Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation

끓는 물 원자로 봉 다발의 건조 메커니즘 이해

Liril D.SilviaDinesh K.ChandrakercSumanaGhoshaArup KDasb
aDepartment of Chemical Engineering, Indian Institute of Technology, Roorkee, India
bDepartment of Mechanical Engineering, Indian Institute of Technology, Roorkee, India
cReactor Engineering Division, Bhabha Atomic Research Centre, Mumbai, India

Abstract

Present work reports numerical understanding of interfacial dynamics during co-flow of vapor and liquid phases of water inside a typical Boiling Water Reactor (BWR), consisting of a nuclear fuel rod bundle assembly of 7 pins in a circular array. Two representative spacings between rods in a circular array are used to carry out the simulation. In literature, flow boiling in a nuclear reactor is dealt with mechanistic models or averaged equations. Hence, in the present study using the Volume of Fluid (VOF) based multiphase model, a detailed numerical understanding of breaking and making in interfaces during flow boiling in BWR is targeted. Our work will portray near realistic vapor bubble and liquid flow dynamics in rod bundle scenario. Constant wall heat flux for fuel rod and uniform velocity of the liquid at the inlet patch is applied as a boundary condition. The saturation properties of water are taken at 30 bar pressure. Flow boiling stages involving bubble nucleation, growth, merging, local dry-out, rewetting with liquid patches, and complete dry-out are illustrated. The dry-out phenomenon with no liquid presence is numerically observed with phase fraction contours at various axial cut-sections. The quantification of the liquid phase fraction at different axial planes is plotted over time, emphasizing the progressive dry-out mechanism. A comparison of liquid-vapor distribution for inner and outer rods reveals that the inner rod’s dry-out occurs sooner than that of the outer rod. The heat transfer coefficient to identify the heat dissipation capacity of each case is also reported.

현재 작업은 원형 배열에 있는 7개의 핀으로 구성된 핵연료봉 다발 어셈블리로 구성된 일반적인 끓는 물 원자로(BWR) 내부의 물의 증기 및 액체상의 동시 흐름 동안 계면 역학에 대한 수치적 이해를 보고합니다.

원형 배열의 막대 사이에 두 개의 대표적인 간격이 시뮬레이션을 수행하는 데 사용됩니다. 문헌에서 원자로의 유동 비등은 기계론적 모델 또는 평균 방정식으로 처리됩니다.

따라서 VOF(Volume of Fluid) 기반 다상 모델을 사용하는 본 연구에서는 BWR에서 유동 비등 동안 계면의 파괴 및 생성에 대한 자세한 수치적 이해를 목표로 합니다.

우리의 작업은 막대 번들 시나리오에서 거의 사실적인 증기 기포 및 액체 흐름 역학을 묘사합니다. 연료봉에 대한 일정한 벽 열유속과 입구 패치에서 액체의 균일한 속도가 경계 조건으로 적용됩니다. 물의 포화 특성은 30bar 압력에서 취합니다.

기포 핵 생성, 성장, 병합, 국소 건조, 액체 패치로 재습윤 및 완전한 건조를 포함하는 유동 비등 단계가 설명됩니다. 액체가 존재하지 않는 건조 현상은 다양한 축 단면에서 위상 분율 윤곽으로 수치적으로 관찰됩니다.

다른 축 평면에서 액상 분율의 정량화는 점진적인 건조 메커니즘을 강조하면서 시간이 지남에 따라 표시됩니다. 내부 막대와 외부 막대의 액-증기 분포를 비교하면 내부 막대의 건조가 외부 막대보다 더 빨리 발생함을 알 수 있습니다. 각 경우의 방열 용량을 식별하기 위한 열 전달 계수도 보고됩니다.

Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation
Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation
Fig. 2. (a-c) dimensions and mesh configuration for G = 6 mm; (d-f) dimensions and mesh configuration for G = 0.6 mm
Fig. 2. (a-c) dimensions and mesh configuration for G = 6 mm; (d-f) dimensions and mesh configuration for G = 0.6 mm
Fig. 3. Simulating the effect of spacer (a) Spacer configuration around rod bundle (b) Mesh structure in spacer zone (c) Distribution of vapor bubbles in a rod bundle with spacer (d) Liquid phase fraction comparison for geometry with and without spacer (e,f,g) Wall temperature comparison for geometry with and without spacer; WS: With Spacer, WOS: Without Spacer; Temperature in the y-axis is in (f) and (g) is same as (e).
Fig. 3. Simulating the effect of spacer (a) Spacer configuration around rod bundle (b) Mesh structure in spacer zone (c) Distribution of vapor bubbles in a rod bundle with spacer (d) Liquid phase fraction comparison for geometry with and without spacer (e,f,g) Wall temperature comparison for geometry with and without spacer; WS: With Spacer, WOS: Without Spacer; Temperature in the y-axis is in (f) and (g) is same as (e).
Fig. 4. Validation of the present numerical model with crossflow boiling over a heated cylindrical rod [40]
Fig. 4. Validation of the present numerical model with crossflow boiling over a heated cylindrical rod [40]
Fig. 5. Grid-Independent study in terms of vapor volume in 1/4th of computational domain
Fig. 5. Grid-Independent study in terms of vapor volume in 1/4th of computational domain
Fig. 6. Interface contour for G = 6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; they are showing nucleation, growth, merging, and pseudo-steady-state condition.
Fig. 6. Interface contour for G = 6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; they are showing nucleation, growth, merging, and pseudo-steady-state condition.
Fig. 7. Interface contours for G = 0.6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; It shows dry-out at pseudo-steady-state near the exit
Fig. 7. Interface contours for G = 0.6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; It shows dry-out at pseudo-steady-state near the exit
Fig. 8. Vapor-liquid distribution across various distant cross-sections (Black color indicates liquid; Gray color indicates vapor); Magnification factor: 1 × (for a and b), 1.5 × (for c and d)
Fig. 8. Vapor-liquid distribution across various distant cross-sections (Black color indicates liquid; Gray color indicates vapor); Magnification factor: 1 × (for a and b), 1.5 × (for c and d)
Fig. 21. Two-phase flow mixture velocity (u¯z); for G = 6 mm, r = 5 means location at inner heated wall and r = 25 means location at outer adiabatic wall; for G = 0.66 mm, r = 5 means location at inner heated wall and r = 16.6 mm means location at outer adiabatic wall.
Fig. 21. Two-phase flow mixture velocity (u¯z); for G = 6 mm, r = 5 means location at inner heated wall and r = 25 means location at outer adiabatic wall; for G = 0.66 mm, r = 5 means location at inner heated wall and r = 16.6 mm means location at outer adiabatic wall.

References

[1] J. Würtz, An Experimental and Theoretical Investigation of Annular Steam-Water Flow in Tubes and Annuli at 30 to 90 Bar, Risø National Laboratory,
Roskilde, 1978.
[2] W. Tian, A. Myint, Z. Li, S. Qiu, G.H. Su, D. Jia, Experimental study on dryout point in vertical narrow annulus under low flow conditions, in: International Conference on Nuclear Engineering, 4689, 2004, pp. 643–648. Jan
1Vol.
[3] K.M. Becker, C.H. Ling, S. Hedberg, G. Strand, An experimental investigation of
post dryout heat transfer, R. Inst. Technol. (1983).
[4] K.M. Becker, A Burnout Correlation for Flow of Boiling Water in Vertical Rod
Bundles, AB Atomenergi, 1967.
[5] Jr J.R. Barbosa, G.F. Hewitt, S.M. Richardson, High-speed visualisation of nucleate boiling in vertical annular flow, Int. J. Heat Mass Transf. 46 (26) (2003)
5153–5160 1, doi:10.1016/S0017-9310(03)00255-2.
[6] Y. Mizutani, A. Tomiyama, S. Hosokawa, A. Sou, Y. Kudo, K. Mishima, Twophase flow patterns in a four by four rod bundle, J. Nucl. Sci. Technol. 44 (6)
(2007) 894–901 1, doi:10.1080/18811248.2007.9711327.
[7] S.S. Paranjape, Two-Phase Flow Interfacial Structures in a Rod Bundle Geometry, Purdue University, 2009.
[8] D. Lavicka, J. Polansky, Model of the cooling of a nuclear reactor fuel rod, Multiph. Sci. Technol. 25 (2-4) (2013), doi:10.1615/MultScienTechn.v25.i2-4.90.
[9] M. Thurgood, J. Kelly, T. Guidotti, R. Kohrt, K. Crowell, Tech. rep., Pacific Northwest National Laboratory, 1983.
[10] S. Sugawara, Droplet deposition and entrainment modeling based on the
three-fluid model, Nucl. Eng. Des. 122 (1-3) (1990) 67–84, doi:10.1016/
0029-5493(90)90197-6.
[11] C. Adamsson, J.M. Le Corre, Modeling and validation of a mechanistic tool
(MEFISTO) for the prediction of critical power in BWR fuel assemblies, Nucl.
Eng. Des. 241 (8) (2011) 2843–2858, doi:10.1016/j.nucengdes.2011.01.033.
[12] S. Talebi, H. Kazeminejad, A mathematical approach to predict dryout in a rod
bundle, Nucl. Eng. Des. 249 (2012) 348–356, doi:10.1016/j.nucengdes.2012.04.
016.
[13] H. Anglart, O. Nylund, N. Kurul, M.Z. Podowski, CFD prediction of flow and
phase distribution in fuel assemblies with spacers, Nucl. Eng. Des. 177 (1-3)
(1997) 215–228, doi:10.1016/S0029-5493(97)00195-7.
[14] H. Li, H. Anglart, CFD model of diabatic annular two-phase flow using the
Eulerian–Lagrangian approach, Ann. Nucl. Energy 77 (2015) 415–424, doi:10.
1016/j.anucene.2014.12.002.
[15] G. Sorokin, A. Sorokin, Experimental and numerical investigation of liquid metal boiling in fuel subassemblies under natural circulation conditions, Prog. Nucl. Energy 47 (1-4) (2005) 656–663, doi:10.1016/j.pnucene.2005.
05.069.
[16] W.D. Pointer, A. Tentner, T. Sofu, D. Weber, S. Lo, A. Splawski, Eulerian
two-phase computational fluid dynamics for boiling water reactor core analysis, Joint International Topical Meeting on Mathematics and Computation and
Supercomputing in Nuclear Applications (M and C± SNA), 2007.
[17] K. Podila, Y. Rao, CFD modelling of supercritical water flow and heat transfer
in a 2 × 2 fuel rod bundle, Nucl. Eng. Des. 301 (2016) 279–289, doi:10.1016/j.
nucengdes.2016.03.019.
[18] H. Pothukuchi, S. Kelm, B.S. Patnaik, B.V. Prasad, H.J. Allelein, Numerical investigation of subcooled flow boiling in an annulus under the influence of eccentricity, Appl. Therm. Eng. 129 (2018) 1604–1617, doi:10.1016/j.applthermaleng.
2017.10.105.
[19] H. Pothukuchi, S. Kelm, B.S. Patnaik, B.V. Prasad, H.J. Allelein, CFD modeling of
critical heat flux in flow boiling: validation and assessment of closure models,
Appl. Therm. Eng. 150 (2019) 651–665, doi:10.1016/j.applthermaleng.2019.01.
030.
[20] W. Fan, H. Li, H. Anglart, A study of rewetting and conjugate heat transfer
influence on dryout and post-dryout phenomena with a multi-domain coupled CFD approach, Int. J. Heat Mass Transf. 163 (2020) 120503, doi:10.1016/j.
ijheatmasstransfer.2020.120503.
[21] R. Zhang, T. Cong, G. Su, J. Wang, S. Qiu, Investigation on the critical heat
flux in typical 5 by 5 rod bundle at conditions prototypical of PWR based
on CFD methodology, Appl. Therm. Eng. 179 (2020) 115582, doi:10.1016/j.
applthermaleng.2020.115582.

[22] L.D. Silvi, A. Saha, D.K. Chandraker, S. Ghosh, A.K. Das, Numerical analysis of
pre-dryout sequences through the route of interfacial evolution in annular gasliquid two-phase flow with phase change, Chem. Eng. Sci. 212 (2020) 115356,
doi:10.1016/j.ces.2019.115356.
[23] L.D. Silvi, D.K. Chandraker, S. Ghosh, A.K. Das, On-route to dryout through sequential interfacial dynamics in annular flow boiling around temperature and
heat flux controlled heater rod, Chem. Eng. Sci. 229 (2021) 116014, doi:10.1016/
j.ces.2020.116014.
[24] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface
tension, J. Comput. Phys. 100 (2) (1992) 335–354, doi:10.1016/0021-9991(92)
90240-Y.
[25] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging
and fragmentation in multiphase flows with SURFER, J. Comput. Phys. 113 (1)
(1994) 134–147, doi:10.1006/jcph.1994.1123.
[26] I. Tanasawa, Advances in condensation heat transfer, Ad. Heat Transf. 21 (1991)
55–139 Vol, doi:10.1016/S0065-2717(08)70334-4.
[27] V.H. Del Valle, D.B. Kenning, Subcooled flow boiling at high heat flux, Int.
J. Heat Mass Transf. 28 (10) (1985) 1907–1920, doi:10.1016/0017-9310(85)
90213-3.
[28] B. Matzner, G.M. Latter, Reduced pressure drop space for boiling water reactor
fuel bundles, US Patent US5375154A, (1993)
[29] C. Unal, O. Badr, K. Tuzla, J.C. Chen, S. Neti, Pressure drop at rod-bundle spacers
in the post-CHF dispersed flow regime, Int. J. Multiphase Flow 20 (3) (1994)
515–522, doi:10.1016/0301-9322(94)90025-6.
[30] D.K. Chandraker, A.K. Nayak, V.P. Krishnan, Effect of spacer on the dryout of
BWR fuel rod assemblies, Nucl. Eng. Des. 294 (2015), doi:10.1016/j.nucengdes.
2015.09.004.
[31] S.K Verma, S.L. Sinha, D.K. Chandraker, A comprehensive review of the spacer
effect on performance of nuclear fuel bundle using computational fluid dynamics methodology, Mater. Today: Proc. 4 (2017) 100030–110034, doi:10.
1016/j.matpr.2017.06.315.
[32] S.K Verma, S.L. Sinha, D.K. Chandraker, Experimental investigation on the effect
of space on the turbulent mixing in vertical pressure tube-type boiling water
reactor, Nucl. Sci. Eng. 190 (2) (2018), doi:10.1080/00295639.2017.1413874.
[33] T. Zhang, Y. Liu, Numerical investigation of flow and heat transfer characteristics of subcooled boiling in a single rod channel with/without spacer grid,
Case Stud. Therm. Eng. 20 (2020) 100644, doi:10.1016/j.csite.2020.100644.
[34] K.M. Becker, G. Hernborg, M. Bode, O. Eriksson, Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters, AB Atomenergi
(1965).
[35] A. Saha, A.K. Das, Numerical study of boiling around wires and influence of
active or passive neighbours on vapour film dynamics, Int. J. Heat Mass Transf.
130 (2019) 440–454, doi:10.1016/j.ijheatmasstransfer.2018.10.117.
[36] M. Reimann, U. Grigull, Heat transfer with free convection and film boiling in
the critical area of water and carbon dioxide, Heat Mass Transf. 8 (1975) 229–
239, doi:10.1007/BF01002151.
[37] M.S. Plesset, S.A. Zwick, The growth of vapor bubbles in superheated liquids, J.
Appl. Phys. 25 (4) (1954) 493–500, doi:10.1063/1.1721668.
[38] N. Samkhaniani, M.R. Ansari, Numerical simulation of superheated vapor bubble rising in stagnant liquid, Heat Mass Transf. 53 (9) (2017) 2885–2899,
doi:10.1007/S00231-017-2031-6.
[39] N. Samkhaniani, M.R. Ansari, The evaluation of the diffuse interface method
for phase change simulations using OpenFOAM, Heat Transf. Asian Res. 46 (8)
(2017) 1173–1203, doi:10.1002/htj.21268.
[40] P. Goel, A.K. Nayak, M.K. Das, J.B. Joshi, Bubble departure characteristics in a
horizontal tube bundle under cross flow conditions, Int. J. Multiph. Flow 100
(2018) 143–154, doi:10.1016/j.ijmultiphaseflow.2017.12.013.
[41] K.M. Becker, J. Engstorm, B.Scholin Nylund, B. Sodequist, Analysis of the dryout
incident in the Oskarshamn 2 boiling water reactor, Int. J. Multiph. Flow 16 (6)
(1990) 959–974, doi:10.1016/0301-9322(90)90101-N.
[42] H.G. Weller, A New Approach to VOF-Based Interface Capturing Methods
for Incompressible and Compressible Flow, A New Approach to VOF-Based
Interface Capturing Methods for Incompressible and Compressible Flow, 4,
OpenCFD Ltd., 2008 Report TR/HGW.
[43] G. Boeing, Visual analysis of nonlinear dynamical systems: chaos, fractals, selfsimilarity and the limits of prediction, Systems 4 (4) (2016) 37, doi:10.3390/
systems4040037.