Fig. 1. Schematic of the hydrogen storage vessel.

화학적 CO 2 고정 및 이용 시스템 을 위한 수소 저장 합금을 이용한 수소 저장 시스템의 시뮬레이션 및 평가

K.NishimuraaC.InazumiaK.OgurobI.UeharacY.ItohdS.FujitanidI.YonezudaResearch Institute of Innovative Technology for the Earth, Ikeda City, Osaka 563-8577, JapanbOsaka National Research Institute, 1-8-31, Midorigaoka, Ikeda City, Osaka 563-8577, JapancToyama Industrial Technology Center, 150, Futagami-machi, Takaoka City, Toyama 933-0981, JapandSanyo Electric Co. Ltd, 1-18-13, Hashiridani, Hirakata-City, Osaka 573-8534, Japan

https://doi.org/10.1016/S0360-3199(00)00008-2Get rights and content

Abstract

Two-dimensional model and simulation programs for designing a hydrogen storage vessel using hydrogen absorbing alloy with tubular heat exchanger were developed with the “Flow-3D” program in which physical properties of the hydrogen storage alloy were incorporated. The calculated results showed good agreement with experimental data obtained from 10 Nm3 scale hydrogen storage vessel with MmNi4.64Al0.36 alloy. It was concluded that this simulation program could be an adequate tool to design a practical scale hydrogen storage system for hydrogen from solid polymer electrolyte water electrolysis and to evaluate its hydrogen storage performance.

관형 열교환기를 갖는 수소흡수합금을 이용한 수소저장용기 설계를 위한 2차원 모델 및 시뮬레이션 프로그램은 수소저장합금의 물성을 반영한 “Flow-3D” 프로그램으로 개발하였다. 계산된 결과는 MmNi 4.64 Al 0.36 합금 이 있는 10 Nm 3 규모의 수소 저장 용기 에서 얻은 실험 데이터와 잘 일치하는 것으로 나타났습니다. 이 시뮬레이션 프로그램은 고체 고분자 전해질 물 전기분해에서 수소를 위한 실용적인 규모의 수소 저장 시스템을 설계하고 수소 저장 성능을 평가하는 데 적절한 도구가 될 수 있다는 결론을 내렸습니다.

    Keywords

    Hydrogen storage alloy, Chemical CO2 fixation and utilization systems, Simulation, Hydrogen storage vessel

    Fig. 1. Schematic of the hydrogen storage vessel.
    Fig. 1. Schematic of the hydrogen storage vessel.
    Fig. 2. Cross-section of the reaction bed, tube exchangers and thermocouples (A±L).
    Fig. 2. Cross-section of the reaction bed, tube exchangers and thermocouples (A±L).

    References

    [1] Masuda S. In: Book of abstracts of second international conference on carbon dioxide removal, 1994. p. 24±7.
    [2] Mayer U, Groll M, Supper W. J Less-Common Metals 1987;131:235±44.
    [3] Choi H, Mills AF. Int J Heat Mass Transfer 1990;33:1281±8.
    [4] Sun DW, Deng SJ. J Less-Common Metals 1989;155:271±9.
    [5] Sun DW, Deng SJ. Int J Hydrogen Energy 1990;15:807± 16.
    [6] Jemini A, Nasrallah B. Int J Hydrogen Energy 1995;20:43±52.
    [7] Fisher PW, Watson JS. Int J Hydrogen Energy 1983;8:109±19.
    [8] Suda S, Kobayashi N, Morishita E, Takemoto N. J Less-Common Metals 1983;89:325±32.
    [9] Fujitani S, Nakamura H, Furukawa A, Nasako K, Satoh K, Imoto T, Saito T, Yonezu I. Z Phys Chem Bd
    1993;179:27.
    [10] Hahne E, Kallweit J. Int J Hydrogen Energy 1998;23:107±14.
    [11] Pons M, Dantzer P. J Less-Common Metals 1991;172(174):1147±56.
    [12] Pons M, Dantzer P, Guilleminot JJ. Int J Heat Mass Transfer 1993;36:2635±46.
    [13] Evance MJB, Everett DH. J Less-Common Metals 1976;49:13.
    [14] Pons M, Dantzer P. Int J Hydrogen Energy 1994;19:611±6.