynamic Interaction of Spherical Aerosol Particles in a High Intensity Acoustic Field,” Journal of Sound and Vibration, Vol. 108, 1986, pp. 33-49. 4Reethof, G., “Acoustic Agglomeration of Power Plant Fly Ash for Environmental and Hot Gas Clean-up,” Transaction of the ASME, Vol. 110, Oct., 1988, pp. 552-557. 5 Song, L., Reethof, G., and Koopmann, G. H., “An Improved Simulation Model of Acoustic Agglomeration,” NCA Vol. 5, 89-WA, American Society of Mechanical Engineers, Winter Annual Meeting, San Francisco, CA, Dec., 10-15, 1989. 6Reethof, G., Koopmann, G. H., and Dorchak, T., “Acoustic Agglomeration for Paniculate Control at High Temperature and high Pressure – Some Recent results,” NCA Vol. 4, 89-WA, American Society of Mechanical Engineers, Winter Annual Meeting, San Francisco, CA, Dec., 10-15, 1989. 7Richards , G. A., and Bedick, R. C, “Application of Acoustics in Advanced Energy Systems,” NCA Vol. 3, 89-WA, American Society of Mechanical Engineers, Winter Annual Meeting, San Francisco, CA, Dec., 10- 15, 1989. 8Yavuzkurt, S., Ha, M. Y., Reethof, G., and Koopmann, G., “Effect of Acoustic Field on the Combustion of Coal Particles in a Rat Flame Burner,” Proceedings of the Ist Annual Pittsburgh Coal Conference, Pittsburgh, PA, Sep., 1984, pp. 53-58. ^rice, E. W., “Review of Combustion Instability Characteristics of Solid Propellants,” Advances in Tactical Rocket Propulsion, AGARD Conference Proceedings, No. 1, Part 2, Chap. 5, Technivision Services, Maidenhead, England, 1968, pp. 141-194. 10Zinn, B.T., “State of the Art and Research Needs of Pulsating Combustion,” NCA Vol. 19, 84-WA, American Society of Mechanical Engineers, 1984. “Rayleigh, J.W.S., The Theory of Sound, Vol. 1 and 2, Dover Publications, New York, 1945, pp. 231-235. 12Zinn, B.T., Miller, N., Carvalho, J.A. Jr., and Daniel. B. R., “Pulsating Combustion of Coal in a Rijke Type Combustor,” Proceedings of the 19th International Symposium on Combustion, 1982, pp. 1197-1203. 13Evans, R.E., and Putnam, A.A., “Rijke Tube Apparatus,” Journal of Applied Physics, Vol. 360, 1966. 14Feldman, K. T., “Review of the Literature on Rijke Thermoacoustic Phenomena, ” Journal of Sound and Vibration, Vol. 7, 1968, pp. 83-89. 15Carvalho, J.R., Ferreira, C., Bressan, C., and Ferreira, G., “Definition of Heater Location to Drive Maximum Amplitude Acoustic Oscillations hi a Rijke Tube,” Combustion and Flame, Vol. 76, 1989, pp. 17-27. 16Raun, R.L., Beckstead, M. W., Finlinson, J. C. , and Brooks, K. P., “A Review of Rijke Tubes, Rijke Burners and Related Devices,” Progress in Energy and Combustion Science, Vol. 19, 1993, pp. 313-364. 17Chu, B. T., “Stability of Systems Containing a HeatSource-The Rayleigh Criterion, “NACA Research Memorandum 56D27, 1956. 18Zinn, B. T., Daniel, B. R., and Shesdari, T.S., “Application of Pulsating Combustion in the Burning of Solid Fuels,” Proceedings of the Symposium on Pulse Combustion Technology for Heating Applications, Argonne National Laboratory, 1979, pp. 239-248. 19Feldman, K.T., “Review of the Literature on Soundhauss Thermoacoustic Phenomena ” Journal of Sound and Vibration, Vol. 7, 1968, pp. 71-82. 20Flow Science Incorporated, Los Alamos, New Mexico.
실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 방사선에 대한 Monte Carlo 방법, 가마 벽의 에너지 방정식에 대한 유한 체적 코드 및 클링커에 대한 화학 반응을 포함한 에너지 보존 방정식 및 종에 대한 새로운 코드. 기상의 온도 장, 벽으로의 복사 열유속, 가마 및 클링커 온도에 대한 예측 간의 반복적인 절차는 내부 벽 온도의 분포를 명시적으로 예측하는 데 사용됩니다. 여기에는 열 흐름 계산이 포함됩니다. 수갑. 가스와 가마 벽 사이의 주요 열 전달 모드는 복사에 의한 것이며 내화물을 통해 환경으로 손실되는 열은 입력 열의 약 10%이고 추가로 40%는 장입 가열 및 클링커 형성. 예측은 실제 규모의 시멘트 가마에서 경험과 제한된 측정을 기반으로 한 경향과 일치합니다.
키워드
산업용 CFD, 로타리 가마, 클링커 형성, 복사 열전달, Industrial CFD, Rotary kilns, Clinker formation, Radiative heat transfer
1 . 소개
시멘트 산업은 에너지의 주요 소비자이며, 미국에서 산업 사용자의 총 화석 연료 소비량의 약 1.4%를 차지하며 [1] 일반적인 비에너지 사용량은 제조된 클링커 1kg당 약 3.2MJ [2] 입니다. CaCO 3 → CaO + CO 2 반응이 일어나기 때문입니다., 클링커 형성의 첫 번째 단계는 높은 흡열성입니다. 시멘트 가마에서 에너지를 절약하기 위한 현재의 경향은 일반적으로 길이가 약 100m이고 직경이 약 5m인 회전 실린더인 가마를 떠나는 배기 가스로부터 에너지를 보다 효율적으로 회수하는 것과 저열량 연료의 사용에 중점을 둡니다. 값. 2-5초 정도의 화염 체류 시간을 허용하고 2200K의 높은 온도에 도달하는 회전 가마의 특성은 또한 시멘트 가마를 유기 폐기물 및 용제에 대한 상업용 소각로에 대한 경쟁력 있는 대안으로 만듭니다 [3]. 클링커의 형성이 이러한 2차 액체 연료의 사용으로 인한 화염의 변화로부터 어떤 식으로든 영향을 받지 않도록 하고, 대기 중으로 방출되는 오염 물질의 양에 대한 현재 및 미래 제한을 준수할 수 있도록, 화염 구조의 세부 사항과 화염에서 고체 충전물로의 열 전달을 더 잘 이해할 필요가 있습니다.
최근 시멘트 가마 4 , 5 , 6 , 7 에서 유동장 및 석탄 연소의 이론적 모델링복사 열 전달을 포함한 전산 유체 역학(CFD) 코드를 사용하여 달성되었습니다. 이러한 결과는 시멘트 가마에 대한 최초의 결과였으며 화염 길이, 산소 소비 등과 관련하여 실험적으로 관찰된 경향을 재현했기 때문에 그러한 코드가 수용 가능한 정확도로 대규모 산업용 용광로에 사용될 수 있음을 보여주었습니다. 킬른과 클링커는 포함하지 않았고, 벽온도의 경계조건은 가스온도와 용액영역의 열유속에 영향을 미치므로 계산에 필요한 경계조건은 예측하지 않고 실험적 측정에 기초하였다. 기상에 대한 CFD 솔루션은 앞으로의 주요 단계이지만 회전 가마를 포괄적으로 모델링하는 데만으로는 충분하지 않습니다.
내화물의 열 전달과 전하에 대한 세부 사항은 다양한 저자 8 , 9 , 10 , 11에 의해 조사되었습니다 . 충전물(보통 잘 혼합된 것으로 가정)은 노출된 표면에 직접 복사되는 열 외에도 전도에 의해 가마 벽에서 가열됩니다. 가장 완전한 이론적 노력에서, 가마 벽 (내화물)에 대한 3 차원 열전도 방정식을 해결하고, 두 개 또는 세 개의 인접하는 영역으로 한정 한 좌표 축 방향에서 어느 방사선 방사선 열전달 영역 모델과 결합 [ 10] 또는 자세히 해결 [11]. 그러나 클링커 형성 중에 일어나는 화학 반응은 고려되지 않았고 기체 상이 균일한 온도로 고정되어 필요한 수준의 정확도로 처리되지 않았습니다.
최종적으로 연소에 의해 방출되는 에너지(일부)를 받는 고체 전하가 화학 반응을 거쳐 최종 제품인 클링커를 형성합니다. 이것들은 [12]에 설명된 주요 특징에 대한 단순화된 모델과 함께 시멘트 화학 문헌에서 광범위한 조사의 주제였습니다 . 그 작업에서, 고체 온도 및 조성의 축 방향 전개를 설명하는 odes가 공식화되고 해결되었지만, 전하에 대한 열유속 및 따라서 클링커 형성 속도를 결정하는 가스 및 벽 온도는 1차원으로 근사되었습니다. 자세한 화염 계산이 없는 모델.
화염, 벽 및 장입물에 대한 위의 이론적 모델 중 어느 것도 회전식 가마 작동을 위한 진정한 예측 도구로 충분하지 않다는 것이 분명합니다. 국부 가스 온도(CFD 계산 결과 중 하나)는 벽 온도에 크게 의존합니다. 클링커 형성은 에너지를 흡수하므로 지역 가스 및 벽 온도에 따라 달라지며 둘 다 화염에 의존합니다. 벽은 화염에서 클링커로의 순 열 전달에서 “중개자” 역할을 하며, 내화재 두께에 따라 환경으로 피할 수 없는 열 손실이 발생합니다. 이러한 상호 의존성은 가마의 거동에 중요하며 개별 프로세스를 개별적으로 계산하는 데 중점을 두었기 때문에 문헌에서 발견된 수학적 모델로는 다루기 어렵습니다.
본 논문에서 우리는 위에 설명된 유형의 세 가지 개별 모델을 결합하여 수행되는 회전식 시멘트 가마에서 발생하는 대부분의 공정에 대한 포괄적인 모듈식 모델을 제시합니다. 우리 작업은 4 , 5 , 6 , 7 에서와 같이 석탄 연소를 위한 다차원 CFD 코드로 기체 상태를 처리합니다 . 10 , 11 에서와 같이 가마 벽의 3차원 열전도 방정식을 풉니다 . 9 , 12 와 유사한 모델로 잘 혼합된 전하 온도 및 조성을 해결합니다.. 3개의 모듈(화염, 벽, 전하)은 내화물에 입사하는 열유속의 축 분포에 대해 수렴이 달성될 때까지 반복적으로 계산됩니다. 충전 온도 및 구성. 따라서 이전 작업에 비해 현재의 주요 이점은 완전성에 있습니다. 이는 가스-킬른-클링커 시스템의 다양한 부분에서 에너지 흐름의 정량화를 통해 킬른 작동에 대한 더 나은 이해를 가능하게 하고 여기에서 사용된 방법을 건조 및 소각과 같은 다른 회전 킬른 응용 분야에 적용할 수 있게 합니다.
이 문서의 특정 목적은 회전식 시멘트 가마에 대한 포괄적인 모델을 제시하고 화염에서 클링커로의 에너지 플럭스와 가마에서 열 손실을 정량화하는 것입니다. 이 문서의 나머지 부분은 다음과 같이 구성됩니다. 2장 에서는 다양한 모델과 해법을 제시하고 3장 에서는 그 결과를 제시하고 논의한다 . 여기에는 본격적인 회전식 시멘트 가마의 제한된 측정값과의 비교가 포함됩니다. 이 논문은 가장 중요한 결론의 요약으로 끝납니다.
2 . 모델 공식화
2.1 . 개요
Fig. 1 은 시멘트 로터리 킬른의 단면을 보여준다. 가마의 회전은 전하의 움직임을 유도하여 후자를 대략적으로 잘 혼합되도록 합니다 [10] , 여기에서 채택할 가정입니다. 우리는 이 코팅을 클링커와 유사한 물리적 특성의 고체 재료로 모델링하여 가마 내화물에 부착된 클링커의 존재를 허용할 것입니다. 우리는 이 층의 두께가 가마를 따라 균일하다고 가정합니다. 이것은 아마도 지나치게 단순화한 것일 수 있지만 관련 데이터를 사용할 수 없습니다. 모델 설명을 진행하기 전에 그림 2 에 개략적으로 표시된 회전식 가마의 다양한 에너지 흐름을 이해하는 것이 중요합니다 .
석탄 연소에 의해 방출되는 에너지(단위 시간당)( Q 석탄 )는 배기 가스(Δ H 가스 )와 함께 가마 밖으로 흘러 가마 벽에 직접 복사( Q rad ) 및 대류( Q conv )됩니다. 공급 및 배기 덕트( Q rad,1 + Q rad,2 ) 에 대한 축 방향의 복사에 의해 작은 부분이 손실됩니다 . 전하 가마 시스템은 복사( Q rad ) 및 대류( Q conv )에 의해 가스로부터 에너지(Δ H cl )를 흡수 하고 주변으로 열을 잃습니다( Q손실 ). 전체 에너지 균형에서 개별 항의 계산, 즉(1a)큐석탄=ΔH가스-Q라드-Q전환-Q일, 1-Q일, 2,(1b)큐라드+Q전환=ΔH클+Q손실여기에서 다음 섹션에 설명된 대로 가스, 가마 및 클링커에 대한 이산화 에너지를 국부적으로 해결함으로써 수행됩니다.
2.2 . CFD 코드
가스 운동량, 종 농도 및 에너지의 Favre 평균 방정식은 표준 k – ε 모델을 사용하여 방사 모듈(RAD-3D)과 함께 상업적으로 이용 가능한 축대칭 CFD 코드(FLOW-3D)에 의해 해결됩니다. [13] . 기하학이 실제로 3차원이고 벽 온도의 각도 분포가 존재하지만 합리적인 시간과 현재 워크스테이션에서 완전한 3으로 솔루션을 얻을 수 있도록 기체상을 축대칭으로 취급합니다. -D를 요구하는 해상도로 계산하려면 슈퍼컴퓨터에 의존해야 합니다. FLOW-3D에서 사용되는 다양한 하위 모델의 일부 기능과 벽 경계 조건에 대한 특수 처리는 다음과 같습니다.
2.2.1 . 석탄 연소
Rossin-Rammler 크기 분포(45μm 평균 직경, 1.3 지수 [6] )를 따르는 석탄 입자 는 CPU 시간을 줄이기 위해 솔루션 영역(즉, 확률적 구성 요소 없이)에서 결정론적으로 추적되었지만 분산을 과소 평가하는 단점이 있습니다 . 14] . 입자는 2-반응 모델에 따라 휘발되도록 허용되었고 휘발성 연소는 무한히 빠른 것으로 간주되었습니다. 석탄 연소에 대한 설명의 세부 사항은 FLOW-3D에서 석탄 휘발 및 열분해의 “표준” 상수 집합이 합리적인 결과를 제공하고 Ref. [5] .
2.2.2 . 복사와 대류
가스의 복사 강도는 RAD-3D 모듈을 사용하여 80,000개의 입자로 Monte-Carlo 방법으로 계산되었습니다. 가마는 반경 방향으로 7개, 축 방향으로 19개(크기가 0.1 × 1.0 m와 0.2 × 5.0 m 사이)로 불균일한 구역으로 나뉘었으며 각 구역 에서 방사선 강도가 균일하다고 가정했습니다. 방사선 모듈의 출력은 내부적으로 FLOW-3D에 대한 유체 계산에 인터페이스되고 외부적으로 벽 및 클링커에 대한 코드에 인터페이스되었습니다( 섹션 2.3 섹션 2.4 참조). 방사선 패키지의 이산화된 구역은 CFD 그리드의 셀보다 훨씬 커야 하므로 구역에 온도 평균이 형성될 수 있는 많은 셀이 포함될 수 있다는 점을 이해하는 것이 중요합니다. 상대적으로 조잡한 복사 구역의 분해능과 Monte-Carlo 방법의 통계적 특성은 구역의 복사 열유속이 더 미세한 구역화 및 더 많은 입자로 몇 번의 실행에 의해 결정된 바와 같이 최대 약 10%까지 부정확할 수 있음을 의미합니다. 또한 경계면에 입사하는 열유속은 영역 크기보다 미세한 분해능으로 결정할 수 없으므로 복사 열유속은 벽에 인접한 19개 영역 각각의 중심에서만 계산됩니다. 0.15m -1 의 흡수 계수는 Ref.[11] . 엄밀히 말하면, 흡수 계수는 국부적 가스 조성과 온도의 함수이므로 균일하지 않아야 합니다. 그러나 가스 조성은 가마의 일부만 차지하는 화염 내에서만 변 하므로( 3절 참조 ) 균일한 흡수 계수를 가정하는 것이 합리적입니다. 또한, 현재 버전의 소프트웨어는 FLOW-3D의 반복 프로세스 동안 이 요소의 자동 재조정을 허용하지 않습니다. 여기서 로컬 가스 특성이 계산되므로 일정하고 균일한 흡수 계수가 필요합니다.
최종적으로, 벽에서 대류 열전달이 플로우 3D 패키지에서 표준 출력 표준 “벽 기능”제형에 혼입 난류 경계층에 대한 식에 기초하고,의 속도 경계 조건과 유사한 K – ε 모델. FLOW-3D 및 RAD-3D에서 입력으로 사용하고 출력으로 계산된 다양한 양은 그림 3에 개략적으로 표시 됩니다.
2.2.3 . 그리드
반경 방향 47개, 축 방향 155개 노드를 갖는 불균일한 격자를 사용하였으며 격자 독립성 연구를 수행한 결과 충분하다고 판단하였다. 유사한 크기의 그리드도 Refs에서 적절한 것으로 밝혀졌습니다. 4 , 5 , 6 , 7 . 매우 높은 축 방향 및 소용돌이 속도로 인해 석탄 버너 유정에 가까운 지역을 해결하기 위해 특별한 주의를 기울였습니다. HP 715/100MHz 워크스테이션에서 이 그리드의 일반적인 CPU 시간은 10시간이었습니다.
2.2.4 . 경계 조건
벽 온도에 대한 경계 조건은 기체상 및 복사 솔버 모두에 필요하다는 것을 인식하는 것이 중요합니다. 아래에서는 4 , 5 , 6 , 7 을 규정하기 보다는 축대칭 그리드에 대한 이 온도 분포를 예측하는 대략적인 방법을 설명합니다 .
내벽 온도 T w ( R in , x , ϕ ) 의 각도 분포 가 알려져 있다고 가정합니다 . 그런 다음 전체 3차원 문제를 “동등한” 축대칭 문제로 줄이기 위해 가상의 내벽 온도 T RAD ( x )는(2)2πε에티4라드(x) = ε클∫0ㄷ티4클(엑스)디ϕ + ε에∫ㄷ2π티4에(아르 자형~에, x, ϕ)디ϕ”효과적인” 경계 조건으로 사용할 수 있습니다. T RAD ( x )는 방위각으로 평균화된 “복사 가중” 온도입니다. 필요한 경계 조건으로 이 온도를 사용하는 것은 복사가 열 전달을 지배한다는 기대에 의해 동기가 부여됩니다(후반부 확인, 섹션 3.4 ). 따라서 전체 3차원 문제와 이 “유효한” 축대칭 문제에서 가스에서 가마로의 전체 에너지 흐름은 거의 동일할 것으로 예상됩니다. 식 의 사용 (2) 축대칭 코드로 기체상 및 복사장을 계산할 수 있으므로 엔지니어링 워크스테이션을 사용하여 문제를 다루기 쉽습니다.
고려되는 가마의 규모와 온도에서 가스는 광학적으로 두꺼운 것으로 간주될 수 있습니다. 솔루션(나중에 제시됨)은 평균 경로 길이(즉, “광자”의 모든 에너지가 흡수되기 전의 평균 길이)가 약 3.2m임을 보여주며, 이는 가마 내경 4.1m보다 작습니다. 이것은 내벽에 입사하는 복사 플럭스가 국부적 벽과 가스 온도에 강하게 의존하고 더 먼 축 또는 방위각 위치에서 벽의 온도에 약하게만 의존함을 의미합니다. 이것은 기체상에 사용된 축대칭 근사에 대한 신뢰를 줍니다. 그것은 또한 Refs의 “구역 방법”을 의미합니다. 8 , 9 , 10표면에 입사하는 방사선이 1-2 구역 길이보다 더 먼 축 위치와 무관한 것으로 간주되는 경우에는 충분했을 것입니다.
2.3 . 가마 온도
내부 소성로 표면 온도 T w ( R in , x , ϕ )는 Eq. 에서 필요합니다 . (2) 및 가마 벽 에너지 방정식의 솔루션 결과의 일부입니다. 각속도 ω로 회전하는 좌표계 에서 후자는 [10] 이 됩니다 .(3)ω∂(ϱ에씨피티에)∂ϕ=1아르 자형∂∂아르 자형에게에아르 자형∂티에∂아르 자형+1아르 자형2∂∂ϕ에게에∂티에∂ϕ+∂∂엑스에게에∂티에∂엑스경계 조건에 따라(3a)r=R~에,Θ<ϕ⩽2π:에게∂티에∂아르 자형=q라드(x)+q전환(엑스),(3b)r=R~에, 0 <ϕ⩽Θ:에게∂티에∂아르 자형=qw–cl(x, ϕ) = hw–cl티클(x)-T에(아르 자형~에, x, ϕ),(3c)r=R밖, 0 <ϕ⩽2π:.케이∂티에∂아르 자형=h쉿티쉿-T∞+ ε쉿티4쉿-T4∞.
전도도, 밀도 및 비열용량에 대한 값은 실제 가마에 사용되는 내화물 재료에 대한 제조업체 정보에서 가져옵니다 [15] . 외부 쉘 온도 T sh = T w ( R out , x , ϕ )는 x 및 ϕ 에 따라 달라질 수 있습니다 .
위 방정식에 대한 몇 가지 의견이 있습니다. 에서는 식. (3a) 에서 열유속의 방위각 의존성이 제거되었습니다. 이전에 언급했듯이 흐름은 광학적으로 두꺼운 것으로 간주됩니다. 즉, 화염이 너무 방사되고 너무 넓기 때문에 벽면 요소가 화염을 가로질러 반대쪽 벽을 “보지” 않습니다. 따라서 q rad ( x , ϕ ) 의 계산은 다른 각도 위치로부터의 복사를 포함할 필요 없이 T 가스 ( r , x ) 및 로컬 T w ( R in , x , ϕ )를 기반으로 할 수 있습니다. 여기부터 qrad ( x )는 Eq. 의 방위각 평균 온도를 기반으로 하는 축대칭 RAD-3D 솔루션에서 가져옵니다 . (2) , 결과적인 q rad ( x )는 어떤 의미에서 방위각으로 평균된 열유속입니다. 식 따라서 (3a) 는 우리가 이 열유속을 모든 ϕ 에 등분포한다는 것을 의미합니다 . Eq 에서 q rad 의 각도 변화를 무시한다는 점에 유의하십시오 . (3a) 는 Refs. [10] 또는 [11] 이 우선되어야 합니다.
소성로와 장입물 사이의 열전달 계수 h w-cl 은 소성로의 에너지 흐름과 온도를 정확하게 예측하는 데 중요하지만 잘 알려져 있지 않습니다. 500 W / m의 전형적인 값 이 K는 여기에 제시된 결과 사용되고있다 [8] . 계산된 T w ( r , x , ϕ ) 및 T RAD ( x) 이 계수의 선택에 따라 달라지지만 예측은 질적으로 변하지 않습니다. 껍질에서 대기로의 열 전달은 복사와 별도로 강제 및 자연 대류를 통해 발생합니다. 자연 대류에 대한 열전달 계수는 Ref. [11] , 현재 조건에서 약 5 W/m 2 K의 일반적인 값 을 사용합니다. 그러나 쉘에 불어오는 외부 팬은 과열을 피하기 위해 산업에서 종종 사용되며 이러한 효과는 총 h sh =30 W/m 2 K 를 사용하여 여기에서 모델링 되었습니다. 방사율에는 다음 값이 사용되었습니다. ε w = ε cl = 0.9 및 ε sh = 0.8.
식 (3) 은 가마의 방사형 기울기가 훨씬 더 가파르기 때문에 방위각 및 축 전도를 무시한 후 명시적 유한 체적 방법으로 해결되었습니다. 방사형으로 50개 노드와 축 방향으로 19개 노드가 있는 균일하지 않은 그리드가 사용되었으며 회전으로 인한 화염에 주기적으로 노출되는 표면으로 인해 발생하는 빠른 온도 변화를 따르기 위해 내부 표면에서 적절한 방사형 분해능이 사용되었습니다. 동일한 이유로 사용 된 작은 단계(Δ ϕ = π /100)는 가마의 큰 열 관성과 함께 가마 벽 온도가 수렴되도록 하기 위해 2시간 정도의 CPU 시간이 필요했습니다.
2.4 . 수갑
가마에 대한 모델의 마지막 부분은 클링커 온도 및 조성 보존 방정식에 관한 것으로, 축 방향 기울기만 고려하고 전도는 무시합니다.(4)씨피V클디(ϱ클티클)디엑스=−엘wclㄷㅏ클∫0ㄷ큐w–cl(x, ϕ)디ϕ +엘gclㅏ클큐라드(x)+q전환(엑스)−∑나Nsp아르 자형나시간0, 나는에프+씨피티,(5)V클디(ϱ클와이나)디엑스=r나,(6)V클디ϱ클디엑스=−r무엇2,여기서 A cl 은 속도 V cl 로 흐르는 전하가 덮는 단면적 이며 둘 다 일정하다고 가정하고 L gcl =2 R in sin( Θ /2) 전하로 덮인 섹터의 현( 그림 1 ) , L WCL = Θ R 에서는 , N SP 화학 종의 수와 r에 난을 (kg / m의 형성 속도 순 3 종의) I를 . 전하의 밀도는 Eq를 감소시킵니다 . (6) CO 2 에 대한 질량 손실로 인한하소하는 동안 초기 값은 총 질량 유량이 ϱ cl V cl A cl 과 같도록 선택되었습니다 . 참고 ρ (CL)이 있다 하지 전하 느슨하게 포장 된 입자로 이루어지는 것으로 생각 될 수있는 바와 같이, 충전 재료 밀도하지만 벌크 밀도. 우리는 또한 전하의 실제 입상 흐름 패턴을 조사하는 것보다 적은 것은 모델의 신뢰성에 크게 추가되지 않는 임시 설명 [10] 이라고 믿기 때문에 전하의 전도를 무시 합니다. 전하는 CaCO 3 , CaO, SiO 2 , Al 2 O 3 , Fe 로 구성된 것으로 가정합니다.2 O 3 , C2S, C3S, C3A 및 C4AF로, 마지막 4종은 클링커화 중에 형성된 복합 염에 대해 시멘트 화학자가 사용하는 특수 표기법으로 표시됩니다. 다음과 같은 화학 반응을 가정합니다 [12] .
(나)
CaCO3→높은+무엇2
k = 108특급(−175728/RT)
(Ⅱ)
높은+2SiO2→C2S
k = 107특급(−240000/RT)
(Ⅲ)
높은+C2S→C3S
k = 109특급(−420000/RT)
(IV)
3높은+로2그만큼3→C3A
k = 108특급(−310000/RT)
(V)
4높은+로2그만큼3+철2그만큼3→Q4AF
k = 108특급(−330000/RT)
상기 시행 착오에 의해 선택되는 아 레니 우스 식에 사용되는 사전 지수 인자 및 활성화 온도는 카코에 대한 활성화 에너지를 제외하고, 가마의 출구에서의 전하의 예상 조성물을 얻었다 (3) 에서 촬영 한 분해 참조 [16] . 우리는 이러한 반응이 임시 모델임을 강조합니다. 실제로 고체상의 화학반응은 다양한 종의 결정들 사이의 계면에서 일어나며 확산이 제한적 이지만 [17] , 클링커 화학에 대한 상세한 처리는 본 연구의 범위를 벗어난다.
클링커 형성의 마지막 단계로 간주되는 반응 (III)은 고온에서 액상이 존재할 때만 발생합니다. 클링커의 용융은 액체 분획 Y fus 에 대해서도 해결함으로써 모델링되었습니다 .(7)엘소란V클디(ϱ클와이소란)디엑스=RHS의식(4)만약 T의 CL이 융해 온도와 같거나보다 커진다 T의 FUS 와 T의 FUS 의 = 1560 K. 상한 Y의 FUS = 0.3 수행 하였다 [17] 상기 식을. (7) 무시되었다.
상미분 방정식, , , , , Gear 방식과 통합되었습니다. 가마 온도에 대한 유한 체적 코드( 2.3절 )와 클링커에 대한 코드는 반복적으로 해결되었으며( 그림 4 ), 이는 벽 클링커 열유속 q w–cl ( x , ϕ ).
2.5 . 최종 커플링
전체 문제(가스, 가마, 장입)는 반복 방식으로 해결되었습니다. T RAD 의 균일한 분포에서 시작 하여 기체상은 q rad ( x ) 및 q conv ( x ) 의 축 분포를 제공하도록 해결되었습니다 . 이것들은 다음에서 사용되었습니다., , , , , 그 솔루션의 새로운 추정 결과 T RAD ( X 통해) 식. (2) . 그런 다음 FLOW3D-RAD3D 실행이 6차 다항식 피팅의 계수 형태로 프로그램에 도입된 새로운 경계 조건으로 반복되었습니다. 의 연속 추정치 사이에 0.5 미만의 밑에 이완 인자 T RAD ( X)는 벽 온도에 대한 복사 열유속의 민감도가 크기 때문에 필요한 것으로 밝혀졌습니다. 일반적으로 HP 715 워크스테이션에서 10일 정도의 총 CPU 시간에 해당하는 내벽 온도(연속 반복이 40K 이상 변하지 않을 때 정의됨)의 수렴을 달성하기 위해 이러한 단계 사이에 약 10번의 반복이 필요했습니다. . 그림 5 는 균일한 값(1600K)에서 시작하여 최종 프로파일까지 T RAD ( x ) 의 수렴 이력을 보여줍니다 .
2.6 . 가마 조건
사용된 일부 매개변수에 대한 작동 조건 및 값은 표 1 표 2 표 3에 나와 있습니다. 이 값은 시멘트 회전 가마의 전형입니다.
표 1 . 공기 및 석탄 입자 입구 조건
축
수송
소용돌이
중고등 학년
석탄
m (kg/s)
2.253
1.759
2.910
45.930
4.0
유 (m/s)
77.1
36.5
76.1
12.73
36.5
V (m/s)
−20.7
0
63.9
0
0
W (m/s)
0
0
112.8
0
0
티 (케이)
318
383
318
1273
383
표 2 . 클링커 조성(질량 분율)
밀가루
가마 입구
가마 출구
m (kg/s)
50.374
39.815
32.775
티 (케이)
−
1100
1785
CACO 3
0.7947
0.40218
0
높은
0
0.33801
0.0229
그런가 2
0.1434
0.18143
0
알 2 O 3
0.0349
0.0442
0
철 2 O 3
0.0270
0.03416
0
C2S
0
0
0.1808
C3S
0
0
0.5981
C3A
0
0
0.0731
Q4AF
0
0
0.1242
소성 인자
0
0.6
1.0
소성 계수 카코의 비율을 3 의 CaO로 변환 된 FARINE있다.
표 3 . 재료 속성 및 기타 매개변수
ω (래드/초)
0.5
V의 CL (m / s)
0.035
T ∞ (K)
300
h sh (W/m 2 K)
30
h w–cl (W/m 2 K)
500
ε w , ε cl
0.9
ε 쉬
0.8
C의 P (클링커) (킬로 / kg K)
1.5
ϱ cl (kg/m 3 )
1200
L fus (kJ/kg)
418.4
c p (벽) (kJ/kg K)
1.5
ϱ w (kg/m 3 )
1600–3000
k는 w (W / m K)
0.6–3.0
석탄 열 방출(kJ/kg)
25475
3 . 결과 및 토론
이 섹션에서는 먼저 화염 구조에 대한 정보와 함께 예측된 공기역학적 패턴의 세부사항을 제시합니다. 소성로 내화물의 온도 분포와 클링커 조성의 변화를 설명합니다. 이 섹션은 가마의 전체 에너지 균형과 가능한 모델 개선에 대한 논의로 끝납니다.
3.1 . 화염 구조
그림 6 은 명확성을 위해 방사상 좌표가 과장된 온도의 등고선 플롯을 보여줍니다. 석탄은 주입 지점에서 약 1m 지점에서 약간 축에서 벗어나 점화되며 최대 화염 온도(약 2400K)는 경험에 따라 약 40m 하류에서 도달합니다 [15] . 완전한 입자 소진에 대한 가장 긴 시간은 버너에서 45m에 해당하는 약 1.4초였습니다. 방사형 온도 프로파일( 그림 7 ) 은 온도의 상당한 불균일성이 있음을 보여주지만 출구 프로파일이 본질적으로 평평해짐에 따라 하류에서 감소합니다. 또한 벽에 인접한 가스가 더 차가운 열 경계층이 존재한다는 것이 분명합니다.석탄 노즐에서 최대 30m까지 벽보다 이것은 이 영역에서 대류에 의한 열 전달이 음(즉, 기체 쪽으로)임을 의미하며, 3.4절 에서 더 자세히 논의된 지점 입니다.
버너 출구 바로 하류에 길이가 약 1 버너 직경인 재순환 구역이 있는데( 그림 8 ), 여기에서 화염이 더 하류에서 발화하기 때문에 소용돌이 안정화 화염 [7] 에서와 같이 화염 안정화에 기여하지 않습니다 . 그러나 액체 연료를 사용할 때는 중요할 수 있으므로 버너에 가까운 그리드의 세부 사항을 강조해야 합니다. 버너에서 처음 몇 미터는 매우 높은 전단력과 높은 난류 에너지 생산을 포함하며 이것이 그리드 미세 조정을 강조하는 또 다른 이유입니다. 휘발성 물질 연소 영역( x =10m, r =1m) 에서 k 및 ε 의 일반적인 예측 값 은 24.3 및 142m 2 /s입니다.3 , 각각. 대규모 난류 시간은 171ms이고 Kolmogorov 시간 규모는 1.1ms입니다. 휘발성 물질의 연소는 0.1ms(일반적인 탄화수소 연료) 정도의 시간 규모에서 발생하며, 이는 가마의 소규모 난류 시간보다 10배 더 짧습니다. 따라서 이 흐름에서 연소에 대한 유한 속도 동역학을 포함할 필요는 없으며 “혼합 연소” 근사가 합리적입니다.
3.2 . 가마 온도 분포
중심선에서 계산된 가스 온도, 온도 T RAD ( x ) 및 클링커 온도는 그림 9 에서 비교됩니다 . 최고 가스 온도는 25~40m 사이에 위치하며 내화 내부 표면 온도도 최고점입니다. 클링커는 놀랍게도 가마에서 나오기 전 마지막 몇 미터 동안 벽보다 뜨겁 습니다. 복사에 의해 내화물에 입사하는 열유속은 대류에 의한 것보다 1-2 배 더 높으며( 그림 10 ) 가마의 처음 10m에 대한 총 열 전달 은 가스를 향 합니다. 이 관찰의 중요성은 나중에 논의됩니다.
대류로 인한 에너지 플럭스는 화염에서 가마까지의 전체 에너지 플럭스의 매우 작은 부분인 것으로 밝혀졌습니다( 그림 10 ). 여기서 예측된 대류의 작은 기여는 Ref. [11] . 그 작업에서 대류 열 전달 계산에 사용된 가스 온도는 가마 단면의 평균이었고 따라서 축 근처에 있는 화염의 기여로 인해 벽 부근의 온도보다 훨씬 높았습니다. . 여기에서 우리는 온도와 가스 속도 및 난류 운동 에너지의 국부적 값을 기반으로 하는 보다 정확한 열전달 계수를 사용했기 때문에 보다 정확한 결과를 기대합니다.
예측된 벽 온도는 모든 방향에서 불균일합니다. Fig. 11 은 가마가 회전함에 따라 화염에 노출되었을 때 벽이 가스에 의해 연속적으로 가열되고 클링커에 열을 공급하여 냉각되는 것을 보여준다. 이것은 약 100K의 일반적인 각도 온도 변화를 갖는 대부분의 가마 길이에 해당됩니다. 대조적으로 버너에 가까우면 벽 은 (0 < ϕ < π /2) 동안 클링커에서 열을 얻고 다음으로 열을 잃 습니다. 노출될 때의 가스( π /2 < ϕ < 2 π ). 벽과 클링커 온도가 같으면서 방위각 변화가 없는 경우가 발생할 수 있습니다( 그림 11 , x = 17.5m). 이 온도 변화가 작은 것으로 간주될 수 있지만 벽에서 클링커까지의 열유속을 계산하는 위치에 있으려면 전체 3차원 내벽 온도 분포를 계산해야 합니다(0 < ϕ 범위에서 발생 < π /2).
그림 12 는 ϕ에 독립적인 외부(쉘) 온도와 함께 고체의 큰 비열로 인해 각도 방향의 변화 영역이 벽으로 약 1cm만 확장됨을 보여줍니다( 그림 12b) .. 벽 온도 방사 분포는 가스 온도, 입사 방사선 및 내화 재료의 특성이 변하기 때문에 축 방향 거리에 따라 달라집니다. 정확한 예측을 위해서는 내화물에 부착된 클링커 코팅의 두께에 대한 정확한 지식이 필요합니다. 여기에서 우리는 이 코팅을 클링커와 유사한 물성을 가진 균일한 두께의 재료로 취급했습니다. 그러나 이 코팅층의 실제 물리적 특성과 두께 분포에 관한 실험 데이터를 사용하여 예측의 신뢰성이 향상될 것입니다.
마지막으로, 그림 13 은 외부 쉘 온도가 화염 영역에서 최고조에 달하고 대략적으로 실험 경향을 따른다는 것을 보여줍니다 [15] . 외부 가마 외피는 다양한 강철 두께, 방사율(외피 착색으로 인한) 및 열 전달 계수(송풍기 간격으로 인한)를 갖고 가마는 가변 내화 두께(에 의한 침식으로 인해)를 갖기 때문에 정확한 비교는 의미가 없습니다. 클링커), 여기에 사용된 가정과 반대입니다. 전체 규모 가마는 또한 차등 코팅 및 내화 침식으로 인한 최대 ±100K의 쉘 온도 각도 변동을 보여줍니다 [15] . 따라서 우리는 그림 13 의 일치 가 실제 가마의 복잡성을 고려할 때 예상할 수 있는 만큼 우수 하다고 믿습니다 .
이 섹션에 제시된 예측은 가마 내부의 열 전달 경로에 대한 다음 그림을 뒷받침합니다. 대부분의 가마 길이에서 장입물은 화염으로부터의 복사와 벽으로부터의 열 전도에 의해 가열되고 있습니다. 장입물이 내화물보다 더 차갑기 때문입니다. 가마가 회전함에 따라 내화물은 화염에 노출될 때 열을 얻고 이를 클링커에 공급합니다( 그림 11 ). 벽의 이 “재생” 작용은 Refs. 9 , 10 및 현재 결과에서 재현되었습니다. 그러나 버너 근처에서 반대 에너지 흐름이 발생합니다( 그림 11 , 작은 x). 여기의 가스는 아직 충분히 뜨겁지 않아 내화물이나 장입물에 에너지를 공급하지 않습니다. 이 영역에서 벽은 다가오는 전하에 의해 열을 얻으므로 고체가 없을 때보다 더 뜨겁게 유지됩니다. 벽과 전하가 대류와 복사에 의해 가스에 열을 공급합니다. 우리는 이것을 “음의 재생” 작용으로 식별할 수 있으며 가마의 더 높은 온도 영역( x > 15m) 에서 클링커에 의해 흡수된 에너지에 의해 유지됩니다 . 전반적으로 클링커는 x > 15 m 에서 열을 흡수 하고 0 < x < 15 m 에서 일부를 가스로 되돌려 줍니다.
이 상호 작용은 간단하지 않으며 쉽게 예상할 수 없습니다. 이는 예를 들어 고체를 액체 연료로 대체하여 화염을 수정하면 열유속 분포를 변경하여 최종 클링커 온도에 중대한 영향을 미칠 수 있음을 의미합니다. 현재의 포괄적인 모델이 제공하는 세부 사항은 가마에서 이러한 변화를 평가하는 데 도움이 될 것입니다.
3.3 . 클링커 온도 및 조성
클링커 온도( 그림 9 )는 가장 높은 화염 온도에 도달하는 축 방향 위치에서 거의 최고조에 달하며 클링커는 약 1780K에서 킬른에 존재하며 이는 시멘트 킬른에서 실험 측정값에 가까운 값입니다 [15] . 초기 및 최종 클링커 조성은 표 2 에 나와 있으며 실제 가마에서 작동 값에 가깝습니다 [15] . 다양한 클링커 성분의 축방향 분포( 그림 14 )는 완전한 하소를 위해 고체 유입구에서 약 25m, C2S, C3A 및 C4AF 생성을 위해 추가로 10m가 소요됨을 보여줍니다. 첫 번째 액체상은 x 에서 발견됩니다.=50m이고 액화는 경험과 일치하는 예측인 매우 직후에 완료됩니다 [17] . 클링커화 반응(R-III)은 모델에서 액체가 나타날 때 시작되는 것으로 가정되었으며, 그림 14 에서 클링커화에는 나머지 길이의 거의 전체가 완료되어야 한다는 것이 분명 합니다. 예측은 전체적으로 시멘트 가마 운영의 경험과 일치하며 여기에 사용된 화학적 및 물리적 매개변수가 현실적인 값을 가지고 있음을 의미합니다.
3.4 . 글로벌 에너지 균형
전지구적 에너지 균형은 기체상(FLOW-3D 및 RAD-3D에 의한)과 소성로 장입 시스템에 대한 솔루션에서 쉽게 계산할 수 있으며 표 4 에 나와 있습니다. CFD 코드는 방사 모듈과 함께 에너지를 약 2%까지 절약합니다. 작은 것으로 간주되는 이 오류는 주로 RAD-3D의 영역 이산화와 Monte-Carlo 계산의 유한한 입자 수로 인해 발생하는 오류에 기인하며 CPU 시간을 희생하여 개선할 수 있습니다. 소성로-클링커 계산의 정확도는 더 나쁩니다. 소성로-클링커 시스템에 입력되는 에너지의 약 10% 오류( Q rad + Q conv )입니다. 이는 수렴된 솔루션이 식 (3) , 그리고 보다 정확한 암시적 솔버에 의해 개선될 수 있습니다.
시멘트 회전식 가마의 에너지 사용에 관한 몇 가지 흥미로운 결론은 표 4 의 결과를 통해 얻을 수 있습니다 . 연소에 의해 방출되는 에너지의 약 40%는 전하 가열 및 클링커 형성에 필요하고 약 10%는 내화물을 통해 대기로 손실됩니다. 나머지의 대부분은 본질적으로 배기 가스와 함께 소성로 밖으로 흐릅니다. 이 중 일부는 소성로 외부의 예비 하소기 및 사이클론에서 회수됩니다. 내부 가마 벽과 장입 온도를 자세히 다루는 여기에 제시된 포괄적인 모델에 의존하지 않고는 국지적 가스 온도를 정확하게 예측하고 이에 따라 향후 연구에서 오염 물질 형성을 예측하는 것이 불가능하다는 것이 분명합니다.
3.5 . 논의
여기에 제시된 회전식 시멘트 가마 작동에 대한 포괄적인 모델의 결과는 합리적이며 실험적으로 관찰된 경향을 재현합니다. 이전 모델링 작업에 비해 이 작업의 주요 이점은 가마에서 발생하는 대부분의 물리적 프로세스를 포함한다는 점입니다. 특히, 가스 온도와 클링커로의 열유속 및 이에 따른 클링커 형성을 결정하는 데 가장 중요한 양인 내벽 온도는 실험 데이터를 사용하여 규정된 것이 아니라 예측되었습니다. 이 특정 기능은 현재 모델을 진정한 예측형으로 만듭니다.
우리는 전체 3차원 문제를 공기역학에 대한 “동등한” 축대칭 문제로 줄이는 방법을 포함했습니다( 식 (2) ). 이를 통해 현재 워크스테이션에서 솔루션을 얻을 수 있습니다. 모델의 모듈식 특성, 즉 공기역학, 복사, 가마 및 장입에 대한 별도의 코드는 해당 모듈만 수정하면 다른 회전 가마 응용 프로그램(예: 소각 및 건조)에도 사용할 수 있음을 의미합니다. 예를 들어, 고형 폐기물의 소각은 현재 코드로 모델링할 수 있지만 적절한 화학, .
실험 데이터와의 상세한 비교는 이용 가능한 측정이 거의 없고 현지 시멘트 회사에서 제공한 경험적 데이터로 제한되어 매우 어렵습니다 [15] . 비교는 앞서 지적한 바와 같이 출구 클링커 조성과 온도가 산업적 경험( 표 2 ) 이내 이고, 배기 가스 조성은 공장 굴뚝에서 측정된 값에 가깝고(“가짜 공기” 희석을 허용한 후), 가마 외피 온도는 측정 범위 내에 있습니다( 그림 13 ). 이 동의는 모델이 프로세스의 정확한 표현임을 시사합니다.
더 높은 정확도의 예측을 달성하려면 모델의 다양한 부분에서 개선이 필요합니다. 내화물의 정확한 두께(즉, 내화물과 부착된 클링커)를 설정해야 합니다. 이는 가마 벽을 통해 주변으로 열 손실이 발생하여 외부 쉘 온도에 영향을 미치기 때문입니다. 새 내화물이 있는 가마에서 쉘 온도 측정과 자세한 비교가 이루어져야 합니다(불균일한 코팅 두께가 방지되도록). 벽 재료의 물리적 특성(열용량, 밀도, 전도도)의 적절한 값을 사용해야 합니다. 가장 큰 불확실성은 클링커 코팅의 가정된 특성에 관한 것입니다. 내벽 표면의 방사율과 가스의 흡수 계수를 더 자세히 조사해야 합니다. 가마에 입사하는 복사 열유속에 영향을 미치므로 벽 온도에 영향을 줄 수 있습니다. 클링커의 온도는 사용된 비열 용량에 따라 달라지므로 정확한 평가에 각별한 주의가 필요합니다. 화염의 국지적 온도와 종 구성에 대한 지식은 CFD 코드를 검증하는 데 매우 유용할 것이지만 그러한 적대적인 환경에서 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다.
이러한 모든 잠재적 개선과 모델과 관련된 불확실성에도 불구하고 가마의 모든 에너지 경로가 적절한 세부 사항으로 모델링되었기 때문에 전체 동작은 최소한 질적으로 정확합니다. 클링커 출구 구성, 쉘 온도 및 배기 가스 구성과 같은 중요한 양은 허용 가능한 정확도로 예측됩니다. 이 모델은 버너, 연료 유형, 품질 및 수량, 예비 하소 수준( 표 2 ) 또는 고형물 유량 등의 변경과 같은 많은 상황에서 산업계에 매우 유용할 것으로 예상됩니다 . 소성로 운영자는 최종 클링커 구성이 여전히 허용 가능하고 현재의 포괄적인 모델이 이 방향에 도움이 될 수 있는지 확인해야 합니다.
4 . 결론
실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 석탄 화염과 가마 사이의 열 교환, 가마와 역류 고체 사이의 열 교환, 고형물을 최종 제품(클링커)으로 변환합니다. 방사선에 대한 Monte-Carlo 방법을 포함하는 축대칭 CFD 코드(상용 패키지 FLOW-3D)가 기상에 사용되었습니다. 가마 벽의 온도는 유한 체적 열전도 코드로 계산되었으며 클링커에 대한 종 및 에너지 보존 방정식도 공식화 및 해결되었습니다. 기체 온도 필드에 대한 예측 사이의 반복적인 절차, 벽에 대한 복사 열 유속, 가마 및 클링커 온도는 실험에서 이러한 정보를 사용한 이전 모델링 노력과 달리 내벽 온도 분포를 명시적으로 계산하는 데 사용되었습니다. 접선 좌표에 대한 통합은 CFD 코드에 필요한 경계 조건으로 사용되는 “유효” 내벽 온도의 축 분포를 초래했습니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다.
결과는 복사가 가스와 가마 벽 사이의 대부분의 열 전달을 설명하는 반면 내화물을 통한 환경으로의 열 손실은 입력 열의 약 10%를 설명한다는 것을 보여줍니다. 화학 반응과 충전물의 가열은 연소 에너지의 약 40%를 흡수합니다. 따라서 이러한 사항을 반드시 고려해야 합니다. 예측은 실제 규모의 시멘트 가마에서 얻은 경험과 측정값을 기반으로 한 경향과 일치합니다.
감사의 말
이 작업은 과학 및 기술을 위한 그리스 사무국 프로젝트 EPET-II/649의 자금 지원을 받았습니다. Mr.P에게 진심으로 감사드립니다. 시멘트 가마에 관한 지침 및 데이터는 그리스 TITAN SA의 Panagiotopoulos에게 문의하십시오.
References 1 S.R. Turns, An Introduction to Combustion, Concepts and Applications, McGraw-Hill, New York, 1996 Google Scholar 2 V. Johansen, T.V. Kouznetsova, Clinker formation and new processes, Presented at the Ninth International Congress on the Chemistry of Cement, India, 1992; also RAMBOLL Bulletin No. 42, 1993 Google Scholar 3 Basel Convention, UNEP Document No. 93-7758, 1993 Google Scholar 4 N.C Markatos Mathematical modelling of single and two-phase flow problems in the process industries Revue de l’Institut Français du Pétrole, 48 (1993), p. 631 View PDFCrossRefView Record in ScopusGoogle Scholar 5 T. Avgeropoulos, J.P. Glekas, C. Papadopoulos, Numerical simulation of the combustion aerodynamics inside a rotary cement kiln, in: Pilavachi (Ed.), Energy Efficiency in Process Technology, Elsevier, London, 1993, p. 767 Google Scholar 6 F.C. Lockwood, B. Shen, T. Lowes, Numerical study of petroleum coke fired cement kiln flames, Presented at the Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, 1995 Google Scholar 7 F.C. Lockwood, B. Shen, Performance predictions of pulverised-coal flames of power station furnace and cement kiln types, Twenty-Fifth Symposium International on Combustion, The Combustion Institute, 1994 p. 503 Google Scholar 8 P.V Barr, J.K Brimacombe, A.P Watkinson A heat-transfer model for the rotary kiln: Part II, development of the cross-section model Metallurgical Transactions B, 20B (1989), p. 403 View Record in ScopusGoogle Scholar 9 V Frisch, R Jeschar Possibilities for optimizing the burning process in rotary cement kilns Zement-Kalk-Gips, 36 (1983), p. 549 View Record in ScopusGoogle Scholar 10 A.A Boateng, P.V Barr A thermal model for the rotary kiln including heat transfer within the bed Int. J. Heat Mass Transfer, 39 (1996), p. 2131 ArticleDownload PDFView Record in ScopusGoogle Scholar 11 M.G. Carvahlo, T. Farias, A. Martius, A three-dimensional modelling of the radiative heat transfer in a cement kiln, in: Carvahlo et al. (Eds.), Combustion Technologies for a Clean Environment, Gordon and Breach, London, 1995, p. 146 Google Scholar 12 H.A Spang A dynamic model of a cement kiln Automatica, 8 (1972), p. 309 ArticleDownload PDFView Record in ScopusGoogle Scholar 13 CFDS, FLOW-3D Users Manual, AEA Harwell, UK Google Scholar 14 E Mastorakos, J.J McGuirk, A.M.K.P Taylor The origin of turbulence acquired by heavy particles in a round, turbulent jet Part. Part. Syst. Charact., 7 (1990), p. 203 View PDFCrossRefView Record in ScopusGoogle Scholar 15 P. Panagiotopoulos, TITAN S.A. Cement Company, Personal communication, 1996 Google Scholar 16 M.S Murthy, B.R Harish, K.S Rajanandam, K.Y Ajoy Pavan Kumar Investigation on the kinetics of thermal decomposition of calcium carbonate Chem. Eng. Sci., 49 (1996), p. 2198 Google Scholar 17 V. Johansen, Cement production and chemistry, Presented at the Symposium on Cement Manufacturing and Chemistry, Anaheim, November 1989; also RAMBOLL Bulletin No. 41, 1993 Google Scholar 1 Also at Department of Mechanical Engineering, University of Patras, Greece.
2 Also at Department of Chemical Engineering, University of Patras, Greece.
The energy dissipation of Stepped Spillways experimentally and numerically
계단식 여수로는 댐의 통합된 부분인 수압 구조로, 넘침 흐름의 안전한 통과를 허용합니다. 이 논문에서는 에너지 소산을 최대한 활용하기 위해 여수로의 상대적인 계단 높이가 다른 영향을 조사하기 위해 실험적 및 수치적 연구를 수행했습니다.
여수로 위의 흐름 모델링은 RANS(Reynolds Averaged Navier-Stokes) 방정식을 푸는 상용 3D CFD 모델인 FLOW-3D를 사용하여 수행되었습니다.
FLOW-3D는 에너지 소산율을 분석하고 얻기 위해 사용되었습니다. 최대 에너지 소산을 달성할 수 있는 계단의 최상의 기하학은 관련 문헌을 검토하고 FLOW-3D에서 제안된 모델을 발명하여 결정되었습니다.
결과는 배수로의 상대적 계단 높이(hs/H) = 0.25. FLOW-3D를 사용한 수치모델은 다양한 실험모델에 대한 측정 데이터와 잘 일치하는 것으로 나타났습니다.
A. ShawkyAwada ,T. Hemdan Nasr-Allah a , Y. Abdallah Mohamed , b G. Mohamed Abdel-Aalb. a Benah University, Faculty of Engineering, Egypt b Zagazig University, Faculty of Engineering, Egypt
KEYWORDS
Stepped spillway, FLOW-3D, energy dissipation
Photo (1) general view of laboratory apparatus and
flow directionPhoto (2) stepped spillways for (hs/H) =0.17,0.25Fig.(6) Pressure contours for (hs/H)= 0.5, 0.33, 0.25, 0.17and 0.11) for Q = 40 l/s Fig.(7) Velocity magnitude for (hs/H)= 0.5, 0.33, 0.25, 0.17and 0.11) for Q = 40 l/sFig.(8) Flow depth for (hs/H)= 0.5, 0.33, 0.25,
0.17and 0.11) for Q = 40 l/sFig.(9) Turbulent dissipation for (hs/H)= 0.5, 0.33,
0.25, 0.17and 0.11) for Q = 40 l/s
REFERENCE
1- A. Hazzab, C. Chafi (2006),” Experimental investigation of flow and energy dissipation in stepped spillways “, Larhyss Journal, ISSN 1112-3680,vol. 05, pp.91-104. 2- H. Chanson and S. Felder (2007), “Dynamic Similarity and Scale Effects in Turbulent Free-Surface Flows above Triangular Cavities”, 16th Australasian Fluid Mechanics Conference Crown Plaza, Gold Coast, Australia. 3- G.A. Barani, M.B. Rahnama and N. Sohrabipoor (2005), “Investigation of Flow Energy Dissipation over Different Stepped Spillways”, American Journal of Applied Sciences 2 (6): 1101-1105, ISSN 1546-9239. 4- Iman Naderi Rad and Mehdi Teimouri (2010),”An Investigation of Flow Energy Dissipation in Simple Stepped Spillways by Numerical Model”, European Journal of Scientific Research ISSN 1450-216X Vol.47 No.4, pp.544-553. 5- Felder, S., and Chanson, H. (2011). “Energy Dissipation down a Stepped Spillway with Non-Uniform Step Heights.” Journal of Hydraulic Engineering, ASCE, Vol. 137, No. 11, pp. 1543-1548 (DOI 10.1061/(ASCE)HY.1943- 7900.0000455) (ISSN 0733-9429). 6- Hubert Chanson (2008), “Physical modeling scale effects and self similarity of stepped spillways flows”, World Environmental and Water Resources Congress, Ahupua’a. 7- Chanson, H., YASUDA, Y., and OHTSU, I. (2002). “Flow Resistance in Skimming Flows and its Modelling.” Can Jl of Civ. Eng., Vol. 29, No. 6, pp. 809-819 (ISSN 0315-1468).
8- Chanson (2004), Hydraulics of stepped chutes: The transition flow, Journal of Hydraulic Research Vol. 42, No. 1 , pp. 43–54. 9- Moussa Rassaei, Sedigheh Rahbar (2014), Numerical flow model stepped spillways in order to maximize energy dissipation using FLUENT software, IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 06 , PP 17-25. 10- Jean G Chatila & Bassam R Jurdi (2004), Stepped Spillway as an Energy Dissipater, Canadian Water Resources Journal Vol. 29(3): 147–158 . 11- A.H. Nikseresht, N. Talebbeydokhti and M.J. Rezaei, (2013), Numerical simulation of two-phase flow on steppool spillways, Scientia Iranica A ,20 (2), 222–230. 12- Khosro Morovati , Afshin Eghbalzadeh and Saba Soori,(2016), Numerical Study of Energy Dissipation of Pooled Stepped Spillways, Civil Engineering Journal , Vol. 2, No. 5. 13- Abbas Mansoori , Shadi Erfanian and Farhad Khamchin Moghadam (2017), A Study of the Conditions of Energy Dissipation in Stepped Spillways with Λ -shaped step Using FLOW-3D, Civil Engineering Journal Vol. 3, No. 10, October, 2017
본 연구에서는 특정 유형의 계단식 배수로에서 에너지 소산을 조사했습니다. 목적은 여수로 하류에서 최고 수준의 에너지 소산을 달성하는 것이었습니다.
큰 러프니스로 계단에 대한 특정 유형의 기하학을 제공하여 수행되었습니다. 여기에서 계단은 흐름에 대한 큰 거칠기로 인식되었습니다.
이 단계에서 최대 흐름 에너지가 최소화될 수 있도록 모양과 수를 설계했습니다. 따라서 하류의 구조에서 가장 높은 에너지 소산률을 얻을 수 있다고 말할 수 있습니다. 또한, 이에 따라 프로젝트에서 저유조를 설계하고 건설함으로써 부과되는 막대한 비용을 최소화할 수 있었습니다.
이 연구에서는 FLOW-3D를 사용하여 에너지 소산율을 분석하고 구했습니다. 최대 에너지 소산을 달성할 수 있는 계단의 최상의 기하학은 관련 문헌을 검토하고 FLOW-3D에서 제안된 모델을 발명하여 결정되었습니다.
제안된 방법을 평가하기 위해 앞서 언급한 방법들과 함께 시행착오를 통해 메쉬망 크기를 분석하고 그 결과를 다른 연구들과 비교하였습니다. 즉, 스무드 스텝에 비해 에너지 소산율이 25도 각도에서 Λ자 스텝으로 가장 최적의 상태를 얻었습니다.
In the present study, energy dissipation was investigated in a specific type of stepped spillways. The purpose was to achieve the highest level of energy dissipation in downstream of the spillway. It was performed by providing a specific type of geometry for step as a great roughness. Here, steps were recognized as great roughness against flow. Their shape and number were designed in such a way that the maximum flow energy can be minimized in this stage, i.e. over steps before reaching to downstream. Accordingly, it can be stated that the highest energy dissipation rate will be obtained in the structure at downstream. Moreover, thereby, heavy costs imposed by designing and constructing stilling basin on project can be minimized. In this study, FLOW-3D was employed to analyse and obtain energy dissipation rate. The best geometry of the steps, through which the maximum energy dissipation can be achieved, was determined by reviewing related literature and inventing the proposed model in FLOW-3D. To evaluate the proposed method, analyses were performed using trial and error in mesh networks sizes as well as the mentioned methods and the results were compared to other studies. In other words, the most optimal state was obtained with Λ-shaped step at angel of 25 degree with respect to energy dissipation rate compare to smooth step.
Figure 2. Three-dimensional design of the spillway using SolidWorks 2012Figure 6. a) 3D Numerical modelling of flow over Spillway; b) 3D experimental modelling of flow over Spillway (with the discharge of ) Figure 7. 2D model of flow depth for each angle of the-shaped steps
References
[1] Chanson, Hubert. Hydraulics of stepped chutes and spillways. CRC Press, 2002. [2] Cassidy, John J. “Irrotational flow over spillways of finite height.” Journal of the Engineering Mechanics Division 91, no. 6 (1965): 155-176. [3] Sorensen, Robert M. “Stepped spillway hydraulic model investigation.” Journal of Hydraulic Engineering 111, no. 12 (1985): 1461-1472. [4] Pegram, Geoffrey GS, Andrew K. Officer, and Samuel R. Mottram. “Hydraulics of skimming flow on modeled stepped spillways.” Journal of hydraulic engineering 125, no. 5 (1999): 500-510. [5] Tabbara, Mazen, Jean Chatila, and Rita Awwad. “Computational simulation of flow over stepped spillways.” Computers & structures 83, no. 27 (2005): 2215-2224. [6] Pedram, A and Mansoori, A. “Study on the end sill stepped spillway energy dissipation”, Seventh Iranian Hydraulic Conference, Power and Water University of Technology, Tehran, Iran, (2008) (In Persian). [7] Naderi Rad, A et al. “Energy dissipation in various types of stepped spillways including simple, sills, and sloped ones using FLUENT numerical model”, journal of civil and environmental engineering 39, no 1 (2009) (In Persian). [8] Stephenson, D. “Energy dissipation down stepped spillways.” International water power & dam construction 43, no. 9 (1991): 27-30. [9] Soori, S and Mansoori, A. “compared energy dissipation in Nappe flow and Skimming flow regime using FLOW-3D”, International Conference on Civil, Architecture and Urban Development, Islamic Azad University, Tabriz, Iran, (2013) (In Persian). [10] Pfister, Michael, Willi H. Hager, and Hans-Erwin Minor. “Bottom aeration of stepped spillways.” Journal of Hydraulic Engineering 132, no. 8 (2006): 850-853. [11] Pfister, Michael, and Willi H. Hager. “Self-entrainment of air on stepped spillways.” International Journal of Multiphase Flow 37, no. 2 (2011): 99-107. [12] Hamedi, Amirmasoud, Mohammad Hajigholizadeh, and Abbas Mansoori. “Flow Simulation and Energy Loss Estimation in the Nappe Flow Regime of Stepped Spillways with Inclined Steps and End Sill: A Numerical Approach.” Civil Engineering Journal 2, no. 9 (2016): 426-437. [13] Sedaghatnejad, S. “Investigation of energy dissipation in the end sill stepped spillways”, Master thesis, Sharif University of Technology, (2009).
Flood Inundation Evolution of Barrier Lake and Evaluation of Regional Ecological Spatiotemporal Response — A Case Study of Sichuan-Tibet Region
Abstract
중국 쓰촨-티베트 지역은 댐 호수의 발생과 붕괴를 동반한 지진 재해가 빈번한 지역이었습니다. 댐 호수의 붕괴는 하류 직원의 생명과 재산 안전을 심각하게 위협합니다.
동시에 국내외 학자들은 주변의 댐 호수에 대해 우려하고 있으며 호수에 대한 생태 연구는 거의 없으며 댐 호수가 생태에 미치는 영향은 우리 호수 건설 프로젝트에서 매우 중요한 계몽 의의를 가지고 있습니다.
이 기사의 목적은 방벽호의 댐 붕괴 위험을 과학적으로 예측하고 생태 환경에 대한 영향을 조사하며 통제 조치를 제시하는 것입니다. 본 논문은 쓰촨-티베트 지역의 Diexihaizi, Tangjiashan 댐호, Hongshihe 댐의 4대 댐 호수 사건을 기반으로 원격 감지 이미지에서 수역을 추출하고 HEC-RAS 모델을 사용하여 위험이 있는지 여부를 결정합니다.
댐 파손 여부 및 댐의 경로 예측; InVEST 모델을 이용하여 1990년부터 2020년까지 가장 작은 행정 구역(군/구)이 위치한 서식지를 평가 및 분석하고, 홍수 침수 결과를 기반으로 평가합니다. 결과는 공학적 처리 후 안정적인 댐 호수(Diexi Haizi)가 서식지 품질 지수에 안정화 효과가 있음을 보여줍니다.
댐 호수의 형성은 인근 토지 이용 유형과 지역 경관 생태 패턴을 변화 시켰습니다. 서식지 품질 지수는 사이 호수 주변 1km 지역에서 약간 감소하지만 3km 지역과 5km 지역에서 서식지 품질이 향상됩니다. 인공 홍수 방류 및 장벽 호수의 공학적 보강이 필요합니다.
이 논문에서 인간의 통제가 강한 지역은 다른 지역의 서식지 질 지수보다 더 잘 회복될 것입니다.
The Sichuan-Tibet region of China has always been an area with frequent earthquake disasters, accompanied by the occurrence and collapse of dammed lakes. The collapse of dammed lakes seriously threatens the lives and property safety of downstream personnel.
At the same time, domestic and foreign scholars are concerned about the surrounding dammed lake there are few ecological studies on the lake, and the impact of the dammed lake on the ecology has very important enlightenment significance for our lake construction project. It is the purpose of this article to scientifically predict the risk of dam break in a barrier lake, explore its impact on the ecological environment and put forward control measures.
Based on the four major dammed lake events of Diexihaizi, Tangjiashan dammed lake, and Hongshihe dammed lake in the Sichuan-Tibet area, this paper extracts water bodies from remote sensing images and uses the HEC-RAS model to determine whether there is a risk of the dam break and whether Forecast the route of the dam; and use the InVEST model to evaluate and analyze the habitat of the smallest administrative district (county/district) where it is located from 1990 to 2020 and make an evaluation based on the results of flood inundation.
The results show that the stable dammed lake (Diexi Haizi) after engineering treatment has a stabilizing effect on the habitat quality index. The formation of the dammed lake has changed the nearby land-use types and the regional landscape ecological pattern.
The habitat quality index will decrease slightly in the 1 km area around Sai Lake, but the habitat quality will increase in the 3 km area and the 5 km area. Artificial flood discharge and engineering reinforcement of barrier lakes are necessary. In this paper, the areas with strong human control will recover better than other regions’ habitat quality index.
Fengshan Jiang ( florachaing@mail.ynu.edu.cn ) Yunnan University https://orcid.org/0000-0001-6231-6180 Xiaoai Dai Chengdu University of Technology https://orcid.org/0000-0003-1342-6417 Zhiqiang Xie Yunnan University Tong Xu Yunnan University Siqiao Yin Yunnan University Ge Qu Chengdu University of Technology Shouquan Yang Yunnan University Yangbin Zhang Yunnan University Zhibing Yang Yunnan University Jiarui Xu Yunnan University Zhiqun Hou Kunming institute of surveying and mapping
Keywords
dammed lake, regional ecology, flood simulation, habitat quality
Figure 1 Location map of barrier lakes, Sichuan-Tibet region, ChinaFigure 8
Habitat quality changes in Maoxian CountyFigure 9
Habitat quality changes in Beichuan CountyFigure 10
Habitat quality change map of Qingchuan County
References
Chaoying Hu H S, Tianming Zhang. 2017. Environmental impact assessment of barrier lake treatment project based on ecological footprint[J]. People’s Yangtze River, 48: 30-32
Dai F C, Lee C F, Deng J H, et al. 2004. The 1786 earthquake-triggered landslide dam and subsequent dam-break flood on the Dadu River, southwestern China[J]. Geomorphology, 65.
Dongjing Chen Z X 2002. Research on Ecological Security Evaluation of Inland River Basin in Northwest China——A Case Study of Zhangye Region in the Middle Reaches of Heihe River Basin[J]. Arid zone geography: 219-224
Dongsheng Chang L Z, Yao Xu, Runqiu Huang. 2009. Risk Assessment of Overtopping Dam Burst in Hongshi River Barrier Lake[J]. Journal of Engineering Geology, 17: 50-55
Fan X, Yunus Ali P, Jansen John D, et al. 2019. Comment on ‘Gigantic rockslides induced by fluvial incision in the Diexi area along the eastern margin of the Tibetan Plateau’ by Zhao et al. (2019) Geomorphology 338, 27–42[J]. Geomorphology.
Feng Yu X L, Hong Wang, Hongjing Yu. 2006. Land Use Change and Ecological Security Evaluation in Huangfuchuan Watershed[J]. Acta Geographica Sinica: 645-653.
Hafiyyan Q, Adityawan M B, Harlan D, et al. 2021. Comparison of Taylor Galerkin and FTCS models for dam-break simulation[J]. IOP Conference Series: Earth and Environmental Science, 737.
Haiwen Li X B 2020. Comprehensive Evaluation of the Restoration Status of Damaged Ecological Space along the Plateau Fragile Area of the Sichuan-Tibet Railway[J]. Journal of Railway Science and Engineering, 17: 2412-2422.
Haohao Li X R, Huabin Yang. 2008. Rescue construction and thinking of Hongshihe dammed lake in Qingchuan County[J]. Water Conservancy and Hydropower Technology (Chinese and English): 50-51+62
Hejun Chai, Runqiu Huang, Hanchao Liu I O E G, Chengdu University of Technology 1997. Analysis and Evaluation of the Dangerous Degree of Landslide Blocking the River[J]. Chinese Journal of Geological Hazard and Control: 2-8+16
Hong Wang Y L, Lili Song, Yun Chen. 2020. Comparison of characteristics of thunderstorm and gale activity and environmental factors in Sichuan-Tibet area[J]. Journal of Applied Meteorology, 31: 435-446.
Hongyan X, Xu H, Jiang H, et al. 2020. Potential pollen evidence for the 1933 M 7.5 Diexi earthquake and implications for post-seismic landscape recovery[J]. Environmental Research Letters, 15.
Hui Xu J C, Zhijiu Cui, Pei Guo. 2019. Analysis of Grain Size Characteristics of Sediment in Dammed Lake——Taking Diexi Ancient Dammed Lake in the Upper Minjiang River as an Example[J]. Acta Sedimentologica Sinica, 37: 51-61
Jian Yang B P, Min Zhao. 2014. Research on Ecological Restoration Technology in Wenchuan Earthquake-Stricken Area ——Taking Tangjiashan Barrier Lake Area as an Example[J]. Sichuan Building Science Research, 40: 164-167.
Jian Yang B P 2017. Evaluation of Ecological Quality of Tangjiashan Dammed Lake Region in Beichuan County[J]. People’s Yangtze River, 48: 27-32
Jianfeng Chen Y W, Yang Li. 2006. Application of HEC-RAS model in flood simulation[J]. Northeast Water Resources and Hydropower: 12-13+42+71.
Jiankang Liu Z C, Tao Yu. 2016. Dam failure risk and its impact of Hongshiyan dammed lake in Ludian, Yunnan[J]. Journal of Mountain Science, 34: 208-215
Jianrong Fan B T, Genwei Cheng, Heping Tao, Jianqiang Zhang,Dong Yan, Fenghuan Su. 2008. Information extraction of dammed bodies induced by the May 12 Wenchuan earthquake based on multi-source remote sensing data[J]. Journal of Mountain Science: 257-262.
Jinghuan Tian K Z, Meng Chen, Fuxin Chai. 2012. Research on the application of HEC-RAS model in flood risk analysis and assessment[J]. Hydropower Energy Science, 30: 23-25
Juan He X W 2015. Dam-break flood analysis based on HEC-RAS and HEC-GeoRAS[J]. Journal of Water Resources and Water Transport Engineering: 112-116
Junwei Gan L Y, Jinjun Li. 2017. Research on the Influencing Factors of Sichuan-Tibet Tourism Industry Competitiveness Based on DEMATEL[J]. Arid Land Resources and Environment, 31: 197-202
Lansheng Wang L Y, Xiaoqun Wang, Liping Duan 2005. Discovery of the ancient dammed lake in Diexi, Minjiang River[J]. Journal of Chengdu University of Technology (Natural Science Edition): 1-11
Ma S, Zhu J, Ya. H. Year. Construction of Risk Assessment System of Dam-break in Barrier Lake Based on Collaborative Workflow: 9.
Ming Zeng Y C, Bingyu Zou. 2019. Discussion on the Method of Forecasting the Flood Evolution of Barrier Lake Burst—— Taking “11·3” Jinsha River Baige Barrier Lake as an Example[J]. Water Resources and Hydropower Express, 40: 11-14
Ouyang C, An H, Zhou S, et al. 2019. Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River, China Landslides[J]. 16.
Peng M, Zhang L M 2012. Analysis of human risks due to dam-break floods—part 1: a new model based on Bayesian networks[J]. Natural Hazards, 64.
Qianfeng Li Y L, Gang Liu, Zhiyun Ouyang, Hua Zheng. 2013. The Impact of Land Use Change on Ecosystem Service Function——Taking Miyun Reservoir Watershed as an Example[J]. Acta Ecologica Sinica, 33: 726-736.
Qiang Xu G Z, Weile Li, Zhaoyang He, Xiujun Dong, Chen Guo, Wenkai Feng. 2018. Analysis and study of two landslides and dams blocking the river in Baige on the Jinsha River in October and November 2018[J]. Journal of Engineering Geology, 26: 1534-1551
Qin Ji J Y, Hongju Chen, Man Li. 2019. Analysis of Economic Differences Along the Sichuan-Tibet Railway from the Perspective of Spatial and Industrial Decomposition[J]. Glacier permafrost: 1-14
Qingchun Li Y H, Yubing Shi. 2020. Study on the stability of the residual dam in Tangjiashan dammed lake[J]. Journal of Underground Space and Engineering, 16: 993-998
Qiwen Xiang J P, Guangze Zhang, Zhengxuan Xu, Dingkai Zhang, Wenli Tu. 2020. Monitoring and Analysis of Surface Deformation in Zheduo Mountain Area of Sichuan-Tibet Railway Based on SBAS Technology[J]. Surveying Engineering, 29: 48-54+59
Shangfu Kuang X W, Jinchi Huang, Yinqi Wei 2008. Analysis and Evaluation of Dam-Break Risk of Barred Lake and Its Influence[J]. China Water Resources: 17-21.
Sheng-Hsueh Y, Yii-Wen P, Jia-Jyun D, et al. 2013. A systematic approach for the assessment of flooding hazard and risk associated with a landslide dam[J]. Natural Hazards, 65.
Sun L 2021. Research on Fast Perception and Simulation Calculation Method of Landslide Dam in Alpine and Gorge Area: Taking Baige Dammed Lake as an Example[J]. Water Conservancy and Hydropower Technology (Chinese and English), 52: 44-52
Tamiru H, O. D M 2021. Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo River Basin, Ethiopia[J]. Journal of Hydrology: Regional Studies, 36.
Tao Pan S W, Erfu Dai, Yujie Liu. 2013. Spatio-temporal changes of water supply services in the ecosystem of the Three Rivers Source Region based on InVEST model[J]. Journal of Applied Ecology, 24: 183-189
Vera K, Sergey C, Inna K, et al. 2017. Modeling potential scenarios of the Tangjiashan Lake outburst and risk assessment in the downstream valley[J]. Frontiers of Earth Science, 11.
Wang Z 1985. Preliminary Discussion on the Evaluation of Ecological Environment Quality in Minjiang River Basin[J]. Journal of ecology: 29-32
Wei Chen Z S, Hui Guo,Hao Wang, Ting Wei, Nan Li, Kaiyi Zhang Shuxiang Yang, Kaijia Dai. 2007. Analysis of Bird Resources and Habitats in Wuhan Urban Lakes and Urban Wetlands in Winter[J]. Forestry Investigation and Planning: 46- 50
Wei G, Gaohong X, Jun S, et al. 2020. Simulation of Flood Process Based on the Model of Improved Barrier Lake’s Gradual Dam Break Model %J Journal of Coastal Research[J]. 104.
Wei X, Jiang H, Xu H, et al. 2021. Response of sedimentary and pollen records to the 1933 Diexi earthquake on the eastern Tibetan Plateau[J]. Ecological Indicators, 129.
Wei Xu M L, Jie Yang, Chunzhi Li, Xiaojuan Shang. 2011. Risk Analysis of Flood Overflow in Huainan Section of Huaihe River Based on HEC-RAS[J]. Journal of Yangtze River Scientific Research Institute, 28: 13-18
Weiwei Zhan R H, Xiangjun Pei, Weile Li. 2017. Research on empirical prediction model of channel type landslide-debris flow movement distance[J]. Journal of Engineering Geology, 25: 154-163
Xianju Zheng H L, Wenhai Huang. 2015. Numerical Simulation of Reconstruction of Natural Dams Induced by Heavy Rain ——An Example of Tangjiashan Dammed Lake[J]. Business story: 62-63
Xiao-Qun W, Xin H, Man S, et al. 2020. Possible relatedness between the outburst of the Diexi ancient dammed lake and ancient Chengdu’s cultural change[J]. Journal of Mountain Science, 17: 2497-2511.
Xingbo Zhou X D, Yu Yao. 2019. Analysis of the dam-break flood of the Baige dammed lake on the Jinsha River[J]. Hydroelectric Power, 45: 8-12+32
Xinhua Zhang R X, Ming Wang, Zhiqiu Yu, Bingdong Li, Bo Wang. 2020. Investigation and analysis of flood disaster caused by dam break of Baige landslide on Jinsha River[J]. Engineering Science and Technology, 52: 89-100
Xinxiao Yu B Z, Xizhi Lv, Zhige Yang. 2012. Evaluation of Forest Water Conservation Function of Beijing Mountainous Area Based on InVEST Model[J]. Forestry Science, 48: 1-5
Xu J, Guo J, Zhang J, et al. 2021. Route choice model based on cellular automata and cumulative prospect theory: Case analysis of transportation network in Sichuan-Tibet region[J]. Journal of Intelligent & Fuzzy Systems, 40.
Xuan Liang Z Z 2021. Research on the Influence of Numerical Simulation of Tailings Pond Based on FLOW-3D on Downstream[J]. Jiangxi Water Conservancy Science and Technology, 47: 11-20
Yu Zheng P Z, Feng Tang, Li Zhao, Xu Zhao. 2018. Research on the Impact of Land Use Change on Habitat Quality in Changli County Based on InVEST Model[J]. China’s Agricultural Resources and Regionalization, 39: 121-128
Yuanyuan Yang E D, Hua Fu. 2012. Research Framework of Value Evaluation of Ecosystem Service Function Based on InVEST Model[J]. Journal of Capital Normal University (Natural Science Edition), 33: 41-47
Yunfei Ma T L, Jinbiao Xiong. 2021. Numerical simulation of dam-break flow based on VOF method and DFBI model[J]. Applied Technology, 48: 23-28
Zhe Wu X C, Beibei Liu, Jinfeng Chu, Lixu Peng. 2013. Research progress of InVEST model and its application[J]. Tropical Agriculture Science, 33: 58-62
Zhengpeng Li Y H, Yilun Li, Yuehong Ying, Zehua Huangfu. 2021. Numerical simulation of dam-break flood in Qianping Reservoir based on BIM+GIS technology[J]. People’s Yellow River, 43: 160-164
Zhenming Shi X X, Ming Peng, Minglang Lin. 2015. Analysis of Seepage Stability of Barrier Dam with High Permeability Area——Taking Hongshihe Barrier Dam as an Example[J]. Journal of Hydraulic Engineering, 46: 1162-1171.
Zhu J, Qi H, Hu Y, et al. 2012. A DVGE service system for risk assessment of dam-break in barrier lake[J]. International Conference on Automatic Control and Artificial Intelligence (ACAI 2012).
Zhu Y, Peng M, Cai S, et al. 2021. Risk-Based Warning Decision Making of Cascade Breaching of the Tangjiashan Landslide Dam and Two Smaller Downstream Landslide Dams[J]. Frontiers in Earth Science.
Zuyu Chen G H, Qiang Zhang, Shuaifeng Wu. 2020. Disaster Mitigation Analysis of Cascade Hydropower Stations on the Jinsha River in “11.03” Baige Barrier Lake Emergency Treatment[J]. Hydropower, 46: 59-63
Zuyu Chen S C, Lin Wang, Qiming Zhong, Qiang Zhang, Songli Jin. 2020. Inversion analysis of the “11.03” Baige barrier lake burst flood in the upper reaches of the Jinsha River[J]. Science in China: Technological Science, 50: 763-774.
Examinations of Damage Mechanism on the Chuteway Slabs of Spillway under Various Flow Conditions
Yoo, Hyung Ju ;
Shin, Dong-Hoon ;
Lee, Seung Oh
유형주 (홍익대학교 공과대학 건설환경공학과) ;
신동훈 (K-water연구원 물인프라안전연구소) ;
이승오 (홍익대학교 공과대학 건설환경공학과)
Published : 2021.06.03
Abstract
최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로의 유입량이 설계 당시보다 증가하여 댐의 안전성 확보가 필요하다(감사원, 2003). 이에 건설교통부(2003)는 기후변화와 댐 노후화에 대비하여 치수능력증대사업을 추진하여 댐의 홍수배제능력을 확보하였고, 환경부(2020)에서는 40년 이상 경과된 댐을 대상으로 스마트 안전관리체계 구축을 통한 선제적 보수보강, 성능개선 및 자산관리로 댐의 장수명화를 목적으로 댐의 국가안전대진단을 추진하고 있다. 이에 본 연구에서는 댐 시설(여수로)의 노후도 평가 시 활용 될 수 있는 여수로 표면손상 원인규명에 대하여 3차원 수치모형(FLOW-3D 및 COMSOL Multiphysics)을 통해 검토하고자 한다. 연구대상 댐은 𐩒𐩒댐으로 지형 및 여수로를 구축하였으며, 계획방류량(200년 빈도) 및 최대방류량(PMF) 조건에서 모의를 수행하였다. 수치모의 계산의 정확도 검토를 위하여 Baffle의 설치를 통하여 시간에 따른 유량의 변화를 설계 값과 비교하였고 오차가 1.0% 이내를 만족하는 것을 확인하였다. 여수로 표면손상의 다양한 원인 중 기존연구(USBR, 2019)를 통하여 공동침식(Cavitation Erosion) 및 수력잭킹(Hydraulic Jacking)에 초점을 두었으며 방류조건 별 공동지수(Cavitation Index)산정을 통하여 공동침식 위험 구간을 확인하였다. 이음부의 균열 및 공동으로 인한 표층부 콘크리트의 탈락현상을 가속화시키는 수력잭킹 검토를 위하여 국부모형을 구축하였고 음압력(Negative Pressure), 정체압력(Stagnation Pressure), 양압력(Uplift Pressure)의 분포를 확인하였다. 최종적으로 COMSOL Multiphysics를 통하여 압력분포에 따른 구조해석을 수행하여 폰 미세스(Von Mises) 등가응력 및 변위를 검토하여 콘크리트의 탈락가능성을 확인하였다. 본 연구는 여수로 공동부 및 균열부에서의 손상메커니즘을 확인할 수 있는 기초적인 연구이지만 향후에는 다양한 지형조건 및 흐름조건에서의 압력분포 분석 및 유체-구조물 상호작용(Fluid-Structure Interaction, FSI)모의를 수행한다면 구조물 노후도 및 잔존수명 평가에 필요한 손상한계함수 도출이 가능할 것으로 기대된다.
Numerical Modeling of Failure Mechanisms in Articulated Concrete Block Mattress as a Sustainable Coastal Protection Structure
Author
Ramin Safari Ghaleh(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)
Omid Aminoroayaie Yamini(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)
S. Hooman Mousavi(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)
Mohammad Reza Kavianpour(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)
Abstract
해안선 보호는 전 세계적인 우선 순위로 남아 있습니다. 일반적으로 해안 지역은 석회암과 같은 단단하고 비자연적이며 지속 불가능한 재료로 보호됩니다. 시공 속도와 환경 친화성을 높이고 개별 콘크리트 블록 및 보강재의 중량을 줄이기 위해 콘크리트 블록을 ACB 매트(Articulated Concrete Block Mattress)로 설계 및 구현할 수 있습니다. 이 구조물은 필수적인 부분으로 작용하며 방파제 또는 해안선 보호의 둑으로 사용할 수 있습니다. 물리적 모델은 해안 구조물의 현상을 추정하고 조사하는 핵심 도구 중 하나입니다. 그러나 한계와 장애물이 있습니다. 결과적으로, 본 연구에서는 이러한 구조물에 대한 파도의 수치 모델링을 활용하여 방파제에서의 파도 전파를 시뮬레이션하고, VOF가 있는 Flow-3D 소프트웨어를 통해 ACB Mat의 불안정성에 영향을 미치는 요인으로는 파괴파동, 옹벽의 흔들림, 파손으로 인한 인양력으로 인한 장갑의 변위 등이 있다. 본 연구의 가장 중요한 목적은 수치 Flow-3D 모델이 연안 호안의 유체역학적 매개변수를 모사하는 능력을 조사하는 것입니다. 콘크리트 블록 장갑에 대한 파동의 상승 값은 파단 매개변수( 0.5 < ξ m – 1 , 0 < 3.3 )가 증가할 때까지(R u 2 % H m 0 = 1.6) ) 최대값에 도달합니다. 따라서 차단파라미터를 증가시키고 파괴파(ξ m − 1 , 0 > 3.3 ) 유형을 붕괴파/해일파로 변경함으로써 콘크리트 블록 호안의 상대파 상승 변화 경향이 점차 증가합니다. 파동(0.5 < ξ m − 1 , 0 < 3.3 )의 경우 차단기 지수(표면 유사성 매개변수)를 높이면 상대파 런다운의 낮은 값이 크게 감소합니다. 또한, 천이영역에서는 파단파동이 쇄도파에서 붕괴/서징으로의 변화( 3.3 < ξ m – 1 , 0 < 5.0 )에서 상대적 런다운 과정이 더 적은 강도로 발생합니다.
Shoreline protection remains a global priority. Typically, coastal areas are protected by armoring them with hard, non-native, and non-sustainable materials such as limestone. To increase the execution speed and environmental friendliness and reduce the weight of individual concrete blocks and reinforcements, concrete blocks can be designed and implemented as Articulated Concrete Block Mattress (ACB Mat). These structures act as an integral part and can be used as a revetment on the breakwater body or shoreline protection. Physical models are one of the key tools for estimating and investigating the phenomena in coastal structures. However, it does have limitations and obstacles; consequently, in this study, numerical modeling of waves on these structures has been utilized to simulate wave propagation on the breakwater, via Flow-3D software with VOF. Among the factors affecting the instability of ACB Mat are breaking waves as well as the shaking of the revetment and the displacement of the armor due to the uplift force resulting from the failure. The most important purpose of the present study is to investigate the ability of numerical Flow-3D model to simulate hydrodynamic parameters in coastal revetment. The run-up values of the waves on the concrete block armoring will multiply with increasing break parameter ( 0.5 < ξ m − 1 , 0 < 3.3 ) due to the existence of plunging waves until it ( R u 2 % H m 0 = 1.6 ) reaches maximum. Hence, by increasing the breaker parameter and changing breaking waves ( ξ m − 1 , 0 > 3.3 ) type to collapsing waves/surging waves, the trend of relative wave run-up changes on concrete block revetment increases gradually. By increasing the breaker index (surf similarity parameter) in the case of plunging waves ( 0.5 < ξ m − 1 , 0 < 3.3 ), the low values on the relative wave run-down are greatly reduced. Additionally, in the transition region, the change of breaking waves from plunging waves to collapsing/surging ( 3.3 < ξ m − 1 , 0 < 5.0 ), the relative run-down process occurs with less intensity.
Figure 1. Armor geometric characteristics and drawing three-dimensional geometry of a breakwater section in SolidWorks software.Figure 5. Wave overtopping on concrete block mattress in (a) laboratory and (b) numerical model.Figure 7. Mesh block for calibrated numerical model with 686,625 cells and utilization of FAVOR tab to assess figure geometry.Figure 10. How to place different layers (core, filter, and revetment) of the structure on slope.
Suggested Citation
Figure 11. Wave run-up on ACB Mat blocks in (a) laboratory model and (b) numerical modeling.Figure 15. Localized deformations on revetment due to run-down and sliding of armor from body laboratory model (left) and numerical modeling (right).
References
Capobianco, V.; Robinson, K.; Kalsnes, B.; Ekeheien, C.; Høydal, Ø. Hydro-Mechanical Effects of Several Riparian Vegetation Combinations on the Streambank Stability—A Benchmark Case in Southeastern Norway. Sustainability 2021, 13, 4046. [CrossRef]
MarCom Working Group 113. PIANC Report No 113: The Application of Geosynthetics in Waterfront Areas; PIANC: Brussels, Belgium, 2011; p. 113, ISBN 978-2-87223-188-1.
Hunt, W.F.; Collins, K.A.; Hathaway, J.M. Hydrologic and Water Quality Evaluation of Four Permeable Pavements in North Carolina, USA. In Proceedings of the 9th International Conference on Concrete Block Paving, Buenos Aires, Argentina, 18–21 October 2009.
Kirkpatrick, R.; Campbell, R.; Smyth, J.; Murtagh, J.; Knapton, J. Improvement of Water Quality by Coarse Graded Aggregates in Permeable Pavements. In Proceedings of the 9th International Conference on Concrete Block Paving, Buenos Aires, Argentina, 18–21 October 2009.
Chinowsky, P.; Helman, J. Protecting Infrastructure and Public Buildings against Sea Level Rise and Storm Surge. Sustainability 2021, 13, 10538. [CrossRef]
Breteler, M.K.; Pilarczyk, K.W.; Stoutjesdijk, T. Design of alternative revetments. Coast. Eng. 1998 1999, 1587–1600. [CrossRef]
Pilarczyk, K.W. Design of Revetments; Dutch Public Works Department (Rws), Hydraulic Engineering Division: Delft, The Netherlands, 2003.
Hughes, S.A. Combined Wave and Surge Overtopping of Levees: Flow Hydrodynamics and Articulated Concrete Mat Stability; Engineer Research and Development Center Vicksburg Ms Coastal and Hydraulics Lab: Vicksburg, MS, USA, 2008.
Gier, F.; Schüttrumpf, H.; Mönnich, J.; Van Der Meer, J.; Kudella, M.; Rubin, H. Stability of Interlocked Pattern Placed Block Revetments. Coast. Eng. Proc. 2012, 1, Structures-46. [CrossRef]
Najafi, J.A.; Monshizadeh, M. Laboratory Investigations on Wave Run-up and Transmission over Breakwaters Covered by Antifer Units; Scientia Iranica: Tehran, Iran, 2010.
Oumeraci, H.; Staal, T.; Pförtner, S.; Ludwigs, G.; Kudella, M. Hydraulic Performance, Wave Loading and Response of Elastocoast Revetments and their Foundation—A Large Scale Model Study; Leichtweiß Institut für Wasserbau: Braunschweig, Germany, 2010.
Tripathy, S.K. Significance of Traditional and Advanced Morphometry to Fishery Science. J. Hum. Earth Future 2020, 1, 153–166. [CrossRef]
Nut, N.; Mihara, M.; Jeong, J.; Ngo, B.; Sigua, G.; Prasad, P.V.V.; Reyes, M.R. Land Use and Land Cover Changes and Its Impact on Soil Erosion in Stung Sangkae Catchment of Cambodia. Sustainability 2021, 13, 9276. [CrossRef]
Xu, C.; Pu, L.; Kong, F.; Li, B. Spatio-Temporal Change of Land Use in a Coastal Reclamation Area: A Complex Network Approach. Sustainability 2021, 13, 8690. [CrossRef]
Mousavi, S.; Kavianpour, H.M.R.; Yamini, O.A. Experimental analysis of breakwater stability with antifer concrete block. Mar. Georesour. Geotechnol. 2017, 35, 426–434. [CrossRef]
Yamini, O.; Aminoroayaie, S.; Mousavi, H.; Kavianpour, M.R. Experimental Investigation of Using Geo-Textile Filter Layer In Articulated Concrete Block Mattress Revetment On Coastal Embankment. J. Ocean Eng. Mar. Energy 2019, 5, 119–133. [CrossRef]
Ghasemi, A.; Far, M.S.; Panahi, R. Numerical Simulation of Wave Overtopping From Armour Breakwater by Considering Porous Effect. J. Mar. Eng. 2015, 11, 51–60. Available online: http://dorl.net/dor/20.1001.1.17357608.1394.11.22.8.4 (accessed on 21 October 2021).
Nourani, O.; Askar, M.B. Comparison of the Effect of Tetrapod Block and Armor X block on Reducing Wave Overtopping in Breakwaters. Open J. Mar. Sci. 2017, 7, 472–484. [CrossRef]
Aminoroaya, A.O.; Kavianpour, M.R.; Movahedi, A. Performance of Hydrodynamics Flow on Flip Buckets Spillway for Flood Control in Large Dam Reservoirs. J. Hum. Earth Future 2020, 1, 39–47.
Milanian, F.; Niri, M.Z.; Najafi-Jilani, A. Effect of hydraulic and structural parameters on the wave run-up over the berm breakwaters. Int. J. Nav. Archit. Ocean Eng. 2017, 9, 282–291. [CrossRef]
Yamini, O.A.; Kavianpour, M.R.; Mousavi, S.H. Experimental investigation of parameters affecting the stability of articulated concrete block mattress under wave attack. Appl. Ocean Res. 2017, 64, 184–202. [CrossRef]
Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids 1992, 4, 1510–1520. [CrossRef]
Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [CrossRef]
Jin, J.; Meng, B. Computation of wave loads on the superstructures of coastal highway bridges. Ocean Eng. 2011, 38, 2185–2200. [CrossRef]
Yang, S.; Yang, W.; Qin, S.; Li, Q.; Yang, B. Numerical study on characteristics of dam-break wave. Ocean Eng. 2018, 159, 358–371. [CrossRef]
Ersoy, H.; Karahan, M.; Geli¸sli, K.; Akgün, A.; Anılan, T.; Sünnetci, M.O.; Yah¸si, B.K. Modelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation. Eng. Geol. 2019, 249, 112–128. [CrossRef]
Zhan, J.M.; Dong, Z.; Jiang, W.; Li, Y.S. Numerical simulation of wave transformation and runup incorporating porous media wave absorber and turbulence models. Ocean Eng. 2010, 37, 1261–1272. [CrossRef]
Owen, M.W. The Hydroulic Design of Seawall Profiles, Proceedings Conference on Shoreline Protection; ICE: London, UK, 1980; pp. 185–192.
Pilarczyk, K.W. Geosythetics and Geosystems in Hydraulic and Coastal Engineering; CRC Press: Balkema, FL, USA, 2000; p. 913, ISBN 90.5809.302.6.
Van der Meer, J.W.; Allsop, N.W.H.; Bruce, T.; De Rouck, J.; Kortenhaus, A.; Pullen, T.; Schüttrumpf, H.; Troch, P.; Zanuttigh, B. (Eds.) Manual on Wave Overtopping of Sea Defences and Related Structures–Assessment Manual; EurOtop.: London, UK, 2016; Available online: www.Overtopping-manual.com (accessed on 21 October 2021).
Battjes, J.A. Computation of Set-up, Longshore Currents, Run-up and Overtopping Due to Wind-Generated Waves; TU Delft Library: Delft, The Netherlands, 1974.
Van der Meer, J.W. Rock Slopes and Gravel Beaches under Wave Attack; Delft Hydraulics: Delft, The Netherlands, 1988.
Ten Oever, E. Theoretical and Experimental Study on the Placement of Xbloc; Delft Hydraulics: Delft, The Netherlands, 2006.
Flow Science, Inc. FLOW-3D User Manual Version 9.3; Flow Science, Inc.: Santa Fe, NM, USA, 2008.
Lebaron, J.W. Stability of A-Jacksarmored Rubble-Mound Break Waters Subjected to Breaking and Non-Breaking Waves with No Overtopping; Master of Science in Civil Engineering, Oregon State University: Corvallis, OR, USA, 1999.
McLaren RW, G.; Chin, C.; Weber, J.; Binns, J.; McInerney, J.; Allen, M. Articulated Concrete Mattress block size stability comparison in omni-directional current. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–6. [CrossRef]
Investigation of the Turbulent Schmidt Number Effects On Numerical Modelling Of Vortex-Type Stormwater Retention Ponds
S. M. Yamini1; H. Shamloo2; S. H. Ghafari3 1M.Eng., Dep. of Civil Engineering K.N. Toosi University of Technology, Valiasr St., Tehran, Iran. smyamini@alumni.kntu.ac.ir 2Associate Professor, Dep. of Civil Engineering K.N. Toosi University of Technology, Valiasr St., Tehran, Iran. hshamloo@kntu.ac.ir 3Ph.D., Dep. of Civil Engineering Univ. of Tehran, Enqelab St., Tehran, Iran. sarvenazghafari@ut.ac.ir
Abstract
정확하고 신뢰할 수 있는 CFD 모델링 결과를 얻는 것은 이러한 시뮬레이션에서 입력의 중요성 때문에 종종 정밀 조사의 대상입니다.
난류 모델링이 RANS(Reynolds-Averaged Navier-Stokes) 방정식을 기반으로 하는 경우 난류 스칼라 전송을 추정하려면 난류 흐름에서 질량 1에 대한 운동량 확산의 비율로 정의되는 난류 슈미트 수(Sct)의 정의가 필요합니다.
그러나 이 매개변수는 난류 흐름의 속성이므로 보편적인 값이 허용되지 않았습니다. 우수 저류지의 수치 연구에서 적절한 Sct를 설정하는 실제 역할은 수력 효율의 평가가 추적자 테스트의 출력 질량 농도를 기반으로 하기 때문에 가장 중요합니다.
본 연구에서는 FLOW-3D를 사용하여 와류형 우수 저류지의 여러 수치 시뮬레이션을 체계적으로 수행했습니다. 다양한 난류 슈미트 수의 범위는 메쉬 감도를 조사하기 위해 다른 수의 계산 셀에 의해 수행된 수치 시뮬레이션에 도입되었습니다.
또한 사용자 정의 또는 자동 계산 값으로 최대 난류 혼합 길이의 영향을 평가했습니다. 이 연구의 결과는 실험 결과와 밀접한 일치를 제공하는 Sct= 0.625와 함께 수리학적 직경의 7%와 동일한 최대 난류 혼합 길이의 일정한 값을 갖는 확립된 수치 모델입니다.
특히 수치적 무차원 RDT 곡선의 피크 값은 극적으로 감소하여 실험 결과와 거의 일치했습니다. 이것은 FLOW-3D가 난류 유동의 와류형 물리학에서 질량 확산도를 적절하게 예측하는 상당한 능력을 가지고 있다는 결론을 내립니다.
– Achieving accurate and reliable CFD modelling results often is the subject of scrutiny because of the importance of the inputs in those simulations. If turbulence modelling is based on Reynolds-Averaged Navier-Stokes (RANS) equations, estimating the turbulent scalar transport requires the definition of the turbulent Schmidt number (Sct), defined as the ratio of momentum diffusivity to mass one in a turbulent flow. However, no universal value has been accepted for this parameter as it is a property of turbulent flows.
The practical role of establishing a suitable Sct in numerical studies of stormwater retention ponds is of the utmost importance because the assessment of the hydraulic efficiency of them is based on output mass concentration of tracer tests. In this study, several numerical simulations of a vortex-type stormwater retention pond were systematically carried out using FLOW-3D. A range of various turbulent Schmidt numbers were introduced in numerical simulations performed by different number of computational cells to investigate mesh sensitivity.
Moreover, the effects of maximum turbulent mixing length as a user-defined or automatically computed value were assessed. The outcome of this study is an established numerical model with a constant value of maximum turbulent mixing length equal to 7% of the hydraulic diameter along with Sct= 0.625 which provides a close agreement with experimental results.
Noticeably, the peak values of numerical dimensionless RDT curves are dramatically decreased, resulted in a close match with experimental results. This concludes that FLOW-3D has a considerable ability to appropriately predict mass diffusivity in vortex-type physics of turbulent flows.
Figure 1- The experimental model [17]Figure 2- Schematic of boundary conditions in the numerical model
Figure 3- Positioning of mesh blocks
References
[1] C. Gualtieri, A. Angeloudis, F. Bombardelli, S. Jha, and T. Stoesser, “On the Values for the Turbulent Schmidt Number in Environmental Flows,” Fluids, vol. 2, p. 17, 2017. [2] Å. Adamsson, L. Bergdahl, and S. Lyngfelt, “Measurement and three-dimensional simulation of flow in a rectangular detention tank,” Urban Water Journal, vol. 2, no. 4, pp. 277-287, 2005/12/01 2005, doi: 10.1080/15730620500386545. [3] C. Gualtieri, “Numerical simulation of flow and tracer transport in a disinfection contact tank,” 2006. [4] S. Khan, B. Melville, and A. Shamseldin, Modeling the Layouts of Stormwater Retention Ponds using Residence Time. 2009, pp. 77-83. [5] F. Martínez-Solano, P. L. I. Rey, C. Gualtieri, and P. López-Jiménez, “Modelling flow and concentration field in rectangular water tanks,” 2010. [6] W. B. Rauen, A. Angeloudis, and R. A. Falconer, “Appraisal of chlorine contact tank modelling practices,” Water Research, vol. 46, no. 18, pp. 5834-5847, 2012/11/15/ 2012, doi: https://doi.org/10.1016/j.watres.2012.08.013.
[7] J. Zhang, A. Tejada-Martínez, and Q. Zhang, “Evaluation of LES and RANS for Determining Hydraulic Performance of Disinfection Systems for Water Treatment,” Journal of Fluids Engineering, vol. 136, 05/15 2014, doi: 10.1115/1.4027652. [8] J. Zhang, A. E. Tejada-Martínez, and Q. Zhang, “Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review,” Environmental Modelling & Software, vol. 58, pp. 71- 85, 2014/08/01/ 2014, doi: https://doi.org/10.1016/j.envsoft.2014.04.003. [9] C. Gualtieri and F. Salzano, “DIscussion on “The effect of baffle spacing on hydrodynamics and solute transport in serpentine contact tanks”,” Journal of Hydraulic Research, vol. 52, pp. 152-154, 02/28 2014, doi: 10.1080/00221686.2013.877528. [10] A. Angeloudis, T. Stoesser, R. A. Falconer, and D. Kim, “Flow, transport and disinfection performance in small- and full-scale contact tanks,” Journal of Hydro-environment Research, vol. 9, no. 1, pp. 15-27, 2015/03/01/ 2015, doi: https://doi.org/10.1016/j.jher.2014.07.001. [11] A. Angeloudis, T. Stoesser, C. Gualtieri, and R. A. Falconer, “Contact Tank Design Impact on Process Performance,” Environmental Modeling & Assessment, vol. 21, no. 5, pp. 563-576, 2016/10/01 2016, doi: 10.1007/s10666-016-9502- x. [12] D. Valero and D. B. Bung, “Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow,” Environmental Modelling & Software, vol. 82, pp. 218-228, 2016/08/01/ 2016, doi: https://doi.org/10.1016/j.envsoft.2016.04.030. [13] F. Sonnenwald, I. Guymer, and V. Stovin, “Computational fluid dynamics modelling of residence times in vegetated stormwater ponds,” Proceedings of the Institution of Civil Engineers – Water Management, vol. 171, pp. 1-11, 11/07 2017, doi: 10.1680/jwama.16.00117. [14] F. Sonnenwald, I. Guymer, and V. Stovin, “A CFD-Based Mixing Model for Vegetated Flows,” Water Resources Research, vol. 55, no. 3, pp. 2322-2347, 2019, doi: https://doi.org/10.1029/2018WR023628. [15] S. B. Pope, Turbulent Flows. Cambridge, UK: Cambridge University Press, 2000. [16] R. Rossi and G. Iaccarino, “Numerical simulation of scalar dispersion downstream of a square obstacle using gradienttransport type models,” Atmospheric Environment, vol. 43, no. 16, pp. 2518-2531, 2009/05/01/ 2009, doi: https://doi.org/10.1016/j.atmosenv.2009.02.044. [17] R. Chowdhury, M. Ahadi, K. A. Mazurek, G. Putz, D. Bergstrom, and C. Albers, “Physical Scale and Computational Modeling in the Development of a Vortex-Type Stormwater Retention Pond,” in World Environmental and Water Resources Congress 2016, 2016, pp. 388-397. [18] V. Yakhot and L. M. Smith, “The renormalization group, the ɛ-expansion and derivation of turbulence models,” Journal of Scientific Computing, vol. 7, no. 1, pp. 35-61, 1992/03/01 1992, doi: 10.1007/BF01060210. [19] Flow Science, Inc., FLOW-3D User manual. Santa Fe, NM, USA. (2015). [20] M. M. Bishop, J. M. Morgan, B. Cornwell, and D. K. Jamison, “Improving the Disinfection Detention Time of a Water Plant Clearwell,” Journal AWWA, vol. 85, no. 3, pp. 68-75, 1993, doi: https://doi.org/10.1002/j.1551- 8833.1993.tb05958.x. [21] F. L. Hart, “Improved Hydraulic Performance of Chlorine Contact Chambers.,” Jounal of Water Pollution Control Federation, vol. 51(12), pp. 2868–2875, 1979.
대용량 배출구가 있는 수중 여수로는 일반적으로 홍수 처리 및 침전물 세척의 이중 기능을 수행하기 위해 댐 정상 아래에 제공됩니다. 이 방수로를 통과하는 홍수 물은 난류 거동을 나타냅니다.
게다가 이러한 난류의 수력학적 분석은 어려운 작업입니다.
따라서 본 연구는 파키스탄 Mangla Dam에 건설된 수중 여수로의 수리학적 거동을 수치해석을 통해 조사하는 것을 목적으로 한다. 또한 다양한 작동 조건에서 화기의 유압 성능을 평가했습니다.
Mangla Spillway의 흐름을 수치적으로 모델링하는 데 전산 유체 역학 코드 FLOW 3D가 사용되었습니다. 레이놀즈 평균 Navier-Stokes 방정식은 난류 흐름을 수치적으로 모델링하기 위해 FLOW 3D에서 사용됩니다.
연구 결과에 따르면 개발된 모델은 최대 6%의 허용 오차로 흐름 매개변수를 계산하므로 수중 여수로 흐름을 시뮬레이션할 수 있습니다.
또한, 여수로 슈트 베드 주변 모델에 의해 계산된 공기 농도는 폭기 장치에 램프를 설치한 후 6% 이상으로 상승한 3%로 개발된 모델도 침수형 폭기 장치의 성능을 평가할 수 있음을 보여주었습니다.
Submerged spillways with large capacity outlets are generally provided below the dam crest to perform the dual functions of flood disposal and sediment flushing. Flood water passing through these spillways exhibits turbulent behavior. Moreover; hydraulic analysis of such turbulent flows is a challenging task. Therefore, the present study aims to use numerical simulations to examine the hydraulic behavior of submerged spillways constructed at Mangla Dam, Pakistan. Besides, the hydraulic performance of aerator was also evaluated at different operating conditions. Computational fluid dynamics code FLOW 3D was used to numerically model the flows of Mangla Spillway. Reynolds-averaged Navier–Stokes equations are used in FLOW 3D to numerically model the turbulent flows. The study results indicated that the developed model can simulate the submerged spillway flows as it computed the flow parameters with an acceptable error of up to 6%. Moreover, air concentration computed by model near spillway chute bed was 3% which raised to more than 6% after the installation of ramp on aerator which showed that developed model is also capable of evaluating the performance of submerged spillway aerator.
Sarwar MK, Bhatti MT, Khan NM (2016) Evaluation of air vents and ramp angles on the performance of orifice spillway aerators. J Eng Appl Sci 35(1):85–93Google Scholar
Shao Z, Jahangir Z, MuhammadYasir Q, Atta-ur-Rahman, Mahmood S (2020) Identification of potential sites for a multi-purpose dam using a dam suitability stream model. Water 12(11):3249. https://doi.org/10.3390/w12113249ArticleGoogle Scholar
Ye T, Pan D, Huang C, Liu M (2019) Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Phys Fluids 31(1):011301ArticleGoogle Scholar
1 Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran
2 Water Engineering Department, University of Tabriz, Tabriz, Iran
3 M.Sc. Student, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran
Abstract
The importance of water control and distribution in irrigation and behind dams requires the use of practical and modern methods. The presence of sill under sluice gate is one of the solutions to control the flow rate. Therefore, this study was conducted to numerically investigate the discharge coefficient (Cd) of sluice gate with different heights and widths of sills in free flow conditions. The simulations were performed using FLOW-3D software and finite volume method. The results of numerical study showed that the gate opening has a good effect on the Cd with sill and non-sill condition. In both cases, the gate opening is inversely related to the Cd. This means that the Cd increases as the gate opening decreases. Results showed that reducing the gate opening from 5 cm to 2 cm increases the Cd in the gate with sill by 9% compared to the non-sill gate. The results also indicate that the height of the sill is one of the parameters affecting the Cd. The minimum and maximum discharge coefficients in gate with sill compared to the non-sill condition were estimated at 1.5% and 18%, respectively. Examination of sill width changes showed that decreasing the width reduces the discharge coefficient by reducing the amount of velocity and flow pressure along the sill sides. The effect of three parameters of gate opening, sill height and sill width were compared. The results showed that increasing the sill width compared to the two mentioned parameters has the maximum increase in the Cd
관개 및 댐 뒤에서 물 관리 및 분배의 중요성은 실용적이고 현대적인 방법의 사용을 요구합니다. 수문 아래 문턱의 존재는 유량을 제어하는 솔루션 중 하나입니다.
따라서 본 연구는 자유유동 조건에서 문턱의 높이와 너비가 다른 수문의 토출계수(Cd)를 수치적으로 조사하기 위해 수행되었습니다. 시뮬레이션은 FLOW-3D 소프트웨어와 유한 체적 방법을 사용하여 수행되었습니다.
수치 연구의 결과는 게이트 개방이 sill 및 non-sill 조건에서 Cd에 좋은 영향을 미치는 것으로 나타났습니다. 두 경우 모두 게이트 개방은 Cd와 반비례합니다. 이것은 게이트 개방이 감소함에 따라 Cd가 증가한다는 것을 의미합니다.
결과에 따르면 게이트 개구부를 5cm에서 2cm로 줄이면 비문이 있는 게이트에 비해 씰이 있는 게이트의 Cd가 9% 증가합니다. 결과는 또한 문턱의 높이가 Cd에 영향을 미치는 매개변수 중 하나임을 나타냅니다.
문턱이 없는 문에 비해 문턱이 있는 문에서 최소 및 최대 배출 계수는 각각 1.5% 및 18%로 추정되었습니다. 문턱 너비 변화를 조사하면 너비를 줄이면 문턱 측면을 따라 유속과 흐름 압력의 양이 감소하여 배출 계수가 감소하는 것으로 나타났습니다.
게이트 개방, 문턱 높이 및 문턱 너비의 세 가지 매개변수의 효과를 비교했습니다. 결과는 언급된 두 매개변수에 비해 씰 너비를 늘리면 Cd가 최대로 증가한다는 것을 보여주었습니다.
결과는 또한 문턱의 높이가 Cd에 영향을 미치는 매개변수 중 하나임을 나타냅니다. 문턱이 없는 문에 비해 문턱이 있는 문에서 최소 및 최대 배출 계수는 각각 1.5% 및 18%로 추정되었습니다. 문턱 너비 변화를 조사하면 너비를 줄이면 문턱 측면을 따라 유속과 흐름 압력의 양이 감소하여 배출 계수가 감소하는 것으로 나타났습니다.
게이트 개방, 문턱 높이 및 문턱 너비의 세 가지 매개변수의 효과를 비교했습니다. 결과는 언급된 두 매개변수와 비교하여 문턱 너비를 늘리면 Cd가 최대로 증가한다는 것을 보여주었습니다.
결과는 또한 문턱의 높이가 Cd에 영향을 미치는 매개변수 중 하나임을 나타냅니다. 문턱이 없는 문에 비해 문턱이 있는 문에서 최소 및 최대 배출 계수는 각각 1.5% 및 18%로 추정되었습니다.
문턱 너비 변화를 조사하면 너비를 줄이면 문턱 측면을 따라 유속과 흐름 압력의 양이 감소하여 배출 계수가 감소하는 것으로 나타났습니다. 게이트 개방, 문턱 높이 및 문턱 너비의 세 가지 매개변수의 효과를 비교했습니다. 결과는 언급된 두 매개변수에 비해 씰 너비를 늘리면 Cd가 최대로 증가한다는 것을 보여주었습니다. 문턱 너비 변화를 조사하면 너비를 줄이면 문턱 측면을 따라 유속과 흐름 압력의 양이 감소하여 배출 계수가 감소하는 것으로 나타났습니다.
게이트 개방, 문턱 높이 및 문턱 너비의 세 가지 매개변수의 효과를 비교했습니다. 결과는 언급된 두 매개변수에 비해 씰 너비를 늘리면 Cd가 최대로 증가한다는 것을 보여주었습니다. 문턱 너비 변화를 조사하면 너비를 줄이면 문턱 측면을 따라 유속과 흐름 압력의 양이 감소하여 배출 계수가 감소하는 것으로 나타났습니다.
게이트 개방, 문턱 높이 및 문턱 너비의 세 가지 매개변수의 효과를 비교했습니다. 결과는 언급된 두 매개변수와 비교하여 문턱 너비를 늘리면 Cd가 최대로 증가한다는 것을 보여주었습니다.
이 기사는 BC Hydro의 Hydrotechnical부서의 전문 엔지니어인 M.A.Sc., P.Eng의 FaizalYusuf에 의해 기고되었다.
브리티시 콜롬비아의 공공 전력 회사인 BC Hydro는 FLOW-3D를 사용하여 현존하는 여러 댐의 복잡한 유압 문제를 조사하고 제안된 시설의 설계와 최적화를 지원합니다. 본 기사에서는 FLOW-3D를 다양한 유형의 드릴에 적용하는 방법과 신뢰할 수 있는 프로토 타입 또는 수치 모델 보정용 물리적 유압 모델 데이터의 중요성을 강조하는 세가지 사례가 제시됩니다.
W.A.C. Bennett Dam
Shock Waves in Spillway Chute
W.C. Bennett 댐에서는 1960년대 물리적 유압 모델과 프로토 타입 사이에 있었던 레일 궤도의 차이로 인해 충격파 형성에 대한 신뢰할 수 있는 결론을 도출하기 어렵습니다. 이 자료는 실제 모델 테스트 결과의 슈트 용량을 제공합니다. 콘크리트 라인 스풀 레이 슈트의 충격 파장의 크기는 헤드 워크에 있는 세 개의 방사형 게이트의 다운 스트림이 44% 감소되는데 크게 영향을 받습니다. 방사형 관문의 방사형 개구부의 충격파는 지역적으로 더 높은 수위로 이어져 특정 과거 작업에서 슈트 월의 과다 주입을 야기합니다.
2012년에 최대 2,865 m3/s 의 배출에 대한 프로토 타입 유출 테스트가 실행되어 슈트 벽, 슈트 내 물 표면에 대한 3D레이저 스캔 및 FLOW-3D model 보정을 위한 흐름 패턴. 수치 모델과 현장 관찰 간에, 특히 슈트 월의 첫번째 충격파의 위치와 높이 사이에 훌륭한 일치가 이루어졌습니다.
Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway
보정된 FLOW-3D모델은 기존에 규정된 바와 같이 3개의 방사형 관문이 모두 열리는 한, 유출되지 않고 설계 홍수를 안전하게 통과할 수 있음을 확인했습니다. 바깥쪽 문을 이용한 허가 명령은 안쪽 문보다 더 많이 열립니다. CFD모델 또한 spillway 슈트의 콘크리트 손상에 대한 통찰력을 제공했습니다. FLOW-3D시뮬레이션 결과로부터 계산된 공동지수를 USBR의 경험적 데이터와 비교했고, spillway의 과거 성능과 일치하는 것으로 확인되었습니다. 수치 해석을 통해 현장 검사를 지원하였으며, 이를 통해 슈트의 콘크리트 상태의 악화가 캐비테이션 때문이 아니라는 결론을 내렸습니다.
Strathcona Dam
Poor Approach Conditions and Uncertainty of Spillway Rating Curves
FLOW-3D는 댐 우측 교대에 수직 리프트 게이트가 3개 포함된 Strathcona댐 배수로의 등급 곡선과 관련한 열악한 접근 조건 및 불확실성을 조사하는 데 사용되었습니다. Strathcona spillway의 등급 곡선은 경험적인 조정과 교각의 기하학적 구조가 포함되지 않은 flume의 제한적인 물리적 유압 모델 테스트의 조합으로부터 개발되었습니다. 수치 모델 테스트 및 보정은 세개의 게이트가 모두 열려 있었던 1982년부터의 프로토 타입 유출 관측치와 비교하여 이루어진 것입니다. 맨 왼쪽 베이의 streamline입니다. 최좌측 베이로의 흐름은 댐 축에 평행하게 흐르는 물과 지하수 댐의 상류 경사에 인접한 콘크리트 옹벽 위로 곤두박질쳐 왜곡됩니다. 이 흐름은 다른 두 베이로 훨씬 더 부드럽게 들어갑니다. 프로토 타입과 비교하여 수치 모델에서 생성된 매우 유사한 흐름 패턴 외에도, 게이트 섹션에서 시뮬레이션된 수위는 1982년의 현장 측정 값과 0.1m이내에 일치했습니다.
Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.
Figure 2-2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open
보정된 CFD모델은 모든 게이트가 완전히 열린 상태에서 탱크의 정상 작동 범위에 대해 배수로 정격 곡선의 5%이내에서 배출을 생성합니다. 그러나 큰 홍수가 지나가는 동안 발생할 수 있는 더 높은 저장소 수준에서(그림 3) 시뮬레이션 배출과 등급 곡선 간의 차이는 다음과 같이 10%보다 큽니다. 단순화된 기하학적 구조와 경험적 보정을 사용한 물리적 모델 시험은 복잡한 접근 흐름 패턴을 적절히 나타내지 않았습니다. FLOW-3D모델은 개별 베이의 등급 곡선 정확도, 게이트 조건 및 오리피스와 자유 표면 흐름 사이의 전환에 대한 추가적인 통찰력을 제공합니다.
John Hart Dam
Optimization of a Proposed Spillway
John Hart 콘크리트 댐은 기존의 게이트 배수로와 현재 건설 중인 낮은 층의 출구 구조 사이에 위치할 새로운 free crest spillway를 포함하도록 개조될 것입니다. FLOW-3D를 사용한 체계적인 최적화 프로세스를 통해 제안된 배수로 설계가 크게 개선되었습니다. free crest 배수로의 예비 설계는 엔지니어링 유압 설계 가이드에 기초했습니다. 콘크리트 에이프런 블록은 댐의 끝에 있는 바위를 보호하기 위한 것입니다. 새로운 우측 도류벽이 새 배수로에서 테일 레일 풀로 흐르는 흐름을 유도하고 낮은 레벨의 배수로 구조물을 배수로로부터 보호합니다.
그림 4는 새 레일의 초기 설계와 최적화 설계에 대한 FLOW-3D모델 결과를 보여 줍니다. CFD분석을 통해 배수 용량이 10%증가하고 도로가 심하게 감소했습니다. 배수로 돌출부 위에 있고 제안된 오른쪽 벽을 따라 최대 5m의 수위 감소를 포함한 흐름 패턴을 개선합니다. 제안된 설계를 확인하기 위해 물리적 유압 모델 테스트가 사용됩니다.
Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.
Conclusion
BC Hydro는 다양한 유형의 댐과 물 운반 구조의 흐름 패턴 및 성능 대한 광범위한 유압 장치 문제를 조사하기 위해 FLOW-3D를 사용해 왔습니다. 프로토 타입 데이터와 신뢰할 수 있는 물리적 유압 모델 테스트는 수치 모델 결과에 대한 신뢰도를 높이기 위해 가능할 때마다 사용됩니다
Keyword : 3D Hydraulic Modeling,CFD, CFD Model, Computational Fluid Dynamics, Dam Hydraulics, Hydrology structure damage
급격한 변화나 예기치 못한 노후화로 인해 댐에서 복잡한 문제가 발생하는 경우 20세기에 개발된 산업 표준 설계 방정식과 방법론이 많은 경우 올바른 솔루션을 제공할 수는 없습니다. 다행스럽게도 엔지니어들은 적절한 조치나 수리를 적용할 수 있도록 유압 상황을 확인하기 위해 전산유체역학(CFD) 모델을 사용할 수 있게 되었습니다.
About the Expert:
Matthew Hickox, PE, brings civil engineering expertise in stormwater and river design, planning, and construction phase services. His experience is founded on a solid understanding of hydrologic modeling, 1- and 2-dimensional hydraulic modeling, in-stream hydraulic structures, scour protection measures, culvert and bridge hydraulics, and the regulatory environment for stormwater projects.
How Does CFD Work in Practice?
최근의 한 사례에서 하천 수문학 및 지형학은 낮은 수두 전환 댐 주변에서 변경되었습니다. 지난 수십 년 동안 빠르게 발전해 온 도시 지역의 하류에 있는 모래 바닥 하천 시스템에 위치한 댐의 문제는 주변 하천 시스템에서 일어나는 여러 가지 일들로 인해 복잡해졌습니다. 증가하는 도시화는 배출 빈도를 증가시켰을 뿐만 아니라 기본 흐름을 증가시켰습니다. 수리학적으로 가파른 시스템은 일시적인 지류에서 연간 베이스 흐름으로의 변화가 상류가 침식됨에 따라 퇴적물 부하도 증가했음을 의미했습니다.
이 조합은 전환 댐의 하류 수로가 지난 15년 동안 3-4피트 감소했고, 배수가 감소된 정수장 apron에서 속도가 증가했으며 구조물 표면에 마모를 유발하는 퇴적물 하중이 감소했음을 의미합니다. 이러한 문제 중 어느 것도 전환 댐의 원래 설계의 잘못이 아니었지만 변화하는 하천 수문 및 지형학으로 인해 원래 설계자가 예상하지 못한 조건이 발생했습니다.
기존 구조물의 단위 너비 CFD 모델은 기존 현장 조건으로 인해 정수기 계류장에 수압 점프가 형성되지 않았다는 현장 관찰을 확인했습니다. 1).
Figure 1. Existing conditions unit width CFD model results showing velocity, cross section view of structure.
설계 표고(열화 전)에서 하류 하류 바닥 표고와 함께 개발된 유사한 단위 너비 CFD 모델은 원래 설계가 정수 유역 계류장과 배수로 전면 근처에서 수압 점프를 생성한다는 것을 보여주었습니다. 이 단위 너비 CFD 모델은 구조에 영향을 미치는 수력학의 가치 있는 검증을 제공하지만 구조 손상이 구조 중간에서 매우 뚜렷하고 다른 영역에서는 거의 손대지 않았기 때문에 이것만으로는 충분하지 않습니다. (그림 2)
Figure 2. Original design conditions unit width CFD model results showing velocity, cross section view of structure. The only difference with Figure 1 is the downstream bed elevation.
전체 기존 조건 CFD 모델은 정수조 앞치마 마모의 범위와 그에 따른 손상을 확인했습니다. (그림 3 및 4)
Figure 3. Existing conditions CFD model results showing velocity streamlines at 2-year event discharge. High velocities are areas of significant abrasion damage, low velocity areas have little or no abrasion damage.Figure 4. Existing conditions shows rebar exposed from significant abrasion damage to stilling basin apron in high velocity areas
이 구조물에 대한 수리를 위한 예비 설계 동안 간단한 분석에 따르면 구조물의 미수를 높이는 것이 방수로 토우 근처의 구조물에 수력학적 점프를 만드는 데 도움이 될 것이며, 이는 정수 유역 계류장과 계류장을 가로지르는 극한 속도를 감소시킬 것입니다. 따라서 구조의 마모를 크게 줄입니다(그림 5 참조). 이 예비 제안 조건 CFD 모델은 엔드 실 높이만 높였습니다. 구조물 하류의 하천 시스템의 상태와 지형은 나머지 설계 수명 동안 구조물의 안정성을 보장하기 위해 모든 최종 설계 조건에 대해 평가되어야 합니다.
Figure 5. Preliminary design check to verify velocities under a raised tailwater condition at a 2-year event discharge. Velocity cross section slices shown.
CFD 모델은 설계 상황이 확립된 설계 방정식 및 절차의 한계 내에 깔끔하게 속하지 않을 때 유압을 확인하는 또 다른 도구를 제공합니다. 구조와 유역의 개요에 대해 자세히 설명하는 전체적인 관점은 프로젝트 현장의 현재와 미래의 상태를 평가하는 데 필요합니다. 이 예에서 구조의 설계 및 작동은 원래 설계와 매우 유사하게 유지됩니다. 구조 주변에서 변경된 것은 하천 시스템입니다. CFD는 현장 조건 변경으로 인해 예기치 않은 수리력 및 구조 손상이 발생할 때 복잡한 수리력을 분석할 수 있는 도구 상자의 또 다른 도구를 제공합니다.
CFD 또는 여기 Ayres에서 제공하는 유압 엔지니어링 서비스에 대한 자세한 내용은 Matthew Hickox, PE에게 문의하십시오.
NesreenTahabMaged M.El-FekyaAtef A.El-SaiadaIsmailFathya aDepartment of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt bLab Manager, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
Abstract
횡단 구조물을 통한 막힘은 안정성을 위협하는 위험한 문제 중 하나입니다. 암거의 막힘 형상 및 하류 세굴 특성에 미치는 영향에 관한 연구는 거의 없습니다.
이 연구의 목적은 수면과 세굴 모두에서 상자 암거를 통한 막힘의 작용을 수치적으로 논의하는 것입니다. 이를 위해 FLOW 3D v11.1.0을 사용하여 퇴적물 수송 모델을 조사했습니다.
상자 암거를 통한 다양한 차단 비율이 연구되었습니다. FLOW 3D 모델은 실험 데이터로 보정되었습니다. 결과는 FLOW 3D 프로그램이 세굴 다운스트림 상자 암거를 정확하게 시뮬레이션할 수 있음을 나타냅니다.
막힌 경우에 대한 속도 분포, 최대 세굴 깊이 및 수심을 플롯하고 비차단된 사례(기본 사례)와 비교했습니다.
그 결과 암거 높이의 70% 차단율은 상류의 수심을 암거 높이의 2.3배 증가시키고 평균 유속은 기본 경우보다 3배 더 증가시키는 것으로 입증되었다. 막힘 비율의 함수로 상대 최대 세굴 깊이를 추정하는 방정식이 만들어졌습니다.
Blockage through crossing structures is one of the dangerous problems that threaten its stability. There are few researches concerned with blockage shape in culverts and its effect on characteristics of scour downstream it.
The study’s purpose is to discuss the action of blockage through box culvert on both water surface and scour numerically. A sediment transport model has been investigated for this purpose using FLOW 3D v11.1.0. Different ratios of blockage through box culvert have been studied. The FLOW 3D model was calibrated with experimental data.
The results present that the FLOW 3D program was capable to simulate accurately the scour downstream box culvert. The velocity distribution, maximum scour depth and water depths for blocked cases have been plotted and compared with the non-blocked case (base case).
The results proved that the blockage ratio 70% of culvert height makes the water depth upstream increases by 2.3 times of culvert height and mean velocity increases by 3 times more than in the base case. An equation has been created to estimate the relative maximum scour depth as a function of blockage ratio.
1. Introduction
Local scour is the removal of granular bed material by the action of hydrodynamic forces. As the depth of scour hole increases, the stability of the foundation of the structure may be endangered, with a consequent risk of damage and failure [1]. So the prediction and control of scour is considered to be very important for protecting the water structures from failure. Most previous studies were designed to study the different factors that impact on scour and their relationship with scour hole dimensions like fluid characteristics, flow conditions, bed properties, and culvert geometry. Many previous researches studied the effect of flow rate on scour hole by information Froude number or modified Froude number [2], [3], [4], [5], [6]. Cesar Mendoza [6] found a good correlation between the scour depth and the discharge Intensity (Qg−.5D−2.5). Breusers and Raudkiv [7] used shear velocity in the outlet-scour prediction procedure. Ali and Lim [8] used the densimetric Froude number in estimation of the scour depth [1], [8], [9], [10], [11], [12], [13], [14]. “The densimetric Froude number presents the ratio of the tractive force on sediment particle to the submerged specific weight of the sediment” [15](1)Fd=uρsρ-1gD50
Ali and Lim [8] pointed to the consequence of tailwater depth on scour behavior [1], [2], [8], [13]. Abida and Townsend [2] indicated that the maximum depth of local scour downstream culvert was varying with the tailwater depth in three ways: first, for very shallow tailwater depths, local scouring decreases with a decrease in tailwater depth; second, when the ratio of tailwater depth to culvert height ranged between 0.2 and 0.7, the scour depth increases with decreasing tailwater depth; and third for a submerged outlet condition. The tailwater depth has only a marginal effect on the maximum depth of scour [2]. Ruff et al. [16] observed that for materials having similar mean grain sizes (d50) but different standard deviations (σ). As (σ) increased, the maximum scour hole depth decreased. Abt et al. [4] mentioned to role of soil type of maximum scour depth. It was noticed that local scour was more dangerous for uniform sands than for well-graded mixtures [1], [2], [4], [9], [17], [18]. Abt et al [3], [19] studied the culvert shape effect on scour hole. The results evidenced that the culvert shape has a limited effect on outlet scour. Under equivalent discharge conditions, it was noted that a square culvert with height equal to the diameter of a circular culvert would reduce scour [16], [20]. The scour hole dimension was also effected by the culvert slope. Abt et al. [3], [21] showed that the culvert slope is a key element in estimating the culvert flow velocity, the discharge capacity, and sediment transport capability. Abt et al. [21], [22] tested experimentally culvert drop height effect on maximum scour depth. It was observed that as the drop height was increasing, the depth of scour was also increasing. From the previous studies, it could have noticed that the most scour prediction formula downstream unblocked culvert was the function of densimetric Froude number, soil properties (d50, σ), tailwater depth and culvert opening size. Blockage is the phenomenon of plugging water structures due to the movement of water flow loaded with sediment and debris. Water structures blockage has a bad effect on water flow where it causes increasing of upstream water level that may cause flooding around the structure and increase of scour rate downstream structures [23], [24]. The blockage phenomenon through was studied experimentally and numerical [15], [25], [26], [27], [28], [29], [30], [31], [32], [33]. Jaeger and Lucke [33] studied the debris transport behavior in a natural channel in Australia. Froude number scale model of an existing culvert was used. It was noticed that through rainfall event, the mobility of debris was impressed by stream shape (depth and width). The condition of the vegetation (size and quantities) through the catchment area was the main factor in debris transport. Rigby et al. [26] reported that steep slope was increasing the ability to mobilize debris that form field data of blocked culverts and bridges during a storm in Wollongong city.
Streftaris et al. [32] studied the probability of screen blockage by debris at trash screens through a numerical model to relate between the blockage probability and nature of the area around. Recently, many commercial computational fluid programs (CFD) such as SSIIM, Fluent, and FLOW 3D are used in the analysis of the scour process. Scour and sediment transport numerical model need to validate by using experimental data or field data [34], [35], [36], [37], [38]. Epely-Chauvin et al. [36] investigated numerically the effect of a series of parallel spur diked. The experimental data were compared by SSIIM and FLOW 3D program. It was found that the accuracy of calibrated FLOW 3D model was better than SSIIM model. Nielsen et al. [35] used the physical model and FLOW 3D model to analyze the scour process around the pile. The soil around the pile was uniform coarse stones in the physical models that were simulated by regular spheres, porous media, and a mixture of them. The calibrated porous media model can be used to determine the bed shear stress. In partially blocked culverts, there aren’t many studies that explain the blockage impact on scour dimensions. Sorourian et al. [14], [15] studied the effect of inlet partial blockage on scour characteristics downstream box culvert. It resulted that the partial blockage at the culvert inlet could be the main factor in estimating the depth of scour. So, this study is aiming to investigate the effects of blockage through a box culvert on flow and scour characteristics by different blockage ratios and compares the results with a non-blocked case. Create a dimensionless equation relates the blockage ratio of the culvert with scour characteristics downstream culvert.
2. Experimental data
The experimental work of the study was conducted in the Hydraulics and Water Engineering Laboratory, Faculty of Engineering, Zagazig University, Egypt. The flume had a rectangular cross-section of 66 cm width, 65.5 cm depth, and 16.2 m long. A rectangular culvert was built with 0.2 m width, 0.2 m height and 3.00 m long with θ = 25° gradually outlet and 0.8 m fixed apron. The model was located on the mid-point of the channel. The sediment part was extended for a distance 2.20 m with 0.66 m width and 0.20 m depth of coarse sand with specific weight 1.60 kg/cm3, d50 = 2.75 mm and σ (d90/d50) = 1.50. The particle size distribution was as shown in Fig. 1. The experimental model was tested for different inlet flow (Q) of 25, 30, 34, 40 l/s for different submerged ratio (S) of 1.25, 1.50, 1.75.
3. Dimensional analysis
A dimensional analysis has been used to reduce the number of variables which affecting on the scour pattern downstream partial blocked culvert. The main factors affecting the maximum scour depth are:(2)ds=f(b.h.L.hb.lb.Q.ud.hu.hd.D50.ρ.ρs.g.ls.dd.ld)
Fig. 2 shows a definition sketch of the experimental model. The maximum scour depth can be written in a dimensionless form as:(3)dsh=f(B.Fd.S)where the ds/h is the relative maximum scour depth.
4. Numerical work
The FLOW 3D is (CFD) program used by many researchers and appeared high accuracy in solving hydrodynamic and sediment transport models in the three dimensions. Numerical simulation with FLOW 3D was performed to study the impacts of blockage ratio through box culvert on shear stress, velocity distribution and the sediment transport in terms of the hydrodynamic features (water surface, velocity and shear stress) and morphological parameters (scour depth and sizes) conditions in accurately and efficiently. The renormalization group (RNG) turbulence model was selected due to its high ability to predict the velocity profiles and turbulent kinetic energy for the flow through culvert [39]. The one-fluid incompressible mode was used to simulate the water surface. Volume of fluid (VOF) method was employed in FLOW 3D to tracks a liquid interface through arbitrary deformations and apply the correct boundary conditions at the interface [40].1.
Governing equations
Three-dimensional Reynolds-averaged Navier Stokes (RANS) equation was applied for incompressible viscous fluid motion. The continuity equation is as following:(4)VF∂ρ∂t+∂∂xρuAx+∂∂yρvAy+∂∂zρwAz=RDIF(5)∂u∂t+1VFuAx∂u∂x+vAy∂u∂y+ωAz∂u∂z=-1ρ∂P∂x+Gx+fx(6)∂v∂t+1VFuAx∂v∂x+vAy∂v∂y+ωAz∂v∂z=-1ρ∂P∂y+Gy+fy(7)∂ω∂t+1VFuAx∂ω∂x+vAy∂ω∂y+ωAz∂ω∂z=-1ρ∂P∂z+Gz+fz
ρ is the fluid density,
VF is the volume fraction,
(x,y,z) is the Cartesian coordinates,
(u,v,w) are the velocity components,
(Ax,Ay,Az) are the area fractions and
RDIF is the turbulent diffusion.
P is the average hydrodynamic pressure,
(Gx, Gy, Gz) are the body accelerations and
(fx, fy, fz) are the viscous accelerations.
The motion of sediment transport (suspended, settling, entrainment, bed load) is estimated by predicting the erosion, advection and deposition process as presented in [41].
The critical shields parameter is (θcr) is defined as the critical shear stress τcr at which sediments begin to move on a flat and horizontal bed [41]:(8)θcr=τcrgd50(ρs-ρ)
The Soulsby–Whitehouse [42] is used to predict the critical shields parameter as:(9)θcr=0.31+1.2d∗+0.0551-e(-0.02d∗)(10)d∗=d50g(Gs-1ν3where:
d* is the dimensionless grain size
Gs is specific weight (Gs = ρs/ρ)
The entrainment coefficient (0.005) was used to scale the scour rates and fit the experimental data. The settling velocity controls the Soulsby deposition equation. The volumetric sediment transport rate per width of the bed is calculated using Van Rijn [43].2.
Meshing and geometry of model
After many trials, it was found that the uniform cell size with 0.03 m cell size is the closest to the experimental results and takes less time. As shown in Fig. 3. In x-direction, the total model length in this direction is 700 cm with mesh planes at −100, 0, 300, 380 and 600 cm respectively from the origin point, in y-direction, the total model length in this direction is 66 cm at distances 0, 23, 43 and 66 cm respectively from the origin point. In z-direction, the total model length in this direction is 120 cm. with mesh planes at −20, 0, 20 and 100 cm respectively.3.
Boundary condition
As shown in Fig. 4, the boundary conditions of the model have been defined to simulate the experimental flow conditions accurately. The upstream boundary was defined as the volume flow rate with a different flow rate. The downstream boundary was defined as specific pressure with different fluid elevation. Both of the right side, the left side, and the bottom boundary were defined as a wall. The top boundary defined as specified pressure with pressure value equals zero.
5. Validation of experimental results and numerical results
The experimental results investigated the flow and scour characteristics downstream culvert due to different flow conditions. The measured value of maximum scour depth is compared with the simulated depth from FLOW 3D model as shown in Fig. 5. The scour results show that the simulated results from the numerical model is quite close to the experimental results with an average error of 3.6%. The water depths in numerical model results is so close to the experimental results as shown in Fig. 6 where the experiment and numerical results are compared at different submerged ratios and flow rates. The results appear maximum error percentage in water depths upstream and downstream the culvert is about 2.37%. This indicated that the FLOW 3D is efficient for the prediction of maximum scour depth and the flow depths downstream box culvert.
6. Computation time
The run time was chosen according to reaching to the stability limit. Hydraulic stability was achieved after 50 s, where the scour development may still go on. For run 1, the numerical simulation was run for 1000 s as shown in Fig. 7 where it mostly reached to scour stability at 800 s. The simulation time was taken 500 s at about 95% of scour stability.
7. Analysis and discussions
Fig. 8 shows the study sections where sec 1 represents to upstream section, sec2 represents to inside section and sec3 represents to downstream stream section. Table 1 indicates the scour hole dimensions at different blockage case. The symbol (B) represents to blockage and the number points to blockage ratio. B0 case signifies to the non-blocked case, B30 is that blockage height is 30% to the culvert height and so on.
Table 1. The scour results of different blockage ratio.
Case
hb cm
B = hb/h
Q lit/s
S
Fd
d50 mm
ds/h measured
ls/h
dd/h
ld/h
ds/h estimated
B0
0
0
35
1.26
1.69
2.5
0.58
1.50
0.27
5.00
0.46
B30
6
0.30
35
1.26
1.68
2.5
0.48
1.25
0.27
4.25
0.40
B50
10
0.50
35
1.22
1.74
2.5
0.45
1.10
0.24
4.00
0.37
B70
14
0.70
35
1.23
1.73
2.5
0.43
1.50
0.16
5.50
0.33
7.1. Scour hole geometry
The scour hole geometry mainly depends on the properties of soil of the bed downstream the fixed apron. From Table 1, the results show that the maximum scour depth in B0 case is about 0.58 of culvert height while the maximum deposition in B0 is 0.27 culvert height. There is a symmetric scour hole as shown in Fig. 9 in B0 case. An asymmetric scour hole is created in B50 and B70 due to turbulences that causes the deviation of the jet direction from the center of the flume where appear in Fig. 11 and Fig. 19.
7.2. Flow water surface
Fig. 10 presents the relative free surface water (hw/h) along the x-direction at center of the box culvert. From the mention Figure, it is easy to release the effect of different blockage ratios. The upstream water level rises by increasing the blockage ratio. Increasing upstream water level may cause flooding over the banks of the waterway. In the 70% blockage case, the upstream water level rises to 2.3 times of culvert height more than the non-blocked case at the same discharge and submerged ratio. The water surface profile shows an increase in water level upstream the culvert due to a decrease in transverse velocity. Because of decreasing velocity downstream culvert, there is an increase in water level before it reaches its uniform depth.
7.3. Velocity vectors
Scour downstream hydraulic structures mainly affects by velocities distribution and bed shear stress. Fig. 11 shows the velocity vectors and their magnitude in xz plane at the same flow conditions. The difference in the upstream water level due to the different blockage ratios is so clear. The maximum water level is in B70 and the minimum level is in B0. The inlet mean velocity value is about 0.88 m/s in B0 increases to 2.86 m/s in B70. As the blockage ratio increases, the inlet velocity increases. The outlet velocity in B0 case makes downward jet causes scour hole just after the fixed apron in the middle of the bed while the blockage causes upward water flow that appears clearly in B70. The upward jet decreases the scour depth to 0.13 culvert height less than B0 case. After the scour hole, the velocity decreases and the flow becomes uniform.
7.4. Velocity distribution
Fig. 12 represents flow velocity (Vx) distribution along the vertical depth (z/hu) upstream the inlet for the different blockage ratios at the same flow conditions. From the Figure, the maximum velocity creates closed to bed in B0 while in blocked case, the maximum horizontal velocity creates at 0.30 of relative vertical depth (z/hu). Fig. 13 shows the (Vz) distribution along the vertical depth (z/hu) upstream culvert at sec 1. From the mentioned Figure, it is easy to note that the maximum vertical is in B70 which appears that as the blockage ratio increases the vertical ratio also increases. In the non-blocked case. The vertical velocity (Vz) is maximum at (z/hu) equals 0.64. At the end of the fixed apron (sec 3), the horizontal velocity (Vx) is slowly increasing to reach the maximum value closed to bed in B0 and B30 while the maximum horizontal velocity occurs near to the top surface in B50 and B70 as shown in Fig. 14. The vertical velocity component along the vertical depth (z/hd) is presented in Fig. 15. The vertical velocity (Vz) is maximum in B0 at vertical depth (z/hd) 0.3 with value 0.45 m/s downward. Figs. 16 and 17 observe velocity components (Vx, Vz) along the vertical depth just after the end of blockage length at the centerline of the culvert barrel. It could be noticed the uniform velocity distribution in B0 case with horizontal velocity (Vx) closed to 1.0 m/s and vertical velocity closed to zero. In the blocked case, the maximum horizontal velocity occurs in depth more than the blockage height.
7.5. Bed velocity distribution
Fig. 18 presents the x-velocity vectors at 1.5 cm above the bed for different blockage ratios from the velocity vectors distribution and magnitude, it is easy to realize the position of the scour hole and deposition region. In B0 and B30, the flow is symmetric so that the scour hole is created around the centerline of flow while in B50 and B70 cases, the flow is asymmetric and the scour hole creates in the right of flow direction in B50. The maximum scour depth is found in the left of flow direction in B70 case where the high velocity region is found.
8. Maximum scour depth prediction
Regression analysis is used to estimate maximum scour depth downstream box culvert for different ratios of blockage by correlating the maximum relative scour by other variables that affect on it in one formula. An equation is developed to predict maximum scour depth for blocked and non-blocked. As shown in the equation below, the relative maximum scour depth(ds/hd) is a function of densimetric Froude number (Fd), blockage ratio (B) and submerged ratio (S)(11)dsh=0.56Fd-0.20B+0.45S-1.05
In this equation the coefficient of correlation (R2) is 0.82 with standard error equals 0·08. The developed equation is valid for Fd = [0.9 to 2.10] and submerged ratio (S) ≥ 1.00. Fig. 19 shows the comparison between relative maximum scour depths (ds/h) measured and estimated for different blockage ratios. Fig. 20 clears the comparison between residuals and ds/h estimated for the present study. From these figures, it could be noticed that there is a good agreement between the measured and estimated relative scour depth.
9. Comparison with previous scour equations
Many previous scour formulae have been produced for calculation the maximum scour depth downstream non-blockage culvert. These equations have been included the effect of flow regime, culvert shape, soil properties and the flow rate on maximum scour depth. Two of previous experimental studies data have been chosen to be compared with the present study results in non-blocked study data. Table 2 shows comparison of culvert shape, densmetric Froude number, median particle size and scour equations for these previous studies. By applying the present study data in these studies scour formula as shown in Fig. 21, it could be noticed that there are a good agreement between present formula results and others empirical equations results. Where that Lim [44] and Abt [4] are so closed to the present study data.
Table 2. Comparison of some previous scour formula.
The present study has shown that the FLOW 3D model can accurately simulate water surface and the scour hole characteristics downstream the box culvert with error percentage in water depths does not exceed 2.37%. Velocities distribution through and outlets culvert barrel helped on understanding the scour hole shape.
The blockage through culvert had caused of increasing of water surface upstream structure where the upstream water level in B70 was 2.3 of culvert height more than non-blocked case at the same discharge that could be dangerous on the stability of roads above. The depth averaged velocity through culvert barrel increased by 3 times its value in non-blocked case.
On the other hand, blockage through culvert had a limited effect on the maximum scour depth. The little effect of blockage on maximum scour depth could be noticed in Fig. 11. From this Figure, it could be noted that the residual part of culvert barrel after the blockage part had made turbulences. These turbulences caused the deviation of the flow resulting in the formation of asymmetric scour hole on the side of channel. This not only but in B70 the blockage height caused upward jet which made a wide far scour hole as cleared from the results in Table 1.
An empirical equation was developed from the results to estimate the maximum scour depth relative to culvert height function of blockage ratio (B), submerged ratio (S), and densimetric Froude number (Fd). The equation results was compared with some scour formulas at the same densimetric Froude number rang where the present study results was in between the other equations results as shown in Fig. 21.
Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
[1]P. Sarathi, M. Faruque, R. BalachandarInfluence of tailwater depth, sediment size and densimetric Froude number on scour by submerged square wall jetsJ. Hydraul. Res., 46 (2) (2008), pp. 158-175CrossRefView Record in ScopusGoogle Scholar[2]H. Abida, R. TownsendLocal scour downstream of box-culvert outletsJ. Irrig. Drain. Eng., 117 (3) (1991), pp. 425-440CrossRefView Record in ScopusGoogle Scholar[3]S.R. Abt, C.A. Donnell, J.F. Ruff, F.K. DoehringCulvert Slope and Shape Effects on Outlet ScourTransp. Res. Rec., 1017 (1985), pp. 24-30View Record in ScopusGoogle Scholar[4]S.R. Abt, R.L. Kloberdanz, C. MendozaUnified culvert scour determinationJ. Hydraul. Eng., 110 (10) (1984), pp. 1475-1479CrossRefView Record in ScopusGoogle Scholar[5]J.P. Bohan, Erosion And Riprap Requirements At Culvert And Storm-Drain Outlets, ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS1970.Google Scholar[6]C. Mendoza, S.R. Abt, J.F. RuffHeadwall influence on scour at culvert outletsJ. Hydraul. Eng., 109 (7) (1983), pp. 1056-1060CrossRefView Record in ScopusGoogle Scholar[7]H. Breusers, A. Raudkivi, Scouring, hydraulic structures design manual, vol. 143, IAHR, AA Balkema, Rotterdam, 1991.Google Scholar[8]K. Ali, S. LimLocal scour caused by submerged wall jetsProc. Inst. Civ. Eng., 81 (4) (1986), pp. 607-645CrossRefView Record in ScopusGoogle Scholar[9]O. Aderibigbe, N. RajaratnamEffect of sediment gradation on erosion by plane turbulent wall jetsJ. Hydraul. Eng., 124 (10) (1998), pp. 1034-1042View Record in ScopusGoogle Scholar[10]F.W. Blaisdell, C.L. AndersonA comprehensive generalized study of scour at cantilevered pipe outletsJ. Hydraul. Res., 26 (4) (1988), pp. 357-376CrossRefView Record in ScopusGoogle Scholar[11]Y.-M. Chiew, S.-Y. LimLocal scour by a deeply submerged horizontal circular jetJ. Hydraul. Eng., 122 (9) (1996), pp. 529-532View Record in ScopusGoogle Scholar[12]R.A. Day, S.L. Liriano, W.R. WhiteEffect of tailwater depth and model scale on scour at culvert outletsProc. Instit. Civil Eng. – Water Marit. Eng., 148 (3) (2001), pp. 189-198http://www.icevirtuallibrary.com/doi/10.1680/wame.2001.148.3.189, 10.1680/wame.2001.148.3.189View Record in ScopusGoogle Scholar[13]S. Emami, A.J. SchleissPrediction of localized scour hole on natural mobile bed at culvert outletsScour and Erosion (2010), pp. 844-853CrossRefView Record in ScopusGoogle Scholar[14]S. Sorourian, A. Keshavarzi, J. Ball, B. SamaliStudy of Blockage Effect on Scouring Pattern Downstream of a Box Culvert under Unsteady FlowAustr. J Water Resor. (2013)Google Scholar[15]S. Sorourian, Turbulent Flow Characteristics At The Outlet Of Partially Blocked Box Culverts, in: 36th IAHR World Congress, The Hague, the Netherlands, 2015.Google Scholar[16]J. Ruff, S. Abt, C. Mendoza, A. Shaikh, R. KloberdanzScour at culvert outlets in mixed bed materialsUnited States. Federal Highway Administration. Office of Research and Development (1982)Google Scholar[17]S.A. Ansari, U.C. Kothyari, K.G.R. RajuInfluence of cohesion on scour under submerged circular vertical jetsJ. Hydraul. Eng., 129 (12) (2003), pp. 1014-1019View Record in ScopusGoogle Scholar[18]B. Crookston B. Tullis, Scour and Riprap Protection in a Bottomless Arch Culvert, in: World Environmental and Water Resources Congress 2008: Ahupua’A, 2008, pp. 1–10.Google Scholar[19]S.R. Abt, J. Ruff, F. Doehring, C. DonnellInfluence of culvert shape on outlet scourJ. Hydraul. Eng., 113 (3) (1987), pp. 393-400View Record in ScopusGoogle Scholar[20]Y.H. Chen, Scour at outlets of box culverts, Colorado State University, 1970.Google Scholar[21]S. Abt, P. Thompson, T. LewisEnhancement of the culvert outlet scour estimation equationsTransp. Res. Rec. J. Transp. Res. Board, 1523 (1996), pp. 178-185View Record in ScopusGoogle Scholar[22]F.K. Doehring, S.R. AbtDrop height influence on outlet scourJ. Hydraul. Eng., 120 (12) (1994), pp. 1470-1476CrossRefView Record in ScopusGoogle Scholar[23]W. Weeks, A. Barthelmess, E. Rigby, G. Witheridge, R. Adamson, Australian rainfall and runoff revison project 11: blockage of hydraulic structures, 2009.Google Scholar[24]W. Weeks, G. Witheridge, E. Rigby, A. BarthelmessProject 11: blockage of hydraulic structuresEngineers Australia (2013)Google Scholar[25]S.R. Abt, T.E. Brisbane, D.M. Frick, C.A. McKnightTrash rack blockage in supercritical flowJ. Hydraul. Eng., 118 (12) (1992), pp. 1692-1696View Record in ScopusGoogle Scholar[26]E. Rigby, M. Boyd, S. Roso, P. Silveri, A. Davis, Causes and effects of culvert blockage during large storms, in: Global solutions for urban drainage, 2002, pp. 1–16.Google Scholar[27]S. Roso, M. Boyd, E. Rigby, R. VanDrie“Prediction of increased flooding in urban catchments due to debris blockage and flow diversionsProceedings Novatech (2004), pp. 8-13View Record in ScopusGoogle Scholar[28]C.-D. Jan, C.-L. ChenDebris flows caused by Typhoon Herb in Taiwanin Debris-Flow Hazards and Related Phenomena, Springer (2005), pp. 539-563CrossRefGoogle Scholar[29]L.W. Zevenbergen, P.F. Lagasse, P.E. Clopper, Effects of debris on bridge pier scour, in: World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat, 2007, pp. 1–10.Google Scholar[30]A. Barthelmess, E. Rigby, Estimating Culvert and Bridge Blockages-a Simplified Procedure, in: Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Engineers Australia, 2011, pp. 39.Google Scholar[31]E. Rigby, A. Barthelmess, Culvert Blockage Mechanisms and their Impact on Flood Behaviour, in: Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Engineers Australia, 2011, pp. 380.Google Scholar[32]G. Streftaris, N. Wallerstein, G. Gibson, S. ArthurModeling probability of blockage at culvert trash screens using Bayesian approachJ. Hydraul. Eng., 139 (7) (2012), pp. 716-726Google Scholar[33]R. Jaeger, T. LuckeInvestigating the relationship between rainfall intensity, catchment vegetation and debris mobilityInt. J. GEOMATE, 12 (33) (2017), pp. 22-29 Download PDFView Record in ScopusGoogle Scholar[34]S. Amiraslani, J. Fahimi, H. Mehdinezhad, The Numerical Investigation of Free Falling Jet’s Effect On the Scour of Plunge Pool, in: XVIII International conference on water resources, Tehran University, Iran, 2008.Google Scholar[35]A.W. Nielsen, X. Liu, B.M. Sumer, J. FredsøeFlow and bed shear stresses in scour protections around a pile in a currentCoast. Eng., 72 (2013), pp. 20-38ArticleDownload PDFView Record in ScopusGoogle Scholar[36]G. Epely-Chauvin, G. De Cesare, S. SchwindtNumerical modelling of plunge pool scour evolution in non-cohesive sedimentsEng. Appl. Comput. Fluid Mech., 8 (4) (2014), pp. 477-487 Download PDFCrossRefView Record in ScopusGoogle Scholar[37]H. Karami, H. Basser, A. Ardeshir, S.H. HosseiniVerification of numerical study of scour around spur dikes using experimental dataWater Environ. J., 28 (1) (2014), pp. 124-134CrossRefView Record in ScopusGoogle Scholar[38]S.-H. Oh, K.S. Lee, W.-M. JeongThree-dimensional experiment and numerical simulation of the discharge performance of sluice passageway for tidal power plantRenew. Energy, 92 (2016), pp. 462-473ArticleDownload PDFView Record in ScopusGoogle Scholar[39]M.A. Khodier, B.P. TullisExperimental and computational comparison of baffled-culvert hydrodynamics for fish passageJ. Appl. Water Eng. Res. (2017), pp. 1-9CrossRefView Record in ScopusGoogle Scholar[40]F.S. Inc., FLOW-3D user’s manual, Flow Science, Inc., 2009.Google Scholar[41]G. Wei, J. Brethour, M. Grünzner, J. BurnhamSedimentation scour modelFlow Science Report, 7 (2014), pp. 1-29View Record in ScopusGoogle Scholar[42]R. Soulsby, R. Whitehouse, Threshold of sediment motion in coastal environments, in: Pacific Coasts and Ports’ 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference, vol. 1, Centre for Advanced Engineering, University of Canterbury, 1997, pp. 145.Google Scholar[43]L.C.v. RijnSediment transport, part II: suspended load transportJ. Hydraul. Eng., 110 (11) (1984), pp. 1613-1641View Record in ScopusGoogle Scholar[44]S Y LIMScour below unsubmerged full-flowing culvert outletsProc. Instit. Civil Eng. – Water Marit. Energy, 112 (2) (1995), pp. 136-149http://www.icevirtuallibrary.com/doi/10.1680/iwtme.1995.27659, 10.1680/iwtme.1995.27659View Record in ScopusGoogle Scholar
Peer review under responsibility of Faculty of Engineering, Alexandria University.
많은 계단식 배수로 지오메트리 설계 지침이 평평한 단계를 위해 개발되었지만 통합 단계를 설계하는 것이 더 효율적으로 작동하는 배수로에 대한 적절한 대안이 될 수 있습니다.
이 논문은 POOL의 다른 높이에서 공기 연행과 보이드 비율의 시작점을 다루는 것을 목표로 합니다. 그 후, FLOW-3D 소프트웨어를 사용하여 POOL과 경사면의 높이를 다르게 하여 폭기된 지역과 폭기되지 않은 지역에서 압력 분포를 평가했습니다.
얻어진 수치 결과와 실험 결과의 비교는 본 연구에 사용된 모든 방류에 대해 잘 일치했습니다. POOL 높이는 시작 지점 위치에 미미한 영향을 미쳤습니다. 공극률의 값은 높은 방류에 비해 낮은 방전에서 더 많은 영향을 받았습니다.
여수로의 마루(통기되지 않은 지역)에서는 음압이 나타나지 않았으며 각 방류에서 마루를 따라 높이가 15cm인 수영장에서 최대 압력 값이 얻어졌습니다.
모든 사면에서 웅덩이 및 평평한 계단형 여수로의 계단층 부근에서는 음압이 형성되지 않았습니다. 그러나 평단식 여수로에 비해 평단식 여수로의 수직면 부근에서 음압이 더 많이 형성되어 평단식 슈트에서 캐비테이션 현상이 발생할 확률이 증가하였습니다.
Study of inception point, void fraction and pressure over pooled stWhile many stepped spillways geometry design guidelines were developed for flat steps, designing pooled steps might be an appropriate alternative to spillways working more efficiency. This paper aims to deal with the inception point of air-entrainment and void fraction in the different height of the pools. Following that, pressure distribution was evaluated in aerated and non-aerated regions under the effect of different heights of the pools and slopes through the use of the FLOW-3D software. Comparison of obtained numerical results with experimental ones was in good agreement for all discharges used in this study. Pools height had the insignificant effect on the inception point location. The value of void fraction was more affected in lower discharges in comparison with higher ones. Negative pressure was not seen over the crest of spillway (non-aerated region), and the maximum pressure values were obtained for pools with 15 cm height along the crest in each discharge. In all slopes, negative pressure was not formed near the step bed in the pooled and flat stepped spillways. However, negative pressure was formed in more area near the vertical face in the flat stepped spillway compared with the pooled stepped spillway which increases the probability of cavitation phenomenon in the flat stepped chute.
Design/methodology/approach
압력, 공극률 및 시작점을 평가하기 위해 POOL된 계단식 여수로가 사용되었습니다. 또한 POOL의 다른 높이가 사용되었습니다. 이 연구의 수치 시뮬레이션은 Flow-3D 소프트웨어를 통해 수행되었습니다. 얻어진 결과는 풀이 압력, 공극률 및 시작점을 포함한 2상 유동 특성에 영향을 미칠 수 있음을 나타냅니다.
Findings
마루 위에는 음압이 보이지 않았습니다. 압력 값은 사용된 모든 높이와 15cm 높이에서 얻은 최대 값에 대해 다릅니다. 또한, 풀링 스텝은 플랫 케이스에 비해 음압점 감소에 더 효과적인 역할을 하였습니다. 시작 지점 위치는 특히 9 및 15cm 높이에 대해 스키밍 흐름 영역과 비교하여 낮잠 및 전환 흐름 영역에서 더 많은 영향을 받았습니다.
Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h
step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm):
d’ is the water depth above the crest; y’ is the distance normal to the crest invertFigure 2- meshing domain and distribution of blocksFigure 3- Comparison of numerical simulation with experimental data by Felder et al. (2012A);
mesh convergence analysis; pooled stepped spillway (slope: 26.6 0
) Figure 4- Comparison of numerical simulation with experimental data by Felder et al. (2012A);
Flat stepped spillway (slope: 0
26 6. )Figure 5-Comparison of numerical simulation with experimental data by Felder et al. (2012B); pooled
and flat stepped spillways (slope: 0
9.8 )
Figure 6- TKE distribution on steps 8, 9 and 10 for four different mesh numbers: 261252 (model 1),
288941 (model 2), 323578 (model 3) and 343154 (model 4)Figure 7- Comparison of obtained Void fraction distribution on step 10 in numerical simulation with
experimental work conducted by Felder et al. (2012A); (slope 26.60
) Figure 8- Results of inception point of air entrainment in different height of the pools: comparison with
empirical correlations (Eqs 8-9), experimental (Felder et al. (2012A)) and numerical dataFigure 9- Void fraction distribution for different pool heights on steps 10; slope 26.6 0Figure 10- Comparison of pressure distribution between numerical simulation and experimental work
conducted by Zhang and Chanson (2016); flat stepped spillway (slope: 0
45 )Figure 11- A comparison of the pressure distribution above the crest of the spillway; B comparison of the
free surface profile along the crest of the spillway.
Note: x’ indicates the longitudinal distance from the starting point of the crest.Figure 12- pressure distribution along crest of spillway in different discharges; slope 26.6Figure 13- Pressure distribution near the last step bed for different slopes and discharges: x” indicatesthe
longitudinal distance from the intersection of the horizontal and vertical faces of step 10; y” is the
distance from the intersection of the horizontal and vertical faces in the vertical direction Figure 14- Pressure distribution adjacent the vertical face of step 9 for different discharges and slopesTable1- Used discharges for assessments of mesh convergence analysis and hydraulic
characteristics
Conclusion
본 연구에서는 자유표면을 모사하기 위해 VOF 방법과 k -ε (RNG) 난류 모델을 활용하여 FLOW-3D 소프트웨어를 사용하였고, 계단식 배수로의 유동을 모사하기 위한 목적으로 난류 특성을 모사하였다. 얻은 결과는 수치 모델이 시작점 위치, 보이드 비율 및 압력을 적절하게 시뮬레이션했음을 나타냅니다. 풀의 높이는 공기 유입 위치에 미미한 영향을 미치므로 얻은 결과는 이 문서에서 제시된 상관 관계와 잘 일치했습니다. 즉, 사용 가능한 상관 관계를 서로 다른 풀 높이에 사용할 수 있습니다. 공극률의 결과는 스텝 풀 근처의 나프 유동 영역에서 공극율 값이 다른 배출보다 더 큰 것으로 나타났다. 더욱이 고방출량 .0 113m3/s에서 수영장 높이를 변경해도 수영장 표면 근처의 공극률 값에는 영향을 미치지 않았습니다.
낮잠 및 전환 체제의 압력 분포에 대한 0 및 3cm 높이의 수영장 효과는 많은 지점에서 대부분 유사했습니다. 더욱이 조사된 모든 높이에서 여수로의 마루를 따라 부압이 없었습니다. 여수로 끝단의 바닥 부근의 압력 결과는 평평하고 고인 경우 부압이 발생하지 않았음을 나타냅니다. 수직면 부근의 음압은 웅덩이에 비해 평평한 계단형 여수로의 깊이(w=0 cm)의 대부분에서 발생하였다. 또한 더 큰 사면에 대한 풀링 케이스에서 음압이 제거되었습니다. 평단식 여수로에서는 계단의 수직면에 인접한 더 넓은 지역에서 음압이 발생하였기 때문에 이 여수로에서는 고형단식여수로보다 캐비테이션 현상이 발생할 가능성이 더 큽니다.
In this study, the FLOW-3D software was used through utilizing the VOF method and k −ε (RNG) turbulence model in order to simulate free surface, and turbulence characteristics for the purpose of simulating flow over pooled stepped spillway. The results obtained indicated that the numerical model properly simulated the inception point location, void fraction, and pressure. The height of the pools has the insignificant effect on the location of air entrainment, so that obtained results were in good agreement with the correlations presented in this paper. In other words, available correlations can be used for different pool heights. The results of void fraction showed that the void fraction values in nappe flow regime near the step pool were more than the other discharges. Furthermore in high discharge, 0.113m3/s, altering pool height had no effect on the value of void fraction near the pool surface.
The effect of the pools with 0 and 3 cm heights over the pressure distribution in nappe and transition regimes was mostly similar in many points. Furthermore, in all examined heights there was no negative pressure along the crest of the spillway. The pressure results near the bed of the step at the end of the spillway indicated that negative pressure did not occur in the flat and pooled cases. Negative pressure near the vertical face occurred in the most part of the depth in the flat stepped spillway (w=0 cm) in comparison with the pooled case. Also, the negative pressure was eliminated in the pooled case for the larger slopes. Since negative pressure occurred in a larger area adjacent the vertical face of the steps in the flat stepped spillways, it is more likely that cavitation phenomenon occurs in this spillway rather than the pooled stepped spillways.
References
André, S. (2004), “High velocity aerated flows on stepped chutes with macro-roughness elements.” Ph.D. thesis, Laboratoire de Constructions Hydraulics (LCH), EPFL, Lausanne, Switzerland, 272 pages.
Attarian, A. Hosseini, Kh. Abdi, H and Hosseini, M. (2014), “The Effect of the Step Height on Energy Dissipation in Stepped Spillways Using Numerical Simulation”. Arabian Journal for Science and Engineering, 39(4), 2587-2594.
Bombardelli, F.A. Meireles. I. Matos, J. (2011), “Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped spillways”. Environmental fluid mechanics, 11(3) 263-288.
Chakib, B. (2013), “Numerical Computation of Inception Point Location for Flat-sloped Stepped Spillway”. International Journal of Hydraulic Engineering; 2(3): 47-52.
Chakib, B. Mohammed, H. (2015), “Numerical Simulation of Air Entrainment for Flat-Sloped Stepped Spillway. Journal of computational multiphase flows”, Volume 7. Number 1.
Chanson, H. Toombes, L. (2002), “Air–water flows down stepped chutes: turbulence and flow structure observations”. International Journal of Multiphase Flow, 28(11) 1737-1761
Chen, Q. Dai, G. Liu, H. (2002), “Volume of Fluid Model for Turbulence Numerical Simulation of Stepped Spillway Overflow”. DOI: 10.1061/(ASCE)0733-9429128:7(683).
Cheng, X. Chen, Y. Luo, L. (2006), “Numerical simulation of air-water two-phase flow over stepped spillways”. Science in China Series E: Technological Sciences, 49(6), 674-684.
Cheng, X. Luo, L. Zhao, W. (2004), “Study of aeration in the water flow over stepped spillway”. In: Proceedings of the world water congress.
Chinnarasri, Ch. Kositgittiwong, D. Julien, Y. (2013), “Model of flow over spillways by computational fluid dynamics”. Proceedings of the ICE – Water Management, Volume 167(3) 164 –175.
Dastgheib, A. Niksokhan, M.H. and Nowroozpour, A.R. (2012), “Comparing of Flow Pattern and Energy Dissipation over different forms of Stepped Spillway”. World Environmental and Water Resources Congress ASCE.
Eghbalzadeh, A. Javan, M. (2012), “Comparison of mixture and VOF models for numerical simulation of air entrainment in skimming flow over stepped spillway”. Procedia Engineering, 28. 657-660.
Felder, S, Chanson, H. (2012), “Free-surface Profiles, Velocity and Pressure Distributions on a Broad-Crested Weir: a Physical study “Free-surface Profiles, Velocity and Pressure Distributions on a Broad-Crested Weir: a Physical study
Felder, S. Fromm, Ch. Chanson, H. (2012B), “Air entrainment and energy dissipation on a 8.9 slope stepped spillway with flat and pooled steps”, School of Civil Engineering, The University of Queensland,. Brisbane, Australia.
Felder, S. Chanson, H. (2014A), Triple decomposition technique in air–water flows: application to instationary flows on a stepped spillway. International Journal of Multiphase Flow, 58, 139-153.
Felder, S. Chanson, H. (2014B), Effects of step pool porosity upon flow aeration and energy dissipation on pooled stepped spillways. Journal of Hydraulic Engineering, 140(4), 04014002.
Felder, S. Chanson, H. (2013A), “Air entrainment and energy dissipation on porous pooled stepped spillways”. Paper presented at the International Workshop on Hydraulic Design of Low-Head Structures.
Felder, S. Chanson, H. (2013B), “Aeration, flow instabilities, and residual energy on pooled stepped spillways of embankment dams”. Journal of irrigation and drainage engineering, 139(10) 880-887.
Felder, S. Guenther, Ph. Chanson, H. (2012A). “Air-water flow properties and energy dissipation on stepped spillways: a physical study of several pooled stepped configurations”, School of Civil Engineering, The University of Queensland,. Brisbane, Australia.
Flow Science, (2013). “FLOW-3D user’s manual”, version 10.1. Flow Science, Inc, Los Alamos.
Frizell, K.W. Renna, F.M. Matos, J. (2012), “Cavitation potential of flow on stepped spillways”. Journal of Hydraulic Engineering, 139(6), 630-636.
Gonzalez, C. (2005), “An experimental study of free-surface aeration on embankment stepped chutes”, department of civil engineering, Brisbane, Australia, Phd thesis.
Gonzalez, C.A. Chanson, H. (2008), “Turbulence manipulation in air–water flows on a stepped chute: An experimental study”. European Journal of Mechanics-B/Fluids, 27(4), 388-408.
Guenther, Ph.. Felder, S. Chanson, H. (2013), “Flow aeration, cavity processes and energy dissipation on flat and pooled stepped spillways for embankments”. Environmental fluid mechanics, 13(5) 503-525.
Hamedi, A. Mansoori, A. Malekmohamadi, I. Roshanaei, H. (2011), “Estimating Energy Dissipation in Stepped Spillways with Reverse Inclined Steps and End Sill”. World Environmental and Water Resources Congress, ASCE.
Hirt, C.W. (2003), “Modeling Turbulent Entrainment of Air at a Free Surface”. Flow Science Inc.
Hunt, S.L. Kadavy, K.C. (2013), “Inception point for enbankment dam stepped spillway”. J. Hydraul. Eng., 139(1), 60–64.
Hunt, S.L. Kadavy, K.C. (2010), “Inception Point Relationship for Flat-Sloped Stepped Spillways”. DOI: 10.1061/ASCEHY.1943-7900.0000297.
Matos, J. Quintela, A. (2000), “Air entrainment and safety against cavitation damage in stepped spillways over RCC dams. In: Proceeding Intl. Workshop on Hydraulics of Stepped Spillways”, VAW, ETH-Zurich, H.E. Minor and W.H. Hager. Balkema. 69–76.
Meireles, I. Matos, J. (2009), “Skimming flow in the nonaerated region of stepped spillways over embankment dams”. J. Hydraul. Eng., 135(8), 685–689.
Miang-liang, ZH. Yong-ming, SH. (2008), “Three dimentional simulation of meandering river basin on 3-D RNG k − ε turbulence model”. Journal of hydrodynamics, 20(4): 448-455.
Morovati, Kh. Eghbalzadeh, A. Javan, M. (2015), “Numerical investigation of the configuration of the pools on the flowPattern passing over pooled stepped spillway in skimming flow regime. Acta Mech, DOI 10.1007/s00707-015-1444-x
Morovati, Kh. Eghbalzadeh, A. Soori, S. (2016), “Numerical Study of Energy Dissipation of Pooled Stepped spillway”. Civil Engineering Journal. Vol. 2, No. 5.
Nikseresht, A.H. Talebbeydokhti, N. and Rezaei, M.J. (2013), “Numerical simulation of two-phase flow on steppool spillways”. Scientia Iranica, A 20 (2), 222–230.
Peyras, L. Royet, P. Degoutte, G. (1990), “Flow and energy dissipation over stepped gabion weirs”. ASCE Convention.
Qun, Ch. Guang-qing, D. Feu-qing, Zh. Qing, Y. (2004). “Three-dimensional turbulence numerical simulation of a stepped spillway overflow”. Journal of hydrodynamics, Ser. B, 1, 74-79.
Relvas, A. T. Pinheiro, A. N. (2008), Inception point and air concentration in flows on stepped chutes lined with wedge-shaped concrete blocks. Journal of Hydraulic Engineering, 134(8), 1042-1051
Sanchez, M. (2000), “Pressure field in skimming flow over a stepped spillways”. In: Proceeding Intl. Workshop on Hydraulics of Stepped Spillways, VAW, ETH-Zurich, H.E. Minor and W.H. Hager. Balkema, 137–146.
Sarfaraz, M. Attari, J. Pfister, M. (2012), “Numerical Computation of Inception Point Location for Steeply Sloping Stepped Spillways”. 9th International Congress on Civil Engineering, May 8-10. Isfahan University of Technology (IUT), Isfahan, Iran.
Savage, Bruce M. Michael C. Johnson. (2001), “Flow over ogee spillway: Physical and numerical model case study.” Journal of Hydraulic Engineering 127.8:640-649.
Shahhedari, H. Jafari Nodoshan, E. Barati, R. Azhdary moghadam, M. (2014). “Discharge coeficient and energy dissipation over stepped spillway under skimming flow regime”. KSCE Journal of Civil Engineering, DOI 10.1007/s12205-013-0749-3.
Tabbara, M. Chatila, J. Awwad, R. (2005), “Computational simulation of flow over stepped spillways”. Computers & structures, 83(27) 2215-2224.
Thorwarth, J. (2008), “Hydraulisches Verhalten der Treppengerinne mit eingetieften Stufen—Selbstinduzierte Abflussinstationaritäten und Energiedissipation” [Hydraulics of pooled stepped spillways— Self-induced unsteady flow and energy dissipation]. Ph.D. thesis, Univ. of Aachen, Aachen, Germany (in German).
WeiLin, XU. ShuJing, LUO, QiuWen, ZH. Jing, LUO. (2015), “Experimental study on pressure and aeration characteristics in stepped chute flows. SCIENCE CHINA. Vol.58 No.4: 720–726. doi: 10.1007/s11431-015- 5783-6.
Xiangju, Ch. Yongcan, C. Lin, L. (2006), “Numerical simulation of air-water two-phase flow over stepped spillways”. Science in China Series E: Technological Sciences, 49(6), 674-684.
Zare, K.H. Doering, J.C. (2012), “Inception Point of Air Entrainment and Training Wall Characteristics of Baffles and Sills on Stepped Spillways”. DOI: 10.1061/(ASCE)HY .1943-7900.0000630.
Zhan, J. Zhang, J. Gong, Y. (2016), “Numerical investigation of air-entrainment in skimming flow over stepped spillways”. Theoretical and Applied Mechanics Letters. Volume 6. Pages 139–142.
Zhang, G. Chanson, H. (2016), Hydraulics of the developing flow region of stepped spillways. II: Pressure and velocity fields. Journal of Hydraulic Engineering, 142(7).
Zhenwei, M. Zhiyan, Zh. Tao, Zh. (2012), “Numerical Simulation of 3-D Flow Field of Spillway based on VOF Method”. Procedia Engineering, 28, 808-812.
Zhi-yong, D. Hun-wei, L.J. (2006), “Numerical simulation of skimming flow over mild stepped channel”. Journal of Hydrodynamics, Ser. B, 18(3) 367-371.
ZhongDong, Q. XiaoQing, H. WenXin, H. António, A. (2009), “Numerical simulation and analysis of water flow over stepped spillways”. Science in China Series E: Technological Sciences, 52(7) 1958-1965.
EXPERIMENTAL AND NUMERICAL INVESTIGATION OF FLOW UNDER RADIAL GATES
submitted by MAHMUT TANYERİ in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering, Middle East Technical University by, Prof. Dr. Halil Kalıpçılar Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Ahmet Türer Head of the Department, Civil Engineering Prof. Dr. Mete Köken Supervisor, Civil Engineering, METU Prof. Dr. İsmail Aydın Co-Supervisor, Civil Engineering, METU
Abstract
방사형 게이트는 여수로에서 일반적으로 사용됩니다. 부분 게이트 개구부에서 60년대에 수행된 실험 작업에서 얻은 경험 방정식을 사용하여 통과하는 방전을 계산합니다.
그러나 이러한 방정식에서 얻은 배출 값과 유한 체적 방법 및 수리적 모델을 기반으로 한 수치 계산에서 얻은 값 사이에는 약간의 불일치가 있습니다. 이러한 차이의 원인을 밝히는 것이 목적입니다.
이를 위해 다양한 게이트 구성에 대한 실험과 수치 계산이 수행되었습니다. 수많은 수치 시뮬레이션에서 나온 경향을 활용하여 연구 말미에 새로운 방전 방정식을 도출했습니다.
하나의 수리학적 매개변수와 두 개의 기하학적 매개변수가 있는 제안된 방정식을 사용하면 설계자가 지루한 정격 곡선 없이도 쉽게 배출을 계산할 수 있습니다.
방사형 수문(또는 테인터 수문)은 특히 수두가 높은 댐에서 홍수 방출을 제어하기 위해 광범위하게 사용되는 오버플로 수문 유형 중 하나입니다. 그것은 강철 곡선 리프, 지지 암 및 슈트 채널의 측벽에 장착된 고정 조인트로 구성됩니다.
게이트는 하류의 물 수요를 충족시키거나 상류 수두를 조절하기 위해 원하는 각도로 피벗 지점을 중심으로 쉽게 회전할 수 있습니다. 방사형 게이트는 다른 유형에 비해 많은 장점이 있습니다. 그들의 가장 놀라운 특성은 게이트를 움직이는 데 필요한 호이스트 힘이 적다는 것입니다.
이는 상류의 물이 게이트에 양력을 가할 수 있는 아치형 덕분에 에너지 소비도 감소합니다. 더욱이, 방사형 게이트는 슬롯이 필요하지 않으며, 시간이 지남에 따라 떠다니는 파편이 그 안에 쌓일 수 있기 때문에 때때로 작동 문제를 일으킬 수 있습니다. 그 활용 분야는 여러 가지가 있지만, 본 연구의 범위는 오지형 여수로에만 수반되는 방사형 게이트로 제한됩니다.
부분적으로 열리면 래디얼 게이트 아래를 통과하는 흐름은 다양한 수리적 및 기하학적 요인의 영향을 받습니다. 따라서 정확한 배출 추정은 어려운 문제입니다. 이 문제는 주로 게이트 근처에서 유선형 동작의 복잡성으로 인해 발생합니다.
유동 영역은 고도의 곡선 유선을 포함하기 때문에 유속에 대한 해석적 솔루션이 불가능합니다. 이러한 이유로 방전은 대부분 실험적 모델에서 조사되었으며 이에 따라 실증적 관계가 도출되었습니다.
방전 방정식은 유선의 총 에너지 변환과 관련된 베르누이 방정식을 기반으로 개발되었습니다. 게이트 바로 아래의 평균 속도는 에너지 방정식에서 추론할 수 있으며, 게이트 개방의 순 면적을 곱하면 체적 유량의 이론적인 값을 얻을 수 있습니다.
그러나 실제로는 바닥 게이트 립과 같은 날카로운 모서리를 유선이 완벽하게 따라갈 수 없고 마찰로 인해 이론 속도가 약간 감소하기 때문에 실제로 분사되는 워터젯의 단면적이 수축합니다.
이러한 효과 때문에 실제 배출량을 추정하기 위해 배출 계수라고 하는 경험적 보정 계수가 방정식에 도입됩니다(Tokyay, 2019). 사례 연구로 터키의 민간 엔지니어링 회사인 TEMELSU(2018)에서 수행한 Lower Kaleköy 댐에 속한 방사형 여수로의 수리학적 계산을 조사했습니다.
그들은 세계적으로 인기 있는 수력 설계 책인 ‘Design of Small Dams’에 제공된 배출 계수 등급 곡선을 사용하여 이러한 계산을 수행했습니다. 이러한 곡선을 기반으로 산출된 토출량 값을 CFD(Computational Fluid Dynamics) 프로그램에서 생성한 수치모델 결과와 비교하였다.
게이트가 부분적으로 열린 경우 이러한 결과 사이에 명백한 불일치가 있는 것으로 관찰되었습니다. 일반적으로 제안된 경험식은 시뮬레이션에 비해 최대 20%까지 유량을 과소평가한다.
본 연구의 목적은 크게 두 가지이다. 첫 번째 목표는 언급된 실험식과 수치해석 간의 불일치 이유를 조사하는 것이고, 두 번째 목표는 어떤 수리적 및 기하학적 매개변수가 방사형 게이트 아래의 배출에 실제로 영향을 미치는지 탐구하는 것입니다.
먼저 METU 수력학 연구소에서 건설한 Lower Kaleköy 댐의 물리적 모델에서 미리 결정된 수문 개구부의 배출 값을 측정했습니다. 이러한 실험에서 얻은 데이터 세트를 수치 모델의 결과와 비교하여 일치 여부를 확인했습니다.
이러한 방식으로 수치적 결과를 검증한 후 원래 수력 조건이 동일하게 유지되는 경우 수치 모델의 게이트 위치, 배수로 형상과 같은 다양한 구성을 시뮬레이션했습니다.
분석은 연구 전반에 걸쳐 모델 규모로 수행되었습니다. 상술한 효과와 관련된 연구 결과, 수치해를 기반으로 새로운 방전방정식을 공식화하였다. 마지막으로 기존 실험식과 새로운 공식에서 얻은 결과를 수치해와 비교하여 정확도를 관찰하였다.
Figure 3.3 General View of the Experimental SetupFigure 3.4 Upstream View of the Radial Gated-SpillwayFigure 3.5 Side View of the Radial Gate During OperationFigure 4.2 Mesh Detail of the 3D Models
Figure 4.7 Mesh Details of the 2D Numerical Model
Figure 4.12 Velocity Magnitude Contours of T1, T2, T3 and T4 at the Design Head
(d=10cm)
이 연구는 이러한 구조물의 가장 중요한 설계 매개변수 중 하나인 슈트 여수로의 플립 버킷에서 동적 압력을 조사합니다. 첫째, 압력에 영향을 미치는 무차원 매개변수를 치수해석을 통해 결정하였다.
그 후, 플립 버킷으로 이어지는 슈트 여수로가 있는 선택된 댐의 특성에 따라 플립 버킷으로의 특정 Froude 수 간격과 슈트 경사 각도, 반경 및 플립 버킷 곡률 각도가 분석을 위해 선택되었습니다.
이러한 매개변수의 조합으로 FLOW-3D에서 총 137개 모델을 시뮬레이션하여 플립 버킷의 바닥 압력과 최대 압력 값을 얻었습니다.
다음으로 고려된 무차원 매개변수를 기반으로 다중 회귀 분석을 사용하여 슈트의 플립 버킷 다운스트림에서 바닥 압력과 최대 압력을 결정하기 위한 방정식이 제안되었습니다. 수치 모델링 실행 결과와 다중 회귀 분석을 사용하여 무차원 압력 관계의 미지의 계수를 결정하고 바닥 압력과 최대 압력에 대한 최종 방정식을 제시했습니다.
저압과 최고압을 결정하기 위해 제안된 식의 상관계수와 MAPE(Mean Absolute Percentage Error) 값은 각각 0.94와 0.96, 6.75%와 8.49%였습니다.
이 값은 제안된 방정식의 적절한 정확도를 나타냅니다. 제안된 방정식에서 Froude 수, 상대 곡률, 슈트 경사각, 이륙 각도 및 플립 버킷의 곡률 각도가 각각 저면 압력과 최대 압력에 가장 큰 영향을 미쳤습니다.
This study investigates the dynamic pressure at the flip buckets of chute spillways, which is one of the most important design parameters of these structures. First, the dimensionless parameters affecting pressure were determined by dimensional analysis. Following that, according to the characteristics of selected dams with chute spillways leading to flip buckets, certain Froude number intervals of inflow to the flip bucket, as well as the chute slope angle, radius, and flip bucket curvature angle were selected for analysis. The combination of these parameters resulted in a total of 137 models simulated in FLOW-3D to obtain bottom pressure and maximum pressure values in the flip bucket. Next, based on the dimensionless parameters considered, equations were proposed to determine the bottom pressure and maximum pressure in the flip bucket downstream of the chute, using multiple regression analysis. Using the numerical modeling run results, along with multiple regression analyses, the unknown coefficients of the dimensionless pressure relationship were determined, and final equations for the bottom pressure and maximum pressure were presented. The correlation coefficient and Mean Absolute Percentage Error (MAPE) values of the proposed equations for determining the bottom pressure and maximum pressure were 0.94 and 0.96, and, 6.75% and 8.49%, respectively. These values indicate the appropriate accuracy of the proposed equations. In the proposed equations, the Froude number, relative curvature, chute slope angle, takeoff angle, and flip bucket’s curvature angle, respectively, had the highest impacts on the bottom pressure and maximum pressure.
Keywords
Dam spillway
Flip bucket
Ski jump
Dynamic pressure
Numerical modeling
FLOW-3D
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
References
1.Vischer DL, Hager WH (1995) Energy dissipators. Balkema, Rotterdam, The NetherlandsGoogle Scholar
2.Khatsuria RM (2005) Hydraulics of spillways and energy dissipators. CRC Press, Dekker, New YorkGoogle Scholar
14.Jorabloo M, Maghsoodi R, Sarkardeh H (2011) 3D simulation of flow over flip buckets at dams. J Am Sci 7(6):931–936Google Scholar
15.Nazari O, Jabbari E, Sarkardeh H (2015) Dynamic pressure analysis at chute flip buckets of five dam model studies. Int J Civil Eng 13(1):45–54. http://ijce.iust.ac.ir/article-1-951-en.html
17.Hojjati SH, Mohammadiun S, Salehi Neyshabouri SAA (2016) Effects of different turbulence models on flow over a triangular flip- bucket. Modares Civil Eng J 16(4):69–81 (in Persian)Google Scholar
20.Novak P, Cabelka J (1981) Model in hydraulic engineering. Pitman Advanced Publishing Program, LondonGoogle Scholar
21.Flow Science, Inc. FLOW-3D User Manual Version 11.2.
22.Water Research Institute (2003) Hydraulic model of Shafaroud Dam flood control system. Final Report, vol 5. Hydraulic structures Divisions, Tehran, Iran, Chapter 5, pp 1–35 (in Persian)Google Scholar
This manual was developed with the purpose of presenting and executing basic numerical models in the software known as Flow 3D within the virtual laboratories of Fluid Mechanics and Applied Hydraulics, to complement and reinforce what was learned in class, the development of the manual covers a theoretical content and an exemplified práctical part for the handling of the software, besides including some feedback for the students, in order to mark the characteristics that the software has. With the handling of the Flow 3D program, the student will be introduced to the concept of Computational Fluid Dynamics or CFD, and a simple procedure to represent numerically and graphically the behavior of hydraulic structures. The hydraulic structures presented in the laboratory manual are: thin and thick wall orifices, gates with free and submerged discharge, thin and thick wall spillways with free and submerged discharge, WES type spillway, submerged intake with pressure conduction and as a complement, hydrostatic pressures on vertical, curved and inclined walls were added. Each of the mentioned hydraulic structures obtained a práctical verification as a verification within the Flow 3D software, presenting a consistency in the results obtained in both ways.
이 매뉴얼은 Fluid Mechanics 및 Applied Hydraulics의 가상 연구실 내에서 Flow 3D로 알려진 소프트웨어에서 기본 수치 모델을 제시하고 실행하기 위해 개발되었으며, 수업에서 배운 내용을 보완하고 강화하기 위해 개발되었으며, 매뉴얼 개발은 이론적인 내용을 다룹니다. 소프트웨어의 특성을 표시하기 위해 학생들을 위한 일부 피드백을 포함하는 것 외에도 소프트웨어 처리에 대한 내용 및 예시된 실제적인 부분. Flow 3D 프로그램을 다루면서 학생은 전산유체역학(Computational Fluid Dynamics) 또는 CFD의 개념과 수력학적 구조의 거동을 수치 및 그래픽으로 표현하는 간단한 절차를 소개합니다. 실험실 매뉴얼에 제시된 유압 구조는 얇고 두꺼운 벽 오리피스, 자유 및 수중 배출이 있는 수문, 자유 및 수중 배출이 있는 얇고 두꺼운 벽 여수로, WES 유형 방수로, 압력 전도 및 보완으로 수중 유입이 있는 수중 흡입구입니다. 수직, 곡선 및 경사 벽에 추가되었습니다. 언급된 각 수력학적 구조는 Flow 3D 소프트웨어 내에서 검증으로 실제 검증을 획득하여 두 가지 방식에서 얻은 결과의 일관성을 나타냅니다.
e) 표시 탭에서 결과를 볼 수 있으며 필요한 경우 슬라이스 옵션을 사용하여 특정 영역을 분석할 수 있습니다.
REFERENCIAS
Anguisa, M., & Maza, X.(2012). Estudio de los procesos de flujo en una obra de camptación mediante experimentación de un modelo físico de escala reducida. [Tesis de grado,Universidad de Cuenca]. Archivo Digital http://dspace.ucuenca.edu.ec/bitstream/123456789/775/1/ti901.pdf Arreaga, W., & Mantilla, D. (2016). Determinación de coeficientes de descarga en orificios circulares, de pared delgada en descarga libre para diferentes diámetros en modelos físicos. [Tesis de grado,Universidad de Guayaquil]. Archivo Digital http://repositorio.ug.edu.ec/bitstream/redug/15855/1/ARREAGA_WILLIAM_ MANTILLA_DIEGO_TRABAJO_TITULACIÓN_HIDRÁULICA_DICIEMB RE_2016.pdf Arrecis, J., (2018). Evaluación de las carácterísticas del prefil tipo Creager. [Tesis de grado,Universidad de San Carlos de Guatemala]. Archivo Digital http://www.repositorio.usac.edu.gt/11372/1/Jared%20Alexander%20V%C3%A 9liz%20Arrecis.pdf Barba, C. A. B. (2020). Modelación numérica (CDF) del flujo combinado superior e inferior en una compuerta plana con el program Flow 3D. [Tesis de Maestria,Escuela Politénica Nacional]. Archivo Digital Bureau of Reclamation, (2007). Traducida por: Martínez, M., Batanero, A., Martínez, G., Martínez, O., Gonzáles, O.: Diseño de Presas Peuqeñas(3ra ed). España: Editorial Bellisco. Calderon, F. V., Cazares, L. G., & Camacho, F. F. (2017). Dificultades conceptuales para la comprensión de la Ecuación de Bernoulli. Revista Eureka Sobre Enseñanza y Divulgación de Las Ciencias, 14(12), 339–352. Fernández, J.(2012).Técnicas numéricas en ingeniería de fluido: Introducción a la dinámica de fluidos computacional (CFD) por el método de volúmenes finitos.Barcelona , España.:Editorial Reverté, S.A. Flow Science. (2008). Manual de Flow 3D. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=r ja&uact=8&ved=2ahUKEwie6p3mpfTsAhWJpFkKHRWpAHcQFjADegQIBh AC&url=https%3A%2F%2Fwww.researchgate.net%2Fprofile%2FAli_Agha7% 2Fpost%2FSomebody_can_recommend_me_the_tutorials_pdf_video_of_Flow_ 3d_v101_software%2Fattachment%2F59d6285e79197b8077986bf3%2FAS%2 53A330000659173377%25401455689696420%2Fdownload%2F%255BFlow_ Science%255D_FLOW3D_V9.3_User_Manual%252C_Volume_1%2528BookZZ.org%2529.pdf&usg =AOvVaw3ALDHf9jsqn-wDYnhAXNB1 Intituto Internacional de la Investigación de Tecnología Educativa INITE. (2006). Ecuaciones fundamentales de la hidráulica. https://gc.scalahed.com/recursos/files/r144r/w226w/Problema_2/Problema2_Hi draulica_Ecuaciones.pdf Inciso, C. (2016). Análisis comparativo de las descargas en orificios y boquillas en laboratorio de Hidráulica de un UPN, Cajamarca. [Tesis de grado,Universidad Privada del Norte, Cajamarca. Perú]. Archivo Digital https://repositorio.upn.edu.pe/bitstream/handle/11537/9980/Inciso%20Pajares% 20%20Carlos%20Jonathan.pdf?sequence=1&isAllowed=y
Gutiérrez, Y. (2016). Modelación numérica computacional del diseño de un vertedor de pared delgada de sección compuesta. [Tesis de grado,Universidad Central Marta Abreu de las Villas]. Archivo Digital https://dspace.uclv.edu.cu/bitstream/handle/123456789/6671/Tesis%20Yunior% 20Gutierrez.pdf?sequence=1&isAllowed=y Guncay, K. (2017). Estudio del desempeño hidráulico del canal multipropósito del laboratorio de hidráulica y dinámica de fluidos LH&DF del campus Balzay. [Tesis de grado,Universidad de Cuenca]. Archivo Digital Jiménez, J., Jiménez J. (2018). Elaboración del modelo físico y la guia metodológica para la práctica: vertederos de pared delgada, de la asignatura Mecánica de Fluidos de la Universidad de Azuay. [Tesis de grado,Universidad de Cuenca]. Archivo Digital http://dspace.uazuay.edu.ec/bitstream/datos/8371/1/14091.pdf Monroy, M. (2010). Medidores De Flujo En Canales Abiertos. [Tesis de grado,Universidad de San Carlos de Guatemala]. Archivo Digital http://biblioteca.usac.edu.gt/tesis/08/08_3165_C.pdf Penagos, D. F. R. (2012). Diseño y modelación de las uniones soldadas de las compuertas planas para presas. [Tesis de posgrado,Universidad Libre de Colombia]. Archivo Digital https://core.ac.uk/download/pdf/198447125.pdf Sotelo, A. (1997). Hidráulica General, Volumen 1(18va ed). Balderas 95, México, D.F.: Editorial Limusa, S.A. Vega, D. (2004). Vertederos de pared delgada.Centro Andino para la gestión y uso del agua. Cochabamba. https://www.academia.edu/6129654/Serie_T%C3%A9cnica_Agua_y_Suelo_N_ 1_VERTEDEROS_DE_PARED_DELGADA_Rectangular_y_Triangular Ven Te Chow. (1994). Hidráulica de canales abiertos. Santafé de Bogotá, Colombia.: Editorial Martha Edna Suárez R.
CFD Simulations of Tubular Archimedean Screw Turbines Harnessing the Small Hydropotential of Greek Watercourses
Alkistis Stergiopoulou1 , Vassilios Stergiopoulos2 1 Institut für Wasserwirtschaft, Hydrologie und Konstruktiven Wasserbau, B.O.K.U. University, Muthgasse 18, 1190 Vienna, (actually Senior Process Engineer at the VTU Engineering in Vienna, Zieglergasse 53/1/24, 1070 Vienna, Austria). 2 School of Pedagogical and Technological Education, Department of Civil Engineering Educators, ASPETE Campus, Eirini Station, 15122 Amarousio, Athens, Greece.
Abstract
이 논문은 “그리스 아르키메데스의 부활: 아르키메데스 달팽이관 물레방아의 수리역학 및 유체역학적 거동 연구, 그리스 자연 및 기술 수로의 수력 잠재력 회복에 대한 기여”. 라는 제목의 최근 연구에서 수행한 최초의 아르키메데스 나사 터빈 CFD 모델링 결과에 대한 간략한 견해를 제시합니다.
FLOW-3D 코드를 기반으로 하는 이 CFD 분석은 일반적인 TAST(Tubular Archimedean Screw Turbines)에 관한 것으로, 그리스의 자연 및 기술 수로의 중요한 미개척 수력 잠재력을 활용하는 소규모 수력 발전 시스템에 대한 TWh/년 및 수천 MW 범위의 총 설치 용량등 몇 가지 유망한 성능을 보여줍니다.
This paper presents a short view of the first Archimedean Screw Turbines CFD modelling results, which were carried out within the recent research entitled “Rebirth of Archimedes in Greece: contribution to the study of hydraulic mechanics and hydrodynamic behavior of Archimedean cochlear waterwheels, for recovering the hydraulic potential of Greek natural and technical watercourses”. This CFD analysis, based to the Flow-3D code, concerns typical Tubular Archimedean Screw Turbines (TASTs) and shows some promising performances for such small hydropower systems harnessing the important unexploited hydraulic potential of natural and technical watercourses of Greece, of the order of several TWh / year and of a total installed capacity in the range of thousands MWs.
Keywords
CFD; Flow-3D; TAST; Small Hydro; Renewable Energy; Greek Watercourses.
Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).Figure 4. Creation of the 3bladed Archimedean Screw with Solidworks.Figure 8. Comparison of Archimedean Screw Turbine power performances P(W) for angle of orientation
θ = 22ο
and 32ο
and for various water discharge values Q = 0.15, 0.30, 0.45 m3
/s.Figure 12. Various performances of the Archimedean Screw (MKE/Mean Kinetic Energy, Torque,
Turbulent Kinetic Energy, Turbulent Dissipation) for flow discharge Q = 0.45 m3
/s and an angle of
orientation θ = 32ο
.
References
[1] A. Stergiopoulou, Computational and experimental investigation of the hydrodynamic behaviour of screw hydro turbine, Ph.D. Thesis, NTUA, 2017. [2] B. Pelikan, A. Lashofer, Verbesserung der Strömungseigenschaften sowie Planungs-und Betriebsoptimierung von Wasserkraftschnecken, Research Project, BOKU University, Vienna, 2012. [3] G. Müller, J. Senior, Simplified theory of Archimedean screws, Journal of Hydraulic Research 47 (5) (2009) 666-669. [4] C. Rorres, The turn of the screw: Optimal design of an Archimedes screw, Journal of Hydraulic Engineering, 80 (2000) 72-80. [5] A. Stergiopoulou, V. Stergiopoulos, Return of Archimedes: Harnessing with new Archimedean spirals the hydraulic potential of the Greek watercourses, in: Proceedings of the Conference for Climate Change, Thessaloniki, 2009. [6] A. Stergiopoulou, V. Stergiopoulos, from the old Archimedean screw pumps to the new Archimedean screw turbines for hydropower production in Greece, in: Proceedings of CEMEPE Conference, Mykonos, June 21-26, 2009.
[7] V. Stergiopoulos, A. Stergiopoulou, E. Kalkani, Quo Vadis Archimedes Nowadays in Greece? Towards Modern Archimedean Turbines for Recovering Greek Small Hydropower Potential, in: Proceedings of 3rd International Scientific “Energy and Climate Change” Conference, Athens, 2010. [8] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Greece beyond the horizon of the era of transition: Archimedean screw hydropower development terra incognita, International Journal of Energy and Development, v.6, Issue 6, pp. 627-536, 2015. [9] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Experimental and theoretical research of zero head innovative horizontal axis Archimedean screw turbines, Journal of Energy and Development, v.6, Issue 5, pp. 471-478, 2015. [10] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Back to the Future: Rediscovering the Archimedean screws as modern turbines for harnessing Greek small hydropower potential, in: Proceedings of the Third International Conference CEMEPE 2011 & SECOTOX, Skiathos, 2011. [11] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439- 445, May 2018. [12] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439- 445, May 2018. [13] A. Stergiopoulou, V. Stergiopoulos, Towards an inventory of the archimedean small hydropower potential of Greece, INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT Volume 11, Issue 2, 2020 pp.137-144. [14] Flow Science, FLOW-3D Manual, 2013. [15] K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Pearson, 2007. [16] C. Hirsch, Numerical Computation of internal and external flows: The fundamentals of Computational Fluid dynamics, John Wiley & Sons, 2007. [17] A. Stergiopoulou, V. Stergiopoulos and E. Kalkani, An eagle’s CFD view of Studying Innovative Archimedean Screw Renewable Hydraulic Energy Systems, Proceedings of the 4th International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE) and SECOTOX Conference, Mykonos island, Greece, pp.454-460 June 24-28, 2013. [18] A. Stergiopoulou, V. Stergiopoulos, A., E. Kalkani, Computational Fluid Dynamics Study on a 3D Graphic Solid Model of Archimedean Screw Turbines, Fresenius Environmental Bulletin, vol.23- No1, 2014. [19] Α. Stergiopoulou, Kalkani E., “Towards a First C.F.D. Study of Innovative Archimedean Inclined Axis Hydropower Turbines”, International Journal of Engineering Research & Technology (IJERT), Vol. 2 Issue 9, September – 2013, pp. 193-199. [20] A. Stergiopoulou, V. Stergiopoulos, A first CFD study of small hydro energy recovery from the Attica water supply network, INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT, Volume 11, Issue 3, 2020 pp.157-166.
Ruigeng Hu 1 , Hongjun Liu 2 , Hao Leng 1 , Peng Yu 3 and Xiuhai Wang 1,2,*
1 College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China; huruigeng@stu.ouc.edu.cn (R.H.); lh4517@stu.ouc.edu.cn (H.L.) 2 Key Lab of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266000, China; hongjun@ouc.edu.cn 3 Qingdao Geo-Engineering Survering Institute, Qingdao 266100, China; yp6650@stu.ouc.edu.cn
Abstract
무작위 파동 하에서 우산 흡입 앵커 기초(USAF) 주변의 국부 세굴을 연구하기 위해 일련의 수치 시뮬레이션이 수행되었습니다. 본 연구에서는 먼저 본 모델의 정확성을 검증하기 위해 검증을 수행하였다.
또한, 세굴 진화와 세굴 메커니즘을 각각 분석하였다. 또한 USAF 주변의 평형 세굴 깊이 Seq를 예측하기 위해 두 가지 수정된 모델이 제안되었습니다. 마지막으로 Seq에 대한 Froude 수 Fr과 Euler 수 Eu의 영향을 연구하기 위해 매개변수 연구가 수행되었습니다.
결과는 현재 수치 모델이 무작위 파동에서 세굴 형태를 묘사하는 데 정확하고 합리적임을 나타냅니다.
수정된 Raaijmaker의 모델은 KCs,p < 8일 때 본 연구의 시뮬레이션 결과와 잘 일치함을 보여줍니다. 수정된 확률적 모델의 예측 결과는 KCrms,a < 4일 때 n = 10일 때 가장 유리합니다. Fr과 Eu가 높을수록 둘 다 더 집중적 인 말굽 소용돌이와 더 큰 결과를 초래합니다.
Figure 1. The close-up of umbrella suction anchor foundation (USAF).
Figure 2. (a) The sketch of seabed-USAF-wave three-dimensional model; (b) boundary condation:Wvwave boundary, S-symmetric boundary, O-outflow boundary; (c) USAF model.Figure 5. Comparison of time evolution of scour between the present study and Khosronejad et al. [52],
Petersen et al. [17].
Figure 9. Scour morphology under different times for case 7.
References
Sumer, B.M.; Fredsøe, J.; Christiansen, N. Scour Around Vertical Pile in Waves. J. Waterw. Port. Coast. Ocean Eng. 1992, 118, 15–31. [CrossRef]
Rudolph, D.; Bos, K. Scour around a monopile under combined wave-current conditions and low KC-numbers. In Proceedings of the 6th International Conference on Scour and Erosion, Amsterdam, The Netherlands, 1–3 November 2006; pp. 582–588.
Nielsen, A.W.; Liu, X.; Sumer, B.M.; Fredsøe, J. Flow and bed shear stresses in scour protections around a pile in a current. Coast. Eng. 2013, 72, 20–38. [CrossRef]
Ahmad, N.; Bihs, H.; Myrhaug, D.; Kamath, A.; Arntsen, Ø.A. Three-dimensional numerical modelling of wave-induced scour around piles in a side-by-side arrangement. Coast. Eng. 2018, 138, 132–151. [CrossRef]
Li, H.; Ong, M.C.; Leira, B.J.; Myrhaug, D. Effects of Soil Profile Variation and Scour on Structural Response of an Offshore Monopile Wind Turbine. J. Offshore Mech. Arct. Eng. 2018, 140, 042001. [CrossRef]
Li, H.; Liu, H.; Liu, S. Dynamic analysis of umbrella suction anchor foundation embedded in seabed for offshore wind turbines. Géoméch. Energy Environ. 2017, 10, 12–20. [CrossRef]
Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Vanem, E.; Carvalho, H.; Correia, J.A.F.D.O. Editorial: Advanced research on offshore structures and foundation design: Part 1. Proc. Inst. Civ. Eng. Marit. Eng. 2019, 172, 118–123. [CrossRef]
Chavez, C.E.A.; Stratigaki, V.; Wu, M.; Troch, P.; Schendel, A.; Welzel, M.; Villanueva, R.; Schlurmann, T.; De Vos, L.; Kisacik, D.; et al. Large-Scale Experiments to Improve Monopile Scour Protection Design Adapted to Climate Change—The PROTEUS Project. Energies 2019, 12, 1709. [CrossRef]
Wu, M.; De Vos, L.; Chavez, C.E.A.; Stratigaki, V.; Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Troch, P. Large Scale Experimental Study of the Scour Protection Damage Around a Monopile Foundation Under Combined Wave and Current Conditions. J. Mar. Sci. Eng. 2020, 8, 417. [CrossRef]
Sørensen, S.P.H.; Ibsen, L.B. Assessment of foundation design for offshore monopiles unprotected against scour. Ocean Eng. 2013, 63, 17–25. [CrossRef]
Prendergast, L.; Gavin, K.; Doherty, P. An investigation into the effect of scour on the natural frequency of an offshore wind turbine. Ocean Eng. 2015, 101, 1–11. [CrossRef]
Fazeres-Ferradosa, T.; Chambel, J.; Taveira-Pinto, F.; Rosa-Santos, P.; Taveira-Pinto, F.; Giannini, G.; Haerens, P. Scour Protections for Offshore Foundations of Marine Energy Harvesting Technologies: A Review. J. Mar. Sci. Eng. 2021, 9, 297. [CrossRef]
Yang, Q.; Yu, P.; Liu, Y.; Liu, H.; Zhang, P.; Wang, Q. Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents. Ocean Eng. 2020, 202, 106701. [CrossRef]
Yu, P.; Hu, R.; Yang, J.; Liu, H. Numerical investigation of local scour around USAF with different hydraulic conditions under currents and waves. Ocean Eng. 2020, 213, 107696. [CrossRef]
Sumer, B.M.; Christiansen, N.; Fredsøe, J. The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves. J. Fluid Mech. 1997, 332, 41–70. [CrossRef]
Sumer, B.M.; Fredsøe, J. Scour around Pile in Combined Waves and Current. J. Hydraul. Eng. 2001, 127, 403–411. [CrossRef]
Petersen, T.U.; Sumer, B.M.; Fredsøe, J. Time scale of scour around a pile in combined waves and current. In Proceedings of the 6th International Conference on Scour and Erosion, Paris, France, 27–31 August 2012.
Petersen, T.U.; Sumer, B.M.; Fredsøe, J.; Raaijmakers, T.C.; Schouten, J.-J. Edge scour at scour protections around piles in the marine environment—Laboratory and field investigation. Coast. Eng. 2015, 106, 42–72. [CrossRef]
Qi, W.; Gao, F. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci. China Ser. E Technol. Sci. 2014, 57, 1030–1039. [CrossRef]
Corvaro, S.; Marini, F.; Mancinelli, A.; Lorenzoni, C.; Brocchini, M. Hydro- and Morpho-dynamics Induced by a Vertical Slender Pile under Regular and Random Waves. J. Waterw. Port. Coast. Ocean Eng. 2018, 144, 04018018. [CrossRef]
Schendel, A.; Welzel, M.; Schlurmann, T.; Hsu, T.-W. Scour around a monopile induced by directionally spread irregular waves in combination with oblique currents. Coast. Eng. 2020, 161, 103751. [CrossRef]
Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Romão, X.; Reis, M.; das Neves, L. Reliability assessment of offshore dynamic scour protections using copulas. Wind. Eng. 2018, 43, 506–538. [CrossRef]
Fazeres-Ferradosa, T.; Welzel, M.; Schendel, A.; Baelus, L.; Santos, P.R.; Pinto, F.T. Extended characterization of damage in rubble mound scour protections. Coast. Eng. 2020, 158, 103671. [CrossRef]
Ettema, R.; Melville, B.; Barkdoll, B. Scale Effect in Pier-Scour Experiments. J. Hydraul. Eng. 1998, 124, 639–642. [CrossRef]
Umeda, S. Scour Regime and Scour Depth around a Pile in Waves. J. Coast. Res. Spec. Issue 2011, 64, 845–849.
Umeda, S. Scour process around monopiles during various phases of sea storms. J. Coast. Res. 2013, 165, 1599–1604. [CrossRef]
Baykal, C.; Sumer, B.; Fuhrman, D.R.; Jacobsen, N.; Fredsøe, J. Numerical simulation of scour and backfilling processes around a circular pile in waves. Coast. Eng. 2017, 122, 87–107. [CrossRef]
Miles, J.; Martin, T.; Goddard, L. Current and wave effects around windfarm monopile foundations. Coast. Eng. 2017, 121, 167–178. [CrossRef]
Miozzi, M.; Corvaro, S.; Pereira, F.A.; Brocchini, M. Wave-induced morphodynamics and sediment transport around a slender vertical cylinder. Adv. Water Resour. 2019, 129, 263–280. [CrossRef]
Yu, T.; Zhang, Y.; Zhang, S.; Shi, Z.; Chen, X.; Xu, Y.; Tang, Y. Experimental study on scour around a composite bucket foundation due to waves and current. Ocean Eng. 2019, 189, 106302. [CrossRef]
Carreiras, J.; Larroudé, P.; Seabra-Santos, F.; Mory, M. Wave Scour Around Piles. In Proceedings of the Coastal Engineering 2000, American Society of Civil Engineers (ASCE), Sydney, Australia, 16–21 July 2000; pp. 1860–1870.
Raaijmakers, T.; Rudolph, D. Time-dependent scour development under combined current and waves conditions—Laboratory experiments with online monitoring technique. In Proceedings of the 4th International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008; pp. 152–161.
Khalfin, I.S. Modeling and calculation of bed score around large-diameter vertical cylinder under wave action. Water Resour. 2007, 34, 357. [CrossRef]
Zanke, U.C.; Hsu, T.-W.; Roland, A.; Link, O.; Diab, R. Equilibrium scour depths around piles in noncohesive sediments under currents and waves. Coast. Eng. 2011, 58, 986–991. [CrossRef]
Myrhaug, D.; Rue, H. Scour below pipelines and around vertical piles in random waves. Coast. Eng. 2003, 48, 227–242. [CrossRef]
Myrhaug, D.; Ong, M.C.; Føien, H.; Gjengedal, C.; Leira, B.J. Scour below pipelines and around vertical piles due to second-order random waves plus a current. Ocean Eng. 2009, 36, 605–616. [CrossRef]
Myrhaug, D.; Ong, M.C. Random wave-induced onshore scour characteristics around submerged breakwaters using a stochastic method. Ocean Eng. 2010, 37, 1233–1238. [CrossRef]
Ong, M.C.; Myrhaug, D.; Hesten, P. Scour around vertical piles due to long-crested and short-crested nonlinear random waves plus a current. Coast. Eng. 2013, 73, 106–114. [CrossRef]
Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [CrossRef]
Yakhot, V.; Smith, L.M. The renormalization group, the e-expansion and derivation of turbulence models. J. Sci. Comput. 1992, 7, 35–61. [CrossRef]
Mastbergen, D.R.; Berg, J.V.D. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology 2003, 50, 625–637. [CrossRef]
Soulsby, R. Dynamics of Marine Sands; Thomas Telford Ltd.: London, UK, 1998. [CrossRef]
Van Rijn, L.C. Sediment Transport, Part I: Bed Load Transport. J. Hydraul. Eng. 1984, 110, 1431–1456. [CrossRef]
Zhang, Q.; Zhou, X.-L.; Wang, J.-H. Numerical investigation of local scour around three adjacent piles with different arrangements under current. Ocean Eng. 2017, 142, 625–638. [CrossRef]
Yu, Y.X.; Liu, S.X. Random Wave and Its Applications to Engineering, 4th ed.; Dalian University of Technology Press: Dalian, China, 2011.
Pang, A.; Skote, M.; Lim, S.; Gullman-Strand, J.; Morgan, N. A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents. Appl. Ocean Res. 2016, 57, 114–124. [CrossRef]
Higuera, P.; Lara, J.L.; Losada, I.J. Three-dimensional interaction of waves and porous coastal structures using Open-FOAM®. Part I: Formulation and validation. Coast. Eng. 2014, 83, 243–258. [CrossRef]
Corvaro, S.; Crivellini, A.; Marini, F.; Cimarelli, A.; Capitanelli, L.; Mancinelli, A. Experimental and Numerical Analysis of the Hydrodynamics around a Vertical Cylinder in Waves. J. Mar. Sci. Eng. 2019, 7, 453. [CrossRef]
Flow3D User Manual, version 11.0.3; Flow Science, Inc.: Santa Fe, NM, USA, 2013.
Khosronejad, A.; Kang, S.; Sotiropoulos, F. Experimental and computational investigation of local scour around bridge piers. Adv. Water Resour. 2012, 37, 73–85. [CrossRef]
Stahlmann, A. Experimental and Numerical Modeling of Scour at Foundation Structures for Offshore Wind Turbines. Ph.D. Thesis, Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz Universität Hannover, Hannover, Germany, 2013.
Breusers, H.N.C.; Nicollet, G.; Shen, H. Local Scour Around Cylindrical Piers. J. Hydraul. Res. 1977, 15, 211–252. [CrossRef]
Schendel, A.; Hildebrandt, A.; Goseberg, N.; Schlurmann, T. Processes and evolution of scour around a monopile induced by tidal currents. Coast. Eng. 2018, 139, 65–84. [CrossRef]
WU Jingxia1 , ZHANG Chunjin2,3 (1. Xi’an Water Conservancy Survey Design Institute, Xi’an 710054, Shaanxi, China; 2. Key Laboratory of Yellow River Sediment Research, M. W. R. , Yellow River Institute of Hydraulic Research, Zhengzhou 450003, Henan, China; 3. State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, Jiangsu, China)
수치 시뮬레이션을 통해 오지 여수로 터널의 수리적 특성 연구의 타당성을 탐색하기 위해 황하 Xiaolangdi 수질 관리 프로젝트의 2번 오지 여수로 터널을 연구 대상으로 취한 다음 오지의 수리 특성 설계 및 점검 홍수 수준 조건에서 여수로 터널은 RNG k-ε 난류 모델을 사용하여 배출 용량, 터널 크라운 잔류 공간, 단면 유속, 압전 수두, 유동 캐비테이션 수, 제트 흐름 범위 및 1 ∶ 40의 일반 수리 모델과 결합된 세굴 구덩이 깊이, 시뮬레이션 값과 실험 값 모두 비교됩니다.
연구결과 모의실험값이 실험값과 일치하여 오지 여수로터널의 수리적 특성을 수치모사를 통해 탐색할 수 있음을 확인하였다. 여수로터널 내부의 흐름은 안정적이고 터널 크라운 잔류 공간은 개방 흐름과 완전 흐름의 교대 흐름 패턴이 없는 25% 이상입니다.
체크 홍수 수위에서 시뮬레이션 값과 유량 계수의 실험 값은 모두 설계에서보다 높으므로 배출 용량은 홍수 제어 관련 설계 요구 사항을 충족할 수 있습니다. 오지 단면과 플립 단면의 유동 캐비테이션 수는 캐비테이션 손상이 발생할 가능성이 작기 때문에 캐비테이션 침식을 줄이기 위한 적절한 적절한 조치가 채택될 필요가 있습니다.
유압 모델의 고르지 않은 표면에 부압이 발생하면 표면 구조에 관련주의를 기울일 필요가 있습니다. 연구 결과는 여수로 터널의 설계 및 건설에 대한 관련 참고 및 이론적 근거를 제공할 수 있습니다.
Keywords
Xiaolangdi Water Control Project; ogee spillway tunnel; simulative calculation; hydraulic characteristics; turbulent model
Fig. 1 Layout of spillway tunnelFig. 4 Hydraulic modelingFig. 6 Sectional surface profile distributionsFig. 7 Comparison between simulated results and experimental
results for flow velocity of section-cross
参考文献(References)
[1] 谢省宗, 吴一红, 陈文学. 我国高坝泄洪消能新技术的研究和创 新[J]. 水利学报, 2016, 47(3): 324-336. XIE Shengzong, WU Yihong, CHEN Wenxue. New technology and innovation on flood discharge and energy dissipation of high dams in China [J]. Journal of Hydraulic Engineering, 2016, 47( 3): 324- 336. [2] 刘嘉夫, 齐昕. 龙抬头水电站泄洪洞水力特性研究[ J]. 水利水 电技术, 2019, 50(2): 139-143. LIU Jiafu, QI Xin. Study on hydraulic characteristics of ogee spillway tunnel of hydropower station [ J]. Water Resources and Hydropower Engineering, 2019, 50(2): 139-143. [3] 范灵, 张宏伟, 刘之平, 等. 明流泄洪洞布置形式对水力特性影 响的数值研究[J]. 水力发电学报, 2009, 28(3): 126-131. FAN Ling, ZHANG Hongwei, LIU Zhiping, et al. Numerical study on hydraulic characteristic of free surface flow in spillway tunnel with different configuration [ J ]. Journal of Hydroelectric Engineering, 2009, 28(3): 126-131. [4] 张春晋, 李永业, 孙西欢. 明流泄洪洞水力特性的二维数值模拟 与试验研究[J]. 长江科学院院报, 2016, 33(1): 54-60. ZHANG Chunjin, LI Yongye, SUN Xihuan. Two-dimensional numerical simulation and experimental research of hydraulic characteristics in spillway tunnel with free water surface [ J]. Journal of Yangtze River Scientific Research Institute, 2016, 33(1): 54-60. [5] 徐国宾, 章环境, 刘昉, 等. 龙抬头泄洪洞水力特性的数值模拟 [J]. 长江科学院院报, 2015, 32(1): 84-87. XU Guobin, ZHANG Huanjing, LIU Fang, et al. Numerical simulation on hydraulic characteristic of high head ogee spillway tunnel [J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(1): 84-87. [6] 陈瑞华, 杨吉健, 马麟, 等. 小湾水电站泄洪洞洞身数值模拟 [J]. 排灌机械工程学报, 2017, 35(6): 488-494. CHEN Ruihua, YANG Jijian, MA Lin, et al. Numerical simulation of tunnel of Xiaowan Hydropower Station [ J]. Journal of Drainage and Irrigation Machinery Engineering, 2017, 35(6): 488-494. [7] 翟保林, 刘亚坤. 高水头明流泄洪洞三维数值模拟[ J]. 水利与 建筑工程学报, 2017, 15(3): 31-34. ZHAI Baolin, LIU Yakun. 3-D Numerical simulation of high water head spillway tunnel with free surface [ J ]. Journal of Water Resources and Architectural Engineering, 2017, 15(3): 31-34. [8] 姜 攀, 尹进步, 何武全, 等. 有压泄洪洞弯道压力特性数值模拟 与试验研究[J]. 水力发电, 2016, 42(2): 49-53. JIANG Pan, YIN Jinbu, HE Wuquan, et al. Numerical simulation and experimental research on pressure characteristic of curved section of pressure spillway tunnel [J]. Water Power, 2016, 42(2): 49-53. [9] 邓 军, 许唯临, 雷军, 等. 高水头岸边泄洪洞水力特性的数值模 拟[J]. 水利学报, 2005(10): 1209-1212. DENG Jun, XU Weilin, LEI Jun, et al. Numerical simulation of hydraulic characteristics of high head spillway tunnel [J]. Journal of Hydraulic Engineering, 2005(10): 1209-1212. [10] 史晓薇, 王长新, 李琳. 高流速泄洪隧洞水力特性的三维数值模 拟[J]. 新疆农业大学学报, 2015, 38(6): 495-501. SHI Xiaowei, WANG Changxin, LI Lin. Three dimensional numerical simulation of hydraulic characteristics of spillway tunnel with high flow velocity [ J]. Journal of Xinjiang Agricultural University, 2015, 38 (6): 495-501. [11] 叶茂, 伍平, 王波, 等. 泄洪洞掺气水流的数值模拟研究[J]. 水 力发电学报, 2014, 33(4): 105-110. YE Mao, WU Ping, WANG Bo, et al. Numerical simulation of aerated flow in hydraulic tunnel [ J ]. Journal of Hydroe