Fluid Velocity

FLOW-3D를 이용한 교각 주변 국부 세굴 깊이 모델링


연구 배경 및 목적

  • 문제 정의: 교각 주변에서 발생하는 국부 세굴(Local Scour)은 하천 바닥 침식을 유발하여 교량의 구조적 안정성을 위협하는 주요 요인 중 하나이다.
  • 연구 목적:
    • FLOW-3D를 활용한 세굴 모델 개발: CFD(Computational Fluid Dynamics) 기반 수치 모델을 사용하여 교각 주변의 세굴 형상을 예측.
    • 실험 데이터와의 비교: 실험실 실험과 수치 모델의 결과를 비교하여 모델의 신뢰성을 평가.
    • 세굴 깊이 및 유속 패턴 분석: 교각 앞쪽 및 후류에서 형성되는 유동 구조와 세굴의 관계를 분석.

연구 방법

  1. 실험 데이터 수집 및 모델링
    • 실험실 실험:
      • 터키 가지안테프 대학교의 수리 실험실에서 수행.
      • 0.8m × 0.9m 크기의 직사각형 수로에서 직경 10cm의 원형 교각을 배치.
      • 유량 0.048 m³/s, 유속 0.48 m/s, 수심 11cm 설정.
      • 세굴층은 비응집성(non-cohesive) 모래(d₅₀ = 1.45mm)로 구성.
    • FLOW-3D 기반 CFD 모델링:
      • VOF(Volume of Fluid) 기법을 사용하여 자유 수면 모델링.
      • RNG k-ε 난류 모델을 적용하여 난류 흐름 분석.
      • 침식 및 퇴적 모델을 적용하여 하상 변화 예측.
  2. 격자 설정 및 경계 조건
    • 메쉬 독립성 검토: 64,000개 이상의 격자를 사용하여 최적화 수행.
    • 경계 조건:
      • 입구: 일정한 유속(0.48 m/s) 설정.
      • 출구: 자유 유출 조건 적용.
      • 하천 바닥: 이동 가능 침전층(Sediment Bed)으로 설정.

주요 결과

  1. 세굴 깊이 비교
    • 실험 값: 6.9 cm
    • FLOW-3D 예측값: 6.5 cm (실험 대비 오차 10%)
    • 실험과 수치 모델의 결과가 높은 상관관계를 보임.
  2. 유동 및 세굴 패턴 분석
    • 유속 분포:
      • 교각 전면부에서 강한 와류(Horseshoe Vortex) 발생 → 침식 심화.
      • 후류 영역에서는 유속이 감소하며 퇴적 형성.
    • 세굴 형상:
      • 최대 세굴 깊이는 교각 전면부 및 측면에서 발생.
      • FLOW-3D 모델은 세굴 발생 위치 및 심도를 효과적으로 예측.
  3. 시간에 따른 세굴 발전
    • 실험 및 CFD 모델 모두에서 1시간 후 세굴 깊이가 안정화됨.
    • 세굴 속도는 초기 30분 동안 급격히 증가한 후 점진적으로 감소.

결론 및 향후 연구

  • 결론:
    • FLOW-3D 기반 CFD 모델은 교각 주변의 세굴 깊이를 실험 결과와 높은 정확도로 예측할 수 있음.
    • RNG k-ε 난류 모델이 국부 세굴 해석에 적합함을 확인.
    • 세굴 깊이 예측에서 실험 대비 오차는 약 10%로 양호한 결과를 보임.
  • 향후 연구 방향:
    • 더 정교한 난류 모델(예: LES) 적용 및 비교.
    • 다양한 교각 형상 및 유량 조건에서 추가 검증.
    • 인공지능(AI) 및 머신러닝을 활용한 세굴 예측 모델 개발.

연구의 의의

이 연구는 FLOW-3D를 이용한 국부 세굴 예측의 신뢰성을 검증하고, 교량 설계 및 유지보수 전략 수립에 활용될 수 있는 중요한 기초 데이터를 제공한다.

Reference

  1. K. Azizi, C.I. Meier, Urban Pluvial Flood Risk Assessment:Challenges and Opportunities for Improvement Using aCommunity-Based Approach, World Environmental andWater Resources Congress 2021, 350–361.
  2. K. Azizi, C.I. Meier, Improving the Characterization of UrbanFlash Floods through Application of Local Knowledge, AGUFall Meeting Abstracts, 2020, H162-0011.
  3. K. Azizi, C.I. Meier, L. Saija, Bottom-Up Planning: FromNatural Disaster to Community Disaster, AGU Fall MeetingAbstracts, 2018, PA23F-1032.
  4. A. S. A. Ali, S. Ebrahimi, M. M. Ashiq, M. S. Alasta, B. Azari,CNN-Bi LSTM neural network for simulating groundwaterlevel, Environ Eng, 8 (2022) 1–7.
  5. B. Azari, K. Hassan, J. Pierce, S. Ebrahimi, Evaluation ofMachine Learning Methods Application in TemperaturePrediction, Environmental Engineering 8 (2022) 1–12.
  6. S. Ebrahimi, M. Khorram, Variability effect of hydrologicalregime on river quality pattern and its uncertainties: case studyof Zarjoob River in Iran, Journal of Hydroinformatics 23(2021) 1146–1164.
  7. A.R. Kashani, C.V. Camp, M. Rostamian, K. Azizi, A.H.Gandomi, Population-based optimization in structuralengineering: a review, Artif. Intell. Rev. 55 (2022) 345–452.
  8. A.R. Kashani, C.V. Camp, K. Azizi, M. Rostamian, Multiobjective optimization of mechanically stabilized earthretaining wall using evolutionary algorithms, Int J Numer AnalMethods Geomech 46 (2022) 1433–1465.
  9. M. Akhani, A.R. Kashani, M. Mousavi, A.H. Gandomi, Ahybrid computational intelligence approach to predict spectralacceleration, Measurement: Journal of the InternationalMeasurement Confederation 138 (2019) 578–589.
  10. M. Gandomi, A.R. Kashani, A. Farhadi, M. Akhani, A.H.Gandomi, Spectral acceleration prediction using geneticprogramming based approaches, Appl. Soft Comput. 106(C)(2021) 13.
  11. A.R. Kashani, M. Akhani, C.V. Camp, A.H. Gandomi, Aneural network to predict spectral acceleration, Basics ofComputational Geophysics, Elsevier (2021) 335–349.
  12. B. Azari, M. Tabesh, Optimal design of stormwater collectionnetworks considering hydraulic performance and BMPs,International Journal of Environmental Research 12 (2018)585–596.
  13. B. Azari, M. Tabesh, Urban storm water drainage systemoptimization using a sustainability index and LID/BMPs,Sustainable Cities and Society 76 (2022) 103500.
  14. H. Breusers, G. Nicollet, H. Shen, Local scour aroundcylindrical piers, Journal of Hydraulic Research 15 (1977)211–252.
  15. P. Khwairakpam, A. Mazumdar, Local scour aroundhydraulic structures, International Journal of Recent Trendsin Engineering 1 (2009) 59.
  16. Shakir Ali Ali A, Günal M. Artificial Neural network forestimation of local scour depth around bridge piers. Archivesof Hydro-Engineering and Environmental Mechanics 68(2021).
  17. O. Link, C. Castillo, A. Pizarro, A. Rojas, B. Ettmer, C.Escauriaza, S. Manfreda, A model of bridge pier scour duringflood waves, Journal of hydraulic research 55 (2017) 310–323.
  18. W.H. Hager, J. Unger, Bridge pier scour under flood waves,Journal of Hydraulic Engineering 136 (2010) 842–847.
  19. L.J. Prendergast, K. Gavin, A review of bridge scourmonitoring techniques, Journal of Rock Mechanics andGeotechnical Engineering 6 (2014) 138–149.
  20. O. Link, S. Henríquez, B. Ettmer, Physical scale modellingof scour around bridge piers, Journal of Hydraulic Research57 (2019) 227–237.
  21. B.W. Melville, A.J. Raudkivi, Flow characteristics in localscour at bridge piers, Journal of Hydraulic Research 15(1977) 373–380.
  22. Y.M. Chiew, B.W. Melville, Local scour around bridge piers,Journal of Hydraulic Research 25 (1987) 15–26.
  23. H. Qi, W. Tian, H. Zhang, Modeling Local Scour around aCylindrical Pier with Circular Collar with Tilt Angles(Counterclockwise around the Direction of the ChannelCross-Section) in Clear-Water, Water 13 (2021) 3281.
  24. B.W. Melville, S.E. Coleman, Bridge scour, Water ResourcesPublication, 2000.
  25. A. Parola, D. Hagerty, D. Mueller, B. Melville, G. Parker, J.Usher, The need for research on scour at bridge crossings,Stream Stability and Scour at Highway Bridges:Compendium of Stream Stability and Scour Papers Presentedat Conferences Sponsored by the Water ResourcesEngineering (Hydraulics) Division of the American Societyof Civil Engineers, ASCE, (1997) 1020–1020.
  26. A. Shirole, R. Holt, Planning for a comprehensive bridgesafety assurance program, Transportation Research Record1290 (1991) 290–005.
  27. D. Imhof, Risk assessment of existing bridge structures,university of cambridge, (2004).
  28. K. Wardhana, F.C. Hadipriono, Analysis of recent bridgefailures in the United States, Journal of performance ofconstructed facilities 17 (2003) 144–150.
  29. A. Iqbal, H.S.U. Rehman, M. Munir, M. Ashiq, A. Omar, Z.Haider, M. Akhtar, M. Javed, O. U. U. Rehman, M. Adnan,M. Jahanzaib, Time and Cost Overrun in ConstructionProjects of Pakistan, Pakistan Journal of Engineering andTechnology 2 (2019) 22–29.
  30. A. Iqbal, M. Yousuf, K. Ullah, M. Adnan, M. Ahmad, M.Ashiq, U. Shehzad, M. Munir, S. U. Rehman, M. Akhtar, M.Rizwan, M. Javed, U. Akram, Utilization of Waste PlasticPolymers to Improve the Performance of Modified Hot MixAsphalt, Pakistan Journal of Engineering and Technology 3(2020) 162–171.
  31. M. Jahanzaib, A. Iqbal, H. Ashfaq, M. Munir, M. Akhtar, M.Ashiq, B. Ibrahim, Partial Replacement of Coarse Aggregateby Using Pumice Aggregate in Lightweight ConcreteExperimental Investigation, Pakistan Journal of Engineeringand Technology 4 (2021) 27–30.
  32. A. Beheshti, B. Ataie-Ashtiani, Experimental study of threedimensional flow field around a complex bridge pier, Journalof engineering mechanics 136 (2010) 143–154.
  33. E. Rahimi, K. Qaderi, M. Rahimpour, M.M. Ahmadi, Effectof debris on piers group scour: An experimental study, KSCEJournal of Civil Engineering 22 (2018) 1496–1505.
  34. R. Shakya, V. Sarda, M. Singh, Experimental Study on ScourDue to Submerged Vertical Impinging Circular Jet,Transportation, Water and Environmental Geotechnics,Springer (2021) 337–345.
  35. O. Suaznabar, N. Sinha, M.A. Sitek, S. Lottes, N. Zhang, PierScour Estimation for Tsunami at Bridges [techbrief], UnitedStates. Federal Highway Administration. Office ofResearch …, 2021.
  36. J.A. Sharp, T.O. McAlpin, Case Study: ExperimentalInvestigation into the Feasibility of Pier Nose Extensions toReduce Local Scour around Bridge Piers, Journal ofHydraulic Engineering 148 (2022) 05021010.
  37. M. Nikian, M. Naghashzadegan, Modeling of Solar Radiationon Part Shaded Walls, SIMS 2004 (2004) 173.
  38. M. Naeej, M. Naeej, J. Salehi, R. Rahimi, Modeling andEvaluating of Wave Run-up and Overtopping usingSmoothed Particle Hydrodynamics Method, ComputationalResearch Progress in Applied Science and Engineering 3(2017) 25–34.
  39. M. M. Ashiq, H. ur Rehman, N. M. Khan, Impact of largediameter recharge wells for reducing groundwater depletionrates in an urban area of Lahore, Pakistan, EnvironmentalEarth Sciences 79 (2020) 1–14.
  40. G. Tunc, M.M. Othman, H.C. Mertol, Finite ElementAnalysis of Frames with Reinforced Concrete Encased SteelComposite Columns, Buildings 12(3) (2022) 375.
  41. S. Sun, M. Zhou, W. Lu, A. Davarpanah, Application ofsymmetry law in numerical modeling of hydraulic fracturingby finite element method, Symmetry 12(7) (2020) 1122.
  42. G.J. Houben, L. Stoeckl, K.E. Mariner, A.S. Choudhury, Theinfluence of heterogeneity on coastal groundwater flowphysical and numerical modeling of fringing reefs, dykes andstructured conductivity fields, Advances in Water Resources113 (2018) 155–166.
  43. M.M. Hamed, A. Al-Masri, Z.M. Dalala, R.J. AlSaleh,Modeling the Time Duration Until the Adoption ofResidential Rooftop Solar Photovoltaic Systems, Journal ofEnergy Resources Technology 144 (2021).
  44. H.K. Jalal, W.H. Hassan, Three-dimensional numericalsimulation of local scour around circular bridge pier usingFlow-3D software, IOP Conference Series: Materials Scienceand Engineering, IOP Publishing (2020) 012150.
  45. M. Nazari-Sharabian, A. Nazari-Sharabian, M. Karakouzian,M. Karami, Sacrificial piles as scour countermeasures in riverbridges a numerical study using flow-3D, Civil EngineeringJournal 6 (2020) 1091.
  46. M. Ghasemi, S. Soltani-Gerdefaramarzi, The scour bridgesimulation around a cylindrical pier using Flow-3D, Journalof Hydrosciences and Environment 1 (2017) 46–54.
  47. I.S.P. Mendonça, H.D.L. Canilho, C.M.S. Fael, Flow-3DModelling of the Debris Effect on Maximum Scour HoleDepth at Bridge Piers, 38th IAHR World Congress (2019)2813–2821.
  48. C. Man, G. Zhang, V. Hong, S. Zhou, Y. Feng, Assessmentof turbulence models on bridge-pier scour using Flow-3D,World Journal of Engineering and Technology 7 (2019) 241–255.
  49. M. Sadat Helbar, A. Parvaresh Rizi, J. Farhoudi, A.Mohammadi, 3D flow simulation to improve the design andoperation of the dam bottom outlets, Arabian Journal ofGeosciences 14 (2021) 1–11.
  50. O. Setyandito, S. Christian, R. Lopa, Flow CharacteristicsInvestigation On Trapezoidal Weir Using FLOW 3D, IOPConference Series: Earth and Environmental Science, IOPPublishing (2022) 012013.
  51. M. Rostam Abadi, S. Kazemi Mohsenabadi, Numerical studyof the weir angle on the flow pattern and scour around thesubmerged weirs, International Journal of Modern Physics C(2022) 2250110.
  52. J. Lian, J. Li, Y. Guo, H. Wang, X. Yang, Numerical studyon local scour characteristics of multi-bucket jacketfoundation considering exposed height, Applied OceanResearch 121 (2022) 103092.
  53. S. Khani, M.A. Moghadam, M. Nikookar, PressureFluctuations Investigation on the Curve of Flip BucketsUsing Analytical and Numerical Methods, ComputationalResearch Progress in Applied Science & Engineering 03(2017)165–171.
  54. A. Ismael, M. Gunal, H. Hussein, Effect of Bridge PierPosition on Scour Reduction According to Flow Direction,Arabian Journal for Science and Engineering 40 (2015)1579–1590.
  55. X. Lu, X. Wang, X. Ban, V.P. Singh, Transportcharacteristics of non-cohesive sediment with differenthydrological durations and sediment transport formulas,Journal of Hydrology 591 (2020) 125489.
  56. R. Soulsby, R. Whitehouse, Threshold of Sediment Motionin Coastal Environments, In: Pacific Coasts and Ports ’97:Proceedings of the 13th Australasian Coastal and OceanEngineering Conference and the 6th Australasian Port andHarbour Conference; Volume 1. Christchurch, N.Z.: Centrefor Advanced Engineering, University of Canterbury, (1997)145–150.
  57. J.C. Winterwerp, W.T. Bakker, D.R. Mastbergen, H.v.Rossum, Hyperconcentrated Sand‐ Water MixtureFlows over Erodible Bed, Journal of Hydraulic Engineering118 (1992) 1508–1525.
  58. E. Meyer-Peter, R. Müller, Formulas for bed-load transport,IAHSR 2nd meeting, Stockholm, appendix 2, IAHR, 1948