Kalix Bridge 디지털 트윈: 미래 극한 기후 현상으로 인한 구조적 부하
Este documento está relacionado con un proyecto en curso para el cual se está desarrollando e implementando un gemelo digital estructural del puente de Kalix en Suecia.
이 문서는 스웨덴 Kalix 교량의 구조적 디지털 트윈이 개발 및 구현되고 있는 진행 중인 프로젝트와 관련이 있습니다.
Autores: Mahyar Kazemian1, Sajad Nikdel2, Mehrnaz MohammadEsmaeili3, Vahid Nik4, Kamyab Zandi*5
RESUMEN Las cargas ambientales, como el viento y el caudal de los ríos, juegan un papel esencial en el diseño y evaluación estructural de puentes de grandes luces. El cambio climático y los eventos climáticos extremos son amenazas para la confiabilidad y seguridad de la red de transporte.
Esto ha llevado a una creciente demanda de modelos de gemelos digitales para investigar la resistencia de los puentes en condiciones climáticas extremas. El puente de Kalix, construido sobre el río Kalix en Suecia en 1956, se utiliza como banco de pruebas en este contexto.
La estructura del puente, realizada en hormigón postensado, consta de cinco vanos, siendo el más largo de 94 m. En este estudio, las características aerodinámicas y los valores extremos de la simulación numérica del viento, como la presión en la superficie, se obtienen utilizando la simulación de remolinos desprendidos retardados (DDES) de Spalart-Allmaras como un enfoque de turbulencia RANS-LES híbrido que es práctico y computacionalmente eficiente para cerca de la pared densidad de malla impuesta por el método LES.
La presión del viento en la superficie se obtiene para tres escenarios climáticos extremos, que incluyen un clima con mucho viento, un clima extremadamente frío y el valor de cálculo para un período de retorno de 3000 años. El resultado indica diferencias significativas en la presión del viento en la superficie debido a las capas de tiempo que provienen de la simulación del flujo de viento transitorio. Para evaluar el comportamiento estructural en el escenario de viento crítico, se considera el valor más alto de presión en la superficie para cada escenario.
Además, se realiza un estudio hidrodinámico en los pilares del puente, en el que se simula el flujo del río por el método VOF, y se examina el proceso de movimiento del agua alrededor de los pilares de forma transitoria y en diferentes momentos. En cada una de las superficies del pilar se calcula la presión superficial aplicada por el caudal del río con el caudal volumétrico más alto registrado.
Para simular el flujo del río, se ha utilizado la información y las condiciones meteorológicas registradas en períodos anteriores. Los resultados muestran que la presión en la superficie en el momento en que el flujo del río golpea los pilares es mucho mayor que en los momentos posteriores. Esta cantidad de presión se puede usar como carga crítica en los cálculos de interacción fluido-estructura (FSI).
Finalmente, para ambas secciones, la presión en la superficie del viento, el campo de velocidades con respecto a las líneas de sondas auxiliares, los contornos del movimiento circunferencial del agua alrededor de los pilares y el diagrama de presión en ellos se informan en diferentes intervalos de tiempo.
요약 바람, 강의 흐름과 같은 환경 하중은 장대 교량의 설계 및 구조 평가에 필수적인 역할을 합니다. 기후 변화와 기상 이변은 교통 네트워크의 신뢰성과 보안에 위협이 됩니다.
이로 인해 극한 기상 조건에서 교량의 복원력을 조사하기 위한 디지털 트윈 모델에 대한 수요가 증가했습니다. 1956년 스웨덴 칼릭스 강 위에 건설된 칼릭스 다리는 이러한 맥락에서 테스트베드로 사용됩니다.
포스트텐션 콘크리트로 만들어진 교량 구조는 5개 경간으로 구성되며 가장 긴 길이는 94m입니다. 본 연구에서는 하이브리드 RANS-LES 난류 접근 방식인 Spalart-Allmaras 지연 분리 와류 시뮬레이션(DDES)을 사용하여 수치적 바람 시뮬레이션의 공기역학적 특성과 표면압 등 극한값을 얻습니다. LES 방법으로 부과된 벽 근처 메쉬 밀도.
바람이 많이 부는 기후, 극도로 추운 기후, 그리고 3000년의 반환 기간에 대해 계산된 값을 포함한 세 가지 극한 기후 시나리오에 대해 표면 풍압을 얻습니다. 결과는 과도 풍류 시뮬레이션에서 나오는 시간 레이어로 인해 표면 풍압에 상당한 차이가 있음을 나타냅니다. 임계 바람 시나리오에서 구조적 거동을 평가하기 위해 각 시나리오에 대해 가장 높은 표면 압력 값이 고려됩니다.
또한 교량 기둥에 대한 유체 역학 연구를 수행하여 하천의 흐름을 VOF 방법으로 시뮬레이션하고 기둥 주변의 물 이동 과정을 일시적이고 다른 시간에 조사합니다. 각 기둥 표면에서 기록된 체적 유량이 가장 높은 강의 흐름에 의해 적용되는 표면 압력이 계산됩니다.
강의 흐름을 시뮬레이션하기 위해 이전 기간에 기록된 정보와 기상 조건이 사용되었습니다. 결과는 강의 흐름이 기둥에 닿는 순간의 표면 압력이 나중에 순간보다 훨씬 높다는 것을 보여줍니다. 이 압력의 양은 유체-구조 상호작용(FSI) 계산에서 임계 하중으로 사용될 수 있습니다.
마지막으로 두 섹션 모두 바람 표면의 압력, 보조 프로브 라인에 대한 속도장, 기둥 주위 물의 원주 운동 윤곽 및 압력 다이어그램이 서로 다른 시간 간격으로 보고됩니다.
키워드: 디지털 트윈 , 풍력 공학, 콘크리트 교량, 유체역학, CFD 시뮬레이션, DDES 난류 모델, Kalix 교량
Palabras clave: Gemelo digital , Ingeniería eólica, Puente de hormigón, Hidrodinámica, Simulación CFD, Modelo de turbulencia DDES, Puente Kalix
1. Introducción
Las infraestructuras de transporte son la columna vertebral de nuestra sociedad y los puentes son el cuello de botella de la red de transporte [1]. Además, el cambio climático que da como resultado tasas de deterioro más altas y los eventos climáticos extremos son amenazas importantes para la confiabilidad y seguridad de las redes de transporte. Durante la última década, muchos puentes se han dañado o fallado por condiciones climáticas extremas como tifones e inundaciones.
Wang et al. analizó los impactos del cambio climático y mostró que se espera que el deterioro de los puentes de hormigón sea aún peor que en la actualidad, y se prevé que los eventos climáticos extremos sean más frecuentes y con mayor gravedad [2].
Además, la demanda de capacidad de carga a menudo aumenta con el tiempo, por ejemplo, debido al uso de camiones más pesados para el transporte de madera en el norte de Europa y América del Norte. Por lo tanto, existe una necesidad creciente de métodos confiables para evaluar la resistencia estructural de la red de transporte en condiciones climáticas extremas que tengan en cuenta los escenarios futuros de cambio climático.
Los activos de transporte por carretera se diseñan, construyen y explotan basándose en numerosas fuentes de datos y varios modelos. Por lo tanto, los ingenieros de diseño usan modelos establecidos proporcionados por las normas; ingenieros de construccion
documentar los datos en el material real y proporcionar planos según lo construido; los operadores recopilan datos sobre el tráfico, realizan inspecciones y planifican el mantenimiento; los científicos del clima combinan datos y modelos climáticos para
predecir eventos climáticos futuros, y los ingenieros de evaluación calculan el impacto de la carga climática extrema en la estructura.
Dadas las fuentes abrumadoras y la complejidad de los datos y modelos, es posible que la información y los cálculos actualizados no estén disponibles para decisiones cruciales, por ejemplo, con respecto a la seguridad estructural y la operabilidad de la infraestructura durante episodios de eventos extremos. La falta de una integración perfecta entre los datos de la infraestructura, los modelos estructurales y la toma de decisiones a nivel del sistema es una limitación importante de las soluciones actuales, lo que conduce a la inadaptación e incertidumbre y crea costos e ineficiencias.
El gemelo digital estructural de la infraestructura es una simulación estructural viva que reúne todos los datos y modelos y se actualiza desde múltiples fuentes para representar su contraparte física. El Digital Twin estructural, mantenido durante todo el ciclo de vida de un activo y fácilmente accesible en cualquier momento, proporciona al propietario/usuarios de la infraestructura una idea temprana de los riesgos potenciales para la movilidad inducidos por eventos climáticos, cargas de vehículos pesados e incluso el envejecimiento de un infraestructura de transporte.
En un proyecto en curso, estamos desarrollando e implementando un gemelo digital estructural para el puente de Kalix en Suecia. El objetivo general del presente artículo es presentar un método y estudiar los resultados de la cuantificación de las cargas estructurales resultantes de eventos climáticos extremos basados en escenarios climáticos futuros para el puente de Kalix. El puente de Kalix, construido sobre el río Kalix en Suecia en 1956, está hecho de una viga cajón de hormigón postensado. El puente se utiliza como banco de pruebas para la demostración de métodos de evaluación y control de la salud estructural (SHM) de última generación.
El objetivo específico de la investigación actual es dar cuenta de parámetros climáticos como el viento y el flujo de agua, que imponen cargas estáticas y dinámicas en las estructuras. Nuestro método, en el primer paso, consiste en simulaciones de flujo de viento y simulaciones de flujo de agua utilizando un modelado CFD transitorio basado en el modelo de turbulencia LES/DES para cuantificar las cargas de viento e hidráulicas; esto constituye el punto focal principal de este artículo.
En el siguiente paso, se estudiará la respuesta estructural del puente mediante la transformación de los perfiles de carga eólica e hidráulica en cargas estructurales en el análisis de EF estructural no lineal. Por último, el modelo estructural se actualizará incorporando sin problemas los datos del SHM y, por lo tanto, creando un gemelo digital estructural que refleje la verdadera respuesta de la estructura. Los dos primeros enfoques de investigación permanecen fuera del alcance inmediato del presente artículo.
2. Descripción del puente de Kalix
El puente de Kalix consta de 5 vanos largos de los cuales el más largo tiene unos 94 metros y el más corto 43,85 m. El puente es de hormigón postensado, el cual se cuela in situ de forma segmentaria y una viga cajón no prismática como se muestra en la Fig. 1. El puente es simétrico en geometría y hay una bisagra en el punto medio. El ancho del tablero del puente en la losa superior e inferior es de aproximadamente 13 my 7,5 m, respectivamente. El espesor del muro es de 45 cm y el espesor de la losa inferior varía de 20 cm a
50 cm.
Fig. 1. Geometría y secciones del puente
3. Simulación de viento
Las pruebas en túnel de viento solían ser la única forma de examinar la reacción de los puentes a las cargas de viento Consulte [3]; sin embargo, estos experimentos requieren mucho tiempo y son costosos. Se requieren cerca de 6 a 8 semanas para realizar una prueba típica en un túnel de viento Consulte [4]. Los últimos logros en la capacidad computacional de las computadoras brindan oportunidades para la simulación práctica del viento alrededor de puentes utilizando la dinámica de fluidos computacional (CFD).
Es beneficioso investigar la presión del viento en los componentes del puente utilizando una simulación por computadora. Es necesario determinar los parámetros de simulación del puente y el campo de viento a su alrededor; por lo tanto, se pueden evaluar con precisión sus impactos en las fuerzas aplicadas en el puente.
Las demandas de diseño de las estructuras de puentes requieren una investigación rigurosa de la acción del viento, especialmente en condiciones climáticas extremas. Garantizar la estabilidad de los puentes de grandes luces, ya que sus características y formaciones son más propensas a la carga de viento, se encuentra entre las principales consideraciones de diseño [3].
3.1. Parámetros de simulación
La velocidad básica del viento se elige 22 m/s según el mapa de viento de Suecia y la ubicación del puente de Kalix según EN 1991-1-4 [5] y el código sueco BFS 2019: 1 EKS 11; ver figura 1. La superficie libre sobre el agua se considera un área expuesta a la carga de viento. La dirección del ataque del viento dominante se considera perpendicular al tablero del puente.
Las simulaciones actuales se basan en tres escenarios que incluyen: viento extremo, frío extremo y valor de diseño para un período de retorno de 3000 años. Cada condición tiene diferentes valores de temperatura, viento básico
velocidad, viscosidad cinemática y densidad del aire, como se muestra en la Tabla 1. Los conjuntos de datos meteorológicos se sintetizaron para dos semanas meteorológicas extremas durante el período de 30 años de 2040-2069, considerando 13 escenarios climáticos futuros diferentes con diferentes modelos climáticos globales (GCM) y rutas de concentración representativas (RCP).
Se seleccionaron una semana de frío extremo y una semana de viento extremo utilizando el enfoque desarrollado
de Nik [7]. El planteamiento se adaptó a las necesidades de este trabajo, considerando el horario semanal en lugar de mensual. Se ha verificado la aplicación del enfoque para simulaciones complejas, incluidos los sistemas de energía Consulte [7] Consulte [8], hidrotermal Consulte [ 9] y simulaciones de microclimas Consulte [10].
Para considerar las condiciones climáticas extremas de una infraestructura muy importante, el valor de la velocidad básica del viento debe transferirse del período de retorno de 50 años a 3000 años como se indica en la ecuación 1 [6]. El perfil de velocidad y turbulencia se crea en base a EN 1991-1-4 [5] para la categoría de terreno 0 (Z0 = 0,003 my Zmín = 1 m), donde Z0 y Zmín son la longitud de rugosidad y la altura mínima, respectivamente. La variación de la velocidad del viento con la altura se define en la ecuación 2, donde co (z) es el factor de orografía tomado como 1, vm (z) es la velocidad media del viento a la altura z, kr es el factor del terreno que depende de la longitud de la rugosidad , e Iv (z) es la intensidad de la turbulencia; ver ecuación 3.���50=[0.36+0.1ln12�] 1�����=��·ln��0·��� [2]���=�����=�1�0�·ln�/�0 ��� ����≤�≤���� [3]���=������ ��� �<���� [4]
Se calcula que el valor de la velocidad del viento para T = período de retorno de 3000 años es de 31 m/s; por lo tanto, los diagramas de velocidad del viento e intensidad de turbulencia se obtienen como se muestra en la figura 2.
Tabla. 1. Información meteorológica para tres escenarios
3.2. Modelo de turbulencia
Para que las investigaciones sean precisas en el flujo alrededor de estructuras importantes como puentes, se aplica un enfoque híbrido que incluye simulaciones de remolinos desprendidos retardados (DDES) y es computacionalmente eficiente [11] [12]. Este modelo de turbulencia usa un método RANS cerca de las capas límite y el método LES lejos de las capas límite y en el área del flujo de la región separada ‘.
En el primer paso, el enfoque de simulación de remolinos separados se ha ampliado para adquirir predicciones de fuerza fiables en los modelos con un gran impacto del flujo separado. Hay varios ejemplos en la parte de revisión de Spalart Consulte [11] para varios casos que usan la aplicación del modelo de turbulencia de simulación de remolino separado (DES).
La formulación DES inicial [13] se desarrolla utilizando el enfoque de Spalart-Allmaras. Con respecto a la transición del enfoque RANS al LES, se revisa el término de destrucción en la ecuación de transporte de viscosidad modificada: la distancia entre un punto en el dominio y la superficie sólida más cercana (d) se sustituye por el factor introducido por:�~=���(�.����·∆)
donde CDES es un coeficiente, se considera como 0,65 y Δ es una escala de longitud asociada con el espaciado de la rejilla local:�=���(��.��.��)
Escala de longitud asociada con el espaciado de rejilla local
Se ha empleado un enfoque modificado de DES, conocido como simulación de remolinos desprendidos retardados (DDES), para dominar el probable problema de la “separación inducida por la rejilla” (GIS) que está relacionado con la geometría de la rejilla. El objetivo de este nuevo enfoque es confirmar que el modelado de turbulencia se mantiene en modo RANS en todas las capas de contorno [14]. Por lo tanto, la definición del parámetro se modifica como se define:�~=�-�����(0. �-����·�) 6
donde fd es una función de filtro que considera un valor de 0 en las capas límite cercanas al muro (zona RANS) y un valor de 1 en las áreas donde se realizó la separación del flujo (zona LES).
3.3. Rejilla computacional y resultados
RWIND 2.01 Pro se emplea para la simulación de viento CFD, que usa el código CFD externo OpenFOAM® versión 17.10. La simulación CFD tridimensional se realiza como una simulación de viento transitorio para flujo turbulento incompresible utilizando el algoritmo SIMPLE (Método semi-implícito para ecuaciones vinculadas a presión).
En la simulación actual, el solucionador de estado estacionario se considera como la condición inicial, lo que significa que cuando se está calculando el flujo transitorio, el cálculo del estado estacionario de la condición inicial comienza en la primera parte de la simulación y tan pronto como se calcula. completado, el cálculo de transitorios se iniciará automáticamente.
Fig. 3. Dominio del túnel de viento y rejilla computacional de referencia (8.057.279 celdas)
La cuadrícula computacional se realiza mediante 8.057.279 celdas tridimensionales y 8.820.901 nudos, también se consideran las dimensiones del dominio del túnel de viento 2000 m * 1000 m * 100 m (largo, ancho, alto) como se muestra en la figura 3. El volumen mínimo de la celda es de 6,34 * 10-5 m3, el volumen máximo es de 812,30 m3 y la desviación máxima es de 1,80.
La presión residual final se considera 5 * 10-5. El proceso de generación de mallas e independencia de la rejilla se ha realizado utilizando los cuatro tamaños de malla que se muestran en la figura 4 para la malla de referencia, y finalmente se ha conseguido la independencia de la rejilla.
Fig. 4. Estudio de rejilla de cuatro tamaños de malla computacional a través de la línea de sondeo.
Se han realizado tres simulaciones para obtener el valor de la presión del viento para condiciones climáticas extremas y el valor de cálculo del viento que se muestra en la Fig. 5. Para cada escenario, el resultado de la presión del viento se obtiene utilizando el modelo de turbulencia transitoria DDES con respecto a 30 (s) de duración que incluye 60 capas de tiempo (Δt = 0,5 s).
Se puede observar que el área frontal del puente está expuesta a la presión del viento positiva y la cantidad de presión aumenta en la altura cerca del borde del tablero para todos los escenarios. Además, la Fig. 5. ilustra los valores negativos de la presión del viento en su totalidad en la superficie de la cubierta. El valor de pertenencia para el período de 3000 años es mucho más alto que los otros escenarios.
Es importante tener en cuenta que el intervalo de la velocidad del viento de entrada tiene un gran impacto en el valor de la presión en la superficie más que en los otros parámetros. Además, para cada escenario, el intervalo más alto de presión del viento y succión durante el tiempo total debe considerarse como una carga de viento crítica impuesta a la estructura. El valor más bajo de la presión en la superficie se obtiene en el escenario de condiciones de frío extremo, mientras que en condiciones de mucho viento, el valor de la presión se vuelve un orden de magnitud más alto.
Además, es importante tener en cuenta que el comportamiento del puente sería completamente diferente debido a las diferentes temperaturas del aire, y puede ocurrir un posible caso crítico en el escenario que experimente una presión menor. Con respecto al valor de entrada de cada escenario, el rango más alto de presión del viento pertenece al nivel de diseño debido al período de retorno de 3000 años, que ha recibido la velocidad del viento más alta como velocidad de entrada.
4. Simulación hidráulica
Los pilares de los puentes a través del río pueden bloquear el flujo al reducir la sección transversal del río, crear corrientes parásitas locales y cambiar la velocidad del flujo, lo que puede ejercer presión en las superficies de los pilares. Cuando el río fluye hacia los pilares del puente, el proceso del flujo de agua alrededor de la base se puede dividir en dos partes: aplicando presión en el momento en que el agua golpea el pilar del puente y después de la presión inicial cuando el agua fluye alrededor de los pilares [15].
Cuando el agua alcanza los pilares del puente a una cierta velocidad, el efecto de la presión sobre los pilares es mucho mayor que la presión del fluido que queda a su alrededor. Debido a los desarrollos de la ciencia de la computación, así como al desarrollo cada vez mayor de los códigos dinámicos de fluidos computacionales, se han utilizado ampliamente varias simulaciones numéricas y se ha demostrado que los resultados de muchas simulaciones son consistentes con los resultados experimentales [16].
Por ello, en esta investigación se ha utilizado el método de la dinámica de fluidos computacional para simular los fenómenos que gobiernan el comportamiento del flujo de los ríos. Para este estudio se ha seleccionado una solución tridimensional basada en cálculos numéricos utilizando el modelo de turbulencia LES. La simulación tridimensional del flujo del río en diferentes direcciones y velocidades nos permite calcular y analizar todas las presiones en la superficie de los pilares del puente en diferentes intervalos de tiempo.
4.1. Parámetros de simulación
El flujo del río se puede definir como un flujo de dos fases, que incluye agua y aire, en un canal abierto. El flujo de canal abierto es un flujo de fluido con una superficie libre en la que la presión atmosférica se distribuye uniformemente y se crea por el peso del fluido. Para simular este tipo de flujo se utiliza el método multifase VOF.
El programa Flow3D, disponible en el mercado, utiliza los métodos de fracciones volumétricas VOF y FAVOF. En el método VOF, el dominio de modelado se divide primero en celdas de elementos o volúmenes de controles más pequeños. Para los elementos que contienen fluidos, se mantienen valores numéricos para cada una de las variables de flujo dentro de ellos.
Estos valores representan la media volumétrica de los valores en cada elemento. En las corrientes superficiales libres, no todas las celdas están llenas de líquido; algunas celdas en la superficie de flujo están medio llenas. En este caso, se define una cantidad llamada volumen de fluido, F, que representa la parte de la celda que se llena con el fluido.
Después de determinar la posición y el ángulo de la superficie del flujo, será posible aplicar las condiciones de contorno apropiadas en la superficie del flujo para calcular el movimiento del fluido. A medida que se mueve el fluido, el valor de F también cambia con él. Las superficies libres son monitoreadas automáticamente por el movimiento de fluido dentro de una red fija. El método FAVOR se usa para determinar la geometría.
También se puede usar otra cantidad de fracción volumétrica para determinar el nivel de un cuerpo rígido desocupado ( Vf ). Cuando se conoce el volumen que ocupa el cuerpo rígido en cada celda, el límite del fluido dentro de la red fija se puede determinar como VOF. Este límite se usa para determinar las condiciones de contorno del muro que sigue el arroyo. En general, la ecuación de continuidad de masa es la siguiente:��𝜕�𝜕�+𝜕𝜕�(����)+�𝜕𝜕�(����)+𝜕𝜕�(����)+������=���� 10
Ecuación de continuidad de masa
Las ecuaciones de movimiento para los componentes de la velocidad de un fluido en coordenadas 3D, o en otras palabras, las ecuaciones de Navier-Stokes, son las siguientes:𝜕�𝜕�+1�����𝜕�𝜕�+���𝜕�𝜕�+���𝜕�𝜕�+��2�����=-1�𝜕�𝜕�+��+��-��-��������-��-��� 11𝜕�𝜕�+1�����𝜕�𝜕�+���𝜕�𝜕�+���𝜕�𝜕�+��������=-�1�𝜕�𝜕�+��+��-��-��������-��-��� 12𝜕�𝜕�+1�����𝜕�𝜕�+���𝜕�𝜕�+���𝜕�𝜕�=-1�𝜕�𝜕�+��+��-��-��������-��-��� 13
Donde VF es la relación del volumen abierto al flujo, ρ es la densidad del fluido, (u, v, w) son las componentes de la velocidad en las direcciones x, y y z, respectivamente, R SOR es la función de la fuente, (Ax, Ay, Az ) son las áreas fraccionales, (Gx, Gy, Gz ) son las fuerzas gravitacionales, (fx, fy, fz ) son las aceleraciones de la viscosidad y (bx, by, bz ) son las pérdidas de flujo en medios porosos en las direcciones x, y, z, respectivamente [17].
La zona de captación del río Kalix es grande y amplia, por lo que tiene un clima subpolar con inviernos fríos y largos y veranos suaves y cortos. Aproximadamente el 50% de las precipitaciones en esta zona es nieve. En mayo, por lo general, el deshielo provoca un aumento significativo en el caudal del río. Las condiciones climáticas del río se resumen en la Tabla 2, [18].
Contrariamente a la tendencia general de este estudio, la previsión de las condiciones meteorológicas mencionadas está utilizando la información meteorológica registrada en los períodos pasados. En función de la información meteorológica disponible, definimos las condiciones de contorno al realizar los cálculos.
Tabla 2: Parámetros del modelo y tabla 3:Condiciones de contorno del modelo
4.2 Cuadrícula computacional y resultados
Primero, según las dimensiones de los pilares en tres direcciones X, Y, Z, y según la dimensión longitudinal de los pilares (D = 8,5 m; véase la figura 7), el dominio se extiende 10D aguas arriba y 20D aguas abajo. Se ha utilizado el método de mallado estructurado (cartesiano) y el software Flow3D para resolver este problema. Para una cuadrícula correcta, el dominio se debe dividir en diferentes secciones.
Esta división se basa en lugares con fuertes pendientes. Usando la creación de una nueva superficie, el dominio se puede dividir en varias secciones para crear una malla regular con las dimensiones correctas y apropiadas, se puede especificar el número de celdas en cada superficie.
Fig. 6: Estudio de rejilla para el dominio hídrico
Esto aumenta el volumen final de las células. Por esta razón, hemos dividido este dominio en tres niveles: Grueso, medio y fino. Los resultados de los estudios de independencia de la red se muestran en la figura 6. Para comprobar los resultados calculados, primero debemos asegurarnos de que la corriente de entrada sea la correcta. Para hacer esto, el caudal de entrada se mide en el dominio de la solución y se compara con el valor base. Las dimensiones del dominio de la solución se especifican en la figura 7. Esta figura también contribuye al reconocimiento de los pilares del puente y su denominación de superficies.
Como se muestra en la Fig. 8, el caudal del río se encuentra dentro del intervalo admisible durante el 90% del tiempo de simulación y el caudal de entrada se ha simulado correctamente. Además, en la Fig. 9, la velocidad media del río se calcula en función del caudal y del área de la sección transversal del río.
Para extraer la cantidad de presión aplicada a los diferentes lados de las columnas, hemos seleccionado el intervalo de tiempo de simulación de 10 a 25 segundos (tiempo de estabilización de descarga en la cantidad de 1800 metros cúbicos por segundo). Los resultados calculados para cada lado se muestran en la Fig. 10 y 11. Los contornos de velocidad también se muestran en las Figuras 12 y 13. Estos contornos se ajustan en función de la velocidad del fluido en un momento dado.
Debido a las dimensiones del dominio de la solución y al caudal del río, el flujo de agua llega a los pilares del puente en el décimo segundo y la presión inicial del flujo del río afecta las superficies de los pilares del puente. Esta presión inicial decrece con el tiempo y se estabiliza en un rango determinado para cada lado según el área y el porcentaje de interacción con el flujo. Para los cálculos de interacción fluido-estructura (FSI), se puede usar la presión crítica calculada en el momento en que la corriente golpea los pilares.
Fig. 7: Dibujo del dominio hidrostático
Fig. 12: Contador de velocidad en el tiempo: 30s Fig. 13: Contador de velocidad en el tiempo: 20 s
5. Conclusión
Los efectos de las condiciones meteorológicas extremas, incluido el viento dinámico y el flujo de agua, se investigaron numéricamente para el puente de Kalix. Se definieron tres escenarios para las simulaciones dinámicas de viento, incluido el clima con mucho viento, el clima extremadamente frío y el valor de diseño para un período de retorno de 3.000 años. Aprovechando las simulaciones CFD, se determinaron las presiones del viento en pasos de 60 tiempos (30 segundos) utilizando el modelo de turbulencia transitoria DDES.
Los resultados indican diferencias significativas entre los escenarios, lo que implica la importancia de los datos de entrada, especialmente el diagrama de velocidades del viento. Se observó que el valor de diseño para el período de devolución de 3000 años tiene un impacto mucho mayor que los otros escenarios. Además, se mostró la importancia de considerar el rango más alto de presión del viento en la superficie a través de los pasos de tiempo para evaluar el comportamiento estructural del puente en la condición más crítica.
Además, se consideró el caudal máximo del río para una simulación transitoria según las condiciones meteorológicas registradas, y los pilares del puente se sometieron al caudal máximo del río durante 30 segundos. Por lo tanto, además de las condiciones físicas del flujo del río y cómo cambia la dirección del flujo aguas abajo, se cuantificaron las presiones máximas del agua en el momento en que el flujo golpea los pilares.
En el trabajo futuro, el rendimiento estructural del puente de Kalix será evaluado por
imposición de la carga del viento, la presión del agua y la carga del tráfico, creando así un gemelo digital estructural que refleja la verdadera respuesta de la estructura.
6. Reconocimiento
Los autores agradecen enormemente el apoyo de Dlubal Software por proporcionar la licencia de RWIND Simulation, así como de Flow Sciences Inc. por proporcionar la licencia de FLOW-3D.
Autores: Mahyar Kazemian1, Sajad Nikdel2, Mehrnaz MohammadEsmaeili3, Vahid Nik4, Kamyab Zandi*5
1 Candidato a doctorado, becario en el Departamento de Ingeniería de Timezyx Inc., Canadá.
2 M.Sc. estudiante, pasante en el Departamento de Ingeniería, Timezyx Inc., Canadá.
3 Estudiante de licenciatura, pasante en el Departamento de Ingeniería, Timezyx Inc., Canadá.
4 Profesor adjunto en la división de Física de la construcción de la Universidad de Lund y la Universidad Tecnológica de Chalmers, Suecia.
* 5 Director, Timezyx Inc., Vancouver, BC V6N 2R2, Canadá. E-mail: kamyab.zandi@timezyx.com
Referencias
- Jančula, M., Jošt, J., & Gocál, J. (2021). Influencia de las acciones ambientales agresivas en las estructuras de los puentes. Transportation Research Procedia, 55 , 1229–1235. https://doi.org/10.1016/j.trpro.2021.07.104
- Wang, X., Nguyen, M., Stewart, MG, Syme, M. y Leitch, A. (2010). Análisis de los impactos del cambio climático en el deterioro de la infraestructura de hormigón – Informe de síntesis. CSIRO, Canberra.
- Kemayou, BTM (2016). Análisis de secciones de tableros de puentes por el método de la pseudocompresibilidad basado en FDM y LES: Mejora del rendimiento mediante la implementación de la computación en paralelo (tesis). Universidad de Arkansas.
- Larsen, A. y Walther, JH (1997). Análisis aeroelástico de secciones de vigas de puentes basado en simulaciones discretas de vórtices. Journal of Wind Engineering and Industrial Aerodynamics, 67–68 , 253–265. https://doi.org/10.1016/s0167-6105(97)00077-9
- Eurocódigo 1: Acciones en estructuras. (2006). Instituto Británico de Normas.
- ASCE. Cargas mínimas de cálculo para edificios y otras estructuras. (2013). Sociedad Estadounidense de Ingenieros Civiles.
- Nik, VM (2016). Facilitación de la simulación energética para el clima futuro: síntesis de conjuntos de datos meteorológicos típicos y extremos a partir de modelos climáticos regionales (RCM). Applied Energy, 177 , 204–226. https://doi.org/10.1016/j.apenergy.2016.05.107
- Perera, AT, Nik, VM, Chen, D., Scartezzini, J.‑L. y Hong, T. (2020). Cuantificación de los impactos del cambio climático y los eventos climáticos extremos en los sistemas energéticos. Nature Energy, 5 (2), 150–159. https://doi.org/10.1038/s41560-020-0558-0
- Nik, VM (2017). Aplicación de conjuntos de datos meteorológicos típicos y extremos en la simulación higrotérmica de componentes de construcción para el clima futuro: un estudio de caso para un muro de entramado de madera. Energy and Buildings, 154 , 30–45. https://doi.org/10.1016/j.enbuild.2017.08.042
- Hosseini, M., Javanroodi, K. y Nik, VM (2022). Evaluación de impacto de alta resolución del cambio climático en el rendimiento energético de los edificios considerando los eventos meteorológicos extremos y el microclima – Investigando las variaciones en el confort térmico interior y los grados-día. Ciudades sostenibles y sociedad, 78 , 103634. https://doi.org/10.1016/j.scs.2021.103634
- Spalart, P. R. (2009). Simulación de remolinos separados. Revisión anual de mecánica de fluidos, 41 , 181–202. https://doi.org/10.1146/annurev.fluid.010908.165130
- Spalart, PR, et al. (2006) Una nueva versión de simulación de remolinos separados, resistente a densidades de rejilla ambiguas. Dinámica de fluidos teórica y computacional, 2006. 20 (3), 181-195. https://doi.org/10.1007/s00162-006-0015-0
- Spalart, PR (1997). Comentarios sobre la viabilidad de LES para alas y sobre una aproximación híbrida RANS/LES. En Actas de la Primera Conferencia Internacional de AFOSR sobre DNS/LES. Prensa de Greyden.
- Boudreau, M., Dumas, G. y Veilleux, J.-C. (2017). Evaluación de la capacidad del enfoque de modelado de turbulencia DDES para simular la estela de un cuerpo de farol. Aeroespacial, 4 (3), 41. https://doi.org/10.3390/aerospace4030041
- Wang, Y., Zou, Y., Xu, L. y Luo, Z. (2015). Análisis de la presión del flujo de agua en pilas de puentes considerando el efecto del impacto. Problemas matemáticos en ingeniería, 2015 , 1–8. https://doi.org/10.1155/2015/687535
- Qi, H., Zheng, J. y Zhang, C. (2020). Simulación numérica del campo de velocidades alrededor de dos pilares de pilas en tándem del puente longitudinal. Fluidos, 5 (1), 32. https://doi.org/10.3390/fluids5010032
- Jalal, H. K. y Hassan, W. H (2020). Simulación numérica tridimensional de la socavación local alrededor de la pila de un puente circular utilizando el software flow-3d. Ciclo de conferencias de IOP: Ciencia e ingeniería de materiales, 745 , 012150. https://doi.org/10.1088/1757-899x/745/1/012150
- Herzog, S. D., Conrad, S., Ingri, J., Persson, P. y Kritzberg, E. S (2019). Cambios inducidos por crecidas de primavera en la especiación y destino del Fe a mayor salinidad. Geoquímica aplicada, 109 , 104385. https://doi.org/10.1016/j.apgeochem.2019.104385