FLOW-3D 해석용컴퓨터 선택 가이드

Hardware Selection for FLOW-3D Products – FLOW-3D

2020-09-08 업데이트 / ㈜에스티아이씨앤디 솔루션사업부

In this blog, Flow Science’s IT Manager Matthew Taylor breaks down the different hardware components and suggests some ideal configurations for getting the most out of your FLOW-3D products.

본 자료는 Flow Science의 IT 매니저 Matthew Taylor가 작성한 자료를 기반으로 STI C&D에서 일부 자료를 보완한 자료입니다. 본 자료를 통해 FLOW-3D 사용자는 최상의 해석용 컴퓨터를 선택할 때 도움을 받을 수 있을 것으로 기대합니다.

수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.

따라서 수치해석용 컴퓨터의 선정을 위해서 단위 시간당 시스템이 처리하는 작업의 수나 처리량, 응답시간, 평균 대기 시간 등의 요소를 복합적으로 검토하여 결정하게 됩니다.

또한 수치해석에 적합한 성능을 가진 컴퓨터를 선별하는 방법으로 CPU 계산 처리속도인 Flops/sec 성능도 중요하지만 수치해석을 수행할 때 방대한 계산 결과를 디스크에 저장하고, 해석결과를 분석할 때는 그래픽 성능도 크게 좌우하기 때문에 SSD 디스크와 그래픽카드에도 관심을 가져야 합니다.

FLOW SCIENCE, INC. 에서는 일반적인 FLOW-3D를 지원하는 최소 컴퓨터 사양과 O/S 플랫폼 가이드를 제시하지만, 도입 담당자의 경우, 최상의 조건에서 해석 업무를 수행해야 하기 때문에 가능하면 최고의 성능을 제공하는 해석용 장비 도입이 필요합니다. 이 자료는 2020 현재 FLOW-3D 제품을 효과적으로 사용하기 위한 하드웨어 선택에 대해 사전에 검토되어야 할 내용들에 대해 자세히 설명합니다. 그리고 실행 중인 시뮬레이션 유형에 따라 다양한 구성에 대한 몇 가지 아이디어를 제공합니다.

CPU의 선택

CPU는 전반적인 성능에 큰 영향을 미치며, 대부분의 경우 컴퓨터의 가장 중요한 구성 요소입니다. 그러나 데스크탑 프로세서를 구입할 때가 되면 인텔과 AMD의 모델 번호와 사양이 어려워 보일 것입니다.
그리고, CPU 성능을 평가하는 방법에 의해 가장 좋은 CPU를 고른다고 해도 보드와, 메모리, 주변 Chip 등 여러가지 조건에 의해 성능이 달라질 수 있기 때문에 성능평가 결과를 기준으로 시스템을 구입할 경우, 단일 CPU나 부품으로 순위가 정해진 자료보다는 시스템 전체를 대상으로 평가한 순위표를 보고 선정하는 지혜가 필요합니다.

고급 사용자를 위한 하이엔드 CPU 시장은 AMD Ryzen Threadripper 3970X(Cores: 32 Threads: 64), AMD Ryzen Threadripper 3990X (Cores: 64 Threads: 128)Intel Xeon Gold 6248R (@3GHz Cores: 24 Threads: 48) , Intel 18코어 i9-10980XE가 장악하고 있다. 특히 AMD 제품이 인텔의 최상위 제품을 가격에서 압도한다. 모든 코어를 다 활용할 정도로 어마어마한 프로덕션 수준의 워크로드를 다루는 게 아니라면 보통 이 정도 수준의 CPU까지는 필요하지 않다. 하지만 필요할 경우를 대비해 말해두자면 AMD 두 제품 모두 눈부시게 빠른 게이밍 속도를 보장할 것이다. ‘파 크라이 5’처럼 쓰레드리퍼만의 멀티 다이 아키텍처 때문에 반응이 느린 게임도 있지만 어디까지나 극소수의 예외에 불과하다. editor@itworld.co.kr

2020-08-20일 현재

<출처> https://www.cpubenchmark.net/high_end_cpus.html

CPU 성능 분석 방법

부동소수점 계산을 하는 수치해석과 밀접한 Computer의 연산 성능 벤치마크 방법은 대표적으로 널리 사용되는 아래와 같은 방법이 있습니다.

FLOW-3D의 CFD 솔버 성능은 CPU의 부동 소수점 성능에 전적으로 좌우되기 때문에 계산 집약적인 프로그램입니다. FlowSight 또한 CPU에 크게 의존합니다. 현재 출시된 사용 가능한 모든 CPU를 벤치마킹할 수는 없지만 상대적인 성능을 합리적으로 비교할 수는 있습니다.

특히, 수치해석 분야에서 주어진 CPU에 대해 FLOW-3D 성능을 추정하거나 여러 CPU 옵션 간의 성능을 비교하기 위한 최상의 옵션은 Standard Performance Evaluation Corporation의 SPEC CPU2017 벤치마크(현재까지 개발된 가장 최신 평가기준임)이며, 특히 SPECspeed 2017 Floating Point 결과가 CFD Solver 성능을 매우 잘 예측합니다.

이는 유료 벤치마크이므로 제공된 결과는 모든 CPU 테스트 결과를 제공하지 않습니다. 보통 제조사가 ASUS, Dell, Lenovo, HP, Huawei 정도의 제품에 대해 RAM이 많은 멀티 소켓 Intel Xeon 기계와 같은 값비싼 구성으로 된 장비 결과들을 제공합니다.

CPU 비교를 위한 또 다른 옵션은 Passmark Software의 CPU 벤치마크입니다. PerformanceTest 제품군은 유료 소프트웨어이지만 무료 평가판을 사용할 수 있습니다. 대부분의 CPU는 저렴한 옵션을 포함하여 나열됩니다. 부동 소수점 성능은 전체 벤치마크의 한 측면에 불과하지만 다양한 워크로드에서 전반적인 성능을 제대로 테스트합니다.

예산을 결정하고 해당 예산에 해당하는 CPU를 선택한 후에는 벤치마크를 사용하여 가격에 가장 적합한 성능을 결정할 수 있습니다.

<참고>

SPEC의 벤치 마크https://www.spec.org/benchmarks.html#cpu )

SPEC CPU 2017 (현재까지 가장 최근에 개발된 CPU 성능측정 기준)

다른 컴퓨터 시스템에서 컴퓨팅 계산에 대한 집약적인 워크로드를 비교하는데 사용할 수 있는 성능 측정을 제공하도록 설계된 SPEC CPU 2017에는 SPECspeed 2017 정수, SPECspeed 2017 부동 소수점, SPECrate 2017 정수 및 SPECrate 2017 부동 소수점의 4 가지 제품군으로 구성된 43 개의 벤치 마크가 포함되어 있습니다. SPEC CPU 2017에는 에너지 소비 측정을 위한 선택적 메트릭도 포함되어 있습니다.

<SPEC CPU 벤치마크 보고서>

벤치마크 결과보고서는 제조사별, 모델별로 테스트한 결과를 아래 사이트에 가면 볼 수 있습니다.

https://www.spec.org/cgi-bin/osgresults

<보고서 샘플>

  • SPEC CPU 2017

Designed to provide performance measurements that can be used to compare compute-intensive workloads on different computer systems, SPEC CPU 2017 contains 43 benchmarks organized into four suites: SPECspeed 2017 Integer, SPECspeed 2017 Floating Point, SPECrate 2017 Integer, and SPECrate 2017 Floating Point. SPEC CPU 2017 also includes an optional metric for measuring energy consumption.

클럭 대 코어

일반적으로 클럭 속도가 높은 칩은 CPU 코어를 더 적게 포함합니다. FLOW-3D는 병렬화가 잘되어 있지만, 디스크 쓰기와 같이 일부 작업은 기본적으로 단일 스레드 방식으로 수행됩니다. 따라서 데이터 출력이 빈번하거나 큰 시뮬레이션은 종종 더 많은 코어가 아닌, 더 높은 클럭 속도를 활용합니다. 마찬가지로 코어 및 소켓의 다중 스레딩은 오버헤드를 발생시키므로 작은 문제의 해석일 경우 사용되는 코어 수를 제한하면 성능이 향상될 수 있습니다.

CPU 아키텍처

CPU 아키텍처는 중요합니다. 최신 CPU는 일반적으로 사이클당 더 많은 기능을 제공합니다. 즉, 현재 세대의 CPU는 일반적으로 동일한 클럭 속도에서 이전 CPU보다 성능이 우수합니다. 또한 전력 효율이 높아져 와트당 성능이 향상될 수 있습니다. Flow Science에는 구형 멀티 소켓 12, 16, 24 코어 Xeon보다 성능이 뛰어난 최근 세대 10~12 Core i9 CPU 시스템을 보유하고 있습니다.

오버클럭

해석용 장비에서는 CPU를 오버클럭 하지 않는 것이 좋습니다. 하드웨어를 다년간의 투자라고 생각한다면, 오버클럭화는 발열을 증가시켜 수명을 단축시킵니다. CPU에 따라 안정성도 저하될 수 있습니다. CPU를 오버클럭 할 때는 세심한 열 관리가 권장됩니다.

하이퍼스레딩

<이미지출처:https://gameabout.com/krum3/4586040>

하이퍼스레딩은 물리적으로 1개의 CPU를 가상으로 2개의 CPU처럼 작동하게 하는 기술로 파이프라인의 단계수가 많고 각 단계의 길이가 짧을때 유리합니다. 다만 수치해석 처럼 모든 코어의 CPU를 100% 사용중인 장시간 수행 시뮬레이션은 일반적으로 Hyper Threading이 비활성화 된 상태에서 더 잘 수행됩니다. FLOW-3D는 100% CPU 사용률이 일반적이므로 새 하드웨어를 구성할 때 Hyper Threading을 비활성화하는 것이 좋습니다. 설정은 시스템의 BIOS 설정에서 수행합니다.

몇 가지 워크로드의 경우에는 Hyper Threading을 사용하여 약간 더 나은 성능을 보이는 경우가 있습니다. 따라서, 최상의 런타임을 위해서는 두 가지 구성중에서 어느 구성이 더 적합한지 시뮬레이션 유형을 테스트하는 것이 좋습니다.

스케일링

여러 코어를 사용할 때 성능은 선형적이지 않습니다. 예를 들어 12 코어 CPU에서 24 코어 CPU로 업그레이드해도 시뮬레이션 런타임이 절반으로 줄어들지 않습니다. 시뮬레이션 유형에 따라 16~32개 이상의 CPU 코어를 선택할 때는 FLOW-3D 및 FLOW-3D CAST의 HPC 버전을 사용하거나 FLOW-3D CLOUD로 이동하는 것을 고려하여야 합니다.

AMD Ryzen 또는 Epyc CPU

AMD는 일부 CPU로 벤치마크 차트를 석권하고 있으며 그 가격은 매우 경쟁력이 있습니다. FLOW SCIENCE, INC. 에서는 소수의 AMD CPU로 FLOW-3D를 테스트했습니다. 현재 Epyc CPU는 이상적이지 않고 Ryzen은 성능이 상당히 우수합니다. 발열은 여전히 신중하게 다뤄져야 할 문제입니다. 현재 32 코어 옵션에 영향을 주는 Windows 버그가 초기 버전에서 성능을 크게 저하시키는 것으로 알려져 있습니다. Bug Fix가 되었는지 업데이트 하여 확인하고, 해결되지 않은 경우 이러한 CPU에는 Linux를 권장됩니다.

<관련 기사>

https://www.techspot.com/news/78122-report-software-fix-can-double-threadripper-2990wx-performance.html

Graphics 고려 사항

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다.

특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.

원격데스크탑 사용시 고려 사항

Flow Science는 nVidia 드라이버 버전이 341.05 이상인 nVidia Quadro K, M 또는 P 시리즈 그래픽 하드웨어를 권장합니다. 이 카드와 드라이버 조합을 사용하면 원격 데스크톱 연결이 완전한 3D 가속 기능을 갖춘 기본 하드웨어에서 자동으로 실행됩니다.

원격 데스크톱 세션에 연결할 때 nVidia Quadro 그래픽 카드가 설치되어 있지 않으면 Windows는 소프트웨어 렌더링을 사용합니다. 이는 FLOW-3D 및 FlowSight 모두 성능에 부정적인 영향을 미칩니다. FLOW-3D 가 소프트웨어 렌더링을 사용하고 있는지 확인하려면 FLOW-3D 도움말 메뉴에서 정보를 선택하십시오. GDI Generic을 소프트웨어 렌더링으로 사용하는 경우 GL_RENDERER 항목에 표시됩니다.

하드웨어 렌더링을 활성화하는 몇 가지 옵션이 있습니다. 쉬운 방법 중 하나는 실제 콘솔에서 FLOW-3D를 시작한 다음 원격 데스크톱 세션을 연결하는 것입니다. Nice Software DCV 와 같은 일부 VNC 소프트웨어는 기본적으로 하드웨어 렌더링을 사용합니다.

RAM 고려 사항

프로세서 코어당 최소 4GB의 RAM은 FLOW-3D의 좋은 출발입니다. FlowSight POST Processor를 사용하여 후처리 작업을 할 경우 상당한 양의 RAM을 사용하는 것이 좋습니다.

현재 주력제품인 DDR4보다 2배 빠른 DDR5가 곧 출시된다는 소식도 있습니다.

일반적으로 FLOW-3D를 이용하여 해석을 할 경우 격자(Mesh)수에 따라 소요되는 적정 메모리 크기는 아래와 같습니다.페이지 보기

  • 초대형 (2억개 이상의 셀) : 최소 128GB
  • 대형 (60 ~ 1억 5천만 셀) : 64 ~ 128GB
  • 중간 (30-60백만 셀) : 32-64GB
  • 작음 (3 천만 셀 이하) : 최소 32GB

HDD 고려 사항

수치해석은 해석결과 파일의 데이터 양이 매우 크기 때문에 읽고 쓰는데, 속도면에서 매우 빠른 SSD를 적용하면 성능면에서 큰 도움이 됩니다. 다만 SSD 가격이 비싸서 가성비 측면을 고려하여 적정수준에서 결정이 필요합니다.

CPU와 저장장치 간 데이터가 오고 가는 통로가 그림과 같이 3가지 방식이 있습니다. 이를 인터페이스라 부르며 SSD는 흔히 PCI-Express 와 SATA 통로를 이용합니다.

흔히 말하는 NVMe는 PCI-Express3.0 지원 SSD의 경우 SSD에 최적화된 NVMe (NonVolatile Memory Express) 전송 프로토콜을 사용합니다. 주의할 점은 MVMe중에서 SATA3 방식도 있기 때문에 잘 구별하여 구입하시기 바랍니다.

그리고 SSD를 선택할 경우에도 SSD 종류 중에서 PCI Express 타입은 매우 빠르고 가격이 고가였지만 최근에는 많이 저렴해졌습니다. 따라서 예산 범위내에서 NVMe SSD등 가장 효과적인 선택을 하는 것이 좋습니다.
( 참고 : 해석용 컴퓨터 SSD 고르기 참조 )

기존의 물리적인 하드 디스크의 경우, 디스크에 기록된 데이터를 읽기 위해서는 데이터를 읽어내는 헤드(바늘)가 물리적으로 데이터가 기록된 위치까지 이동해야 하므로 이동에 일정한 시간이 소요됩니다. (이러한 시간을 지연시간, 혹은 레이턴시 등으로 부름) 따라서 하드 디스크의 경우 데이터를 읽기 위한 요청이 주어진 뒤에 데이터를 실제로 읽기까지 일정한 시간이 소요되는데, 이 시간을 일정한 한계(약 10ms)이하로 줄이는 것이 불가능에 가까우며, 데이터가 플래터에 실제 기록된 위치에 따라서 이러한 데이터에의 접근시간 역시 차이가 나게 됩니다.

하지만 HDD의 최대 강점은 가격대비 용량입니다. 현재 상용화되어 판매하는 대용량 HDD는 12TB ~ 15TB가 공급되고 있으며, 이는 데이터 저장이나 백업용으로 가장 좋은 선택이 됩니다.
결론적으로 데이터를 직접 읽고 쓰는 드라이브는 SSD를 사용하고 보관하는 용도의 드라이브는 기존의 HDD를 사용하는 방법이 효과적인 선택이 될 수 있습니다.

페이지 보기

FLOW-3D Home



FLOW-3D TITLE BANNER

수치해석(CFD)이 필요하십니까? 아마 FLOW-3D 는 귀하가 찾으시는 분야에 가장 적합한 최적의 수치해석 소프트웨어일 것입니다.
천천히 당사의 홈페이지 내용을 살펴보시면 FLOW-3D 의 기술적인 강점과 어떤 분야에 어떻게 적용하여 효과를 볼 수 있는지 알 수 있습니다.FLOW-3D 는 범용 3 차원 수치해석(CFD) 소프트웨어로, 특히 자유표면(자유수면)을 가진 유동흐름을 정확하게 예측하는 분야에서는 타의 추종을 불허하는 성능을 자랑합니다. FLOW-3D 는 수 많은 물리적 유동현상에 대한 시뮬레이션 모델을 제공하여 설계 및 운영단계에서 엔지니어에게 귀중한 통찰력을 제공할 수 있는 세계적인 CFD 소프트웨어입니다.FLOW-3D 는 해석에 필요한 모든 기능을 제공하는 풀 패키지 소프트웨어로, 격자 및 결과 분석에 추가 비용이 필요 없습니다.
또한 기존의 CAD 시스템이나 타 소프트웨어에서 생성된 모델데이터를 STL로 읽을 수 있기 때문에 기존 모델데이터를 쉽게 활용할 수 있습니다.
FLOW-3D 의 가장 큰 특징은 단 몇번의 조작만으로 격자를 생성할 수 있으며, 초보자도 쉽게 시작할 수 있고, 매우 뛰어난 정확성을 가지고 있다는 점 입니다.

FLOW-3DFDM (Finite Difference Method : 유한차분법)에 따라 비정상 흐름을 해석하는범용 3 차원 CFD 소프트웨어로, 비압축성 및 압축성을 고려한 2차원 / 3차원 열 유동 문제, 상 변화, 다양한 점성 현상 및 유체–구조 연성 등의 다중 물리 문제를 해석할 수 있으며, 특히 자유표면 및 두 유체사이 계면에 대한 고속 · 고정밀도 해석에 탁월합니다.

수치해석과 관련하여 궁금하신 사항은 언제든지 부담없이 문의 해주십시오.
감사합니다.

FLOW-3D 제품 안내
FLOW-3D 제품 안내

FLOW-3D MP버전 안내
FLOW-3D MP버전 안내

FLOW-3D Cast 버전 안내
FLOW-3D Cast 버전 안내

Technical Resource
Technical Resource
FLOW-3D 당사의 주력 제품으로 강력하고 매우 정확한 다중 물리 전산 유체역학(CFD) 패키지 프로그램…
Read More >>
FLOW-3D/MP 는 매우 큰 영역 또는 긴 runtime 문제를 해결하기 위해 고성능 컴퓨팅을 사용할 수…
Read More >>
FLOW-3D Cast 는 다양한 주조 공정의 충전 및 응고, 결함 분포 예측이 가능한 3차원 유동해석 프로그램…
Read More >>
FLOW-3D 제품에 대한 기술자료와 이론 및 논문 등 다양한 기술자료를 제공합…
Read More >>
신규소식 기술자료

FLOW-3D HYDRO Conveyance Infrastructure

FLOW-3D & computational fluid dynamics for civil engineering Conveyance systems TunnelsOverflowsHydraulic controlsGatesWeirsOrificeDrop structuresFlow splittingOpen channel conveyancePumpsFlap gates (moving objects)Air flow / air supplyEntrained air (entrainment, evolution, drift flux, buoyancy, bulking, ...
자세한 내용 보기

FLOW-3D HYDRO- Dams & Spillways

Dams & spillways Long history of success Government regulatorsHydro-power utilitiesEngineering consultantsHydraulics laboratoriesCFD consultantsAcademia Dams & spillways •Wide range of applications •Wide range of flow conditions: –Open channel –Pressurized –Mixed •Wide ...
자세한 내용 보기

FLOW-3D HYDRO – The Complete CFD Solution for the Water & Environmental Industry

물 및 환경 산업을 위한 완벽한 CFD 솔루션인 FLOW-3D HYDRO의 신제품 출시를 알립니다. Santa Fe, NM, 2020년 10월 29일 – Flow Science는 토목 및 환경 엔지니어링 산업을 위한 완벽한 CFD ...
자세한 내용 보기

FLOW-3D HYDRO

FLOW-3D HYDRO 제품 개요 최근 FLOW Science, Inc에서는 토목 및 환경 엔지니어링 산업을위한 완벽한 CFD 모델링 솔루션인 FLOW-3D HYDRO 제품을 출시했습니다. 기존 FLOW-3D 사용자이거나 유압 엔지니어링 관행에 CFD 모델링 기능을 ...
자세한 내용 보기

FLOW-3D Glossary

FLOW-3D 용어 사전 / 용어 설명 FLOW-3D 용어 사전 / 용어 설명 Drift Flux 드리프트 모델은 밀도가 서로 다른 두 혼합 유체 구성 요소의 상대적 흐름을 설명합니다. 구성 요소는 상이 ...
자세한 내용 보기

레이저 용접 수치해석 (FLOW-3D WELD)

레이저 용접 수치해석 (FLOW-3D WELD) FLOW-3D@ WELD는 레이저 용접 공정에 대한 정확한 시뮬레이션 기능을 제공하여 최적화된 공정을 개발하게 합니다. 더 나은 공정 제어를 통해 기공, 열 영향 영역을 최소화하고 미세 ...
자세한 내용 보기
컴팩트 디스크 ELISA 칩 [2]

컴팩트 디스크 미세 유체 장치: Optimizing Real Estate

Compact Disc Microfluidic Devices: Optimizing Real Estate 미세 유체 장치 사용자의 증가하는 기대를 충족하려면 작은 미세 유체 장치에서 제한된 공간을 최적화하는 것이 중요합니다. 사용자는 단일 미세 유체 장치에서 최대의 기능과 여러 ...
자세한 내용 보기
World Users Conference 2021

FLOW-3D World Users Conference

World Users Conference 2021 FLOW-3D World Users Conference 는 2021 년 6 월 7 일부터 9 일 까지 독일 뮌헨 의 Maritim Hotel 에서 개최됩니다 . 세계에서 가장 유명한 회사 ...
자세한 내용 보기
벨기에 Zele에서 나온 WWTP의 개략도

활성화 된 슬러지 모델링

Activated Sludge Model 폐수 처리 플랜트 (WWTP) 내부의 생화학 적 반응 및 유체 역학에 대한 자세한 이해는 설계자와 엔지니어가 새로운 플랜트 설계를 평가하고, 관리 결정을 정량화하고, 새로운 제어 계획을 개발하고, ...
자세한 내용 보기
Simulation results from FLOW-3D highlighting the droplet formation and the input pressure pulse

연속 잉크젯 인쇄

Continuous Inkjets 연속 잉크젯 인쇄는 약 150 년 동안 축적 된 기술입니다. 간단히 말해, 프린트 헤드가 작동하면 연속적인 유체 흐름이있는 액적 생성 방법입니다. 이 개념은 1867 년 Lord Kelvin에 의해 처음 특허를 ...
자세한 내용 보기
Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

중력을 사용한 미세 유체 입자 분류

Microfluidics Particle Sorting Using Gravity 미세 유체 입자 분류는 진단, 화학적 및 생물학적 분석, 식품 및 화학 처리, 환경 평가에 적용됩니다. 이전 블로그에서 유체 역학을 사용한 미세 유체 입자 분류에 대해 이야기했습니다 . 같은 주제를 ...
자세한 내용 보기
중간 단계, 땅은 여전히 ​​대부분 물에 젖은 상태임

폭우에 따른 홍수 시뮬레이션

Flash Flood Simulation 최근에는 우리나라에서도 국지성 폭우가 빈발하고, 기상 이변에 따라 단시간의 폭우에 의해 돌발 홍수가 발생하고 있습니다. FLOW-3D를 이용한 수치해석으로 홍수 발생시 주요 피해지역이 어떻게 분포될지, 상류피해 영역과 하류피해 ...
자세한 내용 보기

바람이 개방형 철광석 골재 저장소에 미치는 영향 분석 (비산먼지 배출 방지 연구)

다양한 구성에 대한 비산 먼지 배출 이 기사는 Dhananjay Sharma, EI, CFM, 유압 모델링 엔지니어, AECOM 에 의해 기고되었습니다 . 바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 ...
자세한 내용 보기

코어 가스(Core Gas)

코어 가스(Core Gas)   코어로 주조 모델링 (Modeling Castings with Cores) 모래 속의 화학 결합제는 용융 된 금속에 의해 가열 될 때 가스를 생성 할 수 있으며 적절하게 환기되지 않으면 ...
자세한 내용 보기
Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

NUMERICAL ANALYSIS AND THE REAL WORLD : IT LOOKS PRETTY BUT IS IT RIGHT?

D. K. H. Ho, S. M. Donohoo, K. M. Boyes and C. C. LockAdvanced Analysis, Worley Pty LimitedL7, 116 Miller Street, North Sydney, NSW 2060 AustraliaTel: +61 2 8923 6817 ...
자세한 내용 보기

2 Fluid, 2 Temperature 모델

2 Fluid, 2 Temperature 모델 우주선 및 자동차 연료 탱크 및 특정 미세 유체 장치는 안전하고 효율적인 작동을 위해 정확한 액체 및 기체 상태 모델링이 필요합니다. 이러한 시스템에 유체 계면이 ...
자세한 내용 보기

FLOW-3D 해석용컴퓨터 선택 가이드

Hardware Selection for FLOW-3D Products - FLOW-3D 2020-09-08 업데이트 / ㈜에스티아이씨앤디 솔루션사업부 In this blog, Flow Science’s IT Manager Matthew Taylor breaks down the different hardware components and suggests some ...
자세한 내용 보기
Rivulet Formation in Slide Coating

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique

Volume-of-Fluid 기법을 사용한 과도 및 3 차원 코팅 흐름 시뮬레이션 슬라이드 코팅 흐름은 정밀 필름 코팅 제품의 제조에 널리 사용됩니다. 코팅 속도를 높이고 코팅 필름의 성능을 향상시키기 위해 슬라이드 코팅 ...
자세한 내용 보기

열전달(Heat Transfer)

열전달(Heat Transfer) 열전달은 전도, 대류 및 복사를 통한 열 에너지의 전달입니다. 일반적이지만 매우 중요한 물리적 현상입니다. 재료 특성 및 기타 물리적 현상은 온도 (또는 열에너지)에 매우 민감합니다. FLOW-3D 및 FLOW-3D ...
자세한 내용 보기

FLOW-3D 레이저분야 활용

FLOW-3D 레이저 용접분야 활용

FLOW-3D는 유체의 유동 및 열전달 수치 해석 소프트웨어이며, 자유표면(자유수면)을 가진 유체의 흐름을 정확하게 예측한다. FLOW-3D는 수 많은 물리적 유동 현상에 대한 시뮬레이션 모델을 제공하여, 설계 및 운영 단계에서 엔지니어가 쉽고 정확하게 판단할 수 있도록 해주기 때문에 수리, 주조, 기계, 항공, 용접, 적층 공정, 금속 3D 프린팅 등 여러 분야에서 사용되는 소프트웨어이다. 이번 호에서는 FLOW-3D의 다양한 활용 분야 중에서 레이저 용접 분야(Weld 모듈이 연계된 FLOW-3D Weld를 사용)에 대해 자세히 알아보고자 한다.

레이저 용접은 레이저 광선의 출력을 응용한 용접 방법을 말한다. 레이저 용접의 장점은 용접 강도가 좋고, 열 영향 부위가 작으며, 정밀도가 높고 변형이 적으며 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접할 수 있다는 것이다.
FLOW-3D Weld는 이러한 레이저 용접 공정에 대해 정확한 결과를 얻게 해 주며, 엔지니어가 레이저 프로세스를 최적화하는데 도움을 준다. FLOW-3D Weld는 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발 압력, shield gas 효과, 다중 레이저 반사 등과 같은 물리적 모델을 적용하여 Conduction 용접, Keyhole 용접, Porosity, 용융풀 거동 등을 분석할 수 있다.
이번 호에서는 레이저 용접 프로세스 및 결과물을 최적화하기 위해 필요한 물리적 설정과 대표적인 레이저 용접 해석 예제를 설명하고자 한다.

레이저 광원

1. 레이저 광원
레이저 용접을 하는데 있어 레이저 광원의 설정이 필요하다. FLOW-3D Weld에서 사용되는 레이저 광원은 원통형과 원추형으로 설정할 수 있으며, <그림 1>과 같이 Heat flux를 일정한 상태 또는 가우시안 분포(Gaussian distribution)  형태로 나타낼 수 있다.

레이저 광원의 형태를 원추형으로, 가우시안 분포를 가지도록 Heat flux를 설정하면 <그림 2>와 같이 광원이 원추형으로 나타나며, 반경 거리에 따른 Heat flux의 에너지 밀도 차이도 확인할 수 있다.

그리고, <그림 3>과 같이 레이저 광원의 위치 좌표와 속도 벡터를 설정하면, 레이저의 위치에 대한 광원의 움직임 설정이 가능하다.

기사 상세 내용은 PDF로 제공됩니다.

다운로드[2M] : [201906_FLOW3D_레이저용접]

작성자 | 양정호_에스티아이C&D 솔루션사업부 대리, 조애령_에스티아이C&D 솔루션 사업부 차장
이메일 | flow3d@stikorea.co.kr
홈페이지 | www.flow3d.co.kr

출처 : CAD&Graphics 2019년 06월호

해석예제 및 적용사례

 

당사에서 오랜 기간 동안 FLOW-3D를 적용한 분야별 프로젝트 적용사례와 간단한 소개 자료를 제공합니다.
아래 분야별 적용사례 다운로드 링크를 클릭하여 자유롭게 활용하시기 바랍니다.

casting hydraulics water mems
Casting 분야
적용사례
다운로드
Hydraulics 분야
적용사례
다운로드
WaterTreatments 분야
적용사례
다운로드
MEMS 분야
적용사례
다운로드
maritime
Maritime 분야
적용사례
다운로드
Laser Welding 분야 적용사례 다운로드 Metal 3D printing 분야 적용사례 다운로드

 

São Roque Hydro Power Plant

São Roque Hydro Power Plant

 

This article was contributed by Diego David Baptista de Souza, Alexandre Charles Allain, and Anaximandro Steckling Muller of Engevix Engenharia S/A.

 

The São Roque hydroplant project는 브라질의 카노아스 강 산타 카타리나 주에 있습니다. 롤러 압축 콘크리트 댐은 141,9MW의 설치 용량을 허용합니다. 그림 1은 프로젝트의 위치를 보여 줍니다.

Figure 1 – São Roque hydro power plant location

제트 편향은 낮은 홍수에 대해 배수로의 첫번째 단계에서 발생하며 불안전한 흐름과 진동을 일으킵니다. 수치 모델링은 제트 편향을 제한하는 첫 단계의 형상을 최적화하는데 사용될 수 있습니다. 편향이 발생하는 임계 방전을 최소화하는 기하학적 구조를 찾기 위해 여러 번의 시뮬레이션이 수행되었습니다. 처음 계단식 배수로를 따라 설치된 흐름을 스키핑 흐름이라 한다. 유량 시스템이 불안정성을 보이기 시작하면서 결국 제트가 임계 유량으로 이륙할 때까지 저수지의 수위가 점차적으로 낮아지게 됩니다.

시뮬레이션한 모든 기하학적에서 고정 매개변수인 1.2m의 정규 계단높이와 53°의 경사를 포함합니다. 그림 2와 3은 두개의 기하학적 구조를 보여 줍니다. 수치 모델에는 TruVOF 기법을 이용한 공기 침투 및 자유 표면 추적이 포함됩니다. 색상 범례는 물의 농도를 나타내며, 물 1은 100% 물이고 0은 100% 공기입니다. 분석은 y축에 있는 단일 2D블록인 spillway의 단면 모델을 사용하여 수행되었습니다.
jet takeoff 에 따라 해당되는 유량을 사용해 관련 형상을 비교하고 가장 효율적인 형상을 결정할 수 있습니다. 제트 편향에 해당하는 임계 유량은 탱크 레벨이 낮아지는 속도와 시뮬레이션에 사용되는 메쉬의 크기에 따라 달라지게 됩니다.

Spillway Water Profile and Energy Dissipation

Jet Deflection on Upper Spillway

그림 2는 ‘생성자’ 프로파일과 단계별 섹션 사이의 전환 위치에 대한 2개의 기하학적 설계(상단과 하단)를 비교하여 보여줍니다. 좌측에는 흐름이 스키밍 체제에 있고 중앙에서 탱크 레벨이 점차 낮아지면서 플럭스가 동요되기 시작합니다. 우측에는 지속적인 상태 방출과 함께 jet takeoff 가 표시되어 있습니다.

Figure 2 – Comparison of 2 geometric designs         

Figure 3 – Spillway water and energy profiles

Figure 4 – Turbulent energy dissipation on stepped spillway         

발생 가능한 최대 홍수의 양에 대해 계단식 배수로와 에너지 분산이 평가되었습니다. 표준 단계는 공기 침투 모델과 함께 FLOW-3D와 비교했습니다. 그림 3은 수치 모델과 이론 모델 모두의 결과를 나타내는데 이 현상을 평가하기 위해 FLOW-3D에 단면 모델이 적용되었습니다.
수치 시뮬레이션으로 얻은 Water의 프로필은 공기 흡입을 고려할 때 이론적 모델과 잘 맞습니다. 에너지 프로필은 이론적 모델에서 수렴적인 결과로 약간의 차이가 나타납니다. 이러한 차이는 단계별 채널이 시작되기 전에 Creager프로필의 수두손실을 무시하는 것과 같은 일부 이론적 가정의 결과일 수 있습니다. 다운 스트림에서 유출되는 에너지 프로필은 유출되는 유압 점프로 인해 떨어지게 됩니다. 그림 4는 FLOW-3D의 난류 에너지 소산을 나타냅니다.

Flow Distribution at Turbine Entrance

Figure 5 – Flow trough penstocks upstream turbine entrance

물은 높이는53m이고 총 방출량이333 m3/s인 동일한 3개의 penstock를 통해 전달됩니다. 그 터빈들은 수직 축을 가진 Francis 타입입니다. penstock하단에는 플럭스가 터빈으로 유도되기 전 마지막 곡선 뒤에 남아 있습니다. 이 수평 부분은 터빈에 도달하기 전에 흐름을 안정화시키는데 필요합니다. 필요한 길이와 속도 및 압력 분포의 작동 방식을 결정하기 위해 수치 모델링이 사용되었습니다.
업 스트림 경계 조건은 유량 소스로 설정되며 물 흡입구 끝에 위치합니다. 하류인 터빈 입구에는 특정 압력이 설정되어 있어 Bernoulli방정식이 사용됩니다. 수두 손실은 이론적으로 계산되었고 이 등식에서 제외되었습니다. 마지막으로, 거칠기를 보정하여 수치모델과 이론 계산에서 헤드 손실이 동일하도록 2mm의 거칠기가 설정되었습니다. 이는 강철 penstock의 거칠기와 잘 일치합니다. 또한 메쉬 크기는 0.5m의 셀로 설정되었습니다.

이 세가지 구성은 모두 터빈 입구 바로 앞에 위치한 크로스 섹션의 하부에서 더 높은 속도를 보여 줍니다. 흐름은 단면 1과 단면 2사이에서 많은 변화는 없었습니다. 실제로 깊이 평균 속도와 압력 분포 측면에서 전체 결과는 직경이 전환된 직후에 흐름이 이미 안정화되었음을 나타냅니다.  구성 3에서 속도 분포는 수평 단면을 따라 계속 발전한다는 것은 흥미로운 사실입니다. 따라서, 이 수평적인 penstock의 길이를 증가시킬 필요가 없는 것처럼 보였습니다. 또한, 이것은 비용과 수두손실을 상당히 증가시킬 것입니다. 따라서 초기 프로젝트의 개요는 최종 프로젝트를 위해 그대로 유지되었습니다. 이 시뮬레이션은 수치 모델이 의사 결정 지원을 위한 효율적이고 빠른 도구임을 입증하게 됩니다.

Draft Tube Exit

그 draft tube는 운하의 흐름을 분산시킵니다. 하지만, 갑작스런 단면의 확장으로 인해, 흐름 체제는 난류와 수두 손실의 상당한 확산으로 인해 변화하게 됩니다. 수치 모델을 사용하여 수두손실을 확인할 수 있습니다.

상류 경계조건은 체적 흐름 속도로 설정되었고 draft tube의 수문에 위치합니다. 하류에서는 정상 작동 수위와 동등한 압력이 설정되었습니다. 메쉬 크기는 0.5m로 설정되었습니다.

이 수치 모델은 14cm의 수두 손실을 초래하는 반면, 이론적인 계산은 16.7cm로 비교적으로 수렴하고 있습니다. 3D수치 해석을 사용하면 수두손실을 최소화하는 기하학적인 최적화를 할 수 있습니다.

Figure 6 – Downstream view of the 3 units’ draft tube exit with the FAVOR™ option

Figure 7 – Cross section of the draft tube exit and tailrace channel in terms of velocity magnitude and vectors

Conclusions

수치적 모델링은 수력학 엔지니어에게 유용한 도구이고 FLOW-3D와 같은 패키지는 매우 효율적인 도구입니다. 또한 솔루션 및 최적화를 통해 비용을 절감할 수 있습니다. 저자들의 경험에 따르면 다양한 문제에 있어 3차원 모델링은 훌륭한 옵션이며 물리적 모델링과 함께 추가 도구로 사용될 수 있습니다. 때때로, 그것은 실제 모델을 대체할 수도 있는데, 그것은 São Roque HPP의 경우였습니다. 또한 3D 수치해석 최적화를 통해 물리적 모델을 설계하는데 도움이 될 수 있습니다.

 

연속 잉크젯 프린팅

연속 잉크젯 프린팅

연속 잉크젯 프린팅은 150 년 동안 축적 된 기술입니다. 간단히 말해, 프린트 헤드가 작동 중일 때 유체의 연속 흐름이 있는 방울 생성방법입니다. 이 개념이 1867 년 Lord Kelvin에 의해 처음으로 특허 되었지만, 1951 년 Siemens에서 최초의 상용 장치가 80 년이 지난 뒤에 나타났습니다. 초기에 이 기술은 만료 날짜, 배치 코드, 이름 및 제품 로고와 같은 다양한 정보를 고속, 비접촉식으로 인쇄하는데 사용되었습니다.

연속 잉크젯 프린팅은 탱크에서 액체를 마이크로 미터 크기의 노즐 뱅크로 향하게 하는 고압 펌프로 시작하여 진동하는 압전 크리스탈의 진동에 의해 결정되는 주파수에서 연속적으로 작은 방울이 생성됩니다. 특히 프린팅 응용분야의 경우, 잉크 방울은 외부 전계의 존재로 인해 연속 흐름에서 편향되고 있습니다. 이는 프린팅 매체의 표면 상에 패턴을 생성한다. 이 기술의 장점 중 일부는 높은 처리량, 높은 방울 속도, 프린트 헤드에서 기판까지의 거리 증가 및 연속 작동으로 인한 노즐 막힘현상이 없습니다. 이러한 긍정적인 특성 덕분에 이 기술은 요즘 종이의 일반 인쇄 잉크에서 다양한 재료 (심지어 살아있는 세포)를 증착하고 현대적인 OLED (Organic Light Emitting Diode) 디스플레이를 만들기까지 발전했습니다.

이 블로그에서는 Flow Science의 CFD 엔지니어인 Ioannis H. Karampelas가 진행 한 FLOW-3D 시뮬레이션 연구에 이어 연속 잉크젯 인쇄의 물리학에 대해 논의 할 것입니다. 그의 작업을 더욱 발전시키면서  OLED 프린팅업계에서 잉크젯을 적용하여 영감을 얻은 방울 생성과정에 무작위성을 부여하고 결과로 나온 방울의 변형을 설명합니다.

비말 생성

노즐 크기 선택

방울 생성을 위한 시스템 파라미터를 계산하기 위해 Rayleigh jet 불안정성 이론을 사용할 수 있습니다. 이 이론에 따르면, 드롭 형성으로 이끄는 제트 해체에 대한 자극의 최적 파장 (λ)은 대략 다음과 같습니다.

작동 주파

최적의 드롭 생성 빈도는 최적의 파장에서 직접 계산할 수 있습니다.

위의 이론과 알려진 산업 파라미터를 사용하여 노즐 반경 125 μm 및 10 kHz의 주파수를 사용하여 FLOW-3D에서 계산 모델을 설정했습니다.

FLOW-3D 결과 검증

FLOW-3D는 강력하고 정확한 표면 장력 모델로 인해 연속 잉크젯 인쇄와 같은 액적 기반 프로세스를 시뮬레이션하는데 적합합니다.

아래의 시뮬레이션 결과에서 10 kHz의 주파수에서 진동하는 입력 압력 펄스를 볼 수 있습니다. 평균 물방울 크기는 약 240 μm이며 이론적으로 추정된 물방울 크기 인 약 250 μm와 잘 일치합니다.

물방울 형성 ​​및 입력 압력 펄스를 강조하는 FLOW-3D의 시뮬레이션 결과

OLED Mura 문제

이론 상으로는 동일한 진폭의 압력 펄스를 생성하는 것이 가능합니다. 그러나 OLED의 잉크젯 인쇄와 같은 산업용 어플리케이션에서 모든 노즐은 본질적으로 불완전한 제조 또는 작동 매개 변수 때문에 약간 다릅니다. 이러한 모든 불완전성은 액적 볼륨의 변동을 유발하여 OLED 패널의 각 서브 픽셀에 침착 된 유기 화합물의 체적의 변화를 야기하며, 이는 증착 된 막 두께의 비례 변화를 유도한다. 이러한 두께 변화는 잉크젯 인쇄 된 OLED 디스플레이 (Madigan 외)에서 패널 휘도의 불균일성의 가장 중요한 원인 중 하나이다. 이 패널 휘도의 불균일성을 “무라 효과 (mura effect)”라고 합니다.

mura 문제를 해결하는 한 가지 방법은 평균의 법칙을 사용하는 것입니다. 이것이 의미하는 바는 물방울 부피의 양수 및 음수 오차를 평균화하기 위해 서로 다른 노즐의 방울을 무작위로 결합 (인트라 – 픽셀 혼합)하여 물방울 볼륨 오류를 거의 0에 가깝게 만드는 것입니다.

FLOW-3D에서 이 픽셀 내 혼합 과정을 시뮬레이션하기 위해 입력 압력 펄스 진폭에 임의성이 추가 되었습니다. 최대 변동폭은 원래 압력 진폭 1.7MPa의 상단에 200kPa로 설정되었습니다. 아래의 애니메이션은 무작위성이 없는 초기 사건과 무작위성을 비교 한 사례를 보여줍니다.

압력 펄스의 무작위 대 정진폭의 애니메이션을 비교한 영상.

예상대로 액적 생성은 액적 형태, 액적 크기, 액적 간격 및 비행 속도면에서 일정하지 않습니다. 그러나 오른쪽의 일정한 진폭의 경우 균일한 모양과 크기의 균일한 간격의 물방울이 생성됩니다.

결론

이 블로그 기사에서 FLOW-3D는 연속 잉크젯 프린팅프로세스에 관련된 Physics에 대한 이해를 증진시키는 데 사용되었습니다. 강력한 표면 장력 모델 덕분에 FLOW-3D는 다양한 첨단 방울 생성 및 증착 응용 분야에도 유용합니다. 예를 들어 OLED 인쇄의 경우, FLOW-3D는 픽셀 내 혼합 동안 액적에서 발생하는 변동을 효과적으로 이해하여 OLED 패널의 품질을 향상시킬 수 있습니다.

연속 잉크젯 프린팅

연속 잉크젯 프린팅

연속 잉크젯 프린팅은 150 년 동안 축적 된 기술입니다. 간단히 말해, 프린트 헤드가 작동 중일 때 유체의 연속 흐름이 있는 방울 생성방법입니다. 이 개념이 1867 년 Lord Kelvin에 의해 처음으로 특허 되었지만, 1951 년 Siemens에서 최초의 상용 장치가 80 년이 지난 뒤에 나타났습니다. 초기에 이 기술은 만료 날짜, 배치 코드, 이름 및 제품 로고와 같은 다양한 정보를 고속, 비접촉식으로 인쇄하는데 사용되었습니다.

연속 잉크젯 프린팅은 탱크에서 액체를 마이크로 미터 크기의 노즐 뱅크로 향하게 하는 고압 펌프로 시작하여 진동하는 압전 크리스탈의 진동에 의해 결정되는 주파수에서 연속적으로 작은 방울이 생성됩니다. 특히 프린팅 응용분야의 경우, 잉크 방울은 외부 전계의 존재로 인해 연속 흐름에서 편향되고 있습니다. 이는 프린팅 매체의 표면 상에 패턴을 생성한다. 이 기술의 장점 중 일부는 높은 처리량, 높은 방울 속도, 프린트 헤드에서 기판까지의 거리 증가 및 연속 작동으로 인한 노즐 막힘현상이 없습니다. 이러한 긍정적인 특성 덕분에 이 기술은 요즘 종이의 일반 인쇄 잉크에서 다양한 재료 (심지어 살아있는 세포)를 증착하고 현대적인 OLED (Organic Light Emitting Diode) 디스플레이를 만들기까지 발전했습니다.

이 블로그에서는 Flow Science의 CFD 엔지니어인 Ioannis H. Karampelas가 진행 한 FLOW-3D 시뮬레이션 연구에 이어 연속 잉크젯 인쇄의 물리학에 대해 논의 할 것입니다. 그의 작업을 더욱 발전시키면서  OLED 프린팅업계에서 잉크젯을 적용하여 영감을 얻은 방울 생성과정에 무작위성을 부여하고 결과로 나온 방울의 변형을 설명합니다.

비말 생성

노즐 크기 선택

방울 생성을 위한 시스템 파라미터를 계산하기 위해 Rayleigh jet 불안정성 이론을 사용할 수 있습니다. 이 이론에 따르면, 드롭 형성으로 이끄는 제트 해체에 대한 자극의 최적 파장 (λ)은 대략 다음과 같습니다.

작동 주파

최적의 드롭 생성 빈도는 최적의 파장에서 직접 계산할 수 있습니다.

위의 이론과 알려진 산업 파라미터를 사용하여 노즐 반경 125 μm 및 10 kHz의 주파수를 사용하여 FLOW-3D에서 계산 모델을 설정했습니다.

FLOW-3D 결과 검증

FLOW-3D는 강력하고 정확한 표면 장력 모델로 인해 연속 잉크젯 인쇄와 같은 액적 기반 프로세스를 시뮬레이션하는데 적합합니다.

아래의 시뮬레이션 결과에서 10 kHz의 주파수에서 진동하는 입력 압력 펄스를 볼 수 있습니다. 평균 물방울 크기는 약 240 μm이며 이론적으로 추정된 물방울 크기 인 약 250 μm와 잘 일치합니다.

물방울 형성 ​​및 입력 압력 펄스를 강조하는 FLOW-3D의 시뮬레이션 결과

OLED Mura 문제

이론 상으로는 동일한 진폭의 압력 펄스를 생성하는 것이 가능합니다. 그러나 OLED의 잉크젯 인쇄와 같은 산업용 어플리케이션에서 모든 노즐은 본질적으로 불완전한 제조 또는 작동 매개 변수 때문에 약간 다릅니다. 이러한 모든 불완전성은 액적 볼륨의 변동을 유발하여 OLED 패널의 각 서브 픽셀에 침착 된 유기 화합물의 체적의 변화를 야기하며, 이는 증착 된 막 두께의 비례 변화를 유도한다. 이러한 두께 변화는 잉크젯 인쇄 된 OLED 디스플레이 (Madigan 외)에서 패널 휘도의 불균일성의 가장 중요한 원인 중 하나이다. 이 패널 휘도의 불균일성을 “무라 효과 (mura effect)”라고 합니다.

mura 문제를 해결하는 한 가지 방법은 평균의 법칙을 사용하는 것입니다. 이것이 의미하는 바는 물방울 부피의 양수 및 음수 오차를 평균화하기 위해 서로 다른 노즐의 방울을 무작위로 결합 (인트라 – 픽셀 혼합)하여 물방울 볼륨 오류를 거의 0에 가깝게 만드는 것입니다.

FLOW-3D에서 이 픽셀 내 혼합 과정을 시뮬레이션하기 위해 입력 압력 펄스 진폭에 임의성이 추가 되었습니다. 최대 변동폭은 원래 압력 진폭 1.7MPa의 상단에 200kPa로 설정되었습니다. 아래의 애니메이션은 무작위성이 없는 초기 사건과 무작위성을 비교 한 사례를 보여줍니다.

압력 펄스의 무작위 대 정진폭의 애니메이션을 비교한 영상.

예상대로 액적 생성은 액적 형태, 액적 크기, 액적 간격 및 비행 속도면에서 일정하지 않습니다. 그러나 오른쪽의 일정한 진폭의 경우 균일한 모양과 크기의 균일한 간격의 물방울이 생성됩니다.

결론

이 블로그 기사에서 FLOW-3D는 연속 잉크젯 프린팅프로세스에 관련된 Physics에 대한 이해를 증진시키는 데 사용되었습니다. 강력한 표면 장력 모델 덕분에 FLOW-3D는 다양한 첨단 방울 생성 및 증착 응용 분야에도 유용합니다. 예를 들어 OLED 인쇄의 경우, FLOW-3D는 픽셀 내 혼합 동안 액적에서 발생하는 변동을 효과적으로 이해하여 OLED 패널의 품질을 향상시킬 수 있습니다.

São Roque Hydro Power Plant

São Roque Hydro Power Plant

 

This article was contributed by Diego David Baptista de Souza, Alexandre Charles Allain, and Anaximandro Steckling Muller of Engevix Engenharia S/A.

 

The São Roque hydroplant project는 브라질의 카노아스 강 산타 카타리나 주에 있습니다. 롤러 압축 콘크리트 댐은 141,9MW의 설치 용량을 허용합니다. 그림 1은 프로젝트의 위치를 보여 줍니다.

Figure 1 – São Roque hydro power plant location

제트 편향은 낮은 홍수에 대해 배수로의 첫번째 단계에서 발생하며 불안전한 흐름과 진동을 일으킵니다. 수치 모델링은 제트 편향을 제한하는 첫 단계의 형상을 최적화하는데 사용될 수 있습니다. 편향이 발생하는 임계 방전을 최소화하는 기하학적 구조를 찾기 위해 여러 번의 시뮬레이션이 수행되었습니다. 처음 계단식 배수로를 따라 설치된 흐름을 스키핑 흐름이라 한다. 유량 시스템이 불안정성을 보이기 시작하면서 결국 제트가 임계 유량으로 이륙할 때까지 저수지의 수위가 점차적으로 낮아지게 됩니다.

시뮬레이션한 모든 기하학적에서 고정 매개변수인 1.2m의 정규 계단높이와 53°의 경사를 포함합니다. 그림 2와 3은 두개의 기하학적 구조를 보여 줍니다. 수치 모델에는 TruVOF 기법을 이용한 공기 침투 및 자유 표면 추적이 포함됩니다. 색상 범례는 물의 농도를 나타내며, 물 1은 100% 물이고 0은 100% 공기입니다. 분석은 y축에 있는 단일 2D블록인 spillway의 단면 모델을 사용하여 수행되었습니다.
jet takeoff 에 따라 해당되는 유량을 사용해 관련 형상을 비교하고 가장 효율적인 형상을 결정할 수 있습니다. 제트 편향에 해당하는 임계 유량은 탱크 레벨이 낮아지는 속도와 시뮬레이션에 사용되는 메쉬의 크기에 따라 달라지게 됩니다.

Spillway Water Profile and Energy Dissipation

Jet Deflection on Upper Spillway

그림 2는 ‘생성자’ 프로파일과 단계별 섹션 사이의 전환 위치에 대한 2개의 기하학적 설계(상단과 하단)를 비교하여 보여줍니다. 좌측에는 흐름이 스키밍 체제에 있고 중앙에서 탱크 레벨이 점차 낮아지면서 플럭스가 동요되기 시작합니다. 우측에는 지속적인 상태 방출과 함께 jet takeoff 가 표시되어 있습니다.

Figure 2 – Comparison of 2 geometric designs         

Figure 3 – Spillway water and energy profiles

Figure 4 – Turbulent energy dissipation on stepped spillway         

발생 가능한 최대 홍수의 양에 대해 계단식 배수로와 에너지 분산이 평가되었습니다. 표준 단계는 공기 침투 모델과 함께 FLOW-3D와 비교했습니다. 그림 3은 수치 모델과 이론 모델 모두의 결과를 나타내는데 이 현상을 평가하기 위해 FLOW-3D에 단면 모델이 적용되었습니다.
수치 시뮬레이션으로 얻은 Water의 프로필은 공기 흡입을 고려할 때 이론적 모델과 잘 맞습니다. 에너지 프로필은 이론적 모델에서 수렴적인 결과로 약간의 차이가 나타납니다. 이러한 차이는 단계별 채널이 시작되기 전에 Creager프로필의 수두손실을 무시하는 것과 같은 일부 이론적 가정의 결과일 수 있습니다. 다운 스트림에서 유출되는 에너지 프로필은 유출되는 유압 점프로 인해 떨어지게 됩니다. 그림 4는 FLOW-3D의 난류 에너지 소산을 나타냅니다.

Flow Distribution at Turbine Entrance

Figure 5 – Flow trough penstocks upstream turbine entrance

물은 높이는53m이고 총 방출량이333 m3/s인 동일한 3개의 penstock를 통해 전달됩니다. 그 터빈들은 수직 축을 가진 Francis 타입입니다. penstock하단에는 플럭스가 터빈으로 유도되기 전 마지막 곡선 뒤에 남아 있습니다. 이 수평 부분은 터빈에 도달하기 전에 흐름을 안정화시키는데 필요합니다. 필요한 길이와 속도 및 압력 분포의 작동 방식을 결정하기 위해 수치 모델링이 사용되었습니다.
업 스트림 경계 조건은 유량 소스로 설정되며 물 흡입구 끝에 위치합니다. 하류인 터빈 입구에는 특정 압력이 설정되어 있어 Bernoulli방정식이 사용됩니다. 수두 손실은 이론적으로 계산되었고 이 등식에서 제외되었습니다. 마지막으로, 거칠기를 보정하여 수치모델과 이론 계산에서 헤드 손실이 동일하도록 2mm의 거칠기가 설정되었습니다. 이는 강철 penstock의 거칠기와 잘 일치합니다. 또한 메쉬 크기는 0.5m의 셀로 설정되었습니다.

이 세가지 구성은 모두 터빈 입구 바로 앞에 위치한 크로스 섹션의 하부에서 더 높은 속도를 보여 줍니다. 흐름은 단면 1과 단면 2사이에서 많은 변화는 없었습니다. 실제로 깊이 평균 속도와 압력 분포 측면에서 전체 결과는 직경이 전환된 직후에 흐름이 이미 안정화되었음을 나타냅니다.  구성 3에서 속도 분포는 수평 단면을 따라 계속 발전한다는 것은 흥미로운 사실입니다. 따라서, 이 수평적인 penstock의 길이를 증가시킬 필요가 없는 것처럼 보였습니다. 또한, 이것은 비용과 수두손실을 상당히 증가시킬 것입니다. 따라서 초기 프로젝트의 개요는 최종 프로젝트를 위해 그대로 유지되었습니다. 이 시뮬레이션은 수치 모델이 의사 결정 지원을 위한 효율적이고 빠른 도구임을 입증하게 됩니다.

Draft Tube Exit

그 draft tube는 운하의 흐름을 분산시킵니다. 하지만, 갑작스런 단면의 확장으로 인해, 흐름 체제는 난류와 수두 손실의 상당한 확산으로 인해 변화하게 됩니다. 수치 모델을 사용하여 수두손실을 확인할 수 있습니다.

상류 경계조건은 체적 흐름 속도로 설정되었고 draft tube의 수문에 위치합니다. 하류에서는 정상 작동 수위와 동등한 압력이 설정되었습니다. 메쉬 크기는 0.5m로 설정되었습니다.

이 수치 모델은 14cm의 수두 손실을 초래하는 반면, 이론적인 계산은 16.7cm로 비교적으로 수렴하고 있습니다. 3D수치 해석을 사용하면 수두손실을 최소화하는 기하학적인 최적화를 할 수 있습니다.

Figure 6 – Downstream view of the 3 units’ draft tube exit with the FAVOR™ option

Figure 7 – Cross section of the draft tube exit and tailrace channel in terms of velocity magnitude and vectors

Conclusions

수치적 모델링은 수력학 엔지니어에게 유용한 도구이고 FLOW-3D와 같은 패키지는 매우 효율적인 도구입니다. 또한 솔루션 및 최적화를 통해 비용을 절감할 수 있습니다. 저자들의 경험에 따르면 다양한 문제에 있어 3차원 모델링은 훌륭한 옵션이며 물리적 모델링과 함께 추가 도구로 사용될 수 있습니다. 때때로, 그것은 실제 모델을 대체할 수도 있는데, 그것은 São Roque HPP의 경우였습니다. 또한 3D 수치해석 최적화를 통해 물리적 모델을 설계하는데 도움이 될 수 있습니다.

 

Aerial Landslide Generated Wave Simulations

Aerial Landslide Generated Wave Simulations

Aerial Landslide Generated Wave(ALGW)는 수역에 영향을 미치는 빠른 슬라이드의 결과이다. 이것은 암석에 의해 생성된 작은 파도 이거나, 3000만 입방 미터의 암석으로 인한 500m를 초과하는 파도 일 수도 있다.
공학적 관점에서 보면 ALGW는 근접한 해안을 따라 인간이 거주하는 인구/자산이 있는 수역에서 발생할 때 큰 관심을 가진다. 여기서 파동이 발생하면 해안선이 파손되고 홍수가 날수 있으며, 댐붕괴로 인한 사망까지 일으킬 수 있다(Müller-Salzburg, 1987). 결과적으로, ALGW에 의해 야기되는 최대 파도 상승을 예측하는 것은 경제적, 환경적, 안전상의 이유로 매우 중요합니다.
안타깝게도 분석적인 솔루션이 없는 매우 복잡한 문제로, 유체 역학적인 측면에서뿐만 아니라 지질학적인 관점(즉, 크기/기하학적인 슬라이드의 밀도 프로파일)에서도 마찬가지입니다. 이와 같이, 대부분의 현장 별 ALGW 최대 파형 예측은 확장된 물리적 모델을 사용하여 평가되었다. 일부는 전산유체역학(CFD) 소프트웨어를 기반으로 할 수도 있지만 비용이 많이 들며, 특히 풀 스케일 3차원 문제의 경우 정확성에 대한 논쟁의 대상이 되고 있습니다.
그러나 컴퓨터 하드웨어와 CFD소프트웨어가 계속 발전함에 따라 이제 CFD를 사용하여 ALGW를 실제로 시뮬레이션할 수 있게 되었습니다. 이와 같이 본 연구는 고 충실도의 물리적 모델 데이터를 FLOW-3D와 비교하여 ALGW를 CFD시뮬레이션을 검증하기 위한 지속적인 노력으로 진척시키는 것을 목표로 한다.
다음 절에서는 실제 및 수치 모델 설정에 대한 개요를 제공한다. 뿐만 아니라, 생성된 데이터와 간단한 비교를 제공한다.

Experimental Setup
물리적 실험은 Northwest Hydraulic Consultants 노스 밴쿠버, 캐나다 실험실에서 만들어졌고 실험을 거쳤다. 그것은 30° 경사의 서쪽 벽을 가진 0.5미터 폭의 수로, 45°의 경사진 동쪽 벽, 그리고 두개의 북쪽과 남쪽 측면에 수직 벽, 그리고 1.025m의 수평 단면을 가진 0.610m 너비의 수로로 구성되었다. ALGW를 생성하고 평가하기 위해, 45° 경사 노즈를 가진 0.177×0.305×0.305m의 아크릴 박스를 사용한 6초 시험을 사용했다.
이 슬라이드를 놓았을 때, 슬라이드는 (중력에 의해) 0.607m 심층수에 충돌하기 전에 서쪽 경사면에서 0.768m 아래로 이동했다. 그 후, 물을 통해 또 다른 1.05m를 이동하여 정지 블록을 치기 시작했다. 슬라이드 가속 및 변위뿐만 아니라 파고 높이는 6 초 실험 전체에 대해 100Hz의 주파수에서 기록되었다. 이 데이터를 수집하는 데 사용 된 도구는 다음과 같다.

  • 컴퓨터화된 데이터 수집 시스템
  • 슬라이드의 시간에 따라 이동 한 거리를 측정하는 문자열 가변 저항기
  • 슬라이드 가속도를 측정하는 1 차원 가속도계
  • 물의 주요 본체 내에 배치 된 3 개의 1 차원 커패시턴스 웨이브 – 프로브
  • 웨이브 런업을 캡처하기 위해 동쪽 경사면을 따라 사용되는 저항 사다리꼴 웨이브 프로브
  • 타이밍 스위치 캡처 슬라이드 릴리스 시간 사용
  • 흑백 비디오 카메라

테스트가 반복 가능하고 오작동이 발생하지 않았는지 확인하기 위해 테스트를 5 번 반복하고 각 장비에 대해 평균을 구했다.

Numerical Model Setup
물리적 실험의 전산화 된 3 차원 모델을 제작한 STL 파일을 FLOW-3D로 가져왔다. 일단 FLOW-3D에 들어간 3D 모델은 약 1,370 만개의 0.0075m 크기의 정사각형 셀로 이산화되었고, 벽을 둘러싸고있는 6 개의면 각각에 ‘wall’경계가 사용되었다.
슬라이드를 일반적인 이동 물체로 설정하고, 물리 모델로부터 수집 된 데이터(즉, 가속 및 변위 데이터의 후 처리)에 기초하여 속도가 주어졌다. 동서면 경사면의 표면 거칠기는 0.00025m으로 설정되었다. 모델링 된 유체는 293k의 물이었고, 동적 RNG 난류 모델이 기본 설정과 함께 사용되었다(implicit pressure solve; and, explicit viscous stress, free surface pressure, advection, moving object/fluid coupling solvers).
물리적 모델과 마찬가지로 FLOW-3D는 6 초의 시간을 시뮬레이트하지만 실제 모델과 같이 매 0.01 초가 아닌 0.02 초마다 데이터를 저장하였다(데이터 관리 관점에서 선택하였음).

Result

FLOW-3D 실험의 결과는 그림에 나와 있다. 4개의 웨이브 각각에 대해 실험 시간 동안 파고를 보여준다. 이와 같이, 제시된 파도 높이는 단순히 flume을 통해 전파되는 파도의 구현(즉, 2 차원의 경우에서 볼 수있는 것)이 아니라 오히려 여러 파도의 상호 작용으로 인한 파도 높이를 초래한다.

  • 슬라이드 충격시 발생하는 충격파(1차 신호)
  • 슬라이드 뒤의 충격파 충돌(2차 신호)
  • 북쪽, 동쪽, 서쪽 및 남쪽 벽에서의 웨이브 반사(3차 신호)

또한 길이 방향의 FLOW-3D 데이터(중심선에서)를 실제 모델 비디오 위에 겹쳐서 자유 표면의 FLOW-3D 글로벌 예측을 평가했다. 이것은 아래의 동영상에서 볼 수 있다.
그림과 위의 비디오를 보면 FLOW-3D 데이터가 웨이브 프로브 1, 2 및 3의 경우 물리적 데이터를 매우 잘 일치한다는 것을 알 수 있다. 하지만 웨이브 프로브 4에 대해서는 정확도가 떨어진다.
FLOW-3D 시간 데이터와 관련된 오류는 각 웨이브 프로브에 대한 RMSE (root-mean-square-error)를 취하여 평가된다.

Discussion
이 조사에서 실제 모델의 고 충실도 데이터는 ALGW로 최대 파도 상승에 대한 FLOW-3D 예측과 비교되었다. RNG 모형의 기본 설정을 사용하여 FLOW-3D는 주요 수역 내에서 파고를 정확하게 재현 할 수 있었다. 그러나 최대 파동은 약 43%가 넘었다.
최대 웨이브 런업을 줄이기 위해 몇 가지 대안인 FLOW-3D 물리 설정이 사용되었다. 그러나 43 % 이하로 떨어지는 것은 불가능했다. 이러한 대체 시뮬레이션에 대한 주목할만한 관찰은 다음과 같다.

  • first-order momentum advection scheme의 0.01m 메쉬는 최대 파동 상승 오차가 96% 인 반면 동일하게 0.0075m 메쉬의 오차는 130%였다. 그러나 second-order로 변경하면 0.01 m 및 0.0075 m 메시의 경우 각각 55% 및 43%의 오차가 발생한다. 또한 메쉬 셀 크기를 0.005m으로 줄이면 80%의 오차가 발생한다.
  • 이 테스트 케이스에서 가장 중요한 매개 변수는 momentum advection scheme이다. 평균적으로 second-order를 사용하면 first-order대비 오차가 약 50% 감소한다.
  • FLOW-3D의 MP 버전을 사용하여 0.005m의 메쉬 셀 크기를 사용해야 한다. 해석 시 CPU 시간은 33 시간이었다. 비교를 위해 FLOW-3D의 SMP 버전은 0.0075m의 메쉬 셀 크기로 시뮬레이션을 실행하는 데 26시간이 필요했지만 MP 버전은 4.5시간 밖에 걸리지 않았다.

[1] 3.5GHz 8 코어 AMD FX-8320 프로세서에서 약 6초의 시뮬레이션 시간이 대략 26시간 소요되었다.

References
Fritz, H. M., Hager, W. H., & Minor, H.-E. (2004). Near Field Characteristics of Landslide Generated Impulse Waves. Journal of Waterway, Port, Coastal & Ocean Engineering, 130(6), 287–302. doi:10.1061/(ASCE)0733-950X(2004)130:6(287)
Miller, D. J. (1960). Giant Waves in Lituya Bay Alaska (Geological Survey Professional Paper No. 354-C). Washington, D.C.: United States Government Printing Office.
Müller-Salzburg, L. (1987). The Vajont catastrophe— A personal review. Engineering Geology, 24(1–4), 423–444. doi:10.1016/0013-7952(87)90078-0

CFD Predicts Air Gap and Wave Impact Loads of Offshore Structures

CFD Predicts Air Gap and Wave Impact Loads of Offshore Structures

 

This article was contributed by Anup Paul & Chris Matice of Stress Engineering Services1.

 

연안 플랫폼 갑판 아래의 간격은 중요한 설계 매개변수이며 극한 설계 조건에서 요구되는 최소 공극 격차에 의해 결정된다. 반잠수재 및 다리구조물과 같은 구조의 경우 최소 공극과 갑판에 대한 충격영향을 예측하는 것은 어렵다.

Dynamic response of a spar with a 12 m wave

파도는 공극 설계에서 설명되어야 하는 플랫폼 다리와 상호작용으로 인해 상당한 비선형적 행동과 파장의 증폭을 보여준다. 극한의 환경에서 음의 공기 격차가 발생하는 경우 갑판 충격하중에 대한 예측이 중요해집니다. 석유 및 가스 생산이 더 깊은 물로 이동함에 따라 부양 장치가 필요하며 갑판 높이는 중량 및 안정성 요구사항에 따라 제한됩니다. 극한의 환경에서 이러한 구조물의 성능을 예측하는 데 있어 자유 표면 및 갑판 충격하중에 대한 구조물의 성능을 정확하게 예측하는 것이 중요합니다.

Computational Fluid Dynamics

CFD(전산 유체 역학)방법은 다양한 산업 분야에 광범위하게 적용되어 유체 흐름과 열 전달 특성을 나타냅니다. CFD는 VOF(Volume of Fluid) 모델과 함께 연안 플랫폼의 공극 차이와 파장 영향 부하를 예측하는데 효과적으로 사용할 수 있습니다.  VOF방법은 자유 표면 형상과 비선형 파형 동작을 정확하게 예측하는 데 사용할 수 있습니다. 부유식 시스템의 경우 CFD를 FEA와 결합하여 파형 충격 시 플랫폼의 동적 및 구조적 반응을 예측할 수 있습니다.

Wave Interaction of a SPAR Platform

Figure 1: Dynamic response of SPAR

그림 1은 10m및 20m파에 대한 SPAR의 동적 응답을 보여 줍니다. 두 파 모두 20초의 주기를 가지며 선형 파형 경계 조건을 사용하여 생성됩니다. SPAR은 질량 중심에 6도의 자유도를 가진 강체로 모형화 됩니다. 그림 2는 질량의 SPAR중심의 수직 변위를 보여 줍니다. 그림 3은 파형 상호 작용으로 인한 SPAR의 수평 방향 힘을 보여 줍니다.

Wave Impact on a Gravity Based Structure (GBS)

그림 4는 중력 기반 구조 (GBS)의 갑판에 대한 파동의 영향을 보여줍니다. 평균 수심은 151.1 미터이고 초기 공극은 21.7 미터입니다. 이 파도는 40 미터의 높이와 17 초의 주기를 가집니다. 그림 5는 상단부분의 웨이브 충격으로 인한 GBS의 수평 및 수직력을 보여줍니다. 힘의 급상승은 그림 4에서와 같이 GBS 전면의 파동과 갑판 상단의 2 차 충격에 대한 초기 충격과 일치합니다.

Figure 2: Vertical displacement of SPAR

Figure 3: Horizontal forces on SPAR   

Figure 4: Wave impact on GBS      .

Figure 5: Force history of GBS due to wave impact on deck

 

Anup Paul is an Associate with SES, specializing in fluid dynamic analysis of structures, products and processes

Chris Matice, Ph.D., P.E. is a Principal with SES and heads their Process Technology Group, specializing in fluid dynamic and structural evaluation of plant and equipment.

Learn more about the power and versatility of modeling coastal and maritime applications with FLOW-3D>

Detecting Porosity with the Core Gas Model

Detecting Porosity with the Core Gas Model

Producing High Quality Castings

 

Results options such as core gas flux, binder weight fraction and out-gassing rate can be analyzed using the core gas model

주조공장의 첫 번째 시험에서 주조 품질을 보장하기 위해 많은 선행 엔지니어링을 수행해야 합니다. 최근에는 금속 흐름, 응고, 미세 구조 진화 및 잔류 응력을 모델링하기 위한 수치 도구가 보편화되었습니다. 그러나 아직 완전히 다루어지지 않은 주조 결함 중 하나는 일반적인 코어 가스 불량 결함입니다. 이 문제의 물리학은 금속, 코어 및 바인더 사이의 복잡한 상호 작용을 포함합니다. 이를 해결하지 않으면 고철 수준이 높아질 수 있습니다. 대부분의 문제는 고온의 주입 온도를 사용하고 영향을 받는 영역에 벽체를 추가하여 문제를 관리하지만 완전히 해결할 수는 없습니다.

Designing the Optimum Break-Down

과거에는 재료 및 주조 엔지니어가 코어 가스 버블로 인해 다공성 결함 문제를 발견했을 경우 바인더 함량을 줄이거나 코어 환기량을 늘리거나 코어 환기 시간을 늘리거나 코어를 미리 굽거나 하는 등 일련의 표준 문제를 해결할 수 있었습니다. 가스가 따라가는 경로를 보는 것은 불가능했기 때문에 이것은 한 부분을 완성하는 데 수주가 걸리는 긴 인출 과정이었습니다. 그리고 다른 부분에 문제가 있을 때마다 반복해야 했습니다.

이 가공 일정을 단축해야 하는 시장 중심의 필요성 때문에 주조 시뮬레이션 소프트웨어가 개발되었습니다. 설계 및 제조에 모두 유용한 컴퓨터 기반 모델링을 통해 엔지니어는 실제 비용을 낭비 없이 다양한 접근 방식을 테스트 할 수 있습니다. 주조 공장이 환기 설계에 시뮬레이션을 적용 할 수 있도록 Flow Science는 주조 해석 기능에 핵심 가스 모델을 추가했습니다.

GM engine block water jacket, showing binder weight fraction

Applying CFD Methods to Core Gas Flow

수지 기반 바인더의 화학적 복잡성으로 인해 샌드 코어 열 차단 후 가스가 어디서 어떻게 흐르는 지 이해하는 것은 복잡합니다. 그러나 Flow Science는 여러 그룹과 협력하여 실험 데이터를 얻고 이를 수치 모델의 결과와 비교합니다. 이 회사는 General Motors, Graham-White Manufacturing 및 AlchemCast의 핵심 가스 유량 정보를 수집하여 알루미늄, 철 및 강철과 함께 사용되는 모래 수지 코어에 대한 실제 데이터를 얻었습니다.

GM Powertrain의 캐스팅 분석 엔지니어 인 David Goettsch 박사는 금속 주조물의 충진 및 응고 분석을 위해 15 년 동안 FLOW-3D를 사용했습니다. 새로운 코어 가스 모델은 설계 단계에서 자켓 코어 배출을 최적화하는 데 매우 유용합니다. 모든 요구 사항이 핵심 인화물에 있는 코어 박스에 vent tracks를 구현하기는 매우 어렵습니다.  “핵심 가스 배출에 대한 선행 분석 작업을 통해 시동 시 높은 스크랩률로 부터 벗어날 수 있습니다.”라고 그는 설명합니다. “아마도 프로세스 변경으로 문제가 해결 될 수 있습니다. 그러나 그 시점에 도달하려면 오랜 테스트 기간이 필요할 수 있습니다. “

현재 FLOW-3D에서 사용할 수 있는 코어 가스 모델을 통해 Goettsch는 다양한 삽입 및 배출 위치를 시도하고 글로벌 진단을 받을 수 있습니다. 가스가 얼마나 많이 발생하는지, 어디로 가는지, 금속 프런트가 따라 잡기 전에 얼마만큼 빠져 나오는지 확인하십시오.

Multi-Core Challenges

Core prints for casting with internal geometries

GM Powertrain jacket slab assembly

또 다른 노련한 주조공장 엔지니어인 Graham-White Manufacturing Co.의 Elizabeth Ryder는 가스 다공성은 항상 조사하기가 어려웠다고 주장했다. 그녀는 “특히 다중 코어의 경우, 어떤 코어가 문제의 원인인지 정확하게 찾아 내기가 어려웠으며 전체적인 시스템을 처리 하려고 했습니다. “

1700개의 부품으로 구성된 지속적인 생산으로, 그 중 일부는 연간 10,000개의 부품으로 구성되었으며, Graham-White는 시뮬레이션을 통해 제조 공정을 개선하는 데 매우 익숙했습니다.

Graham-White는 레이저 스캐닝으로 제작한 회주철 부품(약 3 x 4in)의 3D 모델로 작업하면서 평가를 위해 현재 vent 디자인을 제공했습니다. 이 탕구 디자인은 수평으로 분할된 금형에서 패턴 플레이트당 4개의 인상이 포함되었으며, 각 인상은 각 코어에 대한 vent가 있습니다. 중앙 sprue는 2 초 이내에 각각의 몰드를 충진할 수 있게 해주었습니다.

FLOW-3D를 이용한 시뮬레이션은 주입률을 확인시켜 주었지만, 또한 한 코어의 배출량이 충분하지 않다는 것을 보여주었다. Graham-White는 기존 분출구를 통해 가스를 더 많이 공급할 수 있도록 코어에 깊은 구멍을 뚫기 시작했습니다. 새로운 vent 디자인으로 전환한 이후, 회사는 코어 블로우 스크랩을 약 30% 감소 시켰습니다.

Ryder는 FLOW-3D 결과가 디자인 초점을 결정하는데 도움을 주었고, 어떤 코어 (멀티 코어 디자인)가 문제였는지, 코어의 어느 부분이 문제의 근원인지에 대해 파악할 수 있었습니다.

Learn more about the versatility and power of modeling metal casting processes with FLOW-3D Cast>

Interaction Between Waves and Breakwaters

Interaction Between Waves and Breakwaters

This article is an adapted version of an article  published in the journal of the Engineering Association for Offshore and Marine in Italy by Fabio Dentale, E. Pugliese Carratelli, S.D. Russo, and Stefano Mascetti. The first three authors are users at the University of Salerno; Mr. Mascetti is an engineer at XC Engineering, Flow Science’s associate for Italy and France.

 

방파제의 설계는 복잡한 자연 시스템 (바다와 해안)과 인공 구조물 (방파제)의 상호 작용에 대한 완전한 이해가 필요합니다. 일반적으로 설계 작업은 광범위한 물리적 모델링을 수반하므로 비용이 많이 들고 시간이 오래 걸릴 수 있습니다. 최근까지 방파제의 복잡한 측면은 상세한 수치 시뮬레이션에 너무 어려웠습니다. 이것은 물이 비정상적인 동작으로 복잡한 경로를 통해 흐르는 콘크리트 또는 암석 블록으로 구성된 방파제의 경우 특히 그렇습니다.

컴퓨팅 기술의 진보로 수치, 물리적 조사 간의 격차가 좁혀졌습니다. 상호 작용하는 개별 블록으로 구성된 견고한 구조를 정확하게 표현할 수 있으므로 블록 사이의 빈 공간 내에 수치적으로 유동 영역을 생성 할 수 있습니다. 이것은 방류수가 균일한 다공성 매질로 근사되는 Classical Darcy 주제에 고려될 수 없는 대류항 및 난류의 영향을 포함한 전체 유체 역학적 거동의 영향을 평가할 수 있게 합니다

Modeling Rubble Mound Breakwaters

The following examples describe cases where rubble mound breakwaters are modelled on the basis of their real geometry, taking into account the hydrodynamic interactions with the wave motion.

잔재물 분쇄기 모델링

다음의 사례는 잔해 분쇄물이 파도 운동과의 유체 역학적 상호 작용을 고려하여 실제 형상을 기반으로 모델링된 경우를 설명합니다.

Figure 1: Artificial blocks

Figure 2a: Submerged Breakwaters

Figures 2b and 2c: Emerged Breakwater – Accropode regular & Accropode irregular

 

방파제의 개략적인 표현을 고려하여 구체 세트로 재현한 것으로 the cube, the modified cube, the antifer, the tetrapod, the accropode, the accropode II, the coreloc, the xbloc,and the xbloc base 등과 같은 일반적으로 사용되는 인공 블록을 고려하기 위해 개발되었습니다. (그림 1).

방파제는 물에 잠기거나 잠긴 경우에는 문헌에 나와 있는 표준 실험식을 사용하여 크기를 결정하고 실제 기하학적 패턴을 따르는 전체 크기, 구조 및 물리적 모델링과 같이 수치적으로 구성했습니다 (그림. 2).

제안된 절차의 품질을 검증하기 위해 침수된 방파제에 대해 세 가지 기하학적 구조를 고려했다. 즉, 부유, 다공성, 고형물과 부유물(그림 2a)이 출현한 방파제의 경우, 두 가지 다른 기하학적 구조를 사용했다(Fig. 2b – 2c).

방파제가 결정되면 기하학적 구조을 FLOW-3D로 가져 와서 유체 역학적 작용을 평가 및 Wave propagation의 연구를 위해 테스트했습니다. 시뮬레이션은 RNG 난류 모델과 coarse격자 안쪽에 중첩된 미세한 격자가 있는 전산메쉬를 사용하여 Navier-Stokes 방정식을 3 차원으로 통합하여 수행되었습니다.

수중 장벽 (계산 영역: 90 × 1.9 × 6.5m)의 경우, 포함된 메쉬 블록은 동일한 크기 (0.30 × 0.27 × 0.30m)의 46,200 개의 요소로 구성되며 중첩된 블록은 2,353,412 개의 요소로 구성하였습니다(0.061 × 0.055 × 0.061m).

방파제에도 동일한 기준이 적용되었습니다. 포함된 격자 블록은 150,000개의 요소(0.50×0.20×0.30m)로 구성되며, 중첩된 블록은 2,025,000개의 요소(0.10× 0.10×0.10m)로 생성되었습니다.

Figures 3a and 3b: Mesh views of submerged breakwater (3a above) & emerged breakwater (3b below)

Figures 4b: Emerged Breakwater – Accropode regular

Figures 4a: Submerged breakwater

결과 중 일부는 다음 이미지에 요약되어 있습니다. 그림 4에서 3 차원 영역의 2 차원 단면을 따른 압력 및 난류 에너지가 나타납니다. 그림 5에는 서로 다른 순간에 잡힌 자유 표면의 3 차원 형상이 나타나있습니다.

유동경로를 따라 개별 솔리드 요소의 윤곽의 유체 역학에 의한 유동 변화는 쉽게 검출 가능합니다. 이것은 자유 표면의 3 차원 재구성에서 가장 잘 드러나며 (그림 5) 방파제에 대한 파동 작용의 효과가보다 자세하게 표현됩니다.

Figures 5a: Submerged breakwater.

Figures 5b: Emerged Breakwater – Accropode regular.

Figures 5c: Emerged Breakwater – Accropode irregular  

Conclusions

잠수함이나 해상 구조물 간의 상호 작용을 정확히 표현하기 위한 Navier-Stoke기반 수치 시뮬레이션을 활용한 방법, 그리고 유체 움직임이 입증되었습니다. 시뮬레이션은 난류 시뮬레이션을 위한 RANS와 자유 표면 계산을 포함하는 첨단 컴퓨터 유체 동적 소프트웨어 시스템(FLOW-3D)을 사용하여 수행되었습니다.

이 결과는 블록 사이의 경로 내에서 유체 운동의 상세한 그림을 제공함으로써 기존의 흐름 방법보다 더 정확한 시뮬레이션을 제공함을 보여줍니다. 블록을 사용하여 기존의 누설 흐름 방법보다 더 정확한 시뮬레이션을 제공합니다. 원칙적으로 모든 관련 부품(필터, 코어 및 토우)에서 구조물이 물에 잠기거나 나타나는 경우 시뮬레이션이 가능하며 제한은 없습니다.

Further studies will be aimed at assessing the stability of individual blocks through the use of the Moving Object model in FLOW-3D.

 

Additive Manufacturing & Welding Bibliography

적층제조 및 용접 해석 참고문헌

아래는 당사의 적층 제조 및 용접 참고 문헌에 수록된 기술 문서 모음입니다. 이 모든 논문에는 FLOW-3D AM 결과가 나와 있습니다. FLOW-3D AM을 사용하여 적층 제조, 레이저 용접 및 기타 용접 기술에 있는 프로세스를 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아봅니다.

Additive Manufacturing & Welding Bibliography

Below is a collection of technical papers in our Additive Manufacturing and Welding Bibliography. All of these papers feature FLOW-3D AM results. Learn more about how FLOW-3D AM can be used to successfully simulate the processes found in Additive ManufacturingLaser Welding, and other welding technologies.

61-20       Raphael Comminal, Wilson Ricardo Leal da Silva, Thomas Juul Andersen, Henrik Stang, Jon Spangenberg, Influence of processing parameters on the layer geometry in 3D concrete printing: Experiments and modelling, 2nd RILEM International Conference on Concrete and Digital Fabrication, RILEM Bookseries, 28; pp. 852-862, 2020. doi.org/10.1007/978-3-030-49916-7_83

60-20       Marcin P. Serdeczny, Raphaël Comminal, Md. Tusher Mollah, David B. Pedersen, Jon Spangenberg, Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing, Additive Manufacturing, 36; 101454, 2020. doi.org/10.1016/j.addma.2020.101454

58-20       H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy, Mechanistic models for additive manufacturing of metallic components, Progress in Materials Science, preprint, 2020. doi.org/10.1016/j.pmatsci.2020.100703

55-20       Masoud Mohammadpour, Experimental study and numerical simulation of heat transfer and fluid flow in laser welded and brazed joints, Thesis, Southern Methodist University, Dallas, TX, US; Available in Mechanical Engineering Research Theses and Dissertations, 24, 2020.

48-20     Masoud Mohammadpour, Baixuan Yang, Hui-Ping Wang, John Forrest, Michael Poss, Blair Carlson, Radovan Kovacevica, Influence of laser beam inclination angle on galvanized steel laser braze quality, Optics and Laser Technology, 129; 106303, 2020. doi.org/10.1016/j.optlastec.2020.106303

34-20       Binqi Liu, Gang Fang, Liping Lei, Wei Liu, A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM), Applied Mathematical Modeling, 79; pp. 506-520, 2020. doi.org/10.1016/j.apm.2019.10.049

27-20   Xuesong Gao, Guilherme Abreu Farira, Wei Zhang and Kevin Wheeler, Numerical analysis of non-spherical particle effect on molten pool dynamics in laser-powder bed fusion additive manufacturing, Computational Materials Science, 179, art. no. 109648, 2020. doi.org/10.1016/j.commatsci.2020.109648

26-20   Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka and Akihiko Chiba, Isothermal γ → ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing, Journal of Materials Science & Technology, 50, pp. 162-170, 2020. doi.org/10.1016/j.jmst.2019.11.040

21-20   Won-Ik Cho and Peer Woizeschke, Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal, International Journal of Heat and Mass Transfer, 152, art. no. 119528, 2020. doi.org/10.1016/j.ijheatmasstransfer.2020.119528

06-20   Wei Xing, Di Ouyang, Zhen Chen and Lin Liu, Effect of energy density on defect evolution in 3D printed Zr-based metallic glasses by selective laser melting, Science China Physics, Mechanics & Astronomy, 63, art. no. 226111, 2020. doi.org/10.1007/s11433-019-1485-8

04-20    Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

02-20   Dongsheng Wu, Shinichi Tashiro, Ziang Wu, Kazufumi Nomura, Xueming Hua, and Manabu Tanaka, Analysis of heat transfer and material flow in hybrid KPAW-GMAW process based on the novel three dimensional CFD simulation, International Journal of Heat and Mass Transfer, 147, art. no. 118921, 2020. doi.org/10.1016/j.ijheatmasstransfer.2019.118921

01-20   Xiang Huang, Siying Lin, Zhenxiang Bu, Xiaolong Lin, Weijin Yi, Zhihong Lin, Peiqin Xie, and Lingyun Wang, Research on nozzle and needle combination for high frequency piezostack-driven dispenser, International Journal of Adhesion and Adhesives, 96, 2020. doi.org/10.1016/j.ijadhadh.2019.102453

101-19   Wei Xing, Di Ouyang, Zhen Chen and Lin Liu, Effect of energy density on defect evolution in 3D printed Zr-based metallic glasses by selective laser melting, Science China Physics, Mechanics & Astronomy, 63, art. no. 226111, 2019.

88-19   Bo Cheng and Charles Tuffile, Numerical study of porosity formation with implementation of laser multiple reflection in selective laser melting, Proceedings Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing, ASME 2019 14th International Manufacturing Science and Engineering Conference, Erie, Pennsylvania, USA, June 10-14, 2019. doi.org/10.1115/MSEC2019-2891

87-19   Shuhao Wang, Lida Zhu, Jerry Ying His Fuh, Haiquan Zhang, and Wentao Yan, Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition, Optics and Lasers in Engineering, 127:105950, 2019. doi.org/10.1016/j.optlaseng.2019.105950

78-19   Bo Cheng, Lukas Loeber, Hannes Willeck, Udo Hartel, and Charles Tuffile, Computational investigation of melt pool process dynamics and pore formation in laser powder bed fusion, Journal of Materials Engineering and Performance, 28:11, 6565-6578, 2019. doi.org/10.1007/s11665-019-04435-y

77-19   David Souders, Pareekshith Allu, Anurag Chandorkar, and Ruendy Castillo, Application of computational fluid dynamics in developing process parameters for additive manufacturing, Additive Manufacturing Journal, 9th International Conference on 3D Printing and Additive Manufacturing Technologies (AM 2019), Bangalore, India, September 7-9, 2019.

75-19   Raphaël Comminal, Marcin Piotr Serdeczny, Navid Ranjbar, Mehdi Mehrali, David Bue Pedersen, Henrik Stang, Jon Spangenberg, Modelling of material deposition in big area additive manufacturing and 3D concrete printing, Proceedings, Advancing Precision in Additive Manufacturing, Nantes, France, September 16-18, 2019.

73-19   Baohua Chang, Zhang Yuan, Hao Cheng, Haigang Li, Dong Du 1, and Jiguo Shan, A study on the influences of welding position on the keyhole and molten pool behavior in laser welding of a titanium alloy, Metals, 9:1082, 2019. doi.org/10.3390/met9101082

60-19   Binqi Liu, Gang Fang, Liping Lei, and Wei Liu, A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM), Applied Mathematical Modeling, in press, 2019. doi.org/10.1016/j.apm.2019.10.049

57-19     Shengjie Deng, Hui-Ping Wang, Fenggui Lu, Joshua Solomon, and Blair E. Carlson, Investigation of spatter occurrence in remote laser spiral welding of zinc-coated steels, International Journal of Heat and Mass Transfer, Vol. 140, pp. 269-280, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.06.009

53-19     Mohamad Bayat, Aditi Thanki, Sankhya Mohanty, Ann Witvrouw, Shoufeng Yang, Jesper Thorborg, Niels Skat Tieldje, and Jesper Henri Hattel, Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation, Additive Manufacturing, Vol. 30, 2019. doi.org/10.1016/j.addma.2019.100835

51-19     P. Ninpetch, P. Kowitwarangkul, S. Mahathanabodee, R. Tongsri, and P. Ratanadecho, Thermal and melting track simulations of laser powder bed fusion (L-PBF), International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi.org/10.1088/1757-899X/526/1/012030

46-19     Hongze Wang and Yu Zou, Microscale interaction between laser and metal powder in powder-bed additive manufacturing: Conduction mode versus keyhole mode, International Journal of Heat and Mass Transfer, Vol. 142, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.118473

45-19     Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, and Akihiko Chiba, Manipulating local heat accumulation towards controlled quality and microstructure of a Co-Cr-Mo alloy in powder bed fusion with electron beam, Materials Letters, Vol. 254, pp. 269-272, 2019. doi.org/10.1016/j.matlet.2019.07.078

44-19     Guoxiang Xu, Lin Li, Houxiao Wang, Pengfei Li, Qinghu Guo, Qingxian Hu, and Baoshuai Du, Simulation and experimental studies of keyhole induced porosity in laser-MIG hybrid fillet welding of aluminum alloy in the horizontal position, Optics & Laser Technology, Vol. 119, 2019. doi.org/10.1016/j.optlastec.2019.105667

38-19     Subin Shrestha and Y. Kevin Chou, A numerical study on the keyhole formation during laser powder bed fusion process, Journal of Manufacturing Science and Engineering, Vol. 141, No. 10, 2019. doi.org/10.1115/1.4044100

34-19     Dae-Won Cho, Jin-Hyeong Park, and Hyeong-Soon Moon, A study on molten pool behavior in the one pulse one drop GMAW process using computational fluid dynamics, International Journal of Heat and Mass Transfer, Vol. 139, pp. 848-859, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.05.038

30-19     Mohamad Bayat, Sankhya Mohanty, and Jesper Henri Hattel, Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF, International Journal of Heat and Mass Transfer, Vol. 139, pp. 95-114, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.05.003

29-19     Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Daixiu Wei, Kenta Yamanaka, and Akihiko Chiba, Comprehensive study on mechanisms for grain morphology evolution and texture development in powder bed fusion with electron beam of Co–Cr–Mo alloy, Materialia, Vol. 6, 2019. doi.org/10.1016/j.mtla.2019.100346

28-19     Pareekshith Allu, Computational fluid dynamics modeling in additive manufacturing processes, The Minerals, Metals & Materials Society (TMS) 148th Annual Meeting & Exhibition, San Antonio, Texas, USA, March 10-14, 2019.

24-19     Simulation Software: Use, Advantages & Limitations, The Additive Manufacturing and Welding Magazine, Vol. 2, No. 2, 2019

22-19     Hunchul Jeong, Kyungbae Park, Sungjin Baek, and Jungho Cho, Thermal efficiency decision of variable polarity aluminum arc welding through molten pool analysis, International Journal of Heat and Mass Transfer, Vol. 138, pp. 729-737, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.04.089

07-19   Guangxi Zhao, Jun Du, Zhengying Wei, Ruwei Geng and Siyuan Xu, Numerical analysis of arc driving forces and temperature distribution in pulsed TIG welding, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 41, No. 60, 2019. doi.org/10.1007/s40430-018-1563-0

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

03-19   Dongsheng Wu, Anh Van Nguyen, Shinichi Tashiro, Xueming Hua and Manabu Tanaka, Elucidation of the weld pool convection and keyhole formation mechanism in the keyhold plasma arc welding, International Journal of Heat and Mass Transfer, Vol. 131, pp. 920-931, 2019. doi.org/10.1016/j.ijheatmasstransfer.2018.11.108

84-18   Bo Cheng, Xiaobai Li, Charles Tuffile, Alexander Ilin, Hannes Willeck and Udo Hartel, Multi-physics modeling of single track scanning in selective laser melting: Powder compaction effect, Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, pp. 1887-1902, 2018.

81-18 Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Daixiu Wei, Kenta Yamanaka and Akihiko Chiba, Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy, Additive Manufacturing, Vol. 26, pp. 202-214, 2019. doi.org/10.1016/j.addma.2018.12.002

77-18   Jun Du and Zhengying Wei, Numerical investigation of thermocapillary-induced deposited shape in fused-coating additive manufacturing process of aluminum alloy, Journal of Physics Communications, Vol. 2, No. 11, 2018. doi.org/10.1088/2399-6528/aaedc7

76-18   Yu Xiang, Shuzhe Zhang, Zhengying We, Junfeng Li, Pei Wei, Zhen Chen, Lixiang Yang and Lihao Jiang, Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V, Applied Physics A, 124:685, 2018. doi.org/10.1007/s00339-018-2056-9

74-18   Paree Allu, CFD simulations for laser welding of Al Alloys, Proceedings, Die Casting Congress & Exposition, Indianapolis, IN, October 15-17, 2018.

72-18   Hunchul Jeong, Kyungbae Park, Sungjin Baek, Dong-Yoon Kim, Moon-Jin Kang and Jungho Cho, Three-dimensional numerical analysis of weld pool in GMAW with fillet joint, International Journal of Precision Engineering and Manufacturing, Vol. 19, No. 8, pp. 1171-1177, 2018. doi.org/10.1007/s12541-018-0138-4

60-18   R.W. Geng, J. Du, Z.Y. Wei and G.X. Zhao, An adaptive-domain-growth method for phase field simulation of dendrite growth in arc preheated fused-coating additive manufacturing, IOP Conference Series: Journal of Physics: Conference Series 1063, 012077, 2018. doi.org/10.1088/1742-6596/1063/1/012077 (Available at http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012077/pdf and in shared drive)

59-18   Guangxi Zhao, Jun Du, Zhengying Wei, Ruwei Geng and Siyuan Xu, Coupling analysis of molten pool during fused coating process with arc preheating, IOP Conference Series: Journal of Physics: Conference Series 1063, 012076, 2018. doi.org/10.1088/1742-6596/1063/1/012076 (Available at http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012076/pdf and in shared drive)

58-18   Siyuan Xu, Zhengying Wei, Jun Du, Guangxi Zhao and Wei Liu, Numerical simulation and analysis of metal fused coating forming, IOP Conference Series: Journal of Physics: Conference Series 1063, 012075, 2018. doi.org/10.1088/1742-6596/1063/1/012075

55-18   Jason Cheon, Jin-Young Yoon, Cheolhee Kim and Suck-Joo Na, A study on transient flow characteristic in friction stir welding with realtime interface tracking by direct surface calculation, Journal of Materials Processing Tech., vol. 255, pp. 621-634, 2018.

54-18   V. Sukhotskiy, P. Vishnoi, I. H. Karampelas, S. Vader, Z. Vader, and E. P. Furlani, Magnetohydrodynamic drop-on-demand liquid metal additive manufacturing: System overview and modeling, Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer, Niagara Falls, Canada, June 7 – 9, 2018; Paper no. 155, 2018. doi.org/10.11159/ffhmt18.155

52-18   Michael Hilbinger, Claudia Stadelmann, Matthias List and Robert F. Singer, Temconex® – Kontinuierliche Pulverextrusion: Verbessertes Verständnis mit Hilfe der numerischen Simulation, Hochleistungsmetalle und Prozesse für den Leichtbau der Zukunft, Tagungsband 10. Ranshofener Leichtmetalltage, 13-14 Juni 2018, Linz, pp. 175-186, 2018.

38-18   Zhen Chen, Yu Xiang, Zhengying Wei, Pei Wei, Bingheng Lu, Lijuan Zhang and Jun Du, Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification, Applied Physics A, vol. 124, pp. 313, 2018. doi.org/10.1007/s00339-018-1737-8

19-18   Chenxiao Zhu, Jason Cheon, Xinhua Tang, Suck-Joo Na, and Haichao Cui, Molten pool behaviors and their influences on welding defects in narrow gap GMAW of 5083 Al-alloy, International Journal of Heat and Mass Transfer, vol. 126:A, pp.1206-1221, 2018. doi.org/10.1016/j.ijheatmasstransfer.2018.05.132

16-18   P. Schneider, V. Sukhotskiy, T. Siskar, L. Christie and I.H. Karampelas, Additive Manufacturing of Microfluidic Components via Wax Extrusion, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 162 – 165, 2018.

09-18   The Furlani Research Group, Magnetohydrodynamic Liquid Metal 3D Printing, Department of Chemical and Biological Engineering, © University at Buffalo, May 2018.

08-18   Benjamin Himmel, Dominik Rumschöttel and Wolfram Volk, Thermal process simulation of droplet based metal printing with aluminium, Production Engineering, March 2018 © German Academic Society for Production Engineering (WGP) 2018.

07-18   Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba and Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Tech. 254 (2018) 72–78.

60-17   Pei Wei, Zhengying Wei, Zhen Chen, Yuyang He and Jun Du, Thermal behavior in single track during selective laser melting of AlSi10Mg powder, Applied Physics A: Materials Science & Processing, 123:604, 2017. doi.org/10.1007/z00339-017-1194-9

51-17   Koichi Ishizaka, Keijiro Saitoh, Eisaku Ito, Masanori Yuri, and Junichiro Masada, Key Technologies for 1700°C Class Ultra High Temperature Gas Turbine, Mitsubishi Heavy Industries Technical Review, vol. 54, no. 3, 2017.

49-17   Yu-Che Wu, Weng-Sing Hwang, Cheng-Hung San, Chih-Hsiang Chang and Huey-Jiuan Lin, Parametric study of surface morphology for selective laser melting on Ti6Al4V powder bed with numerical and experimental methods, International Journal of Material Forming, © Springer-Verlag France SAS, part of Springer Nature 2017. doi.org/10.1007/s12289-017-1391-2.

37-17   V. Sukhotskiy, I. H. Karampelas, G. Garg, A. Verma, M. Tong, S. Vader, Z. Vader, and E. P. Furlani, Magnetohydrodynamic Drop-on-Demand Liquid Metal 3D Printing, Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

14-17   Jason Cheon and Suck-Joo Na, Prediction of welding residual stress with real-time phase transformation by CFD thermal analysis, International Journal of Mechanical Sciences 131–132 (2017) 37–51.

91-16   Y. S. Lee and D. F. Farson, Surface tension-powered build dimension control in laser additive manufacturing process, Int J Adv Manuf Technol (2016) 85:1035–1044, doi.org/10.1007/s00170-015-7974-5.

84-16   Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E. Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer 108 (2017) 244–256, Available online December 2016.

68-16   Dongsheng Wu, Xueming Hua, Dingjian Ye and Fang Li, Understanding of humping formation and suppression mechanisms using the numerical simulation, International Journal of Heat and Mass Transfer, Volume 104, January 2017, Pages 634–643, Published online 2016.

26-16   Y.S. Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, S2214-8604(16)30087-2, doi.org/10.1016/j.addma.2016.05.003, ADDMA 86.

123-15   Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser welding repair for single crystal blades, Proceedings of International Gas Turbine Congress, pp. 1354-1358, 2015.

116-15   Yousub Lee, Simulation of Laser Additive Manufacturing and its Applications, Ph.D. Thesis: Graduate Program in Welding Engineering, The Ohio State University, 2015, Copyright by Yousub Lee 2015

103-15   Ligang Wu, Jason Cheon, Degala Venkata Kiran, and Suck-Joo Na, CFD Simulations of GMA Welding of Horizontal Fillet Joints based on Coordinate Rotation of Arc Models, Journal of Materials Processing Technology, Available online December 29, 2015

96-15   Jason Cheon, Degala Venkata Kiran, and Suck-Joo Na, Thermal metallurgical analysis of GMA welded AH36 steel using CFD – FEM framework, Materials & Design, Volume 91, February 5 2016, Pages 230-241, published online November 2015

25-15   Dae-Won Cho and Suck-Joo Na, Molten pool behaviors for second pass V-groove GMAW, International Journal of Heat and Mass Transfer 88 (2015) 945–956.

21-15   Jungho Cho, Dave F. Farson, Kendall J. Hollis and John O. Milewski, Numerical analysis of weld pool oscillation in laser welding, Journal of Mechanical Science and Technology 29 (4) (2015) 1715~1722, www.springerlink.com/content/1738-494x, doi.org/10.1007/s12206-015-0344-2.

82-14  Yousub Lee, Mark Nordin, Sudarsanam Suresh Babu, and Dave F. Farson, Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition, Metallurgical and Materials Transactions B, August 2014, Volume 45, Issue 4, pp 1520-1529

59-14   Y.S. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Influence of Fluid Convection on Weld Pool Formation in Laser Cladding, Welding Research/ August 2014, VOL. 93

18-14  L.J. Zhang, J.X. Zhang, A. Gumenyuk, M. Rethmeier, and S.J. Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology (2014), doi.org/10.1016/j.jmatprotec.2014.03.016.

36-13  Dae-Won Cho,Woo-Hyun Song, Min-Hyun Cho, and Suck-Joo Na, Analysis of Submerged Arc Welding Process by Three-Dimensional Computational Fluid Dynamics Simulations, Journal of Materials Processing Technology, 2013. doi.org/10.1016/j.jmatprotec.2013.06.017

12-13 D.W. Cho, S.J. Na, M.H. Cho, J.S. Lee, A study on V-groove GMAW for various welding positions, Journal of Materials Processing Technology, April 2013, doi.org/10.1016/j.jmatprotec.2013.02.015.

01-13  Dae-Won Cho & Suck-Joo Na & Min-Hyun Cho & Jong-Sub Lee, Simulations of weld pool dynamics in V-groove GTA and GMA welding, Weld World, doi.org/10.1007/s40194-012-0017-z, © International Institute of Welding 2013.

63-12  D.W. Cho, S.H. Lee, S.J. Na, Characterization of welding arc and weld pool formation in vacuum gas hollow tungsten arc welding, Journal of Materials Processing Technology, doi.org/10.1016/j.jmatprotec.2012.09.024, September 2012.

77-10  Lim, Y. C.; Yu, X.; Cho, J. H.; et al., Effect of magnetic stirring on grain structure refinement Part 1-Autogenous nickel alloy welds, Science and Technology of Welding and Joining, Volume: 15 Issue: 7, Pages: 583-589, doi.org/10.1179/136217110X12720264008277, October 2010

18-10 K Saida, H Ohnishi, K Nishimoto, Fluxless laser brazing of aluminium alloy to galvanized steel using a tandem beam–dissimilar laser brazing of aluminium alloy and steels, Welding International, 2010

58-09  Cho, Jung-Ho; Farson, Dave F.; Milewski, John O.; et al., Weld pool flows during initial stages of keyhole formation in laser welding, Journal of Physics D-Applied Physics, Volume: 42 Issue: 17 Article Number: 175502 ; doi.org/10.1088/0022-3727/42/17/175502, September 2009

57-09  Lim, Y. C.; Farson, D. F.; Cho, M. H.; et al., Stationary GMAW-P weld metal deposit spreading, Science and Technology of Welding and Joining, Volume: 14 Issue: 7 ;Pages: 626-635, doi.org/10.1179/136217109X441173, October 2009

1-09 J.-H. Cho and S.-J. Na, Three-Dimensional Analysis of Molten Pool in GMA-Laser Hybrid Welding, Welding Journal, February 2009, Vol. 88

52-07   Huey-Jiuan Lin and Wei-Kuo Chang, Design of a sheet forming apparatus for overflow fusion process by numerical simulation, Journal of Non-Crystalline Solids 353 (2007) 2817–2825.

50-07  Cho, Min Hyun; Farson, Dave F., Understanding bead hump formation in gas metal arc welding using a numerical simulation, Metallurgical and Mateials Transactions B-Process Metallurgy and Materials Processing Science, Volume: 38, Issue: 2, Pages: 305-319, doi.org/10.1007/s11663-007-9034-5, April 2007

49-07  Cho, M. H.; Farson, D. F., Simulation study of a hybrid process for the prevention of weld bead hump formation, Welding Journal Volume: 86, Issue: 9, Pages: 253S-262S, September 2007

48-07  Cho, M. H.; Farson, D. F.; Lim, Y. C.; et al., Hybrid laser/arc welding process for controlling bead profile, Science and Technology of Welding and Joining, Volume: 12 Issue: 8, Pages: 677-688, doi.org/10.1179/174329307X236878, November 2007

47-07   Min Hyun Cho, Dave F. Farson, Understanding Bead Hump Formation in Gas Metal Arc Welding Using a Numerical Simulation, Metallurgical and Materials Transactions B, Volume 38, Issue 2, pp 305-319, April 2007

36-06  Cho, M. H.; Lim, Y. C.; Farson, D. F., Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape, Welding Journal, Volume: 85 Issue: 12, Pages: 271S-283S, December 2006

Home

FLOW-3D 는 세계에서 가장 어려운 CFD문제를 해결하는 소프트웨어로, 3차원 자유표면 해석 분야에서 널리 사용되는 최적의 수치해석 소프트웨어 입니다. 특히 자유표면(자유수면)을 가진 유동흐름을 정확하게 예측하는 분야에서는 타의 추종을 불허하는 정확성을 자랑합니다.

FLOW-3D 는 핵폭탄 개발 프로젝트로 유명한 미국 국립 연구소 LANL(LosAlamos National Laboratory)의 허트(C. W. Hirt) 박사가 새로운 자유표면 추적기법(free surface tracking method)인 VOF(Volume ofFluid) 방법을 연구 개발한 후, 수 많은 유동현상에 대한 물리 모델을 추가하고 성능을 개선하여, 설계 및 운영단계에서 사용되면서 엔지니어에게 귀중한 통찰력을 제공하는 세계적인 CFD 소프트웨어 입니다.

FLOW-3D 는 정확한 자유표면 추적, 압축성/비압축성 유동, 층류/난류, 열전달(전도, 대류, 복사), 점성발열, 상변화(응고,증발)/공동현상, 표면장력, 다상유동, 물질확산, 자연대류/밀도류, 뉴턴/비뉴턴유체, 틱소트로피, 다공성매질, 가속도계/관성계, 입자추적, 전기섭동/전기삼투압/주울발열, 열모세관현상 등 수많은 물리 모델을 제공합니다.

수치해석과 관련하여 궁금하신 사항은 언제든지 부담없이 문의 해주십시오.
감사합니다.

 

FLOW-3D Product FLOW-3D HPC
FLOW-3D 는 당사의 주력 제품으로 강력하고 매우 정확한 다중 물리 전산 유체역학(CFD) 패키지 프로그램…
Read More >>
FLOW-3D HPC 는 매우 큰 영역 또는 긴 runtime 문제를 해결하기 위해 고성능 컴퓨팅을 사용할 수…
Read More >>
FLOW-3D Cast 는 다양한 주조 공정의 충전 및 응고, 결함 분포 예측이 가능한 3차원 유동해석 프로그램…
Read More >>
FLOW-3D 제품에 대한 기술자료와 이론 및 논문 등 다양한 기술자료를 제공합…

Read More >>

신규소식 기술자료

FLOW-3D HYDRO Conveyance Infrastructure

FLOW-3D & computational fluid dynamics for civil engineering Conveyance systems TunnelsOverflowsHydraulic controlsGatesWeirsOrificeDrop structuresFlow splittingOpen channel conveyancePumpsFlap gates (moving objects)Air flow / air supplyEntrained air (entrainment, evolution, drift flux, buoyancy, bulking, ...
자세한 내용 보기

FLOW-3D HYDRO- Dams & Spillways

Dams & spillways Long history of success Government regulatorsHydro-power utilitiesEngineering consultantsHydraulics laboratoriesCFD consultantsAcademia Dams & spillways •Wide range of applications •Wide range of flow conditions: –Open channel –Pressurized –Mixed •Wide ...
자세한 내용 보기

FLOW-3D HYDRO – The Complete CFD Solution for the Water & Environmental Industry

물 및 환경 산업을 위한 완벽한 CFD 솔루션인 FLOW-3D HYDRO의 신제품 출시를 알립니다. Santa Fe, NM, 2020년 10월 29일 – Flow Science는 토목 및 환경 엔지니어링 산업을 위한 완벽한 CFD ...
자세한 내용 보기

FLOW-3D HYDRO

FLOW-3D HYDRO 제품 개요 최근 FLOW Science, Inc에서는 토목 및 환경 엔지니어링 산업을위한 완벽한 CFD 모델링 솔루션인 FLOW-3D HYDRO 제품을 출시했습니다. 기존 FLOW-3D 사용자이거나 유압 엔지니어링 관행에 CFD 모델링 기능을 ...
자세한 내용 보기

FLOW-3D Glossary

FLOW-3D 용어 사전 / 용어 설명 FLOW-3D 용어 사전 / 용어 설명 Drift Flux 드리프트 모델은 밀도가 서로 다른 두 혼합 유체 구성 요소의 상대적 흐름을 설명합니다. 구성 요소는 상이 ...
자세한 내용 보기

레이저 용접 수치해석 (FLOW-3D WELD)

레이저 용접 수치해석 (FLOW-3D WELD) FLOW-3D@ WELD는 레이저 용접 공정에 대한 정확한 시뮬레이션 기능을 제공하여 최적화된 공정을 개발하게 합니다. 더 나은 공정 제어를 통해 기공, 열 영향 영역을 최소화하고 미세 ...
자세한 내용 보기
컴팩트 디스크 ELISA 칩 [2]

컴팩트 디스크 미세 유체 장치: Optimizing Real Estate

Compact Disc Microfluidic Devices: Optimizing Real Estate 미세 유체 장치 사용자의 증가하는 기대를 충족하려면 작은 미세 유체 장치에서 제한된 공간을 최적화하는 것이 중요합니다. 사용자는 단일 미세 유체 장치에서 최대의 기능과 여러 ...
자세한 내용 보기
World Users Conference 2021

FLOW-3D World Users Conference

World Users Conference 2021 FLOW-3D World Users Conference 는 2021 년 6 월 7 일부터 9 일 까지 독일 뮌헨 의 Maritim Hotel 에서 개최됩니다 . 세계에서 가장 유명한 회사 ...
자세한 내용 보기
벨기에 Zele에서 나온 WWTP의 개략도

활성화 된 슬러지 모델링

Activated Sludge Model 폐수 처리 플랜트 (WWTP) 내부의 생화학 적 반응 및 유체 역학에 대한 자세한 이해는 설계자와 엔지니어가 새로운 플랜트 설계를 평가하고, 관리 결정을 정량화하고, 새로운 제어 계획을 개발하고, ...
자세한 내용 보기
Simulation results from FLOW-3D highlighting the droplet formation and the input pressure pulse

연속 잉크젯 인쇄

Continuous Inkjets 연속 잉크젯 인쇄는 약 150 년 동안 축적 된 기술입니다. 간단히 말해, 프린트 헤드가 작동하면 연속적인 유체 흐름이있는 액적 생성 방법입니다. 이 개념은 1867 년 Lord Kelvin에 의해 처음 특허를 ...
자세한 내용 보기
Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

중력을 사용한 미세 유체 입자 분류

Microfluidics Particle Sorting Using Gravity 미세 유체 입자 분류는 진단, 화학적 및 생물학적 분석, 식품 및 화학 처리, 환경 평가에 적용됩니다. 이전 블로그에서 유체 역학을 사용한 미세 유체 입자 분류에 대해 이야기했습니다 . 같은 주제를 ...
자세한 내용 보기
중간 단계, 땅은 여전히 ​​대부분 물에 젖은 상태임

폭우에 따른 홍수 시뮬레이션

Flash Flood Simulation 최근에는 우리나라에서도 국지성 폭우가 빈발하고, 기상 이변에 따라 단시간의 폭우에 의해 돌발 홍수가 발생하고 있습니다. FLOW-3D를 이용한 수치해석으로 홍수 발생시 주요 피해지역이 어떻게 분포될지, 상류피해 영역과 하류피해 ...
자세한 내용 보기

바람이 개방형 철광석 골재 저장소에 미치는 영향 분석 (비산먼지 배출 방지 연구)

다양한 구성에 대한 비산 먼지 배출 이 기사는 Dhananjay Sharma, EI, CFM, 유압 모델링 엔지니어, AECOM 에 의해 기고되었습니다 . 바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 ...
자세한 내용 보기

코어 가스(Core Gas)

코어 가스(Core Gas)   코어로 주조 모델링 (Modeling Castings with Cores) 모래 속의 화학 결합제는 용융 된 금속에 의해 가열 될 때 가스를 생성 할 수 있으며 적절하게 환기되지 않으면 ...
자세한 내용 보기
Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

NUMERICAL ANALYSIS AND THE REAL WORLD : IT LOOKS PRETTY BUT IS IT RIGHT?

D. K. H. Ho, S. M. Donohoo, K. M. Boyes and C. C. LockAdvanced Analysis, Worley Pty LimitedL7, 116 Miller Street, North Sydney, NSW 2060 AustraliaTel: +61 2 8923 6817 ...
자세한 내용 보기

2 Fluid, 2 Temperature 모델

2 Fluid, 2 Temperature 모델 우주선 및 자동차 연료 탱크 및 특정 미세 유체 장치는 안전하고 효율적인 작동을 위해 정확한 액체 및 기체 상태 모델링이 필요합니다. 이러한 시스템에 유체 계면이 ...
자세한 내용 보기

FLOW-3D 해석용컴퓨터 선택 가이드

Hardware Selection for FLOW-3D Products - FLOW-3D 2020-09-08 업데이트 / ㈜에스티아이씨앤디 솔루션사업부 In this blog, Flow Science’s IT Manager Matthew Taylor breaks down the different hardware components and suggests some ...
자세한 내용 보기
Rivulet Formation in Slide Coating

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique

Volume-of-Fluid 기법을 사용한 과도 및 3 차원 코팅 흐름 시뮬레이션 슬라이드 코팅 흐름은 정밀 필름 코팅 제품의 제조에 널리 사용됩니다. 코팅 속도를 높이고 코팅 필름의 성능을 향상시키기 위해 슬라이드 코팅 ...
자세한 내용 보기

열전달(Heat Transfer)

열전달(Heat Transfer) 열전달은 전도, 대류 및 복사를 통한 열 에너지의 전달입니다. 일반적이지만 매우 중요한 물리적 현상입니다. 재료 특성 및 기타 물리적 현상은 온도 (또는 열에너지)에 매우 민감합니다. FLOW-3D 및 FLOW-3D ...
자세한 내용 보기
 

Integration of CFD Analysis into Die-Cast Process Design

Integration of CFD Analysis into Die-Cast Process Design

This article was contributed by Alex Reikher, Ph.D., of Shiloh Industries

 

오늘날의 조직은 오래되고, 잘 구축되었으며, 빠르게 성장하는 새로운 경제로부터 점점 더 많은 압박을 받고 있습니다. 시장의 세계화는 기업들이 그들의 경쟁 우위를 유지하기 위한 방안을 찾고 있습니다. 인터넷 기술의 급격한 발전과 자유로운 정보 교환은 기업이 경쟁 우위를 유지할 수 있는 기간을 단축하는 요인들입니다. 조직이 업계에서 선두 자리를 유지할 수 있는 방법 중 하나는 혁신기술을 시장에 도입하는데 필요한 시간을 줄이는 것입니다. 다이캐스팅 공정 개발 시간 단축이라는 목표를 가지고, FLOW-3D로 모델링하는 것은 Shiloh Industries의 엔지니어링 부서의 핵심 부분이 되었습니다.

우리는 7년이 넘게 다이캐스팅 모델링 도구인 FLOW-3D를 사용하여 예측 결과의 정확성과 신뢰성을 입증할 수 있었습니다. 이러한 결과는 실제 주조 결함, 온도 분포 및 흐름 패턴과 좋은 상관 관계를 가지고 있습니다.

Shiloh Industries의 새로운 프로젝트는 게이트와 러너의 컨셉개발에서 시작되며 대략적인 slow shot profile, shot 실린더 직경, 최소 환기 영역 및 프로세스압력 요구 조건사항이 필요합니다. 유동분석은 최상의 유동패턴을 개발하고 공기 유입을 최소화하기 위해 수행됩니다. 러너설계가 완료된 후 열 분석을 실행하여 waterline 배치를 최적화합니다

Figure 1: The casting part

FLOW-3D의 매력적인 특징은 프로세스의 단계마다 별도의 분석을 실행할 수 있는 기능입니다. 이를 통해 올바른 shot 프로파일, 게이트 디자인 및 워터 라인 위치를 선택할 수 있습니다. 완전히 결합된 흐름과 열 분석은 모든 구성 요소가 잘 작동하는지 확인하기 위해 한번만 수행하면 됩니다. GMO(움직이는 물체)모델을 도입하면 저속 촬영단계에서 샷 슬리브의 최고 플런저 속도를 설정할 수 있습니다. 여기에 설명된 프로젝트에서 부품 설계는 현재 생산 버전에서 크게 변경되었습니다.

부품 형상은 그림 1에 나와 있습니다. 요구되는 주조 품질을 보장하기 위해 충전 및 응고 과정에서 어려움이 있습니다. 예를 들어, 응고 및 후속 냉각 중에 높은 내부 응력이 발생하여 바람직하지 않은 변형력이 발생할 수 있습니다.

설계 프로세스의 초기 단계에서 평가를 위해 21 개의 러너 구성이 제안되었습니다. FLOW-3D는 모든 변형을 평가하는데 사용되었습니다. 그림 2는 고려된 주 디자인 중 일부를 보여줍니다.

Figure 2: Three of the twenty-one runner systems modeled in FLOW-3D

러너 시스템의 초기 평가 기준은 유동패턴이었습니다. 설계 프로세스의 첫 번째 단계가 완료된 후, 추가 평가를 위해 그림 3에 표시된 두 가지의 러너 설계가 추가평가를 위해 채택되었습니다.

Figure 3: Runners selected for further evaluation based on the flow pattern 

응고 분석은 두 번째 단계에서 평가하였습니다. 주조물뿐만 아니라 다이의 온도 분포도 분석하였습니다. 그림 4는 최종 러너 시스템 설계를 하여 응고가 끝날 때 부품의 온도 분포를 보여줍니다.

Figure 4: Different views of the final runner system chosen based on temperature distribution in the part at the end of solidification

Conclusion

7년이 넘는 기간 동안 우리는 다이 캐스팅공정 도구인 FLOW-3D를 사용하여 예측 결과의 정확성과 신뢰성을 입증할 수 있었습니다. 이러한 결과는 실제 주조 결함, 온도 분포 및 흐름 패턴과 좋은 상관 관계를 가지고 있습니다.

우리는 다이 캐스팅 공정 시뮬레이션뿐만 아니라 일반적인 CFD 모델링도 FLOW-3D를 사용하고 있습니다. 프로세스 개발 중에 설계 변경을 고객에게 권장해야 하는 경우 FLOW-3D를 사용하면 이러한 변경 사항을 신속하고 안정적으로 평가할 수 있으며 제안된 변경 사항뿐만 아니라 변경사항이 부품 성능에 미칠 영향을 고객에게 제시할 수 있습니다.

 

Learn more about the versatility and power of modeling metal casting processes with FLOW-3D Cast

Turbulent Dispersion Modeling of Environmental Discharges

Turbulent Dispersion Modeling of Environmental Discharges

 

This article was contributed by Daniel Valero, FH Aachen, winner of Flow Science’s 35th Anniversary Simulation Contest.

환경적 배출 및 유출 구조는 전통적으로 복잡하고 비용 집약적이며 시간이 많이 소요되는 실험 연구를 통해 설계되었습니다. 일체형 접근 방식에 기초한 일부 모델은 제한 사항에도 불구하고 일반적으로 사용되지만 오염 물질 재투입 또는 강한 역효과를 초래하는 방출은 그러한 모델의 가설 밖에 있습니다. 따라서 오염 물질 확산을 위해 전체 3D모델을 사용하면 강과 강 어귀의 실제 오염 물질 분산에 대한 이해를 향상시킬 수 있습니다. 마찬가지로 전체 환경 수질 및 생물학적 조건을 개선하기 위해 경계면의 제트를 모델링과 다른 위치점을 테스트할 수 있다.

본 연구에서는 제트방전을 실험적 및 수치적으로 모델링 합니다. 그리고 전단 영역에서 난류분산의 추정치를 얻을 수 있습니다. 난류 모델링의 경우 k-ε RNG 모델은 자유표면 추적을 위한 VOF방법과 함께 사용됩니다. 난류 운송의 적절한 모델링을 보장하는 오염물질 유도를 위해 단일상태의 2차 압력식이 사용됩니다. 업스트림흐름은 제트를 변형하여 재순환이 일어나는 측면 groin필드로 미는 것이 관찰됩니다. FLOW-3D와 함께 물리적 인 모델링은 난류의 슈미트 수를 얻는데 사용되며, 이것은 강과 같은 유사한 오염 물질 분산 문제에 대해 FLOW-3D에서 사용될 수 있습니다. 경계가 있는 제트는 통계적으로 안정된 최종 솔루션의 경우에도 비정상적인 동작을 보여줍니다. 시각화를 쉽게 하기위해 오염 물질이 도달하는 범위를 나타내는 두 개의 등 농도면 (적색)과 (투명 흰색)이 표시됩니다. 결과적으로, 백색 iso-concentration 표면은 붉은 입자보다 더 큰 분산을 보여 주며, 후자는 첫 번째 표면 내에 완전히 포함되어있다. 이러한 경계의 선택은 실험실에서 사용되는 것과 유사한 방식으로 오염 물질 분산을 가시화 할 수 있게 해줍니다. 격자 간격은 실험 모델에서와 같이 5cm로 설정됩니다. 자연 환경에서 볼 수 있듯이, 제트 배출은 난기류이며 일시적인 평균화와 같은 몇 가지 후 처리 작업이 필요합니다.

수치 모델은 전단영역에서의 제트궤도와 충동에 대해 정확히 재현합니다. 전단 영역에서 흐르는 진동의 주파수는 groin 필드의 전반적인 재순환역학과 관련된 실험모델과 일치합니다. 시뮬레이션을 사용하여 이 흐름 구성에 적합한 슈미트 번호를 결정하고 난류 분산을 정확하게 포착할 수 있습니다.

컨설팅 실적

수행 실적

No사업명발주처
1성남정수장 3차원 유동해석한국수자원공사
2소양강댐 홍수방지벽 설치공사 실시설계용역(수치모형실험)도화종합기술공사
3용담댐 도수터널 취수탑 유입수량 유속분포(수치모형실험)한국수자원공사
4대곡댐 여수로 문비설치 기본 및 실시설계(수치해석)도화종합기술공사
5영천댐 치수능력 증대방안 실시설계(실시모형실험)도화종합기술공사
6시화조력발전소 축조공사 턴키설계를 위한 CFD 수치모형실험대우건설
7평화의댐 2단계사업 시설공사 실시설계(수치모형실험)도화종합, 삼안건설, 한국종합개발기술공사
8광동달방댐 치수능력증대사업 기본 및 실시설계영역(수치모형실험)도화종합, 삼안건설기술공사
9광양 3단계 공업용수도 실시설계용역(여수로 수치모형실험,수어댐)삼안건설기술공사
10탐진 다목적댐 치수능력 증대방안용역(수치해석)삼안건설기술공사
11댐 상수원 설계표준도 작성용역삼안건설기술공사
12보성강댐 정밀안전진단(3D모델링 수치해석)한국시설안전관리공단
13반월정수장 노후시설 개량 기본 및 실시설계용역(수치해석 부분)한국종합엔지니어링
14청송양수발전소 1,2호기 설계기술용역/여수로 3차원 수치해석용역현대엔지니어링
15소양강댐 보조여수로 설치공사 기본설계입찰 수치모형실험용역SK건설
16잠실 수중보 어도개선 기본 및 실시설계도화종합기술공사
17서귀포시 동부하수종말처리장 고도처리시설 기본 및 실시설계용역삼안건설기술공사
18서귀포시 서부하수종말처리장 고도처리시설 기본 및 실시설계용역선진엔지니어링
19오산 제2하수처리장 건설사업입찰 기본설계용역 중 3차원 수치유동해석 분야엘지건설
20당진화력 7,8호기 취수로 수치모델링한국동서발전주식회사
21녹산배수펌프장 건설공사 대안설계용역 중 펌프장 흐름해석 부문한국종합기술개발공사
22대암댐 치수능력증대사업 기본 및 실시설계(2차) 수치해석현대엔지니어링
23용인흥덕 쓰레기 이송관로 입찰설계벽산엔지니어링
24군산하수처리장 고도처리사업 턴키공사 기본설계 전산유체해석부강테크(GS건설)
25임하댐 비상여수로 건설공사 기본설계용역(수치모형실험)삼안건설기술공사
26대청댐 비상여수로 건설공사 턴키설계용역(수치해석)삼안건설기술공사
27섬진강댐 재개발 실시설계용역(수치모형실험)삼안건설기술공사
28한강하류권급수체계구축사업 제3공구 생활용수정수장 대안설계신우엔지니어링
29임하댐 취수설비 개선공사 기본 및 실시설계용역 중 전산유체유동해석유신코퍼레이션
30광명 소하 쓰레기 자동집하시설 건설공사 T/K 기본설계용역유신코퍼레이션
31공주막여과정수장 수처리구조물의 합리적 설계를 위한 전산유체해석한국수자원공사
32김포장기지구 쓰레기 자동집하시설의 수치해석한화건설
33군장국가산단(장항지구)호안도로 축조공사 갑문수치모의실험항도엔지니어링(포스코건설)
34대청댐 비상여수로 건설공사 턴키설계용역(주)삼안
35성남판교 자동크린넷시설공사 T/K 기본설계(설계용역)건화엔지니어링
36영등포정수장 재건설 및 고도정수처리 시설공사 턴키설계용역중 수리구조물 전산 유체 해석부분삼성건설
37보령7,8호기 배수로 수치해석한국전력기술
38보령1~6호기 배수로 수치해석한국전력기술
39LNG 지하저장 실증기술개발 중 유속에 의한 Ice Ring 형성조건연구한국지질자원연구원
40LNG 지하저장 실증기술개발 중 유속에 의한 Ice Ring 형성조건연구SK건설
41파주 운정지구 쓰레기 집하시설 수집관로 수치해석건화엔지니어링
42마그네슘블록 유동,응고,응력 해석대림기업(주)
43군남홍수조절지건설공사 기본 및 실시설계용역도화종합기술공사
44안동댐 비상여수로 기본설계용역 수치모형실험에스케이건설
45세탁기 Duct 부품의 Aluminum Die-Casting CAE 해석방안 개발엘지전자
46광양 2~3연주기 고속 주조시 몰드내 열유동응고해석포스코
47Cam-shaft 다이캐스팅용 금형설계 및 주조방안 해석한국생산기술연구원
48팔당수력댐 가능최대홍수량(PMF:Probable Maximum Flood)에 의한 댐체 월류시 수리 및 구조적 안정성 검토용역한국시설안전기술공단
49담체거동을 고려한 호기조 유동해석한수테크니컬서비스
50피스톤 쿨링젯 해석기술 개발 기술용역현대자동차
51아산 방조제 배수갑문확장사업 1단계 대안설계삼안건설기술공사
52하동화력 7,8호기 냉각수 배수구 전면 저류지 축조공사 3차원 수치모형실험 해석제이슨기술단
53의암수력댐 가능최대홍수량(PMF:Probable Maximum Flood)에 의한 댐체 월류시 수리 및 구조적 안정성 검토용역한국시설안전기술공단
54춘천 및 보성강댐 가능최대홍수량(PMF:Probable Maximum Flood)에 의한 댐체 월류시 수리 및 구조적 안정성 검토용역한국시설안전기술공단
55소양강댐 여수로 방류흐름개선을 위한 수치모형실험 용역한국시설안전기술공단
56제천시 하수관거정비 임대형 민자사업(BTL) 기본설계용역 중 수충격검토(주)바셈
57금강살리기 행복지구 생태하천 조성공사계룡건설산업
58첫마을지구 생활폐기물 자동집하시설 건설공사 기본설계 T/K도화종합기술공사
59괴산댐 가능최대홍수량에 대한 댐체월류시 구조적 안정성 검토용역한국시설안전기술공단
60충남도청 이전신도시 자동집하시설 건설공사 T/K입찰 기본설계 용역(주)건화
61영등포정수장 3D 모델링(주)대우건설
62화순홍수조절지 기본 및 실시설계 용역(주)도화종합기술공사
63재천시 하수관거정비 임대형 민자사업(BTL) 기본설계용역 중 수충격검토(주)바셈
64한탄강댐본댐 및 부대시설 공사 설계 변경 용역(주)삼안
65새만금 방수제 만경5공구 건설공사 기본설계 용역(3차원 수치해석)(주)삼안
66연속 주조시 발생되는 몰드 내 열응력 영향 해석(주)엔지비
67낙동강하구둑 배수문 증설공사 기본설계용역 중3차원 수치해석(주)유신
68뚝도정수센터 시설현대화 및 고도정수처리시설 실시설계 수치해석 용역신우엔지니어링
69파주운정쓰레기 자동집하시설 건설공사(T/K)태영건설
70거제평프장도화
71광교댐수치해석도화
72Slag Pouring 및 이송 시 열유동해석매탈젠텍(POSCO)
73LICC DP매탈젠텍(POSCO)
74PFC DP 공정 해석매탈젠텍(RIST)
75행복도시하수처리장이산
76다이캐스팅 주조방안 및 해석코다코(캐스트맨 매출)
77전착성능해석용 차체모델링+전착 이차흐름현대기아기술연구소
78고열전도성 다이캐스팅 경량 방열부품개발현대자동차
79엔진/변속기1 (전륜8속 TM 케이스 및 하우징 방안설계 최적화)현대자동차
80쇽업쇼버 케이스 해석 용역현대자동차
81엔진/변속기2 (세타/실린더헤드 및 후륜 다단변속기 케이스2개 제품)현대자동차
82엔진/변속기3 / 6월현대자동차
83엔진/변속기4 / 8월현대자동차
84고강도 저밀도 산합금 열물성 DB 및 주조해석현대자동차
85진공밸브 최적화현대자동차
86Bloom 해석(연주기 몰드 내 용강 유동해석)현대제철
87상수도관망 최적관리시스템 구축사업(고성군)태성종합기술
88신월빗물저류배수시설 3차원수치해석선진ENG
89실러류 해석기술 개발현대기아기술연구소
90고덕하수처리장 수치해석그레넥스
91고덕하수처리장 수치해석엔바이로솔루션
92라오스수력발전프로젝트SK건설
93슬리브내 역비산기아차
94송석지 싸이폰 여수로농어촌공사(충남도본부 예산지사)
95고풍지 싸이폰 여수로농어촌공사(충남도본부)
96광교저수지 싸이폰 여수로지자체(수원시)
97장수지 싸이폰 여수로지자체(전남공흥군)
98광폭 마그네슘 주조기 용해로 열변형 해석용역포스코
99350톤 양수냄비 다이캐스팅 개발해피콜
100Mg 빌렛 해석HMK
101관망해석 프로그램 개발국민대학교
102충주댐 하류가물막이 수치해석대림산업
103충주댐 하류가적치 수치해석대림산업
104충주댐 하류가적치 수치해석대림산업
105평화의댐 하류부지 계획고 조정에 따른 3D 수치해석 용역대림산업
106봉화댐 실시설계 3차원 수치모형 실험도화엔지니어링
107원통수조 교반해석도화엔지니어링
108DAF 실증시설 부상조 수치해석삼진정밀
109EI과제 프로그램 개발(건기연(정우식박사))오투엔비
110SEMANGKA HEPP 수치모형 실험이산
111공릉저수지 조류 및 유속분포 유동해석한국건설기술연구원
112교육 및 해석 기술 자문한국건설기술연구원
113터빈하우징 로스트폼 주조 용역한국생산기술연구원
114터빈하우징 로스트폼 주조 용역한국생산기술연구원
115교육 및 해석 기술 자문해안해양기술
116새만금 남북2축 도로 제 3공구해석E&H컨설턴트
117달천교 교각세굴 해석E&H컨설턴트
118Lean Amine Air Cooler 부식원인 분석을 위한 유동해석GS칼텍스
119Xe Pian 하류 변경안 해석SK건설
120멤브레인 CFD 프로그램 개발국민대학교
121원형관 내부 유동해석서울시립대학교
122우수저류지 세척 시스템 해석선일엔바이로
123MD 열교환 해석(2차)알이디
124모듈조합프로그램 개발오투앤비
125해양 구조물 세굴해석전남대학교
126하우징 다이캐스팅 해석제이에스테크
127막묘듈 열교환 해석한국건설기술연구원
128두량지 PK Weir 방류량 해석한국농어촌공사
129관내 유동해석GS칼텍스
130정수장 분배수로 응집지 해석그린텍환경컨설팅
131정수장 분배수로 응집지 해석그린텍환경컨설팅
132주조제일테크
133해저구조물 세굴 및 선박유동 해석창원대학교(ADD)
134고출력 저압 램프용 자외선 반응기 해석한국건설기술연구원
135고출력 중압 램프용 자외선 반응기 해석한국건설기술연구원
136과제 해석한국건설기술연구원
137이동식보&팬스한국건설기술연구원
138Point source 기반의 하천 녹조 발생 현황 2차원 mapping 시스템한국건설기술연구원
139해석지원한국종합기술
140데이터교환customizing한국항공우주연구원
141엔진소재의 주조방안 최적화를 위한 주조해석 기술용역현대자동차
142배관유동GS건설
143울산 소수력 수치해석 용역유신
144한국건설기술연구원-이동형 해수담수화 시스템 개발 컨설팅한국건설기술연구원
145Water Dynamometer 해석두산중공업
146약액 침전 외 2건 해석세메스
147Ladle 내 Dam 및 노출부 형상변화에 따른 Vortex 거동 해석(재)포항산업과학연구원
148VMD 모듈 3D모델링알이디
149칠서정수장 기술진단 3차원 수치해석(주)그린텍환경컨설팅
150충주댐 유출부 감세지 3차원 수치해석대림산업
151친환경차용 e-4WD 유도모터 로터 주조기술개발현대자동차
152울산 #4복합 해양소수력 개발 타당성 용역중 3차원 수치해석유신
153사이펀 활용 중력구동 분리막 시스템 수치해석한국건설기술연구원
154삼척화력 소수력발전설비 설치공사(EPC) 기본 및 실시설계 중 CFD해석유신
155LG전자(평택) 생산기술원-레이저 용접 결함 예측 모델 개발LG전자(평택)
156LG전자 창원 H&A사업본부-FLOW-3D 기반 통세척 성능 해석기술 개발LG전자(창원)
 수리/수자원 분야
01 교량 설치에 따른 하천흐름 및 세굴영향 검토
컨설팅내용
  • 교량 설치로 인한 3차원 모형의 수리영향 검토
  • 세굴방지공 설치로 교량의 수리적 안정성 확보
필요데이터
  • 교각 3차원 형상 또는 도면
  • 하천 수심측량 자료 및 수치지형도
  • 하천 상/하류 홍수위 및 홍수량
해석방법
  • 하천의 유동해석 수행 후 최고유속에 해당하는 교각 선정
  • 선정교각 대상을 중심으로 세굴 모형 적용
결과물
  • 하천 유동흐름, 수위분석
  • 평형세굴심 도달시간
  • 최대세굴심 및 최대퇴적고 등
02 댐체 월류 시 수리/수문 구조적 안정성 검토
컨설팅내용
  • 상류 댐 붕괴 시 급격한 방류로 인하여 하류 댐에 미치는 영향을 검토하기 위해 댐체 월류 시 수리/수문 구조적 안정성검토
필요데이터
  • 공도교 및 수문 구조물 상세 도면
  • 하천 수심측량자료 및 주변 수치지형도
  • 하천 상/하류 홍수위 및 홍수량
해석방법
  • 상류 댐 붕괴시 홍수위/홍수량 정보입력
  • 구조물/수문 분리 후 취약한 수문 선정
  • 수문 구조해석 및 Total 힘 분석
결과물
  • 수문/구조물 받는 힘 분석
  • 굥도교 월류 여부 및 수위/유속 분포
  • 방류량 및 구조물 부압 등
 수처리 분야
01 정수처리시설 구조물 최적설계
컨설팅내용
  • 정수시설 구조물에 대한 유동, 유량, 압력, 온도분포 분석
  • 수처리과정에 발생하는 현상분석
필요데이터
  • 정수시설 구조물의 제원
  • 분배수로, 침전지 등 도면 및 3D CAD 자료
  • 초기 수위데이터 등
해석방법
  • 정수시설 구조물의 경계조건 설정
  • 형상에 따른 유동흐름 및 유량 등 초기조건 
결과물
  • 정수시설물에 작용하는 압력분포 확인
  • 유동 유입에 따른 유동양상, 유량, 유속데이터 분석
  • 온도변화에 따른 유동 및 침전효율 분석

02 하수처리시설 방류량 및 유동양상 분석
컨설팅내용
  • 토출수조의 수위 및 유동현상검토
  • 각 방류 Box의 방류유량분포 및 유속분석 
필요데이터
  • 구조물관련 설계도면 자료
  • 전체 모형 작성 및 지형데이터
  • 유체 유입량, 초기 수위관련 자료
해석방법
  • 시설 구조물에 따른 경계조건 설정
  • 초기 수위조건 및 유동현상 등 조건 확인
결과물
  • 토출 수조의 수위량 및 유동흐름
  • 유동 유입에 따른 유량, 유속데이터 분석
  • 구조물 단면의 유량흐름 데이터
 
 주조 분야
01 수축 결함최소화를 위한 주조해석
컨설팅내용
  • 주조 시 산화물 혼입방지 설계
  • 조립부 수축결함 최소화 
필요데이터
  • Frame형상 제원
  • 금형, 형상 도면자료 및 3D CAD자료
  • 초기 용탕 주입시간, 충진속도, 온도 등의 데이터
해석방법
  • 금형형상에 따른 주조해석 경계조건 설정
  • 초기 조건설정에 따른 파라미터분석
결과물
  • 충진시 산화물발생 위치 및 수축공 발생 위치
  • Solidification 확인, 결함부 현상분석
  • Gate, Runner 위치 최적화
         
02 금형 최적설계를 위한 주조해석
컨설팅내용
  • 충진 온도유지 및 제품 결함 최소화를 위한 최적설계
필요데이터
  • 금형관련 제원
  • 금형, 형상 도면자료 및 3D CAD자료
  • 초기 주조 공정조건 데이터
해석방법
  • 금형형상에 맞는 Runner, Gate 모델링
  • 용탕온도, 속도, 압력 등 조건에 따른 제품 최적설계
결과물
  • 충진시 압력분포 및 산화물 발생 위치분석
  • Solid Fraction, Solidification 등 현상분석
  • 결함부위 최소화를 위한 Gate, Runner 위치 최적화
 코팅 분야
01 Nozzle 분사를 이용한 Slit Coating 해석
컨설팅내용
  • 표면 Coating에 적합한 Nozzle 형상 설계
  • Coating 구동조건 및 압력분포 분석
필요데이터
  • 초기 Nozzle 형상 제원
  • 형상 도면자료 및 3D CAD자료
  • 초기 Coating 도포현상 및 구동조건 데이터
해석방법
  • Nozzle 구동에 따른 Coating 분석
  • 액상조건에 따른 Coating 도포형상 분석
결과물
  • Nozzle 형상 파라미터에 따른 Coating 현상분석
  • Coating 분포에 따른 높이 균일성 확인
  • 액상 온도에 따른 도포량분석
  
 MEMS 분야
01 연료전지 시스템의 최적설계를 위한 유동해석
컨설팅내용
  • 연료전지 내부형상에 따른 유동장변화 데이터
  • 유량분배에 적절한 최적의 형상조건 설계
필요데이터
  • 초기 형상 도면자료 및 3D CAD자료
  • 연료전지의 구동조건 및 물성조건
  • Actuator의 작동, 토출량, 유동 등의 데이터
해석방법
  • Micro-Channel에서의 유동분배 설정
  • 액체의 특성에 따른 토출조건 확인
결과물
  • Actuator의 속도에 따른 유동량 분석
  • Micro-Channel에서의 유동양상
  • 공동현상 최소화를 위한 최적의 구동조건

컨설팅 형태

컨설팅 형태


일반컨설팅

  • 고객이 당면한 문제를 분석 /검토/협의 후, 가장 적절한 수치해석 방법을 수립합니다.
  • 주로 상호 협의된 설계안 및 해석 조건에 대해 수치해석을 수행하여 결과를 도출 분석, 검토합니다.
  • 설계 변경 인자 및 해석 횟수는 고객과 협의하여 진행합니다. 수치해석 결과를 분석 검토하여 설계에 반영하기 위한 의견을 제시하여 드립니다.


해석 대행

  • 고객사에 해석 프로세스가 정립되어 있는 경우에 대해, 계산 장비와 수치해석 인력을 이용하여 해석 대행 및 해석 결과물을 제출합니다.