Figure 1. The bathymetry provided with the benchmark problem.
1Civil Engineering Department, Middle East Technical University, Ankara 06800, Turkey
2Ocean Engineering Department, University of Rhode Island, Narragansett, RI 02882, USA
3Civil Engineering Department, Middle East Technical University, Ankara 06800, Turkey
4Department of Applied Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod 603950, Russia
*
Author to whom correspondence should be addressed.
Academic Editor: Richard P. Signell
J. Mar. Sci. Eng. 20164(3), 49; https://doi.org/10.3390/jmse4030049
Received: 5 July 2016 / Revised: 2 August 2016 / Accepted: 12 August 2016 / Published: 18 August 2016

Abstract

쓰나미 진화, 전파 및 침수의 수치 모델링은 현상에 관련된 수많은 매개 변수로 인해 복잡합니다. 쓰나미 모션을 해결하는 숫자 코드의 성능과 흐름 및 속도 패턴을 평가하는 것이 중요합니다. NAMI DANCE는 긴 파도 모델링을 위해 개발된 계산 도구입니다.

쓰나미 생성, 전파 및 침수 메커니즘의 수치 모델링 및 효율적인 시각화를 제공하고 쓰나미 매개 변수를 계산합니다. 긴 파도 이론에서, 물 입자의 수직 움직임은 압력 분포에 영향을 미치지 않습니다.

이러한 근사치와 소홀히 하는 수직 가속을 기반으로 질량 보존 및 모멘텀 방정식은 2차원 깊이 평균 방정식으로 줄어듭니다. NAMI DANCE는 유한차 계산 방법을 사용하여 긴 파도 문제에서 선형 및 비선형 형태의 깊이 평균 얕은 수식을 해결합니다.

이 연구에서 NAMI DANCE는 미국 포틀랜드에서 열린 2015 년 국립 쓰나미 위험 완화 프로그램 (NTHMP) 연례 회의에서 논의된 벤치 마크 문제에 적용됩니다.

벤치마크 문제는 하나의 독방 파도가 해양 섬 특징이 있는 삼각형 모양의 선반을 전파하는 일련의 실험을 특징으로 합니다. 이 문제는 섬 부근에서 상세한 무료 표면 고도 및 속도 의 타임 시리즈를 제공합니다. 결과를 비교한 결과, NAMI DANCE는 긴 파도 진화, 전파, 증폭 및 쓰나미 전류를 만족스럽게 예측할 수 있음을 보여주었습니다.

키워드: 수치 모델링;쓰나미 전류;깊이 평균 방정식;벤치마크,numerical modelingtsunami currentsdepth-averaged equationbenchmark

쓰나미는 해저 지진, 수중 산사태, 화산 폭발 또는 큰 운석 파업으로 인한 해저의 갑작스런 움직임에 의해 생성되는 큰 파도입니다. 쓰나미 파도는이 현상의 가장 파괴적인 매개 변수로 받아 들여진다; 그러나 큰 파도 움직임에 의해 트리거되는 전류는 경우에 따라 매우 치명적일 수 있습니다.

분지 공명 및 기하학적 증폭은 폐쇄 된 분지에서 쓰나미 영향의 지역 배율에 대한 두 가지 합리적으로 잘 이해된 메커니즘이며, 일반적으로 항구 또는 항구에서 쓰나미 위험 잠재력을 추정 할 때 조사 되는 메커니즘입니다. 반면에 전류에 대한 이해력과 예측 능력은부족하다[1]. 

이 연구는 수치 도구를 사용하여 쓰나미 진화, 전파 및 증폭뿐만 아니라 쓰나미 전류의 추정에 2 차원 깊이 평균 천수(shallow water)모델 방정식의 충분성을 조사하는 것을 목표로; 즉 나미 댄스. 1970 년대 이후, 독방 파도는 일반적으로 실험 및 수학 연구에서, 쓰나미를 모델링하는 데 사용되었습니다[2]. 

이러한 점에서 수치 코드는 복잡한 목욕을 통해 단일 독방 파도의 진화와 전파에 초점을 맞춘 벤치마크 문제에 적용됩니다. 이 문제는 선반의 근해에 위치한 섬 특징이 있는 삼각형 모양의 선반을 전파할 때 단일 고독한 파도의 변형을 분석하는 일련의 실험을 설명합니다. 섬 부근에 형성되는 해류도 실험에서 조사된다.

이 연구에 사용된 벤치마크 문제는 미국 포틀랜드에서 개최된 2015 년 국립 쓰나미 위험 완화 프로그램 (NTHMP) 워크샵의 벤치마크 문제 #5.3]. 벤치마크 데이터와 수치 결과를 비교하여 2차원 깊이 평균 얕은 수식은 쓰나미 파도 진화와 해류에 대해 만족스러운 결과를 제공하므로 쓰나미 완화 전략을 결정하는 동안 사용하기에 충분한 도구임을 관찰합니다.

Figure 1. The bathymetry provided with the benchmark problem.
Figure 1. The bathymetry provided with the benchmark problem.
Figure 2. Model parameters: (a) bathymetry of the numerical model, NAMI DANCE; (b) incoming wave.
Figure 2. Model parameters: (a) bathymetry of the numerical model, NAMI DANCE; (b) incoming wave.
Figure 3. Comparison of free surface elevation (FSE) results: (a) X = 7.5 m and Y = 0.0 m at Gage 1; (b) X = 13.0 m and Y = 0.0 m at Gage 2; (c) X = 21.0 m and Y = 0.0 m at Gage 3; (d) X = 7.5 m and Y = 5.0 m at Gage 4; (e) X = 13.0 m and Y = 5.0 m at Gage 5; (f) X = 21.0 m and Y = 5.0 m at Gage 6; (g) X = 25.0 m and Y = 0.0 m at Gage 7; (h) X = 25.0 m and Y = 5.0 m at Gage 8. Black line represents benchmark data, red line represents numerical results.
Figure 3. Comparison of free surface elevation (FSE) results: (a) X = 7.5 m and Y = 0.0 m at Gage 1; (b) X = 13.0 m and Y = 0.0 m at Gage 2; (c) X = 21.0 m and Y = 0.0 m at Gage 3; (d) X = 7.5 m and Y = 5.0 m at Gage 4; (e) X = 13.0 m and Y = 5.0 m at Gage 5; (f) X = 21.0 m and Y = 5.0 m at Gage 6; (g) X = 25.0 m and Y = 0.0 m at Gage 7; (h) X = 25.0 m and Y = 5.0 m at Gage 8. Black line represents benchmark data, red line represents numerical results.
Figure 4. Comparison of results: (a) horizontal velocity in x-direction, U, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (b) horizontal velocity in y-direction, V, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (c) horizontal velocity in x-direction, U, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9; (d) horizontal velocity in y-direction, V, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9. Black line represents benchmark data, red line represents numerical results.
Figure 4. Comparison of results: (a) horizontal velocity in x-direction, U, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (b) horizontal velocity in y-direction, V, recorded at X = 13.0 m, Y = 0.0 m and Z = 0.75 m at Gage 2; (c) horizontal velocity in x-direction, U, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9; (d) horizontal velocity in y-direction, V, recorded at X = 21.0 m, Y = −5.0 m and Z = 0.77 m at Gage 9. Black line represents benchmark data, red line represents numerical results.

References

  1. Lynett, P.J.; Borrero, J.C.; Weiss, R.; Son, S.; Greer, D.; Renteria, W. Observations and modeling of tsunami-induced currents in ports and harbors. EPSL 2012327, 68–74. [Google Scholar]
  2. Madsen, P.A.; Fuhrman, D.R.; Schaffer, H.A. On the solitary wave paradigm for tsunamis. J. Geophys. Res. 2008113. [Google Scholar] [CrossRef]
  3. NTHMP Mapping & Modeling Benchmarking Workshop: Tsunami Currents. Benchmark #5. Available online: http://coastal.usc.edu/currents_workshop/problems/prob5.html (accessed on 2 August 2016).
  4. Onat, Y.; Yalciner, A.C. Initial stage of database development for tsunami warning system along Turkish coasts. Ocean Eng. 201374, 141–154. [Google Scholar] [CrossRef]
  5. Kian, R.; Yalciner, A.C.; Aytore, B.; Zaytsev, A. Wave Amplification and Resonance in Enclosed Basins; A Case Study in Haydarpasa Port of Istanbul. In Proceedings of the 2015 IEEE/OES Eleventh Current, Waves and Turbulence Measurement, St. Petersburg, VA, USA, 2–6 March 2015; Volume 11, pp. 1–7.
  6. Patel, V.M.; Dholakia, M.B.; Singh, A.P. Emergency preparedness in the case of Makran tsunami: A case study on tsunami risk visualization for the western parts of Gujarat, India. Geomat. Nat. Hazards Risk 20167, 826–842. [Google Scholar] [CrossRef]
  7. Yalciner, A.C.; Pelinovsky, E.; Zaytsev, A.; Kurkin, A.; Ozer, C.; Karakus, H.; Ozyurt, G. Modeling and visualization of tsunamis: Mediterranean examples. In Tsunami and Nonlinear Waves, 1st ed.; Kundu, A., Ed.; Springer: Berlin, Germany, 2007; pp. 273–283. [Google Scholar]
  8. Synolakis, C.E.; Bernard, E.N.; Titov, V.; Kanoglu, U.; Gonzalez, F. Validation and verification of tsunami numerical models. PAGEOPH 2008165, 2197–2228. [Google Scholar] [CrossRef]
  9. Yalciner, A.C.; Zaytsev, A.; Kanoglu, U.; Velioglu, D.; Dogan, G.G.; Kian, R.; Sharghivand, N.; Aytore, B. NTHMP Mapping and Modeling Benchmarking Workshop: Tsunami Currents. Available online: http://coastal.usc.edu/currents_workshop/presentations/Yalciner.pdf (accessed on 2 August 2016).
  10. Ozer, C.; Yalciner, A.C. Sensitivity study of hydrodynamic parameters during numerical simulations of tsunami inundation. PAGEOPH 2011168, 2083–2095. [Google Scholar]
  11. Sozdinler, C.O.; Yalciner, A.C.; Zaytsev, A. Investigation of tsunami hydrodynamic parameters in inundation zones with different structural layouts. PAGEOPH 2014172, 931–952. [Google Scholar] [CrossRef]
  12. Sozdinler, C.O.; Yalciner, A.C.; Zaytsev, A.; Suppasri, A.; Imamura, F. Investigation of hydrodynamic parameters and the effects of breakwaters during the 2011 Great East Japan Tsunami in Kamaishi Bay. PAGEOPH 2015172, 3473–3491. [Google Scholar] [CrossRef]
  13. Velioglu, D.; Kian, R.; Yalciner, A.C.; Zaytsev, A. Validation and Performance Comparison of Numerical Codes for Tsunami Inundation. In Proceedings of the 2015 American Geophysical Union Fall Meeting, San Francisco, CA, USA, 14–18 December 2015.
  14. Velioglu, D.; Kian, R.; Yalciner, A.C.; Zaytsev, A. Validation and Comparison of 2D and 3D Codes for Nearshore Motion of Long Waves Using Benchmark Problems. In Proceedings of the 2016 European Geosciences Union, Vienna, Austria, 17–22 April 2016.
  15. Dilmen, D.I.; Kemec, S.; Yalciner, A.C.; Düzgün, S.; Zaytsev, A. Development of a tsunami inundation map in detecting tsunami risk in Gulf of Fethiye, Turkey. PAGEOPH 2015172. [Google Scholar] [CrossRef]
  16. Heidarzadeh, M.; Krastel, S.; Yalciner, A.C. The state-of-the-art numerical tools for modeling landslide tsunamis: A short review. In Submarine Mass Movements and Their Consequences, 6th ed.; Sebastian, K., Jan-Hinrich, B., David, V., Michael, S., Christian, B., Roger, U., Jason, C., Katrin, H., Michael, S., Carl, B.H., Eds.; Springer: Bern, Switzerland, 2013; Volume 37, pp. 483–495. [Google Scholar]
  17. Yalciner, A.C.; Gülkan, P.; Dilmen, D. I.; Aytore, B.; Ayca, A.; Insel, I.; Zaytsev, A. Evaluation of tsunami scenarios for western Peloponnese, Greece. Boll. Geofis. Teor. Appl. 201455, 485–500. [Google Scholar]
  18. Zahibo, N.; Pelinovsky, E.; Kurkin, A.; Kozelkov, A. Estimation of far-field tsunami potential for the Caribbean Coast based on numerical simulation. Sci. Tsunami Hazards 200321, 202–222. [Google Scholar]
  19. Swigler, D.T. Laboratory Study Investigating the Three-dimensıonal Turbulence and Kinematic Properties Associated with a Breaking Solitary Wave. Master’s Thesis, Texas A&M University, College Station, TX, USA, August 2009. [Google Scholar]
  20. National Tsunami Hazard Mitigation Program. Proceedings and Results of the 2011 NTHMP Model Benchmarking Workshop. Available online: http://nws.weather.gov/nthmp/documents/nthmpWorkshopProcMerged.pdf (accessed on 21 July 2016).