Figure 4.18 scour development at time = 360 min and discharge 0.057 m3/sec

이 소개자료는 “SIMULATION OF LOCAL SCOUR AROUND A GROUP OF BRIDGE
PIER USING FLOW-3D SOFTWARE”논문에 대한 소개자료입니다.

Figure 4.18 scour development at time = 360 min and discharge 0.057 m3/sec
Figure 4.18 scour development at time = 360 min and discharge 0.057 m3/sec

연구 목적

  • 본 연구는 FLOW-3D 소프트웨어를 사용하여 교각 그룹 주변의 국부 세굴을 시뮬레이션하는 것을 목적으로 함.

연구 방법:

모델링 설정

  • FLOW-3D 소프트웨어를 사용하여 교각 그룹 주변의 국부 세굴 현상을 수치적으로 모의실험하였음.
  • 교각의 기하학적 형상 및 하천 흐름 조건을 모델에 반영하였음.
  • 다양한 교각 배열 및 흐름 조건에 대한 모델링을 수행하여 세굴 특성을 분석하였음.

모델 검증

  • 수치 모델의 결과를 실험실 데이터 또는 현장 관측 자료와 비교하여 검증하였을 것으로 예상됨.
  • 세굴 깊이, 세굴공의 형태 등 주요 세굴 변수에 대한 모델의 예측 성능을 평가하였을 것으로 예상됨.
  • 모델의 신뢰성을 확보하기 위해 민감도 분석 및 불확실성 분석을 수행하였을 것으로 예상됨.

주요 결과:

흐름 특성 분석

  • 교각 그룹 주변의 유속, 압력 분포 등 흐름 특성을 FLOW-3D 모델을 통해 분석하였을 것으로 예상됨.
  • 교각 배열이 흐름 패턴 및 와류 형성에 미치는 영향을 시각적으로 제시하였을 것으로 예상됨.
  • 세굴 발생 메커니즘과 관련된 흐름 특성을 파악하여 세굴 예측의 정확도를 높였을 것으로 예상됨.

구조물 영향 평가

  • 교각 그룹의 배열 방식이 세굴 깊이 및 세굴공의 크기에 미치는 영향을 평가하였을 것으로 예상됨.
  • 교각 주변의 세굴 특성을 분석하여 교각 기초 설계 시 고려해야 할 중요한 요소를 제시하였을 것으로 예상됨.
  • 수치 모의실험 결과를 바탕으로 교량의 안정성을 평가하고 설계 개선 방안을 제시하였을 것으로 예상됨.

결론 및 시사점:

  • FLOW-3D 소프트웨어를 이용한 수치 모델링은 교각 그룹 주변의 세굴 현상을 분석하고 예측하는 데 효과적인 도구임이 확인되었을 것으로 예상됨.
  • 본 연구 결과는 교각 기초의 안정성을 확보하고 교량 붕괴를 예방하는 데 기여할 수 있을 것으로 기대됨.
  • 향후 다양한 교각 조건 및 하천 흐름 조건에 대한 추가적인 연구를 통해 모델의 적용성을 확대할 필요가 있음.
Figure 3.1 Laboratory layout
Figure 3.1 Laboratory layout
Figure 3.10 Computational domain and mesh setup around the bridge piers model
(4-10)
Figure 3.10 Computational domain and mesh setup around the bridge piers model (4-10)
Figure 4.18 scour development at time = 360 min and discharge 0.057 m3/sec
Figure 4.18 scour development at time = 360 min and discharge 0.057 m3/sec

References

  1. Abbott, M. B., & Basco, D. R. (1989). Computational fluid dynamics—An introduction for engineers. NASA STI/Recon Technical Report A, 90.
  2. Acharya, A. (2011). Experimental study and numerical simulation of flow and sediment transport around a series of spur dikes. The University of Arizona.
  3. Ahmad, M. (1953, August). Experiments on design and behavior of spur dikes. In Proc. Int. Hydraul. Convention (Vol. 145).
  4. Ahmad, N., Bihs, H., Kamath, A., & Arntsen, Ø. A. (2015). Three-dimensional CFD modeling of wave scour around side-by-side and triangular arrangement of piles with REEF3D. Procedia Engineering, 116, 683–690.
  5. Alabi, P. D. (2006). Time development of local scour at a bridge pier fitted with a collar (Doctoral dissertation).
  6. Al-Shukur, A. H. K., & Obeid, Z. H. (2016). Experimental study of bridge pier shape to minimize local scour. International Journal of Civil Engineering and Technology, 7(1), 162–171.
  7. Ataie-Ashtiani, B., & Beheshti, A. A. (2006). Experimental investigation of clear-water local scour at pile groups. Journal of Hydraulic Engineering, 132(10), 1100–1104.
  8. Ballio, F., & Orsi, E. (2001). Time evolution of scour around bridge abutments. Water Engineering Research, 2(4), 243–259.
  9. Beheshti, A. A., & Ataie-Ashtiani, B. (2008). Analysis of threshold and incipient conditions for sediment movement. Coastal Engineering, 55(5), 423–430.
  10. Bozkus, Z., & Yildiz, O. (2004). Effects of inclination of bridge piers on scouring depth. Journal of Hydraulic Engineering, 130(8), 827–832.
  11. Brethour, J. (2003). Modeling sediment scour. Flow Science, Santa Fe, NM. FloSci-TN62.
  12. Breusers, H. N. C., Nicollet, G., & Shen, H. W. (1977). Local scour around cylindrical piers. Journal of Hydraulic Research, 15(3), 211–252.
  13. Cardoso, A. H., & Bettess, R. (1999). Effects of time and channel geometry on scour at bridge abutments. Journal of Hydraulic Engineering, 125(4), 388–399.
  14. Carstens, M. R. (1966). Similarity laws for localized scour. Proc. ASCE Journal of the Hydraulic Division, 92(3), 13–36.
  15. Cheremisinoff, P. N., Cheremisinoff, N. P., & Cheng, S. L. (1987). Hydraulic mechanics Civil Engineering Practice. Technomic Publishing Co., Lancaster, PA.
  16. Chiew, Y. M., & Melville, B. W. (1987). Local scour around bridge piers. Journal of Hydraulic Research, 25(1), 15–26.
  17. Dey, S. (1997). Local scour at piers, Part I: A review of developments of research. Int. J. Sediment Res., 12(2), 23–46.
  18. Dey, S., & Barbhuiya, A. K. (2004). Clear-water scour at abutments in thinly armored beds. Journal of Hydraulic Engineering, 130(7), 622–634.
  19. EL-Ghorab, E. A. (2013). Reduction of scour around bridge piers using a modified method for vortex reduction. Alexandria Engineering Journal, 52(3), 467–478.
  20. Elsabaie, I. H. (2013). An experimental study of local scour around circular bridge pier in sand soil. International Journal of Civil & Environmental Engineering IJCEE-IJENS, 13(01).
  21. Ettema, R., Arndt, R., Roberts, P., & Wahl, T. (2000). Hydraulic modeling: Concepts and practice.
  22. Froehlich, D. C. (1988). Analysis of onsite measurements of scour at piers. ASCE National Conf. on Hydraulic Engineering, Colorado Springs, CO, 534–539.
  23. Garde, R., Subramanya, K. S., & Nambudripad, K. D. (1961). Study of scour around spur-dikes. Journal of the Hydraulics Division, 87(6), 23–37.
  24. Hager, W. H., & Oliveto, G. (2002). Shields’ entrainment criterion in bridge hydraulics. Journal of Hydraulic Engineering, 128(5), 538–542.
  25. Heidarpour, M., Afzalimehr, H., & Izadinia, E. (2010). Reduction of local scour around bridge pier groups using collars. International Journal of Sediment Research, 25(4), 411–422.
  26. Hoffmans, G. J., & Verheij, H. J. (1997). Scour manual (Vol. 96). CRC press.
  27. Huang, W., Yang, Q., & Xiao, H. (2009). CFD modeling of scale effects on turbulence flow and scour around bridge piers. Computers & Fluids, 38(5), 1050–1058.
  28. Ismael, A., Gunal, M., & Hussein, H. (2015). Effect of Bridge Pier Position on Scour Reduction According to Flow Direction. Arabian Journal for Science and Engineering, 40(6), 1579–1590.
  29. Johnson, P. A., & Niezgoda, S. L. (2004). Risk-based method for selecting bridge scour countermeasures. Journal of Hydraulic Engineering, 130(2), 121–128.
  30. Kandasamy, J. K. (1989). Abutment scour. University of Auckland, School of Engineering Report, (458).
  31. Kohli, A., & Hager, W. H. (2001, June). Building scour in floodplains. In Proceedings of the Institution of Civil Engineers – Water and Maritime Engineering, 148(2), 61–80.
  32. Lagasse, P. F., & Richardson, E. V. (2001). ASCE compendium of stream stability and bridge scour papers. Journal of Hydraulic Engineering, 127(7), 531–533.
  33. Lagasse, P. F., et al. (2009). Bridge Scour and Stream Instability Countermeasures: Experience, Selection and Design Guidance. FHWA-NHI-09-111.
  34. Laursen, E. M. (1952). Observations on the nature of scour. In Proceedings of the Fifth Hydraulics Conference, Iowa City, 179–197.
  35. Liu, X., & Garcia, M. H. (2008). 3D numerical model with free surface and mesh deformation for local sediment scour. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(4), 203–217.
  36. Melville, B. W. (1995). Bridge abutment scour in compound channels. Journal of Hydraulic Engineering, 121(12), 863–868.
  37. Melville, B. W., & Chiew, Y. M. (1999). Time scale for local scour at bridge piers. Journal of Hydraulic Engineering, 125(1), 59–65.
  38. Melville, B. W., & Coleman, S. E. (2000). Bridge scour. Water Resources Publication.
  39. Olsen, N. R. (2003). 3D CFD modeling of self-forming meandering channel. Journal of Hydraulic Engineering, 129(5), 366–372.
  40. Richardson, E. V., Harrison, L. J., Richardson, J. R., & Davis, S. R. (1993). Evaluating scour at bridges (HEC 18, 2nd ed.).
  41. Sumer, B. M., & Fredsoe, J. (2001). Scour around pile in combined waves and current. Journal of Hydraulic Engineering, 127(5), 403–411.
  42. Whitehouse, R. (1998). Scour at marine structures: A manual for practical applications. Thomas Telford.
  43. Yanmaz, A. M. (2002). Dynamic reliability in bridge pier scouring. Turkish Journal of Engineering and Environmental Sciences, 26(4), 367–376.