Crossbar

FLOW-3D: 최소 반둘레를 가진 3D 나노스케일 크로스바에서의 흐름 기반 컴퓨팅


연구 배경

  • 문제 정의: 데이터 집약적 애플리케이션의 증가로 인메모리 컴퓨팅에 대한 관심이 증대되었으며, 전통적인 2D 크로스바 설계는 저항 및 커패시턴스 기생 요소로 인해 성능 한계에 직면하고 있다.
  • 목표: Boolean 함수를 3D 나노 크로스바 설계로 자동 합성하는 첫 번째 프레임워크인 FLOW-3D를 제안하여, 반둘레(semiperimeter)를 최소화하고, 면적, 에너지 소비, 지연 시간 등의 측면에서 기존 2D 도구보다 우수한 성능을 달성하는 것이 목적이다.

연구 방법

  1. 기본 아이디어 및 문제 정의
    • Boolean 함수의 합성을 위해 BDD(Binary Decision Diagram)와 3D 크로스바 사이의 유사성을 활용.
    • BDD의 노드와 에지에 해당하는 3D 크로스바의 금속 와이어와 멤리스터를 적절히 매핑하는 문제를 “L-labeling 문제”로 정의하고, 이를 ILP(정수 선형 계획법)로 최적 해결한다.
  2. FLOW-3D 프레임워크 구성
    • 그래프 전처리: 입력된 BDD를 DAG(Directed Acyclic Graph)로 변환하고, 불필요한 0 터미널 노드를 제거.
    • L-labeling 단계: 각 노드에 대해 할당 가능한 금속 층의 범위를 결정하고, 인접 층 간의 연결 제약(에지 제약 및 노드 제약)을 만족하도록 레이블링 수행.
    • 크로스바 할당: 레이블링 결과를 바탕으로 실제 3D 크로스바 구조를 구성하여 Boolean 함수를 구현하는 하드웨어 디자인을 도출.
  3. 성능 평가
    • 제안된 FLOW-3D 프레임워크는 2D 크로스바 기반의 기존 합성 도구와 비교하여, 반둘레, 면적, 에너지 소비, 지연 시간에서 각각 최대 61%, 84%, 37%, 41%의 개선 효과를 보임.
    • RevLib 벤치마크를 통해 실험적으로 평가되었으며, 3D 크로스바 설계의 효율성과 성능 향상을 입증하였다.

주요 결과

  • 자동 합성 도구 제안: Boolean 함수를 3D 크로스바 설계로 자동 합성하는 최초의 프레임워크를 제안.
  • 최적화 성능: FLOW-3D는 ILP 기반 L-labeling 문제 해결을 통해 3D 크로스바의 반둘레를 최소화하고, 면적 및 전력 소비를 현저히 감소시킴.
  • 비교 평가: 기존 2D 기반 합성 도구 대비, 제안된 프레임워크는 에너지 효율과 응답 속도 면에서 우수한 성능을 나타냄.

결론 및 향후 연구

  • 제안된 FLOW-3D 프레임워크는 3D 나노 크로스바를 이용한 흐름 기반 컴퓨팅에서 Boolean 함수 합성을 효율적으로 수행할 수 있음을 입증.
  • 향후 연구에서는 더 복잡한 회로 및 대규모 데이터셋에 대한 확장성과, 다양한 하드웨어 제약 조건을 고려한 추가 최적화 기법이 연구될 필요가 있다.

Reference

  1. John Backus. 1978. Can programming be liberated from the von Neumann style?CACM 21, 8 (1978), 613–641.
  2. ABC Berkeley. 2009. A system for sequential synthesis and verification.
  3. Debjyoti Bhattacharjee et al. 2020. CONTRA: area-constrained technology mapping framework for memristive memory processing unit. In ICCAD’20. 1–9.
  4. Dwaipayan Chakraborty et al. 2017. Automated synthesis of compact crossbarsfor sneak-path based in-memory computing. In DATE’17. IEEE, 770–775.
  5. IBM ILOG Cplex. 2020. IBM ILOG CPLEX Optimization Studio 20.1. InternationalBusiness Machines Corporation (2020). https://www.ibm.com/products/ilog-cplexoptimization-studio
  6. Hadi Esmaeilzadeh et al. 2011. Dark silicon and the end of multicore scaling. InISCA’11. IEEE, 365–376.
  7. Miao Hu et al. 2018. Memristor-based analog computation and neural networkclassification with a dot product engine. Advanced Materials 30, 9 (2018), 1705914.
  8. Sumit Jha et al. 2016. Computation of boolean formulas using sneak paths incrossbar computing. US Patent 9,319,047.
  9. Shahar Kvatinsky et al. 2013. Memristor-based material implication (IMPLY)logic: Design principles and methodologies. IEEE VLSI 22, 10 (2013), 2054–2066.
  10. Shahar Kvatinsky et al. 2014. MAGIC—Memristor-aided logic. IEEE TCAS-II 61,11 (2014), 895–899.
  11. Shuangchen Li et al. 2016. Pinatubo: A processing-in-memory architecture forbulk bitwise operations in emerging non-volatile memories. In DAC. IEEE, 1–6.
  12. Yibo Li et al. 2018. Review of memristor devices in neuromorphic computing:materials sciences and device challenges. J. Phys. D: Appl. Phys 51, 50 (2018),503002.
  13. Jiale Liang, Stanley Yeh, S Simon Wong, and H-S Philip Wong. 2013. Effect ofwordline/bitline scaling on the performance, energy consumption, and reliabilityof cross-point memory array. ACM JETC 9, 1 (2013), 1–14.
  14. Thomas N Theis and H-S Philip Wong. 2017. The end of moore’s law: A newbeginning for information technology. CiSE 19, 2 (2017), 41–50.
  15. Sven Thijssen et al. 2021. COMPACT: Flow-Based Computing on NanoscaleCrossbars with Minimal Semiperimeter. In DATE’21. IEEE, 232–237.
  16. Alvaro Velasquez and Sumit Jha. 2014. Parallel computing using memristivecrossbar networks: Nullifying the processor-memory bottleneck. In IDT’14. IEEE,147–152.
  17. Alvaro Velasquez and Sumit Jha. 2015. Automated synthesis of crossbars fornanoscale computing using formal methods. In NANOARCH’15. IEEE, 130–136.
  18. Alvaro Velasquez and Sumit Jha. 2016. Parallel boolean matrix multiplication inlinear time using rectifying memristors. In ISCAS’16. IEEE, 1874–1877.
  19. Alvaro Velasquez and Sumit Jha. 2018. Brief announcement: Parallel transitiveclosure within 3d crosspoint memory. In SPAA’18. 95–98.
  20. Robert Wille et al. 2008. RevLib: An online resource for reversible functions andreversible circuits. In ISMVL’08. IEEE, 220–225.
  21. Cong Xu et al. 2015. Overcoming the challenges of crossbar resistive memoryarchitectures. In HPCA’15. IEEE, 476–488.