Figure 1 | Laboratory channel dimensions.

강화된 조도 계수 및 인버트 레벨 변화가 있는 90도 측면 턴아웃에서의 유동에 대한 실험적 및 수치적 연구

Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes

Maryam Bagheria, Seyed M. Ali Zomorodianb, Masih Zolghadrc, H. Md. Azamathulla d,*
and C. Venkata Siva Rama Prasade
a Hydraulic Structures, Department of Water Engineering, Shiraz University, Shiraz, Iran
b Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, Iran
c Department of Water Sciences Engineering, College of Agriculture, Jahrom University, Jahrom, Iran
d Civil & Environmental Engineering, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad
e Department of Civil Engineering, St. Peters Engineering College, Hyderabad, India
*Corresponding author. E-mail: azmatheditor@gmail.com

ABSTRACT

측면 분기기(흡입구)의 상류측에서 유동 분리는 분기기 입구에서 맴돌이 전류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 분기 용량 및 효율성을 감소시킵니다. 따라서 분리구역의 크기를 파악하고 그 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다.

본 연구에서는 분리 구역의 크기를 줄이기 위한 방법으로 분출구 입구에 7가지 유형의 조면화 요소와 4가지 다른 방류가 있는 3가지 다른 베드 인버트 레벨의 설치(총 84회 실험)를 조사했습니다. 또한 3D 전산 유체 역학(CFD) 모델을 사용하여 분리 구역의 흐름 패턴과 치수를 평가했습니다.

결과는 조도 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면 드롭 구현 효과는 사용된 조도 계수에 따라 이 영역을 다르게 축소할 수 있음을 보여주었습니다. 두 방법을 결합하면 분리 구역 치수를 최대 63%까지 줄일 수 있습니다.

Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance. It reduces the effective width of flow, turnout capacity and efficiency. Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions.

Installation of 7 types of roughening elements at the turnout entrance and 3 different bed invert levels, with 4 different discharges (making a total of 84 experiments) were examined in this study as a method to reduce the dimensions of the separation zone. Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone.

Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.

Key words

discharge ratio, flow separation zone, intake, three dimensional simulation

Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced
roughness coefficient and invert level changes
Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes
Figure 1 | Laboratory channel dimensions.
Figure 1 | Laboratory channel dimensions.
Figure 2 | Roughness plates.
Figure 2 | Roughness plates.
Figure 4 | Effect of roughness on separation zone dimensions.
Figure 4 | Effect of roughness on separation zone dimensions.
Figure 10 | Comparision of the vortex area (software output) for three roughnesses (0.009, 0.023 and 0.032).
Figure 10 | Comparision of the vortex area (software output) for three roughnesses (0.009, 0.023 and 0.032).
Figure 11 | Comparison of vortex area in 3D mode (tecplot output) with two roughnesses (a) 0.009 and (b) 0.032.
Figure 11 | Comparison of vortex area in 3D mode (tecplot output) with two roughnesses (a) 0.009 and (b) 0.032.
Figure 12 | Velocity vector for flow condition Q¼22 l/s, near surface.
Figure 12 | Velocity vector for flow condition Q¼22 l/s, near surface.

REFERENCES

Abbasi, A., Ghodsian, M., Habibi, M. & Salehi Neishabouri, S. A. 2004 Experimental investigation on dimensions of flow separation zone at
lateral intakeentrance. Research & Construction; Pajouhesh va Sazandegi 62, 38–44. (In Persian).
Al-Zubaidy, R. & Hilo, A. 2021 Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD).
Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.11.172.
Chow, V. T. 1959 Open Channel Hydraulics. McGraw-Hill, New York.
Jalili, H., Hosseinzadeh Dalir, A. & Farsadizadeh, D. 2011 Effect of intake geometry on the sediment transport and lateral flow pattern.
Iranian Water Research Journal 5 (9), 1–10. (In Persian).
Jamshidi, A., Farsadizadeh, D. & Hosseinzadeh Dalir, A. 2016 Variations of flow separation zone at lateral intake entrance using submerged
vanes. Journal of Civil Engineering Urban 6 (3), 54–63. Journal homepage. Available from: www.ojceu.ir/main.
Karami Moghaddam, K. & Keshavarzi, A. 2007 Investigation of flow structure in lateral intakes of 55° and 90° with rounded entrance edge.
In: 03 National Congress on Civil Engineering University of Tabriz. Available from: https://civilica.com/doc/16317. (In Persian).
Karami, H., Farzin, S., Sadrabadi, M. T. & Moazeni, H. 2017 Simulation of flow pattern at rectangular lateral intake with different dike and
submerged vane scenarios. Journal of Water Science and Engineering 10 (3), 246–255. https://doi.org/10.1016/j.wse.2017.10.001.
Kasthuri, B. & Pundarikanthan, N. V. 1987 Discussion on separation zone at open- channel junction. Journal of Hydraulic Engineering
113 (4), 543–548.
Keshavarzi, A. & Habibi, L. 2005 Optimizing water intake angle by flow separation analysis. Journal of Irrigation and Drain 54, 543–552.
https://doi.org/10.1002/ird.207.
Kirkgöz, M. S. & Ardiçlioğ
lu, M. 1997 Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering
1099–1105. 10.1061/(ASCE)0733-9429(1997)123:12(1099).
Nakato, T., Kennedy, J. F. & Bauerly, D. 1990 Pumpstation intake-shoaling control with submerge vanes. Journal of Hydraulic Engineering.
https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(119).
Neary, V. S. & Odgaard, J. A. 1993 Three-dimensional flow structure at open channel diversions. Journal of Hydraulic Engineering. ASCE 119
(11), 1224–1230. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:11(1223).
Nikbin, S. & Borghei, S. M. 2011 Experimental investigation of submerged vanes effect on dimensions of flow separation zone at a 90°
openchannel junction. In: 06rd National Congress on Civil Engineering University of Semnan. (In Persian). Available from: https://
civilica.com/doc/120494.
Odgaard, J. A. & Wang, Y. 1991 Sediment management with submerged vanes, I: theory. Journal of Hydraulic Engineering 117 (3), 267–283.

Ramamurthy, A. S., Junying, Q. & Diep, V. 2007 Numerical and experimental study of dividing open-channel flows. Journal of Hydraulic
Engineering. See: https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135).
Seyedian, S., Karami Moghaddam, K. & Shafai Begestan, M. 2008 Determining the optimal radius in lateral intakes of 55° and 90° using
variation of flow velocity. In: 07th Iranian Hydraulic Conference. Power & Water University of Technology (PWUT). (In Persian).
Available from: https://civilica.com/doc/56251.
Zolghadr, M. & Shafai Bejestan, M. 2020 Six legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments.
International Journal of River Basin Management. doi: 10.1080/15715124.2020.1726357.
Zolghadr, M., Zomorodian, S. M. A., Shabani, R. & Azamatulla Md., H. 2021 Migration of sand mining pit in rivers: an experimental,
numerical and case study. Measurement. https://doi.org/10.1016/j.measurement.2020.108944

Figure 3: Wave pattern at sea surface at 20 knots (10.29 m/s) for mesh 1

Flow-3D에서 CFD 시뮬레이션을 사용한 선박 저항 분석

Ship resistance analysis using CFD simulations in Flow-3D

Author

Deshpande, SujaySundsbø, Per-ArneDas, Subhashis

Abstract

선박의 동력 요구 사항을 설계할 때 고려해야 할 가장 중요한 요소는 선박 저항 또는 선박에 작용하는 항력입니다. 항력을 극복하는 데 필요한 동력이 추진 시스템의 ‘손실’에 기여하기 때문에 추진 시스템을 설계하는 동안 선박 저항을 추정하는 것이 중요합니다. 선박 저항을 계산하는 세 가지 주요 방법이 있습니다:

Holtrop-Mennen(HM) 방법과 같은 통계적 방법, 수치 분석 또는 CFD(전산 유체 역학) 시뮬레이션 및 모델 테스트, 즉 예인 탱크에서 축소된 모델 테스트. 설계 단계 초기에는 기본 선박 매개변수만 사용할 수 있을 때 HM 방법과 같은 통계 모델만 사용할 수 있습니다.

수치 해석/CFD 시뮬레이션 및 모델 테스트는 선박의 완전한 3D 설계가 완료된 경우에만 수행할 수 있습니다. 본 논문은 Flow-3D 소프트웨어 패키지를 사용하여 CFD 시뮬레이션을 사용하여 잔잔한 수상 선박 저항을 예측하는 것을 목표로 합니다.

롤온/롤오프 승객(RoPax) 페리에 대한 사례 연구를 조사했습니다. 선박 저항은 다양한 선박 속도에서 계산되었습니다. 메쉬는 모든 CFD 시뮬레이션의 결과에 영향을 미치기 때문에 메쉬 민감도를 확인하기 위해 여러 개의 메쉬가 사용되었습니다. 시뮬레이션의 결과를 HM 방법의 추정치와 비교했습니다.

시뮬레이션 결과는 낮은 선박 속도에 대한 HM 방법과 잘 일치했습니다. 더 높은 선속을 위한 HM 방법에 비해 결과의 차이가 상당히 컸다. 선박 저항 분석을 수행하는 Flow-3D의 기능이 시연되었습니다.

While designing the power requirements of a ship, the most important factor to be considered is the ship resistance, or the sea drag forces acting on the ship. It is important to have an estimate of the ship resistance while designing the propulsion system since the power required to overcome the sea drag forces contribute to ‘losses’ in the propulsion system. There are three main methods to calculate ship resistance: Statistical methods like the Holtrop-Mennen (HM) method, numerical analysis or CFD (Computational Fluid Dynamics) simulations, and model testing, i.e. scaled model tests in towing tanks. At the start of the design stage, when only basic ship parameters are available, only statistical models like the HM method can be used. Numerical analysis/ CFD simulations and model tests can be performed only when the complete 3D design of the ship is completed. The present paper aims at predicting the calm water ship resistance using CFD simulations, using the Flow-3D software package. A case study of a roll-on/roll-off passenger (RoPax) ferry was investigated. Ship resistance was calculated at various ship speeds. Since the mesh affects the results in any CFD simulation, multiple meshes were used to check the mesh sensitivity. The results from the simulations were compared with the estimate from the HM method. The results from simulations agreed well with the HM method for low ship speeds. The difference in the results was considerably high compared to the HM method for higher ship speeds. The capability of Flow-3D to perform ship resistance analysis was demonstrated.

Figure 1: Simplified ship geometry
Figure 1: Simplified ship geometry
Figure 3: Wave pattern at sea surface at 20 knots (10.29 m/s) for mesh 1
Figure 3: Wave pattern at sea surface at 20 knots (10.29 m/s) for mesh 1
Figure 4: Ship Resistance (kN) vs Ship Speed (knots)
Figure 4: Ship Resistance (kN) vs Ship Speed (knots)

Publisher

International Society of Multiphysics

Citation

Deshpande SR, Sundsbø P, Das S. Ship resistance analysis using CFD simulations in Flow-3D. The International Journal of Multiphysics. 2020;14(3):227-236

REFERENCES

[1] K. Min and S. Kang, “Study on the form factor and full-scale ship resistance prediction
method,” Journal of Marine Science and Technology, vol. 15, pp. 108-118, June 2010.
[2] A. Molland, S. Turnock and D. Hudson, “Ship Resistance and Propulsion” Second
Edition. In Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive
Power (pp. 12-69), August 2017, Cambridge University Press.
[3] K. Niklas and H. Pruszko, “Full-scale CFD simulations for the determination of ship
resistance as a rational, alternative method to towing tank experiments,” Ocean
Engineering, vol. 190, October 2019.
[4] A. Elkafas, M. Elgohary and A. Zeid, “Numerical study on the hydrodynamic drag force
of a container ship model,” Alexandria Engineering Journal, vol. 58, no. 3, pp. 849-859,
September 2019.
[5] J. Holtrop and G. Mennen, “An approximate power prediction method,” International
Shipbuilding Progress, vol. 29, no. 335, pp. 166-170, July 1982.
[6] E. Bøckmann and S. Steen, “Model test and simulation of a ship with wavefoils,” Applied
Ocean research, vol. 57, pp. 8-18, April 2016.
[7] K. Atreyapurapu, B. Tallapragada and K. Voonna, “Simulation of a Free Surface Flow
over a Container Vessel Using CFD,” International Journal of Engineering Trends and
Technology (IJETT), vol. 18, no. 7, pp. 334-339, December 2014.
[8] J. Petersen, D. Jacobsen and O. Winther, “Statistical modelling for ship propulsion
efficiency,” Journal of Marine Science and Technology, vol. 17, pp. 30-39, December
2011.
[9] H. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the
finite volume method (second edition), Harlow, England: Pearson Education Ltd, 2007.
[10]C. Hirth and B. Nichols, “Volume of fluid (VOF) method for the dynamics of free
boundaries,” Journal of Computational Physics, vol. 39, no. 1, pp. 201-225, January 1981.
[11] A. Nordli and H. Khawaja, “Comparison of Explicit Method of Solution for CFD Euler
Problems using MATLAB® and FORTRAN 77,” International Journal of Multiphysics,
vol. 13, no. 2, 2019.
[12] FLOW-3D® Version 12.0 User’s Manual (2018). FLOW-3D [Computer software]. Santa
Fe, NM: Flow Science, Inc. https://www.flow3d.com.
[13] D. McCluskey and A. Holdø, “Optimizing the hydrocyclone for ballast water treatment
using computational fluid dynamics,” International Journal of Multiphysics, vol. 3, no. 3,
2009.
[14]M. Breuer, D. Lakehal and W. Rodi, “Flow around a Surface Mounted Cubical Obstacle:
Comparison of Les and Rans-Results,” Computation of Three-Dimensional Complex
Flows. Notes on Numerical Fluid Mechanics, vol. 49, p. 1996.
[15] G. Wei, “A Fixed-Mesh Method for General Moving Objects in Fluid Flow”, Modern
Physics Letters B, vol. 19, no. 28, pp. 1719-1722, 2005.
[16]J. Michell, “The wave-resistance of a ship,” The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, Vols. 45, 1898, no. 272, pp. 106-123,
May 2009.

Figure 7. Comparison of Archimedean screw power performances P(W) for Q = 0.15 m3 /s and 0.30m3 /s and angles of orientation 22ο & 32ο .

CFD Simulations of Tubular Archimedean Screw Turbines Harnessing the Small Hydropotential of Greek Watercourses

Alkistis Stergiopoulou 1, Vassilios Stergiopoulos 2
1 Institut für Wasserwirtschaft, Hydrologie und Konstruktiven Wasserbau, B.O.K.U. University, Muthgasse 18, 1190 Vienna, (actually Senior Process Engineer at the VTU Engineering in Vienna, Zieglergasse 53/1/24, 1070 Vienna, Austria).2 School of Pedagogical and Technological Education, Department of Civil Engineering Educators, ASPETE Campus, Eirini Station, 15122 Amarousio, Athens, Greece.

Abstract

이 논문은 최초의 아르키메데스 나사 터빈 CFD 모델링 결과에 대한 간략한 견해를 제시하며, 이는 “그리스에서 아르키메데스의 부활: 수리 역학 및 아르키메데스 달팽이관 물레방아의 유체역학적 거동 연구에 대한 기여”라는 제목의 최근 연구에서 수행되었습니다.
그리스 자연 및 기술 수로의 수력 잠재력”. Flow-3D 코드를 기반으로 하는 이 CFD 분석은 일반적인 TAST(Tubular Archimedean Screw Turbines)와 관련이 있으며 몇 TWh 정도의 그리스 자연 및 기술 수로의 중요한 미개발 수력 잠재력을 활용하는 연간 및 수천 MW 범위의 총 설치 용량인 소규모 수력 발전 시스템에 대한 몇 가지 유망한 성능을 보여줍니다.

This paper presents a short view of the first Archimedean Screw Turbines CFD modelling results, which were carried out within the recent research entitled “Rebirth of Archimedes in Greece: contribution to the study of hydraulic mechanics and hydrodynamic behavior of Archimedean cochlear waterwheels, for recovering the hydraulic potential of Greek natural and technical watercourses”. This CFD analysis, based to the Flow-3D code, concerns typical Tubular Archimedean Screw Turbines (TASTs) and shows some promising performances for such small hydropower systems harnessing the important unexploited hydraulic potential of natural and technical watercourses of Greece, of the order of several TWh / year and of a total installed capacity in the range of thousands MWs.

Keywords

CFD; Flow-3D; TAST; Small Hydro; Renewable Energy; Greek Watercourses.

Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).
Figure 1. Photorealistic view of an inclined axis TAST (photo A. Stergiopoulou).
Figure 3. The spectrum of all the screw axis orientation cases.
Figure 3. The spectrum of all the screw axis orientation cases.
Figure 4. Creation of the 3bladed Archimedean Screw with Solidworks
Figure 4. Creation of the 3bladed Archimedean Screw with Solidworks
Figure 6. “Meshing & Geometry” tab Operations (Flow 3-D).
Figure 6. “Meshing & Geometry” tab Operations (Flow 3-D).
Figure 7. Comparison of Archimedean screw power performances P(W) for Q = 0.15 m3
/s and 0.30m3
/s
and angles of orientation 22ο & 32ο
.
Figure 7. Comparison of Archimedean screw power performances P(W) for Q = 0.15 m3 /s and 0.30m3 /s and angles of orientation 22ο & 32ο .
Figure 12. Various performances of the Archimedean Screw (MKE/Mean Kinetic Energy, Torque,
Turbulent Kinetic Energy, Turbulent Dissipation) for flow discharge Q = 0.45 m3
/s and an angle of
orientation θ = 32ο
Figure 12. Various performances of the Archimedean Screw (MKE/Mean Kinetic Energy, Torque, Turbulent Kinetic Energy, Turbulent Dissipation) for flow discharge Q = 0.45 m3 /s and an angle of orientation θ = 32ο

References

[1] A. Stergiopoulou, Computational and experimental investigation of the hydrodynamic behaviour of
screw hydro turbine, Ph.D. Thesis, NTUA, 2017.
[2] B. Pelikan, A. Lashofer, Verbesserung der Strömungseigenschaften sowie Planungs-und
Betriebsoptimierung von Wasserkraftschnecken, Research Project, BOKU University, Vienna,
2012.
[3] G. Müller, J. Senior, Simplified theory of Archimedean screws, Journal of Hydraulic Research 47
(5) (2009) 666-669.
[4] C. Rorres, The turn of the screw: Optimal design of an Archimedes screw, Journal of Hydraulic
Engineering, 80 (2000) 72-80.
[5] A. Stergiopoulou, V. Stergiopoulos, Return of Archimedes: Harnessing with new Archimedean
spirals the hydraulic potential of the Greek watercourses, in: Proceedings of the Conference for
Climate Change, Thessaloniki, 2009.
[6] A. Stergiopoulou, V. Stergiopoulos, from the old Archimedean screw pumps to the new
Archimedean screw turbines for hydropower production in Greece, in: Proceedings of CEMEPE
Conference, Mykonos, June 21-26, 2009.

[7] V. Stergiopoulos, A. Stergiopoulou, E. Kalkani, Quo Vadis Archimedes Nowadays in Greece?
Towards Modern Archimedean Turbines for Recovering Greek Small Hydropower Potential, in:
Proceedings of 3rd International Scientific “Energy and Climate Change” Conference, Athens, 2010.
[8] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Greece beyond the horizon of the era of transition:
Archimedean screw hydropower development terra incognita, International Journal of Energy and
Development, v.6, Issue 6, pp. 627-536, 2015.
[9] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Experimental and theoretical research of zero head
innovative horizontal axis Archimedean screw turbines, Journal of Energy and Development, v.6,
Issue 5, pp. 471-478, 2015.
[10] A. Stergiopoulou, V. Stergiopoulos, E. Κalkani, Back to the Future: Rediscovering the Archimedean
screws as modern turbines for harnessing Greek small hydropower potential, in: Proceedings of the
Third International Conference CEMEPE 2011 & SECOTOX, Skiathos, 2011.
[11] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for
Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439-
445, May 2018.
[12] A. Stergiopoulou, V. Stergiopoulos, Educational Renewable Energy Screw Wheel Technologies for
Pico Hydropower Generation, Modern Environmental Science and Engineering, v.4, No.5, pp. 439-
445, May 2018.
[13] A. Stergiopoulou, V. Stergiopoulos, Towards an inventory of the archimedean small hydropower
potential of Greece, INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENT
Volume 11, Issue 2, 2020 pp.137-144.
[14] Flow Science, FLOW-3D Manual, 2013.
[15] K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Pearson,
2007.
[16] C. Hirsch, Numerical Computation of internal and external flows: The fundamentals of
Computational Fluid dynamics, John Wiley & Sons, 2007.
[17] A. Stergiopoulou, V. Stergiopoulos and E. Kalkani, An eagle’s CFD view of Studying Innovative
Archimedean Screw Renewable Hydraulic Energy Systems, Proceedings of the 4th International
Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE) and
SECOTOX Conference, Mykonos island, Greece, pp.454-460 June 24-28, 2013.
[18] A. Stergiopoulou, V. Stergiopoulos, A., E. Kalkani, Computational Fluid Dynamics Study on a 3D
Graphic Solid Model of Archimedean Screw Turbines, Fresenius Environmental Bulletin, vol.23-
No1, 2014.
[19] Α. Stergiopoulou, Kalkani E., “Towards a First C.F.D. Study of Innovative Archimedean Inclined
Axis Hydropower Turbines”, International Journal of Engineering Research & Technology (IJERT),
Vol. 2 Issue 9, September – 2013, pp. 193-199.
[20] A. Stergiopoulou, V. Stergiopoulos, A first CFD study of small hydro energy recovery from the
Attica water supply network, INTERNATIONAL JOURNAL OF ENERGY AND
ENVIRONMENT, Volume 11, Issue 3, 2020 pp.157-166.

Figure 5. Schematic view of flap and support structure [32]

Design Optimization of Ocean Renewable Energy Converter Using a Combined Bi-level Metaheuristic Approach

결합된 Bi-level 메타휴리스틱 접근법을 사용한 해양 재생 에너지 변환기의 설계 최적화

Erfan Amini a1, Mahdieh Nasiri b1, Navid Salami Pargoo a, Zahra Mozhgani c, Danial Golbaz d, Mehrdad Baniesmaeil e, Meysam Majidi Nezhad f, Mehdi Neshat gj, Davide Astiaso Garcia h, Georgios Sylaios i

Abstract

In recent years, there has been an increasing interest in renewable energies in view of the fact that fossil fuels are the leading cause of catastrophic environmental consequences. Ocean wave energy is a renewable energy source that is particularly prevalent in coastal areas. Since many countries have tremendous potential to extract this type of energy, a number of researchers have sought to determine certain effective factors on wave converters’ performance, with a primary emphasis on ambient factors. In this study, we used metaheuristic optimization methods to investigate the effects of geometric factors on the performance of an Oscillating Surge Wave Energy Converter (OSWEC), in addition to the effects of hydrodynamic parameters. To do so, we used CATIA software to model different geometries which were then inserted into a numerical model developed in Flow3D software. A Ribed-surface design of the converter’s flap is also introduced in this study to maximize wave-converter interaction. Besides, a Bi-level Hill Climbing Multi-Verse Optimization (HCMVO) method was also developed for this application. The results showed that the converter performs better with greater wave heights, flap freeboard heights, and shorter wave periods. Additionally, the added ribs led to more wave-converter interaction and better performance, while the distance between the flap and flume bed negatively impacted the performance. Finally, tracking the changes in the five-dimensional objective function revealed the optimum value for each parameter in all scenarios. This is achieved by the newly developed optimization algorithm, which is much faster than other existing cutting-edge metaheuristic approaches.

Keywords

Wave Energy Converter

OSWEC

Hydrodynamic Effects

Geometric Design

Metaheuristic Optimization

Multi-Verse Optimizer

1Introduction

The increase in energy demand, the limitations of fossil fuels, as well as environmental crises, such as air pollution and global warming, are the leading causes of calling more attention to harvesting renewable energy recently [1][2][3]. While still in its infancy, ocean wave energy has neither reached commercial maturity nor technological convergence. In recent decades, remarkable progress has been made in the marine energy domain, which is still in the early stage of development, to improve the technology performance level (TPL) [4][5]and technology readiness level (TRL) of wave energy converters (WECs). This has been achieved using novel modeling techniques [6][7][8][9][10][11][12][13][14] to gain the following advantages [15]: (i) As a source of sustainable energy, it contributes to the mix of energy resources that leads to greater diversity and attractiveness for coastal cities and suppliers. [16] (ii) Since wave energy can be exploited offshore and does not require any land, in-land site selection would be less expensive and undesirable visual effects would be reduced. [17] (iii) When the best layout and location of offshore site are taken into account, permanent generation of energy will be feasible (as opposed to using solar energy, for example, which is time-dependent) [18].

In general, the energy conversion process can be divided into three stages in a WEC device, including primary, secondary, and tertiary stages [19][20]. In the first stage of energy conversion, which is the subject of this study, the wave power is converted to mechanical power by wave-structure interaction (WSI) between ocean waves and structures. Moreover, the mechanical power is transferred into electricity in the second stage, in which mechanical structures are coupled with power take-off systems (PTO). At this stage, optimal control strategies are useful to tune the system dynamics to maximize power output [10][13][12]. Furthermore, the tertiary energy conversion stage revolves around transferring the non-standard AC power into direct current (DC) power for energy storage or standard AC power for grid integration [21][22]. We discuss only the first stage regardless of the secondary and tertiary stages. While Page 1 of 16 WECs include several categories and technologies such as terminators, point absorbers, and attenuators [15][23], we focus on oscillating surge wave energy converters (OSWECs) in this paper due to its high capacity for industrialization [24].

Over the past two decades, a number of studies have been conducted to understand how OSWECs’ structures and interactions between ocean waves and flaps affect converters performance. Henry et al.’s experiment on oscillating surge wave energy converters is considered as one of the most influential pieces of research [25], which demonstrated how the performance of oscillating surge wave energy converters (OSWECs) is affected by seven different factors, including wave period, wave power, flap’s relative density, water depth, free-board of the flap, the gap between the tubes, gap underneath the flap, and flap width. These parameters were assessed in their two models in order to estimate the absorbed energy from incoming waves [26][27]. In addition, Folly et al. investigated the impact of water depth on the OSWECs performance analytically, numerically, and experimentally. According to this and further similar studies, the average annual incident wave power is significantly reduced by water depth. Based on the experimental results, both the surge wave force and the power capture of OSWECs increase in shallow water [28][29]. Following this, Sarkar et al. found that under such circumstances, the device that is located near the coast performs much better than those in the open ocean [30]. On the other hand, other studies are showing that the size of the converter, including height and width, is relatively independent of the location (within similar depth) [31]. Subsequently, Schmitt et al. studied OSWECs numerically and experimentally. In fact, for the simulation of OSWEC, OpenFOAM was used to test the applicability of Reynolds-averaged Navier-Stokes (RANS) solvers. Then, the experimental model reproduced the numerical results with satisfying accuracy [32]. In another influential study, Wang et al. numerically assessed the effect of OSWEC’s width on their performance. According to their findings, as converter width increases, its efficiency decreases in short wave periods while increases in long wave periods [33]. One of the main challenges in the analysis of the OSWEC is the coupled effect of hydrodynamic and geometric variables. As a result, numerous cutting-edge geometry studies have been performed in recent years in order to find the optimal structure that maximizes power output and minimizes costs. Garcia et al. reviewed hull geometry optimization studies in the literature in [19]. In addition, Guo and Ringwood surveyed geometric optimization methods to improve the hydrodynamic performance of OSWECs at the primary stage [14]. Besides, they classified the hull geometry of OSWECs based on Figure 1. Subsequently, Whittaker et al. proposed a different design of OSWEC called Oyster2. There have been three examples of different geometries of oysters with different water depths. Based on its water depth, they determined the width and height of the converter. They also found that in the constant wave period the less the converter’s width, the less power captures the converter has [34]. Afterward, O’Boyle et al. investigated a type of OSWEC called Oyster 800. They compared the experimental and numerical models with the prototype model. In order to precisely reproduce the shape, mass distribution, and buoyancy properties of the prototype, a 40th-scale experimental model has been designed. Overall, all the models were fairly accurate according to the results [35].

Inclusive analysis of recent research avenues in the area of flap geometry has revealed that the interaction-based designs of such converters are emerging as a novel approach. An initiative workflow is designed in the current study to maximizing the wave energy extrication by such systems. To begin with, a sensitivity analysis plays its role of determining the best hydrodynamic values for installing the converter’s flap. Then, all flap dimensions and characteristics come into play to finalize the primary model. Following, interactive designs is proposed to increase the influence of incident waves on the body by adding ribs on both sides of the flap as a novel design. Finally, a new bi-level metaheuristic method is proposed to consider the effects of simultaneous changes in ribs properties and other design parameters. We hope this novel approach will be utilized to make big-scale projects less costly and justifiable. The efficiency of the method is also compared with four well known metaheuristic algorithms and out weight them for this application.

This paper is organized as follows. First, the research methodology is introduced by providing details about the numerical model implementation. To that end, we first introduced the primary model’s geometry and software details. That primary model is later verified with a benchmark study with regard to the flap angle of rotation and water surface elevation. Then, governing equations and performance criteria are presented. In the third part of the paper, we discuss the model’s sensitivity to lower and upper parts width (we proposed a two cross-sectional design for the flap), bottom elevation, and freeboard. Finally, the novel optimization approach is introduced in the final part and compared with four recent metaheuristic algorithms.

2. Numerical Methods

In this section, after a brief introduction of the numerical software, Flow3D, boundary conditions are defined. Afterwards, the numerical model implementation, along with primary model properties are described. Finally, governing equations, as part of numerical process, are discussed.

2.1Model Setup

FLOW-3D is a powerful and comprehensive CFD simulation platform for studying fluid dynamics. This software has several modules to solve many complex engineering problems. In addition, modeling complex flows is simple and effective using FLOW-3D’s robust meshing capabilities [36]. Interaction between fluid and moving objects might alter the computational range. Dynamic meshes are used in our modeling to take these changes into account. At each time step, the computational node positions change in order to adapt the meshing area to the moving object. In addition, to choose mesh dimensions, some factors are taken into account such as computational accuracy, computational time, and stability. The final grid size is selected based on the detailed procedure provided in [37]. To that end, we performed grid-independence testing on a CFD model using three different mesh grid sizes of 0.01, 0.015, and 0.02 meters. The problem geometry and boundary conditions were defined the same, and simulations were run on all three grids under the same conditions. The predicted values of the relevant variable, such as velocity, was compared between the grids. The convergence behavior of the numerical solution was analyzed by calculating the relative L2 norm error between two consecutive grids. Based on the results obtained, it was found that the grid size of 0.02 meters showed the least error, indicating that it provided the most accurate and reliable solution among the three grids. Therefore, the grid size of 0.02 meters was selected as the optimal spatial resolution for the mesh grid.

In this work, the flume dimensions are 10 meters long, 0.1 meters wide, and 2.2 meters high, which are shown in figure2. In addition, input waves with linear characteristics have a height of 0.1 meters and a period of 1.4 seconds. Among the linear wave methods included in this software, RNGk-ε and k- ε are appropriate for turbulence model. The research of Lopez et al. shows that RNGk- ε provides the most accurate simulation of turbulence in OSWECs [21]. We use CATIA software to create the flap primary model and other innovative designs for this project. The flap measures 0.1 m x 0.65 m x 0.360 m in x, y and z directions, respectively. In Figure 3, the primary model of flap and its dimensions are shown. In this simulation, five boundaries have been defined, including 1. Inlet, 2. Outlet, 3. Converter flap, 4. Bed flume, and 5. Water surface, which are shown in figure 2. Besides, to avoid wave reflection in inlet and outlet zones, Flow3D is capable of defining some areas as damping zones, the length of which has to be one to one and a half times the wavelength. Therefore, in the model, this length is considered equal to 2 meters. Furthermore, there is no slip in all the boundaries. In other words, at every single time step, the fluid velocity is zero on the bed flume, while it is equal to the flap velocity on the converter flap. According to the wave theory defined in the software, at the inlet boundary, the water velocity is called from the wave speed to be fed into the model.

2.2Verification

In the current study, we utilize the Schmitt experimental model as a benchmark for verification, which was developed at the Queen’s University of Belfast. The experiments were conducted on the flap of the converter, its rotation, and its interaction with the water surface. Thus, the details of the experiments are presented below based up on the experimental setup’s description [38]. In the experiment, the laboratory flume has a length of 20m and a width of 4.58m. Besides, in order to avoid incident wave reflection, a wave absorption source is devised at the end of the left flume. The flume bed, also, includes two parts with different slops. The flap position and dimensions of the flume can be seen in Figure4. In addition, a wave-maker with 6 paddles is installed at one end. At the opposite end, there is a beach with wire meshes. Additionally, there are 6 indicators to extract the water level elevation. In the flap model, there are three components: the fixed support structure, the hinge, and the flap. The flap measures 0.1m x 0.65m x 0.341m in x, y and z directions, respectively. In Figure5, the details are given [32]. The support structure consists of a 15 mm thick stainless steel base plate measuring 1m by 1.4m, which is screwed onto the bottom of the tank. The hinge is supported by three bearing blocks. There is a foam centerpiece on the front and back of the flap which is sandwiched between two PVC plates. Enabling changes of the flap, three metal fittings link the flap to the hinge. Moreover, in this experiment, the selected wave is generated based on sea wave data at scale 1:40. The wave height and the wave period are equal to 0.038 (m) and 2.0625 (s), respectively, which are tantamount to a wave with a period of 13 (s) and a height of 1.5 (m).

Two distinct graphs illustrate the numerical and experi-mental study results. Figure6 and Figure7 are denoting the angle of rotation of flap and surface elevation in computational and experimental models, respectively. The two figures roughly represent that the numerical and experimental models are a good match. However, for the purpose of verifying the match, we calculated the correlation coefficient (C) and root mean square error (RMSE). According to Figure6, correlation coefficient and RMSE are 0.998 and 0.003, respectively, and in Figure7 correlation coefficient and RMSE are respectively 0.999 and 0.001. Accordingly, there is a good match between the numerical and empirical models. It is worth mentioning that the small differences between the numerical and experimental outputs may be due to the error of the measuring devices and the calibration of the data collection devices.

Including continuity equation and momentum conserva- tion for incompressible fluid are given as [32][39]:(1)

where P represents the pressure, g denotes gravitational acceleration, u represents fluid velocity, and Di is damping coefficient. Likewise, the model uses the same equation. to calculate the fluid velocity in other directions as well. Considering the turbulence, we use the two-equation model of RNGK- ε. These equations are:

(3)��t(��)+����(����)=����[�eff�������]+��-��and(4)���(��)+����(����)=����[�eff�������]+�1�∗����-��2��2�Where �2� and �1� are constants. In addition, �� and �� represent the turbulent Prandtl number of � and k, respectively.

�� also denote the production of turbulent kinetic energy of k under the effect of velocity gradient, which is calculated as follows:(5)��=�eff[�����+�����]�����(6)�eff=�+��(7)�eff=�+��where � is molecular viscosity,�� represents turbulence viscosity, k denotes kinetic energy, and ∊∊ is energy dissipation rate. The values of constant coefficients in the two-equation RNGK ∊-∊ model is as shown in the Table 1 [40].Table 2.

Table 1. Constant coefficients in RNGK- model

Factors�0�1�2������
Quantity0.0124.381.421.681.391.390.084

Table 2. Flap properties

Joint height (m)0.476
Height of the center of mass (m)0.53
Weight (Kg)10.77

It is worth mentioning that the volume of fluid method is used to separate water and air phases in this software [41]. Below is the equation of this method [40].(8)����+����(���)=0where α and 1 − α are portion of water phase and air phase, respectively. As a weighting factor, each fluid phase portion is used to determine the mixture properties. Finally, using the following equations, we calculate the efficiency of converters [42][34][43]:(9)�=14|�|2�+�2+(�+�a)2(�n2-�2)2where �� represents natural frequency, I denotes the inertia of OSWEC, Ia is the added inertia, F is the complex wave force, and B denotes the hydrodynamic damping coefficient. Afterward, the capture factor of the converter is calculated by [44]:(10)��=�1/2��2����gw where �� represents the capture factor, which is the total efficiency of device per unit length of the wave crest at each time step [15], �� represent the dimensional amplitude of the incident wave, w is the flap’s width, and Cg is the group velocity of the incident wave, as below:(11)��=��0·121+2�0ℎsinh2�0ℎwhere �0 denotes the wave number, h is water depth, and H is the height of incident waves.

According to previous sections ∊,����-∊ modeling is used for all models simulated in this section. For this purpose, the empty boundary condition is used for flume walls. In order to preventing wave reflection at the inlet and outlet of the flume, the length of wave absorption is set to be at least one incident wavelength. In addition, the structured mesh is chosen, and the mesh dimensions are selected in two distinct directions. In each model, all grids have a length of 2 (cm) and a height of 1 (cm). Afterwards, as an input of the software for all of the models, we define the time step as 0.001 (s). Moreover, the run time of every simulation is 30 (s). As mentioned before, our primary model is Schmitt model, and the flap properties is given in table2. For all simulations, the flume measures 15 meters in length and 0.65 meters in width, and water depth is equal to 0.335 (m). The flap is also located 7 meters from the flume’s inlet.

Finally, in order to compare the results, the capture factor is calculated for each simulation and compared to the primary model. It is worth mentioning that capture factor refers to the ratio of absorbed wave energy to the input wave energy.

According to primary model simulation and due to the decreasing horizontal velocity with depth, the wave crest has the highest velocity. Considering the fact that the wave’s orbital velocity causes the flap to move, the contact between the upper edge of the flap and the incident wave can enhance its performance. Additionally, the numerical model shows that the dynamic pressure decreases as depth increases, and the hydrostatic pressure increases as depth increases.

To determine the OSWEC design, it is imperative to understand the correlation between the capture factor, wave period, and wave height. Therefore, as it is shown in Figure8, we plot the change in capture factor over the variations in wave period and wave height in 3D and 2D. In this diagram, the first axis features changes in wave period, the second axis displays changes in wave height, and the third axis depicts changes in capture factor. According to our wave properties in the numerical model, the wave period and wave height range from 2 to 14 seconds and 2 to 8 meters, respectively. This is due to the fact that the flap does not oscillate if the wave height is less than 2 (m), and it does not reverse if the wave height is more than 8 (m). In addition, with wave periods more than 14 (s), the wavelength would be so long that it would violate the deep-water conditions, and with wave periods less than 2 (s), the flap would not oscillate properly due to the shortness of wavelength. The results of simulation are shown in Figure 8. As it can be perceived from Figure 8, in a constant wave period, the capture factor is in direct proportion to the wave height. It is because of the fact that waves with more height have more energy to rotate the flap. Besides, in a constant wave height, the capture factor increases when the wave period increases, until a given wave period value. However, the capture factor falls after this point. These results are expected since the flap’s angular displacement is not high in lower wave periods, while the oscillating motion of that is not fast enough to activate the power take-off system in very high wave periods.

As is shown in Figure 9, we plot the change in capture factor over the variations in wave period (s) and water depth (m) in 3D. As it can be seen in this diagram, the first axis features changes in water depth (m), the second axis depicts the wave period (s), and the third axis displays OSWEC’s capture factor. The wave period ranges from 0 to 10 seconds based on our wave properties, which have been adopted from Schmitt’s model, while water depth ranges from 0 to 0.5 meters according to the flume and flap dimensions and laboratory limitations. According to Figure9, for any specific water depth, the capture factor increases in a varying rate when the wave period increases, until a given wave period value. However, the capture factor falls steadily after this point. In fact, the maximum capture factor occurs when the wave period is around 6 seconds. This trend is expected since, in a specific water depth, the flap cannot oscillate properly when the wavelength is too short. As the wave period increases, the flap can oscillate more easily, and consequently its capture factor increases. However, the capture factor drops in higher wave periods because the wavelength is too large to move the flap. Furthermore, in a constant wave period, by changing the water depth, the capture factor does not alter. In other words, the capture factor does not depend on the water depth when it is around its maximum value.

3Sensitivity Analysis

Based on previous studies, in addition to the flap design, the location of the flap relative to the water surface (freeboard) and its elevation relative to the flume bed (flap bottom elevation) play a significant role in extracting energy from the wave energy converter. This study measures the sensitivity of the model to various parameters related to the flap design including upper part width of the flap, lower part width of the flap, the freeboard, and the flap bottom elevation. Moreover, as a novel idea, we propose that the flap widths differ in the lower and upper parts. In Figure10, as an example, a flap with an upper thickness of 100 (mm) and a lower thickness of 50 (mm) and a flap with an upper thickness of 50 (mm) and a lower thickness of 100 (mm) are shown. The influence of such discrepancy between the widths of the upper and lower parts on the interaction between the wave and the flap, or in other words on the capture factor, is evaluated. To do so, other parameters are remained constant, such as the freeboard, the distance between the flap and the flume bed, and the wave properties.

In Figure11, models are simulated with distinct upper and lower widths. As it is clear in this figure, the first axis depicts the lower part width of the flap, the second axis indicates the upper part width of the flap, and the colors represent the capture factor values. Additionally, in order to consider a sufficient range of change, the flap thickness varies from half to double the value of the primary model for each part.

According to this study, the greater the discrepancy in these two parts, the lower the capture factor. It is on account of the fact that when the lower part of the flap is thicker than the upper part, and this thickness difference in these two parts is extremely conspicuous, the inertia against the motion is significant at zero degrees of rotation. Consequently, it is difficult to move the flap, which results in a low capture factor. Similarly, when the upper part of the flap is thicker than the lower part, and this thickness difference in these two parts is exceedingly noticeable, the inertia is so great that the flap can not reverse at the maximum degree of rotation. As the results indicate, the discrepancy can enhance the performance of the converter if the difference between these two parts is around 20%. As it is depicted in the Figure11, the capture factor reaches its own maximum amount, when the lower part thickness is from 5 to 6 (cm), and the upper part thickness is between 6 and 7 (cm). Consequently, as a result of this discrepancy, less material will be used, and therefore there will be less cost.

As illustrated in Figure12, this study examines the effects of freeboard (level difference between the flap top and water surface) and the flap bottom elevation (the distance between the flume bed and flap bottom) on the converter performance. In this diagram, the first axis demonstrates the freeboard and the second axis on the left side displays the flap bottom elevation, while the colors indicate the capture factor. In addition, the feasible range of freeboard is between -15 to 15 (cm) due to the limitation of the numerical model, so that we can take the wave slamming and the overtopping into consideration. Additionally, based on the Schmitt model and its scaled model of 1:40 of the base height, the flap bottom should be at least 9 (cm) high. Since the effect of surface waves is distributed over the depth of the flume, it is imperative to maintain a reasonable flap height exposed to incoming waves. Thus, the maximum flap bottom elevation is limited to 19 (cm). As the Figure12 pictures, at constant negative values of the freeboard, the capture factor is in inverse proportion with the flap bottom elevation, although slightly.

Furthermore, at constant positive values of the freeboard, the capture factor fluctuates as the flap bottom elevation decreases while it maintains an overall increasing trend. This is on account of the fact that increasing the flap bottom elevation creates turbulence flow behind the flap, which encumbers its rotation, as well as the fact that the flap surface has less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, the capture factor increases by raising the freeboard. This is due to the fact that there is overtopping with adverse impacts on the converter performance when the freeboard is negative and the flap is under the water surface. Besides, increasing the freeboard makes the wave slam more vigorously, which improves the converter performance.

Adding ribs to the flap surface, as shown in Figure13, is a novel idea that is investigated in the next section. To achieve an optimized design for the proposed geometry of the flap, we determine the optimal number and dimensions of ribs based on the flap properties as our decision variables in the optimization process. As an example, Figure13 illustrates a flap with 3 ribs on each side with specific dimensions.

Figure14 shows the flow velocity field around the flap jointed to the flume bed. During the oscillation of the flap, the pressure on the upper and lower surfaces of the flap changes dynamically due to the changing angle of attack and the resulting change in the direction of fluid flow. As the flap moves upwards, the pressure on the upper surface decreases, and the pressure on the lower surface increases. Conversely, as the flap moves downwards, the pressure on the upper surface increases, and the pressure on the lower surface decreases. This results in a cyclic pressure variation around the flap. Under certain conditions, the pressure field around the flap can exhibit significant variations in magnitude and direction, forming vortices and other flow structures. These flow structures can affect the performance of the OSWEC by altering the lift and drag forces acting on the flap.

4Design Optimization

We consider optimizing the design parameters of the flap of converter using a nature-based swarm optimization method, that fall in the category of metaheuristic algorithms [45]. Accordingly, we choose four state-of-the-art algorithms to perform an optimization study. Then, based on their performances to achieve the highest capture factor, one of them will be chosen to be combined with the Hill Climb algorithm to carry out a local search. Therefore, in the remainder of this section, we discuss the search process of each algorithm and visualize their performance and convergence curve as they try to find the best values for decision variables.

4.1. Metaheuristic Approaches

As the first considered algorithm, the Gray Wolf Optimizer (GWO) algorithm simulates the natural leadership and hunting performance of gray wolves which tend to live in colonies. Hunters must obey the alpha wolf, the leader, who is responsible for hunting. Then, the beta wolf is at the second level of the gray wolf hierarchy. A subordinate of alpha wolf, beta stands under the command of the alpha. At the next level in this hierarchy, there are the delta wolves. They are subordinate to the alpha and beta wolves. This category of wolves includes scouts, sentinels, elders, hunters, and caretakers. In this ranking, omega wolves are at the bottom, having the lowest level and obeying all other wolves. They are also allowed to eat the prey just after others have eaten. Despite the fact that they seem less important than others, they are really central to the pack survival. Since, it has been shown that without omega wolves, the entire pack would experience some problems like fighting, violence, and frustration. In this simulation, there are three primary steps of hunting including searching, surrounding, and finally attacking the prey. Mathematically model of gray wolves’ hunting technique and their social hierarchy are applied in determined by optimization. this study. As mentioned before, gray wolves can locate their prey and surround them. The alpha wolf also leads the hunt. Assuming that the alpha, beta, and delta have more knowledge about prey locations, we can mathematically simulate gray wolf hunting behavior. Hence, in addition to saving the top three best solutions obtained so far, we compel the rest of the search agents (also the omegas) to adjust their positions based on the best search agent. Encircling behavior can be mathematically modeled by the following equations: [46].(12)�→=|�→·��→(�)-�→(�)|(13)�→(�+1)=��→(�)-�→·�→(14)�→=2.�2→(15)�→=2�→·�1→-�→Where �→indicates the position vector of gray wolf, ��→ defines the vector of prey, t indicates the current iteration, and �→and �→are coefficient vectors. To force the search agent to diverge from the prey, we use �→ with random values greater than 1 or less than -1. In addition, C→ contains random values in the range [0,2], and �→ 1 and �2→ are random vectors in [0,1]. The second considered technique is the Moth Flame Optimizer (MFO) algorithm. This method revolves around the moths’ navigation mechanism, which is realized by positioning themselves and maintaining a fixed angle relative to the moon while flying. This effective mechanism helps moths to fly in a straight path. However, when the source of light is artificial, maintaining an angle with the light leads to a spiral flying path towards the source that causes the moth’s death [47]. In MFO algorithm, moths and flames are both solutions. The moths are actual search agents that fly in hyper-dimensional space by changing their position vectors, and the flames are considered pins that moths drop when searching the search space [48]. The problem’s variables are the position of moths in the space. Each moth searches around a flame and updates it in case of finding a better solution. The fitness value is the return value of each moth’s fitness (objective) function. The position vector of each moth is passed to the fitness function, and the output of the fitness function is assigned to the corresponding moth. With this mechanism, a moth never loses its best solution [49]. Some attributes of this algorithm are as follows:

  • •It takes different values to converge moth in any point around the flame.
  • •Distance to the flame is lowered to be eventually minimized.
  • •When the position gets closer to the flame, the updated positions around the flame become more frequent.

As another method, the Multi-Verse Optimizer is based on a multiverse theory which proposes there are other universes besides the one in which we all live. According to this theory, there are more than one big bang in the universe, and each big bang leads to the birth of a new universe [50]. Multi-Verse Optimizer (MVO) is mainly inspired by three phenomena in cosmology: white holes, black holes, and wormholes. A white hole has never been observed in our universe, but physicists believe the big bang could be considered a white hole [51]. Black holes, which behave completely in contrast to white holes, attract everything including light beams with their extremely high gravitational force [52]. In the multiverse theory, wormholes are time and space tunnels that allow objects to move instantly between any two corners of a universe (or even simultaneously from one universe to another) [53]. Based on these three concepts, mathematical models are designed to perform exploration, exploitation, and local search, respectively. The concept of white and black holes is implied as an exploration phase, while the concept of wormholes is considered as an exploitation phase by MVO. Additionally, each solution is analogous to a universe, and each variable in the solution represents an object in that universe. Furthermore, each solution is assigned an inflation rate, and the time is used instead of iterations. Following are the universe rules in MVO:

  • •The possibility of having white hole increases with the inflation rate.
  • •The possibility of having black hole decreases with the inflation rate.
  • •Objects tend to pass through black holes more frequently in universes with lower inflation rates.
  • •Regardless of inflation rate, wormholes may cause objects in universes to move randomly towards the best universe. [54]

Modeling the white/black hole tunnels and exchanging objects of universes mathematically was accomplished by using the roulette wheel mechanism. With every iteration, the universes are sorted according to their inflation rates, then, based on the roulette wheel, the one with the white hole is selected as the local extremum solution. This is accomplished through the following steps:

Assume that

(16)���=����1<��(��)����1≥��(��)

Where ��� represents the jth parameter of the ith universe, Ui indicates the ith universe, NI(Ui) is normalized inflation rate of the ith universe, r1 is a random number in [0,1], and j xk shows the jth parameter of the kth universe selected by a roulette wheel selection mechanism [54]. It is assumed that wormhole tunnels always exist between a universe and the best universe formed so far. This mechanism is as follows:(17)���=if�2<���:��+���×((���-���)×�4+���)�3<0.5��-���×((���-���)×�4+���)�3≥0.5����:���where Xj indicates the jth parameter of the best universe formed so far, TDR and WEP are coefficients, where Xj indicates the jth parameter of the best universelbjshows the lower bound of the jth variable, ubj is the upper bound of the jth variable, and r2, r3, and r4 are random numbers in [1][54].

Finally, one of the newest optimization algorithms is WOA. The WOA algorithm simulates the movement of prey and the whale’s discipline when looking for their prey. Among several species, Humpback whales have a specific method of hunting [55]. Humpback whales can recognize the location of prey and encircle it before hunting. The optimal design position in the search space is not known a priori, and the WOA algorithm assumes that the best candidate solution is either the target prey or close to the optimum. This foraging behavior is called the bubble-net feeding method. Two maneuvers are associated with bubbles: upward spirals and double loops. A unique behavior exhibited only by humpback whales is bubble-net feeding. In fact, The WOA algorithm starts with a set of random solutions. At each iteration, search agents update their positions for either a randomly chosen search agent or the best solution obtained so far [56][55]. When the best search agent is determined, the other search agents will attempt to update their positions toward that agent. It is important to note that humpback whales swim around their prey simultaneously in a circular, shrinking circle and along a spiral-shaped path. By using a mathematical model, the spiral bubble-net feeding maneuver is optimized. The following equation represents this behavior:(18)�→(�+1)=�′→·�bl·cos(2��)+�∗→(�)

Where:(19)�′→=|�∗→(�)-�→(�)|

X→(t+ 1) indicates the distance of the it h whale to the prey (best solution obtained so far),� is a constant for defining the shape of the logarithmic spiral, l is a random number in [−1, 1], and dot (.) is an element-by-element multiplication [55].

Comparing the four above-mentioned methods, simulations are run with 10 search agents for 400 iterations. In Figure 15, there are 20 plots the optimal values of different parameters in optimization algorithms. The five parameters of this study are freeboard, bottom elevations, number of ribs on the converter, rib thickness, and rib Height. The optimal value for each was found by optimization algorithms, naming WOA, MVO, MFO, and GWO. By looking through the first row, the freeboard parameter converges to its maximum possible value in the optimization process of GWO after 300 iterations. Similarly, MFO finds the same result as GWO. In contrast, the freeboard converges to its minimum possible value in MVO optimizing process, which indicates positioning the converter under the water. Furthermore, WOA found the optimal value of freeboard as around 0.02 after almost 200 iterations. In the second row, the bottom elevation is found at almost 0.11 (m) in all algorithms; however, the curves follow different trends in each algorithm. The third row shows the number of ribs, where results immediately reveal that it should be over 4. All algorithms coincide at 5 ribs as the optimal number in this process. The fourth row displays the trends of algorithms to find optimal rib thickness. MFO finds the optimal value early and sets it to around 0.022, while others find the same value in higher iterations. Finally, regarding the rib height, MVO, MFO, and GWO state that the optimal value is 0.06 meters, but WOA did not find a higher value than 0.039.

4.2. HCMVO Bi-level Approach

Despite several strong search characteristics of MVO and its high performance in various optimization problems, it suffers from a few deficiencies in local and global search mechanisms. For instance, it is trapped in the local optimum when wormholes stochastically generate many solutions near the best universe achieved throughout iterations, especially in solving complex multimodal problems with high dimensions [57]. Furthermore, MVO needs to be modified by an escaping strategy from the local optima to enhance the global search abilities. To address these shortages, we propose a fast and effective meta-algorithm (HCMVO) to combine MVO with a Random-restart hill-climbing local search. This meta-algorithm uses MVO on the upper level to develop global tracking and provide a range of feasible and proper solutions. The hill-climbing algorithm is designed to develop a comprehensive neighborhood search around the best-found solution proposed by the upper-level (MVO) when MVO is faced with a stagnation issue or falling into a local optimum. The performance threshold is formulated as follows.(20)Δ����THD=∑�=1�����TH��-����TH��-1�where BestTHDis the best-found solution per generation, andM is related to the domain of iterations to compute the average performance of MVO. If the proposed best solution by the local search is better than the initial one, the global best of MVO will be updated. HCMVO iteratively runs hill climbing when the performance of MVO goes down, each time with an initial condition to prepare for escaping such undesirable situations. In order to get a better balance between exploration and exploitation, the search step size linearly decreases as follows:(21)��=��-����Ma�iter��+1where iter and Maxiter are the current iteration and maximum number of evaluation, respectively. �� stands for the step size of the neighborhood search. Meanwhile, this strategy can improve the convergence rate of MVO compared with other algorithms.

Algorithm 1 shows the technical details of the proposed optimization method (HCMVO). The initial solution includes freeboard (�), bottom elevation (�), number of ribs (Nr), rib thickness (�), and rib height(�).

5. Conclusion

The high trend of diminishing worldwide energy resources has entailed a great crisis upon vulnerable societies. To withstand this effect, developing renewable energy technologies can open doors to a more reliable means, among which the wave energy converters will help the coastal residents and infrastructure. This paper set out to determine the optimized design for such devices that leads to the highest possible power output. The main goal of this research was to demonstrate the best design for an oscillating surge wave energy converter using a novel metaheuristic optimization algorithm. In this regard, the methodology was devised such that it argued the effects of influential parameters, including wave characteristics, WEC design, and interaction criteria.

To begin with, a numerical model was developed in Flow 3D software to simulate the response of the flap of a wave energy converter to incoming waves, followed by a validation study based upon a well-reputed experimental study to verify the accuracy of the model. Secondly, the hydrodynamics of the flap was investigated by incorporating the turbulence. The effect of depth, wave height, and wave period are also investigated in this part. The influence of two novel ideas on increasing the wave-converter interaction was then assessed: i) designing a flap with different widths in the upper and lower part, and ii) adding ribs on the surface of the flap. Finally, four trending single-objective metaheuristic optimization methods

Empty CellAlgorithm 1: Hill Climb Multiverse Optimization
01:procedure HCMVO
02:�=30,�=5▹���������������������������������
03:�=〈F1,B1,N,R,H1〉,…〈FN,B2,N,R,HN〉⇒lb1N⩽�⩽ubN
04:Initialize parameters�ER,�DR,�EP,Best�,���ite��▹Wormhole existence probability (WEP)
05:��=����(��)
06:��=Normalize the inflation rate��
07:for iter in[1,⋯,���iter]do
08:for�in[1,⋯,�]do
09:Update�EP,�DR,Black����Index=�
10:for���[1,⋯,�]��
11:�1=����()
12:if�1≤��(��)then
13:White HoleIndex=Roulette�heelSelection(-��)
14:�(Black HoleIndex,�)=��(White HoleIndex,�)
15:end if
16:�2=����([0,�])
17:if�2≤�EPthen
18:�3=����(),�4=����()
19:if�3<0.5then
20:�1=((��(�)-��(�))�4+��(�))
21:�(�,�)=Best�(�)+�DR�
22:else
23:�(�,�)=Best�(�)-�DR�
24:end if
25:end if
26:end for
27:end for
28:�HD=����([�1,�2,⋯,�Np])
29:Bes�TH�itr=����HD
30:ΔBestTHD=∑�=1�BestTII��-BestTII��-1�
31:ifΔBestTHD<��then▹Perform hill climbing local search
32:BestTHD=����-�lim��������THD
33:end if
34:end for
35:return�,BestTHD▹Final configuration
36:end procedure

The implementation details of the hill-climbing algorithm applied in HCMPA can be seen in Algorithm 2. One of the critical parameters isg, which denotes the resolution of the neighborhood search around the proposed global best by MVO. If we set a small step size for hill-climbing, the convergence speed will be decreased. On the other hand, a large step size reinforces the exploration ability. Still, it may reduce the exploitation ability and in return increase the act of jumping from a global optimum or surfaces with high-potential solutions. Per each decision variable, the neighborhood search evaluates two different direct searches, incremental or decremental. After assessing the generated solutions, the best candidate will be selected to iterate the search algorithm. It is noted that the hill-climbing algorithm should not be applied in the initial iteration of the optimization process due to the immense tendency for converging to local optima. Meanwhile, for optimizing largescale problems, hill-climbing is not an appropriate selection. In order to improve understanding of the proposed hybrid optimization algorithm’s steps, the flowchart of HCMVO is designed and can be seen in Figure 16.

Figure 17 shows the observed capture factor (which is the absorbed energy with respect to the available energy) by each optimization algorithm from iterations 1 to 400. The algorithms use ten search agents in their modified codes to find the optimal solutions. While GWO and MFO remain roughly constant after iterations 54 and 40, the other three algorithms keep improving the capture factor. In this case, HCMVO and MVO worked very well in the optimizing process with a capture factor obtained by the former as 0.594 and by the latter as 0.593. MFO almost found its highest value before the iteration 50, which means the exploration part of the algorithm works out well. Similarly, HCMVO does the same. However, it keeps finding the better solution during the optimization process until the last iteration, indicating the strong exploitation part of the algorithm. GWO reveals a weakness in exploration and exploitation because not only does it evoke the least capture factor value, but also the curve remains almost unchanged throughout 350 iterations.

Figure 18 illustrates complex interactions between the five optimization parameters and the capture factor for HCMVO (a), MPA (b), and MFO (c) algorithms. The first interesting observation is that there is a high level of nonlinear relationships among the setting parameters that can make a multi-modal search space. The dark blue lines represent the best-found configuration throughout the optimisation process. Based on both HCMVO (a) and MVO (b), we can infer that the dark blue lines concentrate in a specific range, showing the high convergence ability of both HCMVO and MVO. However, MFO (c) could not find the exact optimal range of the decision variables, and the best-found solutions per generation distribute mostly all around the search space.

Empty CellAlgorithm 1: Hill Climb Multiverse Optimization
01:procedure HCMVO
02:Initialization
03:Initialize the constraints��1�,��1�
04:�1�=Mi�1�+���1�/�▹Compute the step size,�is search resolution
05:So�1=〈�,�,�,�,�〉▹���������������
06:�������1=����So�1▹���������ℎ���������
07:Main loop
08:for iter≤���ita=do
09:���=���±��
10:while�≤���(Sol1)do
11:���=���+�,▹����ℎ���ℎ��������ℎ
12:fitness��iter=�������
13:t = t+1
14:end while
15:〈�����,������max〉=����������
16:���itev=���Inde�max▹�������ℎ�������������������������������ℎ�������
17:��=��-����Max��+1▹�����������������
18:end for
19:return���iter,����
20:end procedure

were utilized to illuminate the optimum values of the design parameters, and the best method was chosen to develop a new algorithm that performs both local and global search methods.

The correlation between hydrodynamic parameters and the capture factor of the converter was supported by the results. For any given water depth, the capture factor increases as the wave period increases, until a certain wave period value (6 seconds) is reached, after which the capture factor gradually decreases. It is expected since the flap cannot oscillate effectively when the wavelength is too short for a certain water depth. Conversely, when the wavelength is too long, the capture factor decreases. Furthermore, under a constant wave period, increasing the water depth does not affect the capture factor. Regarding the sensitivity analysis, the study found that increasing the flap bottom elevation causes turbulence flow behind the flap and limitation of rotation, which leads to less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, increasing the freeboard improves the capture factor. Overtopping happens when the freeboard is negative and the flap is below the water surface, which has a detrimental influence on converter performance. Furthermore, raising the freeboard causes the wave impact to become more violent, which increases converter performance.

In the last part, we discussed the search process of each algorithm and visualized their performance and convergence curves as they try to find the best values for decision variables. Among the four selected metaheuristic algorithms, the Multi-verse Optimizer proved to be the most effective in achieving the best answer in terms of the WEC capture factor. However, the MVO needed modifications regarding its escape approach from the local optima in order to improve its global search capabilities. To overcome these constraints, we presented a fast and efficient meta-algorithm (HCMVO) that combines MVO with a Random-restart hill-climbing local search. On a higher level, this meta-algorithm employed MVO to generate global tracking and present a range of possible and appropriate solutions. Taken together, the results demonstrated that there is a significant degree of nonlinearity among the setup parameters that might result in a multimodal search space. Since MVO was faced with a stagnation issue or fell into a local optimum, we constructed a complete neighborhood search around the best-found solution offered by the upper level. In sum, the newly-developed algorithm proved to be highly effective for the problem compared to other similar optimization methods. The strength of the current findings may encourage future investigation on design optimization of wave energy converters using developed geometry as well as the novel approach.

CRediT authorship contribution statement

Erfan Amini: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Mahdieh Nasiri: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Navid Salami Pargoo: Writing – original draft, Writing – review & editing. Zahra Mozhgani: Conceptualization, Methodology. Danial Golbaz: Writing – original draft. Mehrdad Baniesmaeil: Writing – original draft. Meysam Majidi Nezhad: . Mehdi Neshat: Supervision, Conceptualization, Writing – original draft, Writing – review & editing, Visualization. Davide Astiaso Garcia: Supervision. Georgios Sylaios: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This research has been carried out within ILIAD (Inte-grated Digital Framework for Comprehensive Maritime Data and Information Services) project that received funding from the European Union’s H2020 programme.

Data availability

Data will be made available on request.

References

Nerva-derived reactor coolant channel model for Mars mission applications

화성 임무 적용을 위한 Nerva 파생 원자로 냉각수 채널 모델

Edward W PortaUniversity of Nevada, Las Vegas

Abstract

화성 미션 애플리케이션을 위한 NERVA 파생 원자로 냉각수 채널 모델은 1.3m NERVA 파생 원자로(NDR) 냉각수 채널의 전산유체역학(CFD) 연구 결과를 제시합니다. CFD 코드 FLOW-3D는 NDR 코어를 통과하는 기체 수소의 흐름을 모델링하는 데 사용되었습니다. 수소는 냉각제 채널을 통해 노심을 통과하여 원자로의 냉각제 및 로켓의 추진제 역할을 합니다. 수소는 고밀도/저온 상태로 채널에 들어가고 저밀도/고온 상태로 빠져나오므로 압축성 모델을 사용해야 합니다. 기술 문서의 설계 사양이 모델에 사용되었습니다. 채널 길이에 걸친 압력 강하가 이전에 추정한 것(0.9MPa)보다 높은 것으로 확인되었으며, 이는 더 강력한 냉각수 펌프가 필요하고 설계 사양을 재평가해야 함을 나타냅니다.

NERVA-Derived Reactor Coolant Channel Model for Mars Mission Applications presents the results of a computational fluid dynamics (CFD) study of a 1.3m NERVA-Derived Reactor (NDR) coolant channel; The CFD code FLOW-3D was used to model the flow of gaseous hydrogen through the core of a NDR. Hydrogen passes through the core by way of coolant channels, acting as the coolant for the reactor as well as the propellant for the rocket. Hydrogen enters the channel in a high density/low temperature state and exits in a low density/high temperature state necessitating the use of a compressible model. Design specifications from a technical paper were used for the model; It was determined that the pressure drop across the length of the channel was higher than previously estimated (0.9 MPa), indicating the possible need for more powerful coolant pumps and a re-evaluation of the design specifications.

Keywords

Application; Channel; Coolant; Derived; Mars; Mission; Model; Nerva; Reactor

Figure 1 Nuclear Rocket Schematic Diagram
Figure 1 Nuclear Rocket Schematic Diagram
Figure 2 Fuel Element - Tip View
Figure 2 Fuel Element – Tip View
Figure 3 Fuel Element - Tie-Tube Structure (Tie-tubes are black)
Figure 3 Fuel Element – Tie-Tube Structure (Tie-tubes are black)
Figure 5 Three-Dimensional Coolant Channel Model
Figure 5 Three-Dimensional Coolant Channel Model
Figure 6 Two-Dimensional Coolant Channel Model
Figure 6 Two-Dimensional Coolant Channel Model

REFERENCES

Anderson, J. D., Jr., (1990) Modern Compressible Flow, 2d ed., McGraw-Hill, New
York.
Avallone E. A. and T. Baumeister III, eds., (1987) Mark’s Standard Handbookfor
Mechanical Engineers, 9th ed., McGraw-Hill, New York.
Bennett, G. L. and T. J. Miller (1992) “Nuclear Propulsion: A Key Transportation
Technology for the Exploration of Mars,” Proceedings o f the 9th Symposium on
Space Nuclear Power Systems, CONF-920104, M. S. El-Genk and M. D. Hoover,
eds., American Institute of Physics, New York, AIP Conference Proceedings No.
246, 2: 383-388.
Black, D. L., and S. V. Gunn (1991) “A Technical Summary of Engine and Reactor
Subsystem Design Performance during the NERVA Program,” AIAA-91-3450,
American Institute of Aeronautics and Astronautics, Washington, D. C.
Borowski, S. K., et al. (1992) “Nuclear Thermal Rockets: Key to Moon-Mars
Exploration,” Aerospace America, July 1992, pp. 34(5).
Borowski, S. K., et al. (1993) “ Nuclear Thermal Rocket/Vehicle Design Options for
Future NASA Missions to the Moon and Mars,” AIAA-93-4170, American Institute
of Aeronautics and Astronautics, Washington, D. C.
Borowski, S. K., et al. (1994) “Nuclear Thermal Rocket/Stage Technology Options for
NASA’s Future Human Exploration Missions to the Moon and Mars,” Proceedings
o f the 11th Symposium on Space Nuclear Power and Propulsion, CONF-940101, M.
S. El-Genk and M. D. Hoover, eds., American Institute of Physics, New York, NY,
AIP Conference Proceedings No. 301, 2: 745 – 758.
Burmeister, L. C. (1993) Convective Heat Transfer, 2d ed., John Wiley & Sons, New
York.
Chi, J., R. Holman, and B. Pierce (1989) “Nerva Derivative Reactors for Thermal and
Electrical Propulsion,” AIAA-89-2770, American Institute of Aeronautics and
Astronautics, Washington, D. C.
FIDAP (1993) FIDAP 7.0 User’s Manual, Fluid Dynamics International, Inc.
FL0W-3D (1994) FL0W-3D Version 6.0 Quick Reference Guide, Flow Science, Inc.,
Los Alamos, NM.
Hill, P. G. and C. R. Peterson (1970) Mechanics and Thermodynamics o f Propulsion,
Addison-Wesley, Reading, MA.
Lamarsh, J. R. (1983) Introduction to Nuclear Engineering, 2d ed., Addison-Wesley,
Reading, MA.
Nassersharif, B. (1991) Notes from a Nuclear Propulsion Short Course, 3-5 January
1991, American Institute of Physics.
Nassersharif, B., E. Porta, and D. Hailes (1994) “A Proposal Entitled: Scenario Based
Design of Nuclear Propulsion for Manned Mars Mission,” NSCEE, Las Vegas, NV.
Shepard, K., et al. (1992) “A Split Sprint Mission to Mars,” Proceedings o f the 9th
Symposium on Space Nuclear Power Systems, CONF-920104, M. S. El-Genk and M.
D. Hoover, eds., American Institute of Physics, New York, AIP Conference
Proceedings No. 246, 1: 58 – 63.
Sutton, G. P. (1986) Rocket Propulsion Elements: An Introduction to the Engineering
o f Rockets, 5th ed., John Wiley & Sons, New York.
U.S. President (1989) “Remarks on the 20th Anniversary of the Apollo 11 Moon
Landing July 20, 1989,” Administration o f George Bush, Office of the Federal
Register. National Archives and Records Service, 1989, Washington D. C., George
Bush, 1989, p. 992.
VSAERO (1994) VSAERO User’s Manual E.5, Analytical Methods, Inc., Redmond,
WA.
White, F. M. (1991) Viscous Fluid Flow, 2d ed., McGraw-Hill, Inc., New York.
Zweig, H. R. and M. H. Cooper (1993) “NERVA-Derived Rocket Module for Solar
System Exploration,” AIAA-93-2110, American Institute of Aeronautics and
Astronautics, Washington, D. C.

Flow Hydrodynamics Influences Due to Flood Plain Sand Mining in a Meandering Channel

Flow Hydrodynamics Influences Due to Flood Plain Sand Mining in a Meandering Channel

Abstract

Flow hydrodynamics in the main channel due to floodplain sand mining is important for a better understanding of maintaining the natural habitat or the reliance between the flood plain and the main channel for the river’s long-term survival and also facilitates more effective river restoration engineering. Day by day anthropogenic stresses are increasing in the river corridor system, indiscriminate sand mining is one of them. In this study, a computational fluid dynamics (CFD)-based software Flow-3D hydro (renormalized group K-ε turbulence model used) is used to study the flow hydrodynamics of sinuous (sinuosity index = 1.25) channel 18 m long, 1 m width, and 0.3 m height with floodplain sand mining pit. Sand mining additionally increases the secondary current near the outer bank of the channel, therefore leading to scouring or erosion at the outer bank, as a result, rivers migrate laterally. The turbulence kinetic energy (TKE) is concentrated in the mining pit and near the inner bank. This study result can be used to understand the flow hydrodynamic of the river system due to the series of sand mining.

Keywords

  • Flow hydrodynamics
  • Turbulence modeling
  • Flow-3D
  • Sinuosity
  • Sand mining

References

  1. Best, J.: Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12(1), 7–21 (2019)CrossRef CAS Google Scholar 
  2. Bagnold, R.A.: Some Aspects of the Shape of River Meanders. US Government Printing Office (1960)Google Scholar 
  3. Kondolf, G.M.: Freshwater Gravel Mining and Dredging Issues: White Paper. Washington Department of Fish and Wildlife (2002)Google Scholar 
  4. Molnár, P., Ramírez, J.A.: Energy dissipation theories and optimal channel characteristics of river networks. Water Resour. Res. 34(7), 1809–1818 (1998)CrossRef Google Scholar 
  5. Padmalal, D., Maya, K.: Sand Mining: Environmental Impacts and Selected Case Studies. Springer (2014)Google Scholar 
  6. Hübler, M., Pothen, F.: Can smart policies solve the sand mining problem? PLoS ONE 16(4), e0248882 (2021)CrossRef Google Scholar 
  7. Khan, S., Sugie, A.: Sand mining and its social impacts on local society in rural Bangladesh: a case study of a village in Tangail district. J. Urban Reg. Stud. Contemp. India 2(1), 1–11 (2015)Google Scholar 
  8. Daneshfaraz, R. et al.: The experimental study of the effects of river mining holes on the bridge piers. Iranian J. Soil Water Res. 50(7), 1619–1633 (2019)Google Scholar 
  9. Hackney, C. R., Darby, S. E., Parsons, D. R., Leyland, J., Best, J. L., Aalto, R., … & Houseago, R. C.: River bank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain. 3(3), 217–225 (2020)Google Scholar 
  10. Callander, R.A.: River meandering. Annu. Rev. Fluid Mech. 10(1), 129–158 (1978)CrossRef Google Scholar 
  11. Koehnken, L., Rintoul, M.: Impacts of sand mining on ecosystem structure, process and biodiversity in rivers. World Wildlife Fund International (2018)Google Scholar 
  12. Gavriletea, M.D.: Environmental impacts of sand exploitation. Analysis of sand market. Sustainability 9(7), 1118 (2017)Google Scholar 
  13. Koehnken, L., et al.: Impacts of riverine sand mining on freshwater ecosystems: a review of the scientific evidence and guidance for future research. River Res. Appl. 36(3), 362–370 (2020)Google Scholar 
  14. Myers, W.R.C.: Momentum transfer in a compound channel. J. Hydraul. Res. 16(2), 139–150 (1978)CrossRef Google Scholar 
  15. Rajaratnam, N., Ahmadi, R.M.: Interaction between main channel and flood-plain flows. J. Hydraul. Div. 105(5), 573–588 (1979)CrossRef Google Scholar 
  16. Sellin, R.H.J.: A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain. La Houille Blanche 7, 793–802 (1964)CrossRef Google Scholar 
  17. Karami, H., et al.: Verification of numerical study of scour around spur dikes using experimental data. Water Environ. J. 28(1), 124–134 (2014)Google Scholar 
  18. Bathurst, J.C., et al.: Overbank sediment deposition patterns for straight and meandering flume channels. Earth Surf. Proc. Land. 27(6), 659–665 (2002)CrossRef Google Scholar 
  19. Xu, D., Bai, Y.: Experimental study on the bed topography evolution in alluvial meandering rivers with various sinuousnesses. J. Hydro-Environ. Res. 7(2), 92–102 (2013)CrossRef Google Scholar 
  20. Priego-Hernández, G.A., Rivera-Trejo, F.: Secondary currents: measurement and analysis. Atmósfera 29(1), 23–34 (2016)Google Scholar 
  21. Alshamani, K.M.M.: Correlations among turbulent shear stress, turbulent kinetic energy, and axial turbulence intensity. AIAA J. 16(8), 859–861 (1978)CrossRef Google Scholar 
  22. Biron, P.M., et al.: Comparing different methods of bed shear stress estimates in simple and complex flow fields. Earth Surface Process. Landforms: J. British Geomorphol. Res. Group 29(11), 1403–1415 (2004)Google Scholar 
  23. Clark, L.A., Theresa, M.W.: Boundary Shear Stress Along Vegetated Streambanks (2007)Google Scholar 
  24. Kim, S.-C., et al.: Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data. J. Hydraul. Eng. 126(6), 399–406 (2000)CrossRef Google Scholar 

  1. Home  
  2. Sustainable Environment  
  3. Conference paper

Flow Hydrodynamics Influences Due to Flood Plain Sand Mining in a Meandering Channel

  • 14 Accesses

Abstract

Flow hydrodynamics in the main channel due to floodplain sand mining is important for a better understanding of maintaining the natural habitat or the reliance between the flood plain and the main channel for the river’s long-term survival and also facilitates more effective river restoration engineering. Day by day anthropogenic stresses are increasing in the river corridor system, indiscriminate sand mining is one of them. In this study, a computational fluid dynamics (CFD)-based software Flow-3D hydro (renormalized group K-ε turbulence model used) is used to study the flow hydrodynamics of sinuous (sinuosity index = 1.25) channel 18 m long, 1 m width, and 0.3 m height with floodplain sand mining pit. Sand mining additionally increases the secondary current near the outer bank of the channel, therefore leading to scouring or erosion at the outer bank, as a result, rivers migrate laterally. The turbulence kinetic energy (TKE) is concentrated in the mining pit and near the inner bank. This study result can be used to understand the flow hydrodynamic of the river system due to the series of sand mining.

Keywords

  • Flow hydrodynamics
  • Turbulence modeling
  • Flow-3D
  • Sinuosity
  • Sand mining

This is a preview of subscription content, access via your institution.

References

  1. Best, J.: Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12(1), 7–21 (2019)CrossRef CAS Google Scholar 
  2. Bagnold, R.A.: Some Aspects of the Shape of River Meanders. US Government Printing Office (1960)Google Scholar 
  3. Kondolf, G.M.: Freshwater Gravel Mining and Dredging Issues: White Paper. Washington Department of Fish and Wildlife (2002)Google Scholar 
  4. Molnár, P., Ramírez, J.A.: Energy dissipation theories and optimal channel characteristics of river networks. Water Resour. Res. 34(7), 1809–1818 (1998)CrossRef Google Scholar 
  5. Padmalal, D., Maya, K.: Sand Mining: Environmental Impacts and Selected Case Studies. Springer (2014)Google Scholar 
  6. Hübler, M., Pothen, F.: Can smart policies solve the sand mining problem? PLoS ONE 16(4), e0248882 (2021)CrossRef Google Scholar 
  7. Khan, S., Sugie, A.: Sand mining and its social impacts on local society in rural Bangladesh: a case study of a village in Tangail district. J. Urban Reg. Stud. Contemp. India 2(1), 1–11 (2015)Google Scholar 
  8. Daneshfaraz, R. et al.: The experimental study of the effects of river mining holes on the bridge piers. Iranian J. Soil Water Res. 50(7), 1619–1633 (2019)Google Scholar 
  9. Hackney, C. R., Darby, S. E., Parsons, D. R., Leyland, J., Best, J. L., Aalto, R., … & Houseago, R. C.: River bank instability from unsustainable sand mining in the lower Mekong River. Nat. Sustain. 3(3), 217–225 (2020)Google Scholar 
  10. Callander, R.A.: River meandering. Annu. Rev. Fluid Mech. 10(1), 129–158 (1978)CrossRef Google Scholar 
  11. Koehnken, L., Rintoul, M.: Impacts of sand mining on ecosystem structure, process and biodiversity in rivers. World Wildlife Fund International (2018)Google Scholar 
  12. Gavriletea, M.D.: Environmental impacts of sand exploitation. Analysis of sand market. Sustainability 9(7), 1118 (2017)Google Scholar 
  13. Koehnken, L., et al.: Impacts of riverine sand mining on freshwater ecosystems: a review of the scientific evidence and guidance for future research. River Res. Appl. 36(3), 362–370 (2020)Google Scholar 
  14. Myers, W.R.C.: Momentum transfer in a compound channel. J. Hydraul. Res. 16(2), 139–150 (1978)CrossRef Google Scholar 
  15. Rajaratnam, N., Ahmadi, R.M.: Interaction between main channel and flood-plain flows. J. Hydraul. Div. 105(5), 573–588 (1979)CrossRef Google Scholar 
  16. Sellin, R.H.J.: A laboratory investigation into the interaction between the flow in the channel of a river and that over its flood plain. La Houille Blanche 7, 793–802 (1964)CrossRef Google Scholar 
  17. Karami, H., et al.: Verification of numerical study of scour around spur dikes using experimental data. Water Environ. J. 28(1), 124–134 (2014)Google Scholar 
  18. Bathurst, J.C., et al.: Overbank sediment deposition patterns for straight and meandering flume channels. Earth Surf. Proc. Land. 27(6), 659–665 (2002)CrossRef Google Scholar 
  19. Xu, D., Bai, Y.: Experimental study on the bed topography evolution in alluvial meandering rivers with various sinuousnesses. J. Hydro-Environ. Res. 7(2), 92–102 (2013)CrossRef Google Scholar 
  20. Priego-Hernández, G.A., Rivera-Trejo, F.: Secondary currents: measurement and analysis. Atmósfera 29(1), 23–34 (2016)Google Scholar 
  21. Alshamani, K.M.M.: Correlations among turbulent shear stress, turbulent kinetic energy, and axial turbulence intensity. AIAA J. 16(8), 859–861 (1978)CrossRef Google Scholar 
  22. Biron, P.M., et al.: Comparing different methods of bed shear stress estimates in simple and complex flow fields. Earth Surface Process. Landforms: J. British Geomorphol. Res. Group 29(11), 1403–1415 (2004)Google Scholar 
  23. Clark, L.A., Theresa, M.W.: Boundary Shear Stress Along Vegetated Streambanks (2007)Google Scholar 
  24. Kim, S.-C., et al.: Estimating bottom stress in tidal boundary layer from acoustic Doppler velocimeter data. J. Hydraul. Eng. 126(6), 399–406 (2000)CrossRef Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, IndiaO. P. Maurya, K. K. Nandi, S. Modalavalasa & S. Dutta

Corresponding author

Correspondence to O. P. Maurya .

Editor information

Editors and Affiliations

  1. Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, IndiaDeepmoni Deka
  2. Department of Chemical engineering, Indian Institute of Technology Guwahati, Guwahati, IndiaSubrata Kumar Majumder
  3. Department of Chemical engineering, Indian Institute of Technology Guwahati, Guwahati, IndiaMihir Kumar Purkait
Figure 4.24 - Model with virtual valves in the extremities of the geometries to simulate the permeability of the mold promoting a more uniformed filling

Optimization of filling systems for low pressure by Flow-3D

Dissertação de Mestrado
Ciclo de Estudos Integrados Conducentes ao
Grau de Mestre em Engenharia Mecânica
Trabalho efectuado sob a orientação do
Doutor Hélder de Jesus Fernades Puga
Professor Doutor José Joaquim Carneiro Barbosa

ABSTRACT

논문의 일부로 튜터 선택 가능성과 해결해야 할 주제가 설정되는 매개변수를 염두에 두고 개발 주제 ‘Flow- 3D ®에 의한 저압 충전 시스템 최적화’가 선택되었습니다. 이를 위해서는 달성해야 할 목표와 이를 달성하기 위한 방법을 정의하는 것이 필요했습니다.

충전 시스템을 시뮬레이션하고 검증할 수 있는 광범위한 소프트웨어에도 불구하고 Flow-3D®는 시장에서 최고의 도구 중 하나로 표시되어 전체 충전 프로세스 및 행동 표현과 관련하여 탁월한 정확도로 시뮬레이션하는 능력을 입증했습니다.

이를 위해 관련 프로세스를 더 잘 이해하고 충진 시스템 시뮬레이션을 위한 탐색적 기반 역할을 하기 위해 이 도구를 탐색하는 것이 중요합니다. 지연 및 재료 낭비에 반영되는 실제적인 측면에서 충전 장치의 치수를 완벽하게 만드는 비용 및 시간 낭비. 이러한 방식으로 저압 주조 공정에서 충진 시스템을 설계하고 물리적 모델을 탐색하여 특성화하는 방법론을 검증하기 위한 것입니다.

이를 위해 다음 주요 단계를 고려하십시오.

시뮬레이션 소프트웨어 Flow 3D® 탐색;
충전 시스템 모델링;
모델의 매개변수를 탐색하여 모델링된 시스템의 시뮬레이션, 검증 및 최적화.

따라서 연구 중인 압력 곡선과 주조 분석에서 가장 관련성이 높은 정보의 최종 마이닝을 검증하기 위한 것입니다.

사용된 압력 곡선은 수집된 문헌과 이전에 수행된 실제 작업을 통해 얻었습니다. 결과를 통해 3단계 압력 곡선이 층류 충진 체계의 의도된 목적과 관련 속도가 0.5 𝑚/𝑠를 초과하지 않는다는 결론을 내릴 수 있었습니다.

충전 수준이 2인 압력 곡선은 0.5 𝑚/𝑠 이상의 속도로 영역을 채우는 더 난류 시스템을 갖습니다. 열전달 매개변수는 이전에 얻은 값이 주물에 대한 소산 거동을 확증하지 않았기 때문에 연구되었습니다.

이러한 방식으로 주조 공정에 더 부합하는 새로운 가치를 얻었습니다. 달성된 결과는 유사한 것으로 나타난 NovaFlow & Solid®에 의해 생성된 결과와 비교되어 시뮬레이션에서 설정된 매개변수를 검증했습니다. Flow 3D®는 주조 부품 시뮬레이션을 위한 강력한 도구로 입증되었습니다.

As part of the dissertation and bearing in mind the parameters in which the possibility of a choice of tutor and the subject to be addressed is established, the subject for development ’Optimization of filling systems for low pressure by Flow 3D ®’ was chosen. For this it was necessary to define the objectives to achieve and the methods to attain them. Despite the wide range of software able to simulate and validate filling systems, Flow 3D® has been shown as one of the best tools in the market, demonstrating its ability to simulate with distinctive accuracy with respect to the entire process of filling and the behavioral representation of the fluid obtained. To this end, it is important to explore this tool for a better understanding of the processes involved and to serve as an exploratory basis for the simulation of filling systems, simulation being one of the great strengths of the current industry due to the need to reduce costs and time waste, in practical terms, that lead to the perfecting of the dimensioning of filling devices, which are reflected in delays and wasted material. In this way it is intended to validate the methodology to design a filling system in lowpressure casting process, exploring their physical models and thus allowing for its characterization. For this, consider the following main phases: The exploration of the simulation software Flow 3D®; modeling of filling systems; simulation, validation and optimization of systems modeled by exploring the parameters of the models. Therefore, it is intended to validate the pressure curves under study and the eventual mining of the most relevant information in a casting analysis. The pressure curves that were used were obtained through the gathered literature and the practical work previously performed. Through the results it was possible to conclude that the pressure curve with 3 levels meets the intended purpose of a laminar filling regime and associated speeds never exceeding 0.5 𝑚/𝑠. The pressure curve with 2 filling levels has a more turbulent system, having filling areas with velocities above 0.5 𝑚/𝑠. The heat transfer parameter was studied due to the values previously obtained didn’t corroborate the behavior of dissipation regarding to the casting. In this way, new values, more in tune with the casting process, were obtained. The achieved results were compared with those generated by NovaFlow & Solid®, which were shown to be similar, validating the parameters established in the simulations. Flow 3D® was proven a powerful tool for the simulation of casting parts.

키워드

저압, Flow 3D®, 시뮬레이션, 파운드리, 압력-시간 관계,Low Pressure, Flow 3D®, Simulation, Foundry, Pressure-time relation

Figure 4.24 - Model with virtual valves in the extremities of the geometries to simulate the permeability of the mold promoting a more uniformed filling
Figure 4.24 – Model with virtual valves in the extremities of the geometries to simulate the permeability of the mold promoting a more uniformed filling
Figure 4.39 - Values of temperature contours using full energy heat transfer parameter for simula
Figure 4.39 – Values of temperature contours using full energy heat transfer parameter for simula
Figure 4.40 – Comparison between software simulations (a) Flow 3D® simulation,
(b) NovaFlow & Solid® simulation
Figure 4.40 – Comparison between software simulations (a) Flow 3D® simulation, (b) NovaFlow & Solid® simulation

BIBLIOGRAPHY

[1] E. Stanley and D. B. Sc, “Fluid Flow Aspects of Solidification Modelling : Simulation
of Low Pressure Die Casting .”
[2] Y. Sahin, “Computer aided foundry die-design,” Metallography, vol. 24, no. 8, pp.
671–679, 2003.
[3] F. Bonollo, J. Urban, B. Bonatto, and M. Botter, “Gravity and low pressure die casting
of aluminium alloys : a technical and economical benchmark,” La Metall. Ital., vol. 97,
no. 6, pp. 23–32, 2005.
[4] P. a and R. R, “Study of the effect of process parameters on the production of a nonsimmetric low pressure die casting part,” La Metall. Ital., pp. 57–63, 2009.
[5] “Fundição em baixa pressão | Aluinfo.” [Online]. Available:
http://www.aluinfo.com.br/novo/materiais/fundicao-em-baixa-pressao. [Accessed: 18-
Sep-2015].
[6] “Low Pressure Sand Casting by Wolverine Bronze.” [Online]. Available:
http://www.wolverinebronze.com/low-pressure-sand-casting.php. [Accessed: 18-Sep2015].
[7] A. Reikher, “Numerical Analysis of Die-Casting Process in Thin Cavities Using
Lubrication Approximation,” no. December, 2012.
[8] P. Fu, A. a. Luo, H. Jiang, L. Peng, Y. Yu, C. Zhai, and A. K. Sachdev, “Low-pressure
die casting of magnesium alloy AM50: Response to process parameters,” J. Mater.
Process. Technol., vol. 205, no. 1–3, pp. 224–234, 2008.
[9] X. Li, Q. Hao, W. Jie, and Y. Zhou, “Development of pressure control system in
counter gravity casting for large thin-walled A357 aluminum alloy components,”
Trans. Nonferrous Met. Soc. China, vol. 18, no. 4, pp. 847–851, 2008.
[10] J. a. Hines, “Determination of interfacial heat-transfer boundary conditions in an
aluminum low-pressure permanent mold test casting,” Metall. Mater. Trans. B, vol. 35,
no. 2, pp. 299–311, 2004.
[11] A. Lima, A. Freitas, and P. Magalhães, “Processos de vazamento em moldações
permanentes,” pp. 40–49, 2003.
[12] Y. B. Choi, K. Matsugi, G. Sasaki, K. Arita, and O. Yanagisawa, “Analysis of
Manufacturing Processes for Metal Fiber Reinforced Aluminum Alloy Composite
Fabricated by Low-Pressure Casting,” Mater. Trans., vol. 47, no. 4, pp. 1227–1231,
68
2006.
[13] G. Mi, X. Liu, K. Wang, and H. Fu, “Numerical simulation of low pressure die-casting
aluminum wheel,” China Foundry, vol. 6, no. 1, pp. 48–52, 2009.
[14] J. Kuo, F. Hsu, and W. Hwang, “ADVANCED Development of an interactive
simulation system for the determination of the pressure ± time relationship during the
® lling in a low pressure casting process,” vol. 2, pp. 131–145, 2001.
[15] S.-G. Liu, F.-Y. Cao, X.-Y. Zhao, Y.-D. Jia, Z.-L. Ning, and J.-F. Sun, “Characteristics
of mold filling and entrainment of oxide film in low pressure casting of A356 alloy,”
Mater. Sci. Eng. A, vol. 626, pp. 159–164, 2015.
[16] “Casting Training Class – Lecture 10 – Solidification and Shrinkage-Casting.” FLOW3D®.
[17] “UAB Casting Engineering Laboratory.” [Online]. Available:
file:///C:/Users/Jos%C3%A9 Belo/Desktop/Artigo_Software/UAB Casting
Engineering Laboratory.htm. [Accessed: 09-Nov-2015].
[18] A. Louvo, “Casting Simulation as a Tool in Concurrent Engineering,” pp. 1–12, 1997.
[19] T. R. Vijayaram and P. Piccardo, “Computers in Foundries,” vol. 30, 2012.
[20] M. Sadaiah, D. R. Yadav, P. V. Mohanram, and P. Radhakrishnan, “A generative
computer-aided process planning system for prismatic components,” Int. J. Adv.
Manuf. Technol., vol. 20, no. 10, pp. 709–719, 2002.
[21] Ministry_of_Planning, “Digital Data,” vol. 67, pp. 1–6, 2004.
[22] S. Shamasundar, D. Ramachandran, and N. S. Shrinivasan, “COMPUTER
SIMULATION AND ANALYSIS OF INVESTMENTCASTING PROCESS.”
[23] J. M. Siqueira and G. Motors, “Simulation applied to Aluminum High Pressure Die
Casting,” pp. 1–5, 1998.
[24] C. Fluid, COMPUTATIONAL FLUID DYNAMICS. Abdulnaser Sayma & Ventus
Publishing ApS, 2009.
[25] C. a. Felippa, “1 – Overview,” Adv. Finite Elem. Methods, pp. 1–9.
[26] a. Meena and M. El Mansori, “Correlative thermal methodology for castability
simulation of ductile iron in ADI production,” J. Mater. Process. Technol., vol. 212,
no. 11, pp. 2484–2495, 2012.
[27] T. R. Vijayaram, S. Sulaiman, a. M. S. Hamouda, and M. H. M. Ahmad, “Numerical
simulation of casting solidification in permanent metallic molds,” J. Mater. Process.
69
Technol., vol. 178, pp. 29–33, 2006.
[28] “General CFD FAQ — CFD-Wiki, the free CFD reference.” [Online]. Available:
http://www.cfd-online.com/Wiki/General_CFD_FAQ. [Accessed: 10-Nov-2015].
[29] “FEM | FEA | CFD.” [Online]. Available: http://fem4analyze.blogspot.pt/. [Accessed:
09-Nov-2015].
[30] “Fundição; revista da Associação portuguesa de fundição,” Fundição, vol. N
o
227.
[31] “Casting Training Class – Lecture 1 – Introduction_to_FLOW-3D – Casting.” FLOW3D®.
[32] F. Science, “FLOW-3D Cast Documentation,” no. 3.5, p. 80, 2012.
[33] “Casting Training Class – Lecture 4 – Geometry Building – General.” FLOW-3D®.
[34] F. Science, “FLOW-3D v11.0.3 User Manual,” pp. 1–132, 2015.
[35] “Casting Training Class – Lecture 5 Meshing Concept – General.” FLOW-3D®.
[36] “Casting Training Class – Lecture 6 – Boundary_Conditions – Casting.” FLOW-3D®.
[37] “Casting Training Class – Lecture 9 – Physical Models-castings.” FLOW-3D®.
[38] P. A. D. Jácome, M. C. Landim, A. Garcia, A. F. Furtado, and I. L. Ferreira, “The
application of computational thermodynamics and a numerical model for the
determination of surface tension and Gibbs–Thomson coefficient of aluminum based
alloys,” Thermochim. Acta, vol. 523, no. 1–2, pp. 142–149, 2011.
[39] J. P. Anson, R. A. L. Drew, and J. E. Gruzleski, “The surface tension of molten
aluminum and Al-Si-Mg alloy under vacuum and hydrogen atmospheres,” Metall.
Mater. Trans. B Process Metall. Mater. Process. Sci., vol. 30, no. 6, pp. XVI–1032,
1999.

Figure 1: Mold drawings

3D Flow and Temperature Analysis of Filling a Plutonium Mold

플루토늄 주형 충전의 3D 유동 및 온도 분석

Authors: Orenstein, Nicholas P. [1]

Publication Date:2013-07-24
Research Org.: Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.: DOE/LANL
OSTI Identifier: 1088904
Report Number(s): LA-UR-13-25537
DOE Contract Number: AC52-06NA25396
Resource Type: Technical Report
Country of Publication: United States
Language: English
Subject: Engineering(42); Materials Science(36); Radiation Chemistry, Radiochemistry, & Nuclear Chemistry(38)

Introduction

The plutonium foundry at Los Alamos National Laboratory casts products for various special nuclear applications. However, plutonium’s radioactivity, material properties, and security constraints complicate the ability to perform experimental analysis of mold behavior. The Manufacturing Engineering and Technologies (MET-2) group previously developed a graphite mold to vacuum cast small plutonium disks to be used by the Department of Homeland Security as point sources for radiation sensor testing.

A two-stage pouring basin consisting of a funnel and an angled cavity directs the liquid into a vertical runner. A stack of ten disk castings connect to the runner by horizontal gates. Volumetric flow rates were implemented to limit overflow into the funnel and minimize foundry returns. Models using Flow-3D computational fluid dynamics software are employed here to determine liquid Pu flow paths, optimal pour regimes, temperature changes, and pressure variations.

Setup

Hardcopy drawings provided necessary information to create 3D .stl models for import into Flow-3D (Figs. 1 and 2). The mesh was refined over several iterations to isolate the disk cavities, runner, angled cavity, funnel, and input pour. The final flow and mold-filling simulation utilizes a fine mesh with ~5.5 million total cells. For the temperature study, the mesh contained 1/8 as many cells to reduce computational time and set temperatures to 850 °C for the molten plutonium and 500 °C for the solid graphite mold components (Fig. 3).

Flow-3D solves mass continuity and Navier-Stokes momentum equations over the structured rectangular grid model using finite difference and finite volume numerical algorithms. The solver includes terms in the momentum equation for body and viscous accelerations and uses convective heat transfer.

Simulation settings enabled Flow-3D physics calculations for gravity at 980.665 cm/s 2 in the negative Z direction (top of mold to bottom); viscous, turbulent, incompressible flow using dynamically-computed Renormalized Group Model turbulence calculations and no-slip/partial slip wall shear, and; first order, full energy equation heat transfer.

Mesh boundaries were all set to symmetric boundary conditions except for the Zmin boundary set to outflow and the Zmax boundary set to a volume flow. Vacuum casting conditions and the high reactivity of remaining air molecules with Pu validate the assumption of an initially fluidless void.

Results

The flow follows a unique three-dimensional path. The mold fills upwards with two to three disks receiving fluid in a staggered sequence. Figures 5-9 show how the fluid fills the cavity, and Figure 7 includes the color scale for pressure levels in these four figures. The narrow gate causes a high pressure region which forces the fluid to flow down the cavity centerline.

It proceeds to splash against the far wall and then wrap around the circumference back to the gate (Figs. 5 and 6). Flow in the angled region of the pouring basin cascades over the bottom ledge and attaches to the far wall of the runner, as seen in Figure 7.

This channeling becomes less pronounced as fluid volume levels increase. Finally, two similar but non-uniform depressed regions form about the centerline. These regions fill from their perimeter and bottom until completion (Fig. 8). Such a pattern is counter, for example, to a steady scenario in which a circle of molten Pu encompassing the entire bottom surface rises as a growing cylinder.

Cavity pressure becomes uniform when the cavity is full. Pressure levels build in the rising well section of the runner, where impurities were found to settle in actual casting. Early test simulations optimized the flow as three pours so that the fluid would never overflow to the funnel, the cavities would all fill completely, and small amounts of fluid would remain as foundry returns in the angled cavity.

These rates and durations were translated to the single 2.7s pour at 100 cm 3 per second used here. Figure 9 shows anomalous pressure fluctuations which occurred as the cavities became completely filled. Multiple simulations exhibited a rapid change in pressure from positive to negative and back within the newly-full disk and surrounding, already-full disks.

The time required to completely fill each cavity is plotted in Figure 10. Results show negligible temperature change within the molten Pu during mold filling and, as seen in Figure 11, at fill completion.

Figure 1: Mold drawings
Figure 1: Mold drawings
Figure 2: Mold Assembly
Figure 2: Mold Assembly
Figure 4: Actual mold and cast Pu
Figure 4: Actual mold and cast Pu
Figure 5: Bottom cavity filling
from runner
Figure 5: Bottom cavity filling from runner
Figure 6: Pouring and filling
Figure 6: Pouring and filling
Figure 8: Edge detection of cavity fill geometry. Two similar depressed areas form
about the centerline. Top cavity shown; same pressure scale as other figures
Figure 8: Edge detection of cavity fill geometry. Two similar depressed areas form about the centerline. Top cavity shown; same pressure scale as other figures
Figure 10: Cavity fill times,from first fluid contact with pouring basin, Figure 11:Fluid temperature remains essentially constant
Figure 10: Cavity fill times,from first fluid contact with pouring basin, Figure 11:Fluid temperature remains essentially constant

Conclusions

Non-uniform cavity filling could cause crystal microstructure irregularities during solidification. However, the small temperature changes seen – due to large differences in specific heat between Pu and graphite – over a relatively short time make such problems unlikely in this case.

In the actual casting, cooling required approximately ten minutes. This large difference in time scales further reduces the chance for temperature effects in such a superheated scenario. Pouring basin emptying decreases pressure at the gate which extends fill time of the top two cavities.

The bottom cavity takes longer to fill because fluid must first enter the runner and fill the well. Fill times continue linearly until the top two cavities. The anomalous pressure fluctuations may be due to physical attempts by the system to reach equilibrium, but they are more likely due to numerical errors in the Flow3D solver.

Unsuccessful tests were performed to remove them by halving fluid viscosity. The fine mesh reduced, but did not eliminate, the extent of the fluctuations. Future work is planned to study induction and heat transfer in the full Pu furnace system, including quantifying temporal lag of the cavity void temperature to the mold wall temperature during pre-heat and comparing heat flux levels between furnace components during cool-down.

Thanks to Doug Kautz for the opportunity to work with MET-2 and for assigning an interesting unclassified project. Additional thanks to Mike Bange for CFD guidance, insight of the project’s history, and draft review.

Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.

Numerical modelling of air-water flows in sewer drops

하수구 방울의 공기-물 흐름 수치 모델링

Paula Beceiro (corresponding author)
Maria do Céu Almeida
Hydraulic and Environment Department (DHA), National Laboratory for Civil Engineering, Avenida do Brasil 101, 1700-066 Lisbon, Portugal
E-mail: pbeceiro@lnec.pt
Jorge Matos
Department of Civil Engineering, Arquitecture and Geosources,
Technical University of Lisbon (IST), Avenida Rovisco Pais 1, 1049-001 Lisbon, Portugal

ABSTRACT

물 흐름에 용존 산소(DO)의 존재는 해로운 영향의 발생을 방지하는 데 유익한 것으로 인식되는 호기성 조건을 보장하는 중요한 요소입니다.

하수도 시스템에서 흐르는 폐수에 DO를 통합하는 것은 공기-액체 경계면 또는 방울이나 접합부와 같은 특이점의 존재로 인해 혼입된 공기를 통한 연속 재방출의 영향을 정량화하기 위해 광범위하게 조사된 프로세스입니다. 공기 혼입 및 후속 환기를 향상시키기 위한 하수구 드롭의 위치는 하수구의 호기성 조건을 촉진하는 효과적인 방법입니다.

본 논문에서는 수직 낙하, 배경 및 계단식 낙하를 CFD(전산유체역학) 코드 FLOW-3D®를 사용하여 모델링하여 이러한 유형의 구조물의 존재로 인해 발생하는 난류로 인한 공기-물 흐름을 평가했습니다. 이용 가능한 실험적 연구에 기초한 수력학적 변수의 평가와 공기 혼입의 분석이 수행되었습니다.

이러한 구조물에 대한 CFD 모델의 결과는 Soares(2003), Afonso(2004) 및 Azevedo(2006)가 개발한 해당 물리적 모델에서 얻은 방류, 압력 헤드 및 수심의 측정을 사용하여 검증되었습니다.

유압 거동에 대해 매우 잘 맞았습니다. 수치 모델을 검증한 후 공기 연행 분석을 수행했습니다.

The presence of dissolved oxygen (DO) in water flows is an important factor to ensure the aerobic conditions recognised as beneficial to prevent the occurrence of detrimental effects. The incorporation of DO in wastewater flowing in sewer systems is a process widely investigated in order to quantify the effect of continuous reaeration through the air-liquid interface or air entrained due the presence of singularities such as drops or junctions. The location of sewer drops to enhance air entrainment and subsequently reaeration is an effective practice to promote aerobic conditions in sewers. In the present paper, vertical drops, backdrops and stepped drop was modelled using the computational fluid dynamics (CFD) code FLOW-3D® to evaluate the air-water flows due to the turbulence induced by the presence of this type of structures. The assessment of the hydraulic variables and an analysis of the air entrainment based in the available experimental studies were carried out. The results of the CFD models for these structures were validated using measurements of discharge, pressure head and water depth obtained in the corresponding physical models developed by Soares (2003), Afonso (2004) and Azevedo (2006). A very good fit was obtained for the hydraulic behaviour. After validation of numerical models, analysis of the air entrainment was carried out.

Key words | air entrainment, computational fluid dynamics (CFD), sewer drops

Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.
Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.
Figure 3. Comparison between the experimental and numerical pressure head along of the invert of the outlet pipe.
Figure 3. Comparison between the experimental and numerical pressure head along of the invert of the outlet pipe.
Figure 4. Average void fraction along the longitudinal axis of the outlet pipe for the lower discharges in the vertical drop and backdrop.
Figure 4. Average void fraction along the longitudinal axis of the outlet pipe for the lower discharges in the vertical drop and backdrop.

REFERENCES

Afonso, J. Dissipação de energia e rearejamento em quedas em colectores. M.Sc. Thesis, UTL/IST, Lisboa, Portugal.
Almeida, M. C., Butler, D. & Matos, J. S. Reaeration by sewer drops. In: 8th Int. Conf. on Urban Storm Drainage, Sydney, Australia.
Azevedo, R. I. Transferência de oxigénio em quedas guiadas em colectores. M.Sc. Thesis, IST, Lisboa, Portugal.
Beceiro, P., Almeida, M. C. & Matos, J. Numerical Modelling of air-water flows in a vertical drop and a backdrop. In: 3rd IAHR Europe Congress, Porto, Portugal.
Bombardelli, F. A., Meireles, I. & Matos, J. S. Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of step stepped spillways. Environ. Fluid Mech. 11 (3), 263–288.
Brethour, J. M. & Hirt, C. W. Drift Model for TwoComponent Flows. Flow Science, Inc., Los Alamos, NM, USA.
Chamani, M. R. Jet Flow on Stepped Spillways and Drops. M.Sc. Thesis, University of Alberta, Alberta, Canada.
Chanson, H. Air Bubble Entrainment in Free-Surface Turbulent Shear Flow. Academic Press Inc., California, USA.
Chanson, H. Air bubble entrainment in open channels: flow structure and bubble size distribution. Int. J. Multiphase 23 (1), 193–203.
Chanson, H. Hydraulics of aerated flows: qui pro quo? Journal of Hydraulic Research 51 (3), 223–243.
Dufresne, M., Vazques, J., Terfous, A., Ghenaim, A. & Poulet, J. Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank. Computer and Fluids 38, 1042–1049.
Durve, A. P. & Patwardhan, A. W. Numerical and experimental investigation of onset of gas entrainment phenomenon. Chemical Engineering Science 73, 140–150.
Felder, S. & Chanson, H. Air–water flows and free-surface profiles on a non-uniform stepped chute. Journal of Hydraulic Research 52 (2), 253–263.
Flow Science FLOW-3D User’s Manuals Version 10.0. Vol.1/2. Flow Science Inc., Los Alamos, NM, USA.
Granata, F., Marinis, G., Gargano, R. & Hager, W. H. Energy loss in circular drop manholes. In: 33rd IAHR Congress: Water Engineering for Sustainable Environment, British
Columbia, Vancouver, Canada. Hirt, C. W. Modeling Turbulent Entrainment of air at A Free Surface. Flow Science Inc., Los Alamos, NM, USA.
Hirt, C. W. & Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39, 201–225.
Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proc. 4th Int, Conf. Ship Hydro., National Academy of Science, Washington, DC, USA.
Isfahani, A. H. G. & Brethour, J. On the Implementation of Two-Equation Turbulence Models in FLOW-3D. Flow Science Inc., Los Alamos, NM, USA.
Kouyi, G. L., Bret, P., Didier, J. M., Chocat, B. & Billat, C. The use of CFD modelling to optimise measurement of overflow rates in a downstream-controlled dual-overflow structure. Water Science and Technology 64 (2), 521–527.
Lopes, P., Leandro, J., Carvalho, R. F., Páscoa, P. & Martins, R. Numerical and experimental investigation of a gully under surcharge conditions. Urban Water Journal 12 (6), 468–476.
Martins, R., Leandro, J. & Carvalho, R. F. Characterization of the hydraulic performance of a gully under drainage conditions. Water Science and Technology 69 (12), 2423–2430.
Matias, N., Nielsel, A. H., Vollertsen, J., Ferreira, F. & Matos, J. S. Reaeration and hydrogen sulfide release at drop structures. In: 8th International Conference on Sewer Processes and Networks (SPN8), Rotterdam, Netherlands.
Matos, J. S. & Sousa, E. R. Prediction of dissolved oxygen concentration along sanitary sewers. Water Science and Technology 34 (5–6), 525–532.
Mignot, E., Bonakdari, H., Knothe, P., Lipeme Kouyi, G., Bessette, A., Rivière, N. & Bertrand-Krajewski, J. L. Experiments and 3D simulations of flow structures in junctions and of their influence on location of flowmeters. In: 12th International Conference on Urban Drainage, Porto Alegre, Brazil.
Ozmen-Cagatay, H. & Kocaman, S. Dam-break flow in the presence of obstacle: experiment and CFD Simulation. Engineering Applications of Computational Fluid Mechanics 5 (4), 541–552.
Shojaee Fard, M. H. & Boyaghchi, F. A. Studies of the influence of various blade outlet angles in a centrifugal pump when handling viscous fluids. American Journal of Applied Sciences 4 (9), 718–724.
Soares, A. Rearejamento em Quedas em Colectores de Águas Residuais. M.Sc. Thesis, FCTUC, Coimbra, Portugal.
Sousa, C. M. & Lopes, R. R. Hidráulica e rearejamento em quedas verticais em colectores. Estudo Experimental. Research Report, UTL/IST, Lisboa, Portugal.
Sousa, V., Meireles, I., Matos, J. & Almeida, M. C. Numerical modelling of air-water flow in a vertical drop manhole. In: 7th International Conference on Sewer Processes and Networks (SPN7), Shefield, UK.
Stovin, V., Guymer, I. & Lau, S. D. Approaches to validating a 3D CFD manhole model. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
Tota, P. V. Turbulent Flow Over A Backward-Facing Step Using the RNG Model. Flow Science Inc., Los Alamos, NM, USA.
Valero, D. & García-Bartual, R. Calibration of an air entrainment model for CFD spillway applications. In: Advances in Hydroinformatics. Springer, Singapore, pp. 571–582.
Versteeg, H. K. & Malalasekera, W. An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Longman Group limited, England.
Yang, Y., Yang, J., Zuo, J., Li, Y., He, S., Yang, X. & Zhang, K. Study on two operating conditions of a full-scale oxidation ditch for optimization of energy consumption and effluent quality by using CFD model. Water Research 45 (11), 3439–3452.
Zhai, A. J., Zhang, Z., Zhang, W. & Chen, Q. Y. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part 1— summary of prevalent Turbulence models. HVAC&R Research 13 (6), 853–870.
Zhao, C., Zhu, D. Z. & Rajaratnam, N. Computational and experimental study of surcharged flow at a 90W combining sewer junction. Journal of Hydraulic Engineering 134 (6), 688–700.

Fig. 6 LH2 isotherms at 1020 s.

액체-수소 탱크를 위한 결합된 열역학-유체-역학 솔루션

Coupled thermodynamic-fluid-dynamic solution for a liquid-hydrogen tank

G. D. Grayson

Published Online:23 May 2012 https://doi.org/10.2514/3.26706

Tools Share

Free first page

Introduction

ROPELLANT 열 성층화 및 외부 교란에 대한 유체 역학적 반응은 발사체와 우주선 모두에서 중요합니다. 과거에는 결합된 솔루션을 제공할 수 있는 충분한 계산 기술이 부족하여 이러한 문제를 개별적으로 해결했습니다.1

이로 인해 모델링 기술의 불확실성을 허용하기 위해 큰 안전 계수를 가진 시스템이 과도하게 설계되었습니다. 고중력 환경과 저중력 환경 모두에서 작동하도록 설계된 미래 시스템은 기술적으로나 재정적으로 실현 가능하도록 과잉 설계 및 안전 요소가 덜 필요합니다.

이러한 유체 시스템은 열역학 및 유체 역학이 모두 중요한 환경에서 모델의 기능을 광범위하게 검증한 후에만 고충실도 수치 모델을 기반으로 할 수 있습니다. 상용 컴퓨터 코드 FLOW-3D2는 유체 역학 및 열 모델링 모두에서 가능성을 보여주었으며,1 따라서 열역학-유체-역학 엔지니어링 문제에서 결합된 질량, 운동량 및 에너지 방정식을 푸는 데 적합함을 시사합니다.

발사체의 복잡한 액체 가스 시스템에 대한 포괄적인 솔루션을 달성하기 위한 첫 번째 단계로 액체 유체 역학과 열역학을 통합하는 제안된 상단 단계 액체-수소(Lit) 탱크의 간단한 모델이 여기에 제시됩니다. FLOW-3D FLOW-3D 프로그램은 Los Alamos Scientific Laboratory에서 시작되었으며 마커 및 셀 방법에서 파생된 것입니다.3 현재 상태로 가져오기 위해 수년에 걸쳐 광범위한 코드 수정이 이루어졌습니다.2

프로그램은 다음과 같습니다. 일반 Navier-Stokes 방정식을 풀기 위해 수치 근사의 중앙 유한 차분 방법을 사용하는 3차원 유체 역학 솔버입니다. 모멘텀 및 에너지 방정식의 섹션은 특정 응용 프로그램에 따라 활성화 또는 비활성화할 수 있습니다.

코드는 1994년 9월 13일 접수를 인용하기 위해 무액체 표면, 복잡한 용기 기하학, 여러 점성 모델, 표면 장력, 다공성 매체를 통한 흐름 및 응고와 함께 압축성 또는 비압축성 유동 가정을 제공합니다. 1995년 1월 15일에 받은 개정; 1995년 2월 17일 출판 승인.

ROPELLANT thermal stratification and fluid-dynamic response to external disturbances are of concern in both launch vehicles and spacecraft. In the past these problems have been addressed separately for want of sufficient computational technology to provide for coupled solutions.1 This has resulted in overdesigned systems with large safety factors to allow for the uncertainty in modeling techniques. Future systems designed to perform in both highand low-gravity environments will require less overdesign and safety factors to be technically and financially feasible. Such fluid systems can be based on high-fidelity numerical models only after extensive validation of the models’ capabilities in environments where both the thermodynamics and the fluid dynamics are important. The commercial computer code FLOW-3D2 has shown promise in both fluid-dynamic and thermal modeling,1 thus suggesting suitability for solving the coupled mass, momentum, and energy equations in thermodynamic-fluid-dynamic engineering problems. As a first step to achieving a comprehensive solution for complex liquidgas systems in a launch vehicle, a simple model of a proposed upper-stage liquid-hydrogen (Lit) tank incorporating the liquid fluid dynamics and thermodynamics is presented here. FLOW-3D The FLOW-3D program originated at the Los Alamos Scientific Laboratory and is a derivative of the marker-and-cell method.3 Extensive code modifications have been made over the years to bring it to its present state.2 The program is a three-dimensional fluiddynamic solver that uses a central finite-difference method of numerical approximation to solve the general Navier-Stokes equations. Sections of the momentum and energy equations can be enabled or disabled depending on the particular application. The code provides compressible or incompressible flow assumptions with liquid free surfaces, complex container geometries, several viscosity models, surface tension, flow though porous media, and solidification, to cite Received Sept. 13, 1994; revision received Jan. 15, 1995; accepted for publication Feb. 17, 1995. Copyright © 1995 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. *Engineer/Scientist, Propulsion Analysis and Hydraulics, Space Transportation Division, MS 13-3, 5301 Bolsa Avenue. Member AIAA. a few of the possibilities. Further information on FLOW-3D’s capabilities and details of the numerical algorithms can be found in Ref. 2

Fig. 1 Axial-acceleration history.
Fig. 1 Axial-acceleration history.
Fig. 2 Heat flux histories.
Fig. 2 Heat flux histories.
Fig. 3 LHi isotherms at 50 s.
Fig. 3 LHi isotherms at 50 s.
Fig. 4 LH2 isotherms at 300 s
Fig. 4 LH2 isotherms at 300 s
Fig. 5 LH2 isotherms at 880 s.
Fig. 5 LH2 isotherms at 880 s.
Fig. 6 LH2 isotherms at 1020 s.
Fig. 6 LH2 isotherms at 1020 s.
Fig. 7 Tank-outlet temperature history.
Fig. 7 Tank-outlet temperature history.
Fig. 1 Geometrical 3D model of Caisson

환기실에서 의도된 삼중수소 방출 후 삼중수소 거동 시뮬레이션

Simulation of Tritium Behavior after Intended Tritium Release in Ventilated Room


Yasunori IWAI
, Takumi HAYASHI, Toshihiko YAMANISHI, Kazuhiro KOBAYASHI & Masataka NISHI

Abstract

일본원자력연구소(JAERI) 산하 삼중수소공정연구소(TPL)에서는 핵융합로의 안전성 확인 및 강화를 위해 12m3의 대형 밀폐용기(Caisson)로 삼중수소 안전 연구(CATS)용 케이슨 조립체를 제작하여 추정 삼중수소 누출 이벤트가 발생해야 하는 경우 삼중수소 거동. 본 연구의 주요 목적 중 하나는 환기실에서 삼중수소 누출 사건이 발생한 후 삼중수소 거동을 예측하기 위한 시뮬레이션 방법을 확립하는 것입니다.

RNG 모델은 허용 가능한 엔지니어링 정밀도로 50m3/h 환기 케이슨에서 맴돌이 흐름 계산에 유효한 것으로 밝혀졌습니다. 의도된 삼중수소 방출 후 계산된 초기 및 제거 삼중수소 농도 이력은 50m3/h 환기 케이슨에서 실험 관찰과 일치했습니다.

환기실의 삼중수소 수송에는 벽 근처의 흐름이 중요한 역할을 하는 것으로 밝혀졌다. 한편, 3,000m3의 삼중수소 취급실에서 의도적으로 방출된 삼중수소 거동은 미일 협력하에 실험적으로 조사되었습니다. 동일한 방법으로 계산된 삼중수소 농도 이력은 실험적 관찰과 일치하였으며, 이는 현재 개발된 방법이 삼중수소 취급실의 실제 규모에 적용될 수 있음을 입증한다.

At the Tritium Process Laboratory (TPL) at the Japan Atomic Energy Research Institute (JAERI), Caisson Assembly for Tritium Safety study (CATS) with 12 m3 of large airtight vessel (Caisson) was fabricated for confirmation and enhancement of fusion reactor safety to estimate tritium behavior in the case where a tritium leak event should happen. One of the principal objectives of the present studies is the establishment of simulation method to predict the tritium behavior after the tritium leak event should happen in a ventilated room. The RNG model was found to be valid for eddy flow calculation in the 50m3/h ventilated Caisson with acceptable engineering precision. The calculated initial and removal tritium concentration histories after intended tritium release were consistent with the experimental observations in the 50 m3/h ventilated Caisson. It is found that the flow near a wall plays an important role for the tritium transport in the ventilated room. On the other hand, tritium behavior intentionally released in the 3,000 m3 of tritium handling room was investigated experimentally under a US-Japan collaboration. The tritium concentration history calculated with the same method was consistent with the experimental observations, which proves that the present developed method can be applied to the actual scale of tritium handling room.

KEYWORDS: 

Fig. 1 Geometrical 3D model of Caisson
Fig. 1 Geometrical 3D model of Caisson
Fig. 2 Geometrical 3D model of "main cell" of TSTA
Fig. 2 Geometrical 3D model of “main cell” of TSTA

REFERENCES

(1) Los Alamos National Laboratory: Final Safety Analysis Report of Tritium Systems Test Assembly at the Los Alamos National Laboratory, TSTA-SAR, (1996).
(2) Naruse, Y., Matsuda, Y., Tanaka, K.: Fusion Eng. Des., 12, 293 (1990).
(3) Schira, P., Hutter, E., Jourdan, G., Penzhone, R.: Fu-VOL. 38, NO. 1, JANUARY 2001 sion Eng. Des., 18, 19 (1991).
(4) Bartlit, J. R., Anderson, J. L., Jalbert, R. A., Carl-son, R. V., Okuno, K., Ide, T., Fukui, H., Enoeda, M., Naruse, Y.: Proc. 13th SOFE, Knoxville, TN., U.S.A., 798 (1989).
(5) Hayashi, T., Kobayashi, K., Iwai, Y., Yamanishi, T., Nishi, M., Okuno, K., Carlson, R. V., Willms, R. S., Hyatt, D., Roybal, B.: Fusion Thecnol., 34, 521 (1998).
(6) Hayashi, T., Kobayashi, K., Iwai, Y., Yamada, M., Suzuki, T., O’hira, S., Nakamura, H., Shu, W., Yama-nishi, T., Kawamura, Y., Isobe, K., Konishi, S., Nishi, M.: Submitted to Fusion Eng. Des. (1999).
(7) Yakhot, V., Orgazag, S. A.: J. Sci. Comput., 1, 3 (1986).
(8) Hirt, C. W., Cook, J. L.: J. Comp. Phys., 10, 324 (1972).
(9) Daiguji, H., Miyake, Y., Yoshizawa, A.: “Computa-tional Fluid Dynamics of Turbulent Flow-Models and Numerical Methods”, Univ. of Tokyo Press, Tokyo, 183 (1998), [in Japanese].
(10) Hinze, J. 0.: “Turbulence”, McGraw-Hill, New York, 227 (1959).
(11) Launder, B. E., Spalding, D. B.: “Mathematical Models of Turbulence”, Academics, London, (1972).
(12) Jones, W. P., Launder, B. E.: Int. J. Heat Mass Trans-fer, 15, 301 (1972).
(13) Jones, W. P., Launder, B. E.: Int. J. Heat Mass Trans-fer, 16, 1119 (1973).
(14) Hanjalic, K., Launder, B. E.: J. Fluid Mech., 52, 609 (1972).
(15) Harlow, F. W., Nakayama, P. I.: Phys. Fluids, 10, 2303 (1967).
(16) Nakayama, P. I.: 8th Aerospace Science Meeting, AIAA paper No. 70-3, (1970).
(17) Boussinesq, J.: “Theorie Analytique de la chaleur”, Ganthier-Villars, Paris, 157 (1903).
(18) Hashimoto, K.: “Chemical Reaction Engineering”, (1st ed.), Baifuukan, Tokyo, 173 (1979), [in Japanese].
(19) Iwai, Y., Hayashi, T., Kobayashi, K., O’hira, S., Nishi, M.: Submitted to Fusion Eng. Des. (2000).

Figura 7. Influencia del modelo de turbulencia. Qmodelo=27.95l/s.

Flow-3D를 사용하여 전산유체역학(CFD)을 적용한 빠른 단계의 플러시 유동 수치 모델링

Numerical Modeling of Flush Flow in a Rapid Step Applying Computational Fluid Dynamics (CFD) Using Flow-3D.

레브 폴리텍. (Quito) [온라인]. 2018, vol.41, n.2, pp.53-64. ISSN 2477-8990.

이 프로젝트의 주요 목표는 FLOW-3D를 사용하여 계단식 여수로에서 스키밍 흐름의 수치 모델링을 개발하는 것입니다. 이러한 구조의 설계는 물리적 모델링에서 얻은 경험적 표현과 CFD 코드를 지원하는 계단식 여수로를 통한 흐름의 수치 모델링에서 보완 연구를 기반으로 합니다. 수치 모델은 균일한 영역의 유속과 계단 여수로의 마찰 계수를 추정하는 데 사용됩니다(ϴ = 45º, Hd=4.61m). 흐름에 대한 자동 통기의 표현은 복잡하므로 프로그램은 공기 연행 모델을 사용하여 특정 제한이 있는 솔루션에 근접합니다.

The main objective of this project is to develop the numerical modeling of the skimming flow in a stepped spillway using FLOW-3D. The design of these structures is based on the use of empirical expressions obtained from physical modeling and complementary studies in the numerical modeling of flow over the stepped spillway with support of CFD code. The numerical model is used to estimate the flow velocity in the uniform region and the friction coefficient of the stepped spillway (ϴ = 45º, Hd=4.61m). The representation of auto aeration a flow is complex, so the program approximates the solution with certain limitations, using an air entrainment model; drift flux model and turbulence model k-ԑ RNG. The results obtained with numerical modeling and physical modeling at the beginning of natural auto aeration of flow and depth of the biphasic flow in the uniform region presents deviations above to 10% perhaps the flow is highly turbulent.

Keywords : Stepped spillway; skimming flow; air entrainment; drift flux; numerical modeling; FLOW-3D.

Keywords : 계단식 여수로; 스키밍 흐름; 공기 연행; 드리프트 플럭스; 수치 모델링; 흐름-3D.· 

스페인어로 된 초록 · 스페인어 로 된 텍스트 · 스페인어로 된 텍스트( pdf 

Figure 1. Grazing flow over a rapid step.
Figure 1. Grazing flow over a rapid step.
Figura 2. Principales regiones existentes en un flujo rasante.
Figura 2. Principales regiones existentes en un flujo rasante.
Figure 3. Dimensions of the El Batán stepped rapid.
Figure 3. Dimensions of the El Batán stepped rapid.
Figure 4. 3D physical model of the El Batán stepped rapid
Figure 4. 3D physical model of the El Batán stepped rapid
Figura 7. Influencia del modelo de turbulencia. Qmodelo=27.95l/s.
Figura 7. Influencia del modelo de turbulencia. Qmodelo=27.95l/s.

REFERENCIAS

ARAGUA. (2013). “Modelación numérica y experimental de flujos aire-agua
en caídas en colectores.”, Laboratório Nacional de Engenharia Civil, I.
P. Av do Brasil 101 • 1700-066 Lisboa.
Bombardelli, F.A., Meireles, I. and Matos, J., (2010), “Laboratory
measurement and multi-block numerical simulations of the mean flow
and turbulence in the non-aerated skimming flow region of steep stepped
spillways”, Environ Fluid Mechanics.
Castro M. (2015) “Análisis Dimensional y Modelación física en Hidráulica”.
Escuela Politécnica Nacional. Quito Ecuador. 50 p.
Chanson H., D. B. Bung., J. Matos (2015). “Stepped spillways and cascades”.
IAHR Monograph. School of Civil Engineering, University of
Queensland, Brisbane, Australia.
Chanson H. (1993). “Stepped Spillway Flows and Air Entrainment.” Can. Jl
of Civil Eng., Vol. 20, No. 3, June, pp. 422-435 (ISSN 0315-1468).
CIERHI, EPN TECH, (2016). “Estudio experimental en modelo físico de las
rápidas con perfil escalonado y liso de la quebrada el Batán Fase I y Fase
II”, Escuela Politécnica Nacional, Quito Ecuador.
Fernández Oro J. M. (2012)., “Técnicas Numéricas en Ingeniería de Fluidos:
Introducción a la Dinámica de Fluidos Computacional (CFD) por el
Método de Volúmenes Finitos”. Barcelona: Reverté.
Flow Science, Inc. (2012). “FLOW 3D 10.1.0 Documentation Release.
Manual de Usuario”, Los Alamos National Laboratory. Santa Fe, New
México
Khatsuria, R.M., (2005)., “Hydraulics of Spillways and Energy Dissipators”.
Department of Civil and Environmental Engineering Georgia Institute
of Technology Atlanta.
Lucio I., Matos J., Meireles I. (2015). “Stepped spillway flow over small
embankment dams: some computational experiments”. 15th FLOW-3D
European users conference.
Mohammad S., Jalal A. and Michael P., (2012). “Numerical Computation of
Inception Point Location for Steeply Sloping Stepped Spillways” 9th
International Congress on Civil Engineering. Isfahan University of
Technology (IUT), Isfahan, Iran
Pfister M., Chanson H., (2013), “Scale Effects in Modelling Two-phase Airwater Flows”, Proceedings of 2013 IAHR World Congress.
Sarfaraz, M. and Attari, J. (2011), “Numerical Simulation of Uniform Flow
Region over a Steeply Sloping Stepped Spillway”, 6th National
Congress on Civil Engineering, Semnan University, Semnan, Iran.
Valero, D., Bung, D., (2015), “Hybrid investigation of air transport processes
in moderately sloped stepped spillway flows”, E-proceedings of the 36th
IAHR World Congress 28 June – 3 July, 2015, The Hague, the Netherlands.

Serife Yurdagul Kumcu−2−KSCE Journal of Civil Engineeringthe use of CFD for the assessment of a design, as well as screeningand optimizing of hydraulic structures and cofferdam layouts. Theyconclude that CFD has been successful in optimizing the finalconceptual configuration for the hydraulics design of the project,but recommend that physical modeling still be used as a finalconfirmation.This paper provides experimental studies performed on Kav akDam and analyses the stability of spillway design by usingFLOW-3D model. It compares the hydraulic model tests withFLOW-3D simulation results and gives information on howaccurately a commercially available Computational Fluid Dynamic(CFD) model can predict the spillway discharge capacity andpressure distribution along the spillway bottom surface. 2. Physical ModelA 1/50-scaled undistorted physical model of the Kavsak Damspillway and stilling basin was built and tested at the HydraulicModel Laboratory of State Hydraulic Works of Turkey (DSI).The model was constructed of plexiglas and was fabricated toconform to the distinctive shape of an ogee crest. The spillwayhas 45.8 m in width and 57 m long with a bottom slope of 125%.The length of the stilling basin is about 90 m. During model tests,flow velocities were measured with an ultrasonic flow meter.Pressures on the spillway were measured using a piezometerssçTable 1. Upstream and Downstream Operating Conditions of theKavsak DamRun Upstream reservoir elevation (m)Downstream tailwater elevation (m)1 306.55 168.002 311.35 174.503 314.00 178.904 316.50 182.55Fig. 1. (a) Original Project Design and Final Project Design after Experimental Investigations and Flow Measurement Sections at theApproach, (b) Top View Experimentally Modified Approach in the Laboratory, (c) Side View of the Experimentally Modified Approachin the Laboratory

Investigation of flow over spillway modeling and comparison between experimental data and CFD analysis

여수로 모델링 및 실험 데이터와 CFD 해석의 비교에 대한 조사

DOI:10.1007/s12205-016-1257-z

Authors:

Serife Yurdagul Kumcu at Necmettin Erbakan Üniversitesi

Serife Yurdagul Kumcu

Abstract and Figures

As a part of design process for hydro-electric generating stations, hydraulic engineers typically conduct some form of model testing. The desired outcome from the testing can vary considerably depending on the specific situation, but often characteristics such as velocity patterns, discharge rating curves, water surface profiles, and pressures at various locations are measured. Due to recent advances in computational power and numerical techniques, it is now also possible to obtain much of this information through numerical modeling. In this paper, hydraulic characteristics of Kavsak Dam and Hydroelectric Power Plant (HEPP), which are under construction and built for producing energy in Turkey, were investigated experimentally by physical model studies. The 1/50-scaled physical model was used in conducting experiments. Flow depth, discharge and pressure data were recorded for different flow conditions. Serious modification was made on the original project with the experimental study. In order to evaluate the capability of the computational fluid dynamics on modeling spillway flow a comparative study was made by using results obtained from physical modeling and Computational Fluid Dynamics (CFD) simulation. A commercially available CFD program, which solves the Reynolds-averaged Navier-Stokes (RANS) equations, was used to model the numerical model setup by defining cells where the flow is partially or completely restricted in the computational space. Discharge rating curves, velocity patterns and pressures were used to compare the results of the physical model and the numerical model. It was shown that there is reasonably good agreement between the physical and numerical models in flow characteristics.

수력 발전소 설계 프로세스의 일부로 수력 엔지니어는 일반적으로 어떤 형태의 모델 테스트를 수행합니다. 테스트에서 원하는 결과는 특정 상황에 따라 상당히 다를 수 있지만 속도 패턴, 방전 등급 곡선, 수면 프로파일 및 다양한 위치에서의 압력과 같은 특성이 측정되는 경우가 많습니다. 최근 계산 능력과 수치 기법의 발전으로 인해 이제는 수치 모델링을 통해 이러한 정보의 대부분을 얻을 수도 있습니다.

본 논문에서는 터키에서 에너지 생산을 위해 건설 중인 Kavsak 댐과 수력발전소(HEPP)의 수력학적 특성을 물리적 모델 연구를 통해 실험적으로 조사하였다. 1/50 스케일의 물리적 모델이 실험 수행에 사용되었습니다. 다양한 흐름 조건에 대해 흐름 깊이, 배출 및 압력 데이터가 기록되었습니다. 실험 연구를 통해 원래 프로젝트에 대대적인 수정이 이루어졌습니다.

배수로 흐름 모델링에 대한 전산유체역학의 능력을 평가하기 위해 물리적 모델링과 전산유체역학(CFD) 시뮬레이션 결과를 이용하여 비교 연구를 수행하였습니다. RANS(Reynolds-averaged Navier-Stokes) 방정식을 푸는 상업적으로 이용 가능한 CFD 프로그램은 흐름이 계산 공간에서 부분적으로 또는 완전히 제한되는 셀을 정의하여 수치 모델 설정을 모델링하는 데 사용되었습니다.

물리적 모델과 수치 모델의 결과를 비교하기 위해 배출 등급 곡선, 속도 패턴 및 압력을 사용했습니다. 유동 특성에서 물리적 모델과 수치 모델 간에 상당히 좋은 일치가 있는 것으로 나타났습니다.

Serife Yurdagul Kumcu−2−KSCE Journal of Civil Engineeringthe use of CFD for the assessment of a design, as well as screeningand optimizing of hydraulic structures and cofferdam layouts. Theyconclude that CFD has been successful in optimizing the finalconceptual configuration for the hydraulics design of the project,but recommend that physical modeling still be used as a finalconfirmation.This paper provides experimental studies performed on Kav akDam and analyses the stability of spillway design by usingFLOW-3D model. It compares the hydraulic model tests withFLOW-3D simulation results and gives information on howaccurately a commercially available Computational Fluid Dynamic(CFD) model can predict the spillway discharge capacity andpressure distribution along the spillway bottom surface. 2. Physical ModelA 1/50-scaled undistorted physical model of the Kavsak Damspillway and stilling basin was built and tested at the HydraulicModel Laboratory of State Hydraulic Works of Turkey (DSI).The model was constructed of plexiglas and was fabricated toconform to the distinctive shape of an ogee crest. The spillwayhas 45.8 m in width and 57 m long with a bottom slope of 125%.The length of the stilling basin is about 90 m. During model tests,flow velocities were measured with an ultrasonic flow meter.Pressures on the spillway were measured using a piezometerssçTable 1. Upstream and Downstream Operating Conditions of theKavsak DamRun Upstream reservoir elevation (m)Downstream tailwater elevation (m)1 306.55 168.002 311.35 174.503 314.00 178.904 316.50 182.55Fig. 1. (a) Original Project Design and Final Project Design after Experimental Investigations and Flow Measurement Sections at theApproach, (b) Top View Experimentally Modified Approach in the Laboratory, (c) Side View of the Experimentally Modified Approachin the Laboratory
Serife Yurdagul Kumcu−2−KSCE Journal of Civil Engineeringthe use of CFD for the assessment of a design, as well as screeningand optimizing of hydraulic structures and cofferdam layouts. Theyconclude that CFD has been successful in optimizing the finalconceptual configuration for the hydraulics design of the project,but recommend that physical modeling still be used as a finalconfirmation.This paper provides experimental studies performed on Kav akDam and analyses the stability of spillway design by usingFLOW-3D model. It compares the hydraulic model tests withFLOW-3D simulation results and gives information on howaccurately a commercially available Computational Fluid Dynamic(CFD) model can predict the spillway discharge capacity andpressure distribution along the spillway bottom surface. 2. Physical ModelA 1/50-scaled undistorted physical model of the Kavsak Damspillway and stilling basin was built and tested at the HydraulicModel Laboratory of State Hydraulic Works of Turkey (DSI).The model was constructed of plexiglas and was fabricated toconform to the distinctive shape of an ogee crest. The spillwayhas 45.8 m in width and 57 m long with a bottom slope of 125%.The length of the stilling basin is about 90 m. During model tests,flow velocities were measured with an ultrasonic flow meter.Pressures on the spillway were measured using a piezometerssçTable 1. Upstream and Downstream Operating Conditions of theKavsak DamRun Upstream reservoir elevation (m)Downstream tailwater elevation (m)1 306.55 168.002 311.35 174.503 314.00 178.904 316.50 182.55Fig. 1. (a) Original Project Design and Final Project Design after Experimental Investigations and Flow Measurement Sections at theApproach, (b) Top View Experimentally Modified Approach in the Laboratory, (c) Side View of the Experimentally Modified Approachin the Laboratory

References

Bureau of Reclamation (1977). Design of small dams, U.S. Government Printing Office, Washington, D.C., U.S.

Bureau of Reclamation (1990). Cavitation in chute and spillways, Engineering Monograph, No.42, U.S. Chanel, P. G. (2008). An evaluation of computational fluid dynamics for

spillway modeling, MSc Thesis, University of Manitoba Winnipeg, Manitoba, Canada.

Chanson, H. (2002). The hydraulics of stepped chutes and spillways,Balkema, Lisse, The Netherlands.

Chanson, H. and Gonzalez, C. A. (2005). “Physical modeling and scale effects of air-water flows on stepped spillways.” Journal of Zhejiang University Science, Vol. 6A, No. 3, pp. 243-250.

Demiroz, E. (1986). “Specifications of aeration structures which are added to the spillways.” DSI Report, HI-754, DSI-TAKK Publications, Ankara, Turkey.

Erfanain-Azmoudeh, M. H. and Kamanbedast, A. A. (2013). “Determine the appropriate location of aerator system on gotvandoliadam’s spillway using Flow 3D.” American-Eurasian J. Agric. & Environ. Sci., Vol. 13, No. 3, pp. 378-383, DOI: 10.5829/idosi.aejaes.2013. 13.03. 458.

Falvey, H. T. (1990). Cavitation in chutes and spillways, Engineering Monograph 42 Water Resources Technical Publication US Printing Office, Bureau of Reclamation, Denver.

Flow-3D User ’s Manual (2012). Flow science, Inc., Santa Fe, N.M.

Hirt, C. W. (1992). “Volume-fraction techniques: Powerful tools for flow

modeling.” Flow Science Report, No. FSI-92-00-02, Flow Science, Inc., Santa Fe, N.M.

Hirt C. W. and Nichols B. D. (1981). “Volume of Fluid (VOF) method for the dynamics of free boundaries.”Jornal of Computational Physics, Vol. 39, pp. 201-225, DOI: 10.1016/0021-9991(81)90145-5.

Hirt, C. W. and Sicilian, J. M. (1985). “A Porosity technique for the definition of obstacles in rectangular cell meshes.” Proceedings of the 4th International Conference on Ship Hydro-dynamics, 24-27 September 1985, National Academic of Sciences, Washington DC.

Ho, D., Boyes, K., Donohoo, S., and Cooper, B. (2003). “Numerical flow analysis for spillways.” 43rd ANCOLD Conference, Hobart, Tas m a nia .

Johnson, M. C. and Savage, B. M. (2006). “Physical and numerical comparison of flow over ogee spillway in the presence of tailwater.”

Journal of Hydraulic Engineering, Vol. 132, No. 12, pp. 1353-135, DOI: 10.1061/(ASCE)0733-9429.

Kim, S. D., Lee, H. J., and An, S. D. (2010). “Improvement of hydraulic stability for spillway using CFD model.” Int. Journal of the Physical Sciences, Vol. 5, No. 6, pp. 774-780.

Kokpinar, M. A. and Gogus, M. (2002). “High speed jet flows over spillway aerators.” Canadian Journal of Civil Engineering, Vol. 29, No. 6, pp. 885-898, DOI: 10.1139/l02-088.

Kumcu, S. Y. (2010). Hydraulic model studies of Kavsak Dam and HEPP, DSI Report, HI-1005, DSI-TAKK Publications, Ankara, Turkey.

Margeirsson, B. (2007). Computational modeling of flow over a spillway, MSc Thesis, Chalmers University of Technology, Gothenburg, Sweden.

Nichols, B. D. and Hirt, C. W. (1975). “Methods for calculating multi-dimensional, transient free surface flows past bodies.” Proc. First Intern. Conf. Num., Ship Hydrodynamics, Gaithersburg, ML.

Savage, B. M. and Johnson, M. C. (2001). “Flow over ogee spillway: Physical and numerical model case study.” Journal of Hydraulic Engineering, ASCE, Vol. 127, No. 8, pp. 640-649, DOI: 10.1061/(ASCE)0733-9429.

Souders, D. T. and Hirt, C. W. (2004). “Modeling entrainment of air at turbulent free surfaces.” Critical Transitions in Water and Environmental resources Management, pp. 1-10.

entürk, F. (1994). Hydraulics of dams and reservoirs, Water Resources Publication Colorado, USA.

Teklemariam, E., Korbaylo, B, Groeneveld, J., Sydor, K., and Fuchs, D. (2001). Optimization of hydraulic design using computational fluid dynamics, Waterpower XII, Salt Lake City, Utah.

Teklemariam, E., Shumilak, B., Sydor, K., Murray, D., Fuchs, D., and Holder, G. (2008). “An integral approach using both physical and computational modeling can be beneficial in addressing the full range of hydraulic design issues.” CDA Annual Conference, Winnipeg, Canada.

Usta, E. (2014). Numerical investigation of hydraulic characteristics of Laleli Dam spillway and comparison with physical model study, Master Thesis, Middle East Technical University, Ankara, Turkey.

Versteeg, H. K. and Malalasekera, W. (1996). An introduction to computational fluid dynamics, Longman Scientific and Technical, Longman Group Limited, Harlow, England.

Vischer, D. L. and Hager, W. H. (1997). Dam hydraulics, J. Wiley & Sons Ltd., England.

Wagner, W. E. (1967). “Glen Canyon diversion tunnel outlets.” J. Hydraulic Division, ASCE, Vol. 93, No. HY6, pp. 113-134.

Willey, J., Ewing, T., Wark, B., and Lesleighter, E. (2012). Comple-mentary use of physical and numerical modeling techniques in spillway design refinement, Commission Internationale Des Grands Barrages, Kyoto, June 2012.

Fig. 1. Averaged error trend.

Assessment of spillway modeling using computational fluid dynamics

전산유체역학을 이용한 여수로 모델링 평가

Authors: Paul G. Chanel and John C. Doering AUTHORS INFO & AFFILIATIONS

Publication: Canadian Journal of Civil Engineering

3 December 2008

Abstract

Throughout the design and planning period for future hydroelectric generating stations, hydraulic engineers are increasingly integrating computational fluid dynamics (CFD) into the process. As a result, hydraulic engineers are interested in the reliability of CFD software to provide accurate flow data for a wide range of structures, including a variety of different spillways. In the literature, CFD results have generally been in agreement with physical model experimental data. Despite past success, there has not been a comprehensive assessment that looks at the ability of CFD to model a range of different spillway configurations, including flows with various gate openings. In this article, Flow-3D is used to model the discharge over ogee-crested spillways. The numerical model results are compared with physical model studies for three case study evaluations. The comparison indicates that the accuracy of Flow-3D is related to the parameter P/Hd.

미래의 수력 발전소를 위한 설계 및 계획 기간 동안 유압 엔지니어는 전산유체역학(CFD)을 프로세스에 점점 더 많이 통합하고 있습니다. 결과적으로 유압 엔지니어는 다양한 여수로를 포함하여 광범위한 구조에 대한 정확한 흐름 데이터를 제공하는 CFD 소프트웨어의 신뢰성에 관심을 갖고 있습니다. 문헌에서 CFD 결과는 일반적으로 물리적 모델 실험 데이터와 일치했습니다. 과거의 성공에도 불구하고 다양한 게이트 개구부가 있는 흐름을 포함하여 다양한 여수로 구성을 모델링하는 CFD의 기능을 살펴보는 포괄적인 평가는 없었습니다. 이 기사에서는 Flow-3D를 사용하여 ogee-crested 방수로의 배출을 모델링합니다. 세 가지 사례 연구 평가를 위해 수치 모델 결과를 물리적 모델 연구와 비교합니다. 비교는 Flow-3D의 정확도가 매개변수 P/Hd와 관련되어 있음을 나타냅니다.

Résumé

Les ingénieurs en hydraulique intègrent de plus en plus la dynamique des fluides numérique (« CFD ») dans le processus de conception et de planification des futures centrales. Ainsi, les ingénieurs en hydraulique s’intéressent à la fiabilité du logiciel de « CFD » afin de fournir des données précises sur le débit pour une large gamme de structures, incluant différents types d’évacuateurs. Les résultats de « CFD » dans la littérature ont été globalement sont généralement en accord avec les données expérimentales des essais physiques. Malgré les succès antérieurs, il n’y avait aucune évaluation complète de la capacité des « CFD » à modéliser une plage de configuration des évacuateurs, incluant les débits à diverses ouvertures de vannes. Dans le présent article, le logiciel Flow-3D est utilisé pour modéliser le débit par des évacuateurs en doucine. Les résultats du modèle de calcul sont comparés à ceux des essais physiques pour trois études de cas. La comparaison montre que la précision du logiciel Flow-3D est associée au paramètre P/Hd.

Fig. 1. Averaged error trend.
Fig. 1. Averaged error trend.

Get full access to this article

View all available purchase options and get full access to this article.

GET ACCESSALREADY A SUBSCRIBER? SIGN IN AS AN INDIVIDUAL OR VIA YOUR INSTITUTION

References

Chanel, P.G., and Doering, J.C. 2007. An evaluation of computational fluid dynamics for spillway modelling. In Proceedings of the 16th Australasian Fluid Mechanics Conference (AFMC), Gold Coast, Queensland, Australia, 3–7 December 2007. pp. 1201–1206.

Google Scholar

Flow Science, Inc. 2007. Flow-3D user’s manuals. Version 9.2. Flow Science, Inc., Santa Fe, N.M.

Google Scholar

Gessler, D. 2005. CFD modeling of spillway performance, EWRI 2005: Impacts of global climate change. In Proceedings of the World Water and Environmental Resources Congress, Anchorage, Alaska, 15–19 May 2005. Edited by R. Walton. American Society of Civil Engineers, Reston, Va.

Google Scholar

Hirt, C.W., and Nichols, B.D. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1): 201–225.

Crossref

ISI

Google Scholar

Hirt, C.W., and Sicilian, J.M. 1985. A porosity technique for the definition of obstacles in rectangular cell meshes. In Proceedings of the 4th International Conference on Ship Hydro-dynamics, Washington, D.C., 24–27 September 1985. National Academy of Sciences, Washington, D.C.

Google Scholar

Ho, D., Cooper, B., Riddette, K., and Donohoo, S. 2006. Application of numerical modelling to spillways in Australia. In Dams and Reservoirs, Societies and Environment in the 21st Century. Edited by Berga et al. Taylor and Francis Group, London.

Google Scholar

LaSalle Consulting Group Inc. 1992. Conawapa generating station. Sectional model study of the spillway. LaSalle Consulting Group Inc., Montréal, Que.

Google Scholar

Lemke, D.E. 1989. A comparison of the hydraulic performance of an orifice and an overflow spillway in a northern application using physical modeling. M.Sc. thesis, University of Manitoba, Winnipeg, Man.

Google Scholar

Savage, B.M., and Johnson, M.C. 2001. Flow over ogee spillway: Physical and numerical model case study. Journal of Hydraulic Engineering, 127(8): 640–649.

Crossref

ISI

Google Scholar

Teklemariam, E., Korbaylo, B., Groeneveld, J., Sydor, K., and Fuchs, D. 2001. Optimization of hydraulic design using computational fluid dynamics. In Proceedings of Waterpower XII, Salt Lake City, Utah, 9–11 July 2001.

Google Scholar

Teklemariam, E., Korbaylo, B., Groeneveld, J., and Fuchs, D. 2002. Computational fluid dynamics: Diverse applications in hydropower project’s design and analysis. In Proceedings of the CWRA 55th Annual Conference, Winnipeg, Man., 11–14 June 2002. Canadian Water Resources Association, Cambridge, Ontario.

Google Scholar

Western Canadian Hydraulic Laboratories Inc. 1980. Hydraulics model studies limestone generating station spillway/diversion structure flume study. Final report. Western Canadian Hydraulic Laboratories Inc., Port Coquitlam, B.C.

Google Scholar

Sketch of approach channel and spillway of the Kamal-Saleh dam

CFD modeling of flow pattern in spillway’s approach channel

Sustainable Water Resources Management volume 1, pages245–251 (2015)Cite this article

Abstract

Analysis of behavior and hydraulic characteristics of flow over the dam spillway is a complicated task that takes lots of money and time in water engineering projects planning. To model those hydraulic characteristics, several methods such as physical and numerical methods can be used. Nowadays, by utilizing new methods in computational fluid dynamics (CFD) and by the development of fast computers, the numerical methods have become accessible for use in the analysis of such sophisticated flows. The CFD softwares have the capability to analyze two- and three-dimensional flow fields. In this paper, the flow pattern at the guide wall of the Kamal-Saleh dam was modeled by Flow 3D. The results show that the current geometry of the left wall causes instability in the flow pattern and making secondary and vortex flow at beginning approach channel. This shape of guide wall reduced the performance of weir to remove the peak flood discharge.

댐 여수로 흐름의 거동 및 수리학적 특성 분석은 물 공학 프로젝트 계획에 많은 비용과 시간이 소요되는 복잡한 작업입니다. 이러한 수력학적 특성을 모델링하기 위해 물리적, 수치적 방법과 같은 여러 가지 방법을 사용할 수 있습니다. 요즘에는 전산유체역학(CFD)의 새로운 방법을 활용하고 빠른 컴퓨터의 개발로 이러한 정교한 흐름의 해석에 수치 방법을 사용할 수 있게 되었습니다. CFD 소프트웨어에는 2차원 및 3차원 유동장을 분석하는 기능이 있습니다. 본 논문에서는 Kamal-Saleh 댐 유도벽의 흐름 패턴을 Flow 3D로 모델링하였다. 결과는 왼쪽 벽의 현재 형상이 흐름 패턴의 불안정성을 유발하고 시작 접근 채널에서 2차 및 와류 흐름을 만드는 것을 보여줍니다. 이러한 형태의 안내벽은 첨두방류량을 제거하기 위해 둑의 성능을 저하시켰다.

Introduction

Spillways are one of the main structures used in the dam projects. Design of the spillway in all types of dams, specifically earthen dams is important because the inability of the spillway to remove probable maximum flood (PMF) discharge may cause overflow of water which ultimately leads to destruction of the dam (Das and Saikia et al. 2009; E 2013 and Novak et al. 2007). So study on the hydraulic characteristics of this structure is important. Hydraulic properties of spillway including flow pattern at the entrance of the guide walls and along the chute. Moreover, estimating the values of velocity and pressure parameters of flow along the chute is very important (Chanson 2004; Chatila and Tabbara 2004). The purpose of the study on the flow pattern is the effect of wall geometry on the creation transverse waves, flow instability, rotating and reciprocating flow through the inlet of spillway and its chute (Parsaie and Haghiabi 2015ab; Parsaie et al. 2015; Wang and Jiang 2010). The purpose of study on the values of velocity and pressure is to calculate the potential of the structure to occurrence of phenomena such as cavitation (Fattor and Bacchiega 2009; Ma et al. 2010). Sometimes, it can be seen that the spillway design parameters of pressure and velocity are very suitable, but geometry is considered not suitable for conducting walls causing unstable flow pattern over the spillway, rotating flows at the beginning of the spillway and its design reduced the flood discharge capacity (Fattor and Bacchiega 2009). Study on spillway is usually conducted using physical models (Su et al. 2009; Suprapto 2013; Wang and Chen 2009; Wang and Jiang 2010). But recently, with advances in the field of computational fluid dynamics (CFD), study on hydraulic characteristics of this structure has been done with these techniques (Chatila and Tabbara 2004; Zhenwei et al. 2012). Using the CFD as a powerful technique for modeling the hydraulic structures can reduce the time and cost of experiments (Tabbara et al. 2005). In CFD field, the Navier–Stokes equation is solved by powerful numerical methods such as finite element method and finite volumes (Kim and Park 2005; Zhenwei et al. 2012). In order to obtain closed-form Navier–Stokes equations turbulence models, such k − ε and Re-Normalisation Group (RNG) models have been presented. To use the technique of computational fluid dynamics, software packages such as Fluent and Flow 3D, etc., are provided. Recently, these two software packages have been widely used in hydraulic engineering because the performance and their accuracy are very suitable (Gessler 2005; Kim 2007; Kim et al. 2012; Milési and Causse 2014; Montagna et al. 2011). In this paper, to assess the flow pattern at Kamal-Saleh guide wall, numerical method has been used. All the stages of numerical modeling were conducted in the Flow 3D software.

Materials and methods

Firstly, a three-dimensional model was constructed according to two-dimensional map that was prepared for designing the spillway. Then a small model was prepared with scale of 1:80 and entered into the Flow 3D software; all stages of the model construction was conducted in AutoCAD 3D. Flow 3D software numerically solved the Navier–Stokes equation by finite volume method. Below is a brief reference on the equations that used in the software. Figure 1 shows the 3D sketch of Kamal-Saleh spillway and Fig. 2 shows the uploading file of the Kamal-Saleh spillway in Flow 3D software.

figure 1
Fig. 1
figure 2
Fig. 2

Review of the governing equations in software Flow 3D

Continuity equation at three-dimensional Cartesian coordinates is given as Eq (1).

vf∂ρ∂t+∂∂x(uAx)+∂∂x(vAy)+∂∂x(wAz)=PSORρ,vf∂ρ∂t+∂∂x(uAx)+∂∂x(vAy)+∂∂x(wAz)=PSORρ,

(1)

where uvz are velocity component in the x, y, z direction; A xA yA z cross-sectional area of the flow; ρ fluid density; PSOR the source term; v f is the volume fraction of the fluid and three-dimensional momentum equations given in Eq (2).

∂u∂t+1vf(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)=−1ρ∂P∂x+Gx+fx∂v∂t+1vf(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)=−1ρ∂P∂y+Gy+fy∂w∂t+1vf(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)=−1ρ∂P∂y+Gz+fz,∂u∂t+1vf(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)=−1ρ∂P∂x+Gx+fx∂v∂t+1vf(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)=−1ρ∂P∂y+Gy+fy∂w∂t+1vf(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)=−1ρ∂P∂y+Gz+fz,

(2)

where P is the fluid pressure; G xG yG z the acceleration created by body fluids; f xf yf z viscosity acceleration in three dimensions and v f is related to the volume of fluid, defined by Eq. (3). For modeling of free surface profile the VOF technique based on the volume fraction of the computational cells has been used. Since the volume fraction F represents the amount of fluid in each cell, it takes value between 0 and 1.

∂F∂t+1vf[∂∂x(FAxu)+∂∂y(FAyv)+∂∂y(FAzw)]=0∂F∂t+1vf[∂∂x(FAxu)+∂∂y(FAyv)+∂∂y(FAzw)]=0

(3)

Turbulence models

Flow 3D offers five types of turbulence models: Prantl mixing length, k − ε equation, RNG models, Large eddy simulation model. Turbulence models that have been proposed recently are based on Reynolds-averaged Navier–Stokes equations. This approach involves statistical methods to extract an averaged equation related to the turbulence quantities.

Steps of solving a problem in Flow 3D software

(1) Preparing the 3D model of spillway by AutoCAD software. (2) Uploading the file of 3D model in Flow 3D software and defining the problem in the software and checking the final mesh. (3) Choosing the basic equations that should be solved. (4) Defining the characteristics of fluid. (5) Defining the boundary conditions; it is notable that this software has a wide range of boundary conditions. (6) Initializing the flow field. (7) Adjusting the output. (8) Adjusting the control parameters, choice of the calculation method and solution formula. (9) Start of calculation. Figure 1 shows the 3D model of the Kamal-Saleh spillway; in this figure, geometry of the left and right guide wall is shown.

Figure 2 shows the uploading of the 3D spillway dam in Flow 3D software. Moreover, in this figure the considered boundary condition in software is shown. At the entrance and end of spillway, the flow rate or fluid elevation and outflow was considered as BC. The bottom of spillway was considered as wall and left and right as symmetry.

Model calibration

Calibration of the Flow 3D for modeling the effect of geometry of guide wall on the flow pattern is included for comparing the results of Flow 3D with measured water surface profile. Calibration the Flow 3D software could be conducted in two ways: first, changing the value of upstream boundary conditions is continued until the results of water surface profile of the Flow 3D along the spillway successfully covered the measurement water surface profile; second is the assessment the mesh sensitivity. Analyzing the size of mesh is a trial-and-error process where the size of mesh is evaluated form the largest to the smallest. With fining the size of mesh the accuracy of model is increased; whereas, the cost of computation is increased. In this research, the value of upstream boundary condition was adjusted with measured data during the experimental studies on the scaled model and the mesh size was equal to 1 × 1 × 1 cm3.

Results and discussion

The behavior of water in spillway is strongly affected by the flow pattern at the entrance of the spillway, the flow pattern formation at the entrance is affected by the guide wall, and choice of an optimized form for the guide wall has a great effect on rising the ability of spillway for easy passing the PMF, so any nonuniformity in flow in the approach channel can cause reduction of spillway capacity, reduction in discharge coefficient of spillway, and even probability of cavitation. Optimizing the flow guiding walls (in terms of length, angle and radius) can cause the loss of turbulence and flow disturbances on spillway. For this purpose, initially geometry proposed for model for the discharge of spillway dam, Kamal-Saleh, 80, 100, and 120 (L/s) were surveyed. These discharges of flow were considered with regard to the flood return period, 5, 100 and 1000 years. Geometric properties of the conducting guidance wall are given in Table 1.Table 1 Characteristics and dimensions of the guidance walls tested

Full size table

Results of the CFD simulation for passing the flow rate 80 (L/s) are shown in Fig. 3. Figure 3 shows the secondary flow and vortex at the left guide wall.

figure 3
Fig. 3

For giving more information about flow pattern at the left and right guide wall, Fig. 4 shows the flow pattern at the right side guide wall and Fig. 5 shows the flow pattern at the left side guide wall.

figure 4
Fig. 4
figure 5
Fig. 5

With regard to Figs. 4 and 5 and observing the streamlines, at discharge equal to 80 (L/s), the right wall has suitable performance but the left wall has no suitable performance and the left wall of the geometric design creates a secondary and circular flow, and vortex motion in the beginning of the entrance of spillway that creates cross waves at the beginning of spillway. By increasing the flow rate (Q = 100 L/s), at the inlet spillway secondary flows and vortex were removed, but the streamline is severely distorted. Results of the guide wall performances at the Q = 100 (L/s) are shown in Fig. 6.

figure 6
Fig. 6

Also more information about the performance of each guide wall can be derived from Figs. 7 and 8. These figures uphold that the secondary and vortex flows were removed, but the streamlines were fully diverted specifically near the left side guide wall.

figure 7
Fig. 7
figure 8
Fig. 8

As mentioned in the past, these secondary and vortex flows and diversion in streamline cause nonuniformity and create cross wave through the spillway. Figure 9 shows the cross waves at the crest of the spillway.

figure 9
Fig. 9

The performance of guide walls at the Q = 120 (L/s) also was assessed. The result of simulation is shown in Fig. 10. Figures 11 and 12 show a more clear view of the streamlines near to right and left side guide wall, respectively. As seen in Fig. 12, the left side wall still causes vortex flow and creation of and diversion in streamline.

figure 10
Fig. 10
figure 11
Fig. 11
figure 12
Fig. 12

The results of the affected left side guide wall shape on the cross wave creation are shown in Fig. 13. As seen from Fig. 3, the left side guide wall also causes cross wave at the spillway crest.

figure 13
Fig. 13

As can be seen clearly in Figs. 9 and 13, by moving from the left side to the right side of the spillway, the cross waves and the nonuniformity in flow is removed. By reviewing Figs. 9 and 13, it is found that the right side guide wall removes the cross waves and nonuniformity. With this point as aim, a geometry similar to the right side guide wall was considered instead of the left side guide wall. The result of simulation for Q = 120 (L/s) is shown in Fig. 14. As seen from this figure, the proposed geometry for the left side wall has suitable performance smoothly passing the flow through the approach channel and spillway.

figure 14
Fig. 14

More information about the proposed shape for the left guide wall is shown in Fig. 15. As seen from this figure, this shape has suitable performance for removing the cross waves and vortex flows.

figure 15
Fig. 15

Figure 16 shows the cross section of flow at the crest of spillway. As seen in this figure, the proposed shape for the left side guide wall is suitable for removing the cross waves and secondary flows.

figure 16
Fig. 16

Conclusion

Analysis of behavior and hydraulic properties of flow over the spillway dam is a complicated task which is cost and time intensive. Several techniques suitable to the purposes of study have been undertaken in this research. Physical modeling, usage of expert experience, usage of mathematical models on simulation flow in one-dimensional, two-dimensional and three-dimensional techniques, are some of the techniques utilized to study this phenomenon. The results of the modeling show that the CFD technique is a suitable tool for simulating the flow pattern in the guide wall. Using this tools helps the designer for developing the optimal shape for hydraulic structure which the flow pattern through them are important.

References

  • Chanson H (2004) 19—Design of weirs and spillways. In: Chanson H (ed) Hydraulics of open channel flow, 2nd edn. Butterworth-Heinemann, Oxford, pp 391–430Chapter Google Scholar 
  • Chatila J, Tabbara M (2004) Computational modeling of flow over an ogee spillway. Comput Struct 82:1805–1812Article Google Scholar 
  • Das MM, Saikia MD (2009) Irrigation and water power engineering. PHI Learning, New DelhiGoogle Scholar 
  • E, Department Of Army: U.S. Army Corps (2013) Hydraulic Design of Spillways. BiblioBazaar, CharlestonGoogle Scholar 
  • Fattor C, Bacchiega J (2009) Design conditions for morning-glory spillways: application to potrerillos dam spillway. Adv Water Res Hydraul Eng Springer, Berlin, pp 2123–2128Google Scholar 
  • Gessler D (2005) CFD modeling of spillway performance. Impacts Glob Clim Change. doi:10.1061/40792(173)398
  • Kim D-G (2007) Numerical analysis of free flow past a sluice gate. KSCE J Civ Eng 11:127–132Article Google Scholar 
  • Kim D, Park J (2005) Analysis of flow structure over ogee-spillway in consideration of scale and roughness effects by using CFD model. KSCE J Civ Eng 9:161–169Article Google Scholar 
  • Kim S, Yu K, Yoon B, Lim Y (2012) A numerical study on hydraulic characteristics in the ice Harbor-type fishway. KSCE J Civ Eng 16:265–272Article Google Scholar 
  • Ma X-D, Dai G-Q, Yang Q, Li G-J, Zhao L (2010) Analysis of influence factors of cavity length in the spillway tunnel downstream of middle gate chamber outlet with sudden lateral enlargement and vertical drop aerator. J Hydrodyn Ser B 22:680–686Article Google Scholar 
  • Milési G, Causse S (2014) 3D numerical modeling of a side-channel spillway. In: Gourbesville P, Cunge J, Caignaert G (eds) Advances in hydroinformatics. Springer, Singapore, pp 487–498Chapter Google Scholar 
  • Montagna F, Bellotti G, Di Risio M (2011) 3D numerical modeling of landslide-generated tsunamis around a conical island. Nat Hazards 58:591–608Article Google Scholar 
  • Novak P, Moffat AIB, Nalluri C, Narayanan R (2007) Hydraulic structures. Taylor & Francis, LondonGoogle Scholar 
  • Parsaie A, Haghiabi A (2015a) Computational modeling of pollution transmission in rivers. Appl Water Sci. doi:10.1007/s13201-015-0319-6
  • Parsaie A, Haghiabi A (2015b) The effect of predicting discharge coefficient by neural network on increasing the numerical modeling accuracy of flow over side weir. Water Res Manag 29:973–985Article Google Scholar 
  • Parsaie A, Yonesi H, Najafian S (2015) Predictive modeling of discharge in compound open channel by support vector machine technique. Model Earth Syst Environ 1:1–6Article Google Scholar 
  • Su P-L, Liao H-S, Qiu Y, Li CJ (2009) Experimental study on a new type of aerator in spillway with low Froude number and mild slope flow. J Hydrodyn Ser B 21:415–422Article Google Scholar 
  • Suprapto M (2013) Increase spillway capacity using Labyrinth Weir. Procedia Eng 54:440–446Article Google Scholar 
  • Tabbara M, Chatila J, Awwad R (2005) Computational simulation of flow over stepped spillways. Comput Struct 83:2215–2224Article Google Scholar 
  • Wang J, Chen H (2009) Experimental study of elimination of vortices along guide wall of bank spillway. Adv Water Res Hydraul Eng Springer, Berlin, pp 2059–2063Google Scholar 
  • Wang Y, Jiang C (2010) Investigation of the surface vortex in a spillway tunnel intake. Tsinghua Sci Technol 15:561–565Article Google Scholar 
  • Zhenwei MU, Zhiyan Z, Tao Z (2012) Numerical simulation of 3-D flow field of spillway based on VOF method. Procedia Eng 28:808–812Article Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Water Engineering, Lorestan University, Khorram Abad, IranAbbas Parsaie, Amir Hamzeh Haghiabi & Amir Moradinejad

Corresponding author

Correspondence to Abbas Parsaie.

Reprints and Permissions

About this article

Cite this article

Parsaie, A., Haghiabi, A.H. & Moradinejad, A. CFD modeling of flow pattern in spillway’s approach channel. Sustain. Water Resour. Manag. 1, 245–251 (2015). https://doi.org/10.1007/s40899-015-0020-9

Download citation

  • Received28 April 2015
  • Accepted28 August 2015
  • Published15 September 2015
  • Issue DateSeptember 2015
  • DOIhttps://doi.org/10.1007/s40899-015-0020-9

Share this article

Anyone you share the following link with will be able to read this content:Get shareable link

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Approach channel
  • Kamal-Saleh dam
  • Guide wall
  • Flow pattern
  • Numerical modeling
  • Flow 3D software
    Figure 10. Flow distribution at the approach channel in PMF based on revised plan design. A. Hydarulic model test; B. Numerical simulation; C. Section view.

    Improvement of hydraulic stability for spillway using CFD model

    Hydraulic model test was used to analyze the rapidly varied flow on the spillway. But, it has some shortcomings such as error of scale effect and expensive costs. Recently, through the development of three dimensional computational fluid dynamics (CFD), rapidly varied flow and turbulence can be simulated. In this study, the applicability of CFD model to simulate flow on the spillway was reviewed. The Karian dam in Indonesia was selected as the study area. The FLOW-3d model, which is well known to simulate a flow having a free surface, was used to analyze flow. The flow stability in approach channel was investigated with the initial plan design, and the results showed that the flow in approach channel is unstable in the initial plan design. To improve flow stability in the spillway, therefore, the revised plan design was formulated. The appropriateness of the revised design was examined by a numerical modeling. The results showed that the flow in spillway is stable in the revised design.

    여수로의 급격하게 변화하는 흐름을 분석하기 위해 수리학적 모델 테스트를 사용했습니다. 그러나 스케일 효과의 오차와 고가의 비용 등의 단점이 있다. 최근에는 3차원 전산유체역학(CFD)의 발달로 급변하는 유동과 난류를 모사할 수 있다. 본 연구에서는 여수로의 흐름을 시뮬레이션하기 위한 CFD 모델의 적용 가능성을 검토했습니다. 인도네시아의 Karian 댐이 연구 지역으로 선정되었습니다. 자유표면을 갖는 유동을 모의하는 것으로 잘 알려진 FLOW-3d 모델을 유동해석에 사용하였다. 접근수로의 흐름 안정성은 초기 계획설계와 함께 조사한 결과 초기 계획설계에서 접근수로의 흐름이 불안정한 것으로 나타났다. 따라서 방수로의 흐름 안정성을 향상시키기 위해 수정된 계획 설계가 공식화되었습니다. 수정된 설계의 적합성을 수치모델링을 통해 검토하였다. 결과는 수정된 설계에서 여수로의 흐름이 안정적이라는 것을 보여주었습니다.

    Key words

    Spillway, FLOW-3D, approach channel, flow stability, numerical modeling, hydraulic model test.

    Figure 6. Two dimensional flow velocity distribution at the
approach channel (Flow velocity distribution at depth EL. 68.12 m).
    Figure 6. Two dimensional flow velocity distribution at the approach channel (Flow velocity distribution at depth EL. 68.12 m).
    Figure 7. Flow distribution at the approach channel in PMF.
A. Hydraulic model test; B. Numerial simulatio
C. Cross section view.
    Figure 7. Flow distribution at the approach channel in PMF. A. Hydraulic model test; B. Numerial simulatio C. Cross section view.
    Figure 8. Revised approach channel section.
A. Initial plan design; B. Revised plan design.
    Figure 8. Revised approach channel section. A. Initial plan design; B. Revised plan design.
    Figure 9. Two dimensional flow velocity distribution at the approach channel
based on revised plan design (Flow velocity distribution at depth EL. 68.12 m).
    Figure 9. Two dimensional flow velocity distribution at the approach channel based on revised plan design (Flow velocity distribution at depth EL. 68.12 m).
    Figure 10. Flow distribution at the approach channel in PMF based on revised plan design.
A. Hydarulic model test; B. Numerical simulation; C. Section view.
    Figure 10. Flow distribution at the approach channel in PMF based on revised plan design. A. Hydarulic model test; B. Numerical simulation; C. Section view.

    REFERENCES

    Betts PL (1979). A variation principle in terms of stream function for free
    surface flows and its application to finite element method. Comp.
    Fluids, 7(2): 145-153.
    Cassidy JJ (1965). Irrotational flow over spillways of finite height. J.
    Eng. Mech. Div. ASCE., 91(6): 155-173.
    Flow Science (2002). FLOW-3D -Theory manual. Los Alamos, NM.
    Guo Y, Wen X, Wu C, Fang D (1998). Numerical modeling of spillway
    flow with free drop and initially unknown discharge. J. Hydraulic Res.
    IAHR, 36(5): 785-801.
    Ho DKH, Donohoo SM (2001). Investigation of spillway behavior under
    increased maximum flood by computational fluid dynamics technique.
    Proceeding 14
    th Australasian Fluid Mech. Conference, Adelaide
    University, Adelaide, Australia, pp. 10-14.
    Ikegawa M, Washizu K (1973). Finite element method applied to
    analysis of flow over a spillway crest. Int. J. Numerical Methods Eng.,
    6: 179-189.
    Kim DG, Park JH (2005). Analysis of flow structure over ogee-spillway
    in consideration of scale and roughness effects by using CFD model.
    J. Civil Eng. KSCE., pp. 161-169.
    KRA, KWATER (2006). Feasibility study and detail design of the Karian
    dam project. Indonesia.
    Li W, Xie Q, Chen CJ (1989). Finite analytic solution of flow over
    spillways, J. Eng. Mech. ASCE, 115(2): 2645-2648.
    Olsen NR, Kjellesvig HM (1998).Three-dimensional numerical flow
    modeling for estimation of spillway capacity. J. Hydraulic Res. IAHR.,
    36(5): 775-784.
    Savage BM, Johnson MC (2001). Flow over ogee spillway: Physical and
    numerical model case study. J. Hydraulic Eng. ASCE., 127(8): 640-
    649.
    Tabbara M, Chatial J, Awwad R (2005). Computational simulation of
    flow over stepped spillways. Comput. Structure, 83: 2215-2224.

    Fig. 8. Comparison of the wave pattern for : (a) Ship wave only; (b) Ship wave in the presence of a following current.

    균일한 해류가 존재하는 선박 파도의 수치 시뮬레이션

    Numerical simulation of ship waves in the presence of a uniform current

    CongfangAiYuxiangMaLeiSunGuohaiDongState Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China

    Highlights

    • Ship waves in the presence of a uniform current are studied by a non-hydrostatic model.

    • Effects of a following current on characteristic wave parameters are investigated.

    • Effects of an opposing current on characteristic wave parameters are investigated.

    • The response of the maximum water level elevation to the ship draft is discussed.

    Abstract

    이 논문은 균일한 해류가 존재할 때 선박파의 생성 및 전파를 시뮬레이션하기 위한 비정역학적 모델을 제시합니다. 선박 선체의 움직임을 표현하기 위해 움직이는 압력장 방법이 모델에 통합되었습니다.

    뒤따르거나 반대 방향의 균일한 흐름이 있는 경우의 선박 파도의 수치 결과를 흐름이 없는 선박 파도의 수치 결과와 비교합니다. 추종 또는 반대 균일 전류가 존재할 때 계산된 첨단선 각도는 분석 솔루션과 잘 일치합니다. 추종 균일 전류와 반대 균일 전류가 특성파 매개변수에 미치는 영향을 제시하고 논의합니다.

    선박 흘수에 대한 최대 수위 상승의 응답은 추종 또는 반대의 균일한 흐름이 있는 경우에도 표시되며 흐름이 없는 선박 파도의 응답과 비교됩니다. 선박 선체 측면의 최대 수위 상승은 Froude 수 Fr’=Us/gh의 특정 범위에 대해 다음과 같은 균일한 흐름의 존재에 의해 증가될 수 있음이 밝혀졌습니다.

    여기서 Us는 선박 속도이고 h는 물입니다. 깊이. 균일한 해류를 무시하면 추종류나 반대류가 존재할 때 선박 흘수에 대한 최대 수위 상승의 응답이 과소평가될 수 있습니다.

    본 연구는 선박파의 해석에 있어 균일한 해류의 영향을 고려해야 함을 시사합니다.

    This paper presents a non-hydrostatic model to simulate the generation and propagation of ship waves in the presence of a uniform current. A moving pressure field method is incorporated into the model to represent the movement of a ship hull. Numerical results of ship waves in the presence of a following or an opposing uniform current are compared with those of ship waves without current. The calculated cusp-line angles in the presence of a following or opposing uniform current agree well with analytical solutions. The effects of a following uniform current and an opposing uniform current on the characteristic wave parameters are presented and discussed. The response of the maximum water level elevation to the ship draft is also presented in the presence of a following or an opposing uniform current and is compared with that for ship waves without current. It is found that the maximum water level elevation lateral to the ship hull can be increased by the presence of a following uniform current for a certain range of Froude numbers Fr′=Us/gh, where Us is the ship speed and h is the water depth. If the uniform current is neglected, the response of the maximum water level elevation to the ship draft in the presence of a following or an opposing current can be underestimated. The present study indicates that the effect of a uniform current should be considered in the analysis of ship waves.

    Keywords

    Ship waves, Non-hydrostatic model, Following current, Opposing current, Wave parameters

    1. Introduction

    Similar to wind waves, ships sailing across the sea can also create free-surface undulations ranging from ripples to waves of large size (Grue, 20172020). Ship waves can cause sediment suspension and engineering structures damage and even pose a threat to flora and fauna living near the embankments of waterways (Dempwolff et al., 2022). It is quite important to understand ship waves in various environments. The study of ship waves has been conducted over a century. A large amount of research (Almström et al., 2021Bayraktar and Beji, 2013David et al., 2017Ertekin et al., 1986Gourlay, 2001Havelock, 1908Lee and Lee, 2019Samaras and Karambas, 2021Shi et al., 2018) focused on the generation and propagation of ship waves without current. When a ship navigates in the sea or in a river where tidal flows or river flows always exist, the effect of currents should be taken into account. However, the effect of currents on the characteristic parameters of ship waves is still unclear, because very few publications have been presented on this topic.

    Over the past two decades, many two-dimensional (2D) Boussinesq-type models (Bayraktar and Beji, 2013Dam et al., 2008David et al., 2017Samaras and Karambas, 2021Shi et al., 2018) were developed to examine ship waves. For example, Bayraktar and Beji (2013) solved Boussinesq equations with improved dispersion characteristics to simulate ship waves due to a moving pressure field. David et al. (2017) employed a Boussinesq-type model to investigate the effects of the pressure field and its propagation speed on characteristic wave parameters. All of these Boussinesq-type models aimed to simulate ship waves without current except for that of Dam et al. (2008), who investigated the effect of currents on the maximum wave height of ship waves in a narrow channel.

    In addition to Boussinesq-type models, numerical models based on the Navier-Stokes equations (NSE) or Euler equations are also capable of resolving ship waves. Lee and Lee (20192021) employed the FLOW-3D model to simulate ship waves without current and ship waves in the presence of a uniform current to confirm their equations for ship wave crests. FLOW-3D is a computational fluid dynamics (CFD) software based on the NSE, and the volume of fluid (VOF) method is used to capture the moving free surface. However, VOF-based NSE models are computationally expensive due to the treatment of the free surface. To efficiently track the free surface, non-hydrostatic models employ the so-called free surface equation and can be solved efficiently. One pioneering application for the simulation of ship waves by the non-hydrostatic model was initiated by Ma (2012) and named XBeach. Recently, Almström et al. (2021) validated XBeach with improved dispersive behavior by comparison with field measurements. XBeach employed in Almström et al. (2021) is a 2-layer non-hydrostatic model and is accurate up to Kh=4 for the linear dispersion relation (de Ridder et al., 2020), where K=2π/L is the wavenumber. L is the wavelength, and h is the still water depth. However, no applications of non-hydrostatic models on the simulation of ship waves in the presence of a uniform current have been published. For more advances in the numerical modelling of ship waves, the reader is referred to Dempwolff et al. (2022).

    This paper investigates ship waves in the presence of a uniform current by using a non-hydrostatic model (Ai et al., 2019), in which a moving pressure field method is incorporated to represent the movement of a ship hull. The model solves the incompressible Euler equations by using a semi-implicit algorithm and is associated with iterating to solve the Poisson equation. The model with two, three and five layers is accurate up to Kh= 7, 15 and 40, respectively (Ai et al., 2019) in resolving the linear dispersion relation. To the best of our knowledge, ship waves in the presence of currents have been studied theoretically (Benjamin et al., 2017Ellingsen, 2014Li and Ellingsen, 2016Li et al., 2019.) and numerically (Dam et al., 2008Lee and Lee, 20192021). However, no publications have presented the effects of a uniform current on characteristic wave parameters except for Dam et al. (2008), who investigated only the effect of currents on the maximum wave height in a narrow channel for the narrow relative Froude number Fr=(Us−Uc)/gh ranging from 0.47 to 0.76, where Us is the ship speed and Uc is the current velocity. To reveal the effect of currents on the characteristic parameters of ship waves, the main objectives of this paper are (1) to validate the capability of the proposed model to resolve ship waves in the presence of a uniform current, (2) to investigate the effects of a following or an opposing current on characteristic wave parameters including the maximum water level elevation and the leading wave period in the ship wave train, (3) to show the differences in characteristic wave parameters between ship waves in the presence of a uniform current and those without current when the same relative Froude number Fr is specified, and (4) to examine the response of the maximum water level elevation to the ship draft in the presence of a uniform current.

    The remainder of this paper is organized as follows. The non-hydrostatic model for ship waves is described in Section 2. Section 3 presents numerical validations for ship waves. Numerical results and discussions about the effects of a uniform current on characteristic wave parameters are provided in Section 4, and a conclusion is presented in Section 5.

    2. Non-hydrostatic model for ship waves

    2.1. Governing equations

    The 3D incompressible Euler equations are expressed in the following form:(1)∂u∂x+∂v∂y+∂w∂z=0(2)∂u∂t+∂u2∂x+∂uv∂y+∂uw∂z=−∂p∂x(3)∂v∂t+∂uv∂x+∂v2∂y+∂vw∂z=−∂p∂y(4)∂w∂t+∂uw∂x+∂vw∂y+∂w2∂z=−∂p∂z−gwhere t is the time; u(x,y,z,t), v(x,y,z,t) and w(x,y,z,t) are the velocity components in the horizontal x, y and vertical z directions, respectively; p(x,y,z,t) is the pressure divided by a constant reference density; and g is the gravitational acceleration.

    The pressure p(x,y,z,t) can be expressed as(5)p=ps+g(η−z)+qwhere ps(x,y,t) is the pressure at the free surface, η(x,y,t) is the free surface elevation, and q(x,y,z,t) is the non-hydrostatic pressure.

    η(x,y,t) is calculated by the following free-surface equation:(6)∂η∂t+∂∂x∫−hηudz+∂∂y∫−hηvdz=0where z=−h(x,y) is the bottom surface.

    To generate ship waves, ps(x,y,t) is determined by the following slender-body type pressure field (Bayraktar and Beji, 2013David et al., 2017Samaras and Karambas, 2021):

    For −L/2≤x’≤L/2,−B/2≤y’≤B/2(7)ps(x,y,t)|t=0=pm[1−cL(x′/L)4][1−cB(y′/B)2]exp⁡[−a(y′/B)2]where x′=x−x0 and y′=y−y0. (x0,y0) is the center of the pressure field, pm is the peak pressure defined at (x0,y0), and L and B are the lengthwise and breadthwise parameters, respectively. cL, cB and a are set to 16, 2 and 16, respectively.

    2.2. Numerical algorithms

    In this study, the generation of ship waves is incorporated into the semi-implicit non-hydrostatic model developed by Ai et al. (2019). The 3D grid system used in the model is built from horizontal rectangular grids by adding horizontal layers. The horizontal layers are distributed uniformly along the water depth, which means the layer thickness is defined by Δz=(η+h)/Nz, where Nz is the number of horizontal layers.

    In the solution procedure, the first step is to generate ship waves by implementing Eq. (7) together with the prescribed ship track. In the second step, Eqs. (1)(2)(3)(4) are solved by the pressure correction method, which can be subdivided into three stages. The first stage is to compute intermediate velocities un+1/2, vn+1/2, and wn+1/2 by solving Eqs. (2)(3)(4), which contain the non-hydrostatic pressure at the preceding time level. In the second stage, the Poisson equation for the non-hydrostatic pressure correction term is solved on the graphics processing unit (GPU) in conjunction with the conjugate gradient method. The third stage is to compute the new velocities un+1, vn+1, and wn+1 by correcting the intermediate values after including the non-hydrostatic pressure correction term. In the discretization of Eqs. (2)(3), the gradient terms of the water surface ∂η/∂x and ∂η/∂y are discretized by means of the semi-implicit method (Vitousek and Fringer, 2013), in which the implicitness factor θ=0.5 is used. The model is second-order accurate in time for free-surface flows. More details about the model can be found in Ai et al. (2019).

    3. Model validation

    In this section, we validate the proposed model in resolving ship waves. The numerical experimental conditions are provided in Table 1 and Table 2. In Table 2, Case A with the current velocity of Uc = 0.0 m/s represents ship waves without current. Both Case B and Case C correspond to the cases in the presence of a following current, while Case D and Case E represent the cases in the presence of an opposing current. The current velocities are chosen based on the observed currents at 40.886° N, 121.812° E, which is in the Liaohe Estuary. The measured data were collected from 14:00 on September 18 (GMT + 08:00) to 19:00 on September 19 in 2021. The maximum flood velocity is 1.457 m/s, and the maximum ebb velocity is −1.478 m/s. The chosen current velocities are between the maximum flood velocity and the maximum ebb velocity.

    Table 1. Summary of ship speeds.

    CaseWater depth h (m)Ship speed Us (m/s)Froude number Fr′=Us/gh
    16.04.570.6
    26.05.350.7
    36.06.150.8
    46.06.900.9
    56.07.0930.925
    66.07.280.95
    76.07.4760.975
    86.07.861.025
    96.08.061.05
    106.08.2431.075
    116.08.451.1
    126.09.201.2
    136.09.971.3
    146.010.751.4
    156.011.501.5
    166.012.301.6
    176.013.051.7
    186.013.801.8
    196.014.601.9
    206.015.352.0

    Table 2. Summary of current velocities.

    CaseABCDE
    Current velocity
    Uc (m/s)
    0.00.51.0−0.5−1.0

    Notably, the Froude number Fr′=Us/gh presented in Table 1 is defined by the ship speed Us only and is different from the relative Froude number Fr when a uniform current is presented. According to the theory of Lee and Lee (2021), with the same relative Froude number, the cusp-line angles in the presence of a following or an opposing uniform current are identical to those without current. As a result, for the test cases presented in Table 1Table 2, all calculated cusp-line angles follow the analytical solution of Havelock (1908), when the relative Froude number Fr is introduced.

    As shown in Fig. 1, the dimensions of the computational domain are −420≤x≤420 m and −200≤y≤200 m, which are similar to those of David et al. (2017). The ship track follows the x axis and ranges from −384 m to 384 m. The ship hull is represented by Eq. (7), in which the length L and the beam B are set to 14.0 m and 7.0 m, respectively, and the peak pressure value is pm= 5000 Pa. In the numerical simulations, grid convergence tests reveal that the horizontal grid spacing of Δx=Δy= 1.0 m and two horizontal layers are adequate. The numerical results with different numbers of horizontal layers are shown in the Appendix.

    Fig. 1

    Fig. 2Fig. 3 compare the calculated cusp-line angles θc with the analytical solutions of Havelock (1908) for ship waves in the presence of a following uniform current and an opposing uniform current, respectively. The calculated cusp-line angles without current are also depicted in Fig. 2Fig. 3. All calculated cusp-line angles are in good agreement with the analytical solutions, except that the model tends to underpredict the cusp-line angle for 0.9<Fr<1.0. Notably, a similar underprediction of the cusp-line angle can also be found in David et al. (2017).

    Fig. 2
    Fig. 3

    4. Results and discussions

    This section presents the effects of a following current and opposing current on the maximum water level elevation and the leading wave period in the wave train based on the test cases presented in Table 1Table 2. Moreover, the response of the maximum water level elevation to the ship draft in the presence of a uniform current is examined.

    4.1. Effects of a following current on characteristic wave parameters

    To present the effect of a following current on the maximum wave height, the variations of the maximum water level elevation ηmax with the Froude number Fr′ at gauge points G1 and G2 are depicted in Fig. 4. The positions of gauge points G1 and G2 are shown in Fig. 1. The maximum water level elevation is an analogue to the maximum wave height and is presented in this study, because maximum wave heights at different positions away from the ship track vary throughout the wave train (David et al., 2017). In general, the variations of ηmax with the Froude number Fr′ in the three cases show a similar behavior, in which with the increase in Fr′, ηmax increases and then decreases. The presence of the following currents decreases ηmax for Fr′≤0.8 and Fr′≥1.2. Specifically, the following currents have a significant effect on ηmax for Fr′≤0.8. Notably, ηmax can be increased by the presence of the following currents for 0.9≤Fr′≤1.1. Compared with Case A, at location G1 ηmax is amplified 1.25 times at Fr′=0.925 in Case B and 1.31 times at Fr′=1.025 in Case C. Similarly, at location G2 ηmax is amplified 1.15 times at Fr′=1.025 in Case B and 1.11 times at Fr′=1.075 in Case C. The fact that ηmax can be increased by the presence of a following current for 0.9≤Fr′≤1.1 implies that if a following uniform current is neglected, then ηmax may be underestimated.

    Fig. 4

    To show the effect of a following current on the wave period, Fig. 5 depicts the variation of the leading wave period Tp in the wave train at gauge point G2 with the Froude number Fr′. Similar to David et al. (2017), Tp is defined by the wave period of the first wave with a leading trough in the wave train. The leading wave periods for Fr′= 0.6 and 0.7 were not given in Case B and Case C, because the leading wave heights for Fr′= 0.6 and 0.7 are too small to discern the leading wave periods. Compared with Case A, the presence of a following current leads to a larger Tp for 0.925≤Fr′≤1.1 and a smaller Tp for Fr′≥1.3. For Fr′= 0.8 and 0.9, Tp in Case B is larger than that in Case A and Tp in Case C is smaller than that in Case A. In all three cases, Tp decreases with increasing Fr′ for Fr′>1.0. However, this decreasing trend becomes very gentle after Fr′≥1.4. Notably, as shown in Fig. 5, Fr′=1.2 tends to be a transition point at which the following currents have a very limited effect on Tp. Moreover, before the transition point, Tp in Case B and Case C are larger than that in Case A (only for 0.925≤Fr′≤1.2), but after the transition point the reverse is true.

    Fig. 5

    As mentioned previously, the cusp-line angles for ship waves in the presence of a following or an opposing current are identical to those for ship waves only with the same relative Froude number Fr. However, with the same Fr, the characteristic parameters of ship waves in the presence of a following or an opposing current are quite different from those of ship waves without current. Fig. 6 shows the variations of the maximum water level elevation ηmax with Fr at gauge points G1 and G2 for ship waves in the presence of a following uniform current. Overall, the relationship curves between ηmax and Fr in Case B and Case C are lower than those in Case A. It is inferred that with the same Fr, ηmax in the presence of a following current is smaller than that without current. Fig. 7 shows the variation of the leading wave period Tp in the wave train at gauge point G2 with Fr for ship waves in the presence of a following uniform current. The overall relationship curves between Tp and Fr in Case B and Case C are also lower than those in Case A for 0.9≤Fr≤2.0. It can be inferred that with the same Fr, Tp in the presence of a following current is smaller than that without current for Fr≥0.9.

    Fig. 6
    Fig. 7

    To compare the numerical results between the case of ship waves only and the case of ship waves in the presence of a following current with the same Fr, Fig. 8 shows the wave patterns for Fr=1.2. To obtain the case of ship waves in the presence of a following current with Fr=1.2, the ship speed Us=9.7 m/s and the current velocity Uc=0.5 m/s are adopted. Fig. 8 indicates that both the calculated cusp-line angles for the case of Us=9.2 m/s and Uc=0.0 m/s and the case of Us=9.7 m/s and Uc=0.5 m/s are equal to 56.5°, which follows the theory of Lee and Lee (2021)Fig. 9 depicts the comparison of the time histories of the free surface elevation at gauge point G2 for Fr=1.2 between the case of ship waves only and the case of ship waves in the presence of a following current. The time when the ship wave just arrived at gauge point G2 is defined as t′=0. Both the maximum water level elevation and the leading wave period in the case of Us=9.2 m/s and Uc=0.0 m/s are larger than those in the case of Us=9.7 m/s and Uc=0.5 m/s, which is consistent with the inferences based on Fig. 6Fig. 7.

    Fig. 8
    Fig. 8. Comparison of the wave pattern for Fr=1.2: (a) Ship wave only; (b) Ship wave in the presence of a following current.
    Fig. 9
    Fig. 9. Comparison of the time histories of the free surface elevation at gauge point G2 for between case of ship waves only and case of ship waves in the presence of a following current.

    Fig. 10 shows the response of the maximum water level elevation ηmax to the ship draft at gauge point G2 for Fr′= 1.2 in the presence of a following uniform current. pm ranges from 2500 Pa to 40,000 Pa with an interval of Δp= 2500 Pa pm0= 2500 Pa represents a reference case. ηmax0 denotes the maximum water level elevation corresponding to the case of pm0= 2500 Pa. The best-fit linear trend lines obtained by linear regression analysis for the three responses are also depicted in Fig. 10. In general, all responses of ηmax to the ship draft show a linear relationship. The coefficients of determination for the three linear trend lines are R2= 0.9901, 0.9941 and 0.9991 for Case A, Case B and Case C, respectively. R2 is used to measure how close the numerical results are to the linear trend lines. The closer R2 is to 1.0, the more linear the numerical results tend to be. As a result, the relationship curve between ηmax and the ship draft in the presence of a following uniform current tends to be more linear than that without current. Notably, with the increase in pmpm0, ηmax increases faster in Case B and Case C than Case A. This implies that neglecting the following currents can lead to the underestimation of the response of ηmax to the ship draft.

    Fig. 10

    4.2. Effects of an opposing current on characteristic wave parameters

    Fig. 11 shows the variations of the maximum water level elevation ηmax with the Froude number Fr′ at gauge points G1 and G2 for ship waves in the presence of an opposing uniform current. The presence of opposing uniform currents leads to a significant reduction in ηmax at the two gauge points for 0.6≤Fr′≤2.0. Especially for Fr′=0.6, the decrease in ηmax is up to 73.8% in Case D and 78.4% in Case E at location G1 and up to 93.8% in Case D and 95.3% in Case E at location G2 when compared with Case A. Fig. 12 shows the variations of the leading wave period Tp at gauge point G2 with the Froude number Fr′ for ship waves in the presence of an opposing uniform current. The leading wave periods for Fr′= 0.6 and 0.7 were also not provided in Case D and Case E due to the small leading wave heights. In general, Tp decreases with increasing Fr′ in Case D and Case E for 0.8≤Fr′≤2.0. Tp in Case D and Case E are larger than that in Case A for Fr′≥1.0.

    Fig. 11
    Fig. 12

    Fig. 13 depicts the variations of the maximum water level elevation ηmax with the relative Froude number Fr at gauge points G1 and G2 for ship waves in the presence of an opposing uniform current. Similar to Case B and Case C shown in Fig. 6, the overall relationship curves between ηmax and Fr in Case D and Case E are lower than those in Case A. This implies that with the same Fr, ηmax in the presence of an opposing current is also smaller than that without current. Fig. 14 depicts the variations of the leading wave period Tp in the wave train at gauge point G2 with Fr for ship waves in the presence of an opposing uniform current. Similar to Case B and Case C shown in Fig. 7, the overall relationship curves between Tp and Fr in Case D and Case E are lower than those in Case A for 0.9≤Fr≤2.0. This also implies that with the same Fr, Tp in the presence of an opposing current is smaller than that without current.

    Fig. 13
    Fig. 14

    Fig. 15 shows a comparison of the wave pattern for Fr=1.2 between the case of ship waves only and the case of ship waves in the presence of an opposing current. The case of the ship wave in the presence of an opposing current with Fr=1.2 is obtained by setting the ship speed Us=8.7 m/s and the current velocity Uc=−0.5 m/s. As expected (Lee and Lee, 2021), both calculated cusp-line angles are identical. Fig. 16 depicts the comparison of the time histories of the free surface elevation at gauge point G2 for Fr=1.2 between the case of ship waves only and the case of ship waves in the presence of an opposing current. The maximum water level elevation in the case of Us=9.2 m/s and Uc=0.0 m/s is larger than that in the case of Us=8.7 m/s and Uc=−0.5 m/s, while the reverse is true for the leading wave period. Fig. 16 is consistent with the inferences based on Fig. 13Fig. 14.

    Fig. 15
    Fig. 16

    Fig. 17 depicts the response of the maximum water level elevation ηmax to the ship draft at gauge point G2 for Fr′= 1.2 in the presence of an opposing uniform current. Similarly, the response of ηmax to the ship draft in the presence of an opposing uniform current shows a linear relationship. The coefficients of determination for the three linear trend lines are R2= 0.9901, 0.9955 and 0.9987 for Case A, Case D and Case E, respectively. This indicates that the relationship curve between ηmax and the ship draft in the presence of an opposing uniform current also tends to be more linear than that without current. In addition, ηmax increases faster with increasing pmpm0 in Case D and Case E than Case A, implying that the response of ηmax to the ship draft can also be underestimated by neglecting opposing currents.

    Fig. 17

    5. Conclusions

    A non-hydrostatic model incorporating a moving pressure field method was used to investigate characteristic wave parameters for ship waves in the presence of a uniform current. The calculated cusp-line angles for ship waves in the presence of a following or an opposing uniform current were in good agreement with analytical solutions, demonstrating that the proposed model can accurately resolve ship waves in the presence of a uniform current.

    The model results showed that the presence of a following current can result in an increase in the maximum water level elevation ηmax for 0.9≤Fr′≤1.1, while the presence of an opposing current leads to a significant reduction in ηmax for 0.6≤Fr′≤2.0. The leading wave period Tp can be increased for 0.925≤Fr′≤1.2 and reduced for Fr′≥1.3 due to the presence of a following current. However, the presence of an opposing current leads to an increase in Tp for Fr′≥1.0.

    Although with the same relative Froude number Fr, the cusp-line angles for ship waves in the presence of a following or an opposing current are identical to those for ship waves without current, the maximum water level elevation ηmax and leading wave period Tp in the presence of a following or an opposing current are quite different from those without current. The present model results imply that with the same Fr, ηmax in the presence of a following or an opposing current is smaller than that without current for Fr≥0.6, and Tp in the presence of a following or an opposing current is smaller than that without current for Fr≥0.9.

    The response of ηmax to the ship draft in the presence of a following current or an opposing current is similar to that without current and shows a linear relationship. However, the presence of a following or an opposing uniform current results in more linear responses of ηmax to the ship draft. Moreover, more rapid responses of ηmax to the ship draft are obtained when a following current or an opposing current is presented. This implies that the response of ηmax to the ship draft in the presence of a following current or an opposing current can be underestimated if the uniform current is neglected.

    The present results have implications for ships sailing across estuarine and coastal environments, where river flows or tidal flows are significant. In these environments, ship waves can be larger than expected and the response of the maximum water level elevation to the ship draft may be more remarkable. The effect of a uniform current should be considered in the analysis of ship waves.

    The present study considered only slender-body type ships. For different hull shapes, the effects of a uniform current on characteristic wave parameters need to be further investigated. Moreover, the effects of an oblique uniform current on ship waves need to be examined in future work.

    CRediT authorship contribution statement

    Congfang Ai: Conceptualization, Methodology, Software, Validation, Writing – original draft, Funding acquisition. Yuxiang Ma: Conceptualization, Methodology, Funding acquisition, Writing – review & editing. Lei Sun: Conceptualization, Methodology. Guohai Dong: Supervision, Funding acquisition.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This research is financially supported by the National Natural Science Foundation of China (Grant No. 521712485172010501051979029), LiaoNing Revitalization Talents Program (Grant No. XLYC1807010) and the Fundamental Research Funds for the Central Universities (Grant No. DUT21LK01).

    Appendix. Numerical results with different numbers of horizontal layers

    Fig. 18 shows comparisons of the time histories of the free surface elevation at gauge point G1 for Case B and Fr′= 1.2 between the three sets of numerical results with different numbers of horizontal layers. The maximum water level elevations ηmax obtained by Nz= 3 and 4 are 0.24% and 0.35% larger than ηmax with Nz= 2, respectively. Correspondingly, the leading wave periods Tp obtained by Nz= 3 and 4 are 0.45% and 0.55% larger than Tp with Nz= 2, respectively. In general, the three sets of numerical results are very close. To reduce the computational cost, two horizontal layers Nz= 2 were chosen for this study.

    Fig. 18

    Data availability

    Data will be made available on request.

    References

    Ai et al., 2019

    C. Ai, Y. Ma, C. Yuan, G. Dong

    Development and assessment of semi-implicit nonhydrostatic models for surface water waves

    Ocean Model., 144 (2019), Article 101489

    ArticleDownload PDFView Record in ScopusGoogle ScholarAlmström et al., 2021

    B. Almström, D. Roelvink, M. Larson

    Predicting ship waves in sheltered waterways – an application of XBeach to the Stockholm Archipelago, Sweden

    Coast. Eng., 170 (2021), Article 104026

    ArticleDownload PDFView Record in ScopusGoogle ScholarBayraktar and Beji, 2013

    D. Bayraktar, S. Beji

    Numerical simulation of waves generated by a moving pressure field

    Ocean Eng., 59 (2013), pp. 231-239

    Google ScholarBenjamin et al., 2017

    K. Benjamin, B.K. Smelzer, S.A. Ellingsen

    Surface waves on currents with arbitrary vertical shear

    Phys. Fluids, 29 (2017), Article 047102

    Google ScholarDam et al., 2008

    K.T. Dam, K. Tanimoto, E. Fatimah

    Investigation of ship waves in a narrow channel

    J. Mar. Sci. Technol., 13 (2008), pp. 223-230 View PDF

    CrossRefView Record in ScopusGoogle ScholarDavid et al., 2017

    C.G. David, V. Roeber, N. Goseberg, T. Schlurmann

    Generation and propagation of ship-borne waves – solutions from a Boussinesq-type model

    Coast. Eng., 127 (2017), pp. 170-187

    ArticleDownload PDFView Record in ScopusGoogle Scholarde Ridder et al., 2020

    M.P. de Ridder, P.B. Smit, A. van Dongeren, R. McCall, K. Nederhoff, A.J.H.M. Reniers

    Efficient two-layer non-hydrostatic wave model with accurate dispersive behaviour

    Coast. Eng., 164 (2020), Article 103808

    Google ScholarDempwolff et al., 2022

    L.-C. Dempwolff, G. Melling, C. Windt, O. Lojek, T. Martin, I. Holzwarth, H. Bihs, N. Goseberg

    Loads and effects of ship-generated, drawdown waves in confined waterways – a review of current knowledge and methods

    J. Coast. Hydraul. Struct., 2 (2022), pp. 2-46

    Google ScholarEllingsen, 2014

    S.A. Ellingsen

    Ship waves in the presence of uniform vorticity

    J. Fluid Mech., 742 (2014), p. R2

    View Record in ScopusGoogle ScholarErtekin et al., 1986

    R.C. Ertekin, W.C. Webster, J.V. Wehausen

    Waves caused by a moving disturbance in a shallow channel of finite width

    J. Fluid Mech., 169 (1986), pp. 275-292

    View Record in ScopusGoogle ScholarGrue, 2017

    J. Grue

    Ship generated mini-tsunamis

    J. Fluid Mech., 816 (2017), pp. 142-166 View PDF

    CrossRefView Record in ScopusGoogle ScholarGrue, 2020

    J. Grue

    Mini-tsunamis made by ship moving across a depth change

    J. Waterw. Port, Coast. Ocean Eng., 146 (2020), Article 04020023

    View Record in ScopusGoogle ScholarGourlay, 2001

    T.P. Gourlay

    The supercritical bore produced by a high-speed ship in a channel

    J. Fluid Mech., 434 (2001), pp. 399-409 View PDF

    CrossRefView Record in ScopusGoogle ScholarHavelock, 1908

    T.H. Havelock

    The propagation of groups of waves in dispersive media with application to waves on water produced by a travelling disturbance

    Proc. Royal Soc. London Series A (1908), pp. 398-430

    Google ScholarLee and Lee, 2019

    B.W. Lee, C. Lee

    Equation for ship wave crests in the entire range of water depths

    Coast. Eng., 153 (2019), Article 103542

    ArticleDownload PDFView Record in ScopusGoogle ScholarLee and Lee, 2021

    B.W. Lee, C. Lee

    Equation for ship wave crests in a uniform current in the entire range of water depths

    Coast. Eng., 167 (2021), Article 103900

    ArticleDownload PDFView Record in ScopusGoogle ScholarLi and Ellingsen, 2016

    Y. Li, S.A. Ellingsen

    Ship waves on uniform shear current at finite depth: wave resistance and critical velocity

    J. Fluid Mech., 791 (2016), pp. 539-567 View PDF

    CrossRefView Record in ScopusGoogle ScholarLi et al., 2019

    Y. Li, B.K. Smeltzer, S.A. Ellingsen

    Transient wave resistance upon a real shear current

    Eur. J. Mech. B Fluid, 73 (2019), pp. 180-192

    ArticleDownload PDFCrossRefView Record in ScopusGoogle ScholarMa, 2012

    H. Ma

    Passing Ship Effects in a 2DH Non- Hydrostatic Flow Model

    UNESCO-IHE, Delft, The Netherlands (2012)

    Google ScholarSamaras and Karambas, 2021

    A.G. Samaras, T.V. Karambas

    Numerical simulation of ship-borne waves using a 2DH post-Boussinesq model

    Appl. Math. Model., 89 (2021), pp. 1547-1556

    ArticleDownload PDFView Record in ScopusGoogle ScholarShi et al., 2018

    F. Shi, M. Malej, J.M. Smith, J.T. Kirby

    Breaking of ship bores in a Boussinesq-type ship-wake model

    Coast. Eng., 132 (2018), pp. 1-12

    ArticleDownload PDFCrossRefView Record in ScopusGoogle ScholarVitousek and Fringer, 2013

    S. Vitousek, O.B. Fringer

    Stability and consistency of nonhydrostatic free-surface models using the semi-implicit θ-method

    Int. J. Numer. Methods Fluid., 72 (2013), pp. 550-582 View PDF

    CrossRefView Record in ScopusGoogle Scholar

    Numerical analysis of energy dissipator options using computational fluid dynamics modeling — a case study of Mirani Dam

    전산 유체 역학 모델링을 사용한 에너지 소산자 옵션의 수치적 해석 — Mirani 댐의 사례 연구

    Arabian Journal of Geosciences volume 15, Article number: 1614 (2022) Cite this article

    Abstract

    이 연구에서 FLOW 3D 전산 유체 역학(CFD) 소프트웨어를 사용하여 파키스탄 Mirani 댐 방수로에 대한 에너지 소산 옵션으로 미국 매립지(USBR) 유형 II 및 USBR 유형 III 유역의 성능을 추정했습니다. 3D Reynolds 평균 Navier-Stokes 방정식이 해결되었으며, 여기에는 여수로 위의 자유 표면 흐름을 캡처하기 위해 공기 유입, 밀도 평가 및 드리프트-플럭스에 대한 하위 그리드 모델이 포함되었습니다. 본 연구에서는 5가지 모델을 고려하였다. 첫 번째 모델에는 길이가 39.5m인 USBR 유형 II 정수기가 있습니다. 두 번째 모델에는 길이가 44.2m인 USBR 유형 II 정수기가 있습니다. 3번째와 4 번째모델에는 길이가 각각 48.8m인 USBR 유형 II 정수조와 39.5m의 USBR 유형 III 정수조가 있습니다. 다섯 번째 모델은 네 번째 모델과 동일하지만 마찰 및 슈트 블록 높이가 0.3m 증가했습니다. 최상의 FLOW 3D 모델 조건을 설정하기 위해 메쉬 민감도 분석을 수행했으며 메쉬 크기 0.9m에서 최소 오차를 산출했습니다. 세 가지 경계 조건 세트가 테스트되었으며 최소 오류를 제공하는 세트가 사용되었습니다. 수치적 검증은 USBR 유형 II( L = 48.8m), USBR 유형 III( L = 35.5m) 및 USBR 유형 III 의 물리적 모델 에너지 소산을 0.3m 블록 단위로 비교하여 수행되었습니다( L= 35.5m). 통계 분석 결과 평균 오차는 2.5%, RMSE(제곱 평균 제곱근 오차) 지수는 3% 미만이었습니다. 수리학적 및 경제성 분석을 바탕으로 4 번째 모델이 최적화된 에너지 소산기로 밝혀졌습니다. 흡수된 에너지 백분율 측면에서 물리적 모델과 수치적 모델 간의 최대 차이는 5% 미만인 것으로 나타났습니다.

    In this study, the FLOW 3D computational fluid dynamics (CFD) software was used to estimate the performance of the United States Bureau of Reclamation (USBR) type II and USBR type III stilling basins as energy dissipation options for the Mirani Dam spillway, Pakistan. The 3D Reynolds-averaged Navier–Stokes equations were solved, which included sub-grid models for air entrainment, density evaluation, and drift–flux, to capture free-surface flow over the spillway. Five models were considered in this research. The first model has a USBR type II stilling basin with a length of 39.5 m. The second model has a USBR type II stilling basin with a length of 44.2 m. The 3rd and 4th models have a USBR type II stilling basin with a length of 48.8 m and a 39.5 m USBR type III stilling basin, respectively. The fifth model is identical to the fourth, but the friction and chute block heights have been increased by 0.3 m. To set up the best FLOW 3D model conditions, mesh sensitivity analysis was performed, which yielded a minimum error at a mesh size of 0.9 m. Three sets of boundary conditions were tested and the set that gave the minimum error was employed. Numerical validation was done by comparing the physical model energy dissipation of USBR type II (L = 48.8 m), USBR type III (L =35.5 m), and USBR type III with 0.3-m increments in blocks (L = 35.5 m). The statistical analysis gave an average error of 2.5% and a RMSE (root mean square error) index of less than 3%. Based on hydraulics and economic analysis, the 4th model was found to be an optimized energy dissipator. The maximum difference between the physical and numerical models in terms of percentage energy absorbed was found to be less than 5%.

    Keywords

    • Numerical modeling
    • Spillway
    • Hydraulic jump
    • Energy dissipation
    • FLOW 3D

    References

    • Abbasi S, Fatemi S, Ghaderi A, Di Francesco S (2021) The effect of geometric parameters of the antivortex on a triangular labyrinth side weir. Water (Switzerland) 13(1). https://doi.org/10.3390/w13010014
    • Amorim JCC, Amante RCR, Barbosa VD (2015) Experimental and numerical modeling of flow in a stilling basin. Proceedings of the 36th IAHR World Congress 28 June–3 July, the Hague, the Netherlands, 1, 1–6
    • Asaram D, Deepamkar G, Singh G, Vishal K, Akshay K (2016) Energy dissipation by using different slopes of ogee spillway. Int J Eng Res Gen Sci 4(3):18–22Google Scholar 
    • Boes RM, Hager WH (2003) Hydraulic design of stepped spillways. J Hydraul Eng 129(9):671–679. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:9(671)Article Google Scholar 
    • Celik IB, Ghia U, Roache PJ, Freitas CJ, Coleman H, Raad PE (2008) Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J Fluids Eng Trans ASME 130(7):0780011–0780014. https://doi.org/10.1115/1.2960953Article Google Scholar 
    • Chen Q, Dai G, Liu H (2002) Volume of fluid model for turbulence numerical simulation of stepped spillway overflow. J Hydraul Eng 128(7):683–688. 10.1061/共ASCE兲0733-9429共2002兲128:7共683兲 CE
    • Damiron R (2015) CFD modelling of dam spillway aerator. Lund University Sweden
    • Dunlop SL, Willig IA, Paul GE (2016) Cabinet Gorge Dam spillway modifications for TDG abatement – design evolution and field performance. 6th International Symposium on Hydraulic Structures: Hydraulic Structures and Water System Management, ISHS 2016, 3650628160, 460–470. 10.15142/T3650628160853
    • Fleit G, Baranya S, Bihs H (2018) CFD modeling of varied flow conditions over an ogee-weir. Period Polytech Civ Eng 62(1):26–32. https://doi.org/10.3311/PPci.10821Article Google Scholar 
    • Frizell KW, Frizell KH (2015) Guidelines for hydraulic design of stepped spillways. Hydraulic Laboratory Report HL-2015-06, May
    • Ghaderi A, Abbasi S (2021) Experimental and numerical study of the effects of geometric appendance elements on energy dissipation over stepped spillway. Water (Switzerland) 13(7). https://doi.org/10.3390/w13070957
    • Ghaderi A, Dasineh M, Aristodemo F, Ghahramanzadeh A (2020) Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J Hydroinform 22(6):1554–1572. https://doi.org/10.2166/HYDRO.2020.298Article Google Scholar 
    • Güven A, Mahmood AH (2021) Numerical investigation of flow characteristics over stepped spillways. Water Sci Technol Water Supply 21(3):1344–1355. https://doi.org/10.2166/ws.2020.283Article Google Scholar 
    • Herrera-Granados O, Kostecki SW (2016) Numerical and physical modeling of water flow over the ogee weir of the new Niedów barrage. J Hydrol Hydromech 64(1):67–74. https://doi.org/10.1515/johh-2016-0013Article Google Scholar 
    • Ho DKH, Riddette KM (2010) Application of computational fluid dynamics to evaluate hydraulic performance of spillways in australia. Aust J Civ Eng 6(1):81–104. https://doi.org/10.1080/14488353.2010.11463946Article Google Scholar 
    • Kocaer Ö, Yarar A (2020) Experimental and numerical investigation of flow over ogee spillway. Water Resour Manag 34(13):3949–3965. https://doi.org/10.1007/s11269-020-02558-9Article Google Scholar 
    • Kumcu SY (2017) Investigation of flow over spillway modeling and comparison between experimental data and CFD analysis. KSCE J Civ Eng 21(3):994–1003. https://doi.org/10.1007/s12205-016-1257-zArticle Google Scholar 
    • Li S, Li Q, Yang J (2019) CFD modelling of a stepped spillway with various step layouts. Math Prob Eng 2019:1–12. https://doi.org/10.1155/2019/6215739Article Google Scholar 
    • Muthukumaran N, Prince Arulraj G (2020) Experimental investigation on augmenting the discharge over ogee spillways with nanocement. Civ Eng Archit 8(5):838–845. https://doi.org/10.13189/cea.2020.080511Article Google Scholar 
    • Naderi V, Farsadizadeh D, Lin C, Gaskin S (2019) A 3D study of an air-core vortex using HSPIV and flow visualization. Arab J Sci Eng 44(10):8573–8584. https://doi.org/10.1007/s13369-019-03764-3Article Google Scholar 
    • Nangare PB, Kote AS (2017) Experimental investigation of an ogee stepped spillway with plain and slotted roller bucket for energy dissipation. Int J Civ Eng Technol 8(8):1549–1555Google Scholar 
    • Parsaie A, Moradinejad A, Haghiabi AH (2018) Numerical modeling of flow pattern in spillway approach channel. Jordan J Civ Eng 12(1):1–9Google Scholar 
    • Pasbani Khiavi M, Ali Ghorbani M, Yusefi M (2021) Numerical investigation of the energy dissipation process in stepped spillways using finite volume method. J Irrig Water Eng 11(4):22–37Google Scholar 
    • Peng Y, Zhang X, Yuan H, Li X, Xie C, Yang S, Bai Z (2019) Energy dissipation in stepped spillways with different horizontal face angles. Energies 12(23). https://doi.org/10.3390/en12234469
    • Raza A, Wan W, Mehmood K (2021) Stepped spillway slope effect on air entrainment and inception point location. Water (Switzerland) 13(10). https://doi.org/10.3390/w13101428
    • Reeve DE, Zuhaira AA, Karunarathna H (2019) Computational investigation of hydraulic performance variation with geometry in gabion stepped spillways. Water Sci Eng 12(1):62–72. https://doi.org/10.1016/j.wse.2019.04.002Article Google Scholar 
    • Rice CE, Kadavy KC (1996) Model study of a roller compacted concrete stepped spillway. J Hydraul Eng 122(6):292–297. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:6(292)Article Google Scholar 
    • Rong Y, Zhang T, Peng L, Feng P (2019) Three-dimensional numerical simulation of dam discharge and flood routing in Wudu reservoir. Water (Switzerland) 11(10). https://doi.org/10.3390/w11102157
    • Saqib N, Akbar M, Pan H, Ou G, Mohsin M, Ali A, Amin A (2022) Numerical analysis of pressure profiles and energy dissipation across stepped spillways having curved risers. Appl Sci 12(448):1–18Google Scholar 
    • Saqib N, Ansari K, Babar M (2021) Analysis of pressure profiles and energy dissipation across stepped spillways having curved treads using computational fluid dynamics. Intl Conf Adv Mech Eng :1–10
    • Saqib Nu, Akbar M, Huali P, Guoqiang O (2022) Numerical investigation of pressure profiles and energy dissipation across the stepped spillway having curved treads using FLOW 3D. Arab J Geosci 15(1):1363–1400. https://doi.org/10.1007/s12517-022-10505-8Article Google Scholar 
    • Sarkardeh H, Marosi M, Roshan R (2015) Stepped spillway optimization through numerical and physical modeling. Int J Energy Environ 6(6):597–606Google Scholar 
    • Serafeim A, Avgeris V, Hrissanthou V (2015) Experimental and numerical modeling of flow over a spillway. Eur Water Publ 14(2015):55–59. https://doi.org/10.15224/978-1-63248-042-2-11Article Google Scholar 
    • Sorensen RM (1986) Stepped spillway model investigation. J Hydraul Eng I(12):1461–1472. https://ascelibrary.org/doi/full/10.1061/%28ASCE%290733-
    • Tabbara M, Chatila J, Awwad R (2005) Computational simulation of flow over stepped spillways. Comput Struct 83(27):2215–2224. https://doi.org/10.1016/j.compstruc.2005.04.005Article Google Scholar 
    • Valero D, Bung DB, Crookston BM, Matos J (2016) Numerical investigation of USBR type III stilling basin performance downstream of smooth and stepped spillways. 6th International Symposium on Hydraulic Structures: Hydraulic Structures and Water System Management, ISHS 2016, 3406281608, 635–646. https://doi.org/10.15142/T340628160853
    • Versteeg H, Malalasekera W (1979) An introduction to computational fluid mechanics. (Vol. 2). https://doi.org/10.1016/0010-4655(80)90010-7
    • WAPDA model studies cell, IRI Lahore (2003) Mirani Dam Project hydraulic model studies for the spillway. November 2003
    • Yakhot V, Orszag S (1986) Renormalization group analysis of turbulence. I. Basic theory. J Sci Comput 1(1):3–51Article Google Scholar 
    Fig. 8 Distribution of solidification properties on the yz cross section at the maximum width of the melt pool.(a) thermal gradient G, (b) solidification velocity vT, (c) cooling rate G×vT, and (d) morphology factor G/vT. These profiles are calculated with a laser power 300 W and velocity 400 mm/s using (a1 through d1) analytical Rosenthal simulation and (a2 through d2) high-fidelity CFD simulation. The laser is moving out of the page from the upper left corner of each color map (Color figure online)

    Quantifying Equiaxed vs Epitaxial Solidification in Laser Melting of CMSX-4 Single Crystal Superalloy

    CMSX -4 단결정 초합금의 레이저 용융에서 등축 응고와 에피택셜 응고 정량화

    본 논문은 독자의 편의를 위해 기계번역된 내용이어서 자세한 내용은 원문을 참고하시기 바랍니다.

    Abstract

    에피택셜 과 등축 응고 사이의 경쟁은 적층 제조에서 실행되는 레이저 용융 동안 CMSX-4 단결정 초합금에서 조사되었습니다. 단일 트랙 레이저 스캔은 레이저 출력과 스캐닝 속도의 여러 조합으로 방향성 응고된 CMSX-4 합금의 분말 없는 표면에서 수행되었습니다. EBSD(Electron Backscattered Diffraction) 매핑은 새로운 방향의 식별을 용이하게 합니다. 영역 분율 및 공간 분포와 함께 융합 영역 내에서 핵을 형성한 “스트레이 그레인”은 충실도가 높은 전산 유체 역학 시뮬레이션을 사용하여 용융 풀 내의 온도 및 유체 속도 필드를 모두 추정했습니다. 이 정보를 핵 생성 모델과 결합하여 용융 풀에서 핵 생성이 발생할 확률이 가장 높은 위치를 결정했습니다. 금속 적층 가공의 일반적인 경험에 따라 레이저 용융 트랙의 응고된 미세 구조는 에피택셜 입자 성장에 의해 지배됩니다. 더 높은 레이저 스캐닝 속도와 더 낮은 출력이 일반적으로 흩어진 입자 감소에 도움이 되지만,그럼에도 불구하고 길쭉한 용융 풀에서 흩어진 입자가 분명했습니다.

    The competition between epitaxial vs. equiaxed solidification has been investigated in CMSX-4 single crystal superalloy during laser melting as practiced in additive manufacturing. Single-track laser scans were performed on a powder-free surface of directionally solidified CMSX-4 alloy with several combinations of laser power and scanning velocity. Electron backscattered diffraction (EBSD) mapping facilitated identification of new orientations, i.e., “stray grains” that nucleated within the fusion zone along with their area fraction and spatial distribution. Using high-fidelity computational fluid dynamics simulations, both the temperature and fluid velocity fields within the melt pool were estimated. This information was combined with a nucleation model to determine locations where nucleation has the highest probability to occur in melt pools. In conformance with general experience in metals additive manufacturing, the as-solidified microstructure of the laser-melted tracks is dominated by epitaxial grain growth; nevertheless, stray grains were evident in elongated melt pools. It was found that, though a higher laser scanning velocity and lower power are generally helpful in the reduction of stray grains, the combination of a stable keyhole and minimal fluid velocity further mitigates stray grains in laser single tracks.

    Introduction

    니켈 기반 초합금은 고온에서 긴 노출 시간 동안 높은 인장 강도, 낮은 산화 및 우수한 크리프 저항성을 포함하는 우수한 특성의 고유한 조합으로 인해 가스 터빈 엔진 응용 분야에서 광범위하게 사용됩니다. CMSX-4는 특히 장기 크리프 거동과 관련하여 초고강도의 2세대 레늄 함유 니켈 기반 단결정 초합금입니다. 1 , 2 ]입계의 존재가 크리프를 가속화한다는 인식은 가스 터빈 엔진의 고온 단계를 위한 단결정 블레이드를 개발하게 하여 작동 온도를 높이고 효율을 높이는 데 기여했습니다. 이러한 구성 요소는 사용 중 마모될 수 있습니다. 즉, 구성 요소의 무결성을 복원하고 단결정 미세 구조를 유지하는 수리 방법을 개발하기 위한 지속적인 작업이 있었습니다. 3 , 4 , 5 ]

    적층 제조(AM)가 등장하기 전에는 다양한 용접 공정을 통해 단결정 초합금에 대한 수리 시도가 수행되었습니다. 균열 [ 6 , 7 ] 및 흩어진 입자 8 , 9 ] 와 같은 심각한 결함 이 이 수리 중에 자주 발생합니다. 일반적으로 “스트레이 그레인”이라고 하는 응고 중 모재의 방향과 다른 결정학적 방향을 가진 새로운 그레인의 형성은 니켈 기반 단결정 초합금의 수리 중 유해한 영향으로 인해 중요한 관심 대상입니다. 3 , 10 ]결과적으로 재료의 단결정 구조가 손실되고 원래 구성 요소에 비해 기계적 특성이 손상됩니다. 이러한 흩어진 입자는 특정 조건에서 에피택셜 성장을 대체하는 등축 응고의 시작에 해당합니다.

    떠돌이 결정립 형성을 완화하기 위해 이전 작업은 용융 영역(FZ) 내에서 응고하는 동안 떠돌이 결정립 형성에 영향을 미치는 수지상 응고 거동 및 처리 조건을 이해하는 데 중점을 두었습니다. 11 , 12 , 13 , 14 ] 연구원들은 단결정 합금의 용접 중에 표류 결정립 형성에 대한 몇 가지 가능한 메커니즘을 제안했습니다. 12 , 13 , 14 , 15 ]응고 전단에 앞서 국부적인 구성 과냉각은 이질적인 핵 생성 및 등축 결정립의 성장을 유발할 수 있습니다. 또한 용융 풀에서 활발한 유체 흐름으로 인해 발생하는 덴드라이트 조각화는 용융 풀 경계 근처에서 새로운 결정립을 형성할 수도 있습니다. 두 메커니즘 모두에서, 표류 결정립 형성은 핵 생성 위치에 의존하며, 차이점은 수상 돌기 조각화는 수상 돌기 조각이 핵 생성 위치로 작용한다는 것을 의미하는 반면 다른 메커니즘은 재료,  를 들어 산화물 입자에서 발견되는 다른 유형의 핵 생성 위치를 사용한다는 것을 의미합니다. 잘 알려진 바와 같이, 많은 주물에 대한 반대 접근법은 TiB와 같은 핵제의 도입을 통해 등축 응고를 촉진하는 것입니다.22알루미늄 합금에서.

    헌법적 과냉 메커니즘에서 Hunt 11 ] 는 정상 상태 조건에서 기둥에서 등축으로의 전이(CET)를 설명하는 모델을 개발했습니다. Gaumann과 Kurz는 Hunt의 모델을 수정하여 단결정이 응고되는 동안 떠돌이 결정립이 핵을 생성하고 성장할 수 있는 정도를 설명했습니다. 12 , 14 ] 이후 연구에서 Vitek은 Gaumann의 모델을 개선하고 출력 및 스캐닝 속도와 같은 용접 조건의 영향에 대한 보다 자세한 분석을 포함했습니다. Vitek은 또한 실험 및 모델링 기술을 통해 표류 입자 형성에 대한 기판 방향의 영향을 포함했습니다. 3 , 10 ]일반적으로 높은 용접 속도와 낮은 출력은 표류 입자의 양을 최소화하고 레이저 용접 공정 중 에피택셜 단결정 성장을 최대화하는 것으로 나타났습니다. 3,10 ] 그러나 Vitek은 덴드라이트 조각화를 고려하지 않았으며 그의 연구는 불균질 핵형성이 레이저 용접된 CMSX -4 단결정 합금에서 표류 결정립 형성을 이끄는 주요 메커니즘임을 나타냅니다. 현재 작업에서 Vitek의 수치적 방법이 채택되고 금속 AM의 급속한 특성의 더 높은 속도와 더 낮은 전력 특성으로 확장됩니다.

    AM을 통한 금속 부품 제조 는 지난 10년 동안 급격한 인기 증가를 목격했습니다. 16 ] EBM(Electron Beam Melting)에 의한 CMSX-4의 제작 가능성은 자주 조사되었으나 17 , 18 , 19 , 20 , 21 ] CMSX의 제조 및 수리에 대한 조사는 매우 제한적이었다. – 4개의 단결정 구성요소는 레이저 분말 베드 융합(LPBF)을 사용하며, AM의 인기 있는 하위 집합으로, 특히 표류 입자 형성을 완화하는 메커니즘과 관련이 있습니다. 22 ]이러한 조사 부족은 주로 이러한 합금 시스템과 관련된 처리 문제로 인해 발생합니다. 2 , 19 , 22 , 23 , 24 ] 공정 매개변수( 예: 열원 전력, 스캐닝 속도, 스폿 크기, 예열 온도 및 스캔 전략)의 엄격한 제어는 완전히 조밀한 부품을 만들고 유지 관리할 수 있도록 하는 데 필수적입니다. 단결정 미세구조. 25 ] EBM을 사용하여 단결정 합금의 균열 없는 수리가 현재 가능하지만 19 , 24 ] 표류 입자를 생성하지 않는 수리는 쉽게 달성할 수 없습니다.23 , 26 ]

    이 작업에서 LPBF를 대표하는 조건으로 레이저 용융을 사용하여 단결정 CMSX-4에서 표류 입자 완화를 조사했습니다. LPBF는 스캐닝 레이저 빔을 사용하여 금속 분말의 얇은 층을 기판에 녹이고 융합합니다. 층별 증착에서 레이저 빔의 사용은 급격한 온도 구배, 빠른 가열/냉각 주기 및 격렬한 유체 흐름을 경험하는 용융 풀을 생성 합니다 이것은 일반적으로 부품에 결함을 일으킬 수 있는 매우 동적인 물리적 현상으로 이어집니다. 28 , 29 , 30 ] 레이저 유도 키홀의 동역학( 예:, 기화 유발 반동 압력으로 인한 위상 함몰) 및 열유체 흐름은 AM 공정에서 응고 결함과 강하게 결합되고 관련됩니다. 31 , 32 , 33 , 34 ] 기하 구조의 급격한 변화가 발생하기 쉬운 불안정한 키홀은 다공성, 볼링, 스패터 형성 및 흔하지 않은 미세 구조 상을 포함하는 유해한 물리적 결함을 유발할 수 있습니다. 그러나 키홀 진화와 유체 흐름은 자연적으로 다음을 통해 포착 하기 어렵 습니다 .전통적인 사후 특성화 기술. 고충실도 수치 모델링을 활용하기 위해 이 연구에서는 전산유체역학(CFD)을 적용하여 표면 아래의 레이저-물질 상호 작용을 명확히 했습니다. 36 ] 이것은 응고된 용융물 풀의 단면에 대한 오랫동안 확립된 사후 특성화와 비교하여 키홀 및 용융물 풀 유체 흐름 정량화를 실행합니다.

    CMSX-4 구성 요소의 레이저 기반 AM 수리 및 제조를 위한 적절한 절차를 개발하기 위해 적절한 공정 창을 설정하고 응고 중 표류 입자 형성 경향에 대한 예측 기능을 개발하는 것부터 시작합니다. 다중 합금에 대한 단일 트랙 증착은 분말 층이 있거나 없는 AM 공정에서 용융 풀 형상 및 미세 구조의 정확한 분석을 제공하는 것으로 나타났습니다. 37 , 38 , 39 ]따라서 본 연구에서는 CMSX-4의 응고 거동을 알아보기 위해 분말을 사용하지 않는 단일 트랙 레이저 스캔 실험을 사용하였다. 이는 CMSX-4 단결정의 LPBF 제조를 위한 예비 실험 지침을 제공합니다. 또한 응고 모델링은 기존 용접에서 LPBF와 관련된 급속 용접으로 확장되어 표류 입자 감소를 위한 최적의 레이저 용융 조건을 식별했습니다. 가공 매개변수 최적화를 위한 추가 지침을 제공하기 위해 용융물 풀의 매우 동적인 유체 흐름을 모델링했습니다.

    재료 및 방법

    단일 트랙 실험

    방전 가공(EDM)을 사용하여 CMSX-4 방향성 응고 단결정 잉곳으로부터 샘플을 제작했습니다. 샘플의 최종 기하학은 치수 20의 직육면체 형태였습니다.××20××6mm. 6개 중 하나⟨ 001 ⟩⟨001⟩잉곳의 결정학적 방향은 레이저 트랙이 이 바람직한 성장 방향을 따라 스캔되도록 절단 표면에 수직으로 위치했습니다. 단일 레이저 용융 트랙은 EOS M290 기계를 사용하여 분말이 없는 샘플 표면에 만들어졌습니다. 이 기계는 최대 출력 400W, 가우시안 빔 직경 100의 이터븀 파이버 레이저가 장착된 LPBF 시스템입니다. μμ초점에서 m. 실험 중에 직사각형 샘플을 LPBF 기계용 맞춤형 샘플 홀더의 포켓에 끼워 표면을 동일한 높이로 유지했습니다. 이 맞춤형 샘플 홀더에 대한 자세한 내용은 다른 곳에서 설명합니다. 실험 은 아르곤 퍼지 분위기에서 수행되었으며 예열은 적용되지 않았습니다 단일 트랙 레이저 용융 실험은 다양한 레이저 출력(200~370W)과 스캔 속도(0.4~1.4m/s)에서 수행되었습니다.

    성격 묘사

    레이저 스캐닝 후, 레이저 빔 스캐닝 방향에 수직인 평면에서 FZ를 통해 다이아몬드 톱을 사용하여 샘플을 절단했습니다. 그 후, 샘플을 장착하고 220 그릿 SiC 페이퍼로 시작하여 콜로이드 실리카 현탁액 광택제로 마무리하여 자동 연마했습니다. 결정학적 특성화는 20kV의 가속 전압에서 TESCAN MIRA 3XMH 전계 방출 주사 전자 현미경(SEM)에서 수행되었습니다. EBSD 지도는0.4μm _0.4μ미디엄단계 크기. Bruker 시스템을 사용하여 EBSD 데이터를 정리하고 분석했습니다. EBSD 클린업은 그레인을 접촉시키기 위한 그레인 확장 루틴으로 시작한 다음 인덱스되지 않은 회절 패턴과 관련된 검은색 픽셀을 해결하기 위해 이웃 방향 클린업 루틴으로 이어졌습니다. 용융 풀 형태를 분석하기 위해 단면을 광학 현미경으로 분석했습니다. 광학 특성화의 대비를 향상시키기 위해 10g CuSO로 구성된 Marbles 시약의 변형으로 샘플을 에칭했습니다.44, 50mL HCl 및 70mL H22영형.

    응고 모델링

    구조적 과냉 기준에 기반한 응고 모델링을 수행하여 표유 입자의 성향 및 분포에 대한 가공 매개변수의 영향을 평가했습니다. 이 분석 모델링 접근 방식에 대한 자세한 내용은 이전 작업에서 제공됩니다. 3 , 10 ] 참고문헌 3 에 기술된 바와 같이 , 기본 재료의 결정학적 배향을 가진 용융 풀에서 총 표유 입자 면적 분율의 변화는 최소이므로 기본 재료 배향의 영향은 이 작업에서 고려되지 않았습니다. 우리의 LPBF 결과를 이전 작업과 비교하기 위해 Vitek의 작업에서 사용된 수학적으로 간단한 Rosenthal 방정식 3 ]또한 레이저 매개변수의 함수로 용융 풀의 모양과 FZ의 열 조건을 계산하기 위한 기준으로 여기에서 채택되었습니다. Rosenthal 솔루션은 열이 일정한 재료 특성을 가진 반무한 판의 정상 상태 점원을 통해서만 전도를 통해 전달된다고 가정하며 일반적으로 다음과 같이 표현 됩니다 40 , 41 ] .

    티=티0+η피2 파이케이엑스2+와이2+지2———-√경험치[- 브이(엑스2+와이2+지2———-√− 엑스 )2α _] ,티=티0+η피2파이케이엑스2+와이2+지2경험치⁡[-V(엑스2+와이2+지2-엑스)2α],(1)

    여기서 T 는 온도,티0티0본 연구에서 313K(  , EOS 기계 챔버 온도)로 설정된 주변 온도, P 는 레이저 빔 파워, V 는 레이저 빔 스캐닝 속도,ηη는 레이저 흡수율, k 는 열전도율,αα베이스 합금의 열확산율입니다. x , y , z 는 각각 레이저 스캐닝 방향, 가로 방향 및 세로 방향의 반대 방향과 정렬된 방향입니다 . 이 직교 좌표는 참조 3 의 그림 1에 있는 시스템을 따랐습니다 . CMSX-4에 대한 고상선 온도(1603K)와 액상선 온도(1669K)의 등온선 평균으로 응고 프런트( 즉 , 고체-액체 계면)를 정의했습니다. 42 , 43 , 44 ] 시뮬레이션에 사용된 열물리적 특성은 표 I 에 나열되어 있습니다.표 I CMSX-4의 응고 모델링에 사용된 열물리적 특성

    풀 사이즈 테이블

    열 구배는 외부 열 흐름에 의해 결정되었습니다.∇ 티∇티45 ] 에 의해 주어진 바와 같이 :

    지 = | ∇ 티| =∣∣∣∂티∂엑스나^^+∂티∂와이제이^^+∂티∂지케이^^∣∣∣=(∂티∂엑스)2+(∂티∂와이)2+(∂티∂지)2————————√,G=|∇티|=|∂티∂엑스나^^+∂티∂와이제이^^+∂티∂지케이^^|=(∂티∂엑스)2+(∂티∂와이)2+(∂티∂지)2,(2)

    어디나^^나^^,제이^^제이^^, 그리고케이^^케이^^는 각각 x , y 및 z 방향 을 따른 단위 벡터 입니다. 응고 등온선 속도,V티V티는 다음 관계에 의해 레이저 빔 스캐닝 속도 V 와 기하학적으로 관련됩니다.

    V티= V코사인θ =V∂티∂엑스(∂티∂엑스)2+(∂티∂와이)2+(∂티∂지)2——————-√,V티=V코사인⁡θ=V∂티∂엑스(∂티∂엑스)2+(∂티∂와이)2+(∂티∂지)2,(삼)

    어디θθ는 스캔 방향과 응고 전면의 법선 방향(  , 최대 열 흐름 방향) 사이의 각도입니다. 이 연구의 용접 조건과 같은 제한된 성장에서 수지상 응고 전면은 고체-액체 등온선의 속도로 성장하도록 강제됩니다.V티V티. 46 ]

    응고 전선이 진행되기 전에 새로 핵 생성된 입자의 국지적 비율ΦΦ, 액체 온도 구배 G 에 의해 결정 , 응고 선단 속도V티V티및 핵 밀도N0N0. 고정된 임계 과냉각에서 모든 입자가 핵형성된다고 가정함으로써△티N△티N, 등축 결정립의 반경은 결정립이 핵 생성을 시작하는 시점부터 주상 전선이 결정립에 도달하는 시간까지의 성장 속도를 통합하여 얻습니다. 과냉각으로 대체 시간d (ΔT_) / dt = – _V티G디(△티)/디티=-V티G, 열 구배 G 사이의 다음 관계 , 등축 입자의 국부적 부피 분율ΦΦ, 수상 돌기 팁 과냉각ΔT _△티, 핵 밀도N0N0, 재료 매개변수 n 및 핵생성 과냉각△티N△티N, Gäumann 외 여러분 에 의해 파생되었습니다 . 12 , 14 ] Hunt의 모델 11 ] 의 수정에 기반함 :

    지 =1엔 + 1- 4π _N03 인치( 1 − Φ )———√삼ΔT _( 1 -△티엔 + 1N△티엔 + 1) .G=1N+1-4파이N0삼인⁡(1-Φ)삼△티(1-△티NN+1△티N+1).(4)

    계산을 단순화하기 위해 덴드라이트 팁 과냉각을 전적으로 구성 과냉각의 것으로 추정합니다.△티씨△티씨, 멱법칙 형식으로 근사화할 수 있습니다.△티씨= ( _V티)1 / 엔△티씨=(ㅏV티)1/N, 여기서 a 와 n 은 재료 종속 상수입니다. CMSX-4의 경우 이 값은a = 1.25 ×106ㅏ=1.25×106 s K 3.4m− 1-1,엔 = 3.4N=3.4, 그리고N0= 2 ×1015N0=2×1015미디엄− 3,-삼,참고문헌 3 에 의해 보고된 바와 같이 .△티N△티N2.5K이며 보다 큰 냉각 속도에서 응고에 대해 무시할 수 있습니다.106106 K/s. 에 대한 표현ΦΦ위의 방정식을 재배열하여 해결됩니다.

    Φ= 1 -이자형에스\ 여기서\  S=- 4π _N0삼(1( 엔 + 1 ) (GN/ 아V티)1 / 엔)삼=−2.356×1019(vTG3.4)33.4.Φ=1−eS\ where\ S=−4πN03(1(n+1)(Gn/avT)1/n)3=−2.356×1019(vTG3.4)33.4.

    (5)

    As proposed by Hunt,[11] a value of Φ≤0.66Φ≤0.66 pct represents fully columnar epitaxial growth condition, and, conversely, a value of Φ≥49Φ≥49 pct indicates that the initial single crystal microstructure is fully replaced by an equiaxed microstructure. To calculate the overall stray grain area fraction, we followed Vitek’s method by dividing the FZ into roughly 19 to 28 discrete parts (depending on the length of the melt pool) of equal length from the point of maximum width to the end of melt pool along the x direction. The values of G and vTvT were determined at the center on the melt pool boundary of each section and these values were used to represent the entire section. The area-weighted average of ΦΦ over these discrete sections along the length of melt pool is designated as Φ¯¯¯¯Φ¯, and is given by:

    Φ¯¯¯¯=∑kAkΦk∑kAk,Φ¯=∑kAkΦk∑kAk,

    (6)

    where k is the index for each subsection, and AkAk and ΦkΦk are the areas and ΦΦ values for each subsection. The summation is taken over all the sections along the melt pool. Vitek’s improved model allows the calculation of stray grain area fraction by considering the melt pool geometry and variations of G and vTvT around the tail end of the pool.

    수년에 걸쳐 용융 풀 현상 모델링의 정확도를 개선하기 위해 많은 고급 수치 방법이 개발되었습니다. 우리는 FLOW-3D와 함께 고충실도 CFD를 사용했습니다. FLOW-3D는 여러 물리 모델을 통합하는 상용 FVM(Finite Volume Method)입니다. 47 , 48 ] CFD는 유체 운동과 열 전달을 수치적으로 시뮬레이션하며 여기서 사용된 기본 물리 모델은 레이저 및 표면력 모델이었습니다. 레이저 모델에서는 레이 트레이싱 기법을 통해 다중 반사와 프레넬 흡수를 구현합니다. 36 ]먼저, 레이저 빔은 레이저 빔에 의해 조명되는 각 그리드 셀을 기준으로 여러 개의 광선으로 이산화됩니다. 그런 다음 각 입사 광선에 대해 입사 벡터가 입사 위치에서 금속 표면의 법선 벡터와 정렬될 때 에너지의 일부가 금속에 의해 흡수됩니다. 흡수율은 Fresnel 방정식을 사용하여 추정됩니다. 나머지 에너지는 반사광선 에 의해 유지되며 , 반사광선은 재료 표면에 부딪히면 새로운 입사광선으로 처리됩니다. 두 가지 주요 힘이 액체 금속 표면에 작용하여 자유 표면을 변형시킵니다. 금속의 증발에 의해 생성된 반동 압력은 증기 억제를 일으키는 주요 힘입니다. 본 연구에서 사용된 반동 압력 모델은피아르 자형= 특급 _{ B ( 1- _티V/ 티) }피아르 자형=ㅏ경험치⁡{비(1-티V/티)}, 어디피아르 자형피아르 자형는 반동압력, A 와 B 는 재료의 물성에 관련된 계수로 각각 75와 15이다.티V티V는 포화 온도이고 T 는 키홀 벽의 온도입니다. 표면 흐름 및 키홀 형성의 다른 원동력은 표면 장력입니다. 표면 장력 계수는 Marangoni 흐름을 포함하기 위해 온도의 선형 함수로 추정되며,σ =1.79-9.90⋅10− 4( 티− 1654케이 )σ=1.79-9.90⋅10-4(티-1654년케이)엔엠− 1-1. 49 ] 계산 영역은 베어 플레이트의 절반입니다(2300 μμ미디엄××250 μμ미디엄××500 μμm) xz 평면 에 적용된 대칭 경계 조건 . 메쉬 크기는 8입니다. μμm이고 시간 단계는 0.15입니다. μμs는 계산 효율성과 정확성 간의 균형을 제공합니다.

    결과 및 논의

    용융 풀 형태

    이 작업에 사용된 5개의 레이저 파워( P )와 6개의 스캐닝 속도( V )는 서로 다른 29개의 용융 풀을 생성했습니다.피- 브이피-V조합. P 와 V 값이 가장 높은 것은 그림 1 을 기준으로 과도한 볼링과 관련이 있기 때문에 본 연구에서는 분석하지 않았다  .

    단일 트랙 용융 풀은 그림  1 과 같이 형상에 따라 네 가지 유형으로 분류할 수 있습니다 39 ] : (1) 전도 모드(파란색 상자), (2) 키홀 모드(빨간색), (3) 전환 모드(마젠타), (4) 볼링 모드(녹색). 높은 레이저 출력과 낮은 스캐닝 속도의 일반적인 조합인 키홀 모드에서 용융물 풀은 일반적으로 너비/깊이( W / D ) 비율이 0.5보다 훨씬 큰 깊고 가느다란 모양을 나타냅니다 . 스캐닝 속도가 증가함에 따라 용융 풀이 얕아져 W / D 가 약 0.5인 반원형 전도 모드 용융 풀을 나타냅니다. W / D _전환 모드 용융 풀의 경우 1에서 0.5 사이입니다. 스캐닝 속도를 1200 및 1400mm/s로 더 높이면 충분히 큰 캡 높이와 볼링 모드 용융 풀의 특징인 과도한 언더컷이 발생할 수 있습니다.

    힘과 속도의 함수로서의 용융 풀 깊이와 너비는 각각 그림  2 (a)와 (b)에 표시되어 있습니다. 용융 풀 폭은 기판 표면에서 측정되었습니다. 그림  2 (a)는 깊이가 레이저 출력과 매우 선형적인 관계를 따른다는 것을 보여줍니다. 속도가 증가함에 따라 깊이  파워 곡선의 기울기는 꾸준히 감소하지만 더 높은 속도 곡선에는 약간의 겹침이 있습니다. 이러한 예상치 못한 중첩은 종종 용융 풀 형태의 동적 변화를 유발하는 유체 흐름의 영향과 레이저 스캔당 하나의 이미지만 추출되었다는 사실 때문일 수 있습니다. 이러한 선형 동작은 그림 2 (b) 의 너비에 대해 명확하지 않습니다  . 그림  2(c)는 선형 에너지 밀도 P / V 의 함수로서 용융 깊이와 폭을 보여줍니다 . 선형 에너지 밀도는 퇴적물의 단위 길이당 에너지 투입량을 측정한 것입니다. 50 ] 용융 풀 깊이는 에너지 밀도에 따라 달라지며 너비는 더 많은 분산을 나타냅니다. 동일한 에너지 밀도가 준공 부품의 용융 풀, 미세 구조 또는 속성에서 반드시 동일한 유체 역학을 초래하지는 않는다는 점에 유의하는 것이 중요합니다. 50 ]

    그림 1
    그림 1
    그림 2
    그림 2

    레이저 흡수율 평가

    레이저 흡수율은 LPBF 조건에서 재료 및 가공 매개변수에 따라 크게 달라진다는 것은 잘 알려져 있습니다. 31 , 51 , 52 ] 적분구를 이용한 전통적인 흡수율의 직접 측정은 일반적으로 높은 비용과 구현의 어려움으로 인해 쉽게 접근할 수 없습니다. 51 ] 그  . 39 ] 전도 모드 용융 풀에 대한 Rosenthal 방정식을 기반으로 경험적 레이저 흡수율 모델을 개발했지만 기본 가정으로 인해 키홀 용융 풀에 대한 정확한 예측을 제공하지 못했습니다. 40 ] 최근 간 . 53 ] Ti–6Al–4V에 대한 30개의 고충실도 다중 물리 시뮬레이션 사례를 사용하여 레이저 흡수에 대한 스케일링 법칙을 확인했습니다. 그러나 연구 중인 특정 재료에 대한 최소 흡수(평평한 용융 표면의 흡수율)에 대한 지식이 필요하며 이는 CMSX-4에 대해 알려지지 않았습니다. 다양한 키홀 모양의 용융 풀에 대한 레이저 흡수의 정확한 추정치를 얻기가 어렵기 때문에 상한 및 하한 흡수율로 분석 시뮬레이션을 실행하기로 결정했습니다. 깊은 키홀 모양의 용융 풀의 경우 대부분의 빛을 가두는 키홀 내 다중 반사로 인해 레이저 흡수율이 0.8만큼 높을 수 있습니다. 이것은 기하학적 현상이며 기본 재료에 민감하지 않습니다. 5152 , 54 ] 따라서 본 연구에서는 흡수율의 상한을 0.8로 설정하였다. 참고 문헌 51 에 나타낸 바와 같이 , 전도 용융 풀에 해당하는 최저 흡수율은 약 0.3이었으며, 이는 이 연구에서 합리적인 하한 값입니다. 따라서 레이저 흡수율이 스트레이 그레인 형성에 미치는 영향을 보여주기 위해 흡수율 값을 0.55 ± 0.25로 설정했습니다. Vitek의 작업에서는 1.0의 고정 흡수율 값이 사용되었습니다. 3 ]

    퓨전 존 미세구조

    그림  3 은 200~300W 및 600~300W 및 600~300W 범위의 레이저 출력 및 속도로 9가지 다른 처리 매개변수에 의해 생성된 CMSX-4 레이저 트랙의 yz 단면 에서 취한 EBSD 역극점도와 해당 역극점도를 보여 줍니다. 각각 1400mm/s. EBSD 맵에서 여러 기능을 쉽게 관찰할 수 있습니다. 스트레이 그레인은 EBSD 맵에서 그 방향에 해당하는 다른 RGB 색상으로 나타나고 그레인 경계를 묘사하기 위해 5도의 잘못된 방향이 사용되었습니다. 여기, 그림  3 에서 스트레이 그레인은 대부분 용융 풀의 상단 중심선에 집중되어 있으며, 이는 용접된 단결정 CMSX-4의 이전 보고서와 일치합니다. 10 ]역 극점도에서, 점 근처에 집중된 클러스터⟨ 001 ⟩⟨001⟩융합 경계에서 유사한 방향을 유지하는 단결정 기반 및 에피택셜로 응고된 덴드라이트를 나타냅니다. 그러나 흩어진 곡물은 식별할 수 있는 질감이 없는 흩어져 있는 점으로 나타납니다. 단결정 기본 재료의 결정학적 방향은 주로⟨ 001 ⟩⟨001⟩비록 샘플을 절단하는 동안 식별할 수 없는 기울기 각도로 인해 또는 단결정 성장 과정에서 약간의 잘못된 방향이 있었기 때문에 약간의 편차가 있지만. 용융 풀 내부의 응고된 수상 돌기의 기본 방향은 다시 한 번⟨ 001 ⟩⟨001⟩주상 결정립 구조와 유사한 에피택셜 성장의 결과. 그림 3 과 같이 용융 풀에서 수상돌기의 성장 방향은 하단의 수직 방향에서 상단의 수평 방향으로 변경되었습니다  . 이 전이는 주로 온도 구배 방향의 변화로 인한 것입니다. 두 번째 전환은 CET입니다. FZ의 상단 중심선 주변에서 다양한 방향의 흩어진 입자가 관찰되며, 여기서 안쪽으로 성장하는 수상돌기가 서로 충돌하여 용융 풀에서 응고되는 마지막 위치가 됩니다.

    더 깊은 키홀 모양을 특징으로 하는 샘플에서 용융 풀의 경계 근처에 침전된 흩어진 입자가 분명합니다. 이러한 새로운 입자는 나중에 모델링 섹션에서 논의되는 수상돌기 조각화 메커니즘에 의해 잠재적으로 발생합니다. 결정립이 강한 열 구배에서 핵을 생성하고 성장한 결과, 대부분의 흩어진 결정립은 모든 방향에서 동일한 크기를 갖기보다는 장축이 열 구배 방향과 정렬된 길쭉한 모양을 갖습니다. 그림 3 의 전도 모드 용융 풀 흩어진 입자가 없는 것으로 입증되는 더 나은 단결정 품질을 나타냅니다. 상대적으로 낮은 출력과 높은 속도의 스캐닝 레이저에 의해 생성된 이러한 더 얕은 용융 풀에서 최소한의 결정립 핵형성이 발생한다는 것은 명백합니다. 더 큰 면적 분율을 가진 스트레이 그레인은 고출력 및 저속으로 생성된 깊은 용융 풀에서 더 자주 관찰됩니다. 국부 응고 조건에 대한 동력 및 속도의 영향은 후속 모델링 섹션에서 조사할 것입니다.

    그림 3
    그림 3

    응고 모델링

    서론에서 언급한 바와 같이 연구자들은 단결정 용접 중에 표류 결정립 형성의 가능한 메커니즘을 평가했습니다. 12 , 13 , 14 , 15 , 55 ]논의된 가장 인기 있는 두 가지 메커니즘은 (1) 응고 전단에 앞서 구성적 과냉각에 의해 도움을 받는 이종 핵형성 및 (2) 용융물 풀의 유체 흐름으로 인한 덴드라이트 조각화입니다. 첫 번째 메커니즘은 광범위하게 연구되었습니다. 이원 합금을 예로 들면, 고체는 액체만큼 많은 용질을 수용할 수 없으므로 응고 중에 용질을 액체로 거부합니다. 결과적으로, 성장하는 수상돌기 앞에서 용질 분할은 실제 온도가 국부 평형 액상선보다 낮은 과냉각 액체를 생성합니다. 충분히 광범위한 체질적으로 과냉각된 구역의 존재는 새로운 결정립의 핵형성 및 성장을 촉진합니다. 56 ]전체 과냉각은 응고 전면에서의 구성, 동역학 및 곡률 과냉각을 포함한 여러 기여의 합입니다. 일반적인 가정은 동역학 및 곡률 과냉각이 합금에 대한 용질 과냉각의 더 큰 기여와 관련하여 무시될 수 있다는 것입니다. 57 ]

    서로 다른 기본 메커니즘을 더 잘 이해하려면피- 브이피-V조건에서 응고 모델링이 수행됩니다. 첫 번째 목적은 스트레이 그레인의 전체 범위를 평가하는 것입니다(Φ¯¯¯¯Φ¯) 처리 매개 변수의 함수로 국부적 표류 입자 비율의 변화를 조사하기 위해 (ΦΦ) 용융 풀의 위치 함수로. 두 번째 목적은 금속 AM의 빠른 응고 동안 응고 미세 구조와 표류 입자 형성 메커니즘 사이의 관계를 이해하는 것입니다.

    그림 4
    그림 4

    그림  4 는 해석적으로 시뮬레이션된 표류 입자 비율을 보여줍니다.Φ¯¯¯¯Φ¯세 가지 레이저 흡수율 값에서 다양한 레이저 스캐닝 속도 및 레이저 출력에 대해. 결과는 스트레이 그레인 면적 비율이 흡수된 에너지에 민감하다는 것을 보여줍니다. 흡수율을 0.30에서 0.80으로 증가시키면Φ¯¯¯¯Φ¯약 3배이며, 이 효과는 저속 및 고출력 영역에서 더욱 두드러집니다. 다른 모든 조건이 같다면, 흡수된 전력의 큰 영향은 평균 열 구배 크기의 일반적인 감소와 용융 풀 내 평균 응고율의 증가에 기인합니다. 스캐닝 속도가 증가하고 전력이 감소함에 따라 평균 스트레이 그레인 비율이 감소합니다. 이러한 일반적인 경향은 Vitek의 작업에서 채택된 그림 5 의 파란색 영역에서 시뮬레이션된 용접 결과와 일치합니다  . 3 ] 더 큰 과냉각 구역( 즉, 지 /V티G/V티영역)은 용접 풀의 표유 입자의 면적 비율이 분홍색 영역에 해당하는 LPBF 조건의 면적 비율보다 훨씬 더 크다는 것을 의미합니다. 그럼에도 불구하고 두 데이터 세트의 일반적인 경향은 유사합니다.  , 레이저 출력이 감소하고 레이저 속도가 증가함에 따라 표류 입자의 비율이 감소합니다. 또한 그림  5 에서 스캐닝 속도가 LPBF 영역으로 증가함에 따라 표유 입자 면적 분율에 대한 레이저 매개변수의 변화 효과가 감소한다는 것을 추론할 수 있습니다. 그림  6 (a)는 그림 3 의 EBSD 분석에서 나온 실험적 표류 결정립 면적 분율  과 그림 4 의 해석 시뮬레이션 결과를  비교합니다.. 열쇠 구멍 모양의 FZ에서 정확한 값이 다르지만 추세는 시뮬레이션과 실험 데이터 모두에서 일관되었습니다. 키홀 모양의 용융 풀, 특히 전력이 300W인 2개는 분석 시뮬레이션 예측보다 훨씬 더 많은 양의 흩어진 입자를 가지고 있습니다. Rosenthal 방정식은 일반적으로 열 전달이 순전히 전도에 의해 좌우된다는 가정으로 인해 열쇠 구멍 체제의 열 흐름을 적절하게 반영하지 못하기 때문에 이러한 불일치가 실제로 예상됩니다. 39 , 40 ] 그것은 또한 그림  4 의 발견 , 즉 키홀 모드 동안 흡수된 전력의 증가가 표류 입자 형성에 더 이상적인 조건을 초래한다는 것을 검증합니다. 그림  6 (b)는 실험을 비교Φ¯¯¯¯Φ¯수치 CFD 시뮬레이션Φ¯¯¯¯Φ¯. CFD 모델이 약간 초과 예측하지만Φ¯¯¯¯Φ¯전체적으로피- 브이피-V조건에서 열쇠 구멍 조건에서의 예측은 분석 모델보다 정확합니다. 전도 모드 용융 풀의 경우 실험 값이 분석 시뮬레이션 값과 더 가깝게 정렬됩니다.

    그림 5
    그림 5

    모의 온도 구배 G 분포 및 응고율 검사V티V티분석 모델링의 쌍은 그림  7 (a)의 CMSX-4 미세 구조 선택 맵에 표시됩니다. 제공지 /V티G/V티(  , 형태 인자)는 형태를 제어하고지 ×V티G×V티(  , 냉각 속도)는 응고된 미세 구조의 규모를 제어하고 , 58 , 59 ]지 -V티G-V티플롯은 전통적인 제조 공정과 AM 공정 모두에서 미세 구조 제어를 지원합니다. 이 플롯의 몇 가지 분명한 특징은 등축, 주상, 평면 전면 및 이러한 경계 근처의 전이 영역을 구분하는 경계입니다. 그림  7 (a)는 몇 가지 선택된 분석 열 시뮬레이션에 대한 미세 구조 선택 맵을 나타내는 반면 그림  7 (b)는 수치 열 모델의 결과와 동일한 맵을 보여줍니다. 등축 미세구조의 형성은 낮은 G 이상 에서 명확하게 선호됩니다.V티V티정황. 이 플롯에서 각 곡선의 평면 전면에 가장 가까운 지점은 용융 풀의 최대 너비 위치에 해당하는 반면 등축 영역에 가까운 지점의 끝은 용융 풀의 후면 꼬리에 해당합니다. 그림  7 (a)에서 대부분의지 -V티G-V티응고 전면의 쌍은 원주형 영역에 속하고 점차 CET 영역으로 위쪽으로 이동하지만 용융 풀의 꼬리는 다음에 따라 완전히 등축 영역에 도달하거나 도달하지 않을 수 있습니다.피- 브이피-V조합. 그림 7 (a) 의 곡선 중 어느 것도  평면 전면 영역을 통과하지 않지만 더 높은 전력의 경우에 가까워집니다. 저속 레이저 용융 공정을 사용하는 이전 작업에서는 곡선이 평면 영역을 통과할 수 있습니다. 레이저 속도가 증가함에 따라 용융 풀 꼬리는 여전히 CET 영역에 있지만 완전히 등축 영역에서 멀어집니다. CET 영역으로 떨어지는 섹션의 수도 감소합니다.Φ¯¯¯¯Φ¯응고된 물질에서.

    그림 6
    그림 6

    그만큼지 -V티G-V티CFD 모델을 사용하여 시뮬레이션된 응고 전면의 쌍이 그림  7 (b)에 나와 있습니다. 세 방향 모두에서 각 점 사이의 일정한 간격으로 미리 정의된 좌표에서 수행된 해석 시뮬레이션과 달리, 고충실도 CFD 모델의 출력은 불규칙한 사면체 좌표계에 있었고 G 를 추출하기 전에 일반 3D 그리드에 선형 보간되었습니다. 그리고V티V티그런 다음 미세 구조 선택 맵에 플롯됩니다. 일반적인 경향은 그림  7 (a)의 것과 일치하지만 이 방법으로 모델링된 매우 동적인 유체 흐름으로 인해 결과에 더 많은 분산이 있었습니다. 그만큼지 -V티G-V티분석 열 모델의 쌍 경로는 더 연속적인 반면 수치 시뮬레이션의 경로는 용융 풀 꼬리 모양의 차이를 나타내는 날카로운 굴곡이 있습니다(이는 G 및V티V티) 두 모델에 의해 시뮬레이션됩니다.

    그림 7
    그림 7
    그림 8
    그림 8

    유체 흐름을 통합한 응고 모델링

    수치 CFD 모델을 사용하여 유동 입자 형성 정도에 대한 유체 흐름의 영향을 이해하고 시뮬레이션 결과를 분석 Rosenthal 솔루션과 비교했습니다. 그림  8 은 응고 매개변수 G 의 분포를 보여줍니다.V티V티,지 /V티G/V티, 그리고지 ×V티G×V티yz 단면에서 x  FLOW-3D에서 (a1–d1) 분석 열 모델링 및 (a2–d2) FVM 방법을 사용하여 시뮬레이션된 용융 풀의 최대 폭입니다. 그림  8 의 값은 응고 전선이 특정 위치에 도달할 때 정확한 값일 수도 있고 아닐 수도 있지만 일반적인 추세를 반영한다는 의미의 임시 가상 값입니다. 이 프로파일은 출력 300W 및 속도 400mm/s의 레이저 빔에서 시뮬레이션됩니다. 용융 풀 경계는 흰색 곡선으로 표시됩니다. (a2–d2)의 CFD 시뮬레이션 용융 풀 깊이는 342입니다. μμm, 측정 깊이 352와 잘 일치 μμ일치하는 길쭉한 열쇠 구멍 모양과 함께 그림 1 에 표시된 실험 FZ의 m  . 그러나 분석 모델은 반원 모양의 용융 풀을 출력하고 용융 풀 깊이는 264에 불과합니다. μμ열쇠 구멍의 경우 현실과는 거리가 멀다. CFD 시뮬레이션 결과에서 열 구배는 레이저 반사 증가와 불안정한 액체-증기 상호 작용이 발생하는 증기 함몰의 동적 부분 근처에 있기 때문에 FZ 하단에서 더 높습니다. 대조적으로 해석 결과의 열 구배 크기는 경계를 따라 균일합니다. 두 시뮬레이션 결과 모두 그림 8 (a1) 및 (a2) 에서 응고가 용융 풀의 상단 중심선을 향해 진행됨에 따라 열 구배가 점차 감소합니다  . 응고율은 그림 8 과 같이 경계 근처에서 거의 0입니다. (b1) 및 (b2). 이는 경계 영역이 응고되기 시작할 때 국부 응고 전면의 법선 방향이 레이저 스캐닝 방향에 수직이기 때문입니다. 이것은 드라이브θ → π/ 2θ→파이/2그리고V티→ 0V티→0식에서 [ 3 ]. 대조적으로 용융 풀의 상단 중심선 근처 영역에서 응고 전면의 법선 방향은 레이저 스캐닝 방향과 잘 정렬되어 있습니다.θ → 0θ→0그리고V티→ 브이V티→V, 빔 스캐닝 속도. G 와 _V티V티값이 얻어지면 냉각 속도지 ×V티G×V티및 형태 인자지 /V티G/V티계산할 수 있습니다. 그림 8 (c2)는 용융 풀 바닥 근처의 온도 구배가 매우 높고 상단에서 더 빠른 성장 속도로  인해 냉각 속도가 용융 풀의 바닥 및 상단 중심선 근처에서 더 높다는 것을 보여줍니다. 지역. 그러나 이러한 추세는 그림  8 (c1)에 캡처되지 않았습니다. 그림 8 의 형태 요인 (d1) 및 (d2)는 중심선에 접근함에 따라 눈에 띄게 감소합니다. 경계에서 큰 값은 열 구배를 거의 0인 성장 속도로 나누기 때문에 발생합니다. 이 높은 형태 인자는 주상 미세구조 형성 가능성이 높음을 시사하는 반면, 중앙 영역의 값이 낮을수록 등축 미세구조의 가능성이 더 크다는 것을 나타냅니다. Tanet al. 또한 키홀 모양의 용접 풀 59 ] 에서 이러한 응고 매개변수의 분포 를 비슷한 일반적인 경향으로 보여주었습니다. 그림  3 에서 볼 수 있듯이 용융 풀의 상단 중심선에 있는 흩어진 입자는 낮은 특징을 나타내는 영역과 일치합니다.지 /V티G/V티그림  8 (d1) 및 (d2)의 값. 시뮬레이션과 실험 간의 이러한 일치는 용융 풀의 상단 중심선에 축적된 흩어진 입자의 핵 생성 및 성장이 등온선 속도의 증가와 온도 구배의 감소에 의해 촉진됨을 보여줍니다.

    그림 9
    그림 9

    그림  9 는 유체 속도 및 국부적 핵형성 성향을 보여줍니다.ΦΦ300W의 일정한 레이저 출력과 400, 800 및 1200mm/s의 세 가지 다른 레이저 속도에 의해 생성된 3D 용융 풀 전체에 걸쳐. 그림  9 (d)~(f)는 로컬ΦΦ해당 3D 보기에서 밝은 회색 평면으로 표시된 특정 yz 단면의 분포. 이 yz 섹션은 가장 높기 때문에 선택되었습니다.Φ¯¯¯¯Φ¯용융 풀 내의 값은 각각 23.40, 11.85 및 2.45pct입니다. 이들은 그림  3 의 실험 데이터와 비교하기에 적절하지 않을 수 있는 액체 용융 풀의 과도 값이며Φ¯¯¯¯Φ¯그림  6 의 값은 이 값이 고체-액체 계면에 가깝지 않고 용융 풀의 중간에서 취해졌기 때문입니다. 온도가 훨씬 낮아서 핵이 생존하고 성장할 수 있기 때문에 핵 형성은 용융 풀의 중간이 아닌 고체-액체 계면에 더 가깝게 발생할 가능성이 있습니다.

    그림  3 (a), (d), (g), (h)에서 위쪽 중심선에서 멀리 떨어져 있는 흩어진 결정립이 있었습니다. 그들은 훨씬 더 높은 열 구배와 더 낮은 응고 속도 필드에 위치하기 때문에 과냉각 이론은 이러한 영역에서 표류 입자의 형성에 대한 만족스러운 설명이 아닙니다. 이것은 떠돌이 결정립의 형성을 야기할 수 있는 두 번째 메커니즘,  수상돌기의 팁을 가로지르는 유체 흐름에 의해 유발되는 수상돌기 조각화를 고려하도록 동기를 부여합니다. 유체 흐름이 열 구배를 따라 속도 성분을 갖고 고체-액체 계면 속도보다 클 때, 주상 수상돌기의 국지적 재용융은 용질이 풍부한 액체가 흐물흐물한 구역의 깊은 곳에서 액상선 등온선까지 이동함으로써 발생할 수 있습니다. . 55] 분리된 수상돌기는 대류에 의해 열린 액체로 운반될 수 있습니다. 풀이 과냉각 상태이기 때문에 이러한 파편은 고온 조건에서 충분히 오래 생존하여 길 잃은 입자의 핵 생성 사이트로 작용할 수 있습니다. 결과적으로 수상 돌기 조각화 과정은 활성 핵의 수를 효과적으로 증가시킬 수 있습니다.N0N0) 용융 풀 15 , 60 , 61 ] 에서 생성된 미세 구조에서 표류 입자의 면적을 증가시킵니다.

    그림  9 (a) 및 (b)에서 반동 압력은 용융 유체를 아래쪽으로 흐르게 하여 결과 흐름을 지배합니다. 유체 속도의 역방향 요소는 V = 400 및 800mm/s에 대해 각각 최대값 1.0 및 1.6m/s로 더 느려집니다 . 그림  9 (c)에서 레이저 속도가 더 증가함에 따라 증기 침하가 더 얕고 넓어지고 반동 압력이 더 고르게 분포되어 증기 침강에서 주변 영역으로 유체를 밀어냅니다. 역류는 최대값 3.5m/s로 더 빨라집니다. 용융 풀의 최대 너비에서 yz 단면  의 키홀 아래 평균 유체 속도는 그림에 표시된 경우에 대해 0.46, 0.45 및 1.44m/s입니다.9 (a), (b) 및 (c). 키홀 깊이의 변동은 각 경우의 최대 깊이와 최소 깊이의 차이로 정의되는 크기로 정량화됩니다. 240 범위의 강한 증기 내림 변동 μμm은 그림 9 (a)의 V = 400mm/s 경우에서  발견 되지만 이 변동은 그림  9 (c)에서 16의 범위로  크게 감소합니다.μμ미디엄. V = 400mm/s인 경우 의 유체장과 높은 변동 범위는 이전 키홀 동역학 시뮬레이션과 일치합니다. 34 ]

    따라서 V = 400mm/s 키홀 케이스의 무질서한 변동 흐름이 용융 풀 경계를 따라 응고된 주상 수상돌기에서 분리된 조각을 구동할 가능성이 있습니다. V = 1200mm/s의 경우 강한 역류 는 그림 3 에서 관찰되지 않았지만 동일한 효과를 가질 수 있습니다. . 덴드라이트 조각화에 대한 유체 유동장의 영향에 대한 이 경험적 설명은 용융 풀 경계 근처에 떠돌이 입자의 존재에 대한 그럴듯한 설명을 제공합니다. 분명히 하기 위해, 우리는 이 가설을 검증하기 위해 이 현상에 대한 직접적인 실험적 관찰을 하지 않았습니다. 이 작업에서 표유 입자 면적 분율을 계산할 때 단순화를 위해 핵 생성 모델링에 일정한 핵 생성 수 밀도가 적용되었습니다. 이는 그림  9 의 표류 입자 영역 비율 이 수지상정 조각화가 발생하는 경우 이러한 높은 유체 흐름 용융 풀에서 발생할 수 있는 것,  강화된 핵 생성 밀도를 반영하지 않는다는 것을 의미합니다.

    위의 이유로 핵 형성에 대한 수상 돌기 조각화의 영향을 아직 배제할 수 없습니다. 그러나 단편화 이론은 용접 문헌 [ 62 ] 에서 검증될 만큼 충분히 개발되지 않았 으므로 부차적인 중요성만 고려된다는 점에 유의해야 합니다. 1200mm/s를 초과하는 레이저 스캐닝 속도는 최소한의 표류 결정립 면적 분율을 가지고 있음에도 불구하고 분명한 볼링을 나타내기 때문에 단결정 수리 및 AM 처리에 적합하지 않습니다. 따라서 낮은 P 및 높은 V 에 의해 생성된 응고 전면 근처에서 키홀 변동이 최소화되고 유체 속도가 완만해진 용융 풀이 생성된다는 결론을 내릴 수 있습니다., 처리 창의 극한은 아니지만 흩어진 입자를 나타낼 가능성이 가장 적습니다.

    마지막으로 단일 레이저 트랙의 응고 거동을 조사하면 에피택셜 성장 동안 표류 입자 형성을 더 잘 이해할 수 있다는 점에 주목하는 것이 중요합니다. 우리의 현재 결과는 최적의 레이저 매개변수에 대한 일반적인 지침을 제공하여 최소 스트레이 그레인을 달성하고 단결정 구조를 유지합니다. 이 가이드라인은 250W 정도의 전력과 600~800mm/s의 스캔 속도로 최소 흩어진 입자에 적합한 공정 창을 제공합니다. 각 처리 매개변수를 신중하게 선택하면 과거에 스테인리스강에 대한 거의 단결정 미세 구조를 인쇄하는 데 성공했으며 이는 CMSX-4 AM 빌드에 대한 가능성을 보여줍니다. 63 ]신뢰성을 보장하기 위해 AM 수리 프로세스를 시작하기 전에 보다 엄격한 실험 테스트 및 시뮬레이션이 여전히 필요합니다. 둘 이상의 레이저 트랙 사이의 상호 작용도 고려해야 합니다. 또한 레이저, CMSX-4 분말 및 벌크 재료 간의 상호 작용이 중요하며, 수리 중에 여러 층의 CMSX-4 재료를 축적해야 하는 경우 다른 스캔 전략의 효과도 중요한 역할을 할 수 있습니다. 분말이 포함된 경우 Lopez-Galilea 등 의 연구에서 제안한 바와 같이 분말이 주로 완전히 녹지 않았을 때 추가 핵 생성 사이트를 도입하기 때문에 단순히 레이저 분말과 속도를 조작하여 흩어진 입자 형성을 완화하기 어려울 수 있습니다 . 22 ]결과적으로 CMSX-4 단결정을 수리하기 위한 레이저 AM의 가능성을 다루기 위해서는 기판 재료, 레이저 출력, 속도, 해치 간격 및 층 두께의 조합을 모두 고려해야 하며 향후 연구에서 다루어야 합니다. CFD 모델링은 2개 이상의 레이저 트랙 사이의 상호작용과 열장에 미치는 영향을 통합할 수 있으며, 이는 AM 빌드 시나리오 동안 핵 생성 조건으로 단일 비드 연구의 지식 격차를 해소할 것입니다.

    결론

    LPBF 제조의 특징적인 조건 하에서 CMSX-4 단결정 의 에피택셜(기둥형)  등축 응고 사이의 경쟁을 실험적 및 이론적으로 모두 조사했습니다. 이 연구는 고전적인 응고 개념을 도입하여 빠른 레이저 용융의 미세 구조 특징을 설명하고 응고 조건과 표유 결정 성향을 예측하기 위해 해석적 및 수치적 고충실도 CFD 열 모델 간의 비교를 설명했습니다. 본 연구로부터 다음과 같은 주요 결론을 도출할 수 있다.

    • 단일 레이저 트랙의 레이저 가공 조건은 용융 풀 형상, 레이저 흡수율, 유체 흐름 및 키홀 요동, 입자 구조 및 표류 입자 형성 민감성에 강한 영향을 미치는 것으로 밝혀졌습니다.
    • 레이저 용접을 위해 개발된 이론적인 표유 결정립 핵형성 분석이 레이저 용융 AM 조건으로 확장되었습니다. 분석 모델링 결과와 단일 레이저 트랙의 미세구조 특성화를 비교하면 예측이 전도 및 볼링 조건에서 실험적 관찰과 잘 일치하는 반면 키홀 조건에서는 예측이 약간 과소하다는 것을 알 수 있습니다. 이러한 불일치는 레이저 트랙의 대표성이 없는 섹션이나 유체 속도 필드의 변화로 인해 발생할 수 있습니다. CFD 모델에서 추출한 열장에 동일한 표유 입자 계산 파이프라인을 적용하면 연구된 모든 사례에서 과대평가가 발생하지만 분석 모델보다 연장된 용융 풀의 실험 데이터와 더 정확하게 일치합니다.
    • 이 연구에서 두 가지 표류 결정립 형성 메커니즘인 불균일 핵형성 및 수상돌기 조각화가 평가되었습니다. 우리의 결과는 불균일 핵형성이 용융 풀의 상단 중심선에서 새로운 결정립의 형성으로 이어지는 주요 메커니즘임을 시사합니다.지 /V티G/V티정권.
    • 용융 풀 경계 근처의 흩어진 입자는 깊은 키홀 모양의 용융 풀에서 독점적으로 관찰되며, 이는 강한 유체 흐름으로 인한 수상 돌기 조각화의 영향이 이러한 유형의 용융 풀에서 고려하기에 충분히 강력할 수 있음을 시사합니다.
    • 일반적으로 더 높은 레이저 스캐닝 속도와 더 낮은 전력 외에도 안정적인 키홀과 최소 유체 속도는 또한 흩어진 입자 형성을 완화하고 레이저 단일 트랙에서 에피택셜 성장을 보존합니다.

    References

    1. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006, pp.17–20.Book Google Scholar 
    2. A. Basak, R. Acharya, and S. Das: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3845–59.Article Google Scholar 
    3. J. Vitek: Acta Mater., 2005, vol. 53, pp. 53–67.Article CAS Google Scholar 
    4. R. Vilar and A. Almeida: J. Laser Appl., 2015, vol. 27, p. S17004.Article Google Scholar 
    5. T. Kalfhaus, M. Schneider, B. Ruttert, D. Sebold, T. Hammerschmidt, J. Frenzel, R. Drautz, W. Theisen, G. Eggeler, O. Guillon, and R. Vassen: Mater. Des., 2019, vol. 168, p. 107656.Article CAS Google Scholar 
    6. S.S. Babu, S.A. David, J.W. Park, and J.M. Vitek: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 1–12.Article CAS Google Scholar 
    7. L. Felberbaum, K. Voisey, M. Gäumann, B. Viguier, and A. Mortensen: Mater. Sci. Eng. A, 2001, vol. 299, pp. 152–56.Article Google Scholar 
    8. S. Mokadem, C. Bezençon, J.M. Drezet, A. Jacot, J.D. Wagnière, and W. Kurz: TMS Annual Meeting, 2004, pp. 67–76.
    9. J.M. Vitek: ASM Proc. Int. Conf. Trends Weld. Res., vol. 2005, pp. 773–79.
    10. J.M. Vitek, S. Babu, and S. David: Process Optimization for Welding Single-Crystal Nickel-Bbased Superalloyshttps://technicalreports.ornl.gov/cppr/y2001/pres/120424.pdf
    11. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.Article CAS Google Scholar 
    12. M. Gäumann, R. Trivedi, and W. Kurz: Mater. Sci. Eng. A, 1997, vol. 226–228, pp. 763–69.Article Google Scholar 
    13. M. Gäumann, S. Henry, F. Cléton, J.D. Wagnière, and W. Kurz: Mater. Sci. Eng. A, 1999, vol. 271, pp. 232–41.Article Google Scholar 
    14. M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz: Acta Mater., 2001, vol. 49, pp. 1051–62.Article Google Scholar 
    15. J.M. Vitek, S.A. David, and S.S. Babu: Welding and Weld Repair of Single Crystal Gas Turbine Alloyshttps://www.researchgate.net/profile/Stan-David/publication/238692931_WELDING_AND_WELD_REPAIR_OF_SINGLE_CRYSTAL_GAS_TURBINE_ALLOYS/links/00b4953204ab35bbad000000/WELDING-AND-WELD-REPAIR-OF-SINGLE-CRYSTAL-GAS-TURBINE-ALLOYS.pdf
    16. B. Kianian: Wohlers Report 2017: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report, Wohlers Associates, Inc., Fort Collins, 2017.Google Scholar 
    17. M. Ramsperger, L. Mújica Roncery, I. Lopez-Galilea, R.F. Singer, W. Theisen, and C. Körner: Adv. Eng. Mater., 2015, vol. 17, pp. 1486–93.Article CAS Google Scholar 
    18. A.B. Parsa, M. Ramsperger, A. Kostka, C. Somsen, C. Körner, and G. Eggeler: Metals, 2016, vol. 6, pp. 258-1–17.Article Google Scholar 
    19. C. Körner, M. Ramsperger, C. Meid, D. Bürger, P. Wollgramm, M. Bartsch, and G. Eggeler: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3781–92.Article Google Scholar 
    20. D. Bürger, A. Parsa, M. Ramsperger, C. Körner, and G. Eggeler: Mater. Sci. Eng. A, 2019, vol. 762, p. 138098,Article Google Scholar 
    21. J. Pistor and C. Körner: Sci. Rep., 2021, vol. 11, p. 24482.Article CAS Google Scholar 
    22. I. Lopez-Galilea, B. Ruttert, J. He, T. Hammerschmidt, R. Drautz, B. Gault, and W. Theisen: Addit. Manuf., 2019, vol. 30, p. 100874.CAS Google Scholar 
    23. N. Lu, Z. Lei, K. Hu, X. Yu, P. Li, J. Bi, S. Wu, and Y. Chen: Addit. Manuf., 2020, vol. 34, p. 101228.CAS Google Scholar 
    24. K. Chen, R. Huang, Y. Li, S. Lin, W. Zhu, N. Tamura, J. Li, Z.W. Shan, and E. Ma: Adv. Mater., 2020, vol. 32, pp. 1–8.Google Scholar 
    25. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu: Int. Mater. Rev., 2016, vol. 61, pp. 315–60.Article Google Scholar 
    26. A. Basak, R. Acharya, and S. Das: Addit. Manuf., 2018, vol. 22, pp. 665–71.CAS Google Scholar 
    27. R. Jiang, A. Mostafaei, J. Pauza, C. Kantzos, and A.D. Rollett: Mater. Sci. Eng. A, 2019. https://doi.org/10.1016/J.MSEA.2019.03.103.Article Google Scholar 
    28. R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett: Science, 2019, vol. 363, pp. 849–52.Article CAS Google Scholar 
    29. B. Fotovvati, S.F. Wayne, G. Lewis, and E. Asadi: Adv. Mater. Sci. Eng., 2018, vol. 2018, p. 4920718.Article Google Scholar 
    30. P.-J. Chiang, R. Jiang, R. Cunningham, N. Parab, C. Zhao, K. Fezzaa, T. Sun, and A.D. Rollett: in Advanced Real Time Imaging II, pp. 77–85.
    31. J. Ye, S.A. Khairallah, A.M. Rubenchik, M.F. Crumb, G. Guss, J. Belak, and M.J. Matthews: Adv. Eng. Mater., 2019, vol. 21, pp. 1–9.Article Google Scholar 
    32. C. Zhao, Q. Guo, X. Li, N. Parab, K. Fezzaa, W. Tan, L. Chen, and T. Sun: Phys. Rev. X, 2019, vol. 9, p. 021052.CAS Google Scholar 
    33. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King: Acta Mater., 2016, vol. 108, pp. 36–45.Article CAS Google Scholar 
    34. N. Kouraytem, X. Li, R. Cunningham, C. Zhao, N. Parab, T. Sun, A.D. Rollett, A.D. Spear, and W. Tan: Appl. Phys. Rev., 2019, vol. 11, p. 064054.Article CAS Google Scholar 
    35. T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.Article CAS Google Scholar 
    36. J.H. Cho and S.J. Na: J. Phys. D, 2006, vol. 39, pp. 5372–78.Article CAS Google Scholar 
    37. I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov: J. Mater. Process. Technol., 2010, vol. 210, pp. 1624–31.Article CAS Google Scholar 
    38. S. Ghosh, L. Ma, L.E. Levine, R.E. Ricker, M.R. Stoudt, J.C. Heigel, and J.E. Guyer: JOM, 2018, vol. 70, pp. 1011–16.Article CAS Google Scholar 
    39. Y. He, C. Montgomery, J. Beuth, and B. Webler: Mater. Des., 2019, vol. 183, p. 108126.Article CAS Google Scholar 
    40. D. Rosenthal: Weld. J., 1941, vol. 20, pp. 220–34.Google Scholar 
    41. M. Tang, P.C. Pistorius, and J.L. Beuth: Addit. Manuf., 2017, vol. 14, pp. 39–48.CAS Google Scholar 
    42. R.E. Aune, L. Battezzati, R. Brooks, I. Egry, H.J. Fecht, J.P. Garandet, M. Hayashi, K.C. Mills, A. Passerone, P.N. Quested, E. Ricci, F. Schmidt-Hohagen, S. Seetharaman, B. Vinet, and R.K. Wunderlich: Proc. Int.Symp. Superalloys Var. Deriv., 2005, pp. 467–76.
    43. B.C. Wilson, J.A. Hickman, and G.E. Fuchs: JOM, 2003, vol. 55, pp. 35–40.Article CAS Google Scholar 
    44. J.J. Valencia and P.N. Quested: ASM Handb., 2008, vol. 15, pp. 468–81.Google Scholar 
    45. H.L. Wei, J. Mazumder, and T. DebRoy: Sci. Rep., 2015, vol. 5, pp. 1–7.Google Scholar 
    46. N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, and S.S. Babu: Acta Mater., 2016, vol. 112, pp. 303–14.Article CAS Google Scholar 
    47. R. Lin, H. Wang, F. Lu, J. Solomon, and B.E. Carlson: Int. J. Heat Mass Transf., 2017, vol. 108, pp. 244–56.Article CAS Google Scholar 
    48. M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, and J.H. Hattel: Addit. Manuf., 2019, vol. 30, p. 100835.CAS Google Scholar 
    49. K. Higuchi, H.-J. Fecht, and R.K. Wunderlich: Adv. Eng. Mater., 2007, vol. 9, pp. 349–54.Article CAS Google Scholar 
    50. Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, and L. Chen: Addit. Manuf., 2019, vol. 28, pp. 600–09.Google Scholar 
    51. J. Trapp, A.M. Rubenchik, G. Guss, and M.J. Matthews: Appl. Mater. Today, 2017, vol. 9, pp. 341–49.Article Google Scholar 
    52. M. Schneider, L. Berthe, R. Fabbro, and M. Muller: J. Phys. D, 2008, vol. 41, p. 155502.Article Google Scholar 
    53. Z. Gan, O.L. Kafka, N. Parab, C. Zhao, L. Fang, O. Heinonen, T. Sun, and W.K. Liu: Nat. Commun., 2021, vol. 12, p. 2379.Article CAS Google Scholar 
    54. B.J. Simonds, E.J. Garboczi, T.A. Palmer, and P.A. Williams: Appl. Phys. Rev., 2020, vol. 13, p. 024057.Article CAS Google Scholar 
    55. J. Dantzig and M. Rappaz: Solidification, 2nd ed., EPFL Press, Lausanne, 2016, pp. 483–532.Google Scholar 
    56. W. Tiller, K. Jackson, J. Rutter, and B. Chalmers: Acta Metall., 1953, vol. 1, pp. 428–37.Article CAS Google Scholar 
    57. D. Zhang, A. Prasad, M.J. Bermingham, C.J. Todaro, M.J. Benoit, M.N. Patel, D. Qiu, D.H. StJohn, M. Qian, and M.A. Easton: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4341–59.Article Google Scholar 
    58. F. Yan, W. Xiong, and E.J. Faierson: Materials, 2017, vol. 10, p. 1260.Article Google Scholar 
    59. W. Tan and Y.C. Shin: Comput. Mater. Sci., 2015, vol. 98, pp. 446–58.Article CAS Google Scholar 
    60. A. Hellawell, S. Liu, and S.Z. Lu: JOM, 1997, vol. 49, pp. 18–20.Article CAS Google Scholar 
    61. H. Ji: China Foundry, 2019, vol. 16, pp. 262–66.Article Google Scholar 
    62. J.M. Vitek, S.A. David, and L.A. Boatner: Sci. Technol. Weld. Join., 1997, vol. 2, pp. 109–18.Article CAS Google Scholar 
    63. X. Wang, J.A. Muñiz-Lerma, O. Sanchez-Mata, S.E. Atabay, M.A. Shandiz, and M. Brochu: Prog. Addit. Manuf., 2020, vol. 5, pp. 41–49.Article Google Scholar 

    Download references

    Effect of tailwater depth on non-cohesive earth dam failure due to overtopping

    Effect of tailwater depth on non-cohesive earth dam failure due to overtopping

    범람으로 인한 비점착성 흙댐 붕괴에 대한 테일워터 깊이의 영향

    ShaimaaAmanaMohamedAbdelrazek RezkbRabieaNasrc

    Abstract

    본 연구에서는 범람으로 인한 토사댐 붕괴에 대한 테일워터 깊이의 영향을 실험적으로 조사하였다. 테일워터 깊이의 네 가지 다른 값을 검사합니다. 각 실험에 대해 댐 수심 측량 프로파일의 진화, 고장 기간, 침식 체적 및 유출 수위곡선을 관찰하고 기록합니다.

    결과는 tailwater 깊이를 늘리면 고장 시간이 최대 57% 감소하고 상대적으로 침식된 마루 높이가 최대 77.6% 감소한다는 것을 보여줍니다. 또한 상대 배수 깊이가 3, 4, 5인 경우 누적 침식 체적의 감소는 각각 23, 36.5 및 75%인 반면 최대 유출량의 감소는 각각 7, 14 및 17.35%입니다.

    실험 결과는 침식 과정을 복제할 때 Flow 3D 소프트웨어의 성능을 평가하는 데 활용됩니다. 수치 모델은 비응집성 흙댐의 침식 과정을 성공적으로 시뮬레이션합니다.

    The influence of tailwater depth on earth dam failure due to overtopping is investigated experimentally in this work. Four different values of tailwater depths are examined. For each experiment, the evolution of the dam bathymetry profile, the duration of failure, the eroded volume, and the outflow hydrograph are observed and recorded. The results reveal that increasing the tailwater depth reduces the time of failure by up to 57% and decreases the relative eroded crest height by up to 77.6%. In addition, for relative tailwater depths equal to 3, 4, and 5, the reduction in the cumulative eroded volume is 23, 36.5, and 75%, while the reduction in peak discharge is 7, 14, and 17.35%, respectively. The experimental results are utilized to evaluate the performance of the Flow 3D software in replicating the erosion process. The numerical model successfully simulates the erosion process of non-cohesive earth dams.

    Keywords

    Earth dam, Eroded volume, Flow 3D model, Non-cohesive soil, Overtopping failure, Tailwater depth

    Notation

    d50

    Mean partical diameterWc

    Optimum water contentZo

    Dam height (cm)do

    Tailwater depth (cm)Zeroded

    Eroded height of the dam measured at distance of 0.7 m from the dam heel (cm)t

    Total time of failure (sec)t1

    Time of crest width erosion (sec)Zcrest

    The crest height (cm)Vtotal

    Total volume of the dam (m3)Veroded

    Cumulative eroded volume (m3)RMSE

    The statistical variable root- mean- square errord

    Degree of agreement indexyu.s.

    The upstream water depth (cm)yd.s

    The downstream water depth (cm)H

    Water surface elevation over sharp crested weir (cm)Q

    Outflow discharge (liter/sec)Qpeak

    Peak discharge (liter/sec)

    1. Introduction

    Earth dams are compacted structures composed of natural materials that are usually mined or quarried from local locations. The failures of the earth dams have proven to be deadly, destructive, and costly. According to People’s Daily, two earthen dams, Yong’an Dam and Xinfa Dam located in Hulun Buir City in North China’s Inner Mongolia failed on 2021, due to a surge in the water level of the Nuomin River caused by heavy rain. The dam breach affected 16,660 people, flooded 325,622 mu of farmland (21708.1 ha), and destroyed 22 bridges, 124 culverts, and 15.6 km of roadways. Also, the failure of south fork dam (earth and rock fill dam) near Johnstown on 1889 is considered the worst U.S dam disaster in terms of loss of life. The dam was overtopped and washed away due to unexpected heavy rains, releasing 20 million tons of water which destroyed Johnstown and resulted in 2209 deaths, [1][2]. Piping or shear sliding, failure due to natural factors, and failure due to overtopping are all possible causes of earth dam failure. However, overtopping failure is the most frequent cause of dam failure. According to The International Committee on Large Dams (ICOLD, 1995), and [3], more than one-third of the total known dam failures were caused by dam overtopping.

    Overtopping occurs as the result of insufficient flood design or freeboard in some cases. Extreme rainstorms can cause floods which can overtop the dam and cause it to fail. The size and geometry of the reservoir or the dam (side slopes, top width, height, etc.), the homogeneity of the material used in the construction of the dam, overtopping depth, and the presence or absence of tailwater are all elements that influence this type of failure which will be illustrated in the following literature. Overtopping failures of earth dams may be divided into several failure mechanisms based on the material composition and the inner structure of the dam. For cohesive earth dams because of low permeability, no seepage exists on the slopes. Erosion often begins at the earth dam toe during turbulent erosion and moves upstream, undercutting the slope, causing the removal of large chunks of materials. While for non-cohesive earth dams the downstream face of the dam flattens progressively and is often said to rotate around a point near the downstream toe [4][5][6] In the last few decades, the study of failures due to overtopping has gained popularity among researchers. The overtopping failure, in fact, has been widely investigated in coastal and river hydraulics and morpho dynamic. In addition, several laboratory experimental studies have been conducted in this field in order to better understand different involved factors. Also, many numerical types of research have been conducted to investigate the process of overtopping failure as well as the elements that influence this type of failure.

    Tabrizi et al. [5] conducted a series of embankment overtopping tests to find the effect of compaction on the failure of a homogenous sand embankment. A plane breach process occurred across the flume width due to the narrow flume width. They measured the downstream hydrographs and embankment surface profile for every case. They concluded that the peak discharge decreased with a high compaction level, while the time to peak increased. Kansoh et al. [6] studied experimentally the failure of compacted homogeneous non-cohesive earthen embankment due to overtopping. They investigated the influence of different shape parameters including the downstream slope, the crest width, and the height of the embankment on the erosion process. The erosion process was initiated by carving a pilot channel into the embankment crest. They evaluated the time of embankment failure for different shape parameters. They concluded that the failure time increases with increasing the downstream slope and the crest width. Zhu et al. [7] investigated experimentally the breaching of five embankments, one constructed with pure sand, and four with different sand-silt–clay mixtures. The erosion pattern was similar across the flume width. They stated that for cohesive soil mixtures the head cut erosion was the most important factor that affected the breach growth, while for non-cohesive soil the breach erosion was affected by shear erosion.

    Amaral et al. [8] studied experimentally the failure by overtopping for two embankments built from silt sand material. They studied the effect of the degree of compaction of the embankment and the geometry of the pilot channel carved at the centre of the dam crest. They studied two shapes of pilot channel a rectangular shape and triangular shape. They stated that the breach development is influenced by a higher degree of compaction, however, the pilot channel geometry did not influence the breach’s final form. Bereta et al. [9] studied experimentally the breach formation of five dam models, three of them were homogenous clay soil while two were sandy-clay mixtures. The erosion process was initiated by cutting a pilot channel at the centre of the dam crest. They observed the initiation of erosion, flow shear erosion, sidewall bottom erosion, and distinguished the soil mechanical slope mass failure from the head cut vertically and laterally during these tests. Verma et al. [10] investigated experimentally a two-dimensional erosion phenomenon due to overtopping by using a wooden fuse plug model and five different soils. They concluded that the erosion process was affected mostly by cohesiveness and degree of compaction. For cohesive soils, a head cut erosion was observed, while for non-cohesive soils surface erosion occurred gradually. Also, the dimensions of fuse plug, type of fill material, reservoir capacity, and inflow were found to affect the behaviour of the overall breaching process.

    Wu and Qin [11] studied the effect of adding coarse grains to the downstream face of a non-cohesive dam as a result of tailings deposition. The process of overtopping during tailings dam failures is analyzed and its effect on delaying the dam-break process and disaster mitigation are investigated. They found that the tested protective measures decreased the breach area, the maximum breaching flow discharge and flow velocity, and the downstream inundated area. Khankandi et al. [12] studied experimentally the effect of reservoir geometry on dam break flow in case of dry and wet bed conditions. They considered four different reservoir shapes, a long reservoir, a wide, a trapezoidal shaped and one with a 90◦ bend all with identical water volume and horizontal bed. The dam break is simulated by the sudden gate removal using a pneumatic jack. They measured the variation of water level over time with ultrasonic sensors and flow velocity component with an acoustic Doppler velocimeter. Also, the experimental results of water level variation are compared with Ritters solution (1892) [13]. They stated that for dry bed condition the long and 90 bend reservoirs results are close to the analytical solution by ritter also in these two shapes a 1D flow is noticed. However, for wide and trapezoidal reservoirs a 2D effect is significant due to flow contraction at channel entrance.

    Rifai et al. [14] conducted a series of experiments to investigate the effect of tailwater depth on the outflow discharge and breach geometry during non-cohesive homogenous fluvial dikes overtopping failure. They cut an initial notch in the crest at 0.8 m from the upstream end of the dike to initiate overtopping. They compared their results to previous experiments under different main channel inflow discharges combined with a free floodplain. They divided the dike breaching process into three stages: gradual start of overtopping flow resulting in slow initiation of dike erosion, deepening and widening breach due to large flow depth and velocity, finally the flow depth starts stabilizing at its minimal level with or without sustained breach expansion. They stated that breach discharge has lower values than in free floodplain tests. Jiang [15] studied the effect of bed slope on breach parameters and peak discharge in non-cohesive embankment failure. An initial triangular breach with a depth and width of 4 cm was pre-set on one side of the dam. He stated that peak discharge increases with the increase of bed slope and then decreases.

    Ozmen-cagatay et al. [16] studied experimentally flood wave propagation resulted from a sudden dam break event. For dam-break modelling, they used a mechanism that permitted the rapid removal of a vertical plate with a thickness of 4 mm and made of rigid plastic. They conducted three tests, one with dry bed condition and two tests with tailwater depths equal 0.025 m and 0.1 m respectively. They recorded the free surface profile during initial stages of dam break by using digital image processing. Finally, they compared the experimental results with the with a commercially available VOF-based CFD program solving the Reynolds-averaged Navier –Stokes equations (RANS) with the k– Ɛ turbulence model and the shallow water equations (SWEs). They concluded that Wave breaking was delayed with increasing the tailwater depth to initial reservoir depth ratio. They also stated that the SWE approach is sufficient more to represent dam break flows for wet bed condition. Evangelista [17] investigated experimentally and numerically using a depth-integrated two-phase model, the erosion of sand dike caused by the impact of a dam break wave. The dam break is simulated by a sudden opening of an upstream reservoir gate resulting in the overtopping of a downstream trapezoidal sand dike. The evolution of the water wave caused from the gate opening and dike erosion process are recorded by using a computer-controlled camera. The experimental results demonstrated that the progression of the wave front and dike erosion have a considerable influence on each other during the process. In addition, the dike constructed from fine sands was more resistant to erosion than the one built with coarse sand. They also stated that the numerical model can is capable of accurately predicting wave front position and dike erosion. Also, Di Cristo et al. [18] studied the effect of dam break wave propagation on a sand embankment both experimentally and numerically using a two-phase shallow-water model. The evolution of free surface and of the embankment bottom are recorded and used in numerical model assessment. They stated that the model allows reasonable simulation of the experimental trends of the free surface elevation regardeless of the geofailure operator.

    Lots of numerical models have been developed over the past few years to simulate the dam break flooding problem. A one-dimensional model, such as Hec-Ras, DAMBRK and MIKE 11, ect. A two-dimensional model such as iRIC Nay2DH is used in earth embankment breach simulation. Other researchers studied the failure process numerically using (3D) computational fluid dynamics (CFD) models, such as FLOW-3D, and FLUENT. Goharnejad et al. [19] determined the outflow hydrograph which results from the embankment dam break due to overtopping. Hu et al. [20] performed a comparison between Flow-3D and MIKE3 FM numerical models in simulating a dam break event under dry and wet bed conditions with different tailwater depths. Kaurav et al. [21] simulated a planar dam breach process due to overtopping. They conducted a sensitivity analysis to find the effect of dam material, dam height, downstream slope, crest width, and inlet discharge on the erosion process and peak discharge through breach. They concluded that downstream slope has a significant influence on breaching process. Yusof et al. [22] studied the effect of embankment sediment sizes and inflow rates on breaching geometric and hydrodynamic parameters. They stated that the peak outflow hydrograph increases with increasing sediment size and inflow rates while time of failure decreases.

    In the present work, the effect of tailwater depth on earth dam failure during overtopping is studied experimentally. The relation between the eroded volume of the dam and the tailwater depth is presented. Also, the percentage of reduction in peak discharge due to tailwater existence is calculated. An assessment of Flow 3D software performance in simulating the erosion process during earth dam failure is introduced. The statistical variable root- mean- square error, RMSE, and the agreement degree index, d, are used in model assessment.

    2. Material and methods

    The tests are conducted in a straight rectangular flume in the laboratory of Irrigation Engineering and Hydraulics Department, Faculty of Engineering, Alexandria University, Egypt. The flume dimensions are 10 m long, 0.86 m wide, and 0.5 m deep. The front part of the flume is connected to a storage basin 1 m long by 0.86 m wide. The storage basin is connected to a collecting tank for water recirculation during the experiments as shown in Fig. 1Fig. 2. A sharp-crested weir is placed at a distance of 4 m downstream the constructed dam to keep a constant tailwater depth in each experiment and to measure the outflow discharge.

    To measure the eroded volume with time a rods technique is used. This technique consists of two parallel wooden plates with 10 cm distance in between and five rows of stainless-steel rods passing vertically through the wooden plates at a spacing of 20 cm distributed across flume width. Each row consists of four rods with 15 cm spacing between them. Also, a graph board is provided to measure the drop in each rod with time as shown in Fig. 3Fig. 4. After dam construction the rods are carefully rested on the dam, with the first line of rods resting in the middle of the dam crest and then a constant distance of 15 cm between rods lines is maintained.

    A soil sample is taken and tested in the laboratory of the soil mechanics to find the soil geotechnical parameters. The soil particle size distribution is also determined by sieve analysis as shown in Fig. 5. The soil mean diameter d50,equals 0.38 mm and internal friction angle equals 32.6°.

    2.1. Experimental procedures

    To investigate the effect of the tailwater depth (do), the tailwater depth is changed four times 5, 15, 20, and 25 cm on the sand dam model. The dam profile is 35 cm height, with crest width = 15 cm, the dam base width is 155 cm, and the upstream and downstream slopes are 2:1 as shown in Fig. 6. The dam dimensions are set as the flume permitted to allow observation of the dam erosion process under the available flume dimensions and conditions. All of the conducted experiments have the same dimensions and configurations.

    The optimum water content, Wc, from the standard proctor test is found to be 8 % and the maximum dry unit weight is 19.42 kN/m3. The soil and water are mixed thoroughly to ensure consistency and then placed on three horizontal layers. Each layer is compacted according to ASTM standard with 25 blows by using a rammer (27 cm × 20.5 cm) weighing 4 kg. Special attention is paid to the compaction of the soil to guarantee the repeatability of the tests.

    After placing and compacting the three layers, the dam slopes are trimmed carefully to form the trapezoidal shape of the dam. A small triangular pilot channel with 1 cm height and 1:1 side slopes is cut into the dam crest to initiate the erosion process. The position of triangular pilot channel is presented in Fig. 1. Three digital video cameras with a resolution of 1920 × 1080 pixels and a frame rate of 60 fps are placed in three different locations. One camera on one side of the flume to record the progress of the dam profile during erosion. Another to track the water level over the sharp-crested rectangular weir placed at the downstream end of the flume. And the third camera is placed above the flume at the downstream side of the dam and in front of the rods to record the drop of the tip of the rods with time as shown previously in Fig. 1.

    Before starting the experiment, the water is pumped into the storage basin by using pump with capacity 360 m3/hr, and then into the upstream section of the flume. The upstream boundary is an inflow condition. The flow discharge provided to the storage basin is kept at a constant rate of 6 L/sec for all experiments, while the downstream boundary is an outflow boundary condition.

    Also, the required tailwater depth for each experiment is filled to the desired depth. A dye container valve is opened to color the water upstream of the dam to make it easy to distinguish the dam profile from the water profile. A wooden board is placed just upstream of the dam to prevent water from overtopping the dam until the water level rises to a certain level above the dam crest and then the wooden board is removed slowly to start the experiment.

    2.2. Repeatability

    To verify the accuracy of the results, each experiment is repeated two times under the same conditions. Fig. 7 shows the relative eroded crest height, Zeroded / Zo, with time for 5 cm tailwater depth. From the Figure, it can be noticed that results for all runs are consistent, and accuracy is achieved.

    3. Numerical model

    The commercially available numerical model, Flow 3D is used to simulate the dam failure due to overtopping for the cases of 15 cm, 20 cm and 25 cm tailwater depths. For numerical model calibration, experimental results for dam surface evolution are used. The numerical model is calibrated for selection of the optimal turbulence model (RNG, K-e, and k-w) and sediment scour equations (Van Rin, Meyer- peter and Muller, and Nielsen) that produce the best results. In this, the flow field is solved by the RNG turbulence model, and the van Rijn equation is used for the sediment scour model. A geometry file is imported before applying the mesh.

    A Mesh sensitivity is analyzed and checked for various cell sizes, and it is found that decreasing the cell size significantly increases the simulation time with insignificant differences in the result. It is noticed that the most important factor influencing cell size selection is the value of the dam’s upstream and downstream slopes. For example, the slopes in the dam model are 2:1, thus the cell size ratio in X and Z directions should be 2:1 as well. The cell size in a mesh block is set to be 0.02 m, 0.025 m, and 0.01 m in X, Y and Z directions respectively.

    In the numerical computations, the boundary conditions employed are the walls for sidewalls and the channel bottom. The pressure boundary condition is applied at the top, at the air–water interface, to account for atmospheric pressure on the free surface. The upstream boundary is volume flow rate while the downstream boundary is outflow discharge.

    The initial condition is a fluid region, which is used to define fluid areas both upstream and downstream of the dam. To assess the model accuracy, the statistical variable root- mean- square error, RMSE, and the agreement degree index, d, are calculated as(1)RMSE=1N∑i=1N(Pi-Mi)2(2)d=1-∑Mi-Pi2∑Mi-M¯+Pi-P¯2

    where N is the number of samples, Pi and Mi are the models and experimental values, P and M are the means of the model and experimental values. The best fit between the experimental and model results would have an RMSE = 0 and degree of agreement, d = 1.

    4. Results of experimental work

    The results of the total time of failure, t (defined as the time from when the water begins to overtop the dam crest until the erosion reaches a steady state, when no erosion occurs), time of crest width erosion t1, cumulative eroded volume Veroded, and peak discharge Qpeak for each experiment are listed in Table 1. The case of 5 cm tailwater depth is considered as a reference case in this work.

    Table 1. Results of experimental work.

    Tailwater depth, do (cm)Total time of failure, t (sec)Time of crest width erosion, t1 (sec)cumulative eroded volume, Veroded (m3)Peak discharge, Qpeak (liter/sec)
    5255220.2113.12
    15165300.1612.19
    20140340.1311.29
    25110390.0510.84

    5. Discussion

    5.1. Side erosion

    The evolution of the bathymetry of the erosion line recorded by the video camera1. The videos are split into frames (60 frames/sec) by the Free Video to JPG Converter v.5.063 build and then converted into an excel spreadsheet using MATLAB code as shown in Fig. 8.

    Fig. 9 shows a sample of numerical model output. Fig. 10Fig. 11Fig. 12 show a dam profile development for different time steps from both experimental and numerical model, for tailwater depths equal 15 cm, 20 cm and 25 cm. Also, the values of RMSE and d for each figure are presented. The comparison shows that the Flow 3D software can simulate the erosion process of non-cohesive earth dam during overtopping with an RMSE value equals 0.023, 0.0218, and 0.0167 and degree of agreement, d, equals 0.95, 0.968, and 0.988 for relative tailwater depths, do/(do)ref, = 3, 4 and 5, respectively. The low values of RMSE and high values of d show that the Flow 3D can effectively simulate the erosion process. From Fig. 10Fig. 11Fig. 12, it can be noticed that the model is not capable of reproducing the head cut, while it can simulate well the degradation of the crest height with a minor difference from experimental work. The reason of this could be due to inability of simulation of all physical conditions which exists in the experimental work, such as channel friction and the grain size distribution of the dam soil which is surely has a great effect on the erosion process and breach development. In the experimental work the grain size distribution is shown in Fig. 5, while the numerical model considers that the soil is uniform and exactly 50 % of the dam particles diameter are equal to the d50 value. Another reason is that the model is not considering the increased resistance of the dam due to the apparent cohesion which happens due to dam saturation [23].

    It is clear from both the experimental and numerical results that for a 5 cm tailwater depth, do/(do)ref = 1.0, erosion begins near the dam toe and continues upward on the downstream slope until it reaches the crest. After eroding the crest width, the crest is lowered, resulting in increased flow rates and the speeding up of the erosion process. While for relative tailwater depths, do/(do)ref = 3, 4, and 5 erosion starts at the point of intersection between the downstream slope and tailwater. The existence of tailwater works as an energy dissipater for the falling water which reduces the erosion process and prevents the dam from failure as shown in Fig. 13. It is found that the time of the failure decreases with increasing the tailwater depth because most of the dam height is being submerged with water which decreases the erosion process. The reduction in time of failure from the referenced case is found to be 35.3, 45, and 57 % for relative tailwater depth, do /(do)ref equals 3, 4, and 5, respectively.

    The relation between the relative eroded crest height, Zeroded /Zo, with time is drawn as shown in Fig. 14. It is found that the relative eroded crest height decreases with increasing tailwater depth by 10, 41, and 77.6 % for relative tailwater depth, do /(do)ref equals 3, 4, and 5, respectively. The time required for the erosion of the crest width, t1, is calculated for each experiment. The relation between relative tailwater depth and relative time of crest width erosion is shown in Fig. 15. It is found that the time of crest width erosion increases linearly with increasing, do /Zo. The percent of increase is 36.4, 54.5 and 77.3 % for relative tailwater depth, do /(do)ref = 3, 4 and 5, respectively.

    Crest height, Zcrest is calculated from the experimental results and the Flow 3D results for relative tailwater depths, do/(do)ref, = 3, 4, and 5. A relation between relative crest height, Zcrest/Zo with time from experimental and numerical results is presented in Fig. 16. From Fig. 16, it is seen that there is a good consistency between the results of numerical model and the experimental results in the case of tracking the erosion of the crest height with time.

    5.2. Upstream and downstream water depths

    It is noticed that at the beginning of the erosion process, both upstream and downstream water depths increase linearly with time as long as erosion of the crest height did not take place. However, when the crest height starts to lower the upstream water depth decreases with time while the downstream water depth increases. At the end of the experiment, the two depths are nearly equal. A relation between relative downstream and upstream water depths with time is drawn for each experiment as shown in Fig. 17.

    5.3. Eroded volume

    A MATLAB code is used to calculate the cumulative eroded volume every time interval for each experiment. The total volume of the dam, Vtotal is 0.256 m3. The cumulative eroded volume, Veroded is 0.21, 0.16, 0.13, and 0.05 m3 for tailwater depths, do = 5, 15, 20, and 25 cm, respectively. Fig. 18 presents the relation between cumulative eroded volume, Veroded and time. From Fig. 18, it is observed that the cumulative eroded volume decreases with increasing the tailwater depth. The reduction in cumulative eroded volume is 23, 36.5, and 75 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The relative remained volume of the dam equals 0.18, 0.375, 0.492, and 0.8 for tailwater depths = 5, 15, 20, and 25 cm, respectively. Fig. 19 shows a relation between relative tailwater depth and relative cumulative eroded volume from experimental results. From that figure, it is noticed that the eroded volume decreases exponentially with increasing relative tailwater depth.

    5.4. The outflow discharge

    The inflow discharge provided to the storage tank is maintained constant for all experiments. The water surface elevation, H, over the sharp-crested weir placed at the downstream side is recorded by the video camera 2. For each experiment, the outflow discharge is then calculated by using the sharp-crested rectangular weir equation every 10 sec.

    The outflow discharge is found to increase rapidly until it reaches its peak then it decreases until it is constant. For high values of tailwater depths, the peak discharge becomes less than that in the case of small tailwater depth as shown in Fig. 20 which agrees well with the results of Rifai et al. [14] The reduction in peak discharge is 7, 14, and 17.35 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively.

    The scenario presented in this article in which the tailwater depth rises due to unexpected heavy rainfall, is investigated to find the effect of rising tailwater depth on earth dam failure. The results revealed that rising tailwater depth positively affects the process of dam failure in terms of preventing the dam from complete failure and reducing the outflow discharge.

    6. Conclusions

    The effect of tailwater depth on earth dam failure due to overtopping is investigated experimentally in this work. The study focuses on the effect of tailwater depth on side erosion, upstream and downstream water depths, eroded volume, outflow hydrograph, and duration of the failure process. The Flow 3D numerical software is used to simulate the dam failure, and a comparison is made between the experimental and numerical results to find the ability of this software to simulate the erosion process. The following are the results of the investigation:

    The existence of tailwater with high depths prevents the dam from completely collapsing thereby turning it into a broad crested weir. The failure time decreases with increasing the tailwater depth and the reduction from the reference case is found to be 35.3, 45, and 57 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The difference between the upstream and downstream water depths decreases with time till it became almost negligible at the end of the experiment. The reduction in cumulative eroded volume is 23, 36.5, and 75 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The peak discharge decreases by 7, 14, and 17.35 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The relative eroded crest height decreases linearly with increasing the tailwater depth by 10, 41, and 77.6 % for relative tailwater depth, do /(do)ref = 3, 4, and 5, respectively. The numerical model can reproduce the erosion process with a minor deviation from the experimental results, particularly in terms of tracking the degradation of the crest height with time.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Reference

    [1]

    D. McCullough

    The Johnstown Flood

    Simon and Schuster, NY (1968)

    Google Scholar[2]Rose AT. The influence of dam failures on dam safety laws in Pennsylvania. Association of State Dam Safety Officials Annual Conference 2013, Dam Safety 2013. 2013;1:738–56.

    Google Scholar[3]

    M. Foster, R. Fell, M. Spannagle

    The statistics of embankment dam failures and accidents

    Can Geotech J, 37 (5) (2000), pp. 1000-1024, 10.1139/t00-030 View PDF

    View Record in ScopusGoogle Scholar[4]Pickert, G., Jirka, G., Bieberstein, A., Brauns, J. Soil/water interaction during the breaching process of overtopped embankments. In: Greco, M., Carravetta, A., Morte, R.D. (Eds.), Proceedings of the Conference River-Flow 2004, Balkema.

    Google Scholar[5]

    A. Asghari Tabrizi, E. Elalfy, M. Elkholy, M.H. Chaudhry, J. Imran

    Effects of compaction on embankment breach due to overtopping

    J Hydraul Res, 55 (2) (2017), pp. 236-247, 10.1080/00221686.2016.1238014 View PDF

    View Record in ScopusGoogle Scholar[6]

    R.M. Kansoh, M. Elkholy, G. Abo-Zaid

    Effect of Shape Parameters on Failure of Earthen Embankment due to Overtopping

    KSCE J Civ Eng, 24 (5) (2020), pp. 1476-1485, 10.1007/s12205-020-1107-x View PDF

    View Record in ScopusGoogle Scholar[7]

    YongHui Zhu, P.J. Visser, J.K. Vrijling, GuangQian Wang

    Experimental investigation on breaching of embankments

    Experimental investigation on breaching of embankments, 54 (1) (2011), pp. 148-155 View PDF

    CrossRefView Record in ScopusGoogle Scholar[8]Amaral S, Jónatas R, Bento AM, Palma J, Viseu T, Cardoso R, et al. Failure by overtopping of earth dams. Quantification of the discharge hydrograph. Proceedings of the 3rd IAHR Europe Congress: 14-15 April 2014, Portugal. 2014;(1):182–93.

    Google Scholar[9]

    G. Bereta, P. Hui, H. Kai, L. Guang, P. Kefan, Y.Z. Zhao

    Experimental study of cohesive embankment dam breach formation due to overtopping

    Periodica Polytechnica Civil Engineering, 64 (1) (2020), pp. 198-211, 10.3311/PPci.14565 View PDF

    View Record in ScopusGoogle Scholar[10]

    D.K. Verma, B. Setia, V.K. Arora

    Experimental study of breaching of an earthen dam using a fuse plug model

    Int J Eng Trans A, 30 (4) (2017), pp. 479-485, 10.5829/idosi.ije.2017.30.04a.04 View PDF

    View Record in ScopusGoogle Scholar[11]Wu T, Qin J. Experimental Study of a Tailings Impoundment Dam Failure Due to Overtopping. Mine Water and the Environment [Internet]. 2018;37(2):272–80. Available from: doi: 10.1007/s10230-018-0529-x.

    Google Scholar[12]

    A. Feizi Khankandi, A. Tahershamsi, S. Soares-Frazo

    Experimental investigation of reservoir geometry effect on dam-break flow

    J Hydraul Res, 50 (4) (2012), pp. 376-387 View PDF

    CrossRefView Record in ScopusGoogle Scholar[13]

    A. Ritter

    Die Fortpflanzung der Wasserwellen (The propagation of water waves)

    Zeitschrift Verein Deutscher Ingenieure, 36 (33) (1892), pp. 947-954

    [in German]

    View Record in ScopusGoogle Scholar[14]

    I. Rifai, K. El Kadi Abderrezzak, S. Erpicum, P. Archambeau, D. Violeau, M. Pirotton, et al.

    Floodplain Backwater Effect on Overtopping Induced Fluvial Dike Failure

    Water Resour Res, 54 (11) (2018), pp. 9060-9073 View PDF

    This article is free to access.

    CrossRefView Record in ScopusGoogle Scholar[15]

    X. Jiang

    Laboratory Experiments on Breaching Characteristics of Natural Dams on Sloping Beds

    Advances in Civil Engineering, 2019 (2019), pp. 1-14

    View Record in ScopusGoogle Scholar[16]

    H. Ozmen-Cagatay, S. Kocaman

    Dam-break flows during initial stage using SWE and RANS approaches

    J Hydraul Res, 48 (5) (2010), pp. 603-611 View PDF

    CrossRefView Record in ScopusGoogle Scholar[17]

    S. Evangelista

    Experiments and numerical simulations of dike erosion due to a wave impact

    Water (Switzerland), 7 (10) (2015), pp. 5831-5848 View PDF

    CrossRefView Record in ScopusGoogle Scholar[18]

    C. Di Cristo, S. Evangelista, M. Greco, M. Iervolino, A. Leopardi, A. Vacca

    Dam-break waves over an erodible embankment: experiments and simulations

    J Hydraul Res, 56 (2) (2018), pp. 196-210 View PDF

    CrossRefView Record in ScopusGoogle Scholar[19]Goharnejad H, Sm M, Zn M, Sadeghi L, Abadi K. Numerical Modeling and Evaluation of Embankment Dam Break Phenomenon (Case Study : Taleghan Dam) ISSN : 2319-9873. 2016;5(3):104–11.

    Google Scholar[20]Hu H, Zhang J, Li T. Dam-Break Flows : Comparison between Flow-3D , MIKE 3 FM , and Analytical Solutions with Experimental Data. 2018;1–24. doi: 10.3390/app8122456.

    Google Scholar[21]

    R. Kaurav, P.K. Mohapatra, D. Ph

    Studying the Peak Discharge through a Planar Dam Breach, 145 (6) (2019), pp. 1-8 View PDF

    CrossRef[22]

    Z.M. Yusof, Z.A.L. Shirling, A.K.A. Wahab, Z. Ismail, S. Amerudin

    A hydrodynamic model of an embankment breaching due to overtopping flow using FLOW-3D

    IOP Conference Series: Earth and Environmental Science, 920 (1) (2021)

    Google Scholar[23]

    G. Pickert, V. Weitbrecht, A. Bieberstein

    Breaching of overtopped river embankments controlled by apparent cohesion

    J Hydraul Res, 49 (2) (Apr. 2011), pp. 143-156, 10.1080/00221686.2011.552468 View PDF

    View Record in ScopusGoogle Scholar

    Cited by (0)

    My name is Shaimaa Ibrahim Mohamed Aman and I am a teaching assistant in Irrigation and Hydraulics department, Faculty of Engineering, Alexandria University. I graduated from the Faculty of Engineering, Alexandria University in 2013. I had my MSc in Irrigation and Hydraulic Engineering in 2017. My research interests lie in the area of earth dam Failures.

    Peer review under responsibility of Ain Shams University.

    © 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University.

    Extratropical cyclone damage to the seawall in Dawlish, UK: eyewitness accounts, sea level analysis and numerical modelling

    영국 Dawlish의 방파제에 대한 온대 저기압 피해: 목격자 설명, 해수면 분석 및 수치 모델링

    Extratropical cyclone damage to the seawall in Dawlish, UK: eyewitness accounts, sea level analysis and numerical modelling

    Natural Hazards (2022)Cite this article

    Abstract

    2014년 2월 영국 해협(영국)과 특히 Dawlish에 영향을 미친 온대 저기압 폭풍 사슬은 남서부 지역과 영국의 나머지 지역을 연결하는 주요 철도에 심각한 피해를 입혔습니다.

    이 사건으로 라인이 두 달 동안 폐쇄되어 5천만 파운드의 피해와 12억 파운드의 경제적 손실이 발생했습니다. 이 연구에서는 폭풍의 파괴력을 해독하기 위해 목격자 계정을 수집하고 해수면 데이터를 분석하며 수치 모델링을 수행합니다.

    우리의 분석에 따르면 이벤트의 재난 관리는 성공적이고 효율적이었으며 폭풍 전과 도중에 인명과 재산을 구하기 위해 즉각적인 조치를 취했습니다. 파도 부이 분석에 따르면 주기가 4–8, 8–12 및 20–25초인 복잡한 삼중 봉우리 바다 상태가 존재하는 반면, 조위계 기록에 따르면 최대 0.8m의 상당한 파도와 최대 1.5m의 파도 성분이 나타났습니다.

    이벤트에서 가능한 기여 요인으로 결합된 진폭. 최대 286 KN의 상당한 임펄스 파동이 손상의 시작 원인일 가능성이 가장 높았습니다. 수직 벽의 반사는 파동 진폭의 보강 간섭을 일으켜 파고가 증가하고 최대 16.1m3/s/m(벽의 미터 너비당)의 상당한 오버탑핑을 초래했습니다.

    이 정보와 우리의 공학적 판단을 통해 우리는 이 사고 동안 다중 위험 계단식 실패의 가장 가능성 있는 순서는 다음과 같다고 결론을 내립니다. 조적 파괴로 이어지는 파도 충격력, 충전물 손실 및 연속적인 조수에 따른 구조물 파괴.

    The February 2014 extratropical cyclonic storm chain, which impacted the English Channel (UK) and Dawlish in particular, caused significant damage to the main railway connecting the south-west region to the rest of the UK. The incident caused the line to be closed for two months, £50 million of damage and an estimated £1.2bn of economic loss. In this study, we collate eyewitness accounts, analyse sea level data and conduct numerical modelling in order to decipher the destructive forces of the storm. Our analysis reveals that the disaster management of the event was successful and efficient with immediate actions taken to save lives and property before and during the storm. Wave buoy analysis showed that a complex triple peak sea state with periods at 4–8, 8–12 and 20–25 s was present, while tide gauge records indicated that significant surge of up to 0.8 m and wave components of up to 1.5 m amplitude combined as likely contributing factors in the event. Significant impulsive wave force of up to 286 KN was the most likely initiating cause of the damage. Reflections off the vertical wall caused constructive interference of the wave amplitudes that led to increased wave height and significant overtopping of up to 16.1 m3/s/m (per metre width of wall). With this information and our engineering judgement, we conclude that the most probable sequence of multi-hazard cascading failure during this incident was: wave impact force leading to masonry failure, loss of infill and failure of the structure following successive tides.

    Introduction

    The progress of climate change and increasing sea levels has started to have wide ranging effects on critical engineering infrastructure (Shakou et al. 2019). The meteorological effects of increased atmospheric instability linked to warming seas mean we may be experiencing more frequent extreme storm events and more frequent series or chains of events, as well as an increase in the force of these events, a phenomenon called storminess (Mölter et al. 2016; Feser et al. 2014). Features of more extreme weather events in extratropical latitudes (30°–60°, north and south of the equator) include increased gusting winds, more frequent storm squalls, increased prolonged precipitation and rapid changes in atmospheric pressure and more frequent and significant storm surges (Dacre and Pinto 2020). A recent example of these events impacting the UK with simultaneous significant damage to coastal infrastructure was the extratropical cyclonic storm chain of winter 2013/2014 (Masselink et al. 2016; Adams and Heidarzadeh 2021). The cluster of storms had a profound effect on both coastal and inland infrastructure, bringing widespread flooding events and large insurance claims (RMS 2014).

    The extreme storms of February 2014, which had a catastrophic effect on the seawall of the south Devon stretch of the UK’s south-west mainline, caused a two-month closure of the line and significant disruption to the local and regional economy (Fig. 1b) (Network Rail 2014; Dawson et al. 2016; Adams and Heidarzadeh 2021). Restoration costs were £35 m, and economic effects to the south-west region of England were estimated up to £1.2bn (Peninsula Rail Taskforce 2016). Adams and Heidarzadeh (2021) investigated the disparate cascading failure mechanisms which played a part in the failure of the railway through Dawlish and attempted to put these in the context of the historical records of infrastructure damage on the line. Subsequent severe storms in 2016 in the region have continued to cause damage and disruption to the line in the years since 2014 (Met Office 2016). Following the events of 2014, Network Rail Footnote1 who owns the network has undertaken a resilience study. As a result, it has proposed a £400 m refurbishment of the civil engineering assets that support the railway (Fig. 1) (Network Rail 2014). The new seawall structure (Fig. 1a,c), which is constructed of pre-cast concrete sections, encases the existing Brunel seawall (named after the project lead engineer, Isambard Kingdom Brunel) and has been improved with piled reinforced concrete foundations. It is now over 2 m taller to increase the available crest freeboard and incorporates wave return features to minimise wave overtopping. The project aims to increase both the resilience of the assets to extreme weather events as well as maintain or improve amenity value of the coastline for residents and visitors.

    figure 1
    Fig. 1

    In this work, we return to the Brunel seawall and the damage it sustained during the 2014 storms which affected the assets on the evening of the 4th and daytime of the 5th of February and eventually resulted in a prolonged closure of the line. The motivation for this research is to analyse and model the damage made to the seawall and explain the damage mechanisms in order to improve the resilience of many similar coastal structures in the UK and worldwide. The innovation of this work is the multidisciplinary approach that we take comprising a combination of analysis of eyewitness accounts (social science), sea level and wave data analysis (physical science) as well as numerical modelling and engineering judgement (engineering sciences). We investigate the contemporary wave climate and sea levels by interrogating the real-time tide gauge and wave buoys installed along the south-west coast of the English Channel. We then model a typical masonry seawall (Fig. 2), applying the computational fluid dynamics package FLOW3D-Hydro,Footnote2 to quantify the magnitude of impact forces that the seawall would have experienced leading to its failure. We triangulate this information to determine the probable sequence of failures that led to the disaster in 2014.

    figure 2
    Fig. 2

    Data and methods

    Our data comprise eyewitness accounts, sea level records from coastal tide gauges and offshore wave buoys as well as structural details of the seawall. As for methodology, we analyse eyewitness data, process and investigate sea level records through Fourier transform and conduct numerical simulations using the Flow3D-Hydro package (Flow Science 2022). Details of the data and methodology are provided in the following.

    Eyewitness data

    The scale of damage to the seawall and its effects led the local community to document the first-hand accounts of those most closely affected by the storms including residents, local businesses, emergency responders, politicians and engineering contractors involved in the post-storm restoration work. These records now form a permanent exhibition in the local museum in DawlishFootnote3, and some of these accounts have been transcribed into a DVD account of the disaster (Dawlish Museum 2015). We have gathered data from the Dawlish Museum, national and international news reports, social media tweets and videos. Table 1 provides a summary of the eyewitness accounts. Overall, 26 entries have been collected around the time of the incident. Our analysis of the eyewitness data is provided in the third column of Table 1 and is expanded in Sect. 3.Table 1 Eyewitness accounts of damage to the Dawlish railway due to the February 2014 storm and our interpretations

    Full size table

    Sea level data and wave environment

    Our sea level data are a collection of three tide gauge stations (Newlyn, Devonport and Swanage Pier—Fig. 5a) owned and operated by the UK National Tide and Sea Level FacilityFootnote4 for the Environment Agency and four offshore wave buoys (Dawlish, West Bay, Torbay and Chesil Beach—Fig. 6a). The tide gauge sites are all fitted with POL-EKO (www.pol-eko.com.pl) data loggers. Newlyn has a Munro float gauge with one full tide and one mid-tide pneumatic bubbler system. Devonport has a three-channel data pneumatic bubbler system, and Swanage Pier consists of a pneumatic gauge. Each has a sampling interval of 15 min, except for Swanage Pier which has a sampling interval of 10 min. The tide gauges are located within the port areas, whereas the offshore wave buoys are situated approximately 2—3.3 km from the coast at water depths of 10–15 m. The wave buoys are all Datawell Wavemaker Mk III unitsFootnote5 and come with sampling interval of 0.78 s. The buoys have a maximum saturation amplitude of 20.5 m for recording the incident waves which implies that every wave larger than this threshold will be recorded at 20.5 m. The data are provided by the British Oceanographic Data CentreFootnote6 for tide gauges and the Channel Coastal ObservatoryFootnote7 for wave buoys.

    Sea level analysis

    The sea level data underwent quality control to remove outliers and spikes as well as gaps in data (e.g. Heidarzadeh et al. 2022; Heidarzadeh and Satake 2015). We processed the time series of the sea level data using the Matlab signal processing tool (MathWorks 2018). For calculations of the tidal signals, we applied the tidal package TIDALFIT (Grinsted 2008), which is based on fitting tidal harmonics to the observed sea level data. To calculate the surge signals, we applied a 30-min moving average filter to the de-tided data in order to remove all wind, swell and infra-gravity waves from the time series. Based on the surge analysis and the variations of the surge component before the time period of the incident, an error margin of approximately ± 10 cm is identified for our surge analysis. Spectral analysis of the wave buoy data is performed using the fast Fourier transform (FFT) of Matlab package (Mathworks 2018).

    Numerical modelling

    Numerical modelling of wave-structure interaction is conducted using the computational fluid dynamics package Flow3D-Hydro version 1.1 (Flow Science 2022). Flow3D-Hydro solves the transient Navier–Stokes equations of conservation of mass and momentum using a finite difference method and on Eulerian and Lagrangian frameworks (Flow Science 2022). The aforementioned governing equations are:

    ∇.u=0∇.u=0

    (1)

    ∂u∂t+u.∇u=−∇Pρ+υ∇2u+g∂u∂t+u.∇u=−∇Pρ+υ∇2u+g

    (2)

    where uu is the velocity vector, PP is the pressure, ρρ is the water density, υυ is the kinematic viscosity and gg is the gravitational acceleration. A Fractional Area/Volume Obstacle Representation (FAVOR) is adapted in Flow3D-Hydro, which applies solid boundaries within the Eulerian grid and calculates the fraction of areas and volume in partially blocked volume in order to compute flows on corresponding boundaries (Hirt and Nichols 1981). We validated the numerical modelling through comparing the results with Sainflou’s analytical equation for the design of vertical seawalls (Sainflou 1928; Ackhurst 2020), which is as follows:

    pd=ρgHcoshk(d+z)coshkdcosσtpd=ρgHcoshk(d+z)coshkdcosσt

    (3)

    where pdpd is the hydrodynamic pressure, ρρ is the water density, gg is the gravitational acceleration, HH is the wave height, dd is the water depth, kk is the wavenumber, zz is the difference in still water level and mean water level, σσ is the angular frequency and tt is the time. The Sainflou’s equation (Eq. 3) is used to calculate the dynamic pressure from wave action, which is combined with static pressure on the seawall.

    Using Flow3D-Hydro, a model of the Dawlish seawall was made with a computational domain which is 250.0 m in length, 15.0 m in height and 0.375 m in width (Fig. 3a). The computational domain was discretised using a single uniform grid with a mesh size of 0.125 m. The model has a wave boundary at the left side of the domain (x-min), an outflow boundary on the right side (x-max), a symmetry boundary at the bottom (z-min) and a wall boundary at the top (z-max). A wall boundary implies that water or waves are unable to pass through the boundary, whereas a symmetry boundary means that the two edges of the boundary are identical and therefore there is no flow through it. The water is considered incompressible in our model. For volume of fluid advection for the wave boundary (i.e. the left-side boundary) in our simulations, we utilised the “Split Lagrangian Method”, which guarantees the best accuracy (Flow Science, 2022).

    figure 3
    Fig. 3

    The stability of the numerical scheme is controlled and maintained through checking the Courant number (CC) as given in the following:

    C=VΔtΔxC=VΔtΔx

    (4)

    where VV is the velocity of the flow, ΔtΔt is the time step and ΔxΔx is the spatial step (i.e. grid size). For stability and convergence of the numerical simulations, the Courant number must be sufficiently below one (Courant et al. 1928). This is maintained by a careful adjustment of the ΔxΔx and ΔtΔt selections. Flow3D-Hydro applies a dynamic Courant number, meaning the program adjusts the value of time step (ΔtΔt) during the simulations to achieve a balance between accuracy of results and speed of simulation. In our simulation, the time step was in the range ΔtΔt = 0.0051—0.051 s.

    In order to achieve the most efficient mesh resolution, we varied cell size for five values of ΔxΔx = 0.1 m, 0.125 m, 0.15 m, 0.175 m and 0.20 m. Simulations were performed for all mesh sizes, and the results were compared in terms of convergence, stability and speed of simulation (Fig. 3). A linear wave with an amplitude of 1.5 m and a period of 6 s was used for these optimisation simulations. We considered wave time histories at two gauges A and B and recorded the waves from simulations using different mesh sizes (Fig. 3). Although the results are close (Fig. 3), some limited deviations are observed for larger mesh sizes of 0.20 m and 0.175 m. We therefore selected mesh size of 0.125 m as the optimum, giving an extra safety margin as a conservative solution.

    The pressure from the incident waves on the vertical wall is validated in our model by comparing them with the analytical equation of Sainflou (1928), Eq. (3), which is one of the most common set of equations for design of coastal structures (Fig. 4). The model was tested by running a linear wave of period 6 s and wave amplitude of 1.5 m against the wall, with a still water level of 4.5 m. It can be seen that the model results are very close to those from analytical equations of Sainflou (1928), indicating that our numerical model is accurately modelling the wave-structure interaction (Fig. 4).

    figure 4
    Fig. 4

    Eyewitness account analysis

    Contemporary reporting of the 4th and 5th February 2014 storms by the main national news outlets in the UK highlights the extreme nature of the events and the significant damage and disruption they were likely to have on the communities of the south-west of England. In interviews, this was reinforced by Network Rail engineers who, even at this early stage, were forecasting remedial engineering works to last for at least 6 weeks. One week later, following subsequent storms the cascading nature of the events was obvious. Multiple breaches of the seawall had taken place with up to 35 separate landslide events and significant damage to parapet walls along the coastal route also were reported. Residents of the area reported extreme effects of the storm, one likening it to an earthquake and reporting water ingress through doors windows and even through vertical chimneys (Table 1). This suggests extreme wave overtopping volumes and large wave impact forces. One resident described the structural effects as: “the house was jumping up and down on its footings”.

    Disaster management plans were quickly and effectively put into action by the local council, police service and National Rail. A major incident was declared, and decisions regarding evacuation of the residents under threat were taken around 2100 h on the night of 4th February when reports of initial damage to the seawall were received (Table 1). Local hotels were asked to provide short-term refuge to residents while local leisure facilities were prepared to accept residents later that evening. Initial repair work to the railway line was hampered by successive high spring tides and storms in the following days although significant progress was still made when weather conditions permitted (Table 1).

    Sea level observations and spectral analysis

    The results of surge and wave analyses are presented in Figs. 5 and 6. A surge height of up to 0.8 m was recorded in the examined tide gauge stations (Fig. 5b-d). Two main episodes of high surge heights are identified: the first surge started on 3rd February 2014 at 03:00 (UTC) and lasted until 4th of February 2014 at 00:00; the second event occurred in the period 4th February 2014 15:00 to 5th February 2014 at 17:00 (Fig. 5b-d). These data imply surge durations of 21 h and 26 h for the first and the second events, respectively. Based on the surge data in Fig. 5, we note that the storm event of early February 2014 and the associated surges was a relatively powerful one, which impacted at least 230 km of the south coast of England, from Land’s End to Weymouth, with large surge heights.

    figure 5
    Fig. 5
    figure 6
    Fig. 6

    Based on wave buoy records, the maximum recorded amplitudes are at least 20.5 m in Dawlish and West Bay, 1.9 m in Tor Bay and 4.9 m in Chesil (Fig. 6a-b). The buoys at Tor Bay and Chesil recorded dual peak period bands of 4–8 and 8–12 s, whereas at Dawlish and West Bay registered triple peak period bands at 4–8, 8–12 and 20–25 s (Fig. 6c, d). It is important to note that the long-period waves at 20–25 s occur with short durations (approximately 2 min) while the waves at the other two bands of 4–8 and 8–12 s appear to be present at all times during the storm event.

    The wave component at the period band of 4–8 s can be most likely attributed to normal coastal waves while the one at 8–12 s, which is longer, is most likely the swell component of the storm. Regarding the third component of the waves with long period of 20 -25 s, which occurs with short durations of 2 min, there are two hypotheses; it is either the result of a local (port and harbour) and regional (the Lyme Bay) oscillations (eg. Rabinovich 1997; Heidarzadeh and Satake 2014; Wang et al. 1992), or due to an abnormally long swell. To test the first hypothesis, we consider various water bodies such as Lyme Bay (approximate dimensions of 70 km × 20 km with an average water depth of 30 m; Fig. 6), several local bays (approximate dimensions of 3.6 km × 0.6 km with an average water depth of 6 m) and harbours (approximate dimensions of 0.5 km × 0.5 km with an average water depth of 4 m). Their water depths are based on the online Marine navigation website.Footnote8 According to Rabinovich (2010), the oscillation modes of a semi-enclosed rectangle basin are given by the following equation:

    Tmn=2gd−−√[(m2L)2+(nW)2]−1/2Tmn=2gd[(m2L)2+(nW)2]−1/2

    (5)

    where TmnTmn is the oscillation period, gg is the gravitational acceleration, dd is the water depth, LL is the length of the basin, WW is the width of the basin, m=1,2,3,…m=1,2,3,… and n=0,1,2,3,…n=0,1,2,3,…; mm and nn are the counters of the different modes. Applying Eq. (5) to the aforementioned water bodies results in oscillation modes of at least 5 min, which is far longer than the observed period of 20–25 s. Therefore, we rule out the first hypothesis and infer that the long period of 20–25 s is most likely a long swell wave coming from distant sources. As discussed by Rabinovich (1997) and Wang et al. (2022), comparison between sea level spectra before and after the incident is a useful method to distinguish the spectrum of the weather event. A visual inspection of Fig. 6 reveals that the forcing at the period band of 20–25 s is non-existent before the incident.

    Numerical simulations of wave loading and overtopping

    Based on the results of sea level data analyses in the previous section (Fig. 6), we use a dual peak wave spectrum with peak periods of 10.0 s and 25.0 s for numerical simulations because such a wave would be comprised of the most energetic signals of the storm. For variations of water depth (2.0–4.0 m), coastal wave amplitude (0.5–1.5 m) (Fig. 7) and storm surge height (0.5–0.8 m) (Fig. 5), we developed 20 scenarios (Scn) which we used in numerical simulations (Table 2). Data during the incident indicated that water depth was up to the crest level of the seawall (approximately 4 m water depth); therefore, we varied water depth from 2 to 4 m in our simulation scenarios. Regarding wave amplitudes, we referred to the variations at a nearby tide gauge station (West Bay) which showed wave amplitude up to 1.2 m (Fig. 7). Therefore, wave amplitude was varied from 0.5 m to 1.5 m by considering a factor a safety of 25% for the maximum wave amplitude. As for the storm surge component, time series of storm surges calculated at three coastal stations adjacent to Dawlish showed that it was in the range of 0.5 m to 0.8 m (Fig. 5). These 20 scenarios would help to study uncertainties associated with wave amplitudes and pressures. Figure 8 shows snapshots of wave propagation and impacts on the seawall at different times.

    figure 7
    Fig. 7

    Table 2 The 20 scenarios considered for numerical simulations in this study

    Full size table

    figure 8
    Fig. 8

    Results of wave amplitude simulations

    Large wave amplitudes can induce significant wave forcing on the structure and cause overtopping of the seawall, which could eventually cascade to other hazards such as erosion of the backfill and scour (Adams and Heidarzadeh, 2021). The first 10 scenarios of our modelling efforts are for the same incident wave amplitudes of 0.5 m, which occur at different water depths (2.0–4.0 m) and storm surge heights (0.5–0.8 m) (Table 2 and Fig. 9). This is because we aim at studying the impacts of effective water depth (deff—the sum of mean sea level and surge height) on the time histories of wave amplitudes as the storm evolves. As seen in Fig. 9a, by decreasing effective water depth, wave amplitude increases. For example, for Scn-1 with effective depth of 4.5 m, the maximum amplitude of the first wave is 1.6 m, whereas it is 2.9 m for Scn-2 with effective depth of 3.5 m. However, due to intensive reflections and interferences of the waves in front of the vertical seawall, such a relationship is barely seen for the second and the third wave peaks. It is important to note that the later peaks (second or third) produce the largest waves rather than the first wave. Extraordinary wave amplifications are seen for the Scn-2 (deff = 3.5 m) and Scn-7 (deff = 3.3 m), where the corresponding wave amplitudes are 4.5 m and 3.7 m, respectively. This may indicate that the effective water depth of deff = 3.3–3.5 m is possibly a critical water depth for this structure resulting in maximum wave amplitudes under similar storms. In the second wave impact, the combined wave height (i.e. the wave amplitude plus the effective water depth), which is ultimately an indicator of wave overtopping, shows that the largest wave heights are generated by Scn-2, 7 and 8 (Fig. 9a) with effective water depths of 3.5 m, 3.3 m and 3.8 m and combined heights of 8.0 m, 7.0 m and 6.9 m (Fig. 9b). Since the height of seawall is 5.4 m, the combined wave heights for Scn-2, 7 and 8 are greater than the crest height of the seawall by 2.6 m, 1.6 m and 1.5 m, respectively, which indicates wave overtopping.

    figure 9
    Fig. 9

    For scenarios 11–20 (Fig. 10), with incident wave amplitudes of 1.5 m (Table 2), the largest wave amplitudes are produced by Scn-17 (deff = 3.3 m), Scn-13 (deff = 2.5 m) and Scn-12 (deff = 3.5 m), which are 5.6 m, 5.1 m and 4.5 m. The maximum combined wave heights belong to Scn-11 (deff = 4.5 m) and Scn-17 (deff = 3.3 m), with combined wave heights of 9.0 m and 8.9 m (Fig. 10b), which are greater than the crest height of the seawall by 4.6 m and 3.5 m, respectively.

    figure 10
    Fig. 10

    Our simulations for all 20 scenarios reveal that the first wave is not always the largest and wave interactions, reflections and interferences play major roles in amplifying the waves in front of the seawall. This is primarily because the wall is fully vertical and therefore has a reflection coefficient of close to one (i.e. full reflection). Simulations show that the combined wave height is up to 4.6 m higher than the crest height of the wall, implying that severe overtopping would be expected.

    Results of wave loading calculations

    The pressure calculations for scenarios 1–10 are given in Fig. 11 and those of scenarios 11–20 in Fig. 12. The total pressure distribution in Figs. 1112 mostly follows a triangular shape with maximum pressure at the seafloor as expected from the Sainflou (1928) design equations. These pressure plots comprise both static (due to mean sea level in front of the wall) and dynamic (combined effects of surge and wave) pressures. For incident wave amplitudes of 0.5 m (Fig. 11), the maximum wave pressure varies in the range of 35–63 kPa. At the sea surface, it is in the range of 4–20 kPa (Fig. 11). For some scenarios (Scn-2 and 7), the pressure distribution deviates from a triangular shape and shows larger pressures at the top, which is attributed to the wave impacts and partial breaking at the sea surface. This adds an additional triangle-shaped pressure distribution at the sea surface elevation consistent with the design procedure developed by Goda (2000) for braking waves. The maximum force on the seawall due to scenarios 1–10, which is calculated by integrating the maximum pressure distribution over the wave-facing surface of the seawall, is in the range of 92–190 KN (Table 2).

    figure 11
    Fig. 11
    figure 12
    Fig. 12

    For scenarios 11–20, with incident wave amplitude of 1.5 m, wave pressures of 45–78 kPa and 7–120 kPa, for  the bottom and top of the wall, respectively, were observed (Fig. 12). Most of the plots show a triangular pressure distribution, except for Scn-11 and 15. A significant increase in wave impact pressure is seen for Scn-15 at the top of the structure, where a maximum pressure of approximately 120 kPa is produced while other scenarios give a pressure of 7–32 kPa for the sea surface. In other words, the pressure from Scn-15 is approximately four times larger than the other scenarios. Such a significant increase of the pressure at the top is most likely attributed to the breaking wave impact loads as detailed by Goda (2000) and Cuomo et al. (2010). The wave simulation snapshots in Fig. 8 show that the wave breaks before reaching the wall. The maximum force due to scenarios 11–20 is 120–286 KN.

    The breaking wave impacts peaking at 286 KN in our simulations suggest destabilisation of the upper masonry blocks, probably by grout malfunction. This significant impact force initiated the failure of the seawall which in turn caused extensive ballast erosion. Wave impact damage was proposed by Adams and Heidarzadeh (2021) as one of the primary mechanisms in the 2014 Dawlish disaster. In the multi-hazard risk model proposed by these authors, damage mechanism III (failure pathway 5 in Adams and Heidarzadeh, 2021) was characterised by wave impact force causing damage to the masonry elements, leading to failure of the upper sections of the seawall and loss of infill material. As blocks were removed, access to the track bed was increased for inbound waves allowing infill material from behind the seawall to be fluidised and subsequently removed by backwash. The loss of infill material critically compromised the stability of the seawall and directly led to structural failure. In parallel, significant wave overtopping (discussed in the next section) led to ballast washout and cascaded, in combination with masonry damage, to catastrophic failure of the wall and suspension of the rails in mid-air (Fig. 1b), leaving the railway inoperable for two months.

    Wave Overtopping

    The two most important factors contributing to the 2014 Dawlish railway catastrophe were wave impact forces and overtopping. Figure 13 gives the instantaneous overtopping rates for different scenarios, which experienced overtopping. It can be seen that the overtopping rates range from 0.5 m3/s/m to 16.1 m3/s/m (Fig. 13). Time histories of the wave overtopping rates show that the phenomenon occurs intermittently, and each time lasts 1.0–7.0 s. It is clear that the longer the overtopping time, the larger the volume of the water poured on the structure. The largest wave overtopping rates of 16.1 m3/s/m and 14.4 m3/s/m belong to Scn-20 and 11, respectively. These are the two scenarios that also give the largest combined wave heights (Fig. 10b).

    figure 13
    Fig. 13

    The cumulative overtopping curves (Figs. 1415) show the total water volume overtopped the structure during the entire simulation time. This is an important hazard factor as it determines the level of soil saturation, water pore pressure in the soil and soil erosion (Van der Meer et al. 2018). The maximum volume belongs to Scn-20, which is 65.0 m3/m (m-cubed of water per metre length of the wall). The overtopping volumes are 42.7 m3/m for Scn-11 and 28.8 m3/m for Scn-19. The overtopping volume is in the range of 0.7–65.0 m3/m for all scenarios.

    figure 14
    Fig. 14
    figure 15
    Fig. 15

    For comparison, we compare our modelling results with those estimated using empirical equations. For the case of the Dawlish seawall, we apply the equation proposed by Van Der Meer et al. (2018) to estimate wave overtopping rates, based on a set of decision criteria which are the influence of foreshore, vertical wall, possible breaking waves and low freeboard:

    qgH3m−−−−√=0.0155(Hmhs)12e(−2.2RcHm)qgHm3=0.0155(Hmhs)12e(−2.2RcHm)

    (6)

    where qq is the mean overtopping rate per metre length of the seawall (m3/s/m), gg is the acceleration due to gravity, HmHm is the incident wave height at the toe of the structure, RcRc is the wall crest height above mean sea level, hshs is the deep-water significant wave height and e(x)e(x) is the exponential function. It is noted that Eq. (6) is valid for 0.1<RcHm<1.350.1<RcHm<1.35. For the case of the Dawlish seawall and considering the scenarios with larger incident wave amplitude of 1.5 m (hshs= 1.5 m), the incident wave height at the toe of the structure is HmHm = 2.2—5.6 m, and the wall crest height above mean sea level is RcRc = 0.6–2.9 m. As a result, Eq. (6) gives mean overtopping rates up to approximately 2.9 m3/s/m. A visual inspection of simulated overtopping rates in Fig. 13 for Scn 11–20 shows that the mean value of the simulated overtopping rates (Fig. 13) is close to estimates using Eq. (6).

    Discussion and conclusions

    We applied a combination of eyewitness account analysis, sea level data analysis and numerical modelling in combination with our engineering judgement to explain the damage to the Dawlish railway seawall in February 2014. Main findings are:

    • Eyewitness data analysis showed that the extreme nature of the event was well forecasted in the hours prior to the storm impact; however, the magnitude of the risks to the structures was not well understood. Multiple hazards were activated simultaneously, and the effects cascaded to amplify the damage. Disaster management was effective, exemplified by the establishment of an emergency rendezvous point and temporary evacuation centre during the storm, indicating a high level of hazard awareness and preparedness.
    • Based on sea level data analysis, we identified triple peak period bands at 4–8, 8–12 and 20–25 s in the sea level data. Storm surge heights and wave oscillations were up to 0.8 m and 1.5 m, respectively.
    • Based on the numerical simulations of 20 scenarios with different water depths, incident wave amplitudes, surge heights and peak periods, we found that the wave oscillations at the foot of the seawall result in multiple wave interactions and interferences. Consequently, large wave amplitudes, up to 4.6 m higher than the height of the seawall, were generated and overtopped the wall. Extreme impulsive wave impact forces of up to 286 KN were generated by the waves interacting with the seawall.
    • We measured maximum wave overtopping rates of 0.5–16.1 m3/s/m for our scenarios. The cumulative overtopping water volumes per metre length of the wall were 0.7–65.0 m3/m.
    • Analysis of all the evidence combined with our engineering judgement suggests that the most likely initiating cause of the failure was impulsive wave impact forces destabilising one or more grouted joints between adjacent masonry blocks in the wall. Maximum observed pressures of 286 KN in our simulations are four times greater in magnitude than background pressures leading to block removal and initiating failure. Therefore, the sequence of cascading events was :1) impulsive wave impact force causing damage to masonry, 2) failure of the upper sections of the seawall, 3) loss of infill resulting in a reduction of structural strength in the landward direction, 4) ballast washout as wave overtopping and inbound wave activity increased and 5) progressive structural failure following successive tides.

    From a risk mitigation point of view, the stability of the seawall in the face of future energetic cyclonic storm events and sea level rise will become a critical factor in protecting the rail network. Mitigation efforts will involve significant infrastructure investment to strengthen the civil engineering assets combined with improved hazard warning systems consisting of meteorological forecasting and real-time wave observations and instrumentation. These efforts must take into account the amenity value of coastal railway infrastructure to local communities and the significant number of tourists who visit every year. In this regard, public awareness and active engagement in the planning and execution of the project will be crucial in order to secure local stakeholder support for the significant infrastructure project that will be required for future resilience.

    Notes

    1. https://www.networkrail.co.uk/..
    2. https://www.flow3d.com/products/flow-3d-hydro/.
    3. https://www.devonmuseums.net/Dawlish-Museum/Devon-Museums/.
    4. https://ntslf.org/.
    5. https://www.datawell.nl/Products/Buoys/DirectionalWaveriderMkIII.aspx.
    6. https://www.bodc.ac.uk/.
    7. https://coastalmonitoring.org/cco/.
    8. https://webapp.navionics.com/#boating@8&key=iactHlwfP.

    References

    Download references

    Acknowledgements

    We are grateful to Brunel University London for administering the scholarship awarded to KA. The Flow3D-Hydro used in this research for numerical modelling is licenced to Brunel University London through an academic programme contract. We sincerely thank Prof Harsh Gupta (Editor-in-Chief) and two anonymous reviewers for their constructive review comments.

    Funding

    This project was funded by the UK Engineering and Physical Sciences Research Council (EPSRC) through a PhD scholarship to Keith Adams.

    Author information

    Authors and Affiliations

    1. Department of Civil and Environmental Engineering, Brunel University London, Uxbridge, UB8 3PH, UKKeith Adams
    2. Department of Architecture and Civil Engineering, University of Bath, Bath, BA2 7AY, UKMohammad Heidarzadeh

    Corresponding author

    Correspondence to Keith Adams.

    Ethics declarations

    Conflict of interest

    The authors have no relevant financial or non-financial interests to disclose.

    Availability of data

    All data used in this study are provided in the body of the article.

    Additional information

    Publisher’s Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    Reprints and Permissions

    About this article

    Verify currency and authenticity via CrossMark

    Cite this article

    Adams, K., Heidarzadeh, M. Extratropical cyclone damage to the seawall in Dawlish, UK: eyewitness accounts, sea level analysis and numerical modelling. Nat Hazards (2022). https://doi.org/10.1007/s11069-022-05692-2

    Download citation

    • Received17 May 2022
    • Accepted17 October 2022
    • Published14 November 2022
    • DOIhttps://doi.org/10.1007/s11069-022-05692-2

    Share this article

    Anyone you share the following link with will be able to read this content:Get shareable link

    Provided by the Springer Nature SharedIt content-sharing initiative

    Keywords

    • Storm surge
    • Cyclone
    • Railway
    • Climate change
    • Infrastructure
    • Resilience
    Dissipating Culvert End Design for Erosion Control Using CFD Platform FLOW-3D Numerical Simulation Modeling

    CFD 플랫폼 FLOW-3D 수치 시뮬레이션 모델링을 사용한 침식 제어를 위한 분산 암거 종단 설계

    Dissipating Culvert End Design for Erosion Control Using CFD Platform FLOW-3D Numerical Simulation Modeling

    Saman Mostafazadeh-Fard

    Graduate Research Assistant, Dept. of Civil Engineering, New Mexico State Univ., P.O. Box 30001, MSC 3CE, Las Cruces, NM 88003-8001 (corresponding author). Email: samanmzf@nmsu.edu

    Zohrab Samani

    Professor, Dept. of Civil Engineering, New Mexico State Univ., P.O. Box 30001, MSC 3CE, Las Cruces, NM 88003-8001. Email: zsamani@nmsu.edu

    Abstract

    추상적인
    암거 끝에서 나오는 고속 흐름으로 인한 하류 침식 및 세굴은 수력 엔지니어가 직면한 주요 문제 중 하나입니다. 본 논문의 주요 목적은 일반적인 암거 단부에서 나오는 고속 흐름으로 인한 하류 침식 및 세굴의 위험을 줄일 수 있는 분산 암거 단부 설계를 개발하는 것이었습니다. 이를 위해 전산 유체 역학(CFD) 플랫폼 FLOW-3D 버전 11.1.0 코드를 실험 실행[결정 계수 R2>0.90 및 평균 제곱근 오차(RMSE)<1.9 cm]을 기반으로 보정 및 검증했습니다. 그런 다음 코드를 사용하여 두 가지 대안적인 소멸 암거 끝 설계(ALT 1 및 ALT 2)를 개발하고 하류 침식 및 세굴 완화 가능성을 분석했습니다. 각각의 출수유속과 운동에너지를 측정하여 전형적인 암거단부(대조)유량과 비교하였다. 결과에 따르면 제어 흐름에서의 질량 평균 유체 평균 운동 에너지는 1.37 j/kg2로 기록되었으며, ALT 1 및 ALT 2 흐름에서 각각 0.83 및 0.73 j/kg2로 측정되었습니다. 따라서 제어 흐름 하에서 하류 샌드박스 매스의 제거는 ALT 1 및 ALT 2 흐름에 비해 각각 약 11.1% 및 4.2% 더 높았습니다. FLOW-3D 코드는 암거 끝 흐름과 하류 침식을 예측하고 하류 침식을 줄일 수 있는 잠재적 소산 암거 끝을 설계하는 데 사용할 수 있습니다.

    Downstream erosion and scouring caused by high-velocity flow issuing from culvert ends are one of the main problems faced by hydraulic engineers. The main objective of this paper was to develop a dissipating culvert end design that can reduce the risk of downstream erosion and scour caused by high-velocity flow issuing from typical culvert ends. For this purpose, the computational fluid dynamics (CFD) platform FLOW-3D version 11.1.0 code was calibrated and validated based on the experimental runs [coefficient of determination R2>0.90R2>0.90 and root mean square error (RMSE)<1.9  cm(RMSE)<1.9  cm]. Two alternative dissipating culvert end designs (ALT 1 and ALT 2) were then developed using the code, and their potential in mitigation of downstream erosion and scouring was analyzed. The issuing flow velocity and kinetic energy for each were measured and compared with typical culvert end (control) flow. According to the results, mass averaged fluid mean kinetic energy in the control flow was recorded at 1.37  j/kg21.37  j/kg2 and was measured at 0.83 and 0.73  j/kg20.73  j/kg2 in ALT 1 and ALT 2 flows, respectively. Accordingly, the removal of downstream sandbox mass under control flow was approximately 11.1% and 4.2% higher compared with ALT 1 and ALT 2 flows, respectively. FLOW-3D code can be used to predict culvert end flow and downstream erosion and to design potential dissipating culvert ends that can reduce downstream erosion.

    Dissipating Culvert End Design for Erosion Control Using CFD Platform FLOW-3D Numerical Simulation Modeling
    Dissipating Culvert End Design for Erosion Control Using CFD Platform FLOW-3D Numerical Simulation Modeling
    Fig 3. Front view of the ejected powder particles due to the plume movement. Powder particles are colored by their respective temperature while trajectory colors show their magnitude at 0.007 seconds.

    316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링

    316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링

    M. BAYAT1,* , AND J. H. HATTEL1

    • Corresponding author
      1 Technical University of Denmark (DTU), Building 425, Kgs. 2800 Lyngby, Denmark

    ABSTRACT

    Spatter and denudation are two very well-known phenomena occurring mainly during the laser powder bed fusion process and are defined as ejection and displacement of powder particles, respectively. The main driver of this phenomenon is the formation of a vapor plume jet that is caused by the vaporization of the melt pool which is subjected to the laser beam. In this work, a 3-dimensional transient turbulent computational fluid dynamics model coupled with a discrete element model is developed in the finite volume-based commercial software package Flow-3D AM to simulate the spatter phenomenon. The numerical results show that a localized low-pressure zone forms at the bottom side of the plume jet and this leads to a pseudo-Bernoulli effect that drags nearby powder particles into the area of influence of the vapor plume jet. As a result, the vapor plume acts like a momentum sink and therefore all nearby particles point are dragged towards this region. Furthermore, it is noted that due to the jet’s attenuation, powder particles start diverging from the central core region of the vapor plume as they move vertically upwards. It is moreover observed that only particles which are in the very central core region of the plume jet get sufficiently accelerated to depart the computational domain, while the rest of the dragged particles, especially those which undergo an early divergence from the jet axis, get stalled pretty fast as they come in contact with the resting fluid. In the last part of the work, two simulations with two different scanning speeds are carried out, where it is clearly observed that the angle between the departing powder particles and the vertical axis of the plume jet increases with increasing scanning speed.

    스패터와 denudation은 주로 레이저 분말 베드 융합 과정에서 발생하는 매우 잘 알려진 두 가지 현상으로 각각 분말 입자의 배출 및 변위로 정의됩니다.

    이 현상의 주요 동인은 레이저 빔을 받는 용융 풀의 기화로 인해 발생하는 증기 기둥 제트의 형성입니다. 이 작업에서 이산 요소 모델과 결합된 3차원 과도 난류 ​​전산 유체 역학 모델은 스패터 현상을 시뮬레이션하기 위해 유한 체적 기반 상용 소프트웨어 패키지 Flow-3D AM에서 개발되었습니다.

    수치적 결과는 플룸 제트의 바닥면에 국부적인 저압 영역이 형성되고, 이는 근처의 분말 입자를 증기 플룸 제트의 영향 영역으로 끌어들이는 의사-베르누이 효과로 이어진다는 것을 보여줍니다.

    결과적으로 증기 기둥은 운동량 흡수원처럼 작용하므로 근처의 모든 입자 지점이 이 영역으로 끌립니다. 또한 제트의 감쇠로 인해 분말 입자가 수직으로 위쪽으로 이동할 때 증기 기둥의 중심 코어 영역에서 발산하기 시작합니다.

    더욱이 플룸 제트의 가장 중심 코어 영역에 있는 입자만 계산 영역을 벗어날 만큼 충분히 가속되는 반면, 드래그된 나머지 입자, 특히 제트 축에서 초기 발산을 겪는 입자는 정체되는 것으로 관찰됩니다. 그들은 휴식 유체와 접촉하기 때문에 꽤 빠릅니다.

    작업의 마지막 부분에서 두 가지 다른 스캔 속도를 가진 두 가지 시뮬레이션이 수행되었으며, 여기서 출발하는 분말 입자와 연기 제트의 수직 축 사이의 각도가 스캔 속도가 증가함에 따라 증가하는 것이 명확하게 관찰되었습니다.

    Fig 1. Two different views of the computational domain for the fluid domain. The vapor plume is simulated by a moving momentum source with a prescribed temperature of 3000 K.
    Fig 1. Two different views of the computational domain for the fluid domain. The vapor plume is simulated by a moving momentum source with a prescribed temperature of 3000 K.
    Fig 2. (a) and (b) are two snapshots taken at an x-y plane parallel to the powder layer plane before and 0.008 seconds after the start of the scanning process. (c) Shows a magnified view of (b) where detailed powder particles' movement along with their velocity magnitude and directions are shown.
    Fig 2. (a) and (b) are two snapshots taken at an x-y plane parallel to the powder layer plane before and 0.008 seconds after the start of the scanning process. (c) Shows a magnified view of (b) where detailed powder particles’ movement along with their velocity magnitude and directions are shown.
    Fig 3. Front view of the ejected powder particles due to the plume movement. Powder particles are colored by their respective temperature while trajectory colors show their magnitude at 0.007 seconds.
    Fig 3. Front view of the ejected powder particles due to the plume movement. Powder particles are colored by their respective temperature while trajectory colors show their magnitude at 0.007 seconds.

    References

    [1] T. DebRoy et al., “Additive manufacturing of metallic components – Process, structure
    and properties,” Prog. Mater. Sci., vol. 92, pp. 112–224, 2018, doi:
    10.1016/j.pmatsci.2017.10.001.
    [2] M. Markl and C. Körner, “Multiscale Modeling of Powder Bed–Based Additive
    Manufacturing,” Annu. Rev. Mater. Res., vol. 46, no. 1, pp. 93–123, 2016, doi:
    10.1146/annurev-matsci-070115-032158.
    [3] A. Zinoviev, O. Zinovieva, V. Ploshikhin, V. Romanova, and R. Balokhonov, “Evolution
    of grain structure during laser additive manufacturing. Simulation by a cellular automata
    method,” Mater. Des., vol. 106, pp. 321–329, 2016, doi: 10.1016/j.matdes.2016.05.125.
    [4] Y. Zhang and J. Zhang, “Modeling of solidification microstructure evolution in laser
    powder bed fusion fabricated 316L stainless steel using combined computational fluid
    dynamics and cellular automata,” Addit. Manuf., vol. 28, no. July 2018, pp. 750–765,
    2019, doi: 10.1016/j.addma.2019.06.024.
    [5] A. A. Martin et al., “Ultrafast dynamics of laser-metal interactions in additive
    manufacturing alloys captured by in situ X-ray imaging,” Mater. Today Adv., vol. 1, p.
    100002, 2019, doi: 10.1016/j.mtadv.2019.01.001.
    [6] Y. C. Wu et al., “Numerical modeling of melt-pool behavior in selective laser melting
    with random powder distribution and experimental validation,” J. Mater. Process.
    Technol., vol. 254, no. July 2017, pp. 72–78, 2018, doi:
    10.1016/j.jmatprotec.2017.11.032.
    [7] W. Gao, S. Zhao, Y. Wang, Z. Zhang, F. Liu, and X. Lin, “Numerical simulation of
    thermal field and Fe-based coating doped Ti,” Int. J. Heat Mass Transf., vol. 92, pp. 83–
    90, 2016, doi: 10.1016/j.ijheatmasstransfer.2015.08.082.
    [8] A. Charles, M. Bayat, A. Elkaseer, L. Thijs, J. H. Hattel, and S. Scholz, “Elucidation of
    dross formation in laser powder bed fusion at down-facing surfaces: Phenomenonoriented multiphysics simulation and experimental validation,” Addit. Manuf., vol. 50,
    2022, doi: 10.1016/j.addma.2021.102551.
    [9] C. Meier, R. W. Penny, Y. Zou, J. S. Gibbs, and A. J. Hart, “Thermophysical phenomena
    in metal additive manufacturing by selective laser melting: Fundamentals, modeling,
    simulation and experimentation,” arXiv, 2017, doi:
    10.1615/annualrevheattransfer.2018019042.
    [10] W. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath, and S. A. Khairallah,
    “Overview of modelling and simulation of metal powder bed fusion process at Lawrence
    Livermore National Laboratory,” Mater. Sci. Technol. (United Kingdom), vol. 31, no. 8,
    pp. 957–968, 2015, doi: 10.1179/1743284714Y.0000000728.

    Fig. 9 Test facility a plan view, b the bottom elevation of the reservoir to the channel (Bell et al. 1992)

    2-D Dam-Break Flow Modeling Based on Weighted Average Flux Method

    Iranian Journal of Science and Technology, Transactions of Civil Engineering volume 46, pages1515–1525 (2022)Cite this article

    Abstract

    천해 방정식을 기반으로 하는 2차원 흐름 모델은 댐 붕괴 흐름을 모델링하기 위해 개발되었습니다. 공간 이산화는 유한 체적 셀 중심 유형 방법에 의해 얻어집니다.

    수치 시스템은 명시적인 방식으로 해결됩니다. 플럭스 모델링은 시간과 공간 모두에서 2차 정확도로 TVD WAF 방식으로 배포되었습니다. 로컬 리만 문제는 셀 인터페이스에서 HLLC 방법으로 해결됩니다. 수치 모델은 모델 결과와 해석 솔루션을 비교하여 검증합니다.

    그런 다음 수치 모델의 결과는 90° 및 180° 편차 각도를 갖는 수로 및 삼각형 바텀 씰 위의 직선 수로에서 사용 가능한 실험 데이터와 비교됩니다. 결과는 댐 파괴파를 예측하는 현재 모델의 합리적인 성능을 확인합니다.

    A two-dimensional flow model based on shallow water equations is developed for modeling dam-break flows. The spatial discretization is obtained by the finite volume cell centered type method. The numerical system is solved in explicit way. The flux modeling has been deployed by TVD WAF scheme with a second-order accuracy in both time and space. The local Riemann problem is solved by the HLLC method in the interface of the cells. The numerical model is verified by comparison of model results and analytical solutions. Then the results of numerical model are compared with available experimental data of dam-break waves in a channel with 90° and 180° deviation angle and in a straight channel over a triangular bottom sill. The results confirm the reasonable performance of the present model in predicting dam-break waves.

    This is a preview of subscription content, access via your institution.

    Keywords

    • Finite volume
    • Shallow water equations
    • Dam-break
    • HLLC
    • TVD
    • WAF
    Fig. 2 Generic control volume and notations
    Fig. 2 Generic control volume and notations
    Fig. 1 The generated grid for a channel with a 180° bend
    Fig. 1 The generated grid for a channel with a 180° bend
    Fig. 4 a Water surface profle and b velocity profle of dam-break problem with left dry bed
    Fig. 4 a Water surface profle and b velocity profle of dam-break problem with left dry bed
    Fig. 5 a Water surface profle and b velocity profle of appearance dry region
    Fig. 5 a Water surface profle and b velocity profle of appearance dry region
    Fig. 6 Comparison of the present model results and exact solution for transcritical fow over a bump with a shock
    Fig. 6 Comparison of the present model results and exact solution for transcritical fow over a bump with a shock
    Fig. 7 Geometry of the reservoir and L-shaped channel: plan view (Soares-Frazao et al. 2019)
    Fig. 7 Geometry of the reservoir and L-shaped channel: plan view (Soares-Frazao et al. 2019)
    Fig. 9 Test facility a plan view, b the bottom elevation of the reservoir to the channel (Bell et al. 1992)
    Fig. 9 Test facility a plan view, b the bottom elevation of the reservoir to the channel (Bell et al. 1992)

    References

    • Ata R, Pavan S, Khelladi S, Toro EF (2013) A Weighted Average Flux (WAF) scheme applied to shallow water equations for real-life applications. Adv Water Resour 62:155–172Article Google Scholar 
    • Aureli F, Maranzoni A, Mignosa P, Ziveri C (2008) A weighted surface-depth gradient method for the numerical integration of the 2D shallow water equations with topography. Adv Water Resour 31(7):962–974Article Google Scholar 
    • Bell SW, Elliot RC, Hanif Chaudhry M (1992) Experimental results of two-dimensional dam-break flows. J Hydraul Res 30(2):225–252Article Google Scholar 
    • Benkhaldoun F, Sari S, Seaid M (2015) Projection finite volume method for shallow water flows. Math Comput Simul 118:87–101MathSciNet Article Google Scholar 
    • Chung TJ (2010) Computational fluid dynamics. Cambridge University PressBook Google Scholar 
    • Einfeldt B, Munz CD, Roe PL, Sjögreen B (1991) On Godunov-type methods near low densities. J Comput Phys 92(2):273–295MathSciNet Article Google Scholar 
    • Erduran KS, Kutija V, Hewett CJM (2002) Performance of finite volume solutions to the shallow water equations with shock-capturing schemes. Int J Numer Meth Fluids 40(10):1237–1273MathSciNet Article Google Scholar 
    • Gallardo JM, Schneider KA, Castro MJ (2019) On a class of two-dimensional incomplete Riemann solvers. J Comput Phys 386:541–567MathSciNet Article Google Scholar 
    • Fraccarollo L, Toro EF (1995) Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J Hydraul Res 33(6):843–864Article Google Scholar 
    • Gupta SC (2019) Numerical grid generation and parallel computations. J Aerosp Eng Technol 5(1):11–22Google Scholar 
    • Hosseinzadeh-Tabrizi A, Ghaeini-Hessaroeyeh M (2015) Coupled dam-break flow and bed load modelling using HLLC-WAF scheme. Water Sci Technol 72(7):1155–1167Article Google Scholar 
    • Kocaman S, Ozmen-Cagatay H (2015) Investigation of dam-break induced shock waves impact on a vertical wall. J Hydrol 525:1–12Article Google Scholar 
    • Liang Q, Borthwick AGL, Stelling G (2004) Simulation of dam-and dyke-break hydrodynamics on dynamically adaptive quadtree grids. Int J Numer Meth Fluids 46(2):127–162Article Google Scholar 
    • Liang D, Lin B, Falconer RA (2007) Simulation of rapidly varying flow using an efficient TVD–MacCormack scheme. Int J Numer Meth Fluids 53(5):811–826Article Google Scholar 
    • Munoz DH, Constantinescu G (2020) 3-D dam break flow simulations in simplified and complex domains. Adv Water Resour 103510
    • Muscat L, Puigt G, Montagnac M, Brenner P (2019) A coupled implicit-explicit time integration method for compressible unsteady flows. J Comput Phys 398:183MathSciNet Article Google Scholar 
    • Ozmen-Cagatay H, Kocaman S (2010) Dam-break flows during initial stage using SWE and RANS approaches. J Hydraul Res 48(5):603–611Article Google Scholar 
    • Ozmen-Cagatay H, Kocaman S, Guzel H (2014) Investigation of dam-break flood waves in a dry channel with a hump. J Hydro Environ Res 8(3):304–315Article Google Scholar 
    • Pongsanguansin T, Maleewong M, Mekchay K (2015) Consistent weighted average flux of well-balanced TVD-RK discontinuous galerkin method for shallow water flows. Modelling and simulation in Engineering, pp. 591282
    • Pongsanguansin T, Maleewong M, Mekchay K (2016) Shallow-water simulations by a well-balanced WAF finite volume method: a case study to the great flood in 2011. Thailand Comput Geosci 20(6):1269–1285MathSciNet Article Google Scholar 
    • Soares-Frazão S (2007) Experiments of dam-break wave over a triangular bottom sill. J Hydraul Res 45(sup1):19–26MathSciNet Article Google Scholar 
    • Soares Frazao S, Abbeels S, Messens M (2019) Dam-break flow in a channel with a 90° bend and mobile bed: experimental and numerical simulations. In: 38th IAHR world congress
    • Toro EF (1992) Riemann problems and the WAF method for solving the two-dimensional shallow water equations. Philos Trans Roy Soc Lond Ser A Phys Eng Sci 338(1649):43–68MathSciNet MATH Google Scholar 
    • Toro EF, Spruce M, Speares W (1994) Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4(1):25–34Article Google Scholar 
    • Toro EF (2001) Shock-capturing methods for free-surface shallow flows, vol 868. Wiley, New YorkMATH Google Scholar 
    • Toro EF, Garcia-Navarro P (2007) Godunov-type methods for free-surface shallow flows: a review. J Hydraul Res 45(6):736–751Article Google Scholar 
    • Toro, E.F., 2013. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer Science & Business Media.
    • Valiani A, Caleffi V, Zanni A (2002) Case study: Malpasset dam-break simulation using a two-dimensional finite volume method. J Hydraul Eng 128(5):460–472Article Google Scholar 
    • Xia J, Lin B, Falconer RA, Wang G (2010) Modelling dam-break flows over mobile beds using a 2-D coupled approach. Adv Water Resour 33(2):171–183Article Google Scholar 
    • Zia A, Banihashemi MA (2008) Simple efficient algorithm (SEA) for shallow flows with shock wave on dry and irregular beds. Int J Numer Meth Fluids 56(11):2021–2043MathSciNet Article Google Scholar 
    • Zoppou C, Roberts S (2003) Explicit schemes for dam-break simulations. J Hydraul Eng 129(1):11–34Article Google Scholar 
    • Zhou JG, Causon DM, Ingram DM, Mingham CG (2002) Numerical solutions of the shallow water equations with discontinuous bed topography. Int J Numer Meth Fluids 38(8):769–788Article Google Scholar 
    Flow Field in a Sloped Channel with Damaged and Undamaged Piers: Numerical and Experimental Studies

    Flow Field in a Sloped Channel with Damaged and Undamaged Piers: Numerical and Experimental Studies

    Ehsan OveiciOmid Tayari & Navid Jalalkamali
    KSCE Journal of Civil Engineering volume 25, pages4240–4251 (2021)Cite this article

    Abstract

    본 논문은 경사가 완만한 수로에서 손상되거나 손상되지 않은 교각 주변의 유동 패턴을 분석했습니다. 실험은 길이가 12m이고 기울기가 0.008인 직선 수로에서 수행되었습니다. Acoustic Doppler Velocimeter(ADV)를 이용하여 3차원 유속 데이터를 수집하였고, 그 결과를 PIV(Particle Image Velocimetry) 데이터와 분석하여 비교하였습니다.

    다중 블록 옵션이 있는 취수구의 퇴적물 시뮬레이션(SSIIM)은 이 연구에서 흐름의 수치 시뮬레이션을 위해 통합되었습니다. 일반적으로 비교에서 얻은 결과는 수치 데이터와 실험 데이터 간의 적절한 일치를 나타냅니다. 결과는 모든 경우에 수로 입구에서 2m 거리에서 기복적 수압 점프가 발생했음을 보여주었습니다.

    경사진 수로의 최대 베드 전단응력은 2개의 손상 및 손상되지 않은 교각을 설치하기 위한 수평 수로의 12배였습니다. 이와 같은 경사수로 교각의 위치에 따라 상류측 수위는 수평수로의 유사한 조건에 비해 72.5% 감소한 반면, 이 감소량은 경사면에서 다른 경우에 비해 8.3% 감소하였다. 채널 또한 두 교각이 있는 경우 최대 Froude 수는 수평 수로의 5.7배였습니다.

    This paper analyzed the flow pattern around damaged and undamaged bridge piers in a channel with a mild slope. The experiments were carried out on a straight channel with a length of 12 meters and a slope of 0.008. Acoustic Doppler velocimeter (ADV) was employed to collect three-dimensional flow velocity data, and the results were analyzed and compared with particle image velocimetry (PIV) data. Sediment Simulation in Intakes with Multiblock option (SSIIM) was incorporated for the numerical simulation of the flow in this study. Generally, the results obtained from the comparisons referred to the appropriate agreement between the numerical and the experimental data. The results showed that an undular hydraulic jump occurred at a distance of two meters from the channel entrance in every case; the maximum bed shear stress in the sloped channel was 12 times that in a horizontal channel for installing two damaged and undamaged piers. With this position of the piers in the sloped channel, the upstream water level underwent a 72.5% reduction compared to similar conditions in a horizontal channel, while the amount of this water level decrease was equal to 8.3% compared to the other cases in a sloped channel. In addition, with the presence of both piers, the maximum Froude number was 5.7 times that in a horizontal channel.

    This is a preview of subscription content, access via your institution.

    References

    Download references

    Fig. 1. Model geometry with the computational domain, extrusion nozzle, toolpath, and boundary conditions. The model is presented while printing the fifth layer.

    재료 압출 적층 제조에서 증착된 층의 안정성 및 변형

    Md Tusher Mollah Raphaël 사령관 Marcin P. Serdeczny David B. Pedersen Jon Spangenberg덴마크 공과 대학 기계 공학과, Kgs. 덴마크 링비

    2020년 12월 22일 접수, 2021년 5월 1일 수정, 2021년 7월 15일 수락, 2021년 7월 21일 온라인 사용 가능, 기록 버전 2021년 8월 17일 .

    Abstract

    이 문서는 재료 압출 적층 제조 에서 여러 레이어를 인쇄하는 동안 증착 흐름의 전산 유체 역학 시뮬레이션 을 제공합니다 개발된 모델은 증착된 레이어의 형태를 예측하고 점소성 재료 를 인쇄하는 동안 레이어 변형을 캡처합니다 . 물리학은 일반화된 뉴턴 유체 로 공식화된 Bingham 구성 모델의 연속성 및 운동량 방정식에 의해 제어됩니다. . 증착된 층의 단면 모양이 예측되고 재료의 다양한 구성 매개변수에 대해 층의 변형이 연구됩니다. 층의 변형은 인쇄물의 정수압과 압출시 압출압력으로 인한 것임을 알 수 있다. 시뮬레이션에 따르면 항복 응력이 높을수록 변형이 적은 인쇄물이 생성되는 반면 플라스틱 점도 가 높을수록 증착된 레이어에서변형이 커 집니다 . 또한, 인쇄 속도, 압출 속도 의 영향, 층 높이 및 인쇄된 층의 변형에 대한 노즐 직경을 조사합니다. 마지막으로, 이 모델은 후속 인쇄된 레이어의 정수압 및 압출 압력을 지원하기 위해 증착 후 점소성 재료가 요구하는 항복 응력의 필요한 증가에 대한 보수적인 추정치를 제공합니다.

    This paper presents computational fluid dynamics simulations of the deposition flow during printing of multiple layers in material extrusion additive manufacturing. The developed model predicts the morphology of the deposited layers and captures the layer deformations during the printing of viscoplastic materials. The physics is governed by the continuity and momentum equations with the Bingham constitutive model, formulated as a generalized Newtonian fluid. The cross-sectional shapes of the deposited layers are predicted, and the deformation of layers is studied for different constitutive parameters of the material. It is shown that the deformation of layers is due to the hydrostatic pressure of the printed material, as well as the extrusion pressure during the extrusion. The simulations show that a higher yield stress results in prints with less deformations, while a higher plastic viscosity leads to larger deformations in the deposited layers. Moreover, the influence of the printing speed, extrusion speed, layer height, and nozzle diameter on the deformation of the printed layers is investigated. Finally, the model provides a conservative estimate of the required increase in yield stress that a viscoplastic material demands after deposition in order to support the hydrostatic and extrusion pressure of the subsequently printed layers.

    Fig. 1. Model geometry with the computational domain, extrusion nozzle, toolpath, and boundary conditions. The model is presented while printing the fifth layer.
    Fig. 1. Model geometry with the computational domain, extrusion nozzle, toolpath, and boundary conditions. The model is presented while printing the fifth layer.

    키워드

    점성 플라스틱 재료, 재료 압출 적층 제조(MEX-AM), 다층 증착, 전산유체역학(CFD), 변형 제어
    Viscoplastic Materials, Material Extrusion Additive Manufacturing (MEX-AM), Multiple-Layers Deposition, Computational Fluid Dynamics (CFD), Deformation Control

    Introduction

    Three-dimensional printing of viscoplastic materials has grown in popularity over the recent years, due to the success of Material Extrusion Additive Manufacturing (MEX-AM) [1]. Viscoplastic materials, such as ceramic pastes [2,3], hydrogels [4], thermosets [5], and concrete [6], behave like solids when the applied load is below their yield stress, and like a fluid when the applied load exceeds their yield stress [7]. Viscoplastic materials are typically used in MEX-AM techniques such as Robocasting [8], and 3D concrete printing [9,10]. The differences between these technologies lie in the processing of the material before the extrusion and in the printing scale (from microscale to big area additive manufacturing). In these extrusion-based technologies, the structure is fabricated in a layer-by-layer approach onto a solid surface/support [11, 12]. During the process, the material is typically deposited on top of the previously printed layers that may be already solidified (wet-on-dry printing) or still deformable (wet-on-wet printing) [1]. In wet-on-wet printing, control over the deformation of layers is important for the stability and geometrical accuracy of the prints. If the material is too liquid after the deposition, it cannot support the pressure of the subsequently deposited layers. On the other hand, the material flowability is a necessity during extrusion through the nozzle. Several experimental studies have been performed to analyze the physics of the extrusion and deposition of viscoplastic materials, as reviewed in Refs. [13–16]. The experimental measurements can be supplemented with Computational Fluid Dynamics (CFD) simulations to gain a more complete picture of MEX-AM. A review of the CFD studies within the material processing and deposition in 3D concrete printing was presented by Roussel et al. [17]. Wolfs et al. [18] predicted numerically the failure-deformation of a cylindrical structure due to the self-weight by calculating the stiffness and strength of the individual layers. It was found that the deformations can take place in all layers, however the most critical deformation occurs in the bottom layer. Comminal et al. [19,20] presented three-dimensional simulations of the material deposition in MEX-AM, where the fluid was approximated as Newtonian. Subsequently, the model was experimentally validated in Ref. [21] for polymer-based MEX-AM, and extended to simulate the deposition of multiple layers in Ref. [22], where the previously printed material was assumed solid. Xia et al. [23] simulated the influence of the viscoelastic effects on the shape of deposited layers in MEX-AM. A numerical model for simulating the deposition of a viscoplastic material was recently presented and experimentally validated in Refs. [24] and [25]. These studies focused on predicting the cross-sectional shape of a single printed layer for different processing conditions (relative printing speed, and layer height). Despite these research efforts, a limited number of studies have focused on investigating the material deformations in wet-on-wet printing when multiple layers are deposited on top of each other. This paper presents CFD simulations of the extrusion-deposition flow of a viscoplastic material for several subsequent layers (viz. three- and five-layers). The material is continuously printed one layer over another on a fixed solid surface. The rheology of the viscoplastic material is approximated by the Bingham constitutive equation that is formulated using the Generalized Newtonian Fluid (GNF) model. The CFD model is used to predict the cross-sectional shapes of the layers and their deformations while printing the next layers on top. Moreover, the simulations are used to quantify the extrusion pressure applied by the deposited material on the substrate, and the previously printed layers. Numerically, it is investigated how the process parameters (i.e., the extrusion speed, printing speed, nozzle diameter, and layer height) and the material rheology affect the deformations of the deposited layers. Section 2 describes the methodology of the study. Section 3 presents and discusses the results. The study is summarized and concluded in Section 4.

    References

    [1] R.A. Buswell, W.R. Leal De Silva, S.Z. Jones, J. Dirrenberger, 3D printing using
    concrete extrusion: a roadmap for research, Cem. Concr. Res. 112 (2018) 37–49.
    [2] Z. Chen, Z. Li, J. Li, C. Liu, C. Lao, Y. Fu, C. Liu, Y. Li, P. Wang, Y. He, 3D printing of
    ceramics: a review, J. Eur. Ceram. Soc. 39 (4) (2019) 661–687.
    [3] A. Bellini, L. Shor, S.I. Guceri, New developments in fused deposition modeling of
    ceramics, Rapid Prototyp. J. 11 (4) (2005) 214–220.
    [4] S. Aktas, D.M. Kalyon, B.M. Marín-Santib´
    anez, ˜ J. P´erez-Gonzalez, ´ Shear viscosity
    and wall slip behavior of a viscoplastic hydrogel, J. Rheol. 58 (2) (2014) 513–535.
    [5] J. Lindahl, A. Hassen, S. Romberg, B. Hedger, P. Hedger Jr., M. Walch, T. Deluca,
    W. Morrison, P. Kim, A. Roschli, D. Nuttall, Large-scale Additive Manufacturing
    with Reactive Polymers, Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United
    States), 2018.
    [6] V.N. Nerella, V. Mechtcherine, Studying the printability of fresh concrete for
    formwork-free Concrete onsite 3D Printing Technology (CONPrint3D), 3D Concr.
    Print. Technol. (2019) 333–347.
    [7] C. Tiu, J. Guo, P.H.T. Uhlherr, Yielding behaviour of viscoplastic materials, J. Ind.
    Eng. Chem. 12 (5) (2006) 653–662.
    [8] B. Dietemann, F. Bosna, M. Lorenz, N. Travitzky, H. Kruggel-Emden, T. Kraft,
    C. Bierwisch, Modeling robocasting with smoothed particle hydrodynamics:
    printing gapspanning filaments, Addit. Manuf. 36 (2020), 101488.
    [9] B. Khoshnevis, R. Russell, H. Kwon, S. Bukkapatnam, Contour crafting – a layered
    fabrication, Spec. Issue IEEE Robot. Autom. Mag. 8 (3) (2001) 33–42.
    [10] D. Asprone, F. Auricchio, C. Menna, V. Mercuri, 3D printing of reinforced concrete
    elements: technology and design approach, Constr. Build. Mater. 165 (2018)
    218–231.
    [11] J. Jiang, Y. Ma, Path planning strategies to optimize accuracy, quality, build time
    and material use in additive manufacturing: a review, Micromachines 11 (7)
    (2020) 633.
    [12] J. Jiang, A novel fabrication strategy for additive manufacturing processes,
    J. Clean. Prod. 272 (2020), 122916.
    [13] F. Bos, R. Wolfs, Z. Ahmed, T. Salet, Additive manufacturing of concrete in
    construction: potentials and challenges, Virtual Phys. Prototyp. 11 (3) (2016)
    209–225.
    [14] P. Wu, J. Wang, X. Wang, A critical review of the use of 3-D printing in the
    construction industry, Autom. Constr. 68 (2016) 21–31.
    [15] T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing
    (3D printing): a review of materials, methods, applications and challenges,
    Compos. Part B: Eng. 143 (2018) 172–196.
    [16] M. Valente, A. Sibai, M. Sambucci, Extrusion-based additive manufacturing of
    concrete products: revolutionizing and remodeling the construction industry,
    J. Compos. Sci. 3 (3) (2019) 88.
    [17] N. Roussel, J. Spangenberg, J. Wallevik, R. Wolfs, Numerical simulations of
    concrete processing: from standard formative casting to additive manufacturing,
    Cem. Concr. Res. 135 (2020), 106075.
    [18] R.J.M. Wolfs, F.P. Bos, T.A.M. Salet, Early age mechanical behaviour of 3D printed
    concrete: numerical modelling and experimental testing, Cem. Concr. Res. 106
    (2018) 103–116.
    [19] R. Comminal, M.P. Serdeczny, D.B. Pedersen, J. Spangenberg, Numerical modeling
    of the strand deposition flow in extrusion-based additive manufacturing, Addit.
    Manuf. 20 (2018) 68–76.
    [20] R. Comminal, M.P. Serdeczny, D.B. Pedersen, J. Spangenberg, Numerical modeling
    of the material deposition and contouring precision in fused deposition modeling,
    in Proceedings of the 29th Annual International Solid Freeform Fabrication
    Symposium, Austin, TX, USA, 2018, pp. 1855–1864.
    [21] M.P. Serdeczny, R. Comminal, D.B. Pedersen, J. Spangenberg, Experimental
    validation of a numerical model for the strand shape in material extrusion additive
    manufacturing, Addit. Manuf. 24 (2018) 145–153.
    [22] M.P. Serdeczny, R. Comminal, D.B. Pedersen, J. Spangenberg, Numerical
    simulations of the mesostructure formation in material extrusion additive
    manufacturing, Addit. Manuf. 28 (2019) 419–429.
    [23] H. Xia, J. Lu, G. Tryggvason, A numerical study of the effect of viscoelastic stresses
    in fused filament fabrication, Comput. Methods Appl. Mech. Eng. 346 (2019)
    242–259.
    [24] R. Comminal, W.R.L. da Silva, T.J. Andersen, H. Stang, J. Spangenberg, Influence
    of processing parameters on the layer geometry in 3D concrete printing:
    experiments and modelling, in: Proceedings of the Second RILEM International
    Conference on Concrete and Digital Fabrication, vol. 28, 2020, pp. 852–862.
    [25] R. Comminal, W.R.L. da Silva, T.J. Andersen, H. Stang, J. Spangenberg, Modelling
    of 3D concrete printing based on computational fluid dynamics, Cem. Concr. Res.
    38 (2020), 106256.
    [26] E.C. Bingham, An investigation of the laws of plastic flow, US Bur. Stand. Bull. 13
    (1916) 309–352.
    [27] N. Casson, A flow equation for pigment-oil suspensions of the printing ink type,
    Rheol. Disperse Syst. (1959) 84–104.
    [28] W.H. Herschel, R. Bulkley, Konsistenzmessungen von Gummi-Benzollosungen, ¨
    Kolloid Z. 39 (1926) 291–300.
    [29] “FLOW-3D | We solve The World’s Toughest CFD Problems,” FLOW SCIENCE.
    〈https://www.flow3d.com/〉. (Accessed 27 June 2020).
    [30] S. Jacobsen, R. Cepuritis, Y. Peng, M.R. Geiker, J. Spangenberg, Visualizing and
    simulating flow conditions in concrete form filling using pigments, Constr. Build.
    Mater. 49 (2013) 328–342.
    [31] E.J. O’Donovan, R.I. Tanner, Numerical study of the Bingham squeeze film
    problem, J. Non-Newton. Fluid Mech. 15 (1) (1984) 75–83.
    [32] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free
    boundaries, J. Comput. Phys. 39 (1) (1981) 201–225.
    [33] R. Comminal, J. Spangenberg, J.H. Hattel, Cellwise conservative unsplit advection
    for the volume of fluid method, J. Comput. Phys. 283 (2015) 582–608.
    [34] A. Negar, S. Nazarian, N.A. Meisel, J.P. Duarte, Experimental prediction of material
    deformation in large-scale additive manufacturing of concrete, Addit. Manuf. 37
    (2021), 101656.

    하류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토

    The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions

    하류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토

    Hyung Ju Yoo1, Sung Sik Joo2, Beom Jae Kwon3, Seung Oh Lee4*

    유 형주1, 주 성식2, 권 범재3, 이 승오4*

    1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University
    2Director, Water Resources & Environment Department, HECOREA
    3Director, Water Resources Department, ISAN
    4Professor, Dept. of Civil & Environmental Engineering, Hongik University

    1홍익대학교 건설환경공학과 박사과정
    2㈜헥코리아 수자원환경사업부 이사
    3㈜이산 수자원부 이사
    4홍익대학교 건설환경공학과 교수

    ABSTRACT

    최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다. 그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다. 이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다. 수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다. 따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다. 이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다. 그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.

    키워드 : 보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력

    1. 서 론

    최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.

    기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006Kim, 2007Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.

    그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.

    2. 본 론

    2.1 이론적 배경

    2.1.1 3차원 수치모형의 기본이론

    FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.

    2.1.2 유동해석의 지배방정식

    1) 연속 방정식(Continuity Equation)

    FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1)(2)와 같다.

    (1)

    ∇·v=0

    (2)

    ∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ

    여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.

    2) 운동량 방정식(Momentum Equation)

    각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3)(4)(5)와 같다.

    (3)

    ∂u∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂x+Gx+fx-bx-RSORρVFu

    (4)

    ∂v∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂y+Gy+fy-by-RSORρVFv

    (5)

    ∂w∂t+1VF(uAx∂u∂x+vAy∂v∂y+wAz∂w∂z)=-1ρ∂p∂z+Gz+fz-bz-RSORρVFw

    여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.

    2.1.3 소류력 산정

    호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6)(7)과 같다.

    1) Schoklitsch 공식

    Schoklitsch(1934)는 Chezy 유속계수를 적용하여 소류력을 산정하였다.

    (6)

    τ=γRI=γC2V2

    여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.

    2) Manning 조도계수를 고려한 공식

    Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.

    (7)

    τ=γn2V2R1/3

    여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.

    FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.

    2.2 하천호안 설계기준

    하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.

    Table 1.

    Standard of Permissible Velocity and Shear on Revetment

    Country (Reference)MaterialPermissible velocity (Vp, m/s)Permissible Shear (τp, kN/m2)
    KoreaRiver Construction Design Practice Guidelines
    (MOLIT, 2016)
    Vegetated5.00.50
    Stone5.00.80
    USAASTM D’6460Vegetated6.10.81
    Unvegetated5.00.28
    JAPANDynamic Design Method of Revetment5.0

    2.3. 보조여수로 운영에 따른 하류하천 영향 분석

    2.3.1 모형의 구축 및 경계조건

    본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).

    수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.

    (8)

    n=ks1/68.1g1/2

    여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.

    시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.

    Table 2.

    Mesh sizes and numerical conditions

    MeshNumbers49,102,500 EA
    Increment (m)DirectionExisting SpillwayAuxiliary Spillway
    ∆X0.99 ~ 4.301.00 ~ 4.30
    ∆Y0.99 ~ 8.161.00 ~ 5.90
    ∆Z0.50 ~ 1.220.50 ~ 2.00
    Boundary ConditionsXmin / YmaxInflow / Water Surface Elevation
    Xmax, Ymin, Zmin / ZmaxWall / Symmetry
    Turbulence ModelRNG model
    Table 3.

    Case of numerical simulation (Qp : Design flood discharge)

    CaseExisting Spillway (Qe, m3/s)Auxiliary Spillway (Qa, m3/s)Remarks
    1Qp0Reference case
    20Qp
    300.58QpReview of discharge capacity on
    auxiliary spillway
    400.48Qp
    500.45Qp
    600.32Qp
    70.50Qp0.50QpDetermination of optimal division
    ratio on Spillways
    80.61Qp0.39Qp
    90.39Qp0.61Qp
    100.42Qp0.58Qp
    110.32Qp0.45QpDetermination of permissible
    division on Spillways
    120.35Qp0.48Qp
    130.38Qp0.53Qp
    140.41Qp0.56Qp
    Table 4.

    Roughness coefficient and roughness height

    CriteriaRoughness coefficient (n)Roughness height (ks, m)
    Structure (Concrete)0.0140.00061
    River0.0330.10496
    /media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F1.jpg
    Fig. 1

    Layout of spillway and river in this study

    2.3.2 보조 여수로의 방류능 검토

    본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.

    보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.

    하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.

    /media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F2.jpg
    Fig. 2

    Region of interest in this study

    /media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F3.jpg
    Fig. 3

    Maximum velocity and location of Vmax according to Qa

    /media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F4.jpg
    Fig. 4

    Maximum shear according to Qa

    /media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F5.jpg
    Fig. 5

    Maximum water surface elevation and location of ηmax according to Qa

    Table 5.

    Numerical results for each cases (Case 1 ~ Case 6)

    CaseMaximum Velocity
    (Vmax, m/s)
    Maximum Shear
    (τmax, kN/m2)
    Evaluation
    in terms of Vp
    Evaluation
    in terms of τp
    1
    (Qa = 0)
    9.150.54No GoodNo Good
    2
    (Qa = Qp)
    8.870.56No GoodNo Good
    3
    (Qa = 0.58Qp)
    6.530.40No GoodNo Good
    4
    (Qa = 0.48Qp)
    6.220.36No GoodNo Good
    5
    (Qa = 0.45Qp)
    4.220.12AccpetAccpet
    6
    (Qa = 0.32Qp)
    4.040.14AccpetAccpet

    2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토

    기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).

    따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.

    /media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F6.jpg
    Fig. 6

    Maximum velocity on section 1 & 2 according to Qa

    /media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F7.jpg
    Fig. 7

    Maximum shear on section 1 & 2 according to Qa

    /media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F8.jpg
    Fig. 8

    Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)

    /media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F9.jpg
    Fig. 9

    Maximum water surface elevation on section 1 & 2 according to Qa

    Table 6.

    Numerical results for each cases (Case 7 ~ Case 10)

    Case (Qe &amp; Qa)Maximum Velocity (Vmax, m/s)Maximum Shear
    (τmax, kN/m2)
    Evaluation in terms of VpEvaluation in terms of τp
    Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
    7
    Qe : 0.50QpQa : 0.50Qp
    8.106.230.640.30No GoodNo GoodNo GoodNo Good
    8
    Qe : 0.61QpQa : 0.39Qp
    8.886.410.610.34No GoodNo GoodNo GoodNo Good
    9
    Qe : 0.39QpQa : 0.61Qp
    6.227.330.240.35No GoodNo GoodAcceptNo Good
    10
    Qe : 0.42QpQa : 0.58Qp
    6.394.790.300.19No GoodAcceptNo GoodAccept

    2.3.4 방류량 배분 비율의 허용 방류량 검토

    계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).

    호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).

    Table 7.

    Numerical results for each cases (Case 11 ~ Case 14)

    Case (Qe &amp; Qa)Maximum Velocity
    (Vmax, m/s)
    Maximum Shear
    (τmax, kN/m2)
    Evaluation in terms of VpEvaluation in terms of τp
    Section 1Section 2Section 1Section 2Section 1Section 2Section 1Section 2
    11
    Qe : 0.32QpQa : 0.45Qp
    3.634.530.090.26AcceptAcceptAcceptAccept
    12
    Qe : 0.35QpQa : 0.48Qp
    5.745.180.230.22No GoodNo GoodAcceptAccept
    13
    Qe : 0.38QpQa : 0.53Qp
    6.704.210.280.11No GoodAcceptAcceptAccept
    14
    Qe : 0.41QpQa : 0.56Qp
    6.545.240.280.24No GoodNo GoodAcceptAccept
    /media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F10.jpg
    Fig. 10

    Maximum velocity on section 1 & 2 according to total outflow

    /media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F11.jpg
    Fig. 11

    Maximum shear on section 1 & 2 according to total outflow

    /media/sites/ksds/2021-014-02/N0240140207/images/ksds_14_02_07_F12.jpg
    Fig. 12

    Maximum water surface elevation on section 1 & 2 according to total outflow

    3. 결 론

    본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.

    수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.

    본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.

    Acknowledgements

    본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.

    References

    1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA.

    2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York.

    3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM.

    4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731.

    5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608.

    6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81.

    7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537

    8 K-water (2021). Regulations of Dam Management. Daejeon: K-water.

    9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT.

    10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593

    11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279

    12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT.

    13 MOLIT (2019). Standards of River Design. Sejong: MOLIT.

    14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS.

    15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7.

    16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230

    17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112

    Korean References Translated from the English

    1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부.

    2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실.

    3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부.

    4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부.

    5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608.

    6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537

    7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81.

    8 부산국토관리청 (2009). 낙동강수계 하천기본계획(변경). 부산: 부산국토관리청.

    9 전태명, 김형일, 박형섭, 백운일 (2006). 수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐. 한국수자원학회 학술발표회. 1726-1731.

    10 한국수자원공사 (2021). 댐관리 규정. 대전: 한국수자원공사.

    Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).

    Application of Computational Fluid Dynamics in Chlorine-Dynamics Modeling of In-Situ Chlorination Systems for Cooling Systems

    Jongchan Yi 1, Jonghun Lee 1, Mohd Amiruddin Fikri 2,3, Byoung-In Sang 4 and Hyunook Kim 1,*

    Abstract

    염소화는 상대적인 효율성과 저렴한 비용으로 인해 발전소 냉각 시스템에서 생물학적 오염을 제어하는​​데 선호되는 방법입니다. 해안 지역에 발전소가 있는 경우 바닷물을 사용하여 현장에서 염소를 전기화학적으로 생성할 수 있습니다. 이를 현장 전기염소화라고 합니다. 이 접근 방식은 유해한 염소화 부산물이 적고 염소를 저장할 필요가 없다는 점을 포함하여 몇 가지 장점이 있습니다. 그럼에도 불구하고, 이 전기화학적 공정은 실제로는 아직 초기 단계에 있습니다. 이 연구에서는 파일럿 규모 냉각 시스템에서 염소 붕괴를 시뮬레이션하기 위해 병렬 1차 동역학을 적용했습니다. 붕괴가 취수관을 따라 발생하기 때문에 동역학은 전산유체역학(CFD) 코드에 통합되었으며, 이후에 파이프의 염소 거동을 시뮬레이션하는데 적용되었습니다. 실험과 시뮬레이션 데이터는 강한 난류가 형성되는 조건하에서도 파이프 벽을 따라 염소 농도가 점진적인 것으로 나타났습니다. 염소가 중간보다 파이프 표면을 따라 훨씬 더 집중적으로 남아 있다는 사실은 전기 염소화를 기반으로 하는 시스템의 전체 염소 요구량을 감소시킬 수 있었습니다. 현장 전기 염소화 방식의 냉각 시스템은 직접 주입 방식에 필요한 염소 사용량의 1/3만 소비했습니다. 따라서 현장 전기염소화는 해안 지역의 발전소에서 바이오파울링 제어를 위한 비용 효율적이고 환경 친화적인 접근 방식으로 사용될 수 있다고 결론지었습니다.

    Chlorination is the preferred method to control biofouling in a power plant cooling system due to its comparative effectiveness and low cost. If a power plant is located in a coastal area, chlorine can be electrochemically generated in-situ using seawater, which is called in-situ electrochlorination; this approach has several advantages including fewer harmful chlorination byproducts and no need for chlorine storage. Nonetheless, this electrochemical process is still in its infancy in practice. In this study, a parallel first-order kinetics was applied to simulate chlorine decay in a pilot-scale cooling system. Since the decay occurs along the water-intake pipe, the kinetics was incorporated into computational fluid dynamics (CFD) codes, which were subsequently applied to simulate chlorine behavior in the pipe. The experiment and the simulation data indicated that chlorine concentrations along the pipe wall were incremental, even under the condition where a strong turbulent flow was formed. The fact that chlorine remained much more concentrated along the pipe surface than in the middle allowed for the reduction of the overall chlorine demand of the system based on the electro-chlorination. The cooling system, with an in-situ electro-chlorination, consumed only 1/3 of the chlorine dose demanded by the direct injection method. Therefore, it was concluded that in-situ electro-chlorination could serve as a cost-effective and environmentally friendly approach for biofouling control at power plants on coastal areas.

    Keywords

    computational fluid dynamics; power plant; cooling system; electro-chlorination; insitu chlorination

    Figure 1. Electrodes and batch experiment set-up. (a) Two cylindrical electrodes used in this study. (b) Batch experiment set-up for kinetic tests.
    Figure 1. Electrodes and batch experiment set-up. (a) Two cylindrical electrodes used in this study. (b) Batch experiment set-up for kinetic tests.
    Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).
    Figure 2. Schematic diagram for pilot-scale cooling-water circulation system (a) along with a real picture of the system (b).
    Figure 3. Free chlorine decay curves in seawater with different TOC and initial chlorine concentration. Each line represents the predicted concentration of chlorine under a given condition. (a) Artificial seawater solution with 1 mg L−1 of TOC; (b) artificial seawater solution with 2 mg L−1 of TOC; (c) artificial seawater solution with 3 mg L−1 of TOC; (d) West Sea water (1.3 mg L−1 of TOC).
    Figure 3. Free chlorine decay curves in seawater with different TOC and initial chlorine concentration. Each line represents the predicted concentration of chlorine under a given condition. (a) Artificial seawater solution with 1 mg L−1 of TOC; (b) artificial seawater solution with 2 mg L−1 of TOC; (c) artificial seawater solution with 3 mg L−1 of TOC; (d) West Sea water (1.3 mg L−1 of TOC).
    Figure 4. Correlation between model and experimental data in the chlorine kinetics using seawater.
    Figure 4. Correlation between model and experimental data in the chlorine kinetics using seawater.
    Figure 5. Free chlorine concentrations in West Sea water under different current conditions in an insitu electro-chlorination system.
    Figure 5. Free chlorine concentrations in West Sea water under different current conditions in an insitu electro-chlorination system.
    Figure 6. Free chlorine distribution along the sampling ports under different flow rates. Each dot represents experimental data, and each point on the black line is the expected chlorine concentration obtained from computational fluid dynamics (CFD) simulation with a parallel first-order decay model. The red-dotted line is the desirable concentration at the given flow rate: (a) 600 L min−1 of flow rate, (b) 700 L min−1 of flow rate, (c) 800 L min−1 of flow rate, (d) 900 L min−1 of flow rate.
    Figure 6. Free chlorine distribution along the sampling ports under different flow rates. Each dot represents experimental data, and each point on the black line is the expected chlorine concentration obtained from computational fluid dynamics (CFD) simulation with a parallel first-order decay model. The red-dotted line is the desirable concentration at the given flow rate: (a) 600 L min−1 of flow rate, (b) 700 L min−1 of flow rate, (c) 800 L min−1 of flow rate, (d) 900 L min−1 of flow rate.
    Figure 7. Fluid contour images from CFD simulation of the electro-chlorination experiment. Inlet flow rate is 800 L min−1. Outlet pressure was set to 10.8 kPa. (a) Chlorine concentration; (b) expanded view of electrode side in image (a); (c) velocity magnitude; (d) pressure.
    Figure 7. Fluid contour images from CFD simulation of the electro-chlorination experiment. Inlet flow rate is 800 L min−1. Outlet pressure was set to 10.8 kPa. (a) Chlorine concentration; (b) expanded view of electrode side in image (a); (c) velocity magnitude; (d) pressure.
    Figure 8. Chlorine concentration contour in the simulation of full-scale in-situ electro-chlorination with different cathode positions. The pipe diameter is 2 m and the flow rate is 14 m3 s−1. The figure shows 10 m of the pipeline. (a) The simulation result when the cathode is placed on the surface of the pipe wall. (b) The simulation result when the cathode is placed on the inside of the pipe with 100 mm of distance from the pipe wall.
    Figure 8. Chlorine concentration contour in the simulation of full-scale in-situ electro-chlorination with different cathode positions. The pipe diameter is 2 m and the flow rate is 14 m3 s−1. The figure shows 10 m of the pipeline. (a) The simulation result when the cathode is placed on the surface of the pipe wall. (b) The simulation result when the cathode is placed on the inside of the pipe with 100 mm of distance from the pipe wall.
    Figure 9. Comparison of in-situ electro-chlorination and direct chlorine injection in full-scale applications. (a) Estimated chlorine concentrations along the pipe surface. (b) Relative chlorine demands.
    Figure 9. Comparison of in-situ electro-chlorination and direct chlorine injection in full-scale applications. (a) Estimated chlorine concentrations along the pipe surface. (b) Relative chlorine demands.

    References

    1. Macknick, J.; Newmark, R.; Heath, G.; Hallett, K.C. Operational water consumption and withdrawal factors for electricity generating technologies: A review of existing literature. Environ. Res. Lett. 2012, 7, 045802.
    2. Pan, S.-Y.; Snyder, S.W.; Packman, A.I.; Lin, Y.J.; Chiang, P.-C. Cooling water use in thermoelectric power generation and its associated challenges for addressing water-energy nexus. Water-Energy Nexus 2018, 1, 26–41.
    3. Feeley, T.J., III; Skone, T.J.; Stiegel, G.J., Jr.; McNemar, A.; Nemeth, M.; Schimmoller, B.; Murphy, J.T.;
      Manfredo, L. Water: A critical resource in the thermoelectric power industry. Energy 2008, 33, 1–11.
    4. World Nuclear Association. World Nuclear Performance Report 2016; World Nuclear Association: London, UK, 2016.
    5. Pugh, S.; Hewitt, G.; Müller-Steinhagen, H. Fouling during the use of seawater as coolant—The development of a user guide. Heat Transf. Eng. 2005, 26, 35–43.
    6. Satpathy, K.K.; Mohanty, A.K.; Sahu, G.; Biswas, S.; Prasad, M.; Slvanayagam, M. Biofouling and its control in seawater cooled power plant cooling water system—A review. Nucl. Power 2010, 17, 191–242.
    7. Cristiani, P.; Perboni, G. Antifouling strategies and corrosion control in cooling circuits. Bioelectrochemistry 2014, 97, 120–126.
    8. Walker, M.E.; Safari, I.; Theregowda, R.B.; Hsieh, M.-K.; Abbasian, J.; Arastoopour, H.; Dzombak, D.A.; Miller, D.C. Economic impact of condenser fouling in existing thermoelectric power plants. Energy 2012,44, 429–437.
    9. Yi, J.; Ahn, Y.; Hong, M.; Kim, G.-H.; Shabnam, N.; Jeon, B.; Sang, B.-I.; Kim, H. Comparison between OCl−-Injection and In Situ Electrochlorination in the Formation of Chlorate and Perchlorate in Seawater. Appl.Sci. 2019, 9, 229.
    10. Xue, Y.; Zhao, J.; Qiu, R.; Zheng, J.; Lin, C.; Ma, B.; Wang, P. In Situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater. Appl. Surf. Sci. 2015, 357, 60–68.
    11. Mahfouz, A.B.; Atilhan, S.; Batchelor, B.; Linke, P.; Abdel-Wahab, A.; El-Halwagi, M.M. Optimal scheduling of biocide dosing for seawater-cooled power and desalination plants. Clean Technol. Environ. Policy 2011, 13, 783–796.
    12. Rubio, D.; López-Galindo, C.; Casanueva, J.F.; Nebot, E. Monitoring and assessment of an industrial antifouling treatment. Seasonal effects and influence of water velocity in an open once-through seawater cooling system. Appl. Therm. Eng. 2014, 67, 378–387.
    13. European Integrated Pollution Prevention and Control (IPPC) Bureau, European Commission. Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems December 2001; European Commission, Tech. Rep: Brussels, Belgium, 2001.
    14. Venkatesan R.; Murthy P. S. Macrofouling Control in Power Plants. In Springer Series on Biofilms; Springer: Berlin/Heidelberg, Germany, 2008.
    15. Kastl, G.; Fisher, I.; Jegatheesan, V. Evaluation of chlorine decay kinetics expressions for drinking water distribution systems modelling. J. Water Supply Res. Technol. AQUA 1999, 48, 219–226.
    16. Fisher, I.; Kastl, G.; Sathasivan, A.; Cook, D.; Seneverathne, L. General model of chlorine decay in blends of surface waters, desalinated water, and groundwaters. J. Environ. Eng. 2015, 141, 04015039.
    17. Fisher, I.; Kastl, G.; Sathasivan, A.; Jegatheesan, V. Suitability of chlorine bulk decay models for planning and management of water distribution systems. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1843–1882.
    18. Fisher, I.; Kastl, G.; Sathasivan, A. Evaluation of suitable chlorine bulk-decay models for water distribution systems. Water Res. 2011, 45, 4896–4908.
    19. Haas, C.N.; Karra, S. Kinetics of wastewater chlorine demand exertion. J. (Water Pollut. Control Fed.) 1984, 56, 170–173.
    20. Zeng, J.; Jiang, Z.; Chen, Q.; Zheng, P.; Huang, Y. The decay kinetics of residual chlorine in cooling seawater simulation experiments. Acta Oceanol. Sin. 2009, 28, 54–59.
    21. Saeed, S.; Prakash, S.; Deb, N.; Campbell, R.; Kolluru, V.; Febbo, E.; Dupont, J. Development of a sitespecific kinetic model for chlorine decay and the formation of chlorination by-products in seawater. J. Mar. Sci. Eng. 2015, 3, 772–792.
    22. Al Heboos, S.; Licskó, I. Application and comparison of two chlorine decay models for predicting bulk chlorine residuals. Period. Polytech. Civ. Eng. 2017, 61, 7–13.
    23. Shadloo, M.S.; Oger, G.; Le Touzé, D. Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges. Comput. Fluids 2016, 136, 11–34.
    24. Wols, B.; Hofman, J.; Uijttewaal, W.; Rietveld, L.; Van Dijk, J. Evaluation of different disinfection calculation methods using CFD. Environ. Model. Softw. 2010, 25, 573–582.
    25. Angeloudis, A.; Stoesser, T.; Falconer, R.A. Predicting the disinfection efficiency range in chlorine contact tanks through a CFD-based approach. Water Res. 2014, 60, 118–129.
    26. Zhang, J.; Tejada-Martínez, A.E.; Zhang, Q. Developments in computational fluid dynamics-based modeling for disinfection technologies over the last two decades: A review. Environ. Model. Softw. 2014, 58,71–85.
    27. Lim, Y.H.; Deering, D.D. In Modeling Chlorine Residual in a Ground Water Supply Tank for a Small Community in Cold Conditions, World Environmental and Water Resources Congress 2017; American Society of Civil Engineers: Reston, Virginia, USA, 2017; pp. 124–138.
    28. Hernández-Cervantes, D.; Delgado-Galván, X.; Nava, J.L.; López-Jiménez, P.A.; Rosales, M.; Mora Rodríguez, J. Validation of a computational fluid dynamics model for a novel residence time distribution analysis in mixing at cross-junctions. Water 2018, 10, 733.
    29. Hua, F.; West, J.; Barker, R.; Forster, C. Modelling of chlorine decay in municipal water supplies. Water Res. 1999, 33, 2735–2746.
    30. Jonkergouw, P.M.; Khu, S.-T.; Savic, D.A.; Zhong, D.; Hou, X.Q.; Zhao, H.-B. A variable rate coefficient chlorine decay model. Environ. Sci. Technol. 2009, 43, 408–414.
    31. Nejjari, F.; Puig, V.; Pérez, R.; Quevedo, J.; Cugueró, M.; Sanz, G.; Mirats, J. Chlorine decay model calibration and comparison: Application to a real water network. Procedia Eng. 2014, 70, 1221–1230.
    32. Kohpaei, A.J.; Sathasivan, A.; Aboutalebi, H. Effectiveness of parallel second order model over second and first order models. Desalin. Water Treat. 2011, 32, 107–114.
    33. Powell, J.C.; Hallam, N.B.; West, J.R.; Forster, C.F.; Simms, J. Factors which control bulk chlorine decay rates. Water Res. 2000, 34, 117–126.
    34. Clark, R.M.; Sivaganesan, M. Predicting chlorine residuals in drinking water: Second order model. J. Water Resour. Plan. Manag. 2002, 128, 152–161.
    35. Li, X.; Li, C.; Bayier, M.; Zhao, T.; Zhang, T.; Chen, X.; Mao, X. Desalinated seawater into pilot-scale drinking water distribution system: Chlorine decay and trihalomethanes formation. Desalin. Water Treat. 2016, 57,19149–19159.
    36. United States Environmental Protection Agency (EPA). Chlorine, Total Residual (Spectrophotometric, DPD); EPA-NERL: 330.5; EPA: Cincinnati, OH, USA, 1978.
    37. Polman, H.; Verhaart, F.; Bruijs, M. Impact of biofouling in intake pipes on the hydraulics and efficiency of pumping capacity. Desalin. Water Treat. 2013, 51, 997–1003.
    38. Rajagopal, S.; Van der Velde, G.; Van der Gaag, M.; Jenner, H.A. How effective is intermittent chlorination to control adult mussel fouling in cooling water systems? Water Res. 2003, 37, 329–338.
    39. Bruijs, M.C.; Venhuis, L.P.; Daal, L. Global Experiences in Optimizing Biofouling Control through PulseChlorination®. 2017. Available online: https://www.researchgate.net/publication/318561645_Global_Experiences_in_Optimizing_Biofouling_Co ntrol_through_Pulse-ChlorinationR (accessed on 1 May 2020).
    40. Kim, H.; Hao, O.J.; McAvoy, T.J. Comparison between model-and pH/ORP-based process control for an AAA system. Tamkang J. Sci. Eng. 2000, 3, 165–172.
    41. Brdys, M.; Chang, T.; Duzinkiewicz, K. Intelligent Model Predictive Control of Chlorine Residuals in Water Distribution Systems, Bridging the Gap: Meeting the World’s Water and Environmental Resources Challenges. In Proceedings of the ASCE Water Resource Engineering and Water Resources Planning and Management, July 30–August 2, 2000; pp. 1–11
    Fig 2(b) Observed velocity field for aspect ratio 0.25(Sukhodolov 2002)

    고정 베드의 불침투성 토양에서 흐름 패턴의 수치 시뮬레이션

    NUMERICAL SIMULATION OF FLOW PATTERN IN SERIES OF IMPERMEABLE GROYNES IN FIXED BED

    Kafle, Mukesh Raj1
    1Asst. Professor, Department of Civil Engineering, Institute of Engineering, Pulchowk Campus, Nepal
    Email: mkafle@pcampus.edu.np

    Abstract

    This paper presents a numerical simulation of recirculating flow patterns in groyne fields. Moreover, it entails the concept determination of proper spacing of vertical unsubmerged and impermeable groynesin seriesto control the bank erosion. Flow pattern between the groynes varies along their space. The flow in groyne field may significantly affect the flow change, bed change, bank erosion and condition of habitat. In this regard, an assessment of flow along the space of groynes will yield important data needed to diversify the object of groyne installation. So, knowledge about determination of the proper spacing of groynes in groyne field is important. Space of vertical groynes was set from 1.5 to 10 times the length of groynes. The velocity field between groynes was simulated by using Computational Fluid Dynamics (CFD) model Nays 2D. Simulated velocity field was compared with existing experimentaldata for the same parameter, which agreed satisfactorily. Based on simulated results,the optimal spacing of vertical groynes to control the bank erosion was recommended.

    이 논문은 groyne 필드에서 재순환 흐름 패턴의 수치 시뮬레이션을 제공합니다. 더욱이, 그것은 제방 침식을 제어하기 위해 수직 비침수 및 불침투성 그로이네신 시리즈의 적절한 간격의 개념 결정을 수반합니다. groynes 사이의 흐름 패턴은 공간에 따라 다릅니다. groyne field의 흐름은 흐름 변화, 하상 변화, 제방 침식 및 서식지 상태에 중대한 영향을 미칠 수 있습니다. 이와 관련하여, groyne 공간을 따른 흐름의 평가는 groyne 설치 대상을 다양화하는 데 필요한 중요한 데이터를 산출할 것입니다. 따라서, groyne field에서 groyne의 적절한 간격 결정에 대한 지식이 중요합니다. 수직 여백의 간격은 여아 길이의 1.5배에서 10배 사이로 설정하였다. groyne 사이의 속도장은 CFD(Computational Fluid Dynamics) 모델 Nays 2D를 사용하여 시뮬레이션되었습니다. 시뮬레이션된 속도장은 동일한 매개변수에 대해 기존 실험 데이터와 비교되었으며 만족스럽게 일치했습니다. 모의 결과를 바탕으로 제방 침식을 억제하기 위한 최적의 수직 제방 간격을 제안하였다.

    1. Introduction
      Spur dikes or groynes are used to protect river banks from erosion and also keep the channel
      navigable.Depending upon the flow characteristics, spur-dikes may be classified as submerged and unsubmerged. Also, based on the permeability, spur dikes are further classified as permeable and
      impermeable. Herein, un-submerged !impermeable spur dikes are dealt. These structures are built from the river bank into the stream flow and usually built in group. Construction of groyne against the flow causes significant changes in flow pattern in channel. Those changes may result in scour phenomenon around groynes which may lead structure instability and changes in river morphology. Moreover, in series of groynes, spacing of groynes leads different types of recirculating flow patterns.Therefore, investigating the characteristics of flow pattern around groynes have been a great interest in river engineering. Numerous researchers like Sukhodolov et al. (2002), Hao Zhang et al.(2009), Beheshti (2010), Duan (2009), Naji(2010), Karami(2011) made a variety of experiments in order to determine the flow pattern around groynes. Most of these researchers studied effect of single groyne, while using series of groynes is more effective in protection of rivers. Besides experimental studies, variety of CFD models have been developed for computing flow pattern around hydraulic structures; like Fluent, Flow 3D, Nays 2D, Nays CUBE and SSIIM. In this study, Nays 2D numerical modelling has been used to investigate flow and recirculating pattern around a series of groynes and streamlines including components of velocities.
    1. Flow pattern in groyne fields
      Under conditions where the groynes are not submerged, the groyne fields are not really part of the wetted cross section of a river. Because of that, the flow pattern in the groyne-field is not directly the result of the discharge in the main channel. Reducing the main stream velocity has no effect on the flow pattern itself, whereas lowering the water level does (Uijttewaal et al.2001). Moreover, the flow pattern inside a groyne field may change with the change of its geometry, location along the river (inner curve, outer curve, or straight part), and/ or the groynes orientation( Przedwojski et al.1995). However, there is an indirect effect of the discharge on the flow pattern in the groyne field. Because of the flow that is diverted from the main channel into the groyne fields, water flows into the groyne field with low velocity through the downstream half of the interfacial section between the groyne field and the main channel. This water flows back to the main channel through a small width of, just downstream the upstream groyne of the groyne field ( Termes et al.1991). Flow separates on a groyne head and forms a secondary flow represented by a large scale vortex with a vertical axis of rotation called primary gyre. Deflection of the flow inside the groyne field by banks and upstream groynes leads to the development of a secondary gyre with an opposite direction of rotation to the primary gyre. Location, mutual interactions, and energy exchange between gyres are the factors that create a specific recirculation pattern, and, consequently assuming correspondence with sedimentation processes, they define deposition patterns.
    2. Model Formulation
      The CFD model selected for this study is the publically available software NAYS 2D (iRIC 2.0), which is an analytical solver for calculation of unsteady two-dimensional plane flow and riverbed deformation using boundary-fitted coordinates within general curvilinear coordinates. A numerical channel of length 8.0m and width 0.9m was created with grid size of 0.01m im stream wise and 0.03m in cross stream directions. Groynes or spur dikes of length 0.15 and width 0.01m were chosen in series. Groyne field with various aspect ratio (b/x) 0.7, 0.25, 0.17, 0.125 and 0.10, where b=length of spur dike, x=spacing of two dikes. Discharge of 0.0175 m3 /s was applied. For boundary conditions, water surface at downstream and velocity at upstream were considered as uniform flow. Relaxation coefficient for water surface calculation was considered as 0.8. For the finite-difference method, the CIP method was applied to the advection terms in equations of motion. For the turbulent field calculation, Constant eddy viscosity, Zero-equation model and k-G models were applied and compared. The model!s accuracy in predicting the velocity magnitudes is evaluated using statistical parameters- mean absolute error (MAE), mean square error(MSE), and root mean square error (RMSE). The comparison of results shows the importance of selecting an appropriate turbulence model in simulating flow field around a spur dike. From the comparison, k-I model is found superior over zero energy model and eddy viscosity model. So, k-I model is chosen as appropriate turbulence closure model.
    3. Model!s Validation
      The capability of CFD model Nays 2D to simulate the velocity field and recirculation pattern in groyne field was compared with experimental data of laboratory experiments by Sukhodolov et al. (2002). The numerical simulation was validated for aspect ratio (R=b/x=0.7) and R=0.25. For aspect ratio R=0.7, one gyre system occupies the whole area of the groyne field. The areas with lower-than-average velocity values are clearly seen in the central part of the gyre and near its corners. Velocities increase towards the margins of the gyre. For aspect ratio R=0.25, two gyre velocity fields were observed in the groyne field. In the downstream part of the groyne field a large gyre, covering two-thirds of the area is clearly visible. The left part(upstream) contains second gyre rotating much more slowly and in the direction opposed to the primary gyre. The simulated and observed velocity field pattern and gyre found satisfactorily agreed. Now, after validation, the model was used for further analysis of velocity field for various aspect ratios.
    Fig 2(b) Observed velocity field for aspect ratio 0.25(Sukhodolov 2002)
    Fig 2(b) Observed velocity field for aspect ratio 0.25(Sukhodolov 2002)
    1. Results and Discussions
      The calibrated model was applied to five different cases of un-submerged and impermeable groyne fields with aspect ratios R=0.70,0.25,0.17,0.125 & 0.10 and flow pattern was numerically simulated. For aspect ratio R=0.7 i.e x/b=1.5, Fig 1(a) only one lateral primary gyre was formed inside the groyne field. The circulation pattern in this case is distinguished by the main flow that is deflected outside the groyne field. The developed primary gyre prevents the main flow from penetrating the groyne field. Therefore, this pattern is desirable for navigation purposes as a continuous deep channel is maintained along the face of the groyne field. Simulated velocity pattern satisfactorily agrees with the observed velocity field Fig 1(b) for the same aspect ratio by Sukhodolov (2002). The spacing of the groyne was further increased maintaining aspect ratio R= 0.25 i. e x/b=4 Fig 2(a) and flow pattern inside the groyne field was simulated. In this case, in the downstream part of the groyne field, a primary gyre occupying almost two-third area was formed. In addition, deflection of the flow inside the groyne field by banks and upstream groynes leads to the development of a secondary gyre with an opposite direction of rotation to the primary gyre covering almost one-third part of the groyne field. Likewise in the first case, the main current is maintained deflected outside the groyne field. Simulated velocity pattern satisfactorily agrees with the observed velocity field Fig 2(b) for the same aspect ratio by Sukhodolov (2002). The spacing of the groyne was further increased maintaining aspect ratio R=0.17 i.e x/b=6. In this case the flow pattern was similar to the aspect ratio R=0.25. The spacing of the groynes was further increased maintaining aspect ratio R=0.125 i. e x/b=8. In this case, similar to the previous scenarios two longitudinal gyres but with different positions are formed. The main current is directed in to the groyne field (Fig 3) creating a much more stronger eddy near the upstream groyne and greater turbulence along the upstream face and at the groyne lower head. As the spacing between groynes increased maintaining aspect ratio R=0.10 i. e x/b=10 (Fig 4), still primary and secondary gyres are generated. The formed gyres deflect the main flow thus preventing to enter in to the groyne field in upstream part. However, in the downstream of the primary gyre and just upstream of the second groyne, the flow attacks the bank directly. The resultant velocity profiles at the deflected region y/b=3 were plotted and how the spacing of second groyne affect the result was analyzed. Spacing of groynes makes little change in upstream resultant velocity. However, in the deflected region, its effect is significant. Higher value of spacing of groyne leads higher average deviation in resultant velocity. For aspect ratio R=0.7, the average deviation estimated as 0.02%. In the case of aspect ratio R=0.25, this value was reached to 1.57%. Further increment of spacing i. e decreasing the aspect ratio R=0.17, average deviation was found 3.82%. For the aspect ratio R=0.125, that value was estimated as 4.16%.
    2. Conclusions
      Geometry of the groyne fields; width and length of the groyne field mainly cause the specific flow patterns including number and shape of eddies or gyres. Eddies developed inside the groyne field deflects the main flow preventing it entering into the dead zone. An aspect ratio close to unity gives rise to a single eddy. A smaller aspect ratio (higher spacing between groynes) gives room to two stationary eddies, a large one called primary eddy, in the downstream part of the groyne field, and a smaller secondary eddy emerges near the upstream groyne. The extreme long groyne field -case of length to width ratio of larger thaneight shows penetration of main flow into the groyne field. The two eddies remain in a relatively stable position, while the main flow zone starts to penetrate into groyne field further downstream. In all cases, there is an eddy detaches from the upstream groyne tip that travels along the main channel groyne field interface and eventually merges with the primary eddy. The simulated results indicate that the spacing of groynes or spur dikes from the controlling of bank erosion point of view should be limited within six times the length of groyne.
    Fig 3 Computed velocity field for aspect ratio 0.125
    Fig 3 Computed velocity field for aspect ratio 0.125
    Fig 4 Computed velocity field for aspect ratio 0.10
    Fig 4 Computed velocity field for aspect ratio 0.10
    Fig 5 Resultant velocity profiles at y/b=3
    Fig 5 Resultant velocity profiles at y/b=3
    Fig 5 Resultant velocity profiles at y/b=3
    Fig 5 Resultant velocity profiles at y/b=3

    References

    1. Holtz, K.P  Numerical simulation of recirculating flow at groynes.Å Computer Methods in Water Resources, Vol 2, No 2 (1991).
    2. Hossein, Bassar; Abdollah, Ardeshir; Hojat, Karami.  Numerical simulation of flow pattern around spur dikes series in rigid bed.Å 9th international congress on civil engineering, May 8- 10,2012, Isfahan University of Technology (IUT) , Isfahan, Iran (2012).
    3. Kang, J.G; Yeo, H.K; Kim,S.J An experimental study on a characteristics of flow around groyne area by install conditions.Å www.SciRP.org/journal/eng(2012).
    4. Shimizu,Y; Nelson,JIntroduction of Nays solver in iRIC.Åwww.i-ric.org(2012).
    5. Sukhodolov, A. Uijttewaal, W. S. J., and Engelhardt, C. On the correspondence between morphological and hydro dynamical patterns of groyne fields.Å Earth Surf. Processes Landforms, 27(3) (2002).
    6. Uijttewall, W.S.J; Lehman,D; VanMazijk,A.  Exchange process between a river and its groyne fields-model experiments.Å Journal of Hydraulic Engineering, ASCE, 127(11) (2001).
    7. Uijttewall, W.S.J Groyne field velocity patterns determined with particle tracking
      velocimetryÅ.28th IAHR congress, Graz, Austria (1999).
    8. Yossef, Mohamed  Flow details near groynes: Experimental investigations.Å Journal of Hydraulic Engineering, ASCE, 137 (2011).
    Figura 4.5 – Superfície de contorno de velocidades a 3,9 m do piso após 20 s de acionamento da motosserra.

    전기톱 절단 시험실에서 배기 시스템의 CFD 시뮬레이션

    CFD Simulation of an exhaust system in chainsaw cutting test room

    Área de Concentração: Energia e Fenômenos de Transporte
    Orientador: Prof. Diogo Elias da Vinha Andrade
    Comissão de Avaliação:
    Profa
    . Letícia Jenisch Rodrigues
    Prof. Francis Henrique Ramos França
    Prof. Paulo Smith Schneider

    Abstract

    The objective of the present work is to improve an exhaust system for a chain saw
    cutting test room through a fluid dynamic computational simulation (CFD). The purpose of the
    designed system is to remove combustion gases, such as carbon monoxide (CO), which is
    extremely toxic, colourless and inodorous. The current system consists of a set of exhaust fans,
    a hood and an insufflation set. From experimental tests, the input data of the simulation were
    collected to define the variables and boundary conditions such as volumetric flow of CO, its
    temperature and density and the supply of fresh air in the room. The necessary means of
    instrumentation are presented so that it is possible to obtain the correlation with the results of
    the simulation and, once validated, a study of mesh refinement was carried out. With this, the
    possible solutions to the problem are evaluated through a case study involving the geometry of
    the hood and the exhaust and insufflation systems. By changing the hood geometry, the most
    satisfactory result was obtained for the problem, as it was shown to be able to remove all CO
    from the room, respecting the proposed operational limits.

    현재 연구의 목적은 유체 역학 계산 시뮬레이션(CFD)을 통해 체인 톱 절단 시험실의 배기 시스템을 개선하는 것입니다. 설계된 시스템의 목적은 매우 유독하고 무색이며 냄새가 나는 일산화탄소(CO)와 같은 연소 가스를 제거하는 것입니다. 현재 시스템은 배기 팬 세트, 후드 및 흡입 세트로 구성됩니다. 실험 테스트에서 시뮬레이션의 입력 데이터는 CO의 체적 유량, 온도 및 밀도, 실내의 신선한 공기 공급과 같은 변수 및 경계 조건을 정의하기 위해 수집되었습니다. 시뮬레이션 결과와의 상관관계를 얻을 수 있도록 필요한 계측 수단을 제시하고 검증 후 메쉬 미세화 연구를 수행했습니다. 이를 통해 후드의 기하학적 구조와 배기 및 흡입 시스템과 관련된 사례 연구를 통해 문제에 대한 가능한 솔루션을 평가합니다. 후드 형상을 변경함으로써 제안된 작동 한계를 준수하면서 실내에서 모든 CO를 제거할 수 있는 것으로 나타났기 때문에 문제에 대해 가장 만족스러운 결과를 얻었습니다.

    Keywords

    carbon monoxide, exhaust system, CFD simulation.

    Figura 3.2 – Geometria simplificada da sala de testes da primeira versão.
    Figura 3.2 – Geometria simplificada da sala de testes da primeira versão.
    Figura 3.4 – Velocidade nos sensores de velocidade para verificar independência de malha para cada refino após 20 s do acionamento da motosserra.
    Figura 3.4 – Velocidade nos sensores de velocidade para verificar independência de malha para cada refino após 20 s do acionamento da motosserra.
    Figura 3.4 – Velocidade nos sensores de velocidade para verificar independência de malha para cada refino após 20 s do acionamento da motosserra.
    Figura 3.4 – Velocidade nos sensores de velocidade para verificar independência de malha para cada refino após 20 s do acionamento da motosserra.
    Figura 3.5 – Vista em detalhe da coifa e os elementos que a compõe.
    Figura 3.5 – Vista em detalhe da coifa e os elementos que a compõe.
    Figura 3.6 – Geometrias das versões simuladas do Teste de Casos.
    Figura 3.6 – Geometrias das versões simuladas do Teste de Casos.
    Figura 4.1 – Concentração de CO medida pelos sensores da simulação.
    Figura 4.1 – Concentração de CO medida pelos sensores da simulação.
    Figura 4.2 – Plano indicando os três cortes realizados na simulação para as superfícies de contorno sendo (1) a altura do escape da máquina, (2) a altura dos detectores de CO e (3) a altura dos exaustores
    Figura 4.2 – Plano indicando os três cortes realizados na simulação para as superfícies de contorno sendo (1) a altura do escape da máquina, (2) a altura dos detectores de CO e (3) a altura dos exaustores
    Figura 4.3 – Superfície de contorno de velocidades a 1,3 m do piso após 20 s de acionamento da motosserra.
    Figura 4.3 – Superfície de contorno de velocidades a 1,3 m do piso após 20 s de acionamento da motosserra.
    Figura 4.4 – Superfície de contorno de velocidades a 1,5 m do piso após 20 s de acionamento da motosserra.
    Figura 4.4 – Superfície de contorno de velocidades a 1,5 m do piso após 20 s de acionamento da motosserra.
    Figura 4.5 – Superfície de contorno de velocidades a 3,9 m do piso após 20 s de acionamento da motosserra.
    Figura 4.5 – Superfície de contorno de velocidades a 3,9 m do piso após 20 s de acionamento da motosserra.
    Figura 4.6 – Superfície de contorno de massas específicas a 1,3 m do piso após 20 s de acionamento da motosserra.
    Figura 4.6 – Superfície de contorno de massas específicas a 1,3 m do piso após 20 s de acionamento da motosserra.
    Figura 4.7 – Superfície de contorno de massas específicas a 1,5 m do piso após 20 s de acionamento da motosserra.
    Figura 4.7 – Superfície de contorno de massas específicas a 1,5 m do piso após 20 s de acionamento da motosserra.
    Figura 4.8 – Superfície de contorno de massas específicas a 3,9 m do piso após 20 s de acionamento da motosserra.
    Figura 4.8 – Superfície de contorno de massas específicas a 3,9 m do piso após 20 s de acionamento da motosserra.
    Figura 4.9 – Volume total de monóxido ao longo do tempo na sala.
    Figura 4.9 – Volume total de monóxido ao longo do tempo na sala.
    Figura 4.9 – Vazão volumétrica de CO ao longo do tempo através da superfície de controle. As linhas contínuas representam curvas de ajuste aos dados simulados.
    Figura 4.9 – Vazão volumétrica de CO ao longo do tempo através da superfície de controle. As linhas contínuas representam curvas de ajuste aos dados simulados.

    REFERENCIAS

    CROWL, Daniel A.; LOUVAR, Joseph F. Chemical process safety: fundamentals with applications. Second Edition, Pearson Education, 2001. BURNETT, J.; CHAN, M. Y. Criteria for air quality in enclosed car parks. Em: Proceedings of the Institution of Civil Engineers-Transport. Thomas Telford-ICE Virtual Library, 1997. Disponível em: < http://www.icevirtuallibrary.com/doi/10.1680/itran.1997.29379> SITTISAK, P.; CHARINPANITKUL T.; CHALERMSINSUWAN, B. Enhancement of carbon monoxide removal in an underground car park using ventilation system with single and twin jet fans. Em: Tunnelling and Underground Space Technology. Volume 97, 2020. VERSTEEG, H.K.; MALALASEKERA, W. Computational Fluid Dynamics: The Finite Volume Method. Second Edition, Pearson Education, 2007. BULIŃSKA, A.; POPIOŁEK, Z.; BULIŃSKI, Z.; Experimentally validated CFD analysis on sampling region determination of average indoor carbon dioxide concentration in occupied space. Em: Building and Environment. Volume 72, 2014. KARIMI, H.; RIAZI, B.; MOHHAMMADI, M. Application of Computational Fluid Dynamics in the Simulation of Carbon Monoxide Distribution, a Case Study: Sayad Underground Tunnel in Tehran. Disponível em: YAKHOT, V.; ORSZAG, S. Renormalization group analysis of turbulence. I. Basic theory. Journal of scientific computing, v. 1, n. 1, p. 3-51, 1986. VAN HOOFF, T.; BLOCKEN, B. CFD evaluation of natural ventilation of indoor environments by the concentration decay method: CO2 gas dispersion from a semi-enclosed stadium. Building and Environment, v. 61, p. 1-17, 2013. Disponível em: < https://www.sciencedirect.com/science/article/pii/S0360132312003216> YANG, L., YE, M., HE, B. CFD simulation research on residential indoor air quality. Em Science of The Total Environment. Volume 472, 2014. Disponível em: < https://www.sciencedirect.com/science/article/pii/S0048969713014228> Flow-3D. Flow-3D User’s Guide. Versão 12, 2020. LAUNDER, B. E. e SPALDING, D. B. The numerical computation of turbulent flows. Em Computer Methods in Applied Mechanics and Engineering, vol. 3, 1974. pp. 269-289 MALISKA, Clovis R. Transferência de Calor e Mecânica dos Fluidos Computacional: fundamentos e coordenadas generalizadas. Segunda Edição. Rio de Janeiro, LTC, 2004. ROACHE, P. J. Perspective: A Method for Uniform Reporting of Grid Refinement Studies, Journal of Fluids Engineering, Vol. 116, 1994; 405-413.

    Computational Fluid Dynamics, 온실

    CFD 사용: 유압 구조 및 농업에서의 응용

    USO DE CFD COMO HERRAMIENTA PARA LA MODELACIÓN Y  PREDICCIÓN NUMÉRICA DE LOS FLUIDOS: APLICACIONES EN  ESTRUCTURAS HIDRÁULICAS Y AGRICULTURA

    Cruz Ernesto Aguilar-Rodriguez1*; Candido Ramirez-Ruiz2; Erick Dante Mattos Villarroel3 

    1Tecnológico Nacional de México/ITS de Los Reyes. Carretera Los Reyes-Jacona, Col. Libertad. 60300.  Los Reyes de Salgado, Michoacán. México. 

    ernesto.ar@losreyes.tecnm.mx – 3541013901 (*Autor de correspondencia) 

    2Instituto de Ciencias Aplicadas y Tecnología, UNAM. Cto. Exterior S/N, C.U., Coyoacán, 04510, Ciudad  de México. México.  3Riego y Drenaje. Instituto Mexicano de Tecnología del Agua. Paseo Cuauhnáhuac 8532, Progreso,  Jiutepec, Morelos, C.P. 62550. México.

    Abstract

    공학에서 유체의 거동은 설명하기에 광범위하고 복잡한 과정이며, 유체역학은 유체의 거동을 지배하는 방정식을 통해 유체 역학 현상을 분석할 수 있는 과학 분야이지만 이러한 방정식에는 전체 솔루션이 없습니다. . 전산유체역학(Computational Fluid Dynamics, 이하 CFD)은 수치적 기법을 통해 방정식의 해에 접근할 수 있는 도구로, 신뢰할 수 있는 계산 모델을 얻기 위해서는 물리적 모델의 실험 데이터로 평가해야 합니다. 수력구조물에서 선형 및 미로형 여수로에서 시뮬레이션을 수행하고 배출 시트의 거동과 현재의 폭기 조건을 분석했습니다. 침강기에서 유체의 특성화를 수행하고 필요한 특성에 따라 사체적, 피스톤 또는 혼합의 분수를 수정하는 것이 가능합니다. 농업에서는 온실 환경을 특성화하고 환경에 대한 재료의 디자인, 방향 및 유형 간의 관계를 찾는 데 사용할 수 있습니다. 발견된 가장 중요한 결과 중 온실의 길이와 설계가 환기율에 미칠 수 있는 영향으로 온실의 길이는 높이의 6배 미만인 것이 권장됩니다.

    키워드: Computational Fluid Dynamics, 온실,

    Spillway, Settler 기사: COMEII-21048 소개 

    CFD는 유체 운동 문제에 대한 수치적 솔루션을 얻어 수리학적 현상을 더 잘 이해할 수 있게 함으로써 공간 시각화를 가능하게 하는 수치 도구입니다. 예를 들어, 수력 공학에서 벤츄리(Xu, Gao, Zhao, & Wang, 2014) 워터 펌핑(ȘCHEAUA, 2016) 또는 개방 채널 적용( Wu et 알., 2000). 

    문헌 검토는 실험 연구에서 검증된 배수로의 흐름 거동에 대한 수리학적 분석을 위한 CFD 도구의 효율성을 보여줍니다. 이 검토는 둑의 흐름 거동에 대한 수리학적 분석을 위한 CFD의 효율성을 보여줍니다. Crookston et al. (2012)는 미로 여수로에 대해 Flow 3D로 테스트를 수행했으며, 배출 계수의 결과는 3%에서 7%까지 다양한 오류로 실험적으로 얻은 결과로 허용 가능했으며 연구 결과 측면에 저압 영역이 있음을 발견했습니다. 익사 방식으로 작업할 때 위어의 벽. Zuhair(2013)는 수치 모델링 결과를 Mandali weir 원형의 실험 데이터와 비교했습니다.  

    최근 연구에서는 다양한 난류 모델을 사용하여 CFD를 적용할 가능성이 있음을 보여주었습니다. 그리고 일부만이 음용수 처리를 위한 침적자의 사례 연구를 제시했으며, 다른 설계 변수 중에서 기하학적인 대안, 수온 변화 등을 제안했습니다. 따라서 기술 개발로 인해 설계 엔지니어가 유체 거동을 분석하는 데 CFD 도구를 점점 더 많이 사용하게 되었습니다. 

    보호 농업에서 CFD는 온실 환경을 모델링하고 보조 냉방 또는 난방 시스템을 통해 온실의 미기후 관리를 위한 전략을 제안하는 데 사용되는 기술이었습니다(Aguilar Rodríguez et al., 2020).  

    2D 및 3D CFD 모델을 사용한 본격적인 온실 시뮬레이션은 태양 복사 모델과 현열 및 잠열 교환 하위 모델의 통합을 통해 온실의 미기후 분포를 연구하는 데 사용되었습니다(Majdoubi, Boulard, Fatnassi, & Bouirden, 2009). 마찬가지로 이 모델을 사용하여 온실 설계(Sethi, 2009), 덮개 재료(Baxevanou, Fidaros, Bartzanas, & Kittas, 2018), 시간, 연중 계절( Tong, Christopher, Li, & Wang, 2013), 환기 유형 및 구성(Bartzanas, Boulard, & Kittas, 2004). 

    CFD 거래 프로그램은 사용자 친화적인 플랫폼으로 설계되어 결과를 쉽게 관리하고 이해할 수 있습니다.  

    Figura 1. Distribución de presiones y velocidades en un vertedor de pared delgada.
    Figura 2. Perfiles de velocidad y presión en la cresta vertedora.
    Figura 3. Condiciones de aireación en vertedor tipo laberinto. (A)lámina adherida a la pared del
    vertedor, (B) aireado, (C) parcialmente aireado, (D) ahogado.
    Figura 4. Realización de prueba de riego.
    Figura 5. Efecto de la posición y dirección de los calefactores en un invernadero a 2 m del suelo.
    Figura 5. Efecto de la posición y dirección de los calefactores en un invernadero a 2 m del suelo.
    Figura 6. Indicadores ambientales para medir el confort ambiental de los cultivos.
    Figura 6. Indicadores ambientales para medir el confort ambiental de los cultivos.