FLOW-3D 소프트웨어를 이용한 Wave Dragon 장치의 안내벽 각도가 월류 유량에 미치는 영향 연구
연구 배경 및 목적
- 문제 정의: 파력 에너지 변환 장치(Wave Energy Converter, WEC)는 파도의 에너지를 전기로 변환하는 장치로, 그중 Wave Dragon은 월류 방식(overtopping)을 이용하는 대표적인 WEC 중 하나이다.
- 연구 목적: Wave Dragon 장치의 안내벽(Reflector) 각도가 월류 유량(overtopping discharge)에 미치는 영향을 분석하고, 최적의 안내벽 각도를 도출하는 것.
- 접근법: CFD(Computational Fluid Dynamics) 소프트웨어인 FLOW-3D를 활용하여 안내벽 각도와 파고(wave height) 변화에 따른 월류 유량을 시뮬레이션하고 실험 데이터와 비교 분석.
연구 방법
- Wave Dragon 장치 개요
- Wave Dragon은 세 가지 주요 구성 요소로 이루어짐:
- 안내벽(Guiding Walls): 파도를 유도하여 경사면(Ramp)으로 향하게 함.
- 경사면(Ramp): 파도를 저수조(Reservoir)로 유입시킴.
- 수력 터빈(Hydro Turbines): 저수조에 저장된 물이 터빈을 통과하면서 전기를 생산.
- Wave Dragon은 세 가지 주요 구성 요소로 이루어짐:
- FLOW-3D 기반 수치 모델링
- Navier-Stokes 방정식 및 연속 방정식을 사용하여 유체 흐름을 모델링.
- VOF(Volume of Fluid) 기법을 활용하여 자유 수면을 해석.
- 메쉬 설정: 격자 독립성 검토를 통해 최적의 해상도를 확보.
- 실험 데이터 검증: 기존 연구 및 실험 결과와 시뮬레이션 결과를 비교하여 모델 신뢰성 평가.
- 시뮬레이션 변수
- 파고(Wave Height): 0.2m ~ 1.5m 범위에서 변화.
- 안내벽 각도(Guiding Wall Angle): 50°, 60°, 70°, 80°, 90°.
- 월류량 측정: 안내벽 각도 및 파고에 따른 월류 유량을 비교 분석.
주요 결과
- 안내벽 각도와 월류량의 관계
- 안내벽 각도가 80°에서 최대 월류량을 기록.
- 50°, 60°, 70°에서는 월류량이 감소하며, 90°에서는 파도의 속도가 낮아져 월류량이 다소 감소.
- 파고와 월류량의 관계
- 파고가 증가할수록 월류량이 증가하는 경향을 보임.
- 1.5m 파고에서 가장 높은 월류량이 발생.
- 시뮬레이션과 실험 데이터 비교
- FLOW-3D 시뮬레이션 결과와 실험 데이터 간 오차는 평균 15% 이내로, 모델이 신뢰할 만한 정확도를 보임.
결론 및 향후 연구
- 결론:
- Wave Dragon 장치의 안내벽 각도가 월류 유량에 중요한 영향을 미치며, 80°가 최적의 각도로 나타남.
- 90° 이상에서는 파도 반사가 줄어들어 효율이 낮아지고, 50°~70°에서는 월류 유량이 감소함.
- 향후 연구 방향:
- 실험적 검증을 확장하여 다양한 해양 조건에서의 성능 평가.
- 터빈 효율을 고려한 최적의 수력 에너지 변환 설계 연구.
- 다중 안내벽 설계 및 추가적인 CFD 기법 적용을 통한 성능 개선.
연구의 의의
이 연구는 Wave Dragon과 같은 월류형 WEC의 성능을 최적화하기 위한 CFD 기반 설계 평가 방법을 제시하며, 파력 발전 시스템의 효율성을 향상시키기 위한 실용적인 가이드라인을 제공한다.











Reference
- Drew, Benjamin, Andrew R. Plummer, and M. Necip Sahinkaya. “A review of wave energy converter technology.”(2009): 887-902. https://doi.org/10.1243/09576509JPE782
- Leijon, Mats, Cecilia Boström, Oskar Danielsson, Stefan Gustafsson, Kalle Haikonen, Olivia Langhamer, ErlandStrömstedt et al., “Wave energy from the North Sea: Experiences from the Lysekil research site.” Surveys ingeophysics 29 (2008): 221-240. https://doi.org/10.1007/s10712-008-9047-x
- Clément, Alain, Pat McCullen, António Falcão, Antonio Fiorentino, Fred Gardner, Karin Hammarlund, GeorgeLemonis et al., “Wave energy in Europe: current status and perspectives.” Renewable and sustainable energyreviews 6, no. 5 (2002): 405-431. https://doi.org/10.1016/S1364-0321(02)00009-6
- Thorpe, Tom W. “A brief review of wave energy.” (1999).
- Albert, Alberto, Giovanni Berselli, Luca Bruzzone, and Pietro Fanghella. “Mechanical design and simulation of anonshore four-bar wave energy converter.” Renewable Energy 114 (2017): 766-774.https://doi.org/10.1016/j.renene.2017.07.089
- Falcao, Antonio F. de O. “Wave energy utilization: A review of the technologies.” Renewable and sustainable energyreviews 14, no. 3 (2010): 899-918. https://doi.org/10.1016/j.rser.2009.11.003
- Liu, Zhenwei, Ran Zhang, Han Xiao, and Xu Wang. “A survey of power take-off systems of ocean wave energyconverters.” (2019). https://doi.org/10.20944/preprints201907.0335.v1
- Chong, Heap-Yih, and Wei-Haur Lam. “Ocean renewable energy in Malaysia: The potential of the Straits ofMalacca.” Renewable and Sustainable Energy Reviews 23 (2013): 169-178.https://doi.org/10.1016/j.rser.2013.02.021
- Nabilah, Nur Amira, Cheng Yee Ng, Nauman Riyaz Maldar, and Fatin Khalida Abd Khadir. “Marine hydrokineticenergy potential of Peninsular Malaysia by using hybrid site selection method.” Progress in Energy andEnvironment (2023): 1-10.
- Parmeggiani, Stefano, Jens Peter Kofoed, and Erik Friis-Madsen. “Experimental update of the overtopping modelused for the wave dragon wave energy converter.” Energies 6, no. 4 (2013): 1961-1992.https://doi.org/10.3390/en6041961
- Tedd, James, Jens Peter Kofoed, W. Knapp, E. Friis-Madsen, and H. C. Sørensen. “Wave Dragon: prototype wavepower production.” In Proceedings of the 9th World Renewable Energy Congress: WREC IX, Florence, Italy, August2006. Pergamon Press, 2006.
- Frigaard, Peter, James Tedd, Jens Peter Kofoed, and E. Friis-Madsen. “3 years experience with energy productionon the Nissum Bredning Wave Dragon prototype.” In Proceedings of the Fourth CA-OE Workshop: PerformanceMonitoring of Ocean Energy Systems, Lisbon, 16-17 November, 2006. Coordination Action on Ocean Energy (CAOE): Sixth Framework Programme, 2006.
- Tedd, James, Jens Peter Kofoed, M. Jasinski, A. Morris, E. Friis-Madsen, Rafal Wisniewski, and Jan Dimon Bendtsen.”Advanced control techniques for WEC wave dragon.” In Proceedings of the 7th European Wave and Tidal EnergyConference: EWTEC 2007. European Ocean Energy Association, 2007.
- Kofoed, Jens Peter, Peter Frigaard, Erik Friis-Madsen, and Hans Chr Sørensen. “Prototype testing of the wave energyconverter wave dragon.” Renewable energy 31, no. 2 (2006): 181-189.https://doi.org/10.1016/j.renene.2005.09.005
- Bevilacqua, Giovanna, and Barbara Zanuttigh. “Overtopping Wave Energy Converters: general aspects and stage ofdevelopment.” (2011).
- Nam, B. W., S. H. Shin, K. Y. Hong, and S. W. Hong. “Numerical simulation of wave flow over the spiral-reefovertopping device.” In ISOPE Pacific/Asia Offshore Mechanics Symposium, pp. ISOPE-P. ISOPE, 2008.
- Thorpe, T. W. “An overview of wave energy technologies: status, performance and costs.” Wave power: movingtowards commercial viability 26 (1999): 50-120.
- Khojasteh, Danial, Davood Khojasteh, Reza Kamali, Asfaw Beyene, and Gregorio Iglesias. “Assessment of renewableenergy resources in Iran; with a focus on wave and tidal energy.” Renewable and Sustainable Energy Reviews 81(2018): 2992-3005. https://doi.org/10.1016/j.rser.2017.06.110
- Al-Habaibeh, Amin, D. Su, J. McCague, and A. Knight. “An innovative approach for energy generation fromwaves.” Energy Conversion and Management 51, no. 8 (2010): 1664-1668.https://doi.org/10.1016/j.enconman.2009.11.041
- Sørensen, H. C., and E. Friis-Madsen. “Wave Dragon 1.5 MW North Sea Demonstrator Phase 1.” Report, AalborgUniversity, Copenaghen, Denmark (2015).
- Hald, Tue, Erik Friis-Madsen, and Jens Peter Kofoed. “Hydraulic behaviour of the floating wave energy converterwave dragon.” In The 10th Congress of International Maritime Association of the Mediteranean (IMAM 2002). 2002.
- Kramer, Morten V., and Peter Frigaard. “Efficient wave energy amplification with wave reflectors.” In ISOPEInternational Ocean and Polar Engineering Conference, pp. ISOPE-I. ISOPE, 2002.
- Kofoed, Jens Peter. “Optimization of overtopping ramps for utilization of wave energy.” (2000).
- Kofoed, Jens Peter, Peter Frigaard, Erik Friis-Madsen, and Hans Chr Sørensen. “Prototype testing of the wave energyconverter wave dragon.” Renewable energy 31, no. 2 (2006): 181-189.https://doi.org/10.1016/j.renene.2005.09.005
- Tedd, James. “Testing, analysis and control of Wave Dragon, wave energy converter.” (2007).
- Borgarino, Bruno, Jens Peter Kofoed, and James Tedd. “Experimental Overtopping Investigation for the WaveDragon: effects of reflectors and their attachments.” (2007).
- Kofoed, Jens Peter. “Wave Overtopping of Marine Structures: utilization of wave energy.” (2002).
- Eskilsson, Claes, Johannes Palm, Jens Peter Kofoed, and Erik Friis-Madsen. “CFD study of the overtopping dischargeof the Wave Dragon wave energy converter.” Renewable Energies Offshore (2015): 287-294.https://doi.org/10.1201/b18973-42
- Fernandez, Hernan, Gregorio Iglesias, Rodrigo Carballo, Alberte Castro, Marcos Sánchez, and Francisco TaveiraPinto. “Optimization of the wavecat wave energy converter.” Coastal Engineering Proceedings 33 (2012): 5-5.https://doi.org/10.9753/icce.v33.structures.5
- Vanneste, Dieter FA, Corrado Altomare, Tomohiro Suzuki, Peter Troch, and Toon Verwaest. “Comparison ofnumerical models for wave overtopping and impact on a sea wall.” Coast. Eng. Proc 1, no. 5 (2014).https://doi.org/10.9753/icce.v34.structures.5
- Daliri, Mohammad, Fabio Dentale, Daniela Salerno, and Mariano Buccino. “A CFD study on the structural responseof a sloping top caisson subject to wave overtopping.” COASTAL ENGINEERING (2016): 2.https://doi.org/10.9753/icce.v35.structures.41
- Ahmad, M. F., M. I. Ramli, M. A. Musa, S. E. G. Goh, C. W. M. Othman, E. H. Ariffin, and N. A. Mokhtar. “Numericalsimulation for overtopping discharge on tetrapod breakwater.” In AIP Conference Proceedings, vol. 2746, no. 1. AIPPublishing, 2023. https://doi.org/10.1063/5.0153371
- Musa, M. A., M. F. Roslan, A. Fitriadhy, Y. W. Eissa, S. Z. A. Ahmad, and M. F. Ahmad. “Numerical Simulation ofGeometrical Parameters Effect on Wavecat Energy Converter.” MF, Numerical Simulation of GeometricalParameters Effect on Wavecat Energy Converter (May 13, 2023) (2023). https://doi.org/10.2139/ssrn.4447485
- Musa, Mohd Azlan, Muhammad Faris Roslan, Ahmad Fitriadhy, Aliashim Albani, Mohd Hairil Mohd, MohdAsamuddin A. Rahman, Mohammad Fadhli Ahmad, And Muhammad Nadzrin Nazri. “Experimental Comparison OfLinear And Cubic Ramps For Hybrid Overtopping Breakwater Energy Conversion.” Journal of Sustainability Scienceand Management 18, no. 1 (2023): 215-227. https://doi.org/10.46754/jssm.2023.01.013
- Izzul, Mohamad, Mohammad Fadhli, Mohd Azlan, And Mohd Noor. “Parametric Study On Wave Overtopping DueTo Wedge Angle And Freeboard Of Wavecat Wave Energy Converter.” Universiti Malaysia Terengganu Journal ofUndergraduate Research 4, no. 2 (2022): 37-50. https://doi.org/10.46754/umtjur.v4i2.273
- Musa, M. A., M. F. Roslan, M. F. Ahmad, A. M. Muzathik, M. A. Mustapa, A. Fitriadhy, M. H. Mohd, and M. A. A.Rahman. “The influence of ramp shape parameters on performance of overtopping breakwater for energyconversion.” Journal of Marine Science and Engineering 8, no. 11 (2020): 875.https://doi.org/10.3390/jmse8110875
- Souliotis, D., and P. Prinos. “A numerical simulator for wave overtopping.” In Proceedings of the 34th WorldCongress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology andWater Resources Symposium and 10th Conference on Hydraulics in Water Engineering, pp. 1226-1231. Barton, ACT:Engineers Australia, 2011.
- Maliki, A. Yazid, M. Azlan Musa, M. F. Ahmad, I. Zamri, and Y. Omar. “Comparison of numerical and experimentalresults for overtopping discharge of the OBREC wave energy converter.” Journal of Engineering Science andTechnology 12, no. 5 (2017): 1337-1353.
- Alias, Fatin, Mohd Hairil Mohd, Mohd Azlan Musa, Erwan Hafizi Kasiman, and Mohd Asamudin A. Rahman. “FlowPast a Fixed and Freely Vibrating Drilling Riser System with Auxiliaries in Laminar Flow.” Journal of AdvancedResearch in Fluid Mechanics and Thermal Sciences 87, no. 3 (2021): 94-104.https://doi.org/10.37934/arfmts.87.3.94104
- Wei, Gengsheng. “A fixed-mesh method for general moving objects in fluid flow.” Modern Physics Letters B 19, no.28n29 (2005): 1719-1722. https://doi.org/10.1142/S021798490501030X
- Barkhudarov, Michael, and Gengsheng Wei. “Modeling of the coupled motion of rigid bodies in liquidmetal.” Modeling of Casting, Welding, and Advanced Solidification Processes-XI, Opio, France, May (2006): 71-78.
- Wei, Gengsheng. “An implicit method to solve problems of rigid body motion coupled with fluid flow.” Flow Science,Inc (2006).
- van der Meer, Jentsje W. “Wave run-up and wave overtopping at dikes.” Wave forces on inclined and verticalstructures, ASCE (1995).
- Kofoed, Jens Peter, Peter Frigaard, H. C. Sørensen, and E. Friis-Madsen. “Wave Dragon: a slack moored wave energyconverter.” In Proceedings of the Third European Wave Energy Conference: Patras, Greece 1998. Hydraulics &Coastal Engineering Laboratory, Department of Civil Engineering, Aalborg University, 1998.