Computational Fluid Dynamics Study of Perforated Monopiles

Mary Kathryn Walker
Florida Institute of Technology, mwalker2022@my.fit.edu

Robert J. Weaver, Ph.D.
Associate Professor
Ocean Engineering and Marine Sciences
Major Advisor


Chungkuk Jin, Ph.D.
Assistant Professor
Ocean Engineering and Marine Sciences


Kelli Z. Hunsucker, Ph.D.
Assistant Professor
Ocean Engineering and Marine Sciences


Richard B. Aronson, Ph.D.
Professor and Department Head
Ocean Engineering and Marine Sciences

Abstract

모노파일은 해상 풍력 터빈 건설에 사용되며 일반적으로 설계 수명은 25~50년입니다. 모노파일은 수명 주기 동안 부식성 염수 환경에 노출되어 구조물을 빠르게 분해하는 전기화학적 산화 공정을 용이하게 합니다. 이 공정은 모노파일을 보호 장벽으로 코팅하고 음극 보호 기술을 구현하여 완화할 수 있습니다.

역사적으로 모노파일 설계자는 파일 내부가 완전히 밀봉되고 전기화학적 부식 공정이 결국 사용 가능한 모든 산소를 소모하여 반응을 중단시킬 것이라고 가정했습니다. 그러나 도관을 위해 파일 벽에 만든 관통부는 종종 누출되어 신선하고 산소화된 물이 내부 공간으로 유입되었습니다.

표준 부식 방지 기술을 보다 효과적으로 적용할 수 있는 산소화된 환경으로 내부 공간을 재고하는 새로운 모노파일 설계가 연구되고 있습니다. 이러한 새로운 모노파일은 간조대 또는 조간대 수준에서 벽에 천공이 있어 신선하고 산소화된 물이 구조물을 통해 흐를 수 있습니다.

이러한 천공은 또한 구조물의 파도 하중을 줄일 수 있습니다. 유체 역학적 하중 감소의 크기는 천공의 크기와 방향에 따라 달라집니다. 이 연구에서는 천공의 크기에 따른 모노파일의 힘 감소 분석에서 전산 유체 역학(CFD)의 적용 가능성을 연구하고 주어진 파도의 접근 각도 변화의 효과를 분석했습니다.

모노파일의 힘 감소를 결정하기 위해 이론적 3D 모델을 제작하여 FLOW-3D® HYDRO를 사용하여 테스트했으며, 천공되지 않은 모노파일을 제어로 사용했습니다. 이론적 데이터를 수집한 후, 동일한 종류의 천공이 있는 물리적 스케일 모델을 파도 탱크를 사용하여 테스트하여 이론적 모델의 타당성을 확인했습니다.

CFD 시뮬레이션은 물리적 모델의 10% 이내, 이전 연구의 5% 이내에 있는 것으로 나타났습니다. 물리적 모델과 시뮬레이션 모델을 검증한 후, 천공의 크기가 파도 하중 감소에 뚜렷한 영향을 미치고 주어진 파도의 접근 각도에 대한 테스트를 수행할 수 있음을 발견했습니다.

접근 각도의 변화는 모노파일을 15°씩 회전하여 시뮬레이션했습니다. 이 논문에 제시된 데이터는 모노파일의 방향이 통계적으로 유의하지 않으며 천공 모노파일의 설계 고려 사항이 되어서는 안 된다는 것을 시사합니다.

또한 파도 하중 감소와 구조적 안정성 사이의 균형을 찾기 위해 천공의 크기와 모양에 대한 연구를 계속하는 것이 좋습니다.

Monopiles are used in the construction of offshore wind turbines and typically have a design life of 25 to 50 years. Over their lifecycle, monopiles are exposed to a corrosive saltwater environment, facilitating a galvanic oxidation process that quickly degrades the structure. This process can be mitigated by coating the monopile in a protective barrier and implementing cathodic protection techniques. Historically, monopile designers assumed the interior of the pile would be completely sealed and the galvanic corrosion process would eventually consume all the available oxygen, halting the reaction. However, penetrations made in the pile wall for conduit often leaked and allowed fresh, oxygenated water to enter the interior space. New monopile designs are being researched that reconsider the interior space as an oxygenated environment where standard corrosion protection techniques can be more effectively applied. These new monopiles have perforations through the wall at intertidal or subtidal levels to allow fresh, oxygenated water to flow through the structure. These perforations can also reduce wave loads on the structure. The magnitude of the hydrodynamic load reduction depends on the size and orientation of the perforations. This research studied the applicability of computational fluid dynamics (CFD) in analysis of force reduction on monopiles in relation to size of a perforation and to analyze the effect of variation in approach angle of a given wave. To determine the force reduction on the monopile, theoretical 3D models were produced and tested using FLOW-3D® HYDRO with an unperforated monopile used as the control. After the theoretical data was collected, physical scale models with the same variety of perforations were tested using a wave tank to determine the validity of the theoretical models. The CFD simulations were found to be within 10% of the physical models and within 5% of previous research. After the physical and simulated models were validated, it was found that the size of the perforations has a distinct impact on the wave load reduction and testing for differing approach angles of a given wave could be conducted. The variation in approach angle was simulated by rotating the monopile in 15° increments. The data presented in this paper suggests that the orientation of the monopile is not statistically significant and should not be a design consideration for perforated monopiles. It is also suggested to continue the study on the size and shape of the perforations to find the balance between wave load reduction and structural stability.

Figure 1: Overview sketch of typical monopile (MP) foundation and transition piece (TP) design with an internal j-tube (Hilbert et al., 2011)
Figure 1: Overview sketch of typical monopile (MP) foundation and transition
piece (TP) design with an internal j-tube (Hilbert et al., 2011)

References
Andersen, J., Abrahamsen, R., Andersen, T., Andersen, M., Baun, T., & Neubauer,
J. (2020). Wave Load Mitigation by Perforation of Monopiles. Journal of
Marine Science and Engineering, 8(5), 352.
https://doi.org/10.3390/jmse8050352
Bakker A. (2008) Lectures on Applied Computational Fluid Dynamics.
www.bakker.org.
Bustamante, A., Vera-Tudela, L., & Kühn, M. (2015). Evaluation of wind farm
effects on fatigue loads of an individual wind turbine at the EnBW baltic 1
offshore wind farm. Journal of Physics: Conference Series, 625, 012020.
https://doi.org/10.1088/1742-6596/625/1/012020
Chakrabarti SK. Hydrodynamics of offshore structures. Springer Verlag;1987.
Christiansen, R. (2020). Living Docks: Structural Implications and Determination
of Force Coefficients of Oyster Mats on Dock Pilings in the Indian River
Lagoon [Master’s Thesis, Florida Institute of Technology].
Clauss, G. (1992). Offshore Structures, Volume 1, Conceptual Design and
Hydromechanics. Springer, London, UK.
COMSOL Multiphysics® v. 6.1. www.comsol.com. COMSOL AB, Stockholm,
Sweden.
Delwiche, A. & Tavares, I. (2017). Retrofit Strategy using Aluminum Anodes for
the Internal section of Windturbine Monopiles. NACE Internation
Corrosion Conference & Expo, Paper no. 8955.
Det Norske Veritas (2014) Fatigue design of offshore steel structures. Norway.
70
Det Norske Veritas (1989). Rules for the Classification of Fixed Offshore
Installations. Technical report, DNV, Hovik, Norway.
DNV. (2011). DNV-RP-C203 Fatigue Design of Offshore Steel Structures (tech.
rep.). http://www.dnv.com
Elger, D. F., LeBret, B. A., Crowe, C. T., & Roberson, J. A. (2022). Engineering
fluid mechanics. John Wiley & Sons, Inc.
FLOW-3D® Version 12.0 Users Manual (2018). FLOW-3D [Computer software].
Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com
Gaertner, Evan, Jennifer Rinker, Latha Sethuraman, Frederik Zahle, Benjamin
Andersen, Garrett Barter, Nikhar Abbas, Fanzhong Meng, Pietro Bortolotti,
Witold Skrzypinski, George Scott, Roland Feil, Henrik Bredmose,
Katherine Dykes, Matt Shields, Christopher Allen, and Anthony Viselli.
(2020). Definition of the IEA 15-Megawatt Offshore Reference Wind.
Golden, CO: National Renewable Energy Laboratory. NREL/TP-5000-

  1. https://www.nrel.gov/docs/fy20osti/75698.pdf
    Goodisman, Jerry (2001). “Observations on Lemon Cells”. Journal of Chemical
    Education. 78 (4): 516–518. Bibcode:2001JChEd..78..516G.
    doi:10.1021/ed078p516. Goodisman notes that many chemistry textbooks
    use an incorrect model for a cell with zinc and copper electrodes in an
    acidic electrolyte
    Hilbert, L.R. & Black, Anders & Andersen, F. & Mathiesen, Troels. (2011).
    Inspection and monitoring of corrosion inside monopile foundations for
    offshore wind turbines. European Corrosion Congress 2011, EUROCORR
  2. 3. 2187-2201.
    H. J. Landau, “Sampling, data transmission, and the Nyquist rate,” in Proceedings
    of the IEEE, vol. 55, no. 10, pp. 1701-1706, Oct. 1967, doi:
    10.1109/PROC.1967.5962.
    71
    Journee, J. M., and W. W. Massie. Offshore Hydrodynamics, First Edition.
    Delft University of Technology, 2001.
    Keulegan, G. H., and L. H. Carpenter. “Forces on Cylinders and Plates in an
    Oscillating Fluid.” Journal of Research of the National Bureau of
    Standards, vol. 60, no. 5, 1958, pp. 423–40.
    Lahlou, O. (2019). Experimental and Numerical Analysis of the Drag Force on
    Surfboards with Different Shapes (thesis).
    L. H. Holthuijsen. Waves in Oceanic and Coastal Waters. Cam-bridge University
    Press, 2007. doi:10.1017/cbo9780511618536.
    MacCamy, R.C., Fuchs, R.A.: Wave Forces on Piles: a Diffraction Theory. Corps
    of Engineers Washington DC Beach Erosion Board (1954)
    M. M. Maher and G. Swain, “The Corrosion and Biofouling Characteristics of
    Sealed vs. Perforated Offshore Monopile Interiors Experiment Design
    Comparing Corrosion and Environment Inside Steel Pipe,” OCEANS 2018
    MTS/IEEE Charleston, Charleston, SC, USA, 2018, pp. 1-4, doi:
    10.1109/OCEANS.2018.8604522.
    Morison, J. R.; O’Brien, M. P.; Johnson, J. W.; Schaaf, S. A. (1950), “The force
    exerted by surface waves on piles”, Petroleum Transactions, American
    Institute of Mining Engineers, 189 (5): 149–154, doi:10.2118/950149-G
    Paluzzi, Alexander John, “Effects of Perforations on Internal Cathodic Protection
    and Recruitment of Marine Organisms to Steel Pipes” (2023). Theses and
    Dissertations. 1403. https://repository.fit.edu/etd/1403
    Ploeg, J.V.D. (2021). Perforation of monopiles to reduce hydrodynamic loads and
    enable use in deep waters [Master’s Thesis, Delft University of
    Technology] Institutional Repository at Delft University of Technology.
    http://resolver.tudelft.nl/uuid:91eada6f-4f2b-4ae6-be59-2b5ff0590c6f.
    72
    Shi, W., Zhang, S., Michailides, C., Zhang, L., Zhang, P., & Li, X. (2023).
    Experimental investigation of the hydrodynamic effects of breaking waves
    on monopiles in model scale. Journal of Marine Science and Technology,
    28(1), 314–325. https://doi.org/10.1007/s00773-023-00926-9
    Santamaria Gonzalez, G.A. (2023) Advantages and Challenges of Perforated
    Monopiles in Deep Water Sites [Master’s Thesis, Delft University of
    Technology] Institutional Repository at Delft University of Technology.
    http://resolver.tudelft.nl/uuid:490791b6-a912-4bac-a007-f77012c01107
    Sarpkaya, T. and Isaacson, M. (1981). Mechanics of Wave Forces on Offshore
    Structures. Number ISBN 0-442-25402-4. Van Nostrand Reinhold
    Company Inc., New York.
    Tang, Y., Shi, W., Ning, D., You, J., & Michailides, C. (2020). Effects of spilling
    and plunging type breaking waves acting on large monopile offshore wind
    turbines. Frontiers in Marine Science, 7.
    https://doi.org/10.3389/fmars.2020.00427
    Teja, R. (2021, June 25). Wheatstone bridge: Working, examples, applications.
    ElectronicsHub. https://www.electronicshub.org/wheatstone-bridge/
    The MathWorks Inc. (2022). MATLAB version: 9.13.0 (R2022b), Natick,
    Massachusetts: The MathWorks Inc. https://www.mathworks.com
    Wave gauges. Edinburgh Designs. (2016).
    http://www4.edesign.co.uk/product/wavegauges/
    Wilberts, F. (2017). MEASUREMENT DRIVEN FATIGUE ASSESSMENT OF
    OFFSHORE WIND TURBINE FOUNDATIONS (Master’s Thesis,
    Uppsala University).