Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively

추가 생산용 전자빔 조사에 의한 316L 스테인리스 용융 · 응고 거동

Melting and Solidification Behavior of 316L Steel Induced by Electron-Beam Irradiation for Additive Manufacturing

付加製造用電子ビーム照射による 316L ステンレス鋼の溶融・凝固挙動

奥 川 将 行*・宮 田 雄一朗*・王     雷*・能 勢 和 史*
小 泉 雄一郎*・中 野 貴 由*
Masayuki OKUGAWA, Yuichiro MIYATA, Lei WANG, Kazufumi NOSE,
Yuichiro KOIZUMI and Takayoshi NAKANO

Abstract

적층 제조(AM) 기술은 복잡한 형상의 3D 부품을 쉽게 만들고 미세 구조 제어를 통해 재료 특성을 크게 제어할 수 있기 때문에 많은 관심을 받았습니다. PBF(Powderbed fusion) 방식의 AM 공정에서는 금속 분말을 레이저나 전자빔으로 녹이고 응고시키는 과정을 반복하여 3D 부품을 제작합니다.

일반적으로 응고 미세구조는 Hunt[Mater. 과학. 영어 65, 75(1984)]. 그러나 CET 이론이 일반 316L 스테인리스강에서도 높은 G와 R로 인해 PBF형 AM 공정에 적용될 수 있을지는 불확실하다.

본 연구에서는 미세구조와 응고 조건 간의 관계를 밝히기 위해 전자빔 조사에 의해 유도된 316L 강의 응고 미세구조를 분석하고 CtFD(Computational Thermal-Fluid Dynamics) 방법을 사용하여 고체/액체 계면에서의 응고 조건을 평가했습니다.

CET 이론과 반대로 높은 G 조건에서 등축 결정립이 종종 형성되는 것으로 밝혀졌다. CtFD 시뮬레이션은 약 400 mm s-1의 속도까지 유체 흐름이 있음을 보여 주며 수상 돌기의 파편 및 이동의 영향으로 등축 결정립이 형성됨을 시사했습니다.

Additive manufacturing(AM)technologies have attracted much attention because it enables us to build 3D parts with complicated geometry easily and control material properties significantly via the control of microstructures. In the powderbed fusion(PBF)type AM process, 3D parts are fabricated by repeating a process of melting and solidifying metal powders by laser or electron beams. In general, the solidification microstructures can be predicted from solidification conditions defined by the combination of temperature gradient G and solidification rate R on the basis of columnar-equiaxed transition(CET)theory proposed by Hunt [Mater. Sci. Eng. 65, 75(1984)]. However, it is unclear whether the CET theory can be applied to the PBF type AM process because of the high G and R, even for general 316L stainless steel. In this study, to reveal relationships between microstructures and solidification conditions, we have analyzed solidification microstructures of 316L steel induced by electronbeam irradiation and evaluated solidification conditions at the solid/liquid interface using a computational thermal-fluid dynamics (CtFD)method. It was found that equiaxed grains were often formed under high G conditions contrary to the CET theory. CtFD simulation revealed that there is a fluid flow up to a velocity of about 400 mm s-1, and suggested that equiaxed grains are formed owing to the effect of fragmentations and migrations of dendrites.

Keywords

Additive Manufacturing, 316L Stainless Steel, Powder Bed Fusion, Electron Beam Melting, Computational Thermal
Fluid Dynamics Simulation

Fig. 1 Width, height, and height differences calculated from laser microscope analysis of melt tracks formed by scanning electron beam. Fig. 2(a)Scanning electron microscope(SEM)image and(b) corresponding electron back-scattering diffraction(EBSD) IPF-map taken from the electron-beam irradiated region in P900-V100 sample. Fig. 3 Average grain size and their aspect ratio calculated from EBSD IPF-map taken from the electron-beam irradiated region.
Fig. 1 Width, height, and height differences calculated from laser microscope analysis of melt tracks formed by scanning electron beam. Fig. 2(a)Scanning electron microscope(SEM)image and(b) corresponding electron back-scattering diffraction(EBSD) IPF-map taken from the electron-beam irradiated region in P900-V100 sample. Fig. 3 Average grain size and their aspect ratio calculated from EBSD IPF-map taken from the electron-beam irradiated region.
Fig. 4 Comparison of experimental SEM image and computational thermal fluid dynamics(CtFD)simulated melt pool with a beam diameter of 700 μm and absorption rates of(a)0.3,(b)0.5, and (c)0.7. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively.
Fig. 4 Comparison of experimental SEM image and computational thermal fluid dynamics(CtFD)simulated melt pool with a beam diameter of 700 μm and absorption rates of(a)0.3,(b)0.5, and (c)0.7. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively.
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively
Fig. 6 Depth of melt tracks calculated from experimental SEM image and CtFD simulation results.
Fig. 6 Depth of melt tracks calculated from experimental SEM image and CtFD simulation results.
Fig. 7 G-R plots of 316L steel colored by(a)aspect ratio of crystalline grains and(b)fluid velocity.
Fig. 7 G-R plots of 316L steel colored by(a)aspect ratio of crystalline grains and(b)fluid velocity.
Fig. 8 Comparison of solidification microstructure(EBSD IPF-map)of melt region formed by scanning electron beam and corresponding snap shot of CtFD simulation colored by fluid velocity
Fig. 8 Comparison of solidification microstructure(EBSD IPF-map)of melt region formed by scanning electron beam and corresponding snap shot of CtFD simulation colored by fluid velocity

References

1) M.C. Sow, T. De Terris, O. Castelnau, Z. Hamouche, F. Coste, R.
Fabbro and P. Peyre: “Influence of beam diameter on Laser Powder

Bed Fusion(L-PBF)process”, Addit. Manuf. 36(2020), 101532.
2) J.C. Simmons, X. Chen, A. Azizi, M.A. Daeumer, P.Y. Zavalij, G.
Zhou and S.N. Schiffres: “Influence of processing and microstructure
on the local and bulk thermal conductivity of selective laser melted
316L stainless steel”, Addit. Manuf. 32(2020), 100996.
3) S. Dryepondt, P. Nandwana, P. Fernandez-Zelaia and F. List:
“Microstructure and High Temperature Tensile properties of 316L
Fabricated by Laser Powder-Bed Fusion”, Addit. Manuf. 37(2020),
101723.
4) S.H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa and T.
Nakano: “Excellent mechanical and corrosion properties of austenitic
stainless steel with a unique crystallographic lamellar microstructure
via selective laser melting”, Scr. Mater. 159(2019), 89-93.
5) T. Ishimoto, S. Wu, Y. Ito, S.H. Sun, H. Amano and T. Nakano:
“Crystallographic orientation control of 316L austenitic stainless
steel via selective laser melting”, ISIJ Int. 60(2020), 1758-1764.
6) T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun and T. Nakano:
“Crystallographic texture control of beta-type Ti-15Mo-5Zr3Al alloy by selective laser melting for the development of novel
implants with a biocompatible low Young’s modulus”, Scr. Mater.
132(2017), 34-38.
7) X. Ding, Y. Koizumi, D. Wei and A. Chiba: “Effect of process
parameters on melt pool geometry and microstructure development
for electron beam melting of IN718: A systematic single bead
analysis study”, Addit. Manuf. 26(2019), 215-226.
8) K. Karayagiz, L. Johnson, R. Seede, V. Attari, B. Zhang, X. Huang,
S. Ghosh, T. Duong, I. Karaman, A. Elwany and R. Arróyave: “Finite
interface dissipation phase field modeling of Ni-Nb under additive
manufacturing conditions”, Acta Mater. 185(2020), 320-339.
9) M.M. Kirka, Y. Lee, D.A. Greeley, A. Okello, M.J. Goin, M.T.
Pearce and R.R. Dehoff: “Strategy for Texture Management in
Metals Additive Manufacturing”, JOM, 69(2017), 523-531.
10) S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M.
Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee and
R.R. Dehoff: “Additive Manufacturing of Nickel Superalloys:
Opportunities for Innovation and Challenges Related to
Qualification”, Metall. Mater. Trans. A. 49(2018), 3764-3780.
11) M.R. Gotterbarm, A.M. Rausch and C. Körner: “Fabrication of
Single Crystals through a μ-Helix Grain Selection Process during
Electron Beam Metal Additive Manufacturing”, Metals, 10(2020),
313.
12) J.D.D. Hunt: “Steady state columnar and equiaxed growth of
dendrites and eutectic”, Mater. Sci. Eng. 65(1984), 75-83.
13) S. Bontha, N.W. Klingbeil, P.A. Kobryn and H.L. Fraser: “Effects of
process variables and size-scale on solidification microstructure in
beam-based fabrication of bulky 3D structures”, Mater. Sci. Eng. A.
513-514(2009), 311-318.
14) J. Gockel and J. Beuth: “Understanding Ti-6Al-4V microstructure
control in additive manufacturing via process maps”, 24th Int. SFF
Symp. – An Addit. Manuf. Conf. SFF 2013.(2013), 666-674.
15) B. Schoinochoritis, D. Chantzis and K. Salonitis: “Simulation of
metallic powder bed additive manufacturing processes with the finite
element method: A critical review”, Proc. of Instit. Mech. Eng., Part
B: J. Eng. Manuf. 231(2017), 96-117.
16)小泉雄一郎: “計算機シミュレーションを用いたAdditive
Manufacturing プロセス最適化予測”, スマートプロセス学会誌,
8-4(2019), 132-138.
17) Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka and A. Chiba:
“Molten pool behavior and effect of fluid flow on solidification
conditions in selective electron beam melting(SEBM)of a
biomedical Co-Cr-Mo alloy”, Addit. Manuf. 26(2019), 202-214.
18) C. Tang, J.L. Tan and C.H. Wong: “A numerical investigation on
the physical mechanisms of single track defects in selective laser
melting”, Int. J. Heat Mass Transf. 126(2018), 957-968.
19) Technical data for Iron, [Online]. Available: http://periodictable.com/
Elements/026/data.html. [Accessed: 8-Feb-2021].
20) N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J.
Turner, N. Carl-son and S.S. Babu: “Numerical modeling of heattransfer and the influence of process parameters on tailoring the grain
morphology of IN718 in electron beam additive manufacturing”,
Acta Mater. 112(2016), 303-314.
21) S. Morita, Y. Miki and K. Toishi: “Introduction of Dendrite
Fragmentation to Microstructure Calculation by Cellular Automaton
Method”, Tetsu-to-Hagane. 104(2018), 559-566.
22) H. Esaka and M. Tamura: “Model Experiment Using Succinonitrile
on the Formation of Equiaxed Grains caused by Forced Convection”,
Tetsu-to-Hagane. 86(2000), 252-258.

Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale

Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale

WenjunLiua  BoWangb  YakunGuoc

a State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065, China
State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, College Of Water Resource and Hydropower, Chengdu, 610065, China
faculty of Engineering & Informatics, University of Bradford, BD7 1DP, UK

Abstract

The bed slope and the tailwater depth are two important ones among the factors that affect the propagation of the dam-break flood and Favre waves. Most previous studies have only focused on the macroscopic characteristics of the dam-break flows or Favre waves under the condition of horizontal bed, rather than the internal movement characteristics in sloped channel. The present study applies two numerical models, namely, large eddy simulation (LES) and shallow water equations (SWEs) models embedded in the CFD software package FLOW-3D to analyze the internal movement characteristics of the dam-break flows and Favre waves, such as water level, the velocity distribution, the fluid particles acceleration and the bed shear stress, under the different bed slopes and water depth ratios. The results under the conditions considered in this study show that there is a flow state transition in the flow evolution for the steep bed slope even in water depth ratio α = 0.1 (α is the ratio of the tailwater depth to the reservoir water depth). The flow state transition shows that the wavefront changes from a breaking state to undular. Such flow transition is not observed for the horizontal slope and mild bed slope. The existence of the Favre waves leads to a significant increase of the vertical velocity and the vertical acceleration. In this situation, the SWEs model has poor prediction. Analysis reveals that the variation of the maximum bed shear stress is affected by both the bed slope and tailwater depth. Under the same bed slope (e.g., S0 = 0.02), the maximum bed shear stress position develops downstream of the dam when α = 0.1, while it develops towards the end of the reservoir when α = 0.7. For the same water depth ratio (e.g., α = 0.7), the maximum bed shear stress position always locates within the reservoir at S0 = 0.02, while it appears in the downstream of the dam for S0 = 0 and 0.003 after the flow evolves for a while. The comparison between the numerical simulation and experimental measurements shows that the LES model can predict the internal movement characteristics with satisfactory accuracy. This study improves the understanding of the effect of both the bed slope and the tailwater depth on the internal movement characteristics of the dam-break flows and Favre waves, which also provides a valuable reference for determining the flood embankment height and designing the channel bed anti-scouring facility.

댐붕괴 홍수와 파브르 파도의 전파에 영향을 미치는 요인 중 하상경사와 후미수심은 두 가지 중요한 요소이다. 대부분의 선행 연구들은 경사 수로에서의 내부 이동 특성보다는 수평층 조건에서 댐파괴류나 Favre파동의 거시적 특성에만 초점을 맞추었다.

본 연구에서는 CFD 소프트웨어 패키지 FLOW-3D에 내장된 LES(Large Eddy Simulation) 및 SWE(Shallow Water Equation) 모델의 두 가지 수치 모델을 적용하여 댐-파괴 흐름 및 Favre 파도의 내부 이동 특성을 분석합니다.

수위, 속도 분포, 유체 입자 가속도 및 층 전단 응력, 다양한 층 경사 및 수심 비율로. 본 연구에서 고려한 조건하의 결과는 수심비 α = 0.1(α는 저수지 수심에 대한 tailwater 깊이의 비율)에서도 급경사면에 대한 유동상태 전이가 있음을 보여준다. 유동 상태 전이는 파면이 파단 상태에서 비정형으로 변하는 것을 보여줍니다.

수평 경사와 완만한 바닥 경사에서는 이러한 흐름 전이가 관찰되지 않습니다. Favre 파의 존재는 수직 속도와 수직 가속도의 상당한 증가로 이어집니다. 이 상황에서 SWE 모델은 예측이 좋지 않습니다.

분석에 따르면 최대 바닥 전단 응력의 변화는 바닥 경사와 꼬리 수심 모두에 영향을 받습니다. 동일한 바닥 경사(예: S0 = 0.02)에서 최대 바닥 전단 응력 위치는 α = 0.1일 때 댐의 하류에서 발생하고 α = 0.7일 때 저수지의 끝쪽으로 발생합니다.

동일한 수심비(예: α = 0.7)에 대해 최대 바닥 전단 응력 위치는 항상 S0 = 0.02에서 저수지 내에 위치하는 반면, S0 = 0 및 0.003에 대해 흐름이 진화한 후 댐 하류에 나타납니다. 수치적 시뮬레이션과 실험적 측정을 비교한 결과 LES 모델이 내부 움직임 특성을 만족스러운 정확도로 예측할 수 있음을 알 수 있습니다.

본 연구는 댐 파절류 및 Favre파의 내부 이동 특성에 대한 하상 경사 및 후미 수심의 영향에 대한 이해를 향상 시키며, 이는 또한 제방 높이를 결정하고 수로 저반위 설계를 위한 귀중한 참고자료를 제공한다.

Keywords

Figure Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale
Figure Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale

Dam-break flow, Bed slope, Wet bed, Velocity profile, Bed shear stress, Large eddy simulation
댐파괴유동, 하상경사, 습상, 유속분포, 하상전단응력, 대와류 시뮬레이션

Fig. 1. Hydraulic jump flow structure.

Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

낮은 레이놀즈 수 유압 점프의 수치 모델링에서 OpenFOAM 및 FLOW-3D의 성능 평가

ArnauBayona DanielValerob RafaelGarcía-Bartuala Francisco ​JoséVallés-Morána P. AmparoLópez-Jiméneza

Abstract

A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.

CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.

VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.

모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.

Keywords

CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number

References

Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a
review. J. Hydraulic Res. 35 (1), 81e98.
Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface
reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468.
Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647.
Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev.
Fluid Mech. 42 (2010), 111e133.
Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using

OpenFOAM. J. Hydroinformatics 17 (4), 662e678.
Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees
(Paris, France).
Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,
Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C.,
Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
Characterising performance of environmental models. Environ. Model. Softw.
40, 1e20.
Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop
Impact: Numerical Simulations and Theoretical Modeling. Imperial College of
Science, Technology and Medicine, UK.
Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s  eance. Le 
Remou et sur la Propagation des Ondes, 12, pp. 21e112.
Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD
problems. Elsevier Appl. Numer. Math. 26 (1), 135e151.
Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and
evaluation applied to computational fluid dynamics for environmental fluid
mechanics. Environ. Model. Softw. 33, 1e22.
Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ.
Fluid Mech. 11 (3), 263e288.
Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows
past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic
Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7.
Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined
three-hole conductivity probe for void fraction and velocity measurement in
airewater flows. Exp. fluids 48 (1), 17e31.
Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid
Mech. 286, 1e23.
Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de
translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759.
Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic
jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics
Division.
Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J.
heat fluid flow 18 (1), 45e54.
Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329.
Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment
Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress.
Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe
Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign.
Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in
hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752.
Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of
uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130
(7), 1e4.
Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909.
Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press.
Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/
Fluids 26.3(2007) 367e384.
Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In:
Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor
& Francis Group, ABalkema Book.
Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in
hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44.
Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a
computational fluid dynamics (CFD) model for air entrainment at spillway
aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838.
Can. J. Civ. Eng. 37 (1), 135e138.
Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended
load. Taylor & Francis J. Hydraulic Res. 32, 87e101.
Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144.
Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in
a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607.
Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis
J. Hydraulic Res. 51 (3), 223e243.
Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media.
Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface.
Environ. Model. Softw. 13 (3), 247e255.
Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New
York.
Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic
calculations. Elsevier J. Comput. Phys. 4 (1), 97e117.
De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic
jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173.
Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model 
for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int.
Conf. Hydroinformatics 1, 63e70.
Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep.
N. 81, 26429.
Fawer, C., 1937. Etude de quelquesecoulements permanents 
a filets courbes (‘Study
of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French).
Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on
air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3),
217e238.
Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a
hydraulic jump. J. Hydraulic Res. 48 (4), 504e508.
Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling
basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2),
101e113.
Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer.
Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic
Res. 27 (5), 565e583.
Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal
modelling code in fluvial environments. Environ. Model. Softw. 26 (12),
1685e1695.
Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1.
Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys. 39 (1), 201e225.
Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D.
Nonlinear Phenom. 12 (1), 396e407.
Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load
discharge formulations for transient flow in 1D and 2D situations.
J. Hydroinformatics 15 (4).
Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid
Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations.
Elsevier.
Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction
on flow and dispersion in urban street canyons using the RNG keε turbulence
model. Atmos. Environ. 38 (19), 3039e3048.
Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier
J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158.
Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of
low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520.
Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped
Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. :
http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February
27th 2014.
Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic
jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218.
Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and
transport in a hydraulic jump using two-fluid RANS and DES turbulence
models. Heat Mass Transf. 47 (8), 911e919.
Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity 
measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods
2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58.
Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming
flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385.
McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional
Gas Turbine Cascades.
Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of
Hydraulic Research. Taylor &Francis 37 (4), 541e558.
Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers.
Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and
turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159.
Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free
surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685.
Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of
bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154.
Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence
scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids
11, 1581e1595.
Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings
of the Fifth International Conference on Numerical Methods in Fluid Dynamics
June 28-July 2. 1976 Twente University, Enschede, pp. 330e340.
Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves:
laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97.
Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman
Institute for Fluid Dynamics.
Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial
neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70.
OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free
Software Foundation Inc.
Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water
resources technical publication. Eng. Monogr. 25.
Pope, S.B., 2000. Turbulent Flows. Cambridge university press.
Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of
hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215.
Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow.
Cambridge University Press.
Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91
(HY5), 107e132.
Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps.
Taylor & Francis J. Hydraulic Res. 10 (4), 409e430.
Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a
hydraulic jump (original title, in Spanish: “Simulacioncomputacional del
resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672.
Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966.
Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at
High Phase Fractions. Imperial College of Science, Technology and Medicine, UK.
Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec
application aux crues des riviereset a l’introduction de mareesdansleurslits.
Comptesrendus des seances de l’Academie des Sciences.
Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer.
Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat
Fluid Flow 21 (3), 252e263.
Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for
separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4.
Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study.
University of Stavanger, Norway.
Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces.
Imperial College of Science, Technology and Medicine, UK.
Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD
spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/
10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water.
Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in
moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR
World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands).
Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J.
Comput. Phys 23 (3), 263e275.
Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der
Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76.
Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase
flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16
(DOI: 10.1007/s00348-014-1847-9).
Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition
technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/
s00348-014-1775-8.
Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in
hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE)
HY.1943-7900.0001010. Paper 04015010, 10 pages.
Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic
jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The
Netherlands.
Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
12, 620e631.
Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA).
Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex
dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-

  1. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www.
    sciencedirect.com/science/article/pii/S0301932215000336.
    Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design
    Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands.
    Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of
    turbulence models for shear flows by a double expansion technique, Physics of
    Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520.
    Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics
    code. Tech. Rep. 44 (92), 35e35.
    Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps:
    free-surface fluctuation and integral turbulent scale measurements. Environ.
    fluid Mech. 13 (2), 189e204.
    Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble
    velocities in free hydraulic jumps for small to intermediate froude numbers.
    J. Hydraulic Eng.
Stability and deformations of deposited layers in material extrusion additive manufacturing

Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques

Md TusherMollah, Raphaël Comminal, Marcin P.Serdeczny, David B.Pedersen, Jon Spangenberg
Department of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark

Abstract

This paper presents computational fluid dynamics simulations of the deposition flow during printing of multiple layers in material extrusion additive manufacturing. The developed model predicts the morphology of the deposited layers and captures the layer deformations during the printing of viscoplastic materials. The physics is governed by the continuity and momentum equations with the Bingham constitutive model, formulated as a generalized Newtonian fluid. The cross-sectional shapes of the deposited layers are predicted, and the deformation of layers is studied for different constitutive parameters of the material. It is shown that the deformation of layers is due to the hydrostatic pressure of the printed material, as well as the extrusion pressure during the extrusion. The simulations show that a higher yield stress results in prints with less deformations, while a higher plastic viscosity leads to larger deformations in the deposited layers. Moreover, the influence of the printing speed, extrusion speed, layer height, and nozzle diameter on the deformation of the printed layers is investigated. Finally, the model provides a conservative estimate of the required increase in yield stress that a viscoplastic material demands after deposition in order to support the hydrostatic and extrusion pressure of the subsequently printed layers.

이 논문은 재료 압출 적층 제조에서 여러 레이어를 인쇄하는 동안 증착 흐름의 전산 유체 역학 시뮬레이션을 제공합니다. 개발된 모델은 증착된 레이어의 형태를 예측하고 점소성 재료를 인쇄하는 동안 레이어 변형을 캡처합니다.

물리학은 일반화된 뉴턴 유체로 공식화된 Bingham 구성 모델의 연속성 및 운동량 방정식에 의해 제어됩니다. 증착된 층의 단면 모양이 예측되고 재료의 다양한 구성 매개변수에 대해 층의 변형이 연구됩니다. 층의 변형은 인쇄물의 정수압과 압출시 압출압력으로 인한 것임을 알 수 있다.

시뮬레이션에 따르면 항복 응력이 높을수록 변형이 적은 인쇄물이 생성되는 반면 플라스틱 점도가 높을수록 증착된 레이어에서 변형이 커집니다. 또한 인쇄 속도, 압출 속도, 층 높이 및 노즐 직경이 인쇄된 층의 변형에 미치는 영향을 조사했습니다.

마지막으로, 이 모델은 후속 인쇄된 레이어의 정수압 및 압출 압력을 지원하기 위해 증착 후 점소성 재료가 요구하는 항복 응력의 필요한 증가에 대한 보수적인 추정치를 제공합니다.

Stability and deformations of deposited layers in material extrusion additive manufacturing
Stability and deformations of deposited layers in material extrusion additive manufacturing

Keywords

Viscoplastic MaterialsMaterial Extrusion Additive Manufacturing (MEX-AM)Multiple-Layers DepositionComputational Fluid Dynamics (CFD)Deformation Control

Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques

기계 학습 기술에 의한 불확실성 하에서 다중 이해 관계자 계단형 배수로 설계의 충돌 해결

Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques

Mehrdad GhorbaniMooseluaMohammad RezaNikoobParnian HashempourBakhtiaribNooshin BakhtiariRayanicAzizallahIzadyd
aDepartment of Engineering Sciences, University of Agder, Norway
bDepartment of Civil and Environmental Engineering, Shiraz University, Shiraz, Iran
cSchool of Engineering, Department of Civil and Environmental Engineering, Shiraz University, Shiraz, IrandWater Research Center, Sultan Qaboos University, Muscat, Oman

Abstract

The optimal spillway design is of great significance since these structures can reduce erosion downstream of the dams. This study proposes a risk-based optimization framework for a stepped spillway to achieve an economical design scenario with the minimum loss in hydraulic performance. Accordingly, the stepped spillway was simulated in the FLOW-3D® model, and the validated model was repeatedly performed for various geometric states.

The results were used to form a Multilayer Perceptron artificial neural network (MLP-ANN) surrogate model. Then, a risk-based optimization model was formed by coupling the MLP-ANN and NSGA-II. The concept of conditional value at risk (CVaR) was utilized to reduce the risk of the designed spillway malfunctions in high flood flow rates, while minimizing the construction cost and the loss in hydraulic performance.

Lastly, given the conflicting objectives of stakeholders, the non-cooperative graph model for conflict resolution (GMCR) was applied to achieve a compromise on the Pareto optimal solutions. Applicability of the suggested approach in the Jarreh Dam, Iran, resulted in a practical design scenario, which simultaneously minimizes the loss in hydraulic performance and the project cost and satisfies the priorities of decision-makers.

Keywords

Stepped spillway, FLOW-3D® ,CVaR-based optimization model, GMCR-plus, NSGA-II

최적의 배수로 설계는 이러한 구조가 댐 하류의 침식을 줄일 수 있기 때문에 매우 중요합니다. 본 연구에서는 유압 성능 손실을 최소화하면서 경제적인 설계 시나리오를 달성하기 위해 계단형 여수로에 대한 위험 기반 최적화 프레임워크를 제안합니다. 따라서 FLOW-3D® 모델에서 계단식 배수로를 시뮬레이션하고 다양한 기하학적 상태에 대해 검증된 모델을 반복적으로 수행했습니다.

결과는 다층 퍼셉트론 인공 신경망(MLP-ANN) 대리 모델을 형성하는 데 사용되었습니다. 그런 다음 MLP-ANN과 NSGA-II를 결합하여 위험 기반 최적화 모델을 구성했습니다. 위험 조건부 값(CVaR)의 개념은 높은 홍수 유량에서 설계된 방수로 오작동의 위험을 줄이는 동시에 건설 비용과 수리 성능 손실을 최소화하기 위해 활용되었습니다.

마지막으로 이해관계자의 상충되는 목표를 고려하여 파레토 최적해에 대한 절충안을 달성하기 위해 갈등 해결을 위한 비협조적 그래프 모델(GMCR)을 적용하였다. 이란 Jarreh 댐에서 제안된 접근 방식의 적용 가능성은 수력 성능 손실과 프로젝트 비용을 동시에 최소화하고 의사 결정자의 우선 순위를 만족시키는 실용적인 설계 시나리오로 귀결되었습니다.

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions

류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토

Hyung Ju Yoo1 Sung Sik Joo2 Beom Jae Kwon3 Seung Oh Lee4*
유 형주1 주 성식2 권 범재3 이 승오4*
1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University2Director, Water Resources & Environment Department, HECOREA3Director, Water Resources Department, ISAN4Professor, Dept. of Civil & Environmental Engineering, Hongik University
1홍익대학교 건설환경공학과 박사과정
2㈜헥코리아 수자원환경사업부 이사
3㈜이산 수자원부 이사
4홍익대학교 건설환경공학과 교수*Corresponding Author

ABSTRACT

최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다.

그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다.

이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다.

수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다.

따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다.

이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다.

그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.

키워드

보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력

Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.KeywordsAuxiliary spillway FLOW-3D Numerical simulation Revetment stability Shear stress

1. 서 론

최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.

기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006Kim, 2007Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.

그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.

2. 본 론

2.1 이론적 배경

2.1.1 3차원 수치모형의 기본이론

FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.

2.1.2 유동해석의 지배방정식

1) 연속 방정식(Continuity Equation)

FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1)(2)와 같다.

(1)

∇·v=0

(2)

∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ

여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.

2) 운동량 방정식(Momentum Equation)

각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3)(4)(5)와 같다.

(3)

∂u∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂x+Gx+fx-bx-RSORρVFu

(4)

∂v∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂y+Gy+fy-by-RSORρVFv

(5)

∂w∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂z+Gz+fz-bz-RSORρVFw

여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.

2.1.3 소류력 산정

호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6)(7)과 같다.

1) Schoklitsch 공식

Schoklitsch(1934)는 Chezy 유속계수를 적용하여 소류력을 산정하였다.

(6)

τ=γRI=γC2V2

여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.

2) Manning 조도계수를 고려한 공식

Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.

(7)

τ=γn2V2R1/3

여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.

FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.

2.2 하천호안 설계기준

하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.

Table 1.

Standard of Permissible Velocity and Shear on Revetment

Country (Reference)MaterialPermissible velocity (Vp, m/s)Permissible Shear (τp, kN/m2)
KoreaRiver Construction Design Practice Guidelines
(MOLIT, 2016)
Vegetated5.00.50
Stone5.00.80
USAASTM D’6460Vegetated6.10.81
Unvegetated5.00.28
JAPANDynamic Design Method of Revetment5.0

2.3. 보조여수로 운영에 따른 하류하천 영향 분석

2.3.1 모형의 구축 및 경계조건

본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).

수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.

(8)

n=ks1/68.1g1/2

여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.

시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.

Table 2.

Mesh sizes and numerical conditions

MeshNumbers49,102,500 EA
Increment (m)DirectionExisting SpillwayAuxiliary Spillway
∆X0.99 ~ 4.301.00 ~ 4.30
∆Y0.99 ~ 8.161.00 ~ 5.90
∆Z0.50 ~ 1.220.50 ~ 2.00
Boundary ConditionsXmin / YmaxInflow / Water Surface Elevation
Xmax, Ymin, Zmin / ZmaxWall / Symmetry
Turbulence ModelRNG model
Table 3.

Case of numerical simulation (Qp : Design flood discharge)

CaseExisting Spillway (Qe, m3/s)Auxiliary Spillway (Qa, m3/s)Remarks
1Qp0Reference case
20Qp
300.58QpReview of discharge capacity on
auxiliary spillway
400.48Qp
500.45Qp
600.32Qp
70.50Qp0.50QpDetermination of optimal division
ratio on Spillways
80.61Qp0.39Qp
90.39Qp0.61Qp
100.42Qp0.58Qp
110.32Qp0.45QpDetermination of permissible
division on Spillways
120.35Qp0.48Qp
130.38Qp0.53Qp
140.41Qp0.56Qp
Table 4.

Roughness coefficient and roughness height

CriteriaRoughness coefficient (n)Roughness height (ks, m)
Structure (Concrete)0.0140.00061
River0.0330.10496
/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F1.jpg
Fig. 1

Layout of spillway and river in this study

2.3.2 보조 여수로의 방류능 검토

본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.

보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.

하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F2.jpg
Fig. 2

Region of interest in this study

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F3.jpg
Fig. 3

Maximum velocity and location of Vmax according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F4.jpg
Fig. 4

Maximum shear according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F5.jpg
Fig. 5

Maximum water surface elevation and location of ηmax according to Qa

Table 5.

Numerical results for each cases (Case 1 ~ Case 6)

CaseMaximum Velocity
(Vmax, m/s)
Maximum Shear
(τmax, kN/m2)
Evaluation
in terms of Vp
Evaluation
in terms of τp
1
(Qa = 0)
9.150.54No GoodNo Good
2
(Qa = Qp)
8.870.56No GoodNo Good
3
(Qa = 0.58Qp)
6.530.40No GoodNo Good
4
(Qa = 0.48Qp)
6.220.36No GoodNo Good
5
(Qa = 0.45Qp)
4.220.12AccpetAccpet
6
(Qa = 0.32Qp)
4.040.14AccpetAccpet

2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토

기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).

따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F6.jpg
Fig. 6

Maximum velocity on section 1 & 2 according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F7.jpg
Fig. 7

Maximum shear on section 1 & 2 according to Qa

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F8.jpg
Fig. 8

Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F9.jpg
Fig. 9

Maximum water surface elevation on section 1 & 2 according to Qa

Table 6.

Numerical results for each cases (Case 7 ~ Case 10)

Case (Qe &amp; Qa)Maximum Velocity (Vmax, m/s)Maximum Shear
(τmax, kN/m2)
Evaluation in terms of VpEvaluation in terms of τp
Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
7
Qe : 0.50QpQa : 0.50Qp
8.106.230.640.30No GoodNo GoodNo GoodNo Good
8
Qe : 0.61QpQa : 0.39Qp
8.886.410.610.34No GoodNo GoodNo GoodNo Good
9
Qe : 0.39QpQa : 0.61Qp
6.227.330.240.35No GoodNo GoodAcceptNo Good
10
Qe : 0.42QpQa : 0.58Qp
6.394.790.300.19No GoodAcceptNo GoodAccept

2.3.4 방류량 배분 비율의 허용 방류량 검토

계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).

호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).

Table 7.

Numerical results for each cases (Case 11 ~ Case 14)

Case (Qe &amp; Qa)Maximum Velocity
(Vmax, m/s)
Maximum Shear
(τmax, kN/m2)
Evaluation in terms of VpEvaluation in terms of τp
Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
11
Qe : 0.32QpQa : 0.45Qp
3.634.530.090.26AcceptAcceptAcceptAccept
12
Qe : 0.35QpQa : 0.48Qp
5.745.180.230.22No GoodNo GoodAcceptAccept
13
Qe : 0.38QpQa : 0.53Qp
6.704.210.280.11No GoodAcceptAcceptAccept
14
Qe : 0.41QpQa : 0.56Qp
6.545.240.280.24No GoodNo GoodAcceptAccept
/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F10.jpg
Fig. 10

Maximum velocity on section 1 & 2 according to total outflow

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F11.jpg
Fig. 11

Maximum shear on section 1 & 2 according to total outflow

/media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F12.jpg
Fig. 12

Maximum water surface elevation on section 1 & 2 according to total outflow

3. 결 론

본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.

수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.

본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.

Acknowledgements

본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.

References

1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA.
2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York.
3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM.
4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731.
5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608.
6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81.
7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
8 K-water (2021). Regulations of Dam Management. Daejeon: K-water.
9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT.
10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593
11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279
12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT.
13 MOLIT (2019). Standards of River Design. Sejong: MOLIT.
14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS.
15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7.
16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230
17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112

Korean References Translated from the English

1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부.
2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실.
3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부.
4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부.
5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608.
6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81.
8 부산국토관리청 (2009). 낙동강수계 하천기본계획(변경). 부산: 부산국토관리청.
9 전태명, 김형일, 박형섭, 백운일 (2006). 수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐. 한국수자원학회 학술발표회. 1726-1731.
10 한국수자원공사 (2021). 댐관리 규정. 대전: 한국수자원공사.

Fig. 1. Nysted Offshore Wind Farm

FLOW-3D 모형을 이용한 해상풍력기초 세굴현상 분석

박영진1, 김태원2*1 서일대학교 토목공학과, 2 (주)지티이

Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Mode

Abstract

국내․외에서 다양한 형태의 석유 대체에너지는 온실효과 가스를 배출하지 않는 청정에너지로 개발되고 있으며, 특히 해상풍력은 풍력 자원이 풍부하고 육상보다 풍력 감소가 상대적으로 작아 다양하게 연구되고 있다. 본 연구에서는 해상 풍력기초의 세굴현상을 분석하기 위해서 Flow-3D 모형을 이용하여 모노 파일과 삼각대 파일 기초에 대하여 수치모의를 수행 하였다. 직경이 다른(D=5.0 m, d=1.69 m) 모노 파일 형식과 직경이 동일한(D=5.0 m) 모노파일에 대하여 세굴현상을 평가하 였다. 수치해석 결과, 동일한 직경을 가진 모노파일에서 하강류가 증가되었으며, 최대세굴심은 약 1.7배 이상 발생하였다. 삼각대 파일에 대하여 관측유속과 극치파랑 조건을 상류경계조건으로 각각 적용한 후 세굴현상을 평가하였다. 극치파랑조건 을 적용한 경우 최대 세굴심은 약 1.3배 정도 깊게 발생하였다. LES 모형을 적용하였을 경우 세굴심은 평형상태에 도달한 반면, RNG  모형은 해석영역 내 전반적으로 세굴현상이 발생하였으며, 세굴심은 평형상태에 도달하지 않았다. 해상풍 력기초에 대하여 세굴현상을 평가하기 위해서 수치모형 적용시 파랑조건 및 LES 난류모형을 적용하는 것이 타당할 것으로 판단된다.

Various types of alternative energy sources to petroleum are being developed both domestically and internationally as clean energy that does not emit greenhouse gases. In particular, offshore wind power has been studied because the wind resources are relatively limitless and the wind power is relatively smaller than onshore. In this study, to analyze the scour phenomenon around offshore wind foundations, mono pile and tripod pile foundations were simulated using a FLOW-3D model. The scour phenomenon was evaluated for mono piles: one is a pile with a 5 m diameter and d=1.69 m and the other is a pile with a 5 m diameter. Numerical analysis showed that in the latter, the falling-flow increased and the maximum scour depth occurred more than 1.7 times. For a tripod pile foundation, the measured velocity and the maximum wave condition were applied to the upstream boundary condition, respectively, and the scour phenomenon was evaluated. When the maximum wave condition was applied, the maximum scour depth occurred more than about 1.3 times. When the LES model was applied, the scour depth reached equilibrium, whereas the numerical results of the RNG model show that the scour phenomenon occurred in the entire boundary area and the scour depth did not reach equilibrium. To evaluate the scour phenomenon around offshore wind foundations, it is reasonable to apply the wave condition and the LES turbulence model to numerical model applications.

Keywords : Flow-3D, LES model, Mono pile, Offshore wind foundation, RNG k-e model, Scour phenomenon, Tripod pile

서론

지구환경문제에 대한 관심이 증가되고 있는 현실에 서, 풍력발전은 석유 대체에너지로서 뿐만 아니라, 이산 화탄소 등 온실효과 가스를 배출하지 않는 청청에너지의 발전방식으로 국내․외에서 개발이 증가되고 있다. 특 히, 해상풍력은 풍력 자원이 풍부하고, 육상보다 풍력 감 소가 상대적으로 작아 전기 출력량이 크기 때문에 신재 생에너지원 확보 차원에서 국내․외 해상풍력단지 사업 계획이 수립되어 추진되고 있는 실정이다. Fig. 1은 세계 최대 네델란드 해상풍력단지인 Nysted Offshore Wind Farm의 사진이다.

Fig. 1. Nysted Offshore Wind Farm
Fig. 1. Nysted Offshore Wind Farm

하천 내 교각 주변에서 세굴 현상은 발생하며 교각의 안정성 측면에서 세굴보호공을 설치한다. 해양에서 해상 풍력발전 기초를 설치할 경우 구조물로 인해 교란된 흐 름은 세굴을 유발시킨다. 따라서 해상풍력기초를 계획할 경우 안정성 측면에서 세굴현상을 검토할 필요가 있다. 특히 하천의 경우 교각 세굴보호공에 대하여 다양한 공 법들이 설계에 반영되고 있으나, 해양구조물 기초에 대 한 연구는 미흡한 상태이다.

이에 본 연구에서는 수치모 형을 이용하여 해상풍력기초에 대한 세굴현상을 분석하 였다. 수치모형을 이용하여 세굴현상을 예측함에 있어서 본 연구와 연관된 연구동향으로는 양원준과 최성욱(2002) 은 FLOW-3D 모형을 이용하여 세굴영향 평가를 함에 있어서 난류모형을 비교․분석 하였다. 전반적으로 수리 모형실험 자료와 좀 더 잘 일치하는 난류모형은 LES 모 형으로 분석되었다[1]. 여창건 등(2010)은 세굴영향 평 가를 위해 FLOW-3D 모형을 이용할 경우 세굴에 미치 는 중요한 인자에 대하여 매개변수 민감도분석을 수행하 였다.

검토결과, 세굴에 민감한 변수는 유사의 입경, 세 굴조절계수, 안식각 등의 순서로 민감한 것으로 검토되 었다[2]. 오명학 등(2012)은 해상풍력발전기초 시설 주 변에서 FLOW-3D 모형을 이용하여 세굴영향 검토를 수 행하였다. 오명학 등이 검토한 지역은 본 연구 지역과 동 일한 지역이나 경계조건 및 세굴평가에서 가장 중요한 평균입경이 다르다. 세굴검토를 위해 수치모형에 입력한 경계조건은 대조기 창조 최강유속 1.0 m/s을 상류경계조 건으로, 평균입경은 0.0353 mm를 적용하였다. 이와 같은 조건에서 모노파일에서 발생하는 최대세굴심은 약 5.24 m로 분석되었다[3].

Stahlmann과 Schlurmann(2010)은 본 과업에서 적용할 해상풍력기초와 유사한 기초를 가진 구조물에 대하여 수리모형실험을 수행하였다. 연구대상 지역은 독일 해안가에 의한 해상풍력단지에 대하여 삼각 대 형식의 해상풍력기초에 대하여 1/40과 1/12 축척으로 각각 수리모형실험을 수행하였다. 1/40과 1/12 축척에 따라서 세굴분포양상 및 최대세굴심의 위치가 다르게 관 측되었다[4].

본 연구에서는 3차원 수치모형인 Flow-3D를 이용하 여 세굴현상을 평가함에 있어서, 파일 형상 변화, 경계조 건이 다른 경우 및 서로 다른 난류모형을 적용하였을 경 우에 대하여 수치해석이 국부세굴 현상에 미치는 영향을 검토하였다. 이와 같은 연구는 향후 수치모형을 이용하 여 해상풍력발전 기초에 대하여 세굴현상을 평가함에 있 어서 기초 자료로 활용될 수 있을 것으로 판단된다.

Fig. 2. Shape of Pile
Fig. 2. Shape of Pile
Fig. 3. Boundary Area and Grid of Flow-3D
Fig. 3. Boundary Area and Grid of Flow-3D
Fig. 4. Scour around Monopile
Fig. 4. Scour around Monopile
Fig. 5. Velocity Development around Monopile
Fig. 5. Velocity Development around Monopile
Fig. 6. Flow Phenomenon and Scour around Tripod Pile Foundation
Fig. 6. Flow Phenomenon and Scour around Tripod Pile Foundation
Fig. 7. Scour according to Turbulence Models(RNG k-e & LES Model)
Fig. 7. Scour according to Turbulence Models(RNG k-e & LES Model)

결론

본 연구에서는 해상풍력기초 형식이 모노파일과 삼각 대 파일일 경우 세굴현상을 평가하기 위해서 3차원 수치 모형인 Flow-3D를 이용하였다. 직경이 서로 다른(D=5.0 m, d=1.69 m) 모노파일과 직경이 동일한(D=5.0 m) 모노파일에 대하여 LES 모형 을 적용하여 세굴현상을 평가하였다. 서로 다른 직경을 가진 모노파일 주변에서 최대 세굴심은 4.13 m, 동일한 직경을 가진 모노파일 주변에서는 7.13 m의 최대 세굴 심이 발생하였다. 또한 동일한 직경을 가진 파일에서 하 강류가 증가되어 최대세굴심이 증가된 것으로 분석되었 다. 수치해석 결과, 세굴에 대한 기초의 안정성 측면에서 서로 다른 직경을 가진 기초 형식이 유리한 것으로 분석 되었다. 수치모형을 이용하여 세굴현상을 평가함에 있어서 경 계조건 및 난류모형의 선정은 중요하다. 본 연구에서는 서로 다른 직경을 가진 삼각대 형식의 해상풍력기초에 대하여 상류경계조건으로 관측유속과 극치파랑조건을 각각 적용하였을 경우 세굴현상을 평가하였다. 극치파랑 조건을 적용하였을 경우가 최대세굴심이 약 1.3배 정도 깊게 발생하였다. 또한 극치파랑조건에서 RNG 과 LES 모형을 적용하여 세굴현상을 평가하였다. LES 모 형을 적용하였을 경우 파일 주변에서 세굴현상이 발생하 였으며, 세굴심은 일정시간이 경과된 후에는 증가되지 않는 평형상태에 도달하였다. 그러나 RNG 모형을 적용한 경우는 평형상태에 도달하지 않고 계속해서 세굴 이 진행되어 세굴심을 평가할 수 없었다. 현재 해양구조 물 기초에 대한 세굴현상 연구는 미흡한 상태로 하천에 서 교각 세굴현상을 검토하기 위해서 적용되는 경계조건 을 적용하기보다는 해상 조건인 파랑조건을 적용하여 검 토하는 것이 기초의 안정성 측면에서 유리할 것으로 판 단된다. 또한 정확한 세굴현상을 예측하기 위해서는 RNG 모형보다는 LES 모형을 적용하는 것이 타당 할 것으로 판단된다. 향후 해상풍력기초에 대한 세굴관측을 수행하여 수치 모의 결과와 비교․분석이 필요하며, 또한 다양한 파랑 조건에서 난류모형에 대한 비교․분석이 필요할 것으로 생각된다.

References

[1] W. J. Yang, S. U. Choi. “Three- Dimensional Numerical
Simulation of Local Scour around the Bridge Pier using
Large Eddy Simulation”, Journal of KWRA, vol. 22, no.
4-B, pp. 437-446, 2002.
[2] C. G. Yeo, J. E. Lee, S. O. Lee, J. W. Song. “Sensitivity
Analysis of Sediment Scour Model in Flow-3D”,
Proceedings of KWRA, pp. 1750-1754, 2010.
[3] M. H. Oh, O. S. Kwon, W. M. Jeong, K. S. Lee.
“FLOW-3D Analysis on Scouring around Offshore Wind
Foundation”, Journal of KAIS, vol. 13, no. 3, pp.
1346-1351, 2012.
DOI: http://dx.doi.org/10.5762/KAIS.2012.13.3.1346

[4] A. Stahlmann, T. Schlurmann, “Physical Modeling of
Scour around Tripod Foundation Structures for Offshore
Wind Energy Converters”, Proceedings of 32nd
Conference on Coastal Engineering, Shanghai, China,
no. 32, pp. 1-12, 2010.
[5] Flow Science. Flow-3D User’s Manual. Los Alamos,
NM, USA, 2016.
[6] KEPRI. 『Test Bed for 2.5GW Offshore Wind Farm at
Yellow Sea』 Interim Design Report(in Korea), 2014.
[7] Germanischer Lloyd. Guideline for the Certification of
Offshore Wind Turbines. Hamburg, Germany, 2005.
[8] B. M. Sumer, J. Fredsøe, The Mechanics of Scour in the
Marine Environment. World Scientific Publishing Co.
Pte. Ltd. 2002.
[9] S. J. Ahn, U. Y. Kim, J. K. Lee. “Experimental Study
for Scour Protection around Bridge Pier by Falling-Flow
Interruption”, Journal of KSCE, vol. 19, no. II-1, pp.
57-65, 1999.
[10] V. Yakhot, S. A. Orszag, S. Thangam, T. B. Gatski, C.
G. Speziale, “Development of turbulence models for
shear flows by a double expansion technique”, Physics
of Fluids, vol. 4, no. 7, pp. 1510-1520, 1992.
DOI: https://doi.org/10.1063/1.858424

Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow

Numerical Methods in Civil Engineering

Rasoul Daneshfaraz*, Ehsan Aminvash**, Silvia Di Francesco***, Amir Najibi**, John Abraham****

토목공학의 수치해석법

Abstract

The main purpose of this study is to provide a method to increase energy dissipation on an inclined drop. Therefore, three types of rough elements with cylindrical, triangular and batshaped geometries are used on the inclined slope in the relative critical depth range of 0.128 to 0.36 and the effect of the geometry of these elements is examined using Flow 3D software. The results showed demonstrate that the downstream relative depth obtained from the numerical analysis is in good agreement with the laboratory results. The application of rough elements on the inclined drop increased the downstream relative depth and also the relative energy dissipation. The application of rough elements on the sloping surface of the drop significantly reduced the downstream Froude number, so that the Froude number in all models ranging from 4.7~7.5 to 1.45~3.36 also decreased compared to the plain drop. Bat-shaped elements are structurally smaller in size, so the use of these elements, in addition to dissipating more energy, is also economically viable.

이 연구의 주요 목적은 경사진 낙하에서 에너지 소산을 증가시키는 방법을 제공하는 것입니다. 따라서 0.128 ~ 0.36의 상대 임계 깊이 범위에서 경사면에 원통형, 삼각형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거친 요소가 사용되며 이러한 요소의 형상의 영향은 Flow 3D 소프트웨어를 사용하여 조사됩니다. 결과는 수치 분석에서 얻은 하류 상대 깊이가 실험실 결과와 잘 일치함을 보여줍니다. 경 사진 낙하에 거친 요소를 적용하면 하류 상대 깊이와 상대 에너지 소산이 증가했습니다. 낙차 경사면에 거친 요소를 적용하면 하류의 Froude 수를 크게 감소시켜 4.7~7.5에서 1.45~3.36 범위의 모든 모델에서 Froude 수도 일반 낙차에 비해 감소했습니다. 박쥐 모양의 요소는 구조적으로 크기가 더 작기 때문에 더 많은 에너지를 분산시키는 것 외에도 이러한 요소를 사용하는 것이 경제적으로도 가능합니다.

Keywords: Downstream depth, Energy dissipation, Froude number, Inclined drop, Roughness elements

Introduction

급수 네트워크 시스템, 침식 수로, 수처리 시스템 및 경사가 큰 경우 흐름 에너지를 더 잘 제어하기 위해 경사 방울을 사용할 수 있습니다. 낙하 구조는 지반의 자연 경사를 설계 경사로 변환하여 에너지 소산, 유속 감소 및 수심 증가를 유발합니다. 따라서 흐름의 하류 에너지를 분산 시키기 위해 에너지 분산 구조를 사용할 수 있습니다. 난기류와 혼합된 물과 공기의 형성은 에너지 소비를 증가 시키는 효과적인 방법입니다. 흐름 경로에서 거칠기 요소를 사용하는 것은 에너지 소산을 위한 알려진 방법입니다. 이러한 요소는 흐름 경로에 배치됩니다. 그들은 종종 에너지 소산을 증가시키기 위해 다른 기하학적 구조와 배열을 가지고 있습니다. 이 연구의 목적은 직사각형 경사 방울에 대한 거칠기 요소의 영향을 조사하는 것입니다.

Fig. 1: Model made in Ardabil, Iran
Fig. 1: Model made in Ardabil, Iran
Fig. 2: Geometric and hydraulic parameters of an inclined drop equipped with roughness elements
Fig. 2: Geometric and hydraulic parameters of an inclined drop equipped with roughness elements
Fig. 3: Views of the incline with (a) Bat-shaped, (b) Cylindrical, (c) Triangular roughness elements
Fig. 3: Views of the incline with (a) Bat-shaped, (b) Cylindrical, (c) Triangular roughness elements
Fig. 4: Geometric profile of inclined drop and boundary conditions with the bat-shape roughness element
Fig. 4: Geometric profile of inclined drop and boundary conditions with the bat-shape roughness element
Fig. 5: Variation of the RMSE varying cell size
Fig. 5: Variation of the RMSE varying cell size
Fig. 6: Numerical and laboratory comparison of the downstream relative depth
Fig. 6: Numerical and laboratory comparison of the downstream relative depth
Fig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a) Without roughness elements; (b) Bat-shaped roughness element; (c) Cylindrical roughness element; (d) Triangular roughness element
Fig. 7: Flow profile on inclined drop in discharge of 5 L/s: (a) Without roughness elements; (b) Bat-shaped roughness element; (c) Cylindrical roughness element; (d) Triangular roughness element
Fig. 8: Relative edge depth versus the relative critical depth
Fig. 8: Relative edge depth versus the relative critical depth
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow
Fig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flow
Fig. 9: Flow on the inclined drop with bat-shaped elements: (b) Submerged flow
Fig. 10: Relative downstream depth versus the relative critical depth
Fig. 10: Relative downstream depth versus the relative critical depth
Fig. 11: Relative downstream depth versus the relative critical depth
Fig. 11: Relative downstream depth versus the relative critical depth

Conclusions

현재 연구에서 FLOW-3D 소프트웨어를 사용하여 한 높이, 한 각도, 밀도 15% 및 지그재그 배열에서 삼각형, 원통형 및 박쥐 모양의 형상을 가진 세 가지 유형의 거칠기 요소를 사용하여 경사 낙하 수리학적 매개변수에 대한 거칠기 요소 형상의 영향 평가되었다. VOF 방법을 사용하여 자유 표면 흐름을 시뮬레이션하고 초기에 3개의 난류 모델 RNG, k-ɛ 및 kω를 검증에 사용하고 이를 검토한 후 RNG 방법을 사용하여 다른 모델을 시뮬레이션했습니다. 1- 수치 결과에서 얻은 부드러운 경사 방울의 하류 상대 깊이는 실험실 데이터와 매우 좋은 상관 관계가 있으며 원통형 요소가 장착 된 경사 방울의 상대 에지 깊이 값이 가장 높았습니다. 2- 하류 상대깊이는 임계상대깊이가 증가함에 따라 상승하는 경향을 나타내어 박쥐형 요소를 구비한 경사낙하와 완만한 경사낙하가 각각 하류상대깊이가 가장 높고 가장 낮았다. 3- 하류 깊이의 증가로 인해 상대적 임계 깊이가 증가함에 따라 상대적 에너지 소산이 감소합니다. 한편, 가장 높은 에너지 소산은 박쥐 모양의 요소가 장착된 경사 낙하와 관련이 있으며 가장 낮은 에너지 소산은 부드러운 낙하와 관련이 있습니다. 삼각형, 원통형 및 박쥐 모양의 거친 요소가 장착된 드롭은 부드러운 드롭보다 각각 65%, 76% 및 85% 더 많은 흐름 에너지를 소산합니다. 4- 낙차의 경사면에 거친 요소를 적용하여 다운 스트림 Froude 수를 크게 줄여 4.7 ~ 7.5에서 1.45 ~ 3.36까지의 모든 모델에서 Froude 수가 부드러운 낙하에 비해 감소했습니다. 또한, 다른 원소보다 부피가 작은 박쥐 모양의 거칠기의 부피로 인해 이러한 유형의 거칠기를 사용하는 것이 경제적입니다.

References

References:
[1] Abbaspour, A., Shiravani, P., and Hosseinzadeh dalir, A.,
“Experimental study of the energy dissipation on the rough ramps”,
ISH journal of hydraulic engineering, 2019, p. 1-9.
[2] Abraham, J.P., Sparrow, E.M., Gorman, J.M., Zhao, Y., and
Minkowycz, W.J., “Application of an Intermittency model for
laminar, transitional, and turbulent internal flows”, Journal of
Fluids Engineering, vol. 141, 2019, paper no. 071204.
[3] Ahmad, Z., Petappa, N.M., and Westrich, B., “Energy
dissipation on block ramps with staggered boulders”, Journal of
hydraulic engineering, vol. 135(6), 2009, p. 522-526.
[4] Babaali, H.R., Shamsai, A., and Vosoughifar, H.R.,
“Computational modeling of the hydraulic jump in the stilling
basin with convergence walls using CFD codes”, Arabian Journal
for Science and Engineering, vol. 40(2), 2014, p. 381-395.
[5] Castillo, L.G., Carrillo, J.M., and Cacía, J.T., “Numerical
simulations and laboratory measurements in hydraulic jumps”,
International conference on hydroinformatics. (2014, August) New
York city.
[6] Daneshfaraz, R., Aminvash, E., Esmaeli, R., Sadeghfam, S.,
and Abraham, J., “Experimental and numerical investigation for
energy dissipation of supercritical flow in sudden contractions”,
Journal of groundwater science and engineering, vol. 8(4), 2020a,
p. 396-406.
[7] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Kuriqi, A., and
Abraham, J., “Three-dimensional investigation of hydraulic
properties of vertical drop in the presence of step and grid
dissipators”, Symmetry, vol. 13 (5), 2021a, p. 895.
[8] Daneshfaraz, R., Aminvash, E., Ghaderi, A., Abraham, J., and
Bagherzadeh, M., “SVM performance for predicting the effect of
horizontal screen diameters on the hydraulic parameters of a
vertical drop”, Applied sciences, vol. 11 (9), 2021b, p. 4238.
[9] Daneshfaraz, R., Bagherzadeh, M., Esmaeeli, R., Norouzi, R.,
and Abraham, J. “Study of the performance of support vector
machine for predicting vertical drop hydraulic parameters in the
presence of dual horizontal screens”, Water supply, vol 21(1),
2021c, p. 217-231.
[10] Daneshfaraz, R., and Ghaderi, A., “Numerical investigation of
inverse curvature ogee spillways”, Civil engineering journal, vol.
3(11), 2017, p. 1146-1156.
[11] Daneshfaraz, R., Majedi Asl, M., and Bagherzadeh, M.,
“Experimental Investigation of the Energy Dissipation and the
Downstream Relative Depth of Pool in the Sloped Gabion Drop
and the Sloped simple Drop”, AUT Journal of Civil Engineering,
2020b (In persian).
[12] Daneshfaraz, R., Majedi Asl, M., Bazyar, A., Abraham, J.,
Norouzi, R., “The laboratory study of energy dissipation in inclined
drops equipped with a screen”, Journal of Applied Water
Engineering and Research, 2020c, p. 1-10.
[13] Daneshfaraz, R., Minaei, O., Abraham, J., Dadashi, S., and
Ghaderi, A., “3-D Numerical simulation of water flow over a
broad-crested weir with openings”, ISH Journal of Hydraulic
Engineering, 2019, p.1-9.
[14] Daneshfaraz, R., Sadeghfam, S., and Kashani, M., “Numerical
simulation of flow over stepped spillways”, Research in civil
engineering and environmental engineering, vol. 2(4), 2014, p.
190-198.
[15] Ghaderi, A., Abbasi, S., Abraham, J., and Azamathulla, H.M.,
“Efficiency of trapezoidal labyrinth shaped stepped spillways”,
Flow measurement and instrumentation, vol. 72, 2020a.
[16] Ghaderi, A., Daneshfaraz, R., Dasineh, M., and Di Francesco,
S., “Energy dissipation and hydraulics of flow over trapezoidaltriangular labyrinth weirs”, Water, vol. 12(7), 2020b, p. 1-18.
[17] Ghaderi, A., Daneshfaraz, R., Torabi, M., Abraham, and
Azamathulla, H.M. “Experimental investigation on effective
scouring parameters downstream from stepped spillways”, Water
supply, vol. 20(4), 2020c, p. 1-11.
[18] Ghare, A.D., Ingle, R.N., Porey, P.D., and Gokhale, S.S.
“Block ramp design for efficient energy dissipation”, Journal of
energy dissipation, vol. 136(1), 2010, p. 1-5.
[19] Gorman, J.M., Sparrow, E.M., Smith, C.J., Ghoash, A.,
Abraham, J.P., Daneshfaraz, R., Rezezadeh, J., “In-bend pressure
drop and post-bend heat transfer for a bend with partial blockage at
its inlet”, Numerical Heat Transfer A, vol, 73, 2018, p. 743-767.
[20] Jamil, M., and Khan, S.A., “Theorical study of hydraulic jump
in circular channel section”, ISH journal of hydraulic engineering,
vol. 16(1), 2010, p. 1-10.
[21] Katourani, S., and Kashefipour, S.M., “Effect of the geometric
characteristics of baffle on hydraulic flow condition in baffled
apron drop”, Irrigation sciences and engineering, vol. 37(2), 2012,
p. 51-59.
[22] Lai, Y.G., and Wu, K.A., “Three-dimensional flow and
sediment transport model for free surface open channel flow on
unstructured flexible meshes”, Fluids, vol. 4(1), 2019, p. 1-19.

[23] Nayebzadeh, B., Lotfollahi yaghin, M.A., and Daneshfaraz,
R., “Numerical investigation of hydraulic characteristics of vertical
drops with screens and gradually wall expanding”, Amirkabir
journal of civil engineering, 2020 (In Persian).
[24] Nurouzi, R., Daneshfaraz, R., and Bazyar, A., “The study of
energy dissipation due to the use of vertical screen in the
downstream of inclined drop by adaptive Neuro-Fuzzy inference
system (ANFIS)”, AUT journal of civil engineering, 2019, (In
Persian).
[25] Ohtsu, I., and Yasuda, Y., “Hydraulic jump in sloping
channel”, Journal of hydraulic engineering, vol. 117(7), 1991, p.
905-921.
[26] Olsen, L., Abraham, J.P., Cheng, L.K., Gorman, J.M., and
Sparrow, E.M., “Summary of forced-convection fluid flow and
heat transfer for square cylinders of different aspect ratios ranging
from the cube to a two-dimensional cylinder”, Advances in Heat
Transfer, Vol. 51, 2019, p. 351-457.
[27] Pagliara, S., Das, R., and Palermo, M., “Energy dissipation on
submerged block ramps”, Journal of irrigation and drainage
engineering, vol. 134(4), 2008, p.527-532.
[28] Pagliara, S., and Palermo, M., “Effect of stilling basin
geometry on the dissipative process in the presence of block
ramps”, Journal of irrigation and drainage engineering, vol.
138(11), 2012, p. 1027-1031.
[29] Simsek, O., Akoz, M.S, and Soydan, N.G., “Numerical
validation of open channel flow over a curvilinear broad-creasted
weir”, Progress in computational fluid dynamics an international
journal, vol. 16(6), 2016, p. 364-378.
[30] Sharif, N., and Rostami, A., “Experimental and numerical
study of the effect of flow sepration on dissipating energy in
compound bucket”, APCBEE procedia, vol. 9, 2014, p. 334-338.
[31] Sparrow, E.M., Tong, J.C.K., and Abraham, J.P., “Fluid flow
in a system with separate laminar and turbulent zones”, Numerical
Heat Transfer A, vol. 53(4), 2008, p. 341-353.
[32] Sparrow, E.M., Gorman, J.M., Abraham, J.P., and
Minkowycz, W.J., “Validation of turbulence models for numerical
simulation of fluid flow and convective heat transfers”, Advances
in Heat Transfer, vol. 49, 2017, p. 397-421.
[33] Wagner, W.E., “Hydraulic model studies of the check intake
structure-potholes East canal”, Bureau of reclamation hydraulic
laboratory report hyd, 1956, 411.

FLOW DEM

FLOW-3D DEM Module 개요

FLOW DEM 은 FLOW-3D 의 기체 및 액체 유동 해석에 DEM(Discrete Element Method : 개별 요소법)공법인 입자의 거동을 분석해주는 모듈입니다.

dem9

dem10
주요 기능 : 고체 요소의 충돌, 스프링(Spring) / 대시 포트(Dash Pot) 모델 적용 Void, 1 fluid, 2 fluid(자유 계면 포함) 각각의 모드에 대응 가변 밀도 / 가변 직경 입자 크기조절로 입자 특성을 유지하면서 입자 수를 감소 독립적인 DEM의 Sub Time Step 이용

Discrete Element Method : 개별 요소법

다수의 고체 요소의 충돌 운동을 분석하는 데 유용합니다. 유동 해석과 함께 사용하면 광범위한 용도에 응용을 할 수 있습니다.

dem1

입자 간의 충돌

Voigt model은 스프링(Spring) 및 대시 포트(Dash pot)의 조합에 의해 입자 충돌 시의 힘을 평가합니다. 탄성력 부분은 스프링 모델에서,
비탄성 충돌의 에너지 소산부분은 대시 포트 모델에서 시뮬레이션되고 있으며, 중량 및 항력은 작용하는 외력으로 고려 될 수 있습니다.

분석 모드

기본적으로 이용하는 운동 방정식은 FLOW-3D 에 사용되는 질량 입자의 운동 방정식과 같은 것이지만, 여기에 DEM으로
평가되는 항목이 추가되기 형태로되어 있으며, 실제 시뮬레이션으로는 ‘void + DEM’, ‘1 Fluid + DEM’ , ‘ 1 Fluid 자유계면 + DEM ‘을 기본 유동 모드로 취급이 가능합니다.

dem4

입자 유형

입자 타입도 표준 기능의 질량 입자 모델처럼 입자 크기 (반경)와 밀도가 동일한 것 외, 크기는 같지만 밀도가 다른 것이나 밀도는 같지만 크기가 다른 것 등도 취급 가능합니다. 이로 인해 표준 질량 입자 모델에서는 입자 간의 상호 작용이 고려되어 있지 않기 때문에 모든 아래에 가라 앉아 버리고 있었지만, FLOW DEM을 이용하여 기하학적 관계를 평가하는 것이 가능합니다.

dem7

응용 분야

1. Mechanical Engineering 분야

수지 충전, 스쿠류 이송, 분말 이송 / Resin filling, screw conveyance, powder conveyance

2. Civil Engineering분야

3. Civil Engineering 분야

파편, 자갈, 낙 성/ Debris flow, gravel, falling rock

dem11

3. Chemical Engineering, Pharmaceutics 분야

유동층, 사이클론, 교반기 / Fluidized bed, cyclone, stirrer

dem12

4. MEMS, Electrical Engineering 분야

하전 입자를 포함한 전기장 해석 등

dem15

입자 그룹 가시화

그룹 가시화

DEM은 일반적으로 다수의 입자를 필요로하는 분석을 상정하고 있습니다. 
다만 이 경우, 계산 부하가 높아 지므로 현실적인 계산자원을 고려하면, 입자 수가 너무 많아 현실적으로 취급 할 수 없는 경우 입자의 특성은 유지하고 숫자를 줄여 가시화할 필요가 있습니다 .
일반적인 유동해석 계산의 메쉬 해상도에 해당합니다.
메쉬 수 많음 (계산 부하 큼) → 소 (계산 부하 적음)
입자 수 다 (계산 부하 큼) → 소 (계산 부하 적음)

원래 입자수

입자 사이즈를 키운경우

그룹 가시화

  • 입자 수를 줄이기 위해 그대로 입경을 크게했을 경우와 그룹 가시화 한 경우의 비교.
  • 입자 크기를 크게하면 개별 입자 특성이 달라지기 때문에 거동이 달라진다. (본 사례에서는 부력이 커진다.)
  • 그룹 가시화의 경우 개별 특성은 동일 원래의 거동과 대체로 일치한다.

주조 시뮬레이션에 DEM 적용

그룹 가시화 비교 예

그룹 가시화한 경우와 입경을 크게하여 수를 줄인 경우, 입경을 크게하면
개별 입자 특성이 변화하여 거동이 바뀌어 버리기 때문에 실제 계산으로는 사용할 수 어렵습니다.

중자 모래 분사 분석

DEM에서의 계산부하를 생각할 때는 입자모델에 의한 안정제한을 고려해야 하지만 서브타임스텝이라는 개념을 도입함으로써 입자의 경우와 유체의 경우의 타임스텝을 바꾸고 필요이상으로 계산시간을 들이지 않고 효율적으로 계산하는 것을 가능하게 하고 있습니다.

이를 통해 예를 들어 중자사 분사 시뮬레이션 실험에서는 이러한 문제로 자주 이용되는 빙엄 유체에서는 실험과의 정합성이 별로 좋지 않기 때문에 당사에서는 이전부터 입상류 모델이라는 모델을 개발하고 연속체로부터의 접근에서도 실험과의 높은 정합성을 실현할 수 있는 모델화를 해왔는데, 이번에 DEM을 사용해도 그것과 거의 같은 결과를 얻습니다. 할 수 있음을 확인할 수 있었다.

Reference :

  • Lefebvre D., Mackenbrock A., Vidal V., Pavan V. and Haigh PM, 2004,
  • Development and use of simulation in the Design of Blown Cores and Moulds

FLOW-3D AM

flow3d AM-product
FLOW-3D AM-product

와이어 파우더 기반 DED | Wire Powder Based DED

일부 연구자들은 부품을 만들기 위해 더 넓은 범위의 처리 조건을 사용하여 하이브리드 와이어 분말 기반 DED 시스템을 찾고 있습니다. 예를 들어, 이 시뮬레이션은 다양한 분말 및 와이어 이송 속도를 가진 하이브리드 시스템을 살펴봅니다.

와이어 기반 DED | Wire Based DED

와이어 기반 DED는 분말 기반 DED보다 처리량이 높고 낭비가 적지만 재료 구성 및 증착 방향 측면에서 유연성이 떨어집니다. FLOW-3D AM 은 와이어 기반 DED의 처리 결과를 이해하는데 유용하며 최적화 연구를 통해 빌드에 대한 와이어 이송 속도 및 직경과 같은 최상의 처리 매개 변수를 찾을 수 있습니다.

FLOW-3D AM은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대해 매우 정확한 시뮬레이션을 제공합니다.

3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다.  FLOW-3D  AM  은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.

파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.

FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.

레이저 파우더 베드 퓨전 (L-PBF)

LPBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.

FLOW-3D DEM FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM  은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.

파우더 베드 부설 공정

FLOW-3D DEM을 통해 분말 크기 분포, 재료 특성, 응집 효과는 물론 롤러 또는 블레이드 움직임 및 상호 작용과 같은 기하학적 효과와 관련된 분말 확산 및 압축을 이해할 수 있습니다. 이러한 시뮬레이션은 공정 매개 변수가 후속 인쇄 공정에서 용융 풀 역학에 직접적인 영향을 미치는 패킹 밀도와 같은 분말 베드 특성에 어떻게 영향을 미치는지에 대한 정확한 이해를 제공합니다.

다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.

파우더 베드 분포 다양한 입자 크기 분포
세 가지 다른 입자 크기 분포를 사용하여 파우더 베드 배치
파우더 베드 압축 결과
세 가지 다른 입자 크기 분포를 사용한 분말 베드 압축

입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.

FLOW-3D AM  시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.

Melting | 파우더 베드 용해

DEM 시뮬레이션에서 파우더 베드가 생성되면 STL 파일로 추출됩니다. 다음 단계는 CFD를 사용하여 레이저 용융 공정을 시뮬레이션하는 것입니다. 여기서는 레이저 빔과 파우더 베드의 상호 작용을 모델링 합니다. 이 프로세스를 정확하게 포착하기 위해 물리학에는 점성 흐름, 용융 풀 내의 레이저 반사 (광선 추적을 통해), 열 전달, 응고, 상 변화 및 기화, 반동 압력, 차폐 가스 압력 및 표면 장력이 포함됩니다. 이 모든 물리학은 이 복잡한 프로세스를 정확하게 시뮬레이션하기 위해 TruVOF 방법을 기반으로 개발되었습니다.

레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.

용융 풀이 응고되면 FLOW-3D AM  압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.

Multilayer | 다층 적층 제조

용융 풀 트랙이 응고되면 DEM을 사용하여 이전에 응고된 층에 새로운 분말 층의 확산을 시뮬레이션 할 수 있습니다. 유사하게, 레이저 용융은 새로운 분말 층에서 수행되어 후속 층 간의 융합 조건을 분석 할 수 있습니다.

해석 진행 절차는 첫 번째 용융층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.

다층 적층 적층 제조 시뮬레이션

LPBF의 키홀 링 | Keyholing in LPBF

키홀링 중 다공성은 어떻게 형성됩니까? 이것은 TU Denmark의 연구원들이 FLOW-3D AM을 사용하여 답변한 질문이었습니다. 레이저 빔의 적용으로 기판이 녹으면 기화 및 상 변화로 인한 반동 압력이 용융 풀을 압박합니다. 반동 압력으로 인한 하향 흐름과 레이저 반사로 인한 추가 레이저 에너지 흡수가 공존하면 폭주 효과가 발생하여 용융 풀이 Keyholing으로 전환됩니다. 결국, 키홀 벽을 따라 온도가 변하기 때문에 표면 장력으로 인해 벽이 뭉쳐져서 진행되는 응고 전선에 의해 갇힐 수 있는 공극이 생겨 다공성이 발생합니다. FLOW-3D AM 레이저 파우더 베드 융합 공정 모듈은 키홀링 및 다공성 형성을 시뮬레이션 하는데 필요한 모든 물리 모델을 보유하고 있습니다.

바인더 분사 (Binder jetting)

Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.

Scan Strategy | 스캔 전략

스캔 전략은 온도 구배 및 냉각 속도에 영향을 미치기 때문에 미세 구조에 직접적인 영향을 미칩니다. 연구원들은 FLOW-3D AM 을 사용하여 결함 형성과 응고된 금속의 미세 구조에 영향을 줄 수 있는 트랙 사이에서 발생하는 재 용융을 이해하기 위한 최적의 스캔 전략을 탐색하고 있습니다. FLOW-3D AM 은 하나 또는 여러 레이저에 대해 시간에 따른 방향 속도를 구현할 때 완전한 유연성을 제공합니다.

Beam Shaping | 빔 형성

레이저 출력 및 스캔 전략 외에도 레이저 빔 모양과 열유속 분포는 LPBF 공정에서 용융 풀 역학에 큰 영향을 미칩니다. AM 기계 제조업체는 공정 안정성 및 처리량에 대해 다중 코어 및 임의 모양의 레이저 빔 사용을 모색하고 있습니다. FLOW-3D AM을 사용하면 멀티 코어 및 임의 모양의 빔 프로파일을 구현할 수 있으므로 생산량을 늘리고 부품 품질을 개선하기 위한 최상의 구성에 대한 통찰력을 제공 할 수 있습니다.

이 영역에서 수행 된 일부 작업에 대해 자세히 알아 보려면 “The Next Frontier of Metal AM”웨비나를 시청하십시오.

Multi-material Powder Bed Fusion | 다중 재료 분말 베드 융합

이 시뮬레이션에서 스테인리스 강 및 알루미늄 분말은 FLOW-3D AM 이 용융 풀 역학을 정확하게 포착하기 위해 추적하는 독립적으로 정의 된 온도 의존 재료 특성을 가지고 있습니다. 시뮬레이션은 용융 풀에서 재료 혼합을 이해하는 데 도움이됩니다.

다중 재료 용접 사례 연구

이종 금속의 레이저 키홀 용접에서 금속 혼합 조사

GM과 University of Utah의 연구원들은 FLOW-3D WELD 를 사용 하여 레이저 키홀 용접을 통한 이종 금속의 혼합을 이해했습니다. 그들은 반동 압력 및 Marangoni 대류와 관련하여 구리와 알루미늄의 혼합 농도에 대한 레이저 출력 및 스캔 속도의 영향을 조사했습니다. 그들은 시뮬레이션을 실험 결과와 비교했으며 샘플 내의 절단 단면에서 재료 농도 사이에 좋은 일치를 발견했습니다.

이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056
참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056

방향성 에너지 증착

FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.

electromagnetic metal casting computation designs Fig1

A survey of electromagnetic metal casting computation designs, present approaches, future possibilities, and practical issues

The European Physical Journal Plus volume 136, Article number: 704 (2021) Cite this article

Abstract

Electromagnetic metal casting (EMC) is a casting technique that uses electromagnetic energy to heat metal powders. It is a faster, cleaner, and less time-consuming operation. Solid metals create issues in electromagnetics since they reflect the electromagnetic radiation rather than consume it—electromagnetic energy processing results in sounded pieces with higher-ranking material properties and a more excellent microstructure solution. For the physical production of the electromagnetic casting process, knowledge of electromagnetic material interaction is critical. Even where the heated material is an excellent electromagnetic absorber, the total heating quality is sometimes insufficient. Numerical modelling works on finding the proper coupled effects between properties to bring out the most effective operation. The main parameters influencing the quality of output of the EMC process are: power dissipated per unit volume into the material, penetration depth of electromagnetics, complex magnetic permeability and complex dielectric permittivity. The contact mechanism and interference pattern also, in turn, determines the quality of the process. Only a few parameters, such as the environment’s temperature, the interference pattern, and the rate of metal solidification, can be controlled by AI models. Neural networks are used to achieve exact outcomes by stimulating the neurons in the human brain. Additive manufacturing (AM) is used to design mold and cores for metal casting. The models outperformed the traditional DFA optimization approach, which is susceptible to local minima. The system works only offline, so real-time analysis and corrections are not yet possible.

Korea Abstract

전자기 금속 주조 (EMC)는 전자기 에너지를 사용하여 금속 분말을 가열하는 주조 기술입니다. 더 빠르고 깨끗하며 시간이 덜 소요되는 작업입니다.

고체 금속은 전자기 복사를 소비하는 대신 반사하기 때문에 전자기학에서 문제를 일으킵니다. 전자기 에너지 처리는 더 높은 등급의 재료 특성과 더 우수한 미세 구조 솔루션을 가진 사운드 조각을 만듭니다.

전자기 주조 공정의 물리적 생산을 위해서는 전자기 물질 상호 작용에 대한 지식이 중요합니다. 가열된 물질이 우수한 전자기 흡수재인 경우에도 전체 가열 품질이 때때로 불충분합니다. 수치 모델링은 가장 효과적인 작업을 이끌어 내기 위해 속성 간의 적절한 결합 효과를 찾는데 사용됩니다.

EMC 공정의 출력 품질에 영향을 미치는 주요 매개 변수는 단위 부피당 재료로 분산되는 전력, 전자기의 침투 깊이, 복합 자기 투과성 및 복합 유전율입니다. 접촉 메커니즘과 간섭 패턴 또한 공정의 품질을 결정합니다. 환경 온도, 간섭 패턴 및 금속 응고 속도와 같은 몇 가지 매개 변수 만 AI 모델로 제어 할 수 있습니다.

신경망은 인간 뇌의 뉴런을 자극하여 정확한 결과를 얻기 위해 사용됩니다. 적층 제조 (AM)는 금속 주조용 몰드 및 코어를 설계하는 데 사용됩니다. 모델은 로컬 최소값에 영향을 받기 쉬운 기존 DFA 최적화 접근 방식을 능가했습니다. 이 시스템은 오프라인에서만 작동하므로 실시간 분석 및 수정은 아직 불가능합니다.

electromagnetic metal casting computation designs Fig1
electromagnetic metal casting computation designs Fig1
electromagnetic metal casting computation designs Fig2
electromagnetic metal casting computation designs Fig2
electromagnetic metal casting computation designs Fig3
electromagnetic metal casting computation designs Fig3
electromagnetic metal casting computation designs Fig4
electromagnetic metal casting computation designs Fig4
electromagnetic metal casting computation designs Fig5
electromagnetic metal casting computation designs Fig5
electromagnetic metal casting computation designs Fig6
electromagnetic metal casting computation designs Fig6
electromagnetic metal casting computation designs Fig7
electromagnetic metal casting computation designs Fig7
electromagnetic metal casting computation designs Fig8
electromagnetic metal casting computation designs Fig8
electromagnetic metal casting computation designs Fig9
electromagnetic metal casting computation designs Fig9

References

  1. 1.J. Sun, W. Wang, Q. Yue, Review on electromagnetic-matter interaction fundamentals and efficient electromagnetic-associated heating strategies. Materials 9(4), 231 (2016). https://doi.org/10.3390/ma9040231ADS Article Google Scholar 
  2. 2.E. Ghasali, A. Fazili, M. Alizadeh, K. Shirvanimoghaddam, T. Ebadzadeh, Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, electromagnetic and spark plasma sintering methods. Materials 10(11), 1255 (2017). https://doi.org/10.3390/ma10111255ADS Article Google Scholar 
  3. 3.D. Agrawal, Latest global developments in electromagnetic materials processing. Mater. Res. Innov. 14(1), 3–8 (2010). https://doi.org/10.1179/143307510×12599329342926Article Google Scholar 
  4. 4.S. Singh, P. Singh, D. Gupta, V. Jain, R. Kumar, S. Kaushal, Development and characterization of electromagnetic processed cast iron joint. Eng. Sci. Technol. Int. J. (2018). https://doi.org/10.1016/j.jestch.2018.10.012Article Google Scholar 
  5. 5.S. Singh, D. Gupta, V. Jain, Electromagnetic melting and processing of metal–ceramic composite castings. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232(7), 1235–1243 (2016). https://doi.org/10.1177/0954405416666900Article Google Scholar 
  6. 6.S. Singh, D. Gupta, V. Jain, Novel electromagnetic composite casting process: theory, feasibility and characterization. Mater. Des. 111, 51–59 (2016). https://doi.org/10.1016/j.matdes.2016.08.071Article Google Scholar 
  7. 7.J. Lucas, J, What are electromagnetics? LiveScience. (2018). https://www.livescience.com/50259-Electromagnetics.html
  8. 8.R. Samyal, A.K. Bagha, R. Bedi, the casting of materials using electromagnetic energy: a review. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.255Article Google Scholar 
  9. 9.S. Singh, D. Gupta, V. Jain, Processing of Ni-WC-8Co MMC casting through electromagnetic melting. Mater. Manuf. Process. (2017). https://doi.org/10.1080/10426914.2017.1291954Article Google Scholar 
  10. 10.R. Singh, S. Singh, V. Mahajan, Investigations for dimensional accuracy of investment casting process after cycle time reduction by advancements in shell moulding. Procedia Mater. Sci. 6, 859–865 (2014). https://doi.org/10.1016/j.mspro.2014.07.103Article Google Scholar 
  11. 11.R.R. Mishra, A.K. Sharma, On melting characteristics of bulk Al-7039 alloy during in-situ electromagnetic casting. Appl. Therm. Eng. 111, 660–675 (2017). https://doi.org/10.1016/j.applthermaleng.2016.09.122Article Google Scholar 
  12. 12.S. Zhang, 10 Different types of casting process. (2021). MachineMfg.com, https://www.machinemfg.com/types-of-casting/
  13. 13.Envirocare, Foundry health risks. (2013). https://envirocare.org/foundry-health-risks/
  14. 14.S.S. Gajmal, D.N. Raut, A review of opportunities and challenges in electromagnetic assisted casting. Recent Trends Product. Eng. 2(1) (2019)
  15. 15.R.R. Mishra, A.K. Sharma, Electromagnetic-material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Compos. Part A (2015). https://doi.org/10.1016/j.compositesa.2015.10.035Article Google Scholar 
  16. 16.S. Chandrasekaran, T. Basak, S. Ramanathan, Experimental and theoretical investigation on electromagnetic melting of metals. J. Mater. Process. Technol. 211(3), 482–487 (2011). https://doi.org/10.1016/j.jmatprotec.2010.11.001Article Google Scholar 
  17. 17.C.R. Bird, J.M. Mertz, U.S. Patent No. 4655276. (U.S. Patent and Trademark Office, Washington, DC, 1987)
  18. 18.R.R. Mishra, A.K. Sharma, Experimental investigation on in-situ electromagnetic casting of copper. IOP Conf. Ser. Mater. Sci. Eng. 346, 012052 (2018). https://doi.org/10.1088/1757-899x/346/1/012052Article Google Scholar 
  19. 19.V. Gangwar, S. Kumar, V. Singh, H. Singh, Effect of process parameters on hardness of AA-6063 in-situ electromagnetic casting by using taguchi method, in IOP Conference Series: Materials Science and Engineering, vol. 804(1) (IOP Publishing, 2020), p. 012019
  20. 20.X. Ye, S. Guo, L. Yang, J. Gao, J. Peng, T. Hu, L. Wang, M. Hou, Q. Luo, New utilization approach of electromagnetic thermal energy: preparation of metallic matrix diamond tool bit by electromagnetic hot-press sintering. J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.03.183Article Google Scholar 
  21. 21.S. Das, A.K. Mukhopadhyay, S. Datta, D. Basu, Prospects of Electromagnetic processing: an overview. Bull. Mater. Sci. 32(1), 1–13 (2009). https://doi.org/10.1007/s12034-009-0001-4Article Google Scholar 
  22. 22.K.L. Glass, D.M. Ashby, U.S. Patent No. 9050656. (U.S. Patent and Trademark Office, Washington, DC, 2015)
  23. 23.S. Verma, P. Gupta, S. Srivastava, S. Kumar, A. Anand, An overview: casting/melting of non ferrous metallic materials using domestic electromagnetic oven. J. Mater. Sci. Mech. Eng. 4(4), (2017). p-ISSN: 2393-9095; e-ISSN: 2393-9109
  24. 24.S.S. Panda, V. Singh, A. Upadhyaya, D. Agrawal, Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and electromagnetic furnaces. Scripta Mater. 54(12), 2179–2183 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.034Article Google Scholar 
  25. 25.Y. Zhang, S. Yang, S. Wang, X. Liu, L. Li, Microwave/freeze casting assisted fabrication of carbon frameworks derived from embedded upholder in tremella for superior performance supercapacitors. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.08.006Article Google Scholar 
  26. 26.D. Thomas, P. Abhilash, M.T. Sebastian, Casting and characterization of LiMgPO4 glass free LTCC tape for electromagnetic applications. J. Eur. Ceram. Soc. 33(1), 87–93 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.08.002Article Google Scholar 
  27. 27.M.H. Awida, N. Shah, B. Warren, E. Ripley, A.E. Fathy, Modeling of an industrial Electromagnetic furnace for metal casting applications. 2008 IEEE MTT-S Int. Electromagn. Symp. Digest. (2008). https://doi.org/10.1109/mwsym.2008.4633143Article Google Scholar 
  28. 28.P.K. Loharkar, A. Ingle, S. Jhavar, Parametric review of electromagnetic-based materials processing and its applications. J. Market. Res. 8(3), 3306–3326 (2019). https://doi.org/10.1016/j.jmrt.2019.04.004Article Google Scholar 
  29. 29.E.B. Ripley, J.A. Oberhaus, WWWeb search power page-melting and heat treating metals using electromagnetic heating-the potential of electromagnetic metal processing techniques for a wide variety of metals and alloys is. Ind. Heat. 72(5), 65–70 (2005)Google Scholar 
  30. 30.J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design (Butterworth-Heinemann, 2015)Google Scholar 
  31. 31.B. Ravi, Metal Casting: Computer-Aided Design and Analysis, 1st edn. (PHI Learning Ltd, 2005)Google Scholar 
  32. 32.D.E. Clark, W.H. Sutton, Electromagnetic processing of materials. Annu. Rev. Mater. Sci. 26(1), 299–331 (1996)ADS Article Google Scholar 
  33. 33.A.D. Abdullin, New capabilities of software package ProCAST 2011 for modeling foundry operations. Metallurgist 56(5–6), 323–328 (2012). https://doi.org/10.1007/s11015-012-9578-8Article Google Scholar 
  34. 34.J. Ha, P. Cleary, V. Alguine, T. Nguyen, Simulation of die filling in gravity die casting using SPH and MAGMAsoft, in Proceedings of 2nd International Conference on CFD in Minerals & Process Industries (1999) pp. 423–428
  35. 35.M. Sirviö, M. Woś, Casting directly from a computer model by using advanced simulation software FLOW-3D Cast Ž. Arch. Foundry Eng. 9(1), 79–82 (2009)Google Scholar 
  36. 36.NOVACAST Systems, Nova-Solid/Flow Brochure, NOVACAST, Ronneby (2015)
  37. 37.AutoCAST-X1 Brochure, 3D Foundry Tech, Mumbai
  38. 38.EKK, Inc. Metal Casting Simulation Software and Consulting Services, CAPCAST Brochure
  39. 39.P. Muenprasertdee, Solidification modeling of iron castings using SOLIDCast (2007)
  40. 40.CasCAE, CT-CasTest Inc. Oy, Kerava
  41. 41.E. Dominguez-Tortajada, J. Monzo-Cabrera, A. Diaz-Morcillo, Uniform electric field distribution in electromagnetic heating applicators by means of genetic algorithms optimization of dielectric multilayer structures. IEEE Trans. Electromagn. Theory Tech. 55(1), 85–91 (2007). https://doi.org/10.1109/tmtt.2006.886913ADS Article Google Scholar 
  42. 42.B. Warren, M.H. Awida, A.E. Fathy, Electromagnetic heating of metals. IET Electromagn. Antennas Propag. 6(2), 196–205 (2012)Article Google Scholar 
  43. 43.S. Ashouri, M. Nili-Ahmadabadi, M. Moradi, M. Iranpour, Semi-solid microstructure evolution during reheating of aluminum A356 alloy deformed severely by ECAP. J. Alloy. Compd. 466(1–2), 67–72 (2008). https://doi.org/10.1016/j.jallcom.2007.11.010Article Google Scholar 
  44. 44.Penn State, Metal Parts Made In The Electromagnetic Oven. ScienceDaily. (1999) Retrieved May 8, 2021, from www.sciencedaily.com/releases/1999/06/990622055733.htm
  45. 45.R.R. Mishra, A.K. Sharma, A review of research trends in electromagnetic processing of metal-based materials and opportunities in electromagnetic metal casting. Crit. Rev. Solid State Mater. Sci. 41(3), 217–255 (2016). https://doi.org/10.1080/10408436.2016.1142421ADS Article Google Scholar 
  46. 46.D.K. Ghodgaonkar, V.V. Varadan, V.K. Varadan, Free-space measurement of complex permittivity and complex permeability of magnetic materials at Electromagnetic frequencies. IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990). https://doi.org/10.1109/19.52520Article Google Scholar 
  47. 47.J. Baker-Jarvis, E.J. Vanzura, W.A. Kissick, Improved technique for determining complex permittivity with the transmission/reflection method. Microw. Theory Tech. IEEE Trans. 38, 1096–1103 (1990)ADS Article Google Scholar 
  48. 48.M. Bologna, A. Petri, B. Tellini, C. Zappacosta, Effective magnetic permeability measurementin composite resonator structures. Instrum. Meas. IEEE Trans. 59, 1200–1206 (2010)Article Google Scholar 
  49. 49.B. Ravi, G.L. Datta, Metal casting–back to future, in 52nd Indian Foundry Congress, (2004)
  50. 50.D. El Khaled, N. Novas, J.A. Gazquez, F. Manzano-Agugliaro. Microwave dielectric heating: applications on metals processing. Renew. Sustain. Energy Rev. 82, 2880–2892 (2018). https://doi.org/10.1016/j.rser.2017.10.043Article Google Scholar 
  51. 51.H. Sekiguchi, Y. Mori, Steam plasma reforming using Electromagnetic discharge. Thin Solid Films 435, 44–48 (2003)ADS Article Google Scholar 
  52. 52.J. Sun, W. Wang, C. Zhao, Y. Zhang, C. Ma, Q. Yue, Study on the coupled effect of wave absorption and metal discharge generation under electromagnetic irradiation. Ind. Eng. Chem. Res. 53, 2042–2051 (2014)Article Google Scholar 
  53. 53.K.I. Rybakov, E.A. Olevsky, E.V. Krikun, Electromagnetic sintering: fundamentals and modeling. J. Am. Ceram. Soc. 96(4), 1003–1020 (2013). https://doi.org/10.1111/jace.12278Article Google Scholar 
  54. 54.A.K. Shukla, A. Mondal, A. Upadhyaya, Numerical modeling of electromagnetic heating. Sci. Sinter. 42(1), 99–124 (2010)Article Google Scholar 
  55. 55.M. Chiumenti, C. Agelet de Saracibar, M. Cervera, On the numerical modeling of the thermomechanical contact for metal casting analysis. J. Heat Transf. 130(6), (2008). https://doi.org/10.1115/1.2897923Article MATH Google Scholar 
  56. 56.B. Ravi, Metal Casting: Computer-Aided Design and Analysis. (PHI Learning Pvt. Ltd., 2005)
  57. 57.J.H. Lee, S.D. Noh, H.-J. Kim, Y.-S. Kang, Implementation of cyber-physical production systems for quality prediction and operation control in metal casting. Sensors 18, 1428 (2018). https://doi.org/10.3390/s18051428ADS Article Google Scholar 
  58. 58.B. Aksoy, M. Koru, Estimation of casting mold interfacial heat transfer coefficient in pressure die casting process by artificial intelligence methods. Arab. J. Sci. Eng. 45, 8969–8980 (2020). https://doi.org/10.1007/s13369-020-04648-7Article Google Scholar 
  59. 59.S.S. Miriyala, V.R. Subramanian, K. Mitra, TRANSFORM-ANN for online optimization of complex industrial processes: casting process as case study. Eur. J. Oper. Res. 264(1), 294–309 (2018). https://doi.org/10.1016/j.ejor.2017.05.026MathSciNet Article MATH Google Scholar 
  60. 60.J.K. Kittu, G.C.M. Patel, M. Parappagoudar, Modeling of pressure die casting process: an artificial intelligence approach. Int. J. Metalcast. (2015). https://doi.org/10.1007/s40962-015-0001-7Article Google Scholar 
  61. 61.W. Chen, B. Gutmann, C.O. Kappe, Characterization of electromagnetic-induced electric discharge phenomena in metal-solvent mixtures. ChemistryOpen 1, 39–48 (2012)Article Google Scholar 
  62. 62.J. Walker, A. Prokop, C. Lynagh, B. Vuksanovich, B. Conner, K. Rogers, J. Thiel, E. MacDonald, Real-time process monitoring of core shifts during metal casting with wireless sensing and 3D sand printing. Addit. Manuf. (2019). https://doi.org/10.1016/j.addma.2019.02.018Article Google Scholar 
  63. 63.G.C. Manjunath Patel, A.K. Shettigar, M.B. Parappagoudar, A systematic approach to model and optimize wear behaviour of castings produced by squeeze casting process. J. Manuf. Process. 32, 199–212 (2018). https://doi.org/10.1016/j.jmapro.2018.02.004Article Google Scholar 
  64. 64.G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, An intelligent system for squeeze casting process—soft computing based approach. Int. J. Adv. Manuf. Technol. 86, 3051–3065 (2016). https://doi.org/10.1007/s00170-016-8416-8Article Google Scholar 
  65. 65.M. Ferguson, R. Ak, Y.T. Lee, K.H. Law, Automatic localization of casting defects with convolutional neural networks, in 2017 IEEE International Conference on Big Data (Big Data) (Boston, MA, USA, 2017), pp. 1726–1735. https://doi.org/10.1109/BigData.2017.8258115.
  66. 66.P.K.D.V. Yarlagadda, Prediction of die casting process parameters by using an artificial neural network model for zinc alloys. Int. J. Prod. Res. 38(1), 119–139 (2000). https://doi.org/10.1080/002075400189617Article MATH Google Scholar 
  67. 67.G.C. ManjunathPatel, A.K. Shettigar, P. Krishna, M.B. Parappagoudar, Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process. Appl. Soft Comput. 59, 418–437 (2017). https://doi.org/10.1016/j.asoc.2017.06.018Article Google Scholar 
  68. 68.J. Zheng, Q. Wang, P. Zhao et al., Optimization of high-pressure die-casting process parameters using artificial neural network. Int. J. Adv. Manuf. Technol. 44, 667–674 (2009). https://doi.org/10.1007/s00170-008-1886-6Article Google Scholar 
  69. 69.E. Mares, J. Sokolowski, Artificial intelligence-based control system for the analysis of metal casting properties. J. Achiev. Mater. Manuf. Eng. 40, 149–154 (2010)Google Scholar 
  70. 70.K.S. Senthil, S. Muthukumaran, C. Chandrasekhar Reddy, Suitability of friction welding of tube to tube plate using an external tool process for different tube diameters—a study. Exp. Tech. 37(6), 8–14 (2013)Article Google Scholar 
  71. 71.N.K. Bhoi, H. Singh, S. Pratap, P.K. Jain, Electromagnetic material processing: a clean, green, and sustainable approach. Sustain. Eng. Prod. Manuf. Technol. (2019). https://doi.org/10.1016/b978-0-12-816564-5.00001-3Article Google Scholar 
  72. 72.K.S. Senthil, D.A. Daniel, An investigation of boiler grade tube and tube plate without block by using friction welding process. Mater. Today Proc. 5(2), 8567–8576 (2018)Article Google Scholar 
  73. 73.E. Hetmaniok, D. Słota, A. Zielonka, Restoration of the cooling conditions in a three-dimensional continuous casting process using artificial intelligence algorithms. Appl. Math. Modell. 39(16), 4797–4807 (2015). https://doi.org/10.1016/j.apm.2015.03.056Article MATH Google Scholar 
  74. 74.C.V. Kumar, S. Muthukumaran, A. Pradeep, S.S. Kumaran, Optimizational study of friction welding of steel tube to aluminum tube plate using an external tool process. Int. J. Mech. Mater. Eng. 6(2), 300–306 (2011)Google Scholar 
  75. 75.T. Adithiyaa, D. Chandramohan, T. Sathish, Optimal prediction of process parameters by GWO-KNN in stirring-squeeze casting of AA2219 reinforced metal matrix composites. Mater. Today Proc. 150, 1598 (2020). https://doi.org/10.1016/j.matpr.2019.10.051Article Google Scholar 
  76. 76.B.P. Pehrson, A.F. Moore (2014). U.S. Patent No. 8708031 (U.S. Patent and Trademark Office, Washington, DC, 2014)
  77. 77.Liu, J., & Rynerson, M. L. (2008). U.S. Patent No. 7,461,684. Washington, DC: U.S. Patent and Trademark Office.
  78. 78.K. Salonitis, B. Zeng, H.A. Mehrabi, M. Jolly, The challenges for energy efficient casting processes. Procedia CIRP 40, 24–29 (2016). https://doi.org/10.1016/j.procir.2016.01.043Article Google Scholar 
  79. 79.R.R. Mishra, A.K. Sharma, Effect of solidification environment on microstructure and indentation hardness of Al–Zn–Mg alloy casts developed using electromagnetic heating. Int. J. Metal Cast. 10, 1–13 (2017). https://doi.org/10.1007/s40962-017-0176-1Article Google Scholar 
  80. 80.R.R. Mishra, A.K. Sharma, Effect of susceptor and Mold material on microstructure of in-situ electromagnetic casts of Al–Zn–Mg alloy. Mater. Des. 131, 428–440 (2017). https://doi.org/10.1016/j.matdes.2017.06.038Article Google Scholar 
  81. 81.S. Kaushal, S. Bohra, D. Gupta, V. Jain, On processing and characterization of Cu–Mo-based castings through electromagnetic heating. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00481-8Article Google Scholar 
  82. 82.S. Nandwani, S. Vardhan, A.K. Bagha, A literature review on the exposure time of electromagnetic based welding of different materials. Mater. Today Proc. (2019). https://doi.org/10.1016/j.matpr.2019.10.056Article Google Scholar 
  83. 83.F.J.B. Brum, S.C. Amico, I. Vedana, J.A. Spim, Electromagnetic dewaxing applied to the investment casting process. J. Mater. Process. Technol. 209(7), 3166–3171 (2009). https://doi.org/10.1016/j.jmatprotec.2008.07.024Article Google Scholar 
  84. 84.M.P. Reddy, R.A. Shakoor, G. Parande, V. Manakari, F. Ubaid, A.M.A. Mohamed, M. Gupta, Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through electromagnetic sintering and hot extrusion techniques. Prog. Nat. Sci. Mater. Int. 27(5), 606–614 (2017). https://doi.org/10.1016/j.pnsc.2017.08.015Article Google Scholar 
  85. 85.V.R. Kalamkar, K. Monkova, (Eds.), Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. (2021) https://doi.org/10.1007/978-981-15-3639-7
  86. 86.V. Bist, A.K. Sharma, P. Kumar, Development and microstructural characterisations of the lead casting using electromagnetic technology. Manager’s J. Mech. Eng. 4(4), 6 (2014). https://doi.org/10.26634/jme.4.4.2840Article Google Scholar 
  87. 87.A. Sharma, A. Chouhan, L. Pavithran, U. Chadha, S.K. Selvaraj, Implementation of LSS framework in automotive component manufacturing: a review, current scenario and future directions. Mater Today: Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.02.374Article Google Scholar 
Proceedings of the 6th International Conference on Civil, Offshore and Environmental Engineering (ICCOEE2020)

Numerical Simulation to Assess Floating Instability of Small Passenger Vehicle Under Sub-critical Flow

미 임계 흐름에서 소형 승용차의 부동 불안정성을 평가하기 위한 수치 시뮬레이션

Proceedings of the International Conference on Civil, Offshore and Environmental Engineering
ICCOEE 2021: ICCOEE2020 pp 258-265| Cite as

  • Ebrahim Hamid Hussein Al-Qadami
  • Zahiraniza Mustaffa
  • Eduardo Martínez-Gomariz
  • Khamaruzaman Wan Yusof
  • Abdurrasheed S. Abdurrasheed
  • Syed Muzzamil Hussain Shah

Conference paperFirst Online: 01 January 2021

  • 355Downloads

Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 132)

Abstract

Parked vehicles can be directly affected by the floods and at a certain flow velocity and depth, vehicles can be easily swept away. Therefore, studying flooded vehicles stability limits is required. Herein, an attempt has been done to assess numerically the floating instability mode of a small passenger car with a scaled-down ratio of 1:10 using FLOW-3D. The 3D car model was placed inside a closed box and the six degrees of freedom numerical simulation was conducted. Later, numerical results validated experimentally and analytically. Results showed that buoyancy depths were 3.6 and 3.8 cm numerically and experimentally, respectively with a percentage difference of 5.4%. Further, the buoyancy forces were 8.95 N and 8.97 N numerically and analytically, respectively with a percentage difference of 0.2%. With this small difference, it can be concluded that the numerical modeling for such cases using FLOW-3D software can give an acceptable prediction on the vehicle stability limits.

주차된 차량은 홍수의 직접적인 영향을 받을 수 있으며 특정 유속과 깊이에서 차량을 쉽게 쓸어 버릴 수 있습니다. 따라서 침수 차량 안정성 한계를 연구해야 합니다. 여기에서는 FLOW-3D를 사용하여 축소 비율이 1:10 인 소형 승용차의 부동 불안정 모드를 수치 적으로 평가하려는 시도가 이루어졌습니다. 3D 자동차 모델은 닫힌 상자 안에 배치되었고 6 개의 자유도 수치 시뮬레이션이 수행되었습니다. 나중에 수치 결과는 실험적으로 그리고 분석적으로 검증되었습니다. 결과는 부력 깊이가 각각 5.4 %의 백분율 차이로 수치 및 실험적으로 3.6 및 3.8 cm임을 보여 주었다. 또한 부력은 수치적으로 8.95N과 분석적으로 8.97N이었고 백분율 차이는 0.2 %였다. 이 작은 차이로 인해 FLOW-3D 소프트웨어를 사용한 이러한 경우의 수치 모델링은 차량 안정성 한계에 대한 허용 가능한 예측을 제공 할 수 있다는 결론을 내릴 수 있습니다.

Keywords

Floating instability Small passenger car Numerical simulation FLOW-3D Subcritical flowe 

References

  1. 1.Hung, C.L.J., James, L.A., Carbone, G.J., Williams, J.M.: Impacts of combined land-use and climate change on streamflow in two nested catchments in the southeastern united states. Ecol. Eng. 143, 105665 (2020)CrossRefGoogle Scholar
  2. 2.Bui, D.T., Hoang, N.D., Martínez-Álvarez, F., Ngo, P.T.T., Hoa, P.V., Pham, T.D., Samui, P., Costache, R.: A novel deep learning neural network approach for predicting flash flood susceptibility: a case study at a high frequency tropical storm area. Sci. Total Environ. 701, 134413 (2020)CrossRefGoogle Scholar
  3. 3.Shah, S.M.H., Mustaffa, Z., Martínez-Gomariz, E., Yusof, K.W., Al-Qadami, E.H.H.: A review of safety guidelines for vehicles in floodwaters. Int. J. River Basin Manage. 1–17 (2019)Google Scholar
  4. 4.Shah, S.M.H., Mustaffa, Z., Yusof, K.W.: Disasters worldwide and floods in the malaysian region: a brief review. Indian J. Sci. Technol. 10(2), (2017)Google Scholar
  5. 5.Xia, J., Falconer, R.A., Lin, B., Tan, G.: Numerical assessment of flood hazard risk to people and vehicles in flash floods. Environ. Model Softw. 26(8), 987–998 (2011)CrossRefGoogle Scholar
  6. 6.Bonham, A.J., Hattersley, R.T.: Low level causeways. Technical report, University of New South Wales, Water Research Laboratory (1967)Google Scholar
  7. 7.Gordon, A.D., Stone, P.B.: Car stability on road causeways. Technical report No. 73/12, Institution (1973)Google Scholar
  8. 8.Keller, R.J., Mitsch, B.: Safety aspects of the design of roadways as floodways. Research Report No. 69, Urban Water Research Association of Australia, Melbourne (1993)Google Scholar
  9. 9.Shah, S.M.H., Mustaffa, Z., Martinez-Gomariz, E., Kim, D.K., Yusof, K.W.: Criterion of vehicle instability in floodwaters: past, present and future. Int. J. River Basin Manage. 1–23 (2019)Google Scholar
  10. 10.Teo, F.Y.: Study of the hydrodynamic processes Ofrivers and flood- plains with obstructions. Ph.D. thesis (2010). https://orca.cf.ac.uk/54161/1/U517543.pdf
  11. 11.Xia, J., Teo, F.Y., Lin, B., Falconer, R.A.: Formula of incipient velocity for flooded vehicles. Nat. Hazards 58(1), 1–14 (2011)CrossRefGoogle Scholar
  12. 12.Shu, C., Xia, J., Falconer, R.A., Lin, B.: Incipient velocity for partially submerged vehicles in floodwaters. J. Hydraul. Res. 49(6), 709–717 (2011)CrossRefGoogle Scholar
  13. 13.Toda, K., Ishigaki, T., Ozaki, T.: Experiments study on floating car in flooding. In: International Conference on Flood Resilience: Experiences in Asia and Europe (2013)Google Scholar
  14. 14.Xia, J., Falconer, R.A., Xiao, X., Wang, Y.: Criterion of vehicle stability in floodwaters based on theoretical and experimental studies. Nat. Hazards 70(2), 1619–1630 (2014)CrossRefGoogle Scholar
  15. 15.Martínez-Gomariz, E., Gómez, M., Russo, B., Djordjević, S.: A new experiments-based methodology to define the stability threshold for any vehicle exposed to flooding. Urban Water J. 14(9), 930–939 (2017)CrossRefGoogle Scholar
  16. 16.Smith, G.P., Modra, B.D., Tucker, T.A., Cox, R.J.: Vehicle stability testing for flood flows. Technical report 7, Water Research Laboratory, School of Civil and Environmental Engineering (2017)Google Scholar
  17. 17.Xia, J., Falconer, R.A., Lin, B., Tan, G.: Modelling flash flood risk in urban areas. In: Proceedings of the Institution of Civil Engineers-Water Management, vol. 164 (6), pp. 267–282. Thomas Telford Ltd, (2011)Google Scholar
  18. 18.Arrighi, C., Alcèrreca-Huerta, J.C., Oumeraci, H., Castelli, F.: Drag and lift contribution to the incipient motion of partly submerged flooded vehicles. J. Fluids Struct. 57, 170–184 (2015)CrossRefGoogle Scholar
  19. 19.Gómez, M., Martínez, E., Russo, B.: Experimental and numerical study of stability of vehicles exposed to flooding. In: Advances in Hydroinformatics, pp. 595–605. Springer, Singapore (2018). http://doi.org/10.1007/978-981-10-7218-5_42
  20. 20.Al-Qadami, E.H.H., Abdurrasheed, A.S.I., Mustaffa, Z., Yusof, K.W., Malek, M.A., Ab Ghani, A.: Numerical modelling of flow characteristics over sharp crested triangular hump. Results Eng. 4, 100052 (2019)Google Scholar
Fig1 3D flow simulation to improve the design and operation of the dam bottom outlets

3D flow simulation to improve the design and operation of the dam bottom outlets

Abstract

The most widely used method of flushing of reservoirs is to remove the deposited sediment through the bottom outlets. The size and shape of gates affect the outflow volume of water, the volume of removed sediments, and flushing efficiency. The purpose of this study is to investigate the effect of the area, number and shape of the bottom outlet gates on the velocity, concentration, and volume of the removed sediments and the dimensions of the flushing cone. Four different shapes with the same area were used for this purpose. Moreover, to study the effect of area and number of gates on flushing efficiency, circular gates with two different diameters were used. In this research, various pressure flushing modes were simulated using the Flow-3D model. Calibration and evaluation of this model were performed based on experimental findings. Results showed the parameters of the Flow-3D measures such as length, width, maximum depth, and flushing cone size with an average error of 3%, which is in good agreement with experimental results. As the area of the outlet gates increases, flushing is less risky in viewpoints of the operation process. Furthermore, the gate with a horizontal-rectangular section has an optimal shape with the highest flushing efficiency.

저수지를 세척하는 가장 널리 사용되는 방법은 바닥 배출구를 통해 침전된 침전물을 제거하는 것입니다. 게이트의 크기와 모양은 물의 유출량, 제거 된 퇴적물의 양 및 세척 효율에 영향을 미칩니다.

이 연구의 목적은 제거된 퇴적물의 속도, 농도 및 부피와 플러싱 콘의 크기에 대한 바닥 출구 게이트의 면적, 수 및 모양의 영향을 조사하는 것입니다.

이 목적을 위해 동일한 면적을 가진 4 개의 다른 모양이 사용되었습니다. 또한 플러싱 효율에 대한 면적과 게이트 수의 영향을 연구하기 위해 두 가지 직경의 원형 게이트를 사용했습니다. 이 연구에서는 Flow-3D 모델을 사용하여 다양한 압력 플러싱 모드를 시뮬레이션했습니다.

이 모델의 보정 및 평가는 실험 결과를 기반으로 수행되었습니다. 결과는 길이, 너비, 최대 깊이 및 플러싱 콘 크기와 같은 Flow-3D 측정의 매개 변수를 보여 주며 평균 오차는 3 %로 실험 결과와 잘 일치합니다. 출구 게이트의 면적이 증가함에 따라 작동 과정의 관점에서 플러싱이 덜 위험합니다. 또한 수평 직사각형 단면의 게이트는 최고의 세척 효율로 최적의 모양을 갖습니다.

Keywords

  • Computer model
  • Scouring
  • Flushing
  • Bottom outlet
  • Flow-3D
  • Sedimentation
Fig1 3D flow simulation to improve the design and operation of the dam bottom outlets
Fig1 3D flow simulation to improve the design and operation of the dam bottom outlets
Fig2 3D flow simulation to improve the design and operation of the dam bottom outlets
Fig2 3D flow simulation to improve the design and operation of the dam bottom outlets
Fig8 3D flow simulation to improve the design and operation of the dam bottom outlets
Fig8 3D flow simulation to improve the design and operation of the dam bottom outlets
Fig10 3D flow simulation to improve the design and operation of the dam bottom outlets
Fig10 3D flow simulation to improve the design and operation of the dam bottom outlets

References

  1. Atkinson E (1996) The feasibility of flushing sediment from the reservoir. Report OD 137. Wallingford.
  2. Brandt SA (2000) A review of reservoir desiltation. International Journal of Sediment Research. 15:321–342Google Scholar 
  3. Brethour J (2003) Modeling sediment scour. Flow Science Inc. Report FSI-03-TN62
  4. Brethour J, Burnham J (2010) Modeling sediment erosion and deposition with the FLOW-3D sedimentation & scour model. Flow Science Technical Note. FSI-10-TN85, pp: 1-22.
  5. Dawdy DR, Vanoni VA (1986) Modeling alluvial channels. Water Resources Research. Vol. 22(9S):71S–81SGoogle Scholar 
  6. Dehghani AA, Mosaedi A, Imamgholizadeh S, Meshkati ME (2010) Experimental investigation of pressure flushing technique in reservoir storages. Application Plans of the Ministry of Energy
  7. Epely-Chauvin G, De Cesare G, Schwindt S (2014) Numerical modelling of plunge pool scour evolution in non-cohesive sediments. Engineering Applications of Computational Fluid Mechanics. 8(4):477–487. https://doi.org/10.1080/19942060.2014.11083301Article Google Scholar 
  8. Esmaeili T, Sumi T, Kantoush SA, Kubota Y, Haun S, Rüther N (2017) Three-dimensional numerical study of free-flow sediment flushing to increase the flushing efficiency: a case-study reservoir in Japan. Water. Vol. 9. No. 11, p. 900. https://doi.org/10.3390/w9110900 .
  9. Fang D, Cao S (1996) An experimental study on scour funnel in front of a sediment flushing outlet of a reservoir. Proceedings of the 6th Federal Interagency Sedimentation Conference. Las Vegas. March 10-14, pp: I.78-I.84.
  10. Hemphil RG (1931) Silting and life of southwestern reservoirs. Proceedings of the American Society of Civil Engineers. 56(5):967–980Google Scholar 
  11. Holly FM, Cunge JA (1975) Time dependent mass dispersion in natural streams. In: Modelling Techniques. ASCE, San Francisco, pp 1121–1137Google Scholar 
  12. Huan CC, Lai JS, Lee FZ, Tan Y C (2018) Physical model-based investigation of reservoir sedimentation processes. Water. Vol. 10, No. 4, p. 352. https://doi.org/10.3390/w10040352.
  13. Khosronejad A, Rennie CD, Neyshabouri AS, Gholami I (2008) Three-dimensional numerical modeling of reservoir sediment release. Journal of Hydraulic Research. 46(2):209–223. https://doi.org/10.1080/00221686.2008.9521856Article Google Scholar 
  14. Lai JS, Shen HW (1996) Flushing sediment through reservoirs. Journal of Hydraulic Research. 34(2):237–255. https://doi.org/10.1080/00221689609498499Article Google Scholar 
  15. Lyn H (1987) Unsteady sediment transport modeling. Journal of Hydraulic Engineering. ASCE 110(4):450–466Google Scholar 
  16. Meshkati ME, Dehghani AA, Naser G, Emamgholizadeh S, Mosaedi A (2009) Evolution of developing flushing cone during the pressurized flushing in reservoir storage. World Academy of Science. Engineering and Technology 58:1107–1111Google Scholar 
  17. Morris GL (1995) Reservoir sedimentation and sustainable development in India: problem scope and remedial strategies. Sixth International Symposium on River Sedimentation, Management of Sediment: Philosophy, Aims, and Techniques, New Delhi.
  18. Morris GL, Fan J (1998) Reservoir sedimentation handbook: design and management of dams, reservoirs, and watersheds for sustainable use. McGraw Hill, New York. USAGoogle Scholar 
  19. Movahedi A, Kavianpour MR, Yamini OA (2018) Evaluation and modeling scouring and sedimentation around downstream of large dams. Environmental Earth Sciences 77:1–17. https://doi.org/10.1007/s12665-018-7487-2Article Google Scholar 
  20. Petkovšek G, Roca M, Kitamura Y (2020) Sediment flushing from reservoirs: a review. Dams and Reservoirs. 30(1):12–21. https://doi.org/10.1680/jdare.20.00005Article Google Scholar 
  21. Sawadogo O, Basson GR, Schneiderbauer S (2019) Physical and coupled fully three-dimensional numerical modeling of pressurized bottom outlet flushing processes in reservoirs. International Journal of Sediment Research. 34:461–474. https://doi.org/10.1016/j.ijsrc.2019.02.001Article Google Scholar 
  22. Scheuerlein H, Tritthart M, Nunez-Gonzalez F (2004) Numerical and physical modeling concerning the removal of sediment deposits from reservoirs. Conference proceeding of Hydraulic of Dams and River Structures, Tehran, Iran, pp 245–254Google Scholar 
  23. Török GT, Baranya S, Rüther N (2017) 3D CFD modeling of local scouring, bed armoring and sediment deposition. Water. Vol. 9, No. 1, p. 56, https://doi.org/10.3390/w9010056.
  24. White WR, Bettess R (1984) The feasibility of flushing sediments through reservoirs. challenges in African hydrology and water resources Proceedings of the Harare Symposium, IAHS Publication, No.144, pp. 577-587.
  25. Xie Z (2011) Theoretical and numerical research on sediment transport in pressurized flow conditions. The University of Nebraska-Lincoln.
  26. Yucel O, Graf WH (1973) Bed load deposition and delta formation: a mathematical model. December 1973. Fritz Laboratory Reports. 2062.
Fig.1 Schematic diagram of the novel cytometric device

Fabrication and Experimental Investigation of a Novel 3D Hydrodynamic Focusing Micro Cytometric Device

Yongquan Wang*a , Jingyuan Wangb, Hualing Chenc

School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P. R. China
a yqwang@mail.xjtu.edu.cn,, bwjy2006@stu.xjtu.edu.cn,, c hlchen@mail.xjtu.edu.cn,

Abstract:

This paper presents the fabrication of a novel micro-machined cytometric device, and the experimental investigations for its 3D hydrodynamic focusing performance. The proposed device is simple in structure, with the uniqueness that the depth of its microchannels is non-uniform. Using the SU-8 soft lithography containing two exposures, as well as micro-molding techniques, the PDMS device is successfully fabricated. Two kinds of experiments, i.e., the red ink fluidity observation experiments and the fluorescent optical experiments, are then performed for the device prototypes with different step heights, or channel depth differences, to explore the influence laws of the feature parameter on the devices hydrodynamic focusing behaviors. The experimental results show that the introducing of the steps can efficiently enhance the vertical focusing performance of the device. At appropriate geometry and operating conditions, good 3D hydrodynamic focusing can be obtained.

Korea Abstract

이 논문은 새로운 마이크로 머신 세포 측정 장치의 제조와 3D 유체 역학적 초점 성능에 대한 실험적 조사를 제시합니다. 제안 된 장치는 구조가 단순하며, 마이크로 채널의 깊이가 균일하지 않다는 독특함이 있습니다. 두 가지 노출이 포함 된 SU-8 소프트 리소그래피와 마이크로 몰딩 기술을 사용하여 PDMS 장치가 성공적으로 제작되었습니다. 그런 다음 두 종류의 실험, 즉 적색 잉크 유동성 관찰 실험과 형광 광학 실험을 단계 높이 또는 채널 깊이 차이가 다른 장치 프로토 타입에 대해 수행하여 장치 유체 역학적 초점에 대한 기능 매개 변수의 영향 법칙을 탐색합니다. 행동. 실험 결과는 단계의 도입이 장치의 수직 초점 성능을 효율적으로 향상시킬 수 있음을 보여줍니다. 적절한 형상과 작동 조건에서 우수한 3D 유체 역학적 초점을 얻을 수 있습니다.

Keywords

Flow cytometer, Hydrodynamic focusing, Three-dimensional (3D), Micro-machined

Fig.1 Schematic diagram of the novel cytometric device
Fig.1 Schematic diagram of the novel cytometric device
Fig.2 Overview of the cytometric device fabrication process
Fig.2 Overview of the cytometric device fabrication process
Fig.3 The fabricated micro cytometric device Fig.4 Experiment setup for focusing performance
Fig.3 The fabricated micro cytometric device Fig. 4 Experiment setup for focusing performance
Fig.5 Horizontal focusing images of two devices with and without steps
Fig.5 Horizontal focusing images of two devices with and without steps
Fig.6 Channel cross-section fluorescence images for different step heights
Fig.6 Channel cross-section fluorescence images for different step heights

References 

Fig.7 Effect of the step height on the 3D focusing at different velocity ratios
Fig.7 Effect of the step height on the 3D focusing at different velocity ratios

Conclusions

In this paper, we presented a novel micro-machined cytometric device and its fabrication process,
emphasizing on the experimental investigations for its 3D hydrodynamic focusing performance. The
proposed device is simple in structure, low cost, and easy to be batch produced. Besides this, as a
device based on standard micro-fabrication methodology, it can be conveniently integrated with other
micro-fluidic and/or micro-optical units to form a complete detection and analysis system.
The experimental tests for the prototype devices not only verified the design conception, but also
gave us a comprehensive understanding of the device hydro-focusing performance. The experimental
results show that, as the uniqueness of this design, the introducing of the feature steps can
significantly enhance the vertical focusing performance of the devices, which is crucial for the
achievement of 3D focusing. In summary, for the proposed novel device, good 3D hydrodynamic
focusing can be attained at appropriate geometry and operating conditions.
In addition, an improved design can be obtained by replacing the flat cover with an identical
device unit, in other words, the same two device units are bonded together (The channels are inward
and aligned) to form a new device. Then the sample stream can focused to the center of the assembly
outlet channel due to the hydrodynamic forces equally in both horizontal and vertical directions, and
thus avoiding the adsorption or friction issues of cells/particles to the top channel wall.

References

[1] Mandy FF, Bergeron M, Minkus T, Principles of flow cytometry. Transfusion Science Transfusion Science, 16 (1995) 303.

DOI: 10.1016/0955-3886(95)00041-0

[2] Rieseberg M, Kasper C, Reardon KF, and Scheper T, Flow cytometry in biotechnology, Appl. Microbiol. Biotechnol. 56 (2001) 350.

[3] Chung TD, Kim HC, Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis, Electrophoresis. 28(2007) 4511.

DOI: 10.1002/elps.200700620

[4] Xuan X, Zhu J, Church C, Particle focusing in microfluidic devices, Microfluid Nanofluid. 9(2010) 1-16.

DOI: 10.1007/s10404-010-0602-7

[5] Stone H A, Stroock A D and Ajdari A, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech. 36 (2004) 381-411.

[6] Fu LM, Yang RJ, Lin CH, Pan YJ, and Lee GB, Electrokinetically-driven microflow cytometers with integrated fiber optics for on-line cell/particle collection, Analytica Chimica Acta. 507(2004) 163-169.

DOI: 10.1016/j.aca.2003.10.028

[7] Applegate Jr RW, Schafer DN, Amir W, Squier J, Vestad T, Oakey J and Marr DWM, Optically integrated microfluidic systems for cellular characterization and manipulation, J. Opt. A: Pure Appl. Opt. 9(2007) 122-128.

DOI: 10.1088/1464-4258/9/8/s03

[8] Chang CM, Hsiung SK, Lee GB, Micro flow cytometer chip integrated with micro-pumps/micro-valves for multi-wavelength cell counting and sorting, Jpn. J. Appl. Phys. 46 (2007): 3126-3134.

DOI: 10.1143/jjap.46.3126

[9] Lee GB, Hung CI, Ke BJ, Huang GR, Hwei BH, and Lai Hui-Fang, Hydrodynamic focusing for a micromachined flow cytometer, J Fluids Engineering 123(2001) 672-679.

DOI: 10.1115/1.1385514

[10] Weigl BH, Bardell R, Schulte T, Battrell F and Hayenga J, Design and rapid prototyping of thin-film laminate-based microfluidic devices, Biomed Microdevices. 3(2001) 267-274.

DOI: 10.1023/a:1012448412811

[11] Yang AS, Hsieh WH, Hydrodynamic focusing investigation in a micro-flow cytometer, Biomed Microdevices, 9(2007) 113-122.

DOI: 10.1007/s10544-006-9003-9

[12] Ateya DA, Erickson JS, Howell PB Jr, Hilliard LR, Golden JP, Ligler FS, The good, the bad, and the tiny: a review of microflow cytometry, Anal Bioanal Chem. 391(2008) 1485-1498.

DOI: 10.1007/s00216-007-1827-5

[13] Goranovic G, Perch-Nielsen I, Larsen UD, Wolff A, Kutter J and Telleman P, Three-Dimensional Single Step Flow Sheathing in Micro Cell Sorters, Proceedings of MSM Conference. (2001) pp.242-245.

[14] Lin CH, Lee GB, Fu LM, and Hwey BH, Vertical focusing device utilizing dielectrophoretic force and its application on mocroflow cytometer, J. Microelectromech. Syst. 13 (2004) 923-932.

DOI: 10.1109/jmems.2004.838352

[15] Yang R, Feeback DL, Wang W, Microfabrication and test of a three-dimensional polymer hydro-focusing unit for flow cytometry applications, Sens. Actuat. A. 118(2005) 259-267.

DOI: 10.1016/j.sna.2004.09.001

[16] Hairer G, Pärr GS, Svasek P, Jachimowicz A, and Vellekoop MJ, Investigations of micrometer sample stream profiles in a three-dimensional hydrodynamic focusing device, Sens. Actuat. B. 132 (2008) 518-524.

DOI: 10.1016/j.snb.2007.11.018

[17] Mao X, Lin SC, Dong C, and Huang TJ, Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing, Lab Chip. 9 (2009) 1583-1589.

DOI: 10.1039/b820138b

[18] Wang Y, Wang J, Chen H, Zhu Z, and Wang B, Prototype of a novel micro-machined cytometer and its 3D hydrodynamic focusing properties, Microsyst. Technol. 18(2012) 1991-(1997).

DOI: 10.1007/s00542-012-1525-x

Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).

Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions

레이저 파우더 베드 융합 오버행 영역에서 표면 거칠기의 원인에 대한 실험 및 수치 조사

Shaochuan Feng,Amar M. Kamat,Soheil Sabooni &Yutao PeiPages S66-S84 | Received 18 Jan 2021, Accepted 25 Feb 2021, Published online: 10 Mar 2021

ABSTRACT

Surface roughness of laser powder bed fusion (L-PBF) printed overhang regions is a major contributor to deteriorated shape accuracy/surface quality. This study investigates the mechanisms behind the evolution of surface roughness (Ra) in overhang regions. The evolution of surface morphology is the result of a combination of border track contour, powder adhesion, warp deformation, and dross formation, which is strongly related to the overhang angle (θ). When 0° ≤ θ ≤ 15°, the overhang angle does not affect Ra significantly since only a small area of the melt pool boundaries contacts the powder bed resulting in slight powder adhesion. When 15° < θ ≤ 50°, powder adhesion is enhanced by the melt pool sinking and the increased contact area between the melt pool boundary and powder bed. When θ > 50°, large waviness of the overhang contour, adhesion of powder clusters, severe warp deformation and dross formation increase Ra sharply.

레이저 파우더 베드 퓨전 (L-PBF) 프린팅 오버행 영역의 표면 거칠기는 형상 정확도 / 표면 품질 저하의 주요 원인입니다. 이 연구 는 오버행 영역에서 표면 거칠기 (Ra ) 의 진화 뒤에 있는 메커니즘을 조사합니다 . 표면 형태의 진화는 오버행 각도 ( θ ) 와 밀접한 관련이있는 경계 트랙 윤곽, 분말 접착, 뒤틀림 변형 및 드로스 형성의 조합의 결과입니다 . 0° ≤  θ  ≤ 15° 인 경우 , 용융풀 경계의 작은 영역 만 분말 베드와 접촉하여 약간의 분말 접착이 발생하기 때문에 오버행 각도가 R a에 큰 영향을 주지 않습니다 . 15° < θ 일 때  ≤ 50°, 용융 풀 싱킹 및 용융 풀 경계와 분말 베드 사이의 증가된 접촉 면적으로 분말 접착력이 향상됩니다. θ  > 50° 일 때 오버행 윤곽의 큰 파형, 분말 클러스터의 접착, 심한 휨 변형 및 드 로스 형성이 Ra 급격히 증가 합니다.

KEYWORDS: Laser powder bed fusion (L-PBF), melt pool dynamics, overhang region, shape deviation, surface roughness

1. Introduction

레이저 분말 베드 융합 (L-PBF)은 첨단 적층 제조 (AM) 기술로, 집중된 레이저 빔을 사용하여 금속 분말을 선택적으로 융합하여 슬라이스 된 3D 컴퓨터 지원에 따라 층별로 3 차원 (3D) 금속 부품을 구축합니다. 설계 (CAD) 모델 (Chatham, Long 및 Williams 2019 ; Tan, Zhu 및 Zhou 2020 ). 재료가 인쇄 층 아래에 ​​존재하는지 여부에 따라 인쇄 영역은 각각 솔리드 영역 또는 돌출 영역으로 분류 될 수 있습니다. 따라서 오버행 영역은 고체 기판이 아니라 분말 베드 바로 위에 건설되는 특수 구조입니다 (Patterson, Messimer 및 Farrington 2017). 오버행 영역은지지 구조를 포함하거나 포함하지 않고 구축 할 수 있으며, 지지대가있는 돌출 영역의 L-PBF는 지지체가 더 낮은 밀도로 구축된다는 점을 제외 하고 (Wang and Chou 2018 ) 고체 기판의 공정과 유사합니다 (따라서 기계적 강도가 낮기 때문에 L-PBF 공정 후 기계적으로 쉽게 제거 할 수 있습니다. 따라서지지 구조로 인쇄 된 오버행 영역은 L-PBF 공정 후 지지물 제거, 연삭 및 연마와 같은 추가 후 처리 단계가 필요합니다.

수평 내부 채널의 제작과 같은 일부 특정 경우에는 공정 후 지지대를 제거하기가 어려우므로 채널 상단 절반의 돌출부 영역을 지지대없이 건설해야합니다 (Hopkinson and Dickens 2000 ). 수평 내부 채널에 사용할 수없는지지 구조 외에도 내부 표면, 특히 등각 냉각 채널 (Feng, Kamat 및 Pei 2021 ) 에서 발생하는 복잡한 3D 채널 네트워크의 경우 표면 마감 프로세스를 구현하는 것도 어렵습니다 . 결과적으로 오버행 영역은 (i) 잔류 응력에 의한 변형, (ii) 계단 효과 (Kuo et al. 2020 ; Li et al. 2020 )로 인해 설계된 모양에서 벗어날 수 있습니다 .) 및 (iii) 원하지 않는 분말 소결로 인한 향상된 표면 거칠기; 여기서, 앞의 두 요소는 일반적으로 mm 길이 스케일에서 ‘매크로’편차로 분류되고 후자는 일반적으로 µm 길이 스케일에서 ‘마이크로’편차로 인식됩니다.

열 응력에 의한 변형은 오버행 영역에서 발생하는 중요한 문제입니다 (Patterson, Messimer 및 Farrington 2017 ). 국부적 인 용융 / 냉각은 용융 풀 내부 및 주변에서 큰 온도 구배를 유도하여 응고 된 층에 집중적 인 열 응력을 유발합니다. 열 응력에 의한 뒤틀림은 고체 영역을 현저하게 변형하지 않습니다. 이러한 영역은 아래의 여러 레이어에 의해 제한되기 때문입니다. 반면에 오버행 영역은 구속되지 않고 공정 중 응력 완화로 인해 상당한 변형이 발생합니다 (Kamat 및 Pei 2019 ). 더욱이 용융 깊이는 레이어 두께보다 큽니다 (이전 레이어도 재용 해되어 빌드 된 레이어간에 충분한 결합을 보장하기 때문입니다 [Yadroitsev et al. 2013 ; Kamath et al.2014 ]),응고 된 두께가 설계된 두께보다 크기 때문에형태 편차 (예 : 드 로스 [Charles et al. 2020 ; Feng et al. 2020 ])가 발생합니다. 마이크로 스케일에서 인쇄 된 표면 (R a 및 S a ∼ 10 μm)은 기계적으로 가공 된 표면보다 거칠다 (Duval-Chaneac et al. 2018 ; Wen et al. 2018 ). 이 문제는고형화 된 용융 풀의 가장자리에 부착 된 용융되지 않은 분말의 결과로 표면 거칠기 (R a )가 일반적으로 약 20 μm인 오버행 영역에서 특히 심각합니다 (Mazur et al. 2016 ; Pakkanen et al. 2016 ).

오버행 각도 ( θ , 빌드 방향과 관련하여 측정)는 오버행 영역의 뒤틀림 편향과 표면 거칠기에 영향을 미치는 중요한 매개 변수입니다 (Kamat and Pei 2019 ; Mingear et al. 2019 ). θ ∼ 45 ° 의 오버행 각도 는 일반적으로지지 구조없이 오버행 영역을 인쇄 할 수있는 임계 값으로 합의됩니다 (Pakkanen et al. 2016 ; Kadirgama et al. 2018 ). θ 일 때이 임계 값보다 크면 오버행 영역을 허용 가능한 표면 품질로 인쇄 할 수 없습니다. 오버행 각도 외에도 레이저 매개 변수 (레이저 에너지 밀도와 관련된)는 용융 풀의 모양 / 크기 및 용융 풀 역학에 영향을줌으로써 오버행 영역의 표면 거칠기에 영향을줍니다 (Wang et al. 2013 ; Mingear et al . 2019 ).

용융 풀 역학은 고체 (Shrestha 및 Chou 2018 ) 및 오버행 (Le et al. 2020 ) 영역 모두에서 수행되는 L-PBF 공정을 포함한 레이저 재료 가공의 일반적인 물리적 현상입니다 . 용융 풀 모양, 크기 및 냉각 속도는 잔류 응력으로 인한 변형과 ​​표면 거칠기에 모두 영향을 미치므로 처리 매개 변수와 표면 형태 / 품질 사이의 다리 역할을하며 용융 풀을 이해하기 위해 수치 시뮬레이션을 사용하여 추가 조사를 수행 할 수 있습니다. 거동과 표면 거칠기에 미치는 영향. 현재까지 고체 영역의 L-PBF 동안 용융 풀 동작을 시뮬레이션하기 위해 여러 연구가 수행되었습니다. 유한 요소 방법 (FEM)과 같은 시뮬레이션 기술 (Roberts et al. 2009 ; Du et al.2019 ), 유한 차분 법 (FDM) (Wu et al. 2018 ), 전산 유체 역학 (CFD) (Lee and Zhang 2016 ), 임의의 Lagrangian-Eulerian 방법 (ALE) (Khairallah and Anderson 2014 )을 사용하여 증발 반동 압력 (Hu et al. 2018 ) 및 Marangoni 대류 (Zhang et al. 2018 ) 현상을포함하는 열 전달 (온도 장) 및 물질 전달 (용융 흐름) 프로세스. 또한 이산 요소법 (DEM)을 사용하여 무작위 분산 분말 베드를 생성했습니다 (Lee and Zhang 2016 ; Wu et al. 2018 ). 이 모델은 분말 규모의 L-PBF 공정을 시뮬레이션했습니다 (Khairallah et al. 2016) 메조 스케일 (Khairallah 및 Anderson 2014 ), 단일 트랙 (Leitz et al. 2017 )에서 다중 트랙 (Foroozmehr et al. 2016 ) 및 다중 레이어 (Huang, Khamesee 및 Toyserkani 2019 )로.

그러나 결과적인 표면 거칠기를 결정하는 오버행 영역의 용융 풀 역학은 문헌에서 거의 관심을받지 못했습니다. 솔리드 영역의 L-PBF에 대한 기존 시뮬레이션 모델이 어느 정도 참조가 될 수 있지만 오버행 영역과 솔리드 영역 간의 용융 풀 역학에는 상당한 차이가 있습니다. 오버행 영역에서 용융 금속은 분말 입자 사이의 틈새로 아래로 흘러 용융 풀이 다공성 분말 베드가 제공하는 약한 지지체 아래로 가라 앉습니다. 이것은 중력과 표면 장력의 영향이 용융 풀의 결과적인 모양 / 크기를 결정하는 데 중요하며, 결과적으로 오버행 영역의 마이크로 스케일 형태의 진화에 중요합니다. 또한 분말 입자 사이의 공극, 열 조건 (예 : 에너지 흡수,2019 ; Karimi et al. 2020 ; 노래와 영 2020 ). 표면 거칠기는 (마이크로) 형상 편차를 증가시킬뿐만 아니라 주기적 하중 동안 미세 균열의 시작 지점 역할을함으로써 기계적 강도를 저하시킵니다 (Günther et al. 2018 ). 오버행 영역의 높은 표면 거칠기는 (마이크로) 정확도 / 품질에 대한 엄격한 요구 사항이있는 부품 제조에서 L-PBF의 적용을 제한합니다.

본 연구는 실험 및 시뮬레이션 연구를 사용하여 오버행 영역 (지지물없이 제작)의 미세 형상 편차 형성 메커니즘과 표면 거칠기의 기원을 체계적이고 포괄적으로 조사합니다. 결합 된 DEM-CFD 시뮬레이션 모델은 경계 트랙 윤곽, 분말 접착 및 뒤틀림 변형의 효과를 고려하여 오버행 영역의 용융 풀 역학과 표면 형태의 형성 메커니즘을 나타 내기 위해 개발되었습니다. 표면 거칠기 R의 시뮬레이션 및 단일 요인 L-PBF 인쇄 실험을 사용하여 오버행 각도의 함수로 연구됩니다. 용융 풀의 침몰과 관련된 오버행 영역에서 분말 접착의 세 가지 메커니즘이 식별되고 자세히 설명됩니다. 마지막으로, 인쇄 된 오버행 영역에서 높은 표면 거칠기 문제를 완화 할 수 있는 잠재적 솔루션에 대해 간략하게 설명합니다.

The shape and size of the L-PBF printed samples are illustrated in Figure 1
The shape and size of the L-PBF printed samples are illustrated in Figure 1
Figure 2. Borders in the overhang region depending on the overhang angle θ
Figure 2. Borders in the overhang region depending on the overhang angle θ
Figure 3. (a) Profile of the volumetric heat source, (b) the model geometry of single-track printing on a solid substrate (unit: µm), and (c) the comparison of melt pool dimensions obtained from the experiment (right half) and simulation (left half) for a calibrated optical penetration depth of 110 µm (laser power 200 W and scan speed 800 mm/s, solidified layer thickness 30 µm, powder size 10–45 µm).
Figure 3. (a) Profile of the volumetric heat source, (b) the model geometry of single-track printing on a solid substrate (unit: µm), and (c) the comparison of melt pool dimensions obtained from the experiment (right half) and simulation (left half) for a calibrated optical penetration depth of 110 µm (laser power 200 W and scan speed 800 mm/s, solidified layer thickness 30 µm, powder size 10–45 µm).
Figure 4. The model geometry of an overhang being L-PBF processed: (a) 3D view and (b) right view.
Figure 4. The model geometry of an overhang being L-PBF processed: (a) 3D view and (b) right view.
Figure 5. The cross-sectional contour of border tracks in a 45° overhang region.
Figure 5. The cross-sectional contour of border tracks in a 45° overhang region.
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).
Figure 7. The overhang contour is contributed by (a) only outer borders when θ ≤ 60° (b) both inner borders and outer borders when θ > 60°.
Figure 7. The overhang contour is contributed by (a) only outer borders when θ ≤ 60° (b) both inner borders and outer borders when θ > 60°.
Figure 8. Schematic of powder adhesion on a 45° overhang region.
Figure 8. Schematic of powder adhesion on a 45° overhang region.
Figure 9. The L-PBF printed samples with various overhang angle (a) θ = 0° (cube), (b) θ = 30°, (c) θ = 45°, (d) θ = 55° and (e) θ = 60°.
Figure 9. The L-PBF printed samples with various overhang angle (a) θ = 0° (cube), (b) θ = 30°, (c) θ = 45°, (d) θ = 55° and (e) θ = 60°.
Figure 10. Two mechanisms of powder adhesion related to the overhang angle: (a) simulation-predicted, θ = 45°; (b) simulation-predicted, θ = 60°; (c, e) optical micrographs, θ = 45°; (d, f) optical micrographs, θ = 60°. (e) and (f) are partial enlargement of (c) and (d), respectively.
Figure 10. Two mechanisms of powder adhesion related to the overhang angle: (a) simulation-predicted, θ = 45°; (b) simulation-predicted, θ = 60°; (c, e) optical micrographs, θ = 45°; (d, f) optical micrographs, θ = 60°. (e) and (f) are partial enlargement of (c) and (d), respectively.
Figure 11. Simulation-predicted surface morphology in the overhang region at different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45°, (d) θ = 60° and (e) θ = 80° (Blue solid lines: simulation-predicted contour; red dashed lines: the planar profile of designed overhang region specified by the overhang angles).
Figure 11. Simulation-predicted surface morphology in the overhang region at different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45°, (d) θ = 60° and (e) θ = 80° (Blue solid lines: simulation-predicted contour; red dashed lines: the planar profile of designed overhang region specified by the overhang angles).
Figure 12. Effect of overhang angle on surface roughness Ra in overhang regions
Figure 12. Effect of overhang angle on surface roughness Ra in overhang regions
Figure 13. Surface morphology of L-PBF printed overhang regions with different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45° and (d) θ = 60° (overhang border parameters: P = 100 W, v = 1000 mm/s).
Figure 13. Surface morphology of L-PBF printed overhang regions with different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45° and (d) θ = 60° (overhang border parameters: P = 100 W, v = 1000 mm/s).
Figure 14. Effect of (a) laser power (scan speed = 1000 mm/s) and (b) scan speed (lase power = 100 W) on surface roughness Ra in overhang regions (θ = 45°, laser power and scan speed referred to overhang border parameters, and the other process parameters are listed in Table 2).
Figure 14. Effect of (a) laser power (scan speed = 1000 mm/s) and (b) scan speed (lase power = 100 W) on surface roughness Ra in overhang regions (θ = 45°, laser power and scan speed referred to overhang border parameters, and the other process parameters are listed in Table 2).

References

  • Cai, Chao, Chrupcala Radoslaw, Jinliang Zhang, Qian Yan, Shifeng Wen, Bo Song, and Yusheng Shi. 2019. “In-Situ Preparation and Formation of TiB/Ti-6Al-4V Nanocomposite via Laser Additive Manufacturing: Microstructure Evolution and Tribological Behavior.” Powder Technology 342: 73–84. doi:10.1016/j.powtec.2018.09.088. [Crossref], [Web of Science ®], [Google Scholar]
  • Cai, Chao, Wei Shian Tey, Jiayao Chen, Wei Zhu, Xingjian Liu, Tong Liu, Lihua Zhao, and Kun Zhou. 2021. “Comparative Study on 3D Printing of Polyamide 12 by Selective Laser Sintering and Multi Jet Fusion.” Journal of Materials Processing Technology 288 (August 2020): 116882. doi:10.1016/j.jmatprotec.2020.116882. [Crossref], [Web of Science ®], [Google Scholar]
  • Cai, Chao, Xu Wu, Wan Liu, Wei Zhu, Hui Chen, Jasper Dong Qiu Chua, Chen Nan Sun, Jie Liu, Qingsong Wei, and Yusheng Shi. 2020. “Selective Laser Melting of Near-α Titanium Alloy Ti-6Al-2Zr-1Mo-1V: Parameter Optimization, Heat Treatment and Mechanical Performance.” Journal of Materials Science and Technology 57: 51–64. doi:10.1016/j.jmst.2020.05.004. [Crossref], [Web of Science ®], [Google Scholar]
  • Charles, Amal, Ahmed Elkaseer, Lore Thijs, and Steffen G. Scholz. 2020. “Dimensional Errors Due to Overhanging Features in Laser Powder Bed Fusion Parts Made of Ti-6Al-4V.” Applied Sciences 10 (7): 2416. doi:10.3390/app10072416. [Crossref], [Google Scholar]
  • Chatham, Camden A., Timothy E. Long, and Christopher B. Williams. 2019. “A Review of the Process Physics and Material Screening Methods for Polymer Powder Bed Fusion Additive Manufacturing.” Progress in Polymer Science 93: 68–95. doi:10.1016/j.progpolymsci.2019.03.003. [Crossref], [Web of Science ®], [Google Scholar]
  • Du, Yang, Xinyu You, Fengbin Qiao, Lijie Guo, and Zhengwu Liu. 2019. “A Model for Predicting the Temperature Field during Selective Laser Melting.” Results in Physics 12 (November 2018): 52–60. doi:10.1016/j.rinp.2018.11.031. [Crossref], [Web of Science ®], [Google Scholar]
  • Duval-Chaneac, M. S., S. Han, C. Claudin, F. Salvatore, J. Bajolet, and J. Rech. 2018. “Experimental Study on Finishing of Internal Laser Melting (SLM) Surface with Abrasive Flow Machining (AFM).” Precision Engineering 54 (July 2017): 1–6. doi:10.1016/j.precisioneng.2018.03.006. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Shijie Chen, Amar M. Kamat, Ru Zhang, Mingji Huang, and Liangcai Hu. 2020. “Investigation on Shape Deviation of Horizontal Interior Circular Channels Fabricated by Laser Powder Bed Fusion.” Additive Manufacturing 36 (December): 101585. doi:10.1016/j.addma.2020.101585. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Chuanzhen Huang, Jun Wang, Hongtao Zhu, Peng Yao, and Zhanqiang Liu. 2017. “An Analytical Model for the Prediction of Temperature Distribution and Evolution in Hybrid Laser-Waterjet Micro-Machining.” Precision Engineering 47: 33–45. doi:10.1016/j.precisioneng.2016.07.002. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Amar M. Kamat, and Yutao Pei. 2021. “Design and Fabrication of Conformal Cooling Channels in Molds: Review and Progress Updates.” International Journal of Heat and Mass Transfer. doi:10.1016/j.ijheatmasstransfer.2021.121082. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Flow-3D V11.2 Documentation. 2016. Flow Science, Inc. [Crossref], [Google Scholar]
  • Foroozmehr, Ali, Mohsen Badrossamay, Ehsan Foroozmehr, and Sa’id Golabi. 2016. “Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed.” Materials and Design 89: 255–263. doi:10.1016/j.matdes.2015.10.002. [Crossref], [Web of Science ®], [Google Scholar]
  • “Geometrical Product Specifications (GPS) — Surface Texture: Profile Method — Rules and Procedures for the Assessment of Surface Texture (ISO 4288).” 1996. International Organization for Standardization. https://www.iso.org/standard/2096.html. [Google Scholar]
  • Günther, Johannes, Stefan Leuders, Peter Koppa, Thomas Tröster, Sebastian Henkel, Horst Biermann, and Thomas Niendorf. 2018. “On the Effect of Internal Channels and Surface Roughness on the High-Cycle Fatigue Performance of Ti-6Al-4V Processed by SLM.” Materials & Design 143: 1–11. doi:10.1016/j.matdes.2018.01.042. [Crossref], [Web of Science ®], [Google Scholar]
  • Hopkinson, Neil, and Phill Dickens. 2000. “Conformal Cooling and Heating Channels Using Laser Sintered Tools.” In Solid Freeform Fabrication Conference, 490–497. Texas. doi:10.26153/tsw/3075. [Crossref], [Google Scholar]
  • Hu, Zhiheng, Haihong Zhu, Changchun Zhang, Hu Zhang, Ting Qi, and Xiaoyan Zeng. 2018. “Contact Angle Evolution during Selective Laser Melting.” Materials and Design 139: 304–313. doi:10.1016/j.matdes.2017.11.002. [Crossref], [Web of Science ®], [Google Scholar]
  • Hu, Cheng, Kejia Zhuang, Jian Weng, and Donglin Pu. 2019. “Three-Dimensional Analytical Modeling of Cutting Temperature for Round Insert Considering Semi-Infinite Boundary and Non-Uniform Heat Partition.” International Journal of Mechanical Sciences 155 (October 2018): 536–553. doi:10.1016/j.ijmecsci.2019.03.019. [Crossref], [Web of Science ®], [Google Scholar]
  • Huang, Yuze, Mir Behrad Khamesee, and Ehsan Toyserkani. 2019. “A New Physics-Based Model for Laser Directed Energy Deposition (Powder-Fed Additive Manufacturing): From Single-Track to Multi-Track and Multi-Layer.” Optics & Laser Technology 109 (August 2018): 584–599. doi:10.1016/j.optlastec.2018.08.015. [Crossref], [Web of Science ®], [Google Scholar]
  • Kadirgama, K., W. S. W. Harun, F. Tarlochan, M. Samykano, D. Ramasamy, Mohd Zaidi Azir, and H. Mehboob. 2018. “Statistical and Optimize of Lattice Structures with Selective Laser Melting (SLM) of Ti6AL4V Material.” International Journal of Advanced Manufacturing Technology 97 (1–4): 495–510. doi:10.1007/s00170-018-1913-1. [Crossref], [Web of Science ®], [Google Scholar]
  • Kamat, Amar M, and Yutao Pei. 2019. “An Analytical Method to Predict and Compensate for Residual Stress-Induced Deformation in Overhanging Regions of Internal Channels Fabricated Using Powder Bed Fusion.” Additive Manufacturing 29 (March): 100796. doi:10.1016/j.addma.2019.100796. [Crossref], [Web of Science ®], [Google Scholar]
  • Kamath, Chandrika, Bassem El-Dasher, Gilbert F. Gallegos, Wayne E. King, and Aaron Sisto. 2014. “Density of Additively-Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers up to 400 W.” International Journal of Advanced Manufacturing Technology 74 (1–4): 65–78. doi:10.1007/s00170-014-5954-9. [Crossref], [Web of Science ®], [Google Scholar]
  • Karimi, J., C. Suryanarayana, I. Okulov, and K. G. Prashanth. 2020. “Selective Laser Melting of Ti6Al4V: Effect of Laser Re-Melting.” Materials Science and Engineering A (July): 140558. doi:10.1016/j.msea.2020.140558. [Crossref], [Web of Science ®], [Google Scholar]
  • Khairallah, Saad A., and Andy Anderson. 2014. “Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder.” Journal of Materials Processing Technology 214 (11): 2627–2636. doi:10.1016/j.jmatprotec.2014.06.001. [Crossref], [Web of Science ®], [Google Scholar]
  • Khairallah, Saad A., Andrew T. Anderson, Alexander Rubenchik, and Wayne E. King. 2016. “Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones.” Edited by Adedeji B. Badiru, Vhance V. Valencia, and David Liu. Acta Materialia 108 (April): 36–45. doi:10.1016/j.actamat.2016.02.014. [Crossref], [Web of Science ®], [Google Scholar]
  • Kuo, C. N., C. K. Chua, P. C. Peng, Y. W. Chen, S. L. Sing, S. Huang, and Y. L. Su. 2020. “Microstructure Evolution and Mechanical Property Response via 3D Printing Parameter Development of Al–Sc Alloy.” Virtual and Physical Prototyping 15 (1): 120–129. doi:10.1080/17452759.2019.1698967. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Le, K. Q., C. H. Wong, K. H. G. Chua, C. Tang, and H. Du. 2020. “Discontinuity of Overhanging Melt Track in Selective Laser Melting Process.” International Journal of Heat and Mass Transfer 162 (December): 120284. doi:10.1016/j.ijheatmasstransfer.2020.120284. [Crossref], [Web of Science ®], [Google Scholar]
  • Lee, Y. S., and W. Zhang. 2016. “Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion.” Additive Manufacturing 12: 178–188. doi:10.1016/j.addma.2016.05.003. [Crossref], [Web of Science ®], [Google Scholar]
  • Leitz, K. H., P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L. S. Sigl. 2017. “Multi-Physical Simulation of Selective Laser Melting.” Metal Powder Report 72 (5): 331–338. doi:10.1016/j.mprp.2016.04.004. [Crossref], [Google Scholar]
  • Li, Jian, Jing Hu, Yi Zhu, Xiaowen Yu, Mengfei Yu, and Huayong Yang. 2020. “Surface Roughness Control of Root Analogue Dental Implants Fabricated Using Selective Laser Melting.” Additive Manufacturing 34 (September 2019): 101283. doi:10.1016/j.addma.2020.101283. [Crossref], [Web of Science ®], [Google Scholar]
  • Li, Yingli, Kun Zhou, Pengfei Tan, Shu Beng Tor, Chee Kai Chua, and Kah Fai Leong. 2018. “Modeling Temperature and Residual Stress Fields in Selective Laser Melting.” International Journal of Mechanical Sciences 136 (February): 24–35. doi:10.1016/j.ijmecsci.2017.12.001. [Crossref], [Web of Science ®], [Google Scholar]
  • Mazur, MacIej, Martin Leary, Matthew McMillan, Joe Elambasseril, and Milan Brandt. 2016. “SLM Additive Manufacture of H13 Tool Steel with Conformal Cooling and Structural Lattices.” Rapid Prototyping Journal 22 (3): 504–518. doi:10.1108/RPJ-06-2014-0075. [Crossref], [Web of Science ®], [Google Scholar]
  • Mingear, Jacob, Bing Zhang, Darren Hartl, and Alaa Elwany. 2019. “Effect of Process Parameters and Electropolishing on the Surface Roughness of Interior Channels in Additively Manufactured Nickel-Titanium Shape Memory Alloy Actuators.” Additive Manufacturing 27 (October 2018): 565–575. doi:10.1016/j.addma.2019.03.027. [Crossref], [Web of Science ®], [Google Scholar]
  • Pakkanen, Jukka, Flaviana Calignano, Francesco Trevisan, Massimo Lorusso, Elisa Paola Ambrosio, Diego Manfredi, and Paolo Fino. 2016. “Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys.” Metallurgical and Materials Transactions A 47 (8): 3837–3844. doi:10.1007/s11661-016-3478-7. [Crossref], [Web of Science ®], [Google Scholar]
  • Patterson, Albert E., Sherri L. Messimer, and Phillip A. Farrington. 2017. “Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need.” Technologies 5 (4): 15. doi:10.3390/technologies5020015. [Crossref], [Web of Science ®], [Google Scholar]
  • Roberts, I. A., C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors. 2009. “A Three-Dimensional Finite Element Analysis of the Temperature Field during Laser Melting of Metal Powders in Additive Layer Manufacturing.” International Journal of Machine Tools and Manufacture 49 (12–13): 916–923. doi:10.1016/j.ijmachtools.2009.07.004. [Crossref], [Web of Science ®], [Google Scholar]
  • Shrestha, Subin, and Kevin Chou. 2018. “Computational Analysis of Thermo-Fluid Dynamics with Metallic Powder in SLM.” In CFD Modeling and Simulation in Materials Processing 2018, edited by Laurentiu Nastac, Koulis Pericleous, Adrian S. Sabau, Lifeng Zhang, and Brian G. Thomas, 85–95. Cham, Switzerland: Springer Nature. doi:10.1007/978-3-319-72059-3_9. [Crossref], [Google Scholar]
  • Sing, S. L., and W. Y. Yeong. 2020. “Laser Powder Bed Fusion for Metal Additive Manufacturing: Perspectives on Recent Developments.” Virtual and Physical Prototyping 15 (3): 359–370. doi:10.1080/17452759.2020.1779999. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Šmilauer, Václav, Emanuele Catalano, Bruno Chareyre, Sergei Dorofeenko, Jérôme Duriez, Nolan Dyck, Jan Eliáš, et al. 2015. Yade Documentation. 2nd ed. The Yade Project. doi:10.5281/zenodo.34073. [Crossref], [Google Scholar]
  • Tan, Pengfei, Fei Shen, Biao Li, and Kun Zhou. 2019. “A Thermo-Metallurgical-Mechanical Model for Selective Laser Melting of Ti6Al4V.” Materials & Design 168 (April): 107642. doi:10.1016/j.matdes.2019.107642. [Crossref], [Web of Science ®], [Google Scholar]
  • Tan, Lisa Jiaying, Wei Zhu, and Kun Zhou. 2020. “Recent Progress on Polymer Materials for Additive Manufacturing.” Advanced Functional Materials 30 (43): 1–54. doi:10.1002/adfm.202003062. [Crossref], [Web of Science ®], [Google Scholar]
  • Wang, Xiaoqing, and Kevin Chou. 2018. “Effect of Support Structures on Ti-6Al-4V Overhang Parts Fabricated by Powder Bed Fusion Electron Beam Additive Manufacturing.” Journal of Materials Processing Technology 257 (February): 65–78. doi:10.1016/j.jmatprotec.2018.02.038. [Crossref], [Web of Science ®], [Google Scholar]
  • Wang, Di, Yongqiang Yang, Ziheng Yi, and Xubin Su. 2013. “Research on the Fabricating Quality Optimization of the Overhanging Surface in SLM Process.” International Journal of Advanced Manufacturing Technology 65 (9–12): 1471–1484. doi:10.1007/s00170-012-4271-4. [Crossref], [Web of Science ®], [Google Scholar]
  • Wen, Peng, Maximilian Voshage, Lucas Jauer, Yanzhe Chen, Yu Qin, Reinhart Poprawe, and Johannes Henrich Schleifenbaum. 2018. “Laser Additive Manufacturing of Zn Metal Parts for Biodegradable Applications: Processing, Formation Quality and Mechanical Properties.” Materials and Design 155: 36–45. doi:10.1016/j.matdes.2018.05.057. [Crossref], [Web of Science ®], [Google Scholar]
  • Wu, Yu-che, Cheng-hung San, Chih-hsiang Chang, Huey-jiuan Lin, Raed Marwan, Shuhei Baba, and Weng-Sing Hwang. 2018. “Numerical Modeling of Melt-Pool Behavior in Selective Laser Melting with Random Powder Distribution and Experimental Validation.” Journal of Materials Processing Technology 254 (November 2017): 72–78. doi:10.1016/j.jmatprotec.2017.11.032. [Crossref], [Web of Science ®], [Google Scholar]
  • Yadroitsev, I., P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov. 2013. “Energy Input Effect on Morphology and Microstructure of Selective Laser Melting Single Track from Metallic Powder.” Journal of Materials Processing Technology 213 (4): 606–613. doi:10.1016/j.jmatprotec.2012.11.014. [Crossref], [Web of Science ®], [Google Scholar]
  • Yu, Wenhui, Swee Leong Sing, Chee Kai Chua, and Xuelei Tian. 2019. “Influence of Re-Melting on Surface Roughness and Porosity of AlSi10Mg Parts Fabricated by Selective Laser Melting.” Journal of Alloys and Compounds 792: 574–581. doi:10.1016/j.jallcom.2019.04.017. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhang, Dongyun, Pudan Zhang, Zhen Liu, Zhe Feng, Chengjie Wang, and Yanwu Guo. 2018. “Thermofluid Field of Molten Pool and Its Effects during Selective Laser Melting (SLM) of Inconel 718 Alloy.” Additive Manufacturing 21 (100): 567–578. doi:10.1016/j.addma.2018.03.031. [Crossref], [Web of Science ®], [Google Scholar]
Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).

Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

1Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain
2William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W. Woodruff Ave., Columbus, OH 43210, USA
*Author to whom correspondence should be addressed.
Sensors 202020(11), 3030; https://doi.org/10.3390/s20113030
Received: 16 April 2020 / Revised: 21 May 2020 / Accepted: 25 May 2020 / Published: 27 May 2020
(This article belongs to the Special Issue Lab-on-a-Chip and Microfluidic Sensors)

Abstract

The use of functionalized magnetic particles for the detection or separation of multiple chemicals and biomolecules from biofluids continues to attract significant attention. After their incubation with the targeted substances, the beads can be magnetically recovered to perform analysis or diagnostic tests. Particle recovery with permanent magnets in continuous-flow microdevices has gathered great attention in the last decade due to the multiple advantages of microfluidics. As such, great efforts have been made to determine the magnetic and fluidic conditions for achieving complete particle capture; however, less attention has been paid to the effect of the channel geometry on the system performance, although it is key for designing systems that simultaneously provide high particle recovery and flow rates. Herein, we address the optimization of Y-Y-shaped microchannels, where magnetic beads are separated from blood and collected into a buffer stream by applying an external magnetic field. The influence of several geometrical features (namely cross section shape, thickness, length, and volume) on both bead recovery and system throughput is studied. For that purpose, we employ an experimentally validated Computational Fluid Dynamics (CFD) numerical model that considers the dominant forces acting on the beads during separation. Our results indicate that rectangular, long devices display the best performance as they deliver high particle recovery and high throughput. Thus, this methodology could be applied to the rational design of lab-on-a-chip devices for any magnetically driven purification, enrichment or isolation.

Keywords: particle magnetophoresisCFDcross sectionchip fabrication

Korea Abstract

생체 유체에서 여러 화학 물질과 생체 분자의 검출 또는 분리를위한 기능화 된 자성 입자의 사용은 계속해서 상당한 관심을 받고 있습니다. 표적 물질과 함께 배양 한 후 비드를 자기 적으로 회수하여 분석 또는 진단 테스트를 수행 할 수 있습니다. 연속 흐름 마이크로 장치에서 영구 자석을 사용한 입자 회수는 마이크로 유체의 여러 장점으로 인해 지난 10 년 동안 큰 관심을 모았습니다. 

따라서 완전한 입자 포획을 달성하기 위한 자기 및 유체 조건을 결정하기 위해 많은 노력을 기울였습니다. 그러나 높은 입자 회수율과 유속을 동시에 제공하는 시스템을 설계하는 데있어 핵심이기는 하지만 시스템 성능에 대한 채널 형상의 영향에 대해서는 덜주의를 기울였습니다. 

여기에서 우리는 자기 비드가 혈액에서 분리되고 외부 자기장을 적용하여 버퍼 스트림으로 수집되는 YY 모양의 마이크로 채널의 최적화를 다룹니다. 비드 회수 및 시스템 처리량에 대한 여러 기하학적 특징 (즉, 단면 형상, 두께, 길이 및 부피)의 영향을 연구합니다. 

이를 위해 분리 중에 비드에 작용하는 지배적인 힘을 고려하는 실험적으로 검증 된 CFD (Computational Fluid Dynamics) 수치 모델을 사용합니다. 우리의 결과는 직사각형의 긴 장치가 높은 입자 회수율과 높은 처리량을 제공하기 때문에 최고의 성능을 보여줍니다. 

따라서 이 방법론은 자기 구동 정제, 농축 또는 분리를 위한 랩온어 칩 장치의 합리적인 설계에 적용될 수 있습니다.

Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).
Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).
Figure 2. (a) Channel-magnet configuration and (b–d) magnetic force distribution in the channel midplane for 2 mm, 5 mm and 10 mm long rectangular (left) and U-shaped (right) devices.
Figure 2. (a) Channel-magnet configuration and (b–d) magnetic force distribution in the channel midplane for 2 mm, 5 mm and 10 mm long rectangular (left) and U-shaped (right) devices.
Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and U-shaped (right) cross section channels, and (b) particle location in these cross sections.
Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and U-shaped (right) cross section channels, and (b) particle location in these cross sections.
Figure 4. Influence of fluid flow rate on particle recovery when the applied magnetic force is (a) different and (b) equal in U-shaped and rectangular cross section microdevices.
Figure 4. Influence of fluid flow rate on particle recovery when the applied magnetic force is (a) different and (b) equal in U-shaped and rectangular cross section microdevices.
Figure 5. Magnetic bead capture as a function of fluid flow rate for all of the studied geometries.
Figure 5. Magnetic bead capture as a function of fluid flow rate for all of the studied geometries.
Figure 6. Influence of (a) magnetic and fluidic forces (J parameter) and (b) channel geometry (θ parameter) on particle recovery. Note that U-2mm does not accurately fit a line.
Figure 6. Influence of (a) magnetic and fluidic forces (J parameter) and (b) channel geometry (θ parameter) on particle recovery. Note that U-2mm does not accurately fit a line.
Figure 7. Dependence of bead capture on the (a) functional channel volume and (b) particle residence time (tres). Note that in the curve fitting expressions V represents the functional channel volume and that U-2mm does not accurately fit a line.
Figure 7. Dependence of bead capture on the (a) functional channel volume and (b) particle residence time (tres). Note that in the curve fitting expressions V represents the functional channel volume and that U-2mm does not accurately fit a line.

References

  1. Gómez-Pastora, J.; Xue, X.; Karampelas, I.H.; Bringas, E.; Furlani, E.P.; Ortiz, I. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Sep. Purif. Technol. 2017172, 16–31. [Google Scholar] [CrossRef]
  2. Wise, N.; Grob, T.; Morten, K.; Thompson, I.; Sheard, S. Magnetophoretic velocities of superparamagnetic particles, agglomerates and complexes. J. Magn. Magn. Mater. 2015384, 328–334. [Google Scholar] [CrossRef]
  3. Khashan, S.A.; Elnajjar, E.; Haik, Y. CFD simulation of the magnetophoretic separation in a microchannel. J. Magn. Magn. Mater. 2011323, 2960–2967. [Google Scholar] [CrossRef]
  4. Khashan, S.A.; Furlani, E.P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 2014125, 311–318. [Google Scholar] [CrossRef]
  5. Furlani, E.P. Magnetic biotransport: Analysis and applications. Materials 20103, 2412–2446. [Google Scholar] [CrossRef]
  6. Gómez-Pastora, J.; Bringas, E.; Ortiz, I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans. 201647, 241–246. [Google Scholar]
  7. Gómez-Pastora, J.; Bringas, E.; Lázaro-Díez, M.; Ramos-Vivas, J.; Ortiz, I. The reverse of controlled release: Controlled sequestration of species and biotoxins into nanoparticles (NPs). In Drug Delivery Systems; Stroeve, P., Mahmoudi, M., Eds.; World Scientific: Hackensack, NJ, USA, 2017; pp. 207–244. ISBN 9789813201057. [Google Scholar]
  8. Ruffert, C. Magnetic bead-magic bullet. Micromachines 20167, 21. [Google Scholar] [CrossRef]
  9. Yáñez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Magnetic particles coupled to disposable screen printed transducers for electrochemical biosensing. Sensors 201616, 1585. [Google Scholar] [CrossRef]
  10. Schrittwieser, S.; Pelaz, B.; Parak, W.J.; Lentijo-Mozo, S.; Soulantica, K.; Dieckhoff, J.; Ludwig, F.; Guenther, A.; Tschöpe, A.; Schotter, J. Homogeneous biosensing based on magnetic particle labels. Sensors 201616, 828. [Google Scholar] [CrossRef]
  11. He, J.; Huang, M.; Wang, D.; Zhang, Z.; Li, G. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal. 2014101, 84–101. [Google Scholar] [CrossRef]
  12. Ha, Y.; Ko, S.; Kim, I.; Huang, Y.; Mohanty, K.; Huh, C.; Maynard, J.A. Recent advances incorporating superparamagnetic nanoparticles into immunoassays. ACS Appl. Nano Mater. 20181, 512–521. [Google Scholar] [CrossRef]
  13. Gómez-Pastora, J.; González-Fernández, C.; Fallanza, M.; Bringas, E.; Ortiz, I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J. 2018344, 487–497. [Google Scholar] [CrossRef]
  14. Gale, B.K.; Jafek, A.R.; Lambert, C.J.; Goenner, B.L.; Moghimifam, H.; Nze, U.C.; Kamarapu, S.K. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 20183, 60. [Google Scholar] [CrossRef]
  15. Nanobiotechnology; Concepts, Applications and Perspectives; Niemeyer, C.M.; Mirkin, C.A. (Eds.) Wiley-VCH: Weinheim, Germany, 2004; ISBN 3527305068. [Google Scholar]
  16. Khashan, S.A.; Dagher, S.; Alazzam, A.; Mathew, B.; Hilal-Alnaqbi, A. Microdevice for continuous flow magnetic separation for bioengineering applications. J. Micromech. Microeng. 201727, 055016. [Google Scholar] [CrossRef]
  17. Basauri, A.; Gomez-Pastora, J.; Fallanza, M.; Bringas, E.; Ortiz, I. Predictive model for the design of reactive micro-separations. Sep. Purif. Technol. 2019209, 900–907. [Google Scholar] [CrossRef]
  18. Abdollahi, P.; Karimi-Sabet, J.; Moosavian, M.A.; Amini, Y. Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables. Sep. Purif. Technol. 2020231, 115875. [Google Scholar] [CrossRef]
  19. Khashan, S.A.; Alazzam, A.; Furlani, E. A novel design for a microfluidic magnetophoresis system: Computational study. In Proceedings of the 12th International Symposium on Fluid Control, Measurement and Visualization (FLUCOME2013), Nara, Japan, 18–23 November 2013. [Google Scholar]
  20. Pamme, N. Magnetism and microfluidics. Lab Chip 20066, 24–38. [Google Scholar] [CrossRef]
  21. Gómez-Pastora, J.; Amiri Roodan, V.; Karampelas, I.H.; Alorabi, A.Q.; Tarn, M.D.; Iles, A.; Bringas, E.; Paunov, V.N.; Pamme, N.; Furlani, E.P.; et al. Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers. J. Phys. Chem. C 2019123, 10065–10080. [Google Scholar] [CrossRef]
  22. Gómez-Pastora, J.; Karampelas, I.H.; Bringas, E.; Furlani, E.P.; Ortiz, I. Numerical analysis of bead magnetophoresis from flowing blood in a continuous-flow microchannel: Implications to the bead-fluid interactions. Sci. Rep. 20199, 7265. [Google Scholar] [CrossRef]
  23. Tarn, M.D.; Pamme, N. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. In Microchip Diagnostics Methods and Protocols; Taly, V., Viovy, J.L., Descroix, S., Eds.; Humana Press: New York, NY, USA, 2017; pp. 69–83. [Google Scholar]
  24. Phurimsak, C.; Tarn, M.D.; Peyman, S.A.; Greenman, J.; Pamme, N. On-chip determination of c-reactive protein using magnetic particles in continuous flow. Anal. Chem. 201486, 10552–10559. [Google Scholar] [CrossRef]
  25. Wu, X.; Wu, H.; Hu, Y. Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid. Nanofluid. 201111, 11–24. [Google Scholar] [CrossRef]
  26. Vojtíšek, M.; Tarn, M.D.; Hirota, N.; Pamme, N. Microfluidic devices in superconducting magnets: On-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid. Nanofluid. 201213, 625–635. [Google Scholar] [CrossRef]
  27. Gómez-Pastora, J.; González-Fernández, C.; Real, E.; Iles, A.; Bringas, E.; Furlani, E.P.; Ortiz, I. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip 201818, 1593–1606. [Google Scholar] [CrossRef] [PubMed]
  28. Forbes, T.P.; Forry, S.P. Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells. Lab Chip 201212, 1471–1479. [Google Scholar] [CrossRef]
  29. Nandy, K.; Chaudhuri, S.; Ganguly, R.; Puri, I.K. Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices. J. Magn. Magn. Mater. 2008320, 1398–1405. [Google Scholar] [CrossRef]
  30. Plouffe, B.D.; Lewis, L.H.; Murthy, S.K. Computational design optimization for microfluidic magnetophoresis. Biomicrofluidics 20115, 013413. [Google Scholar] [CrossRef] [PubMed]
  31. Hale, C.; Darabi, J. Magnetophoretic-based microfluidic device for DNA isolation. Biomicrofluidics 20148, 044118. [Google Scholar] [CrossRef] [PubMed]
  32. Becker, H.; Gärtner, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 200021, 12–26. [Google Scholar] [CrossRef]
  33. Pekas, N.; Zhang, Q.; Nannini, M.; Juncker, D. Wet-etching of structures with straight facets and adjustable taper into glass substrates. Lab Chip 201010, 494–498. [Google Scholar] [CrossRef]
  34. Wang, T.; Chen, J.; Zhou, T.; Song, L. Fabricating microstructures on glass for microfluidic chips by glass molding process. Micromachines 20189, 269. [Google Scholar] [CrossRef]
  35. Castaño-Álvarez, M.; Pozo Ayuso, D.F.; García Granda, M.; Fernández-Abedul, M.T.; Rodríguez García, J.; Costa-García, A. Critical points in the fabrication of microfluidic devices on glass substrates. Sens. Actuators B Chem. 2008130, 436–448. [Google Scholar] [CrossRef]
  36. Prakash, S.; Kumar, S. Fabrication of microchannels: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015229, 1273–1288. [Google Scholar] [CrossRef]
  37. Leester-Schädel, M.; Lorenz, T.; Jürgens, F.; Ritcher, C. Fabrication of Microfluidic Devices. In Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells; Dietzel, A., Ed.; Springer: Basel, Switzerland, 2016; pp. 23–57. ISBN 9783319269207. [Google Scholar]
  38. Bartlett, N.W.; Wood, R.J. Comparative analysis of fabrication methods for achieving rounded microchannels in PDMS. J. Micromech. Microeng. 201626, 115013. [Google Scholar] [CrossRef]
  39. Ng, P.F.; Lee, K.I.; Yang, M.; Fei, B. Fabrication of 3D PDMS microchannels of adjustable cross-sections via versatile gel templates. Polymers 201911, 64. [Google Scholar] [CrossRef] [PubMed]
  40. Furlani, E.P.; Sahoo, Y.; Ng, K.C.; Wortman, J.C.; Monk, T.E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices 20079, 451–463. [Google Scholar] [CrossRef]
  41. Tarn, M.D.; Peyman, S.A.; Robert, D.; Iles, A.; Wilhelm, C.; Pamme, N. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater. 2009321, 4115–4122. [Google Scholar] [CrossRef]
  42. Furlani, E.P. Permanent Magnet and Electromechanical Devices; Materials, Analysis and Applications; Academic Press: Waltham, MA, USA, 2001. [Google Scholar]
  43. White, F.M. Viscous Fluid Flow; McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
  44. Mathew, B.; Alazzam, A.; El-Khasawneh, B.; Maalouf, M.; Destgeer, G.; Sung, H.J. Model for tracing the path of microparticles in continuous flow microfluidic devices for 2D focusing via standing acoustic waves. Sep. Purif. Technol. 2015153, 99–107. [Google Scholar] [CrossRef]
  45. Furlani, E.J.; Furlani, E.P. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J. Magn. Magn. Mater. 2007312, 187–193. [Google Scholar] [CrossRef]
  46. Furlani, E.P.; Ng, K.C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E 200673, 061919. [Google Scholar] [CrossRef]
  47. Eibl, R.; Eibl, D.; Pörtner, R.; Catapano, G.; Czermak, P. Cell and Tissue Reaction Engineering; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
  48. Pamme, N.; Eijkel, J.C.T.; Manz, A. On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. J. Magn. Magn. Mater. 2006307, 237–244. [Google Scholar] [CrossRef]
  49. Alorabi, A.Q.; Tarn, M.D.; Gómez-Pastora, J.; Bringas, E.; Ortiz, I.; Paunov, V.N.; Pamme, N. On-chip polyelectrolyte coating onto magnetic droplets-Towards continuous flow assembly of drug delivery capsules. Lab Chip 201717, 3785–3795. [Google Scholar] [CrossRef]
  50. Zhang, H.; Guo, H.; Chen, Z.; Zhang, G.; Li, Z. Application of PECVD SiC in glass micromachining. J. Micromech. Microeng. 200717, 775–780. [Google Scholar] [CrossRef]
  51. Mourzina, Y.; Steffen, A.; Offenhäusser, A. The evaporated metal masks for chemical glass etching for BioMEMS. Microsyst. Technol. 200511, 135–140. [Google Scholar] [CrossRef]
  52. Mata, A.; Fleischman, A.J.; Roy, S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 200616, 276–284. [Google Scholar] [CrossRef]
  53. Su, N. 8 2000 Negative Tone Photoresist Formulations 2002–2025; MicroChem Corporation: Newton, MA, USA, 2002. [Google Scholar]
  54. Su, N. 8 2000 Negative Tone Photoresist Formulations 2035–2100; MicroChem Corporation: Newton, MA, USA, 2002. [Google Scholar]
  55. Fu, C.; Hung, C.; Huang, H. A novel and simple fabrication method of embedded SU-8 micro channels by direct UV lithography. J. Phys. Conf. Ser. 200634, 330–335. [Google Scholar] [CrossRef]
  56. Kazoe, Y.; Yamashiro, I.; Mawatari, K.; Kitamori, T. High-pressure acceleration of nanoliter droplets in the gas phase in a microchannel. Micromachines 20167, 142. [Google Scholar] [CrossRef]
  57. Sharp, K.V.; Adrian, R.J.; Santiago, J.G.; Molho, J.I. Liquid flows in microchannels. In MEMS: Introduction and Fundamentals; Gad-el-Hak, M., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 10-1–10-46. ISBN 9781420036572. [Google Scholar]
  58. Oh, K.W.; Lee, K.; Ahn, B.; Furlani, E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip 201212, 515–545. [Google Scholar] [CrossRef]
  59. Bruus, H. Theoretical Microfluidics; Oxford University Press: New York, NY, USA, 2008; ISBN 9788578110796. [Google Scholar]
  60. Beebe, D.J.; Mensing, G.A.; Walker, G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 20024, 261–286. [Google Scholar] [CrossRef] [PubMed]
  61. Yalikun, Y.; Tanaka, Y. Large-scale integration of all-glass valves on a microfluidic device. Micromachines 20167, 83. [Google Scholar] [CrossRef] [PubMed]
  62. Van Heeren, H.; Verhoeven, D.; Atkins, T.; Tzannis, A.; Becker, H.; Beusink, W.; Chen, P. Design Guideline for Microfluidic Device and Component Interfaces (Part 2), Version 3; Available online: http://www.makefluidics.com/en/design-guideline?id=7 (accessed on 9 March 2020).
  63. Scheuble, N.; Iles, A.; Wootton, R.C.R.; Windhab, E.J.; Fischer, P.; Elvira, K.S. Microfluidic technique for the simultaneous quantification of emulsion instabilities and lipid digestion kinetics. Anal. Chem. 201789, 9116–9123. [Google Scholar] [CrossRef] [PubMed]
  64. Lynch, E.C. Red blood cell damage by shear stress. Biophys. J. 197212, 257–273. [Google Scholar]
  65. Paul, R.; Apel, J.; Klaus, S.; Schügner, F.; Schwindke, P.; Reul, H. Shear stress related blood damage in laminar Couette flow. Artif. Organs 200327, 517–529. [Google Scholar] [CrossRef] [PubMed]
  66. Gómez-Pastora, J.; Karampelas, I.H.; Xue, X.; Bringas, E.; Furlani, E.P.; Ortiz, I. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: Theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C 2017121, 7466–7477. [Google Scholar] [CrossRef]
  67. Lim, J.; Yeap, S.P.; Leow, C.H.; Toh, P.Y.; Low, S.C. Magnetophoresis of iron oxide nanoparticles at low field gradient: The role of shape anisotropy. J. Colloid Interface Sci. 2014421, 170–177. [Google Scholar] [CrossRef] [PubMed]
  68. Culbertson, C.T.; Sibbitts, J.; Sellens, K.; Jia, S. Fabrication of Glass Microfluidic Devices. In Microfluidic Electrophoresis: Methods and Protocols; Dutta, D., Ed.; Humana Press: New York, NY, USA, 2019; pp. 1–12. ISBN 978-1-4939-8963-8. [Google Scholar]
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.

Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions

Scientific Reports volume 9, Article number: 7265 (2019) Cite this article

Abstract

이 연구에서는 비드 운동과 유체 흐름에 미치는 영향에 대한 자세한 분석을 제공하기 위해 연속 흐름 마이크로 채널 내부의 비드 자기 영동에 대한 수치 흐름 중심 연구를 보고합니다.

수치 모델은 Lagrangian 접근 방식을 포함하며 영구 자석에 의해 생성 된 자기장의 적용에 의해 혈액에서 비드 분리 및 유동 버퍼로의 수집을 예측합니다.

다음 시나리오가 모델링됩니다. (i) 운동량이 유체에서 점 입자로 처리되는 비드로 전달되는 단방향 커플 링, (ii) 비드가 점 입자로 처리되고 운동량이 다음으로부터 전달되는 양방향 결합 비드를 유체로 또는 그 반대로, (iii) 유체 변위에서 비드 체적의 영향을 고려한 양방향 커플 링.

결과는 세 가지 시나리오에서 비드 궤적에 약간의 차이가 있지만 특히 높은 자기력이 비드에 적용될 때 유동장에 상당한 변화가 있음을 나타냅니다.

따라서 높은 자기력을 사용할 때 비드 운동과 유동장의 체적 효과를 고려한 정확한 전체 유동 중심 모델을 해결해야 합니다. 그럼에도 불구하고 비드가 중간 또는 낮은 자기력을 받을 때 계산적으로 저렴한 모델을 안전하게 사용하여 자기 영동을 모델링 할 수 있습니다.

Sketch of the magnetophoresis process in the continuous-flow microdevice.
Sketch of the magnetophoresis process in the continuous-flow microdevice.
Schematic view of the microdevice showing the working conditions set in the simulations.
Schematic view of the microdevice showing the working conditions set in the simulations.
Bead trajectories for different magnetic field conditions, magnet placed at different distances “d” from the channel: (a) d = 0; (b) d = 1 mm; (c) d = 1.5 mm; (d) d = 2 mm
Bead trajectories for different magnetic field conditions, magnet placed at different distances “d” from the channel: (a) d = 0; (b) d = 1 mm; (c) d = 1.5 mm; (d) d = 2 mm
Separation efficacy as a function of the magnet distance. Comparison between one-way and two-way coupling.
Separation efficacy as a function of the magnet distance. Comparison between one-way and two-way coupling.
(a) Fluid velocity magnitude including velocity vectors and (b) blood volumetric fraction contours with magnet distance d = 0 mm for scenario 1 (t = 0.25 s).
(a) Fluid velocity magnitude including velocity vectors and (b) blood volumetric fraction contours with magnet distance d = 0 mm for scenario 1 (t = 0.25 s).
luid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 2: (a,b) Magnet distance d = 0 mm at t = 0.4 s; (c,d) Magnet distance d = 1 mm at t = 0.4 s.
luid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 2: (a,b) Magnet distance d = 0 mm at t = 0.4 s; (c,d) Magnet distance d = 1 mm at t = 0.4 s.
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.
Blood volumetric fraction contours. Scenario 1: (a) Magnet distance d = 0 and (b) Magnet distance d = 1 mm; Scenario 2: (c) Magnet distance d = 0 and (d) Magnet distance d = 1 mm; and Scenario 3: (e) Magnet distance d = 0 and (f) Magnet distance d = 1 mm.
Blood volumetric fraction contours. Scenario 1: (a) Magnet distance d = 0 and (b) Magnet distance d = 1 mm; Scenario 2: (c) Magnet distance d = 0 and (d) Magnet distance d = 1 mm; and Scenario 3: (e) Magnet distance d = 0 and (f) Magnet distance d = 1 mm.

References

  1. 1.Keshipour, S. & Khalteh, N. K. Oxidation of ethylbenzene to styrene oxide in the presence of cellulose-supported Pd magnetic nanoparticles. Appl. Organometal. Chem. 30, 653–656 (2016).CAS Article Google Scholar 
  2. 2.Neamtu, M. et al. Functionalized magnetic nanoparticles: synthesis, characterization, catalytic application and assessment of toxicity. Sci. Rep. 8(1), 6278 (2018).ADS MathSciNet Article Google Scholar 
  3. 3.Gómez-Pastora, J., Bringas, E. & Ortiz, I. Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications. Chem. Eng. J. 256, 187–204 (2014).Article Google Scholar 
  4. 4.Gómez-Pastora, J., Bringas, E. & Ortiz, I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans. 47, 241–246 (2016).Google Scholar 
  5. 5.Bagbi, Y., Sarswat, A., Mohan, D., Pandey, A. & Solanki, P. R. Lead and chromium adsorption from water using L-Cysteine functionalized magnetite (Fe3O4) nanoparticles. Sci. Rep. 7(1), 7672 (2017).ADS Article Google Scholar 
  6. 6.Gómez-Pastora, J. et al. Review and perspectives on the use of magnetic nanophotocatalysts (MNPCs) in water treatment. Chem. Eng. J. 310, 407–427 (2017).Article Google Scholar 
  7. 7.Lee, H. Y. et al. A selective fluoroionophore based on BODIPY-functionalized magnetic silica nanoparticles: removal of Pb2+ from human blood. Angew. Chem. Int. Ed. 48, 1239–1243 (2009).CAS Article Google Scholar 
  8. 8.Buzea, C., Pacheco, I. I. & Robbie, K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17–MR71 (2007).Article Google Scholar 
  9. 9.Roux, S. et al. Multifunctional nanoparticles: from the detection of biomolecules to the therapy. Int. J. Nanotechnol. 7, 781–801 (2010).ADS CAS Article Google Scholar 
  10. 10.Gómez-Pastora, J., Bringas, E., Lázaro-Díez, M., Ramos-Vivas, J. & Ortiz, I. In Drug Delivery Systems (Stroeve, P. & Mahmoudi, M. ed) 207–244 (World Scientific, 2017).
  11. 11.Selmi, M., Gazzah, M. H. & Belmabrouk, H. Optimization of microfluidic biosensor efficiency by means of fluid flow engineering. Sci. Rep. 7(1), 5721 (2017).ADS Article Google Scholar 
  12. 12.Gómez-Pastora, J., González-Fernández, C., Fallanza, M., Bringas, E. & Ortiz, I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J. 344, 487–497 (2018).Article Google Scholar 
  13. 13.Pamme, N. Magnetism and microfluidics. Lab Chip 6, 24–38 (2006).CAS Article Google Scholar 
  14. 14.Alorabi, A. Q. et al. On-chip polyelectrolyte coating onto magnetic droplets – towards continuous flow assembly of drug delivery capsules. Lab Chip 17, 3785–3795 (2017).CAS Article Google Scholar 
  15. 15.Gómez-Pastora, J. et al. Analysis of separators for magnetic beads recovery: from large systems to multifunctional microdevices. Sep. Purif. Technol. 172, 16–31 (2017).Article Google Scholar 
  16. 16.Tarn, M. D. & Pamme, N. On-chip magnetic particle-based immunoassays using multilaminar flow for clinical diagnosis. Methods Mol. Biol. 1547, 69–83 (2017).CAS Article Google Scholar 
  17. 17.Lv, C. et al. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems. Sci. Rep. 6, 19801 (2016).ADS CAS Article Google Scholar 
  18. 18.Gómez-Pastora, J. et al. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C 121, 7466–7477 (2017).Article Google Scholar 
  19. 19.Furlani, E. P. Magnetic biotransport: analysis and applications. Materials 3, 2412–2446 (2010).ADS CAS Article Google Scholar 
  20. 20.Khashan, S. A. & Furlani, E. P. Effects of particle–fluid coupling on particle transport and capture in a magnetophoretic microsystem. Microfluid. Nanofluid. 12, 565–580 (2012).Article Google Scholar 
  21. 21.Modak, N., Datta, A. & Ganguly, R. Cell separation in a microfluidic channel using magnetic microspheres. Microfluid. Nanofluid. 6, 647–660 (2009).CAS Article Google Scholar 
  22. 22.Furlani, E. P., Sahoo, Y., Ng, K. C., Wortman, J. C. & Monk, T. E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices 9, 451–463 (2007).CAS Article Google Scholar 
  23. 23.Furlani, E. P. & Sahoo, Y. Analytical model for the magnetic field and force in a magnetophoretic microsystem. J. Phys. D: Appl. Phys. 39, 1724–1732 (2006).ADS CAS Article Google Scholar 
  24. 24.Tarn, M. D. et al. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater. 321, 4115–4122 (2009).ADS CAS Article Google Scholar 
  25. 25.Fonnum, G., Johansson, C., Molteberg, A., Morup, S. & Aksnes, E. Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J. Magn. Magn. Mater. 293, 41–47 (2005).ADS CAS Article Google Scholar 
  26. 26.Xue, W., Moore, L. R., Nakano, N., Chalmers, J. J. & Zborowski, M. Single cell magnetometry by magnetophoresis vs. bulk cell suspension magnetometry by SQUID-MPMS – A comparison. J. Magn. Magn. Mater. 474, 152–160 (2019).ADS CAS Article Google Scholar 
  27. 27.Moore, L. R. et al. Continuous, intrinsic magnetic depletion of erythrocytes from whole blood with a quadrupole magnet and annular flow channel; pilot scale study. Biotechnol. Bioeng. 115, 1521–1530 (2018).CAS Article Google Scholar 
  28. 28.Furlani, E. P. & Xue, X. Field, force and transport analysis for magnetic particle-based gene delivery. Microfluid Nanofluid. 13, 589–602 (2012).CAS Article Google Scholar 
  29. 29.Furlani, E. P. & Xue, X. A model for predicting field-directed particle transport in the magnetofection process. Pharm. Res. 29, 1366–1379 (2012).CAS Article Google Scholar 
  30. 30.Furlani, E. P. Permanent Magnet and Electromechanical Devices; MaterialsAnalysis and Applications, (Academic Press, 2001).
  31. 31.Balachandar, S. & Eaton, J. K. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111–133 (2010).ADS Article Google Scholar 
  32. 32.Wakaba, L. & Balachandar, S. On the added mass force at finite Reynolds and acceleration number. Theor. Comput. Fluid. Dyn. 21, 147–153 (2007).Article Google Scholar 
  33. 33.White, F. M. Viscous Fluid Flow, (McGraw-Hill, 1974).
  34. 34.Rietema, K. & Van Den Akker, H. E. A. On the momentum equations in dispersed two-phase systems. Int. J. Multiphase Flow 9, 21–36 (1983).Article Google Scholar 
  35. 35.Furlani, E. P. & Ng, K. C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E 73, 1–10 (2006).Article Google Scholar 
  36. 36.Eibl, R., Eibl, D., Pörtner, R., Catapano, G. & Czermak, P. Cell and Tissue Reaction Engineering, (Springer, 2009).
  37. 37.Gómez-Pastora, J. et al. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip 18, 1593–1606 (2018).Article Google Scholar 
  38. 38.Khashan, S. A. & Furlani, E. P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 125, 311–318 (2014).CAS Article Google Scholar 
  39. 39.Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. ProcFourth International ConfShip Hydro., National Academic of Science, Washington, DC., (1985).
  40. 40.Crank, J. Free and Moving Boundary Problems, (Oxford University Press, 1984).
  41. 41.Bruus, H. Theoretical Microfluidics, (Oxford University Press, 2008).
  42. 42.Liang, L. & Xuan, X. Diamagnetic particle focusing using ferromicrofluidics with a single magnet. Microfluid. Nanofluid. 13, 637–643 (2012).

Author information

  1. Edward P. Furlani is deceased.

Affiliations

  1. Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005, Santander, SpainJenifer Gómez-Pastora, Eugenio Bringas & Inmaculada Ortiz
  2. Flow Science, Inc, Santa Fe, New Mexico, 87505, USAIoannis H. Karampelas
  3. Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USAEdward P. Furlani
  4. Department of Electrical Engineering, University at Buffalo (SUNY), Buffalo, New York, 14260, USAEdward P. Furlani
Figure 1. Cross-sectional dimensions of a V-groove channel

Modeling Open Surface Microfluidics

개방형 표면 미세 유체 모델링

Open surface microfluidic systems are becoming increasingly popular in the fields of biology, biotechnology, medicine, point-of-care (POC) and home care systems. The design of such systems usually involves fluid being transported by capillary forces. Capillarity can enhance fluid transport for small volumes of fluid and can provide a reliable alternative to micro-scale pumping mechanisms. Advantages of capillary systems include:

  • Low cost due to easy and fast fabrication
  • User friendliness due to the simplicity of their design
  • Increased portability ensured by the capillary actuation of fluids
  • Enhanced accessibility caused by the open-surface nature of their design
  • Complete elimination of air bubbles guaranteed by the uniformly moving fluid front

For these reasons, open capillary systems are the preferred design option for various POC systems.

개방형 표면 미세 유체 시스템은 생물학, 생명 공학, 의학, POC (Point-of-Care) 및 홈 케어 시스템 분야에서 점점 인기를 얻고 있습니다. 이러한 시스템의 설계에는 일반적으로 모세관 힘에 의해 유체가 운반됩니다. 모세관은 소량의 유체에 대한 유체 수송을 향상시킬 수 있으며 마이크로 규모 펌핑 메커니즘에 대한 신뢰할 수있는 대안을 제공 할 수 있습니다. 모세관 시스템의 장점은 다음과 같습니다.

  • 쉽고 빠른 제작으로 인한 저렴한 비용
  • 디자인의 단순성으로 인한 사용자 편의성
  • 유체의 모세관 작동으로 인한 휴대 성 향상
  • 디자인의 개방형 특성으로 인한 접근성 향상
  • 균일하게 움직이는 유체 전면으로 보장되는 기포의 완전한 제거

이러한 이유로 개방형 모세관 시스템은 다양한 POC 시스템에서 선호되는 설계 옵션입니다.

모세관 흐름의 시작 조건

V 홈 치수
그림 1. V 홈 채널의 단면 치수 : W = 150 μm, h1 = 300 μm, h2 = 1200 μm, α = 14.5ο.

University at Buffalo와 University of Grenoble의 연구원들의 최근 논문에서 마이크로 그루브가 잠재적으로 모세관 효과를 향상시킬 수있는 방법을 보여주었습니다 [1]. 이 논문의 결과를 바탕으로, FLOW-3D를 사용하여 평행 한 플레이트로 대체 된 좁은 V- 홈 마이크로 채널 내부 유체의 자발적 모세관 흐름 (SCF)에 대한 사례 연구를 논의 할 것  입니다. 모세관 흐름의 시작에 대한 특정 조건이 충족되면 혈류를 모니터링하기위한 POC 시스템의 설계를 위해 전혈과 같은 점성 유체를 사용해도 큰 유체 속도를 얻을 수 있습니다.

모세관 흐름의 조건은 Gibbs 자유 에너지의 최소화를 기반으로 한 정적 접근 방식을 사용하여 이론적으로 설정할 수 있습니다. 보다 구체적으로, 입구 압력이 0 일 때 모세관 흐름이 시작되는 조건은 다음과 같습니다.

(수식 1)           pF/pW < cos⁡ θ

여기서  θ  는 영 접촉각이고  F  및  W  는 각각 유동의 임의 단면에서 자유 및 습식 둘레입니다. 그림 1에 표시된 것과 같은 반각 α 를 갖는 V- 홈 마이크로 채널의  경우 몇 가지 수학적 조작 후 eq. 1은 다음과 같이 다시 작성할 수 있습니다.

(수식 2)         sin α = cos⁡ θ

우리의 경우  α  ≈ 14.5 ο 가 있으므로 모세관 흐름의 조건은  θ  <75.5 o 입니다.

FLOW-3D 에서 시뮬레이션

정적 접근 방식이 SCF의 시작에 관한 중요한 정보를 제공하지만 수치 접근 방식은 현장 진료 장치에서 유동 역학을 연구하는 데 더 적합합니다. 접촉각이 37 °  이고 전혈의 유체 특성 을 갖는 V- 홈 마이크로 채널에 대해 CFD 분석을 수행했습니다 . 혈액의 점도는 거의 일정하기 때문에 흐름 체제는 뉴턴으로 간주됩니다 [1]. 유체 운동이 모세관 효과에 의해서만 발생하도록 모든 경계와 계산 영역 전체에 균일 한 주변 압력이 적용되었습니다. 시뮬레이션은 처음 4mm의 유체 이동을 포함하는 초기 시뮬레이션과 4mm에서 8mm의 유체 이동을 예측하는 재시작 시뮬레이션의 두 부분으로 나뉩니다.

결과 및 검증

처음 8mm 이동에 대한 유동 역학은 그림 2에 나와 있습니다.이 그림은 세 가지 다른 시간에 슬롯에서 전진 인터페이스의 모양을 보여줍니다. 필라멘트 (Concus-Finn 필라멘트)의 점진적인 확장은 주 흐름보다 앞서 볼 수 있습니다.

모세관 흐름 시뮬레이션
그림 2. 세 가지 다른 시간에서 FLOW-3D를 사용하여 진행하는 모세관 흐름의 동적 계산 : (a) 0.04, (b) 0.07 및 (c) 0.11 초와 삽입물 (i1), (i2) 및 (i3) Concus-Finn 필라멘트의 진화 [1].

분석, 수치 및 실험 결과 간의 비교는 그림 3에 나와 있습니다. 수치 예측과 실험 간에는 탁월한 일치가 있습니다. 분석 솔루션도 플롯되었지만 채널 하단에있는 Concus – Finn 필라멘트의 효과가 고려되지 않았기 때문에 수치 및 실험 결과에 대한 유효한 비교를 나타내지 않을 수 있습니다.

모세관 흐름 검증
그림 3. (A) 시간의 함수로서 채널의 속도. 빨간색 점 : FLOW-3D 시뮬레이션 (중간 높이에서); 녹색 점 : 실험 관찰 (채널 중앙 높이); 파선 녹색 선 : 하단 V 홈의 효과를 무시한 분석 속도. (B) 시간의 함수로서 액체 전면의 원점으로부터의 거리. 빨간색 점 : FLOW-3D 시뮬레이션 (중간 높이에서); 녹색 점 : 실험 관찰 (채널 중앙 높이); 파선 녹색 선 : 하단 V 홈의 효과를 무시한 분석 속도 [1].

전혈 이외에도 식용 색소로 착색 한 물과 점성이 높은 알기 네이트 용액을 포함하여 장치가 고점도 유체를 이동시킬 수있는 가능성을 테스트하는 등 다양한 유체를 연구했습니다. 혈액과 같은 고점도 액체는 1 초 이내에 이동할 수 있습니다 (아래 애니메이션 참조).https://www.youtube.com/embed/v4OYoHStJ1w?controls=1&rel=0&playsinline=0&modestbranding=0&autoplay=0&enablejsapi=1&origin=https%3A%2F%2Fwww.flow3d.com&widgetid=1

사례 연구는 상대적으로 큰 점도 (물의 4 배)를 갖는 전혈의 경우 최대 7.5cm / s의 속도를 달성했음을 보여줍니다. 실험 결과 및  FLOW-3D  예측에 따라 전체 채널은 0.2 초 이내에 혈액으로 채워졌습니다. FLOW-3D  시뮬레이션 결과는 실험 관찰 결과와 매우 일치하며, V-groove 내부의 거리에 따라 속도가 감소하지만 장치의 전체 길이에 걸쳐 중요 함을 나타냅니다.

참고 문헌

  1. Berthier, J., K. Brakke, E. P. Furlani, I. H. Karampelas, and G. Delapierre. “Open-surface microfluidics.” In Proceedings of the Nanotech International Conference, pp. 15-19. 2014.
  2. Hirt, Cyril W., and Billy D. Nichols. “Volume of fluid (VOF) method for the dynamics of free boundaries.” Journal of computational physics 39, no. 1 (1981): 201-225.
  3. Rajaratnam, N., and M. R. Chamani. “Energy loss at drops.” Journal of Hydraulic Research 33, no. 3 (1995): 373-384.
The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

The simulation of droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by laser irradiation and silanization processes

레이저 조사 및 silanization 공정으로 제작된 micro-pillar arrays를 사용하여 초 소수성 표면에 대한 액적 영향 시뮬레이션

ZhenyanXiaa YangZhaoa ZhenYangabc ChengjuanYangab LinanLia ShibinWanga MengWangab
aSchool of Mechanical Engineering, Tianjin University, Tianjin, 300054, China
bKey Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin, 300072, Chinac
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK

Received 23 September 2020, Revised 17 November 2020, Accepted 26 November 2020, Available online 11 December 2020.

Abstract

Super-hydrophobicity is one of the significant natural phenomena, which has inspired researchers to fabricate artificial smart materials using advanced manufacturing techniques. In this study, a super-hydrophobic aluminum surface was prepared by nanosecond laser texturing and FAS modification in sequence. The surface wettability turned from original hydrophilicity to super-hydrophilicity immediately after laser treatment. Then it changed to super-hydrophobicity showing a WCA of 157.6 ± 1.2° with a SA of 1.7 ± 0.7° when the laser-induced rough surface being coated with a layer of FAS molecules. The transforming mechanism was further explored from physical and chemical aspects based on the analyses of surface morphology and surface chemistry. Besides, the motion process of droplet impacting super-hydrophobic surface was systematically analyzed via the optimization of simulation calculation grid and the simulation method of volume of fluid (VOF). Based on this simulation method, the morphological changes, the inside pressure distribution and velocity of the droplet were further investigated. And the motion mechanism of the droplet on super-hydrophobic surface was clearly revealed in this paper. The simulation results and the images captured by high-speed camera were highly consistent, which indicated that the computational fluid dynamics (CFD) is an effective method to predict the droplet motion on super- hydrophobic surfaces. This paper can provide an explicit guidance for the selection of suitable methods for functional surfaces with different requirements in the industry.

Korea Abstract

초 소수성은 연구원들이 첨단 제조 기술을 사용하여 인공 스마트 재료를 제작하도록 영감을 준 중요한 자연 현상 중 하나 입니다. 이 연구에서 초 소수성 알루미늄 표면은 나노초 레이저 텍스처링과 FAS 수정에 의해 순서대로 준비되었습니다.

레이저 처리 직후 표면 습윤성은 원래의 친수성에서 초 친수성으로 바뀌 었습니다. 그런 다음 레이저 유도 거친 표면을 FAS 분자 층으로 코팅했을 때 WCA가 157.6 ± 1.2 °이고 SA가 1.7 ± 0.7 ° 인 초 소수성으로 변경되었습니다.

변형 메커니즘은 표면 형태 및 표면 화학 분석을 기반으로 물리적 및 화학적 측면에서 추가로 탐구 되었습니다. 또한, 초 소수성 표면에 영향을 미치는 물방울의 운동 과정은 시뮬레이션 계산 그리드의 최적화와 유체 부피 (VOF) 시뮬레이션 방법을 통해 체계적으로 분석되었습니다.

이 시뮬레이션 방법을 바탕으로 형태학적 변화, 내부 압력 분포 및 액 적의 속도를 추가로 조사했습니다. 그리고 초 소수성 표면에 있는 물방울의 운동 메커니즘이 이 논문에서 분명하게 드러났습니다.

시뮬레이션 결과와 고속 카메라로 캡처한 이미지는 매우 일관적 이었습니다. 이는 전산 유체 역학 (CFD)이 초 소수성 표면에서 액적 움직임을 예측하는 효과적인 방법임을 나타냅니다.

이 백서는 업계의 다양한 요구 사항을 가진 기능 표면에 적합한 방법을 선택하기 위한 명시적인 지침을 제공 할 수 있습니다.

Keywords: Laser irradiation; Wettability; Droplet impact; Simulation; VOF

Introduction

서식지에 적응하기 위해 많은 자연 식물과 동물에서 특별한 습윤 표면이 진화되었습니다 [1-3]. 연잎은 먼지에 의한 오염으로부터 스스로를 보호하기 위해 우수한 자가 청소 특성을 나타냅니다 [4]. 사막 딱정벌레는 공기에서 물을 수확할 수 있는 기능적 표면 때문에 건조한 사막에서 생존 할 수 있습니다 [5].

자연 세계에서 영감을 받아 고체 기질의 표면 습윤성을 수정하는데 더 많은 관심이 집중되었습니다 [6-7]. 기능성 표면의 우수한 성능은 고유 한 표면 습윤성에 기인하며, 이는 고체 표면에서 액체의 확산 능력을 반영하는 중요한 특성 중 하나입니다 [8].

일반적으로 물 접촉각 (WCA) 값에 따라 90 °는 친수성과 소수성의 경계로 간주됩니다. WCA가 90 ° 이상인 소수성 표면, WCA가 90 ° 미만인 친수성 표면 [9 ]. 특히 고체 표면은 WCA가 10 ° 미만의 슬라이딩 각도 (SA)에서 150 °를 초과 할 때 특별한 초 소수성을 나타냅니다 [10-11].

<내용 중략> ……

 The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes
The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

References

[1] H.W. Chen, P.F. Zhang, L.W. Zhang, Y. Jiang, H.L. Liu, D.Y. Zhang, Z.W. Han, L.
Jiang, Continuous directional water transport on the peristome surface of Nepenthes
alata, Nature 532 (2016) 85-89.
[2] Y. Liu, K.T. Zhang, W.G. Yao, J.A. Liu, Z.W. Han, L.Q. Ren, Bioinspired
structured superhydrophobic and superoleophilic stainless steel mesh for efficient oilwater separation, Colloids Surf., A 500 (2016) 54-63.
[3] Y.X. Liu, W.L. Liu, G.L. Wang, J.C. Hou, H. Kong, W.L. Wang, A facile one-step
approach to superhydrophilic silica film with hierarchical structure using
fluoroalkylsilane, Colloids Surf., A 539 (2018) 109-115.
[4] F.P. Wang, S. Li, L. Wang, Fabrication of artificial super-hydrophobic lotus-leaflike bamboo surfaces through soft lithography, Colloids Surf., A 513 (2017) 389-395.
[5] W. Huang, X.Y. Tang, Z. Qiu, W.X. Zhu, Y.G. Wang, Y.L. Zhu, Z.F. Xiao, H.G.
Wang, D.X. Liang, Jian, L. Y.J Xie, Cellulose-based Superhydrophobic Surface
Decorated with Functional Groups Showing Distinct Wetting Abilities to Manipulate
Water Harvesting, ACS Appl. Mater. Interfaces DOI: 10.1021/acsami.0c12504.
[6] M.Y. Zhang, L.J. Ma, Q. Wang, P. Hao, X. Zheng, Wettability behavior of
nanodroplets on copper surfaces with hierarchical nanostructures, Colloids Surf., A
604 (2020) 125291.
[7] A.F. Pan, W.J. Wang, X.S. Mei, K.D. Wang, X.B. Yang, Rutile TiO2 flocculent
ripples with high antireflectivity and superhydrophobicity on the surface of titanium
under 10 ns laser irradiation without focusing, Langmuir 33 (2017) 9530-9538.
[8] M. Li, X.H. Liu, N. Liu, Z.H. Guo, P.K. Singh, S.Y. Fu, Effect of surface
wettability on the antibacterial activity of nanocellulose-based material with
quaternary ammonium groups, Colloids Surf., A 554 (2018) 122-128.
[9] T.C. Chen, H.T. Liu, H.F. Yang, W. Yan, W. Zhu, H. Liu, Biomimetic fabrication
of robust self-assembly superhydrophobic surfaces with corrosion resistance
properties on stainless steel substrate, RSC Adv. 6 (2016) 43937-43949.
[10] P. Zhang, F.Y. Lv, A review of the recent advances in superhydrophobic surfaces
and the emerging energy-related applications, Energy 82 (2015) 1068-1087.
[11] Z. Yang, X.P. Liu, Y.L. Tian, Novel metal-organic super-hydrophobic surface
fabricated by nanosecond laser irradiation in solution, Colloids Surf., A 587 (2020)
124343.
[12] J.Y. Peng, X.J. Zhao, W.F. Wang, X. Gong, Durable Self-Cleaning Surfaces with
Superhydrophobic and Highly Oleophobic Properties, Langmuir, 35 (2019) 8404-
8412.
[13] Z. Yang, X.P. Liu, Y.L. Tian, A contrastive investigation on anticorrosive
performance of laser-induced super-hydrophobic and oil-infused slippery coatings,
Prog. Org. Coat. 138 (2020) 105313.
[14] J.L. Yong, F. Chen, Q. Yang, J.L. Huo, X. Hou, Superoleophobic Surfaces,
Chem. Soc. Rev. 46 (2017) 4168-4217.
[15] D.W. Li, H.Y. Wang, Y. Liu, D.S. Wei, Z.X. Zhao, Large-Scale Fabrication of
Durable and Robust Super-Hydrophobic Spray Coatings with Excellent Repairable
and Anti-Corrosion Performance, Chem. Eng. J. 367 (2019) 169-179.
[16] R.J. Liao, Z.P. Zuo, C. Guo, Y. Yuan, A.Y. Zhuang, Fabrication of
superhydrophobic surface on aluminum by continuous chemical etching and its antiicing property, Appl. Surf. Sci. 317 (2014) 701-709.
[17] Z. Yang. X.P. Liu, Y.L. Tian, Hybrid laser ablation and chemical modification for
fast fabrication of bio-inspired super-hydrophobic surface with excellent selfcleaning, stability and corrosion resistance, J Bionic Eng 16 (2019) 13-26.
[18] Z. Yang, Y.L. Tian, Y.C. Zhao, C.J. Yang, Study on the fabrication of superhydrophobic surface on Inconel alloy via nanosecond laser ablation, Materials 12
(2019) 278.
[19] Y. Wang, X. Gong, Superhydrophobic Coatings with Periodic Ring Structured
Patterns for Self-Cleaning and Oil-Water Separation, Adv. Mater. Interfaces 4 (2017)
1700190.
[20] N. Chik, W.S.W.M. Zain, A.J. Mohamad, M.Z. Sidek, W.H.W. Ibrahim, A. Reif,
J.H. Rakebrandt, W. Pfleging, X. Liu, Bacterial adhesion on the titanium and
stainless-steel surfaces undergone two different treatment methods: Polishing and ultrafast laser treatment, IOP Conf. Ser.: Mater. Sci. Eng.358 (2018) 012034.
[21] N.K.K. Win, P. Jitareerat, S. Kanlayanarat, S. Sangchote, Effects of cinnamon
extract, chitosan coating, hot water treatment and their combinations on crown rot
disease and quality of banana fruit, Postharvest Biol. Technol. 45 (2007) 333–340.
[22] A. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing, Annu.
Rev. Fluid Mech. 38 (2006) 159–192.
[23] N. Wang, L.L. Tang, Y.F. Cai, W. Tong, D.S. Xiong, Scalable superhydrophobic
coating with controllable wettability and investigations of its drag reduction, Colloids
Surf. A 555 (2018) 290–295.
[24] R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning
properties of artificial superhydrophobic surfaces, Langmuir 21 (2005) 956–61.
[25] U. Trdan, M. Hočevar, P. Gregorčič, Transition from superhydrophilic to
superhydrophobic state of laser textured stainless steel surface and its effect on
corrosion resistance, Corros. Sci. 123 (2017) 21–44.
[26] A.L. Biance, C. Clanet, D. Quere, First steps in the spreading of a liquid droplet,
Phys. Rev. E 69 (2004) 016301.
[27] S. Kulju, L. Riegger, P. Koltay et al, Fluid flow simulations meet high-speed
video: computer vision comparison of droplet dynamics, J. Colloid Interface Sci. 522
(2018) 48.
[28] C.J. Yong, B. Bhushan, Dynamic effects of bouncing water droplets on
superhydrophobic surfaces, Langmuir 24.12 (2008) 6262–6269.
[29] G. Karapetsas, N.T. Chamakos, A.G. Papathanasiou, Efficient modelling of
droplet dynamics on complex surfaces, J. Phys.: Condens. Matter 28.8 (2016) 085101.
[30] D. Khojasteh, N.M. Kazerooni, S. Salarian et al, Droplet impact on
superhydrophobic surfaces: a review of recent developments, J. Ind. Eng. Chem. 42
(2016) 1–14.
[31] S.H. Kim, Y. Jiang, H. Kim, Droplet impact and LFP on wettability and
nanostructured surface, Exp. Therm. Fluid Sci. 99 (2018) 85–93.
[32] M. Rudman, Volume‐Tracking Methods for Interfacial Flow Calculations, Int.
J. Numer. Methods Fluids 24.7 (1997) 671-691.

A new dynamic masking technique for time resolved PIV analysis

A new dynamic masking technique for time resolved PIV analysis

시간 분해 PIV 분석을위한 새로운 동적 마스킹 기술

물체 가시성을 허용하기 위해 형광 코팅과 결합 된 새로운 프리웨어 레이 캐스팅 도구

Journal of Visualization ( 2021 ) 이 기사 인용

Abstract

Time resolved PIV encompassing moving and/or deformable objects interfering with the light source requires the employment of dynamic masking (DM). A few DM techniques have been recently developed, mainly in microfluidics and multiphase flows fields. Most of them require ad-hoc design of the experimental setup, and may spoil the accuracy of the resulting PIV analysis. A new DM technique is here presented which envisages, along with a dedicated masking algorithm, the employment of fluorescent coating to allow for accurate tracking of the object. We show results from measurements obtained through a validated PIV setup demonstrating the need to include a DM step even for objects featuring limited displacements. We compare the proposed algorithm with both a no-masking and a static masking solution. In the framework of developing low cost, flexible and accurate PIV setups, the proposed algorithm is made available through a freeware application able to generate masks to be used by an existing, freeware PIV analysis package.

광원을 방해하는 이동 또는 변형 가능한 물체를 포함하는 시간 해결 PIV는 동적 마스킹 (DM)을 사용해야 합니다. 주로 미세 유체 및 다상 흐름 분야에서 몇 가지 DM 기술이 최근 개발되었습니다. 대부분은 실험 설정의 임시 설계가 필요하며 결과 PIV 분석의 정확도를 떨어 뜨릴 수 있습니다. 여기에는 전용 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수있는 새로운 DM 기술이 제시되어 있습니다. 제한된 변위를 특징으로 하는 물체에 대해서도 DM 단계를 포함해야 하는 필요성을 보여주는 검증 된 PIV 설정을 통해 얻은 측정 결과를 보여줍니다. 제안 된 알고리즘을 no-masking 및 static masking 솔루션과 비교합니다. 저비용, 유연하고 정확한 PIV 설정 개발 프레임 워크에서 제안 된 알고리즘은 기존 프리웨어 PIV 분석 패키지에서 사용할 마스크를 생성 할 수 있는 프리웨어 애플리케이션을 통해 사용할 수 있습니다.

Keywords

  • Time resolved PIV, Dynamics masking, Image processing, Vibration inducers, Fluorescent coating

그래픽 개요

소개

PIV (입자 영상 속도계)의 사용은 70 년대 후반 (Archbold 및 Ennos 1972 )이 반점 계측의 확장 (Barker and Fourney 1977 ) 으로 도입된 이래 실험 유체 역학에서 중심적인 역할을 했습니다 . PIV 기술의 기본 아이디어는 유체에 주입된 입자의 속도를 측정하여 유동장을 재구성하는 것입니다. 입자의 크기와 밀도는 확실하게 선택되고 유동을 만족스럽게 따르게 됩니다.

흐름은 레이저 / LED 소스를 통해 조명되고 입자에 의해 산란 된 빛은 추적을 허용합니다. 독자는 리뷰 작품 Grant ( 1997 ), Westerweel et al. ( 2013 년)에 대한 자세한 설명을 참조하십시오. 기본 2D 기술은 고유한 설정으로 발전했으며, 가장 진보 된 것은 단일 / 다중 평면 입체 PIV (Prasad 2000 ) 및 체적 / 단층 PIV (Scarano 2013 )입니다. 광범위한 유동장의 비 침습적 측정이 필요한 산업 및 연구 응용 분야에서 광범위하게 사용되었습니다.

조사된 유동장이 단단한 서있는 경계의 영향을 받는 경우 정적 마스킹 (SM) 접근 방식을 사용하여 PIV 분석을 수행하는 영역에서 솔리드 객체와 그림자가 차지하는 영역을 빼기 위해 주의를 기울여야 합니다. 실제로 이러한 영역에서는 파종 입자를 식별 할 수 없으므로 유속 재구성을 수행 할 수 없습니다. 제대로 처리되지 않으면 이 마스킹 단계는 잘못된 예측으로 이어질 수 있으며, 불행히도 그림자 영역 경계의 근접성에 국한되지 않습니다.

PIV 기술은 획득 프레임 속도를 관심있는 시간 척도로 조정하여 정상 상태 또는 시간 변화 흐름에 적용 할 수 있습니다. 시간의 가변성이 고체 물체의 위치 / 모양과 관련된 경우 이미지를 동적으로 마스킹하기 위해 추가 노력이 필요합니다. 고체 물체뿐만 아니라 다른 유체 단계도 가려야한다는 점에 유의해야합니다 (Foeth et al. 2006). 

이 프로세스는 고체 물체의 움직임이 선험적으로 알려진 경우 비교적 쉬우므로 SM 알고리즘에 대한 최소한의 수정이 목적에 부합 할 수 있습니다. 그러나 고체 물체의 위치 및 / 또는 모양이 알려지지 않은 방식으로 시간에 따라 변할 경우 물체를 동적으로 추적 할 수 있는 마스킹 기술이 필요합니다. PIV 분석을위한 동적 마스킹 (DM) 접근 방식은 현재 상당한 주목을 받고 있습니다 (Sanchis and Jensen 2011 , Masullo 및 Theunissen 2017 , Anders et al. 2019 ) . 시간 분해 PIV 시스템의 확산 덕분에 고속 카메라의 가용성이 높아집니다. 

DM 기술의 주요 발전은 마이크로 PIV 분야에서 비롯됩니다 (Lindken et al. 2009) 마이크로 및 나노 스위 머 (Ergin et al. 2015 ) 및 다상 흐름 (Brücker 2000 , Khalitov 및 Longmire 2002 ) 주변의 유동장을 조사 하려면 정확하고 유연한 알고리즘이 필요합니다. DM 기술은 상용 PIV 분석 소프트웨어 패키지 (TSI Instruments 2014 , DantecDynamics 2018 )에 포함되어 있습니다. 최근 개발 (Vennemann 및 Rösgen 2020 )은 신경망 자동 마스킹 기술의 적용을 예상하지만, 네트워크를 훈련하려면 합성 데이터 세트를 생성해야합니다.

많은 알고리즘은 이미지 처리 기술을 사용하여 개체를 추적하며, 대부분 사용자는 획득 한 이미지에서 추적 할 개체를 강조 표시 할 수있는 임시 실험 설정을 개발해야합니다. 따라서 실험 설정의 설계는 알고리즘의 최종 정확도에 영향을줍니다.

몇 가지 해결책을 구상 할 수 있습니다. 다음에서는 간단한 2D PIV 설정을 참조하지만 대부분의 고려 사항은 더 복잡한 설정으로 확장 할 수 있습니다. PIV 설정에서 객체를 쉽고 정확하게 추적 할 수 있도록 렌더링하는 가장 간단한 방법은 일반적으로 PIV 레이저 시트에 대략 수직 인 카메라를 향한 반사를 최대화하는 방향을 가리키는 추가 광원을 사용하여 조명하는 것입니다. 이 순진한 솔루션과 관련된 주요 문제는 PIV의 ROI (관심 영역)를 비추 지 않고는 광원을 움직이는 물체에만 겨냥하는 것이 사실상 불가능하여 시딩에 의해 산란 된 레이저 광 사이의 명암비를 감소 시킨다는 것입니다. 입자와 어두운 배경.

카메라의 프레임 속도가 높을수록 센서에 닿는 빛의 양이 적다는 사실로 인해 상황이 가혹 해집니다. 고체 물체의 움직임과 유동 입자가 모두 사용 된 설정의 획득 속도에 비해 충분히 느리다면, 가능한 해결책은 레이저 펄스 쌍 사이에 단일 확산 광 샷을 삽입하는 것입니다 (반드시 대칭 삽입은 아님). 그리고 카메라 샷을 둘 모두에 동기화합니다. 각 레이저 커플에서 물체의 위치는 확산 광에 의해 생성 된 이전 샷과 다음 샷의 두 위치를 보간하여 결정될 수 있습니다. 이 접근 방식에는 레이저, 카메라 및 빛을 제어 할 수있는 동기화 장치가 필요합니다.

이 문제에 대한 해결책이 제안되었으며 유체 인터페이스 (Foeth et al. 2006 ; Dussol et al. 2016 ) 의 밝은 반사를 활용 하여 이미지에서 많은 양의 산란 레이저 광을 획득 할 수 있습니다. 고체 표면에는 효과를 높이기 위해 반사 코팅이 제공 될 수 있습니다. 그런 다음 물체는 비정상적으로 큰 입자로 식별되고 경계를 쉽게 추적 할 수 있습니다. 이 솔루션의 단점은 물체 표면에서 산란 된 빛이 레이저 시트에 있지 않은 많은 시딩 입자를 비추어 PIV 분석의 정확도를 점진적으로 저하 시킨다는 것입니다.

위의 접근 방식의 개선은 다른 파장 의 두 번째 동일 평면 레이저 시트 (Driscoll et al. 2003 )를 사용합니다. 첫 번째 레이저 파장을 중심으로 한 좁은 반사 대역. 전체 설정은 매우 비쌀 수 있습니다. 파장 방출의 차이를 이용하여 설정을 저렴하게 만들 수 있습니다. 서로 다른 필터가 장착 된 두 대의 카메라를 적용하면 인터페이스로부터의 반사와 독립적으로 형광 시드 입자를 식별 할 수 있습니다 (Pedocchi et al. 2008 ).

객체의 변위가 작을 때 기본 솔루션은 실제 시간에 따라 변하는 음영 영역에 가장 근접한 하나의 정적 마스크를 추출하는 것입니다. 일반적인 경험 법칙은 예상되는 음영 영역보다 약간 더 크게 마스크를 그려 분석에 포함 된 조명 영역의 양을 단순화하고 최소화하는 것 사이의 최상의 균형을 찾는 것입니다.

본 논문에서는 PIV 분석을위한 DM 문제에 대한 새로운 실험적 접근법을 제안합니다. 우리의 방법은 형광 페인팅을 사용하여 물체를 쉽게 추적 할 수 있도록 하는 기술과 시변 마스크를 생성 할 수있는 특정 오픈 소스 알고리즘을 포함합니다. 이 접근법은 레이저 광에 불투명 한 물체의 큰 변위를 허용함으로써 효과적인 것으로 입증되었습니다. 

우리의 방법인 NM (no-masking)과 SM (static masking) 접근 방식을 비교합니다. 우리의 접근 방식의 타당성을 입증하는 것 외에도 이 백서는 마스킹 단계가 정확한 결과를 얻기 위해 가장 중요하다는 것을 확인합니다. 실제로 물체의 변위가 무시할 수 없는 경우 DM에 대한 리조트는 필수이며 SM 접근 방식은 음영 처리 된 영역의 주변 환경에 국한되지 않는 부정확성을 유발합니다. 

논문의 구조는 다음과 같습니다. 먼저 형광 코팅 기술과 마스킹 소프트웨어를 설명하는 제안된 접근법의 근거를 소개합니다. 그런 다음 PIV 설정에 대한 설명 후 두 벤치 마크 사례를 통해 전체 PIV 체인 분석의 신뢰성을 평가합니다. 그런 다음 제안 된 DM 방법의 결과를 NM 및 SM 솔루션과 비교합니다. 마지막으로 몇 가지 결론이 도출됩니다.

행동 양식

제안 된 DM 기술은 PIV 분석을 위해 캡처 한 동일한 이미지에서 쉽고 정확한 추적 성을 허용하기 위해 움직이는 물체 표면의 형광 코팅을 구상합니다. 물체가 가시화되면 특정 알고리즘이 물체 추적을 수행하고 레이저 위치가 알려지면 (그림 1 참조  ) 음영 영역의 마스킹을 수행합니다.

형광 코팅

코팅은 구조적 매트릭스 에 시판되는 형광 분말 (fluorescein (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018 )) 의 분산액으로 구성됩니다 . 단단한 물체의 경우 매트릭스는 폴리 에스터 / 에폭시 (대상 재료와의 화학적 호환성에 따라) 투명 수지 일 수 있습니다. 변형 가능한 물체의 경우 매트릭스는 투명한 실리콘 고무로 만들 수 있습니다. 형광 코팅 된 물체는 실행 중에 지속적으로 빛을 방출하기 위해 실험 전에 충분히 오랫동안 조명을 비춰 야합니다. 우리는 4W LED 소스 (그림 2 에서 볼 수 있음)에 20 초 긴 노출이  실험 실행 (몇 초)의 짧은 기간 동안 일관된 형광 방출을 제공하기에 충분하다는 것을 발견했습니다.

우리 실험에서 물체와 입자 크기 사이의 상당한 차이를 감안할 때 전자를 식별하는 것은 간단합니다. 그림  3 은 씨 뿌리기 입자와 물체 모양이 서로 다른 세 번에 겹쳐진 모습을 보여줍니다 (색상은 다른 순간을 나타냄).

대신, 이러한 크기 기반 분류가 가능하지 않은 경우 입자와 물체의 파장을 분리해야합니다. 이러한 분리는 시드 입자에 의해 산란 된 빛과 현저하게 다른 파장에서 방출되는 형광 코팅을 선택하여 달성 할 수 있습니다. 또는 레이저에서 멀리 떨어진 대역에서 방출되는 형광 입자를 이용하는 것 (Pedocchi et al. 2008 ). 두 경우 모두 컬러 이미지 획득의 채널 분리 또는 멀티 카메라 설정의 애드혹 필터링은 물체 식별을 크게 촉진 할 수 있습니다. 우리의 경우에는 그러한 파장 분리를 달성 할 필요가 없습니다. 실제로 형광 코팅의 방출 스펙트럼의 피크는 540nm입니다 (Taniguchi and Lindsey 2018 ; Taniguchi et al. 2018), 사용 된 레이저의 532 nm에 매우 가깝습니다.

마스킹 소프트웨어

DM 용으로 개발 된 알고리즘 은 무료 PIV 분석 패키지 PIVlab (Thielicke 2020 , Thielicke 및 Stamhuis 2014 ) 과 함께 작동하도록 고안된 오픈 소스 프리웨어 GUI 기반 도구 (Prestininzi 및 Lombardi 2021 )입니다. 이것은 세 단계의 순차적 실행으로 구성됩니다 (그림 1 에서 a–b–c라고 함 ). 첫 번째 단계 (a)는 장면에서 레이저 위치를 찾는 데 사용됩니다 (즉, 소스의 좌표를 계산합니다. 장애물에 부딪히는 빛); 두 번째 항목 (b)은 개체 위치를 추적하고 각 프레임의 음영 영역을 계산합니다. 세 번째 항목 (c)은 추적 된 개체 영역과 음영 처리 된 개체 영역을 PIV 알고리즘을위한 단일 마스크로 병합합니다.

각 단계에 대한 자세한 내용은 다음과 같습니다.

  1. (ㅏ)레이저 위치는 프레임 (즉, 획득 한 프레임의 시야 (FOV)) 내에서 가시적 일 수도 있고 아닐 수도 있습니다. 전자의 경우 사용자는 GUI에서 레이저 소스를 클릭하여 찾기 만하면됩니다. 후자의 경우, 사용자는 음영 영역의 경계에 속하는 두 개의 세그먼트 (두 쌍의 점)를 그리도록 요청받습니다. 그러면 FOV 외부에있는 레이저 위치가 두 선의 교차점으로 계산됩니다. 세그먼트로 구성됩니다. 개체 그림자는 ROI 프레임 상자에 도달하는 것으로 간주됩니다.
  2. (비)레이저 위치가 알려지면 물체 추적은 다음과 같이 수행됩니다. 각 프레임의 하나의 채널 (이 경우 RGB 색상 공간이 사용되기 때문에 녹색 채널이지만 GUI는 선호하는 채널을 지정할 수 있음)은 다음과 같습니다. 로컬 적응 임계 값을 사용하여 이진화 됨 (Bradley and Roth 2007), 후자는 이웃 주변의 로컬 평균 강도를 사용하여 각 픽셀에 대해 계산됩니다. 그런 다음 입자와 물체로 구성된 이진 이미지가 영역으로 변환됩니다. 우리 실험에 존재하는 유일한 장애물은 모든 입자에 비해 더 큰 크기를 기준으로 식별됩니다. 다른 전략은 이전에 논의되었습니다. 그런 다음 장애물 영역의 경계 다각형은 사용자 정의 포인트 밀도로 결정됩니다. 여기에서는 그림자 결정을 위해 광선 투사 (RC) 접근 방식을 채택했습니다. RC는 컴퓨터 그래픽을 기반으로하는 “경 운송 모델링”의 틀에 속합니다. 수치 적으로 정확한 그림자를 제공하기 때문에 여기에서 선택됩니다. 정확도는 떨어지지 만 주로 RC의 계산 부하를 줄이는 것을 목표로하는 몇 가지 다른 방법이 개발되었습니다.2015 ), 여기서 간략히 회상합니다. 각 프레임 (명확성을 위해 여기에 색인화되지 않음)에 대해 광선아르 자형나는 j아르 자형나는제이레이저 위치 L 에서 i 번째 정점 으로 캐스트됩니다.피나는 j피나는제이의 J 오브젝트의 경계 다각형 일; 목표는피나는 j피나는제이 하위 집합에 속 ㅏ제이ㅏ제이 레이저에 의해 직접 조명되는 경계 정점의 피나는 j피나는제이 에 추가됩니다 ㅏ제이ㅏ제이 만약 아르 자형나는 j아르 자형나는제이 적어도 한쪽을 교차 에스k j에스케이제이( j 번째 개체 경계 다각형 의 모든면에 걸쳐있는 k )피나는 j피나는제이 (그것이 교차로 큐나는 j k큐나는제이케이 레이저 위치와 정점 사이에 있지 않습니다. 피나는 j피나는제이). 두 개의 광선, 즉ρ1ρ1 과 ρ2ρ2추가면을 가로 지르지 않는는 저장됩니다.
  3. (씨)일단 정점 세트, 즉 ㅏ제이ㅏ제이 레이저에 의해 직접 비춰지고 식별되었으며 ROI 프레임 상자의 음영 부분은 후자와 교차하여 결정됩니다. ρ1ρ1 과 ρ2ρ2. 두 교차점은 다음에 추가됩니다.ㅏ제이ㅏ제이. 점으로 둘러싸인 영역ㅏ제이ㅏ제이 마침내 마스크로 변환됩니다.

레이저 소스가 여러 개인 경우 각각에 RC 알고리즘을 적용해야하며 음영 영역의 결합이 수행됩니다. 레이 캐스팅 절차의 의사 코드는 Alg에보고됩니다. 1.

그림
그림 1
그림 1

DM 검증

이 섹션에서는 제안 된 DM으로 수행 된 PIV 측정과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM) 간의 비교를 제시합니다.

그림 2
그림 2
그림 3
그림 3

실험 설정

진동 유도기 (VI)의 성능을 분석하기 위해 PIV 설정을 설계하고 현재 DM 기술을 개발했습니다 (Curatolo et al. 2019 , 2020 ). 후자는 비 맥동 ​​유체 흐름에서 역류에 배치 된 캔틸레버의 규칙적이고 넓은 진동을 유도 할 수있는 윙렛입니다. 이러한 VI는 캔틸레버의 끝에 장착되며 (그림 2 참조   ) 진동 운동의 어느 지점에서든 캔틸레버의 중립 구성을 향해 양력을 생성 할 수있는 두 개의 오목한 날개가 있습니다.

VI는 캔틸레버 표면에 장착 된 압전 패치를 사용하여 고정 유체 흐름에서 기계적 에너지 추출을 향상시킬 수 있습니다. 그림 2 에서 강조된 날개의 전체 측면 가장자리는  Sect에 설명 된 사양에 따라 형광 페인트로 코팅되어 있습니다. 2.1 . 실험은 Roma Tre University 공학부 수력 학 실험실의 자유 표면 채널에서 수행됩니다. 10.8cm 길이의 캔틸레버는 채널의 중심선에 배치되고 상류로 향하며 수직-세로 평면에서 진동합니다. 세라믹 페 로브 스카이 트 (PZT) 압전 패치 (7××캔틸레버의 윗면에는 Physik Instrumente (PI)에서 만든 3cm)가 부착되어 있습니다. 흐름 유도 진동 하에서 변형으로 인해 AC 전압 차이를 제공합니다. VI 왼쪽 날개의 수직 중앙면에있는 2D 속도 필드는 수제 수중 PIV 장비를 통해 얻었습니다.각주1 연속파, 저비용, 저전력 (150mW), 녹색 (532nm) 레이저 빔이 2mm 두께의 부채꼴 시트에 퍼집니다.120∘120∘그림 2 와 같이 VI의 한쪽 날개를 절반으로 교차 합니다. 물은 평균 직경이 100 인 폴리 아미드 입자로 시드됩니다.μμm 및 1016 Kg / m의 밀도삼삼. 레이저 소스는 VI의 15cm 위쪽 (자유 표면 아래 약 4cm)과 VI의 하류 5cm에 경사지게 배치됩니다.5∘5∘상류. 위의 설정은 주로 날개의 후류를 조사하기 위해 고안되었습니다. 날개의 상류면과 하류 부분의 일부는 레이저 시트에 직접 맞지 않습니다. 레이저 시트에 수직으로 촬영하는 고속 상용 카메라 (Sony RX100 M5)를 사용하여 동영상을 촬영합니다. 후자는 1920의 프레임 크기로 500fps의 높은 프레임 속도 모드로 기록됩니다.×× 1080px, 나중에 더 작은 655로 잘림 ××이미지 분석 중에 분석 할 850px ROI. 시간 해결, 프리웨어, 오픈 소스, MatLab 용 PIV 분석 도구가 사용됩니다 (Thielicke and Stamhuis 2014 ). 이 도구는 질의 영역 (IA) 변형 (우리의 경우 64×× 64, 32 ×× 32 및 26 ××26). 각 패스에서 각 IA의 경계와 모서리에서 추가 변위 정보를 얻기 위해 인접한 IA 사이에 50 %의 중첩이 허용됩니다. 첫 번째 통과 후, 입자 변위 정보가 보간되어 IA의 모든 픽셀의 변위를 도출하고 그에 따라 변형됩니다.

시딩 입자 수 밀도는 첫 번째 패스에서 IA 당 약 5입니다. Keane과 Adrian ( 1992 )에 따르면 이러한 밀도 값은 95 % 유효한 탐지 확률을 보장합니다. IA는 프레임 커플 내에서 입자의 충분한 영구성을 보장하기 위해 크기가 조정됩니다. 분석 된 유동 역학은 0.4 ~ 0.7m / s 범위의 유동 속도를 특징으로합니다. 따라서 입자는 권장 최소값 인 2 프레임 (Keane and Adrian 1992 ) 보다 큰 약 3-4 프레임의 세 번째 패스 IA에 나타납니다 .

PIV 체인 분석 평가

사용 된 PIV 알고리즘의 정확성은 이전에 문헌에서 광범위하게 평가되었습니다 (예 : Guérin et al. ( 2020 ), Vennemann and Rösgen ( 2020 ), Mohammadshahi et al. ( 2020 ), Narayan et al. ( 2020 )). 그러나 PIV 측정의 물리적 일관성을 보장하기 위해 두 가지 벤치 마크 사례가 여기에 나와 있습니다.

첫 번째는 Sect에 설명 된 동일한 PIV 설정을 통해 측정 된 세로 유속의 수직 프로파일을 비교합니다. 3.1 분석 기준 용액이있는 실험 채널에서. 후자는 플로팅 트레이서로 수행되는 PTV (입자 추적 속도계) 측정을 통해 보정되었습니다. 분석 속도 프로파일은 Eq. 1 (Keulegan 1938 ).u ( z) =유∗[5.75 로그(지δ) +8.5];유(지)=유∗[5.75로그⁡(지δ)+8.5];(1)

여기서 u 는 수평 유속 성분, z 는 수직 좌표,δδ 침대 거칠기 및 V∗V∗ 균일 한 흐름 공식에 의해 주어진 것으로 가정되는 마찰 속도, 즉 유∗= U/ C유∗=유/씨; U 는 깊이 평균 유속이고 C 는 다음 과 같이 주어진 마찰 계수입니다.씨= 5.75로그( 13.3에프R / δ)씨=5.75로그⁡(13.3에프아르 자형/δ), R = 0.2아르 자형=0.2 m은 유압 반경이고 에프= 0.92에프=0.92유한 폭 채널의 형상 계수. 그림  4 는 4 초의 시간 창에 걸쳐 순간 값을 평균화하여 얻은 분석 프로필과 PIV 측정 간의 비교를 보여줍니다. 국부적 인 변동은 대략 0.5 초의 시간 척도에서 진화하는 것으로 밝혀졌습니다. PTV 결과에 가장 적합하면 다음과 같은 값이 산출됩니다.δ= 1δ=1cm, 베드 거칠기의 경우 Eq. 1 , 실험 채널 침대 표면의 실제 조건과 호환됩니다. VI의 휴지 구성 위치에서 유속의 분석 값은 그림에서 검은 색 십자가로 표시됩니다. 비교는 놀라운 일치를 보여 주므로 실험 설정과 PIV 알고리즘의 조합이 분석 된 설정에 대해 신뢰할 수있는 것으로 간주 될 수 있음을 증명합니다.

두 번째 벤치 마크는 VI 뒷면에 재 부착 된 흐름의 양을 비교합니다. 실제로 이러한 장치의 높은 캠버를 고려할 때 흐름은 하류 표면에서 분리되어 결국 다시 연결됩니다. 첨부 흐름을 나타내는 표면의 양 (Curatolo 외. 발견 2020 ) 흥미로운 압전 패치 (즉, 효율이 큰 경우에 더 빠르게 진동이 유발되는 것이다)에서 VI의 효율과 상관된다. 여기에서는 PIV 분석을 통해 측정 된 진동의 상사 점에서 재 부착 된 흐름의 길이를 CFD (전산 유체 역학) 상용 코드 FLOW-3D® (Flow Science 2019 )로 예측 한 길이와 비교하여 RANS를 해결합니다. 결합 식 (비어 스톡스 레이놀즈 평균) 케이 -ϵϵ구조화 된 그리드의 난류 폐쇄 (시뮬레이션을 위해 1mm 간격이 선택됨). 다운 스트림 측면의 흐름은 이러한 높은 캠버 VI를 위해 여러 위치에서 분리 및 재 부착됩니다. 이 벤치 마크에서 비교 된 양은 VI의 앞쪽 가장자리와 가장 가까운 흐름 재 부착 위치 사이의 호 길이입니다. 그림 5를 참조  하면 CFD 모델에 의해 예측 된 호의 길이는 측정 된 호의 길이보다 10 % 더 큽니다. 이 작업에 제시된 DM 기술을 사용하는 PIV 분석은 물리적으로 건전한 측정을 제공하는 것으로 입증됩니다. 후류의 유체 역학에 대한 자세한 분석과 VI의 전반적인 효율성과의 상관 관계는 현재 진행 중이며 향후 작업의 대상이 될 것입니다.

그림 4
그림 4
그림 5
그림 5

결과

그림 6을 참조하여  순간 유속 장의 관점에서 세 가지 접근법의 결과를 비교합니다. 선택한 순간은 진동의 상사 점에 해당합니다.

제안 된 DM (그림 6 의 패널 a  )은 부드러운 유동장을 생성하여 후류에서 일관된 소용돌이 구조를 나타냅니다.

NM 접근법 (그림 6 의 패널 b1  )도 후류의 와류 구조를 정확하게 예측하지만 음영 영역에서 대부분 부정확 한 값을 산출합니다. 또한 비교에서 합리적인 기준을 추론 할 수 없기 때문에 획득 한 유동장 의 사후 필터링이 실현 가능하지 않다는 것이 분명합니다 . 실제로 유속은 그림 6 의 패널 c1에서 볼 수 있듯이 가장 큰 오류가 생성되는 위치에서도 “합리적인”크기를 갖습니다. , DM 및 NM 접근 방식으로 얻은 속도 필드 간의 차이가 표시됩니다. 더욱이 후류에서 발생하는 매우 불안정한 소용돌이 운동이 이러한 위치에 가깝게 이동하기 때문에 그럴듯한 흐름 방향을 가정하더라도 필터링 기준을 공식화 할 수 없습니다. 모델러가 그러한 부정확성을 알고 있었다하더라도 NM 접근법은 “합리적”이지만 여전히 날개의 내부 현과 그 바로 아래에있는 유동장의 대부분은 부정확합니다. 이러한 행동은 매우 오해의 소지가 있습니다.

그림 6 의 패널 b2는  SM 접근법으로 얻은 유속 장을 보여주고 패널 c2는 SM과 DM 접근법으로 얻은 결과 간의 차이를 보여줍니다. SM 접근법은 NM 대응 물에 비해 전반적으로 더 나은 정확도를 명확하게 보여 주지만, 이는 레이저 소스의 위치가 진동 중에 음영 영역이 많이 움직이지 않기 때문입니다 (그림 3 참조). 한 번의 진동 동안 VI가 경험 한 최대 변위를 육안으로 검사합니다. 즉, 분석 된 사례의 경우 정적 마스크를 그리기위한 중립 구성을 선택하면 NM 접근 방식보다 낮은 오류를 얻을 수 있습니다. 더 큰 물체 변위를 포함하는 실험 설정은 NM이 일관되게 더 정확해질 수 있기 때문에 NM보다 SM의 우월성은 일반화 될 수 없음을 강조하고 싶습니다.

그림  6 은 분석 된 접근법에 의해 생성 된 차이를 철저히 보여 주지만 결과에 대한보다 정량적 인 평가를 제공하기 위해 오류의 빈도 분포를 계산했습니다. 그림 7 에서 이러한 분포를  살펴보면 SM 접근법이 NM보다 전체적인 예측이 더 우수하고 SM 분포가 더 정점에 있음을 확인합니다. 그럼에도 불구하고 SM은 여전히 ​​비정상적인 강도의 스파이크를 생성합니다. 분포의 꼬리로 표시되는 이러한 값은 정적 마스크 범위의 과대 평가 (왼쪽 꼬리) 및 과소 평가 (오른쪽 꼬리)에 연결됩니다. 그러나 주파수의 크기는 고려되는 경우에 SM과 NM의 적용 가능성을 배제하여 DM에 대한 리조트를 의무적으로 만듭니다.

그림 6
그림 6
그림 7
그림 7

결론

이 작업에서는 PIV 분석 도구에 DM (Dynamic Masking) 모듈을 제공하기위한 새로운 실험 기법을 제시합니다. 동적 마스킹은 유체 흐름에 잠긴 불투명 이동 / 변형 가능한 물체를 포함하는 시간 해결 PIV 설정에서 필요한 단계입니다. 마스킹 알고리즘과 함께 형광 코팅을 사용하여 물체를 정확하게 추적 할 수 있습니다. 우리는 제안 된 DM과 두 가지 다른 접근 방식, 즉 no-masking (NM)과 static masking (SM)을 비교하여 자체적으로 설계된 저비용 PIV 설정을 통해 수행 된 측정을 제시합니다. 분석 된 유동 역학은 고체 물체의 제한된 변위를 포함하지만 정량적 비교는 DM 기술을 채택해야하는 필수 필요성을 보여줍니다. 여기에서 정확성이 입증 된 현재의 실험적 접근 방식은

메모

  1. 1.실험 데이터 세트는 PIV 분석의 복제를 허용하기 위해 요청시 제공됩니다.

참고 문헌

  1. Anders S, Noto D, Seilmayer M, Eckert S (2019) 스펙트럼 랜덤 마스킹 : 다상 흐름에서 piv를위한 새로운 동적 마스킹 기술. Experim 유체 60 (4) : 1–6 Google 학술 검색 
  2. Archbold E, Ennos A (1972) 이중 노출 레이저 사진에서 변위 측정. Optica Acta Int J Opt 19 (4) : 253–271 Google 학술 검색 
  3. Barker D, Fourney M (1977) 얼룩 패턴으로 유체 속도 측정. Opt Lett 1 (4) : 135–137 Google 학술 검색 
  4. Bradley D, Roth G (2007) 적분 이미지를 사용한 적응 형 임계 값. J 그래프 도구 12 (2) : 13–21 Google 학술 검색 
  5. Brücker C (2000) Piv의 다상 흐름. 입자 이미지 유속계 및 관련 기술, 강의 시리즈, p 1
  6. Case N (2015) 시력 및 조명. GitHub 저장소. https://github.com/ncase/sight-and-light
  7. Curatolo M, La Rosa M, Prestininzi P (2019) 바이 모르 프 압전 캔틸레버의 굽힘에서 평면 상태 가정의 타당성. J Intell Mater Syst Struct 30 (10) : 1508–1517 Google 학술 검색 
  8. Curatolo M, Lombardi V, Prestininzi P (2020) 얇은 압전 캔틸레버의 유동 유도 진동 향상 : 실험 분석. In : River Flow 2020— 유체 유압에 관한 국제 회의 절차
  9. DantecDynamics : DynamicStudio 6.4 (2018) https://www.dantecdynamics.com/dynamicstudio-6-4-release-with-new-dynamic-masking-add-on/
  10. Driscoll K, Sick V, Gray C (2003) 고밀도 연료 ​​스프레이에서 동시 공기 / 연료 위상 piv 측정. Experim 유체 35 (1) : 112–115 Google 학술 검색 
  11. Dussol D, Druault P, Mallat B, Delacroix S, Germain G (2016) 불안정한 인터페이스, 거품 및 움직이는 구조를 포함하는 piv 이미지에 대한 자동 동적 마스크 추출. Comptes Rendus Mécanique 344 (7) : 464–478 Google 학술 검색 
  12. Ergin F, Watz B, Wadhwa N (2015) 장거리 micropiv를 사용하여 작은 평영 수영 선수 주변의 픽셀 정확도 동적 마스킹 및 흐름 측정. 에서 : 입자 이미지 유속계 -PIV15에 관한 제 11 회 국제 심포지엄. 캘리포니아 주 산타 바바라, 9 월, 14 ~ 16 쪽
  13. Flow Science I (2019) FLOW-3D, 버전 12.0. 산타페, NM https://www.flow3d.com/
  14. Foeth EJ, Van Doorne C, Van Terwisga T, Wieneke B (2006) 시간은 3d 시트 캐비테이션의 piv 및 유동 시각화를 해결했습니다. Experim 유체 40 (4) : 503–513 Google 학술 검색 
  15. Grant I (1997) 입자 이미지 속도 측정 : 리뷰. Proc Inst Mech Eng CJ Mech Eng Sci 211 (1) : 55–76 Google 학술 검색 
  16. Guérin A, Derr J, Du Pont SC, Berhanu M (2020) 흐르는 물막에 의해 생성 된 Streamwise 용해 패턴. Phys Rev Lett 125 (19) : 194502 Google 학술 검색 
  17. Keane RD, Adrian RJ (1992) piv 이미지의 상호 상관 분석 이론. Appl Sci Res 49 (3) : 191–215 Google 학술 검색 
  18. Keulegan GH (1938) 열린 수로에서 난류의 법칙, vol. 21. 미국 표준 국 (National Bureau of Standards)
  19. Khalitov D, Longmire EK (2002) 2 개 매개 변수 위상 차별에 의한 동시 2 상 piv. Experim 유체 32 (2) : 252–268 Google 학술 검색 
  20. Lindken R, Rossi M, Große S, Westerweel J (2009) 미세 입자 영상 속도계 (piv) : 최근 개발, 응용 및 지침. 랩 칩 9 (17) : 2551–2567 Google 학술 검색 
  21. Masullo A, Theunissen R (2017) 픽셀 강도 통계를 기반으로 한 piv 이미지 분석을위한 자동화 된 마스크 생성. Experim 유체 58 (6) : 70 Google 학술 검색 
  22. Mohammadshahi S, Samsam-Khayani H, Cai T, Kim KC (2020) 수로에서 진동하는 제트의 흐름 특성과 열 전달에 대한 실험 및 수치 연구. Int J 열 유체 흐름 86 : 108701 Google 학술 검색 
  23. Narayan S, Moravec DB, Dallas AJ, Dutcher CS (2020) 4 채널 미세 유체 유체 역학 트랩에서 물방울 모양 이완. Phys Rev Fluids 5 (11) : 113603 Google 학술 검색 
  24. Pedocchi F, Martin JE, García MH (2008) 입자 이미지 속도계를 사용하는 대규모 실험을위한 저렴한 형광 입자. Experim 유체 45 (1) : 183–186 Google 학술 검색 
  25. Prasad AK (2000) 입체 입자 영상 유속계. Experim 유체 29 (2) : 103–116 Google 학술 검색 
  26. Prestininzi P, Lombardi V (2021) DM @ PIV. https://it.mathworks.com/matlabcentral/fileexchange/75398-dm-piv . MATLAB Central 파일 교환. 2021 년 5 월 6 일 확인
  27. Sanchis A, Jensen A (2011) 자유 표면 흐름에서 라돈 변환을 사용한 piv 이미지의 동적 마스킹. Experim 유체 51 (4) : 871–880 Google 학술 검색 
  28. Scarano F (2013) Tomographic piv : 원리와 실행. Meas Sci Technol 24 (1)
  29. Taniguchi M, Lindsey JS (2018) photochemcad에 사용하기위한> 300 개의 일반적인 화합물의 흡수 및 형광 스펙트럼 데이터베이스. Photochem Photobiol 94 (2) : 290–327 Google 학술 검색 
  30. Taniguchi M, Du H, Lindsey JS (2018) Photochemcad 3 : 다중 스펙트럼 데이터베이스를 사용한 광 물리 계산을위한 다양한 모듈. Photochem Photobiol 94 (2) : 277–289 Google 학술 검색 
  31. Thielicke W (2020) PIVlab (2020). https://www.mathworks.com/matlabcentral/fileexchange/27659-pivlab-particle-image-velocimetry-piv-tool . MATLAB Central 파일 교환. 5 월 8 일 확인
  32. Thielicke W, Stamhuis E (2014) PIVlab-matlab의 사용자 친화적이고 저렴하며 정확한 디지털 입자 이미지 속도계를 지향합니다. J Open Res Softw 2 (1)
  33. TSI Instruments (2014) PIV 이미지에 대한 동적 마스킹. TSI Incorporated 애플리케이션 노트 PIV-018
  34. Vennemann B, Rösgen T (2020) 컨볼 루션 오토 인코더를 사용하는 입자 이미지 속도 측정을위한 동적 마스킹 기술. Experim 유체 61 (7) : 1–11 Google 학술 검색 
  35. Westerweel J, Elsinga GE, Adrian RJ (2013) 복잡하고 난류 흐름에 대한 입자 이미지 유속계. Ann Rev Fluid Mech 45 (1) : 409–436. https://doi.org/10.1146/annurev-fluid-120710-101204MathSciNet  수학 Google 학술 검색 

참조 다운로드

자금

CRUI-CARE 계약에 따라 Università degli Studi Roma Tre가 제공하는 오픈 액세스 자금.

작가 정보

제휴

  1. 이탈리아 Roma, Università Roma Tre 공학과Valentina Lombardi, Michele La Rocca, Pietro Prestininzi

교신 저자

Valentina Lombardi에 대한 서신 .

추가 정보

발행인의 메모

Springer Nature는 출판 된지도 및 기관 소속의 관할권 주장과 관련하여 중립을 유지합니다.

오픈 액세스이 기사는 크리에이티브 커먼즈 저작자 표시 4.0 국제 라이선스에 따라 사용이 허가되었습니다.이 라이선스는 귀하가 원저자와 출처에 대해 적절한 크레딧을 제공하는 한 모든 매체 또는 형식으로 사용, 공유, 개작, 배포 및 복제를 허용합니다. 크리에이티브 커먼즈 라이센스에 대한 링크를 제공하고 변경 사항이 있는지 표시합니다. 이 기사의 이미지 또는 기타 제 3 자 자료는 자료에 대한 크레딧 라인에 달리 명시되지 않는 한 기사의 크리에이티브 커먼즈 라이선스에 포함됩니다. 자료가 기사의 크리에이티브 커먼즈 라이센스에 포함되어 있지 않고 의도 된 사용이 법적 규정에 의해 허용되지 않거나 허용 된 사용을 초과하는 경우 저작권 보유자로부터 직접 허가를 받아야합니다. 이 라이센스의 사본을 보려면 다음을 방문하십시오.http://creativecommons.org/licenses/by/4.0/ .

재판 및 허가

이 기사에 대해

CrossMark를 통해 통화 및 진위 확인

이 기사 인용

Lombardi, V., Rocca, ML & Prestininzi, P. 시간 분해 PIV 분석을위한 새로운 동적 마스킹 기술. J Vis (2021). https://doi.org/10.1007/s12650-021-00756-0

인용 다운로드

이 기사 공유

다음 링크를 공유하는 사람은 누구나이 콘텐츠를 읽을 수 있습니다.공유 가능한 링크 받기

Springer Nature SharedIt 콘텐츠 공유 이니셔티브 제공

키워드

  • 시간 해결 PIV
  • 역학 마스킹
  • 이미지 처리
  • 진동 유도제
  • 형광 코팅
Figure 3. Flow velocity on seawall in A2-3 modeling.

Modeling of the Changes in Flow Velocity on Seawalls under Different Conditions Using FLOW-3D Software

Open Journal of Marine Science
Vol.06 No.02(2016), Article ID:65874,6 pages
10.4236/ojms.2016.62026

FLOW-3D 소프트웨어를 사용하여 다양한 조건에서 Seawalls의 흐름 속도 변경 모델링

Maryam Deilami-Tarifi1, Mehdi Behdarvandi-Askar2*, Vahid Chegini3, Sadegh Haghighi-Pour4
1Department of Coastal Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

2Department of Marine Structures, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
3Iran National Center for Oceanography and Atmospheric Sciences, Tehran, Iran
4Department of Civil Engineering, Excellence in Education Center of Jihad University of Khuzestan, Ahvaz, Iran
Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

ABSTRACT

방파벽은 파도힘의 수준을 감소시키고 다른 구조물로부터 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 이와 관련하여 이러한 구조에 대한 보다 정확한 조사는 다른 관점에서 매우 중요합니다. 이 연구는 다른 레이아웃과 경사면에서 장애물을 고려하여 방파제 크라운의 속도 변화를 조사합니다. FLOW-3D는 모델링을 위한 이 연구에서 사용되었습니다. 모델링의 결과는 장애물의 존재가 방파벽의 크라운의 유량을 줄이는 결정적인 역할을 한다는 것을 보여줍니다. 또한, 예상대로, 상류 방파의 경사계는 벽의 가장 낮은 속도가 D-상태 레이아웃과 45°의 경사에서 발생하므로 이 속도를 줄이는 데 매우 결정적입니다.

Keywords: 플로우 속도, 방파제 크라운, 모델링, Flow Velocity, Seawall Crown, Modeling, FLOW-3D

1. 소개

방파벽은 파도의 속도를 감소시키고 다른 구조물을 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 등대는 일반적으로 방파벽에 의해 보호되는 구조 중 하나입니다. 따라서, 방파성상에 통과하는 물의 부피의 중요성 외에도, 이 구조물에 대한 크라운의 통과-흐름의 속도는 이러한 벽 뒤에 있는 구조물에 추진력과 충동을 만드는 속도 요인의 중요성 때문에 매우 중요하다. 기본적으로 업스트림 경사면에서 장애물을 생성하고 업스트림 경사의 속도는 이 속도의 양을 줄이는 데 매우 효과적일 수 있습니다. 그러나 특정 경사면에서 최적의 장애물 레이아웃에 도달하기 위해 모델링하여 이 문제를 정확하게 조사해야 합니다. 본 연구에서는, FLOW-3D의 3차원 모델이 언급된 문제점을 조사하는 데 사용된다 [1].

2. 연구 역사

여러 연구는 파도가 해양 구조물을 덮어 넘나는 데 초점을 맞추고 있습니다. 이러한 방법은 지속적으로 바다 파도로부터 해안을 보호하기 위해 구조물의 오버 토핑을 정확하게 예측했다. 2002년까지 거의 6,500건의 시험이 실시되었습니다. 일반 파도의 물리적 모델도 미국에서 수행되었습니다 [2] . 무작위 파도의 가장 완벽한 세트는 오웬에 의해 완료되었다 (1980). 오웬은 오버 토핑과 바다 벽의 높이와 오버 토핑의 정도 사이의 관계를 연구하기 위해 물리적 모델 테스트의 번호를 수행 [3] . 그는 오버 토핑의 정도는 파도 높이 및 파도 기간과 같은 환경 조건뿐만 아니라 구조 재료의 기하학 및 유형에 따라 달라지며 있음을 보여주었습니다. 이러한 요인의 조합을 조사해야 합니다. 폰 마이어와 듀발 (1992) 연구의 또 다른 시리즈를 수행 [4] .

3. 재료 및 방법

이 연구에서는 68개의 다양한 형상이 모델링용 소프트웨어에 제공되며 다음 표 1에간단히 소개됩니다. 이 68 개의 다른 기하학에는 4 개의 다른 슬로프, 4 개의 다른 레이아웃 및 4 개의 다른 장애물 높이및 장애물이없는 4 개의 상태및 다른 경사에서만 포함 [5] . 그런 다음, 이러한 서로 다른 형상 및 상태는 FLOW-3D 3차원 모델을 사용하여 동일한 조건에서 평가 및 분석됩니다.

표 1. 변수지정.

4. 숫자 모델

FLOW-3D 소프트웨어는 3차원 유동 필드 분석을 통해 유체 역학 분야에서 강력한 유압 시뮬레이터 응용 프로그램입니다. 모델에서 지배하는 방정식은 다른 유사한 모델과 마찬가지로 Navier-Stokes 방정식과 질량 방정식의 보존[6]입니다.

이 응용 프로그램의 채널을 모델링하려면 일반 조건(모든 시스템의 시뮬레이션 포함), 물리적 조건, 형상 및 모델 해결 네트워크, 출력 및 관련 옵션을 조정해야 합니다. 온도도는 시스템 단위, SI 및 온도에 대해 선택되었습니다.

물리적 인 측면에서, 소프트웨어는 현상을 지배하는 물리학의 원칙에 따라 관련 조건을 선택할 수 있습니다. 이 연구를 지배하는 물리적 조건은 중력과 점도와 난기류입니다. 이 소프트웨어의 난기류는 5 가지 모델에 의해 자극되고이 연구에 사용되는 모델은 재정상화 그룹 (RNG)이었습니다. 난기류의 이 모델에서, K-모델에서 실험적으로 계산된 상수값은 암시적으로 파생된다[7].

그 후 유체를 정의해야 합니다. 이 연구의 선택된 유체는 섭씨 20도물[ 8]이다.

다음 단계는 형상을 정의하고 시뮬레이션에서 중요한 네트워크를 해결하는 것입니다 [9]. FLOW3D를 사용하면 소프트웨어에서 사용할 수 있는 도구로 많은 유체 현상을 묘사할 수 있습니다. 채널 형상을 정의하면 네트워크를 해결해야 합니다. 소프트웨어의 정의된 해결 네트워크는 네트워크 크기, 셀 수 및 X, Y 및 Z 및 경계 조건의 세 가지 좌표에서 해당 치수를 포함한 일반(입방) 해결 네트워크의 형태입니다. 네트워크 셀 치수의 크기가 작을수록 시뮬레이션을 위한 프로그램의 기능과 정밀도가 높을수록[10]이됩니다.

5. 결과

다른 그림에서 관찰할 수 있으므로 다이어그램은 두 가지 유형으로, 먼저 그림 1-4를 포함하는 소프트웨어의 직접 출력과 다른 숫자 5-7을 변경 프로세스의 다이어그램으로 포함합니다. 그러나 그림 1-4에서는 경사면 중 하나에서 출력이 소프트웨어 출력에서 직접 가져온다는 점을 언급해야 합니다.

언급된 수치와 관련하여, 이러한 속도는 장애물없이 상태의 상류 경사면에서 최대인 반면 방파제의 상류 경사면에서 가장 높은 속도 비율이 발생한다는 것을 이해할 수 있다. 흥미로운 점은 가장 낮은 속도는 일반적으로 방파제 크라운에 존재한다는 것입니다.

그림 5-8에서 볼 수 있듯이, 상류 방파제의 모든 다른 경사 상태에서, 가장 높은 유량 속도는 10cm 높이와 가장 낮은 속도의 장애물과 관련이 있으며 50cm 높이의 장애물과 관련이 있다. 그 이유는 장애물과의 충돌로 인해 잠재적 에너지로 변환되는 유동 운동 에너지의 가치가 장애물의 높이를 증가시켜 증가하기 때문입니다. 따라서, 높이가

그림 1. A1 모델링의 방파제의 흐름 속도.

그림 2. A2-1 모델링의 방파제의 흐름 속도.

Figure 3. Flow velocity on seawall in A2-3 modeling.

그림 4. A3-1 모델링의 방파제의 흐름 속도.

그림 5. 방파제 유형 A(61° 경사)의 흐름 속도 의 변화.

그림 6. 방파제 형 B (56 ° 경사)의 흐름 속도의 변화.

그림 7. 방파제 유형 C(51° 경사)의 흐름 속도 의 변화.

그림 8. 방파제 유형 D(45° 경사)의 흐름 속도 변경입니다.

해당 유동 운동 에너지는 각 장애물에 대한 흐름의 충돌에서 잠재적 에너지의 해당 높이로 변환되며, 흐름 속도가 잠시 0이 되고 장애물을 건너면 속도가 증가한다. 장애물의 높이가 낮은 것이든, 순간적인 제로 속도 상태가 줄어들고 흐름은 더 높은 속도와 함께 계속 움직입니다.

6. 결론

Also, as it can be observed, the highest difference of velocity in all the figures is between the obstacles with 10
cm height and the obstacles with 50 cm height. Also, this amount of difference in velocity for difference between the obstacles with 10 cm and 20 cm heights is higher than that of the differences in the obstacles with 20
cm and 30 cm heights which can be related to the special conditions in flow hydraulic in that range of height.

또한, 관찰할 수 있으므로 모든 수치에서 속도의 가장 높은 차이는 높이 가 10cm의 장애물과 높이가 50cm인 장애물 사이에 있습니다. 또한, 10cm와 20cm 높이의 장애물 사이의 차이에 대한 속도차이는 20cm 및 30cm 높이의 장애물의 차이보다 높으며, 이는 그 높이 범위에서 유압의 특별한 조건과 관련이 있을 수 있다.

이 논문 인용

메리암 데일라미-타리피, 메디 베다르반디-아스카르, 바히드 체기니, 사데 그 하그하이-부어(2016) FLOW-3D 소프트웨어를 사용하여 다양한 조건하에서 해벽에 흐르는 속도의 변화를 모델링한다. 해양 과학의 오픈 저널,06,317-322. doi: 10.4236/ojms.2016.62026

참조

  1. 1. Owen, M.W. (1980) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England.   [Citation Time(s):1]
  2. 2. van der Meer, J.W. and Janssen, J.P.F.M. (1995) Wave Run-Up and Wave Overtopping at Dikes. In: Kobayashi, N. and Demirbilek, Z., Eds., Wave Forces on Inclined and Vertical Wall Structures, ASCE, New York.   [Citation Time(s):1]
  3. 3. CIRIA/CUR (1995) Manual on the Use of Rock in Hydraulic Engineering. CUR/RWS Report 169, A.A. Balkema, Rotterdam.   [Citation Time(s):1]
  4. 4. Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schuttrumpf, H. and van der Meer, J.W. (2007) EurOtop— Wave Overtopping of Seadefences and Related Structures Assessment Manual.
    http://www.overtopping-manual.com/manual.html?   [Citation Time(s):1]
  5. 5. De Wall, J.P. and Van der Meer, J.W. (1992) Wave Run-Up and Overtopping at Coastal Structures. ASCE, Proceeding of 23rd ICCE, Venice, 1758-1771.   [Citation Time(s):1]
  6. 6. De Gerloni, M., Franco, L. and Passoni, G. (1991) The Safety of Breakwaters against Wave Overtopping. Proceedings of ICE Conference on Breakwaters and Coastal Structures, Thomas Telford, London.   [Citation Time(s):1]
  7. 7. Fenton, J.D. (1988) The Numerical Solution of Steady Water Wave Problems. Computers & Geosciences, 14.
    http://dx.doi.org/10.1016/0098-3004(88)90066-0   [Citation Time(s):1]
  8. 8. Owen, M.W. (1982) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England.   [Citation Time(s):1]
  9. 9. Allsop, W., Bruce, T., Pearson, J. and Besley, P. (2006) Wave Overtopping at Vertical and Steep Seawall.   [Citation Time(s):1]
  10. 10. TAW (1974) Technical Advisory Committee on Protection against Inundation, Wave Run-Up and Overtopping. Government Publishing Office, The Hague.   [Citation Time(s):1]
Figure 5 - Modeling a simple lotus overflow symmetrically in FLOW-3D software

Flow-3D를 이용한 Morning Glory Spillway의 배출 계수에 대한 소용돌이 차단 블레이드 45 도의 효과

Effect of Vortex Breaker Blades 45 Degree on Discharge Coefficient of Morning Glory Spillway Using Flow-3D

Authors

S. Noruzi1
and J. Ahadiyan2*
1– M.Sc. Student, Faculty of Water Sciences Engineering, Shahid Chamran University of Ahvaz, Iran.
2*-Corresponding Author, Associate Professor, Faculty of Water Sciences Engineering, Shahid Chamran
University of Ahvaz, Iran.

Abstract

The discharge coefficient of morning glory spillway is decreased with eddies created by vortex at the inlet part of weir. However, a series of specific blades can reduce vortices which result in the spillway efficiency is increased. Hence, in this research numerical modeling of installed breaker blade on morning glory spillway was evaluated using Flow-3D model. To achieve these purposes, morning glory spillway was modeled without and with blades 3, 4 and 6 blades at 45 degree angle. To simulate the turbulence fluctuations, the modified k-e model (RNG k-e) was used and its results were compared to the experimental data. Results showed that by installing blades, the discharge coefficient increases up to 42 percent with 25 percent decreasing in the upstream water level. Moreover, among the three different arrangements of blades, the six-blade model was found to have more satisfactory results than other models. In comparison to control model, for H/D between 0 to 0.1 and 0.1 to 0.2 the discharge coefficient has been increased 40 and 57 percent for six-blade arrangement, respectively. 

모닝 글로리의 배출 계수는 위어 입구 부분의 와류에 의해 생성된 소용돌이로 감소합니다. 그러나 일련의 특정 블레이드는 와류를 줄여 배수로 효율성을 높일 수 있습니다. 따라서 본 연구에서는 모닝 글로리 여수로에 설치된 브레이커 블레이드의 수치 모델링을 Flow-3D 모델을 사용하여 평가했습니다. 이러한 목적을 달성하기 위해 45도 각도에서 블레이드 3, 4 및 6 블레이드 없이 모닝 글로리 여수로를 모델링 했습니다. 난류 변동을 시뮬레이션하기 위해 수정된 k-e 모델 (RNG k-e)을 사용하고 그 결과를 실험 데이터와 비교했습니다. 결과에 따르면 블레이드를 설치하면 상류 수위가 25 % 감소하면서 배출 계수가 42 %까지 증가합니다. 또한 3 개의 블레이드 배열 중 6 개 블레이드 모델이 다른 모델보다 더 만족스러운 결과를 나타냈다. 제어 모델에 비해 H / D가 0 ~ 0.1 및 0.1 ~ 0.2 인 경우 방전 계수가 6- 블레이드 배열에서 각각 40 % 및 57 % 증가했습니다.

Keywords

Figure 1 - Dimensions of the vortex blade
Figure 1 – Dimensions of the vortex blade
Figure 3 - A (Physical model of lotus overflow without blade, b) Physical model of lotus overflow with eddy blades.
Figure 3 – A (Physical model of lotus overflow without blade, b) Physical model of lotus overflow with eddy blades.
Figure 5 - Modeling a simple lotus overflow symmetrically in FLOW-3D software
Figure 5 – Modeling a simple lotus overflow symmetrically in FLOW-3D software
Figure 7 - Comparison of Ashley flow chart with numerical model and laboratory
Figure 7 – Comparison of Ashley flow chart with numerical model and laboratory
Figure 8 - Comparison of flow coefficient diagram - immersion ratio of numerical model with laboratory: a (overflow without blade, b) overflow with three blades, c (overflow with four blades, d) overflow with six blades
Figure 8 – Comparison of flow coefficient diagram – immersion ratio of numerical model with laboratory: a (overflow without blade, b) overflow with three blades, c (overflow with four blades, d) overflow with six blades

Reference

1 -حیدری ارجلو، س.، موسوی جهرمی، س. ح. و ادیب، ا. 1386 .بررسی تاثیر شیب بر تعداد بهینه پلکانها در سرریزهای پلکانی، مجله علوم و مهندسی
.)123-136 :)2(33 ،كشاورزی علمی )آبیاری
2 -حاجیپور، گ. 1363 .بررسی آزمایشگاهی تأثیر تیغههای گردابشکن بر هیدرولیک جریان سرریز نیلوفری. پایاننامه كارشناسی ارشد رشته سازههای آبی،
دانشکده مهندسی علوم آب، دانشگاه شهید چمران اهواز.
3 -رنجبر ملکشاه، م.، 1363 .بررسی رفتار سرریز نیلوفری با پایین دست تاج پلکانی بوسیله مدلسازی رایانهای، پایاننامه كارشناسی ارشد مهندسی عمران،
دانشکده مهندسی عمران، دانشگاه خواجه نصیر طوسی.
4 -رمضانی، س. كاویانپور، م ر. و ع. حسنی نژاد. 1362 .بررسی پارامترهای مؤثر بر آبگذری سرریزهای نیلوفری. هفتمین كنگره ملی مهندسی عمران،
دانشکده مهندسی شهید نیکبخت، زاهدان.
1 -سامانی، م. 1331 .طراحی سازههای هیدرولیکی. انتشارات شركت مهندسی مشاور دز آب اهواز
1 -قاسمزاده، ف. 1362 .شبیه سازی مسائل هیدرولیکی در 3D-FLOW .تهران، نوآور.
3 -كمانبدست، 1 ،.موسوی، س.ر. 1361 .مطالعه آزمایشگاهی تأثیر تعداد و زاویه گرداب شکن بر مشخصات جریان در سرریز نیلوفری مربعی، نشریه علوم
آب و خاک )غعلوم و فنون كشاورزی و منابع طبیعی(، سال بیستم، شماره 38 ،صفحه 182-131 .
8 -نظری پوركیانی، ع ا. 1363 .بررسی فشار و سرعت جریان در سرریز نیلوفری سد البرز با استفاده از نرمافزار 3D-FLOW .اولین كنفرانس سراسری
توسعه محوری مهندسی عمران، معماری، برق و مکانیک ایران.
6 -نوحانی، ا.، جمالی امام قیس، ر. 1364 .بررسی آزمایشگاهی تأثیرشکل تیغه های ضد گرداب برراندمان تخلیهی سرریزهای نیلوفری، نشریه آبیاری و
زهکشی ایران، جلد 6 ،شماره 1 ،صفحه 346-341 .
10-Akbari, A A., Nohani, E and A. Afrous. 2015. Numerical study of the effect of anti-vortex plates on the
inflow pattern in shaft spillways. Indian Journal of Fundamental and Applied Life Sciences, 5(S1):
3819-3826.
11-Anonymous, 1965. Design of Small Dams. Water Resources Technical publication, U.S Department of
the interior Bureau of Reclamation.
12-Bagheri, A., Shafai Bajestan, M., Mousavi Jahromi, H., Kashkuli, H. and H. Sedghi. 2010. Hydraulic
evaluation of the flow over polyhedral morning glory spillways. Word Applied Sciences Journal, 9(7):
712-717.
13- Fattor, C. A. and J. D. Bacchiega. 2003. Analysis of instabilities in the charge of regime in morning
glory spillways. Journal of Hydraulic Research, 40(4): 114-123.
14- Khatsuria, R. M. 2005. Hydraulics of spillways and energy dissipaters. Marcel Dekker. Department of
Civil and Environmental Engineering Georgia, Institute of Technology Atlanta, Newyork, USA.
15-Mousavi. S. R., Kamanbedast, A.A., and H. Fathian. 2013. Experimental investigation of the effect of
number of anti-vortex piers on submergence threshold in morning glory spillway with square inlet.
Technical Journal of Engineering and Applied Sciences, 3(24): 3534-3540.
16- Novak, P. 2007. Hydraulic Structures, Fourth edition published by Taylor and Francis. University of
New Castle upon, Tyne, UK, Landon and Network.
17-Tavana, M H., Mousavi Jahromi, H., Shafai Bajestan, M., Masjedi, A. R. and H. Sedghi. 2011.
Optimization of number and direction of vortex breakers in the morning glory spillway using physical
model. Economy, Environmental and Conservation Journal, 17(2): 435-440.
18-Vresteeg. H. K and W. Malalasekera. 1995. An introduction to computational fluid dynamics. Longman
Scientific and Technical. New York.
19-Yakhot. V and L. M. Smith. 1992. The renormalization group. The e-expansion and of turbulence
models. Journal of Computing, 7(1): 35-61.

Fig.2- Richard Dam overflow in America

Studying the effect of shape changes in plan of labyrinth weir on increasing flow discharge coefficient using Flow-3D numerical model

FLOW-3D 수치 모델을 이용하여 미로 위어 평면도의 형상 변화가 유량 계수 증가에 미치는 영향 연구

E. Zamiri 1
, H. Karami 2*
and S. Farzin3
1- M.S. Student, Department of Civil Engineering, Semnan University, Semnan, Iran.
2
*

  • Corresponding Author, Assistant Professor, Department of Civil Engineering, Semnan
    University, Semnan, Iran. (hkarami@semnan.ac.ir).
    3- Assistant Professor, Department of Civil Engineering, Semnan University, Semnan, Iran.

Keywords: : Flood control, Sidewall angle, Predicting discharge coefficient, Computational hydraulic,

Introduction

Weirs are hydraulic structures used to measure, regulate and control the water levels and are
fixed upon open channels and rivers width. Growing magnitude of probable maximum flood
events (PMF) has highlighted the demand for increasing discharge capacity. Application of
labyrinth weir has been suggested as a solution for increasing discharge capacity.
Tullis et al. (1995) evaluated the effective parameters in determining the capacity of a labyrinth
weir. They introduced total head, the effective crest length and the discharge coefficient as
parameters influencing the discharge capacity of a labyrinth weir. Khode et al. (2011)
experimentally studied the parameters of a flow-over labyrinth weir for different side wall angles
(α) from 8 to 30°. They found that discharge coefficient increases by growing side wall angle
values.
Crookston and Tullis (2012a) studied performance of different labyrinth weirs by making
differences between geometric shapes of weirs in plan. The results indicated that discharge
capacity of the arced labyrinth weirs is more than the discharge capacity of horseshoe weirs.
Seo et al. (2016) investigated the effect of weir shapes on discharge of weirs. It was shown that
the discharge of the labyrinth weir had an increase of approximately 71% in comparison with the
linear ogee weir.
In this research, labyrinth weir with sidewall angle equal to 6° was simulated through Flow3D model, using experimental results of previous researchers. After validation, the changes of
discharge coefficient of weir with angles of 45° and 85° and apex shapes of triangular and halfcircular shapes were analyzed.

Weirs는 수위를 측정, 조절 및 제어하는 ​​데 사용되는 수력 구조물이며 열린 수로 및 강 폭에 고정됩니다. 예상되는 최대 홍수 사건 (PMF)의 규모가 커짐에 따라 배출 용량 증가에 대한 요구가 강조되었습니다. 미로 위어 (labyrinth weir)의 적용은 배출 용량을 증가시키기 위한 해결책으로 제안 되었습니다.

Tullis et al. (1995)는 미로 위어의 용량을 결정하는데 효과적인 매개 변수를 평가했습니다. 그들은 미로 위어의 배출 용량에 영향을 미치는 매개 변수로 총 수두, 유효 문장 길이 및 배출 계수를 도입했습니다.

Khode et al. (2011)은 8 ~ 30 °의 다양한 측벽 각도 (α)에 대한 유동-오버 래비 린스 위어의 매개 변수를 실험적으로 연구했습니다.

그들은 측벽 각도 값이 증가함에 따라 방전 계수가 증가한다는 것을 발견했습니다. Crookston과 Tullis (2012a)는 평면에서 위어의 기하학적 모양을 차이를 만들어 서로 다른 미로 위어의 성능을 연구했습니다.

결과는 호형 미로 위어의 배출 용량이 말굽 위어의 배출 용량보다 더 많다는 것을 나타냅니다. Seo et al. (2016)은 위어의 배출에 대한 위어 모양의 영향을 조사했습니다. 미로 위어의 배출량은 선형 오지 위어에 비해 약 71 % 증가한 것으로 나타났습니다.

이 연구에서는 이전 연구자들의 실험 결과를 사용하여 Flow3D 모델을 통해 측벽 각도가 6 ° 인 미로 위어를 시뮬레이션했습니다. 검증 후 각 45 °, 85 °의 위어의 배출 계수 변화와 삼각형 및 반원 형태의 정점 형태를 분석 하였다.

Fig.1- Schematic of trapezoidal, triangular, and rectangular congressional overflow
Fig.1- Schematic of trapezoidal, triangular, and rectangular congressional overflow
Fig.2- Richard Dam overflow in America
Fig.2- Richard Dam overflow in America
Fig.3- Plan of geometric parameters of congressional overflow
Fig.3- Plan of geometric parameters of congressional overflow
Fig. 4- The boundary conditions of the congressional overflow model
Fig. 4- The boundary conditions of the congressional overflow model
Fig.5- View of a simulated congressional overflow
Fig.5- View of a simulated congressional overflow
Fig. 6- Comparison of discharge coefficients resulted from numerical and experimental models
Fig. 6- Comparison of discharge coefficients resulted from numerical and experimental models
Fig.7- The relationship between Cd and Q for different angles of the congressional overflow wall
Fig.7- The relationship between Cd and Q for different angles of the congressional overflow wall
Fig. 8- The relationship between Cd and HT/p for different angles of the congressional overflow wall
Fig. 8- The relationship between Cd and HT/p for different angles of the congressional overflow wall
Table 3- The correlation of Q and HT/p with Cd for different angles of the overflow wall
Table 3- The correlation of Q and HT/p with Cd for different angles of the overflow wall
Fig. 9- The congressional overflow with linear, semicircular and triangular spans
Fig. 9- The congressional overflow with linear, semicircular and triangular spans
Fig. 10- The relationship between Cd and Q for different forms of congressional overflow
Fig. 10- The relationship between Cd and Q for different forms of congressional overflow
Fig. 11- The relationship of Cd and HT/p under different forms of congressional overflow
Fig. 11- The relationship of Cd and HT/p under different forms of congressional overflow
Fig. 12- The relationship Cd other/Cd simple and HT/p in a congressional overflow
Fig. 12- The relationship Cd other/Cd simple and HT/p in a congressional overflow
Fig. 13- Comparison of discharge coefficients resulted from a numerical model and proposed relation
Fig. 13- Comparison of discharge coefficients resulted from a numerical model and proposed relation
Fig. 14- Comparison of Cd from the present study and other studies for 6 angle congressional overflow
Fig. 14- Comparison of Cd from the present study and other studies for 6 angle congressional overflow
Fig. 15- The relationship between the discharge coefficient and HT/p for 6 ◦ angle congressional overflow
Fig. 15- The relationship between the discharge coefficient and HT/p for 6 ◦ angle congressional overflow

Results

오버행의 넘침 흐름을 증가시키는 것이 중요하기 때문에 본 연구에서는 넘침 벽의 돌출부에 6, 45 및 85 도의 세 가지 값을 채점하고 넘침 개구부에 삼각형 및 반원 모양을 제안함으로써 , 오버 플로우의 오버 플로우 계수를 변경하여 3D 숫자 래치를 사용하십시오.

Irene Par Vahsh Bareh에서 얻은 결과는 다음과 같습니다.

1- 흐름을 따라 포병의 범람 벽 각도를 늘리면 방출 계수가 증가합니다. 벽 각도가 85도 및 45 도인 포병의 범람 계수는 벽 각도가 6 도인 범람 계수 평균의 2.28 및 1.24 배입니다.

2-구부러진 양고기를 먹은 상태에서 배수로 모양의 변화는 배출 계수를 증가시킨다. 삼각형과 비 삼각형 개구부가있는 오버플로의 배출 계수는 온대 개구부가있는 오버플로의 배출 계수에 비해 양고기가 50.29 및 4.16 % 증가했습니다.

3- 오버플로 양 (p / HT)의 부하와 함께 부하 부하의 무 차원 비율 값을 늘리면 혼잡 한 오버플로의 방전 계수가 감소합니다. 또한 p <HT / 0.5의 값에서 세 가지 형태의 오버플로 개구에 대한 배출 계수의 값은 서로 가깝고 오버플로 모양의 각 끝은 값에서 동일한 기능을 갖습니다. p / HT <0.5. 4-유량이 증가함에 따라 유량 계수가 감소합니다.

References

1- Azhdary Moghaddam, M. and Jafari Nodoushan, E., 2013. Optimization of Geometry of
trapezoidallabyrinth Spillway with using ANFIS Models and Genetic Algorithms (Ute Dam Case Study
in the United States of America). Journal of Civil Engineering. 24(2), pp. 129-138. (In Persian).
2- Canholi, J. F., Canholi, A. P. and Sobral, V., 2011. Hydraulic Design of a Labyrinth Weir in
Aclimação´s Lake. 12nd International Conference on Urban Drainage, Porto Alegre/Brazil.
3- Crookston, B. M. and Tullis, B. P., 2012a. Arced labyrinth weirs. Journal of Hydraulic
Engineering. 138(6), pp.555-562.
4- Crookston, B. M. and Tullis, B. P., 2012b, Hydraulic design and analysis of labyrinth weirs. I:
Discharge relationships. Journal of Irrigation and Drainage Engineering. 139(5), pp.363-370.
5- Esmaeili Varaki, M. and Safarrazavi Zadeh, M., 2013. Study of Hydraulic Features of Flow Over
Labyrinth Weir with Semi-circular Plan form. Journal of Water and Soil. 27(1), pp. 224-234. (In
Persian).
6- Farzin, S., Karami, H. and Zamiri, E., 2016. Study of the Flow over Rubber Dam Using Computational
Hydrodynamics. Journal of Dam and Hydroelectric Powerplant. 3(9), pp.1-11. (In Persian).
7- Hirt, C. W. and Richardson, J. E., 1999. The modeling of shallow flows, Flow Science, Technical
Notes. 48, pp.1-14.
8- Hosseini, K., Tajnesaie, M. and Jafari Nodoush, E., 2015. Optimization of the Geometry of Triangular
Labyrinth Spillways, Using Fuzzy‐Neural System and Differential Evolution Algorithm. Journal of
Civil and Environmental Engineering. 45(1), PP.81-91. (In Persian).
9- Khode, B. V., Tembhurkar, A. R., Porey, P. D. and Ingle, R. N., 2011. Experimental studies on flow
over labyrinth weir. Journal of Irrigation and Drainage Engineering. 138(6), pp.548-552.
10- Nezami, F., Farsadizadeh, D., Hosseinzadeh Delir, A. and Salmasi, F., 2012. Experimental Study of
Discharge Coefficient of Trapezoidal Labyrinth Side-Weirs. Journal of Water and Soil Science. 23(1),
PP.247-257. (In Persian).
11- Nikpiek, P. and Kashefipour, S. M., 2014. Effect of the hydraulic conditions and structure geometry on
mathematical modelling of discharge coefficient for duckbill and oblique weirs. Journal of Irrigation
Science and Engineering. 39(1), pp.1-10. (In Persian).
12- Noori, B. M. and Aaref, N. T., 2017. Hydraulic Performance of Circular Crested Triangular Plan Form
Weirs. Arabian Journal for Science and Engineering. pp.1-10.
13- Noruzi, S. and Ahadiyan, J., 2016. Effect of Vortex Breaker Blades 45 Degree on Discharge
Coefficient of Morning Glory Spillway Using Flow-3D. Journal of Irrigation Science and
Engineering. 39(4), PP. 47-58. (In Persian).
14- Paxson, G. and Savage, B., 2006. Labyrinth spillways: comparison of two popular USA design
methods and consideration of non-standard approach conditions and geometries. Proceedings of the
international junior researcher and engineer workshop on hydraulic structures, Montemor-o-Novo,
Portugal, Division of Civil Engineering, 37.
15- Payri, R., Tormos, B., Gimeno, J. and Bracho, G., 2010. The potential of Large Eddy Simulation (LES)
code for the modeling of flow in diesel injectors. Mathematical and Computer Modelling. 52(7),
pp.1151-1160.
16- Rezaee, M., Emadi, A. and Aqajani Mazandarani, Q., 2016. Experimental Study of Rectangular
Labyrinth Weir. Journal of Water and Soil. 29(6), pp. 1438-1446. (In Persian).
17- Seo, I. W., Do Kim, Y., Park, Y. S. and Song, C. G. 2016, Spillway discharges by modification of weir
shapes and overflow surroundings. Environmental Earth Sciences. 75(6), pp.1-13.
18- Suprapto, M., 2013. Increase spillway capacity using Labyrinth Weir. Procedia Engineering. 54, pp.
440-446.
19- Tullis, J. P., Amanian, N. and Waldron, D., 1995. Design of labyrinth spillways. Journal of Hydraulic
Engineering. 121(3), pp.247-255.
20- Zamiri, E., Karami, H. and Farzin, S., 2016. Numerical Study of Labyrinth Weir Using RNG
Turbulence Model. 15th Iranian Hydraulic Conference, Imam Khomeini International University,
Qazvin, Iran. (In Persian).

Abf - Three-dimensional view of the abbot from short to long to short

Flow-3D 수치 모형을 이용한 파동 감소에 대한 규칙적인 레이아웃으로 식생 고도 변화 효과 연구

세예드 아마드가 헤리 네 자드 1 , Mehdi Behdarvandi Askar  2 , 모하마드 안사리 고이 가르 3, 에산 파르시 4
1 공학, 해안, 항만 및 & amp; 해양 구조물 _ 코람 샤르 해양 과학 기술 대학교
2 코람 샤르 해양 과학 기술 대학교 해양 공학부 해양 구조학과
3 이란 카라 지 테헤란 대학교 농업 및 천연 자원 대학 관개 및 매립 공학과.
4 연구 전문가, Arvand Water and Energy Consulting Engineers Company, Ahvaz, Iran.

Abstract

The development of water waves through submerged and non-submerged vegetation is accompanied by a loss of energy through the resistive force of the vegetation, resulting in a decrease in wave height. Wave damping by vegetation is a function of cover characteristics such as geometry and structure, immersion ratio, density, hardness, and spatial arrangement, as well as wave conditions such as input wave height, duration, and wave direction. In the present study, the effect of geometric arrangement of vegetation with variable height on wave damping has been investigated using the Flow 3D numerical model. For this purpose, a channel with a length of 480 cm and a width of 10.8 cm, which has been previously used by Cox and Wu (2015) to study the effect of plant density with variable height on wave damping, is modeled. The operation of the three arrangements, including long to short arrangement, short to long arrangement, and zigzag arrangement, is examined under four different waves, all of which are linear waves. It should be noted that in this study, wave height is considered as an damping index. The results obtained by measuring the height of the waves at four different points along the channel show that the behavior of the waves in dealing with different arrangements follows a fixed pattern and also changes in the geometry of the vegetation can greatly lead to Increase the damping of the waves. The results show that a change in height arrangement can cause a change in damping of up to 7.1%.

Keywords : Green belt , wave , geometric layout , vegetation

물에 잠긴 초목과 물에 잠기지 않은 초목을 통한 물결의 발달은 초목의 저항력을 통한 에너지 손실을 동반하여 파고가 감소합니다. 식생에 의한 파동감쇠는 기하와 구조, 몰입도, 밀도, 경도, 공간배열 등 커버 특성과 입력파동 높이, 지속시간, 파동방향 등의 파동조건의 함수입니다.

본 연구에서는 Flow 3D 수치 모델을 사용하여 가변 높이 식물이 파동 댐핑에 미치는 기하학적 배치가 조사되었습니다. 이를 위해 Cox와 Wu (2015)가 이전에 파동 댐핑에 대한 가변 높이의 발전소 밀도가 미치는 영향을 연구하기 위해 사용한 길이 480cm, 폭 10.8cm의 채널을 모델링합니다.

장파에서 단파, 단파에서 장파까지, 지그재그 배열을 포함한 세 가지 배열의 작동은 4개의 다른 파장에서 조사됩니다. 모두 선형파입니다.

본 연구에서는 파고가 감쇠 지수로 간주된다는 점에 유의해야 합니다.

채널을 따라 네 곳의 서로 다른 지점에서 파도의 높이를 측정하여 얻은 결과는 다른 배열을 다루는 파도의 동작이 고정된 패턴을 따르며 또한 초목의 기하학적인 변화가 파도의 감쇠를 증가 시키는 것으로 크게 이어질 수 있다는 것을 보여줍니다.

결과는 높이 배열의 변화가 최대 7.1%의 댐핑 변화를 일으킬 수 있음을 보여줍니다.

Figure 1 - Geometry used by Cox and Wu (2015) to study the effect of plant density on wave damping
Figure 1 – Geometry used by Cox and Wu (2015) to study the effect of plant density on wave damping
Figure 2 - Schematic of Erie wave
Figure 2 – Schematic of Erie wave
Abf - Three-dimensional view of the abbot from short to long to short
Abf – Three-dimensional view of the abbot from short to long to short

References

خلیلی نفت­چالی، آ. خزیمه­نژاد، ح. اکبرپور، ا. ورجاوند، پ. 1394. بررسی آزمایشگاهی تأثیر تراکم پوشش گیاهی بر مشخصه‌های جریان غلیظ. نشریه آبیاری و زهکشی ایران. 9 (1): 95-83.
زارعی، م. فتحی­مقدم، م. داوودی، ل. 1395. بررسی اثر پوشش گیاهی ساحلی بر میرایی نیروی مخرب امواج منفرد ناشکنا در سواحل شیبدار. نشریه مهندسی آبیاری و آب ایران. 7 (26): 75-62.
گرمئی، ا. امامی، ح. خراسانی، ر. 1396. اثر تراکم سه نوع پوشش گیاهی بر میزان رواناب و رسوب در حاشیه شهر مشهد. نشریه آبیاری و زهکشی ایران. 11 (1): 20-11.
فضلی، س. نور، ح. 1396. شبیه‌سازی و ارزیابی اثر سناریوهای مختلف درصد پوشش گیاهی بر فرسایش خاک. نشریه آبیاری و زهکشی ایران. 11 (4): 571-562.
قنبری عدیوی، ا. فتحی مقدم، م. 1393. مروری بر تحقیقات استهلاک و میرایی امواج دریا از طریق پوشش گیاهی ساحلی. فصلنامه علوم و فناوری دریا. 18 (70): 62-54.
معتمدی­نژاد، ع. فتحی­مقدم، م. زارعی، م. 1394. بررسی آزمایشگاهی اثر پوشش گیاهی ساحلی بر کاهش نیروی امواج شکنا. دهمین سمینار بین المللی مهندسی رودخانه. دانشگاه شهید چمران اهواز، اهواز، ایران.
میرزاخانی، گ. قنبری عدیوی، ا. فتاحی­نافچی، ر. 1398. میرایی موج توسط پوشش گیاهی صلب در سواحل. دومین همایش ملی مدیریت منابع طبیعی با محوریت آب، سیل و محیط زیست. دانشگاه گنبد کاووس، گنبد کاووس، ایران.
Asano, T. S. Sutsui, T. and Sakai.T. 1988. Wave damping characteristics due to seaweed. Proceedings of the 35th Coastal Engineering Conference in Japan. JSCE. 138-142 (in Japanese).
Asano, T., Deguchi, H. and N. Kobayashi. 1992. Interactions between water waves and vegetation. Proceedings of the 23rd International Conference on Coastal Engineering. ASCE. 2710-2723.
Augustin, L.N., Irish, J.L. and Lynett, P. 2009. Laboratory and numerical studies of wave damping by emergent and nearemergent wetland vegetation. Coastal Engineering. 56(3): 332-340.
Cavallaro L., Re, C.L., Paratore, G., Viviano, A. and Foti, E. 2010. Response of Posidonia oceanic to wave motion in shallowwaters: Preliminary experimental results. Proceedings of the 32nd International Conference on Coastal Engineering. Coastal Engineering Research Council. 1-10.
Cook, H.L. and Campbell, F.B. 1939. Characteristics of some meadow strip vegetation. Agricultural Engineering. 20:345-348.
Cooper, N.J. 2005. Wave dissipation across intertidal surfaces in the Wash Tidal inlet, Eastern England. Journal of Coastal Research. 21(1): 28-40.
Dean, R.G. 1979. Effects of vegetation on shoreline erosional processes. Wetland Function and Values: The State of Our Understanding. 1: 415-426.
Dean, R.G., and Dalrymple, R.A. 1991. Water Wave Mechanics for Engineers and Scientist. World Scientific Publishing.Singapore.
Dubi, A. 1995. Damping of water waves by submerged vegetation: A case study on Laminaria hyperborea. PhD thesis. University of Trondheim, the Norwegian Institute of Technology, Trondheim, Norway.
Fathi Moghadam, M., Drikundi, K.h., Masjidi, A. and M. 2012. Investigation of the Effect of Vegetation Density and Flexibility on Roughness Coefficients in Riverside and Flood Plains, Iranian Water Resources Research Quarterly, Year 8, Issue 2, Fall 91.
Fathi Moghadam, M. and Zaraei, M. 2016. Investigation of the Effect of Coastal Vegetation on the Damping of Destructive Force of Unbreakable Individual Waves on Shabidar Coasts, Journal of Irrigation and Water Engineering, Year 7, No. 26.
Furukawa, K., Wolanski, E. and Mueller, H. 1997. Currents and sediment transport in mangrove forests. Estuar Coast Shelf Sci 44:301–310.
Harada, K. and Imamura, F. 2006. Experimental study on the resistance by mangrove under unsteady flow, Proc. Congress. Asian and Pacific Coastal Engineering Dalia, 984-975.
Jellilund, R., M. Zeid Ali, L. Nouri Hindi and M. 2012. Investigating the advantages and disadvantages of protection and organization of beaches with vegetation against morphological changes, Fifth National Conference and Specialized Environment Exhibition, 90.
Journal 629, Guide to the Design and Implementation of a Coastal Protection Structure.
Kongko, W. 2004. Study on tsunami energy dissipation in mangrove forest, Master Thesis Report, wate University, Japan, 43 pages.
Kutija, V. and Erduran, K. S. 2003. Quasi-three-dimensional numerical model for flow through flexible, rigid, submerged and non-sub merged vegetation. Journal of Hydro informatics. 35(3): 189-202.
Li, R.M. and Shen, H.W. 1973. Effect of tall vegetations on flow and sediment. Journal of the Hydraulics Division, ASCE. 99(5):739-814.
Wu, W.C. and Cox, D, T. 2015. Effects of Vertical Variation in Vegetation Density on Wave Attenuation. Journal of Waterway, Port, Coastal and Ocean Engineering. Volume 142 Issue 2.

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Numerical investigation of flow characteristics over stepped spillways

Güven, Aytaç
Mahmood, Ahmed Hussein
Water Supply (2021) 21 (3): 1344–1355.
https://doi.org/10.2166/ws.2020.283Article history

Abstract

Spillways are constructed to evacuate flood discharge safely so that a flood wave does not overtop the dam body. There are different types of spillways, with the ogee type being the conventional one. A stepped spillway is an example of a nonconventional spillway. The turbulent flow over a stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over a stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with an experimental study done by others in the literature. Two models of a stepped spillway with different discharge for each model were simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which are exhibited in terms of graphics and statistical tables.

배수로는 홍수가 댐 몸체 위로 넘치지 않도록 안전하게 홍수를 피할 수 있도록 건설되었습니다. 다른 유형의 배수로가 있으며, ogee 유형이 기존 유형입니다. 계단식 배수로는 비 전통적인 배수로의 예입니다. 계단식 배수로 위의 난류는 Flow-3D 패키지를 사용하여 수치적으로 연구되었습니다.

세로 유속, 온도 분포, 밀도 및 화학 농도와 같은 다양한 유체 흐름 특성은 Flow-3D로 잘 시뮬레이션 할 수 있습니다. 이 연구에서는 계단식 배수로에 대한 공기 혼입, 속도 분포 및 동적 압력 분포와 같은 유동 특성에 대한 경사 변화의 영향을 Flow-3D로 모델링 했습니다.

수치 모델의 결과는 문헌에서 다른 사람들이 수행한 실험 연구와 비교되었습니다. 각 모델에 대해 서로 다른 배출이 있는 계단식 배수로의 두 모델이 시뮬레이션되었습니다. 실험 모델의 난류 흐름은 수치 모델의 Renormalized Group (RNG) 난류 계획에 의해 시뮬레이션되었습니다. 수치 결과와 관찰 된 결과 사이에 좋은 일치가 이루어졌으며, 이는 그래픽 및 통계 테이블로 표시됩니다.

HIGHLIGHTS

ListenReadSpeaker webReader: Listen

  • A numerical model was developed for stepped spillways.
  • The turbulent flow was simulated by the Renormalized Group (RNG) model.
  • Both numerical and experimental results showed that flow characteristics are greatly affected by abrupt slope change on the steps.

Keyword

CFDnumerical modellingslope changestepped spillwayturbulent flow

INTRODUCTION

댐 구조는 물 보호가 생활의 핵심이기 때문에 물을 저장하거나 물을 운반하는 전 세계에서 가장 중요한 프로젝트입니다. 그리고 여수로는 댐의 가장 중요한 부분 중 하나로 분류됩니다. 홍수로 인한 파괴 나 피해로부터 댐을 보호하기 위해 여수로가 건설됩니다.

수력 발전, 항해, 레크리에이션 및 어업의 중요성을 감안할 때 댐 건설 및 홍수 통제는 전 세계적으로 매우 중요한 문제로 간주 될 수 있습니다. 많은 유형의 배수로가 있지만 가장 일반적인 유형은 다음과 같습니다 : ogee 배수로, 자유 낙하 배수로, 사이펀 배수로, 슈트 배수로, 측면 채널 배수로, 터널 배수로, 샤프트 배수로 및 계단식 배수로.

그리고 모든 여수로는 입구 채널, 제어 구조, 배출 캐리어 및 출구 채널의 네 가지 필수 구성 요소로 구성됩니다. 특히 롤러 압축 콘크리트 (RCC) 댐 건설 기술과 더 쉽고 빠르며 저렴한 건설 기술로 분류 된 계단식 배수로 건설과 관련하여 최근 수십 년 동안 많은 계단식 배수로가 건설되었습니다 (Chanson 2002; Felder & Chanson 2011).

계단식 배수로 구조는 캐비테이션 위험을 감소시키는 에너지 소산 속도를 증가시킵니다 (Boes & Hager 2003b). 계단식 배수로는 다양한 조건에서 더 매력적으로 만드는 장점이 있습니다.

계단식 배수로의 흐름 거동은 일반적으로 낮잠, 천이 및 스키밍 흐름 체제의 세 가지 다른 영역으로 분류됩니다 (Chanson 2002). 유속이 낮을 때 nappe 흐름 체제가 발생하고 자유 낙하하는 낮잠의 시퀀스로 특징 지워지는 반면, 스키밍 흐름 체제에서는 물이 외부 계단 가장자리 위의 유사 바닥에서 일관된 흐름으로 계단 위로 흐릅니다.

또한 주요 흐름에서 3 차원 재순환 소용돌이가 발생한다는 것도 분명합니다 (예 : Chanson 2002; Gonzalez & Chanson 2008). 계단 가장자리 근처의 의사 바닥에서 흐름의 방향은 가상 바닥과 가상으로 정렬됩니다. Takahashi & Ohtsu (2012)에 따르면, 스키밍 흐름 체제에서 주어진 유속에 대해 흐름은 계단 가장자리 근처의 수평 계단면에 영향을 미치고 슈트 경사가 감소하면 충돌 영역의 면적이 증가합니다. 전이 흐름 체제는 나페 흐름과 스키밍 흐름 체제 사이에서 발생합니다. 계단식 배수로를 설계 할 때 스키밍 흐름 체계를 고려해야합니다 (예 : Chanson 1994, Matos 2000, Chanson 2002, Boes & Hager 2003a).

CFD (Computational Fluid Dynamics), 즉 수력 공학의 수치 모델은 일반적으로 물리적 모델에 소요되는 총 비용과 시간을 줄여줍니다. 따라서 수치 모델은 실험 모델보다 빠르고 저렴한 것으로 분류되며 동시에 하나 이상의 목적으로 사용될 수도 있습니다. 사용 가능한 많은 CFD 소프트웨어 패키지가 있지만 가장 널리 사용되는 것은 FLOW-3D입니다. 이 연구에서는 Flow 3D 소프트웨어를 사용하여 유량이 서로 다른 두 모델에 대해 계단식 배수로에서 공기 농도, 속도 분포 및 동적 압력 분포를 시뮬레이션합니다.

Roshan et al. (2010)은 서로 다른 수의 계단 및 배출을 가진 계단식 배수로의 두 가지 물리적 모델에 대한 흐름 체제 및 에너지 소산 조사를 연구했습니다. 실험 모델의 기울기는 각각 19.2 %, 12 단계와 23 단계의 수입니다. 결과는 23 단계 물리적 모델에서 관찰 된 흐름 영역이 12 단계 모델보다 더 수용 가능한 것으로 간주되었음을 보여줍니다. 그러나 12 단계 모델의 에너지 손실은 23 단계 모델보다 더 많았습니다. 그리고 실험은 스키밍 흐름 체제에서 23 단계 모델의 에너지 소산이 12 단계 모델보다 약 12 ​​% 더 적다는 것을 관찰했습니다.

Ghaderi et al. (2020a)는 계단 크기와 유속이 다른 정련 매개 변수의 영향을 조사하기 위해 계단식 배수로에 대한 실험 연구를 수행했습니다. 그 결과, 흐름 체계가 냅페 흐름 체계에서 발생하는 최소 scouring 깊이와 같은 scouring 구멍 치수에 영향을 미친다는 것을 보여주었습니다. 또한 테일 워터 깊이와 계단 크기는 최대 scouring깊이에 대한 실제 매개 변수입니다. 테일 워터의 깊이를 6.31cm에서 8.54 및 11.82cm로 늘림으로써 수세 깊이가 각각 18.56 % 및 11.42 % 증가했습니다. 또한 이 증가하는 테일 워터 깊이는 scouring 길이를 각각 31.43 % 및 16.55 % 감소 시킵니다. 또한 유속을 높이면 Froude 수가 증가하고 흐름의 운동량이 증가하면 scouring이 촉진됩니다. 또한 결과는 중간의 scouring이 횡단면의 측벽보다 적다는 것을 나타냅니다. 계단식 배수로 하류의 최대 scouring 깊이를 예측 한 후 실험 결과와 비교하기 위한 실험식이 제안 되었습니다. 그리고 비교 결과 제안 된 공식은 각각 3.86 %와 9.31 %의 상대 오차와 최대 오차 내에서 scouring 깊이를 예측할 수 있음을 보여주었습니다.

Ghaderi et al. (2020b)는 사다리꼴 미로 모양 (TLS) 단계의 수치 조사를 했습니다. 결과는 이러한 유형의 배수로가 확대 비율 LT / Wt (LT는 총 가장자리 길이, Wt는 배수로의 폭)를 증가시키기 때문에 더 나은 성능을 갖는 것으로 관찰되었습니다. 또한 사다리꼴 미로 모양의 계단식 배수로는 더 큰 마찰 계수와 더 낮은 잔류 수두를 가지고 있습니다. 마찰 계수는 다양한 배율에 대해 0.79에서 1.33까지 다르며 평평한 계단식 배수로의 경우 대략 0.66과 같습니다. 또한 TLS 계단식 배수로에서 잔류 수두의 비율 (Hres / dc)은 약 2.89이고 평평한 계단식 배수로의 경우 약 4.32와 같습니다.

Shahheydari et al. (2015)는 Flow-3D 소프트웨어, RNG k-ε 모델 및 VOF (Volume of Fluid) 방법을 사용하여 배출 계수 및 에너지 소산과 같은 자유 표면 흐름의 프로파일을 연구하여 스키밍 흐름 체제에서 계단식 배수로에 대한 흐름을 조사했습니다. 실험 결과와 비교했습니다. 결과는 에너지 소산 율과 방전 계수율의 관계가 역으로 실험 모델의 결과와 잘 일치 함을 보여 주었다.

Mohammad Rezapour Tabari & Tavakoli (2016)는 계단 높이 (h), 계단 길이 (L), 계단 수 (Ns) 및 단위 폭의 방전 (q)과 같은 다양한 매개 변수가 계단식 에너지 ​​소산에 미치는 영향을 조사했습니다. 방수로. 그들은 해석에 FLOW-3D 소프트웨어를 사용하여 계단식 배수로에서 에너지 손실과 임계 흐름 깊이 사이의 관계를 평가했습니다. 또한 유동 난류에 사용되는 방정식과 표준 k-ɛ 모델을 풀기 위해 유한 체적 방법을 적용했습니다. 결과에 따르면 스텝 수가 증가하고 유량 배출량이 증가하면 에너지 손실이 감소합니다. 얻은 결과를 다른 연구와 비교하고 경험적, 수학적 조사를 수행하여 결국 합격 가능한 결과를 얻었습니다.

METHODOLOGY

ListenReadSpeaker webReader: ListenFor all numerical models the basic principle is very similar: a set of partial differential equations (PDE) present the physical problems. The flow of fluids (gas and liquid) are governed by the conservation laws of mass, momentum and energy. For Computational Fluid Dynamics (CFD), the PDE system is substituted by a set of algebraic equations which can be worked out by using numerical methods (Versteeg & Malalasekera 2007). Flow-3D uses the finite volume approach to solve the Reynolds Averaged Navier-Stokes (RANS) equation, by applying the technique of Fractional Area/Volume Obstacle Representation (FAVOR) to define an obstacle (Flow Science Inc. 2012). Equations (1) and (2) are RANS and continuity equations with FAVOR variables that are applied for incompressible flows.

formula

(1)

formula

(2)where  is the velocity in xi direction, t is the time,  is the fractional area open to flow in the subscript directions,  is the volume fraction of fluid in each cell, p is the hydrostatic pressure,  is the density, is the gravitational force in subscript directions and  is the Reynolds stresses.

Turbulence modelling is one of three key elements in CFD (Gunal 1996). There are many types of turbulence models, but the most common are Zero-equation models, One-equation models, Two-equation models, Reynolds Stress/Flux models and Algebraic Stress/Flux models. In FLOW-3D software, five turbulence models are available. The formulation used in the FLOW-3D software differs slightly from other formulations that includes the influence of the fractional areas/volumes of the FAVORTM method and generalizes the turbulence production (or decay) associated with buoyancy forces. The latter generalization, for example, includes buoyancy effects associated with non-inertial accelerations.

The available turbulence models in Flow-3D software are the Prandtl Mixing Length Model, the One-Equation Turbulent Energy Model, the Two-Equation Standard  Model, the Two-Equation Renormalization-Group (RNG) Model and large Eddy Simulation Model (Flow Science Inc. 2012).In this research the RNG model was selected because this model is more commonly used than other models in dealing with particles; moreover, it is more accurate to work with air entrainment and other particles. In general, the RNG model is classified as a more widely-used application than the standard k-ɛ model. And in particular, the RNG model is more accurate in flows that have strong shear regions than the standard k-ɛ model and it is defined to describe low intensity turbulent flows. For the turbulent dissipation  it solves an additional transport equation:

formula

(3)where CDIS1, CDIS2, and CDIS3 are dimensionless parameters and the user can modify them. The diffusion of dissipation, Diff ɛ, is

formula

(4)where uv and w are the x, y and z coordinates of the fluid velocity; ⁠, ⁠,  and ⁠, are FLOW-3D’s FAVORTM defined terms;  and  are turbulence due to shearing and buoyancy effects, respectively. R and  are related to the cylindrical coordinate system. The default values of RMTKE, CDIS1 and CNU differ, being 1.39, 1.42 and 0.085 respectively. And CDIS2 is calculated from turbulent production (⁠⁠) and turbulent kinetic energy (⁠⁠).The kinematic turbulent viscosity is the same in all turbulence transport models and is calculated from

formula

(5)where ⁠: is the turbulent kinematic viscosity.  is defined as the numerical challenge between the RNG and the two-equation k-ɛ models, found in the equation below. To avoid an unphysically large result for  in Equation (3), since this equation could produce a value for  very close to zero and also because the physical value of  may approach to zero in such cases, the value of  is calculated from the following equation:

formula

(6)where ⁠: the turbulent length scale.

VOF and FAVOR are classifications of volume-fraction methods. In these two methods, firstly the area should be subdivided into a control volume grid or a small element. Each flow parameter like velocity, temperature and pressure values within the element are computed for each element containing liquids. Generally, these values represent the volumetric average of values in the elements.Numerous methods have been used recently to solve free infinite boundaries in the various numerical simulations. VOF is an easy and powerful method created based on the concept of a fractional intensity of fluid. A significant number of studies have confirmed that this method is more flexible and efficient than others dealing with the configurations of a complex free boundary. By using VOF technology the Flow-3D free surface was modelled and first declared in Hirt & Nichols (1981). In the VOF method there are three ingredients: a planner to define the surface, an algorithm for tracking the surface as a net mediator moving over a computational grid, and application of the boundary conditions to the surface. Configurations of the fluids are defined in terms of VOF function, F (x, y, z, t) (Hirt & Nichols 1981). And this VOF function shows the volume of flow per unit volume

formula

(7)

formula

(8)

formula

(9)where  is the density of the fluid, is a turbulent diffusion term,  is a mass source,  is the fractional volume open to flow. The components of velocity (u, v, w) are in the direction of coordinates (x, y, z) or (r, ⁠).  in the x-direction is the fractional area open to flow,  and  are identical area fractions for flow in the y and z directions. The R coefficient is based on the selection of the coordinate system.

The FAVOR method is a different method and uses another volume fraction technique, which is only used to define the geometry, such as the volume of liquid in each cell used to determine the position of fluid surfaces. Another fractional volume can be used to define the solid surface. Then, this information is used to determine the boundary conditions of the wall that the flow should be adapted for.

Case study

ListenReadSpeaker webReader: Listen

In this study, the experimental results of Ostad Mirza (2016) was simulated. In a channel composed of two 4 m long modules, with a transparent sidewall of height 0.6 m and 0.5 m width. The upstream chute slope (i.e. pseudo-bottom angle) Ɵ1 = 50°, the downstream chute slope Ɵ2 = 30° or 18.6°, the step heights h = 0.06 m, the total number of steps along the 50° chute 41 steps, the total number of steps along the 30° chute 34 steps and the total number of steps along the 18.6° chute 20 steps.

The flume inflow tool contained a jetbox with a maximum opening set to 0.12 meters, designed for passing the maximum unit discharge of 0.48 m2/s. The measurements of the flow properties (i.e. air concentration and velocity) were computed perpendicular to the pseudo-bottom as shown in Figure 1 at the centre of twenty stream-wise cross-sections, along the stepped chute, (i.e. in five steps up on the slope change and fifteen steps down on the slope change, namely from step number −09 to +23 on 50°–30° slope change, or from −09 to +15 on 50°–18.6° slope change, respectively).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).
Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Pressure sensors were arranged with the x/l values for different slope change as shown in Table 1, where x is the distance from the step edge, along the horizontal step face, and l is the length of the horizontal step face. The location of pressure sensors is shown in Table 1.Table 1

Location of pressure sensors on horizontal step faces

Θ(°)L(m)x/l (–)
50.0 0.050 0.35 0.64 – – – 
30.0 0.104 0.17 0.50 0.84 – – 
18.6 0.178 0.10 0.30 0.50 0.7 0.88 
Location of pressure sensors on horizontal step faces
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Numerical model set-up

ListenReadSpeaker webReader: Listen

A 3D numerical model of hydraulic phenomena was simulated based on an experimental study by Ostad Mirza (2016). The water surcharge and flow pressure over the stepped spillway was computed for two models of a stepped spillway with different discharge for each model. In this study, the package was used to simulate the flow parameters such as air entrainment, velocity distribution and dynamic pressures. The solver uses the finite volume technique to discretize the computational domain. In every test run, one incompressible fluid flow with a free surface flow selected at 20̊ was used for this simulation model. Table 2 shows the variables used in test runs.Table 2

Variables used in test runs

Test no.Θ1 (°)Θ2 (°)h(m)d0q (m3s1)dc/h (–)
50 18.6 0.06 0.045 0.1 2.6 
50 18.6 0.06 0.082 0.235 4.6 
50 30.0 0.06 0.045 0.1 2.6 
50 30.0 0.06 0.082 0.235 4.6 
Table 2 Variables used in test runs

For stepped spillway simulation, several parameters should be specified to get accurate simulations, which is the scope of this research. Viscosity and turbulent, gravity and non-inertial reference frame, air entrainment, density evaluation and drift-flux should be activated for these simulations. There are five different choices in the ‘viscosity and turbulent’ option, in the viscosity flow and Renormalized Group (RNG) model. Then a dynamical model is selected as the second option, the ‘gravity and non-inertial reference frame’. Only the z-component was inputted as a negative 9.81 m/s2 and this value represents gravitational acceleration but in the same option the x and y components will be zero. Air entrainment is selected. Finally, in the drift-flux model, the density of phase one is input as (water) 1,000 kg/m3 and the density of phase two (air) as 1.225 kg/m3. Minimum volume fraction of phase one is input equal to 0.1 and maximum volume fraction of phase two to 1 to allow air concentration to reach 90%, then the option allowing gas to escape at free surface is selected, to obtain closer simulation.

The flow domain is divided into small regions relatively by the mesh in Flow-3D numerical model. Cells are the smallest part of the mesh, in which flow characteristics such as air concentration, velocity and dynamic pressure are calculated. The accuracy of the results and simulation time depends directly on the mesh block size so the cell size is very important. Orthogonal mesh was used in cartesian coordinate systems. A smaller cell size provides more accuracy for results, so we reduced the number of cells whilst including enough accuracy. In this study, the size of cells in x, y and z directions was selected as 0.015 m after several trials.

Figure 3 shows the 3D computational domain model 50–18.6 slope change, that is 6.0 m length, 0.50 m width and 4.23 m height. The 3D model of the computational domain model 50–30 slope changes this to 6.0 m length, 0.50 m width and 5.068 m height and the size of meshes in x, y, and z directions are 0.015 m. For the 50–18.6 slope change model: both total number of active and passive cells = 4,009,952, total number of active cells = 3,352,307, include real cells (used for solving the flow equations) = 3,316,269, open real cells = 3,316,269, fully blocked real cells equal to zero, external boundary cells were 36,038, inter-block boundary cells = 0 (Flow-3D report). For 50–30 slope change model: both total number of active and passive cells = 4,760,002, total number of active cells equal to 4,272,109, including real cells (used for solving the flow equations) were 3,990,878, open real cells = 3,990,878 fully blocked real cells = zero, external boundary cells were 281,231, inter-block boundary cells = 0 (Flow-3D report).

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.
Figure3 The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Figure 3VIEW LARGEDOWNLOAD SLIDE

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

When solving the Navier-Stokes equation and continuous equations, boundary conditions should be applied. The most important work of boundary conditions is to create flow conditions similar to physical status. The Flow-3D software has many types of boundary condition; each type can be used for the specific condition of the models. The boundary conditions in Flow-3D are symmetry, continuative, specific pressure, grid overlay, wave, wall, periodic, specific velocity, outflow, and volume flow rate.

There are two options to input finite flow rate in the Flow-3D software either for inlet discharge of the system or for the outlet discharge of the domain: specified velocity and volume flow rate. In this research, the X-minimum boundary condition, volume flow rate, has been chosen. For X-maximum boundary condition, outflow was selected because there is nothing to be calculated at the end of the flume. The volume flow rate and the elevation of surface water was set for Q = 0.1 and 0.235 m3/s respectively (Figure 2).

The bottom (Z-min) is prepared as a wall boundary condition and the top (Z-max) is computed as a pressure boundary condition, and for both (Y-min) and (Y-max) as symmetry.

RESULTS AND DISCUSSION

ListenReadSpeaker webReader: Listen

The air concentration distribution profiles in two models of stepped spillway were obtained at an acquisition time equal to 25 seconds in skimming flow for both upstream and downstream of a slope change 50°–18.6° and 50°–30° for different discharge as in Table 2, and as shown in Figure 4 for 50°–18.6° slope change and Figure 5 for 50°–30° slope change configuration for dc/h = 4.6. The simulation results of the air concentration are very close to the experimental results in all curves and fairly close to that predicted by the advection-diffusion model for the air bubbles suggested by Chanson (1997) on a constant sloping chute.

Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure 4VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.
Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 5VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 6VIEW LARGEDOWNLOAD SLIDE

Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.
Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.
Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

Figure 7VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

But as is shown in all above mentioned figures it is clear that at the pseudo-bottom the CFD results of air concentration are less than experimental ones until the depth of water reaches a quarter of the total depth of water. Also the direction of the curves are parallel to each other when going up towards the surface water and are incorporated approximately near the surface water. For all curves, the cross-section is separate between upstream and downstream steps. Therefore the (-) sign for steps represents a step upstream of the slope change cross-section and the (+) sign represents a step downstream of the slope change cross-section.

The dimensionless velocity distribution (V/V90) profile was acquired at an acquisition time equal to 25 seconds in skimming flow of the upstream and downstream slope change for both 50°–18.6° and 50°–30° slope change. The simulation results are compared with the experimental ones showing that for all curves there is close similarity for each point between the observed and experimental results. The curves increase parallel to each other and they merge near at the surface water as shown in Figure 6 for slope change 50°–18.6° configuration and Figure 7 for slope change 50°–30° configuration. However, at step numbers +1 and +5 in Figure 7 there are few differences between the simulated and observed results, namely the simulation curves ascend regularly meaning the velocity increases regularly from the pseudo-bottom up to the surface water.

Figure 8 (50°–18.6° slope change) and Figure 9 (50°–30° slope change) compare the simulation results and the experimental results for the presented dimensionless dynamic pressure distribution for different points on the stepped spillway. The results show a good agreement with the experimental and numerical simulations in all curves. For some points, few discrepancies can be noted in pressure magnitudes between the simulated and the observed ones, but they are in the acceptable range. Although the experimental data do not completely agree with the simulated results, there is an overall agreement.

Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 8VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

The pressure profiles were acquired at an acquisition time equal to 70 seconds in skimming flow on 50°–18.6°, where p is the measured dynamic pressure, h is step height and ϒ is water specific weight. A negative sign for steps represents a step upstream of the slope change cross-section and a positive sign represents a step downstream of the slope change cross-section.

Figure 10 shows the experimental streamwise development of dimensionless pressure on the 50°–18.6° slope change for dc/h = 4.6, x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute compared with the numerical simulation. It is obvious from Figure 10 that the streamwise development of dimensionless pressure before slope change (steps number −1, −2 and −3) both of the experimental and simulated results are close to each other. However, it is clear that there is a little difference between the results of the streamwise development of dimensionless pressure at step numbers +1, +2 and +3. Moreover, from step number +3 to the end, the curves get close to each other.

Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.
Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 10VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 11 compares the experimental and the numerical results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute. It is apparent that the outcomes of the experimental work are close to the numerical results, however, the results of the simulation are above the experimental ones before the slope change, but the results of the simulation descend below the experimental ones after the slope change till the end.

Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.
Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

Figure 11VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

CONCLUSION

ListenReadSpeaker webReader: Listen

In this research, numerical modelling was attempted to investigate the effect of abrupt slope change on the flow properties (air entrainment, velocity distribution and dynamic pressure) over a stepped spillway with two different models and various flow rates in a skimming flow regime by using the CFD technique. The numerical model was verified and compared with the experimental results of Ostad Mirza (2016). The same domain of the numerical model was inputted as in experimental models to reduce errors as much as possible.

Flow-3D is a well modelled tool that deals with particles. In this research, the model deals well with air entrainment particles by observing their results with experimental results. And the reason for the small difference between the numerical and the experimental results is that the program deals with particles more accurately than the laboratory. In general, both numerical and experimental results showed that near to the slope change the flow bulking, air entrainment, velocity distribution and dynamic pressure are greatly affected by abrupt slope change on the steps. Although the extent of the slope change was relatively small, the influence of the slope change was major on flow characteristics.

The Renormalized Group (RNG) model was selected as a turbulence solver. For 3D modelling, orthogonal mesh was used as a computational domain and the mesh grid size used for X, Y, and Z direction was equal to 0.015 m. In CFD modelling, air concentration and velocity distribution were recorded for a period of 25 seconds, but dynamic pressure was recorded for a period of 70 seconds. The results showed that there is a good agreement between the numerical and the physical models. So, it can be concluded that the proposed CFD model is very suitable for use in simulating and analysing the design of hydraulic structures.

이 연구에서 수치 모델링은 두 가지 다른 모델과 다양한 유속을 사용하여 스키밍 흐름 영역에서 계단식 배수로에 대한 유동 특성 (공기 혼입, 속도 분포 및 동적 압력)에 대한 급격한 경사 변화의 영향을 조사하기 위해 시도되었습니다. CFD 기술. 수치 모델을 검증하여 Ostad Mirza (2016)의 실험 결과와 비교 하였다. 오차를 최대한 줄이기 위해 실험 모형과 동일한 수치 모형을 입력 하였다.

Flow-3D는 파티클을 다루는 잘 모델링 된 도구입니다. 이 연구에서 모델은 실험 결과를 통해 결과를 관찰하여 공기 혼입 입자를 잘 처리합니다. 그리고 수치와 실험 결과의 차이가 작은 이유는 프로그램이 실험실보다 입자를 더 정확하게 다루기 때문입니다. 일반적으로 수치 및 실험 결과는 경사에 가까워지면 유동 벌킹, 공기 혼입, 속도 분포 및 동적 압력이 계단의 급격한 경사 변화에 크게 영향을받는 것으로 나타났습니다. 사면 변화의 정도는 상대적으로 작았지만 사면 변화의 영향은 유동 특성에 큰 영향을 미쳤다.

Renormalized Group (RNG) 모델이 난류 솔버로 선택되었습니다. 3D 모델링의 경우 계산 영역으로 직교 메쉬가 사용되었으며 X, Y, Z 방향에 사용 된 메쉬 그리드 크기는 0.015m입니다. CFD 모델링에서 공기 농도와 속도 분포는 25 초 동안 기록되었지만 동적 압력은 70 초 동안 기록되었습니다. 결과는 수치 모델과 물리적 모델간에 좋은 일치가 있음을 보여줍니다. 따라서 제안 된 CFD 모델은 수력 구조물의 설계 시뮬레이션 및 해석에 매우 적합하다는 결론을 내릴 수 있습니다.

DATA AVAILABILITY STATEMENT

ListenReadSpeaker webReader: Listen

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Boes R. M. Hager W. H. 2003a Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679.
Google Scholar
Boes R. M. Hager W. H. 2003b Two-Phase flow characteristics of stepped spillways. Journal of Hydraulic Engineering 129 (9), 661–670.
Google Scholar
Chanson H. 1994 Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research 32 (3), 445–460.
Google Scholar
Chanson H. 1997 Air Bubble Entrainment in Free Surface Turbulent Shear Flows. Academic Press, London.
Google Scholar
Chanson H. 2002 The Hydraulics of Stepped Chutes and Spillways. Balkema, Lisse, The Netherlands.
Google Scholar
Felder S. Chanson H. 2011 Energy dissipation down a stepped spillway with nonuniform step heights. Journal of Hydraulic Engineering 137 (11), 1543–1548.
Google Scholar
Flow Science, Inc. 2012 FLOW-3D v10-1 User Manual. Flow Science, Inc., Santa Fe, CA.
Ghaderi A. Daneshfaraz R. Torabi M. Abraham J. Azamathulla H. M. 2020a Experimental investigation on effective scouring parameters downstream from stepped spillways. Water Supply 20 (5), 1988–1998.
Google Scholar
Ghaderi A. Abbasi S. Abraham J. Azamathulla H. M. 2020b Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Measurement and Instrumentation 72, 101711.
Google Scholar
Gonzalez C. A. Chanson H. 2008 Turbulence and cavity recirculation in air-water skimming flows on a stepped spillway. Journal of Hydraulic Research 46 (1), 65–72.
Google Scholar
Gunal M. 1996 Numerical and Experimental Investigation of Hydraulic Jumps. PhD Thesis, University of Manchester, Institute of Science and Technology, Manchester, UK.
Hirt C. W. Nichols B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39 (1), 201–225.
Google Scholar
Matos J. 2000 Hydraulic design of stepped spillways over RCC dams. In: Intl Workshop on Hydraulics of Stepped Spillways (H.-E. Minor & W. Hager, eds). Balkema Publ, Zurich, pp. 187–194.
Google Scholar
Mohammad Rezapour Tabari M. Tavakoli S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science & Engineering (Springer Science & Business Media BV) 41 (4), 1215–1224.
Google Scholar
Ostad Mirza M. J. 2016 Experimental Study on the Influence of Abrupt Slope Changes on Flow Characteristics Over Stepped Spillways. Communications du Laboratoire de Constructions Hydrauliques, No. 64 (A. J. Schleiss, ed.). Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Roshan R. Azamathulla H. M. Marosi M. Sarkardeh H. Pahlavan H. Ab Ghani A. 2010 Hydraulics of stepped spillways with different numbers of steps. Dams and Reservoirs 20 (3), 131–136.
Google Scholar
Shahheydari H. Nodoshan E. J. Barati R. Moghadam M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182.
Google Scholar
Takahashi M. Ohtsu I. 2012 Aerated flow characteristics of skimming flow over stepped chutes. Journal of Hydraulic Research 50 (4), 427–434.
Google Scholar
Versteeg H. K. Malalasekera W. 2007 An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Harlow.
Google Scholar
© 2021 The Authors
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Modeling of contactless bubble–bubble interactions in microchannels with integrated inertial pumps

Modeling of contactless bubble–bubble interactions in microchannels with integrated inertial pumps

통합 관성 펌프를 사용하여 마이크로 채널에서 비접촉식 기포-기포 상호 작용 모델링

Physics of Fluids 33, 042002 (2021); https://doi.org/10.1063/5.0041924 B. Hayesa) G. L. Whitingb), and  R. MacCurdyc)

ABSTRACT

In this study, the nonlinear effect of contactless bubble–bubble interactions in inertial micropumps is characterized via reduced parameter one-dimensional and three-dimensional computational fluid dynamics (3D CFD) modeling. A one-dimensional pump model is developed to account for contactless bubble-bubble interactions, and the accuracy of the developed one-dimensional model is assessed via the commercial volume of fluid CFD software, FLOW-3D. The FLOW-3D CFD model is validated against experimental bubble dynamics images as well as experimental pump data. Precollapse and postcollapse bubble and flow dynamics for two resistors in a channel have been successfully explained by the modified one-dimensional model. The net pumping effect design space is characterized as a function of resistor placement and firing time delay. The one-dimensional model accurately predicts cumulative flow for simultaneous resistor firing with inner-channel resistor placements (0.2L < x < 0.8L where L is the channel length) as well as delayed resistor firing with inner-channel resistor placements when the time delay is greater than the time required for the vapor bubble to fill the channel cross section. In general, one-dimensional model accuracy suffers at near-reservoir resistor placements and short time delays which we propose is a result of 3D bubble-reservoir interactions and transverse bubble growth interactions, respectively, that are not captured by the one-dimensional model. We find that the one-dimensional model accuracy improves for smaller channel heights. We envision the developed one-dimensional model as a first-order rapid design tool for inertial pump-based microfluidic systems operating in the contactless bubble–bubble interaction nonlinear regime

이 연구에서 관성 마이크로 펌프에서 비접촉 기포-기포 상호 작용의 비선형 효과는 감소 된 매개 변수 1 차원 및 3 차원 전산 유체 역학 (3D CFD) 모델링을 통해 특성화됩니다. 비접촉식 기포-버블 상호 작용을 설명하기 위해 1 차원 펌프 모델이 개발되었으며, 개발 된 1 차원 모델의 정확도는 유체 CFD 소프트웨어 인 FLOW-3D의 상용 볼륨을 통해 평가됩니다.

FLOW-3D CFD 모델은 실험적인 거품 역학 이미지와 실험적인 펌프 데이터에 대해 검증되었습니다. 채널에 있는 두 저항기의 붕괴 전 및 붕괴 후 기포 및 유동 역학은 수정 된 1 차원 모델에 의해 성공적으로 설명되었습니다. 순 펌핑 효과 설계 공간은 저항 배치 및 발사 시간 지연의 기능으로 특징 지어집니다.

1 차원 모델은 내부 채널 저항 배치 (0.2L <x <0.8L, 여기서 L은 채널 길이)로 동시 저항 발생에 대한 누적 흐름과 시간 지연시 내부 채널 저항 배치로 지연된 저항 발생을 정확하게 예측합니다. 증기 방울이 채널 단면을 채우는 데 필요한 시간보다 큽니다.

일반적으로 1 차원 모델 정확도는 저수지 근처의 저항 배치와 1 차원 모델에 의해 포착되지 않는 3D 기포-저수지 상호 작용 및 가로 기포 성장 상호 작용의 결과 인 짧은 시간 지연에서 어려움을 겪습니다. 채널 높이가 작을수록 1 차원 모델 정확도가 향상됩니다. 우리는 개발 된 1 차원 모델을 비접촉 기포-기포 상호 작용 비선형 영역에서 작동하는 관성 펌프 기반 미세 유체 시스템을 위한 1 차 빠른 설계 도구로 생각합니다.

REFERENCES

1.S. Hassan and X. Zhang, “ Design and fabrication of capillary-driven flow device for point-of-care diagnostics,” Biosensors 10, 39 (2020). https://doi.org/10.3390/bios10040039, Google ScholarCrossref
2.Q. Shizhi and H. Bau, “ Magneto-hydrodynamics based microfluidics,” Mech. Res. Commun. 36, 10 (2009). https://doi.org/10.1016/j.mechrescom.2008.06.013, Google ScholarCrossref
3.N. Mishchuk, T. Heldal, T. Volden, J. Auerswald, and H. Knapp, “ Micropump based on electroosmosis of the second kind,” Electrophoresis 30, 3499 (2009). https://doi.org/10.1002/elps.200900271, Google ScholarCrossref
4.J. Snyder, J. Getpreecharsawas, D. Fang, T. Gaborski, C. Striemer, P. Fauchet, D. Borkholder, and J. McGrath, “ High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes,” Proc. Nat. Acad. Sci. U. S. A. 110, 18425–18430 (2013). https://doi.org/10.1073/pnas.1308109110, Google ScholarCrossref
5.K. Vinayakumar, G. Nadiger, V. Shetty, S. Dinesh, M. Nayak, and K. Rajanna, “ Packaged peristaltic micropump for controlled drug delivery application,” Rev. Sci. Instrum. 88, 015102 (2017). https://doi.org/10.1063/1.4973513, Google ScholarScitation, ISI
6.D. Duffy, H. Gillis, J. Lin, N. Sheppard, and G. Kellogg, “ Microfabricated centrifugal microfluidic systems: Characterization and multiple enzymatic assays,” Anal. Chem. 71, 4669 (1999). https://doi.org/10.1021/ac990682c, Google ScholarCrossref
7.V. Gnyawali, M. Saremi, M. Kolios, and S. Tsai, “ Stable microfluidic flow focusing using hydrostatics,” Biomicrofluidics 11, 034104 (2017). https://doi.org/10.1063/1.4983147, Google ScholarScitation, ISI
8.J. Lake, K. Heyde, and W. Ruder, “ Low-cost feedback-controlled syringe pressure pumps for microfluidics applications,” PLoS One 12, e0175089 (2017). https://doi.org/10.1371/journal.pone.0175089, Google ScholarCrossref
9.M. I. Mohammed, S. Haswell, and I. Gibson, “ Lab-on-a-chip or chip-in-a-lab: Challenges of commercialization lost in translation,” Procedia Technology 20, 54–59 (2015), proceedings of The 1st International Design Technology Conference, DESTECH2015, Geelong. Google ScholarCrossref
10.E. Torniainen, A. Govyadinov, D. Markel, and P. Kornilovitch, “ Bubble-driven inertial micropump,” Phys. Fluids 24, 122003 (2012). https://doi.org/10.1063/1.4769755, Google ScholarScitation, ISI
11.H. Hoefemann, S. Wadle, N. Bakhtina, V. Kondrashov, N. Wangler, and R. Zengerle, “ Sorting and lysis of single cells by bubblejet technology,” Sens. Actuators, B 168, 442–445 (2012). https://doi.org/10.1016/j.snb.2012.04.005, Google ScholarCrossref
12.B. Hayes, A. Hayes, M. Rolleston, A. Ferreira, and J. Kirsher, “ Pulsatory mixing of laminar flow using bubble-driven micro-pumps,” in Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition (2018), Vol. 7. Google ScholarCrossref
13.E. Ory, H. Yuan, A. Prosperetti, S. Popinet, and S. Zaleski, “ Growth and collapse of a vapor bubble in a narrow tube,” Phys. Fluids 12, 1268 (2000). https://doi.org/10.1063/1.870381, Google ScholarScitation, ISI
14.Z. Yin and A. Prosperetti, “‘ Blinking bubble’ micropump with microfabricated heaters,” J. Micromech. Microeng. 15, 1683 (2005). https://doi.org/10.1088/0960-1317/15/9/010, Google ScholarCrossref
15.M. Einat and M. Grajower, “ Microboiling measurements of thermal-inkjet heaters,” J. Microelectromech. Syst. 19, 391 (2010). https://doi.org/10.1109/JMEMS.2010.2040946, Google ScholarCrossref
16.A. Govyadinov, P. Kornilovitch, D. Markel, and E. Torniainen, “ Single-pulse dynamics and flow rates of inertial micropumps,” Microfluid. Nanofluid. 20, 73 (2016). https://doi.org/10.1007/s10404-016-1738-x, Google ScholarCrossref
17.E. Sourtiji and Y. Peles, “ A micro-synthetic jet in a microchannel using bubble growth and collapse,” Appl. Therm. Eng. 160, 114084 (2019). https://doi.org/10.1016/j.applthermaleng.2019.114084, Google ScholarCrossref
18.B. Hayes, A. Govyadinov, and P. Kornilovitch, “ Microfluidic switchboards with integrated inertial pumps,” Microfluid. Nanofluid. 22, 15 (2018). https://doi.org/10.1007/s10404-017-2032-2, Google ScholarCrossref
19.P. Kornilovitch, A. Govyadinov, D. Markel, and E. Torniainen, “ One-dimensional model of inertial pumping,” Phys. Rev. E 87, 023012 (2013). https://doi.org/10.1103/PhysRevE.87.023012, Google ScholarCrossref
20.H. Yuan and A. Prosperetti, “ The pumping effect of growing and collapsing bubbles in a tube,” J. Micromech. Microeng. 9, 402–413 (1999). https://doi.org/10.1088/0960-1317/9/4/318, Google ScholarCrossref
21.J. Zou, B. Li, and C. Ji, “ Interactions between two oscillating bubbles in a rigid tube,” Exp. Therm. Fluid Sci. 61, 105 (2015). https://doi.org/10.1016/j.expthermflusci.2014.10.021, Google ScholarCrossref
22.C. Hirt and B. Nichols, “ Volume of fluid (vof) method for the dynamics of free boundaries,” J. Comput. Phys. 39, 201–225 (1981). https://doi.org/10.1016/0021-9991(81)90145-5, Google ScholarCrossref
23.C. Borgnakke and R. E. Sonntag, Fundamentals of Thermodynamics, 8th ed. ( Wiley, 1999). Google Scholar
24.O. E. Ruiz, “ CFD model of the thermal inkjet droplet ejection process,” in Proceeding of Heat Transfer Summer Conference (2007), Vol. 3. Google ScholarCrossref
25.T. Theofanous, L. Biasi, H. Isbin, and H. Fauske, “ A theoretical study on bubble growth in constant and time-dependent pressure fields,” Chem. Eng. Sci. 24, 885–897 (1969). https://doi.org/10.1016/0009-2509(69)85008-6, Google ScholarCrossref
26.S. Timoshenko and J. Goodier, Theory of Elasticity, 3rd ed. ( McGaw-Hill, Inc., 1970). Google Scholar

Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.

DNA Printing Integrated Multiplexer Driver Microelectronic Mechanical System Head (IDMH) and Microfluidic Flow Estimation

DNA 프린팅 통합 멀티플렉서 드라이버 Microelectronic Mechanical System Head (IDMH) 및 Microfluidic Flow Estimation

by Jian-Chiun Liou 1,*,Chih-Wei Peng 1,Philippe Basset 2 andZhen-Xi Chen 11School of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan2ESYCOM, Université Gustave Eiffel, CNRS, CNAM, ESIEE Paris, F-77454 Marne-la-Vallée, France*Author to whom correspondence should be addressed.

Abstract

The system designed in this study involves a three-dimensional (3D) microelectronic mechanical system chip structure using DNA printing technology. We employed diverse diameters and cavity thickness for the heater. DNA beads were placed in this rapid array, and the spray flow rate was assessed. Because DNA cannot be obtained easily, rapidly deploying DNA while estimating the total amount of DNA being sprayed is imperative. DNA printings were collected in a multiplexer driver microelectronic mechanical system head, and microflow estimation was conducted. Flow-3D was used to simulate the internal flow field and flow distribution of the 3D spray room. The simulation was used to calculate the time and pressure required to generate heat bubbles as well as the corresponding mean outlet speed of the fluid. The “outlet speed status” function in Flow-3D was used as a power source for simulating the ejection of fluid by the chip nozzle. The actual chip generation process was measured, and the starting voltage curve was analyzed. Finally, experiments on flow rate were conducted, and the results were discussed. The density of the injection nozzle was 50, the size of the heater was 105 μm × 105 μm, and the size of the injection nozzle hole was 80 μm. The maximum flow rate was limited to approximately 3.5 cc. The maximum flow rate per minute required a power between 3.5 W and 4.5 W. The number of injection nozzles was multiplied by 100. On chips with enlarged injection nozzle density, experiments were conducted under a fixed driving voltage of 25 V. The flow curve obtained from various pulse widths and operating frequencies was observed. The operating frequency was 2 KHz, and the pulse width was 4 μs. At a pulse width of 5 μs and within the power range of 4.3–5.7 W, the monomer was injected at a flow rate of 5.5 cc/min. The results of this study may be applied to estimate the flow rate and the total amount of the ejection liquid of a DNA liquid.

이 연구에서 설계된 시스템은 DNA 프린팅 기술을 사용하는 3 차원 (3D) 마이크로 전자 기계 시스템 칩 구조를 포함합니다. 히터에는 다양한 직경과 캐비티 두께를 사용했습니다. DNA 비드를 빠른 어레이에 배치하고 스프레이 유속을 평가했습니다.

DNA를 쉽게 얻을 수 없기 때문에 DNA를 빠르게 배치하면서 스프레이 되는 총 DNA 양을 추정하는 것이 필수적입니다. DNA 프린팅은 멀티플렉서 드라이버 마이크로 전자 기계 시스템 헤드에 수집되었고 마이크로 플로우 추정이 수행되었습니다.

Flow-3D는 3D 스프레이 룸의 내부 유동장과 유동 분포를 시뮬레이션 하는데 사용되었습니다. 시뮬레이션은 열 거품을 생성하는데 필요한 시간과 압력뿐만 아니라 유체의 해당 평균 출구 속도를 계산하는데 사용되었습니다.

Flow-3D의 “출구 속도 상태”기능은 칩 노즐에 의한 유체 배출 시뮬레이션을 위한 전원으로 사용되었습니다. 실제 칩 생성 프로세스를 측정하고 시작 전압 곡선을 분석했습니다. 마지막으로 유속 실험을 하고 그 결과를 논의했습니다. 분사 노즐의 밀도는 50, 히터의 크기는 105μm × 105μm, 분사 노즐 구멍의 크기는 80μm였다. 최대 유량은 약 3.5cc로 제한되었습니다. 분당 최대 유량은 3.5W에서 4.5W 사이의 전력이 필요했습니다. 분사 노즐의 수에 100을 곱했습니다. 분사 노즐 밀도가 확대 된 칩에 대해 25V의 고정 구동 전압에서 실험을 수행했습니다. 얻은 유동 곡선 다양한 펄스 폭과 작동 주파수에서 관찰되었습니다. 작동 주파수는 2KHz이고 펄스 폭은 4μs입니다. 5μs의 펄스 폭과 4.3–5.7W의 전력 범위 내에서 단량체는 5.5cc / min의 유속으로 주입되었습니다. 이 연구의 결과는 DNA 액체의 토 출액의 유량과 총량을 추정하는 데 적용될 수 있습니다.

Keywords: DNA printingflow estimationMEMS

Introduction

잉크젯 프린트 헤드 기술은 매우 중요하며, 잉크젯 기술의 거대한 발전은 주로 잉크젯 프린트 헤드 기술의 원리 개발에서 시작되었습니다. 잉크젯 인쇄 연구를 위한 대규모 액적 생성기 포함 [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8]. 연속 식 잉크젯 시스템은 고주파 응답과 고속 인쇄의 장점이 있습니다. 그러나이 방법의 잉크젯 프린트 헤드의 구조는 더 복잡하고 양산이 어려운 가압 장치, 대전 전극, 편향 전계가 필요하다. 주문형 잉크젯 시스템의 잉크젯 프린트 헤드는 구조가 간단하고 잉크젯 헤드의 다중 노즐을 쉽게 구현할 수 있으며 디지털화 및 색상 지정이 쉽고 이미지 품질은 비교적 좋지만 일반적인 잉크 방울 토출 속도는 낮음 [ 9 , 10 , 11 ].

핫 버블 잉크젯 헤드의 총 노즐 수는 수백 또는 수천에 달할 수 있습니다. 노즐은 매우 미세하여 풍부한 조화 색상과 부드러운 메쉬 톤을 생성할 수 있습니다. 잉크 카트리지와 노즐이 일체형 구조를 이루고 있으며, 잉크 카트리지 교체시 잉크젯 헤드가 동시에 업데이트되므로 노즐 막힘에 대한 걱정은 없지만 소모품 낭비가 발생하고 상대적으로 높음 비용. 주문형 잉크젯 기술은 배출해야 하는 그래픽 및 텍스트 부분에만 잉크 방울을 배출하고 빈 영역에는 잉크 방울이 배출되지 않습니다. 이 분사 방법은 잉크 방울을 충전할 필요가 없으며 전극 및 편향 전기장을 충전할 필요도 없습니다. 노즐 구조가 간단하고 노즐의 멀티 노즐 구현이 용이하며, 출력 품질이 더욱 개선되었습니다. 펄스 제어를 통해 디지털화가 쉽습니다. 그러나 잉크 방울의 토출 속도는 일반적으로 낮습니다. 열 거품 잉크젯, 압전 잉크젯 및 정전기 잉크젯의 세 가지 일반적인 유형이 있습니다. 물론 다른 유형이 있습니다.

압전 잉크젯 기술의 실현 원리는 인쇄 헤드의 노즐 근처에 많은 소형 압전 세라믹을 배치하면 압전 크리스탈이 전기장의 작용으로 변형됩니다. 잉크 캐비티에서 돌출되어 노즐에서 분사되는 패턴 데이터 신호는 압전 크리스탈의 변형을 제어한 다음 잉크 분사량을 제어합니다. 압전 MEMS 프린트 헤드를 사용한 주문형 드롭 하이브리드 인쇄 [ 12]. 열 거품 잉크젯 기술의 실현 원리는 가열 펄스 (기록 신호)의 작용으로 노즐의 발열체 온도가 상승하여 근처의 잉크 용매가 증발하여 많은 수의 핵 형성 작은 거품을 생성하는 것입니다. 내부 거품의 부피는 계속 증가합니다. 일정 수준에 도달하면 생성된 압력으로 인해 잉크가 노즐에서 분사되고 최종적으로 기판 표면에 도달하여 패턴 정보가 재생됩니다 [ 13 , 14 , 15 , 16 , 17 , 18 ].

“3D 제품 프린팅”및 “증분 빠른 제조”의 의미는 진화했으며 모든 증분 제품 제조 기술을 나타냅니다. 이는 이전 제작과는 다른 의미를 가지고 있지만, 자동 제어 하에 소재를 쌓아 올리는 3D 작업 제작 과정의 공통적 인 특징을 여전히 반영하고 있습니다 [ 19 , 20 , 21 , 22 , 23 , 24 ].

이 개발 시스템은 열 거품 분사 기술입니다. 이 빠른 어레이에 DNA 비드를 배치하고 스프레이 유속을 평가하기 위해 다른 히터 직경과 캐비티 두께를 설계하는 것입니다. DNA 제트 칩의 부스트 회로 시스템은 큰 흐름을 구동하기위한 신호 소스입니다. 목적은 분사되는 DNA 용액의 양과 출력을 조정하는 것입니다. 입력 전압을 더 높은 출력 전압으로 변환해야 하는 경우 부스트 컨버터가 유일한 선택입니다. 부스트 컨버터는 내부 금속 산화물 반도체 전계 효과 트랜지스터 (MOSFET)를 통해 전압을 충전하여 부스트 출력의 목적을 달성하고, MOSFET이 꺼지면 인덕터는 부하 정류를 통해 방전됩니다.

인덕터의 충전과 방전 사이의 변환 프로세스는 인덕터를 통한 전압의 방향을 반대로 한 다음 점차적으로 입력 작동 전압보다 높은 전압을 증가시킵니다. MOSFET의 스위칭 듀티 사이클은 확실히 부스트 비율을 결정합니다. MOSFET의 정격 전류와 부스트 컨버터의 부스트 비율은 부스트 ​​컨버터의 부하 전류의 상한을 결정합니다. MOSFET의 정격 전압은 출력 전압의 상한을 결정합니다. 일부 부스트 컨버터는 정류기와 MOSFET을 통합하여 동기식 정류를 제공합니다. 통합 MOSFET은 정확한 제로 전류 턴 오프를 달성하여 부스트 변압기를 보다 효율적으로 만듭니다. 최대 전력 점 추적 장치를 통해 입력 전력을 실시간으로 모니터링합니다. 입력 전압이 최대 입력 전력 지점에 도달하면 부스트 컨버터가 작동하기 시작하여 부스트 컨버터가 최대 전력 출력 지점으로 유리 기판에 DNA 인쇄를 하는 데 적합합니다. 일정한 온 타임 생성 회로를 통해 온 타임이 온도 및 칩의 코너 각도에 영향을 받지 않아 시스템의 안정성이 향상됩니다.

잉크젯 프린트 헤드에 사용되는 기술은 매우 중요합니다. 잉크젯 기술의 엄청난 발전은 주로 잉크젯 프린팅에 사용되는 대형 액적 이젝터 [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ]를 포함하여 잉크젯 프린트 헤드 기술의 이론 개발에서 시작되었습니다 . 연속 잉크젯 시스템은 고주파 응답과 고속 인쇄의 장점을 가지고 있습니다. 잉크젯 헤드의 총 노즐 수는 수백 또는 수천에 달할 수 있으며 이러한 노즐은 매우 복잡합니다. 노즐은 풍부하고 조화로운 색상과 부드러운 메쉬 톤을 생성할 수 있습니다 [ 9 , 10 ,11 ]. 잉크젯은 열 거품 잉크젯, 압전 잉크젯 및 정전 식 잉크젯의 세 가지 주요 유형으로 분류할 수 있습니다. 다른 유형도 사용 중입니다. 압전 잉크젯의 기능은 다음과 같습니다. 많은 소형 압전 세라믹이 잉크젯 헤드 노즐 근처에 배치됩니다. 압전 결정은 전기장 아래에서 변형됩니다. 그 후, 잉크는 잉크 캐비티에서 압착되어 노즐에서 배출됩니다. 패턴의 데이터 신호는 압전 결정의 변형을 제어한 다음 분사되는 잉크의 양을 제어합니다. 압전 마이크로 전자 기계 시스템 (MEMS) 잉크젯 헤드는 하이브리드 인쇄에 사용됩니다. [ 12]. 열 버블 잉크젯 기술은 다음과 같이 작동합니다. 가열 펄스 (즉, 기록 신호) 하에서 노즐의 가열 구성 요소의 온도가 상승하여 근처의 잉크 용매를 증발시켜 많은 양의 작은 핵 기포를 생성합니다. 내부 기포의 부피가 지속적으로 증가합니다. 압력이 일정 수준에 도달하면 노즐에서 잉크가 분출되고 잉크가 기판 표면에 도달하여 패턴과 메시지가 표시됩니다 [ 13 , 14 , 15 , 16 , 17 , 18 ].

3 차원 (3D) 제품 프린팅 및 빠른 프로토 타입 기술의 발전에는 모든 빠른 프로토 타입의 생산 기술이 포함됩니다. 래피드 프로토 타입 기술은 기존 생산 방식과는 다르지만 3D 제품 프린팅 생산 과정의 일부 특성을 공유합니다. 구체적으로 자동 제어 [ 19 , 20 , 21 , 22 , 23 , 24 ] 하에서 자재를 쌓아 올립니다 .

이 연구에서 개발된 시스템은 열 기포 방출 기술을 사용했습니다. 이 빠른 어레이에 DNA 비드를 배치하기 위해 히터에 대해 다른 직경과 다른 공동 두께가 사용되었습니다. 그 후, 스프레이 유속을 평가했다. DNA 제트 칩의 부스트 회로 시스템은 큰 흐름을 구동하기위한 신호 소스입니다. 목표는 분사되는 DNA 액체의 양과 출력을 조정하는 것입니다. 입력 전압을 더 높은 출력 전압으로 수정해야하는 경우 승압 컨버터가 유일한 옵션입니다. 승압 컨버터는 내부 금속 산화물 반도체 전계 효과 트랜지스터 (MOSFET)를 충전하여 출력 전압을 증가시킵니다. MOSFET이 꺼지면 부하 정류를 통해 인덕턴스가 방전됩니다. 충전과 방전 사이에서 인덕터를 변경하는 과정은 인덕터를 통과하는 전압의 방향을 변경합니다. 전압은 입력 작동 전압을 초과하는 지점까지 점차적으로 증가합니다. MOSFET 스위치의 듀티 사이클은 부스트 ​​비율을 결정합니다. MOSFET의 승압 컨버터의 정격 전류와 부스트 비율은 승압 컨버터의 부하 전류의 상한을 결정합니다. MOSFET의 정격 전류는 출력 전압의 상한을 결정합니다. 일부 승압 컨버터는 정류기와 MOSFET을 통합하여 동기식 정류를 제공합니다. 통합 MOSFET은 정밀한 제로 전류 셧다운을 실현할 수 있으므로 셋업 컨버터의 효율성을 높일 수 있습니다. 최대 전력 점 추적 장치는 입력 전력을 실시간으로 모니터링하는 데 사용되었습니다. 입력 전압이 최대 입력 전력 지점에 도달하면 승압 컨버터가 작동을 시작합니다. 스텝 업 컨버터는 DNA 프린팅을 위한 최대 전력 출력 포인트가 있는 유리 기판에 사용됩니다.

MEMS Chip Design for Bubble Jet

이 연구는 히터 크기, 히터 번호 및 루프 저항과 같은 특정 매개 변수를 조작하여 5 가지 유형의 액체 배출 챔버 구조를 설계했습니다. 표 1 은 측정 결과를 나열합니다. 이 시스템은 다양한 히터의 루프 저항을 분석했습니다. 100 개 히터 설계를 완료하기 위해 2 세트의 히터를 사용하여 각 단일 회로 시리즈를 통과하기 때문에 100 개의 히터를 설계할 때 총 루프 저항은 히터 50 개의 총 루프 저항보다 하나 더 커야 합니다. 이 연구에서 MEMS 칩에서 기포를 배출하는 과정에서 저항 층의 면저항은 29 Ω / m 2입니다. 따라서 모델 A의 총 루프 저항이 가장 컸습니다. 일반 사이즈 모델 (모델 B1, C, D, E)의 두 배였습니다. 모델 B1, C, D 및 E의 총 루프 저항은 약 29 Ω / m 2 입니다. 표 1 에 따르면 오류 범위는 허용된 설계 값 이내였습니다. 따라서야 연구에서 설계된 각 유형의 단일 칩은 동일한 생산 절차 결과를 가지며 후속 유량 측정에 사용되었습니다.

Table 1. List of resistance measurement of single circuit resistance.
Table 1. List of resistance measurement of single circuit resistance.

DNA를 뿌린 칩의 파워가 정상으로 확인되면 히터 버블의 성장 특성을 테스트하고 검증했습니다. DNA 스프레이 칩의 필름 두께와 필름 품질은 히터의 작동 조건과 스프레이 품질에 영향을 줍니다. 따라서 기포 성장 현상과 그 성장 특성을 이해하면 본 연구에서 DNA 스프레이 칩의 특성과 작동 조건을 명확히 하는 데 도움이 됩니다.

설계된 시스템은 기포 성장 조건을 관찰하기 위해 개방형 액체 공급 방법을 채택했습니다. 이미지 관찰을 위해 발광 다이오드 (LED, Nichia NSPW500GS-K1, 3.1V 백색 LED 5mm)를 사용하는 동기식 플래시 방식을 사용하여 동기식 지연 광원을 생성했습니다. 이 시스템은 또한 전하 결합 장치 (CCD, Flir Grasshopper3 GigE GS3-PGE-50S5C-C)를 사용하여 이미지를 캡처했습니다. 그림 1핵 형성, 성장, 거품 생성에서 소산에 이르는 거품의 과정을 보여줍니다. 이 시스템은 기포의 성장 및 소산 과정을 확인하여 시작 전압을 관찰하는 데 사용할 수 있습니다. 마이크로 채널의 액체 공급 방법은 LED가 깜빡이는 시간을 가장 큰 기포 발생에 필요한 시간 (15μs)으로 설정했습니다. 이 디자인은 부적합한 깜박임 시간으로 인한 잘못된 판단과 거품 이미지 캡처 불가능을 방지합니다.

Figure 1. The system uses CCD to capture images.
Figure 1. The system uses CCD to capture images.

<내용 중략>…….

Table 2. Open pool test starting voltage results.
Table 2. Open pool test starting voltage results.
Figure 2. Serial input parallel output shift registers forms of connection.
Figure 2. Serial input parallel output shift registers forms of connection.
Figure 3. The geometry of the jet cavity. (a) The actual DNA liquid chamber, (b) the three-dimensional view of the microfluidic single channel. A single-channel jet cavity with 60 μm diameter and 50 μm thickness, with an operating frequency of 5 KHz, in (a) three-dimensional side view (b) X-Z two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs injection conditions.
Figure 3. The geometry of the jet cavity. (a) The actual DNA liquid chamber, (b) the three-dimensional view of the microfluidic single channel. A single-channel jet cavity with 60 μm diameter and 50 μm thickness, with an operating frequency of 5 KHz, in (a) three-dimensional side view (b) X-Z two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs injection conditions.
Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.
Figure 4. Calculate and simulate the injection of water in a single-channel injection chamber with a nozzle diameter of 60 μm and a thickness of 50 μm, at an operating frequency of 5 KHz, in the X-Y two-dimensional cross-sectional view, at 10, 20, 30, 40 and 200 μs.
Figure 5 depicts the calculation results of the 2D X-Z cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. This may be because the size of the single-channel injection cavity was unsuitable for the highest operating frequency of 10 KHz. Thus, subsequent calculation simulations employed 5 KHz as the reference operating frequency. The calculation simulation results were calculated according to the operating frequency of the impact. Figure 6 illustrates the injection cavity height as 60 μm and 30 μm and reveals the 2D X-Y cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. In those stages, the fluid was still filling the chamber, and the flow field was not yet stable.
Figure 5 depicts the calculation results of the 2D X-Z cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. This may be because the size of the single-channel injection cavity was unsuitable for the highest operating frequency of 10 KHz. Thus, subsequent calculation simulations employed 5 KHz as the reference operating frequency. The calculation simulation results were calculated according to the operating frequency of the impact. Figure 6 illustrates the injection cavity height as 60 μm and 30 μm and reveals the 2D X-Y cross section. At 100 μs and 200 μs, the fluid injection orifice did not completely fill the chamber. In those stages, the fluid was still filling the chamber, and the flow field was not yet stable.
Figure 6. Calculate and simulate water in a single-channel spray chamber with a spray hole diameter of 60 μm and a thickness of 50 μm, with an operating frequency of 10 KHz, in an XY cross-sectional view, at 10, 20, 30, 40, 100, 110, 120, 130, 140 and 200 μs injection situation.
Figure 6. Calculate and simulate water in a single-channel spray chamber with a spray hole diameter of 60 μm and a thickness of 50 μm, with an operating frequency of 10 KHz, in an XY cross-sectional view, at 10, 20, 30, 40, 100, 110, 120, 130, 140 and 200 μs injection situation.
Figure 7. The DNA printing integrated multiplexer driver MEMS head (IDMH).
Figure 7. The DNA printing integrated multiplexer driver MEMS head (IDMH).
Figure 8. The initial voltage diagrams of chip number A,B,C,D,E type.
Figure 8. The initial voltage diagrams of chip number A,B,C,D,E type.
Figure 9. The initial energy diagrams of chip number A,B,C,D,E type.
Figure 9. The initial energy diagrams of chip number A,B,C,D,E type.
Figure 10. A Type-Sample01 flow test.
Figure 10. A Type-Sample01 flow test.
Figure 11. A Type-Sample01 drop volume.
Figure 11. A Type-Sample01 drop volume.
Figure 12. A Type-Sample01 flow rate.
Figure 12. A Type-Sample01 flow rate.
Figure 13. B1-00 flow test.
Figure 13. B1-00 flow test.
Figure 14. C Type-01 flow test.
Figure 14. C Type-01 flow test.
Figure 15. D Type-02 flow test.
Figure 15. D Type-02 flow test.
Figure 16. E1 type flow test.
Figure 16. E1 type flow test.
Figure 17. E1 type ejection rate relationship.
Figure 17. E1 type ejection rate relationship.

Conclusions

이 연구는 DNA 프린팅 IDMH를 제공하고 미세 유체 흐름 추정을 수행했습니다. 설계된 DNA 스프레이 캐비티와 20V의 구동 전압에서 다양한 펄스 폭의 유동 성능이 펄스 폭에 따라 증가하는 것으로 밝혀졌습니다.

E1 유형 유량 테스트는 해당 유량이 3.1cc / min으로 증가함에 따라 유량이 전력 변화에 영향을 받는 것으로 나타났습니다. 동력이 증가함에 따라 유량은 0.75cc / min에서 3.5cc / min으로 최대 6.5W까지 증가했습니다. 동력이 더 증가하면 유량은 에너지와 함께 증가하지 않습니다. 이것은 이 테이블 디자인이 가장 크다는 것을 보여줍니다. 유속은 3.5cc / 분이었다.
작동 주파수가 2KHz이고 펄스 폭이 4μs 및 5μs 인 특수 설계된 DNA 스프레이 룸 구조에서 다양한 전력 조건 하에서 유량 변화를 관찰했습니다. 4.3–5.87 W의 출력 범위 내에서 주입 된 모노머의 유속은 5.5cc / 분이었습니다. 이것은 힘이 증가해도 변하지 않았습니다. DNA는 귀중하고 쉽게 얻을 수 없습니다. 이 실험을 통해 우리는 DNA가 뿌려진 마이크로 어레이 바이오칩의 수천 개의 지점에 필요한 총 DNA 양을 정확하게 추정 할 수 있습니다.

<내용 중략>…….

References

  1. Pydar, O.; Paredes, C.; Hwang, Y.; Paz, J.; Shah, N.; Candler, R. Characterization of 3D-printed microfluidic chip interconnects with integrated O-rings. Sens. Actuators Phys. 2014205, 199–203. [Google Scholar] [CrossRef]
  2. Ohtani, K.; Tsuchiya, M.; Sugiyama, H.; Katakura, T.; Hayakawa, M.; Kanai, T. Surface treatment of flow channels in microfluidic devices fabricated by stereolitography. J. Oleo Sci. 201463, 93–96. [Google Scholar] [CrossRef]
  3. Castrejn-Pita, J.R.; Martin, G.D.; Hoath, S.D.; Hutchings, I.M. A simple large-scale droplet generator for studies of inkjet printing. Rev. Sci. Instrum. 200879, 075108. [Google Scholar] [CrossRef] [PubMed]
  4. Asai, A. Application of the nucleation theory to the design of bubble jet printers. Jpn. J. Appl. Phys. Regul. Rap. Short Notes 198928, 909–915. [Google Scholar] [CrossRef]
  5. Aoyama, R.; Seki, M.; Hong, J.W.; Fujii, T.; Endo, I. Novel Liquid Injection Method with Wedge-shaped Microchannel on a PDMS Microchip System for Diagnostic Analyses. In Transducers’ 01 Eurosensors XV; Springer: Berlin, Germany, 2001; pp. 1204–1207. [Google Scholar]
  6. Xu, B.; Zhang, Y.; Xia, H.; Dong, W.; Ding, H.; Sun, H. Fabrication and multifunction integration of microfluidic chips by femtosecond laser direct writing. Lab Chip 201313, 1677–1690. [Google Scholar] [CrossRef] [PubMed]
  7. Nayve, R.; Fujii, M.; Fukugawa, A.; Takeuchi, T.; Murata, M.; Yamada, Y. High-Resolution long-array thermal ink jet printhead fabricated by anisotropic wet etching and deep Si RIE. J. Microelectromech. Syst. 200413, 814–821. [Google Scholar] [CrossRef]
  8. O’Connor, J.; Punch, J.; Jeffers, N.; Stafford, J. A dimensional comparison between embedded 3D: Printed and silicon microchannesl. J. Phys. Conf. Ser. 2014525, 012009. [Google Scholar] [CrossRef]
  9. Fang, Y.J.; Lee, J.I.; Wang, C.H.; Chung, C.K.; Ting, J. Modification of heater and bubble clamping behavior in off-shooting inkjet ejector. In Proceedings of the IEEE Sensors, Irvine, CA, USA, 30 October–3 November 2005; pp. 97–100. [Google Scholar]
  10. Lee, W.; Kwon, D.; Choi, W.; Jung, G.; Jeon, S. 3D-Printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section. Sci. Rep. 20155, 7717. [Google Scholar] [CrossRef] [PubMed]
  11. Shin, D.Y.; Smith, P.J. Theoretical investigation of the influence of nozzle diameter variation on the fabrication of thin film transistor liquid crystal display color filters. J. Appl. Phys. 2008103, 114905-1–114905-11. [Google Scholar] [CrossRef]
  12. Kim, Y.; Kim, S.; Hwang, J.; Kim, Y. Drop-on-Demand hybrid printing using piezoelectric MEMS printhead at various waveforms, high voltages and jetting frequencies. J. Micromech. Microeng. 201323, 8. [Google Scholar] [CrossRef]
  13. Shin, S.J.; Kuka, K.; Shin, J.W.; Lee, C.S.; Oha, Y.S.; Park, S.O. Thermal design modifications to improve firing frequency of back shooting inkjet printhead. Sens. Actuators Phys. 2004114, 387–391. [Google Scholar] [CrossRef]
  14. Rose, D. Microfluidic Technologies and Instrumentation for Printing DNA Microarrays. In Microarray Biochip Technology; Eaton Publishing: Norwalk, CT, USA, 2000; p. 35. [Google Scholar]
  15. Wu, D.; Wu, S.; Xu, J.; Niu, L.; Midorikawa, K.; Sugioka, K. Hybrid femtosecond laser microfabrication to achieve true 3D glass/polymer composite biochips with multiscale features and high performance: The concept of ship-in-abottle biochip. Laser Photon. Rev. 20148, 458–467. [Google Scholar] [CrossRef]
  16. McIlroy, C.; Harlen, O.; Morrison, N. Modelling the jetting of dilute polymer solutions in drop-on-demand inkjet printing. J. Non Newton. Fluid Mech. 2013201, 17–28. [Google Scholar] [CrossRef]
  17. Anderson, K.; Lockwood, S.; Martin, R.; Spence, D. A 3D printed fluidic device that enables integrated features. Anal. Chem. 201385, 5622–5626. [Google Scholar] [CrossRef] [PubMed]
  18. Avedisian, C.T.; Osborne, W.S.; McLeod, F.D.; Curley, C.M. Measuring bubble nucleation temperature on the surface of a rapidly heated thermal ink-jet heater immersed in a pool of water. Proc. R. Soc. A Lond. Math. Phys. Sci. 1999455, 3875–3899. [Google Scholar] [CrossRef]
  19. Lim, J.H.; Kuk, K.; Shin, S.J.; Baek, S.S.; Kim, Y.J.; Shin, J.W.; Oh, Y.S. Failure mechanisms in thermal inkjet printhead analyzed by experiments and numerical simulation. Microelectron. Reliab. 200545, 473–478. [Google Scholar] [CrossRef]
  20. Shallan, A.; Semjkal, P.; Corban, M.; Gujit, R.; Breadmore, M. Cost-Effective 3D printing of visibly transparent microchips within minutes. Anal. Chem. 201486, 3124–3130. [Google Scholar] [CrossRef] [PubMed]
  21. Cavicchi, R.E.; Avedisian, C.T. Bubble nucleation and growth anomaly for a hydrophilic microheater attributed to metastable nanobubbles. Phys. Rev. Lett. 200798, 124501. [Google Scholar] [CrossRef] [PubMed]
  22. Kamei, K.; Mashimo, Y.; Koyama, Y.; Fockenberg, C.; Nakashima, M.; Nakajima, M.; Li, J.; Chen, Y. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients. Biomed. Microdevices 201517, 36. [Google Scholar] [CrossRef] [PubMed]
  23. Shin, S.J.; Kuka, K.; Shin, J.W.; Lee, C.S.; Oha, Y.S.; Park, S.O. Firing frequency improvement of back shooting inkjet printhead by thermal management. In Proceedings of the TRANSDUCERS’03. 12th International Conference on Solid-State Sensors.Actuators and Microsystems. Digest of Technical Papers (Cat. No.03TH8664), Boston, MA, USA, 8–12 June 2003; Volume 1, pp. 380–383. [Google Scholar]
  24. Laio, X.; Song, J.; Li, E.; Luo, Y.; Shen, Y.; Chen, D.; Chen, Y.; Xu, Z.; Sugoioka, K.; Midorikawa, K. Rapid prototyping of 3D microfluidic mixers in glass by femtosecond laser direct writing. Lab Chip 201212, 746–749. [Google Scholar] [CrossRef] [PubMed]
Fig. 1.Schematic of wire feeding in a melting line.

Evaluation on the Efficiency of Cored Wire Feeding in Addition of Alloying Elements into Cu Melt

Bok-Hyun Kang*, Ki-Young Kim
Korea University of Technology and Education

코어드 와이어 피딩에 의한 Cu 용탕에의 합금 첨가 시 효율 평가

Abstract

To add alloying elements into a pure copper melt, the wire-feeding efficiency of cored (alloy containing) wire was evaluated using a commercial, computational fluid-dynamics program. The model design was based on an industrial-scale production line. The variables calculated included wire feed rate, melt temperature, wire diameter, melt flow rate and wire temperature. Efficiency was evaluated after a series of calculations based on the penetration depth of the alloy-wire into the molten copper bath. Of the five variables investigated, the wire feed rate and wire diameter were the most influential factors affecting the feeding efficiency of the cored-wire.

Keywords: Cored wire feeding, Cu melt, Efficiency, Alloying elements

1. 서론

소재산업이 고품질, 환경친화적,저에너지 소비기술을 지향하면서 보다 고효율 공정의 활용이 증가하는 추세에 있다. 철강이나 비철소재에 있어서도 탈산, 탈황, 개재물 처리 및 합금화 등과 같은 청정화를 위한 용탕 처리 뿐만 아니라목표하는 합금의 화학 조성의 정확한 조절이 요구되고 있다.

분말 원재료를 금속 피복재 등으로 감싸서 와이어의 형태로 만들고 이를 릴에 감은 후 순차적으로 풀어서 용탕에 투입하는 코어드 와이어(cored wire)방식은 첨가되는 원재료의 손실을 최소화하고 높은 효율성을 얻을 수 있는 이점이 있다.

용강의 탈산을 위한 Ca투입 시에도 Ca분말을 피복하여 사용한 경우의 회수율이 높아지고,미량의 V나 Al를 합금원소로참가할 때에도 효율적이라고 보고되고 있다[1-5]. 그리고 코어드 와이어를 사용할 경우의 용해 메커니즘에 대한 모델 및 열전달에 관한연구도 보고된 바 있다[6-9].

또한 철강산업에서 뿐만 아니라 주철 제조시에도 코어드 와이어법이 이용되고 있는데, 주철의 구상화 처리[10], 선철의 탈황[11]등에서도 활용이 되고 있다.

한편, 비철산업에서는 코어드 와이어법이 아직 활발히 채용이 되지 않고 있는 상태이나, 전자부품 용동 합금소재와 같이정밀한 합금화가 필요하거나 산화가 용이하여 분말로 첨가 시 회수율이 낮은 원소의 합금 시 그 활용이 기대되고 있다.

실제 정확한 장입 계산으로 합금 원소를 투입 하더라도 최종 목표 조성을 관리하는 것은 쉽지 않다. 특히 산화가 쉬운원소의 경우 용탕에 투입했을 때 회수율의 변동성이 심하고, 마이크로 합금화(micro alloying)와 같이 첨가량이 매우 적다면 화학조성의 조절이 더욱 어렵고, 회수율의 예측 또한 힘들다.

일반적으로 동합금의 제조시 합금원소는 용해 라인에서 연속적으로 첨가 되는데, 기존 공정라인에서의 합금화는 배합로에서 합금원소를 덩어리 또는 분말형태로 투입하여 진행한다. 그러나 이러한 배합방식은 많은 양의 분진 발생으로 작업 환경을 나쁘게 하고, 특히 분말의 상태로 용탕과 접촉하므로 산화가 용이하여 회수율의 변동이 심한 단점이 있다.

동합금 제조에 있어서 코어드 와이어법의 적용에 대한 실험실적 연구는 수행된 바 있으나[12], 다양한 공정변수를 고려하기 위해서는 실제 동합금의 용해, 연주라인에서 실험하는 것은 어려우므로, 전산모사를 활용하여 각 변수의 영향을 알아보는 것도 효과적인 방법 중의 하나이다.

본 연구에서는 아직까지 Cu 합금의 제조에 사용되지 않은 코어드 와이어 피딩법의 전산모사를 통하여 와이어 피딩 시의효율에 미치는 공정변수의 영향을 조사하였다.

2.연구방법

Fig. 1은 용해라인에서의 와이어피딩 모식도를 나타낸 것으로, 배합로에서 합금을 투입한다고 가정하였다. 또한 용탕의유속은 연주되는 슬라브의 유량과 용탕유로의 단면적으로 유로내에서의 용탕유속을 산출하였고, 이러한 용탕의 흐름을가정하여 유체의X+ 방향으로의 유속을 정의하였다.

Fig. 2는계산모델을 나타낸 것으로 100×500×20 mm 크기의 모델을 길이 방향으로 50개, 높이 방향으로 250개, 두께 방향으로 10개의 소로 나누었다. 용탕은 순 Cu로 가정하였고, 와이어의 재질은 Cu이며, 튜브 안에 Cu 분말이 들어있는 것으로 가정하였다.

계산상 합금분말은 정의가 안되기 때문에, 코어드 와이어의 밀도는 벌크 재질 밀도의60%의 밀도로 입력 하였다. 계산에 사용한 재질별 물성은T able 1과 같다.

용탕의 흐름, Cu용탕과 와이어 사이의 열 이동은 상용 유체해석 소프트웨어인 Flow-3D를 이용하여 3차원 계산을 수행하였다. 계산 변수는 와이어의 송급속도, 용탕의 온도, 와이어의 직경, 용탕의 흐름 속도 및 와이어의 온도로 하였으며, 상세는 Table2와 같다. 와이어의 송급 속도는 Z- 방향으로 당겨지는 것으로 입력하였다.

Fig. 1.Schematic of wire feeding in a melting line.
Fig. 1.Schematic of wire feeding in a melting line.

<중략>…….

Flg. 2.Three dimensional model for wire feeding simulation
Flg. 2.Three dimensional model for wire feeding simulation
Fig. 3.Change in solid fraction of the cored wire during feeding: (I)initial heating, (II) transient melting, (III) steady statemelting
Fig. 3.Change in solid fraction of the cored wire during feeding: (I)initial heating, (II) transient melting, (III) steady statemelting
Fig. 4.Solid fraction contours with wire feed rate at steady state: melt temp. 1473 K, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K
Fig. 4.Solid fraction contours with wire feed rate at steady state: melt temp. 1473 K, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K

Fig. 5.Effect of wire feed rate on the penetration depth of wire at itssolid fraction of 0.7.
Fig. 5.Effect of wire feed rate on the penetration depth of wire at itssolid fraction of 0.7.
ig. 6.Solid fraction contours with melt temperature at steady state: wire feed rate 7 m/s, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K
ig. 6.Solid fraction contours with melt temperature at steady state: wire feed rate 7 m/s, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K
Fig. 7.Solid fraction contours with wire diameter at steady state: wire feed rate 7 m/s, melt temp. 1473 K, melt flow rate 1.7 m/s, wiretemp.303 K
Fig. 7.Solid fraction contours with wire diameter at steady state: wire feed rate 7 m/s, melt temp. 1473 K, melt flow rate 1.7 m/s, wiretemp.303 K
Fig. 8.Effect of wire diameter on the penetration depth of wire at itssolid fraction of 0.7
Fig. 8.Effect of wire diameter on the penetration depth of wire at itssolid fraction of 0.7
ig. 9.Effect of melt flow rate on the penetration depth of wire.
ig. 9.Effect of melt flow rate on the penetration depth of wire.
Fig. 10.Effect of wire temperature on the penetration depth of wire
Fig. 10.Effect of wire temperature on the penetration depth of wire

<중략>…

4. 결론

코어드와이어 피딩 공정을 와이어의 송급 속도, 용탕의 온도, 와이어의 직경, 용탕의 흐름 속도 및 와이어의 온도를 공정변수로 하여 전산 모사하고, 피딩공정의 효율은 와이어의 침투 깊이로 평가하였다.

그 결과, 와이어의 송급 속도와 와이어의 직경이 와이어의 침투 깊이에 가장 영향이 큰 것으로 나타났다. 즉 와이어가 용탕의 상면 가까이에서 용해되어 버리면 산화가 용이하게 되고, 부상하여 슬래그 중으로 들어가기 쉬우므로 효율이 떨어지나, 용탕의 저부에서 용해되면, 대부분 Cu 용탕 중으로 녹아 들어가므로 첨가하는 합금 원소의 회수율이 높아지게 됨을 기대할 수 있다. 연속 주조 라인에서는 빌렛의 최종 조성의 조절이 중요한데, 와이어의 직경과 적정 송급 속도의 조화가 필요하다.

References

[1] P. Murray, Metallurgist, “Use of cored wire to introducemetallic powders into molten metal”,41(1997) 53-55.
[2] S. Basak, R. Kumar Dhal and G. G. Roy, Ironmaking andSteelmaking, “Efficacy and recovery of calcium during CaSicored wire injection in steel melts”,37(2010) 161-168.
[3] D.A. Dyudkin, V.V. Kisilenko, V.P. Onishchuk, A.A. Larionov,and B.V. Neboga, Metallurgist, “Effectiveness of alloyingsteel with vanadium from cored wire”,46(2002) 203-204.
[4] Y. Heikiki and M. Juha, Scandinavian J. of Metallurgy, “Steelcomposition adjustment by wire feeding at Rautaruukki OyRaaha steel works”,19(1990) 142-145.
[5] S.V. Kazakov, A.A. Neretin, S.M. Chumakov, S.D. Zinchenkoand A. B. Lyatin, Metallurgist, “Treatment of converter steelwith calcium-aluminum wire”,42(1998) 173-175.
[6] S. Sanyal, S. Chandra, S. Kumar and G.G. Roy, Steel ResearchInt., “Dissolution kinetics of cored wire in molten steel”,77(2006) 541-549.
[7] S. Sanyal, S. Chandra, S. Kumar and G.G. Roy, ISIJ Int., “AnImproved Model of Cored Wire Injection in Steel Melts”,44(2004) 1157-1166.
[8] S. Sanyal, J.K. Saha, S. Chandra and C. Bhanu, ISIJ Int.,“Model based optimazation of aluminum wire injection insteel melts”,46(2006) 779-781.
[9] M.G. Kim, D.C. Hwang, J.J. Choi, S.Y. Yoon, B.J. Ye, J.H.Kim and W.B. Kim, J. KFS, “Heat Flow Analysis of FerriticStainless Steel Melt during Ti wire feeding”,29(2009) 277-283.
[10] I. Ruiz, F. Wolfsgruber and J. L. Enriquez, Inter. J. of CastMetals Research, “Production of ductile iron with the coredwire technology”,16(2003) 7-10.
[11] A.M. Zborshchik, Metallurgist, “Cost-effectiveness of de-sulfurizing pig iron with magnesium-bearing cored wire”,45(2001) 360-362.
[12] B.H. Kang, W.H. Lee, J.Y. Cho, M.J. Lee and K.Y. Kim,Advanced Mater. Reasearch, “Yield of alloying elements fedby cored wire into a copper melt”,690-693(2013) 62-65

Fig. 3. Mesh and depth map for the storm surge model of ADCSWAN model.

ADCSWAN과 FLOW-3D 모델을 이용한 태풍 차바 내습 시 부산 마린시티의 침수범람 재현

최흥배․엄호식†․박종집․강태욱
*, *** ㈜지오시스템리서치 선임, ** ㈜지오시스템리서치 책임, **** 부경대학교 박사

Reproduction of Flood Inundation in Marine City, Busan During the Typhoon Chaba Invasion Using ADCSWAN and FLOW-3D Models

요 약 : 최근 연안지역의 대규모 개발로 인해 고파랑 내습과 강한 태풍으로 발생된 월파는 연안지역의 많은 인명 및 재산피해를 발생시 켰으나 연안지역의 특성을 고려한 침수·범람 연구는 미비한 실정이다. 본 연구는 ADCSWAN(ADCIRC+SWAN) 모델과 FLOW-3D 모델을 적용 하여 해일 및 파랑의 복합요소에 대한 침수범람을 재현하기 위한 방법론에 대한 연구이다. 본 연구에서는 ADCSWAN(ADCIRC+SWAN) 모 델을 이용하여 FLOW-3D 모델의 경계자료(해수위, 파랑)를 추출하고, FLOW-3D 모델 입력값으로 적용하여 태풍 차바 통과시 부산 마린시 티를 대상으로 해일과 월파에 의한 침수범람을 재현하였다. 또한 기존 월파량 경험식과 FLOW-3D 모델로 계산된 월파량을 비교하였으며, 침수범람은 한국국토정보공사의 침수흔적도를 활용하여 정성적인 검증을 수행하여, 본 연구의 유효성을 검토하였다.

Keywords : ADCSWAN, FLOW-3D, 태풍 차바, 월파, 침수범람, Typhoon Chaba, Wave overtopping, Inundation

서 론

연안지역에 인접한 도시지역의 침수피해는 일반적인 도 시침수피해의 특성뿐만 아니라 연안지역의 조위상승 및 월 파현상이 포함된 복합적인 형태의 침수피해가 발생한다. 최근 지구온난화로 인한 기후변화는 평균해수면 상승과 태풍 의 강도 증가로 인해 해안지역의 재해 위험을 높이고 있지 만, 해안지역의 대규모 매립과 개발로 인해 인명손실과 재 산피해를 야기하는 위험도를 증가시켰다. 해안지역은 만조시 해수면 상승, 폭풍해일로 인한 월류 및 월파와 같은 요인에 의해 침수가 발생할 수 있다. 실제로 2003년 태풍 매미로 인한 마산만 조수가 예보치와 비교하여 2 m 이상 상승하여 많은 지역이 침수 및 인명·재산 피해가 발생되었으며, 2016년 태풍 차바는 폭풍해일 내습시 동반되 는 고파랑 발생으로 부산 해운대구 마린 시티에 대규모 침 수범람을 발생시켰다. 그러나 국내 연안도시지역의 특성을 고려한 월파 및 침수에 대한 연구는 미비한 실정이다(Song et al., 2017). 하지만 복잡한 지형이나 연안지역의 경우 방파 제 및 구조물의 형상에 따른 월파를 정밀하게 계산하기 위 해 3차원 전산유체 수치모형(CFD)의 가능성 여부가 검토되 어 왔다. 그러나 지금까지 대부분의 전산유체 수치모형은 그 적용성의 한계성과 큰 영역에 대해 직접 수치모의 하여 월파량을 산정한 예는 드물다. Le Roy et al.(2014)는 프랑스 도시지역에서 월파로 인한 해 안 홍수 문제를 해결하기 위해 XBeach 수치모델 및 경험적 (EurOtop) 모델을 사용하여 최대 월파량과 처오름을 추정하 였다. 우리나라의 설계기준서인 “항만 및 어항 설계기준(Ministry of Oceans and Fisheries, 2014)” 경우에는 월파량 산정은 Goda 도표를 단순 직립식 구조물 및 소파호안에 적용하는 것을 제안하였다(Goda, 1970; Goda et al., 1975; Goda, 1985) 월파량 산정과 관련된 최근 연구 경향은 월파량 산정식을 대부분 지수함수 형태로 표현하고 있으며, 여유고와 입사파 고를 입력변수로 하여 월파량 산정이 가능하도록 제시하고 있다(van der Meer and Janssen, 1995; Franco and Franco, 1999; EurOtop, 2007; Anderson and Burcharth, 2009 등). 태풍에 의해 발생하는 폭풍해일의 영향을 예측하기 위해 서는 기본적으로 태풍에 의한 기압 강하, 해상풍, 진행 속도 등에 의한 해수면 변화 양상 및 조석-해일-파랑에 대해 충분 히 재현 가능해야 한다(Kang et al., 2019). 본 연구에서는 태풍 차바 내습시 폭풍해일 ADCSWAN (coupled model of ADCIRC and SWAN)모델과 FLOW-3D 수치 모형 결합을 통해 월파 특성을 재현하고 경험식을 통한 월 파량을 비교·검토하였다.

  1. 연구 개요
    2.1 대상 태풍

본 연구의 대상지역은 대한민국 부산 해안가에 위치한 수 변도시로, 수영만 매립지 일부에 조성된 주거형 타운 지역 이다. 주요 건물이 해안선에 인접해 있으며, 지역 주민의 바 다를 볼 수 있는 조망권 확보를 위해 월파로 인한 방지대책 이 제한적으로 설치되어 있다. 이러한 지역적 특성으로 인 해 2016년 태풍 차바와 2018년 태풍 콩 라이(Kong-Rai) 때 폭 우와 폭풍해일 동반으로 월파와 강우로 인해 마린 시티 주 변의 많은 도로와 상가 침수가 발생되었다.

Fig. 1. Typhoon Chaba route (KMA & JMA)
Fig. 1. Typhoon Chaba route (KMA & JMA)

ADCSWAN과 FLOW-3D 모델을 이용한 태풍 차바 내습 시 부산 마린시티의 침수범람 재현

Fig. 2. Marine City during Typhoon Chaba in 2016.
Fig. 2. Marine City during Typhoon Chaba in 2016.

2016년 발생한 제 18호 태풍 ‘차바(이하 Chaba로 표기함)’ 는 2016년 9월 28일 오전 3시에 중심기압 1,000 hPa, 최대풍속 18 m/s, 강풍 반경 280 km 크기의 ‘소형’ 열대폭풍으로 미국 괌 동쪽 약 590 km 부근 해상에서 발생하여 한반도의 제주 특별자치도 서귀포시와 경상남도 거제시, 부산광역시를 순 차적으로 통과하여 10월 6일 0시에 일본 센다이 서쪽 약 380 km부근 해상에서 중심기압 985 hPa의 온대저기압으로 세력 이 약화되면서 소멸하였다. 태풍의 일시별 정보와 피해사진 을 Fig. 1 및 Fig. 2에 제시하였다.

2.2 적용 모델
2.2.1 ADCSWAN(ADCIRC+SWAN) model

태풍에 의해 발생되는 폭풍해일의 영향을 예측하기 위해 서는 지형적인 특성과 태풍에 의한 기압강하, 해상풍, 진행 속도 등에 의한 해수면 변화 양상 및 조석-해일-파랑에 대 해 충분히 재현 가능해야 한다(Ferreira et al., 2014a, 2014b). 본 연구에서는 태풍에 의해 발생 가능한 현상에 대해 기존 의 다양한 연구에서 적용 및 활용성이 확보된 폭풍해일ADCIRC(ADvanced CIRCulation) 모델과 SWAN(Simulating WAves Nearshore) 파랑모델이 결합된 ADCSWAN(coupled model of ADCIRC and SWAN) 모델을 이용하였다(Dietrich et al., 2011; Suh et al., 2015; Xie et al., 2016; Deb and Ferreira, 2018). 사용한 ADCIRC 모델은 유한요소 유체역학모델로, 수직적 으로 통합된 일반파 연속방정식(generalised wave continuity equation: GWCE)과 운동량 방정식(각각 식(1)과 (2))을 적용하 는 2D 버전(Luettich and Westerink, 2004)을 사용하였다.

<중략> ….

Fig. 3. Mesh and depth map for the storm surge model of ADCSWAN model.
Fig. 3. Mesh and depth map for the storm surge model of ADCSWAN model.
Fig. 5. Simulation boundary of FLOW3D Model [a) Input boundary of wave and storm surge, b) output boundary of wave overtopping rate].
Fig. 5. Simulation boundary of FLOW3D Model [a) Input boundary of wave and storm surge, b) output boundary of wave overtopping rate].
Fig. 6. Verification of tidal level and storm surge during Typhoon Chaba(1618), Pre : tidal predication.
Fig. 6. Verification of tidal level and storm surge during Typhoon Chaba(1618), Pre : tidal predication.
Fig. 7. Verification of significant wave height the Typhoon Chaba.
Fig. 7. Verification of significant wave height the Typhoon Chaba.
Fig. 8. Averaged overtopping rate by empirical formula and FLOW3D model at Marine City during Typhoon Chaba.
Fig. 8. Averaged overtopping rate by empirical formula and FLOW3D model at Marine City during Typhoon Chaba.
Fig. 9. Comparison of inundation results due to Typhoon Chaba [a)Archived inundation map on Marine City area, b) Simulation results obtained from wave overtopping).
Fig. 9. Comparison of inundation results due to Typhoon Chaba [a)Archived inundation map on Marine City area, b) Simulation results obtained from wave overtopping).

<중략>…………

결 론

본 연구에서는 폭풍해일 모델과 3차원 전산유체 모델 연 계를 통해 태풍 차바 통과시 마린시티를 대상으로 침수범람 을 재현하였다. 먼저, 기존 월파량 경험식(EurOtop, 2016)과 FLOW-3D모델 로 산정된 월파량을 비교하였으며. 비교결과 경험식으로 산 정된 월파량은 2.237 m³/m/s이며, FLOW-3D로 계산된 월파량 은 6.438 m³/m/s로 약 2.8배의 차이를 보였다. 이는 경험식이 고파랑에 의한 처오름 등 실제 현상재현에 한계점을 가지고 있기 때문으로 사료된다. 태풍 차바로 인한 수위상승과 폭풍해일 등의 복합적 피해 가 발생한 부산 마린시티 적용결과 현장조사(침수흔적도)와 정량적 비교는 불가능하지만 침수범람 범위의 경우 현장조 사와 비교하여 유효한 결과를 도출할 수 있었다. 기존 월파량 추정은 경험식을 적용하여 산정하였으나, 본 연구에서는 동적모델(FLOW-3D)을 적용하여 월파량을 산정 하였다. 동적모델을 적용할 경우 해당지역의 보다 정확한 형상을 구현할 수 있다는 점에서 기존 경험식에 비하여 정 도 높은 월파량 재현이 가능한 것으로 판단된다. 현재 우리나라 연안을 대상으로 제작된 해안침수예상도 는 해일에 의한 침수범람을 외력요인으로 하고 있으나, 실제 발생하는 침수범람은 해일뿐만 아니라 월파의 영향이 크 게 발생하기도 한다. 본 연구에서는 해일과 월파에 의한 복 합원인에 의한 침수범람을 재현하기 위한 방법론에 대한 연 구를 수행하였다.

References

[1] Anderson, T. L. and H. F. Burcharth(2009), Three-dimensionalinvestigation of wave overtopping on rubble mound structures,Coastal Engineering, Vol. 56, No. 2, pp. 180-189.
[2] Booij, N., R. C. Ris, and L. H. Holthuijsen(1999), Athird-generation wave model for coastal regions: 1. Modeldescription and validation, J. Geophys. Res., Vol. 104, No.C4, pp. 7649-7666.
[3] Deb, M. and C. M. Ferreira(2018), Simulation of cycloneinduced storm surges in the low-lying delta of Bangladeshusing coupled hydrodynamic and wave model (SWAN +ADCIRC), J. Flood Risk Manag., Vol. 11, No. S2, pp.750-765.
[4] Dietrich, J. C., M. Zijlema, J. J. Westerink, L. H. Holthuijsen,C. Dawson, R. A. Luettich, R. E. Jensen, J. M. Smith, G. S.Stelling, and G. W. Stone(2011), Modeling hurricane wavesand storm surge using integrally-coupled scalable computations,Coast Eng., Vol. 58, No. 1, pp. 45-65.
[5] Dietrich, J. C., S. Bunya, J. J. Westerink, B. A. Ebersole, J.M. Smith, J. H. Atkinson, R. Jensen, D. T. Resio, R. A.Luettich, C. Dawson, V. J. Cardone, A. T. Cox, M. D.Powell, H. J. Westerink, and H. J. Roberts(2010), A highresolution coupled riverine flow, tide, wind, wind wave andstorm surge model for southern Louisiana and Mississippi.Part II: Synoptic description and analyses of HurricanesKatrina and Rita. Mon. Weather Rev., Vol. 138, No. 2, pp.378-404.
[6] EurOtop(2016), Manual on wave overtopping of sea defencesand related structures. An overtopping manual largely basedon European research, but for worldwide application. SecondEdition. Authors: J. W. van der Meer, N. W. H. Allsop, T. Bruce, J. DeRouck, A. Kortenhaus, T. Pullen, H. Schuttrumpf,P. Troch, and B. Zanuttigh, www.overtopping-manual.com.
[7] EurOtop(2007), EurOtop – Wave overtopping of sea defencesand related structures: Assessment Manual.
[8] Ferreira, C. M., J. L. Irish, and F. Olivera(2014a), Quantifyingthe potential impact of land cover changes due to sea-levelrise on storm surge on lower Texas coast bays, Coast Eng.,Vol. 94, pp. 102-111.
[9] Ferreira, C. M., J. L. Irish, and F. Olivera(2014b), Uncertaintyin hurricane surge simulation due to land cover specification,J. Geophys. Res. Ocean., Vol. 119, No. 3, pp. 1812-1827.
[10] Goda, Y.(1970), Estimation of the rate of irregular waveovertopping at seawalls, Technical Report of Port and AirportResearch Institute, Vol. 9, No. 4, pp. 3-42.
[11] Goda, Y.(1985), Random seas and design of maritimestructures 1st editionth ed. World Scientific Publishing.
[12] Goda, Y., Y. Kishira, and Y. Kamiyama(1975), Laboratoryinvestigation on the overtoppping rate of seawalls by irregularwaves, Technical Report of Port and Airport ResearchInstitute, Vol. 14, No. 4, pp. 3-44.
[13] Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E.Cartwright, E. Enke, J. A. Ewing, H. Gienapp, D. E.Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D. J.Olbers, K. Richter, W. Sell, and H. Walden(1973),Measurement of wind-wave growth and swell decay duringthe Joint North Sea Wave Project (JONSWAP), Dtsch.Hydrogr. Z. Suppl., Vol. 12, No. A8, pp. 1-95.
[14] Kang, T. W., S. H. Lee, H. B. Choi, and S. B. Yoon(2019),A Technical Review for Reducing Inundation Damage toHigh-Rise and Underground-Linked Complex Buildings inCoastal Areas (2): Case Analysis for Application, J. KoreanSoc. Hazard Mitig., Vol. 19, No. 5 (Oct.), pp. 45-53.
[15] Le Roy, S., R. Pedreros, C. André, F. Paris, S. Lecacheux, F.Marche, C. Vinchon(2014), Coastal flooding of urban areas byovertopping: dynamic modelling application to the Johannastorm (2008) in Gâvres (France), Natural Hazard and EarthSystem Sciences Discussions, Vol. 2, No. 8, pp. 4947-4985l.
[16] Luettich, R. A. and J. J. Westerink(2004), Formulation andNumerical Implementation of the 2D/3D ADCIRC FiniteElement Model Version 44.XX.
[17] Ministry of Oceans and Fisheries(2014), Harbour and FisheryDesign Criteria.
[18] Song, Y., J. Joo, J. Lee, and M. Park(2017), A Study onEstimation of Inundation Area in Coastal Urban Area Applying Wave Overtopping, J. Korean Soc. Hazard Mitig.,Vol. 17(2), pp. 501-510.
[19] Suh, S. W., H. Y. Lee, H. J. Kim, and J. G. Fleming(2015),An efficient early warning system for typhoon storm surgebased on time-varying advisories by coupled ADCIRC andSWAN, Ocean Dyn. 65, pp. 617-646.
[20] Van der Meer, J. W. and H. Janssen(1995). Wave run-up andovertopping at dikes, Wave forces on inclined and verticalwall structures, ASCE.
[21] Xie, D. M., Q. P. Zou, and J. W. Cannon(2016), Applicationof SWAN + ADCIRC to tide-surge and wave simulation inGulf of Maine during Patriot’s Day storm, Water Sci. Eng.,Vol. 9, No. 1, pp. 33-41.
[22] Yoon, H. S., J. H. Park, and Y. H. Jeon(2017), A Study onWave Overtopping of the Seawall at Haeundae Marine CityDuring the Passing of Typhoon Chaba, J. Korean Soc. Mar.Environ. Energy, Vol. 20(3), pp. 152-159.

A photo of HeMOSU-1.

FLOW-3D를 이용한 해상 자켓구조물 주변의 세굴 수치모의 실험

Numerical Simulation Test of Scour around Offshore Jacket Structure using FLOW-3D

J Korean Soc Coast Ocean Eng. 2015;27(6):373-381Publication date (electronic) : 2015 December 31doi : https://doi.org/10.9765/KSCOE.2015.27.6.373Dong Hui Ko*Shin Taek Jeong,**Nam Sun Oh****Hae Poong Engineering Inc.**Department of Civil and Environmental Engineering, Wonkwang University***Ocean·Plant Construction Engineering, Mokpo Maritime National University
고동휘*, 정신택,**, 오남선***

*(주)해풍기술**원광대학교 토목환경공학과***목포해양대학교 해양·플랜트건설공학과

Abstract

해상풍력 기기, 해상 플랫폼과 같은 구조물이 해상에서 빈번하게 설치되면서 세굴에 관한 영향도 중요시되고 있다. 이러한 세굴 영향을 검토하기 위해 세굴 수치모의 실험을 수행한다. 일반적으로 수치모의 조건은 일방향 흐름에 대해서만 검토가 이뤄지고 있으며 서해안과 같은 왕복성 조류 흐름에 대해서는 검토되지 않는다. 본 연구에서는 서해안에 설치된 HeMOSU-1호 해상 자켓구조물 주변에서 발생하는 세굴 현상을 FLOW-3D를 이용하여 수치모의하였다. 해석 조건으로는 일방향 흐름과 조석현상을 고려한 왕복성 흐름을 고려하였으며, 이를 현장 관측값과 비교하였다. 10,000초 동안의 수치모의 결과, 일방향의 흐름 조건에서는 1.32 m의 최대 세굴심이 발생하였으며, 양방향 흐름 조건에서는 1.44 m의 최대 세굴심이 발생하였다. 한편, 현장 관측값의 경우 약 1.5~2.0 m의 세굴심이 발생하여 양방향의 흐름에 대한 해석 결과와 근사한 값을 보였다.

Keywords 세굴일방향 흐름왕복성 조류 흐름해상 자켓구조물FLOW-3D최대 세굴심, scouruni-directional flowbi-directional tidal current flowoffshore jacket substructureFlow-3Dmaximum scour depth

As offshore structures such as offshore wind and offshore platforms have been installed frequently in ocean, scour effects are considered important. To test the scour effect, numerical simulation of scour has been carried out. However, the test was usually conducted under the uni-directional flow without bi-directional current flow in western sea of Korea. Thus, in this paper, numerical simulations of scour around offshore jacket substructure of HeMOSU-1 installed in western sea of Korea are conducted using FLOW-3D. The conditions are uni-directional and bi-directional flow considering tidal current. And these results are compared to measured data. The analysis results for 10,000 sec show that under uni-directional conditions, maximum scour depth was about 1.32 m and under bi-directional conditions, about 1.44 m maximum scour depth occurred around the structure. Meanwhile, about 1.5~2.0 m scour depths occurred in field observation and the result of field test is similar to result under bi-directional conditions.

1. 서 론

최근 해상풍력기기, 해상플랫폼과 같은 해상구조물 설치가 빈번해지면서 해상구조물의 안정성을 저하시키는 요인에 대한 대응 연구가 필요하다. 특히 해상에서의 구조물 설치는 육상과 달리 수력학적 하중이 작용하게 되기 때문에 파랑에 의한 구조물과의 진동, 세굴 현상에 대하여 철저한 사전 검토가 요구된다. 특히, 해상 기초에서 발생하는 세굴은 조류 및 파랑 등 유체 흐름과 구조물 사이의 상호작용으로 인해 해저 입자가 유실되는 현상으로 정의할 수 있으며 해상 외력 조건에 포함되어 설계시 고려하도록 제안하고 있다(IEC, 2009).구조물을 해상에 설치하게 되면 구조물이 흐름을 방해하는 장애요인으로 작용하여 구조물 주위에 부분적으로 더 빠른 유속이 발생하게 된다. 이러한 유속 변화는 압력 분포 변화에 기인하게 되어 해양구조물 주위에 아래로 흐르는 유속(downflow), 말굽형 와류(horseshoe vortex) 그리고 후류 와류(wake vortex)가 나타난다. 결국, 유속과 흐름의 변화를 야기하고 하상전단응력과 유사이동 능력을 증가시켜 해저 입자를 유실시키며 구조물의 안정성을 위협하는 요인으로 작용하게 된다. 이러한 세굴 현상이 계속 진행되면 해상풍력 지지구조물 기초의 지지력이 감소하게 될 뿐만 아니라 지지면의 유실로 상부반력 작용에 편심을 유발하여 기초의 전도를 초래한다. 또한 세굴에 의한 기초의 부등 침하가 크게 발생하면 상부 해상풍력 지지구조물에 보다 큰 단면력이 작용하므로 세굴에 의한 붕괴가 발생할 수 있다. 이처럼 세굴은 기초지지구조물을 붕괴하고, 침하와 얕은 기초의 변형을 초래하며, 구조물의 동적 성능을 변화시키기 때문에 설계 및 시공 유지관리시 사전에 세굴심도 산정, 세굴 완화 대책 등을 고려하여야 한다.또한 각종 설계 기준서에서는 세굴에 대해 다양하게 제시하고 있다. IEC(2009)ABS(2013)BSH(2007)MMAF(2005)에서는 세굴에 대한 영향을 검토할 것을 주문하지만 심도 산정 등 세굴에 대한 구체적인 내용은 언급하지 않고 전반적인 내용만 수록하고 있다. 그러나 DNV(2010)CEM(2006)에서는 경험 공식을 이용한 세굴 심도 산정 등 구체적인 내용을 광범위하게 수록하고 있어 세굴에 대한 영향 검토시 활용가능하다. 그 외의 기준서에서는 수치 모델 등을 통한 세굴 검토를 주문하고 있어 사용자들이 직접 판단하도록 제안하고 있다.그러나 세굴은 유속, 수심, 구조물 폭, 형상, 해저입자 등에 의해 결정되기 때문에 세굴의 영향 정도를 정확하게 예측하기란 쉽지 않지만 수리 모형 실험 또는 CFD(Computational Fluid Dynamics)를 이용한 수치 해석을 통해 지반 침식 및 퇴적으로 인한 지형변화를 예측할 수 있다. 한편, 침식과 퇴적 등 구조물 설치로 인한 해저 지형 변화를 예측하는 모델은 다양하지만, 본 연구에서는 Flowscience의 3차원 유동해석모델인 Flow-3D 모델을 사용하였다.해상 구조물은 목적에 따라 비교적 수심이 낮은 지역에 설치가 용이하다. 국내의 경우, 서남해안과 같이 비교적 연안역이 넓고 수심이 낮은 지역에 구조물을 설치하는 것이 비용 및 유지관리 측면에서 유리할 수 있다. 그러나 국내 서남해안 지역은 왕복성 흐름, 즉 조류가 발생하는 지역으로 흐름의 방향이 시간에 따라 변화하게 된다. 따라서, 세굴 수치 모의시 이러한 왕복성 흐름을 고려해야한다. 그러나 대부분의 수치 모델 적용시 조류가 우세한 지역에서도 일방향의 흐름에 대해서만 검토하며 왕복성 흐름에 의한 지층의 침식과 퇴적작용으로 인해 발생하는 해저 입자의 상호 보충 효과는 배제되게 된다. 또한 이로 인해 수치모델 결과에 많은 의구심이 발생하게 되며 현실성이 결여된 해석으로 보여질 수 있다. 이러한 왕복흐름의 영향을 검토하기 위해 Kim and Gang(2011)은 조류의 왕복류 흐름을 고려하여 지반의 수리 저항 성능 실험을 수행하였으며, 양방향이 일방향 흐름보다 세굴이 크게 발생하는 것을 발표하였다. 또한 Kim et al.(2012)은 흐름의 입사각에 따른 수리저항 실험을 수행하였으며 입사각이 커짐에 따라 세굴률이 증가하는 것으로 나타났다.본 연구에서는 단일방향 고정유속 그리고 양방향 변동유속조건에서 발생하는 지형 변화와 세굴 현상을 수치 모의하였으며, 이러한 비선형성 흐름변화에 따른 세굴 영향 정도를 검토하였다. 더불어 현장 관측 자료와의 비교를 통해 서남해안과 같은 왕복성 흐름이 발생하는 지역에서의 세굴 예측시 적절한 모델 수립 방안을 제안하고자 한다.

2. 수치해석 모형

본 연구에서는 Autodesk의 3D max 프로그램을 이용하여 지지구조물 형상을 제작하였으며, 수치해석은 미국 Flowscience가 개발한 범용 유동해석 프로그램인 FLOW-3D(Ver. 11.0.4.5)를 사용하였다. 좌표계는 직교 좌표계를 사용하였으며 복잡한 3차원 형상의 표현을 위하여 FAVOR 기법(Fractional Area/Volume Obstacle Representation Method)을 사용하였다. 또한 유한차분법에 FAVOR 기법을 도입한 유한체적법의 접근법을 사용하였으며 직교좌표계 에서 비압축성 유체의 3차원 흐름을 해석하기 위한 지배방정식으로는 연속방정식과 운동방정식이 사용되었다. 난류모형으로는 RNG(renormalized group)모델을 사용하였다.

2.1 FLOW-3D의 지배방정식

수식은 MathML 표현문제로 본 문서의 하단부의 원문바로가기 링크를 통해 원문을 참고하시기 바랍니다.

2.1.1 연속방정식

직교좌표계 (x,y,z)에서 비압축성 유체는 압축성 유체의 연속방정식에서 유도될 수 있으며 다음 식 (1)과 같다.

(1)

∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ
여기서, u, v, w는 (x,y,z) 방향별 유체속도, Ax, Ay, Az는 각 방향별 유체 흐름을 위해 확보된 면적비 (Area fraction), ρ는 유체 밀도, RSOR은 질량생성/소멸(Mass source/sink)항이다.

2.1.2 운동방정식

본 모형은 3차원 난류모형이므로 각각의 방향에 따른 운동량 방정식은 다음 식(2)~(4)와 같다.

(2)

∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)   =−1ρ∂p∂x+Gx+fx−bx−RSORρVFu∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)   =−1ρ∂p∂x+Gx+fx−bx−RSORρVFu

(3)

∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)   =−1ρ∂p∂y+Gy+fy−by−RSORρVFv∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)   =−1ρ∂p∂y+Gy+fy−by−RSORρVFv

(4)

∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)   =−1ρ∂p∂z+Gz+fz−bz−RSORρVFw∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)   =−1ρ∂p∂z+Gz+fz−bz−RSORρVFw여기서, RSOR은 질량생성/소멸(Mass source/sink)항, VF는 체적비 (Volume fraction), p는 압력, Gx, Gy, Gz는 방향별 체적력항, fx, fy, fz는 방향별 점성력항, bx, by, bz는 다공질 매체에서 방향별 흐름 손실이다.그리고 점성계수 µ에 대하여 점성력항은 다음 식 (5)~(7)과 같다.

(5)

ρVffx=wsx−{∂∂x(Axτxx)+R∂∂y(Ayτxy)+∂∂z(Azτxz)+ζx(Axτxx−Ayτyy)}ρVffx=wsx−{∂∂x(Axτxx)+R∂∂y(Ayτxy)+∂∂z(Azτxz)+ζx(Axτxx−Ayτyy)}

(6)

ρVffy=wsy−{∂∂x(Axτxy)+R∂∂y(Ayτyy)+∂∂z(Azτyz)+ζx(Axτxx−Ayτxy)}ρVffy=wsy−{∂∂x(Axτxy)+R∂∂y(Ayτyy)+∂∂z(Azτyz)+ζx(Axτxx−Ayτxy)}

(7)

ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}여기서, wsx, wsy, wsz는 벽전단응력이며, 벽전단응력은 벽 근처에서 벽 법칙 (law of the wall)을 따르며, 식 (8)~(13)에 의해 표현되어진다.

(8)

τxx=−2μ{∂u∂x−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τxx=−2μ{∂u∂x−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(9)

τyy=−2μ{R∂v∂y+ζux−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τyy=−2μ{R∂v∂y+ζux−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(10)

τzz=−2μ{R∂w∂y−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τzz=−2μ{R∂w∂y−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(11)

τxy=−μ{∂v∂x+R∂u∂y−ζvx}τxy=−μ{∂v∂x+R∂u∂y−ζvx}

(12)

τxz=−μ{∂u∂y+∂w∂x}τxz=−μ{∂u∂y+∂w∂x}

(13)

τyz=−μ{∂v∂z+R∂w∂y}τyz=−μ{∂v∂z+R∂w∂y}

2.1.3 Sediment scour model

Flow-3D 모델에서 사용하는 sediment scour model은 해저입자의 특성에 따라 해저 입자의 침식, 이송, 전단과 흐름 변화로 인한 퇴적물의 교란 그리고 하상 이동을 계산한다.

2.1.3.1 The critical Shields parameter

무차원 한계소류력(the dimensionless critical Shields parameter)은 Soulsby-Whitehouse 식에 의해 다음 식 (14)와 같이 나타낼 수 있다(Soulsby, 1997).

(14)

θcr,i=0.31+1.2R∗i+0.055[1−exp(−0.02R∗i)]θcr,i=0.31+1.2Ri*+0.055[1−exp(−0.02Ri*)]여기서 무차원 상수, R∗iRi*는 다음 식 (15)와 같다.

(15)

R∗i=ds,i0.1(ρs,i−ρf)ρf∥g∥ds,i−−−−−−−−−−−−−−−−−−−√μfRi*=ds,i0.1(ρs,i−ρf)ρf‖g‖ds,iμf여기서 ρs, i는 해저 입자의 밀도, ρf는 유체 밀도, ds, i는 해저입자 직경, g는 중력가속도이다.한편, 안식각에 따라 한계소류력은 다음 식 (16)과 같이 표현될 수 있다.

(16)

θ′cr,i=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2β−−−−−−−−−−−−−−−−−−−−√tanψiθcr,i′=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2βtanψi여기서, β는 하상 경사각, ψi는 해저입자의 안식각, ψ는 유체와 해저경사의 사잇각이다.또한 local Shields number는 국부 전단응력, τ에 기초하여 다음 식 (17)과 같이 계산할 수 있다.

(17)

θi=τ∥g∥ds,i(ρs,i−ρf)θi=τ‖g‖ds,i(ρs,i−ρf)여기서, ||g||g 는 중력 벡터의 크기이며, τ는 식 (8)~(13)의 벽 법칙을 이용하여 계산할 수 있다.

2.1.3.2 동반이행(Entrainment)과 퇴적

다음 식은 해저 지반과 부유사 사이의 교란을 나타내는 동반이행과 퇴적 현상을 계산한다. 해저입자의 동반이행 속도의 계산식은 다음 식 (18)과 같으며 부유사로 전환되는 해저의 양을 계산한다.

(18)

ulift,i=αinsd0.3∗(θi−θ′cr,i)1.5∥g∥ds,i(ρs,i−ρf)ρf−−−−−−−−−−−−−−√ulift,i=αinsd*0.3(θi−θcr,i′)1.5‖g‖ds,i(ρs,i−ρf)ρf여기서, αi는 동반이행 매개변수이며, ns는 the packed bed interface에서의 법선벡터, µ는 유체의 동점성계수 그리고 d*은 무차원 입자 직경으로 다음 식 (19)와 같다.

(19)

d∗=ds,i[ρf(ρs,i−ρf)∥g∥μ2]1/3d*=ds,i[ρf(ρs,i−ρf)‖g‖μ2]1/3또한 퇴적 모델에서 사용하는 침강 속도 식은 다음 식 (20)같이 나타낼 수 있다.

(20)

usettling,i=νfds,i[(10.362+1.049d3∗)0.5−10.36]usettling,i=νfds,i[(10.362+1.049d*3)0.5−10.36]여기서, νf는 유체의 운동점성계수이다.

2.1.3.3 하상이동 모델(Bedload transport)

하상이동 모델은 해저면에 대한 단위 폭당 침전물의 체적흐름을 예측하는데 사용되며 다음 식 (21)과 같이 표현되어진다.

(21)

Φi=βi(θi−θ′cr,i)1.5Φi=βi(θi−θcr,i′)1.5여기서 Φi는 무차원 하상이동률이며 βi는 일반적으로 8.0의 값을 사용한다(van Rijn, 1984).단위 폭당 체적 하상이동률, qi는 다음 식 (22)와 같이 나타낼 수 있다.

(22)

qb,i=fb,i Φi[∥g∥(ρs,i−ρfρf)d3s,i]1/2qb,i=fb,i Φi[‖g‖(ρs,i−ρfρf)ds,i3]1/2여기서, fb, i는 해저층의 입자별 체적률이다.또한 하상이동 속도를 계산하기 위해 다음 식 (23)에 의해 해저면층 두께를 계산할 수 있다.

(23)

δi=0.3ds,id0.7∗(θiθ′cr,i−1)0.5δi=0.3ds,id*0.7(θiθcr,i′−1)0.5그리고 하상이동 속도 식은 다음 식 (24)와 같이 계산되어진다.

(24)

ubedload,i=qb,iδifb,iubedload,i=qb,iδifb,i

2.2 모델 구성 및 해역 조건

2.2.1 해역 조건 및 적용 구조물

본 수치해석은 위도와 안마도 사이의 해양 조건을 적용하였으며 지점은 Fig. 1과 같다.

jkscoe-27-6-373f1.gifFig. 1.Iso-water depth contour map in western sea of Korea.

본 해석 대상 해역은 서해안의 조석 현상이 뚜렷한 지역으로 조류 흐름이 지배적이며 위도의 조화분석의 결과를 보면 조석형태수가 0.21로서 반일주조 형태를 취한다. 또한 북동류의 창조류와 남서류의 낙조류의 특성을 보이며 조류의 크기는 대상 영역에서 0.7~1 m/s의 최강유속 분포를 보이는 것으로 발표된 바 있다. 또한 대상 해역의 시추조사 결과를 바탕으로 해저조건은 0.0353 mm 로 설정하였고(KORDI, 2011), 수위는 등수심도를 바탕으로 15 m로 하였다.한편, 풍황자원 분석을 통한 단지 세부설계 기초자료 제공, 유속, 조류 등 해양 환경변화 계측을 통한 환경영향평가 기초자료 제공을 목적으로 Fig. 2와 같이 해상기상탑(HeMOSU-1호)을 설치하여 운영하고 있다. HeMOSU-1호는 평균해수면 기준 100 m 높이이며, 중량은 100 톤의 자켓구조물로 2010년 설치되었다. 본 연구에서는 HeMOSU-1호의 제원을 활용하여 수치 모의하였으며, 2013년 7월(설치 후 약 3년 경과) 현장 관측을 수행하였다.

jkscoe-27-6-373f2.gifFig. 2.A photo of HeMOSU-1.

2.2.2 모델 구성

본 연구에서는 왕복성 조류의 영향을 살펴보기 위해 2 case에 대하여 해석하였다. 먼저, Case 1은 1 m/s의 고정 유속을 가진 일방향 흐름에 대한 해석이며, Case 2는 -1~1 m/s의 유속분포를 가진 양방향 흐름에 대한 해석이다. 여기서 (-)부호는 방향을 의미한다. Fig. 3은 시간대별 유속 분포를 나타낸 것이다.

jkscoe-27-6-373f3.gifFig. 3.Comparison of current speed conditions.

2.2.3 구조물 형상 및 격자

HeMOSU-1호 기상 타워 자켓 구조물 형상은 Fig. 4, 격자 정보는 Table 1과 같으며, 본 연구에서는 총 2,883,000 개의 직교 가변 격자체계를 구성하였다.

jkscoe-27-6-373f4.gifFig. 4.3 Dimensional plot of jacket structure.
Table 1.

Grid information of jacket structure

Xmin/Xmax(m)Ymin/Ymax(m)Zmin/Zmax(m)No. of x gridNo. of y gridNo. of z grid
−100/100−40/40−9/2031015560
Download Table

한편, 계산영역의 격자 형상은 Fig. 5와 같다.

jkscoe-27-6-373f5.gifFig. 5.3 dimensional grid of jacket structure.

2.3 계산 조건

계산영역의 경계 조건으로, Case 1의 경우, 유입부는 유속 조건을 주었으며 유출부는 outflow 조건을 적용하였다. 그리고 Case 2의 경우, 왕복성 흐름을 표현하기 위해 유입부와 유출부 조건을 유속 조건으로 설정하였다. 또한 2가지 경우 모두 상부는 자유수면을 표현하기 위해 pressure로 하였으며 하부는 지반 조건의 특성을 가진 wall 조건을 적용하였다. 양측면은 Symmetry 조건으로 대칭면으로 정의하여 대칭면에 수직한 방향의 에너지와 질량의 유출입이 없고 대칭면에 평행한 방향의 유동저항이 없는 경우로 조건을 설정하였다. 본 연구에서 케이스별 입력 조건을 다음 Table 2에 정리하였다.

Table 2.

Basic information of two scour simulation tests

CaseStructure typeVelocityDirectionAnalysis time
Case 1Jacket1 m/sUnidirectional10,000 sec
Case 2−1~1 m/sBidirectional
Download Table

FLOW-3D는 자유표면을 가진 유동장의 계산에서 정상상태 해석이 불가능하므로 비정상유동 난류해석을 수행하게 되는데 정지 상태의 조건은 조위를 설정하였다. 또한 유속의 초기 흐름은 난류상태의 비정상흐름이 되므로 본 해석에서는 정상상태의 해석 수행을 위해 1,000초의 유동 해석을 수행하였으며 그 후에 10,000초의 sediment scour 모델을 수행하였다. 해수의 밀도는 1,025 kg/m3의 점성유체로 설정하였으며 RNG(renormalized group) 난류 모델을 적용하였다.Go to : Goto

3. 수치모형 실험 결과

3.1 Case 1

본 케이스에서는 1 m/s의 유속을 가진 흐름이 구조물 주변을 흐를 때, 발생하는 세굴에 대해서 수치 모의하였다. Fig. 6은 X-Z 평면의 유속 분포도이고 Fig. 7은 X-Y 평면의 유속 분포이다. 구조물 주변에서 약간의 유속 변화가 발생했지만 전체적으로 1 m/s의 정상 유동 상태를 띄고 있다.

jkscoe-27-6-373f6.gifFig. 6.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Z plane).
jkscoe-27-6-373f7.gifFig. 7.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Y plane).

이러한 흐름과 구조물과의 상호 작용에 의한 세굴 현상이 발생되며 Fig. 8에 구조물 주변 지형 변화를 나타내었다. 유속이 발생하는 구조물의 전면부는 대체로 침식이 일어나 해저지반이 초기 상태보다 낮아진 것을 확인할 수 있으며, 또한 전면부의 지반이 유실되어 구조물 후면부에 최대 0.13 m까지 퇴적된 것을 확인할 수 있다.

jkscoe-27-6-373f8.gifFig. 8.Sea-bed elevation change of case 1 at t = 10,000 sec.

일방향 흐름인 Case 1의 경우에는 Fig. 9와 같이 10,000초 후 구조물 주변에 최대 1.32 m의 세굴이 발생하는 것으로 나타났다. 또한 구조물 뒤쪽으로는 퇴적이 일어났으며, 구조물 전면부에는 침식작용이 일어나고 있다.

jkscoe-27-6-373f9.gifFig. 9.Scour phenomenon around jacket substructure(Case 1).

3.2 Case 2

서해안은 조석현상으로 인해 왕복성 조류 흐름이 나타나고 있으며 대상해역은 -1~1 m/s의 유속분포를 가지고 있다. 본 연구에서는 이러한 특성을 고려한 왕복성 흐름에 대해서 수치모의하였다.다음 Fig. 10은 X-Z 평면의 유속 분포도이며 Fig. 11은 X-Y 평면의 유속 분포도이다.

jkscoe-27-6-373f10.gifFig. 10.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Z plane).
jkscoe-27-6-373f11.gifFig. 11.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Y plane).

양방향 흐름인 Case 2의 경우에는 Fig. 12와 같이 10,000초후 구조물 주변에 최대 1.44 m의 세굴이 발생하는 것으로 나타났다. 특히 구조물 내부에 조류 흐름 방향으로 침식 작용이 일어나고 있는 것으로 나타났다.

jkscoe-27-6-373f12.gifFig. 12.Sea-bed elevation change of case 2 at t = 10,000 sec.

Fig. 13은 3차원 수치해석 모의 결과이다.

jkscoe-27-6-373f13.gifFig. 13.Scour phenomenon around jacket substructure(Case 2).

3.3 현장 관측

본 연구에서는 수치모의 실험의 검증을 위해 HeMOSU-1호 기상 타워를 대상으로 하여 2013년 7월 1일 수심 측량을 실시하였다.HeMOSU-1호 주변의 수심측량은 Knudsen sounder 1620과 미국 Trimble사의 DGPS를 이용하여 실시하였다. 매 작업시 Bar-Check를 실시하고, 수중 음파속도는 1,500 m/s로 결정하여 조위 보정을 통해 수심을 측량하였다. 측량선의 해상위치자료는 DGPS를 사용하여 UTM 좌표계로 변환을 실시하였다. 한편, 수심측량은 해면이 정온할 때 실시하였으며 관측 자료의 변동성을 제거하기 위해 2013년 7월 1일 10시~13시에 걸쳐 수심 측량한 자료를 동시간대에 국립해양조사원에서 제공한 위도 자료를 활용해 조위 보정하였다. 다음 Fig. 14는 위도 조위 관측소의 현장관측시간대 조위 시계열 그래프이다.

jkscoe-27-6-373f14.gifFig. 14.Time series of tidal data at Wido (2013.7.1).

2013년 7월 1일 오전 10시부터 오후 1시에 걸쳐 수심측량한 결과를 이용하여 0.5 m 간격으로 등수심도를 작성하였으며 그 결과는 Fig. 15와 같다. 기상탑 내부 해역은 선박이 접근할 수 없기 때문에 측량을 실시하지 않고 Blanking 처리하였다.

jkscoe-27-6-373f15.gifFig. 15.Iso-depth contour map around HeMOSU-1.

대상 해역의 수심은 대부분 -15 m이나 4개의 Jacket 구조물 주변에서는 세굴이 발생하여 수심의 변화가 나타났다. 특히 L-3, L-4 주변에서 최대 1.5~2.0 m의 세굴이 발생한 것으로 보였으며, L-4 주변에서는 넓은 범위에 걸쳐 세굴이 발생하였다. 창조류는 북동, 낙조류는 남서 방향으로 흐르는 조류 방향성을 고려하였을 때, L-4 주변은 조류방향과 동일하게 세굴이 발생하고 있었으며, 보다 상세한 세굴형태는 원형 구조물 내부 방향의 세굴 심도를 측정하여 파악하여야 할 것으로 판단된다.관측결과 최대 1.5~2.0 m인 점을 고려하면 양방향 흐름을 대상으로 장기간에 걸쳐 모의실험을 진행하는 경우, 실제 현상에 더 근접하는 결과를 얻을 수 있을 것으로 사료된다.Go to : Goto

4. 결론 및 토의

본 연구에서는 자켓구조물인 해상기상탑 HeMOSU-1 주변에서 발생하는 세굴현상을 검토하기 위하여 2013년 7월 1일 현장 관측을 수행하고, FLOW-3D를 이용하여 수치모의 실험을 수행하였다. 실험 조건으로는 먼저 1 m/s의 유속을 가진 일방향 흐름과 -1~1 m/s의 흐름 분포를 가진 왕복성 흐름에 대해서 수치모의를 수행하였다. 그 결과 일방향 흐름의 경우, 10,000 초에 이르렀을 때 1.32 m, 왕복성 흐름의 경우 동일 시간에서 1.44 m의 최대 세굴심도가 발생하였다. 동일한 구조물에 대해서 현장 관측 결과는 1.5~2.0 m로 관측되어 일방향 흐름보다 왕복성 흐름의 경우 실제 현상에 더 근사한 것으로 판단되었다. 이는 일방향 흐름의 경우, Fig. 8에서 보는 바와 같이 구조물 후면에 퇴적과 함께 해저입자의 맞물림이 견고해져 해저 지반의 저항력이 커지는 현상에 기인한 것으로 판단된다. 반면 양방향 흐름의 경우, 흐름의 변화로 인해 맞물림이 약해지고 이로 인해 지반의 저항력이 일방향 흐름보다 약해져 세굴이 더 크게 발생하는 것으로 판단되었다.또한 장시간에 걸쳐 모델링을 수행하는 경우, 보다 근사한 결과를 얻을 수 있을 것을 사료되며, 신형식 기초 구조물을 개발하여 세굴을 저감할 수 있는 지 여부를 판단하는 등의 추가 연구가 필요하다.Go to : GotoInternational Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.

감사의 글

본 연구는 지식경제 기술혁신사업인 “승강식 해상플랫폼을 가진 수직 진자운동형 30kW급 파력발전기 개발(과제번호 :20133010071570)”와 첨단항만건설기술개발사업인 “해상풍력 지지구조 설계기준 및 콘크리트 지지구조물 기술 개발(과제번호:20120093)”의 일환으로 수행되었습니다.Go to : Goto

References

American Bureau of Shipping (ABS). (2013). Guide for Building and Classing Bottom-Founded Offshore Wind turbine Installations.

API RP 2A WSD. (2005). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, API.

Det Norske Veritas (DNV). (2010). OS-J101 Design of Offshore Wind Turbine Structures.

Federal Maritime and Hydrographic Agency (BSH). (2007). Standard. Design of Offshore Wind Turbines.

FLOW SCIENCE. (2014). FLOW-3D User’s Manual, Version 11.0.4.5.

International Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.

International Organization for Standardization (ISO). (2007). ISO 19902: Petroleum and Natural Gas Industries – Fixed Steel Offshore Structures.

Kim, YS, Kang, GO. (2011). Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow, Journal of Korean Society of Coastal and Ocean Engineers. 23(1):118-125 (in Korean).

Kim, YS, Han, BD, Kang, GO. (2012). Effect of Incidence Angle of Current on the Hydraulic Resistance Capacity of Clayey Soil, Journal of Korean Society of Coastal and Ocean Engineers. 24(1):26-35 (in Korean).

KORDI. (2011). BSPN64710-2275-2. An Analysis on the Marine Characteristics and Design Supporting for Offshore Wind Power Plant (in Korean).

Ministry of Maritime Affairs and Fisheries. (2005). Harbor and fishery design criteria (in Korean).

Soulsby, R. (1997). Dynamics of marine sands. Thomas Telford Publications, London.

U.S. Army Corps of Engineers. (2006). Coastal Engineering Manual, Part II : Coastal Hydrodynamics, Chapter II–2, Meteorology and Wave Climate.

van Rijn, L. (1984). Sediment transport, Part II:bed load transport, Journal of Hydraulic Engineering, 110(10):1431-1456.

Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.

Investigation on Laser Welding of Al Ribbon to Cu Sheet: Weldability, Microstructure, and Mechanical and Electrical Properties

알루미늄 리본과 구리 시트의 레이저 용접에 대한 조사 : 용접성, 미세 구조, 기계적 및 전기적 특성

Won‐Sang Shin 1,†, Dae‐Won Cho 2,†, Donghyuck Jung 1, Heeshin Kang 3, Jeng O Kim 3, Yoon‐Jun Kim 1,*
and Changkyoo Park 3,*

Al 리본과 Cu 시트의 펄스 레이저 용접은 전력 전자 모듈의 전기적 상호 연결에 대해 조사되었습니다. 결함 없는 Al / Cu 조인트를 얻기 위해 레이저 출력, 스캔 속도 및 열 입력이 서로 다른 다양한 실험 조건이 사용되었습니다. Al / Cu 레이저 용접 중에 금속 간 화합물이 용접 영역에 형성되었습니다. 전자 탐침 마이크로 분석기와 투과 전자 현미경으로 Al4Cu9, Al2Cu, AlCu 등으로 밝혀진 금속 간 화합물의 상을 확인했습니다. 전산 유체 역학 시뮬레이션은 Marangoni 효과가 용융 풀의 순환을 유도하여 혼합물을 생성하는 것으로 나타났습니다. Al과 Cu의 결합과 Al / Cu 조인트에서 소용돌이 모양의 구조 형성. Al / Cu 접합부의 인장 전단강도와 전기 저항을 측정하였으며 용접 면적과 강한 상관 관계를 보였다. Al / Cu 접합부의 용접 면적이 증가함에 따라 기계적 강도의 감소와 전기 저항의 증가가 측정 되었습니다. 또한 무결점 Al / Cu 접합을 위한 공정 창을 개발하고 Al / Cu 레이저 브레이즈 용접을 위한 실험 조건을 조사하여 Al / Cu 접합에서 금속 간 화합물 형성을 최소화했습니다.

Introduction

전기 상호 연결은 전력 전자 모듈을 패키징하는 데 중요합니다. 우수한 기계적 및 전기적 특성을 가진 견고한 전기적 상호 연결은 전력 전자 모듈의 전기적 고장을 방지하는 데 필수적입니다. 저항 스폿 용접, 브레이징, 납땜 및 초음파 용접 (USW)이 전기 상호 연결에 사용되었습니다.

납땜과 납땜 모두 저온 공정으로 인해 접합부에서 한계 변형과 잔류 응력이 발생합니다 [1]. 필러 합금은 두 공정 모두 견고한 전기 접촉을 달성하는 데 필수적입니다. 따라서 조인트는 서로 접촉하는 서로 다른 금속으로 구성됩니다.

결과적으로 조인트는 부식 환경에서 갈바닉 부식에 취약 할 수 있습니다 [2,3]. 더욱이, 비금속과 충전재 사이의 친화도를 고려해야 하기 때문에 제한된 충전재 만 특정 조인트에 사용할 수 있습니다 [1]. USW는 용접 온도가 낮고 용접 시간이 짧기 때문에 접합부의 변형이 비교적 적습니다.

따라서 이는 특히 연질 재료 (예 : Al, Cu, Ag, Au 및 Ni)의 경우 기존 접합 방법을 대체하고 있습니다 [4–6]. 그러나 Cu를위한 USW 공정의 경우, 표면 산화물이 강해 용접성이 저하되는 것을 방지하기 위해 Cu 표면에 Sn 또는 Ni 코팅이 필요하며, 이는 공정 속도를 늦추고 산업적 응용을위한 경제적 측면을 악화시킨다 [7 , 8].

레이저 용접은 쉬운 제어, 고정밀 및 원격 처리의 특성으로 인해 전력 전자 모듈의 전기 연결에 대한 유망한 후보입니다. 열의 영향을 받는 작은 영역과 변형은 전기 접점의 손상을 최소화 할 것으로 예상됩니다 [9-11]. 또한 레이저 용접을 위해 추가 표면 준비가 필요하지 않습니다.

이종 재료의 용접은 산업 응용 분야에서 중요했습니다. 더욱이 그림 1 [12,13]에서 볼 수 있듯이 전기 연결을위한 와이어 또는 리본 본딩에 여러 다른 조인트가 필요하기 때문에 전력 전자 모듈에서 필수적인 기술이되고 있습니다.

전기 접점의 다양한 조합 중에서 Al과 Cu는 높은 전기 전도성으로 인해 전기 연결에 중요한 재료로 종종 간주됩니다 [14]. 그러나 Al과 Cu의 서로 다른 용접은 금속 간 화합물 (IMC)의 형성을 촉진하고 동시에 Al / Cu 조인트의 기계적 및 전기적 특성에 영향을 줍니다. 일반적으로 Al / Cu 조인트 내부에 IMC가 있으면 연성 및 전기 저항에 해를 끼치므로 균열이 쉽게 발생하고 용접을 통한 전기 전도도를 방해합니다 [15,16].

따라서 견고한 Al / Cu 조인트를 얻으려면 IMC의 형성을 피해야합니다. 여러 연구에서 Al 및 Cu 시트의 레이저 빔 용접을 조사했습니다. 연속파 (CW) 레이저가 Al / Cu 조인트에 사용되었습니다 [17-23]. 큰 열 입력과 상당한 IMC 형성으로 인해 용접 영역에서 많은 균열이 관찰되었습니다 [18,19].

CW 레이저 빔의 공간 진동은 Al / Cu 조인트의 용접 품질을 향상시키는 것으로 나타났습니다. 직선 CW 레이저 빔 [18-20]과 비교하여 용접 영역에서 IMC 크기가 더 작은 기공과 균열이 더 적습니다.

Al과 Cu 시트의 겹침 접합에는 CW 단일 모드 파이버 레이저를 사용했으며, IMC 형성을 억제하여 높은 용접 속도 (즉, 50m / min)에서 견고한 Al / Cu 접합을 얻었습니다 [22]. Mai et al. [23]은 다른 Al / Cu 용접을 달성하기 위해 펄스 레이저를 사용했습니다.

그들은 Al / Cu 용접성이 레이저 공정 매개 변수에 크게 의존한다는 것을 밝혔으며 100mm / min 미만의 스캔 속도에서 균열없는 Al / Cu 접합을 달성하는 데 성공했습니다.

본문 내용 생략 : 문서 하단부의 원문보기를 참고하시기 바랍니다.

Figure 1. Schematic diagram of the insulated gate bipolar transistors (IGBT) power module. Red‐dotted box indicated the electrical connections
Figure 1. Schematic diagram of the insulated gate bipolar transistors (IGBT) power module. Red‐dotted box indicated the electrical connections
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.
Figure 3. Schematic diagram of the numerical simulation domain and boundary conditions.
Figure 3. Schematic diagram of the numerical simulation domain and boundary conditions.
Figure 4. Experimental setup for the four‐point electrical resistance measurement.
Figure 4. Experimental setup for the four‐point electrical resistance measurement.
Figure 5. Cross‐sectional OM image of the Al/Cu joints in parallel to the laser welding direction. The laser power and scan speed were set at 2300 W and 20 mm/s, respectively.
Figure 5. Cross‐sectional OM image of the Al/Cu joints in parallel to the laser welding direction. The laser power and scan speed were set at 2300 W and 20 mm/s, respectively.
Figure 6 shows the cross‐sectional SEM images of the Al/Cu joints, and corresponding EPMA element mapping of Al and Cu for the (a) 23/20, (b) 25/28.6, (c) 25/15.4, and (d) 27/20.
Figure 6 shows the cross‐sectional SEM images of the Al/Cu joints, and corresponding EPMA element mapping of Al and Cu for the (a) 23/20,
Figure 6. Cross‐sectional SEM image and elemental distribution mapping of Al and Cu elements for the (a) 23/20, (b) 25/28.6, (c) 25/15.4, and (d) 27/20.
Figure 6. Cross‐sectional SEM image and elemental distribution mapping of Al and Cu elements for the (d) 27/20.
Figure 7. EPMA line scan analysis and identification of the IMCs for the (a) 23/20 and (b) 25/15.4.
Figure 7. EPMA line scan analysis and identification of the IMCs for the (a) 23/20 and (b) 25/15.4.
Figure 8. TEM analysis for the 25/28.6. (a) Indicating the location of TEM analysis in SEM image of the welding zone. (b) TEM bright‐field image and SAED pattern insets, examined at the location (1) in figure (a), confirmed Al‐rich phase (white globular shape) and Al2Cu eutectic phase (gray region), and (c) TEM bright‐field image and SAED pattern inset of Al4Cu9, examined at the location (2) in figure (a).
Figure 8. TEM analysis for the 25/28.6. (a) Indicating the location of TEM analysis in SEM image of the welding zone. (b) TEM bright‐field image and SAED pattern insets, examined at the location (1) in figure (a), confirmed Al‐rich phase (white globular shape) and Al2Cu eutectic phase (gray region), and (c) TEM bright‐field image and SAED pattern inset of Al4Cu9, examined at the location (2) in figure (a).
Figure 9. Temperature profiles and molten pool flow on transverse cross‐section (y–z plane at x = 1.23 cm): (a) Negative surface tension gradient for the 23/20 (Case 1), (b) negative surface tension gradient for the 25/15.4 (Case 2), (c) positive surface tension gradient for the 25/15.4 (Case 3), and (d) without surface tension for the 25/15.4 (Case 4).
Figure 9. Temperature profiles and molten pool flow on transverse cross‐section (y–z plane at x = 1.23 cm): (a) Negative surface tension gradient for the 23/20 (Case 1), (b) negative surface tension gradient for the 25/15.4 (Case 2), (c) positive surface tension gradient for the 25/15.4 (Case 3), and (d) without surface tension for the 25/15.4 (Case 4).
Figure 12. Results of the tensile shear tests for the (a) 23/20: fracture at the Al ribbon and (b) 25/15.4: fracture at the weld
Figure 12. Results of the tensile shear tests for the (a) 23/20: fracture at the Al ribbon and (b) 25/15.4: fracture at the weld
Figure 13. Stress–strain curves obtained by the tensile shear tests.
Figure 13. Stress–strain curves obtained by the tensile shear tests.

References

  1. Schwartz, M.M.; Aircraft, S. Introduction to Brazing and Soldering. ASM Int. 2018, 6, doi.org/10.31399/asm.hb.v06.a0001344.
  2. Vianco, P.T. Corrosion issues in solder joint design and service. Weld. J. 1999, 78, 39–46.
  3. Shi, Y.; Li, J.; Zhang, G.; Huang, J.; Gu, Y. Corrosion Behavior of Aluminum‐Steel Weld‐Brazing Joint. J. Mater. Eng. Perform.
    2016, 25, 1916–1923, doi:10.1007/s11665‐016‐2020‐9.
  4. Harman, G.G. Wire Bonding in Microelectronics: Materials, Processes, Reliability and Yield, 3rd ed; McGraw‐Hill Education: New
    York, NY, USA, 2010; ISBN 9780071642651.
  5. Aonuma, M.; Nakata, K. Dissimilar metal joining of ZK60 magnesium alloy and titanium by friction stir welding. Mater. Sci.
    Eng. B Solid State Mater. Adv. Technol. 2012, 177, 543–548, doi:10.1016/j.mseb.2011.12.031.
  6. Sasaki, T.; Watanabe, T.; Hosokawa, Y.; Yanagisawa, A. Analysis for relative motion in ultrasonic welding of aluminium sheet.
    Sci. Technol. Weld. Jt. 2012, 18, 19–24, doi:10.1179/1362171812Y.0000000066.
  7. Maeda, M.; Sato, T.; Inoue, N.; Yagi, D.; Takahashi, Y. Anomalous microstructure formed at the interface between copper ribbon
    and tin‐deposited copper plate by ultrasonic bonding. Microelectron. Reliab. 2011, 51, 130–136, doi:10.1016/j.microrel.2010.05.009.
  8. Maeda, M.; Yagi, D.; Takahashi, Y. Interfacial microstructure between copper ribbon and nickel‐coated copper plate formed by
    ultrasonic bonding. Q. J. Jpn. Weld. Soc. 2013, 31, 188–191, doi:10.2207/qjjws.31.188s.
  9. Sun, Z.; Ion, J.C. Laser welding of dissimilar metal combinations. J. Mater. Sci. 1995, 30, 4205–4214, doi:10.1007/BF00361499.
  10. Yan, S.; Hong, Z.; Watanabe, T.; Jingguo, T. CW/PW dual‐beam YAG laser welding of steel/aluminum alloy sheets. Opt. Lasers
    Eng. 2010, 48, 732–736, doi:10.1016/j.optlaseng.2010.03.015.
  11. Mehlmann, B.; Gehlen, E.; Olowinsky, A.; Gillner, A. Laser micro welding for ribbon bonding. Phys. Procedia 2014, 56, 776–781,
    doi:10.1016/j.phpro.2014.08.085.
  12. Nwanoro, K.C.; Lu, H.; Yin, C.; Bailey, C. An analysis of the reliability and design optimization of aluminium ribbon bonds in
    power electronics modules using computer simulation method. Microelectron. Reliab. 2018, 87, 1–14,
    doi:10.1016/j.microrel.2018.05.013.
  13. Li, H.; Cao, B.; Yang, J.W.; Liu, J. Modeling of resistance heat assisted ultrasonic welding of Cu‐Al joint. J. Mater. Process. Technol.
    2018, 256, 121–130, doi:10.1016/j.jmatprotec.2018.02.008.
  14. Davis, J.R. Copper and Copper Alloys. In ASM Speciality Handbook; ASM International: Almere, The Netherlands, 2001; ISBN
    2001022956
  1. Rabkin, D.M.; Ryabov, V.R.; Lozovskaya, A.V.; Dovzhenko, V.A. Preparation and properties of copper‐aluminum intermetallic
    compounds. Sov. Powder Metall. Met. Ceram. 1970, 9, 695–700, doi:10.1007/BF00803820.
  2. Chen, C.Y.; Chen, H.L.; Hwang, W.S. Influence of interfacial structure development on the fracture mechanism and bond
    strength of aluminum/copper bimetal plate. Mater. Trans. 2006, 47, 1232–1239, doi:10.2320/matertrans.47.1232.
  3. Schmidt, P.A.; Schweier, M.; Zaeh, M.F. Joining of lithium‐ion batteries using laser beam welding: Electrical losses of welded
    aluminum and copper joints. J. Laser Appl. 2012, 915, doi:10.2351/1.5062563.
  4. Smith, S.; Blackburn, J.; Gittos, M.; De Bono, P.; Hilton, P. Welding of dissimilar metallic materials using a scanned laser beam.
    J. Laser Appl. 2013, 493, doi:10.2351/1.5062921.
  5. Solchenbach, T.; Plapper, P. Mechanical characteristics of laser braze‐welded aluminium‐copper connections. Opt. Laser Technol.
    2013, 54, 249–256, doi:10.1016/j.optlastec.2013.06.003.
  6. Kraetzsch, M.; Standfuss, J.; Klotzbach, A.; Kaspar, J.; Brenner, B.; Beyer, E. Laser Beam Welding with High‐Frequency Beam
    Oscillation: Welding of Dissimilar Materials with Brilliant Fiber Lasers. Phys. Procedia 2011, 12, 142–149,
    doi:10.1016/j.phpro.2011.03.018.
  7. Solchenbach, T.; Plapper, P.; Cai, W. Electrical performance of laser braze‐welded aluminum‐copper interconnects. J. Manuf.
    Process. 2014, 16, 183–189, doi:10.1016/j.jmapro.2013.12.002.
  8. Lee, S.J.; Nakamura, H.; Kawahito, Y.; Katayama, S. Effect of welding speed on microstructural and mechanical properties of
    laser lap weld joints in dissimilar Al and Cu sheets. Sci. Technol. Weld. Jt. 2014, 19, 111–118, doi:10.1179/1362171813Y.0000000168.
  9. Mai, T.A.; Spowage, A.C. Characterisation of dissimilar joints in laser welding of steel‐kovar, copper‐steel and copper‐
    aluminium. Mater. Sci. Eng. A 2004, 374, 224–233, doi:10.1016/j.msea.2004.02.025.
  10. Zhang, G.; Takahashi, Y.; Heng, Z.; Takashima, K.; Misawa, K. Ultrasonic weldability of al ribbon to cu sheet and the dissimilar
    joint formation mode. Mater. Trans. 2015, 56, 1842–1851, doi:10.2320/matertrans.M2015251.
  11. Zhu, B.; Zhen, L.; Xia, H.; Su, J.; Niu, S.; Wu, L.; Tan, C.; Chen, B. Effect of the scanning path on the nanosecond pulse laser
    welded Al/Cu lapped joint. Opt. Laser Technol. 2021, 139, 106945, doi.org/10.1016/j.optlastec.2021.106945.
  12. Kumar, A.; Gupta, M.P.; Banerjee, J.; Neogy, S.; Keskar, N.; Bhatt, R.B.; Behere, P.G.; Biswas, D.J. Micro‐Welding of Stainless
    Steel and Copper Foils Using a Nano‐Second Pulsed Fiber Laser. Lasers Manuf. Mater. Process. 2019, 6, 158–172,
    doi.org/10.1007/s40516‐019‐00088‐w.
  13. Trinh, L.N.; Lee, D. The Characteristics of Laser Welding of a Thin Aluminum Tab and Steel Battery Case for Lithium‐Ion
    Battery. Metals 2020, 10, 842, doi.org/10.3390/met10060842.
  14. Cho, D.W.; Park, J.H.; Moon, H.S. A study on molten pool behavior in the one pulse one drop GMAW process using
    computational fluid dynamics. Int. J. Heat Mass Transf. 2019, 139, 848–859, doi:10.1016/j.ijheatmasstransfer.2019.05.038.
  15. Cho, W.I.; Na, S.J.; Cho, M.H.; Lee, J.S. Numerical study of alloying element distribution in CO2 laser‐GMA hybrid welding.
    Comput. Mater. Sci. 2010, 49, 792–800, doi:10.1016/j.commatsci.2010.06.025.
  16. Cho, D.W.; Kiran, D.V.; Na, S.J. Analysis of molten pool behavior by flux‐wall guided metal transfer in low‐current submerged
    arc welding process. Int. J. Heat Mass Transf. 2017, 110, 104–112, doi:10.1016/j.ijheatmasstransfer.2017.02.060.
  17. Cho, W.‐I.; Na, S.‐J. Impact of Wavelengths of CO2, Disk, and Green Lasers on Fusion Zone Shape in Laser Welding of Steel. J.
    Weld. Jt. 2020, 38, 235–240, doi:10.5781/jwj.2020.38.3.1.
  18. Sim, A.; Chun, E.J.; Cho, D.W. Numerical Simulation of Surface Softening Behavior for Laser Heat Treated Cu‐Bearing Medium
    Carbon Steel. Met. Mater. Int. 2020, 26, 1207–1217, doi:10.1007/s12540‐019‐00577‐9.
  19. Jarwitz, M.; Fetzer, F.; Weber, R.; Graf, T. Weld seam geometry and electrical resistance of laser‐welded, aluminum‐copper
    dissimilar joints produced with spatial beam oscillation. Metals 2018, 8, 510, doi:10.3390/met8070510.
  20. Weigl, M.; Albert, F.; Schmidt, M. Enhancing the ductility of laser‐welde copper‐aluminum connections by using adapted filler
    materia. Phys. Procedia 2011, 12, 335–341, doi:10.1016/j.phpro.2011.03.141.
  21. Chen, J.; Lai, Y.S.; Wang, Y.W.; Kao, C.R. Investigation of growth behavior of Al‐Cu intermetallic compounds in Cu wire
    bonding. Microelectron. Reliab. 2011, 51, 125–129, doi:10.1016/j.microrel.2010.09.034.
  22. Chen, H.; Yang, L.; Long, J. First‐principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al‐
    Cu intermetallic compounds. Superlattices Microstruct. 2015, 79, 156–165, doi:10.1016/j.spmi.2014.11.005.
  23. Liu, H.J.; Shen, J.J.; Zhou, L.; Zhao, Y.Q.; Liu, C.; Kuang, L.Y. Microstructural characterisation and mechanical properties of
    friction stir welded joints of aluminium alloy to copper. Sci. Technol. Weld. Jt. 2011, 16, 92–99,
    doi:10.1179/1362171810Y.0000000007.
  24. Hug, E.; Bellido, N. Brittleness study of intermetallic (Cu, Al) layers in copper‐clad aluminium thin wires. Mater. Sci. Eng. A
    2011, 528, 7103–7106, doi:10.1016/j.msea.2011.05.077.
  25. Braunović, M.; Alexandrov, N. Intermetallic Compounds At Aluminum‐To‐Copper Electrical Interfaces: Effect of Temperature
    And Electric Current. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1994, 17, 78–85, doi:10.1109/95.296372.
  26. Lee, W.B.; Bang, K.S.; Jung, S.B. Effects of intermetallic compound on the electrical and mechanical properties of friction welded
    Cu/Al bimetallic joints during annealing. J. Alloys Compd. 2005, 390, 212–219, doi:10.1016/j.jallcom.2004.07.057.
planar representation (cross-section at tank centre).

Analysis of cryogenic propellant behaviour in microgravity and low thrust environments*

미세 중력 및 저 추력 환경에서 극저온 추진체 거동 분석

M.F. Fisher, G.R. Schmidt and J.J. Martin
NASA Marshall Space Flight Center, Huntsville, AL 35824, USA

Abstract

우주선 비행 작업 (예 : 엔진 재시동 및 유체 전달) 중 극저온 추진제의 동작과 반응을 이해하는 것은 추진체 설계에서 매우 중요한 측면입니다. 엔진 연소 전 적절한 안정과 임무의 모든 단계에서 효과적인 차량 제어를 보장하려면 유체 움직임 및 슬로시 증폭에 대한 정확한 예측이 필요합니다.

이러한 유형의 분석을 강화하기 위해 Marshall Space Flight Center (MSFC)는 최근 Flow Sciences Inc에서 개발 한 CFD 패키지인 FLOW-3D를 인수했습니다. 이 문서에서는 FLOW-3D 모델 예측을 MSFC 드롭 타워 테스트 데이터와 비교한 최근 검증에 대해 설명합니다. 테스트는 원래 Saturn S-IVB 단계 액체 수소 (LH 2) 탱크의 설계 및 성능 평가를 지원하기 위해 1960 년대에 수행되었지만, 데이터는 FLOW-3D 모델의 정확성을 검증하는데 유용한 것으로 입증되었습니다.

Understanding the behaviour and response of cryogenic propellants during spacecraft flight operations (e.g., engine restart and fluid transfer) is an extremely important aspect of vehicle design. Accurate predictions of fluid motion and slosh amplification are needed to ensure proper settling prior to engine burn and effective vehicle control throughout all phases of the mission. To augment analyses of this type, Marshall Space Flight Center (MSFC) recently acquired FLOW-3D, a CFD package developed by Flow Sciences Inc. This paper describes a recent validation in which FLOW-3D model predictions were compared with MSFC drop tower test data. Although the tests were originally conducted in the 1960s to support design and performance assessments of the Saturn S-IVB stage liquid hydrogen (LH 2) tank, the data have proven useful for verifying the accuracy of the FLOW3D model.

Keywords: space cryogenics; propellants; microgravity

planar representation (cross-section at tank centre).
planar representation (cross-section at tank centre).
Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).

Coupled Simulation of Vehicle Dynamics and Tank Slosh. Phase 1 Report. Testing and Validation of Tank Slosh Analysis

Prepared byGlenn R. WendelSteven T. GreenRussell C. Burkey

Abstract:

차량 동력학의 컴퓨터 시뮬레이션은 차량 설계에서 귀중한 도구가 되었다. 그러나 그들은 차량의 탱크에서 유체 슬로싱의 복잡한 역학을 정확하게 시뮬레이션할 수 없다. 

유체 슬로쉬를 예측할 수 있는 컴퓨터 유체역학 CFD 분석 소프트웨어를 이용할 수 있지만, 군용 차량 애플리케이션용 유체 슬로쉬를 정확하게 예측하는데 이 소프트웨어의 사용은 입증되지 않았다. 이것은 차량 역학 분석과 결합된 CFD 분석의 사용을 개발 및 입증하여 유체 수송 시스템의 역학을 보다 정확하게 예측하는 다중 효소 프로그램의 첫 번째 단계다. 

이 단계의 목적은 일반적인 기동에 직면한 차량의 움직임에 따른 탱크에서 슬로시 역학을 예측하는 CFD 분석을 검증하는 것이다. 이를 위해, 5톤 FMTV 트럭을 시뮬레이션하는 시험 설비뿐만 아니라, 1/4 규모의 TOD 탱크 모델이 건설되었다. CFD 분석과 실험실 시험의 반응력과 유동 운동을 차선 변경과 요철을 포함한 6가지 모의 차량 기동에서 비교했다. 

CFD 분석은 상용 소프트웨어 패키지인 FLOW-3D-로 수행되었다. 테스트 탱크의 해당 측정값과 비교하기 위해 빈 탱크의 강체 동적 해석의 힘과 모멘트 예측에 순유체 힘과 모멘트 예측이 추가되었다. 

전반적으로, 그 결과는 CFD가 트럭에 탑재된 수상 수송 탱크의 유체 운동 및 유체 구조 상호작용 연구에 성공적으로 적용될 수 있음을 보여준다. 예측된 롤 모멘트와 측정된 롤 모멘트 사이에는 좋은 상관관계가 있다. 

여기에 제시된 CFD 시뮬레이션의 빠른 전환 시간을 감안할 때, 전술에 대한 전체 차량 반응의 높은 충실도 시뮬레이션을 위해 차량 강체 차체 동적 분석을 유체 역학 분석과 결합하는 것이 바람직하다는 전망이 나온다.

Computer simulation of vehicle dynamics has become a valuable tool in the design of vehicles. They are, however, unable to accurately simulate the complex dynamics of fluid sloshing in a tank on the vehicle. Computational Fluid Dynamics CFD analysis software is available that can predict fluid slosh, however, the use of this software in accurately predicting fluid slosh for a military vehicle application has not been demonstrated. This is the first phase of a multiphase program to develop and demonstrate the use of CFD analysis, coupled with vehicle dynamics analysis, to more accurately predict the dynamics of a fluid transport system. The objective of this phase is to validate the CFD analysis in predicting slosh dynamics on a tank subjected to motions of a vehicle encountering typical maneuvers. To accomplish this, a one-quarter-scale model of a TOLD tank was constructed, as well as a test fixture to simulate a five-ton FMTV truck. The reaction forces and the fluid motions of the CFD analysis and the laboratory test were compared for six simulated vehicle maneuvers including lane changes and bumps. The CFD analysis was conducted with the commercially available software package, FLOW-3D-. The net fluid force and moment predictions were added to the force and moment predictions of a rigid body dynamic analysis of the empty tank alone to compare to the corresponding measured values for the test tank. Overall, the results show that CFD can successfully be applied to the study of fluid motions and the fluid- structure interactions in truck-mounted water transport tanks. There is good correlation between the predicted and measured roll moment. Given the rapid turnaround time for the CFD simulations presented here, the outlook is encouraging for coupling a vehicle rigid body dynamics analysis to a fluid dynamics analysis for a high fidelity simulation of the complete vehicle response to maneuvers.

Keywords

Keywords: COMPUTATIONAL,FLUID,DYNAMICS,VEHICLES,*SLOSHING,TEST,AND,EVALUATION,COMPUTER,PROGRAMS,COMPUTERIZED,SIMULATION,COUPLING(INTERACTION),SIMULATION,ROLL,LABORATORY,TESTS,PREDICTIONS,VALIDATION,INTERACTIONS,MILITARY,VEHICLES,REACTION,TIME,MOTION,RESPONSE,TRANSPORT,MILITARY,APPLICATIONS,FLUIDS,TRUCKS,MANEUVERS,RIGIDITY,TEST,FIXTURES,WATER,TANKS

CFD 분석과 실험실 테스트의 작용력과 유체 운동은 다음과 같은 시뮬레이션 된 차량 기동에 대해 비교되었습니다.

  • AVTP Lane Change at 20 mph
  • AVTP Lane Change at 40 mph
  • 9” Half-Round Symmetric Bump at 10 mph
  • 12” Half-Round Symmetric Bump at 5 mph
  • 9” Trapezoidal Asymmetric Bump at 15 mph
  • 12” Trapezoidal Asymmetric Bump at 10 mph

CFD 분석은 상용 소프트웨어 패키지 FLOW-3D를 사용하여 수행되었습니다.

Rear Axle Roll Moment, 40-mph Lane Change.
Rear Axle Roll Moment, 40-mph Lane Change.
Figure 2.1.  Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).
Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).
Figure 2.2.  Test Setup Drawing.The load cell locations and the coordinate systems used in the testing and analysis are defined as shown.
Figure 2.2. Test Setup Drawing.The load cell locations and the coordinate systems used in the testing and analysis are defined as shown.
Figure 3.1.  Computational Mesh Definition
Figure 3.1. Computational Mesh Definition
Figure 3.2.  Rear Axle Roll Moment, 20-mph Lane Change
Figure 3.2. Rear Axle Roll Moment, 20-mph Lane Change
Figure 3.3.  Rear Axle Roll Moment, 40-mph Lane Change
Figure 3.3. Rear Axle Roll Moment, 40-mph Lane Change
Figure 3.4.  Rear Axle Roll Moment, 9” Trapezoidal Bump at 15 mph
Figure 3.4. Rear Axle Roll Moment, 9” Trapezoidal Bump at 15 mph
Figure 3.5.  Rear Axle Roll Moment, 12” Trapezoidal Bump at 10 mph
Figure 3.5. Rear Axle Roll Moment, 12” Trapezoidal Bump at 10 mph
Figure 3.8.  Fluid Configuration for 20-mph Lane Change.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction.  Theinset in the video image is viewing the tank from the left side of the vehicle.
Figure 3.8. Fluid Configuration for 20-mph Lane Change.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction. Theinset in the video image is viewing the tank from the left side of the vehicle.
Figure 3.9.  Fluid Configuration for 12” Trapezoidal Bump at 10 mph.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction.  Theinset in the video image is viewing the tank from the left side of the vehicle.
Figure 3.9. Fluid Configuration for 12” Trapezoidal Bump at 10 mph.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction. Theinset in the video image is viewing the tank from the left side of the vehicle.

REFERENCES

Abramson, H.N. [1966], The Dynamic Behavior of Liquids in Moving Containers,NASA SP-106.Flow Science, Inc. [2001], FLOW-3D, Version 8.0.1, Santa Fe, New Mexico.Working Model, Inc. [1997], Working Model 3D, Version 2.0, San Mateo, California.Coleman, H.W., Steele, W.G. [1989], Experimentation and Uncertainty Analysis forEngineers, John Wiley and Sons, New York, 1989

Figure 1. Sketch map of the port Laozi on Lake Hongze

FLOW-3D software for substantiation the layout of the port water area

항구 수역의 레이아웃을 입증하기 위한 FLOW-3D 소프트웨어

B Pan1

  • and N Belyaev2
    1 Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
    pan3.b@edu.spbstu.ru

Abstract

방파제 설계시 항만 내 수역 및 접안 시설에서 중대한 파도 발생을 배제 할 필요가 있다. 이 기사는 항구 지역의 물 이동 계산 결과를 제시합니다. 항구 입구의 위치와 주어진 물체의 크기에 대한 가장 안전한 옵션이 확인되었습니다. FLOW – 3D 프로그램을 사용하여 항구 수역의 예비 배치 단계에서 계획되고 건설적인 솔루션을 선택할 가능성이 입증되었습니다.

Introduction

항구를 설계 할 때 계류선의 가장 합리적인 구성과 항구 수역의 레이아웃을 선택하여 항구의 영토를 배치하는 것이 필요합니다. 러시아 연방의 항구 수역 배치는 항구 수역 요소에 대한 사양을 포함하는 해로, 페어웨이 및 기동 구역에 대한 설계 표준의 요구 사항에 따라 수행됩니다 [1, 2].

항구 물은 파도, 퇴적물 축적 및 얼음으로부터 보호되어야 합니다. 항구 계획을 작성할 때, 선박의 기동 및 연안 계류 중뿐만 아니라 선적 및 하역 및 기타 항구 운영 중에 선박 계류에 대한 정상적인 조건이 생성되도록 파도로부터 수역을 보호하는 정도를 제공해야 합니다.

설계 결정은 새로운 포트를 설계하거나 기존 포트를 개발할 때 물리적 또는 수학적 모델링을 기반으로 합니다 [2]. 항구 수역에서 계산 된 물 흐름의 매개 변수는 수문 기상 조사, 장기 현장 관찰 및 실험실 연구의 결과를 기반으로 하도록 권장됩니다.

공학 수문 기상 측량 데이터가 불충분하면 계산 방법을 기반으로 설계 폭풍의 파도 매개 변수를 결정할 수 있습니다. 사용된 계산 방법이 국제 실무에서 동일한 목적으로 채택된 방법 (모델)에 부합하는지 표시하는 것이 좋습니다 [3].

Figure 1. Sketch map of the port Laozi on Lake Hongze
Figure 1. Sketch map of the port Laozi on Lake Hongze
Figure 2. The location of the port entrance on Lake Hongze: a – variant 1; b – variant 2; c – variants 3-5
Figure 2. The location of the port entrance on Lake Hongze: a – variant 1; b – variant 2; c – variants 3-5
Figure 3. Port water area plan
Figure 3. Port water area plan
Figure 4. Modeling of variant 1 with the movement of waves in the port water area
Figure 4. Modeling of variant 1 with the movement of waves in the port water area
Figure 5. Modeling of variant 2: a is prevailing movement of water towards the enclosed water area; b is prevailing reverse movement of water
Figure 5. Modeling of variant 2: a is prevailing movement of water towards the enclosed water area; b is prevailing reverse movement of water
Figure 6. Modeling of variant 3
Figure 6. Modeling of variant 3
Figure 7. Modeling of variant 4
Figure 7. Modeling of variant 4
Figure 8. Modeling of variant 5
Figure 8. Modeling of variant 5
Figure 9. Plan of the port water area with design points
Figure 9. Plan of the port water area with design points
Figure 10. Change in water depth at point A: a – variant 1; b – variant 2
Figure 10. Change in water depth at point A: a – variant 1; b – variant 2
Figure 11. Change in water depth at point A: a – variant 3; b – variant 4; c – variant 5
Figure 11. Change in water depth at point A: a – variant 3; b – variant 4; c – variant 5
Figure 12. Change in water depth at points A (a) and C (b) for variant 3
Figure 12. Change in water depth at points A (a) and C (b) for variant 3
Figure 13. Change in water depth at points A (a) and B (b) for variant 3
Figure 13. Change in water depth at points A (a) and B (b) for variant 3
Figure 14. Scheme of vessel traffic: a – variant 3; b – variant 4
Figure 14. Scheme of vessel traffic: a – variant 3; b – variant 4

References
[1] SP 350.1326000.2018. 2018 Norms for technological design of sea ports (Moscow:
Standartinform) p 226
[2] SP 444.1326000.2019. 2019 Standards for the design of sea channels, fairways and
maneuvering areas (Moscow: Standartinform) p 62
[3] SP 38.13330.2012. 2014 Loads and impacts on Hydraulic structures (from wave, ice and ships)
(Moscow: Ministry of Regional Development of the Russian Federation) p 112
[4] Rijnsdorp D P Smit P B and Zijlema M 2012 Non-hydrostatic modelling of infragravity waves
using SWASH. Proceedings of 33rd Conference on Coastal Engineering. pp 1287–1299
[5] Kantardgi I G Zheleznyak M J 2016 Laboratory and numerical study of waves in the port area.
Magazine of Civil Engineering No 6 pp 49–59 DOI: 10.5862/MCE.66.5
[6] Zheleznyak M J Kantardgi I G Sorokin M S and Polyakov A I 2015 Resonance properties of
seaport water areas Magazine of Civil Engineering № 5(57) pp 3-19 DOI:10.5862/MCE.57.1
[7] Kantarzhi I Zuev N Shunko N 2014 Numerical and physical modelling of the waves inside the
new marina in Gelendjik (Black Sea) Application of physical modelling to port and coastal
protection. Proceedings of 5th international conference Coastlab (Varna) Vol 2 pp 253–262
[8] Makarov K N and Chebotarev A G 2015 Breakwater placement at the root of a seawall
Magazine of Civil Engineering № 3(55) pp 67-78 DOI: 10.5862/MCE.55.8
[9] Belyaev N D Lebedev V V and Alexeeva A V 2017 Investigation of the soil structure changes
under the tsunami waves impact on the marine hydrotechnical structures V 10 № 4 pp 44-52
DOI: 10.7868/S2073667317040049
[10] Lebedev V V Nudner I S and Belyaev N D 2018 The formation of the seabed surface relief near
the gravitational object Magazine of Civil Engineering No 79(3) pp 120–131 DOI:
10.18720/MCE.79.13
[11] Kofoed-Hansen H Sloth P Sørensen O R Fuchs J 2000 Combined numerical and physical
modelling of seiching in exposed new marina Proceedings of 27th international conference of
coastal engineering pp 3600–3614
[12] Smit P Stelling G and Zijlema M 2011 Assessment of nonhydrostatic wave-flow model
SWASH for directionally spread waves propagating through a barred basin Proceedings of
ACOMEN 2011 pp 1–10
[13] Zijlema M Stelling G Smit P 2011 SWASH: An operational public domain code for simulating
wave fields and rapidly varied flows in coastal waters. Coastal Engineering. № 10(58). pp 992–
1012
[14] FLOW-3D® 2008 User’s Manual Version 9.3 Flow Science Inc p 821
[15] Pan Bayan and Belyaev N D 2019 Week of Science SPbPU: Proceedings of an international
scientific conference The best reports. pp 3-7
[16] Girgidov A A 2011 Hybrid simulation in hydrotechnical facilities design and FLOW-3D as a
tool its realization Magazine of Civil Engineering №3 pp 21-27
[17] Girgidov A A 2010 Proceeding of the VNIIG vol 260. pp 12-19

[18] Vasquez J A Walsh B W 2009 CFD simulation of local scour in complex piers under tidal flow,
33rd IAHR Congress: Water Engineering for a Sustainable Environment, © 2009 by
International Association of Hydraulic Engineering & Research (IAHR) ISBN: 978-94-90365-
01-1.
[19] Shan-Hwei Ou Tai-Wen Hsu and Jian-Feng Lin 2010 Experimental and Numerical Studies on
Wave Transformation over Artificial Reefs Proceedings of the International Conference on
Coastal Engineering (Shanghai, China) No 32
[20] Hirt C and Nichols B 1980 Volume of Fluid Method for the Dynamics of Free Boundaries
Journal Comp. Phys 39 p 201.

Capsule-type Vane Tank

Numerical Simulation Analysis of Liquid Transportation in Capsule-type Vane Tank under Microgravity

Microgravity 하에서 캡슐형 베인 탱크의 액체 수송에 대한 수치 시뮬레이션 분석

Abstract

Li Yong-Qiang1,2 & Dong Jun-Yan1 & Rui Wei
1Received: 17 June 2019 /Accepted: 4 December 2019
#Springer Nature B.V. 2020

In order to research the influence of the guide vane on liquid transmission performance in a tank under microgravity, simulation analysis was carried out with FLOW-3D software. Firstly, it compared the working condition under the charging rate of 10% with the corresponding experiment results of the drop tower and validated the correctness of the simulation process. And then it changed the structure parameters of the guide vane, researched the influence of different quantity, gap and thickness on climbing rate of liquid, and analyzed the causing reasons of these effects in-depth. This paper provided a reference for the design of internal guiding vane of microgravity tank.

본 논문은 가이드 베인이 미세 중력 상태의 탱크에서 액체 전달 성능에 미치는 영향을 연구하기 위해 FLOW-3D 소프트웨어를 사용하여 시뮬레이션 분석을 수행했습니다. 첫째, 10 % 충전율 하에서 작업 조건을 드롭 타워의 해당 실험 결과와 비교하여 시뮬레이션 프로세스의 정확성을 검증했다. 그리고 가이드 베인의 구조 매개 변수를 변경하고, 액체의 상승 속도에 대한 양, 간격 및 두께의 영향을 연구하고 이러한 영향의 원인을 심도있게 분석했습니다. 이 논문은 미세 중력 탱크의 내부 안내 날개 설계에 대한 참고 자료를 제공했습니다.

Capsule-type Vane Tank
Capsule-type Vane Tank
The relationship curve between the square of climbing height and time with a = 6 mm
The relationship curve between the square of climbing height and time with a = 6 mm
The relationship curve between the vane’s liquid transportation and time under different width a
The relationship curve between the vane’s liquid transportation and time under different width a
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section

A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process

Keyhole에 대한 수치적 연구 : 레이저 분말 중 형성 베드 퓨전 공정

Subin Shrestha1
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: subin.shrestha@louisville.edu

Y. Kevin Chou
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: kevin.chou@louisville.edu

LPBF (Laser Powder Bed fusion) 공정 중 용융 풀의 동적 현상은 복잡하고 공정 매개 변수에 민감합니다. 에너지 밀도 입력이 특정 임계 값을 초과하면 키홀이라고 하는 거대한 증기 함몰이 형성 될 수 있습니다.

이 연구는 수치 분석을 통해 LPBF 과정에서 키홀 거동 및 관련 기공 형성을 이해하는 데 중점을 둡니다. 이를 위해 이산 분말 입자가 있는 열 유동 모델이 개발되었습니다.

이산 요소 방법 (DEM)에서 얻은 분말 분포는 계산 영역에 통합되어 FLOW-3D를 사용하는 3D 프로세스 물리학 모델을 개발합니다.

전도 모드 중 용융 풀 형성과 용융의 키홀 모드가 식별되고 설명되었습니다. 높은 에너지 밀도는 증기 기둥의 형성으로 이어지고 결과적으로 레이저 스캔 트랙 아래에 구멍이 생깁니다.

또한 다양한 레이저 출력과 스캔 속도로 인한 Keyhole 모양을 조사합니다. 수치 결과는 동일한 에너지 밀도에서도 레이저 출력이 증가함에 따라 Keyhole크기가 증가 함을 나타냅니다. Keyhole은 더 높은 출력에서 ​​안정되어 레이저 스캔 중 Keyhole 발생을 줄일 수 있습니다.

The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.

Keywords: additive manufacturing, keyhole, laser powder bed fusion, porosity

Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 2 3D computational domain used for single-track simulation
Fig. 2 3D computational domain used for single-track simulation
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 4 Powder and substrate melting during laser application
Fig. 4 Powder and substrate melting during laser application
Fig. 5 Melt region formed after complete melting and solidification
Fig. 5 Melt region formed after complete melting and solidification
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 12 Melt region formed after complete melting and solidification
Fig. 12 Melt region formed after complete melting and solidification
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm

References

[1] Bauereiß, A., Scharowsky, T., and Körner, C., 2014, “Defect Generation and
Propagation Mechanism During Additive Manufacturing by Selective Beam
Melting,” J. Mater. Process. Technol., 214(11), pp. 2522–2528.
[2] Gong, H., Rafi, K., Gu, H., Starr, T., and Stucker, B., 2014, “Analysis of Defect
Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive
Manufacturing Processes,” Add. Manuf., 1(2014), pp. 87–98.
[3] Wang, Y., Kamath, C., Voisin, T., and Li, Z., 2018, “A Processing Diagram for
High-Density Ti-6Al-4V by Selective Laser Melting,” Rapid Prototyping J., 24
(9), pp. 1469–1478.
[4] Khairallah, S. A., and Anderson, A., 2014, “Mesoscopic Simulation Model of
Selective Laser Melting of Stainless Steel Powder,” J. Mater. Process. Technol.,
214(11), pp. 2627–2636.
[5] Yadroitsev, I., Gusarov, A., Yadroitsava, I., and Smurov, I., 2010, “Single Track
Formation in Selective Laser Melting of Metal Powders,” J. Mater. Process.
Technol., 210(12), pp. 1624–1631.
[6] Xia, M., Gu, D., Yu, G., Dai, D., Chen, H., and Shi, Q., 2016, “Influence of Hatch
Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability
During Additive Manufacturing of Inconel 718 Alloy,” Int. J. Mach. Tools
Manuf., 109(2016), pp. 147–157.
[7] Lee, Y., and Zhang, W., 2016, “Modeling of Heat Transfer, Fluid Flow and
Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser
Powder bed Fusion,” Add. Manuf., 12(2016), pp. 178–188.
[8] Wu, Y.-C., San, C.-H., Chang, C.-H., Lin, H.-J., Marwan, R., Baba, S., and
Hwang, W.-S., 2018, “Numerical Modeling of Melt-Pool Behavior in Selective
Laser Melting with Random Powder Distribution and Experimental
Validation,” J. Mater. Process. Technol., 254(2018), pp. 72–78.
[9] Khairallah, S. A., Anderson, A. T., Rubenchik, A., and King, W. E., 2016, “Laser
Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and
Formation Mechanisms of Pores, Spatter, and Denudation Zones,” Acta
Materialia, 108(2016), pp. 36–45.
[10] Tan, J., Tang, C., and Wong, C., 2018, “A Computational Study on Porosity
Evolution in Parts Produced by Selective Laser Melting,” Metall. Mater. Trans.
A, 49A(8), pp. 3663–3673.
[11] Leitz, K.-H., Singer, P., Plankensteiner, A., Tabernig, B., Kestler, H., and Sigl,
L. J. M. P. R., 2017, “Multi-Physical Simulation of Selective Laser Melting,”
Metal Powder Report, 72(5), pp. 331–338.
[12] Zhao, C., Fezzaa, K., Cunningham, R. W., Wen, H., Carlo, F., Chen, L., Rollett,
A. D., and Sun, T., 2017, “Real-time Monitoring of Laser Powder Bed Fusion
Process Using High-Speed X-ray Imaging and Diffraction,” Sci. Rep., 7(1),
p. 3602.
[13] Parab, N. D., Zhao, C., Cunningham, R., Escano, L. I., Fezzaa, K., Everhart, W.,
Rollett, A. D., Chen, L., and Sun, T., 2018, “Ultrafast X-ray Imaging of Laser–
Metal Additive Manufacturing Processes,” J. Synchrotron Radiat., 25(5),
pp. 1467–1477.
[14] Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T.,
and Rollett, A. D., 2019, “Keyhole Threshold and Morphology in Laser Melting
Revealed by Ultrahigh-Speed X-Ray Imaging,” Science, 363(6429), pp. 849–852.
[15] Shrestha, S., Starr, T., and Chou, K., 2019, “A Study of Keyhole Porosity in
Selective Laser Melting: Single Track Scanning With Micro-CT Analysis,”
ASME J. Manuf. Sci. Eng., 141(7), pp. 1–23.
[16] Ye, J., Rubenchik, A. M., Crumb, M. F., Guss, G., and Matthews, M. J., 2018,
“Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive
Manufacturing of Metals,” Proceedings of the CLEO: Science and Innovations,
Optical Society of America, San Jose, CA, May 13–18, Optical Society of
America, p. JW2A.117.
[17] Mishra, B., and Rajamani, R. K., 1992, “The Discrete Element Method for the
Simulation of Ball Mills,” Appl. Math. Modell., 16(11), pp. 598–604.
[18] Yan, W., Qian, Y., Ge, W., Lin, S., Liu, W. K., Lin, F., and Wagner, G. J., 2018,
“Meso-Scale Modeling of Multiple-Layer Fabrication Process in Selective
Electron Beam Melting: Inter-Layer/Track Voids Formation,” Materials and
Design, 141(2018), pp. 210–219.
[19] Kloss, C., Goniva, C., Hager, A., Amberger, S., and Pirker, S., 2012, “Models,
Algorithms and Validation for Opensource DEM and CFD–DEM,” Prog.
Comput. Fluid Dynam. Int. J., 12(2–3), pp. 140–152.
[20] Escano, L. I., Parab, N. D., Xiong, L., Guo, Q., Zhao, C., Fezzaa, K., Everhart,
W., Sun, T., and Chen, L., 2018, “Revealing Particle-Scale Powder Spreading
Dynamics in Powder-Bed-Based Additive Manufacturing Process by
High-Speed X-Ray Imaging,” Sci. Rep., 8(1), p. 15079.
[21] Gong, H., Gu, H., Zeng, K., Dilip, J., Pal, D., Stucker, B., Christiansen, D., Beuth,
J., and Lewandowski, J. J., 2014, “Melt Pool Characterization for Selective Laser
Melting of Ti-6Al-4V Pre-Alloyed Powder,” Proceedings of the Solid Freeform
Fabrication Symposium, Austin, TX, Aug. 4–6, pp. 256–267.
[22] Mills, K. C., 2002, Recommended Values of Thermophysical Properties for
Selected Commercial Alloys, Woodhead Publishing, Cambridge, UK.
[23] Shrestha, S., and Chou, K., 2017, “A Build Surface Study of Powder-Bed
Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and
White-Light Interferometry,” Int. J. Mach. Tools Manuf., 121(2017), pp. 37–49.
[24] Cho, J.-H., and Na, S.-J., 2006, “Implementation of Real-Time Multiple
Reflection and Fresnel Absorption of Laser Beam in Keyhole,” J. Phys. D:
Appl. Phys., 39(24), p. 5372.
[25] Dilip, J., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., and Stucker, B.,
2017, “Influence of Processing Parameters on the Evolution of Melt Pool,
Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective
Laser Melting,” Prog. Add. Manuf., 2(3), pp. 157–167.
[26] Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J.-P. R., and Schoenung,
J. M., 2017, “On the Limitations of Volumetric Energy Density as a Design
Parameter for Selective Laser Melting,” Mater. Des., 113(2017), pp. 331–340.
[27] Kroos, J., Gratzke, U., and Simon, G., 1993, “Towards a Self-Consistent Model of
the Keyhole in Penetration Laser Beam Welding,” J. Phys. D: Appl. Phys., 26(3),
p. 474.
[28] Martin, A., Calta, N., Hammons, J., Khairallah, S., Nielsen, M., Shuttlesworth, R.,
Sinclair, N., Matthews, M., Jeffries, J., and Willey, T., 2019, “Ultrafast Dynamics
of Laser-Metal Interactions in Additive Manufacturing Alloys Captured by In Situ
X-Ray Imaging,” Mater. Today Adv., 1(2019), p. 100002.
[29] Shrestha, S., Starr, T., and Chou, K., 2018, “Individual and coupled contributions
of laser power and scanning speed towards process-induced porosity in selective
laser melting,” Proceedings of the Solid Freeform Fabrication Symposium,
Austin, TX, Aug. 13–15, pp. 1400–1409.
[30] Hann, D., Iammi, J., and Folkes, J., 2011, “A Simple Methodology for Predicting
Laser-Weld Properties From Material and Laser Parameters,” J. Phys. D: Appl.
Phys., 44(44), p. 445401.
[31] Trapp, J., Rubenchik, A. M., Guss, G., and Matthews, M. J., 2017, “In Situ
Absorptivity Measurements of Metallic Powders During Laser Powder-bed
Fusion Additive Manufacturing,” Appl. Mat. Today, 9(2017), pp. 341–349.

Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and Ushaped (right) cross section channels, and (b) particle location in these cross sections.

Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

Cristina González Fernández,1 Jenifer Gómez Pastora,2 Arantza Basauri,1 Marcos Fallanza,1 Eugenio Bringas,1 Jeffrey J. Chalmers,2 and Inmaculada Ortiz1,*
Author information Article notes Copyright and License information Disclaimer

생체 유체에서 자성 입자의 연속 흐름 분리 : 마이크로 장치 형상이 분리 성능을 어떻게 결정합니까?

Abstract

The use of functionalized magnetic particles for the detection or separation of multiple chemicals and biomolecules from biofluids continues to attract significant attention. After their incubation with the targeted substances, the beads can be magnetically recovered to perform analysis or diagnostic tests. Particle recovery with permanent magnets in continuous-flow microdevices has gathered great attention in the last decade due to the multiple advantages of microfluidics. As such, great efforts have been made to determine the magnetic and fluidic conditions for achieving complete particle capture; however, less attention has been paid to the effect of the channel geometry on the system performance, although it is key for designing systems that simultaneously provide high particle recovery and flow rates. Herein, we address the optimization of Y-Y-shaped microchannels, where magnetic beads are separated from blood and collected into a buffer stream by applying an external magnetic field. The influence of several geometrical features (namely cross section shape, thickness, length, and volume) on both bead recovery and system throughput is studied. For that purpose, we employ an experimentally validated Computational Fluid Dynamics (CFD) numerical model that considers the dominant forces acting on the beads during separation. Our results indicate that rectangular, long devices display the best performance as they deliver high particle recovery and high throughput. Thus, this methodology could be applied to the rational design of lab-on-a-chip devices for any magnetically driven purification, enrichment or isolation.

생체 유체에서 여러 화학 물질과 생체 분자의 검출 또는 분리를 위한 기능화된 자성 입자의 사용은 계속해서 상당한 관심을 받고 있습니다. 표적 물질과 함께 배양 한 후 비드는 자기적으로 회수되어 분석 또는 진단 테스트를 수행 할 수 있습니다.

연속 흐름 마이크로 장치에서 영구 자석을 사용한 입자 회수는 마이크로 유체의 여러 장점으로 인해 지난 10 년 동안 큰 관심을 모았습니다. 따라서 완전한 입자 포획을 달성하기 위한 자기 및 유체 조건을 결정하기 위해 많은 노력을 기울였습니다.

그러나 높은 입자 회수율과 유속을 동시에 제공하는 시스템을 설계하는데 있어 핵심이기는 하지만 시스템 성능에 대한 채널 형상의 영향에 대해서는 덜 주의를 기울였습니다.

여기에서 우리는 자기 비드가 혈액에서 분리되어 외부 자기장을 적용하여 버퍼 스트림으로 수집되는 Y-Y 모양의 마이크로 채널의 최적화를 다룹니다. 비드 회수 및 시스템 처리량에 대한 여러 기하학적 특징 (즉, 단면 형상, 두께, 길이 및 부피)의 영향을 연구합니다.

이를 위해 분리 중에 비드에 작용하는 지배적인 힘을 고려하는 실험적으로 검증된 CFD (Computational Fluid Dynamics) 수치 모델을 사용합니다.

우리의 결과는 직사각형의 긴 장치가 높은 입자 회수율과 높은 처리량을 제공하기 때문에 최고의 성능을 보여줍니다. 따라서 이 방법론은 자기 구동 정제, 농축 또는 분리를 위한 랩 온어 칩 장치의 합리적인 설계에 적용될 수 있습니다.

Keywords: particle magnetophoresis, CFD, cross section, chip fabrication

Figure 1 (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).
Figure 1 (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).
Figure 2. (a) Channel-magnet configuration and (b–d) magnetic force distribution in the channel midplane for 2 mm, 5 mm and 10 mm long rectangular (left) and U-shaped (right) devices.
Figure 2. (a) Channel-magnet configuration and (b–d) magnetic force distribution in the channel midplane for 2 mm, 5 mm and 10 mm long rectangular (left) and U-shaped (right) devices.
Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and Ushaped (right) cross section channels, and (b) particle location in these cross sections.
Figure 3. (a) Velocity distribution in a section perpendicular to the flow for rectangular (left) and Ushaped (right) cross section channels, and (b) particle location in these cross sections.
Figure 4. Influence of fluid flow rate on particle recovery when the applied magnetic force is (a) different and (b) equal in U-shaped and rectangular cross section microdevices.
Figure 4. Influence of fluid flow rate on particle recovery when the applied magnetic force is (a) different and (b) equal in U-shaped and rectangular cross section microdevices.
Figure 5. Magnetic bead capture as a function of fluid flow rate for all of the studied geometries.
Figure 5. Magnetic bead capture as a function of fluid flow rate for all of the studied geometries.
Figure 6. Influence of (a) magnetic and fluidic forces (J parameter) and (b) channel geometry (θ parameter) on particle recovery. Note that U-2mm does not accurately fit a line.
Figure 6. Influence of (a) magnetic and fluidic forces (J parameter) and (b) channel geometry (θ parameter) on particle recovery. Note that U-2mm does not accurately fit a line.
Figure 7. Dependence of bead capture on the (a) functional channel volume, and (b) particle residence time (tres). Note that in the curve fitting expressions V represents the functional channel volume and that U-2mm does not accurately fit a line.
Figure 7. Dependence of bead capture on the (a) functional channel volume, and (b) particle residence time (tres). Note that in the curve fitting expressions V represents the functional channel volume and that U-2mm does not accurately fit a line.

References

  1. Gómez-Pastora J., Xue X., Karampelas I.H., Bringas E., Furlani E.P., Ortiz I. Analysis of separators for magnetic beads recovery: From large systems to multifunctional microdevices. Sep. Purif. Technol. 2017;172:16–31. doi: 10.1016/j.seppur.2016.07.050. [CrossRef] [Google Scholar]
  2. Wise N., Grob T., Morten K., Thompson I., Sheard S. Magnetophoretic velocities of superparamagnetic particles, agglomerates and complexes. J. Magn. Magn. Mater. 2015;384:328–334. doi: 10.1016/j.jmmm.2015.02.031. [CrossRef] [Google Scholar]
  3. Khashan S.A., Elnajjar E., Haik Y. CFD simulation of the magnetophoretic separation in a microchannel. J. Magn. Magn. Mater. 2011;323:2960–2967. doi: 10.1016/j.jmmm.2011.06.001. [CrossRef] [Google Scholar]
  4. Khashan S.A., Furlani E.P. Scalability analysis of magnetic bead separation in a microchannel with an array of soft magnetic elements in a uniform magnetic field. Sep. Purif. Technol. 2014;125:311–318. doi: 10.1016/j.seppur.2014.02.007. [CrossRef] [Google Scholar]
  5. Furlani E.P. Magnetic biotransport: Analysis and applications. Materials. 2010;3:2412–2446. doi: 10.3390/ma3042412. [CrossRef] [Google Scholar]
  6. Gómez-Pastora J., Bringas E., Ortiz I. Design of novel adsorption processes for the removal of arsenic from polluted groundwater employing functionalized magnetic nanoparticles. Chem. Eng. Trans. 2016;47:241–246. [Google Scholar]
  7. Gómez-Pastora J., Bringas E., Lázaro-Díez M., Ramos-Vivas J., Ortiz I. The reverse of controlled release: Controlled sequestration of species and biotoxins into nanoparticles (NPs) In: Stroeve P., Mahmoudi M., editors. Drug Delivery Systems. World Scientific; Hackensack, NJ, USA: 2017. pp. 207–244. [Google Scholar]
  8. Ruffert C. Magnetic bead-magic bullet. Micromachines. 2016;7:21. doi: 10.3390/mi7020021. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  9. Yáñez-Sedeño P., Campuzano S., Pingarrón J.M. Magnetic particles coupled to disposable screen printed transducers for electrochemical biosensing. Sensors. 2016;16:1585. doi: 10.3390/s16101585. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  10. Schrittwieser S., Pelaz B., Parak W.J., Lentijo-Mozo S., Soulantica K., Dieckhoff J., Ludwig F., Guenther A., Tschöpe A., Schotter J. Homogeneous biosensing based on magnetic particle labels. Sensors. 2016;16:828. doi: 10.3390/s16060828. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  11. He J., Huang M., Wang D., Zhang Z., Li G. Magnetic separation techniques in sample preparation for biological analysis: A review. J. Pharm. Biomed. Anal. 2014;101:84–101. doi: 10.1016/j.jpba.2014.04.017. [PubMed] [CrossRef] [Google Scholar]
  12. Ha Y., Ko S., Kim I., Huang Y., Mohanty K., Huh C., Maynard J.A. Recent advances incorporating superparamagnetic nanoparticles into immunoassays. ACS Appl. Nano Mater. 2018;1:512–521. doi: 10.1021/acsanm.7b00025. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  13. Gómez-Pastora J., González-Fernández C., Fallanza M., Bringas E., Ortiz I. Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies. Chem. Eng. J. 2018;344:487–497. doi: 10.1016/j.cej.2018.03.110. [CrossRef] [Google Scholar]
  14. Gale B.K., Jafek A.R., Lambert C.J., Goenner B.L., Moghimifam H., Nze U.C., Kamarapu S.K. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions. 2018;3:60. doi: 10.3390/inventions3030060. [CrossRef] [Google Scholar]
  15. Niemeyer C.M., Mirkin C.A., editors. Nanobiotechnology; Concepts, Applications and Perspectives. Wiley-VCH; Weinheim, Germany: 2004. [Google Scholar]
  16. Khashan S.A., Dagher S., Alazzam A., Mathew B., Hilal-Alnaqbi A. Microdevice for continuous flow magnetic separation for bioengineering applications. J. Micromech. Microeng. 2017;27:055016. doi: 10.1088/1361-6439/aa666d. [CrossRef] [Google Scholar]
  17. Basauri A., Gomez-Pastora J., Fallanza M., Bringas E., Ortiz I. Predictive model for the design of reactive micro-separations. Sep. Purif. Technol. 2019;209:900–907. doi: 10.1016/j.seppur.2018.09.028. [CrossRef] [Google Scholar]
  18. Abdollahi P., Karimi-Sabet J., Moosavian M.A., Amini Y. Microfluidic solvent extraction of calcium: Modeling and optimization of the process variables. Sep. Purif. Technol. 2020;231:115875. doi: 10.1016/j.seppur.2019.115875. [CrossRef] [Google Scholar]
  19. Khashan S.A., Alazzam A., Furlani E. A novel design for a microfluidic magnetophoresis system: Computational study; Proceedings of the 12th International Symposium on Fluid Control, Measurement and Visualization (FLUCOME2013); Nara, Japan. 18–23 November 2013. [Google Scholar]
  20. Pamme N. Magnetism and microfluidics. Lab Chip. 2006;6:24–38. doi: 10.1039/B513005K. [PubMed] [CrossRef] [Google Scholar]
  21. Gómez-Pastora J., Amiri Roodan V., Karampelas I.H., Alorabi A.Q., Tarn M.D., Iles A., Bringas E., Paunov V.N., Pamme N., Furlani E.P., et al. Two-step numerical approach to predict ferrofluid droplet generation and manipulation inside multilaminar flow chambers. J. Phys. Chem. C. 2019;123:10065–10080. doi: 10.1021/acs.jpcc.9b01393. [CrossRef] [Google Scholar]
  22. Gómez-Pastora J., Karampelas I.H., Bringas E., Furlani E.P., Ortiz I. Numerical analysis of bead magnetophoresis from flowing blood in a continuous-flow microchannel: Implications to the bead-fluid interactions. Sci. Rep. 2019;9:7265. doi: 10.1038/s41598-019-43827-x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  23. Tarn M.D., Pamme N. On-Chip Magnetic Particle-Based Immunoassays Using Multilaminar Flow for Clinical Diagnostics. In: Taly V., Viovy J.L., Descroix S., editors. Microchip Diagnostics Methods and Protocols. Humana Press; New York, NY, USA: 2017. pp. 69–83. [Google Scholar]
  24. Phurimsak C., Tarn M.D., Peyman S.A., Greenman J., Pamme N. On-chip determination of c-reactive protein using magnetic particles in continuous flow. Anal. Chem. 2014;86:10552–10559. doi: 10.1021/ac5023265. [PubMed] [CrossRef] [Google Scholar]
  25. Wu X., Wu H., Hu Y. Enhancement of separation efficiency on continuous magnetophoresis by utilizing L/T-shaped microchannels. Microfluid. Nanofluid. 2011;11:11–24. doi: 10.1007/s10404-011-0768-7. [CrossRef] [Google Scholar]
  26. Vojtíšek M., Tarn M.D., Hirota N., Pamme N. Microfluidic devices in superconducting magnets: On-chip free-flow diamagnetophoresis of polymer particles and bubbles. Microfluid. Nanofluid. 2012;13:625–635. doi: 10.1007/s10404-012-0979-6. [CrossRef] [Google Scholar]
  27. Gómez-Pastora J., González-Fernández C., Real E., Iles A., Bringas E., Furlani E.P., Ortiz I. Computational modeling and fluorescence microscopy characterization of a two-phase magnetophoretic microsystem for continuous-flow blood detoxification. Lab Chip. 2018;18:1593–1606. doi: 10.1039/C8LC00396C. [PubMed] [CrossRef] [Google Scholar]
  28. Forbes T.P., Forry S.P. Microfluidic magnetophoretic separations of immunomagnetically labeled rare mammalian cells. Lab Chip. 2012;12:1471–1479. doi: 10.1039/c2lc40113d. [PubMed] [CrossRef] [Google Scholar]
  29. Nandy K., Chaudhuri S., Ganguly R., Puri I.K. Analytical model for the magnetophoretic capture of magnetic microspheres in microfluidic devices. J. Magn. Magn. Mater. 2008;320:1398–1405. doi: 10.1016/j.jmmm.2007.11.024. [CrossRef] [Google Scholar]
  30. Plouffe B.D., Lewis L.H., Murthy S.K. Computational design optimization for microfluidic magnetophoresis. Biomicrofluidics. 2011;5:013413. doi: 10.1063/1.3553239. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  31. Hale C., Darabi J. Magnetophoretic-based microfluidic device for DNA isolation. Biomicrofluidics. 2014;8:044118. doi: 10.1063/1.4893772. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  32. Becker H., Gärtner C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis. 2000;21:12–26. doi: 10.1002/(SICI)1522-2683(20000101)21:1<12::AID-ELPS12>3.0.CO;2-7. [PubMed] [CrossRef] [Google Scholar]
  33. Pekas N., Zhang Q., Nannini M., Juncker D. Wet-etching of structures with straight facets and adjustable taper into glass substrates. Lab Chip. 2010;10:494–498. doi: 10.1039/B912770D. [PubMed] [CrossRef] [Google Scholar]
  34. Wang T., Chen J., Zhou T., Song L. Fabricating microstructures on glass for microfluidic chips by glass molding process. Micromachines. 2018;9:269. doi: 10.3390/mi9060269. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  35. Castaño-Álvarez M., Pozo Ayuso D.F., García Granda M., Fernández-Abedul M.T., Rodríguez García J., Costa-García A. Critical points in the fabrication of microfluidic devices on glass substrates. Sens. Actuators B Chem. 2008;130:436–448. doi: 10.1016/j.snb.2007.09.043. [CrossRef] [Google Scholar]
  36. Prakash S., Kumar S. Fabrication of microchannels: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2015;229:1273–1288. doi: 10.1177/0954405414535581. [CrossRef] [Google Scholar]
  37. Leester-Schädel M., Lorenz T., Jürgens F., Ritcher C. Fabrication of Microfluidic Devices. In: Dietzel A., editor. Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells. Springer; Basel, Switzerland: 2016. pp. 23–57. [Google Scholar]
  38. Bartlett N.W., Wood R.J. Comparative analysis of fabrication methods for achieving rounded microchannels in PDMS. J. Micromech. Microeng. 2016;26:115013. doi: 10.1088/0960-1317/26/11/115013. [CrossRef] [Google Scholar]
  39. Ng P.F., Lee K.I., Yang M., Fei B. Fabrication of 3D PDMS microchannels of adjustable cross-sections via versatile gel templates. Polymers. 2019;11:64. doi: 10.3390/polym11010064. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  40. Furlani E.P., Sahoo Y., Ng K.C., Wortman J.C., Monk T.E. A model for predicting magnetic particle capture in a microfluidic bioseparator. Biomed. Microdevices. 2007;9:451–463. doi: 10.1007/s10544-007-9050-x. [PubMed] [CrossRef] [Google Scholar]
  41. Tarn M.D., Peyman S.A., Robert D., Iles A., Wilhelm C., Pamme N. The importance of particle type selection and temperature control for on-chip free-flow magnetophoresis. J. Magn. Magn. Mater. 2009;321:4115–4122. doi: 10.1016/j.jmmm.2009.08.016. [CrossRef] [Google Scholar]
  42. Furlani E.P. Permanent Magnet and Electromechanical Devices; Materials, Analysis and Applications. Academic Press; Waltham, MA, USA: 2001. [Google Scholar]
  43. White F.M. Viscous Fluid Flow. McGraw-Hill; New York, NY, USA: 1974. [Google Scholar]
  44. Mathew B., Alazzam A., El-Khasawneh B., Maalouf M., Destgeer G., Sung H.J. Model for tracing the path of microparticles in continuous flow microfluidic devices for 2D focusing via standing acoustic waves. Sep. Purif. Technol. 2015;153:99–107. doi: 10.1016/j.seppur.2015.08.026. [CrossRef] [Google Scholar]
  45. Furlani E.J., Furlani E.P. A model for predicting magnetic targeting of multifunctional particles in the microvasculature. J. Magn. Magn. Mater. 2007;312:187–193. doi: 10.1016/j.jmmm.2006.09.026. [CrossRef] [Google Scholar]
  46. Furlani E.P., Ng K.C. Analytical model of magnetic nanoparticle transport and capture in the microvasculature. Phys. Rev. E. 2006;73:061919. doi: 10.1103/PhysRevE.73.061919. [PubMed] [CrossRef] [Google Scholar]
  47. Eibl R., Eibl D., Pörtner R., Catapano G., Czermak P. Cell and Tissue Reaction Engineering. Springer; Berlin/Heidelberg, Germany: 2009. [Google Scholar]
  48. Pamme N., Eijkel J.C.T., Manz A. On-chip free-flow magnetophoresis: Separation and detection of mixtures of magnetic particles in continuous flow. J. Magn. Magn. Mater. 2006;307:237–244. doi: 10.1016/j.jmmm.2006.04.008. [CrossRef] [Google Scholar]
  49. Alorabi A.Q., Tarn M.D., Gómez-Pastora J., Bringas E., Ortiz I., Paunov V.N., Pamme N. On-chip polyelectrolyte coating onto magnetic droplets-Towards continuous flow assembly of drug delivery capsules. Lab Chip. 2017;17:3785–3795. doi: 10.1039/C7LC00918F. [PubMed] [CrossRef] [Google Scholar]
  50. Zhang H., Guo H., Chen Z., Zhang G., Li Z. Application of PECVD SiC in glass micromachining. J. Micromech. Microeng. 2007;17:775–780. doi: 10.1088/0960-1317/17/4/014. [CrossRef] [Google Scholar]
  51. Mourzina Y., Steffen A., Offenhäusser A. The evaporated metal masks for chemical glass etching for BioMEMS. Microsyst. Technol. 2005;11:135–140. doi: 10.1007/s00542-004-0430-3. [CrossRef] [Google Scholar]
  52. Mata A., Fleischman A.J., Roy S. Fabrication of multi-layer SU-8 microstructures. J. Micromech. Microeng. 2006;16:276–284. doi: 10.1088/0960-1317/16/2/012. [CrossRef] [Google Scholar]
  53. Su N. 8 2000 Negative Tone Photoresist Formulations 2002–2025. MicroChem Corporation; Newton, MA, USA: 2002. [Google Scholar]
  54. Su N. 8 2000 Negative Tone Photoresist Formulations 2035–2100. MicroChem Corporation; Newton, MA, USA: 2002. [Google Scholar]
  55. Fu C., Hung C., Huang H. A novel and simple fabrication method of embedded SU-8 micro channels by direct UV lithography. J. Phys. Conf. Ser. 2006;34:330–335. doi: 10.1088/1742-6596/34/1/054. [CrossRef] [Google Scholar]
  56. Kazoe Y., Yamashiro I., Mawatari K., Kitamori T. High-pressure acceleration of nanoliter droplets in the gas phase in a microchannel. Micromachines. 2016;7:142. doi: 10.3390/mi7080142. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  57. Sharp K.V., Adrian R.J., Santiago J.G., Molho J.I. Liquid flows in microchannels. In: Gad-el-Hak M., editor. MEMS: Introduction and Fundamentals. CRC Press; Boca Raton, FL, USA: 2006. pp. 10-1–10-46. [Google Scholar]
  58. Oh K.W., Lee K., Ahn B., Furlani E.P. Design of pressure-driven microfluidic networks using electric circuit analogy. Lab Chip. 2012;12:515–545. doi: 10.1039/C2LC20799K. [PubMed] [CrossRef] [Google Scholar]
  59. Bruus H. Theoretical Microfluidics. Oxford University Press; New York, NY, USA: 2008. [Google Scholar]
  60. Beebe D.J., Mensing G.A., Walker G.M. Physics and applications of microfluidics in biology. Annu. Rev. Biomed. Eng. 2002;4:261–286. doi: 10.1146/annurev.bioeng.4.112601.125916. [PubMed] [CrossRef] [Google Scholar]
  61. Yalikun Y., Tanaka Y. Large-scale integration of all-glass valves on a microfluidic device. Micromachines. 2016;7:83. doi: 10.3390/mi7050083. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  62. Van Heeren H., Verhoeven D., Atkins T., Tzannis A., Becker H., Beusink W., Chen P. [(accessed on 9 March 2020)];Design Guideline for Microfluidic Device and Component Interfaces (Part 2) Version 3. Available online: http://www.makefluidics.com/en/design-guideline?id=7.
  63. Scheuble N., Iles A., Wootton R.C.R., Windhab E.J., Fischer P., Elvira K.S. Microfluidic technique for the simultaneous quantification of emulsion instabilities and lipid digestion kinetics. Anal. Chem. 2017;89:9116–9123. doi: 10.1021/acs.analchem.7b01853. [PubMed] [CrossRef] [Google Scholar]
  64. Lynch E.C. Red blood cell damage by shear stress. Biophys. J. 1972;12:257–273. [PMC free article] [PubMed] [Google Scholar]
  65. Paul R., Apel J., Klaus S., Schügner F., Schwindke P., Reul H. Shear stress related blood damage in laminar Couette flow. Artif. Organs. 2003;27:517–529. doi: 10.1046/j.1525-1594.2003.07103.x. [PubMed] [CrossRef] [Google Scholar]
  66. Gómez-Pastora J., Karampelas I.H., Xue X., Bringas E., Furlani E.P., Ortiz I. Magnetic bead separation from flowing blood in a two-phase continuous-flow magnetophoretic microdevice: Theoretical analysis through computational fluid dynamics simulation. J. Phys. Chem. C. 2017;121:7466–7477. d