Wave Energy Devices

파동 에너지 장치 모델링
최근 몇 년 동안 파력 에너지와 같은 재생 가능 자원을 사용하여 환경 영향이 적은 에너지를 생산하는 신기술 개발에 대한 국제적인 관심이 기하 급수적으로 증가했습니다. 바다 (해류, 파도 등)에서 전기를 유도하는 파동 에너지 장치는 특히 중요하며 FLOW-3D로 정확하게 모델링 할 수 있습니다.

포인트 흡수 장치
점 흡수 장치는 수면의 파도를 사용하여 에너지를 생성하는 많은 파도 장치 중 하나입니다. 포인트 흡수 에너지 장치는 기본적으로 파도에서 에너지를 흡수하고 바닥에 대한 부력 상단의 움직임을 전력으로 변환하는 부동 구조입니다.

이 시뮬레이션은 부력 구형 구조가 위에 있는 포인트 흡수기 장치를 보여주고, 들어오는 파동의 파고와 수조에 따라 위아래로 움직입니다. FLOW-3D의 이동 객체 모델은 x 또는 y 방향으로 이동을 제한하면서 z 방향으로 커플링 모션을 허용하는 데 사용됩니다. 스톡스 유형의 파장은 진폭 5m, 파장은 100m로 사용되었습니다. RNG 모델은 파동이 포인트 업소버 장치와 상호작용할 때 발생하는 난류를 포착하기 위해 사용되었습니다. 예상대로, 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 그림은 난류로 인해 장치 근처의 복잡한 속도장이 진화하기 때문에 질량 중심의 불규칙한 순환 운동을 보여줍니다.

Multi-Flap, Bottom-Hinged Wave Energy Converter

Oscillating flap은 바다의 파동으로부터 에너지를 추출하여 기계 에너지로 변환합니다. 암은 Water wave에 반응하여 피벗 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 멀티플랩파 에너지 변환기를 만들 수 있습니다. 3개의 플랩 배열이 아래 왼쪽에 표시된 CFD 시뮬레이션에서 시뮬레이션됩니다. 모든 플랩은 하단에 힌지로 연결되며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 깊이 30m에서 주파수가 10초인 4m 진폭 파형으로 작동 중입니다. 시뮬레이션은 한 플랩이 배열 내의 다른 플랩에 미치는 영향을 연구하는 데 중요한 중심 평면을 따라 복잡한 속도 ISO 표면을 보여줍니다. 3개의 플랩이 유사한 동적 모션으로 시작하는 동안, 곧 플랩의 상호 작용 효과가 모션을 위상 밖으로 렌더링합니다. 우측에는 유사한 플랩 에너지 변환기가 표시되어 있습니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 완전히 물에 잠깁니다. 이러한 에너지 변환기를 표면 천공 플랩 에너지 변환기라고 합니다. 이 두 시뮬레이션 예는 모두 미네르바 다이내믹스에 의해 제공되었습니다.

Oscillating Water Column

진동하는 물 기둥은 부분적으로 잠긴 속이 빈 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수선 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수있는 터빈을 통해 대기로 흐르게됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.

위의 CFD 시뮬레이션은 진동하는 water columns를 보여줍니다. FLOW-3D로 포착된 물리학을 강조하기 위해 물기둥이 중공 구조에서 상승 및 하강하는 부분만 모델링합니다. 시뮬레이션은 파형 생성의 다른 선택을 제외하고 유사한 결과를 전달합니다. 왼쪽의 시뮬레이션은 웨이브 유형 경계 조건을 사용하고 오른쪽의 시뮬레이션은 움직이는 물체 모델을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.

Sloshing & Slamming

Sloshing & Slamming

LNG 선과 같은 전 세계 항해 선박의 내부 슬로싱 운동에 의해 유발되는 가속 및 하중은 이러한 선박의 안전 설계에 중요한 요소입니다. 선박은 이러한 파도 슬로싱 역학으로 인해 상당한 내부 강제력을 경험할 수 있으며,화물 탱크는 격리 시스템 및 지지 구조물에 추가 하중을 경험할 수 있습니다. FLOW-3D의 비관성 기준 프레임 모델을 사용하면 컨테이너에서 유체 모션을 정확하게 추적하기 위해 복잡한 모션 매개 변수를 규정 할 수 있습니다. FLOW-3D는 연료 탱크의 액체화물과 추진체 움직임을 정확하게 예측합니다.

슬래밍 분석과 “그린 워터”(파동 스프레이 또는 선체 오버 토핑의 결과로 데크를 덮는 물)는 FLOW-3D의 일반적인 응용 분야이며, 이러한 문제에 대한 FLOW-3D의 TruVOF 접근 방식은 엔지니어에게 고유 한 기능을 제공합니다.

이 시뮬레이션은 FLOW-3D로 캡처한 것처럼 파도로 움직이는 LNG 유조선의 복잡하고 완전히 결합된 동작을 보여줍니다. 탱크에서 유체의 슬로싱은 선박의 역학에 영향을 미치며, 여기에는 bilge keels 과 bulbous bow가 포함되어 입사파에서 안정성을 유지하는데 도움이됩니다. 또한 탱크의 유체 슬로싱은 예상대로 선박의 움직임에서 위상 이동이 있습니다. FLOW-3D의 움직이는 물체 모델, 밀도 평가 모델 및 파동 생성 경계 조건은 해양 엔지니어가 유사한 문제를 분석하는 데 도움이 될 수 있습니다.

자유 표면 흐름을 위한 정상 상태 가속기

자유 표면 흐름을 위한 정상 상태 가속기

이 기사에서 Tony Hirt 박사는 곧 출시 될 FLOW-3D v12.0릴리스에서 사용할 수 있는 새로운 Steady-State Accelerator에 대해 설명합니다.

일시적인 흐름의 점근적 상태를 계산하는 것보다 안정적인 자유 표면 흐름을 더 빠르게 생성하는 방법이 필요한 경우가 종종 있습니다. 그러한 상황은 압축 가능한 흐름 솔버를 사용하여 압축할 수 없는 흐름을 해결하는 것과 유사합니다. 후자의 경우에는 압축파가 붕괴되고 압축되지 않은 결과물을 남기는 데 시간이 오래 걸릴 수 있습니다. 이에 따라 자유 표면 흐름에서 유체는 압축되지 않지만 표면파는 안정적인 자유 표면 구성을 생성하기 위해 댐핑하는데 시간이 오래 걸릴 수 있습니다.

비압축 흐름의 경우 압축파를 크게 감쇠시키는 반복 프로세스(즉, 압력 속도 반복)를 사용합니다. 물리적으로, 반복은 가까운 거리에 영향을 미치는 짧게 이동하는 파장과 같은 압력을 허용합니다. 그러나 압력 장에 상당한 소음을 유발할 수 있는 장거리 전파 및 반사는 피할 수 있을 정도로 빠르게 감쇠합니다.

이 노트에서 자유 표면 셀에 적용된 간단한 압력 조정은 표면 방해에 대한 감쇠력으로 작용합니다. 이 감쇠는 안정적인 자유 표면 구성에 대한 접근 방식을 가속화합니다.

 

정상 상태 가속기 아이디어

유체 인터페이스 또는 자유 표면은 VOF (Volume-of-Fluid) 기술을 사용하여 FLOW-3D에서 추적됩니다. 유체 변수 F의 분율은 유체가 차지하는 영역을 찾습니다. 유체에 고정 자유 표면이 있는 경우 유체를 정의하는 F 값도 안정된 값을 유지해야합니다. F가 일정하려면 표면에 수직인 유체 속도가 0이어야 합니다. 물론, 표면에서의 접선 유체 속도는 0 일 필요는 없습니다. 예를 들어, 위어 위의 흐름에는 일정한 흐름이 있지만 계단에서 나오는 흐름의 위치와 모양은 변하지 않습니다.

자유 표면 흐름을 위한 정상 상태 솔버를 가지려면 흐름의 비압축성을 유지하면서 정상 표면 속도를 0으로 만드는 방법을 찾아야 합니다.

이를 달성하는 한 가지 방법은 정상 속도를 0으로 향하게 하는 방식으로 표면 압력을 조정하는 것입니다.  특히 정상 속도에 비례하는 총 표면 압력에 “댐핑” 압력 기여를 추가하여 속도는 표면에서 나오고 그렇지 않으면 음수입니다.

정상 속도가 0에 가까워지면 표면이 고정 위치를 오버 슈트하지 않도록 수정 압력도 0으로 가야합니다. 물론 보정이 너무 크면 오버 슈트가 발생할 수 있습니다. 이러한 이유로 보정을 안정적으로 적용하려면 몇 가지 제한 요소가 있어야 합니다.

Steady-State Accelerator를 나타내는 계수 약어인 ssacc가 이 새로운 옵션을 활성화하기 위해 프로그램 입력에 추가되었습니다. ssacc의 값은 편리한 상한 인 1.0보다 작거나 같아야 합니다. 프로그램 내에 댐핑 압력에 자동으로 적용되는 몇 가지 리미터가 있어서 불안정성이 발생하거나 일시적 현상에 악영향을 미치지 않도록 합니다.

안정성 및 댐핑 리미터에 대한 이전의 문제는 강조 될 만합니다. 정상 상태 가속기를 사용하면 자유 표면 흐름의 모든 과도를 더 이상 완전히 볼 수 없습니다. 댐핑 압력은 물리적 힘이 아니라 파동의 전파 및 반사를 감소시키는 메커니즘입니다. 댐퍼는 큰 과도 현상의 진화를 방해하지 않도록 고안되었으며 흐름이 안정화됨에 따라 보다 빠르게 꾸준한 결과를 얻는데 기여해야 합니다. 그러나 사용자는 리미터가 예상하지 못했던 과도한 댐핑에 주의해야하며 댐핑 계수 ssacc의 입력 값을 줄이면 제거 할 수 있습니다.

정상 상태 가속기의 감쇠 메커니즘이 작동하는 방식을 설명하는 두 가지 예가 있습니다.

 

정상 상태 가속기의 예

상승된 유체의 열 축소

첫 번째 예는 길이 100cm, 깊이 5cm의 2 차원 수영장으로 구성됩니다. 물을 포함하는 탱크의 모든 경계는 대칭 경계입니다. 수영장 중앙에는 10cm 너비와 3cm 높이의 수영장 위에 물 블록이 있습니다. 이 블록은 중력으로 인해 물에 빠지고 충격 지점에서 멀어지고 탱크 끝에서 반사되는 파도를 생성합니다. 100초 이후에도 반복되는 반사로 인해 여전히 상당한 파동이 발생합니다 (그림 1).

새로운 정상 상태 가속기가 계수 ssacc = 1.0과 함께 사용되면 모든 파도가 빠르게 감쇠되어 표면이 거의 평평 해집니다. 일부 잔류 흐름은 표면 아래에 남아 있지만 점성 작용으로 천천히 감쇠됩니다 (그림 2). 이 예에서 추가 된 감쇠는 특히 인상적입니다.

그림 1. 댐핑없이 열 축소. 흐름 도표의 시간은 0.0, 10.0 및 100.0입니다. 아래 그림은 평균 운동 에너지 대 시간입니다.
그림 2. 0.0, 10.0 및 100.0s에서 감쇠 계수 ssacc = 1.0으로 열 축소. 아래 그림은 평균 운동 에너지 대 시간입니다.

사각형 격자에서 45 °의 정사각형 채널에서 모세관 상승

수직 채널에서 유체의 모세관 상승은 간단한 분석할 수 있으며 솔루션이 있는 양호한 정상 상태 문제입니다. 중력에 대해 상승 된 유체의 양은 벽의 접착력, 즉 접촉각의 코사인에 표면 장력 곱하기 접촉 선 길이에 의해 결정됩니다. 이 예에서 유체는 물이며 표면 장력은 70 dynes / cm이고 접촉각은 30 °입니다. 채널은 단면이 정사각형이며 가장자리 길이가 0.707cm이고 직사각형 격자에서 45 ° 회전합니다. 문제가 x 및 y 방향으로 대칭을 이루기 때문에 그리드의 사분면 만 모델링됩니다. 그리드의 바닥에는 제로 게이지 압력의 물이 있으며 그리드의 가장자리 길이는 0.0125cm (41x41x80 셀)입니다. 상승시켜야하는 이론적 유체 량은 0.04373cc입니다. 그림 3a는 정상 상태 결과를 보여줍니다. 이는 감쇠 사용 여부와 비슷합니다. 댐핑없이 계산된 유체의 양은 이론 값보다 1.74 % 높습니다. 그림 3b와 같이 댐핑이 있는 경우에는 2.24 %가 너무 높습니다. 가속기를 사용하면 정상 상태는 약 0.15 초에 도달하는 반면 표준 솔버는 0.8 초 후에 만 ​​정상 상태 솔루션을 생성하므로 5 배 이상 더 오래 걸립니다.

그림 3a. 댐핑 압력이없는 정사각형 채널의 모세관 상승.
그림 3b. 두 시뮬레이션에서 유체 체적 이력 (파란색은 감쇠)입니다.

ssacc가 1.0보다 작으면 댐핑이 적어 수렴에 더 빨리 도달합니다. 1.0을 포함한 모든 ssacc 값은 댐핑되지 않은 ssacc = 0.0 경우와 비교하여 이론과 밀접하게 일치하고 후면 벽에 적은 양의 유체를 나타내는 수렴 된 솔루션을 만듭니다.

후면 벽의 작은 유체는 평형 위치를 초과하는 유체의 오버 슈트 (overshoot)로부터 발생하며, 그 후 다시 점성력으로 인해 정착하는데 오랜 시간이 걸리는 벽에 적은 양의 유체가 남습니다. 이 오버 슈트는 ssacc가 0이 아닌 경우 제거됩니다.

조선/해양 분야

Coastal & Maritime

FLOW-3D 는 선박설계, 슬로싱 동역학, 파도에 미치는 영향 및 환기를 포함하여 해안 및 해양 관련 분야에 사용할 수 있는 이상적인 소프트웨어입니다.

자유 표면 유체 역학, 파동 생성, 움직이는 물체, 계선 및 용접 공정과 관련한 FLOW-3D 의 기능은 해양 및 해양 산업에서 CFD 공정을 모델링하는 데 매우 적합한 도구입니다. 해안 응용 분야의 경우  FLOW-3D  해안 응용 분야의 경우 FLOW-3D  는 해안 구조물에 대한 심한 폭풍 및 쓰나미 파동의 세부 사항을 정확하게 예측하고 돌발 홍수 및 중요 구조물 홍수 및 피해 분석에 사용됩니다. 기능은 다음과 같습니다.

  • 자유 표면 – 파동 유체 역학 및 오버 토핑 : 규칙 및 불규칙파 및 파동 스펙트럼 (Pierson Moskowitz, JONSWAP)
  • Seakeeping – slamming, planing, porpoising 및 선체 선체 변위 : 완전히 결합된 선박 및 수중 차량 유체 역학
  • 선체 – Resistance, stability and dynamics: surging, heaving, pitching and rolling motion (response amplitude operators or RAOs)
  • 슬로싱 – LNG / 밸러스트 탱크
  • 해양 공학 – 파동 에너지 변환기
 

해안 응용 분야의 경우, FLOW-3D 는 강력한 폭풍과 쓰나미 현상에 의한 해안 구조물이 받는 영향에 대한 세부 사항 예측, 돌발 홍수에 의한 중요한 시설물에 대한 정확한 피해 분석 등을 위해 사용됩니다.

Mooring Lines, Springs and Ropes

FLOW-3D (계류선 및 스프링 등)의 특수 물체를 다른 움직이는 물체에 부착하면 엔지니어가 선박 런칭, 부유 장애물 역학, 부표, 파도에너지 변환기 등을 정확하게 포착할 수 있습니다.

Welding

FLOW-3D 용접 모듈이 추가되면서 조선업계의 용접분야에서는 다공성 등 용접 결함을 최소화할 수 있어 선체의 품질을 크게 높이는 동시에 생산 시간을 최적화할 수 있습니다.

Coastal & Maritime Case Studies

FLOW-3D 사용자들은 연약한 해안선 보호, 구조물에 대한 파장 시뮬레이션, 선체 설계 최적화, 선박 내 환기 연구 등 해안 및 해양 애플리케이션에 FLOW-3D를 사용합니다.

우리는 보트가 세계 항해를 하면서 마주칠 것 같은 다양한 조건에서 항해를 할 수 있는지를 볼 수 있었습니다. 그리고 속도뿐만 아니라 연료 효율과 안전도 고려하도록 설계를 수정할 수 있었습니다.
– Pete Bethune, skipper of Earthrace

Lateral wave impact in waterWave resultsEarthrace vessel
Validation of Sloshing Simulations in Narrow Tanks / Aerial Landslide Generated Wave Simulations / Earthrace: Speed, Fuel Efficiency and Safety
Wave impact vertical displacementEmerged breakwater accropodeStokes theory horizontal velocity
Wave Impact on Offshore StructuresInteraction Between Waves and BreakwatersWave Forces on Coastal Bridges

기타

Bibliography

Models

파도 / Waves

파도 / Waves

FLOW-3D 는 비정형 파뿐만 아니라 일반 선형 및 비선형파 표면을 시뮬레이션 할 수 있는 기능이 있습니다. 선형파는 작은 진폭 및 급경사를 갖는 사인파 표면 프로파일을 가지며, 비선형파는 선형 파보다 더 큰 진폭 (유한 진폭), 더 뾰족한 볏 및 평탄한 골짜기를 갖는다. 비선형 파는 파동 문자와 그 해를 구하기 위해 사용 된 수학적 방법에 따라 스톡 (stookes), 코니이드 (cnoidal) 파 및 독방 파로 분류 될 수 있습니다.

그림 1. 다른 진행파의 프로파일 비교
도 1 및도 2에 도시 된 바와 같이, 스톡스 파는 심층 및 과도수의 주기적인 파이다. Cnoidal 파는 얕은 물과 중간 물에서 긴주기적인 파이고 Stokes 파보다 더 뾰족한 볏과 평평한 골짜기를 가지고 있습니다. 스톡스와 코니 형 파와 달리 독방 파는 얕은 물과 과도 수에서 존재하는 비 주기적 파이다. 그것은 하나의 산마루와 물마루를 가지며 완전히 방해받지 않은 수면 위입니다. 수학적으로 파장이 무한대가 될 때 그것은 코니 형 파의 제한적인 경우입니다. 심층수, 과도 수 및 파도에 대한 얕은 물의 분류는 표 1에서 찾아 볼 수있다.

그림 2. 다양한 파도의 적용 범위 (Le Méhauté, 1976, Sorensen, 2005 및 USACE, 2008). d : 평균 수심; H : 파고; T : 파주기; g : 중력 가속도

선형 파 이론 (Airy, 1845)이 많은 응용 분야에서 사용되었지만 비선형 파 이론은 파동의 진폭이 작지 않은 경우 선형 파 이론보다 정확도가 크게 향상되었습니다. FLOW-3D 에서 3 개의 비선형 파 이론이 5 차 스톡스 파 이론 (Fenton, 1985), 스톡스 및 코니이드 파에 대한 푸리에 급수 방법 (Fenton, 1999), McCowan의 독방 파 이론 (McCowan, 1891, Munk, 1949). 그 중에서 Fenton의 Fourier 시리즈 방법은 선형 물, 스톡 (Stokes) 및 코니형 (cnoidal) 파를 포함하여 심층수, 과도 수 및 얕은 물에서 모든 종류의 주기적 전파 파들에 유효합니다. 또한 다른 웨이브 이론보다 정확도가 높습니다 (USACE, 2008). 따라서 모든 수심에서 선형 및 비선형 주기파의 모든 유형을 생성하는 것이 권장되는 방법입니다. solitary wave의 경우, FLOW-3D 에 사용 된 McCowan의 이론은 Boussinesq (1871)에 의해 개발 된 다른 널리 사용되는 이론보다 더 높은 주문 정확도를 갖는다.

그림 3. PM과 JOHNSWAP 스펙트럼 (USCE, 2006에서 적응)

Classifications d /\lambda
Deep water 1/2 to ∞
Transitional water 1/20 to 1/2
Shallow water 0 to 1/20

불규칙한 물결은 파도의 물성이 일정하지 않은 자연적인 바다의 상태를 나타냅니다. FLOW-3D에서 불규칙한 파동은 다양한 진폭과 주파수 및 임의의 위상 변이를 갖는 많은 선형 성분 파의 중첩으로 표현됩니다. Pierson-Moskowitz (Pierson and Moskowitz, 1964)와 JONSWAP 파력 에너지 스펙트럼 (Hasselmann, et al., 1973)은 FLOW-3D에서 구성 요소 파를 생성하기 위해 구현된다. 다른 웨이브 에너지 스펙트럼은 사용자 정의 데이터 파일을 가져와서 사용할 수 있습니다.

계산 시간을 절약하기 위해 웨이브는 메시 블록 경계에서뿐만 아니라 초기 조건으로 정의 될 수 있습니다.

아래의 애니메이션은 웨이브 초기화가 있거나없는 웨이브의 모든 유형에 대한 예제를 보여줍니다.
선형 및 비선형 수위 시뮬레이션을 위해 FLOW-3D 의 성공적인 적용이 이루어졌습니다. Bhinder 외의 예를 참조하십시오. al (2009), Chen (2012), Hsu et. al (2012) Thanyamanta et. al (2011) 및 Yilmaz et. 자세한 내용은 알 (2011)을 참조하십시오.






References

Airy, G. B., 1845, Tides and Waves, Encyc. Metrop. Article 102.

Bhinder, M. A., Mingham, C. G., Causon, D. M., Rahmati, M. T., Aggidis, G. A. and Chaplin, R.V., 2009, A Joint Numerical And Experimental Study Of a Surging Point Absorbing Wave Energy Converter (WRASPA), Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79392, Honolulu, Hawaii.

Boussinesq, J., 1871, Theorie de L’intumescence Liquide Appelee Onde Solitaire ou de Translation se Propageant dans un Canal Rectangulaire, Comptes Rendus Acad. Sci. Paris, Vol 72, pp. 755-759.

Chen, C. H., 2012, Study on the Application of FLOW-3D for Wave Energy Dissipation by a Porous Structure, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University.

Fenton, J. D., 1985, A Fifth-Order Stokes Theory for Steady Waves, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 111, No. 2.

Fenton, J. D., 1999, Numerical Methods for Nonlinear Waves, Advances in Coastal and Ocean Engineering, Vol. 5, ed. P.L.-F. Liu, pp. 241-324, World Scientific: Singapore, 1999.

Hasselmann, K., Barnet, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H., 1973, Measurement of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP), German Hydrographic Institute, Amburg.

Hsu, T. W., Lai, J. W. and Lan, Y., J., 2012, Experimental and Numerical Studies on Wave Propagation over Coarse Grained Sloping Beach, Proceedings of the International Conference on Coastal Engineering, No 32 (2010), Shanghai, China.

Kamphuis, J. M., 2000, Introduction to Coastal Engineering and Management, World Scientific, Singapore.

Le Méhauté, B., 1976, An Introduction to Hydrodynamics and Water Waves, Springer-Verlag.

McCowan, J., 1891, On the solitary wave, Philosophical Magazine, Vol. 32, pp. 45-58.

Munk, W. H., 1949, The Solitary Wave Theory and Its Application to Surf Problems, Annals New York Acad. Sci., Vol 51, pp 376-423.

Pierson W. J. and Moskowitz, L., 1964, A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitiagordskii, J. Geophys. Res. 9, pp. 5181-5190.

Thanyamanta, W., Herrington, P. and Molyneux, D., 2011, Wave patterns, wave induced forces and moments for a gravity based structure predicted using CFD, Proceedings of the ASME 2011, 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011, Rotterdam, The Netherlands.

USACE (U.S. Army Corps of Engineers), 2006, Coastal Engineering Manual, EM 1110-2-1100, Washington, DC.

Yilmaz, N., Trapp, G. E., Gagan, S. M. and Emmerich, T., R., 2011 CFD Supported Examination of Buoy Design for Wave Energy Conversion, IGEC-VI-2011-173, pp. 537-541

난류 모델링

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Turbulence Modeling

The majority of flows in nature are turbulent. This raises the question, is it necessary to represent turbulence in computational models of flow processes? Unfortunately, there is no simple answer to this question, and the modeler must exercise some engineering judgment. The following remarks cover some things to consider when faced with this question.

난류 모델링

자연에서의 흐름은 대부분은 난류입니다. 이것은 유동의 수치해석 모델에서 난류를 표현할 필요가 있는가? 에 대한 의문이 생깁니다.  불행히도이 질문에 대한 답은 모델링을 할 경우 엔지니어가 공학적인 판단을 내려야합니다.  다음에 이 질문에 직면했을 때 고려해야 할  몇 가지를 설명합니다.

Definitions and Orders of Magnitude

The possibility that turbulence may occur is generally measured by the flow Reynolds number:

난류가 발생할 가능성은 일반적으로 흐름의 레이놀즈 수에 의해 측정됩니다.

where ρ is fluid density and μ is the dynamic viscosity of the fluid. The parameters L and U are a characteristic length and speed for the flow. Obviously, the choice of L and U are somewhat arbitrary, and there may not be single values that characterize all the important features of an entire flow field. The important point to remember is that Re is meant to measure the relative importance of fluid inertia to viscous forces. When viscous forces are negligible the Reynolds number is large.

여기서 ρ는 유체 밀도이고 μ는 유체의 동적 점도입니다. 매개 변수 L과 U는 흐름의 특성 길이와 속도입니다. 분명히 L과 U의 선택은 다소 임의적이며, 전체 유동장의 모든 중요한 특징을 특징 짓는 단일 값이 없을 수도 있습니다. 기억해야 할 중요한 점은 Re가 점성력에 대한 유체 관성의 상대적 중요성을 측정한다는 것입니다. 점성력을 무시할 수있는 경우 레이놀즈 수가 큽니다.

A good choice for L and U is usually one that characterizes the region showing the strongest shear flow, that is, where viscous forces would be expected to have the most influence.

L과 U에 대한 좋은 선택은 일반적으로 가장 강한 전단 흐름을 나타내는 영역, 즉 점성 힘이 가장 큰 영향을 미칠 것으로 예상되는 영역을 특징 짓는 것입니다.

Roughly speaking, a Reynolds number well above 1000 is probably turbulent, while a Reynolds number below 100 is not. The actual value of a critical Reynolds number that separates laminar and turbulent flow can vary widely depending on the nature of the surfaces bounding the flow and the magnitude of perturbations in the flow.

대략적으로 말하면, 1000을 훨씬 넘는 레이놀즈 수는 아마도 난류 일 수 있지만 100 미만의 레이놀즈 수는 그렇지 않습니다. 층류와 난류를 분리하는 임계 레이놀즈 수의 실제 값은 유동을 경계하는 표면의 특성과 유동의 섭동의 크기에 따라 크게 달라질 수 있습니다.

In a fully turbulent flow a range of scales exist for fluctuating velocities that are often characterized as collections of different eddy structures. If L is a characteristic macroscopic length scale and l is the diameter of the smallest turbulent eddies, defined as the scale on which viscous effects are dominant, then the ratio of these scales can be shown to be of order L/l≈Re3/4. This relation follows from the assumption that, in steady-state, the smallest eddies must dissipate turbulent energy by converting it into heat.

완전 난류 흐름에서는 다양한 와류 구조의 집합으로 특징 지어지는 변동 속도에 대해 다양한 스케일이 존재합니다. L이 거시적 길이 특성 척도이고, l을 점성 효과가 우세한 척도로 정의되는 가장 작은 난류 소용돌이의 직경인 경우, 이러한 척도의 비율은L/l≈Re3/4 정도인 것으로 표시 될 수 있습니다.  이 관계는 정상 상태에서 가장 작은 소용돌이가 난류 에너지를 열로 변환하여 발산해야한다는 가정에서 비롯됩니다.

Turbulence Models

From the above relation for the range of scales it is easy to see that even for a modest Reynolds number, say Re=104, the range spans three orders of magnitude, L/l=103. In this case, the number of control volumes needed to resolve all the eddies in a three-dimensional computation would be greater than 109. Numbers of this size are well beyond current computational capabilities. For this reason, considerable effort has been devoted to the construction of approximate models for turbulence.

난류 모델

스케일의 범위에 대한 위의 관계를 보면 적당한 레이놀즈 수 (예 : Re = 10 4 )에서도 범위가 세 자릿수인 L/l=103에 걸쳐 있음을 쉽게 알 수 있습니다. 이 경우 3 차원 계산에서 모든 소용돌이를 해결하는데 필요한 제어 볼륨의 수는 109보다 커집니다.이 크기의 수는 현재 계산 능력을 훨씬 뛰어 넘습니다. 이러한 이유로 난류에 대한 대략적인 모델을 구성하는 데 상당한 노력을 기울였습니다.

We cannot describe turbulence modeling in any detail in this short article. Instead, we will simply make some basic observations about the types of models available. Be forewarned, however, that no models exist for general use. Every model must be employed with discretion and its results cautiously treated.

이 짧은 기사에서는 난류 모델링에 대해 구체적으로 설명 할 수 없습니다.  대신 사용 가능한 모델의 유형에 대한 몇 가지 기본적인 설명만 합니다.  그러므로 일반 모델은 존재하지 않는 것을 미리 양해 바랍니다.  어떤 모델도 신중하게 선택하고 결과를 주의 깊게 처리해야 합니다.

The original turbulence modeler was Osborne Reynolds. Anyone interested in this subject should read his groundbreaking work (Phil. Trans. Royal Soc. London, Series A, Vol.186, p.123, 1895). Reynolds’s insights and approach were both fundamental and practical.

난류를 처음으로 모델링 한 인물은 Osborne Reynolds 입니다.  이 건에 관심이있는 분은 Reynolds 의 획기적인 저서 (Phil. Trans. Royal Soc. London, Series A, Vol.186, p.123,1895)를 참조하십시오.  Reynolds 의 통찰력과 접근 방식은 기본이며 동시에 실용적인 것입니다.

The Pseudo-Fluid Approximation

In a fully turbulent flow it is sometimes possible to define an effective turbulent viscosity, μeff, that roughly approximates the turbulent mixing processes contributing to a diffusion of momentum (and other properties). Thinking of a turbulent flow as a pseudo-fluid having increased viscosity leads to the observation that the effective Reynolds number for a turbulent flow is generally less than 100:

의사 유체 근사

완전 난류 흐름에서는 운동량 (및 기타 특성)의 확산에 기여하는 난류 혼합 공정에 대략적으로 근접하는 효과적인 난류 점도 μ eff를 정의 할 수 있습니다. 난류 흐름을 점도가 증가 된 유사 유체로 생각하면 난류 흐름에 대한 유효 레이놀즈 수가 일반적으로 100 미만이라는 관찰이 가능합니다.

This observation is particularly useful because it suggests a simple way to approximate some turbulent flows. In particular, when the details of the turbulence are not important, but the general mixing behavior associated with the turbulence is, it is often possible to use an effective turbulent (eddy) viscosity in place of the molecular viscosity. The effective viscosity can often be expressed as

이 관찰 결과는 몇 가지 난류를 근사하는 간단한 방법을 제시하고 있기 때문에 특히 유용합니다.  특히 난류 대한 자세한 내용은 중요하지 난류와 관련된 일반적인 혼합 거동이 중요한 경우에는 분자 점성 대신 사용 난류 (소용돌이) 점성을 사용할 수있는 경우가 있습니다.  유효 점성은 다음의 식으로 나타낼 수 있습니다.

where α is a number between 0.02 and 0.04. This expression works well for the turbulence associated with plane and cylindrical jets entering a stagnant fluid. The effective Reynolds number associated with this model is Re=1/α, a number between 25 and 50.

α는 0.02에서 0.04 사이의 숫자입니다.  이 수식은 정체 유체에 들어가는 평면 제트 및 원통형 분류 관련 난류에 대하여 효과가 있습니다.  이 모델에 대한 사용 레이놀즈 수는 Re = 1 / α 25에서 50 사이의 숫자입니다.

While this model is often adequate for predicting the gross features of a turbulent flow, it may not be suitable for predicting local details. For example, it would predict a parabolic flow (i.e., laminar) profile in a pipe instead of the measured logarithmic profile.

이 모델은 종종 난류의 전반적인 특징을 예측하는데는 적합하지만, 로컬 세부 사항을 예측하는 데는 적합하지 않을 수 있습니다.  예를 들어, 측정된 대수 프로필 대신 파이프의 포물선 흐름 (층류 등)의 프로파일을 예측합니다.

Local Viscosity Model

The next level of complexity beyond a constant eddy viscosity is to compute an effective viscosity that is a function of local conditions. This is the basis of Prandtl’s mixing-length hypothesis where it is assumed that the viscosity is proportional to the local rate of shear. The proportionality constant has the dimensions of a length squared. The square root of this constant is referred to as the “mixing length.”

This model offers an improvement over a simple constant viscosity. For example, it predicts the logarithmic velocity profile in a pipe. However, it is not used much because it doesn’t account for important transport effects.

국소 점성 모델

일정한 소용돌이 점성보다 복잡한 것은 국소적 조건의 함수인 유효 점성을 계산하는 것입니다.  이것은 점성이 국소적 전단 속도에 비례한다고 가정된다는 프란틀 혼합 길이 가설(Prandtl’s mixing-length hypothesis )의 기초가됩니다.  비례 상수의 차원은 길이의 제곱입니다.  이 상수의 제곱근은 “혼합 장”이라고합니다.

이 모델은 간단한 일정한 점성 개선을 제공합니다.  예를 들어, 파이프의 대수 속도 프로파일을 예측할 수 있습니다.  그러나 중요한 수송 효과를 지원하지 않기 때문에 그다지 많이 사용되지 않습니다.

Turbulence Transport Models

For practical engineering purposes the most successful computational models have two or more transport equations. A minimum of two equations is desirable because it takes two quantities to characterize the length and time scales of turbulent processes. The use of transport equations to describe these variables allows turbulence creation and destruction processes to have localized rates. For instance, a region of strong shear at the corners of a building may generate strong eddies, while little turbulence is generated in the building’s wake region. The strong mixing observed in the wakes of buildings (or automobiles and airplanes) is caused by the advection of upstream generated eddies into the wake. Without transport mechanisms, turbulence would have to instantly adjust to local conditions, implying unrealistically large creation and destruction rates.

난류 수송 모델

실용 공학의 목적인 가장 뛰어난 수치 모델에는 2 개 이상의 수송 방정식이 있습니다.  난류 과정의 길이와 시간의 스케일을 특징으로는 2 개 분량이 필요하므로 최소한 2 개의 방정식이있는 것이 바람직 할 것입니다.  수송 방정식을 사용하여 이러한 변수를 표현하면 난류의 생성 속도와 파괴율을 국소적으로 할 수 있습니다.  예를 들어, 건물의 모서리의 전단력이 강한 영역에서 강력한 소용돌이가 생성 된 건축물의 후류 영역에서 난류는 거의 생성되지 않습니다.  건축물 (또는 자동차 나 비행기)의 후류에서 관찰되는 강력한 혼합은 상류에서 생성된 소용돌이 후류의 이류에 의해 발생합니다.  수송 메커니즘이 없는 경우, 난류는 국소적 조건에 즉시 적응해야하므로 생성 속도와 파괴율이 비현실적인 크기입니다.

Nearly all transport models invoke one or more gradient assumptions in which a correlation between two fluctuating quantities is approximated by an expression proportional to the gradient of one of the terms. This captures the diffusion-like character of turbulent mixing associated with many small eddy structures, but such approximations can lead to errors when there is significant transport by large eddy structures.

거의 모든 수송 모델에서 하나 이상의 경사 가정을 이루어 두 변동하는 양의 상관 관계가 하나의 항 기울기에 비례하는 식으로 근사됩니다.  이를 통해 다수의 작은 소용돌이 구조와 관련된 난류 혼합 확산적인 특징을 파악할 수 있지만, 큰 소용돌이 구조에 의해 상당한 전송이 존재하는 경우, 이러한 근사 오류가 발생할 수 있습니다.

Large Eddy Simulation

Most models of turbulence are designed to approximate a smoothed out or time-averaged effect of turbulence. An exception is the Large Eddy Simulation model (or Subgrid Scale model). The idea behind this model is that computations should be directly capable of modeling all the fluctuating details of a turbulent flow except for those too small to be resolved by the grid. The unresolved eddies are then treated by approximating their effect using a local eddy viscosity. Generally, this eddy viscosity is made proportional to the local grid size and some measure of the local flow velocity, such as the magnitude of the rate of strain.

Large Eddy 시뮬레이션

난류의 대부분의 모델은 매끄럽게 또는 시간 평균된 난류의 효과를 근사하도록 설계되어 있습니다.  예외는 큰 에디 시뮬레이션 모델 (또는 서브 그리드 스케일 모델)입니다.  이 모델의 배경에는 너무 작은 격자에 의해 해결할 수 없는 것을 제외하고는 난류의 모든 변동 내용은 계산에 의해 직접 모델링 할 수 있어야 한다는 생각이 있습니다.  미해결 소용돌이는 로컬 점성을 사용하여 효과를 근사하여 처리됩니다.  일반적으로이 소용돌이 점성은 국소적인 격자 크기 및 어떤 국소적인 흐름의 속도 측정 (변형 속도의 크기 등)에 비례합니다.

대부분의 난류 모델은 난류의 평활화 또는 시간 평균 효과에 근접하도록 설계되었습니다. 예외는 Large Eddy Simulation 모델 (또는 Subgrid Scale 모델)입니다. 이 모델의 이면에있는 아이디어는 계산이 격자에 의해 해결 되기에는 너무 작은 것을 제외하고, 난류 흐름의 모든 변동 세부 사항을 직접 모델링 할 수 있어야 한다는 것입니다. 해결되지 않은 소용돌이는 로컬 소용돌이 점도를 사용하여 효과를 근사화하여 처리됩니다. 일반적으로, 이 와류 점도는 로컬 격자 크기와 변형률의 크기와 같은 로컬 유속 측정치에 비례하여 만들어집니다.

Such an approach might be expected to give good results if the unresolved scales are small enough, for example, in the viscous sub-range. Unfortunately, this is still an uncomfortably small size. When these models are used with a minimum scale size that is above the viscous sub-range, they are then referred to as Coherent Structure Capturing models.

이러한 접근 방식은 미해결 스케일이 충분히 작은 경우, 예를 들어 점성이 작은 영역에 있는 경우에 좋은 결과를 얻을 수 있을 것으로 기대됩니다.  불행히도 아직은 여전히 불편한 작은 크기 입니다.  이러한 모델을 점성 작은 영역보다 높은 최소 스케일 사이즈로 사용하는 경우는 CSC (Coherent Structure Capturing) 모델이라고합니다.

The advantage of these more realistic models is that they provide information not only about the average effects of turbulence but also about the magnitude of fluctuations. But, this advantage is also a disadvantage, because averages must actually be computed over many fluctuations, and some means must be provided to introduce meaningful fluctuations at the start of a computation and at boundaries where flow enters the computational region.

이보다 현실적인 모델의 장점은 난류의 평균 효과에 대한 정보뿐만 아니라 변동의 크기에 대한 정보도 제공 될 것입니다.  그러나 이와같은 장점은 단점도 있습니다.  평균적으로 실제로 다수의 변동에 대해 계산해야 하며, 계산의 시작 및 흐름이 계산 영역에 들어가는 경계에서 상당한 변화를 도입하기위한 수단을 제공 할 필요가 있기 때문입니다.

Turbulence from an Engineering Perspective

We have seen that it is probably not reasonable to attempt to compute all the details of a turbulent flow. Furthermore, from the perspective of most applications, it’s not likely that we would be interested in the local details of individual fluctuations. The question then is how should we deal with turbulence, when should we employ a turbulence model, and how complex should that model be?

공학적 관점에서의 난류

지금까지 난류의 모든 세부 사항을 계산하려고하는 것은 아마도 합리적이지 않다는 것을 확인했습니다.  또한 많은 적용례의 관점에서 개별 변동의 국소적인 세부 사항이 관심의 대상이 될 수는 없을 것입니다.  거기서 생기는 의문은 난류를 어떻게 처리해야 할지 난류 모델을 언제 선택할지 그 모델이 얼마나 복잡할지에 있다는 것입니다.

Experimental observations suggest that many flows become independent of Reynolds number once a certain minimum value is exceeded. If this were not so, wind tunnels, wave tanks, and other experimental tools would not be as useful as they are. One of the principal effects of a Reynolds number change is to relocate flow separation points. In laboratory experiments this fact sometimes requires the use of trip wires or other devices to induce separation at desired locations. A similar treatment may be used in a numerical simulation.

실험적 관찰에 따르면 특정 최소값이 초과되면 많은 흐름이 레이놀즈 수와 무관하게됩니다. 그렇지 않다면 풍동, 파도 탱크 및 기타 실험 도구는 그다지 유용하지 않을 것입니다. 레이놀즈 수 변경의 주요 효과 중 하나는 흐름 분리 지점을 재배치하는 것입니다. 실험실 실험에서이 사실은 때때로 원하는 위치에서 분리를 유도하기 위해 트립 와이어 또는 기타 장치를 사용해야합니다. 유사한 처리가 수치 시뮬레이션에서 사용될 수 있습니다.

Most often a simulation is done to determine the dominant flow patterns that develop in some specified situation. These patterns consist of the mean flow and the largest eddy structures containing the majority of the kinetic energy of the flow. The details of how this energy is removed from the larger eddies and dissipated into heat by the smallest eddies may not be important. In such cases the dissipation mechanisms inherent in numerical methods may alone be sufficient to produce reasonable results. In other cases it is possible to supply additional dissipation with a simple turbulence model such as a constant eddy viscosity or a mixing length assumption.

대부분의 경우 특정 상황에서 발생하는 지배적 인 흐름 패턴을 결정하기 위해 시뮬레이션이 수행됩니다. 이러한 패턴은 평균 흐름과 흐름의 대부분의 운동 에너지를 포함하는 가장 큰 소용돌이 구조로 구성됩니다. 이 에너지가 더 큰 소용돌이에서 제거되고 가장 작은 소용돌이에 의해 열로 소산되는 방법에 대한 세부 사항은 중요하지 않을 수 있습니다. 그러한 경우 수치 적 방법에 내재 된 소산 메커니즘만으로도 합리적인 결과를 얻을 수 있습니다. 다른 경우에는 일정한 소용돌이 점도 또는 혼합 길이 가정과 같은 간단한 난류 모델을 사용하여 추가 소산을 제공 할 수 있습니다.

Turbulence transport equations require more CPU resources and should only be used when there are strong, localized sources of turbulence and when that turbulence is likely to be advected into other important regions of the flow.  When there is reason to seriously question the results of a computation, it is always desirable to seek experimental confirmation.

An excellent introduction to fluid turbulence can be found in the book Elementary Mechanics of Fluids by Hunter Rouse, Dover Publications, Inc., New York (1978).

난류 전송 방정식은 더 많은 CPU 리소스를 필요로하며 강력하고 국부 화 된 난기류 소스가 있고 그 난류가 흐름의 다른 중요한 영역으로 전파 될 가능성이있는 경우에만 사용해야합니다. 계산 결과에 매우 의문이 생길 경우는 실험에 의해 확인하는 것이 좋습니다.

유체 난류에 대한 훌륭한 소개는 Hunter Rouse, Dover Publications, Inc., New York (1978)의 책 Elementary Mechanics of Fluids에서 찾을 수 있습니다.

Breakwater Structures

Breakwater Structures

복잡한 지형과 해안 구조를 통해 큰 진폭의 비선형 파를 모델링 할 수 있는 FLOW-3D의 능력은 간단한 선형 파에서 복잡한 바다 상태에 이르기까지 파도의 강제 유체 역학적 방파제 구조물의 성능을 분석 할 수 있는 이상적인 도구입니다. 수신 파로부터 운동 에너지를 제거하여 구조물 의 강도를 측정하는 것 이외에도 FLOW-3D는 사용자로 하여금 퇴적물 전송의 상세한 분석을 수행 할 수 있게 하며 방파제 요소에 작용하는 힘의 평가도 가능합니다. 생태학적 요구로 인해 통합 연안 구조가 더 중요해 지는 상황에서 FLOW-3D는 엔지니어로 하여금 구조물의 주위에 흐름 패턴의 세부 사항을 평가할 수 있습니다.

Rubble-mound Breakwaters Simulation

Rubble-mound Breakwaters Simulation

테트라포드 방파제는 종종 극심한 파동 하중의 영향으로부터 해안선을 보호하고 긴 해안 표류를 막기 위해 사용됩니다. 엔지니어는 FLOW-3D를 사용하여 보호 레이어, 파동 반사 계수 및 이러한 구조와 관련된 볼륨 overtopping volumes 을 추정할 수 있습니다.