FLOW-3D 용접해석 개요

FLOW-3D 용접해석 개요

자료 제공: FLOW Science Japan

용접은 금속의 상변화, 용융시의 유동, 방열에 의한 응고 등을 포함한 복잡한 물리 현상입니다. FLOW-3D@에는 그 현상을 정밀하게 모델링하는 기능이 있고, 용접 현상을 충실하게 재현할 수 있습니다.

특히 용융 금속의 유동은 표면 장력의 영향이 강하고, 그 해석은 정확한 자유 계면의 추적이 필요합니다.

FLOW-3D@의 정확한 계면 추적 기능인 TruVOF®는 그 현상을 파악하기에 매우 적합합니다.

해석 조건으로 레이저의 power, spot size, distance, 움직임(분사방향) 등을 입력할 수 있으며, 보호가스는 밀도와 유속으로 설정 할 수 있습니다. 스패터의 분출 해석은 현재 지원되지 않습니다.

해석 결과로 용접 비드의 폭, 깊이, 기공의 유무 등 관찰할 수 있습니다.

열응력 해석은 FLOW-3D 유동 해석 결과를 Abaqus 등의 구조해석 프로그램에서 불러와서 별도로 열응력 해석을 수행해야 합니다.

해석 필요성

FLOW-3D 를 이용한 용접해석은

  • 높은 방사 강도와 고온으로 직접 관찰하기 어려운 내부 현상의 상세 내용을 가시화
  • 온도, 열, 용접 속도, 위치 관계, 재료 물성 등의 파라미터 연구 검토
  • 결함 예측 (공기연행, 응고 수축, 금속 산화) 등의 필요성

해석을 통해 얻는 이점

금속의 상변화, 용융시의 유체의 힘, 방열에 의한 응고 등의 물리모델 용접 현상을 분석할 수 있습니다.

또한 용융시에는 표면장력의 영향이 강하고, 자유계면을 추적하는 수치해석 방법에 대해 높은 정밀도가 요구됩니다. FLOW-3D@는 이러한 요구사항을 잘 처리할 수 있는 장점을 가지고 있어, 용접 용융-응고의 연속적인 현상을 정확하게 파악합니다.

접촉선의 고정(Contact Line Pinning)

접촉선의 고정(Contact Line Pinning)

증발하는 빗방울에서 남은 잔류의 물은 새로 씻은 자동차에서 좋지 못할 수 있습니다. 그러나, 동일한 증발 공정은, 예를 들어, 드롭 잔류 물이 인쇄 된 이미지 또는 텍스트의 일부가되는 잉크젯 인쇄에서 유리할 수있다. 그러나 동일한 증발 과정이 어떤 경우엔 도움이 될 수 있습니다 예를 들면, 잉크 찌꺼기가 인쇄 된 이미지나 텍스트의 일부가 되는 잉크젯 인쇄가 그렇습니다.

액체 방울의 증발로 인한 잔류의 물이 예상치 못한 방식으로 나타날 수 있습니다. 커피 링 얼룩이 잘 알려진 예이며, 커피의 잔류의 물이 물방울의 바깥 쪽 가장자리에 모여 얇은 원형 링 얼룩이 남습니다. 이 현상은 흥미로운 유체역학적인 과정의 결과입니다. 커피 링 얼룩이 형성 되려면 액체가 증착 된 고체 표면에 고정 된 접촉선이 있어야합니다. 고정 된 접촉선은 액체 방울이 고체 기판과 교차하는 액체 방울의 외부의 가장자리가 방울이 증발함에 따라 정지 상태를 유지함을 의미합니다. 증발은 기판의 열에 의해 발생하며 방울의 얇은 외부의 가장자리에서 가장 크게 생깁니다. 표면 장력은 액체가 증발하면서 손실 된 액체를 대체하기 위해 가장자리를 향해 발생하게 됩니다. 이는 결국 더 많은 용질을 가장자리로 운반하며 모든 액체가 증발 한 후, 결과적으로 커피 링 얼룩을 형성하게하는 더 높은 농도의 용질 잔류 물을 생성합니다.

모델링 접근법

FLOW-3D v12.0의 최신 업데이트로 인해 ‘접촉선의 고정’ 모델이 개발되었으며, 소프트웨어의 기능이 표면 장력 중심의 애플리케이션으로도 광범위하게 확장되었습니다. 표면 접촉의 고정 및 비고정 특성은 잉크젯 인쇄, 코팅 및 스프레이 냉각에서 중요한 역할을 합니다. 습윤 특성에 대한 표면 공법은 미세 유체 장치에서 액체 샘플의 이동을 제어하는 ​​데 사용될 수 있습니다. 모델의 주요 특징은 방울의 가장자리를 고정 위치에 고정하는 수단을 제공하는 것입니다. 형상 구성 요소 및 하위 구성 요소중에 표면에 ‘고정’ 속성을 지정할 수 있습니다. 유체의 접촉선은 처음 표면과 접촉하는 곳에 고정됩니다. 전방 속도를 0으로 유지하면 고정이 적용됩니다. 유체는 접촉선과 표면을 따라 이동하는 것이 아니라 롤오버하여 접촉점을 지나야만 이동할 수 있습니다.

커피 링 얼룩 검증

그림 1은 평평한 수평 표면에 놓인 원형 물방울의 결과를 보여줍니다. 표면은 30 ℃의 일정한 온도로 유지됩니다. 초기 유체 온도는 20 ℃이고 주변 공극의 온도는 일정한 20 ℃입니다. 유체는 밀도 0.967 g/cm3, 점도 0.02022 poise, 비열 1.645e+07 cm2/s/K, 열전도도 1.2964e+4 g*cm/s3/K, 표면 장력 계수 33.15 g/cm2의 일반적인 잉크를 나타냅니다.

그림 1. 고정 된 접촉선을 사용하여 건조 공정 중의 물방울 모양의 변화.

액적 표면의 초기 곡률 반경은 7.5e-03 cm이고, 차지하는 공간은 반경 4.5e-03 cm의 원이며, 겉보기의 초기 접촉각은 37.87 도입니다. 그림 1-a를 참조하시기 바랍니다. 지정된 정적 접촉각은 0 도입니다.

정압에 의한 상변화 모델이 활성화됩니다. 공극 내의 증기 분압은 0이고 상변화 수용 계수는 Rsize = 0.01 입니다.

잉크가 건조될 때 기판 상에 고체가 잔류하는 물이 형성되는 것을 포착하기 위해 잔류 물 모델도 켜집니다. 유체에 용해 된 안료의 농도는 초기 농도 0.01 g/cm3 이고 최대 농도 rmax = 1.1625 g/cm3 에서 운반이 가능한 스칼라로 표시됩니다. 용해 된 안료는 질량 평균을 기준으로 안료의 단위질량당 0.05 poise의 속도로 유체의 순 점도를 향상시킵니다.

이 공정은 3.0 도의 방위 방향으로 하나의 셀에 걸쳐있는 축 대칭 원통형 메쉬로 모델링됩니다. (x 간격 = 6e-05 cm, z 간격 = 4e-05 cm.)

그림 1은 유체가 증발함에 따라 접촉선이 고정 된 상태를 유지하고 있음을 보여줍니다. 0 도의 정적 접촉각 조건은 액적의 중심을 향한 압력 구배를 가져오고, 이는 접촉선 방향으로의 유동을 생성합니다. 용해 된 안료의 농도는 증발로 인해 자유 표면 근처에서 증가하며, 흐름을 따라 농도는 접촉선을 향해 더욱 재분배합니다. (그림 2). 액체가 계속 증발함에 따라, 남아있는 액체의 안료 농도는 증가합니다. 농도가 최대 rmax에 도달하면, 과잉된 안료는 고체가 잔류하는 물로 전환됩니다.

그림2. g / cm3 단위의 안료 농도 및 t = 2.0ms에서의 흐름 패턴. 흐름은 고정 된 접촉선을 향하여 안료 농도가 증가합니다.

접촉선 근처의 유체가 먼저 건조되어 고체가 잔류하는 물이 남습니다. 해당 영역의 유체에 안료 농도가 높기 때문에 고체가 잔류하는 물의 특징인 ‘커피 링’ 패턴이 기판 표면에 생성됩니다. (그림 3 및 4). 안료의 총 질량(용해 + 건조 잔류 물)은 초기 질량의 0.025 % 이내로 보존됩니다.

그림 3. 모든 유체가 증발 된 후 기판 표면에 건조된 잔류 물의 분포 (단위 : g / cm3) .
가장 높은 농도는 고정 된 접촉선의 위치에 있으며, 이는 ‘커피 링’ 효과를 만들어냅니다.
그림 4. 유체가 완전히 증발 한 후 초기 액적의 반경을 따라 건조된 잔류 물의 예상 분포.

물방울 벽의 검증

그림5. 수직 벽에 고정 된 물방울의 변형 : t = 0 ms (파란색), t = 4e-02 ms (연한 파랑) t = 0.2 ms (빨간색).
해당 이미지는 “Effects of microscale topography”, Y.V.Kalinin, V.Berejnov and R. E. Thorne, Langmuir 25, 5391-5397. (2009). 에서의 이미지입니다.

접촉선 고정 응용의 두 번째 예는 수직의 벽에 고정 된 한 방울의 액체 알루미늄의 거동입니다. 유체 밀도는 2.7 g / cm3, 표면 장력 계수 200 g / cm2 및 점도 0.27 poise입니다. 정적 접촉각은 0 도입니다.

초기의 겉보기의 접촉각이 90도가 되도록 반경 0.5cm의 물방울을 수직 벽에 놓습니다 (그림 5). 7e+06 cm/s2의 중력 크기는 표면 장력의 복원 작용을 없애고 액적이 눈에 띄도록 변형시키기 위하여 인위적으로 향상되었습니다. 결과들은 비슷한 크기의 물방울에 대한 실험 결과와의 질적 비교를 포함하여 그림 5에서 보여줍니다.

요약

FLOW-3D의 접촉선 고정 모델은 표면 장력 및 벽의 접착 기능을 확장하여 표면 공법에서 복잡한 상호 작용을 모델링합니다. 접촉선 고정이 실제로 응용되는 분야에 관하여 더 많은 예시와 추가적인 참조를 찾으신다면 여기에서 찾을 수 있습니다.

모델링 기능(Modeling Capabilities)

모델링 기능(Modeling Capabilities)

범용 CFD 소프트웨어인 FLOW-3D는 40년의 역사를 통해 개발 된 비압축 유체의 내부 및 외부의 자유 표면 흐름, 열 전달, 난류, 이동 및 변형하는 고체, 표면 장력 및 상변화와 같은 광범위한 물리적 및 수치적 기능을 갖추고 있습니다. FLOW-3D를 성공적으로 사용하여 광범위한 공학적 및 과학적 문제를 해결하고 설계를 최적화하며 복잡한 과정에 대한 통찰력을 얻을 수 있습니다.

 

 

FLOW-3D의 단열 버블 및 표면 장력 모델과 결합 된 1 유체 VOF 방식을 사용하면 유체를 사용하여 빈 공간을 효과적으로 모델링 할 수 있습니다. 이 솔루션은 빠르고 강력하며 정확하고 복잡한 2 유체 VOF 접근 방식을 우회합니다.

3D 프린팅 시뮬레이션 기술 자료 모음

본 자료에서는 분말 또는 와이어를 층별로 적층 제조하는 3D프린팅 과정에 대해 3차원 수치해석 시뮬레이션이 가능한 FLOW-3D 제품과 기술에 관련된 자료를 찾아볼 수 있습니다. FLOW-3D는 주요 금속 적층 제조 공정인 파우더 베드 융접(PBF), 직접 에너지 증착(DED) 및 바인더 분사 공정에 대해 FLOW-3D는 높은 정확도의 시뮬레이션 기능을 제공합니다.

현재 3D 프린팅 및 레이저 용접 시뮬레이션에 FLOW-3D를 사용하고 있는 기관들은 포항공대, KAIST, 부산대학교, 성균관대학교 등 국내 여러 대학들과 한국생산기술연구원, 한국기계연구원, LG전자, 현재조선해양(현대중공업) 등 많은 기관에서 연구개발에 사용되고 있습니다.

FLOW-3D는 자유수면(VOF), 상변화, 열전달 등 여러 면에서 탁월한 정확도를 가지고 있는 제품으로 특히 국내외 적층 제조 분야에서 독보적인 위치를 차지하고 있습니다.
아래에 3D 프린팅 관련 기술을 연구 개발하는데 참고가 될 만한 관련 자료 및 링크를 제공합니다.

  1. Weld
  2. Additive Manufacturing
  3. DEM(Discrete Element Method)

Advanced Microfluidic Flow Modeling/마이크로유동 모델링

유동 모델링(Flow modeling)

  • Free surface flows (자유표면 유동)
    – Free surface(자유표면), Surface tension(표면장력) 고려
    – Capillary rise/wetting(모세관 현상) 고려
    – Spontaneous capillary flow(모세관 유동) 고려
    – Wall contactangle(접촉각) 고려
  • Multi-fluid flow (멀티유체 유동)
  • Multiphase(다상 유동)
    – Free surface(자유표면)
    – Surface tension(표면장력)
    – Phase change(상 변화)
    – Heat transfer(열전달)
  • Internal flows(내부 유동)
    – Secondary circulations(이차 순환)
    – Promote mixing(믹싱 촉진)
    – Details depend on flow and curvature(곡률과 유동의 세부사항 관계)
    – Multiple flow configurations(멀티 유동 구성)
    – Micro-latching(마이크로 래칭)
    – Surface-Directed liquid flow inside Micro-channels
    (마이크로채널 내부의 표면에 따른 액체 유동)
    – General moving object flow coupling(운동학적 유동 및 커플링)
  • External forcing(외력)
    – Mechanical mixing(기계적 믹싱)
    – General moving object model(운동학적 유동모델)

– Integrates effects of electrophoresis and dielectrophoresis
  (전기 영동 및 유전 영동의 효과)
– Surface tension and electro-mechanics models(표면장력 및 전기역학 모델)
– Electrowetting on dielectric(EWOD, 유전체 전기습윤)
– Induced charges manipulate fluid at micro/nano volumes
  (유도 전하로 인한 마이크로/나노 볼륨조작)

– Magneto hydrodynamics(자기 유체역학)
– Use of magnetic control to mix fluids(유체 혼합을 위한 자기제어)

Advances in Nanotechnology

Advances in Nanotechnology

This article was contributed by Prof. Edward Furlani and his students from the University at Buffalo, SUNY.

Microfluidics와 nanofluidics는 나노와 나노사이의 기능을 가진 재료와 시스템을 통한 유체 흐름의 과학과 기술을 포함하는 분야입니다. 최근 몇 년 사이에 이 분야의 연구는 재료 개발과 시스템의 급속한 발전된 유체공정의 독특한 이점으로 증가해 왔습니다. Microfluidic 및 nanofluidic 시스템은 화학 반응, 유체 가열, 혼합 및 감지와 같은 순차적 또는 다중화된 공정을 포함할 수 있는 응용 분야에서 마이크로 사이즈의 유체 유동은 매우 효율적이고 반복 가능하며 신속한 처리를 가능하게 합니다. 풀 라니 (Furlani) 교수 그룹의 연구는 새로운 공정 및 장치 개발에 대한 모델링 및 시뮬레이션을 보여줍니다. 이 연구의 대부분은 뉴턴 및 비 뉴턴 유체, 열 전달, 상변화 분석, 자유표면 및 다상분석, 유체와 관련된 유체 현상을 연구하기 위해 최첨단 전산 유체역학을 강조합니다. 매체 상호작용, 다공성 매체를 통한 유동, 완전히 결합된 유체구조 및 입자, 유체 상호작용에 대해 콜로이드. 국제 나노 기술 학술 대회에서 3 편의 논문이 발표될 예정입니다. 2014년 6월 15일부터 18 일까지 워싱턴 DC의 Gaylord National Hotel 및 Convention Center에서 개최됩니다. 이들은 버팔로 대학교 (University at Buffalo)에서 진행되는 획기적인 결과를 선보입니다. 여기에서는 이러한 작품의 미리 보기와 FLOW-3D로 생성된 시뮬레이션 결과 중 일부를 제시합니다.

Analysis of Stem Cell Culture Performance in a Microcarrier Bioreactor System

Koushik Ponnuru1, Jincheng Wu1, Preeti Ashok1, Emmanuel S. Tzanakakis1,3,4,5,6 and Edward P. Furlani1,2

1Dept. of Chemical and Biological Engineering, 2 Dept. of Electrical Engineering, 3Dept. of Biomedical Engineering, 4New York State Center of Excellence in Bioinformatics and Life Sciences, 5Western New York Stem Cell Culture and Analysis Center, 6Genetics, Genomics and Bioinformatics, University at Buffalo, SUNY

(left) Shear stress distribution along with velocity vectors in a cross sectional plane of the bioreactor running at 60 rpm; (right) Kolmogorov length scale distribution at the same plane under the same conditions.

CFD 기반 시뮬레이션과 실험결과의 조합으로 교반 탱크의 마이크로 캐리어 생물 반응기 시스템에서 세포 배양에 대한 난류 전단응력의 영향에 대한 분석을 제시합니다. Corning’s bench-scale spinner flask의 3D 계산 모델은 최첨단 CFD 소프트웨어 인 FLOW-3D를 사용하여 제작되었습니다. 임펠러 속도, 배양액 및 입자 크기와 같은 매개변수가 마이크로 캐리어 입자에 작용되는 전단응력에 미치는 영향을 CFD 분석을 사용하여 연구하였습니다. 이것은 세포가 겪는 정확한 전단 조건을 예측하고 세포의 손상을 방지하는 최적의 작동조건을 확인하는데 사용됩니다. 또한, 다원능 마커 Oct4, Sox2 및 Nanog를 운반하는 세포의 비율을 세포 계측법 및 정량적 PCR을 사용하여 측정함으로써 hPSCs의 다능성 전단효과를 연구합니다.

Numerical Analysis of Fully-Coupled Particle-Fluid Transport and Free-Flow Magnetophoretic Sorting in Microfluidic Systems

Chenxu Liu1, Xiaozheng Xue1 and Edward P. Furlani 1,2

1Dept. of Chemical and Biological Engineering, 2Dept. of Electrical Engineering, University at Buffalo, SUNY

Magnetic nanoparticle chaining and rotating following an external field and causing the mixing of two different molecular concentrations.

Magnetic 입자는 생체 의학 및 임상 진단 응용을 위해 생체 재료를 선택적으로 분리 및 분류하는 마이크로 유체시스템에 점점 더 많이 사용되고 있습니다. 그러한 시스템의 합리적인 설계에 사용될 수 있는 전산모델이 도입되었습니다. 이 모델은 자기 및 유체 역학적 힘, 완전 결합 입자 – 유체 상호 작용 및 입자의 자기 조립을 유도하는 자기 쌍극자와 쌍극자의 상호 작용을 비롯한 입자 수송에 대한 지배적 메커니즘을 고려합니다. 응용 프로그램을 통해 연속흐름 분리시스템 및 회전 조립 체인을 기반으로 하는 미세 유체 혼합프로세스로 시연됩니다.

Numerical Analysis of Laser Induced Photothermal Effects using Colloidal Plasmonic Nanostructures

Ioannis H. Karampelas1, Young Hwa Kim2 and Edward P. Furlani 1,2

1Dept. of Chemical and Biological Engineering, 2 Dept. of Electrical Engineering, University at Buffalo, SUNY

Photothermal heat cycle of a nanocage (a=50nm, t=5nm) (perspective 1/8 view): plot of nanocage temperature vs. time, pulse duration indicated by the red arrow and dashed line and inset plots showing various phases of the thermo -fluidic cycle: (a) nanobubble formation, (b) nanobubble (maximum size), (c) nanobubble collapse, (d) cooling.

Colloidal 귀금속 (plasmonic) 나노 구조는 나노 입자 합성에서부터 바이오 이미징 (bioimaging), 의학 요법 (medical therapy)에 이르기까지 다양한 광열 (photothermal) 분야에서 점점 더 많이 사용되고 있습니다. 많은 응용분야에서, 펄스 레이저는 plasmonic 공진 주파수에서 나노 구조를 사용하며, 이는 광자의 흡수 및 고도로 국부화된 파장필드의 향상을 가져옵니다. 원격 소스로부터 효율적인 나노 스케일 가열하는 것 외에도, 합성동안 나노 입자의 구조를 조정함으로써 근적외선 스펙트럼을 통한 공진 가열파장을 조정할 수 있습니다. 우리 그룹은 nanosecond-pulsed, laser-heated colloidal metallic nanoparticles 및 열 유체 거동을 예측하는 전산모델을 개발했습니다. 이 모델은 플라즈몬 공명, 입자에서 주변 유체로의 열 전달 및 균일한 기포 핵 형성을 유도하는 유체의 위상변화에서 나노 입자 내의 에너지 전환을 시뮬레이션 하는데 사용되었습니다. nanorods, nanotori, nanorings 및 nanocages 등 다양한 nanoparticle 형상이 연구되었습니다. 이 분석은 레이저 강도, 입사 파장, 편광, 펄스 지속 시간 및 나노 입자의 방향 및 모양과 같은 공정 매개 변수가 광열 공정을 최적화하도록 조정될 수 있음을 보여줍니다. Plasmonic nanoparticles는 악성 조직의 약물 치료, 약물 전달 및 생체치료에 사용됩니다.

Home

FLOW-3D 는 세계에서 가장 어려운 CFD문제를 해결하는 소프트웨어로, 3차원 자유표면 해석 분야에서 널리 사용되는 최적의 수치해석 소프트웨어 입니다. 특히 자유표면(자유수면)을 가진 유동흐름을 정확하게 예측하는 분야에서는 타의 추종을 불허하는 정확성을 자랑합니다.

FLOW-3D 는 핵폭탄 개발 프로젝트로 유명한 미국 국립 연구소 LANL(LosAlamos National Laboratory)의 허트(C. W. Hirt) 박사가 새로운 자유표면 추적기법(free surface tracking method)인 VOF(Volume ofFluid) 방법을 연구 개발한 후, 수 많은 유동현상에 대한 물리 모델을 추가하고 성능을 개선하여, 설계 및 운영단계에서 사용되면서 엔지니어에게 귀중한 통찰력을 제공하는 세계적인 CFD 소프트웨어 입니다.

FLOW-3D 는 정확한 자유표면 추적, 압축성/비압축성 유동, 층류/난류, 열전달(전도, 대류, 복사), 점성발열, 상변화(응고,증발)/공동현상, 표면장력, 다상유동, 물질확산, 자연대류/밀도류, 뉴턴/비뉴턴유체, 틱소트로피, 다공성매질, 가속도계/관성계, 입자추적, 전기섭동/전기삼투압/주울발열, 열모세관현상 등 수많은 물리 모델을 제공합니다.

수치해석과 관련하여 궁금하신 사항은 언제든지 부담없이 문의 해주십시오.
감사합니다.

 
FLOW-3D Product
FLOW-3D 는 당사의 주력 제품으로 강력하고 매우 정확한 다중 물리 전산 유체역학(CFD) 패키지 프로그램…
Read More >>
FLOW-3D  WELDAM은 레이저 용접 공정 제어를 통해 다공성, 열 영향 영역을 최소화하고, 미세 구조 변화를 제어 할 수 있습니다. …
Read More >>
FLOW-3D Cast 는 다양한 주조 공정의 충전 및 응고, 결함 분포 예측이 가능한 3차원 유동해석 프로그램…
Read More >>
FLOW-3D 제품에 대한 기술자료와 이론 및 논문 등 다양한 기술자료를 제공합…

 

Read More >>

신규소식 기술자료
Fig. 1. Hydraulic jump flow structure.

Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

낮은 레이놀즈 수 유압 점프의 수치 모델링에서 OpenFOAM 및 FLOW-3D의 성능 평가 ArnauBayona DanielValerob RafaelGarcía-Bartuala Francisco ​JoséVallés-Morána P. AmparoLópez-Jiméneza Abstract A comparative performance analysis of the CFD platforms OpenFOAM and ...
자세한 내용 보기
Stability and deformations of deposited layers in material extrusion additive manufacturing

Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques

Md TusherMollah, Raphaël Comminal, Marcin P.Serdeczny, David B.Pedersen, Jon SpangenbergDepartment of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark Abstract This paper presents computational fluid dynamics simulations of the ...
자세한 내용 보기
Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques

기계 학습 기술에 의한 불확실성 하에서 다중 이해 관계자 계단형 배수로 설계의 충돌 해결

Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques Mehrdad GhorbaniMooseluaMohammad RezaNikoobParnian HashempourBakhtiaribNooshin BakhtiariRayanicAzizallahIzadydaDepartment of Engineering Sciences, University of Agder, NorwaybDepartment of Civil and Environmental ...
자세한 내용 보기

The Optimal Operation on Auxiliary Spillway to Minimize the Flood Damage in Downstream River with Various Outflow Conditions

류하천의 영향 최소화를 위한 보조 여수로 최적 활용방안 검토 Hyung Ju Yoo Sung Sik Joo Beom Jae Kwon Seung Oh Lee*유 형주 주 성식 권 범재 이 승오*1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik ...
자세한 내용 보기
Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.

Numerical Simulations of the Flow Field of a Submerged Hydraulic Jump over Triangular Macroroughnesses

Triangular Macroroughnesses 대한 잠긴 수압 점프의 유동장 수치 시뮬레이션 by Amir Ghaderi 1,2,Mehdi Dasineh 3,Francesco Aristodemo 2 andCostanza Aricò 4,*1Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan ...
자세한 내용 보기
Fig. 3. Breakwaters model in Flow-3D with meshing geometry and boundary (a) circular slots (b) square slots.

Study of Unconventional Alternatives to Vertical Breakwater

수직 방파제에 대한 비전통적 대안 연구 Karim Badr Hussein and Mohamed IbrahimLecturer of Irrigation and Hydraulics, Faculty of Engineering, Al-Azhar UniversityCorresponding author E-mail: badrkarim713@yahoo.com Abstract 방파제의 주요 목적은 항만 내부의 ...
자세한 내용 보기
Fig. 1. Schematic of (a) geometry of the simulation model, (b) A-A cross-section presenting the locations of point probes for recording temperature history (unit: µm).

Laser powder bed fusion of 17-4 PH stainless steel: a comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties

17-4 PH 스테인리스강의 레이저 분말 베드 융합: 열처리가 미세조직의 진화 및 기계적 특성에 미치는 영향에 대한 비교 연구 panelS.Saboonia, A.Chaboka, S.Fenga,e, H.Blaauwb, T.C.Pijperb,c, H.J.Yangd, Y.T.PeiaaDepartment of Advanced Production Engineering, Engineering ...
자세한 내용 보기
Laser powder bed fusion Figure

A study of transient and steady-state regions from single-track deposition in laser powder bed fusion

SubinShrestha KevinChou J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40292, United States Abstract The surface morphology of parts made by the laser powder bed fusion (L-PBF) process ...
자세한 내용 보기
Fig. 1. Nysted Offshore Wind Farm

FLOW-3D 모형을 이용한 해상풍력기초 세굴현상 분석

박영진1, 김태원2*1 서일대학교 토목공학과, 2 (주)지티이 Analysis of Scour Phenomenon around Offshore Wind Foundation using Flow-3D Mode Abstract 국내․외에서 다양한 형태의 석유 대체에너지는 온실효과 가스를 배출하지 않는 청정에너지로 개발되고 있으며, ...
자세한 내용 보기
Flow on the inclined drop with bat-shaped elements: (a) Non-submerged flow

Numerical Methods in Civil Engineering

Rasoul Daneshfaraz*, Ehsan Aminvash**, Silvia Di Francesco***, Amir Najibi**, John Abraham**** 토목공학의 수치해석법 Abstract The main purpose of this study is to provide a method to increase energy dissipation on ...
자세한 내용 보기
참조 : YS Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion , S2214-8604 (16) 30087-2, doi.org/10.1016/j.addma .2016.05.003 , ADDMA 86.

FLOW-3D AM 미세 구조 예측 | 열 응력 해석

미세 구조 예측 냉각 속도 및 온도 구배와 같은 FLOW-3D AM 데이터를 미세 구조 모델에 입력하여 결정 성장 및 수상 돌기 암 간격을 예측할 수 있습니다. 레이저 파우더 베드 융합으로 ...
자세한 내용 보기
Fig6. 실험실 연구에서 계단식 오버 플로우에 대한 쐐기 요소의 선택된 형상 및 배열

Numerical and Experimental Study of Wedge Elements Influence on Hydraulic Parameters and Energy Dissipation over Stepped Spillway in Skimming Flow Regime

Wedge Elements의 수치 및 실험적 연구가 스키밍 흐름 체제에서 계단식 배수로에 대한 유압 매개 변수 및 에너지 소산에 미치는 영향 Authors Kiyoumars Roushangar   ; samira akhgar 1 Civil Engineering Department, Tabriz University, Tabriz, ...
자세한 내용 보기
Fig. 1. A) Computational domain showing the cylinder, the profiles PF1, PF2 and the mining pit as set-up in the laboratory (B).

Numerical analysis of water flow around a bridge pier in a sand mined channel

모래 채굴 수로에서 교각 주변의 물 흐름에 대한 수치 해석 Oscar HERRERA-GRANADOS1,, Abhijit LADE2, , Bimlesh KUMAR31 Faculty of Civil Engineering, Wroclaw University of Science and Technology, Polandemail: Oscar.Herrera-Granados@pwr.edu.pl2 3Department ...
자세한 내용 보기
Proceedings of the 6th International Conference on Civil, Offshore and Environmental Engineering (ICCOEE2020)

Numerical Simulation to Assess Floating Instability of Small Passenger Vehicle Under Sub-critical Flow

미 임계 흐름에서 소형 승용차의 부동 불안정성을 평가하기 위한 수치 시뮬레이션 Proceedings of the International Conference on Civil, Offshore and Environmental EngineeringICCOEE 2021: ICCOEE2020 pp 258-265| Cite as Ebrahim Hamid ...
자세한 내용 보기
Numerical simulation of energy dissipation in crescent-shaped contraction of the flow path

Numerical simulation of energy dissipation in crescent-shaped contraction of the flow path

Authors Rasoul Daneshfaraz      Ehsan Aminvash     Hamidreza Abbaszadeh   1 Professor, Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Iran.2 M.sc student, Department of Civil Engineering, Faculty of Engineering, University ...
자세한 내용 보기
Fig1 3D flow simulation to improve the design and operation of the dam bottom outlets

3D flow simulation to improve the design and operation of the dam bottom outlets

Morteza Sadat Helbar,  Atefeh Parvaresh Rizi,  Javad Farhoudi &  Amir Mohammadi  Arabian Journal of Geosciences volume 14, Article number: 90 (2021) Cite this article 113 Accesses Metrics Abstract The most widely used method of flushing of reservoirs is ...
자세한 내용 보기
Fig.1 Schematic diagram of the novel cytometric device

Fabrication and Experimental Investigation of a Novel 3D Hydrodynamic Focusing Micro Cytometric Device

Yongquan Wang*a , Jingyuan Wangb, Hualing Chenc School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi, 710049, P. R. Chinaa yqwang@mail.xjtu.edu.cn,, bwjy2006@stu.xjtu.edu.cn,, c hlchen@mail.xjtu.edu.cn, Abstract: This paper presents the fabrication ...
자세한 내용 보기
Simulating Porosity Factors

다공성 요인 시뮬레이션

Simulating Porosity Factors https://www.foundrymag.com/issues-and-ideas/article/21926214/simulating-porosity-factorsPamela Waterman 수치 모델링 도구는 일반적이지만 원인을 파악하기가 너무 어렵 기 때문에 코어 가스 블로우 결함을 거의 이해하지 못합니다. FLOW-3D 소프트웨어는 코어 가스 흐름을 모델링하여 더 나은 품질의 ...
자세한 내용 보기
Figure 1. The push barge model in 1:20 geometrical scale during field experiments.

Experimental Method for the Measurements and Numerical Investigations of Force Generated on the Rotating Cylinder under Water Flow

by Teresa Abramowicz-Gerigk 1,*,Zbigniew Burciu 1,Jacek Jachowski 1,Oskar Kreft 2,Dawid Majewski 3,Barbara Stachurska 3,Wojciech Sulisz 3 andPiotr Szmytkiewicz 3 1Faculty of Navigation, Gdynia Maritime University, 81-225 Gdynia, Poland2AREX Ltd., 81-212 ...
자세한 내용 보기
Figure 1. (a) Top view of the microfluidic-magnetophoretic device, (b) Schematic representation of the channel cross-sections studied in this work, and (c) the magnet position relative to the channel location (Sepy and Sepz are the magnet separation distances in y and z, respectively).

Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance?

by  Cristina González Fernández1, Jenifer Gómez Pastora2, Arantza Basauri1, Marcos Fallanza1, Eugenio Bringas1, Jeffrey J. Chalmers2 and Inmaculada Ortiz1,* 1Department of Chemical and Biomolecular Engineering, ETSIIT, University of Cantabria, Avda. Los Castros s/n, 39005 Santander, Spain ...
자세한 내용 보기
Fluid velocity magnitude including velocity vectors and blood volumetric fraction contours for scenario 3: (a,b) Magnet distance d = 0; (c,d) Magnet distance d = 1 mm.

Numerical Analysis of Bead Magnetophoresis from Flowing Blood in a Continuous-Flow Microchannel: Implications to the Bead-Fluid Interactions

Jenifer Gómez-Pastora,  Ioannis H. Karampelas,  Eugenio Bringas,  Edward P. Furlani &  Inmaculada Ortiz  Scientific Reports volume 9, Article number: 7265 (2019) Cite this article Abstract 이 연구에서는 비드 운동과 유체 흐름에 미치는 영향에 대한 자세한 분석을 제공하기 ...
자세한 내용 보기
Fig. 12. Comparison of simulation results with experimental data for a flow rate of water = Ql=15 ml/hr and a flow rate of air = Qg =3 ml/hr.

Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method

A. Chandorkar Published 2009 Abstract This paper demonstrates that the Volume of Fluid (TruVOF) method in FLOW-3D (a general purpose CFD software) is an effective tool for studying droplet dynamics and ...
자세한 내용 보기
Figure 1. Cross-sectional dimensions of a V-groove channel

Modeling Open Surface Microfluidics

개방형 표면 미세 유체 모델링 Open surface microfluidic systems are becoming increasingly popular in the fields of biology, biotechnology, medicine, point-of-care (POC) and home care systems. The design of such ...
자세한 내용 보기
Fig.4 Schematic of a package structure

Three-Dimensional Flow Analysis of a Thermosetting Compound during Mold Filling

Junichi Saeki and Tsutomu KonoProduction Engineering Research Laboratory, Hitachi Ltd.292, Y shida-cho, Totsuka-ku, Yokohama, 244-0817 Japan Abstract Thermosetting molding compounds are widely used for encapsulating semiconductor devices and electronic modules ...
자세한 내용 보기
Hierarchical grain refinement during the laser additive manufacturing of Ti-6Al-4V alloys by the addition of micron-sized refractory particles

Hierarchical grain refinement during the laser additive manufacturing of Ti-6Al-4V alloys by the addition of micron-sized refractory particles

Xiang Wang  Lin-Jie Zhang  Jie Ning  Sen Li  Liang-Liang Zhang  Jian Long State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China Received 22 January 2021, ...
자세한 내용 보기
The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

The simulation of droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by laser irradiation and silanization processes

레이저 조사 및 silanization 공정으로 제작된 micro-pillar arrays를 사용하여 초 소수성 표면에 대한 액적 영향 시뮬레이션 ZhenyanXiaa YangZhaoa ZhenYangabc ChengjuanYangab LinanLia ShibinWanga MengWangabaSchool of Mechanical Engineering, Tianjin University, Tianjin, 300054, ...
자세한 내용 보기
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig7

A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys

Mohamad Bayat Venkata K. Nadimpalli David B. Pedersen Jesper H. Hattel Department of mechanical engineering, Technical University of Denmark (DTU), Building 425, 2800 Kgs., Lyngby, Denmark Received 21 August 2020, ...
자세한 내용 보기
 

전체 기술자료로 바로가기

Advances in Nanotechnology

Advances in Nanotechnology

This article was contributed by Prof. Edward Furlani and his students from the University at Buffalo, SUNY.

 

Microfluidics와 nanofluidics는 나노와 나노사이의 기능을 가진 재료와 시스템을 통한 유체 흐름의 과학과 기술을 포함하는 분야입니다. 최근 몇 년 사이에 이 분야의 연구는 재료 개발과 시스템의 급속한 발전된 유체공정의 독특한 이점으로 증가해 왔습니다. Microfluidic 및 nanofluidic 시스템은 화학 반응, 유체 가열, 혼합 및 감지와 같은 순차적 또는 다중화된 공정을 포함할 수 있는 응용 분야에서 마이크로 사이즈의 유체 유동은 매우 효율적이고 반복 가능하며 신속한 처리를 가능하게 합니다. 풀 라니 (Furlani) 교수 그룹의 연구는 새로운 공정 및 장치 개발에 대한 모델링 및 시뮬레이션을 보여줍니다. 이 연구의 대부분은 뉴턴 및 비 뉴턴 유체, 열 전달, 상변화 분석, 자유표면 및 다상분석, 유체와 관련된 유체 현상을 연구하기 위해 최첨단 전산 유체역학을 강조합니다. 매체 상호작용, 다공성 매체를 통한 유동, 완전히 결합된 유체구조 및 입자, 유체 상호작용에 대해 콜로이드. 국제 나노 기술 학술 대회에서 3 편의 논문이 발표될 예정입니다. 2014년 6월 15일부터 18 일까지 워싱턴 DC의 Gaylord National Hotel 및 Convention Center에서 개최됩니다. 이들은 버팔로 대학교 (University at Buffalo)에서 진행되는 획기적인 결과를 선보입니다. 여기에서는 이러한 작품의 미리 보기와 FLOW-3D로 생성된 시뮬레이션 결과 중 일부를 제시합니다.

Analysis of Stem Cell Culture Performance in a Microcarrier Bioreactor System

Koushik Ponnuru1, Jincheng Wu1, Preeti Ashok1, Emmanuel S. Tzanakakis1,3,4,5,6 and Edward P. Furlani1,2

1Dept. of Chemical and Biological Engineering, 2 Dept. of Electrical Engineering, 3Dept. of Biomedical Engineering, 4New York State Center of Excellence in Bioinformatics and Life Sciences, 5Western New York Stem Cell Culture and Analysis Center, 6Genetics, Genomics and Bioinformatics, University at Buffalo, SUNY

(left) Shear stress distribution along with velocity vectors in a cross sectional plane of the bioreactor running at 60 rpm; (right) Kolmogorov length scale distribution at the same plane under the same conditions.

CFD 기반 시뮬레이션과 실험결과의 조합으로 교반 탱크의 마이크로 캐리어 생물 반응기 시스템에서 세포 배양에 대한 난류 전단응력의 영향에 대한 분석을 제시합니다. Corning’s bench-scale spinner flask의 3D 계산 모델은 최첨단 CFD 소프트웨어 인 FLOW-3D를 사용하여 제작되었습니다. 임펠러 속도, 배양액 및 입자 크기와 같은 매개변수가 마이크로 캐리어 입자에 작용되는 전단응력에 미치는 영향을 CFD 분석을 사용하여 연구하였습니다. 이것은 세포가 겪는 정확한 전단 조건을 예측하고 세포의 손상을 방지하는 최적의 작동조건을 확인하는데 사용됩니다. 또한, 다원능 마커 Oct4, Sox2 및 Nanog를 운반하는 세포의 비율을 세포 계측법 및 정량적 PCR을 사용하여 측정함으로써 hPSCs의 다능성 전단효과를 연구합니다.

 

Numerical Analysis of Fully-Coupled Particle-Fluid Transport and Free-Flow Magnetophoretic Sorting in Microfluidic Systems

Chenxu Liu1, Xiaozheng Xue1 and Edward P. Furlani 1,2

1Dept. of Chemical and Biological Engineering, 2Dept. of Electrical Engineering, University at Buffalo, SUNY

Magnetic nanoparticle chaining and rotating following an external field and causing the mixing of two different molecular concentrations.

 

Magnetic 입자는 생체 의학 및 임상 진단 응용을 위해 생체 재료를 선택적으로 분리 및 분류하는 마이크로 유체시스템에 점점 더 많이 사용되고 있습니다. 그러한 시스템의 합리적인 설계에 사용될 수 있는 전산모델이 도입되었습니다. 이 모델은 자기 및 유체 역학적 힘, 완전 결합 입자 – 유체 상호 작용 및 입자의 자기 조립을 유도하는 자기 쌍극자와 쌍극자의 상호 작용을 비롯한 입자 수송에 대한 지배적 메커니즘을 고려합니다. 응용 프로그램을 통해 연속흐름 분리시스템 및 회전 조립 체인을 기반으로 하는 미세 유체 혼합프로세스로 시연됩니다.

 

Numerical Analysis of Laser Induced Photothermal Effects using Colloidal Plasmonic Nanostructures

Ioannis H. Karampelas1, Young Hwa Kim2 and Edward P. Furlani 1,2

1Dept. of Chemical and Biological Engineering, 2 Dept. of Electrical Engineering, University at Buffalo, SUNY

 

Photothermal heat cycle of a nanocage (a=50nm, t=5nm) (perspective 1/8 view): plot of nanocage temperature vs. time, pulse duration indicated by the red arrow and dashed line and inset plots showing various phases of the thermo -fluidic cycle: (a) nanobubble formation, (b) nanobubble (maximum size), (c) nanobubble collapse, (d) cooling.

Colloidal 귀금속 (plasmonic) 나노 구조는 나노 입자 합성에서부터 바이오 이미징 (bioimaging), 의학 요법 (medical therapy)에 이르기까지 다양한 광열 (photothermal) 분야에서 점점 더 많이 사용되고 있습니다. 많은 응용분야에서, 펄스 레이저는 plasmonic 공진 주파수에서 나노 구조를 사용하며, 이는 광자의 흡수 및 고도로 국부화된 파장필드의 향상을 가져옵니다. 원격 소스로부터 효율적인 나노 스케일 가열하는 것 외에도, 합성동안 나노 입자의 구조를 조정함으로써 근적외선 스펙트럼을 통한 공진 가열파장을 조정할 수 있습니다. 우리 그룹은 nanosecond-pulsed, laser-heated colloidal metallic nanoparticles 및 열 유체 거동을 예측하는 전산모델을 개발했습니다. 이 모델은 플라즈몬 공명, 입자에서 주변 유체로의 열 전달 및 균일한 기포 핵 형성을 유도하는 유체의 위상변화에서 나노 입자 내의 에너지 전환을 시뮬레이션 하는데 사용되었습니다. nanorods, nanotori, nanorings 및 nanocages 등 다양한 nanoparticle 형상이 연구되었습니다. 이 분석은 레이저 강도, 입사 파장, 편광, 펄스 지속 시간 및 나노 입자의 방향 및 모양과 같은 공정 매개 변수가 광열 공정을 최적화하도록 조정될 수 있음을 보여줍니다. Plasmonic nanoparticles는 악성 조직의 약물 치료, 약물 전달 및 생체치료에 사용됩니다.

컨설팅 실적

FLOW-3D Case Studies
FLOW-3D Case Studies

수행 실적

No사업명발주처
1성남정수장 3차원 유동해석한국수자원공사
2소양강댐 홍수방지벽 설치공사 실시설계용역(수치모형실험)도화종합기술공사
3용담댐 도수터널 취수탑 유입수량 유속분포(수치모형실험)한국수자원공사
4대곡댐 여수로 문비설치 기본 및 실시설계(수치해석)도화종합기술공사
5영천댐 치수능력 증대방안 실시설계(실시모형실험)도화종합기술공사
6시화조력발전소 축조공사 턴키설계를 위한 CFD 수치모형실험대우건설
7평화의댐 2단계사업 시설공사 실시설계(수치모형실험)도화종합, 삼안건설, 한국종합개발기술공사
8광동달방댐 치수능력증대사업 기본 및 실시설계영역(수치모형실험)도화종합, 삼안건설기술공사
9광양 3단계 공업용수도 실시설계용역(여수로 수치모형실험,수어댐)삼안건설기술공사
10탐진 다목적댐 치수능력 증대방안용역(수치해석)삼안건설기술공사
11댐 상수원 설계표준도 작성용역삼안건설기술공사
12보성강댐 정밀안전진단(3D모델링 수치해석)한국시설안전관리공단
13반월정수장 노후시설 개량 기본 및 실시설계용역(수치해석 부분)한국종합엔지니어링
14청송양수발전소 1,2호기 설계기술용역/여수로 3차원 수치해석용역현대엔지니어링
15소양강댐 보조여수로 설치공사 기본설계입찰 수치모형실험용역SK건설
16잠실 수중보 어도개선 기본 및 실시설계도화종합기술공사
17서귀포시 동부하수종말처리장 고도처리시설 기본 및 실시설계용역삼안건설기술공사
18서귀포시 서부하수종말처리장 고도처리시설 기본 및 실시설계용역선진엔지니어링
19오산 제2하수처리장 건설사업입찰 기본설계용역 중 3차원 수치유동해석 분야엘지건설
20당진화력 7,8호기 취수로 수치모델링한국동서발전주식회사
21녹산배수펌프장 건설공사 대안설계용역 중 펌프장 흐름해석 부문한국종합기술개발공사
22대암댐 치수능력증대사업 기본 및 실시설계(2차) 수치해석현대엔지니어링
23용인흥덕 쓰레기 이송관로 입찰설계벽산엔지니어링
24군산하수처리장 고도처리사업 턴키공사 기본설계 전산유체해석부강테크(GS건설)
25임하댐 비상여수로 건설공사 기본설계용역(수치모형실험)삼안건설기술공사
26대청댐 비상여수로 건설공사 턴키설계용역(수치해석)삼안건설기술공사
27섬진강댐 재개발 실시설계용역(수치모형실험)삼안건설기술공사
28한강하류권급수체계구축사업 제3공구 생활용수정수장 대안설계신우엔지니어링
29임하댐 취수설비 개선공사 기본 및 실시설계용역 중 전산유체유동해석유신코퍼레이션
30광명 소하 쓰레기 자동집하시설 건설공사 T/K 기본설계용역유신코퍼레이션
31공주막여과정수장 수처리구조물의 합리적 설계를 위한 전산유체해석한국수자원공사
32김포장기지구 쓰레기 자동집하시설의 수치해석한화건설
33군장국가산단(장항지구)호안도로 축조공사 갑문수치모의실험항도엔지니어링(포스코건설)
34대청댐 비상여수로 건설공사 턴키설계용역(주)삼안
35성남판교 자동크린넷시설공사 T/K 기본설계(설계용역)건화엔지니어링
36영등포정수장 재건설 및 고도정수처리 시설공사 턴키설계용역중 수리구조물 전산 유체 해석부분삼성건설
37보령7,8호기 배수로 수치해석한국전력기술
38보령1~6호기 배수로 수치해석한국전력기술
39LNG 지하저장 실증기술개발 중 유속에 의한 Ice Ring 형성조건연구한국지질자원연구원
40LNG 지하저장 실증기술개발 중 유속에 의한 Ice Ring 형성조건연구SK건설
41파주 운정지구 쓰레기 집하시설 수집관로 수치해석건화엔지니어링
42마그네슘블록 유동,응고,응력 해석대림기업(주)
43군남홍수조절지건설공사 기본 및 실시설계용역도화종합기술공사
44안동댐 비상여수로 기본설계용역 수치모형실험에스케이건설
45세탁기 Duct 부품의 Aluminum Die-Casting CAE 해석방안 개발엘지전자
46광양 2~3연주기 고속 주조시 몰드내 열유동응고해석포스코
47Cam-shaft 다이캐스팅용 금형설계 및 주조방안 해석한국생산기술연구원
48팔당수력댐 가능최대홍수량(PMF:Probable Maximum Flood)에 의한 댐체 월류시 수리 및 구조적 안정성 검토용역한국시설안전기술공단
49담체거동을 고려한 호기조 유동해석한수테크니컬서비스
50피스톤 쿨링젯 해석기술 개발 기술용역현대자동차
51아산 방조제 배수갑문확장사업 1단계 대안설계삼안건설기술공사
52하동화력 7,8호기 냉각수 배수구 전면 저류지 축조공사 3차원 수치모형실험 해석제이슨기술단
53의암수력댐 가능최대홍수량(PMF:Probable Maximum Flood)에 의한 댐체 월류시 수리 및 구조적 안정성 검토용역한국시설안전기술공단
54춘천 및 보성강댐 가능최대홍수량(PMF:Probable Maximum Flood)에 의한 댐체 월류시 수리 및 구조적 안정성 검토용역한국시설안전기술공단
55소양강댐 여수로 방류흐름개선을 위한 수치모형실험 용역한국시설안전기술공단
56제천시 하수관거정비 임대형 민자사업(BTL) 기본설계용역 중 수충격검토(주)바셈
57금강살리기 행복지구 생태하천 조성공사계룡건설산업
58첫마을지구 생활폐기물 자동집하시설 건설공사 기본설계 T/K도화종합기술공사
59괴산댐 가능최대홍수량에 대한 댐체월류시 구조적 안정성 검토용역한국시설안전기술공단
60충남도청 이전신도시 자동집하시설 건설공사 T/K입찰 기본설계 용역(주)건화
61영등포정수장 3D 모델링(주)대우건설
62화순홍수조절지 기본 및 실시설계 용역(주)도화종합기술공사
63재천시 하수관거정비 임대형 민자사업(BTL) 기본설계용역 중 수충격검토(주)바셈
64한탄강댐본댐 및 부대시설 공사 설계 변경 용역(주)삼안
65새만금 방수제 만경5공구 건설공사 기본설계 용역(3차원 수치해석)(주)삼안
66연속 주조시 발생되는 몰드 내 열응력 영향 해석(주)엔지비
67낙동강하구둑 배수문 증설공사 기본설계용역 중3차원 수치해석(주)유신
68뚝도정수센터 시설현대화 및 고도정수처리시설 실시설계 수치해석 용역신우엔지니어링
69파주운정쓰레기 자동집하시설 건설공사(T/K)태영건설
70거제평프장도화
71광교댐수치해석도화
72Slag Pouring 및 이송 시 열유동해석매탈젠텍(POSCO)
73LICC DP매탈젠텍(POSCO)
74PFC DP 공정 해석매탈젠텍(RIST)
75행복도시하수처리장이산
76다이캐스팅 주조방안 및 해석코다코(캐스트맨 매출)
77전착성능해석용 차체모델링+전착 이차흐름현대기아기술연구소
78고열전도성 다이캐스팅 경량 방열부품개발현대자동차
79엔진/변속기1 (전륜8속 TM 케이스 및 하우징 방안설계 최적화)현대자동차
80쇽업쇼버 케이스 해석 용역현대자동차
81엔진/변속기2 (세타/실린더헤드 및 후륜 다단변속기 케이스2개 제품)현대자동차
82엔진/변속기3 / 6월현대자동차
83엔진/변속기4 / 8월현대자동차
84고강도 저밀도 산합금 열물성 DB 및 주조해석현대자동차
85진공밸브 최적화현대자동차
86Bloom 해석(연주기 몰드 내 용강 유동해석)현대제철
87상수도관망 최적관리시스템 구축사업(고성군)태성종합기술
88신월빗물저류배수시설 3차원수치해석선진ENG
89실러류 해석기술 개발현대기아기술연구소
90고덕하수처리장 수치해석그레넥스
91고덕하수처리장 수치해석엔바이로솔루션
92라오스수력발전프로젝트SK건설
93슬리브내 역비산기아차
94송석지 싸이폰 여수로농어촌공사(충남도본부 예산지사)
95고풍지 싸이폰 여수로농어촌공사(충남도본부)
96광교저수지 싸이폰 여수로지자체(수원시)
97장수지 싸이폰 여수로지자체(전남공흥군)
98광폭 마그네슘 주조기 용해로 열변형 해석용역포스코
99350톤 양수냄비 다이캐스팅 개발해피콜
100Mg 빌렛 해석HMK
101관망해석 프로그램 개발국민대학교
102충주댐 하류가물막이 수치해석대림산업
103충주댐 하류가적치 수치해석대림산업
104충주댐 하류가적치 수치해석대림산업
105평화의댐 하류부지 계획고 조정에 따른 3D 수치해석 용역대림산업
106봉화댐 실시설계 3차원 수치모형 실험도화엔지니어링
107원통수조 교반해석도화엔지니어링
108DAF 실증시설 부상조 수치해석삼진정밀
109EI과제 프로그램 개발(건기연(정우식박사))오투엔비
110SEMANGKA HEPP 수치모형 실험이산
111공릉저수지 조류 및 유속분포 유동해석한국건설기술연구원
112교육 및 해석 기술 자문한국건설기술연구원
113터빈하우징 로스트폼 주조 용역한국생산기술연구원
114터빈하우징 로스트폼 주조 용역한국생산기술연구원
115교육 및 해석 기술 자문해안해양기술
116새만금 남북2축 도로 제 3공구해석E&H컨설턴트
117달천교 교각세굴 해석E&H컨설턴트
118Lean Amine Air Cooler 부식원인 분석을 위한 유동해석GS칼텍스
119Xe Pian 하류 변경안 해석SK건설
120멤브레인 CFD 프로그램 개발국민대학교
121원형관 내부 유동해석서울시립대학교
122우수저류지 세척 시스템 해석선일엔바이로
123MD 열교환 해석(2차)알이디
124모듈조합프로그램 개발오투앤비
125해양 구조물 세굴해석전남대학교
126하우징 다이캐스팅 해석제이에스테크
127막묘듈 열교환 해석한국건설기술연구원
128두량지 PK Weir 방류량 해석한국농어촌공사
129관내 유동해석GS칼텍스
130정수장 분배수로 응집지 해석그린텍환경컨설팅
131정수장 분배수로 응집지 해석그린텍환경컨설팅
132주조제일테크
133해저구조물 세굴 및 선박유동 해석창원대학교(ADD)
134고출력 저압 램프용 자외선 반응기 해석한국건설기술연구원
135고출력 중압 램프용 자외선 반응기 해석한국건설기술연구원
136과제 해석한국건설기술연구원
137이동식보&팬스한국건설기술연구원
138Point source 기반의 하천 녹조 발생 현황 2차원 mapping 시스템한국건설기술연구원
139해석지원한국종합기술
140데이터교환customizing한국항공우주연구원
141엔진소재의 주조방안 최적화를 위한 주조해석 기술용역현대자동차
142배관유동GS건설
143울산 소수력 수치해석 용역유신
144한국건설기술연구원-이동형 해수담수화 시스템 개발 컨설팅한국건설기술연구원
145Water Dynamometer 해석두산중공업
146약액 침전 외 2건 해석세메스
147Ladle 내 Dam 및 노출부 형상변화에 따른 Vortex 거동 해석(재)포항산업과학연구원
148VMD 모듈 3D모델링알이디
149칠서정수장 기술진단 3차원 수치해석(주)그린텍환경컨설팅
150충주댐 유출부 감세지 3차원 수치해석대림산업
151친환경차용 e-4WD 유도모터 로터 주조기술개발현대자동차
152울산 #4복합 해양소수력 개발 타당성 용역중 3차원 수치해석유신
153사이펀 활용 중력구동 분리막 시스템 수치해석한국건설기술연구원
154삼척화력 소수력발전설비 설치공사(EPC) 기본 및 실시설계 중 CFD해석유신
155LG전자(평택) 생산기술원-레이저 용접 결함 예측 모델 개발LG전자(평택)
156LG전자 창원 H&A사업본부-FLOW-3D 기반 통세척 성능 해석기술 개발LG전자(창원)
 수리/수자원 분야
01 교량 설치에 따른 하천흐름 및 세굴영향 검토
컨설팅내용
  • 교량 설치로 인한 3차원 모형의 수리영향 검토
  • 세굴방지공 설치로 교량의 수리적 안정성 확보
필요데이터
  • 교각 3차원 형상 또는 도면
  • 하천 수심측량 자료 및 수치지형도
  • 하천 상/하류 홍수위 및 홍수량
해석방법
  • 하천의 유동해석 수행 후 최고유속에 해당하는 교각 선정
  • 선정교각 대상을 중심으로 세굴 모형 적용
결과물
  • 하천 유동흐름, 수위분석
  • 평형세굴심 도달시간
  • 최대세굴심 및 최대퇴적고 등
02 댐체 월류 시 수리/수문 구조적 안정성 검토
컨설팅내용
  • 상류 댐 붕괴 시 급격한 방류로 인하여 하류 댐에 미치는 영향을 검토하기 위해 댐체 월류 시 수리/수문 구조적 안정성검토
필요데이터
  • 공도교 및 수문 구조물 상세 도면
  • 하천 수심측량자료 및 주변 수치지형도
  • 하천 상/하류 홍수위 및 홍수량
해석방법
  • 상류 댐 붕괴시 홍수위/홍수량 정보입력
  • 구조물/수문 분리 후 취약한 수문 선정
  • 수문 구조해석 및 Total 힘 분석
결과물
  • 수문/구조물 받는 힘 분석
  • 굥도교 월류 여부 및 수위/유속 분포
  • 방류량 및 구조물 부압 등
 수처리 분야
01 정수처리시설 구조물 최적설계
컨설팅내용
  • 정수시설 구조물에 대한 유동, 유량, 압력, 온도분포 분석
  • 수처리과정에 발생하는 현상분석
필요데이터
  • 정수시설 구조물의 제원
  • 분배수로, 침전지 등 도면 및 3D CAD 자료
  • 초기 수위데이터 등
해석방법
  • 정수시설 구조물의 경계조건 설정
  • 형상에 따른 유동흐름 및 유량 등 초기조건 
결과물
  • 정수시설물에 작용하는 압력분포 확인
  • 유동 유입에 따른 유동양상, 유량, 유속데이터 분석
  • 온도변화에 따른 유동 및 침전효율 분석

02 하수처리시설 방류량 및 유동양상 분석
컨설팅내용
  • 토출수조의 수위 및 유동현상검토
  • 각 방류 Box의 방류유량분포 및 유속분석 
필요데이터
  • 구조물관련 설계도면 자료
  • 전체 모형 작성 및 지형데이터
  • 유체 유입량, 초기 수위관련 자료
해석방법
  • 시설 구조물에 따른 경계조건 설정
  • 초기 수위조건 및 유동현상 등 조건 확인
결과물
  • 토출 수조의 수위량 및 유동흐름
  • 유동 유입에 따른 유량, 유속데이터 분석
  • 구조물 단면의 유량흐름 데이터
 
 주조 분야
01 수축 결함최소화를 위한 주조해석
컨설팅내용
  • 주조 시 산화물 혼입방지 설계
  • 조립부 수축결함 최소화 
필요데이터
  • Frame형상 제원
  • 금형, 형상 도면자료 및 3D CAD자료
  • 초기 용탕 주입시간, 충진속도, 온도 등의 데이터
해석방법
  • 금형형상에 따른 주조해석 경계조건 설정
  • 초기 조건설정에 따른 파라미터분석
결과물
  • 충진시 산화물발생 위치 및 수축공 발생 위치
  • Solidification 확인, 결함부 현상분석
  • Gate, Runner 위치 최적화
         
02 금형 최적설계를 위한 주조해석
컨설팅내용
  • 충진 온도유지 및 제품 결함 최소화를 위한 최적설계
필요데이터
  • 금형관련 제원
  • 금형, 형상 도면자료 및 3D CAD자료
  • 초기 주조 공정조건 데이터
해석방법
  • 금형형상에 맞는 Runner, Gate 모델링
  • 용탕온도, 속도, 압력 등 조건에 따른 제품 최적설계
결과물
  • 충진시 압력분포 및 산화물 발생 위치분석
  • Solid Fraction, Solidification 등 현상분석
  • 결함부위 최소화를 위한 Gate, Runner 위치 최적화
 코팅 분야
01 Nozzle 분사를 이용한 Slit Coating 해석
컨설팅내용
  • 표면 Coating에 적합한 Nozzle 형상 설계
  • Coating 구동조건 및 압력분포 분석
필요데이터
  • 초기 Nozzle 형상 제원
  • 형상 도면자료 및 3D CAD자료
  • 초기 Coating 도포현상 및 구동조건 데이터
해석방법
  • Nozzle 구동에 따른 Coating 분석
  • 액상조건에 따른 Coating 도포형상 분석
결과물
  • Nozzle 형상 파라미터에 따른 Coating 현상분석
  • Coating 분포에 따른 높이 균일성 확인
  • 액상 온도에 따른 도포량분석
  
 MEMS 분야
01 연료전지 시스템의 최적설계를 위한 유동해석
컨설팅내용
  • 연료전지 내부형상에 따른 유동장변화 데이터
  • 유량분배에 적절한 최적의 형상조건 설계
필요데이터
  • 초기 형상 도면자료 및 3D CAD자료
  • 연료전지의 구동조건 및 물성조건
  • Actuator의 작동, 토출량, 유동 등의 데이터
해석방법
  • Micro-Channel에서의 유동분배 설정
  • 액체의 특성에 따른 토출조건 확인
결과물
  • Actuator의 속도에 따른 유동량 분석
  • Micro-Channel에서의 유동양상
  • 공동현상 최소화를 위한 최적의 구동조건

[FLOW-3D 물리모델] Solidification 응고

응고 모델은 열전달이 활성화되고(Physics Heat Transfer Fluid internal energy advection) 유체비열(Fluids Fluid 1 Thermal Properties Specific heat)과 전도도(Fluids Fluid 1 Thermal Properties Thermal Conductivity) 이 지정될 때 사용될 수 있다. 단지 유체 1만 상 변화를 겪을 수 있다.

Solidification - Activate solidification

응고모델을 활성화하기 위해 Fluids Fluid 1 Solidification Model 을 체크하고 물성 Fluids Fluid 1 Solidification Model 가지에서 Liquidus temperature, Solidus temperature, 그리고 Latent heat of fusion 를 지정한다. 가장 간단한 모델(Latent Heat Release Definition 에 펼쳐지는 메뉴에서 Linearly with constant 를 선택)에서, 잠열은 물체가 Liquidus 에서 Solidus 온도로 냉각될 때 선형적으로 방출된다. 고상에서의 상변화열을 포함하는, 잠열 방출의 더 자세한 모델을 위해 온도의 함수로 잠열방출을 정의하기 위해 Specific energy vs. temperature 또는 Solid fraction vs. temperature 선택을 사용한다. 이 지정에 대한 더 자세한 내용은 이론 매뉴얼의 Heat of Transformation 를 참조한다.

solidification-fluid-properties

응고는 유체의 강직성 및 유동저항을 뜻한다. 이 강직성은 두 가지로 모델링 된다. 낮은 고상율에 대해 즉 Fluids Fluid 1 Solidification Model Solidified Fluid 1 Properties Coherent Solid Fraction 의 coherency 점 밑에서는 점도는 고상율의 함수이다. 간섭 고상율보다 큰 고상율에 대해서는 고상율의 함수에 비례하는 항력계수를 갖는 Darcy 형태의 항력이 이용된다. 이 항력은 모멘텀 방정식에 (bx,by,bz) 로써 추가된다- Momentum Equations 를 보라. 이 항력의 계산은 Solidification Drag Model 에서 기술된다. 항력계수는 사용자가 유동저항에 양을 조절할 수 있는 Coefficient of Solidification Drag 인자를 포함한다. 항력계수는 FLOW-3D 출력에서 기록된 속도에 상응하는 지역 상 평균 속도에 의해 곱해진다.

Fluid 1 Properties)을 지나면 항력은 무한대가 되고 계산격자 관련하여 유동이 있을 수 없다(단 예외로 Moving Solid Phase를 참조).

Note

모든 유체가 완전히 응고하면 모사를 정지시키기 위해 General Finish condition Solidified fluid fraction 를 이용한다. General Finish condition Finish fraction 은 모사를 중지하기 위한 고상율 값을 정한다.

 

Drag in the Mushy Zone, Mushy영역 내 항력

 

주조 시 mushy zone 은 액상과 고상이 혼합물로 존재하는 지역이다. 이 지역 혼합점도는 동축의 수지상 조직(과냉각된 액체 안에서 방사상으로 자라는 결정으로 된 구조) 이 액체 안에서 자유롭게 부유할 때 영향을 미친다.

일단 수지상 조직의 간섭성이 발생하여 고정된 고상 망이 형성되면 액상이 고정된 다공 수지상 구조를 통과해야 하므로 추가의 유동손실이 발생한다. 다른 방법으로는 간섭점을 지난 액/고상 혼합물은 다공물질을 통한 유동 대신에 고점도의 유체로 간주될 수 있다. 점성유체로 간주하는 접근은 예를 들면 연속 이중 롤 주조 과정같이 고상이 계속 이동 및 변형할 때 유용하다.

 

Solidification Drag Models in FLOW-3D, FLOW-3D 내 응고 항력모델

응고에 의한 항력계수를 정의하기 위해 사용자는 우선 열전달 및 응고모델을 활성화 해야 한다. 이들은 Model Setup Physics 탭 에서 활성화될 수 있다. 수축모델 또한 응고모델 창에서 활성화될 수 있다.

Solidification model

일단 Solidification 모델이 활성화되면 항력의 공식이 지정될 필요가 있다. Solidification대화의 밑 좌측 모퉁이에서 Porous media drag-based Viscosity-based 의 항력공식 중의 선택을 한다.

    • Viscosity-based 공식은 점성 유체로 취급하며 Viscosity 영역 내Flow model for solidified metal 입력 밑에서 지정되는 순수 고상 점성을 갖는 고상화된 유체로 간주된다. 이 접근법은 경직성의 항력모델(즉, 응고 금속이 롤러 사이로 압착될 때)을 사용할 수 없는 경우의 모사에 이용된다. 이 점성은 고상율에 따라 선형으로 변한다.고상율이0일 때 점도는 유체1의 점도이다.고상율이1이면 점도는 Solidification 패널에서 지정된 값과 같다.
    • Porous media drag-based 공식은 응고상태를 결정하기 위해 고상율을 사용한다. 고상율이 Critical Solid Fraction 이거나 초과하면 이때 항력은 무한대가 된다-즉, 액상/고상 혼합물은 고체같이 거동한다. 고상율이 Coherent Solid Fraction 보다 작으면 항력은 0이다. 이 두 값 사이에서 유동은 mushy 지역에 있고 이를 통한 유동은 마치 다공질 내에서의 유동같이 처리된다. 또한 모델은 고상율이 Coherent Solid Fraction 보다 작을 때 자동적으로 용융 금속의 점도를 조절한다. 이 상태에서 고상결정은 점도를 올리지만 결합하지는 않는다(즉, 간섭 없음). 일단 유체가 Coherent Solid Fraction 에 도달하면 항력방정식이 고려되고 점도는 간섭성에 도달하기 전의 값으로 일정하게 된다. 임계 및 간섭 고상율은 사용자가 정의하며 논문이나 책 등에서 찾을 수 있다. 이 식에서는 Coefficient of Solidification Drag 가 정의되어야 한다. 이는 Solidification 창 또는 Fluid 1 Solidification ModelSolidified Fluid 1 Properties tree Other 트리를열어 Model Setup Fluids 탭에서 될 수 있다.

How to Calculate Permeability 투과성 계산법

밑에 주어진 Darcy법칙은 수지상 구조를 위한 다공매질내의 수학적 유동기술이다.[Poi87].

(19)\mathbf{u} = - \frac{K}{\mu} \nabla P

여기서 u 는 수지상 구조 내 유동의 속도이고 ∇P 는 지역 압력구배, 그리고 K 는 mushy 구역의 특정 투수성이다. 이 방정식은 단지 유동이 거의 정상 상태이고, 관성효과가 없으며 유체의 체적율이 일정하고 균일하며 액체-액체의 상호작용 힘이 없을 때 유효하다. 투수성을 정의하는데 이용될 수 있는 대 여섯 개의 모델이 있으나 FLOW-3D 는 밑에 보여주는 Blake-Kozeny 을 이용한다. 다른 모델들은 코드와 함께 제공되는 소스코드를 사용자 사양에 맞게 수정하여 추가할 수 있다.

(20)\mathbf{u} = -C_2 \left( \frac{\lambda_1^2 (1-f_s)^3}{\mu f_s^2} \right) \left( \nabla P - \rho \mathbf{g} \right)

여기서

C2 는 전형적으로 와 같은 비틀림

fs 는 고상율이고

λ1는 유동을 위한 특정 치수

이 응용에서 수지상 가지 간격(DAS)이 이용된다.

  • 식 (11.19) 을 식(11.20) 에 적용하면 투수성을 위한 다음 식을 얻는다.

(21)K = \lambda_1^2 \frac{(1-f_s)^3}{180f_s^2}

수지상 가지 간격(DAS)에 대한 일반적인 값들은 밑에 주어져 있다.

Range of Cooling Rates in Solidification Processes
COOLING RATE, K/s PRODUCTION PROCESSES DENDRITE ARM SPACING, \mu m
10^{-4} to 10^{-2} large castings 5000 to 200
10^{-2} to 10^3 small castings, continuous castings, die castings, strip castings, coarse powder atomization 200 to 5
10^3 to 10^9 fine powder atomization, melt spinning, spray deposition, electron beam or laser surface melting 5 to 0.05

Range of cooling rates in solidification processes [CF85]

 

How FLOW-3D Defines the Coefficient of Solidification Drag FLOW-3D 가 응고 항력계수를 결정하는법

FLOW-3D 는 액고상 변화를 모델링하기 위해 다공매질항력을 이용한다. 항력은 고상율의 함수이다. 사용자에게 두 수축모델이 이용 가능하다; 급속 수축 모델 과 완전 유동모델. 급속 수축 모델은 상변화와 연관된 체적변화를 고려하지 않으며 유체는 정지해 있다고 가정한다. 완전 유동모델은 상변화가 관련된 체적변화를 고려한다. 항력은 투수성에 역으로 비례하므로 다음과 같이 표현될 수 있다.

(22)K = \frac{\mu}{\rho F_d}

여기서, Fd FLOW-3D 에서 사용된 항력계수이다. 이 항력계수는 지역 속도에 의해 곱해지고 모멘텀 방정식의 오른쪽에서 차감된다 (Momentum Equations 참조). 식 (11.22) 를 재정리하고 식 (11.21) 로부터의 투수성에 치환하면 다음을 얻는다.

  • The Coefficient of Solidification Drag: \text{TSDRG}=\frac{180 \mu}{\lambda_1^2\rho },
  • The drag force: F_d = \mbox{TSDRG} \frac{ f_s^2}{(1-f_s)^3}.

 

Macro-Segregation during Alloy Solidification 합금응고시 거시적 편절

편절 모델은 대류와 확산에 의한 용질 이동에 따른 이원합금 요소에서의 변화를 모델링 하도록 되어 있다. 이 모델링은 Physics → Solidification 로 부터 될 수 있다.

Solidification

Activate binary alloy segregation model 을 체크하고 편절 모델을 활성화한다.

여러 온도에서 평형에 있는2원합금 요소농도를 정의하는 상태도는 직선의 고상선 및 액상선을 가진다고 가정된다. 상태도는 입력데이터에 의해 구성되고 전처리 그림파일 prpplt 에 포함된다. Analyze Existing 에서 이용 가능하다

Macro-Segregation Model (under Fluids Fluid 1 Solidification Model)에 관련된 일부 유체물성 트리가 밑에 보여진다. 상태도는 Reference Solute Concentration 에서의 the Solidus Liquidus Temperatures 값들에 의해 정의된다. 추가로 Concentration Variables 밑의 Partition coefficient 도 정의되어야 한다. 그렇지 않으면 Pure Solvent Melting Temperature 가 정의될 수 있다. Partition coefficient Pure Solvent Melting Temperature 둘 다가 지정되면 용매 용융 온도는 상태도로부터 재 정의된다.

Macro segregation fluid properties

 

Eutectic Temperature 또는 Eutectic Concentration 는 융해작용을 정의하기 위해 지정될 수 있다. 또 이 두 변수가 다 지정되면 Eutectic Concentration 은 상태도에서 재 정의된다.

Diffusion Coefficients 는 고상과 액상 사이의 용질의 확산계수 비율을 정의한다. 액체 내의 용질의 분자 확산계수는 Physics Solidification 에서 specifying Solute diffusion coefficient 를 지정함으로써 정해진다. RMSEG 는 용질의 난류 확산계수 승수를 정의한다; 이는 입력파일에서 직접 지정된다.

Density evaluation

용질 재 분배에 의한 농도변화가 중요하면 Physics Density evaluation Density evaluated as a function of other quantities를 정하고 용질농도의 선형함수로써 금속농도를 정의하기 위해 Fluids Segregation model 밑의 Solutal Expansion Coefficient 를 용질 확장계수로 지정한다. 이 경우 Reference Solute Concentration 이 기준농도로 사용될 것이다. 추가로 Fluids Fluid 1 Density Properties Volumetric Thermal Expansion 은 액체 내 열부력 효과를 참작하기 위해 지정될 수 있다(또한 Buoyant Flow참조).

초기 용질농도는 Meshing & Geometry Initial Global Uniform alloy solute concentration 에서 지정될 수 있다. 불 균일한 초기 분포는 Alloy solute concentration 밑의 초기유체 구역 안에서 정의될 수 있다. 추가로 농도는 Initial Conditions: Region Values 에서 기술된 바와 같이 2차함수를 사용하는 부분을 편집하여 공간상의2차함수로 변화할 수 있다. 압력과속도 경계에서 용질 경계조건을 정하기 위해 Boundaries Boundary face Solute concentration 를 이용한다.

액상 및 고상 구성은 후처리에서 데이터 변환을 이용하여 그려질 수 있다. 용융 응고금속은 금속 내 용융의 질량 분율을 저장하는 SLDEUT 를 그림으로써 가시화될 수 있다.

액상 내 열구배가 크면 Physics Heat Transfer Second order monotonicity preserving 를 지정함으로써 더 나은 정확성을 위해 고차원 이류법을 사용한다.

 

Heat Transfer

mushy 지역에서의 유동손실은 수지상 가지 간격(DAS)의 함수인 Fluids Fluid 1 Solidification Model Solidified Fluid 1 Properties Coefficient of Solidification Drag 에 의해 조절된다. 후자는 이 모델에 의해 계산되지 않으므로 사용자는 Coefficient of Solidification Drag 를 지정해야 한다

Note

  • 표준 응고모델 과는 달리 상태도상의 용융점을 지나 고상선을 외삽하여 정의되므로 여기서 응고선의 값은 음수일 수 있다.

Microporosity Formation 미세다공형성