Fig. 4. Numerical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; (d) Juam-1; (e) Andong-3; (f) Imha-2; (g) Imha-3; and (h) Juam-3.

Interference of Dual Spillways Operations

Jai Hong Lee, Ph.D., P.E., M.ASCE; Pierre Y. Julien, Ph.D., M.ASCE; and Christopher I. Thornton, Ph.D., P.E., M.ASCE

Abstract

이중 여수로 간섭은 여수로가 서로 가깝게 배치될 때 수압 성능의 손실을 나타냅니다. 배수로 간섭은 물리적 실험과 수치 시뮬레이션을 모두 사용하여 조사됩니다.

이중 여수로 구성의 4개 물리적 모델의 단계 및 배출 측정값을 한국의 4개 댐 부지에서 Flow-3D 계산 결과와 비교합니다.

두 개의 배수로를 함께 사용하는 것을 각 배수로의 단일 작동과 비교합니다. 두 여수로를 동시에 운영할 경우 두 여수로를 통한 총 유량은 최대 7.6%까지 감소합니다.

간섭 계수는 단계 He가 설계 단계 Hd를 초과하고 두 배수로를 분리하는 거리 D가 배수로 너비 W에 비해 짧을 때 가장 중요합니다. 매개변수 DHd/WHe는 계산 및 측정된 간섭 계수와 매우 잘 관련됩니다.

안동댐 설계방류에 대한 홍수경로 예시는 간섭계수를 적용한 경우와 적용하지 않은 경우 저수지 수위의 차이가 42cm임을 보여줍니다. 결과적으로 댐 안전을 위해 추가 여수로의 너비(간섭 계수 포함)를 늘려야 합니다.

Dual spillway interference refers to the loss of hydraulic performance of spillways when they are placed close together. Spillway interference is examined using both physical experiments and numerical simulations. Stage and discharge measurements from four physical models with dual spillways configurations are compared to the Flow-3D computational results at four dam sites in South Korea. The conjunctive use of two spillways is compared with the singular operation of each spillway. When both spillways are operated at the same time, the total flow rate through the two spillways is reduced by up to 7.6%. Interference coefficients are most significant when the stage He exceeds the design stage Hd and when the distance D separating two spillways is short compared to the spillway width W. The parameter DHd/WHecorrelates very well with the calculated and measured interference coefficients. A flood routing example for the design discharge at Andong dam shows a 42 cm difference in reservoir water level with and without application of the interference coefficient. Consequently, the width of additional spillways (including the interference coefficient) should be increased for dam safety.

Fig. 1. Definition sketch for dual spillways
Fig. 1. Definition sketch for dual spillways
Fig. 2. Stage-discharge rating curves for dual spillway operations.
Fig. 2. Stage-discharge rating curves for dual spillway operations.
Fig. 3. Physical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; and (d) Juam-1
Fig. 3. Physical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; and (d) Juam-1
Fig. 4. Numerical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; (d) Juam-1; (e) Andong-3; (f) Imha-2; (g) Imha-3; and (h) Juam-3.
Fig. 4. Numerical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; (d) Juam-1; (e) Andong-3; (f) Imha-2; (g) Imha-3; and (h) Juam-3.
Fig. 4. (Continued.)
Fig. 4. (Continued.)
Fig. 5. Meshes and calculation domain for numerical modeling of Andong dam.
Fig. 5. Meshes and calculation domain for numerical modeling of Andong dam.
Fig. 6. Stage-discharge rating curve for existing and additional spillways (Andong-1): (a) existing spillway; (b) additional spillway; and (c) dual spillway simulations.
Fig. 6. Stage-discharge rating curve for existing and additional spillways (Andong-1): (a) existing spillway; (b) additional spillway; and (c) dual spillway simulations.
Fig. 7. Discharge comparison of physical experiments and numerical simulations. The upper panel is the comparative result for the existing spillway (ES) and the lower panel is for the additional spillway (AS) at four dams.
Fig. 7. Discharge comparison of physical experiments and numerical simulations. The upper panel is the comparative result for the existing spillway (ES) and the lower panel is for the additional spillway (AS) at four dams.
Fig. 8. Interference coefficients for dual spillways simulations with various scenarios.
Fig. 8. Interference coefficients for dual spillways simulations with various scenarios.
Fig. 9. Regression model for the distance-width ratio (D=W) and head ratio (Hd=He) by dual spillway simulations
Fig. 9. Regression model for the distance-width ratio (D=W) and head ratio (Hd=He) by dual spillway simulations
Fig. 10. Physical and numerical model validation: (a) numerical modeling; (b) solids of overflow weir of the spillway; and (c) physical models of reservoir and spillway
Fig. 10. Physical and numerical model validation: (a) numerical modeling; (b) solids of overflow weir of the spillway; and (c) physical models of reservoir and spillway
Fig. 11. Interference coefficients for dual spillways operations with various scenarios. The dashed lines indicate the results of the validation model with dual conditions of 1 þ 2, 1 þ 4, 1 þ 6, 3 þ 4, and 4 þ 5.
Fig. 11. Interference coefficients for dual spillways operations with various scenarios. The dashed lines indicate the results of the validation model with dual conditions of 1 þ 2, 1 þ 4, 1 þ 6, 3 þ 4, and 4 þ 5.
Fig. 12. Results of reservoir operations under the PMF at Andong dam.
Fig. 12. Results of reservoir operations under the PMF at Andong dam.

References

Cassidy, J. J. 1965. “Irrotational flow over spillways of finite height.”
J. Eng. Mech. Div. 91 (6): 155–173.
Chanel, P., and J. Doering. 2008. “Assessment of spillway modeling using
computational fluid dynamics.” Can. J. Civ. Eng. 35 (12): 1481–1485.
https://doi.org/10.1139/L08-094.
Chow, V. T. 1959. Open-channel hydraulics, 365–380. New York:
McGraw-Hill.
Ho, D., B. Cooper, K. Riddette, and S. Donohoo. 2006. “Application of
numerical modelling to spillways in Australia.” In Proc., Int. Symp.
on Dams in the Societies of the 21st Century, 22nd Int. Congress on
Large Dams (ICOLD), edited by L. Berga, et al. London: Taylor &
Francis.
Huff, F. A. 1967. “Time distribution of rainfall in heavy storms.” Water
Resour. Res. 3 (4): 1007–1019. https://doi.org/10.1029/WR003i004
p01007.
Kim, D. G., and J. H. Park. 2005. “Analysis of flow structure over ogeespillway in consideration of scale and roughness effects by using CFD
model.” KSCE J. Civ. Eng. 9 (2): 161–169. https://doi.org/10.1007
/BF02829067.
Koutsunis, N. A. 2015. “Impact of climatic changes on downstream hydraulic geometry and its influence on flood hydrograph
routing—Applied to the bluestone dam watershed.” M.S. degree,
Dept. of Civil and Environmental Engineering, Colorado State Univ.
Lee, J. H., and P. Y. Julien. 2016a. “ENSO impacts on temperature over
South Korea.” Int. J. Climatol. 36 (11): 3651. https://doi.org/10.1002
/joc.4581.
Lee, J. H., and P. Y. Julien. 2016b. “Teleconnections of the ENSO and
South Korean precipitation patterns.” J. Hydrol. 534: 237–250.
https://doi.org/10.1016/j.jhydrol.2016.01.011.
Lee, J. H., and P. Y. Julien. 2017. “Influence of the El Nino/southern ˜
oscillation on South Korean streamflow variability.” Hydrol. Processes
31 (12): 2162–2178. https://doi.org/10.1002/hyp.11168.
Li, S., S. Cain, N. Wosnik, C. Miller, H. Kocahan, and R. Wyckoff. 2011.
“Numerical modeling of probable maximum flood flowing through a
system of spillways.” J. Hydraul. Eng. 137 (1): 66–74. https://doi.org
/10.1061/(ASCE)HY.1943-7900.0000279.
MOCT (Ministry of Construction and Transportation). 2003. Hydraulic
model study of Soyanggang multipurpose dam auxiliary spillway.
[In Korean.] Governing City, South Korea: MOCT.
Olsen, N. R., and H. M. Kjellesvig. 1998. “Three-dimensional numerical
flow modeling for estimation of spillway capacity.” J. Hydraul. Res.
36 (5): 775–784. https://doi.org/10.1080/00221689809498602.
Savage, B. M., and M. C. Johnson. 2001. “Flow over ogee spillway:
Physical and numerical model case study.” J. Hydraul. Eng. 127 (8):
640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640).
USACE (US Army Corps of Engineers). 2008. Hydrologic modeling
system HEC-HMS, user’s manual version 3.2. Davis, CA: USACE.
USBR (US Bureau of Reclamation). 1980. Hydraulic laboratory techniques: A water resources technical publication. Denver: US Dept.
of the Interior, Bureau of Reclamation.
Yakhot, V., and S. A. Orszag. 1986. “Renormalization group analysis of
turbulence. I: Basic theory.” J. Sci. Comput. 1 (1): 3–51. https://doi
.org/10.1007/BF01061452.
Yakhot, V., and L. M. Smith. 1992. “The renormalization group, the
e-expansion and derivation of turbulence models.” J. Sci. Comput.
7 (1): 35–61. https://doi.org/10.1007/BF01060210.
Zeng, J., L. Zhang, M. Ansar, E. Damisse, and J. A. Gonzalez-Castro. 2017.
“Applications of computational fluid dynamics to flow ratings at prototype spillways and weirs. I: Data generation and validation.” J. Irrig.
Drain. Eng. 143 (1): 04016072. https://doi.org/10.1061/(ASCE)IR
.1943-4774.0001112.

Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

다공성 미디어 및 나노유체에 의해 강화된 수집기로 태양광 CCHP 시스템의 최적화

Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid


Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4

Abstract

태양열 집열기의 낮은 효율은 CCHP(Solar Combined Cooling, Heating, and Power) 사이클의 문제점 중 하나로 언급될 수 있습니다. 태양계를 개선하기 위해 나노유체와 다공성 매체가 태양열 집열기에 사용됩니다.

다공성 매질과 나노입자를 사용하는 장점 중 하나는 동일한 조건에서 더 많은 에너지를 흡수할 수 있다는 것입니다. 이 연구에서는 평균 일사량이 1b인 따뜻하고 건조한 지역의 600 m2 건물의 전기, 냉방 및 난방을 생성하기 위해 다공성 매질과 나노유체를 사용하여 태양열 냉난방 복합 발전(SCCHP) 시스템을 최적화했습니다.

본 논문에서는 침전물이 형성되지 않는 lb = 820 w/m2(이란) 정도까지 다공성 물질에서 나노유체의 최적량을 계산하였다. 이 연구에서 태양열 집열기는 구리 다공성 매체(95% 다공성)와 CuO 및 Al2O3 나노 유체로 향상되었습니다.

나노유체의 0.1%-0.6%가 작동 유체로 물에 추가되었습니다. 나노유체의 0.5%가 태양열 집열기 및 SCCHP 시스템에서 가장 높은 에너지 및 엑서지 효율 향상으로 이어지는 것으로 밝혀졌습니다.

본 연구에서 포물선형 집열기(PTC)의 최대 에너지 및 엑서지 효율은 각각 74.19% 및 32.6%입니다. 그림 1은 태양 CCHP의 주기를 정확하게 설명하기 위한 그래픽 초록으로 언급될 수 있습니다.

The low efficiency of solar collectors can be mentioned as one of the problems in solar combined cooling, heating, and power (CCHP) cycles. For improving solar systems, nanofluid and porous media are used in solar collectors. One of the advantages of using porous media and nanoparticles is to absorb more energy under the same conditions. In this research, a solar combined cooling, heating, and power (SCCHP) system has been optimized by porous media and nanofluid for generating electricity, cooling, and heating of a 600 m2 building in a warm and dry region with average solar radiation of Ib = 820 w/m2 in Iran. In this paper, the optimal amount of nanofluid in porous materials has been calculated to the extent that no sediment is formed. In this study, solar collectors were enhanced with copper porous media (95% porosity) and CuO and Al2O3 nanofluids. 0.1%–0.6% of the nanofluids were added to water as working fluids; it is found that 0.5% of the nanofluids lead to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Maximum energy and exergy efficiency of parabolic thermal collector (PTC) riches in this study are 74.19% and 32.6%, respectively. Figure 1 can be mentioned as a graphical abstract for accurately describing the cycle of solar CCHP.

1. Introduction

Due to the increase in energy consumption, the use of clean energy is one of the important goals of human societies. In the last four decades, the use of cogeneration cycles has increased significantly due to high efficiency. Among clean energy, the use of solar energy has become more popular due to its greater availability [1]. Low efficiency of energy production, transmission, and distribution system makes a new system to generate simultaneously electricity, heating, and cooling as an essential solution to be widely used. The low efficiency of the electricity generation, transmission, and distribution system makes the CCHP system a basic solution to eliminate waste of energy. CCHP system consists of a prime mover (PM), a power generator, a heat recovery system (produce extra heating/cooling/power), and thermal energy storage (TES) [2]. Solar combined cooling, heating, and power (SCCHP) has been started three decades ago. SCCHP is a system that receives its propulsive force from solar energy; in this cycle, solar collectors play the role of propulsive for generating power in this system [3].

Increasing the rate of energy consumption in the whole world because of the low efficiency of energy production, transmission, and distribution system causes a new cogeneration system to generate electricity, heating, and cooling energy as an essential solution to be widely used. Building energy utilization fundamentally includes power required for lighting, home electrical appliances, warming and cooling of building inside, and boiling water. Domestic usage contributes to an average of 35% of the world’s total energy consumption [4].

Due to the availability of solar energy in all areas, solar collectors can be used to obtain the propulsive power required for the CCHP cycle. Solar energy is the main source of energy in renewable applications. For selecting a suitable area to use solar collectors, annual sunshine hours, the number of sunny days, minus temperature and frosty days, and the windy status of the region are essentially considered [5]. Iran, with an average of more than 300 sunny days, is one of the suitable countries to use solar energy. Due to the fact that most of the solar radiation is in the southern regions of Iran, also the concentration of cities is low in these areas, and transmission lines are far apart, one of the best options is to use CCHP cycles based on solar collectors [6]. One of the major problems of solar collectors is their low efficiency [7]. Low efficiency increases the area of collectors, which increases the initial cost of solar systems and of course increases the initial payback period. To increase the efficiency of solar collectors and improve their performance, porous materials and nanofluids are used to increase their workability.

There are two ways to increase the efficiency of solar collectors and mechanical and fluid improvement. In the first method, using porous materials or helical filaments inside the collector pipes causes turbulence of the flow and increases heat transfer. In the second method, using nanofluids or salt and other materials increases the heat transfer of water. The use of porous materials has grown up immensely over the past twenty years. Porous materials, especially copper porous foam, are widely used in solar collectors. Due to the high contact surface area, porous media are appropriate candidates for solar collectors [8]. A number of researchers investigated Solar System performance in accordance with energy and exergy analyses. Zhai et al. [9] reviewed the performance of a small solar-powered system in which the energy efficiency was 44.7% and the electrical efficiency was 16.9%.

Abbasi et al. [10] proposed an innovative multiobjective optimization to optimize the design of a cogeneration system. Results showed the CCHP system based on an internal diesel combustion engine was the applicable alternative at all regions with different climates. The diesel engine can supply the electrical requirement of 31.0% and heating demand of 3.8% for building.

Jiang et al. [11] combined the experiment and simulation together to analyze the performance of a cogeneration system. Moreover, some research focused on CCHP systems using solar energy. It integrated sustainable and renewable technologies in the CCHP, like PV, Stirling engine, and parabolic trough collector (PTC) [21215].

Wang et al. [16] optimized a cogeneration solar cooling system with a Rankine cycle and ejector to reach the maximum total system efficiency of 55.9%. Jing et al. analyzed a big-scale building with the SCCHP system and auxiliary heaters to produced electrical, cooling, and heating power. The maximum energy efficiency reported in their work is 46.6% [17]. Various optimization methods have been used to improve the cogeneration system, minimum system size, and performance, such as genetic algorithm [1819].

Hirasawa et al. [20] investigated the effect of using porous media to reduce thermal waste in solar systems. They used the high-porosity metal foam on top of the flat plate solar collector and observed that thermal waste decreased by 7% due to natural heat transfer. Many researchers study the efficiency improvement of the solar collector by changing the collector’s shapes or working fluids. However, the most effective method is the use of nanofluids in the solar collector as working fluid [21]. In the experimental study done by Jouybari et al. [22], the efficiency enhancement up to 8.1% was achieved by adding nanofluid in a flat plate collector. In this research, by adding porous materials to the solar collector, collector efficiency increased up to 92% in a low flow regime. Subramani et al. [23] analyzed the thermal performance of the parabolic solar collector with Al2O3 nanofluid. They conducted their experiments with Reynolds number range 2401 to 7202 and mass flow rate 0.0083 to 0.05 kg/s. The maximum efficiency improvement in this experiment was 56% at 0.05 kg/s mass flow rate.

Shojaeizadeh et al. [24] investigated the analysis of the second law of thermodynamic on the flat plate solar collector using Al2O3/water nanofluid. Their research showed that energy efficiency rose up to 1.9% and the exergy efficiency increased by a maximum of 0.72% compared to pure water. Tiwari et al. [25] researched on the thermal performance of solar flat plate collectors for working fluid water with different nanofluids. The result showed that using 1.5% (optimum) particle volume fraction of Al2O3 nanofluid as an absorbing medium causes the thermal efficiency to enhance up to 31.64%.

The effect of porous media and nanofluids on solar collectors has already been investigated in the literature but the SCCHP system with a collector embedded by both porous media and nanofluid for enhancing the ratio of nanoparticle in nanofluid for preventing sedimentation was not discussed. In this research, the amount of energy and exergy of the solar CCHP cycles with parabolic solar collectors in both base and improved modes with a porous material (copper foam with 95% porosity) and nanofluid with different ratios of nanoparticles was calculated. In the first step, it is planned to design a CCHP system based on the required load, and, in the next step, it will analyze the energy and exergy of the system in a basic and optimize mode. In the optimize mode, enhanced solar collectors with porous material and nanofluid in different ratios (0.1%–0.7%) were used to optimize the ratio of nanofluids to prevent sedimentation.

2. Cycle Description

CCHP is one of the methods to enhance energy efficiency and reduce energy loss and costs. The SCCHP system used a solar collector as a prime mover of the cogeneration system and assisted the boiler to generate vapor for the turbine. Hot water flows from the expander to the absorption chiller in summer or to the radiator or fan coil in winter. Finally, before the hot water wants to flow back to the storage tank, it flows inside a heat exchanger for generating domestic hot water [26].

For designing of solar cogeneration system and its analysis, it is necessary to calculate the electrical, heating (heating load is the load required for the production of warm water and space heating), and cooling load required for the case study considered in a residential building with an area of 600 m2 in the warm region of Iran (Zahedan). In Table 1, the average of the required loads is shown for the different months of a year (average of electrical, heating, and cooling load calculated with CARRIER software).Table 1 The average amount of electric charges, heating load, and cooling load used in the different months of the year in the city of Zahedan for a residential building with 600 m2.

According to Table 1, the maximum magnitude of heating, cooling, and electrical loads is used to calculate the cogeneration system. The maximum electric load is 96 kW, the maximum amount of heating load is 62 kW, and the maximum cooling load is 118 kW. Since the calculated loads are average, all loads increased up to 10% for the confidence coefficient. With the obtained values, the solar collector area and other cogeneration system components are calculated. The cogeneration cycle is capable of producing 105 kW electric power, 140 kW cooling capacity, and 100 kW heating power.

2.1. System Analysis Equations

An analysis is done by considering the following assumptions:(1)The system operates under steady-state conditions(2)The system is designed for the warm region of Iran (Zahedan) with average solar radiation Ib = 820 w/m2(3)The pressure drops in heat exchangers, separators, storage tanks, and pipes are ignored(4)The pressure drop is negligible in all processes and no expectable chemical reactions occurred in the processes(5)Potential, kinetic, and chemical exergy are not considered due to their insignificance(6)Pumps have been discontinued due to insignificance throughout the process(7)All components are assumed adiabatic

Schematic shape of the cogeneration cycle is shown in Figure 1 and all data are given in Table 2.

Figure 1 Schematic shape of the cogeneration cycle.Table 2 Temperature and humidity of different points of system.

Based on the first law of thermodynamic, energy analysis is based on the following steps.

First of all, the estimated solar radiation energy on collector has been calculated:where α is the heat transfer enhancement coefficient based on porous materials added to the collector’s pipes. The coefficient α is increased by the porosity percentage, the type of porous material (in this case, copper with a porosity percentage of 95), and the flow of fluid to the collector equation.

Collector efficiency is going to be calculated by the following equation [9]:

Total energy received by the collector is given by [9]

Also, the auxiliary boiler heat load is [2]

Energy consumed from vapor to expander is calculated by [2]

The power output form by the screw expander [9]:

The efficiency of the expander is 80% in this case [11].

In this step, cooling and heating loads were calculated and then, the required heating load to reach sanitary hot water will be calculated as follows:

First step: calculating the cooling load with the following equation [9]:

Second step: calculating heating loads [9]:

Then, calculating the required loud for sanitary hot water will be [9]

According to the above-mentioned equations, efficiency is [9]

In the third step, calculated exergy analysis as follows.

First, the received exergy collector from the sun is calculated [9]:

In the previous equation, f is the constant of air dilution.

The received exergy from the collector is [9]

In the case of using natural gas in an auxiliary heater, the gas exergy is calculated from the following equation [12]:

Delivering exergy from vapor to expander is calculated with the following equation [9]:

In the fourth step, the exergy in cooling and heating is calculated by the following equation:

Cooling exergy in summer is calculated [9]:

Heating exergy in winter is calculated [9]:

In the last step based on thermodynamic second law, exergy efficiency has been calculated from the following equation and the above-mentioned calculated loads [9]:

3. Porous Media

The porous medium that filled the test section is copper foam with a porosity of 95%. The foams are determined in Figure 2 and also detailed thermophysical parameters and dimensions are shown in Table 3.

Figure 2 Copper foam with a porosity of 95%.Table 3 Thermophysical parameters and dimensions of copper foam.

In solar collectors, copper porous materials are suitable for use at low temperatures and have an easier and faster manufacturing process than ceramic porous materials. Due to the high coefficient conductivity of copper, the use of copper metallic foam to increase heat transfer is certainly more efficient in solar collectors.

Porous media and nanofluid in solar collector’s pipes were simulated in FLOW-3D software using the finite-difference method [27]. Nanoparticles Al2O3 and CUO are mostly used in solar collector enhancement. In this research, different concentrations of nanofluid are added to the parabolic solar collectors with porous materials (copper foam with porosity of 95%) to achieve maximum heat transfer in the porous materials before sedimentation. After analyzing PTC pipes with the nanofluid flow in FLOW-3D software, for energy and exergy efficiency analysis, Carrier software results were used as EES software input. Simulation PTC with porous media inside collector pipe and nanofluids sedimentation is shown in Figure 3.

Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

3.1. Nano Fluid

In this research, copper and silver nanofluids (Al2O3, CuO) have been added with percentages of 0.1%–0.7% as the working fluids. The nanoparticle properties are given in Table 4. Also, system constant parameters are presented in Table 4, which are available as default input in the EES software.Table 4 Properties of the nanoparticles [9].

System constant parameters for input in the software are shown in Table 5.Table 5 System constant parameters.

The thermal properties of the nanofluid can be obtained from equations (18)–(21). The basic fluid properties are indicated by the index (bf) and the properties of the nanoparticle silver with the index (np).

The density of the mixture is shown in the following equation [28]:where ρ is density and ϕ is the nanoparticles volume fraction.

The specific heat capacity is calculated from the following equation [29]:

The thermal conductivity of the nanofluid is calculated from the following equation [29]:

The parameter β is the ratio of the nanolayer thickness to the original particle radius and, usually, this parameter is taken equal to 0.1 for the calculated thermal conductivity of the nanofluids.

The mixture viscosity is calculated as follows [30]:

In all equations, instead of water properties, working fluids with nanofluid are used. All of the above equations and parameters are entered in the EES software for calculating the energy and exergy of solar collectors and the SCCHP cycle. All calculation repeats for both nanofluids with different concentrations of nanofluid in the solar collector’s pipe.

4. Results and Discussion

In the present study, relations were written according to Wang et al. [16] and the system analysis was performed to ensure the correctness of the code. The energy and exergy charts are plotted based on the main values of the paper and are shown in Figures 4 and 5. The error rate in this simulation is 1.07%.

Figure 4 Verification charts of energy analysis results.

Figure 5 Verification charts of exergy analysis results.

We may also investigate the application of machine learning paradigms [3141] and various hybrid, advanced optimization approaches that are enhanced in terms of exploration and intensification [4255], and intelligent model studies [5661] as well, for example, methods such as particle swarm optimizer (PSO) [6062], differential search (DS) [63], ant colony optimizer (ACO) [616465], Harris hawks optimizer (HHO) [66], grey wolf optimizer (GWO) [5367], differential evolution (DE) [6869], and other fusion and boosted systems [4146485054557071].

At the first step, the collector is modified with porous copper foam material. 14 cases have been considered for the analysis of the SCCHP system (Table 6). It should be noted that the adding of porous media causes an additional pressure drop inside the collector [922263072]. All fourteen cases use copper foam with a porosity of 95 percent. To simulate the effect of porous materials and nanofluids, the first solar PTC pipes have been simulated in the FLOW-3D software and then porous media (copper foam with porosity of 95%) and fluid flow with nanoparticles (AL2O3 and CUO) are generated in the software. After analyzing PTC pipes in FLOW-3D software, for analyzing energy and exergy efficiency, software outputs were used as EES software input for optimization ratio of sedimentation and calculating energy and exergy analyses.Table 6 Collectors with different percentages of nanofluids and porous media.

In this research, an enhanced solar collector with both porous media and Nanofluid is investigated. In the present study, 0.1–0.5% CuO and Al2O3 concentration were added to the collector fully filled by porous media to achieve maximum energy and exergy efficiencies of solar CCHP systems. All steps of the investigation are shown in Table 6.

Energy and exergy analyses of parabolic solar collectors and SCCHP systems are shown in Figures 6 and 7.

Figure 6 Energy and exergy efficiencies of the PTC with porous media and nanofluid.

Figure 7 Energy and exergy efficiency of the SCCHP.

Results show that the highest energy and exergy efficiencies are 74.19% and 32.6%, respectively, that is achieved in Step 12 (parabolic collectors with filled porous media and 0.5% Al2O3). In the second step, the maximum energy efficiency of SCCHP systems with fourteen steps of simulation are shown in Figure 7.

In the second step, where 0.1, −0.6% of the nanofluids were added, it is found that 0.5% leads to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Using concentrations more than 0.5% leads to sediment in the solar collector’s pipe and a decrease of porosity in the pipe [73]. According to Figure 7, maximum energy and exergy efficiencies of SCCHP are achieved in Step 12. In this step energy efficiency is 54.49% and exergy efficiency is 18.29%. In steps 13 and 14, with increasing concentration of CUO and Al2O3 nanofluid solution in porous materials, decreasing of energy and exergy efficiency of PTC and SCCHP system at the same time happened. This decrease in efficiency is due to the formation of sediment in the porous material. Calculations and simulations have shown that porous materials more than 0.5% nanofluids inside the collector pipe cause sediment and disturb the porosity of porous materials and pressure drop and reduce the coefficient of performance of the cogeneration system. Most experience showed that CUO and AL2O3 nanofluids with less than 0.6% percent solution are used in the investigation on the solar collectors at low temperatures and discharges [74]. One of the important points of this research is that the best ratio of nanofluids in the solar collector with a low temperature is 0.5% (AL2O3 and CUO); with this replacement, the cost of solar collectors and SCCHP cycle is reduced.

5. Conclusion and Future Directions

In the present study, ways for increasing the efficiency of solar collectors in order to enhance the efficiency of the SCCHP cycle are examined. The research is aimed at adding both porous materials and nanofluids for estimating the best ratio of nanofluid for enhanced solar collector and protecting sedimentation in porous media. By adding porous materials (copper foam with porosity of 95%) and 0.5% nanofluids together, high efficiency in solar parabolic collectors can be achieved. The novelty in this research is the addition of both nanofluids and porous materials and calculating the best ratio for preventing sedimentation and pressure drop in solar collector’s pipe. In this study, it was observed that, by adding 0.5% of AL2O3 nanofluid in working fluids, the energy efficiency of PTC rises to 74.19% and exergy efficiency is grown up to 32.6%. In SCCHP cycle, energy efficiency is 54.49% and exergy efficiency is 18.29%.

In this research, parabolic solar collectors fully filled by porous media (copper foam with a porosity of 95) are investigated. In the next step, parabolic solar collectors in the SCCHP cycle were simultaneously filled by porous media and different percentages of Al2O3 and CuO nanofluid. At this step, values of 0.1% to 0.6% of each nanofluid were added to the working fluid, and the efficiency of the energy and exergy of the collectors and the SCCHP cycle were determined. In this case, nanofluid and the porous media were used together in the solar collector and maximum efficiency achieved. 0.5% of both nanofluids were used to achieve the biggest efficiency enhancement.

In the present study, as expected, the highest efficiency is for the parabolic solar collector fully filled by porous material (copper foam with a porosity of 95%) and 0.5% Al2O3. Results of the present study are as follows:(1)The average enhancement of collectors’ efficiency using porous media and nanofluids is 28%.(2)Solutions with 0.1 to 0.5% of nanofluids (CuO and Al2O3) are used to prevent collectors from sediment occurrence in porous media.(3)Collector of solar cogeneration cycles that is enhanced by both porous media and nanofluid has higher efficiency, and the stability of output temperature is more as well.(4)By using 0.6% of the nanofluids in the enhanced parabolic solar collectors with copper porous materials, sedimentation occurs and makes a high-pressure drop in the solar collector’s pipe which causes decrease in energy efficiency.(5)Average enhancement of SCCHP cycle efficiency is enhanced by both porous media and nanofluid 13%.

Nomenclature

:Solar radiation
a:Heat transfer augmentation coefficient
A:Solar collector area
Bf:Basic fluid
:Specific heat capacity of the nanofluid
F:Constant of air dilution
:Thermal conductivity of the nanofluid
:Thermal conductivity of the basic fluid
:Viscosity of the nanofluid
:Viscosity of the basic fluid
:Collector efficiency
:Collector energy receives
:Auxiliary boiler heat
:Expander energy
:Gas energy
:Screw expander work
:Cooling load, in kilowatts
:Heating load, in kilowatts
:Solar radiation energy on collector, in Joule
:Sanitary hot water load
Np:Nanoparticle
:Energy efficiency
:Heat exchanger efficiency
:Sun exergy
:Collector exergy
:Natural gas exergy
:Expander exergy
:Cooling exergy
:Heating exergy
:Exergy efficiency
:Steam mass flow rate
:Hot water mass flow rate
:Specific heat capacity of water
:Power output form by the screw expander
Tam:Average ambient temperature
:Density of the mixture.

Greek symbols

ρ:Density
ϕ:Nanoparticles volume fraction
β:Ratio of the nanolayer thickness.

Abbreviations

CCHP:Combined cooling, heating, and power
EES:Engineering equation solver.

Data Availability

For this study, data were generated by CARRIER software for the average electrical, heating, and cooling load of a residential building with 600 m2 in the city of Zahedan, Iran.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. A. Fudholi and K. Sopian, “Review on solar collector for agricultural produce,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 9, no. 1, p. 414, 2018.View at: Publisher Site | Google Scholar
  2. G. Yang and X. Zhai, “Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies,” Applied Thermal Engineering, vol. 133, pp. 327–340, 2018.View at: Publisher Site | Google Scholar
  3. J. Wang, Z. Han, and Z. Guan, “Hybrid solar-assisted combined cooling, heating, and power systems: a review,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110256, 2020.View at: Publisher Site | Google Scholar
  4. Y. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Applied Energy, vol. 104, pp. 538–553, 2013.View at: Publisher Site | Google Scholar
  5. J. M. Hassan, Q. J. Abdul-Ghafour, and M. F. Mohammed, “CFD simulation of enhancement techniques in flat plate solar water collectors,” Al-Nahrain Journal for Engineering Sciences, vol. 20, no. 3, pp. 751–761, 2017.View at: Google Scholar
  6. M. Jahangiri, O. Nematollahi, A. Haghani, H. A. Raiesi, and A. Alidadi Shamsabadi, “An optimization of energy cost of clean hybrid solar-wind power plants in Iran,” International Journal of Green Energy, vol. 16, no. 15, pp. 1422–1435, 2019.View at: Publisher Site | Google Scholar
  7. I. H. Yılmaz and A. Mwesigye, “Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review,” Applied Energy, vol. 225, pp. 135–174, 2018.View at: Google Scholar
  8. F. Wang, J. Tan, and Z. Wang, “Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas,” Energy Conversion and Management, vol. 83, pp. 159–166, 2014.View at: Publisher Site | Google Scholar
  9. H. Zhai, Y. J. Dai, J. Y. Wu, and R. Z. Wang, “Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas,” Applied Energy, vol. 86, no. 9, pp. 1395–1404, 2009.View at: Publisher Site | Google Scholar
  10. M. H. Abbasi, H. Sayyaadi, and M. Tahmasbzadebaie, “A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application,” Applied Thermal Engineering, vol. 135, pp. 389–405, 2018.View at: Google Scholar
  11. R. Jiang, F. G. F. Qin, X. Yang, S. Huang, and B. Chen, “Performance analysis of a liquid absorption dehumidifier driven by jacket-cooling water of a diesel engine in a CCHP system,” Energy and Buildings, vol. 163, pp. 70–78, 2018.View at: Publisher Site | Google Scholar
  12. F. A. Boyaghchi and M. Chavoshi, “Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC,” Solar Energy, vol. 166, pp. 351–370, 2018.View at: Publisher Site | Google Scholar
  13. F. A. Boyaghchi and M. Chavoshi, “Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts,” Applied Thermal Engineering, vol. 112, pp. 660–675, 2017.View at: Publisher Site | Google Scholar
  14. B. Su, W. Han, Y. Chen, Z. Wang, W. Qu, and H. Jin, “Performance optimization of a solar assisted CCHP based on biogas reforming,” Energy Conversion and Management, vol. 171, pp. 604–617, 2018.View at: Publisher Site | Google Scholar
  15. F. A. Al-Sulaiman, F. Hamdullahpur, and I. Dincer, “Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production,” Renewable Energy, vol. 48, pp. 161–172, 2012.View at: Publisher Site | Google Scholar
  16. J. Wang, Y. Dai, L. Gao, and S. Ma, “A new combined cooling, heating and power system driven by solar energy,” Renewable Energy, vol. 34, no. 12, pp. 2780–2788, 2009.View at: Publisher Site | Google Scholar
  17. Y.-Y. Jing, H. Bai, J.-J. Wang, and L. Liu, “Life cycle assessment of a solar combined cooling heating and power system in different operation strategies,” Applied Energy, vol. 92, pp. 843–853, 2012.View at: Publisher Site | Google Scholar
  18. J.-J. Wang, Y.-Y. Jing, and C.-F. Zhang, “Optimization of capacity and operation for CCHP system by genetic algorithm,” Applied Energy, vol. 87, no. 4, pp. 1325–1335, 2010.View at: Publisher Site | Google Scholar
  19. L. Ali, “LDA–GA–SVM: improved hepatocellular carcinoma prediction through dimensionality reduction and genetically optimized support vector machine,” Neural Computing and Applications, vol. 87, pp. 1–10, 2020.View at: Google Scholar
  20. S. Hirasawa, R. Tsubota, T. Kawanami, and K. Shirai, “Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium,” Solar Energy, vol. 97, pp. 305–313, 2013.View at: Publisher Site | Google Scholar
  21. E. Bellos, C. Tzivanidis, and Z. Said, “A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors,” Sustainable Energy Technologies and Assessments, vol. 39, p. 100714, 2020.View at: Publisher Site | Google Scholar
  22. H. J. Jouybari, S. Saedodin, A. Zamzamian, M. E. Nimvari, and S. Wongwises, “Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study,” Renewable Energy, vol. 114, pp. 1407–1418, 2017.View at: Publisher Site | Google Scholar
  23. J. Subramani, P. K. Nagarajan, S. Wongwises, S. A. El-Agouz, and R. Sathyamurthy, “Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids,” Environmental Progress & Sustainable Energy, vol. 37, no. 3, pp. 1149–1159, 2018.View at: Publisher Site | Google Scholar
  24. E. Shojaeizadeh, F. Veysi, and A. Kamandi, “Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based Flat-plate solar collector,” Energy and Buildings, vol. 101, pp. 12–23, 2015.View at: Publisher Site | Google Scholar
  25. A. K. Tiwari, P. Ghosh, and J. Sarkar, “Solar water heating using nanofluids–a comprehensive overview and environmental impact analysis,” International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 3, pp. 221–224, 2013.View at: Google Scholar
  26. D. R. Rajendran, E. Ganapathy Sundaram, P. Jawahar, V. Sivakumar, O. Mahian, and E. Bellos, “Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design,” Journal of Thermal Analysis and Calorimetry, vol. 140, no. 1, pp. 33–51, 2020.View at: Publisher Site | Google Scholar
  27. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Google Scholar
  28. K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” International Journal of Heat and Mass Transfer, vol. 54, no. 19-20, pp. 4410–4428, 2011.View at: Publisher Site | Google Scholar
  29. K. Farhana, K. Kadirgama, M. M. Rahman et al., “Improvement in the performance of solar collectors with nanofluids – a state-of-the-art review,” Nano-Structures & Nano-Objects, vol. 18, p. 100276, 2019.View at: Publisher Site | Google Scholar
  30. M. Turkyilmazoglu, “Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models,” European Journal of Mechanics-B/Fluids, vol. 65, pp. 184–191, 2017.View at: Publisher Site | Google Scholar
  31. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 2020, 2020.View at: Google Scholar
  32. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, M. Fan, D. Wang, P. Zhou, and D. Tao, “Top-k feature selection framework using robust 0-1 integer programming,” IEEE Transactions on Neural Networks and Learning Systems, vol. 1, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  34. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  35. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
  36. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 1, 2020.View at: Google Scholar
  37. M. Mirmozaffari, “Machine learning algorithms based on an optimization model,” 2020.View at: Google Scholar
  38. M. Mirmozaffari, M. Yazdani, A. Boskabadi, H. Ahady Dolatsara, K. Kabirifar, and N. Amiri Golilarz, “A novel machine learning approach combined with optimization models for eco-efficiency evaluation,” Applied Sciences, vol. 10, no. 15, p. 5210, 2020.View at: Publisher Site | Google Scholar
  39. M. Vosoogha and A. Addeh, “An intelligent power prediction method for wind energy generation based on optimized fuzzy system,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 5, pp. 34–43, 2019.View at: Google Scholar
  40. A. Javadi, N. Mikaeilvand, and H. Hosseinzdeh, “Presenting a new method to solve partial differential equations using a group search optimizer method (GSO),” Computational Research Progress in Applied Science and Engineering, vol. 4, no. 1, pp. 22–26, 2018.View at: Google Scholar
  41. F. J. Golrokh, Gohar Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, pp. 1–8, 2020.View at: Google Scholar
  42. H. Yu, “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 1, pp. 1–29, 2020.View at: Google Scholar
  43. C. Yu, “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 1, pp. 1–28, 2021.View at: Google Scholar
  44. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 1, p. 106728, 2020.View at: Google Scholar
  45. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, p. 106642, 2021.View at: Publisher Site | Google Scholar
  46. Y. Zhang, “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 1, 2020.View at: Google Scholar
  47. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 1, pp. 1–30, 2020.View at: Google Scholar
  48. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  49. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  50. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  51. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  52. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  53. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  54. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, 2020.View at: Publisher Site | Google Scholar
  55. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  56. R. U. Khan, X. Zhang, R. Kumar, A. Sharif, N. A. Golilarz, and M. Alazab, “An adaptive multi-layer botnet detection technique using machine learning classifiers,” Applied Sciences, vol. 9, no. 11, p. 2375, 2019.View at: Publisher Site | Google Scholar
  57. A. Addeh, A. Khormali, and N. A. Golilarz, “Control chart pattern recognition using RBF neural network with new training algorithm and practical features,” ISA Transactions, vol. 79, pp. 202–216, 2018.View at: Publisher Site | Google Scholar
  58. N. Amiri Golilarz, H. Gao, R. Kumar, L. Ali, Y. Fu, and C. Li, “Adaptive wavelet based MRI brain image de-noising,” Frontiers in Neuroscience, vol. 14, p. 728, 2020.View at: Publisher Site | Google Scholar
  59. N. A. Golilarz, H. Gao, and H. Demirel, “Satellite image de-noising with Harris hawks meta heuristic optimization algorithm and improved adaptive generalized Gaussian distribution threshold function,” IEEE Access, vol. 7, pp. 57459–57468, 2019.View at: Publisher Site | Google Scholar
  60. M. Eisazadeh and J. Rezapour, “Multi-objective optimization of the composite sheets using PSO algorithm,” 2017.View at: Google Scholar
  61. I. Bargegol, M. Nikookar, R. V. Nezafat, E. J. Lashkami, and A. M. Roshandeh, “Timing optimization of signalized intersections using shockwave theory by genetic algorithm,” Computational Research Progress in Applied Science & Engineering, vol. 1, pp. 160–167, 2015.View at: Google Scholar
  62. B. Bai, Z. Guo, C. Zhou, W. Zhang, and J. Zhang, “Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering,” Information Sciences, vol. 546, pp. 42–59, 2021.View at: Publisher Site | Google Scholar
  63. J. Liu, C. Wu, G. Wu, and X. Wang, “A novel differential search algorithm and applications for structure design,” Applied Mathematics and Computation, vol. 268, pp. 246–269, 2015.View at: Publisher Site | Google Scholar
  64. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  65. D. Zhao, “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 24, p. 106510, 2020.View at: Google Scholar
  66. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  67. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, p. 106684, 2021.View at: Publisher Site | Google Scholar
  68. G. Sun, B. Yang, Z. Yang, and G. Xu, “An adaptive differential evolution with combined strategy for global numerical optimization,” Soft Computing, vol. 24, pp. 1–20, 2019.View at: Google Scholar
  69. G. Sun, C. Li, and L. Deng, “An adaptive regeneration framework based on search space adjustment for differential evolution,” Neural Computing and Applications, vol. 24, pp. 1–17, 2021.View at: Google Scholar
  70. A. Addeh and M. Iri, “Brain tumor type classification using deep features of MRI images and optimized RBFNN,” ENG Transactions, vol. 2, pp. 1–7, 2021.View at: Google Scholar
  71. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” Soft Computing, vol. 1, pp. 1–8, 2020.View at: Google Scholar
  72. H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” Journal of Solar Energy Engineering, vol. 131, no. 4, 2009.View at: Publisher Site | Google Scholar
  73. S. Rashidi, M. Bovand, and J. A. Esfahani, “Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis,” Energy Conversion and Management, vol. 103, pp. 726–738, 2015.View at: Publisher Site | Google Scholar
  74. N. Akram, R. Sadri, S. N. Kazi et al., “A comprehensive review on nanofluid operated solar flat plate collectors,” Journal of Thermal Analysis and Calorimetry, vol. 139, no. 2, pp. 1309–1343, 2020.View at: Publisher Site | Google Scholar
Fig. 2. Schematic indication of the separate parts comprising the rotary kiln model, together with the energy fluxes from Eq. (1).

화염 모델링, 열 전달 및 클링커 화학을 포함한 시멘트 가마에 대한 CFD 예측

E Mastorakos Massias 1C.D Tsakiroglou D.A Goussis V.N Burganos A.C Payatakes 2

Abstract

실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 방사선에 대한 Monte Carlo 방법, 가마 벽의 에너지 방정식에 대한 유한 체적 코드 및 클링커에 대한 화학 반응을 포함한 에너지 보존 방정식 및 종에 대한 새로운 코드. 기상의 온도 장, 벽으로의 복사 열유속, 가마 및 클링커 온도에 대한 예측 간의 반복적인 절차는 내부 벽 온도의 분포를 명시적으로 예측하는 데 사용됩니다. 여기에는 열 흐름 계산이 포함됩니다. 수갑. 가스와 가마 벽 사이의 주요 열 전달 모드는 복사에 의한 것이며 내화물을 통해 환경으로 손실되는 열은 입력 열의 약 10%이고 추가로 40%는 장입 가열 및 클링커 형성. 예측은 실제 규모의 시멘트 가마에서 경험과 제한된 측정을 기반으로 한 경향과 일치합니다.

키워드

산업용 CFD, 로타리 가마, 클링커 형성, 복사 열전달, Industrial CFD, Rotary kilns, Clinker formation, Radiative heat transfer

1 . 소개

시멘트 산업은 에너지의 주요 소비자이며, 미국에서 산업 사용자의 총 화석 연료 소비량의 약 1.4%를 차지하며 [1] 일반적인 비에너지 사용량은 제조된 클링커 1kg당 약 3.2MJ [2] 입니다. CaCO 3  →  CaO  +  CO 2 반응이 일어나기 때문입니다., 클링커 형성의 첫 번째 단계는 높은 흡열성입니다. 시멘트 가마에서 에너지를 절약하기 위한 현재의 경향은 일반적으로 길이가 약 100m이고 직경이 약 5m인 회전 실린더인 가마를 떠나는 배기 가스로부터 에너지를 보다 효율적으로 회수하는 것과 저열량 연료의 사용에 중점을 둡니다. 값. 2-5초 정도의 화염 체류 시간을 허용하고 2200K의 높은 온도에 도달하는 회전 가마의 특성은 또한 시멘트 가마를 유기 폐기물 및 용제에 대한 상업용 소각로에 대한 경쟁력 있는 대안으로 만듭니다 [3]. 클링커의 형성이 이러한 2차 액체 연료의 사용으로 인한 화염의 변화로부터 어떤 식으로든 영향을 받지 않도록 하고, 대기 중으로 방출되는 오염 물질의 양에 대한 현재 및 미래 제한을 준수할 수 있도록, 화염 구조의 세부 사항과 화염에서 고체 충전물로의 열 전달을 더 잘 이해할 필요가 있습니다.

최근 시멘트 가마 4 , 5 , 6 , 7 에서 유동장 및 석탄 연소의 이론적 모델링복사 열 전달을 포함한 전산 유체 역학(CFD) 코드를 사용하여 달성되었습니다. 이러한 결과는 시멘트 가마에 대한 최초의 결과였으며 화염 길이, 산소 소비 등과 관련하여 실험적으로 관찰된 경향을 재현했기 때문에 그러한 코드가 수용 가능한 정확도로 대규모 산업용 용광로에 사용될 수 있음을 보여주었습니다. 킬른과 클링커는 포함하지 않았고, 벽온도의 경계조건은 가스온도와 용액영역의 열유속에 영향을 미치므로 계산에 필요한 경계조건은 예측하지 않고 실험적 측정에 기초하였다. 기상에 대한 CFD 솔루션은 앞으로의 주요 단계이지만 회전 가마를 포괄적으로 모델링하는 데만으로는 충분하지 않습니다.

내화물의 열 전달과 전하에 대한 세부 사항은 다양한 저자 8 , 9 , 10 , 11에 의해 조사되었습니다 . 충전물(보통 잘 혼합된 것으로 가정)은 노출된 표면에 직접 복사되는 열 외에도 전도에 의해 가마 벽에서 가열됩니다. 가장 완전한 이론적 노력에서, 가마 벽 (내화물)에 대한 3 차원 열전도 방정식을 해결하고, 두 개 또는 세 개의 인접하는 영역으로 한정 한 좌표 축 방향에서 어느 방사선 방사선 열전달 영역 모델과 결합 [ 10] 또는 자세히 해결 [11]. 그러나 클링커 형성 중에 일어나는 화학 반응은 고려되지 않았고 기체 상이 균일한 온도로 고정되어 필요한 수준의 정확도로 처리되지 않았습니다.

최종적으로 연소에 의해 방출되는 에너지(일부)를 받는 고체 전하가 화학 반응을 거쳐 최종 제품인 클링커를 형성합니다. 이것들은 [12]에 설명된 주요 특징에 대한 단순화된 모델과 함께 시멘트 화학 문헌에서 광범위한 조사의 주제였습니다 . 그 작업에서, 고체 온도 및 조성의 축 방향 전개를 설명하는 odes가 공식화되고 해결되었지만, 전하에 대한 열유속 및 따라서 클링커 형성 속도를 결정하는 가스 및 벽 온도는 1차원으로 근사되었습니다. 자세한 화염 계산이 없는 모델.

화염, 벽 및 장입물에 대한 위의 이론적 모델 중 어느 것도 회전식 가마 작동을 위한 진정한 예측 도구로 충분하지 않다는 것이 분명합니다. 국부 가스 온도(CFD 계산 결과 중 하나)는 벽 온도에 크게 의존합니다. 클링커 형성은 에너지를 흡수하므로 지역 가스 및 벽 온도에 따라 달라지며 둘 다 화염에 의존합니다. 벽은 화염에서 클링커로의 순 열 전달에서 “중개자” 역할을 하며, 내화재 두께에 따라 환경으로 피할 수 없는 열 손실이 발생합니다. 이러한 상호 의존성은 가마의 거동에 중요하며 개별 프로세스를 개별적으로 계산하는 데 중점을 두었기 때문에 문헌에서 발견된 수학적 모델로는 다루기 어렵습니다.

본 논문에서 우리는 위에 설명된 유형의 세 가지 개별 모델을 결합하여 수행되는 회전식 시멘트 가마에서 발생하는 대부분의 공정에 대한 포괄적인 모듈식 모델을 제시합니다. 우리 작업은 4 , 5 , 6 , 7 에서와 같이 석탄 연소를 위한 다차원 CFD 코드로 기체 상태를 처리합니다 . 10 , 11 에서와 같이 가마 벽의 3차원 열전도 방정식을 풉니다 . 9 , 12 와 유사한 모델로 잘 혼합된 전하 온도 및 조성을 해결합니다.. 3개의 모듈(화염, 벽, 전하)은 내화물에 입사하는 열유속의 축 분포에 대해 수렴이 달성될 때까지 반복적으로 계산됩니다. 충전 온도 및 구성. 따라서 이전 작업에 비해 현재의 주요 이점은 완전성에 있습니다. 이는 가스-킬른-클링커 시스템의 다양한 부분에서 에너지 흐름의 정량화를 통해 킬른 작동에 대한 더 나은 이해를 가능하게 하고 여기에서 사용된 방법을 건조 및 소각과 같은 다른 회전 킬른 응용 분야에 적용할 수 있게 합니다.

이 문서의 특정 목적은 회전식 시멘트 가마에 대한 포괄적인 모델을 제시하고 화염에서 클링커로의 에너지 플럭스와 가마에서 열 손실을 정량화하는 것입니다. 이 문서의 나머지 부분은 다음과 같이 구성됩니다. 2장 에서는 다양한 모델과 해법을 제시하고 3장 에서는 그 결과를 제시하고 논의한다 . 여기에는 본격적인 회전식 시멘트 가마의 제한된 측정값과의 비교가 포함됩니다. 이 논문은 가장 중요한 결론의 요약으로 끝납니다.

2 . 모델 공식화

2.1 . 개요

Fig. 1 은 시멘트 로터리 킬른의 단면을 보여준다. 가마의 회전은 전하의 움직임을 유도하여 후자를 대략적으로 잘 혼합되도록 합니다 [10] , 여기에서 채택할 가정입니다. 우리는 이 코팅을 클링커와 유사한 물리적 특성의 고체 재료로 모델링하여 가마 내화물에 부착된 클링커의 존재를 허용할 것입니다. 우리는 이 층의 두께가 가마를 따라 균일하다고 가정합니다. 이것은 아마도 지나치게 단순화한 것일 수 있지만 관련 데이터를 사용할 수 없습니다. 모델 설명을 진행하기 전에 그림 2 에 개략적으로 표시된 회전식 가마의 다양한 에너지 흐름을 이해하는 것이 중요합니다 .

석탄 연소에 의해 방출되는 에너지(단위 시간당)( 석탄 )는 배기 가스(Δ 가스 )와 함께 가마 밖으로 흘러 가마 벽에 직접 복사( rad ) 및 대류( conv )됩니다. 공급 및 배기 덕트( rad,1  + rad,2 ) 에 대한 축 방향의 복사에 의해 작은 부분이 손실됩니다 . 전하 가마 시스템은 복사( rad ) 및 대류( conv )에 의해 가스로부터 에너지(Δ cl )를 흡수 하고 주변으로 열을 잃습니다( Q 손실 ). 전체 에너지 균형에서 개별 항의 계산, 즉(1a)큐석탄=ΔH가스-Q라드-Q전환-Q일, 1-Q일, 2,(1b)큐라드+Q전환=ΔH클+Q손실여기에서 다음 섹션에 설명된 대로 가스, 가마 및 클링커에 대한 이산화 에너지를 국부적으로 해결함으로써 수행됩니다.

2.2 . CFD 코드

가스 운동량, 종 농도 및 에너지의 Favre 평균 방정식은 표준 k – ε 모델을 사용하여 방사 모듈(RAD-3D)과 함께 상업적으로 이용 가능한 축대칭 CFD 코드(FLOW-3D)에 의해 해결됩니다. [13] . 기하학이 실제로 3차원이고 벽 온도의 각도 분포가 존재하지만 합리적인 시간과 현재 워크스테이션에서 완전한 3으로 솔루션을 얻을 수 있도록 기체상을 축대칭으로 취급합니다. -D를 요구하는 해상도로 계산하려면 슈퍼컴퓨터에 의존해야 합니다. FLOW-3D에서 사용되는 다양한 하위 모델의 일부 기능과 벽 경계 조건에 대한 특수 처리는 다음과 같습니다.

2.2.1 . 석탄 연소

Rossin-Rammler 크기 분포(45μm 평균 직경, 1.3 지수 [6] )를 따르는 석탄 입자 는 CPU 시간을 줄이기 위해 솔루션 영역(즉, 확률적 구성 요소 없이)에서 결정론적으로 추적되었지만 분산을 과소 평가하는 단점이 있습니다 . 14] . 입자는 2-반응 모델에 따라 휘발되도록 허용되었고 휘발성 연소는 무한히 빠른 것으로 간주되었습니다. 석탄 연소에 대한 설명의 세부 사항은 FLOW-3D에서 석탄 휘발 및 열분해의 “표준” 상수 집합이 합리적인 결과를 제공하고 Ref. [5] .

2.2.2 . 복사와 대류

가스의 복사 강도는 RAD-3D 모듈을 사용하여 80,000개의 입자로 Monte-Carlo 방법으로 계산되었습니다. 가마는 반경 방향으로 7개, 축 방향으로 19개(크기가 0.1  ×  1.0 m와 0.2  ×  5.0 m 사이)로 불균일한 구역으로 나뉘었으며 각 구역 에서 방사선 강도가 균일하다고 가정했습니다. 방사선 모듈의 출력은 내부적으로 FLOW-3D에 대한 유체 계산에 인터페이스되고 외부적으로 벽 및 클링커에 대한 코드에 인터페이스되었습니다( 섹션 2.3 섹션 2.4 참조). 방사선 패키지의 이산화된 구역은 CFD 그리드의 셀보다 훨씬 커야 하므로 구역에 온도 평균이 형성될 수 있는 많은 셀이 포함될 수 있다는 점을 이해하는 것이 중요합니다. 상대적으로 조잡한 복사 구역의 분해능과 Monte-Carlo 방법의 통계적 특성은 구역의 복사 열유속이 더 미세한 구역화 및 더 많은 입자로 몇 번의 실행에 의해 결정된 바와 같이 최대 약 10%까지 부정확할 수 있음을 의미합니다. 또한 경계면에 입사하는 열유속은 영역 크기보다 미세한 분해능으로 결정할 수 없으므로 복사 열유속은 벽에 인접한 19개 영역 각각의 중심에서만 계산됩니다. 0.15m -1 의 흡수 계수는 Ref.[11] . 엄밀히 말하면, 흡수 계수는 국부적 가스 조성과 온도의 함수이므로 균일하지 않아야 합니다. 그러나 가스 조성은 가마의 일부만 차지하는 화염 내에서만 변 하므로( 3절 참조 ) 균일한 흡수 계수를 가정하는 것이 합리적입니다. 또한, 현재 버전의 소프트웨어는 FLOW-3D의 반복 프로세스 동안 이 요소의 자동 재조정을 허용하지 않습니다. 여기서 로컬 가스 특성이 계산되므로 일정하고 균일한 흡수 계수가 필요합니다.

최종적으로, 벽에서 대류 열전달이 플로우 3D 패키지에서 표준 출력 표준 “벽 기능”제형에 혼입 난류 경계층에 대한 식에 기초하고,의 속도 경계 조건과 유사한 K – ε 모델. FLOW-3D 및 RAD-3D에서 입력으로 사용하고 출력으로 계산된 다양한 양은 그림 3에 개략적으로 표시 됩니다.

2.2.3 . 그리드

반경 방향 47개, 축 방향 155개 노드를 갖는 불균일한 격자를 사용하였으며 격자 독립성 연구를 수행한 결과 충분하다고 판단하였다. 유사한 크기의 그리드도 Refs에서 적절한 것으로 밝혀졌습니다. 4 , 5 , 6 , 7 . 매우 높은 축 방향 및 소용돌이 속도로 인해 석탄 버너 유정에 가까운 지역을 해결하기 위해 특별한 주의를 기울였습니다. HP 715/100MHz 워크스테이션에서 이 그리드의 일반적인 CPU 시간은 10시간이었습니다.

2.2.4 . 경계 조건

벽 온도에 대한 경계 조건은 기체상 및 복사 솔버 모두에 필요하다는 것을 인식하는 것이 중요합니다. 아래에서는 4 , 5 , 6 , 7 을 규정하기 보다는 축대칭 그리드에 대한 이 온도 분포를 예측하는 대략적인 방법을 설명합니다 .

내벽 온도 w ( in , x , ϕ ) 의 각도 분포 가 알려져 있다고 가정합니다 . 그런 다음 전체 3차원 문제를 “동등한” 축대칭 문제로 줄이기 위해 가상의 내벽 온도 RAD ( x )는(2)2πε에티4라드(x) = ε클∫0ㄷ티4클(엑스)디ϕ + ε에∫ㄷ2π티4에(아르 자형~에, x, ϕ)디ϕ”효과적인” 경계 조건으로 사용할 수 있습니다. RAD ( x )는 방위각으로 평균화된 “복사 가중” 온도입니다. 필요한 경계 조건으로 이 온도를 사용하는 것은 복사가 열 전달을 지배한다는 기대에 의해 동기가 부여됩니다(후반부 확인, 섹션 3.4 ). 따라서 전체 3차원 문제와 이 “유효한” 축대칭 문제에서 가스에서 가마로의 전체 에너지 흐름은 거의 동일할 것으로 예상됩니다.  의 사용 (2) 축대칭 코드로 기체상 및 복사장을 계산할 수 있으므로 엔지니어링 워크스테이션을 사용하여 문제를 다루기 쉽습니다.

고려되는 가마의 규모와 온도에서 가스는 광학적으로 두꺼운 것으로 간주될 수 있습니다. 솔루션(나중에 제시됨)은 평균 경로 길이(즉, “광자”의 모든 에너지가 흡수되기 전의 평균 길이)가 약 3.2m임을 보여주며, 이는 가마 내경 4.1m보다 작습니다. 이것은 내벽에 입사하는 복사 플럭스가 국부적 벽과 가스 온도에 강하게 의존하고 더 먼 축 또는 방위각 위치에서 벽의 온도에 약하게만 의존함을 의미합니다. 이것은 기체상에 사용된 축대칭 근사에 대한 신뢰를 줍니다. 그것은 또한 Refs의 “구역 방법”을 의미합니다. 8 , 9 , 10표면에 입사하는 방사선이 1-2 구역 길이보다 더 먼 축 위치와 무관한 것으로 간주되는 경우에는 충분했을 것입니다.

2.3 . 가마 온도

내부 소성로 표면 온도 w ( in , x , ϕ )는 Eq. 에서 필요합니다 (2) 및 가마 벽 에너지 방정식의 솔루션 결과의 일부입니다. 각속도 ω로 회전하는 좌표계 에서 후자는 [10] 이 됩니다 .(3)ω∂(ϱ에씨피티에)∂ϕ=1아르 자형∂∂아르 자형에게에아르 자형∂티에∂아르 자형+1아르 자형2∂∂ϕ에게에∂티에∂ϕ+∂∂엑스에게에∂티에∂엑스경계 조건에 따라(3a)r=R~에,Θ<ϕ⩽2π:에게∂티에∂아르 자형=q라드(x)+q전환(엑스),(3b)r=R~에, 0 <ϕ⩽Θ:에게∂티에∂아르 자형=qw–cl(x, ϕ) = hw–cl티클(x)-T에(아르 자형~에, x, ϕ),(3c)r=R밖, 0 <ϕ⩽2π:.케이∂티에∂아르 자형=h쉿티쉿-T∞+ ε쉿티4쉿-T4∞.

전도도, 밀도 및 비열용량에 대한 값은 실제 가마에 사용되는 내화물 재료에 대한 제조업체 정보에서 가져옵니다 [15] . 외부 쉘 온도 sh = w ( out , x , ϕ )는 x 및 ϕ 에 따라 달라질 수 있습니다 .

위 방정식에 대한 몇 가지 의견이 있습니다. 에서는 식. (3a) 에서 열유속의 방위각 의존성이 제거되었습니다. 이전에 언급했듯이 흐름은 광학적으로 두꺼운 것으로 간주됩니다. 즉, 화염이 너무 방사되고 너무 넓기 때문에 벽면 요소가 화염을 가로질러 반대쪽 벽을 “보지” 않습니다. 따라서 rad ( x , ϕ ) 의 계산은 다른 각도 위치로부터의 복사를 포함할 필요 없이 가스 ( r , x ) 및 로컬 w ( in , x , ϕ )를 기반으로 할 수 있습니다. 여기부터 qrad ( x )는 Eq. 의 방위각 평균 온도를 기반으로 하는 축대칭 RAD-3D 솔루션에서 가져옵니다 (2) , 결과적인 rad ( x )는 어떤 의미에서 방위각으로 평균된 열유속입니다. 식 따라서 (3a) 는 우리가 이 열유속을 모든 ϕ 에 등분포한다는 것을 의미합니다 . Eq 에서 rad 의 각도 변화를 무시한다는 점에 유의하십시오 . (3a) 는 Refs. [10] 또는 [11] 이 우선되어야 합니다.

소성로와 장입물 사이의 열전달 계수 w-cl 은 소성로의 에너지 흐름과 온도를 정확하게 예측하는 데 중요하지만 잘 알려져 있지 않습니다. 500 W / m의 전형적인 값  K는 여기에 제시된 결과 사용되고있다 [8] . 계산된 w ( r , x , ϕ ) 및 RAD ( x) 이 계수의 선택에 따라 달라지지만 예측은 질적으로 변하지 않습니다. 껍질에서 대기로의 열 전달은 복사와 별도로 강제 및 자연 대류를 통해 발생합니다. 자연 대류에 대한 열전달 계수는 Ref. [11] , 현재 조건에서 약 5 W/m 2 K의 일반적인 값 을 사용합니다. 그러나 쉘에 불어오는 외부 팬은 과열을 피하기 위해 산업에서 종종 사용되며 이러한 효과는 총 sh =30 W/m 2 K 를 사용하여 여기에서 모델링 되었습니다. 방사율에는 다음 값이 사용되었습니다. ε w = ε cl = 0.9 및 ε sh = 0.8.

식 (3) 은 가마의 방사형 기울기가 훨씬 더 가파르기 때문에 방위각 및 축 전도를 무시한 후 명시적 유한 체적 방법으로 해결되었습니다. 방사형으로 50개 노드와 축 방향으로 19개 노드가 있는 균일하지 않은 그리드가 사용되었으며 회전으로 인한 화염에 주기적으로 노출되는 표면으로 인해 발생하는 빠른 온도 변화를 따르기 위해 내부 표면에서 적절한 방사형 분해능이 사용되었습니다. 동일한 이유로 사용 된 작은 단계(Δ ϕ = π /100)는 가마의 큰 열 관성과 함께 가마 벽 온도가 수렴되도록 하기 위해 2시간 정도의 CPU 시간이 필요했습니다.

2.4 . 수갑

가마에 대한 모델의 마지막 부분은 클링커 온도 및 조성 보존 방정식에 관한 것으로, 축 방향 기울기만 고려하고 전도는 무시합니다.(4)씨피V클디(ϱ클티클)디엑스=−엘wclㄷㅏ클∫0ㄷ큐w–cl(x, ϕ)디ϕ +엘gclㅏ클큐라드(x)+q전환(엑스)−∑나Nsp아르 자형나시간0, 나는에프+씨피티,(5)V클디(ϱ클와이나)디엑스=r나,(6)V클디ϱ클디엑스=−r무엇2,여기서 cl 은 속도 cl 로 흐르는 전하가 덮는 단면적 이며 둘 다 일정하다고 가정하고 gcl =2 in sin( Θ /2) 전하로 덮인 섹터의 현( 그림 1 ) , WCL = Θ 에서는 , SP 화학 종의 수와 r에 난을 (kg / m의 형성 속도 순 3 종의) I를 . 전하의 밀도는 Eq를 감소시킵니다 (6) CO 2 에 대한 질량 손실로 인한하소하는 동안 초기 값은 총 질량 유량이 ϱ cl cl cl 과 같도록 선택되었습니다 . 참고 ρ (CL)이 있다 하지 전하 느슨하게 포장 된 입자로 이루어지는 것으로 생각 될 수있는 바와 같이, 충전 재료 밀도하지만 벌크 밀도. 우리는 또한 전하의 실제 입상 흐름 패턴을 조사하는 것보다 적은 것은 모델의 신뢰성에 크게 추가되지 않는 임시 설명 [10] 이라고 믿기 때문에 전하의 전도를 무시 합니다. 전하는 CaCO 3 , CaO, SiO 2 , Al 2 O 3 , Fe 로 구성된 것으로 가정합니다.2 O 3 , C2S, C3S, C3A 및 C4AF로, 마지막 4종은 클링커화 중에 형성된 복합 염에 대해 시멘트 화학자가 사용하는 특수 표기법으로 표시됩니다. 다음과 같은 화학 반응을 가정합니다 [12] .

(나)CaCO3→높은+무엇2k = 108특급(−175728/RT)
(Ⅱ)높은+2SiO2→C2Sk = 107특급(−240000/RT)
(Ⅲ)높은+C2S→C3Sk = 109특급(−420000/RT)
(IV)3높은+로2그만큼3→C3Ak = 108특급(−310000/RT)
(V)4높은+로2그만큼3+철2그만큼3→Q4AFk = 108특급(−330000/RT)

상기 시행 착오에 의해 선택되는 아 레니 우스 식에 사용되는 사전 지수 인자 및 활성화 온도는 카코에 대한 활성화 에너지를 제외하고, 가마의 출구에서의 전하의 예상 조성물을 얻었다 (3) 에서 촬영 한 분해 참조 [16] . 우리는 이러한 반응이 임시 모델임을 강조합니다. 실제로 고체상의 화학반응은 다양한 종의 결정들 사이의 계면에서 일어나며 확산이 제한적 이지만 [17] , 클링커 화학에 대한 상세한 처리는 본 연구의 범위를 벗어난다.

클링커 형성의 마지막 단계로 간주되는 반응 (III)은 고온에서 액상이 존재할 때만 발생합니다. 클링커의 용융은 액체 분획 fus 에 대해서도 해결함으로써 모델링되었습니다 .(7)엘소란V클디(ϱ클와이소란)디엑스=RHS의식(4)만약 T의 CL이 융해 온도와 같거나보다 커진다 T의 FUS 와 T의 FUS 의 = 1560 K. 상한 Y의 FUS = 0.3 수행 하였다 [17] 상기 식을. (7) 무시되었다.

상미분 방정식, , Gear 방식과 통합되었습니다. 가마 온도에 대한 유한 체적 코드( 2.3절 )와 클링커에 대한 코드는 반복적으로 해결되었으며( 그림 4 ), 이는 벽 클링커 열유속 w–cl ( x , ϕ ).

2.5 . 최종 커플링

전체 문제(가스, 가마, 장입)는 반복 방식으로 해결되었습니다. RAD 의 균일한 분포에서 시작 하여 기체상은 rad ( x ) 및 conv ( x ) 의 축 분포를 제공하도록 해결되었습니다 . 이것들은 다음에서 사용되었습니다., 그 솔루션의 새로운 추정 결과 RAD ( X 통해) 식. (2) . 그런 다음 FLOW3D-RAD3D 실행이 6차 다항식 피팅의 계수 형태로 프로그램에 도입된 새로운 경계 조건으로 반복되었습니다. 의 연속 추정치 사이에 0.5 미만의 밑에 이완 인자 RAD ( X)는 벽 온도에 대한 복사 열유속의 민감도가 크기 때문에 필요한 것으로 밝혀졌습니다. 일반적으로 HP 715 워크스테이션에서 10일 정도의 총 CPU 시간에 해당하는 내벽 온도(연속 반복이 40K 이상 변하지 않을 때 정의됨)의 수렴을 달성하기 위해 이러한 단계 사이에 약 10번의 반복이 필요했습니다. . 그림 5 는 균일한 값(1600K)에서 시작하여 최종 프로파일까지 RAD ( x ) 의 수렴 이력을 보여줍니다 .

2.6 . 가마 조건

사용된 일부 매개변수에 대한 작동 조건 및 값은 표 1 표 2 표 3에 나와 있습니다. 이 값은 시멘트 회전 가마의 전형입니다.

표 1 . 공기 및 석탄 입자 입구 조건

수송소용돌이중고등 학년석탄
m (kg/s)2.2531.7592.91045.9304.0
 (m/s)77.136.576.112.7336.5
V (m/s)−20.7063.900
W (m/s)00112.800
 (케이)3183833181273383

표 2 . 클링커 조성(질량 분율)

밀가루가마 입구가마 출구
m (kg/s)50.37439.81532.775
 (케이)11001785
CACO 30.79470.402180
높은00.338010.0229
그런가 20.14340.181430
알 2 O 30.03490.04420
철 2 O 30.02700.034160
C2S000.1808
C3S000.5981
C3A000.0731
Q4AF000.1242
소성 인자00.61.0

소성 계수 카코의 비율을 3 의 CaO로 변환 된 FARINE있다.

표 3 . 재료 속성 및 기타 매개변수

ω (래드/초)0.5
V의 CL (m / s)0.035
 (K)300
sh (W/m 2 K)30
w–cl (W/m 2 K)500
ε w , ε cl0.9
ε 0.8
C의 P (클링커) (킬로 / kg K)1.5
ϱ cl (kg/m 3 )1200
fus (kJ/kg)418.4
p (벽) (kJ/kg K)1.5
ϱ w (kg/m 3 )1600–3000
k는 w (W / m K)0.6–3.0
석탄 열 방출(kJ/kg)25475

3 . 결과 및 토론

이 섹션에서는 먼저 화염 구조에 대한 정보와 함께 예측된 공기역학적 패턴의 세부사항을 제시합니다. 소성로 내화물의 온도 분포와 클링커 조성의 변화를 설명합니다. 이 섹션은 가마의 전체 에너지 균형과 가능한 모델 개선에 대한 논의로 끝납니다.

3.1 . 화염 구조

그림 6 은 명확성을 위해 방사상 좌표가 과장된 온도의 등고선 플롯을 보여줍니다. 석탄은 주입 지점에서 약 1m 지점에서 약간 축에서 벗어나 점화되며 최대 화염 온도(약 2400K)는 경험에 따라 약 40m 하류에서 도달합니다 [15] . 완전한 입자 소진에 대한 가장 긴 시간은 버너에서 45m에 해당하는 약 1.4초였습니다. 방사형 온도 프로파일( 그림 7 ) 은 온도의 상당한 불균일성이 있음을 보여주지만 출구 프로파일이 본질적으로 평평해짐에 따라 하류에서 감소합니다. 또한 벽에 인접한 가스가 더 차가운 열 경계층이 존재한다는 것이 분명합니다.석탄 노즐에서 최대 30m까지 벽보다 이것은 이 영역에서 대류에 의한 열 전달이 음(즉, 기체 쪽으로)임을 의미하며, 3.4절 에서 더 자세히 논의된 지점 입니다.

버너 출구 바로 하류에 길이가 약 1 버너 직경인 재순환 구역이 있는데( 그림 8 ), 여기에서 화염이 더 하류에서 발화하기 때문에 소용돌이 안정화 화염 [7] 에서와 같이 화염 안정화에 기여하지 않습니다 . 그러나 액체 연료를 사용할 때는 중요할 수 있으므로 버너에 가까운 그리드의 세부 사항을 강조해야 합니다. 버너에서 처음 몇 미터는 매우 높은 전단력과 높은 난류 에너지 생산을 포함하며 이것이 그리드 미세 조정을 강조하는 또 다른 이유입니다. 휘발성 물질 연소 영역( x =10m, r =1m) 에서 k 및 ε 의 일반적인 예측 값 은 24.3 및 142m 2 /s입니다.3 , 각각. 대규모 난류 시간은 171ms이고 Kolmogorov 시간 규모는 1.1ms입니다. 휘발성 물질의 연소는 0.1ms(일반적인 탄화수소 연료) 정도의 시간 규모에서 발생하며, 이는 가마의 소규모 난류 시간보다 10배 더 짧습니다. 따라서 이 흐름에서 연소에 대한 유한 속도 동역학을 포함할 필요는 없으며 “혼합 연소” 근사가 합리적입니다.

3.2 . 가마 온도 분포

중심선에서 계산된 가스 온도, 온도 RAD ( x ) 및 클링커 온도는 그림 9 에서 비교됩니다 . 최고 가스 온도는 25~40m 사이에 위치하며 내화 내부 표면 온도도 최고점입니다. 클링커는 놀랍게도 가마에서 나오기 전 마지막 몇 미터 동안 벽보다 뜨겁 습니다. 복사에 의해 내화물에 입사하는 열유속은 대류에 의한 것보다 1-2 배 더 높으며( 그림 10 ) 가마의 처음 10m에 대한 총 열 전달 은 가스를  합니다. 이 관찰의 중요성은 나중에 논의됩니다.

대류로 인한 에너지 플럭스는 화염에서 가마까지의 전체 에너지 플럭스의 매우 작은 부분인 것으로 밝혀졌습니다( 그림 10 ). 여기서 예측된 대류의 작은 기여는 Ref. [11] . 그 작업에서 대류 열 전달 계산에 사용된 가스 온도는 가마 단면의 평균이었고 따라서 축 근처에 있는 화염의 기여로 인해 벽 부근의 온도보다 훨씬 높았습니다. . 여기에서 우리는 온도와 가스 속도 및 난류 운동 에너지의 국부적 값을 기반으로 하는 보다 정확한 열전달 계수를 사용했기 때문에 보다 정확한 결과를 기대합니다.

예측된 벽 온도는 모든 방향에서 불균일합니다. Fig. 11 은 가마가 회전함에 따라 화염에 노출되었을 때 벽이 가스에 의해 연속적으로 가열되고 클링커에 열을 공급하여 냉각되는 것을 보여준다. 이것은 약 100K의 일반적인 각도 온도 변화를 갖는 대부분의 가마 길이에 해당됩니다. 대조적으로 버너에 가까우면 벽 은 (0 < ϕ < π /2) 동안 클링커에서 열을 얻고 다음으로 열을  습니다. 노출될 때의 가스( π /2 < ϕ < 2 π ). 벽과 클링커 온도가 같으면서 방위각 변화가 없는 경우가 발생할 수 있습니다( 그림 11 ,        x = 17.5m). 이 온도 변화가 작은 것으로 간주될 수 있지만 벽에서 클링커까지의 열유속을 계산하는 위치에 있으려면 전체 3차원 내벽 온도 분포를 계산해야 합니다(0  < ϕ 범위에서 발생 < π /2).   

그림 12 는 ϕ에 독립적인 외부(쉘) 온도와 함께 고체의 큰 비열로 인해 각도 방향의 변화 영역이 벽으로 약 1cm만 확장됨을 보여줍니다( 그림 12b) .. 벽 온도 방사 분포는 가스 온도, 입사 방사선 및 내화 재료의 특성이 변하기 때문에 축 방향 거리에 따라 달라집니다. 정확한 예측을 위해서는 내화물에 부착된 클링커 코팅의 두께에 대한 정확한 지식이 필요합니다. 여기에서 우리는 이 코팅을 클링커와 유사한 물성을 가진 균일한 두께의 재료로 취급했습니다. 그러나 이 코팅층의 실제 물리적 특성과 두께 분포에 관한 실험 데이터를 사용하여 예측의 신뢰성이 향상될 것입니다.

마지막으로, 그림 13 은 외부 쉘 온도가 화염 영역에서 최고조에 달하고 대략적으로 실험 경향을 따른다는 것을 보여줍니다 [15] . 외부 가마 외피는 다양한 강철 두께, 방사율(외피 착색으로 인한) 및 열 전달 계수(송풍기 간격으로 인한)를 갖고 가마는 가변 내화 두께(에 의한 침식으로 인해)를 갖기 때문에 정확한 비교는 의미가 없습니다. 클링커), 여기에 사용된 가정과 반대입니다. 전체 규모 가마는 또한 차등 코팅 및 내화 침식으로 인한 최대 ±100K의 쉘 온도 각도 변동을 보여줍니다 [15] . 따라서 우리는 그림 13 의 일치 가 실제 가마의 복잡성을 고려할 때 예상할 수 있는 만큼 우수 하다고 믿습니다 .

이 섹션에 제시된 예측은 가마 내부의 열 전달 경로에 대한 다음 그림을 뒷받침합니다. 대부분의 가마 길이에서 장입물은 화염으로부터의 복사와 벽으로부터의 열 전도에 의해 가열되고 있습니다. 장입물이 내화물보다 더 차갑기 때문입니다. 가마가 회전함에 따라 내화물은 화염에 노출될 때 열을 얻고 이를 클링커에 공급합니다( 그림 11 ). 벽의 이 “재생” 작용은 Refs. 9 , 10 및 현재 결과에서 재현되었습니다. 그러나 버너 근처에서 반대 에너지 흐름이 발생합니다( 그림 11 , 작은 x). 여기의 가스는 아직 충분히 뜨겁지 않아 내화물이나 장입물에 에너지를 공급하지 않습니다. 이 영역에서 벽은 다가오는 전하에 의해 열을 얻으므로 고체가 없을 때보다 더 뜨겁게 유지됩니다. 벽과 전하가 대류와 복사에 의해 가스에 열을 공급합니다. 우리는 이것을 “음의 재생” 작용으로 식별할 수 있으며 가마의 더 높은 온도 영역( x  >  15m) 에서 클링커에 의해 흡수된 에너지에 의해 유지됩니다 . 전반적으로 클링커는 x  >  15 m 에서 열을 흡수 하고 0  < x < 15 m 에서 일부를 가스로 되돌려 줍니다.   

이 상호 작용은 간단하지 않으며 쉽게 예상할 수 없습니다. 이는 예를 들어 고체를 액체 연료로 대체하여 화염을 수정하면 열유속 분포를 변경하여 최종 클링커 온도에 중대한 영향을 미칠 수 있음을 의미합니다. 현재의 포괄적인 모델이 제공하는 세부 사항은 가마에서 이러한 변화를 평가하는 데 도움이 될 것입니다.

3.3 . 클링커 온도 및 조성

클링커 온도( 그림 9 )는 가장 높은 화염 온도에 도달하는 축 방향 위치에서 거의 최고조에 달하며 클링커는 약 1780K에서 킬른에 존재하며 이는 시멘트 킬른에서 실험 측정값에 가까운 값입니다 [15] . 초기 및 최종 클링커 조성은 표 2 에 나와 있으며 실제 가마에서 작동 값에 가깝습니다 [15] . 다양한 클링커 성분의 축방향 분포( 그림 14 )는 완전한 하소를 위해 고체 유입구에서 약 25m, C2S, C3A 및 C4AF 생성을 위해 추가로 10m가 소요됨을 보여줍니다. 첫 번째 액체상은 x 에서 발견됩니다.=50m이고 액화는 경험과 일치하는 예측인 매우 직후에 완료됩니다 [17] . 클링커화 반응(R-III)은 모델에서 액체가 나타날 때 시작되는 것으로 가정되었으며, 그림 14 에서 클링커화에는 나머지 길이의 거의 전체가 완료되어야 한다는 것이 분명 합니다. 예측은 전체적으로 시멘트 가마 운영의 경험과 일치하며 여기에 사용된 화학적 및 물리적 매개변수가 현실적인 값을 가지고 있음을 의미합니다.

3.4 . 글로벌 에너지 균형

전지구적 에너지 균형은 기체상(FLOW-3D 및 RAD-3D에 의한)과 소성로 장입 시스템에 대한 솔루션에서 쉽게 계산할 수 있으며 표 4 에 나와 있습니다. CFD 코드는 방사 모듈과 함께 에너지를 약 2%까지 절약합니다. 작은 것으로 간주되는 이 오류는 주로 RAD-3D의 영역 이산화와 Monte-Carlo 계산의 유한한 입자 수로 인해 발생하는 오류에 기인하며 CPU 시간을 희생하여 개선할 수 있습니다. 소성로-클링커 계산의 정확도는 더 나쁩니다. 소성로-클링커 시스템에 입력되는 에너지의 약 10% 오류( rad  + conv )입니다. 이는 수렴된 솔루션이 식 (3) , 그리고 보다 정확한 암시적 솔버에 의해 개선될 수 있습니다.

표 4 . CFD 그리드 및 가마-클링커 조합에 대한 글로벌 에너지 균형

가스(MW)
라드 , 1−2.47
라드 , 2−2.72
큐 라드−57.12
전환0.04
석탄101.2
Δ 가스41.25
균형2.32
가마 클링커
큐 라드57.12
전환−0.04
손실−10.45
Δ H의 CL40.99
균형5.64

에너지 흐름의 정의는 그림 2 를 참조하십시오 .

시멘트 회전식 가마의 에너지 사용에 관한 몇 가지 흥미로운 결론은 표 4 의 결과를 통해 얻을 수 있습니다 . 연소에 의해 방출되는 에너지의 약 40%는 전하 가열 및 클링커 형성에 필요하고 약 10%는 내화물을 통해 대기로 손실됩니다. 나머지의 대부분은 본질적으로 배기 가스와 함께 소성로 밖으로 흐릅니다. 이 중 일부는 소성로 외부의 예비 하소기 및 사이클론에서 회수됩니다. 내부 가마 벽과 장입 온도를 자세히 다루는 여기에 제시된 포괄적인 모델에 의존하지 않고는 국지적 가스 온도를 정확하게 예측하고 이에 따라 향후 연구에서 오염 물질 형성을 예측하는 것이 불가능하다는 것이 분명합니다.

3.5 . 논의

여기에 제시된 회전식 시멘트 가마 작동에 대한 포괄적인 모델의 결과는 합리적이며 실험적으로 관찰된 경향을 재현합니다. 이전 모델링 작업에 비해 이 작업의 주요 이점은 가마에서 발생하는 대부분의 물리적 프로세스를 포함한다는 점입니다. 특히, 가스 온도와 클링커로의 열유속 및 이에 따른 클링커 형성을 결정하는 데 가장 중요한 양인 내벽 온도는 실험 데이터를 사용하여 규정된 것이 아니라 예측되었습니다. 이 특정 기능은 현재 모델을 진정한 예측형으로 만듭니다.

우리는 전체 3차원 문제를 공기역학에 대한 “동등한” 축대칭 문제로 줄이는 방법을 포함했습니다( 식 (2) ). 이를 통해 현재 워크스테이션에서 솔루션을 얻을 수 있습니다. 모델의 모듈식 특성, 즉 공기역학, 복사, 가마 및 장입에 대한 별도의 코드는 해당 모듈만 수정하면 다른 회전 가마 응용 프로그램(예: 소각 및 건조)에도 사용할 수 있음을 의미합니다. 예를 들어, 고형 폐기물의 소각은 현재 코드로 모델링할 수 있지만 적절한 화학.

실험 데이터와의 상세한 비교는 이용 가능한 측정이 거의 없고 현지 시멘트 회사에서 제공한 경험적 데이터로 제한되어 매우 어렵습니다 [15] . 비교는 앞서 지적한 바와 같이 출구 클링커 조성과 온도가 산업적 경험( 표 2 ) 이내 이고, 배기 가스 조성은 공장 굴뚝에서 측정된 값에 가깝고(“가짜 공기” 희석을 허용한 후), 가마 외피 온도는 측정 범위 내에 있습니다( 그림 13 ). 이 동의는 모델이 프로세스의 정확한 표현임을 시사합니다.

더 높은 정확도의 예측을 달성하려면 모델의 다양한 부분에서 개선이 필요합니다. 내화물의 정확한 두께(즉, 내화물과 부착된 클링커)를 설정해야 합니다. 이는 가마 벽을 통해 주변으로 열 손실이 발생하여 외부 쉘 온도에 영향을 미치기 때문입니다. 새 내화물이 있는 가마에서 쉘 온도 측정과 자세한 비교가 이루어져야 합니다(불균일한 코팅 두께가 방지되도록). 벽 재료의 물리적 특성(열용량, 밀도, 전도도)의 적절한 값을 사용해야 합니다. 가장 큰 불확실성은 클링커 코팅의 가정된 특성에 관한 것입니다. 내벽 표면의 방사율과 가스의 흡수 계수를 더 자세히 조사해야 합니다. 가마에 입사하는 복사 열유속에 영향을 미치므로 벽 온도에 영향을 줄 수 있습니다. 클링커의 온도는 사용된 비열 용량에 따라 달라지므로 정확한 평가에 각별한 주의가 필요합니다. 화염의 국지적 온도와 종 구성에 대한 지식은 CFD 코드를 검증하는 데 매우 유용할 것이지만 그러한 적대적인 환경에서 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다.

이러한 모든 잠재적 개선과 모델과 관련된 불확실성에도 불구하고 가마의 모든 에너지 경로가 적절한 세부 사항으로 모델링되었기 때문에 전체 동작은 최소한 질적으로 정확합니다. 클링커 출구 구성, 쉘 온도 및 배기 가스 구성과 같은 중요한 양은 허용 가능한 정확도로 예측됩니다. 이 모델은 버너, 연료 유형, 품질 및 수량, 예비 하소 수준( 표 2 ) 또는 고형물 유량 등의 변경과 같은 많은 상황에서 산업계에 매우 유용할 것으로 예상됩니다 . 소성로 운영자는 최종 클링커 구성이 여전히 허용 가능하고 현재의 포괄적인 모델이 이 방향에 도움이 될 수 있는지 확인해야 합니다.

4 . 결론

실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 석탄 화염과 가마 사이의 열 교환, 가마와 역류 고체 사이의 열 교환, 고형물을 최종 제품(클링커)으로 변환합니다. 방사선에 대한 Monte-Carlo 방법을 포함하는 축대칭 CFD 코드(상용 패키지 FLOW-3D)가 기상에 사용되었습니다. 가마 벽의 온도는 유한 체적 열전도 코드로 계산되었으며 클링커에 대한 종 및 에너지 보존 방정식도 공식화 및 해결되었습니다. 기체 온도 필드에 대한 예측 사이의 반복적인 절차, 벽에 대한 복사 열 유속, 가마 및 클링커 온도는 실험에서 이러한 정보를 사용한 이전 모델링 노력과 달리 내벽 온도 분포를 명시적으로 계산하는 데 사용되었습니다. 접선 좌표에 대한 통합은 CFD 코드에 필요한 경계 조건으로 사용되는 “유효” 내벽 온도의 축 분포를 초래했습니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다.

결과는 복사가 가스와 가마 벽 사이의 대부분의 열 전달을 설명하는 반면 내화물을 통한 환경으로의 열 손실은 입력 열의 약 10%를 설명한다는 것을 보여줍니다. 화학 반응과 충전물의 가열은 연소 에너지의 약 40%를 흡수합니다. 따라서 이러한 사항을 반드시 고려해야 합니다. 예측은 실제 규모의 시멘트 가마에서 얻은 경험과 측정값을 기반으로 한 경향과 일치합니다.

감사의 말

이 작업은 과학 및 기술을 위한 그리스 사무국 프로젝트 EPET-II/649의 자금 지원을 받았습니다. Mr.P에게 진심으로 감사드립니다. 시멘트 가마에 관한 지침 및 데이터는 그리스 TITAN SA의 Panagiotopoulos에게 문의하십시오.

References
1 S.R. Turns, An Introduction to Combustion, Concepts and Applications, McGraw-Hill, New York, 1996
Google Scholar
2 V. Johansen, T.V. Kouznetsova, Clinker formation and new processes, Presented at the Ninth International Congress on the Chemistry of Cement, India, 1992; also RAMBOLL Bulletin No. 42, 1993
Google Scholar
3 Basel Convention, UNEP Document No. 93-7758, 1993
Google Scholar
4 N.C Markatos
Mathematical modelling of single and two-phase flow problems in the process industries
Revue de l’Institut Français du Pétrole, 48 (1993), p. 631
View PDFCrossRefView Record in ScopusGoogle Scholar
5 T. Avgeropoulos, J.P. Glekas, C. Papadopoulos, Numerical simulation of the combustion aerodynamics inside a rotary cement kiln, in: Pilavachi (Ed.), Energy Efficiency in Process Technology, Elsevier, London, 1993, p. 767
Google Scholar
6 F.C. Lockwood, B. Shen, T. Lowes, Numerical study of petroleum coke fired cement kiln flames, Presented at the Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, 1995
Google Scholar
7 F.C. Lockwood, B. Shen, Performance predictions of pulverised-coal flames of power station furnace and cement kiln types, Twenty-Fifth Symposium International on Combustion, The Combustion Institute, 1994 p. 503
Google Scholar
8 P.V Barr, J.K Brimacombe, A.P Watkinson
A heat-transfer model for the rotary kiln: Part II, development of the cross-section model
Metallurgical Transactions B, 20B (1989), p. 403
View Record in ScopusGoogle Scholar
9 V Frisch, R Jeschar
Possibilities for optimizing the burning process in rotary cement kilns
Zement-Kalk-Gips, 36 (1983), p. 549
View Record in ScopusGoogle Scholar
10 A.A Boateng, P.V Barr
A thermal model for the rotary kiln including heat transfer within the bed
Int. J. Heat Mass Transfer, 39 (1996), p. 2131
ArticleDownload PDFView Record in ScopusGoogle Scholar
11 M.G. Carvahlo, T. Farias, A. Martius, A three-dimensional modelling of the radiative heat transfer in a cement kiln, in: Carvahlo et al. (Eds.), Combustion Technologies for a Clean Environment, Gordon and Breach, London, 1995, p. 146
Google Scholar
12 H.A Spang
A dynamic model of a cement kiln
Automatica, 8 (1972), p. 309
ArticleDownload PDFView Record in ScopusGoogle Scholar
13 CFDS, FLOW-3D Users Manual, AEA Harwell, UK
Google Scholar
14 E Mastorakos, J.J McGuirk, A.M.K.P Taylor
The origin of turbulence acquired by heavy particles in a round, turbulent jet
Part. Part. Syst. Charact., 7 (1990), p. 203
View PDFCrossRefView Record in ScopusGoogle Scholar
15 P. Panagiotopoulos, TITAN S.A. Cement Company, Personal communication, 1996
Google Scholar
16 M.S Murthy, B.R Harish, K.S Rajanandam, K.Y Ajoy Pavan Kumar
Investigation on the kinetics of thermal decomposition of calcium carbonate
Chem. Eng. Sci., 49 (1996), p. 2198
Google Scholar
17 V. Johansen, Cement production and chemistry, Presented at the Symposium on Cement Manufacturing and Chemistry, Anaheim, November 1989; also RAMBOLL Bulletin No. 41, 1993
Google Scholar
1 Also at Department of Mechanical Engineering, University of Patras, Greece.

2 Also at Department of Chemical Engineering, University of Patras, Greece.

Figure 1 | Original Compound Broad Crested Weir Model (PVC cast).

복합 광대보의 방류계수 예측을 위한 실험적 해석과 CFD 해석의 비교연구

Comparative study of experimental and CFD analysis for predicting discharge coefficient of compound broad crested weir

ABSTRACT

Present study highlights the behavior of weir crest head and width parameter on the discharge coefficient of compound broad crested (CBC) weir. Computational fluid dynamics model (CFD) is validated with laboratory experimental investigations.

In the discharge analysis through broad crested weirs, the upstream head over the weir crest (h) is crucial, where the result is mainly dependent upon the weir crest length (L) in transverse direction to flow, water depth from channel bed. Currently, minimal investigations are known for CFD validations on compound broad crested weirs.

The hydraulic research for measuring discharge numerically is carried out using FLOW 3D software. The model applies renormalized group (RNG) using volume of fluid (VOF) method for improved accuracy in free surface simulations. Structured hexagonal meshes of cubic elements define discretized meshing.

The comparative analysis of the numerical simulations and experimental observations confirm the performance of CBC weir for precise measurement of a wide range of discharges. Series of CFD model studies and experimental validation have led to constant range of discharg coefficients for various head over weir crest. The correlation coefficient of discharge predictions is 0.999 with mean error of 0.28%.

현재 연구에서는 CBC(compound broad crested) 위어의 배출 계수에 대한 위어 볏 머리 및 너비 매개변수의 거동을 강조합니다. 전산 유체 역학 모델(CFD)은 실험실 실험 조사를 통해 검증되었습니다.

넓은 볏이 있는 둑을 통한 유출 분석에서 둑 마루의 상류 수두(h)가 중요합니다. 여기서 결과는 주로 흐름에 대한 횡 방향의 둑 마루 길이(L), 수로 바닥에서 수심에 따라 달라집니다. . 현재 복합 넓은 볏 둑에 대한 CFD 검증에 대해 최소한의 조사가 알려져 있습니다.

수압 연구는 FLOW 3D 소프트웨어를 사용하여 수치적으로 측정합니다. 이 모델은 자유 표면 시뮬레이션의 정확도 향상을 위해 VOF(유체 체적) 방법을 사용하여 RNG(재정규화 그룹)를 적용합니다. 정육면체 요소의 구조화된 육각형 메쉬는 이산화된 메쉬를 정의합니다.

수치 시뮬레이션과 실험적 관찰의 비교 분석을 통해 광범위한 배출의 정확한 측정을 위한 CBC 둑의 성능을 확인했습니다. 일련의 CFD 모델 연구와 실험적 검증을 통해 다양한 head over weir crest에 대한 일정한 범위의 방전 계수가 나타났습니다. 방전 예측의 상관 계수는 0.999이고 평균 오차는 0.28%입니다.

Figure 1 | Original Compound Broad Crested Weir Model (PVC cast).
Figure 1 | Original Compound Broad Crested Weir Model (PVC cast).
Figure 4 | CFD Simulation for max discharge (y2 ¼ 13.557 cm, Qmax ¼ 10 lps) and min discharge (y2 ¼ 6.56 cm, Qmin ¼ 2 lps).
Figure 4 | CFD Simulation for max discharge (y2 ¼ 13.557 cm, Qmax ¼ 10 lps) and min discharge (y2 ¼ 6.56 cm, Qmin ¼ 2 lps).
Figure 5 | (a, b) Velocity profiles corresponding to max discharge (10 lps) and min discharge (2 lps).
Figure 5 | (a, b) Velocity profiles corresponding to max discharge (10 lps) and min discharge (2 lps).
Table 8 | Range of Froude number, Reynold number and Weber number
Table 8 | Range of Froude number, Reynold number and Weber number

Key words

compound weir, flow 3D, flow measurement, numerical technique, open channel

HIGHLIGHTS

• The Head-Discharge relation is established for discharge measurement using compound broad crested weir, experimentally and numerically.
• Assessment of head over weir crest for different step widths of proposed weir on discharge coefficient is executed.
• Experimental and CFD results of weir performance demonstrate good agreement between the theoretical discharges by traditional rectangular weir formulae keeping Cd constant.

CONCLUSION

  1. The head discharge relationship established for compound rectangular broad crested weir for various discharge ranges was validated by CFD technique. A three dimensional simulation software FLOW 3D was used for this purpose.
  2. Original theoretical compound weir model depicts the relative average error between discharge predictions with Flow 3D simulation as 4.96% which is found less than the predictions made by graphical interpolation technique which is 5.33%.
  3. The standard deviation in Cd parameter for CFD simulation model is less i.e. 0.0146 as compared to experimental output of 0.0502.
  4. The correlation coefficient for physical and CFD studies for modified compound weir model is high, around 0.999 with
    error in discharge predictions being 0.28% as compared to the accuracy limits of about +3–5% stated in literature so far.
  5. Discharge coefficient by experimental and CFD approach is maintained constant and equal to design input value of 0.6.
    Thus, the proposed CBC weir can be operated for various discharge ranges by maintaining constant discharge coefficients.
    Good agreement between the theoretical, experimental and CFD simulation results for obtaining discharge through compound broad crested weir ascertains the fact that CFD model can be used as an effective tool towards modeling flow through compound broad crested weir.

REFERENCES

Abd El-Hady Rady, R. M. 2011 2D 3D modeling of flow over sharp crested weirs. Journal of Applied Sciences Research 7 (12), 2495–2505.
ISSN 1819-544X.
Ackers, P., White, W. R. & Harrison, A. J. M. 1978 Weirs and Flumes for Flow Measurement. Wiley, New York.
Aydin, M. C. 2016 Investigation of a sill effect on rectangular side-weir flow by using CFD. Journal of Irrigation and Drainage Engineering
142 (2), 04015043.
Azimi, A. H. & Rajaratnam, N. 2009 Discharge characteristics of weirs of finite crest length. Journal of Hydraulic Engineering 135 (12),
1081–1085.
Bijankhan, M., Di Stefano, C., Ferro, V. & Kouchakzadeh, S. 2014 New stage discharge relationship for weirs of finite crest length. Journal of
Irrigation and Drainage Engineering 140 (3), 06013006.
Boiten, W. & Pitlo, H. R. 1982 The V- shaped broad-crested weir. Journal of Irrigation and Drainage Engineering 108 (2), 142–160.
Bos, M. G. 1989 Discharge Measurement Structures, 3rd edn. International Institute for Land Reclamation and Improvement, Publication 20,
Wageningen, The Netherlands.
Gogus, M., Defne, Z. & Ozkandemir, V. 2006 Broad-crested weirs with rectangular compound cross sections. Journal of Irrigation and
Drainage Engineering 132 (3), 272–280.

Gogus, M., Al-Khatib, I. A., Atalay, A. E. & Khatib, J. I. 2016 Discharge prediction in flow measurement flumes with different downstream
transition slopes. Flow Measurement and Instrumentation 47, 28–34.
Hager, W. H. & Schwalt, M. 1994 Broad – crested weir. Journal of Irrigation and Drainage Engineering 120 (1), 13–25.
Harrison, A. J. M. 1967 The streamlined broad-crested weir. Proceedings of the Institution of Civil Engineers 38, 657–678.
Hinge, G. A., Balkrishna, S. & Khare, K. C. 2010 Improved design of stilling basin for deficient tail water. Journal of Basic and Applied
Scientific Research 1 (1), 31–40.
Hinge, G. A., Balkrishna, S. & Khare, K. C. 2011 Experimental and numerical study of compound broad crested weir. International Journal of
Fluids Engineering 3 (2), 197–202.
Horton, R. E. 1907 Weir Experiments, Coefficients, and Formulas. Dept. of the Interior, U.S. Geological Survey, Water-Supply and Irrigation
Paper 200. Government Printing Office, Washington, DC.
Khan, L. A., Wicklein, E. A. & Teixeira, E. C. 2006 Validation of a three-dimensional computational fluid dynamics model of a contact tank.
Journal of Hydraulic Engineering 132 (7), 741–746.
Kindsvater, C. E. & Carter, R. W. 1959 Discharge characteristics of rectangular thin-plate weirs. Paper No. 3001, Transactions, American
Society of Civil Engineers 124.
Kulin, G. & Compton, P. R. 1975 A Guide to Methods and Standards for the Measurement of Water Flow. Special Publication 421, National
Bureau of Standards.
Kulkarni, K. H. & Hinge, G. A. 2017 Compound broad crested weir for measurement of discharge – a novel approach. In: Proceedings
International Conference Organized by Indian Society of Hydraulics – ISH HYDRO, 21–23 Dec 2017, India, pp. 678–687.
Kulkarni, K. H. & Hinge, G. A. 2020 Experimental study for measuring discharge through compound broad crested weir. Flow Measurement
Instrumentation 75, 101803. ISSN 0955-5986.
Man, C., Zhang, G., Hong, V., Zhou, S. & Feng, Y. 2019 Assessment of turbulence models on bridge-pier scour using flow-3D. World Journal
of Engineering and Technology 7, 241–255. ISSN Online: 2331-4249.
Omer, B., Cihan, A. M., Emin, E. M. & Miller, C. J. 2018 Experimental and CFD analysis of circular labyrinth weirs. Journal of Irrigation and
Drainage Engineering 144 (6), 04018007.
RangaRaju, K. G. 1981 Flow Through Open Channels. McGraw-Hill, New York.
Roushangar, K., Nouri, A., Shahnazi, S. & Azamathulla, H. M. 2021 Towards design of compound channels with minimum overall cost
through grey wolf optimization algorithm. IWA – Journal of Hydroinformatics (In – press).
Safarzadeh, A. & Mohajeri, S. H. 2018 Hydrodynamics of rectangular broad-crested porous weir. Journal of Irrigation and Drainage
Engineering 144 (10), 04018028.
Salmasi, F., Poorescandar, S., Dalir, A. H. & Zadeh, D. F. 2012 Discharge relations for rectangular broad crested weirs. Journal of
Agricultural Sciences 17, 324–336.
Samadi, A. & Arvanaghi, H. 2014 CFD simulation of flow over contracted compound arched rectangular sharp crested weirs. International
Journal of Optimization in Civil Engineering 4 (4), 549–560.
Savage, B. M. & Johnson, M. C. 2001 Flow over ogee spillway: physical and numerical model case study. Journal of Hydraulic Engineering
127 (8), 640–649.
Swamee, P. K. 1988 Generalized rectangular weir equations. Journal of Hydraulic Engineering 945–952. doi:10.1061/(ASCE),0733-9429
114:8(945).
The United States Bureau of Reclamation (USBR) 2001 Water Measurement Manual, Chapter 7 – Weirs. U.S. Government Printing Office,
Washington, DC, p. 20402. Available from: http://www/usbr.gov/pmts/hydraulics_lab/pubs/wmm.
Zahiri, A. & Azamathulla, H. M. 2014 Comparison between linear genetic programming and M5 tree models to predict flow discharge in
compound channels. Neural Computing and Application 24, 413–420.

Figure 15. Localized deformations on revetment due to run-down and sliding of armor from body laboratory model (left) and numerical modeling (right).

지속 가능한 해안 보호 구조로서 굴절식 콘크리트 블록 매트리스의 손상 메커니즘의 수치적 모델링

Numerical Modeling of Failure Mechanisms in Articulated Concrete Block Mattress as a Sustainable Coastal Protection Structure

Author

Ramin Safari Ghaleh(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)

Omid Aminoroayaie Yamini(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)

S. Hooman Mousavi(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)

Mohammad Reza Kavianpour(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)

Abstract

해안선 보호는 전 세계적인 우선 순위로 남아 있습니다. 일반적으로 해안 지역은 석회암과 같은 단단하고 비자연적이며 지속 불가능한 재료로 보호됩니다. 시공 속도와 환경 친화성을 높이고 개별 콘크리트 블록 및 보강재의 중량을 줄이기 위해 콘크리트 블록을 ACB 매트(Articulated Concrete Block Mattress)로 설계 및 구현할 수 있습니다. 이 구조물은 필수적인 부분으로 작용하며 방파제 또는 해안선 보호의 둑으로 사용할 수 있습니다. 물리적 모델은 해안 구조물의 현상을 추정하고 조사하는 핵심 도구 중 하나입니다. 그러나 한계와 장애물이 있습니다. 결과적으로, 본 연구에서는 이러한 구조물에 대한 파도의 수치 모델링을 활용하여 방파제에서의 파도 전파를 시뮬레이션하고, VOF가 있는 Flow-3D 소프트웨어를 통해 ACB Mat의 불안정성에 영향을 미치는 요인으로는 파괴파동, 옹벽의 흔들림, 파손으로 인한 인양력으로 인한 장갑의 변위 등이 있다. 본 연구의 가장 중요한 목적은 수치 Flow-3D 모델이 연안 호안의 유체역학적 매개변수를 모사하는 능력을 조사하는 것입니다. 콘크리트 블록 장갑에 대한 파동의 상승 값은 파단 매개변수( 0.5 < ξ m – 1 , 0 < 3.3 )가 증가할 때까지(R u 2 % H m 0 = 1.6) ) 최대값에 도달합니다. 따라서 차단파라미터를 증가시키고 파괴파(ξ m − 1 , 0 > 3.3 ) 유형을 붕괴파/해일파로 변경함으로써 콘크리트 블록 호안의 상대파 상승 변화 경향이 점차 증가합니다. 파동(0.5 < ξ m − 1 , 0 < 3.3 )의 경우 차단기 지수(표면 유사성 매개변수)를 높이면 상대파 런다운의 낮은 값이 크게 감소합니다. 또한, 천이영역에서는 파단파동이 쇄도파에서 붕괴/서징으로의 변화( 3.3 < ξ m – 1 , 0 < 5.0 )에서 상대적 런다운 과정이 더 적은 강도로 발생합니다.

Shoreline protection remains a global priority. Typically, coastal areas are protected by armoring them with hard, non-native, and non-sustainable materials such as limestone. To increase the execution speed and environmental friendliness and reduce the weight of individual concrete blocks and reinforcements, concrete blocks can be designed and implemented as Articulated Concrete Block Mattress (ACB Mat). These structures act as an integral part and can be used as a revetment on the breakwater body or shoreline protection. Physical models are one of the key tools for estimating and investigating the phenomena in coastal structures. However, it does have limitations and obstacles; consequently, in this study, numerical modeling of waves on these structures has been utilized to simulate wave propagation on the breakwater, via Flow-3D software with VOF. Among the factors affecting the instability of ACB Mat are breaking waves as well as the shaking of the revetment and the displacement of the armor due to the uplift force resulting from the failure. The most important purpose of the present study is to investigate the ability of numerical Flow-3D model to simulate hydrodynamic parameters in coastal revetment. The run-up values of the waves on the concrete block armoring will multiply with increasing break parameter ( 0.5 < ξ m − 1 , 0 < 3.3 ) due to the existence of plunging waves until it ( R u 2 % H m 0 = 1.6 ) reaches maximum. Hence, by increasing the breaker parameter and changing breaking waves ( ξ m − 1 , 0 > 3.3 ) type to collapsing waves/surging waves, the trend of relative wave run-up changes on concrete block revetment increases gradually. By increasing the breaker index (surf similarity parameter) in the case of plunging waves ( 0.5 < ξ m − 1 , 0 < 3.3 ), the low values on the relative wave run-down are greatly reduced. Additionally, in the transition region, the change of breaking waves from plunging waves to collapsing/surging ( 3.3 < ξ m − 1 , 0 < 5.0 ), the relative run-down process occurs with less intensity.

Figure 1.  Armor  geometric  characteristics  and  drawing  three-dimensional  geometry  of  a  breakwater section  in SolidWorks software.
Figure 1. Armor geometric characteristics and drawing three-dimensional geometry of a breakwater section in SolidWorks software.
Figure  5.  Wave  overtopping on  concrete block  mattress in (a)  laboratory  and (b)  numerical  model.
Figure 5. Wave overtopping on concrete block mattress in (a) laboratory and (b) numerical model.
Figure  7.  Mesh  block  for  calibrated  numerical  model  with  686,625  cells  and  utilization  of  FAVOR  tab to assess figure geometry.
Figure 7. Mesh block for calibrated numerical model with 686,625 cells and utilization of FAVOR tab to assess figure geometry.
Figure  10.  How to place different layers  (core, filter,  and revetment)  of the structure on slope.
Figure 10. How to place different layers (core, filter, and revetment) of the structure on slope.

Suggested Citation

Figure 11. Wave run-up on ACB Mat blocks in (a) laboratory model and (b) numerical modeling.
Figure 11. Wave run-up on ACB Mat blocks in (a) laboratory model and (b) numerical modeling.
Figure  15.  Localized  deformations  on  revetment  due  to  run-down  and  sliding  of  armor  from  body  laboratory  model  (left) and  numerical  modeling (right).
Figure 15. Localized deformations on revetment due to run-down and sliding of armor from body laboratory model (left) and numerical modeling (right).

References

  1. Capobianco, V.; Robinson, K.; Kalsnes, B.; Ekeheien, C.; Høydal, Ø. Hydro-Mechanical Effects of Several Riparian Vegetation Combinations on the Streambank Stability—A Benchmark Case in Southeastern Norway. Sustainability 2021, 13, 4046. [CrossRef]
  2. MarCom Working Group 113. PIANC Report No 113: The Application of Geosynthetics in Waterfront Areas; PIANC: Brussels, Belgium, 2011; p. 113, ISBN 978-2-87223-188-1.
  3. Hunt, W.F.; Collins, K.A.; Hathaway, J.M. Hydrologic and Water Quality Evaluation of Four Permeable Pavements in North Carolina, USA. In Proceedings of the 9th International Conference on Concrete Block Paving, Buenos Aires, Argentina, 18–21 October 2009.
  4. Kirkpatrick, R.; Campbell, R.; Smyth, J.; Murtagh, J.; Knapton, J. Improvement of Water Quality by Coarse Graded Aggregates in Permeable Pavements. In Proceedings of the 9th International Conference on Concrete Block Paving, Buenos Aires, Argentina, 18–21 October 2009.
  5. Chinowsky, P.; Helman, J. Protecting Infrastructure and Public Buildings against Sea Level Rise and Storm Surge. Sustainability 2021, 13, 10538. [CrossRef]
  6. Breteler, M.K.; Pilarczyk, K.W.; Stoutjesdijk, T. Design of alternative revetments. Coast. Eng. 1998 1999, 1587–1600. [CrossRef]
  7. Pilarczyk, K.W. Design of Revetments; Dutch Public Works Department (Rws), Hydraulic Engineering Division: Delft, The Netherlands, 2003.
  8. Hughes, S.A. Combined Wave and Surge Overtopping of Levees: Flow Hydrodynamics and Articulated Concrete Mat Stability; Engineer Research and Development Center Vicksburg Ms Coastal and Hydraulics Lab: Vicksburg, MS, USA, 2008.
  9. Gier, F.; Schüttrumpf, H.; Mönnich, J.; Van Der Meer, J.; Kudella, M.; Rubin, H. Stability of Interlocked Pattern Placed Block Revetments. Coast. Eng. Proc. 2012, 1, Structures-46. [CrossRef]
  10. Najafi, J.A.; Monshizadeh, M. Laboratory Investigations on Wave Run-up and Transmission over Breakwaters Covered by Antifer Units; Scientia Iranica: Tehran, Iran, 2010.
  11. Oumeraci, H.; Staal, T.; Pförtner, S.; Ludwigs, G.; Kudella, M. Hydraulic Performance, Wave Loading and Response of Elastocoast Revetments and their Foundation—A Large Scale Model Study; Leichtweiß Institut für Wasserbau: Braunschweig, Germany, 2010.
  12. Tripathy, S.K. Significance of Traditional and Advanced Morphometry to Fishery Science. J. Hum. Earth Future 2020, 1, 153–166. [CrossRef]
  13. Nut, N.; Mihara, M.; Jeong, J.; Ngo, B.; Sigua, G.; Prasad, P.V.V.; Reyes, M.R. Land Use and Land Cover Changes and Its Impact on Soil Erosion in Stung Sangkae Catchment of Cambodia. Sustainability 2021, 13, 9276. [CrossRef]
  14. Xu, C.; Pu, L.; Kong, F.; Li, B. Spatio-Temporal Change of Land Use in a Coastal Reclamation Area: A Complex Network Approach. Sustainability 2021, 13, 8690. [CrossRef]
  15. Mousavi, S.; Kavianpour, H.M.R.; Yamini, O.A. Experimental analysis of breakwater stability with antifer concrete block. Mar. Georesour. Geotechnol. 2017, 35, 426–434. [CrossRef]
  16. Yamini, O.; Aminoroayaie, S.; Mousavi, H.; Kavianpour, M.R. Experimental Investigation of Using Geo-Textile Filter Layer In Articulated Concrete Block Mattress Revetment On Coastal Embankment. J. Ocean Eng. Mar. Energy 2019, 5, 119–133. [CrossRef]
  17. Ghasemi, A.; Far, M.S.; Panahi, R. Numerical Simulation of Wave Overtopping From Armour Breakwater by Considering Porous Effect. J. Mar. Eng. 2015, 11, 51–60. Available online: http://dorl.net/dor/20.1001.1.17357608.1394.11.22.8.4 (accessed on 21 October 2021).
  18. Nourani, O.; Askar, M.B. Comparison of the Effect of Tetrapod Block and Armor X block on Reducing Wave Overtopping in Breakwaters. Open J. Mar. Sci. 2017, 7, 472–484. [CrossRef]
  19. Aminoroaya, A.O.; Kavianpour, M.R.; Movahedi, A. Performance of Hydrodynamics Flow on Flip Buckets Spillway for Flood Control in Large Dam Reservoirs. J. Hum. Earth Future 2020, 1, 39–47.
  20. Milanian, F.; Niri, M.Z.; Najafi-Jilani, A. Effect of hydraulic and structural parameters on the wave run-up over the berm breakwaters. Int. J. Nav. Archit. Ocean Eng. 2017, 9, 282–291. [CrossRef]
  21. Yamini, O.A.; Kavianpour, M.R.; Mousavi, S.H. Experimental investigation of parameters affecting the stability of articulated concrete block mattress under wave attack. Appl. Ocean Res. 2017, 64, 184–202. [CrossRef]
  22. Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids 1992, 4, 1510–1520. [CrossRef]
  23. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [CrossRef]
  24. Jin, J.; Meng, B. Computation of wave loads on the superstructures of coastal highway bridges. Ocean Eng. 2011, 38, 2185–2200. [CrossRef]
  25. Yang, S.; Yang, W.; Qin, S.; Li, Q.; Yang, B. Numerical study on characteristics of dam-break wave. Ocean Eng. 2018, 159, 358–371. [CrossRef]
  26. Ersoy, H.; Karahan, M.; Geli¸sli, K.; Akgün, A.; Anılan, T.; Sünnetci, M.O.; Yah¸si, B.K. Modelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation. Eng. Geol. 2019, 249, 112–128. [CrossRef]
  27. Zhan, J.M.; Dong, Z.; Jiang, W.; Li, Y.S. Numerical simulation of wave transformation and runup incorporating porous media wave absorber and turbulence models. Ocean Eng. 2010, 37, 1261–1272. [CrossRef]
  28. Owen, M.W. The Hydroulic Design of Seawall Profiles, Proceedings Conference on Shoreline Protection; ICE: London, UK, 1980; pp. 185–192.
  29. Pilarczyk, K.W. Geosythetics and Geosystems in Hydraulic and Coastal Engineering; CRC Press: Balkema, FL, USA, 2000; p. 913, ISBN 90.5809.302.6.
  30. Van der Meer, J.W.; Allsop, N.W.H.; Bruce, T.; De Rouck, J.; Kortenhaus, A.; Pullen, T.; Schüttrumpf, H.; Troch, P.; Zanuttigh, B. (Eds.) Manual on Wave Overtopping of Sea Defences and Related Structures–Assessment Manual; EurOtop.: London, UK, 2016; Available online: www.Overtopping-manual.com (accessed on 21 October 2021).
  31. Battjes, J.A. Computation of Set-up, Longshore Currents, Run-up and Overtopping Due to Wind-Generated Waves; TU Delft Library: Delft, The Netherlands, 1974.
  32. Van der Meer, J.W. Rock Slopes and Gravel Beaches under Wave Attack; Delft Hydraulics: Delft, The Netherlands, 1988.
  33. Ten Oever, E. Theoretical and Experimental Study on the Placement of Xbloc; Delft Hydraulics: Delft, The Netherlands, 2006.
  34. Flow Science, Inc. FLOW-3D User Manual Version 9.3; Flow Science, Inc.: Santa Fe, NM, USA, 2008.
  35. Lebaron, J.W. Stability of A-Jacksarmored Rubble-Mound Break Waters Subjected to Breaking and Non-Breaking Waves with No Overtopping; Master of Science in Civil Engineering, Oregon State University: Corvallis, OR, USA, 1999.
  36. McLaren RW, G.; Chin, C.; Weber, J.; Binns, J.; McInerney, J.; Allen, M. Articulated Concrete Mattress block size stability comparison in omni-directional current. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–6. [CrossRef]
Wave Loads Assessment on Coastal Structures at Inundation Risk Using CFD Modelling

CFD 모델링을 사용하여 침수 위험이 있는 해안 구조물에 대한 파랑 하중 평가

Wave Loads Assessment on Coastal Structures at Inundation Risk Using CFD Modellin

Ana GomesJosé Pinho

Conference paperFirst Online: 19 November 2021

지난 수십 년 동안 극한 현상은 심각성과 주민, 기반 시설 및 인류 활동에 대한 위험 증가로 인해 우려를 불러일으켰습니다. 오늘날 해안 구조물이 범람하고 해변 침식 및 기반 시설 파괴가 전 세계 해안에서 흔히 발생합니다. 

완화에 효율적으로 기여하고 효율적인 방어 조치를 채택하려면 이러한 영향을 예상하는 것이 매우 중요합니다. 대규모 물리적 모델을 기반으로 하는 이전 실험 작업에서 목조 교각 상단의 고가 해안 구조물의 공극과 그에 따른 수평 및 수직 파도력 사이의 관계가 다양한 파도 하중 조건에 대해 연구되었습니다. 

이러한 실험 결과는 CFD 도구를 사용하여 유체/구조 상호 작용을 시뮬레이션하기 위한 수치 모델에 대한 보정 데이터 역할을 합니다. 주어진 파도 조건에 대해 물과 구조물 베이스 레벨 사이의 공극 높이를 다르게 하여 세 가지 시나리오를 시뮬레이션했습니다. 

수치 결과를 물리적 모델 결과와 비교하면 수치적으로 구한 수평력과 수직력의 최대값은 각각 평균 ​​14.4%와 25.4%의 상대차로 만족할 만합니다. 또한 구조물을 지지하는 교각에 작용하는 압력과 전단응력을 시뮬레이션하기 위해 실제 수치모델을 적용하였으며, 서로 다른 공극의 높이를 고려하고 각각의 CPU 시뮬레이션 시간을 평가하였습니다. 

이러한 방식으로 CFD 모델의 운영 모델링 기능을 평가하여 조기 경보 시스템 내에서 최종 사용에 대한 예측 선행 시간 제한을 결정했습니다.

키워드

Coastal risk, Elevated coastal structure, Numerical simulation, Flow-3D® , 해안 위험, 높은 해안 구조, 수치 시뮬레이션

References

  1. 1.Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PloS one, n. 10(3), p. X-XGoogle Scholar
  2. 2.Jones B, O’Neill BC (2016) Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environmental Research Letters, N. 11(8):1–10Google Scholar
  3. 3.Talbot J (2005) Repairing Florida’s Escambia Bay Bridge. Associated Construction Publications, available online at http://www.acppubs.com/article/CA511040
  4. 4.Kennedy A, Rogers S, Sallenger A, Gravois U, Zachry B, Dosa M, Zarama F (2011a) Building destruction from wave and surge on the bolivar peninsula during hurricane Ike. J. Waterw. Port, Coast. Ocean Eng. 137 (3), 132–141Google Scholar
  5. 5.Tomiczek T, Kennedy A, Rogers S (2014) Collapse limit state fragilities of woodframed residences from storm surge and waves during hurricane Ike. J. Waterw. Port, Coast. Ocean Eng. 140 (1), 43–55Google Scholar
  6. 6.Dentale F, Donnarumma G, Pugliese Carratelli E (2014a) Simulation of flow within armour blocks in a breakwater. J Coast Res 30(3):528–536CrossRefGoogle Scholar
  7. 7.Peregrine DH (2003) Water wave impact on walls. Annu Rev Fluid Mech 35:23–43CrossRefGoogle Scholar
  8. 8.Cuomo G, Piscopia R, Allsop W (2011) Evaluation of wave impact loads on caisson breakwaters based on joint probability of impact maxima and rise times. Coast Eng 58(1):9–27CrossRefGoogle Scholar
  9. 9.Faltinsen OM, Landrini M, Greco M (2004) Slamming in marine applications. J Eng Math 48(3–4):187–217CrossRefGoogle Scholar
  10. 10.Peregrine DH. et al (2005) Violent water wave impact on a wall. In: Proceedings of 14th Aha Huliko Winter Workshop, Honolulu, HawaiiGoogle Scholar
  11. 11.Cuomo G, Tirindelli M, Allsop W (2007) Wave in deck loads on exposed jetties. Coast Eng 54(9):657–679CrossRefGoogle Scholar
  12. 12.Azadbakht M, Yim SC (2015) Simulation and estimation of tsunami loads on bridge superstructures. J Waterw Port Coast Ocean Eng 141(2):20CrossRefGoogle Scholar
  13. 13.Wiebe DM, Park H, Cox DT (2014) Application of the Goda pressure formulae for horizontal wave loads on elevated structures. KSCE J. Civ. EngGoogle Scholar
  14. 14.Hayatdavoodi M, Seiffert B, Ertekin RC (2015) Experiments and calculations of cnoidal wave loads on a flat plate in shallow-water. J. Ocean Eng. Mar. Energy 1(1):77–99CrossRefGoogle Scholar
  15. 15.Wei Z, Dalrymple RA (2016) Numerical study on mitigating tsunami force on bridges by an SPH model. J. Ocean. Eng. Mar. Energy 2(365):365–380CrossRefGoogle Scholar
  16. 16.Bradner, C., Schumacher, T., Cox, D., Higgins, C.: Experimental Setup for a largescale bridge superstructure model subjected to waves. J. Waterw. Port, Coast. Ocean Eng. 137 (1), 3–11 (2011)Google Scholar
  17. 17.Xiao H, Huang W (2008) Numerical modeling of wave runup and forces on an idealized beachfront house. Ocean Eng 35(1):106–116CrossRefGoogle Scholar
  18. 18.Do T, van de Lindt JW, Cox D (2016) Performance-based design methodology for inundated elevated coastal structures subjected to wave load. Eng Struct 117:250–262CrossRefGoogle Scholar
  19. 19.Lara JL, Garcia N, Losada IJ (2006) RANS modeling applied to random wave interaction with submerged permeable structures. Coastal Eng 53(5–6):395–417CrossRefGoogle Scholar
  20. 20.Meringolo DD, Aristodemo F, Veltri P (2015) SPH numerical modeling of wave–perforated breakwater interaction. Coast Eng 101:48–68CrossRefGoogle Scholar
  21. 21.Al-Banaa K, Liu PLF (2007) Numerical study on the hydraulic performance of submerged porous breakwater under solitary wave attack. J Coast Res 50:201–205Google Scholar
  22. 22.Gomes, A., Pinho, J.L.S., Valente, T., Antunes do Carmo, J.S., V. Hegde, A.: Performance Assessment of a Semi-Circular Breakwater through CFD Modelling. J. Mar. Sci. Eng. 2020, 8, 226 (2020).Google Scholar
  23. 23.Flow Sciences Inc. Flow-3D User Manual, release 9.4, Santa Fe, NM, USA (2009).Google Scholar
  24. 24.Smith, H., Foster., D.L.: Modeling of flow around a cylinder over a scoured bed. J. Waterw., Port, Coastal, Ocean Eng.131(1),14–24 (2005).Google Scholar
  25. 25.Richardson JE, Panchang VG (1998) Three-dimensional simulation of scour-inducing flow at bridge piers. J Hydraul Eng 124(5):530–540CrossRefGoogle Scholar
  26. 26.Jin J, Meng B (2011) Computation of wave loads on the superstructures of coastal highway bridges. Ocean Eng 38(17–18):2185–2200CrossRefGoogle Scholar
  27. 27.Dentale F, Donnarumma G, Pugliese Carratelli E (2014b) Numerical wave interaction with tetrapods breakwater. Int. J. Nav. Arch. Ocean 6:13Google Scholar
  28. 28.Carratelli EP, Viccione G, Bovolin V (2016) Free surface flow impact on a vertical wall: a numerical assessment. Theor. Comput. Fluid Mech. 30(5):403–414CrossRefGoogle Scholar
  29. 29.Cavallaro, L., Dentale, F., Donnarumma, G., Foti, E., Musumeci, R.E., Pugliese Carratelli, E.: Rubble mound breakwater overtopping: estimation of the reliability of a 3D numerical simulation, In: ICCE 2012, Interntional Conference on Coastal Engineering, Santander, Spain (2012).Google Scholar
  30. 30.Vanneste, D., Suzuki, T., Altomare, C.: Comparison of numerical models for wave overtoping and impact on storm return walls. In: ICCE 2014, International Conference on Coastal Engineering, Seoul, Korea (2014).Google Scholar
  31. 31.Park H, Tomiczek T, Cox DT, van de Lindt JW, Lomonaco P (2017) Experimental modeling of horizontal and vertical wave forces on an elevated coastal structure. Coast Eng 128:58–74CrossRefGoogle Scholar
  32. 32.Isfahani AHG, Brethour JM (2009) On the Implementation of Two-Equation Turbulence Models in FLOW-3D; FSI-09-TN86; Flow Science: Santa Fe. NM, USAGoogle Scholar
  33. 33.Novais-Barbosa J (1985) Mecânica dos Fluidos e Hidráulica Geral Vol 1 e II Porto Editora, PortoGoogle Scholar
  34. 34.Le Méhauté B (1976) An Introduction to Hydrodynamics and Water Waves. Springer, Berlin/Heidelberg, GermanyCrossRefGoogle Scholar
Figure 1- The experimental model [17]

와류형 우수 저류지의 수치 모델링에 대한 난류 슈미트 수의 영향 조사

Investigation of the Turbulent Schmidt Number Effects On Numerical Modelling Of Vortex-Type Stormwater Retention Ponds

S. M. Yamini1; H. Shamloo2; S. H. Ghafari3
1M.Eng., Dep. of Civil Engineering K.N. Toosi University of Technology, Valiasr St., Tehran, Iran.
smyamini@alumni.kntu.ac.ir
2Associate Professor, Dep. of Civil Engineering K.N. Toosi University of Technology, Valiasr St., Tehran, Iran.
hshamloo@kntu.ac.ir
3Ph.D., Dep. of Civil Engineering Univ. of Tehran, Enqelab St., Tehran, Iran. sarvenazghafari@ut.ac.ir

Abstract

정확하고 신뢰할 수 있는 CFD 모델링 결과를 얻는 것은 이러한 시뮬레이션에서 입력의 중요성 때문에 종종 정밀 조사의 대상입니다.

난류 모델링이 RANS(Reynolds-Averaged Navier-Stokes) 방정식을 기반으로 하는 경우 난류 스칼라 전송을 추정하려면 난류 흐름에서 질량 1에 대한 운동량 확산의 비율로 정의되는 난류 슈미트 수(Sct)의 정의가 필요합니다.

그러나 이 매개변수는 난류 흐름의 속성이므로 보편적인 값이 허용되지 않았습니다. 우수 저류지의 수치 연구에서 적절한 Sct를 설정하는 실제 역할은 수력 효율의 평가가 추적자 테스트의 출력 질량 농도를 기반으로 하기 때문에 가장 중요합니다.

본 연구에서는 FLOW-3D를 사용하여 와류형 우수 저류지의 여러 수치 시뮬레이션을 체계적으로 수행했습니다. 다양한 난류 슈미트 수의 범위는 메쉬 감도를 조사하기 위해 다른 수의 계산 셀에 의해 수행된 수치 시뮬레이션에 도입되었습니다.

또한 사용자 정의 또는 자동 계산 값으로 최대 난류 혼합 길이의 영향을 평가했습니다. 이 연구의 결과는 실험 결과와 밀접한 일치를 제공하는 Sct= 0.625와 함께 수리학적 직경의 7%와 동일한 최대 난류 혼합 길이의 일정한 값을 갖는 확립된 수치 모델입니다.

특히 수치적 무차원 RDT 곡선의 피크 값은 극적으로 감소하여 실험 결과와 거의 일치했습니다. 이것은 FLOW-3D가 난류 유동의 와류형 물리학에서 질량 확산도를 적절하게 예측하는 상당한 능력을 가지고 있다는 결론을 내립니다.

– Achieving accurate and reliable CFD modelling results often is the subject of scrutiny because of the importance of the inputs in those simulations. If turbulence modelling is based on Reynolds-Averaged Navier-Stokes (RANS) equations, estimating the turbulent scalar transport requires the definition of the turbulent Schmidt number (Sct), defined as the ratio of momentum diffusivity to mass one in a turbulent flow. However, no universal value has been accepted for this parameter as it is a property of turbulent flows.

The practical role of establishing a suitable Sct in numerical studies of stormwater retention ponds is of the utmost importance because the assessment of the hydraulic efficiency of them is based on output mass concentration of tracer tests. In this study, several numerical simulations of a vortex-type stormwater retention pond were systematically carried out using FLOW-3D. A range of various turbulent Schmidt numbers were introduced in numerical simulations performed by different number of computational cells to investigate mesh sensitivity.

Moreover, the effects of maximum turbulent mixing length as a user-defined or automatically computed value were assessed. The outcome of this study is an established numerical model with a constant value of maximum turbulent mixing length equal to 7% of the hydraulic diameter along with Sct= 0.625 which provides a close agreement with experimental results.

Noticeably, the peak values of numerical dimensionless RDT curves are dramatically decreased, resulted in a close match with experimental results. This concludes that FLOW-3D has a considerable ability to appropriately predict mass diffusivity in vortex-type physics of turbulent flows.

Keywords:

turbulent Schmidt number – maximum turbulent mixing length – CFD – mesh sensitivity – vortex-type
stormwater retention pond – environmental fluid mechanics

Figure 1- The experimental model [17]
Figure 1- The experimental model [17]
Figure 2- Schematic of boundary conditions in the numerical model
Figure 2- Schematic of boundary conditions in the numerical model
Figure 3- Positioning of mesh blocks
Figure 3- Positioning of mesh blocks

References

[1] C. Gualtieri, A. Angeloudis, F. Bombardelli, S. Jha, and T. Stoesser, “On the Values for the Turbulent Schmidt Number
in Environmental Flows,” Fluids, vol. 2, p. 17, 2017.
[2] Å. Adamsson, L. Bergdahl, and S. Lyngfelt, “Measurement and three-dimensional simulation of flow in a rectangular
detention tank,” Urban Water Journal, vol. 2, no. 4, pp. 277-287, 2005/12/01 2005, doi: 10.1080/15730620500386545.
[3] C. Gualtieri, “Numerical simulation of flow and tracer transport in a disinfection contact tank,” 2006.
[4] S. Khan, B. Melville, and A. Shamseldin, Modeling the Layouts of Stormwater Retention Ponds using Residence Time.
2009, pp. 77-83.
[5] F. Martínez-Solano, P. L. I. Rey, C. Gualtieri, and P. López-Jiménez, “Modelling flow and concentration field in
rectangular water tanks,” 2010.
[6] W. B. Rauen, A. Angeloudis, and R. A. Falconer, “Appraisal of chlorine contact tank modelling practices,” Water
Research, vol. 46, no. 18, pp. 5834-5847, 2012/11/15/ 2012, doi: https://doi.org/10.1016/j.watres.2012.08.013.

[7] J. Zhang, A. Tejada-Martínez, and Q. Zhang, “Evaluation of LES and RANS for Determining Hydraulic Performance
of Disinfection Systems for Water Treatment,” Journal of Fluids Engineering, vol. 136, 05/15 2014, doi:
10.1115/1.4027652.
[8] J. Zhang, A. E. Tejada-Martínez, and Q. Zhang, “Developments in computational fluid dynamics-based modeling for
disinfection technologies over the last two decades: A review,” Environmental Modelling & Software, vol. 58, pp. 71-
85, 2014/08/01/ 2014, doi: https://doi.org/10.1016/j.envsoft.2014.04.003.
[9] C. Gualtieri and F. Salzano, “DIscussion on “The effect of baffle spacing on hydrodynamics and solute transport in
serpentine contact tanks”,” Journal of Hydraulic Research, vol. 52, pp. 152-154, 02/28 2014, doi:
10.1080/00221686.2013.877528.
[10] A. Angeloudis, T. Stoesser, R. A. Falconer, and D. Kim, “Flow, transport and disinfection performance in small- and
full-scale contact tanks,” Journal of Hydro-environment Research, vol. 9, no. 1, pp. 15-27, 2015/03/01/ 2015, doi:
https://doi.org/10.1016/j.jher.2014.07.001.
[11] A. Angeloudis, T. Stoesser, C. Gualtieri, and R. A. Falconer, “Contact Tank Design Impact on Process Performance,”
Environmental Modeling & Assessment, vol. 21, no. 5, pp. 563-576, 2016/10/01 2016, doi: 10.1007/s10666-016-9502-
x.
[12] D. Valero and D. B. Bung, “Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in
crossflow,” Environmental Modelling & Software, vol. 82, pp. 218-228, 2016/08/01/ 2016, doi:
https://doi.org/10.1016/j.envsoft.2016.04.030.
[13] F. Sonnenwald, I. Guymer, and V. Stovin, “Computational fluid dynamics modelling of residence times in vegetated
stormwater ponds,” Proceedings of the Institution of Civil Engineers – Water Management, vol. 171, pp. 1-11, 11/07
2017, doi: 10.1680/jwama.16.00117.
[14] F. Sonnenwald, I. Guymer, and V. Stovin, “A CFD-Based Mixing Model for Vegetated Flows,” Water Resources
Research, vol. 55, no. 3, pp. 2322-2347, 2019, doi: https://doi.org/10.1029/2018WR023628.
[15] S. B. Pope, Turbulent Flows. Cambridge, UK: Cambridge University Press, 2000.
[16] R. Rossi and G. Iaccarino, “Numerical simulation of scalar dispersion downstream of a square obstacle using gradienttransport type models,” Atmospheric Environment, vol. 43, no. 16, pp. 2518-2531, 2009/05/01/ 2009, doi:
https://doi.org/10.1016/j.atmosenv.2009.02.044.
[17] R. Chowdhury, M. Ahadi, K. A. Mazurek, G. Putz, D. Bergstrom, and C. Albers, “Physical Scale and Computational
Modeling in the Development of a Vortex-Type Stormwater Retention Pond,” in World Environmental and Water
Resources Congress 2016, 2016, pp. 388-397.
[18] V. Yakhot and L. M. Smith, “The renormalization group, the ɛ-expansion and derivation of turbulence models,” Journal
of Scientific Computing, vol. 7, no. 1, pp. 35-61, 1992/03/01 1992, doi: 10.1007/BF01060210.
[19] Flow Science, Inc., FLOW-3D User manual. Santa Fe, NM, USA. (2015).
[20] M. M. Bishop, J. M. Morgan, B. Cornwell, and D. K. Jamison, “Improving the Disinfection Detention Time of a Water
Plant Clearwell,” Journal AWWA, vol. 85, no. 3, pp. 68-75, 1993, doi: https://doi.org/10.1002/j.1551-
8833.1993.tb05958.x.
[21] F. L. Hart, “Improved Hydraulic Performance of Chlorine Contact Chambers.,” Jounal of Water Pollution Control
Federation, vol. 51(12), pp. 2868–2875, 1979.

그림 3. 수중 4차 횡파 영향

Validation of Sloshing Simulations in Narrow Tanks

This case study was contributed by Peter Arnold, Minerva Dynamics.

이 작업의 목적은 FLOW-3D  를 검증하는 것입니다. 밀폐된 좁은 스팬 직사각형 탱크의 출렁거림 문제에 대비하여 탱크의 내부 파동 공명 주기에 가깝거나 같은 주기로 롤 운동을 하여 측면 및 지붕 파동 충격 이벤트가 발생합니다.

탱크는 물이나 해바라기 기름으로 두 가지 다른 수준으로 채워졌고 위의 공간은 공기로 채워졌습니다. 압력 센서는 여러 장소의 벽에 설치되었으며 처음 4개의 출렁이는 기간 동안 기록된 롤 각도와 시간 이력이 있습니다. 오일을 사용하는 경우의 흐름은 레이놀즈 수가 1748인 층류인 반면, 물로 채워진 경우의 흐름은 레이놀즈 수가 97546인 난류입니다. 

CFD 시뮬레이션은 탱크의 고조파 롤 운동을 복제하기 위해 본체력 방법을 사용했으며, 난류 및 공기 압축성을 설명하기 위해 다른 모델링 가정과 함께 그리드 의존성 테스트를 수행했습니다.

The objective of this work is to validate FLOW-3D against a sloshing problem in a sealed narrow span rectangular tank, subjected to roll motion at periods close to or equal to the tank’s internal wave resonance period, such that side and roof wave impact events occur. The tank was filled to two different levels with water or sunflower oil, with the space above filled by air. Pressure sensors were installed in the walls at several places and their time histories, along with the roll angle, recorded for the first four sloshing periods. For the cases using oil, the flow is laminar with a Reynolds number of 1748, while for the cases filled with water the flow is turbulent with a Reynolds number of 97546. The CFD simulations used the body force method to replicate the harmonic roll motion of the tank, while grid dependence tests were performed along with different modelling assumptions to account for turbulence and air compressibility.

Experimental Problem Setup

원래 실험은 Souto-Iglesias 및 Botia-Vera[1]에 의해 수행되었으며 모든 실험 데이터 파일은 문제 설명, 비디오 및 불확실성 분석과 함께 사용할 수 있습니다. 그림 1에 표시된 형상은 길이 900mm, 높이 508mm, 스팬 62mm의 직사각형 탱크로 구성되어 있으며 물이나 해바라기 기름으로 93mm 또는 355.3mm로 채워져 있으므로 4가지 경우가 고려됩니다. 탱크 벽과 같은 높이로 설치된 압력 센서의 위치도 표시됩니다. 탱크 회전 중심은 수평에 대한 회전 각도와 함께 그림 1에 나와 있습니다. 각 실험 실행은 반복성을 평가할 수 있도록 100번 수행되었습니다.

The original experiment was performed by Souto-Iglesias and Botia-Vera [1] and all experimental data files are available along with problem description, videos and an uncertainty analysis. The geometry shown in Fig. 1 consists of a rectangular tank of 900mm length, 508mm height and 62mm span, filled to either 93mm or 355.3 mm with either water or sunflower oil, hence four cases are considered. The locations of the pressure sensors that were installed flush with the tank walls are also shown. The tank rotation center is shown in Fig. 1, along with the rotation angle relative to the horizontal. Each of the experimental runs was performed 100 times to enable their repeatability to be assessed.

Tank dimensions and locations of pressure sensors
Figure 1. Tank dimensions and locations of pressure sensors

Numerical Simulation

문제는 FLOW-3D 내에서 비관성 기준 좌표계 모델을 사용하여 비교적 간단하게 설정할 수 있으며  , 이는 로컬 기준 좌표계의 가속도에 따라 유체에 체력 을 적용합니다. Z축 회전 속도는 탱크의 롤 운동을 시뮬레이션하기 위한 주기 함수로 정의되었으며 음의 수직 방향으로 작용하는 일정한 중력이 가해졌습니다.

메쉬 미세화, 운동량 이류에 대한 수치 근사 순서, 층류 대 난류 모델 및 탱크 내 공기에 대한 세 가지 다른 처리(즉, 일정 압력, 압축성 기체 및 비압축성 기체)와 같은 것을 조사하기 위해 여러 시뮬레이션을 수행했습니다.

93mm 깊이로 채워진 모든 케이스에 대해 압력은 압력 센서 P1에서만 실험 값과 비교되었으며, 355.3mm 깊이로 채워진 모든 케이스에서는 P3 센서의 데이터만 비교되었습니다.

The problem was relatively simple to set up using the non-inertial reference frame model within FLOW-3D, which applies a body force to the fluid depending on the acceleration of the local reference frame. The Z axis rotational velocity was defined as a periodic function to simulate a roll motion of the tank, and a constant gravity force acting in the negative vertical direction was applied.

Multiple simulations were performed to investigate such things as mesh refinement, the numerical approximation order for momentum advection, laminar versus turbulent models and three different treatments for the air in the tank (i.e., constant pressure, compressible gas and incompressible gas).

For all 93mm depth-filled cases, the pressure was compared to the experimental values at pressure sensor P1 only, while for all 355.3mm depth-filled cases, only data at the P3 sensor was compared.

Results

P1에서 측정된 측면 워터 슬로싱에 대한 메쉬 해상도의 영향은 그림 2에서 볼 수 있습니다. 피크 값 예측 측면에서 특별한 편향을 보이지 않습니다. 모든 측면 사례에서 초기 피크 직후의 압력은 시뮬레이션에서 일관되게 과대 평가되었습니다. 모든 메쉬는 피크의 타이밍 측면에서 우수한 일치를 보입니다. 100회 실행에서 보고된 실험 시간 기록은 평균 값에 가장 가까운 최고 압력을 가진 기록입니다.

The effect of mesh resolution on lateral water sloshing measured at P1 is seen in Fig. 2. It shows no particular bias in terms of the prediction of peak values. In all the Lateral cases, the pressures immediately after the initial peaks are consistently over estimated in the simulations. All meshes have excellent agreement in terms of the timing of the peaks. The experimental time histories reported from the 100 runs made are those with peak pressures closest to the average values.

Lateral water case
Figure 2. Tank dimensions and locations of pressure sensors

실험 결과의 반복성은 Souto-Iglesias & Elkin Botia-Vera[1]에 의해 각 테스트를 100번 실행하고 처음 4개의 피크 압력의 평균 및 표준 편차를 측정하여 평가했습니다. CFD 실행이 다른 실험 실행으로 간주되는 경우 오류 막대 내에 있을 확률이 95%입니다. 그러나 CFD 결과의 16개 피크 압력 중 9개만 실험 결과의 2 표준 편차 내에 있으므로 CFD 모델이 실험을 대표하지 않거나 피크 압력이 정규 분포를 따르지 않는다는 결론을 내려야 합니다.

어쨌든 표준 편차는 피크 자체에 비해 상당히 크며, 수성 케이스와 측면 오일의 비율이 가장 작은 피크 값에 대한 표준 편차의 비율이 가장 큰 것으로 나타났습니다. 이러한 결과는 그림 1과 2에서 볼 수 있는 벽 충격 역학의 복잡성을 고려할 때 그리 놀라운 일이 아닙니다. 3,4.

The repeatability of the experimental results was assessed by Souto-Iglesias & Elkin Botia-Vera [1] running each test 100 times and measuring the average and standard deviation of the first four peak pressures. If a CFD run is considered to be another experimental run there is a 95% chance it will lie within the error bars. However, only nine of the 16 peak pressures from the CFD results fall within two standard deviations of the experimental results, so we must conclude that either the CFD model is not representative of the experiment or that the peak pressures are not normally distributed.

In any event, the standard deviations are quite large compared to the peaks themselves, with the largest ratio of standard deviation to peak values occurring for the water-based cases and the lateral oil having the smallest ratio. These results are perhaps not too surprising when one considers the complexity of the wall impact dynamics as seen in Figs. 3,4.

Lateral Wave Impact in Water
Figure 3. 4th Lateral Wave Impact in Water
Wave Impact of Water on Roof
Figure 4. 4th Wave Impact of Water on Roof

Conclusions

좁은 탱크 슬로싱 문제의 네 가지 구성은 자유 표면 흐름을 위해 설계된 상용 CFD 코드를 사용하여 수치적으로 시뮬레이션되었습니다. 대략 2 X 10 3  및 1 X 10 5 의 Reynolds 수에 해당하는 두 가지 다른 유체  와 두 가지 유체 깊이가 네 가지 경우를 정의하는 데 사용되었습니다. 4가지 경우 모두에 대해 메쉬 셀 크기 독립성 테스트를 수행했지만 메쉬 해상도가 증가함에 따라 실험 결과에 대해 약한 수렴만 발견되었습니다. 조사는 또한 두 가지 다른 운동량 이류 수치 차분 계획을 테스트했으며 두 번째 방법을 사용하여 더 가까운 일치를 발견했습니다 1차 체계를 사용하는 것보다 차수 단조성 보존 체계. 기본 층류 흐름을 포함한 세 가지 난류 모델이 테스트되었지만 더 낮은 계산 비용으로 인해 층류 이외의 모델에 대한 선호도가 발견되지 않았습니다. 실험 데이터와 공기 감소 일치의 압축성을 포함하여 그 이유는 불분명합니다.

실험 압력 프로브 시간 이력 데이터 세트에는 100회 반복 테스트에서 파생된 각 압력 피크에 대해 100개의 값이 포함되어 있으므로 CFD 시뮬레이션과의 일치의 통계적 유의성을 조사할 수 있었습니다. 수치 시뮬레이션과 실험 모두 출렁이는 파동 충격에 해당하는 매우 가파른 압력 펄스를 발생시켰고 실험 결과는 피크 값에서 높은 정도의 자연적 변동성을 갖는 것으로 나타났습니다. CFD 시뮬레이션의 감도 테스트(예: 약간 다른 초기 시작 조건 사용)는 공식적으로 수행되지 않았지만 수치 솔루션은 또한 다른 메쉬, 차분 체계 및 난류 모델,

모든 경우에 압력 피크가 발생하는 수치해의 타이밍은 매우 정확함을 알 수 있었다. 그러나 가장 난이도가 낮은 Lateral Oil의 경우에도 압력 피크와 바로 뒤따르는 압력 값이 과대 평가되어 수치 모델링의 단점이 나타났습니다. 실험적 피크 압력 변동성을 고려할 때 CFD 생성 값은 CFD 솔루션이 통계적 유의성을 나타내기 위해 필요한 15개 이상이 아니라 16개 피크 중 9개에서 2개의 표준편차 한계 내에 떨어졌습니다. 실험을 대표했다. 이것은 피크가 정규 분포를 따르지 않거나 CFD 모델이 피크를 예측하는 데 어떤 식으로든 결함이 있음을 나타냅니다.

Four configurations of a narrow tank sloshing problem were numerically simulated using a commercial CFD code designed for free surface flow. Two different fluids corresponding to Reynolds numbers of approximately 2 X 103 and 1 X 105 and two fluid depths were used to define the four cases. Mesh cell size independence tests were conducted for all four cases, but only a weak convergence towards the experimental results with increasing mesh resolution was found. The investigation also tested two different momentum advection numerical differencing schemes and found closer agreement using the 2nd order monotonicity preserving scheme than by using a first order scheme. Three turbulence models, including the default laminar flow, were tested but no preference was found for any model other than the laminar by virtue of its lower computational cost. Including the compressibility of the air-reduced agreement with the experimental data, the reasons for this are unclear.

The experimental pressure probe time history data sets included 100 values for each of the pressure peaks derived from 100 repeat tests, and thus we were able to examine the statistical significance of the agreement with the CFD simulations. Both the numerical simulations and the experiments gave rise to very steep pressure pulses corresponding to the sloshing wave impacts, and the experimental results were found to have a high degree of natural variability in the peak values. Although sensitivity tests of the CFD simulations (using, for example, slightly different initial starting conditions) were not formally conducted, the numerical solutions also showed a high degree of variability in the pressure peak magnitudes resulting from the use of different meshes, differencing schemes and turbulence models, which could be considered to show that the numerical solution also had a high degree of natural variability.

In all cases, the numerical solutions’ timing of the occurrence of the pressure peaks were found to be very accurate. However, even for the least challenging Lateral Oil case, the pressure peaks and the immediately following pressure values were overestimated, which indicated a shortcoming in the numerical modelling. When the experimental peak pressure variability was taken into account, the CFD-generated values fell inside the two Standard Deviation margin in nine of the 16 peaks rather than the 15 or more that would be required to show statistical significance in the sense that the CFD solution was representative of the experiment. This indicates that either the peaks are not normally distributed and/or the CFD model is in some way deficient at predicting them. Further work is required to establish how the peak pressures are distributed and/or to establish the physical reasons why the CFD model is overestimating the pressure peaks for even the least challenging Lateral Oil configuration.

References

  1. Spheric Benchmark Test Case, Sloshing Wave Impact Problem, Antonio Souto-Iglesias & Elkin Botia-Vera, https://wiki.manchester.ac.uk/spheric/index.php/Test10
  2. Peregrine DH (1993). Water-wave impact on walls. Annual Review of Fluid Mechanics. Vol 35, pp 23-43.

Editor’s Note

The complete document from which this note was extracted and the related data and input files are available on our Users Site. Readers are encouraged to read the original validation to get a full appreciation of the detail in this work investigating comparisons between simulation and experimental data. This study is especially noteworthy since it deals with highly non-linear sloshing of fluids interacting with the boundaries of a confining tank.

With regard to the author’s conclusions, it should be mentioned that the over prediction of fluid impact pressures in simulations could be the result of not allowing for sufficient compressibility effects in the liquids. For instance, in Fig. 3, it appears that there has been some air entrained in the liquid near the side wall. Also, negative pressures (i.e., below atmospheric) recorded experimentally might result from liquid drops remaining on the pressure sensors after the main body of liquid has drained away. Such details, which may be hard to quantify, only emphasize the difficulties involved in undertaking detailed validation studies. The author is commended for his excellent work.

Fig. 6. Configuration of Johnson (1958) hydraulic experiment.

전체 수심 범위에서 선박 파고에 대한 방정식

Equation for ship wave crests in the entire range of water depths

Byeong Wook Lee a
, Changhoon Lee b,
*a Coastal Development and Ocean Energy Research Center, Korea Institute of Ocean Science & Technology, 385 Haeyang-ro, Busan, 49111, Republic of Korea
b Department of Civil and Environmental Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea

ABSTRACT

An equation for ship wave crests y/x in the entire range of water depths is developed using the linear dispersion relation. In deep water, the developed equation is reduced to the equation of Kelvin (1906). The locations of ship wave crests in the x – and y -directions are obtained using a dimensionless constant C. The wave ray angle θc at the cusp locus is determined using the condition that θc is maximal at the cusp locus and the cusp locus angle is determined as αc=−tan−1(y/x)max. Numerical experiments are conducted using the FLOW-3D to simulate ship wave propagation. The cusp locus angles of the FLOW-3D are similar to both those of the present theory and Havelock (1908) theory in the entire range of the Froude number. Both the present theory and the FLOW-3D yield that, with the increase of ship speed, the Froude number increases and does the wavelength. For the Froude number equal to or greater than unity, the wavelength becomes infinitely large and the transverse waves disappear. The wavelengths of the FLOW-3D are slightly smaller than those of the present theory because the FLOW-3D considers the decrease of wavelength due to energy dissipation which happens because of viscosity of water and turbulence of high-speed particle velocities.

Fig. 6. Configuration of Johnson (1958) hydraulic experiment.
Fig. 6. Configuration of Johnson (1958) hydraulic experiment.
Fig. 8. Comparison of ship wave crest patterns: (a) Fr ¼ 0:66 (Us ¼ 6:5m=s,  kh � 0:724π), (b) Fr ¼ 0:86 (Us ¼ 8:5m=s, kh � 0:342π), (c) Fr ¼ 1:21 (Us ¼ 12:0m=s, kh � 0:003π). Line definition: red solid line ¼ present theory; yellow  dashed line ¼ Kelvin theory; white dot ¼ FLOW-3D solution. (For interpretation  of the references to colour in this figure legend, the reader is referred to the  Web version of this article.)
Fig. 8. Comparison of ship wave crest patterns: (a) Fr ¼ 0:66 (Us ¼ 6:5m=s, kh >= 0:724π), (b) Fr ¼ 0:86 (Us ¼ 8:5m=s, kh >= 0:342π), (c) Fr ¼ 1:21 (Us ¼ 12:0m=s, kh >= 0:003π). Line definition: red solid line ¼ present theory; yellow dashed line ¼ Kelvin theory; white dot ¼ FLOW-3D solution. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Keywords

Ship wave crests
Cusp locus angle
Entire range of water depths
Theoretical solution
Numerical experiment

References

kylas, T.R., 1984. On the excitation of long nonlinear water waves by a moving pressure
distribution. J. Fluid Mech. 141, 455–466.

Chen, X.N., Sharma, S.D., 1995. A slender ship moving at a near-critical speed in a
shallow channel. J. Fluid Mech. 291, 263–285.
David, C.G., Roeber, V., Goseberg, N., Schlurmann, T., 2017. Generation and propagation
of ship-borne waves – solutions from a Boussinesq-type model. Cost Eng. 127,
170–187.
Ersan, D.B., Beji, S., 2013. Numerical simulation of waves generated by a moving
pressure field. Ocean Eng. 59, 231–239.
Ertekin, R.C., Webster, W.C., Wehausen, J.V., 1986. Waves caused by a moving
disturbance in a shallow channel of finite width. J. Fluid Mech. 169, 275–292.
Fang, M.-C., Yang, R.-Y., Shugan, I.V., 2011. Kelvin ship wake in the wind waves field
and on the finite sea depth. J. Mech. 27 (1), 71–77.
Havelock, T.H., 1908. The propagation of groups of waves in dispersive media with
application to waves on water produced by a travelling disturbance. Proc. Royal Soc.
London Ser. A 398–430.
Hennings, I., Romeiser, R., Alpers, W., Viola, A., 1999. Radar imaging of Kelvin arms of
ship wakes. Int. J. Remote Sens. 20 (13), 2519–2543.
Hur, D.S., Lee, J., Choi, D.S., Lee, H.W., 2011. On run-up characteristics of revetment
under interaction among ocean wave, current and ship induced wave in the canal.
In: Proceedings of the 37th Conference on the Korean Society of Civil Engineers,
pp. 588–591 (in Korean).
Johnson, J.W., 1958. Ship waves in navigation channels. In: Proceedings of the 6th
Conference on Coastal Engineering, pp. 666–690.
Kang, Y.S., Kim, P.J., Hyun, S.K., Sung, H.K., 2008. Numerical simulation of ship-induced
wave using FLOW-3D. J. Korean Soc. Coast. Ocean Eng. 20 (3), 255–267 (in Korean).
Kelvin, 1887. On ship waves. In: Proceedings of the Institution of Mechanical
Engineering, pp. 409–433.
Kelvin, 1906. Deep sea ship-waves. Proc. R. Soc. Edinb. 25 (2), 1060–1084.
Lamb, H., 1945. Hydrodynamics. Dover Publications.
Lee, C., Lee, B.W., Kim, Y.J., Ko, K.O., 2011. Ship wave crests in intermediate-depth
water. In: Proceedings of the 6th International Conference on Asian and Pacific
Coasts, pp. 1818–1825.
Lee, B.W., Lee, C., Kim, Y.J., Ko, K.O., 2013. Prediction of ship wave crests on varying
water depths and verification by FLOW-3D. J. Korean Soc. Civil Eng. 33 (4),
1447–1454 (in Korean).
Lighthill, M.J., Whitham, G.B., 1955. On kinematic waves: I. Flood movement in long
rivers; II. Theory of traffic flow on long crowded roads. Proc. R. Soc. A 229, 281–345.
Newman, J.N., 1970. Recent research on ship waves. In: Proceedings of the 8th
Symposium on Naval Hydrodynamics, pp. 519–545.
Newman, J.N., 1977. Marine Hydrodynamics. The MIT Press.
Reed, A.M., Milgram, J.H., 2002. Ship wakes and their radar images. Annu. Rev. Fluid
Mech. 34, 469–502.
Shemdin, O.H., 1990. Synthetic aperture radar imaging of ship wakes in the Gulf of
Alaska. J. Geophys. Res. 95 (C9), 16319–16338.
Shi, F., Malej, M., Smith, J.M., Kirby, J.T., 2018. Breaking of ship bores in a Boussinesqtype ship-wake model. Cost Eng. 132, 1–12.
Sorensen, R.M., 1967. Investigation of ship-generated waves. J. Waterw. Harb. Div.
85–99. ASCE.
Sorensen, R.M., 1969. Waves generated by model ship hull. J. Waterw. Harb. Div.
513–538. ASCE.
Sorensen, R.M., Weggel, J.R., 1984. Development of ship wave design information. In:
Proceedings of the 19th Conference on Coastal Engineering, pp. 3227–3243. ASCE.
Stoker, J.J., 1957. Water Waves: the Mathematical Theory with Applications.
Interscience Publishers.
Tuck, E.O., 1966. Shallow-water flows past slender bodies. J. Fluid Mech. 26, 81–95.
Wu, D.M., Wu, T.Y., 1982. Three-dimensional nonlinear long waves due to moving
surface pressure. In: Proceedings of the 14th Symposium on Naval Hydrodynamics,
pp. 103–129.

Fig. 11. Velocity vectors along x-direction through the center of the box culvert for B0, B30, B50, and B70 respectively.

Numerical investigation of scour characteristics downstream of blocked culverts

막힌 암거 하류의 세굴 특성 수치 조사

NesreenTahabMaged M.El-FekyaAtef A.El-SaiadaIsmailFathya
aDepartment of Water and Water Structures Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
bLab Manager, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt

Abstract

횡단 구조물을 통한 막힘은 안정성을 위협하는 위험한 문제 중 하나입니다. 암거의 막힘 형상 및 하류 세굴 특성에 미치는 영향에 관한 연구는 거의 없습니다.

이 연구의 목적은 수면과 세굴 모두에서 상자 암거를 통한 막힘의 작용을 수치적으로 논의하는 것입니다. 이를 위해 FLOW 3D v11.1.0을 사용하여 퇴적물 수송 모델을 조사했습니다.

상자 암거를 통한 다양한 차단 비율이 연구되었습니다. FLOW 3D 모델은 실험 데이터로 보정되었습니다. 결과는 FLOW 3D 프로그램이 세굴 다운스트림 상자 암거를 정확하게 시뮬레이션할 수 있음을 나타냅니다.

막힌 경우에 대한 속도 분포, 최대 세굴 깊이 및 수심을 플롯하고 비차단된 사례(기본 사례)와 비교했습니다.

그 결과 암거 높이의 70% 차단율은 상류의 수심을 암거 높이의 2.3배 증가시키고 평균 유속은 기본 경우보다 3배 더 증가시키는 것으로 입증되었다. 막힘 비율의 함수로 상대 최대 세굴 깊이를 추정하는 방정식이 만들어졌습니다.

Blockage through crossing structures is one of the dangerous problems that threaten its stability. There are few researches concerned with blockage shape in culverts and its effect on characteristics of scour downstream it.

The study’s purpose is to discuss the action of blockage through box culvert on both water surface and scour numerically. A sediment transport model has been investigated for this purpose using FLOW 3D v11.1.0. Different ratios of blockage through box culvert have been studied. The FLOW 3D model was calibrated with experimental data.

The results present that the FLOW 3D program was capable to simulate accurately the scour downstream box culvert. The velocity distribution, maximum scour depth and water depths for blocked cases have been plotted and compared with the non-blocked case (base case).

The results proved that the blockage ratio 70% of culvert height makes the water depth upstream increases by 2.3 times of culvert height and mean velocity increases by 3 times more than in the base case. An equation has been created to estimate the relative maximum scour depth as a function of blockage ratio.

1. Introduction

Local scour is the removal of granular bed material by the action of hydrodynamic forces. As the depth of scour hole increases, the stability of the foundation of the structure may be endangered, with a consequent risk of damage and failure [1]. So the prediction and control of scour is considered to be very important for protecting the water structures from failure. Most previous studies were designed to study the different factors that impact on scour and their relationship with scour hole dimensions like fluid characteristics, flow conditions, bed properties, and culvert geometry. Many previous researches studied the effect of flow rate on scour hole by information Froude number or modified Froude number [2][3][4][5][6]. Cesar Mendoza [6] found a good correlation between the scour depth and the discharge Intensity (Qg−.5D−2.5). Breusers and Raudkiv [7] used shear velocity in the outlet-scour prediction procedure. Ali and Lim [8] used the densimetric Froude number in estimation of the scour depth [1][8][9][10][11][12][13][14]. “The densimetric Froude number presents the ratio of the tractive force on sediment particle to the submerged specific weight of the sediment” [15](1)Fd=uρsρ-1gD50

Ali and Lim [8] pointed to the consequence of tailwater depth on scour behavior [1][2][8][13]. Abida and Townsend [2] indicated that the maximum depth of local scour downstream culvert was varying with the tailwater depth in three ways: first, for very shallow tailwater depths, local scouring decreases with a decrease in tailwater depth; second, when the ratio of tailwater depth to culvert height ranged between 0.2 and 0.7, the scour depth increases with decreasing tailwater depth; and third for a submerged outlet condition. The tailwater depth has only a marginal effect on the maximum depth of scour [2]. Ruff et al. [16] observed that for materials having similar mean grain sizes (d50) but different standard deviations (σ). As (σ) increased, the maximum scour hole depth decreased. Abt et al. [4] mentioned to role of soil type of maximum scour depth. It was noticed that local scour was more dangerous for uniform sands than for well-graded mixtures [1][2][4][9][17][18]. Abt et al [3][19] studied the culvert shape effect on scour hole. The results evidenced that the culvert shape has a limited effect on outlet scour. Under equivalent discharge conditions, it was noted that a square culvert with height equal to the diameter of a circular culvert would reduce scour [16][20]. The scour hole dimension was also effected by the culvert slope. Abt et al. [3][21] showed that the culvert slope is a key element in estimating the culvert flow velocity, the discharge capacity, and sediment transport capability. Abt et al. [21][22] tested experimentally culvert drop height effect on maximum scour depth. It was observed that as the drop height was increasing, the depth of scour was also increasing. From the previous studies, it could have noticed that the most scour prediction formula downstream unblocked culvert was the function of densimetric Froude number, soil properties (d50, σ), tailwater depth and culvert opening size. Blockage is the phenomenon of plugging water structures due to the movement of water flow loaded with sediment and debris. Water structures blockage has a bad effect on water flow where it causes increasing of upstream water level that may cause flooding around the structure and increase of scour rate downstream structures [23][24]. The blockage phenomenon through was studied experimentally and numerical [15][25][26][27][28][29][30][31][32][33]. Jaeger and Lucke [33] studied the debris transport behavior in a natural channel in Australia. Froude number scale model of an existing culvert was used. It was noticed that through rainfall event, the mobility of debris was impressed by stream shape (depth and width). The condition of the vegetation (size and quantities) through the catchment area was the main factor in debris transport. Rigby et al. [26] reported that steep slope was increasing the ability to mobilize debris that form field data of blocked culverts and bridges during a storm in Wollongong city.

Streftaris et al. [32] studied the probability of screen blockage by debris at trash screens through a numerical model to relate between the blockage probability and nature of the area around. Recently, many commercial computational fluid programs (CFD) such as SSIIM, Fluent, and FLOW 3D are used in the analysis of the scour process. Scour and sediment transport numerical model need to validate by using experimental data or field data [34][35][36][37][38]. Epely-Chauvin et al. [36] investigated numerically the effect of a series of parallel spur diked. The experimental data were compared by SSIIM and FLOW 3D program. It was found that the accuracy of calibrated FLOW 3D model was better than SSIIM model. Nielsen et al. [35] used the physical model and FLOW 3D model to analyze the scour process around the pile. The soil around the pile was uniform coarse stones in the physical models that were simulated by regular spheres, porous media, and a mixture of them. The calibrated porous media model can be used to determine the bed shear stress. In partially blocked culverts, there aren’t many studies that explain the blockage impact on scour dimensions. Sorourian et al. [14][15] studied the effect of inlet partial blockage on scour characteristics downstream box culvert. It resulted that the partial blockage at the culvert inlet could be the main factor in estimating the depth of scour. So, this study is aiming to investigate the effects of blockage through a box culvert on flow and scour characteristics by different blockage ratios and compares the results with a non-blocked case. Create a dimensionless equation relates the blockage ratio of the culvert with scour characteristics downstream culvert.

2. Experimental data

The experimental work of the study was conducted in the Hydraulics and Water Engineering Laboratory, Faculty of Engineering, Zagazig University, Egypt. The flume had a rectangular cross-section of 66 cm width, 65.5 cm depth, and 16.2 m long. A rectangular culvert was built with 0.2 m width, 0.2 m height and 3.00 m long with θ = 25° gradually outlet and 0.8 m fixed apron. The model was located on the mid-point of the channel. The sediment part was extended for a distance 2.20 m with 0.66 m width and 0.20 m depth of coarse sand with specific weight 1.60 kg/cm3, d50 = 2.75 mm and σ (d90/d50) = 1.50. The particle size distribution was as shown in Fig. 1. The experimental model was tested for different inlet flow (Q) of 25, 30, 34, 40 l/s for different submerged ratio (S) of 1.25, 1.50, 1.75.

3. Dimensional analysis

A dimensional analysis has been used to reduce the number of variables which affecting on the scour pattern downstream partial blocked culvert. The main factors affecting the maximum scour depth are:(2)ds=f(b.h.L.hb.lb.Q.ud.hu.hd.D50.ρ.ρs.g.ls.dd.ld)

Fig. 2 shows a definition sketch of the experimental model. The maximum scour depth can be written in a dimensionless form as:(3)dsh=f(B.Fd.S)where the ds/h is the relative maximum scour depth.

4. Numerical work

The FLOW 3D is (CFD) program used by many researchers and appeared high accuracy in solving hydrodynamic and sediment transport models in the three dimensions. Numerical simulation with FLOW 3D was performed to study the impacts of blockage ratio through box culvert on shear stress, velocity distribution and the sediment transport in terms of the hydrodynamic features (water surface, velocity and shear stress) and morphological parameters (scour depth and sizes) conditions in accurately and efficiently. The renormalization group (RNG) turbulence model was selected due to its high ability to predict the velocity profiles and turbulent kinetic energy for the flow through culvert [39]. The one-fluid incompressible mode was used to simulate the water surface. Volume of fluid (VOF) method was employed in FLOW 3D to tracks a liquid interface through arbitrary deformations and apply the correct boundary conditions at the interface [40].1.

Governing equations

Three-dimensional Reynolds-averaged Navier Stokes (RANS) equation was applied for incompressible viscous fluid motion. The continuity equation is as following:(4)VF∂ρ∂t+∂∂xρuAx+∂∂yρvAy+∂∂zρwAz=RDIF(5)∂u∂t+1VFuAx∂u∂x+vAy∂u∂y+ωAz∂u∂z=-1ρ∂P∂x+Gx+fx(6)∂v∂t+1VFuAx∂v∂x+vAy∂v∂y+ωAz∂v∂z=-1ρ∂P∂y+Gy+fy(7)∂ω∂t+1VFuAx∂ω∂x+vAy∂ω∂y+ωAz∂ω∂z=-1ρ∂P∂z+Gz+fz

ρ is the fluid density,

VF is the volume fraction,

(x,y,z) is the Cartesian coordinates,

(u,v,w) are the velocity components,

(Ax,Ay,Az) are the area fractions and

RDIF is the turbulent diffusion.

P is the average hydrodynamic pressure,

(Gx, Gy, Gz) are the body accelerations and

(fx, fy, fz) are the viscous accelerations.

The motion of sediment transport (suspended, settling, entrainment, bed load) is estimated by predicting the erosion, advection and deposition process as presented in [41].

The critical shields parameter is (θcr) is defined as the critical shear stress τcr at which sediments begin to move on a flat and horizontal bed [41]:(8)θcr=τcrgd50(ρs-ρ)

The Soulsby–Whitehouse [42] is used to predict the critical shields parameter as:(9)θcr=0.31+1.2d∗+0.0551-e(-0.02d∗)(10)d∗=d50g(Gs-1ν3where:

d* is the dimensionless grain size

Gs is specific weight (Gs = ρs/ρ)

The entrainment coefficient (0.005) was used to scale the scour rates and fit the experimental data. The settling velocity controls the Soulsby deposition equation. The volumetric sediment transport rate per width of the bed is calculated using Van Rijn [43].2.

Meshing and geometry of model

After many trials, it was found that the uniform cell size with 0.03 m cell size is the closest to the experimental results and takes less time. As shown in Fig. 3. In x-direction, the total model length in this direction is 700 cm with mesh planes at −100, 0, 300, 380 and 600 cm respectively from the origin point, in y-direction, the total model length in this direction is 66 cm at distances 0, 23, 43 and 66 cm respectively from the origin point. In z-direction, the total model length in this direction is 120 cm. with mesh planes at −20, 0, 20 and 100 cm respectively.3.

Boundary condition

As shown in Fig. 4, the boundary conditions of the model have been defined to simulate the experimental flow conditions accurately. The upstream boundary was defined as the volume flow rate with a different flow rate. The downstream boundary was defined as specific pressure with different fluid elevation. Both of the right side, the left side, and the bottom boundary were defined as a wall. The top boundary defined as specified pressure with pressure value equals zero.

5. Validation of experimental results and numerical results

The experimental results investigated the flow and scour characteristics downstream culvert due to different flow conditions. The measured value of maximum scour depth is compared with the simulated depth from FLOW 3D model as shown in Fig. 5. The scour results show that the simulated results from the numerical model is quite close to the experimental results with an average error of 3.6%. The water depths in numerical model results is so close to the experimental results as shown in Fig. 6 where the experiment and numerical results are compared at different submerged ratios and flow rates. The results appear maximum error percentage in water depths upstream and downstream the culvert is about 2.37%. This indicated that the FLOW 3D is efficient for the prediction of maximum scour depth and the flow depths downstream box culvert.

6. Computation time

The run time was chosen according to reaching to the stability limit. Hydraulic stability was achieved after 50 s, where the scour development may still go on. For run 1, the numerical simulation was run for 1000 s as shown in Fig. 7 where it mostly reached to scour stability at 800 s. The simulation time was taken 500 s at about 95% of scour stability.

7. Analysis and discussions

Fig. 8 shows the study sections where sec 1 represents to upstream section, sec2 represents to inside section and sec3 represents to downstream stream section. Table 1 indicates the scour hole dimensions at different blockage case. The symbol (B) represents to blockage and the number points to blockage ratio. B0 case signifies to the non-blocked case, B30 is that blockage height is 30% to the culvert height and so on.

Table 1. The scour results of different blockage ratio.

Casehb cmB = hb/hQ lit/sSFdd50 mmds/h measuredls/hdd/hld/hds/h estimated
B000351.261.692.50.581.500.275.000.46
B3060.30351.261.682.50.481.250.274.250.40
B50100.50351.221.742.50.451.100.244.000.37
B70140.70351.231.732.50.431.500.165.500.33

7.1. Scour hole geometry

The scour hole geometry mainly depends on the properties of soil of the bed downstream the fixed apron. From Table 1, the results show that the maximum scour depth in B0 case is about 0.58 of culvert height while the maximum deposition in B0 is 0.27 culvert height. There is a symmetric scour hole as shown in Fig. 9 in B0 case. An asymmetric scour hole is created in B50 and B70 due to turbulences that causes the deviation of the jet direction from the center of the flume where appear in Fig. 11 and Fig. 19.

7.2. Flow water surface

Fig. 10 presents the relative free surface water (hw/h) along the x-direction at center of the box culvert. From the mention Figure, it is easy to release the effect of different blockage ratios. The upstream water level rises by increasing the blockage ratio. Increasing upstream water level may cause flooding over the banks of the waterway. In the 70% blockage case, the upstream water level rises to 2.3 times of culvert height more than the non-blocked case at the same discharge and submerged ratio. The water surface profile shows an increase in water level upstream the culvert due to a decrease in transverse velocity. Because of decreasing velocity downstream culvert, there is an increase in water level before it reaches its uniform depth.

7.3. Velocity vectors

Scour downstream hydraulic structures mainly affects by velocities distribution and bed shear stress. Fig. 11 shows the velocity vectors and their magnitude in xz plane at the same flow conditions. The difference in the upstream water level due to the different blockage ratios is so clear. The maximum water level is in B70 and the minimum level is in B0. The inlet mean velocity value is about 0.88 m/s in B0 increases to 2.86 m/s in B70. As the blockage ratio increases, the inlet velocity increases. The outlet velocity in B0 case makes downward jet causes scour hole just after the fixed apron in the middle of the bed while the blockage causes upward water flow that appears clearly in B70. The upward jet decreases the scour depth to 0.13 culvert height less than B0 case. After the scour hole, the velocity decreases and the flow becomes uniform.

7.4. Velocity distribution

Fig. 12 represents flow velocity (Vx) distribution along the vertical depth (z/hu) upstream the inlet for the different blockage ratios at the same flow conditions. From the Figure, the maximum velocity creates closed to bed in B0 while in blocked case, the maximum horizontal velocity creates at 0.30 of relative vertical depth (z/hu). Fig. 13 shows the (Vz) distribution along the vertical depth (z/hu) upstream culvert at sec 1. From the mentioned Figure, it is easy to note that the maximum vertical is in B70 which appears that as the blockage ratio increases the vertical ratio also increases. In the non-blocked case. The vertical velocity (Vz) is maximum at (z/hu) equals 0.64. At the end of the fixed apron (sec 3), the horizontal velocity (Vx) is slowly increasing to reach the maximum value closed to bed in B0 and B30 while the maximum horizontal velocity occurs near to the top surface in B50 and B70 as shown in Fig. 14. The vertical velocity component along the vertical depth (z/hd) is presented in Fig. 15. The vertical velocity (Vz) is maximum in B0 at vertical depth (z/hd) 0.3 with value 0.45 m/s downward. Figs. 16 and 17 observe velocity components (Vx, Vz) along the vertical depth just after the end of blockage length at the centerline of the culvert barrel. It could be noticed the uniform velocity distribution in B0 case with horizontal velocity (Vx) closed to 1.0 m/s and vertical velocity closed to zero. In the blocked case, the maximum horizontal velocity occurs in depth more than the blockage height.

7.5. Bed velocity distribution

Fig. 18 presents the x-velocity vectors at 1.5 cm above the bed for different blockage ratios from the velocity vectors distribution and magnitude, it is easy to realize the position of the scour hole and deposition region. In B0 and B30, the flow is symmetric so that the scour hole is created around the centerline of flow while in B50 and B70 cases, the flow is asymmetric and the scour hole creates in the right of flow direction in B50. The maximum scour depth is found in the left of flow direction in B70 case where the high velocity region is found.

8. Maximum scour depth prediction

Regression analysis is used to estimate maximum scour depth downstream box culvert for different ratios of blockage by correlating the maximum relative scour by other variables that affect on it in one formula. An equation is developed to predict maximum scour depth for blocked and non-blocked. As shown in the equation below, the relative maximum scour depth(ds/hd) is a function of densimetric Froude number (Fd), blockage ratio (B) and submerged ratio (S)(11)dsh=0.56Fd-0.20B+0.45S-1.05

In this equation the coefficient of correlation (R2) is 0.82 with standard error equals 0·08. The developed equation is valid for Fd = [0.9 to 2.10] and submerged ratio (S) ≥ 1.00. Fig. 19 shows the comparison between relative maximum scour depths (ds/h) measured and estimated for different blockage ratios. Fig. 20 clears the comparison between residuals and ds/h estimated for the present study. From these figures, it could be noticed that there is a good agreement between the measured and estimated relative scour depth.

9. Comparison with previous scour equations

Many previous scour formulae have been produced for calculation the maximum scour depth downstream non-blockage culvert. These equations have been included the effect of flow regime, culvert shape, soil properties and the flow rate on maximum scour depth. Two of previous experimental studies data have been chosen to be compared with the present study results in non-blocked study data. Table 2 shows comparison of culvert shape, densmetric Froude number, median particle size and scour equations for these previous studies. By applying the present study data in these studies scour formula as shown in Fig. 21, it could be noticed that there are a good agreement between present formula results and others empirical equations results. Where that Lim [44] and Abt [4] are so closed to the present study data.

Table 2. Comparison of some previous scour formula.

ResearchersFdCulvert shaped50(mm)Proposed equationSubmerged ratio
Present study0.9–2.11square2.75dsh=0.56Fd-0.20B+0.45S-1.051.25–1.75
Lim [44]1–10Circular1.65dsh=0.45Fd0.47
Abt [4]Fd ≥ 1Circular0.22–7.34-dsh=3.67Fd0.57∗D500.4∗σ-0.4

10. Conclusions

The present study has shown that the FLOW 3D model can accurately simulate water surface and the scour hole characteristics downstream the box culvert with error percentage in water depths does not exceed 2.37%. Velocities distribution through and outlets culvert barrel helped on understanding the scour hole shape.

The blockage through culvert had caused of increasing of water surface upstream structure where the upstream water level in B70 was 2.3 of culvert height more than non-blocked case at the same discharge that could be dangerous on the stability of roads above. The depth averaged velocity through culvert barrel increased by 3 times its value in non-blocked case.

On the other hand, blockage through culvert had a limited effect on the maximum scour depth. The little effect of blockage on maximum scour depth could be noticed in Fig. 11. From this Figure, it could be noted that the residual part of culvert barrel after the blockage part had made turbulences. These turbulences caused the deviation of the flow resulting in the formation of asymmetric scour hole on the side of channel. This not only but in B70 the blockage height caused upward jet which made a wide far scour hole as cleared from the results in Table 1.

An empirical equation was developed from the results to estimate the maximum scour depth relative to culvert height function of blockage ratio (B), submerged ratio (S), and densimetric Froude number (Fd). The equation results was compared with some scour formulas at the same densimetric Froude number rang where the present study results was in between the other equations results as shown in Fig. 21.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1]P. Sarathi, M. Faruque, R. BalachandarInfluence of tailwater depth, sediment size and densimetric Froude number on scour by submerged square wall jetsJ. Hydraul. Res., 46 (2) (2008), pp. 158-175CrossRefView Record in ScopusGoogle Scholar[2]H. Abida, R. TownsendLocal scour downstream of box-culvert outletsJ. Irrig. Drain. Eng., 117 (3) (1991), pp. 425-440CrossRefView Record in ScopusGoogle Scholar[3]S.R. Abt, C.A. Donnell, J.F. Ruff, F.K. DoehringCulvert Slope and Shape Effects on Outlet ScourTransp. Res. Rec., 1017 (1985), pp. 24-30View Record in ScopusGoogle Scholar[4]S.R. Abt, R.L. Kloberdanz, C. MendozaUnified culvert scour determinationJ. Hydraul. Eng., 110 (10) (1984), pp. 1475-1479CrossRefView Record in ScopusGoogle Scholar[5]J.P. Bohan, Erosion And Riprap Requirements At Culvert And Storm-Drain Outlets, ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS1970.Google Scholar[6]C. Mendoza, S.R. Abt, J.F. RuffHeadwall influence on scour at culvert outletsJ. Hydraul. Eng., 109 (7) (1983), pp. 1056-1060CrossRefView Record in ScopusGoogle Scholar[7]H. Breusers, A. Raudkivi, Scouring, hydraulic structures design manual, vol. 143, IAHR, AA Balkema, Rotterdam, 1991.Google Scholar[8]K. Ali, S. LimLocal scour caused by submerged wall jetsProc. Inst. Civ. Eng., 81 (4) (1986), pp. 607-645CrossRefView Record in ScopusGoogle Scholar[9]O. Aderibigbe, N. RajaratnamEffect of sediment gradation on erosion by plane turbulent wall jetsJ. Hydraul. Eng., 124 (10) (1998), pp. 1034-1042View Record in ScopusGoogle Scholar[10]F.W. Blaisdell, C.L. AndersonA comprehensive generalized study of scour at cantilevered pipe outletsJ. Hydraul. Res., 26 (4) (1988), pp. 357-376CrossRefView Record in ScopusGoogle Scholar[11]Y.-M. Chiew, S.-Y. LimLocal scour by a deeply submerged horizontal circular jetJ. Hydraul. Eng., 122 (9) (1996), pp. 529-532View Record in ScopusGoogle Scholar[12]R.A. Day, S.L. Liriano, W.R. WhiteEffect of tailwater depth and model scale on scour at culvert outletsProc. Instit. Civil Eng. – Water Marit. Eng., 148 (3) (2001), pp. 189-198http://www.icevirtuallibrary.com/doi/10.1680/wame.2001.148.3.18910.1680/wame.2001.148.3.189View Record in ScopusGoogle Scholar[13]S. Emami, A.J. SchleissPrediction of localized scour hole on natural mobile bed at culvert outletsScour and Erosion (2010), pp. 844-853CrossRefView Record in ScopusGoogle Scholar[14]S. Sorourian, A. Keshavarzi, J. Ball, B. SamaliStudy of Blockage Effect on Scouring Pattern Downstream of a Box Culvert under Unsteady FlowAustr. J Water Resor. (2013)Google Scholar[15]S. Sorourian, Turbulent Flow Characteristics At The Outlet Of Partially Blocked Box Culverts, in: 36th IAHR World Congress, The Hague, the Netherlands, 2015.Google Scholar[16]J. Ruff, S. Abt, C. Mendoza, A. Shaikh, R. KloberdanzScour at culvert outlets in mixed bed materialsUnited States. Federal Highway Administration. Office of Research and Development (1982)Google Scholar[17]S.A. Ansari, U.C. Kothyari, K.G.R. RajuInfluence of cohesion on scour under submerged circular vertical jetsJ. Hydraul. Eng., 129 (12) (2003), pp. 1014-1019View Record in ScopusGoogle Scholar[18]B. Crookston B. Tullis, Scour and Riprap Protection in a Bottomless Arch Culvert, in: World Environmental and Water Resources Congress 2008: Ahupua’A, 2008, pp. 1–10.Google Scholar[19]S.R. Abt, J. Ruff, F. Doehring, C. DonnellInfluence of culvert shape on outlet scourJ. Hydraul. Eng., 113 (3) (1987), pp. 393-400View Record in ScopusGoogle Scholar[20]Y.H. Chen, Scour at outlets of box culverts, Colorado State University, 1970.Google Scholar[21]S. Abt, P. Thompson, T. LewisEnhancement of the culvert outlet scour estimation equationsTransp. Res. Rec. J. Transp. Res. Board, 1523 (1996), pp. 178-185View Record in ScopusGoogle Scholar[22]F.K. Doehring, S.R. AbtDrop height influence on outlet scourJ. Hydraul. Eng., 120 (12) (1994), pp. 1470-1476CrossRefView Record in ScopusGoogle Scholar[23]W. Weeks, A. Barthelmess, E. Rigby, G. Witheridge, R. Adamson, Australian rainfall and runoff revison project 11: blockage of hydraulic structures, 2009.Google Scholar[24]W. Weeks, G. Witheridge, E. Rigby, A. BarthelmessProject 11: blockage of hydraulic structuresEngineers Australia (2013)Google Scholar[25]S.R. Abt, T.E. Brisbane, D.M. Frick, C.A. McKnightTrash rack blockage in supercritical flowJ. Hydraul. Eng., 118 (12) (1992), pp. 1692-1696View Record in ScopusGoogle Scholar[26]E. Rigby, M. Boyd, S. Roso, P. Silveri, A. Davis, Causes and effects of culvert blockage during large storms, in: Global solutions for urban drainage, 2002, pp. 1–16.Google Scholar[27]S. Roso, M. Boyd, E. Rigby, R. VanDrie“Prediction of increased flooding in urban catchments due to debris blockage and flow diversionsProceedings Novatech (2004), pp. 8-13View Record in ScopusGoogle Scholar[28]C.-D. Jan, C.-L. ChenDebris flows caused by Typhoon Herb in Taiwanin Debris-Flow Hazards and Related Phenomena, Springer (2005), pp. 539-563CrossRefGoogle Scholar[29]L.W. Zevenbergen, P.F. Lagasse, P.E. Clopper, Effects of debris on bridge pier scour, in: World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat, 2007, pp. 1–10.Google Scholar[30]A. Barthelmess, E. Rigby, Estimating Culvert and Bridge Blockages-a Simplified Procedure, in: Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Engineers Australia, 2011, pp. 39.Google Scholar[31]E. Rigby, A. Barthelmess, Culvert Blockage Mechanisms and their Impact on Flood Behaviour, in: Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Engineers Australia, 2011, pp. 380.Google Scholar[32]G. Streftaris, N. Wallerstein, G. Gibson, S. ArthurModeling probability of blockage at culvert trash screens using Bayesian approachJ. Hydraul. Eng., 139 (7) (2012), pp. 716-726Google Scholar[33]R. Jaeger, T. LuckeInvestigating the relationship between rainfall intensity, catchment vegetation and debris mobilityInt. J. GEOMATE, 12 (33) (2017), pp. 22-29 Download PDFView Record in ScopusGoogle Scholar[34]S. Amiraslani, J. Fahimi, H. Mehdinezhad, The Numerical Investigation of Free Falling Jet’s Effect On the Scour of Plunge Pool, in: XVIII International conference on water resources, Tehran University, Iran, 2008.Google Scholar[35]A.W. Nielsen, X. Liu, B.M. Sumer, J. FredsøeFlow and bed shear stresses in scour protections around a pile in a currentCoast. Eng., 72 (2013), pp. 20-38ArticleDownload PDFView Record in ScopusGoogle Scholar[36]G. Epely-Chauvin, G. De Cesare, S. SchwindtNumerical modelling of plunge pool scour evolution in non-cohesive sedimentsEng. Appl. Comput. Fluid Mech., 8 (4) (2014), pp. 477-487 Download PDFCrossRefView Record in ScopusGoogle Scholar[37]H. Karami, H. Basser, A. Ardeshir, S.H. HosseiniVerification of numerical study of scour around spur dikes using experimental dataWater Environ. J., 28 (1) (2014), pp. 124-134CrossRefView Record in ScopusGoogle Scholar[38]S.-H. Oh, K.S. Lee, W.-M. JeongThree-dimensional experiment and numerical simulation of the discharge performance of sluice passageway for tidal power plantRenew. Energy, 92 (2016), pp. 462-473ArticleDownload PDFView Record in ScopusGoogle Scholar[39]M.A. Khodier, B.P. TullisExperimental and computational comparison of baffled-culvert hydrodynamics for fish passageJ. Appl. Water Eng. Res. (2017), pp. 1-9CrossRefView Record in ScopusGoogle Scholar[40]F.S. Inc., FLOW-3D user’s manual, Flow Science, Inc., 2009.Google Scholar[41]G. Wei, J. Brethour, M. Grünzner, J. BurnhamSedimentation scour modelFlow Science Report, 7 (2014), pp. 1-29View Record in ScopusGoogle Scholar[42]R. Soulsby, R. Whitehouse, Threshold of sediment motion in coastal environments, in: Pacific Coasts and Ports’ 97: Proceedings of the 13th Australasian Coastal and Ocean Engineering Conference and the 6th Australasian Port and Harbour Conference, vol. 1, Centre for Advanced Engineering, University of Canterbury, 1997, pp. 145.Google Scholar[43]L.C.v. RijnSediment transport, part II: suspended load transportJ. Hydraul. Eng., 110 (11) (1984), pp. 1613-1641View Record in ScopusGoogle Scholar[44]S Y LIMScour below unsubmerged full-flowing culvert outletsProc. Instit. Civil Eng. – Water Marit. Energy, 112 (2) (1995), pp. 136-149http://www.icevirtuallibrary.com/doi/10.1680/iwtme.1995.2765910.1680/iwtme.1995.27659View Record in ScopusGoogle Scholar

Peer review under responsibility of Faculty of Engineering, Alexandria University.

Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm): d' is the water depth above the crest; y' is the distance normal to the crest invert

Study of inception point, void fraction and pressure over pooled stepped spillways using Flow-3D

Khosro Morovati , Afshin Eghbalzadeh 
International Journal of Numerical Methods for Heat & Fluid Flow

ISSN: 0961-5539

Article publication date: 3 April 2018

Abstract

많은 계단식 배수로 지오메트리 설계 지침이 평평한 단계를 위해 개발되었지만 통합 단계를 설계하는 것이 더 효율적으로 작동하는 배수로에 대한 적절한 대안이 될 수 있습니다.

이 논문은 POOL의 다른 높이에서 공기 연행과 보이드 비율의 시작점을 다루는 것을 목표로 합니다. 그 후, FLOW-3D 소프트웨어를 사용하여 POOL과 경사면의 높이를 다르게 하여 폭기된 지역과 폭기되지 않은 지역에서 압력 분포를 평가했습니다.

얻어진 수치 결과와 실험 결과의 비교는 본 연구에 사용된 모든 방류에 대해 잘 일치했습니다. POOL 높이는 시작 지점 위치에 미미한 영향을 미쳤습니다. 공극률의 값은 높은 방류에 비해 낮은 방전에서 더 많은 영향을 받았습니다.

여수로의 마루(통기되지 않은 지역)에서는 음압이 나타나지 않았으며 각 방류에서 마루를 따라 높이가 15cm인 수영장에서 최대 압력 값이 얻어졌습니다.

모든 사면에서 웅덩이 및 평평한 계단형 여수로의 계단층 부근에서는 음압이 형성되지 않았습니다. 그러나 평단식 여수로에 비해 평단식 여수로의 수직면 부근에서 음압이 더 많이 형성되어 평단식 슈트에서 캐비테이션 현상이 발생할 확률이 증가하였습니다.

Study of inception point, void fraction and pressure over pooled
stWhile many stepped spillways geometry design guidelines were developed for flat steps, designing pooled steps might be an appropriate alternative to spillways working more efficiency. This paper aims to deal with the inception point of air-entrainment and void fraction in the different height of the pools. Following that, pressure distribution was evaluated in aerated and non-aerated regions under the effect of different heights of the pools and slopes through the use of the FLOW-3D software. Comparison of obtained numerical results with experimental ones was in good agreement for all discharges used in this study. Pools height had the insignificant effect on the inception point location. The value of void fraction was more affected in lower discharges in comparison with higher ones. Negative pressure was not seen over the crest of spillway (non-aerated region), and the maximum pressure values were obtained for pools with 15 cm height along the crest in each discharge. In all slopes, negative pressure was not formed near the step bed in the pooled and flat stepped spillways. However, negative pressure was formed in more area near the vertical face in the flat stepped spillway compared with the pooled stepped spillway which increases the probability of cavitation phenomenon in the flat stepped chute.

Design/methodology/approach

압력, 공극률 및 시작점을 평가하기 위해 POOL된 계단식 여수로가 사용되었습니다. 또한 POOL의 다른 높이가 사용되었습니다. 이 연구의 수치 시뮬레이션은 Flow-3D 소프트웨어를 통해 수행되었습니다. 얻어진 결과는 풀이 압력, 공극률 및 시작점을 포함한 2상 유동 특성에 영향을 미칠 수 있음을 나타냅니다.

Findings

마루 위에는 음압이 보이지 않았습니다. 압력 값은 사용된 모든 높이와 15cm 높이에서 얻은 최대 값에 대해 다릅니다. 또한, 풀링 스텝은 플랫 케이스에 비해 음압점 감소에 더 효과적인 역할을 하였습니다. 시작 지점 위치는 특히 9 및 15cm 높이에 대해 스키밍 흐름 영역과 비교하여 낮잠 및 전환 흐름 영역에서 더 많은 영향을 받았습니다.

Keywords

Citation

Morovati, K. and Eghbalzadeh, A. (2018), “Study of inception point, void fraction and pressure over pooled stepped spillways using Flow-3D”, International Journal of Numerical Methods for Heat & Fluid Flow, Vol. 28 No. 4, pp. 982-998. https://doi.org/10.1108/HFF-03-2017-0112

Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h  step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm):  d' is the water depth above the crest; y' is the distance normal to the crest invert
Figure 1- Schematic diagram of pooled stepped spillway conducted by Felder et al. (2012A): Notes: h step height (10 cm): w pool height (3.1 cm): l horizontal step length (20 cm): lw pool weir length (1.5 cm): d’ is the water depth above the crest; y’ is the distance normal to the crest invert
Figure 2- meshing domain and distribution of blocks
Figure 2- meshing domain and distribution of blocks
Figure 3- Comparison of numerical simulation with experimental data by Felder et al. (2012A);  mesh convergence analysis; pooled stepped spillway (slope: 26.6 0 )
Figure 3- Comparison of numerical simulation with experimental data by Felder et al. (2012A); mesh convergence analysis; pooled stepped spillway (slope: 26.6 0 )
Figure 4- Comparison of numerical simulation with experimental data by Felder et al. (2012A);  Flat stepped spillway (slope: 0 26 6. )
Figure 4- Comparison of numerical simulation with experimental data by Felder et al. (2012A); Flat stepped spillway (slope: 0 26 6. )
Figure 5-Comparison of numerical simulation with experimental data by Felder et al. (2012B); pooled  and flat stepped spillways (slope: 0 9.8 )
Figure 5-Comparison of numerical simulation with experimental data by Felder et al. (2012B); pooled and flat stepped spillways (slope: 0 9.8 )
Figure 6- TKE distribution on steps 8, 9 and 10 for four different mesh numbers: 261252 (model 1),  288941 (model 2), 323578 (model 3) and 343154 (model 4)
Figure 6- TKE distribution on steps 8, 9 and 10 for four different mesh numbers: 261252 (model 1), 288941 (model 2), 323578 (model 3) and 343154 (model 4)
Figure 7- Comparison of obtained Void fraction distribution on step 10 in numerical simulation with  experimental work conducted by Felder et al. (2012A); (slope 26.60 )
Figure 7- Comparison of obtained Void fraction distribution on step 10 in numerical simulation with experimental work conducted by Felder et al. (2012A); (slope 26.60 )
Figure 8- Results of inception point of air entrainment in different height of the pools: comparison with  empirical correlations (Eqs 8-9), experimental (Felder et al. (2012A)) and numerical data
Figure 8- Results of inception point of air entrainment in different height of the pools: comparison with empirical correlations (Eqs 8-9), experimental (Felder et al. (2012A)) and numerical data
Figure 9- Void fraction distribution for different pool heights on steps 10; slope 26.6 0
Figure 9- Void fraction distribution for different pool heights on steps 10; slope 26.6 0
Figure 10- Comparison of pressure distribution between numerical simulation and experimental work  conducted by Zhang and Chanson (2016); flat stepped spillway (slope: 0 45 )
Figure 10- Comparison of pressure distribution between numerical simulation and experimental work conducted by Zhang and Chanson (2016); flat stepped spillway (slope: 0 45 )
Figure 11- A comparison of the pressure distribution above the crest of the spillway; B comparison of the  free surface profile along the crest of the spillway.  Note: x' indicates the longitudinal distance from the starting point of the crest.
Figure 11- A comparison of the pressure distribution above the crest of the spillway; B comparison of the free surface profile along the crest of the spillway. Note: x’ indicates the longitudinal distance from the starting point of the crest.
Figure 12- pressure distribution along crest of spillway in different discharges; slope 26.6
Figure 12- pressure distribution along crest of spillway in different discharges; slope 26.6
Figure 13- Pressure distribution near the last step bed for different slopes and discharges: x'' indicatesthe  longitudinal distance from the intersection of the horizontal and vertical faces of step 10; y" is the distance from the intersection of the horizontal and vertical faces in the vertical direction
Figure 13- Pressure distribution near the last step bed for different slopes and discharges: x” indicatesthe longitudinal distance from the intersection of the horizontal and vertical faces of step 10; y” is the distance from the intersection of the horizontal and vertical faces in the vertical direction
Figure 14- Pressure distribution adjacent the vertical face of step 9 for different discharges and slopes
Figure 14- Pressure distribution adjacent the vertical face of step 9 for different discharges and slopes
Table1- Used discharges for assessments of mesh convergence analysis and hydraulic  characteristics
Table1- Used discharges for assessments of mesh convergence analysis and hydraulic characteristics

Conclusion

본 연구에서는 자유표면을 모사하기 위해 VOF 방법과 k -ε (RNG) 난류 모델을 활용하여 FLOW-3D 소프트웨어를 사용하였고, 계단식 배수로의 유동을 모사하기 위한 목적으로 난류 특성을 모사하였다. 얻은 결과는 수치 모델이 시작점 위치, 보이드 비율 및 압력을 적절하게 시뮬레이션했음을 나타냅니다. 풀의 높이는 공기 유입 위치에 미미한 영향을 미치므로 얻은 결과는 이 문서에서 제시된 상관 관계와 잘 일치했습니다. 즉, 사용 가능한 상관 관계를 서로 다른 풀 높이에 사용할 수 있습니다. 공극률의 결과는 스텝 풀 근처의 나프 유동 영역에서 공극율 값이 다른 배출보다 더 큰 것으로 나타났다. 더욱이 고방출량 .0 113m3/s에서 수영장 높이를 변경해도 수영장 표면 근처의 공극률 값에는 영향을 미치지 않았습니다.

낮잠 및 전환 체제의 압력 분포에 대한 0 및 3cm 높이의 수영장 효과는 많은 지점에서 대부분 유사했습니다. 더욱이 조사된 모든 높이에서 여수로의 마루를 따라 부압이 없었습니다. 여수로 끝단의 바닥 부근의 압력 결과는 평평하고 고인 경우 부압이 발생하지 않았음을 나타냅니다. 수직면 부근의 음압은 웅덩이에 비해 평평한 계단형 여수로의 깊이(w=0 cm)의 대부분에서 발생하였다. 또한 더 큰 사면에 대한 풀링 케이스에서 음압이 제거되었습니다. 평단식 여수로에서는 계단의 수직면에 인접한 더 넓은 지역에서 음압이 발생하였기 때문에 이 여수로에서는 고형단식여수로보다 캐비테이션 현상이 발생할 가능성이 더 큽니다.

In this study, the FLOW-3D software was used through utilizing the VOF method and k −ε (RNG) turbulence model in order to simulate free surface, and turbulence characteristics for the purpose of simulating flow over pooled stepped spillway. The results obtained indicated that the numerical model properly simulated the inception point location, void fraction, and pressure. The height of the pools has the insignificant effect on the location of air entrainment, so that obtained results were in good agreement with the correlations presented in this paper. In other words, available correlations can be used for different pool heights. The results of void fraction showed that the void fraction values in nappe flow regime near the step pool were more than the other discharges. Furthermore in high discharge, 0.113m3/s, altering pool height had no effect on the value of void fraction near the pool surface.

The effect of the pools with 0 and 3 cm heights over the pressure distribution in nappe and transition regimes was mostly similar in many points. Furthermore, in all examined heights there was no negative pressure along the crest of the spillway. The pressure results near the bed of the step at the end of the spillway indicated that negative pressure did not occur in the flat and pooled cases. Negative pressure near the vertical face occurred in the most part of the depth in the flat stepped spillway (w=0 cm) in comparison with the pooled case. Also, the negative pressure was eliminated in the pooled case for the larger slopes. Since negative pressure occurred in a larger area adjacent the vertical face of the steps in the flat stepped spillways, it is more likely that cavitation phenomenon occurs in this spillway rather than the pooled stepped spillways.

References

  1. André, S. (2004), “High velocity aerated flows on stepped chutes with macro-roughness elements.” Ph.D. thesis,
    Laboratoire de Constructions Hydraulics (LCH), EPFL, Lausanne, Switzerland, 272 pages.
  2. Attarian, A. Hosseini, Kh. Abdi, H and Hosseini, M. (2014), “The Effect of the Step Height on Energy
    Dissipation in Stepped Spillways Using Numerical Simulation”. Arabian Journal for Science and
    Engineering, 39(4), 2587-2594.
  3. Bombardelli, F.A. Meireles. I. Matos, J. (2011), “Laboratory measurements and multi-block numerical
    simulations of the mean flow and turbulence in the non-aerated skimming flow region of steep stepped
    spillways”. Environmental fluid mechanics, 11(3) 263-288.
  4. Chakib, B. (2013), “Numerical Computation of Inception Point Location for Flat-sloped Stepped Spillway”.
    International Journal of Hydraulic Engineering; 2(3): 47-52.
  5. Chakib, B. Mohammed, H. (2015), “Numerical Simulation of Air Entrainment for Flat-Sloped Stepped Spillway.
    Journal of computational multiphase flows”, Volume 7. Number 1.
  6. Chanson, H. Toombes, L. (2002), “Air–water flows down stepped chutes: turbulence and flow structure
    observations”. International Journal of Multiphase Flow, 28(11) 1737-1761
  7. Chen, Q. Dai, G. Liu, H. (2002), “Volume of Fluid Model for Turbulence Numerical Simulation
    of Stepped Spillway Overflow”. DOI: 10.1061/(ASCE)0733-9429128:7(683).
  8. Cheng, X. Chen, Y. Luo, L. (2006), “Numerical simulation of air-water two-phase flow over stepped spillways”.
    Science in China Series E: Technological Sciences, 49(6), 674-684.
  9. Cheng, X. Luo, L. Zhao, W. (2004), “Study of aeration in the water flow over stepped spillway”. In: Proceedings
    of the world water congress.
  10. Chinnarasri, Ch. Kositgittiwong, D. Julien, Y. (2013), “Model of flow over spillways by computational fluid
    dynamics”. Proceedings of the ICE – Water Management, Volume 167(3) 164 –175.
  11. Dastgheib, A. Niksokhan, M.H. and Nowroozpour, A.R. (2012), “Comparing of Flow Pattern and Energy
    Dissipation over different forms of Stepped Spillway”. World Environmental and Water Resources
    Congress ASCE.
  12. Eghbalzadeh, A. Javan, M. (2012), “Comparison of mixture and VOF models for numerical simulation of air
    entrainment in skimming flow over stepped spillway”. Procedia Engineering, 28. 657-660.
  13. Felder, S, Chanson, H. (2012), “Free-surface Profiles, Velocity and Pressure Distributions on a
    Broad-Crested Weir: a Physical study “Free-surface Profiles, Velocity and Pressure Distributions on a
    Broad-Crested Weir: a Physical study
  14. Felder, S. Fromm, Ch. Chanson, H. (2012B), “Air entrainment and energy dissipation on a 8.9 slope stepped
    spillway with flat and pooled steps”, School of Civil Engineering, The University of Queensland,.
    Brisbane, Australia.
  15. Felder, S. Chanson, H. (2014A), Triple decomposition technique in air–water flows: application to instationary
    flows on a stepped spillway. International Journal of Multiphase Flow, 58, 139-153.
  16. Felder, S. Chanson, H. (2014B), Effects of step pool porosity upon flow aeration and energy dissipation on
    pooled stepped spillways. Journal of Hydraulic Engineering, 140(4), 04014002.
  17. Felder, S. Chanson, H. (2013A), “Air entrainment and energy dissipation on porous pooled stepped spillways”.
    Paper presented at the International Workshop on Hydraulic Design of Low-Head Structures.
  18. Felder, S. Chanson, H. (2013B), “Aeration, flow instabilities, and residual energy on pooled stepped spillways of
    embankment dams”. Journal of irrigation and drainage engineering, 139(10) 880-887.
  19. Felder, S. Guenther, Ph. Chanson, H. (2012A). “Air-water flow properties and energy dissipation on stepped
    spillways: a physical study of several pooled stepped configurations”, School of Civil Engineering, The
    University of Queensland,. Brisbane, Australia.
  20. Flow Science, (2013). “FLOW-3D user’s manual”, version 10.1. Flow Science, Inc, Los Alamos.
  21. Frizell, K.W. Renna, F.M. Matos, J. (2012), “Cavitation potential of flow on stepped spillways”. Journal of
    Hydraulic Engineering, 139(6), 630-636.
  22. Gonzalez, C. (2005), “An experimental study of free-surface aeration on embankment stepped chutes”,
    department of civil engineering, Brisbane, Australia, Phd thesis.
  23. Gonzalez, C.A. Chanson, H. (2008), “Turbulence manipulation in air–water flows on a stepped chute: An
    experimental study”. European Journal of Mechanics-B/Fluids, 27(4), 388-408.
  24. Guenther, Ph.. Felder, S. Chanson, H. (2013), “Flow aeration, cavity processes and energy dissipation on flat and
    pooled stepped spillways for embankments”. Environmental fluid mechanics, 13(5) 503-525.
  25. Hamedi, A. Mansoori, A. Malekmohamadi, I. Roshanaei, H. (2011), “Estimating Energy Dissipation in Stepped
    Spillways with Reverse Inclined Steps and End Sill”. World Environmental and Water Resources
    Congress, ASCE.
  26. Hirt, C.W. (2003), “Modeling Turbulent Entrainment of Air at a Free Surface”. Flow Science Inc.
  27. Hunt, S.L. Kadavy, K.C. (2013), “Inception point for enbankment dam stepped spillway”. J. Hydraul. Eng.,
    139(1), 60–64.
  28. Hunt, S.L. Kadavy, K.C. (2010), “Inception Point Relationship for Flat-Sloped Stepped
    Spillways”. DOI: 10.1061/ASCEHY.1943-7900.0000297.
  29. Matos, J. Quintela, A. (2000), “Air entrainment and safety against cavitation damage in stepped spillways over
    RCC dams. In: Proceeding Intl. Workshop on Hydraulics of Stepped Spillways”, VAW, ETH-Zurich, H.E.
    Minor and W.H. Hager. Balkema. 69–76.
  30. Meireles, I. Matos, J. (2009), “Skimming flow in the nonaerated region of stepped spillways over embankment
    dams”. J. Hydraul. Eng., 135(8), 685–689.
  31. Miang-liang, ZH. Yong-ming, SH. (2008), “Three dimentional simulation of meandering river basin on 3-D
    RNG k − ε turbulence model”. Journal of hydrodynamics, 20(4): 448-455.
  32. Morovati, Kh. Eghbalzadeh, A. Javan, M. (2015), “Numerical investigation of the configuration of the pools on
    the flowPattern passing over pooled stepped spillway in skimming flow regime. Acta Mech, DOI
    10.1007/s00707-015-1444-x
  33. Morovati, Kh. Eghbalzadeh, A. Soori, S. (2016), “Numerical Study of Energy Dissipation of Pooled Stepped
    spillway”. Civil Engineering Journal. Vol. 2, No. 5.
  34. Nikseresht, A.H. Talebbeydokhti, N. and Rezaei, M.J. (2013), “Numerical simulation of two-phase flow on steppool spillways”. Scientia Iranica, A 20 (2), 222–230.
  35. Peyras, L. Royet, P. Degoutte, G. (1990), “Flow and energy dissipation over stepped gabion weirs”. ASCE
    Convention.
  36. Qun, Ch. Guang-qing, D. Feu-qing, Zh. Qing, Y. (2004). “Three-dimensional turbulence numerical simulation of
    a stepped spillway overflow”. Journal of hydrodynamics, Ser. B, 1, 74-79.
  37. Relvas, A. T. Pinheiro, A. N. (2008), Inception point and air concentration in flows on stepped chutes lined with
    wedge-shaped concrete blocks. Journal of Hydraulic Engineering, 134(8), 1042-1051
  38. Sanchez, M. (2000), “Pressure field in skimming flow over a stepped spillways”. In: Proceeding Intl. Workshop
    on Hydraulics of Stepped Spillways, VAW, ETH-Zurich, H.E. Minor and W.H. Hager. Balkema,
    137–146.
  39. Sarfaraz, M. Attari, J. Pfister, M. (2012), “Numerical Computation of Inception Point Location for Steeply
    Sloping Stepped Spillways”. 9th International Congress on Civil Engineering, May 8-10. Isfahan
    University of Technology (IUT), Isfahan, Iran.
  40. Savage, Bruce M. Michael C. Johnson. (2001), “Flow over ogee spillway: Physical and numerical model case
    study.” Journal of Hydraulic Engineering 127.8:640-649.
  41. Shahhedari, H. Jafari Nodoshan, E. Barati, R. Azhdary moghadam, M. (2014). “Discharge coeficient and energy
    dissipation over stepped spillway under skimming flow regime”. KSCE Journal of Civil Engineering, DOI
    10.1007/s12205-013-0749-3.
  42. Tabbara, M. Chatila, J. Awwad, R. (2005), “Computational simulation of flow over stepped spillways”.
    Computers & structures, 83(27) 2215-2224.
  43. Thorwarth, J. (2008), “Hydraulisches Verhalten der Treppengerinne mit eingetieften Stufen—Selbstinduzierte
    Abflussinstationaritäten und Energiedissipation” [Hydraulics of pooled stepped spillways— Self-induced
    unsteady flow and energy dissipation]. Ph.D. thesis, Univ. of Aachen, Aachen, Germany (in German).
  44. WeiLin, XU. ShuJing, LUO, QiuWen, ZH. Jing, LUO. (2015), “Experimental study on pressure and aeration
    characteristics in stepped chute flows. SCIENCE CHINA. Vol.58 No.4: 720–726. doi: 10.1007/s11431-015-
    5783-6.
  45. Xiangju, Ch. Yongcan, C. Lin, L. (2006), “Numerical simulation of air-water two-phase flow over stepped
    spillways”. Science in China Series E: Technological Sciences, 49(6), 674-684.
  46. Zare, K.H. Doering, J.C. (2012), “Inception Point of Air Entrainment and Training Wall
    Characteristics of Baffles and Sills on Stepped Spillways”. DOI: 10.1061/(ASCE)HY
    .1943-7900.0000630.
  47. Zhan, J. Zhang, J. Gong, Y. (2016), “Numerical investigation of air-entrainment in skimming flow over stepped
    spillways”. Theoretical and Applied Mechanics Letters. Volume 6. Pages 139–142.
  48. Zhang, G. Chanson, H. (2016), Hydraulics of the developing flow region of stepped spillways. II: Pressure and
    velocity fields. Journal of Hydraulic Engineering, 142(7).
  49. Zhenwei, M. Zhiyan, Zh. Tao, Zh. (2012), “Numerical Simulation of 3-D Flow Field of Spillway based on VOF
    Method”. Procedia Engineering, 28, 808-812.
  50. Zhi-yong, D. Hun-wei, L.J. (2006), “Numerical simulation of skimming flow over mild stepped channel”.
    Journal of Hydrodynamics, Ser. B, 18(3) 367-371.
  51. ZhongDong, Q. XiaoQing, H. WenXin, H. António, A. (2009), “Numerical simulation and analysis of water
    flow over stepped spillways”. Science in China Series E: Technological Sciences, 52(7) 1958-1965.
Dynamic Pressure at Flip Buckets of Chute Spillways

낙하 배수로의 플립 버킷에서의 동적 압력: 수치 해석

Dynamic Pressure at Flip Buckets of Chute Spillways: A Numerical Study

International Journal of Civil Engineering (2021)Cite this article

Abstract

이 연구는 이러한 구조물의 가장 중요한 설계 매개변수 중 하나인 슈트 여수로의 플립 버킷에서 동적 압력을 조사합니다. 첫째, 압력에 영향을 미치는 무차원 매개변수를 치수해석을 통해 결정하였다.

그 후, 플립 버킷으로 이어지는 슈트 여수로가 있는 선택된 댐의 특성에 따라 플립 버킷으로의 특정 Froude 수 간격과 슈트 경사 각도, 반경 및 플립 버킷 곡률 각도가 분석을 위해 선택되었습니다.

이러한 매개변수의 조합으로 FLOW-3D에서 총 137개 모델을 시뮬레이션하여 플립 버킷의 바닥 압력과 최대 압력 값을 얻었습니다.

다음으로 고려된 무차원 매개변수를 기반으로 다중 회귀 분석을 사용하여 슈트의 플립 버킷 다운스트림에서 바닥 압력과 최대 압력을 결정하기 위한 방정식이 제안되었습니다. 수치 모델링 실행 결과와 다중 회귀 분석을 사용하여 무차원 압력 관계의 미지의 계수를 결정하고 바닥 압력과 최대 압력에 대한 최종 방정식을 제시했습니다.

저압과 최고압을 결정하기 위해 제안된 식의 상관계수와 MAPE(Mean Absolute Percentage Error) 값은 각각 0.94와 0.96, 6.75%와 8.49%였습니다.

이 값은 제안된 방정식의 적절한 정확도를 나타냅니다. 제안된 방정식에서 Froude 수, 상대 곡률, 슈트 경사각, 이륙 각도 및 플립 버킷의 곡률 각도가 각각 저면 압력과 최대 압력에 가장 큰 영향을 미쳤습니다.

This study investigates the dynamic pressure at the flip buckets of chute spillways, which is one of the most important design parameters of these structures. First, the dimensionless parameters affecting pressure were determined by dimensional analysis. Following that, according to the characteristics of selected dams with chute spillways leading to flip buckets, certain Froude number intervals of inflow to the flip bucket, as well as the chute slope angle, radius, and flip bucket curvature angle were selected for analysis. The combination of these parameters resulted in a total of 137 models simulated in FLOW-3D to obtain bottom pressure and maximum pressure values in the flip bucket. Next, based on the dimensionless parameters considered, equations were proposed to determine the bottom pressure and maximum pressure in the flip bucket downstream of the chute, using multiple regression analysis. Using the numerical modeling run results, along with multiple regression analyses, the unknown coefficients of the dimensionless pressure relationship were determined, and final equations for the bottom pressure and maximum pressure were presented. The correlation coefficient and Mean Absolute Percentage Error (MAPE) values of the proposed equations for determining the bottom pressure and maximum pressure were 0.94 and 0.96, and, 6.75% and 8.49%, respectively. These values indicate the appropriate accuracy of the proposed equations. In the proposed equations, the Froude number, relative curvature, chute slope angle, takeoff angle, and flip bucket’s curvature angle, respectively, had the highest impacts on the bottom pressure and maximum pressure.

Keywords

  • Dam spillway
  • Flip bucket
  • Ski jump
  • Dynamic pressure
  • Numerical modeling
  • FLOW-3D
  • Fig. 1extended data figure 1
  • Fig. 2extended data figure 2
  • Fig. 3extended data figure 3
  • Fig. 4extended data figure 4
  • Fig. 5extended data figure 5
  • Fig. 6extended data figure 6
  • Fig. 7extended data figure 7
  • Fig. 8extended data figure 8
  • Fig. 9extended data figure 9
  • Fig. 10extended data figure 10

References

  1. 1.Vischer DL, Hager WH (1995) Energy dissipators. Balkema, Rotterdam, The NetherlandsGoogle Scholar 
  2. 2.Khatsuria RM (2005) Hydraulics of spillways and energy dissipators. CRC Press, Dekker, New YorkGoogle Scholar 
  3. 3.Novak P, Moffat AIB, Nalluri C, Narayanan R (2006) Hydraulics structures. Spon, LondonGoogle Scholar 
  4. 4.Chow VT (1959) Open channel hydraulics. McGraw-Hill Book Co., New YorkGoogle Scholar 
  5. 5.Balloffet A (1961) Pressures on spillway flip buckets. J Hydraul Div ASCE 87(5):87–98. https://doi.org/10.1061/JYCEAJ.0000650Article Google Scholar 
  6. 6.Chen TC, Yu YS (1965) Pressure distribution on spillway flip buckets. J Hydraul Div ASCE 91(2):51–63. https://doi.org/10.1061/JYCEAJ.0001228Article Google Scholar 
  7. 7.Lenau CW, Cassidy JJ (1969) Flow through spillway flip bucket. Journal of the Hydraulics Division ASCE 95(2):633–648. https://doi.org/10.1061/JYCEAJ.0002029Article Google Scholar 
  8. 8.Juon R, Hager WH (2000) Flip bucket without and with deflectors. J Hydraul Eng 126(11):837–845. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:11(837)Article Google Scholar 
  9. 9.Savage BM, Johnson MC (2001) Flow over ogee spillway: physical and numerical model case study. J Hydraul Eng 127(8):640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640)Article Google Scholar 
  10. 10.Heller V, Hager WH, Minor HE (2005) Ski jump hydraulics. J Hydraul Eng 131(5):347–355. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:5(347)Article Google Scholar 
  11. 11.Larese A, Rossi R, Onate E, Idelsohn SR (2008) Validation of the particle finite element method (PFEM) for simulation of free surface flows. Eng Comput 25(4):385–425. https://doi.org/10.1108/02644400810874976Article MATH Google Scholar 
  12. 12.Steiner R, Heller V, Hager WH, Minor HE (2008) Deflector ski jump hydraulics. J Hydraul Eng 134(5):562–571. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(562)Article Google Scholar 
  13. 13.Kirkgoz MS, Akoz MS, Oner AA (2009) Numerical modeling of flow over a chute spillway. J Hydraul Res 47(6):790–797. https://doi.org/10.3826/jhr.2009.3467Article Google Scholar 
  14. 14.Jorabloo M, Maghsoodi R, Sarkardeh H (2011) 3D simulation of flow over flip buckets at dams. J Am Sci 7(6):931–936Google Scholar 
  15. 15.Nazari O, Jabbari E, Sarkardeh H (2015) Dynamic pressure analysis at chute flip buckets of five dam model studies. Int J Civil Eng 13(1):45–54. http://ijce.iust.ac.ir/article-1-951-en.html
  16. 16.Yamini OA, Kavianpour MR, Movahedi A (2015) Pressure distribution on the bed of the compound flip buckets. J Comput Multiphase Flows 7(3):181–194. https://doi.org/10.1260/1757-482X.7.3.181Article Google Scholar 
  17. 17.Hojjati SH, Mohammadiun S, Salehi Neyshabouri SAA (2016) Effects of different turbulence models on flow over a triangular flip- bucket. Modares Civil Eng J 16(4):69–81 (in Persian)Google Scholar 
  18. 18.Lauria A, Alfonsi G (2020) Numerical investigation of ski jump hydraulics. J Hydraul Eng 146(4):121–127. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001718Article MATH Google Scholar 
  19. 19.Muralha A, Melo J, Ramos HM (2020) Assessment of CFD solvers and turbulent models for water free jets in spillways. Fluids 5(3):104. https://doi.org/10.3390/fluids5030104Article Google Scholar 
  20. 20.Novak P, Cabelka J (1981) Model in hydraulic engineering. Pitman Advanced Publishing Program, LondonGoogle Scholar 
  21. 21.Flow Science, Inc. FLOW-3D User Manual Version 11.2.
  22. 22.Water Research Institute (2003) Hydraulic model of Shafaroud Dam flood control system. Final Report, vol 5. Hydraulic structures Divisions, Tehran, Iran, Chapter 5, pp 1–35 (in Persian)Google Scholar
Figure 9. Scour morphology under different times for case 7.

Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves

무작위 파동에서 우산 흡입 앵커 기초 주변의 세굴 특성 및 평형 세굴 깊이 예측

Ruigeng Hu 1
, Hongjun Liu 2
, Hao Leng 1
, Peng Yu 3 and Xiuhai Wang 1,2,*

1 College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China;
huruigeng@stu.ouc.edu.cn (R.H.); lh4517@stu.ouc.edu.cn (H.L.)
2 Key Lab of Marine Environment and Ecology (Ocean University of China), Ministry of Education,
Qingdao 266000, China; hongjun@ouc.edu.cn
3 Qingdao Geo-Engineering Survering Institute, Qingdao 266100, China; yp6650@stu.ouc.edu.cn

Abstract

무작위 파동 하에서 우산 흡입 앵커 기초(USAF) 주변의 국부 세굴을 연구하기 위해 일련의 수치 시뮬레이션이 수행되었습니다. 본 연구에서는 먼저 본 모델의 정확성을 검증하기 위해 검증을 수행하였다.

또한, 세굴 진화와 세굴 메커니즘을 각각 분석하였다. 또한 USAF 주변의 평형 세굴 깊이 Seq를 예측하기 위해 두 가지 수정된 모델이 제안되었습니다. 마지막으로 Seq에 대한 Froude 수 Fr과 Euler 수 Eu의 영향을 연구하기 위해 매개변수 연구가 수행되었습니다.

결과는 현재 수치 모델이 무작위 파동에서 세굴 형태를 묘사하는 데 정확하고 합리적임을 나타냅니다.

수정된 Raaijmaker의 모델은 KCs,p < 8일 때 본 연구의 시뮬레이션 결과와 잘 일치함을 보여줍니다. 수정된 확률적 모델의 예측 결과는 KCrms,a < 4일 때 n = 10일 때 가장 유리합니다. Fr과 Eu가 높을수록 둘 다 더 집중적 인 말굽 소용돌이와 더 큰 결과를 초래합니다.

Figure 1. The close-up of umbrella suction anchor foundation (USAF).
Figure 1. The close-up of umbrella suction anchor foundation (USAF).
Figure 2. (a) The sketch of seabed-USAF-wave three-dimensional model; (b) boundary condation:Wvwave boundary, S-symmetric boundary, O-outflow boundary; (c) USAF model.
Figure 2. (a) The sketch of seabed-USAF-wave three-dimensional model; (b) boundary condation:Wvwave boundary, S-symmetric boundary, O-outflow boundary; (c) USAF model.
Figure 5. Comparison of time evolution of scour between the present study and Khosronejad et al. [52], Petersen et al. [17].
Figure 5. Comparison of time evolution of scour between the present study and Khosronejad et al. [52], Petersen et al. [17].
Figure 9. Scour morphology under different times for case 7.
Figure 9. Scour morphology under different times for case 7.

References

  1. Sumer, B.M.; Fredsøe, J.; Christiansen, N. Scour Around Vertical Pile in Waves. J. Waterw. Port. Coast. Ocean Eng. 1992, 118, 15–31.
    [CrossRef]
  2. Rudolph, D.; Bos, K. Scour around a monopile under combined wave-current conditions and low KC-numbers. In Proceedings of
    the 6th International Conference on Scour and Erosion, Amsterdam, The Netherlands, 1–3 November 2006; pp. 582–588.
  3. Nielsen, A.W.; Liu, X.; Sumer, B.M.; Fredsøe, J. Flow and bed shear stresses in scour protections around a pile in a current. Coast.
    Eng. 2013, 72, 20–38. [CrossRef]
  4. Ahmad, N.; Bihs, H.; Myrhaug, D.; Kamath, A.; Arntsen, Ø.A. Three-dimensional numerical modelling of wave-induced scour
    around piles in a side-by-side arrangement. Coast. Eng. 2018, 138, 132–151. [CrossRef]
  5. Li, H.; Ong, M.C.; Leira, B.J.; Myrhaug, D. Effects of Soil Profile Variation and Scour on Structural Response of an Offshore
    Monopile Wind Turbine. J. Offshore Mech. Arct. Eng. 2018, 140, 042001. [CrossRef]
  6. Li, H.; Liu, H.; Liu, S. Dynamic analysis of umbrella suction anchor foundation embedded in seabed for offshore wind turbines.
    Géoméch. Energy Environ. 2017, 10, 12–20. [CrossRef]
  7. Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Vanem, E.; Carvalho, H.; Correia, J.A.F.D.O. Editorial: Advanced research
    on offshore structures and foundation design: Part 1. Proc. Inst. Civ. Eng. Marit. Eng. 2019, 172, 118–123. [CrossRef]
  8. Chavez, C.E.A.; Stratigaki, V.; Wu, M.; Troch, P.; Schendel, A.; Welzel, M.; Villanueva, R.; Schlurmann, T.; De Vos, L.; Kisacik,
    D.; et al. Large-Scale Experiments to Improve Monopile Scour Protection Design Adapted to Climate Change—The PROTEUS
    Project. Energies 2019, 12, 1709. [CrossRef]
  9. Wu, M.; De Vos, L.; Chavez, C.E.A.; Stratigaki, V.; Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Troch, P. Large Scale
    Experimental Study of the Scour Protection Damage Around a Monopile Foundation Under Combined Wave and Current
    Conditions. J. Mar. Sci. Eng. 2020, 8, 417. [CrossRef]
  10. Sørensen, S.P.H.; Ibsen, L.B. Assessment of foundation design for offshore monopiles unprotected against scour. Ocean Eng. 2013,
    63, 17–25. [CrossRef]
  11. Prendergast, L.; Gavin, K.; Doherty, P. An investigation into the effect of scour on the natural frequency of an offshore wind
    turbine. Ocean Eng. 2015, 101, 1–11. [CrossRef]
  12. Fazeres-Ferradosa, T.; Chambel, J.; Taveira-Pinto, F.; Rosa-Santos, P.; Taveira-Pinto, F.; Giannini, G.; Haerens, P. Scour Protections
    for Offshore Foundations of Marine Energy Harvesting Technologies: A Review. J. Mar. Sci. Eng. 2021, 9, 297. [CrossRef]
  13. Yang, Q.; Yu, P.; Liu, Y.; Liu, H.; Zhang, P.; Wang, Q. Scour characteristics of an offshore umbrella suction anchor foundation
    under the combined actions of waves and currents. Ocean Eng. 2020, 202, 106701. [CrossRef]
  14. Yu, P.; Hu, R.; Yang, J.; Liu, H. Numerical investigation of local scour around USAF with different hydraulic conditions under
    currents and waves. Ocean Eng. 2020, 213, 107696. [CrossRef]
  15. Sumer, B.M.; Christiansen, N.; Fredsøe, J. The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder
    exposed to waves. J. Fluid Mech. 1997, 332, 41–70. [CrossRef]
  16. Sumer, B.M.; Fredsøe, J. Scour around Pile in Combined Waves and Current. J. Hydraul. Eng. 2001, 127, 403–411. [CrossRef]
  17. Petersen, T.U.; Sumer, B.M.; Fredsøe, J. Time scale of scour around a pile in combined waves and current. In Proceedings of the
    6th International Conference on Scour and Erosion, Paris, France, 27–31 August 2012.
  18. Petersen, T.U.; Sumer, B.M.; Fredsøe, J.; Raaijmakers, T.C.; Schouten, J.-J. Edge scour at scour protections around piles in the
    marine environment—Laboratory and field investigation. Coast. Eng. 2015, 106, 42–72. [CrossRef]
  19. Qi, W.; Gao, F. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci. China Ser. E Technol.
    Sci. 2014, 57, 1030–1039. [CrossRef]
  20. Larsen, B.E.; Fuhrman, D.R.; Baykal, C.; Sumer, B.M. Tsunami-induced scour around monopile foundations. Coast. Eng. 2017, 129,
    36–49. [CrossRef]
  21. Corvaro, S.; Marini, F.; Mancinelli, A.; Lorenzoni, C.; Brocchini, M. Hydro- and Morpho-dynamics Induced by a Vertical Slender
    Pile under Regular and Random Waves. J. Waterw. Port. Coast. Ocean Eng. 2018, 144, 04018018. [CrossRef]
  22. Schendel, A.; Welzel, M.; Schlurmann, T.; Hsu, T.-W. Scour around a monopile induced by directionally spread irregular waves in
    combination with oblique currents. Coast. Eng. 2020, 161, 103751. [CrossRef]
  23. Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Romão, X.; Reis, M.; das Neves, L. Reliability assessment of offshore dynamic scour
    protections using copulas. Wind. Eng. 2018, 43, 506–538. [CrossRef]
  24. Fazeres-Ferradosa, T.; Welzel, M.; Schendel, A.; Baelus, L.; Santos, P.R.; Pinto, F.T. Extended characterization of damage in rubble
    mound scour protections. Coast. Eng. 2020, 158, 103671. [CrossRef]
  25. Tavouktsoglou, N.S.; Harris, J.M.; Simons, R.R.; Whitehouse, R.J.S. Equilibrium Scour-Depth Prediction around Cylindrical
    Structures. J. Waterw. Port. Coast. Ocean Eng. 2017, 143, 04017017. [CrossRef]
  26. Ettema, R.; Melville, B.; Barkdoll, B. Scale Effect in Pier-Scour Experiments. J. Hydraul. Eng. 1998, 124, 639–642. [CrossRef]
  27. Umeda, S. Scour Regime and Scour Depth around a Pile in Waves. J. Coast. Res. Spec. Issue 2011, 64, 845–849.
  28. Umeda, S. Scour process around monopiles during various phases of sea storms. J. Coast. Res. 2013, 165, 1599–1604. [CrossRef]
  29. Baykal, C.; Sumer, B.; Fuhrman, D.R.; Jacobsen, N.; Fredsøe, J. Numerical simulation of scour and backfilling processes around a
    circular pile in waves. Coast. Eng. 2017, 122, 87–107. [CrossRef]
  30. Miles, J.; Martin, T.; Goddard, L. Current and wave effects around windfarm monopile foundations. Coast. Eng. 2017, 121,
    167–178. [CrossRef]
  1. Miozzi, M.; Corvaro, S.; Pereira, F.A.; Brocchini, M. Wave-induced morphodynamics and sediment transport around a slender
    vertical cylinder. Adv. Water Resour. 2019, 129, 263–280. [CrossRef]
  2. Yu, T.; Zhang, Y.; Zhang, S.; Shi, Z.; Chen, X.; Xu, Y.; Tang, Y. Experimental study on scour around a composite bucket foundation
    due to waves and current. Ocean Eng. 2019, 189, 106302. [CrossRef]
  3. Carreiras, J.; Larroudé, P.; Seabra-Santos, F.; Mory, M. Wave Scour Around Piles. In Proceedings of the Coastal Engineering 2000,
    American Society of Civil Engineers (ASCE), Sydney, Australia, 16–21 July 2000; pp. 1860–1870.
  4. Raaijmakers, T.; Rudolph, D. Time-dependent scour development under combined current and waves conditions—Laboratory
    experiments with online monitoring technique. In Proceedings of the 4th International Conference on Scour and Erosion, Tokyo,
    Japan, 5–7 November 2008; pp. 152–161.
  5. Khalfin, I.S. Modeling and calculation of bed score around large-diameter vertical cylinder under wave action. Water Resour. 2007,
    34, 357. [CrossRef]
  6. Zanke, U.C.; Hsu, T.-W.; Roland, A.; Link, O.; Diab, R. Equilibrium scour depths around piles in noncohesive sediments under
    currents and waves. Coast. Eng. 2011, 58, 986–991. [CrossRef]
  7. Myrhaug, D.; Rue, H. Scour below pipelines and around vertical piles in random waves. Coast. Eng. 2003, 48, 227–242. [CrossRef]
  8. Myrhaug, D.; Ong, M.C.; Føien, H.; Gjengedal, C.; Leira, B.J. Scour below pipelines and around vertical piles due to second-order
    random waves plus a current. Ocean Eng. 2009, 36, 605–616. [CrossRef]
  9. Myrhaug, D.; Ong, M.C. Random wave-induced onshore scour characteristics around submerged breakwaters using a stochastic
    method. Ocean Eng. 2010, 37, 1233–1238. [CrossRef]
  10. Ong, M.C.; Myrhaug, D.; Hesten, P. Scour around vertical piles due to long-crested and short-crested nonlinear random waves
    plus a current. Coast. Eng. 2013, 73, 106–114. [CrossRef]
  11. Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 1986, 1, 3–51. [CrossRef]
  12. Yakhot, V.; Smith, L.M. The renormalization group, the e-expansion and derivation of turbulence models. J. Sci. Comput. 1992, 7,
    35–61. [CrossRef]
  13. Mastbergen, D.R.; Berg, J.V.D. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons.
    Sedimentology 2003, 50, 625–637. [CrossRef]
  14. Soulsby, R. Dynamics of Marine Sands; Thomas Telford Ltd.: London, UK, 1998. [CrossRef]
  15. Van Rijn, L.C. Sediment Transport, Part I: Bed Load Transport. J. Hydraul. Eng. 1984, 110, 1431–1456. [CrossRef]
  16. Zhang, Q.; Zhou, X.-L.; Wang, J.-H. Numerical investigation of local scour around three adjacent piles with different arrangements
    under current. Ocean Eng. 2017, 142, 625–638. [CrossRef]
  17. Yu, Y.X.; Liu, S.X. Random Wave and Its Applications to Engineering, 4th ed.; Dalian University of Technology Press: Dalian,
    China, 2011.
  18. Pang, A.; Skote, M.; Lim, S.; Gullman-Strand, J.; Morgan, N. A numerical approach for determining equilibrium scour depth
    around a mono-pile due to steady currents. Appl. Ocean Res. 2016, 57, 114–124. [CrossRef]
  19. Higuera, P.; Lara, J.L.; Losada, I.J. Three-dimensional interaction of waves and porous coastal structures using Open-FOAM®.
    Part I: Formulation and validation. Coast. Eng. 2014, 83, 243–258. [CrossRef]
  20. Corvaro, S.; Crivellini, A.; Marini, F.; Cimarelli, A.; Capitanelli, L.; Mancinelli, A. Experimental and Numerical Analysis of the
    Hydrodynamics around a Vertical Cylinder in Waves. J. Mar. Sci. Eng. 2019, 7, 453. [CrossRef]
  21. Flow3D User Manual, version 11.0.3; Flow Science, Inc.: Santa Fe, NM, USA, 2013.
  22. Khosronejad, A.; Kang, S.; Sotiropoulos, F. Experimental and computational investigation of local scour around bridge piers. Adv.
    Water Resour. 2012, 37, 73–85. [CrossRef]
  23. Stahlmann, A. Experimental and Numerical Modeling of Scour at Foundation Structures for Offshore Wind Turbines. Ph.D. Thesis,
    Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz Universität Hannover, Hannover, Germany, 2013.
  24. Breusers, H.N.C.; Nicollet, G.; Shen, H. Local Scour Around Cylindrical Piers. J. Hydraul. Res. 1977, 15, 211–252. [CrossRef]
  25. Schendel, A.; Hildebrandt, A.; Goseberg, N.; Schlurmann, T. Processes and evolution of scour around a monopile induced by
    tidal currents. Coast. Eng. 2018, 139, 65–84. [CrossRef]
Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s.

Optimization Algorithms and Engineering: Recent Advances and Applications

Mahdi Feizbahr,1 Navid Tonekaboni,2Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4Show moreAcademic Editor: Mohammad YazdiReceived08 Apr 2021Revised18 Jun 2021Accepted17 Jul 2021Published11 Aug 2021

Abstract

Vegetation along the river increases the roughness and reduces the average flow velocity, reduces flow energy, and changes the flow velocity profile in the cross section of the river. Many canals and rivers in nature are covered with vegetation during the floods. Canal’s roughness is strongly affected by plants and therefore it has a great effect on flow resistance during flood. Roughness resistance against the flow due to the plants depends on the flow conditions and plant, so the model should simulate the current velocity by considering the effects of velocity, depth of flow, and type of vegetation along the canal. Total of 48 models have been simulated to investigate the effect of roughness in the canal. The results indicated that, by enhancing the velocity, the effect of vegetation in decreasing the bed velocity is negligible, while when the current has lower speed, the effect of vegetation on decreasing the bed velocity is obviously considerable.


강의 식생은 거칠기를 증가시키고 평균 유속을 감소시키며, 유속 에너지를 감소시키고 강의 단면에서 유속 프로파일을 변경합니다. 자연의 많은 운하와 강은 홍수 동안 초목으로 덮여 있습니다. 운하의 조도는 식물의 영향을 많이 받으므로 홍수시 유동저항에 큰 영향을 미칩니다. 식물로 인한 흐름에 대한 거칠기 저항은 흐름 조건 및 식물에 따라 다르므로 모델은 유속, 흐름 깊이 및 운하를 따라 식생 유형의 영향을 고려하여 현재 속도를 시뮬레이션해야 합니다. 근관의 거칠기의 영향을 조사하기 위해 총 48개의 모델이 시뮬레이션되었습니다. 결과는 유속을 높임으로써 유속을 감소시키는 식생의 영향은 무시할 수 있는 반면, 해류가 더 낮은 유속일 때 유속을 감소시키는 식생의 영향은 분명히 상당함을 나타냈다.

1. Introduction

Considering the impact of each variable is a very popular field within the analytical and statistical methods and intelligent systems [114]. This can help research for better modeling considering the relation of variables or interaction of them toward reaching a better condition for the objective function in control and engineering [1527]. Consequently, it is necessary to study the effects of the passive factors on the active domain [2836]. Because of the effect of vegetation on reducing the discharge capacity of rivers [37], pruning plants was necessary to improve the condition of rivers. One of the important effects of vegetation in river protection is the action of roots, which cause soil consolidation and soil structure improvement and, by enhancing the shear strength of soil, increase the resistance of canal walls against the erosive force of water. The outer limbs of the plant increase the roughness of the canal walls and reduce the flow velocity and deplete the flow energy in vicinity of the walls. Vegetation by reducing the shear stress of the canal bed reduces flood discharge and sedimentation in the intervals between vegetation and increases the stability of the walls [3841].

One of the main factors influencing the speed, depth, and extent of flood in this method is Manning’s roughness coefficient. On the other hand, soil cover [42], especially vegetation, is one of the most determining factors in Manning’s roughness coefficient. Therefore, it is expected that those seasonal changes in the vegetation of the region will play an important role in the calculated value of Manning’s roughness coefficient and ultimately in predicting the flood wave behavior [4345]. The roughness caused by plants’ resistance to flood current depends on the flow and plant conditions. Flow conditions include depth and velocity of the plant, and plant conditions include plant type, hardness or flexibility, dimensions, density, and shape of the plant [46]. In general, the issue discussed in this research is the optimization of flood-induced flow in canals by considering the effect of vegetation-induced roughness. Therefore, the effect of plants on the roughness coefficient and canal transmission coefficient and in consequence the flow depth should be evaluated [4748].

Current resistance is generally known by its roughness coefficient. The equation that is mainly used in this field is Manning equation. The ratio of shear velocity to average current velocity  is another form of current resistance. The reason for using the  ratio is that it is dimensionless and has a strong theoretical basis. The reason for using Manning roughness coefficient is its pervasiveness. According to Freeman et al. [49], the Manning roughness coefficient for plants was calculated according to the Kouwen and Unny [50] method for incremental resistance. This method involves increasing the roughness for various surface and plant irregularities. Manning’s roughness coefficient has all the factors affecting the resistance of the canal. Therefore, the appropriate way to more accurately estimate this coefficient is to know the factors affecting this coefficient [51].

To calculate the flow rate, velocity, and depth of flow in canals as well as flood and sediment estimation, it is important to evaluate the flow resistance. To determine the flow resistance in open ducts, Manning, Chézy, and Darcy–Weisbach relations are used [52]. In these relations, there are parameters such as Manning’s roughness coefficient (n), Chézy roughness coefficient (C), and Darcy–Weisbach coefficient (f). All three of these coefficients are a kind of flow resistance coefficient that is widely used in the equations governing flow in rivers [53].

The three relations that express the relationship between the average flow velocity (V) and the resistance and geometric and hydraulic coefficients of the canal are as follows:where nf, and c are Manning, Darcy–Weisbach, and Chézy coefficients, respectively. V = average flow velocity, R = hydraulic radius, Sf = slope of energy line, which in uniform flow is equal to the slope of the canal bed,  = gravitational acceleration, and Kn is a coefficient whose value is equal to 1 in the SI system and 1.486 in the English system. The coefficients of resistance in equations (1) to (3) are related as follows:

Based on the boundary layer theory, the flow resistance for rough substrates is determined from the following general relation:where f = Darcy–Weisbach coefficient of friction, y = flow depth, Ks = bed roughness size, and A = constant coefficient.

On the other hand, the relationship between the Darcy–Weisbach coefficient of friction and the shear velocity of the flow is as follows:

By using equation (6), equation (5) is converted as follows:

Investigation on the effect of vegetation arrangement on shear velocity of flow in laboratory conditions showed that, with increasing the shear Reynolds number (), the numerical value of the  ratio also increases; in other words the amount of roughness coefficient increases with a slight difference in the cases without vegetation, checkered arrangement, and cross arrangement, respectively [54].

Roughness in river vegetation is simulated in mathematical models with a variable floor slope flume by different densities and discharges. The vegetation considered submerged in the bed of the flume. Results showed that, with increasing vegetation density, canal roughness and flow shear speed increase and with increasing flow rate and depth, Manning’s roughness coefficient decreases. Factors affecting the roughness caused by vegetation include the effect of plant density and arrangement on flow resistance, the effect of flow velocity on flow resistance, and the effect of depth [4555].

One of the works that has been done on the effect of vegetation on the roughness coefficient is Darby [56] study, which investigates a flood wave model that considers all the effects of vegetation on the roughness coefficient. There are currently two methods for estimating vegetation roughness. One method is to add the thrust force effect to Manning’s equation [475758] and the other method is to increase the canal bed roughness (Manning-Strickler coefficient) [455961]. These two methods provide acceptable results in models designed to simulate floodplain flow. Wang et al. [62] simulate the floodplain with submerged vegetation using these two methods and to increase the accuracy of the results, they suggested using the effective height of the plant under running water instead of using the actual height of the plant. Freeman et al. [49] provided equations for determining the coefficient of vegetation roughness under different conditions. Lee et al. [63] proposed a method for calculating the Manning coefficient using the flow velocity ratio at different depths. Much research has been done on the Manning roughness coefficient in rivers, and researchers [496366] sought to obtain a specific number for n to use in river engineering. However, since the depth and geometric conditions of rivers are completely variable in different places, the values of Manning roughness coefficient have changed subsequently, and it has not been possible to choose a fixed number. In river engineering software, the Manning roughness coefficient is determined only for specific and constant conditions or normal flow. Lee et al. [63] stated that seasonal conditions, density, and type of vegetation should also be considered. Hydraulic roughness and Manning roughness coefficient n of the plant were obtained by estimating the total Manning roughness coefficient from the matching of the measured water surface curve and water surface height. The following equation is used for the flow surface curve:where  is the depth of water change, S0 is the slope of the canal floor, Sf is the slope of the energy line, and Fr is the Froude number which is obtained from the following equation:where D is the characteristic length of the canal. Flood flow velocity is one of the important parameters of flood waves, which is very important in calculating the water level profile and energy consumption. In the cases where there are many limitations for researchers due to the wide range of experimental dimensions and the variety of design parameters, the use of numerical methods that are able to estimate the rest of the unknown results with acceptable accuracy is economically justified.

FLOW-3D software uses Finite Difference Method (FDM) for numerical solution of two-dimensional and three-dimensional flow. This software is dedicated to computational fluid dynamics (CFD) and is provided by Flow Science [67]. The flow is divided into networks with tubular cells. For each cell there are values of dependent variables and all variables are calculated in the center of the cell, except for the velocity, which is calculated at the center of the cell. In this software, two numerical techniques have been used for geometric simulation, FAVOR™ (Fractional-Area-Volume-Obstacle-Representation) and the VOF (Volume-of-Fluid) method. The equations used at this model for this research include the principle of mass survival and the magnitude of motion as follows. The fluid motion equations in three dimensions, including the Navier–Stokes equations with some additional terms, are as follows:where  are mass accelerations in the directions xyz and  are viscosity accelerations in the directions xyz and are obtained from the following equations:

Shear stresses  in equation (11) are obtained from the following equations:

The standard model is used for high Reynolds currents, but in this model, RNG theory allows the analytical differential formula to be used for the effective viscosity that occurs at low Reynolds numbers. Therefore, the RNG model can be used for low and high Reynolds currents.

Weather changes are high and this affects many factors continuously. The presence of vegetation in any area reduces the velocity of surface flows and prevents soil erosion, so vegetation will have a significant impact on reducing destructive floods. One of the methods of erosion protection in floodplain watersheds is the use of biological methods. The presence of vegetation in watersheds reduces the flow rate during floods and prevents soil erosion. The external organs of plants increase the roughness and decrease the velocity of water flow and thus reduce its shear stress energy. One of the important factors with which the hydraulic resistance of plants is expressed is the roughness coefficient. Measuring the roughness coefficient of plants and investigating their effect on reducing velocity and shear stress of flow is of special importance.

Roughness coefficients in canals are affected by two main factors, namely, flow conditions and vegetation characteristics [68]. So far, much research has been done on the effect of the roughness factor created by vegetation, but the issue of plant density has received less attention. For this purpose, this study was conducted to investigate the effect of vegetation density on flow velocity changes.

In a study conducted using a software model on three density modes in the submerged state effect on flow velocity changes in 48 different modes was investigated (Table 1).Table 1 The studied models.

The number of cells used in this simulation is equal to 1955888 cells. The boundary conditions were introduced to the model as a constant speed and depth (Figure 1). At the output boundary, due to the presence of supercritical current, no parameter for the current is considered. Absolute roughness for floors and walls was introduced to the model (Figure 1). In this case, the flow was assumed to be nonviscous and air entry into the flow was not considered. After  seconds, this model reached a convergence accuracy of .

Figure 1 The simulated model and its boundary conditions.

Due to the fact that it is not possible to model the vegetation in FLOW-3D software, in this research, the vegetation of small soft plants was studied so that Manning’s coefficients can be entered into the canal bed in the form of roughness coefficients obtained from the studies of Chow [69] in similar conditions. In practice, in such modeling, the effect of plant height is eliminated due to the small height of herbaceous plants, and modeling can provide relatively acceptable results in these conditions.

48 models with input velocities proportional to the height of the regular semihexagonal canal were considered to create supercritical conditions. Manning coefficients were applied based on Chow [69] studies in order to control the canal bed. Speed profiles were drawn and discussed.

Any control and simulation system has some inputs that we should determine to test any technology [7077]. Determination and true implementation of such parameters is one of the key steps of any simulation [237881] and computing procedure [8286]. The input current is created by applying the flow rate through the VFR (Volume Flow Rate) option and the output flow is considered Output and for other borders the Symmetry option is considered.

Simulation of the models and checking their action and responses and observing how a process behaves is one of the accepted methods in engineering and science [8788]. For verification of FLOW-3D software, the results of computer simulations are compared with laboratory measurements and according to the values of computational error, convergence error, and the time required for convergence, the most appropriate option for real-time simulation is selected (Figures 2 and 3 ).

Figure 2 Modeling the plant with cylindrical tubes at the bottom of the canal.

Figure 3 Velocity profiles in positions 2 and 5.

The canal is 7 meters long, 0.5 meters wide, and 0.8 meters deep. This test was used to validate the application of the software to predict the flow rate parameters. In this experiment, instead of using the plant, cylindrical pipes were used in the bottom of the canal.

The conditions of this modeling are similar to the laboratory conditions and the boundary conditions used in the laboratory were used for numerical modeling. The critical flow enters the simulation model from the upstream boundary, so in the upstream boundary conditions, critical velocity and depth are considered. The flow at the downstream boundary is supercritical, so no parameters are applied to the downstream boundary.

The software well predicts the process of changing the speed profile in the open canal along with the considered obstacles. The error in the calculated speed values can be due to the complexity of the flow and the interaction of the turbulence caused by the roughness of the floor with the turbulence caused by the three-dimensional cycles in the hydraulic jump. As a result, the software is able to predict the speed distribution in open canals.

2. Modeling Results

After analyzing the models, the results were shown in graphs (Figures 414 ). The total number of experiments in this study was 48 due to the limitations of modeling.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 4 Flow velocity profiles for canals with a depth of 1 m and flow velocities of 3–3.3 m/s. Canal with a depth of 1 meter and a flow velocity of (a) 3 meters per second, (b) 3.1 meters per second, (c) 3.2 meters per second, and (d) 3.3 meters per second.

Figure 5 Canal diagram with a depth of 1 meter and a flow rate of 3 meters per second.

Figure 6 Canal diagram with a depth of 1 meter and a flow rate of 3.1 meters per second.

Figure 7 Canal diagram with a depth of 1 meter and a flow rate of 3.2 meters per second.

Figure 8 Canal diagram with a depth of 1 meter and a flow rate of 3.3 meters per second.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 9 Flow velocity profiles for canals with a depth of 2 m and flow velocities of 4–4.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

Figure 10 Canal diagram with a depth of 2 meters and a flow rate of 4 meters per second.

Figure 11 Canal diagram with a depth of 2 meters and a flow rate of 4.1 meters per second.

Figure 12 Canal diagram with a depth of 2 meters and a flow rate of 4.2 meters per second.

Figure 13 Canal diagram with a depth of 2 meters and a flow rate of 4.3 meters per second.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 14 Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

To investigate the effects of roughness with flow velocity, the trend of flow velocity changes at different depths and with supercritical flow to a Froude number proportional to the depth of the section has been obtained.

According to the velocity profiles of Figure 5, it can be seen that, with the increasing of Manning’s coefficient, the canal bed speed decreases.

According to Figures 5 to 8, it can be found that, with increasing the Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the models 1 to 12, which can be justified by increasing the speed and of course increasing the Froude number.

According to Figure 10, we see that, with increasing Manning’s coefficient, the canal bed speed decreases.

According to Figure 11, we see that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 510, which can be justified by increasing the speed and, of course, increasing the Froude number.

With increasing Manning’s coefficient, the canal bed speed decreases (Figure 12). But this deceleration is more noticeable than the deceleration of the higher models (Figures 58 and 1011), which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 13, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5 to 12, which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 15, with increasing Manning’s coefficient, the canal bed speed decreases.

Figure 15 Canal diagram with a depth of 3 meters and a flow rate of 5 meters per second.

According to Figure 16, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher model, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 16 Canal diagram with a depth of 3 meters and a flow rate of 5.1 meters per second.

According to Figure 17, it is clear that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 17 Canal diagram with a depth of 3 meters and a flow rate of 5.2 meters per second.

According to Figure 18, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 18 Canal diagram with a depth of 3 meters and a flow rate of 5.3 meters per second.

According to Figure 19, it can be seen that the vegetation placed in front of the flow input velocity has negligible effect on the reduction of velocity, which of course can be justified due to the flexibility of the vegetation. The only unusual thing is the unexpected decrease in floor speed of 3 m/s compared to higher speeds.(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 19 Comparison of velocity profiles with the same plant densities (depth 1 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 1 m; (b) plant densities of 50%, depth 1 m; and (c) plant densities of 75%, depth 1 m.

According to Figure 20, by increasing the speed of vegetation, the effect of vegetation on reducing the flow rate becomes more noticeable. And the role of input current does not have much effect in reducing speed.(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 20 Comparison of velocity profiles with the same plant densities (depth 2 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 2 m; (b) plant densities of 50%, depth 2 m; and (c) plant densities of 75%, depth 2 m.

According to Figure 21, it can be seen that, with increasing speed, the effect of vegetation on reducing the bed flow rate becomes more noticeable and the role of the input current does not have much effect. In general, it can be seen that, by increasing the speed of the input current, the slope of the profiles increases from the bed to the water surface and due to the fact that, in software, the roughness coefficient applies to the channel floor only in the boundary conditions, this can be perfectly justified. Of course, it can be noted that, due to the flexible conditions of the vegetation of the bed, this modeling can show acceptable results for such grasses in the canal floor. In the next directions, we may try application of swarm-based optimization methods for modeling and finding the most effective factors in this research [27815188994]. In future, we can also apply the simulation logic and software of this research for other domains such as power engineering [9599].(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 21 Comparison of velocity profiles with the same plant densities (depth 3 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 3 m; (b) plant densities of 50%, depth 3 m; and (c) plant densities of 75%, depth 3 m.

3. Conclusion

The effects of vegetation on the flood canal were investigated by numerical modeling with FLOW-3D software. After analyzing the results, the following conclusions were reached:(i)Increasing the density of vegetation reduces the velocity of the canal floor but has no effect on the velocity of the canal surface.(ii)Increasing the Froude number is directly related to increasing the speed of the canal floor.(iii)In the canal with a depth of one meter, a sudden increase in speed can be observed from the lowest speed and higher speed, which is justified by the sudden increase in Froude number.(iv)As the inlet flow rate increases, the slope of the profiles from the bed to the water surface increases.(v)By reducing the Froude number, the effect of vegetation on reducing the flow bed rate becomes more noticeable. And the input velocity in reducing the velocity of the canal floor does not have much effect.(vi)At a flow rate between 3 and 3.3 meters per second due to the shallow depth of the canal and the higher landing number a more critical area is observed in which the flow bed velocity in this area is between 2.86 and 3.1 m/s.(vii)Due to the critical flow velocity and the slight effect of the roughness of the horseshoe vortex floor, it is not visible and is only partially observed in models 1-2-3 and 21.(viii)As the flow rate increases, the effect of vegetation on the rate of bed reduction decreases.(ix)In conditions where less current intensity is passing, vegetation has a greater effect on reducing current intensity and energy consumption increases.(x)In the case of using the flow rate of 0.8 cubic meters per second, the velocity distribution and flow regime show about 20% more energy consumption than in the case of using the flow rate of 1.3 cubic meters per second.

Nomenclature

n:Manning’s roughness coefficient
C:Chézy roughness coefficient
f:Darcy–Weisbach coefficient
V:Flow velocity
R:Hydraulic radius
g:Gravitational acceleration
y:Flow depth
Ks:Bed roughness
A:Constant coefficient
:Reynolds number
y/∂x:Depth of water change
S0:Slope of the canal floor
Sf:Slope of energy line
Fr:Froude number
D:Characteristic length of the canal
G:Mass acceleration
:Shear stresses.

Data Availability

All data are included within the paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. H. Yu, L. Jie, W. Gui et al., “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 20, pp. 1–29, 2020.View at: Publisher Site | Google Scholar
  2. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  3. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, Article ID 106684, 2021.View at: Publisher Site | Google Scholar
  4. C. Yu, M. Chen, K. Chen et al., “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 4, pp. 1–28, 2021.View at: Publisher Site | Google Scholar
  5. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 8, Article ID 106728, 2020.View at: Google Scholar
  6. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, Article ID 106642, 2021.View at: Publisher Site | Google Scholar
  7. Y. Zhang, R. Liu, X. Wang et al., “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 430, 2020.View at: Google Scholar
  8. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  9. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  10. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  11. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  12. M. Wang, H. Chen, B. Yang et al., “Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses,” Neurocomputing, vol. 267, pp. 69–84, 2017.View at: Publisher Site | Google Scholar
  13. L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging satellite and gauge precipitation,” Journal of Hydrology, vol. 558, pp. 275–289, 2018.View at: Publisher Site | Google Scholar
  14. F. J. Golrokh, G. Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  15. D. Zhao, L. Lei, F. Yu et al., “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 8, Article ID 106510, 2020.View at: Google Scholar
  16. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 517, pp. 1–30, 2020.View at: Publisher Site | Google Scholar
  17. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  18. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  19. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  20. Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.View at: Publisher Site | Google Scholar
  21. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, Article ID 105946, 2020.View at: Publisher Site | Google Scholar
  22. Y. Chen, J. Li, H. Lu, and P. Yan, “Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains,” Journal of Cleaner Production, vol. 278, Article ID 123209, 2020.View at: Google Scholar
  23. H. Tang, Y. Xu, A. Lin et al., “Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers,” IEEE Access, vol. 8, pp. 35546–35562, 2020.View at: Publisher Site | Google Scholar
  24. H.-J. Ma and G.-H. Yang, “Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3240–3255, 2015.View at: Google Scholar
  25. H.-J. Ma and L.-X. Xu, “Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory,” IEEE Transactions on Automatic Control, vol. 66, 2020.View at: Google Scholar
  26. H. J. Ma, L. X. Xu, and G. H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Cybernetics, vol. 51, pp. 1–16, 2019.View at: Publisher Site | Google Scholar
  27. J. Hu, M. Wang, C. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,” Science China Technological Sciences, vol. 63, no. 1, pp. 65–72, 2020.View at: Publisher Site | Google Scholar
  28. C. Zhang, H. Li, Y. Qian, C. Chen, and X. Zhou, “Locality-constrained discriminative matrix regression for robust face identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  29. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  30. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, 2020.View at: Google Scholar
  31. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 03, p. 1, 2020.View at: Publisher Site | Google Scholar
  32. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 197-198, Article ID 103003, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, p. 1, 2020.View at: Publisher Site | Google Scholar
  34. L. He, J. Shen, and Y. Zhang, “Ecological vulnerability assessment for ecological conservation and environmental management,” Journal of Environmental Management, vol. 206, pp. 1115–1125, 2018.View at: Publisher Site | Google Scholar
  35. Y. Chen, W. Zheng, W. Li, and Y. Huang, “Large group Activity security risk assessment and risk early warning based on random forest algorithm,” Pattern Recognition Letters, vol. 144, pp. 1–5, 2021.View at: Publisher Site | Google Scholar
  36. J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, and Q. Pan, “Object traversing by monocular UAV in outdoor environment,” Asian Journal of Control, vol. 25, 2020.View at: Google Scholar
  37. P. Tian, H. Lu, W. Feng, Y. Guan, and Y. Xue, “Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin,” Catena, vol. 187, Article ID 104340, 2020.View at: Publisher Site | Google Scholar
  38. A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud, and R. C. Sidle, “Desirable plant root traits for protecting natural and engineered slopes against landslides,” Plant and Soil, vol. 324, no. 1, pp. 1–30, 2009.View at: Publisher Site | Google Scholar
  39. T. B. Devi, A. Sharma, and B. Kumar, “Studies on emergent flow over vegetative channel bed with downward seepage,” Hydrological Sciences Journal, vol. 62, no. 3, pp. 408–420, 2017.View at: Google Scholar
  40. G. Ireland, M. Volpi, and G. Petropoulos, “Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood,” Remote Sensing, vol. 7, no. 3, pp. 3372–3399, 2015.View at: Publisher Site | Google Scholar
  41. L. Goodarzi and S. Javadi, “Assessment of aquifer vulnerability using the DRASTIC model; a case study of the Dezful-Andimeshk Aquifer,” Computational Research Progress in Applied Science & Engineering, vol. 2, no. 1, pp. 17–22, 2016.View at: Google Scholar
  42. K. Zhang, Q. Wang, L. Chao et al., “Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China,” Journal of Hydrology, vol. 574, pp. 903–914, 2019.View at: Publisher Site | Google Scholar
  43. L. De Doncker, P. Troch, R. Verhoeven, K. Bal, P. Meire, and J. Quintelier, “Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river,” Environmental Fluid Mechanics, vol. 9, no. 5, pp. 549–567, 2009.View at: Publisher Site | Google Scholar
  44. M. Fathi-Moghadam and K. Drikvandi, “Manning roughness coefficient for rivers and flood plains with non-submerged vegetation,” International Journal of Hydraulic Engineering, vol. 1, no. 1, pp. 1–4, 2012.View at: Google Scholar
  45. F.-C. Wu, H. W. Shen, and Y.-J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, vol. 125, no. 9, pp. 934–942, 1999.View at: Publisher Site | Google Scholar
  46. M. K. Wood, “Rangeland vegetation-hydrologic interactions,” in Vegetation Science Applications for Rangeland Analysis and Management, vol. 3, pp. 469–491, Springer, 1988.View at: Publisher Site | Google Scholar
  47. C. Wilson, O. Yagci, H.-P. Rauch, and N. Olsen, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, vol. 327, no. 1-2, pp. 13–21, 2006.View at: Publisher Site | Google Scholar
  48. R. Yazarloo, M. Khamehchian, and M. R. Nikoodel, “Observational-computational 3d engineering geological model and geotechnical characteristics of young sediments of golestan province,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  49. G. E. Freeman, W. H. Rahmeyer, and R. R. Copeland, “Determination of resistance due to shrubs and woody vegetation,” International Journal of River Basin Management, vol. 19, 2000.View at: Google Scholar
  50. N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” Journal of the Hydraulics Division, vol. 99, no. 5, pp. 713–728, 1973.View at: Publisher Site | Google Scholar
  51. S. Hosseini and J. Abrishami, Open Channel Hydraulics, Elsevier, Amsterdam, Netherlands, 2007.
  52. C. S. James, A. L. Birkhead, A. A. Jordanova, and J. J. O’Sullivan, “Flow resistance of emergent vegetation,” Journal of Hydraulic Research, vol. 42, no. 4, pp. 390–398, 2004.View at: Publisher Site | Google Scholar
  53. F. Huthoff and D. Augustijn, “Channel roughness in 1D steady uniform flow: Manning or Chézy?,,” NCR-days, vol. 102, 2004.View at: Google Scholar
  54. M. S. Sabegh, M. Saneie, M. Habibi, A. A. Abbasi, and M. Ghadimkhani, “Experimental investigation on the effect of river bank tree planting array, on shear velocity,” Journal of Watershed Engineering and Management, vol. 2, no. 4, 2011.View at: Google Scholar
  55. A. Errico, V. Pasquino, M. Maxwald, G. B. Chirico, L. Solari, and F. Preti, “The effect of flexible vegetation on flow in drainage channels: estimation of roughness coefficients at the real scale,” Ecological Engineering, vol. 120, pp. 411–421, 2018.View at: Publisher Site | Google Scholar
  56. S. E. Darby, “Effect of riparian vegetation on flow resistance and flood potential,” Journal of Hydraulic Engineering, vol. 125, no. 5, pp. 443–454, 1999.View at: Publisher Site | Google Scholar
  57. V. Kutija and H. Thi Minh Hong, “A numerical model for assessing the additional resistance to flow introduced by flexible vegetation,” Journal of Hydraulic Research, vol. 34, no. 1, pp. 99–114, 1996.View at: Publisher Site | Google Scholar
  58. T. Fischer-Antze, T. Stoesser, P. Bates, and N. R. B. Olsen, “3D numerical modelling of open-channel flow with submerged vegetation,” Journal of Hydraulic Research, vol. 39, no. 3, pp. 303–310, 2001.View at: Publisher Site | Google Scholar
  59. U. Stephan and D. Gutknecht, “Hydraulic resistance of submerged flexible vegetation,” Journal of Hydrology, vol. 269, no. 1-2, pp. 27–43, 2002.View at: Publisher Site | Google Scholar
  60. F. G. Carollo, V. Ferro, and D. Termini, “Flow resistance law in channels with flexible submerged vegetation,” Journal of Hydraulic Engineering, vol. 131, no. 7, pp. 554–564, 2005.View at: Publisher Site | Google Scholar
  61. W. Fu-sheng, “Flow resistance of flexible vegetation in open channel,” Journal of Hydraulic Engineering, vol. S1, 2007.View at: Google Scholar
  62. P.-f. Wang, C. Wang, and D. Z. Zhu, “Hydraulic resistance of submerged vegetation related to effective height,” Journal of Hydrodynamics, vol. 22, no. 2, pp. 265–273, 2010.View at: Publisher Site | Google Scholar
  63. J. K. Lee, L. C. Roig, H. L. Jenter, and H. M. Visser, “Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades,” Ecological Engineering, vol. 22, no. 4-5, pp. 237–248, 2004.View at: Publisher Site | Google Scholar
  64. G. J. Arcement and V. R. Schneider, Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains, US Government Printing Office, Washington, DC, USA, 1989.
  65. Y. Ding and S. S. Y. Wang, “Identification of Manning’s roughness coefficients in channel network using adjoint analysis,” International Journal of Computational Fluid Dynamics, vol. 19, no. 1, pp. 3–13, 2005.View at: Publisher Site | Google Scholar
  66. E. T. Engman, “Roughness coefficients for routing surface runoff,” Journal of Irrigation and Drainage Engineering, vol. 112, no. 1, pp. 39–53, 1986.View at: Publisher Site | Google Scholar
  67. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Publisher Site | Google Scholar
  68. M. Farzadkhoo, A. Keshavarzi, H. Hamidifar, and M. Javan, “Sudden pollutant discharge in vegetated compound meandering rivers,” Catena, vol. 182, Article ID 104155, 2019.View at: Publisher Site | Google Scholar
  69. V. T. Chow, Open-channel Hydraulics, Mcgraw-Hill Civil Engineering Series, Chennai, TN, India, 1959.
  70. X. Zhang, R. Jing, Z. Li, Z. Li, X. Chen, and C.-Y. Su, “Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 916–928, 2020.View at: Google Scholar
  71. C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective,” Optics and Lasers in Engineering, vol. 71, pp. 20–32, 2015.View at: Publisher Site | Google Scholar
  72. C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Scientific Reports, vol. 7, no. 1, pp. 7654–7722, 2017.View at: Publisher Site | Google Scholar
  73. B.-H. Li, Y. Liu, A.-M. Zhang, W.-H. Wang, and S. Wan, “A survey on blocking technology of entity resolution,” Journal of Computer Science and Technology, vol. 35, no. 4, pp. 769–793, 2020.View at: Publisher Site | Google Scholar
  74. Y. Liu, B. Zhang, Y. Feng et al., “Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array,” Applied Sciences, vol. 10, no. 21, p. 7924, 2020.View at: Publisher Site | Google Scholar
  75. J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, and Q. Pan, “Convergent multiagent formation control with collision avoidance,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1805–1818, 2020.View at: Publisher Site | Google Scholar
  76. M. B. Movahhed, J. Ayoubinejad, F. N. Asl, and M. Feizbahr, “The effect of rain on pedestrians crossing speed,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 6, no. 3, 2020.View at: Google Scholar
  77. A. Li, D. Spano, J. Krivochiza et al., “A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 796–839, 2020.View at: Publisher Site | Google Scholar
  78. W. Zhu, C. Ma, X. Zhao et al., “Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine,” IEEE Access, vol. 8, pp. 61107–61123, 2020.View at: Publisher Site | Google Scholar
  79. G. Liu, W. Jia, M. Wang et al., “Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine,” IEEE Access, vol. 8, pp. 46895–46908, 2020.View at: Publisher Site | Google Scholar
  80. Y. Wei, H. Lv, M. Chen et al., “Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone harris hawks optimizer,” IEEE Access, vol. 8, pp. 76841–76855, 2020.View at: Publisher Site | Google Scholar
  81. A. Lin, Q. Wu, A. A. Heidari et al., “Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-Nearest neighbor classifier,” Ieee Access, vol. 7, pp. 67235–67248, 2019.View at: Publisher Site | Google Scholar
  82. Y. Fan, P. Wang, A. A. Heidari et al., “Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis,” Expert Systems with Applications, vol. 157, Article ID 113486, 2020.View at: Publisher Site | Google Scholar
  83. E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva et al., “An efficient Harris hawks-inspired image segmentation method,” Expert Systems with Applications, vol. 155, Article ID 113428, 2020.View at: Publisher Site | Google Scholar
  84. S. Jiao, G. Chong, C. Huang et al., “Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models,” Energy, vol. 203, Article ID 117804, 2020.View at: Publisher Site | Google Scholar
  85. Z. Xu, Z. Hu, A. A. Heidari et al., “Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis,” Expert Systems with Applications, vol. 150, Article ID 113282, 2020.View at: Publisher Site | Google Scholar
  86. A. Abbassi, R. Abbassi, A. A. Heidari et al., “Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,” Energy, vol. 198, Article ID 117333, 2020.View at: Publisher Site | Google Scholar
  87. M. Mahmoodi and K. K. Aminjan, “Numerical simulation of flow through sukhoi 24 air inlet,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  88. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  89. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  90. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “Bayesian hierarchical model-based information fusion for degradation analysis considering non-competing relationship,” IEEE Access, vol. 7, pp. 175222–175227, 2019.View at: Publisher Site | Google Scholar
  91. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “A Bayesian approach for degradation analysis with individual differences,” IEEE Access, vol. 7, pp. 175033–175040, 2019.View at: Publisher Site | Google Scholar
  92. M. M. A. Malakoutian, Y. Malakoutian, P. Mostafapour, and S. Z. D. Abed, “Prediction for monthly rainfall of six meteorological regions and TRNC (case study: north Cyprus),” ENG Transactions, vol. 2, no. 2, 2021.View at: Google Scholar
  93. H. Arslan, M. Ranjbar, and Z. Mutlum, “Maximum sound transmission loss in multi-chamber reactive silencers: are two chambers enough?,,” ENG Transactions, vol. 2, no. 1, 2021.View at: Google Scholar
  94. N. Tonekaboni, M. Feizbahr, N. Tonekaboni, G.-J. Jiang, and H.-X. Chen, “Optimization of solar CCHP systems with collector enhanced by porous media and nanofluid,” Mathematical Problems in Engineering, vol. 2021, Article ID 9984840, 12 pages, 2021.View at: Publisher Site | Google Scholar
  95. Z. Niu, B. Zhang, J. Wang et al., “The research on 220GHz multicarrier high-speed communication system,” China Communications, vol. 17, no. 3, pp. 131–139, 2020.View at: Publisher Site | Google Scholar
  96. B. Zhang, Z. Niu, J. Wang et al., “Four‐hundred gigahertz broadband multi‐branch waveguide coupler,” IET Microwaves, Antennas & Propagation, vol. 14, no. 11, pp. 1175–1179, 2020.View at: Publisher Site | Google Scholar
  97. Z.-Q. Niu, L. Yang, B. Zhang et al., “A mechanical reliability study of 3dB waveguide hybrid couplers in the submillimeter and terahertz band,” Journal of Zhejiang University Science, vol. 1, no. 1, 1998.View at: Google Scholar
  98. B. Zhang, D. Ji, D. Fang, S. Liang, Y. Fan, and X. Chen, “A novel 220-GHz GaN diode on-chip tripler with high driven power,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 780–783, 2019.View at: Publisher Site | Google Scholar
  99. M. Taleghani and A. Taleghani, “Identification and ranking of factors affecting the implementation of knowledge management engineering based on TOPSIS technique,” ENG Transactions, vol. 1, no. 1, 2020.View at: Google Scholar
A 3-D numerical simulation of the characteristics of open channel flows with submerged rigid vegetation

A 3-D numerical simulation of the characteristics of open channel flows with submerged rigid vegetation

수중 강성 식생이 있는 개방 수로 흐름의 특성에 대한 3차원 수치 시뮬레이션

Journal of Hydrodynamics (2021)Cite this article

Abstract

이 논문은 FLOW-3D를 적용하여 다양한 흐름 배출 및 식생 시나리오가 유속(종방향, 횡방향 및 수직 속도 포함)에 미치는 영향을 조사합니다.

실험적 측정을 통한 검증 후 식생직경, 식생높이, 유출량에 대한 민감도 분석을 수행하였습니다. 종방향 속도의 경우 흐름 구조에 대한 가장 큰 영향은 배출보다는 식생 직경에서 비롯됩니다.

그러나 식생 높이는 수직 분포의 변곡점을 결정합니다. 식생 지역, 즉 상류와 하류의 두 위치에서 횡단 속도를 비교하면 수심을 따라 대칭 패턴이 식별됩니다. 식생 지역의 횡단 및 수직 유체 순환 패턴을 포함하여 흐름 또는 식생 시나리오에 관계없이 수직 속도에서도 동일한 패턴이 관찰됩니다.

또한 식생 직경이 클수록 이러한 패턴이 더 분명해집니다. 상부 순환은 식생 캐노피 근처에서 발생합니다. 식생 지역의 가로 세로 방향 순환에 관한 이러한 발견은 수중 식생을 통한 3차원 흐름 구조를 밝혀줍니다.

This paper applies the Flow-3D to investigate the impacts of different flow discharge and vegetation scenarios on the flow velocity (including the longitudinal, transverse and vertical velocities). After the verification by using experimental measurements, a sensitivity analysis is conducted for the vegetation diameter, the vegetation height and the flow discharge. For the longitudinal velocity, the greatest impact on the flow structure originates from the vegetation diameter, rather than the discharge. The vegetation height, however, determines the inflection point of the vertical distribution. Comparing the transverse velocities at two positions in the vegetated area, i.e., the upstream and the downstream, a symmetric pattern is identified along the water depth. The same pattern is also observed for the vertical velocity regardless of the flow or vegetation scenario, including both transverse and vertical fluid circulation patterns in the vegetated area. Moreover, the larger the vegetation diameter is, the more evident these patterns become. The upper circulation occurs near the vegetation canopy. These findings regarding the circulations along the transverse and vertical directions in the vegetated region shed light on the 3-D flow structure through the submerged vegetation.

Key words

  • Submerged rigid vegetation
  • longitudinal velocity
  • transverse velocity
  • vertical velocity

References

  1. [1]Angelina A., Jordanova C. S. J. Experimental study of bed load transport through emergent vegetation [J]. Journal of Hydraulic Engineering, ASCE, 2003, 129(6): 474–478.Article Google Scholar 
  2. [2]Li Y., Wang Y., Anim D. O. et al. Flow characteristics in different densities of submerged flexible vegetation from an open-channel flume study of artificial plants [J]. Geomorphology, 2014, 204: 314–324.Article Google Scholar 
  3. [3]Bai F., Yang Z., Huai W. et al. A depth-averaged two dimensional shallow water model to simulate flow-rigid vegetation interactions [J]. Procedia Engineering, 2016, 154: 482–489.Article Google Scholar 
  4. [4]Huai W. X., Song S., Han J. et al. Prediction of velocity distribution in straight open-channel flow with partial vegetation by singular perturbation method [J]. Applied Mathematics and Mechanics (Engilsh Editon), 2016, 37(10): 1315–1324.MathSciNet Article Google Scholar 
  5. [5]Wang P. F., Wang C. Numerical model for flow through submerged vegetation regions in a shallow lake [J]. Journal of Hydrodynamics, 2011, 23(2): 170–178.Article Google Scholar 
  6. [6]Wang W. J., Cui X. Y., Dong F. et al. Predictions of bulk velocity for open channel flow through submerged vegetation [J]. Journal of Hydrodynamics, 2020, 32(4): 795–799.Article Google Scholar 
  7. [7]Zhang M., Li C. W., Shen Y. Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation [J]. Applied Mathematical Modelling, 2013, 37(1–2): 540–553.MathSciNet Article Google Scholar 
  8. [8]Huai W., Wang W., Hu Y. et al. Analytical model of the mean velocity distribution in an open channel with double-layered rigid vegetation [J]. Advances in Water Resources, 2014, 69: 106–113.Article Google Scholar 
  9. [9]Panigrahi K., Khatua K. K. Prediction of velocity distribution in straight channel with rigid vegetation [J]. Aquatic Procedia, 2015, 4: 819–825.Article Google Scholar 
  10. [10]Huai W. X., Zeng Y. H., Xu Z. G. et al. Three-layer model for vertical velocity distribution in open channel flow with submerged rigid vegetation [J]. Advances in Water Resources, 2009, 32(4): 487–492.Article Google Scholar 
  11. [11]Chen S. C., Kuo Y. M., Li Y. H. Flow characteristics within different configurations of submerged flexible vegetation [J]. Journal of Hydrology, 2011, 398(1–2): 124–134.Article Google Scholar 
  12. [12]Yagci O., Tschiesche U., Kabdasli M. S. The role of different forms of natural riparian vegetation on turbulence and kinetic energy characteristics [J]. Advances in Water Resources, 2010, 33(5): 601–614.Article Google Scholar 
  13. [13]Wu F. S. Characteristics of flow resistance in open channels with non-submerged rigid vegetation [J]. Journal of Hydrodynamics, 2008, 20(2): 239–245.Article Google Scholar 
  14. [14]Huai W., Hu Y., Zeng Y. et al. Velocity distribution for open channel flows with suspended vegetation [J]. Advances in Water Resources, 2012, 49: 56–61.Article Google Scholar 
  15. [15]Pu J. H., Hussain A., Guo Y. K. et al. Submerged flexible vegetation impact on open channel flow velocity distribution: An analytical modelling study on drag and friction [J]. Water Science and Engineering, 2019, 12(2): 121–128.Article Google Scholar 
  16. [16]Zhang M. L., Li C. W., Shen Y. M. A 3D non-linear k-ε turbulent model for prediction of flow and mass transport in channel with vegetation [J]. Applied Mathematical Modelling, 2010, 34(4): 1021–1031.MathSciNet Article Google Scholar 
  17. [17]Anjum N., Tanaka N. Numerical investigation of velocity distribution of turbulent flow through vertically double-layered vegetation [J]. Water Science and Engineering, 2019, 12(4): 319–329.Article Google Scholar 
  18. [18]Wang W., Huai W. X., Gao M. Numerical investigation of flow through vegetated multi-stage compound channel [J]. Journal of Hydrodynamics, 2014, 26(3): 467–473.Article Google Scholar 
  19. [19]Ghani U., Anjum N., Pasha G. A. et al. Numerical investigation of the flow characteristics through discontinuous and layered vegetation patches of finite width in an open channel [J]. Environmental Fluid Mechanics, 2019, 19(6): 1469–1495.Article Google Scholar 
  20. [20]Aydin M. C., Emiroglu M. E. Determination of capacity of labyrinth side weir by CFD [J]. Flow Measurement and Instrumentation, 2013, 29: 1–8.Article Google Scholar 
  21. [21]Hao W. L., Wu W. Q., Zhu C. J. et al. Experimental study on vertical distribution of flow velocity in vegetated river channel [J]. Water Resources and Power, 2015, 33(2): 85–88(in Chinese).Google Scholar 
  22. [22]Pietri L., Petroff A., Amielh M. et al. Turbulent flows interacting with varying density canopies [J]. Mécanique and Industries, 2009, 10(3–4): 181–185.Article Google Scholar 
  23. [23]Li Y., Du W., Yu Z. et al. Impact of flexible emergent vegetation on the flow turbulence and kinetic energy characteristics in a flume experiment [J]. Journal of Hydro-environment Research, 2015, 9(3): 354–367.Article Google Scholar 
  24. [24]Li W. Q., Wang D., Jiao J. L. et al. Effects of vegetation patch density on flow velocity characteristics in an open channel [J]. Journal of Hydrodynamics, 2018, 31(5): 1052–1059.Article Google Scholar 
  25. [25]Langre E. D., Gutierrez A., Cossé J. On the scaling of drag reduction by reconfiguration in plants [J]. Comptes Rendus Mécanique, 2012, 340(1–2): 35–40.Article Google Scholar 
  26. [26]Fathi-Maghadam M., Kouwen N. Nonrigid, nonsubmerged, vegetative roughness on floodplains [J]. Journal of Hydraulic Engineering, ASCE, 1997, 123(1): 51–57.Article Google Scholar 
  27. [27]Liang D., Wu X. A random walk simulation of scalar mixing in flows through submerged vegetations [J]. Journal of Hydrodynamics, 2014, 26(3): 343–350.MathSciNet Article Google Scholar 
  28. [28]Ghisalberti M., Nepf H. Mass transport in vegetated shear flows [J]. Environmental Fluid Mechanics, 2005, 5(6): 527–551.
Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

Lin Chen, Gaoyang Mi, Xiong Zhang, Chunming Wang
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

Abstract

레이저 사인파 진동(사인) 용접 및 레이저 용접(SLW)에서 1.5mm 6061/5182 알루미늄 합금 박판 랩 조인트의 수치 모델이 온도 분포와 용융 흐름을 시뮬레이션하기 위해 개발되었습니다.

SLW의 일반적인 에너지 분포와 달리 레이저 빔의 사인파 진동은 에너지 분포를 크게 균질화하고 에너지 피크를 줄였습니다. 에너지 피크는 사인 용접의 양쪽에 위치하여 톱니 모양의 단면이 형성되었습니다. 이 논문은 시뮬레이션을 통해 응고 미세구조에 대한 온도 구배(G)와 응고 속도(R)의 영향을 설명했습니다.

결과는 사인 용접의 중심이 낮은 G/R로 더 넓은 영역을 가짐으로써 더 넓은 등축 결정립 영역의 형성을 촉진하고 더 큰 GR로 인해 주상 결정립이 더 가늘다는 것을 나타냅니다. 다공성 및 비관통 용접은 레이저 사인파 진동에 의해 얻어졌습니다.

그 이유는 용융 풀의 부피가 확대되고 열쇠 구멍의 부피 비율이 감소하며 용융 풀의 난류가 완만해졌기 때문이며, 이는 용융 흐름의 고속 이미징 및 시뮬레이션 결과에서 관찰되었습니다. 두 용접부의 인장시험에서 융착선을 따라 인장파괴 형태를 보였고 사인 용접부의 인장강도가 SLW 용접부보다 유의하게 우수하였습니다.

이는 등축 결정립 영역이 넓을수록 균열 경향이 감소하고 파단 위치에 근접한 입자 크기가 미세하기 때문입니다. 결함이 없고 우수한 용접은 신에너지 자동차 산업에 매우 중요합니다.

A numerical model of 1.5 mm 6061/5182 aluminum alloys thin sheets lap joints under laser sinusoidal oscillation (sine) welding and laser welding (SLW) weld was developed to simulate temperature distribution and melt flow. Unlike the common energy distribution of SLW, the sinusoidal oscillation of laser beam greatly homogenized the energy distribution and reduced the energy peak. The energy peaks were located at both sides of the sine weld, resulting in the tooth-shaped sectional formation. This paper illustrated the effect of the temperature gradient (G) and solidification rate (R) on the solidification microstructure by simulation. Results indicated that the center of the sine weld had a wider area with low G/R, promoting the formation of a wider equiaxed grain zone, and the columnar grains were slenderer because of greater GR. The porosity-free and non-penetration welds were obtained by the laser sinusoidal oscillation. The reasons were that the molten pool volume was enlarged, the volume proportion of keyhole was reduced and the turbulence in the molten pool was gentled, which was observed by the high-speed imaging and simulation results of melt flow. The tensile test of both welds showed a tensile fracture form along the fusion line, and the tensile strength of sine weld was significantly better than that of the SLW weld. This was because that the wider equiaxed grain area reduced the tendency of cracks and the finer grain size close to the fracture location. Defect-free and excellent welds are of great significance to the new energy vehicles industry.

Keywords

Laser weldingSinusoidal oscillatingEnergy distributionNumerical simulationMolten pool flowGrain structure

Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively

추가 생산용 전자빔 조사에 의한 316L 스테인리스 용융 · 응고 거동

Melting and Solidification Behavior of 316L Steel Induced by Electron-Beam Irradiation for Additive Manufacturing

付加製造用電子ビーム照射による 316L ステンレス鋼の溶融・凝固挙動

奥 川 将 行*・宮 田 雄一朗*・王     雷*・能 勢 和 史*
小 泉 雄一郎*・中 野 貴 由*
Masayuki OKUGAWA, Yuichiro MIYATA, Lei WANG, Kazufumi NOSE,
Yuichiro KOIZUMI and Takayoshi NAKANO

Abstract

적층 제조(AM) 기술은 복잡한 형상의 3D 부품을 쉽게 만들고 미세 구조 제어를 통해 재료 특성을 크게 제어할 수 있기 때문에 많은 관심을 받았습니다. PBF(Powderbed fusion) 방식의 AM 공정에서는 금속 분말을 레이저나 전자빔으로 녹이고 응고시키는 과정을 반복하여 3D 부품을 제작합니다.

일반적으로 응고 미세구조는 Hunt[Mater. 과학. 영어 65, 75(1984)]. 그러나 CET 이론이 일반 316L 스테인리스강에서도 높은 G와 R로 인해 PBF형 AM 공정에 적용될 수 있을지는 불확실하다.

본 연구에서는 미세구조와 응고 조건 간의 관계를 밝히기 위해 전자빔 조사에 의해 유도된 316L 강의 응고 미세구조를 분석하고 CtFD(Computational Thermal-Fluid Dynamics) 방법을 사용하여 고체/액체 계면에서의 응고 조건을 평가했습니다.

CET 이론과 반대로 높은 G 조건에서 등축 결정립이 종종 형성되는 것으로 밝혀졌다. CtFD 시뮬레이션은 약 400 mm s-1의 속도까지 유체 흐름이 있음을 보여 주며 수상 돌기의 파편 및 이동의 영향으로 등축 결정립이 형성됨을 시사했습니다.

Additive manufacturing(AM)technologies have attracted much attention because it enables us to build 3D parts with complicated geometry easily and control material properties significantly via the control of microstructures. In the powderbed fusion(PBF)type AM process, 3D parts are fabricated by repeating a process of melting and solidifying metal powders by laser or electron beams. In general, the solidification microstructures can be predicted from solidification conditions defined by the combination of temperature gradient G and solidification rate R on the basis of columnar-equiaxed transition(CET)theory proposed by Hunt [Mater. Sci. Eng. 65, 75(1984)]. However, it is unclear whether the CET theory can be applied to the PBF type AM process because of the high G and R, even for general 316L stainless steel. In this study, to reveal relationships between microstructures and solidification conditions, we have analyzed solidification microstructures of 316L steel induced by electronbeam irradiation and evaluated solidification conditions at the solid/liquid interface using a computational thermal-fluid dynamics (CtFD)method. It was found that equiaxed grains were often formed under high G conditions contrary to the CET theory. CtFD simulation revealed that there is a fluid flow up to a velocity of about 400 mm s-1, and suggested that equiaxed grains are formed owing to the effect of fragmentations and migrations of dendrites.

Keywords

Additive Manufacturing, 316L Stainless Steel, Powder Bed Fusion, Electron Beam Melting, Computational Thermal
Fluid Dynamics Simulation

Fig. 1 Width, height, and height differences calculated from laser microscope analysis of melt tracks formed by scanning electron beam. Fig. 2(a)Scanning electron microscope(SEM)image and(b) corresponding electron back-scattering diffraction(EBSD) IPF-map taken from the electron-beam irradiated region in P900-V100 sample. Fig. 3 Average grain size and their aspect ratio calculated from EBSD IPF-map taken from the electron-beam irradiated region.
Fig. 1 Width, height, and height differences calculated from laser microscope analysis of melt tracks formed by scanning electron beam. Fig. 2(a)Scanning electron microscope(SEM)image and(b) corresponding electron back-scattering diffraction(EBSD) IPF-map taken from the electron-beam irradiated region in P900-V100 sample. Fig. 3 Average grain size and their aspect ratio calculated from EBSD IPF-map taken from the electron-beam irradiated region.
Fig. 4 Comparison of experimental SEM image and computational thermal fluid dynamics(CtFD)simulated melt pool with a beam diameter of 700 μm and absorption rates of(a)0.3,(b)0.5, and (c)0.7. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively.
Fig. 4 Comparison of experimental SEM image and computational thermal fluid dynamics(CtFD)simulated melt pool with a beam diameter of 700 μm and absorption rates of(a)0.3,(b)0.5, and (c)0.7. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively.
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively
Fig. 6 Depth of melt tracks calculated from experimental SEM image and CtFD simulation results.
Fig. 6 Depth of melt tracks calculated from experimental SEM image and CtFD simulation results.
Fig. 7 G-R plots of 316L steel colored by(a)aspect ratio of crystalline grains and(b)fluid velocity.
Fig. 7 G-R plots of 316L steel colored by(a)aspect ratio of crystalline grains and(b)fluid velocity.
Fig. 8 Comparison of solidification microstructure(EBSD IPF-map)of melt region formed by scanning electron beam and corresponding snap shot of CtFD simulation colored by fluid velocity
Fig. 8 Comparison of solidification microstructure(EBSD IPF-map)of melt region formed by scanning electron beam and corresponding snap shot of CtFD simulation colored by fluid velocity

References

1) M.C. Sow, T. De Terris, O. Castelnau, Z. Hamouche, F. Coste, R.
Fabbro and P. Peyre: “Influence of beam diameter on Laser Powder

Bed Fusion(L-PBF)process”, Addit. Manuf. 36(2020), 101532.
2) J.C. Simmons, X. Chen, A. Azizi, M.A. Daeumer, P.Y. Zavalij, G.
Zhou and S.N. Schiffres: “Influence of processing and microstructure
on the local and bulk thermal conductivity of selective laser melted
316L stainless steel”, Addit. Manuf. 32(2020), 100996.
3) S. Dryepondt, P. Nandwana, P. Fernandez-Zelaia and F. List:
“Microstructure and High Temperature Tensile properties of 316L
Fabricated by Laser Powder-Bed Fusion”, Addit. Manuf. 37(2020),
101723.
4) S.H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa and T.
Nakano: “Excellent mechanical and corrosion properties of austenitic
stainless steel with a unique crystallographic lamellar microstructure
via selective laser melting”, Scr. Mater. 159(2019), 89-93.
5) T. Ishimoto, S. Wu, Y. Ito, S.H. Sun, H. Amano and T. Nakano:
“Crystallographic orientation control of 316L austenitic stainless
steel via selective laser melting”, ISIJ Int. 60(2020), 1758-1764.
6) T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun and T. Nakano:
“Crystallographic texture control of beta-type Ti-15Mo-5Zr3Al alloy by selective laser melting for the development of novel
implants with a biocompatible low Young’s modulus”, Scr. Mater.
132(2017), 34-38.
7) X. Ding, Y. Koizumi, D. Wei and A. Chiba: “Effect of process
parameters on melt pool geometry and microstructure development
for electron beam melting of IN718: A systematic single bead
analysis study”, Addit. Manuf. 26(2019), 215-226.
8) K. Karayagiz, L. Johnson, R. Seede, V. Attari, B. Zhang, X. Huang,
S. Ghosh, T. Duong, I. Karaman, A. Elwany and R. Arróyave: “Finite
interface dissipation phase field modeling of Ni-Nb under additive
manufacturing conditions”, Acta Mater. 185(2020), 320-339.
9) M.M. Kirka, Y. Lee, D.A. Greeley, A. Okello, M.J. Goin, M.T.
Pearce and R.R. Dehoff: “Strategy for Texture Management in
Metals Additive Manufacturing”, JOM, 69(2017), 523-531.
10) S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M.
Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee and
R.R. Dehoff: “Additive Manufacturing of Nickel Superalloys:
Opportunities for Innovation and Challenges Related to
Qualification”, Metall. Mater. Trans. A. 49(2018), 3764-3780.
11) M.R. Gotterbarm, A.M. Rausch and C. Körner: “Fabrication of
Single Crystals through a μ-Helix Grain Selection Process during
Electron Beam Metal Additive Manufacturing”, Metals, 10(2020),
313.
12) J.D.D. Hunt: “Steady state columnar and equiaxed growth of
dendrites and eutectic”, Mater. Sci. Eng. 65(1984), 75-83.
13) S. Bontha, N.W. Klingbeil, P.A. Kobryn and H.L. Fraser: “Effects of
process variables and size-scale on solidification microstructure in
beam-based fabrication of bulky 3D structures”, Mater. Sci. Eng. A.
513-514(2009), 311-318.
14) J. Gockel and J. Beuth: “Understanding Ti-6Al-4V microstructure
control in additive manufacturing via process maps”, 24th Int. SFF
Symp. – An Addit. Manuf. Conf. SFF 2013.(2013), 666-674.
15) B. Schoinochoritis, D. Chantzis and K. Salonitis: “Simulation of
metallic powder bed additive manufacturing processes with the finite
element method: A critical review”, Proc. of Instit. Mech. Eng., Part
B: J. Eng. Manuf. 231(2017), 96-117.
16)小泉雄一郎: “計算機シミュレーションを用いたAdditive
Manufacturing プロセス最適化予測”, スマートプロセス学会誌,
8-4(2019), 132-138.
17) Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka and A. Chiba:
“Molten pool behavior and effect of fluid flow on solidification
conditions in selective electron beam melting(SEBM)of a
biomedical Co-Cr-Mo alloy”, Addit. Manuf. 26(2019), 202-214.
18) C. Tang, J.L. Tan and C.H. Wong: “A numerical investigation on
the physical mechanisms of single track defects in selective laser
melting”, Int. J. Heat Mass Transf. 126(2018), 957-968.
19) Technical data for Iron, [Online]. Available: http://periodictable.com/
Elements/026/data.html. [Accessed: 8-Feb-2021].
20) N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J.
Turner, N. Carl-son and S.S. Babu: “Numerical modeling of heattransfer and the influence of process parameters on tailoring the grain
morphology of IN718 in electron beam additive manufacturing”,
Acta Mater. 112(2016), 303-314.
21) S. Morita, Y. Miki and K. Toishi: “Introduction of Dendrite
Fragmentation to Microstructure Calculation by Cellular Automaton
Method”, Tetsu-to-Hagane. 104(2018), 559-566.
22) H. Esaka and M. Tamura: “Model Experiment Using Succinonitrile
on the Formation of Equiaxed Grains caused by Forced Convection”,
Tetsu-to-Hagane. 86(2000), 252-258.

Fig. 1. Hydraulic jump flow structure.

Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

낮은 레이놀즈 수 유압 점프의 수치 모델링에서 OpenFOAM 및 FLOW-3D의 성능 평가

ArnauBayona DanielValerob RafaelGarcía-Bartuala Francisco ​JoséVallés-Morána P. AmparoLópez-Jiméneza

Abstract

A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.

CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.

VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.

모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.

Keywords

CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number

References

Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a
review. J. Hydraulic Res. 35 (1), 81e98.
Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface
reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468.
Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647.
Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev.
Fluid Mech. 42 (2010), 111e133.
Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using

OpenFOAM. J. Hydroinformatics 17 (4), 662e678.
Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees
(Paris, France).
Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,
Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C.,
Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
Characterising performance of environmental models. Environ. Model. Softw.
40, 1e20.
Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop
Impact: Numerical Simulations and Theoretical Modeling. Imperial College of
Science, Technology and Medicine, UK.
Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s  eance. Le 
Remou et sur la Propagation des Ondes, 12, pp. 21e112.
Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD
problems. Elsevier Appl. Numer. Math. 26 (1), 135e151.
Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and
evaluation applied to computational fluid dynamics for environmental fluid
mechanics. Environ. Model. Softw. 33, 1e22.
Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ.
Fluid Mech. 11 (3), 263e288.
Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows
past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic
Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7.
Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined
three-hole conductivity probe for void fraction and velocity measurement in
airewater flows. Exp. fluids 48 (1), 17e31.
Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid
Mech. 286, 1e23.
Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de
translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759.
Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic
jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics
Division.
Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J.
heat fluid flow 18 (1), 45e54.
Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329.
Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment
Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress.
Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe
Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign.
Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in
hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752.
Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of
uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130
(7), 1e4.
Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909.
Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press.
Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/
Fluids 26.3(2007) 367e384.
Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In:
Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor
& Francis Group, ABalkema Book.
Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in
hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44.
Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a
computational fluid dynamics (CFD) model for air entrainment at spillway
aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838.
Can. J. Civ. Eng. 37 (1), 135e138.
Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended
load. Taylor & Francis J. Hydraulic Res. 32, 87e101.
Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144.
Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in
a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607.
Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis
J. Hydraulic Res. 51 (3), 223e243.
Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media.
Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface.
Environ. Model. Softw. 13 (3), 247e255.
Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New
York.
Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic
calculations. Elsevier J. Comput. Phys. 4 (1), 97e117.
De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic
jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173.
Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model 
for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int.
Conf. Hydroinformatics 1, 63e70.
Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep.
N. 81, 26429.
Fawer, C., 1937. Etude de quelquesecoulements permanents 
a filets courbes (‘Study
of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French).
Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on
air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3),
217e238.
Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a
hydraulic jump. J. Hydraulic Res. 48 (4), 504e508.
Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling
basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2),
101e113.
Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer.
Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic
Res. 27 (5), 565e583.
Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal
modelling code in fluvial environments. Environ. Model. Softw. 26 (12),
1685e1695.
Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1.
Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys. 39 (1), 201e225.
Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D.
Nonlinear Phenom. 12 (1), 396e407.
Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load
discharge formulations for transient flow in 1D and 2D situations.
J. Hydroinformatics 15 (4).
Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid
Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations.
Elsevier.
Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction
on flow and dispersion in urban street canyons using the RNG keε turbulence
model. Atmos. Environ. 38 (19), 3039e3048.
Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier
J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158.
Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of
low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520.
Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped
Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. :
http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February
27th 2014.
Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic
jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218.
Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and
transport in a hydraulic jump using two-fluid RANS and DES turbulence
models. Heat Mass Transf. 47 (8), 911e919.
Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity 
measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods
2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58.
Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming
flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385.
McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional
Gas Turbine Cascades.
Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of
Hydraulic Research. Taylor &Francis 37 (4), 541e558.
Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers.
Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and
turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159.
Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free
surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685.
Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of
bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154.
Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence
scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids
11, 1581e1595.
Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings
of the Fifth International Conference on Numerical Methods in Fluid Dynamics
June 28-July 2. 1976 Twente University, Enschede, pp. 330e340.
Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves:
laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97.
Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman
Institute for Fluid Dynamics.
Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial
neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70.
OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free
Software Foundation Inc.
Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water
resources technical publication. Eng. Monogr. 25.
Pope, S.B., 2000. Turbulent Flows. Cambridge university press.
Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of
hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215.
Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow.
Cambridge University Press.
Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91
(HY5), 107e132.
Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps.
Taylor & Francis J. Hydraulic Res. 10 (4), 409e430.
Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a
hydraulic jump (original title, in Spanish: “Simulacioncomputacional del
resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672.
Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966.
Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at
High Phase Fractions. Imperial College of Science, Technology and Medicine, UK.
Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec
application aux crues des riviereset a l’introduction de mareesdansleurslits.
Comptesrendus des seances de l’Academie des Sciences.
Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer.
Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat
Fluid Flow 21 (3), 252e263.
Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for
separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4.
Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study.
University of Stavanger, Norway.
Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces.
Imperial College of Science, Technology and Medicine, UK.
Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD
spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/
10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water.
Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in
moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR
World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands).
Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J.
Comput. Phys 23 (3), 263e275.
Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der
Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76.
Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase
flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16
(DOI: 10.1007/s00348-014-1847-9).
Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition
technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/
s00348-014-1775-8.
Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in
hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE)
HY.1943-7900.0001010. Paper 04015010, 10 pages.
Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic
jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The
Netherlands.
Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
12, 620e631.
Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA).
Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex
dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-

  1. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www.
    sciencedirect.com/science/article/pii/S0301932215000336.
    Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design
    Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands.
    Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of
    turbulence models for shear flows by a double expansion technique, Physics of
    Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520.
    Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics
    code. Tech. Rep. 44 (92), 35e35.
    Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps:
    free-surface fluctuation and integral turbulent scale measurements. Environ.
    fluid Mech. 13 (2), 189e204.
    Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble
    velocities in free hydraulic jumps for small to intermediate froude numbers.
    J. Hydraulic Eng.

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions

류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토

Hyung Ju Yoo1 Sung Sik Joo2 Beom Jae Kwon3 Seung Oh Lee4*
유 형주1 주 성식2 권 범재3 이 승오4*
1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University2Director, Water Resources & Environment Department, HECOREA3Director, Water Resources Department, ISAN4Professor, Dept. of Civil & Environmental Engineering, Hongik University
1홍익대학교 건설환경공학과 박사과정
2㈜헥코리아 수자원환경사업부 이사
3㈜이산 수자원부 이사
4홍익대학교 건설환경공학과 교수*Corresponding Author

ABSTRACT

최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다.

그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다.

이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다.

수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다.

따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다.

이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다.

그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.

키워드

보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력

Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.KeywordsAuxiliary spillway FLOW-3D Numerical simulation Revetment stability Shear stress

1. 서 론

최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.

기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006Kim, 2007Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.

그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.

2. 본 론

2.1 이론적 배경

2.1.1 3차원 수치모형의 기본이론

FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.

2.1.2 유동해석의 지배방정식

1) 연속 방정식(Continuity Equation)

FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1)(2)와 같다.

(1)

∇·v=0

(2)

∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ

여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.

2) 운동량 방정식(Momentum Equation)

각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3)(4)(5)와 같다.

(3)

∂u∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂x+Gx+fx-bx-RSORρVFu

(4)

∂v∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂y+Gy+fy-by-RSORρVFv

(5)

∂w∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂z+Gz+fz-bz-RSORρVFw

여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.

2.1.3 소류력 산정

호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6)(7)과 같다.

1) Schoklitsch 공식

Schoklitsch(1934)는 Chezy 유속계수를 적용하여 소류력을 산정하였다.

(6)

τ=γRI=γC2V2

여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.

2) Manning 조도계수를 고려한 공식

Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.

(7)

τ=γn2V2R1/3

여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.

FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.

2.2 하천호안 설계기준

하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.

Table 1.

Standard of Permissible Velocity and Shear on Revetment

Country (Reference)MaterialPermissible velocity (Vp, m/s)Permissible Shear (τp, kN/m2)
KoreaRiver Construction Design Practice Guidelines
(MOLIT, 2016)
Vegetated5.00.50
Stone5.00.80
USAASTM D’6460Vegetated6.10.81
Unvegetated5.00.28
JAPANDynamic Design Method of Revetment5.0

2.3. 보조여수로 운영에 따른 하류하천 영향 분석

2.3.1 모형의 구축 및 경계조건

본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).

수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.

(8)

n=ks1/68.1g1/2

여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.

시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.

Table 2.

Mesh sizes and numerical conditions

MeshNumbers49,102,500 EA
Increment (m)DirectionExisting SpillwayAuxiliary Spillway
∆X0.99 ~ 4.301.00 ~ 4.30
∆Y0.99 ~ 8.161.00 ~ 5.90
∆Z0.50 ~ 1.220.50 ~ 2.00
Boundary ConditionsXmin / YmaxInflow / Water Surface Elevation
Xmax, Ymin, Zmin / ZmaxWall / Symmetry
Turbulence ModelRNG model
Table 3.

Case of numerical simulation (Qp : Design flood discharge)

CaseExisting Spillway (Qe, m3/s)Auxiliary Spillway (Qa, m3/s)Remarks
1Qp0Reference case
20Qp
300.58QpReview of discharge capacity on
auxiliary spillway
400.48Qp
500.45Qp
600.32Qp
70.50Qp0.50QpDetermination of optimal division
ratio on Spillways
80.61Qp0.39Qp
90.39Qp0.61Qp
100.42Qp0.58Qp
110.32Qp0.45QpDetermination of permissible
division on Spillways
120.35Qp0.48Qp
130.38Qp0.53Qp
140.41Qp0.56Qp
Table 4.

Roughness coefficient and roughness height

CriteriaRoughness coefficient (n)Roughness height (ks, m)
Structure (Concrete)0.0140.00061
River0.0330.10496
/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F1.jpg
Fig. 1

Layout of spillway and river in this study

2.3.2 보조 여수로의 방류능 검토

본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.

보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.

하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F2.jpg
Fig. 2

Region of interest in this study

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F3.jpg
Fig. 3

Maximum velocity and location of Vmax according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F4.jpg
Fig. 4

Maximum shear according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F5.jpg
Fig. 5

Maximum water surface elevation and location of ηmax according to Qa

Table 5.

Numerical results for each cases (Case 1 ~ Case 6)

CaseMaximum Velocity
(Vmax, m/s)
Maximum Shear
(τmax, kN/m2)
Evaluation
in terms of Vp
Evaluation
in terms of τp
1
(Qa = 0)
9.150.54No GoodNo Good
2
(Qa = Qp)
8.870.56No GoodNo Good
3
(Qa = 0.58Qp)
6.530.40No GoodNo Good
4
(Qa = 0.48Qp)
6.220.36No GoodNo Good
5
(Qa = 0.45Qp)
4.220.12AccpetAccpet
6
(Qa = 0.32Qp)
4.040.14AccpetAccpet

2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토

기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).

따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F6.jpg
Fig. 6

Maximum velocity on section 1 & 2 according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F7.jpg
Fig. 7

Maximum shear on section 1 & 2 according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F8.jpg
Fig. 8

Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F9.jpg
Fig. 9

Maximum water surface elevation on section 1 & 2 according to Qa

Table 6.

Numerical results for each cases (Case 7 ~ Case 10)

Case (Qe &amp; Qa)Maximum Velocity (Vmax, m/s)Maximum Shear
(τmax, kN/m2)
Evaluation in terms of VpEvaluation in terms of τp
Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
7
Qe : 0.50QpQa : 0.50Qp
8.106.230.640.30No GoodNo GoodNo GoodNo Good
8
Qe : 0.61QpQa : 0.39Qp
8.886.410.610.34No GoodNo GoodNo GoodNo Good
9
Qe : 0.39QpQa : 0.61Qp
6.227.330.240.35No GoodNo GoodAcceptNo Good
10
Qe : 0.42QpQa : 0.58Qp
6.394.790.300.19No GoodAcceptNo GoodAccept

2.3.4 방류량 배분 비율의 허용 방류량 검토

계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).

호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).

Table 7.

Numerical results for each cases (Case 11 ~ Case 14)

Case (Qe &amp; Qa)Maximum Velocity
(Vmax, m/s)
Maximum Shear
(τmax, kN/m2)
Evaluation in terms of VpEvaluation in terms of τp
Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
11
Qe : 0.32QpQa : 0.45Qp
3.634.530.090.26AcceptAcceptAcceptAccept
12
Qe : 0.35QpQa : 0.48Qp
5.745.180.230.22No GoodNo GoodAcceptAccept
13
Qe : 0.38QpQa : 0.53Qp
6.704.210.280.11No GoodAcceptAcceptAccept
14
Qe : 0.41QpQa : 0.56Qp
6.545.240.280.24No GoodNo GoodAcceptAccept
/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F10.jpg
Fig. 10

Maximum velocity on section 1 & 2 according to total outflow

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F11.jpg
Fig. 11

Maximum shear on section 1 & 2 according to total outflow

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F12.jpg
Fig. 12

Maximum water surface elevation on section 1 & 2 according to total outflow

3. 결 론

본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.

수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.

본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.

Acknowledgements

본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.

References

1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA.
2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York.
3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM.
4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731.
5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608.
6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81.
7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
8 K-water (2021). Regulations of Dam Management. Daejeon: K-water.
9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT.
10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593
11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279
12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT.
13 MOLIT (2019). Standards of River Design. Sejong: MOLIT.
14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS.
15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7.
16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230
17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112

Korean References Translated from the English

1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부.
2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실.
3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부.
4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부.
5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608.
6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81.
8 부산국토관리청 (2009). 낙동강수계 하천기본계획(변경). 부산: 부산국토관리청.
9 전태명, 김형일, 박형섭, 백운일 (2006). 수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐. 한국수자원학회 학술발표회. 1726-1731.
10 한국수자원공사 (2021). 댐관리 규정. 대전: 한국수자원공사.

Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.

Numerical Simulations of the Flow Field of a Submerged Hydraulic Jump over Triangular Macroroughnesses

Triangular Macroroughnesses 대한 잠긴 수압 점프의 유동장 수치 시뮬레이션

by Amir Ghaderi 1,2,Mehdi Dasineh 3,Francesco Aristodemo 2 andCostanza Aricò 4,*1Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan 537138791, Iran2Department of Civil Engineering, University of Calabria, Arcavacata, 87036 Rende, Italy3Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh 8311155181, Iran4Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy*Author to whom correspondence should be addressed.Academic Editor: Anis YounesWater202113(5), 674; https://doi.org/10.3390/w13050674

Abstract

The submerged hydraulic jump is a sudden change from the supercritical to subcritical flow, specified by strong turbulence, air entrainment and energy loss. Despite recent studies, hydraulic jump characteristics in smooth and rough beds, the turbulence, the mean velocity and the flow patterns in the cavity region of a submerged hydraulic jump in the rough beds, especially in the case of triangular macroroughnesses, are not completely understood. The objective of this paper was to numerically investigate via the FLOW-3D model the effects of triangular macroroughnesses on the characteristics of submerged jump, including the longitudinal profile of streamlines, flow patterns in the cavity region, horizontal velocity profiles, streamwise velocity distribution, thickness of the inner layer, bed shear stress coefficient, Turbulent Kinetic Energy (TKE) and energy loss, in different macroroughness arrangements and various inlet Froude numbers (1.7 < Fr1 < 9.3). To verify the accuracy and reliability of the present numerical simulations, literature experimental data were considered.

Keywords: submerged hydraulic jumptriangular macroroughnessesTKEbed shear stress coefficientvelocityFLOW-3D model

수중 유압 점프는 강한 난류, 공기 동반 및 에너지 손실로 지정된 초임계에서 아임계 흐름으로의 급격한 변화입니다. 최근 연구에도 불구하고, 특히 삼각형 거시적 거칠기의 경우, 평활 및 거친 베드에서의 수압 점프 특성, 거친 베드에서 잠긴 수압 점프의 공동 영역에서 난류, 평균 속도 및 유동 패턴이 완전히 이해되지 않았습니다.

이 논문의 목적은 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 두께를 포함하여 서브머지드 점프의 특성에 대한 삼각형 거시 거칠기의 영향을 FLOW-3D 모델을 통해 수치적으로 조사하는 것이었습니다.

내부 층의 층 전단 응력 계수, 난류 운동 에너지(TKE) 및 에너지 손실, 다양한 거시 거칠기 배열 및 다양한 입구 Froude 수(1.7 < Fr1 < 9.3). 현재 수치 시뮬레이션의 정확성과 신뢰성을 검증하기 위해 문헌 실험 데이터를 고려했습니다.

 Introduction

격렬한 난류 혼합과 기포 동반이 있는 수압 점프는 초임계에서 아임계 흐름으로의 변화 과정으로 간주됩니다[1]. 자유 및 수중 유압 점프는 일반적으로 게이트, 배수로 및 둑과 같은 수력 구조 아래의 에너지 손실에 적합합니다. 매끄러운 베드에서 유압 점프의 특성은 널리 연구되었습니다[2,3,4,5,6,7,8,9].

베드의 거칠기 요소가 매끄러운 베드와 비교하여 수압 점프의 특성에 어떻게 영향을 미치는지 예측하기 위해 거시적 거칠기에 대한 자유 및 수중 수력 점프에 대해 여러 실험 및 수치 연구가 수행되었습니다. Ead와 Rajaratnam[10]은 사인파 거대 거칠기에 대한 수리학적 점프의 특성을 조사하고 무차원 분석을 통해 수면 프로파일과 배출을 정규화했습니다.

Tokyayet al. [11]은 두 사인 곡선 거대 거칠기에 대한 점프 길이 비율과 에너지 손실이 매끄러운 베드보다 각각 35% 더 작고 6% 더 높다는 것을 관찰했습니다. Abbaspur et al. [12]는 6개의 사인파형 거대 거칠기에 대한 수력학적 점프의 특성을 연구했습니다. 그 결과, 꼬리수심과 점프길이는 평상보다 낮았고 Froude 수는 점프길이에 큰 영향을 미쳤습니다.

Shafai-Bejestan과 Neisi[13]는 수압 점프에 대한 마름모꼴 거대 거칠기의 영향을 조사했습니다. 결과는 마름모꼴 거시 거칠기를 사용하면 매끄러운 침대와 비교하여 꼬리 수심과 점프 길이를 감소시키는 것으로 나타났습니다. Izadjoo와 Shafai-Bejestan[14]은 다양한 사다리꼴 거시 거칠기에 대한 수압 점프를 연구했습니다.

그들은 전단응력계수가 평활층보다 10배 이상 크고 점프길이가 50% 감소하는 것을 관찰하였습니다. Nikmehr과 Aminpour[15]는 Flow-3D 모델 버전 11.2[16]를 사용하여 사다리꼴 블록이 있는 거시적 거칠기에 대한 수력학적 점프의 특성을 조사했습니다. 결과는 거시 거칠기의 높이와 거리가 증가할수록 전단 응력 계수뿐만 아니라 베드 근처에서 속도가 감소하는 것으로 나타났습니다.

Ghaderi et al. [17]은 다양한 형태의 거시 거칠기(삼각형, 정사각형 및 반 타원형)에 대한 자유 및 수중 수력 점프 특성을 연구했습니다. 결과는 Froude 수의 증가에 따라 자유 및 수중 점프에서 전단 응력 계수, 에너지 손실, 수중 깊이, 미수 깊이 및 상대 점프 길이가 증가함을 나타냅니다.

자유 및 수중 점프에서 가장 높은 전단 응력과 에너지 손실은 삼각형의 거시 거칠기가 존재할 때 발생했습니다. Elsebaie와 Shabayek[18]은 5가지 형태의 거시적 거칠기(삼각형, 사다리꼴, 2개의 측면 경사 및 직사각형이 있는 정현파)에 대한 수력학적 점프의 특성을 연구했습니다. 결과는 모든 거시적 거칠기에 대한 에너지 손실이 매끄러운 베드에서보다 15배 이상이라는 것을 보여주었습니다.

Samadi-Boroujeni et al. [19]는 다양한 각도의 6개의 삼각형 거시 거칠기에 대한 수력 점프를 조사한 결과 삼각형 거시 거칠기가 평활 베드에 비해 점프 길이를 줄이고 에너지 손실과 베드 전단 응력 계수를 증가시키는 것으로 나타났습니다.

Ahmed et al. [20]은 매끄러운 베드와 삼각형 거시 거칠기에서 수중 수력 점프 특성을 조사했습니다. 결과는 부드러운 침대와 비교할 때 잠긴 깊이와 점프 길이가 감소했다고 밝혔습니다. 표 1은 다른 연구자들이 제시한 과거의 유압 점프에 대한 실험 및 수치 연구의 세부 사항을 나열합니다.

Table 1. Main characteristics of some past experimental and numerical studies on hydraulic jumps.

ReferenceShape Bed-Channel Type-
Jump Type
Channel Dimension (m)Roughness (mm)Fr1Investigated Flow
Properties
Ead and Rajaratnam [10]-Smooth and rough beds-Rectangular channel-Free jumpCL1 = 7.60
CW2 = 0.44
CH3 = 0.60
-Corrugated sheets (RH4 = 13 and 22)4–10-Upstream and tailwater depths-Jump length-Roller length-Velocity-Water surface profile
Tokyay et al. [11]-Smooth and rough beds-Rectangular channel-Free jumpCL = 10.50
CW = 0.253
CH = 0.432
-Two sinusoidal corrugated (RH = 10 and 13)5–12-Depth ratio-Jump length-Energy loss
Izadjoo and Shafai-Bejestan [14]-Smooth and rough beds-Two rectangular-channel-Free jumpCL = 1.2, 9
CW = 0.25, 0.50
CH = 0.40
Baffle with trapezoidal cross section
(RH: 13 and 26)
6–12-Upstream and tailwater depths-Jump length-Velocity-Bed shear stress coefficient
Abbaspour et al. [12]-Horizontal bed with slope 0.002-Rectangular channel—smooth and rough beds-Free jumpCL = 10
CW = 0.25
CH = 0.50
-Sinusoidal bed (RH = 15,20, 25 and 35)3.80–8.60-Water surface profile-Depth ratio-Jump length-Energy loss-Velocity profiles-Bed shear stress coefficient
Shafai-Bejestan and Neisi [13]-Smooth and rough beds-Rectangular channel-Free jumpCL = 7.50
CW = 0.35
CH = 0.50
Lozenge bed4.50–12-Sequent depth-Jump length
Elsebaie and Shabayek [18]-Smooth and rough beds-Rectangular channel-With side slopes of 45 degrees for two trapezoidal and triangular macroroughnesses and of 60 degrees for other trapezoidal macroroughnesses-Free jumpCL = 9
CW = 0.295
CH = 0.32
-Sinusoidal-Triangular-Trapezoidal with two side-Rectangular-(RH = 18 and corrugation wavelength = 65)50-Water surface profile-Sequent depth-Jump length-Bed shear stress coefficient
Samadi-Boroujeni et al. [19]-Rectangular channel-Smooth and rough beds-Free jumpCL = 12
CW = 0.40
CH = 0.40
-Six triangular corrugated (RH = 2.5)6.10–13.10-Water surface profile-Sequent depth-Jump length-Energy loss-Velocity profiles-Bed shear stress coefficient
Ahmed et al. [20]-Smooth and rough beds-Rectangular channel-Submerged jumpCL = 24.50
CW = 0.75
CH = 0.70
-Triangular corrugated sheet (RH = 40)1.68–9.29-Conjugated and tailwater depths-Submerged ratio-Deficit depth-Relative jump length-Jump length-Relative roller jump length-Jump efficiency-Bed shear stress coefficient
Nikmehr and Aminpour [15]-Horizontal bed with slope 0.002-Rectangular channel-Rough bed-Free jumpCL = 12
CW = 0.25
CH = 0.50
-Trapezoidal blocks (RH = 2, 3 and 4)5.01–13.70-Water surface profile-Sequent depth-Jump length-Roller length-Velocity
Ghaderi et al. [17]-Smooth and rough beds-Rectangular channel-Free and submerged jumpCL = 4.50
CW = 0.75
CH = 0.70
-Triangular, square and semi-oval macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)1.70–9.30-Horizontal velocity distributions-Bed shear stress coefficient-Sequent depth ratio and submerged depth ratio-Jump length-Energy loss
Present studyRectangular channel
Smooth and rough beds
Submerged jump
CL = 4.50
CW = 0.75
CH = 0.70
-Triangular macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)1.70–9.30-Longitudinal profile of streamlines-Flow patterns in the cavity region-Horizontal velocity profiles-Streamwise velocity distribution-Bed shear stress coefficient-TKE-Thickness of the inner layer-Energy loss

CL1: channel length, CW2: channel width, CH3: channel height, RH4: roughness height.

이전에 논의된 조사의 주요 부분은 실험실 접근 방식을 기반으로 하며 사인파, 마름모꼴, 사다리꼴, 정사각형, 직사각형 및 삼각형 매크로 거칠기가 공액 깊이, 잠긴 깊이, 점프 길이, 에너지 손실과 같은 일부 자유 및 수중 유압 점프 특성에 어떻게 영향을 미치는지 조사합니다.

베드 및 전단 응력 계수. 더욱이, 저자[17]에 의해 다양한 형태의 거시적 거칠기에 대한 수력학적 점프에 대한 이전 발표된 논문을 참조하면, 삼각형의 거대조도는 가장 높은 층 전단 응력 계수 및 에너지 손실을 가지며 또한 가장 낮은 잠긴 깊이, tailwater를 갖는 것으로 관찰되었습니다.

다른 거친 모양, 즉 정사각형 및 반 타원형과 부드러운 침대에 비해 깊이와 점프 길이. 따라서 본 논문에서는 삼각형 매크로 거칠기를 사용하여(일정한 거칠기 높이가 T = 4cm이고 삼각형 거칠기의 거리가 I = 4, 8, 12, 16 및 20cm인 다른 T/I 비율에 대해), 특정 캐비티 영역의 유동 패턴, 난류 운동 에너지(TKE) 및 흐름 방향 속도 분포와 같은 연구가 필요합니다.

CFD(Computational Fluid Dynamics) 방법은 자유 및 수중 유압 점프[21]와 같은 복잡한 흐름의 모델링 프로세스를 수행하는 중요한 도구로 등장하며 수중 유압 점프의 특성은 CFD 시뮬레이션을 사용하여 정확하게 예측할 수 있습니다 [22,23 ].

본 논문은 초기에 수중 유압 점프의 주요 특성, 수치 모델에 대한 입력 매개변수 및 Ahmed et al.의 참조 실험 조사를 제시합니다. [20], 검증 목적으로 보고되었습니다. 또한, 본 연구에서는 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 내부 층의 두께, 베드 전단 응력 계수, TKE 및 에너지 손실과 같은 특성을 조사할 것입니다.

Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.
Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.

Table 2. Effective parameters in the numerical model.

Bed TypeQ
(l/s)
I
(cm)
T (cm)d (cm)y1
(cm)
y4
(cm)
Fr1= u1/(gy1)0.5SRe1= (u1y1)/υ
Smooth30, 4551.62–3.839.64–32.101.7–9.30.26–0.5039,884–59,825
Triangular macroroughnesses30, 454, 8, 12, 16, 20451.62–3.846.82–30.081.7–9.30.21–0.4439,884–59,825
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).

Table 3. Main flow variables for the numerical and physical models (Ahmed et al. [20]).

ModelsBed TypeQ (l/s)d (cm)y1 (cm)u1 (m/s)Fr1
Numerical and PhysicalSmooth4551.62–3.831.04–3.701.7–9.3
T/I = 0.54551.61–3.831.05–3.711.7–9.3
T/I = 0.254551.60–3.841.04–3.711.7–9.3
Figure 3. The boundary conditions governing the simulations.
Figure 3. The boundary conditions governing the simulations.
Figure 4. Sketch of mesh setup.
Figure 4. Sketch of mesh setup.

Table 4. Characteristics of the computational grids.

MeshNested Block Cell Size (cm)Containing Block Cell Size (cm)
10.551.10
20.651.30
30.851.70

Table 5. The numerical results of mesh convergence analysis.

ParametersAmounts
fs1 (-)7.15
fs2 (-)6.88
fs3 (-)6.19
K (-)5.61
E32 (%)10.02
E21 (%)3.77
GCI21 (%)3.03
GCI32 (%)3.57
GCI32/rp GCI210.98
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.
Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.
Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.
Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.
Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.
Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.
Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.
Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.
Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.
Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].
Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].
Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.
Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.
Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1
Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1
Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.
Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.
Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.
Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.
Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).
Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).
Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).
Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).
Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.
Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.
Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).
Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).

Conclusions

  • 본 논문에서는 유선의 종방향 프로파일, 공동 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 내부 층의 두께, 베드 전단 응력 계수, 난류 운동 에너지(TKE)를 포함하는 수중 유압 점프의 특성을 제시하고 논의했습니다. ) 및 삼각형 거시적 거칠기에 대한 에너지 손실. 이러한 특성은 FLOW-3D® 모델을 사용하여 수치적으로 조사되었습니다. 자유 표면을 시뮬레이션하기 위한 VOF(Volume of Fluid) 방법과 난류 RNG k-ε 모델이 구현됩니다. 본 모델을 검증하기 위해 평활층과 삼각형 거시 거칠기에 대해 수치 시뮬레이션과 실험 결과를 비교했습니다. 본 연구의 다음과 같은 결과를 도출할 수 있다.
  • 개발 및 개발 지역의 삼각형 거시 거칠기의 흐름 패턴은 수중 유압 점프 조건의 매끄러운 바닥과 비교하여 더 작은 영역에서 동일합니다. 삼각형의 거대 거칠기는 거대 거칠기 사이의 공동 영역에서 또 다른 시계 방향 와류의 형성으로 이어집니다.
  • T/I = 1, 0.5 및 0.33과 같은 거리에 대해 속도 벡터 분포는 캐비티 영역에서 시계 방향 소용돌이를 표시하며, 여기서 속도의 크기는 평균 유속보다 훨씬 작습니다. 삼각형 거대 거칠기(T/I = 0.25 및 0.2) 사이의 거리를 늘리면 캐비티 영역에 크기가 다른 두 개의 소용돌이가 형성됩니다.
  • 삼각형 거시조도 사이의 거리가 충분히 길면 흐름이 다음 조도에 도달할 때까지 속도 분포가 회복됩니다. 그러나 짧은 거리에서 흐름은 속도 분포의 적절한 회복 없이 다음 거칠기에 도달합니다. 따라서 거시 거칠기 사이의 거리가 감소함에 따라 마찰 계수의 증가율이 감소합니다.
  • 삼각형의 거시적 거칠기에서, 잠수 점프의 지정된 섹션에서 최대 속도는 자유 점프보다 높은 값으로 이어집니다. 또한, 수중 점프에서 두 가지 유형의 베드(부드러움 및 거친 베드)에 대해 깊이 및 와류 증가로 인해 베드로부터의 최대 속도 거리는 감소합니다. 잠수 점프에서 경계층 두께는 자유 점프보다 얇습니다.
  • 매끄러운 베드의 난류 영역은 게이트로부터의 거리에 따라 생성되고 자유 표면 롤러 영역 근처에서 발생하는 반면, 거시적 거칠기에서는 난류가 게이트 근처에서 시작되어 더 큰 강도와 제한된 스위프 영역으로 시작됩니다. 이는 반시계 방향 순환의 결과입니다. 거시 거칠기 사이의 공간에서 자유 표면 롤러 및 시계 방향 와류.
  • 삼각 거시 거칠기에서 침지 점프의 베드 전단 응력 계수와 에너지 손실은 유입구 Froude 수의 증가에 따라 증가하는 매끄러운 베드에서 발견된 것보다 더 큽니다. T/I = 0.50 및 0.20에서 최고 및 최저 베드 전단 응력 계수 및 에너지 손실이 평활 베드에 비해 거칠기 요소의 거리가 증가함에 따라 발생합니다.
  • 거의 거칠기 요소가 있는 삼각형 매크로 거칠기의 존재에 의해 주어지는 점프 길이와 잠긴 수심 및 꼬리 수심의 감소는 결과적으로 크기, 즉 길이 및 높이가 감소하는 정수조 설계에 사용될 수 있습니다.
  • 일반적으로 CFD 모델은 다양한 수력 조건 및 기하학적 배열을 고려하여 잠수 점프의 특성 예측을 시뮬레이션할 수 있습니다. 캐비티 영역의 흐름 패턴, 흐름 방향 및 수평 속도 분포, 베드 전단 응력 계수, TKE 및 유압 점프의 에너지 손실은 수치적 방법으로 시뮬레이션할 수 있습니다. 그러나 거시적 차원과 유동장 및 공동 유동의 변화에 ​​대한 다양한 배열에 대한 연구는 향후 과제로 남아 있다.

References

  1. White, F.M. Viscous Fluid Flow, 2nd ed.; McGraw-Hill University of Rhode Island: Montreal, QC, Canada, 1991. [Google Scholar]
  2. Launder, B.E.; Rodi, W. The turbulent wall jet. Prog. Aerosp. Sci. 197919, 81–128. [Google Scholar] [CrossRef]
  3. McCorquodale, J.A. Hydraulic jumps and internal flows. In Encyclopedia of Fluid Mechanics; Cheremisinoff, N.P., Ed.; Golf Publishing: Houston, TX, USA, 1986; pp. 120–173. [Google Scholar]
  4. Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M. Simulating 2D open-channel flows through an SPH model. Eur. J. Mech. B Fluids 201234, 35–46. [Google Scholar] [CrossRef]
  5. Khan, S.A. An analytical analysis of hydraulic jump in triangular channel: A proposed model. J. Inst. Eng. India Ser. A 201394, 83–87. [Google Scholar] [CrossRef]
  6. Mortazavi, M.; Le Chenadec, V.; Moin, P.; Mani, A. Direct numerical simulation of a turbulent hydraulic jump: Turbulence statistics and air entrainment. J. Fluid Mech. 2016797, 60–94. [Google Scholar] [CrossRef]
  7. Daneshfaraz, R.; Ghahramanzadeh, A.; Ghaderi, A.; Joudi, A.R.; Abraham, J. Investigation of the effect of edge shape on characteristics of flow under vertical gates. J. Am. Water Works Assoc. 2016108, 425–432. [Google Scholar] [CrossRef]
  8. Azimi, H.; Shabanlou, S.; Kardar, S. Characteristics of hydraulic jump in U-shaped channels. Arab. J. Sci. Eng. 201742, 3751–3760. [Google Scholar] [CrossRef]
  9. De Padova, D.; Mossa, M.; Sibilla, S. SPH numerical investigation of characteristics of hydraulic jumps. Environ. Fluid Mech. 201818, 849–870. [Google Scholar] [CrossRef]
  10. Ead, S.A.; Rajaratnam, N. Hydraulic jumps on corrugated beds. J. Hydraul. Eng. 2002128, 656–663. [Google Scholar] [CrossRef]
  11. Tokyay, N.D. Effect of channel bed corrugations on hydraulic jumps. In Proceedings of the World Water and Environmental Resources Congress 2005, Anchorage, AK, USA, 15–19 May 2005; pp. 1–9. [Google Scholar]
  12. Abbaspour, A.; Dalir, A.H.; Farsadizadeh, D.; Sadraddini, A.A. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. J. Hydro-Environ. Res. 20093, 109–117. [Google Scholar] [CrossRef]
  13. Shafai-Bejestan, M.S.; Neisi, K. A new roughened bed hydraulic jump stilling basin. Asian J. Appl. Sci. 20092, 436–445. [Google Scholar] [CrossRef]
  14. Izadjoo, F.; Shafai-Bejestan, M. Corrugated bed hydraulic jump stilling basin. J. Appl. Sci. 20077, 1164–1169. [Google Scholar] [CrossRef]
  15. Nikmehr, S.; Aminpour, Y. Numerical Simulation of Hydraulic Jump over Rough Beds. Period. Polytech. Civil Eng. 201764, 396–407. [Google Scholar] [CrossRef]
  16. Flow Science Inc. FLOW-3D V 11.2 User’s Manual; Flow Science Inc.: Santa Fe, NM, USA, 2016. [Google Scholar]
  17. Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Ghahramanzadeh, A. Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J. Hydroinform. 202022, 1554–1572. [Google Scholar] [CrossRef]
  18. Elsebaie, I.H.; Shabayek, S. Formation of hydraulic jumps on corrugated beds. Int. J. Civil Environ. Eng. IJCEE–IJENS 201010, 37–47. [Google Scholar]
  19. Samadi-Boroujeni, H.; Ghazali, M.; Gorbani, B.; Nafchi, R.F. Effect of triangular corrugated beds on the hydraulic jump characteristics. Can. J. Civil Eng. 201340, 841–847. [Google Scholar] [CrossRef]
  20. Ahmed, H.M.A.; El Gendy, M.; Mirdan, A.M.H.; Ali, A.A.M.; Haleem, F.S.F.A. Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Eng. J. 20145, 1033–1042. [Google Scholar] [CrossRef]
  21. Viti, N.; Valero, D.; Gualtieri, C. Numerical simulation of hydraulic jumps. Part 2: Recent results and future outlook. Water 201911, 28. [Google Scholar] [CrossRef]
  22. Gumus, V.; Simsek, O.; Soydan, N.G.; Akoz, M.S.; Kirkgoz, M.S. Numerical modeling of submerged hydraulic jump from a sluice gate. J. Irrig. Drain. Eng. 2016142, 04015037. [Google Scholar] [CrossRef]
  23. Jesudhas, V.; Roussinova, V.; Balachandar, R.; Barron, R. Submerged hydraulic jump study using DES. J. Hydraul. Eng. 2017143, 04016091. [Google Scholar] [CrossRef]
  24. Rajaratnam, N. The hydraulic jump as a wall jet. J. Hydraul. Div. 196591, 107–132. [Google Scholar] [CrossRef]
  25. Hager, W.H. Energy Dissipaters and Hydraulic Jump; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1992; pp. 185–224. [Google Scholar]
  26. Long, D.; Steffler, P.M.; Rajaratnam, N. LDA study of flow structure in submerged Hydraulic jumps. J. Hydraul. Res. 199028, 437–460. [Google Scholar] [CrossRef]
  27. Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
  28. Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries, Inc.: La Canada, CA, USA, 2006. [Google Scholar]
  29. Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 198139, 201–225. [Google Scholar] [CrossRef]
  30. Pourshahbaz, H.; Abbasi, S.; Pandey, M.; Pu, J.H.; Taghvaei, P.; Tofangdar, N. Morphology and hydrodynamics numerical simulation around groynes. ISH J. Hydraul. Eng. 2020, 1–9. [Google Scholar] [CrossRef]
  31. Choufu, L.; Abbasi, S.; Pourshahbaz, H.; Taghvaei, P.; Tfwala, S. Investigation of flow, erosion, and sedimentation pattern around varied groynes under different hydraulic and geometric conditions: A numerical study. Water 201911, 235. [Google Scholar] [CrossRef]
  32. Zhenwei, Z.; Haixia, L. Experimental investigation on the anisotropic tensorial eddy viscosity model for turbulence flow. Int. J. Heat Technol. 201634, 186–190. [Google Scholar]
  33. Carvalho, R.; Lemos Ramo, C. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraul. Res. 200846, 739–752. [Google Scholar] [CrossRef]
  34. Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of Open FOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 201680, 322–335. [Google Scholar] [CrossRef]
  35. Daneshfaraz, R.; Ghaderi, A.; Akhtari, A.; Di Francesco, S. On the Effect of Block Roughness in Ogee Spillways with Flip Buckets. Fluids 20205, 182. [Google Scholar] [CrossRef]
  36. Ghaderi, A.; Abbasi, S. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sādhanā 201944, 216. [Google Scholar] [CrossRef]
  37. Ghaderi, A.; Daneshfaraz, R.; Dasineh, M.; Di Francesco, S. Energy Dissipation and Hydraulics of Flow over Trapezoidal–Triangular Labyrinth Weirs. Water 202012, 1992. [Google Scholar] [CrossRef]
  38. Ghaderi, A.; Abbasi, S.; Abraham, J.; Azamathulla, H.M. Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Meas. Instrum. 202072, 101711. [Google Scholar] [CrossRef]
  39. Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. basic theory. J. Sci. Comput. 19861, 3–51. [Google Scholar] [CrossRef] [PubMed]
  40. Biscarini, C.; Di Francesco, S.; Ridolfi, E.; Manciola, P. On the simulation of floods in a narrow bending valley: The malpasset dam break case study. Water 20168, 545. [Google Scholar] [CrossRef]
  41. Ghaderi, A.; Daneshfaraz, R.; Abbasi, S.; Abraham, J. Numerical analysis of the hydraulic characteristics of modified labyrinth weirs. Int. J. Energy Water Resour. 20204, 425–436. [Google Scholar] [CrossRef]
  42. Alfonsi, G. Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl. Mech. Rev. 200962. [Google Scholar] [CrossRef]
  43. Abbasi, S.; Fatemi, S.; Ghaderi, A.; Di Francesco, S. The Effect of Geometric Parameters of the Antivortex on a Triangular Labyrinth Side Weir. Water 202113, 14. [Google Scholar] [CrossRef]
  44. Celik, I.B.; Ghia, U.; Roache, P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 2008130, 0780011–0780013. [Google Scholar]
  45. Khan, M.I.; Simons, R.R.; Grass, A.J. Influence of cavity flow regimes on turbulence diffusion coefficient. J. Vis. 20069, 57–68. [Google Scholar] [CrossRef]
  46. Javanappa, S.K.; Narasimhamurthy, V.D. DNS of plane Couette flow with surface roughness. Int. J. Adv. Eng. Sci. Appl. Math. 2020, 1–13. [Google Scholar] [CrossRef]
  47. Nasrabadi, M.; Omid, M.H.; Farhoudi, J. Submerged hydraulic jump with sediment-laden flow. Int. J. Sediment Res. 201227, 100–111. [Google Scholar] [CrossRef]
  48. Pourabdollah, N.; Heidarpour, M.; Abedi Koupai, J. Characteristics of free and submerged hydraulic jumps in different stilling basins. In Water Management; Thomas Telford Ltd.: London, UK, 2019; pp. 1–11. [Google Scholar]
  49. Rajaratnam, N. Turbulent Jets; Elsevier Science: Amsterdam, The Netherlands, 1976. [Google Scholar]
  50. Aristodemo, F.; Marrone, S.; Federico, I. SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng. 2015105, 160–175. [Google Scholar] [CrossRef]
  51. Shekari, Y.; Javan, M.; Eghbalzadeh, A. Three-dimensional numerical study of submerged hydraulic jumps. Arab. J. Sci. Eng. 201439, 6969–6981. [Google Scholar] [CrossRef]
  52. Khan, A.A.; Steffler, P.M. Physically based hydraulic jump model for depth-averaged computations. J. Hydraul. Eng. 1996122, 540–548. [Google Scholar] [CrossRef]
  53. De Dios, M.; Bombardelli, F.A.; García, C.M.; Liscia, S.O.; Lopardo, R.A.; Parravicini, J.A. Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps. J. Hydro-Environ. Res. 201715, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Fig. 1. Nysted Offshore Wind Farm

FLOW-3D 모형을 이용한 해상풍력기초 세굴현상 분석

박영진1, 김태원2*1 서일대학교 토목공학과, 2 (주)지티이

Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Mode

Abstract

국내․외에서 다양한 형태의 석유 대체에너지는 온실효과 가스를 배출하지 않는 청정에너지로 개발되고 있으며, 특히 해상풍력은 풍력 자원이 풍부하고 육상보다 풍력 감소가 상대적으로 작아 다양하게 연구되고 있다. 본 연구에서는 해상 풍력기초의 세굴현상을 분석하기 위해서 Flow-3D 모형을 이용하여 모노 파일과 삼각대 파일 기초에 대하여 수치모의를 수행 하였다. 직경이 다른(D=5.0 m, d=1.69 m) 모노 파일 형식과 직경이 동일한(D=5.0 m) 모노파일에 대하여 세굴현상을 평가하 였다. 수치해석 결과, 동일한 직경을 가진 모노파일에서 하강류가 증가되었으며, 최대세굴심은 약 1.7배 이상 발생하였다. 삼각대 파일에 대하여 관측유속과 극치파랑 조건을 상류경계조건으로 각각 적용한 후 세굴현상을 평가하였다. 극치파랑조건 을 적용한 경우 최대 세굴심은 약 1.3배 정도 깊게 발생하였다. LES 모형을 적용하였을 경우 세굴심은 평형상태에 도달한 반면, RNG  모형은 해석영역 내 전반적으로 세굴현상이 발생하였으며, 세굴심은 평형상태에 도달하지 않았다. 해상풍 력기초에 대하여 세굴현상을 평가하기 위해서 수치모형 적용시 파랑조건 및 LES 난류모형을 적용하는 것이 타당할 것으로 판단된다.

Various types of alternative energy sources to petroleum are being developed both domestically and internationally as clean energy that does not emit greenhouse gases. In particular, offshore wind power has been studied because the wind resources are relatively limitless and the wind power is relatively smaller than onshore. In this study, to analyze the scour phenomenon around offshore wind foundations, mono pile and tripod pile foundations were simulated using a FLOW-3D model. The scour phenomenon was evaluated for mono piles: one is a pile with a 5 m diameter and d=1.69 m and the other is a pile with a 5 m diameter. Numerical analysis showed that in the latter, the falling-flow increased and the maximum scour depth occurred more than 1.7 times. For a tripod pile foundation, the measured velocity and the maximum wave condition were applied to the upstream boundary condition, respectively, and the scour phenomenon was evaluated. When the maximum wave condition was applied, the maximum scour depth occurred more than about 1.3 times. When the LES model was applied, the scour depth reached equilibrium, whereas the numerical results of the RNG model show that the scour phenomenon occurred in the entire boundary area and the scour depth did not reach equilibrium. To evaluate the scour phenomenon around offshore wind foundations, it is reasonable to apply the wave condition and the LES turbulence model to numerical model applications.

Keywords : Flow-3D, LES model, Mono pile, Offshore wind foundation, RNG k-e model, Scour phenomenon, Tripod pile

서론

지구환경문제에 대한 관심이 증가되고 있는 현실에 서, 풍력발전은 석유 대체에너지로서 뿐만 아니라, 이산 화탄소 등 온실효과 가스를 배출하지 않는 청청에너지의 발전방식으로 국내․외에서 개발이 증가되고 있다. 특 히, 해상풍력은 풍력 자원이 풍부하고, 육상보다 풍력 감 소가 상대적으로 작아 전기 출력량이 크기 때문에 신재 생에너지원 확보 차원에서 국내․외 해상풍력단지 사업 계획이 수립되어 추진되고 있는 실정이다. Fig. 1은 세계 최대 네델란드 해상풍력단지인 Nysted Offshore Wind Farm의 사진이다.

Fig. 1. Nysted Offshore Wind Farm
Fig. 1. Nysted Offshore Wind Farm

하천 내 교각 주변에서 세굴 현상은 발생하며 교각의 안정성 측면에서 세굴보호공을 설치한다. 해양에서 해상 풍력발전 기초를 설치할 경우 구조물로 인해 교란된 흐 름은 세굴을 유발시킨다. 따라서 해상풍력기초를 계획할 경우 안정성 측면에서 세굴현상을 검토할 필요가 있다. 특히 하천의 경우 교각 세굴보호공에 대하여 다양한 공 법들이 설계에 반영되고 있으나, 해양구조물 기초에 대 한 연구는 미흡한 상태이다.

이에 본 연구에서는 수치모 형을 이용하여 해상풍력기초에 대한 세굴현상을 분석하 였다. 수치모형을 이용하여 세굴현상을 예측함에 있어서 본 연구와 연관된 연구동향으로는 양원준과 최성욱(2002) 은 FLOW-3D 모형을 이용하여 세굴영향 평가를 함에 있어서 난류모형을 비교․분석 하였다. 전반적으로 수리 모형실험 자료와 좀 더 잘 일치하는 난류모형은 LES 모 형으로 분석되었다[1]. 여창건 등(2010)은 세굴영향 평 가를 위해 FLOW-3D 모형을 이용할 경우 세굴에 미치 는 중요한 인자에 대하여 매개변수 민감도분석을 수행하 였다.

검토결과, 세굴에 민감한 변수는 유사의 입경, 세 굴조절계수, 안식각 등의 순서로 민감한 것으로 검토되 었다[2]. 오명학 등(2012)은 해상풍력발전기초 시설 주 변에서 FLOW-3D 모형을 이용하여 세굴영향 검토를 수 행하였다. 오명학 등이 검토한 지역은 본 연구 지역과 동 일한 지역이나 경계조건 및 세굴평가에서 가장 중요한 평균입경이 다르다. 세굴검토를 위해 수치모형에 입력한 경계조건은 대조기 창조 최강유속 1.0 m/s을 상류경계조 건으로, 평균입경은 0.0353 mm를 적용하였다. 이와 같은 조건에서 모노파일에서 발생하는 최대세굴심은 약 5.24 m로 분석되었다[3].

Stahlmann과 Schlurmann(2010)은 본 과업에서 적용할 해상풍력기초와 유사한 기초를 가진 구조물에 대하여 수리모형실험을 수행하였다. 연구대상 지역은 독일 해안가에 의한 해상풍력단지에 대하여 삼각 대 형식의 해상풍력기초에 대하여 1/40과 1/12 축척으로 각각 수리모형실험을 수행하였다. 1/40과 1/12 축척에 따라서 세굴분포양상 및 최대세굴심의 위치가 다르게 관 측되었다[4].

본 연구에서는 3차원 수치모형인 Flow-3D를 이용하 여 세굴현상을 평가함에 있어서, 파일 형상 변화, 경계조 건이 다른 경우 및 서로 다른 난류모형을 적용하였을 경 우에 대하여 수치해석이 국부세굴 현상에 미치는 영향을 검토하였다. 이와 같은 연구는 향후 수치모형을 이용하 여 해상풍력발전 기초에 대하여 세굴현상을 평가함에 있 어서 기초 자료로 활용될 수 있을 것으로 판단된다.

Fig. 2. Shape of Pile
Fig. 2. Shape of Pile
Fig. 3. Boundary Area and Grid of Flow-3D
Fig. 3. Boundary Area and Grid of Flow-3D
Fig. 4. Scour around Monopile
Fig. 4. Scour around Monopile
Fig. 5. Velocity Development around Monopile
Fig. 5. Velocity Development around Monopile
Fig. 6. Flow Phenomenon and Scour around Tripod Pile Foundation
Fig. 6. Flow Phenomenon and Scour around Tripod Pile Foundation
Fig. 7. Scour according to Turbulence Models(RNG k-e & LES Model)
Fig. 7. Scour according to Turbulence Models(RNG k-e & LES Model)

결론

본 연구에서는 해상풍력기초 형식이 모노파일과 삼각 대 파일일 경우 세굴현상을 평가하기 위해서 3차원 수치 모형인 Flow-3D를 이용하였다. 직경이 서로 다른(D=5.0 m, d=1.69 m) 모노파일과 직경이 동일한(D=5.0 m) 모노파일에 대하여 LES 모형 을 적용하여 세굴현상을 평가하였다. 서로 다른 직경을 가진 모노파일 주변에서 최대 세굴심은 4.13 m, 동일한 직경을 가진 모노파일 주변에서는 7.13 m의 최대 세굴 심이 발생하였다. 또한 동일한 직경을 가진 파일에서 하 강류가 증가되어 최대세굴심이 증가된 것으로 분석되었 다. 수치해석 결과, 세굴에 대한 기초의 안정성 측면에서 서로 다른 직경을 가진 기초 형식이 유리한 것으로 분석 되었다. 수치모형을 이용하여 세굴현상을 평가함에 있어서 경 계조건 및 난류모형의 선정은 중요하다. 본 연구에서는 서로 다른 직경을 가진 삼각대 형식의 해상풍력기초에 대하여 상류경계조건으로 관측유속과 극치파랑조건을 각각 적용하였을 경우 세굴현상을 평가하였다. 극치파랑 조건을 적용하였을 경우가 최대세굴심이 약 1.3배 정도 깊게 발생하였다. 또한 극치파랑조건에서 RNG 과 LES 모형을 적용하여 세굴현상을 평가하였다. LES 모 형을 적용하였을 경우 파일 주변에서 세굴현상이 발생하 였으며, 세굴심은 일정시간이 경과된 후에는 증가되지 않는 평형상태에 도달하였다. 그러나 RNG 모형을 적용한 경우는 평형상태에 도달하지 않고 계속해서 세굴 이 진행되어 세굴심을 평가할 수 없었다. 현재 해양구조 물 기초에 대한 세굴현상 연구는 미흡한 상태로 하천에 서 교각 세굴현상을 검토하기 위해서 적용되는 경계조건 을 적용하기보다는 해상 조건인 파랑조건을 적용하여 검 토하는 것이 기초의 안정성 측면에서 유리할 것으로 판 단된다. 또한 정확한 세굴현상을 예측하기 위해서는 RNG 모형보다는 LES 모형을 적용하는 것이 타당 할 것으로 판단된다. 향후 해상풍력기초에 대한 세굴관측을 수행하여 수치 모의 결과와 비교․분석이 필요하며, 또한 다양한 파랑 조건에서 난류모형에 대한 비교․분석이 필요할 것으로 생각된다.

References

[1] W. J. Yang, S. U. Choi. “Three- Dimensional Numerical
Simulation of Local Scour around the Bridge Pier using
Large Eddy Simulation”, Journal of KWRA, vol. 22, no.
4-B, pp. 437-446, 2002.
[2] C. G. Yeo, J. E. Lee, S. O. Lee, J. W. Song. “Sensitivity
Analysis of Sediment Scour Model in Flow-3D”,
Proceedings of KWRA, pp. 1750-1754, 2010.
[3] M. H. Oh, O. S. Kwon, W. M. Jeong, K. S. Lee.
“FLOW-3D Analysis on Scouring around Offshore Wind
Foundation”, Journal of KAIS, vol. 13, no. 3, pp.
1346-1351, 2012.
DOI: http://dx.doi.org/10.5762/KAIS.2012.13.3.1346

[4] A. Stahlmann, T. Schlurmann, “Physical Modeling of
Scour around Tripod Foundation Structures for Offshore
Wind Energy Converters”, Proceedings of 32nd
Conference on Coastal Engineering, Shanghai, China,
no. 32, pp. 1-12, 2010.
[5] Flow Science. Flow-3D User’s Manual. Los Alamos,
NM, USA, 2016.
[6] KEPRI. 『Test Bed for 2.5GW Offshore Wind Farm at
Yellow Sea』 Interim Design Report(in Korea), 2014.
[7] Germanischer Lloyd. Guideline for the Certification of
Offshore Wind Turbines. Hamburg, Germany, 2005.
[8] B. M. Sumer, J. Fredsøe, The Mechanics of Scour in the
Marine Environment. World Scientific Publishing Co.
Pte. Ltd. 2002.
[9] S. J. Ahn, U. Y. Kim, J. K. Lee. “Experimental Study
for Scour Protection around Bridge Pier by Falling-Flow
Interruption”, Journal of KSCE, vol. 19, no. II-1, pp.
57-65, 1999.
[10] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, C.
G. Speziale, “Development of turbulence models for
shear flows by a double expansion technique”, Physics
of Fluids, vol. 4, no. 7, pp. 1510-1520, 1992.
DOI: https://doi.org/10.1063/1.858424

Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow

Numerical Methods in Civil Engineering

Rasoul Daneshfaraz*, Ehsan Aminvash**, Silvia Di Francesco***, Amir Najibi**, John Abraham****

토목공학의 수치해석법

Abstract

The main purpose of this study is to provide a method to increase energy dissipation on an inclined drop. Therefore, three types of rough elements with cylindrical, triangular and batshaped geometries are used on the inclined slope in the relative critical depth range of 0.128 to 0.36 and the effect of the geometry of these elements is examined using Flow 3D software. The results showed demonstrate that the downstream relative depth obtained from the numerical analysis is in good agreement with the laboratory results. The application of rough elements on the inclined drop increased the downstream relative depth and also the relative energy dissipation. The application of rough elements on the sloping surface of the drop significantly reduced the downstream Froude number, so that the Froude number in all models ranging from 4.7~7.5 to 1.45~3.36 also decreased compared to the plain drop. Bat-shaped elements are structurally smaller in size, so the use of these elements, in addition to dissipating more energy, is also economically viable.

이 연구의 주요 목적은 경사진 낙하에서 에너지 소산을 증가시키는 방법을 제공하는 것입니다. 따라서 0.128 ~ 0.36의 상대 임계 깊이 범위에서 경사면에 원통형, 삼각형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거친 요소가 사용되며 이러한 요소의 형상의 영향은 Flow 3D 소프트웨어를 사용하여 조사됩니다. 결과는 수치 분석에서 얻은 하류 상대 깊이가 실험실 결과와 잘 일치함을 보여줍니다. 경 사진 낙하에 거친 요소를 적용하면 하류 상대 깊이와 상대 에너지 소산이 증가했습니다. 낙차 경사면에 거친 요소를 적용하면 하류의 Froude 수를 크게 감소시켜 4.7~7.5에서 1.45~3.36 범위의 모든 모델에서 Froude 수도 일반 낙차에 비해 감소했습니다. 박쥐 모양의 요소는 구조적으로 크기가 더 작기 때문에 더 많은 에너지를 분산시키는 것 외에도 이러한 요소를 사용하는 것이 경제적으로도 가능합니다.

Keywords: Downstream depth, Energy dissipation, Froude number, Inclined drop, Roughness elements

Introduction

급수 네트워크 시스템, 침식 수로, 수처리 시스템 및 경사가 큰 경우 흐름 에너지를 더 잘 제어하기 위해 경사 방울을 사용할 수 있습니다. 낙하 구조는 지반의 자연 경사를 설계 경사로 변환하여 에너지 소산, 유속 감소 및 수심 증가를 유발합니다. 따라서 흐름의 하류 에너지를 분산 시키기 위해 에너지 분산 구조를 사용할 수 있습니다. 난기류와 혼합된 물과 공기의 형성은 에너지 소비를 증가 시키는 효과적인 방법입니다. 흐름 경로에서 거칠기 요소를 사용하는 것은 에너지 소산을 위한 알려진 방법입니다. 이러한 요소는 흐름 경로에 배치됩니다. 그들은 종종 에너지 소산을 증가시키기 위해 다른 기하학적 구조와 배열을 가지고 있습니다. 이 연구의 목적은 직사각형 경사 방울에 대한 거칠기 요소의 영향을 조사하는 것입니다.

Fig. 1: Model made in Ardabil, Iran
Fig. 1: Model made in Ardabil, Iran
Fig. 2: Geometric and hydraulic parameters of an inclined drop equipped with roughness elements
Fig. 2: Geometric and hydraulic parameters of an inclined drop equipped with roughness elements
Fig. 3: Views of the incline with (a) Bat-shaped, (b) Cylindrical, (c) Triangular roughness elements
Fig. 3: Views of the incline with (a) Bat-shaped, (b) Cylindrical, (c) Triangular roughness elements
Fig. 4: Geometric profile of inclined drop and boundary conditions with the bat-shape roughness element
Fig. 4: Geometric profile of inclined drop and boundary conditions with the bat-shape roughness element
Fig. 5: Variation of the RMSE varying cell size
Fig. 5: Variation of the RMSE varying cell size
Fig. 6: Numerical and laboratory comparison of the downstream relative depth
Fig. 6: Numerical and laboratory comparison of the downstream relative depth
Fig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a) Without roughness elements; (b) Bat-shaped roughness element; (c) Cylindrical roughness element; (d) Triangular roughness element
Fig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a) Without roughness elements; (b) Bat-shaped roughness element; (c) Cylindrical roughness element; (d) Triangular roughness element
Fig. 8: Relative edge depth versus the relative critical depth
Fig. 8: Relative edge depth versus the relative critical depth
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow
Fig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flow
Fig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flow
Fig. 10: Relative downstream depth versus the relative critical depth
Fig. 10: Relative downstream depth versus the relative critical depth
Fig. 11: Relative downstream depth versus the relative critical depth
Fig. 11: Relative downstream depth versus the relative critical depth

Conclusions

현재 연구에서 FLOW-3D 소프트웨어를 사용하여 한 높이, 한 각도, 밀도 15% 및 지그재그 배열에서 삼각형, 원통형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거칠기 요소를 사용하여 경사 낙하 수리학적 매개변수에 대한 거칠기 요소 형상의 영향 평가되었다. VOF 방법을 사용하여 자유 표면 흐름을 시뮬레이션하고 초기에 3개의 난류 모델 RNG, k-ɛ 및 kω를 검증에 사용하고 이를 검토한 후 RNG 방법을 사용하여 다른 모델을 시뮬레이션했습니다. 1- 수치 결과에서 얻은 부드러운 경사 방울의 하류 상대 깊이는 실험실 데이터와 매우 좋은 상관 관계가 있으며 원통형 요소가 장착 된 경사 방울의 상대 에지 깊이 값이 가장 높았습니다. 2- 하류 상대깊이는 임계상대깊이가 증가함에 따라 상승하는 경향을 나타내어 박쥐형 요소를 구비한 경사낙하와 완만한 경사낙하가 각각 하류상대깊이가 가장 높고 가장 낮았다. 3- 하류 깊이의 증가로 인해 상대적 임계 깊이가 증가함에 따라 상대적 에너지 소산이 감소합니다. 한편, 가장 높은 에너지 소산은 박쥐 모양의 요소가 장착된 경사 낙하와 관련이 있으며 가장 낮은 에너지 소산은 부드러운 낙하와 관련이 있습니다. 삼각형, 원통형 및 박쥐 모양의 거친 요소가 장착된 드롭은 부드러운 드롭보다 각각 65%, 76% 및 85% 더 많은 흐름 에너지를 소산합니다. 4- 낙차의 경사면에 거친 요소를 적용하여 다운 스트림 Froude 수를 크게 줄여 4.7 ~ 7.5에서 1.45 ~ 3.36까지의 모든 모델에서 Froude 수가 부드러운 낙하에 비해 감소했습니다. 또한, 다른 원소보다 부피가 작은 박쥐 모양의 거칠기의 부피로 인해 이러한 유형의 거칠기를 사용하는 것이 경제적입니다.

References

References:
[1] Abbaspour, A., Shiravani, P., and Hosseinzadeh dalir, A.,
“Experimental study of the energy dissipation on the rough ramps”,
ISH journal of hydraulic engineering, 2019, p. 1-9.
[2] Abraham, J.P., Sparrow, E.M., Gorman, J.M., Zhao, Y., and
Minkowycz, W.J., “Application of an Intermittency model for
laminar, transitional, and turbulent internal flows”, Journal of
Fluids Engineering, vol. 141, 2019, paper no. 071204.
[3] Ahmad, Z., Petappa, N.M., and Westrich, B., “Energy
dissipation on block ramps with staggered boulders”, Journal of
hydraulic engineering, vol. 135(6), 2009, p. 522-526.
[4] Babaali, H.R., Shamsai, A., and Vosoughifar, H.R.,
“Computational modeling of the hydraulic jump in the stilling
basin with convergence walls using CFD codes”, Arabian Journal
for Science and Engineering, vol. 40(2), 2014, p. 381-395.
[5] Castillo, L.G., Carrillo, J.M., and Cacía, J.T., “Numerical
simulations and laboratory measurements in hydraulic jumps”,
International conference on hydroinformatics. (2014, August) New
York city.
[6] Daneshfaraz, R., Aminvash, E., Esmaeli, R., Sadeghfam, S.,
and Abraham, J., “Experimental and numerical investigation for
energy dissipation of supercritical flow in sudden contractions”,
Journal of groundwater science and engineering, vol. 8(4), 2020a,
p. 396-406.
[7] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Kuriqi, A., and
Abraham, J., “Three-dimensional investigation of hydraulic
properties of vertical drop in the presence of step and grid
dissipators”, Symmetry, vol. 13 (5), 2021a, p. 895.
[8] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J., and
Bagherzadeh, M., “SVM performance for predicting the effect of
horizontal screen diameters on the hydraulic parameters of a
vertical drop”, Applied sciences, vol. 11 (9), 2021b, p. 4238.
[9] Daneshfaraz, R., Bagherzadeh, M., Esmaeeli, R., Norouzi, R.,
and Abraham, J. “Study of the performance of support vector
machine for predicting vertical drop hydraulic parameters in the
presence of dual horizontal screens”, Water supply, vol 21(1),
2021c, p. 217-231.
[10] Daneshfaraz, R., and Ghaderi, A., “Numerical investigation of
inverse curvature ogee spillways”, Civil engineering journal, vol.
3(11), 2017, p. 1146-1156.
[11] Daneshfaraz, R., Majedi Asl, M., and Bagherzadeh, M.,
“Experimental Investigation of the Energy Dissipation and the
Downstream Relative Depth of Pool in the Sloped Gabion Drop
and the Sloped simple Drop”, AUT Journal of Civil Engineering,
2020b (In persian).
[12] Daneshfaraz, R., Majedi Asl, M., Bazyar, A., Abraham, J.,
Norouzi, R., “The laboratory study of energy dissipation in inclined
drops equipped with a screen”, Journal of Applied Water
Engineering and Research, 2020c, p. 1-10.
[13] Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., and
Ghaderi, A., “3-D Numerical simulation of water flow over a
broad-crested weir with openings”, ISH Journal of Hydraulic
Engineering, 2019, p.1-9.
[14] Daneshfaraz, R., Sadeghfam, S., and Kashani, M., “Numerical
simulation of flow over stepped spillways”, Research in civil
engineering and environmental engineering, vol. 2(4), 2014, p.
190-198.
[15] Ghaderi, A., Abbasi, S., Abraham, J., and Azamathulla, H.M.,
“Efficiency of trapezoidal labyrinth shaped stepped spillways”,
Flow measurement and instrumentation, vol. 72, 2020a.
[16] Ghaderi, A., Daneshfaraz, R., Dasineh, M., and Di Francesco,
S., “Energy dissipation and hydraulics of flow over trapezoidaltriangular labyrinth weirs”, Water, vol. 12(7), 2020b, p. 1-18.
[17] Ghaderi, A., Daneshfaraz, R., Torabi, M., Abraham, and
Azamathulla, H.M. “Experimental investigation on effective
scouring parameters downstream from stepped spillways”, Water
supply, vol. 20(4), 2020c, p. 1-11.
[18] Ghare, A.D., Ingle, R.N., Porey, P.D., and Gokhale, S.S.
“Block ramp design for efficient energy dissipation”, Journal of
energy dissipation, vol. 136(1), 2010, p. 1-5.
[19] Gorman, J.M., Sparrow, E.M., Smith, C.J., Ghoash, A.,
Abraham, J.P., Daneshfaraz, R., Rezezadeh, J., “In-bend pressure
drop and post-bend heat transfer for a bend with partial blockage at
its inlet”, Numerical Heat Transfer A, vol, 73, 2018, p. 743-767.
[20] Jamil, M., and Khan, S.A., “Theorical study of hydraulic jump
in circular channel section”, ISH journal of hydraulic engineering,
vol. 16(1), 2010, p. 1-10.
[21] Katourani, S., and Kashefipour, S.M., “Effect of the geometric
characteristics of baffle on hydraulic flow condition in baffled
apron drop”, Irrigation sciences and engineering, vol. 37(2), 2012,
p. 51-59.
[22] Lai, Y.G., and Wu, K.A., “Three-dimensional flow and
sediment transport model for free surface open channel flow on
unstructured flexible meshes”, Fluids, vol. 4(1), 2019, p. 1-19.

[23] Nayebzadeh, B., Lotfollahi yaghin, M.A., and Daneshfaraz,
R., “Numerical investigation of hydraulic characteristics of vertical
drops with screens and gradually wall expanding”, Amirkabir
journal of civil engineering, 2020 (In Persian).
[24] Nurouzi, R., Daneshfaraz, R., and Bazyar, A., “The study of
energy dissipation due to the use of vertical screen in the
downstream of inclined drop by adaptive Neuro-Fuzzy inference
system (ANFIS)”, AUT journal of civil engineering, 2019, (In
Persian).
[25] Ohtsu, I., and Yasuda, Y., “Hydraulic jump in sloping
channel”, Journal of hydraulic engineering, vol. 117(7), 1991, p.
905-921.
[26] Olsen, L., Abraham, J.P., Cheng, L.K., Gorman, J.M., and
Sparrow, E.M., “Summary of forced-convection fluid flow and
heat transfer for square cylinders of different aspect ratios ranging
from the cube to a two-dimensional cylinder”, Advances in Heat
Transfer, Vol. 51, 2019, p. 351-457.
[27] Pagliara, S., Das, R., and Palermo, M., “Energy dissipation on
submerged block ramps”, Journal of irrigation and drainage
engineering, vol. 134(4), 2008, p.527-532.
[28] Pagliara, S., and Palermo, M., “Effect of stilling basin
geometry on the dissipative process in the presence of block
ramps”, Journal of irrigation and drainage engineering, vol.
138(11), 2012, p. 1027-1031.
[29] Simsek, O., Akoz, M.S, and Soydan, N.G., “Numerical
validation of open channel flow over a curvilinear broad-creasted
weir”, Progress in computational fluid dynamics an international
journal, vol. 16(6), 2016, p. 364-378.
[30] Sharif, N., and Rostami, A., “Experimental and numerical
study of the effect of flow sepration on dissipating energy in
compound bucket”, APCBEE procedia, vol. 9, 2014, p. 334-338.
[31] Sparrow, E.M., Tong, J.C.K., and Abraham, J.P., “Fluid flow
in a system with separate laminar and turbulent zones”, Numerical
Heat Transfer A, vol. 53(4), 2008, p. 341-353.
[32] Sparrow, E.M., Gorman, J.M., Abraham, J.P., and
Minkowycz, W.J., “Validation of turbulence models for numerical
simulation of fluid flow and convective heat transfers”, Advances
in Heat Transfer, vol. 49, 2017, p. 397-421.
[33] Wagner, W.E., “Hydraulic model studies of the check intake
structure-potholes East canal”, Bureau of reclamation hydraulic
laboratory report hyd, 1956, 411.

Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).

Numerical analysis of water flow around a bridge pier in a sand mined channel

모래 채굴 수로에서 교각 주변의 물 흐름에 대한 수치 해석

Oscar HERRERA-GRANADOS1,, Abhijit LADE2, , Bimlesh KUMAR3
1 Faculty of Civil Engineering, Wroclaw University of Science and Technology, Poland
email: Oscar.Herrera-Granados@pwr.edu.pl
2 3Department of Civil Engineering, Indian Institute of Technology, Guwahati, India
email: lade176104013@iitg.ac.in
email: bimk@iitg.ac.in

ABSTRACT

Extraction of sand from river beds has a variety of effects on the hydraulic and morphological characteristicsof the fluvial systems. Recent studies on mining pit have revealed that downstream reaches of the mining pitare more prone to erosion due to increased bed shear stresses. Bridge piers in the vicinity of such mining pitsare also prone to streambed instabilities due to turbulence alterations as suggested by a few recent studies.Thus, a numerical study was carried out to study the effects of a mining pit on the hydrodynamics around acircular pier. The numerical experiments were conducted with the Computational Fluid Dynamics (CFD) codeFlow-3D, which can run several turbulence model closures. In this contribution, the authors applied theclassical RANS equations with the volume of fluid (VOF) method (Savage and Johnson, 2001).

강바닥에서 모래를 추출하는 것은 하강 시스템의 수력 학적 및 형태 학적 특성에 다양한 영향을 미칩니다. 광산 구덩이에 대한 최근 연구에 따르면 광산 구덩이의 하류 도달은 베드 전단 응력 증가로 인해 침식되기 쉽습니다. 이러한 광산 구덩이 근처의 교각은 최근 몇 가지 연구에서 제안한 바와 같이 난류 변화로 인해 유동 불안정성이 발생하기 쉽습니다. 따라서 원형 부두 주변의 유체 역학에 대한 광산 구덩이의 영향을 연구하기 위해 수치 연구가 수행되었습니다. 수치 실험은 CFD (Computational Fluid Dynamics) 코드 Flow-3D로 수행되었으며, 여러 난류 모델 폐쇄를 실행할 수 있습니다. 이 공헌에서 저자는 VOF (volume of fluid) 방법 (Savage and Johnson, 2001)과 함께 고전적인 RANS 방정식을 적용했습니다.

1. Set-up and boundary conditions

두 번의 수치 실행 결과가 이 기여도에서 비교됩니다. 첫 번째 실험에서 0.044 [m3-s-1]의 정상 유량이 원통 부두가 있는 1.0 [m] 폭의 채널을 따라 흐르는 상류 경계 조건으로 설정되었습니다. 계산 영역은 IIT Guwahati 수력학 실험실 (Lade et al., 2019b)의 틸팅 유체 크기를 기반으로 정의됩니다. 두 번째 실행에서는 동일한 배출물이 실린더의 상류에 있는 준설 사다리꼴 구덩이와 함께 실린더 주위로 통과되었습니다. 구덩이의 깊이는 0.1 [m]이고 수로 전체에 걸쳐 확장되었습니다. 수로의 길이 방향을 따라 피트의 상단 너비는 0.67 [m], 하단 너비는 0.33 [m]였습니다.

이 연구의 주요 초점은 채굴 구덩이 (그림 1의 PF2)가있을 때 구덩이 하류 (그림 1의 PF1)와 실린더 하류의 흐름 특성의 변화를 조사하는 것이 었습니다. 따라서 채널 베드는 고정 베드 모델을 사용하여 시뮬레이션 되었습니다. 두 실험의 수압 조건은 CFD 경계 조건으로 설정된 표 1에 나와 있습니다. 배출구 (하류 경계 조건)는 실험실 기록 중에 측정된 수심을 사용하여 설정되었습니다 (Lade et al., 2019a).

Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).
Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).
Fig. 2. Output of the CFD model (velocity magnitude) without the sand pit (left side) and with the trapezoidal sand pit (right side).
Fig. 2. Output of the CFD model (velocity magnitude) without the sand pit (left side) and with the trapezoidal sand pit (right side).
Fig. 3. Output of the CFD model. Streamwise velocity ux, TKE as well as Lt profiles along the locations PF1 and PF2
Fig. 3. Output of the CFD model. Streamwise velocity ux, TKE as well as Lt profiles along the locations PF1 and PF2

References

Herrera-Granados O (2018) Turbulence flow modeling of one-sharp-groyne field. In Free surface flows and transport processes :
36th International School of Hydraulics. Geoplanet: Earth and Planetary Series. Springer IP AG, 207-218.
Lade AD, Deshpande V, Kumar B (2019a) Study of flow turbulence around a circular bridge pier in sand-mined stream channel.
Proceedings of the Institution of Civil Engineers – Water Management,https://doi.org/10.1680/jwama.19.00041
Lade AD, A, DT, Kumar B (2019b) Randomness in flow turbulence around a bridge pier in a sand
mined channel..Physica A 535 122426
Savage, BM, Johnson, M.C (2001). Flow over ogee spillway: Physical and numerical model case study. J. Hydraulic Eng.,
127(8), 640–649.

Numerical simulation of energy dissipation in crescent-shaped contraction of the flow path

Numerical simulation of energy dissipation in crescent-shaped contraction of the flow path

Authors

1 Professor, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran.
2 M.sc student, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran.
3 M.sc student, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran

Abstract

One of the methods of controlling and reducing flow energy is the use of energy dissipating structures and the formation of hydraulic jumps. One of these types of structures is the constriction elements in the flow path, which leads to a decrease in the energy of the passing flow. In the present study, the effect of crescent-shaped contraction as an energy dissipating structure in the supercritical flow path has been investigated using FLOW-3D software. Examining the simulation results, the RNG turbulence model due to its higher accuracy and lower relative error and absolute error percentage than other models, among the RNG turbulence models, k-ε, k-ω and LES was selected. In this study, the amplitude of the Froude number after the gate as the most effective dimensionless parameter in energy dissipation varied from 2.8 to 7.5 and the values of stenosis on both sides are 5 and 7.5 cm. The results show that in all cases of using the crescent-shaped contractions, the energy consumption due to the contraction is 5 and 7.5 cm, respectively, based on the energy drop relative to the upstream of 24.62% and 29.84% and compared to the downstream 46.14% and 48.42% more than the classic free jump. Also, by examining the obtained results, it was observed that the crescent-shaped contractions have a better performance in terms of energy loss compared to the sudden contraction, obtained from the studies of previous researchers. Based on the simulation results, with increasing the upstream Froude number, the relative energy dissipation to the upstream and downstream crescent-shaped contraction increased so that the use of contraction elements reduces the downstream Froude number of the contracted section in the range of 1.6 to 3/2.

흐름 에너지를 제어하고 줄이는 방법 중 하나는 에너지 소산 구조를 사용하고 유압 점프를 형성하는 것입니다. 이러한 유형의 구조 중 하나는 흐름 경로의 수축 요소로, 통과하는 흐름의 에너지를 감소시킵니다. 현재 연구에서는 초 임계 유동 경로에서 에너지 소산 구조로서 초승달 모양의 수축 효과가 FLOW-3D 소프트웨어를 사용하여 조사되었습니다. 시뮬레이션 결과를 살펴보면 RNG 난류 모델 중 k-ε, k-ω, LES 중에서 다른 모델보다 정확도가 높고 상대 오차와 절대 오차 비율이 낮은 RNG 난류 모델을 선택했습니다. 이 연구에서 에너지 소산에서 가장 효과적인 무 차원 매개 변수 인 게이트 뒤의 Froude 수의 진폭은 2.8에서 7.5까지 다양했으며 양쪽의 협착 값은 5cm와 7.5cm입니다. 결과는 초승달 모양의 수축을 사용하는 모든 경우에서 수축으로 인한 에너지 소비는 각각 5cm와 7.5cm로 상류에 비해 에너지 강하가 24.62 % 및 29.84 %이고 하류와 비교됩니다. 고전적인 자유 점프보다 46.14 % 및 48.42 % 더 많습니다. 또한 얻어진 결과를 살펴보면 초승달 모양의 수축이 이전 연구자들의 연구에서 얻은 갑작스런 수축에 비해 에너지 손실 측면에서 더 나은 성능을 보이는 것으로 나타났습니다. 시뮬레이션 결과에 따르면 상류 Froude 수를 증가 시키면 상류 및 하류 초승달 모양의 수축에 대한 상대적 에너지 소산이 증가하여 수축 요소를 사용하면 수축 된 부분의 하류 Froude 수가 1.6 ~ 3/2 범위에서 감소합니다. .

Keywords

Figure 1. The push barge model in 1:20 geometrical scale during field experiments.

Experimental Method for the Measurements and Numerical Investigations of Force Generated on the Rotating Cylinder under Water Flow

by Teresa Abramowicz-Gerigk 1,*,Zbigniew Burciu 1,Jacek Jachowski 1,Oskar Kreft 2,Dawid Majewski 3,Barbara Stachurska 3,Wojciech Sulisz 3 andPiotr Szmytkiewicz 3

1Faculty of Navigation, Gdynia Maritime University, 81-225 Gdynia, Poland
2AREX Ltd., 81-212 Gdynia, Poland
3Institute of Hydro-Engineering of Polish Academy of Sciences, 80-328 Gdansk, Poland
*Author to whom correspondence should be addressed.
Academic Editor: Remco J. WiegerinkSensors202121(6), 2216; https://doi.org/10.3390/s21062216
Received: 20 January 2021 / Revised: 9 March 2021 / Accepted: 18 March 2021 / Published: 22 March 2021(This article belongs to the Special Issue Sensing in Flow Analysis)

Abstract

본 논문은 자유 표면 효과를 포함한 균일한 흐름 하에서 회전하는 실린더 (로터)에 발생하는 유체 역학적 힘의 실험 테스트 설정 및 측정 방법을 제시합니다. 실험 테스트 설정은 고급 유량 생성 및 측정 시스템을 갖춘 수로 탱크에 설치된 고유 한 구조였습니다.

테스트 설정은 로터 드라이브가 있는 베어링 장착 플랫폼과 유체 역학적 힘을 측정하는 센서로 구성되었습니다. 낮은 길이 대 직경 비율 실린더는 얕은 흘수 강 바지선의 선수 로터 방향타 모델로 선택되었습니다. 로터 역학은 최대 550rpm의 회전 속도와 최대 0.85m / s의 수류 속도에 대해 테스트되었습니다.

실린더의 낮은 종횡비와 자유 표면 효과는 생성 된 유체 역학적 힘에 영향을 미치는 현상에 상당한 영향을 미쳤습니다. 회전자 길이 대 직경 비율, 회전 속도 대 유속 비율 및 양력에 대한 레이놀즈 수의 영향을 분석했습니다. 실험 결과에 대한 계산 모델의 유효성이 표시됩니다. 결과는 시뮬레이션 및 실험에 대한 결과의 유사한 경향을 보여줍니다.

The paper presents the experimental test setup and measurement method of hydrodynamic force generated on the rotating cylinder (rotor) under uniform flow including the free surface effect. The experimental test setup was a unique construction installed in the flume tank equipped with advanced flow generating and measuring systems.

The test setup consisted of a bearing mounted platform with rotor drive and sensors measuring the hydrodynamic force. The low length to diameter ratio cylinders were selected as models of bow rotor rudders of a shallow draft river barge. The rotor dynamics was tested for the rotational speeds up to 550 rpm and water current velocity up to 0.85 m/s. The low aspect ratio of the cylinder and free surface effect had significant impacts on the phenomena influencing the generated hydrodynamic force. The effects of the rotor length to diameter ratio, rotational velocity to flow velocity ratio, and the Reynolds number on the lift force were analyzed. The validation of the computational model against experimental results is presented. The results show a similar trend of results for the simulation and experiment.

Keywords: rotating cylinderforce sensor with built-in amplifierstrain gauge sensorCFD analysis

Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 2. Scheme of the measurement area.
Figure 2. Scheme of the measurement area.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 16. Measured (EXP) and computed (CFD) lift force values.
Figure 16. Measured (EXP) and computed (CFD) lift force values.

결론

결론은 다음과 같습니다.
계산 결과가 일반적으로 실험 데이터와 일치하는 경우 계산 결과는 검증 된 것으로 간주되며 추가 예측에 사용할 수 있습니다. 검증 실험을 통해 메쉬 밀도와 난류 모델을 결정할 수있었습니다.
작은 전류 속도 0.4m / s 및 0.5m / s에서 직경 D3의 로터에 대해 계산 된 양력 값은 회전 속도가 200rpm 이상일 때의 실험 값과 달랐습니다. 그 이유는 실험 중에 관찰 된 강한 진동과 수치 시뮬레이션에서 모델링되지 않은 유동 분리 때문이었습니다.
D2 직경을 가진 로터의 경우 작은 rpm에서 양력의 반대 부호가 관찰되었습니다. 이 현상은 시뮬레이션 중에 관찰되지 않았습니다.
제시된 실험 테스트 설정은 드라이브,지지 구조물 및 측정 장치에 손상을 주지 않고 진동을 포함한 모든 현상을 관찰 할 수 있도록 구성되었습니다. Wang et al. [14]는 동일한 α 값에서 실린더 종횡비가 증가함에 따라 와류 유발 진동이 증가하는 것을 관찰했습니다.
실험의 원활한 진행은 장치 손상 가능성과 함께 약 4의 α에 영향을 미쳤습니다. 본 연구에서는 α = 4.8에서 시작하는 가장 큰 직경의 실린더에서 가장 강한 진동이 관찰되었습니다.
제시된 연구는 로터 생성 흐름의 능동적 제어에 대한 추가 연구의 첫 번째 부분으로 유체 역학적 힘의 신뢰할 수 있는 실험적 예측 방법을 설명했습니다 [22]. , 바람, 파도 [23].
논문의 참신함은 저상 실린더에 대해 회 전자에서 생성 된 유체 역학적 힘을 모델링 할 수있는 가능성에 대한 조사입니다.
이 방법의 주요 장점은 자유 표면 효과 및 유동 유도 회 전자 진동과 관련된 현상을 포함하여 회 전자 생성 유동장 및 유체 역학적 힘을 관찰 할 수 있다는 것입니다. 제안 된 테스트 설정 구성은 유체 역학적 힘의 매개 변수 연구, 스케일 효과 조사 및 낮은 전류 속도와 큰 회전 속도에서 큰 불일치가 확인 된 CFD 시뮬레이션 모델의 검증에 사용될 것입니다.

References

  1. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. An Innovative Steering System for a River Push Barge Operated in Environmentally Sensitive Areas. Pol. Marit. Res. 201724, 27–34. [Google Scholar] [CrossRef]
  2. Abramowicz-Gerigk, T.; Burciu, Z.; Krata, P.; Jachowski, J. Steering system for a waterborne inland unit. Patent 420664, 2017. [Google Scholar]
  3. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. Parametric study on the flow field generated by river barge bow steering systems. Sci. J. Marit. Univ. Szczec. 201960, 9–17. [Google Scholar]
  4. Gerigk, M.; Wójtowicz, S. An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle. TransnavInt. J. Mar. Navig. Saf. Sea Transp. 20159, 591–596. [Google Scholar] [CrossRef]
  5. Thouault, N.; Breitsamter, C.; Adams, N.A.; Seifert, J.; Badalamenti, C.; Prince, S.A. Numerical Analysis of a Rotating Cylinder with Spanwise Disks. AIAA J. 201250, 271–283. [Google Scholar] [CrossRef]
  6. Badr, H.M.; Coutanceau, M.; Dennis, S.C.R.; Menard, C. Unsteady flow past a rotating circular cylinder at Reynolds numbers 10 3 and 10 4. J. Fluid Mech. 1990220, 459. [Google Scholar] [CrossRef]
  7. Karabelas, S.; Koumroglou, B.; Argyropoulos, C.; Markatos, N. High Reynolds number turbulent flow past a rotating cylinder. Appl. Math. Model. 201236, 379–398. [Google Scholar] [CrossRef]
  8. Chen, W.; Rheem, C.-K. Experimental investigation of rotating cylinders in flow. J. Mar. Sci. Technol. 201924, 111–122. [Google Scholar] [CrossRef]
  9. Zhou, B.; Wang, X.; Guo, W.; Gho, W.M.; Tan, S.K. Experimental study on flow past a circular cylinder with rough surface. Ocean Eng. 2015109, 7–13. [Google Scholar] [CrossRef]
  10. Tokumaru, P.T.; Dimotakis, P.E. The lift of a cylinder executing rotary motions in a uniform flow. J. Fluid Mech. 1993255, 1–10. [Google Scholar] [CrossRef]
  11. Wong, K.W.L.; Zhao, J.; Jacono, D.L.; Thompson, M.C.; Sheridan, J. Experimental investigation of flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 2017829, 486–511. [Google Scholar] [CrossRef]
  12. Bourguet, R.; Jacono, D.L. Flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 2014740, 342–380. [Google Scholar] [CrossRef]
  13. Carstensen, S.; Mandviwalla, X.; Vita, L.; Schmidt, P. Lift of a Rotating Circular Cylinder in Unsteady Flows. J. Ocean Wind Energy 20141, 41–49. Available online: http://www.isope.org/publications (accessed on 15 January 2021).
  14. Wang, W.; Wang, Y.; Zhao, D.; Pang, Y.; Guo, C.; Wang, Y. Numerical and Experimental Analysis of the Hydrodynamic Performance of a Three-Dimensional Finite-Length Rotating Cylinder. J. Mar. Sci. Appl. 202019, 388–397. [Google Scholar] [CrossRef]
  15. Mobini, K.; Niazi, M. Simulation of unsteady flow around a rotating circular cylinder at various Reynolds numbers. JMEUT 201746, 249–257. Available online: https://www.researchgate.net/publication/323447030_Simulation_of_Unsteady_Flow_Around_a_Rotating_Circular_Cylinder_at_Various_Reynolds_Numbers (accessed on 15 January 2021).
  16. Babarit, A.; Delvoye, S.; Arnal, V.; Davoust, L.; Wackers, J. Wave and Current Generation in Wave Flumes Using Axial-Flow Pumps. In Proceedings of the 36th International Conference on Ocean, Offshore and Artic Engineering (OMAE2017), Trondheim, Norway, 25–30 June 2017; pp. 1–10. [Google Scholar] [CrossRef]
  17. Nortek Manuals. The Comprehensive Manual for Velocimeters. 2018. Available online: https://support.nortekgroup.com/hc/en-us/articles/360029839351-The-Comprehensive-Manual-Velocimeters (accessed on 15 January 2021).
  18. Stachurska, B.; Majewski, D. Propagation of Surface waves under currents—Analysis of measurements in wave flume of IBW PAN. IMiG 20144, 280–290. [Google Scholar]
  19. Lohrmann, A.; Cabrera, R.; Kraus, N. Acoustic-Doppler Velocimeter (ADV) for laboratory use. In Fundamentals and Advancements in Hydraulic Measuremensts and Experimentation; Buffalo: New York, NY, USA, 1994. [Google Scholar]
  20. Stachurska, B.; Majewski, D. Experimental Measurements of Current Velocity in Wave Flume of IBW PAN; Internal Report; Institute of Hydro-Engineering of Polish Academy of Sciences: Gdańsk, Poland, 2013. (In Polish) [Google Scholar]
  21. FLOW-3D. Available online: https://www.flow3d.com/ (accessed on 15 January 2021).
  22. He, J.W.; Glowinski, R.; Metcalfe, R.; Nordlander, A.; Periaux, J. Active control and drag optimization for flow past a circular cylinder: Oscillatory cylinder rotation. J. Comput. Phys. 2000163, 83–117. [Google Scholar] [CrossRef]
  23. Lebkowski, A. Analysis of the Use of Electric Drive Systems for Crew Transfer Vessels Servicing Offshore Wind Farms. Energies 202013, 1466. [Google Scholar] [CrossRef]
FIGURA 4.9. DISTRIBUCIÓN DE PRESIONES SOBRE EL PANEL SUMERGIDO ELABORADO: Jurado – Oñate, 2020

Analysis of Sediment Transport Downstream of Submerged Panels Applying the Flow 3D Program

Jurado Amaluisa, Luis Alfredo
Oñate Oñate, Veronica Cristina

FLOW-3D 프로그램을 적용한 수중 패널의 하류 퇴적물 이동 분석

이 조사의 목적은 실험 모델 f Khaled Hamad의 박사 학위 논문 인 Submerged Vanes의 실험적 난류 분석을 기반으로 FLOW 3D 컴퓨터 패키지를 사용하여 3 차원 수치 모델링을 개발하여 수치 및 실험 모델 둘 사이의 속도와 압력 결과를 비교하는 것입니다.

이 조사는 모래층에 설치된 침수 베인과 상호 작용할 때 흐름의 거동을 평가하고 이러한 유형의 수력 구조물을 구현할 때 퇴적물 수송 능력이 어떻게 변하는지 분석했습니다.

보정된 모델을 얻기 위해 민감도 분석이 수행되었고 보정은 메쉬 크기, 계산 비용, 시뮬레이션 시간 및 난류 모델을 정의했습니다. 원하는 결과가 얻어 질 때까지 23 번의 테스트가 수행되었고 실험 모델과 같았습니다.

난류 분석은 보정 된 모델 속도, 레이놀즈 전단, 난류 운동 에너지 및 그 소산 속도, 난류 강도 및 Kolmogorov 스케일로 수행되었습니다. 실험 모델과 수치 모델에서 얻은 결과를 비교했습니다. 수치 모형과 실험 모형의 결과를 비교하여 차이와 오차의 비율을 결정하여 수치 모형의 값을 검증 하였습니다.

FIGURA 1.2. (ARRIBA) EROSIÓN DE UN BANCO DE SEDIMENTOS POR LA CORRIENTE NATURAL;(ABAJO) MITIGACIÓN DE LA EROSIÓN MEDIANTE LA INSTALACIÓN DE PANELES SUMERGIDOS FUENTE: (Odgaard, 2009)
FIGURA 1.2. (ARRIBA) EROSIÓN DE UN BANCO DE SEDIMENTOS POR LA CORRIENTE NATURAL;(ABAJO) MITIGACIÓN DE LA EROSIÓN MEDIANTE LA INSTALACIÓN DE PANELES SUMERGIDOS FUENTE: (Odgaard, 2009)
FIGURA 1.3. REDISTRIBUCIÓN DEL FLUJO POR ACCIÓN DE PANELES SUMERGIDOS DENTRO DE UNA SECCIÓN TRANSVERSAL DEL CANAL FUENTE: (Odgaard, 2009)
FIGURA 1.3. REDISTRIBUCIÓN DEL FLUJO POR ACCIÓN DE PANELES SUMERGIDOS DENTRO DE UNA SECCIÓN TRANSVERSAL DEL CANAL FUENTE: (Odgaard, 2009)
FIGURA 2.2. BOSQUEJO DE LA CIRCULACIÓN INDUCIDA POR UNA SERIE DE TRES PANELES SUMERGIDOS FUENTE: (Odgaard, 2009)
FIGURA 2.2. BOSQUEJO DE LA CIRCULACIÓN INDUCIDA POR UNA SERIE DE TRES PANELES SUMERGIDOS FUENTE: (Odgaard, 2009)
FIGURA 2.3. ESQUEMA QUE MUESTRA EL CAMBIO PROVOCADO POR TRES PANELES SUMERGIDOS EN EL PERFIL DE LA CAMA DE SEDIMENTOS FUENTE: (Odgaard, 2009)
FIGURA 2.3. ESQUEMA QUE MUESTRA EL CAMBIO PROVOCADO POR TRES PANELES SUMERGIDOS EN EL PERFIL DE LA CAMA DE SEDIMENTOS FUENTE: (Odgaard, 2009)
FIGURA 2.4. ESQUEMA DEL TRANSPORTE DE SEDIMENTOS FUENTE: (Sarango, 2013)
FIGURA 2.4. ESQUEMA DEL TRANSPORTE DE SEDIMENTOS FUENTE: (Sarango, 2013)
FIGURA 2.5. FORMAS DEL TRANSPORTE DE SEDIMENTOS FUENTE: (Garcia & Maza, 1996)
FIGURA 2.5. FORMAS DEL TRANSPORTE DE SEDIMENTOS FUENTE: (Garcia & Maza, 1996)
FOTOGRAFÍA 3.1. VISTA EN PLANTA DEL CANAL FUENTE: (Hamad, 2015)
FOTOGRAFÍA 3.1. VISTA EN PLANTA DEL CANAL FUENTE: (Hamad, 2015)
FOTOGRAFÍA 3.2. PANEL SUMERGIDO INSTALADO FUENTE: (Hamad, 2015)
FOTOGRAFÍA 3.2. PANEL SUMERGIDO INSTALADO FUENTE: (Hamad, 2015)
FOTOGRAFÍA 3.3. SISTEMA DE COORDENADAS DEL PANEL SUMERGIDO FUENTE: (Hamad, 2015)
FOTOGRAFÍA 3.3. SISTEMA DE COORDENADAS DEL PANEL SUMERGIDO FUENTE: (Hamad, 2015)
FIGURA 4.9. DISTRIBUCIÓN DE PRESIONES SOBRE EL PANEL SUMERGIDO ELABORADO: Jurado – Oñate, 2020
FIGURA 4.9. DISTRIBUCIÓN DE PRESIONES SOBRE EL PANEL SUMERGIDO ELABORADO: Jurado – Oñate, 2020
FOTOGRAFÍA 4.1. TOPOGRAFÍA FINAL DEL LECHO DE ARENA EN MODELO EXPERIMENTAL FUENTE: (Hamad, 2015)
FOTOGRAFÍA 4.1. TOPOGRAFÍA FINAL DEL LECHO DE ARENA EN MODELO EXPERIMENTAL FUENTE: (Hamad, 2015)
FIGURA 4.15. TOPOGRAFÍA FINAL DEL LECHO DE ARENA TRAZADA EN MATLAB FUENTE: (Hamad, 2015)
FIGURA 4.15. TOPOGRAFÍA FINAL DEL LECHO DE ARENA TRAZADA EN MATLAB FUENTE: (Hamad, 2015)

TABLA 4.6. TENSIONES DE REYNOLDS TANTO PARA EL MODELO NUMÉRICO (PRUEBA 23) COMO PARA EL MODELO EXPERIMENTAL PARA LOS PUNTOS DE ESTUDIO
TABLA 4.6. TENSIONES DE REYNOLDS TANTO PARA EL MODELO NUMÉRICO (PRUEBA 23) COMO PARA EL MODELO EXPERIMENTAL PARA LOS PUNTOS DE ESTUDIO
Figure 5 - Modeling a simple lotus overflow symmetrically in FLOW-3D software

Flow-3D를 이용한 Morning Glory Spillway의 배출 계수에 대한 소용돌이 차단 블레이드 45 도의 효과

Effect of Vortex Breaker Blades 45 Degree on Discharge Coefficient of Morning Glory Spillway Using Flow-3D

Authors

S. Noruzi1
and J. Ahadiyan2*
1– M.Sc. Student, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran.
2*-Corresponding Author, Associate Professor, Faculty of Water Sciences Engineering, Shahid Chamran
University of Ahvaz, Iran.

Abstract

The discharge coefficient of morning glory spillway is decreased with eddies created by vortex at the inlet part of weir. However, a series of specific blades can reduce vortices which result in the spillway efficiency is increased. Hence, in this research numerical modeling of installed breaker blade on morning glory spillway was evaluated using Flow-3D model. To achieve these purposes, morning glory spillway was modeled without and with blades 3, 4 and 6 blades at 45 degree angle. To simulate the turbulence fluctuations, the modified k-e model (RNG k-e) was used and its results were compared to the experimental data. Results showed that by installing blades, the discharge coefficient increases up to 42 percent with 25 percent decreasing in the upstream water level. Moreover, among the three different arrangements of blades, the six-blade model was found to have more satisfactory results than other models. In comparison to control model, for H/D between 0 to 0.1 and 0.1 to 0.2 the discharge coefficient has been increased 40 and 57 percent for six-blade arrangement, respectively. 

모닝 글로리의 배출 계수는 위어 입구 부분의 와류에 의해 생성된 소용돌이로 감소합니다. 그러나 일련의 특정 블레이드는 와류를 줄여 배수로 효율성을 높일 수 있습니다. 따라서 본 연구에서는 모닝 글로리 여수로에 설치된 브레이커 블레이드의 수치 모델링을 Flow-3D 모델을 사용하여 평가했습니다. 이러한 목적을 달성하기 위해 45도 각도에서 블레이드 3, 4 및 6 블레이드 없이 모닝 글로리 여수로를 모델링 했습니다. 난류 변동을 시뮬레이션하기 위해 수정된 k-e 모델 (RNG k-e)을 사용하고 그 결과를 실험 데이터와 비교했습니다. 결과에 따르면 블레이드를 설치하면 상류 수위가 25 % 감소하면서 배출 계수가 42 %까지 증가합니다. 또한 3 개의 블레이드 배열 중 6 개 블레이드 모델이 다른 모델보다 더 만족스러운 결과를 나타냈다. 제어 모델에 비해 H / D가 0 ~ 0.1 및 0.1 ~ 0.2 인 경우 방전 계수가 6- 블레이드 배열에서 각각 40 % 및 57 % 증가했습니다.

Keywords

Figure 1 - Dimensions of the vortex blade
Figure 1 – Dimensions of the vortex blade
Figure 3 - A (Physical model of lotus overflow without blade, b) Physical model of lotus overflow with eddy blades.
Figure 3 – A (Physical model of lotus overflow without blade, b) Physical model of lotus overflow with eddy blades.
Figure 5 - Modeling a simple lotus overflow symmetrically in FLOW-3D software
Figure 5 – Modeling a simple lotus overflow symmetrically in FLOW-3D software
Figure 7 - Comparison of Ashley flow chart with numerical model and laboratory
Figure 7 – Comparison of Ashley flow chart with numerical model and laboratory
Figure 8 - Comparison of flow coefficient diagram - immersion ratio of numerical model with laboratory: a (overflow without blade, b) overflow with three blades, c (overflow with four blades, d) overflow with six blades
Figure 8 – Comparison of flow coefficient diagram – immersion ratio of numerical model with laboratory: a (overflow without blade, b) overflow with three blades, c (overflow with four blades, d) overflow with six blades

Reference

1 -حیدری ارجلو، س.، موسوی جهرمی، س. ح. و ادیب، ا. 1386 .بررسی تاثیر شیب بر تعداد بهینه پلکانها در سرریزهای پلکانی، مجله علوم و مهندسی
.)123-136 :)2(33 ،كشاورزی علمی )آبیاری
2 -حاجیپور، گ. 1363 .بررسی آزمایشگاهی تأثیر تیغههای گردابشکن بر هیدرولیک جریان سرریز نیلوفری. پایاننامه كارشناسی ارشد رشته سازههای آبی،
دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
3 -رنجبر ملکشاه، م.، 1363 .بررسی رفتار سرریز نیلوفری با پایین دست تاج پلکانی بوسیله مدلسازی رایانهای، پایاننامه كارشناسی ارشد مهندسی عمران،
دانشکده مهندسی عمران، دانشگاه خواجه نصیر طوسی.
4 -رمضانی، س. كاویانپور، م ر. و ع. حسنی نژاد. 1362 .بررسی پارامترهای مؤثر بر آبگذری سرریزهای نیلوفری. هفتمین كنگره ملی مهندسی عمران،
دانشکده مهندسی شهید نیکبخت، زاهدان.
1 -سامانی، م. 1331 .طراحی سازههای هیدرولیکی. انتشارات شركت مهندسی مشاور دز آب اهواز
1 -قاسمزاده، ف. 1362 .شبیه سازی مسائل هیدرولیکی در 3D-FLOW .تهران، نوآور.
3 -كمانبدست، 1 ،.موسوی، س.ر. 1361 .مطالعه آزمایشگاهی تأثیر تعداد و زاویه گرداب شکن بر مشخصات جریان در سرریز نیلوفری مربعی، نشریه علوم
آب و خاک )غعلوم و فنون كشاورزی و منابع طبیعی(، سال بیستم، شماره 38 ،صفحه 182-131 .
8 -نظری پوركیانی، ع ا. 1363 .بررسی فشار و سرعت جریان در سرریز نیلوفری سد البرز با استفاده از نرمافزار 3D-FLOW .اولین كنفرانس سراسری
توسعه محوری مهندسی عمران، معماری، برق و مکانیک ایران.
6 -نوحانی، ا.، جمالی امام قیس، ر. 1364 .بررسی آزمایشگاهی تأثیرشکل تیغه های ضد گرداب برراندمان تخلیهی سرریزهای نیلوفری، نشریه آبیاری و
زهکشی ایران، جلد 6 ،شماره 1 ،صفحه 346-341 .
10-Akbari, A A., Nohani, E and A. Afrous. 2015. Numerical study of the effect of anti-vortex plates on the
inflow pattern in shaft spillways. Indian Journal of Fundamental and Applied Life Sciences, 5(S1):
3819-3826.
11-Anonymous, 1965. Design of Small Dams. Water Resources Technical publication, U.S Department of
the interior Bureau of Reclamation.
12-Bagheri, A., Shafai Bajestan, M., Mousavi Jahromi, H., Kashkuli, H. and H. Sedghi. 2010. Hydraulic
evaluation of the flow over polyhedral morning glory spillways. Word Applied Sciences Journal, 9(7):
712-717.
13- Fattor, C. A. and J. D. Bacchiega. 2003. Analysis of instabilities in the charge of regime in morning
glory spillways. Journal of Hydraulic Research, 40(4): 114-123.
14- Khatsuria, R. M. 2005. Hydraulics of spillways and energy dissipaters. Marcel Dekker. Department of
Civil and Environmental Engineering Georgia, Institute of Technology Atlanta, Newyork, USA.
15-Mousavi. S. R., Kamanbedast, A.A., and H. Fathian. 2013. Experimental investigation of the effect of
number of anti-vortex piers on submergence threshold in morning glory spillway with square inlet.
Technical Journal of Engineering and Applied Sciences, 3(24): 3534-3540.
16- Novak, P. 2007. Hydraulic Structures, Fourth edition published by Taylor and Francis. University of
New Castle upon, Tyne, UK, Landon and Network.
17-Tavana, M H., Mousavi Jahromi, H., Shafai Bajestan, M., Masjedi, A. R. and H. Sedghi. 2011.
Optimization of number and direction of vortex breakers in the morning glory spillway using physical
model. Economy, Environmental and Conservation Journal, 17(2): 435-440.
18-Vresteeg. H. K and W. Malalasekera. 1995. An introduction to computational fluid dynamics. Longman
Scientific and Technical. New York.
19-Yakhot. V and L. M. Smith. 1992. The renormalization group. The e-expansion and of turbulence
models. Journal of Computing, 7(1): 35-61.

Figure 1 - General diagram of the forehead and body of the concentrated

Laboratory and Numerical Study of Dynamics Salty Density Current in The Reservoirs

저수지의 동적 염분 흐름의 실험 및 수치해석적 연구

Authors

1 Water resource expert Khuzestan Water and Power Authority
2 shahid chamran univercity of ahwaz

Since the characteristics of density current is affected by different parameters, the effect of discharge rate changes, gradient and the concentration of density current on speed of the forehead  and also the speed distribution in density current’s body have been investigated by physical and three-dimensional mathematical model (Flow-3d) in this research. For these purposes, different tests in the form of salty density current were done with three inflow discharge rates (0.7, 1 and 1.3 liters per second) and three different slopes (0, 1 and 2.2 percent). As well as to evaluate the effect of density changes on the flow characteristics, the concentration of 10, 15 and 20 grams per liter were used. In order to measure the speed of the forehead, velocity distribution in the body and its changes with flow, density and different slopes, video camera and ultrasound profiler speedometer were used in this study. Then, forehead speed and velocity distribution in the current’s body were achieved using six different turbulence models which are available on the software of “Flow-3D”. Comparing the results of physical and mathematical model showed that Eddy turbulence model and laminar flow mode have better accuracy in relation to other turbulent models. It should be noted that Reynolds number on experiments are at the range of  2000-4000.

밀도 흐름의 특성은 서로 다른 파라미터에 의해 영향을 받기 때문에 방출 속도 변화, 구배 및 밀도 흐름의 농도가 수두 속도에 미치는 영향과 밀도 흐름의 볼륨 속도 분포도 물리적 및 3차원 수학 모델(Flow-3d)에 의해 조사되었습니다.

이러한 목적을 위해 세 가지 유입 배출 속도(초당 0.7, 1 및 1.3L)와 세 가지 다른 경사도(0, 1, 2.2%)로 염분 밀도 흐름 형태의 다른 테스트가 수행되었습니다.

밀도 변화가 흐름 특성에 미치는 영향을 평가하기 위해 리터당 10, 15, 20g의 농도를 사용했습니다. 이 연구에서는 수두의 속도를 측정하기 위해 체내의 속도 분포와 흐름, 밀도 및 다양한 기울기와 함께 변화된 속도, 비디오 카메라 및 초음파 프로파일러 속도계를 사용했습니다.

그런 다음, “Flow-3D” 소프트웨어에서 사용할 수 있는 6가지 난류 모델을 사용하여 현재 볼륨의 수두 속도와 속도 분포를 달성했습니다.

물리적 모델과 수학적 모델의 결과를 비교한 결과, 에디 난류 모델과 층류 모드가 다른 난류 모델과 비교하여 더 나은 정확도를 가지고 있다는 것을 보여주었습니다.

레이놀즈 실험 번호는 2000-4000 범위라는 점에 유의해야 합니다.

Figure 1 - General diagram of the forehead and body of the concentrated
Figure 1 – General diagram of the forehead and body of the concentrated
Figure 2 - Dimensional profile of velocity distribution in concentrated flow (Graph and Altinacar, 1662)
Figure 2 – Dimensional profile of velocity distribution in concentrated flow (Graph and Altinacar, 1662)
Figure 1 - Schematic drawing of the physical model used
Figure 1 – Schematic drawing of the physical model used
Figure 0 - Sample of the concentrated flow created in the laboratory (front and body of concentrated flow)
Figure 0 – Sample of the concentrated flow created in the laboratory (front and body of concentrated flow)
Figure 6 - Mixing intensity values against Richardson number and comparing it with the results of other researchers
Figure 6 – Mixing intensity values against Richardson number and comparing it with the results of other researchers

Reference

1- حقی آبی، ا. 1383. بررسی اثر شیب کف بر پروفیل سرعت جریان غلیظ رساله دکتری رشته سازه های آبی ، دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.

2- کاهه، م. قمشی، م. و س، ح، موسوی جهرمی، 1391. بررسی آزمایشگاهی سرعت پیشروی جریان غلیظ بر روی سطوح زبر. علوم و مهندسی آبیاری، 35(1): 101-110.

3- کشتکار، ش. ایوب زاده، س ع. و ب، فیروزآبادی، 1389 . بررسی پروفیل سرعت و غلظت جریان گل آلود با استفاده از مدل فیزیکی. پژوهش‌های آبخیزداری،87(2): 43-36.

4- کوتی، ف. کاشفی پور، س، م. و م قمشی، 1391. تجزیه و تحلیل پروفیل های سرعت در جریان غلیظ. مجله ی علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، 59: 29-15.

5- Altinakar, M.S., Graf, W.H. and , E.J, Hopfinger. 1990. Weakly depositing turbidity current on a small slope. Journal of Hydraulic Research. 28(1): 55-80.

6- Baas, J.H. McCaffrey, W.D. Haughton P.D.W. and C, Choux. 2005. Coupling between suspended sediment distribution and turbulence structure in a laboratory turbidity current. Journal of Geophysics Research, 110: 20-32.

7- Barahmand, N. and A, Shamsai. 2010. Experimental and theoretical study of density jumps on smooth and rough beds”. Lakes and Reservoirs: Research and Management, 15(4): 285-307.

8- Britter, R.E. and P, Linden. 1980.The motion of the front of a gravity current traveling down an incline. Journal of Fluid Mechanics, 99(3): 531- 543.

9- Buckee, C. Kneller, B. and J, Peakall. 2001. Turbulence structure in steady solute-driven gravity currents Blackwell Oxford pp, 173-188.

10- Choux, C.M.A. Baas, J.H. McCaffrey, W.D. and P.D.W, Haughton. 2005. Comparison of spatio–temporal evolution of experimental particulate gravity flows at two different initial concentrations based on velocity grain size and density data. Sedimentary Geology, 179: 49-69.

11- FathiMoghadam, M. TorabiPoudeh, H. Ghomshi, M. and M, Shafaei. 2008. The density current head velocity in expansion reaches. Lakes & Reservoirs: Research & Management, 13(1): 63-68.

12- Ghomeshi, M. 1995. Reservoir sedimentationmodeling. Ph.D. Thesis. University of Wollongong. Australia.

  1. Graf, W.H. and M, S, Altinakar. 1998. Fluvial Hydraulics, Flow and Transport Processes in Channels of Simple Geometry. John Wiley and Sons, Ltd, England.

14- Ieong, K, K. Mok, K,M. and H, Yeh. 2006. Fluctuation of the front propagation speed of developed gravity current. Journal of Hydrodynamics, 18(3): 351-355.

15- LaRocca, M. Adduce, C. Sciortino, G. And A, B, Pinzon. 2008. Experimental and numerical simulation of three-dimensional gravity currents on smooth and rough bottom. Physics of Fluids, 20, 106603.

16- McCaffrey, W, D. Choux, C, M. Baas, J, H. And P, D, W, Haughton. 2003. Spatio-temporal evolution of velocity structure concentration and grainsize stratification within experimental particulate gravity currents. Marine and Petroleum Geology. 20: 851-860.

17- Sequeiros, O, E. Spinewine, B. Beaubouef, R, T. Sun, T. Garcia, H. M., and G, Parker. 2010. Characteristics of Velocity and Excess Density Profiles of Saline Underflows and Turbidity Currents Flowing over a Mobile Bed”. Journal of Hydraulic Engineering, 136(7): 167-180.

18- Turner, J, S. 1973. Buoyancy Effects in Fluids. Cambridge University Press London, U.K, pp. 178-181.

19- Yu, W, S. Lee, H, Y. And M, S, Hsu. 2000. Experiments on deposition behavior of fine in a reservoir. Journal of Hydraulic Engineering, 126(12): 912-920.

Fig.2- Richard Dam overflow in America

Studying the effect of shape changes in plan of labyrinth weir on increasing flow discharge coefficient using Flow-3D numerical model

FLOW-3D 수치 모델을 이용하여 미로 위어 평면도의 형상 변화가 유량 계수 증가에 미치는 영향 연구

E. Zamiri 1
, H. Karami 2*
and S. Farzin3
1- M.S. Student, Department of Civil Engineering, Semnan University, Semnan, Iran.
2
*

  • Corresponding Author, Assistant Professor, Department of Civil Engineering, Semnan
    University, Semnan, Iran. (hkarami@semnan.ac.ir).
    3- Assistant Professor, Department of Civil Engineering, Semnan University, Semnan, Iran.

Keywords: : Flood control, Sidewall angle, Predicting discharge coefficient, Computational hydraulic,

Introduction

Weirs are hydraulic structures used to measure, regulate and control the water levels and are
fixed upon open channels and rivers width. Growing magnitude of probable maximum flood
events (PMF) has highlighted the demand for increasing discharge capacity. Application of
labyrinth weir has been suggested as a solution for increasing discharge capacity.
Tullis et al. (1995) evaluated the effective parameters in determining the capacity of a labyrinth
weir. They introduced total head, the effective crest length and the discharge coefficient as
parameters influencing the discharge capacity of a labyrinth weir. Khode et al. (2011)
experimentally studied the parameters of a flow-over labyrinth weir for different side wall angles
(α) from 8 to 30°. They found that discharge coefficient increases by growing side wall angle
values.
Crookston and Tullis (2012a) studied performance of different labyrinth weirs by making
differences between geometric shapes of weirs in plan. The results indicated that discharge
capacity of the arced labyrinth weirs is more than the discharge capacity of horseshoe weirs.
Seo et al. (2016) investigated the effect of weir shapes on discharge of weirs. It was shown that
the discharge of the labyrinth weir had an increase of approximately 71% in comparison with the
linear ogee weir.
In this research, labyrinth weir with sidewall angle equal to 6° was simulated through Flow3D model, using experimental results of previous researchers. After validation, the changes of
discharge coefficient of weir with angles of 45° and 85° and apex shapes of triangular and halfcircular shapes were analyzed.

Weirs는 수위를 측정, 조절 및 제어하는 ​​데 사용되는 수력 구조물이며 열린 수로 및 강 폭에 고정됩니다. 예상되는 최대 홍수 사건 (PMF)의 규모가 커짐에 따라 배출 용량 증가에 대한 요구가 강조되었습니다. 미로 위어 (labyrinth weir)의 적용은 배출 용량을 증가시키기 위한 해결책으로 제안 되었습니다.

Tullis et al. (1995)는 미로 위어의 용량을 결정하는데 효과적인 매개 변수를 평가했습니다. 그들은 미로 위어의 배출 용량에 영향을 미치는 매개 변수로 총 수두, 유효 문장 길이 및 배출 계수를 도입했습니다.

Khode et al. (2011)은 8 ~ 30 °의 다양한 측벽 각도 (α)에 대한 유동-오버 래비 린스 위어의 매개 변수를 실험적으로 연구했습니다.

그들은 측벽 각도 값이 증가함에 따라 방전 계수가 증가한다는 것을 발견했습니다. Crookston과 Tullis (2012a)는 평면에서 위어의 기하학적 모양을 차이를 만들어 서로 다른 미로 위어의 성능을 연구했습니다.

결과는 호형 미로 위어의 배출 용량이 말굽 위어의 배출 용량보다 더 많다는 것을 나타냅니다. Seo et al. (2016)은 위어의 배출에 대한 위어 모양의 영향을 조사했습니다. 미로 위어의 배출량은 선형 오지 위어에 비해 약 71 % 증가한 것으로 나타났습니다.

이 연구에서는 이전 연구자들의 실험 결과를 사용하여 Flow3D 모델을 통해 측벽 각도가 6 ° 인 미로 위어를 시뮬레이션했습니다. 검증 후 각 45 °, 85 °의 위어의 배출 계수 변화와 삼각형 및 반원 형태의 정점 형태를 분석 하였다.

Fig.1- Schematic of trapezoidal, triangular, and rectangular congressional overflow
Fig.1- Schematic of trapezoidal, triangular, and rectangular congressional overflow
Fig.2- Richard Dam overflow in America
Fig.2- Richard Dam overflow in America
Fig.3- Plan of geometric parameters of congressional overflow
Fig.3- Plan of geometric parameters of congressional overflow
Fig. 4- The boundary conditions of the congressional overflow model
Fig. 4- The boundary conditions of the congressional overflow model
Fig.5- View of a simulated congressional overflow
Fig.5- View of a simulated congressional overflow
Fig. 6- Comparison of discharge coefficients resulted from numerical and experimental models
Fig. 6- Comparison of discharge coefficients resulted from numerical and experimental models
Fig.7- The relationship between Cd and Q for different angles of the congressional overflow wall
Fig.7- The relationship between Cd and Q for different angles of the congressional overflow wall
Fig. 8- The relationship between Cd and HT/p for different angles of the congressional overflow wall
Fig. 8- The relationship between Cd and HT/p for different angles of the congressional overflow wall
Table 3- The correlation of Q and HT/p with Cd for different angles of the overflow wall
Table 3- The correlation of Q and HT/p with Cd for different angles of the overflow wall
Fig. 9- The congressional overflow with linear, semicircular and triangular spans
Fig. 9- The congressional overflow with linear, semicircular and triangular spans
Fig. 10- The relationship between Cd and Q for different forms of congressional overflow
Fig. 10- The relationship between Cd and Q for different forms of congressional overflow
Fig. 11- The relationship of Cd and HT/p under different forms of congressional overflow
Fig. 11- The relationship of Cd and HT/p under different forms of congressional overflow
Fig. 12- The relationship Cd other/Cd simple and HT/p in a congressional overflow
Fig. 12- The relationship Cd other/Cd simple and HT/p in a congressional overflow
Fig. 13- Comparison of discharge coefficients resulted from a numerical model and proposed relation
Fig. 13- Comparison of discharge coefficients resulted from a numerical model and proposed relation
Fig. 14- Comparison of Cd from the present study and other studies for 6 angle congressional overflow
Fig. 14- Comparison of Cd from the present study and other studies for 6 angle congressional overflow
Fig. 15- The relationship between the discharge coefficient and HT/p for 6 ◦ angle congressional overflow
Fig. 15- The relationship between the discharge coefficient and HT/p for 6 ◦ angle congressional overflow

Results

오버행의 넘침 흐름을 증가시키는 것이 중요하기 때문에 본 연구에서는 넘침 벽의 돌출부에 6, 45 및 85 도의 세 가지 값을 채점하고 넘침 개구부에 삼각형 및 반원 모양을 제안함으로써 , 오버 플로우의 오버 플로우 계수를 변경하여 3D 숫자 래치를 사용하십시오.

Irene Par Vahsh Bareh에서 얻은 결과는 다음과 같습니다.

1- 흐름을 따라 포병의 범람 벽 각도를 늘리면 방출 계수가 증가합니다. 벽 각도가 85도 및 45 도인 포병의 범람 계수는 벽 각도가 6 도인 범람 계수 평균의 2.28 및 1.24 배입니다.

2-구부러진 양고기를 먹은 상태에서 배수로 모양의 변화는 배출 계수를 증가시킨다. 삼각형과 비 삼각형 개구부가있는 오버플로의 배출 계수는 온대 개구부가있는 오버플로의 배출 계수에 비해 양고기가 50.29 및 4.16 % 증가했습니다.

3- 오버플로 양 (p / HT)의 부하와 함께 부하 부하의 무 차원 비율 값을 늘리면 혼잡 한 오버플로의 방전 계수가 감소합니다. 또한 p <HT / 0.5의 값에서 세 가지 형태의 오버플로 개구에 대한 배출 계수의 값은 서로 가깝고 오버플로 모양의 각 끝은 값에서 동일한 기능을 갖습니다. p / HT <0.5. 4-유량이 증가함에 따라 유량 계수가 감소합니다.

References

1- Azhdary Moghaddam, M. and Jafari Nodoushan, E., 2013. Optimization of Geometry of
trapezoidallabyrinth Spillway with using ANFIS Models and Genetic Algorithms (Ute Dam Case Study
in the United States of America). Journal of Civil Engineering. 24(2), pp. 129-138. (In Persian).
2- Canholi, J. F., Canholi, A. P. and Sobral, V., 2011. Hydraulic Design of a Labyrinth Weir in
Aclimação´s Lake. 12nd International Conference on Urban Drainage, Porto Alegre/Brazil.
3- Crookston, B. M. and Tullis, B. P., 2012a. Arced labyrinth weirs. Journal of Hydraulic
Engineering. 138(6), pp.555-562.
4- Crookston, B. M. and Tullis, B. P., 2012b, Hydraulic design and analysis of labyrinth weirs. I:
Discharge relationships. Journal of Irrigation and Drainage Engineering. 139(5), pp.363-370.
5- Esmaeili Varaki, M. and Safarrazavi Zadeh, M., 2013. Study of Hydraulic Features of Flow Over
Labyrinth Weir with Semi-circular Plan form. Journal of Water and Soil. 27(1), pp. 224-234. (In
Persian).
6- Farzin, S., Karami, H. and Zamiri, E., 2016. Study of the Flow over Rubber Dam Using Computational
Hydrodynamics. Journal of Dam and Hydroelectric Powerplant. 3(9), pp.1-11. (In Persian).
7- Hirt, C. W. and Richardson, J. E., 1999. The modeling of shallow flows, Flow Science, Technical
Notes. 48, pp.1-14.
8- Hosseini, K., Tajnesaie, M. and Jafari Nodoush, E., 2015. Optimization of the Geometry of Triangular
Labyrinth Spillways, Using Fuzzy‐Neural System and Differential Evolution Algorithm. Journal of
Civil and Environmental Engineering. 45(1), PP.81-91. (In Persian).
9- Khode, B. V., Tembhurkar, A. R., Porey, P. D. and Ingle, R. N., 2011. Experimental studies on flow
over labyrinth weir. Journal of Irrigation and Drainage Engineering. 138(6), pp.548-552.
10- Nezami, F., Farsadizadeh, D., Hosseinzadeh Delir, A. and Salmasi, F., 2012. Experimental Study of
Discharge Coefficient of Trapezoidal Labyrinth Side-Weirs. Journal of Water and Soil Science. 23(1),
PP.247-257. (In Persian).
11- Nikpiek, P. and Kashefipour, S. M., 2014. Effect of the hydraulic conditions and structure geometry on
mathematical modelling of discharge coefficient for duckbill and oblique weirs. Journal of Irrigation
Science and Engineering. 39(1), pp.1-10. (In Persian).
12- Noori, B. M. and Aaref, N. T., 2017. Hydraulic Performance of Circular Crested Triangular Plan Form
Weirs. Arabian Journal for Science and Engineering. pp.1-10.
13- Noruzi, S. and Ahadiyan, J., 2016. Effect of Vortex Breaker Blades 45 Degree on Discharge
Coefficient of Morning Glory Spillway Using Flow-3D. Journal of Irrigation Science and
Engineering. 39(4), PP. 47-58. (In Persian).
14- Paxson, G. and Savage, B., 2006. Labyrinth spillways: comparison of two popular USA design
methods and consideration of non-standard approach conditions and geometries. Proceedings of the
international junior researcher and engineer workshop on hydraulic structures, Montemor-o-Novo,
Portugal, Division of Civil Engineering, 37.
15- Payri, R., Tormos, B., Gimeno, J. and Bracho, G., 2010. The potential of Large Eddy Simulation (LES)
code for the modeling of flow in diesel injectors. Mathematical and Computer Modelling. 52(7),
pp.1151-1160.
16- Rezaee, M., Emadi, A. and Aqajani Mazandarani, Q., 2016. Experimental Study of Rectangular
Labyrinth Weir. Journal of Water and Soil. 29(6), pp. 1438-1446. (In Persian).
17- Seo, I. W., Do Kim, Y., Park, Y. S. and Song, C. G. 2016, Spillway discharges by modification of weir
shapes and overflow surroundings. Environmental Earth Sciences. 75(6), pp.1-13.
18- Suprapto, M., 2013. Increase spillway capacity using Labyrinth Weir. Procedia Engineering. 54, pp.
440-446.
19- Tullis, J. P., Amanian, N. and Waldron, D., 1995. Design of labyrinth spillways. Journal of Hydraulic
Engineering. 121(3), pp.247-255.
20- Zamiri, E., Karami, H. and Farzin, S., 2016. Numerical Study of Labyrinth Weir Using RNG
Turbulence Model. 15th Iranian Hydraulic Conference, Imam Khomeini International University,
Qazvin, Iran. (In Persian).

Journal of Irrigation Sciences and Engineering (JISE)

FLOW-3D 모델을 사용하여 오리피스 업스트림의 종 방향 및 횡 방향 속도 프로파일 모델링

Modeling Longitudinal and Transverse Velocity Profiles Upstream of an Orifice Using the FLOW-3D Model

Authors

1 MS Student, Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

2 Professor, Department of Water Structures, Faculty of Water and Environmental Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran.

3 shahid chamran university

Abstract

Due to the crisis of water scarcity, water resources management has become inevitable in Iran. Dam reservoirs are among the most important used water resources. Construction of a dam on a river reduces the flow velocity in the reservoir, finally resulting in the deposit of sediments in it. The depositing of sediments in the dam reservoir reduces its useful volume and disturbs the dam’s performance in terms of water storage. Therefore, solutions have always been proposed to manage and discharge sediments in the reservoir during the service period. In this regard, pressurized flushing is a common solution for eliminating sediments. In this method, by opening the bottom gates, the upstream water pressure discharges the sediments through the orifice. The volume of the exited sediments is a function of factors, such as gate diameter, sediments type and size, water height upstream the gate, and outflow discharge. Numerous studies have been conducted on the effect of the mentioned factors on the volume of sediments exited from an orifice. Shahmirzadi et al. (2010) experimentally evaluated the effect of the diameter of bottom dischargers on the dimensions of the flushing cone. Powell and Khan (2015) conducted tests to investigate the flow pattern upstream of a dam orifice under the fixed bed and equilibrium scour (mobile bed) conditions. Their results demonstrated that the velocity’s horizontal component was almost equal for both fixed and equilibrium scour conditions. The same conditions were also the case for the vertical component of the velocity.

Keywords : Flushing, orifice, turbulence model, shear stress

물 부족의 위기로 이란에서는 수자원 관리가 불가피해졌습니다. 댐 저수지는 가장 중요한 사용 수자원 중 하나 입니다. 강에 댐을 건설하면 저수지의 유속이 감소하여 결국 침전물이 퇴적됩니다. 댐 저수지에 퇴적물이 쌓이면 유용한 부피가 줄어들고 물 저장 측면에서 댐의 성능이 저하됩니다.

따라서 서비스 기간 동안 저수지의 퇴적물을 관리하고 배출하는 솔루션이 항상 제안 되었습니다. 이와 관련하여 가압 플러싱은 침전물 제거를 위한 일반적인 솔루션입니다.

이 방법에서는 하단 게이트를 열면 상류 수압이 오리피스를 통해 퇴적물을 배출합니다. 배출된 퇴적물의 부피는 게이트 직경, 퇴적물의 유형 및 크기, 게이트 상류의 수위, 유출 배출과 같은 요인의 함수입니다.

오리피스에서 배출되는 퇴적물의 양에 대한 언급 된 요인의 영향에 대한 수많은 연구가 수행되었습니다. Shahmirzadi et al. (2010)은 바닥 배출기의 직경이 플러싱 콘의 치수에 미치는 영향을 실험적으로 평가했습니다.

Powell and Khan (2015)은 고정층 아래의 댐 오리피스 상류의 유동 패턴과 평형 수색 (이동 층) 조건을 조사하기 위해 테스트를 수행했습니다. 그들의 결과는 속도의 수평 성분이 고정 및 평형 수색 조건 모두에서 거의 동일하다는 것을 보여주었습니다. 속도의 수직 성분에 대해서도 동일한 조건이 적용되었습니다.

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Numerical investigation of flow characteristics over stepped spillways

Güven, Aytaç
Mahmood, Ahmed Hussein
Water Supply (2021) 21 (3): 1344–1355.
https://doi.org/10.2166/ws.2020.283Article history

Abstract

Spillways are constructed to evacuate flood discharge safely so that a flood wave does not overtop the dam body. There are different types of spillways, with the ogee type being the conventional one. A stepped spillway is an example of a nonconventional spillway. The turbulent flow over a stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over a stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with an experimental study done by others in the literature. Two models of a stepped spillway with different discharge for each model were simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which are exhibited in terms of graphics and statistical tables.

배수로는 홍수가 댐 몸체 위로 넘치지 않도록 안전하게 홍수를 피할 수 있도록 건설되었습니다. 다른 유형의 배수로가 있으며, ogee 유형이 기존 유형입니다. 계단식 배수로는 비 전통적인 배수로의 예입니다. 계단식 배수로 위의 난류는 Flow-3D 패키지를 사용하여 수치적으로 연구되었습니다.

세로 유속, 온도 분포, 밀도 및 화학 농도와 같은 다양한 유체 흐름 특성은 Flow-3D로 잘 시뮬레이션 할 수 있습니다. 이 연구에서는 계단식 배수로에 대한 공기 혼입, 속도 분포 및 동적 압력 분포와 같은 유동 특성에 대한 경사 변화의 영향을 Flow-3D로 모델링 했습니다.

수치 모델의 결과는 문헌에서 다른 사람들이 수행한 실험 연구와 비교되었습니다. 각 모델에 대해 서로 다른 배출이 있는 계단식 배수로의 두 모델이 시뮬레이션되었습니다. 실험 모델의 난류 흐름은 수치 모델의 Renormalized Group (RNG) 난류 계획에 의해 시뮬레이션되었습니다. 수치 결과와 관찰 된 결과 사이에 좋은 일치가 이루어졌으며, 이는 그래픽 및 통계 테이블로 표시됩니다.

HIGHLIGHTS

ListenReadSpeaker webReader: Listen

  • A numerical model was developed for stepped spillways.
  • The turbulent flow was simulated by the Renormalized Group (RNG) model.
  • Both numerical and experimental results showed that flow characteristics are greatly affected by abrupt slope change on the steps.

Keyword

CFDnumerical modellingslope changestepped spillwayturbulent flow

INTRODUCTION

댐 구조는 물 보호가 생활의 핵심이기 때문에 물을 저장하거나 물을 운반하는 전 세계에서 가장 중요한 프로젝트입니다. 그리고 여수로는 댐의 가장 중요한 부분 중 하나로 분류됩니다. 홍수로 인한 파괴 나 피해로부터 댐을 보호하기 위해 여수로가 건설됩니다.

수력 발전, 항해, 레크리에이션 및 어업의 중요성을 감안할 때 댐 건설 및 홍수 통제는 전 세계적으로 매우 중요한 문제로 간주 될 수 있습니다. 많은 유형의 배수로가 있지만 가장 일반적인 유형은 다음과 같습니다 : ogee 배수로, 자유 낙하 배수로, 사이펀 배수로, 슈트 배수로, 측면 채널 배수로, 터널 배수로, 샤프트 배수로 및 계단식 배수로.

그리고 모든 여수로는 입구 채널, 제어 구조, 배출 캐리어 및 출구 채널의 네 가지 필수 구성 요소로 구성됩니다. 특히 롤러 압축 콘크리트 (RCC) 댐 건설 기술과 더 쉽고 빠르며 저렴한 건설 기술로 분류 된 계단식 배수로 건설과 관련하여 최근 수십 년 동안 많은 계단식 배수로가 건설되었습니다 (Chanson 2002; Felder & Chanson 2011).

계단식 배수로 구조는 캐비테이션 위험을 감소시키는 에너지 소산 속도를 증가시킵니다 (Boes & Hager 2003b). 계단식 배수로는 다양한 조건에서 더 매력적으로 만드는 장점이 있습니다.

계단식 배수로의 흐름 거동은 일반적으로 낮잠, 천이 및 스키밍 흐름 체제의 세 가지 다른 영역으로 분류됩니다 (Chanson 2002). 유속이 낮을 때 nappe 흐름 체제가 발생하고 자유 낙하하는 낮잠의 시퀀스로 특징 지워지는 반면, 스키밍 흐름 체제에서는 물이 외부 계단 가장자리 위의 유사 바닥에서 일관된 흐름으로 계단 위로 흐릅니다.

또한 주요 흐름에서 3 차원 재순환 소용돌이가 발생한다는 것도 분명합니다 (예 : Chanson 2002; Gonzalez & Chanson 2008). 계단 가장자리 근처의 의사 바닥에서 흐름의 방향은 가상 바닥과 가상으로 정렬됩니다. Takahashi & Ohtsu (2012)에 따르면, 스키밍 흐름 체제에서 주어진 유속에 대해 흐름은 계단 가장자리 근처의 수평 계단면에 영향을 미치고 슈트 경사가 감소하면 충돌 영역의 면적이 증가합니다. 전이 흐름 체제는 나페 흐름과 스키밍 흐름 체제 사이에서 발생합니다. 계단식 배수로를 설계 할 때 스키밍 흐름 체계를 고려해야합니다 (예 : Chanson 1994, Matos 2000, Chanson 2002, Boes & Hager 2003a).

CFD (Computational Fluid Dynamics), 즉 수력 공학의 수치 모델은 일반적으로 물리적 모델에 소요되는 총 비용과 시간을 줄여줍니다. 따라서 수치 모델은 실험 모델보다 빠르고 저렴한 것으로 분류되며 동시에 하나 이상의 목적으로 사용될 수도 있습니다. 사용 가능한 많은 CFD 소프트웨어 패키지가 있지만 가장 널리 사용되는 것은 FLOW-3D입니다. 이 연구에서는 Flow 3D 소프트웨어를 사용하여 유량이 서로 다른 두 모델에 대해 계단식 배수로에서 공기 농도, 속도 분포 및 동적 압력 분포를 시뮬레이션합니다.

Roshan et al. (2010)은 서로 다른 수의 계단 및 배출을 가진 계단식 배수로의 두 가지 물리적 모델에 대한 흐름 체제 및 에너지 소산 조사를 연구했습니다. 실험 모델의 기울기는 각각 19.2 %, 12 단계와 23 단계의 수입니다. 결과는 23 단계 물리적 모델에서 관찰 된 흐름 영역이 12 단계 모델보다 더 수용 가능한 것으로 간주되었음을 보여줍니다. 그러나 12 단계 모델의 에너지 손실은 23 단계 모델보다 더 많았습니다. 그리고 실험은 스키밍 흐름 체제에서 23 단계 모델의 에너지 소산이 12 단계 모델보다 약 12 ​​% 더 적다는 것을 관찰했습니다.

Ghaderi et al. (2020a)는 계단 크기와 유속이 다른 정련 매개 변수의 영향을 조사하기 위해 계단식 배수로에 대한 실험 연구를 수행했습니다. 그 결과, 흐름 체계가 냅페 흐름 체계에서 발생하는 최소 scouring 깊이와 같은 scouring 구멍 치수에 영향을 미친다는 것을 보여주었습니다. 또한 테일 워터 깊이와 계단 크기는 최대 scouring깊이에 대한 실제 매개 변수입니다. 테일 워터의 깊이를 6.31cm에서 8.54 및 11.82cm로 늘림으로써 수세 깊이가 각각 18.56 % 및 11.42 % 증가했습니다. 또한 이 증가하는 테일 워터 깊이는 scouring 길이를 각각 31.43 % 및 16.55 % 감소 시킵니다. 또한 유속을 높이면 Froude 수가 증가하고 흐름의 운동량이 증가하면 scouring이 촉진됩니다. 또한 결과는 중간의 scouring이 횡단면의 측벽보다 적다는 것을 나타냅니다. 계단식 배수로 하류의 최대 scouring 깊이를 예측 한 후 실험 결과와 비교하기 위한 실험식이 제안 되었습니다. 그리고 비교 결과 제안 된 공식은 각각 3.86 %와 9.31 %의 상대 오차와 최대 오차 내에서 scouring 깊이를 예측할 수 있음을 보여주었습니다.

Ghaderi et al. (2020b)는 사다리꼴 미로 모양 (TLS) 단계의 수치 조사를 했습니다. 결과는 이러한 유형의 배수로가 확대 비율 LT / Wt (LT는 총 가장자리 길이, Wt는 배수로의 폭)를 증가시키기 때문에 더 나은 성능을 갖는 것으로 관찰되었습니다. 또한 사다리꼴 미로 모양의 계단식 배수로는 더 큰 마찰 계수와 더 낮은 잔류 수두를 가지고 있습니다. 마찰 계수는 다양한 배율에 대해 0.79에서 1.33까지 다르며 평평한 계단식 배수로의 경우 대략 0.66과 같습니다. 또한 TLS 계단식 배수로에서 잔류 수두의 비율 (Hres / dc)은 약 2.89이고 평평한 계단식 배수로의 경우 약 4.32와 같습니다.

Shahheydari et al. (2015)는 Flow-3D 소프트웨어, RNG k-ε 모델 및 VOF (Volume of Fluid) 방법을 사용하여 배출 계수 및 에너지 소산과 같은 자유 표면 흐름의 프로파일을 연구하여 스키밍 흐름 체제에서 계단식 배수로에 대한 흐름을 조사했습니다. 실험 결과와 비교했습니다. 결과는 에너지 소산 율과 방전 계수율의 관계가 역으로 실험 모델의 결과와 잘 일치 함을 보여 주었다.

Mohammad Rezapour Tabari & Tavakoli (2016)는 계단 높이 (h), 계단 길이 (L), 계단 수 (Ns) 및 단위 폭의 방전 (q)과 같은 다양한 매개 변수가 계단식 에너지 ​​소산에 미치는 영향을 조사했습니다. 방수로. 그들은 해석에 FLOW-3D 소프트웨어를 사용하여 계단식 배수로에서 에너지 손실과 임계 흐름 깊이 사이의 관계를 평가했습니다. 또한 유동 난류에 사용되는 방정식과 표준 k-ɛ 모델을 풀기 위해 유한 체적 방법을 적용했습니다. 결과에 따르면 스텝 수가 증가하고 유량 배출량이 증가하면 에너지 손실이 감소합니다. 얻은 결과를 다른 연구와 비교하고 경험적, 수학적 조사를 수행하여 결국 합격 가능한 결과를 얻었습니다.

METHODOLOGY

ListenReadSpeaker webReader: ListenFor all numerical models the basic principle is very similar: a set of partial differential equations (PDE) present the physical problems. The flow of fluids (gas and liquid) are governed by the conservation laws of mass, momentum and energy. For Computational Fluid Dynamics (CFD), the PDE system is substituted by a set of algebraic equations which can be worked out by using numerical methods (Versteeg & Malalasekera 2007). Flow-3D uses the finite volume approach to solve the Reynolds Averaged Navier-Stokes (RANS) equation, by applying the technique of Fractional Area/Volume Obstacle Representation (FAVOR) to define an obstacle (Flow Science Inc. 2012). Equations (1) and (2) are RANS and continuity equations with FAVOR variables that are applied for incompressible flows.

formula

(1)

formula

(2)where  is the velocity in xi direction, t is the time,  is the fractional area open to flow in the subscript directions,  is the volume fraction of fluid in each cell, p is the hydrostatic pressure,  is the density, is the gravitational force in subscript directions and  is the Reynolds stresses.

Turbulence modelling is one of three key elements in CFD (Gunal 1996). There are many types of turbulence models, but the most common are Zero-equation models, One-equation models, Two-equation models, Reynolds Stress/Flux models and Algebraic Stress/Flux models. In FLOW-3D software, five turbulence models are available. The formulation used in the FLOW-3D software differs slightly from other formulations that includes the influence of the fractional areas/volumes of the FAVORTM method and generalizes the turbulence production (or decay) associated with buoyancy forces. The latter generalization, for example, includes buoyancy effects associated with non-inertial accelerations.

The available turbulence models in Flow-3D software are the Prandtl Mixing Length Model, the One-Equation Turbulent Energy Model, the Two-Equation Standard  Model, the Two-Equation Renormalization-Group (RNG) Model and large Eddy Simulation Model (Flow Science Inc. 2012).In this research the RNG model was selected because this model is more commonly used than other models in dealing with particles; moreover, it is more accurate to work with air entrainment and other particles. In general, the RNG model is classified as a more widely-used application than the standard k-ɛ model. And in particular, the RNG model is more accurate in flows that have strong shear regions than the standard k-ɛ model and it is defined to describe low intensity turbulent flows. For the turbulent dissipation  it solves an additional transport equation:

formula

(3)where CDIS1, CDIS2, and CDIS3 are dimensionless parameters and the user can modify them. The diffusion of dissipation, Diff ɛ, is

formula

(4)where uv and w are the x, y and z coordinates of the fluid velocity; ⁠, ⁠,  and ⁠, are FLOW-3D’s FAVORTM defined terms;  and  are turbulence due to shearing and buoyancy effects, respectively. R and  are related to the cylindrical coordinate system. The default values of RMTKE, CDIS1 and CNU differ, being 1.39, 1.42 and 0.085 respectively. And CDIS2 is calculated from turbulent production (⁠⁠) and turbulent kinetic energy (⁠⁠).The kinematic turbulent viscosity is the same in all turbulence transport models and is calculated from

formula

(5)where ⁠: is the turbulent kinematic viscosity.  is defined as the numerical challenge between the RNG and the two-equation k-ɛ models, found in the equation below. To avoid an unphysically large result for  in Equation (3), since this equation could produce a value for  very close to zero and also because the physical value of  may approach to zero in such cases, the value of  is calculated from the following equation:

formula

(6)where ⁠: the turbulent length scale.

VOF and FAVOR are classifications of volume-fraction methods. In these two methods, firstly the area should be subdivided into a control volume grid or a small element. Each flow parameter like velocity, temperature and pressure values within the element are computed for each element containing liquids. Generally, these values represent the volumetric average of values in the elements.Numerous methods have been used recently to solve free infinite boundaries in the various numerical simulations. VOF is an easy and powerful method created based on the concept of a fractional intensity of fluid. A significant number of studies have confirmed that this method is more flexible and efficient than others dealing with the configurations of a complex free boundary. By using VOF technology the Flow-3D free surface was modelled and first declared in Hirt & Nichols (1981). In the VOF method there are three ingredients: a planner to define the surface, an algorithm for tracking the surface as a net mediator moving over a computational grid, and application of the boundary conditions to the surface. Configurations of the fluids are defined in terms of VOF function, F (x, y, z, t) (Hirt & Nichols 1981). And this VOF function shows the volume of flow per unit volume

formula

(7)

formula

(8)

formula

(9)where  is the density of the fluid, is a turbulent diffusion term,  is a mass source,  is the fractional volume open to flow. The components of velocity (u, v, w) are in the direction of coordinates (x, y, z) or (r, ⁠).  in the x-direction is the fractional area open to flow,  and  are identical area fractions for flow in the y and z directions. The R coefficient is based on the selection of the coordinate system.

The FAVOR method is a different method and uses another volume fraction technique, which is only used to define the geometry, such as the volume of liquid in each cell used to determine the position of fluid surfaces. Another fractional volume can be used to define the solid surface. Then, this information is used to determine the boundary conditions of the wall that the flow should be adapted for.

Case study

ListenReadSpeaker webReader: Listen

In this study, the experimental results of Ostad Mirza (2016) was simulated. In a channel composed of two 4 m long modules, with a transparent sidewall of height 0.6 m and 0.5 m width. The upstream chute slope (i.e. pseudo-bottom angle) Ɵ1 = 50°, the downstream chute slope Ɵ2 = 30° or 18.6°, the step heights h = 0.06 m, the total number of steps along the 50° chute 41 steps, the total number of steps along the 30° chute 34 steps and the total number of steps along the 18.6° chute 20 steps.

The flume inflow tool contained a jetbox with a maximum opening set to 0.12 meters, designed for passing the maximum unit discharge of 0.48 m2/s. The measurements of the flow properties (i.e. air concentration and velocity) were computed perpendicular to the pseudo-bottom as shown in Figure 1 at the centre of twenty stream-wise cross-sections, along the stepped chute, (i.e. in five steps up on the slope change and fifteen steps down on the slope change, namely from step number −09 to +23 on 50°–30° slope change, or from −09 to +15 on 50°–18.6° slope change, respectively).