FLOW-3D를 이용한 교각 주변 국부 세굴 깊이 모델링
연구 배경 및 목적
- 문제 정의: 교각 주변에서 발생하는 국부 세굴(Local Scour)은 하천 바닥 침식을 유발하여 교량의 구조적 안정성을 위협하는 주요 요인 중 하나이다.
- 연구 목적:
- FLOW-3D를 활용한 세굴 모델 개발: CFD(Computational Fluid Dynamics) 기반 수치 모델을 사용하여 교각 주변의 세굴 형상을 예측.
- 실험 데이터와의 비교: 실험실 실험과 수치 모델의 결과를 비교하여 모델의 신뢰성을 평가.
- 세굴 깊이 및 유속 패턴 분석: 교각 앞쪽 및 후류에서 형성되는 유동 구조와 세굴의 관계를 분석.
연구 방법
- 실험 데이터 수집 및 모델링
- 실험실 실험:
- 터키 가지안테프 대학교의 수리 실험실에서 수행.
- 0.8m × 0.9m 크기의 직사각형 수로에서 직경 10cm의 원형 교각을 배치.
- 유량 0.048 m³/s, 유속 0.48 m/s, 수심 11cm 설정.
- 세굴층은 비응집성(non-cohesive) 모래(d₅₀ = 1.45mm)로 구성.
- FLOW-3D 기반 CFD 모델링:
- VOF(Volume of Fluid) 기법을 사용하여 자유 수면 모델링.
- RNG k-ε 난류 모델을 적용하여 난류 흐름 분석.
- 침식 및 퇴적 모델을 적용하여 하상 변화 예측.
- 실험실 실험:
- 격자 설정 및 경계 조건
- 메쉬 독립성 검토: 64,000개 이상의 격자를 사용하여 최적화 수행.
- 경계 조건:
- 입구: 일정한 유속(0.48 m/s) 설정.
- 출구: 자유 유출 조건 적용.
- 하천 바닥: 이동 가능 침전층(Sediment Bed)으로 설정.
주요 결과
- 세굴 깊이 비교
- 실험 값: 6.9 cm
- FLOW-3D 예측값: 6.5 cm (실험 대비 오차 10%)
- 실험과 수치 모델의 결과가 높은 상관관계를 보임.
- 유동 및 세굴 패턴 분석
- 유속 분포:
- 교각 전면부에서 강한 와류(Horseshoe Vortex) 발생 → 침식 심화.
- 후류 영역에서는 유속이 감소하며 퇴적 형성.
- 세굴 형상:
- 최대 세굴 깊이는 교각 전면부 및 측면에서 발생.
- FLOW-3D 모델은 세굴 발생 위치 및 심도를 효과적으로 예측.
- 유속 분포:
- 시간에 따른 세굴 발전
- 실험 및 CFD 모델 모두에서 1시간 후 세굴 깊이가 안정화됨.
- 세굴 속도는 초기 30분 동안 급격히 증가한 후 점진적으로 감소.
결론 및 향후 연구
- 결론:
- FLOW-3D 기반 CFD 모델은 교각 주변의 세굴 깊이를 실험 결과와 높은 정확도로 예측할 수 있음.
- RNG k-ε 난류 모델이 국부 세굴 해석에 적합함을 확인.
- 세굴 깊이 예측에서 실험 대비 오차는 약 10%로 양호한 결과를 보임.
- 향후 연구 방향:
- 더 정교한 난류 모델(예: LES) 적용 및 비교.
- 다양한 교각 형상 및 유량 조건에서 추가 검증.
- 인공지능(AI) 및 머신러닝을 활용한 세굴 예측 모델 개발.
연구의 의의
이 연구는 FLOW-3D를 이용한 국부 세굴 예측의 신뢰성을 검증하고, 교량 설계 및 유지보수 전략 수립에 활용될 수 있는 중요한 기초 데이터를 제공한다.
Reference
- K. Azizi, C.I. Meier, Urban Pluvial Flood Risk Assessment:Challenges and Opportunities for Improvement Using aCommunity-Based Approach, World Environmental andWater Resources Congress 2021, 350–361.
- K. Azizi, C.I. Meier, Improving the Characterization of UrbanFlash Floods through Application of Local Knowledge, AGUFall Meeting Abstracts, 2020, H162-0011.
- K. Azizi, C.I. Meier, L. Saija, Bottom-Up Planning: FromNatural Disaster to Community Disaster, AGU Fall MeetingAbstracts, 2018, PA23F-1032.
- A. S. A. Ali, S. Ebrahimi, M. M. Ashiq, M. S. Alasta, B. Azari,CNN-Bi LSTM neural network for simulating groundwaterlevel, Environ Eng, 8 (2022) 1–7.
- B. Azari, K. Hassan, J. Pierce, S. Ebrahimi, Evaluation ofMachine Learning Methods Application in TemperaturePrediction, Environmental Engineering 8 (2022) 1–12.
- S. Ebrahimi, M. Khorram, Variability effect of hydrologicalregime on river quality pattern and its uncertainties: case studyof Zarjoob River in Iran, Journal of Hydroinformatics 23(2021) 1146–1164.
- A.R. Kashani, C.V. Camp, M. Rostamian, K. Azizi, A.H.Gandomi, Population-based optimization in structuralengineering: a review, Artif. Intell. Rev. 55 (2022) 345–452.
- A.R. Kashani, C.V. Camp, K. Azizi, M. Rostamian, Multiobjective optimization of mechanically stabilized earthretaining wall using evolutionary algorithms, Int J Numer AnalMethods Geomech 46 (2022) 1433–1465.
- M. Akhani, A.R. Kashani, M. Mousavi, A.H. Gandomi, Ahybrid computational intelligence approach to predict spectralacceleration, Measurement: Journal of the InternationalMeasurement Confederation 138 (2019) 578–589.
- M. Gandomi, A.R. Kashani, A. Farhadi, M. Akhani, A.H.Gandomi, Spectral acceleration prediction using geneticprogramming based approaches, Appl. Soft Comput. 106(C)(2021) 13.
- A.R. Kashani, M. Akhani, C.V. Camp, A.H. Gandomi, Aneural network to predict spectral acceleration, Basics ofComputational Geophysics, Elsevier (2021) 335–349.
- B. Azari, M. Tabesh, Optimal design of stormwater collectionnetworks considering hydraulic performance and BMPs,International Journal of Environmental Research 12 (2018)585–596.
- B. Azari, M. Tabesh, Urban storm water drainage systemoptimization using a sustainability index and LID/BMPs,Sustainable Cities and Society 76 (2022) 103500.
- H. Breusers, G. Nicollet, H. Shen, Local scour aroundcylindrical piers, Journal of Hydraulic Research 15 (1977)211–252.
- P. Khwairakpam, A. Mazumdar, Local scour aroundhydraulic structures, International Journal of Recent Trendsin Engineering 1 (2009) 59.
- Shakir Ali Ali A, Günal M. Artificial Neural network forestimation of local scour depth around bridge piers. Archivesof Hydro-Engineering and Environmental Mechanics 68(2021).
- O. Link, C. Castillo, A. Pizarro, A. Rojas, B. Ettmer, C.Escauriaza, S. Manfreda, A model of bridge pier scour duringflood waves, Journal of hydraulic research 55 (2017) 310–323.
- W.H. Hager, J. Unger, Bridge pier scour under flood waves,Journal of Hydraulic Engineering 136 (2010) 842–847.
- L.J. Prendergast, K. Gavin, A review of bridge scourmonitoring techniques, Journal of Rock Mechanics andGeotechnical Engineering 6 (2014) 138–149.
- O. Link, S. Henríquez, B. Ettmer, Physical scale modellingof scour around bridge piers, Journal of Hydraulic Research57 (2019) 227–237.
- B.W. Melville, A.J. Raudkivi, Flow characteristics in localscour at bridge piers, Journal of Hydraulic Research 15(1977) 373–380.
- Y.M. Chiew, B.W. Melville, Local scour around bridge piers,Journal of Hydraulic Research 25 (1987) 15–26.
- H. Qi, W. Tian, H. Zhang, Modeling Local Scour around aCylindrical Pier with Circular Collar with Tilt Angles(Counterclockwise around the Direction of the ChannelCross-Section) in Clear-Water, Water 13 (2021) 3281.
- B.W. Melville, S.E. Coleman, Bridge scour, Water ResourcesPublication, 2000.
- A. Parola, D. Hagerty, D. Mueller, B. Melville, G. Parker, J.Usher, The need for research on scour at bridge crossings,Stream Stability and Scour at Highway Bridges:Compendium of Stream Stability and Scour Papers Presentedat Conferences Sponsored by the Water ResourcesEngineering (Hydraulics) Division of the American Societyof Civil Engineers, ASCE, (1997) 1020–1020.
- A. Shirole, R. Holt, Planning for a comprehensive bridgesafety assurance program, Transportation Research Record1290 (1991) 290–005.
- D. Imhof, Risk assessment of existing bridge structures,university of cambridge, (2004).
- K. Wardhana, F.C. Hadipriono, Analysis of recent bridgefailures in the United States, Journal of performance ofconstructed facilities 17 (2003) 144–150.
- A. Iqbal, H.S.U. Rehman, M. Munir, M. Ashiq, A. Omar, Z.Haider, M. Akhtar, M. Javed, O. U. U. Rehman, M. Adnan,M. Jahanzaib, Time and Cost Overrun in ConstructionProjects of Pakistan, Pakistan Journal of Engineering andTechnology 2 (2019) 22–29.
- A. Iqbal, M. Yousuf, K. Ullah, M. Adnan, M. Ahmad, M.Ashiq, U. Shehzad, M. Munir, S. U. Rehman, M. Akhtar, M.Rizwan, M. Javed, U. Akram, Utilization of Waste PlasticPolymers to Improve the Performance of Modified Hot MixAsphalt, Pakistan Journal of Engineering and Technology 3(2020) 162–171.
- M. Jahanzaib, A. Iqbal, H. Ashfaq, M. Munir, M. Akhtar, M.Ashiq, B. Ibrahim, Partial Replacement of Coarse Aggregateby Using Pumice Aggregate in Lightweight ConcreteExperimental Investigation, Pakistan Journal of Engineeringand Technology 4 (2021) 27–30.
- A. Beheshti, B. Ataie-Ashtiani, Experimental study of threedimensional flow field around a complex bridge pier, Journalof engineering mechanics 136 (2010) 143–154.
- E. Rahimi, K. Qaderi, M. Rahimpour, M.M. Ahmadi, Effectof debris on piers group scour: An experimental study, KSCEJournal of Civil Engineering 22 (2018) 1496–1505.
- R. Shakya, V. Sarda, M. Singh, Experimental Study on ScourDue to Submerged Vertical Impinging Circular Jet,Transportation, Water and Environmental Geotechnics,Springer (2021) 337–345.
- O. Suaznabar, N. Sinha, M.A. Sitek, S. Lottes, N. Zhang, PierScour Estimation for Tsunami at Bridges [techbrief], UnitedStates. Federal Highway Administration. Office ofResearch …, 2021.
- J.A. Sharp, T.O. McAlpin, Case Study: ExperimentalInvestigation into the Feasibility of Pier Nose Extensions toReduce Local Scour around Bridge Piers, Journal ofHydraulic Engineering 148 (2022) 05021010.
- M. Nikian, M. Naghashzadegan, Modeling of Solar Radiationon Part Shaded Walls, SIMS 2004 (2004) 173.
- M. Naeej, M. Naeej, J. Salehi, R. Rahimi, Modeling andEvaluating of Wave Run-up and Overtopping usingSmoothed Particle Hydrodynamics Method, ComputationalResearch Progress in Applied Science and Engineering 3(2017) 25–34.
- M. M. Ashiq, H. ur Rehman, N. M. Khan, Impact of largediameter recharge wells for reducing groundwater depletionrates in an urban area of Lahore, Pakistan, EnvironmentalEarth Sciences 79 (2020) 1–14.
- G. Tunc, M.M. Othman, H.C. Mertol, Finite ElementAnalysis of Frames with Reinforced Concrete Encased SteelComposite Columns, Buildings 12(3) (2022) 375.
- S. Sun, M. Zhou, W. Lu, A. Davarpanah, Application ofsymmetry law in numerical modeling of hydraulic fracturingby finite element method, Symmetry 12(7) (2020) 1122.
- G.J. Houben, L. Stoeckl, K.E. Mariner, A.S. Choudhury, Theinfluence of heterogeneity on coastal groundwater flowphysical and numerical modeling of fringing reefs, dykes andstructured conductivity fields, Advances in Water Resources113 (2018) 155–166.
- M.M. Hamed, A. Al-Masri, Z.M. Dalala, R.J. AlSaleh,Modeling the Time Duration Until the Adoption ofResidential Rooftop Solar Photovoltaic Systems, Journal ofEnergy Resources Technology 144 (2021).
- H.K. Jalal, W.H. Hassan, Three-dimensional numericalsimulation of local scour around circular bridge pier usingFlow-3D software, IOP Conference Series: Materials Scienceand Engineering, IOP Publishing (2020) 012150.
- M. Nazari-Sharabian, A. Nazari-Sharabian, M. Karakouzian,M. Karami, Sacrificial piles as scour countermeasures in riverbridges a numerical study using flow-3D, Civil EngineeringJournal 6 (2020) 1091.
- M. Ghasemi, S. Soltani-Gerdefaramarzi, The scour bridgesimulation around a cylindrical pier using Flow-3D, Journalof Hydrosciences and Environment 1 (2017) 46–54.
- I.S.P. Mendonça, H.D.L. Canilho, C.M.S. Fael, Flow-3DModelling of the Debris Effect on Maximum Scour HoleDepth at Bridge Piers, 38th IAHR World Congress (2019)2813–2821.
- C. Man, G. Zhang, V. Hong, S. Zhou, Y. Feng, Assessmentof turbulence models on bridge-pier scour using Flow-3D,World Journal of Engineering and Technology 7 (2019) 241–255.
- M. Sadat Helbar, A. Parvaresh Rizi, J. Farhoudi, A.Mohammadi, 3D flow simulation to improve the design andoperation of the dam bottom outlets, Arabian Journal ofGeosciences 14 (2021) 1–11.
- O. Setyandito, S. Christian, R. Lopa, Flow CharacteristicsInvestigation On Trapezoidal Weir Using FLOW 3D, IOPConference Series: Earth and Environmental Science, IOPPublishing (2022) 012013.
- M. Rostam Abadi, S. Kazemi Mohsenabadi, Numerical studyof the weir angle on the flow pattern and scour around thesubmerged weirs, International Journal of Modern Physics C(2022) 2250110.
- J. Lian, J. Li, Y. Guo, H. Wang, X. Yang, Numerical studyon local scour characteristics of multi-bucket jacketfoundation considering exposed height, Applied OceanResearch 121 (2022) 103092.
- S. Khani, M.A. Moghadam, M. Nikookar, PressureFluctuations Investigation on the Curve of Flip BucketsUsing Analytical and Numerical Methods, ComputationalResearch Progress in Applied Science & Engineering 03(2017)165–171.
- A. Ismael, M. Gunal, H. Hussein, Effect of Bridge PierPosition on Scour Reduction According to Flow Direction,Arabian Journal for Science and Engineering 40 (2015)1579–1590.
- X. Lu, X. Wang, X. Ban, V.P. Singh, Transportcharacteristics of non-cohesive sediment with differenthydrological durations and sediment transport formulas,Journal of Hydrology 591 (2020) 125489.
- R. Soulsby, R. Whitehouse, Threshold of Sediment Motionin Coastal Environments, In: Pacific Coasts and Ports ’97:Proceedings of the 13th Australasian Coastal and OceanEngineering Conference and the 6th Australasian Port andHarbour Conference; Volume 1. Christchurch, N.Z.: Centrefor Advanced Engineering, University of Canterbury, (1997)145–150.
- J.C. Winterwerp, W.T. Bakker, D.R. Mastbergen, H.v.Rossum, Hyperconcentrated Sand‐ Water MixtureFlows over Erodible Bed, Journal of Hydraulic Engineering118 (1992) 1508–1525.
- E. Meyer-Peter, R. Müller, Formulas for bed-load transport,IAHSR 2nd meeting, Stockholm, appendix 2, IAHR, 1948

















