Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.

BC Hydro Assesses Spillway Hydraulics with FLOW-3D

by Faizal Yusuf, M.A.Sc., P.Eng.
Specialist Engineer in the Hydrotechnical Department at BC Hydro

BC Hydro, a public electric utility in British Columbia, uses FLOW-3D to investigate complex hydraulics issues at several existing dams and to assist in the design and optimization of proposed facilities.

Faizal Yusuf, M.A.Sc., P.Eng., Specialist Engineer in the Hydrotechnical department at BC Hydro, presents three case studies that highlight the application of FLOW-3D to different types of spillways and the importance of reliable prototype or physical hydraulic model data for numerical model calibration.

W.A.C. Bennett Dam
At W.A.C. Bennett Dam, differences in the spillway geometry between the physical hydraulic model from the 1960s and the prototype make it difficult to draw reliable conclusions on shock wave formation and chute capacity from physical model test results. The magnitude of shock waves in the concrete-lined spillway chute are strongly influenced by a 44% reduction in the chute width downstream of the three radial gates at the headworks, as well as the relative openings of the radial gates. The shock waves lead to locally higher water levels that have caused overtopping of the chute walls under certain historical operations.Prototype spill tests for discharges up to 2,865 m3/s were performed in 2012 to provide surveyed water surface profiles along chute walls, 3D laser scans of the water surface in the chute and video of flow patterns for FLOW-3D model calibration. Excellent agreement was obtained between the numerical model and field observations, particularly for the location and height of the first shock wave at the chute walls (Figure 1).

W.A.C에서 Bennett Dam, 1960년대의 물리적 수력학 모델과 프로토타입 사이의 여수로 형상의 차이로 인해 물리적 모델 테스트 결과에서 충격파 형성 및 슈트 용량에 대한 신뢰할 수 있는 결론을 도출하기 어렵습니다. 콘크리트 라이닝 방수로 낙하산의 충격파 크기는 방사형 게이트의 상대적인 개구부뿐만 아니라 헤드워크에 있는 3개의 방사형 게이트 하류의 슈트 폭이 44% 감소함에 따라 크게 영향을 받습니다. 충격파는 특정 역사적 작업에서 슈트 벽의 범람을 야기한 국부적으로 더 높은 수위로 이어집니다. 최대 2,865m3/s의 배출에 대한 프로토타입 유출 테스트가 2012년에 수행되어 슈트 벽을 따라 조사된 수면 프로필, 3D 레이저 스캔을 제공했습니다. FLOW-3D 모델 보정을 위한 슈트의 수면 및 흐름 패턴 비디오. 특히 슈트 벽에서 첫 번째 충격파의 위치와 높이에 대해 수치 모델과 현장 관찰 간에 탁월한 일치가 이루어졌습니다(그림 1).
Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway.
Figure 1. Comparison between prototype observations and FLOW-3D for a spill discharge of 2,865 m^3/s at Bennett Dam spillway.

The calibrated FLOW-3D model confirmed that the design flood could be safely passed without overtopping the spillway chute walls as long as all three radial gates are opened as prescribed in existing operating orders with the outer gates open more than the inner gate.

The CFD model also provided insight into the concrete damage in the spillway chute. Cavitation indices computed from FLOW-3D simulation results were compared with empirical data from the USBR and found to be consistent with the historical performance of the spillway. The numerical analysis supported field inspections, which concluded that deterioration of the concrete conditions in the chute is likely not due to cavitation.

Strathcona Dam
FLOW-3D was used to investigate poor approach conditions and uncertainties with the rating curves for Strathcona Dam spillway, which includes three vertical lift gates on the right abutment of the dam. The rating curves for Strathcona spillway were developed from a combination of empirical adjustments and limited physical hydraulic model testing in a flume that did not include geometry of the piers and abutments.

Numerical model testing and calibration was based on comparisons with prototype spill observations from 1982 when all three gates were fully open, resulting in a large depression in the water surface upstream of the leftmost bay (Figure 2). The approach flow to the leftmost bay is distorted by water flowing parallel to the dam axis and plunging over the concrete retaining wall adjacent to the upstream slope of the earthfill dam. The flow enters the other two bays much more smoothly. In addition to very similar flow patterns produced in the numerical model compared to the prototype, simulated water levels at the gate section matched 1982 field measurements to within 0.1 m.

보정된 FLOW-3D 모델은 외부 게이트가 내부 게이트보다 더 많이 열려 있는 기존 운영 명령에 규정된 대로 3개의 방사형 게이트가 모두 열리는 한 여수로 낙하산 벽을 넘지 않고 설계 홍수를 안전하게 통과할 수 있음을 확인했습니다.

CFD 모델은 방수로 낙하산의 콘크리트 손상에 대한 통찰력도 제공했습니다. FLOW-3D 시뮬레이션 결과에서 계산된 캐비테이션 지수는 USBR의 경험적 데이터와 비교되었으며 여수로의 역사적 성능과 일치하는 것으로 나타났습니다. 수치 분석은 현장 검사를 지원했으며, 슈트의 콘크리트 상태 악화는 캐비테이션 때문이 아닐 가능성이 높다고 결론지었습니다.

Strathcona 댐
FLOW-3D는 Strathcona Dam 여수로에 대한 등급 곡선을 사용하여 열악한 접근 조건과 불확실성을 조사하는 데 사용되었습니다. 여기에는 댐의 오른쪽 접합부에 3개의 수직 리프트 게이트가 포함되어 있습니다. Strathcona 여수로에 대한 등급 곡선은 경험적 조정과 교각 및 교대의 형상을 포함하지 않는 수로에서 제한된 물리적 수리 모델 테스트의 조합으로 개발되었습니다.

수치 모델 테스트 및 보정은 세 개의 수문이 모두 완전히 개방된 1982년의 프로토타입 유출 관측과의 비교를 기반으로 했으며, 그 결과 가장 왼쪽 만의 상류 수면에 큰 함몰이 발생했습니다(그림 2). 최좌단 만으로의 접근 흐름은 댐 축과 평행하게 흐르는 물과 흙채움댐의 상류 경사면에 인접한 콘크리트 옹벽 위로 떨어지는 물에 의해 왜곡됩니다. 흐름은 훨씬 더 원활하게 다른 두 베이로 들어갑니다. 프로토타입과 비교하여 수치 모델에서 생성된 매우 유사한 흐름 패턴 외에도 게이트 섹션에서 시뮬레이션된 수위는 1982년 현장 측정과 0.1m 이내로 일치했습니다.

Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.
Figure 2. Prototype observations and FLOW-3D results for a Strathcona Dam spill in 1982 with all three gates fully open.

The calibrated CFD model produces discharges within 5% of the spillway rating curve for the reservoir’s normal operating range with all gates fully open. However, at higher reservoir levels, which may occur during passage of large floods (as shown in Figure 3), the difference between simulated discharges and the rating curves are greater than 10% as the physical model testing with simplified geometry and empirical corrections did not adequately represent the complex approach flow patterns. The FLOW-3D model provided further insight into the accuracy of rating curves for individual bays, gated conditions and the transition between orifice and free surface flow.

보정된 CFD 모델은 모든 게이트가 완전히 열린 상태에서 저수지의 정상 작동 범위에 대한 여수로 등급 곡선의 5% 이내에서 배출을 생성합니다. 그러나 대규모 홍수가 통과하는 동안 발생할 수 있는 더 높은 저수지 수위에서는(그림 3 참조) 단순화된 기하학과 경험적 수정을 사용한 물리적 모델 테스트가 그렇지 않았기 때문에 모의 배출과 등급 곡선 간의 차이는 10% 이상입니다. 복잡한 접근 흐름 패턴을 적절하게 표현합니다. FLOW-3D 모델은 개별 베이, 게이트 조건 및 오리피스와 자유 표면 흐름 사이의 전환에 대한 등급 곡선의 정확도에 대한 추가 통찰력을 제공했습니다.

Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.
Figure 3. FLOW-3D results for Strathcona Dam spillway with all gates fully open at an elevated reservoir level during passage of a large flood. Note the effects of poor approach conditions and pier overtopping at the leftmost bay.

John Hart Dam
The John Hart concrete dam will be modified to include a new free crest spillway to be situated between an existing gated spillway and a low level outlet structure that is currently under construction. Significant improvements in the design of the proposed spillway were made through a systematic optimization process using FLOW-3D.

The preliminary design of the free crest spillway was based on engineering hydraulic design guides. Concrete apron blocks are intended to protect the rock at the toe of the dam. A new right training wall will guide the flow from the new spillway towards the tailrace pool and protect the low level outlet structure from spillway discharges.

FLOW-3D model results for the initial and optimized design of the new spillway are shown in Figure 4. CFD analysis led to a 10% increase in discharge capacity, significant decrease in roadway impingement above the spillway crest and improved flow patterns including up to a 5 m reduction in water levels along the proposed right wall. Physical hydraulic model testing will be used to confirm the proposed design.

존 하트 댐
John Hart 콘크리트 댐은 현재 건설 중인 기존 배수로와 저층 배수로 사이에 위치할 새로운 자유 마루 배수로를 포함하도록 수정될 것입니다. FLOW-3D를 사용한 체계적인 최적화 프로세스를 통해 제안된 여수로 설계의 상당한 개선이 이루어졌습니다.

자유 마루 여수로의 예비 설계는 엔지니어링 수력학 설계 가이드를 기반으로 했습니다. 콘크리트 앞치마 블록은 댐 선단부의 암석을 보호하기 위한 것입니다. 새로운 오른쪽 훈련 벽은 새 여수로에서 테일레이스 풀로 흐름을 안내하고 여수로 배출로부터 낮은 수준의 배출구 구조를 보호합니다.

새 여수로의 초기 및 최적화된 설계에 대한 FLOW-3D 모델 결과는 그림 4에 나와 있습니다. CFD 분석을 통해 방류 용량이 10% 증가하고 여수로 마루 위의 도로 충돌이 크게 감소했으며 최대 제안된 오른쪽 벽을 따라 수위가 5m 감소합니다. 제안된 설계를 확인하기 위해 물리적 수압 모델 테스트가 사용됩니다.

Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.
Figure 4. FLOW-3D model results for the preliminary and optimized layout of the proposed spillway at John Hart Dam.

Conclusion

BC Hydro has been using FLOW-3D to investigate a wide range of challenging hydraulics problems for different types of spillways and water conveyance structures leading to a greatly improved understanding of flow patterns and performance. Prototype data and reliable physical hydraulic model testing are used whenever possible to improve confidence in the numerical model results.

다양한 유형의 여수로 및 물 수송 구조로 인해 흐름 패턴 및 성능에 대한 이해가 크게 향상되었습니다. 프로토타입 데이터와 신뢰할 수 있는 물리적 유압 모델 테스트는 수치 모델 결과의 신뢰도를 향상시키기 위해 가능할 때마다 사용됩니다.

About Flow Science, Inc.
Based in Santa Fe, New Mexico USA, Flow Science was founded in 1980 by Dr. C. W. (Tony) Hirt, who was one of the principals in pioneering the “Volume-of-Fluid” or VOF method while working at the Los Alamos National Lab. FLOW-3D is a direct descendant of this work, and in the subsequent years, we have increased its sophistication with TruVOF, boasting pioneering improvements in the speed and accuracy of tracking distinct liquid/gas interfaces. Today, Flow Science products offer complete multiphysics simulation with diverse modeling capabilities including fluid-structure interaction, 6-DoF moving objects, and multiphase flows. From inception, our vision has been to provide our customers with excellence in flow modeling software and services.

Fig. 1. Schematic of the hydrogen storage vessel.

Simulation and evaluation of a hydrogen storage system using hydrogen storage alloy for a chemical CO2 fixation and utilization system

화학적 CO 2 고정 및 이용 시스템 을 위한 수소 저장 합금을 이용한 수소 저장 시스템의 시뮬레이션 및 평가

K.NishimuraaC.InazumiaK.OgurobI.UeharacY.ItohdS.FujitanidI.YonezudaResearch Institute of Innovative Technology for the Earth, Ikeda City, Osaka 563-8577, JapanbOsaka National Research Institute, 1-8-31, Midorigaoka, Ikeda City, Osaka 563-8577, JapancToyama Industrial Technology Center, 150, Futagami-machi, Takaoka City, Toyama 933-0981, JapandSanyo Electric Co. Ltd, 1-18-13, Hashiridani, Hirakata-City, Osaka 573-8534, Japan

https://doi.org/10.1016/S0360-3199(00)00008-2Get rights and content

Abstract

Two-dimensional model and simulation programs for designing a hydrogen storage vessel using hydrogen absorbing alloy with tubular heat exchanger were developed with the “Flow-3D” program in which physical properties of the hydrogen storage alloy were incorporated. The calculated results showed good agreement with experimental data obtained from 10 Nm3 scale hydrogen storage vessel with MmNi4.64Al0.36 alloy. It was concluded that this simulation program could be an adequate tool to design a practical scale hydrogen storage system for hydrogen from solid polymer electrolyte water electrolysis and to evaluate its hydrogen storage performance.

관형 열교환기를 갖는 수소흡수합금을 이용한 수소저장용기 설계를 위한 2차원 모델 및 시뮬레이션 프로그램은 수소저장합금의 물성을 반영한 “Flow-3D” 프로그램으로 개발하였다. 계산된 결과는 MmNi 4.64 Al 0.36 합금 이 있는 10 Nm 3 규모의 수소 저장 용기 에서 얻은 실험 데이터와 잘 일치하는 것으로 나타났습니다. 이 시뮬레이션 프로그램은 고체 고분자 전해질 물 전기분해에서 수소를 위한 실용적인 규모의 수소 저장 시스템을 설계하고 수소 저장 성능을 평가하는 데 적절한 도구가 될 수 있다는 결론을 내렸습니다.

    Keywords

    Hydrogen storage alloy, Chemical CO2 fixation and utilization systems, Simulation, Hydrogen storage vessel

    Fig. 1. Schematic of the hydrogen storage vessel.
    Fig. 1. Schematic of the hydrogen storage vessel.
    Fig. 2. Cross-section of the reaction bed, tube exchangers and thermocouples (A±L).
    Fig. 2. Cross-section of the reaction bed, tube exchangers and thermocouples (A±L).

    References

    [1] Masuda S. In: Book of abstracts of second international conference on carbon dioxide removal, 1994. p. 24±7.
    [2] Mayer U, Groll M, Supper W. J Less-Common Metals 1987;131:235±44.
    [3] Choi H, Mills AF. Int J Heat Mass Transfer 1990;33:1281±8.
    [4] Sun DW, Deng SJ. J Less-Common Metals 1989;155:271±9.
    [5] Sun DW, Deng SJ. Int J Hydrogen Energy 1990;15:807± 16.
    [6] Jemini A, Nasrallah B. Int J Hydrogen Energy 1995;20:43±52.
    [7] Fisher PW, Watson JS. Int J Hydrogen Energy 1983;8:109±19.
    [8] Suda S, Kobayashi N, Morishita E, Takemoto N. J Less-Common Metals 1983;89:325±32.
    [9] Fujitani S, Nakamura H, Furukawa A, Nasako K, Satoh K, Imoto T, Saito T, Yonezu I. Z Phys Chem Bd
    1993;179:27.
    [10] Hahne E, Kallweit J. Int J Hydrogen Energy 1998;23:107±14.
    [11] Pons M, Dantzer P. J Less-Common Metals 1991;172(174):1147±56.
    [12] Pons M, Dantzer P, Guilleminot JJ. Int J Heat Mass Transfer 1993;36:2635±46.
    [13] Evance MJB, Everett DH. J Less-Common Metals 1976;49:13.
    [14] Pons M, Dantzer P. Int J Hydrogen Energy 1994;19:611±6.

    Best Ultrabooks and Premium Laptops 2021

    FLOW-3D 해석용 노트북 선택 가이드

    2023년 01월 11일

    본 자료는 IT WORLD에서 인용한 자료입니다.

    일반적으로 수치해석을 주 업무로 사용하는 경우 노트북을 사용하는 경우는 그리 많지 않습니다. 그 이유는 CPU 성능을 100%로 사용하는 해석 프로그램의 특성상 발열과 부품의 성능 측면에서 데스크탑이나 HPC의 성능을 따라 가기는 어렵기 때문입니다.

    그럼에도 불구하고, 이동 편의성이나 발표,  Demo 등의 업무 필요성이 자주 있는 경우, 또는 계산 시간이 짧은 경량 해석을 주로 하는 경우, 노트북이 주는 이점이 크기 때문에 수치해석용 노트북을 고려하기도 합니다.

    보통 수치해석용 컴퓨터를 검토하는 경우 CPU의 Core수나 클럭, 메모리, 그래픽카드 등을 신중하게 검토하게 되는데 모든 것이 예산과 직결되어 있기 때문입니다.  따라서 해석용 컴퓨터 구매 시 어떤 것을 선정 우선순위에 두는지에 따라 사양이 달라지게 됩니다.

    해석용으로 노트북을 고려하는 경우, 보통 CPU의 클럭은 비교적 선택 기준이 명확합니다. 메모리 또한 용량에 따라 가격이 정해지기 때문에 이것도 비교적 명확합니다. 나머지 가격에 가장 큰 영향을 주는 것이 그래픽카드인데, 이는 그래픽 카드의 경우 일반적인 게임용이나 포토샵으로 일반적인 이미지 처리 작업을 수행하는 그래픽카드와 3차원 CAD/CAE에 사용되는 업무용 그래픽 카드는 명확하게 분리되어 있고, 이는 가격 측면에서 매우 차이가 많이 납니다.

    통상 게임용 그래픽카드는 수치해석의 경우 POST 작업시 문제가 발생하는 경우가 종종 발생하기 때문에 일반적으로 선택 우선 순위에서 충분한 확인을 한 후 구입하는 것이 좋습니다.

    FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 적합합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 NVIDIA의 Quadro K 시리즈와 AMD의 Fire Pro W 시리즈입니다.

    특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

    MSI, CES 2023서 인텔 코어 i9-13980HX 탑재 노트북 벤치마크 공개

    2023.01.11

    Mark Hachman  | PCWorld

    MSI가 새로운 노트북 CPU 벤치마크, 그리고 그 CPU가 내장돼 있는 신제품 노트북 제품군을 모두 CES 2023에서 공개했다. CES에서 인텔은 노트북용 13세대 코어 칩, 코드명 랩터 레이크와 핵심 제품인 코어 i9-13980HX를 발표했다.

    ⓒ PCWorld

    새로운 노트북용 13세대 코어 칩이 게임 플레이에서 12% 더 빠르다는 정도의 약간의 정보는 이미 알려져 있다. 사용자가 기다리는 것은 실제 CPU가 탑재된 노트북에서의 성능이지만 보통 벤치마크는 제품 출시가 임박해서야 공개되는 것이 보통이다. 올해는 다르다.

    CES 2023에서 MSI는 인텔 최고급 제품군인 코어 i9-13980HX 프로세서가 탑재된 타이탄 GT77 HX과 레이더 GE78 HX를 공개했다. 이례적으로 여기에 더해 PCI 익스프레서 5 SSD의 실제 성능을 측정하는 크리스털디스크마크, 모바일 프로세서 실행 속도를 측정하는 시네벤치 벤치마크 점수도 함께 제공했다. 다음 영상의 결과부터 말하자면 인텔 최신 프로세서를 큰 폭으로 따돌릴 만한 수치다.

    https://www.youtube.com/embed/3kvrOIEOUlw

    ⓒ PCWorld

    MSI는 레이더 GE78 HX 외에도 레이더 GE68 HX 그리고 게이밍 노트북 같지 않은 외관의 스텔스 16 스튜디오, 스텔스 14, 사이보그 14 등 2023년에 출시될 다른 노트북도 전시했다. 오래된 PC 애호가라면 MSI 노트북 전면을 장식한 화려한 복고풍의 라이트 브라이트(Lite Brite) LED를 반가워할지도 모른다. 바닥면 섀시가 투명한 플라스틱 소재로 MSI 로고가 새겨져 있는 제품도 있다. 상세한 가격, 출시일, 사양 등은 추후 공개 예정이다.
    editor@itworld.co.kr 

    원문보기:
    https://www.itworld.co.kr/news/272199#csidx870364b15ea6aa28b53a990bc5c0697 

    ‘코어 i7 vs. 코어 i9’ 나에게 맞는 고성능 노트북 CP

    2021.06.14

    고성능 노트북을 구매할 때는 코어 i7과 코어 i9 사이에서 선택의 갈림길에 서게 된다. 코어 i7 CPU도 강력하지만 코어 i9는 최고의 성능을 위해 만들어진 CPU이며 보통 그에 상응하는 높은 가격대로 판매된다.

    CPU에 초점을 둔다면 관건은 성능이다. 성능을 좌우하는 두 가지 주요소는 CPU의 동작 클록 속도(MHz), 그리고 탑재된 연산 코어의 수다. 그러나 노트북에서 한 가지 중요한 제약 요소는 냉각이다. 냉각이 제대로 되지 않으면 고성능도 쓸모가 없다. 가장 적합한 노트북 CPU를 결정하는 데 도움이 되도록 인텔의 지난 3개 세대 CPU의 코어 i7과 i9에 대한 정보를 모았다. 최신 세대부터 시작해 역순으로 살펴보자.

    11세대: 코어 i9 vs. 코어 i7

    인텔의 11세대 타이거 레이크(Tiger Lake) H는 한 가지 큰 이정표를 달성했다. 인텔이 2015년부터 H급 CPU에 사용해 온 14nm 공정을 마침내 최신 10nm 슈퍼핀(SuperFin) 공정으로 바꾼 것이다. 오랫동안 기다려온 변화다.

    인텔이 자랑할 만한 10nm 고성능 칩을 내놓자 타이거 레이크 H를 장착한 노트북도 속속 발표됐다. 얇고 가볍고 예상외로 가격도 저렴한 에이서 프레데터 트라이톤(Acer Predator Triton) 300 SE를 포함해 일부는 벌써 매장에 출시됐다. 모든 타이거 레이크 H 칩이 8코어 CPU라는 점도 달라진 부분이다. 이전 세대의 경우 같은 제품군 내에서 코어 수에 차이를 둬 성능 기대치를 구분했다.

    클록 차이도 크지 않다. 코어 i7-11800H의 최대 클록은 4.6GHz, 코어 i9-11980HK는 5GHz로, 클록 속도 증가폭은 약 8.6% 차이다. 나쁘지 않은 수치지만 둘 다 8코어 CPU임을 고려하면 대부분의 사용자에게 코어 i9는 큰 매력은 없다.

    다만 코어 i9에 유리한 부분을 하나 더 꼽자면 코어 i9-11980HK가 65W의 열설계전력(TDP)을 옵션으로 제공한다는 점이다. 높은 TDP는 최상위 코어 i9에만 제공되는데, 이는 전력 및 냉각 요구사항을 충족하는 노트북에서는 코어 i7 버전보다 더 높은 지속 클록 속도를 제공할 수 있음을 의미한다.

    대신 이런 노트북은 두껍고 크기도 클 가능성이 높다. 따라서 두 개의 얇은 랩톱 중에서(하나는 코어 i9, 하나는 코어 i7) 고민하는 사람에겐 열 및 전력 측면의 여유분은 두께와 크기를 희생할 만큼의 가치는 없을 것이다.

    *11세대의 승자: 대부분의 사용자에게 코어 i7

    10세대: 코어 i9 vs. 코어 i7

    인텔은 10세대 코멧 레이크(Comet Lake) H 제품군에서 14nm를 고수했다. 그 대신 코어 i9 CPU 외에 코어 i7에도 8코어 CPU를 도입, 사용자가 비싼 최상위 CPU를 사지 않고도 더 뛰어난 성능을 누릴 수 있게 했다.

    11세대 노트북이 나오기 시작했지만 10세대 CPU 제품 중에서도 아직 괜찮은 제품이 많다. 예를 들어 MSI GE76 게이밍 노트북은 빠른 CPU와 고성능 155W GPU를 탑재했고, 전면 모서리에는 RGB 라이트가 달려 있다.

    11세대 칩과 마찬가지로 코어와 클록 속도의 차이가 크지 않으므로 대부분의 사용자에게 코어 i7과 코어 i9 간의 차이는 미미하다. 코어 i9-10980HK의 최대 부스트 클록은 5.3GHz, 코어 i7-10870H는 5GHz로, 두 칩의 차이는 약 6%다. PC를 최대 한계까지 사용해야 하는 경우가 아니라면 더 비싼 비용을 들여 10세대 코어 i9를 구매할 이유가 없다.

    *10세대 승자: 대부분의 사용자에게 코어 i7

    9세대: 코어 i9 대 코어 i7

    인텔은 9세대 커피 레이크 리프레시(Coffee Lake Refresh) 노트북 H급 CPU에서 14nm 공정을 계속 유지했다. 코어 i9는 더 높은 클록 속도(최대 5GHz)를 제공하며 8개의 CPU 코어를 탑재했다. 물론 이 칩은 2년 전에 출시됐지만 인텔이 설계를 도운 XPG 제니아(Xenia) 15 등 아직 괜찮은 게이밍 노트북이 있다. 얇고 가볍고 빠르며 엔비디아 RTX GPU를 내장했다.

    8코어 4.8GHz 코어 i9-9880HK와 4.6GHz 6코어 코어 i7-9850의 클록 속도 차이는 약 4%로, 실제 사용 시 유의미한 차이로 이어지는 경우는 극소수다. 두 CPU 모두 기업용 노트북에 많이 사용됐다. 대부분의 소비자용 노트북에는 8코어 5GHz 코어 i9-9880HK와 6코어 4.5GHz 코어 i7-9750H가 탑재됐다. 이 두 CPU의 클록 차이는 약 11%로, 이 정도면 유의미한 차이지만 마찬가지로 대부분의 경우 실제로 체감하기는 어렵다.

    그러나 코어 수의 차이는 멀티 스레드 애플리케이션에서 큰 체감 효과로 이어지는 경우가 많다. 3D 모델링 테스트인 씨네벤치(Cinebench) R20에서 코어 i9-9980HK를 탑재한 구형 XPS 15의 점수는 코어 i7-9750H를 탑재한 게이밍 노트북보다 42% 더 높았다. 8코어 코어 i9의 발열을 심화하는 무거운 부하에서는 성능 차이가 약 7%로 줄어들었다. 여기에는 노트북의 설계가 큰 영향을 미칠 것이다. 어쨌든 일부 상황에서는 8코어가 6코어보다 유리하다.

    또한 수치해석의 경우 결과를 분석하는 작업중의 많은 부분이 POST 작업으로 그래픽처리가 필요하다. 따라서 아래 영상편집을 위한 노트북에 대한 자료도 선택에 도움이 될것으로 보인다.

    영상 편집을 위한 최고의 노트북 9선

    Brad Chacos, Ashley Biancuzzo, Sam Singleton | PCWorld

    2022.12.29

    영상을 편집하다 보면 컴퓨터의 여러 리소스를 집약적으로 사용하기 마련이다. 그래서 영상 편집은 대부분 데스크톱 PC에서 하는 경우가 많지만, 노트북에서 영상을 편집하려 한다면 PC만큼 강력한 사양이 뒷받침되어야 한다. 

    ⓒ Gordon Mah Ung / IDG

    영상 편집용 노트북을 구매할 때 가장 비싼 제품을 선택할 필요는 없다. 사용 환경에 맞게 프로세서, 디스플레이의 품질, 포트 종류 등을 다양하게 고려해야 한다. 다음은 영상 편집에 최적화된 노트북 제품이다. 추천 제품을 확인한 후 영상 편집용 노트북을 테스트하는 팁도 참고하자. 

    1. 영상 편집용 최고의 노트북, 델 XPS 17(2022)

    ⓒ  IDG

    장점
    • 가격 대비 강력한 기능
    • 밝고 풍부한 색채의 대형 디스플레이
    • 썬더볼트 4 포트 4개 제공
    • 긴 배터리 수명 
    • 시중에서 가장 빠른 GPU인 RTX 3060

    단점
    • 무겁고 두꺼움
    • 평범한 키보드
    • USB-A, HDMI, 이더넷 미지원

    델 XPS 17(2022)이야말로 콘텐츠 제작에 최적화된 노트북이다. 인텔 12세대 코어 i7-12700H 프로세서 및 엔비디아 지포스 RTX 3060는 편집을 위한 뛰어난 성능을 제공한다. 1TB SSD도 함께 지원되기에 데이터를 옮길 때도 편하다. 

    XPS 17은 SD카드 리더, 여러 썬더볼트 4 포트, 3840×2400 해상도의 17인치 터치스크린 패널, 16:10 화면 비율과 같은 영상 편집자에게 필요한 기능을 포함한다. 무게도 2.5kg 대로 비교적 가볍다. 배터리 지속 시간은 한번 충전 시 11시간인데, 이전 XPS 17 버전보다 1시간 이상 늘어난 수치다. 

    2. 영상 편집에 최적화된 스크린, 델 XPS 15 9520

    ⓒ  IDG

    장점
    • 뛰어난 OLED 디스플레이
    • 견고하고 멋진 섀시(Chassis)
    • 강력한 오디오
    • 넓은 키보드 및 터치패드

    단점
    • 다소 부족한 화면 크기
    • 실망스러운 배터리 수명
    • 시대에 뒤떨어진 웹캠
    • 제한된 포트

    델 XPS 15 9520은 놀라운 OLED 디스플레이를 갖추고 있으며, 최신 인텔 코어 i7-12700H CPU 및 지포스 RTX 3050 Ti 그래픽이 탑재되어 있다. 컨텐츠 제작 및 영상 편집용으로 가장 선호하는 제품이다. 시스템도 좋지만 투박하면서 금속 소재로 이루어진 외관이 특히 매력적이다. 

    15인치 노트북이지만 매일 갖고 다니기에 다소 무거운 것은 단점이다. XPS 17 모델에서 제공되는 포트도 일부 없다. 그러나 멋진 OLED 디스플레이가 단연 돋보이며, 3456X2160 해상도, 16:10 화면 비율, 그리고 매우 선명하고 정확한 색상을 갖추고 있어 좋다. 

    3. 최고의 듀얼 모니터 지원, 에이수스 젠북 프로 14 듀오 올레드

    ⓒ IDG

    장점
    • 놀라운 기본 디스플레이와 보기 쉬운 보조 디스플레이 
    • 탁월한 I/O 옵션 및 무선 연결
    • 콘텐츠 제작에 알맞은 CPU 및 GPU 성능 

    단점
    • 생산성 노트북 치고는 부족한 배터리 수명
    • 작고 어색하게 배치된 트랙패드
    • 닿기 어려운 포트 위치

    에이수스 젠북 프로 14 듀오(Asus Zenbook Pro 14 Duo OLED)는 일반적이지 않은 노트북이다. 일단 사양은 코어 i7 프로세서, 지포스 RTX 3050 그래픽, 16GB DDR5 메모리, 빠른 1TB NVMe SSD를 포함해 상당한 성능을 자랑한다. 또한 초광도의 547니트로 빛을 발하는 한편 DCI-P3 색영역의 100%를 커버하는 14.5인치 4K 터치 OLED 패널을 갖추고 있다. 사실상 콘텐츠 제작자를 위해 만들어진 제품이라 볼 수 있다.

    가장 흥미로운 부분은 키보드 바로 위에 위치한 12.7인치 2880×864 스크린이다. 윈도우에서는 해당 모니터를 보조 모니터로 간주하며, 사용자는 번들로 제공된 에이수스 소프트웨어를 사용해 트랙패드로 사용하거나 어도비 앱을 위한 터치 제어 패널을 표시할 수 있다. 어떤 작업이든 유용하게 써먹을 수 있다.

    젠북 프로 14 듀오 올레드는 기본적으로 휴대용이자 중간급 워크스테이션이다. 단, 배터리 수명은 평균 수준이기 때문에 중요한 작업 수행이 필요한 경우, 반드시 충전 케이블을 가지고 다녀야 한다. 그럼에도 불구하고 젠북 프로 14 듀오 올레드는 3D 렌더링 및 인코딩과 같은 작업에서 탁월한 성능을 보여 콘텐츠 제작자들에게 맞춤화 된 컴퓨터이다. 듀얼 스크린은 역대 최고의 기능이다.

    4. 영상 편집하기 좋은 포터블 노트북, 레이저 블레이드 14(2021)

    ⓒ IDG

    장점
    • AAA 게임에서 뛰어난 성능
    • 훌륭한 QHD 패널
    • 유난히 적은 소음 

    단점
    • 700g으로 무거운 AC 어댑터
    • 비싼 가격
    • 썬더볼트 4 미지원

    휴대성이 핵심 고려 사항이라면, 레이저 블레이드 14(Razer Blade 14) (2021)를 선택해 보자. 노트북 두께는 1.5cm, 무게는 1.7kg에 불과해 비슷한 수준의 노트북보다 훨씬 가볍다. 사양은 AMD의 8-코어 라이젠 9 5900HX CPU, 엔비디아의 8GB 지포스 RTX 3080, 1TB NVMe SSD, 16GB 메모리를 탑재하고 있어 사양도 매우 좋다. 

    그러나 휴대성을 대가로 몇 가지 이점을 포기해야 할 수 있다. 일단 14인치 IPS 등급 스크린은 공장에서 보정된 상태로 제공되지만, 최대 해상도는 2560×1440다. 또 풀 DCI-P3 색영역을 지원하지만 4K 영상 편집은 불가능하다. 거기에 레이저 블레이드 14는 SD 카드 슬롯도 없다. 다만 편집 및 렌더링을 위한 강력한 성능을 갖추고 있고 가방에 쉽게 넣을 수 있는 제품인 것은 분명하다. 

    5. 배터리 수명이 긴 노트북, 델 인스피론 16

    ⓒ Dell

    장점
    • 넉넉한 16인치 16:10 디스플레이
    • 긴 배터리 수명
    • 경쟁력 있는 애플리케이션 성능 
    • 편안한 키보드 및 거대한 터치패드 
    • 쿼드 스피커(Quad speakers)

    단점
    • GPU 업그레이드 어려움
    • 512GB SSD 초과 불가
    • 태블릿 모드에서는 어색하게 느껴질 수 있는 큰 스크린 

    긴 배터리 수명을 가장 최우선으로 고려한다면, 델 인스피론 16(Dell Inspiron 16)을 살펴보자. 콘텐츠 제작 작업을 하며테스트해보니, 인스피론 16은 한 번 충전으로 16.5시간 동안 이용할 수 있다. 외부에서 작업을 마음껏 편집할 수 있는 시간이다. 그러나 무거운 배터리로 인해 무게가 2.1 kg에 달하므로 갖고 다니기에 적합한 제품은 아니다. 

    가격은 저렴한 편이나 몇 가지 단점이 있다. 일단 인텔 코어 i7-1260P CPU, 인텔 아이리스 Xe 그래픽, 16GB 램, 512GB SSD 스토리지를 탑재하고 있다. 이 정도 사양으로 영상 편집 프로젝트 대부분을 작업할 수 있으나, 스토리지 용량이 부족하기 때문에 영상 파일을 저장할 경우 외장 드라이브가 필요하다. 그러나 델 인스피론 16이 진정으로 빛을 발하는 부분은 단연 배터리 수명이다. 또한 강력한 쿼드 스피커 시스템도 사용해 보면 만족할 것이다. 포트의 경우, USB 타입-C 2개, USB-A 3.2 Gen 1 1개, HDMI 1개, SD 카드 리더 1개, 3.5mm 오디오 잭 1개가 제공된다. 

    6. 게이밍과 영상 편집 모두에 적합한 노트북, MSI GE76 레이더

    ⓒ MSI

    장점
    • 뛰어난 성능을 발휘하는 12세대 코어 i9-12900HK
    • 팬 소음을 크게 줄이는 AI 성능 모드
    • 1080p 웹캠과 훌륭한 마이크 및 오디오로 우수한 화상 회의 경험 제공

    단점
    • 동일한 유형의 세 번째 버전
    • 어수선한 UI
    • 비싼 가격 

    사양이 제일 좋은 제품을 찾고 있을 경우, 크고 무거운 게이밍 노트북을 선택해 보자. MSI GE76 레이더(Raider)는 강력한 14-코어 인텔 코어 i9-12900HK 칩, 175와트의 엔비디아 RTX 3080 Ti가 탑재됐고, 충분한 내부 냉각 성능 덕분에 UL의 프로시온(Procyon) 벤치마크의 어도비 프리미어 테스트에서 다른 노트북보다 훨씬 뛰어난 성능을 보였다. MSI GE76 레이더는 심지어 고속 카드 전송을 위해 PCle 버스에 연결된 SD 익스프레스(SD Express) 카드 리더도 갖추고 있다.

    동일한 제품의 작년 모델은 게이머 중심의 360Hz 1080p 디스플레이를 지원한다. 영상 편집 과정에서는 그닥 이상적이지 않은 사양이다. 그러나 2022년의 12UHS 고급 버전은 4K, 120Hz 패널을 추가했는데, 이 패널은 콘텐츠 생성에 맞춰 튜닝 되지는 않았으나 17.3인치의 넓은 스크린 크기이기에 영상 편집자에게 꽤 유용하다. 

    7. 가성비 좋은 노트북, HP 엔비 14t-eb000(2021) 

    ⓒ IDG

    장점
    • 높은 가격 대비 우수한 성능
    • 환상적인 배터리 수명
    • 성능 조절이 감지되지 않을 정도의 저소음 팬 
    • 썬더볼트 4 지원

    단점
    • 약간 특이한 키보드 레이아웃
    • 비효율적인 웹캠의 시그니처 기능

    가장 빠른 영상 편집 및 렌더링을 원할 경우 하드웨어에 더 많은 비용을 들여야 하지만, 예산이 넉넉하지 않을 때가 있다. 이때 HP 엔비(Envy) 14 14t-eb000) (2021)를 이용해보면 좋다. 가격은 상대적으로 저렴한 편이고 견고한 기본 컨텐츠 제작에 유용하다. 

    엔트리 레벨의 지포스 GTX 1650 Ti GPU 및 코어 i5-1135G7 프로세서는 그 자체로 업계 최고 제품은 아니다. 하지만 일반적인 편집 작업을 충분히 수행할 수 있는 사양이다. 분명 가성비 좋은 제품이다. 14인치 1900×1200 디스플레이는 16:10 화면 비율로 생산성을 향상하고, 공장 색 보정과 DCI-P3는 지원하지 않지만 100% sRGB 지원을 제공한다. 그뿐만 아니라, HP 엔비 14의 경우 중요한 SD 카드 및 썬더볼트 포트가 포함되며, 놀라울 정도로 조용하게 실행된다. 

    8. 컨텐츠 제작에 알맞은 또다른 게이밍 노트북, 에이수스 ROG 제피러스 S17

    장점
    • 뛰어난 CPU 및 GPU 성능
    • 강력하고 혁신적인 디자인
    • 편안한 맞춤형 키보드

    단점
    • 약간의 압력이 필요한 트랙패드
    • 상당히 높은 가격

    에이수스 ROG 제피러스(Zephyrus) S17은 영상 편집자의 궁극적인 꿈이다. 이 노트북은 초고속 GPU 및 CPU 성능과 함께 120Hz 화면 재생률을 갖춘 놀라운 17.3인치 4K 디스플레이를 탑재하고 있다. 견고한 전면 금속 섀시, 6개의 스피커 사운드 시스템 및 맞춤형 키보드는 프리미엄급 경험을 더욱 향상한다. 거기다 SD 카드 슬롯 및 풍부한 썬더볼트 포트가 포함되어 있어 더욱 좋다. 그러나 이를 위해 상당한 비용을 지불해야 한다. 예산이 넉넉하고 최상의 제품을 원한다면 제피루스 S17을 선택하면 된다. 

    9. 강력한 휴대성을 가진 노트북, XPG 제니아 15 KC 

    ⓒ XPG 

    장점
    • 가벼운 무게
    • 조용함
    • 상대적으로 빠른 속도

    단점
    • 중간 수준 이하의 RGB
    • 평범한 오디오 성능
    • 느린 SD 카드 리더 

    사양이 좋은 노트북의 경우, 대부분 부피가 크고 무거워서 종종 2.2kg 또는 2.7kg를 넘기도 한다. XPG 제니아 15 KC(XPG Xenia 15 KC)만은 예외다. XPG 제니아 15 KC의 무게는 1.8kg가 조금 넘는 수준으로, 타제품에 비해 상당히 가볍다. 또한 소음도 별로 없다. 원래 게이밍 노트북 자체가 소음이 크기에 비교해보면 큰 장점이 될 수 있다. 1440p 디스플레이와 상대적으로 느린 SD 카드 리더 성능으로 인해 일부 콘텐츠 제작자들이 구매를 주저할 수 있으나, 조용하고 휴대하기 좋은 제품을 찾고 있다면 제니아 15 KC가 좋은 선택지다. 

    영상 편집 노트북 구매 시 고려 사항

    영상 편집 노트북 구매 시 고려해야 할 가장 중요한 사항은 CPU 및 GPU다. 하드웨어가 빨라질수록 편집 속도도 빨라진다. 필자는 UL 프로시온 영상 편집 테스트(UL Procyon Video Editing Test)를 통해 속도를 테스트해보았다. 이 벤치마크는 2개의 서로 다른 영상 프로젝트를 가져와 색상 그레이딩 및 전환과 같은 시각적 효과를 적용한 다음, 1080p와 4K 모두에서 H.264, H.265를 사용해 내보내는 작업을 어도비 프리미어가 수행하도록 한다. 

    ⓒ Gordon Mah Ung / IDG

    성능은 인텔의 11세대 프로세서를 실행하는 크고 무거운 노트북에서 가장 높았고, AMD의 비피 라이젠 9(beefy Ryzen 9) 프로세서를 탑재한 노트북이 바로 뒤를 이었다. 10세대 인텔 칩은 여전히 상당한 점수를 기록하고 있다. 위의 차트에는 없으나 새로운 인텔 12세대 노트북은 더 빨리 실행된다. 최고 성능의 노트북은 모두 최신 인텔 CPU 및 엔비디아의 RTX 30 시리즈 GPU를 결합했는데, 두 기업 모두 어도비 성능 최적화에 많은 시간 및 리소스를 투자했기 때문에 놀라운 일은 아니다. 

    GPU는 어도비 프리미어 프로에서 CPU보다 더 중요하지만, 매우 빠르게 수확체감 지점에 다다른다. 최고급 RTX 3080 그래픽을 사용하는 노트북은 RTX 3060 그래픽을 사용하는 노트북보다 영상 편집 속도가 더 빠르나, 속도 차이가 크지는 않다. 델 XPS 17 9710의 점수를 살펴보면, 지포스 RTX 3060 노트북 GPU는 MSI GE76 레이더의 가장 빠른 RTX 3080보다 14% 더 느릴 수 있다. 특히 GE76 레이더가 델 노트북에 비해 얼마나 더 크고 두꺼운지를 고려할 때 수치가 크지는 않다.

    일반적으로 그래픽과 영상 편집을 위해 적어도 RTX 3060을 갖추는 것을 권장한다. 그러나 영상 편집은 워크플로에 크게 의존한다. 특정 작업 및 도구는 CPU 집약적이거나 프리미어보다 GPU에 더 의존할 수 있다. 이 경우 원하는 요소의 우선순위를 조정하길 바란다. 앞서 언급한 목록은 기본적으로 여러 요소를 종합적으로 고려해서 만든 내용이다.

    인텔 및 엔비디아는 각각 퀵 싱크(Quick Sync) 및 쿠다(CUDA)와 같은 도구를 구축하는 데 수년을 보냈고, 이로 인해 많은 영상 편집 앱의 속도는 크게 향상될 수 있다. AMD 하드웨어는 영상 편집에 적합하나 특히 워크플로가 공급업체별 소프트웨어 최적화에 의존하는 경우, 특별한 이유가 없는 한 인텔 및 엔비디아를 사용하는 것을 추천한다. 

    영상 촬영 ⓒ Gordon Mah Ung/IDG

    그러나 내부 기능만 신경 써서는 안된다. PC월드의 영상 디렉터인 아담 패트릭 머레이는 “영상 편집에 이상적인 노트북에는 카메라로 촬영 중 영상 파일을 저장하는 SD 카드 리더가 포함되어 있다”라고 강조한다. 또한 머레이는 영상 편집에 이상적인 게임용 노트북에서 흔히 볼 수 있는 초고속 1080p 패널보다 4k, 60Hz 패널을 갖춘 노트북을 선택할 것을 추천한다.

    4K 영상을 잘 편집하려면 4K 패널이 필요하며, 초고속 화면 재생률은 게임에서처럼 영상 편집에는 아무런 의미가 없다. 예를 들어, 개인 유튜브 채널용으로 일상적인 영상만 만드는 경우 색상 정확도가 중요하지 않을 수 있다. 그러나 색상 정확도가 중요할 경우, 델타 E < 2 색상 정확도와 더불어 DCI-P3 색 영역 지원은 필수적이다. 

    게임용 노트북은 사양이 좋지만 콘텐츠 제작용으로는 조금 부족해 보일 수 있다. 게임용과 콘텐츠 제작용으로 함께 쓰는 노트북을 원한다면, 게임용으로 노트북 한 대를 구매하고, 색상을 정확히 파악하기 위한 모니터를 추가로 구매하는 것도 방법이다. 
    editor@itworld.co.kr

    원문보기:
    https://www.itworld.co.kr/topnews/269913#csidxa12f167cd9eef5abfb1b6d099fb54ea 

    그래픽 카드

    AMD FirePro Naver Shopping 검색 결과

    2021-12-15 기준

    현재 NVIDIA Quadro pro graphic card : 네이버 쇼핑 (naver.com)

    코어가 많은 그래픽카드의 경우 가격이 상상 이상으로 높습니다. 빠르면 빠를수록 좋겠지만 어디까지나 예산에 맞춰 구매를 해야 하는 현실을 감안할 수 밖에 없는 것 같습니다.

    한가지 유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 모델에 따라 다르기는 하지만, 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상이어야 하고 1GB이상을 권장합니다.


    2021-12-15 현재 그래픽카드의 성능 순위는 위와 다음과 같습니다.
    출처: https://www.videocardbenchmark.net/high_end_gpus.html

    주요 Notebook

    출시된 모든 그래픽 카드가 노트북용으로 장착되어 출시되지는 않기 때문에, 현재 오픈마켓 검색서비스를 제공하는 네이버에서 Lenovo Quadro 그래픽카드를 사용하는 노트북을 검색하면 아래와 같습니다. 검색 시점에 따라 상위 그래픽카드를 장착한 노트북의 대략적인 가격을 볼 수 있을 것입니다.

    <검색 방법>
    네이버 쇼핑 검색 키워드 : 컴퓨터 제조사 + 그래픽카드 모델 + NoteBook 형태로 검색
    Lenovo quadro notebook or HP quadro notebook 또는 Lenovo firepro notebook or HP firepro notebook


    ( 2021-12-15기준)

    대부분 검색 시점에 따라 최신 CPU와 최신 그래픽카드를 선택하여 검색을 하면 예산에 적당한 노트북을 자신에게 맞는 최상의 노트북을 어렵지 않게 선택할 수 있습니다.

    (주)에스티아이씨앤디 솔루션사업부

    이종 금속 인터커넥트의 펄스 레이저 용접을 위한 가공 매개변수 최적화

    Optimization of processing parameters for pulsed laser welding of dissimilar metal interconnects

    본 논문은 독자의 편의를 위해 기계번역된 내용이어서 자세한 내용은 원문을 참고하시기 바랍니다.

    NguyenThi TienaYu-LungLoabM.Mohsin RazaaCheng-YenChencChi-PinChiuc

    aNational Cheng Kung University, Department of Mechanical Engineering, Tainan, Taiwan

    bNational Cheng Kung University, Academy of Innovative Semiconductor and Sustainable Manufacturing, Tainan, Taiwan

    cJum-bo Co., Ltd, Xinshi District, Tainan, Taiwan

    Abstract

    워블 전략이 포함된 펄스 레이저 용접(PLW) 방법을 사용하여 알루미늄 및 구리 이종 랩 조인트의 제조를 위한 최적의 가공 매개변수에 대해 실험 및 수치 조사가 수행됩니다. 피크 레이저 출력과 접선 용접 속도의 대표적인 조합 43개를 선택하기 위해 원형 패킹 설계 알고리즘이 먼저 사용됩니다.

    선택한 매개변수는 PLW 프로세스의 전산유체역학(CFD) 모델에 제공되어 용융 풀 형상(즉, 인터페이스 폭 및 침투 깊이) 및 구리 농도를 예측합니다. 시뮬레이션 결과는 설계 공간 내에서 PLW 매개변수의 모든 조합에 대한 용융 풀 형상 및 구리 농도를 예측하기 위해 3개의 대리 모델을 교육하는 데 사용됩니다.

    마지막으로, 대체 모델을 사용하여 구성된 처리 맵은 용융 영역에 균열이나 기공이 없고 향상된 기계적 및 전기적 특성이 있는 이종 조인트를 생성하는 PLW 매개변수를 결정하기 위해 세 가지 품질 기준에 따라 필터링됩니다.

    제안된 최적화 접근법의 타당성은 최적의 용접 매개변수를 사용하여 생성된 실험 샘플의 전단 강도, 금속간 화합물(IMC) 형성 및 전기 접촉 저항을 평가하여 입증됩니다.

    결과는 최적의 매개변수가 1209N의 높은 전단 강도와 86µΩ의 낮은 전기 접촉 저항을 생성함을 확인합니다. 또한 용융 영역에는 균열 및 기공과 같은 결함이 없습니다.

    An experimental and numerical investigation is performed into the optimal processing parameters for the fabrication of aluminum and copper dissimilar lap joints using a pulsed laser welding (PLW) method with a wobble strategy. A circle packing design algorithm is first employed to select 43 representative combinations of the peak laser power and tangential welding speed. The selected parameters are then supplied to a computational fluidic dynamics (CFD) model of the PLW process to predict the melt pool geometry (i.e., interface width and penetration depth) and copper concentration. The simulation results are used to train three surrogate models to predict the melt pool geometry and copper concentration for any combination of the PLW parameters within the design space. Finally, the processing maps constructed using the surrogate models are filtered in accordance with three quality criteria to determine the PLW parameters that produce dissimilar joints with no cracks or pores in the fusion zone and enhanced mechanical and electrical properties. The validity of the proposed optimization approach is demonstrated by evaluating the shear strength, intermetallic compound (IMC) formation, and electrical contact resistance of experimental samples produced using the optimal welding parameters. The results confirm that the optimal parameters yield a high shear strength of 1209 N and a low electrical contact resistance of 86 µΩ. Moreover, the fusion zone is free of defects, such as cracks and pores.

    Fig. 1. Schematic illustration of Al-Cu lap-joint arrangement
    Fig. 1. Schematic illustration of Al-Cu lap-joint arrangement
    Fig. 2. Machine setup (MFQS-150W_1500W
    Fig. 2. Machine setup (MFQS-150W_1500W
    Fig. 5. Lap-shear mechanical tests: (a) experimental setup and specimen dimensions, and (b) two different failures of lap-joint welding.
N. Thi Tien et al.
    Fig. 5. Lap-shear mechanical tests: (a) experimental setup and specimen dimensions, and (b) two different failures of lap-joint welding. N. Thi Tien et al.
    Fig. 9. Simulation and experimental results for melt pool profile. (a) Simulation results for melt pool cross-section, and (b) OM image of melt pool cross-section.
(Note that laser processing parameter of 830 W and 565 mm/s is chosen.).
    Fig. 9. Simulation and experimental results for melt pool profile. (a) Simulation results for melt pool cross-section, and (b) OM image of melt pool cross-section. (Note that laser processing parameter of 830 W and 565 mm/s is chosen.).

    References

    [1]

    G. Santos

    Road transport and CO2 emissions: What are the challenges?

    Transport Policy, 59 (2017), pp. 71-74

    ArticleDownload PDFView Record in ScopusGoogle Scholar[2]

    A. Das, D. Li, D. Williams, D. Greenwood

    Joining technologies for automotive battery systems manufacturing

    World Electric Veh. J., 9 (2) (2018), p. 22 View PDF

    CrossRefGoogle Scholar[3]

    M. Zwicker, M. Moghadam, W. Zhang, C. Nielsen

    Automotive battery pack manufacturing–a review of battery to tab joining

    J. Adv. Joining Process., 1 (2020), Article 100017

    ArticleDownload PDFView Record in ScopusGoogle Scholar[4]

    T. Mai, A. Spowage

    Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium

    Mater. Sci. Eng. A, 374 (1–2) (2004), pp. 224-233

    ArticleDownload PDFView Record in ScopusGoogle Scholar[5]

    S.S. Lee, T.H. Kim, S.J. Hu, W.W. Cai, J. Li, J.A. Abell

    Characterization of joint quality in ultrasonic welding of battery tabs

    International Manufacturing Science and Engineering Conference, vol. 54990, American Society of Mechanical Engineers (2012), pp. 249-261

    Google Scholar[6]

    Y. Zhou, P. Gorman, W. Tan, K. Ely

    Weldability of thin sheet metals during small-scale resistance spot welding using an alternating-current power supply

    J. Electron. Mater., 29 (9) (2000), pp. 1090-1099 View PDF

    CrossRefView Record in ScopusGoogle Scholar[7]

    S. Katayama

    Handbook of laser welding technologies

    Elsevier (2013)

    Google Scholar[8]

    A. Sadeghian, N. Iqbal

    A review on dissimilar laser welding of steel-copper, steel-aluminum, aluminum-copper, and steel-nickel for electric vehicle battery manufacturing

    Opt. Laser Technol., 146 (2022), Article 107595

    ArticleDownload PDFView Record in ScopusGoogle Scholar[9]

    M.J. Brand, P.A. Schmidt, M.F. Zaeh, A. Jossen

    Welding techniques for battery cells and resulting electrical contact resistances

    J. Storage Mater., 1 (2015), pp. 7-14

    ArticleDownload PDFView Record in ScopusGoogle Scholar[10]

    M. Jarwitz, F. Fetzer, R. Weber, T. Graf

    Weld seam geometry and electrical resistance of laser-welded, aluminum-copper dissimilar joints produced with spatial beam oscillation

    Metals, 8 (7) (2018), p. 510 View PDF

    CrossRefView Record in ScopusGoogle Scholar[11]S. Smith, J. Blackburn, M. Gittos, P. de Bono, and P. Hilton, “Welding of dissimilar metallic materials using a scanned laser beam,” in International Congress on Applications of Lasers & Electro-Optics, 2013, vol. 2013, no. 1: Laser Institute of America, pp. 493-502.

    Google Scholar[12]

    P. Schmitz, J.B. Habedank, M.F. Zaeh

    Spike laser welding for the electrical connection of cylindrical lithium-ion batteries

    J. Laser Appl., 30 (1) (2018), Article 012004 View PDF

    CrossRefView Record in ScopusGoogle Scholar[13]

    P. Kah, C. Vimalraj, J. Martikainen, R. Suoranta

    Factors influencing Al-Cu weld properties by intermetallic compound formation

    Int. J. Mech. Mater. Eng., 10 (1) (2015), pp. 1-13

    Google Scholar[14]

    Z. Lei, X. Zhang, J. Liu, P. Li

    Interfacial microstructure and reaction mechanism with various weld fillers on laser welding-brazing of Al/Cu lap joint

    J. Manuf. Process., 67 (2021), pp. 226-240

    ArticleDownload PDFView Record in ScopusGoogle Scholar[15]

    T. Solchenbach, P. Plapper

    Mechanical characteristics of laser braze-welded aluminium–copper connections

    Opt. Laser Technol., 54 (2013), pp. 249-256

    ArticleDownload PDFView Record in ScopusGoogle Scholar[16]

    T. Solchenbach, P. Plapper, W. Cai

    Electrical performance of laser braze-welded aluminum–copper interconnects

    J. Manuf. Process., 16 (2) (2014), pp. 183-189

    ArticleDownload PDFView Record in ScopusGoogle Scholar[17]

    S.J. Lee, H. Nakamura, Y. Kawahito, S. Katayama

    Effect of welding speed on microstructural and mechanical properties of laser lap weld joints in dissimilar Al and Cu sheets

    Sci. Technol. Weld. Join., 19 (2) (2014), pp. 111-118

    Google Scholar[18]

    Z. Xue, S. Hu, D. Zuo, W. Cai, D. Lee, K.-A. Elijah Jr

    Molten pool characterization of laser lap welded copper and aluminum

    J. Phys. D Appl. Phys., 46 (49) (2013), Article 495501 View PDF

    CrossRefView Record in ScopusGoogle Scholar[19]

    S. Zhao, G. Yu, X. He, Y. Zhang, W. Ning

    Numerical simulation and experimental investigation of laser overlap welding of Ti6Al4V and 42CrMo

    J. Mater. Process. Technol., 211 (3) (2011), pp. 530-537

    ArticleDownload PDFView Record in ScopusGoogle Scholar[20]

    W. Huang, H. Wang, T. Rinker, W. Tan

    Investigation of metal mixing in laser keyhole welding of dissimilar metals

    Mater. Des., 195 (2020), Article 109056

    ArticleDownload PDFView Record in ScopusGoogle Scholar[21]

    E. Kaiser, G. Ambrosy, E. Papastathopoulos

    Welding strategies for joining copper and aluminum by fast oscillating, high quality laser beam

    High-Power Laser Materials Processing: Applications, Diagnostics, and Systems IX, vol. 11273, International Society for Optics and Photonics (2020), p. 112730C

    View Record in ScopusGoogle Scholar[22]

    V. Dimatteo, A. Ascari, A. Fortunato

    Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials (Al-Cu and Cu-Al): Process optimization and characterization

    J. Manuf. Process., 44 (2019), pp. 158-165

    ArticleDownload PDFView Record in ScopusGoogle Scholar[23]

    V. Dimatteo, A. Ascari, E. Liverani, A. Fortunato

    Experimental investigation on the effect of spot diameter on continuous-wave laser welding of copper and aluminum thin sheets for battery manufacturing

    Opt. Laser Technol., 145 (2022), Article 107495

    ArticleDownload PDFView Record in ScopusGoogle Scholar[24]

    D. Wu, X. Hua, F. Li, L. Huang

    Understanding of spatter formation in fiber laser welding of 5083 aluminum alloy

    Int. J. Heat Mass Transf., 113 (2017), pp. 730-740

    ArticleDownload PDFView Record in ScopusGoogle Scholar[25]

    R. Ducharme, K. Williams, P. Kapadia, J. Dowden, B. Steen, M. Glowacki

    The laser welding of thin metal sheets: an integrated keyhole and weld pool model with supporting experiments

    J. Phys. D Appl. Phys., 27 (8) (1994), p. 1619 View PDF

    CrossRefView Record in ScopusGoogle Scholar[26]

    C.W. Hirt, B.D. Nichols

    Volume of fluid (VOF) method for the dynamics of free boundaries

    J. Comput. Phys., 39 (1) (1981), pp. 201-225

    ArticleDownload PDFGoogle Scholar[27]

    W. Piekarska, M. Kubiak

    Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process

    Int. J. Heat Mass Transf., 54 (23–24) (2011), pp. 4966-4974

    ArticleDownload PDFView Record in ScopusGoogle Scholar[28]J. Zhou, H.-L. Tsai, and P.-C. Wang, “Transport phenomena and keyhole dynamics during pulsed laser welding,” 2006.

    Google Scholar[29]

    D. Harrison, D. Yan, S. Blairs

    The surface tension of liquid copper

    J. Chem. Thermodyn., 9 (12) (1977), pp. 1111-1119

    ArticleDownload PDFView Record in ScopusGoogle Scholar[30]

    M. Leitner, T. Leitner, A. Schmon, K. Aziz, G. Pottlacher

    Thermophysical properties of liquid aluminum

    Metall. Mater. Trans. A, 48 (6) (2017), pp. 3036-3045 View PDF

    This article is free to access.

    CrossRefView Record in ScopusGoogle Scholar[31]

    H.-C. Tran, Y.-L. Lo

    Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process

    Int. J. Adv. Manuf. Technol., 105 (10) (2019), pp. 4443-4460 View PDF

    CrossRefView Record in ScopusGoogle Scholar[32]A. Ascari, A. Fortunato, E. Liverani, and A. Lutey, “Application of different pulsed laser sources to dissimilar welding of Cu and Al alloys,” in Proceedings of Lasers in Manufacturing Conference (LIM), 2019.

    Google Scholar[33]

    A. Fortunato, A. Ascari

    Laser welding of thin copper and aluminum sheets: feasibility and challenges in continuous-wave welding of dissimilar metals

    Lasers in Manufacturing and Materials Processing, 6 (2) (2019), pp. 136-157 View PDF

    CrossRefView Record in ScopusGoogle Scholar[34]

    A. Boucherit, M.-N. Avettand-Fènoël, R. Taillard

    Effect of a Zn interlayer on dissimilar FSSW of Al and Cu

    Mater. Des., 124 (2017), pp. 87-99

    ArticleDownload PDFView Record in ScopusGoogle Scholar[35]

    N. Kumar, I. Masters, A. Das

    In-depth evaluation of laser-welded similar and dissimilar material tab-to-busbar electrical interconnects for electric vehicle battery pack

    J. Manuf. Process., 70 (2021), pp. 78-96

    ArticleDownload PDFView Record in ScopusGoogle Scholar[36]

    M. Abbasi, A.K. Taheri, M. Salehi

    Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process

    J. Alloy. Compd., 319 (1–2) (2001), pp. 233-241

    ArticleDownload PDFGoogle Scholar[37]

    D. Zuo, S. Hu, J. Shen, Z. Xue

    Intermediate layer characterization and fracture behavior of laser-welded copper/aluminum metal joints

    Mater. Des., 58 (2014), pp. 357-362

    ArticleDownload PDFView Record in ScopusGoogle Scholar[38]

    S. Yan, Y. Shi

    Influence of Ni interlayer on microstructure and mechanical properties of laser welded joint of Al/Cu bimetal

    J. Manuf. Process., 59 (2020), pp. 343-354

    ArticleDownload PDFView Record in ScopusGoogle Scholar[39]

    S. Yan, Y. Shi

    Influence of laser power on microstructure and mechanical property of laser-welded Al/Cu dissimilar lap joints

    J. Manuf. Process., 45 (2019), pp. 312-321

    ArticleDownload PDFView Record in ScopusGoogle Scholar

    Fig. 8 Distribution of solidification properties on the yz cross section at the maximum width of the melt pool.(a) thermal gradient G, (b) solidification velocity vT, (c) cooling rate G×vT, and (d) morphology factor G/vT. These profiles are calculated with a laser power 300 W and velocity 400 mm/s using (a1 through d1) analytical Rosenthal simulation and (a2 through d2) high-fidelity CFD simulation. The laser is moving out of the page from the upper left corner of each color map (Color figure online)

    Quantifying Equiaxed vs Epitaxial Solidification in Laser Melting of CMSX-4 Single Crystal Superalloy

    CMSX -4 단결정 초합금의 레이저 용융에서 등축 응고와 에피택셜 응고 정량화

    본 논문은 독자의 편의를 위해 기계번역된 내용이어서 자세한 내용은 원문을 참고하시기 바랍니다.

    Abstract

    에피택셜 과 등축 응고 사이의 경쟁은 적층 제조에서 실행되는 레이저 용융 동안 CMSX-4 단결정 초합금에서 조사되었습니다. 단일 트랙 레이저 스캔은 레이저 출력과 스캐닝 속도의 여러 조합으로 방향성 응고된 CMSX-4 합금의 분말 없는 표면에서 수행되었습니다. EBSD(Electron Backscattered Diffraction) 매핑은 새로운 방향의 식별을 용이하게 합니다. 영역 분율 및 공간 분포와 함께 융합 영역 내에서 핵을 형성한 “스트레이 그레인”은 충실도가 높은 전산 유체 역학 시뮬레이션을 사용하여 용융 풀 내의 온도 및 유체 속도 필드를 모두 추정했습니다. 이 정보를 핵 생성 모델과 결합하여 용융 풀에서 핵 생성이 발생할 확률이 가장 높은 위치를 결정했습니다. 금속 적층 가공의 일반적인 경험에 따라 레이저 용융 트랙의 응고된 미세 구조는 에피택셜 입자 성장에 의해 지배됩니다. 더 높은 레이저 스캐닝 속도와 더 낮은 출력이 일반적으로 흩어진 입자 감소에 도움이 되지만,그럼에도 불구하고 길쭉한 용융 풀에서 흩어진 입자가 분명했습니다.

    The competition between epitaxial vs. equiaxed solidification has been investigated in CMSX-4 single crystal superalloy during laser melting as practiced in additive manufacturing. Single-track laser scans were performed on a powder-free surface of directionally solidified CMSX-4 alloy with several combinations of laser power and scanning velocity. Electron backscattered diffraction (EBSD) mapping facilitated identification of new orientations, i.e., “stray grains” that nucleated within the fusion zone along with their area fraction and spatial distribution. Using high-fidelity computational fluid dynamics simulations, both the temperature and fluid velocity fields within the melt pool were estimated. This information was combined with a nucleation model to determine locations where nucleation has the highest probability to occur in melt pools. In conformance with general experience in metals additive manufacturing, the as-solidified microstructure of the laser-melted tracks is dominated by epitaxial grain growth; nevertheless, stray grains were evident in elongated melt pools. It was found that, though a higher laser scanning velocity and lower power are generally helpful in the reduction of stray grains, the combination of a stable keyhole and minimal fluid velocity further mitigates stray grains in laser single tracks.

    Introduction

    니켈 기반 초합금은 고온에서 긴 노출 시간 동안 높은 인장 강도, 낮은 산화 및 우수한 크리프 저항성을 포함하는 우수한 특성의 고유한 조합으로 인해 가스 터빈 엔진 응용 분야에서 광범위하게 사용됩니다. CMSX-4는 특히 장기 크리프 거동과 관련하여 초고강도의 2세대 레늄 함유 니켈 기반 단결정 초합금입니다. 1 , 2 ]입계의 존재가 크리프를 가속화한다는 인식은 가스 터빈 엔진의 고온 단계를 위한 단결정 블레이드를 개발하게 하여 작동 온도를 높이고 효율을 높이는 데 기여했습니다. 이러한 구성 요소는 사용 중 마모될 수 있습니다. 즉, 구성 요소의 무결성을 복원하고 단결정 미세 구조를 유지하는 수리 방법을 개발하기 위한 지속적인 작업이 있었습니다. 3 , 4 , 5 ]

    적층 제조(AM)가 등장하기 전에는 다양한 용접 공정을 통해 단결정 초합금에 대한 수리 시도가 수행되었습니다. 균열 [ 6 , 7 ] 및 흩어진 입자 8 , 9 ] 와 같은 심각한 결함 이 이 수리 중에 자주 발생합니다. 일반적으로 “스트레이 그레인”이라고 하는 응고 중 모재의 방향과 다른 결정학적 방향을 가진 새로운 그레인의 형성은 니켈 기반 단결정 초합금의 수리 중 유해한 영향으로 인해 중요한 관심 대상입니다. 3 , 10 ]결과적으로 재료의 단결정 구조가 손실되고 원래 구성 요소에 비해 기계적 특성이 손상됩니다. 이러한 흩어진 입자는 특정 조건에서 에피택셜 성장을 대체하는 등축 응고의 시작에 해당합니다.

    떠돌이 결정립 형성을 완화하기 위해 이전 작업은 용융 영역(FZ) 내에서 응고하는 동안 떠돌이 결정립 형성에 영향을 미치는 수지상 응고 거동 및 처리 조건을 이해하는 데 중점을 두었습니다. 11 , 12 , 13 , 14 ] 연구원들은 단결정 합금의 용접 중에 표류 결정립 형성에 대한 몇 가지 가능한 메커니즘을 제안했습니다. 12 , 13 , 14 , 15 ]응고 전단에 앞서 국부적인 구성 과냉각은 이질적인 핵 생성 및 등축 결정립의 성장을 유발할 수 있습니다. 또한 용융 풀에서 활발한 유체 흐름으로 인해 발생하는 덴드라이트 조각화는 용융 풀 경계 근처에서 새로운 결정립을 형성할 수도 있습니다. 두 메커니즘 모두에서, 표류 결정립 형성은 핵 생성 위치에 의존하며, 차이점은 수상 돌기 조각화는 수상 돌기 조각이 핵 생성 위치로 작용한다는 것을 의미하는 반면 다른 메커니즘은 재료,  를 들어 산화물 입자에서 발견되는 다른 유형의 핵 생성 위치를 사용한다는 것을 의미합니다. 잘 알려진 바와 같이, 많은 주물에 대한 반대 접근법은 TiB와 같은 핵제의 도입을 통해 등축 응고를 촉진하는 것입니다.22알루미늄 합금에서.

    헌법적 과냉 메커니즘에서 Hunt 11 ] 는 정상 상태 조건에서 기둥에서 등축으로의 전이(CET)를 설명하는 모델을 개발했습니다. Gaumann과 Kurz는 Hunt의 모델을 수정하여 단결정이 응고되는 동안 떠돌이 결정립이 핵을 생성하고 성장할 수 있는 정도를 설명했습니다. 12 , 14 ] 이후 연구에서 Vitek은 Gaumann의 모델을 개선하고 출력 및 스캐닝 속도와 같은 용접 조건의 영향에 대한 보다 자세한 분석을 포함했습니다. Vitek은 또한 실험 및 모델링 기술을 통해 표류 입자 형성에 대한 기판 방향의 영향을 포함했습니다. 3 , 10 ]일반적으로 높은 용접 속도와 낮은 출력은 표류 입자의 양을 최소화하고 레이저 용접 공정 중 에피택셜 단결정 성장을 최대화하는 것으로 나타났습니다. 3,10 ] 그러나 Vitek은 덴드라이트 조각화를 고려하지 않았으며 그의 연구는 불균질 핵형성이 레이저 용접된 CMSX -4 단결정 합금에서 표류 결정립 형성을 이끄는 주요 메커니즘임을 나타냅니다. 현재 작업에서 Vitek의 수치적 방법이 채택되고 금속 AM의 급속한 특성의 더 높은 속도와 더 낮은 전력 특성으로 확장됩니다.

    AM을 통한 금속 부품 제조 는 지난 10년 동안 급격한 인기 증가를 목격했습니다. 16 ] EBM(Electron Beam Melting)에 의한 CMSX-4의 제작 가능성은 자주 조사되었으나 17 , 18 , 19 , 20 , 21 ] CMSX의 제조 및 수리에 대한 조사는 매우 제한적이었다. – 4개의 단결정 구성요소는 레이저 분말 베드 융합(LPBF)을 사용하며, AM의 인기 있는 하위 집합으로, 특히 표류 입자 형성을 완화하는 메커니즘과 관련이 있습니다. 22 ]이러한 조사 부족은 주로 이러한 합금 시스템과 관련된 처리 문제로 인해 발생합니다. 2 , 19 , 22 , 23 , 24 ] 공정 매개변수( 예: 열원 전력, 스캐닝 속도, 스폿 크기, 예열 온도 및 스캔 전략)의 엄격한 제어는 완전히 조밀한 부품을 만들고 유지 관리할 수 있도록 하는 데 필수적입니다. 단결정 미세구조. 25 ] EBM을 사용하여 단결정 합금의 균열 없는 수리가 현재 가능하지만 19 , 24 ] 표류 입자를 생성하지 않는 수리는 쉽게 달성할 수 없습니다.23 , 26 ]

    이 작업에서 LPBF를 대표하는 조건으로 레이저 용융을 사용하여 단결정 CMSX-4에서 표류 입자 완화를 조사했습니다. LPBF는 스캐닝 레이저 빔을 사용하여 금속 분말의 얇은 층을 기판에 녹이고 융합합니다. 층별 증착에서 레이저 빔의 사용은 급격한 온도 구배, 빠른 가열/냉각 주기 및 격렬한 유체 흐름을 경험하는 용융 풀을 생성 합니다 이것은 일반적으로 부품에 결함을 일으킬 수 있는 매우 동적인 물리적 현상으로 이어집니다. 28 , 29 , 30 ] 레이저 유도 키홀의 동역학( 예:, 기화 유발 반동 압력으로 인한 위상 함몰) 및 열유체 흐름은 AM 공정에서 응고 결함과 강하게 결합되고 관련됩니다. 31 , 32 , 33 , 34 ] 기하 구조의 급격한 변화가 발생하기 쉬운 불안정한 키홀은 다공성, 볼링, 스패터 형성 및 흔하지 않은 미세 구조 상을 포함하는 유해한 물리적 결함을 유발할 수 있습니다. 그러나 키홀 진화와 유체 흐름은 자연적으로 다음을 통해 포착 하기 어렵 습니다 .전통적인 사후 특성화 기술. 고충실도 수치 모델링을 활용하기 위해 이 연구에서는 전산유체역학(CFD)을 적용하여 표면 아래의 레이저-물질 상호 작용을 명확히 했습니다. 36 ] 이것은 응고된 용융물 풀의 단면에 대한 오랫동안 확립된 사후 특성화와 비교하여 키홀 및 용융물 풀 유체 흐름 정량화를 실행합니다.

    CMSX-4 구성 요소의 레이저 기반 AM 수리 및 제조를 위한 적절한 절차를 개발하기 위해 적절한 공정 창을 설정하고 응고 중 표류 입자 형성 경향에 대한 예측 기능을 개발하는 것부터 시작합니다. 다중 합금에 대한 단일 트랙 증착은 분말 층이 있거나 없는 AM 공정에서 용융 풀 형상 및 미세 구조의 정확한 분석을 제공하는 것으로 나타났습니다. 37 , 38 , 39 ]따라서 본 연구에서는 CMSX-4의 응고 거동을 알아보기 위해 분말을 사용하지 않는 단일 트랙 레이저 스캔 실험을 사용하였다. 이는 CMSX-4 단결정의 LPBF 제조를 위한 예비 실험 지침을 제공합니다. 또한 응고 모델링은 기존 용접에서 LPBF와 관련된 급속 용접으로 확장되어 표류 입자 감소를 위한 최적의 레이저 용융 조건을 식별했습니다. 가공 매개변수 최적화를 위한 추가 지침을 제공하기 위해 용융물 풀의 매우 동적인 유체 흐름을 모델링했습니다.

    재료 및 방법

    단일 트랙 실험

    방전 가공(EDM)을 사용하여 CMSX-4 방향성 응고 단결정 잉곳으로부터 샘플을 제작했습니다. 샘플의 최종 기하학은 치수 20의 직육면체 형태였습니다.××20××6mm. 6개 중 하나⟨ 001 ⟩⟨001⟩잉곳의 결정학적 방향은 레이저 트랙이 이 바람직한 성장 방향을 따라 스캔되도록 절단 표면에 수직으로 위치했습니다. 단일 레이저 용융 트랙은 EOS M290 기계를 사용하여 분말이 없는 샘플 표면에 만들어졌습니다. 이 기계는 최대 출력 400W, 가우시안 빔 직경 100의 이터븀 파이버 레이저가 장착된 LPBF 시스템입니다. μμ초점에서 m. 실험 중에 직사각형 샘플을 LPBF 기계용 맞춤형 샘플 홀더의 포켓에 끼워 표면을 동일한 높이로 유지했습니다. 이 맞춤형 샘플 홀더에 대한 자세한 내용은 다른 곳에서 설명합니다. 실험 은 아르곤 퍼지 분위기에서 수행되었으며 예열은 적용되지 않았습니다 단일 트랙 레이저 용융 실험은 다양한 레이저 출력(200~370W)과 스캔 속도(0.4~1.4m/s)에서 수행되었습니다.

    성격 묘사

    레이저 스캐닝 후, 레이저 빔 스캐닝 방향에 수직인 평면에서 FZ를 통해 다이아몬드 톱을 사용하여 샘플을 절단했습니다. 그 후, 샘플을 장착하고 220 그릿 SiC 페이퍼로 시작하여 콜로이드 실리카 현탁액 광택제로 마무리하여 자동 연마했습니다. 결정학적 특성화는 20kV의 가속 전압에서 TESCAN MIRA 3XMH 전계 방출 주사 전자 현미경(SEM)에서 수행되었습니다. EBSD 지도는0.4μm _0.4μ미디엄단계 크기. Bruker 시스템을 사용하여 EBSD 데이터를 정리하고 분석했습니다. EBSD 클린업은 그레인을 접촉시키기 위한 그레인 확장 루틴으로 시작한 다음 인덱스되지 않은 회절 패턴과 관련된 검은색 픽셀을 해결하기 위해 이웃 방향 클린업 루틴으로 이어졌습니다. 용융 풀 형태를 분석하기 위해 단면을 광학 현미경으로 분석했습니다. 광학 특성화의 대비를 향상시키기 위해 10g CuSO로 구성된 Marbles 시약의 변형으로 샘플을 에칭했습니다.44, 50mL HCl 및 70mL H22영형.

    응고 모델링

    구조적 과냉 기준에 기반한 응고 모델링을 수행하여 표유 입자의 성향 및 분포에 대한 가공 매개변수의 영향을 평가했습니다. 이 분석 모델링 접근 방식에 대한 자세한 내용은 이전 작업에서 제공됩니다. 3 , 10 ] 참고문헌 3 에 기술된 바와 같이 , 기본 재료의 결정학적 배향을 가진 용융 풀에서 총 표유 입자 면적 분율의 변화는 최소이므로 기본 재료 배향의 영향은 이 작업에서 고려되지 않았습니다. 우리의 LPBF 결과를 이전 작업과 비교하기 위해 Vitek의 작업에서 사용된 수학적으로 간단한 Rosenthal 방정식 3 ]또한 레이저 매개변수의 함수로 용융 풀의 모양과 FZ의 열 조건을 계산하기 위한 기준으로 여기에서 채택되었습니다. Rosenthal 솔루션은 열이 일정한 재료 특성을 가진 반무한 판의 정상 상태 점원을 통해서만 전도를 통해 전달된다고 가정하며 일반적으로 다음과 같이 표현 됩니다 40 , 41 ] .

    티=티0+η피2 파이케이엑스2+와이2+지2———-√경험치[- 브이(엑스2+와이2+지2———-√− 엑스 )2α _] ,티=티0+η피2파이케이엑스2+와이2+지2경험치⁡[-V(엑스2+와이2+지2-엑스)2α],(1)

    여기서 T 는 온도,티0티0본 연구에서 313K(  , EOS 기계 챔버 온도)로 설정된 주변 온도, P 는 레이저 빔 파워, V 는 레이저 빔 스캐닝 속도,ηη는 레이저 흡수율, k 는 열전도율,αα베이스 합금의 열확산율입니다. x , y , z 는 각각 레이저 스캐닝 방향, 가로 방향 및 세로 방향의 반대 방향과 정렬된 방향입니다 . 이 직교 좌표는 참조 3 의 그림 1에 있는 시스템을 따랐습니다 . CMSX-4에 대한 고상선 온도(1603K)와 액상선 온도(1669K)의 등온선 평균으로 응고 프런트( 즉 , 고체-액체 계면)를 정의했습니다. 42 , 43 , 44 ] 시뮬레이션에 사용된 열물리적 특성은 표 I 에 나열되어 있습니다.표 I CMSX-4의 응고 모델링에 사용된 열물리적 특성

    풀 사이즈 테이블

    열 구배는 외부 열 흐름에 의해 결정되었습니다.∇ 티∇티45 ] 에 의해 주어진 바와 같이 :

    지 = | ∇ 티| =∣∣∣∂티∂엑스나^^+∂티∂와이제이^^+∂티∂지케이^^∣∣∣=(∂티∂엑스)2+(∂티∂와이)2+(∂티∂지)2————————√,G=|∇티|=|∂티∂엑스나^^+∂티∂와이제이^^+∂티∂지케이^^|=(∂티∂엑스)2+(∂티∂와이)2+(∂티∂지)2,(2)

    어디나^^나^^,제이^^제이^^, 그리고케이^^케이^^는 각각 x , y 및 z 방향 을 따른 단위 벡터 입니다. 응고 등온선 속도,V티V티는 다음 관계에 의해 레이저 빔 스캐닝 속도 V 와 기하학적으로 관련됩니다.

    V티= V코사인θ =V∂티∂엑스(∂티∂엑스)2+(∂티∂와이)2+(∂티∂지)2——————-√,V티=V코사인⁡θ=V∂티∂엑스(∂티∂엑스)2+(∂티∂와이)2+(∂티∂지)2,(삼)

    어디θθ는 스캔 방향과 응고 전면의 법선 방향(  , 최대 열 흐름 방향) 사이의 각도입니다. 이 연구의 용접 조건과 같은 제한된 성장에서 수지상 응고 전면은 고체-액체 등온선의 속도로 성장하도록 강제됩니다.V티V티. 46 ]

    응고 전선이 진행되기 전에 새로 핵 생성된 입자의 국지적 비율ΦΦ, 액체 온도 구배 G 에 의해 결정 , 응고 선단 속도V티V티및 핵 밀도N0N0. 고정된 임계 과냉각에서 모든 입자가 핵형성된다고 가정함으로써△티N△티N, 등축 결정립의 반경은 결정립이 핵 생성을 시작하는 시점부터 주상 전선이 결정립에 도달하는 시간까지의 성장 속도를 통합하여 얻습니다. 과냉각으로 대체 시간d (ΔT_) / dt = – _V티G디(△티)/디티=-V티G, 열 구배 G 사이의 다음 관계 , 등축 입자의 국부적 부피 분율ΦΦ, 수상 돌기 팁 과냉각ΔT _△티, 핵 밀도N0N0, 재료 매개변수 n 및 핵생성 과냉각△티N△티N, Gäumann 외 여러분 에 의해 파생되었습니다 . 12 , 14 ] Hunt의 모델 11 ] 의 수정에 기반함 :

    지 =1엔 + 1- 4π _N03 인치( 1 − Φ )———√삼ΔT _( 1 -△티엔 + 1N△티엔 + 1) .G=1N+1-4파이N0삼인⁡(1-Φ)삼△티(1-△티NN+1△티N+1).(4)

    계산을 단순화하기 위해 덴드라이트 팁 과냉각을 전적으로 구성 과냉각의 것으로 추정합니다.△티씨△티씨, 멱법칙 형식으로 근사화할 수 있습니다.△티씨= ( _V티)1 / 엔△티씨=(ㅏV티)1/N, 여기서 a 와 n 은 재료 종속 상수입니다. CMSX-4의 경우 이 값은a = 1.25 ×106ㅏ=1.25×106 s K 3.4m− 1-1,엔 = 3.4N=3.4, 그리고N0= 2 ×1015N0=2×1015미디엄− 3,-삼,참고문헌 3 에 의해 보고된 바와 같이 .△티N△티N2.5K이며 보다 큰 냉각 속도에서 응고에 대해 무시할 수 있습니다.106106 K/s. 에 대한 표현ΦΦ위의 방정식을 재배열하여 해결됩니다.

    Φ= 1 -이자형에스\ 여기서\  S=- 4π _N0삼(1( 엔 + 1 ) (GN/ 아V티)1 / 엔)삼=−2.356×1019(vTG3.4)33.4.Φ=1−eS\ where\ S=−4πN03(1(n+1)(Gn/avT)1/n)3=−2.356×1019(vTG3.4)33.4.

    (5)

    As proposed by Hunt,[11] a value of Φ≤0.66Φ≤0.66 pct represents fully columnar epitaxial growth condition, and, conversely, a value of Φ≥49Φ≥49 pct indicates that the initial single crystal microstructure is fully replaced by an equiaxed microstructure. To calculate the overall stray grain area fraction, we followed Vitek’s method by dividing the FZ into roughly 19 to 28 discrete parts (depending on the length of the melt pool) of equal length from the point of maximum width to the end of melt pool along the x direction. The values of G and vTvT were determined at the center on the melt pool boundary of each section and these values were used to represent the entire section. The area-weighted average of ΦΦ over these discrete sections along the length of melt pool is designated as Φ¯¯¯¯Φ¯, and is given by:

    Φ¯¯¯¯=∑kAkΦk∑kAk,Φ¯=∑kAkΦk∑kAk,

    (6)

    where k is the index for each subsection, and AkAk and ΦkΦk are the areas and ΦΦ values for each subsection. The summation is taken over all the sections along the melt pool. Vitek’s improved model allows the calculation of stray grain area fraction by considering the melt pool geometry and variations of G and vTvT around the tail end of the pool.

    수년에 걸쳐 용융 풀 현상 모델링의 정확도를 개선하기 위해 많은 고급 수치 방법이 개발되었습니다. 우리는 FLOW-3D와 함께 고충실도 CFD를 사용했습니다. FLOW-3D는 여러 물리 모델을 통합하는 상용 FVM(Finite Volume Method)입니다. 47 , 48 ] CFD는 유체 운동과 열 전달을 수치적으로 시뮬레이션하며 여기서 사용된 기본 물리 모델은 레이저 및 표면력 모델이었습니다. 레이저 모델에서는 레이 트레이싱 기법을 통해 다중 반사와 프레넬 흡수를 구현합니다. 36 ]먼저, 레이저 빔은 레이저 빔에 의해 조명되는 각 그리드 셀을 기준으로 여러 개의 광선으로 이산화됩니다. 그런 다음 각 입사 광선에 대해 입사 벡터가 입사 위치에서 금속 표면의 법선 벡터와 정렬될 때 에너지의 일부가 금속에 의해 흡수됩니다. 흡수율은 Fresnel 방정식을 사용하여 추정됩니다. 나머지 에너지는 반사광선 에 의해 유지되며 , 반사광선은 재료 표면에 부딪히면 새로운 입사광선으로 처리됩니다. 두 가지 주요 힘이 액체 금속 표면에 작용하여 자유 표면을 변형시킵니다. 금속의 증발에 의해 생성된 반동 압력은 증기 억제를 일으키는 주요 힘입니다. 본 연구에서 사용된 반동 압력 모델은피아르 자형= 특급 _{ B ( 1- _티V/ 티) }피아르 자형=ㅏ경험치⁡{비(1-티V/티)}, 어디피아르 자형피아르 자형는 반동압력, A 와 B 는 재료의 물성에 관련된 계수로 각각 75와 15이다.티V티V는 포화 온도이고 T 는 키홀 벽의 온도입니다. 표면 흐름 및 키홀 형성의 다른 원동력은 표면 장력입니다. 표면 장력 계수는 Marangoni 흐름을 포함하기 위해 온도의 선형 함수로 추정되며,σ =1.79-9.90⋅10− 4( 티− 1654케이 )σ=1.79-9.90⋅10-4(티-1654년케이)엔엠− 1-1. 49 ] 계산 영역은 베어 플레이트의 절반입니다(2300 μμ미디엄××250 μμ미디엄××500 μμm) xz 평면 에 적용된 대칭 경계 조건 . 메쉬 크기는 8입니다. μμm이고 시간 단계는 0.15입니다. μμs는 계산 효율성과 정확성 간의 균형을 제공합니다.

    결과 및 논의

    용융 풀 형태

    이 작업에 사용된 5개의 레이저 파워( P )와 6개의 스캐닝 속도( V )는 서로 다른 29개의 용융 풀을 생성했습니다.피- 브이피-V조합. P 와 V 값이 가장 높은 것은 그림 1 을 기준으로 과도한 볼링과 관련이 있기 때문에 본 연구에서는 분석하지 않았다  .

    단일 트랙 용융 풀은 그림  1 과 같이 형상에 따라 네 가지 유형으로 분류할 수 있습니다 39 ] : (1) 전도 모드(파란색 상자), (2) 키홀 모드(빨간색), (3) 전환 모드(마젠타), (4) 볼링 모드(녹색). 높은 레이저 출력과 낮은 스캐닝 속도의 일반적인 조합인 키홀 모드에서 용융물 풀은 일반적으로 너비/깊이( W / D ) 비율이 0.5보다 훨씬 큰 깊고 가느다란 모양을 나타냅니다 . 스캐닝 속도가 증가함에 따라 용융 풀이 얕아져 W / D 가 약 0.5인 반원형 전도 모드 용융 풀을 나타냅니다. W / D _전환 모드 용융 풀의 경우 1에서 0.5 사이입니다. 스캐닝 속도를 1200 및 1400mm/s로 더 높이면 충분히 큰 캡 높이와 볼링 모드 용융 풀의 특징인 과도한 언더컷이 발생할 수 있습니다.

    힘과 속도의 함수로서의 용융 풀 깊이와 너비는 각각 그림  2 (a)와 (b)에 표시되어 있습니다. 용융 풀 폭은 기판 표면에서 측정되었습니다. 그림  2 (a)는 깊이가 레이저 출력과 매우 선형적인 관계를 따른다는 것을 보여줍니다. 속도가 증가함에 따라 깊이  파워 곡선의 기울기는 꾸준히 감소하지만 더 높은 속도 곡선에는 약간의 겹침이 있습니다. 이러한 예상치 못한 중첩은 종종 용융 풀 형태의 동적 변화를 유발하는 유체 흐름의 영향과 레이저 스캔당 하나의 이미지만 추출되었다는 사실 때문일 수 있습니다. 이러한 선형 동작은 그림 2 (b) 의 너비에 대해 명확하지 않습니다  . 그림  2(c)는 선형 에너지 밀도 P / V 의 함수로서 용융 깊이와 폭을 보여줍니다 . 선형 에너지 밀도는 퇴적물의 단위 길이당 에너지 투입량을 측정한 것입니다. 50 ] 용융 풀 깊이는 에너지 밀도에 따라 달라지며 너비는 더 많은 분산을 나타냅니다. 동일한 에너지 밀도가 준공 부품의 용융 풀, 미세 구조 또는 속성에서 반드시 동일한 유체 역학을 초래하지는 않는다는 점에 유의하는 것이 중요합니다. 50 ]

    그림 1
    그림 1
    그림 2
    그림 2

    레이저 흡수율 평가

    레이저 흡수율은 LPBF 조건에서 재료 및 가공 매개변수에 따라 크게 달라진다는 것은 잘 알려져 있습니다. 31 , 51 , 52 ] 적분구를 이용한 전통적인 흡수율의 직접 측정은 일반적으로 높은 비용과 구현의 어려움으로 인해 쉽게 접근할 수 없습니다. 51 ] 그  . 39 ] 전도 모드 용융 풀에 대한 Rosenthal 방정식을 기반으로 경험적 레이저 흡수율 모델을 개발했지만 기본 가정으로 인해 키홀 용융 풀에 대한 정확한 예측을 제공하지 못했습니다. 40 ] 최근 간 . 53 ] Ti–6Al–4V에 대한 30개의 고충실도 다중 물리 시뮬레이션 사례를 사용하여 레이저 흡수에 대한 스케일링 법칙을 확인했습니다. 그러나 연구 중인 특정 재료에 대한 최소 흡수(평평한 용융 표면의 흡수율)에 대한 지식이 필요하며 이는 CMSX-4에 대해 알려지지 않았습니다. 다양한 키홀 모양의 용융 풀에 대한 레이저 흡수의 정확한 추정치를 얻기가 어렵기 때문에 상한 및 하한 흡수율로 분석 시뮬레이션을 실행하기로 결정했습니다. 깊은 키홀 모양의 용융 풀의 경우 대부분의 빛을 가두는 키홀 내 다중 반사로 인해 레이저 흡수율이 0.8만큼 높을 수 있습니다. 이것은 기하학적 현상이며 기본 재료에 민감하지 않습니다. 5152 , 54 ] 따라서 본 연구에서는 흡수율의 상한을 0.8로 설정하였다. 참고 문헌 51 에 나타낸 바와 같이 , 전도 용융 풀에 해당하는 최저 흡수율은 약 0.3이었으며, 이는 이 연구에서 합리적인 하한 값입니다. 따라서 레이저 흡수율이 스트레이 그레인 형성에 미치는 영향을 보여주기 위해 흡수율 값을 0.55 ± 0.25로 설정했습니다. Vitek의 작업에서는 1.0의 고정 흡수율 값이 사용되었습니다. 3 ]

    퓨전 존 미세구조

    그림  3 은 200~300W 및 600~300W 및 600~300W 범위의 레이저 출력 및 속도로 9가지 다른 처리 매개변수에 의해 생성된 CMSX-4 레이저 트랙의 yz 단면 에서 취한 EBSD 역극점도와 해당 역극점도를 보여 줍니다. 각각 1400mm/s. EBSD 맵에서 여러 기능을 쉽게 관찰할 수 있습니다. 스트레이 그레인은 EBSD 맵에서 그 방향에 해당하는 다른 RGB 색상으로 나타나고 그레인 경계를 묘사하기 위해 5도의 잘못된 방향이 사용되었습니다. 여기, 그림  3 에서 스트레이 그레인은 대부분 용융 풀의 상단 중심선에 집중되어 있으며, 이는 용접된 단결정 CMSX-4의 이전 보고서와 일치합니다. 10 ]역 극점도에서, 점 근처에 집중된 클러스터⟨ 001 ⟩⟨001⟩융합 경계에서 유사한 방향을 유지하는 단결정 기반 및 에피택셜로 응고된 덴드라이트를 나타냅니다. 그러나 흩어진 곡물은 식별할 수 있는 질감이 없는 흩어져 있는 점으로 나타납니다. 단결정 기본 재료의 결정학적 방향은 주로⟨ 001 ⟩⟨001⟩비록 샘플을 절단하는 동안 식별할 수 없는 기울기 각도로 인해 또는 단결정 성장 과정에서 약간의 잘못된 방향이 있었기 때문에 약간의 편차가 있지만. 용융 풀 내부의 응고된 수상 돌기의 기본 방향은 다시 한 번⟨ 001 ⟩⟨001⟩주상 결정립 구조와 유사한 에피택셜 성장의 결과. 그림 3 과 같이 용융 풀에서 수상돌기의 성장 방향은 하단의 수직 방향에서 상단의 수평 방향으로 변경되었습니다  . 이 전이는 주로 온도 구배 방향의 변화로 인한 것입니다. 두 번째 전환은 CET입니다. FZ의 상단 중심선 주변에서 다양한 방향의 흩어진 입자가 관찰되며, 여기서 안쪽으로 성장하는 수상돌기가 서로 충돌하여 용융 풀에서 응고되는 마지막 위치가 됩니다.

    더 깊은 키홀 모양을 특징으로 하는 샘플에서 용융 풀의 경계 근처에 침전된 흩어진 입자가 분명합니다. 이러한 새로운 입자는 나중에 모델링 섹션에서 논의되는 수상돌기 조각화 메커니즘에 의해 잠재적으로 발생합니다. 결정립이 강한 열 구배에서 핵을 생성하고 성장한 결과, 대부분의 흩어진 결정립은 모든 방향에서 동일한 크기를 갖기보다는 장축이 열 구배 방향과 정렬된 길쭉한 모양을 갖습니다. 그림 3 의 전도 모드 용융 풀 흩어진 입자가 없는 것으로 입증되는 더 나은 단결정 품질을 나타냅니다. 상대적으로 낮은 출력과 높은 속도의 스캐닝 레이저에 의해 생성된 이러한 더 얕은 용융 풀에서 최소한의 결정립 핵형성이 발생한다는 것은 명백합니다. 더 큰 면적 분율을 가진 스트레이 그레인은 고출력 및 저속으로 생성된 깊은 용융 풀에서 더 자주 관찰됩니다. 국부 응고 조건에 대한 동력 및 속도의 영향은 후속 모델링 섹션에서 조사할 것입니다.

    그림 3
    그림 3

    응고 모델링

    서론에서 언급한 바와 같이 연구자들은 단결정 용접 중에 표류 결정립 형성의 가능한 메커니즘을 평가했습니다. 12 , 13 , 14 , 15 , 55 ]논의된 가장 인기 있는 두 가지 메커니즘은 (1) 응고 전단에 앞서 구성적 과냉각에 의해 도움을 받는 이종 핵형성 및 (2) 용융물 풀의 유체 흐름으로 인한 덴드라이트 조각화입니다. 첫 번째 메커니즘은 광범위하게 연구되었습니다. 이원 합금을 예로 들면, 고체는 액체만큼 많은 용질을 수용할 수 없으므로 응고 중에 용질을 액체로 거부합니다. 결과적으로, 성장하는 수상돌기 앞에서 용질 분할은 실제 온도가 국부 평형 액상선보다 낮은 과냉각 액체를 생성합니다. 충분히 광범위한 체질적으로 과냉각된 구역의 존재는 새로운 결정립의 핵형성 및 성장을 촉진합니다. 56 ]전체 과냉각은 응고 전면에서의 구성, 동역학 및 곡률 과냉각을 포함한 여러 기여의 합입니다. 일반적인 가정은 동역학 및 곡률 과냉각이 합금에 대한 용질 과냉각의 더 큰 기여와 관련하여 무시될 수 있다는 것입니다. 57 ]

    서로 다른 기본 메커니즘을 더 잘 이해하려면피- 브이피-V조건에서 응고 모델링이 수행됩니다. 첫 번째 목적은 스트레이 그레인의 전체 범위를 평가하는 것입니다(Φ¯¯¯¯Φ¯) 처리 매개 변수의 함수로 국부적 표류 입자 비율의 변화를 조사하기 위해 (ΦΦ) 용융 풀의 위치 함수로. 두 번째 목적은 금속 AM의 빠른 응고 동안 응고 미세 구조와 표류 입자 형성 메커니즘 사이의 관계를 이해하는 것입니다.

    그림 4
    그림 4

    그림  4 는 해석적으로 시뮬레이션된 표류 입자 비율을 보여줍니다.Φ¯¯¯¯Φ¯세 가지 레이저 흡수율 값에서 다양한 레이저 스캐닝 속도 및 레이저 출력에 대해. 결과는 스트레이 그레인 면적 비율이 흡수된 에너지에 민감하다는 것을 보여줍니다. 흡수율을 0.30에서 0.80으로 증가시키면Φ¯¯¯¯Φ¯약 3배이며, 이 효과는 저속 및 고출력 영역에서 더욱 두드러집니다. 다른 모든 조건이 같다면, 흡수된 전력의 큰 영향은 평균 열 구배 크기의 일반적인 감소와 용융 풀 내 평균 응고율의 증가에 기인합니다. 스캐닝 속도가 증가하고 전력이 감소함에 따라 평균 스트레이 그레인 비율이 감소합니다. 이러한 일반적인 경향은 Vitek의 작업에서 채택된 그림 5 의 파란색 영역에서 시뮬레이션된 용접 결과와 일치합니다  . 3 ] 더 큰 과냉각 구역( 즉, 지 /V티G/V티영역)은 용접 풀의 표유 입자의 면적 비율이 분홍색 영역에 해당하는 LPBF 조건의 면적 비율보다 훨씬 더 크다는 것을 의미합니다. 그럼에도 불구하고 두 데이터 세트의 일반적인 경향은 유사합니다.  , 레이저 출력이 감소하고 레이저 속도가 증가함에 따라 표류 입자의 비율이 감소합니다. 또한 그림  5 에서 스캐닝 속도가 LPBF 영역으로 증가함에 따라 표유 입자 면적 분율에 대한 레이저 매개변수의 변화 효과가 감소한다는 것을 추론할 수 있습니다. 그림  6 (a)는 그림 3 의 EBSD 분석에서 나온 실험적 표류 결정립 면적 분율  과 그림 4 의 해석 시뮬레이션 결과를  비교합니다.. 열쇠 구멍 모양의 FZ에서 정확한 값이 다르지만 추세는 시뮬레이션과 실험 데이터 모두에서 일관되었습니다. 키홀 모양의 용융 풀, 특히 전력이 300W인 2개는 분석 시뮬레이션 예측보다 훨씬 더 많은 양의 흩어진 입자를 가지고 있습니다. Rosenthal 방정식은 일반적으로 열 전달이 순전히 전도에 의해 좌우된다는 가정으로 인해 열쇠 구멍 체제의 열 흐름을 적절하게 반영하지 못하기 때문에 이러한 불일치가 실제로 예상됩니다. 39 , 40 ] 그것은 또한 그림  4 의 발견 , 즉 키홀 모드 동안 흡수된 전력의 증가가 표류 입자 형성에 더 이상적인 조건을 초래한다는 것을 검증합니다. 그림  6 (b)는 실험을 비교Φ¯¯¯¯Φ¯수치 CFD 시뮬레이션Φ¯¯¯¯Φ¯. CFD 모델이 약간 초과 예측하지만Φ¯¯¯¯Φ¯전체적으로피- 브이피-V조건에서 열쇠 구멍 조건에서의 예측은 분석 모델보다 정확합니다. 전도 모드 용융 풀의 경우 실험 값이 분석 시뮬레이션 값과 더 가깝게 정렬됩니다.

    그림 5
    그림 5

    모의 온도 구배 G 분포 및 응고율 검사V티V티분석 모델링의 쌍은 그림  7 (a)의 CMSX-4 미세 구조 선택 맵에 표시됩니다. 제공지 /V티G/V티(  , 형태 인자)는 형태를 제어하고지 ×V티G×V티(  , 냉각 속도)는 응고된 미세 구조의 규모를 제어하고 , 58 , 59 ]지 -V티G-V티플롯은 전통적인 제조 공정과 AM 공정 모두에서 미세 구조 제어를 지원합니다. 이 플롯의 몇 가지 분명한 특징은 등축, 주상, 평면 전면 및 이러한 경계 근처의 전이 영역을 구분하는 경계입니다. 그림  7 (a)는 몇 가지 선택된 분석 열 시뮬레이션에 대한 미세 구조 선택 맵을 나타내는 반면 그림  7 (b)는 수치 열 모델의 결과와 동일한 맵을 보여줍니다. 등축 미세구조의 형성은 낮은 G 이상 에서 명확하게 선호됩니다.V티V티정황. 이 플롯에서 각 곡선의 평면 전면에 가장 가까운 지점은 용융 풀의 최대 너비 위치에 해당하는 반면 등축 영역에 가까운 지점의 끝은 용융 풀의 후면 꼬리에 해당합니다. 그림  7 (a)에서 대부분의지 -V티G-V티응고 전면의 쌍은 원주형 영역에 속하고 점차 CET 영역으로 위쪽으로 이동하지만 용융 풀의 꼬리는 다음에 따라 완전히 등축 영역에 도달하거나 도달하지 않을 수 있습니다.피- 브이피-V조합. 그림 7 (a) 의 곡선 중 어느 것도  평면 전면 영역을 통과하지 않지만 더 높은 전력의 경우에 가까워집니다. 저속 레이저 용융 공정을 사용하는 이전 작업에서는 곡선이 평면 영역을 통과할 수 있습니다. 레이저 속도가 증가함에 따라 용융 풀 꼬리는 여전히 CET 영역에 있지만 완전히 등축 영역에서 멀어집니다. CET 영역으로 떨어지는 섹션의 수도 감소합니다.Φ¯¯¯¯Φ¯응고된 물질에서.

    그림 6
    그림 6

    그만큼지 -V티G-V티CFD 모델을 사용하여 시뮬레이션된 응고 전면의 쌍이 그림  7 (b)에 나와 있습니다. 세 방향 모두에서 각 점 사이의 일정한 간격으로 미리 정의된 좌표에서 수행된 해석 시뮬레이션과 달리, 고충실도 CFD 모델의 출력은 불규칙한 사면체 좌표계에 있었고 G 를 추출하기 전에 일반 3D 그리드에 선형 보간되었습니다. 그리고V티V티그런 다음 미세 구조 선택 맵에 플롯됩니다. 일반적인 경향은 그림  7 (a)의 것과 일치하지만 이 방법으로 모델링된 매우 동적인 유체 흐름으로 인해 결과에 더 많은 분산이 있었습니다. 그만큼지 -V티G-V티분석 열 모델의 쌍 경로는 더 연속적인 반면 수치 시뮬레이션의 경로는 용융 풀 꼬리 모양의 차이를 나타내는 날카로운 굴곡이 있습니다(이는 G 및V티V티) 두 모델에 의해 시뮬레이션됩니다.

    그림 7
    그림 7
    그림 8
    그림 8

    유체 흐름을 통합한 응고 모델링

    수치 CFD 모델을 사용하여 유동 입자 형성 정도에 대한 유체 흐름의 영향을 이해하고 시뮬레이션 결과를 분석 Rosenthal 솔루션과 비교했습니다. 그림  8 은 응고 매개변수 G 의 분포를 보여줍니다.V티V티,지 /V티G/V티, 그리고지 ×V티G×V티yz 단면에서 x  FLOW-3D에서 (a1–d1) 분석 열 모델링 및 (a2–d2) FVM 방법을 사용하여 시뮬레이션된 용융 풀의 최대 폭입니다. 그림  8 의 값은 응고 전선이 특정 위치에 도달할 때 정확한 값일 수도 있고 아닐 수도 있지만 일반적인 추세를 반영한다는 의미의 임시 가상 값입니다. 이 프로파일은 출력 300W 및 속도 400mm/s의 레이저 빔에서 시뮬레이션됩니다. 용융 풀 경계는 흰색 곡선으로 표시됩니다. (a2–d2)의 CFD 시뮬레이션 용융 풀 깊이는 342입니다. μμm, 측정 깊이 352와 잘 일치 μμ일치하는 길쭉한 열쇠 구멍 모양과 함께 그림 1 에 표시된 실험 FZ의 m  . 그러나 분석 모델은 반원 모양의 용융 풀을 출력하고 용융 풀 깊이는 264에 불과합니다. μμ열쇠 구멍의 경우 현실과는 거리가 멀다. CFD 시뮬레이션 결과에서 열 구배는 레이저 반사 증가와 불안정한 액체-증기 상호 작용이 발생하는 증기 함몰의 동적 부분 근처에 있기 때문에 FZ 하단에서 더 높습니다. 대조적으로 해석 결과의 열 구배 크기는 경계를 따라 균일합니다. 두 시뮬레이션 결과 모두 그림 8 (a1) 및 (a2) 에서 응고가 용융 풀의 상단 중심선을 향해 진행됨에 따라 열 구배가 점차 감소합니다  . 응고율은 그림 8 과 같이 경계 근처에서 거의 0입니다. (b1) 및 (b2). 이는 경계 영역이 응고되기 시작할 때 국부 응고 전면의 법선 방향이 레이저 스캐닝 방향에 수직이기 때문입니다. 이것은 드라이브θ → π/ 2θ→파이/2그리고V티→ 0V티→0식에서 [ 3 ]. 대조적으로 용융 풀의 상단 중심선 근처 영역에서 응고 전면의 법선 방향은 레이저 스캐닝 방향과 잘 정렬되어 있습니다.θ → 0θ→0그리고V티→ 브이V티→V, 빔 스캐닝 속도. G 와 _V티V티값이 얻어지면 냉각 속도지 ×V티G×V티및 형태 인자지 /V티G/V티계산할 수 있습니다. 그림 8 (c2)는 용융 풀 바닥 근처의 온도 구배가 매우 높고 상단에서 더 빠른 성장 속도로  인해 냉각 속도가 용융 풀의 바닥 및 상단 중심선 근처에서 더 높다는 것을 보여줍니다. 지역. 그러나 이러한 추세는 그림  8 (c1)에 캡처되지 않았습니다. 그림 8 의 형태 요인 (d1) 및 (d2)는 중심선에 접근함에 따라 눈에 띄게 감소합니다. 경계에서 큰 값은 열 구배를 거의 0인 성장 속도로 나누기 때문에 발생합니다. 이 높은 형태 인자는 주상 미세구조 형성 가능성이 높음을 시사하는 반면, 중앙 영역의 값이 낮을수록 등축 미세구조의 가능성이 더 크다는 것을 나타냅니다. Tanet al. 또한 키홀 모양의 용접 풀 59 ] 에서 이러한 응고 매개변수의 분포 를 비슷한 일반적인 경향으로 보여주었습니다. 그림  3 에서 볼 수 있듯이 용융 풀의 상단 중심선에 있는 흩어진 입자는 낮은 특징을 나타내는 영역과 일치합니다.지 /V티G/V티그림  8 (d1) 및 (d2)의 값. 시뮬레이션과 실험 간의 이러한 일치는 용융 풀의 상단 중심선에 축적된 흩어진 입자의 핵 생성 및 성장이 등온선 속도의 증가와 온도 구배의 감소에 의해 촉진됨을 보여줍니다.

    그림 9
    그림 9

    그림  9 는 유체 속도 및 국부적 핵형성 성향을 보여줍니다.ΦΦ300W의 일정한 레이저 출력과 400, 800 및 1200mm/s의 세 가지 다른 레이저 속도에 의해 생성된 3D 용융 풀 전체에 걸쳐. 그림  9 (d)~(f)는 로컬ΦΦ해당 3D 보기에서 밝은 회색 평면으로 표시된 특정 yz 단면의 분포. 이 yz 섹션은 가장 높기 때문에 선택되었습니다.Φ¯¯¯¯Φ¯용융 풀 내의 값은 각각 23.40, 11.85 및 2.45pct입니다. 이들은 그림  3 의 실험 데이터와 비교하기에 적절하지 않을 수 있는 액체 용융 풀의 과도 값이며Φ¯¯¯¯Φ¯그림  6 의 값은 이 값이 고체-액체 계면에 가깝지 않고 용융 풀의 중간에서 취해졌기 때문입니다. 온도가 훨씬 낮아서 핵이 생존하고 성장할 수 있기 때문에 핵 형성은 용융 풀의 중간이 아닌 고체-액체 계면에 더 가깝게 발생할 가능성이 있습니다.

    그림  3 (a), (d), (g), (h)에서 위쪽 중심선에서 멀리 떨어져 있는 흩어진 결정립이 있었습니다. 그들은 훨씬 더 높은 열 구배와 더 낮은 응고 속도 필드에 위치하기 때문에 과냉각 이론은 이러한 영역에서 표류 입자의 형성에 대한 만족스러운 설명이 아닙니다. 이것은 떠돌이 결정립의 형성을 야기할 수 있는 두 번째 메커니즘,  수상돌기의 팁을 가로지르는 유체 흐름에 의해 유발되는 수상돌기 조각화를 고려하도록 동기를 부여합니다. 유체 흐름이 열 구배를 따라 속도 성분을 갖고 고체-액체 계면 속도보다 클 때, 주상 수상돌기의 국지적 재용융은 용질이 풍부한 액체가 흐물흐물한 구역의 깊은 곳에서 액상선 등온선까지 이동함으로써 발생할 수 있습니다. . 55] 분리된 수상돌기는 대류에 의해 열린 액체로 운반될 수 있습니다. 풀이 과냉각 상태이기 때문에 이러한 파편은 고온 조건에서 충분히 오래 생존하여 길 잃은 입자의 핵 생성 사이트로 작용할 수 있습니다. 결과적으로 수상 돌기 조각화 과정은 활성 핵의 수를 효과적으로 증가시킬 수 있습니다.N0N0) 용융 풀 15 , 60 , 61 ] 에서 생성된 미세 구조에서 표류 입자의 면적을 증가시킵니다.

    그림  9 (a) 및 (b)에서 반동 압력은 용융 유체를 아래쪽으로 흐르게 하여 결과 흐름을 지배합니다. 유체 속도의 역방향 요소는 V = 400 및 800mm/s에 대해 각각 최대값 1.0 및 1.6m/s로 더 느려집니다 . 그림  9 (c)에서 레이저 속도가 더 증가함에 따라 증기 침하가 더 얕고 넓어지고 반동 압력이 더 고르게 분포되어 증기 침강에서 주변 영역으로 유체를 밀어냅니다. 역류는 최대값 3.5m/s로 더 빨라집니다. 용융 풀의 최대 너비에서 yz 단면  의 키홀 아래 평균 유체 속도는 그림에 표시된 경우에 대해 0.46, 0.45 및 1.44m/s입니다.9 (a), (b) 및 (c). 키홀 깊이의 변동은 각 경우의 최대 깊이와 최소 깊이의 차이로 정의되는 크기로 정량화됩니다. 240 범위의 강한 증기 내림 변동 μμm은 그림 9 (a)의 V = 400mm/s 경우에서  발견 되지만 이 변동은 그림  9 (c)에서 16의 범위로  크게 감소합니다.μμ미디엄. V = 400mm/s인 경우 의 유체장과 높은 변동 범위는 이전 키홀 동역학 시뮬레이션과 일치합니다. 34 ]

    따라서 V = 400mm/s 키홀 케이스의 무질서한 변동 흐름이 용융 풀 경계를 따라 응고된 주상 수상돌기에서 분리된 조각을 구동할 가능성이 있습니다. V = 1200mm/s의 경우 강한 역류 는 그림 3 에서 관찰되지 않았지만 동일한 효과를 가질 수 있습니다. . 덴드라이트 조각화에 대한 유체 유동장의 영향에 대한 이 경험적 설명은 용융 풀 경계 근처에 떠돌이 입자의 존재에 대한 그럴듯한 설명을 제공합니다. 분명히 하기 위해, 우리는 이 가설을 검증하기 위해 이 현상에 대한 직접적인 실험적 관찰을 하지 않았습니다. 이 작업에서 표유 입자 면적 분율을 계산할 때 단순화를 위해 핵 생성 모델링에 일정한 핵 생성 수 밀도가 적용되었습니다. 이는 그림  9 의 표류 입자 영역 비율 이 수지상정 조각화가 발생하는 경우 이러한 높은 유체 흐름 용융 풀에서 발생할 수 있는 것,  강화된 핵 생성 밀도를 반영하지 않는다는 것을 의미합니다.

    위의 이유로 핵 형성에 대한 수상 돌기 조각화의 영향을 아직 배제할 수 없습니다. 그러나 단편화 이론은 용접 문헌 [ 62 ] 에서 검증될 만큼 충분히 개발되지 않았 으므로 부차적인 중요성만 고려된다는 점에 유의해야 합니다. 1200mm/s를 초과하는 레이저 스캐닝 속도는 최소한의 표류 결정립 면적 분율을 가지고 있음에도 불구하고 분명한 볼링을 나타내기 때문에 단결정 수리 및 AM 처리에 적합하지 않습니다. 따라서 낮은 P 및 높은 V 에 의해 생성된 응고 전면 근처에서 키홀 변동이 최소화되고 유체 속도가 완만해진 용융 풀이 생성된다는 결론을 내릴 수 있습니다., 처리 창의 극한은 아니지만 흩어진 입자를 나타낼 가능성이 가장 적습니다.

    마지막으로 단일 레이저 트랙의 응고 거동을 조사하면 에피택셜 성장 동안 표류 입자 형성을 더 잘 이해할 수 있다는 점에 주목하는 것이 중요합니다. 우리의 현재 결과는 최적의 레이저 매개변수에 대한 일반적인 지침을 제공하여 최소 스트레이 그레인을 달성하고 단결정 구조를 유지합니다. 이 가이드라인은 250W 정도의 전력과 600~800mm/s의 스캔 속도로 최소 흩어진 입자에 적합한 공정 창을 제공합니다. 각 처리 매개변수를 신중하게 선택하면 과거에 스테인리스강에 대한 거의 단결정 미세 구조를 인쇄하는 데 성공했으며 이는 CMSX-4 AM 빌드에 대한 가능성을 보여줍니다. 63 ]신뢰성을 보장하기 위해 AM 수리 프로세스를 시작하기 전에 보다 엄격한 실험 테스트 및 시뮬레이션이 여전히 필요합니다. 둘 이상의 레이저 트랙 사이의 상호 작용도 고려해야 합니다. 또한 레이저, CMSX-4 분말 및 벌크 재료 간의 상호 작용이 중요하며, 수리 중에 여러 층의 CMSX-4 재료를 축적해야 하는 경우 다른 스캔 전략의 효과도 중요한 역할을 할 수 있습니다. 분말이 포함된 경우 Lopez-Galilea 등 의 연구에서 제안한 바와 같이 분말이 주로 완전히 녹지 않았을 때 추가 핵 생성 사이트를 도입하기 때문에 단순히 레이저 분말과 속도를 조작하여 흩어진 입자 형성을 완화하기 어려울 수 있습니다 . 22 ]결과적으로 CMSX-4 단결정을 수리하기 위한 레이저 AM의 가능성을 다루기 위해서는 기판 재료, 레이저 출력, 속도, 해치 간격 및 층 두께의 조합을 모두 고려해야 하며 향후 연구에서 다루어야 합니다. CFD 모델링은 2개 이상의 레이저 트랙 사이의 상호작용과 열장에 미치는 영향을 통합할 수 있으며, 이는 AM 빌드 시나리오 동안 핵 생성 조건으로 단일 비드 연구의 지식 격차를 해소할 것입니다.

    결론

    LPBF 제조의 특징적인 조건 하에서 CMSX-4 단결정 의 에피택셜(기둥형)  등축 응고 사이의 경쟁을 실험적 및 이론적으로 모두 조사했습니다. 이 연구는 고전적인 응고 개념을 도입하여 빠른 레이저 용융의 미세 구조 특징을 설명하고 응고 조건과 표유 결정 성향을 예측하기 위해 해석적 및 수치적 고충실도 CFD 열 모델 간의 비교를 설명했습니다. 본 연구로부터 다음과 같은 주요 결론을 도출할 수 있다.

    • 단일 레이저 트랙의 레이저 가공 조건은 용융 풀 형상, 레이저 흡수율, 유체 흐름 및 키홀 요동, 입자 구조 및 표류 입자 형성 민감성에 강한 영향을 미치는 것으로 밝혀졌습니다.
    • 레이저 용접을 위해 개발된 이론적인 표유 결정립 핵형성 분석이 레이저 용융 AM 조건으로 확장되었습니다. 분석 모델링 결과와 단일 레이저 트랙의 미세구조 특성화를 비교하면 예측이 전도 및 볼링 조건에서 실험적 관찰과 잘 일치하는 반면 키홀 조건에서는 예측이 약간 과소하다는 것을 알 수 있습니다. 이러한 불일치는 레이저 트랙의 대표성이 없는 섹션이나 유체 속도 필드의 변화로 인해 발생할 수 있습니다. CFD 모델에서 추출한 열장에 동일한 표유 입자 계산 파이프라인을 적용하면 연구된 모든 사례에서 과대평가가 발생하지만 분석 모델보다 연장된 용융 풀의 실험 데이터와 더 정확하게 일치합니다.
    • 이 연구에서 두 가지 표류 결정립 형성 메커니즘인 불균일 핵형성 및 수상돌기 조각화가 평가되었습니다. 우리의 결과는 불균일 핵형성이 용융 풀의 상단 중심선에서 새로운 결정립의 형성으로 이어지는 주요 메커니즘임을 시사합니다.지 /V티G/V티정권.
    • 용융 풀 경계 근처의 흩어진 입자는 깊은 키홀 모양의 용융 풀에서 독점적으로 관찰되며, 이는 강한 유체 흐름으로 인한 수상 돌기 조각화의 영향이 이러한 유형의 용융 풀에서 고려하기에 충분히 강력할 수 있음을 시사합니다.
    • 일반적으로 더 높은 레이저 스캐닝 속도와 더 낮은 전력 외에도 안정적인 키홀과 최소 유체 속도는 또한 흩어진 입자 형성을 완화하고 레이저 단일 트랙에서 에피택셜 성장을 보존합니다.

    References

    1. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006, pp.17–20.Book Google Scholar 
    2. A. Basak, R. Acharya, and S. Das: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3845–59.Article Google Scholar 
    3. J. Vitek: Acta Mater., 2005, vol. 53, pp. 53–67.Article CAS Google Scholar 
    4. R. Vilar and A. Almeida: J. Laser Appl., 2015, vol. 27, p. S17004.Article Google Scholar 
    5. T. Kalfhaus, M. Schneider, B. Ruttert, D. Sebold, T. Hammerschmidt, J. Frenzel, R. Drautz, W. Theisen, G. Eggeler, O. Guillon, and R. Vassen: Mater. Des., 2019, vol. 168, p. 107656.Article CAS Google Scholar 
    6. S.S. Babu, S.A. David, J.W. Park, and J.M. Vitek: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 1–12.Article CAS Google Scholar 
    7. L. Felberbaum, K. Voisey, M. Gäumann, B. Viguier, and A. Mortensen: Mater. Sci. Eng. A, 2001, vol. 299, pp. 152–56.Article Google Scholar 
    8. S. Mokadem, C. Bezençon, J.M. Drezet, A. Jacot, J.D. Wagnière, and W. Kurz: TMS Annual Meeting, 2004, pp. 67–76.
    9. J.M. Vitek: ASM Proc. Int. Conf. Trends Weld. Res., vol. 2005, pp. 773–79.
    10. J.M. Vitek, S. Babu, and S. David: Process Optimization for Welding Single-Crystal Nickel-Bbased Superalloyshttps://technicalreports.ornl.gov/cppr/y2001/pres/120424.pdf
    11. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.Article CAS Google Scholar 
    12. M. Gäumann, R. Trivedi, and W. Kurz: Mater. Sci. Eng. A, 1997, vol. 226–228, pp. 763–69.Article Google Scholar 
    13. M. Gäumann, S. Henry, F. Cléton, J.D. Wagnière, and W. Kurz: Mater. Sci. Eng. A, 1999, vol. 271, pp. 232–41.Article Google Scholar 
    14. M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz: Acta Mater., 2001, vol. 49, pp. 1051–62.Article Google Scholar 
    15. J.M. Vitek, S.A. David, and S.S. Babu: Welding and Weld Repair of Single Crystal Gas Turbine Alloyshttps://www.researchgate.net/profile/Stan-David/publication/238692931_WELDING_AND_WELD_REPAIR_OF_SINGLE_CRYSTAL_GAS_TURBINE_ALLOYS/links/00b4953204ab35bbad000000/WELDING-AND-WELD-REPAIR-OF-SINGLE-CRYSTAL-GAS-TURBINE-ALLOYS.pdf
    16. B. Kianian: Wohlers Report 2017: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report, Wohlers Associates, Inc., Fort Collins, 2017.Google Scholar 
    17. M. Ramsperger, L. Mújica Roncery, I. Lopez-Galilea, R.F. Singer, W. Theisen, and C. Körner: Adv. Eng. Mater., 2015, vol. 17, pp. 1486–93.Article CAS Google Scholar 
    18. A.B. Parsa, M. Ramsperger, A. Kostka, C. Somsen, C. Körner, and G. Eggeler: Metals, 2016, vol. 6, pp. 258-1–17.Article Google Scholar 
    19. C. Körner, M. Ramsperger, C. Meid, D. Bürger, P. Wollgramm, M. Bartsch, and G. Eggeler: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3781–92.Article Google Scholar 
    20. D. Bürger, A. Parsa, M. Ramsperger, C. Körner, and G. Eggeler: Mater. Sci. Eng. A, 2019, vol. 762, p. 138098,Article Google Scholar 
    21. J. Pistor and C. Körner: Sci. Rep., 2021, vol. 11, p. 24482.Article CAS Google Scholar 
    22. I. Lopez-Galilea, B. Ruttert, J. He, T. Hammerschmidt, R. Drautz, B. Gault, and W. Theisen: Addit. Manuf., 2019, vol. 30, p. 100874.CAS Google Scholar 
    23. N. Lu, Z. Lei, K. Hu, X. Yu, P. Li, J. Bi, S. Wu, and Y. Chen: Addit. Manuf., 2020, vol. 34, p. 101228.CAS Google Scholar 
    24. K. Chen, R. Huang, Y. Li, S. Lin, W. Zhu, N. Tamura, J. Li, Z.W. Shan, and E. Ma: Adv. Mater., 2020, vol. 32, pp. 1–8.Google Scholar 
    25. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu: Int. Mater. Rev., 2016, vol. 61, pp. 315–60.Article Google Scholar 
    26. A. Basak, R. Acharya, and S. Das: Addit. Manuf., 2018, vol. 22, pp. 665–71.CAS Google Scholar 
    27. R. Jiang, A. Mostafaei, J. Pauza, C. Kantzos, and A.D. Rollett: Mater. Sci. Eng. A, 2019. https://doi.org/10.1016/J.MSEA.2019.03.103.Article Google Scholar 
    28. R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett: Science, 2019, vol. 363, pp. 849–52.Article CAS Google Scholar 
    29. B. Fotovvati, S.F. Wayne, G. Lewis, and E. Asadi: Adv. Mater. Sci. Eng., 2018, vol. 2018, p. 4920718.Article Google Scholar 
    30. P.-J. Chiang, R. Jiang, R. Cunningham, N. Parab, C. Zhao, K. Fezzaa, T. Sun, and A.D. Rollett: in Advanced Real Time Imaging II, pp. 77–85.
    31. J. Ye, S.A. Khairallah, A.M. Rubenchik, M.F. Crumb, G. Guss, J. Belak, and M.J. Matthews: Adv. Eng. Mater., 2019, vol. 21, pp. 1–9.Article Google Scholar 
    32. C. Zhao, Q. Guo, X. Li, N. Parab, K. Fezzaa, W. Tan, L. Chen, and T. Sun: Phys. Rev. X, 2019, vol. 9, p. 021052.CAS Google Scholar 
    33. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King: Acta Mater., 2016, vol. 108, pp. 36–45.Article CAS Google Scholar 
    34. N. Kouraytem, X. Li, R. Cunningham, C. Zhao, N. Parab, T. Sun, A.D. Rollett, A.D. Spear, and W. Tan: Appl. Phys. Rev., 2019, vol. 11, p. 064054.Article CAS Google Scholar 
    35. T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.Article CAS Google Scholar 
    36. J.H. Cho and S.J. Na: J. Phys. D, 2006, vol. 39, pp. 5372–78.Article CAS Google Scholar 
    37. I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov: J. Mater. Process. Technol., 2010, vol. 210, pp. 1624–31.Article CAS Google Scholar 
    38. S. Ghosh, L. Ma, L.E. Levine, R.E. Ricker, M.R. Stoudt, J.C. Heigel, and J.E. Guyer: JOM, 2018, vol. 70, pp. 1011–16.Article CAS Google Scholar 
    39. Y. He, C. Montgomery, J. Beuth, and B. Webler: Mater. Des., 2019, vol. 183, p. 108126.Article CAS Google Scholar 
    40. D. Rosenthal: Weld. J., 1941, vol. 20, pp. 220–34.Google Scholar 
    41. M. Tang, P.C. Pistorius, and J.L. Beuth: Addit. Manuf., 2017, vol. 14, pp. 39–48.CAS Google Scholar 
    42. R.E. Aune, L. Battezzati, R. Brooks, I. Egry, H.J. Fecht, J.P. Garandet, M. Hayashi, K.C. Mills, A. Passerone, P.N. Quested, E. Ricci, F. Schmidt-Hohagen, S. Seetharaman, B. Vinet, and R.K. Wunderlich: Proc. Int.Symp. Superalloys Var. Deriv., 2005, pp. 467–76.
    43. B.C. Wilson, J.A. Hickman, and G.E. Fuchs: JOM, 2003, vol. 55, pp. 35–40.Article CAS Google Scholar 
    44. J.J. Valencia and P.N. Quested: ASM Handb., 2008, vol. 15, pp. 468–81.Google Scholar 
    45. H.L. Wei, J. Mazumder, and T. DebRoy: Sci. Rep., 2015, vol. 5, pp. 1–7.Google Scholar 
    46. N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, and S.S. Babu: Acta Mater., 2016, vol. 112, pp. 303–14.Article CAS Google Scholar 
    47. R. Lin, H. Wang, F. Lu, J. Solomon, and B.E. Carlson: Int. J. Heat Mass Transf., 2017, vol. 108, pp. 244–56.Article CAS Google Scholar 
    48. M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, and J.H. Hattel: Addit. Manuf., 2019, vol. 30, p. 100835.CAS Google Scholar 
    49. K. Higuchi, H.-J. Fecht, and R.K. Wunderlich: Adv. Eng. Mater., 2007, vol. 9, pp. 349–54.Article CAS Google Scholar 
    50. Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, and L. Chen: Addit. Manuf., 2019, vol. 28, pp. 600–09.Google Scholar 
    51. J. Trapp, A.M. Rubenchik, G. Guss, and M.J. Matthews: Appl. Mater. Today, 2017, vol. 9, pp. 341–49.Article Google Scholar 
    52. M. Schneider, L. Berthe, R. Fabbro, and M. Muller: J. Phys. D, 2008, vol. 41, p. 155502.Article Google Scholar 
    53. Z. Gan, O.L. Kafka, N. Parab, C. Zhao, L. Fang, O. Heinonen, T. Sun, and W.K. Liu: Nat. Commun., 2021, vol. 12, p. 2379.Article CAS Google Scholar 
    54. B.J. Simonds, E.J. Garboczi, T.A. Palmer, and P.A. Williams: Appl. Phys. Rev., 2020, vol. 13, p. 024057.Article CAS Google Scholar 
    55. J. Dantzig and M. Rappaz: Solidification, 2nd ed., EPFL Press, Lausanne, 2016, pp. 483–532.Google Scholar 
    56. W. Tiller, K. Jackson, J. Rutter, and B. Chalmers: Acta Metall., 1953, vol. 1, pp. 428–37.Article CAS Google Scholar 
    57. D. Zhang, A. Prasad, M.J. Bermingham, C.J. Todaro, M.J. Benoit, M.N. Patel, D. Qiu, D.H. StJohn, M. Qian, and M.A. Easton: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4341–59.Article Google Scholar 
    58. F. Yan, W. Xiong, and E.J. Faierson: Materials, 2017, vol. 10, p. 1260.Article Google Scholar 
    59. W. Tan and Y.C. Shin: Comput. Mater. Sci., 2015, vol. 98, pp. 446–58.Article CAS Google Scholar 
    60. A. Hellawell, S. Liu, and S.Z. Lu: JOM, 1997, vol. 49, pp. 18–20.Article CAS Google Scholar 
    61. H. Ji: China Foundry, 2019, vol. 16, pp. 262–66.Article Google Scholar 
    62. J.M. Vitek, S.A. David, and L.A. Boatner: Sci. Technol. Weld. Join., 1997, vol. 2, pp. 109–18.Article CAS Google Scholar 
    63. X. Wang, J.A. Muñiz-Lerma, O. Sanchez-Mata, S.E. Atabay, M.A. Shandiz, and M. Brochu: Prog. Addit. Manuf., 2020, vol. 5, pp. 41–49.Article Google Scholar 

    Download references

    FLOW-3D 수치해석용 컴퓨터 선택 가이드 (update)

    Hardware Selection for FLOW-3D Products – FLOW-3D

    2022-12-07 부분 업데이트 / ㈜에스티아이씨앤디 솔루션사업부

    In this blog, Flow Science’s IT Manager Matthew Taylor breaks down the different hardware components and suggests some ideal configurations for getting the most out of your FLOW-3D products.

    개요

    본 자료는 Flow Science의 IT 매니저 Matthew Taylor가 작성한 자료를 기반으로 STI C&D에서 일부 자료를 보완한 자료입니다. 본 자료를 통해 FLOW-3D 사용자는 최상의 해석용 컴퓨터를 선택할 때 도움을 받을 수 있을 것으로 기대합니다.

    수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.

    따라서 수치해석용 컴퓨터의 선정을 위해서 단위 시간당 시스템이 처리하는 작업의 수나 처리량, 응답시간, 평균 대기 시간 등의 요소를 복합적으로 검토하여 결정하게 됩니다.

    또한 수치해석에 적합한 성능을 가진 컴퓨터를 선별하는 방법으로 CPU 계산 처리속도인 Flops/sec 성능도 중요하지만 수치해석을 수행할 때 방대한 계산 결과를 디스크에 저장하고, 해석결과를 분석할 때는 그래픽 성능도 크게 좌우하기 때문에 SSD 디스크와 그래픽카드에도 관심을 가져야 합니다.

    FLOW SCIENCE, INC. 에서는 일반적인 FLOW-3D를 지원하는 최소 컴퓨터 사양과 O/S 플랫폼 가이드를 제시하지만, 도입 담당자의 경우, 최상의 조건에서 해석 업무를 수행해야 하기 때문에 가능하면 최고의 성능을 제공하는 해석용 장비 도입이 필요합니다. 이 자료는 2022년 현재 FLOW-3D 제품을 효과적으로 사용하기 위한 하드웨어 선택에 대해 사전에 검토되어야 할 내용들에 대해 자세히 설명합니다. 그리고 실행 중인 시뮬레이션 유형에 따라 다양한 구성에 대한 몇 가지 아이디어를 제공합니다.

    CPU 최신 뉴스

    2022년 11월 23일 기준 (https://www.itworld.co.kr/news/265948 기사 원문 발췌)

    ⓒ Rob Schultz/IDG
    ⓒ Rob Schultz/IDG
    • 현재 AMD의 라이젠 7000 시리즈와 인텔 13세대 코어 CPU는 환상적인 성능을 제공하나 앞으로는 더욱 좋은 칩이 출시될 예정이다. 물론 강력한 성능을 원한다면 고민할 필요도 없이 최대한 빠른 클럭 속도, 최대한 많은 코어 수를 찾으면 된다. 여기서 어려운 부분은 새로운 칩 라인업의 복잡하다는 것이다. 특히 최신 프로세서와 지난 세대 최상급 프로세서 중에서 고민한다면 여러 부분을 세밀하게 이해해야 한다.
    • 모든 CFD 엔지니어의 고민은 예산이 넉넉하여 무조건 최고 사양의 제품을 구매하면 간단하지만, 현실의 예산은 그렇지 못하기 때문에 선택의 기로에서 힘들어 한다.
    • 현재 워크스테이션에서 최고 사양은 AMD 라이젠 스레드리퍼 PRO 5995WX 샤갈 프로 거의 슈퍼컴퓨터 수준이다. 가격 조회 사이트인 다나와에서 현재 일자(2022년 12월 07일) 기준으로 검색해 보면 CPU 가격만 1000만원대인 매우 고가의 CPU인 것을 알 수 있다.
    • AMD와 인텔의 최신 아키텍처는 모두 성능만큼 에너지 소비량도 늘어난다. AMD의 라이젠 7950X와 인텔의 코어 i9-13900K는 DDR5 RAM을 지원한다.
    • 다양한 가격대의 CPU가 있으므로 아래 CPU 성능 차트의 성능대비 가격을 보고 CPU를 선택하도록 한다.
    인텔® 코어™ i9-13900K 프로세서(36M 캐시, 최대 5.80GHz)
    인텔® 코어™ i9-13900K 프로세서(36M 캐시, 최대 5.80GHz)

    완제품의 경우 그래픽 카드에 따라 가격이 심하게 차이가 나기 때문에 단순 비교가 어려우므로, 구입사양을 정하고 검색을 통해 적당한 제품을 선정하면 된다.

    CPU의 선택

    CPU는 전반적인 성능에 큰 영향을 미치며, 대부분의 경우 컴퓨터의 가장 중요한 구성 요소입니다. 그러나 데스크탑 프로세서를 구입할 때가 되면 Intel 과 AMD의 모델 번호와 사양을 이해하는 것이 어려워 보일 것입니다.
    그리고, CPU 성능을 평가하는 방법에 의해 가장 좋은 CPU를 고른다고 해도 보드와, 메모리, 주변 Chip 등 여러가지 조건에 의해 성능이 달라질 수 있기 때문에 성능평가 결과를 기준으로 시스템을 구입할 경우, 단일 CPU나 부품으로 순위가 정해진 자료보다는 시스템 전체를 대상으로 평가한 순위표를 보고 선정하는 지혜가 필요합니다.

    PassMark – CPU Mark High End CPUs

    2022년 12월 07일 기준

    PassMark - CPU Mark
High End CPUs
Updated 6th of December 2022
    PassMark – CPU Mark High End CPUs Updated 6th of December 2022

    <출처> https://www.cpubenchmark.net/high_end_cpus.html

    수치해석을 수행하는 CPU의 경우 예산에 따라 Core가 많지 않은 CPU를 구매해야 하는 경우도 있을 수 있습니다. 보통 Core가 많다고 해석 속도가 선형으로 증가하지는 않으며, 해석 케이스에 따라 적정 Core수가 있습니다. 이 경우 예산에 맞는 성능 대비 최상의 코어 수가 있을 수 있기 때문에 Single thread Performance 도 매우 중요합니다. 아래 성능 도표를 참조하여 예산에 맞는 최적 CPU를 찾는데 도움을 받을 수 있습니다.

    PassMark - CPU Mark
Single Thread Performance
Updated 6th of December 2022
    PassMark – CPU Mark Single Thread Performance Updated 6th of December 2022

    출처 : https://www.cpubenchmark.net/singleThread.html

    CPU 성능 분석 방법

    부동소수점 계산을 하는 수치해석과 밀접한 Computer의 연산 성능 벤치마크 방법은 대표적으로 널리 사용되는 아래와 같은 방법이 있습니다.

    FLOW-3D의 CFD 솔버 성능은 CPU의 부동 소수점 성능에 전적으로 좌우되기 때문에 계산 집약적인 프로그램입니다. FlowSight 또한 CPU에 크게 의존합니다. 현재 출시된 사용 가능한 모든 CPU를 벤치마킹할 수는 없지만 상대적인 성능을 합리적으로 비교할 수는 있습니다.

    특히, 수치해석 분야에서 주어진 CPU에 대해 FLOW-3D 성능을 추정하거나 여러 CPU 옵션 간의 성능을 비교하기 위한 최상의 옵션은 Standard Performance Evaluation Corporation의 SPEC CPU2017 벤치마크(현재까지 개발된 가장 최신 평가기준임)이며, 특히 SPECspeed 2017 Floating Point 결과가 CFD Solver 성능을 매우 잘 예측합니다.

    이는 유료 벤치마크이므로 제공된 결과는 모든 CPU 테스트 결과를 제공하지 않습니다. 보통 제조사가 ASUS, Dell, Lenovo, HP, Huawei 정도의 제품에 대해 RAM이 많은 멀티 소켓 Intel Xeon 기계와 같은 값비싼 구성으로 된 장비 결과들을 제공합니다.

    CPU 비교를 위한 또 다른 옵션은 Passmark Software의 CPU 벤치마크입니다. PerformanceTest 제품군은 유료 소프트웨어이지만 무료 평가판을 사용할 수 있습니다. 대부분의 CPU는 저렴한 옵션을 포함하여 나열됩니다. 부동 소수점 성능은 전체 벤치마크의 한 측면에 불과하지만 다양한 워크로드에서 전반적인 성능을 제대로 테스트합니다.

    예산을 결정하고 해당 예산에 해당하는 CPU를 선택한 후에는 벤치마크를 사용하여 가격에 가장 적합한 성능을 결정할 수 있습니다.

    <참고>

    SPEC의 벤치 마크https://www.spec.org/benchmarks.html#cpu )

    SPEC CPU 2017 (현재까지 가장 최근에 개발된 CPU 성능측정 기준)

    다른 컴퓨터 시스템에서 컴퓨팅 계산에 대한 집약적인 워크로드를 비교하는데 사용할 수 있는 성능 측정을 제공하도록 설계된 SPEC CPU 2017에는 SPECspeed 2017 정수, SPECspeed 2017 부동 소수점, SPECrate 2017 정수 및 SPECrate 2017 부동 소수점의 4 가지 제품군으로 구성된 43 개의 벤치 마크가 포함되어 있습니다. SPEC CPU 2017에는 에너지 소비 측정을 위한 선택적 메트릭도 포함되어 있습니다.

    <SPEC CPU 벤치마크 보고서>

    벤치마크 결과보고서는 제조사별, 모델별로 테스트한 결과를 아래 사이트에 가면 볼 수 있습니다.

    https://www.spec.org/cgi-bin/osgresults

    <보고서 샘플>

    • SPEC CPU 2017

    Designed to provide performance measurements that can be used to compare compute-intensive workloads on different computer systems, SPEC CPU 2017 contains 43 benchmarks organized into four suites: SPECspeed 2017 Integer, SPECspeed 2017 Floating Point, SPECrate 2017 Integer, and SPECrate 2017 Floating Point. SPEC CPU 2017 also includes an optional metric for measuring energy consumption.

    클럭 대 코어

    일반적으로 클럭 속도가 높은 칩은 CPU 코어를 더 적게 포함합니다. FLOW-3D는 병렬화가 잘되어 있지만, 디스크 쓰기와 같이 일부 작업은 기본적으로 단일 스레드 방식으로 수행됩니다. 따라서 데이터 출력이 빈번하거나 큰 시뮬레이션은 종종 더 많은 코어가 아닌, 더 높은 클럭 속도를 활용합니다. 마찬가지로 코어 및 소켓의 다중 스레딩은 오버헤드를 발생시키므로 작은 문제의 해석일 경우 사용되는 코어 수를 제한하면 성능이 향상될 수 있습니다.

    CPU 아키텍처

    CPU 아키텍처는 중요합니다. 최신 CPU는 일반적으로 사이클당 더 많은 기능을 제공합니다. 즉, 현재 세대의 CPU는 일반적으로 동일한 클럭 속도에서 이전 CPU보다 성능이 우수합니다. 또한 전력 효율이 높아져 와트당 성능이 향상될 수 있습니다. Flow Science에는 구형 멀티 소켓 12, 16, 24 코어 Xeon보다 성능이 뛰어난 최근 세대 10~12 Core i9 CPU 시스템을 보유하고 있습니다.

    오버클럭

    해석용 장비에서는 CPU를 오버클럭 하지 않는 것이 좋습니다. 하드웨어를 다년간의 투자라고 생각한다면, 오버클럭화는 발열을 증가시켜 수명을 단축시킵니다. CPU에 따라 안정성도 저하될 수 있습니다. CPU를 오버클럭 할 때는 세심한 열 관리가 권장됩니다.

    하이퍼스레딩

    <이미지출처:https://gameabout.com/krum3/4586040>

    하이퍼스레딩은 물리적으로 1개의 CPU를 가상으로 2개의 CPU처럼 작동하게 하는 기술로 파이프라인의 단계수가 많고 각 단계의 길이가 짧을때 유리합니다. 다만 수치해석 처럼 모든 코어의 CPU를 100% 사용중인 장시간 수행 시뮬레이션은 일반적으로 Hyper Threading이 비활성화 된 상태에서 더 잘 수행됩니다. FLOW-3D는 100% CPU 사용률이 일반적이므로 새 하드웨어를 구성할 때 Hyper Threading을 비활성화하는 것이 좋습니다. 설정은 시스템의 BIOS 설정에서 수행합니다.

    몇 가지 워크로드의 경우에는 Hyper Threading을 사용하여 약간 더 나은 성능을 보이는 경우가 있습니다. 따라서, 최상의 런타임을 위해서는 두 가지 구성중에서 어느 구성이 더 적합한지 시뮬레이션 유형을 테스트하는 것이 좋습니다.

    스케일링

    여러 코어를 사용할 때 성능은 선형적이지 않습니다. 예를 들어 12 코어 CPU에서 24 코어 CPU로 업그레이드해도 시뮬레이션 런타임이 절반으로 줄어들지 않습니다. 시뮬레이션 유형에 따라 16~32개 이상의 CPU 코어를 선택할 때는 FLOW-3D 및 FLOW-3D CAST의 HPC 버전을 사용하거나 FLOW-3D CLOUD로 이동하는 것을 고려하여야 합니다.

    AMD Ryzen 또는 Epyc CPU

    AMD는 일부 CPU로 벤치마크 차트를 석권하고 있으며 그 가격은 매우 경쟁력이 있습니다. FLOW SCIENCE, INC. 에서는 소수의 AMD CPU로 FLOW-3D를 테스트했습니다. 현재 Epyc CPU는 이상적이지 않고 Ryzen은 성능이 상당히 우수합니다. 발열은 여전히 신중하게 다뤄져야 할 문제입니다. 현재 32 코어 옵션에 영향을 주는 Windows 버그가 초기 버전에서 성능을 크게 저하시키는 것으로 알려져 있습니다. Bug Fix가 되었는지 업데이트 하여 확인하고, 해결되지 않은 경우 이러한 CPU에는 Linux를 권장됩니다.

    <관련 기사>

    https://www.techspot.com/news/78122-report-software-fix-can-double-threadripper-2990wx-performance.html

    Graphics 고려 사항

    FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다.

    특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

    유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.

    PassMark - G3D Mark High End Videocards 2022
    PassMark – G3D Mark High End Videocards 2022

    출처 : https://www.videocardbenchmark.net/high_end_gpus.html

    원격데스크탑 사용시 고려 사항

    Flow Science는 nVidia 드라이버 버전이 341.05 이상인 nVidia Quadro K, M 또는 P 시리즈 그래픽 하드웨어를 권장합니다. 이 카드와 드라이버 조합을 사용하면 원격 데스크톱 연결이 완전한 3D 가속 기능을 갖춘 기본 하드웨어에서 자동으로 실행됩니다.

    원격 데스크톱 세션에 연결할 때 nVidia Quadro 그래픽 카드가 설치되어 있지 않으면 Windows는 소프트웨어 렌더링을 사용합니다. 이는 FLOW-3D 및 FlowSight 모두 성능에 부정적인 영향을 미칩니다. FLOW-3D 가 소프트웨어 렌더링을 사용하고 있는지 확인하려면 FLOW-3D 도움말 메뉴에서 정보를 선택하십시오. GDI Generic을 소프트웨어 렌더링으로 사용하는 경우 GL_RENDERER 항목에 표시됩니다.

    하드웨어 렌더링을 활성화하는 몇 가지 옵션이 있습니다. 쉬운 방법 중 하나는 실제 콘솔에서 FLOW-3D를 시작한 다음 원격 데스크톱 세션을 연결하는 것입니다. Nice Software DCV 와 같은 일부 VNC 소프트웨어는 기본적으로 하드웨어 렌더링을 사용합니다.

    RAM 고려 사항

    프로세서 코어당 최소 4GB의 RAM은 FLOW-3D의 좋은 출발입니다. FlowSight POST Processor를 사용하여 후처리 작업을 할 경우 상당한 양의 RAM을 사용하는 것이 좋습니다.

    현재 주력제품인 DDR4보다 2배 빠른 DDR5가 곧 출시된다는 소식도 있습니다.

    일반적으로 FLOW-3D를 이용하여 해석을 할 경우 격자(Mesh)수에 따라 소요되는 적정 메모리 크기는 아래와 같습니다.페이지 보기

    • 초대형 (2억개 이상의 셀) : 최소 128GB
    • 대형 (60 ~ 1억 5천만 셀) : 64 ~ 128GB
    • 중간 (30-60백만 셀) : 32-64GB
    • 작음 (3 천만 셀 이하) : 최소 32GB

    HDD 고려 사항

    수치해석은 해석결과 파일의 데이터 양이 매우 크기 때문에 읽고 쓰는데, 속도면에서 매우 빠른 SSD를 적용하면 성능면에서 큰 도움이 됩니다. 다만 SSD 가격이 비싸서 가성비 측면을 고려하여 적정수준에서 결정이 필요합니다.

    CPU와 저장장치 간 데이터가 오고 가는 통로가 그림과 같이 3가지 방식이 있습니다. 이를 인터페이스라 부르며 SSD는 흔히 PCI-Express 와 SATA 통로를 이용합니다.

    흔히 말하는 NVMe는 PCI-Express3.0 지원 SSD의 경우 SSD에 최적화된 NVMe (NonVolatile Memory Express) 전송 프로토콜을 사용합니다. 주의할 점은 MVMe중에서 SATA3 방식도 있기 때문에 잘 구별하여 구입하시기 바랍니다.

    그리고 SSD를 선택할 경우에도 SSD 종류 중에서 PCI Express 타입은 매우 빠르고 가격이 고가였지만 최근에는 많이 저렴해졌습니다. 따라서 예산 범위내에서 NVMe SSD등 가장 효과적인 선택을 하는 것이 좋습니다.
    ( 참고 : 해석용 컴퓨터 SSD 고르기 참조 )

    기존의 물리적인 하드 디스크의 경우, 디스크에 기록된 데이터를 읽기 위해서는 데이터를 읽어내는 헤드(바늘)가 물리적으로 데이터가 기록된 위치까지 이동해야 하므로 이동에 일정한 시간이 소요됩니다. (이러한 시간을 지연시간, 혹은 레이턴시 등으로 부름) 따라서 하드 디스크의 경우 데이터를 읽기 위한 요청이 주어진 뒤에 데이터를 실제로 읽기까지 일정한 시간이 소요되는데, 이 시간을 일정한 한계(약 10ms)이하로 줄이는 것이 불가능에 가까우며, 데이터가 플래터에 실제 기록된 위치에 따라서 이러한 데이터에의 접근시간 역시 차이가 나게 됩니다.

    하지만 HDD의 최대 강점은 가격대비 용량입니다. 현재 상용화되어 판매하는 대용량 HDD는 12TB ~ 15TB가 공급되고 있으며, 이는 데이터 저장이나 백업용으로 가장 좋은 선택이 됩니다.
    결론적으로 데이터를 직접 읽고 쓰는 드라이브는 SSD를 사용하고 보관하는 용도의 드라이브는 기존의 HDD를 사용하는 방법이 효과적인 선택이 될 수 있습니다.

    PassMark – Disk Rating High End Drives

    PassMark - Disk Rating High End Drives 2022
    PassMark – Disk Rating High End Drives 2022

    출처 : https://www.harddrivebenchmark.net/high_end_drives.html

    상기 벤치마크 테스트는 테스트 조건에 따라 그 성능 곡선이 달라질 수 있기 때문에 조건을 확인할 필요가 있습니다. 예를 들어 Windows7, windows8, windows10 모두에서 테스트한 결과를 평균한 점수와 자신이 사용할 컴퓨터 O/S에서 테스트한 결과는 다를 수 있습니다. 상기 결과에 대한 테스트 환경에 대한 내용은 아래 사이트를 참고하시기 바랍니다.

    참고 : 테스트 환경

    페이지 보기

    FLOW-3D World Users Conference 2023

    FLOW-3D World Users Conference 2023

    FLOW-3D World Users Conference 2023
    FLOW-3D World Users Conference 2023

    FLOW-3D World Users Conference 2023 에 전 세계 고객을 초대합니다 . 이 회의는 2023년 6월 5일부터 7일까지 프랑스 스트라스부르 의 Sofitel Strasbourg Grande Ile 에서 개최됩니다. 세계에서 가장 유명한 회사 및 기관의 동료 엔지니어, 연구원 및 과학자와 함께 시뮬레이션 기술을 연마하고 새로운 모델링 접근 방식을 탐색하고 최신 소프트웨어 개발에 대해 알아보십시오. 이 회의에서는 응용 분야별 트랙, 고급 교육 세션, 고객의 기술 프레젠테이션, Flow Science의 선임 기술 직원이 발표하는 최신 제품 개발을 선보일 예정입니다. 회의는 XC Engineering 이 공동 주최합니다 . 

    초록 요청

    초록 모집은 2023년 3월 31일까지 가능합니다!

    경험을 공유하고 성공 사례를 제시하며  FLOW-3D  사용자 커뮤니티 및 고위 기술 직원으로부터 귀중한 피드백을 얻으십시오. 초록에는 제목, 저자 및 200단어 이상의 설명이 포함되어야 하며 info@flow3d.com 으로 이메일을 보낼 수 있습니다 . 

    소셜 이벤트

    오프닝 리셉션

    리셉션은 6월 5일 월요일 18:00-19:00 사이 Vineyard에 있는 Sofitel Strasbourg Grande Ile 컨퍼런스 호텔에서 열립니다 . 모든 컨퍼런스 참석자는 이 행사에 초대됩니다.

    컨퍼런스 디너

    회의 만찬은 6월 6일 화요일 저녁에 열릴 예정입니다. 모든 회의 참석자는 이 행사에 초대됩니다. 시간 및 장소는 미정입니다. 자세한 내용은 계속 지켜봐 주세요!

    컨퍼런스 정보

    중요한 날들

    • 2023년 3월 31일: 초록 마감일
    • 2023년 4월 7일: 초록 접수
    • 2023년 5월 26일: 프레젠테이션 마감일
    • 2023년 6월 5일: 고급 교육 세션
    • 2023년 6월 6일: 컨퍼런스 만찬

    등록비

    • 컨퍼런스 1일차 및 2일차: 300 €
    • 컨퍼런스 첫째 날: 200 €
    • 컨퍼런스 2일차: 200 €
    • 게스트 요금(사교 행사만 해당): 50 €
    • 교육 세션: 무료!

    고급 교육 세션

    모든 교육 세션은 컨퍼런스 참석자에게 무료입니다!

    교육 일정

    2023년 6월 5일 월요일

    • 1:30-300:  FLOW-3D (x)
    • 3:00-3:30: 다과와 커피 브레이크
    • 3:30-4:00: 재조정 및 클라우드 컴퓨팅
    • 4:00-5:30: FLOW-3D POST 

    FLOW-3D POST: 기본을 넘어 시뮬레이션 문제 해결 및 고급 장면 렌더링

    FLOW-3D POST 는 사용자가 셀 수준 포인트 속성 조사에서 전체 장면 고급 렌더링까지 쉽게 초점을 변경할 수 있는 유연하고 강력한 후처리 도구입니다. 이 교육에서는 두 가지 일반적인 후처리 기능을 살펴봅니다. 먼저 문제 해결 또는 런타임 개선 목적으로 포인트 값 정보를 추출하는 방법을 배웁니다. 이 부분은 매우 기술적인 부분이지만 시뮬레이션이 수치적 어려움이나 비효율성에 직면할 수 있는 이유에 대한 통찰력을 제공하는 보상을 제공합니다. 두 번째 부분에서는 벡터, 광선 추적 및 이동 카메라 효과를 사용하여 고급 렌더링 효과를 활용하여 매력적인 이미지와 애니메이션을 만드는 방법을 배웁니다.

    FLOW-3D (x): 자동화를 통한 효율성 및 개선된 시뮬레이션 통찰력

    FLOW-3D (x) 는 FLOW-3D 툴킷에 추가된 강력한 기능으로 사용자가 CAD 매개변수 정의에서 자동화된 시뮬레이션 및 후처리 전체 주기 워크플로우를 통해 많은 시뮬레이션 요소를 쉽게 연결, 자동화 및 최적화할 수 있습니다. 이 교육에서 사용자는 견고한 시뮬레이션 환경을 만들기 위해 다른 소프트웨어 노드와 함께 FLOW-3D (x) 를 사용하는 방법을 배우게 됩니다.

    참석자는 컨퍼런스 후 FLOW-3D (x) 의 3개월 무료 라이선스를 받게 됩니다 .

    Rescale: FLOW-3D 사용자가 클라우드 기반 고성능 컴퓨팅(HPC) 리소스를 활용할 수 있는 새로운 플랫폼

    Flow Science는 고객 이 다양한 원격 하드웨어에서 FLOW-3D 모델 을 실행할 수 있도록 새로운 클라우드 기반 리소스인 Rescale 을 제공하고 있습니다. 이 교육은 다음 세 가지 주제로 구성됩니다. 

    1. Rescale 계정 개설, 모델 실행 및 데이터 후처리 
    2. 명령줄 모드에서 Rescale에서 실행하는 것과 사용자 인터페이스 기반 환경에서 Rescale을 사용하는 것 비교. 그리고 
    3. Rescale에서 사용할 수 있는 다양한 유형의 하드웨어 아키텍처에 대한 자세한 벤치마킹을 통해 하드웨어 선택 및 HPC 배포 전략과 관련된 비용 성능 고려 사항을 명확히 합니다. 교육 세션이 끝나면 사용자는 Rescale 플랫폼에서 모델을 실행하는 비용과 실용성을 모두 명확하게 이해할 수 있습니다.

    발표자 정보

    각 발표자는 Q & A를 포함하여 30분의 발언 시간을 갖습니다. 모든 프레젠테이션은 컨퍼런스 참석자와 컨퍼런스 후 웹사이트에 배포됩니다. 이 회의에는 전체 보고서가 필요하지 않습니다. 컨퍼런스에서 발표하는 것에 대해 질문이 있으시면 저희에게 연락해 주십시오 . XC Engineering은 Best Presentation Award를 후원합니다.

    여행하다

    컨퍼런스 호텔

    소피텔 스트라스부르그 그란데 일

    4 위 Saint Pierre le Jeune
    67000 STRASBOURG 프랑스

    GPS: 48.585184, 7.746356
    전화:+33-3-88-15-49-00
    팩스 +33 3 88 15 49 99
    H0568@sofitel.com

    기차 및 공항 정보 는 호텔 웹사이트 를 참조하십시오.

    회의실 요금

    회의실 블록은 2023년 1월 15일부터 4월 15일까지 운영됩니다.

    • 클래식룸: 1박당 195.00유로
    • 수페리어룸: 1박당 220.00유로
    • 발코니가 있는 수페리어룸: 1박당 250.00유로
    • 럭셔리룸: 1박당 250.00유로
    • 1인 조식 포함
    • 2인 숙박 시 추가 요금: 1박당 30.00유로
    • 지방세: 1인 1박당 3.30유로
    • 도착 7일 이전에 통보하는 경우 무료 취소가 가능합니다.
    소피텔 스트라스부르
    소피텔 스트라스부르 로비
    소피텔 스트라스부르 테라스

    리켄 RIBF 조감도. 3 개의 입사 (RILAC, RILAC2, AVF), 4 개의 링 사이클로트론 (RRC, fRC, IRC, SRC), RI 빔 분리 장치 BigRIPS 및 다양한 실험 장치로 구성

    Riken RIBF의 He 가스 스트리퍼 및 하전 변환 링 계획

    今尾浩士
    国立研究開発法人理化学研究所 〒 351-0198 埼玉県和光市広沢 2-1
    imao@riken.jp
    令和 4 年 9 月 16 日原稿受付

    Abstract

    리켄 RI 빔 팩토리(RIBF)는 지속적으로 우라늄 빔의 대강도화에 임하고 있으며, 지난 10년간 200배 이상의 강도 증강에 성공하고 있다. He 가스를 이용한 하전 스트리퍼 (He 가스 스트리퍼)의 실현은 그 고강도화의 큰 터닝 포인트였다. 또한, 하전 변환 효율을 비약적으로 올리기 위해 현재 제안하고 있는 하전 변환 링(CSR)은 더욱 큰 강도화가 큰 열쇠가 되는 장치이다. He 스트리퍼와 CSR 계획에 관한 관련 물리 화제와 문제를 섞어 소개한다.

    소개

    리켄 RI 빔 팩토리 (RIBF [1])와 같이 여러 가속기를 사용하여 중이온의 다단계 가속에서 가속가수의 선택성은 특징적인 자유도 중 하나이다. 가속기의 시작점이되는 이온 소스로부터 생성 된 이온의 원자가의 선택과 가속 도중의 원자가는 “하전 스트리퍼”라고 불리는 장치에 의해 제어 선택된다.

    가능한 한 다가가 가속기에서의 가속이나 편향은 효율적이지만, 이온원으로 다가 이온을 대강도로 얻는 것은 일반적으로 어렵고, 스트리퍼로 다가로 하기 위해서는 충분히 가속되어 있어야 한다 있다. 가수를 어느 단계에서 어디까지 올리는지, 그 가속 전략의 최적화는 중이온 가속기 설계의 간이다.

    특히 스트리퍼의 성능(얻어지는 가수·변환 효율·내구성·균일성 등)은 가속기 전체의 성능(가속 가능 빔 강도·가속 효율·안정성 등)을 결정하는 가장 중요한 인자라고 할 수 있다. 스트리퍼에는 다양한 기술적인 어려움이 있지만, 이온 원자 충돌의 물리 그 자체를 구현한 장치이며, 축축, 중이온 가속기의 성능은 원자 충돌 과정에 지배되고 있다고 해도 과언이 아니다 .

    본 논문에서는 제가 중심으로 개발을 하고 있는 리켄 RIBF 에 있어서의 He 가스 스트리퍼[2–4]와 장래 계획의 하나 하전 변환 링(CSR[5–7])에 대해서, 관련하는 물리의 화제 와 문제를 섞어 소개한다. 모두 가장 가속하기 어려운 우라늄 빔에의 적용을 주안으로 한 것으로, 우선 RIBF에서의 우라늄 빔 가속에 대해 개관한다.

    1.はじめに
    理研 RI ビームファクトリー(RIBF[1])のように複 数の加速器を用いた重イオンの多段階加速にお いて,加速価数の選択性は特徴的な自由度の一 つである.加速器の始点となるイオン源からの生 成イオンの価数の選択,そして加速途中の価数も 「荷電ストリッパー」と呼ばれる装置によって制御 選択される.なるべく多価の方が加速器での加速 や偏向は効率的あるが,イオン源で多価イオンを 大強度で得るのは一般に難しく,ストリッパーで多 価にするためには十分加速されている必要がある. 価数をどの段階でどこまで上げるのか,その加速 ストラテジーの最適化は重イオン加速器設計の肝 である.特にストリッパーの性能(得られる価数・変 換効率・耐久性・均一性など)は加速器全体の性 能(加速可能ビーム強度・加速効率・安定性など) を決める最重要因子といえる.ストリッパーには 様々な技術的な難しさはあるが,イオン原子衝突 の物理そのものを体現した装置であり,畢竟,重 イオン加速器の性能は原子衝突過程に支配され ているといっても過言ではない. 本稿では私が中心となって開発を行っている 理研 RIBF における He ガスストリッパー[2–4]と将 来計画の一つ荷電変換リング(CSR[5–7])につい て,関連する物理の話題や問題を織り交ぜながら 紹介する.いずれも最も加速の難しいウランビームへの適用を主眼としたものであり,先ず RIBF に おけるウランビーム加速について概観する.

    리켄 RIBF 조감도. 3 개의 입사 (RILAC, RILAC2, AVF), 4 개의 링 사이클로트론 (RRC, fRC, IRC, SRC), RI 빔 분리 장치 BigRIPS 및 다양한 실험 장치로 구성
    리켄 RIBF 조감도. 3 개의 입사 (RILAC, RILAC2, AVF), 4 개의 링 사이클로트론 (RRC, fRC, IRC, SRC), RI 빔 분리 장치 BigRIPS 및 다양한 실험 장치로 구성
    그림 7 : He 가스 스트리퍼의 단면도와 실제 사진 (왼쪽 아래) 및 빔 통과시의 발광 모습 (오른쪽 아래).
    그림 7 : He 가스 스트리퍼의 단면도와 실제 사진 (왼쪽 아래) 및 빔 통과시의 발광 모습 (오른쪽 아래).

    References

    [1] Y. Yano, Nucl. Instrum. Methods Phys. Res. B261, 1009 (2007).
    [2] H. Okuno et al., Phys. Rev. ST Accel. Beams14, 033503 (2011).
    [3] H. Imao et al., Phys. Rev. STAccel. Beams 15,123501 (2012).
    [4] H. Imao et al., CYC2013, 265 (2013).
    [5] H. Imao et al., CYC2016, 155 (2016).
    [6] H. Imao, JINST 15, P12036 (2020).
    [7] H. Imao et al., IPAC2022, TUIYGD2 (2022).
    [8] H. Hasebe et al., AIPConf. Proc. 1962, 030004(2018).
    [9] H. Hasebe et al., EPJ Web Conf. 229, 01004(2020).
    [10] N. Fukunishi et al., PAC09, MO3GRI01(2009).
    [11] N. Bohr and J. Lindhard, Mat. Fys. Medd. Dan.Vid. 28 No.7 (1954).
    [12] H. D. Betz and L. Grodzins, Phys. Rev. Lett.25, 211 (1970).
    [13] J. H. McGuire and P. Richard, Phys. Rev. A 8,1374 (1973).
    [14] A. S. Schlachter et al., Phys. Rev. A 27, 3372(1983).
    [15] C. Scheidenberger et al., Nucl. Instrum.Methods Phys. Res. B 142, 441 (1998).
    [16] J. P. Rozet et al., Nucl. Instrum. Methods Phys.Res. B 107, 67b (1996).
    [17] E. Lamour et al., Phys. Rev. A 92, 042703(2015).
    [18] T. Kanemura et al., Phys. Rev. Lett. 128,212301 (2022).
    [19] H. Ryuto et al., CYC2007, 314 (2007).
    [20] P. Scharrer et al., Phys. Rev. ST Accel. Beams 20, 043503 (2017).
    [21] H. Kuboki et al., Phys. Rev. ST Accel. Beams 14, 053502 (2011).
    [22] H. Geissel et al., Nucl. Instrum. Methods Phys. Res. B 195, 3 (2002).
    [23] J. Wei et al., NA-PAC’13, 1453 (2013).
    [24] FAIR Baseline Technical Report, vol. 2 (2006).
    [25] D. Jeon, IPAC2013, 3898 (2013).
    [26] J. C. Yang et al., IPAC2013, WEOBB103(2013).

    Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing

    레이저 금속 적층 제조 중 나노 입자로 에너지 효율 증가

    Minglei Quo bQilin Guo a bLuis IzetEscano a bAli Nabaa a bKamel Fezzaa cLianyi Chen a b

    레이저 금속 적층 제조(AM) 공정의 낮은 에너지 효율은 대규모 산업 생산에서 잠재적인 지속 가능성 문제입니다. 레이저 용융을 위한 에너지 효율의 명시적 조사는 용융 금속의 불투명한 특성으로 인해 매우 어려운 용융 풀 치수 및 증기 내림의 직접적인 특성화를 요구합니다. 

    여기에서 우리는 현장 고속 고에너지 x-선 이미징에 의해 Al6061의 레이저 분말 베드 융합(LPBF) 동안 증기 강하 및 용융 풀 형성에 대한 TiC 나노 입자의 효과에 대한 직접적인 관찰 및 정량화를 보고합니다. 정량 결과를 바탕으로, 우리는 Al6061의 LPBF 동안 TiC 나노 입자가 있거나 없을 때 레이저 용융 에너지 효율(여기서 재료를 용융하는 데 필요한 에너지 대 레이저 빔에 의해 전달되는 에너지의 비율로 정의)을 계산했습니다. 

    결과는 TiC 나노 입자를 Al6061에 추가하면 레이저 용융 에너지 효율이 크게 증가한다는 것을 보여줍니다(평균 114% 증가, 312에서 521% 증가). W 레이저 출력, 0.4m  /s 스캔 속도). 체계적인 특성 측정, 시뮬레이션 및 x-선 이미징 연구를 통해 우리는 처음으로 세 가지 메커니즘이 함께 작동하여 레이저 용융 에너지 효율을 향상시킨다는 것을 확인할 수 있었습니다.

    (1) TiC 나노 입자를 추가하면 흡수율이 증가합니다. (2) TiC 나노입자를 추가하면 열전도율이 감소하고, (3) TiC 나노입자를 추가하면 더 낮은 레이저 출력에서 ​​증기 억제 및 다중 반사를 시작할 수 있습니다(즉, 키홀링에 대한 레이저 출력 임계값을 낮춤). 

    여기서 보고한 Al6061의 LPBF 동안 레이저 용융 에너지 효율을 증가시키기 위해 TiC 나노입자를 사용하는 방법 및 메커니즘은 보다 에너지 효율적인 레이저 금속 AM을 위한 공급원료 재료의 개발을 안내할 수 있습니다.

    The low energy efficiency of the laser metal additive manufacturing (AM) process is a potential sustainability concern for large-scale industrial production. Explicit investigation of the energy efficiency for laser melting requires the direct characterization of melt pool dimension and vapor depression, which is very difficult due to the opaque nature of the molten metal. Here we report the direct observation and quantification of effects of the TiC nanoparticles on the vapor depression and melt pool formation during laser powder bed fusion (LPBF) of Al6061 by in-situ high-speed high-energy x-ray imaging. Based on the quantification results, we calculated the laser melting energy efficiency (defined here as the ratio of the energy needed to melt the material to the energy delivered by the laser beam) with and without TiC nanoparticles during LPBF of Al6061. The results show that adding TiC nanoparticles into Al6061 leads to a significant increase of laser melting energy efficiency (114% increase on average, 521% increase under 312 W laser power, 0.4 m/s scan speed). Systematic property measurement, simulation, and x-ray imaging studies enable us, for the first time, to identify that three mechanisms work together to enhance the laser melting energy efficiency: (1) adding TiC nanoparticles increases the absorptivity; (2) adding TiC nanoparticles decreases the thermal conductivity, and (3) adding TiC nanoparticles enables the initiation of vapor depression and multiple reflection at lower laser power (i.e., lowers the laser power threshold for keyholing). The method and mechanisms of using TiC nanoparticles to increase the laser melting energy efficiency during LPBF of Al6061 we reported here may guide the development of feedstock materials for more energy efficient laser metal AM.

    Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing
    Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing

    Keywords

    Additive manufacturing

    laser powder bed fusion

    energy efficiency

    keyhole

    melt pool

    x-ray imaging

    metal matrix nanocomposites

    Fig. 1. (a) Dimensions of the casting with runners (unit: mm), (b) a melt flow simulation using Flow-3D software together with Reilly's model[44], predicted that a large amount of bifilms (denoted by the black particles) would be contained in the final casting. (c) A solidification simulation using Pro-cast software showed that no shrinkage defect was contained in the final casting.

    AZ91 합금 주물 내 연행 결함에 대한 캐리어 가스의 영향

    TianLiabJ.M.T.DaviesaXiangzhenZhuc
    aUniversity of Birmingham, Birmingham B15 2TT, United Kingdom
    bGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United Kingdom
    cBrunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Ln, London, Uxbridge UB8 3PH, United Kingdom

    Abstract

    An entrainment defect (also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final castings. Previous publications, carried out with Al-alloy castings, reported that this trapped gas could be subsequently consumed by the reaction with the surrounding melt, thus reducing the void volume and negative effect of entrainment defects. Compared with Al-alloys, the entrapped gas within Mg-alloy might be more efficiently consumed due to the relatively high reactivity of magnesium. However, research into the entrainment defects within Mg alloys has been significantly limited. In the present work, AZ91 alloy castings were produced under different carrier gas atmospheres (i.e., SF6/CO2, SF6/air). The evolution processes of the entrainment defects contained in AZ91 alloy were suggested according to the microstructure inspections and thermodynamic calculations. The defects formed in the different atmospheres have a similar sandwich-like structure, but their oxide films contained different combinations of compounds. The use of carrier gases, which were associated with different entrained-gas consumption rates, affected the reproducibility of AZ91 castings.

    연행 결함(이중 산화막 결함 또는 이중막이라고도 함)은 경합금 용융물에 잠길 때 갇힌 가스를 포함하는 공극으로 작용하여 최종 주물의 품질과 재현성을 저하시킵니다. Al-합금 주물을 사용하여 수행된 이전 간행물에서는 이 갇힌 가스가 주변 용융물과의 반응에 의해 후속적으로 소모되어 공극 부피와 연행 결함의 부정적인 영향을 줄일 수 있다고 보고했습니다. Al-합금에 비해 마그네슘의 상대적으로 높은 반응성으로 인해 Mg-합금 내에 포집된 가스가 더 효율적으로 소모될 수 있습니다. 그러나 Mg 합금 내 연행 결함에 대한 연구는 상당히 제한적이었습니다. 현재 작업에서 AZ91 합금 주물은 다양한 캐리어 가스 분위기(즉, SF6/CO2, SF6/공기)에서 생산되었습니다. AZ91 합금에 포함된 연행 결함의 진화 과정은 미세 조직 검사 및 열역학 계산에 따라 제안되었습니다. 서로 다른 분위기에서 형성된 결함은 유사한 샌드위치 구조를 갖지만 산화막에는 서로 다른 화합물 조합이 포함되어 있습니다. 다른 동반 가스 소비율과 관련된 운반 가스의 사용은 AZ91 주물의 재현성에 영향을 미쳤습니다.

    Keywords

    Magnesium alloy, Casting, Oxide film, Bifilm, Entrainment defect, Reproducibility

    1. Introduction

    As the lightest structural metal available on Earth, magnesium became one of the most attractive light metals over the last few decades. The magnesium industry has consequently experienced a rapid development in the last 20 years [1,2], indicating a large growth in demand for Mg alloys all over the world. Nowadays, the use of Mg alloys can be found in the fields of automobiles, aerospace, electronics and etc.[3,4]. It has been predicted that the global consumption of Mg metals will further increase in the future, especially in the automotive industry, as the energy efficiency requirement of both traditional and electric vehicles further push manufactures lightweight their design [3,5,6].

    The sustained growth in demand for Mg alloys motivated a wide interest in the improvement of the quality and mechanical properties of Mg-alloy castings. During a Mg-alloy casting process, surface turbulence of the melt can lead to the entrapment of a doubled-over surface film containing a small quantity of the surrounding atmosphere, thus forming an entrainment defect (also known as a double oxide film defect or bifilm) [7][8][9][10]. The random size, quantity, orientation, and placement of entrainment defects are widely accepted to be significant factors linked to the variation of casting properties [7]. In addition, Peng et al. [11] found that entrained oxides films in AZ91 alloy melt acted as filters to Al8Mn5 particles, trapping them as they settle. Mackie et al. [12] further suggested that entrained oxide films can act to trawl the intermetallic particles, causing them to cluster and form extremely large defects. The clustering of intermetallic compounds made the entrainment defects more detrimental for the casting properties.

    Most of the previous studies regarding entrainment defects were carried out on Al-alloys [7,[13][14][15][16][17][18], and a few potential methods have been suggested for diminishing their negative effect on the quality of Al-alloy castings. Nyahumwa et al.,[16] shows that the void volume within entrainment defects could be reduced by a hot isostatic pressing (HIP) process. Campbell [7] suggested the entrained gas within the defects could be consumed due to reaction with the surrounding melt, which was further verified by Raiszedeh and Griffiths [19].The effect of the entrained gas consumption on the mechanical properties of Al-alloy castings has been investigated by [8,9], suggesting that the consumption of the entrained gas promoted the improvement of the casting reproducibility.

    Compared with the investigation concerning the defects within Al-alloys, research into the entrainment defects within Mg-alloys has been significantly limited. The existence of entrainment defects has been demonstrated in Mg-alloy castings [20,21], but their behaviour, evolution, as well as entrained gas consumption are still not clear.

    In a Mg-alloy casting process, the melt is usually protected by a cover gas to avoid magnesium ignition. The cavities of sand or investment moulds are accordingly required to be flushed with the cover gas prior to the melt pouring [22]. Therefore, the entrained gas within Mg-alloy castings should contain the cover gas used in the casting process, rather than air only, which may complicate the structure and evolution of the corresponding entrainment defects.

    SF6 is a typical cover gas widely used for Mg-alloy casting processes [23][24][25]. Although this cover gas has been restricted to use in European Mg-alloy foundries, a commercial report has pointed out that this cover is still popular in global Mg-alloy industry, especially in the countries which dominated the global Mg-alloy production, such as China, Brazil, India, etc. [26]. In addition, a survey in academic publications also showed that this cover gas was widely used in recent Mg-alloy studies [27]. The protective mechanism of SF6 cover gas (i.e., the reaction between liquid Mg-alloy and SF6 cover gas) has been investigated by several previous researchers, but the formation process of the surface oxide film is still not clearly understood, and even some published results are conflicting with each other. In early 1970s, Fruehling [28] found that the surface film formed under SF6 was MgO mainly with traces of fluorides, and suggested that SF6 was absorbed in the Mg-alloy surface film. Couling [29] further noticed that the absorbed SF6 reacted with the Mg-alloy melt to form MgF2. In last 20 years, different structures of the Mg-alloy surface films have been reported, as detailed below.(1)

    Single-layered film. Cashion [30,31] used X-ray Photoelectron Spectroscopy (XPS) and Auger Spectroscopy (AES) to identify the surface film as MgO and MgF2. He also found that composition of the film was constant throughout the thickness and the whole experimental holding time. The film observed by Cashion had a single-layered structure created from a holding time from 10 min to 100 min.(2)

    Double-layered film. Aarstad et. al [32] reported a doubled-layered surface oxide film in 2003. They observed several well-distributed MgF2 particles attached to the preliminary MgO film and grew until they covered 25–50% of the total surface area. The inward diffusion of F through the outer MgO film was the driving force for the evolution process. This double-layered structure was also supported by Xiong’s group [25,33] and Shih et al. [34].(3)

    Triple-layered film. The triple-layered film and its evolution process were reported in 2002 by Pettersen [35]. Pettersen found that the initial surface film was a MgO phase and then gradually evolved to the stable MgF2 phase by the inward diffusion of F. In the final stage, the film has a triple-layered structure with a thin O-rich interlayer between the thick top and bottom MgF2 layers.(4)

    Oxide film consisted of discrete particles. Wang et al [36] stirred the Mg-alloy surface film into the melt under a SF6 cover gas, and then inspect the entrained surface film after the solidification. They found that the entrained surface films were not continues as the protective surface films reported by other researchers but composed of discrete particles. The young oxide film was composed of MgO nano-sized oxide particles, while the old oxide films consist of coarse particles (about 1  µm in average size) on one side that contained fluorides and nitrides.

    The oxide films of a Mg-alloy melt surface or an entrained gas are both formed due to the reaction between liquid Mg-alloy and the cover gas, thus the above-mentioned research regarding the Mg-alloy surface film gives valuable insights into the evolution of entrainment defects. The protective mechanism of SF6 cover gas (i.e., formation of a Mg-alloy surface film) therefore indicated a potential complicated evolution process of the corresponding entrainment defects.

    However, it should be noted that the formation of a surface film on a Mg-alloy melt is in a different situation to the consumption of an entrained gas that is submerged into the melt. For example, a sufficient amount of cover gas was supported during the surface film formation in the studies previously mentioned, which suppressed the depletion of the cover gas. In contrast, the amount of entrained gas within a Mg-alloy melt is finite, and the entrained gas may become fully depleted. Mirak [37] introduced 3.5%SF6/air bubbles into a pure Mg-alloy melt solidifying in a specially designed permanent mould. It was found that the gas bubbles were entirely consumed, and the corresponding oxide film was a mixture of MgO and MgF2. However, the nucleation sites (such as the MgF2 spots observed by Aarstad [32] and Xiong [25,33]) were not observed. Mirak also speculated that the MgF2 formed prior to MgO in the oxide film based on the composition analysis, which was opposite to the surface film formation process reported in previous literatures (i.e., MgO formed prior to MgF2). Mirak’s work indicated that the oxide-film formation of an entrained gas may be quite different from that of surface films, but he did not reveal the structure and evolution of the oxide films.

    In addition, the use of carrier gas in the cover gases also influenced the reaction between the cover gas and the liquid Mg-alloy. SF6/air required a higher content of SF6 than did a SF6/CO2 carrier gas [38], to avoid the ignition of molten magnesium, revealing different gas-consumption rates. Liang et.al [39] suggested that carbon was formed in the surface film when CO2 was used as a carrier gas, which was different from the films formed in SF6/air. An investigation into Mg combustion [40] reported a detection of Mg2C3 in the Mg-alloy sample after burning in CO2, which not only supported Liang’s results, but also indicated a potential formation of Mg carbides in double oxide film defects.

    The work reported here is an investigation into the behaviour and evolution of entrainment defects formed in AZ91 Mg-alloy castings, protected by different cover gases (i.e., SF6/air and SF6/CO2). These carrier gases have different protectability for liquid Mg alloy, which may be therefore associated with different consumption rates and evolution processes of the corresponding entrained gases. The effect of the entrained-gas consumption on the reproducibility of AZ91 castings was also studied.

    2. Experiment

    2.1. Melting and casting

    Three kilograms AZ91 alloy was melted in a mild steel crucible at 700 ± 5 °C. The composition of the AZ91 alloy has been shown in Table 1. Prior to heating, all oxide scale on the ingot surface was removed by machining. The cover gases used were 0.5%SF6/air or 0.5%SF6/CO2 (vol.%) at a flow rate of 6 L/min for different castings. The melt was degassed by argon with a flow rate of 0.3 L/min for 15 min [41,42], and then poured into sand moulds. Prior to pouring, the sand mould cavity was flushed with the cover gas for 20 min [22]. The residual melt (around 1 kg) was solidified in the crucible.

    Table 1. Composition (wt.%) of the AZ91 alloy used in this study.

    AlZnMnSiFeNiMg
    9.40.610.150.020.0050.0017Residual

    Fig. 1(a) shows the dimensions of the casting with runners. A top-filling system was deliberately used to generate entrainment defects in the final castings. Green and Campbell [7,43] suggested that a top-filling system caused more entrainment events (i.e., bifilms) during a casting process, compared with a bottom-filling system. A melt flow simulation (Flow-3D software) of this mould, using Reilly’s model [44] regarding the entrainment events, also predicted that a large amount of bifilms would be contained in the final casting (denoted by the black particles in Fig. 1b).

    Fig. 1. (a) Dimensions of the casting with runners (unit: mm), (b) a melt flow simulation using Flow-3D software together with Reilly's model[44], predicted that a large amount of bifilms (denoted by the black particles) would be contained in the final casting. (c) A solidification simulation using Pro-cast software showed that no shrinkage defect was contained in the final casting.

    Shrinkage defects also affect the mechanical properties and reproducibility of castings. Since this study focused on the effect of bifilms on the casting quality, the mould has been deliberately designed to avoid generating shrinkage defects. A solidification simulation using ProCAST software showed that no shrinkage defect would be contained in the final casting, as shown in Fig. 1c. The casting soundness has also been confirmed using a real time X-ray prior to the test bar machining.

    The sand moulds were made from resin-bonded silica sand, containing 1wt. % PEPSET 5230 resin and 1wt. % PEPSET 5112 catalyst. The sand also contained 2 wt.% Na2SiF6 to act as an inhibitor [45]. The pouring temperature was 700 ± 5 °C. After the solidification, a section of the runner bars was sent to the Sci-Lab Analytical Ltd for a H-content analysis (LECO analysis), and all the H-content measurements were carried out on the 5th day after the casting process. Each of the castings was machined into 40 test bars for a tensile strength test, using a Zwick 1484 tensile test machine with a clip extensometer. The fracture surfaces of the broken test bars were examined using Scanning Electron Microscope (SEM, Philips JEOL7000) with an accelerating voltage of 5–15 kV. The fractured test bars, residual Mg-alloy solidified in the crucible, and the casting runners were then sectioned, polished and also inspected using the same SEM. The cross-section of the oxide film found on the test-bar fracture surface was exposed by the Focused Ion Beam milling technique (FIB), using a CFEI Quanta 3D FEG FIB-SEM. The oxide film required to be analysed was coated with a platinum layer. Then, a gallium ion beam, accelerated to 30 kV, milled the material substrate surrounding the platinum coated area to expose the cross section of the oxide film. EDS analysis of the oxide film’s cross section was carried out using the FIB equipment at accelerating voltage of 30 kV.

    2.2. Oxidation cell

    As previously mentioned, several past researchers investigated the protective film formed on a Mg-alloy melt surface [38,39,[46][47][48][49][50][51][52]. During these experiments, the amount of cover gas used was sufficient, thus suppressing the depletion of fluorides in the cover gas. The experiment described in this section used a sealed oxidation cell, which limited the supply of cover gas, to study the evolution of the oxide films of entrainment defects. The cover gas contained in the oxidation cell was regarded as large-size “entrained bubble”.

    As shown in Fig. 2, the main body of the oxidation cell was a closed-end mild steel tube which had an inner length of 400 mm, and an inner diameter of 32 mm. A water-cooled copper tube was wrapped around the upper section of the cell. When the tube was heated, the cooling system created a temperature difference between the upper and lower sections, causing the interior gas to convect within the tube. The temperature was monitored by a type-K thermocouple located at the top of the crucible. Nie et al. [53] suggested that the SF6 cover gas would react with the steel wall of the holding furnace when they investigated the surface film of a Mg-alloy melt. To avoid this reaction, the interior surface of the steel oxidation cell (shown in Fig. 2) and the upper half section of the thermocouple were coated with boron nitride (the Mg-alloy was not in contact with boron nitride).

    Fig. 2. Schematic of the oxidation cell used to study the evolution of the oxide films of the entrainment defects (unit mm).

    During the experiment, a block of solid AZ91 alloy was placed in a magnesia crucible located at the bottom of the oxidation cell. The cell was heated to 100 °C in an electric resistance furnace under a gas flow rate of 1 L/min. The cell was held at this temperature for 20 min, to replace the original trapped atmosphere (i.e. air). Then, the oxidation cell was further heated to 700 °C, melting the AZ91 sample. The gas inlet and exit valves were then closed, creating a sealed environment for oxidation under a limited supply of cover gas. The oxidation cell was then held at 700 ± 10 °C for periods of time from 5 min to 30 min in 5-min intervals. At the end of each holding time, the cell was quenched in water. After cooling to room temperature, the oxidised sample was sectioned, polished, and subsequently examined by SEM.

    3. Results

    3.1. Structure and composition of the entrainment defects formed in SF6/air

    The structure and composition of the entrainment defect formed in the AZ91 castings under a cover gas of 0.5%SF6/air was observed by SEM and EDS. The results indicate that there exist two types of entrainment defects which are sketched in Fig. 3: (1) Type A defect whose oxide film has a traditional single-layered structure and (2) Type B defect, whose oxide film has two layers. The details of these defects were introduced in the following. Here it should be noticed that, as the entrainment defects are also known as biofilms or double oxide film, the oxide films of Type B defect were referred to as “multi-layered oxide film” or “multi-layered structure” in the present work to avoid a confusing description such as “the double-layered oxide film of a double oxide film defect”.

    Fig. 3. Schematic of the different types of entrainment defects found in AZ91 castings. (a) Type A defect with a single-layered oxide film and (b) Type B defect with two-layered oxide film.

    Fig. 4(a-b) shows a Type A defect having a compact single-layered oxide film with about 0.4 µm thickness. Oxygen, fluorine, magnesium and aluminium were detected in this film (Fig. 4c). It is speculated that oxide film is the mixture of fluoride and oxide of magnesium and aluminium. The detection of fluorine revealed that an entrained cover gas was contained in the formation of this defect. That is to say that the pores shown in Fig. 4(a) were not shrinkage defects or hydrogen porosity, but entrainment defects. The detection of aluminium was different with Xiong and Wang’s previous study [47,48], which showed that no aluminium was contained in their surface film of an AZ91 melt protected by a SF6 cover gas. Sulphur could not be clearly recognized in the element map, but there was a S-peak in the corresponding ESD spectrum.

    Fig. 4. (a) A Type A entrainment defect formed in SF6/air and having a single-layered oxide film, (b) the oxide film of this defect, (c) SEM-EDS element maps (using Philips JEOL7000) corresponding to the area highlighted in (b).

    Fig. 5(a-b) shows a Type B entrainment defect having a multi-layered oxide film. The compact outer layers of the oxide films were enriched with fluorine and oxygen (Fig. 5c), while their relatively porous inner layers were only enriched with oxygen (i.e., poor in fluorine) and partly grew together, thus forming a sandwich-like structure. Therefore, it is speculated that the outer layer is the mixture of fluoride and oxide, while the inner layer is mainly oxide. Sulphur could only be recognized in the EDX spectrum and could not be clearly identified in the element map, which might be due to the small S-content in the cover gas (i.e., 0.5% volume content of SF6 in the cover gas). In this oxide film, aluminium was contained in the outer layer of this oxide film but could not be clearly detected in the inner layer. Moreover, the distribution of Al seems to be uneven. It can be found that, in the right side of the defect, aluminium exists in the film but its concentration can not be identified to be higher than the matrix. However, there is a small area with much higher aluminium concentration in the left side of the defect. Such an uneven distribution of aluminium was also observed in other defects (shown in the following), and it is the result of the formation of some oxide particles in or under the film.

    Fig. 5. (a) A Type B entrainment defect formed in SF6/air and having a multi-layered oxide film, (b) the oxide films of this defect have grown together, (c) SEM-EDS element maps (using Philips JEOL7000) corresponding to the area shown in (b).

    Figs. 4 and 5 show cross sectional observations of the entrainment defects formed in the AZ91 alloy sample cast under a cover gas of SF6/air. It is not sufficient to characterize the entrainment defects only by the figures observed from the two-dimensional section. To have a further understanding, the surface of the entrainment defects (i.e. the oxide film) was further studied by observing the fracture surface of the test bars.

    Fig. 6(a) shows fracture surfaces of an AZ91 alloy tensile test bar produced in SF6/air. Symmetrical dark regions can be seen on both sides of the fracture surfaces. Fig. 6(b) shows boundaries between the dark and bright regions. The bright region consisted of jagged and broken features, while the surface of the dark region was relatively smooth and flat. In addition, the EDS results (Fig. 6c-d and Table 2) show that fluorine, oxygen, sulphur, and nitrogen were only detected in the dark regions, indicating that the dark regions were surface protective films entrained into the melt. Therefore, it could be suggested that the dark regions were an entrainment defect with consideration of their symmetrical nature. Similar defects on fracture surfaces of Al-alloy castings have been previously reported [7]Nitrides were only found in the oxide films on the test-bar fracture surfaces but never detected in the cross-sectional samples shown in Figs. 4 and 5. An underlying reason is that the nitrides contained in these samples may have hydrolysed during the sample polishing process [54].

    Fig. 6. (a) A pair of the fracture surfaces of a AZ91 alloy tensile test bar produced under a cover gas of SF6/air. The dimension of the fracture surface is 5 mm × 6 mm, (b) a section of the boundary between the dark and bright regions shown in (a), (c-d) EDS spectrum of the (c) bright regions and (d) dark regions, (e) schematic of an entrainment defect contained in a test bar.

    Table 2. EDS results (wt.%) corresponding to the regions shown in Fig. 6 (cover gas: SF6/air).

    Empty CellCOMgFAlZnSN
    Dark region in Fig. 6(b)3.481.3279.130.4713.630.570.080.73
    Bright region in Fig. 6(b)3.5884.4811.250.68

    In conjunction with the cross-sectional observation of the defects shown in Figs. 4 and 5, the structure of an entrainment defect contained in a tensile test bar was sketched as shown in Fig. 6(e). The defect contained an entrained gas enclosed by its oxide film, creating a void section inside the test bar. When the tensile force applied on the defect during the fracture process, the crack was initiated at the void section and propagated along the entrainment defect, since cracks would be propagated along the weakest path [55]. Therefore, when the test bar was finally fractured, the oxide films of entrainment defect appeared on both fracture surfaces of the test bar, as shown in Fig. 6(a).

    3.2. Structure and composition of the entrainment defects formed in SF6/CO2

    Similar to the entrainment defect formed in SF6/air, the defects formed under a cover gas of 0.5%SF6/CO2 also had two types of oxide films (i.e., single-layered and multi-layered types). Fig. 7(a) shows an example of the entrainment defects containing a multi-layered oxide film. A magnified observation to the defect (Fig. 7b) shows that the inner layers of the oxide films had grown together, presenting a sandwich-like structure, which was similar to the defects formed in an atmosphere of SF6/air (Fig. 5b). An EDS spectrum (Fig. 7c) revealed that the joint area (inner layer) of this sandwich-like structure mainly contained magnesium oxides. Peaks of fluorine, sulphur, and aluminium were recognized in this EDS spectrum, but their amount was relatively small. In contrast, the outer layers of the oxide films were compact and composed of a mixture of fluorides and oxides (Fig. 7d-e).

    Fig. 7. (a) An example of entrainment defects formed in SF6/CO2 and having a multi-layered oxide film, (b) magnified observation of the defect, showing the inner layer of the oxide films has grown together, (c) EDS spectrum of the point denoted in (b), (d) outer layer of the oxide film, (e) SEM-EDS element maps (using Philips JEOL7000) corresponding to the area shown in (d).

    Fig. 8(a) shows an entrainment defect on the fracture surfaces of an AZ91 alloy tensile test bar, which was produced in an atmosphere of 0.5%SF6/CO2. The corresponding EDS results (Table 3) showed that oxide film contained fluorides and oxides. Sulphur and nitrogen were not detected. Besides, a magnified observation (Fig. 8b) indicated spots on the oxide film surface. The diameter of the spots ranged from hundreds of nanometres to a few micron meters.

    Fig. 8. (a) A pair of the fracture surfaces of a AZ91 alloy tensile test bar, produced in an atmosphere of SF6/CO2. The dimension of the fracture surface is 5 mm × 6 mm, (b) surface appearance of the oxide films on the fracture surfaces, showing spots on the film surface.

    To further reveal the structure and composition of the oxide film clearly, the cross-section of the oxide film on a test-bar fracture surface was onsite exposed using the FIB technique (Fig. 9). As shown in Fig. 9a, a continuous oxide film was found between the platinum coating layer and the Mg-Al alloy substrate. Fig. 9 (b-c) shows a magnified observation to oxide films, indicating a multi-layered structure (denoted by the red box in Fig. 9c). The bottom layer was enriched with fluorine and oxygen and should be the mixture of fluoride and oxide, which was similar to the “outer layer” shown in Figs. 5 and 7, while the only-oxygen-enriched top layer was similar to the “inner layer” shown in Figs. 5 and 7.

    Fig. 9. (a) A cross-sectional observation of the oxide film on the fracture surface of the AZ91 casting produced in SF6/CO2, exposed by FIB, (b) a magnified observation of area highlighted in (a), and (c) SEM-EDS elements map of the area shown in (b), obtained by CFEI Quanta 3D FEG FIB-SEM.

    Except the continuous film, some individual particles were also observed in or below the continuous film, as shown in Fig. 9. An Al-enriched particle was detected in the left side of the oxide film shown in Fig. 9b and might be speculated to be spinel Mg2AlO4 because it also contains abundant magnesium and oxygen elements. The existing of such Mg2AlO4 particles is responsible for the high concentration of aluminium in small areas of the observed film and the uneven distribution of aluminium, as shown in Fig. 5(c). Here it should be emphasized that, although the other part of the bottom layer of the continuous oxide film contains less aluminium than this Al-enriched particle, the Fig. 9c indicated that the amount of aluminium in this bottom layer was still non-negligible, especially when comparing with the outer layer of the film. Below the right side of the oxide film shown in Fig. 9b, a particle was detected and speculated to be MgO because it is rich in Mg and O. According to Wang’s result [56], lots of discrete MgO particles can be formed on the surface of the Mg melt by the oxidation of Mg melt and Mg vapor. The MgO particles observed in our present work may be formed due to the same reasons. While, due to the differences in experimental conditions, less Mg melt can be vapored or react with O2, thus only a few of MgO particles formed in our work. An enrichment of carbon was also found in the film, revealing that CO2 was able to react with the melt, thus forming carbon or carbides. This carbon concentration was consistent with the relatively high carbon content of the oxide film shown in Table 3 (i.e., the dark region). In the area next to the oxide film.

    Table 3. EDS results (wt.%) corresponding to the regions shown in Fig. 8 (cover gas: SF6/ CO2).

    Empty CellCOMgFAlZnSN
    Dark region in Fig. 8(a)7.253.6469.823.827.030.86
    Bright region in Fig. 8(a)2.100.4482.8313.261.36

    This cross-sectional observation of the oxide film on a test bar fracture surface (Fig. 9) further verified the schematic of the entrainment defect shown in Fig. 6(e). The entrainment defects formed in different atmospheres of SF6/CO2 and SF6/air had similar structures, but their compositions were different.

    3.3. Evolution of the oxide films in the oxidation cell

    The results in Section 3.1 and 3.2 have shown the structures and compositions of entrainment defects formed in AZ91 castings under cover gases of SF6/air and SF6/CO2. Different stages of the oxidation reaction may lead to the different structures and compositions of entrainment defects. Although Campbell has conjectured that an entrained gas may react with the surrounding melt, it is rarely reported that the reaction occurring between the Mg-alloy melt and entrapped cover gas. Previous researchers normally focus on the reaction between a Mg-alloy melt and the cover gas in an open environment [38,39,[46][47][48][49][50][51][52], which was different from the situation of a cover gas trapped into the melt. To further understand the formation of the entrainment defect in an AZ91 alloy, the evolution process of oxide films of the entrainment defect was further studied using an oxidation cell.

    Fig. 10 (a and d) shows a surface film held for 5 min in the oxidation cell, protected by 0.5%SF6/air. There was only one single layer consisting of fluoride and oxide (MgF2 and MgO). In this surface film. Sulphur was detected in the EDS spectrum, but its amount was too small to be recognized in the element map. The structure and composition of this oxide film was similar to the single-layered films of entrainment defects shown in Fig. 4.

    Fig. 10. Oxide films formed in the oxidation cell under a cover gas of 0.5%SF6/air and held at 700 °C for (a) 5 min; (b) 10 min; (c) 30 min, and (d-f) the SEM-EDS element maps (using Philips JEOL7000) corresponding to the oxide film shown in (a-c) respectively, (d) 5 min; (e) 10 min; (f) 30 min. The red points in (c and f) are the location references, denoting the boundary of the F-enriched layer in different element maps.

    After a holding time of 10 min, a thin (O, S)-enriched top layer (around 700 nm) appeared upon the preliminary F-enriched film, forming a multi-layered structure, as shown in Fig. 10(b and e). The thickness of the (O, S)-enriched top layer increased with increased holding time. As shown in Fig. 10(c and f), the oxide film held for 30 min also had a multi-layered structure, but the thickness of its (O, S)-enriched top layer (around 2.5 µm) was higher than the that of the 10-min oxide film. The multi-layered oxide films shown in Fig. 10(b-c) presented a similar appearance to the films of the sandwich-like defect shown in Fig. 5.

    The different structures of the oxide films shown in Fig. 10 indicated that fluorides in the cover gas would be preferentially consumed due to the reaction with the AZ91 alloy melt. After the depletion of fluorides, the residual cover gas reacted further with the liquid AZ91 alloy, forming the top (O, S)-enriched layer in the oxide film. Therefore, the different structures and compositions of entrainment defects shown in Figs. 4 and 5 may be due to an ongoing oxidation reaction between melt and entrapped cover gas.

    This multi-layered structure has not been reported in previous publications concerning the protective surface film formed on a Mg-alloy melt [38,[46][47][48][49][50][51]. This may be due to the fact that previous researchers carried out their experiments with an un-limited amount of cover gas, creating a situation where the fluorides in the cover gas were not able to become depleted. Therefore, the oxide film of an entrainment defect had behaviour traits similar to the oxide films shown in Fig. 10, but different from the oxide films formed on the Mg-alloy melt surface reported in [38,[46][47][48][49][50][51].

    Similar with the oxide films held in SF6/air, the oxide films formed in SF6/CO2 also had different structures with different holding times in the oxidation cell. Fig. 11(a) shows an oxide film, held on an AZ91 melt surface under a cover gas of 0.5%SF6/CO2 for 5 min. This film had a single-layered structure consisting of MgF2. The existence of MgO could not be confirmed in this film. After the holding time of 30 min, the film had a multi-layered structure; the inner layer was of a compact and uniform appearance and composed of MgF2, while the outer layer is the mixture of MgF2 and MgO. Sulphur was not detected in this film, which was different from the surface film formed in 0.5%SF6/air. Therefore, fluorides in the cover gas of 0.5%SF6/CO2 were also preferentially consumed at an early stage of the film growth process. Compared with the film formed in SF6/air, the MgO in film formed in SF6/CO2 appeared later and sulphide did not appear within 30 min. It may mean that the formation and evolution of film in SF6/air is faster than SF6/CO2. CO2 may have subsequently reacted with the melt to form MgO, while sulphur-containing compounds accumulated in the cover gas and reacted to form sulphide in very late stage (may after 30 min in oxidation cell).

    Fig. 11. Oxide films formed in the oxidation cell under a cover gas of 0.5%SF6/CO2, and their SEM-EDS element maps (using Philips JEOL7000). They were held at 700 °C for (a) 5 min; (b) 30 min. The red points in (b) are the location references, denoting the boundary between the top and bottom layers in the oxide film.

    4. Discussion

    4.1. Evolution of entrainment defects formed in SF6/air

    HSC software from Outokumpu HSC Chemistry for Windows (http://www.hsc-chemistry.net/) was used to carry out thermodynamic calculations needed to explore the reactions which might occur between the trapped gases and liquid AZ91 alloy. The solutions to the calculations suggest which products are most likely to form in the reaction process between a small amount of cover gas (i.e., the amount within a trapped bubble) and the AZ91-alloy melt.

    In the trials, the pressure was set to 1 atm, and the temperature set to 700 °C. The amount of the cover gas was assumed to be 7 × 10−7 kg, with a volume of approximately 0.57 cm3 (3.14 × 10−8 kmol) for 0.5%SF6/air, and 0.35 cm3 (3.12 × 10−8 kmol) for 0.5%SF6/CO2. The amount of the AZ91 alloy melt in contact with the trapped gas was assumed to be sufficient to complete all reactions. The decomposition products of SF6 were SF5, SF4, SF3, SF2, F2, S(g), S2(g) and F(g) [57][58][59][60].

    Fig. 12 shows the equilibrium diagram of the thermodynamic calculation of the reaction between the AZ91 alloy and 0.5%SF6/air. In the diagram, the reactants and products with less than 10−15 kmol have not been shown, as this was 5 orders of magnitude less than the amount of SF6 present (≈ 1.57 × 10−10 kmol) and therefore would not affect the observed process in a practical way.

    Fig. 12. An equilibrium diagram for the reaction between 7e-7 kg 0.5%SF6/air and a sufficient amount of AZ91 alloy. The X axis is the amount of AZ91 alloy melt having reacted with the entrained gas, and the vertical Y-axis is the amount of the reactants and products.

    This reaction process could be divided into 3 stages.

    Stage 1: The formation of fluorides. the AZ91 melt preferentially reacted with SF6 and its decomposition products, producing MgF2, AlF3, and ZnF2. However, the amount of ZnF2 may have been too small to be detected practically (1.25 × 10−12 kmol of ZnF2 compared with 3 × 10−10 kmol of MgF2), which may be the reason why Zn was not detected in any the oxide films shown in Sections 3.13.3. Meanwhile, sulphur accumulated in the residual gas as SO2.

    Stage 2: The formation of oxides. After the liquid AZ91 alloy had depleted all the available fluorides in the entrapped gas, the amount of AlF3 and ZnF2 quickly reduced due to a reaction with Mg. O2(g) and SO2 reacted with the AZ91 melt, forming MgO, Al2O3, MgAl2O4, ZnO, ZnSO4 and MgSO4. However, the amount of ZnO and ZnSO4 would have been too small to be found practically by EDS (e.g. 9.5 × 10−12 kmol of ZnO,1.38 × 10−14 kmol of ZnSO4, in contrast to 4.68 × 10−10 kmol of MgF2, when the amount of AZ91 on the X-axis is 2.5 × 10−9 kmol). In the experimental cases, the concentration of F in the cover gas is very low, whole the concentration f O is much higher. Therefore, the stage 1 and 2, i.e, the formation of fluoride and oxide may happen simultaneously at the beginning of the reaction, resulting in the formation of a singer-layered mixture of fluoride and oxide, as shown in Figs. 4 and 10(a). While an inner layer consisted of oxides but fluorides could form after the complete depletion of F element in the cover gas.

    Stages 1- 2 theoretically verified the formation process of the multi-layered structure shown in Fig. 10.

    The amount of MgAl2O4 and Al2O3 in the oxide film was of a sufficient amount to be detected, which was consistent with the oxide films shown in Fig. 4. However, the existence of aluminium could not be recognized in the oxide films grown in the oxidation cell, as shown in Fig. 10. This absence of Al may be due to the following reactions between the surface film and AZ91 alloy melt:(1)

    Al2O3 + 3Mg + = 3MgO + 2Al, △G(700 °C) = -119.82 kJ/mol(2)

    Mg + MgAl2O4 = MgO + Al, △G(700 °C) =-106.34 kJ/molwhich could not be simulated by the HSC software since the thermodynamic calculation was carried out under an assumption that the reactants were in full contact with each other. However, in a practical process, the AZ91 melt and the cover gas would not be able to be in contact with each other completely, due to the existence of the protective surface film.

    Stage 3: The formation of Sulphide and nitride. After a holding time of 30 min, the gas-phase fluorides and oxides in the oxidation cell had become depleted, allowing the melt reaction with the residual gas, forming an additional sulphur-enriched layer upon the initial F-enriched or (F, O)-enriched surface film, thus resulting in the observed multi-layered structure shown in Fig. 10 (b and c). Besides, nitrogen reacted with the AZ91 melt until all reactions were completed. The oxide film shown in Fig. 6 may correspond to this reaction stage due to its nitride content. However, the results shows that the nitrides were not detected in the polished samples shown in Figs. 4 and 5, but only found on the test bar fracture surfaces. The nitrides may have hydrolysed during the sample preparation process, as follows [54]:(3)

    Mg3N2 + 6H2O =3Mg(OH)2 + 2NH3↑(4)

    AlN+ 3H2O =Al(OH)3 + NH3

    In addition, Schmidt et al. [61] found that Mg3N2 and AlN could react to form ternary nitrides (Mg3AlnNn+2, n= 1, 2, 3…). HSC software did not contain the database of ternary nitrides, and it could not be added into the calculation. The oxide films in this stage may also contain ternary nitrides.

    4.2. Evolution of entrainment defects formed in SF6/CO2

    Fig. 13 shows the results of the thermodynamic calculation between AZ91 alloy and 0.5%SF6/CO2. This reaction processes can also be divided into three stages.

    Fig. 13. An equilibrium diagram for the reaction between 7e-7 kg 0.5%SF6/CO2 and a sufficient amount of AZ91 alloy. The X axis denotes the amount of Mg alloy melt having reacted with the entrained gas, and the vertical Y-axis denotes the amounts of the reactants and products.

    Stage 1: The formation of fluorides. SF6 and its decomposition products were consumed by the AZ91 melt, forming MgF2, AlF3, and ZnF2. As in the reaction of AZ91 in 0.5%SF6/air, the amount of ZnF2 was too small to be detected practically (1.51 × 10−13 kmol of ZnF2 compared with 2.67 × 10−10 kmol of MgF2). Sulphur accumulated in the residual trapped gas as S2(g) and a portion of the S2(g) reacted with CO2, to form SO2 and CO. The products in this reaction stage were consistent with the film shown in Fig. 11(a), which had a single layer structure that contained fluorides only.

    Stage 2: The formation of oxides. AlF3 and ZnF2 reacted with the Mg in the AZ91 melt, forming MgF2, Al and Zn. The SO2 began to be consumed, producing oxides in the surface film and S2(g) in the cover gas. Meanwhile, the CO2 directly reacted with the AZ91 melt, forming CO, MgO, ZnO, and Al2O3. The oxide films shown in Figs. 9 and 11(b) may correspond to this reaction stage due to their oxygen-enriched layer and multi-layered structure.

    The CO in the cover gas could further react with the AZ91 melt, producing C. This carbon may further react with Mg to form Mg carbides, when the temperature reduced (during solidification period) [62]. This may be the reason for the high carbon content in the oxide film shown in Figs. 89. Liang et al. [39] also reported carbon-detection in an AZ91 alloy surface film protected by SO2/CO2. The produced Al2O3 may be further combined with MgO, forming MgAl2O4 [63]. As discussed in Section 4.1, the alumina and spinel can react with Mg, causing an absence of aluminium in the surface films, as shown in Fig. 11.

    Stage 3: The formation of Sulphide. the AZ91 melt began to consume S2(g) in the residual entrapped gas, forming ZnS and MgS. These reactions did not occur until the last stage of the reaction process, which could be the reason why the S-content in the defect shown Fig. 7(c) was small.

    In summary, thermodynamic calculations indicate that the AZ91 melt will react with the cover gas to form fluorides firstly, then oxides and sulphides in the last. The oxide film in the different reaction stages would have different structures and compositions.

    4.3. Effect of the carrier gases on consumption of the entrained gas and the reproducibility of AZ91 castings

    The evolution processes of entrainment defects, formed in SF6/air and SF6/CO2, have been suggested in Sections 4.1 and 4.2. The theoretical calculations were verified with respect to the corresponding oxide films found in practical samples. The atmosphere within an entrainment defect could be efficiently consumed due to the reaction with liquid Mg-alloy, in a scenario dissimilar to the Al-alloy system (i.e., nitrogen in an entrained air bubble would not efficiently react with Al-alloy melt [64,65], however, nitrogen would be more readily consumed in liquid Mg alloys, commonly referred to as “nitrogen burning” [66]).

    The reaction between the entrained gas and the surrounding liquid Mg-alloy converted the entrained gas into solid compounds (e.g. MgO) within the oxide film, thus reducing the void volume of the entrainment defect and hence probably causing a collapse of the defect (e.g., if an entrained gas of air was depleted by the surrounding liquid Mg-alloy, under an assumption that the melt temperature is 700 °C and the depth of liquid Mg-alloy is 10 cm, the total volume of the final solid products would be 0.044% of the initial volume taken by the entrapped air).

    The relationship between the void volume reduction of entrainment defects and the corresponding casting properties has been widely studied in Al-alloy castings. Nyahumwa and Campbell [16] reported that the Hot Isostatic Pressing (HIP) process caused the entrainment defects in Al-alloy castings to collapse and their oxide surfaces forced into contact. The fatigue lives of their castings were improved after HIP. Nyahumwa and Campbell [16] also suggested a potential bonding of the double oxide films that were in contact with each other, but there was no direct evidence to support this. This binding phenomenon was further investigated by Aryafar et.al.[8], who re-melted two Al-alloy bars with oxide skins in a steel tube and then carried out a tensile strength test on the solidified sample. They found that the oxide skins of the Al-alloy bars strongly bonded with each other and became even stronger with an extension of the melt holding time, indicating a potential “healing” phenomenon due to the consumption of the entrained gas within the double oxide film structure. In addition, Raidszadeh and Griffiths [9,19] successfully reduced the negative effect of entrainment defects on the reproducibility of Al-alloy castings, by extending the melt holding time before solidification, which allowed the entrained gas to have a longer time to react with the surrounding melt.

    With consideration of the previous work mentioned, the consumption of the entrained gas in Mg-alloy castings may diminish the negative effect of entrainment defects in the following two ways.

    (1) Bonding phenomenon of the double oxide films. The sandwich-like structure shown in Fig. 5 and 7 indicated a potential bonding of the double oxide film structure. However, more evidence is required to quantify the increase in strength due to the bonding of the oxide films.

    (2) Void volume reduction of entrainment defects. The positive effect of void-volume reduction on the quality of castings has been widely demonstrated by the HIP process [67]. As the evolution processes discussed in Section 4.14.2, the oxide films of entrainment defects can grow together due to an ongoing reaction between the entrained gas and surrounding AZ91 alloy melt. The volume of the final solid products was significant small compared with the entrained gas (i.e., 0.044% as previously mentioned).

    Therefore, the consumption rate of the entrained gas (i.e., the growth rate of oxide films) may be a critical parameter for improving the quality of AZ91 alloy castings. The oxide film growth rate in the oxidization cell was accordingly further investigated.

    Fig. 14 shows a comparison of the surface film growth rates in different cover gases (i.e., 0.5%SF6/air and 0.5%SF6/CO2). 15 random points on each sample were selected for film thickness measurements. The 95% confidence interval (95%CI) was computed under an assumption that the variation of the film thickness followed a Gaussian distribution. It can be seen that all the surface films formed in 0.5%SF6/air grew faster than those formed in 0.5%SF6/CO2. The different growth rates suggested that the entrained-gas consumption rate of 0.5%SF6/air was higher than that of 0.5%SF6/CO2, which was more beneficial for the consumption of the entrained gas.

    Fig. 14. A comparison of the AZ91 alloy oxide film growth rates in 0.5%SF6/air and 0.5%SF6/CO2

    It should be noted that, in the oxidation cell, the contact area of liquid AZ91 alloy and cover gas (i.e. the size of the crucible) was relatively small with consideration of the large volume of melt and gas. Consequently, the holding time for the oxide film growth within the oxidation cell was comparatively long (i.e., 5–30 min). However, the entrainment defects contained in a real casting are comparatively very small (i.e., a few microns size as shown in Figs. 36, and [7]), and the entrained gas is fully enclosed by the surrounding melt, creating a relatively large contact area. Hence the reaction time for cover gas and the AZ91 alloy melt may be comparatively short. In addition, the solidification time of real Mg-alloy sand castings can be a few minutes (e.g. Guo [68] reported that a Mg-alloy sand casting with 60 mm diameter required 4 min to be solidified). Therefore, it can be expected that an entrained gas trapped during an Mg-alloy melt pouring process will be readily consumed by the surrounding melt, especially for sand castings and large-size castings, where solidification times are long.

    Therefore, the different cover gases (0.5%SF6/air and 0.5%SF6/CO2) associated with different consumption rates of the entrained gases may affect the reproducibility of the final castings. To verify this assumption, the AZ91 castings produced in 0.5%SF6/air and 0.5%SF6/CO2 were machined into test bars for mechanical evaluation. A Weibull analysis was carried out using both linear least square (LLS) method and non-linear least square (non-LLS) method [69].

    Fig. 15(a-b) shows a traditional 2-p linearized Weibull plot of the UTS and elongation of the AZ91 alloy castings, obtained by the LLS method. The estimator used is P= (i-0.5)/N, which was suggested to cause the lowest bias among all the popular estimators [69,70]. The casting produced in SF6/air has an UTS Weibull moduli of 16.9, and an elongation Weibull moduli of 5.0. In contrast, the UTS and elongation Weibull modulus of the casting produced in SF6/CO2 are 7.7 and 2.7 respectively, suggesting that the reproducibility of the casting protected by SF6/CO2 were much lower than that produced in SF6/air.

    Fig. 15. The Weibull modulus of AZ91 castings produced in different atmospheres, estimated by (a-b) the linear least square method, (c-d) the non-linear least square method, where SSR is the sum of residual squares.

    In addition, the author’s previous publication [69] demonstrated a shortcoming of the linearized Weibull plots, which may cause a higher bias and incorrect R2 interruption of the Weibull estimation. A Non-LLS Weibull estimation was therefore carried out, as shown in Fig. 15 (c-d). The UTS Weibull modulus of the SF6/air casting was 20.8, while the casting produced under SF6/CO2 had a lower UTS Weibull modulus of 11.4, showing a clear difference in their reproducibility. In addition, the SF6/air elongation (El%) dataset also had a Weibull modulus (shape = 5.8) higher than the elongation dataset of SF6/CO2 (shape = 3.1). Therefore, both the LLS and Non-LLS estimations suggested that the SF6/air casting has a higher reproducibility than the SF6/CO2 casting. It supports the method that the use of air instead of CO2 contributes to a quicker consumption of the entrained gas, which may reduce the void volume within the defects. Therefore, the use of 0.5%SF6/air instead of 0.5%SF6/CO2 (which increased the consumption rate of the entrained gas) improved the reproducibility of the AZ91 castings.

    However, it should be noted that not all the Mg-alloy foundries followed the casting process used in present work. The Mg-alloy melt in present work was degassed, thus reducing the effect of hydrogen on the consumption of the entrained gas (i.e., hydrogen could diffuse into the entrained gas, potentially suppressing the depletion of the entrained gas [7,71,72]). In contrast, in Mg-alloy foundries, the Mg-alloy melt is not normally degassed, since it was widely believed that there is not a ‘gas problem’ when casting magnesium and hence no significant change in tensile properties [73]. Although studies have shown the negative effect of hydrogen on the mechanical properties of Mg-alloy castings [41,42,73], a degassing process is still not very popular in Mg-alloy foundries.

    Moreover, in present work, the sand mould cavity was flushed with the SF6 cover gas prior to pouring [22]. However, not all the Mg-alloy foundries flushed the mould cavity in this way. For example, the Stone Foundry Ltd (UK) used sulphur powder instead of the cover-gas flushing. The entrained gas within their castings may be SO2/air, rather than the protective gas.

    Therefore, although the results in present work have shown that using air instead of CO2 improved the reproducibility of the final casting, it still requires further investigations to confirm the effect of carrier gases with respect to different industrial Mg-alloy casting processes.

    7. Conclusion

    Entrainment defects formed in an AZ91 alloy were observed. Their oxide films had two types of structure: single-layered and multi-layered. The multi-layered oxide film can grow together forming a sandwich-like structure in the final casting.2.

    Both the experimental results and the theoretical thermodynamic calculations demonstrated that fluorides in the trapped gas were depleted prior to the consumption of sulphur. A three-stage evolution process of the double oxide film defects has been suggested. The oxide films contained different combinations of compounds, depending on the evolution stage. The defects formed in SF6/air had a similar structure to those formed in SF6/CO2, but the compositions of their oxide films were different. The oxide-film formation and evolution process of the entrainment defects were different from that of the Mg-alloy surface films previous reported (i.e., MgO formed prior to MgF2).3.

    The growth rate of the oxide film was demonstrated to be greater under SF6/air than SF6/CO2, contributing to a quicker consumption of the damaging entrapped gas. The reproducibility of an AZ91 alloy casting improved when using SF6/air instead of SF6/CO2.

    Acknowledgements

    The authors acknowledge funding from the EPSRC LiME grant EP/H026177/1, and the help from Dr W.D. Griffiths and Mr. Adrian Carden (University of Birmingham). The casting work was carried out in University of Birmingham.

    Reference

    [1]

    M.K. McNutt, SALAZAR K.

    Magnesium, Compounds & Metal, U.S. Geological Survey and U.S. Department of the Interior

    Reston, Virginia (2013)

    Google Scholar[2]

    Magnesium

    Compounds & Metal, U.S. Geological Survey and U.S. Department of the Interior

    (1996)

    Google Scholar[3]

    I. Ostrovsky, Y. Henn

    ASTEC’07 International Conference-New Challenges in Aeronautics, Moscow (2007), pp. 1-5

    Aug 19-22

    View Record in ScopusGoogle Scholar[4]

    Y. Wan, B. Tang, Y. Gao, L. Tang, G. Sha, B. Zhang, N. Liang, C. Liu, S. Jiang, Z. Chen, X. Guo, Y. Zhao

    Acta Mater., 200 (2020), pp. 274-286

    ArticleDownload PDFView Record in Scopus[5]

    J.T.J. Burd, E.A. Moore, H. Ezzat, R. Kirchain, R. Roth

    Appl. Energy, 283 (2021), Article 116269

    ArticleDownload PDFView Record in Scopus[6]

    A.M. Lewis, J.C. Kelly, G.A. Keoleian

    Appl. Energy, 126 (2014), pp. 13-20

    ArticleDownload PDFView Record in Scopus[7]

    J. Campbell

    Castings

    Butterworth-Heinemann, Oxford (2004)

    Google Scholar[8]

    M. Aryafar, R. Raiszadeh, A. Shalbafzadeh

    J. Mater. Sci., 45 (2010), pp. 3041-3051 View PDF

    CrossRefView Record in Scopus[9]

    R. Raiszadeh, W.D. Griffiths

    Metall. Mater. Trans. B-Process Metall. Mater. Process. Sci., 42 (2011), pp. 133-143 View PDF

    CrossRefView Record in Scopus[10]

    R. Raiszadeh, W.D. Griffiths

    J. Alloy. Compd., 491 (2010), pp. 575-580

    ArticleDownload PDFView Record in Scopus[11]

    L. Peng, G. Zeng, T.C. Su, H. Yasuda, K. Nogita, C.M. Gourlay

    JOM, 71 (2019), pp. 2235-2244 View PDF

    CrossRefView Record in Scopus[12]

    S. Ganguly, A.K. Mondal, S. Sarkar, A. Basu, S. Kumar, C. Blawert

    Corros. Sci., 166 (2020)[13]

    G.E. Bozchaloei, N. Varahram, P. Davami, S.K. Kim

    Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 548 (2012), pp. 99-105

    View Record in Scopus[14]

    S. Fox, J. Campbell

    Scr. Mater., 43 (2000), pp. 881-886

    ArticleDownload PDFView Record in Scopus[15]

    M. Cox, R.A. Harding, J. Campbell

    Mater. Sci. Technol., 19 (2003), pp. 613-625

    View Record in Scopus[16]

    C. Nyahumwa, N.R. Green, J. Campbell

    Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 32 (2001), pp. 349-358

    View Record in Scopus[17]

    A. Ardekhani, R. Raiszadeh

    J. Mater. Eng. Perform., 21 (2012), pp. 1352-1362 View PDF

    CrossRefView Record in Scopus[18]

    X. Dai, X. Yang, J. Campbell, J. Wood

    Mater. Sci. Technol., 20 (2004), pp. 505-513

    View Record in Scopus[19]

    E.M. Elgallad, M.F. Ibrahim, H.W. Doty, F.H. Samuel

    Philos. Mag., 98 (2018), pp. 1337-1359 View PDF

    CrossRefView Record in Scopus[20]

    W.D. Griffiths, N.W. Lai

    Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 38A (2007), pp. 190-196 View PDF

    CrossRefView Record in Scopus[21]

    A.R. Mirak, M. Divandari, S.M.A. Boutorabi, J. Campbell

    Int. J. Cast Met. Res., 20 (2007), pp. 215-220 View PDF

    CrossRefView Record in Scopus[22]

    C. Cingi

    Laboratory of Foundry Engineering

    Helsinki University of Technology, Espoo, Finland (2006)

    Google Scholar[23]

    Y. Jia, J. Hou, H. Wang, Q. Le, Q. Lan, X. Chen, L. Bao

    J. Mater. Process. Technol., 278 (2020), Article 116542

    ArticleDownload PDFView Record in Scopus[24]

    S. Ouyang, G. Yang, H. Qin, S. Luo, L. Xiao, W. Jie

    Mater. Sci. Eng. A, 780 (2020), Article 139138

    ArticleDownload PDFView Record in Scopus[25]

    S.-m. Xiong, X.-F. Wang

    Trans. Nonferrous Met. Soc. China, 20 (2010), pp. 1228-1234

    ArticleDownload PDFView Record in Scopus[26]

    G.V. Research

    Grand View Research

    (2018)

    USA

    Google Scholar[27]

    T. Li, J. Davies

    Metall. Mater. Trans. A, 51 (2020), pp. 5389-5400 View PDF

    CrossRefView Record in Scopus[28]J.F. Fruehling, The University of Michigan, 1970.

    Google Scholar[29]

    S. Couling

    36th Annual World Conference on Magnesium, Norway (1979), pp. 54-57

    View Record in ScopusGoogle Scholar[30]

    S. Cashion, N. Ricketts, P. Hayes

    J. Light Met., 2 (2002), pp. 43-47

    ArticleDownload PDFView Record in Scopus[31]

    S. Cashion, N. Ricketts, P. Hayes

    J. Light Met., 2 (2002), pp. 37-42

    ArticleDownload PDFView Record in Scopus[32]

    K. Aarstad, G. Tranell, G. Pettersen, T.A. Engh

    Various Techniques to Study the Surface of Magnesium Protected by SF6

    TMS (2003)

    Google Scholar[33]

    S.-M. Xiong, X.-L. Liu

    Metall. Mater. Trans. A, 38 (2007), pp. 428-434 View PDF

    CrossRefView Record in Scopus[34]

    T.-S. Shih, J.-B. Liu, P.-S. Wei

    Mater. Chem. Phys., 104 (2007), pp. 497-504

    ArticleDownload PDFView Record in Scopus[35]

    G. Pettersen, E. Øvrelid, G. Tranell, J. Fenstad, H. Gjestland

    Mater. Sci. Eng. A, 332 (2002), pp. 285-294

    ArticleDownload PDFView Record in Scopus[36]

    H. Bo, L.B. Liu, Z.P. Jin

    J. Alloy. Compd., 490 (2010), pp. 318-325

    ArticleDownload PDFView Record in Scopus[37]

    A. Mirak, C. Davidson, J. Taylor

    Corros. Sci., 52 (2010), pp. 1992-2000

    ArticleDownload PDFView Record in Scopus[38]

    B.D. Lee, U.H. Beak, K.W. Lee, G.S. Han, J.W. Han

    Mater. Trans., 54 (2013), pp. 66-73 View PDF

    View Record in Scopus[39]

    W.Z. Liang, Q. Gao, F. Chen, H.H. Liu, Z.H. Zhao

    China Foundry, 9 (2012), pp. 226-230 View PDF

    CrossRef[40]

    U.I. Gol’dshleger, E.Y. Shafirovich

    Combust. Explos. Shock Waves, 35 (1999), pp. 637-644[41]

    A. Elsayed, S.L. Sin, E. Vandersluis, J. Hill, S. Ahmad, C. Ravindran, S. Amer Foundry

    Trans. Am. Foundry Soc., 120 (2012), pp. 423-429[42]

    E. Zhang, G.J. Wang, Z.C. Hu

    Mater. Sci. Technol., 26 (2010), pp. 1253-1258

    View Record in Scopus[43]

    N.R. Green, J. Campbell

    Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 173 (1993), pp. 261-266

    ArticleDownload PDFView Record in Scopus[44]

    C Reilly, MR Jolly, NR Green

    Proceedings of MCWASP XII – 12th Modelling of Casting, Welding and Advanced Solidifcation Processes, Vancouver, Canada (2009)

    Google Scholar[45]H.E. Friedrich, B.L. Mordike, Springer, Germany, 2006.

    Google Scholar[46]

    C. Zheng, B.R. Qin, X.B. Lou

    Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies, ASME (2010), pp. 383-388

    Mimt 2010 View PDF

    CrossRefView Record in ScopusGoogle Scholar[47]

    S.M. Xiong, X.F. Wang

    Trans. Nonferrous Met. Soc. China, 20 (2010), pp. 1228-1234

    ArticleDownload PDFView Record in Scopus[48]

    S.M. Xiong, X.L. Liu

    Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 38A (2007), pp. 428-434 View PDF

    CrossRefView Record in Scopus[49]

    T.S. Shih, J.B. Liu, P.S. Wei

    Mater. Chem. Phys., 104 (2007), pp. 497-504

    ArticleDownload PDFView Record in Scopus[50]

    K. Aarstad, G. Tranell, G. Pettersen, T.A. Engh

    Magn. Technol. (2003), pp. 5-10[51]

    G. Pettersen, E. Ovrelid, G. Tranell, J. Fenstad, H. Gjestland

    Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 332 (2002), pp. 285-294

    ArticleDownload PDFView Record in Scopus[52]

    X.F. Wang, S.M. Xiong

    Corros. Sci., 66 (2013), pp. 300-307

    ArticleDownload PDFView Record in Scopus[53]

    S.H. Nie, S.M. Xiong, B.C. Liu

    Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 422 (2006), pp. 346-351

    ArticleDownload PDFView Record in Scopus[54]

    C. Bauer, A. Mogessie, U. Galovsky

    Zeitschrift Fur Metallkunde, 97 (2006), pp. 164-168 View PDF

    CrossRef[55]

    Q.G. Wang, D. Apelian, D.A. Lados

    J. Light Met., 1 (2001), pp. 73-84

    ArticleDownload PDFView Record in Scopus[56]

    S. Wang, Y. Wang, Q. Ramasse, Z. Fan

    Metall. Mater. Trans. A, 51 (2020), pp. 2957-2974[57]

    S. Hayashi, W. Minami, T. Oguchi, H.J. Kim

    Kag. Kog. Ronbunshu, 35 (2009), pp. 411-415 View PDF

    CrossRefView Record in Scopus[58]

    K. Aarstad

    Norwegian University of Science and Technology

    (2004)

    Google Scholar[59]

    R.L. Wilkins

    J. Chem. Phys., 51 (1969), p. 853

    -&

    View Record in Scopus[60]

    O. Kubaschewski, K. Hesselemam

    Thermo-Chemical Properties of Inorganic Substances

    Springer-Verlag, Belin (1991)

    Google Scholar[61]

    R. Schmidt, M. Strobele, K. Eichele, H.J. Meyer

    Eur. J. Inorg. Chem. (2017), pp. 2727-2735 View PDF

    CrossRefView Record in Scopus[62]

    B. Hu, Y. Du, H. Xu, W. Sun, W.W. Zhang, D. Zhao

    J. Min. Metall. Sect. B-Metall., 46 (2010), pp. 97-103

    View Record in Scopus[63]

    O. Salas, H. Ni, V. Jayaram, K.C. Vlach, C.G. Levi, R. Mehrabian

    J. Mater. Res., 6 (1991), pp. 1964-1981

    View Record in Scopus[64]

    S.S.S. Kumari, U.T.S. Pillai, B.C. Pai

    J. Alloy. Compd., 509 (2011), pp. 2503-2509

    ArticleDownload PDFView Record in Scopus[65]

    H. Scholz, P. Greil

    J. Mater. Sci., 26 (1991), pp. 669-677

    View Record in Scopus[66]

    P. Biedenkopf, A. Karger, M. Laukotter, W. Schneider

    Magn. Technol., 2005 (2005), pp. 39-42

    View Record in Scopus[67]

    H.V. Atkinson, S. Davies

    Metall. Mater. Trans. A, 31 (2000), pp. 2981-3000 View PDF

    CrossRefView Record in Scopus[68]

    E.J. Guo, L. Wang, Y.C. Feng, L.P. Wang, Y.H. Chen

    J. Therm. Anal. Calorim., 135 (2019), pp. 2001-2008 View PDF

    CrossRefView Record in Scopus[69]

    T. Li, W.D. Griffiths, J. Chen

    Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 48A (2017), pp. 5516-5528 View PDF

    CrossRefView Record in Scopus[70]

    M. Tiryakioglu, D. Hudak

    J. Mater. Sci., 42 (2007), pp. 10173-10179 View PDF

    CrossRefView Record in Scopus[71]

    Y. Yue, W.D. Griffiths, J.L. Fife, N.R. Green

    Proceedings of the 1st International Conference on 3d Materials Science (2012), pp. 131-136 View PDF

    CrossRefView Record in ScopusGoogle Scholar[72]

    R. Raiszadeh, W.D. Griffiths

    Metall. Mater. Trans. B-Process Metall. Mater. Process. Sci., 37 (2006), pp. 865-871

    View Record in Scopus[73]

    Z.C. Hu, E.L. Zhang, S.Y. Zeng

    Mater. Sci. Technol., 24 (2008), pp. 1304-1308 View PDF

    CrossRefView Record in Scopus

    Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.

    알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

    린 첸 가오 양 미시 옹 장 춘밍 왕
    Lin Chen , Gaoyang Mi , Xiong Zhang , Chunming Wang *
    중국 우한시 화중과학기술대학 재료공학부, 430074

    Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

    Abstract

    A numerical model of 1.5 mm 6061/5182 aluminum alloys thin sheets lap joints under laser sinusoidal oscillation (sine) welding and laser welding (SLW) weld was developed to simulate temperature distribution and melt flow. Unlike the common energy distribution of SLW, the sinusoidal oscillation of laser beam greatly homogenized the energy distribution and reduced the energy peak. The energy peaks were located at both sides of the sine weld, resulting in the tooth-shaped sectional formation. This paper illustrated the effect of the temperature gradient (G) and solidification rate (R) on the solidification microstructure by simulation. Results indicated that the center of the sine weld had a wider area with low G/R, promoting the formation of a wider equiaxed grain zone, and the columnar grains were slenderer because of greater GR. The porosity-free and non-penetration welds were obtained by the laser sinusoidal oscillation. The reasons were that the molten pool volume was enlarged, the volume proportion of keyhole was reduced and the turbulence in the molten pool was gentled, which was observed by the high-speed imaging and simulation results of melt flow. The tensile test of both welds showed a tensile fracture form along the fusion line, and the tensile strength of sine weld was significantly better than that of the SLW weld. This was because that the wider equiaxed grain area reduced the tendency of cracks and the finer grain size close to the fracture location. Defect-free and excellent welds are of great significance to the new energy vehicles industry.

    온도 분포 및 용융 흐름을 시뮬레이션하기 위해 레이저 사인파 진동 (사인) 용접 및 레이저 용접 (SLW) 용접에서 1.5mm 6061/5182 알루미늄 합금 박판 랩 조인트 의 수치 모델이 개발되었습니다. SLW의 일반적인 에너지 분포와 달리 레이저 빔의 사인파 진동은 에너지 분포를 크게 균질화하고 에너지 피크를 줄였습니다. 에너지 피크는 사인 용접의 양쪽에 위치하여 톱니 모양의 단면이 형성되었습니다. 이 논문은 온도 구배(G)와 응고 속도 의 영향을 설명했습니다.(R) 시뮬레이션에 의한 응고 미세 구조. 결과는 사인 용접의 중심이 낮은 G/R로 더 넓은 영역을 가짐으로써 더 넓은 등축 결정립 영역의 형성을 촉진하고 더 큰 GR로 인해 주상 결정립 이 더 가늘다는 것을 나타냅니다. 다공성 및 비관통 용접은 레이저 사인파 진동에 의해 얻어졌습니다. 그 이유는 용융 풀의 부피가 확대되고 열쇠 구멍의 부피 비율이 감소하며 용융 풀의 난류가 완만해졌기 때문이며, 이는 용융 흐름의 고속 이미징 및 시뮬레이션 결과에서 관찰되었습니다. 두 용접부 의 인장시험 은 융착선을 따라 인장파괴형태를인장강도사인 용접의 경우 SLW 용접보다 훨씬 우수했습니다. 이는 등축 결정립 영역이 넓을수록 균열 경향이 감소하고 파단 위치에 근접한 입자 크기가 미세 하기 때문입니다. 결함이 없고 우수한 용접은 신에너지 자동차 산업에 매우 중요합니다.

    Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.
    Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.
    Fig. 2. Finite element mesh.
    Fig. 2. Finite element mesh.
    Fig. 3. Weld morphologies of cross-section and upper surface for the two welds: (a) sine pattern weld; (b) SLW weld.
    Fig. 3. Weld morphologies of cross-section and upper surface for the two welds: (a) sine pattern weld; (b) SLW weld.
    Fig. 4. Calculation of laser energy distribution: (a)-(c) sine pattern weld; (d)-(f) SLW weld.
    Fig. 4. Calculation of laser energy distribution: (a)-(c) sine pattern weld; (d)-(f) SLW weld.
    Fig. 5. The partially melted region of zone A.
    Fig. 5. The partially melted region of zone A.
    Fig. 6. The simulated profiles of melted region for the two welds: (a) SLW weld; (b) sine pattern weld.
    Fig. 6. The simulated profiles of melted region for the two welds: (a) SLW weld; (b) sine pattern weld.
    Fig. 7. The temperature field simulation results of cross section for sine pattern weld.
    Fig. 7. The temperature field simulation results of cross section for sine pattern weld.
    Fig. 8. Dynamic behavior of the molten pool at the same time interval of 0.004 s within one oscillating period: (a) SLW weld; (b) sine pattern weld.
    Fig. 8. Dynamic behavior of the molten pool at the same time interval of 0.004 s within one oscillating period: (a) SLW weld; (b) sine pattern weld.
    Fig. 9. The temperature field and flow field of the molten pool for the SLW weld: (a)~(f) t = 80 ms~100 ms.
    Fig. 9. The temperature field and flow field of the molten pool for the SLW weld: (a)~(f) t = 80 ms~100 ms.
    Fig. 10. The temperature field and flow field of the molten pool for the sine pattern weld: (a)~(f) t = 151 ms~171 ms.
    Fig. 10. The temperature field and flow field of the molten pool for the sine pattern weld: (a)~(f) t = 151 ms~171 ms.
    Fig. 11. The evolution of the molten pool volume and keyhole depth within one period.
    Fig. 11. The evolution of the molten pool volume and keyhole depth within one period.
    Fig. 12. The X-ray inspection results for the two welds: (a) SLW weld, (b) sine pattern weld.
    Fig. 12. The X-ray inspection results for the two welds: (a) SLW weld, (b) sine pattern weld.
    Fig. 13. Comparison of the solidification parameters for sine and SLW patterns: (a) the temperature field simulated results of the molten pool upper surfaces; (b) temperature gradient G and solidification rate R along the molten pool boundary isotherm from weld centerline to the fusion boundary; (c) G/R; (d) GR.
    Fig. 13. Comparison of the solidification parameters for sine and SLW patterns: (a) the temperature field simulated results of the molten pool upper surfaces; (b) temperature gradient G and solidification rate R along the molten pool boundary isotherm from weld centerline to the fusion boundary; (c) G/R; (d) GR.
    Fig. 14. The EBSD results of equiaxed grain zone in the weld center of: (a) sine pattern weld; (b) SLW weld; (c) grain size.
    Fig. 14. The EBSD results of equiaxed grain zone in the weld center of: (a) sine pattern weld; (b) SLW weld; (c) grain size.
    Fig. 15. (a) EBSD results of horizontal sections of SLW weld and sine pattern weld; (b) The columnar crystal widths of SLW weld and sine pattern weld.
    Fig. 15. (a) EBSD results of horizontal sections of SLW weld and sine pattern weld; (b) The columnar crystal widths of SLW weld and sine pattern weld.
    Fig. 16. (a) The tensile test results of the two welds; (b) Fracture location of SLW weld; (b) Fracture location of sine pattern weld.
    Fig. 16. (a) The tensile test results of the two welds; (b) Fracture location of SLW weld; (b) Fracture location of sine pattern weld.

    Keywords

    Laser welding, Sinusoidal oscillating, Energy distribution, Numerical simulation, Molten pool flow, Grain structure

    References

    Chen, X., 2014. Study on laser-MAG Hybrid Weaving Welding Charateristics. Master
    thesis. Harbin Institute of Technology, China.
    Chen, G., Wang, B., Mao, S., Zhong, P., He, J., 2019. Research on the “∞”-shaped laser
    scanning welding process for aluminum alloy. Opt. Laser Technol. 115, 32–41.
    Cho, W.-I., Na, S.-J., Cho, M.-H., Lee, J.-S., 2010. Numerical study of alloying element
    distribution in CO2 laser–GMA hybrid welding. Comput. Mater. Sci. 49, 792–800.
    Cho, W.-I., Na, S.-J., Thomy, C., Vollertsen, F., 2012. Numerical simulation of molten
    pool dynamics in high power disk laser welding. J. Mater. Process. Technol. 212,
    262–275.
    Das, A., Butterworth, I., Masters, I., Williams, D., 2018. Microstructure and mechanical
    properties of gap-bridged remote laser welded (RLW) automotive grade AA 5182
    joints. Mater. Charact. 145, 697–712.
    Fetzer, F., Sommer, M., Weber, R., Weberpals, J.-P., Graf, T., 2018. Reduction of pores by
    means of laser beam oscillation during remote welding of AlMgSi. Opt. Lasers Eng.
    108, 68–77.
    Geng, S., Jiang, P., Shao, X., Guo, L., Gao, X., 2020. Heat transfer and fluid flow and their
    effects on the solidification microstructure in full-penetration laser welding of
    aluminum sheet. J. Mater. Sci. Technol. 46, 50–63.
    Hagenlocher, C., Sommer, M., Fetzer, F., Weber, R., Graf, T., 2018a. Optimization of the
    solidification conditions by means of beam oscillation during laser beam welding of
    aluminum. Mater. Des. 160, 1178–1185.
    Hagenlocher, C., Weller, D., Weber, R., Graf, T., 2018b. Reduction of the hot cracking
    susceptibility of laser beam welds in AlMgSi alloys by increasing the number of grain
    boundaries. Sci. Technol. Weld. Join. 24, 313–319.
    Hagenlocher, C., Fetzer, F., Weller, D., Weber, R., Graf, T., 2019. Explicit analytical
    expressions for the influence of welding parameters on the grain structure of laser
    beam welds in aluminium alloys. Mater. Des. 174, 107791.
    Han, X., Tang, X., Wang, T., Shao, C., Lu, F., Cui, H., 2018. Role of ambient pressure in
    keyhole dynamics based on beam transmission path method for laser welding on Al
    alloy. Int. J. Adv. Manuf. Technol. 99, 1639–1651.
    Hao, K., Li, G., Gao, M., Zeng, X., 2015. Weld formation mechanism of fiber laser
    oscillating welding of austenitic stainless steel. J. Mater. Process. Technol. 225,
    77–83.
    Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free
    boundaries. J. Comput. Phys. 39, 201–225.
    Jiang, Z., Chen, X., Li, H., Lei, Z., Chen, Y., Wu, S., Wang, Y., 2020. Grain refinement and
    laser energy distribution during laser oscillating welding of Invar alloy. Mater. Des.
    186, 108195.
    Kaplan, A., 1994. A model of deep penetration laser welding based on calculation of the
    keyhole profile. J. Phys. D Appl. Phys. 27, 1805–1814.
    Kou, S., 2002. Welding Metallurgy, 2nd ed. Wiley-Interscience, New Jersey, USA.
    Kuryntsev, S.V., Gilmutdinov, A.K., 2015. The effect of laser beam wobbling mode in
    welding process for structural steels. Int. J. Adv. Manuf. Technol. 81, 1683–1691.
    Li, P., Nie, F., Dong, H., Li, S., Yang, G., Zhang, H., 2018. Pulse MIG welding of 6061-T6/
    A356-T6 aluminum alloy dissimilar T-joint. J. Mater. Eng. Perform. 27, 4760–4769.
    Liu, T., Mu, Z., Hu, R., Pang, S., 2019. Sinusoidal oscillating laser welding of 7075
    aluminum alloy: hydrodynamics, porosity formation and optimization. Int. J. Heat
    Mass Transf. 140, 346–358.
    Seto, N., Katayama, S., Matsunawa, A., 2000. High-speed simultaneous observation of
    plasma and keyhole behavior during high power CO2 laser welding: effect of
    shielding gas on porosity formation. J. Laser Appl. 12, 245–250.
    Tang, Z., Vollertsen, F., 2014. Influence of grain refinement on hot cracking in laser
    welding of aluminum. Weld. World 58, 355–366.
    Wang, L., Gao, M., Zhang, C., Zeng, X., 2016. Effect of beam oscillating pattern on weld
    characterization of laser welding of AA6061-T6 aluminum alloy. Mater. Des. 108,
    707–717.
    Wang, L., Gao, M., Zeng, X., 2018. Experiment and prediction of weld morphology for
    laser oscillating welding of AA6061 aluminium alloy. Sci. Technol. Weld. Join. 24,
    334–341.
    Yamazaki, Y., Abe, Y., Hioki, Y., Nakatani, M., Kitagawa, A., Nakata, K., 2016.
    Fundamental study of narrow-gap welding with oscillation laser beam. Weld. Int. 30,
    699–707.
    Yuan, Z., Tu, Y., Yuan, T., Zhang, Y., Huang, Y., 2021. Size effects on mechanical
    properties of pure industrial aluminum sheet for micro/meso scale plastic
    deformation: experiment and modeling. J. Alloys. Compd. 859, 157752.
    Zou, J., 2016. Characteristics of laser scanning welding process for 5A06 aluminum alloy
    thick plate with narrow gap. Materials Processing Engineering. Harbin Welding
    Institute, China. Master thesis.

    Fig. 1 Multi-physics phenomena in the laser-material interaction zone

    COMPARISON BETWEEN GREEN AND
    INFRARED LASER IN LASER POWDER BED
    FUSION OF PURE COPPER THROUGH HIGH
    FIDELITY NUMERICAL MODELLING AT MESOSCALE

    316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링

    W.E. ALPHONSO1*, M. BAYAT1 and J.H. HATTEL1
    *Corresponding author
    1Technical University of Denmark (DTU), 2800, Kgs, Lyngby, Denmark

    ABSTRACT

    L-PBF(Laser Powder Bed Fusion)는 금속 적층 제조(MAM) 기술로, 기존 제조 공정에 비해 부품 설계 자유도, 조립품 통합, 부품 맞춤화 및 낮은 툴링 비용과 같은 여러 이점을 산업에 제공합니다.

    전기 코일 및 열 관리 장치는 일반적으로 높은 전기 및 열 전도성 특성으로 인해 순수 구리로 제조됩니다. 따라서 순동의 L-PBF가 가능하다면 기하학적으로 최적화된 방열판과 자유형 전자코일을 제작할 수 있습니다.

    그러나 L-PBF로 조밀한 순동 부품을 생산하는 것은 적외선에 대한 낮은 광 흡수율과 높은 열전도율로 인해 어렵습니다. 기존의 L-PBF 시스템에서 조밀한 구리 부품을 생산하려면 적외선 레이저의 출력을 500W 이상으로 높이거나 구리의 광흡수율이 높은 녹색 레이저를 사용해야 합니다.

    적외선 레이저 출력을 높이면 후면 반사로 인해 레이저 시스템의 광학 구성 요소가 손상되고 렌즈의 열 광학 현상으로 인해 공정이 불안정해질 수 있습니다. 이 작업에서 FVM(Finite Volume Method)에 기반한 다중 물리학 중간 규모 수치 모델은 Flow-3D에서 개발되어 용융 풀 역학과 궁극적으로 부품 품질을 제어하는 ​​물리적 현상 상호 작용을 조사합니다.

    녹색 레이저 열원과 적외선 레이저 열원은 기판 위의 순수 구리 분말 베드에 단일 트랙 증착을 생성하기 위해 개별적으로 사용됩니다.

    용융 풀 역학에 대한 레이저 열원의 유사하지 않은 광학 흡수 특성의 영향이 탐구됩니다. 수치 모델을 검증하기 위해 단일 트랙이 구리 분말 베드에 증착되고 시뮬레이션된 용융 풀 모양과 크기가 비교되는 실험이 수행되었습니다.

    녹색 레이저는 광흡수율이 높아 전도 및 키홀 모드 용융이 가능하고 적외선 레이저는 흡수율이 낮아 키홀 모드 용융만 가능하다. 레이저 파장에 대한 용융 모드의 변화는 궁극적으로 기계적, 전기적 및 열적 특성에 영향을 미치는 열 구배 및 냉각 속도에 대한 결과를 가져옵니다.

    Laser Powder Bed Fusion (L-PBF) is a Metal Additive Manufacturing (MAM) technology which offers several advantages to industries such as part design freedom, consolidation of assemblies, part customization and low tooling cost over conventional manufacturing processes. Electric coils and thermal management devices are generally manufactured from pure copper due to its high electrical and thermal conductivity properties. Therefore, if L-PBF of pure copper is feasible, geometrically optimized heat sinks and free-form electromagnetic coils can be manufactured. However, producing dense pure copper parts by L-PBF is difficult due to low optical absorptivity to infrared radiation and high thermal conductivity. To produce dense copper parts in a conventional L-PBF system either the power of the infrared laser must be increased above 500W, or a green laser should be used for which copper has a high optical absorptivity. Increasing the infrared laser power can damage the optical components of the laser systems due to back reflections and create instabilities in the process due to thermal-optical phenomenon of the lenses. In this work, a multi-physics meso-scale numerical model based on Finite Volume Method (FVM) is developed in Flow-3D to investigate the physical phenomena interaction which governs the melt pool dynamics and ultimately the part quality. A green laser heat source and an infrared laser heat source are used individually to create single track deposition on pure copper powder bed above a substrate. The effect of the dissimilar optical absorptivity property of laser heat sources on the melt pool dynamics is explored. To validate the numerical model, experiments were conducted wherein single tracks are deposited on a copper powder bed and the simulated melt pool shape and size are compared. As the green laser has a high optical absorptivity, a conduction and keyhole mode melting is possible while for the infrared laser only keyhole mode melting is possible due to low absorptivity. The variation in melting modes with respect to the laser wavelength has an outcome on thermal gradient and cooling rates which ultimately affect the mechanical, electrical, and thermal properties.

    Keywords

    Pure Copper, Laser Powder Bed Fusion, Finite Volume Method, multi-physics

    Fig. 1 Multi-physics phenomena in the laser-material interaction zone
    Fig. 1 Multi-physics phenomena in the laser-material interaction zone
    Fig. 2 Framework for single laser track simulation model including powder bed and substrate (a) computational domain with boundaries (b) discretization of the domain with uniform quad mesh.
    Fig. 2 Framework for single laser track simulation model including powder bed and substrate (a) computational domain with boundaries (b) discretization of the domain with uniform quad mesh.
    Fig. 3 2D melt pool contours from the numerical model compared to experiments [16] for (a) VED = 65 J/mm3 at 7 mm from the beginning of the single track (b) VED = 103 J/mm3 at 3 mm from the beginning of the single track (c) VED = 103 J/mm3 at 7 mm from the beginning of the single track. In the 2D contour, the non-melted region is indicated in blue, and the melted region is indicated by red and green when the VED is 65 J/mm3 and 103 J/mm3 respectively.
    Fig. 3 2D melt pool contours from the numerical model compared to experiments [16] for (a) VED = 65 J/mm3 at 7 mm from the beginning of the single track (b) VED = 103 J/mm3 at 3 mm from the beginning of the single track (c) VED = 103 J/mm3 at 7 mm from the beginning of the single track. In the 2D contour, the non-melted region is indicated in blue, and the melted region is indicated by red and green when the VED is 65 J/mm3 and 103 J/mm3 respectively.
    Fig. 4 3D temperature contour plots of during single track L-PBF process at time1.8 µs when (a) VED = 65 J/mm3 (b) VED = 103 J/mm3 along with 2D melt pool contours at 5 mm from the laser initial position. In the 2D contour, the non-melted region is indicated in blue, and the melted region is indicated by red and green when the VED is 65 J/mm3 and 103 J/mm3 respectively.
    Fig. 4 3D temperature contour plots of during single track L-PBF process at time1.8 µs when (a) VED = 65 J/mm3 (b) VED = 103 J/mm3 along with 2D melt pool contours at 5 mm from the laser initial position. In the 2D contour, the non-melted region is indicated in blue, and the melted region is indicated by red and green when the VED is 65 J/mm3 and 103 J/mm3 respectively.

    References

    [1] L. Jyothish Kumar, P. M. Pandey, and D. I. Wimpenny, 3D printing and additive
    manufacturing technologies. Springer Singapore, 2018. doi: 10.1007/978-981-13-0305-0.
    [2] T. DebRoy et al., “Additive manufacturing of metallic components – Process, structure
    and properties,” Progress in Materials Science, vol. 92, pp. 112–224, 2018, doi:
    10.1016/j.pmatsci.2017.10.001.
    [3] C. S. Lefky, B. Zucker, D. Wright, A. R. Nassar, T. W. Simpson, and O. J. Hildreth,
    “Dissolvable Supports in Powder Bed Fusion-Printed Stainless Steel,” 3D Printing and
    Additive Manufacturing, vol. 4, no. 1, pp. 3–11, 2017, doi: 10.1089/3dp.2016.0043.
    [4] J. L. Bartlett and X. Li, “An overview of residual stresses in metal powder bed fusion,”
    Additive Manufacturing, vol. 27, no. January, pp. 131–149, 2019, doi:
    10.1016/j.addma.2019.02.020.
    [5] I. H. Ahn, “Determination of a process window with consideration of effective layer
    thickness in SLM process,” International Journal of Advanced Manufacturing
    Technology, vol. 105, no. 10, pp. 4181–4191, 2019, doi: 10.1007/s00170-019-04402-w.

    [6] R. McCann et al., “In-situ sensing, process monitoring and machine control in Laser
    Powder Bed Fusion: A review,” Additive Manufacturing, vol. 45, no. May, 2021, doi:
    10.1016/j.addma.2021.102058.
    [7] M. Bayat et al., “Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF)
    of Ti6Al4V: High-fidelity modelling and experimental validation,” Additive
    Manufacturing, vol. 30, no. August, p. 100835, 2019, doi: 10.1016/j.addma.2019.100835.
    [8] M. Bayat, S. Mohanty, and J. H. Hattel, “Multiphysics modelling of lack-of-fusion voids
    formation and evolution in IN718 made by multi-track/multi-layer L-PBF,” International
    Journal of Heat and Mass Transfer, vol. 139, pp. 95–114, 2019, doi:
    10.1016/j.ijheatmasstransfer.2019.05.003.
    [9] S. D. Jadhav, L. R. Goossens, Y. Kinds, B. van Hooreweder, and K. Vanmeensel, “Laserbased powder bed fusion additive manufacturing of pure copper,” Additive Manufacturing,
    vol. 42, no. March, 2021, doi: 10.1016/j.addma.2021.101990.
    [10] S. D. Jadhav, S. Dadbakhsh, L. Goossens, J. P. Kruth, J. van Humbeeck, and K.
    Vanmeensel, “Influence of selective laser melting process parameters on texture evolution
    in pure copper,” Journal of Materials Processing Technology, vol. 270, no. January, pp.
    47–58, 2019, doi: 10.1016/j.jmatprotec.2019.02.022.
    [11] H. Siva Prasad, F. Brueckner, J. Volpp, and A. F. H. Kaplan, “Laser metal deposition of
    copper on diverse metals using green laser sources,” International Journal of Advanced
    Manufacturing Technology, vol. 107, no. 3–4, pp. 1559–1568, 2020, doi: 10.1007/s00170-
    020-05117-z.
    [12] L. R. Goossens, Y. Kinds, J. P. Kruth, and B. van Hooreweder, “On the influence of
    thermal lensing during selective laser melting,” Solid Freeform Fabrication 2018:
    Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – An
    Additive Manufacturing Conference, SFF 2018, no. December, pp. 2267–2274, 2020.
    [13] M. Bayat, V. K. Nadimpalli, D. B. Pedersen, and J. H. Hattel, “A fundamental investigation
    of thermo-capillarity in laser powder bed fusion of metals and alloys,” International
    Journal of Heat and Mass Transfer, vol. 166, p. 120766, 2021, doi:
    10.1016/j.ijheatmasstransfer.2020.120766.
    [14] H. Chen, Q. Wei, Y. Zhang, F. Chen, Y. Shi, and W. Yan, “Powder-spreading mechanisms
    in powder-bed-based additive manufacturing: Experiments and computational modeling,”
    Acta Materialia, vol. 179, pp. 158–171, 2019, doi: 10.1016/j.actamat.2019.08.030.
    [15] S. K. Nayak, S. K. Mishra, C. P. Paul, A. N. Jinoop, and K. S. Bindra, “Effect of energy
    density on laser powder bed fusion built single tracks and thin wall structures with 100 µm
    preplaced powder layer thickness,” Optics and Laser Technology, vol. 125, May 2020, doi:
    10.1016/j.optlastec.2019.106016.
    [16] G. Nordet et al., “Absorptivity measurements during laser powder bed fusion of pure
    copper with a 1 kW cw green laser,” Optics & Laser Technology, vol. 147, no. April 2021,
    p. 107612, 2022, doi: 10.1016/j.optlastec.2021.107612.
    [17] M. Hummel, C. Schöler, A. Häusler, A. Gillner, and R. Poprawe, “New approaches on
    laser micro welding of copper by using a laser beam source with a wavelength of 450 nm,”
    Journal of Advanced Joining Processes, vol. 1, no. February, p. 100012, 2020, doi:
    10.1016/j.jajp.2020.100012.
    [18] M. Hummel, M. Külkens, C. Schöler, W. Schulz, and A. Gillner, “In situ X-ray
    tomography investigations on laser welding of copper with 515 and 1030 nm laser beam
    sources,” Journal of Manufacturing Processes, vol. 67, no. April, pp. 170–176, 2021, doi:
    10.1016/j.jmapro.2021.04.063.
    [19] L. Gargalis et al., “Determining processing behaviour of pure Cu in laser powder bed
    fusion using direct micro-calorimetry,” Journal of Materials Processing Technology, vol.
    294, no. March, p. 117130, 2021, doi: 10.1016/j.jmatprotec.2021.117130.
    [20] A. Mondal, D. Agrawal, and A. Upadhyaya, “Microwave heating of pure copper powder
    with varying particle size and porosity,” Journal of Microwave Power and
    Electromagnetic Energy, vol. 43, no. 1, pp. 4315–43110, 2009, doi:
    10.1080/08327823.2008.11688599.

    Fig. 2- Experimental setup (Shamloo et al., 2012)

    2상 유동 해석을 통한 슈트 폭기 시스템 효율에 대한 램프 각도의 영향 조사

    1 Associate Professor, Civil Engineering Department, Jundi-Shapur University of Technology, Dezful, Iran

    2 Instructor in Civil Engineering Department Jundi-Shapur University of Technology, Dezful,Iran.

     10.22055/JISE.2021.37743.1980

    Abstract

    슈트 여수로의 흐름 폭기는 캐비테이션 손상을 방지하는 가장 효과적이고 경제적인 방법 중 하나입니다. 수중 프리즘에 아주 작은 양의 공기가 흩어지면 표면 손상이 크게 줄어듭니다. 이를 위해 폭기 장치로 알려진 구조를 사용할 수 있습니다. 또한, 램프 각도는 폭기 효율에 영향을 미치는 요인 중 하나입니다. 이 연구에서는 Flow-3D 소프트웨어를 사용하여 3가지 다른 시나리오인 6, 8 및 10도의 램프 각도에서 Jarreh 댐의 방수로를 통해 흐름을 동반하는 공기의 값을 시뮬레이션했습니다. 6도의 경사각에서 유동 유체로 유입되는 공기의 결과를 검증하기 위해이란 TAMAB Company의 실험실에서 댐 방수로 물리적 모델의 관찰 결과를 사용했습니다. 결과에 따르면 램프 각도를 높이면 워터제트 기저귀로 유입되는 공기가 증가하고 10도 램프 각도는 최고의 폭기 효율을 제공합니다. Flow-3D 모델은 결과에 따라 여수로의 2단계 물-공기 흐름을 시뮬레이션할 수도 있습니다.

    Flow aeration in chute spillway is one of the most effective and economic ways to prevent cavitation damage. Surface damage is significantly reduced when very small values of air are scattered in a water prism. A structure known as an aerator may be used for this purpose. Besides, ramp angle is one of the factors influencing aerator efficiency. In this research, the value of air entraining the flow through the Jarreh Dam’s spillway at the ramp angles of 6, 8 and 10 degrees, as three different scenarios, was simulated using the Flow-3D software. In order to validate the results of the inlet air into the flowing fluid at a ramp angle of 6 degrees, the observational results of the dam spillway physical model from the laboratory of TAMAB Company in Iran were used. According to the results, raising the ramp angle increases the inlet air to the water jet nappe, and a ten-degree ramp angle provides the best aeration efficiency. The Flow-3D model can also simulate the two-phase water-air flow on spillways, according to the results.

    Fig. 1- Schematic of the general pattern of flow and aeration process in the aerators
    Fig. 1- Schematic of the general pattern of flow and aeration process in the aerators
    Fig. 2- Experimental setup (Shamloo et al., 2012)
    Fig. 2- Experimental setup (Shamloo et al., 2012)
    Fig. 3- Results of numerical model validation in determining a) mean flow depth, b) mean velocity, and c) static pressure in various discharges vs (Shamloo et al., 2012) research under a 6 degree ramp angle
    Fig. 3- Results of numerical model validation in determining a) mean flow depth, b) mean velocity, and c) static pressure in various discharges vs (Shamloo et al., 2012) research under a 6 degree ramp angle
    Fig. 4- Location of data extraction stations after aeration on a scale model of 1:50
    Fig. 4- Location of data extraction stations after aeration on a scale model of 1:50
    Fig.7- Changes in cavitation index in different discharges with changes in ramp angle: a) 6 degrees, b) 8 degrees and c) 10 degrees
    Fig.7- Changes in cavitation index in different discharges with changes in ramp angle: a) 6 degrees, b) 8 degrees and c) 10 degrees

    Keywords

    Aeration system Ramp angle Aeration coefficient Two-phase flow Flow-3D model

    참고문헌

    • Baharvand, S., & Lashkar-Ara, B. (2021). 실험 모델과 CFD 모델을 결합한 수정 사행 C형 어로의 수력학적 설계기준. 생태 공학 , 164 . https://doi.org/10.1016/j.ecoleng.2021.106207

    2- Bayon, A., Toro, JP, Bombardelli, FA, Matos, J., & López-Jiménez, PA(2018). VOF 기술, 난류 모델 및 이산화 방식이 계단식 배수로에서 폭기되지 않은 스키밍 흐름의 수치 시뮬레이션에 미치는 영향. 수력 환경 연구 저널 , 19 , 137–149. https://doi.org/10.1016/j.jher.2017.10.002

    3- Brethour, JM, & Hirt, CW (2009). 2성분 흐름에 대한 드리프트 모델. Flow Science, Inc. , FSI – 09 – TN83Rev , 1–7.

    4- Chanson, H. (1989). 공기 유입 및 폭기 장치 연구. 수력학 연구 저널 , 27 (3), 301–319. https://doi.org/10.1080/00221688909499166

    5- Dong, Z., Wang, J., Vetsch, DF, Boes, RM, & Tan, G. (2019). 매우 높은 단위 배출에서 X자형 플레어링 게이트 교각 뒤의 계단식 배수로에서 공기-물 2상 흐름의 수치 시뮬레이션. 물(스위스) , 11 (10). https://doi.org/10.3390/w11101956

    6- Flow-3D, V. 11. 2. (2017). 사용자 매뉴얼. Flow Science Inc.: Santa Fe, NM, USA;

    7- Hirt, CW (2003). 자유 표면에서 공기의 난류 동반 모델링. Flow Science, Inc. , FSI – 03 – TN6 , 1–9.

    8- Hirt, CW (2016). 드리프트 플럭스에 대한 동적 액적 크기. Flow Science, Inc. , 1–10.

    9- Hirt, CW, & Nichols, BD (1981). 자유 경계의 역학에 대한 VOF(유체 체적) 방법. 전산 물리학 저널 , 39 (1), 201–225. https://doi.org/10.1016/0021-9991(81)90145-5

    10- Kherbache, K., Chesneau, X., Zeghmati, B., Abide, S., & Benmamar, S. (2017). 계단식 배수로의 물 흐름에 대한 계단식 경사 및 공기 주입의 영향: 수치 연구. 유체 역학 저널 , 29 (2), 322–331. https://doi.org/10.1016/S1001-6058(16)60742-4

    11- Kramer, M., & Chanson, H. (2019). 폭기된 여수로 흐름에서 광학 흐름 추정: 샘플링 매개변수에 대한 필터링 및 논의. 실험적 열 및 유체 과학 , 103 , 318–328. https://doi.org/10.1016/j.expthermflusci.2018.12.002

    12- Mahmoudian, Z., Baharvand, S., & Lashkarara, B. (2019). Baffle Fishway Denil Type의 흐름 패턴 조사. 관개 과학 및 공학(JISE) , 42 (3), 179–196.

    13- Meireles, IC, Bombardelli, FA 및 Matos, J. (2014). 가파른 계단식 배수로의 스키밍 흐름에서 공기 유입 시작: 분석. 수력학 연구 저널 , 52 (3). https://doi.org/10.1080/00221686.2013.878401

    14- Parsaie, A., & Haghiabi, AH (2019). 1/4 원형 볏이 있는 계단식 배수로에서 흐름 폭기의 시작 지점. 유량 측정 및 계측 , 69 . https://doi.org/10.1016/j.flowmeasinst.2019.101618

    15- Richardson, JF, & Zaki W N. (1979). 침전 및 유동화. 파트 1. 트랜스. Inst. 화학 영어 , 32 , 35–53.

    16- Shamloo, H., Hoseini Ghafari, S., & Kavianpour, M. (2012). 슈트 여수로의 폭기에 대한 유입구 흐름의 영향에 대한 실험적 연구(사례 연구: 이란 Jare Dam). 제10차 토목 공학 발전에 관한 국제 회의, 중동 기술 대학, 앙카라, 터키 .

    17- Wang, SY, Hou, DM, & Wang, CH (2012). Murum 수력 발전소의 계단식 슈트의 폭기 장치. 프로시디아 엔지니어링 , 28 , 803–807. https://doi.org/10.1016/j.proeng.2012.01.813.

    18- Wei, W., Deng, J., & Zhang, F. (2016). 초임계 슈트 흐름에 대한 자체 폭기 공정 개발. 다상 흐름의 국제 저널 , 79 , 172–180. https://doi.org/10.1016/j.ijmultiphaseflow.2015.11.003

    19- Wu, J., QIAN, S., & MA, F. (2016). 스키점프 스텝 배수로의 새로운 디자인. 유체 역학 저널 , 05 , 914–917.

    20- Xu, Y., Wang, W., Yong, H., & Zhao, W. (2012). 슈트 폭기 장치에서 제트 흐름의 공동 역류에 대한 조사. 프로시디아 엔지니어링 , 31 , 51–56. https://doi.org/10.1016/j.proeng.2012.01.989

    21- Yakhot, V., & Orszag, SA (1986). 난류의 재정규화 그룹 분석. I. 기본 이론. 과학 컴퓨팅 저널 , 1 (1), 3–51. https://doi.org/10.1007/BF01061452

    22- Yang, J., Teng, P., & Lin, C. (2019). 넓은 여수로 폭기장치의 통풍구 배치 및 물-기류 거동. Theoretical and Applied Mechanics Letters , 9 (2), 130–143. https://doi.org/10.1016/j.taml.2019.02.009

    23- Zhang, G., & Chanson, H. (2016). 자유 표면 폭기와 계단식 슈트의 총 압력 사이의 상호 작용. 실험적 열 및 유체 과학 , 74 , 368–381. https://doi.org/10.1016/j.expthermflusci.2015.12.011

    Computational Fluid Dynamics, 온실

    CFD 사용: 유압 구조 및 농업에서의 응용

    USO DE CFD COMO HERRAMIENTA PARA LA MODELACIÓN Y  PREDICCIÓN NUMÉRICA DE LOS FLUIDOS: APLICACIONES EN  ESTRUCTURAS HIDRÁULICAS Y AGRICULTURA

    Cruz Ernesto Aguilar-Rodriguez1*; Candido Ramirez-Ruiz2; Erick Dante Mattos Villarroel3 

    1Tecnológico Nacional de México/ITS de Los Reyes. Carretera Los Reyes-Jacona, Col. Libertad. 60300.  Los Reyes de Salgado, Michoacán. México. 

    ernesto.ar@losreyes.tecnm.mx – 3541013901 (*Autor de correspondencia) 

    2Instituto de Ciencias Aplicadas y Tecnología, UNAM. Cto. Exterior S/N, C.U., Coyoacán, 04510, Ciudad  de México. México.  3Riego y Drenaje. Instituto Mexicano de Tecnología del Agua. Paseo Cuauhnáhuac 8532, Progreso,  Jiutepec, Morelos, C.P. 62550. México.

    Abstract

    공학에서 유체의 거동은 설명하기에 광범위하고 복잡한 과정이며, 유체역학은 유체의 거동을 지배하는 방정식을 통해 유체 역학 현상을 분석할 수 있는 과학 분야이지만 이러한 방정식에는 전체 솔루션이 없습니다. . 전산유체역학(Computational Fluid Dynamics, 이하 CFD)은 수치적 기법을 통해 방정식의 해에 접근할 수 있는 도구로, 신뢰할 수 있는 계산 모델을 얻기 위해서는 물리적 모델의 실험 데이터로 평가해야 합니다. 수력구조물에서 선형 및 미로형 여수로에서 시뮬레이션을 수행하고 배출 시트의 거동과 현재의 폭기 조건을 분석했습니다. 침강기에서 유체의 특성화를 수행하고 필요한 특성에 따라 사체적, 피스톤 또는 혼합의 분수를 수정하는 것이 가능합니다. 농업에서는 온실 환경을 특성화하고 환경에 대한 재료의 디자인, 방향 및 유형 간의 관계를 찾는 데 사용할 수 있습니다. 발견된 가장 중요한 결과 중 온실의 길이와 설계가 환기율에 미칠 수 있는 영향으로 온실의 길이는 높이의 6배 미만인 것이 권장됩니다.

    키워드: Computational Fluid Dynamics, 온실,

    Spillway, Settler 기사: COMEII-21048 소개 

    CFD는 유체 운동 문제에 대한 수치적 솔루션을 얻어 수리학적 현상을 더 잘 이해할 수 있게 함으로써 공간 시각화를 가능하게 하는 수치 도구입니다. 예를 들어, 수력 공학에서 벤츄리(Xu, Gao, Zhao, & Wang, 2014) 워터 펌핑(ȘCHEAUA, 2016) 또는 개방 채널 적용( Wu et 알., 2000). 

    문헌 검토는 실험 연구에서 검증된 배수로의 흐름 거동에 대한 수리학적 분석을 위한 CFD 도구의 효율성을 보여줍니다. 이 검토는 둑의 흐름 거동에 대한 수리학적 분석을 위한 CFD의 효율성을 보여줍니다. Crookston et al. (2012)는 미로 여수로에 대해 Flow 3D로 테스트를 수행했으며, 배출 계수의 결과는 3%에서 7%까지 다양한 오류로 실험적으로 얻은 결과로 허용 가능했으며 연구 결과 측면에 저압 영역이 있음을 발견했습니다. 익사 방식으로 작업할 때 위어의 벽. Zuhair(2013)는 수치 모델링 결과를 Mandali weir 원형의 실험 데이터와 비교했습니다.  

    최근 연구에서는 다양한 난류 모델을 사용하여 CFD를 적용할 가능성이 있음을 보여주었습니다. 그리고 일부만이 음용수 처리를 위한 침적자의 사례 연구를 제시했으며, 다른 설계 변수 중에서 기하학적인 대안, 수온 변화 등을 제안했습니다. 따라서 기술 개발로 인해 설계 엔지니어가 유체 거동을 분석하는 데 CFD 도구를 점점 더 많이 사용하게 되었습니다. 

    보호 농업에서 CFD는 온실 환경을 모델링하고 보조 냉방 또는 난방 시스템을 통해 온실의 미기후 관리를 위한 전략을 제안하는 데 사용되는 기술이었습니다(Aguilar Rodríguez et al., 2020).  

    2D 및 3D CFD 모델을 사용한 본격적인 온실 시뮬레이션은 태양 복사 모델과 현열 및 잠열 교환 하위 모델의 통합을 통해 온실의 미기후 분포를 연구하는 데 사용되었습니다(Majdoubi, Boulard, Fatnassi, & Bouirden, 2009). 마찬가지로 이 모델을 사용하여 온실 설계(Sethi, 2009), 덮개 재료(Baxevanou, Fidaros, Bartzanas, & Kittas, 2018), 시간, 연중 계절( Tong, Christopher, Li, & Wang, 2013), 환기 유형 및 구성(Bartzanas, Boulard, & Kittas, 2004). 

    CFD 거래 프로그램은 사용자 친화적인 플랫폼으로 설계되어 결과를 쉽게 관리하고 이해할 수 있습니다.  

    Figura 1. Distribución de presiones y velocidades en un vertedor de pared delgada.
    Figura 2. Perfiles de velocidad y presión en la cresta vertedora.
    Figura 3. Condiciones de aireación en vertedor tipo laberinto. (A)lámina adherida a la pared del
    vertedor, (B) aireado, (C) parcialmente aireado, (D) ahogado.
    Figura 4. Realización de prueba de riego.
    Figura 5. Efecto de la posición y dirección de los calefactores en un invernadero a 2 m del suelo.
    Figura 5. Efecto de la posición y dirección de los calefactores en un invernadero a 2 m del suelo.
    Figura 6. Indicadores ambientales para medir el confort ambiental de los cultivos.
    Figura 6. Indicadores ambientales para medir el confort ambiental de los cultivos.
    Figura 7. Líneas de corriente dentro del sedimentador experimental en estado estacionario  (Ramirez-Ruiz, 2019).
    Figura 7. Líneas de corriente dentro del sedimentador experimental en estado estacionario (Ramirez-Ruiz, 2019).

    Referencias Bibliográficas

    Aguilar-Rodriguez, C.; Flores-Velazquez, J.; Ojeda-Bustamante, W.; Rojano, F.; Iñiguez-
    Covarrubias, M. 2020. Valuation of the energyperformance of a greenhouse with

    an electric heater using numerical simulations. Processes, 8, 600.

    Aguilar-Rodriguez, C.; Flores-Velazquez, J.; Rojano, F.; Ojeda-Bustamante, W.; Iñiguez-
    Covarrubias, M. 2020. Estimación del ciclo de cultivo de tomate (Solanum

    lycopersicum L.) en invernadero, con base en grados días calor (GDC) simulados
    con CFD. Tecnología y ciencias del agua, ISSN 2007-2422, 11(4), 27-57.
    Al-Sammarraee, M., y Chan, A. (2009). Large-eddy simulations of particle sedimentation
    in a longitudinal sedimentation basin of a water treatment plant. Part 2: The effects
    of baffles. Chemical Engineering Journal, 152(2-3), 315-321.
    doi:https://doi.org/10.1016/j.cej.2009.01.052.
    Bartzanas, T.; Boulard, T.; Kittas, C. 2004. Effect of vent arrangement on windward
    ventilation of a tunnel greenhouse. Biosystems Engineering, 88(4).
    Baxevanou, C.; Fidaros, D.; Bartzanas, T.; Kittas, C. 2018. Yearly numerical evaluation of
    greenhouse cover materials. Computers and Electronics in Agriculture, 149, 54–

    1. DOI: https://doi.org/10.1016/j.compag.2017.12.006.
      Crookston, B. M., & Tullis, B. P. 2012. Labyrinth weirs: Nappe interference and local
      submergence. Journal of Irrigation and Drainage Engineering, 138(8), 757-765.
      Fernández, J. M. 2012. Técnicas numéricas en Ingeniería de Fluidos: Introducción a la
      Dinámica de Fluidos Computacional (CFD) por el Método de Volumen Finito;
      Reverté, Barcelona, pp. 98-294.
      Goula, A., Kostoglou, M., Karapantsios, T., y Zouboulis, A. (2008). The effect of influent
      temperature variations in a sedimentation tank for potable water treatment— A
      computational fluid dynamics study. Water Research, 42(13), 3405-3414.
      doi://doi.org/10.1016/j.watres.2008.05.002.
      Majdoubi, H.; Boulard, T.; Fatnassi, H.; Bouirden, L. 2009. Airflow and microclimate
      patterns in a one-hectare Canary type greenhouse: an experimental and CFD
      assisted study. Agricultural and Forest Meteorology, 149(6-7), 1050-1062.
      Ramirez-Ruiz Candido (2019). Estudio hidrodinámico de sedimentadores de alta tasa en
      plantas potabilizadoras utilizando dinámica de fluidos computacional (CFD).
      Universidad Nacional Autónoma de México. Tesis de maestría.
      Sánchez, J. M. C., & Elsitdié, L. G. C. 2011. Consideraciones del mallado aplicadas al
      cálculo de flujos bifásicos con las técnicas de dinámica de fluidos computacional.
      J. Introd. Inv. UPCT., 4, 33-35.
      Sethi, V.P. 2009. On the selection of shape and orientation of a greenhouse: Thermal
      modeling and experimental validation, Sol. Energy, 83, 21–38.
      ȘCHEAUA, F. 2016. AGRICULTURAL FIELD IRRIGATION SOLUTION BASED ON
      VENTURI NOZZLE γ 2 g γ 2 g. JOURNAL OF INDUSTRIAL DESIGN AND
      ENGINEERING GRAPHICS, 2(1), 31–35.

    Tong, G.; Christopher, D.; Li, T.; Wang, T. 2013. Passive solar energy utilization: a review
    of cross-section building parameter selection for Chinese solar greenhouses.
    Renewable and Sustainable Energy Reviews, 26, 540-548.

    Xu, Y., Gao, L., Zhao, Y., & Wang, H. 2014. Wet gas overreading characteristics of a long-
    throat Venturi at high pressure based on CFD. Flow Measurement and

    Instrumentation, 40, 247–255. https://doi.org/10.1016/j.flowmeasinst.2014.09.004
    Wu, W., Rodi, W y Wenka, T. 2000. 3D numerical modeling of flow and sediment transport
    in open channels. ASCE Journal of Hydraulic Engineering. Vol 126 Num 1.
    Zuhair al zubaidy, Riyadh. 2013. Numerical Simulation of Two-Phase Flow.
    En:International Journal of Structural and Civil Engineering Research. Vol 2, No 3;
    13p

    Fig. 3. Experimental angled top-view setup for laser welding of zinc-coated steel with a laser illumination.

    Effect of zinc vapor forces on spattering in partial penetration laser welding of zinc-coated steels

    Yu Hao a, Nannan Chen a,b, Hui-Ping Wang c,*, Blair E. Carlson c, Fenggui Lu a,*
    a Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai,
    200240, PR China b Department of Industrial and Manufacturing Eng

    ABSTRACT

    A three-dimensional thermal-fluid numerical model considering zinc vapor interaction with the molten pool was developed to study the occurrence of zinc vapor-induced spatter in partial penetration laser overlap welding of zinc-coated steels. The zinc vapor effect was represented by two forces: a jet pressure force acting on the keyhole rear wall as the vapor bursts into the keyhole and a drag force on the upper keyhole wall as the vapor escapes upwards. The numerical model was calibrated by comparing the predicted keyhole shape with the keyhole shape observed by high-speed X-ray imaging and applied for various weld schedules. The study showed that large jet pressure forces induced violent fluctuations of the keyhole rear wall, resulting in an unstable keyhole and turbulent melt flow. A large drag force pushed the melt adjacent to the keyhole surface upward and accelerated the movement of the melt whose velocities reached 1 m/s or even higher, potentially inducing spatter. Increased heat input facilitated the occurrence of large droplets of spatter, which agreed with experimental observations captured by high-speed camera.

    아연도금강의 부분용입 레이저 겹침용접에서 아연증기유도 스패터의 발생을 연구하기 위하여 용융풀과의 아연증기 상호작용을 고려한 3차원 열유체 수치모델을 개발하였습니다.

    아연 증기 효과는 증기가 열쇠 구멍으로 폭발할 때 키홀 뒤쪽 벽에 작용하는 제트 압력력과 증기가 위쪽으로 빠져나갈 때 위쪽 키홀 벽에 작용하는 항력의 두 가지 힘으로 표시됩니다.

    수치 모델은 예측된 열쇠 구멍 모양과 고속 X선 영상으로 관찰된 키홀 모양을 비교하여 보정하고 다양한 용접 일정에 적용했습니다.

    이 연구는 큰 제트 압력이 키홀 뒷벽의 격렬한 변동을 유발하여 불안정한 열쇠 구멍과 난류 용융 흐름을 초래한다는 것을 보여주었습니다. 큰 항력은 키홀 표면에 인접한 용융물을 위로 밀어올리고 속도가 1m/s 이상에 도달한 용융물의 이동을 가속화하여 잠재적으로 스패터를 유발할 수 있습니다.

    증가된 열 입력은 고속 카메라로 포착한 실험적 관찰과 일치하는 큰 방울의 스패터 발생을 촉진했습니다.

    Fig. 1. Schematic of zero-gap laser welding of zinc-coated steel.
    Fig. 1. Schematic of zero-gap laser welding of zinc-coated steel.
    Fig. 2. Experimental setup for capturing a side view of the laser welding of zinc-coated steel enabled by use of high-temperature glass.
    Fig. 2. Experimental setup for capturing a side view of the laser welding of zinc-coated steel enabled by use of high-temperature glass.
    Fig. 3. Experimental angled top-view setup for laser welding of zinc-coated steel with a laser illumination.
    Fig. 3. Experimental angled top-view setup for laser welding of zinc-coated steel with a laser illumination.
    Fig. 4. Schematic of the rotating Gaussian body heat source.
    Fig. 4. Schematic of the rotating Gaussian body heat source.
    Fig. 5. Schematic of jet pressure force caused by zinc vapor: (a) locating the outlet of zinc vapor (point A), (b) schematic of assigning the jet pressure force.
    Fig. 5. Schematic of jet pressure force caused by zinc vapor: (a) locating the outlet of zinc vapor (point A), (b) schematic of assigning the jet pressure force.
    Fig. 6. Schematic of drag force caused by zinc vapor.
    Fig. 6. Schematic of drag force caused by zinc vapor.
    Fig. 7. Procedure for calculating the outgassing velocity of zinc vapor.
    Fig. 7. Procedure for calculating the outgassing velocity of zinc vapor.
    Fig. 8. Schematic related to calculating the zone of vaporized zinc.
    Fig. 8. Schematic related to calculating the zone of vaporized zinc.
    Fig. 9. The meshed domains for the thermal-fluid simulation of laser welding.
    Fig. 9. The meshed domains for the thermal-fluid simulation of laser welding.
    Fig. 10. The calculated temperature field and validation: (a) 3-D temperature field; (b)-(f) Comparison of experimental and simulated weld cross section: (b) P = 2000 W, v = 50 mm/s; (c) P = 2500 W, v = 50 mm/s; (d) P = 3000 W, v = 50 mm/s; (e) P = 3000 W, v = 60 mm/s; (f) P = 3000 W, v = 70 mm/s.
    Fig. 10. The calculated temperature field and validation: (a) 3-D temperature field; (b)-(f) Comparison of experimental and simulated weld cross section: (b) P = 2000 W, v = 50 mm/s; (c) P = 2500 W, v = 50 mm/s; (d) P = 3000 W, v = 50 mm/s; (e) P = 3000 W, v = 60 mm/s; (f) P = 3000 W, v = 70 mm/s.
    Fig. 11. Comparison of X-Ray images of in-process keyhole profiles and the numerical predictions: (a) Single sheet penetration (P = 480 W, v = 150 mm/s); (b) Two sheet penetration (P = 532 W, v = 150 mm/s).
    Fig. 11. Comparison of X-Ray images of in-process keyhole profiles and the numerical predictions: (a) Single sheet penetration (P = 480 W, v = 150 mm/s); (b) Two sheet penetration (P = 532 W, v = 150 mm/s).
    Fig. 12. High-speed images of dynamic keyhole in laser welding of steels: (a) without zinc coating (b) with zinc coating.
    Fig. 12. High-speed images of dynamic keyhole in laser welding of steels: (a) without zinc coating (b) with zinc coating.
    Fig. 13. Mass loss and molten pool observation under different laser power and welding velocity for 1.2 mm + 1.2 mm HDG 420LA stack-up
    Fig. 13. Mass loss and molten pool observation under different laser power and welding velocity for 1.2 mm + 1.2 mm HDG 420LA stack-up
    Fig. 14. Numerical results of keyhole and flow field in molten pool: (a) without zinc vapor forces, (b) with zinc vapor forces.
    Fig. 14. Numerical results of keyhole and flow field in molten pool: (a) without zinc vapor forces, (b) with zinc vapor forces.
    Fig. 18. Calculated velocity fields for different welding parameters: (a) P = 2 kW, v = 50 mm/s, (b) P = 2.5 kW, v = 50 mm/s, (c) P = 3 kW, v = 50 mm/s, (d) P = 3 kW, v = 60 mm/s, (e) P = 3 kW, v = 70 mm/s.
    Fig. 18. Calculated velocity fields for different welding parameters: (a) P = 2 kW, v = 50 mm/s, (b) P = 2.5 kW, v = 50 mm/s, (c) P = 3 kW, v = 50 mm/s, (d) P = 3 kW, v = 60 mm/s, (e) P = 3 kW, v = 70 mm/s.
    Fig. 19. Schematic of the generation of spatter in different sizes: (a) small size, (b) large size.
    Fig. 19. Schematic of the generation of spatter in different sizes: (a) small size, (b) large size.

    References

    Ai, Y., Jiang, P., Wang, C., et al., 2018. Experimental and numerical analysis of molten
    pool and keyhole profile during high-power deep-penetration laser welding. Int. J.
    Heat Mass Transf. 126 (part-A), 779–789.
    Chen, Z., Yang, S., Wang, C., et al., 2014. A study of fiber laser welding of galvanized
    steel using a suction method. J. Mater. Process. Technol. 214 (7), 1456–1465.
    Cho, W.I., Na, S.J., Thomy, C., et al., 2012. Numerical simulation of molten pool
    dynamics in high power disk laser welding. J. Mater. Process. Technol. 212 (1),
    262–275.
    Deng, S., Wang, H.P., Lu, F., et al., 2019. Investigation of spatter occurrence in remote
    laser spiral welding of zinc-coated steels. Int. J. Heat Mass Transf. 140 (9), 269–280.
    Fabbro, R., Coste, F., Goebels, D., et al., 2006. Study of CW Nd-Yag laser welding of Zncoated steel sheets. J. Phys. D Appl. Phys. 39 (2), 401.
    Gao, Z., Wu, Y., Huang, J., 2009. Analysis of weld pool dynamic during stationary
    laser–MIG hybrid welding. Int. J. Adv. Manuf. Technol. 44 (9), 870–879.
    Kaplan, A., 1994. A model of deep penetration laser welding based on calculation of the
    keyhole profile. J. Phys. D Appl. Phys. 27 (9), 1805.
    Kim, J., Oh, S., Ki, H., 2015. A study of keyhole geometry in laser welding of zinc-coated
    and uncoated steels using a coaxial observation method. J. Mater. Process. Technol.
    225, 451–462.
    Kim, J., Oh, S., Ki, H., 2016. Effect of keyhole geometry and dynamics in zero-gap laser
    welding of zinc-coated steel sheets. J. Mater. Process. Technol. 232, 131–141.
    Koch, H., KaGeler, C., Otto, A., et al., 2011. Analysis of welding zinc coated steel sheets
    in zero gap configuration by 3D simulations and high-speed imaging. Phys. Procedia
    12 (part-B), 428–436.
    Kouraytem, N., Li, X., Cunningham, R., et al., 2019. Effect of laser-matter interaction on
    molten pool flow and keyhole dynamics. Phys. Rev. Appl. 11 (6), 54–64.
    Li, S., Chen, G., Katayama, S., et al., 2014. Relationship between spatter formation and
    dynamic molten pool during high-power deep-penetration laser welding. Appl. Surf.
    Sci. 303 (6), 481–488.
    Ma, J., 2013. Experimental and Numerical Studies on the Issues in Laser Welding of
    Galvanized High-Strength Dual-Phase Steels in a Zero-Gap Lap Joint Configuration,
    PhD Thesis. Southern Methodist University.
    Pan, Y., 2011. Laser Welding of Zinc Coated Steel Without a Pre-Set Gap, PhD Thesis.
    Delft University of Technology.
    Schmidt, M., Otto, A., 2008. Analysis of YAG laser lap-welding of zinc coated steel sheets.
    CIRP Ann. Manuf. Technol. 57, 213–216.
    Semak, V., Matsunawa, A., 1999. The role of recoil pressure in energy balance during
    laser materials processing. J. Phys. D Appl. Phys. 30 (18), 2541.
    Wu, S., Zhao, H., Wang, Y., Zhang, X., 2004. A new heat source model in numerical
    simulation of high energy beam welding. Trans. China Weld. 21, 99–102.
    Yaws, C.L., 2015. The Yaws Handbook of Vapor Pressure: Antoine Coefficients.
    Zhou, J., Tsai, H.L., 2008. Modeling of transport phenomena in hybrid laser-MIG keyhole
    welding. Int. J. Heat Mass Transf. 51 (17–18), 4353–4366.

    Fig. 2 Model Test System

    경로점을 가지는 해상풍력 석션버켓 기초의 기울기 제어 모형실험

    Model tests for tilting control of suction bucket foundation for offshore wind turbine with path points

    J. Korean Soc. Hazard Mitig. 2021;21(3):125-132

    Publication date (electronic) : 2021 June 30

    doi : https://doi.org/10.9798/KOSHAM.2021.21.3.125

    You-Seok Kim*Jong-Pil Lee**

    김유석*, 이종필**

    * 정회원, ㈜대우건설 기술연구원 수석연구원(E-mail: youseok.kim@daewooenc.com)

    * Member, Chief Research Engineer, Daewoo Institute of Construction Technology, DAEWOO E&C

    ** ㈜대우건설 기술연구원 과장

    ** Manager, Daewoo Institute of Construction Technology, DAEWOO E&C

    * 교신저자, 정회원, ㈜대우건설 기술연구원 수석연구원(Tel: +82-2-2288-1050, Fax: +82-2-2288-4094, E-mail: youseok.kim@daewooenc.com)

    Abstract

    해상풍력단지개발에서 단일형 석션버켓 기초의 기울기 제어는 중요한 문제이다. 단일형 석션버켓 기초의 경우에는 내부에 격실을 마련하고 각 격실의 압력을 제어하는 것으로부터 기초의 기울기 제어가 가능하다. 단 각 격실의 압력은 미세하게 제어가 가능하여야 한다. 이에 대한 연구들이 수행되었으나 기울기 제어에 대한 방법론에 대해서는 구체적으로 언급이 되지 않고 있다. 본 연구에서는 3개의 내부격실을 둔 단일형 석션버켓 기초의 기울기 제어에 대한 모형실험을 실시하였다. 모형석션 기초의 기울기 제어를 위해서 격실내부압력을 각기 제어하여 실험을 수행하였다. 모형은 실제크기의 1:100으로 제작하였고 모래지반으로 수행하였다. 각 격실별로 부압 및 정압을 4가지로 조합하여 모형기초의 기울기 제어 실험을 수행하였다. 실험결과 시공 중 및 운용 중에 대해서 5°의 기울기 제어가 가능하였다. 운용중의 경우에는 부압만으로는 모형기초의 기울기 제어가 한계가 있어 정압을 조합하여 5°의 기울기 제어를 실현하였다.

    In offshore wind farms, tilting control based on a single-basket suction bucket foundation is a significant problem. In a single-basket suction bucket foundation, the tilting control of the foundation is possible by arranging the cells inside and controlling the pressure of each cell. However, the pressure of each cell must be finely controlled. Studies on this topic have been conducted, but no specific tilting control method has been developed. This paper presents experimental model results for tilting control obtained during the installation of a suction bucket foundation consisting of three internal cells. Tilting control was performed by independently controlling the internal pressure of each cell. A 1:100 scale model was used, and the ground condition was sandy. Four cases of tilting control tests for the model foundation were used with multiple combinations of internal positive, negative, or both pressures of each cell. It was found that the tilting control was within 5° during the installation and operation stages. There was a tilting control limit for operation based on the model with only negative pressure; therefore, 5° tilting control was achieved by combining the positive pressure.

    Keywords

    1. 서 론

    해상풍력발전기가 원활한 발전을 하기 위해서는 일정각도 이내의 기울기가 확보되어야 한다. 석션버켓 기초 형식은 기초하부가 단단한 암반층에 놓이지 않는다. 따라서 석션버켓 기초를 가지는 해상풍력 발전기는 조류력, 풍력, 파력 그리고 세굴 등에 의해 기울어질 수 있다. 우리나라의 경우 유럽과 달리 태풍과 같은 변수도 작용한다. 이를 극복하기 위해서는 설치단계나 운용단계에서 기울기를 보정하는 것이 중요하다. 특히 단일형 석션버켓 기초의 경우 내부에 격실을 두고 격실 내 압력을 제어하여 기울기를 보정하게 된다. 이 경우 각 격실에 부여하는 압력에 따라 기울기 보정이 이루어 질것이나 구체적으로 기울기보정을 위한 압력제어방법에 대해서는 구체적인 언급이 없는 형편이다.

    Universal Foundation은 북해 Round 3에 대하여 단일형 석션버켓 기초에 대한 시험시공을 실시하였으며 수직도를 0.1° 미만으로 달성한 바 있다(Universal-foundation, 2014).

    중국에서는 해상풍력 발전기용 단일형 석션버켓 기초에 내부격실을 적용하였으며 기초를 prestressed 콘크리트로 만든바 있다(Lian et al., 2011Lian et al., 2012Zhang et al., 2015). Zhang et al. (2016)에 따르면, 내부격실은 6각형이 모여있는 벌집형태를 가지며 실험은 Jiangsu성 풍력단지 예정지에서 가져온 실트질 모래로 지반을 조성하였다. 총 7개의 내부격실을 개별적으로 제어하였으나 최종 수직도는 명확하게 기술하지 않았다. 작은 기울기에 대해서는 부압을 통하여 조정하고, 큰 기울기에 대해서는 정압과 부압을 조합하여 제어를 완료하였다. 단일형 석션버켓 기초의 수직도에 대한 연구이나 구체적 절차가 언급되어 있지 않고, 격실별 정압⋅부압의 조합으로 인한 효과 등에 대해서도 자세하게 언급하지 않았다.

    국내에서는 Kwag et al. (2012)은 군산항 앞바다에 단일형 석션버켓 기초를 시험 시공하였다. 단일형 석션버켓 기초를 최대 0.5° 이내의 오차로 설치가 완료하였다. 또한, Kim and Bae (2016)는 내부격실을 가지는 단일형 석션버켓 기초에 대한 기울기 보정방법을 제안하였다. 석션버켓 기초의 내부를 동일한 크기로 한가운데를 기준으로 방사형으로 3개 또는 4개의 격실로 나누고, 격실별 석션압을 제어하여 기울기를 제어하는 기술을 제안하였다. Kim et al. (2017)은 3개의 내부격실을 갖는 실내모형실험에서 시공중 1° 이상의 기울기 제어가 가능하였으며, 운용 중에는 0.25°의 기울기 제어가 가능한 것을 확인하였다. 운용단계에서는 정압을 부여하여야 큰 기울기 보정이 가능함을 밝혔다.

    Kim et al. (2017)의 연구에서는 펌프구동압 제어문제로 임의 방위각을 가지는 단일형 석션버켓 기초의 실험을 수행하지 못하였고, 일방향 제어에 의한 기울기 제어의 실험이 수행되었다. 실험은 펌프구동압이 제어되지 못하여 보일링이 발생하는 문제가 있었다.

    본 연구에서는 Kim et al. (2017)의 기존 연구를 보완하여 3개의 격실을 가지는 단일형 석션버켓 기초모형을 가지고 격실내부 압력을 각기 제어하여 기울기를 보정하는 실험연구를 수행하였다. 4개의 실험들은 초기에 동일한 경사각을 가지도록 하였고 이를 펌프구동에 의해 0.25° 이하가 되도록 하였으며, 기울어진 점이 내부격실위치에 상관없이 임의 방위각을 가지도록 배치하여 개별 격실내부에 부압과 정압을 조합하는 조건에서 해상풍력 발전기 시공단계 중 2가지와 운용 중 2가지에 대해서 기울기 보정실험을 수행하였다. 1개의 해상풍력기초의 경우는 수동에 의한 기울기 보정이 가능하다고 보여 지나, 해상풍력단지는 다수의 기초로 구성되며, 자동화를 위한 알고리즘 개발은 중요한 문제이다. 일련의 실험들은 동일한 방식에 의해 모형기초의 기울기 제어가 되도록 하였다. 동일한 알고리즘이 적용되는 경우에 단일형 석션버켓 기초로 이루어진 해상풍력단지 개발에 적용이 가능할 것으로 사료된다.

    2. 실험방법 및 장비

    본 연구에서는 Kim and Bae (2016)가 제안한 방법을 실험적으로 구현하였다. 이를 위해 Kim et al. (2017)의 시스템에서 문제가 되었던 펌프의 압력을 제어하기 위해 비례제어밸브를 추가 하였고, 임의 방위각으로 기울어진 모형석션버켓 기초를 기울기 보정하기 위해 총 6개의 펌프를 설치하였다. 펌프에 의한 격실 내 압력제어는 모형기초의 기울기를 미세하게 자세제어하기 위해서 필요하다. Kim et al. (2017)에서 사용한 펌프는 작은 용량이었으나 보일링이 일어나는 문제가 있었다. 따라서 압력을 제어하기 위해서 펌프자체의 속도를 저감하는 방법이 필요하였다. 채택된 펌프용량이 작아서 인버터와 같은 펌프속도에 맞는 속도제어기를 구하지 못하였다. 이에 따라 압력제어를 위하여 격실에 연결되는 호스 중간에 비례제어밸브를 채택하게 되었다. 비례제어밸브는 수백단계의 각도를 미세하게 제어가 가능하며 전압이나 전류 값을 입력하여 밸브의 여닫힘 제어가 가능하다. 본 실험에서 사용된 비례제어밸브는 전압제어 방식으로 0에서 5 V DC전압으로 밸브 폐쇄부터 완전개방까지를 제어할 수 있다. 본 실험에서는 제어기와 비례제어밸브간 거리가 상대적으로 멀지 않았기 때문에 제어가 쉬운 DC전압제어를 사용하였으나, 5 m 이상 거리가 먼 경우에는 전압강하 등에 의한 문제가 없는 전류 값으로도 제어가 가능한 제품을 사용하였다. Kim and Bae (2016)가 제안한 방법의 기본개념은 Fig. 1(a)와 같다. 그림에서 보는 바와 같이 각 격실의 압력을 제어하여 초기위치 pt4를 기울기원점(기울기 0°) pt0로 보내는 것으로 2번의 경로를 통하여 원점으로 보내게 된다. 여기에는 각 격실의 압력부여에 따라 3가지 방법이 있다. 우선 격실2번에 부압을 주면 pt1으로 보내고 다음 단계로 격실 2번 및 3번에 부압을 주어 pt0로 보내는 방법1, 격실3에 부압을 주어 pt2로 보낸 다음 격실 2에 부압을 주어 pt0로 보내는 방법2, 마지막으로 격실 2 및 3에 부압을 주어 pt3으로 보낸 다음 격실2에 부압을 주어 pt0로 보내는 방법3다. 이 3가지 방법 중에서 중간의 경로점 pt1, pt2, pt3와 최종위치 pt0와의 거리가 가장 짧은 쪽을 선택하는 것이 가장 효율적인 방법이다. 본 연구에서는 pt4(방위각 55°)에서 pt3를 거쳐 pt0로 보내는 방법(case 1)과 pt4의 대각선에 위치한다고 가정한(방위각 235°) pt5에서 pt0로 이동시키는 방법(case 2)에 대해 모형실험을 실시하였다(Fig. 1(b) 참조). 또한 해상풍력발전기가 운영중인 것으로 모사하기 위해 내부격실이 모래지반으로 채워져서 부압만으로는 기울기보정이 안 되는 것으로 가정하여 case 1과 case 2와 동일한 방위각 및 기울기에서 정압도 부여하는 방법(case 3, 4)에 대하여 실험을 실시하였다. Kim et al. (2017)에 의하면 3개의 격실 중 1개의 격실 만에도 내부에 모래지반으로 채워져 물로만 되어 있는 공간이 없는 경우는 더 이상 기울기 제어가 거의 되지 않았음을 확인한 바 있다. 초기 기울기각은 5°로 하였으며 방위각은 Fig. 1(b)에서와 같이 55° 및 235°에 대하여 실시하였다. 방위각 55°의 경우 위에서 언급한 격실 2와 3에 부압을 주는 경우(Fig. 1(c) 참조)가 가장 효율적이며 방위각 235°의 경우는 격실 1에 부압을 주는 방법(Fig. 1(d) 참조)이 가장 효율적이다.

    Fig. 1 Basic Concept of Tilting Control Method
    Fig. 1 Basic Concept of Tilting Control Method

    이와 같이 동일한 방식으로 자동화를 이루면 단일형 석션버켓 기초로 이루어진 해상풍력단지에서 일정각도 이상 기울어진 경우에 자동적으로 기울기가 보정 가능할 것으로 사료된다.

    실험장비는 Fig. 2와 같이 모형토조, 모형기초 내부의 부압 및 정압을 부여하는 펌프, 모형석션버켓 기초, 펌프압을 제어하는 비례제어밸브, 레이저변위용 센서거치대, 데이터 수집장비 및 실시간데이터를 볼 수 있는 PC로 구성된다. 모형토조 제원은 내경 580 mm, 내측 높이 454 mm이며 두께 10 mm의 원형아크릴로 제작되었다. 데이터 수집장비는 레이저변위계 및 압력계를 계측할 수 있는 측정장비를 사용하였고 계측간격은 초당 2회로 하였다.

    Fig. 2 Model Test System
    Fig. 2 Model Test System

    Model Test System

    모형석션버켓 기초는 두께 3 mm의 아크릴로 제작되었으며, 이의 제원은 Fig. 3(a)와 같이 지름 170 mm, 높이 130 mm이다. 내부격실은 두께 3 mm, 격실높이 78 mm로 모형석션버켓 벽체높이의 60%로 설치하였다. 모형석션버켓 기초는 원형(prototype) 구조물의 1:100의 크기로 제작되었다. 모형석션버켓 기초 내부에 격실 내부의 압력을 측정하는 압력계를 부착하였다(Figs. 3(b) and 3(e) 참조). 격실내부의 압력계는 간극수압의 측정을 위하여 격실내부에 있는 모래지반이 부압에 의하여 융기하여 격실내부천장에 있는 압력센서에 닿지 않도록 빈 공간을 두었으며 물만 유입이 되도록 가는 철망을 씌웠다. 사용된 압력계는 50 kPa의 압력까지를 측정할 수 있는 것으로 2 m 깊이의 수조에 물을 넣고 수위를 조절하여 실험에 사용된 모든 센서를 검정하여 사용하였다. 실험 중 변위는 연직변위 측정을 위하여 레이저변위계로 측정되었으며, 총 1개가 사용되었다. 모형기초의 중앙상부에 반사판을 설치하였고, 센서거치대에는 막대를 설치하고 막대 끝에 레이저변위계를 수직 Z축 방향으로 부착하였다(Figs. 3(a) and 3(c) 참조). 레이저변위계에는 변위값이 표시되며 운용중 단계인 실험 Case 3 및 Case 4에서 부압에 의해 연직변위가 더 이상 발생하지 않는 것을 확인하는 용도로 설치하였다(Fig. 3(d) 참조). 모형석션버켓 기초의 기울기 측정을 위해 경사계를 모형상부에 설치하였다. 경사계는 X, Y 2개축의 기울기를 각각 -40°~40°까지 측정가능하며, DC 전압으로 출력된다. 이를 Data logger에서 계측하고 다시 방위각 및 경사각을 계산하여 PC상에서 실시간으로 보여줄 수 있도록 하였다.

    Fig. 3

    Instrumented Model Suction Bucket

    펌프는 일 방향으로만 구동되는 로터리식 펌프로 물이 한 방향으로만 들어가고 반대방향으로 물이 나오는 구조의 펌프이다. 펌프는 220 V AC로 구동되며 용량은 80 W이다. 사용된 펌프는 총 6개로 모든 격실에 각각 2개씩 연결되어, 격실별 제어를 하였다. 실험 case별로 각 격실별 압력이 부압인지 정압인지에 따라서, 사용되는 펌프가 다르게 하여 실험을 수행하였다.

    모형석션버켓 기초는 30 mm까지는 수동으로 관입시켰으며, 이후 모형석션버켓의 매입깊이가 20 mm가 남겨질 때까지 각 격실에 부압을 작용시키면서 관입시켰다. 35 mm가 남겨진 이후에는 초기기울기를 부여하기 위해 각 격실별로 부압을 달리하였다. 마지막단계에서는 초기기울기를 모든 실험에서 동일하게 설정하기 위해 3개의 격실에 각기 다른 부압을 작동시키면서 X축으로부터 방위각 55°(또는 235°) 및 기울기가 5°가 되도록 기초상부를 강제변위를 부여하여 위치시켰다. 방위각 및 기울기는 컴퓨터화면에서 실시간으로 볼 수 있도록 하였다. Kim et al. (2017)에서는 펌프압의 크기를 제어하지 못하여 실재적인 기울기 모사가 어려워서 한쪽방향으로만 움직이게 하는 기울기 제어 실험을 실시한바 있다. 본 연구에서는 이러한 문제점을 개선하고자 펌프를 3개 추가하여 총 6개를 설치하였으며, 모든 펌프에는 비례제어밸브를 설치하여 컴퓨터프로그램으로 비례제어밸브의 여닫는 각도를 제어할 수 있도록 하여 임의 방위각을 가진 기울어진 모형석션버켓 기초의 수직도제어가 가능하도록 시스템을 개선하였다. 사용된 비례제어밸브는 600단계의 여닫힘 각도제어가 가능하다. 각 격실별로 부압펌프 1개 및 정압펌프 1개를 설치하였다. 실험조건은 설치단계에 대한 모사로서 모형석션버켓의 설치모사단계로 X축을 기준으로 55° 또는 235°의 방위각에 기울기 5°를 기준으로 하여 동일한 기초배치시 격실의 부압 및 정압제어를 실시하는 2가지 조건으로 하였다(case 1, 2). 또한 운전 중인 상태를 고려하되 앞의 조건과 동일한 방위각 55° 및 235°에 대한 2가지 실험을 실시하였다. 기초 설치시의 조건인 경우에는 격실내부에 물만 있는 공간이 있는 경우이고, 운전 중인 조건은 격실내부에 부압을 작용시켜도 모형석션버켓 기초가 움직이지 않는 경우로 가정하였다(case 3, 4). 이를 위해 3개의 격실중 적어도 하나의 격실에 모래지반으로 채워져서 부압을 가하여도 모형석션버켓이 움직이지 않아 기울기 제어가 안 되는 조건을 인위적으로 조성하였다. 따라서 운전 중인 경우에는 내부에 모래가 차있는 격실에 정압을 부여하여 인위적으로 내부공간을 만들면서 기울기를 제어하도록 하였다. 기울기 제어 실험케이스는 Table 1과 같다.

    Table 1

    Cases of Experiment

    격실의 압력은 실험 시작 전 초기에 설정한 비례제어밸브의 열림정도를 결정하고 수행하였으며, 격실압력이 이웃격실로 전이되거나 보일링이 발생되는 경우에는 실험을 중단하였고, 비례제어밸브값을 수정하여 초기 압력을 다시 설정하였다. 또한 실험중간에 비례제어밸브를 미세하게 제어할 수 있도록 프로그램화 하였으며 PC에서 실시간으로 제어하여 기울기의 변화를 살펴가면서 기울기가 0.25 이하가 나올 때까지 제어하였다. 계측은 격실 내 압력 및 모형석션버켓의 최상단에 변위계를 설치하여 변위를 측정하였다. 사용된 지반은 모래이고 Kim et al. (2017)에서 수행한 실험과 동일한 모래를 사용하였으며 내부마찰각은 39.1°이었으며 상대밀도는 59%이었다. 모래지반조성은 강사기를 사용하였으며, 토조 하부에 관을 매설하여 물을 주입할 수 있도록 하였으며 지반조성 후 포화 시 지반의 교란이 최소가 되도록 하였다. 본 연구에서는 연구목적이 Kim et al. (2017)이 수행한 실험과의 연계 및 내부격실을 이용하여 기울기 제어 가능성을 판단하기 위한 것이기 때문에, 모래지반만을 대상으로 연구를 수행하였다. 각 격실 상부에는 부압용라인과 정압용라인, 초기 압입 시 발생되는 내압을 제거하기 위한 밸브가 같이 부착되어 있다. Kim et al. (2017)에서는 모형석션버켓 기초의 평형을 맞춘 상태로 기울기 제어 실험을 실시하였으나, 본 연구에서는 초기에 정해진 방위각 및 기울기를 확보하고자, 각 격실에 압력을 제어하면서 최종적으로는 수동으로 방위각 및 기울기를 조정하였다. 격실 내 모래가 다 차있는 공용 중 기울기 모사실험을 모사하기 위해서는 하나 또는 두 개의 격실에 다른 격실보다 큰 부압을 부여하여 보일링이 발생토록 유도하였다. 부압발생에 따른 추가적인 변위발생이 없는지를 상부에 설치된 레이저변위계의 수치를 보면서 초기 모형석션버켓 기초설치를 완료 하였다.

    3. 실험결과 및 토의

    실험결과를 제시한 그래프에서 측정된 격실내부 수압은 초기값을 0으로 설정하고 압력이 부여된 상태에 대한 상대 압력을 도시하였다. 경사계는 토조를 상부에서 바라볼 때 오른쪽이 X축으로 앞쪽을 Y축으로 정하였으며 방위각은 X축을 기준으로 반시계방향으로 정하였다. 경사계로 얻은 경사각은 실험 전 기초를 5°(±0.1° 이내)가 되도록 기울여 설정하였으며, 격실1에 설치된 상대압력 값은 P1으로 나머지 격실 2와 3의 상대압력은 P2와 P3으로 각각 표시하였다. 각 격실은 X축을 방위각 0°로 하여 방위각 120°까지가 격실 1, 그 다음 240°까지가 격실 2, 나머지 360°까지를 격실 3으로 하였다. 실험결과 그래프에 격실별 위치를 나타내는 모형석션버켓 기초의 평면도를 삽입하였다. 평면도에서 작은 점은 실험을 시작하기 전의 모형석션기초의 기울어진 위치이다. 둥근 원은 모형석션기초의 기울어진 경사각 5°를 뜻한다.

    3.1 시공단계 기울기 제어 모사실험

    3.1.1 2격실에 부압 적용한 기울기 제어 : Case 1

    Case 1 실험은 Fig. 1(c)에서와 같이 3개의 격실 중 격실 2 및 3의 2개 격실에 부압을 작용시켜 모형 기초의 기울기를 보정하는 1단계 및 현 기울기 위치가 X축을 기준으로 방위각 0°에 이르면 2번 격실에 부압을 작용시켜 기울기가 0.25° 이하가 되도록 하는 2단계 실험이다. 격실내부의 수압변화와 모형석션버켓 기초의 경사각변화는 Fig. 4와 같다. Fig. 4에서 보는 바와 같이, 부압을 가한 격실에서 측정된 압력 P2 및 P3이 낮아졌으며, 아무런 압력을 가하지 않은 격실 1에서 측정된 압력 P1도 따라서 낮아 졌으나 그 값은 작았으며 보일링도 발생하지 않았다. 방위각이 0°에 가까워지면 비례제어밸브 열림 정도를 작게 하면서 격실 3 펌프를 정지시켰다. 그리고 격실 2에 연결된 펌프의 압력을 낮추기 위해 연결된 비례제어밸브의 열림 정도를 작게 조종하였으며 최종적으로 경사각은 0.25° 이하가 유지되어 기울기가 조정됨을 확인 하였다.

    Fig. 4

    Variations in Pressures of Internal Cells and Inclined Angle for Case 1

    3.1.2 1격실에 부압 적용한 기울기 제어 : Case 2

    Fig. 5는 실험결과 Case 2의 격실 내 압력변화와 경사각을 같이 도시한 그림이다. 2격실 부압 적용 조건인 Case 1과 마찬가지로 부압에 의해 경사각 변화가 발생하는 것을 확인하였으며 2개 격실에 부압이 적용된 Case 1보다 기울기보정시간이 길었다. Case 1과 마찬가지로 나머지 격실에 부압이 발생하였으나 값은 크지 않았다. Case 1과 마찬가지로 경로마다 비례제어밸브도 제어하였으며 최종적으로는 펌프를 정지시켰다. Case 2에서도 경사각 0.25° 이하로 제어가 가능함을 확인하였다.

    Fig. 5

    Variations in Pressures of Internal Cells and Inclined Angle for Case 2

    3.2 시공완료 후 해상풍력 발전기 운용단계 모사실험

    3.2.1 부압2격실 및 정압1격실에 적용한 기울기 제어 : Case 3

    Case 3의 실험결과는 Fig. 6과 같다. Case 3에서는 격실 1이 모래로 차있기 때문에 격실내 부압 제어만으로는 기울기 제어각도가 제한된다. Kim et al. (2017)에 의하면 부압에 의해서는 0.25°의 기울기 보정이 가능하였다. 따라서 격실 안에 모래로 차있는 격실에 정압을 부여하여 격실 내 상부판과 모래지반상부와의 공간을 확보하면서 기울기를 제어하였다. 또한 반대편에 부압을 작용시켜 기울기가 빠르게 보정되도록 하였다. Case 3의 경우도 경사각 5°에 대한 기울기 제어가 가능함을 확인하였다.

    Fig. 6

    Variations in Pressures of Internal Cells and Inclined Angle of Case 3

    3.2.2 부압1격실 및 정압2격실에 적용한 기울기 제어 : Case 4

    시공완료 후 조건에 따라 사전에 격실 2 및 격실 3에 모래가 차도록 부압을 발생시켜둔 상태로 부압만으로는 기울기 제어가 안되기 때문에 격실 2 및 격실 3에 정압을 발생시키고 반대편 격실 1에는 부압을 부여하였다. Fig. 7 결과에 의하면 Case 3보다는 Case 4에서 기울기 보정시간이 단축되었는데, Case 3에서는 정압부여 격실이 1개 인데 비하여 Case 4에서는 정압부여 격실이 2개이기 때문으로 사료된다. Case 4에서도 기울기 0.25°로 달성 가능함을 확인하였다.

    Fig. 7

    Variations in Pressures of Internal Cells and Inclined Angle for Case 4

    3.3 실험케이스별 모형석션버켓 기초의 최종 경사각과 도달시간

    Table 2는 실험 중 경사각을 정리하였다. 시공 중 및 운용 중에 대한 4개의 실험들에서 설정된 초기 기울기가 5° 인 경우에 최종기울기가 0.25° 이하로의 기울기 보정이 가능함을 확인하였다. 또한, 방위각과 격실배치에 상관없이 임의각도로 기울어져도 격실에 부압과 정압을 부여하면 기울기 제어가 가능함을 확인 하였다. 운용중인 경우는 부압만으로 기울기 제어가 곤란함을 이전 실험연구에서 확인하였는바 이번 연구에서는 격실에 정압을 부여함으로서 기울기 제어가 가능함을 확인하였다.

    Table 2

    Final Results of Tilting Control

    4. 결 론

    단일형 석션버켓 기초를 사용하는 해상풍력 발전기의 하부기초에 대하여 3개의 내부격실을 적용한 형식으로 임의 방향의 기울기 제어가 가능함을 확인하는 모형실험을 수행하였다. 각 격실에는 부압용 및 정압용 펌프를 각기 연결하였다. 또한 각 펌프에 비례제어밸브를 추가하여 압력을 제어하였다. 모래지반에서 원형(prototype) 구조물의 1:100 크기로 된 모형석션버켓을 이용한 4개의 실험결과로 부터 다음과 같은 결론을 얻었다.

    • 1. 내부격실 내 여유 공간이 있는 시공단계 중을 모사한 단일형 석션버켓 모형실험에서 초기 설정한 5°의 기울기 제어가 가능하였다. 단일형 석션버켓 기초에 3개의 내부격실을 둠으로서 격실내부압력변화로 부터 기울기 제어가 가능한 것을 확인하였다.
    • 2. 격실 내 상판이 지표면에 맞닿은 조건이 되는 경우로 가정한 운용단계실험에서 정압을 부여하여 내부에 공간을 확보하면서 이웃격실에 부압을 부여하면 기 설정된 5°의 기울기 제어가 가능함을 확인하였다. 3개 격실 모두에 여유 공간이 없는 경우도 기울기 제어가 가능할 것으로 사료되나 내부격실 모두에 정압을 부여하면 풍력발전기전체가 상승하게 되어 이에 대해서는 세심한 기울기 제어가 필요할 것으로 사료된다.
    • 3. 이전 연구에서 펌프압력을 제어하기 어려웠던 것에 비하여 본 연구에서는 비례제어밸브를 사용하여 압력을 기존실험에서보다 낮게 제어하여 격실내부의 압력이 이웃격실로 새어나가는 것을 방지 할 수 있었으며 이를 통하여 2단계 경로제어가 가능하였다. 다만, 동일한 압력제어가 매 실험마다 구현되지 않는 문제가 있었으며, 이를 극복하기 위해서는 모형축척을 보다 크게 할 필요가 있다고 사료된다.
    • 4. 해상풍력 발전기 기초에 단일형 석션버켓 기초가 적용되는 경우 시공단계에서 펌프속도를 제어하는 장치가 각 펌프별로 필요할 것으로 판단된다. 또한 발생된 압력을 알기 위해서는 설치단계별 격실 내 압력을 측정하는 것도 중요하다. 운용 시에는 일정깊이에서 유사한 압력만 제어하면 가능하기 때문에 상대적으로 간단한 제어방식을 사용하는 것도 가능할 것으로 사료된다. 다만, 실험결과와 같이 기울기 보정각이 큰 경우에는 격실 내 정압력도 부여해야 하는 문제가 있기 때문에 격실 내 공간확보를 위한 부양높이를 기울기 제어가 가능한 범위내로 제한할 필요가 있다.
    • 5. 단일형 석션버켓기초는 해상풍력단지 건설시 및 운용시 수직도의 유지가 중요하며, 이 경우 동일한 알고리즘을 가지는 수직도제어방법의 개발이 필요하다고 사료된다. 따라서 이를 자동화하기 위한 알고리즘의 개발이 선행되어야 할 것으로 판단된다. 본 연구에서는 기 개발된 알고리즘이 구현되는지를 실험적으로 규명하였다. 본 연구에서는 2단계 경로를 가지는 방법을 제안하였으나 정밀한 기울기 제어가 가능한 경우에 단일경로로 제어하는 방법도 가능할 것으로 사료된다.
    • 6. 본 연구에서는 격실매입깊이에 따른 상한 및 하한 압력을 결정하고 이에 맞는 압력을 부여하는 실험까지는 수행하지 못하였으며 향 후 보다 정밀한 자세제어기법 개발을 위해서는 상하한 압력도표를 적용한 알고리즘의 개발이 필요하다고 사료된다.
    Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation

    Understanding dry-out mechanism in rod bundles of boiling water reactor

    끓는 물 원자로 봉 다발의 건조 메커니즘 이해

    Liril D.SilviaDinesh K.ChandrakercSumanaGhoshaArup KDasb
    aDepartment of Chemical Engineering, Indian Institute of Technology, Roorkee, India
    bDepartment of Mechanical Engineering, Indian Institute of Technology, Roorkee, India
    cReactor Engineering Division, Bhabha Atomic Research Centre, Mumbai, India

    Abstract

    Present work reports numerical understanding of interfacial dynamics during co-flow of vapor and liquid phases of water inside a typical Boiling Water Reactor (BWR), consisting of a nuclear fuel rod bundle assembly of 7 pins in a circular array. Two representative spacings between rods in a circular array are used to carry out the simulation. In literature, flow boiling in a nuclear reactor is dealt with mechanistic models or averaged equations. Hence, in the present study using the Volume of Fluid (VOF) based multiphase model, a detailed numerical understanding of breaking and making in interfaces during flow boiling in BWR is targeted. Our work will portray near realistic vapor bubble and liquid flow dynamics in rod bundle scenario. Constant wall heat flux for fuel rod and uniform velocity of the liquid at the inlet patch is applied as a boundary condition. The saturation properties of water are taken at 30 bar pressure. Flow boiling stages involving bubble nucleation, growth, merging, local dry-out, rewetting with liquid patches, and complete dry-out are illustrated. The dry-out phenomenon with no liquid presence is numerically observed with phase fraction contours at various axial cut-sections. The quantification of the liquid phase fraction at different axial planes is plotted over time, emphasizing the progressive dry-out mechanism. A comparison of liquid-vapor distribution for inner and outer rods reveals that the inner rod’s dry-out occurs sooner than that of the outer rod. The heat transfer coefficient to identify the heat dissipation capacity of each case is also reported.

    현재 작업은 원형 배열에 있는 7개의 핀으로 구성된 핵연료봉 다발 어셈블리로 구성된 일반적인 끓는 물 원자로(BWR) 내부의 물의 증기 및 액체상의 동시 흐름 동안 계면 역학에 대한 수치적 이해를 보고합니다.

    원형 배열의 막대 사이에 두 개의 대표적인 간격이 시뮬레이션을 수행하는 데 사용됩니다. 문헌에서 원자로의 유동 비등은 기계론적 모델 또는 평균 방정식으로 처리됩니다.

    따라서 VOF(Volume of Fluid) 기반 다상 모델을 사용하는 본 연구에서는 BWR에서 유동 비등 동안 계면의 파괴 및 생성에 대한 자세한 수치적 이해를 목표로 합니다.

    우리의 작업은 막대 번들 시나리오에서 거의 사실적인 증기 기포 및 액체 흐름 역학을 묘사합니다. 연료봉에 대한 일정한 벽 열유속과 입구 패치에서 액체의 균일한 속도가 경계 조건으로 적용됩니다. 물의 포화 특성은 30bar 압력에서 취합니다.

    기포 핵 생성, 성장, 병합, 국소 건조, 액체 패치로 재습윤 및 완전한 건조를 포함하는 유동 비등 단계가 설명됩니다. 액체가 존재하지 않는 건조 현상은 다양한 축 단면에서 위상 분율 윤곽으로 수치적으로 관찰됩니다.

    다른 축 평면에서 액상 분율의 정량화는 점진적인 건조 메커니즘을 강조하면서 시간이 지남에 따라 표시됩니다. 내부 막대와 외부 막대의 액-증기 분포를 비교하면 내부 막대의 건조가 외부 막대보다 더 빨리 발생함을 알 수 있습니다. 각 경우의 방열 용량을 식별하기 위한 열 전달 계수도 보고됩니다.

    Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation
    Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation
    Fig. 2. (a-c) dimensions and mesh configuration for G = 6 mm; (d-f) dimensions and mesh configuration for G = 0.6 mm
    Fig. 2. (a-c) dimensions and mesh configuration for G = 6 mm; (d-f) dimensions and mesh configuration for G = 0.6 mm
    Fig. 3. Simulating the effect of spacer (a) Spacer configuration around rod bundle (b) Mesh structure in spacer zone (c) Distribution of vapor bubbles in a rod bundle with spacer (d) Liquid phase fraction comparison for geometry with and without spacer (e,f,g) Wall temperature comparison for geometry with and without spacer; WS: With Spacer, WOS: Without Spacer; Temperature in the y-axis is in (f) and (g) is same as (e).
    Fig. 3. Simulating the effect of spacer (a) Spacer configuration around rod bundle (b) Mesh structure in spacer zone (c) Distribution of vapor bubbles in a rod bundle with spacer (d) Liquid phase fraction comparison for geometry with and without spacer (e,f,g) Wall temperature comparison for geometry with and without spacer; WS: With Spacer, WOS: Without Spacer; Temperature in the y-axis is in (f) and (g) is same as (e).
    Fig. 4. Validation of the present numerical model with crossflow boiling over a heated cylindrical rod [40]
    Fig. 4. Validation of the present numerical model with crossflow boiling over a heated cylindrical rod [40]
    Fig. 5. Grid-Independent study in terms of vapor volume in 1/4th of computational domain
    Fig. 5. Grid-Independent study in terms of vapor volume in 1/4th of computational domain
    Fig. 6. Interface contour for G = 6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; they are showing nucleation, growth, merging, and pseudo-steady-state condition.
    Fig. 6. Interface contour for G = 6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; they are showing nucleation, growth, merging, and pseudo-steady-state condition.
    Fig. 7. Interface contours for G = 0.6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; It shows dry-out at pseudo-steady-state near the exit
    Fig. 7. Interface contours for G = 0.6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; It shows dry-out at pseudo-steady-state near the exit
    Fig. 8. Vapor-liquid distribution across various distant cross-sections (Black color indicates liquid; Gray color indicates vapor); Magnification factor: 1 × (for a and b), 1.5 × (for c and d)
    Fig. 8. Vapor-liquid distribution across various distant cross-sections (Black color indicates liquid; Gray color indicates vapor); Magnification factor: 1 × (for a and b), 1.5 × (for c and d)
    Fig. 21. Two-phase flow mixture velocity (u¯z); for G = 6 mm, r = 5 means location at inner heated wall and r = 25 means location at outer adiabatic wall; for G = 0.66 mm, r = 5 means location at inner heated wall and r = 16.6 mm means location at outer adiabatic wall.
    Fig. 21. Two-phase flow mixture velocity (u¯z); for G = 6 mm, r = 5 means location at inner heated wall and r = 25 means location at outer adiabatic wall; for G = 0.66 mm, r = 5 means location at inner heated wall and r = 16.6 mm means location at outer adiabatic wall.

    References

    [1] J. Würtz, An Experimental and Theoretical Investigation of Annular Steam-Water Flow in Tubes and Annuli at 30 to 90 Bar, Risø National Laboratory,
    Roskilde, 1978.
    [2] W. Tian, A. Myint, Z. Li, S. Qiu, G.H. Su, D. Jia, Experimental study on dryout point in vertical narrow annulus under low flow conditions, in: International Conference on Nuclear Engineering, 4689, 2004, pp. 643–648. Jan
    1Vol.
    [3] K.M. Becker, C.H. Ling, S. Hedberg, G. Strand, An experimental investigation of
    post dryout heat transfer, R. Inst. Technol. (1983).
    [4] K.M. Becker, A Burnout Correlation for Flow of Boiling Water in Vertical Rod
    Bundles, AB Atomenergi, 1967.
    [5] Jr J.R. Barbosa, G.F. Hewitt, S.M. Richardson, High-speed visualisation of nucleate boiling in vertical annular flow, Int. J. Heat Mass Transf. 46 (26) (2003)
    5153–5160 1, doi:10.1016/S0017-9310(03)00255-2.
    [6] Y. Mizutani, A. Tomiyama, S. Hosokawa, A. Sou, Y. Kudo, K. Mishima, Twophase flow patterns in a four by four rod bundle, J. Nucl. Sci. Technol. 44 (6)
    (2007) 894–901 1, doi:10.1080/18811248.2007.9711327.
    [7] S.S. Paranjape, Two-Phase Flow Interfacial Structures in a Rod Bundle Geometry, Purdue University, 2009.
    [8] D. Lavicka, J. Polansky, Model of the cooling of a nuclear reactor fuel rod, Multiph. Sci. Technol. 25 (2-4) (2013), doi:10.1615/MultScienTechn.v25.i2-4.90.
    [9] M. Thurgood, J. Kelly, T. Guidotti, R. Kohrt, K. Crowell, Tech. rep., Pacific Northwest National Laboratory, 1983.
    [10] S. Sugawara, Droplet deposition and entrainment modeling based on the
    three-fluid model, Nucl. Eng. Des. 122 (1-3) (1990) 67–84, doi:10.1016/
    0029-5493(90)90197-6.
    [11] C. Adamsson, J.M. Le Corre, Modeling and validation of a mechanistic tool
    (MEFISTO) for the prediction of critical power in BWR fuel assemblies, Nucl.
    Eng. Des. 241 (8) (2011) 2843–2858, doi:10.1016/j.nucengdes.2011.01.033.
    [12] S. Talebi, H. Kazeminejad, A mathematical approach to predict dryout in a rod
    bundle, Nucl. Eng. Des. 249 (2012) 348–356, doi:10.1016/j.nucengdes.2012.04.
    016.
    [13] H. Anglart, O. Nylund, N. Kurul, M.Z. Podowski, CFD prediction of flow and
    phase distribution in fuel assemblies with spacers, Nucl. Eng. Des. 177 (1-3)
    (1997) 215–228, doi:10.1016/S0029-5493(97)00195-7.
    [14] H. Li, H. Anglart, CFD model of diabatic annular two-phase flow using the
    Eulerian–Lagrangian approach, Ann. Nucl. Energy 77 (2015) 415–424, doi:10.
    1016/j.anucene.2014.12.002.
    [15] G. Sorokin, A. Sorokin, Experimental and numerical investigation of liquid metal boiling in fuel subassemblies under natural circulation conditions, Prog. Nucl. Energy 47 (1-4) (2005) 656–663, doi:10.1016/j.pnucene.2005.
    05.069.
    [16] W.D. Pointer, A. Tentner, T. Sofu, D. Weber, S. Lo, A. Splawski, Eulerian
    two-phase computational fluid dynamics for boiling water reactor core analysis, Joint International Topical Meeting on Mathematics and Computation and
    Supercomputing in Nuclear Applications (M and C± SNA), 2007.
    [17] K. Podila, Y. Rao, CFD modelling of supercritical water flow and heat transfer
    in a 2 × 2 fuel rod bundle, Nucl. Eng. Des. 301 (2016) 279–289, doi:10.1016/j.
    nucengdes.2016.03.019.
    [18] H. Pothukuchi, S. Kelm, B.S. Patnaik, B.V. Prasad, H.J. Allelein, Numerical investigation of subcooled flow boiling in an annulus under the influence of eccentricity, Appl. Therm. Eng. 129 (2018) 1604–1617, doi:10.1016/j.applthermaleng.
    2017.10.105.
    [19] H. Pothukuchi, S. Kelm, B.S. Patnaik, B.V. Prasad, H.J. Allelein, CFD modeling of
    critical heat flux in flow boiling: validation and assessment of closure models,
    Appl. Therm. Eng. 150 (2019) 651–665, doi:10.1016/j.applthermaleng.2019.01.
    030.
    [20] W. Fan, H. Li, H. Anglart, A study of rewetting and conjugate heat transfer
    influence on dryout and post-dryout phenomena with a multi-domain coupled CFD approach, Int. J. Heat Mass Transf. 163 (2020) 120503, doi:10.1016/j.
    ijheatmasstransfer.2020.120503.
    [21] R. Zhang, T. Cong, G. Su, J. Wang, S. Qiu, Investigation on the critical heat
    flux in typical 5 by 5 rod bundle at conditions prototypical of PWR based
    on CFD methodology, Appl. Therm. Eng. 179 (2020) 115582, doi:10.1016/j.
    applthermaleng.2020.115582.

    [22] L.D. Silvi, A. Saha, D.K. Chandraker, S. Ghosh, A.K. Das, Numerical analysis of
    pre-dryout sequences through the route of interfacial evolution in annular gasliquid two-phase flow with phase change, Chem. Eng. Sci. 212 (2020) 115356,
    doi:10.1016/j.ces.2019.115356.
    [23] L.D. Silvi, D.K. Chandraker, S. Ghosh, A.K. Das, On-route to dryout through sequential interfacial dynamics in annular flow boiling around temperature and
    heat flux controlled heater rod, Chem. Eng. Sci. 229 (2021) 116014, doi:10.1016/
    j.ces.2020.116014.
    [24] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface
    tension, J. Comput. Phys. 100 (2) (1992) 335–354, doi:10.1016/0021-9991(92)
    90240-Y.
    [25] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging
    and fragmentation in multiphase flows with SURFER, J. Comput. Phys. 113 (1)
    (1994) 134–147, doi:10.1006/jcph.1994.1123.
    [26] I. Tanasawa, Advances in condensation heat transfer, Ad. Heat Transf. 21 (1991)
    55–139 Vol, doi:10.1016/S0065-2717(08)70334-4.
    [27] V.H. Del Valle, D.B. Kenning, Subcooled flow boiling at high heat flux, Int.
    J. Heat Mass Transf. 28 (10) (1985) 1907–1920, doi:10.1016/0017-9310(85)
    90213-3.
    [28] B. Matzner, G.M. Latter, Reduced pressure drop space for boiling water reactor
    fuel bundles, US Patent US5375154A, (1993)
    [29] C. Unal, O. Badr, K. Tuzla, J.C. Chen, S. Neti, Pressure drop at rod-bundle spacers
    in the post-CHF dispersed flow regime, Int. J. Multiphase Flow 20 (3) (1994)
    515–522, doi:10.1016/0301-9322(94)90025-6.
    [30] D.K. Chandraker, A.K. Nayak, V.P. Krishnan, Effect of spacer on the dryout of
    BWR fuel rod assemblies, Nucl. Eng. Des. 294 (2015), doi:10.1016/j.nucengdes.
    2015.09.004.
    [31] S.K Verma, S.L. Sinha, D.K. Chandraker, A comprehensive review of the spacer
    effect on performance of nuclear fuel bundle using computational fluid dynamics methodology, Mater. Today: Proc. 4 (2017) 100030–110034, doi:10.
    1016/j.matpr.2017.06.315.
    [32] S.K Verma, S.L. Sinha, D.K. Chandraker, Experimental investigation on the effect
    of space on the turbulent mixing in vertical pressure tube-type boiling water
    reactor, Nucl. Sci. Eng. 190 (2) (2018), doi:10.1080/00295639.2017.1413874.
    [33] T. Zhang, Y. Liu, Numerical investigation of flow and heat transfer characteristics of subcooled boiling in a single rod channel with/without spacer grid,
    Case Stud. Therm. Eng. 20 (2020) 100644, doi:10.1016/j.csite.2020.100644.
    [34] K.M. Becker, G. Hernborg, M. Bode, O. Eriksson, Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters, AB Atomenergi
    (1965).
    [35] A. Saha, A.K. Das, Numerical study of boiling around wires and influence of
    active or passive neighbours on vapour film dynamics, Int. J. Heat Mass Transf.
    130 (2019) 440–454, doi:10.1016/j.ijheatmasstransfer.2018.10.117.
    [36] M. Reimann, U. Grigull, Heat transfer with free convection and film boiling in
    the critical area of water and carbon dioxide, Heat Mass Transf. 8 (1975) 229–
    239, doi:10.1007/BF01002151.
    [37] M.S. Plesset, S.A. Zwick, The growth of vapor bubbles in superheated liquids, J.
    Appl. Phys. 25 (4) (1954) 493–500, doi:10.1063/1.1721668.
    [38] N. Samkhaniani, M.R. Ansari, Numerical simulation of superheated vapor bubble rising in stagnant liquid, Heat Mass Transf. 53 (9) (2017) 2885–2899,
    doi:10.1007/S00231-017-2031-6.
    [39] N. Samkhaniani, M.R. Ansari, The evaluation of the diffuse interface method
    for phase change simulations using OpenFOAM, Heat Transf. Asian Res. 46 (8)
    (2017) 1173–1203, doi:10.1002/htj.21268.
    [40] P. Goel, A.K. Nayak, M.K. Das, J.B. Joshi, Bubble departure characteristics in a
    horizontal tube bundle under cross flow conditions, Int. J. Multiph. Flow 100
    (2018) 143–154, doi:10.1016/j.ijmultiphaseflow.2017.12.013.
    [41] K.M. Becker, J. Engstorm, B.Scholin Nylund, B. Sodequist, Analysis of the dryout
    incident in the Oskarshamn 2 boiling water reactor, Int. J. Multiph. Flow 16 (6)
    (1990) 959–974, doi:10.1016/0301-9322(90)90101-N.
    [42] H.G. Weller, A New Approach to VOF-Based Interface Capturing Methods
    for Incompressible and Compressible Flow, A New Approach to VOF-Based
    Interface Capturing Methods for Incompressible and Compressible Flow, 4,
    OpenCFD Ltd., 2008 Report TR/HGW.
    [43] G. Boeing, Visual analysis of nonlinear dynamical systems: chaos, fractals, selfsimilarity and the limits of prediction, Systems 4 (4) (2016) 37, doi:10.3390/
    systems4040037.

    Fig. 8. Pressure distribution during the infiltration of preform with the 50 ¯m particles and 20 % starches: (a) 25 % filled, (b) 57 % filled, and (c) 99 % filled.

    Experimental study and numerical simulation of infiltration of AlSi12 alloys into Si porous preforms with micro-computed tomography inspection characteristics

    마이크로 컴퓨터 단층 촬영 검사 특성을 가진 Si 다공성 프리폼에 AlSi12 합금의 침투에 대한 실험적 연구 및 수치 시뮬레이션

    Ruizhe LIU1 and Haidong ZHAO1
    1National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology,
    Guangzhou 510640, China

    Abstract

    전분 함량(10, 20 및 30%)과 입자 크기(20, 50 및 90 m)가 다른 실리콘 입자 예비 성형체는 압축 성형 및 열처리를 통해 제작되었습니다. 프리폼의 기공 특성은 고해상도(³1 m) 3차원(3D) X선 마이크로 컴퓨터 단층 촬영(V-CT)으로 검사되었습니다. AlSi12 합금의 프리폼으로의 침투는 진공 보조 압력 침투 장치에서 800 °C 및 400 kPa의 조건에서 서로 다른 압력 적용 시간(3, 8 및 15초)으로 수행되었습니다. 고해상도(³500 nm) 수직 주사 백색광 간섭 프로파일로미터를 사용하여 복합 재료의 전면을 감지했습니다. Navier-Stokes 방정식을 기반으로 하는 ¯-CT 검사에서 실제 기공 형상을 고려하여 침투를 미시적으로 시뮬레이션했습니다. 그 결과 전분 함량과 입자크기가 증가할수록 복합재료의 표면적이 증가하는 것으로 나타났다. 전분 함량과 비교하여 입자 크기는 전면 표면적에 더 많은 영향을 미칩니다. 시뮬레이션에서 침투가 진행됨에 따라 액체 AlSi12의 압력이 감소했습니다. 복합재의 잔류 기공은 침투와 함께 증가했습니다. 실험 및 시뮬레이션 결과에 따르면 침투 방향을 따라 더 큰 압력 강하가 복합 재료의 더 많은 잔류 기공을 유도합니다.

    Silicon particle preforms with different starch contents (10, 20 and 30%) and particle sizes (20, 50 and 90 ¯m) were fabricated by compression mold forming and heat treatment. The pore characteristics of preforms were inspected with a high-resolution (³1 ¯m) three-dimensional (3D) X-ray micro-computed tomography (¯-CT). The infiltration of AlSi12 alloys into the preforms were carried out under the condition of 800 °C and 400 kPa with different pressure-applied times (3, 8 and 15 s) in a vacuum-assisted pressure infiltration apparatus. A highresolution (³500 nm) vertical scanning white light interfering profilometer was used to detect the front surfaces of composites. The infiltration was simulated at micro-scale by considering the actual pore geometry from the ¯- CT inspection based on the Navier-Stokes equation. The results demonstrated that as the starch content and particle size increased, the front surface area of composite increased. Compared with the starch content, the particle size has more influence on the front surface area. In the simulation, as the infiltration progressed, the pressure of liquid AlSi12 decreased. The residual pores of composites increased with infiltration. According to the experiment and simulation results, a larger pressure drop along the infiltration direction leads to more residual pores of composites.

    Fig. 1. Size distributions of Si particles.
    Fig. 1. Size distributions of Si particles.
    Fig. 2. Schematic of different locations of composites.
    Fig. 2. Schematic of different locations of composites.
    Fig. 3. Three-dimensional geometry with the reconstruction technology, enmeshment and infiltration parameters of Si preforms: (a) geometry, and (b) meshes and flow direction.
    Fig. 3. Three-dimensional geometry with the reconstruction technology, enmeshment and infiltration parameters of Si preforms: (a) geometry, and (b) meshes and flow direction.
    Fig. 4. Number-based frequencies of effective pore radius and throat radius: (a) effective pore radius of preforms with the 50 ¯m particles, (b) effective throat radius of preforms with the 50 ¯m particles, (c) effective pore radius of preforms with the 20 % starches, and (d) effective throat radius of preforms with the 20 % starches.
    Fig. 4. Number-based frequencies of effective pore radius and throat radius: (a) effective pore radius of preforms with the 50 ¯m particles, (b) effective throat radius of preforms with the 50 ¯m particles, (c) effective pore radius of preforms with the 20 % starches, and (d) effective throat radius of preforms with the 20 % starches.
    Fig. 5. 3D topological morphologies of front surfaces of composites: (a) 50 ¯m-10 %, (b) 50 ¯m-20 %, (c) 50 ¯m-30 %, (d) 20 ¯m-20 %, and (e) 90 ¯m-20 %.
    Fig. 5. 3D topological morphologies of front surfaces of composites: (a) 50 ¯m-10 %, (b) 50 ¯m-20 %, (c) 50 ¯m-30 %, (d) 20 ¯m-20 %, and (e) 90 ¯m-20 %.
    Fig. 6. Schematic of capillary tube.
    Fig. 6. Schematic of capillary tube.
    Fig. 8. Pressure distribution during the infiltration of preform with the 50 ¯m particles and 20 % starches: (a) 25 % filled, (b) 57 % filled, and (c) 99 % filled.
    Fig. 8. Pressure distribution during the infiltration of preform with the 50 ¯m particles and 20 % starches: (a) 25 % filled, (b) 57 % filled, and (c) 99 % filled.
    Fig. 9. Pressure distributions of liquid AlSi12 during the infiltration of preforms: (a) different fill fractions, (b) different starch contents, and (c) different particle sizes.
    Fig. 9. Pressure distributions of liquid AlSi12 during the infiltration of preforms: (a) different fill fractions, (b) different starch contents, and (c) different particle sizes.
    Fig. 10. Metallographs of composites: (a) different locations of composite with the 20 ¯m particles and 20 % starches, and (b) different locations of composite with the 90 ¯m particles and 20 % starches.
    Fig. 10. Metallographs of composites: (a) different locations of composite with the 20 ¯m particles and 20 % starches, and (b) different locations of composite with the 90 ¯m particles and 20 % starches.
    Fig. 11. Area fractions of residual pores of composites: (a) 50 ¯m (different starch contents), and (b) 20 % (different particle sizes).
    Fig. 11. Area fractions of residual pores of composites: (a) 50 ¯m (different starch contents), and (b) 20 % (different particle sizes).

    References

    1) V. G. Resmi, K. M. Sree Manu, V. Lakshmi, M.
    Brahmakumar, T. P. D. Rajan, C. Pavithran and B. C.
    Pai, J. Porous Mat., 22, 1445­1454 (2015).
    2) C. García-Cordovilla, E. Louis and J. Narciso, Acta
    Mater., 47, 4461­4479 (1999).
    3) D. B. Miracle, Compos. Sci. Technol., 65, 2526­2540
    (2005).
    4) J. M. Chiou and D. D. L. Chung, J. Mater. Sci., 28,
    1447­1470 (1993).
    5) Q. G. Zhang and M. Y. Gu, J. Compos. Mater., 40, 471­
    478 (2006).
    6) C. M. Lawrence Wu and G. W. Han, Compos. Part AAppl. S., 37, 1858­1862 (2006).
    7) X. Y. Cai, X. W. Yin, X. K. Ma, X. M. Fan, Y. Z. Cai,
    J. P. Li, L. F. Cheng and L. T. Zhang, Ceram. Int., 42,
    10144­10150 (2016).
    8) J. M. Molina, E. Piñero, J. Narciso, C. GarcíaCordovilla and E. Louis, Curr. Opin. Solid St. M., 9,
    202­210 (2005).
    9) A. Léger, L. Weber and A. Mortensen, Acta Mater., 91,
    57­69 (2015).
    10) Y. Q. Ma, L. H. Qi, W. G. Zheng, J. M. Zhou and L. Y.
    Ju, T. Nonferr. Metal. Soc., 23, 1915­1921 (2013).
    11) J. T. Tian, E. Piñero, J. Narciso and E. Louis, Scripta
    Mater., 53, 1483­1488 (2005).
    12) J. Narciso, A. Alonso, A. Pamies, C. García-Cordovilla
    and E. Louis, Metall. Mater. Trans. A, 26A, 983­990
    (1995).
    13) J. Roger, M. Avenel and L. Lapuyade, J. Eur. Ceram.
    Soc., 40, 1859­1868 (2020).
    14) J. Roger, M. Avenel and L. Lapuyade, J. Eur. Ceram.
    Soc., 40, 1869­1876 (2020).
    15) R. Scardovelli and S. Zaleski, Annu. Rev. Fluid Mech.,
    31, 567­603 (1999).
    16) H. D. Zhao, I. Ohnaka and J. D. Zhu, Appl. Math.
    Model., 32, 185­194 (2008).
    17) Y. He, A. E. Bayly, A. Hassanpour, F. Muller, K. Wu
    and D. M. Yang, Powder Technol., 338, 548­562
    (2018).
    18) K. D. Nikitin, K. M. Terekhov and Y. V. Vassilevski,
    Appl. Math. Lett., 86, 236­242 (2018).
    19) J. F. Xiao, X. Liu, Y. M. Luo, J. C. Cai and J. F. Xu,
    Colloid. Surface. A, 591, 124572 (2020).
    20) N. Birgle, R. Masson and L. Trenty, J. Comput. Phys.,
    368, 210­235 (2018).
    21) M. Chaaban, Y. Heider and B. Markert, Int. J. Heat
    Fluid Fl., 83, 108566 (2020).
    22) S. Zhang, M. J. Zhu, X. Zhao, D. G. Xiong, H. Wan,
    S. X. Bai and X. D. Wang, Compos. Part A-Appl. S., 90,
    71­81 (2016).
    23) J. Roger, L. Guesnet, A. Marchais and Y. Le Petitcorps,
    J. Alloy. Compd., 747, 484­494 (2018).
    24) Q. Wan, H. D. Zhao and C. Zou, ISIJ Int., 54, 511­515
    (2014).
    25) F. Liu, H. D. Zhao, R. S. Yang and F. Z. Sun, Mater.
    Today Commun., 19, 114­123 (2019).
    26) D. Roussel, A. Lichtner, D. Jauffrès, J. Villanova, R. K.
    Bordia and C. L. Martin, Scripta Mater., 113, 250­253
    (2016).
    27) M. Fukushima, T. Ohji, H. Hyuga, C. Matsunaga and Y.
    Yoshizawa, J. Mater. Res., 32, 3286­3293 (2017).
    28) M. Fukushima, H. Hyuga, C. Matsunaga and Y.
    Yoshizawa, J. Am. Ceram. Soc., 101, 3266­3270
    (2018).
    29) R. Z. Liu, H. D. Zhao, H. Long and B. Xie, Mater.
    Charact., 137, 370­378 (2017).
    30) B. Xie, H. D. Zhao, H. Long, J. L. Peng and R. Z. Liu,
    Ceram. Int., 45, 23924­23933 (2019).
    31) R. Z. Liu, H. D. Zhao and B. Xie, Transport Porous
    Med., 131, 1053­1063 (2020).
    32) Y. Li, H. W. Chen, F. Q. Wang, X. L. Xia and H. P. Tan,
    Infrared Phys. Techn., 113, 103646 (2021).
    33) P. Tahmasebi, M. Sahimi, A. H. Kohanpur and A.
    Valocchi, J. Petrol. Sci. Eng., 155, 21­33 (2017).
    34) B. Gharedaghloo, S. J. Berg and E. A. Sudicky, Adv.
    Water Resour., 143, 103681 (2020).
    35) A. Viswanath, M. V. Manu, S. Savithri and U. T. S.
    Pillai, J. Mater. Process. Tech., 244, 320­330 (2017).
    36) D. Silin and T. Patzek, Physica A, 371, 336­360 (2006).
    37) W. Hui, Y. S. Wang, D. Z. Ren and H. Jin, J. Petrol. Sci.
    Eng., 192, 107295 (2020).
    38) H. Nakae and H. Katoh, J. Jpn. I. Met. Mater., 63,
    1356­1362 (1999).

    Figure 3: 3D temperature contours and 2D melt pool cross-sections where the melt pool is stabilized at x=500 µm from the start of the laser initial location for cases where (a) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 12 µm, (b) absorptivity = 0.1, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (c) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (d) absorptivity = 0.45, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (e) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (f) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 18 µm.

    MULTI-PHYSICS NUMERICAL MODELLING OF 316L AUSTENITIC STAINLESS STEEL IN LASER POWDER BED FUSION PROCESS AT MESO-SCALE

    W.E. Alphonso1, M.Bayat1,*, M. Baier 2, S. Carmignato2, J.H. Hattel1
    1Department of Mechanical Engineering, Technical University of Denmark (DTU), Lyngby, Denmark
    2Department of Management and Engineering – University of Padova, Padova, Italy

    ABSTRACT

    L-PBF(Laser Powder Bed Fusion)는 레이저 열원을 사용하여 선택적으로 통합되는 분말 층으로 복잡한 3D 금속 부품을 만드는 금속 적층 제조(MAM) 기술입니다. 처리 영역은 수십 마이크로미터 정도이므로 L-PBF를 다중 규모 제조 공정으로 만듭니다.

    기체 기공의 형성 및 성장 및 용융되지 않은 분말 영역의 생성은 다중물리 모델에 의해 예측할 수 있습니다. 또한 이러한 모델을 사용하여 용융 풀 모양 및 크기, 온도 분포, 용융 풀 유체 흐름 및 입자 크기 및 형태와 같은 미세 구조 특성을 계산할 수 있습니다.

    이 작업에서는 용융, 응고, 유체 흐름, 표면 장력, 열 모세관, 증발 및 광선 추적을 통한 다중 반사를 포함하는 스테인리스 스틸 316-L에 대한 충실도 다중 물리학 중간 규모 수치 모델이 개발되었습니다. 완전한 실험 설계(DoE) 방법을 사용하는 통계 연구가 수행되었으며, 여기서 불확실한 재료 특성 및 공정 매개변수, 즉 흡수율, 반동 압력(기화) 및 레이저 빔 크기가 용융수지 모양 및 크기에 미치는 영향을 분석했습니다.

    또한 용융 풀 역학에 대한 위에서 언급한 불확실한 입력 매개변수의 중요성을 강조하기 위해 흡수율이 가장 큰 영향을 미치고 레이저 빔 크기가 그 뒤를 잇는 주요 효과 플롯이 생성되었습니다. 용융 풀 크기에 대한 반동 압력의 중요성은 흡수율에 따라 달라지는 용융 풀 부피와 함께 증가합니다.

    모델의 예측 정확도는 유사한 공정 매개변수로 생성된 단일 트랙 실험과 시뮬레이션의 용융 풀 모양 및 크기를 비교하여 검증됩니다.

    더욱이, 열 렌즈 효과는 레이저 빔 크기를 증가시켜 수치 모델에서 고려되었으며 나중에 결과적인 용융 풀 프로파일은 모델의 견고성을 보여주기 위한 실험과 비교되었습니다.

    Laser Powder Bed Fusion (L-PBF) is a Metal Additive Manufacturing (MAM) technology where a complex 3D metal part is built from powder layers, which are selectively consolidated using a laser heat source. The processing zone is in the order of a few tenths of micrometer, making L-PBF a multi-scale manufacturing process. The formation and growth of gas pores and the creation of un-melted powder zones can be predicted by multiphysics models. Also, with these models, the melt pool shape and size, temperature distribution, melt pool fluid flow and its microstructural features like grain size and morphology can be calculated. In this work, a high fidelity multi-physics meso-scale numerical model is developed for stainless steel 316-L which includes melting, solidification, fluid flow, surface tension, thermo-capillarity, evaporation and multiple reflection with ray-tracing. A statistical study using a full Design of Experiments (DoE) method was conducted, wherein the impact of uncertain material properties and process parameters namely absorptivity, recoil pressure (vaporization) and laser beam size on the melt pool shape and size was analysed. Furthermore, to emphasize on the significance of the above mentioned uncertain input parameters on the melt pool dynamics, a main effects plot was created which showed that absorptivity had the highest impact followed by laser beam size. The significance of recoil pressure on the melt pool size increases with melt pool volume which is dependent on absorptivity. The prediction accuracy of the model is validated by comparing the melt pool shape and size from the simulation with single track experiments that were produced with similar process parameters. Moreover, the effect of thermal lensing was considered in the numerical model by increasing the laser beam size and later on the resultant melt pool profile was compared with experiments to show the robustness of the model.

    Figure 1: a) Computational domain for single track L-PBF which includes a 200 μm thick substrate and 45 μm powder layer thickness b) 3D temperature contour plot after scanning a single track with melt pool contours at two locations along the scanning direction where the green region indicates the melted regions.
    Figure 1: a) Computational domain for single track L-PBF which includes a 200 μm thick substrate and 45 μm powder layer thickness b) 3D temperature contour plot after scanning a single track with melt pool contours at two locations along the scanning direction where the green region indicates the melted regions.
    Figure 2: Main effects plot of uncertain parameters: absorptivity, recoil pressure coefficient and laser beam radius on the melt pool dimensions (width and depth)
    Figure 2: Main effects plot of uncertain parameters: absorptivity, recoil pressure coefficient and laser beam radius on the melt pool dimensions (width and depth)
    Figure 3: 3D temperature contours and 2D melt pool cross-sections where the melt pool is stabilized at x=500 µm from the start of the laser initial location for cases where (a) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 12 µm, (b) absorptivity = 0.1, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (c) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (d) absorptivity = 0.45, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (e) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (f) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 18 µm.
    Figure 3: 3D temperature contours and 2D melt pool cross-sections where the melt pool is stabilized at x=500 µm from the start of the laser initial location for cases where (a) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 12 µm, (b) absorptivity = 0.1, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (c) absorptivity = 0.1, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (d) absorptivity = 0.45, Recoil pressure coefficient B = 1 and laser beam radius = 18 µm, (e) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 12 µm, (f) absorptivity = 0.45, Recoil pressure coefficient B = 20 and laser beam radius = 18 µm.
    Figure 4: Validation of Numerical model with Recoil pressure coefficient B= 20, absorptivity = 0.45 and a) laser beam radius = 15 µm b) laser beam radius = 20 µm
    Figure 4: Validation of Numerical model with Recoil pressure coefficient B= 20, absorptivity = 0.45 and a) laser beam radius = 15 µm b) laser beam radius = 20 µm

    CONCLUSION

    In this work, a high-fidelity multi-physics numerical model was developed for L-PBF using the FVM method in Flow-3D. The impact of uncertainty in the input parameters including absorptivity, recoil pressure and laser beam size on the melt pool is addressed using a DoE method. The DoE analysis shows that absorptivity has the highest impact on the melt pool. The recoil pressure and laser beam size only become significant once absorptivity is 0.45. Furthermore, the numerical model is validated by comparing the predicted melt pool shape and size with experiments conducted with similar process parameters wherein a high prediction accuracy is achieved by the model. In addition, the impact of thermal lensing on the melt pool dimensions by increasing the laser beam spot size is considered in the validated numerical model and the resultant melt pool is compared with experiments.

    REFERENCES

    [1] T. Bonhoff, M. Schniedenharn, J. Stollenwerk, P. Loosen, Experimental and theoretical analysis of thermooptical effects in protective window for selective laser melting, Proc. Int. Conf. Lasers Manuf. LiM. (2017)
    26–29. https://www.wlt.de/lim/Proceedings2017/Data/PDF/Contribution31_final.pdf.
    [2] L.R. Goossens, Y. Kinds, J.P. Kruth, B. van Hooreweder, On the influence of thermal lensing during selective
    laser melting, Solid Free. Fabr. 2018 Proc. 29th Annu. Int. Solid Free. Fabr. Symp. – An Addit. Manuf. Conf.
    SFF 2018. (2020) 2267–2274.
    [3] J. Shinjo, C. Panwisawas, Digital materials design by thermal-fluid science for multi-metal additive
    manufacturing, Acta Mater. 210 (2021) 116825. https://doi.org/10.1016/j.actamat.2021.116825.
    [4] Z. Zhang, Y. Huang, A. Rani Kasinathan, S. Imani Shahabad, U. Ali, Y. Mahmoodkhani, E. Toyserkani, 3-
    Dimensional heat transfer modeling for laser powder-bed fusion additive manufacturing with volumetric heat
    sources based on varied thermal conductivity and absorptivity, Opt. Laser Technol. 109 (2019) 297–312.
    https://doi.org/10.1016/j.optlastec.2018.08.012.
    [5] M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, J.H. Hattel, Keyholeinduced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and
    experimental validation, Addit. Manuf. 30 (2019) 100835. https://doi.org/10.1016/j.addma.2019.100835.
    [6] M. Bayat, S. Mohanty, J.H. Hattel, Multiphysics modelling of lack-of-fusion voids formation and evolution
    in IN718 made by multi-track/multi-layer L-PBF, Int. J. Heat Mass Transf. 139 (2019) 95–114.
    https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.003.
    [7] J. Metelkova, Y. Kinds, K. Kempen, C. de Formanoir, A. Witvrouw, B. Van Hooreweder, On the influence
    of laser defocusing in Selective Laser Melting of 316L, Addit. Manuf. 23 (2018) 161–169.
    https://doi.org/10.1016/j.addma.2018.08.006.

    Figure 2: Temperature contours and melt pool border lines at different times for the 50 % duty cycle case: (a) - (c) Δtcycle = 400 μs, (d) – (f) Δtcycle = 1000 μs and (g) – (i) Δtcycle = 3000 μs.

    MULTIPHYSICS SIMULATION OF THEMRAL AND FLUID DYNAMICS PHENOMENA DURING THE PULSED LASER POWDER BED FUSION PROCESS OF 316-L STEEL

    M. Bayat* , V. K. Nadimpalli, J. H. Hattel
    1Department of Mechanical Engineering, Technical University of Denmark (DTU), Produktionstorvet
    425, Kgs. 2800, Lyngby, Denmark

    ABSTRACT

    L-PBF(Laser Powder Bed Fusion)는 다양한 산업 분야에서 많은 관심을 받았으며, 주로 기존 제조 기술을 사용하여 만들 수 없었던 복잡한 토폴로지 최적화 구성 요소를 구현하는 잘 알려진 능력 덕분입니다. . 펄스 L-PBF(PL-PBF)에서 레이저의 시간적 프로파일은 주기 지속 시간과 듀티 주기 중 하나 또는 둘 다를 수정하여 변조할 수 있습니다. 따라서 레이저의 시간적 프로파일은 향후 적용을 위해 이 프로세스를 더 잘 제어할 수 있는 길을 열어주는 새로운 프로세스 매개변수로 간주될 수 있습니다. 따라서 이 작업에서 우리는 레이저의 시간적 프로파일을 변경하는 것이 PL-PBF 공정에서 용융 풀 조건과 트랙의 최종 모양 및 형상에 어떻게 영향을 미칠 수 있는지 조사하는 것을 목표로 합니다. 이와 관련하여 본 논문에서는 CFD(Computational Fluid Dynamics) 소프트웨어 패키지인 Flow-3D를 기반으로 하는 316-L 스테인리스강 PL-PBF 공정의 다중물리 수치 모델을 개발하고 이 모델을 사용하여 열과 유체를 시뮬레이션합니다. 다양한 펄스 모드에서 공정 과정 중 용융 풀 내부에서 발생하는 유동 조건. 따라서 고정된 레이저 듀티 사이클(50%)이 있는 레이저 주기 지속 시간이 용융 풀의 모양과 크기 및 최종 트랙 형태에 미치는 영향을 연구하기 위해 매개변수 연구가 수행됩니다. 더 긴 주기 기간에서 더 많은 재료가 더 큰 용융 풀 내에서 변위됨에 따라 용융 풀의 후류에 더 눈에 띄는 혹이 형성되며, 동시에 더 심각한 반동 압력을 받습니다. 또한 시뮬레이션에서 50% 듀티 사이클에서 1000μs에서 형성된 보다 대칭적인 용융 풀과 비교하여 400μs 사이클 주기에서 더 긴 용융 풀이 형성된다는 것이 관찰되었습니다. 풀 볼륨은 1000μs의 경우 더 큽니다. 매개변수 연구는 연속 트랙과 파손된 트랙 PL-PBF 사이의 경계를 설명하며, 여기서 연속 트랙은 항상 소량의 용융 재료를 유지함으로써 유지됩니다.

    English Abstract

    Laser Powder Bed Fusion (L-PBF) has attracted a lot of attention from various industrial sectors and mainly thanks to its well-proven well-known capacity of realizing complex topology-optimized components that have so far been impossible to make using conventional manufacturing techniques. In Pulsed L-PBF (PL-PBF), the laser’s temporal profile can be modulated via modifying either or both the cycle duration and the duty cycle. Thus, the laser’s temporal profile could be considered as a new process parameter that paves the way for a better control of this process for future applications. Therefore, in this work we aim to investigate how changing the laser’s temporal profile can affect the melt pool conditions and the final shape and geometry of a track in the PL-PBF process. In this respect, in this paper a multiphysics numerical model of the PL-PBF process of 316-L stainless steel is developed based on the computational fluid dynamics (CFD) software package Flow-3D and the model is used to simulate the heat and fluid flow conditions occurring inside the melt pool during the course of the process at different pulsing modes. Thus, a parametric study is carried out to study the influence of the laser’s cycle duration with a fixed laser duty cycle (50 %) on the shape and size of the melt pool and the final track morphology. It is noticed that at longer cycle periods, more noticeable humps form at the wake of the melt pool as more material is displaced within bigger melt pools, which are at the same time subjected to more significant recoil pressures. It is also observed in the simulations that at 50 % duty cycle, longer melt pools form at 400 μs cycle period compared to the more symmetrical melt pools formed at 1000 μs, primarily because of shorter laser off-times in the former, even though melt pool volume is bigger for the 1000 μs case. The parameteric study illustrates the boundary between a continuous track and a broken track PL-PBF wherein the continuous track is retained by always maintaining a small volume of molten material.

    Figure 1: Front and side views of the computational domain. Note that the region along z and from -100 μm to +50 μm is void.
    Figure 1: Front and side views of the computational domain. Note that the region along z and from -100 μm to +50 μm is void.
    Figure 2: Temperature contours and melt pool border lines at different times for the 50 % duty cycle case: (a) - (c) Δtcycle = 400 μs, (d) – (f) Δtcycle = 1000 μs and (g) – (i) Δtcycle = 3000 μs.
    Figure 2: Temperature contours and melt pool border lines at different times for the 50 % duty cycle case: (a) – (c) Δtcycle = 400 μs, (d) – (f) Δtcycle = 1000 μs and (g) – (i) Δtcycle = 3000 μs.
    Figure 3: Plot of melt pool volume versus time for four cases including continuous wave laser as well as 50 % duty cycle at 400 μs, 1000 μs and 3000 μs.
    Figure 3: Plot of melt pool volume versus time for four cases including continuous wave laser as well as 50 % duty cycle at 400 μs, 1000 μs and 3000 μs.

    CONCLUSIONS

    In this work a CFD model of the modulated PL-PBF process of stainless steel 316-L is developed in the commercial software package Flow-3D. The model involves physics such as solidification, melting, evaporation, convection, laser-material interaction, capillarity, Marangoni effect and the recoil pressure effect. In the current study, a parametric study is carried out to understand how the change in the cycle period duration affects the melt pool’s thermo-fluid conditions during the modulated PL-PBF process. It is observed that at the pulse mode with 50 % duty cycle and 400 μs cycle period, an overlapped chain of humps form at the wake of the melt pool and at a spatial frequency of occurrence of about 78 μm. Furthermore and as expected, it is noted that the melt pool volume, the size of the hump as well as the crater size at the end of the track, increase with increase in the cycle period duration, as more material is re-deposited at the back of the melt pool and that itself is caused by more pronounced recoil pressures. Moreover, it is noticed that due to the short off-time period of the laser in the 400 μs cycle period case, there is always an amount of liquid metal left from the previous cycle, at the time the new cycle starts. This is found to be the main reason why longer and elongated melt pools form at 400 μs cycle period, compared to the bigger, shorter and more symmetrical-like melt pools forming at the 1000 μs case. In this study PL-PBF single tracks including the broken track and the continuous track examples were studied to illustrate the boundary of this transition at a given laser scan parameter setting. At higher scan speeds, it is expected that the Plateau–Rayleigh instability will compete with the pulsing behavior to change the transition boundary between a broken and continuous track, which is suggested as future work from this study.

    REFERENCES

    [1] T. Craeghs, L. Thijs, F. Verhaeghe, J.-P. Kruth, J. Van Humbeeck, A study of the microstructural
    evolution during selective laser melting of Ti–6Al–4V, Acta Mater. 58 (2010) 3303–3312.
    https://doi.org/10.1016/j.actamat.2010.02.004.
    [2] J. Liu, A.T. Gaynor, S. Chen, Z. Kang, K. Suresh, A. Takezawa, L. Li, J. Kato, J. Tang, C.C.L. Wang, L.
    Cheng, X. Liang, A.C. To, Current and future trends in topology optimization for additive manufacturing,
    (2018) 2457–2483.
    [3] M. Bayat, W. Dong, J. Thorborg, A.C. To, J.H. Hattel, A review of multi-scale and multi-physics
    simulations of metal additive manufacturing processes with focus on modeling strategies, Addit. Manuf.
    47 (2021). https://doi.org/10.1016/j.addma.2021.102278.
    [4] A. Foroozmehr, M. Badrossamay, E. Foroozmehr, S. Golabi, Finite Element Simulation of Selective Laser
    Melting process considering Optical Penetration Depth of laser in powder bed, Mater. Des. 89 (2016)
    255–263. https://doi.org/10.1016/j.matdes.2015.10.002.
    [5] Y.S. Lee, W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base
    superalloy fabricated by laser powder bed fusion, Addit. Manuf. 12 (2016) 178–188.
    https://doi.org/10.1016/j.addma.2016.05.003.
    [6] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive
    manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation
    zones, Acta Mater. 108 (2016) 36–45. https://doi.org/10.1016/j.actamat.2016.02.014.
    [7] M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, J.H. Hattel, Keyholeinduced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and
    experimental validation, Addit. Manuf. 30 (2019). https://doi.org/10.1016/j.addma.2019.100835.
    [8] A. Charles, M. Bayat, A. Elkaseer, L. Thijs, J.H. Hattel, S. Scholz, Elucidation of dross formation in laser
    powder bed fusion at down-facing surfaces: phenomenon-oriented multiphysics simulation and
    experimental validation, Addit. Manuf. Under revi (2021).
    [9] M. Bayat, V.K. Nadimpalli, D.B. Pedersen, J.H. Hattel, A fundamental investigation of thermo-capillarity
    in laser powder bed fusion of metals and alloys, Int. J. Heat Mass Transf. 166 (2021) 120766.
    https://doi.org/10.1016/j.ijheatmasstransfer.2020.120766.
    [10] J.D. Roehling, S.A. Khairallah, Y. Shen, A. Bayramian, C.D. Boley, A.M. Rubenchik, J. Demuth, N.
    Duanmu, M.J. Matthews, Physics of large-area pulsed laser powder bed fusion, Addit. Manuf. 46 (2021) https://doi.org/10.1016/j.addma.2021.102186.
    [11] M. Zheng, L. Wei, J. Chen, Q. Zhang, J. Li, S. Sui, G. Wang, W. Huang, Surface morphology evolution
    during pulsed selective laser melting: Numerical and experimental investigations, Appl. Surf. Sci. 496
    (2019) 143649. https://doi.org/10.1016/j.apsusc.2019.143649.
    [12] M. Bayat, V.K. Nadimpalli, D.B. Pedersen, J.H. Hattel, A fundamental investigation of thermo-capillarity
    in laser powder bed fusion of metals and alloys, Int. J. Heat Mass Transf. 166 (2021).
    https://doi.org/10.1016/j.ijheatmasstransfer.2020.120766.

    Figure 7. The simulated velocity (a) and simulated pressure pattern (b) across the Parshall flume. The patterns match the physical behavior of actual Parshall flumes [7].

    Application of Numerical and Experimental Modeling to Improve the Efficiency of Parshall Flumes: A Review of the State-of-the-Art

    Parshall Flumes의 효율성 향상을 위한 수치 및 실험 모델링의 적용: 최신 기술 검토

    Mehdi Heyrani 1,* , Abdolmajid Mohammadian 1, Ioan Nistor 1 and Omerul Faruk Dursun 2

    Abstract

    열린 채널에서 흐름을 관리하는 기본 단계 중 하나는 속성을 결정하는 것입니다. 개방 수로의 흐름에 관한 추가 정보를 제공하기 위해 경험적 방정식이 개발되었습니다. 이러한 실험 방정식을 얻는 것은 비용과 시간이 많이 소요됩니다. 따라서 대체 솔루션이 모색되었습니다.

    지난 세기 동안 움직이는 부분이 없는 정적 측정 장치인 Parshall 수로가 개방 수로의 흐름을 측정하는 데 중요한 역할을 했습니다. 많은 연구자들이 관개 및 폐수 관리와 같은 다양한 분야에서 Parshall 수로의 적용을 연구하는 데 관심을 집중해 왔습니다.

    여러 학자들이 실험 결과를 사용하여 Parshall 수로의 등급 방정식을 향상시켰지만 다른 학자들은 수치 시뮬레이션을 사용하여 높이-방전 관계 방정식을 재보정하기 위해 대체 데이터 소스를 사용했습니다. 컴퓨팅 하드웨어가 지난 수십 년 동안 크게 발전하여 과거에 경험했던 제한된 해상도를 뛰어넘는 것이 가능해짐에 따라 CFD(Computational Fluid Dynamic) 소프트웨어가 오늘날 대중화되고 있습니다.

    여러 CFD 모델은 가용성에 따라 오픈 소스 또는 상업적으로 허가되어 수위 결과를 생성하기 위해 다양한 구성의 수로, 특히 Parshall 수로에 대한 수치 시뮬레이션을 수행하는 데 사용되었습니다.

    FLOW-3D, Ansys Fluent, OpenFOAM 등 지금까지 사용되어 온 다양한 CFD 도구에 대해 실험 데이터로 정밀 교정한 결과, 출력이 안정적이고 실제 시나리오에 구현할 수 있음이 확인되었습니다.

    결과를 생성하기 위해 이 기술을 사용하는 이점은 필요한 경우 유속 또는 구조적 형상과 같은 초기 조건을 조정하는 CFD 접근 방식의 능력입니다. 수로 크기와 수로가 위치한 부지의 조건과 관련하여 상황에 적합한 특정 Parshall 수로로 선택이 좁혀집니다.

    표준 Parshall 수로를 선택하는 것이 항상 가능한 것은 아닙니다. 따라서 엔지니어는 가장 가까운 수로 크기에 약간의 수정을 제공하고 정확한 유량을 생성하기 위해 새로운 등급 곡선을 제공합니다.

    이 검토는 기존 등급 방정식을 향상시키거나 구조의 기하학에 대한 추가 수정을 제안하기 위해 Parshall 수로에서 수치 시뮬레이션 및 물리적 실험 데이터의 적용을 목표로 하는 여러 학자의 작업에 대해 수행되었습니다.

    One of the primary steps in managing the flow in an open channel is determining its properties. Empirical equations are developed to provide further information regarding the flow in open channels. Obtaining such experimental equations is expensive and time consuming; therefore, alternative solutions have been sought. Over the last century, the Parshall flume, a static measuring device with no moving parts, has played a significant role in measuring the flow in open channels. Many researchers have focused their interest on studying the application of Parshall flumes in various fields like irrigation and wastewater management. Although various scholars used experimental results to enhance the rating equation of the Parshall flume, others used an alternative source of data to recalibrate the height–discharge relation equation using numerical simulation. Computational Fluid Dynamic (CFD) software is becoming popular nowadays as computing hardware has advanced significantly within the last few decades, making it possible to go beyond the limited resolution that was experienced in the past. Multiple CFD models, depending on their availability, either open-source or commercially licensed, have been used to perform numerical simulations on different configurations of flumes, especially Parshall flumes, to produce water level results. Regarding various CFD tools that have been used, i.e., FLOW-3D, Ansys Fluent, or OpenFOAM, after precise calibration with experimental data, it has been determined that the output is reliable and can be implemented to the actual scenarios. The benefit of using this technique to produce results is the ability of the CFD approach to adjust the initial conditions, like flow velocity or structural geometry, where necessary. With respect to channel size and the condition of the site where the flume is located, the choices are narrowed to the specific Parshall flume suitable to the situation. It is not always possible to select the standard Parshall flume; therefore, engineers provide some modification to the closest flume size and provide a new rating curve to produce accurate flowrates. This review has been performed on the works of a number of scholars who targeted the application of numerical simulation and physical experimental data in Parshall flumes to either enhance the existing rating equation or propose further modification to the structure’s geometry.

    Keywords

    Parshall flume; CFD; OpenFOAM; FLOW-3D; numerical simulation; turbulence model

    Figure 1. Parshall flume measuring structure, installed [2].
    Figure 1. Parshall flume measuring structure, installed [2].
    Figure 2. Parshall flume measuring structure, uninstalled [3]
    Figure 2. Parshall flume measuring structure, uninstalled [3]
    Figure 4. Mesh sensitivity analysis: top view and side view of the Parshall flume: (a) contains 27,000 cells; (b) 52,000 cells; (c) 75,000 cells; (d) 270,000 cells. The C setup was used in their simulation [7].
    Figure 4. Mesh sensitivity analysis: top view and side view of the Parshall flume: (a) contains 27,000 cells; (b) 52,000 cells; (c) 75,000 cells; (d) 270,000 cells. The C setup was used in their simulation [7].
    Figure 7. The simulated velocity (a) and simulated pressure pattern (b) across the Parshall flume. The patterns match the physical behavior of actual Parshall flumes [7].
    Figure 7. The simulated velocity (a) and simulated pressure pattern (b) across the Parshall flume. The patterns match the physical behavior of actual Parshall flumes [7].
    Figure 8. Computational grid system in the Side A flume. (a) contains a triangular grid system (b) demonstrates the rectangular grid system. (c) and (d) are three-dimensional schematics showing the superimposed grid system. (e) magnifies the dashed section in (b). (Reprinted with permission from Ref. [11]. 2020 ELSEVIER). ).
    Figure 8. Computational grid system in the Side A flume. (a) contains a triangular grid system (b) demonstrates the rectangular grid system. (c) and (d) are three-dimensional schematics showing the superimposed grid system. (e) magnifies the dashed section in (b). (Reprinted with permission from Ref. [11]. 2020 ELSEVIER). ).
    Figure 10. The results of flow patterns in different flumes; (a) Cutthroat flume, (b) airfoil-shaped flume, (c) airfoil pillar-shaped flume, (d) optimized airfoil-shaped flume [23]
    Figure 10. The results of flow patterns in different flumes; (a) Cutthroat flume, (b) airfoil-shaped flume, (c) airfoil pillar-shaped flume, (d) optimized airfoil-shaped flume [23]
    Figure 11. Experimental setup: contraction ratio used on each flume [23].
    Figure 11. Experimental setup: contraction ratio used on each flume [23].
    Figure 12. Entire flume geometry [25]
    Figure 12. Entire flume geometry [25]

    References

    1. Cone, V.M. The Venturi Flume; U.S. Government Printing Office: Washington, DC, USA, 1917.
    2. 20-Foot Concrete Parshall Flume with Radius Wing Walls. Available online: https://www.openchannelflow.com/assets/uploads/
      media/_large/20-foot-parshall-flume-curved-wing-walls.jpg (accessed on 12 January 2021).
    3. Fiberglass 6-Inch Parshall Flume with Gauge. Available online: https://www.openchannelflow.com/assets/uploads/media/
      _large/flume-parshall-6-inch-fiberglass.png (accessed on 12 January 2021).
    4. Parshall, R.L. The Parshall Measuring Flume; Colorado State College, Colorado Experiment Station: Fort Collins, CO, USA, 1936.
    5. Selecting Between a Weir and a Flume. 2022. Available online: https://www.openchannelflow.com/blog/selecting-a-primarydevice-part-1-choosing-between-a-weir-and-a-flume (accessed on 29 December 2021).
    6. Parshall, R.L. The Improved Venturi Flume. Trans. Am. Soc. Civ. Eng. 1928, 89, 841–851. [CrossRef]
    7. Heyrani, M.; Mohammadian, A.; Nistor, I. Numerical Simulation of Flow in Parshall Flume Using Selected Nonlinear Turbulence
      Models. Hydrology 2021, 8, 151. [CrossRef]
    8. Heyrani, M.; Mohammadian, A.; Nistor, I.; Dursun, O.F. Numerical Modeling of Venturi Flume. Hydrology 2021, 8, 27. [CrossRef]
    9. Alfonsi, G. Reynolds-Averaged Navier–Stokes Equations for Turbulence Modeling. Appl. Mech. Rev. 2009, 62, 040802. [CrossRef]
    10. Imanian, H.; Mohammadian, A. Numerical Simulation of Flow over Ogee Crested Spillways under High Hydraulic Head Ratio.
      Eng. Appl. Comput. Fluid Mech. 2019, 13, 983–1000. [CrossRef]
    11. Khosronejad, A.; Herb, W.; Sotiropoulos, F.; Kang, S.; Yang, X. Assessment of Parshall Flumes for Discharge Measurement of
      Open-Channel Flows: A Comparative Numerical and Field Case Study. Measurement 2020, 167, 108292. [CrossRef]
    12. Dursun, O.F. An Experimental Investigation of the Aeration Performance of Parshall Flume and Venturi Flumes. KSCE J. Civ. Eng.
      2016, 20, 943–950. [CrossRef]
    13. Shih, T.-H.; Liu, N.-S.; Chen, K.-H. A Non-Linear k-Epsilon Model for Turbulent Shear Flows. In Proceedings of the 34th
      AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, USA, 13 July 1998; p. 3983.
    14. Lien, F.S. Low-Reynolds-Number Eddy-Viscosity Modelling Based on Non-Linear Stress-Strain/Vorticity Relations. In Proceedings of the 3rd Symposium on Engineering Turbulence Modelling and Measurement, Heraklion, Greece, 27 May 1996.
    15. Davis, R.W.; Deutsch, S. A Numerical-Experimental Study of Parhall Flumes. J. Hydraul. Res. 1980, 18, 135–152. [CrossRef]
    16. Xiao, Y.; Wang, W.; Hu, X.; Zhou, Y. Experimental and Numerical Research on Portable Short-Throat Flume in the Field. Flow
      Meas. Instrum. 2016, 47, 54–61. [CrossRef]
    17. Wright, S.J.; Tullis, B.P.; Long, T.M. Recalibration of Parshall Flumes at Low Discharges. J. Irrig. Drain. Eng. 1994, 120, 348–362.
      [CrossRef]
    18. Heiner, B.; Barfuss, S.L. Parshall Flume Discharge Corrections: Wall Staff Gauge and Centerline Measurements. J. Irrig. Drain.
      Eng. 2011, 137, 779–792. [CrossRef]
    19. Savage, B.M.; Heiner, B.; Barfuss, S. Parshall Flume Discharge Correction Coefficients through Modelling. Proc. ICE Water Manag.
      2013, 167, 279–287. [CrossRef]
    20. Zerihun, Y.T. A Numerical Study on Curvilinear Free Surface Flows in Venturi Flumes. Fluids 2016, 1, 21. [CrossRef]
    21. Sun, B.; Zhu, S.; Yang, L.; Liu, Q.; Zhang, C.; Zhang, J. ping Experimental and Numerical Investigation of Flow Measurement
      Mechanism and Hydraulic Performance on Curved Flume in Rectangular Channel. Arab. J. Sci. Eng. 2020. [CrossRef]
    22. Hu, H.; Huang, J.; Qian, Z.; Huai, W.; Yu, G. Hydraulic Analysis of Parabolic Flume for Flow Measurement. Flow Meas. Instrum.
      2014, 37, 54–64. [CrossRef]
    23. Sun, B.; Yang, L.; Zhu, S.; Liu, Q.; Wang, C.; Zhang, C. Study on the Applicability of Four Flumes in Small Rectangular Channels.
      Flow Meas. Instrum. 2021, 80, 101967. [CrossRef]
    24. Willeitner, R.P.; Barfuss, S.L.; Johnson, M.C. Using Numerical Modeling to Correct Flow Rates for Submerged Montana Flumes. J.
      Irrig. Drain. Eng. 2013, 139, 586–592. [CrossRef]
    25. Ran, D.; Wang, W.; Hu, X. Three-Dimensional Numerical Simulation of Flow in Trapezoidal Cutthroat Flumes Based on FLOW-3D.
      Front. Agric. Sci. Eng. 2018, 5, 168–176. [CrossRef]
    26. Kim, S.-Y.; Lee, J.-H.; Hong, N.-K.; Lee, S.-O. Numerical Simulation for Determining Scale of Parshall Flume. Proc. Korea Water
      Resour. Assoc. Conf. 2010, 719–723.
    27. Tekade, S.A.; Vasudeo, A.D.; Ghare, A.D.; Ingle, R.N. Measurement of Flow in Supercritical Flow Regime Using Cutthroat Flumes.
      Sadhana 2016, 41, 265–272. [CrossRef]
    28. Wahl, T.L.; Replogle, J.A.; Wahlin, B.T.; Higgs, J.A. New Developments in Design and Application of Long-Throated Flumes. In
      Proceedings of the Joint Conference on Water Resource Engineering and Water Resources Planning and Management, Minneapolis,
      MN, USA, 30 July–2 August 2000.
    29. Howes, D.J.; Burt, C.M.; Sanders, B.F. Subcritical Contraction for Improved Open-Channel Flow Measurement Accuracy with an
      Upward-Looking ADVM. J. Irrig. Drain. Eng. 2010, 136, 617–626. [CrossRef]
    30. Tiwari, N.K.; Sihag, P. Prediction of Oxygen Transfer at Modified Parshall Flumes Using Regression Models. ISH J. Hydraul. Eng.
      2020, 26, 209–220. [CrossRef]
    31. Thornton, C.I.; Smith, B.A.; Abt, S.R.; Robeson, M.D. Supercritical Flow Measurement Using a Small Parshall Flume. J. Irrig.
      Drain. Eng. 2009, 135, 683–692. [CrossRef]
    32. Cox, A.L.; Thornton, C.I.; Abt, S.R. Supercritical Flow Measurement Using a Large Parshall Flume. J. Irrig. Drain. Eng. 2013, 139,
      655–662. [CrossRef]
    1. Ribeiro, Á.S.; Sousa, J.A.; Simões, C.; Martins, L.L.; Dias, L.; Mendes, R.; Martins, C. Parshall Flumes Flow Rate Uncertainty
      Including Contributions of the Model Parameters and Correlation Effects. Meas. Sens. 2021, 18, 100108. [CrossRef]
    2. Singh, J.; Mittal, S.K.; Tiwari, H.L. Discharge Relation for Small Parshall Flume in Free Flow Condition. Int. J. Res. Eng. Technol.
      2014, 3, 317–321.
    3. Kim, S.-D.; Lee, H.-J.; Oh, B.-D. Investigation on Application of Parshall Flume for Flow Measurement of Low-Flow Season in
      Korea. Meas. Sci. Rev. 2010, 10, 111. [CrossRef]
    4. Willeitner, R.P.; Barfuss, S.L.; Johnson, M.C. Montana Flume Flow Corrections under Submerged Flow. J. Irrig. Drain. Eng. 2012,
      138, 685–689. [CrossRef]
    5. Dufresne, M.; Vazquez, J. Head–Discharge Relationship of Venturi Flumes: From Long to Short Throats. J. Hydraul. Res. 2013, 51,
      465–468. [CrossRef]
    図3 He ガスストリッパー装置の図と全景.

    RIKEN RIBF의 He-Gas 스트리퍼 및 회전 디스크 스트리퍼

    He Gas Stripper and Rotating Disk Stripper at the RIKEN RIBF

    理研 RI ビームファクトリーにおける He ガスと回転ディスクストリッパー

    今尾 浩士 *・長谷部 裕雄 *

    서론

    우라늄 빔 등 중원소 빔의 대강도화는 다양한 단수명 원자핵을 생성·이용하고 우주에서의 원소 합성을 이해하기 위한 필수 과제이다. 중이온의 가속에 있어서는, 복수의 가속기를 이용하여, 고에너지까지 캐스케이드상으로 가속해 가지만, 효율적인 가속을 위해 도중의 하전 변환 과정은 필수 과정이라고 할 수 있다.

    리켄 RI 빔팩토리(RIBF) 1)에서는 가장 무거운 우라늄 등의 가속에 있어서, 2회의 하전 변환을 실시하고 있다.

    그러나 기존에 사용해 온 고정형 탄소막 스트리퍼 2)의 내구성은 대강화의 원리적 병목이며, 미국 FRIB 계획 3) 등을 포함한 차세대 RI 생성 시설의 공통 문제에서도 있었다. RIBF는 가스 4-7)과 회전형 디스크 8, 9)를 사용하여 고강도 우라늄을 견딜 수있는 스트리퍼를 개발했다.

    RIBF에서 238U 빔의 가속도를 그림 1에 나타내었다. 28 GHz의 초전도 ECR 이온 소스 (10, 11)로 생성 및 선별 된 238U35 +는 입사기 RILAC2와 4 개의 링 사이클로트론 (RRC, fRC, IRC, SRC)을 사용하여 345 MeV / u까지 가속된다.

    스트리퍼는 RRC 가속 후 11 MeV / u와 fRC 가속 후 51 MeV / u에서 두 번 사용된다. 첫 번째 단계는 He 가스 스트리퍼를 사용하며 U35 +에서 U64 +로 변환한다. 두 번째 단계는 회전 흑연 시트 디스크 스트리퍼이며 U64 +에서 U86 +로 변환한다.

    중이온 스트리퍼는 총 열 부하, 파워 손실이라는 의미에서는 전혀 작지만, 특히 큰 것은 단위 길이 에너지 손실 dE/dx이며, 이에 특유의 어려움이 있다. 우라늄의 dE / dx는 특히 크고, 수 MeV / u-50 MeV / u 정도까지의 스트리퍼는 dE / dx가 크고 두께가 고체로서는 얇아지기 때문에 어렵다.

    우리의 11 MeV / u에서의 목표 강도 10 pA는 dE / dx로 정규화 된 경우, 예를 들어 400 MeV의 양성자 빔이라면 500 mA라고 불리우는 강도에 해당한다. 또한 우라늄의 국부적 인 에너지 손실로 인한 비선형 피해도보고되었으며 상황은 더욱 심각하다.

    예를 들어 제1 스트리퍼로 탄소막을 사용했을 경우, 1 µm 정도 이하의 박막을 사용하지 않을 수 없고, 취약성, 불균일성과의 싸움으로, 열 제거도 어렵다. 실제로 RIBF 초기에 사용 된 고정형 탄소막 2)에서는 우라늄 빔 20pnA 정도의 조사 강도에서도 사용 가능 시간은 반일 정도였다. 그런 다음 두 번째 스트리퍼에서도 비슷한 상황이 발생했다.

    현재 사용하고 있는 He 가스 스트리퍼와 회전형 그라파이트 디스크 스트리퍼는 당시의 약 100배의 강도라도 사용 시간을 거의 신경쓸 필요가 없을 정도의 내구성을 가지고 있다.

    본 논문에서는 He 가스 스트리퍼와 회전형 스트리퍼에 대해 개요와 고출력 표적으로서의 측면을 중심으로 설명한다.

    図1 He ガスと回転ディスクストリッパーを用いた現在の RIBF ウラン加速スキーム.
    図1 He ガスと回転ディスクストリッパーを用いた現在の RIBF ウラン加速スキーム.
    図2 様々な厚さの He ガスによる11 MeV/u 238U の荷電分布.
    図2 様々な厚さの He ガスによる11 MeV/u 238U の荷電分布.
    図3 He ガスストリッパー装置の図と全景.
    図3 He ガスストリッパー装置の図と全景.
    図4 かく乱板の写真(上)と位置依存性(下).
    図4 かく乱板の写真(上)と位置依存性(下).
    図5 オリフィスから噴出する He のマッハ数の CFD 計算 (Solidworks flow simulation).
    図5 オリフィスから噴出する He のマッハ数の CFD 計算 (Solidworks flow simulation).
    図6 238U ビームによる He ガス温度上昇の実験値と計算値 の比較.実験値は輸送条件の異なる幾つかの RUN の データをプロットしている.
    図6 238U ビームによる He ガス温度上昇の実験値と計算値 の比較.実験値は輸送条件の異なる幾つかの RUN の データをプロットしている.
    図7 マクロパルスの長さと周期を変えた時のΔt の変化 (上)とマクロパルスの構造(下).
    図7 マクロパルスの長さと周期を変えた時のΔt の変化 (上)とマクロパルスの構造(下).
    図8 ガスジェットカーテン法コンセプト.
    図8 ガスジェットカーテン法コンセプト.
    図9 シール効果とガス置換効果(上)とオリフィスの大口径 化(下).
    図9 シール効果とガス置換効果(上)とオリフィスの大口径 化(下).
    図10 2 次元ラバール式ノズルによるガスジェットカーテ ンの計算例(Solidworks flow simulation).図はマッハ 数のプロットである.
    図10 2 次元ラバール式ノズルによるガスジェットカーテ ンの計算例(Solidworks flow simulation).図はマッハ 数のプロットである.
    図11 4 枚目の Be ディスク.左使用前,右使用後.
    図11 4 枚目の Be ディスク.左使用前,右使用後.
    図12 40 mg/cm2 グラッシーカーボンディスク
    図12 40 mg/cm2 グラッシーカーボンディスク
    図13 GS ディスク.左使用前,右使用後.
    図13 GS ディスク.左使用前,右使用後.
    図14 GTF ディスク.左使用前,右使用後.
    図14 GTF ディスク.左使用前,右使用後.
    図15 U ビーム照射中の GTF ディスク
    図15 U ビーム照射中の GTF ディスク
    図16 アクセスドア用ガラス. 左変色したガラス,右新品のガラス
    図16 アクセスドア用ガラス. 左変色したガラス,右新品のガラス

    References

    1) Y. Yano: Nucl. Instrum. Methods 261, 1009 (2007).
    2) ACF-Metals Arizona Carbon Foil Co. Inc.: http://www.
    techexpo.com/firms/acf-metl.html
    3) J. Wei et al.: “Progress towards the Facility for Rare Isotope Beams,” in Proceedings of 2013 North American
    Particle Accelerator Conference (NA-PAC’13), Pasadena,
    CA, U.S.A., September 2013, pp. 1453–1457.
    4) H. Kuboki, H. Okuno, S. Yokouchi, H. Hasebe, T. Kishida,
    N. Fukunishi, O. Kamigaito, A. Goto, M. Kase and Y.
    Yano: Phys. Rev. Spec. Top. Accel. Beams 13, 093501
    (2010).
    5) H. Okuno, N. Fukunishi, A. Goto, H. Hasebe, H. Imao, O.
    Kamigaito, M. Kase, H. Kuboki, Y. Yano, S. Yokouchi and
    A. Hershcovitch: Phys. Rev. Spec. Top. Accel. Beams 14,
    033503 (2011).
    6) H. Imao, H. Okuno, H. Kuboki, S. Yokouchi, N. Fukunishi,
    O. Kamigaito, H. Hasebe, T. Watanabe, Y. Watanabe, M.
    Kase and Y. Yano: Phys. Rev. Spec. Top. Accel. Beams
    15, 123501 (2012).
    7) H. Imao et al.: “R&D of Helium Gas Stripper for Intense
    Uranium Beams,” in Proceedings of the Twentieth International Conference on Cyclotrons and their Applications
    (CYC2013), Vancouver, BC, Canada, September 2013, pp.
    265–268.
    8) H. Hasebe, H. Okuno, A. Tatami, M. Tachibana, M. Murakami, H. Kuboki, H. Imao, N. Fukunishi, M. Kase and O.
    Kamigaito: AIP Conf. Proc. 1962, 030004 (2018).
    9) H. Hasebe, H. Okuno, A. Tatami, M. Tachibana, M. Murakami, H. Imao, N. Fukunishi, M. Kase and O. Kamigaito:
    EPJ Web of Conferences 229, 01004 (2020).
    10) T. Nakagawa, M. Kidera, Y. Higurashi, J. Ohonishi, A.
    Goto and Y. Yano: Rev. Sci. Instrum. 79, 02A327 (2008).
    11) Y. Higurashi, J. Ohnishi, K. Ozeki, M. Kidera and T. Nakagawa: Rev. Sci. Instrum. 85, 02A953 (2014).
    12) 小山亮,内山暁仁,今尾浩士,渡邉環:RIBF にお
    けるシステム統合のためのガスストリッパー制御の
    更新,PASJ2019, FRPH003 (2019).
    13) H. Imao et al.: “Development of gas stripper at RIBF,” in
    Proceedings of the 9th International Particle Accelerator
    Conference (IPAC2018), Vancouver, BC, Canada, April
    2018, pp. 41–46.
    14) A. Akashio, K. Tanaka, H. Imao and Y. Uwamino: EPJ
    Web of Conferences 153, 01022 (2017).
    15) H. Imao et al.: “Charge Stripper Ring for Cyclotron
    Cascade,” in Proceedings of the Twenty-first International Conference on Cyclotrons and their Applications
    (CYC2016), Zurich, Switzerland, September 2016, pp.
    155–159.
    16) H. Imao: JINST 15, P12036 (2020).
    17) H. Kuboki, H. Okuno, A. Hershcovitch, T. Dantsuka, H.
    Hasebe, K. Ikegami, H. Imao, O. Kamigaito, M. Kase,
    T. Maie, T. Nakagawa and Y. Yano: J. Radioanal. Nucl.
    Chem. 299, 1029 (2014).
    18) N. Ikoma, Y. Miyake, M. Takahashi, H. Okuno, S. Namba,
    K. Takahashi, T. Sasaki and T. Kikuchi: Rev. Sci. Instrum. 91, 053503 (2020).
    19) H. Ryuto, H. Hasebe, N. Fukunishi, S. Yokouchi, A. Goto,
    M. Kase and Y. Yano: Nucl. Instrum. Methods Phys. Res.
    A 569, 697 (2006).
    20) H. Hasebe, H. Okuno, H. Kuboki, H. Imao, N. Fukunishi, M.
    Kase and O. Kamigaito: J. Radioanal. Nucl. Chem. 305,
    825 (2015).
    21) Crystal Optics Inc.: http://www.crystal-opt.co.jp.
    22) TANKEN SEAL SEIKO Co., LTD.: http://www.tanken
    seal.co.jp.
    23) Kaneka Corporation: http://www.elecdiv.kaneka.co.jp.
    24) H. Hasebe, H. Okuno, H. Imao, N. Fukunishi, M. Kase and
    O. Kamigaito: Proceedings of the 16th annual meeting of
    PASJ, p. 9 (2019).
    25) A. Tatami, Y. Kawashima, M. Murakami, K. Murashima
    and M. Tachibana: Proceedings of the 14th annual meeting of PASJ, p. 159 (2017).

    Figure 3.10: Snapshots of Temperature Profile for Single Track in Keyhole Regime (P = 250W and V = 0.5m/s) at the Preheating Temperature of 100 °C

    Multiscale Process Modeling of Residual Deformation and Defect Formation for Laser Powder Bed Fusion Additive Manufacturing

    Qian Chen, PhD
    University of Pittsburgh, 2021

    레이저 분말 베드 퓨전(L-PBF) 적층 제조(AM)는 우수한 기계적 특성으로 그물 모양에 가까운 복잡한 부품을 생산할 수 있습니다. 그러나 빌드 실패 및 다공성과 같은 결함으로 이어지는 원치 않는 잔류 응력 및 왜곡이 L-PBF의 광범위한 적용을 방해하고 있습니다.

    L-PBF의 잠재력을 최대한 실현하기 위해 잔류 변형, 용융 풀 및 다공성 형성을 예측하는 다중 규모 모델링 방법론이 개발되었습니다. L-PBF의 잔류 변형 및 응력을 부품 규모에서 예측하기 위해 고유 변형 ​​방법을 기반으로 하는 다중 규모 프로세스 모델링 프레임워크가 제안됩니다.

    고유한 변형 벡터는 마이크로 스케일에서 충실도가 높은 상세한 다층 프로세스 시뮬레이션에서 추출됩니다. 균일하지만 이방성인 변형은 잔류 왜곡 및 응력을 예측하기 위해 준 정적 평형 유한 요소 분석(FEA)에서 레이어별로 L-PBF 부품에 적용됩니다.

    부품 규모에서의 잔류 변형 및 응력 예측 외에도 분말 규모의 다중물리 모델링을 수행하여 공정 매개변수, 예열 온도 및 스패터링 입자에 의해 유도된 용융 풀 변동 및 결함 형성을 연구합니다. 이러한 요인과 관련된 용융 풀 역학 및 다공성 형성 메커니즘은 시뮬레이션 및 실험을 통해 밝혀졌습니다.

    제안된 부품 규모 잔류 응력 및 왜곡 모델을 기반으로 경로 계획 방법은 큰 잔류 변형 및 건물 파손을 방지하기 위해 주어진 형상에 대한 레이저 스캐닝 경로를 조정하기 위해 개발되었습니다.

    연속 및 아일랜드 스캐닝 전략을 위한 기울기 기반 경로 계획이 공식화되고 공식화된 컴플라이언스 및 스트레스 최소화 문제에 대한 전체 감도 분석이 수행됩니다. 이 제안된 경로 계획 방법의 타당성과 효율성은 AconityONE L-PBF 시스템을 사용하여 실험적으로 입증되었습니다.

    또한 기계 학습을 활용한 데이터 기반 프레임워크를 개발하여 L-PBF에 대한 부품 규모의 열 이력을 예측합니다. 본 연구에서는 실시간 열 이력 예측을 위해 CNN(Convolutional Neural Network)과 RNN(Recurrent Neural Network)을 포함하는 순차적 기계 학습 모델을 제안합니다.

    유한 요소 해석과 비교하여 100배의 예측 속도 향상이 달성되어 실제 제작 프로세스보다 빠른 예측이 가능하고 실시간 온도 프로파일을 사용할 수 있습니다.

    Laser powder bed fusion (L-PBF) additive manufacturing (AM) is capable of producing complex parts near net shape with good mechanical properties. However, undesired residual stress and distortion that lead to build failure and defects such as porosity are preventing broader applications of L-PBF. To realize the full potential of L-PBF, a multiscale modeling methodology is developed to predict residual deformation, melt pool, and porosity formation. To predict the residual deformation and stress in L-PBF at part-scale, a multiscale process modeling framework based on inherent strain method is proposed.

    Inherent strain vectors are extracted from detailed multi-layer process simulation with high fidelity at micro-scale. Uniform but anisotropic strains are then applied to L-PBF part in a layer-by-layer fashion in a quasi-static equilibrium finite element analysis (FEA) to predict residual distortion and stress. Besides residual distortion and stress prediction at part scale, multiphysics modeling at powder scale is performed to study the melt pool variation and defect formation induced by process parameters, preheating temperature and spattering particles. Melt pool dynamics and porosity formation mechanisms associated with these factors are revealed through simulation and experiments.

    Based on the proposed part-scale residual stress and distortion model, path planning method is developed to tailor the laser scanning path for a given geometry to prevent large residual deformation and building failures. Gradient based path planning for continuous and island scanning strategy is formulated and full sensitivity analysis for the formulated compliance- and stress-minimization problem is performed.

    The feasibility and effectiveness of this proposed path planning method is demonstrated experimentally using the AconityONE L-PBF system. In addition, a data-driven framework utilizing machine learning is developed to predict the thermal history at part-scale for L-PBF.

    In this work, a sequential machine learning model including convolutional neural network (CNN) and recurrent neural network (RNN), long shortterm memory unit, is proposed for real-time thermal history prediction. A 100x prediction speed improvement is achieved compared to the finite element analysis which makes the prediction faster than real fabrication process and real-time temperature profile available.

    Figure 1.1: Schematic Overview of Metal Laser Powder Bed Fusion Process [2]
    Figure 1.1: Schematic Overview of Metal Laser Powder Bed Fusion Process [2]
    Figure 1.2: Commercial Powder Bed Fusion Systems
    Figure 1.2: Commercial Powder Bed Fusion Systems
    Figure 1.3: Commercial Metal Components Fabricated by Powder Bed Fusion Additive Manufacturing: (a) GE Fuel Nozzle; (b) Stryker Hip Biomedical Implant.
    Figure 1.3: Commercial Metal Components Fabricated by Powder Bed Fusion Additive Manufacturing: (a) GE Fuel Nozzle; (b) Stryker Hip Biomedical Implant.
    Figure 2.1: Proposed Multiscale Process Simulation Framework
    Figure 2.1: Proposed Multiscale Process Simulation Framework
    Figure 2.2: (a) Experimental Setup for In-situ Thermocouple Measurement in the EOS M290 Build Chamber; (b) Themocouple Locations on the Bottom Side of the Substrate.
    Figure 2.2: (a) Experimental Setup for In-situ Thermocouple Measurement in the EOS M290 Build Chamber; (b) Themocouple Locations on the Bottom Side of the Substrate.
    Figure 2.3: (a) Finite Element Model for Single Layer Thermal Analysis; (b) Deposition Layer
    Figure 2.3: (a) Finite Element Model for Single Layer Thermal Analysis; (b) Deposition Layer
    Figure 2.4: Core-skin layer: (a) Surface Morphology; (b) Scanning Strategy; (c) Transient Temperature Distribution and Temperature History at (d) Point 1; (e) Point 2 and (f) Point 3
    Figure 2.4: Core-skin layer: (a) Surface Morphology; (b) Scanning Strategy; (c) Transient Temperature Distribution and Temperature History at (d) Point 1; (e) Point 2 and (f) Point 3
    Figure 2.5: (a) Scanning Orientation of Each Layer; (b) Finite Element Model for Micro-scale Representative Volume
    Figure 2.5: (a) Scanning Orientation of Each Layer; (b) Finite Element Model for Micro-scale Representative Volume
    Figure 2.6: Bottom Layer (a) Thermal History; (b) Plastic Strain and (c) Elastic Strain Evolution History
    Figure 2.6: Bottom Layer (a) Thermal History; (b) Plastic Strain and (c) Elastic Strain Evolution History
    Figure 2.7: Bottom Layer Inherent Strain under Default Process Parameters along Horizontal Scanning Path
    Figure 2.7: Bottom Layer Inherent Strain under Default Process Parameters along Horizontal Scanning Path
    Figure 2.8: Snapshots of the Element Activation Process
    Figure 2.8: Snapshots of the Element Activation Process
    Figure 2.9: Double Cantilever Beam Structure Built by the EOS M290 DMLM Process (a) Before and (b) After Cutting off; (c) Faro Laser ScanArm V3 for Distortion Measurement
    Figure 2.9: Double Cantilever Beam Structure Built by the EOS M290 DMLM Process (a) Before and (b) After Cutting off; (c) Faro Laser ScanArm V3 for Distortion Measurement
    Figure 2.10: Square Canonical Structure Built by the EOS M290 DMLM Process
    Figure 2.10: Square Canonical Structure Built by the EOS M290 DMLM Process
    Figure 2.11: Finite Element Mesh for the Square Canonical and Snapshots of Element Activation Process
    Figure 2.11: Finite Element Mesh for the Square Canonical and Snapshots of Element Activation Process
    Figure 2.12: Simulated Distortion Field for the Double Cantilever Beam before Cutting off the Supports: (a) Inherent Strain Method; (b) Simufact Additive 3.1
    Figure 2.12: Simulated Distortion Field for the Double Cantilever Beam before Cutting off the Supports: (a) Inherent Strain Method; (b) Simufact Additive 3.1
    Figure 3.10: Snapshots of Temperature Profile for Single Track in Keyhole Regime (P = 250W and V = 0.5m/s) at the Preheating Temperature of 100 °C
    Figure 3.10: Snapshots of Temperature Profile for Single Track in Keyhole Regime (P = 250W and V = 0.5m/s) at the Preheating Temperature of 100 °C
    s) at the Preheating Temperature of 500 °C
    s) at the Preheating Temperature of 500 °C
    Figure 3.15: Melt Pool Cross Section Comparison Between Simulation and Experiment for Single Track
    Figure 3.15: Melt Pool Cross Section Comparison Between Simulation and Experiment for Single Track

    Bibliography

    [1] I. Astm, ASTM52900-15 Standard Terminology for Additive Manufacturing—General
    Principles—Terminology, ASTM International, West Conshohocken, PA 3(4) (2015) 5.
    [2] W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M.
    Rubenchik, Laser powder bed fusion additive manufacturing of metals; physics, computational,
    and materials challenges, Applied Physics Reviews 2(4) (2015) 041304.
    [3] W. Yan, Y. Lu, K. Jones, Z. Yang, J. Fox, P. Witherell, G. Wagner, W.K. Liu, Data-driven
    characterization of thermal models for powder-bed-fusion additive manufacturing, Additive
    Manufacturing (2020) 101503.
    [4] K. Dai, L. Shaw, Thermal and stress modeling of multi-material laser processing, Acta
    Materialia 49(20) (2001) 4171-4181.
    [5] K. Dai, L. Shaw, Distortion minimization of laser-processed components through control of
    laser scanning patterns, Rapid Prototyping Journal 8(5) (2002) 270-276.
    [6] S.S. Bo Cheng, Kevin Chou, Stress and deformation evaluations of scanning strategy effect in
    selective laser melting, Additive Manufacturing (2017).
    [7] C. Fu, Y. Guo, Three-dimensional temperature gradient mechanism in selective laser melting
    of Ti-6Al-4V, Journal of Manufacturing Science and Engineering 136(6) (2014) 061004.
    [8] P. Prabhakar, W.J. Sames, R. Dehoff, S.S. Babu, Computational modeling of residual stress
    formation during the electron beam melting process for Inconel 718, Additive Manufacturing 7
    (2015) 83-91.
    [9] A. Hussein, L. Hao, C. Yan, R. Everson, Finite element simulation of the temperature and
    stress fields in single layers built without-support in selective laser melting, Materials & Design
    (1980-2015) 52 (2013) 638-647.
    [10] P.Z. Qingcheng Yang, Lin Cheng, Zheng Min, Minking Chyu, Albert C. To, articleFinite
    element modeling and validation of thermomechanicalbehavior of Ti-6Al-4V in directed energy
    deposition additivemanufacturing, Additive Manufacturing (2016).
    [11] E.R. Denlinger, J. Irwin, P. Michaleris, Thermomechanical Modeling of Additive
    Manufacturing Large Parts, Journal of Manufacturing Science and Engineering 136(6) (2014)
    061007.
    [12] E.R. Denlinger, M. Gouge, J. Irwin, P. Michaleris, Thermomechanical model development
    and in situ experimental validation of the Laser Powder-Bed Fusion process, Additive
    Manufacturing 16 (2017) 73-80.
    [13] V.J. Erik R Denlinger, G.V. Srinivasan, Tahany EI-Wardany, Pan Michaleris, Thermal
    modeling of Inconel 718 processed with powder bed fusionand experimental validation using in
    situ measurements, Additive Manufacturing 11 (2016) 7-15.
    [14] N. Patil, D. Pal, H.K. Rafi, K. Zeng, A. Moreland, A. Hicks, D. Beeler, B. Stucker, A
    Generalized Feed Forward Dynamic Adaptive Mesh Refinement and Derefinement Finite Element
    Framework for Metal Laser Sintering—Part I: Formulation and Algorithm Development, Journal
    of Manufacturing Science and Engineering 137(4) (2015) 041001.
    [15] D. Pal, N. Patil, K.H. Kutty, K. Zeng, A. Moreland, A. Hicks, D. Beeler, B. Stucker, A
    Generalized Feed-Forward Dynamic Adaptive Mesh Refinement and Derefinement FiniteElement Framework for Metal Laser Sintering—Part II: Nonlinear Thermal Simulations and
    Validations, Journal of Manufacturing Science and Engineering 138(6) (2016) 061003.
    [16] N. Keller, V. Ploshikhin, New method for fast predictions of residual stress and distortion of
    AM parts, Solid Freeform Fabrication Symposium, Austin, Texas, 2014, pp. 1229-1237.
    [17] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive
    manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and
    denudation zones, Acta Materialia 108 (2016) 36-45.
    [18] M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King,
    Denudation of metal powder layers in laser powder bed fusion processes, Acta Materialia 114
    (2016) 33-42.
    [19] A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, V. Thampy, G.M.
    Guss, A.M. Kiss, K.H. Stone, Dynamics of pore formation during laser powder bed fusion additive
    manufacturing, Nature communications 10(1) (2019) 1987.
    [20] R. Shi, S.A. Khairallah, T.T. Roehling, T.W. Heo, J.T. McKeown, M.J. Matthews,
    Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam
    shaping strategy, Acta Materialia (2019).
    [21] S.A. Khairallah, A.A. Martin, J.R. Lee, G. Guss, N.P. Calta, J.A. Hammons, M.H. Nielsen,
    K. Chaput, E. Schwalbach, M.N. Shah, Controlling interdependent meso-nanosecond dynamics
    and defect generation in metal 3D printing, Science 368(6491) (2020) 660-665.
    [22] W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin, G.J. Wagner, Multi-physics
    modeling of single/multiple-track defect mechanisms in electron beam selective melting, Acta
    Materialia 134 (2017) 324-333.
    [23] S. Shrestha, Y. Kevin Chou, A Numerical Study on the Keyhole Formation During Laser
    Powder Bed Fusion Process, Journal of Manufacturing Science and Engineering 141(10) (2019).
    [24] S. Shrestha, B. Cheng, K. Chou, An Investigation into Melt Pool Effective Thermal
    Conductivity for Thermal Modeling of Powder-Bed Electron Beam Additive Manufacturing.
    [25] D. Rosenthal, Mathematical theory of heat distribution during welding and cutting, Welding
    journal 20 (1941) 220-234.
    [26] P. Promoppatum, S.-C. Yao, P.C. Pistorius, A.D. Rollett, A comprehensive comparison of the
    analytical and numerical prediction of the thermal history and solidification microstructure of
    Inconel 718 products made by laser powder-bed fusion, Engineering 3(5) (2017) 685-694.
    [27] M. Tang, P.C. Pistorius, J.L. Beuth, Prediction of lack-of-fusion porosity for powder bed
    fusion, Additive Manufacturing 14 (2017) 39-48.
    [28] T. Moran, P. Li, D. Warner, N. Phan, Utility of superposition-based finite element approach
    for part-scale thermal simulation in additive manufacturing, Additive Manufacturing 21 (2018)
    215-219.
    [29] Y. Yang, M. Knol, F. van Keulen, C. Ayas, A semi-analytical thermal modelling approach
    for selective laser melting, Additive Manufacturing 21 (2018) 284-297.
    [30] B. Cheng, S. Shrestha, K. Chou, Stress and deformation evaluations of scanning strategy
    effect in selective laser melting, Additive Manufacturing 12 (2016) 240-251.
    [31] L.H. Ahmed Hussein, Chunze Yan, Richard Everson, Finite element simulation of the
    temperature and stress fields in single layers built without-support in selective laser melting,
    Materials and Design 52 (2013) 638-647.
    [32] H. Peng, D.B. Go, R. Billo, S. Gong, M.R. Shankar, B.A. Gatrell, J. Budzinski, P. Ostiguy,
    R. Attardo, C. Tomonto, Part-scale model for fast prediction of thermal distortion in DMLS
    additive manufacturing; Part 2: a quasi-static thermo-mechanical model, Austin, Texas (2016).
    [33] M.F. Zaeh, G. Branner, Investigations on residual stresses and deformations in selective laser
    melting, Production Engineering 4(1) (2010) 35-45.
    [34] C. Li, C. Fu, Y. Guo, F. Fang, A multiscale modeling approach for fast prediction of part
    distortion in selective laser melting, Journal of Materials Processing Technology 229 (2016) 703-
    712.
    [35] C. Li, Z. Liu, X. Fang, Y. Guo, On the Simulation Scalability of Predicting Residual Stress
    and Distortion in Selective Laser Melting, Journal of Manufacturing Science and Engineering
    140(4) (2018) 041013.
    [36] S. Afazov, W.A. Denmark, B.L. Toralles, A. Holloway, A. Yaghi, Distortion Prediction and
    Compensation in Selective Laser Melting, Additive Manufacturing 17 (2017) 15-22.
    [37] Y. Lee, W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of
    nickel-base superalloy fabricated by laser powder bed fusion, Additive Manufacturing 12 (2016)
    178-188.
    [38] L. Scime, J. Beuth, A multi-scale convolutional neural network for autonomous anomaly
    detection and classification in a laser powder bed fusion additive manufacturing process, Additive
    Manufacturing 24 (2018) 273-286.
    [39] L. Scime, J. Beuth, Using machine learning to identify in-situ melt pool signatures indicative
    of flaw formation in a laser powder bed fusion additive manufacturing process, Additive
    Manufacturing 25 (2019) 151-165.
    [40] X. Xie, J. Bennett, S. Saha, Y. Lu, J. Cao, W.K. Liu, Z. Gan, Mechanistic data-driven
    prediction of as-built mechanical properties in metal additive manufacturing, npj Computational
    Materials 7(1) (2021) 1-12.
    [41] C. Wang, X. Tan, S. Tor, C. Lim, Machine learning in additive manufacturing: State-of-theart and perspectives, Additive Manufacturing (2020) 101538.
    [42] J. Li, R. Jin, Z.Y. Hang, Integration of physically-based and data-driven approaches for
    thermal field prediction in additive manufacturing, Materials & Design 139 (2018) 473-485.
    [43] M. Mozaffar, A. Paul, R. Al-Bahrani, S. Wolff, A. Choudhary, A. Agrawal, K. Ehmann, J.
    Cao, Data-driven prediction of the high-dimensional thermal history in directed energy deposition
    processes via recurrent neural networks, Manufacturing letters 18 (2018) 35-39.
    [44] A. Paul, M. Mozaffar, Z. Yang, W.-k. Liao, A. Choudhary, J. Cao, A. Agrawal, A real-time
    iterative machine learning approach for temperature profile prediction in additive manufacturing
    processes, 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA),
    IEEE, 2019, pp. 541-550.
    [45] S. Clijsters, T. Craeghs, J.-P. Kruth, A priori process parameter adjustment for SLM process
    optimization, Innovative developments on virtual and physical prototyping, Taylor & Francis
    Group., 2012, pp. 553-560.
    [46] R. Mertens, S. Clijsters, K. Kempen, J.-P. Kruth, Optimization of scan strategies in selective
    laser melting of aluminum parts with downfacing areas, Journal of Manufacturing Science and
    Engineering 136(6) (2014) 061012.
    [47] J.-P. Kruth, J. Deckers, E. Yasa, R. Wauthlé, Assessing and comparing influencing factors of
    residual stresses in selective laser melting using a novel analysis method, Proceedings of the
    institution of mechanical engineers, Part B: Journal of Engineering Manufacture 226(6) (2012)
    980-991.
    [48] Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie, J. Lin, Study on the microstructure,
    mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing
    island scanning strategy, Optics & Laser Technology 75 (2015) 197-206.
    [49] E. Foroozmehr, R. Kovacevic, Effect of path planning on the laser powder deposition process:
    thermal and structural evaluation, The International Journal of Advanced Manufacturing
    Technology 51(5-8) (2010) 659-669.
    [50] L.H. Ahmed Hussein, Chunze Yan, Richard Everson, Finite element simulation of the
    temperature and stress fields in single layers built without-support in selective laser melting,
    Materials and Design (2013).
    [51] J.-P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, J. Van Humbeeck, Part and
    material properties in selective laser melting of metals, Proceedings of the 16th international
    symposium on electromachining, 2010, pp. 1-12.
    [52] L. Thijs, K. Kempen, J.-P. Kruth, J. Van Humbeeck, Fine-structured aluminium products with
    controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Materialia
    61(5) (2013) 1809-1819.
    [53] D. Ding, Z.S. Pan, D. Cuiuri, H. Li, A tool-path generation strategy for wire and arc additive
    manufacturing, The international journal of advanced manufacturing technology 73(1-4) (2014)
    173-183.
    [54] B.E. Carroll, T.A. Palmer, A.M. Beese, Anisotropic tensile behavior of Ti–6Al–4V
    components fabricated with directed energy deposition additive manufacturing, Acta Materialia
    87 (2015) 309-320.
    [55] D. Ding, Z. Pan, D. Cuiuri, H. Li, A practical path planning methodology for wire and arc
    additive manufacturing of thin-walled structures, Robotics and Computer-Integrated
    Manufacturing 34 (2015) 8-19.
    [56] D. Ding, Z. Pan, D. Cuiuri, H. Li, S. van Duin, N. Larkin, Bead modelling and implementation
    of adaptive MAT path in wire and arc additive manufacturing, Robotics and Computer-Integrated
    Manufacturing 39 (2016) 32-42.
    [57] R. Ponche, O. Kerbrat, P. Mognol, J.-Y. Hascoet, A novel methodology of design for Additive
    Manufacturing applied to Additive Laser Manufacturing process, Robotics and ComputerIntegrated Manufacturing 30(4) (2014) 389-398.
    [58] D.E. Smith, R. Hoglund, Continuous fiber angle topology optimization for polymer fused
    fillament fabrication, Annu. Int. Solid Free. Fabr. Symp. Austin, TX, 2016.
    [59] J. Liu, J. Liu, H. Yu, H. Yu, Concurrent deposition path planning and structural topology
    optimization for additive manufacturing, Rapid Prototyping Journal 23(5) (2017) 930-942.
    [60] Q. Xia, T. Shi, Optimization of composite structures with continuous spatial variation of fiber
    angle through Shepard interpolation, Composite Structures 182 (2017) 273-282.
    [61] C. Kiyono, E. Silva, J. Reddy, A novel fiber optimization method based on normal distribution
    function with continuously varying fiber path, Composite Structures 160 (2017) 503-515.
    [62] C.J. Brampton, K.C. Wu, H.A. Kim, New optimization method for steered fiber composites
    using the level set method, Structural and Multidisciplinary Optimization 52(3) (2015) 493-505.
    [63] J. Liu, A.C. To, Deposition path planning-integrated structural topology optimization for 3D
    additive manufacturing subject to self-support constraint, Computer-Aided Design 91 (2017) 27-
    45.
    [64] H. Shen, J. Fu, Z. Chen, Y. Fan, Generation of offset surface for tool path in NC machining
    through level set methods, The International Journal of Advanced Manufacturing Technology
    46(9-12) (2010) 1043-1047.
    [65] C. Zhuang, Z. Xiong, H. Ding, High speed machining tool path generation for pockets using
    level sets, International Journal of Production Research 48(19) (2010) 5749-5766.
    [66] K.C. Mills, Recommended values of thermophysical properties for selected commercial
    alloys, Woodhead Publishing2002.
    [67] S.S. Sih, J.W. Barlow, The prediction of the emissivity and thermal conductivity of powder
    beds, Particulate Science and Technology 22(4) (2004) 427-440.
    [68] L. Dong, A. Makradi, S. Ahzi, Y. Remond, Three-dimensional transient finite element
    analysis of the selective laser sintering process, Journal of materials processing technology 209(2)
    (2009) 700-706.
    [69] J.J. Beaman, J.W. Barlow, D.L. Bourell, R.H. Crawford, H.L. Marcus, K.P. McAlea, Solid
    freeform fabrication: a new direction in manufacturing, Kluwer Academic Publishers, Norwell,
    MA 2061 (1997) 25-49.
    [70] G. Bugeda Miguel Cervera, G. Lombera, Numerical prediction of temperature and density
    distributions in selective laser sintering processes, Rapid Prototyping Journal 5(1) (1999) 21-26.
    [71] T. Mukherjee, W. Zhang, T. DebRoy, An improved prediction of residual stresses and
    distortion in additive manufacturing, Computational Materials Science 126 (2017) 360-372.
    [72] A.J. Dunbar, E.R. Denlinger, M.F. Gouge, P. Michaleris, Experimental validation of finite
    element modeling for laser powderbed fusion deformation, Additive Manufacturing 12 (2016)
    108-120.
    [73] J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources,
    Metallurgical and Materials Transactions B 15(2) (1984) 299-305.
    [74] J. Liu, Q. Chen, Y. Zhao, W. Xiong, A. To, Quantitative Texture Prediction of Epitaxial
    Columnar Grains in Alloy 718 Processed by Additive Manufacturing, Proceedings of the 9th
    International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial
    Applications, Springer, 2018, pp. 749-755.
    [75] J. Irwin, P. Michaleris, A line heat input model for additive manufacturing, Journal of
    Manufacturing Science and Engineering 138(11) (2016) 111004.
    [76] M. Gouge, J. Heigel, P. Michaleris, T. Palmer, Modeling forced convection in the thermal
    simulation of laser cladding processes, International Journal of Advanced Manufacturing
    Technology 79 (2015).
    [77] J. Heigel, P. Michaleris, E. Reutzel, Thermo-mechanical model development and validation
    of directed energy deposition additive manufacturing of Ti–6Al–4V, Additive manufacturing 5
    (2015) 9-19.
    [78] E.R. Denlinger, J.C. Heigel, P. Michaleris, Residual stress and distortion modeling of electron
    beam direct manufacturing Ti-6Al-4V, Proceedings of the Institution of Mechanical Engineers,
    Part B: Journal of Engineering Manufacture 229(10) (2015) 1803-1813.
    [79] X. Liang, Q. Chen, L. Cheng, Q. Yang, A. To, A modified inherent strain method for fast
    prediction of residual deformation in additive manufacturing of metal parts, 2017 Solid Freeform
    Fabrication Symposium Proceedings, Austin, Texas, 2017.
    [80] X. Liang, L. Cheng, Q. Chen, Q. Yang, A. To, A Modified Method for Estimating Inherent
    Strains from Detailed Process Simulation for Fast Residual Distortion Prediction of Single-Walled
    Structures Fabricated by Directed Energy Deposition, Additive Manufacturing 23 (2018) 471-486.
    [81] L. Sochalski-Kolbus, E.A. Payzant, P.A. Cornwell, T.R. Watkins, S.S. Babu, R.R. Dehoff,
    M. Lorenz, O. Ovchinnikova, C. Duty, Comparison of residual stresses in Inconel 718 simple parts
    made by electron beam melting and direct laser metal sintering, Metallurgical and Materials
    Transactions A 46(3) (2015) 1419-1432.
    [82] P. Mercelis, J.-P. Kruth, Residual stresses in selective laser sintering and selective laser
    melting, Rapid Prototyping Journal 12(5) (2006) 254-265.
    [83] N. Hodge, R. Ferencz, J. Solberg, Implementation of a thermomechanical model for the
    simulation of selective laser melting, Computational Mechanics 54(1) (2014) 33-51.
    [84] A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, W.E. King, An experimental investigation
    into additive manufacturing-induced residual stresses in 316L stainless steel, Metallurgical and
    Materials Transactions A 45(13) (2014) 6260-6270.
    [85] C. Li, J. liu, Y. Guo, Efficient predictive model of part distortion and residual stress in
    selective laser melting, Solid Freeform Fabrication 2016, 2017.
    [86] Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka, A. Chiba, Molten pool behavior and
    effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a
    biomedical Co-Cr-Mo alloy, Additive Manufacturing 26 (2019) 202-214.
    [87] J.-H. Cho, S.-J. Na, Implementation of real-time multiple reflection and Fresnel absorption of
    laser beam in keyhole, Journal of Physics D: Applied Physics 39(24) (2006) 5372.
    [88] Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa,
    W. Everhart, T. Sun, In-situ characterization and quantification of melt pool variation under
    constant input energy density in laser powder-bed fusion additive manufacturing process, Additive
    Manufacturing (2019).
    [89] E. Assuncao, S. Williams, D. Yapp, Interaction time and beam diameter effects on the
    conduction mode limit, Optics and Lasers in Engineering 50(6) (2012) 823-828.
    [90] R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, A.D. Rollett,
    Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging,
    Science 363(6429) (2019) 849-852.
    [91] W. Tan, N.S. Bailey, Y.C. Shin, Investigation of keyhole plume and molten pool based on a
    three-dimensional dynamic model with sharp interface formulation, Journal of Physics D: Applied
    Physics 46(5) (2013) 055501.
    [92] W. Tan, Y.C. Shin, Analysis of multi-phase interaction and its effects on keyhole dynamics
    with a multi-physics numerical model, Journal of Physics D: Applied Physics 47(34) (2014)
    345501.
    [93] R. Fabbro, K. Chouf, Keyhole modeling during laser welding, Journal of applied Physics
    87(9) (2000) 4075-4083.
    [94] Q. Guo, C. Zhao, M. Qu, L. Xiong, S.M.H. Hojjatzadeh, L.I. Escano, N.D. Parab, K. Fezzaa,
    T. Sun, L. Chen, In-situ full-field mapping of melt flow dynamics in laser metal additive
    manufacturing, Additive Manufacturing 31 (2020) 100939.
    [95] Y. Ueda, K. Fukuda, K. Nakacho, S. Endo, A new measuring method of residual stresses with
    the aid of finite element method and reliability of estimated values, Journal of the Society of Naval
    Architects of Japan 1975(138) (1975) 499-507.
    [96] M.R. Hill, D.V. Nelson, The inherent strain method for residual stress determination and its
    application to a long welded joint, ASME-PUBLICATIONS-PVP 318 (1995) 343-352.
    [97] H. Murakawa, Y. Luo, Y. Ueda, Prediction of welding deformation and residual stress by
    elastic FEM based on inherent strain, Journal of the society of Naval Architects of Japan 1996(180)
    (1996) 739-751.
    [98] M. Yuan, Y. Ueda, Prediction of residual stresses in welded T-and I-joints using inherent
    strains, Journal of Engineering Materials and Technology, Transactions of the ASME 118(2)
    (1996) 229-234.
    [99] L. Zhang, P. Michaleris, P. Marugabandhu, Evaluation of applied plastic strain methods for
    welding distortion prediction, Journal of Manufacturing Science and Engineering 129(6) (2007)
    1000-1010.
    [100] M. Bugatti, Q. Semeraro, Limitations of the Inherent Strain Method in Simulating Powder
    Bed Fusion Processes, Additive Manufacturing 23 (2018) 329-346.
    [101] L. Cheng, X. Liang, J. Bai, Q. Chen, J. Lemon, A. To, On Utilizing Topology Optimization
    to Design Support Structure to Prevent Residual Stress Induced Build Failure in Laser Powder Bed
    Metal Additive Manufacturing, Additive Manufacturing (2019).
    [102] Q. Chen, X. Liang, D. Hayduke, J. Liu, L. Cheng, J. Oskin, R. Whitmore, A.C. To, An
    inherent strain based multiscale modeling framework for simulating part-scale residual
    deformation for direct metal laser sintering, Additive Manufacturing 28 (2019) 406-418.
    [103] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based
    on Hamilton-Jacobi formulations, Journal of computational physics 79(1) (1988) 12-49.
    [104] M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization,
    Computer methods in applied mechanics and engineering 192(1) (2003) 227-246.
    [105] G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a
    level-set method, Journal of computational physics 194(1) (2004) 363-393.
    [106] Y. Wang, Z. Luo, Z. Kang, N. Zhang, A multi-material level set-based topology and shape
    optimization method, Computer Methods in Applied Mechanics and Engineering 283 (2015)
    1570-1586.
    [107] P. Dunning, C. Brampton, H. Kim, Simultaneous optimisation of structural topology and
    material grading using level set method, Materials Science and Technology 31(8) (2015) 884-894.
    [108] P. Liu, Y. Luo, Z. Kang, Multi-material topology optimization considering interface
    behavior via XFEM and level set method, Computer methods in applied mechanics and
    engineering 308 (2016) 113-133.
    [109] J. Liu, Q. Chen, Y. Zheng, R. Ahmad, J. Tang, Y. Ma, Level set-based heterogeneous object
    modeling and optimization, Computer-Aided Design (2019).
    [110] J. Liu, Q. Chen, X. Liang, A.C. To, Manufacturing cost constrained topology optimization
    for additive manufacturing, Frontiers of Mechanical Engineering 14(2) (2019) 213-221.
    [111] Z. Kang, Y. Wang, Integrated topology optimization with embedded movable holes based
    on combined description by material density and level sets, Computer methods in applied
    mechanics and engineering 255 (2013) 1-13.
    [112] P.D. Dunning, H. Alicia Kim, A new hole insertion method for level set based structural
    topology optimization, International Journal for Numerical Methods in Engineering 93(1) (2013)
    118-134.
    [113] J.A. Sethian, A fast marching level set method for monotonically advancing fronts,
    Proceedings of the National Academy of Sciences 93(4) (1996) 1591-1595.
    [114] J.A. Sethian, Level set methods and fast marching methods: evolving interfaces in
    computational geometry, fluid mechanics, computer vision, and materials science, Cambridge
    university press1999.
    [115] C. Le, J. Norato, T. Bruns, C. Ha, D. Tortorelli, Stress-based topology optimization for
    continua, Structural and Multidisciplinary Optimization 41(4) (2010) 605-620.
    [116] A. Takezawa, G.H. Yoon, S.H. Jeong, M. Kobashi, M. Kitamura, Structural topology
    optimization with strength and heat conduction constraints, Computer Methods in Applied
    Mechanics and Engineering 276 (2014) 341-361.
    [117] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation 9(8) (1997)
    1735-1780.
    [118] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional
    neural networks, Advances in neural information processing systems 25 (2012) 1097-1105.
    [119] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
    recognition, arXiv preprint arXiv:1409.1556 (2014).
    [120] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings
    of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
    [121] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
    Khosla, M. Bernstein, Imagenet large scale visual recognition challenge, International journal of
    computer vision 115(3) (2015) 211-252.
    [122] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object detection with
    region proposal networks, Advances in neural information processing systems 28 (2015) 91-99.
    [123] E.J. Schwalbach, S.P. Donegan, M.G. Chapman, K.J. Chaput, M.A. Groeber, A discrete
    source model of powder bed fusion additive manufacturing thermal history, Additive
    Manufacturing 25 (2019) 485-498.
    [124] D.G. Duffy, Green’s functions with applications, Chapman and Hall/CRC2015.
    [125] J. Martínez-Frutos, D. Herrero-Pérez, Efficient matrix-free GPU implementation of fixed
    grid finite element analysis, Finite Elements in Analysis and Design 104 (2015) 61-71.
    [126] F. Dugast, P. Apostolou, A. Fernandez, W. Dong, Q. Chen, S. Strayer, R. Wicker, A.C. To,
    Part-scale thermal process modeling for laser powder bed fusion with matrix-free method and GPU
    computing, Additive Manufacturing 37 (2021) 101732.
    [127] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I.
    Polosukhin, Attention is all you need, Advances in neural information processing systems, 2017,
    pp. 5998-6008.
    [128] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
    transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).

    Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

    다공성 미디어 및 나노유체에 의해 강화된 수집기로 태양광 CCHP 시스템의 최적화

    Optimization of Solar CCHP Systems with Collector Enhanced by Porous Media and Nanofluid


    Navid Tonekaboni,1Mahdi Feizbahr,2 Nima Tonekaboni,1Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4

    Abstract

    태양열 집열기의 낮은 효율은 CCHP(Solar Combined Cooling, Heating, and Power) 사이클의 문제점 중 하나로 언급될 수 있습니다. 태양계를 개선하기 위해 나노유체와 다공성 매체가 태양열 집열기에 사용됩니다.

    다공성 매질과 나노입자를 사용하는 장점 중 하나는 동일한 조건에서 더 많은 에너지를 흡수할 수 있다는 것입니다. 이 연구에서는 평균 일사량이 1b인 따뜻하고 건조한 지역의 600 m2 건물의 전기, 냉방 및 난방을 생성하기 위해 다공성 매질과 나노유체를 사용하여 태양열 냉난방 복합 발전(SCCHP) 시스템을 최적화했습니다.

    본 논문에서는 침전물이 형성되지 않는 lb = 820 w/m2(이란) 정도까지 다공성 물질에서 나노유체의 최적량을 계산하였다. 이 연구에서 태양열 집열기는 구리 다공성 매체(95% 다공성)와 CuO 및 Al2O3 나노 유체로 향상되었습니다.

    나노유체의 0.1%-0.6%가 작동 유체로 물에 추가되었습니다. 나노유체의 0.5%가 태양열 집열기 및 SCCHP 시스템에서 가장 높은 에너지 및 엑서지 효율 향상으로 이어지는 것으로 밝혀졌습니다.

    본 연구에서 포물선형 집열기(PTC)의 최대 에너지 및 엑서지 효율은 각각 74.19% 및 32.6%입니다. 그림 1은 태양 CCHP의 주기를 정확하게 설명하기 위한 그래픽 초록으로 언급될 수 있습니다.

    The low efficiency of solar collectors can be mentioned as one of the problems in solar combined cooling, heating, and power (CCHP) cycles. For improving solar systems, nanofluid and porous media are used in solar collectors. One of the advantages of using porous media and nanoparticles is to absorb more energy under the same conditions. In this research, a solar combined cooling, heating, and power (SCCHP) system has been optimized by porous media and nanofluid for generating electricity, cooling, and heating of a 600 m2 building in a warm and dry region with average solar radiation of Ib = 820 w/m2 in Iran. In this paper, the optimal amount of nanofluid in porous materials has been calculated to the extent that no sediment is formed. In this study, solar collectors were enhanced with copper porous media (95% porosity) and CuO and Al2O3 nanofluids. 0.1%–0.6% of the nanofluids were added to water as working fluids; it is found that 0.5% of the nanofluids lead to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Maximum energy and exergy efficiency of parabolic thermal collector (PTC) riches in this study are 74.19% and 32.6%, respectively. Figure 1 can be mentioned as a graphical abstract for accurately describing the cycle of solar CCHP.

    1. Introduction

    Due to the increase in energy consumption, the use of clean energy is one of the important goals of human societies. In the last four decades, the use of cogeneration cycles has increased significantly due to high efficiency. Among clean energy, the use of solar energy has become more popular due to its greater availability [1]. Low efficiency of energy production, transmission, and distribution system makes a new system to generate simultaneously electricity, heating, and cooling as an essential solution to be widely used. The low efficiency of the electricity generation, transmission, and distribution system makes the CCHP system a basic solution to eliminate waste of energy. CCHP system consists of a prime mover (PM), a power generator, a heat recovery system (produce extra heating/cooling/power), and thermal energy storage (TES) [2]. Solar combined cooling, heating, and power (SCCHP) has been started three decades ago. SCCHP is a system that receives its propulsive force from solar energy; in this cycle, solar collectors play the role of propulsive for generating power in this system [3].

    Increasing the rate of energy consumption in the whole world because of the low efficiency of energy production, transmission, and distribution system causes a new cogeneration system to generate electricity, heating, and cooling energy as an essential solution to be widely used. Building energy utilization fundamentally includes power required for lighting, home electrical appliances, warming and cooling of building inside, and boiling water. Domestic usage contributes to an average of 35% of the world’s total energy consumption [4].

    Due to the availability of solar energy in all areas, solar collectors can be used to obtain the propulsive power required for the CCHP cycle. Solar energy is the main source of energy in renewable applications. For selecting a suitable area to use solar collectors, annual sunshine hours, the number of sunny days, minus temperature and frosty days, and the windy status of the region are essentially considered [5]. Iran, with an average of more than 300 sunny days, is one of the suitable countries to use solar energy. Due to the fact that most of the solar radiation is in the southern regions of Iran, also the concentration of cities is low in these areas, and transmission lines are far apart, one of the best options is to use CCHP cycles based on solar collectors [6]. One of the major problems of solar collectors is their low efficiency [7]. Low efficiency increases the area of collectors, which increases the initial cost of solar systems and of course increases the initial payback period. To increase the efficiency of solar collectors and improve their performance, porous materials and nanofluids are used to increase their workability.

    There are two ways to increase the efficiency of solar collectors and mechanical and fluid improvement. In the first method, using porous materials or helical filaments inside the collector pipes causes turbulence of the flow and increases heat transfer. In the second method, using nanofluids or salt and other materials increases the heat transfer of water. The use of porous materials has grown up immensely over the past twenty years. Porous materials, especially copper porous foam, are widely used in solar collectors. Due to the high contact surface area, porous media are appropriate candidates for solar collectors [8]. A number of researchers investigated Solar System performance in accordance with energy and exergy analyses. Zhai et al. [9] reviewed the performance of a small solar-powered system in which the energy efficiency was 44.7% and the electrical efficiency was 16.9%.

    Abbasi et al. [10] proposed an innovative multiobjective optimization to optimize the design of a cogeneration system. Results showed the CCHP system based on an internal diesel combustion engine was the applicable alternative at all regions with different climates. The diesel engine can supply the electrical requirement of 31.0% and heating demand of 3.8% for building.

    Jiang et al. [11] combined the experiment and simulation together to analyze the performance of a cogeneration system. Moreover, some research focused on CCHP systems using solar energy. It integrated sustainable and renewable technologies in the CCHP, like PV, Stirling engine, and parabolic trough collector (PTC) [21215].

    Wang et al. [16] optimized a cogeneration solar cooling system with a Rankine cycle and ejector to reach the maximum total system efficiency of 55.9%. Jing et al. analyzed a big-scale building with the SCCHP system and auxiliary heaters to produced electrical, cooling, and heating power. The maximum energy efficiency reported in their work is 46.6% [17]. Various optimization methods have been used to improve the cogeneration system, minimum system size, and performance, such as genetic algorithm [1819].

    Hirasawa et al. [20] investigated the effect of using porous media to reduce thermal waste in solar systems. They used the high-porosity metal foam on top of the flat plate solar collector and observed that thermal waste decreased by 7% due to natural heat transfer. Many researchers study the efficiency improvement of the solar collector by changing the collector’s shapes or working fluids. However, the most effective method is the use of nanofluids in the solar collector as working fluid [21]. In the experimental study done by Jouybari et al. [22], the efficiency enhancement up to 8.1% was achieved by adding nanofluid in a flat plate collector. In this research, by adding porous materials to the solar collector, collector efficiency increased up to 92% in a low flow regime. Subramani et al. [23] analyzed the thermal performance of the parabolic solar collector with Al2O3 nanofluid. They conducted their experiments with Reynolds number range 2401 to 7202 and mass flow rate 0.0083 to 0.05 kg/s. The maximum efficiency improvement in this experiment was 56% at 0.05 kg/s mass flow rate.

    Shojaeizadeh et al. [24] investigated the analysis of the second law of thermodynamic on the flat plate solar collector using Al2O3/water nanofluid. Their research showed that energy efficiency rose up to 1.9% and the exergy efficiency increased by a maximum of 0.72% compared to pure water. Tiwari et al. [25] researched on the thermal performance of solar flat plate collectors for working fluid water with different nanofluids. The result showed that using 1.5% (optimum) particle volume fraction of Al2O3 nanofluid as an absorbing medium causes the thermal efficiency to enhance up to 31.64%.

    The effect of porous media and nanofluids on solar collectors has already been investigated in the literature but the SCCHP system with a collector embedded by both porous media and nanofluid for enhancing the ratio of nanoparticle in nanofluid for preventing sedimentation was not discussed. In this research, the amount of energy and exergy of the solar CCHP cycles with parabolic solar collectors in both base and improved modes with a porous material (copper foam with 95% porosity) and nanofluid with different ratios of nanoparticles was calculated. In the first step, it is planned to design a CCHP system based on the required load, and, in the next step, it will analyze the energy and exergy of the system in a basic and optimize mode. In the optimize mode, enhanced solar collectors with porous material and nanofluid in different ratios (0.1%–0.7%) were used to optimize the ratio of nanofluids to prevent sedimentation.

    2. Cycle Description

    CCHP is one of the methods to enhance energy efficiency and reduce energy loss and costs. The SCCHP system used a solar collector as a prime mover of the cogeneration system and assisted the boiler to generate vapor for the turbine. Hot water flows from the expander to the absorption chiller in summer or to the radiator or fan coil in winter. Finally, before the hot water wants to flow back to the storage tank, it flows inside a heat exchanger for generating domestic hot water [26].

    For designing of solar cogeneration system and its analysis, it is necessary to calculate the electrical, heating (heating load is the load required for the production of warm water and space heating), and cooling load required for the case study considered in a residential building with an area of 600 m2 in the warm region of Iran (Zahedan). In Table 1, the average of the required loads is shown for the different months of a year (average of electrical, heating, and cooling load calculated with CARRIER software).Table 1 The average amount of electric charges, heating load, and cooling load used in the different months of the year in the city of Zahedan for a residential building with 600 m2.

    According to Table 1, the maximum magnitude of heating, cooling, and electrical loads is used to calculate the cogeneration system. The maximum electric load is 96 kW, the maximum amount of heating load is 62 kW, and the maximum cooling load is 118 kW. Since the calculated loads are average, all loads increased up to 10% for the confidence coefficient. With the obtained values, the solar collector area and other cogeneration system components are calculated. The cogeneration cycle is capable of producing 105 kW electric power, 140 kW cooling capacity, and 100 kW heating power.

    2.1. System Analysis Equations

    An analysis is done by considering the following assumptions:(1)The system operates under steady-state conditions(2)The system is designed for the warm region of Iran (Zahedan) with average solar radiation Ib = 820 w/m2(3)The pressure drops in heat exchangers, separators, storage tanks, and pipes are ignored(4)The pressure drop is negligible in all processes and no expectable chemical reactions occurred in the processes(5)Potential, kinetic, and chemical exergy are not considered due to their insignificance(6)Pumps have been discontinued due to insignificance throughout the process(7)All components are assumed adiabatic

    Schematic shape of the cogeneration cycle is shown in Figure 1 and all data are given in Table 2.

    Figure 1 Schematic shape of the cogeneration cycle.Table 2 Temperature and humidity of different points of system.

    Based on the first law of thermodynamic, energy analysis is based on the following steps.

    First of all, the estimated solar radiation energy on collector has been calculated:where α is the heat transfer enhancement coefficient based on porous materials added to the collector’s pipes. The coefficient α is increased by the porosity percentage, the type of porous material (in this case, copper with a porosity percentage of 95), and the flow of fluid to the collector equation.

    Collector efficiency is going to be calculated by the following equation [9]:

    Total energy received by the collector is given by [9]

    Also, the auxiliary boiler heat load is [2]

    Energy consumed from vapor to expander is calculated by [2]

    The power output form by the screw expander [9]:

    The efficiency of the expander is 80% in this case [11].

    In this step, cooling and heating loads were calculated and then, the required heating load to reach sanitary hot water will be calculated as follows:

    First step: calculating the cooling load with the following equation [9]:

    Second step: calculating heating loads [9]:

    Then, calculating the required loud for sanitary hot water will be [9]

    According to the above-mentioned equations, efficiency is [9]

    In the third step, calculated exergy analysis as follows.

    First, the received exergy collector from the sun is calculated [9]:

    In the previous equation, f is the constant of air dilution.

    The received exergy from the collector is [9]

    In the case of using natural gas in an auxiliary heater, the gas exergy is calculated from the following equation [12]:

    Delivering exergy from vapor to expander is calculated with the following equation [9]:

    In the fourth step, the exergy in cooling and heating is calculated by the following equation:

    Cooling exergy in summer is calculated [9]:

    Heating exergy in winter is calculated [9]:

    In the last step based on thermodynamic second law, exergy efficiency has been calculated from the following equation and the above-mentioned calculated loads [9]:

    3. Porous Media

    The porous medium that filled the test section is copper foam with a porosity of 95%. The foams are determined in Figure 2 and also detailed thermophysical parameters and dimensions are shown in Table 3.

    Figure 2 Copper foam with a porosity of 95%.Table 3 Thermophysical parameters and dimensions of copper foam.

    In solar collectors, copper porous materials are suitable for use at low temperatures and have an easier and faster manufacturing process than ceramic porous materials. Due to the high coefficient conductivity of copper, the use of copper metallic foam to increase heat transfer is certainly more efficient in solar collectors.

    Porous media and nanofluid in solar collector’s pipes were simulated in FLOW-3D software using the finite-difference method [27]. Nanoparticles Al2O3 and CUO are mostly used in solar collector enhancement. In this research, different concentrations of nanofluid are added to the parabolic solar collectors with porous materials (copper foam with porosity of 95%) to achieve maximum heat transfer in the porous materials before sedimentation. After analyzing PTC pipes with the nanofluid flow in FLOW-3D software, for energy and exergy efficiency analysis, Carrier software results were used as EES software input. Simulation PTC with porous media inside collector pipe and nanofluids sedimentation is shown in Figure 3.

    Figure 3 Simulation PTC pipes enhanced with copper foam and nanoparticles in FLOW-3D software.

    3.1. Nano Fluid

    In this research, copper and silver nanofluids (Al2O3, CuO) have been added with percentages of 0.1%–0.7% as the working fluids. The nanoparticle properties are given in Table 4. Also, system constant parameters are presented in Table 4, which are available as default input in the EES software.Table 4 Properties of the nanoparticles [9].

    System constant parameters for input in the software are shown in Table 5.Table 5 System constant parameters.

    The thermal properties of the nanofluid can be obtained from equations (18)–(21). The basic fluid properties are indicated by the index (bf) and the properties of the nanoparticle silver with the index (np).

    The density of the mixture is shown in the following equation [28]:where ρ is density and ϕ is the nanoparticles volume fraction.

    The specific heat capacity is calculated from the following equation [29]:

    The thermal conductivity of the nanofluid is calculated from the following equation [29]:

    The parameter β is the ratio of the nanolayer thickness to the original particle radius and, usually, this parameter is taken equal to 0.1 for the calculated thermal conductivity of the nanofluids.

    The mixture viscosity is calculated as follows [30]:

    In all equations, instead of water properties, working fluids with nanofluid are used. All of the above equations and parameters are entered in the EES software for calculating the energy and exergy of solar collectors and the SCCHP cycle. All calculation repeats for both nanofluids with different concentrations of nanofluid in the solar collector’s pipe.

    4. Results and Discussion

    In the present study, relations were written according to Wang et al. [16] and the system analysis was performed to ensure the correctness of the code. The energy and exergy charts are plotted based on the main values of the paper and are shown in Figures 4 and 5. The error rate in this simulation is 1.07%.

    Figure 4 Verification charts of energy analysis results.

    Figure 5 Verification charts of exergy analysis results.

    We may also investigate the application of machine learning paradigms [3141] and various hybrid, advanced optimization approaches that are enhanced in terms of exploration and intensification [4255], and intelligent model studies [5661] as well, for example, methods such as particle swarm optimizer (PSO) [6062], differential search (DS) [63], ant colony optimizer (ACO) [616465], Harris hawks optimizer (HHO) [66], grey wolf optimizer (GWO) [5367], differential evolution (DE) [6869], and other fusion and boosted systems [4146485054557071].

    At the first step, the collector is modified with porous copper foam material. 14 cases have been considered for the analysis of the SCCHP system (Table 6). It should be noted that the adding of porous media causes an additional pressure drop inside the collector [922263072]. All fourteen cases use copper foam with a porosity of 95 percent. To simulate the effect of porous materials and nanofluids, the first solar PTC pipes have been simulated in the FLOW-3D software and then porous media (copper foam with porosity of 95%) and fluid flow with nanoparticles (AL2O3 and CUO) are generated in the software. After analyzing PTC pipes in FLOW-3D software, for analyzing energy and exergy efficiency, software outputs were used as EES software input for optimization ratio of sedimentation and calculating energy and exergy analyses.Table 6 Collectors with different percentages of nanofluids and porous media.

    In this research, an enhanced solar collector with both porous media and Nanofluid is investigated. In the present study, 0.1–0.5% CuO and Al2O3 concentration were added to the collector fully filled by porous media to achieve maximum energy and exergy efficiencies of solar CCHP systems. All steps of the investigation are shown in Table 6.

    Energy and exergy analyses of parabolic solar collectors and SCCHP systems are shown in Figures 6 and 7.

    Figure 6 Energy and exergy efficiencies of the PTC with porous media and nanofluid.

    Figure 7 Energy and exergy efficiency of the SCCHP.

    Results show that the highest energy and exergy efficiencies are 74.19% and 32.6%, respectively, that is achieved in Step 12 (parabolic collectors with filled porous media and 0.5% Al2O3). In the second step, the maximum energy efficiency of SCCHP systems with fourteen steps of simulation are shown in Figure 7.

    In the second step, where 0.1, −0.6% of the nanofluids were added, it is found that 0.5% leads to the highest energy and exergy efficiency enhancement in solar collectors and SCCHP systems. Using concentrations more than 0.5% leads to sediment in the solar collector’s pipe and a decrease of porosity in the pipe [73]. According to Figure 7, maximum energy and exergy efficiencies of SCCHP are achieved in Step 12. In this step energy efficiency is 54.49% and exergy efficiency is 18.29%. In steps 13 and 14, with increasing concentration of CUO and Al2O3 nanofluid solution in porous materials, decreasing of energy and exergy efficiency of PTC and SCCHP system at the same time happened. This decrease in efficiency is due to the formation of sediment in the porous material. Calculations and simulations have shown that porous materials more than 0.5% nanofluids inside the collector pipe cause sediment and disturb the porosity of porous materials and pressure drop and reduce the coefficient of performance of the cogeneration system. Most experience showed that CUO and AL2O3 nanofluids with less than 0.6% percent solution are used in the investigation on the solar collectors at low temperatures and discharges [74]. One of the important points of this research is that the best ratio of nanofluids in the solar collector with a low temperature is 0.5% (AL2O3 and CUO); with this replacement, the cost of solar collectors and SCCHP cycle is reduced.

    5. Conclusion and Future Directions

    In the present study, ways for increasing the efficiency of solar collectors in order to enhance the efficiency of the SCCHP cycle are examined. The research is aimed at adding both porous materials and nanofluids for estimating the best ratio of nanofluid for enhanced solar collector and protecting sedimentation in porous media. By adding porous materials (copper foam with porosity of 95%) and 0.5% nanofluids together, high efficiency in solar parabolic collectors can be achieved. The novelty in this research is the addition of both nanofluids and porous materials and calculating the best ratio for preventing sedimentation and pressure drop in solar collector’s pipe. In this study, it was observed that, by adding 0.5% of AL2O3 nanofluid in working fluids, the energy efficiency of PTC rises to 74.19% and exergy efficiency is grown up to 32.6%. In SCCHP cycle, energy efficiency is 54.49% and exergy efficiency is 18.29%.

    In this research, parabolic solar collectors fully filled by porous media (copper foam with a porosity of 95) are investigated. In the next step, parabolic solar collectors in the SCCHP cycle were simultaneously filled by porous media and different percentages of Al2O3 and CuO nanofluid. At this step, values of 0.1% to 0.6% of each nanofluid were added to the working fluid, and the efficiency of the energy and exergy of the collectors and the SCCHP cycle were determined. In this case, nanofluid and the porous media were used together in the solar collector and maximum efficiency achieved. 0.5% of both nanofluids were used to achieve the biggest efficiency enhancement.

    In the present study, as expected, the highest efficiency is for the parabolic solar collector fully filled by porous material (copper foam with a porosity of 95%) and 0.5% Al2O3. Results of the present study are as follows:(1)The average enhancement of collectors’ efficiency using porous media and nanofluids is 28%.(2)Solutions with 0.1 to 0.5% of nanofluids (CuO and Al2O3) are used to prevent collectors from sediment occurrence in porous media.(3)Collector of solar cogeneration cycles that is enhanced by both porous media and nanofluid has higher efficiency, and the stability of output temperature is more as well.(4)By using 0.6% of the nanofluids in the enhanced parabolic solar collectors with copper porous materials, sedimentation occurs and makes a high-pressure drop in the solar collector’s pipe which causes decrease in energy efficiency.(5)Average enhancement of SCCHP cycle efficiency is enhanced by both porous media and nanofluid 13%.

    Nomenclature

    :Solar radiation
    a:Heat transfer augmentation coefficient
    A:Solar collector area
    Bf:Basic fluid
    :Specific heat capacity of the nanofluid
    F:Constant of air dilution
    :Thermal conductivity of the nanofluid
    :Thermal conductivity of the basic fluid
    :Viscosity of the nanofluid
    :Viscosity of the basic fluid
    :Collector efficiency
    :Collector energy receives
    :Auxiliary boiler heat
    :Expander energy
    :Gas energy
    :Screw expander work
    :Cooling load, in kilowatts
    :Heating load, in kilowatts
    :Solar radiation energy on collector, in Joule
    :Sanitary hot water load
    Np:Nanoparticle
    :Energy efficiency
    :Heat exchanger efficiency
    :Sun exergy
    :Collector exergy
    :Natural gas exergy
    :Expander exergy
    :Cooling exergy
    :Heating exergy
    :Exergy efficiency
    :Steam mass flow rate
    :Hot water mass flow rate
    :Specific heat capacity of water
    :Power output form by the screw expander
    Tam:Average ambient temperature
    :Density of the mixture.

    Greek symbols

    ρ:Density
    ϕ:Nanoparticles volume fraction
    β:Ratio of the nanolayer thickness.

    Abbreviations

    CCHP:Combined cooling, heating, and power
    EES:Engineering equation solver.

    Data Availability

    For this study, data were generated by CARRIER software for the average electrical, heating, and cooling load of a residential building with 600 m2 in the city of Zahedan, Iran.

    Conflicts of Interest

    The authors declare that they have no conflicts of interest.

    Acknowledgments

    This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

    References

    1. A. Fudholi and K. Sopian, “Review on solar collector for agricultural produce,” International Journal of Power Electronics and Drive Systems (IJPEDS), vol. 9, no. 1, p. 414, 2018.View at: Publisher Site | Google Scholar
    2. G. Yang and X. Zhai, “Optimization and performance analysis of solar hybrid CCHP systems under different operation strategies,” Applied Thermal Engineering, vol. 133, pp. 327–340, 2018.View at: Publisher Site | Google Scholar
    3. J. Wang, Z. Han, and Z. Guan, “Hybrid solar-assisted combined cooling, heating, and power systems: a review,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110256, 2020.View at: Publisher Site | Google Scholar
    4. Y. Tian and C. Y. Zhao, “A review of solar collectors and thermal energy storage in solar thermal applications,” Applied Energy, vol. 104, pp. 538–553, 2013.View at: Publisher Site | Google Scholar
    5. J. M. Hassan, Q. J. Abdul-Ghafour, and M. F. Mohammed, “CFD simulation of enhancement techniques in flat plate solar water collectors,” Al-Nahrain Journal for Engineering Sciences, vol. 20, no. 3, pp. 751–761, 2017.View at: Google Scholar
    6. M. Jahangiri, O. Nematollahi, A. Haghani, H. A. Raiesi, and A. Alidadi Shamsabadi, “An optimization of energy cost of clean hybrid solar-wind power plants in Iran,” International Journal of Green Energy, vol. 16, no. 15, pp. 1422–1435, 2019.View at: Publisher Site | Google Scholar
    7. I. H. Yılmaz and A. Mwesigye, “Modeling, simulation and performance analysis of parabolic trough solar collectors: a comprehensive review,” Applied Energy, vol. 225, pp. 135–174, 2018.View at: Google Scholar
    8. F. Wang, J. Tan, and Z. Wang, “Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas,” Energy Conversion and Management, vol. 83, pp. 159–166, 2014.View at: Publisher Site | Google Scholar
    9. H. Zhai, Y. J. Dai, J. Y. Wu, and R. Z. Wang, “Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas,” Applied Energy, vol. 86, no. 9, pp. 1395–1404, 2009.View at: Publisher Site | Google Scholar
    10. M. H. Abbasi, H. Sayyaadi, and M. Tahmasbzadebaie, “A methodology to obtain the foremost type and optimal size of the prime mover of a CCHP system for a large-scale residential application,” Applied Thermal Engineering, vol. 135, pp. 389–405, 2018.View at: Google Scholar
    11. R. Jiang, F. G. F. Qin, X. Yang, S. Huang, and B. Chen, “Performance analysis of a liquid absorption dehumidifier driven by jacket-cooling water of a diesel engine in a CCHP system,” Energy and Buildings, vol. 163, pp. 70–78, 2018.View at: Publisher Site | Google Scholar
    12. F. A. Boyaghchi and M. Chavoshi, “Monthly assessments of exergetic, economic and environmental criteria and optimization of a solar micro-CCHP based on DORC,” Solar Energy, vol. 166, pp. 351–370, 2018.View at: Publisher Site | Google Scholar
    13. F. A. Boyaghchi and M. Chavoshi, “Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts,” Applied Thermal Engineering, vol. 112, pp. 660–675, 2017.View at: Publisher Site | Google Scholar
    14. B. Su, W. Han, Y. Chen, Z. Wang, W. Qu, and H. Jin, “Performance optimization of a solar assisted CCHP based on biogas reforming,” Energy Conversion and Management, vol. 171, pp. 604–617, 2018.View at: Publisher Site | Google Scholar
    15. F. A. Al-Sulaiman, F. Hamdullahpur, and I. Dincer, “Performance assessment of a novel system using parabolic trough solar collectors for combined cooling, heating, and power production,” Renewable Energy, vol. 48, pp. 161–172, 2012.View at: Publisher Site | Google Scholar
    16. J. Wang, Y. Dai, L. Gao, and S. Ma, “A new combined cooling, heating and power system driven by solar energy,” Renewable Energy, vol. 34, no. 12, pp. 2780–2788, 2009.View at: Publisher Site | Google Scholar
    17. Y.-Y. Jing, H. Bai, J.-J. Wang, and L. Liu, “Life cycle assessment of a solar combined cooling heating and power system in different operation strategies,” Applied Energy, vol. 92, pp. 843–853, 2012.View at: Publisher Site | Google Scholar
    18. J.-J. Wang, Y.-Y. Jing, and C.-F. Zhang, “Optimization of capacity and operation for CCHP system by genetic algorithm,” Applied Energy, vol. 87, no. 4, pp. 1325–1335, 2010.View at: Publisher Site | Google Scholar
    19. L. Ali, “LDA–GA–SVM: improved hepatocellular carcinoma prediction through dimensionality reduction and genetically optimized support vector machine,” Neural Computing and Applications, vol. 87, pp. 1–10, 2020.View at: Google Scholar
    20. S. Hirasawa, R. Tsubota, T. Kawanami, and K. Shirai, “Reduction of heat loss from solar thermal collector by diminishing natural convection with high-porosity porous medium,” Solar Energy, vol. 97, pp. 305–313, 2013.View at: Publisher Site | Google Scholar
    21. E. Bellos, C. Tzivanidis, and Z. Said, “A systematic parametric thermal analysis of nanofluid-based parabolic trough solar collectors,” Sustainable Energy Technologies and Assessments, vol. 39, p. 100714, 2020.View at: Publisher Site | Google Scholar
    22. H. J. Jouybari, S. Saedodin, A. Zamzamian, M. E. Nimvari, and S. Wongwises, “Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study,” Renewable Energy, vol. 114, pp. 1407–1418, 2017.View at: Publisher Site | Google Scholar
    23. J. Subramani, P. K. Nagarajan, S. Wongwises, S. A. El-Agouz, and R. Sathyamurthy, “Experimental study on the thermal performance and heat transfer characteristics of solar parabolic trough collector using Al2O3 nanofluids,” Environmental Progress & Sustainable Energy, vol. 37, no. 3, pp. 1149–1159, 2018.View at: Publisher Site | Google Scholar
    24. E. Shojaeizadeh, F. Veysi, and A. Kamandi, “Exergy efficiency investigation and optimization of an Al2O3-water nanofluid based Flat-plate solar collector,” Energy and Buildings, vol. 101, pp. 12–23, 2015.View at: Publisher Site | Google Scholar
    25. A. K. Tiwari, P. Ghosh, and J. Sarkar, “Solar water heating using nanofluids–a comprehensive overview and environmental impact analysis,” International Journal of Emerging Technology and Advanced Engineering, vol. 3, no. 3, pp. 221–224, 2013.View at: Google Scholar
    26. D. R. Rajendran, E. Ganapathy Sundaram, P. Jawahar, V. Sivakumar, O. Mahian, and E. Bellos, “Review on influencing parameters in the performance of concentrated solar power collector based on materials, heat transfer fluids and design,” Journal of Thermal Analysis and Calorimetry, vol. 140, no. 1, pp. 33–51, 2020.View at: Publisher Site | Google Scholar
    27. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Google Scholar
    28. K. Khanafer and K. Vafai, “A critical synthesis of thermophysical characteristics of nanofluids,” International Journal of Heat and Mass Transfer, vol. 54, no. 19-20, pp. 4410–4428, 2011.View at: Publisher Site | Google Scholar
    29. K. Farhana, K. Kadirgama, M. M. Rahman et al., “Improvement in the performance of solar collectors with nanofluids – a state-of-the-art review,” Nano-Structures & Nano-Objects, vol. 18, p. 100276, 2019.View at: Publisher Site | Google Scholar
    30. M. Turkyilmazoglu, “Condensation of laminar film over curved vertical walls using single and two-phase nanofluid models,” European Journal of Mechanics-B/Fluids, vol. 65, pp. 184–191, 2017.View at: Publisher Site | Google Scholar
    31. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 2020, 2020.View at: Google Scholar
    32. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
    33. X. Zhang, M. Fan, D. Wang, P. Zhou, and D. Tao, “Top-k feature selection framework using robust 0-1 integer programming,” IEEE Transactions on Neural Networks and Learning Systems, vol. 1, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
    34. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
    35. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 1, 2020.View at: Publisher Site | Google Scholar
    36. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 1, 2020.View at: Google Scholar
    37. M. Mirmozaffari, “Machine learning algorithms based on an optimization model,” 2020.View at: Google Scholar
    38. M. Mirmozaffari, M. Yazdani, A. Boskabadi, H. Ahady Dolatsara, K. Kabirifar, and N. Amiri Golilarz, “A novel machine learning approach combined with optimization models for eco-efficiency evaluation,” Applied Sciences, vol. 10, no. 15, p. 5210, 2020.View at: Publisher Site | Google Scholar
    39. M. Vosoogha and A. Addeh, “An intelligent power prediction method for wind energy generation based on optimized fuzzy system,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 5, pp. 34–43, 2019.View at: Google Scholar
    40. A. Javadi, N. Mikaeilvand, and H. Hosseinzdeh, “Presenting a new method to solve partial differential equations using a group search optimizer method (GSO),” Computational Research Progress in Applied Science and Engineering, vol. 4, no. 1, pp. 22–26, 2018.View at: Google Scholar
    41. F. J. Golrokh, Gohar Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, pp. 1–8, 2020.View at: Google Scholar
    42. H. Yu, “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 1, pp. 1–29, 2020.View at: Google Scholar
    43. C. Yu, “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 1, pp. 1–28, 2021.View at: Google Scholar
    44. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 1, p. 106728, 2020.View at: Google Scholar
    45. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, p. 106642, 2021.View at: Publisher Site | Google Scholar
    46. Y. Zhang, “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 1, 2020.View at: Google Scholar
    47. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 1, pp. 1–30, 2020.View at: Google Scholar
    48. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson’s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
    49. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
    50. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
    51. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
    52. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
    53. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
    54. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, 2020.View at: Publisher Site | Google Scholar
    55. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
    56. R. U. Khan, X. Zhang, R. Kumar, A. Sharif, N. A. Golilarz, and M. Alazab, “An adaptive multi-layer botnet detection technique using machine learning classifiers,” Applied Sciences, vol. 9, no. 11, p. 2375, 2019.View at: Publisher Site | Google Scholar
    57. A. Addeh, A. Khormali, and N. A. Golilarz, “Control chart pattern recognition using RBF neural network with new training algorithm and practical features,” ISA Transactions, vol. 79, pp. 202–216, 2018.View at: Publisher Site | Google Scholar
    58. N. Amiri Golilarz, H. Gao, R. Kumar, L. Ali, Y. Fu, and C. Li, “Adaptive wavelet based MRI brain image de-noising,” Frontiers in Neuroscience, vol. 14, p. 728, 2020.View at: Publisher Site | Google Scholar
    59. N. A. Golilarz, H. Gao, and H. Demirel, “Satellite image de-noising with Harris hawks meta heuristic optimization algorithm and improved adaptive generalized Gaussian distribution threshold function,” IEEE Access, vol. 7, pp. 57459–57468, 2019.View at: Publisher Site | Google Scholar
    60. M. Eisazadeh and J. Rezapour, “Multi-objective optimization of the composite sheets using PSO algorithm,” 2017.View at: Google Scholar
    61. I. Bargegol, M. Nikookar, R. V. Nezafat, E. J. Lashkami, and A. M. Roshandeh, “Timing optimization of signalized intersections using shockwave theory by genetic algorithm,” Computational Research Progress in Applied Science & Engineering, vol. 1, pp. 160–167, 2015.View at: Google Scholar
    62. B. Bai, Z. Guo, C. Zhou, W. Zhang, and J. Zhang, “Application of adaptive reliability importance sampling-based extended domain PSO on single mode failure in reliability engineering,” Information Sciences, vol. 546, pp. 42–59, 2021.View at: Publisher Site | Google Scholar
    63. J. Liu, C. Wu, G. Wu, and X. Wang, “A novel differential search algorithm and applications for structure design,” Applied Mathematics and Computation, vol. 268, pp. 246–269, 2015.View at: Publisher Site | Google Scholar
    64. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
    65. D. Zhao, “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 24, p. 106510, 2020.View at: Google Scholar
    66. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
    67. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, p. 106684, 2021.View at: Publisher Site | Google Scholar
    68. G. Sun, B. Yang, Z. Yang, and G. Xu, “An adaptive differential evolution with combined strategy for global numerical optimization,” Soft Computing, vol. 24, pp. 1–20, 2019.View at: Google Scholar
    69. G. Sun, C. Li, and L. Deng, “An adaptive regeneration framework based on search space adjustment for differential evolution,” Neural Computing and Applications, vol. 24, pp. 1–17, 2021.View at: Google Scholar
    70. A. Addeh and M. Iri, “Brain tumor type classification using deep features of MRI images and optimized RBFNN,” ENG Transactions, vol. 2, pp. 1–7, 2021.View at: Google Scholar
    71. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” Soft Computing, vol. 1, pp. 1–8, 2020.View at: Google Scholar
    72. H. Tyagi, P. Phelan, and R. Prasher, “Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector,” Journal of Solar Energy Engineering, vol. 131, no. 4, 2009.View at: Publisher Site | Google Scholar
    73. S. Rashidi, M. Bovand, and J. A. Esfahani, “Heat transfer enhancement and pressure drop penalty in porous solar heat exchangers: a sensitivity analysis,” Energy Conversion and Management, vol. 103, pp. 726–738, 2015.View at: Publisher Site | Google Scholar
    74. N. Akram, R. Sadri, S. N. Kazi et al., “A comprehensive review on nanofluid operated solar flat plate collectors,” Journal of Thermal Analysis and Calorimetry, vol. 139, no. 2, pp. 1309–1343, 2020.View at: Publisher Site | Google Scholar
    Figure 1. Typical road and rail tunnel sections.

    터널의 화재 위험을 평가하는 컴퓨터 모델(FASIT)

    A Computer Model to Assess Fire Hazards in Tunnels (FASlT)

    David A. Charters, W. Alan Gray, Andrew C. McIntosh
    Charters is now with NHS Estates in Leeds (previously with AEA Consultancy
    Services), and Gray and Mclntosh are with the University of Leeds, England.

    Abstract

    터널에서 화재 성장 움직임을 시뮬레이션하는 컴퓨터 모델이 설명되고 터널 시스템에 대한 간략한 개요가 표시됩니다. 질량 흐름, 속도, 연기 농도 및 열 전달을 예측하는 방법과 위험 출력 매개 변수 목록이 표시됩니다. 실험에 대한 모델의 유효성 검사와 향후 작업에 대한 가능한 방향도 제시됩니다.

    Introduction

    최근 도로 및 철도 터널의 화재 안전에 대해 운송 업계와 여행자들 사이에서 많은 우려가 제기되고 있습니다.

    1,2,3 터널에서 연소 생성물은 한 방향 또는 두 방향을 제외한 모든 방향으로 제한되어 매우 빠른 연기 이동과 생명에 대한 빠른 위협을 초래할 수 있습니다.

    이 분야의 많은 초기 작업은 Thomas에 의해 수행되었습니다. 4,5 AEA Consultancy Services와 University of Leeds의 연료 및 에너지부는 현재 터널의 구멍으로 인한 위험을 예측하는 컴퓨터 모델을 개발 중입니다.

    이 모델은 터널 내 설비의 위험과 화재 위험 수준, 화재 방지 시스템의 이점을 평가하는 데 도움이 됩니다.

    유사한 ‘구역’ 화재 모델에서 Considine et al. 7은 유해 물질 운송을 포함하는 피트에 대한 모델을 개발했으며 Miclea 등은 터널 환기에 대한 화재의 영향을 평가하고 비상 환기를 논의하는 터널 환기 모델을 개발했으며 Laage 등은 터널 환기 모델을 개발했습니다.

    9는 특히 광산 네트워크의 화재에 대한 모델을 개발했습니다. 다른 터널 화재 모델에서 Kumar et al.10 및 Jones et al.11은 터널 화재의 유체 흐름을 예측하기 위해 전산 유체 역학(CFD) 또는 ‘장’ 모델을 사용합니다.

    AEA/Leeds University에서 개발 중인 코드는 터널의 화재 위험을 예측하기 위한 더 큰 모델의 일부가 되도록 의도되었습니다.

    이 코드는 FASIT(Fire growth And Smoke movement In Tunnels) 모델이라고 합니다.12 FASIT는 구조가 모듈식이므로 화염, 연기, 부력 흐름, 열 전달 등에 대한 개선된 모델을 많은 수의 재작성 없이 통합할 수 있습니다.

    Figure 1. Typical road and rail tunnel sections.
    Figure 1. Typical road and rail tunnel sections.
    Figure 2. Tunnel zone/layer schematic.
    Figure 2. Tunnel zone/layer schematic.
    Figure 3. Schematic of plume mass flows°
    Figure 3. Schematic of plume mass flows°

    References

    1. Bertrand, A., “Opening Address,”Safety in Road and Rail Tunnels, 1992.
    2. Haack, A., “Fire Protection Traffic Tunnels-Initial Recognitions from Large Scale Tests,”Safety in Road and Rail Tunnels, 1992.
    3. Luchian, S.F., “The Central Artery/Tunnel Project Memorial Tunnel Fire Test Program,”Safety in Road and Rail Tunnels, 1992.
    4. Thomas, P.H., “The Movement of Buoyant Fluid Against a Stream and the Venting of Underground Fires,”Fire Research Note 351/1958, Fire Research Station, U.K., 1958.Google Scholar 
    5. Thomas, P.H., “The Movement of Smoke in Horizontal Passages Against an Air Flow,”Fire Research Note 723/1968, Fire Research Station, U.K., 1968.Google Scholar 
    6. Charters, D.A., “Fire Risk Assessment in Rail Tunnels,”Safety in Road and Rail Tunnels, 1992.
    7. Considine, M., Parry, S.T., and Blything, K.,Risk Assessments of Hazardous Substances Through Road Tunnels in the United Kingdom, Department of Transport, 1989.
    8. Miclea, P.C. and Murphy, R.E., “Assessment of Emergency Ventilation Capability in Case of Train Fire in a Tunnel Using Subway Environment Simulation (SES) Computer Program,”Proceedings of 4th U.S. Mine Ventilation Symposium, SME, 1989.
    9. Laage, L.W. and Yang, H., “Mine Fire Experiments at the Waldo Mine,”Proceedings of 5th U.S. Mine Ventilation Symposium, SME, 1991.
    10. Kumar, S. and Cox, G.,Mathematical Modeling of Fire in Road Tunnels—Validation of JASMINE Department of Transport, 1986.
    11. Simcox, S., Wilkies, N.S. and Jones, I.P., “Computer Simulation of the Flows of Hot Gases from Fire at King’s Cross Underground Station,”Institution of Mechanical Engineers, 1989.
    12. Charters, D.A., Gray, W. A., and McIntosh, A.C.,FASIT Tunnel Fire Computer Model—Physical Basis, AEA Technology/Leeds University, 1993.
    13. Heskestad, G., “Fire Plumes,”The SFPE Handbook of Fire Protection Engineering, SFPE/NFPA, 1988, Chapters 1–6.
    14. Drysdale, D.D.,An Introduction to Fire Dynamics, Wiley, 1985.
    15. British Standard (Draft for Development) 180,Guide for the Assessment of Toxic Hazards in Fire in Buildings and Transport British Standards Institution, 1989.
    16. Vantelon, J.P.,et al., Investigation of Fire-Induced Smoke Movement in Tunnels and Stations: An Application to the Paris Metro, Third International Symposium on Fire Safety Science, Elsevier, 1991.
    17. Heselden, A.J.M., “Studies of Fire and Smoke Behavior Relevant to Tunnels,”Current Paper CP66/78, Building Research Establishment, 1978.
    18. Emmons, H.W., “The Ceiling Jet in Fires,”Proceedings of the 3rd International Symposium of Fire Safety Science, Elsevier, 1991.
    19. Carslaw, H.S. and Jaeger, J.C.,Conduction of Heat in Solids, 2nd edition, Oxford University Press, 1959.
    20. Final Report on the Tests in the Ofenegg Tunnel, Commission for Safety Measures in Road Tunnels, Bern, 1965.
    21. Feizlmayr, A.H.,Brandversuche in Einen Tunnel, Bundesministerium für Banten und Technik, Heft 50, Vienna, 1976.Google Scholar 
    22. Keski-Rahkonen, O., Holmlund, C., Loikkanen, P., Ludrigsen, H., and Mikkola, E.,Two Full-Scale Pilot Fire Experiments in a Tunnel, VTT Finland, 1986.
    23. Marshall, I.A., Hines, M.A., Cutler, D.P., and Packer, S.D.,Fire Gallery Tests for Non-Metallic Materials Intended for Underground Use Project No. 7255-10/058, CEC, 1984.
    24. Private communication between Beckett, H. (HSE) and Burke, G. (AEA), 1986.
    25. McCaughey, M.N. and Fletcher, D.F.,Simulation of a Fire in a Tunnel, SRD, 1992.
    26. Fletcher, D.F. and Owens, M.P.,Tunnel Fire Modeling Using FLOW 3D: Progress and Suggested Future Work, SRD, 1993.
    Fig. 2 Schematic diagram of the experimental Rijke tube

    RIJKE 튜브 내부의 열음향 장에 대한 새로운 조사

    A novel investigation of the thermoacoustic field inside a Rijke tube

    B. EntezamW. Van Moorhem and J. MajdalaniPublished Online:22 Aug 2012 https://doi.org/10.2514/6.1998-2582

    Abstract

    이 논문에서는 Rijke 튜브 내부의 시간 종속 유동장의 실험 연구 및 계산 시뮬레이션에서 진행한 결과를 제시하고 해석합니다. 기존의 추측과 스케일링 분석을 기반으로 한 이론적 논의가 진행됩니다. 주요 결과에는 열 구동 진동에서 중요한 역할을 하는 것으로 보이는 유사성 매개변수가 포함됩니다. 이 매개변수는 열 섭동을 속도, 압력 및 특성 길이의 제곱과 관련시킵니다. 열 진동을 압력 및 속도 진동의 결합된 효과에 기인하는 간단한 이론은 계산, 실험 및 스케일링 고려 사항을 통해 논의됩니다. 이전의 분석 이론은 열 진동을 속도 또는 압력 진동에 연결했기 때문에 현재 분석 모델은 기존 추측에 동의하고 조정합니다. Rayleigh 기준에 따라 열원은 Rijke-tube 하단에서 1/4의 임계 거리에 위치해야 공명이 발생합니다. 이 관찰은 결합이 최대화되는 임계점이 음향 속도와 압력의 곱인 음향 강도가 가장 큰 공간 위치에 해당하기 때문에 제안된 해석을 확인합니다. 수치 시뮬레이션은 Rijke 튜브 내부의 압력 진동이 열 입력이 증가함에 따라 기하급수적으로 증가한다는 것을 보여줍니다. 충분히 작은 열 입력으로 음향 싱크가 소스를 초과하고 음향 감쇠가 발생합니다. 열 입력이 임계 임계값 이상으로 증가하면 음향 싱크가 불충분해져서 ​​내부 에너지 축적으로 인해 빠른 음향 증폭이 발생합니다.

    In this paper, results proceeding from experimental studies and computational simulations of the time-dependent flowfield inside a Rijke tube are presented and interpreted. A theoretical discussion based on existing speculations and scaling analyses is carried out. The main results include a similarity parameter that appears to play an important role in the heat driven oscillations. This parameter relates heat perturbations to velocity, pressure, and the square of a characteristic length. A simple theory that attributes heat oscillations to the combined effects of pressure and velocity oscillations is discussed via computational, experimental, and scaling considerations. Since previous analytical theories link heat oscillations to either velocity or pressure oscillations, the current analytical model agrees with and reconciles between existing speculations. In compliance with the Rayleigh criterion, it is found that the heat source must be positioned at a critical distance of 1/4 from the Rijke-tube lower end for resonance to occur. This observation confirms our proposed interpretation since the critical point where coupling is maximized corresponds to a spatial location where the acoustic intensity, product of both acoustic velocities and pressures, is largest. Numerical simulations show that pressure oscillations inside the Rijke tube grow exponentially with increasing heat input With a sufficiently small heat input, the acoustic sinks exceed the sources and acoustic damping takes place. When the heat input is augmented beyond a critical threshold, acoustic sinks become insufficient causing rapid acoustic amplification by virtue of internal energy accumulation.

    Fig. 2 Schematic diagram of the experimental Rijke tube
    Fig. 2 Schematic diagram of the experimental Rijke tube
    A novel investigation of the thermoacoustic field inside a Rijke tube
    A novel investigation of the thermoacoustic field inside a Rijke tube

    References

    ‘Entezam, B., Majdalani, J., and Van Moorhem, W. K.,
    “Modeling of a Rijke-Tube Pulse Combustor Using
    Computational Fluid Dynamics,” AIAA Paper 97-2718,
    Seattle, WA, July 1997.

    2George, W., and Reethof, G., “On the Fragility of
    Acoustically Agglomerated Submicron Fly Ash
    Particles,” Journal of Vibration, Acoustics, Stress, and
    Reliability in Design, Vol. 108, July 1986, pp. 322-329.
    3Tiwary R., and Reethof, G., “Hydrodynamic
    Interaction of Spherical Aerosol Particles in a High
    Intensity Acoustic Field,” Journal of Sound and
    Vibration, Vol. 108, 1986, pp. 33-49.
    4Reethof, G., “Acoustic Agglomeration of Power Plant
    Fly Ash for Environmental and Hot Gas Clean-up,”
    Transaction of the ASME, Vol. 110, Oct., 1988, pp.
    552-557.
    5
    Song, L., Reethof, G., and Koopmann, G. H., “An
    Improved Simulation Model of Acoustic
    Agglomeration,” NCA Vol. 5, 89-WA, American
    Society of Mechanical Engineers, Winter Annual
    Meeting, San Francisco, CA, Dec., 10-15, 1989.
    6Reethof, G., Koopmann, G. H., and Dorchak, T.,
    “Acoustic Agglomeration for Paniculate Control at
    High Temperature and high Pressure – Some Recent
    results,” NCA Vol. 4, 89-WA, American Society of
    Mechanical Engineers, Winter Annual Meeting, San
    Francisco, CA, Dec., 10-15, 1989.
    7Richards , G. A., and Bedick, R. C, “Application of
    Acoustics in Advanced Energy Systems,” NCA Vol. 3,
    89-WA, American Society of Mechanical Engineers,
    Winter Annual Meeting, San Francisco, CA, Dec., 10-
    15, 1989.
    8Yavuzkurt, S., Ha, M. Y., Reethof, G., and Koopmann,
    G., “Effect of Acoustic Field on the Combustion of
    Coal Particles in a Rat Flame Burner,” Proceedings of
    the Ist
    Annual Pittsburgh Coal Conference, Pittsburgh,
    PA, Sep., 1984, pp. 53-58.
    ^rice, E. W., “Review of Combustion Instability
    Characteristics of Solid Propellants,” Advances in
    Tactical Rocket Propulsion, AGARD Conference
    Proceedings, No. 1, Part 2, Chap. 5, Technivision
    Services, Maidenhead, England, 1968, pp. 141-194.
    10Zinn, B.T., “State of the Art and Research Needs of
    Pulsating Combustion,” NCA Vol. 19, 84-WA,
    American Society of Mechanical Engineers, 1984.
    “Rayleigh, J.W.S., The Theory of Sound, Vol. 1 and 2,
    Dover Publications, New York, 1945, pp. 231-235.
    12Zinn, B.T., Miller, N., Carvalho, J.A. Jr., and Daniel.
    B. R., “Pulsating Combustion of Coal in a Rijke Type
    Combustor,” Proceedings of the 19th International
    Symposium on Combustion, 1982, pp. 1197-1203.
    13Evans, R.E., and Putnam, A.A., “Rijke Tube
    Apparatus,” Journal of Applied Physics, Vol. 360,
    1966.
    14Feldman, K. T., “Review of the Literature on Rijke
    Thermoacoustic Phenomena, ” Journal of Sound and
    Vibration, Vol. 7, 1968, pp. 83-89.
    15Carvalho, J.R., Ferreira, C., Bressan, C., and Ferreira,
    G., “Definition of Heater Location to Drive Maximum
    Amplitude Acoustic Oscillations hi a Rijke Tube,”
    Combustion and Flame, Vol. 76, 1989, pp. 17-27.
    16Raun, R.L., Beckstead, M. W., Finlinson, J. C. , and
    Brooks, K. P., “A Review of Rijke Tubes, Rijke
    Burners and Related Devices,” Progress in Energy and
    Combustion Science, Vol. 19, 1993, pp. 313-364.
    17Chu, B. T., “Stability of Systems Containing a HeatSource-The Rayleigh Criterion, “NACA Research
    Memorandum 56D27, 1956.
    18Zinn, B. T., Daniel, B. R., and Shesdari, T.S.,
    “Application of Pulsating Combustion in the Burning of
    Solid Fuels,” Proceedings of the Symposium on Pulse
    Combustion Technology for Heating Applications,
    Argonne National Laboratory, 1979, pp. 239-248.
    19Feldman, K.T., “Review of the Literature on
    Soundhauss Thermoacoustic Phenomena ” Journal of
    Sound and Vibration, Vol. 7, 1968, pp. 71-82.
    20Flow Science Incorporated, Los Alamos, New
    Mexico.

    Fig. 2. Schematic indication of the separate parts comprising the rotary kiln model, together with the energy fluxes from Eq. (1).

    화염 모델링, 열 전달 및 클링커 화학을 포함한 시멘트 가마에 대한 CFD 예측

    E Mastorakos Massias 1C.D Tsakiroglou D.A Goussis V.N Burganos A.C Payatakes 2

    Abstract

    실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 방사선에 대한 Monte Carlo 방법, 가마 벽의 에너지 방정식에 대한 유한 체적 코드 및 클링커에 대한 화학 반응을 포함한 에너지 보존 방정식 및 종에 대한 새로운 코드. 기상의 온도 장, 벽으로의 복사 열유속, 가마 및 클링커 온도에 대한 예측 간의 반복적인 절차는 내부 벽 온도의 분포를 명시적으로 예측하는 데 사용됩니다. 여기에는 열 흐름 계산이 포함됩니다. 수갑. 가스와 가마 벽 사이의 주요 열 전달 모드는 복사에 의한 것이며 내화물을 통해 환경으로 손실되는 열은 입력 열의 약 10%이고 추가로 40%는 장입 가열 및 클링커 형성. 예측은 실제 규모의 시멘트 가마에서 경험과 제한된 측정을 기반으로 한 경향과 일치합니다.

    키워드

    산업용 CFD, 로타리 가마, 클링커 형성, 복사 열전달, Industrial CFD, Rotary kilns, Clinker formation, Radiative heat transfer

    1 . 소개

    시멘트 산업은 에너지의 주요 소비자이며, 미국에서 산업 사용자의 총 화석 연료 소비량의 약 1.4%를 차지하며 [1] 일반적인 비에너지 사용량은 제조된 클링커 1kg당 약 3.2MJ [2] 입니다. CaCO 3  →  CaO  +  CO 2 반응이 일어나기 때문입니다., 클링커 형성의 첫 번째 단계는 높은 흡열성입니다. 시멘트 가마에서 에너지를 절약하기 위한 현재의 경향은 일반적으로 길이가 약 100m이고 직경이 약 5m인 회전 실린더인 가마를 떠나는 배기 가스로부터 에너지를 보다 효율적으로 회수하는 것과 저열량 연료의 사용에 중점을 둡니다. 값. 2-5초 정도의 화염 체류 시간을 허용하고 2200K의 높은 온도에 도달하는 회전 가마의 특성은 또한 시멘트 가마를 유기 폐기물 및 용제에 대한 상업용 소각로에 대한 경쟁력 있는 대안으로 만듭니다 [3]. 클링커의 형성이 이러한 2차 액체 연료의 사용으로 인한 화염의 변화로부터 어떤 식으로든 영향을 받지 않도록 하고, 대기 중으로 방출되는 오염 물질의 양에 대한 현재 및 미래 제한을 준수할 수 있도록, 화염 구조의 세부 사항과 화염에서 고체 충전물로의 열 전달을 더 잘 이해할 필요가 있습니다.

    최근 시멘트 가마 4 , 5 , 6 , 7 에서 유동장 및 석탄 연소의 이론적 모델링복사 열 전달을 포함한 전산 유체 역학(CFD) 코드를 사용하여 달성되었습니다. 이러한 결과는 시멘트 가마에 대한 최초의 결과였으며 화염 길이, 산소 소비 등과 관련하여 실험적으로 관찰된 경향을 재현했기 때문에 그러한 코드가 수용 가능한 정확도로 대규모 산업용 용광로에 사용될 수 있음을 보여주었습니다. 킬른과 클링커는 포함하지 않았고, 벽온도의 경계조건은 가스온도와 용액영역의 열유속에 영향을 미치므로 계산에 필요한 경계조건은 예측하지 않고 실험적 측정에 기초하였다. 기상에 대한 CFD 솔루션은 앞으로의 주요 단계이지만 회전 가마를 포괄적으로 모델링하는 데만으로는 충분하지 않습니다.

    내화물의 열 전달과 전하에 대한 세부 사항은 다양한 저자 8 , 9 , 10 , 11에 의해 조사되었습니다 . 충전물(보통 잘 혼합된 것으로 가정)은 노출된 표면에 직접 복사되는 열 외에도 전도에 의해 가마 벽에서 가열됩니다. 가장 완전한 이론적 노력에서, 가마 벽 (내화물)에 대한 3 차원 열전도 방정식을 해결하고, 두 개 또는 세 개의 인접하는 영역으로 한정 한 좌표 축 방향에서 어느 방사선 방사선 열전달 영역 모델과 결합 [ 10] 또는 자세히 해결 [11]. 그러나 클링커 형성 중에 일어나는 화학 반응은 고려되지 않았고 기체 상이 균일한 온도로 고정되어 필요한 수준의 정확도로 처리되지 않았습니다.

    최종적으로 연소에 의해 방출되는 에너지(일부)를 받는 고체 전하가 화학 반응을 거쳐 최종 제품인 클링커를 형성합니다. 이것들은 [12]에 설명된 주요 특징에 대한 단순화된 모델과 함께 시멘트 화학 문헌에서 광범위한 조사의 주제였습니다 . 그 작업에서, 고체 온도 및 조성의 축 방향 전개를 설명하는 odes가 공식화되고 해결되었지만, 전하에 대한 열유속 및 따라서 클링커 형성 속도를 결정하는 가스 및 벽 온도는 1차원으로 근사되었습니다. 자세한 화염 계산이 없는 모델.

    화염, 벽 및 장입물에 대한 위의 이론적 모델 중 어느 것도 회전식 가마 작동을 위한 진정한 예측 도구로 충분하지 않다는 것이 분명합니다. 국부 가스 온도(CFD 계산 결과 중 하나)는 벽 온도에 크게 의존합니다. 클링커 형성은 에너지를 흡수하므로 지역 가스 및 벽 온도에 따라 달라지며 둘 다 화염에 의존합니다. 벽은 화염에서 클링커로의 순 열 전달에서 “중개자” 역할을 하며, 내화재 두께에 따라 환경으로 피할 수 없는 열 손실이 발생합니다. 이러한 상호 의존성은 가마의 거동에 중요하며 개별 프로세스를 개별적으로 계산하는 데 중점을 두었기 때문에 문헌에서 발견된 수학적 모델로는 다루기 어렵습니다.

    본 논문에서 우리는 위에 설명된 유형의 세 가지 개별 모델을 결합하여 수행되는 회전식 시멘트 가마에서 발생하는 대부분의 공정에 대한 포괄적인 모듈식 모델을 제시합니다. 우리 작업은 4 , 5 , 6 , 7 에서와 같이 석탄 연소를 위한 다차원 CFD 코드로 기체 상태를 처리합니다 . 10 , 11 에서와 같이 가마 벽의 3차원 열전도 방정식을 풉니다 . 9 , 12 와 유사한 모델로 잘 혼합된 전하 온도 및 조성을 해결합니다.. 3개의 모듈(화염, 벽, 전하)은 내화물에 입사하는 열유속의 축 분포에 대해 수렴이 달성될 때까지 반복적으로 계산됩니다. 충전 온도 및 구성. 따라서 이전 작업에 비해 현재의 주요 이점은 완전성에 있습니다. 이는 가스-킬른-클링커 시스템의 다양한 부분에서 에너지 흐름의 정량화를 통해 킬른 작동에 대한 더 나은 이해를 가능하게 하고 여기에서 사용된 방법을 건조 및 소각과 같은 다른 회전 킬른 응용 분야에 적용할 수 있게 합니다.

    이 문서의 특정 목적은 회전식 시멘트 가마에 대한 포괄적인 모델을 제시하고 화염에서 클링커로의 에너지 플럭스와 가마에서 열 손실을 정량화하는 것입니다. 이 문서의 나머지 부분은 다음과 같이 구성됩니다. 2장 에서는 다양한 모델과 해법을 제시하고 3장 에서는 그 결과를 제시하고 논의한다 . 여기에는 본격적인 회전식 시멘트 가마의 제한된 측정값과의 비교가 포함됩니다. 이 논문은 가장 중요한 결론의 요약으로 끝납니다.

    2 . 모델 공식화

    2.1 . 개요

    Fig. 1 은 시멘트 로터리 킬른의 단면을 보여준다. 가마의 회전은 전하의 움직임을 유도하여 후자를 대략적으로 잘 혼합되도록 합니다 [10] , 여기에서 채택할 가정입니다. 우리는 이 코팅을 클링커와 유사한 물리적 특성의 고체 재료로 모델링하여 가마 내화물에 부착된 클링커의 존재를 허용할 것입니다. 우리는 이 층의 두께가 가마를 따라 균일하다고 가정합니다. 이것은 아마도 지나치게 단순화한 것일 수 있지만 관련 데이터를 사용할 수 없습니다. 모델 설명을 진행하기 전에 그림 2 에 개략적으로 표시된 회전식 가마의 다양한 에너지 흐름을 이해하는 것이 중요합니다 .

    석탄 연소에 의해 방출되는 에너지(단위 시간당)( 석탄 )는 배기 가스(Δ 가스 )와 함께 가마 밖으로 흘러 가마 벽에 직접 복사( rad ) 및 대류( conv )됩니다. 공급 및 배기 덕트( rad,1  + rad,2 ) 에 대한 축 방향의 복사에 의해 작은 부분이 손실됩니다 . 전하 가마 시스템은 복사( rad ) 및 대류( conv )에 의해 가스로부터 에너지(Δ cl )를 흡수 하고 주변으로 열을 잃습니다( Q 손실 ). 전체 에너지 균형에서 개별 항의 계산, 즉(1a)큐석탄=ΔH가스-Q라드-Q전환-Q일, 1-Q일, 2,(1b)큐라드+Q전환=ΔH클+Q손실여기에서 다음 섹션에 설명된 대로 가스, 가마 및 클링커에 대한 이산화 에너지를 국부적으로 해결함으로써 수행됩니다.

    2.2 . CFD 코드

    가스 운동량, 종 농도 및 에너지의 Favre 평균 방정식은 표준 k – ε 모델을 사용하여 방사 모듈(RAD-3D)과 함께 상업적으로 이용 가능한 축대칭 CFD 코드(FLOW-3D)에 의해 해결됩니다. [13] . 기하학이 실제로 3차원이고 벽 온도의 각도 분포가 존재하지만 합리적인 시간과 현재 워크스테이션에서 완전한 3으로 솔루션을 얻을 수 있도록 기체상을 축대칭으로 취급합니다. -D를 요구하는 해상도로 계산하려면 슈퍼컴퓨터에 의존해야 합니다. FLOW-3D에서 사용되는 다양한 하위 모델의 일부 기능과 벽 경계 조건에 대한 특수 처리는 다음과 같습니다.

    2.2.1 . 석탄 연소

    Rossin-Rammler 크기 분포(45μm 평균 직경, 1.3 지수 [6] )를 따르는 석탄 입자 는 CPU 시간을 줄이기 위해 솔루션 영역(즉, 확률적 구성 요소 없이)에서 결정론적으로 추적되었지만 분산을 과소 평가하는 단점이 있습니다 . 14] . 입자는 2-반응 모델에 따라 휘발되도록 허용되었고 휘발성 연소는 무한히 빠른 것으로 간주되었습니다. 석탄 연소에 대한 설명의 세부 사항은 FLOW-3D에서 석탄 휘발 및 열분해의 “표준” 상수 집합이 합리적인 결과를 제공하고 Ref. [5] .

    2.2.2 . 복사와 대류

    가스의 복사 강도는 RAD-3D 모듈을 사용하여 80,000개의 입자로 Monte-Carlo 방법으로 계산되었습니다. 가마는 반경 방향으로 7개, 축 방향으로 19개(크기가 0.1  ×  1.0 m와 0.2  ×  5.0 m 사이)로 불균일한 구역으로 나뉘었으며 각 구역 에서 방사선 강도가 균일하다고 가정했습니다. 방사선 모듈의 출력은 내부적으로 FLOW-3D에 대한 유체 계산에 인터페이스되고 외부적으로 벽 및 클링커에 대한 코드에 인터페이스되었습니다( 섹션 2.3 섹션 2.4 참조). 방사선 패키지의 이산화된 구역은 CFD 그리드의 셀보다 훨씬 커야 하므로 구역에 온도 평균이 형성될 수 있는 많은 셀이 포함될 수 있다는 점을 이해하는 것이 중요합니다. 상대적으로 조잡한 복사 구역의 분해능과 Monte-Carlo 방법의 통계적 특성은 구역의 복사 열유속이 더 미세한 구역화 및 더 많은 입자로 몇 번의 실행에 의해 결정된 바와 같이 최대 약 10%까지 부정확할 수 있음을 의미합니다. 또한 경계면에 입사하는 열유속은 영역 크기보다 미세한 분해능으로 결정할 수 없으므로 복사 열유속은 벽에 인접한 19개 영역 각각의 중심에서만 계산됩니다. 0.15m -1 의 흡수 계수는 Ref.[11] . 엄밀히 말하면, 흡수 계수는 국부적 가스 조성과 온도의 함수이므로 균일하지 않아야 합니다. 그러나 가스 조성은 가마의 일부만 차지하는 화염 내에서만 변 하므로( 3절 참조 ) 균일한 흡수 계수를 가정하는 것이 합리적입니다. 또한, 현재 버전의 소프트웨어는 FLOW-3D의 반복 프로세스 동안 이 요소의 자동 재조정을 허용하지 않습니다. 여기서 로컬 가스 특성이 계산되므로 일정하고 균일한 흡수 계수가 필요합니다.

    최종적으로, 벽에서 대류 열전달이 플로우 3D 패키지에서 표준 출력 표준 “벽 기능”제형에 혼입 난류 경계층에 대한 식에 기초하고,의 속도 경계 조건과 유사한 K – ε 모델. FLOW-3D 및 RAD-3D에서 입력으로 사용하고 출력으로 계산된 다양한 양은 그림 3에 개략적으로 표시 됩니다.

    2.2.3 . 그리드

    반경 방향 47개, 축 방향 155개 노드를 갖는 불균일한 격자를 사용하였으며 격자 독립성 연구를 수행한 결과 충분하다고 판단하였다. 유사한 크기의 그리드도 Refs에서 적절한 것으로 밝혀졌습니다. 4 , 5 , 6 , 7 . 매우 높은 축 방향 및 소용돌이 속도로 인해 석탄 버너 유정에 가까운 지역을 해결하기 위해 특별한 주의를 기울였습니다. HP 715/100MHz 워크스테이션에서 이 그리드의 일반적인 CPU 시간은 10시간이었습니다.

    2.2.4 . 경계 조건

    벽 온도에 대한 경계 조건은 기체상 및 복사 솔버 모두에 필요하다는 것을 인식하는 것이 중요합니다. 아래에서는 4 , 5 , 6 , 7 을 규정하기 보다는 축대칭 그리드에 대한 이 온도 분포를 예측하는 대략적인 방법을 설명합니다 .

    내벽 온도 w ( in , x , ϕ ) 의 각도 분포 가 알려져 있다고 가정합니다 . 그런 다음 전체 3차원 문제를 “동등한” 축대칭 문제로 줄이기 위해 가상의 내벽 온도 RAD ( x )는(2)2πε에티4라드(x) = ε클∫0ㄷ티4클(엑스)디ϕ + ε에∫ㄷ2π티4에(아르 자형~에, x, ϕ)디ϕ”효과적인” 경계 조건으로 사용할 수 있습니다. RAD ( x )는 방위각으로 평균화된 “복사 가중” 온도입니다. 필요한 경계 조건으로 이 온도를 사용하는 것은 복사가 열 전달을 지배한다는 기대에 의해 동기가 부여됩니다(후반부 확인, 섹션 3.4 ). 따라서 전체 3차원 문제와 이 “유효한” 축대칭 문제에서 가스에서 가마로의 전체 에너지 흐름은 거의 동일할 것으로 예상됩니다.  의 사용 (2) 축대칭 코드로 기체상 및 복사장을 계산할 수 있으므로 엔지니어링 워크스테이션을 사용하여 문제를 다루기 쉽습니다.

    고려되는 가마의 규모와 온도에서 가스는 광학적으로 두꺼운 것으로 간주될 수 있습니다. 솔루션(나중에 제시됨)은 평균 경로 길이(즉, “광자”의 모든 에너지가 흡수되기 전의 평균 길이)가 약 3.2m임을 보여주며, 이는 가마 내경 4.1m보다 작습니다. 이것은 내벽에 입사하는 복사 플럭스가 국부적 벽과 가스 온도에 강하게 의존하고 더 먼 축 또는 방위각 위치에서 벽의 온도에 약하게만 의존함을 의미합니다. 이것은 기체상에 사용된 축대칭 근사에 대한 신뢰를 줍니다. 그것은 또한 Refs의 “구역 방법”을 의미합니다. 8 , 9 , 10표면에 입사하는 방사선이 1-2 구역 길이보다 더 먼 축 위치와 무관한 것으로 간주되는 경우에는 충분했을 것입니다.

    2.3 . 가마 온도

    내부 소성로 표면 온도 w ( in , x , ϕ )는 Eq. 에서 필요합니다 (2) 및 가마 벽 에너지 방정식의 솔루션 결과의 일부입니다. 각속도 ω로 회전하는 좌표계 에서 후자는 [10] 이 됩니다 .(3)ω∂(ϱ에씨피티에)∂ϕ=1아르 자형∂∂아르 자형에게에아르 자형∂티에∂아르 자형+1아르 자형2∂∂ϕ에게에∂티에∂ϕ+∂∂엑스에게에∂티에∂엑스경계 조건에 따라(3a)r=R~에,Θ<ϕ⩽2π:에게∂티에∂아르 자형=q라드(x)+q전환(엑스),(3b)r=R~에, 0 <ϕ⩽Θ:에게∂티에∂아르 자형=qw–cl(x, ϕ) = hw–cl티클(x)-T에(아르 자형~에, x, ϕ),(3c)r=R밖, 0 <ϕ⩽2π:.케이∂티에∂아르 자형=h쉿티쉿-T∞+ ε쉿티4쉿-T4∞.

    전도도, 밀도 및 비열용량에 대한 값은 실제 가마에 사용되는 내화물 재료에 대한 제조업체 정보에서 가져옵니다 [15] . 외부 쉘 온도 sh = w ( out , x , ϕ )는 x 및 ϕ 에 따라 달라질 수 있습니다 .

    위 방정식에 대한 몇 가지 의견이 있습니다. 에서는 식. (3a) 에서 열유속의 방위각 의존성이 제거되었습니다. 이전에 언급했듯이 흐름은 광학적으로 두꺼운 것으로 간주됩니다. 즉, 화염이 너무 방사되고 너무 넓기 때문에 벽면 요소가 화염을 가로질러 반대쪽 벽을 “보지” 않습니다. 따라서 rad ( x , ϕ ) 의 계산은 다른 각도 위치로부터의 복사를 포함할 필요 없이 가스 ( r , x ) 및 로컬 w ( in , x , ϕ )를 기반으로 할 수 있습니다. 여기부터 qrad ( x )는 Eq. 의 방위각 평균 온도를 기반으로 하는 축대칭 RAD-3D 솔루션에서 가져옵니다 (2) , 결과적인 rad ( x )는 어떤 의미에서 방위각으로 평균된 열유속입니다. 식 따라서 (3a) 는 우리가 이 열유속을 모든 ϕ 에 등분포한다는 것을 의미합니다 . Eq 에서 rad 의 각도 변화를 무시한다는 점에 유의하십시오 . (3a) 는 Refs. [10] 또는 [11] 이 우선되어야 합니다.

    소성로와 장입물 사이의 열전달 계수 w-cl 은 소성로의 에너지 흐름과 온도를 정확하게 예측하는 데 중요하지만 잘 알려져 있지 않습니다. 500 W / m의 전형적인 값  K는 여기에 제시된 결과 사용되고있다 [8] . 계산된 w ( r , x , ϕ ) 및 RAD ( x) 이 계수의 선택에 따라 달라지지만 예측은 질적으로 변하지 않습니다. 껍질에서 대기로의 열 전달은 복사와 별도로 강제 및 자연 대류를 통해 발생합니다. 자연 대류에 대한 열전달 계수는 Ref. [11] , 현재 조건에서 약 5 W/m 2 K의 일반적인 값 을 사용합니다. 그러나 쉘에 불어오는 외부 팬은 과열을 피하기 위해 산업에서 종종 사용되며 이러한 효과는 총 sh =30 W/m 2 K 를 사용하여 여기에서 모델링 되었습니다. 방사율에는 다음 값이 사용되었습니다. ε w = ε cl = 0.9 및 ε sh = 0.8.

    식 (3) 은 가마의 방사형 기울기가 훨씬 더 가파르기 때문에 방위각 및 축 전도를 무시한 후 명시적 유한 체적 방법으로 해결되었습니다. 방사형으로 50개 노드와 축 방향으로 19개 노드가 있는 균일하지 않은 그리드가 사용되었으며 회전으로 인한 화염에 주기적으로 노출되는 표면으로 인해 발생하는 빠른 온도 변화를 따르기 위해 내부 표면에서 적절한 방사형 분해능이 사용되었습니다. 동일한 이유로 사용 된 작은 단계(Δ ϕ = π /100)는 가마의 큰 열 관성과 함께 가마 벽 온도가 수렴되도록 하기 위해 2시간 정도의 CPU 시간이 필요했습니다.

    2.4 . 수갑

    가마에 대한 모델의 마지막 부분은 클링커 온도 및 조성 보존 방정식에 관한 것으로, 축 방향 기울기만 고려하고 전도는 무시합니다.(4)씨피V클디(ϱ클티클)디엑스=−엘wclㄷㅏ클∫0ㄷ큐w–cl(x, ϕ)디ϕ +엘gclㅏ클큐라드(x)+q전환(엑스)−∑나Nsp아르 자형나시간0, 나는에프+씨피티,(5)V클디(ϱ클와이나)디엑스=r나,(6)V클디ϱ클디엑스=−r무엇2,여기서 cl 은 속도 cl 로 흐르는 전하가 덮는 단면적 이며 둘 다 일정하다고 가정하고 gcl =2 in sin( Θ /2) 전하로 덮인 섹터의 현( 그림 1 ) , WCL = Θ 에서는 , SP 화학 종의 수와 r에 난을 (kg / m의 형성 속도 순 3 종의) I를 . 전하의 밀도는 Eq를 감소시킵니다 (6) CO 2 에 대한 질량 손실로 인한하소하는 동안 초기 값은 총 질량 유량이 ϱ cl cl cl 과 같도록 선택되었습니다 . 참고 ρ (CL)이 있다 하지 전하 느슨하게 포장 된 입자로 이루어지는 것으로 생각 될 수있는 바와 같이, 충전 재료 밀도하지만 벌크 밀도. 우리는 또한 전하의 실제 입상 흐름 패턴을 조사하는 것보다 적은 것은 모델의 신뢰성에 크게 추가되지 않는 임시 설명 [10] 이라고 믿기 때문에 전하의 전도를 무시 합니다. 전하는 CaCO 3 , CaO, SiO 2 , Al 2 O 3 , Fe 로 구성된 것으로 가정합니다.2 O 3 , C2S, C3S, C3A 및 C4AF로, 마지막 4종은 클링커화 중에 형성된 복합 염에 대해 시멘트 화학자가 사용하는 특수 표기법으로 표시됩니다. 다음과 같은 화학 반응을 가정합니다 [12] .

    (나)CaCO3→높은+무엇2k = 108특급(−175728/RT)
    (Ⅱ)높은+2SiO2→C2Sk = 107특급(−240000/RT)
    (Ⅲ)높은+C2S→C3Sk = 109특급(−420000/RT)
    (IV)3높은+로2그만큼3→C3Ak = 108특급(−310000/RT)
    (V)4높은+로2그만큼3+철2그만큼3→Q4AFk = 108특급(−330000/RT)

    상기 시행 착오에 의해 선택되는 아 레니 우스 식에 사용되는 사전 지수 인자 및 활성화 온도는 카코에 대한 활성화 에너지를 제외하고, 가마의 출구에서의 전하의 예상 조성물을 얻었다 (3) 에서 촬영 한 분해 참조 [16] . 우리는 이러한 반응이 임시 모델임을 강조합니다. 실제로 고체상의 화학반응은 다양한 종의 결정들 사이의 계면에서 일어나며 확산이 제한적 이지만 [17] , 클링커 화학에 대한 상세한 처리는 본 연구의 범위를 벗어난다.

    클링커 형성의 마지막 단계로 간주되는 반응 (III)은 고온에서 액상이 존재할 때만 발생합니다. 클링커의 용융은 액체 분획 fus 에 대해서도 해결함으로써 모델링되었습니다 .(7)엘소란V클디(ϱ클와이소란)디엑스=RHS의식(4)만약 T의 CL이 융해 온도와 같거나보다 커진다 T의 FUS 와 T의 FUS 의 = 1560 K. 상한 Y의 FUS = 0.3 수행 하였다 [17] 상기 식을. (7) 무시되었다.

    상미분 방정식, , Gear 방식과 통합되었습니다. 가마 온도에 대한 유한 체적 코드( 2.3절 )와 클링커에 대한 코드는 반복적으로 해결되었으며( 그림 4 ), 이는 벽 클링커 열유속 w–cl ( x , ϕ ).

    2.5 . 최종 커플링

    전체 문제(가스, 가마, 장입)는 반복 방식으로 해결되었습니다. RAD 의 균일한 분포에서 시작 하여 기체상은 rad ( x ) 및 conv ( x ) 의 축 분포를 제공하도록 해결되었습니다 . 이것들은 다음에서 사용되었습니다., 그 솔루션의 새로운 추정 결과 RAD ( X 통해) 식. (2) . 그런 다음 FLOW3D-RAD3D 실행이 6차 다항식 피팅의 계수 형태로 프로그램에 도입된 새로운 경계 조건으로 반복되었습니다. 의 연속 추정치 사이에 0.5 미만의 밑에 이완 인자 RAD ( X)는 벽 온도에 대한 복사 열유속의 민감도가 크기 때문에 필요한 것으로 밝혀졌습니다. 일반적으로 HP 715 워크스테이션에서 10일 정도의 총 CPU 시간에 해당하는 내벽 온도(연속 반복이 40K 이상 변하지 않을 때 정의됨)의 수렴을 달성하기 위해 이러한 단계 사이에 약 10번의 반복이 필요했습니다. . 그림 5 는 균일한 값(1600K)에서 시작하여 최종 프로파일까지 RAD ( x ) 의 수렴 이력을 보여줍니다 .

    2.6 . 가마 조건

    사용된 일부 매개변수에 대한 작동 조건 및 값은 표 1 표 2 표 3에 나와 있습니다. 이 값은 시멘트 회전 가마의 전형입니다.

    표 1 . 공기 및 석탄 입자 입구 조건

    수송소용돌이중고등 학년석탄
    m (kg/s)2.2531.7592.91045.9304.0
     (m/s)77.136.576.112.7336.5
    V (m/s)−20.7063.900
    W (m/s)00112.800
     (케이)3183833181273383

    표 2 . 클링커 조성(질량 분율)

    밀가루가마 입구가마 출구
    m (kg/s)50.37439.81532.775
     (케이)11001785
    CACO 30.79470.402180
    높은00.338010.0229
    그런가 20.14340.181430
    알 2 O 30.03490.04420
    철 2 O 30.02700.034160
    C2S000.1808
    C3S000.5981
    C3A000.0731
    Q4AF000.1242
    소성 인자00.61.0

    소성 계수 카코의 비율을 3 의 CaO로 변환 된 FARINE있다.

    표 3 . 재료 속성 및 기타 매개변수

    ω (래드/초)0.5
    V의 CL (m / s)0.035
     (K)300
    sh (W/m 2 K)30
    w–cl (W/m 2 K)500
    ε w , ε cl0.9
    ε 0.8
    C의 P (클링커) (킬로 / kg K)1.5
    ϱ cl (kg/m 3 )1200
    fus (kJ/kg)418.4
    p (벽) (kJ/kg K)1.5
    ϱ w (kg/m 3 )1600–3000
    k는 w (W / m K)0.6–3.0
    석탄 열 방출(kJ/kg)25475

    3 . 결과 및 토론

    이 섹션에서는 먼저 화염 구조에 대한 정보와 함께 예측된 공기역학적 패턴의 세부사항을 제시합니다. 소성로 내화물의 온도 분포와 클링커 조성의 변화를 설명합니다. 이 섹션은 가마의 전체 에너지 균형과 가능한 모델 개선에 대한 논의로 끝납니다.

    3.1 . 화염 구조

    그림 6 은 명확성을 위해 방사상 좌표가 과장된 온도의 등고선 플롯을 보여줍니다. 석탄은 주입 지점에서 약 1m 지점에서 약간 축에서 벗어나 점화되며 최대 화염 온도(약 2400K)는 경험에 따라 약 40m 하류에서 도달합니다 [15] . 완전한 입자 소진에 대한 가장 긴 시간은 버너에서 45m에 해당하는 약 1.4초였습니다. 방사형 온도 프로파일( 그림 7 ) 은 온도의 상당한 불균일성이 있음을 보여주지만 출구 프로파일이 본질적으로 평평해짐에 따라 하류에서 감소합니다. 또한 벽에 인접한 가스가 더 차가운 열 경계층이 존재한다는 것이 분명합니다.석탄 노즐에서 최대 30m까지 벽보다 이것은 이 영역에서 대류에 의한 열 전달이 음(즉, 기체 쪽으로)임을 의미하며, 3.4절 에서 더 자세히 논의된 지점 입니다.

    버너 출구 바로 하류에 길이가 약 1 버너 직경인 재순환 구역이 있는데( 그림 8 ), 여기에서 화염이 더 하류에서 발화하기 때문에 소용돌이 안정화 화염 [7] 에서와 같이 화염 안정화에 기여하지 않습니다 . 그러나 액체 연료를 사용할 때는 중요할 수 있으므로 버너에 가까운 그리드의 세부 사항을 강조해야 합니다. 버너에서 처음 몇 미터는 매우 높은 전단력과 높은 난류 에너지 생산을 포함하며 이것이 그리드 미세 조정을 강조하는 또 다른 이유입니다. 휘발성 물질 연소 영역( x =10m, r =1m) 에서 k 및 ε 의 일반적인 예측 값 은 24.3 및 142m 2 /s입니다.3 , 각각. 대규모 난류 시간은 171ms이고 Kolmogorov 시간 규모는 1.1ms입니다. 휘발성 물질의 연소는 0.1ms(일반적인 탄화수소 연료) 정도의 시간 규모에서 발생하며, 이는 가마의 소규모 난류 시간보다 10배 더 짧습니다. 따라서 이 흐름에서 연소에 대한 유한 속도 동역학을 포함할 필요는 없으며 “혼합 연소” 근사가 합리적입니다.

    3.2 . 가마 온도 분포

    중심선에서 계산된 가스 온도, 온도 RAD ( x ) 및 클링커 온도는 그림 9 에서 비교됩니다 . 최고 가스 온도는 25~40m 사이에 위치하며 내화 내부 표면 온도도 최고점입니다. 클링커는 놀랍게도 가마에서 나오기 전 마지막 몇 미터 동안 벽보다 뜨겁 습니다. 복사에 의해 내화물에 입사하는 열유속은 대류에 의한 것보다 1-2 배 더 높으며( 그림 10 ) 가마의 처음 10m에 대한 총 열 전달 은 가스를  합니다. 이 관찰의 중요성은 나중에 논의됩니다.

    대류로 인한 에너지 플럭스는 화염에서 가마까지의 전체 에너지 플럭스의 매우 작은 부분인 것으로 밝혀졌습니다( 그림 10 ). 여기서 예측된 대류의 작은 기여는 Ref. [11] . 그 작업에서 대류 열 전달 계산에 사용된 가스 온도는 가마 단면의 평균이었고 따라서 축 근처에 있는 화염의 기여로 인해 벽 부근의 온도보다 훨씬 높았습니다. . 여기에서 우리는 온도와 가스 속도 및 난류 운동 에너지의 국부적 값을 기반으로 하는 보다 정확한 열전달 계수를 사용했기 때문에 보다 정확한 결과를 기대합니다.

    예측된 벽 온도는 모든 방향에서 불균일합니다. Fig. 11 은 가마가 회전함에 따라 화염에 노출되었을 때 벽이 가스에 의해 연속적으로 가열되고 클링커에 열을 공급하여 냉각되는 것을 보여준다. 이것은 약 100K의 일반적인 각도 온도 변화를 갖는 대부분의 가마 길이에 해당됩니다. 대조적으로 버너에 가까우면 벽 은 (0 < ϕ < π /2) 동안 클링커에서 열을 얻고 다음으로 열을  습니다. 노출될 때의 가스( π /2 < ϕ < 2 π ). 벽과 클링커 온도가 같으면서 방위각 변화가 없는 경우가 발생할 수 있습니다( 그림 11 ,        x = 17.5m). 이 온도 변화가 작은 것으로 간주될 수 있지만 벽에서 클링커까지의 열유속을 계산하는 위치에 있으려면 전체 3차원 내벽 온도 분포를 계산해야 합니다(0  < ϕ 범위에서 발생 < π /2).   

    그림 12 는 ϕ에 독립적인 외부(쉘) 온도와 함께 고체의 큰 비열로 인해 각도 방향의 변화 영역이 벽으로 약 1cm만 확장됨을 보여줍니다( 그림 12b) .. 벽 온도 방사 분포는 가스 온도, 입사 방사선 및 내화 재료의 특성이 변하기 때문에 축 방향 거리에 따라 달라집니다. 정확한 예측을 위해서는 내화물에 부착된 클링커 코팅의 두께에 대한 정확한 지식이 필요합니다. 여기에서 우리는 이 코팅을 클링커와 유사한 물성을 가진 균일한 두께의 재료로 취급했습니다. 그러나 이 코팅층의 실제 물리적 특성과 두께 분포에 관한 실험 데이터를 사용하여 예측의 신뢰성이 향상될 것입니다.

    마지막으로, 그림 13 은 외부 쉘 온도가 화염 영역에서 최고조에 달하고 대략적으로 실험 경향을 따른다는 것을 보여줍니다 [15] . 외부 가마 외피는 다양한 강철 두께, 방사율(외피 착색으로 인한) 및 열 전달 계수(송풍기 간격으로 인한)를 갖고 가마는 가변 내화 두께(에 의한 침식으로 인해)를 갖기 때문에 정확한 비교는 의미가 없습니다. 클링커), 여기에 사용된 가정과 반대입니다. 전체 규모 가마는 또한 차등 코팅 및 내화 침식으로 인한 최대 ±100K의 쉘 온도 각도 변동을 보여줍니다 [15] . 따라서 우리는 그림 13 의 일치 가 실제 가마의 복잡성을 고려할 때 예상할 수 있는 만큼 우수 하다고 믿습니다 .

    이 섹션에 제시된 예측은 가마 내부의 열 전달 경로에 대한 다음 그림을 뒷받침합니다. 대부분의 가마 길이에서 장입물은 화염으로부터의 복사와 벽으로부터의 열 전도에 의해 가열되고 있습니다. 장입물이 내화물보다 더 차갑기 때문입니다. 가마가 회전함에 따라 내화물은 화염에 노출될 때 열을 얻고 이를 클링커에 공급합니다( 그림 11 ). 벽의 이 “재생” 작용은 Refs. 9 , 10 및 현재 결과에서 재현되었습니다. 그러나 버너 근처에서 반대 에너지 흐름이 발생합니다( 그림 11 , 작은 x). 여기의 가스는 아직 충분히 뜨겁지 않아 내화물이나 장입물에 에너지를 공급하지 않습니다. 이 영역에서 벽은 다가오는 전하에 의해 열을 얻으므로 고체가 없을 때보다 더 뜨겁게 유지됩니다. 벽과 전하가 대류와 복사에 의해 가스에 열을 공급합니다. 우리는 이것을 “음의 재생” 작용으로 식별할 수 있으며 가마의 더 높은 온도 영역( x  >  15m) 에서 클링커에 의해 흡수된 에너지에 의해 유지됩니다 . 전반적으로 클링커는 x  >  15 m 에서 열을 흡수 하고 0  < x < 15 m 에서 일부를 가스로 되돌려 줍니다.   

    이 상호 작용은 간단하지 않으며 쉽게 예상할 수 없습니다. 이는 예를 들어 고체를 액체 연료로 대체하여 화염을 수정하면 열유속 분포를 변경하여 최종 클링커 온도에 중대한 영향을 미칠 수 있음을 의미합니다. 현재의 포괄적인 모델이 제공하는 세부 사항은 가마에서 이러한 변화를 평가하는 데 도움이 될 것입니다.

    3.3 . 클링커 온도 및 조성

    클링커 온도( 그림 9 )는 가장 높은 화염 온도에 도달하는 축 방향 위치에서 거의 최고조에 달하며 클링커는 약 1780K에서 킬른에 존재하며 이는 시멘트 킬른에서 실험 측정값에 가까운 값입니다 [15] . 초기 및 최종 클링커 조성은 표 2 에 나와 있으며 실제 가마에서 작동 값에 가깝습니다 [15] . 다양한 클링커 성분의 축방향 분포( 그림 14 )는 완전한 하소를 위해 고체 유입구에서 약 25m, C2S, C3A 및 C4AF 생성을 위해 추가로 10m가 소요됨을 보여줍니다. 첫 번째 액체상은 x 에서 발견됩니다.=50m이고 액화는 경험과 일치하는 예측인 매우 직후에 완료됩니다 [17] . 클링커화 반응(R-III)은 모델에서 액체가 나타날 때 시작되는 것으로 가정되었으며, 그림 14 에서 클링커화에는 나머지 길이의 거의 전체가 완료되어야 한다는 것이 분명 합니다. 예측은 전체적으로 시멘트 가마 운영의 경험과 일치하며 여기에 사용된 화학적 및 물리적 매개변수가 현실적인 값을 가지고 있음을 의미합니다.

    3.4 . 글로벌 에너지 균형

    전지구적 에너지 균형은 기체상(FLOW-3D 및 RAD-3D에 의한)과 소성로 장입 시스템에 대한 솔루션에서 쉽게 계산할 수 있으며 표 4 에 나와 있습니다. CFD 코드는 방사 모듈과 함께 에너지를 약 2%까지 절약합니다. 작은 것으로 간주되는 이 오류는 주로 RAD-3D의 영역 이산화와 Monte-Carlo 계산의 유한한 입자 수로 인해 발생하는 오류에 기인하며 CPU 시간을 희생하여 개선할 수 있습니다. 소성로-클링커 계산의 정확도는 더 나쁩니다. 소성로-클링커 시스템에 입력되는 에너지의 약 10% 오류( rad  + conv )입니다. 이는 수렴된 솔루션이 식 (3) , 그리고 보다 정확한 암시적 솔버에 의해 개선될 수 있습니다.

    표 4 . CFD 그리드 및 가마-클링커 조합에 대한 글로벌 에너지 균형

    가스(MW)
    라드 , 1−2.47
    라드 , 2−2.72
    큐 라드−57.12
    전환0.04
    석탄101.2
    Δ 가스41.25
    균형2.32
    가마 클링커
    큐 라드57.12
    전환−0.04
    손실−10.45
    Δ H의 CL40.99
    균형5.64

    에너지 흐름의 정의는 그림 2 를 참조하십시오 .

    시멘트 회전식 가마의 에너지 사용에 관한 몇 가지 흥미로운 결론은 표 4 의 결과를 통해 얻을 수 있습니다 . 연소에 의해 방출되는 에너지의 약 40%는 전하 가열 및 클링커 형성에 필요하고 약 10%는 내화물을 통해 대기로 손실됩니다. 나머지의 대부분은 본질적으로 배기 가스와 함께 소성로 밖으로 흐릅니다. 이 중 일부는 소성로 외부의 예비 하소기 및 사이클론에서 회수됩니다. 내부 가마 벽과 장입 온도를 자세히 다루는 여기에 제시된 포괄적인 모델에 의존하지 않고는 국지적 가스 온도를 정확하게 예측하고 이에 따라 향후 연구에서 오염 물질 형성을 예측하는 것이 불가능하다는 것이 분명합니다.

    3.5 . 논의

    여기에 제시된 회전식 시멘트 가마 작동에 대한 포괄적인 모델의 결과는 합리적이며 실험적으로 관찰된 경향을 재현합니다. 이전 모델링 작업에 비해 이 작업의 주요 이점은 가마에서 발생하는 대부분의 물리적 프로세스를 포함한다는 점입니다. 특히, 가스 온도와 클링커로의 열유속 및 이에 따른 클링커 형성을 결정하는 데 가장 중요한 양인 내벽 온도는 실험 데이터를 사용하여 규정된 것이 아니라 예측되었습니다. 이 특정 기능은 현재 모델을 진정한 예측형으로 만듭니다.

    우리는 전체 3차원 문제를 공기역학에 대한 “동등한” 축대칭 문제로 줄이는 방법을 포함했습니다( 식 (2) ). 이를 통해 현재 워크스테이션에서 솔루션을 얻을 수 있습니다. 모델의 모듈식 특성, 즉 공기역학, 복사, 가마 및 장입에 대한 별도의 코드는 해당 모듈만 수정하면 다른 회전 가마 응용 프로그램(예: 소각 및 건조)에도 사용할 수 있음을 의미합니다. 예를 들어, 고형 폐기물의 소각은 현재 코드로 모델링할 수 있지만 적절한 화학.

    실험 데이터와의 상세한 비교는 이용 가능한 측정이 거의 없고 현지 시멘트 회사에서 제공한 경험적 데이터로 제한되어 매우 어렵습니다 [15] . 비교는 앞서 지적한 바와 같이 출구 클링커 조성과 온도가 산업적 경험( 표 2 ) 이내 이고, 배기 가스 조성은 공장 굴뚝에서 측정된 값에 가깝고(“가짜 공기” 희석을 허용한 후), 가마 외피 온도는 측정 범위 내에 있습니다( 그림 13 ). 이 동의는 모델이 프로세스의 정확한 표현임을 시사합니다.

    더 높은 정확도의 예측을 달성하려면 모델의 다양한 부분에서 개선이 필요합니다. 내화물의 정확한 두께(즉, 내화물과 부착된 클링커)를 설정해야 합니다. 이는 가마 벽을 통해 주변으로 열 손실이 발생하여 외부 쉘 온도에 영향을 미치기 때문입니다. 새 내화물이 있는 가마에서 쉘 온도 측정과 자세한 비교가 이루어져야 합니다(불균일한 코팅 두께가 방지되도록). 벽 재료의 물리적 특성(열용량, 밀도, 전도도)의 적절한 값을 사용해야 합니다. 가장 큰 불확실성은 클링커 코팅의 가정된 특성에 관한 것입니다. 내벽 표면의 방사율과 가스의 흡수 계수를 더 자세히 조사해야 합니다. 가마에 입사하는 복사 열유속에 영향을 미치므로 벽 온도에 영향을 줄 수 있습니다. 클링커의 온도는 사용된 비열 용량에 따라 달라지므로 정확한 평가에 각별한 주의가 필요합니다. 화염의 국지적 온도와 종 구성에 대한 지식은 CFD 코드를 검증하는 데 매우 유용할 것이지만 그러한 적대적인 환경에서 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다.

    이러한 모든 잠재적 개선과 모델과 관련된 불확실성에도 불구하고 가마의 모든 에너지 경로가 적절한 세부 사항으로 모델링되었기 때문에 전체 동작은 최소한 질적으로 정확합니다. 클링커 출구 구성, 쉘 온도 및 배기 가스 구성과 같은 중요한 양은 허용 가능한 정확도로 예측됩니다. 이 모델은 버너, 연료 유형, 품질 및 수량, 예비 하소 수준( 표 2 ) 또는 고형물 유량 등의 변경과 같은 많은 상황에서 산업계에 매우 유용할 것으로 예상됩니다 . 소성로 운영자는 최종 클링커 구성이 여전히 허용 가능하고 현재의 포괄적인 모델이 이 방향에 도움이 될 수 있는지 확인해야 합니다.

    4 . 결론

    실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 석탄 화염과 가마 사이의 열 교환, 가마와 역류 고체 사이의 열 교환, 고형물을 최종 제품(클링커)으로 변환합니다. 방사선에 대한 Monte-Carlo 방법을 포함하는 축대칭 CFD 코드(상용 패키지 FLOW-3D)가 기상에 사용되었습니다. 가마 벽의 온도는 유한 체적 열전도 코드로 계산되었으며 클링커에 대한 종 및 에너지 보존 방정식도 공식화 및 해결되었습니다. 기체 온도 필드에 대한 예측 사이의 반복적인 절차, 벽에 대한 복사 열 유속, 가마 및 클링커 온도는 실험에서 이러한 정보를 사용한 이전 모델링 노력과 달리 내벽 온도 분포를 명시적으로 계산하는 데 사용되었습니다. 접선 좌표에 대한 통합은 CFD 코드에 필요한 경계 조건으로 사용되는 “유효” 내벽 온도의 축 분포를 초래했습니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다.

    결과는 복사가 가스와 가마 벽 사이의 대부분의 열 전달을 설명하는 반면 내화물을 통한 환경으로의 열 손실은 입력 열의 약 10%를 설명한다는 것을 보여줍니다. 화학 반응과 충전물의 가열은 연소 에너지의 약 40%를 흡수합니다. 따라서 이러한 사항을 반드시 고려해야 합니다. 예측은 실제 규모의 시멘트 가마에서 얻은 경험과 측정값을 기반으로 한 경향과 일치합니다.

    감사의 말

    이 작업은 과학 및 기술을 위한 그리스 사무국 프로젝트 EPET-II/649의 자금 지원을 받았습니다. Mr.P에게 진심으로 감사드립니다. 시멘트 가마에 관한 지침 및 데이터는 그리스 TITAN SA의 Panagiotopoulos에게 문의하십시오.

    References
    1 S.R. Turns, An Introduction to Combustion, Concepts and Applications, McGraw-Hill, New York, 1996
    Google Scholar
    2 V. Johansen, T.V. Kouznetsova, Clinker formation and new processes, Presented at the Ninth International Congress on the Chemistry of Cement, India, 1992; also RAMBOLL Bulletin No. 42, 1993
    Google Scholar
    3 Basel Convention, UNEP Document No. 93-7758, 1993
    Google Scholar
    4 N.C Markatos
    Mathematical modelling of single and two-phase flow problems in the process industries
    Revue de l’Institut Français du Pétrole, 48 (1993), p. 631
    View PDFCrossRefView Record in ScopusGoogle Scholar
    5 T. Avgeropoulos, J.P. Glekas, C. Papadopoulos, Numerical simulation of the combustion aerodynamics inside a rotary cement kiln, in: Pilavachi (Ed.), Energy Efficiency in Process Technology, Elsevier, London, 1993, p. 767
    Google Scholar
    6 F.C. Lockwood, B. Shen, T. Lowes, Numerical study of petroleum coke fired cement kiln flames, Presented at the Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, 1995
    Google Scholar
    7 F.C. Lockwood, B. Shen, Performance predictions of pulverised-coal flames of power station furnace and cement kiln types, Twenty-Fifth Symposium International on Combustion, The Combustion Institute, 1994 p. 503
    Google Scholar
    8 P.V Barr, J.K Brimacombe, A.P Watkinson
    A heat-transfer model for the rotary kiln: Part II, development of the cross-section model
    Metallurgical Transactions B, 20B (1989), p. 403
    View Record in ScopusGoogle Scholar
    9 V Frisch, R Jeschar
    Possibilities for optimizing the burning process in rotary cement kilns
    Zement-Kalk-Gips, 36 (1983), p. 549
    View Record in ScopusGoogle Scholar
    10 A.A Boateng, P.V Barr
    A thermal model for the rotary kiln including heat transfer within the bed
    Int. J. Heat Mass Transfer, 39 (1996), p. 2131
    ArticleDownload PDFView Record in ScopusGoogle Scholar
    11 M.G. Carvahlo, T. Farias, A. Martius, A three-dimensional modelling of the radiative heat transfer in a cement kiln, in: Carvahlo et al. (Eds.), Combustion Technologies for a Clean Environment, Gordon and Breach, London, 1995, p. 146
    Google Scholar
    12 H.A Spang
    A dynamic model of a cement kiln
    Automatica, 8 (1972), p. 309
    ArticleDownload PDFView Record in ScopusGoogle Scholar
    13 CFDS, FLOW-3D Users Manual, AEA Harwell, UK
    Google Scholar
    14 E Mastorakos, J.J McGuirk, A.M.K.P Taylor
    The origin of turbulence acquired by heavy particles in a round, turbulent jet
    Part. Part. Syst. Charact., 7 (1990), p. 203
    View PDFCrossRefView Record in ScopusGoogle Scholar
    15 P. Panagiotopoulos, TITAN S.A. Cement Company, Personal communication, 1996
    Google Scholar
    16 M.S Murthy, B.R Harish, K.S Rajanandam, K.Y Ajoy Pavan Kumar
    Investigation on the kinetics of thermal decomposition of calcium carbonate
    Chem. Eng. Sci., 49 (1996), p. 2198
    Google Scholar
    17 V. Johansen, Cement production and chemistry, Presented at the Symposium on Cement Manufacturing and Chemistry, Anaheim, November 1989; also RAMBOLL Bulletin No. 41, 1993
    Google Scholar
    1 Also at Department of Mechanical Engineering, University of Patras, Greece.

    2 Also at Department of Chemical Engineering, University of Patras, Greece.

    View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft - Courtesy of Mott MacDonald

    Thames Tideway Tunnel – East Contract – Hydraulic Modelling

    수력 구조물의 수력 설계 및 모델링 경험 (Experiences in the hydraulic design and modelling of the hydraulic structures)

    CFD Modelling: View of Earl Pumping Station interception structures and approach to vortex drop shaft - Courtesy of Mott MacDonald
    CFD Modelling: View of Earl Pumping Station interception structures and approach to vortex drop shaft – Courtesy of Mott MacDonald

    템스 타이드웨이 터널은 주로 템스 강 아래 런던 중심부를 통과하는 새로운 저장 및 이송 터널입니다. 최대 지름 7.2m의 길이약 25km에 달하는 주요 터널은 서쪽액톤에서 동쪽의 수도원 밀스까지 운행됩니다. 이 프로젝트의 목적은 템스 강에 도달하기 전에 결합된 하수 흐름을 가로채고 저장하여 가장 오염이 많은 복합 하수 오버플로(CSOS)의 34개 를 제어하는 것입니다. 템스 타이드웨이 터널은 베크턴 하수 처리 작업에서 치료를 위해 흐름을 수송할 수도원 밀스의 리 터널에 연결됩니다. CSO 현장에서는 소용돌이 낙하 샤프트와 같은 가로채기 및 전환 구조물이 근처 표면 하수 네트워크에서 깊은 저장 터널로 결합된 하수 흐름을 수송합니다.

    East main works

    터널을 납품하는 회사인 Tideway는 프로젝트를 세 부분으로 분리했습니다. 동쪽 구간은 프로젝트의 가장 깊은 부분이며, 65m 깊이에 도달합니다. 버몬드시의 챔버 부두는 애비 밀스 (Abbey Mills)에 이르는이 5.5km 터널 섹션의 주요 드라이브 사이트입니다. 동부 개발에는 그리니치 펌핑 스테이션에서 챔버 스워프의 주요 터널까지 약 4.5km의 5m 내부 직경 연결 터널이 포함되어 있습니다.

    4개의 드롭 샤프트가 현재 설계 및 제작 중입니다. 이들은 24-36m 3/s 범위의 설계 흐름을 가지며 차단 및 전환 구조, 터널 격리 게이트 및 플랩 밸브가 있는 밸브 챔버, 와류 발생기 입구 구조, 와류 드롭 튜브 및 에너지 소산 및 탈기 챔버를 포함한 유압 구조로 구성됩니다.

    The challenge/ hydraulic modelling

    이러한 새로운 구조의 설계는 수많은 엔지니어링 문제에 직면해 있습니다. 최대 36m3/s의 대규모 설계 유량은 기존 네트워크에 부정적인 영향을 미치거나 기존 CSO를 통해 유출되지 않고 완전히 캡처되어 터널로 안전하게 전달되어야 합니다.

    또한 복잡한 흐름 패턴이 발생하는 수축된 설계와 시스템의 올바른 작동을 위해 필요하고 불리한 유체 역학 조건으로부터 보호해야 하는 기계 플랜트의 필요성을 초래하는 공간 제약이 있습니다. 또한, 소용돌이 낙하 샤프트 내부에 최대 50m까지 떨어지는 흐름에 의해 생성되는 많은 양의 에너지는 터널로 전달하기 전에 안전하게 소멸되고 유동을 제거해야합니다.

    이러한 과제를 해결하기 위해 프로젝트 팀은 물리적 스케일 모델링과 함께 CFD(계산 유체 역학) 모델링을 광범위하게 사용했습니다.

    CFD 모델링: 얼 펌핑 스테이션 소용돌이 드롭 샤프트 및 저장 터널 의 보기 - Courtesy of Mott MacDonald
    CFD 모델링: arl Pumping Station 소용돌이 드롭 샤프트 및 저장 터널 의 보기 – Courtesy of Mott MacDonald

    전산 유체 역학 모델링

    CFD는 초기 설계 단계에서 사용되는 주요 유압 모델링 도구로, 모든 유압 구조를 모델링하고, 설계 수정을 통합하고, 결과를 신속하게 시각화 및 분석하고, 성능을 마무리할 수 있는 기능을 제공했습니다.

    제안된 설계의 3D 건물 정보 모델링(BIM) 형상을 CFD 소프트웨어로 전송하여 CFD 유체 도메인에 대한 형상을 생성하는 데 필요한 시간을 줄였습니다.

    FlowScience Inc에서 개발한 Flow 3D가 주요 모델링 플랫폼으로 활용되었습니다. 이 소프트웨어는 공기-물 인터페이스를 추적하기 위해 유체 체적 방법을 적용하여 자유 표면 흐름을 정확하게 모델링하는 기능이 있습니다.

    입방 격자를 사용한 3D 구조형 메쉬를 사용하였고, 레이놀즈평균 Navier-Stokes 접근법을 표준 k-omega 난기류 모델로 사용하여 난류를 해석하였습니다.

    View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft - Courtesy of Mott MacDonald
    View of King Edward Memorial Park Foreshore interception structures and approach to vortex drop shaft – Courtesy of Mott MacDonald

    메쉬 해상도에 대한 민감도 분석이 수행되었고 계산 메쉬의 적합성에 대한 추론을 허용하기 위해 이전 개념 단계 구조의 물리적 스케일 모델링에서 사용 가능한 결과와 비교되었습니다. 와류 발생기 및 드롭 튜브의 목과 같이 급격한 기울기가 발생하는 영역의 메쉬에 특별한 주의를 기울였습니다.

    전체 메쉬 해상도와 계산 효율성 간의 균형은 설계 목적을 위해 충분히 정확하지만 설계 프로그램 목표를 충족하는 시간 척도 내에서 결정적으로 중요한 솔루션을 생성하는 데 필요했습니다.

    CFD 모델이 수렴되면 결과가 시각화되었습니다. 주요 산출물에는 구조 전체에 걸친 상세한 수위, 크기와 벡터, 흐름 유선이 있는 속도 플롯이 포함되었습니다. CFD 모델에 의해 생성된 데이터는 유동장의 거동을 이해하는 데 매우 유용했으며 이러한 결과를 분석하여 설계가 어떻게 수행되고 있는지에 대한 결론을 내릴 수 있었습니다.

    View of King Edward Memorial Park Foreshore drop shaft and energy dissipation chamber - Courtesy of Mott MacDonald
    View of King Edward Memorial Park Foreshore drop shaft and energy dissipation chamber – Courtesy of Mott MacDonald

    물리적 스케일 유압 모델링

    물리적 규모의 수력학적 모델링은 작동 조건의 전체 범위에 걸쳐 설계의 수력학적 성능을 종합적으로 평가하고 설계 개선 사항을 알리고 테스트하는 데 사용되었습니다.

    프로그램의 효율성을 위해 수력구조물의 설계가 잘 진행된 단계에서 물리적인 규모의 모델링을 수행하였다. CFD 모델링은 이미 수행되어 설계의 전체 성능에 대한 확신을 제공했습니다. 주요 구조 부재도 MEICA 공장을 위해 크기가 조정되었고 설계 공간이 확보되었습니다.

    설계 개발의 이 단계에서 물리적 모델링을 수행하는 것은 시간이 많이 소요되는 물리적 모델에 필요한 주요 변경의 위험을 줄이는 것을 목표로 했습니다. 또한 모델 테스트가 수력 구조의 최종 의도 설계를 가능한 한 가깝게 반영하도록 했습니다.

    물리적 모델링을 위해 두 개의 사이트가 선택되었으며, 주로 공간 제약으로 인해 유압 구조의 설계가 더 복잡했습니다. 이러한 사이트는 다음과 같은 사이트였습니다.

    • 그리니치 펌핑 스테이션은 1:10 규모의 전체 작업 현장 모델이 건설되었습니다.
    • CSO 차단 구조의 모델이 수행된 King Edward Memorial Park 및 Foreshore는 1:10 축척으로, 드롭 샤프트 에너지 소산 및 탈기 챔버의 별도 모델은 1:12 축척으로 구축되었습니다.

    모델은 실험실 시설에서 전문 하청 업체 BHR 그룹에 의해 구축 및 테스트되었습니다. 모델은 최신 디자인 BIM 모델에서 생성된 모델 도면을 사용하여 주로 퍼스펙스와 합판으로 구축되었다. 모델 시공승인을 받기 전에 도면은 실험실에서 유압 구조물의 정확한 복제본을 보장하기 위해 BIM 모델에 대한 엄격한 치수 검사를 받았습니다.

    Model of King Edward Mermorial Park and Foreshore energy dissipation chamber in operation - Courtesy of Mott MacDonald & BHR Group
    Model of King Edward Mermorial Park and Foreshore energy dissipation chamber in operation – Courtesy of Mott MacDonald & BHR Group

    중력의 힘이 이러한 구조에서 개방 채널 유체 흐름을 지배하기 때문에 유사성을 보장하기 위해 프로토타입(전체 규모 설계) 및 축소된 축소 모델에서 Froude 수를 동일하게 유지하는 것이 중요합니다. 따라서 Froude 수의 동일성을 유지하기 위해 모델을 유속으로 작동했습니다. 규모는 또한 모든 흐름 조건에서 흐름이 완전히 난류임을 보장할 수 있을 만큼 충분히 커야 했으며 이는 모델의 다른 부분에서 흐름의 레이놀즈 수를 추정하여 확인했습니다.

    축소된 물리적 모델에서는 모든 스케일 효과를 제거할 수 없습니다. 표면 장력은 비례하지 않기 때문에 프로토타입과 모델의 Weber 수(초기 힘과 표면 장력 사이의 비율을 나타냄)가 다르고 둘 사이의 액체 상태에 포함된 공기의 양도 다릅니다. 이것은 방법의 한계로 인식되고 이해되며 공기 동반 결과에 스케일링 계수를 적용하여 해결되었습니다.

    이 모델은 작동 사례를 설정하는 미리 정의된 테스트 매트릭스에 따라 테스트를 거쳤습니다. 여기에는 다양한 흐름 사례와 저장 터널 꼬리 수위가 포함됩니다. 유량은 보정된 기기로 엄격하게 제어되었으며, 필요한 경우 모델로의 유량은 관심 영역의 유량이 유입구 조건에 의해 인위적으로 영향을 받지 않도록 조절되었습니다.

    흐름의 동작을 관찰하고 기록했습니다.

    • 수위는 압력 태핑을 통해 또는 모델 측벽의 수직 눈금을 통해 시각적으로 기록되었습니다.
    • 플로우 패턴은 염료 추적기의 도움을 받아 시각적으로 기록되었습니다.

    특히 관심의 한 측면은 소용돌이 흐름이었다. 소용돌이 발생기및 소용돌이 낙하튜브를 통한 흐름에 대한 상세한 관찰은 흐름이 안정적이고, 맥동과 도미 효과가 없는지, 그리고 흐름 범위 전반특히 관심의 한 측면은 소용돌이 흐름이었습니다. 와류 발생기 및 와류 드롭 튜브를 통한 흐름에 대한 자세한 관찰은 흐름이 안정적이고 맥동 과도 효과가 없으며 와류 흐름이 드롭 튜브에서 잘 형성되어 흐름 범위 전체에 걸쳐 안정적인 공기 코어를 유지하면서 관찰되었습니다.

    (left) Physical model of Greenwich Pumping Station interception chamber flap valves in operation and (right) physical model of Greenwich PS internal structures for energy dissipation within the shaft - Courtesy of Mott MacDonald and BHR Group
    (left) Physical model of Greenwich Pumping Station interception chamber flap valves in operation and (right) physical model of Greenwich PS internal structures for energy dissipation within the shaft – Courtesy of Mott MacDonald and BHR Group

    와류 발생기에서 임계유량이 발생하기 때문에 확실한 수두-방전 관계가 설정되어 수위를 판독하여 유량을 측정할 수 있는 기회를 제공합니다. 와류 발생기에 대한 접근 암거에 위치한 압력 탭핑은 유속 범위에 걸쳐 수심 값을 기록하여 각 방울 구조에 대해 수두 방출 곡선을 도출할 수 있도록 했습니다. 프로토타입에서 이 지점에서 수집된 레벨 신호는 흐름을 계산하고 격리 게이트를 제어하는 ​​데 사용됩니다.

    흐름이 와류 드롭 튜브 아래로 수 미터 떨어지고 드롭 샤프트의 바닥에 있는 물 풀로 충돌할 때 공기가 물 속으로 동반됩니다. 터널 시스템에서 발생하는 압축 공기 주머니와 저장 용량 감소 문제를 피하기 위해 드롭 샤프트에서 저장 터널로 전달되는 공기의 양을 최소화하는 것이 중요합니다. 이 목적을 달성하기 위해, 드롭 샤프트의 베이스가 흐름의 에너지 소산 및 탈기 기능을 수행하는 것이 매우 중요합니다. 이것은 충분한 체적을 제공하도록 샤프트의 크기를 조정하고 다음과 같은 흐름을 조절하기 위해 샤프트 내부 벽을 설계함으로써 달성되었습니다.

    • 플런지 풀이 형성되었습니다.
    • 샤프트의 흐름 경로/유지 시간은 가능한 한 오래 지속됩니다.
    • 샤프트 의 베이스의 특정 영역은 위쪽 흐름 경로를 촉진합니다.

    이러한 조치는 떨어지는 물의 에너지가 소멸되고 공기가 가능한 한 흐름에서 분리되도록 하는 것을 목표로 하고 저장 터널로 전달됩니다.

    에너지 소산 및 탈기 구조의 성능을 평가하기 위해 드롭 샤프트에서 저장 터널을 통과하는 공기 흐름을 물 변위 방법으로 측정했습니다. 흐름에 혼입된 정확한 양의 공기를 보장하기 위해 모델은 와류 드롭 튜브의 전체 높이를 통합했습니다. 설계의 허용 기준에 대해 최대 기류는 최대 설계 수류의 백분율로 정의된 미리 정의된 값으로 제한되었습니다. 스케일 효과를 설명하기 위해 모델에서 허용 가능한 최대 기류량은 프로토타입에 비해 약 6배 감소했습니다.

    hysical model of Greenwich PS showing energy dissipation chamber and entrance to connection tunnel - Courtesy of Mott MacDonald and BHR Group
    hysical model of Greenwich PS showing energy dissipation chamber and entrance to connection tunnel – Courtesy of Mott MacDonald and BHR Group

    물리적 규모 모델링은 또한 구조물을 통한 퇴적물의 이동성을 테스트했습니다. 이는 하수 네트워크에서 발생하는 예상 입자 크기 분포와 일치하도록 조정된 모의물의 양으로 모델에 투여함으로써 달성되었습니다.

    모델의 설계 개선은 주로 탈기 성능을 개선하기 위한 샤프트 내부 구조의 조정, 퇴적물 이동성을 돕기 위한 벤치 및 기타 조치의 포함으로 구성되었습니다. 이러한 개선 사항은 재테스트를 통해 확인된 다음 설계에 통합되었습니다. 물리적 모델링의 데이터는 관찰된 좋은 일치와 함께 CFD 모델링의 결과와 비교되었습니다.

    최종 모델링 결과는 흐름이 기존 하수 네트워크에서 전환되는 위치 근처에서 큰 난류가 발생하는 반면 차단 챔버는 이 에너지를 부분적으로 소산할 수 있을 만큼 충분히 크기가 지정되었으며 특정 수력 설계 요소를 포함하면 문제가 있는 유압 거동이 기계 장비 근처에서 관찰되었습니다. 더 높은 유속에서 일부 공기 동반 와류는 유체의 대부분에 형성됩니다. 그러나 이러한 높은 폭풍 유속의 간헐적인 특성을 고려할 때 콘크리트 구조물의 열화를 일으킬 것으로 예상되지는 않았습니다. 결과는 또한 구조가 최대 설계 흐름을 Thames Tideway Tunnel로 전환하여 기존 보유 CSO를 통한 유출을 방지할 수 있음을 나타냅니다. 차단실과 와류 낙하축을 연결하는 선형 연결 암거는 흐름 조절에 긍정적인 영향을 미쳤고 소용돌이 낙하 튜브의 작동은 흐름 범위에 걸쳐 안정적인 것으로 관찰되었습니다.

    Conclusions

    Thames Tideway Tunnel의 수력 구조물 설계에는 복잡한 3D 난류 유동 거동이 포함되며 설계 단계에서 고급 수력 모델링 도구를 사용해야 합니다. CFD 모델링을 통해 제안된 설계를 테스트하고 수정할 수 있으므로 설계 흐름이 필요한 성능 매개변수 내에서 안전하게 수용됩니다.

    이 프로젝트에서 CFD를 활용한 주요 이점은 비교적 짧은 시간에 수력학적 모델링을 수행할 수 있는 능력, 생성된 데이터의 유용성 및 시각화할 수 있는 능력이었습니다. 이는 설계를 알리고 확인하는 데 도움이 되었습니다. CFD 모델링은 제한된 도시 환경 내에서 설정된 이러한 수력학적 구조를 설계하는 데 유용한 도구였습니다.

    Physical Modelling – View of King Edward Memorial Park and Foreshore Energy Dissipation Chamber - Courtesy of Mott MacDonald and BHR Group
    Physical Modelling – View of King Edward Memorial Park and Foreshore Energy Dissipation Chamber – Courtesy of Mott MacDonald and BHR Group

    구조의 중요성으로 인해 물리적 모델링이 수행되어 결과에 대한 신뢰도를 높이고 CFD가 한계를 나타내는 수력 성능 측면을 추가로 연구했습니다. 물리적 모델은 이해 관계자에게 구조 내부에서 흐름이 어떻게 수행되고 있는지 정확히 보여주기 위해 유용한 것으로 입증되었습니다. 또한, 모델 테스트가 대부분 최종 설계를 반영한다는 점을 감안할 때 구조물의 수력 성능에 대한 기록이 유지됩니다.

    Timescale

    5개 샤프트 중 4개에 대한 굴착이 진행 중이거나 완료되었으며 1차 기초 슬래브와 2차 라이닝이 올해 말 전에 샤프트에 부어질 것입니다. 주 터널인 Selina의 TBM은 2020년 터널링이 시작되어 연말에 현장으로의 마지막 여정을 시작할 것입니다.

    The editor and publishers thank Ricardo Telo, Senior Hydraulic Engineer, and Tejal Shah, Senior Mechanical Engineer, both with Mott MacDonald, for providing the above article for publication.

    첨부 파일

    Intel CPU i9

    해석용 컴퓨터 CPU에 대한 이해 및 선택 방법

    last update : 2021-12-15

    자료출처 : 본 기사는 PCWorld Australia의 내용과 www.itworld.co.kr의 기사를 기반으로 일부 가필하여 게재한 내용입니다.

    해석용 컴퓨터를 선정하기 위해서는 가장 먼저 선택해야 하는 것이 있다. AMD인가, 인텔인가? 두 업체는 CPU 시장의 양대산맥과도 같다. 인텔이 새롭게 출시한 12세대 앨더 레이크 CPU 시리즈가 벤치마크 기록을 깼지만, 지난해 출시된 AMD의 라이젠 5000 아키텍처를 고수하거나, 다른 신제품을 기다릴만한 이유도 있다. 인텔과 AMD CPU를 자세히 살펴보자.

    ⓒ Gordon Mah Ung


    비교 대상 제품 

    2021.11.09

    PC 조립 부품을 예산 기준으로 결정하고, 반도체 수급난에서 CPU를 정가에 구매할 수 있다고 가정했을 때, 인텔과 AMD 제품 선택지를 몇 가지로 압축할 수 있다.

    인텔성능/효율 코어쓰레드가격
    Core i9 12900K/KF8/824590달러/570달러
    Core i7 12700K/KF8/420410달러/390달러
    Core i5 12600K/KF6/416290달러/270달러
    AMD  성능 코어 쓰레드    가격   
    Ryzen 9 5950X1632800달러
    Ryzen 9 5900X1224550달러
    Ryzen 7 5800X816450달러
    Ryzen 5 5600X612300달러

    비교적 저렴한 인텔 CPU인 F 시리즈는 통합 그래픽카드가 없어 별도의 GPU가 필요하다. 라이젠 프로세서는 외장 그래픽카드와 짝을 이루어야 한다. 인텔이 ‘한 방’을 노리고 있기 때문에 이 비교에서는 최상급인 16코어 라이젠 9 5950X도 함께 살펴볼 예정이다. 12900KF가 최대 8코어이기 때문에 라이젠 9 5950X와 직접적인 비교 대상은 아니지만, 인텔은 AMD와 꽤 대등하게 싸우고 있다. CPU에만 80만원을 지출할 계획이라면 더 큰 파워 서플라이가 필요하다.

    인텔 코어 CPU 에 대한 이해

    인텔 코어 CPU에 대한 자료를 찾아보면 쿼드(Quad) 코어, 하이퍼-스레딩(Hyper-Threading), 터보-부스팅(Turbo-Boosting), 캐시(Cache) 크기 같은 용어를 많이 볼 수 있다.
    인텔 코어 i3, i5, i7, i9는 각각 어떻게 다를까?
    칩셋에는 세대가 있는데, 세대의 의미와 차이는 무엇일까?
    하이퍼-스레딩은 무엇이고 클럭 속도는 어느 정도가 적합할까?

    새 프로세서를 구입하기 전에 먼저 현재 사용하고 있는 인텔 CPU를 이해해보자.
    지금 내 PC 성능이 어느 정도인지 알기 위해서이다.
    가장 빠른 방법은 제어판 > 시스템 및 보안 항목에서 시스템을 선택하는 것이다.

    여기에서 현재 PC에 설치된 CPU, RAM, 운영체제 정보를 확인할 수 있다.
    프로세서 아래에 현재 설치된 인텔 CPU가 무엇인지, 인텔 코어 i7-4790, 인텔 코어 i7-8500U 같은 모델명을 확인할 수 있을 것이다. 또 Ghz가 단위인 CPU 클럭 속도를 알 수 있다. 나중에 이와 관련해 더 자세히 설명을 하겠다.

    일단 CPU부터 알아보자.
    CPU 모델명에는 숫자가 많아 어려워 보이지만, 이 숫자가 무슨 의미인지 이해하는 것은 어려운 일이 아니다.

    모델명의 앞 부분인 “인텔 코어”는 인텔이 만든 코어 시리즈 프로세스 중 하나라는 의미다. 코어는 인텔에서 가장 크고, 인기있는 제품군이다. 따라서 많은 인텔 제품 데스크톱과 노트북 컴퓨터에서 인텔 코어라는 표기를 발견할 수 있다.

    참고 : 인텔은 셀룰론(Celeron), 펜티엄(Pentium), 제온(Xeon) 등 다양한 프로세스 제품군을 판매하고 있지만, 이 기사는 인텔 코어 프로세스에 초점을 맞춘다.

    그 다음 “i7”은 CPU 내부 마이크로 아키텍처 디자인의 종류이다.
    자동차가 클래스와 엔진 종류로 나눠지는 것과 비슷하다. 이들 ‘엔진’이 하는 일은 동일하다. 그러나 차량 브랜드에 따라 일을 하는 방법이 다르다.
    인텔의 경우 코어 브랜드 CPU의 클래스인 i3, i5, i7이 각각 사양이 다르다. 여기서 사양이란 코어의 수, 클럭 속도, 캐시 크기, 터보 부스트 2.0과 하이퍼스레딩 같은 고급 기능 지원 여부를 말한다.
    코어 i5와 i7 데스크톱 프로세서는 통상 쿼드 코어(코어가 4개)이고, 로우엔드(저가) 코어 i3 데스크톱 프로세스는 듀얼 코어(코어가 2개)다.

    이제 SKU와 세대에 대해 알아보자. 앞서 예로 들은 “4790”으로 설명하겠다.
    첫 번째 숫자인 “4”는 CPU의 세대이고, “790”는 일종의 일련번호, 또는 ID 번호이다. 즉 인텔 코어 i7이 4세대 CPU라는 이야기이다.

    그런데 ‘접미사’가 붙는 경우가 있다. 위에서 예로 든 모델에는 접미사가 없지만 “Intel Core i7-8650U” 같이 끝에 접미사가 붙은 모델이 있다. 여기에서 “U”는 “Ultra Low Power(초저전력)”를 의미한다.
    인텔은 모델명에 다양한 접미사를 사용하는데 세대에 따라 의미가 바뀌는 경우가 있다. 따라서 현재 사용하고 있는 CPU 모델을 정확히 해석하려면 링크된 인텔의 ‘접미사 목록’ 페이지를 참고하자.

    CPU의 세대는 중요할까?

    꽤 중요하다. 간단히 말해, 그리고 일반적으로 세대가 높을 수록, 즉 새로울 수록 더 좋다. 하지만 세대별로 개선된 정도는 각기 다르다.

    인텔에 따르면, 최신 8세대 인텔 코어 프로세스는 7세대보다 최대 40%까지 성능이 향상됐다. 물론 비교 대상에 따라 성능 향상치가 크게 다르다. SKU가 세대별로 다를 수 있기 때문이다. 예를 들어, 인텔 코어 i7-8850U는 있지만 인텔 코어 i7-7850U는 없다.

    세대가 높을 수록 최신 프로세서라는 것이 기본 원칙이다. 더 발전한 기술과 설계의 이점을 누릴 수 있다는 의미이며, PC 성능도 따라서 향상될 것이다.

    코어가 많을 수록 좋을까?
    간단히 대답하면, 일반적으로 코어 수가 적은 것보다 많은 것이 좋다. 코어가 1개인 프로세서는 한 번에 스레드 1개만 처리할 수 있다. 그리고 코어가 2개인 프로세서는 2개를, 코어가 4개인 쿼드 코어 프로세서는 4개를 처리할 수 있다.

    그렇다면 스레드(Thread)는 무엇일까? 아주 간단히 설명하면, 스레드는 특정 프로그램에서 나와 프로세서를 통과하는 연속된 데이터 데이터 흐름을 말한다. PC의 모든 것은 프로세서를 통과하는 스레드로 귀결된다.

    즉, 논리적으로 코어가 많을 수록 한 번에 처리할 수 있는 스레드가 많다. PC가 더 빠르고 효율적으로 데이터를 처리하고 명령을 실행할 수 있다는 이야기이다. 그러나 새 CPU를 조사하면서 코어 수에만 초점을 맞추면 자칫 코어 수만큼 중요한 수치인 클럭 속도를 무시할 위험이 있다.

    CPU의 각 코어에는 Ghz가 단위인 클럭 속도가 있다. 클럭 속도는 CPU 실행 속도다. 클럭 속도가 빠를 수록, CPU가 한 번에 처리 및 실행할 수 있는 명령이 많다.

    클럭 속도는 통상 높을 수록 더 좋다. 그러나 발열과 관련된 제약 때문에 프로세서의 코어 수가 많을 수록 클럭 속도가 낮은 경향이 있다. 이런 이유로 코어 수가 많은 PC가 최고의 성능을 발휘하지 못하는 경우도 있다.
    그렇다면 가장 알맞은 클럭 속도는 어느 정도일까?


    클럭 속도는 PC로 하려는 일에 따라 달라진다. 일부 애플리케이션은 싱글스레드로 실행된다. 반면, 여러 스레드를 활용하도록 만들어진 애플리케이션도 있다. 비디오 렌더링이나 일부 게임 환경이 여기에 해당된다. 이 경우, 코어 수가 많은 프로세서가 클럭 속도가 높지만 코어가 하나인 프로세스보다 성능이 훨씬 더 높다.
    수치해석의 경우는 계산량이 많은 큰 해석의 경우 멀티코어가 훨씬 유리하다.

    웹 브라우징 같은 일상적인 작업에서는 클럭 속도가 높은 i5 프로세서가 i7보다 가격 대비 성능이 훨씬 더 높다는 의미이다. 즉, 코어 수가 많은 프로세서보다 클럭 속도는 높고 코어 수가 적은 프로세서를 구입하는 것이 훨씬 경제적인 대안이 될 수도 있다.

    하이퍼-스레딩이란?

    앞서 언급했듯, 일반적으로 프로세서 코어 하나가 한 번에 하나의 스레드만 처리할 수 있다. 즉, CPU가 듀얼 코어라면 동시에 처리할 수 있는 스레드가 2개다. 그러나 인텔은 하이퍼-스레딩이라는 기술을 개발해 도입했다. 가상으로 운영체제가 인식하는 코어를 2배 증가시키는 방법으로 하나의 코어가 동시에 여러 스레드를 처리할 수 있는 기술이다.

    즉 i5의 물리적 코어 수는 4개이지만, 여러 스레드를 지원하는 애플리케이션을 실행시키면 하이퍼-스레딩이 코어 수를 가상으로 2배 늘려서 성능을 크게 향상하는 방법이다.

    터보 부스트(Turbo Boost)란?

    인텔의 터보 부스트는 프로세서가 필요한 경우 동적으로 클럭 속도를 높이는 기능이다. 터부 부스트로 높을 수 있는 최대 클럭 속도는 활성 코어의 수, 추정되는 전류 및 전력 소모량, 프로세서 온도에 따라 달라진다.

    알기 쉽게 설명하면, 인텔 터보 부스트 기술은 사용자의 프로세서 사용 현황을 모니터링, 프로세서가 ‘열 설계 전력’의 최대치에 얼마나 가까이 도달했는지 판단한 후 적절한 수준으로 클럭 속도를 높인다. 기본적으로 가장 적절하고 우수한 클럭 속도와 코어 수를 제공한다.

    현재 터보 부스트 테크놀로지 2.0 버전이 사용되고 있으며, 여러 다양한 7세대 및 8세대 인텔 코어 i7과 i5 CPU에서 이를 지원한다.

    i3, i5, i7, i9 프로세서 중 하나를 선택하기 전에 클럭 속도, 코어 수와 함께 기억해야 할 한 가지가 또 있다.

    캐시 크기

    CPU가 동일한 데이터를 계속 사용하는 경우, CPU는 이 데이터를 프로세서의 일부분인 캐시라는 곳에 저장된다. 캐시는 RAM과 비슷하다. 그러나 메인보드가 아닌 CPU에 구축되어 있어 훨씬 더 빠르다.
    캐시 크기가 크면 더 빨리 더 많은 데이터에 액세스 할 수 있다. 클럭 속도 및 코어 수와 다르게, 캐시 크기는 무조건 클 수록 더 좋다. 메모리가 많을 수록 CPU 성능이 향상된다.

    7세대 코어 i3 및 코어 i5 프로세서 U 및 Y 시리즈 캐시 크기는 3MB, 4MB이다. 코어 i7의 캐시 크기는 4MB이다. 현재 8세대 프로세서의 캐시 메모리는 6MB, 8MB, 9MB, 12MB이다.

    코어 i3, i5, i7, i9의 차이점은 무엇일까?
    일반적으로 코어 i7은 코어 i5, 코어 i5는 코어 i3보다 나은 프로세서이다. 코어 i7의 코어 수는 7개가 아니다. 코어 i3 역시 코어 수가 3개가 아니다. 코어 수나 클럭 속도가 아닌 상대적인 연산력의 차이를 알려주는 수치다.

    2017년 출시된 코어 i9 시리즈는 고가의 고성능 프로세서이다. 최상급인 코어 i9-7980X의 코어 수와 클럭 속도는 18개와 2.6GHz, 한 번에 처리할 수 있는 스레드는 32개이다. 가장 저렴한 코어 i9-7900X의 경우 각각 10코어, 3.3GHz(기본 클럭 속도), 20 스레드이다.

    수치해석 측면에서 구입해야 할 컴퓨터를 고려한다면 CPU 성능은 현재 최신코어인 i7과 i9을 구입하는 것이 원하는 성능을 정확히 제공하는 CPU를 선택하는 방법이지만 예산과 성능이라는 선택의 문제가 존재한다.

    editor@itworld.co.kr


    AMD CPU 에 대한 이해

    썸네일
    썸네일

    AMD CPU 이름 규칙 및 코드명, 종류, 세대, 소켓 알아보기

    AMD 1600, AMD 2400G, Athlon 240GE, AMD 3990X 등 AMD에 다양한 종류의, 다양한 모델명을 가진 cpu들이 있습니다. AMD cpu, apu의 종류와 세대, 소켓에 대해서 알아보도록 하며 이 글에서는 2017년 3월 3일 이후 나온 ‘라이젠’ 시리즈의 cpu, apu에 대해서만 다루도록 하겠습니다.

    AMD 라이젠 시리즈는 현재 3세대까지 출시되었으며, 크게 일반 cpu, 하이엔드 cpu(스레드리퍼), 일반 APU, 모바일 APU으로 나뉩니다. 또한 소켓은 현재까지 나온 cpu 중 하이엔드 cpu를 제외한 cpu는 모두 am4소켓입니다.

    AMD CPU 이름 규칙

    이름 규칙

     

    이름 규칙

    AMD 라이젠 시리즈는 ‘AMD 라이젠 7 1700X’를 예로 들면, 앞의 ‘AMD’는 회사 이름을 나타내며

    뒤에 ‘라이젠 7’은 성능을 나타냅니다.
    ‘라이젠 3’은 메인스트림,
    ‘라이젠 5’는 고성능,
    ‘라이젠 7’은 최고 성능입니다.

    그리고 뒤에 ‘1’은 세대를 나타냅니다.
    ‘1700’은 Zen 1세대이며,
    ‘AMD 라이젠 5 2400G’와 같이 APU는 기존 세대에 비해 조금 개선되긴 했지만, 다음 세대 정도까지에 개선은 아니라서 세대는 같지만, ‘400G’앞에 붙는 숫자는 1이 더해져서 나옵니다.

    그리고 두번째 자리 ‘7’은 성능을 나타냅니다.
    ‘2,3’은 메인스트림,
    ‘4,5,6’은 고성능,
    ‘7,8’은 최고 성능입니다.

    그리고 세네번째 자리는 세세한 기능의, 세세한 성능의 변화 정도로 생각하시면 됩니다.

    출처: https://minikupa.com/52 [미니쿠파]

     

    인텔 코어 i9-12900K 리뷰 | 왕좌 탈환 노리는 ‘인텔의 귀환’

    2021.11.09

    Gordon Mah Ung | PCWorld구원 서사를 좋아하지 않는 사람은 없다. 인텔 12세대 코어 i9-12900K는 오랫동안 회자될 귀환 이야기의 주인공이다. 한때 강력하고 득의양양했던 챔피언은 수 년 전 부활한 AMD 라이젠 프로세서의 손에 굴욕적인 패배를 겪었고 어떻게 해서든 다시 한번 싸울 방법을 찾아 마침내 승리를 외치려고 한다. 이제 카메라가 페이드아웃 되면서 엔딩 크레딧으로 넘어간 셈이다.

    인생이나 기술은 그런 헐리우드식 결말을 맺기 어렵지만, 인텔 코어 i9-12900K는 그런 드라마의 주인공 역할을 상당히 잘 해낸 것 같다. 지난 몇 년 동안 AMD 프로세서에 두들겨 맞은 후 태어난 12900K는 경쟁 제품인 라이젠 9 5950X보다 훨씬 더 나은 CPU로 더 많은 사용자에게 활용 가능성을 안겼다. 화끈한 KO 승리를 거둔 것은 전혀 아니지만, 인텔 12세대 앨더 레이크 프로세서의 뛰어난 장점과 기능을 고려할 때 바로 오늘 구입할 수 있는 하이엔드 데스크톱 프로세서다. 

    ⓒ Gordon Mah Ung


    12세대 앨더 레이크는 어떤 CPU?

    인텔 12세대 앨더 레이크는 근본적으로 인텔 7 공정을 기반으로 만들어진 하이브리드 CPU 설계다. 사실 이것만으로도 엄청난 일이다. 14나노 트랜지스터 기술에 5년 이상을 허비한 끝에, 앨더 레이크는 마침내 하나의 노드를 뛰어넘었다. (기존 10나노 공정이 리브랜드된 후 인텔 7이라는 이름으로 불린다.)

    새롭게 설계된 고성능 CPU 코어와 더 작아진 효율 코어를 혼합하여 성능 대 전력 비율의 균형을 최적화했다. 완전히 재설계된 큰 코어를 가진 인텔의 첫 번째 인텔 7 프로세스 데스크톱 CPU라고 이해하는 것이 가장 쉽다. 그리고 여기에 더해 여러 개의 나머지 효율성 코어 성능이 이전 10세대 코어만큼 우수하다. 또한, 12세대 앨더 레이크는 PCIe 5.0, DDR5 메모리, LGA1700 소켓을 비롯해 새로운 표준을 다수 지원한다.

    ⓒ Intel

    CPU 렌더링 성능

    인텔의 전통점 강점이 아니었던 3D 렌더링과 모델링부터 시작하자. 지금까지는 PC에서 3D 모델링 애플리케이션 실사용자가 많지 않아서, 이들 전문 애플리케이션의 실행 성능에 큰 의미를 두지 않았다는 것이 인텔의 주장이었다. 라이젠 CPU의 눈부신 성능에 뒤지는 경우에만 렌더링 성능에서 피벗을 뺐다는 점에 주목하는 사람도 많다.

    맥슨 시네벤치 R23부터 시작한다. 맥슨 시네마4D 애플리케이션에 사용되는 렌더링 엔진 테스트이며, 같은 렌더링 엔진이 일부 어도비 애플리케이션에도 내장되어 있다.

    최신 버전은 10분 쓰로틀링 테스트를 기본값으로 제안한다. 인텔 10세대, 11세대 칩과 윈도우 11 환경을 테스트한 결과는 없지만, 윈도우 10과 10코어 코어 i9-10900K가 1만 4,336점을 받았고 8코어 코어 i9-11900K는 1만 6,264점을 받았다. 사실 둘 다 2만 2,168점을 받은 AMD 12코어 라이젠 9 5900X과는 상대가 되지 않는다. 그래서 굳이 16코어 라이젠 9 5950X와 비교할 필요가 없었다.

    눈길을 끄는 것은 코어 i9-12900K의 긴 파란 막대다. 인텔이 앨더 레이크에서 추구한 하이브리드 설계를 추구하는 것에 여러 가지 말이 많았지만, 12900K는 오랫동안 라이젠의 홈그라운드였던 렌더링 벤치마크에서 AMD의 1, 2위 CPU를 아주 약간이나마 능가해 호사가의 입을 단속한다.