Deniz Velioglu Sogut ,Erdinc Sogut ,Ali Farhadzadeh,Tian-Jian Hsu
Abstract
The present study evaluates the performance of two numerical approaches in estimating non-equilibrium scour patterns around a non-slender square structure subjected to a transient wave, by comparing numerical findings with experimental data. This study also investigates the impact of the structure’s positioning on bed evolution, analyzing configurations where the structure is either attached to the sidewall or positioned at the centerline of the wave flume. The first numerical method treats sediment particles as a distinct continuum phase, directly solving the continuity and momentum equations for both sediment and fluid phases. The second method estimates sediment transport using the quadratic law of bottom shear stress, yielding robust predictions of bed evolution through meticulous calibration and validation. The findings reveal that both methods underestimate vortex-induced near-bed vertical velocities. Deposits formed along vortex trajectories are overestimated by the first method, while the second method satisfactorily predicts the bed evolution beneath these paths. Scour holes caused by wave impingement tend to backfill as the flow intensity diminishes. The second method cannot sufficiently capture this backfilling, whereas the first method adequately reflects the phenomenon. Overall, this study highlights significant variations in the predictive capabilities of both methods in regard to the evolution of non-equilibrium scour at low Keulegan–Carpenter numbers.
Keywords
Keulegan-Carpenter number, Solitary wave, non slender, wave-structure interaction, FLOW-3D, WedWaveFoam
Mary Kathryn Walker Florida Institute of Technology, mwalker2022@my.fit.edu
Robert J. Weaver, Ph.D. Associate Professor Ocean Engineering and Marine Sciences Major Advisor
Chungkuk Jin, Ph.D. Assistant Professor Ocean Engineering and Marine Sciences
Kelli Z. Hunsucker, Ph.D. Assistant Professor Ocean Engineering and Marine Sciences
Richard B. Aronson, Ph.D. Professor and Department Head Ocean Engineering and Marine Sciences
Abstract
모노파일은 해상 풍력 터빈 건설에 사용되며 일반적으로 설계 수명은 25~50년입니다. 모노파일은 수명 주기 동안 부식성 염수 환경에 노출되어 구조물을 빠르게 분해하는 전기화학적 산화 공정을 용이하게 합니다. 이 공정은 모노파일을 보호 장벽으로 코팅하고 음극 보호 기술을 구현하여 완화할 수 있습니다.
역사적으로 모노파일 설계자는 파일 내부가 완전히 밀봉되고 전기화학적 부식 공정이 결국 사용 가능한 모든 산소를 소모하여 반응을 중단시킬 것이라고 가정했습니다. 그러나 도관을 위해 파일 벽에 만든 관통부는 종종 누출되어 신선하고 산소화된 물이 내부 공간으로 유입되었습니다.
표준 부식 방지 기술을 보다 효과적으로 적용할 수 있는 산소화된 환경으로 내부 공간을 재고하는 새로운 모노파일 설계가 연구되고 있습니다. 이러한 새로운 모노파일은 간조대 또는 조간대 수준에서 벽에 천공이 있어 신선하고 산소화된 물이 구조물을 통해 흐를 수 있습니다.
이러한 천공은 또한 구조물의 파도 하중을 줄일 수 있습니다. 유체 역학적 하중 감소의 크기는 천공의 크기와 방향에 따라 달라집니다. 이 연구에서는 천공의 크기에 따른 모노파일의 힘 감소 분석에서 전산 유체 역학(CFD)의 적용 가능성을 연구하고 주어진 파도의 접근 각도 변화의 효과를 분석했습니다.
모노파일의 힘 감소를 결정하기 위해 이론적 3D 모델을 제작하여 FLOW-3D® HYDRO를 사용하여 테스트했으며, 천공되지 않은 모노파일을 제어로 사용했습니다. 이론적 데이터를 수집한 후, 동일한 종류의 천공이 있는 물리적 스케일 모델을 파도 탱크를 사용하여 테스트하여 이론적 모델의 타당성을 확인했습니다.
CFD 시뮬레이션은 물리적 모델의 10% 이내, 이전 연구의 5% 이내에 있는 것으로 나타났습니다. 물리적 모델과 시뮬레이션 모델을 검증한 후, 천공의 크기가 파도 하중 감소에 뚜렷한 영향을 미치고 주어진 파도의 접근 각도에 대한 테스트를 수행할 수 있음을 발견했습니다.
접근 각도의 변화는 모노파일을 15°씩 회전하여 시뮬레이션했습니다. 이 논문에 제시된 데이터는 모노파일의 방향이 통계적으로 유의하지 않으며 천공 모노파일의 설계 고려 사항이 되어서는 안 된다는 것을 시사합니다.
또한 파도 하중 감소와 구조적 안정성 사이의 균형을 찾기 위해 천공의 크기와 모양에 대한 연구를 계속하는 것이 좋습니다.
Monopiles are used in the construction of offshore wind turbines and typically have a design life of 25 to 50 years. Over their lifecycle, monopiles are exposed to a corrosive saltwater environment, facilitating a galvanic oxidation process that quickly degrades the structure. This process can be mitigated by coating the monopile in a protective barrier and implementing cathodic protection techniques. Historically, monopile designers assumed the interior of the pile would be completely sealed and the galvanic corrosion process would eventually consume all the available oxygen, halting the reaction. However, penetrations made in the pile wall for conduit often leaked and allowed fresh, oxygenated water to enter the interior space. New monopile designs are being researched that reconsider the interior space as an oxygenated environment where standard corrosion protection techniques can be more effectively applied. These new monopiles have perforations through the wall at intertidal or subtidal levels to allow fresh, oxygenated water to flow through the structure. These perforations can also reduce wave loads on the structure. The magnitude of the hydrodynamic load reduction depends on the size and orientation of the perforations. This research studied the applicability of computational fluid dynamics (CFD) in analysis of force reduction on monopiles in relation to size of a perforation and to analyze the effect of variation in approach angle of a given wave. To determine the force reduction on the monopile, theoretical 3D models were produced and tested using FLOW-3D® HYDRO with an unperforated monopile used as the control. After the theoretical data was collected, physical scale models with the same variety of perforations were tested using a wave tank to determine the validity of the theoretical models. The CFD simulations were found to be within 10% of the physical models and within 5% of previous research. After the physical and simulated models were validated, it was found that the size of the perforations has a distinct impact on the wave load reduction and testing for differing approach angles of a given wave could be conducted. The variation in approach angle was simulated by rotating the monopile in 15° increments. The data presented in this paper suggests that the orientation of the monopile is not statistically significant and should not be a design consideration for perforated monopiles. It is also suggested to continue the study on the size and shape of the perforations to find the balance between wave load reduction and structural stability.
References Andersen, J., Abrahamsen, R., Andersen, T., Andersen, M., Baun, T., & Neubauer, J. (2020). Wave Load Mitigation by Perforation of Monopiles. Journal of Marine Science and Engineering, 8(5), 352. https://doi.org/10.3390/jmse8050352 Bakker A. (2008) Lectures on Applied Computational Fluid Dynamics. www.bakker.org. Bustamante, A., Vera-Tudela, L., & Kühn, M. (2015). Evaluation of wind farm effects on fatigue loads of an individual wind turbine at the EnBW baltic 1 offshore wind farm. Journal of Physics: Conference Series, 625, 012020. https://doi.org/10.1088/1742-6596/625/1/012020 Chakrabarti SK. Hydrodynamics of offshore structures. Springer Verlag;1987. Christiansen, R. (2020). Living Docks: Structural Implications and Determination of Force Coefficients of Oyster Mats on Dock Pilings in the Indian River Lagoon [Master’s Thesis, Florida Institute of Technology]. Clauss, G. (1992). Offshore Structures, Volume 1, Conceptual Design and Hydromechanics. Springer, London, UK. COMSOL Multiphysics® v. 6.1. www.comsol.com. COMSOL AB, Stockholm, Sweden. Delwiche, A. & Tavares, I. (2017). Retrofit Strategy using Aluminum Anodes for the Internal section of Windturbine Monopiles. NACE Internation Corrosion Conference & Expo, Paper no. 8955. Det Norske Veritas (2014) Fatigue design of offshore steel structures. Norway. 70 Det Norske Veritas (1989). Rules for the Classification of Fixed Offshore Installations. Technical report, DNV, Hovik, Norway. DNV. (2011). DNV-RP-C203 Fatigue Design of Offshore Steel Structures (tech. rep.). http://www.dnv.com Elger, D. F., LeBret, B. A., Crowe, C. T., & Roberson, J. A. (2022). Engineering fluid mechanics. John Wiley & Sons, Inc. FLOW-3D® Version 12.0 Users Manual (2018). FLOW-3D [Computer software]. Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com Gaertner, Evan, Jennifer Rinker, Latha Sethuraman, Frederik Zahle, Benjamin Andersen, Garrett Barter, Nikhar Abbas, Fanzhong Meng, Pietro Bortolotti, Witold Skrzypinski, George Scott, Roland Feil, Henrik Bredmose, Katherine Dykes, Matt Shields, Christopher Allen, and Anthony Viselli. (2020). Definition of the IEA 15-Megawatt Offshore Reference Wind. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5000-
https://www.nrel.gov/docs/fy20osti/75698.pdf Goodisman, Jerry (2001). “Observations on Lemon Cells”. Journal of Chemical Education. 78 (4): 516–518. Bibcode:2001JChEd..78..516G. doi:10.1021/ed078p516. Goodisman notes that many chemistry textbooks use an incorrect model for a cell with zinc and copper electrodes in an acidic electrolyte Hilbert, L.R. & Black, Anders & Andersen, F. & Mathiesen, Troels. (2011). Inspection and monitoring of corrosion inside monopile foundations for offshore wind turbines. European Corrosion Congress 2011, EUROCORR
3. 2187-2201. H. J. Landau, “Sampling, data transmission, and the Nyquist rate,” in Proceedings of the IEEE, vol. 55, no. 10, pp. 1701-1706, Oct. 1967, doi: 10.1109/PROC.1967.5962. 71 Journee, J. M., and W. W. Massie. Offshore Hydrodynamics, First Edition. Delft University of Technology, 2001. Keulegan, G. H., and L. H. Carpenter. “Forces on Cylinders and Plates in an Oscillating Fluid.” Journal of Research of the National Bureau of Standards, vol. 60, no. 5, 1958, pp. 423–40. Lahlou, O. (2019). Experimental and Numerical Analysis of the Drag Force on Surfboards with Different Shapes (thesis). L. H. Holthuijsen. Waves in Oceanic and Coastal Waters. Cam-bridge University Press, 2007. doi:10.1017/cbo9780511618536. MacCamy, R.C., Fuchs, R.A.: Wave Forces on Piles: a Diffraction Theory. Corps of Engineers Washington DC Beach Erosion Board (1954) M. M. Maher and G. Swain, “The Corrosion and Biofouling Characteristics of Sealed vs. Perforated Offshore Monopile Interiors Experiment Design Comparing Corrosion and Environment Inside Steel Pipe,” OCEANS 2018 MTS/IEEE Charleston, Charleston, SC, USA, 2018, pp. 1-4, doi: 10.1109/OCEANS.2018.8604522. Morison, J. R.; O’Brien, M. P.; Johnson, J. W.; Schaaf, S. A. (1950), “The force exerted by surface waves on piles”, Petroleum Transactions, American Institute of Mining Engineers, 189 (5): 149–154, doi:10.2118/950149-G Paluzzi, Alexander John, “Effects of Perforations on Internal Cathodic Protection and Recruitment of Marine Organisms to Steel Pipes” (2023). Theses and Dissertations. 1403. https://repository.fit.edu/etd/1403 Ploeg, J.V.D. (2021). Perforation of monopiles to reduce hydrodynamic loads and enable use in deep waters [Master’s Thesis, Delft University of Technology] Institutional Repository at Delft University of Technology. http://resolver.tudelft.nl/uuid:91eada6f-4f2b-4ae6-be59-2b5ff0590c6f. 72 Shi, W., Zhang, S., Michailides, C., Zhang, L., Zhang, P., & Li, X. (2023). Experimental investigation of the hydrodynamic effects of breaking waves on monopiles in model scale. Journal of Marine Science and Technology, 28(1), 314–325. https://doi.org/10.1007/s00773-023-00926-9 Santamaria Gonzalez, G.A. (2023) Advantages and Challenges of Perforated Monopiles in Deep Water Sites [Master’s Thesis, Delft University of Technology] Institutional Repository at Delft University of Technology. http://resolver.tudelft.nl/uuid:490791b6-a912-4bac-a007-f77012c01107 Sarpkaya, T. and Isaacson, M. (1981). Mechanics of Wave Forces on Offshore Structures. Number ISBN 0-442-25402-4. Van Nostrand Reinhold Company Inc., New York. Tang, Y., Shi, W., Ning, D., You, J., & Michailides, C. (2020). Effects of spilling and plunging type breaking waves acting on large monopile offshore wind turbines. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.00427 Teja, R. (2021, June 25). Wheatstone bridge: Working, examples, applications. ElectronicsHub. https://www.electronicshub.org/wheatstone-bridge/ The MathWorks Inc. (2022). MATLAB version: 9.13.0 (R2022b), Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com Wave gauges. Edinburgh Designs. (2016). http://www4.edesign.co.uk/product/wavegauges/ Wilberts, F. (2017). MEASUREMENT DRIVEN FATIGUE ASSESSMENT OF OFFSHORE WIND TURBINE FOUNDATIONS (Master’s Thesis, Uppsala University).
Minxi Zhanga,b, Hanyan Zhaoc, Dongliang Zhao d, Shaolin Yuee, Huan Zhoue,Xudong Zhaoa , Carlo Gualtierif, Guoliang Yua,b,∗ a SKLOE, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China b KLMIES, MOE, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China c Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510610, China d CCCC Second Harbor Engineering Co., Ltd., Wuhan 430040, China e CCCC Road & Bridge Special Engineering Co., Ltd, Wuhan 430071, China f Department of Structures for Engineering and Architecture, University of Naples Federico II, Italy
Abstract
Local scour at a pile or pier in current or wave environments threats the safety of the upper structure all over the world. The application of a net-like matt as a scour protection cover at the pile or pier was proposed. The matt weakens and diffuses the flow in the local scour pit and thus reduces local scour while enhances sediment deposition. Numerical simulations were carried out to investigate the flow at the pile covered by the matt. The simulation results were used to optimize the thickness dt (2.6d95 ∼ 17.9d95) and opening size dn (7.7d95 ∼ 28.2d95) of the matt. It was found that the matt significantly reduced the local velocity and dissipated the vortex at the pile, substantially reduced the extent of local scour. The smaller the opening size of the matt, the more effective was the flow diffusion at the bed, and smaller bed shear stress was observed at the pile. For the flow conditions considered in this study, a matt with a relative thickness of T = 7.7 and relative opening size of S = 7.7 could be effective in scour protection.
조류 또는 파도 환경에서 파일이나 부두의 국지적인 세굴은 전 세계적으로 상부 구조물의 안전을 위협합니다. 파일이나 교각의 세굴 방지 덮개로 그물 모양의 매트를 적용하는 것이 제안되었습니다.
매트는 국부 세굴 구덩이의 흐름을 약화시키고 확산시켜 국부 세굴을 감소시키는 동시에 퇴적물 퇴적을 향상시킵니다. 매트로 덮인 파일의 흐름을 조사하기 위해 수치 시뮬레이션이 수행되었습니다.
시뮬레이션 결과는 매트의 두께 dt(2.6d95 ∼ 17.9d95)와 개구부 크기 dn(7.7d95 ∼ 28.2d95)을 최적화하는 데 사용되었습니다. 매트는 국부 속도를 크게 감소시키고 말뚝의 와류를 소멸시켜 국부 세굴 정도를 크게 감소시키는 것으로 나타났습니다.
매트의 개구부 크기가 작을수록 층에서의 흐름 확산이 더 효과적이었으며 파일에서 더 작은 층 전단 응력이 관찰되었습니다.
본 연구에서 고려한 유동 조건의 경우 상대 두께 T = 7.7, 상대 개구부 크기 S = 7.7을 갖는 매트가 세굴 방지에 효과적일 수 있습니다.
Keywords
Numerical simulation, Pile foundation, Local scour, Protective measure, Net-like matt
[1] C. He, Mod. Transp. Technol. 17 (3) (2020) 46–59 in Chinese. [2] X. Wen, D. Zhang, J. Tianjin Univ. 54 (10) (2021) 998–1007 (Science and Technology)in Chinese. [3] M. Zhang, H. Sun, W. Yao, G. Yu, Ocean Eng. 265 (2020) 112652, doi:10.1016/j. oceaneng.2022.112652. [4] K. Wardhana, F.C. Hadipriono, J. Perform. Constr. Fac. 17 (3) (2003) 144–150, doi:10.1061/(ASCE)0887-3828(2003)17:3(144). [5] R. Ettema, G. Constantinescu, B.W. Melville, J. Hydraul. Eng. 143 (9) (2017) 03117006, doi:10.1061/(ASCE)HY.1943-7900.0001330. [6] C. Valela, C.D. Rennie, I. Nistor, Int. J. Sediment Res. 37 (1) (2021) 37–46, doi:10.1016/j.ijsrc.2021.04.004. [7] B.W. Melville, A.J. Sutherland, J. Hydraul. Eng. 114 (10) (1988) 1210–1226, doi:10.1061/(ASCE)0733-9429(1988)114:10(1210). [8] E.V. Richardson, S.R. Davis, Evaluating Scour At Bridges, 4th ed., United States Department of Transportation, Federal Highway Administration, Washington, DC., 2001. [9] D.M. Sheppard, B. Melville, H. Demir, J. Hydraul. Eng. 140 (1) (2014) 14–23, doi:10.1061/(ASCE)HY.1943-7900.0000800. [10] A.O. Aksoy, G. Bombar, T. Arkis, M.S. Guney, J. Hydrol. Hydromech. 65 (1) (2017) 26–34. [11] D.T. Bui, A. Shirzadi, A. Amini, et al., Sustainability 12 (3) (2020) 1063, doi:10. 3390/su12031063. [12] B.M. Sumer, J. Fredsoe, The Mechanics of Scour in Marine Environments. World Advanced Series on Ocean Engineering, 17, World Scientific, Singapore, 2002. [13] J. Unger, W.H. Hager, Exp. Fluids 42 (1) (2007) 1–19. [14] G. Kirkil, S.G. Constantinescu, R. Ettema, J. Hydraul. Eng. 134 (5) (2008) 82–84, doi:10.1061/(ASCE)0733-9429(2008)134:5(572). [15] B. Dargahi, J. Hydraul. Eng. 116 (10) (1990) 1197–1214. [16] A. Bestawy, T. Eltahawy, A. Alsaluli, M. Alqurashi, Water Supply 20 (3) (2020) 1006–1015, doi:10.2166/ws.2020.022. [17] Y.M. Chiew, J. Hydraul. Eng. 118 (9) (1992) 1260–1269. [18] D. Bertoldi, R. Kilgore, in: Hydraulic Engineering ’93, ASCE, San Francisco, California, United States, 1993, pp. 1385–1390. [19] Y.M. Chiew, J. Hydraul. Eng. 121 (9) (1997) 635–642. [20] C.S. Lauchlan, B.W. Melville, J. Hydraul. Eng. 127 (5) (2001) 412–418, doi:10. 1061/(ASCE)0733-9429(2001)127:5(412). [21] P.F. Lagasse, P.E. Clopper, L.W. Zevenbergen, L.G. Girard, National Cooperative Highway Research Program (NCHRPReport 593), Countermeasures to protect bridge piers from scour, Washington, DC, NCHRP, 2007. [22] S. Jiang, Z. Zhou, J. Ou, J. Sediment Res. (4) (2013) 63–67 in Chinese. [23] A. Galan, G. Simarro, G. Sanchez-Serrano, J. Hydraul. Eng. 141 (6) (2015) 06015004, doi:10.1061/(ASCE)HY.1943-7900.0001003. [24] Z. Zhang, H. Ding, J. Liu, Ocean Eng. 33 (2) (2015) 77–83 in Chinese. [25] C. Valela, C.N. Whittaker, C.D. Rennie, I. Nistor, B.W. Melville, J. Hydraul. Eng. 148 (3) (2022) 04022002 10.1061/%28ASCE%29HY.1943-7900.0001967. [26] B.W. Melville, A.C. Hadfield, J. Hydraul. Eng. 6 (2) (1999) 1221–1224, doi:10. 1061/(ASCE)0733-9429(1999)125:11(1221). [27] V. Kumar, K.G. Rangaraju, N. Vittal, J. Hydraul. Eng. 125 (12) (1999) 1302–1305. [28] A.M. Yasser, K.S. Yasser, M.A. Abdel-Azim, Alex. Eng. J. 54 (2) (2015) 197–203, doi:10.1016/j.aej.2015.03.004. [29] S. Khaple, P.R. Hanmaiahgari, R. Gaudio, S. Dey, Acta Geophys. 65 (2017) 957– 975, doi:10.1007/s11600-017-0084-z. [30] C. Valela, I. Nistor, C.D. Rennie, in: Proceedings of the 6th International Disaster Mitigation Specialty Conference, Fredericton, Canada, Canadian Society for Civil Engineering, 2018, pp. 235–244. [31] A. Tafarojnoruz, R. Gaudio, F. Calomino, J. Hydraul. Eng. 138 (3) (2012) 297– 305, doi:10.1061/(ASCE)HY.1943-7900.0000512. [32] H. Tang, S. Fang, Y. Zhou, K. Cai, Y.M. Chiew, S.Y. Lim, N.S. Cheng, in: Proceedings of the 2nd International Conference Scour and Erosion (ICSE-2), Singapore. Singapore, Nanyang Technological University, 2004. [33] W. Zhang, Y. Li, X. Wang, Z. Sun, J. Sichuan Univ. 06 (2005) 34–40 (Engineering Science Edition)in Chinese. [34] S. Yang, B. Shi, Trans. Oceanol. Limnol. 5 (2017) 43–47 in Chinese. [35] H. Wang, F. Si, G. Lou, W. Yang, G. Yu, J. Waterw. Port Coast. Ocean Eng. 141 (1) (2015) 04014030, doi:10.1061/(ASCE)WW.1943-5460.0000270. [36] L.D. Meyer, S.M. Dabney, W.C. Harmon, Trans. ASAE 38 (3) (1995) 809–815. [37] G. Spyreas, B.W. Wilm, A.E. Plocher, D.M. Ketzner, J.W. Matthews, J.L. Ellis, E.J. Heske, Biol. Invasions 12 (5) (2010) 1253–1267, doi:10.1007/ s10530-009-9544-y. [38] T. Lambrechts, S. François, S. Lutts, R. Muñoz-Carpena, C.L. Bielders, J. Hydrol. 511 (2014) 800–810, doi:10.1016/j.jhydrol.2014.02.030. [39] G. Yu, Dynamic Embedded Anchor with High Frequency Micro Amplitude Vibrations. CN patent No: ZL200810038546.0, 2008. [40] X. Chen, M. Zhang, G. Yu, Ocean Eng. 236 (2021) 109315, doi:10.1016/j. oceaneng.2021.109315. [41] F. Gumgum, M.S. Guney, in: Proceedings of the 6th International Conference Engineering and Natural Sciences (ICENS), Serbia, Belgrade, 2020. [42] H. Zhao, S. Yue, H. Zhou, M. Zhang, G. Yu, Ocean Eng. 40 (5) (2022) 111–120 in Chinese. [43] B. Blocken, C. Gualtieri, Environ. Modell. Softw. 33 (2012) 1–22, doi:10.1016/j. envsoft.2012.02.001. [44] N.D. Bennett, B.F. Croke, G. Guariso, et al., Modell. Softw. 40 (2013) 1–20, doi:10.1016/j.envsoft.2012.09.011. [45] X. Zhao, Effectiveness and Mechanism of Lattice On Sedimentation and Anti-Erosion of Local Scour Hole At Piers, Shanghai Jiao Tong University, Shanghai, China, 2023. [46] M. Zhang, G. Yu, Water Resour. Res. 53 (9) (2017) 7798–7815, doi:10.1002/ 2017WR021066.
Moon, Y.-K.; Yoo, C.-I.; Lee, J.-M.; Lee, S.-H., and Yoon, H.-S., 2023. Evaluation of pedestrian safety for wave overtopping by ship-induced waves in waterfront revetment. In: Lee, J.L.; Lee, H.; Min, B.I.; Chang, J.-I.; Cho, G.T.; Yoon, J.-S., and Lee, J. (eds.), Multidisciplinary Approaches to Coastal and Marine Management. Journal of Coastal Research, Special Issue No. 116, pp. 314-318. Charlotte (North Carolina), ISSN 0749-0208.
In the past, Busan North Port was redeveloped as a commercial and cultural center as its competitiveness declined as a conventional port and the need for urban regeneration in the old city center was raised. In particular, the waterfront and leisure space were created between the marina and the international passenger terminal for sustainable urban development from Busan North Port Redevelopment Project. However, since there is a high possibility of ship-induced wave due to large cruise ships and speeding vessels, and it is necessary to study the safety of pedestrians on sloping revetments with easy access to the shore. In addition, there is no study on the systematic standard setting to secure pedestrian safety due to generation of wave overtopping caused by ship-induced wave. Therefore, this study performed scenario of generation by ship-induced wave from simulation using Flow 3D based on the data of Lee (2022), who analyzed the 5-year ship operation data that entered Busan Port and suggested the scenario of the occurrence of the sailing frequency. At this time, based on the result of calculating the vertical revetment, the relative wave overtopping volume of the sloping revetment, which simplified the waterfront space, was compared, and the minimum safety distance concept for pedestrian safety was presented by analyzing the distance at which the maximum wave overtopping from the shoreline occurred.
과거에 부산 노스 포트 (Busan North Port)는 경쟁력이 기존의 항구로 감소하고 구시대의 도시 재생의 필요성이 높아짐에 따라 상업 및 문화 센터로 재개발되었습니다. 특히, 워터 프론트와 레저 공간은 마리나와 국제 여객 터미널 사이에 Busan North Port 재개발 프로젝트의 지속 가능한 도시 개발을위한 국제 여객 터미널 사이에 만들어졌습니다.
그러나 대형 유람선과 과속 선박으로 인한 선박으로 인한 파도의 가능성이 높기 때문에 해안에 쉽게 접근 할 수있는 보행자의 보행자의 안전을 연구해야합니다. 또한, 선박으로 인한 파도로 인한 파도의 생성으로 인해 보행자 안전을 확보하기위한 체계적인 표준 설정에 대한 연구는 없습니다.
따라서 이 연구는 부산 포트에 입력 한 5 년의 선박 운영 데이터를 분석하고 항해 빈도. 이 시점에서 수직 회귀 계산의 결과에 따라, 워터 프론트 공간을 단순화 한 경사 회귀의 상대적 파도를 과도하게 비교하고, 보행자 안전을위한 최소 안전 거리 개념은 거리를 분석함으로써 제시되었다. 해안선에서 오버 팅하는 최대 파도가 발생했습니다.
Assessing the interaction of waves and porous offshore structures such as rubble mound breakwaters plays a critical role in designing such structures optimally. This study focused on the effect of the geometric parameters of a sloped rubble mound breakwater, including the shape of the armour, method of its arrangement, and the breakwater slope. Thus, three main design criteria, including the wave reflection coefficient (Kr), transmission coefficient (Kt), and depreciation wave energy coefficient (Kd), are discussed. Based on the results, a decrease in wavelength reduced the Kr and increased the Kt and Kd. The rubble mound breakwater with the Coreloc armour layer could exhibit the lowest Kr compared to other armour geometries. In addition, a decrease in the breakwater slope reduced the Kr and Kd by 3.4 and 1.25%, respectively. In addition, a decrease in the breakwater slope from 33 to 25° increased the wave breaking height by 6.1% on average. Further, a decrease in the breakwater slope reduced the intensity of turbulence depreciation. Finally, the armour geometry and arrangement of armour layers on the breakwater with its different slopes affect the wave behaviour and interaction between the wave and breakwater. Thus, layering on the breakwater and the correct use of the geometric shapes of the armour should be considered when designing such structures.
파도와 잔해 더미 방파제와 같은 다공성 해양 구조물의 상호 작용을 평가하는 것은 이러한 구조물을 최적으로 설계하는 데 중요한 역할을 합니다. 본 연구는 경사진 잔해 둔덕 방파제의 기하학적 매개변수의 효과에 초점을 맞추었는데, 여기에는 갑옷의 형태, 배치 방법, 방파제 경사 등이 포함된다. 따라서 파동 반사 계수(Kr), 투과 계수(Kt) 및 감가상각파 에너지 계수(Kd)에 대해 논의합니다. 결과에 따르면 파장이 감소하면 K가 감소합니다.r그리고 K를 증가시켰습니다t 및 Kd. Coreloc 장갑 층이 있는 잔해 언덕 방파제는 가장 낮은 K를 나타낼 수 있습니다.r 다른 갑옷 형상과 비교했습니다. 또한 방파제 경사가 감소하여 K가 감소했습니다.r 및 Kd 각각 3.4%, 1.25% 증가했다. 또한 방파제 경사가 33°에서 25°로 감소하여 파도 파쇄 높이가 평균 6.1% 증가했습니다. 또한, 방파제 경사의 감소는 난류 감가상각의 강도를 감소시켰다. 마지막으로, 경사가 다른 방파제의 장갑 형상과 장갑 층의 배열은 파도 거동과 파도와 방파제 사이의 상호 작용에 영향을 미칩니다. 따라서 이러한 구조를 설계 할 때 방파제에 층을 쌓고 갑옷의 기하학적 모양을 올바르게 사용하는 것을 고려해야합니다.
Keywords
Rubble mound breakwater
Computational fluid dynamics
Armour layer
Wave reflection coefficient
Wave transmission coefficient
Wave energy dissipation coefficient
References
Sollitt, C.K.; Cross, R.H.: Wave transmission through permeable breakwaters. In Coastal Engineering. pp. 1827–1846. (1973)
Sulisz, W.: Wave reflection and transmission at permeable breakwaters of arbitrary cross-section. Coast. Eng. 9(4), 371–386 (1985)ArticleGoogle Scholar
Kobayashi, N.; Wurjanto, A.: Numerical model for waves on rough permeable slopes. J. Coast. Res.149–166. (1990)
Wurjanto, A.; Kobayashi, N.: Irregular wave reflection and runup on permeable slopes. J. Waterw. Port Coast. Ocean Eng. 119(5), 537–557 (1993)ArticleGoogle Scholar
van Gent, M.R.: Numerical modelling of wave interaction with dynamically stable structures. In Coastal Engineering 1996. pp. 1930–1943. (1997)
Liu, P.L.F.; Wen, J.: Nonlinear diffusive surface waves in porous media. J. Fluid Mech. 347, 119–139 (1997)ArticleMathSciNetMATHGoogle Scholar
Troch, P.; De Rouck, J.: Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters. In Coastal Engineering. pp. 1638–1649. (1999)
Liu, P.L.F.; Lin, P.; Chang, K.A.; Sakakiyama, T.: Numerical modeling of wave interaction with porous structures. J. Waterw. Port Coast. Ocean Eng. 125(6), 322–330 (1999)ArticleGoogle Scholar
Abdolmaleki, K.; Thiagarajan, K.P.; Morris-Thomas, M.T.: Simulation of the dam break problem and impact flows using a Navier-Stokes solver. Simulation 13, 17 (2004)Google Scholar
Higuera, P.; Lara, J.L.; Losada, I.J.: Realistic wave generation and active wave absorption for Navier-Stokes models: application to OpenFOAM®. Coast. Eng. 71, 102–118 (2013)ArticleGoogle Scholar
Higuera, P.; Lara, J.L.; Losada, I.J.: Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part II: application. Coast. Eng. 83, 259–270 (2014)ArticleGoogle Scholar
Dentale, F.; Donnarumma, G.; Carratelli, E.P.; Reale, F.: A numerical method to analyze the interaction between sea waves and rubble mound emerged breakwaters. WSEAS Trans. Fluid Mech 10, 106–116 (2015)Google Scholar
Dentale, F.; Reale, F.; Di Leo, A.; Carratelli, E.P.: A CFD approach to rubble mound breakwater design. Int. J. Naval Archit. Ocean Eng. 10(5), 644–650 (2018)ArticleGoogle Scholar
Koley, S.: Wave transmission through multilayered porous breakwater under regular and irregular incident waves. Eng. Anal. Bound. Elem. 108, 393–401 (2019)ArticleMathSciNetMATHGoogle Scholar
Koley, S.; Panduranga, K.; Almashan, N.; Neelamani, S.; Al-Ragum, A.: Numerical and experimental modeling of water wave interaction with rubble mound offshore porous breakwaters. Ocean Eng. 218, 108218 (2020)ArticleGoogle Scholar
Pourteimouri, P.; Hejazi, K.: Development of an integrated numerical model for simulating wave interaction with permeable submerged breakwaters using extended Navier-Stokes equations. J. Mar. Sci. Eng. 8(2), 87 (2020)ArticleGoogle Scholar
Cao, D.; Yuan, J.; Chen, H.: Towards modelling wave-induced forces on an armour layer unit of rubble mound coastal revetments. Ocean Eng. 239, 109811 (2021)ArticleGoogle Scholar
Díaz-Carrasco, P.; Eldrup, M.R.; Andersen, T.L.: Advance in wave reflection estimation for rubble mound breakwaters: the importance of the relative water depth. Coast. Eng. 168, 103921 (2021)ArticleGoogle Scholar
Vieira, F.; Taveira-Pinto, F.; Rosa-Santos, P.: Damage evolution in single-layer cube armoured breakwaters with a regular placement pattern. Coast. Eng. 169, 103943 (2021)ArticleGoogle Scholar
Booshi, S.; Ketabdari, M.J.: Modeling of solitary wave interaction with emerged porous breakwater using PLIC-VOF method. Ocean Eng. 241, 110041 (2021)ArticleGoogle Scholar
Aristodemo, F.; Filianoti, P.; Tripepi, G.; Gurnari, L.; Ghaderi, A.: On the energy transmission by a submerged barrier interacting with a solitary wave. Appl. Ocean Res. 122, 103123 (2022)ArticleGoogle Scholar
Teixeira, P.R.; Didier, E.: Numerical analysis of performance of an oscillating water column wave energy converter inserted into a composite breakwater with rubble mound foundation. Ocean Eng. 278, 114421 (2023)ArticleGoogle Scholar
Burgan, H.I.: Numerical modeling of structural irregularities on unsymmetrical buildings. Tehnički vjesnik 28(3), 856–861 (2021)Google Scholar
Jones, I.P.: CFDS-Flow3D user guide. (1994)
Al Shaikhli, H.I.; Khassaf, S.I.: Stepped mound breakwater simulation by using flow 3D. Eurasian J. Eng. Technol. 6, 60–68 (2022)Google Scholar
Hirt, C.W.; Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201–225 (1981)ArticleMATHGoogle Scholar
Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Aricò, C.: Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses. Water 13(5), 674 (2021)ArticleGoogle Scholar
Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 4(7), 1510–1520 (1992)ArticleMathSciNetMATHGoogle Scholar
Van der Meer, J.W.; Stam, C.J.M.: Wave runup on smooth and rock slopes of coastal structures. J. Waterw. Port Coast. Ocean Eng. 118(5), 534–550 (1992)ArticleGoogle Scholar
Goda, Y.; Suzuki, Y. Estimation of incident and reflected waves in random wave experiments. In: ASCE, Proceedings of 15th International Conference on Coastal Engineering, (Honolulu, Hawaii). vol. 1, pp. 828–845. (1976)
Zanuttigh, B.; Van der Meer, J.W.: Wave reflection from coastal structures. In: AA.VV., Proceedings of the XXX International Conference on Coastal Engineering, World Scientific, (San Diego, CA, USA, September 2006). pp. 4337–4349. (2006)
Seelig W.N.; Ahrens J.P.: Estimation of wave reflection and energy dissipation coefficients for beaches, revetments, and breakwaters. CERC, Technical Paper, Fort Belvoir. vol. 81, p. 41 (1981)
Mase, H.: Random wave runup height on gentle slope. J. Waterw. Port Coast. Ocean Eng. 115(5), 649–661 (1989)ArticleGoogle Scholar
Field observations provide valuable data regarding nearshore tsunami impact, yet only in inundation areas where tsunami waves have already flooded. Therefore, tsunami modeling is essential to understand tsunami behavior and prepare for tsunami inundation. It is necessary that all numerical models used in tsunami emergency planning be subject to benchmark tests for validation and verification. This study focuses on two numerical codes, NAMI DANCE and FLOW-3D®, for validation and performance comparison. NAMI DANCE is an in-house tsunami numerical model developed by the Ocean Engineering Research Center of Middle East Technical University, Turkey and Laboratory of Special Research Bureau for Automation of Marine Research, Russia. FLOW-3D® is a general purpose computational fluid dynamics software, which was developed by scientists who pioneered in the design of the Volume-of-Fluid technique. The codes are validated and their performances are compared via analytical, experimental and field benchmark problems, which are documented in the ‘‘Proceedings and Results of the 2011 National Tsunami Hazard Mitigation Program (NTHMP) Model Benchmarking Workshop’’ and the ‘‘Proceedings and Results of the NTHMP 2015 Tsunami Current Modeling Workshop”. The variations between the numerical solutions of these two models are evaluated through statistical error analysis.
현장 관찰은 연안 쓰나미 영향에 관한 귀중한 데이터를 제공하지만 쓰나미 파도가 이미 범람한 침수 지역에서만 가능합니다. 따라서 쓰나미 모델링은 쓰나미 행동을 이해하고 쓰나미 범람에 대비하는 데 필수적입니다.
쓰나미 비상 계획에 사용되는 모든 수치 모델은 검증 및 검증을 위한 벤치마크 테스트를 받아야 합니다. 이 연구는 검증 및 성능 비교를 위해 NAMI DANCE 및 FLOW-3D®의 두 가지 숫자 코드에 중점을 둡니다.
NAMI DANCE는 터키 중동 기술 대학의 해양 공학 연구 센터와 러시아 해양 연구 자동화를 위한 특별 조사국 연구소에서 개발한 사내 쓰나미 수치 모델입니다. FLOW-3D®는 Volume-of-Fluid 기술의 설계를 개척한 과학자들이 개발한 범용 전산 유체 역학 소프트웨어입니다.
코드의 유효성이 검증되고 분석, 실험 및 현장 벤치마크 문제를 통해 코드의 성능이 비교되며, 이는 ‘2011년 NTHMP(National Tsunami Hazard Mitigation Program) 모델 벤치마킹 워크숍의 절차 및 결과’와 ”절차 및 NTHMP 2015 쓰나미 현재 모델링 워크숍 결과”. 이 두 모델의 수치 해 사이의 변동은 통계적 오류 분석을 통해 평가됩니다.
Apotsos, A., Buckley, M., Gelfenbaum, G., Jafe, B., & Vatvani, D. (2011). Nearshore tsunami inundation and sediment transport modeling: towards model validation and application. Pure and Applied Geophysics,168(11), 2097–2119. https://doi.org/10.1007/s00024-011-0291-5.ArticleGoogle Scholar
Barberopoulou, A., Legg, M. R., & Gica, E. (2015). Time evolution of man-made harbor modifications in San Diego: effects on Tsunamis. Journal of Marine Science and Engineering,3, 1382–1403.ArticleGoogle Scholar
Basu, D., Green, S., Das, K., Janetzke, R. and Stamatakos, J. (2009). Numerical Simulation of Surface Waves Generated by a Subaerial Landslide at Lituya Bay, Alaska. Proceedings of 28th International Conference on Ocean, Offshore and Arctic Engineering. Honolulu, Hawaii, USA.
Briggs, M. J., Synolakis, C. E., Harkins, G. S., & Green, D. R. (1995). Laboratory experiments of tsunami run-up on a circular island. Pure and Applied Geophysics,144(3/4), 569–593.ArticleGoogle Scholar
Cheung, K. F., Bai, Y., & Yamazaki, Y. (2013). Surges around the Hawaiian Islands from the 2011 Tohoku Tsunami. Journal of Geophysical Research: Oceans,118, 5703–5719. https://doi.org/10.1002/jgrc.20413.Google Scholar
Choi, B. H., Dong, C. K., Pelinovsky, E., & Woo, S. B. (2007). Three-dimensional Simulation of Tsunami Run-up Around Conical Island. Coastal Engineering,54, 618–629.ArticleGoogle Scholar
Cox, D., T. Tomita, P. Lynett, R.A., Holman. (2008). Tsunami Inundation with Macroroughness in the Constructed Environment. Proceedings of 31st International Conference on Coastal Engineering, ASCE, pp. 1421–1432.
Flow Science. (2002). FLOW-3D User’s Manual.
Hirt, C. W., & Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics,39, 201–225.ArticleGoogle Scholar
Horrillo, J., Grilli, S. T., Nicolsky, D., Roeber, V., & Zang, J. (2015). Performance benchmarking Tsunami models for NTHMP’s inundation mapping activities. Pure and Applied Geophysics,172, 869–884.ArticleGoogle Scholar
Kim, K. O., Kim, D. C., Choi, B.-H., Jung, T. K., Yuk, J. H., & Pelinovsky, E. (2015). The role of diffraction effects in extreme run-up inundation at Okushiri Island due to 1993 Tsunami. Natural Hazards and Earth Systems Sciences,15, 747–755.ArticleGoogle Scholar
Liu, P. L.-F. (1994). Model equations for wave propagations from deep to shallow water. (P.-F. Liu, Ed.) Advances in Coastal and Ocean Engineering, 1, 125–158.
Liu, P. L.-F., Yeh, H., & Synolakis, C. E. (2008). Advanced numerical models for simulating Tsunami waves and run-up. Advances in Coastal and Ocean Engineering,10, 344.Google Scholar
Lynett, P. J., Gately, K., Wilson, R., Montoya, L., Arcas, D., Aytore, B., et al. (2017). Inter-model analysis of Tsunami-induced coastal currents. Ocean Modelling,114, 14–32.ArticleGoogle Scholar
Lynett, P. J., Wu, T.-R., & Liu, P. L.-F. (2002). Modeling wave run-up with depth-integrated equations. Coastal Engineering,46(2), 89–107.ArticleGoogle Scholar
Macias, J., Castro, M. J., Ortega, S., Escalante, C., & Gonzalez-Vida, J. M. (2017). Performance benchmarking of Tsunami-HySEA model for nthmp’s inundation mapping activities. Pure and Applied Geophysics,174, 3147–3183.ArticleGoogle Scholar
Matsuyama, M., & Tanaka, H. (2001). An experimental study of the highest run-up height in the 1993 Hokkaidō Nansei-Oki Earthquake Tsunami. Proceedings of ITS,2001, 879–889.Google Scholar
National Tsunami Hazard Mitigation Program. 2012. Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. Boulder: U.S. Department of Commerce/NOAA/NTHMP; (NOAA Special Report). p. 436.
National Tsunami Hazard Mitigation Program. (2017). Proceedings and Results of the National Tsunami Hazard Mitigation Program 2015 Tsunami Current Modeling Workshop, February 9-10, 2015, Portland, Oregon: compiled by Patrick Lynett and Rick Wilson, p 194.
Necmioglu, O., & Ozel, N. M. (2014). An earthquake source sensitivity analysis for Tsunami propagation in the Eastern Mediterranean. Oceanography,27(2), 76–85.ArticleGoogle Scholar
Nichols, B.D. and Hirt, C.W. (1975). Methods for Calculating Multi-Dimensional, Transient Free Surface Flows Past Bodies. Proceedings of 1st International Conference Num. Ship Hydrodynamics. Gaithersburg.
Nicolsky, D. J., Suleimani, E. N., & Hansen, R. A. (2011). Validation and verification of a numerical model for Tsunami propagation and run-up. Pure and Applied Geophysics,168(6), 1199–1222.ArticleGoogle Scholar
Park, H., Cox, D. T., Lynett, P. J., Wiebe, D. M., & Shin, S. (2013). Tsunami inundation modeling in constructed environments: a physical and numerical comparison of free-surface elevation, velocity, and momentum flux. Coastal Engineering,79, 9–21.ArticleGoogle Scholar
Patel, V. M., Dholakia, M. B., & Singh, A. P. (2016). Emergency preparedness in the case of Makran Tsunami: a case study on Tsunami risk visualization for the Western Parts of Gujarat, India. Geomatics Natural Hazard and Risk,7(2), 826–842.ArticleGoogle Scholar
Pelinovsky, E., Kim, D.-C., Kim, K.-O., & Choi, B.-H. (2013). Three-dimensional simulation of extreme run-up heights during the 2004 Indonesian and 2011 Japanese Tsunamis. Vienna: EGU General Assembly.Google Scholar
Rueben, M., Holman, R., Cox, D., Shin, S., Killian, J., & Stanley, J. (2011). Optical measurements of Tsunami inundation through an urban waterfront modeled in a large-scale laboratory basin. Coastal Engineering,58, 229–238.ArticleGoogle Scholar
Shuto, N. (1991). Numerical simulation of Tsunamis—its present and near future. Natural Hazards,4, 171–191.ArticleGoogle Scholar
Synolakis, C. E. (1986). The run-up of long waves. Ph.D. Thesis. California Institute of Technology, Pasadena, California.
Synolakis, C. E., Bernard, E. N., Titov, V. V., Kanoglu, U. & Gonzalez, F. (2007). Standards, criteria, and procedures for NOAA evaluation of Tsunami Numerical Models. 55 p. Seattle, Washington: NOAA OAR Special Report, Contribution No 3053, NOAA/OAR/PMEL.
Synolakis, C. E., Bernard, E. N., Titov, V. V., Kanoglu, U., & Gonzalez, F. I. (2008). Validation and verification of Tsunami numerical models. Pure and Applied Geophysics,165, 2197–2228.ArticleGoogle Scholar
Tolkova, E. (2014). Land-water boundary treatment for a tsunami model with dimensional splitting. Pure and Applied Geophysics,171(9), 2289–2314.ArticleGoogle Scholar
Velioglu, D. (2017). Advanced two- and three-dimensional Tsunami models: benchmarking and validation. Ph.D. Thesis. Middle East Technical University, Ankara.
Velioglu, D., Kian, R., Yalciner, A.C. and Zaytsev, A. (2016). Performance assessment of NAMI DANCE in Tsunami evolution and currents using a benchmark problem. (R. Signell, Ed.) J. Mar. Sci. Eng., 4(3), 49.
Wu, T. (2001). A unified theory for modeling water waves. Advances in Applied Mechanics,37, 1–88.ArticleGoogle Scholar
Wu, N.-J., Hsiao, S.-C., Chen, H.-H., & Yang, R.-Y. (2016). The study on solitary waves generated by a piston-type wave maker. Ocean Engineering,117, 114–129.ArticleGoogle Scholar
Yalciner, A. C., Dogan, P. and Sukru. E. (2005). December 26 2004, Indian Ocean Tsunami Field Survey, North of Sumatra Island. UNESCO.
Yalciner, A. C., Gülkan, P., Dilmen, I., Aytore, B., Ayca, A., Insel, I., et al. (2014). Evaluation of Tsunami scenarios For Western Peloponnese, Greece. Bollettino di Geofisica Teorica ed Applicata,55, 485–500.Google Scholar
Yen, B. C. (1991). Hydraulic resistance in open channels. In B. C. Yen (Ed.), Channel flow resistance: centennial of manning’s formula (pp. 1–135). Highlands Ranch: Water Resource Publications.Google Scholar
Zaitsev, A. I., Kovalev, D. P., Kurkin, A. A., Levin, B. V., Pelinovskii, E. N., Chernov, A. G., et al. (2009). The Tsunami on Sakhalin on August 2, 2007: mareograph evidence and numerical simulation. Tikhookeanskaya Geologiya,28, 30–35.Google Scholar
The authors wish to thank Dr. Andrey Zaytsev due to his undeniable contributions to the development of in-house numerical model, NAMI DANCE. The Turkish branch of Flow Science, Inc. is also acknowledged. Finally, the National Tsunami Hazard Mitigation Program (NTHMP), who provided most of the benchmark data, is appreciated. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.
Author information
Author notes
Deniz Velioglu SogutPresent address: 1212 Computer Science, Department of Civil Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
Authors and Affiliations
Middle East Technical University, 06800, Ankara, TurkeyDeniz Velioglu Sogut & Ahmet Cevdet Yalciner
Velioglu Sogut, D., Yalciner, A.C. Performance Comparison of NAMI DANCE and FLOW-3D® Models in Tsunami Propagation, Inundation and Currents using NTHMP Benchmark Problems. Pure Appl. Geophys.176, 3115–3153 (2019). https://doi.org/10.1007/s00024-018-1907-9
Numerical study of the flow at a vertical pile with net-like scour protection matt Minxi Zhanga,b , Hanyan Zhaoc , Dongliang Zhao d, Shaolin Yuee , Huan Zhoue , Xudong Zhaoa , Carlo Gualtierif , Guoliang Yua,b,∗ a SKLOE, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China b KLMIES, MOE, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China c Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510610, China d CCCC Second Harbor Engineering Co., Ltd., Wuhan 430040, China e CCCC Road & Bridge Special Engineering Co., Ltd, Wuhan 430071, China f Department of Structures for Engineering and Architecture, University of Naples Federico II, Italy
Abstract
현재 또는 파도 환경에서 말뚝 또는 부두의 국부 세굴은 전 세계적으로 상부 구조물의 안전을 위협합니다. 말뚝이나 부두에서 세굴 방지 덮개로 그물 모양의 매트를 적용하는 것이 제안되었습니다. 매트는 국부 세굴 구덩이의 흐름을 약화 및 확산시켜 국부 세굴을 줄이고 퇴적물 퇴적을 강화합니다. 매트로 덮힌 말뚝의 흐름을 조사하기 위해 수치 시뮬레이션을 수행했습니다. 시뮬레이션 결과는 매트의 두께 dt(2.6d95 ~ 17.9d95)와 개구부 크기 dn(7.7d95 ~ 28.2d95)을 최적화하는 데 사용되었습니다. 매트가 국부 속도를 상당히 감소시키고 말뚝에서 와류를 소멸시켜 국부 세굴 범위를 실질적으로 감소시키는 것으로 밝혀졌습니다. 매트의 개구부 크기가 작을수록 베드에서의 유동확산이 더 효과적이었으며 말뚝에서 더 작은 베드전단응력이 관찰되었다. 본 연구에서 고려한 유동 조건의 경우 상대 두께 T = 7.7 및 상대 개구 크기 S = 7.7인 매트가 세굴 방지에 효과적일 수 있습니다.
Fig. 26. Distribution of the turbulent kinetic energy on the y-z plane (X = 0.5) for various S
References
[1] C. He, Mod. Transp. Technol. 17 (3) (2020) 46–59 in Chinese. [2] X. Wen, D. Zhang, J. Tianjin Univ. 54 (10) (2021) 998–1007 (Science and Technology)in Chinese. [3] M. Zhang, H. Sun, W. Yao, G. Yu, Ocean Eng. 265 (2020) 112652, doi:10.1016/j. oceaneng.2022.112652. [4] K. Wardhana, F.C. Hadipriono, J. Perform. Constr. Fac. 17 (3) (2003) 144–150, doi:10.1061/(ASCE)0887-3828(2003)17:3(144). [5] R. Ettema, G. Constantinescu, B.W. Melville, J. Hydraul. Eng. 143 (9) (2017) 03117006, doi:10.1061/(ASCE)HY.1943-7900.0001330. [6] C. Valela, C.D. Rennie, I. Nistor, Int. J. Sediment Res. 37 (1) (2021) 37–46, doi:10.1016/j.ijsrc.2021.04.004. [7] B.W. Melville, A.J. Sutherland, J. Hydraul. Eng. 114 (10) (1988) 1210–1226, doi:10.1061/(ASCE)0733-9429(1988)114:10(1210). [8] E.V. Richardson, S.R. Davis, Evaluating Scour At Bridges, 4th ed., United States Department of Transportation, Federal Highway Administration, Washington, DC., 2001. [9] D.M. Sheppard, B. Melville, H. Demir, J. Hydraul. Eng. 140 (1) (2014) 14–23, doi:10.1061/(ASCE)HY.1943-7900.0000800. [10] A.O. Aksoy, G. Bombar, T. Arkis, M.S. Guney, J. Hydrol. Hydromech. 65 (1) (2017) 26–34. [11] D.T. Bui, A. Shirzadi, A. Amini, et al., Sustainability 12 (3) (2020) 1063, doi:10. 3390/su12031063. [12] B.M. Sumer, J. Fredsoe, The Mechanics of Scour in Marine Environments. World Advanced Series on Ocean Engineering, 17, World Scientific, Singapore, 2002. [13] J. Unger, W.H. Hager, Exp. Fluids 42 (1) (2007) 1–19. [14] G. Kirkil, S.G. Constantinescu, R. Ettema, J. Hydraul. Eng. 134 (5) (2008) 82–84, doi:10.1061/(ASCE)0733-9429(2008)134:5(572). [15] B. Dargahi, J. Hydraul. Eng. 116 (10) (1990) 1197–1214. [16] A. Bestawy, T. Eltahawy, A. Alsaluli, M. Alqurashi, Water Supply 20 (3) (2020) 1006–1015, doi:10.2166/ws.2020.022. [17] Y.M. Chiew, J. Hydraul. Eng. 118 (9) (1992) 1260–1269. [18] D. Bertoldi, R. Kilgore, in: Hydraulic Engineering ’93, ASCE, San Francisco, California, United States, 1993, pp. 1385–1390. [19] Y.M. Chiew, J. Hydraul. Eng. 121 (9) (1997) 635–642. [20] C.S. Lauchlan, B.W. Melville, J. Hydraul. Eng. 127 (5) (2001) 412–418, doi:10. 1061/(ASCE)0733-9429(2001)127:5(412). [21] P.F. Lagasse, P.E. Clopper, L.W. Zevenbergen, L.G. Girard, National Cooperative Highway Research Program (NCHRPReport 593), Countermeasures to protect bridge piers from scour, Washington, DC, NCHRP, 2007. [22] S. Jiang, Z. Zhou, J. Ou, J. Sediment Res. (4) (2013) 63–67 in Chinese. [23] A. Galan, G. Simarro, G. Sanchez-Serrano, J. Hydraul. Eng. 141 (6) (2015) 06015004, doi:10.1061/(ASCE)HY.1943-7900.0001003. [24] Z. Zhang, H. Ding, J. Liu, Ocean Eng. 33 (2) (2015) 77–83 in Chinese. [25] C. Valela, C.N. Whittaker, C.D. Rennie, I. Nistor, B.W. Melville, J. Hydraul. Eng. 148 (3) (2022) 04022002 10.1061/%28ASCE%29HY.1943-7900.0001967. [26] B.W. Melville, A.C. Hadfield, J. Hydraul. Eng. 6 (2) (1999) 1221–1224, doi:10. 1061/(ASCE)0733-9429(1999)125:11(1221). [27] V. Kumar, K.G. Rangaraju, N. Vittal, J. Hydraul. Eng. 125 (12) (1999) 1302–1305. [28] A.M. Yasser, K.S. Yasser, M.A. Abdel-Azim, Alex. Eng. J. 54 (2) (2015) 197–203, doi:10.1016/j.aej.2015.03.004. [29] S. Khaple, P.R. Hanmaiahgari, R. Gaudio, S. Dey, Acta Geophys. 65 (2017) 957– 975, doi:10.1007/s11600-017-0084-z. [30] C. Valela, I. Nistor, C.D. Rennie, in: Proceedings of the 6th International Disaster Mitigation Specialty Conference, Fredericton, Canada, Canadian Society for Civil Engineering, 2018, pp. 235–244. [31] A. Tafarojnoruz, R. Gaudio, F. Calomino, J. Hydraul. Eng. 138 (3) (2012) 297– 305, doi:10.1061/(ASCE)HY.1943-7900.0000512. [32] H. Tang, S. Fang, Y. Zhou, K. Cai, Y.M. Chiew, S.Y. Lim, N.S. Cheng, in: Proceedings of the 2nd International Conference Scour and Erosion (ICSE-2), Singapore. Singapore, Nanyang Technological University, 2004. [33] W. Zhang, Y. Li, X. Wang, Z. Sun, J. Sichuan Univ. 06 (2005) 34–40 (Engineering Science Edition)in Chinese. [34] S. Yang, B. Shi, Trans. Oceanol. Limnol. 5 (2017) 43–47 in Chinese. [35] H. Wang, F. Si, G. Lou, W. Yang, G. Yu, J. Waterw. Port Coast. Ocean Eng. 141 (1) (2015) 04014030, doi:10.1061/(ASCE)WW.1943-5460.0000270. [36] L.D. Meyer, S.M. Dabney, W.C. Harmon, Trans. ASAE 38 (3) (1995) 809–815. [37] G. Spyreas, B.W. Wilm, A.E. Plocher, D.M. Ketzner, J.W. Matthews, J.L. Ellis, E.J. Heske, Biol. Invasions 12 (5) (2010) 1253–1267, doi:10.1007/ s10530-009-9544-y. [38] T. Lambrechts, S. François, S. Lutts, R. Muñoz-Carpena, C.L. Bielders, J. Hydrol. 511 (2014) 800–810, doi:10.1016/j.jhydrol.2014.02.030. [39] G. Yu, Dynamic Embedded Anchor with High Frequency Micro Amplitude Vibrations. CN patent No: ZL200810038546.0, 2008. [40] X. Chen, M. Zhang, G. Yu, Ocean Eng. 236 (2021) 109315, doi:10.1016/j. oceaneng.2021.109315. [41] F. Gumgum, M.S. Guney, in: Proceedings of the 6th International Conference Engineering and Natural Sciences (ICENS), Serbia, Belgrade, 2020. [42] H. Zhao, S. Yue, H. Zhou, M. Zhang, G. Yu, Ocean Eng. 40 (5) (2022) 111–120 in Chinese. [43] B. Blocken, C. Gualtieri, Environ. Modell. Softw. 33 (2012) 1–22, doi:10.1016/j. envsoft.2012.02.001. [44] N.D. Bennett, B.F. Croke, G. Guariso, et al., Modell. Softw. 40 (2013) 1–20, doi:10.1016/j.envsoft.2012.09.011. [45] X. Zhao, Effectiveness and Mechanism of Lattice On Sedimentation and Anti-Erosion of Local Scour Hole At Piers, Shanghai Jiao Tong University, Shanghai, China, 2023. [46] M. Zhang, G. Yu, Water Resour. Res. 53 (9) (2017) 7798–7815, doi:10.1002/ 2017WR021066.
The hydrodynamics of coral reefs strongly influences their biological functioning, impacting processes such as nutrient availability and uptake, recruitment success and bleaching. For example, coral reefs located in oligotrophic regions depend on upwelling for nutrient supply. Coral reefs at Sodwana Bay, located on the east coast of South Africa, are an example of high latitude marginal reefs. These reefs are subjected to complex hydrodynamic forcings due to the interaction between the strong Agulhas current and the highly variable topography of the region. In this study, we explore the reef scale hydrodynamics resulting from the bathymetry for two steady current scenarios at Two-Mile Reef (TMR) using a combination of field data and numerical simulations. The influence of tides or waves was not considered for this study as well as reef-scale roughness. Tilt current meters with onboard temperature sensors were deployed at selected locations within TMR. We used field observations to identify the dominant flow conditions on the reef for numerical simulations that focused on the hydrodynamics driven by mean currents. During the field campaign, southerly currents were the predominant flow feature with occasional flow reversals to the north. Northerly currents were associated with greater variability towards the southern end of TMR. Numerical simulations showed that Jesser Point was central to the development of flow features for both the northerly and southerly current scenarios. High current variability in the south of TMR during reverse currents is related to the formation of Kelvin-Helmholtz type shear instabilities along the outer edge of an eddy formed north of Jesser Point. Furthermore, downward vertical velocities were computed along the offshore shelf at TMR during southerly currents. Current reversals caused a change in vertical velocities to an upward direction due to the orientation of the bathymetry relative to flow directions.
Highlights
A predominant southerly current was measured at Two-Mile Reef with occasional reversals towards the north.
Field observations indicated that northerly currents are spatially varied along Two-Mile Reef.
Simulation of reverse currents show the formation of a separated flow due to interaction with Jesser Point with Kelvin–Helmholtz type shear instabilities along the seaward edge.
지금까지 Sodwana Bay에서 자세한 암초 규모 유체 역학을 모델링하려는 시도는 없었습니다. 이러한 모델의 결과는 규모가 있는 산호초 사이의 흐름이 산호초 건강에 어떤 영향을 미치는지 탐색하는 데 사용할 수 있습니다. 이 연구에서는 Sodwana Bay의 유체역학을 탐색하는 데 사용할 수 있는 LES 모델을 개발하기 위한 단계별 접근 방식을 구현합니다. 여기서 우리는 이 초기 단계에서 파도와 조수의 영향을 배제하면서 Agulhas 해류의 유체역학에 초점을 맞춥니다. 이 접근법은 흐름의 첫 번째 LES를 제시하고 Sodwana Bay의 산호초에서 혼합함으로써 향후 연구의 기초를 제공합니다.
Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res Ocean 104(C4):7649–7666. https://doi.org/10.1029/98JC02622ArticleGoogle Scholar
Celliers L, Schleyer MH (2002) Coral bleaching on high-latitude marginal reefs at Sodwana Bay, South Africa. Mar Pollut Bull 44:1380–1387ArticleGoogle Scholar
Chen SC (2018) Performance assessment of FLOW-3D and XFlow in the numerical modelling of fish-bone type fishway hydraulics https://doi.org/10.15142/T3HH1J
Flow Science Inc (2018) FLOW-3D, Version 12.0 Users Manual. Santa Fe, NM, https://www.flow3d.com/
Flow Science Inc (2019) FLOW-3D, Version 12.0 [Computer Software]. Santa Fe, NM, https://www.flow3d.com/
Franco A, Moernaut J, Schneider-Muntau B, Strasser M, Gems B (2020) The 1958 Lituya Bay tsunami – pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software Flow-3D. Nat Hazards Earth Syst Sci 20(8):2255–2279ArticleGoogle Scholar
Fringer OB, Gerritsen M, Street RL (2006) An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Model 14(3):139–173ArticleGoogle Scholar
Hirt CW, Sicilian JM (1985) A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proceedings of 4th International Conference on Ship Hydrodynamics https://ci.nii.ac.jp/naid/10009570543/en/
Hocker LO, Hruska MA (2004) Interleaving synchronous data and asynchronous data in a single data storage file
Lim A, Wheeler AJ, Price DM, O’Reilly L, Harris K, Conti L (2020) Influence of benthic currents on cold-water coral habitats: a combined benthic monitoring and 3D photogrammetric investigation. Sci Rep 10(1):19433. https://doi.org/10.1038/s41598-020-76446-yArticleGoogle Scholar
Morris T (2009) Physical oceanography of Sodwana Bay and its effect on larval transport and coral bleaching. PhD thesis, Cape Peninsula University of Technology
Pope SB (2001) Turbulent flows. Cambridge University Press, CambridgeGoogle Scholar
Porter SN (2009) Biogeography and potential factors regulating shallow subtidal reef communities in the Western Indian Ocean. PhD thesis, University of Cape Town
Porter SN, Schleyer MH (2019) Environmental variation and how its spatial structure influences the cross-shelf distribution of high-latitude coral communities in South Africa. Diversity. https://doi.org/10.3390/d11040057ArticleGoogle Scholar
Ramsay PJ, Mason TR (1990) Development of a type zoning model for Zululand coral reefs, Sodwana Bay, South Africa. J Coastal Res 6(4):829–852Google Scholar
Roberts H, Richardson J, Lagumbay R, Meselhe E, Ma Y (2013) Hydrodynamic and sediment transport modeling using FLOW-3D for siting and optimization of the LCA medium diversion at white ditch hydrodynamic and sediment transport modeling using FLOW-3D for siting and optimization of the LCA medium diversion at white D (December)
Roberts MJ, Ribbink AJ, Morris T, Berg MAVD, Engelbrecht DC, Harding RT (2006) Oceanographic environment of the Sodwana Bay coelacanths (Latimeria chalumnae), South Africa: coelacanth research. South Afr J Sci 102(9):435–443Google Scholar
Rogers JS, Monismith SG, Koweek DA, Torres WI, Dunbar RB (2016) Thermodynamics and hydrodynamics in an atoll reef system and their influence on coral cover. Limnol Oceanogr 61(6):2191–2206. https://doi.org/10.1002/lno.10365ArticleGoogle Scholar
Schleyer MH, Celliers L (2003) Coral dominance at the reef-sediment interface in marginal coral communities at Sodwana Bay, South Africa. Mar Freshw Res 54(8):967–972. https://doi.org/10.1071/MF02049ArticleGoogle Scholar
Schleyer MH, Porter SN (2018) Chapter One – drivers of soft and stony coral community distribution on the high-latitude coral reefs of South Africa. advances in marine biology, vol 80, Academic Press, pp 1–55, https://doi.org/10.1016/bs.amb.2018.09.001
Sebens KP, Grace SP, Helmuth B, Maney EJ Jr, Miles JS (1998) Water flow and prey capture by three scleractinian corals, Madracis mirabilis, Montastrea cavernosa and Porites porites, in a field enclosure. Mar Biol 131(2):347–360ArticleGoogle Scholar
Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164ArticleGoogle Scholar
Stocking J, Laforsch C, Sigl R, Reidenbach M (2018) The role of turbulent hydrodynamics and surface morphology on heat and mass transfer in corals. J R Soc Interface 15:20180448. https://doi.org/10.1098/rsif.2018.0448ArticleGoogle Scholar
Wyatt ASJ, Lowe RJ, Humphries S, Waite AM (2010) Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. Mar Ecol Prog Ser 405:113–130ArticleGoogle Scholar
SYAFIQ ZIKRYAND FITRIADHY* Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia * Corresponding author: naoe.afit@gmail.com http://doi.org/10.46754/umtjur.2021.07.017
Abstract
수중익선은 일반적으로 열악한 환경 조건으로 인해 승객의 편안함에 영향을 미칠 수 있는 높은 저항과 과도한 수직 운동(히브 및 피치)을 경험합니다. 따라서 복잡한 유체역학적 현상이 존재하기 때문에 파랑에서 수중익선의 내항성능을 규명할 필요가 있다.
이를 위해 수중익선 운동에 대한 CFD(Computational Fluid Dynamic) 해석을 제안한다. Froude Number 및 포일 받음각과 같은 여러 매개변수가 고려되었습니다.
그 결과 Froude Number의 후속 증가는 히브 및 피치 운동에 반비례한다는 것이 밝혀졌습니다. 본질적으로 이것은 높은 응답 진폭 연산자(RAO)의 형태로 제공되는 수중익선 항해 성능의 업그레이드로 이어졌습니다.
또한 포일 선수의 증가하는 각도는 히브 운동에 비례하는 반면, 포일 선미는 7.5o에서 낮은 히브 운동을 보였고, 그 다음으로 5o, 10o 순으로 나타났다. 피치모션의 경우 포일 보우의 증가는 5o에서 더 낮았고, 그 다음이 10o, 7.5o 순이었다. 포일 선미의 증가는 수중익선에 의한 피치 모션 경험에 비례했습니다.
일반적으로 이 CFD 시뮬레이션은 앞서 언급한 설계 매개변수와 관련하여 공해 상태에서 수중익선 설계의 운영 효율성을 보장하는 데 매우 유용합니다.
Keywords
CFD, hydrofoil, foil angle of attack, heave, pitch.
Figure 1: Overall mesh block being used in simulationFigure 2: 3D (left) and 2D (right) views of wave elevation using case C
References
Djavareshkian, M. H., & Esmaeili, A. (2014). Heuristic optimization of submerged hydrofoil using ANFIS–PSO. Ocean Engineering, 92, 55-63. Fitriadhy, A., & Adam, N. A. (2017). Heave and pitch motions performance of a monotricat ship in head-seas. International Journal of Automotive and Mechanical Engineering, 14, 4243-4258. Islam, M., Jahra, F., & Hiscock, S. (2016). Data analysis methodologies for hydrodynamic experiments in waves. Journal of Naval Architecture and Marine Engineering, 13(1), 1-15. Koutsourakis, N., Bartzis, J. G., & Markatos, N. C. (2012). Evaluation of Reynolds stress, k-ε and RNG k-ε turbulence models in street canyon flows using various experimental datasets. Environmental fluid mechanics, 1-25. Manual, F. D. U. (2011). Flow3D User Manual, v9. 4.2, Flow Science. Inc., Santa Fe, NM. Matveev, K., & Duncan, R. (2005). Development of the tool for predicting hydrofoil system performance and simulating motion of hydrofoil-assisted boats. Paper presented at the High Speed and High Performance Ship and Craft Symposium, Everett/WA: ASNE, USA. Seif, M., Mehdigholi, H., & Najafi, A. (2014). Experimental and numerical modeling of the high speed planing vessel motion. Journal of Marine Engineering & Technology, 13(2), 62- 72. Sun, X., Yao, C., Xiong, Y., & Ye, Q. (2017). Numerical and experimental study on seakeeping performance of a swath vehicle in head waves. Applied Ocean Research, 68, 262- 275. Vakilabadi, K. A., Khedmati, M. R., & Seif, M.S. (2014). Experimental study on heave and pitch motion characteristics of a wave-piercing trimaran. Transactions of FAMENA, 38(3), 13- 26. Yakhot, A., Rakib, S., & Flannery, W. (1994). LowReynolds number approximation for turbulent eddy viscosity. Journal of scientific computing, 9(3), 283-292. Yakhot, V., & Orszag, S. A. (1986). Renormalization group analysis of turbulence. I. Basic theory. Journal of scientific computing, 1(1), 3-51.
Fatemehsadat Mirshafiee1, Emad Shahbazi 2, Mohadeseh Safi 3, Rituraj Rituraj 4,* 1Department of Electrical and Computer Engineering, K.N. Toosi University of Technology, Tehran 1999143344 , Iran 2Department of Mechatronic, Amirkabir University of Technology, Tehran 158754413, Iran 3Department of Mechatronic, Electrical and Computer Engineering, University of Tehran, Tehran 1416634793, Iran 4 Faculty of Informatics, Obuda University, 1023, Budapest, Hungary
Correspondence: rituraj88@stud.uni-obuda.hu
ABSTRACT
본 연구는 지속가능한 에너지 변환기의 전력 및 수소 발생 모델링을 위한 데이터 기반 방법론을 제안합니다. 파고와 풍속을 달리하여 파고와 수소생산을 예측합니다.
또한 이 연구는 파도에서 수소를 추출할 수 있는 가능성을 강조하고 장려합니다. FLOW-3D 소프트웨어 시뮬레이션에서 추출한 데이터와 해양 특수 테스트의 실험 데이터를 사용하여 두 가지 데이터 기반 학습 방법의 비교 분석을 수행합니다.
결과는 수소 생산의 양은 생성된 전력의 양에 비례한다는 것을 보여줍니다. 제안된 재생 에너지 변환기의 신뢰성은 지속 가능한 스마트 그리드 애플리케이션으로 추가로 논의됩니다.
This study proposes a data-driven methodology for modeling power and hydrogen generation of a sustainable energy converter. The wave and hydrogen production at different wave heights and wind speeds are predicted. Furthermore, this research emphasizes and encourages the possibility of extracting hydrogen from ocean waves. By using the extracted data from FLOW-3D software simulation and the experimental data from the special test in the ocean, the comparison analysis of two data-driven learning methods is conducted. The results show that the amount of hydrogen production is proportional to the amount of generated electrical power. The reliability of the proposed renewable energy converter is further discussed as a sustainable smart grid application.
Key words
Cavity, Combustion efficiency, hydrogen fuel, Computational Fluent and Gambit.
Figure 1. The process of power and hydrogen production with Searaser.Figure 2. The cross-section A-A of the two essential parts of a SearaserFigure 3. Different parts of a Searaser; 1) Buoy 2) Chamber 3) Valves 4) Generator 5) Anchor systemFigure 4. The boundary conditions of the control volumeFigure 5. The wind velocity during the period of the experimental test
REFERENCES
Kalbasi, R., Jahangiri, M., Dehshiri, S.J.H., Dehshiri, S.S.H., Ebrahimi, S., Etezadi, Z.A.S. and Karimipour, A., 2021. Finding the best station in Belgium to use residential-scale solar heating, one-year dynamic simulation with considering all system losses: economic analysis of using ETSW. Sustainable Energy Technologies and Assessments, 45, p.101097.
Megura M, Gunderson R. Better poison is the cure? Critically examining fossil fuel companies, climate change framing, and corporate sustainability reports. Energy Research & Social Science. 2022 Mar 1;85:102388.
Holechek JL, Geli HM, Sawalhah MN, Valdez R. A global assessment: can renewable energy replace fossil fuels by 2050?. Sustainability. 2022 Jan;14(8):4792.
Ahmad M, Kumar A, Ranjan R. Recent Developments of Tidal Energy as Renewable Energy: An Overview. River and Coastal Engineering. 2022:329-43.
Amini E, Mehdipour H, Faraggiana E, Golbaz D, Mozaffari S, Bracco G, Neshat M. Optimization of hydraulic power take-off system settings for point absorber wave energy converter. Renewable Energy. 2022 Jun 4.
Claywell, R., Nadai, L., Felde, I., Ardabili, S. 2020. Adaptive neuro-fuzzy inference system and a multilayer perceptron model trained with grey wolf optimizer for predicting solar diffuse fraction. Entropy, 22(11), p.1192.
McLeod I, Ringwood JV. Powering data buoys using wave energy: a review of possibilities. Journal of Ocean Engineering and Marine Energy. 2022 Jun 20:1-6.
Olsson G. Water interactions: A systemic view: Why we need to comprehend the water-climate-energy-food-economics-lifestyle connections.
Malkowska A, Malkowski A. Green Energy in the Political Debate. InGreen Energy 2023 (pp. 17-39). Springer, Cham.
Mayon R, Ning D, Ding B, Sergiienko NY. Wave energy converter systems–status and perspectives. InModelling and Optimisation of Wave Energy Converters (pp. 3-58). CRC Press.
Available online at: https://www.offshore-energy.biz/uk-ecotricity-introduces-wave-power-device-searaser/ (9/27/2022)
Mousavi SM, et al.,. Deep learning for wave energy converter modeling using long short-term memory. Mathematics. 2021 Apr 15;9(8):871.
Mega V. The Energy Race to Decarbonisation. InHuman Sustainable Cities 2022 (pp. 105-141). Springer, Cham.
Li R, Tang BJ, Yu B, Liao H, Zhang C, Wei YM. Cost-optimal operation strategy for integrating large scale of renewable energy in China’s power system: From a multi-regional perspective. Applied Energy. 2022 Nov 1;325:119780.
Ardabili S., Abdolalizadeh L., Mako C., Torok B., Systematic Review of Deep Learning and Machine Learning for Building Energy, Frontiers in Energy Research, 10, 2022.
Penalba M, Aizpurua JI, Martinez-Perurena A, Iglesias G. A data-driven long-term metocean data forecasting approach for the design of marine renewable energy systems. Renewable and Sustainable Energy Reviews. 2022 Oct 1;167:112751.
Torabi, M., Hashemi, S., Saybani, M.R., 2019. A Hybrid clustering and classification technique for forecasting short‐term energy consumption. Environmental progress & sustainable energy, 38(1), pp.66-76.
Rivera FP, Zalamea J, Espinoza JL, Gonzalez LG. Sustainable use of spilled turbinable energy in Ecuador: Three different energy storage systems. Renewable and Sustainable Energy Reviews. 2022 Mar 1;156:112005.
Raza SA, Jiang J. Mathematical foundations for balancing single-phase residential microgrids connected to a three-phase distribution system. IEEE Access. 2022 Jan 6;10:5292-303.
Takach M, Sarajlić M, Peters D, Kroener M, Schuldt F, von Maydell K. Review of Hydrogen Production Techniques from Water Using Renewable Energy Sources and Its Storage in Salt Caverns. Energies. 2022 Feb 15;15(4):1415.
Lv Z, Li W, Wei J, Ho F, Cao J, Chen X. Autonomous Chemistry Enabling Environment-Adaptive Electrochemical Energy Storage Devices. CCS Chemistry. 2022 Jul 7:1-9.
Dehghan Manshadi, Mahsa, Milad Mousavi, M. Soltani, Amir Mosavi, and Levente Kovacs. 2022. “Deep Learning for Modeling an Offshore Hybrid Wind–Wave Energy System” Energies 15, no. 24: 9484. https://doi.org/10.3390/en15249484
Ishaq H, Dincer I, Crawford C. A review on hydrogen production and utilization: Challenges and opportunities. International Journal of Hydrogen Energy. 2022 Jul 22;47(62):26238-64.
Maguire JF, Woodcock LV. On the Thermodynamics of Aluminum Cladding Oxidation: Water as the Catalyst for Spontaneous Combustion. Journal of Failure Analysis and Prevention. 2022 Sep 10:1-5.
Mohammadi, M. R., Hadavimoghaddam, F., Pourmahdi, M., Atashrouz, S., Munir, M. T., Hemmati-Sarapardeh, A., … & Mohaddespour, A. (2021). Modeling hydrogen solubility in hydrocarbons using extreme gradient boosting and equations of state. Scientific reports, 11(1).
Ma S, Qin J, Xiu X, Wang S. Design and performance evaluation of an underwater hybrid system of fuel cell and battery. Energy Conversion and Management. 2022 Jun 15;262:115672.
Ahamed R, McKee K, Howard I. A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems. Sustainability. 2022 Jan;14(16):9936.
Nejad, H.D., Nazari, M., Nazari, M., Mardan, M.M.S., 2022. Fuzzy State-Dependent Riccati Equation (FSDRE) Control of the Reverse Osmosis Desalination System With Photovoltaic Power Supply. IEEE Access, 10, pp.95585-95603.
Zou S, Zhou X, Khan I, Weaver WW, Rahman S. Optimization of the electricity generation of a wave energy converter using deep reinforcement learning. Ocean Engineering. 2022 Jan 15;244:110363.
Wu J, Qin L, Chen N, Qian C, Zheng S. Investigation on a spring-integrated mechanical power take-off system for wave energy conversion purpose. Energy. 2022 Apr 15;245:123318.
Papini G, Dores Piuma FJ, Faedo N, Ringwood JV, Mattiazzo G. Nonlinear Model Reduction by Moment-Matching for a Point Absorber Wave Energy Conversion System. Journal of Marine Science and Engineering. 2022 May;10(5):656.
Forbush DD, Bacelli G, Spencer SJ, Coe RG, Bosma B, Lomonaco P. Design and testing of a free floating dual flap wave energy converter. Energy. 2022 Feb 1;240:122485.
Rezaei, M.A., 2022. A New Hybrid Cascaded Switched-Capacitor Reduced Switch Multilevel Inverter for Renewable Sources and Domestic Loads. IEEE Access, 10, pp.14157-14183.
Lin Z, Cheng L, Huang G. Electricity consumption prediction based on LSTM with attention mechanism. IEEJ Transactions on Electrical and Electronic Engineering. 2020;15(4):556-562.
Tavoosi, J., Mohammadzadeh, A., Pahlevanzadeh, B., Kasmani, M.B., 2022. A machine learning approach for active/reactive power control of grid-connected doubly-fed induction generators. Ain Shams Engineering Journal, 13(2), p.101564.
Ghalandari, M., 2019. Flutter speed estimation using presented differential quadrature method formulation. Engineering Applications of Computational Fluid Mechanics, 13(1), pp.804-810.
Li Z, Bouscasse B, Ducrozet G, Gentaz L, Le Touzé D, Ferrant P. Spectral wave explicit navier-stokes equations for wavestructure interactions using two-phase computational fluid dynamics solvers. Ocean Engineering. 2021 Feb 1;221:108513.
Zhou Y. Ocean energy applications for coastal communities with artificial intelligencea state-of-the-art review. Energy and AI. 2022 Jul 29:100189.
Miskati S, Farin FM. Performance evaluation of wave-carpet in wave energy extraction at different coastal regions: an analytical approach (Doctoral dissertation, Department of Mechanical and Production Engineering).
Gu C, Li H. Review on Deep Learning Research and Applications in Wind and Wave Energy. Energies. 2022 Feb 17;15(4):1510.
Aazami, R., 2022. Optimal Control of an Energy-Storage System in a Microgrid for Reducing Wind-Power Fluctuations. Sustainability, 14(10), p.6183.
Kabir M, Chowdhury MS, Sultana N, Jamal MS, Techato K. Ocean renewable energy and its prospect for developing economies. InRenewable Energy and Sustainability 2022 Jan 1 (pp. 263-298). Elsevier.
Babajani A, Jafari M, Hafezisefat P, Mirhosseini M, Rezania A, Rosendahl L. Parametric study of a wave energy converter (Searaser) for Caspian Sea. Energy Procedia. 2018 Aug 1;147:334-42.
He J. Coherence and cross-spectral density matrix analysis of random wind and wave in deep water. Ocean Engineering. 2020;197:106930
Ijadi Maghsoodi, A., 2018. Renewable energy technology selection problem using integrated h-swara-multimoora approach. Sustainability, 10(12), p.4481.
Band, S.S., Ardabili, S., Sookhak, M., Theodore, A., Elnaffar, S., Moslehpour, M., Csaba, M., Torok, B., Pai, H.T., 2022. When Smart Cities Get Smarter via Machine Learning: An In-depth Literature Review. IEEE Access.
Shamshirband, S., Rabczuk, T., Nabipour, N. and Chau, K.W., 2020. Prediction of significant wave height; comparison between nested grid numerical model, and machine learning models of artificial neural networks, extreme learning and support vector machines. Engineering Applications of Computational Fluid Mechanics, 14(1), pp.805-817.
Liu, Z., Mohammadzadeh, A., Turabieh, H., Mafarja, M., 2021. A new online learned interval type-3 fuzzy control system for solar energy management systems. IEEE Access, 9, pp.10498-10508.
Bavili, R.E., Mohammadzadeh, A., Tavoosi, J., Mobayen, S., Assawinchaichote, W., Asad, J.H. 2021. A New Active Fault Tolerant Control System: Predictive Online Fault Estimation. IEEE Access, 9, pp.118461-118471.
Akbari, E., Teimouri, A.R., Saki, M., Rezaei, M.A., Hu, J., Band, S.S., Pai, H.T., 2022. A Fault-Tolerant Cascaded SwitchedCapacitor Multilevel Inverter for Domestic Applications in Smart Grids. IEEE Access.
Band, S.S., Ardabili, S., 2022. Feasibility of soft computing techniques for estimating the long-term mean monthly wind speed. Energy Reports, 8, pp.638-648.
Tavoosi, J., Mohammadzadeh, A., Pahlevanzadeh, B., Kasmani, M.B., 2022. A machine learning approach for active/reactive power control of grid-connected doubly-fed induction generators. Ain Shams Engineering Journal, 13(2), p.101564.
Ponnusamy, V. K., Kasinathan, P., Madurai Elavarasan, R., Ramanathan, V., Anandan, R. K., Subramaniam, U., … & Hossain, E. A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid. Sustainability, 2021; 13(23), 13322.
Ahmad, T., Zhang, D., Huang, C., Zhang, H., Dai, N., Song, Y., & Chen, H. Artificial intelligence in sustainable energy industry: Status Quo, challenges and opportunities. Journal of Cleaner Production, 2021; 289, 125834.
Wang, G., Chao, Y., Cao, Y., Jiang, T., Han, W., & Chen, Z. A comprehensive review of research works based on evolutionary game theory for sustainable energy development. Energy Reports, 2022; 8, 114-136.
Iranmehr H., Modeling the Price of Emergency Power Transmission Lines in the Reserve Market Due to the Influence of Renewable Energies, Frontiers in Energy Research, 9, 2022
Farmanbar, M., Parham, K., Arild, Ø., & Rong, C. A widespread review of smart grids towards smart cities. Energies, 2019; 12(23), 4484.
Quartier, N., Crespo, A. J., Domínguez, J. M., Stratigaki, V., & Troch, P. Efficient response of an onshore Oscillating Water Column Wave Energy Converter using a one-phase SPH model coupled with a multiphysics library. Applied Ocean Research, 2021; 115, 102856.
Mahmoodi, K., Nepomuceno, E., & Razminia, A. Wave excitation force forecasting using neural networks. Energy, 2022; 247, 123322.
Wang, H., Alattas, K.A., 2022. Comprehensive review of load forecasting with emphasis on intelligent computing approaches. Energy Reports, 8, pp.13189-13198.
Clemente, D., Rosa-Santos, P., & Taveira-Pinto, F. On the potential synergies and applications of wave energy converters: A review. Renewable and Sustainable Energy Reviews, 2021; 135, 110162.
Felix, A., V. Hernández-Fontes, J., Lithgow, D., Mendoza, E., Posada, G., Ring, M., & Silva, R. Wave energy in tropical regions: deployment challenges, environmental and social perspectives. Journal of Marine Science and Engineering, 2019; 7(7), 219.
Farrok, O., Ahmed, K., Tahlil, A. D., Farah, M. M., Kiran, M. R., & Islam, M. R. Electrical power generation from the oceanic wave for sustainable advancement in renewable energy technologies. Sustainability, 2020; 12(6), 2178.
Guo, B., & Ringwood, J. V. A review of wave energy technology from a research and commercial perspective. IET Renewable Power Generation, 2021; 15(14), 3065-3090.
López-Ruiz, A., Bergillos, R. J., Lira-Loarca, A., & Ortega-Sánchez, M. A methodology for the long-term simulation and uncertainty analysis of the operational lifetime performance of wave energy converter arrays. Energy, 2018; 153, 126-135.
Safarian, S., Saryazdi, S. M. E., Unnthorsson, R., & Richter, C. Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant. Energy, 2020; 213, 118800.
Kushwah, S. An oscillating water column (OWC): the wave energy converter. Journal of The Institution of Engineers (India): Series C, 2021; 102(5), 1311-1317.
Pap, J., Mako, C., Illessy, M., Kis, N., 2022. Modeling Organizational Performance with Machine Learning. Journal of Open Innovation: Technology, Market, and Complexity, 8(4), p.177.
Pap, J., Mako, C., Illessy, M., Dedaj, Z., Ardabili, S., Torok, B., 2022. Correlation Analysis of Factors Affecting Firm Performance and Employees Wellbeing: Application of Advanced Machine Learning Analysis. Algorithms, 15(9), p.300.
Alanazi, A., 2022. Determining Optimal Power Flow Solutions Using New Adaptive Gaussian TLBO Method. Applied Sciences, 12(16), p.7959.
Shakibjoo, A.D., Moradzadeh, M., Din, S.U., 2021. Optimized Type-2 Fuzzy Frequency Control for Multi-Area Power Systems. IEEE access, 10, pp.6989-7002.
Zhang, G., 2021. Solar radiation estimation in different climates with meteorological variables using Bayesian model averaging and new soft computing models. Energy Reports, 7, pp.8973-8996.
Cao, Y., Raise, A., Mohammadzadeh, A., Rathinasamy, S., 2021. Deep learned recurrent type-3 fuzzy system: Application for renewable energy modeling/prediction. Energy Reports, 7, pp.8115-8127.
Tavoosi, J., Suratgar, A.A., Menhaj, M.B., 2021. Modeling renewable energy systems by a self-evolving nonlinear consequent part recurrent type-2 fuzzy system for power prediction. Sustainability, 13(6), p.3301.
Bourouis, S., Band, S.S., 2022. Meta-Heuristic Algorithm-Tuned Neural Network for Breast Cancer Diagnosis Using Ultrasound Images. Frontiers in Oncology, 12, p.834028.
Mosavi, A.H., Mohammadzadeh, A., Rathinasamy, S., Zhang, C., Reuter, U., Levente, K. and Adeli, H., 2022. Deep learning fuzzy immersion and invariance control for type-I diabetes. Computers in Biology and Medicine, 149, p.105975.
Almutairi, K., Algarni, S., Alqahtani, T., Moayedi, H., 2022. A TLBO-Tuned Neural Processor for Predicting Heating Load in Residential Buildings. Sustainability, 14(10), p.5924.
Ahmad, Z., Zhong, H., 2020. Machine learning modeling of aerobic biodegradation for azo dyes and hexavalent chromium. Mathematics, 8(6), p.913.
Mosavi, A., Shokri, M., Mansor, Z., Qasem, S.N., Band, S.S. and Mohammadzadeh, A., 2020. Machine learning for modeling the singular multi-pantograph equations. Entropy, 22(9), p.1041.
Ardabili, S., 2019, September. Deep learning and machine learning in hydrological processes climate change and earth systems a systematic review. In International conference on global research and education (pp. 52-62). Springer, Cham.
Moayedi, H., (2021). Suggesting a stochastic fractal search paradigm in combination with artificial neural network for early prediction of cooling load in residential buildings. Energies, 14(6), 1649.
Rezakazemi, M., et al., 2019. ANFIS pattern for molecular membranes separation optimization. Journal of Molecular Liquids, 274, pp.470-476.
Mosavi, A., Faghan, Y., Ghamisi, P., Duan, P., Ardabili, S.F., Salwana, E. and Band, S.S., 2020. Comprehensive review of deep reinforcement learning methods and applications in economics. Mathematics, 8(10), p.1640.
Samadianfard, S., Jarhan, S., Salwana, E., 2019. Support vector regression integrated with fruit fly optimization algorithm for river flow forecasting in Lake Urmia Basin. Water, 11(9), p.1934.
Moayedi, H., (2021). Double-target based neural networks in predicting energy consumption in residential buildings. Energies, 14(5), 1331.
Mohammadzadeh S, D., Kazemi, S.F., 2019. Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures, 4(2), p.26.
Karballaeezadeh, N., Mohammadzadeh S, D., Shamshirband, S., Hajikhodaverdikhan, P., 2019. Prediction of remaining service life of pavement using an optimized support vector machine (case study of Semnan–Firuzkuh road). Engineering Applications of Computational Fluid Mechanics, 13(1), pp.188-198.
Rezaei, M. Et al., (2022). Adaptation of A Real-Time Deep Learning Approach with An Analog Fault Detection Technique for Reliability Forecasting of Capacitor Banks Used in Mobile Vehicles. IEEE Access v. 21 pp. 89-99.
Khakian, R., et al., (2020). Modeling nearly zero energy buildings for sustainable development in rural areas. Energies, 13(10), 2593.
hydrogen production, renewable energy, green energy, simulation, FLOW-3D, electrical power,수소 생산, 재생 에너지, 녹색 에너지, 시뮬레이션, FLOW-3D, 전력
Abstract
This study proposes a data-driven methodology for modeling power and hydrogen generation of a sustainable energy converter. The wave and hydrogen production at different wave heights and wind speeds are predicted. Furthermore, this research emphasizes and encourages the possibility of extracting hydrogen from ocean waves. By using the extracted data from FLOW-3D software simulation and the experimental data from the special test in the ocean, the comparison analysis of two data-driven learning methods is conducted. The results show that the amount of hydrogen production is proportional to the amount of generated electrical power. The reliability of the proposed renewable energy converter is further discussed as a sustainable smart grid application
본 연구는 지속가능한 에너지 변환기의 전력 및 수소 발생 모델링을 위한 데이터 기반 방법론을 제안한다. 파고와 풍속을 달리하여 파고와 수소생산을 예측한다. 또한 이 연구는 파도에서 수소를 추출할 수 있는 가능성을 강조하고 장려합니다. FLOW-3D 소프트웨어 시뮬레이션에서 추출한 데이터와 해양 특수 테스트의 실험 데이터를 사용하여 두 가지 데이터 기반 학습 방법의 비교 분석을 수행합니다. 결과는 수소 생산의 양은 생성된 전력의 양에 비례한다는 것을 보여줍니다. 제안된 재생 에너지 변환기의 신뢰성은 지속 가능한 스마트 그리드 애플리케이션으로 추가로 논의됩니다.
Predicting Power and Hydrogen Generation of a Renewable Energy Converter Utilizing Data-Driven methods
Numerical simulation of ship waves in the presence of a uniform current
CongfangAiYuxiangMaLeiSunGuohaiDongState Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian, 116024, China
Highlights
• Ship waves in the presence of a uniform current are studied by a non-hydrostatic model.
• Effects of a following current on characteristic wave parameters are investigated.
• Effects of an opposing current on characteristic wave parameters are investigated.
• The response of the maximum water level elevation to the ship draft is discussed.
Abstract
이 논문은 균일한 해류가 존재할 때 선박파의 생성 및 전파를 시뮬레이션하기 위한 비정역학적 모델을 제시합니다. 선박 선체의 움직임을 표현하기 위해 움직이는 압력장 방법이 모델에 통합되었습니다.
뒤따르거나 반대 방향의 균일한 흐름이 있는 경우의 선박 파도의 수치 결과를 흐름이 없는 선박 파도의 수치 결과와 비교합니다. 추종 또는 반대 균일 전류가 존재할 때 계산된 첨단선 각도는 분석 솔루션과 잘 일치합니다. 추종 균일 전류와 반대 균일 전류가 특성파 매개변수에 미치는 영향을 제시하고 논의합니다.
선박 흘수에 대한 최대 수위 상승의 응답은 추종 또는 반대의 균일한 흐름이 있는 경우에도 표시되며 흐름이 없는 선박 파도의 응답과 비교됩니다. 선박 선체 측면의 최대 수위 상승은 Froude 수 Fr’=Us/gh의 특정 범위에 대해 다음과 같은 균일한 흐름의 존재에 의해 증가될 수 있음이 밝혀졌습니다.
여기서 Us는 선박 속도이고 h는 물입니다. 깊이. 균일한 해류를 무시하면 추종류나 반대류가 존재할 때 선박 흘수에 대한 최대 수위 상승의 응답이 과소평가될 수 있습니다.
본 연구는 선박파의 해석에 있어 균일한 해류의 영향을 고려해야 함을 시사합니다.
This paper presents a non-hydrostatic model to simulate the generation and propagation of ship waves in the presence of a uniform current. A moving pressure field method is incorporated into the model to represent the movement of a ship hull. Numerical results of ship waves in the presence of a following or an opposing uniform current are compared with those of ship waves without current. The calculated cusp-line angles in the presence of a following or opposing uniform current agree well with analytical solutions. The effects of a following uniform current and an opposing uniform current on the characteristic wave parameters are presented and discussed. The response of the maximum water level elevation to the ship draft is also presented in the presence of a following or an opposing uniform current and is compared with that for ship waves without current. It is found that the maximum water level elevation lateral to the ship hull can be increased by the presence of a following uniform current for a certain range of Froude numbers Fr′=Us/gh, where Us is the ship speed and h is the water depth. If the uniform current is neglected, the response of the maximum water level elevation to the ship draft in the presence of a following or an opposing current can be underestimated. The present study indicates that the effect of a uniform current should be considered in the analysis of ship waves.
Ship waves, Non-hydrostatic model, Following current, Opposing current, Wave parameters
1. Introduction
Similar to wind waves, ships sailing across the sea can also create free-surface undulations ranging from ripples to waves of large size (Grue, 2017, 2020). Ship waves can cause sediment suspension and engineering structures damage and even pose a threat to flora and fauna living near the embankments of waterways (Dempwolff et al., 2022). It is quite important to understand ship waves in various environments. The study of ship waves has been conducted over a century. A large amount of research (Almström et al., 2021; Bayraktar and Beji, 2013; David et al., 2017; Ertekin et al., 1986; Gourlay, 2001; Havelock, 1908; Lee and Lee, 2019; Samaras and Karambas, 2021; Shi et al., 2018) focused on the generation and propagation of ship waves without current. When a ship navigates in the sea or in a river where tidal flows or river flows always exist, the effect of currents should be taken into account. However, the effect of currents on the characteristic parameters of ship waves is still unclear, because very few publications have been presented on this topic.
Over the past two decades, many two-dimensional (2D) Boussinesq-type models (Bayraktar and Beji, 2013; Dam et al., 2008; David et al., 2017; Samaras and Karambas, 2021; Shi et al., 2018) were developed to examine ship waves. For example, Bayraktar and Beji (2013) solved Boussinesq equations with improved dispersion characteristics to simulate ship waves due to a moving pressure field. David et al. (2017) employed a Boussinesq-type model to investigate the effects of the pressure field and its propagation speed on characteristic wave parameters. All of these Boussinesq-type models aimed to simulate ship waves without current except for that of Dam et al. (2008), who investigated the effect of currents on the maximum wave height of ship waves in a narrow channel.
In addition to Boussinesq-type models, numerical models based on the Navier-Stokes equations (NSE) or Euler equations are also capable of resolving ship waves. Lee and Lee (2019, 2021) employed the FLOW-3D model to simulate ship waves without current and ship waves in the presence of a uniform current to confirm their equations for ship wave crests. FLOW-3D is a computational fluid dynamics (CFD) software based on the NSE, and the volume of fluid (VOF) method is used to capture the moving free surface. However, VOF-based NSE models are computationally expensive due to the treatment of the free surface. To efficiently track the free surface, non-hydrostatic models employ the so-called free surface equation and can be solved efficiently. One pioneering application for the simulation of ship waves by the non-hydrostatic model was initiated by Ma (2012) and named XBeach. Recently, Almström et al. (2021) validated XBeach with improved dispersive behavior by comparison with field measurements. XBeach employed in Almström et al. (2021) is a 2-layer non-hydrostatic model and is accurate up to Kh=4 for the linear dispersion relation (de Ridder et al., 2020), where K=2π/L is the wavenumber. L is the wavelength, and h is the still water depth. However, no applications of non-hydrostatic models on the simulation of ship waves in the presence of a uniform current have been published. For more advances in the numerical modelling of ship waves, the reader is referred to Dempwolff et al. (2022).
This paper investigates ship waves in the presence of a uniform current by using a non-hydrostatic model (Ai et al., 2019), in which a moving pressure field method is incorporated to represent the movement of a ship hull. The model solves the incompressible Euler equations by using a semi-implicit algorithm and is associated with iterating to solve the Poisson equation. The model with two, three and five layers is accurate up to Kh= 7, 15 and 40, respectively (Ai et al., 2019) in resolving the linear dispersion relation. To the best of our knowledge, ship waves in the presence of currents have been studied theoretically (Benjamin et al., 2017; Ellingsen, 2014; Li and Ellingsen, 2016; Li et al., 2019.) and numerically (Dam et al., 2008; Lee and Lee, 2019, 2021). However, no publications have presented the effects of a uniform current on characteristic wave parameters except for Dam et al. (2008), who investigated only the effect of currents on the maximum wave height in a narrow channel for the narrow relative Froude number Fr=(Us−Uc)/gh ranging from 0.47 to 0.76, where Us is the ship speed and Uc is the current velocity. To reveal the effect of currents on the characteristic parameters of ship waves, the main objectives of this paper are (1) to validate the capability of the proposed model to resolve ship waves in the presence of a uniform current, (2) to investigate the effects of a following or an opposing current on characteristic wave parameters including the maximum water level elevation and the leading wave period in the ship wave train, (3) to show the differences in characteristic wave parameters between ship waves in the presence of a uniform current and those without current when the same relative Froude number Fr is specified, and (4) to examine the response of the maximum water level elevation to the ship draft in the presence of a uniform current.
The remainder of this paper is organized as follows. The non-hydrostatic model for ship waves is described in Section 2. Section 3 presents numerical validations for ship waves. Numerical results and discussions about the effects of a uniform current on characteristic wave parameters are provided in Section 4, and a conclusion is presented in Section 5.
2. Non-hydrostatic model for ship waves
2.1. Governing equations
The 3D incompressible Euler equations are expressed in the following form:(1)∂u∂x+∂v∂y+∂w∂z=0(2)∂u∂t+∂u2∂x+∂uv∂y+∂uw∂z=−∂p∂x(3)∂v∂t+∂uv∂x+∂v2∂y+∂vw∂z=−∂p∂y(4)∂w∂t+∂uw∂x+∂vw∂y+∂w2∂z=−∂p∂z−gwhere t is the time; u(x,y,z,t), v(x,y,z,t) and w(x,y,z,t) are the velocity components in the horizontal x, y and vertical z directions, respectively; p(x,y,z,t) is the pressure divided by a constant reference density; and g is the gravitational acceleration.
The pressure p(x,y,z,t) can be expressed as(5)p=ps+g(η−z)+qwhere ps(x,y,t) is the pressure at the free surface, η(x,y,t) is the free surface elevation, and q(x,y,z,t) is the non-hydrostatic pressure.
η(x,y,t) is calculated by the following free-surface equation:(6)∂η∂t+∂∂x∫−hηudz+∂∂y∫−hηvdz=0where z=−h(x,y) is the bottom surface.
For −L/2≤x’≤L/2,−B/2≤y’≤B/2(7)ps(x,y,t)|t=0=pm[1−cL(x′/L)4][1−cB(y′/B)2]exp[−a(y′/B)2]where x′=x−x0 and y′=y−y0. (x0,y0) is the center of the pressure field, pm is the peak pressure defined at (x0,y0), and L and B are the lengthwise and breadthwise parameters, respectively. cL, cB and a are set to 16, 2 and 16, respectively.
2.2. Numerical algorithms
In this study, the generation of ship waves is incorporated into the semi-implicit non-hydrostatic model developed by Ai et al. (2019). The 3D grid system used in the model is built from horizontal rectangular grids by adding horizontal layers. The horizontal layers are distributed uniformly along the water depth, which means the layer thickness is defined by Δz=(η+h)/Nz, where Nz is the number of horizontal layers.
In the solution procedure, the first step is to generate ship waves by implementing Eq. (7) together with the prescribed ship track. In the second step, Eqs. (1), (2), (3), (4) are solved by the pressure correction method, which can be subdivided into three stages. The first stage is to compute intermediate velocities un+1/2, vn+1/2, and wn+1/2 by solving Eqs. (2), (3), (4), which contain the non-hydrostatic pressure at the preceding time level. In the second stage, the Poisson equation for the non-hydrostatic pressure correction term is solved on the graphics processing unit (GPU) in conjunction with the conjugate gradient method. The third stage is to compute the new velocities un+1, vn+1, and wn+1 by correcting the intermediate values after including the non-hydrostatic pressure correction term. In the discretization of Eqs. (2), (3), the gradient terms of the water surface ∂η/∂x and ∂η/∂y are discretized by means of the semi-implicit method (Vitousek and Fringer, 2013), in which the implicitness factor θ=0.5 is used. The model is second-order accurate in time for free-surface flows. More details about the model can be found in Ai et al. (2019).
3. Model validation
In this section, we validate the proposed model in resolving ship waves. The numerical experimental conditions are provided in Table 1 and Table 2. In Table 2, Case A with the current velocity of Uc = 0.0 m/s represents ship waves without current. Both Case B and Case C correspond to the cases in the presence of a following current, while Case D and Case E represent the cases in the presence of an opposing current. The current velocities are chosen based on the observed currents at 40.886° N, 121.812° E, which is in the Liaohe Estuary. The measured data were collected from 14:00 on September 18 (GMT + 08:00) to 19:00 on September 19 in 2021. The maximum flood velocity is 1.457 m/s, and the maximum ebb velocity is −1.478 m/s. The chosen current velocities are between the maximum flood velocity and the maximum ebb velocity.
Table 1. Summary of ship speeds.
Case
Water depth h (m)
Ship speed Us (m/s)
Froude number Fr′=Us/gh
1
6.0
4.57
0.6
2
6.0
5.35
0.7
3
6.0
6.15
0.8
4
6.0
6.90
0.9
5
6.0
7.093
0.925
6
6.0
7.28
0.95
7
6.0
7.476
0.975
8
6.0
7.86
1.025
9
6.0
8.06
1.05
10
6.0
8.243
1.075
11
6.0
8.45
1.1
12
6.0
9.20
1.2
13
6.0
9.97
1.3
14
6.0
10.75
1.4
15
6.0
11.50
1.5
16
6.0
12.30
1.6
17
6.0
13.05
1.7
18
6.0
13.80
1.8
19
6.0
14.60
1.9
20
6.0
15.35
2.0
Table 2. Summary of current velocities.
Case
A
B
C
D
E
Current velocity Uc (m/s)
0.0
0.5
1.0
−0.5
−1.0
Notably, the Froude number Fr′=Us/gh presented in Table 1 is defined by the ship speed Us only and is different from the relative Froude number Fr when a uniform current is presented. According to the theory of Lee and Lee (2021), with the same relative Froude number, the cusp-line angles in the presence of a following or an opposing uniform current are identical to those without current. As a result, for the test cases presented in Table 1, Table 2, all calculated cusp-line angles follow the analytical solution of Havelock (1908), when the relative Froude number Fr is introduced.
As shown in Fig. 1, the dimensions of the computational domain are −420≤x≤420 m and −200≤y≤200 m, which are similar to those of David et al. (2017). The ship track follows the x axis and ranges from −384 m to 384 m. The ship hull is represented by Eq. (7), in which the length L and the beam B are set to 14.0 m and 7.0 m, respectively, and the peak pressure value is pm= 5000 Pa. In the numerical simulations, grid convergence tests reveal that the horizontal grid spacing of Δx=Δy= 1.0 m and two horizontal layers are adequate. The numerical results with different numbers of horizontal layers are shown in the Appendix.
Fig. 2, Fig. 3 compare the calculated cusp-line angles θc with the analytical solutions of Havelock (1908) for ship waves in the presence of a following uniform current and an opposing uniform current, respectively. The calculated cusp-line angles without current are also depicted in Fig. 2, Fig. 3. All calculated cusp-line angles are in good agreement with the analytical solutions, except that the model tends to underpredict the cusp-line angle for 0.9<Fr<1.0. Notably, a similar underprediction of the cusp-line angle can also be found in David et al. (2017).
4. Results and discussions
This section presents the effects of a following current and opposing current on the maximum water level elevation and the leading wave period in the wave train based on the test cases presented in Table 1, Table 2. Moreover, the response of the maximum water level elevation to the ship draft in the presence of a uniform current is examined.
4.1. Effects of a following current on characteristic wave parameters
To present the effect of a following current on the maximum wave height, the variations of the maximum water level elevation ηmax with the Froude number Fr′ at gauge points G1 and G2 are depicted in Fig. 4. The positions of gauge points G1 and G2 are shown in Fig. 1. The maximum water level elevation is an analogue to the maximum wave height and is presented in this study, because maximum wave heights at different positions away from the ship track vary throughout the wave train (David et al., 2017). In general, the variations of ηmax with the Froude number Fr′ in the three cases show a similar behavior, in which with the increase in Fr′, ηmax increases and then decreases. The presence of the following currents decreases ηmax for Fr′≤0.8 and Fr′≥1.2. Specifically, the following currents have a significant effect on ηmax for Fr′≤0.8. Notably, ηmax can be increased by the presence of the following currents for 0.9≤Fr′≤1.1. Compared with Case A, at location G1 ηmax is amplified 1.25 times at Fr′=0.925 in Case B and 1.31 times at Fr′=1.025 in Case C. Similarly, at location G2 ηmax is amplified 1.15 times at Fr′=1.025 in Case B and 1.11 times at Fr′=1.075 in Case C. The fact that ηmax can be increased by the presence of a following current for 0.9≤Fr′≤1.1 implies that if a following uniform current is neglected, then ηmax may be underestimated.
To show the effect of a following current on the wave period, Fig. 5 depicts the variation of the leading wave period Tp in the wave train at gauge point G2 with the Froude number Fr′. Similar to David et al. (2017), Tp is defined by the wave period of the first wave with a leading trough in the wave train. The leading wave periods for Fr′= 0.6 and 0.7 were not given in Case B and Case C, because the leading wave heights for Fr′= 0.6 and 0.7 are too small to discern the leading wave periods. Compared with Case A, the presence of a following current leads to a larger Tp for 0.925≤Fr′≤1.1 and a smaller Tp for Fr′≥1.3. For Fr′= 0.8 and 0.9, Tp in Case B is larger than that in Case A and Tp in Case C is smaller than that in Case A. In all three cases, Tp decreases with increasing Fr′ for Fr′>1.0. However, this decreasing trend becomes very gentle after Fr′≥1.4. Notably, as shown in Fig. 5, Fr′=1.2 tends to be a transition point at which the following currents have a very limited effect on Tp. Moreover, before the transition point, Tp in Case B and Case C are larger than that in Case A (only for 0.925≤Fr′≤1.2), but after the transition point the reverse is true.
As mentioned previously, the cusp-line angles for ship waves in the presence of a following or an opposing current are identical to those for ship waves only with the same relative Froude number Fr. However, with the same Fr, the characteristic parameters of ship waves in the presence of a following or an opposing current are quite different from those of ship waves without current. Fig. 6 shows the variations of the maximum water level elevation ηmax with Fr at gauge points G1 and G2 for ship waves in the presence of a following uniform current. Overall, the relationship curves between ηmax and Fr in Case B and Case C are lower than those in Case A. It is inferred that with the same Fr, ηmax in the presence of a following current is smaller than that without current. Fig. 7 shows the variation of the leading wave period Tp in the wave train at gauge point G2 with Fr for ship waves in the presence of a following uniform current. The overall relationship curves between Tp and Fr in Case B and Case C are also lower than those in Case A for 0.9≤Fr≤2.0. It can be inferred that with the same Fr, Tp in the presence of a following current is smaller than that without current for Fr≥0.9.
To compare the numerical results between the case of ship waves only and the case of ship waves in the presence of a following current with the same Fr, Fig. 8 shows the wave patterns for Fr=1.2. To obtain the case of ship waves in the presence of a following current with Fr=1.2, the ship speed Us=9.7 m/s and the current velocity Uc=0.5 m/s are adopted. Fig. 8 indicates that both the calculated cusp-line angles for the case of Us=9.2 m/s and Uc=0.0 m/s and the case of Us=9.7 m/s and Uc=0.5 m/s are equal to 56.5°, which follows the theory of Lee and Lee (2021). Fig. 9 depicts the comparison of the time histories of the free surface elevation at gauge point G2 for Fr=1.2 between the case of ship waves only and the case of ship waves in the presence of a following current. The time when the ship wave just arrived at gauge point G2 is defined as t′=0. Both the maximum water level elevation and the leading wave period in the case of Us=9.2 m/s and Uc=0.0 m/s are larger than those in the case of Us=9.7 m/s and Uc=0.5 m/s, which is consistent with the inferences based on Fig. 6, Fig. 7.
Fig. 8. Comparison of the wave pattern for Fr=1.2: (a) Ship wave only; (b) Ship wave in the presence of a following current.Fig. 9. Comparison of the time histories of the free surface elevation at gauge point G2 for between case of ship waves only and case of ship waves in the presence of a following current.
Fig. 10 shows the response of the maximum water level elevation ηmax to the ship draft at gauge point G2 for Fr′= 1.2 in the presence of a following uniform current. pm ranges from 2500 Pa to 40,000 Pa with an interval of Δp= 2500 Pa pm0= 2500 Pa represents a reference case. ηmax0 denotes the maximum water level elevation corresponding to the case of pm0= 2500 Pa. The best-fit linear trend lines obtained by linear regression analysis for the three responses are also depicted in Fig. 10. In general, all responses of ηmax to the ship draft show a linear relationship. The coefficients of determination for the three linear trend lines are R2= 0.9901, 0.9941 and 0.9991 for Case A, Case B and Case C, respectively. R2 is used to measure how close the numerical results are to the linear trend lines. The closer R2 is to 1.0, the more linear the numerical results tend to be. As a result, the relationship curve between ηmax and the ship draft in the presence of a following uniform current tends to be more linear than that without current. Notably, with the increase in pmpm0, ηmax increases faster in Case B and Case C than Case A. This implies that neglecting the following currents can lead to the underestimation of the response of ηmax to the ship draft.
4.2. Effects of an opposing current on characteristic wave parameters
Fig. 11 shows the variations of the maximum water level elevation ηmax with the Froude number Fr′ at gauge points G1 and G2 for ship waves in the presence of an opposing uniform current. The presence of opposing uniform currents leads to a significant reduction in ηmax at the two gauge points for 0.6≤Fr′≤2.0. Especially for Fr′=0.6, the decrease in ηmax is up to 73.8% in Case D and 78.4% in Case E at location G1 and up to 93.8% in Case D and 95.3% in Case E at location G2 when compared with Case A. Fig. 12 shows the variations of the leading wave period Tp at gauge point G2 with the Froude number Fr′ for ship waves in the presence of an opposing uniform current. The leading wave periods for Fr′= 0.6 and 0.7 were also not provided in Case D and Case E due to the small leading wave heights. In general, Tp decreases with increasing Fr′ in Case D and Case E for 0.8≤Fr′≤2.0. Tp in Case D and Case E are larger than that in Case A for Fr′≥1.0.
Fig. 13 depicts the variations of the maximum water level elevation ηmax with the relative Froude number Fr at gauge points G1 and G2 for ship waves in the presence of an opposing uniform current. Similar to Case B and Case C shown in Fig. 6, the overall relationship curves between ηmax and Fr in Case D and Case E are lower than those in Case A. This implies that with the same Fr, ηmax in the presence of an opposing current is also smaller than that without current. Fig. 14 depicts the variations of the leading wave period Tp in the wave train at gauge point G2 with Fr for ship waves in the presence of an opposing uniform current. Similar to Case B and Case C shown in Fig. 7, the overall relationship curves between Tp and Fr in Case D and Case E are lower than those in Case A for 0.9≤Fr≤2.0. This also implies that with the same Fr, Tp in the presence of an opposing current is smaller than that without current.
Fig. 15 shows a comparison of the wave pattern for Fr=1.2 between the case of ship waves only and the case of ship waves in the presence of an opposing current. The case of the ship wave in the presence of an opposing current with Fr=1.2 is obtained by setting the ship speed Us=8.7 m/s and the current velocity Uc=−0.5 m/s. As expected (Lee and Lee, 2021), both calculated cusp-line angles are identical. Fig. 16 depicts the comparison of the time histories of the free surface elevation at gauge point G2 for Fr=1.2 between the case of ship waves only and the case of ship waves in the presence of an opposing current. The maximum water level elevation in the case of Us=9.2 m/s and Uc=0.0 m/s is larger than that in the case of Us=8.7 m/s and Uc=−0.5 m/s, while the reverse is true for the leading wave period. Fig. 16 is consistent with the inferences based on Fig. 13, Fig. 14.
Fig. 17 depicts the response of the maximum water level elevation ηmax to the ship draft at gauge point G2 for Fr′= 1.2 in the presence of an opposing uniform current. Similarly, the response of ηmax to the ship draft in the presence of an opposing uniform current shows a linear relationship. The coefficients of determination for the three linear trend lines are R2= 0.9901, 0.9955 and 0.9987 for Case A, Case D and Case E, respectively. This indicates that the relationship curve between ηmax and the ship draft in the presence of an opposing uniform current also tends to be more linear than that without current. In addition, ηmax increases faster with increasing pmpm0 in Case D and Case E than Case A, implying that the response of ηmax to the ship draft can also be underestimated by neglecting opposing currents.
5. Conclusions
A non-hydrostatic model incorporating a moving pressure field method was used to investigate characteristic wave parameters for ship waves in the presence of a uniform current. The calculated cusp-line angles for ship waves in the presence of a following or an opposing uniform current were in good agreement with analytical solutions, demonstrating that the proposed model can accurately resolve ship waves in the presence of a uniform current.
The model results showed that the presence of a following current can result in an increase in the maximum water level elevation ηmax for 0.9≤Fr′≤1.1, while the presence of an opposing current leads to a significant reduction in ηmax for 0.6≤Fr′≤2.0. The leading wave period Tp can be increased for 0.925≤Fr′≤1.2 and reduced for Fr′≥1.3 due to the presence of a following current. However, the presence of an opposing current leads to an increase in Tp for Fr′≥1.0.
Although with the same relative Froude number Fr, the cusp-line angles for ship waves in the presence of a following or an opposing current are identical to those for ship waves without current, the maximum water level elevation ηmax and leading wave period Tp in the presence of a following or an opposing current are quite different from those without current. The present model results imply that with the same Fr, ηmax in the presence of a following or an opposing current is smaller than that without current for Fr≥0.6, and Tp in the presence of a following or an opposing current is smaller than that without current for Fr≥0.9.
The response of ηmax to the ship draft in the presence of a following current or an opposing current is similar to that without current and shows a linear relationship. However, the presence of a following or an opposing uniform current results in more linear responses of ηmax to the ship draft. Moreover, more rapid responses of ηmax to the ship draft are obtained when a following current or an opposing current is presented. This implies that the response of ηmax to the ship draft in the presence of a following current or an opposing current can be underestimated if the uniform current is neglected.
The present results have implications for ships sailing across estuarine and coastal environments, where river flows or tidal flows are significant. In these environments, ship waves can be larger than expected and the response of the maximum water level elevation to the ship draft may be more remarkable. The effect of a uniform current should be considered in the analysis of ship waves.
The present study considered only slender-body type ships. For different hull shapes, the effects of a uniform current on characteristic wave parameters need to be further investigated. Moreover, the effects of an oblique uniform current on ship waves need to be examined in future work.
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Acknowledgments
This research is financially supported by the National Natural Science Foundation of China (Grant No. 52171248, 51720105010, 51979029), LiaoNing Revitalization Talents Program (Grant No. XLYC1807010) and the Fundamental Research Funds for the Central Universities (Grant No. DUT21LK01).
Appendix. Numerical results with different numbers of horizontal layers
Fig. 18 shows comparisons of the time histories of the free surface elevation at gauge point G1 for Case B and Fr′= 1.2 between the three sets of numerical results with different numbers of horizontal layers. The maximum water level elevations ηmax obtained by Nz= 3 and 4 are 0.24% and 0.35% larger than ηmax with Nz= 2, respectively. Correspondingly, the leading wave periods Tp obtained by Nz= 3 and 4 are 0.45% and 0.55% larger than Tp with Nz= 2, respectively. In general, the three sets of numerical results are very close. To reduce the computational cost, two horizontal layers Nz= 2 were chosen for this study.
2014년 2월 영국 해협(영국)과 특히 Dawlish에 영향을 미친 온대 저기압 폭풍 사슬은 남서부 지역과 영국의 나머지 지역을 연결하는 주요 철도에 심각한 피해를 입혔습니다.
이 사건으로 라인이 두 달 동안 폐쇄되어 5천만 파운드의 피해와 12억 파운드의 경제적 손실이 발생했습니다. 이 연구에서는 폭풍의 파괴력을 해독하기 위해 목격자 계정을 수집하고 해수면 데이터를 분석하며 수치 모델링을 수행합니다.
우리의 분석에 따르면 이벤트의 재난 관리는 성공적이고 효율적이었으며 폭풍 전과 도중에 인명과 재산을 구하기 위해 즉각적인 조치를 취했습니다. 파도 부이 분석에 따르면 주기가 4–8, 8–12 및 20–25초인 복잡한 삼중 봉우리 바다 상태가 존재하는 반면, 조위계 기록에 따르면 최대 0.8m의 상당한 파도와 최대 1.5m의 파도 성분이 나타났습니다.
이벤트에서 가능한 기여 요인으로 결합된 진폭. 최대 286 KN의 상당한 임펄스 파동이 손상의 시작 원인일 가능성이 가장 높았습니다. 수직 벽의 반사는 파동 진폭의 보강 간섭을 일으켜 파고가 증가하고 최대 16.1m3/s/m(벽의 미터 너비당)의 상당한 오버탑핑을 초래했습니다.
이 정보와 우리의 공학적 판단을 통해 우리는 이 사고 동안 다중 위험 계단식 실패의 가장 가능성 있는 순서는 다음과 같다고 결론을 내립니다. 조적 파괴로 이어지는 파도 충격력, 충전물 손실 및 연속적인 조수에 따른 구조물 파괴.
The February 2014 extratropical cyclonic storm chain, which impacted the English Channel (UK) and Dawlish in particular, caused significant damage to the main railway connecting the south-west region to the rest of the UK. The incident caused the line to be closed for two months, £50 million of damage and an estimated £1.2bn of economic loss. In this study, we collate eyewitness accounts, analyse sea level data and conduct numerical modelling in order to decipher the destructive forces of the storm. Our analysis reveals that the disaster management of the event was successful and efficient with immediate actions taken to save lives and property before and during the storm. Wave buoy analysis showed that a complex triple peak sea state with periods at 4–8, 8–12 and 20–25 s was present, while tide gauge records indicated that significant surge of up to 0.8 m and wave components of up to 1.5 m amplitude combined as likely contributing factors in the event. Significant impulsive wave force of up to 286 KN was the most likely initiating cause of the damage. Reflections off the vertical wall caused constructive interference of the wave amplitudes that led to increased wave height and significant overtopping of up to 16.1 m3/s/m (per metre width of wall). With this information and our engineering judgement, we conclude that the most probable sequence of multi-hazard cascading failure during this incident was: wave impact force leading to masonry failure, loss of infill and failure of the structure following successive tides.
Introduction
The progress of climate change and increasing sea levels has started to have wide ranging effects on critical engineering infrastructure (Shakou et al. 2019). The meteorological effects of increased atmospheric instability linked to warming seas mean we may be experiencing more frequent extreme storm events and more frequent series or chains of events, as well as an increase in the force of these events, a phenomenon called storminess (Mölter et al. 2016; Feser et al. 2014). Features of more extreme weather events in extratropical latitudes (30°–60°, north and south of the equator) include increased gusting winds, more frequent storm squalls, increased prolonged precipitation and rapid changes in atmospheric pressure and more frequent and significant storm surges (Dacre and Pinto 2020). A recent example of these events impacting the UK with simultaneous significant damage to coastal infrastructure was the extratropical cyclonic storm chain of winter 2013/2014 (Masselink et al. 2016; Adams and Heidarzadeh 2021). The cluster of storms had a profound effect on both coastal and inland infrastructure, bringing widespread flooding events and large insurance claims (RMS 2014).
The extreme storms of February 2014, which had a catastrophic effect on the seawall of the south Devon stretch of the UK’s south-west mainline, caused a two-month closure of the line and significant disruption to the local and regional economy (Fig. 1b) (Network Rail 2014; Dawson et al. 2016; Adams and Heidarzadeh 2021). Restoration costs were £35 m, and economic effects to the south-west region of England were estimated up to £1.2bn (Peninsula Rail Taskforce 2016). Adams and Heidarzadeh (2021) investigated the disparate cascading failure mechanisms which played a part in the failure of the railway through Dawlish and attempted to put these in the context of the historical records of infrastructure damage on the line. Subsequent severe storms in 2016 in the region have continued to cause damage and disruption to the line in the years since 2014 (Met Office 2016). Following the events of 2014, Network Rail Footnote1 who owns the network has undertaken a resilience study. As a result, it has proposed a £400 m refurbishment of the civil engineering assets that support the railway (Fig. 1) (Network Rail 2014). The new seawall structure (Fig. 1a,c), which is constructed of pre-cast concrete sections, encases the existing Brunel seawall (named after the project lead engineer, Isambard Kingdom Brunel) and has been improved with piled reinforced concrete foundations. It is now over 2 m taller to increase the available crest freeboard and incorporates wave return features to minimise wave overtopping. The project aims to increase both the resilience of the assets to extreme weather events as well as maintain or improve amenity value of the coastline for residents and visitors.
Fig. 1
In this work, we return to the Brunel seawall and the damage it sustained during the 2014 storms which affected the assets on the evening of the 4th and daytime of the 5th of February and eventually resulted in a prolonged closure of the line. The motivation for this research is to analyse and model the damage made to the seawall and explain the damage mechanisms in order to improve the resilience of many similar coastal structures in the UK and worldwide. The innovation of this work is the multidisciplinary approach that we take comprising a combination of analysis of eyewitness accounts (social science), sea level and wave data analysis (physical science) as well as numerical modelling and engineering judgement (engineering sciences). We investigate the contemporary wave climate and sea levels by interrogating the real-time tide gauge and wave buoys installed along the south-west coast of the English Channel. We then model a typical masonry seawall (Fig. 2), applying the computational fluid dynamics package FLOW3D-Hydro,Footnote2 to quantify the magnitude of impact forces that the seawall would have experienced leading to its failure. We triangulate this information to determine the probable sequence of failures that led to the disaster in 2014.
Fig. 2
Data and methods
Our data comprise eyewitness accounts, sea level records from coastal tide gauges and offshore wave buoys as well as structural details of the seawall. As for methodology, we analyse eyewitness data, process and investigate sea level records through Fourier transform and conduct numerical simulations using the Flow3D-Hydro package (Flow Science 2022). Details of the data and methodology are provided in the following.
Eyewitness data
The scale of damage to the seawall and its effects led the local community to document the first-hand accounts of those most closely affected by the storms including residents, local businesses, emergency responders, politicians and engineering contractors involved in the post-storm restoration work. These records now form a permanent exhibition in the local museum in DawlishFootnote3, and some of these accounts have been transcribed into a DVD account of the disaster (Dawlish Museum 2015). We have gathered data from the Dawlish Museum, national and international news reports, social media tweets and videos. Table 1 provides a summary of the eyewitness accounts. Overall, 26 entries have been collected around the time of the incident. Our analysis of the eyewitness data is provided in the third column of Table 1 and is expanded in Sect. 3.Table 1 Eyewitness accounts of damage to the Dawlish railway due to the February 2014 storm and our interpretations
Our sea level data are a collection of three tide gauge stations (Newlyn, Devonport and Swanage Pier—Fig. 5a) owned and operated by the UK National Tide and Sea Level FacilityFootnote4 for the Environment Agency and four offshore wave buoys (Dawlish, West Bay, Torbay and Chesil Beach—Fig. 6a). The tide gauge sites are all fitted with POL-EKO (www.pol-eko.com.pl) data loggers. Newlyn has a Munro float gauge with one full tide and one mid-tide pneumatic bubbler system. Devonport has a three-channel data pneumatic bubbler system, and Swanage Pier consists of a pneumatic gauge. Each has a sampling interval of 15 min, except for Swanage Pier which has a sampling interval of 10 min. The tide gauges are located within the port areas, whereas the offshore wave buoys are situated approximately 2—3.3 km from the coast at water depths of 10–15 m. The wave buoys are all Datawell Wavemaker Mk III unitsFootnote5 and come with sampling interval of 0.78 s. The buoys have a maximum saturation amplitude of 20.5 m for recording the incident waves which implies that every wave larger than this threshold will be recorded at 20.5 m. The data are provided by the British Oceanographic Data CentreFootnote6 for tide gauges and the Channel Coastal ObservatoryFootnote7 for wave buoys.
Sea level analysis
The sea level data underwent quality control to remove outliers and spikes as well as gaps in data (e.g. Heidarzadeh et al. 2022; Heidarzadeh and Satake 2015). We processed the time series of the sea level data using the Matlab signal processing tool (MathWorks 2018). For calculations of the tidal signals, we applied the tidal package TIDALFIT (Grinsted 2008), which is based on fitting tidal harmonics to the observed sea level data. To calculate the surge signals, we applied a 30-min moving average filter to the de-tided data in order to remove all wind, swell and infra-gravity waves from the time series. Based on the surge analysis and the variations of the surge component before the time period of the incident, an error margin of approximately ± 10 cm is identified for our surge analysis. Spectral analysis of the wave buoy data is performed using the fast Fourier transform (FFT) of Matlab package (Mathworks 2018).
Numerical modelling
Numerical modelling of wave-structure interaction is conducted using the computational fluid dynamics package Flow3D-Hydro version 1.1 (Flow Science 2022). Flow3D-Hydro solves the transient Navier–Stokes equations of conservation of mass and momentum using a finite difference method and on Eulerian and Lagrangian frameworks (Flow Science 2022). The aforementioned governing equations are:
∇.u=0∇.u=0
(1)
∂u∂t+u.∇u=−∇Pρ+υ∇2u+g∂u∂t+u.∇u=−∇Pρ+υ∇2u+g
(2)
where uu is the velocity vector, PP is the pressure, ρρ is the water density, υυ is the kinematic viscosity and gg is the gravitational acceleration. A Fractional Area/Volume Obstacle Representation (FAVOR) is adapted in Flow3D-Hydro, which applies solid boundaries within the Eulerian grid and calculates the fraction of areas and volume in partially blocked volume in order to compute flows on corresponding boundaries (Hirt and Nichols 1981). We validated the numerical modelling through comparing the results with Sainflou’s analytical equation for the design of vertical seawalls (Sainflou 1928; Ackhurst 2020), which is as follows:
where pdpd is the hydrodynamic pressure, ρρ is the water density, gg is the gravitational acceleration, HH is the wave height, dd is the water depth, kk is the wavenumber, zz is the difference in still water level and mean water level, σσ is the angular frequency and tt is the time. The Sainflou’s equation (Eq. 3) is used to calculate the dynamic pressure from wave action, which is combined with static pressure on the seawall.
Using Flow3D-Hydro, a model of the Dawlish seawall was made with a computational domain which is 250.0 m in length, 15.0 m in height and 0.375 m in width (Fig. 3a). The computational domain was discretised using a single uniform grid with a mesh size of 0.125 m. The model has a wave boundary at the left side of the domain (x-min), an outflow boundary on the right side (x-max), a symmetry boundary at the bottom (z-min) and a wall boundary at the top (z-max). A wall boundary implies that water or waves are unable to pass through the boundary, whereas a symmetry boundary means that the two edges of the boundary are identical and therefore there is no flow through it. The water is considered incompressible in our model. For volume of fluid advection for the wave boundary (i.e. the left-side boundary) in our simulations, we utilised the “Split Lagrangian Method”, which guarantees the best accuracy (Flow Science, 2022).
Fig. 3
The stability of the numerical scheme is controlled and maintained through checking the Courant number (CC) as given in the following:
C=VΔtΔxC=VΔtΔx
(4)
where VV is the velocity of the flow, ΔtΔt is the time step and ΔxΔx is the spatial step (i.e. grid size). For stability and convergence of the numerical simulations, the Courant number must be sufficiently below one (Courant et al. 1928). This is maintained by a careful adjustment of the ΔxΔx and ΔtΔt selections. Flow3D-Hydro applies a dynamic Courant number, meaning the program adjusts the value of time step (ΔtΔt) during the simulations to achieve a balance between accuracy of results and speed of simulation. In our simulation, the time step was in the range ΔtΔt = 0.0051—0.051 s.
In order to achieve the most efficient mesh resolution, we varied cell size for five values of ΔxΔx = 0.1 m, 0.125 m, 0.15 m, 0.175 m and 0.20 m. Simulations were performed for all mesh sizes, and the results were compared in terms of convergence, stability and speed of simulation (Fig. 3). A linear wave with an amplitude of 1.5 m and a period of 6 s was used for these optimisation simulations. We considered wave time histories at two gauges A and B and recorded the waves from simulations using different mesh sizes (Fig. 3). Although the results are close (Fig. 3), some limited deviations are observed for larger mesh sizes of 0.20 m and 0.175 m. We therefore selected mesh size of 0.125 m as the optimum, giving an extra safety margin as a conservative solution.
The pressure from the incident waves on the vertical wall is validated in our model by comparing them with the analytical equation of Sainflou (1928), Eq. (3), which is one of the most common set of equations for design of coastal structures (Fig. 4). The model was tested by running a linear wave of period 6 s and wave amplitude of 1.5 m against the wall, with a still water level of 4.5 m. It can be seen that the model results are very close to those from analytical equations of Sainflou (1928), indicating that our numerical model is accurately modelling the wave-structure interaction (Fig. 4).
Fig. 4
Eyewitness account analysis
Contemporary reporting of the 4th and 5th February 2014 storms by the main national news outlets in the UK highlights the extreme nature of the events and the significant damage and disruption they were likely to have on the communities of the south-west of England. In interviews, this was reinforced by Network Rail engineers who, even at this early stage, were forecasting remedial engineering works to last for at least 6 weeks. One week later, following subsequent storms the cascading nature of the events was obvious. Multiple breaches of the seawall had taken place with up to 35 separate landslide events and significant damage to parapet walls along the coastal route also were reported. Residents of the area reported extreme effects of the storm, one likening it to an earthquake and reporting water ingress through doors windows and even through vertical chimneys (Table 1). This suggests extreme wave overtopping volumes and large wave impact forces. One resident described the structural effects as: “the house was jumping up and down on its footings”.
Disaster management plans were quickly and effectively put into action by the local council, police service and National Rail. A major incident was declared, and decisions regarding evacuation of the residents under threat were taken around 2100 h on the night of 4th February when reports of initial damage to the seawall were received (Table 1). Local hotels were asked to provide short-term refuge to residents while local leisure facilities were prepared to accept residents later that evening. Initial repair work to the railway line was hampered by successive high spring tides and storms in the following days although significant progress was still made when weather conditions permitted (Table 1).
Sea level observations and spectral analysis
The results of surge and wave analyses are presented in Figs. 5 and 6. A surge height of up to 0.8 m was recorded in the examined tide gauge stations (Fig. 5b-d). Two main episodes of high surge heights are identified: the first surge started on 3rd February 2014 at 03:00 (UTC) and lasted until 4th of February 2014 at 00:00; the second event occurred in the period 4th February 2014 15:00 to 5th February 2014 at 17:00 (Fig. 5b-d). These data imply surge durations of 21 h and 26 h for the first and the second events, respectively. Based on the surge data in Fig. 5, we note that the storm event of early February 2014 and the associated surges was a relatively powerful one, which impacted at least 230 km of the south coast of England, from Land’s End to Weymouth, with large surge heights.
Fig. 5Fig. 6
Based on wave buoy records, the maximum recorded amplitudes are at least 20.5 m in Dawlish and West Bay, 1.9 m in Tor Bay and 4.9 m in Chesil (Fig. 6a-b). The buoys at Tor Bay and Chesil recorded dual peak period bands of 4–8 and 8–12 s, whereas at Dawlish and West Bay registered triple peak period bands at 4–8, 8–12 and 20–25 s (Fig. 6c, d). It is important to note that the long-period waves at 20–25 s occur with short durations (approximately 2 min) while the waves at the other two bands of 4–8 and 8–12 s appear to be present at all times during the storm event.
The wave component at the period band of 4–8 s can be most likely attributed to normal coastal waves while the one at 8–12 s, which is longer, is most likely the swell component of the storm. Regarding the third component of the waves with long period of 20 -25 s, which occurs with short durations of 2 min, there are two hypotheses; it is either the result of a local (port and harbour) and regional (the Lyme Bay) oscillations (eg. Rabinovich 1997; Heidarzadeh and Satake 2014; Wang et al. 1992), or due to an abnormally long swell. To test the first hypothesis, we consider various water bodies such as Lyme Bay (approximate dimensions of 70 km × 20 km with an average water depth of 30 m; Fig. 6), several local bays (approximate dimensions of 3.6 km × 0.6 km with an average water depth of 6 m) and harbours (approximate dimensions of 0.5 km × 0.5 km with an average water depth of 4 m). Their water depths are based on the online Marine navigation website.Footnote8 According to Rabinovich (2010), the oscillation modes of a semi-enclosed rectangle basin are given by the following equation:
where TmnTmn is the oscillation period, gg is the gravitational acceleration, dd is the water depth, LL is the length of the basin, WW is the width of the basin, m=1,2,3,…m=1,2,3,… and n=0,1,2,3,…n=0,1,2,3,…; mm and nn are the counters of the different modes. Applying Eq. (5) to the aforementioned water bodies results in oscillation modes of at least 5 min, which is far longer than the observed period of 20–25 s. Therefore, we rule out the first hypothesis and infer that the long period of 20–25 s is most likely a long swell wave coming from distant sources. As discussed by Rabinovich (1997) and Wang et al. (2022), comparison between sea level spectra before and after the incident is a useful method to distinguish the spectrum of the weather event. A visual inspection of Fig. 6 reveals that the forcing at the period band of 20–25 s is non-existent before the incident.
Numerical simulations of wave loading and overtopping
Based on the results of sea level data analyses in the previous section (Fig. 6), we use a dual peak wave spectrum with peak periods of 10.0 s and 25.0 s for numerical simulations because such a wave would be comprised of the most energetic signals of the storm. For variations of water depth (2.0–4.0 m), coastal wave amplitude (0.5–1.5 m) (Fig. 7) and storm surge height (0.5–0.8 m) (Fig. 5), we developed 20 scenarios (Scn) which we used in numerical simulations (Table 2). Data during the incident indicated that water depth was up to the crest level of the seawall (approximately 4 m water depth); therefore, we varied water depth from 2 to 4 m in our simulation scenarios. Regarding wave amplitudes, we referred to the variations at a nearby tide gauge station (West Bay) which showed wave amplitude up to 1.2 m (Fig. 7). Therefore, wave amplitude was varied from 0.5 m to 1.5 m by considering a factor a safety of 25% for the maximum wave amplitude. As for the storm surge component, time series of storm surges calculated at three coastal stations adjacent to Dawlish showed that it was in the range of 0.5 m to 0.8 m (Fig. 5). These 20 scenarios would help to study uncertainties associated with wave amplitudes and pressures. Figure 8 shows snapshots of wave propagation and impacts on the seawall at different times.
Fig. 7
Table 2 The 20 scenarios considered for numerical simulations in this study
Large wave amplitudes can induce significant wave forcing on the structure and cause overtopping of the seawall, which could eventually cascade to other hazards such as erosion of the backfill and scour (Adams and Heidarzadeh, 2021). The first 10 scenarios of our modelling efforts are for the same incident wave amplitudes of 0.5 m, which occur at different water depths (2.0–4.0 m) and storm surge heights (0.5–0.8 m) (Table 2 and Fig. 9). This is because we aim at studying the impacts of effective water depth (deff—the sum of mean sea level and surge height) on the time histories of wave amplitudes as the storm evolves. As seen in Fig. 9a, by decreasing effective water depth, wave amplitude increases. For example, for Scn-1 with effective depth of 4.5 m, the maximum amplitude of the first wave is 1.6 m, whereas it is 2.9 m for Scn-2 with effective depth of 3.5 m. However, due to intensive reflections and interferences of the waves in front of the vertical seawall, such a relationship is barely seen for the second and the third wave peaks. It is important to note that the later peaks (second or third) produce the largest waves rather than the first wave. Extraordinary wave amplifications are seen for the Scn-2 (deff = 3.5 m) and Scn-7 (deff = 3.3 m), where the corresponding wave amplitudes are 4.5 m and 3.7 m, respectively. This may indicate that the effective water depth of deff = 3.3–3.5 m is possibly a critical water depth for this structure resulting in maximum wave amplitudes under similar storms. In the second wave impact, the combined wave height (i.e. the wave amplitude plus the effective water depth), which is ultimately an indicator of wave overtopping, shows that the largest wave heights are generated by Scn-2, 7 and 8 (Fig. 9a) with effective water depths of 3.5 m, 3.3 m and 3.8 m and combined heights of 8.0 m, 7.0 m and 6.9 m (Fig. 9b). Since the height of seawall is 5.4 m, the combined wave heights for Scn-2, 7 and 8 are greater than the crest height of the seawall by 2.6 m, 1.6 m and 1.5 m, respectively, which indicates wave overtopping.
Fig. 9
For scenarios 11–20 (Fig. 10), with incident wave amplitudes of 1.5 m (Table 2), the largest wave amplitudes are produced by Scn-17 (deff = 3.3 m), Scn-13 (deff = 2.5 m) and Scn-12 (deff = 3.5 m), which are 5.6 m, 5.1 m and 4.5 m. The maximum combined wave heights belong to Scn-11 (deff = 4.5 m) and Scn-17 (deff = 3.3 m), with combined wave heights of 9.0 m and 8.9 m (Fig. 10b), which are greater than the crest height of the seawall by 4.6 m and 3.5 m, respectively.
Fig. 10
Our simulations for all 20 scenarios reveal that the first wave is not always the largest and wave interactions, reflections and interferences play major roles in amplifying the waves in front of the seawall. This is primarily because the wall is fully vertical and therefore has a reflection coefficient of close to one (i.e. full reflection). Simulations show that the combined wave height is up to 4.6 m higher than the crest height of the wall, implying that severe overtopping would be expected.
Results of wave loading calculations
The pressure calculations for scenarios 1–10 are given in Fig. 11 and those of scenarios 11–20 in Fig. 12. The total pressure distribution in Figs. 11, 12 mostly follows a triangular shape with maximum pressure at the seafloor as expected from the Sainflou (1928) design equations. These pressure plots comprise both static (due to mean sea level in front of the wall) and dynamic (combined effects of surge and wave) pressures. For incident wave amplitudes of 0.5 m (Fig. 11), the maximum wave pressure varies in the range of 35–63 kPa. At the sea surface, it is in the range of 4–20 kPa (Fig. 11). For some scenarios (Scn-2 and 7), the pressure distribution deviates from a triangular shape and shows larger pressures at the top, which is attributed to the wave impacts and partial breaking at the sea surface. This adds an additional triangle-shaped pressure distribution at the sea surface elevation consistent with the design procedure developed by Goda (2000) for braking waves. The maximum force on the seawall due to scenarios 1–10, which is calculated by integrating the maximum pressure distribution over the wave-facing surface of the seawall, is in the range of 92–190 KN (Table 2).
Fig. 11Fig. 12
For scenarios 11–20, with incident wave amplitude of 1.5 m, wave pressures of 45–78 kPa and 7–120 kPa, for the bottom and top of the wall, respectively, were observed (Fig. 12). Most of the plots show a triangular pressure distribution, except for Scn-11 and 15. A significant increase in wave impact pressure is seen for Scn-15 at the top of the structure, where a maximum pressure of approximately 120 kPa is produced while other scenarios give a pressure of 7–32 kPa for the sea surface. In other words, the pressure from Scn-15 is approximately four times larger than the other scenarios. Such a significant increase of the pressure at the top is most likely attributed to the breaking wave impact loads as detailed by Goda (2000) and Cuomo et al. (2010). The wave simulation snapshots in Fig. 8 show that the wave breaks before reaching the wall. The maximum force due to scenarios 11–20 is 120–286 KN.
The breaking wave impacts peaking at 286 KN in our simulations suggest destabilisation of the upper masonry blocks, probably by grout malfunction. This significant impact force initiated the failure of the seawall which in turn caused extensive ballast erosion. Wave impact damage was proposed by Adams and Heidarzadeh (2021) as one of the primary mechanisms in the 2014 Dawlish disaster. In the multi-hazard risk model proposed by these authors, damage mechanism III (failure pathway 5 in Adams and Heidarzadeh, 2021) was characterised by wave impact force causing damage to the masonry elements, leading to failure of the upper sections of the seawall and loss of infill material. As blocks were removed, access to the track bed was increased for inbound waves allowing infill material from behind the seawall to be fluidised and subsequently removed by backwash. The loss of infill material critically compromised the stability of the seawall and directly led to structural failure. In parallel, significant wave overtopping (discussed in the next section) led to ballast washout and cascaded, in combination with masonry damage, to catastrophic failure of the wall and suspension of the rails in mid-air (Fig. 1b), leaving the railway inoperable for two months.
Wave Overtopping
The two most important factors contributing to the 2014 Dawlish railway catastrophe were wave impact forces and overtopping. Figure 13 gives the instantaneous overtopping rates for different scenarios, which experienced overtopping. It can be seen that the overtopping rates range from 0.5 m3/s/m to 16.1 m3/s/m (Fig. 13). Time histories of the wave overtopping rates show that the phenomenon occurs intermittently, and each time lasts 1.0–7.0 s. It is clear that the longer the overtopping time, the larger the volume of the water poured on the structure. The largest wave overtopping rates of 16.1 m3/s/m and 14.4 m3/s/m belong to Scn-20 and 11, respectively. These are the two scenarios that also give the largest combined wave heights (Fig. 10b).
Fig. 13
The cumulative overtopping curves (Figs. 14, 15) show the total water volume overtopped the structure during the entire simulation time. This is an important hazard factor as it determines the level of soil saturation, water pore pressure in the soil and soil erosion (Van der Meer et al. 2018). The maximum volume belongs to Scn-20, which is 65.0 m3/m (m-cubed of water per metre length of the wall). The overtopping volumes are 42.7 m3/m for Scn-11 and 28.8 m3/m for Scn-19. The overtopping volume is in the range of 0.7–65.0 m3/m for all scenarios.
Fig. 14Fig. 15
For comparison, we compare our modelling results with those estimated using empirical equations. For the case of the Dawlish seawall, we apply the equation proposed by Van Der Meer et al. (2018) to estimate wave overtopping rates, based on a set of decision criteria which are the influence of foreshore, vertical wall, possible breaking waves and low freeboard:
where qq is the mean overtopping rate per metre length of the seawall (m3/s/m), gg is the acceleration due to gravity, HmHm is the incident wave height at the toe of the structure, RcRc is the wall crest height above mean sea level, hshs is the deep-water significant wave height and e(x)e(x) is the exponential function. It is noted that Eq. (6) is valid for 0.1<RcHm<1.350.1<RcHm<1.35. For the case of the Dawlish seawall and considering the scenarios with larger incident wave amplitude of 1.5 m (hshs= 1.5 m), the incident wave height at the toe of the structure is HmHm = 2.2—5.6 m, and the wall crest height above mean sea level is RcRc = 0.6–2.9 m. As a result, Eq. (6) gives mean overtopping rates up to approximately 2.9 m3/s/m. A visual inspection of simulated overtopping rates in Fig. 13 for Scn 11–20 shows that the mean value of the simulated overtopping rates (Fig. 13) is close to estimates using Eq. (6).
Discussion and conclusions
We applied a combination of eyewitness account analysis, sea level data analysis and numerical modelling in combination with our engineering judgement to explain the damage to the Dawlish railway seawall in February 2014. Main findings are:
Eyewitness data analysis showed that the extreme nature of the event was well forecasted in the hours prior to the storm impact; however, the magnitude of the risks to the structures was not well understood. Multiple hazards were activated simultaneously, and the effects cascaded to amplify the damage. Disaster management was effective, exemplified by the establishment of an emergency rendezvous point and temporary evacuation centre during the storm, indicating a high level of hazard awareness and preparedness.
Based on sea level data analysis, we identified triple peak period bands at 4–8, 8–12 and 20–25 s in the sea level data. Storm surge heights and wave oscillations were up to 0.8 m and 1.5 m, respectively.
Based on the numerical simulations of 20 scenarios with different water depths, incident wave amplitudes, surge heights and peak periods, we found that the wave oscillations at the foot of the seawall result in multiple wave interactions and interferences. Consequently, large wave amplitudes, up to 4.6 m higher than the height of the seawall, were generated and overtopped the wall. Extreme impulsive wave impact forces of up to 286 KN were generated by the waves interacting with the seawall.
We measured maximum wave overtopping rates of 0.5–16.1 m3/s/m for our scenarios. The cumulative overtopping water volumes per metre length of the wall were 0.7–65.0 m3/m.
Analysis of all the evidence combined with our engineering judgement suggests that the most likely initiating cause of the failure was impulsive wave impact forces destabilising one or more grouted joints between adjacent masonry blocks in the wall. Maximum observed pressures of 286 KN in our simulations are four times greater in magnitude than background pressures leading to block removal and initiating failure. Therefore, the sequence of cascading events was :1) impulsive wave impact force causing damage to masonry, 2) failure of the upper sections of the seawall, 3) loss of infill resulting in a reduction of structural strength in the landward direction, 4) ballast washout as wave overtopping and inbound wave activity increased and 5) progressive structural failure following successive tides.
From a risk mitigation point of view, the stability of the seawall in the face of future energetic cyclonic storm events and sea level rise will become a critical factor in protecting the rail network. Mitigation efforts will involve significant infrastructure investment to strengthen the civil engineering assets combined with improved hazard warning systems consisting of meteorological forecasting and real-time wave observations and instrumentation. These efforts must take into account the amenity value of coastal railway infrastructure to local communities and the significant number of tourists who visit every year. In this regard, public awareness and active engagement in the planning and execution of the project will be crucial in order to secure local stakeholder support for the significant infrastructure project that will be required for future resilience.
Ackhurst M (2020) Design of Vertical Gravity Sea and Quay Walls. ICE Publishing, Westminster, London
Adams K, Heidarzadeh M (2021) A multi-hazard risk model with cascading failure pathways for the Dawlish (UK) railway using historical and contemporary data. Int J Disaster Risk Reduc 56:102082. https://doi.org/10.1016/j.ijdrr.2021.102082ArticleGoogle Scholar
Courant R, Friedrichs K, Lewy H (1928) Über die partiellen Differenzengleichungen der mathematischen Physik. Math Ann 100(1):32–74ArticleGoogle Scholar
Cuomo G, Allsop W, Bruce T, Pearson J (2010) Breaking wave loads at vertical seawalls and breakwaters. Coastal Eng 57(4):424–439ArticleGoogle Scholar
Dawson D, Shaw J, Gehrels WR (2016) Sea-level rise impacts on transport infrastructure: the notorious case of the coastal railway line at Dawlish, England. J Transport Geog 51:97–109ArticleGoogle Scholar
Feser F, Barcikowska M, Krueger O, Schenk F, Weisse R, Xia L (2015) Storminess over the North Atlantic and northwestern Europe—A review. Quarter J R Meteorol Soc 141:350–382. https://doi.org/10.1002/qj.2364ArticleGoogle Scholar
Heidarzadeh M, Satake K (2015) Source properties of the 1998 July 17 Papua New Guinea tsunami based on tide gauge records. Geophys J Int 202(1):361–369ArticleGoogle Scholar
Heidarzadeh M, Gusman A, Ishibe T, Sabeti R, Šepić J (2022) Estimating the eruption-induced water displacement source of the 15 January 2022 Tonga volcanic tsunami from tsunami spectra and numerical modelling. Ocean Eng 261:112165. https://doi.org/10.1016/j.oceaneng.2022.112165ArticleGoogle Scholar
Masselink G, Castelle B, Scott T, Dodet G, Suanez S, Jackson D, Floc’h F (2016) Extreme wave activity during 2013/2014 winter and morphological impacts along the Atlantic coast of Europe. Geophys Res Lett 43(5):2135–2143. https://doi.org/10.1002/2015GL067492ArticleGoogle Scholar
Mathworks (2018) MATLAB, 2018. 9.7.0.1190202 (R2019b), Natick, Massachusetts: The MathWorks Inc.
Van der Meer JW, Allsop NWH, Bruce T, De Rouck J, Kortenhaus A, Pullen T, Schüttrumpf H, Troch P and Zanuttigh B (2018) EurOtop, Manual on wave overtopping of sea defences and related structures. An overtopping manual largely based on European research, but for worldwide application. Available online at: www.overtopping-manual.com.
Wang Y, Su HY, Ren Z, Ma Y (2022) Source properties and resonance characteristics of the tsunami generated by the 2021 M 8.2 Alaska earthquake. J Geophys Res Oceans, 127(3):e2021JC018308. https://doi.org/10.1029/2021JC018308ArticleGoogle Scholar
We are grateful to Brunel University London for administering the scholarship awarded to KA. The Flow3D-Hydro used in this research for numerical modelling is licenced to Brunel University London through an academic programme contract. We sincerely thank Prof Harsh Gupta (Editor-in-Chief) and two anonymous reviewers for their constructive review comments.
Funding
This project was funded by the UK Engineering and Physical Sciences Research Council (EPSRC) through a PhD scholarship to Keith Adams.
Author information
Authors and Affiliations
Department of Civil and Environmental Engineering, Brunel University London, Uxbridge, UB8 3PH, UKKeith Adams
Department of Architecture and Civil Engineering, University of Bath, Bath, BA2 7AY, UKMohammad Heidarzadeh
The authors have no relevant financial or non-financial interests to disclose.
Availability of data
All data used in this study are provided in the body of the article.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
Adams, K., Heidarzadeh, M. Extratropical cyclone damage to the seawall in Dawlish, UK: eyewitness accounts, sea level analysis and numerical modelling. Nat Hazards (2022). https://doi.org/10.1007/s11069-022-05692-2
WenjunLiuaBoWangaYakunGuobaState Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, ChinabFaculty of Engineering & Informatics, University of Bradford, BD7 1DP, UK
Highlights
경사진 습윤층에서 댐파괴유동과 FFavre 파를 수치적으로 조사하였다. 수직 대 수평 속도의 비율이 먼저 정량화됩니다. 유동 상태는 유상 경사가 큰 후기 단계에서 크게 변경됩니다. Favre 파도는 수직 속도와 수직 가속도에 큰 영향을 미칩니다. 베드 전단응력의 변화는 베드 기울기와 꼬리물의 영향을 받습니다.
Abstract
The bed slope and the tailwater depth are two important ones among the factors that affect the propagation of the dam-break flood and Favre waves. Most previous studies have only focused on the macroscopic characteristics of the dam-break flows or Favre waves under the condition of horizontal bed, rather than the internal movement characteristics in sloped channel. The present study applies two numerical models, namely, large eddy simulation (LES) and shallow water equations (SWEs) models embedded in the CFD software package FLOW-3D to analyze the internal movement characteristics of the dam-break flows and Favre waves, such as water level, the velocity distribution, the fluid particles acceleration and the bed shear stress, under the different bed slopes and water depth ratios. The results under the conditions considered in this study show that there is a flow state transition in the flow evolution for the steep bed slope even in water depth ratio α = 0.1 (α is the ratio of the tailwater depth to the reservoir water depth). The flow state transition shows that the wavefront changes from a breaking state to undular. Such flow transition is not observed for the horizontal slope and mild bed slope. The existence of the Favre waves leads to a significant increase of the vertical velocity and the vertical acceleration. In this situation, the SWEs model has poor prediction. Analysis reveals that the variation of the maximum bed shear stress is affected by both the bed slope and tailwater depth. Under the same bed slope (e.g., S0 = 0.02), the maximum bed shear stress position develops downstream of the dam when α = 0.1, while it develops towards the end of the reservoir when α = 0.7. For the same water depth ratio (e.g., α = 0.7), the maximum bed shear stress position always locates within the reservoir at S0 = 0.02, while it appears in the downstream of the dam for S0 = 0 and 0.003 after the flow evolves for a while. The comparison between the numerical simulation and experimental measurements shows that the LES model can predict the internal movement characteristics with satisfactory accuracy. This study improves the understanding of the effect of both the bed slope and the tailwater depth on the internal movement characteristics of the dam-break flows and Favre waves, which also provides a valuable reference for determining the flood embankment height and designing the channel bed anti-scouring facility.
Fig. 1. Sketch of related variables involved in shallow water model.Fig. 2. Flume model in numerical simulation.Fig. 3. Grid sensitivity analysis (a) water surface profile; (b) velocity profile.Fig. 4. Sketch of experimental set-up for validating the velocity profile.Fig. 5. Sketch of experimental set-up for validating the bed shear stress.Fig. 6. Model validation results (a) variation of the velocity profile; (b) error value of the velocity profile; (c) variation of the bed shear stress; (d) error value of the
bed shear stress.Fig. 7. Schematic diagram of regional division.Fig. 8. Variation of water surface profile (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.Fig. 8. (continued).Fig. 8. (continued).Fig. 8. (continued).Fig. 9. Froude number for α = 0.1 (a) variation with time; (b) variation with wavefront position.Fig. 10. Characteristics of velocity distribution (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.Fig. 11. Average proportion of the vertical velocity (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.Fig. 12. Bed shear stress distribution (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.Fig. 12. (continued).Fig. 13. Variation of the maximum bed shear stress position with time (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.Fig. 14. Time when the maximum bed shear stress appears at different positions (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.Fig. 15. Movement characteristics of the fluid particles (a) α = 0.1; (b) α = 0.3; (c) α = 0.5; (d) α = 0.7.Fig. 15. (continued).
Keywords
Dam-break flow, Bed slope, Wet bed, Velocity profile, Bed shear stress, Large eddy simulation
References
Barnes, M.P., Baldock, T.E. 2006. Bed shear stress measurements in dam break and swash flows. Proceedings of International Conference on Civil and Environmental Engineering. Hiroshima University, Japan, 28–29 September. Biscarini, C., Francesco, S.D., Manciola, P., 2010. CFD modelling approach for dam break flow studies. Hydrol. Earth Syst. Sc. 14, 705–718. https://doi.org/10.5194/hess-14- 705-2010. Fig. 15. (continued). W. Liu et al. Journal of Hydrology 602 (2021) 126752 19 Bristeau, M.-O., Goutal, N., Sainte-Marie, J., 2011. Numerical simulations of a nonhydrostatic shallow water model. Comput. Fluids. 47 (1), 51–64. https://doi.org/ 10.1016/j.compfluid.2011.02.013. Bung, D.B., Hildebrandt, A., Oertel, M., Schlenkhoff, A., Schlurmann, T. 2008. Bore propagation over a submerged horizontal plate by physical and numerical simulation. Proc. 31st Intl.Conf. Coastal Eng., Hamburg, Germany, 3542–3553. Cantero-Chinchilla, F.N., Castro-Orgaz, O., Dey, S., Ayuso, J.L., 2016. Nonhydrostatic dam break flows. I: physical equations and numerical schemes. J. Hydraul. Eng. 142 (12), 04016068. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001205. Castro-Orgaz, O., Chanson, H., 2020. Undular and broken surges in dam-break flows: A review of wave breaking strategies in a boussinesq-type framework. Environ. Fluid Mech. 154 https://doi.org/10.1007/s10652-020-09749-3. Chang, T.-J., Kao, H.-M., Chang, K.-H., Hsu, M.-H., 2011. Numerical simulation of shallow-water dam break flows in open channels using smoothed particle hydrodynamics. J. Hydrol. 408 (1-2), 78–90. https://doi.org/10.1016/j. jhydrol.2011.07.023. Chen, H., Xu, W., Deng, J., Xue, Y., Li, J., 2009. Experimental investigation of pressure load exerted on a downstream dam by dam-break flow. J. Hydraul. Eng. 140, 199–207. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000743. Favre H. 1935. Etude th´eorique et exp´erimentale des ondes de translation dans les canaux d´ecouverts. Dunod, Paris. (in French). Flow Science Inc. 2016. Flow-3D User’s Manuals. Santa Fe NM. Fraccarollo, L., Toro, E.F., 1995. Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems. J. Hydraul. Res. 33 (6), 843–864. https://doi.org/10.1080/00221689509498555. Guo, Y., Wu, X., Pan, C., Zhang, J., 2012. Numerical simulation of the tidal flow and suspended sediment transport in the qiantang estuary. J Waterw. Port Coastal. 138 (3), 192–202. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000118. Guo, Y., Zhang, Z., Shi, B., 2014. Numerical simulation of gravity current descending a slope into a linearly stratified environment. J. Hydraulic Eng. 140 (12), 04014061. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000936. Khosronejad, A., Kang, S., Flora, K., 2019. Fully coupled free-surface flow and sediment transport modelling of flash floods in a desert stream in the mojave desert, california. Hydrol. Process 33 (21), 2772–2791. https://doi.org/10.1002/hyp.v33.2110.1002/ hyp.13527. Khosronejad, A., Arabi, M.G., Angelidis, D., Bagherizadeh, E., Flora, K., Farhadzadeh, A., 2020a. A comparative study of rigid-lid and level-set methods for LES of openchannel flows: morphodynamics. Environ. Fluid Mech. 20 (1), 145–164. https://doi. org/10.1007/s10652-019-09703-y. Khosronejad, A., Flora, K., Zhang, Z.X., Kang, S., 2020b. Large-eddy simulation of flash flood propagation and sediment transport in a dry-bed desert stream. Int. J. Sediment Res. 35 (6), 576–586. https://doi.org/10.1016/j.ijsrc.2020.02.002. Khoshkonesh, A., Nsom, B., Gohari, S., Banejad, H., 2019. A comprehensive study of dam break over the dry and wet beds. Ocean Eng. 188, 106279.1–106279.18. https://doi. org/10.1016/j.oceaneng.2019.106279. Kocaman, S., Ozmen-Cagatay, H., 2012. The effect of lateral channel contraction on dam break flows: laboratory experiment. J. Hydrol. 432–433, 145–153. https://doi.org/ 10.1016/j.jhydrol.2012.02.035. Kocaman, S., Ozmen-Cagatay, H., 2015. Investigation of dam-break induced shock waves impact on a vertical wall. J. Hydrol. 525, 1–12. https://doi.org/10.1016/j. jhydrol.2015.03.040. LaRocque, L.A., Imran, J., Chaudhry, M.H., 2013a. Experimental and numerical investigations of two-dimensional dam-break flows. J. Hydraul. Eng. 139 (6), 569–579. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000705. Larocque, L.A., Imran, J., Chaudhry, M.H., 2013b. 3D numerical simulation of partial breach dam-break flow using the LES and k-ε turbulence models. J. Hydraul. Res. 51, 145–157. https://doi.org/10.1080/00221686.2012.734862. Lauber, G., Hager, W.H., 1998a. Experiments to dam break wave: Horizontal channel. J. Hydraul. Res. 36 (3), 291–307. https://doi.org/10.1080/00221689809498620. Lauber, G., Hager, W.H., 1998b. Experiments to dam break wave: Sloping channel. J. Hydraul. Res. 36 (5), 761–773. https://doi.org/10.1080/00221689809498601. Leal, J.G., Ferreira, R.M., Cardoso, A.H., 2006. Dam-break wave-front celerity. J. Hydraul. Eng. 132 (1), 69–76. https://doi.org/10.1061/(ASCE)0733-9429(2006) 132:1(69). Liu, W., Wang, B., Guo, Y., Zhang, J., Chen, Y., 2020. Experimental investigation on the effects of bed slope and tailwater on dam-break flows. J. Hydrol. 590, 125256. https://doi.org/10.1016/j.jhydrol.2020.125256. Marche, C., Beauchemin P. EL Kayloubi, A. 1995. Etude num´erique et exp´erimentale des ondes secondaires de Favre cons´ecutives a la rupture d’un harrage. Can. J. Civil Eng. 22, 793–801, (in French). https://doi.org/10.1139/l95-089. Marra, D., Earl, T., Ancey, C. 2011. Experimental investigations of dam break flows down an inclined channel. Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Brisbane, Australia. Marsooli, R., Wu, W., 2014. 3-D finite-volume model of dam-break flow over uneven beds based on vof method. Adv. Water Resour. 70, 104–117. https://doi.org/ 10.1016/j.advwatres.2014.04.020. Miller, S., Chaudhry, M.H., 1989. Dam-break flows in curved channel. J. Hydraul. Eng. 115 (11), 1465–1478. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:11 (1465). Mohapatra, P.K., Chaudhry, M.H., 2004. Numerical solution of Boussinesq equations to simulate dam-break flows. J. Hydraul. Eng. 130 (2), 156–159. https://doi.org/ 10.1061/(ASCE)0733-9429(2004)130:2(156). Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves: laboratory versus VOF. J. Hydraul. Res. 50 (1), 89–97. https://doi.org/10.1080/ 00221686.2011.639981. Ozmen-Cagatay, H., Kocaman, S., 2012. Investigation of dam-break flow over abruptly contracting channel with trapezoidal-shaped lateral obstacles. J. Fluids Eng. 134, 081204 https://doi.org/10.1115/1.4007154. Ozmen-Cagatay, H., Kocaman, S., Guzel, H., 2014. Investigation of dam-break flood waves in a dry channel with a hump. J. Hydro-environ. Res. 8 (3), 304–315. https:// doi.org/10.1016/j.jher.2014.01.005. Park, I.R., Kim, K.S., Kim, J., Van, S.H., 2012. Numerical investigation of the effects of turbulence intensity on dam-break flows. Ocean Eng. 42, 176–187. https://doi.org/ 10.1016/j.oceaneng.2012.01.005. Peregrine, D.H., 1966. Calculations of the development of an undular bore. J. Fluid Mech. 25 (2), 321–330. https://doi.org/10.1017/S0022112066001678. Savic, L.j., Holly, F.M., 1993. Dam break flood waves computed by modified Godunov method. J. Hydraul. Res. 31 (2), 187–204. https://doi.org/10.1080/ 00221689309498844. Shigematsu, T., Liu, P., Oda, K., 2004. Numerical modeling of the initial stages of dambreak waves. J. Hydraul. Res. 42 (2), 183–195. https://doi.org/10.1080/ 00221686.2004.9628303. Smagorinsky, J., 1963. General circulation experiments with the primitive equations. Part I: the basic experiment. Mon. Weather Rev. 91, 99–164. https://doi.org/ 10.1126/science.27.693.594. Soares-Frazao, S., Zech, Y., 2002. Undular bores and secondary waves – Experiments and hybrid finite-volume modeling. J. Hydraul. Res. 40, 33–43. https://doi.org/ 10.1080/00221680209499871. Stansby, P.K., Chegini, A., Barnes, T.C.D., 1998. The initial stages of dam-break flow. J. Fluid Mech. 370, 203–220. https://doi.org/10.1017/022112098001918. Treske, A., 1994. Undular bores (favre-waves) in open channels – experimental studies. J. Hydraul. Res. 32 (3), 355–370. https://doi.org/10.1080/00221689409498738. Wang, B., Chen, Y., Wu, C., Dong, J., Ma, X., Song, J., 2016. A semi-analytical approach for predicting peak discharge of floods caused by embankment dam failures. Hydrol. Process 30 (20), 3682–3691. https://doi.org/10.1002/hyp.v30.2010.1002/ hyp.10896. Wang, B., Chen, Y., Wu, C., Peng, Y., Ma, X., Song, J., 2017. Analytical solution of dambreak flood wave propagation in a dry sloped channel with an irregular-shaped cross-section. J. Hydro-environ. Res. 14, 93–104. https://doi.org/10.1016/j. jher.2016.11.003. Wang, B., Chen, Y., Wu, C., Peng, Y., Song, J., Liu, W., Liu, X., 2018. Empirical and semianalytical models for predicting peak outflows caused by embankment dam failures. J. Hydrol. 562, 692–702. https://doi.org/10.1016/j.jhydrol.2018.05.049. Wang, B., Zhang, J., Chen, Y., Peng, Y., Liu, X., Liu, W., 2019. Comparison of measured dam-break flood waves in triangular and rectangular channels. J. Hydrol. 575, 690–703. https://doi.org/10.1016/j.jhydrol.2019.05.081. Wang, B., Liu, W., Zhang, J., Chen, Y., Wu, C., Peng, Y., Wu, Z., Liu, X., Yang, S., 2020a. Enhancement of semi-theoretical models for predicting peak discharges in breached embankment dams. Environ. Fluid Mech. 20 (4), 885–904. https://doi.org/10.1007/ s10652-019-09730-9. Wang, B., Chen, Y., Peng, Y., Zhang, J., Guo, Y., 2020b. Analytical solution of shallow water equations for ideal dam-break flood along a wet bed slope. J. Hydraul. Eng. 146 (2), 06019020. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001683. Wang, B., Liu, W., Wang, W., Zhang, J., Chen, Y., Peng, Y., Liu, X., Yang, S., 2020c. Experimental and numerical investigations of similarity for dam-break flows on wet bed. J. Hydrol. 583, 124598. https://doi.org/10.1016/j.jhydrol.2020.124598. Wang, B., Liu, X., Zhang, J., Guo, Y., Chen, Y., Peng, Y., Liu, W., Yang, S., Zhang, F., 2020d. Analytical and experimental investigations of dam-break flows in triangular channels with wet-bed conditions. J. Hydraul. Eng. 146 (10), 04020070. https://doi. org/10.1061/(ASCE)HY.1943-7900.0001808. Wu, W., Wang, S., 2007. One-dimensional modeling of dam-break flow over movable beds. J. Hydraul. Eng. 133 (1), 48–58. https://doi.org/10.1061/(ASCE)0733-9429 (2007)133:1(48). Xia, J., Lin, B., Falconer, R.A., Wang, G., 2010. Modelling dam-break flows over mobile beds using a 2d coupled approach. Adv. Water Resour. 33 (2), 171–183. https://doi. org/10.1016/j.advwatres.2009.11.004. Yang, S., Yang, W., Qin, S., Li, Q., Yang, B., 2018a. Numerical study on characteristics of dam-break wave. Ocean Eng. 159, 358–371. https://doi.org/10.1016/j. oceaneng.2018.04.011. Yang, S., Yang, W., Qin, S., Li, Q., 2018b. Comparative study on calculation methods of dam-break wave. J. Hydraul. Res. 57 (5), 702–714. https://doi.org/10.1080/ 00221686.2018.1494057.
NadhiraKarimaaIkhaMagdalenaabIndrianaMarcelaaMohammadFaridbaFaculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 40132, IndonesiabCenter for Coastal and Marine Development, Bandung Institute of Technology, Indonesia
Highlights
•A new three-layer model for n-block submerged porous breakwaters is developed.
•New analytical approach in finding the wave transmission coefficient is presented.
•A finite volume method successfully simulates the wave attenuation process.
•Porous media blocks characteristics and configuration can optimize wave reduction.
Abstract
높은 파도 진폭은 해안선에 위험한 영향을 미치고 해안 복원력을 약화시킬 수 있습니다. 그러나 다중 다공성 매체는 해양 생태계의 환경 친화적인 해안 보호 역할을 할 수 있습니다.
이 논문에서 우리는 n개의 잠긴 다공성 미디어 블록이 있는 영역에서 파동 진폭 감소를 계산하기 위해 3층 깊이 통합 방정식을 사용합니다. 수학적 모델은 파동 전달 계수를 얻기 위해 여러 행렬 방정식을 포함하는 변수 분리 방법을 사용하여 해석적으로 해결됩니다.
이 계수는 진폭 감소의 크기에 대한 정보를 제공합니다. 또한 모델을 수치적으로 풀기 위해 지그재그 유한 체적 방법이 적용됩니다.
수치 시뮬레이션을 통해 다공성 매질 블록의 구성과 특성이 투과파 진폭을 줄이는 데 중요하다는 결론을 내렸습니다.
High wave amplitudes may cause dangerous effects on the shoreline and weaken coastal resilience. However, multiple porous media can act as environmental friendly coastal protectors of the marine ecosystem. In this paper, we use three-layer depth-integrated equations to calculate wave amplitude reduction in a domain with n submerged porous media blocks. The mathematical model is solved analytically using the separation of variables method involving several matrix equations to obtain the wave transmission coefficient. This coefficient provides information about the magnitude of amplitude reduction. Additionally, a staggered finite volume method is applied to solve the model numerically. By conducting numerical simulations, we conclude that porous media blocks’ configuration and characteristics are crucial in reducing transmitted wave amplitude.
Fig. 1. Sketch of the problem configuration.Fig. 6. Experiment of waves passing through a single block of porous medium.
References
[1]M. Beck, G. Lange, Managing Coasts with Natural Solutions: Guidelines for Measuring and Valuing the Coastal Protection Services of Mangroves and Coral Reefs.
ArticleDownload PDFView Record in ScopusGoogle Scholar[9]F. Hajivalie, S. M. Mahmoudof, Experimental study of energy dissipation at rectangular submerged breakwater, Proceedings of the 8th International Conference on Fluid Mechanics.
Google Scholar[10]G. T. Klonaris, A. S. Metallinos, C. D. Memos, K. A. Galani, Experimental and numerical investigation of bed morphology in the lee of porous submerged breakwaters, Coast. Eng. 155.
Finite element simulation on the convective double diffusive water-based copper oxide nanofluid flow in a square cavity having vertical wavy surfaces in presence of hydro-magnetic field
두 개의 부유체 사이에 간격이 있는 경사진 부유식 방파제(FB)에 대한 새로운 연구가 제안되었습니다. 구조물의 기울기는 파동 에너지 소산을 유발할 수 있습니다. 경사진 구조물의 문제는 파도가 넘친다는 것입니다. 이 문제를 해결하기 위해 두 플로터 사이의 간격을 고려합니다.
오버 토핑이 발생하면 마루를 통과하는 물이 두 플로터 사이의 틈으로 쏟아지며 결과적으로 파도 에너지가 감쇠됩니다. 체인 네트가 모델에 추가되고 전송 계수에 대한 영향이 연구됩니다. 또한, 구조물의 유체역학적 성능에 대한 자유도의 영향을 조사하기 위해 말뚝으로 고정된(1 자유도) 계류 라인으로 고정된(3도의 자유도) 두 가지 고정 시스템에서 자유 모델을 연구했습니다.
게다가, 실험은 5개의 다른 파도 주기와 4개의 다른 파도 높이를 가진 규칙파에서 수행됩니다. 실험 결과, 경사형 부유식 방파제가 직사각형 상자형보다 최대 15% 성능이 우수한 것으로 나타났다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다.
체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다. 실험 결과, 경사형 부유식 방파제가 직사각형 상자형보다 최대 15% 성능이 우수한 것으로 나타났다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다.
체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다. 실험 결과, 경사형 부유식 방파제가 직사각형 상자형보다 최대 15% 성능이 우수한 것으로 나타났다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다.
체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다. 흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다.
체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다. 말뚝에 의해 고정된 FB에 대한 투과계수는 단파에서 케이블에 의해 고정된 FB보다 최대값으로 약 14% 낮고 장파에서 약 4-10% 더 높다.
흘수가 증가함에 따라 전송 계수는 감소하지만 건현은 허용 비율의 초과를 제한하기 위한 최소 요구 사항을 충족해야 합니다. 체인 그물이 있는 모델은 없는 모델에 비해 전달 계수가 최대 14% 감소하여 더 나은 성능을 나타냅니다.
A novel study of sloping floating breakwater (FB) that has a gap between two floaters is proposed. The slope of a structure can cause wave energy dissipation. A problem with sloping structures is wave overtopping. To solve this problem, a gap is considered between the two floaters. If overtopping occurs, water passing the crest will pour into the gap between the two floaters, as a result wave energy will be attenuated. A chain net is added to the model and its effect on the transmission coefficient is studied. Furthermore, in order to investigate the effects of the degree of freedom on the hydrodynamic performance of the structure, the model is studied in the two anchorage systems which are anchored by pile (1 degree of freedom) and anchored by mooring lines (3 degree of freedom). Moreover, the experiments are performed under regular waves with five different wave periods and four different wave heights. The results of the experiments show a sloping floating breakwater that has a better performance than that of rectangular box type by 15% as maximum value. The transmission coefficients for the FB anchored by pile are lower about 14% as maximum value than that of the FB anchored by cable in shorter waves and are higher about 4–10% in longer waves. With increasing the draft, the transmission coefficient decreases but the freeboard should meet the minimum requirements to restrict overtopping in the allowable rate. The model with a chain net exhibits a better performance as compared with the model without it by a maximum 14% reduction in the transmission coefficients.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig.24
Fig. 25
Fig. 26
Fig. 27
References
Abul-Azm AG, Gesraha MR (2000) Approximation to the hydrodynamics of floating pontoons under oblique waves. Ocean Eng 27:365–384ArticleGoogle Scholar
Biesheuvel AC (2013) Effectiveness of floating breakwaters. Delf University of Technology, DissertaionGoogle Scholar
Chen Zh, Wang Y, Dong H, Zheng B (2012) Time-domain hydrodynamic analysis of pontoon-plate floating breakwater. J Water Sci Eng 5(3):291–303Google Scholar
Daneshfaraz R, Kaya B (2008) solution of the propagation of the waves in open channels by the transfer matrix method. J Ocean Eng 35:1075–1079ArticleGoogle Scholar
Daneshfaraz R, Sadeghfam S, Tahni A (2020) exprimental investigation of screen as energy dissipators in the movable-Bed channel. Iran J Sci Technol Trans Civil Eng 44:1237–1246ArticleGoogle Scholar
Deng Zh, Wang L, Zhao X, Huang Zh (2019) Hydrodynamic performance of a T-shaped floating breakwater. J Appl Ocean Res 82:325–336ArticleGoogle Scholar
Dong GH, Zheng YN, Li YC, Teng B, Guan CT, Lin DF (2008) Experiments on wave transmission coefficients of floating breakwaters. Ocean Eng 35:931–938ArticleGoogle Scholar
Duan WY, Xu SP, Xu QL et al (2017) Performance of an F-type floating break water: a numerical and experimental study. Proc I MechE Part M 231(2):583–599Google Scholar
Gesraha MR (2006) Analysis of π shaped floating breakwater in oblique waves: I. Impervious rigid wave boards. Appl Ocean Res 28:327–338ArticleGoogle Scholar
He F, Huang Zh, Wing-Keung Law A (2013) An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction. J Appl Energy 106:222–231ArticleGoogle Scholar
Ikeno M, Shimoda N, Iwata K (1988) A new type of breakwater utilizing air compressibility. In: Proceedings of the 21st Coastal Engineering Conference, ASCE. pp 2426–2339
Ji Ch, Cheng Y, Cui J, Yuan Zh, Gaidai O (2018) Hydrodynamic performance of floating breakwaters in long wave regime: an experimental study. J Ocean Eng 152:154–166ArticleGoogle Scholar
Koutandos E, Prinos P, Gironella X (2005) Floating breakwaters under regular and irregular wave forcing: reflection and transmission characteristics. J Hydraul Res 43(2):174–188ArticleGoogle Scholar
Liu Zh, Wang Y, Wang W, Hua X (2019) Numerical modeling and optimization of a winged box-type floating breakwater by Smoothed Particle Hydrodynamics. J Ocean Eng 188:106246ArticleGoogle Scholar
LotfollahiYaghin MA, Mojtahedi A, Aminfar MH (2012) Physical model studies and system identification of hydrodynamics around a vertical square-section cylinder in irregular sea waves. J Ocean Eng 55:10–22ArticleGoogle Scholar
Mansard E, Funke E (1980) The measurement of the incident and reflected spectra using the least squares method. In: Proceedings of the 17th Coastal Engineering Conference ASCE, Sydney. pp 154–172
Mojtahedi A, ShokatianBeiragh M, Farajpour I, Mohammadian M (2020) Investigation on hydrodynamic performance of an enviromentally friendly pile breakwater. J Ocean Eng 217:107942ArticleGoogle Scholar
Pena E, Ferreras J, Sanchez-Tembleque F (2011) Experimental study on wave transmission coefficient, mooring lines and module connector forces with different designs of floating breakwaters. J Ocean Eng 38:1150–1160ArticleGoogle Scholar
Safarzadeh A, Zaji AH, Bonakdari H (2017) Comparative Assessment of the Hybrid Genetic Algorithm-Artificial neural network and genetic programming methods for the predicition of longitudinal velocity field around a single straight groyne. Appl Soft Comput 60:213–228ArticleGoogle Scholar
Tang HJ, Huang CC, Chen WM (2011) Dynamics of dual pontoon floating structure for cage aquaculture in a two-dimensional numerical wave tank. J Fluid Struct 27:918–936ArticleGoogle Scholar
U.S. Army coastal engineering research center (1984) Shore protection manual. U.S. Government Printing Office, WashingtonGoogle Scholar
Williams AN, Lee HS, Huang Z (2000) Floating pontoon breakwaters. Ocean Eng 27:221–240ArticleGoogle Scholar
Yang Zh, Xie M, Gao Zh, Xu T, Guo W, Ji X, Yuan Ch (2018) Experimental investigation on hydrodynamic effectiveness of a water ballast type floating breakwater. J Ocean Eng 167:77–94ArticleGoogle Scholar
Zhang X, Ma Sh, Duan W (2018) A new L type floating breakwater derived from vortex dissipation simulation. J Ocean Eng 164:455–464ArticleGoogle Scholar
Numerical Modeling of Failure Mechanisms in Articulated Concrete Block Mattress as a Sustainable Coastal Protection Structure
Author
Ramin Safari Ghaleh(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)
Omid Aminoroayaie Yamini(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)
S. Hooman Mousavi(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)
Mohammad Reza Kavianpour(Department of Civil Engineering, K. N. Toosi University of Technology, Tehran 19967-15433, Iran)
Abstract
해안선 보호는 전 세계적인 우선 순위로 남아 있습니다. 일반적으로 해안 지역은 석회암과 같은 단단하고 비자연적이며 지속 불가능한 재료로 보호됩니다. 시공 속도와 환경 친화성을 높이고 개별 콘크리트 블록 및 보강재의 중량을 줄이기 위해 콘크리트 블록을 ACB 매트(Articulated Concrete Block Mattress)로 설계 및 구현할 수 있습니다. 이 구조물은 필수적인 부분으로 작용하며 방파제 또는 해안선 보호의 둑으로 사용할 수 있습니다. 물리적 모델은 해안 구조물의 현상을 추정하고 조사하는 핵심 도구 중 하나입니다. 그러나 한계와 장애물이 있습니다. 결과적으로, 본 연구에서는 이러한 구조물에 대한 파도의 수치 모델링을 활용하여 방파제에서의 파도 전파를 시뮬레이션하고, VOF가 있는 Flow-3D 소프트웨어를 통해 ACB Mat의 불안정성에 영향을 미치는 요인으로는 파괴파동, 옹벽의 흔들림, 파손으로 인한 인양력으로 인한 장갑의 변위 등이 있다. 본 연구의 가장 중요한 목적은 수치 Flow-3D 모델이 연안 호안의 유체역학적 매개변수를 모사하는 능력을 조사하는 것입니다. 콘크리트 블록 장갑에 대한 파동의 상승 값은 파단 매개변수( 0.5 < ξ m – 1 , 0 < 3.3 )가 증가할 때까지(R u 2 % H m 0 = 1.6) ) 최대값에 도달합니다. 따라서 차단파라미터를 증가시키고 파괴파(ξ m − 1 , 0 > 3.3 ) 유형을 붕괴파/해일파로 변경함으로써 콘크리트 블록 호안의 상대파 상승 변화 경향이 점차 증가합니다. 파동(0.5 < ξ m − 1 , 0 < 3.3 )의 경우 차단기 지수(표면 유사성 매개변수)를 높이면 상대파 런다운의 낮은 값이 크게 감소합니다. 또한, 천이영역에서는 파단파동이 쇄도파에서 붕괴/서징으로의 변화( 3.3 < ξ m – 1 , 0 < 5.0 )에서 상대적 런다운 과정이 더 적은 강도로 발생합니다.
Shoreline protection remains a global priority. Typically, coastal areas are protected by armoring them with hard, non-native, and non-sustainable materials such as limestone. To increase the execution speed and environmental friendliness and reduce the weight of individual concrete blocks and reinforcements, concrete blocks can be designed and implemented as Articulated Concrete Block Mattress (ACB Mat). These structures act as an integral part and can be used as a revetment on the breakwater body or shoreline protection. Physical models are one of the key tools for estimating and investigating the phenomena in coastal structures. However, it does have limitations and obstacles; consequently, in this study, numerical modeling of waves on these structures has been utilized to simulate wave propagation on the breakwater, via Flow-3D software with VOF. Among the factors affecting the instability of ACB Mat are breaking waves as well as the shaking of the revetment and the displacement of the armor due to the uplift force resulting from the failure. The most important purpose of the present study is to investigate the ability of numerical Flow-3D model to simulate hydrodynamic parameters in coastal revetment. The run-up values of the waves on the concrete block armoring will multiply with increasing break parameter ( 0.5 < ξ m − 1 , 0 < 3.3 ) due to the existence of plunging waves until it ( R u 2 % H m 0 = 1.6 ) reaches maximum. Hence, by increasing the breaker parameter and changing breaking waves ( ξ m − 1 , 0 > 3.3 ) type to collapsing waves/surging waves, the trend of relative wave run-up changes on concrete block revetment increases gradually. By increasing the breaker index (surf similarity parameter) in the case of plunging waves ( 0.5 < ξ m − 1 , 0 < 3.3 ), the low values on the relative wave run-down are greatly reduced. Additionally, in the transition region, the change of breaking waves from plunging waves to collapsing/surging ( 3.3 < ξ m − 1 , 0 < 5.0 ), the relative run-down process occurs with less intensity.
Figure 1. Armor geometric characteristics and drawing three-dimensional geometry of a breakwater section in SolidWorks software.Figure 5. Wave overtopping on concrete block mattress in (a) laboratory and (b) numerical model.Figure 7. Mesh block for calibrated numerical model with 686,625 cells and utilization of FAVOR tab to assess figure geometry.Figure 10. How to place different layers (core, filter, and revetment) of the structure on slope.
Suggested Citation
Figure 11. Wave run-up on ACB Mat blocks in (a) laboratory model and (b) numerical modeling.Figure 15. Localized deformations on revetment due to run-down and sliding of armor from body laboratory model (left) and numerical modeling (right).
References
Capobianco, V.; Robinson, K.; Kalsnes, B.; Ekeheien, C.; Høydal, Ø. Hydro-Mechanical Effects of Several Riparian Vegetation Combinations on the Streambank Stability—A Benchmark Case in Southeastern Norway. Sustainability 2021, 13, 4046. [CrossRef]
MarCom Working Group 113. PIANC Report No 113: The Application of Geosynthetics in Waterfront Areas; PIANC: Brussels, Belgium, 2011; p. 113, ISBN 978-2-87223-188-1.
Hunt, W.F.; Collins, K.A.; Hathaway, J.M. Hydrologic and Water Quality Evaluation of Four Permeable Pavements in North Carolina, USA. In Proceedings of the 9th International Conference on Concrete Block Paving, Buenos Aires, Argentina, 18–21 October 2009.
Kirkpatrick, R.; Campbell, R.; Smyth, J.; Murtagh, J.; Knapton, J. Improvement of Water Quality by Coarse Graded Aggregates in Permeable Pavements. In Proceedings of the 9th International Conference on Concrete Block Paving, Buenos Aires, Argentina, 18–21 October 2009.
Chinowsky, P.; Helman, J. Protecting Infrastructure and Public Buildings against Sea Level Rise and Storm Surge. Sustainability 2021, 13, 10538. [CrossRef]
Breteler, M.K.; Pilarczyk, K.W.; Stoutjesdijk, T. Design of alternative revetments. Coast. Eng. 1998 1999, 1587–1600. [CrossRef]
Pilarczyk, K.W. Design of Revetments; Dutch Public Works Department (Rws), Hydraulic Engineering Division: Delft, The Netherlands, 2003.
Hughes, S.A. Combined Wave and Surge Overtopping of Levees: Flow Hydrodynamics and Articulated Concrete Mat Stability; Engineer Research and Development Center Vicksburg Ms Coastal and Hydraulics Lab: Vicksburg, MS, USA, 2008.
Gier, F.; Schüttrumpf, H.; Mönnich, J.; Van Der Meer, J.; Kudella, M.; Rubin, H. Stability of Interlocked Pattern Placed Block Revetments. Coast. Eng. Proc. 2012, 1, Structures-46. [CrossRef]
Najafi, J.A.; Monshizadeh, M. Laboratory Investigations on Wave Run-up and Transmission over Breakwaters Covered by Antifer Units; Scientia Iranica: Tehran, Iran, 2010.
Oumeraci, H.; Staal, T.; Pförtner, S.; Ludwigs, G.; Kudella, M. Hydraulic Performance, Wave Loading and Response of Elastocoast Revetments and their Foundation—A Large Scale Model Study; Leichtweiß Institut für Wasserbau: Braunschweig, Germany, 2010.
Tripathy, S.K. Significance of Traditional and Advanced Morphometry to Fishery Science. J. Hum. Earth Future 2020, 1, 153–166. [CrossRef]
Nut, N.; Mihara, M.; Jeong, J.; Ngo, B.; Sigua, G.; Prasad, P.V.V.; Reyes, M.R. Land Use and Land Cover Changes and Its Impact on Soil Erosion in Stung Sangkae Catchment of Cambodia. Sustainability 2021, 13, 9276. [CrossRef]
Xu, C.; Pu, L.; Kong, F.; Li, B. Spatio-Temporal Change of Land Use in a Coastal Reclamation Area: A Complex Network Approach. Sustainability 2021, 13, 8690. [CrossRef]
Mousavi, S.; Kavianpour, H.M.R.; Yamini, O.A. Experimental analysis of breakwater stability with antifer concrete block. Mar. Georesour. Geotechnol. 2017, 35, 426–434. [CrossRef]
Yamini, O.; Aminoroayaie, S.; Mousavi, H.; Kavianpour, M.R. Experimental Investigation of Using Geo-Textile Filter Layer In Articulated Concrete Block Mattress Revetment On Coastal Embankment. J. Ocean Eng. Mar. Energy 2019, 5, 119–133. [CrossRef]
Ghasemi, A.; Far, M.S.; Panahi, R. Numerical Simulation of Wave Overtopping From Armour Breakwater by Considering Porous Effect. J. Mar. Eng. 2015, 11, 51–60. Available online: http://dorl.net/dor/20.1001.1.17357608.1394.11.22.8.4 (accessed on 21 October 2021).
Nourani, O.; Askar, M.B. Comparison of the Effect of Tetrapod Block and Armor X block on Reducing Wave Overtopping in Breakwaters. Open J. Mar. Sci. 2017, 7, 472–484. [CrossRef]
Aminoroaya, A.O.; Kavianpour, M.R.; Movahedi, A. Performance of Hydrodynamics Flow on Flip Buckets Spillway for Flood Control in Large Dam Reservoirs. J. Hum. Earth Future 2020, 1, 39–47.
Milanian, F.; Niri, M.Z.; Najafi-Jilani, A. Effect of hydraulic and structural parameters on the wave run-up over the berm breakwaters. Int. J. Nav. Archit. Ocean Eng. 2017, 9, 282–291. [CrossRef]
Yamini, O.A.; Kavianpour, M.R.; Mousavi, S.H. Experimental investigation of parameters affecting the stability of articulated concrete block mattress under wave attack. Appl. Ocean Res. 2017, 64, 184–202. [CrossRef]
Yakhot, V.; Orszag, S.A.; Thangam, S.; Gatski, T.B.; Speziale, C.G. Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids 1992, 4, 1510–1520. [CrossRef]
Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw. 2016, 80, 322–335. [CrossRef]
Jin, J.; Meng, B. Computation of wave loads on the superstructures of coastal highway bridges. Ocean Eng. 2011, 38, 2185–2200. [CrossRef]
Yang, S.; Yang, W.; Qin, S.; Li, Q.; Yang, B. Numerical study on characteristics of dam-break wave. Ocean Eng. 2018, 159, 358–371. [CrossRef]
Ersoy, H.; Karahan, M.; Geli¸sli, K.; Akgün, A.; Anılan, T.; Sünnetci, M.O.; Yah¸si, B.K. Modelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation. Eng. Geol. 2019, 249, 112–128. [CrossRef]
Zhan, J.M.; Dong, Z.; Jiang, W.; Li, Y.S. Numerical simulation of wave transformation and runup incorporating porous media wave absorber and turbulence models. Ocean Eng. 2010, 37, 1261–1272. [CrossRef]
Owen, M.W. The Hydroulic Design of Seawall Profiles, Proceedings Conference on Shoreline Protection; ICE: London, UK, 1980; pp. 185–192.
Pilarczyk, K.W. Geosythetics and Geosystems in Hydraulic and Coastal Engineering; CRC Press: Balkema, FL, USA, 2000; p. 913, ISBN 90.5809.302.6.
Van der Meer, J.W.; Allsop, N.W.H.; Bruce, T.; De Rouck, J.; Kortenhaus, A.; Pullen, T.; Schüttrumpf, H.; Troch, P.; Zanuttigh, B. (Eds.) Manual on Wave Overtopping of Sea Defences and Related Structures–Assessment Manual; EurOtop.: London, UK, 2016; Available online: www.Overtopping-manual.com (accessed on 21 October 2021).
Battjes, J.A. Computation of Set-up, Longshore Currents, Run-up and Overtopping Due to Wind-Generated Waves; TU Delft Library: Delft, The Netherlands, 1974.
Van der Meer, J.W. Rock Slopes and Gravel Beaches under Wave Attack; Delft Hydraulics: Delft, The Netherlands, 1988.
Ten Oever, E. Theoretical and Experimental Study on the Placement of Xbloc; Delft Hydraulics: Delft, The Netherlands, 2006.
Flow Science, Inc. FLOW-3D User Manual Version 9.3; Flow Science, Inc.: Santa Fe, NM, USA, 2008.
Lebaron, J.W. Stability of A-Jacksarmored Rubble-Mound Break Waters Subjected to Breaking and Non-Breaking Waves with No Overtopping; Master of Science in Civil Engineering, Oregon State University: Corvallis, OR, USA, 1999.
McLaren RW, G.; Chin, C.; Weber, J.; Binns, J.; McInerney, J.; Allen, M. Articulated Concrete Mattress block size stability comparison in omni-directional current. In Proceedings of the OCEANS 2016 MTS/IEEE Monterey, Monterey, CA, USA, 19–23 September 2016; pp. 1–6. [CrossRef]
Wave Loads Assessment on Coastal Structures at Inundation Risk Using CFD Modellin
Ana GomesJosé Pinho
Conference paperFirst Online: 19 November 2021
지난 수십 년 동안 극한 현상은 심각성과 주민, 기반 시설 및 인류 활동에 대한 위험 증가로 인해 우려를 불러일으켰습니다. 오늘날 해안 구조물이 범람하고 해변 침식 및 기반 시설 파괴가 전 세계 해안에서 흔히 발생합니다.
완화에 효율적으로 기여하고 효율적인 방어 조치를 채택하려면 이러한 영향을 예상하는 것이 매우 중요합니다. 대규모 물리적 모델을 기반으로 하는 이전 실험 작업에서 목조 교각 상단의 고가 해안 구조물의 공극과 그에 따른 수평 및 수직 파도력 사이의 관계가 다양한 파도 하중 조건에 대해 연구되었습니다.
이러한 실험 결과는 CFD 도구를 사용하여 유체/구조 상호 작용을 시뮬레이션하기 위한 수치 모델에 대한 보정 데이터 역할을 합니다. 주어진 파도 조건에 대해 물과 구조물 베이스 레벨 사이의 공극 높이를 다르게 하여 세 가지 시나리오를 시뮬레이션했습니다.
수치 결과를 물리적 모델 결과와 비교하면 수치적으로 구한 수평력과 수직력의 최대값은 각각 평균 14.4%와 25.4%의 상대차로 만족할 만합니다. 또한 구조물을 지지하는 교각에 작용하는 압력과 전단응력을 시뮬레이션하기 위해 실제 수치모델을 적용하였으며, 서로 다른 공극의 높이를 고려하고 각각의 CPU 시뮬레이션 시간을 평가하였습니다.
이러한 방식으로 CFD 모델의 운영 모델링 기능을 평가하여 조기 경보 시스템 내에서 최종 사용에 대한 예측 선행 시간 제한을 결정했습니다.
키워드
Coastal risk, Elevated coastal structure, Numerical simulation, Flow-3D® , 해안 위험, 높은 해안 구조, 수치 시뮬레이션
References
1.Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding-a global assessment. PloS one, n. 10(3), p. X-XGoogle Scholar
2.Jones B, O’Neill BC (2016) Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways. Environmental Research Letters, N. 11(8):1–10Google Scholar
3.Talbot J (2005) Repairing Florida’s Escambia Bay Bridge. Associated Construction Publications, available online at http://www.acppubs.com/article/CA511040
4.Kennedy A, Rogers S, Sallenger A, Gravois U, Zachry B, Dosa M, Zarama F (2011a) Building destruction from wave and surge on the bolivar peninsula during hurricane Ike. J. Waterw. Port, Coast. Ocean Eng. 137 (3), 132–141Google Scholar
5.Tomiczek T, Kennedy A, Rogers S (2014) Collapse limit state fragilities of woodframed residences from storm surge and waves during hurricane Ike. J. Waterw. Port, Coast. Ocean Eng. 140 (1), 43–55Google Scholar
6.Dentale F, Donnarumma G, Pugliese Carratelli E (2014a) Simulation of flow within armour blocks in a breakwater. J Coast Res 30(3):528–536CrossRefGoogle Scholar
7.Peregrine DH (2003) Water wave impact on walls. Annu Rev Fluid Mech 35:23–43CrossRefGoogle Scholar
8.Cuomo G, Piscopia R, Allsop W (2011) Evaluation of wave impact loads on caisson breakwaters based on joint probability of impact maxima and rise times. Coast Eng 58(1):9–27CrossRefGoogle Scholar
9.Faltinsen OM, Landrini M, Greco M (2004) Slamming in marine applications. J Eng Math 48(3–4):187–217CrossRefGoogle Scholar
10.Peregrine DH. et al (2005) Violent water wave impact on a wall. In: Proceedings of 14th Aha Huliko Winter Workshop, Honolulu, HawaiiGoogle Scholar
11.Cuomo G, Tirindelli M, Allsop W (2007) Wave in deck loads on exposed jetties. Coast Eng 54(9):657–679CrossRefGoogle Scholar
12.Azadbakht M, Yim SC (2015) Simulation and estimation of tsunami loads on bridge superstructures. J Waterw Port Coast Ocean Eng 141(2):20CrossRefGoogle Scholar
13.Wiebe DM, Park H, Cox DT (2014) Application of the Goda pressure formulae for horizontal wave loads on elevated structures. KSCE J. Civ. EngGoogle Scholar
14.Hayatdavoodi M, Seiffert B, Ertekin RC (2015) Experiments and calculations of cnoidal wave loads on a flat plate in shallow-water. J. Ocean Eng. Mar. Energy 1(1):77–99CrossRefGoogle Scholar
15.Wei Z, Dalrymple RA (2016) Numerical study on mitigating tsunami force on bridges by an SPH model. J. Ocean. Eng. Mar. Energy 2(365):365–380CrossRefGoogle Scholar
16.Bradner, C., Schumacher, T., Cox, D., Higgins, C.: Experimental Setup for a largescale bridge superstructure model subjected to waves. J. Waterw. Port, Coast. Ocean Eng. 137 (1), 3–11 (2011)Google Scholar
17.Xiao H, Huang W (2008) Numerical modeling of wave runup and forces on an idealized beachfront house. Ocean Eng 35(1):106–116CrossRefGoogle Scholar
18.Do T, van de Lindt JW, Cox D (2016) Performance-based design methodology for inundated elevated coastal structures subjected to wave load. Eng Struct 117:250–262CrossRefGoogle Scholar
19.Lara JL, Garcia N, Losada IJ (2006) RANS modeling applied to random wave interaction with submerged permeable structures. Coastal Eng 53(5–6):395–417CrossRefGoogle Scholar
20.Meringolo DD, Aristodemo F, Veltri P (2015) SPH numerical modeling of wave–perforated breakwater interaction. Coast Eng 101:48–68CrossRefGoogle Scholar
21.Al-Banaa K, Liu PLF (2007) Numerical study on the hydraulic performance of submerged porous breakwater under solitary wave attack. J Coast Res 50:201–205Google Scholar
22.Gomes, A., Pinho, J.L.S., Valente, T., Antunes do Carmo, J.S., V. Hegde, A.: Performance Assessment of a Semi-Circular Breakwater through CFD Modelling. J. Mar. Sci. Eng. 2020, 8, 226 (2020).Google Scholar
23.Flow Sciences Inc. Flow-3D User Manual, release 9.4, Santa Fe, NM, USA (2009).Google Scholar
24.Smith, H., Foster., D.L.: Modeling of flow around a cylinder over a scoured bed. J. Waterw., Port, Coastal, Ocean Eng.131(1),14–24 (2005).Google Scholar
25.Richardson JE, Panchang VG (1998) Three-dimensional simulation of scour-inducing flow at bridge piers. J Hydraul Eng 124(5):530–540CrossRefGoogle Scholar
26.Jin J, Meng B (2011) Computation of wave loads on the superstructures of coastal highway bridges. Ocean Eng 38(17–18):2185–2200CrossRefGoogle Scholar
27.Dentale F, Donnarumma G, Pugliese Carratelli E (2014b) Numerical wave interaction with tetrapods breakwater. Int. J. Nav. Arch. Ocean 6:13Google Scholar
28.Carratelli EP, Viccione G, Bovolin V (2016) Free surface flow impact on a vertical wall: a numerical assessment. Theor. Comput. Fluid Mech. 30(5):403–414CrossRefGoogle Scholar
29.Cavallaro, L., Dentale, F., Donnarumma, G., Foti, E., Musumeci, R.E., Pugliese Carratelli, E.: Rubble mound breakwater overtopping: estimation of the reliability of a 3D numerical simulation, In: ICCE 2012, Interntional Conference on Coastal Engineering, Santander, Spain (2012).Google Scholar
30.Vanneste, D., Suzuki, T., Altomare, C.: Comparison of numerical models for wave overtoping and impact on storm return walls. In: ICCE 2014, International Conference on Coastal Engineering, Seoul, Korea (2014).Google Scholar
31.Park H, Tomiczek T, Cox DT, van de Lindt JW, Lomonaco P (2017) Experimental modeling of horizontal and vertical wave forces on an elevated coastal structure. Coast Eng 128:58–74CrossRefGoogle Scholar
32.Isfahani AHG, Brethour JM (2009) On the Implementation of Two-Equation Turbulence Models in FLOW-3D; FSI-09-TN86; Flow Science: Santa Fe. NM, USAGoogle Scholar
33.Novais-Barbosa J (1985) Mecânica dos Fluidos e Hidráulica Geral Vol 1 e II Porto Editora, PortoGoogle Scholar
34.Le Méhauté B (1976) An Introduction to Hydrodynamics and Water Waves. Springer, Berlin/Heidelberg, GermanyCrossRefGoogle Scholar
해양 연안 구조물에 걸리는 하중은 크게 임의의(random) 바다 상태에서 파와 구조물의 상호 작용의 세부 사항에 의해 결정됩니다. FLOW-3D는 사용자로 하여금 다양한 파형 아래에서 부유체와 바다의 스펙트럼(JONSWAP, Pierson Moskowitz, User Defined Function등)사이의 비선형 상호 작용을 모델링 할 수 있게 합니다. 또한 FLOW-3D는 파-구조물- 계류계 안에서 구조 등답 해석뿐 아니라 갑판에서의 물 분석, 충격 하중, 완전 비선형 파형 전달 해석을 제공합니다.
해양 플랫폼 갑판 아래에 있는 고요한 물 에어 갭(Air gap)은 중요한 설계인자이며, 극한 설계 조건에 필요한 최소한의 에어 갭에 의해 결정된다. FLOW-3D는 해양플랫폼, tension leg platform, semi-submersible 등의 에어갭, 파충격 하중, 효과적으로 예측하는데 사용될 수 있습니다.
FLOW-3D는 고정말뚝 구조물 외에 여기에 표시된 도크와 같은 부유 구조물에 대한 힘을 시뮬레이션하는 데 사용할 수 있습니다. 계류선 모델을 이용하여 도크의 움직임을 안정화 시켰고, 수위가 꾸준히 증가함에 따른 도크의 역동성을 영상에서 확인할 수 있습니다.
해양 플랫폼에 대한 파도 영향 시뮬레이션
연안 플랫폼 데크 아래의 잔잔한 수중 공극은 중요한 설계 매개변수이며 극한의 설계 조건에서 요구되는 최소 공극에 의해 결정됩니다. FLOW-3D는 해양 플랫폼, 텐션 레그 플랫폼 및 반잠수정의 공극 및 파도 충격 하중을 효과적으로 예측하는 데 사용할 수 있습니다. FLOW-3D 는 수치적 환경에서 전체 규모의 문제를 모델링함으로써 엔지니어가 축소된 규모의 모델 물리적 유역 테스트와 관련된 종종 섬세한 스케일링 문제를 우회할 수 있도록 합니다.
a State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu, 610065, China
b State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, College Of Water Resource and Hydropower, Chengdu, 610065, China
c faculty of Engineering & Informatics, University of Bradford, BD7 1DP, UK
Abstract
The bed slope and the tailwater depth are two important ones among the factors that affect the propagation of the dam-break flood and Favre waves. Most previous studies have only focused on the macroscopic characteristics of the dam-break flows or Favre waves under the condition of horizontal bed, rather than the internal movement characteristics in sloped channel. The present study applies two numerical models, namely, large eddy simulation (LES) and shallow water equations (SWEs) models embedded in the CFD software package FLOW-3D to analyze the internal movement characteristics of the dam-break flows and Favre waves, such as water level, the velocity distribution, the fluid particles acceleration and the bed shear stress, under the different bed slopes and water depth ratios. The results under the conditions considered in this study show that there is a flow state transition in the flow evolution for the steep bed slope even in water depth ratio α = 0.1 (α is the ratio of the tailwater depth to the reservoir water depth). The flow state transition shows that the wavefront changes from a breaking state to undular. Such flow transition is not observed for the horizontal slope and mild bed slope. The existence of the Favre waves leads to a significant increase of the vertical velocity and the vertical acceleration. In this situation, the SWEs model has poor prediction. Analysis reveals that the variation of the maximum bed shear stress is affected by both the bed slope and tailwater depth. Under the same bed slope (e.g., S0 = 0.02), the maximum bed shear stress position develops downstream of the dam when α = 0.1, while it develops towards the end of the reservoir when α = 0.7. For the same water depth ratio (e.g., α = 0.7), the maximum bed shear stress position always locates within the reservoir at S0 = 0.02, while it appears in the downstream of the dam for S0 = 0 and 0.003 after the flow evolves for a while. The comparison between the numerical simulation and experimental measurements shows that the LES model can predict the internal movement characteristics with satisfactory accuracy. This study improves the understanding of the effect of both the bed slope and the tailwater depth on the internal movement characteristics of the dam-break flows and Favre waves, which also provides a valuable reference for determining the flood embankment height and designing the channel bed anti-scouring facility.
댐붕괴 홍수와 파브르 파도의 전파에 영향을 미치는 요인 중 하상경사와 후미수심은 두 가지 중요한 요소이다. 대부분의 선행 연구들은 경사 수로에서의 내부 이동 특성보다는 수평층 조건에서 댐파괴류나 Favre파동의 거시적 특성에만 초점을 맞추었다.
본 연구에서는 CFD 소프트웨어 패키지 FLOW-3D에 내장된 LES(Large Eddy Simulation) 및 SWE(Shallow Water Equation) 모델의 두 가지 수치 모델을 적용하여 댐-파괴 흐름 및 Favre 파도의 내부 이동 특성을 분석합니다.
수위, 속도 분포, 유체 입자 가속도 및 층 전단 응력, 다양한 층 경사 및 수심 비율로. 본 연구에서 고려한 조건하의 결과는 수심비 α = 0.1(α는 저수지 수심에 대한 tailwater 깊이의 비율)에서도 급경사면에 대한 유동상태 전이가 있음을 보여준다. 유동 상태 전이는 파면이 파단 상태에서 비정형으로 변하는 것을 보여줍니다.
수평 경사와 완만한 바닥 경사에서는 이러한 흐름 전이가 관찰되지 않습니다. Favre 파의 존재는 수직 속도와 수직 가속도의 상당한 증가로 이어집니다. 이 상황에서 SWE 모델은 예측이 좋지 않습니다.
분석에 따르면 최대 바닥 전단 응력의 변화는 바닥 경사와 꼬리 수심 모두에 영향을 받습니다. 동일한 바닥 경사(예: S0 = 0.02)에서 최대 바닥 전단 응력 위치는 α = 0.1일 때 댐의 하류에서 발생하고 α = 0.7일 때 저수지의 끝쪽으로 발생합니다.
동일한 수심비(예: α = 0.7)에 대해 최대 바닥 전단 응력 위치는 항상 S0 = 0.02에서 저수지 내에 위치하는 반면, S0 = 0 및 0.003에 대해 흐름이 진화한 후 댐 하류에 나타납니다. 수치적 시뮬레이션과 실험적 측정을 비교한 결과 LES 모델이 내부 움직임 특성을 만족스러운 정확도로 예측할 수 있음을 알 수 있습니다.
본 연구는 댐 파절류 및 Favre파의 내부 이동 특성에 대한 하상 경사 및 후미 수심의 영향에 대한 이해를 향상 시키며, 이는 또한 제방 높이를 결정하고 수로 저반위 설계를 위한 귀중한 참고자료를 제공한다.
Keywords
Figure Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale
Karim Badr Hussein and Mohamed Ibrahim Lecturer of Irrigation and Hydraulics, Faculty of Engineering, Al-Azhar University Corresponding author E-mail: badrkarim713@yahoo.com
Abstract
방파제의 주요 목적은 항만 내부의 안정을 유지하여 선박의 안전과 운영의 용이성을 달성하는데 도움이 되기 때문에 강한 파도와 폭풍으로부터 항만, 해변 또는 해변 시설을 보호하는 것입니다.
이 연구는 수직 방파제에 대한 비전통적인 대안을 연구하는 것을 목표로 합니다. 이 연구에서는 유체역학적 성능의 연구 및 평가를 위해 구현된 수직파 장벽의 두 가지 다른 모델을 선택했습니다.
첫 번째 모델은 원형 슬롯이 있는 수직 벽이고 두 번째 모델은 사각형 슬롯이 있는 수직 벽입니다. 두 모델을 비교한 결과 정사각형 슬롯은 원형 슬롯보다 파동의 전송을 5~20% 감소시키는 것으로 나타났습니다.
두 개의 원형 홈이 있는 벽을 사용하면 단일 벽에 비해 파동 전송이 최대 30% 감소하고 파동 에너지 분산이 최대 40% 증가합니다. 상대 길이(h/L)가 증가함에 따라 수평파력이 증가합니다.
다공성 = 0.25에서 상대파력(F/Fo)은 다공성 = 0.50에서보다 10~30% 더 컸습니다. 개구부에서 파동 속도가 높고 파동 에너지 소산 계수도 높습니다. 파동 진폭이 클수록 파동 에너지 소산 계수가 커집니다.
모든 국가에서 해안 지역은 가장 중요하고 중요한 지역 중 하나입니다. 연안지역과 항만은 대외무역 촉진, 연안관광 개발 및 활성화 등 다양한 분야에 기여하고 있어 경제적 파급효과가 매우 크며, 일자리 창출은 물론 도시근린 정착 및 안정에도 기여한다. 젊은이들에게 강력한 수익을 제공하는 가능성과 어항을 건설하여 어획량을 늘리는 것입니다. [1].
그러나 해안선 부근의 파도, 바람, 조수, 조류 등의 자연 현상은 해변과 해안 지역의 안정성에 영향을 미칩니다. 따라서 연안 보전 서비스는 연안 환경의 균형을 유지하고 보존하는 데 중요한 역할을 합니다. 거센 파도로부터 항구와 해변 시설을 보호하는 방파제 방파제. 방파제는 선박이 안전하게 정박할 수 있는 조용한 지역을 제공하고 건설 및 석유 및 광물 발견 동안 임시 보호를 제공합니다.
파도는 방파제에 부딪힐 때 많은 에너지를 잃습니다. 방파제는 눈에 보이거나 떠 있거나 수중일 수 있으며 다양한 크기, 재료 및 출력 표준이 있습니다[11]. 전통적인 장벽 또는 눈에 보이는 격벽은 매우 효율적이지만 해변의 미적 비전을 가립니다. 많은 건축 자재가 필요하고 건설 비용이 증가합니다[9].
이에 반해 부유방벽은 자재가 필요없고 공사비가 저렴하지만 그 효과는 제한적입니다. 결과적으로 수중 파티션은 이러한 종류의 단점을 방지하기 때문에 더 나은 옵션 중 하나로 간주됩니다.
수중 방벽은 가장 중요한 해변 방어 시설 중 하나이며, 수중 방벽의 장점 중 하나는 투명 방벽에 비해 건설 비용이 비교적 저렴하고 물이 앞에서 뒤로 흐를 수 있다는 것입니다[3].
멤브레인 아래에서 물이 재생됩니다. 또한 바다의 미적 이미지를 왜곡하지 않고 조망을 방해하지 않아 인근 해변에 미치는 영향도 미미하다[18]. 반면에 잠긴 방파제는 건설 후 가라앉으면서 파도 에너지를 분산시키고 해안선을 방어하는 효과를 잃습니다. 장벽의 품질은 높은 수위의 영향도 받습니다.
결과적으로 해안 보호의 가장 중요한 측면 중 하나는 수중 방파제의 효율성을 향상시키는 것입니다. 수직 방파제 이러한 유형의 방파제는 바다를 향한 수직면이 있는 설비입니다[10]. 이러한 장벽은 파도 에너지의 일부가 해안이나 보호할 수역에 도달하는 것을 방지하여 파도를 진정시키는 역할을 합니다[16].
수직 방파제는 블록, 케이슨, 시트 파일 또는 셀룰러로 구성될 수 있습니다. 이 연구는 정사각형 및 원형 구멍이 있는 천공된 수직 방파제의 유체역학적 성능에 대한 연구를 제시하는 것을 목적으로 합니다.
이 논문은 또한 제안된 모델의 유체역학적 효율뿐만 아니라 이 분야의 유사한 연구와 비교되었습니다. 이것은 다음 헤드라인으로 이 백서에 나와 있습니다.
Materials and methods. Results and discussion. Conclusions and recommendations.
Fig. 1. The open channelFig. 2. Breakwaters model (a) perforated wall with circular slots and (b)
perforated wall with square slots.Fig. 3. Breakwaters model in Flow-3D with meshing geometry and
boundary (a) circular slots (b) square slots.Fig. 4. Details and dimensions of proposed breakwaterFig 5 .Wave profiles using (Flow-3D) at wave period (T) = 1.2 sec for
perforated walls with circular slots at behind model (Ht).Fig. 11. Velocity distribution through slots at (a) quarter wave period, (b)
half wave period and (c) three quarters wave period.Fig. 13. Velocity vectors at front, between and behind barriers.
Conclusion & Recommendations
얻어진 결과에 대한 이전 분석을 바탕으로 도달한 결론은 다음과 같습니다. 결과와 연구에 따르면 FLOW-3D는 수직으로 구멍이 뚫린 벽이 있는 선형 파동과 파동의 관계를 설명하는 강력한 능력을 가지고 있습니다. 또한 실험실 데이터 및 반분석 결과의 가장 중요한 측면을 복제할 수 있습니다. FLOW-3D에 의해 생성된 수치적 결과는 훌륭합니다. 사각슬롯은 원형슬롯에 비해 파동의 투과율이 5:20% 감소합니다. 한 쌍의 원형 슬롯 벽을 사용하면 단일 벽에 비해 파동 투과율이 최대 30% 감소하고 파동 에너지 분산이 최대 40% 증가합니다. 수평파력은 상대길이(h/L)가 증가할수록 증가한다. 다공성 = 0.25에서 상대파력(F/Fo)은 다공성 = 0.50에서보다 10~30% 더 높았다. 파도가 원 모양으로 움직이고 큰 원이 위쪽에 있었다가 점차 아래쪽으로 내려갑니다. 개구부에서 파동 속도가 높았고 파동 에너지 소산 계수도 높았습니다. 파동 진폭이 높을수록 파동 에너지 소산 계수가 높아집니다.
REFERENCES
[1] Bahaa Elsharnouby and Mohamed, E. (2012). “Study of environment friendly porous suspended breakwater for the Egyptian Northwestern Coast” J. of Ocean Engineering, Vol. 48, 47-58. [2] Huang Z. (2007) “Wave interaction with one or two rows of closely spaced rectangular cylinders” J. Ocean Eng Vol. 34,1584–1591. [3] Huang, C. J.; Chang, H. H.; and Hwung, H. H., 2003. “Structural permeability effects on the interaction of a solitary wave and a submerged breakwater,” Coastal Engineering. Vol. 49, pp. 1-24. [4] Hsu, H-H. & Wu, Y-C., 1999. “Numerical solution for the second-order wave interaction with porous structures.” International Journal for Numerical Methods in Fluids, Vol. 29 Issue 3, pp. 265-288. [5] Isaacson, M., Baldwim, J., Premasiro, S. and Yang, G., (1999) “Wave interaction with double slotted barriers.” J. Applied Ocean Research, Vol. 21, No. 2, pp. 81-91. [6] Isaacson, M., Premasiro, S. and Yang, G. (1998) “Wave Interaction with Vertical Slotted Barrier” J. Waterway, Port, Coastal and Ocean Eng., ASCE, Vol. 124, No. 3. [7] Ji, C.H. and Suh, K.D. (2010) “Wave interactions with multiple-row curtainwall-pile breakwaters” J.Coastal Engineering vol. 57 issue 5, p. 500-512. [8] Koraim, A. S., Iskander, M.M. and Elsayed, W. R. (2014) “Hydrodynamic performance of double rows of piles suspending horizontal c shaped bars” J. Coastal Engineering, Vol. 84, P. 81-96. [9] Koraim, A. S., Iskander, M.M. and Elsayed, W. R. (2013) “Hydrodynamic performance of double rows of piles suspending horizontal c shaped bars” J. Coastal Engineering, Vol. 84, P. 81-96. [10] Koraim, A. S. and Salem, T. N. (2012) “The hydrodynamic characteristics of a single suspended row of half pipes under regular waves” J. Ocean Engineering, Vol. 50, P. 1-9. [11] Laju, K., Sundar, V. & Sundaravadivelu, R., 2011. “Hydrodynamic characteristics of pile supported skirt breakwater models.” Journal of Ocean Re, 33,12-22. [12] Lin, P.; and Karunarathna, .S.A., 2007. “Numerical study of solitary wave interaction with porous breakwaters,” J. of waterway, port, coastal and ocean engineering. , pp. 352-363. [13] Moh. Ibrahim (2017) “Linear Wave Interaction with Permeable Breakwaters” A Thesis Submitted for Partial Fulfillment of Doctor of Philosophy Degree in Civil Eng., al-Azhar University. [14] Mansard, E .P. D. & Funke, E. R., 1980. “The measurement of incident and reflected spectra using a least squares method.” In Proc. 17th Coastal Eng. Conf., Sydney, Australia, pp 159-174. [15] Nadji Chioukh et al (2017) “Reflection and Transmission of Regular Waves from/Through Single and Double Perforated Thin Walls” China Ocean Eng., 2017, Vol. 31, No. 4, P. 466–475. [16] Rageh, O., Koraim, A. (2010b). “Hydraulic performance of vertical walls with horizontal slots used as breakwater”. J.Coastal Engineering, Vol. 57, 745–746. 12. [17] Suh KD, Jung HY and Pyun CK (2007) “Wave reflection and transmission by curtain wall–pile breakwaters using circular piles”. J. Ocean Eng,Vol. 34(14–15), 2100–2106. [18] Suh, K. D., Shin, S. & Cox, D. T., 2006. “Hydrodynamic characteristics of Pile-Supported vertical wall breakwaters.” J. of Waterways, Port, Coastal and Ocean Engineering, Vol.132, No.2, pp.83-96.
1Faculty of Navigation, Gdynia Maritime University, 81-225 Gdynia, Poland 2AREX Ltd., 81-212 Gdynia, Poland 3Institute of Hydro-Engineering of Polish Academy of Sciences, 80-328 Gdansk, Poland *Author to whom correspondence should be addressed. Academic Editor: Remco J. WiegerinkSensors2021, 21(6), 2216; https://doi.org/10.3390/s21062216 Received: 20 January 2021 / Revised: 9 March 2021 / Accepted: 18 March 2021 / Published: 22 March 2021(This article belongs to the Special Issue Sensing in Flow Analysis)
Abstract
본 논문은 자유 표면 효과를 포함한 균일한 흐름 하에서 회전하는 실린더 (로터)에 발생하는 유체 역학적 힘의 실험 테스트 설정 및 측정 방법을 제시합니다. 실험 테스트 설정은 고급 유량 생성 및 측정 시스템을 갖춘 수로 탱크에 설치된 고유 한 구조였습니다.
테스트 설정은 로터 드라이브가 있는 베어링 장착 플랫폼과 유체 역학적 힘을 측정하는 센서로 구성되었습니다. 낮은 길이 대 직경 비율 실린더는 얕은 흘수 강 바지선의 선수 로터 방향타 모델로 선택되었습니다. 로터 역학은 최대 550rpm의 회전 속도와 최대 0.85m / s의 수류 속도에 대해 테스트되었습니다.
실린더의 낮은 종횡비와 자유 표면 효과는 생성 된 유체 역학적 힘에 영향을 미치는 현상에 상당한 영향을 미쳤습니다. 회전자 길이 대 직경 비율, 회전 속도 대 유속 비율 및 양력에 대한 레이놀즈 수의 영향을 분석했습니다. 실험 결과에 대한 계산 모델의 유효성이 표시됩니다. 결과는 시뮬레이션 및 실험에 대한 결과의 유사한 경향을 보여줍니다.
The paper presents the experimental test setup and measurement method of hydrodynamic force generated on the rotating cylinder (rotor) under uniform flow including the free surface effect. The experimental test setup was a unique construction installed in the flume tank equipped with advanced flow generating and measuring systems.
The test setup consisted of a bearing mounted platform with rotor drive and sensors measuring the hydrodynamic force. The low length to diameter ratio cylinders were selected as models of bow rotor rudders of a shallow draft river barge. The rotor dynamics was tested for the rotational speeds up to 550 rpm and water current velocity up to 0.85 m/s. The low aspect ratio of the cylinder and free surface effect had significant impacts on the phenomena influencing the generated hydrodynamic force. The effects of the rotor length to diameter ratio, rotational velocity to flow velocity ratio, and the Reynolds number on the lift force were analyzed. The validation of the computational model against experimental results is presented. The results show a similar trend of results for the simulation and experiment.
Figure 1. The push barge model in 1:20 geometrical scale during field experiments.Figure 2. Scheme of the measurement area.Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.Figure 10. Parameter y+ for the studied turbulence models and meshes.Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FYFigure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.Figure 15. Flow chart of validation of the computational model against experimental results.Figure 16. Measured (EXP) and computed (CFD) lift force values.
결론
결론은 다음과 같습니다. 계산 결과가 일반적으로 실험 데이터와 일치하는 경우 계산 결과는 검증 된 것으로 간주되며 추가 예측에 사용할 수 있습니다. 검증 실험을 통해 메쉬 밀도와 난류 모델을 결정할 수있었습니다. 작은 전류 속도 0.4m / s 및 0.5m / s에서 직경 D3의 로터에 대해 계산 된 양력 값은 회전 속도가 200rpm 이상일 때의 실험 값과 달랐습니다. 그 이유는 실험 중에 관찰 된 강한 진동과 수치 시뮬레이션에서 모델링되지 않은 유동 분리 때문이었습니다. D2 직경을 가진 로터의 경우 작은 rpm에서 양력의 반대 부호가 관찰되었습니다. 이 현상은 시뮬레이션 중에 관찰되지 않았습니다. 제시된 실험 테스트 설정은 드라이브,지지 구조물 및 측정 장치에 손상을 주지 않고 진동을 포함한 모든 현상을 관찰 할 수 있도록 구성되었습니다. Wang et al. [14]는 동일한 α 값에서 실린더 종횡비가 증가함에 따라 와류 유발 진동이 증가하는 것을 관찰했습니다. 실험의 원활한 진행은 장치 손상 가능성과 함께 약 4의 α에 영향을 미쳤습니다. 본 연구에서는 α = 4.8에서 시작하는 가장 큰 직경의 실린더에서 가장 강한 진동이 관찰되었습니다. 제시된 연구는 로터 생성 흐름의 능동적 제어에 대한 추가 연구의 첫 번째 부분으로 유체 역학적 힘의 신뢰할 수 있는 실험적 예측 방법을 설명했습니다 [22]. , 바람, 파도 [23]. 논문의 참신함은 저상 실린더에 대해 회 전자에서 생성 된 유체 역학적 힘을 모델링 할 수있는 가능성에 대한 조사입니다. 이 방법의 주요 장점은 자유 표면 효과 및 유동 유도 회 전자 진동과 관련된 현상을 포함하여 회 전자 생성 유동장 및 유체 역학적 힘을 관찰 할 수 있다는 것입니다. 제안 된 테스트 설정 구성은 유체 역학적 힘의 매개 변수 연구, 스케일 효과 조사 및 낮은 전류 속도와 큰 회전 속도에서 큰 불일치가 확인 된 CFD 시뮬레이션 모델의 검증에 사용될 것입니다.
References
Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. An Innovative Steering System for a River Push Barge Operated in Environmentally Sensitive Areas. Pol. Marit. Res.2017, 24, 27–34. [Google Scholar] [CrossRef]
Abramowicz-Gerigk, T.; Burciu, Z.; Krata, P.; Jachowski, J. Steering system for a waterborne inland unit. Patent 420664, 2017. [Google Scholar]
Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. Parametric study on the flow field generated by river barge bow steering systems. Sci. J. Marit. Univ. Szczec.2019, 60, 9–17. [Google Scholar]
Gerigk, M.; Wójtowicz, S. An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle. TransnavInt. J. Mar. Navig. Saf. Sea Transp.2015, 9, 591–596. [Google Scholar] [CrossRef]
Thouault, N.; Breitsamter, C.; Adams, N.A.; Seifert, J.; Badalamenti, C.; Prince, S.A. Numerical Analysis of a Rotating Cylinder with Spanwise Disks. AIAA J.2012, 50, 271–283. [Google Scholar] [CrossRef]
Badr, H.M.; Coutanceau, M.; Dennis, S.C.R.; Menard, C. Unsteady flow past a rotating circular cylinder at Reynolds numbers 10 3 and 10 4. J. Fluid Mech.1990, 220, 459. [Google Scholar] [CrossRef]
Karabelas, S.; Koumroglou, B.; Argyropoulos, C.; Markatos, N. High Reynolds number turbulent flow past a rotating cylinder. Appl. Math. Model.2012, 36, 379–398. [Google Scholar] [CrossRef]
Chen, W.; Rheem, C.-K. Experimental investigation of rotating cylinders in flow. J. Mar. Sci. Technol.2019, 24, 111–122. [Google Scholar] [CrossRef]
Zhou, B.; Wang, X.; Guo, W.; Gho, W.M.; Tan, S.K. Experimental study on flow past a circular cylinder with rough surface. Ocean Eng.2015, 109, 7–13. [Google Scholar] [CrossRef]
Tokumaru, P.T.; Dimotakis, P.E. The lift of a cylinder executing rotary motions in a uniform flow. J. Fluid Mech.1993, 255, 1–10. [Google Scholar] [CrossRef]
Wong, K.W.L.; Zhao, J.; Jacono, D.L.; Thompson, M.C.; Sheridan, J. Experimental investigation of flow-induced vibration of a rotating circular cylinder. J. Fluid Mech.2017, 829, 486–511. [Google Scholar] [CrossRef]
Bourguet, R.; Jacono, D.L. Flow-induced vibrations of a rotating cylinder. J. Fluid Mech.2014, 740, 342–380. [Google Scholar] [CrossRef]
Carstensen, S.; Mandviwalla, X.; Vita, L.; Schmidt, P. Lift of a Rotating Circular Cylinder in Unsteady Flows. J. Ocean Wind Energy2014, 1, 41–49. Available online: http://www.isope.org/publications (accessed on 15 January 2021).
Wang, W.; Wang, Y.; Zhao, D.; Pang, Y.; Guo, C.; Wang, Y. Numerical and Experimental Analysis of the Hydrodynamic Performance of a Three-Dimensional Finite-Length Rotating Cylinder. J. Mar. Sci. Appl.2020, 19, 388–397. [Google Scholar] [CrossRef]
Babarit, A.; Delvoye, S.; Arnal, V.; Davoust, L.; Wackers, J. Wave and Current Generation in Wave Flumes Using Axial-Flow Pumps. In Proceedings of the 36th International Conference on Ocean, Offshore and Artic Engineering (OMAE2017), Trondheim, Norway, 25–30 June 2017; pp. 1–10. [Google Scholar] [CrossRef]
Stachurska, B.; Majewski, D. Propagation of Surface waves under currents—Analysis of measurements in wave flume of IBW PAN. IMiG2014, 4, 280–290. [Google Scholar]
Lohrmann, A.; Cabrera, R.; Kraus, N. Acoustic-Doppler Velocimeter (ADV) for laboratory use. In Fundamentals and Advancements in Hydraulic Measuremensts and Experimentation; Buffalo: New York, NY, USA, 1994. [Google Scholar]
Stachurska, B.; Majewski, D. Experimental Measurements of Current Velocity in Wave Flume of IBW PAN; Internal Report; Institute of Hydro-Engineering of Polish Academy of Sciences: Gdańsk, Poland, 2013. (In Polish) [Google Scholar]
He, J.W.; Glowinski, R.; Metcalfe, R.; Nordlander, A.; Periaux, J. Active control and drag optimization for flow past a circular cylinder: Oscillatory cylinder rotation. J. Comput. Phys.2000, 163, 83–117. [Google Scholar] [CrossRef]
Lebkowski, A. Analysis of the Use of Electric Drive Systems for Crew Transfer Vessels Servicing Offshore Wind Farms. Energies2020, 13, 1466. [Google Scholar] [CrossRef]
Open Journal of Marine Science Vol.06 No.02(2016), Article ID:65874,6 pages 10.4236/ojms.2016.62026
FLOW-3D 소프트웨어를 사용하여 다양한 조건에서 Seawalls의 흐름 속도 변경 모델링
Maryam Deilami-Tarifi1, Mehdi Behdarvandi-Askar2*, Vahid Chegini3, Sadegh Haghighi-Pour4 1Department of Coastal Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
방파벽은 파도힘의 수준을 감소시키고 다른 구조물로부터 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 이와 관련하여 이러한 구조에 대한 보다 정확한 조사는 다른 관점에서 매우 중요합니다. 이 연구는 다른 레이아웃과 경사면에서 장애물을 고려하여 방파제 크라운의 속도 변화를 조사합니다. FLOW-3D는 모델링을 위한 이 연구에서 사용되었습니다. 모델링의 결과는 장애물의 존재가 방파벽의 크라운의 유량을 줄이는 결정적인 역할을 한다는 것을 보여줍니다. 또한, 예상대로, 상류 방파의 경사계는 벽의 가장 낮은 속도가 D-상태 레이아웃과 45°의 경사에서 발생하므로 이 속도를 줄이는 데 매우 결정적입니다.
방파벽은 파도의 속도를 감소시키고 다른 구조물을 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 등대는 일반적으로 방파벽에 의해 보호되는 구조 중 하나입니다. 따라서, 방파성상에 통과하는 물의 부피의 중요성 외에도, 이 구조물에 대한 크라운의 통과-흐름의 속도는 이러한 벽 뒤에 있는 구조물에 추진력과 충동을 만드는 속도 요인의 중요성 때문에 매우 중요하다. 기본적으로 업스트림 경사면에서 장애물을 생성하고 업스트림 경사의 속도는 이 속도의 양을 줄이는 데 매우 효과적일 수 있습니다. 그러나 특정 경사면에서 최적의 장애물 레이아웃에 도달하기 위해 모델링하여 이 문제를 정확하게 조사해야 합니다. 본 연구에서는, FLOW-3D의 3차원 모델이 언급된 문제점을 조사하는 데 사용된다 [1].
여러 연구는 파도가 해양 구조물을 덮어 넘나는 데 초점을 맞추고 있습니다. 이러한 방법은 지속적으로 바다 파도로부터 해안을 보호하기 위해 구조물의 오버 토핑을 정확하게 예측했다. 2002년까지 거의 6,500건의 시험이 실시되었습니다. 일반 파도의 물리적 모델도 미국에서 수행되었습니다 [2] . 무작위 파도의 가장 완벽한 세트는 오웬에 의해 완료되었다 (1980). 오웬은 오버 토핑과 바다 벽의 높이와 오버 토핑의 정도 사이의 관계를 연구하기 위해 물리적 모델 테스트의 번호를 수행 [3] . 그는 오버 토핑의 정도는 파도 높이 및 파도 기간과 같은 환경 조건뿐만 아니라 구조 재료의 기하학 및 유형에 따라 달라지며 있음을 보여주었습니다. 이러한 요인의 조합을 조사해야 합니다. 폰 마이어와 듀발 (1992) 연구의 또 다른 시리즈를 수행 [4] .
이 연구에서는 68개의 다양한 형상이 모델링용 소프트웨어에 제공되며 다음 표 1에간단히 소개됩니다. 이 68 개의 다른 기하학에는 4 개의 다른 슬로프, 4 개의 다른 레이아웃 및 4 개의 다른 장애물 높이및 장애물이없는 4 개의 상태및 다른 경사에서만 포함 [5] . 그런 다음, 이러한 서로 다른 형상 및 상태는 FLOW-3D 3차원 모델을 사용하여 동일한 조건에서 평가 및 분석됩니다.
FLOW-3D 소프트웨어는 3차원 유동 필드 분석을 통해 유체 역학 분야에서 강력한 유압 시뮬레이터 응용 프로그램입니다. 모델에서 지배하는 방정식은 다른 유사한 모델과 마찬가지로 Navier-Stokes 방정식과 질량 방정식의 보존[6]입니다.
이 응용 프로그램의 채널을 모델링하려면 일반 조건(모든 시스템의 시뮬레이션 포함), 물리적 조건, 형상 및 모델 해결 네트워크, 출력 및 관련 옵션을 조정해야 합니다. 온도도는 시스템 단위, SI 및 온도에 대해 선택되었습니다.
물리적 인 측면에서, 소프트웨어는 현상을 지배하는 물리학의 원칙에 따라 관련 조건을 선택할 수 있습니다. 이 연구를 지배하는 물리적 조건은 중력과 점도와 난기류입니다. 이 소프트웨어의 난기류는 5 가지 모델에 의해 자극되고이 연구에 사용되는 모델은 재정상화 그룹 (RNG)이었습니다. 난기류의 이 모델에서, K-모델에서 실험적으로 계산된 상수값은 암시적으로 파생된다[7].
그 후 유체를 정의해야 합니다. 이 연구의 선택된 유체는 섭씨 20도물[ 8]이다.
다음 단계는 형상을 정의하고 시뮬레이션에서 중요한 네트워크를 해결하는 것입니다 [9]. FLOW3D를 사용하면 소프트웨어에서 사용할 수 있는 도구로 많은 유체 현상을 묘사할 수 있습니다. 채널 형상을 정의하면 네트워크를 해결해야 합니다. 소프트웨어의 정의된 해결 네트워크는 네트워크 크기, 셀 수 및 X, Y 및 Z 및 경계 조건의 세 가지 좌표에서 해당 치수를 포함한 일반(입방) 해결 네트워크의 형태입니다. 네트워크 셀 치수의 크기가 작을수록 시뮬레이션을 위한 프로그램의 기능과 정밀도가 높을수록[10]이됩니다.
다른 그림에서 관찰할 수 있으므로 다이어그램은 두 가지 유형으로, 먼저 그림 1-4를 포함하는 소프트웨어의 직접 출력과 다른 숫자 5-7을 변경 프로세스의 다이어그램으로 포함합니다. 그러나 그림 1-4에서는 경사면 중 하나에서 출력이 소프트웨어 출력에서 직접 가져온다는 점을 언급해야 합니다.
언급된 수치와 관련하여, 이러한 속도는 장애물없이 상태의 상류 경사면에서 최대인 반면 방파제의 상류 경사면에서 가장 높은 속도 비율이 발생한다는 것을 이해할 수 있다. 흥미로운 점은 가장 낮은 속도는 일반적으로 방파제 크라운에 존재한다는 것입니다.
그림 5-8에서 볼 수 있듯이, 상류 방파제의 모든 다른 경사 상태에서, 가장 높은 유량 속도는 10cm 높이와 가장 낮은 속도의 장애물과 관련이 있으며 50cm 높이의 장애물과 관련이 있다. 그 이유는 장애물과의 충돌로 인해 잠재적 에너지로 변환되는 유동 운동 에너지의 가치가 장애물의 높이를 증가시켜 증가하기 때문입니다. 따라서, 높이가
해당 유동 운동 에너지는 각 장애물에 대한 흐름의 충돌에서 잠재적 에너지의 해당 높이로 변환되며, 흐름 속도가 잠시 0이 되고 장애물을 건너면 속도가 증가한다. 장애물의 높이가 낮은 것이든, 순간적인 제로 속도 상태가 줄어들고 흐름은 더 높은 속도와 함께 계속 움직입니다.
Also, as it can be observed, the highest difference of velocity in all the figures is between the obstacles with 10 cm height and the obstacles with 50 cm height. Also, this amount of difference in velocity for difference between the obstacles with 10 cm and 20 cm heights is higher than that of the differences in the obstacles with 20 cm and 30 cm heights which can be related to the special conditions in flow hydraulic in that range of height.
또한, 관찰할 수 있으므로 모든 수치에서 속도의 가장 높은 차이는 높이 가 10cm의 장애물과 높이가 50cm인 장애물 사이에 있습니다. 또한, 10cm와 20cm 높이의 장애물 사이의 차이에 대한 속도차이는 20cm 및 30cm 높이의 장애물의 차이보다 높으며, 이는 그 높이 범위에서 유압의 특별한 조건과 관련이 있을 수 있다.
메리암 데일라미-타리피, 메디 베다르반디-아스카르, 바히드 체기니, 사데 그 하그하이-부어(2016) FLOW-3D 소프트웨어를 사용하여 다양한 조건하에서 해벽에 흐르는 속도의 변화를 모델링한다. 해양 과학의 오픈 저널,06,317-322. doi: 10.4236/ojms.2016.62026
1. Owen, M.W. (1980) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England. [Citation Time(s):1]
2. van der Meer, J.W. and Janssen, J.P.F.M. (1995) Wave Run-Up and Wave Overtopping at Dikes. In: Kobayashi, N. and Demirbilek, Z., Eds., Wave Forces on Inclined and Vertical Wall Structures, ASCE, New York. [Citation Time(s):1]
3. CIRIA/CUR (1995) Manual on the Use of Rock in Hydraulic Engineering. CUR/RWS Report 169, A.A. Balkema, Rotterdam. [Citation Time(s):1]
4. Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schuttrumpf, H. and van der Meer, J.W. (2007) EurOtop— Wave Overtopping of Seadefences and Related Structures Assessment Manual. http://www.overtopping-manual.com/manual.html? [Citation Time(s):1]
5. De Wall, J.P. and Van der Meer, J.W. (1992) Wave Run-Up and Overtopping at Coastal Structures. ASCE, Proceeding of 23rd ICCE, Venice, 1758-1771. [Citation Time(s):1]
6. De Gerloni, M., Franco, L. and Passoni, G. (1991) The Safety of Breakwaters against Wave Overtopping. Proceedings of ICE Conference on Breakwaters and Coastal Structures, Thomas Telford, London. [Citation Time(s):1]
8. Owen, M.W. (1982) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England. [Citation Time(s):1]
9. Allsop, W., Bruce, T., Pearson, J. and Besley, P. (2006) Wave Overtopping at Vertical and Steep Seawall. [Citation Time(s):1]
10. TAW (1974) Technical Advisory Committee on Protection against Inundation, Wave Run-Up and Overtopping. Government Publishing Office, The Hague. [Citation Time(s):1]
세예드 아마드가 헤리 네 자드1 , Mehdi Behdarvandi Askar2 , 모하마드 안사리 고이 가르3, 에산 파르시4 1 공학, 해안, 항만 및 & amp; 해양 구조물 _ 코람 샤르 해양 과학 기술 대학교 2 코람 샤르 해양 과학 기술 대학교 해양 공학부 해양 구조학과 3 이란 카라 지 테헤란 대학교 농업 및 천연 자원 대학 관개 및 매립 공학과. 4 연구 전문가, Arvand Water and Energy Consulting Engineers Company, Ahvaz, Iran.
Abstract
The development of water waves through submerged and non-submerged vegetation is accompanied by a loss of energy through the resistive force of the vegetation, resulting in a decrease in wave height. Wave damping by vegetation is a function of cover characteristics such as geometry and structure, immersion ratio, density, hardness, and spatial arrangement, as well as wave conditions such as input wave height, duration, and wave direction. In the present study, the effect of geometric arrangement of vegetation with variable height on wave damping has been investigated using the Flow 3D numerical model. For this purpose, a channel with a length of 480 cm and a width of 10.8 cm, which has been previously used by Cox and Wu (2015) to study the effect of plant density with variable height on wave damping, is modeled. The operation of the three arrangements, including long to short arrangement, short to long arrangement, and zigzag arrangement, is examined under four different waves, all of which are linear waves. It should be noted that in this study, wave height is considered as an damping index. The results obtained by measuring the height of the waves at four different points along the channel show that the behavior of the waves in dealing with different arrangements follows a fixed pattern and also changes in the geometry of the vegetation can greatly lead to Increase the damping of the waves. The results show that a change in height arrangement can cause a change in damping of up to 7.1%.
물에 잠긴 초목과 물에 잠기지 않은 초목을 통한 물결의 발달은 초목의 저항력을 통한 에너지 손실을 동반하여 파고가 감소합니다. 식생에 의한 파동감쇠는 기하와 구조, 몰입도, 밀도, 경도, 공간배열 등 커버 특성과 입력파동 높이, 지속시간, 파동방향 등의 파동조건의 함수입니다.
본 연구에서는 Flow 3D 수치 모델을 사용하여 가변 높이 식물이 파동 댐핑에 미치는 기하학적 배치가 조사되었습니다. 이를 위해 Cox와 Wu (2015)가 이전에 파동 댐핑에 대한 가변 높이의 발전소 밀도가 미치는 영향을 연구하기 위해 사용한 길이 480cm, 폭 10.8cm의 채널을 모델링합니다.
장파에서 단파, 단파에서 장파까지, 지그재그 배열을 포함한 세 가지 배열의 작동은 4개의 다른 파장에서 조사됩니다. 모두 선형파입니다.
본 연구에서는 파고가 감쇠 지수로 간주된다는 점에 유의해야 합니다.
채널을 따라 네 곳의 서로 다른 지점에서 파도의 높이를 측정하여 얻은 결과는 다른 배열을 다루는 파도의 동작이 고정된 패턴을 따르며 또한 초목의 기하학적인 변화가 파도의 감쇠를 증가 시키는 것으로 크게 이어질 수 있다는 것을 보여줍니다.
결과는 높이 배열의 변화가 최대 7.1%의 댐핑 변화를 일으킬 수 있음을 보여줍니다.
Figure 1 – Geometry used by Cox and Wu (2015) to study the effect of plant density on wave dampingFigure 2 – Schematic of Erie waveAbf – Three-dimensional view of the abbot from short to long to short
References
خلیلی نفتچالی، آ. خزیمهنژاد، ح. اکبرپور، ا. ورجاوند، پ. 1394. بررسی آزمایشگاهی تأثیر تراکم پوشش گیاهی بر مشخصههای جریان غلیظ. نشریه آبیاری و زهکشی ایران. 9 (1): 95-83. زارعی، م. فتحیمقدم، م. داوودی، ل. 1395. بررسی اثر پوشش گیاهی ساحلی بر میرایی نیروی مخرب امواج منفرد ناشکنا در سواحل شیبدار. نشریه مهندسی آبیاری و آب ایران. 7 (26): 75-62. گرمئی، ا. امامی، ح. خراسانی، ر. 1396. اثر تراکم سه نوع پوشش گیاهی بر میزان رواناب و رسوب در حاشیه شهر مشهد. نشریه آبیاری و زهکشی ایران. 11 (1): 20-11. فضلی، س. نور، ح. 1396. شبیهسازی و ارزیابی اثر سناریوهای مختلف درصد پوشش گیاهی بر فرسایش خاک. نشریه آبیاری و زهکشی ایران. 11 (4): 571-562. قنبری عدیوی، ا. فتحی مقدم، م. 1393. مروری بر تحقیقات استهلاک و میرایی امواج دریا از طریق پوشش گیاهی ساحلی. فصلنامه علوم و فناوری دریا. 18 (70): 62-54. معتمدینژاد، ع. فتحیمقدم، م. زارعی، م. 1394. بررسی آزمایشگاهی اثر پوشش گیاهی ساحلی بر کاهش نیروی امواج شکنا. دهمین سمینار بین المللی مهندسی رودخانه. دانشگاه شهید چمران اهواز، اهواز، ایران. میرزاخانی، گ. قنبری عدیوی، ا. فتاحینافچی، ر. 1398. میرایی موج توسط پوشش گیاهی صلب در سواحل. دومین همایش ملی مدیریت منابع طبیعی با محوریت آب، سیل و محیط زیست. دانشگاه گنبد کاووس، گنبد کاووس، ایران. Asano, T. S. Sutsui, T. and Sakai.T. 1988. Wave damping characteristics due to seaweed. Proceedings of the 35th Coastal Engineering Conference in Japan. JSCE. 138-142 (in Japanese). Asano, T., Deguchi, H. and N. Kobayashi. 1992. Interactions between water waves and vegetation. Proceedings of the 23rd International Conference on Coastal Engineering. ASCE. 2710-2723. Augustin, L.N., Irish, J.L. and Lynett, P. 2009. Laboratory and numerical studies of wave damping by emergent and nearemergent wetland vegetation. Coastal Engineering. 56(3): 332-340. Cavallaro L., Re, C.L., Paratore, G., Viviano, A. and Foti, E. 2010. Response of Posidonia oceanic to wave motion in shallowwaters: Preliminary experimental results. Proceedings of the 32nd International Conference on Coastal Engineering. Coastal Engineering Research Council. 1-10. Cook, H.L. and Campbell, F.B. 1939. Characteristics of some meadow strip vegetation. Agricultural Engineering. 20:345-348. Cooper, N.J. 2005. Wave dissipation across intertidal surfaces in the Wash Tidal inlet, Eastern England. Journal of Coastal Research. 21(1): 28-40. Dean, R.G. 1979. Effects of vegetation on shoreline erosional processes. Wetland Function and Values: The State of Our Understanding. 1: 415-426. Dean, R.G., and Dalrymple, R.A. 1991. Water Wave Mechanics for Engineers and Scientist. World Scientific Publishing.Singapore. Dubi, A. 1995. Damping of water waves by submerged vegetation: A case study on Laminaria hyperborea. PhD thesis. University of Trondheim, the Norwegian Institute of Technology, Trondheim, Norway. Fathi Moghadam, M., Drikundi, K.h., Masjidi, A. and M. 2012. Investigation of the Effect of Vegetation Density and Flexibility on Roughness Coefficients in Riverside and Flood Plains, Iranian Water Resources Research Quarterly, Year 8, Issue 2, Fall 91. Fathi Moghadam, M. and Zaraei, M. 2016. Investigation of the Effect of Coastal Vegetation on the Damping of Destructive Force of Unbreakable Individual Waves on Shabidar Coasts, Journal of Irrigation and Water Engineering, Year 7, No. 26. Furukawa, K., Wolanski, E. and Mueller, H. 1997. Currents and sediment transport in mangrove forests. Estuar Coast Shelf Sci 44:301–310. Harada, K. and Imamura, F. 2006. Experimental study on the resistance by mangrove under unsteady flow, Proc. Congress. Asian and Pacific Coastal Engineering Dalia, 984-975. Jellilund, R., M. Zeid Ali, L. Nouri Hindi and M. 2012. Investigating the advantages and disadvantages of protection and organization of beaches with vegetation against morphological changes, Fifth National Conference and Specialized Environment Exhibition, 90. Journal 629, Guide to the Design and Implementation of a Coastal Protection Structure. Kongko, W. 2004. Study on tsunami energy dissipation in mangrove forest, Master Thesis Report, wate University, Japan, 43 pages. Kutija, V. and Erduran, K. S. 2003. Quasi-three-dimensional numerical model for flow through flexible, rigid, submerged and non-sub merged vegetation. Journal of Hydro informatics. 35(3): 189-202. Li, R.M. and Shen, H.W. 1973. Effect of tall vegetations on flow and sediment. Journal of the Hydraulics Division, ASCE. 99(5):739-814. Wu, W.C. and Cox, D, T. 2015. Effects of Vertical Variation in Vegetation Density on Wave Attenuation. Journal of Waterway, Port, Coastal and Ocean Engineering. Volume 142 Issue 2.
XinyuHanaShengDongaYizhiWangb aCollege of Engineering, Ocean University of China, Qingdao, 266100, China bShandong Harbour Engineering Group Co., Ltd., Rizhao, 276826, China
Highlights
Interaction of oblique waves and the arc-shaped breakwater was simulated.
Wave force and pressure distribution along central axis were analysed.
Arc curvature has little effect on the maximum wave force of different sections.
Overtopping-induced Hmax behind breakwater up to 0.7 times of incident wave height.
Abstract
The hydrodynamic interaction between oblique waves and an arc-shaped breakwater and the wave field behind it. A three-dimensional computational fluid dynamic model was used to simulate the interaction between the oblique waves and arc-shaped breakwater. The pressure distribution and wave force in the different sections under different wave directions were measured by experiments to validate the numerical results. The pressure distribution and wave force in the arc-shaped vertical part of the breakwater along the central axis were further analysed using numerical model. The maximum positive and negative forces in each section along the central axis were compared. The results indicated that the arc curvature exerted little effect on the maximum wave force in the different sections. The wave height behind the breakwater was obviously smaller than that at the front. With the decrease in the incident angle, the influence of diffraction on the wave field gradually decreased. Under east–southeast waves, the maximum wave height behind the breakwater caused by overtopping was approximately 0.7 times the incident-wave height. In the spatial distribution of the wave period behind the breakwater, some areas with smaller periods existed, which may be caused by the overtopping flow that broke behind the breakwater.
경사파와 호 모양의 방파제와 그 뒤에 있는 파동 장 사이의 유체 역학적 상호 작용. 3 차원 전산 유체 역학 모델을 사용하여 사선 파와 호 모양의 방파제 사이의 상호 작용을 시뮬레이션했습니다.
서로 다른 파동 방향에서 서로 다른 섹션의 압력 분포와 파력은 수치 결과를 검증하기 위해 실험을 통해 측정 되었습니다. 방파제 중심 축을 따라 호 모양의 수직 부분의 압력 분포와 파력은 수치 모델을 사용하여 추가로 분석되었습니다.
중심 축을 따라 각 섹션에서 최대 양의 힘과 음의 힘을 비교했습니다. 결과는 아크 곡률이 다른 섹션에서 최대 파력에 거의 영향을 미치지 않음을 나타냅니다. 방파제 뒤의 파도 높이는 정면보다 분명히 작았습니다. 입사각이 감소함에 따라 파동 장에 대한 회절의 영향이 점차 감소했습니다.
동-남동 파 하에서 오버 탑으로 인한 방파제 뒤의 최대 파고는 입사 파고의 약 0.7 배였다. 방파제 뒤의 파동주기의 공간적 분포에는 방파제 뒤에서 파열 된 과잉 흐름에 의해 발생할 수 있는 더 작은주기를 가진 일부 지역이 존재했습니다.
Keywords
Arc-shaped breakwater3D numerical modelWave forcePressure distributionWave height and period behind breakwater
Figures -Interaction between oblique waves and arc-shaped breakwaterFigures-Interaction between oblique waves and arc-shaped breakwater2
and N Belyaev2 1 Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia pan3.b@edu.spbstu.ru
Abstract
방파제 설계시 항만 내 수역 및 접안 시설에서 중대한 파도 발생을 배제 할 필요가 있다. 이 기사는 항구 지역의 물 이동 계산 결과를 제시합니다. 항구 입구의 위치와 주어진 물체의 크기에 대한 가장 안전한 옵션이 확인되었습니다. FLOW – 3D 프로그램을 사용하여 항구 수역의 예비 배치 단계에서 계획되고 건설적인 솔루션을 선택할 가능성이 입증되었습니다.
Introduction
항구를 설계 할 때 계류선의 가장 합리적인 구성과 항구 수역의 레이아웃을 선택하여 항구의 영토를 배치하는 것이 필요합니다. 러시아 연방의 항구 수역 배치는 항구 수역 요소에 대한 사양을 포함하는 해로, 페어웨이 및 기동 구역에 대한 설계 표준의 요구 사항에 따라 수행됩니다 [1, 2].
항구 물은 파도, 퇴적물 축적 및 얼음으로부터 보호되어야 합니다. 항구 계획을 작성할 때, 선박의 기동 및 연안 계류 중뿐만 아니라 선적 및 하역 및 기타 항구 운영 중에 선박 계류에 대한 정상적인 조건이 생성되도록 파도로부터 수역을 보호하는 정도를 제공해야 합니다.
설계 결정은 새로운 포트를 설계하거나 기존 포트를 개발할 때 물리적 또는 수학적 모델링을 기반으로 합니다 [2]. 항구 수역에서 계산 된 물 흐름의 매개 변수는 수문 기상 조사, 장기 현장 관찰 및 실험실 연구의 결과를 기반으로 하도록 권장됩니다.
공학 수문 기상 측량 데이터가 불충분하면 계산 방법을 기반으로 설계 폭풍의 파도 매개 변수를 결정할 수 있습니다. 사용된 계산 방법이 국제 실무에서 동일한 목적으로 채택된 방법 (모델)에 부합하는지 표시하는 것이 좋습니다 [3].
Figure 1. Sketch map of the port Laozi on Lake HongzeFigure 2. The location of the port entrance on Lake Hongze:
a – variant 1; b – variant 2; c – variants 3-5Figure 3. Port water area planFigure 4. Modeling of variant 1 with the movement of waves in the
port water areaFigure 5. Modeling of variant 2:
a is prevailing movement of water towards the enclosed water area; b is prevailing
reverse movement of waterFigure 6. Modeling of variant 3Figure 7. Modeling of variant 4Figure 8. Modeling of variant 5Figure 9. Plan of the port water area with design pointsFigure 10. Change in water depth at point A: a – variant 1; b – variant 2Figure 11. Change in water depth at point A: a – variant 3; b – variant 4; c – variant 5Figure 12. Change in water depth at points A (a) and C (b) for variant 3Figure 13. Change in water depth at points A (a) and B (b) for variant 3Figure 14. Scheme of vessel traffic: a – variant 3; b – variant 4
References [1] SP 350.1326000.2018. 2018 Norms for technological design of sea ports (Moscow: Standartinform) p 226 [2] SP 444.1326000.2019. 2019 Standards for the design of sea channels, fairways and maneuvering areas (Moscow: Standartinform) p 62 [3] SP 38.13330.2012. 2014 Loads and impacts on Hydraulic structures (from wave, ice and ships) (Moscow: Ministry of Regional Development of the Russian Federation) p 112 [4] Rijnsdorp D P Smit P B and Zijlema M 2012 Non-hydrostatic modelling of infragravity waves using SWASH. Proceedings of 33rd Conference on Coastal Engineering. pp 1287–1299 [5] Kantardgi I G Zheleznyak M J 2016 Laboratory and numerical study of waves in the port area. Magazine of Civil Engineering No 6 pp 49–59 DOI: 10.5862/MCE.66.5 [6] Zheleznyak M J Kantardgi I G Sorokin M S and Polyakov A I 2015 Resonance properties of seaport water areas Magazine of Civil Engineering № 5(57) pp 3-19 DOI:10.5862/MCE.57.1 [7] Kantarzhi I Zuev N Shunko N 2014 Numerical and physical modelling of the waves inside the new marina in Gelendjik (Black Sea) Application of physical modelling to port and coastal protection. Proceedings of 5th international conference Coastlab (Varna) Vol 2 pp 253–262 [8] Makarov K N and Chebotarev A G 2015 Breakwater placement at the root of a seawall Magazine of Civil Engineering № 3(55) pp 67-78 DOI: 10.5862/MCE.55.8 [9] Belyaev N D Lebedev V V and Alexeeva A V 2017 Investigation of the soil structure changes under the tsunami waves impact on the marine hydrotechnical structures V 10 № 4 pp 44-52 DOI: 10.7868/S2073667317040049 [10] Lebedev V V Nudner I S and Belyaev N D 2018 The formation of the seabed surface relief near the gravitational object Magazine of Civil Engineering No 79(3) pp 120–131 DOI: 10.18720/MCE.79.13 [11] Kofoed-Hansen H Sloth P Sørensen O R Fuchs J 2000 Combined numerical and physical modelling of seiching in exposed new marina Proceedings of 27th international conference of coastal engineering pp 3600–3614 [12] Smit P Stelling G and Zijlema M 2011 Assessment of nonhydrostatic wave-flow model SWASH for directionally spread waves propagating through a barred basin Proceedings of ACOMEN 2011 pp 1–10 [13] Zijlema M Stelling G Smit P 2011 SWASH: An operational public domain code for simulating wave fields and rapidly varied flows in coastal waters. Coastal Engineering. № 10(58). pp 992– 1012 [14] FLOW-3D® 2008 User’s Manual Version 9.3 Flow Science Inc p 821 [15] Pan Bayan and Belyaev N D 2019 Week of Science SPbPU: Proceedings of an international scientific conference The best reports. pp 3-7 [16] Girgidov A A 2011 Hybrid simulation in hydrotechnical facilities design and FLOW-3D as a tool its realization Magazine of Civil Engineering №3 pp 21-27 [17] Girgidov A A 2010 Proceeding of the VNIIG vol 260. pp 12-19
1 Faculty of Water Resources Engineering, Thuyloi University, 175 Tay Son, Dong Da, Ha Noi 116705, Vietnam 2 Hydraulic Construction Institute, 3/95 Chua Boc, Dong Da, Ha Noi 116705, Vietnam * Author to whom correspondence should be addressed. Academic Editor: Costanza Aricò Water 2021, 13(3), 344;
Abstract
본 논문의 목적은 일부 2D 및 3D 수치 모델이 침수 지역에 고립된 건물 또는 건물 배열이 있는 곳에서 홍수 파동을 시뮬레이션하는 능력을 조사하는 것이었습니다.
먼저, 제안된 2D 수치 모델은 구조화된 메시에서 2D 천수(shallow water) 방정식(2D-SWEs)을 해결하기 위한 유한 볼륨 방법(FVM)을 기반으로 했습니다.
FDS (flux-difference splitting)은 정확한 질량 균형을 얻기 위해 사용되었고 Roe 체계는 Riemann 문제를 근사하기 위해 호출되었습니다.
둘째, 상업적으로 이용 가능한 3D CFD 소프트웨어 패키지가 선택되었으며, 여기에는 두 가지 난류 모델이 포함된 Flow 3D 모델이 포함되어 있습니다.
RNG(Renormalized Group) 및 LES(Large-eddy Simulation)를 사용하는 레이놀즈 평균 Navier-Stokes(RAN)입니다. 댐 붕괴 흐름으로 인한 장애물에 대한 충격력의 수치 결과는 3D 솔루션이 2D 솔루션보다 훨씬 낫다는 것을 보여주었습니다.
건물 배열에 작용하는 충격력의 3D 수치 힘 결과를 보유하고 있는 실험 데이터와 비교함으로써, 속도 유도력이 동적 힘에 미치는 영향은 Froude 숫자의 함수와 사고 파동의 수심 함수에 의해 정량화 되었습니다. 또한, 우리는 힘의 강도의 피크 값의 3D 계산 결과에 대한 초기 물 단계와 댐 붕괴 폭의 영향을 조사했습니다.
The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.
건물 또는 건물 그룹에 대한 홍수 파동의 영향에 대한 연구는 하류 지역에 대한 조기 경고 또는 안전 의식 향상에 중요한 역할을 했습니다. 기본적으로 댐 파괴 흐름에 대한 연구는 실험 측정이나 수치 시뮬레이션을 통해 추정 할 수 있습니다 [1,2,3,4,5,6].
컴퓨터 처리 능력의 증가로 인해 불연속 흐름에 대한 수치 연구가 비용 효율적이되었습니다. 지난 10 년 동안 천수(shallow water) 솔버는 정확성과 계산 능력면에서 크게 향상되었습니다. 침수 가능 지역의 수심 및 속도 프로파일과 같은 유체 역학적 매개 변수에 많은주의를 기울였습니다 [1,2,3,4,5,6,7,8].
Migot et al. [9]는 도시 홍수의 실험적 모델링에 관한 많은 기사를 검토했습니다. 그 논문에 언급 된 45 개의 작품 중 단 4 개의 프로젝트 만이 장애물에 가해지는 일정한 또는 비정상적인 흐름의 힘 또는 압력을 측정했습니다.
또한 물리적 및 2D 수치 모델에서 건물 또는 건물 그룹에 돌발 홍수가 미치는 영향에 대한 연구는 거의 없었습니다. 천수(shallow water) 모델은 [10,11]에서 고립된 장애물에 대한 충격의 힘을 예측하는데 사용되었습니다.
한편 Shige-eda [12]는 액체와 건물 배열 간의 상호 작용을 결정하기 위해 물리적 모델과 2D 수치 체계를 선택했습니다. Aureli와 Shige-eda는 수직 속도와 가속도를 무시하기 때문에 댐 파괴 흐름의 힘을 추정하기 위한 2D 천수(shallow water) 방정식 (SWE)의 단점을 보여주었습니다 [10,12].
Migot [9]은 또한 장애물 주변의 시뮬레이션된 홍수 흐름에 대한 2D SWE에 대한 여러 출판물이 있었지만 이 주제에 대한 3D 수치 모델에 대한 연구는 거의 없다고 지적했습니다. 최근 전산 유체 역학 (CFD) 3D 시뮬레이션은 유체 흐름과 관련된 문제를 해결하기위한 광범위한 도구가되었습니다.
댐 파괴 파의 특성은 [13,14,15,16]에 의해 주목되었고 Issakhov [17]는 다양한 종류의 장애물이 압력 분포에 미치는 영향을 조사하기 위해 CFD 방법을 사용했습니다. 그들은 분포가 댐 표면에서 3 배 더 낮다는 것을 밝혔다.
Aureli [10]는 댐 파괴 파가 구조물에 미치는 영향의 정적 힘을 평가하기 위해 실험 테스트와 2D 및 3D 수치 모델을 사용했습니다. Mokarani [18]는 댐 브레이크 흐름 영향의 VOF 시뮬레이션에서 피크 압력 안정성 조건을 연구했습니다.
앞서 언급한 작품에서 구조물이나 구조물 군에 작용하는 힘은 압력에 의한 정 수력 또는 정력이었다. 한편, 급류에서 속도로 인한 힘은 압력 력보다 크거나 같았습니다 [19]. Armanini [20]는 정상 흐름에 대해이 항을 추정하기 위한 분석적 표현 만을 제시했습니다. 우리가 아는 한, 건물 그룹에 작용하는 비정상 흐름의 동적 힘을 생성하기 위해 2D 및 3D 수학적 모델을 모두 사용하는 작업은 없습니다.
따라서 본 연구에서는 제안된 2D 수치 모델과 3D 수학적 모델 모두에 의해 고립 된 장애물 또는 장애물 그룹에 대한 급격한 비정상 흐름의 테스트 사례를 재현했습니다. 수심 및 유속 수문 그래프와 같은 몇 가지 수력 학적 특성이 추정되었으며 측정 된 데이터와 매우 잘 일치했습니다.
특히 댐 브레이크 흐름이 서로 다른 건물에 가하는 동적인 힘도 시뮬레이션했습니다. 속도 유도 힘이 동적 힘에 미치는 영향 수준을 나타내는 매개 변수는 Froude 수와 입사 파동의 수심의 함수인 것으로 밝혀졌습니다. 또한 붕괴된 댐 사이트 폭 (b)과 초기 수위 (h0)는 충격력의 최대 값에 영향을 미치는 변수로 고려되었습니다.
Figure 1. (a) Configuration of experiment test (dimension in meters); (b) Gauges on the vertical front face of building.Figure 2. (a) Distributed pressure profiles at centerline of front face of column; (b) Comparison of load-time histories simulated by different numerical modelsFigure 3. Group of buildings in flooded area.Figure 4. Water depth and u-velocity profiles at gauge b.Figure 5. Water hydrographs at gauges a and c.Figure 6. Velocity component profiles at gauges a and c.Figure 7. Formation of incident and reflected waves.Figure 8. Snapshots of streamlines of Froude number at different times: 1.0 s, 2.0 s, 5.0 s and 10 s.Figure 9. Force in the flow direction exerted on 6 buildings.Figure 10. The linear regression between forces per unit width (F) and q2b/h0.
Conclusions
댐 붕괴 흐름으로 인한 홍수 파도는 높은 속도 또는 큰 깊이가 관련되었을 때 건물에 큰 영향을 미칩니다. 본 논문에서는 2D 및 3D 수치 모델의 건물 및 건물 그룹에 대한 빠른 흐름에 의해 발생하는 유압 특성과 충격 부하를 추정할 수 있는 능력을 조사했습니다. 천수(shallow water) 방정식에 기초한 2D 수학 모델은 FDS 방법으로 해결되었으며, FDS 방법은 최신 버전의 Flow 3D 유체 역학 모델과 함께 사용되었습니다. 연구의 주요 발견은 다음과 같습니다. (1) 수심 또는 속도 프로파일을 공식화하기 위해 2D 및 3D 수치 솔루션은 모두 매우 유사합니다. 제안된 2D 수치 모델은 정적 힘의 최대 값 뿐만 아니라 수심 및 속도 구성 요소를 포함하는 유압 특성을 예측하는 데 적합합니다. 그러나 LES 및 RAN 난류 모듈이 포함된 3D 유체역학 모델은 2D 얕은 흐름 모델이 1개만 제공하는 동안 두 개의 최고 충격 부하를 잘 포착할 수 있습니다. 일반적으로 3D 결과는 실험 결과와 더 가깝습니다. (2) 여러 건물에 대한 정적 및 동적 힘은 모두 LES 모듈을 사용하여 Flow 3D에 의해 계산되었습니다. 건물에서 속도에 의한 힘과 압력의 역할은 위치에 따라 다릅니다. 댐 현장 근처에서, 속도 유도 힘은 댐 파괴 파동의 주 방향에서 멀리 떨어져 있거나 두 번째 배열에서 압력 힘이 더 중요합니다. 속도 유도 힘의 영향은 매개 변수 α에 의해 정량화되며, 이는 사고파의 Froude 숫자와 수심 함수로 수행됩니다. q2b/h0과 정적 힘과 동적 힘의 피크 강도 사이의 선형 회귀 관계는 합리적인 R-제곱 양으로 해결됩니다.
추가 연구에서, 제시된 2D 수치 모델의 견고성과 효과는 더 명확하게 드러날 것입니다. 대규모 도메인에 대한 홍수 흐름을 시뮬레이션하는 데 쉽게 적용할 수 있습니다. 또한, α 매개변수의 제안된 방정식(21)은 실제 사례 연구에서 다운스트림 영역의 건물에 대한 속도 유도 힘의 영향을 정확하게 평가하기 위한 매우 의미가 있습니다. 이 매개 변수의 정확도 수준을 높이려면 서로 다른 조건에서 장애물에 작용하는 여러 가지 힘 실험이 구현되어야 합니다.
Testa, G.; Zuccala, D.; Alcrudo, F.; Mulet, J.; Frazao, S.S. Flash flood flow experiment in a simplifed urban district. J. Hydraul. Res.2007, 45, 37–44. [Google Scholar] [CrossRef]
Soares-Frazao, S.; Zech, Y. Dam-break flow through an idealized city. J. Hydraul. Res.2008, 46, 648–665. [Google Scholar] [CrossRef]
Soares-Frazão, S.; Zech, Y. Experimental study of dam-break flow against an isolated obstacle. J. Hydraul. Res.2007, 45, 27–36. [Google Scholar] [CrossRef]
Soares-Frazão, S. Experiments of dam-break wave over a triangular bottom sill. J. Hydraul. Res.2007, 45, 19–26. [Google Scholar] [CrossRef]
di Cristo, C.; Evangelista, S.; Greco, M.; Iervolino, M.; Leopardi, A.; Vacca, A. Dam-break waves over an erodible embankment: Experiments and simulations. J. Hydraul. Res.2018, 56, 196–210. [Google Scholar] [CrossRef]
Evangelista, S. Experiments and numerical simulations of dike erosion due to a wave impact. Water2015, 7, 5831–5848. [Google Scholar] [CrossRef]
Li, Y.L.; Yu, C.H. Research on dam break flow induced front wave impacting a vertical wall based on the CLSVOF and level set methods. Ocean Eng.2019, 178, 442–462. [Google Scholar] [CrossRef]
Özgen, I.; Zhao, J.; Liang, D.; Hinkelmann, R. Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity. J. Hydrol.2016, 541, 1165–1184. [Google Scholar] [CrossRef]
Mignot, E.; Li, X.; Dewals, B. Experimental modelling of urban flooding: A review. J. Hydrol.2019, 568, 334–342. [Google Scholar] [CrossRef]
Aureli, F.; Dazzi, A.; Maranzoni, A.; Mignosa, P.; Vacondio, R. Experimental and numerical evaluation of the force due to the impact of a dam break wave on a structure. Adv. Water Resour.2015, 76, 29–42. [Google Scholar] [CrossRef]
Milanesi, L.; Pilotti, M.; Belleri, A.; Marini, A.; Fuchs, S. Vulnerability to flash floods: A simplified structural model for masonry buldings. Water Resour. Res.2018, 54, 7177–7197. [Google Scholar] [CrossRef]
Shige-eda, M.; Akiyama, J. Numerical and experimental study on two dimensional flood flows with and without structures. J. Hydraul. Eng.2003, 129, 817–821. [Google Scholar] [CrossRef]
Cagatay, H.O.; Kocaman, S. Dam break flows during initial stage using SWE and RANs approaches. J. Hydraul. Res.2010, 48, 603–611. [Google Scholar] [CrossRef]
Yang, S.; Yang, W.; Qin, S.; Li, Q.; Yang, B. Numerical study on characteristics of dam break wave. Ocean Eng.2018, 159, 358–371. [Google Scholar] [CrossRef]
Robb., D.M.; Vasquez., J.A. Numerical simulation of dam break flows using depth averaged hydrodynamic and three dimensional CFD models. In Proceedings of the 22nd Canadian Hydrotechnical Conference, Ottawa, ON, Canada, 28–30 April 2015. [Google Scholar]
Kocaman, S.; Evangelista, S.; Viccione, G.; Guzel, H. Experimental and Numerical analysis of 3D dam break waves in an enclosed domain with a single oriented obstacles. Environ. Sci. Proc.2020, 2, 35. [Google Scholar] [CrossRef]
Issakhov, A.; Zhandaulet, Y.; Nogaeva, A. Numerical simulation of dambreak flow for various forms of the obstacle by VOF method. Int. J. Multiph. Flow2018, 109, 191–206. [Google Scholar] [CrossRef]
Mokarani, C.; Abadie, S. Conditions for peak pressure stability in VOF simulations of dam break flow impact. J. Fluids Struct.2016, 62, 86–103. [Google Scholar] [CrossRef]
Liu, L.; Sun, J.; Lin, B.; Lu, L. Building performance in dam break flow—an experimental sudy. Urban Water J.2018, 15, 251–258. [Google Scholar] [CrossRef]
Armanini, A.; Larcher, M.; Odorizzi, M. Dynamic impact of a debris flow front against a vertical wall. In Proceedings of the 5th international conference on debris-flow hazards mitigation: Mechanics, prediction and assessment, Padua, Italy, 14–17 June 2011. [Google Scholar] [CrossRef]
Hubbard, M.E.; Garcia Navarro, P. Flux difference splitting and the balancing of source terms and flux gradients. J. Comput. Phys.2000, 165, 89–125. [Google Scholar] [CrossRef]
Roe, P.L. A basis for upwind differencing of the two-dimensional unsteady Euler equations. In Numerical Methods in Fluids Dynamics II; Oxford University Press: Oxford, UK, 1986. [Google Scholar]
Bradford, S.F.; Sander, B. Finite volume model for shallow water flooding of arbitrary topography. J. Hydraul. Eng. (ASCE)2002, 128, 289–298. [Google Scholar] [CrossRef]
Brufau, P.; Garica-Navarro, P. Two dimensional dam break flow simulation. Int. J. Numer. Meth. Fluids2000, 33, 35–57. [Google Scholar] [CrossRef]
Hien, L.T.T. 2D Numerical Modeling of Dam-Break Flows with Application to Case Studies in Vietnam. Ph.D. Thesis, Brescia University, Brescia, Italy, 2014. [Google Scholar]
Hien, L.T.T.; Tomirotti, M. Numerical modeling of dam break flows over complex topography. Case studies in Vietnam. In Proceedings of the 19th IAHR-APD Congress 2014, Hanoi, Vietnam, 21–24 September 2014; ISBN 978-604-82-1383-1. [Google Scholar]
Flow-3D, Version 12.0; User Mannual; Flow Science Inc.: Santa Fe, NM, USA, 2020.
Guney, M.S.; Tayfur, G.; Bombar, G.; Elci, S. Distorted physical model to study sudden partial dam break flow in an urban area. J. Hydraul. Eng.2014, 140, 05014006. [Google Scholar] [CrossRef]
Shige-eda, M.; Akiyama, J. Discussion and Closure to “Numerical and experimental study on two dimensional flood flows with and without structures” by Mirei Shige-eda and Juichiro Akiyama. J. Hydraul. Eng.2005, 131, 336–337. [Google Scholar] [CrossRef]
Ritter, A. Die Fortpflanzung der Wasserwelle (Generation of the water wave). Z. Ver. Dtsch. Ing.1892, 36, 947–954. [Google Scholar]
쓰나미 진화, 전파 및 침수의 수치 모델링은 현상에 관련된 수많은 매개 변수로 인해 복잡합니다. 쓰나미 모션을 해결하는 숫자 코드의 성능과 흐름 및 속도 패턴을 평가하는 것이 중요합니다. NAMI DANCE는 긴 파도 모델링을 위해 개발된 계산 도구입니다.
쓰나미 생성, 전파 및 침수 메커니즘의 수치 모델링 및 효율적인 시각화를 제공하고 쓰나미 매개 변수를 계산합니다. 긴 파도 이론에서, 물 입자의 수직 움직임은 압력 분포에 영향을 미치지 않습니다.
이러한 근사치와 소홀히 하는 수직 가속을 기반으로 질량 보존 및 모멘텀 방정식은 2차원 깊이 평균 방정식으로 줄어듭니다. NAMI DANCE는 유한차 계산 방법을 사용하여 긴 파도 문제에서 선형 및 비선형 형태의 깊이 평균 얕은 수식을 해결합니다.
이 연구에서 NAMI DANCE는 미국 포틀랜드에서 열린 2015 년 국립 쓰나미 위험 완화 프로그램 (NTHMP) 연례 회의에서 논의된 벤치 마크 문제에 적용됩니다.
벤치마크 문제는 하나의 독방 파도가 해양 섬 특징이 있는 삼각형 모양의 선반을 전파하는 일련의 실험을 특징으로 합니다. 이 문제는 섬 부근에서 상세한 무료 표면 고도 및 속도 의 타임 시리즈를 제공합니다. 결과를 비교한 결과, NAMI DANCE는 긴 파도 진화, 전파, 증폭 및 쓰나미 전류를 만족스럽게 예측할 수 있음을 보여주었습니다.
쓰나미는 해저 지진, 수중 산사태, 화산 폭발 또는 큰 운석 파업으로 인한 해저의 갑작스런 움직임에 의해 생성되는 큰 파도입니다. 쓰나미 파도는이 현상의 가장 파괴적인 매개 변수로 받아 들여진다; 그러나 큰 파도 움직임에 의해 트리거되는 전류는 경우에 따라 매우 치명적일 수 있습니다.
분지 공명 및 기하학적 증폭은 폐쇄 된 분지에서 쓰나미 영향의 지역 배율에 대한 두 가지 합리적으로 잘 이해된 메커니즘이며, 일반적으로 항구 또는 항구에서 쓰나미 위험 잠재력을 추정 할 때 조사 되는 메커니즘입니다. 반면에 전류에 대한 이해력과 예측 능력은부족하다[1].
이 연구는 수치 도구를 사용하여 쓰나미 진화, 전파 및 증폭뿐만 아니라 쓰나미 전류의 추정에 2 차원 깊이 평균 천수(shallow water)모델 방정식의 충분성을 조사하는 것을 목표로; 즉 나미 댄스. 1970 년대 이후, 독방 파도는 일반적으로 실험 및 수학 연구에서, 쓰나미를 모델링하는 데 사용되었습니다[2].
이러한 점에서 수치 코드는 복잡한 목욕을 통해 단일 독방 파도의 진화와 전파에 초점을 맞춘 벤치마크 문제에 적용됩니다. 이 문제는 선반의 근해에 위치한 섬 특징이 있는 삼각형 모양의 선반을 전파할 때 단일 고독한 파도의 변형을 분석하는 일련의 실험을 설명합니다. 섬 부근에 형성되는 해류도 실험에서 조사된다.
이 연구에 사용된 벤치마크 문제는 미국 포틀랜드에서 개최된 2015 년 국립 쓰나미 위험 완화 프로그램 (NTHMP) 워크샵의 벤치마크 문제 #5.3]. 벤치마크 데이터와 수치 결과를 비교하여 2차원 깊이 평균 얕은 수식은 쓰나미 파도 진화와 해류에 대해 만족스러운 결과를 제공하므로 쓰나미 완화 전략을 결정하는 동안 사용하기에 충분한 도구임을 관찰합니다.
Figure 1. The bathymetry provided with the benchmark problem.Figure 2. Model parameters: (a) bathymetry of the numerical model, NAMI DANCE; (b) incoming wave.Figure 3. Comparison of free surface elevation (FSE) results: (a) X = 7.5 m and Y = 0.0 m at Gage 1; (b) X = 13.0 m and Y = 0.0 m at Gage 2; (c) X = 21.0 m and Y = 0.0 m at Gage 3; (d) X = 7.5 m and Y = 5.0 m at Gage 4; (e) X = 13.0 m and Y = 5.0 m at Gage 5; (f) X = 21.0 m and Y = 5.0 m at Gage 6; (g) X = 25.0 m and Y = 0.0 m at Gage 7; (h) X = 25.0 m and Y = 5.0 m at Gage 8. Black line represents benchmark data, red line represents numerical results.Figure 4. Comparison of results: (a) horizontal velocity in x-direction, U, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (b) horizontal velocity in y-direction, V, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (c) horizontal velocity in x-direction, U, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9; (d) horizontal velocity in y-direction, V, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9. Black line represents benchmark data, red line represents numerical results.
References
Lynett, P.J.; Borrero, J.C.; Weiss, R.; Son, S.; Greer, D.; Renteria, W. Observations and modeling of tsunami-induced currents in ports and harbors. EPSL2012, 327, 68–74. [Google Scholar]
Madsen, P.A.; Fuhrman, D.R.; Schaffer, H.A. On the solitary wave paradigm for tsunamis. J. Geophys. Res.2008, 113. [Google Scholar] [CrossRef]
Onat, Y.; Yalciner, A.C. Initial stage of database development for tsunami warning system along Turkish coasts. Ocean Eng.2013, 74, 141–154. [Google Scholar] [CrossRef]
Kian, R.; Yalciner, A.C.; Aytore, B.; Zaytsev, A. Wave Amplification and Resonance in Enclosed Basins; A Case Study in Haydarpasa Port of Istanbul. In Proceedings of the 2015 IEEE/OES Eleventh Current, Waves and Turbulence Measurement, St. Petersburg, VA, USA, 2–6 March 2015; Volume 11, pp. 1–7.
Patel, V.M.; Dholakia, M.B.; Singh, A.P. Emergency preparedness in the case of Makran tsunami: A case study on tsunami risk visualization for the western parts of Gujarat, India. Geomat. Nat. Hazards Risk2016, 7, 826–842. [Google Scholar] [CrossRef]
Yalciner, A.C.; Pelinovsky, E.; Zaytsev, A.; Kurkin, A.; Ozer, C.; Karakus, H.; Ozyurt, G. Modeling and visualization of tsunamis: Mediterranean examples. In Tsunami and Nonlinear Waves, 1st ed.; Kundu, A., Ed.; Springer: Berlin, Germany, 2007; pp. 273–283. [Google Scholar]
Synolakis, C.E.; Bernard, E.N.; Titov, V.; Kanoglu, U.; Gonzalez, F. Validation and verification of tsunami numerical models. PAGEOPH2008, 165, 2197–2228. [Google Scholar] [CrossRef]
Yalciner, A.C.; Zaytsev, A.; Kanoglu, U.; Velioglu, D.; Dogan, G.G.; Kian, R.; Sharghivand, N.; Aytore, B. NTHMP Mapping and Modeling Benchmarking Workshop: Tsunami Currents. Available online: http://coastal.usc.edu/currents_workshop/presentations/Yalciner.pdf (accessed on 2 August 2016).
Ozer, C.; Yalciner, A.C. Sensitivity study of hydrodynamic parameters during numerical simulations of tsunami inundation. PAGEOPH2011, 168, 2083–2095. [Google Scholar]
Sozdinler, C.O.; Yalciner, A.C.; Zaytsev, A. Investigation of tsunami hydrodynamic parameters in inundation zones with different structural layouts. PAGEOPH2014, 172, 931–952. [Google Scholar] [CrossRef]
Sozdinler, C.O.; Yalciner, A.C.; Zaytsev, A.; Suppasri, A.; Imamura, F. Investigation of hydrodynamic parameters and the effects of breakwaters during the 2011 Great East Japan Tsunami in Kamaishi Bay. PAGEOPH2015, 172, 3473–3491. [Google Scholar] [CrossRef]
Velioglu, D.; Kian, R.; Yalciner, A.C.; Zaytsev, A. Validation and Performance Comparison of Numerical Codes for Tsunami Inundation. In Proceedings of the 2015 American Geophysical Union Fall Meeting, San Francisco, CA, USA, 14–18 December 2015.
Velioglu, D.; Kian, R.; Yalciner, A.C.; Zaytsev, A. Validation and Comparison of 2D and 3D Codes for Nearshore Motion of Long Waves Using Benchmark Problems. In Proceedings of the 2016 European Geosciences Union, Vienna, Austria, 17–22 April 2016.
Dilmen, D.I.; Kemec, S.; Yalciner, A.C.; Düzgün, S.; Zaytsev, A. Development of a tsunami inundation map in detecting tsunami risk in Gulf of Fethiye, Turkey. PAGEOPH2015, 172. [Google Scholar] [CrossRef]
Heidarzadeh, M.; Krastel, S.; Yalciner, A.C. The state-of-the-art numerical tools for modeling landslide tsunamis: A short review. In Submarine Mass Movements and Their Consequences, 6th ed.; Sebastian, K., Jan-Hinrich, B., David, V., Michael, S., Christian, B., Roger, U., Jason, C., Katrin, H., Michael, S., Carl, B.H., Eds.; Springer: Bern, Switzerland, 2013; Volume 37, pp. 483–495. [Google Scholar]
Yalciner, A.C.; Gülkan, P.; Dilmen, D. I.; Aytore, B.; Ayca, A.; Insel, I.; Zaytsev, A. Evaluation of tsunami scenarios for western Peloponnese, Greece. Boll. Geofis. Teor. Appl.2014, 55, 485–500. [Google Scholar]
Zahibo, N.; Pelinovsky, E.; Kurkin, A.; Kozelkov, A. Estimation of far-field tsunami potential for the Caribbean Coast based on numerical simulation. Sci. Tsunami Hazards2003, 21, 202–222. [Google Scholar]
Swigler, D.T. Laboratory Study Investigating the Three-dimensıonal Turbulence and Kinematic Properties Associated with a Breaking Solitary Wave. Master’s Thesis, Texas A&M University, College Station, TX, USA, August 2009. [Google Scholar]
연구자 : Yu-Ren Chen 지도교수 : Dr John R C Hsu June 2012
기술과 수치 알고리즘의 발전으로 파도가 해양이나 항만 구조물에 미치는 영향에 대한 많은 연구가 개발되었으며,보다 정확한 결과를 얻기 위해 고효율 수치 계산 소프트웨어를 사용할 수 있습니다. 현재 내부 파 생성, 전송, 파동의 물리적 메커니즘은 국내외 해양 분야에서 중요한 연구 주제 중 하나입니다.
이 연구는 FLOW-3D 전산 유체 역학 (Computational Fluid Dynamics, CFD) 소프트웨어를 사용하여 상층의 담수와 하층의 담수를 시뮬레이션합니다. 바닷물의 밀도 계층화 유체는 중력 혼합 붕괴 방식을 사용하여 내부 파도를 생성하고 긴 경사와 같은 일반적인 장애물을 통해 파형 진화 및 유동장 분포를 탐구합니다.
짧은 플랫폼 사다리꼴 경사와 이등변 삼각형. 이 기사에서는 또한 소프트웨어 작동 설정과 FLOW-3D를 내부 파 실험에 적용하는 방법을 소개하고, 이전 실험 조건과 결과를 참조하여 내부 파 전송 과정을 시뮬레이션합니다. 시뮬레이션 결과는 실험 데이터를 확인하고 첫 번째 분석을 시뮬레이션합니다.
중력 붕괴 방식의 게이트의 개방 속도가 내부 파의 전송 시간 및 진폭에 미치는 영향; 시뮬레이션 결과는 게이트 개방 속도가 빠르고 내부 파의 진폭이 크고 전송 속도가 빠릅니다. ; 반대로 게이트 개방 속도가 느리면 내부 파의 진폭이 작고 전송 속도가 느리지 만 둘 다 비선형 비례 관계.
이 연구는 또한 다양한 장애물 (긴 기울기, 사다리꼴 기울기가있는 짧은 플랫폼, 이등변 삼각형)을 통한 내부 고독 파의 전송 과정을 시뮬레이션하고 단일 장애물을 통과하는 내부 파도의 파형 진화, 와류 및 유동장 변화를 논의합니다.
연구를 통해 우리가 매우 미세한 그리드를 사용하고 수치 시뮬레이션의 그래픽 출력을 열심히 분석 할 수 있다면 실험실 실험 관찰보다 내부 고독 파의 전송 특성을 더 잘 이해할 수 있다고 믿습니다.
요약
서로 다른 특성을 가진 두 유체의 계면에있는 파동을 계면 파라고합니다. 바다에서는 표층의 기압 변화에 의해 형성된 바람 장이 공기와 바다의 경계 파인 해면에 불어 올 때 변동을 일으킨다. 기체 또는 유체의 밀도 층화가 발생할 때 외부 힘 (예 : 바람, 압력, 파도 및 조류, 중력 등)에 의해 교란되면 내부 파도라고하는 경계면에서 변동이 발생할 수 있으므로 내부 파도가 발생할 수 있습니다. 웨이브는 밀도가 다른 층화 된 유체의 웨이브 현상입니다.
대기의 내부 파도와 같이 일상 생활에서 볼 수있는 내부 파도는 특히 오후 또는 비가 내리기 전에 깊고 얕은 altocumulus 구름 층으로 하늘에 자주 나타납니다. 대기 중의 내부 파의 움직임은 공기의 흐름에 영향을 주어 기류를 상승시키고 공기 중의 수증기가 물방울로 응축되어 구름이되도록합니다.
반대로 기류가 가라 앉으면 수증기가 응결이 쉽지 않습니다. 구름이 있어도 내부의 파도가 응결하기 어렵습니다. 소산되어 루버와 같은 altocumulus 구름을 형성합니다. 안정된 밀도와 층화 상태의 자연 수체는 외부 세계에 의해 교란 될 때 내부 파동 운동을 겪게됩니다.
예를 들어, 밀도가 안정되고 층화가 분명한 호수에서 바람 장은 수면에 파도에서 파생 된 내부 파동을 일으켜 물의 질량이 전달되고 호수 가장자리로 물이 축적되어 수위가 높아집니다. 위치 에너지를 형성하는 축적 영역; 수역이 가라 앉기 시작하면 위치 에너지를 운동 에너지로 변환하고 남미 콜롬비아의 Babine Lake의 내부 파동 거동과 같은 내부 파동 운동을 생성 할 수도 있습니다 (Farmer, 1978). ). 염분, 밀도 또는 온도가 안정된 바다에서는 조수와 지형의 영향으로 수역이 행성의 중력에 따라 움직입니다.
격렬한 기복이있는 지형을 통과 할 때 내부 파동이 발생합니다. ; 중국 해에서 발견되는 남쪽 내부 파도에서와 같이 (Hsu et al., 2000). 파동은 심해에서 얕은 물로 전달되며, 얕아 짐, 깨짐, 혼합, 소용돌이, 굴절, 회절 및 반사가있을 것입니다. 내부 파 전달은 일종의 파동이기 때문에 위에서 언급 한 파동 특성도 갖습니다.
해양 내부 파도는 길이가 수백 미터에서 수십 킬로미터에 이르는 광범위한 파장을 가지고 있으며,주기는 몇 분 정도 빠르며 수십 시간 정도 느리며 진폭은 몇 미터에서 수백 미터. 해양 내부 파도가 움직일 때 층화 위와 아래의 물 흐름 방향이 반대가되어 현재 전단 작용으로 인해 층화 경계면에서 큰 비틀림 힘이 발생합니다.
바다에 기초 말뚝과 같은 구조물이있는 경우 석유 시추 플랫폼의 고정 케이블은 큰 비틀림을 견딜 수 없어 파손될 가능성이 매우 높습니다 (Bole et al. 1994). 빽빽한 클라인 경계 근처에서 항해하는 잠수함이 해양 내부 파도 활동을 만나게되면 내부 파도에 의한 상승 전류로 인해 잠수함이 해저에 수면에 닿거나 충돌하여 잠수함이 손상 될 수 있습니다.
그러나 바다의 내부 파는 바람직하지 않으며 매우 중요한 역할을합니다. 예를 들어, 내부 파가 심해 지역에서 근해 대륙붕으로 전달되면 상하수 체가 교환됩니다. 해저에 영양분을 운반합니다. 선반 가장자리까지 생물학적 성장을 촉진하고 해당 지역의 생태 환경을 조절하며 (Osborne and Bruch et al., 1980; Sandstorm and Elliot et al., 1984) 어업 자원을 풍부하게합니다.
위에서 언급 한 항목 외에도 해저에 대한 케이블 및 파이프 라인, 수중 음파 탐지기, 해양 생물 환경, 군사 활동 등이 해양 내부 파도의 영향에 포함되므로 해양 내부 파도에 대한 연구가 매우 중요합니다.
최근 내부 파를 연구하는 방법에는 분석 이론 도출, 현장 조사 및 관찰, 실험실 실험 분석이 포함됩니다. 그러나 과학 기술의 급속한 발전, 발전과 발전, 컴퓨터의 대중화, 수치 계산 방법의 진화로 해양 공학과 관련된 많은 파동 효과는 일반적으로 수치 시뮬레이션 방법으로 해결됩니다.
또한 수치 연산 방법의 비용이 현장 조사 관측 및 실험실 실험 해석보다 저렴하고 시뮬레이션 결과를 더 빨리 얻을 수 있기 때문에 본 논문에서는 전산 유체 역학 (전산 유체 역학, 참조)의 FLOW-를 선정 하였다. 3D 소프트웨어는 내부 파 생성, 전송, 장애물 통과, 점차 소멸하는 움직임 과정을 시뮬레이션하고, 내부 파의 변화 과정을 분석하고 비교하기 위해 이전 실험실 모델 실험을 참조합니다.
Apel, J.R., Holbrook, J.R, Tsai, J. and Liu, A.K. (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanography, 15(12): 1625-1651. Ariyaratnam, J. (1998). Investigation of slope stability under internal wave action. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia. Baines, P.G. (1983). Tidal motion in submarine canyons – a laboratory experiment. J. Physical Oceanography, 13: 310-328. Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25: 241-270. Bole, J.B., Ebbesmeyer, J.J. and Romea, R.D. (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas. 367-375. Burnside, W. (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Soc., (1) xx, 392-397. Chen C.Y., J.R-C. Hsu, H.H. Chen, C.F. Kuo and Cheng M.H (2007). Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Engineering, 34: 157-170. Cheng M.H., J.R-C. Hsu, C.Y. Chen (2005). Numerical model for internal solitary wave evolution on impermeable variable seabad, Proc.27th Ocean Eng, pp.355-359. Choi, W. and Camassa, R. (1996). Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 313: 83-103. Ebbesmeyer, C.C., and Romea, R.D. (1992). Final design parameters for solitons at selected locations in South China Sea. Final and supplementary reports prepared for Amoco Production Company, 209pp. plus appendices. Ekman, V. M., (1904). “On dead-water, Norwegian North Polar Expedition”, 1893-1896. Scientific Results, 5(15):1-150. Farmer, D.M. (1978). Observation of long nonlinear internal waves in a lake. J. Phys. Oceanography, 8(1): 63-73. Garret, C. and Munk, W. (1972). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264. Gill, A.E. (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press. Harleman, D.R.F. (1961). Stratified flow. Ch. 26 in Handbook of Fluid Dynamics (ed., V. Streeter), NY: McGraw-Hill, (26): 1-21. Helfrich, K.R. (1992). Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech., 243: 133-154.
Helfrich, K.R. and Melville, W.K. (1986). On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167: 285-308. Honji, H., Matsunaga, N., Sugihara, Y. and Sakai, K. (1995). Experimental observation of interanl symmetric solitary waves in a two-layer fluid. Fluid Dynamics Research, 15 (2): 89-102. Hsu, M.K., Liu, A.K., and Liu, C. (2000). A study of internal waves in the China Sea and Yellow Sea using SAR. Continental Shelf Research, 20: 389-410. Johns, K. (1999). Interaction of an internal wave with a submerged sill in a two-layer fluid. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia Kao, T.W., Pan, F.S. and Renouard, D. (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech. 159: 19-53. Koop, C.G. and Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251. Lin, T.W. (2001). A study on internal waves characteristics in north of South China Sea, Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan. (In Chinese). Lynett, P., Wu, T.-R. and Liu, P. L.-F. (2002), Modeling wave runup with depth-integrated equations, Coastal Engineering, Vol. 46, pp. 89-107. Ming-Hung Cheng,John R.-C. Hsu, Chen-Yuan Chen and Cheng-Wu Chen (2009). Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope.Environ Fluid Mech,9:321–340. Ming-Hung Cheng and John R.C. Hsu (2011). Effect of frontal slope on waveform evolution of a depression interfacial solitary wave across a trapezoidal obstacle. Ocean Engineering. Matsuno, Y. (1993). A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan, 62: 1902-1916. Michallet, H. and Barthelemy, E. (1998). Experimental study of interfacial solitary waves. J. Fluid Mech., 366: 159-177. Muller, P. and X. Liu (2000). Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies, J. Phys. Oceanogr., 30: 532-549 Nagashima, H. (1971). Reflection and breaking of internal waves on a sloping beach. J. Oceanographical Soc. Japan, 27(1): 1-6. Nansen, F. (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition 1893-1896, 3: 9. Osborne, A.R. and Burch, T.L. (1980). Internal solitons in the Andaman Sea. Science, 208 (43): 451-460
82 Russell, J.S. (1844). On waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311-390. Sandstrom, H. and Elliot J. A. (1984). Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. Journal of Geophysical Research, 89 (C4): 6415-6428. Stokes G.G. (1847). On the Theory of Oscillatory Waves. Transactions of the Cambridge Philosophical Society, 8: 441–455. Strutt, J. W., Lord Rayleigh. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density.Proceedings of the London mathematical society, 8: pp. 170-177. Sveen, J.K., Guo, Y., Davies, P.A. and Grue, J. (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188. Vlasenko, V., and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. of Physical Oceanography, 32(6), pp.1779-1793. Wessels F. and Hutter K. (1996). Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr , 26: 5-20
유압 점프는 개방형 채널 애플리케이션으로 작업하는 사람들에게 친숙한 흐름 현상입니다. Wikipedia는 수력 점프를 “개방형 채널 흐름이 초-임계에서 아임계로 갑자기 변환되는 조건”으로 정의합니다. 점프가 발생하는 위치에서 속도 헤드가 수면 상승으로 거래되는 것을 관찰 할 수 있습니다. 방수로와 같은 흐름 제어 응용 분야에서 수압 점프는 침식을 완화하기 위해 에너지를 소산하는 수단으로 의도적으로 설정됩니다. 또한 레크리에이션 목적으로 사용됩니다. 유압 점프로 생성된 정상 파도는 어떤 바다에서든 수천 마일 떨어진 서핑 공원에서 타는 방법을 서퍼를 훈련시키는데 사용됩니다. 유압 점프의 새로운 응용 분야는 점프의 에너지 전달이 다시 중단되고 정상적인 펌핑 작업 중에 침전된 고형물을 제거하는 자가 세척 트렌치 유형 펌프 섬프(sump)입니다.
트렌치 유형 집수 펌프 시뮬레이션 FLOW-3D는 유압 점프 시뮬레이션에서 신뢰할 수 있는 도구로 입증되었으며 자가 세척 트렌치 유형 펌프 섬프의 설계 및 시연에 사용되었습니다. 트렌치 형 펌프 섬프는 펌프 흡입 라인이 있는 좁은 채널로 구성됩니다. 일반적인 응용 분야는 들어오는 물에서 모래와 자갈을 걸러내는 입구 스크린이 없는 빗물 수집입니다. 아래 회로도에 예가 나와 있습니다.
ANSI/HI 9.8 Pump Intake Design
이 수치는 ANSI / HI 9.8 펌프 흡기 설계 매뉴얼에서 발췌한 것이며 4 개의 펌프가 설치된 섬프의 평면도 및 입면도를 보여줍니다. 유입 암거, 웅덩이 바닥 및 펌프 흡입 바닥을 벗어난 높이의 배열은 이 설계 유형의 자체 청소 기능에 매우 중요합니다. 유입 암거는 최소 작동 웅덩이 수위보다 높은 고도에 있습니다. 또한 유입단의 트렌치 벽은 Ogee 모양입니다. 마지막으로, 트렌치의 맨 끝에 있는 펌프 흡입 벨은 상류 펌프의 절반 높이에 설정됩니다.
Designing for Storm Events
폭풍이 닥친 후 모래와 자갈이 웅덩이 바닥에 쌓입니다. 그들은 점진적인 유압 점프를 통해 다시 매달리고 빠져 나갑니다. 청소 주기 동안 물은 유입 암거를 통해 유입되는 것보다 더 빠른 속도로 트렌치의 맨 끝에 있는 하부 펌프에 의해 배출됩니다.
이 시퀀스 동안 유압 점프는 두 가지 중요한 역할을 수행합니다. 점프 업스트림의 초임계 부분은 섬프 바닥의 모래와 자갈을 휘감아 펌핑이 되도록 다시 일시 중단합니다. 애니메이션의 색상 스케일을 보면 ogee 바닥의 수색 속도가 약 9ft/sec에 가깝다는 것을 알 수 있습니다. 한편, 점프 하류의 계단식 수면 상승은 하단 펌프에 충분한 잠수를 제공하여 섬프가 펌핑 될 때까지 계속 작동합니다.
물이 최소 정상 작동 수준 아래로 떨어지면 유입이 Ogee 모양의 벽 아래로 가속되어 궁극적으로 초임계가됩니다. 섬프의 수위가 바닥에 가까워지면 수압 점프가 형성되고 하단 원단 펌프가 흡입력을 잃을 때까지 섬프를 따라 진행됩니다. 아래 애니메이션에서 이런 일이 일어나는 것을 관찰 할 수 있습니다.
The Magnolia Storm Water Pumping Station
이 자체 세척 섬프 응용 분야에 FLOW-3D를 사용하면 트렌치 형상을 쉽게 조정하여 유압 점프 동작을 최적화 할 수 있습니다. 텍사스 엘파소에있는 Magnolia Storm Water Pumping Station은 FLOW-3D가 설계 및 평가 도구로 사용 된 예입니다. 2016 년에 시운전 된 Magnolia Storm Water Pumping Station은 폭우시 고속도로 10 번의 홍수를 방지하기 위해 건설되었습니다.
Magnolia 스테이션은자가 세척 트렌치 유형 섬프에 3 개의 대형 수직 터빈 펌프로 구성됩니다. 섬프 설계 과정에서 FLOW-3D를 사용하여 몇 가지 기하학적 변형을 평가하여 자체 세척 기능을 통해 펌프 작동 효율성 및 유지 보수 용이성에 이상적인 구성에 도달했습니다.
전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다. 특히 자유 표면 흐름과 관련이 높은 이러한 문제의 대부분은 FLOW-3D가 매우 정확한 분석을 제공하여 문제 해결에 적합합니다.
공해에서 컨테이너 내부의 연료 또는화물 슬로싱 / Fuel or cargo sloshing inside containers on the high seas
해양 플랫폼에 대한 파도 효과 / Wave effects on offshore platforms
6 자유도 모션을 받는 분리 장치의 성능 최적화 / Performance optimization for separation devices undergoing 6 DOF motion
파동 에너지 포착 장치 / Design of devices to capture energy from waves
Energy Case Studies
천연자원이 계속 감소함에 따라, 대체 자원과 방법을 탐구하고 가능한 한 효과적으로 현재 공급량을 사용하고 있습니다. 엔지니어는 사고를 예방하고 채굴 및 기타 에너지 수확 기법으로 인한 환경적 영향을 평가하기 위해 FLOW-3D를 사용합니다.
Tailing Breach Simulation – CFD Analysis with FLOW-3D
점성이 높은 유체, 비 뉴턴 흐름, 슬러리 또는 심지어 세분화 된 흐름의 형태를 취할 수있는 많은 채광 응용 프로그램의 잔여 물인 테일링은 악명 높은 시뮬레이션 전제를 제공합니다. FLOW-3D 는 비 뉴턴 유체, 슬러리 및 입상 흐름에 대한 특수 모델을 포함하여 이러한 분석을 수행하는 데 필요한 모든 도구를 제공합니다. FLOW-3D 의 자유 표면 유동 모델링 기능 과 결합되어 이러한 어렵고 환경 적으로 민감한 문제에 대한 탁월한 모델링 솔루션을 제공합니다.
관련 응용 분야에는 바람 강제 분석에 따른 광석 비축 더미 먼지 드리프트가 포함되며, 여기서 FLOW-3D 의 드리프트 플럭스 모델을 통해 엔지니어는 광석 침착 및 유입 패턴과 개선 솔루션의 효과를 연구 할 수 있습니다.
액화와 기계적 방해가 물과 같은 뉴턴 흐름과는 대조적으로 입자 흐름의 매우 독특한 속성 인 결국 저절로 멈추는 위반의 동적 특징의 일부라는 점에 유의하십시오.
오일 및 가스 분리기
FLOW-3D 는 기름과 물과 같은 혼합 불가능한 유체를 모델링 할 수 있으며 개방 된 환경 (주변 공기)과 관련된 구성 요소 간의 뚜렷한 인터페이스를 정확하게 추적 할 수 있습니다. 유체는 전체 도메인에 영향을 미치는 역학으로 인해 자유롭게 혼합 될 수 있습니다. 시간이 지남에 따라 유체는 연속 상과 분산 상 간의 드리프트 관계에 따라 다시 분리됩니다. 중력 분리기의 성능은 CFD 모델링을 통해 향상 될 수 있습니다.
기체 및 액체 흐름의 균일성을 개선하고 파도에 의한 슬로싱으로 인한 오일과 물의 혼합을 방지하기 위해 용기 입구 구성을 개발합니다.
유압 효율 및 분리 성능에 대한 내부 장비의 영향을 결정합니다.
작동 조건 변화의 영향 측정
소규모 현상 (다상 흐름, 방울, 입자, 기포)을 정확하게 모델링
생산 파이프 | Production Pipes
생산에 사용되는 공정 파이프의 청소 과정에서 유체가 위로 흘러도 고밀도 입자가 침전될 수 있습니다. 침전 입자를 포착하도록 장치를 설계 할 수 있습니다. 파이프 중앙에 있는 “버킷”이 그러한 잠재적 장치중 하나 입니다. 흐름 변위로 인해 버킷 외부의 상류 속도는 고밀도 입자에 대한 침전 속도보다 높으며 버킷 내부에 모여 있습니다. 표시된 디자인에서 버킷 주변의 상향 유체 속도는 입자 안정화 속도보다 높습니다. 이로 인해 입자가 버킷과 파이프 벽 사이의 틈새를 통해 빠져 나갈 수 없습니다. 따라서 시뮬레이션된 입자는 버킷을 통과하여 아래에 정착하지 않습니다.
파동 에너지 장치 모델링 | Modeling Wave Energy Devices
포인트 흡수 장치 | Point Absorber Devices
이 시뮬레이션은 상단에 부력이있는 구형 구조가있는 점 흡수 장치를 보여 주며, 들어오는 파도의 볏과 골과 함께 위아래로 이동합니다. FLOW-3D 의 움직이는 물체 모델은 x 또는 y 방향으로의 움직임을 제한하면서 z 방향으로 결합 된 움직임을 허용하는 데 사용됩니다. 진폭 5m, 파장 100m의 스톡 스파를 사용했다. RNG 모델은 파도가 점 흡수 장치와 상호 작용할 때 발생하는 난류를 포착하는 데 사용되었습니다. 예상대로 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 플롯은 난류로 인해 장치 근처의 복잡한 속도 장의 진화로 인해 질량 중심의 불규칙한 순환 운동을 보여줍니다.
다중 플랩, 하단 경첩 파동 에너지 변환기 | Multi-Flap, Bottom-Hinged Wave Energy Converter
진동하는 플랩은 바다의 파도에서 에너지를 추출하여 기계 에너지로 변환합니다. Arm은 물결에 반응하여 피벗된 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 다중 플랩 파동 에너지 변환기를 만들 수 있습니다. 아래 상단에 표시된 CFD 시뮬레이션에서 3 개의 플랩 배열이 시뮬레이션됩니다. 모든 플랩은 바닥에 경첩이 달려 있으며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 30m 깊이에서 10 초의 주파수로 4m 진폭파에서 작동합니다. 시뮬레이션은 중앙 평면을 따라 복잡한 속도 등 가면을 보여줍니다. 이는 한 플랩이 어레이 내의 다른 플랩에 미치는 영향을 연구하는 데 중요합니다. 3 개의 플랩이 유사한 동적 동작으로 시작하는 동안 플랩의 상호 작용 효과는 곧 동작을 위상에서 벗어납니다. 유사한 플랩 에너지 변환기가 오른쪽 하단에 표시됩니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 물에 완전히 잠 깁니다. 이러한 에너지 변환기를 Surface Piercing 플랩 에너지 변환기라고합니다. 이 두 시뮬레이션 예제는 모두 미네르바 역학 .
진동 수주 | Oscillating Water Column
진동하는 수주는 부분적으로 잠긴 중공 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수면 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수 있는 터빈을 통해 대기로 흐르게 됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.
아래의 CFD 시뮬레이션은 진동하는 수주를 보여줍니다. FLOW-3D에서 포착한 물리학을 강조하기 위해 중공 구조에서 물기둥이 상승 및 하강하는 부분만 모델링 합니다. 시뮬레이션은 다른 파형 생성 선택을 제외하고 유사한 결과를 전달합니다. 아래의 시뮬레이션은 웨이브 유형 경계 조건을 사용하는 반면 그 아래의 시뮬레이션은 움직이는 물체 모델 을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.
사례 연구
Architects Achieve LEED Certification in Sustainable Buildings
LEED (Leadership in Energy and Environmental Design)는 제 3자가 친환경 건축물 인증을 제공하는 자발적 인증 시스템입니다.
FLOW-3D는 보고타(콜롬비아)의 사무실 건물에서 “IEQ-Credit2–환기 증가”라는 신뢰를 얻는 데 큰 도움을 주었습니다. 이러한 인정을 받기 위해서는 실외 공기가 ASHRAE의 표준 비율인 30%를 초과한다는 것을 증명해야만 합니다. 이 건물에서 실외 공기는 태양 광선에 의해, 가열되는 지붕 위의 2개의 유리 굴뚝에 의해 발생되는 온도 차이에 의해 발생하는 열 부력의 영향으로 제공됩니다. 이것은 바람이 불지 않는 조건에서 이루어져야 합니다.
Comparing HVAC System Designs
최근 프로젝트에서 Tecsult의 HVAC(난방, 냉방 및 환기)시스템 엔지니어는 강력한 에어컨 시스템의 두 가지 다른 구성을 고려해야 했고 노동자들에게 어떤 것이 가장 쾌적함을 제공하는지 보여주기를 원했습니다. FLOW-3D는 대체 설계를 시뮬레이션하고 비교하는 데 사용되었습니다.
이 발전소는 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있습니다. 에어컨 시스템의 목적은 건물 내 최대 온도를 35ºC로 제한하는 것입니다. 디퓨저가 하부 레벨에 위치하고 천장 근처의 환기구가 있기 때문에 천장 근처에서 최대 공기 온도가 발생하고 바닥 레벨은 반드시 몇도 더 낮습니다.
Debris Transport in a Nuclear Reactor Containment Building
이 기사는 FLOW-3D가 원자력 시설에서 봉쇄 시설의 성능을 모델링하는데 사용된 방법을 설명하며, Alion Science and Technology의 Tim Sande & Joe Tezak이 기고 한 바 있습니다.
가압수형 원자로 원자력 발전소에서 원자로 노심을 통해 순환되는 물은 약 2,080 psi 및 585°F의 압력과 온도로 유지되는 1차 배관 시스템에 밀폐됩니다. 수압이 높기 때문에 배관이 파손되면 격납건물 내에 여러 가지 이물질 유형이 생성될 수 있습니다. 이는 절연재가 장비와 균열 주변 영역의 배관에서 떨어져 나가기 때문에 발생합니다. 생성될 수 있는 다양한 유형의 이물질의 일반적인 예가 나와 있습니다(오른쪽).
Evaluation of the Wind Effects on the Iron-Ore Stock Pile
바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km2 철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.
September 2023 DOI:10.30955/gnc2023.00436 Conference: 18th International Conference on Environmental Science and Technology CEST2023, 30 August to 2 September 2023, Athens, ...
Numerical Study of the Local Scouring Process and Influencing Factors of Semi-Exposed Submarine Cables by Qishun Li,Yanpeng Hao *,Peng Zhang,Haotian Tan,Wanxing Tian,Linhao ...
Analyses of Cryogenic Propellant Tank Pressurization based upon Experiments and Numerical SimulationsCarina Ludwig? and Michael Dreyer***DLR - German Aerospace Center, ...
Coupled thermodynamic-fluid-dynamic solution for a liquid-hydrogen tank G. D. Grayson Published Online:23 May 2012 https://doi.org/10.2514/3.26706 Read Now Tools Share Introduction ...
지난 사용자 컨퍼런스에서 에너지 산업을위한 FLOW-3D의 응용에 초점을 맞춘 사용자 프레젠테이션을 다운로드하십시오 .
2019 년
Numerical modelling of a two-degree-of-freedom Wave Energy Converter: Creation, validation and utilization of the model
2 자유도 파동 에너지 변환기의 수치 모델링 : 모델의 생성, 검증 및 활용
Eliseo Marchesi, Politecnico di Milano / Studio Frosio srl Marco Negri 및 Stefano Malavasi, Politecnico di Milano Filippo Palo, XC Engineering Srl
Numerical modelling of a two-degree-of-freedom Wave Energy Converter
이 연구의 목적은 FLOW-3D를 통한 수치 모델링입니다., Politecnico di Milano에서 실험실 규모 테스트를 거친 특정 Wave Energy Converter (WEC) : 두 개의 자유도 진동 체 시스템 인 EDS (Energy Double System), 급증하는 패들. 두 본체는 서로 연결되어 있으며 각각은 지상에 반응하는 PTO (Power Take-Off)에 연결됩니다. 수치 모델은주기적인 파동으로 사용 가능한 실험 테스트에 대해 검증되었습니다. 첫 번째 시뮬레이션은 실험실 테스트의주기적인 파동을 재현하는 것을 목표로했습니다. 그런 다음 실험 시스템에 해당하는 EDS의 수치 모델을 생성하고 이전에 모델링 한주기 파를 적용했습니다. 수치 방법의 품질이 확인되면 EDS 시스템의 새로운 구성에 대한 시뮬레이션이 수행되었습니다. 첫 번째 시뮬레이션 시리즈에서는이 매개 변수가 실험 모델에서 최적화되지 않았기 때문에이를 최적화하기 위해 패들 PTO의 댐핑이 변경되었습니다. 그 후, EDS 동작은 이전에 시뮬레이션 된 주기적 파동과 에너지 적으로 동일한 임의 파동에서 조사되었습니다.
Numerical simulation of extreme wave loading on an axisymmetric point absorber wave energy converter in a survival sea state
생존 해상 상태에서 축 대칭 점 흡수 파 에너지 변환기에 대한 극한 파 하중의 수치 시뮬레이션
Peter Arnold, Minerva Dynamics Limited
생존 해상 상태에서 파력 에너지 변환기 (WEC)가 경험할 수있는 힘과 모멘트의 초기 평가는 개념 설계 단계에서 특히 중요합니다. 현재까지 WEC의 생존 가능성을 평가하는 데 사용되는 주요 방법은 모델 규모 탱크 테스트이지만 일반적으로 10m에서 15m 범위의 상당한 파도 높이를 갖는 생존 파도의 크기로 인해 탱크 테스트 프로그램은 소규모를 사용해야합니다. 관련 계측 및 물리적 확장 문제가있는 스케일 프로토 타입 또는 관련 비용이 더 큰 대형 프로토 타입에 의존합니다. 보다 최근에 CFD는 더 작은 계산 비용으로 인해 불규칙한 파동 스펙트럼과는 반대로, 단독 집중 또는“New Waves”를 사용하여 정적 및 부동 구조에 대한 비선형 파동 부하를 평가하는 데 사용되었습니다. 그러나 이러한 초기 연구는 WEC 설계 엔지니어가 결과 부하의 통계적 분포를 필요로하기 때문에 WEC 생존에 필요한 조건 만 제공하지만 충분하지는 않습니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다.
Wave propagation and reflection at an inclined plane – simulations and experiments
경사면에서의 파동 전파 및 반사 – 시뮬레이션 및 실험
Boris Huber, 비엔나 기술 대학교
20m 길이의 수로에서 물리적 모델 테스트를 수행하여 수로 끝의 경사면에서 파동 전파 및 반사를 관찰했습니다. 웨이브 생성은 익스텐더 휠에 의해 앞뒤로 움직이는 바닥에 장착 된 패들로 이루어졌습니다. 파도의 전파는 수위 측정에 의해 여러 지점에서 기록되었습니다. 실험은 다양한 파동으로 실행 된 다음 FLOW-3D 로 시뮬레이션되었습니다 . 또한 CFD 시뮬레이션에서 적절한 경계 조건을 얻기 위해 돌과 천공 시트로 구성된 파동 흡수 경계를 사용한 실험을 수행하고 다른 경계 조건에서 시뮬레이션을 실행했습니다.
Flap type wave power device in near shore conditions
해안 근처에서 플랩 형 파력 장치
Ibis Group, Inc의 Stephen Saunders
FLOW-3D v10.1을 솔루션 코드로 사용하여 단일 이동 플랩 파 전력 캡처 장치의 CFD 분석을 수행했습니다 . 이 작업의 목적은 프로토 타입을 제작하고 배치하기 전에 의도 한 작업 환경에서 플랩이 겪는 힘을 예측하는 것입니다. FLOW-3D 는 이동하는 공기 / 물 인터페이스의 역학을 캡처하는 데 필요한 강력한 VOF 모델 때문에 경쟁 업체보다이 프로젝트에 선택되었습니다. 또한 FLOW-3D움직이는 고체 물체를 표현하는 FAVOR ™ 방법은 움직이는 플랩을 시뮬레이션하는 데 중요합니다. 플랩 형상의 성능을 시뮬레이션하고 다가오는 파도가 플랩 표면에 수직 인 해안 근처 조건에서 평가되었습니다. 테스트 된 모델은 플랩 끝 주변의 흐름 특성을 평가하기 위해 3D로 구성됩니다. 현재까지 두 개의 바다 상태가 테스트되었습니다. 이들은 플랩에 도달하는 즉시 깨지는 깨지지 않는 팽창 및 파도입니다. 예상대로 깨지지 않는 팽창은 중립의 양쪽에서 동일한 플랩 편향과 거의 대칭 인 부드러운 플랩 동작을 유도합니다. 파동 사례를 깨는 결과는 비대칭 동작과 하중으로 훨씬 더 극적입니다.
Ocean waves resonance analysis of an oscillating water column energy converter
진동 수주 에너지 변환기의 해양 파도 공명 분석
José Manuel Grases ; 센데 키아
SDK Marine은 진동하는 수주 챔버 내의 물에 잠긴 수력 터빈을 기반으로 파도에서 전기 에너지를 수집하는 새로운 방법을 개발하고 있습니다. FLOW-3D 는 챔버 내부와 외부의 흐름 동작을 이해하는 데 사용되었습니다. 이 프로젝트의 주요 목표는 내부 수위를 측정하고이를 외부 파 여기와 비교하여 장치의 응답을 얻는 것이 었습니다. 또한 장치의 수력을 계산하기 위해 서로 다른 수력 터빈의 거동을 시뮬레이션하기 위해 서로 다른 다공성 멤브레인을 구현했습니다.
이 기사에서 Tony Hirt 박사는 다가오는 FLOW-3D v12.0 릴리스에서 사용할 수있는 새로운 Steady-State Accelerator에 대해 설명합니다 .
일시적인 흐름의 점근 적 상태를 계산하는 것보다 안정된 자유 표면 흐름을 생성하는 더 빠른 방법이 자주 필요합니다. 상황은 압축성 흐름 솔버를 사용하여 비압축성 흐름을 해결하는 것과 유사합니다. 후자의 경우 압축 파는 붕괴하는 데 오랜 시간이 걸리고 결과적으로 비압축성 흐름을 남길 수 있습니다. 이에 따라 자유 표면 흐름에서 유체는 비압축성이지만 표면 파동은 안정된 자유 표면 구성을 생성하는 데 오랜 시간이 걸릴 수 있습니다.
비압축성 흐름의 경우, 압축 파를 심각하게 감쇠시키는 반복적 인 프로세스 (즉, 압력-속도 반복)를 사용합니다. 물리적으로 반복은 압력과 같은 파동이 국부적 인 영역에 영향을 미치는 짧은 거리를 이동하도록 허용하지만 압력 장에 상당한 노이즈를 유발할 수있는 장거리 전파 및 반사를 피할 수있을만큼 빠르게 감쇠됩니다.
이 노트에서 자유 표면 셀에 적용된 간단한 압력 조정은 표면 교란에 대한 감쇠력으로 작용합니다. 이 댐핑은 안정적인 자유 표면 구성에 대한 접근을 가속화합니다.
Steady-State Accelerator Idea
유체 인터페이스 또는 자유 표면은 VOF (Volume-of-Fluid) 기술을 사용하여 FLOW-3D 에서 추적됩니다 . 유체 변수 F의 비율은 유체가 차지하는 영역을 찾습니다. 유체에 고정 된 자유 표면이있는 경우 유체를 정의하는 F 값도 안정된 값을 유지해야합니다. F가 일정하려면 표면에 수직 인 유체 속도가 0이어야합니다. 물론 표면에서의 접선 유체 속도는 0 일 필요는 없습니다. 예를 들어, 위어 위의 흐름에는 일정한 흐름이 있지만 계단에서 나오는 흐름의 위치와 모양은 변하지 않습니다.
자유 표면 흐름에 대한 정상 상태 솔버를 사용하려면 흐름의 비압축성을 유지하면서 정상 표면 속도를 0으로 유도하는 방법을 찾아야합니다.
이를 수행하는 한 가지 방법은 정상 속도를 0으로 유도하는 방식으로 표면 압력을 조정하는 것입니다. 특히 정상 속도에 비례하는 총 표면 압력에 “댐핑”압력 기여를 추가하는 것입니다. 속도는 표면 밖으로 향하고 그렇지 않으면 음수입니다.
정상 속도가 0에 가까워지면 수정 압력도 0이되어야 표면이 고정 위치를 초과하지 않게됩니다. 물론 보정이 너무 크면 오버 슈트가 발생할 수 있습니다. 따라서 안정적인 보정 적용을 위해서는 몇 가지 제한 요소가 있어야합니다.
계수 약어 ssacc 을 나타내며, S는 teady- S 테이트 액세서리 elerator이 새로운 옵션을 활성화하는 프로그램 입력에 추가되었다. ssacc 의 값 은 편리한 상한 인 1.0보다 작거나 같아야합니다. 프로그램 내에서 댐핑 압력에 자동으로 적용되는 여러 제한 기가 불안정 해 지거나 일시적인 현상에 악영향을 미치는 것을 방지합니다.
안정성 및 댐핑 리미터에 대한 이전 문제는 강조되어야합니다. 정상 상태 가속기를 사용하면 자유 표면 흐름의 모든 과도 현상이 더 이상 완전히 사실적인 것으로 볼 수 없습니다. 댐핑 압력은 물리적 인 힘이 아니라 파동 전파와 반사를 줄이는 메커니즘입니다. 댐퍼는 큰 과도 현상의 발생을 방해하지 않도록 고안되었으며 흐름이 안정됨에 따라 안정된 결과를보다 빠르게 얻는 데에만 기여해야합니다. 그러나 사용자는 리미터가 예상하지 못한 초과 댐핑에 대해 주의를 기울여야 합니다. 이는 댐핑 계수 ssacc 의 입력 값을 줄임으로써 제거 할 수 있습니다 .
두 가지 예는 정상 상태 가속기의 댐핑 메커니즘이 어떻게 작동하는지 보여줍니다.
Steady-State Accelerator Examples
Collapse of Raised Fluid Column
첫 번째 예는 길이 100cm, 깊이 5cm의 2 차원 물 웅덩이로 구성됩니다. 물을 담은 탱크의 모든 경계는 대칭 경계입니다. 수영장 중앙에는 폭 10cm, 높이 3cm의 수영장 위에 물 블록이 있습니다. 이 블록은 중력으로 인해 물에 떨어지고 충돌 지점에서 멀리 이동 한 다음 탱크 끝에서 반사되는 파도를 생성합니다. 100 초 후에도 반복되는 반사 때문에 여전히 상당한 파동 작용이 있습니다 (그림 1).
새로운 정상 상태 가속기를 계수 ssacc = 1.0 과 함께 사용하면 모든 파동이 빠르게 감쇠되어 거의 평평한 표면이됩니다. 일부 잔류 흐름은 표면 아래에 남아 있지만 점도의 작용으로 서서히 감쇠됩니다 (그림 2). 이 예에서 추가 된 댐핑은 특히 인상적입니다.
Figure 1. Column collapse without damping. Times of flow plots are 0.0, 10.0, and 100.0s. Bottom figure is the mean kinetic energy vs. time.
Figure 2. Column collapse with damping coefficient ssacc=1.0 at times of 0.0, 10.0 and 100.0s. Bottom figure is the mean kinetic energy vs. time.
사각형 격자에서 45 °의 정사각형 채널에서 모세관 상승
수직 채널에서 유체의 모세관 상승은 간단한 분석할 수 있으며 솔루션이 있는 양호한 정상 상태 문제입니다. 중력에 대해 상승 된 유체의 양은 벽의 접착력, 즉 접촉각의 코사인에 표면 장력 곱하기 접촉 선 길이에 의해 결정됩니다. 이 예에서 유체는 물이며 표면 장력은 70 dynes / cm이고 접촉각은 30 °입니다. 채널은 단면이 정사각형이며 가장자리 길이가 0.707cm이고 직사각형 격자에서 45 ° 회전합니다. 문제가 x 및 y 방향으로 대칭을 이루기 때문에 그리드의 사분면 만 모델링됩니다. 그리드의 바닥에는 제로 게이지 압력의 물이 있으며 그리드의 가장자리 길이는 0.0125cm (41x41x80 셀)입니다. 상승시켜야하는 이론적 유체 량은 0.04373cc입니다. 그림 3a는 정상 상태 결과를 보여줍니다. 이는 감쇠 사용 여부와 비슷합니다. 댐핑없이 계산된 유체의 양은 이론 값보다 1.74 % 높습니다. 그림 3b와 같이 댐핑이 있는 경우에는 2.24 %가 너무 높습니다. 가속기를 사용하면 정상 상태는 약 0.15 초에 도달하는 반면 표준 솔버는 0.8 초 후에 만 정상 상태 솔루션을 생성하므로 5 배 이상 더 오래 걸립니다.
Figure 3a. Capillary rise in square channel without damping pressures.
Figure 3b. Histories of fluid volume in the two simulations (blue is with damping).
ssacc가 1.0보다 작으면 댐핑이 적어 수렴에 더 빨리 도달합니다. 1.0을 포함한 모든 ssacc 값은 댐핑되지 않은 ssacc = 0.0 경우와 비교하여 이론과 밀접하게 일치하고 후면 벽에 적은 양의 유체를 나타내는 수렴된 솔루션을 만듭니다.
뒤쪽 벽에있는 작은 유체 조각은 평형 위치를 초과하는 유체의 오버 슈트에서 발생하며, 이는 점성력으로 인해 정착하는 데 오랜 시간이 필요한 소량의 유체를 벽에 남기고 뒤로 떨어집니다. 이 오버 슈트는 ssacc 가 0이 아닐 때 제거됩니다 .
채널 스패닝 유압 구조물은 상류 물고기 이동에 대한 장벽 역할을 할 수 있습니다. 이러한 종단 적 서식지 연결의 중단과 관련된 부정적인 결과는 정확하고 실행 가능한 평가 기술의 필요성을 강조합니다.
3 차원 평가 방법은 인스트림 구조에서 복잡한 흐름을 해결하고 물고기 움직임을 정확하게 예측하는 것으로 나타났습니다. 그러나 3 차원 모델링은 시간과 리소스 요구 사항으로 인해 비실용적 일 수 있습니다.
이 연구는 2 차원 전산 유체 역학 모델과 통계 분석을 사용하여 콜로라도 주 리옹에있는 화이트 워터 공원 구조의 수력 조건을 설명하는 것을 조사합니다. 물고기의 움직임 관찰은 잠재적 인 수영 경로를 나타내는 공간적으로 명시적이고 연속적인 경로를 따라 결과 수력 변수와 쌍을 이룹니다.
로지스틱 회귀 분석은 흐름 깊이와 속도가 어류 통과와 밀접한 관련이 있음을 나타냅니다. 결합 된 깊이 및 속도 변수무지개 송어 (92 %를 정확하게 예측Oncorhynchus mykiss) 및 갈색 송어 (Salmo trutta)는 이 유압 구조에서) 움직임 관찰을 합니다.
이 연구의 결과는 2 차원 분석 방법이 3 차원 분석이 불가능한 경우 유사한 수력 학적 구조가 어류 통과에 미치는 영향을 평가하는 비용 효율적인 접근 방식을 제공할 수 있음을 시사합니다. 또한,이 연구의 결론은 비교적 낮은 수영 성능을 가진 송어와 물고기 모두에 대한 관리 및 설계 결정을 안내하는 데 사용할 수 있습니다.
서문
수력 구조물은 수생 생물의 종 방향 서식지 연결을 의도적으로든 우연히든 효과적으로 차단할 수 있습니다. 의도적 장벽은 일반적으로 침입성 종의 도입 또는 교잡을 방지하기 위해 관리자에 의해 배치됩니다 (Holthe et al. 2005; Fausch et al. 2006). 그러나 구조물을 설계하고 설치할 때 물고기 통행 촉진을 고려하지 않았기 때문에 장벽이 더 자주 생성됩니다. 따라서 인위적 장애로 인해 전 세계 수로가 분열되었습니다 (Williams et al. 2012). 철새 어종의 성공적인 수명주기를 위해서는 종단 서식지 연결이 필수적입니다 (Schlosser and Angermeier 1995). 상류 이동에 대한 지연 또는 종료는 인구에 부정적인 영향을 미치고 생태계 기능을 방해 할 수 있습니다 (Beechie et al. 2010).
수로를 가로 지르는 수력 구조물은 어류 통행에 미치는 영향을 철저히 평가하지 않고 하천과 강에 계속 배치됩니다 (Cada 1998; Noonan et al. 2012). 그러나 강 조각화와 관련된 문제에 대한 인식이 높아짐에 따라 설계 프로세스 전반에 걸쳐 물고기 통과 문제가 해결되는 방식에서 패러다임 전환이 일어나고 있습니다 (Katopodis and Williams 2012). 비 연어 종은 경제적 가치가 높은 종을 선호하는 경우가 많지만, 칼륨 종의 상류 이동 요구가 점점 더 중요하게 고려되고 있습니다 (Santos et al. 2012; Silva et al 2012) (Katopodis 2005; Roscoe and Hinch 2010). . 천연 자원 관리자는 제안 된 수력 구조물에 대해 의견을 제시하고 허용하도록 자주 요청받으며 (Kondratieff 2015),이 검토 과정에서 엔지니어와 과학자는 설계에 대한 예상 어류 통과 성능에 대한 모델 기반 증거를 제공하도록 요청받을 수 있습니다. 어류 통행과 관련하여 기존의 수력 구조물을 평가하고 우선 순위를 정하는 여러 방법이 현재 사용 가능하지만 (Kemp et al. 2010), 이전에 이 중요한 지점에서 제안된 구조물의 통행 효율성을 평가할 수있는 정확하고 실행 가능한 승인 및 설치 도구가 필요합니다.
이러한 요구를 해결하는 데 초점을 맞춘 이전 작업은 3D 수력 모델링 기술이 상류 어류 이동을 평가할 목적으로 채널 스패닝 구조의 복잡한 유체 역학을 적절하게 해결할 수 있음을 보여주었습니다 (Stephens 2014).
이러한 새로운 3D 분석 방법은 전체 예측 정확도가 80 % 이상 (Stephens 2014)으로 매우 효과적 일 수 있지만 3D CFD (전산 유체 역학) 모델을 개발하는 데는 시간과 리소스가 많이 사용됩니다.
추가 데이터 수집, 소프트웨어 라이선스, 모델링 전문 지식 등에 대한 필요성은 많은 하천 관리 결정에 3D 분석을 비실용적으로 만들 수 있습니다. 다양한 2D 모델 플랫폼이 홍수 배출을 추정하고 (Horritt and Bates 2002; Merwade et al. 2008) 인스 트림 평가에 광범위하게 사용 되었기 때문에 실무 엔지니어와 과학자는 대부분의 수력 구조물 프로젝트에서 2D 수력 모델링을 수행 할 가능성이 더 높습니다.
물고기 서식지 (Clark et al. 2008; Katopodis 2012). 2D 및 3D 유압 모델의 실제 비교가보고되었지만 (Lane et al. 1999; Shen and Diplas 2008; Kolden 2013), 어류 통과에 대한 2D 및 3D 모델 기반 평가의 효능을 조사한 연구는 현재에서 발견되지 않았습니다.
목표
천연 자원 관리자와 설계 엔지니어가 Stephens (2014)의 매우 효과적인 3D 방법에 더 쉽게 접근 할 수 있도록하기 위해이 연구는 자유롭게 사용할 수있는 산업 표준 2D CFD 모델 인 River2D (Steffler and Blackburn 2002)를 사용하여 타당성을 조사합니다. 수력 구조가 어류 통로에 미치는 영향을 평가합니다.
유사한 접근 방식을 기반으로하고 이전의 수력 학 및 어류 이동 데이터 세트 (Fox 2013, Kolden 2013, Stephens 2014)를 사용하여 이 2 개의 연구는 2D 분석 방법을 사용하여 St. Vrain River의 WWP (화이트 워터 파크) 구조를 평가합니다. Lyons, CO.이 연구의 구체적인 목표는 다음과 같습니다.
1. WWP 구조에서 복잡한 유압 환경을 설명하는 2D CFD 모델을 개발합니다.
2.이 2D CFD 모델의 결과를 사용하여 WWP 구조를 통해 잠재적 인 물고기 이동 경로를 따라 연속적이고 공간적으로 명시적인 수력 학적 설명을 생성합니다.
3. 무지개 송어 (대해 사용 가능한 어류 이동 데이터와 가장 밀접하게 관련된 수리적 변수를 결정Oncorhynchus mykiss) 및 갈색 송어 (Salmo trutta)에합니다.
4. 이전에 개발 된 3D 접근 방식 (Stephens 2014)의 PIT (Passive Integrated Transponder) 태그 연구의 움직임 데이터를 기반으로 한 예측 평가 능력을이 연구의 2D 접근 방식과 비교합니다.
5. 어류 통행의 관점에서 수력 구조물에 대한 비용 효율적인 평가를 통해 천연 자원 관리자 및 설계자를 지원하기위한 권장 사항을 제공합니다.
배경
상류 어류 이동에 대한 장벽은 유속 깊이, 유속 또는 유속과 거리의 조합을 포함한 다양한 물리적 조건에 의해 생성 될 수 있습니다 (Coffman 2005; Cahoon et al. 2005). 깊이 장벽은 일반적으로 흐름 깊이가 너무 얕아 통과 시도를 허용하지 않을 때 생성됩니다.
깊이 장벽은 또한 자리 잡은 구조물의 낙하 높이 및 플런지 풀 깊이가 도약 제약으로 인해 통과를 허용하지 않을 때 존재할 수 있습니다. 유속이 구조물을 통과하려는 물고기의 수영 능력을 초과 할 때 속도 장벽이 생성되어 상류 진행을 방해합니다. 수력 구조물에 의해 생성 된 난류는 물고기의 통과에도 역할을 할 수 있습니다. 조건에 따라 난류는 물고기 수영에 긍정적 인 영향과 부정적인 영향을 모두 미칠 수 있습니다 (Liao 2007; Cotel and Webb 2012; Lacey et al. 2012).
수영 성능 지표는 종종 기존의 수력 학적 구조가 물고기 통행의 장벽으로 작용하는지 여부를 평가하는 데 사용됩니다. 이러한 메트릭 중 가장 일반적인 것은 달리기 속도라고도 하는 버스트 수영 속도와 지구력 곡선입니다 (Castro-Santos et al. 2013).
물고기는 지속, 연장, 파열의 세 가지 수영 모드를 나타냅니다 (Peake et al. 1997). 지속적인 수영은 이론적으로 무한정 유지 될 수 있지만 장시간 및 버스트 수영 속도는 제한된 시간 동안만 유지 될 수 있습니다.
지구력 곡선은 세 가지 수영 모드 (Videler and Wardle 1991)에 걸쳐 연속적으로 수영 속도와 피로 시간 사이의 역 관계를 설명하여 생성됩니다. 버스트 수영 속도는 속도 장벽을 식별 할 때 유용하며 (Haro et al. 2004) 지구력 곡선은 잠재적 인 완전 장벽을 식별하는 데 도움이됩니다 (Castro-Santos et al. 2013). 현재 물고기 수영 성능과 난류 임계 값 또는 분포 사이의 물리적 관계는 잘 알려져 있지 않습니다 (Liao 2007).
그러나 총 운동 에너지 (TKE), 총 수력 변형, 레이놀즈 전단 응력 및 와도와 같은 일부 프록시 변수는 난류가 어류에 미치는 영향을 정량화 할 때 유용한 것으로 나타났습니다 (Nestler et al. 2008; Cotel and Webb 2012; Lacey et al. 2012; Silva et al. 2012).
장벽은 완전 할 수 있으며, 물고기 통행을 허용하지 않거나 선택적 통행 성공이 생리적 또는 수리적 특성에 따라 결정되는 경우 부분적 일 수 있습니다. 이 연구의 목적을 위해 총 시도 횟수에 대한 성공적인 통과 횟수를 기반으로 한 인구 수준의 통과 효율을 사용하여 유압 구조로 인한 상류 이동 억제 정도를 정량화합니다 (Haro et al. 2004). 다양한 방법 개발되었습니다.
장벽이 물고기 통로 (켐프와 O’Hanley 2010)에 영향을 미치는 방법을 정량화하기 위해 한 가지 접근 방식은 통계 모델을 사용하여 통과 효율 추정치를 0 ~ 100 %의 연속 척도로 표현할 수 있습니다. 과거에는 규칙 기반 또는 회귀 기법을 사용하여 암거 (Coffman 2005; Burford et al. 2009), 도로 횡단 (Warren and Pardew 1998) 또는 수로 실험 설정 (Haro et al. 2004)을 다양한 성공으로 평가했습니다.
통계적 방법은 다양한 척도에서 수리적 변수에 대한 정보를 결합하여 통과에 큰 영향을 미치는 변수를 식별 할 수 있습니다 (Kemp and O’Hanley 2010). 이러한 모델은 현장 기반 어류 이동 관찰을 사용하여 검증 할 수도 있습니다 (Coffman 2005; Burford 2009).
2014 년에 Stephens는 3D CFD 모델 출력 (Kolden 2013)을 활용하여 수력 구조물에서 물고기 통과를 평가하기위한 연속적이고 공간적으로 명시적인 분석 방법을 만드는 새로운 통계 방법을 개발했습니다. 이 방법은 콜로라도에있는 3 개의 파도 생성, 인공 화이트 워터 파크 (WWP) 구조물에서 수집 한 수력 측정 및 PIT 태그 통과 관찰 (Fox 2013)을 통해 검증되었습니다. 통계 결과에 따르면 Stephens (2014) 방법은 전체 정확도가 80 % 이상인 통과 효율을 예측할 수 있습니다.
Stephens는 3D CFD 모델의 결과를 사용했지만 다른 연구에서는 2D CFD 모델을 사용하여 물고기와 관련된 규모의 복잡한 흐름을 설명하는 데 초점을 맞추 었습니다 (Lane et al. 1999; Crowder and Diplas 2000; Shen and Diplas 2008). 2D CFD 모델링의 주요 관심사는 물고기 서식지 및 수영 성능에 중요한 중간 규모 기능과 관련된 복잡성을 포착 할 수 있는지 여부였습니다 (Crowder and Diplas 2000).
혼합된 결과는 서식지 평가를 위해 모델링되는 도달 범위의 특성에 따라 2D CFD 모델이 수력 조건에 대한 적절한 설명을 제공하거나 제공하지 않을 수 있음을 보여줍니다 (Clark et al. 2008; Shen and Diplas 2008; Kozarek et al. 2010) . 서식지 또는 지형 모델링에 중점을 두는 경우 깊이 평균 2D 모델과 직접 비교할 때 3D 모델 사용이 선호되었습니다 (Lane et al. 1999; Shen and Diplas 2008). 그러나 수력 구조물에서 상류 어류의 움직임을 평가할 때 2D 및 3D 모델의 성능을 비교 평가 한 연구는 거의 없습니다.
이 연구에서 CFD 모델의 비교는 2D 소프트웨어 River2D와 3D 소프트웨어 FLOW-3D에 중점을 둡니다 (Flow Science, 2009). 2D 모델과 3D 모델의 가장 큰 차이점은 2D 모델은 각 계산 노드에서 유압 변수의 값을 깊이 평균한다는 것입니다. 이 깊이 평균은 구조물의 물고기 친화성에 큰 영향을 미칠 수있는 중요한 흐름 특징과 경계층 효과를 배제 할 수있는 잠재력을 가지고 있습니다.
예를 들어, 수심 평균 속도 값은 WWP 구조 하류의 수력 조건이 동일한 도달 범위 내의 자연 풀에있는 것과 유사하다고 잘못 제안 할 수 있습니다. 실제로 두 유동장은 어류 개체군에 다르게 영향을 미칠 수있는 고유 한 특성을 가지고 있습니다 (Kolden 2013). River2D는 또한 정수압과 일정한 수평 속도 분포를 가정하는 반면 FLOW-3D는 이러한 가정을 피할 수 있습니다.
대부분의 2D CFD 모델링 프로그램 (Toombes and Chanson 2011)에서 요구하는 정수압 가정은 가파른 경사 (> 10 %)와 급변하는 경사 (Steffler and Blackburn 2002)에서 계산 정확도를 제한합니다. 속도 분포가 일정하다는 가정은 수직 속도 구성 요소가 무시할 수 있음을 의미하며 본질적으로 2D CFD 모델을 사용하여 2 차 흐름 및 강한 순환을 분석하는 기능을 제거합니다 (Steffler and Blackburn 2002; Toombes and Chanson 2011).
이러한 가정과 2D 물리적 표현의 단순화 된 특성을 고려할 때 2D CFD 모델이 물고기 통과 예측 평가를 위해 채널 스패닝 구조의 복잡한 유체 역학을 적절하게 해결할 수 있는지 여부는 불분명합니다.
Figure 1. Alaska requires minimum water depth for fish passage to be 2.5 times the height of the caudal fin (D) (Hotchkiss and Frei 2007).Figure 2. Depth (m) and velocity magnitude (m/s) River2D contours for 0.42 cms.
A Thesis by GYEONG-BO KIM Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE
초록
쓰나미는 해저 지진으로 인해 종종 발생하는 해안 지역에 영향을 미치는 가장 치명적인 자연 현상 중 하나입니다. 그럼에도 불구하고 밀폐된 분지, 즉 피요르드, 저수지 및 호수에서, 수중 또는 해저 산사태는 유사한 결과로 파괴적인 쓰나미를 일으킬 수 있습니다. 큰 수역에 충돌하는 수중 또는 해저 산사태가 쓰나미를 발생시킬 수 있지만, 해저 산사태는 대응하는 것보다 훨씬 더 위협적인 쓰나미 발생원입니다.
이 연구에서 우리는 지하 산사태에 의한 쓰나미 발생에 대한 실험실 규모의 실험을 수치 모델과 통합하는 것을 목표로 합니다. 이 작업은 2 개의 3 차원 Navier-Stokes (3D-NS) 모델, FLOW-3D 및 당사가 개발 한 모델 TSUNAMI3D의 수치 검증에 중점을 둡니다.
이 모델은 Georgia Institute of Technology의 Hermann Fritz 박사가 이끄는 쓰나미 연구팀이 수행 한 이전의 대규모 실험실 실험을 기반으로 검증되었습니다. 일련의 실험실 실험에서 세 가지 대규모 산사태 시나리오, 즉 피요르드 유사, 곶 및 원거리 해안선이 선택되었습니다. 이러한 시나리오는 복잡한 파도 장이 지하 산사태에 의해 생성 될 수 있음을 보여주었습니다.
파동 장의 정확한 정의와 진화는 뒤 따르는 쓰나미와 해안 지역에서의 영향을 정확하게 모델링하는 데 중요합니다. 이 연구에서는 수치 결과와 실험실 실험을 비교합니다. 토양 유변학에 대한 방법론과 주요 매개 변수는 모델 검증을 위해 정의됩니다. 모델의 결과는 쓰나미 수치 모델의 검증을 위해 National Tsunami Hazard Mitigation Program (NTHMP), National Oceanic and Atmospheric Administration (NOAA) 지침에 명시된 허용 오차 미만일 것으로 예상됩니다.
이 연구의 궁극적 인 목표는 멕시코만과 카리브해 지역의 침수지도를 구축하는 데 필요한 해저 산사태 쓰나미에 대한 3D 모델의 실제 적용을 위한 더 나은 쓰나미 계산 도구를 얻는 것입니다.
주요 분석 이미지
Figure 1.4: Sketch of a subaerial landslide-induced tsunami wave: (a) cross section defining parameters in the direction of slide motion; (b) plan view defining coordinate system to reference and quantify the generated tsunami waveFigure 2.1: A typical computational domain with moving and stationary objects.
Courtesy Dr. Juan J. Horrillo, Texas A&M at Galveston.Figure 2.2: A typical tsunami computational domain: (a) Location of variables in a
computational cell. The horizontal (ui,j ) and vertical (vi,j ) velocity components are
located at the right cell face and top cell faces, respectively. The pressure pi,j and
VOF function Fi,j are located at the cell center; (b) Volume and side cell apertures.
Courtesy Dr. Juan J. Horrillo, Texas A&M at Galveston.Figure A.1: Configurations of boundary conditions for fjord case: FLOW-3D
파동 에너지 장치 모델링 최근 몇 년 동안 파력 에너지와 같은 재생 가능 자원을 사용하여 환경 영향이 적은 에너지를 생산하는 신기술 개발에 대한 국제적인 관심이 기하 급수적으로 증가했습니다. 바다 (해류, 파도 등)에서 전기를 유도하는 파동 에너지 장치는 특히 중요하며 FLOW-3D로 정확하게 모델링 할 수 있습니다.
포인트 흡수 장치 점 흡수 장치는 수면의 파도를 사용하여 에너지를 생성하는 많은 파도 장치 중 하나입니다. 포인트 흡수 에너지 장치는 기본적으로 파도에서 에너지를 흡수하고 바닥에 대한 부력 상단의 움직임을 전력으로 변환하는 부동 구조입니다.
이 시뮬레이션은 부력 구형 구조가 위에 있는 포인트 흡수기 장치를 보여주고, 들어오는 파동의 파고와 수조에 따라 위아래로 움직입니다. FLOW-3D의 이동 객체 모델은 x 또는 y 방향으로 이동을 제한하면서 z 방향으로 커플링 모션을 허용하는 데 사용됩니다. 스톡스 유형의 파장은 진폭 5m, 파장은 100m로 사용되었습니다. RNG 모델은 파동이 포인트 업소버 장치와 상호작용할 때 발생하는 난류를 포착하기 위해 사용되었습니다. 예상대로, 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 그림은 난류로 인해 장치 근처의 복잡한 속도장이 진화하기 때문에 질량 중심의 불규칙한 순환 운동을 보여줍니다.
Multi-Flap, Bottom-Hinged Wave Energy Converter
Oscillating flap은 바다의 파동으로부터 에너지를 추출하여 기계 에너지로 변환합니다. 암은 Water wave에 반응하여 피벗 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 멀티플랩파 에너지 변환기를 만들 수 있습니다. 3개의 플랩 배열이 아래 왼쪽에 표시된 CFD 시뮬레이션에서 시뮬레이션됩니다. 모든 플랩은 하단에 힌지로 연결되며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 깊이 30m에서 주파수가 10초인 4m 진폭 파형으로 작동 중입니다. 시뮬레이션은 한 플랩이 배열 내의 다른 플랩에 미치는 영향을 연구하는 데 중요한 중심 평면을 따라 복잡한 속도 ISO 표면을 보여줍니다. 3개의 플랩이 유사한 동적 모션으로 시작하는 동안, 곧 플랩의 상호 작용 효과가 모션을 위상 밖으로 렌더링합니다. 우측에는 유사한 플랩 에너지 변환기가 표시되어 있습니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 완전히 물에 잠깁니다. 이러한 에너지 변환기를 표면 천공 플랩 에너지 변환기라고 합니다. 이 두 시뮬레이션 예는 모두 미네르바 다이내믹스에 의해 제공되었습니다.
Oscillating Water Column
진동하는 물 기둥은 부분적으로 잠긴 속이 빈 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수선 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수있는 터빈을 통해 대기로 흐르게됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.
위의 CFD 시뮬레이션은 진동하는 water columns를 보여줍니다. FLOW-3D로 포착된 물리학을 강조하기 위해 물기둥이 중공 구조에서 상승 및 하강하는 부분만 모델링합니다. 시뮬레이션은 파형 생성의 다른 선택을 제외하고 유사한 결과를 전달합니다. 왼쪽의 시뮬레이션은 웨이브 유형 경계 조건을 사용하고 오른쪽의 시뮬레이션은 움직이는 물체 모델을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.
LNG 선과 같은 전 세계 항해 선박의 내부 슬로싱 운동에 의해 유발되는 가속 및 하중은 이러한 선박의 안전 설계에 중요한 요소입니다. 선박은 이러한 파도 슬로싱 역학으로 인해 상당한 내부 강제력을 경험할 수 있으며,화물 탱크는 격리 시스템 및 지지 구조물에 추가 하중을 경험할 수 있습니다. FLOW-3D의 비관성 기준 프레임 모델을 사용하면 컨테이너에서 유체 모션을 정확하게 추적하기 위해 복잡한 모션 매개 변수를 규정 할 수 있습니다. FLOW-3D는 연료 탱크의 액체화물과 추진체 움직임을 정확하게 예측합니다.
슬래밍 분석과 “그린 워터”(파동 스프레이 또는 선체 오버 토핑의 결과로 데크를 덮는 물)는 FLOW-3D의 일반적인 응용 분야이며, 이러한 문제에 대한 FLOW-3D의 TruVOF 접근 방식은 엔지니어에게 고유 한 기능을 제공합니다.
이 시뮬레이션은 FLOW-3D로 캡처한 것처럼 파도로 움직이는 LNG 유조선의 복잡하고 완전히 결합된 동작을 보여줍니다. 탱크에서 유체의 슬로싱은 선박의 역학에 영향을 미치며, 여기에는 bilge keels 과 bulbous bow가 포함되어 입사파에서 안정성을 유지하는데 도움이됩니다. 또한 탱크의 유체 슬로싱은 예상대로 선박의 움직임에서 위상 이동이 있습니다. FLOW-3D의 움직이는 물체 모델, 밀도 평가 모델 및 파동 생성 경계 조건은 해양 엔지니어가 유사한 문제를 분석하는 데 도움이 될 수 있습니다.
This article was contributed by Jun Jin, Assistant Professor in the Maritime Systems Engineering Department at Texas A&M University at Galveston.
최근 몇 년 동안 허리케인은 멕시코만 연안의 4개 주에서 여러 해안 고속도로 교량에 구조적 피해를 입혔습니다. 허리케인 피해를 방지하기 위해 연안 교량에 가해지는 파도 하중의 크기는 합리적인 정확성을 가지고 결정되어야 합니다. 일반적으로 구조에 대한 파도 하중의 계산은 구조 상호작용의 여러 특성으로 인해 복잡해집니다. 이 본문은 이러한 복잡한 문제들 중 해결할 수 있는 몇 가지를 보여줍니다.
Validation of Stokes Nonlinear Wave Solution in FLOW-3D
FLOW-3D는 해안 교량의 파도 하중을 계산하고 구조물 고도 및 녹색갑판 위의 물 하중에 대한 영향을 조사하기 위해 사용되었습니다. FLOW-3D에서 StokesWave의 정확도를 평가하기 위해 계산 도메인의 세개 지점을 선택했습니다(그림 1). 시뮬레이션을 하는 동안, 각 입자 소스는 초당 10개의 입자를 방출했습니다. 입자 궤적은 그림 1에 표시되어 있습니다. 한 지점의 입자 속도를 이론적 결과와 비교했습니다(그림 2a 및 2b). FLOW-3D에 의해 계산된 입자의 역학은 Stokes비선형 파동이론과 잘 일치한다고 결론내렸습니다.
Figure 1. Particle trajectories and pressure variation during a wave simulation
Figure 2a. Comparison of computed particle velocities of a point with theoretical results
Figure 2b. Comparison of computed particle velocities of a point with theoretical results
Wave Loads vs. Superstructure Elevations
다리 갑판을 다른 높이로 설정하고 2m파형 높이와 6초 주기의 파형으로 시뮬레이션을 수행했습니다. 그림 3은 파형력이 최대치에 있을 때의 파동 단면과 압력 등고선을 보여 줍니다.
Figure 3. Wave profile and pressure contours at different moments (Pressure unit: Pa).
Flow Field under Bridge Deck
시뮬레이션은 다른 파도 높이로 실행되었습니다. 그림 4에서 볼 수 있듯이 교량 바닥판 밑의 유동장은 복잡합니다. 대들보와 상부 구조물에 의해 형성된 개방된 공간내에서, 물의 흐름은 경계를 따라 원형패턴으로 있었습니다. 또한 유동의 복잡성은 웨이브 높이가 증가함에 따라 증가하는 것으로 관찰되었다.
Observations
시뮬레이션 결과에서 다음과 같은 결론을 도출할 수 있습니다.
상부 구조물의 높이가 증가함에 따라 교량 상부 구조물의 수직 방향 파동력이 감소하는 반면, 수평 방향 파형력은 교량의 상부 구조물의 상부 표면이 웨이브 높이의 아래에 있을 때 큰 영향을 미치지 않습니다.
교량 상층부의 물 하중은 파고와 함께 증가합니다. 파손이 거의 발생하는 경우 최대 물 하중이 최대 수직 파력의 50 %를 초과했습니다. 그러나 그린 워터 하중과 상향 파력 사이의 위상차로 인해 수직 파력의 최대 값은 물의 부하에 의해 현저히 감소하지는 않았습니다.
교량 상부 구조물 주위의 유동장은 평행한 대들보에 의해 차단됩니다. 그러므로 웨이브 힘에 대한 순전히 기반한 방법은 웨이브 힘을 계산하는데 사용할 수 없습니다.
Figure 4. Vectors of water particle velocity at the moment of maximum wave force (Velocity unit: m/s)
Learn more about the power and versatility of modeling coastal and maritime applications with FLOW-3D>
인도 Sikkim에 위치한 The Teesta III Hydropower Project는 가파르고 좁은 히말라야 계곡에 위치한 60m의 Concrete Face Rockfill Dam (CFRD)이 포함되어 있습니다. 이 계곡은 지진 활동이 활발하며 가파른 경사면은 산사태를 발생시킬 수 있습니다. 댐 상류 저수지의 산사태로 CFRD를 범람할 수 있다는 우려가 있었습니다. 몇 초 이상 과도하게 지속되면 오버플로우로 인해 CFRD가 잘못될 수 있습니다. 비록 댐이 무너지지 않았지만, 여전히 Chungtangh에 있는 상류쪽 작은 마을은 홍수가 날 것이라는 우려가 있었습니다.
Teesta강 계곡의 가장 가파른 경사면은 댐의 바로 상류에 위치해 있는데, 댐의 산사태가 가장 일어날 가능성이 높은 지역입니다. 이 분석의 목적은 저수지에 대한 산사태를 시뮬레이션하고 그 결과로 발생하는 파도가 댐에 넘치는지 여부를 결정하는 것이었습니다.
Moving Objects Model Used to Simulate Landslide
Tecsult는 저수지의 침전물과 퇴적물을 모델링하는데 성공적이었기 때문에 FLOW-3D를 선택하여 이를 시뮬레이션하였습니다. 저수지의 시뮬레이션은 시작점으로 사용되었습니다. FLOW-3D의 Moving Objects모델은 산사태를 시뮬레이션하는데 사용되었으며 VOF모델은 웨이브 생성을 시뮬레이션하는 데 사용되었습니다.
저수지의 산사태를 추정하기 위해서는 여러가지 방법이 고려되었습니다. 경험적 방법은 흔히 산사태가 발생한 파도를 평가하는데 사용되지만, 이러한 방법은 여러가지 면에서 부족합니다. 이러한 방법은 근접 필드 또는 스플래시 영역에 대한 정보를 제공하지 않습니다. 댐은 슬라이드 면과 매우 가깝기 때문에 스플래시 영역을 아는 것이 중요했습니다. CFRD는 몇 초 이상 overflow를 견딜 수 없었습니다. FLOW-3D는 미끄러운 지형 질량과 물 사이의 완전 결합된 상호 작용을 계산하여 시나리오를 3 차원에서 시뮬레이션하는 방법을 제공합니다.
이 문제를 시뮬레이션하기 위해 간단하고 작은 크기의 자유 낙하 블록으로 구성된 실험과 비교하였습니다. 이 경우는 아래 동영상에 나와 있습니다. 그 결과로 생긴 파도 높이는 그 실험과 잘 맞았습니다.
이 모델의 STL파일은 FLOW-3D로 직접 가져옵니다. 예상 산사태 지역의 크기는 지질 정보와 주변 산사태 관측치를 바탕으로 결정되었습니다. 30,000m³, 100m높이의 산사태가 310만 셀의 메쉬로 시뮬레이션 되었습니다. 높이가 1m인 측면 3m의 균일한 셀을 사용했습니다. 최대 슬라이딩 속도는 진입 지점에서 23m/s에 도달했습니다. 파도는 높이 8m, 속도 10m/s로 댐에 도달하여 몇 초 동안 범람했습니다. 그 결과로 상류 마을에서는 홍수가 나타나지 않았습니다.
Figure 3. Prediction of wave height in the splash zone and near field in a small reservoir, with refraction.
Figure 4. Wave heights plotted against each other
Figure 5. Downstream view of TEEST III dam and water intake CATIA model
Conclusions
이 작업의 주된 관심사는 댐의 범람으로 인해 댐과 Chungtangh 마을이 파괴될 수 있었다는 것입니다. 그러나 시뮬레이션에 따르면 댐은 잠시 동안만 범람했고 파도는 마을에 닿지 않았습니다. Chungtangh마을은 강 위에 충분히 높기 때문에, 그것을 범람시키기 위해서는 상당한 파도의 높이가 필요할 것입니다.
Aerial Landslide Generated Wave(ALGW)는 수역에 영향을 미치는 빠른 슬라이드의 결과이다. 이것은 암석에 의해 생성된 작은 파도 이거나, 3000만 입방 미터의 암석으로 인한 500m를 초과하는 파도 일 수도 있다. 공학적 관점에서 보면 ALGW는 근접한 해안을 따라 인간이 거주하는 인구/자산이 있는 수역에서 발생할 때 큰 관심을 가진다. 여기서 파동이 발생하면 해안선이 파손되고 홍수가 날수 있으며, 댐붕괴로 인한 사망까지 일으킬 수 있다(Müller-Salzburg, 1987). 결과적으로, ALGW에 의해 야기되는 최대 파도 상승을 예측하는 것은 경제적, 환경적, 안전상의 이유로 매우 중요합니다. 안타깝게도 분석적인 솔루션이 없는 매우 복잡한 문제로, 유체 역학적인 측면에서뿐만 아니라 지질학적인 관점(즉, 크기/기하학적인 슬라이드의 밀도 프로파일)에서도 마찬가지입니다. 이와 같이, 대부분의 현장 별 ALGW 최대 파형 예측은 확장된 물리적 모델을 사용하여 평가되었다. 일부는 전산유체역학(CFD) 소프트웨어를 기반으로 할 수도 있지만 비용이 많이 들며, 특히 풀 스케일 3차원 문제의 경우 정확성에 대한 논쟁의 대상이 되고 있습니다. 그러나 컴퓨터 하드웨어와 CFD소프트웨어가 계속 발전함에 따라 이제 CFD를 사용하여 ALGW를 실제로 시뮬레이션할 수 있게 되었습니다. 이와 같이 본 연구는 고 충실도의 물리적 모델 데이터를 FLOW-3D와 비교하여 ALGW를 CFD시뮬레이션을 검증하기 위한 지속적인 노력으로 진척시키는 것을 목표로 한다. 다음 절에서는 실제 및 수치 모델 설정에 대한 개요를 제공한다. 뿐만 아니라, 생성된 데이터와 간단한 비교를 제공한다.
Experimental Setup 물리적 실험은 Northwest Hydraulic Consultants 노스 밴쿠버, 캐나다 실험실에서 만들어졌고 실험을 거쳤다. 그것은 30° 경사의 서쪽 벽을 가진 0.5미터 폭의 수로, 45°의 경사진 동쪽 벽, 그리고 두개의 북쪽과 남쪽 측면에 수직 벽, 그리고 1.025m의 수평 단면을 가진 0.610m 너비의 수로로 구성되었다. ALGW를 생성하고 평가하기 위해, 45° 경사 노즈를 가진 0.177×0.305×0.305m의 아크릴 박스를 사용한 6초 시험을 사용했다. 이 슬라이드를 놓았을 때, 슬라이드는 (중력에 의해) 0.607m 심층수에 충돌하기 전에 서쪽 경사면에서 0.768m 아래로 이동했다. 그 후, 물을 통해 또 다른 1.05m를 이동하여 정지 블록을 치기 시작했다. 슬라이드 가속 및 변위뿐만 아니라 파고 높이는 6 초 실험 전체에 대해 100Hz의 주파수에서 기록되었다. 이 데이터를 수집하는 데 사용 된 도구는 다음과 같다.
컴퓨터화된 데이터 수집 시스템
슬라이드의 시간에 따라 이동 한 거리를 측정하는 문자열 가변 저항기
슬라이드 가속도를 측정하는 1 차원 가속도계
물의 주요 본체 내에 배치 된 3 개의 1 차원 커패시턴스 웨이브 – 프로브
웨이브 런업을 캡처하기 위해 동쪽 경사면을 따라 사용되는 저항 사다리꼴 웨이브 프로브
타이밍 스위치 캡처 슬라이드 릴리스 시간 사용
흑백 비디오 카메라
테스트가 반복 가능하고 오작동이 발생하지 않았는지 확인하기 위해 테스트를 5 번 반복하고 각 장비에 대해 평균을 구했다.
Numerical Model Setup 물리적 실험의 전산화 된 3 차원 모델을 제작한 STL 파일을 FLOW-3D로 가져왔다. 일단 FLOW-3D에 들어간 3D 모델은 약 1,370 만개의 0.0075m 크기의 정사각형 셀로 이산화되었고, 벽을 둘러싸고있는 6 개의면 각각에 ‘wall’경계가 사용되었다. 슬라이드를 일반적인 이동 물체로 설정하고, 물리 모델로부터 수집 된 데이터(즉, 가속 및 변위 데이터의 후 처리)에 기초하여 속도가 주어졌다. 동서면 경사면의 표면 거칠기는 0.00025m으로 설정되었다. 모델링 된 유체는 293k의 물이었고, 동적 RNG 난류 모델이 기본 설정과 함께 사용되었다(implicit pressure solve; and, explicit viscous stress, free surface pressure, advection, moving object/fluid coupling solvers). 물리적 모델과 마찬가지로 FLOW-3D는 6 초의 시간을 시뮬레이트하지만 실제 모델과 같이 매 0.01 초가 아닌 0.02 초마다 데이터를 저장하였다(데이터 관리 관점에서 선택하였음).
Result
FLOW-3D 실험의 결과는 그림에 나와 있다. 4개의 웨이브 각각에 대해 실험 시간 동안 파고를 보여준다. 이와 같이, 제시된 파도 높이는 단순히 flume을 통해 전파되는 파도의 구현(즉, 2 차원의 경우에서 볼 수있는 것)이 아니라 오히려 여러 파도의 상호 작용으로 인한 파도 높이를 초래한다.
슬라이드 충격시 발생하는 충격파(1차 신호)
슬라이드 뒤의 충격파 충돌(2차 신호)
북쪽, 동쪽, 서쪽 및 남쪽 벽에서의 웨이브 반사(3차 신호)
또한 길이 방향의 FLOW-3D 데이터(중심선에서)를 실제 모델 비디오 위에 겹쳐서 자유 표면의 FLOW-3D 글로벌 예측을 평가했다. 이것은 아래의 동영상에서 볼 수 있다. 그림과 위의 비디오를 보면 FLOW-3D 데이터가 웨이브 프로브 1, 2 및 3의 경우 물리적 데이터를 매우 잘 일치한다는 것을 알 수 있다. 하지만 웨이브 프로브 4에 대해서는 정확도가 떨어진다. FLOW-3D 시간 데이터와 관련된 오류는 각 웨이브 프로브에 대한 RMSE (root-mean-square-error)를 취하여 평가된다.
Discussion 이 조사에서 실제 모델의 고 충실도 데이터는 ALGW로 최대 파도 상승에 대한 FLOW-3D 예측과 비교되었다. RNG 모형의 기본 설정을 사용하여 FLOW-3D는 주요 수역 내에서 파고를 정확하게 재현 할 수 있었다. 그러나 최대 파동은 약 43%가 넘었다. 최대 웨이브 런업을 줄이기 위해 몇 가지 대안인 FLOW-3D 물리 설정이 사용되었다. 그러나 43 % 이하로 떨어지는 것은 불가능했다. 이러한 대체 시뮬레이션에 대한 주목할만한 관찰은 다음과 같다.
first-order momentum advection scheme의 0.01m 메쉬는 최대 파동 상승 오차가 96% 인 반면 동일하게 0.0075m 메쉬의 오차는 130%였다. 그러나 second-order로 변경하면 0.01 m 및 0.0075 m 메시의 경우 각각 55% 및 43%의 오차가 발생한다. 또한 메쉬 셀 크기를 0.005m으로 줄이면 80%의 오차가 발생한다.
이 테스트 케이스에서 가장 중요한 매개 변수는 momentum advection scheme이다. 평균적으로 second-order를 사용하면 first-order대비 오차가 약 50% 감소한다.
FLOW-3D의 MP 버전을 사용하여 0.005m의 메쉬 셀 크기를 사용해야 한다. 해석 시 CPU 시간은 33 시간이었다. 비교를 위해 FLOW-3D의 SMP 버전은 0.0075m의 메쉬 셀 크기로 시뮬레이션을 실행하는 데 26시간이 필요했지만 MP 버전은 4.5시간 밖에 걸리지 않았다.
[1] 3.5GHz 8 코어 AMD FX-8320 프로세서에서 약 6초의 시뮬레이션 시간이 대략 26시간 소요되었다.
References Fritz, H. M., Hager, W. H., & Minor, H.-E. (2004). Near Field Characteristics of Landslide Generated Impulse Waves. Journal of Waterway, Port, Coastal & Ocean Engineering, 130(6), 287–302. doi:10.1061/(ASCE)0733-950X(2004)130:6(287) Miller, D. J. (1960). Giant Waves in Lituya Bay Alaska (Geological Survey Professional Paper No. 354-C). Washington, D.C.: United States Government Printing Office. Müller-Salzburg, L. (1987). The Vajont catastrophe— A personal review. Engineering Geology, 24(1–4), 423–444. doi:10.1016/0013-7952(87)90078-0
This article was contributed by Jun Jin, Assistant Professor in the Maritime Systems Engineering Department at Texas A&M University at Galveston.
최근 몇 년 동안 허리케인은 멕시코만 연안의 4 개 주에서 여러 해안 고속도로 교량에 구조적 피해를 입혔습니다. 허리케인 피해를 방지하기 위해 연안 교량에 가해지는 파도 하중의 크기는 합리적인 정확성을 가지고 결정되어야 합니다. 일반적으로 구조에 대한 파도 하중의 계산은 구조 상호작용의 여러 특성으로 인해 복잡해집니다. 이 본문은 이러한 복잡한 문제들 중 해결할 수 있는 몇 가지를 보여줍니다.
Validation of Stokes Nonlinear Wave Solution in FLOW-3D
FLOW-3D는 해안 교량의 파도 하중을 계산하고 구조물 고도 및 녹색갑판 위의 물 하중에 대한 영향을 조사하기 위해 사용되었습니다. FLOW-3D에서 StokesWave의 정확도를 평가하기 위해 계산 도메인의 세개 지점을 선택했습니다(그림 1). 시뮬레이션을 하는 동안, 각 입자 소스는 초당 10개의 입자를 방출했습니다. 입자 궤적은 그림 1에 표시되어 있습니다. 한 지점의 입자 속도를 이론적 결과와 비교했습니다(그림 2a 및 2b). FLOW-3D에 의해 계산된 입자의 역학은 Stokes비선형 파동이론과 잘 일치한다고 결론내렸습니다.
Figure 1. Particle trajectories and pressure variation during a wave simulation
Figure 2a. Comparison of computed particle velocities of a point with theoretical results
Figure 2b. Comparison of computed particle velocities of a point with theoretical results
Wave Loads vs. Superstructure Elevations
다리 갑판을 다른 높이로 설정하고 2m파형 높이와 6초 주기의 파형으로 시뮬레이션을 수행했습니다. 그림 3은 파형력이 최대치에 있을 때의 파동 단면과 압력 등고선을 보여 줍니다.
Figure 3. Wave profile and pressure contours at different moments (Pressure unit: Pa).
Flow Field under Bridge Deck
시뮬레이션은 다른 파도 높이로 실행되었습니다. 그림 4에서 볼 수 있듯이 교량 바닥판 밑의 유동장은 복잡합니다. 대들보와 상부 구조물에 의해 형성된 개방된 공간내에서, 물의 흐름은 경계를 따라 원형패턴으로 있었습니다. 또한 유동의 복잡성은 웨이브 높이가 증가함에 따라 증가하는 것으로 관찰되었다.
Observations
시뮬레이션 결과에서 다음과 같은 결론을 도출할 수 있습니다.
상부 구조물의 높이가 증가함에 따라 교량 상부 구조물의 수직 방향 파동력이 감소하는 반면, 수평 방향 파형력은 교량의 상부 구조물의 상부 표면이 웨이브 높이의 아래에 있을 때 큰 영향을 미치지 않습니다.
교량 상층부의 물 하중은 파고와 함께 증가합니다. 파손이 거의 발생하는 경우 최대 물 하중이 최대 수직 파력의 50 %를 초과했습니다. 그러나 그린 워터 하중과 상향 파력 사이의 위상차로 인해 수직 파력의 최대 값은 물의 부하에 의해 현저히 감소하지는 않았습니다.
교량 상부 구조물 주위의 유동장은 평행한 대들보에 의해 차단됩니다. 그러므로 웨이브 힘에 대한 순전히 기반한 방법은 웨이브 힘을 계산하는데 사용할 수 없습니다.
Figure 4. Vectors of water particle velocity at the moment of maximum wave force (Velocity unit: m/s)
Learn more about the power and versatility of modeling coastal and maritime applications with FLOW-3D>
This article is an adapted version of an article published in the journal of the Engineering Association for Offshore and Marine in Italy by Fabio Dentale, E. Pugliese Carratelli, S.D. Russo, and Stefano Mascetti. The first three authors are users at the University of Salerno; Mr. Mascetti is an engineer at XC Engineering, Flow Science’s associate for Italy and France.
방파제의 설계는 복잡한 자연 시스템 (바다와 해안)과 인공 구조물 (방파제)의 상호 작용에 대한 완전한 이해가 필요합니다. 일반적으로 설계 작업은 광범위한 물리적 모델링을 수반하므로 비용이 많이 들고 시간이 오래 걸릴 수 있습니다. 최근까지 방파제의 복잡한 측면은 상세한 수치 시뮬레이션에 너무 어려웠습니다. 이것은 물이 비정상적인 동작으로 복잡한 경로를 통해 흐르는 콘크리트 또는 암석 블록으로 구성된 방파제의 경우 특히 그렇습니다.
컴퓨팅 기술의 진보로 수치, 물리적 조사 간의 격차가 좁혀졌습니다. 상호 작용하는 개별 블록으로 구성된 견고한 구조를 정확하게 표현할 수 있으므로 블록 사이의 빈 공간 내에 수치적으로 유동 영역을 생성 할 수 있습니다. 이것은 방류수가 균일한 다공성 매질로 근사되는 Classical Darcy 주제에 고려될 수 없는 대류항 및 난류의 영향을 포함한 전체 유체 역학적 거동의 영향을 평가할 수 있게 합니다
Modeling Rubble Mound Breakwaters
The following examples describe cases where rubble mound breakwaters are modelled on the basis of their real geometry, taking into account the hydrodynamic interactions with the wave motion.
잔재물 분쇄기 모델링
다음의 사례는 잔해 분쇄물이 파도 운동과의 유체 역학적 상호 작용을 고려하여 실제 형상을 기반으로 모델링된 경우를 설명합니다.
방파제의 개략적인 표현을 고려하여 구체 세트로 재현한 것으로 the cube, the modified cube, the antifer, the tetrapod, the accropode, the accropode II, the coreloc, the xbloc,and the xbloc base 등과 같은 일반적으로 사용되는 인공 블록을 고려하기 위해 개발되었습니다. (그림 1).
방파제는 물에 잠기거나 잠긴 경우에는 문헌에 나와 있는 표준 실험식을 사용하여 크기를 결정하고 실제 기하학적 패턴을 따르는 전체 크기, 구조 및 물리적 모델링과 같이 수치적으로 구성했습니다 (그림. 2).
제안된 절차의 품질을 검증하기 위해 침수된 방파제에 대해 세 가지 기하학적 구조를 고려했다. 즉, 부유, 다공성, 고형물과 부유물(그림 2a)이 출현한 방파제의 경우, 두 가지 다른 기하학적 구조를 사용했다(Fig. 2b – 2c).
방파제가 결정되면 기하학적 구조을 FLOW-3D로 가져 와서 유체 역학적 작용을 평가 및 Wave propagation의 연구를 위해 테스트했습니다. 시뮬레이션은 RNG 난류 모델과 coarse격자 안쪽에 중첩된 미세한 격자가 있는 전산메쉬를 사용하여 Navier-Stokes 방정식을 3 차원으로 통합하여 수행되었습니다.
수중 장벽 (계산 영역: 90 × 1.9 × 6.5m)의 경우, 포함된 메쉬 블록은 동일한 크기 (0.30 × 0.27 × 0.30m)의 46,200 개의 요소로 구성되며 중첩된 블록은 2,353,412 개의 요소로 구성하였습니다(0.061 × 0.055 × 0.061m).
방파제에도 동일한 기준이 적용되었습니다. 포함된 격자 블록은 150,000개의 요소(0.50×0.20×0.30m)로 구성되며, 중첩된 블록은 2,025,000개의 요소(0.10× 0.10×0.10m)로 생성되었습니다.
Figures 3a and 3b: Mesh views of submerged breakwater (3a above) & emerged breakwater (3b below)
잠수함이나 해상 구조물 간의 상호 작용을 정확히 표현하기 위한 Navier-Stoke기반 수치 시뮬레이션을 활용한 방법, 그리고 유체 움직임이 입증되었습니다. 시뮬레이션은 난류 시뮬레이션을 위한 RANS와 자유 표면 계산을 포함하는 첨단 컴퓨터 유체 동적 소프트웨어 시스템(FLOW-3D)을 사용하여 수행되었습니다.
이 결과는 블록 사이의 경로 내에서 유체 운동의 상세한 그림을 제공함으로써 기존의 흐름 방법보다 더 정확한 시뮬레이션을 제공함을 보여줍니다. 블록을 사용하여 기존의 누설 흐름 방법보다 더 정확한 시뮬레이션을 제공합니다. 원칙적으로 모든 관련 부품(필터, 코어 및 토우)에서 구조물이 물에 잠기거나 나타나는 경우 시뮬레이션이 가능하며 제한은 없습니다.
Further studies will be aimed at assessing the stability of individual blocks through the use of the Moving Object model in FLOW-3D.
FLOW-3D 는 선박설계, 슬로싱 동역학, 파도에 미치는 영향 및 환기를 포함하여 해안 및 해양 관련 분야에 사용할 수 있는 이상적인 소프트웨어입니다.
자유 표면 유체 역학, 파동 생성, 움직이는 물체, 계선 및 용접 공정과 관련한 FLOW-3D 의 기능은 해양 및 해양 산업에서 CFD 공정을 모델링하는 데 매우 적합한 도구입니다. 해안 응용 분야의 경우 FLOW-3D 해안 응용 분야의 경우 FLOW-3D 는 해안 구조물에 대한 심한 폭풍 및 쓰나미 파동의 세부 사항을 정확하게 예측하고 돌발 홍수 및 중요 구조물 홍수 및 피해 분석에 사용됩니다. 기능은 다음과 같습니다.
자유 표면 – 파동 유체 역학 및 오버 토핑 : 규칙 및 불규칙파 및 파동 스펙트럼 (Pierson Moskowitz, JONSWAP)
Seakeeping – slamming, planing, porpoising 및 선체 선체 변위 : 완전히 결합된 선박 및 수중 차량 유체 역학
선체 – Resistance, stability and dynamics: surging, heaving, pitching and rolling motion (response amplitude operators or RAOs)
슬로싱 – LNG / 밸러스트 탱크
해양 공학 – 파동 에너지 변환기
해안 응용 분야의 경우, FLOW-3D 는 강력한 폭풍과 쓰나미 현상에 의한 해안 구조물이 받는 영향에 대한 세부 사항 예측, 돌발 홍수에 의한 중요한 시설물에 대한 정확한 피해 분석 등을 위해 사용됩니다.
Mooring Lines, Springs and Ropes
FLOW-3D (계류선 및 스프링 등)의 특수 물체를 다른 움직이는 물체에 부착하면 엔지니어가 선박 런칭, 부유 장애물 역학, 부표, 파도에너지 변환기 등을 정확하게 포착할 수 있습니다.
Welding
FLOW-3D 용접 모듈이 추가되면서 조선업계의 용접분야에서는 다공성 등 용접 결함을 최소화할 수 있어 선체의 품질을 크게 높이는 동시에 생산 시간을 최적화할 수 있습니다.
Coastal & Maritime Case Studies
FLOW-3D 사용자들은 연약한 해안선 보호, 구조물에 대한 파장 시뮬레이션, 선체 설계 최적화, 선박 내 환기 연구 등 해안 및 해양 애플리케이션에 FLOW-3D를 사용합니다.
우리는 보트가 세계 항해를 하면서 마주칠 것 같은 다양한 조건에서 항해를 할 수 있는지를 볼 수 있었습니다. 그리고 속도뿐만 아니라 연료 효율과 안전도 고려하도록 설계를 수정할 수 있었습니다. – Pete Bethune, skipper of Earthrace
Validation of Sloshing Simulations in Narrow Tanks / Aerial Landslide Generated Wave Simulations / Earthrace: Speed, Fuel Efficiency and Safety
Mary Kathryn WalkerFlorida Institute of Technology, mwalker2022@my.fit.edu Robert J. Weaver, Ph.D.Associate ProfessorOcean Engineering and Marine SciencesMajor Advisor Chungkuk Jin, Ph.D.Assistant ...
Waqed H. Hassan | Zahraa Mohammad Fadhe* | Rifqa F. Thiab | Karrar MahdiCivil Engineering Department, Faculty of Engineering, University of Warith Al-Anbiyaa, Kerbala 56001, IraqCivil ...
수직 수중 펄스 제트에 의한 모래층 정련에 대한 펄스 폭과 진폭의 영향 조사 Chuan Wang abc, Hao Yu b, Yang Yang b, Zhenjun Gao c, Bin Xi b, Hui Wang b, Yulong Yao b aInternational Shipping Research Institute, GongQing Institute ...
Yupeng Ren abc, Huiguang Zhou cd, Houjie Wang ab, Xiao Wu ab, Guohui Xu cd, Qingsheng Meng cd Abstract 해저 퇴적물 흐름은 퇴적물을 심해로 운반하는 주요 수단 중 하나이며, 종종 장거리를 이동하고 수십 또는 수백 킬로미터에 걸쳐 ...
FLOW-3D 는 비정형 파뿐만 아니라 일반 선형 및 비선형파 표면을 시뮬레이션 할 수 있는 기능이 있습니다. 선형파는 작은 진폭 및 급경사를 갖는 사인파 표면 프로파일을 가지며, 비선형파는 선형 파보다 더 큰 진폭 (유한 진폭), 더 뾰족한 볏 및 평탄한 골짜기를 갖는다. 비선형 파는 파동 문자와 그 해를 구하기 위해 사용 된 수학적 방법에 따라 스톡 (stookes), 코니이드 (cnoidal) 파 및 독방 파로 분류 될 수 있습니다.
그림 1. 다른 진행파의 프로파일 비교 도 1 및도 2에 도시 된 바와 같이, 스톡스 파는 심층 및 과도수의 주기적인 파이다. Cnoidal 파는 천수(shallow water)와 중간 물에서 긴주기적인 파이고 Stokes 파보다 더 뾰족한 볏과 평평한 골짜기를 가지고 있습니다. 스톡스와 코니 형 파와 달리 독방 파는 천수(shallow water)와 과도 수에서 존재하는 비 주기적 파이다. 그것은 하나의 산마루와 물마루를 가지며 완전히 방해받지 않은 수면 위입니다. 수학적으로 파장이 무한대가 될 때 그것은 코니 형 파의 제한적인 경우입니다. 심층수, 과도 수 및 파도에 대한 천수(shallow water)의 분류는 표 1에서 찾아 볼 수있다.
그림 2. 다양한 파도의 적용 범위 (Le Méhauté, 1976, Sorensen, 2005 및 USACE, 2008). d : 평균 수심; H : 파고; T : 파주기; g : 중력 가속도
선형 파 이론 (Airy, 1845)이 많은 응용 분야에서 사용되었지만 비선형 파 이론은 파동의 진폭이 작지 않은 경우 선형 파 이론보다 정확도가 크게 향상되었습니다. FLOW-3D 에서 3 개의 비선형 파 이론이 5 차 스톡스 파 이론 (Fenton, 1985), 스톡스 및 코니이드 파에 대한 푸리에 급수 방법 (Fenton, 1999), McCowan의 독방 파 이론 (McCowan, 1891, Munk, 1949). 그 중에서 Fenton의 Fourier 시리즈 방법은 선형 물, 스톡 (Stokes) 및 코니형 (cnoidal) 파를 포함하여 심층수, 과도 수 및 천수(shallow water)에서 모든 종류의 주기적 전파 파들에 유효합니다. 또한 다른 웨이브 이론보다 정확도가 높습니다 (USACE, 2008). 따라서 모든 수심에서 선형 및 비선형 주기파의 모든 유형을 생성하는 것이 권장되는 방법입니다. solitary wave의 경우, FLOW-3D 에 사용 된 McCowan의 이론은 Boussinesq (1871)에 의해 개발 된 다른 널리 사용되는 이론보다 더 높은 주문 정확도를 갖는다.
그림 3. PM과 JOHNSWAP 스펙트럼 (USCE, 2006에서 적응)
Classifications
d /
Deep water
1/2 to ∞
Transitional water
1/20 to 1/2
Shallow water
0 to 1/20
불규칙한 물결은 파도의 물성이 일정하지 않은 자연적인 바다의 상태를 나타냅니다. FLOW-3D에서 불규칙한 파동은 다양한 진폭과 주파수 및 임의의 위상 변이를 갖는 많은 선형 성분 파의 중첩으로 표현됩니다. Pierson-Moskowitz (Pierson and Moskowitz, 1964)와 JONSWAP 파력 에너지 스펙트럼 (Hasselmann, et al., 1973)은 FLOW-3D에서 구성 요소 파를 생성하기 위해 구현된다. 다른 웨이브 에너지 스펙트럼은 사용자 정의 데이터 파일을 가져와서 사용할 수 있습니다.
계산 시간을 절약하기 위해 웨이브는 메시 블록 경계에서뿐만 아니라 초기 조건으로 정의 될 수 있습니다.
아래의 애니메이션은 웨이브 초기화가 있거나없는 웨이브의 모든 유형에 대한 예제를 보여줍니다. 선형 및 비선형 수위 시뮬레이션을 위해 FLOW-3D 의 성공적인 적용이 이루어졌습니다. Bhinder 외의 예를 참조하십시오. al (2009), Chen (2012), Hsu et. al (2012) Thanyamanta et. al (2011) 및 Yilmaz et. 자세한 내용은 알 (2011)을 참조하십시오.
References
Airy, G. B., 1845, Tides and Waves, Encyc. Metrop. Article 102.
Bhinder, M. A., Mingham, C. G., Causon, D. M., Rahmati, M. T., Aggidis, G. A. and Chaplin, R.V., 2009, A Joint Numerical And Experimental Study Of a Surging Point Absorbing Wave Energy Converter (WRASPA), Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79392, Honolulu, Hawaii.
Boussinesq, J., 1871, Theorie de L’intumescence Liquide Appelee Onde Solitaire ou de Translation se Propageant dans un Canal Rectangulaire, Comptes Rendus Acad. Sci. Paris, Vol 72, pp. 755-759.
Chen, C. H., 2012, Study on the Application of FLOW-3D for Wave Energy Dissipation by a Porous Structure, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University.
Fenton, J. D., 1985, A Fifth-Order Stokes Theory for Steady Waves, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 111, No. 2.
Fenton, J. D., 1999, Numerical Methods for Nonlinear Waves, Advances in Coastal and Ocean Engineering, Vol. 5, ed. P.L.-F. Liu, pp. 241-324, World Scientific: Singapore, 1999.
Hasselmann, K., Barnet, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H., 1973, Measurement of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP), German Hydrographic Institute, Amburg.
Hsu, T. W., Lai, J. W. and Lan, Y., J., 2012, Experimental and Numerical Studies on Wave Propagation over Coarse Grained Sloping Beach, Proceedings of the International Conference on Coastal Engineering, No 32 (2010), Shanghai, China.
Kamphuis, J. M., 2000, Introduction to Coastal Engineering and Management, World Scientific, Singapore.
Le Méhauté, B., 1976, An Introduction to Hydrodynamics and Water Waves, Springer-Verlag.
McCowan, J., 1891, On the solitary wave, Philosophical Magazine, Vol. 32, pp. 45-58.
Munk, W. H., 1949, The Solitary Wave Theory and Its Application to Surf Problems, Annals New York Acad. Sci., Vol 51, pp 376-423.
Pierson W. J. and Moskowitz, L., 1964, A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitiagordskii, J. Geophys. Res. 9, pp. 5181-5190.
Thanyamanta, W., Herrington, P. and Molyneux, D., 2011, Wave patterns, wave induced forces and moments for a gravity based structure predicted using CFD, Proceedings of the ASME 2011, 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011, Rotterdam, The Netherlands.
USACE (U.S. Army Corps of Engineers), 2006, Coastal Engineering Manual, EM 1110-2-1100, Washington, DC.
Yilmaz, N., Trapp, G. E., Gagan, S. M. and Emmerich, T., R., 2011 CFD Supported Examination of Buoy Design for Wave Energy Conversion, IGEC-VI-2011-173, pp. 537-541
Finite-difference equations may have rapidly growing and oscillating solutions that in no way resemble the solutions expected from the partial differential equations they are meant to approximate. Such solutions are said to exhibit computational instability. Clearly, it is desirable to avoid these numerical disasters. For linear difference equations with constant coefficients, computational stability can be determined using a Fourier method pioneered by von Neumann (see the article in this series “Computational Stability.” Unfortunately, most equations of physical interest are either nonlinear, or have non-constant coefficients, or both.
유한 차분 방정식의 계산 결과에서 본래 근사하는 편미분 방정식에서 예상되는 것과 크게 다르게 급속하게 증가하고 부호가 자주 반전하는 솔루션을 얻을 수 있습니다. 이러한 솔루션이 나타내는 행동을 “계산 불안정성”라고합니다. 물론 이러한 해석은 바람직하지 않습니다. 상수 계수를 따른 선형 차분 방정식의 계산 안정성을 확인하는 방법으로는 von Neumann 의한 푸리에 방법을 사용할 수 있습니다 (본 시리즈 “계산 안정성” 참조). 불행히도, 물리 현상을 나타내는 대부분의 방정식은 비선형이거나 비 상수 계수를 수반하거나 또는 둘 다입니다.
Heuristic Analysis Methods
In this article a simple heuristic analysis method is described for investigating the computational stability of such finite-difference equations. An important by-product of this type of analysis is that it often suggests simple ways to eliminate the instabilities and at the same time increase the accuracy of the approximations.
이 책에서는 위의 유한 차분 방정식의 계산 안정성을 조사하기위한 간단한 휴리스틱 분석 방법에 대해 설명합니다. 이 유형의 분석은 많은 경우에 불안정을 제거하는 방법을 보여뿐만 아니라 근사치의 정확도를 높이는 방법도 보여주는 뛰어난 특징이 있습니다.
The approach described here is called “heuristic” because it is not rigorous or complete, but it often works and can provide a great deal of useful information. Reference [1] is the original publication describing the heuristic stability method from which much of this article has been taken.
여기서 설명하는 방법은 엄격하지도 완전하지도 않은 것으로부터 “추론”이라고되어 있지만, 많은 경우에 유효하고 유용한 정보를 많이 제공합니다. 안정성을 분석하기위한 휴리스틱 기법에 대해 작성된 참고 문헌 [1]은이 책에서 다루고 많은 정보 출처 소스입니다.
Heuristic analysis is based on the rather simple idea of reducing a finite-difference equation back to a partial differential equation by expanding each of its terms in a Taylor series and keeping only terms to a certain order in the expansion. This expansion is in powers of the space and time increments, which are assumed to be small to begin with.
휴리스틱 분석은 유한 차분 방정식을 전개하고 각항을 테일러 급수로 나타내 특정 차수까지의 항만을 남김으로 편미분 방정식에 귀착시키는 비교적 간단한 개념을 기반으로합니다. 이 확장은 처음에는 작은 것으로 예상되는 공간 증가 및 시간 증분의 거듭 제곱으로 표시됩니다.
Certainly such an expansion must, to lowest order, reproduce the original partial differential equation, otherwise, it would not be a good approximation. Oftentimes this requirement is referred to as the “consistency” of the approximation. Terms beyond the lowest order in the expansion are referred to as truncation errors.
이러한 확장은 원래의 미분 방정식을 최소 차수까지 재현하는 것이 필수적입니다. 그렇지 않으면 좋은 근사치를 얻을 수 없습니다. 이 요구 사항은 종종 근사치의 ‘일치 성’이라고 합니다. 전개 된 최소 차수 다음은 절단 오류라고합니다.
The basic concept of a heuristic analysis is that the Taylor-expanded equation is a more accurate representation of the difference equation than the original partial differential equation. Even keeping only a few truncation error terms should result in a partial differential equation that is more closely related to the difference equation. With this in mind, the following discussion will show that an examination of the truncated equation can sometimes reveal properties shared with the difference equation such as stability problems, necessary initial conditions and/or serious inaccuracies.
휴리스틱 분석은 테일러 전개 방정식 쪽이 원래 편미분 방정식보다 차분 방정식을보다 정밀하게 나타내고 있다는 기본 개념을 기반으로합니다. 절단 오차 부분을 일부 남긴 경우에도 항은 차분 방정식에 가까운 편미분 방정식입니다. 이 점을 염두에 두면서 여기에서 계산을 중단 한 식을 조사함으로써 안정성 문제 필요한 초기 조건 심각한 부정확성 등 차등 방정식과 일반적인 특성이 밝혀 질 것을 보여 있습니다.
To begin, we consider the same linear partial differential equation that was discussed in the first article on stability: Computational Stability.
첫째, 안정성에 쓰여진 ” 계산 안정성”에서 사용한 것과 동일한 선형 편미분 방정식 생각합니다.
Linear Equation Example
The equation for one-dimensional advection-diffusion of a variable u(x,t) is
여기에서는 변수 u (x, t)의 1 차의 이류 확산 방정식을 이용합니다.
(1)
The convection velocity c and the diffusion coefficient ν are assumed to be constants. Solutions of this equation are known to be bounded and otherwise well-behaved.
대류 속도 c와 확산 계수 ν은 상수로 간주합니다. 이 방정식의 해는 경계이며, 양호한 거동을 나타내는 것을 알 수 있습니다.
What will be shown here is that the stability of a simple finite-difference approximation to Eq. 1 can be determined from an examination of the truncations errors resulting from a Taylor series expansion of a the difference equation. Not only does this process reveal that there are two basic types of instability, but we shall be able to make a direct comparison between the heuristic method and the von Neumann type of Fourier analysis carried out in Computational Stability. This comparison provides a useful rule-of-thumb for which truncation error terms to keep and which to eliminate from the Taylor expansion in order to evaluate the difference equation’s stability.
여기에서는 차분 방정식의 테일러 급수 전개로 인한 절단 오차를 조사하는 것으로, 식 1에 대한 간단한 유한 차분 근사의 안정성을 판단 할 수있는 것을 나타냅니다. 이 프로세스는 불안정성은 기본적으로 두 가지 유형이 있다는 것을 밝혀 질뿐만 아니라 휴리스틱 기법과 “계산 안정성”에서 이용한 von Neumann 유형의 푸리에 분석을 직접 비교할 수 있게 되는 것 있습니다. 이러한 비교를 통해 차이 방정식의 안정성을 평가하는데 테일러 전개로 인한 절단 오차 중 유지해야 할 항목과 배제 할 부분을 결정하는 데 유용한 경험규칙을 얻을 수 있습니다.
The simple, explicit finite-difference equation approximating Eq. 1 discussed in Computational Stability is
다음 수식은 “계산 안정성”에서 설명한 식 1을 근사하는 간결하고 양적인 유한 차분 방정식입니다.
(2)
where, e.g., ujn denotes u(jδx,nδt). This is called a forward-in-time approximation that allows all j location values to be computed at time step n+1, provided all the j values at step n are known. In other words, the difference equation requires one initial condition to start things off, just as the original partial differential equation also requires a single initial condition because it only involves a single time derivative.
여기서, u j n은 u (jδx, nδt)을 나타냅니다. 이것은 시간의 전진 차분 근사라는 것으로, 시간 단계 n의 공간 내의 위치 j 값이 모두 알려진이면 단계 n + 1의 모든 j 값을 계산할 수 있습니다. 즉, 원래의 미분 방정식에서 1 개의 초기 조건이 필요할뿐만 아니라 하나의 시간 미분만을 포함하기 때문에 차분 방정식에서 계산을 시작함에있어서 초기 조건이 하나 필요합니다.
It may be observed that difference equation, Eq. 2, has the property that each space and time location (jδx,nδt) will affect points at time step n+1 at locations j-1, j and j+1. That is, point (jδx,nδt) has a region of influence at later time bounded by lines having slopes ±δx/δt in x-t space. These are similar to characteristic lines along which signals can propagate. For example, the original equation, Eq. 1, has a characteristic line with slope c along which a disturbance advects. In the discrete equation, however, the characteristic lines are not physical characteristics but computational ones defining the region where the difference equation changes data values resulting from a change in value at a particular point.
차분 방정식 2는 공간 위치 및 시간 위치 (jδx, nδt)마다 타임 단계 n + 1의 위치 j-1, j, j + 1의 각 점에 영향을주는 특성을 볼 수 있습니다. 즉, 점 (jδx, nδt)는 현재보다 먼저있는 시간에서, xt 공간에서 기울기 ± δx / δt를 가진 선이 경계가되는 영향 영역을 가지고 있습니다. 이것은 신호의 전달을 나타내는 특성 곡선과 비슷합니다. 예를 들어, 원래 식 1은 교란의 이류를 나타내는 기울기 c의 특성 선을 가지고 있습니다. 그러나 이산 방정식의 특성 선은 물리적 특성을 나타내는 것이 아니라 특정 시점의 값의 변화에 따라 차이 방정식의 데이터 값이 변화하는 영역을 정의하는 계산의 특성을 나타냅니다.
We saw in the Computational Stability article that a Fourier series technique could be used to determine a set of three stability conditions for the difference equation, Eq.2. Here we shall see what can be learned from looking at the truncation errors associated with the approximating equation, Eq. 2.
” 계산 안정성”에서는 푸리에 급수에 의한 방법을 이용하여 차등 방정식 2에 대한 3 개의 안정 조건을 이끌어 낼 것을 알 수있었습니다. 이 책에서는 근사 식 2에 관련된 중단 오차를 조사함으로써 얻은 정보에 대해 설명합니다.
Truncation Error Evaluation
Assume that each term in Eq. 2 is a continuous and differentiable function of x and t. Then, for example, “uj+1,n would be u(xj+δx,tn) and can be expanded about the point (xj,tn) in a Taylor series in powers of δx. Carrying out the expansion in δx and δt for all the terms in Eq.2 yields,
식 2 절은 x 및 t의 연속 미분 가능한 함수로 간주합니다. 그러면 예를 들어, u j + 1, n, n은 u (x j + δx, t n)이되고, 점 (x j, t n)의 주위에 δx의 거듭 제곱에서 테일러 급수 전개를 할 수 있습니다. 식 2의 모든 사항에 대해 δx 및 δt로 확장하면 다음 식을 얻습니다.
(3)
All second and higher order terms in δx and δt have been lumped into the order symbol O(δx2 ,δt2). This is a consistent approximation because it reduces to the original partial differential equation, Eq. 1, when δx and δt tend to zero.
2 차 이상의 δx 및 δt 절은 주문 기호를 사용하여 O (δx 2, δt 2)라고 기술되어 있습니다. δx 및 δt가 제로에 접근 할 때, 원래의 편미분 방정식 1로 귀착하기 때문에 이것은 일관성 있는 근사치라고 할 수 있습니다.
Comparison of Fourier and Truncation Error Analysis
In the article Computational Stability a typical Fourier mode of the form
“계산 안정성”에서는 다음과 같은 형식의 전형적인 푸리에 모드
was substituted into the difference equation, Eq.2, to obtain an equation for r,
이를 차등 방정식 2에 대입하면 r을 구하는 식을 얻었습니다.
(4)
Computational stability of the difference equation requires that the magnitude of r remain less than or equal to 1.0.
차분 방정식의 계산 안정성을 실현하려면 r의 절대 값을 1.0 이하로하는 것이 필요합니다.
If we insert a Fourier mode of the form exp(i(kx+wt)) into the truncated Eq. 3, it will be seen that the result is the same as Eq. 4 with r=exp(iwδt) and then expanded in powers of wδt, plus the sine and cosine expanded in powers of kδx. This confirms that the two results are the same, as they should be to O(δx2,δt2) retained in Eq. 3.
exp (i (kx + wt)) 형식의 푸리에 모드를 계산을 중단 한 식 3에 대입하면 r = exp (iwδt)되고, wδt의 거듭 제곱에서 전개되고 더 sin과 cos는 kδx의 거듭 제곱 전개되고 식 4와 같은 결과를 얻을 수 있는 것을 알 수 있습니다. 식 3에서 개최 된 O (δx 2, δt 2)와 같이 두 결과는 동일하다고 확정됩니다.
However, the comparison also indicates that to keep the basic form of r in Eq. 4, with its real and imaginary parts, we must keep at least the first non-zero terms from the sine and cosine when they are expanded in powers of kδx. The first non-zero term in the imaginary contribution to r comes from sin(kδx) and is proportion to kδx, which corresponds to the first derivative with respect to x in Eq.3. The first non-zero term in the real part of r (other than 1) comes from cos(kδx) and is proportional to (kδx)2, which corresponds to the second derivative with respect to x in Eq. 3.
그러나 이 비교에서는 식 4의 실수 부와 허수 부로 구성된 r의 기본 형식을 유지하려면 kδx의 제곱으로 전개 된 때 적어도 sin과 cos의 첫 번째 non-zero 항을 유지 해야한다고 표시됩니다. r의 허수 부분의 첫 번째 non-zero 항은 sin (kδx)로부터 유도 된 것으로, kδx에 비례합니다. 이것은 식 3의 x에 대한 1 차 도함수에 대응합니다. r의 실수 부 최초의 non-zero 항 (1 제외)은 cos (kδx)로부터 유도 된 것으로, (kδx) 2에 비례합니다. 이것은 식 3의 x에 관한 2 차 도함수에 대응합니다.
These observations lead to the rule-of-thumb that for the truncated equation to reproduce the lowest order real and imaginary parts of the amplification factor r, it is necessary to retain the lowest order even and odd derivatives with respect to each independent variable in the truncation error. In Eq. 3 there is only one first order term proportional to δt and it is a second derivative with respect to t. There are no first order terms proportional to δx.
이러한 점에서 계산을 끊은 식으로 진폭 계수 r의 최소 차수의 실수 부와 허수 부를 재현하려면 중단 오차에서 각 독립 변수에 대해 최소 차수의 짝수와 홀수 함수 (도함수) 을 유지해야한다는 경험식을 지도합니다. 식 3에서 δt에 비례하는 1 차 항은 하나만에서 t에 대한 2 차 도함수입니다. δx에 비례하는 1 차 항은 없습니다.
Examining the Truncated Equation for Stability
Using the above rule-of-thumb, the truncated equation is,
위의 경험식을 사용하면 계산을 중단 한 식은 다음과 같이됩니다.
(5)
The first important thing to note is that this is not identical to the original partial differential equation, Eq. 1. The claim made here is that Eq. 5 is a better approximation of the finite-difference equation than Eq. 1 and because of this we can obtain information about the stability properties of the difference equation. This, in fact, is the case.
여기에서 먼저주의해야 할 점은이 표현은 원래 편미분 방정식 1과 동일하지 않다는 것입니다. 여기에서 증명하고 싶은 것은, 식 5 식 1보다 유한 차분 방정식을 양호하게 근사 할 식이며, 따라서 차이 방정식의 안정성을 나타내는 특성에 대한 정보를 얻을 수 있다는 점입니다. 바로 이것이 증명됩니다.
Recall that the difference equation propagated information into a region of influence bounded by lines whose slopes are dx/dt=±δx/δt. Similarly, the truncated Eq. 5 has a hyperbolic (i.e., wave) character because of the second space and second time derivatives, and the effective wave speeds are ±(2ν/δt)½. If the difference equation is to have any hope of approximating the truncated equation then its region of influence must at least encompass the region of influence of the truncated equation, which leads to the condition
전술 한 바와 같이 차등 방정식은 기울기 dx / dt = ± δx / δt를 가진 선이 경계가되는 영향 영역에 정보가 전달됩니다. 마찬가지로 계산을 중단 한 식 5는 공간에 대한 2 차 도함수 및 시간에 대한 2 차 도함수에 의해 쌍곡선 (즉, 파동)의 특성을 가지고 유효한 파동 속도는 ± (2ν / δt ) ½입니다. 차분 방정식으로 계산을 중단 한 식을 근사하려면 그 영향 영역이 적어도 계산을 끊은 식의 영향 영역을 포함하고 있어야합니다. 그러면 다음의 조건이 도출됩니다.
(6) or
Courant, Friedrichs and Lewy [2] used a similar region of influence condition, now called the Courant condition, which restricts the distance a wave travels in one time increment to less than one space increment. A violation of the Courant condition leads to an oscillating and exponentially growing instability. Condition Eq. 6 is precisely one of the stability conditions found from Fourier analysis in Computational Stability.
Courant, Friedrichs 및 Lewy [2]는 유사한 영향 영역에 관한 조건을 사용했습니다. 현재 이것은 “쿨랑 조건”이라고 불리며 하나의 시간 증분 사이에 파도가 전파하는 거리가 하나의 공간 증분 미만으로 제한된다는 것입니다. 쿨랑 조건이 충족되지 않은 경우, 부호의 빈번한 반전이나 기하 급수적 인 증가를 수반 불안정성이 생깁니다. 조건식 6은 바로 ‘ 계산 안정성 “푸리에 분석에서 도출 한 안정 조건의 하나입니다.
A similar Courant-type condition can be inferred from the two first order derivative terms (the advective terms) in the truncated Eq. 5, which propagate information with speed c,
계산을 중단 한 식 5의 2 개의 1 차 도함수 항 (이류 항)에서 다음과 같은 유사한 쿨랑 유형 조건을 추측 할 수 있습니다. 여기에서 정보는 속도 c로 전달합니다.
(7)
This stability condition, also identified in Computational Stability, likewise leads to an oscillating and growing instability when violated.
이 안정 조건도 “계산 안정성”로 표시 한 것으로, 충족되지 않을 때뿐만 아니라 부호의 반전이나 증가를 수반 불안정성이 생깁니다.
To uncover a third stability condition we must first rewrite the truncated equation by converting the δt term to have space instead of time derivatives, but in a way that still maintains the first order of the expansion. This is done by differentiating Eq. 3 by t and neglecting all first and higher order terms,
세 번째 안정 조건을 도출 먼저, δt 항을 변환하여 계산을 중단 한 식을 다시 작성합니다. 이 때 배포 1 차 항이 유지되도록 시간 도함수 대신 공간 도함수를 갖도록 변환합니다. 이것은 식 3을 t로 미분 1 차 이상의 항을 무시합니다.
(8)
Next replace the first time derivative of u by t in this equation using Eq. 1 to obtain
그런 식 1을 이용하여이 식 u / t 시간의 1 차 도함수를 대체하여 다음의 식을 얻는다.
(9)
Finally, rewrite the truncated Eq.5 using this result for the δt term
마지막으로,이 결과를 이용하여 δt 사항에 대해 계산을 중단 한 식 5를 다시 작성합니다.
(10)
This result is identical to what would have been obtained by Taylor expanding the original finite-difference equation about the point x=jδx and t=(n+½)δt (and would probably have been easier).
마지막으로 얻어진 수식은 원래 유한 차분 방정식을 점 x = jδx 및 t = (n + ½) δt의 주위에 테일러 전개하고 (아마도 더 쉽게) 제공하는 것과 같은 식입니다.
According to our rule-of-thumb the last two terms on the right side proportional to δt can be dropped because they involve higher order derivatives than what is in the first δt term on the right side, which leaves,
위의 경험칙에서 δt에 비례 우변의 마지막 두 절은 우변의 첫 번째 δt 항에 포함 된 것보다 고차 도함수를 포함하기 때문에 폐기합니다.
(11)
This is an alternative form for the truncated equation that retains only the lowest order (first) truncation errors and only those that contain the lowest even and odd derivatives with respect to each independent variable.
이것은 계산을 끊은 식의 대체 형식으로 최소 차수 (1 차)의 중단 오차와 각 독립 변수에 대해 최소의 짝수와 홀수 함수 (도함수)을 포함 것만을 보유하고 있습니다.
Equation 11 is nearly the same as the original Eq. 1, except for a modified diffusion coefficient. The significant thing here is that the diffusion coefficient can be negative. As long as the diffusion coefficient is positive solutions of Eq. 11 exhibit exponentially damped behavior, but with a negative coefficient solutions have an exponentially growing character, i.e., a computational instability! Thus, a further condition for computational stability is that the diffusion coefficient remains positive,
식 11는 변형 된 확산 계수를 제외하고는 원래의 식 1과 거의 동일합니다. 여기서 중요한 것은, 확산 계수는 마이너스가 될 가능성이있는 것입니다. 확산 계수가 양수로 한 식 11의 해는 기하 급수적으로 감쇠 거동을 나타내지 만 계수가 음수 솔루션은 기하 급수적으로 증가하는 특성을 보인다, 즉 계산의 불안정성이 생깁니다 . 따라서 계산 안정성을 구현하기위한 또 하나의 조건으로 확산 계수가 정의되는 것을 결정합니다.
(12)
In this case the instability is a pure growing one without the oscillations in sign associated with the two earlier region-of-influence conditions. If instability is encountered, knowing whether it is exhibiting an oscillation in sign or not will identify it as either a region-of-influence violation or a negative diffusion coefficient. Having this knowledge makes it easier to find a remedy for the instability.
이 케이스의 불안정성은 전술의 영향 영역에 관한 두 가지 조건에 관련한 부호 반전을 수반하는 것이 아니라 단순히 증가하는 특성입니다. 불안정성이 보여진다 부호의 빈번한 반전을 수반 여부를 파악하여 영향 영역에 관한 조건 또는 음의 확산 계수에 관한 조건 중이 충족되지 않았는지 확인 할 수 있습니다. 이러한 정보를 파악할 수 있으면 불안정을 해소하는 방법을 쉽게 찾을 수 있습니다.
Application to Two-Dimensional Fluid Flow
A two-dimensional example (x,z) of water flowing under a laboratory scale sluice gate offers a test for examining a computational instability arising from non-linearity in the governing equations. The physical problem consists of water held behind a gate with an elevation of 0.9ft. Downstream (right) of the gate there is a water pool of depth 0.14 ft. Gravity is 32.2 ft/s2 in the negative z direction (down). At time t=0 the gate is raised up a distance of 0.125ft and water surges out into the pool. Figure 1 shows the resulting flow obtained with a Navier-Stokes solver [3] at t=0.35s. The solver used for this example has been optimized to automatically eliminate instabilities so none are apparent in this case, but it is possible to force the program to use non-optimum settings.
실험실 규모의 수문 아래를 통과하는 2 차원 (x, z)의 흐름의 예는 지배 방정식의 비선형 성으로 인한 계산 불안정성을 조사 테스트합니다. 이 물리 현상 문제는 0.9 피트 높이까지 물을 막아서있는 수문이 있습니다. 수문 하류 측 (오른쪽)의 수심은 0.14 피트입니다. 중력이 -z 방향 (아래쪽)에 32.2 피트 / s 2입니다. 시간 t = 0에 수문은 0.125 피트 상승하고 물이 하류로 흘러갑니다. 그림 1은 나비에 스톡스 솔버[3]을 이용하여 얻은 t = 0.35s의 흐름을 나타냅니다. 이 예에서 사용 된 솔버는 불안정성을 자동으로 제거하도록 최적화되어 있기 때문에이 경우에는 불안정성은 볼 수 없습니다. 그러나 프로그램에 최적화되지 않은 설정을 강제로 실행할 수 있습니다.
Figure 1 (left). Flow under a sluice gate. No unstable behavior is observed. Figure 2 (right). Flow instability developing when computed with small time step and no viscosity.
To demonstrate some unstable behavior we first examine a heuristic analysis performed on the vertical velocity equation used in the simulation. Focus is on the effective diffusion coefficients for the z direction velocity w, while all other truncation errors are ignored,
불안정한 거동을 실례로 설명하기 위해 먼저 시뮬레이션에 사용 된 수직 속도 식에 대해 수행 한 휴리스틱 분석을 고찰합니다. 여기에서 z 방향 속도 w에 대한 효과적인 확산 계수에 초점을 맞추고 있으며, 다른 모든 중단 오차는 무시합니다.
(13)
The diffusion of w in the x and z directions are expressed by the two terms on the right side of Eq. 13, where ν is the fluid viscosity and α is a parameter that modifies the numerical approximation of the term describing the u advection of w, i.e., the second term on the left side of the above equation. When α=0 the finite-difference advection approximation is said to be centered about the location of w, but when α=1 an upstream or “donor cell” approximation is used.
x 및 z 방향의 w의 확산은 식 13의 우변의 두 항으로 표현되어 있습니다. 여기서, v는 유체 점성, α는 w의 u 이류를 나타내는 항 (식 13의 좌변의 제 2 항)의 수치 근사를 수정하는 매개 변수입니다. α = 0 일 때, 이류의 유한 차분 근사 w의 위치를 중심으로 한 근사하지만, α = 1 일 때, 상류 측 또는 “도나세루」에 의한 근사를 사용합니다.
The first thing to notice is that if ν=0 and a centered difference approximation is also used (α=0) then the lowest order term in the two effective viscosity coefficients are proportional to δt and are negative. This clearly leads to unstable behavior, and is a well known property of the central difference approximation. Adding enough viscosity to keep the diffusion coefficient positive is also an established procedure to gain stability, but at the possible cost of introducing too much diffusion. The upstream difference option, α=1, is a reasonable compromise; provided the condition wδt<δx is maintained, the diffusion coefficients are positive (provided the δx2 and δz2 terms are small) and the simulation will be stable.
먼저 주의해야 할 점은 ν = 0이고 중심 차분 근사를 사용하는 경우 (α = 0), 2 개의 유효 점성 계수의 최소 차수의 항은 δt에 비례하고, 부가됩니다. 이것은 분명 불안정한 거동을 이끌 것으로, 중심 차분 근사의 잘 알려진 특성입니다. 확산 계수를 양수 유지하기 위해 충분한 점성을 추가 수법도 안정성을 얻는 데에서 확립 된 방법이지만, 확산이 커질 위험성도 있습니다. 상류 측에서 차분 옵션 α = 1은 합리적인 타협이다. 조건 wδt <δx이 충족되는 한, 확산 계수는 양이며 (δx 2 및 δz 2 항이 작은 경우) 시뮬레이션도 안정됩니다.
If the δx2 and δz2 terms in the diffusion coefficients are not small there is a possibility of unstable behavior. To demonstrate this we set the viscosity to zero and reduce the amount of upstream differencing by setting α=0.05. To keep the negative δt term less than the a term a very small time step δt=0.00025 is used. With these settings the resulting simulation is shown in Fig. 2. An instability in the z velocity has developed just upstream of the sluice gate, which is shown close up in Fig. 3 (where color indicates the z velocity magnitude).
확산 계수의 δx 2 및 δz 2 항이 작지 않은 경우 불안정한 거동이 발생할 수 있습니다. 이를 설명하기 위해 점성을 0으로 설정하고 상류의 차이 량을 α = 0.05로 줄입니다. 부정적인 δt 항이 a 항보다 작아 지도록 매우 작은 시간 단계 δt = 0.00025을 사용합니다. 이러한 설정에서 실행 된 시뮬레이션을 그림 2에 나타냅니다. 수문 상류 측에서 z 속도의 불안정성이 발생하고 있습니다. 그림 3은 그 확대도를 나타냅니다 (색상은 z 속도의 크기를 나타낸다).
This instability is a result of a negative x-direction diffusion coefficient, which is coming from the δx2 term. A negative value results from the fact that the flow upstream of the gate is compressing in the z direction, but expanding in the x direction, which means that the x derivative of u in the δx2 term is positive in this region resulting in a net negative diffusion coefficient.
이 불안정은 δx 2 항에 의하여 부정되었다 x 방향의 확산 계수에 기인합니다. 수문 상류의 흐름은 z 방향으로 압축하고 있습니다 만, x 방향으로 팽창하고 있기 때문에 음수입니다. 즉,이 영역에서는 δx 2 항의 u의 x 방향 도함수는 긍정적이고 순으로 부정적인 확산 계수입니다.
A check on this conclusion can be made by adding in a little viscosity ν=0.0093 to compensate for the negative δx2 term. Figure 4 shows that this change does, indeed, stabilize the flow.
이 결론을 확인하려면 부정적인 δx 2 항을 보정하기 위해 약간 점성을 추가합니다 (ν = 0.0093). 그림 4는이 작은 변화에 의해 흐름이 확실히 안정된 것을 알 수 있습니다.
This example demonstrates that truncation error terms arising from non-linear terms in the original equation influence the computational stability of the difference equation. This type of instability cannot be found by a von Neumann type Fourier analysis. Perhaps most important of all is that when troublesome truncation errors are found to exist this knowledge can be used to alter the finite difference equations to eliminate those errors.
이 예에서는 원래의 방정식의 비선형 항으로 인해 중단 오차 항은 차분 방정식의 계산 안정성에 영향을 미치는 것으로 나타했습니다. 이 유형의 불안정은 von Neumann 유형의 푸리에 분석에서 찾을 수 없습니다. 가장 중요한 것은 문제가 될 수있는 중단 오차가 존재하는 것으로 판명 될 때이 지식을 이용하여 유한 차분 방정식을 수정하여 이러한 오차를 제거 할 수 있습니다.
Figure 3 (left). Close up of locally unstable flow caused by negative δx2 term. Color indicates z velocity. Figure 4 (right). Same as Fig. 3 with a small amount of viscosity added to compensate for negative δx2 term.
Summary
To summarize, it has been shown that all the stability conditions associated with a linear finite-difference equation, Eq.2, can be identified using a heuristic truncation error approach. This approach not only identifies the instabilities, it also indicates what can be done to eliminate them. For instance, for a region-of-influence violation only a reduction in the time-step increment will solve the problem, but if there is a negative diffusion coefficient then adding more diffusion to compensate for the errors is one way to regain stability. Knowing the origin of a negative diffusion error may also suggest how the original finite-difference equation might be modified to avoid this problem.
이 책에서는 선형 유한 차분 방정식Eq.2에 관련된 모든 안정 조건을 중단 오차에 대한 경험적 접근에 의해 특정 할 수 있는지를 보여주었습니다. 이 방법은 불안정성을 특정 할 수있을 뿐만 아니라 그것을 제거하는 방법을 보여줍니다. 예를 들어, 영향 영역에 대한 조건이 충족되지 않을 경우 시간 단계를 줄일 수 밖에 없어 문제를 해결할 수 없지만, 음의 확산 계수가 존재하는 경우는 확산을 확대하고 오차를 보정하여 안정성을 되찾는 방법 도 있습니다. 음의 확산 오차의 원인을 아는 것은이 문제를 해결 할 수 있도록 원래의 유한 차분 방정식을 어떻게 해결 하는가하는 방법을 알려 줄 수 있습니다.
The most significant aspect of the heuristic approach is that it is not limited to linear equations with constant coefficients, as was shown in connection with the example of flow under a sluice gate. No special assumptions were necessary to form the approximating truncated equation. The goal was simply to reverse the procedure of writing a difference equation to approximate a partial differential equation, and instead to write a partial differential equation that approximates the difference equation. A simple rule-of-thumb was described for constructing the truncated equation. This approximating equation was then used to check for region-of-influence violations and for possible negative diffusion coefficients both features that lead to unstable solutions.
휴리스틱 접근법의 가장 중요한 특징은 상수 계수를 따른 선형 방정식에 한정되지 않는다는 점입니다. 이것은 수문 아래를 통과하는 흐름의 예에서 나타났습니다. 계산을 끊은 식의 근사 식을 세우는 데 특별한 가정이 필요하지 않았습니다. 편미분 방정식을 근사하는 차분 방정식을 설명하는 것이 아니라 차분 방정식을 근사하는 편미분 방정식을 기술한다는 단순히 역순를 할 목적이었습니다. 계산을 중단 한 식을 세우기위한 간단한 경험칙에 대해서도 설명했습니다. 이 근사 식을 사용하여 솔루션의 불안정으로 이어질 영향 영역에 대한 조건이 충족되어 있는지, 또한 음의 확산 계수가 존재하는지의 두 관점을 확인했습니다.
Several additional examples involving compressible and incompressible fluid dynamics simulations can be found in the original heuristic stability paper [1], which further show how the heuristic approach can be applied to real, practical, non-linear problems.
안정성에 관한 경험적 분석에 대해 기술 된 참고 문헌 [1]에는 압축 흐름 및 비 압축 흐름을 따른 몇 가지 유체 역학 시뮬레이션 예가 나와 있습니다. 또 경험적 접근을 실제 비선형 문제에 적용하는 방법에 대해 자세히 나와 있습니다.
References
C.W. Hirt, Heuristic Stability Theory for Finite-Difference Equations, J. Comp. Phys., 2, 339 (1968).
R. Courant, K.O. Friedricks and H. Lewy, Math. Ann. 100, 32 (1928).
The commercial software package FLOW-3D from Flow Science, Inc., Santa Fe, NM, USA.
본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.
Turbulence Modeling
The majority of flows in nature are turbulent. This raises the question, is it necessary to represent turbulence in computational models of flow processes? Unfortunately, there is no simple answer to this question, and the modeler must exercise some engineering judgment. The following remarks cover some things to consider when faced with this question.
난류 모델링
자연에서의 흐름은 대부분은 난류입니다. 이것은 유동의 수치해석 모델에서 난류를 표현할 필요가 있는가? 에 대한 의문이 생깁니다. 불행히도이 질문에 대한 답은 모델링을 할 경우 엔지니어가 공학적인 판단을 내려야합니다. 다음에 이 질문에 직면했을 때 고려해야 할 몇 가지를 설명합니다.
Definitions and Orders of Magnitude
The possibility that turbulence may occur is generally measured by the flow Reynolds number:
난류가 발생할 가능성은 일반적으로 흐름의 레이놀즈 수에 의해 측정됩니다.
where ρ is fluid density and μ is the dynamic viscosity of the fluid. The parameters L and U are a characteristic length and speed for the flow. Obviously, the choice of L and U are somewhat arbitrary, and there may not be single values that characterize all the important features of an entire flow field. The important point to remember is that Re is meant to measure the relative importance of fluid inertia to viscous forces. When viscous forces are negligible the Reynolds number is large.
여기서 ρ는 유체 밀도이고 μ는 유체의 동적 점도입니다. 매개 변수 L과 U는 흐름의 특성 길이와 속도입니다. 분명히 L과 U의 선택은 다소 임의적이며, 전체 유동장의 모든 중요한 특징을 특징 짓는 단일 값이 없을 수도 있습니다. 기억해야 할 중요한 점은 Re가 점성력에 대한 유체 관성의 상대적 중요성을 측정한다는 것입니다. 점성력을 무시할 수있는 경우 레이놀즈 수가 큽니다.
A good choice for L and U is usually one that characterizes the region showing the strongest shear flow, that is, where viscous forces would be expected to have the most influence.
L과 U에 대한 좋은 선택은 일반적으로 가장 강한 전단 흐름을 나타내는 영역, 즉 점성 힘이 가장 큰 영향을 미칠 것으로 예상되는 영역을 특징 짓는 것입니다.
Roughly speaking, a Reynolds number well above 1000 is probably turbulent, while a Reynolds number below 100 is not. The actual value of a critical Reynolds number that separates laminar and turbulent flow can vary widely depending on the nature of the surfaces bounding the flow and the magnitude of perturbations in the flow.
대략적으로 말하면, 1000을 훨씬 넘는 레이놀즈 수는 아마도 난류 일 수 있지만 100 미만의 레이놀즈 수는 그렇지 않습니다. 층류와 난류를 분리하는 임계 레이놀즈 수의 실제 값은 유동을 경계하는 표면의 특성과 유동의 섭동의 크기에 따라 크게 달라질 수 있습니다.
In a fully turbulent flow a range of scales exist for fluctuating velocities that are often characterized as collections of different eddy structures. If L is a characteristic macroscopic length scale and l is the diameter of the smallest turbulent eddies, defined as the scale on which viscous effects are dominant, then the ratio of these scales can be shown to be of order L/l≈Re3/4. This relation follows from the assumption that, in steady-state, the smallest eddies must dissipate turbulent energy by converting it into heat.
완전 난류 흐름에서는 다양한 와류 구조의 집합으로 특징 지어지는 변동 속도에 대해 다양한 스케일이 존재합니다. L이 거시적 길이 특성 척도이고, l을 점성 효과가 우세한 척도로 정의되는 가장 작은 난류 소용돌이의 직경인 경우, 이러한 척도의 비율은L/l≈Re3/4 정도인 것으로 표시 될 수 있습니다. 이 관계는 정상 상태에서 가장 작은 소용돌이가 난류 에너지를 열로 변환하여 발산해야한다는 가정에서 비롯됩니다.
Turbulence Models
From the above relation for the range of scales it is easy to see that even for a modest Reynolds number, say Re=104, the range spans three orders of magnitude, L/l=103. In this case, the number of control volumes needed to resolve all the eddies in a three-dimensional computation would be greater than 109. Numbers of this size are well beyond current computational capabilities. For this reason, considerable effort has been devoted to the construction of approximate models for turbulence.
난류 모델
스케일의 범위에 대한 위의 관계를 보면 적당한 레이놀즈 수 (예 : Re = 10 4 )에서도 범위가 세 자릿수인 L/l=103에 걸쳐 있음을 쉽게 알 수 있습니다. 이 경우 3 차원 계산에서 모든 소용돌이를 해결하는데 필요한 제어 볼륨의 수는 109보다 커집니다.이 크기의 수는 현재 계산 능력을 훨씬 뛰어 넘습니다. 이러한 이유로 난류에 대한 대략적인 모델을 구성하는 데 상당한 노력을 기울였습니다.
We cannot describe turbulence modeling in any detail in this short article. Instead, we will simply make some basic observations about the types of models available. Be forewarned, however, that no models exist for general use. Every model must be employed with discretion and its results cautiously treated.
이 짧은 기사에서는 난류 모델링에 대해 구체적으로 설명 할 수 없습니다. 대신 사용 가능한 모델의 유형에 대한 몇 가지 기본적인 설명만 합니다. 그러므로 일반 모델은 존재하지 않는 것을 미리 양해 바랍니다. 어떤 모델도 신중하게 선택하고 결과를 주의 깊게 처리해야 합니다.
The original turbulence modeler was Osborne Reynolds. Anyone interested in this subject should read his groundbreaking work (Phil. Trans. Royal Soc. London, Series A, Vol.186, p.123, 1895). Reynolds’s insights and approach were both fundamental and practical.
난류를 처음으로 모델링 한 인물은 Osborne Reynolds 입니다. 이 건에 관심이있는 분은 Reynolds 의 획기적인 저서 (Phil. Trans. Royal Soc. London, Series A, Vol.186, p.123,1895)를 참조하십시오. Reynolds 의 통찰력과 접근 방식은 기본이며 동시에 실용적인 것입니다.
The Pseudo-Fluid Approximation
In a fully turbulent flow it is sometimes possible to define an effective turbulent viscosity, μeff, that roughly approximates the turbulent mixing processes contributing to a diffusion of momentum (and other properties). Thinking of a turbulent flow as a pseudo-fluid having increased viscosity leads to the observation that the effective Reynolds number for a turbulent flow is generally less than 100:
의사 유체 근사
완전 난류 흐름에서는 운동량 (및 기타 특성)의 확산에 기여하는 난류 혼합 공정에 대략적으로 근접하는 효과적인 난류 점도 μ eff를 정의 할 수 있습니다. 난류 흐름을 점도가 증가 된 유사 유체로 생각하면 난류 흐름에 대한 유효 레이놀즈 수가 일반적으로 100 미만이라는 관찰이 가능합니다.
This observation is particularly useful because it suggests a simple way to approximate some turbulent flows. In particular, when the details of the turbulence are not important, but the general mixing behavior associated with the turbulence is, it is often possible to use an effective turbulent (eddy) viscosity in place of the molecular viscosity. The effective viscosity can often be expressed as
이 관찰 결과는 몇 가지 난류를 근사하는 간단한 방법을 제시하고 있기 때문에 특히 유용합니다. 특히 난류 대한 자세한 내용은 중요하지 난류와 관련된 일반적인 혼합 거동이 중요한 경우에는 분자 점성 대신 사용 난류 (소용돌이) 점성을 사용할 수있는 경우가 있습니다. 유효 점성은 다음의 식으로 나타낼 수 있습니다.
where α is a number between 0.02 and 0.04. This expression works well for the turbulence associated with plane and cylindrical jets entering a stagnant fluid. The effective Reynolds number associated with this model is Re=1/α, a number between 25 and 50.
α는 0.02에서 0.04 사이의 숫자입니다. 이 수식은 정체 유체에 들어가는 평면 제트 및 원통형 분류 관련 난류에 대하여 효과가 있습니다. 이 모델에 대한 사용 레이놀즈 수는 Re = 1 / α 25에서 50 사이의 숫자입니다.
While this model is often adequate for predicting the gross features of a turbulent flow, it may not be suitable for predicting local details. For example, it would predict a parabolic flow (i.e., laminar) profile in a pipe instead of the measured logarithmic profile.
이 모델은 종종 난류의 전반적인 특징을 예측하는데는 적합하지만, 로컬 세부 사항을 예측하는 데는 적합하지 않을 수 있습니다. 예를 들어, 측정된 대수 프로필 대신 파이프의 포물선 흐름 (층류 등)의 프로파일을 예측합니다.
Local Viscosity Model
The next level of complexity beyond a constant eddy viscosity is to compute an effective viscosity that is a function of local conditions. This is the basis of Prandtl’s mixing-length hypothesis where it is assumed that the viscosity is proportional to the local rate of shear. The proportionality constant has the dimensions of a length squared. The square root of this constant is referred to as the “mixing length.”
This model offers an improvement over a simple constant viscosity. For example, it predicts the logarithmic velocity profile in a pipe. However, it is not used much because it doesn’t account for important transport effects.
국소 점성 모델
일정한 소용돌이 점성보다 복잡한 것은 국소적 조건의 함수인 유효 점성을 계산하는 것입니다. 이것은 점성이 국소적 전단 속도에 비례한다고 가정된다는 프란틀 혼합 길이 가설(Prandtl’s mixing-length hypothesis )의 기초가됩니다. 비례 상수의 차원은 길이의 제곱입니다. 이 상수의 제곱근은 “혼합 장”이라고합니다.
이 모델은 간단한 일정한 점성 개선을 제공합니다. 예를 들어, 파이프의 대수 속도 프로파일을 예측할 수 있습니다. 그러나 중요한 수송 효과를 지원하지 않기 때문에 그다지 많이 사용되지 않습니다.
Turbulence Transport Models
For practical engineering purposes the most successful computational models have two or more transport equations. A minimum of two equations is desirable because it takes two quantities to characterize the length and time scales of turbulent processes. The use of transport equations to describe these variables allows turbulence creation and destruction processes to have localized rates. For instance, a region of strong shear at the corners of a building may generate strong eddies, while little turbulence is generated in the building’s wake region. The strong mixing observed in the wakes of buildings (or automobiles and airplanes) is caused by the advection of upstream generated eddies into the wake. Without transport mechanisms, turbulence would have to instantly adjust to local conditions, implying unrealistically large creation and destruction rates.
난류 수송 모델
실용 공학의 목적인 가장 뛰어난 수치 모델에는 2 개 이상의 수송 방정식이 있습니다. 난류 과정의 길이와 시간의 스케일을 특징으로는 2 개 분량이 필요하므로 최소한 2 개의 방정식이있는 것이 바람직 할 것입니다. 수송 방정식을 사용하여 이러한 변수를 표현하면 난류의 생성 속도와 파괴율을 국소적으로 할 수 있습니다. 예를 들어, 건물의 모서리의 전단력이 강한 영역에서 강력한 소용돌이가 생성 된 건축물의 후류 영역에서 난류는 거의 생성되지 않습니다. 건축물 (또는 자동차 나 비행기)의 후류에서 관찰되는 강력한 혼합은 상류에서 생성된 소용돌이 후류의 이류에 의해 발생합니다. 수송 메커니즘이 없는 경우, 난류는 국소적 조건에 즉시 적응해야하므로 생성 속도와 파괴율이 비현실적인 크기입니다.
Nearly all transport models invoke one or more gradient assumptions in which a correlation between two fluctuating quantities is approximated by an expression proportional to the gradient of one of the terms. This captures the diffusion-like character of turbulent mixing associated with many small eddy structures, but such approximations can lead to errors when there is significant transport by large eddy structures.
거의 모든 수송 모델에서 하나 이상의 경사 가정을 이루어 두 변동하는 양의 상관 관계가 하나의 항 기울기에 비례하는 식으로 근사됩니다. 이를 통해 다수의 작은 소용돌이 구조와 관련된 난류 혼합 확산적인 특징을 파악할 수 있지만, 큰 소용돌이 구조에 의해 상당한 전송이 존재하는 경우, 이러한 근사 오류가 발생할 수 있습니다.
Large Eddy Simulation
Most models of turbulence are designed to approximate a smoothed out or time-averaged effect of turbulence. An exception is the Large Eddy Simulation model (or Subgrid Scale model). The idea behind this model is that computations should be directly capable of modeling all the fluctuating details of a turbulent flow except for those too small to be resolved by the grid. The unresolved eddies are then treated by approximating their effect using a local eddy viscosity. Generally, this eddy viscosity is made proportional to the local grid size and some measure of the local flow velocity, such as the magnitude of the rate of strain.
Large Eddy 시뮬레이션
난류의 대부분의 모델은 매끄럽게 또는 시간 평균된 난류의 효과를 근사하도록 설계되어 있습니다. 예외는 큰 에디 시뮬레이션 모델 (또는 서브 그리드 스케일 모델)입니다. 이 모델의 배경에는 너무 작은 격자에 의해 해결할 수 없는 것을 제외하고는 난류의 모든 변동 내용은 계산에 의해 직접 모델링 할 수 있어야 한다는 생각이 있습니다. 미해결 소용돌이는 로컬 점성을 사용하여 효과를 근사하여 처리됩니다. 일반적으로이 소용돌이 점성은 국소적인 격자 크기 및 어떤 국소적인 흐름의 속도 측정 (변형 속도의 크기 등)에 비례합니다.
대부분의 난류 모델은 난류의 평활화 또는 시간 평균 효과에 근접하도록 설계되었습니다. 예외는 Large Eddy Simulation 모델 (또는 Subgrid Scale 모델)입니다. 이 모델의 이면에있는 아이디어는 계산이 격자에 의해 해결 되기에는 너무 작은 것을 제외하고, 난류 흐름의 모든 변동 세부 사항을 직접 모델링 할 수 있어야 한다는 것입니다. 해결되지 않은 소용돌이는 로컬 소용돌이 점도를 사용하여 효과를 근사화하여 처리됩니다. 일반적으로, 이 와류 점도는 로컬 격자 크기와 변형률의 크기와 같은 로컬 유속 측정치에 비례하여 만들어집니다.
Such an approach might be expected to give good results if the unresolved scales are small enough, for example, in the viscous sub-range. Unfortunately, this is still an uncomfortably small size. When these models are used with a minimum scale size that is above the viscous sub-range, they are then referred to as Coherent Structure Capturing models.
이러한 접근 방식은 미해결 스케일이 충분히 작은 경우, 예를 들어 점성이 작은 영역에 있는 경우에 좋은 결과를 얻을 수 있을 것으로 기대됩니다. 불행히도 아직은 여전히 불편한 작은 크기 입니다. 이러한 모델을 점성 작은 영역보다 높은 최소 스케일 사이즈로 사용하는 경우는 CSC (Coherent Structure Capturing) 모델이라고합니다.
The advantage of these more realistic models is that they provide information not only about the average effects of turbulence but also about the magnitude of fluctuations. But, this advantage is also a disadvantage, because averages must actually be computed over many fluctuations, and some means must be provided to introduce meaningful fluctuations at the start of a computation and at boundaries where flow enters the computational region.
이보다 현실적인 모델의 장점은 난류의 평균 효과에 대한 정보뿐만 아니라 변동의 크기에 대한 정보도 제공 될 것입니다. 그러나 이와같은 장점은 단점도 있습니다. 평균적으로 실제로 다수의 변동에 대해 계산해야 하며, 계산의 시작 및 흐름이 계산 영역에 들어가는 경계에서 상당한 변화를 도입하기위한 수단을 제공 할 필요가 있기 때문입니다.
Turbulence from an Engineering Perspective
We have seen that it is probably not reasonable to attempt to compute all the details of a turbulent flow. Furthermore, from the perspective of most applications, it’s not likely that we would be interested in the local details of individual fluctuations. The question then is how should we deal with turbulence, when should we employ a turbulence model, and how complex should that model be?
공학적 관점에서의 난류
지금까지 난류의 모든 세부 사항을 계산하려고하는 것은 아마도 합리적이지 않다는 것을 확인했습니다. 또한 많은 적용례의 관점에서 개별 변동의 국소적인 세부 사항이 관심의 대상이 될 수는 없을 것입니다. 거기서 생기는 의문은 난류를 어떻게 처리해야 할지 난류 모델을 언제 선택할지 그 모델이 얼마나 복잡할지에 있다는 것입니다.
Experimental observations suggest that many flows become independent of Reynolds number once a certain minimum value is exceeded. If this were not so, wind tunnels, wave tanks, and other experimental tools would not be as useful as they are. One of the principal effects of a Reynolds number change is to relocate flow separation points. In laboratory experiments this fact sometimes requires the use of trip wires or other devices to induce separation at desired locations. A similar treatment may be used in a numerical simulation.
실험적 관찰에 따르면 특정 최소값이 초과되면 많은 흐름이 레이놀즈 수와 무관하게됩니다. 그렇지 않다면 풍동, 파도 탱크 및 기타 실험 도구는 그다지 유용하지 않을 것입니다. 레이놀즈 수 변경의 주요 효과 중 하나는 흐름 분리 지점을 재배치하는 것입니다. 실험실 실험에서이 사실은 때때로 원하는 위치에서 분리를 유도하기 위해 트립 와이어 또는 기타 장치를 사용해야합니다. 유사한 처리가 수치 시뮬레이션에서 사용될 수 있습니다.
Most often a simulation is done to determine the dominant flow patterns that develop in some specified situation. These patterns consist of the mean flow and the largest eddy structures containing the majority of the kinetic energy of the flow. The details of how this energy is removed from the larger eddies and dissipated into heat by the smallest eddies may not be important. In such cases the dissipation mechanisms inherent in numerical methods may alone be sufficient to produce reasonable results. In other cases it is possible to supply additional dissipation with a simple turbulence model such as a constant eddy viscosity or a mixing length assumption.
대부분의 경우 특정 상황에서 발생하는 지배적 인 흐름 패턴을 결정하기 위해 시뮬레이션이 수행됩니다. 이러한 패턴은 평균 흐름과 흐름의 대부분의 운동 에너지를 포함하는 가장 큰 소용돌이 구조로 구성됩니다. 이 에너지가 더 큰 소용돌이에서 제거되고 가장 작은 소용돌이에 의해 열로 소산되는 방법에 대한 세부 사항은 중요하지 않을 수 있습니다. 그러한 경우 수치 적 방법에 내재 된 소산 메커니즘만으로도 합리적인 결과를 얻을 수 있습니다. 다른 경우에는 일정한 소용돌이 점도 또는 혼합 길이 가정과 같은 간단한 난류 모델을 사용하여 추가 소산을 제공 할 수 있습니다.
Turbulence transport equations require more CPU resources and should only be used when there are strong, localized sources of turbulence and when that turbulence is likely to be advected into other important regions of the flow. When there is reason to seriously question the results of a computation, it is always desirable to seek experimental confirmation.
An excellent introduction to fluid turbulence can be found in the book Elementary Mechanics of Fluids by Hunter Rouse, Dover Publications, Inc., New York (1978).
난류 전송 방정식은 더 많은 CPU 리소스를 필요로하며 강력하고 국부 화 된 난기류 소스가 있고 그 난류가 흐름의 다른 중요한 영역으로 전파 될 가능성이있는 경우에만 사용해야합니다. 계산 결과에 매우 의문이 생길 경우는 실험에 의해 확인하는 것이 좋습니다.
유체 난류에 대한 훌륭한 소개는 Hunter Rouse, Dover Publications, Inc., New York (1978)의 책 Elementary Mechanics of Fluids에서 찾을 수 있습니다.