Local Scour Depth Around Bridge Piers: Performance Evaluation of Dimensional Analysis-based Empirical Equations and AI Techniques

Abstract

Artificial Intelligence (AI) techniques, such as Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and dimensional analysis-based empirical equations (DAEEs), can estimate scour depth around bridge piers. AI’s accuracy depends on various architectures, while DAEEs’ performance depends on experimental data. This study evaluated the performance of AI and DAEEs for scour depth estimation using flow velocity, depth, size of bed sediment, critical approach velocity, and pier width. The data from a smooth rectangular (20 m × 1 m) flume and a high-precision particle image velocimetry to study the flow structure around the pier – width: 1.5 – 91.5 cm evaluated DAEEs. Various ANNs (5, 10, and 15 neurons), double layer (DL) and triple layers (TL), and different ANFIS settings were trained, tested, and verified. The Generalized Reduced Gradient optimization identified the parameters of DAEEs, and Nash–Sutcliffe efficiency (NSE) and Mean Square Error (MSE) evaluated the performance of different models. The study revealed that DL ANN-3 with 10 neurons (NSE = 0.986) outperformed ANFIS, other ANN (ANN1, ANN2, ANN4 & ANN5) models, and empirical equations with NSE values between 0.76 and 0.983. The study found pier dimensions to be the most influential parameter for pier scour.

 This is a preview of subscription content, log in via an institution  to check access.

Abdul Razzaq GhummanHusnain HaiderIbrahim Saleh Al SalamahMd. ShafiquzzamanAbdullah AlodahMohammad AlresheediRashid FarooqAfzal Ahmed & Ghufran Ahmed Pasha

Similar content being viewed by others

Prediction of local scour around bridge piers using the ANFIS method

Article 18 September 2015

Live-Bed Scour Depth Modelling Around the Bridge Pier Using ANN-PSO, ANFIS, MARS, and M5Tree

Article 22 May 2024

Artificial Intelligence Modeling for Scour Depth Prediction Upstream of Bridge Piers

Article 08 November 2023

References

Download references

Acknowledgments

Authors also thank “The US Department of the Interior,” US Geol. Surv. Reston, VA, USA” for providing access to scour data. The Researchers would like to thank the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support (QU-APC-2024-9/1).

Author information

Authors and Affiliations

  1. Dept. of Civil Engineering, College of Engineering, Qassim University, Buraydah, 51452, Saudi ArabiaAbdul Razzaq Ghumman, Husnain Haider, Ibrahim Saleh Al Salamah, Md. Shafiquzzaman, Abdullah Alodah & Mohammad Alresheedi
  2. Dept. of Civil Engineering, International Islamic University, Islamabad, 44000, PakistanRashid Farooq
  3. Dept. of Civil Engineering, University of Engineering and Technology, Taxila, 47050, PakistanAfzal Ahmed & Ghufran Ahmed Pasha

  • DOIhttps://doi.org/10.1007/s12205-024-1161-x


Keywords