**ABSTRACT**

이 연구에서는 세 가지 다른 말뚝 뚜껑 높이에서 직사각형 말뚝 캡이 있는 복잡한 부두 주변의 지역 세굴 및 관련 흐름 유체 역학을 조사합니다. 말뚝 캡 높이가 초기 모래층에 대해 선택되었으며, 말뚝 캡이 흐름에 노출되지 않고(사례 I), 부분적으로 노출되고(사례 II) 완전히 노출(사례 III)되도록 했습니다. 실험은 맑은 물 세굴 조건 하에서 재순환 수로에서 수행되었으며, 입자 이미지 유속계 (PIV) 기술을 사용하여 다른 수직면에서 순간 유속을 얻었습니다. 부분적으로 노출된 파일 캡 케이스는 최대 수세미 깊이(MSD)를 보여주었습니다. 사례 II에서 MSD가 발생한 이유는 난류 유동장 분석을 통해 밝혀졌는데, 이는 말뚝 캡이 흐름에 노출됨에 따라 더 높은 세굴 깊이를 담당하는 말뚝 가장자리에서 와류 생성에 지배적으로 영향을 미친다는 것을 보여주었습니다. 유동장에 대한 파일 캡의 영향은 평균 속도, 소용돌이, 레이놀즈 전단 응력 및 난류 운동 에너지 윤곽을 통해 사례 III에서 두드러지게 나타났지만 파일 캡이 베드에서 떨어져 있었기 때문에 파일 캡 모서리는 수세미에 직접적인 영향을 미치지 않았습니다.

In this study, the local scour and the associated flow hydrodynamics around a complex pier with rectangular pile-cap at three different pile-cap elevations are investigated. The pile-cap elevations were selected with respect to the initial sand bed, such that the pile-cap was unexposed (case I), partially exposed (case II), and fully exposed (case III) to the flow. The experiments were performed in a recirculating flume under clear-water scour conditions, and the instantaneous flow velocity was obtained at different vertical planes using the particle image velocimetry (PIV) technique. The partially exposed pile-cap case showed the maximum obtained scour-depth (MSD). The reason behind the MSD occurrence in case II was enunciated through the analysis of turbulent flow field which showed that as the pile-cap got exposed to the flow, it dominantly affected the generation of vortices from the pile-cap corners responsible for the higher scour depth. The effect of the pile-cap on the flow field was prominently seen in case III through the mean velocities, vorticity, Reynolds shear stresses and turbulent kinetic energy contours, but since the pile-cap was away from the bed, the pile-cap corners did not show any direct effect on the scour.

KEYWORDS:

## References

- Adrian, R. J. (2013). Structure of turbulent boundary layers. In Jeremy G. Venditti, James L. Best, Michael Church, & Richard J. Hardy (Eds.),
*Coherent flow structures at earth’s surface*(pp. 17–24). John Wiley and Sons. [Crossref], [Google Scholar] - Adrian, R. J., & Westerweel, J. (2011).
*Particle image velocimetry, No. 30*. Cambridge University Press. [Google Scholar] - Alemi, M., & Maia, R. (2018). Numerical simulation of the flow and local scour process around single and complex bridge piers.
*International Journal of Civil Engineering*,*16*(5), 475–487. https://doi.org/10.1007/s40999-016-0137-8 [Crossref], [Google Scholar] - Alemi, M., Pêgo, J. P., & Maia, R. (2019). Numerical simulation of the turbulent flow around a complex bridge pier on the scoured bed.
*European Journal of Mechanics – B/Fluids*,*76*, 316–331. https://doi.org/10.1016/j.euromechflu.2019.03.011 [Crossref], [Web of Science ®], [Google Scholar] - Amini, A., Hamidi, S., Shirzadi, A., Behmanesh, J., & Akib, S. (2021). Efficiency of artificial neural networks in determining scour depth at composite bridge piers.
*International Journal of River Basin Management*,*19*(3), 327–333. https://doi.org/10.1080/15715124.2020.1742138 [Taylor & Francis Online], [Web of Science ®], [Google Scholar] - Arneson, L. A., Zevenbergen, L. W., Lagasse, P. F., & Clopper, P. E. (2015).
*Evaluating scour at bridges, 5th ed. hydraulic engineering circular No. 18 (HEC-18)*. Federal Highway Administration. [Google Scholar] - Ataie-Ashtiani, B., & Aslani-Kordkandi, A. (2012). Flow field around side-by-side piers with and without a scour hole.
*European Journal of Mechanics – B/Fluids*,*36*, 152–166. https://doi.org/10.1016/j.euromechflu.2012.03.007 [Crossref], [Web of Science ®], [Google Scholar] - Ataie-Ashtiani, B., Baratian-Ghorghi, Z., & Beheshti, A. A. (2010). Experimental investigation of clear-water local scour of compound piers.
*Journal of Hydraulic Engineering*,*136*(6), 343–351. https://doi.org/10.1061/(ASCE)0733-9429(2010)136:6(343) [Crossref], [Web of Science ®], [Google Scholar] - Avallone, F., Discetti, S., Astarita, T., & Cardone, G. (2015). Convergence enhancement of single-pixel PIV with symmetric double correlation.
*Experiments in Fluids*,*56*(4), 71. https://doi.org/10.1007/s00348-015-1938-2 [Crossref], [Web of Science ®], [Google Scholar] - Beheshti, A. A., & Ataie-Ashtiani, B. (2010). Experimental study of three-dimensional flow field around a complex bridge pier.
*Journal of Engineering Mechanics*,*136*(2), 143–154. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000073 [Crossref], [Web of Science ®], [Google Scholar] - Beheshti, A. A., & Ataie-Ashtiani, B. (2016). Scour hole influence on turbulent flow field around complex bridge piers.
*Flow, Turbulence and Combustion*,*97*(2), 451–474. https://doi.org/10.1007/s10494-016-9707-8 [Crossref], [Web of Science ®], [Google Scholar] - Cameron, S. M., Nikora, V. I., & Marusic, I. (2019). Drag forces on a bed particle in open-channel flow: Effects of pressure spatial fluctuations and very-large-scale motions.
*Journal of Fluid Mechanics*,*863*, 494–512. https://doi.org/10.1017/jfm.2018.1003 [Crossref], [Web of Science ®], [Google Scholar] - Cheng, N., & Emadzadeh, A. (2017). Laboratory measurements of vortex-induced sediment pickup rates.
*International Journal of Sediment Research*,*32*(1), 98–104. https://doi.org/10.1016/j.ijsrc.2016.04.005 [Crossref], [Web of Science ®], [Google Scholar] - Coleman, S. E. (2005). Clearwater local scour at complex piers.
*Journal of Hydraulic Engineering*,*131*(4), 330–334. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:4(330) [Crossref], [Web of Science ®], [Google Scholar] - Das, S., & Mazumdar, A. (2015). Turbulence flow field around two eccentric circular piers in scour hole.
*International Journal of River Basin Management*,*13*(3), 343–361. https://doi.org/10.1080/15715124.2015.1012515 [Taylor & Francis Online], [Web of Science ®], [Google Scholar] - Esmaeili Varaki, M., Radice, A., Samira Hossini, S., & Fazl Ola, R. (2019). Local scour at a complex pier with inclined columns footed on capped piles: Effect of the pile arrangement and of the cap thickness and elevation.
*ISH Journal of Hydraulic Engineering*, 1–10. https://doi.org/10.1080/09715010.2019.1702109 [Taylor & Francis Online], [Google Scholar] - Ferraro, D., Tafarojnoruz, A., Gaudio, R., & Cardoso, A. H. (2013). Effects of pile cap thickness on the maximum scour depth at a complex pier.
*Journal of Hydraulic Engineering*,*139*(5), 482–491. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000704 [Crossref], [Web of Science ®], [Google Scholar] - Gaudio, R., Tafarojnoruz, A., & Calomino, F. (2012). Combined flow-altering countermeasures against bridge pier scour.
*Journal of Hydraulic Research*,*50*(1), 35–43. https://doi.org/10.1080/00221686.2011.649548 [Taylor & Francis Online], [Web of Science ®], [Google Scholar] - Gautam, P., Eldho, T., & Behera, M. (2016). Experimental study of scour around a complex pier with elliptical pile-cap. In J. Harris, R. Whitehouse, & S. Moxon (Eds.),
*Scour and Erosion: Proceedings of the 8th International Conference on Scour and Erosion (Oxford, UK, 12-15 September 2016)*(pp. 759–765). CRC Press. [Crossref], [Google Scholar] - Gautam, P., Eldho, T. I., Mazumder, B. S., & Behera, M. R. (2019). Experimental study of flow and turbulence characteristics around simple and complex piers using PIV.
*Experimental Thermal and Fluid Science*,*100*, 193–206. https://doi.org/10.1016/j.expthermflusci.2018.09.010 [Crossref], [Web of Science ®], [Google Scholar] - Graf, W. H., & Istiarto, I. (2002). Flow pattern in the scour hole around a cylinder.
*Journal of Hydraulic Research*,*40*(1), 13–20. https://doi.org/10.1080/00221680209499869 [Taylor & Francis Online], [Web of Science ®], [Google Scholar] - Hjulstrom, F. (1935).
*Study of the morphological activity of Rivers as illustrated by the River fyris bulletin, vol. 25*. Geological Institute of Upsala. [Google Scholar] - Kumar, A., & Kothyari, U. C. (2012). Three-dimensional flow characteristics within the scour hole around circular uniform and compound piers.
*Journal of Hydraulic Engineering*,*138*(5), 420–429. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000527 [Crossref], [Web of Science ®], [Google Scholar] - Mashahir, M. B., Zarrati, A. R., & Rezayi, M. J. (2004). Time development of scouring around a bridge pier protected by collar. In
*Proceedings 2nd International Conference on Scour and Erosion (ICSE-2). November 14–17, 2004, Singapore*. [Google Scholar] - Melville, B. W. (2008).
*The physics of local scour at bridge piers*. In Proceedings of the 4th International Conference on Scour and Erosion (ICSE-4). November 5-7, 2008, Tokyo, Japan (pp. 28–40). [Google Scholar] - Melville, B. W., & Chiew, Y. M. (1999). Time scale for local scour at bridge piers.
*Journal of Hydraulic Engineering*,*125*(1), 59–65. https://doi.org/10.1061/(ASCE)0733-9429(1999)125:1(59) [Crossref], [Web of Science ®], [Google Scholar] - Melville, B. W., & Raudkivi, A. J. (1977). Flow characteristics in local scour at bridge piers.
*Journal of Hydraulic Research*,*15*(4), 373–380. https://doi.org/10.1080/00221687709499641 [Taylor & Francis Online], [Web of Science ®], [Google Scholar] - Moreno, M., Maia, R., & Couto, L. (2016a). Effects of relative column width and pile-cap elevation on local scour depth around complex piers.
*Journal of Hydraulic Engineering*,*142*(2), 04015051. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001080 [Crossref], [Web of Science ®], [Google Scholar] - Moreno, M., Maia, R., & Couto, L. (2016b). Prediction of equilibrium local scour depth at complex bridge piers.
*Journal of Hydraulic Engineering*,*142*(11), 04016045. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001153 [Crossref], [Web of Science ®], [Google Scholar] - Nezu, I., & Rodi, W. (1986). Open-channel flow measurements with a laser Doppler anemometer.
*Journal of Hydraulic Engineering*,*112*(5), 335–355. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:5(335) [Crossref], [Web of Science ®], [Google Scholar] - Radice, A., & Tran, C. K. (2012). Study of sediment motion in scour hole of a circular pier.
*Journal of Hydraulic Research*,*50*(1), 44–51. https://doi.org/10.1080/00221686.2011.641764 [Taylor & Francis Online], [Web of Science ®], [Google Scholar] - Richardson, J. R., & York, K. (1999). Hydrodynamic countermeasures for local pier scour.
*Transportation Research Record: Journal of the Transportation Research Board*,*1690*(1), 186–192. https://doi.org/10.3141/1690-21 [Crossref], [Google Scholar] - Saw, E., Debue, P., Kuzzay, D., Daviaud, F., & Dubrulle, B. (2018). On the universality of anomalous scaling exponents of structure functions in turbulent flows.
*Journal of Fluid Mechanics*,*837*, 657–669. https://doi.org/10.1017/jfm.2017.848 [Crossref], [Web of Science ®], [Google Scholar] - Schlichting, H. (1968).
*Boundary layer theory (Vol. 960)*. McGraw-Hill. [Google Scholar] - Sheppard, D. M., Demir, H., & Melville, B. W. (2011).
*Scour at wide piers and long skewed piers (Vol. 682)*. Transportation Research Board. [Google Scholar] - Tafarojnoruz, A., Gaudio, R., & Calomino, F. (2012). Bridge pier scour mitigation under steady and unsteady flow conditions.
*Acta Geophysica*,*60*(4), 1076–1097. https://doi.org/10.2478/s11600-012-0040-x [Crossref], [Web of Science ®], [Google Scholar] - Tafarojnoruz, A., Gaudio, R., & Dey, S. (2010). Flow-altering countermeasures against scour at bridge piers: A review.
*Journal of Hydraulic Research*,*48*(4), 441–452. https://doi.org/10.1080/00221686.2010.491645 [Taylor & Francis Online], [Web of Science ®], [Google Scholar] - Tennekes, H., & Lumley, J. L. (1972).
*A first course in turbulence*. MIT press. [Crossref], [Google Scholar] - Veerappadevaru, G., Gangadharaiah, T., & Jagadeesh, T. R. (2011). Vortex scouring process around bridge pier with a caisson.
*Journal of Hydraulic Research*,*49*(3), 378–383. https://doi.org/10.1080/00221686.2011.568195 [Taylor & Francis Online], [Web of Science ®], [Google Scholar] - Veerappadevaru, G., Gangadharaiah, T., & Jagadeesh, T. R. (2012). Temporal variation of vortex scour process around caisson piers.
*Journal of Hydraulic Research*,*50*(2), 200–207. https://doi.org/10.1080/00221686.2012.666832 [Taylor & Francis Online], [Web of Science ®], [Google Scholar] - Vijayasree, B. A., Eldho, T. I., Mazumder, B. S., & Ahmad, N. (2019). Influence of bridge pier shape on flow field and scour geometry.
*International Journal of River Basin Management*,*17*(1), 109–129. https://doi.org/10.1080/15715124.2017.1394315 [Taylor & Francis Online], [Web of Science ®], [Google Scholar] - Yang, Y., Melville, B. W., Sheppard, D. M., & Shamseldin, A. Y. (2018). Clear-water local scour at skewed complex bridge piers.
*Journal of Hydraulic Engineering*,*144*(6), 04018019. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001458 [Crossref], [Web of Science ®], [Google Scholar] - Yang, Y., Melville, B. W., Macky, G. H., & Shamseldin, A. Y. (2020). Temporal evolution of clear-water local scour at aligned and skewed complex bridge piers.
*Journal of Hydraulic Engineering*,*146*(4), 04020026. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001732 [Crossref], [Web of Science ®], [Google Scholar]