Figure (17): Stream Lines Indicating Average Flow Speed in the Model with Various Nose shapes, Measured at Mid-Depth and at the Flow Surface Level, at a Flow Rate of 78 Liters per Second.

FLOW-3D를 사용하여 PKW 둑의 흐름 수력학에 대한 베이스 노즈 모양의 영향을 분석하기 위한 실험 및 수치 연구 수행

Behshad Mardasi 1
Rasoul Ilkhanipour Zeynali 2
Majid Heydari 3

Abstract

Weirs are essential structures used to manage excess water flow from behind dams to downstream areas. Enhancing discharge efficiency often involves extending the effective length of Piano Key Weirs (PKW) in dams or regulating flow within irrigation and drainage networks. This study employed both numerical and laboratory investigations to assess the impact of different base nose shapes installed beneath the outlet keys and varying Input to output key width ratios (Wi/Wo) on discharges ranging from 5 to 80 liters per second. Furthermore, the study aimed to achieve research objectives and compare the performance of Piano Key Weirs with Ogee Weir. For numerical simulation, the optimal number of cells for meshing was determined, and an appropriate turbulence model was selected. The results indicated that the numerical model accurately simulated the laboratory sample with a high degree of precision. Moreover, the numerical model closely approximated PKW for all parameters Q, H, and Cd compared to the laboratory sample. The findings revealed that in laboratory models with a maximum discharge area of 80 liters per second, the weir with Wi/Wo=1.2 and a flow head value of 285 mm exhibited the lowest value, whereas the weir with Wi/Wo=0.71 and a flow head value of 305 mm showed the highest, attributed to the higher discharge in the input-output ratio. Additionally, as the ratio of flow head to weir height H/P increased, the discharge coefficient Cd decreased. Comparing the flow conditions in weirs with different base nose shapes, it was observed that the weir with a spindle nose shape (PKW1.2S) outperformed the PKW with a flat (PKW1.2), semi-cylindrical (PKW1.2CL) and triangular base nose (PKW1.2TR). The results emphasized that models featuring semi-cylindrical and flat noses exhibited notable flow deviation and abrupt disruption upon impact with the nose. However, this effect was significantly reduced in models equipped with triangular and spindle-shaped noses. Also, the coefficient of discharge in PKW1.2S and PKW1.2TR weirs, compared to the PKW1.20 weir, increased by 27% and 20%, respectively.

웨어는 댐 뒤에서 하류 지역으로의 과도한 물 흐름을 관리하는 데 사용되는 필수 구조물입니다. 배출 효율을 높이는 데에는 댐의 피아노 키 위어(PKW) 유효 길이를 연장하거나 관개 및 배수 네트워크 내 흐름을 조절하는 것이 포함됩니다.

이 연구에서는 콘센트 키 아래에 설치된 다양한 베이스 노즈 모양과 초당 5~80리터 범위의 배출에 대한 다양한 입력 대 출력 키 너비 비율(Wi/Wo)의 영향을 평가하기 위해 수치 및 실험실 조사를 모두 사용했습니다. 또한 본 연구에서는 연구 목적을 달성하고 Piano Key Weir와 Ogee Weir의 성능을 비교하는 것을 목표로 했습니다.

수치 시뮬레이션을 위해 메시 생성을 위한 최적의 셀 수를 결정하고 적절한 난류 모델을 선택했습니다. 결과는 수치 모델이 높은 정밀도로 실험실 샘플을 정확하게 시뮬레이션했음을 나타냅니다. 더욱이, 수치 모델은 실험실 샘플과 비교하여 모든 매개변수 Q, H 및 Cd에 대해 PKW에 매우 근접했습니다.

연구 결과, 최대 배출 면적이 초당 80리터인 실험실 모델에서는 Wi/Wo=1.2, 플로우 헤드 값이 285mm인 웨어가 가장 낮은 값을 나타냈고, Wi/Wo=0.71 및 a인 웨어는 가장 낮은 값을 나타냈습니다. 플로우 헤드 값은 305mm로 가장 높은 것으로 나타났는데, 이는 입출력 비율의 높은 토출량에 기인합니다. 또한, 웨어 높이에 대한 유수두 비율 H/P가 증가함에 따라 유출계수 Cd는 감소하였다.

베이스 노즈 모양이 다른 웨어의 흐름 조건을 비교해 보면, 스핀들 노즈 모양(PKW1.2S)의 웨어가 평면(PKW1.2), 반원통형(PKW1.2CL) 및 삼각형 모양의 PKW보다 성능이 우수한 것으로 관찰되었습니다. 베이스 노즈(PKW1.2TR) 결과는 반원통형 및 편평한 노즈를 특징으로 하는 모델이 노즈에 충격을 가할 때 눈에 띄는 흐름 편차와 급격한 중단을 나타냄을 강조했습니다.

그러나 삼각형 및 방추형 노즈를 장착한 모델에서는 이러한 효과가 크게 감소했습니다. 또한 PKW1.20보에 비해 PKW1.2S보와 PKW1.2TR보의 유출계수는 각각 27%, 20% 증가하였다.

Keywords

Piano Key Weir, Base Nose Shape, Flow Hydraulics, Numerical Model, Triangular
Nose Shape, Flat Nose Shape, Semi-Cylindrical Nose Shape, Spindle Nose Shape

Figure (17): Stream Lines Indicating Average Flow Speed in the Model with Various Nose shapes, Measured at Mid-Depth and at the Flow Surface Level, at a Flow Rate of 78 Liters per Second.
Figure (17): Stream Lines Indicating Average Flow Speed in the Model with Various Nose shapes, Measured at Mid-Depth and at the Flow Surface Level, at a Flow Rate of 78 Liters per Second.

Reference

  1. Chow, V.T. (1959). “Open channel hydraulics.” McGraw-Hill Book Company, New York,
    NY.
  2. Ouamane, A., and Lempérière, F. (2006). “Design of a new economic shape of weir.” Proc.,
    Intl. Symp. on Dams in the Societies of the 21st Century, 463-470, Barcelona, Spain.
  3. Crookston, B. M., Anderson, A., Shearin-Feimster, L., and Tullis, B. P. (2014). “Mitigation
    investigation of flow-induced vibrations at a rehabilitated spillway.” Proc., 5th IAHR Intl.
    Symp. on Hydraulic Structures, Univ. of Queensland Brisbane, Brisbane, Australia.
  4. Machiels, O. (2012). “Experimental study of the hydraulic behaviour of Piano Key Weirs.”
    Ph.D. Dissertation, Faculty of Applied Science, University of Liège, Liège, Belgium.
  5. Blanc, P., and Lempérière, F. (2001). “Labyrinth spillways have a promising future.” Intl. J.
    of Hydropower and Dams, 8(4), 129-131.
  6. Muslu, Y. (2001). “Numerical analysis for lateral weir flow.” J. of Irrigation and Drainage
    Eng., ASCE, 127, 246.
  7. Erpicum, S., Machiels, O., Dewals, B., Pirotton, M., and Archambeau, P. (2012).
    “Numerical and physical hydraulic modeling of Piano Key Weirs.” Proc., ASIA 2012 – 4th
    Intl. Conf. on Water Resources and Renewable Energy Development in Asia, Chiang Mai,
    Thailand.
  8. Tullis, J.P., Amanian, N., and Waldron, D. (1995). “Design of Labyrinth Spillways.” J. of
    Hydraulic Eng., ASCE, 121.
  9. Lux, F.L., and Hinchcliff, D. (1985). “Design and construction of labyrinth spillways.”
    Proc., 15th Intl. Congress on Large Dams, ICOLD, Vol. 4, 249-274, Paris, France.
  10. Erpicum, S., Laugier, F., Ho to Khanh, M., & Pfister, M. (2017). Labyrinth and Piano Key
    Weirs III–PKW 2017. CRC Press, Boca Raton, FL.
  11. Kabiri-Samani, A., and Javaheri, A. (2012). “Discharge coefficient for free and submerged flow over Piano Key weirs.” Hydraulic Research J., 50(1), 114-120.
  12. Hien, T.C., Son, H.T., and Khanh, M.H.T. (2006). “Results of some piano Key weirs
    hydraulic model tests in Vietnam.” Proc., 22nd ICOLD Congress, CIGB/ICOLD,
    Barcelona, Spain.
  13. Laugier, F., Lochu, A., Gille, C., Leite Ribeiro, M., and Boillat, J-L. (2009). “Design and
    construction of a labyrinth PKW spillway at St-Marc Dam.” Hydropower and Dams J.,
    15(5), 100-107.
  14. Cicero, G.M., Menon, J.M., Luck, M., and Pinchard, T. (2011). “Experimental study of side
    and scale effects on hydraulic performances of a Piano Key Weir.” In: Erpicum, S., Laugier,
    F., Boillat, J-L, Pirotton, M., Reverchon, B., and Schleiss, A-J (Eds.), Labyrinth and Piano
    Key Weirs, 167-172, CRC Press, London.
  15. Pralong, J., Vermeulen, J., Blancher, B., Laugier, F., Erpicum, S., Machiels, O., Pirotton,
    M., Boillat, J.L, Leite Ribeiro, M., and Schleiss, A.J. (2011). “A naming convention for the
    piano key weirs geometrical parameters.” In: Erpicum, S., Laugier, F., Boillat, J-L, Pirotton,
    M., Reverchon, B., and Schleiss, A-J (Eds.), Labyrinth and Piano Key Weirs, 271-278,
    CRC Press, London.
  16. Denys, F. J. M., and Basson, G. R. (2018). “Transient hydrodynamics of Piano Key Weirs.”
    Proc., 7th IAHR Intl. Symp. on Hydraulic Structures, ISHS2018, 518-527,
    DigitalCommons@USU, Logan, UT.
  17. Anderson, A., and Tullis, B. P. (2018). “Finite crest length weir nappe oscillation.” J. of
    Hydraulic Eng., ASCE, 144(6), 04018020. https://doi.org/10.1061/(ASCE)HY.1943-
    7900.0001461
  18. Erpicum, S., Laugier, F., Boillat, J.-L., Pirotton, M., Reverchon, B., and Schleiss, A. J.
    (2011). “Labyrinth and Piano Key Weirs–PKW 2011.” CRC Press, Boca Raton, FL.
  19. Aydin, C.M., and Emiroglu, M.E. (2011). “Determination of capacity of labyrinth side weir
    by CFD.” Flow Measurement and Instrumentation, 29, 1-8.
  20. Cicero, G.M., Delisle, J.R., Lefebvre, V., and Vermeulen, J. (2013). “Experimental and
    numerical study of the hydraulic performance of a trapezoidal PKW.” Proc., Intl. Workshop
    on Labyrinths and Piano Key Weirs PKW II 2013, 265-272, CRC Press.
  21. Anderson, R. M. (2011). “Piano Key Weir Head Discharge Relationships.” Master’s Thesis,
    Utah State University, Logan, Utah.
  22. Crookston, B.M., Anderson, R.M., and Tullis, B.P. (2018). “Free-flow discharge estimation
    method for Piano Key weir geometries.” J. of Hydro-environment Research, 19, 160-167