Coupled CFD-DEM simulation of interfacial fluid–particle interaction during binder jet 3D printing

Coupled CFD-DEM simulation of interfacial fluid–particle interaction during binder jet 3D printing

바인더 제트 3D 프린팅 중 계면 유체-입자 상호 작용에 대한 CFD-DEM 결합 시뮬레이션

Joshua J. Wagner, C. Fred Higgs III

https://doi.org/10.1016/j.cma.2024.116747

Abstract

The coupled dynamics of interfacial fluid phases and unconstrained solid particles during the binder jet 3D printing process govern the final quality and performance of the resulting components. The present work proposes a computational fluid dynamics (CFD) and discrete element method (DEM) framework capable of simulating the complex interfacial fluid–particle interaction that occurs when binder microdroplets are deposited into a powder bed. The CFD solver uses a volume-of-fluid (VOF) method for capturing liquid–gas multifluid flows and relies on block-structured adaptive mesh refinement (AMR) to localize grid refinement around evolving fluid–fluid interfaces. The DEM module resolves six degrees of freedom particle motion and accounts for particle contact, cohesion, and rolling resistance. Fully-resolved CFD-DEM coupling is achieved through a fictitious domain immersed boundary (IB) approach. An improved method for enforcing three-phase contact lines with a VOF-IB extension technique is introduced. We present several simulations of binder jet primitive formation using realistic process parameters and material properties. The DEM particle systems are experimentally calibrated to reproduce the cohesion behavior of physical nickel alloy powder feedstocks. We demonstrate the proposed model’s ability to resolve the interdependent fluid and particle dynamics underlying the process by directly comparing simulated primitive granules with one-to-one experimental counterparts obtained from an in-house validation apparatus. This computational framework provides unprecedented insight into the fundamental mechanisms of binder jet 3D printing and presents a versatile new approach for process parameter optimization and defect mitigation that avoids the inherent challenges of experiments.

바인더 젯 3D 프린팅 공정 중 계면 유체 상과 구속되지 않은 고체 입자의 결합 역학이 결과 구성 요소의 최종 품질과 성능을 좌우합니다. 본 연구는 바인더 미세액적이 분말층에 증착될 때 발생하는 복잡한 계면 유체-입자 상호작용을 시뮬레이션할 수 있는 전산유체역학(CFD) 및 이산요소법(DEM) 프레임워크를 제안합니다.

CFD 솔버는 액체-가스 다중유체 흐름을 포착하기 위해 VOF(유체량) 방법을 사용하고 블록 구조 적응형 메쉬 세분화(AMR)를 사용하여 진화하는 유체-유체 인터페이스 주위의 그리드 세분화를 국지화합니다. DEM 모듈은 6개의 자유도 입자 운동을 해결하고 입자 접촉, 응집력 및 구름 저항을 설명합니다.

완전 분해된 CFD-DEM 결합은 가상 도메인 침지 경계(IB) 접근 방식을 통해 달성됩니다. VOF-IB 확장 기술을 사용하여 3상 접촉 라인을 강화하는 향상된 방법이 도입되었습니다. 현실적인 공정 매개변수와 재료 특성을 사용하여 바인더 제트 기본 형성에 대한 여러 시뮬레이션을 제시합니다.

DEM 입자 시스템은 물리적 니켈 합금 분말 공급원료의 응집 거동을 재현하기 위해 실험적으로 보정되었습니다. 우리는 시뮬레이션된 기본 과립과 내부 검증 장치에서 얻은 일대일 실험 대응물을 직접 비교하여 프로세스의 기본이 되는 상호 의존적인 유체 및 입자 역학을 해결하는 제안된 모델의 능력을 보여줍니다.

이 계산 프레임워크는 바인더 제트 3D 프린팅의 기본 메커니즘에 대한 전례 없는 통찰력을 제공하고 실험에 내재된 문제를 피하는 공정 매개변수 최적화 및 결함 완화를 위한 다용도의 새로운 접근 방식을 제시합니다.

Introduction

Binder jet 3D printing (BJ3DP) is a powder bed additive manufacturing (AM) technology capable of fabricating geometrically complex components from advanced engineering materials, such as metallic superalloys and ultra-high temperature ceramics [1], [2]. As illustrated in Fig. 1(a), the process is comprised of many repetitive print cycles, each contributing a new cross-sectional layer on top of a preceding one to form a 3D CAD-specified geometry. The feedstock material is first delivered from a hopper to a build plate and then spread into a thin layer by a counter-rotating roller. After powder spreading, a print head containing many individual inkjet nozzles traverses over the powder bed while precisely jetting binder microdroplets onto select regions of the spread layer. Following binder deposition, the build plate lowers by a specified layer thickness, leaving a thin void space at the top of the job box that the subsequent powder layer will occupy. This cycle repeats until the full geometries are formed layer by layer. Powder bed fusion (PBF) methods follow a similar procedure, except they instead use a laser or electron beam to selectively melt and fuse the powder material. Compared to PBF, binder jetting offers several distinct advantages, including faster build rates, enhanced scalability for large production volumes, reduced machine and operational costs, and a wider selection of suitable feedstock materials [2]. However, binder jetted parts generally possess inferior mechanical properties and reduced dimensional accuracy [3]. As a result, widescale adoption of BJ3DP to fabricate high-performance, mission-critical components, such as those common to the aerospace and defense sectors, is contingent on novel process improvements and innovations [4].

A major obstacle hindering the advancement of BJ3DP is our limited understanding of how various printing parameters and material properties collectively influence the underlying physical mechanisms of the process and their effect on the resulting components. To date, the vast majority of research efforts to uncover these relationships have relied mainly on experimental approaches [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], which are often expensive and time-consuming and have inherent physical restrictions on what can be measured and observed. For these reasons, there is a rapidly growing interest in using computational models to circumvent the challenges of experimental investigations and facilitate a deeper understanding of the process’s fundamental phenomena. While significant progress has been made in developing and deploying numerical frameworks aimed at powder spreading [20], [21], [22], [23], [24], [25], [26], [27] and sintering [28], [29], [30], [31], [32], simulating the interfacial fluid–particle interaction (IFPI) in the binder deposition stage is still in its infancy. In their exhaustive review, Mostafaei et al. [2] point out the lack of computational models capable of resolving the coupled fluid and particle dynamics associated with binder jetting and suggest that the development of such tools is critical to further improving the process and enhancing the quality of its end-use components.

We define IFPI as a multiphase flow regime characterized by immiscible fluid phases separated by dynamic interfaces that intersect the surfaces of moving solid particles. As illustrated in Fig. 1(b), an elaborate IFPI occurs when a binder droplet impacts the powder bed in BJ3DP. The momentum transferred from the impacting droplet may cause powder compaction, cratering, and particle ejection. These ballistic disturbances can have deleterious effects on surface texture and lead to the formation of large void spaces inside the part [5], [13]. After impact, the droplet spreads laterally on the bed surface and vertically into the pore network, driven initially by inertial impact forces and then solely by capillary action [33]. Attractive capillary forces exerted on mutually wetted particles tend to draw them inward towards each other, forming a packed cluster of bound particles referred to as a primitive [34]. A single-drop primitive is the most fundamental building element of a BJ3DP part, and the interaction leading to its formation has important implications on the final part characteristics, such as its mechanical properties, resolution, and dimensional accuracy. Generally, binder droplets are deposited successively as the print head traverses over the powder bed. The traversal speed and jetting frequency are set such that consecutive droplets coalesce in the bed, creating a multi-drop primitive line instead of a single-drop primitive granule. The binder must be jetted with sufficient velocity to penetrate the powder bed deep enough to provide adequate interlayer binding; however, a higher impact velocity leads to more pronounced ballistic effects.

A computational framework equipped to simulate the interdependent fluid and particle dynamics in BJ3DP would allow for unprecedented observational and measurement capability at temporal and spatial resolutions not currently achievable by state-of-the-art imaging technology, namely synchrotron X-ray imaging [13], [14], [18], [19]. Unfortunately, BJ3DP presents significant numerical challenges that have slowed the development of suitable modeling frameworks; the most significant of which are as follows:

  • 1.Incorporating dynamic fluid–fluid interfaces with complex topological features remains a nontrivial task for standard mesh-based CFD codes. There are two broad categories encompassing the methods used to handle interfacial flows: interface tracking and interface capturing [35]. Interface capturing techniques, such as the popular volume-of-fluid (VOF) [36] and level-set methods [37], [38], are better suited for problems with interfaces that become heavily distorted or when coalescence and fragmentation occur frequently; however, they are less accurate in resolving surface tension and boundary layer effects compared to interface tracking methods like front-tracking [39], arbitrary Lagrangian–Eulerian [40], and space–time finite element formulations [41]. Since interfacial forces become increasingly dominant at decreasing length scales, inaccurate surface tension calculations can significantly deteriorate the fidelity of IFPI simulations involving <100 μm droplets and particles.
  • 2.Dynamic powder systems are often modeled using the discrete element method (DEM) introduced by Cundall and Strack [42]. For IFPI problems, a CFD-DEM coupling scheme is required to exchange information between the fluid and particle solvers. Fully-resolved CFD-DEM coupling suggests that the flow field around individual particle surfaces is resolved on the CFD mesh [43], [44]. In contrast, unresolved coupling volume averages the effect of the dispersed solid phase on the continuous fluid phases [45], [46], [47], [48]. Comparatively, the former is computationally expensive but provides detailed information about the IFPI in question and is more appropriate when contact line dynamics are significant. However, since the pore structure of a powder bed is convoluted and evolves with time, resolving such solid–fluid interfaces on a computational mesh presents similar challenges as fluid–fluid interfaces discussed in the previous point. Although various algorithms have been developed to deform unstructured meshes to accommodate moving solid surfaces (see Bazilevs et al. [49] for an overview of such methods), they can be prohibitively expensive when frequent topology changes require mesh regeneration rather than just modification through nodal displacement. The pore network in a powder bed undergoes many topology changes as particles come in and out of contact with each other, constantly closing and opening new flow channels. Non-body-conforming structured grid approaches that rely on immersed boundary (IB) methods to embed the particles in the flow field can be better suited for such cases [50]. Nevertheless, accurately representing these complex pore geometries on Cartesian grids requires extremely high mesh resolutions, which can impose significant computational costs.
  • 3.Capillary effects depend on the contact angle at solid–liquid–gas intersections. Since mesh nodes do not coincide with a particle surface when using an IB method on structured grids, imposing contact angle boundary conditions at three-phase contact lines is not straightforward.

While these issues also pertain to PBF process modeling, resolving particle motion is generally less crucial for analyzing melt pool dynamics compared to primitive formation in BJ3DP. Therefore, at present, the vast majority of computational process models of PBF assume static powder beds and avoid many of the complications described above, see, e.g., [51], [52], [53], [54], [55], [56], [57], [58], [59]. Li et al. [60] presented the first 2D fully-resolved CFD-DEM simulations of the interaction between the melt pool, powder particles, surrounding gas, and metal vapor in PBF. Following this work, Yu and Zhao [61], [62] published similar melt pool IFPI simulations in 3D; however, contact line dynamics and capillary forces were not considered. Compared to PBF, relatively little work has been published regarding the computational modeling of binder deposition in BJ3DP. Employing the open-source VOF code Gerris [63], Tan [33] first simulated droplet impact on a powder bed with appropriate binder jet parameters, namely droplet size and impact velocity. However, similar to most PBF melt pool simulations described in the current literature, the powder bed was fixed in place and not allowed to respond to the interacting fluid phases. Furthermore, a simple face-centered cubic packing of non-contacting, monosized particles was considered, which does not provide a realistic pore structure for AM powder beds. Building upon this approach, we presented a framework to simulate droplet impact on static powder beds with more practical particle size distributions and packing arrangements [64]. In a study similar to [33], [64], Deng et al. [65] used the VOF capability in Ansys Fluent to examine the lateral and vertical spreading of a binder droplet impacting a fixed bimodal powder bed with body-centered packing. Li et al. [66] also adopted Fluent to conduct 2D simulations of a 100 μm diameter droplet impacting substrates with spherical roughness patterns meant to represent the surface of a simplified powder bed with monosized particles. The commercial VOF-based software FLOW-3D offers an AM module centered on process modeling of various AM technologies, including BJ3DP. However, like the above studies, particle motion is still not considered in this codebase. Ur Rehman et al. [67] employed FLOW-3D to examine microdroplet impact on a fixed stainless steel powder bed. Using OpenFOAM, Erhard et al. [68] presented simulations of different droplet impact spacings and patterns on static sand particles.

Recently, Fuchs et al. [69] introduced an impressive multipurpose smoothed particle hydrodynamics (SPH) framework capable of resolving IFPI in various AM methods, including both PBF and BJ3DP. In contrast to a combined CFD-DEM approach, this model relies entirely on SPH meshfree discretization of both the fluid and solid governing equations. The authors performed several prototype simulations demonstrating an 80 μm diameter droplet impacting an unconstrained powder bed at different speeds. While the powder bed responds to the hydrodynamic forces imparted by the impacting droplet, the particle motion is inconsistent with experimental time-resolved observations of the process [13]. Specifically, the ballistic effects, such as particle ejection and bed deformation, were drastically subdued, even in simulations using a droplet velocity ∼ 5× that of typical jetting conditions. This behavior could be caused by excessive damping in the inter-particle contact force computations within their SPH framework. Moreover, the wetted particles did not appear to be significantly influenced by the strong capillary forces exerted by the binder as no primitive agglomeration occurred. The authors mention that the objective of these simulations was to demonstrate their codebase’s broad capabilities and that some unrealistic process parameters were used to improve computational efficiency and stability, which could explain the deviations from experimental observations.

In the present paper, we develop a novel 3D CFD-DEM numerical framework for simulating fully-resolved IFPI during binder jetting with realistic material properties and process parameters. The CFD module is based on the VOF method for capturing binder–air interfaces. Surface tension effects are realized through the continuum surface force (CSF) method with height function calculations of interface curvature. Central to our fluid solver is a proprietary block-structured AMR library with hierarchical octree grid nesting to focus enhanced grid resolution near fluid–fluid interfaces. The GPU-accelerated DEM module considers six degrees of freedom particle motion and includes models based on Hertz-Mindlin contact, van der Waals cohesion, and viscoelastic rolling resistance. The CFD and DEM modules are coupled to achieve fully-resolved IFPI using an IB approach in which Lagrangian solid particles are mapped to the underlying Eulerian fluid mesh through a solid volume fraction field. An improved VOF-IB extension algorithm is introduced to enforce the contact angle at three-phase intersections. This provides robust capillary flow behavior and accurate computations of the fluid-induced forces and torques acting on individual wetted particles in densely packed powder beds.

We deploy our integrated codebase for direct numerical simulations of single-drop primitive formation with powder beds whose particle size distributions are generated from corresponding laboratory samples. These simulations use jetting parameters similar to those employed in current BJ3DP machines, fluid properties that match commonly used aqueous polymeric binders, and powder properties specific to nickel alloy feedstocks. The cohesion behavior of the DEM powder is calibrated based on the angle of repose of the laboratory powder systems. The resulting primitive granules are compared with those obtained from one-to-one experiments conducted using a dedicated in-house test apparatus. Finally, we demonstrate how the proposed framework can simulate more complex and realistic printing operations involving multi-drop primitive lines.

Section snippets

Mathematical description of interfacial fluid–particle interaction

This section briefly describes the governing equations of fluid and particle dynamics underlying the CFD and DEM solvers. Our unified framework follows an Eulerian–Lagrangian approach, wherein the Navier–Stokes equations of incompressible flow are discretized on an Eulerian grid to describe the motion of the binder liquid and surrounding gas, and the Newton–Euler equations account for the positions and orientations of the Lagrangian powder particles. The mathematical foundation for

CFD solver for incompressible flow with multifluid interfaces

This section details the numerical methodology used in our CFD module to solve the Navier–Stokes equations of incompressible flow. First, we introduce the VOF method for capturing the interfaces between the binder and air phases. This approach allows us to solve the fluid dynamics equations considering only a single continuum field with spatial and temporal variations in fluid properties. Next, we describe the time integration procedure using a fractional-step projection algorithm for

DEM solver for solid particle dynamics

This section covers the numerical procedure for tracking the motion of individual powder particles with DEM. The Newton–Euler equations (Eqs. (10), (11)) are ordinary differential equations (ODEs) for which many established numerical integrators are available. In general, the most challenging aspects of DEM involve processing particle collisions in a computationally efficient manner and dealing with small time step constraints that result from stiff materials, such as metallic AM powders. The

Unified CFD-DEM solver

The preceding sections have introduced the CFD and DEM solution algorithms separately. Here, we discuss the integrated CFD-DEM solution algorithm and related details.

Binder jet process modeling and validation experiments

In this section, we deploy our CFD-DEM framework to simulate the IFPI occurring during the binder droplet deposition stage of the BJ3DP process. The first simulations attempt to reproduce experimental single-drop primitive granules extracted from four nickel alloy powder samples with varying particle size distributions. The experiments are conducted with a dedicated in-house test apparatus that allows for the precision deposition of individual binder microdroplets into a powder bed sample. The

Conclusions

This paper introduces a coupled CFD-DEM framework capable of fully-resolved simulation of the interfacial fluid–particle interaction occurring in the binder jet 3D printing process. The interfacial flow of binder and surrounding air is captured with the VOF method and surface tension effects are incorporated using the CSF technique augmented by height function curvature calculations. Block-structured AMR is employed to provide localized grid refinement around the evolving liquid–gas interface.

CRediT authorship contribution statement

Joshua J. Wagner: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Visualization, Writing – original draft, Writing – review & editing. C. Fred Higgs III: Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

This work was supported by a NASA Space Technology Research Fellowship, United States of America, Grant No. 80NSSC19K1171. Partial support was also provided through an AIAA Foundation Orville, USA and Wilbur Wright Graduate Award, USA . The authors would like to gratefully acknowledge Dr. Craig Smith of NASA Glenn Research Center for the valuable input he provided on this project.

References (155)

Fig. 3. Free surface and substrate profiles in all Sp and Ls cases at t = 1 s, t = 3 s, and t = 5 s, arranged left to right (note: the colour contours correspond to the horizontal component of the flow velocity (u), expressed in m/s).

Numerical investigation of dam break flow over erodible beds with diverse substrate level variations

다양한 기질 수준 변화를 갖는 침식성 층 위의 댐 파손 흐름에 대한 수치 조사

Alireza Khoshkonesh1, Blaise Nsom2, Saeid Okhravi3*, Fariba Ahmadi Dehrashid4, Payam Heidarian5,
Silvia DiFrancesco6
1 Department of Geography, School of Social Sciences, History, and Philosophy, Birkbeck University of London, London, UK.
2 Université de Bretagne Occidentale. IRDL/UBO UMR CNRS 6027. Rue de Kergoat, 29285 Brest, France.
3 Institute of Hydrology, Slovak Academy of Sciences, Dúbravská cesta 9, 84104, Bratislava, Slovak Republic.
4Department of Water Science and Engineering, Faculty of Agriculture, Bu-Ali Sina University, 65178-38695, Hamedan, Iran.
5 Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, 25123 Brescia, Italy.
6Niccol`o Cusano University, via Don C. Gnocchi 3, 00166 Rome, Italy. * Corresponding author. Tel.: +421-944624921. E-mail: saeid.okhravi@savba.sk

Abstract

This study aimed to comprehensively investigate the influence of substrate level difference and material composition on dam break wave evolution over two different erodible beds. Utilizing the Volume of Fluid (VOF) method, we tracked free surface advection and reproduced wave evolution using experimental data from the literature. For model validation, a comprehensive sensitivity analysis encompassed mesh resolution, turbulence simulation methods, and bed load transport equations. The implementation of Large Eddy Simulation (LES), non-equilibrium sediment flux, and van Rijn’s (1984) bed load formula yielded higher accuracy compared to alternative approaches. The findings emphasize the significant effect of substrate level difference and material composition on dam break morphodynamic characteristics. Decreasing substrate level disparity led to reduced flow velocity, wavefront progression, free surface height, substrate erosion, and other pertinent parameters. Initial air entrapment proved substantial at the wavefront, illustrating pronounced air-water interaction along the bottom interface. The Shields parameter experienced a one-third reduction as substrate level difference quadrupled, with the highest near-bed concentration observed at the wavefront. This research provides fresh insights into the complex interplay of factors governing dam break wave propagation and morphological changes, advancing our comprehension of this intricate phenomenon.

이 연구는 두 개의 서로 다른 침식층에 대한 댐 파괴파 진화에 대한 기질 수준 차이와 재료 구성의 영향을 종합적으로 조사하는 것을 목표로 했습니다. VOF(유체량) 방법을 활용하여 자유 표면 이류를 추적하고 문헌의 실험 데이터를 사용하여 파동 진화를 재현했습니다.

모델 검증을 위해 메쉬 해상도, 난류 시뮬레이션 방법 및 침대 하중 전달 방정식을 포함하는 포괄적인 민감도 분석을 수행했습니다. LES(Large Eddy Simulation), 비평형 퇴적물 플럭스 및 van Rijn(1984)의 하상 부하 공식의 구현은 대체 접근 방식에 비해 더 높은 정확도를 산출했습니다.

연구 결과는 댐 붕괴 형태역학적 특성에 대한 기질 수준 차이와 재료 구성의 중요한 영향을 강조합니다. 기판 수준 차이가 감소하면 유속, 파면 진행, 자유 표면 높이, 기판 침식 및 기타 관련 매개변수가 감소했습니다.

초기 공기 포집은 파면에서 상당한 것으로 입증되었으며, 이는 바닥 경계면을 따라 뚜렷한 공기-물 상호 작용을 보여줍니다. 기판 레벨 차이가 4배로 증가함에 따라 Shields 매개변수는 1/3로 감소했으며, 파면에서 가장 높은 베드 근처 농도가 관찰되었습니다.

이 연구는 댐 파괴파 전파와 형태학적 변화를 지배하는 요인들의 복잡한 상호 작용에 대한 새로운 통찰력을 제공하여 이 복잡한 현상에 대한 이해를 향상시킵니다.

Keywords

Dam break; Substrate level difference; Erodible bed; Sediment transport; Computational fluid dynamics CFD.

Fig. 3. Free surface and substrate profiles in all Sp and Ls cases at t = 1 s, t = 3 s, and t = 5 s, arranged left to right (note: the colour contours
correspond to the horizontal component of the flow velocity (u), expressed in m/s).
Fig. 3. Free surface and substrate profiles in all Sp and Ls cases at t = 1 s, t = 3 s, and t = 5 s, arranged left to right (note: the colour contours correspond to the horizontal component of the flow velocity (u), expressed in m/s).

REFERENCES

Aleixo, R., Soares-Frazão, S., Zech, Y., 2010. Velocity profiles in
dam-break flows: water and sediment layers. In: Proc. Int. Conf.
on Fluvial Hydraulics “River Flow 2010”, pp. 533–540.
An, S., Ku, H., Julien, P.Y., 2015. Numerical modelling of local
scour caused by submerged jets. Maejo Int. J. Sci. Technol., 9, 3,
328–343.
Bahmanpouri, F., Daliri, M., Khoshkonesh, A., Namin, M.M.,
Buccino, M., 2021. Bed compaction effect on dam break flow over
erodible bed; experimental and numerical modeling. J. Hydrol.,
594, 125645. https://doi.org/10.1016/j.jhydrol.2020.125645
Baklanov, A., 2007. Environmental risk and assessment modelling
– scientific needs and expected advancements. In: Ebel, A.,
Davitashvili, T. (Eds.): Air, Water and Soil Quality Modelling
for Risk and Impact Assessment Springer, Dordrecht, pp. 29–44.
Biscarini, C., Di Francesco, S., Nardi, F., Manciola, P., 2013.
Detailed simulation of complex hydraulic problems with
macroscopic and mesoscopic mathematical methods. Math.
Probl. Eng., 928309. https://doi.org/10.1155/2013/928309
Cao, Z., Pender, G., Wallis, S., Carling, P., 2004. Computational
dam-break hydraulics over erodible sediment bed. J. Hydraul.
Eng., 130, 7, 689–703.
Catucci, D., Briganti, R., Heller, V., 2021. Numerical validation of novel
scaling laws for air entrainment in water. Proc. R. Soc. A, 477, 2255,20210339. https://doi.org/10.1098/rspa.2021.0339
Dehrashid, F.A., Heidari, M., Rahimi, H., Khoshkonesh, A., Yuan,
S., Tang, X., Lu, C., Wang, X., 2023. CFD modeling the flow
dynamics in an open channel with double-layered vegetation.
Model. Earth Syst. Environ., 9, 1, 543–555.
Desombre, J., Morichon, D., Mory, M., 2013. RANS v2-f simulation
of a swash event: Detailed flow structure. Coastal Eng., 71, 1–12.
Dodangeh, E., Afzalimehr, H., 2022. Incipient motion of sediment
particles in the presence of bed forms under decelerating and
accelerating flows. J. Hydrol. Hydromech., 70, 1, 89–102.
Dong, Z., Wang, J., Vetsch, D.F., Boes, R.M., Tan, G., 2019.
Numerical simulation of air entrainment on stepped
spillways. In: E-proceedings of the 38th IAHR World Congress
(pp. 1494). September 1–6, 2019, Panama City, Panama. DOI:
10.3850/38WC092019-0755
Flow3D [computer software]. 2023. Santa Fe, NM: Flow Science,
Inc.
Fraccarollo, L., Capart, H., 2002. Riemann wave description of
erosional dam-break flows. J. Fluid Mech., 461, 183–228.
Gu, Z., Wang, T., Meng, W., Yu, C.H., An, R., 2023. Numerical
investigation of silted-up dam-break flow with different silted-up
sediment heights. Water Supply, 23, 2, 599–614.
Gualtieri, P., De Felice, S., Pasquino, V., Doria, G.P., 2018. Use of
conventional flow resistance equations and a model for the
Nikuradse roughness in vegetated flows at high submergence. J.
Hydrol. Hydromech., 66, 1, 107–120.
Heller, V., 2011. Scale effects in physical hydraulic engineering
models. J. Hydraul. Res., 49, 3, 293–306.
Hirt, C.W., 2003. Modeling turbulent entrainment of air at a free
surface. Flow Science, Inc.
Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for
the dynamics of free boundaries. J. Comput. Phys., 39, 1, 201–
225.
Issakhov, A., Zhandaulet, Y., Nogaeva, A., 2018. Numerical
simulation of dam break flow for various forms of the obstacle
by VOF method. Int. J. Multiphase Flow, 109, 191–206.
Khayyer, A., Gotoh, H., 2010. On particle-based simulation of a dam
break over a wet bed. J. Hydraul. Res., 48, 2, 238–249.
Khoshkonesh, A., Daliri, M., Riaz, K., Dehrashid, F.A.,
Bahmanpouri, F., Di Francesco, S., 2022. Dam-break flow
dynamics over a stepped channel with vegetation. J. Hydrol., 613,128395. https://doi.org/10.1016/j.jhydrol.2022.128395
Khoshkonesh, A., Nsom, B., Gohari, S., Banejad, H., 2019.
A comprehensive study on dam-break flow over dry and wet
beds. Ocean Eng., 188, 106279.
https://doi.org/10.1016/j.oceaneng.2019.106279
Khoshkonesh, A., Sadeghi, S.H., Gohari, S., Karimpour, S., Oodi,
S., Di Francesco, S., 2023. Study of dam-break flow over a
vegetated channel with and without a drop. Water Resour.
Manage., 37, 5, 2107–2123.
Khosravi, K., Chegini, A.H.N., Cooper, J., Mao, L., Habibnejad, M.,
Shahedi, K., Binns, A., 2021. A laboratory investigation of bedload transport of gravel sediments under dam break flow. Int. J.
Sediment Res., 36, 2, 229–234.
Kim, Y., Zhou, Z., Hsu, T.J., Puleo, J.A., 2017. Large eddy
simulation of dam‐break‐driven swash on a rough‐planar beach.
J. Geophys. Res.: Oceans, 122, 2, 1274–1296.
Kocaman, S., Ozmen-Cagatay, H., 2012. The effect of lateral
channel contraction on dam break flows: Laboratory experiment.
J. Hydrol., 432, 145–153.
Leal, J.G., Ferreira, R.M., Cardoso, A.H., 2006. Dam-break wavefront celerity. J. Hydraul. Eng., 132, 1, 69–76.
Leal, J.G.A.B., Ferreira, R.M., Cardoso, A.H., 2003. Dam-break
wave propagation over a cohesionless erodible bed. In: Proc.
30rd IAHR Congress, 100, 261–268.
Li, Y. L., Ma, Y., Deng, R., Jiang, D.P., Hu, Z., 2019. Research on
dam-break induced tsunami bore acting on the triangular
breakwater based on high order 3D CLSVOF-THINC/WLICIBM approaching. Ocean Eng., 182, 645–659.
Li, Y.L., Yu, C.H., 2019. Research on dam-break flow induced front
wave impacting a vertical wall based on the CLSVOF and level
set methods. Ocean Eng., 178, 442–462.
Mei, S., Chen, S., Zhong, Q., Shan, Y., 2022. Detailed numerical
modeling for breach hydrograph and morphology evolution
during landslide dam breaching. Landslides, 19, 12, 2925–2949.
Meng, W., Yu, C.H., Li, J., An, R., 2022. Three-dimensional simulation
of silted-up dam-break flow striking a rigid structure. Ocean Eng.,
261, 112042. https://doi.org/10.1016/j.oceaneng.2022.112042
Meyer-Peter, E., Müller, R., 1948. Formulas for bed-load transport.
In: IAHSR 2nd meeting, Stockholm, appendix 2. IAHR.
Nielsen, P., 1984. Field measurements of time-averaged suspended
sediment concentrations under waves. Coastal Eng., 8, 1, 51–72.
Nielsen, P., 2018. Bed shear stress, surface shape and velocity field
near the tips of dam-breaks, tsunami and wave runup. Coastal
Eng., 138, 126–131.
Nsom, B., Latrache, N., Ramifidisoa, L., Khoshkonesh, A., 2019.
Analytical solution to the stability of gravity-driven stratified
flow of two liquids over an inclined plane. In: 24th French
Mechanics Congress in Brest. Brest, p. 244178.
Nsom, B., Ravelo, B., Ndong, W., 2008. Flow regimes in horizontal
viscous dam-break flow of Cayous mud. Appl. Rheol., 18, 4,
43577-1. https://doi.org/10.1515/arh-2008-0012
Oguzhan, S., Aksoy, A.O., 2020. Experimental investigation of the
effect of vegetation on dam break flood waves. J. Hydrol.
Hydromech., 68, 3, 231–241.
Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2022. Effects of bedmaterial gradation on clear water scour at single and group of
piles. J. Hydrol. Hydromech., 70, 1, 114–127.
Okhravi, S., Gohari, S., Alemi, M., Maia, R., 2023. Numerical
modeling of local scour of non-uniform graded sediment for two
arrangements of pile groups. Int. J. Sediment Res., 38, 4, 597–614.
Parambath, A., 2010. Impact of tsunamis on near shore wind power
units. Master’s Thesis. Texas A&M University. Available
electronically from https://hdl.handle.net/1969.1/ETD-TAMU2010-12-8919
Pintado-Patiño, J.C., Puleo, J.A., Krafft, D., Torres-Freyermuth, A.,

  • Hydrodynamics and sediment transport under a dambreak-driven swash: An experimental study. Coastal Eng., 170,
  • https://doi.org/10.1016/j.coastaleng.2021.103986
    Riaz, K., Aslam, H.M.S., Yaseen, M.W., Ahmad, H.H.,
    Khoshkonesh, A., Noshin, S., 2022. Flood frequency analysis
    and hydraulic design of bridge at Mashan on river Kunhar. Arch.
    Hydroengineering Environ. Mech., 69, 1, 1–12.
    Ritter, A., 1892. Die Fortpflanzung der Wasserwellen. Zeitschrift
    des Vereines Deutscher Ingenieure, 36, 33, 947–954. (In
    German.)
    Smagorinsky, J., 1963. General circulation experiments with the
    primitive equations: I. The basic experiment. Mon. Weather
    Rev., 91, 3, 99–164.
    Soulsby, R.L., 1997. Dynamics of marine sands: a manual for
    practical applications. Oceanogr. Lit. Rev., 9, 44, 947.
    Spinewine, B., Capart, H., 2013. Intense bed-load due to a sudden
    dam-break. J. Fluid Mech., 731, 579–614.
    Van Rijn, L.C., 1984. Sediment transport, part I: bed load transport.
    J. Hydraul. Eng., 110, 10, 1431–1456.
    Vosoughi, F., Rakhshandehroo, G., Nikoo, M.R., Sadegh, M.,
  • Experimental study and numerical verification of
    silted-up dam break. J. Hydrol., 590, 125267.
    https://doi.org/10.1016/j.jhydrol.2020.125267
    Wu, W., Wang, S.S., 2008. One-dimensional explicit finite-volume
    model for sediment transport. J. Hydraul. Res., 46, 1, 87–98.
    Xu, T., Huai, W., Liu, H., 2023. MPS-based simulation of
    dam-break wave propagation over wet beds with a
    sediment layer. Ocean Eng., 281, 115035.
    https://doi.org/10.1016/j.oceaneng.2023.115035
    Yang, S., Yang, W., Qin, S., Li, Q., Yang, B., 2018. Numerical study
    on characteristics of dam-break wave. Ocean Eng., 159, 358–371.
    Yao, G.F., 2004. Development of new pressure-velocity solvers in
    FLOW-3D. Flow Science, Inc., USA.
Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.

Numerical modelling of air-water flows in sewer drops

하수구 방울의 공기-물 흐름 수치 모델링

Paula Beceiro (corresponding author)
Maria do Céu Almeida
Hydraulic and Environment Department (DHA), National Laboratory for Civil Engineering, Avenida do Brasil 101, 1700-066 Lisbon, Portugal
E-mail: pbeceiro@lnec.pt
Jorge Matos
Department of Civil Engineering, Arquitecture and Geosources,
Technical University of Lisbon (IST), Avenida Rovisco Pais 1, 1049-001 Lisbon, Portugal

ABSTRACT

물 흐름에 용존 산소(DO)의 존재는 해로운 영향의 발생을 방지하는 데 유익한 것으로 인식되는 호기성 조건을 보장하는 중요한 요소입니다.

하수도 시스템에서 흐르는 폐수에 DO를 통합하는 것은 공기-액체 경계면 또는 방울이나 접합부와 같은 특이점의 존재로 인해 혼입된 공기를 통한 연속 재방출의 영향을 정량화하기 위해 광범위하게 조사된 프로세스입니다. 공기 혼입 및 후속 환기를 향상시키기 위한 하수구 드롭의 위치는 하수구의 호기성 조건을 촉진하는 효과적인 방법입니다.

본 논문에서는 수직 낙하, 배경 및 계단식 낙하를 CFD(전산유체역학) 코드 FLOW-3D®를 사용하여 모델링하여 이러한 유형의 구조물의 존재로 인해 발생하는 난류로 인한 공기-물 흐름을 평가했습니다. 이용 가능한 실험적 연구에 기초한 수력학적 변수의 평가와 공기 혼입의 분석이 수행되었습니다.

이러한 구조물에 대한 CFD 모델의 결과는 Soares(2003), Afonso(2004) 및 Azevedo(2006)가 개발한 해당 물리적 모델에서 얻은 방류, 압력 헤드 및 수심의 측정을 사용하여 검증되었습니다.

유압 거동에 대해 매우 잘 맞았습니다. 수치 모델을 검증한 후 공기 연행 분석을 수행했습니다.

The presence of dissolved oxygen (DO) in water flows is an important factor to ensure the aerobic conditions recognised as beneficial to prevent the occurrence of detrimental effects. The incorporation of DO in wastewater flowing in sewer systems is a process widely investigated in order to quantify the effect of continuous reaeration through the air-liquid interface or air entrained due the presence of singularities such as drops or junctions. The location of sewer drops to enhance air entrainment and subsequently reaeration is an effective practice to promote aerobic conditions in sewers. In the present paper, vertical drops, backdrops and stepped drop was modelled using the computational fluid dynamics (CFD) code FLOW-3D® to evaluate the air-water flows due to the turbulence induced by the presence of this type of structures. The assessment of the hydraulic variables and an analysis of the air entrainment based in the available experimental studies were carried out. The results of the CFD models for these structures were validated using measurements of discharge, pressure head and water depth obtained in the corresponding physical models developed by Soares (2003), Afonso (2004) and Azevedo (2006). A very good fit was obtained for the hydraulic behaviour. After validation of numerical models, analysis of the air entrainment was carried out.

Key words | air entrainment, computational fluid dynamics (CFD), sewer drops

Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.
Figure 1.| Physical models of the vertical drop, backdrop and stepped drop developed in the Technical University of Lisbon.
Figure 3. Comparison between the experimental and numerical pressure head along of the invert of the outlet pipe.
Figure 3. Comparison between the experimental and numerical pressure head along of the invert of the outlet pipe.
Figure 4. Average void fraction along the longitudinal axis of the outlet pipe for the lower discharges in the vertical drop and backdrop.
Figure 4. Average void fraction along the longitudinal axis of the outlet pipe for the lower discharges in the vertical drop and backdrop.

REFERENCES

Afonso, J. Dissipação de energia e rearejamento em quedas em colectores. M.Sc. Thesis, UTL/IST, Lisboa, Portugal.
Almeida, M. C., Butler, D. & Matos, J. S. Reaeration by sewer drops. In: 8th Int. Conf. on Urban Storm Drainage, Sydney, Australia.
Azevedo, R. I. Transferência de oxigénio em quedas guiadas em colectores. M.Sc. Thesis, IST, Lisboa, Portugal.
Beceiro, P., Almeida, M. C. & Matos, J. Numerical Modelling of air-water flows in a vertical drop and a backdrop. In: 3rd IAHR Europe Congress, Porto, Portugal.
Bombardelli, F. A., Meireles, I. & Matos, J. S. Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence in the non-aerated skimming flow region of step stepped spillways. Environ. Fluid Mech. 11 (3), 263–288.
Brethour, J. M. & Hirt, C. W. Drift Model for TwoComponent Flows. Flow Science, Inc., Los Alamos, NM, USA.
Chamani, M. R. Jet Flow on Stepped Spillways and Drops. M.Sc. Thesis, University of Alberta, Alberta, Canada.
Chanson, H. Air Bubble Entrainment in Free-Surface Turbulent Shear Flow. Academic Press Inc., California, USA.
Chanson, H. Air bubble entrainment in open channels: flow structure and bubble size distribution. Int. J. Multiphase 23 (1), 193–203.
Chanson, H. Hydraulics of aerated flows: qui pro quo? Journal of Hydraulic Research 51 (3), 223–243.
Dufresne, M., Vazques, J., Terfous, A., Ghenaim, A. & Poulet, J. Experimental investigation and CFD modelling of flow, sedimentation, and solids separation in a combined sewer detention tank. Computer and Fluids 38, 1042–1049.
Durve, A. P. & Patwardhan, A. W. Numerical and experimental investigation of onset of gas entrainment phenomenon. Chemical Engineering Science 73, 140–150.
Felder, S. & Chanson, H. Air–water flows and free-surface profiles on a non-uniform stepped chute. Journal of Hydraulic Research 52 (2), 253–263.
Flow Science FLOW-3D User’s Manuals Version 10.0. Vol.1/2. Flow Science Inc., Los Alamos, NM, USA.
Granata, F., Marinis, G., Gargano, R. & Hager, W. H. Energy loss in circular drop manholes. In: 33rd IAHR Congress: Water Engineering for Sustainable Environment, British
Columbia, Vancouver, Canada. Hirt, C. W. Modeling Turbulent Entrainment of air at A Free Surface. Flow Science Inc., Los Alamos, NM, USA.
Hirt, C. W. & Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39, 201–225.
Hirt, C. W. & Sicilian, J. M. A porosity technique for the definition of obstacles in rectangular cell meshes. In: Proc. 4th Int, Conf. Ship Hydro., National Academy of Science, Washington, DC, USA.
Isfahani, A. H. G. & Brethour, J. On the Implementation of Two-Equation Turbulence Models in FLOW-3D. Flow Science Inc., Los Alamos, NM, USA.
Kouyi, G. L., Bret, P., Didier, J. M., Chocat, B. & Billat, C. The use of CFD modelling to optimise measurement of overflow rates in a downstream-controlled dual-overflow structure. Water Science and Technology 64 (2), 521–527.
Lopes, P., Leandro, J., Carvalho, R. F., Páscoa, P. & Martins, R. Numerical and experimental investigation of a gully under surcharge conditions. Urban Water Journal 12 (6), 468–476.
Martins, R., Leandro, J. & Carvalho, R. F. Characterization of the hydraulic performance of a gully under drainage conditions. Water Science and Technology 69 (12), 2423–2430.
Matias, N., Nielsel, A. H., Vollertsen, J., Ferreira, F. & Matos, J. S. Reaeration and hydrogen sulfide release at drop structures. In: 8th International Conference on Sewer Processes and Networks (SPN8), Rotterdam, Netherlands.
Matos, J. S. & Sousa, E. R. Prediction of dissolved oxygen concentration along sanitary sewers. Water Science and Technology 34 (5–6), 525–532.
Mignot, E., Bonakdari, H., Knothe, P., Lipeme Kouyi, G., Bessette, A., Rivière, N. & Bertrand-Krajewski, J. L. Experiments and 3D simulations of flow structures in junctions and of their influence on location of flowmeters. In: 12th International Conference on Urban Drainage, Porto Alegre, Brazil.
Ozmen-Cagatay, H. & Kocaman, S. Dam-break flow in the presence of obstacle: experiment and CFD Simulation. Engineering Applications of Computational Fluid Mechanics 5 (4), 541–552.
Shojaee Fard, M. H. & Boyaghchi, F. A. Studies of the influence of various blade outlet angles in a centrifugal pump when handling viscous fluids. American Journal of Applied Sciences 4 (9), 718–724.
Soares, A. Rearejamento em Quedas em Colectores de Águas Residuais. M.Sc. Thesis, FCTUC, Coimbra, Portugal.
Sousa, C. M. & Lopes, R. R. Hidráulica e rearejamento em quedas verticais em colectores. Estudo Experimental. Research Report, UTL/IST, Lisboa, Portugal.
Sousa, V., Meireles, I., Matos, J. & Almeida, M. C. Numerical modelling of air-water flow in a vertical drop manhole. In: 7th International Conference on Sewer Processes and Networks (SPN7), Shefield, UK.
Stovin, V., Guymer, I. & Lau, S. D. Approaches to validating a 3D CFD manhole model. In: 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK.
Tota, P. V. Turbulent Flow Over A Backward-Facing Step Using the RNG Model. Flow Science Inc., Los Alamos, NM, USA.
Valero, D. & García-Bartual, R. Calibration of an air entrainment model for CFD spillway applications. In: Advances in Hydroinformatics. Springer, Singapore, pp. 571–582.
Versteeg, H. K. & Malalasekera, W. An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Longman Group limited, England.
Yang, Y., Yang, J., Zuo, J., Li, Y., He, S., Yang, X. & Zhang, K. Study on two operating conditions of a full-scale oxidation ditch for optimization of energy consumption and effluent quality by using CFD model. Water Research 45 (11), 3439–3452.
Zhai, A. J., Zhang, Z., Zhang, W. & Chen, Q. Y. Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part 1— summary of prevalent Turbulence models. HVAC&R Research 13 (6), 853–870.
Zhao, C., Zhu, D. Z. & Rajaratnam, N. Computational and experimental study of surcharged flow at a 90W combining sewer junction. Journal of Hydraulic Engineering 134 (6), 688–700.

Fig. 2 Modeling of bubble point test apparatus (left) and computational grid (righ

Flow-3d를 이용한 표면장력 탱크용메시스크린모델링

Modeling of Mesh Screen for Use in Surface TensionTankUsing Flow-3d Software

Hyuntak Kim․ Sang Hyuk Lim․Hosung Yoon․Jeong-Bae Park*․Sejin Kwon

ABSTRACT

Mesh screen modeling and liquid propellant discharge simulation of surface tension tank wereperformed using commercial CFD software Flow-3d. 350 × 2600, 400 × 3000 and 510 × 3600 DTW mesh screen were modeled using macroscopic porous media model. Porosity, capillary pressure, and drag
coefficient were assigned for each mesh screen model, and bubble point simulations were performed. The
mesh screen model was validated with the experimental data. Based on the screen modeling, liquidpropellant discharge simulation from PMD tank was performed. NTO was assigned as the liquidpropellant, and void was set to flow into the tank inlet to achieve an initial volume flowrate of
liquid propellant in 3 × 10-3 g acceleration condition. The intial flow pressure drop through the meshscreen was approximately 270 Pa, and the pressure drop increased with time. Liquid propellant
discharge was sustained until the flow pressure drop reached approximately 630 Pa, which was near
the estimated bubble point value of the screen model.

초 록

상용 CFD 프로그램 Flow-3d를 활용하여, 표면 장력 탱크 적용을 위한 메시 스크린의 모델링 및 추진제 배출 해석을 수행하였다. Flow-3d 내 거시적 다공성 매체 모델을 사용하였으며, 350 × 2600, 400× 3000, 510 × 3600 DTW 메시 스크린에 대한 공극률, 모세관압, 항력계수를 스크린 모델에 대입 후, 기포점 측정 시뮬레이션을 수행하였다.

시뮬레이션 결과를 실험 데이터와 비교하였으며, 메시 스크린 모델링의 적절성을 검증하였다. 이를 기반으로 스크린 모델을 포함한 PMD 구조체에 대한 추진제 배출 해석을 수행하였다. 추진제는 액상의 NTO를 가정하였으며, 3 × 10-3 g 가속 조건에서 초기 유량을만족하도록 void를 유입시켰다. 메시 스크린을 통한 차압은 초기 약 270 Pa에서 시간에 따라 증가하였으며, 스크린 모델의 예상 기포점과 유사한 630 Pa에 이르기까지 액상 추진제 배출을 지속하였다.

Key Words

Surface Tension Tank(표면장력 탱크), Propellant Management Device(추진제 관리 장치),
Mesh Screen(메시 스크린), Porous Media Model(다공성 매체 모델), Bubble Point(기포점)

서론

    우주비행체를 미소 중력 조건 내에서 운용하 는 경우, 가압 기체가 액상의 추진제와 혼합되어 엔진으로 공급될 우려가 있으므로 이를 방지하 기 위한 탱크의 설계가 필요하다.

    다이어프램 (Diaphragm), 피스톤(Piston) 등 다양한 장치들 이 활용되고 있으며, 이 중 표면 장력 탱크는 내 부의 메시 스크린(Mesh screen), 베인(Vane) 등 의 구조체에서 추진제의 표면장력을 활용함으로 써 액상 추진제의 이송 및 배출을 유도하는 방 식이다.

    표면 장력 탱크는 구동부가 없는 구조로 신뢰성이 높고, 전 부분을 티타늄 등의 금속 재 질로 구성함으로써 부식성 추진제의 사용 조건 에서도 장기 운용이 가능한 장점이 있다. 위에서 언급한 메시 스크린(Mesh screen)은 수 십 마이크로미터 두께의 금속 와이어를 직조한 다공성 재질로 표면 장력 탱크의 핵심 구성 요소 중 하나이다.

    미세 공극 상 추진제의 표면장력에 의해 기체와 액체 간 계면을 일정 차압 내에서 유지시킬 수 있다. 이러한 성질로 인해 일정 조 건에서 가압 기체가 메시 스크린을 통과하지 못 하게 되고, 스크린을 탱크 유로에 설치함으로써 액상의 추진제 배출을 유도할 수 있다.

    메시 스크린이 가압 기체를 통과시키기 직전 의 기체-액체 계면에 형성되는 최대 차압을 기포 점 (Bubble point) 이라 칭하며, 메시 스크린의 주 요 성능 지표 중 하나이다. IPA, 물, LH2, LCH4 등 다양한 기준 유체 및 추진제, 다양한 메시 스 크린 사양에 대해 기포점 측정 관련 실험적 연 구가 이루어져 왔다 [1-3].

    위 메시 스크린을 포함하여 표면 장력 탱크 내 액상의 추진제 배출을 유도하는 구조물 일체 를 PMD(Propellant management device)라 칭하 며, 갤러리(Gallery), 베인(Vane), 스펀지(Sponge), 트랩(Trap) 등 여러 종류의 구조물에 대해 각종 형상 변수를 내포한다[4, 5].

    따라서 다양한 파라미터를 고려한 실험적 연구는 제약이 따를 수 있으며, 베인 등 상대적으로 작은 미소 중력 조건에서 개방형 유로를 활용하는 경우 지상 추진제 배출 실험이 불가능하다[6]. 그러므로 CFD를 통한 표면장력 탱크 추진제 배출 해석은 다양한 작동 조건 및 PMD 형상 변수에 따른 추진제 거동을 이해하고, 탱크를 설계하는 데 유용하게 활용될 수 있다.

    상기 추진제 배출 해석을 수행하기 위해서는 핵심 요소 중 하나인 메시 스크린에 대한 모델링이 필수적이다. Chato, McQuillen 등은 상용 CFD 프로그램인 Fluent를 통해, 갤러리 내 유동 시뮬레이션을 수행하였으며, 이 때 메시 스크린에 ‘porous jump’ 경계 조건을 적용함으로써 액상의 추진제가 스크린을 통과할 때 생기는 압력 강하를 모델링하였다[7, 8].

    그러나 앞서 언급한 메시 스크린의 기포점 특성을 모델링한 사례는 찾아보기 힘들다. 이는 스크린을 활용하는 표면 장력 탱크 내 액상 추진제 배출 현상을 해석적으로 구현하기 위해 반드시 필요한 부분이다. 본 연구에서는 자유표면 해석에 상대적으로 강점을 지닌 상용 CFD 프로그램 Flow-3d를 사용하여, 메시 스크린을 모델링하였다.

    거시적 다공성 매체 모델(Macroscopic porous mediamodel)을 활용하여 메시 스크린 모델 영역에 공극률(Porosity), 모세관압(Capillary pressure), 항력 계수(Drag coefficient)를 지정하고, 이를 기반으로 기포점 측정 시뮬레이션을 수행, 해석 결과와 실험 데이터 간 비교 및 검증을 수행하였다.

    이를 기반으로 메시 스크린 및 PMD구조체를 포함한 탱크의 추진제 배출 해석을 수행하고, 기포점 특성의 반영 여부를 확인하였다.

    Fig. 1 Real geometry-based mesh screen model (left)
and mesh screen model based on macroscopic
porous media model in Flow-3d (righ
    Fig. 1 Real geometry-based mesh screen model (left) and mesh screen model based on macroscopic porous media model in Flow-3d (righ
    Fig. 2 Modeling of bubble point test apparatus (left)
and computational grid (righ
    Fig. 2 Modeling of bubble point test apparatus (left) and computational grid (righ)
    Fig. 3 Modeling of sump in a tank (left) and lower part
of the sump structure (right)
    Fig. 3 Modeling of sump in a tank (left) and lower part of the sump structure (right)

    참 고 문 헌

    1. David J. C and Maureen T. K, ScreenChannel Liquid Aquisition Devices for Cryogenic Propellants” NASA-TM-2005- 213638, 2005
    2. Hartwig, J., Mann, J. A. Jr., Darr, S. R., “Parametric Analysis of the LiquidHydrogen and Nitrogen Bubble Point Pressure for Cryogenic Liquid AcquisitionDevices”, Cryogenics, Vol. 63, 2014, pp. 25-36
    3. Jurns, J. M., McQuillen, J. B.,BubblePoint Measurement with Liquid Methane of a Screen Capillary Liquid AcquisitionDevice”, NASA-TM-2009-215496, 2009
    4. Jaekle, D. E. Jr., “Propellant Management Device: Conceptual Design and Analysis: Galleries”, AIAA 29th Joint PropulsionConference, AIAA-97-2811, 1997
    5. Jaekle, D. E. Jr., “Propellant Management Device: Conceptual Design and Analysis: Traps and Troughs”, AIAA 31th Joint Propulsion Conference, AIAA-95-2531, 1995
    6. Yu, A., Ji, B., Zhuang, B. T., Hu, Q., Luo, X. W., Xu, H. Y., “Flow Analysis inaVane-type Surface Tension Propellant Tank”, IOP Conference Series: MaterialsScience and Engineering, Vol. 52, No. 7, – 990 – 2013, Article number: 072018
    7. Chato, D. J., McQuillen, J. B., Motil, B. J., Chao, D. F., Zhang, N., CFD simulation of Pressure Drops in Liquid Acquisition Device Channel with Sub-Cooled Oxygen”, World Academy of Science, Engineering and Technology, Vol. 3, 2009, pp. 144-149
    8. McQuillen, J. B., Chao, D. F., Hall, N. R., Motil, B. J., Zhang, N., CFD simulation of Flow in Capillary Flow Liquid Acquisition Device Channel”, World Academy of Science, Engineering and Technology, Vol. 6, 2012, pp. 640-646
    9. Hartwig, J., Chato, D., McQuillen, J.,  Screen Channel LAD Bubble Point Tests in Liquid Hydrogen”, International Journal of Hydrogen Energy, Vol. 39, No. 2, 2014, pp. 853-861
    10. Fischer, A., Gerstmann, J., “Flow Resistance of Metallic Screens in Liquid, Gaseous and Cryogenic Flow”, 5th European Conferencefor Aeronautics and Space Sciences, Munich, Germany, 2013
    11. Fries, N., Odic, K., Dreyer, M., Wickingof Perfectly Wetting Liquids into a MetallicMesh”, 2nd International Conference onPorous Media and its Applications inScience and Engineering, 2007
    12. Seo, M, K., Kim, D, H., Seo, C, W., Lee, S, Y., Jang, S, P., Koo, J., “Experimental Study of Pressure Drop in CompressibleFluid through Porous Media”, Transactionsof the Korean Society of Mechanical Engineers – B, Vol. 37, No. 8, pp. 759-765, 2013.
    13. Hartwig, J., Mann, J. A., “Bubble Point Pressures of Binary Methanol/Water Mixtures in Fine-Mesh Screens”, AlChEJournal, Vol. 60, No. 2, 2014, pp. 730-739
    Fig. 8 Distribution of solidification properties on the yz cross section at the maximum width of the melt pool.(a) thermal gradient G, (b) solidification velocity vT, (c) cooling rate G×vT, and (d) morphology factor G/vT. These profiles are calculated with a laser power 300 W and velocity 400 mm/s using (a1 through d1) analytical Rosenthal simulation and (a2 through d2) high-fidelity CFD simulation. The laser is moving out of the page from the upper left corner of each color map (Color figure online)

    Quantifying Equiaxed vs Epitaxial Solidification in Laser Melting of CMSX-4 Single Crystal Superalloy

    CMSX -4 단결정 초합금의 레이저 용융에서 등축 응고와 에피택셜 응고 정량화

    본 논문은 독자의 편의를 위해 기계번역된 내용이어서 자세한 내용은 원문을 참고하시기 바랍니다.

    Abstract

    에피택셜 과 등축 응고 사이의 경쟁은 적층 제조에서 실행되는 레이저 용융 동안 CMSX-4 단결정 초합금에서 조사되었습니다. 단일 트랙 레이저 스캔은 레이저 출력과 스캐닝 속도의 여러 조합으로 방향성 응고된 CMSX-4 합금의 분말 없는 표면에서 수행되었습니다. EBSD(Electron Backscattered Diffraction) 매핑은 새로운 방향의 식별을 용이하게 합니다. 영역 분율 및 공간 분포와 함께 융합 영역 내에서 핵을 형성한 “스트레이 그레인”은 충실도가 높은 전산 유체 역학 시뮬레이션을 사용하여 용융 풀 내의 온도 및 유체 속도 필드를 모두 추정했습니다. 이 정보를 핵 생성 모델과 결합하여 용융 풀에서 핵 생성이 발생할 확률이 가장 높은 위치를 결정했습니다. 금속 적층 가공의 일반적인 경험에 따라 레이저 용융 트랙의 응고된 미세 구조는 에피택셜 입자 성장에 의해 지배됩니다. 더 높은 레이저 스캐닝 속도와 더 낮은 출력이 일반적으로 흩어진 입자 감소에 도움이 되지만,그럼에도 불구하고 길쭉한 용융 풀에서 흩어진 입자가 분명했습니다.

    The competition between epitaxial vs. equiaxed solidification has been investigated in CMSX-4 single crystal superalloy during laser melting as practiced in additive manufacturing. Single-track laser scans were performed on a powder-free surface of directionally solidified CMSX-4 alloy with several combinations of laser power and scanning velocity. Electron backscattered diffraction (EBSD) mapping facilitated identification of new orientations, i.e., “stray grains” that nucleated within the fusion zone along with their area fraction and spatial distribution. Using high-fidelity computational fluid dynamics simulations, both the temperature and fluid velocity fields within the melt pool were estimated. This information was combined with a nucleation model to determine locations where nucleation has the highest probability to occur in melt pools. In conformance with general experience in metals additive manufacturing, the as-solidified microstructure of the laser-melted tracks is dominated by epitaxial grain growth; nevertheless, stray grains were evident in elongated melt pools. It was found that, though a higher laser scanning velocity and lower power are generally helpful in the reduction of stray grains, the combination of a stable keyhole and minimal fluid velocity further mitigates stray grains in laser single tracks.

    Introduction

    니켈 기반 초합금은 고온에서 긴 노출 시간 동안 높은 인장 강도, 낮은 산화 및 우수한 크리프 저항성을 포함하는 우수한 특성의 고유한 조합으로 인해 가스 터빈 엔진 응용 분야에서 광범위하게 사용됩니다. CMSX-4는 특히 장기 크리프 거동과 관련하여 초고강도의 2세대 레늄 함유 니켈 기반 단결정 초합금입니다. 1 , 2 ]입계의 존재가 크리프를 가속화한다는 인식은 가스 터빈 엔진의 고온 단계를 위한 단결정 블레이드를 개발하게 하여 작동 온도를 높이고 효율을 높이는 데 기여했습니다. 이러한 구성 요소는 사용 중 마모될 수 있습니다. 즉, 구성 요소의 무결성을 복원하고 단결정 미세 구조를 유지하는 수리 방법을 개발하기 위한 지속적인 작업이 있었습니다. 3 , 4 , 5 ]

    적층 제조(AM)가 등장하기 전에는 다양한 용접 공정을 통해 단결정 초합금에 대한 수리 시도가 수행되었습니다. 균열 [ 6 , 7 ] 및 흩어진 입자 8 , 9 ] 와 같은 심각한 결함 이 이 수리 중에 자주 발생합니다. 일반적으로 “스트레이 그레인”이라고 하는 응고 중 모재의 방향과 다른 결정학적 방향을 가진 새로운 그레인의 형성은 니켈 기반 단결정 초합금의 수리 중 유해한 영향으로 인해 중요한 관심 대상입니다. 3 , 10 ]결과적으로 재료의 단결정 구조가 손실되고 원래 구성 요소에 비해 기계적 특성이 손상됩니다. 이러한 흩어진 입자는 특정 조건에서 에피택셜 성장을 대체하는 등축 응고의 시작에 해당합니다.

    떠돌이 결정립 형성을 완화하기 위해 이전 작업은 용융 영역(FZ) 내에서 응고하는 동안 떠돌이 결정립 형성에 영향을 미치는 수지상 응고 거동 및 처리 조건을 이해하는 데 중점을 두었습니다. 11 , 12 , 13 , 14 ] 연구원들은 단결정 합금의 용접 중에 표류 결정립 형성에 대한 몇 가지 가능한 메커니즘을 제안했습니다. 12 , 13 , 14 , 15 ]응고 전단에 앞서 국부적인 구성 과냉각은 이질적인 핵 생성 및 등축 결정립의 성장을 유발할 수 있습니다. 또한 용융 풀에서 활발한 유체 흐름으로 인해 발생하는 덴드라이트 조각화는 용융 풀 경계 근처에서 새로운 결정립을 형성할 수도 있습니다. 두 메커니즘 모두에서, 표류 결정립 형성은 핵 생성 위치에 의존하며, 차이점은 수상 돌기 조각화는 수상 돌기 조각이 핵 생성 위치로 작용한다는 것을 의미하는 반면 다른 메커니즘은 재료,  를 들어 산화물 입자에서 발견되는 다른 유형의 핵 생성 위치를 사용한다는 것을 의미합니다. 잘 알려진 바와 같이, 많은 주물에 대한 반대 접근법은 TiB와 같은 핵제의 도입을 통해 등축 응고를 촉진하는 것입니다.22알루미늄 합금에서.

    헌법적 과냉 메커니즘에서 Hunt 11 ] 는 정상 상태 조건에서 기둥에서 등축으로의 전이(CET)를 설명하는 모델을 개발했습니다. Gaumann과 Kurz는 Hunt의 모델을 수정하여 단결정이 응고되는 동안 떠돌이 결정립이 핵을 생성하고 성장할 수 있는 정도를 설명했습니다. 12 , 14 ] 이후 연구에서 Vitek은 Gaumann의 모델을 개선하고 출력 및 스캐닝 속도와 같은 용접 조건의 영향에 대한 보다 자세한 분석을 포함했습니다. Vitek은 또한 실험 및 모델링 기술을 통해 표류 입자 형성에 대한 기판 방향의 영향을 포함했습니다. 3 , 10 ]일반적으로 높은 용접 속도와 낮은 출력은 표류 입자의 양을 최소화하고 레이저 용접 공정 중 에피택셜 단결정 성장을 최대화하는 것으로 나타났습니다. 3,10 ] 그러나 Vitek은 덴드라이트 조각화를 고려하지 않았으며 그의 연구는 불균질 핵형성이 레이저 용접된 CMSX -4 단결정 합금에서 표류 결정립 형성을 이끄는 주요 메커니즘임을 나타냅니다. 현재 작업에서 Vitek의 수치적 방법이 채택되고 금속 AM의 급속한 특성의 더 높은 속도와 더 낮은 전력 특성으로 확장됩니다.

    AM을 통한 금속 부품 제조 는 지난 10년 동안 급격한 인기 증가를 목격했습니다. 16 ] EBM(Electron Beam Melting)에 의한 CMSX-4의 제작 가능성은 자주 조사되었으나 17 , 18 , 19 , 20 , 21 ] CMSX의 제조 및 수리에 대한 조사는 매우 제한적이었다. – 4개의 단결정 구성요소는 레이저 분말 베드 융합(LPBF)을 사용하며, AM의 인기 있는 하위 집합으로, 특히 표류 입자 형성을 완화하는 메커니즘과 관련이 있습니다. 22 ]이러한 조사 부족은 주로 이러한 합금 시스템과 관련된 처리 문제로 인해 발생합니다. 2 , 19 , 22 , 23 , 24 ] 공정 매개변수( 예: 열원 전력, 스캐닝 속도, 스폿 크기, 예열 온도 및 스캔 전략)의 엄격한 제어는 완전히 조밀한 부품을 만들고 유지 관리할 수 있도록 하는 데 필수적입니다. 단결정 미세구조. 25 ] EBM을 사용하여 단결정 합금의 균열 없는 수리가 현재 가능하지만 19 , 24 ] 표류 입자를 생성하지 않는 수리는 쉽게 달성할 수 없습니다.23 , 26 ]

    이 작업에서 LPBF를 대표하는 조건으로 레이저 용융을 사용하여 단결정 CMSX-4에서 표류 입자 완화를 조사했습니다. LPBF는 스캐닝 레이저 빔을 사용하여 금속 분말의 얇은 층을 기판에 녹이고 융합합니다. 층별 증착에서 레이저 빔의 사용은 급격한 온도 구배, 빠른 가열/냉각 주기 및 격렬한 유체 흐름을 경험하는 용융 풀을 생성 합니다 이것은 일반적으로 부품에 결함을 일으킬 수 있는 매우 동적인 물리적 현상으로 이어집니다. 28 , 29 , 30 ] 레이저 유도 키홀의 동역학( 예:, 기화 유발 반동 압력으로 인한 위상 함몰) 및 열유체 흐름은 AM 공정에서 응고 결함과 강하게 결합되고 관련됩니다. 31 , 32 , 33 , 34 ] 기하 구조의 급격한 변화가 발생하기 쉬운 불안정한 키홀은 다공성, 볼링, 스패터 형성 및 흔하지 않은 미세 구조 상을 포함하는 유해한 물리적 결함을 유발할 수 있습니다. 그러나 키홀 진화와 유체 흐름은 자연적으로 다음을 통해 포착 하기 어렵 습니다 .전통적인 사후 특성화 기술. 고충실도 수치 모델링을 활용하기 위해 이 연구에서는 전산유체역학(CFD)을 적용하여 표면 아래의 레이저-물질 상호 작용을 명확히 했습니다. 36 ] 이것은 응고된 용융물 풀의 단면에 대한 오랫동안 확립된 사후 특성화와 비교하여 키홀 및 용융물 풀 유체 흐름 정량화를 실행합니다.

    CMSX-4 구성 요소의 레이저 기반 AM 수리 및 제조를 위한 적절한 절차를 개발하기 위해 적절한 공정 창을 설정하고 응고 중 표류 입자 형성 경향에 대한 예측 기능을 개발하는 것부터 시작합니다. 다중 합금에 대한 단일 트랙 증착은 분말 층이 있거나 없는 AM 공정에서 용융 풀 형상 및 미세 구조의 정확한 분석을 제공하는 것으로 나타났습니다. 37 , 38 , 39 ]따라서 본 연구에서는 CMSX-4의 응고 거동을 알아보기 위해 분말을 사용하지 않는 단일 트랙 레이저 스캔 실험을 사용하였다. 이는 CMSX-4 단결정의 LPBF 제조를 위한 예비 실험 지침을 제공합니다. 또한 응고 모델링은 기존 용접에서 LPBF와 관련된 급속 용접으로 확장되어 표류 입자 감소를 위한 최적의 레이저 용융 조건을 식별했습니다. 가공 매개변수 최적화를 위한 추가 지침을 제공하기 위해 용융물 풀의 매우 동적인 유체 흐름을 모델링했습니다.

    재료 및 방법

    단일 트랙 실험

    방전 가공(EDM)을 사용하여 CMSX-4 방향성 응고 단결정 잉곳으로부터 샘플을 제작했습니다. 샘플의 최종 기하학은 치수 20의 직육면체 형태였습니다.××20××6mm. 6개 중 하나⟨ 001 ⟩⟨001⟩잉곳의 결정학적 방향은 레이저 트랙이 이 바람직한 성장 방향을 따라 스캔되도록 절단 표면에 수직으로 위치했습니다. 단일 레이저 용융 트랙은 EOS M290 기계를 사용하여 분말이 없는 샘플 표면에 만들어졌습니다. 이 기계는 최대 출력 400W, 가우시안 빔 직경 100의 이터븀 파이버 레이저가 장착된 LPBF 시스템입니다. μμ초점에서 m. 실험 중에 직사각형 샘플을 LPBF 기계용 맞춤형 샘플 홀더의 포켓에 끼워 표면을 동일한 높이로 유지했습니다. 이 맞춤형 샘플 홀더에 대한 자세한 내용은 다른 곳에서 설명합니다. 실험 은 아르곤 퍼지 분위기에서 수행되었으며 예열은 적용되지 않았습니다 단일 트랙 레이저 용융 실험은 다양한 레이저 출력(200~370W)과 스캔 속도(0.4~1.4m/s)에서 수행되었습니다.

    성격 묘사

    레이저 스캐닝 후, 레이저 빔 스캐닝 방향에 수직인 평면에서 FZ를 통해 다이아몬드 톱을 사용하여 샘플을 절단했습니다. 그 후, 샘플을 장착하고 220 그릿 SiC 페이퍼로 시작하여 콜로이드 실리카 현탁액 광택제로 마무리하여 자동 연마했습니다. 결정학적 특성화는 20kV의 가속 전압에서 TESCAN MIRA 3XMH 전계 방출 주사 전자 현미경(SEM)에서 수행되었습니다. EBSD 지도는0.4μm _0.4μ미디엄단계 크기. Bruker 시스템을 사용하여 EBSD 데이터를 정리하고 분석했습니다. EBSD 클린업은 그레인을 접촉시키기 위한 그레인 확장 루틴으로 시작한 다음 인덱스되지 않은 회절 패턴과 관련된 검은색 픽셀을 해결하기 위해 이웃 방향 클린업 루틴으로 이어졌습니다. 용융 풀 형태를 분석하기 위해 단면을 광학 현미경으로 분석했습니다. 광학 특성화의 대비를 향상시키기 위해 10g CuSO로 구성된 Marbles 시약의 변형으로 샘플을 에칭했습니다.44, 50mL HCl 및 70mL H22영형.

    응고 모델링

    구조적 과냉 기준에 기반한 응고 모델링을 수행하여 표유 입자의 성향 및 분포에 대한 가공 매개변수의 영향을 평가했습니다. 이 분석 모델링 접근 방식에 대한 자세한 내용은 이전 작업에서 제공됩니다. 3 , 10 ] 참고문헌 3 에 기술된 바와 같이 , 기본 재료의 결정학적 배향을 가진 용융 풀에서 총 표유 입자 면적 분율의 변화는 최소이므로 기본 재료 배향의 영향은 이 작업에서 고려되지 않았습니다. 우리의 LPBF 결과를 이전 작업과 비교하기 위해 Vitek의 작업에서 사용된 수학적으로 간단한 Rosenthal 방정식 3 ]또한 레이저 매개변수의 함수로 용융 풀의 모양과 FZ의 열 조건을 계산하기 위한 기준으로 여기에서 채택되었습니다. Rosenthal 솔루션은 열이 일정한 재료 특성을 가진 반무한 판의 정상 상태 점원을 통해서만 전도를 통해 전달된다고 가정하며 일반적으로 다음과 같이 표현 됩니다 40 , 41 ] .

    티=티0+η피2 파이케이엑스2+와이2+지2———-√경험치[- 브이(엑스2+와이2+지2———-√− 엑스 )2α _] ,티=티0+η피2파이케이엑스2+와이2+지2경험치⁡[-V(엑스2+와이2+지2-엑스)2α],(1)

    여기서 T 는 온도,티0티0본 연구에서 313K(  , EOS 기계 챔버 온도)로 설정된 주변 온도, P 는 레이저 빔 파워, V 는 레이저 빔 스캐닝 속도,ηη는 레이저 흡수율, k 는 열전도율,αα베이스 합금의 열확산율입니다. x , y , z 는 각각 레이저 스캐닝 방향, 가로 방향 및 세로 방향의 반대 방향과 정렬된 방향입니다 . 이 직교 좌표는 참조 3 의 그림 1에 있는 시스템을 따랐습니다 . CMSX-4에 대한 고상선 온도(1603K)와 액상선 온도(1669K)의 등온선 평균으로 응고 프런트( 즉 , 고체-액체 계면)를 정의했습니다. 42 , 43 , 44 ] 시뮬레이션에 사용된 열물리적 특성은 표 I 에 나열되어 있습니다.표 I CMSX-4의 응고 모델링에 사용된 열물리적 특성

    풀 사이즈 테이블

    열 구배는 외부 열 흐름에 의해 결정되었습니다.∇ 티∇티45 ] 에 의해 주어진 바와 같이 :

    지 = | ∇ 티| =∣∣∣∂티∂엑스나^^+∂티∂와이제이^^+∂티∂지케이^^∣∣∣=(∂티∂엑스)2+(∂티∂와이)2+(∂티∂지)2————————√,G=|∇티|=|∂티∂엑스나^^+∂티∂와이제이^^+∂티∂지케이^^|=(∂티∂엑스)2+(∂티∂와이)2+(∂티∂지)2,(2)

    어디나^^나^^,제이^^제이^^, 그리고케이^^케이^^는 각각 x , y 및 z 방향 을 따른 단위 벡터 입니다. 응고 등온선 속도,V티V티는 다음 관계에 의해 레이저 빔 스캐닝 속도 V 와 기하학적으로 관련됩니다.

    V티= V코사인θ =V∂티∂엑스(∂티∂엑스)2+(∂티∂와이)2+(∂티∂지)2——————-√,V티=V코사인⁡θ=V∂티∂엑스(∂티∂엑스)2+(∂티∂와이)2+(∂티∂지)2,(삼)

    어디θθ는 스캔 방향과 응고 전면의 법선 방향(  , 최대 열 흐름 방향) 사이의 각도입니다. 이 연구의 용접 조건과 같은 제한된 성장에서 수지상 응고 전면은 고체-액체 등온선의 속도로 성장하도록 강제됩니다.V티V티. 46 ]

    응고 전선이 진행되기 전에 새로 핵 생성된 입자의 국지적 비율ΦΦ, 액체 온도 구배 G 에 의해 결정 , 응고 선단 속도V티V티및 핵 밀도N0N0. 고정된 임계 과냉각에서 모든 입자가 핵형성된다고 가정함으로써△티N△티N, 등축 결정립의 반경은 결정립이 핵 생성을 시작하는 시점부터 주상 전선이 결정립에 도달하는 시간까지의 성장 속도를 통합하여 얻습니다. 과냉각으로 대체 시간d (ΔT_) / dt = – _V티G디(△티)/디티=-V티G, 열 구배 G 사이의 다음 관계 , 등축 입자의 국부적 부피 분율ΦΦ, 수상 돌기 팁 과냉각ΔT _△티, 핵 밀도N0N0, 재료 매개변수 n 및 핵생성 과냉각△티N△티N, Gäumann 외 여러분 에 의해 파생되었습니다 . 12 , 14 ] Hunt의 모델 11 ] 의 수정에 기반함 :

    지 =1엔 + 1- 4π _N03 인치( 1 − Φ )———√삼ΔT _( 1 -△티엔 + 1N△티엔 + 1) .G=1N+1-4파이N0삼인⁡(1-Φ)삼△티(1-△티NN+1△티N+1).(4)

    계산을 단순화하기 위해 덴드라이트 팁 과냉각을 전적으로 구성 과냉각의 것으로 추정합니다.△티씨△티씨, 멱법칙 형식으로 근사화할 수 있습니다.△티씨= ( _V티)1 / 엔△티씨=(ㅏV티)1/N, 여기서 a 와 n 은 재료 종속 상수입니다. CMSX-4의 경우 이 값은a = 1.25 ×106ㅏ=1.25×106 s K 3.4m− 1-1,엔 = 3.4N=3.4, 그리고N0= 2 ×1015N0=2×1015미디엄− 3,-삼,참고문헌 3 에 의해 보고된 바와 같이 .△티N△티N2.5K이며 보다 큰 냉각 속도에서 응고에 대해 무시할 수 있습니다.106106 K/s. 에 대한 표현ΦΦ위의 방정식을 재배열하여 해결됩니다.

    Φ= 1 -이자형에스\ 여기서\  S=- 4π _N0삼(1( 엔 + 1 ) (GN/ 아V티)1 / 엔)삼=−2.356×1019(vTG3.4)33.4.Φ=1−eS\ where\ S=−4πN03(1(n+1)(Gn/avT)1/n)3=−2.356×1019(vTG3.4)33.4.

    (5)

    As proposed by Hunt,[11] a value of Φ≤0.66Φ≤0.66 pct represents fully columnar epitaxial growth condition, and, conversely, a value of Φ≥49Φ≥49 pct indicates that the initial single crystal microstructure is fully replaced by an equiaxed microstructure. To calculate the overall stray grain area fraction, we followed Vitek’s method by dividing the FZ into roughly 19 to 28 discrete parts (depending on the length of the melt pool) of equal length from the point of maximum width to the end of melt pool along the x direction. The values of G and vTvT were determined at the center on the melt pool boundary of each section and these values were used to represent the entire section. The area-weighted average of ΦΦ over these discrete sections along the length of melt pool is designated as Φ¯¯¯¯Φ¯, and is given by:

    Φ¯¯¯¯=∑kAkΦk∑kAk,Φ¯=∑kAkΦk∑kAk,

    (6)

    where k is the index for each subsection, and AkAk and ΦkΦk are the areas and ΦΦ values for each subsection. The summation is taken over all the sections along the melt pool. Vitek’s improved model allows the calculation of stray grain area fraction by considering the melt pool geometry and variations of G and vTvT around the tail end of the pool.

    수년에 걸쳐 용융 풀 현상 모델링의 정확도를 개선하기 위해 많은 고급 수치 방법이 개발되었습니다. 우리는 FLOW-3D와 함께 고충실도 CFD를 사용했습니다. FLOW-3D는 여러 물리 모델을 통합하는 상용 FVM(Finite Volume Method)입니다. 47 , 48 ] CFD는 유체 운동과 열 전달을 수치적으로 시뮬레이션하며 여기서 사용된 기본 물리 모델은 레이저 및 표면력 모델이었습니다. 레이저 모델에서는 레이 트레이싱 기법을 통해 다중 반사와 프레넬 흡수를 구현합니다. 36 ]먼저, 레이저 빔은 레이저 빔에 의해 조명되는 각 그리드 셀을 기준으로 여러 개의 광선으로 이산화됩니다. 그런 다음 각 입사 광선에 대해 입사 벡터가 입사 위치에서 금속 표면의 법선 벡터와 정렬될 때 에너지의 일부가 금속에 의해 흡수됩니다. 흡수율은 Fresnel 방정식을 사용하여 추정됩니다. 나머지 에너지는 반사광선 에 의해 유지되며 , 반사광선은 재료 표면에 부딪히면 새로운 입사광선으로 처리됩니다. 두 가지 주요 힘이 액체 금속 표면에 작용하여 자유 표면을 변형시킵니다. 금속의 증발에 의해 생성된 반동 압력은 증기 억제를 일으키는 주요 힘입니다. 본 연구에서 사용된 반동 압력 모델은피아르 자형= 특급 _{ B ( 1- _티V/ 티) }피아르 자형=ㅏ경험치⁡{비(1-티V/티)}, 어디피아르 자형피아르 자형는 반동압력, A 와 B 는 재료의 물성에 관련된 계수로 각각 75와 15이다.티V티V는 포화 온도이고 T 는 키홀 벽의 온도입니다. 표면 흐름 및 키홀 형성의 다른 원동력은 표면 장력입니다. 표면 장력 계수는 Marangoni 흐름을 포함하기 위해 온도의 선형 함수로 추정되며,σ =1.79-9.90⋅10− 4( 티− 1654케이 )σ=1.79-9.90⋅10-4(티-1654년케이)엔엠− 1-1. 49 ] 계산 영역은 베어 플레이트의 절반입니다(2300 μμ미디엄××250 μμ미디엄××500 μμm) xz 평면 에 적용된 대칭 경계 조건 . 메쉬 크기는 8입니다. μμm이고 시간 단계는 0.15입니다. μμs는 계산 효율성과 정확성 간의 균형을 제공합니다.

    결과 및 논의

    용융 풀 형태

    이 작업에 사용된 5개의 레이저 파워( P )와 6개의 스캐닝 속도( V )는 서로 다른 29개의 용융 풀을 생성했습니다.피- 브이피-V조합. P 와 V 값이 가장 높은 것은 그림 1 을 기준으로 과도한 볼링과 관련이 있기 때문에 본 연구에서는 분석하지 않았다  .

    단일 트랙 용융 풀은 그림  1 과 같이 형상에 따라 네 가지 유형으로 분류할 수 있습니다 39 ] : (1) 전도 모드(파란색 상자), (2) 키홀 모드(빨간색), (3) 전환 모드(마젠타), (4) 볼링 모드(녹색). 높은 레이저 출력과 낮은 스캐닝 속도의 일반적인 조합인 키홀 모드에서 용융물 풀은 일반적으로 너비/깊이( W / D ) 비율이 0.5보다 훨씬 큰 깊고 가느다란 모양을 나타냅니다 . 스캐닝 속도가 증가함에 따라 용융 풀이 얕아져 W / D 가 약 0.5인 반원형 전도 모드 용융 풀을 나타냅니다. W / D _전환 모드 용융 풀의 경우 1에서 0.5 사이입니다. 스캐닝 속도를 1200 및 1400mm/s로 더 높이면 충분히 큰 캡 높이와 볼링 모드 용융 풀의 특징인 과도한 언더컷이 발생할 수 있습니다.

    힘과 속도의 함수로서의 용융 풀 깊이와 너비는 각각 그림  2 (a)와 (b)에 표시되어 있습니다. 용융 풀 폭은 기판 표면에서 측정되었습니다. 그림  2 (a)는 깊이가 레이저 출력과 매우 선형적인 관계를 따른다는 것을 보여줍니다. 속도가 증가함에 따라 깊이  파워 곡선의 기울기는 꾸준히 감소하지만 더 높은 속도 곡선에는 약간의 겹침이 있습니다. 이러한 예상치 못한 중첩은 종종 용융 풀 형태의 동적 변화를 유발하는 유체 흐름의 영향과 레이저 스캔당 하나의 이미지만 추출되었다는 사실 때문일 수 있습니다. 이러한 선형 동작은 그림 2 (b) 의 너비에 대해 명확하지 않습니다  . 그림  2(c)는 선형 에너지 밀도 P / V 의 함수로서 용융 깊이와 폭을 보여줍니다 . 선형 에너지 밀도는 퇴적물의 단위 길이당 에너지 투입량을 측정한 것입니다. 50 ] 용융 풀 깊이는 에너지 밀도에 따라 달라지며 너비는 더 많은 분산을 나타냅니다. 동일한 에너지 밀도가 준공 부품의 용융 풀, 미세 구조 또는 속성에서 반드시 동일한 유체 역학을 초래하지는 않는다는 점에 유의하는 것이 중요합니다. 50 ]

    그림 1
    그림 1
    그림 2
    그림 2

    레이저 흡수율 평가

    레이저 흡수율은 LPBF 조건에서 재료 및 가공 매개변수에 따라 크게 달라진다는 것은 잘 알려져 있습니다. 31 , 51 , 52 ] 적분구를 이용한 전통적인 흡수율의 직접 측정은 일반적으로 높은 비용과 구현의 어려움으로 인해 쉽게 접근할 수 없습니다. 51 ] 그  . 39 ] 전도 모드 용융 풀에 대한 Rosenthal 방정식을 기반으로 경험적 레이저 흡수율 모델을 개발했지만 기본 가정으로 인해 키홀 용융 풀에 대한 정확한 예측을 제공하지 못했습니다. 40 ] 최근 간 . 53 ] Ti–6Al–4V에 대한 30개의 고충실도 다중 물리 시뮬레이션 사례를 사용하여 레이저 흡수에 대한 스케일링 법칙을 확인했습니다. 그러나 연구 중인 특정 재료에 대한 최소 흡수(평평한 용융 표면의 흡수율)에 대한 지식이 필요하며 이는 CMSX-4에 대해 알려지지 않았습니다. 다양한 키홀 모양의 용융 풀에 대한 레이저 흡수의 정확한 추정치를 얻기가 어렵기 때문에 상한 및 하한 흡수율로 분석 시뮬레이션을 실행하기로 결정했습니다. 깊은 키홀 모양의 용융 풀의 경우 대부분의 빛을 가두는 키홀 내 다중 반사로 인해 레이저 흡수율이 0.8만큼 높을 수 있습니다. 이것은 기하학적 현상이며 기본 재료에 민감하지 않습니다. 5152 , 54 ] 따라서 본 연구에서는 흡수율의 상한을 0.8로 설정하였다. 참고 문헌 51 에 나타낸 바와 같이 , 전도 용융 풀에 해당하는 최저 흡수율은 약 0.3이었으며, 이는 이 연구에서 합리적인 하한 값입니다. 따라서 레이저 흡수율이 스트레이 그레인 형성에 미치는 영향을 보여주기 위해 흡수율 값을 0.55 ± 0.25로 설정했습니다. Vitek의 작업에서는 1.0의 고정 흡수율 값이 사용되었습니다. 3 ]

    퓨전 존 미세구조

    그림  3 은 200~300W 및 600~300W 및 600~300W 범위의 레이저 출력 및 속도로 9가지 다른 처리 매개변수에 의해 생성된 CMSX-4 레이저 트랙의 yz 단면 에서 취한 EBSD 역극점도와 해당 역극점도를 보여 줍니다. 각각 1400mm/s. EBSD 맵에서 여러 기능을 쉽게 관찰할 수 있습니다. 스트레이 그레인은 EBSD 맵에서 그 방향에 해당하는 다른 RGB 색상으로 나타나고 그레인 경계를 묘사하기 위해 5도의 잘못된 방향이 사용되었습니다. 여기, 그림  3 에서 스트레이 그레인은 대부분 용융 풀의 상단 중심선에 집중되어 있으며, 이는 용접된 단결정 CMSX-4의 이전 보고서와 일치합니다. 10 ]역 극점도에서, 점 근처에 집중된 클러스터⟨ 001 ⟩⟨001⟩융합 경계에서 유사한 방향을 유지하는 단결정 기반 및 에피택셜로 응고된 덴드라이트를 나타냅니다. 그러나 흩어진 곡물은 식별할 수 있는 질감이 없는 흩어져 있는 점으로 나타납니다. 단결정 기본 재료의 결정학적 방향은 주로⟨ 001 ⟩⟨001⟩비록 샘플을 절단하는 동안 식별할 수 없는 기울기 각도로 인해 또는 단결정 성장 과정에서 약간의 잘못된 방향이 있었기 때문에 약간의 편차가 있지만. 용융 풀 내부의 응고된 수상 돌기의 기본 방향은 다시 한 번⟨ 001 ⟩⟨001⟩주상 결정립 구조와 유사한 에피택셜 성장의 결과. 그림 3 과 같이 용융 풀에서 수상돌기의 성장 방향은 하단의 수직 방향에서 상단의 수평 방향으로 변경되었습니다  . 이 전이는 주로 온도 구배 방향의 변화로 인한 것입니다. 두 번째 전환은 CET입니다. FZ의 상단 중심선 주변에서 다양한 방향의 흩어진 입자가 관찰되며, 여기서 안쪽으로 성장하는 수상돌기가 서로 충돌하여 용융 풀에서 응고되는 마지막 위치가 됩니다.

    더 깊은 키홀 모양을 특징으로 하는 샘플에서 용융 풀의 경계 근처에 침전된 흩어진 입자가 분명합니다. 이러한 새로운 입자는 나중에 모델링 섹션에서 논의되는 수상돌기 조각화 메커니즘에 의해 잠재적으로 발생합니다. 결정립이 강한 열 구배에서 핵을 생성하고 성장한 결과, 대부분의 흩어진 결정립은 모든 방향에서 동일한 크기를 갖기보다는 장축이 열 구배 방향과 정렬된 길쭉한 모양을 갖습니다. 그림 3 의 전도 모드 용융 풀 흩어진 입자가 없는 것으로 입증되는 더 나은 단결정 품질을 나타냅니다. 상대적으로 낮은 출력과 높은 속도의 스캐닝 레이저에 의해 생성된 이러한 더 얕은 용융 풀에서 최소한의 결정립 핵형성이 발생한다는 것은 명백합니다. 더 큰 면적 분율을 가진 스트레이 그레인은 고출력 및 저속으로 생성된 깊은 용융 풀에서 더 자주 관찰됩니다. 국부 응고 조건에 대한 동력 및 속도의 영향은 후속 모델링 섹션에서 조사할 것입니다.

    그림 3
    그림 3

    응고 모델링

    서론에서 언급한 바와 같이 연구자들은 단결정 용접 중에 표류 결정립 형성의 가능한 메커니즘을 평가했습니다. 12 , 13 , 14 , 15 , 55 ]논의된 가장 인기 있는 두 가지 메커니즘은 (1) 응고 전단에 앞서 구성적 과냉각에 의해 도움을 받는 이종 핵형성 및 (2) 용융물 풀의 유체 흐름으로 인한 덴드라이트 조각화입니다. 첫 번째 메커니즘은 광범위하게 연구되었습니다. 이원 합금을 예로 들면, 고체는 액체만큼 많은 용질을 수용할 수 없으므로 응고 중에 용질을 액체로 거부합니다. 결과적으로, 성장하는 수상돌기 앞에서 용질 분할은 실제 온도가 국부 평형 액상선보다 낮은 과냉각 액체를 생성합니다. 충분히 광범위한 체질적으로 과냉각된 구역의 존재는 새로운 결정립의 핵형성 및 성장을 촉진합니다. 56 ]전체 과냉각은 응고 전면에서의 구성, 동역학 및 곡률 과냉각을 포함한 여러 기여의 합입니다. 일반적인 가정은 동역학 및 곡률 과냉각이 합금에 대한 용질 과냉각의 더 큰 기여와 관련하여 무시될 수 있다는 것입니다. 57 ]

    서로 다른 기본 메커니즘을 더 잘 이해하려면피- 브이피-V조건에서 응고 모델링이 수행됩니다. 첫 번째 목적은 스트레이 그레인의 전체 범위를 평가하는 것입니다(Φ¯¯¯¯Φ¯) 처리 매개 변수의 함수로 국부적 표류 입자 비율의 변화를 조사하기 위해 (ΦΦ) 용융 풀의 위치 함수로. 두 번째 목적은 금속 AM의 빠른 응고 동안 응고 미세 구조와 표류 입자 형성 메커니즘 사이의 관계를 이해하는 것입니다.

    그림 4
    그림 4

    그림  4 는 해석적으로 시뮬레이션된 표류 입자 비율을 보여줍니다.Φ¯¯¯¯Φ¯세 가지 레이저 흡수율 값에서 다양한 레이저 스캐닝 속도 및 레이저 출력에 대해. 결과는 스트레이 그레인 면적 비율이 흡수된 에너지에 민감하다는 것을 보여줍니다. 흡수율을 0.30에서 0.80으로 증가시키면Φ¯¯¯¯Φ¯약 3배이며, 이 효과는 저속 및 고출력 영역에서 더욱 두드러집니다. 다른 모든 조건이 같다면, 흡수된 전력의 큰 영향은 평균 열 구배 크기의 일반적인 감소와 용융 풀 내 평균 응고율의 증가에 기인합니다. 스캐닝 속도가 증가하고 전력이 감소함에 따라 평균 스트레이 그레인 비율이 감소합니다. 이러한 일반적인 경향은 Vitek의 작업에서 채택된 그림 5 의 파란색 영역에서 시뮬레이션된 용접 결과와 일치합니다  . 3 ] 더 큰 과냉각 구역( 즉, 지 /V티G/V티영역)은 용접 풀의 표유 입자의 면적 비율이 분홍색 영역에 해당하는 LPBF 조건의 면적 비율보다 훨씬 더 크다는 것을 의미합니다. 그럼에도 불구하고 두 데이터 세트의 일반적인 경향은 유사합니다.  , 레이저 출력이 감소하고 레이저 속도가 증가함에 따라 표류 입자의 비율이 감소합니다. 또한 그림  5 에서 스캐닝 속도가 LPBF 영역으로 증가함에 따라 표유 입자 면적 분율에 대한 레이저 매개변수의 변화 효과가 감소한다는 것을 추론할 수 있습니다. 그림  6 (a)는 그림 3 의 EBSD 분석에서 나온 실험적 표류 결정립 면적 분율  과 그림 4 의 해석 시뮬레이션 결과를  비교합니다.. 열쇠 구멍 모양의 FZ에서 정확한 값이 다르지만 추세는 시뮬레이션과 실험 데이터 모두에서 일관되었습니다. 키홀 모양의 용융 풀, 특히 전력이 300W인 2개는 분석 시뮬레이션 예측보다 훨씬 더 많은 양의 흩어진 입자를 가지고 있습니다. Rosenthal 방정식은 일반적으로 열 전달이 순전히 전도에 의해 좌우된다는 가정으로 인해 열쇠 구멍 체제의 열 흐름을 적절하게 반영하지 못하기 때문에 이러한 불일치가 실제로 예상됩니다. 39 , 40 ] 그것은 또한 그림  4 의 발견 , 즉 키홀 모드 동안 흡수된 전력의 증가가 표류 입자 형성에 더 이상적인 조건을 초래한다는 것을 검증합니다. 그림  6 (b)는 실험을 비교Φ¯¯¯¯Φ¯수치 CFD 시뮬레이션Φ¯¯¯¯Φ¯. CFD 모델이 약간 초과 예측하지만Φ¯¯¯¯Φ¯전체적으로피- 브이피-V조건에서 열쇠 구멍 조건에서의 예측은 분석 모델보다 정확합니다. 전도 모드 용융 풀의 경우 실험 값이 분석 시뮬레이션 값과 더 가깝게 정렬됩니다.

    그림 5
    그림 5

    모의 온도 구배 G 분포 및 응고율 검사V티V티분석 모델링의 쌍은 그림  7 (a)의 CMSX-4 미세 구조 선택 맵에 표시됩니다. 제공지 /V티G/V티(  , 형태 인자)는 형태를 제어하고지 ×V티G×V티(  , 냉각 속도)는 응고된 미세 구조의 규모를 제어하고 , 58 , 59 ]지 -V티G-V티플롯은 전통적인 제조 공정과 AM 공정 모두에서 미세 구조 제어를 지원합니다. 이 플롯의 몇 가지 분명한 특징은 등축, 주상, 평면 전면 및 이러한 경계 근처의 전이 영역을 구분하는 경계입니다. 그림  7 (a)는 몇 가지 선택된 분석 열 시뮬레이션에 대한 미세 구조 선택 맵을 나타내는 반면 그림  7 (b)는 수치 열 모델의 결과와 동일한 맵을 보여줍니다. 등축 미세구조의 형성은 낮은 G 이상 에서 명확하게 선호됩니다.V티V티정황. 이 플롯에서 각 곡선의 평면 전면에 가장 가까운 지점은 용융 풀의 최대 너비 위치에 해당하는 반면 등축 영역에 가까운 지점의 끝은 용융 풀의 후면 꼬리에 해당합니다. 그림  7 (a)에서 대부분의지 -V티G-V티응고 전면의 쌍은 원주형 영역에 속하고 점차 CET 영역으로 위쪽으로 이동하지만 용융 풀의 꼬리는 다음에 따라 완전히 등축 영역에 도달하거나 도달하지 않을 수 있습니다.피- 브이피-V조합. 그림 7 (a) 의 곡선 중 어느 것도  평면 전면 영역을 통과하지 않지만 더 높은 전력의 경우에 가까워집니다. 저속 레이저 용융 공정을 사용하는 이전 작업에서는 곡선이 평면 영역을 통과할 수 있습니다. 레이저 속도가 증가함에 따라 용융 풀 꼬리는 여전히 CET 영역에 있지만 완전히 등축 영역에서 멀어집니다. CET 영역으로 떨어지는 섹션의 수도 감소합니다.Φ¯¯¯¯Φ¯응고된 물질에서.

    그림 6
    그림 6

    그만큼지 -V티G-V티CFD 모델을 사용하여 시뮬레이션된 응고 전면의 쌍이 그림  7 (b)에 나와 있습니다. 세 방향 모두에서 각 점 사이의 일정한 간격으로 미리 정의된 좌표에서 수행된 해석 시뮬레이션과 달리, 고충실도 CFD 모델의 출력은 불규칙한 사면체 좌표계에 있었고 G 를 추출하기 전에 일반 3D 그리드에 선형 보간되었습니다. 그리고V티V티그런 다음 미세 구조 선택 맵에 플롯됩니다. 일반적인 경향은 그림  7 (a)의 것과 일치하지만 이 방법으로 모델링된 매우 동적인 유체 흐름으로 인해 결과에 더 많은 분산이 있었습니다. 그만큼지 -V티G-V티분석 열 모델의 쌍 경로는 더 연속적인 반면 수치 시뮬레이션의 경로는 용융 풀 꼬리 모양의 차이를 나타내는 날카로운 굴곡이 있습니다(이는 G 및V티V티) 두 모델에 의해 시뮬레이션됩니다.

    그림 7
    그림 7
    그림 8
    그림 8

    유체 흐름을 통합한 응고 모델링

    수치 CFD 모델을 사용하여 유동 입자 형성 정도에 대한 유체 흐름의 영향을 이해하고 시뮬레이션 결과를 분석 Rosenthal 솔루션과 비교했습니다. 그림  8 은 응고 매개변수 G 의 분포를 보여줍니다.V티V티,지 /V티G/V티, 그리고지 ×V티G×V티yz 단면에서 x  FLOW-3D에서 (a1–d1) 분석 열 모델링 및 (a2–d2) FVM 방법을 사용하여 시뮬레이션된 용융 풀의 최대 폭입니다. 그림  8 의 값은 응고 전선이 특정 위치에 도달할 때 정확한 값일 수도 있고 아닐 수도 있지만 일반적인 추세를 반영한다는 의미의 임시 가상 값입니다. 이 프로파일은 출력 300W 및 속도 400mm/s의 레이저 빔에서 시뮬레이션됩니다. 용융 풀 경계는 흰색 곡선으로 표시됩니다. (a2–d2)의 CFD 시뮬레이션 용융 풀 깊이는 342입니다. μμm, 측정 깊이 352와 잘 일치 μμ일치하는 길쭉한 열쇠 구멍 모양과 함께 그림 1 에 표시된 실험 FZ의 m  . 그러나 분석 모델은 반원 모양의 용융 풀을 출력하고 용융 풀 깊이는 264에 불과합니다. μμ열쇠 구멍의 경우 현실과는 거리가 멀다. CFD 시뮬레이션 결과에서 열 구배는 레이저 반사 증가와 불안정한 액체-증기 상호 작용이 발생하는 증기 함몰의 동적 부분 근처에 있기 때문에 FZ 하단에서 더 높습니다. 대조적으로 해석 결과의 열 구배 크기는 경계를 따라 균일합니다. 두 시뮬레이션 결과 모두 그림 8 (a1) 및 (a2) 에서 응고가 용융 풀의 상단 중심선을 향해 진행됨에 따라 열 구배가 점차 감소합니다  . 응고율은 그림 8 과 같이 경계 근처에서 거의 0입니다. (b1) 및 (b2). 이는 경계 영역이 응고되기 시작할 때 국부 응고 전면의 법선 방향이 레이저 스캐닝 방향에 수직이기 때문입니다. 이것은 드라이브θ → π/ 2θ→파이/2그리고V티→ 0V티→0식에서 [ 3 ]. 대조적으로 용융 풀의 상단 중심선 근처 영역에서 응고 전면의 법선 방향은 레이저 스캐닝 방향과 잘 정렬되어 있습니다.θ → 0θ→0그리고V티→ 브이V티→V, 빔 스캐닝 속도. G 와 _V티V티값이 얻어지면 냉각 속도지 ×V티G×V티및 형태 인자지 /V티G/V티계산할 수 있습니다. 그림 8 (c2)는 용융 풀 바닥 근처의 온도 구배가 매우 높고 상단에서 더 빠른 성장 속도로  인해 냉각 속도가 용융 풀의 바닥 및 상단 중심선 근처에서 더 높다는 것을 보여줍니다. 지역. 그러나 이러한 추세는 그림  8 (c1)에 캡처되지 않았습니다. 그림 8 의 형태 요인 (d1) 및 (d2)는 중심선에 접근함에 따라 눈에 띄게 감소합니다. 경계에서 큰 값은 열 구배를 거의 0인 성장 속도로 나누기 때문에 발생합니다. 이 높은 형태 인자는 주상 미세구조 형성 가능성이 높음을 시사하는 반면, 중앙 영역의 값이 낮을수록 등축 미세구조의 가능성이 더 크다는 것을 나타냅니다. Tanet al. 또한 키홀 모양의 용접 풀 59 ] 에서 이러한 응고 매개변수의 분포 를 비슷한 일반적인 경향으로 보여주었습니다. 그림  3 에서 볼 수 있듯이 용융 풀의 상단 중심선에 있는 흩어진 입자는 낮은 특징을 나타내는 영역과 일치합니다.지 /V티G/V티그림  8 (d1) 및 (d2)의 값. 시뮬레이션과 실험 간의 이러한 일치는 용융 풀의 상단 중심선에 축적된 흩어진 입자의 핵 생성 및 성장이 등온선 속도의 증가와 온도 구배의 감소에 의해 촉진됨을 보여줍니다.

    그림 9
    그림 9

    그림  9 는 유체 속도 및 국부적 핵형성 성향을 보여줍니다.ΦΦ300W의 일정한 레이저 출력과 400, 800 및 1200mm/s의 세 가지 다른 레이저 속도에 의해 생성된 3D 용융 풀 전체에 걸쳐. 그림  9 (d)~(f)는 로컬ΦΦ해당 3D 보기에서 밝은 회색 평면으로 표시된 특정 yz 단면의 분포. 이 yz 섹션은 가장 높기 때문에 선택되었습니다.Φ¯¯¯¯Φ¯용융 풀 내의 값은 각각 23.40, 11.85 및 2.45pct입니다. 이들은 그림  3 의 실험 데이터와 비교하기에 적절하지 않을 수 있는 액체 용융 풀의 과도 값이며Φ¯¯¯¯Φ¯그림  6 의 값은 이 값이 고체-액체 계면에 가깝지 않고 용융 풀의 중간에서 취해졌기 때문입니다. 온도가 훨씬 낮아서 핵이 생존하고 성장할 수 있기 때문에 핵 형성은 용융 풀의 중간이 아닌 고체-액체 계면에 더 가깝게 발생할 가능성이 있습니다.

    그림  3 (a), (d), (g), (h)에서 위쪽 중심선에서 멀리 떨어져 있는 흩어진 결정립이 있었습니다. 그들은 훨씬 더 높은 열 구배와 더 낮은 응고 속도 필드에 위치하기 때문에 과냉각 이론은 이러한 영역에서 표류 입자의 형성에 대한 만족스러운 설명이 아닙니다. 이것은 떠돌이 결정립의 형성을 야기할 수 있는 두 번째 메커니즘,  수상돌기의 팁을 가로지르는 유체 흐름에 의해 유발되는 수상돌기 조각화를 고려하도록 동기를 부여합니다. 유체 흐름이 열 구배를 따라 속도 성분을 갖고 고체-액체 계면 속도보다 클 때, 주상 수상돌기의 국지적 재용융은 용질이 풍부한 액체가 흐물흐물한 구역의 깊은 곳에서 액상선 등온선까지 이동함으로써 발생할 수 있습니다. . 55] 분리된 수상돌기는 대류에 의해 열린 액체로 운반될 수 있습니다. 풀이 과냉각 상태이기 때문에 이러한 파편은 고온 조건에서 충분히 오래 생존하여 길 잃은 입자의 핵 생성 사이트로 작용할 수 있습니다. 결과적으로 수상 돌기 조각화 과정은 활성 핵의 수를 효과적으로 증가시킬 수 있습니다.N0N0) 용융 풀 15 , 60 , 61 ] 에서 생성된 미세 구조에서 표류 입자의 면적을 증가시킵니다.

    그림  9 (a) 및 (b)에서 반동 압력은 용융 유체를 아래쪽으로 흐르게 하여 결과 흐름을 지배합니다. 유체 속도의 역방향 요소는 V = 400 및 800mm/s에 대해 각각 최대값 1.0 및 1.6m/s로 더 느려집니다 . 그림  9 (c)에서 레이저 속도가 더 증가함에 따라 증기 침하가 더 얕고 넓어지고 반동 압력이 더 고르게 분포되어 증기 침강에서 주변 영역으로 유체를 밀어냅니다. 역류는 최대값 3.5m/s로 더 빨라집니다. 용융 풀의 최대 너비에서 yz 단면  의 키홀 아래 평균 유체 속도는 그림에 표시된 경우에 대해 0.46, 0.45 및 1.44m/s입니다.9 (a), (b) 및 (c). 키홀 깊이의 변동은 각 경우의 최대 깊이와 최소 깊이의 차이로 정의되는 크기로 정량화됩니다. 240 범위의 강한 증기 내림 변동 μμm은 그림 9 (a)의 V = 400mm/s 경우에서  발견 되지만 이 변동은 그림  9 (c)에서 16의 범위로  크게 감소합니다.μμ미디엄. V = 400mm/s인 경우 의 유체장과 높은 변동 범위는 이전 키홀 동역학 시뮬레이션과 일치합니다. 34 ]

    따라서 V = 400mm/s 키홀 케이스의 무질서한 변동 흐름이 용융 풀 경계를 따라 응고된 주상 수상돌기에서 분리된 조각을 구동할 가능성이 있습니다. V = 1200mm/s의 경우 강한 역류 는 그림 3 에서 관찰되지 않았지만 동일한 효과를 가질 수 있습니다. . 덴드라이트 조각화에 대한 유체 유동장의 영향에 대한 이 경험적 설명은 용융 풀 경계 근처에 떠돌이 입자의 존재에 대한 그럴듯한 설명을 제공합니다. 분명히 하기 위해, 우리는 이 가설을 검증하기 위해 이 현상에 대한 직접적인 실험적 관찰을 하지 않았습니다. 이 작업에서 표유 입자 면적 분율을 계산할 때 단순화를 위해 핵 생성 모델링에 일정한 핵 생성 수 밀도가 적용되었습니다. 이는 그림  9 의 표류 입자 영역 비율 이 수지상정 조각화가 발생하는 경우 이러한 높은 유체 흐름 용융 풀에서 발생할 수 있는 것,  강화된 핵 생성 밀도를 반영하지 않는다는 것을 의미합니다.

    위의 이유로 핵 형성에 대한 수상 돌기 조각화의 영향을 아직 배제할 수 없습니다. 그러나 단편화 이론은 용접 문헌 [ 62 ] 에서 검증될 만큼 충분히 개발되지 않았 으므로 부차적인 중요성만 고려된다는 점에 유의해야 합니다. 1200mm/s를 초과하는 레이저 스캐닝 속도는 최소한의 표류 결정립 면적 분율을 가지고 있음에도 불구하고 분명한 볼링을 나타내기 때문에 단결정 수리 및 AM 처리에 적합하지 않습니다. 따라서 낮은 P 및 높은 V 에 의해 생성된 응고 전면 근처에서 키홀 변동이 최소화되고 유체 속도가 완만해진 용융 풀이 생성된다는 결론을 내릴 수 있습니다., 처리 창의 극한은 아니지만 흩어진 입자를 나타낼 가능성이 가장 적습니다.

    마지막으로 단일 레이저 트랙의 응고 거동을 조사하면 에피택셜 성장 동안 표류 입자 형성을 더 잘 이해할 수 있다는 점에 주목하는 것이 중요합니다. 우리의 현재 결과는 최적의 레이저 매개변수에 대한 일반적인 지침을 제공하여 최소 스트레이 그레인을 달성하고 단결정 구조를 유지합니다. 이 가이드라인은 250W 정도의 전력과 600~800mm/s의 스캔 속도로 최소 흩어진 입자에 적합한 공정 창을 제공합니다. 각 처리 매개변수를 신중하게 선택하면 과거에 스테인리스강에 대한 거의 단결정 미세 구조를 인쇄하는 데 성공했으며 이는 CMSX-4 AM 빌드에 대한 가능성을 보여줍니다. 63 ]신뢰성을 보장하기 위해 AM 수리 프로세스를 시작하기 전에 보다 엄격한 실험 테스트 및 시뮬레이션이 여전히 필요합니다. 둘 이상의 레이저 트랙 사이의 상호 작용도 고려해야 합니다. 또한 레이저, CMSX-4 분말 및 벌크 재료 간의 상호 작용이 중요하며, 수리 중에 여러 층의 CMSX-4 재료를 축적해야 하는 경우 다른 스캔 전략의 효과도 중요한 역할을 할 수 있습니다. 분말이 포함된 경우 Lopez-Galilea 등 의 연구에서 제안한 바와 같이 분말이 주로 완전히 녹지 않았을 때 추가 핵 생성 사이트를 도입하기 때문에 단순히 레이저 분말과 속도를 조작하여 흩어진 입자 형성을 완화하기 어려울 수 있습니다 . 22 ]결과적으로 CMSX-4 단결정을 수리하기 위한 레이저 AM의 가능성을 다루기 위해서는 기판 재료, 레이저 출력, 속도, 해치 간격 및 층 두께의 조합을 모두 고려해야 하며 향후 연구에서 다루어야 합니다. CFD 모델링은 2개 이상의 레이저 트랙 사이의 상호작용과 열장에 미치는 영향을 통합할 수 있으며, 이는 AM 빌드 시나리오 동안 핵 생성 조건으로 단일 비드 연구의 지식 격차를 해소할 것입니다.

    결론

    LPBF 제조의 특징적인 조건 하에서 CMSX-4 단결정 의 에피택셜(기둥형)  등축 응고 사이의 경쟁을 실험적 및 이론적으로 모두 조사했습니다. 이 연구는 고전적인 응고 개념을 도입하여 빠른 레이저 용융의 미세 구조 특징을 설명하고 응고 조건과 표유 결정 성향을 예측하기 위해 해석적 및 수치적 고충실도 CFD 열 모델 간의 비교를 설명했습니다. 본 연구로부터 다음과 같은 주요 결론을 도출할 수 있다.

    • 단일 레이저 트랙의 레이저 가공 조건은 용융 풀 형상, 레이저 흡수율, 유체 흐름 및 키홀 요동, 입자 구조 및 표류 입자 형성 민감성에 강한 영향을 미치는 것으로 밝혀졌습니다.
    • 레이저 용접을 위해 개발된 이론적인 표유 결정립 핵형성 분석이 레이저 용융 AM 조건으로 확장되었습니다. 분석 모델링 결과와 단일 레이저 트랙의 미세구조 특성화를 비교하면 예측이 전도 및 볼링 조건에서 실험적 관찰과 잘 일치하는 반면 키홀 조건에서는 예측이 약간 과소하다는 것을 알 수 있습니다. 이러한 불일치는 레이저 트랙의 대표성이 없는 섹션이나 유체 속도 필드의 변화로 인해 발생할 수 있습니다. CFD 모델에서 추출한 열장에 동일한 표유 입자 계산 파이프라인을 적용하면 연구된 모든 사례에서 과대평가가 발생하지만 분석 모델보다 연장된 용융 풀의 실험 데이터와 더 정확하게 일치합니다.
    • 이 연구에서 두 가지 표류 결정립 형성 메커니즘인 불균일 핵형성 및 수상돌기 조각화가 평가되었습니다. 우리의 결과는 불균일 핵형성이 용융 풀의 상단 중심선에서 새로운 결정립의 형성으로 이어지는 주요 메커니즘임을 시사합니다.지 /V티G/V티정권.
    • 용융 풀 경계 근처의 흩어진 입자는 깊은 키홀 모양의 용융 풀에서 독점적으로 관찰되며, 이는 강한 유체 흐름으로 인한 수상 돌기 조각화의 영향이 이러한 유형의 용융 풀에서 고려하기에 충분히 강력할 수 있음을 시사합니다.
    • 일반적으로 더 높은 레이저 스캐닝 속도와 더 낮은 전력 외에도 안정적인 키홀과 최소 유체 속도는 또한 흩어진 입자 형성을 완화하고 레이저 단일 트랙에서 에피택셜 성장을 보존합니다.

    References

    1. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006, pp.17–20.Book Google Scholar 
    2. A. Basak, R. Acharya, and S. Das: Metall. Mater. Trans. A, 2016, vol. 47A, pp. 3845–59.Article Google Scholar 
    3. J. Vitek: Acta Mater., 2005, vol. 53, pp. 53–67.Article CAS Google Scholar 
    4. R. Vilar and A. Almeida: J. Laser Appl., 2015, vol. 27, p. S17004.Article Google Scholar 
    5. T. Kalfhaus, M. Schneider, B. Ruttert, D. Sebold, T. Hammerschmidt, J. Frenzel, R. Drautz, W. Theisen, G. Eggeler, O. Guillon, and R. Vassen: Mater. Des., 2019, vol. 168, p. 107656.Article CAS Google Scholar 
    6. S.S. Babu, S.A. David, J.W. Park, and J.M. Vitek: Sci. Technol. Weld. Join., 2004, vol. 9, pp. 1–12.Article CAS Google Scholar 
    7. L. Felberbaum, K. Voisey, M. Gäumann, B. Viguier, and A. Mortensen: Mater. Sci. Eng. A, 2001, vol. 299, pp. 152–56.Article Google Scholar 
    8. S. Mokadem, C. Bezençon, J.M. Drezet, A. Jacot, J.D. Wagnière, and W. Kurz: TMS Annual Meeting, 2004, pp. 67–76.
    9. J.M. Vitek: ASM Proc. Int. Conf. Trends Weld. Res., vol. 2005, pp. 773–79.
    10. J.M. Vitek, S. Babu, and S. David: Process Optimization for Welding Single-Crystal Nickel-Bbased Superalloyshttps://technicalreports.ornl.gov/cppr/y2001/pres/120424.pdf
    11. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.Article CAS Google Scholar 
    12. M. Gäumann, R. Trivedi, and W. Kurz: Mater. Sci. Eng. A, 1997, vol. 226–228, pp. 763–69.Article Google Scholar 
    13. M. Gäumann, S. Henry, F. Cléton, J.D. Wagnière, and W. Kurz: Mater. Sci. Eng. A, 1999, vol. 271, pp. 232–41.Article Google Scholar 
    14. M. Gäumann, C. Bezençon, P. Canalis, and W. Kurz: Acta Mater., 2001, vol. 49, pp. 1051–62.Article Google Scholar 
    15. J.M. Vitek, S.A. David, and S.S. Babu: Welding and Weld Repair of Single Crystal Gas Turbine Alloyshttps://www.researchgate.net/profile/Stan-David/publication/238692931_WELDING_AND_WELD_REPAIR_OF_SINGLE_CRYSTAL_GAS_TURBINE_ALLOYS/links/00b4953204ab35bbad000000/WELDING-AND-WELD-REPAIR-OF-SINGLE-CRYSTAL-GAS-TURBINE-ALLOYS.pdf
    16. B. Kianian: Wohlers Report 2017: 3D Printing and Additive Manufacturing State of the Industry, Annual Worldwide Progress Report, Wohlers Associates, Inc., Fort Collins, 2017.Google Scholar 
    17. M. Ramsperger, L. Mújica Roncery, I. Lopez-Galilea, R.F. Singer, W. Theisen, and C. Körner: Adv. Eng. Mater., 2015, vol. 17, pp. 1486–93.Article CAS Google Scholar 
    18. A.B. Parsa, M. Ramsperger, A. Kostka, C. Somsen, C. Körner, and G. Eggeler: Metals, 2016, vol. 6, pp. 258-1–17.Article Google Scholar 
    19. C. Körner, M. Ramsperger, C. Meid, D. Bürger, P. Wollgramm, M. Bartsch, and G. Eggeler: Metall. Mater. Trans. A, 2018, vol. 49A, pp. 3781–92.Article Google Scholar 
    20. D. Bürger, A. Parsa, M. Ramsperger, C. Körner, and G. Eggeler: Mater. Sci. Eng. A, 2019, vol. 762, p. 138098,Article Google Scholar 
    21. J. Pistor and C. Körner: Sci. Rep., 2021, vol. 11, p. 24482.Article CAS Google Scholar 
    22. I. Lopez-Galilea, B. Ruttert, J. He, T. Hammerschmidt, R. Drautz, B. Gault, and W. Theisen: Addit. Manuf., 2019, vol. 30, p. 100874.CAS Google Scholar 
    23. N. Lu, Z. Lei, K. Hu, X. Yu, P. Li, J. Bi, S. Wu, and Y. Chen: Addit. Manuf., 2020, vol. 34, p. 101228.CAS Google Scholar 
    24. K. Chen, R. Huang, Y. Li, S. Lin, W. Zhu, N. Tamura, J. Li, Z.W. Shan, and E. Ma: Adv. Mater., 2020, vol. 32, pp. 1–8.Google Scholar 
    25. W.J. Sames, F.A. List, S. Pannala, R.R. Dehoff, and S.S. Babu: Int. Mater. Rev., 2016, vol. 61, pp. 315–60.Article Google Scholar 
    26. A. Basak, R. Acharya, and S. Das: Addit. Manuf., 2018, vol. 22, pp. 665–71.CAS Google Scholar 
    27. R. Jiang, A. Mostafaei, J. Pauza, C. Kantzos, and A.D. Rollett: Mater. Sci. Eng. A, 2019. https://doi.org/10.1016/J.MSEA.2019.03.103.Article Google Scholar 
    28. R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, and A.D. Rollett: Science, 2019, vol. 363, pp. 849–52.Article CAS Google Scholar 
    29. B. Fotovvati, S.F. Wayne, G. Lewis, and E. Asadi: Adv. Mater. Sci. Eng., 2018, vol. 2018, p. 4920718.Article Google Scholar 
    30. P.-J. Chiang, R. Jiang, R. Cunningham, N. Parab, C. Zhao, K. Fezzaa, T. Sun, and A.D. Rollett: in Advanced Real Time Imaging II, pp. 77–85.
    31. J. Ye, S.A. Khairallah, A.M. Rubenchik, M.F. Crumb, G. Guss, J. Belak, and M.J. Matthews: Adv. Eng. Mater., 2019, vol. 21, pp. 1–9.Article Google Scholar 
    32. C. Zhao, Q. Guo, X. Li, N. Parab, K. Fezzaa, W. Tan, L. Chen, and T. Sun: Phys. Rev. X, 2019, vol. 9, p. 021052.CAS Google Scholar 
    33. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King: Acta Mater., 2016, vol. 108, pp. 36–45.Article CAS Google Scholar 
    34. N. Kouraytem, X. Li, R. Cunningham, C. Zhao, N. Parab, T. Sun, A.D. Rollett, A.D. Spear, and W. Tan: Appl. Phys. Rev., 2019, vol. 11, p. 064054.Article CAS Google Scholar 
    35. T. DebRoy, H. Wei, J. Zuback, T. Mukherjee, J. Elmer, J. Milewski, A. Beese, A. Wilson-Heid, A. De, and W. Zhang: Prog. Mater. Sci., 2018, vol. 92, pp. 112–224.Article CAS Google Scholar 
    36. J.H. Cho and S.J. Na: J. Phys. D, 2006, vol. 39, pp. 5372–78.Article CAS Google Scholar 
    37. I. Yadroitsev, A. Gusarov, I. Yadroitsava, and I. Smurov: J. Mater. Process. Technol., 2010, vol. 210, pp. 1624–31.Article CAS Google Scholar 
    38. S. Ghosh, L. Ma, L.E. Levine, R.E. Ricker, M.R. Stoudt, J.C. Heigel, and J.E. Guyer: JOM, 2018, vol. 70, pp. 1011–16.Article CAS Google Scholar 
    39. Y. He, C. Montgomery, J. Beuth, and B. Webler: Mater. Des., 2019, vol. 183, p. 108126.Article CAS Google Scholar 
    40. D. Rosenthal: Weld. J., 1941, vol. 20, pp. 220–34.Google Scholar 
    41. M. Tang, P.C. Pistorius, and J.L. Beuth: Addit. Manuf., 2017, vol. 14, pp. 39–48.CAS Google Scholar 
    42. R.E. Aune, L. Battezzati, R. Brooks, I. Egry, H.J. Fecht, J.P. Garandet, M. Hayashi, K.C. Mills, A. Passerone, P.N. Quested, E. Ricci, F. Schmidt-Hohagen, S. Seetharaman, B. Vinet, and R.K. Wunderlich: Proc. Int.Symp. Superalloys Var. Deriv., 2005, pp. 467–76.
    43. B.C. Wilson, J.A. Hickman, and G.E. Fuchs: JOM, 2003, vol. 55, pp. 35–40.Article CAS Google Scholar 
    44. J.J. Valencia and P.N. Quested: ASM Handb., 2008, vol. 15, pp. 468–81.Google Scholar 
    45. H.L. Wei, J. Mazumder, and T. DebRoy: Sci. Rep., 2015, vol. 5, pp. 1–7.Google Scholar 
    46. N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J. Turner, N. Carlson, and S.S. Babu: Acta Mater., 2016, vol. 112, pp. 303–14.Article CAS Google Scholar 
    47. R. Lin, H. Wang, F. Lu, J. Solomon, and B.E. Carlson: Int. J. Heat Mass Transf., 2017, vol. 108, pp. 244–56.Article CAS Google Scholar 
    48. M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, and J.H. Hattel: Addit. Manuf., 2019, vol. 30, p. 100835.CAS Google Scholar 
    49. K. Higuchi, H.-J. Fecht, and R.K. Wunderlich: Adv. Eng. Mater., 2007, vol. 9, pp. 349–54.Article CAS Google Scholar 
    50. Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa, W. Everhart, T. Sun, and L. Chen: Addit. Manuf., 2019, vol. 28, pp. 600–09.Google Scholar 
    51. J. Trapp, A.M. Rubenchik, G. Guss, and M.J. Matthews: Appl. Mater. Today, 2017, vol. 9, pp. 341–49.Article Google Scholar 
    52. M. Schneider, L. Berthe, R. Fabbro, and M. Muller: J. Phys. D, 2008, vol. 41, p. 155502.Article Google Scholar 
    53. Z. Gan, O.L. Kafka, N. Parab, C. Zhao, L. Fang, O. Heinonen, T. Sun, and W.K. Liu: Nat. Commun., 2021, vol. 12, p. 2379.Article CAS Google Scholar 
    54. B.J. Simonds, E.J. Garboczi, T.A. Palmer, and P.A. Williams: Appl. Phys. Rev., 2020, vol. 13, p. 024057.Article CAS Google Scholar 
    55. J. Dantzig and M. Rappaz: Solidification, 2nd ed., EPFL Press, Lausanne, 2016, pp. 483–532.Google Scholar 
    56. W. Tiller, K. Jackson, J. Rutter, and B. Chalmers: Acta Metall., 1953, vol. 1, pp. 428–37.Article CAS Google Scholar 
    57. D. Zhang, A. Prasad, M.J. Bermingham, C.J. Todaro, M.J. Benoit, M.N. Patel, D. Qiu, D.H. StJohn, M. Qian, and M.A. Easton: Metall. Mater. Trans. A, 2020, vol. 51A, pp. 4341–59.Article Google Scholar 
    58. F. Yan, W. Xiong, and E.J. Faierson: Materials, 2017, vol. 10, p. 1260.Article Google Scholar 
    59. W. Tan and Y.C. Shin: Comput. Mater. Sci., 2015, vol. 98, pp. 446–58.Article CAS Google Scholar 
    60. A. Hellawell, S. Liu, and S.Z. Lu: JOM, 1997, vol. 49, pp. 18–20.Article CAS Google Scholar 
    61. H. Ji: China Foundry, 2019, vol. 16, pp. 262–66.Article Google Scholar 
    62. J.M. Vitek, S.A. David, and L.A. Boatner: Sci. Technol. Weld. Join., 1997, vol. 2, pp. 109–18.Article CAS Google Scholar 
    63. X. Wang, J.A. Muñiz-Lerma, O. Sanchez-Mata, S.E. Atabay, M.A. Shandiz, and M. Brochu: Prog. Addit. Manuf., 2020, vol. 5, pp. 41–49.Article Google Scholar 

    Download references

    Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation

    Understanding dry-out mechanism in rod bundles of boiling water reactor

    끓는 물 원자로 봉 다발의 건조 메커니즘 이해

    Liril D.SilviaDinesh K.ChandrakercSumanaGhoshaArup KDasb
    aDepartment of Chemical Engineering, Indian Institute of Technology, Roorkee, India
    bDepartment of Mechanical Engineering, Indian Institute of Technology, Roorkee, India
    cReactor Engineering Division, Bhabha Atomic Research Centre, Mumbai, India

    Abstract

    Present work reports numerical understanding of interfacial dynamics during co-flow of vapor and liquid phases of water inside a typical Boiling Water Reactor (BWR), consisting of a nuclear fuel rod bundle assembly of 7 pins in a circular array. Two representative spacings between rods in a circular array are used to carry out the simulation. In literature, flow boiling in a nuclear reactor is dealt with mechanistic models or averaged equations. Hence, in the present study using the Volume of Fluid (VOF) based multiphase model, a detailed numerical understanding of breaking and making in interfaces during flow boiling in BWR is targeted. Our work will portray near realistic vapor bubble and liquid flow dynamics in rod bundle scenario. Constant wall heat flux for fuel rod and uniform velocity of the liquid at the inlet patch is applied as a boundary condition. The saturation properties of water are taken at 30 bar pressure. Flow boiling stages involving bubble nucleation, growth, merging, local dry-out, rewetting with liquid patches, and complete dry-out are illustrated. The dry-out phenomenon with no liquid presence is numerically observed with phase fraction contours at various axial cut-sections. The quantification of the liquid phase fraction at different axial planes is plotted over time, emphasizing the progressive dry-out mechanism. A comparison of liquid-vapor distribution for inner and outer rods reveals that the inner rod’s dry-out occurs sooner than that of the outer rod. The heat transfer coefficient to identify the heat dissipation capacity of each case is also reported.

    현재 작업은 원형 배열에 있는 7개의 핀으로 구성된 핵연료봉 다발 어셈블리로 구성된 일반적인 끓는 물 원자로(BWR) 내부의 물의 증기 및 액체상의 동시 흐름 동안 계면 역학에 대한 수치적 이해를 보고합니다.

    원형 배열의 막대 사이에 두 개의 대표적인 간격이 시뮬레이션을 수행하는 데 사용됩니다. 문헌에서 원자로의 유동 비등은 기계론적 모델 또는 평균 방정식으로 처리됩니다.

    따라서 VOF(Volume of Fluid) 기반 다상 모델을 사용하는 본 연구에서는 BWR에서 유동 비등 동안 계면의 파괴 및 생성에 대한 자세한 수치적 이해를 목표로 합니다.

    우리의 작업은 막대 번들 시나리오에서 거의 사실적인 증기 기포 및 액체 흐름 역학을 묘사합니다. 연료봉에 대한 일정한 벽 열유속과 입구 패치에서 액체의 균일한 속도가 경계 조건으로 적용됩니다. 물의 포화 특성은 30bar 압력에서 취합니다.

    기포 핵 생성, 성장, 병합, 국소 건조, 액체 패치로 재습윤 및 완전한 건조를 포함하는 유동 비등 단계가 설명됩니다. 액체가 존재하지 않는 건조 현상은 다양한 축 단면에서 위상 분율 윤곽으로 수치적으로 관찰됩니다.

    다른 축 평면에서 액상 분율의 정량화는 점진적인 건조 메커니즘을 강조하면서 시간이 지남에 따라 표시됩니다. 내부 막대와 외부 막대의 액-증기 분포를 비교하면 내부 막대의 건조가 외부 막대보다 더 빨리 발생함을 알 수 있습니다. 각 경우의 방열 용량을 식별하기 위한 열 전달 계수도 보고됩니다.

    Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation
    Fig. 1. A typical Boiling Water Reactor (BWR) and selected segment of study for simulation
    Fig. 2. (a-c) dimensions and mesh configuration for G = 6 mm; (d-f) dimensions and mesh configuration for G = 0.6 mm
    Fig. 2. (a-c) dimensions and mesh configuration for G = 6 mm; (d-f) dimensions and mesh configuration for G = 0.6 mm
    Fig. 3. Simulating the effect of spacer (a) Spacer configuration around rod bundle (b) Mesh structure in spacer zone (c) Distribution of vapor bubbles in a rod bundle with spacer (d) Liquid phase fraction comparison for geometry with and without spacer (e,f,g) Wall temperature comparison for geometry with and without spacer; WS: With Spacer, WOS: Without Spacer; Temperature in the y-axis is in (f) and (g) is same as (e).
    Fig. 3. Simulating the effect of spacer (a) Spacer configuration around rod bundle (b) Mesh structure in spacer zone (c) Distribution of vapor bubbles in a rod bundle with spacer (d) Liquid phase fraction comparison for geometry with and without spacer (e,f,g) Wall temperature comparison for geometry with and without spacer; WS: With Spacer, WOS: Without Spacer; Temperature in the y-axis is in (f) and (g) is same as (e).
    Fig. 4. Validation of the present numerical model with crossflow boiling over a heated cylindrical rod [40]
    Fig. 4. Validation of the present numerical model with crossflow boiling over a heated cylindrical rod [40]
    Fig. 5. Grid-Independent study in terms of vapor volume in 1/4th of computational domain
    Fig. 5. Grid-Independent study in terms of vapor volume in 1/4th of computational domain
    Fig. 6. Interface contour for G = 6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; they are showing nucleation, growth, merging, and pseudo-steady-state condition.
    Fig. 6. Interface contour for G = 6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; they are showing nucleation, growth, merging, and pseudo-steady-state condition.
    Fig. 7. Interface contours for G = 0.6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; It shows dry-out at pseudo-steady-state near the exit
    Fig. 7. Interface contours for G = 0.6 mm; ul = 1.2 m/s; q˙ w = 396 kW/m2; It shows dry-out at pseudo-steady-state near the exit
    Fig. 8. Vapor-liquid distribution across various distant cross-sections (Black color indicates liquid; Gray color indicates vapor); Magnification factor: 1 × (for a and b), 1.5 × (for c and d)
    Fig. 8. Vapor-liquid distribution across various distant cross-sections (Black color indicates liquid; Gray color indicates vapor); Magnification factor: 1 × (for a and b), 1.5 × (for c and d)
    Fig. 21. Two-phase flow mixture velocity (u¯z); for G = 6 mm, r = 5 means location at inner heated wall and r = 25 means location at outer adiabatic wall; for G = 0.66 mm, r = 5 means location at inner heated wall and r = 16.6 mm means location at outer adiabatic wall.
    Fig. 21. Two-phase flow mixture velocity (u¯z); for G = 6 mm, r = 5 means location at inner heated wall and r = 25 means location at outer adiabatic wall; for G = 0.66 mm, r = 5 means location at inner heated wall and r = 16.6 mm means location at outer adiabatic wall.

    References

    [1] J. Würtz, An Experimental and Theoretical Investigation of Annular Steam-Water Flow in Tubes and Annuli at 30 to 90 Bar, Risø National Laboratory,
    Roskilde, 1978.
    [2] W. Tian, A. Myint, Z. Li, S. Qiu, G.H. Su, D. Jia, Experimental study on dryout point in vertical narrow annulus under low flow conditions, in: International Conference on Nuclear Engineering, 4689, 2004, pp. 643–648. Jan
    1Vol.
    [3] K.M. Becker, C.H. Ling, S. Hedberg, G. Strand, An experimental investigation of
    post dryout heat transfer, R. Inst. Technol. (1983).
    [4] K.M. Becker, A Burnout Correlation for Flow of Boiling Water in Vertical Rod
    Bundles, AB Atomenergi, 1967.
    [5] Jr J.R. Barbosa, G.F. Hewitt, S.M. Richardson, High-speed visualisation of nucleate boiling in vertical annular flow, Int. J. Heat Mass Transf. 46 (26) (2003)
    5153–5160 1, doi:10.1016/S0017-9310(03)00255-2.
    [6] Y. Mizutani, A. Tomiyama, S. Hosokawa, A. Sou, Y. Kudo, K. Mishima, Twophase flow patterns in a four by four rod bundle, J. Nucl. Sci. Technol. 44 (6)
    (2007) 894–901 1, doi:10.1080/18811248.2007.9711327.
    [7] S.S. Paranjape, Two-Phase Flow Interfacial Structures in a Rod Bundle Geometry, Purdue University, 2009.
    [8] D. Lavicka, J. Polansky, Model of the cooling of a nuclear reactor fuel rod, Multiph. Sci. Technol. 25 (2-4) (2013), doi:10.1615/MultScienTechn.v25.i2-4.90.
    [9] M. Thurgood, J. Kelly, T. Guidotti, R. Kohrt, K. Crowell, Tech. rep., Pacific Northwest National Laboratory, 1983.
    [10] S. Sugawara, Droplet deposition and entrainment modeling based on the
    three-fluid model, Nucl. Eng. Des. 122 (1-3) (1990) 67–84, doi:10.1016/
    0029-5493(90)90197-6.
    [11] C. Adamsson, J.M. Le Corre, Modeling and validation of a mechanistic tool
    (MEFISTO) for the prediction of critical power in BWR fuel assemblies, Nucl.
    Eng. Des. 241 (8) (2011) 2843–2858, doi:10.1016/j.nucengdes.2011.01.033.
    [12] S. Talebi, H. Kazeminejad, A mathematical approach to predict dryout in a rod
    bundle, Nucl. Eng. Des. 249 (2012) 348–356, doi:10.1016/j.nucengdes.2012.04.
    016.
    [13] H. Anglart, O. Nylund, N. Kurul, M.Z. Podowski, CFD prediction of flow and
    phase distribution in fuel assemblies with spacers, Nucl. Eng. Des. 177 (1-3)
    (1997) 215–228, doi:10.1016/S0029-5493(97)00195-7.
    [14] H. Li, H. Anglart, CFD model of diabatic annular two-phase flow using the
    Eulerian–Lagrangian approach, Ann. Nucl. Energy 77 (2015) 415–424, doi:10.
    1016/j.anucene.2014.12.002.
    [15] G. Sorokin, A. Sorokin, Experimental and numerical investigation of liquid metal boiling in fuel subassemblies under natural circulation conditions, Prog. Nucl. Energy 47 (1-4) (2005) 656–663, doi:10.1016/j.pnucene.2005.
    05.069.
    [16] W.D. Pointer, A. Tentner, T. Sofu, D. Weber, S. Lo, A. Splawski, Eulerian
    two-phase computational fluid dynamics for boiling water reactor core analysis, Joint International Topical Meeting on Mathematics and Computation and
    Supercomputing in Nuclear Applications (M and C± SNA), 2007.
    [17] K. Podila, Y. Rao, CFD modelling of supercritical water flow and heat transfer
    in a 2 × 2 fuel rod bundle, Nucl. Eng. Des. 301 (2016) 279–289, doi:10.1016/j.
    nucengdes.2016.03.019.
    [18] H. Pothukuchi, S. Kelm, B.S. Patnaik, B.V. Prasad, H.J. Allelein, Numerical investigation of subcooled flow boiling in an annulus under the influence of eccentricity, Appl. Therm. Eng. 129 (2018) 1604–1617, doi:10.1016/j.applthermaleng.
    2017.10.105.
    [19] H. Pothukuchi, S. Kelm, B.S. Patnaik, B.V. Prasad, H.J. Allelein, CFD modeling of
    critical heat flux in flow boiling: validation and assessment of closure models,
    Appl. Therm. Eng. 150 (2019) 651–665, doi:10.1016/j.applthermaleng.2019.01.
    030.
    [20] W. Fan, H. Li, H. Anglart, A study of rewetting and conjugate heat transfer
    influence on dryout and post-dryout phenomena with a multi-domain coupled CFD approach, Int. J. Heat Mass Transf. 163 (2020) 120503, doi:10.1016/j.
    ijheatmasstransfer.2020.120503.
    [21] R. Zhang, T. Cong, G. Su, J. Wang, S. Qiu, Investigation on the critical heat
    flux in typical 5 by 5 rod bundle at conditions prototypical of PWR based
    on CFD methodology, Appl. Therm. Eng. 179 (2020) 115582, doi:10.1016/j.
    applthermaleng.2020.115582.

    [22] L.D. Silvi, A. Saha, D.K. Chandraker, S. Ghosh, A.K. Das, Numerical analysis of
    pre-dryout sequences through the route of interfacial evolution in annular gasliquid two-phase flow with phase change, Chem. Eng. Sci. 212 (2020) 115356,
    doi:10.1016/j.ces.2019.115356.
    [23] L.D. Silvi, D.K. Chandraker, S. Ghosh, A.K. Das, On-route to dryout through sequential interfacial dynamics in annular flow boiling around temperature and
    heat flux controlled heater rod, Chem. Eng. Sci. 229 (2021) 116014, doi:10.1016/
    j.ces.2020.116014.
    [24] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface
    tension, J. Comput. Phys. 100 (2) (1992) 335–354, doi:10.1016/0021-9991(92)
    90240-Y.
    [25] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging
    and fragmentation in multiphase flows with SURFER, J. Comput. Phys. 113 (1)
    (1994) 134–147, doi:10.1006/jcph.1994.1123.
    [26] I. Tanasawa, Advances in condensation heat transfer, Ad. Heat Transf. 21 (1991)
    55–139 Vol, doi:10.1016/S0065-2717(08)70334-4.
    [27] V.H. Del Valle, D.B. Kenning, Subcooled flow boiling at high heat flux, Int.
    J. Heat Mass Transf. 28 (10) (1985) 1907–1920, doi:10.1016/0017-9310(85)
    90213-3.
    [28] B. Matzner, G.M. Latter, Reduced pressure drop space for boiling water reactor
    fuel bundles, US Patent US5375154A, (1993)
    [29] C. Unal, O. Badr, K. Tuzla, J.C. Chen, S. Neti, Pressure drop at rod-bundle spacers
    in the post-CHF dispersed flow regime, Int. J. Multiphase Flow 20 (3) (1994)
    515–522, doi:10.1016/0301-9322(94)90025-6.
    [30] D.K. Chandraker, A.K. Nayak, V.P. Krishnan, Effect of spacer on the dryout of
    BWR fuel rod assemblies, Nucl. Eng. Des. 294 (2015), doi:10.1016/j.nucengdes.
    2015.09.004.
    [31] S.K Verma, S.L. Sinha, D.K. Chandraker, A comprehensive review of the spacer
    effect on performance of nuclear fuel bundle using computational fluid dynamics methodology, Mater. Today: Proc. 4 (2017) 100030–110034, doi:10.
    1016/j.matpr.2017.06.315.
    [32] S.K Verma, S.L. Sinha, D.K. Chandraker, Experimental investigation on the effect
    of space on the turbulent mixing in vertical pressure tube-type boiling water
    reactor, Nucl. Sci. Eng. 190 (2) (2018), doi:10.1080/00295639.2017.1413874.
    [33] T. Zhang, Y. Liu, Numerical investigation of flow and heat transfer characteristics of subcooled boiling in a single rod channel with/without spacer grid,
    Case Stud. Therm. Eng. 20 (2020) 100644, doi:10.1016/j.csite.2020.100644.
    [34] K.M. Becker, G. Hernborg, M. Bode, O. Eriksson, Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters, AB Atomenergi
    (1965).
    [35] A. Saha, A.K. Das, Numerical study of boiling around wires and influence of
    active or passive neighbours on vapour film dynamics, Int. J. Heat Mass Transf.
    130 (2019) 440–454, doi:10.1016/j.ijheatmasstransfer.2018.10.117.
    [36] M. Reimann, U. Grigull, Heat transfer with free convection and film boiling in
    the critical area of water and carbon dioxide, Heat Mass Transf. 8 (1975) 229–
    239, doi:10.1007/BF01002151.
    [37] M.S. Plesset, S.A. Zwick, The growth of vapor bubbles in superheated liquids, J.
    Appl. Phys. 25 (4) (1954) 493–500, doi:10.1063/1.1721668.
    [38] N. Samkhaniani, M.R. Ansari, Numerical simulation of superheated vapor bubble rising in stagnant liquid, Heat Mass Transf. 53 (9) (2017) 2885–2899,
    doi:10.1007/S00231-017-2031-6.
    [39] N. Samkhaniani, M.R. Ansari, The evaluation of the diffuse interface method
    for phase change simulations using OpenFOAM, Heat Transf. Asian Res. 46 (8)
    (2017) 1173–1203, doi:10.1002/htj.21268.
    [40] P. Goel, A.K. Nayak, M.K. Das, J.B. Joshi, Bubble departure characteristics in a
    horizontal tube bundle under cross flow conditions, Int. J. Multiph. Flow 100
    (2018) 143–154, doi:10.1016/j.ijmultiphaseflow.2017.12.013.
    [41] K.M. Becker, J. Engstorm, B.Scholin Nylund, B. Sodequist, Analysis of the dryout
    incident in the Oskarshamn 2 boiling water reactor, Int. J. Multiph. Flow 16 (6)
    (1990) 959–974, doi:10.1016/0301-9322(90)90101-N.
    [42] H.G. Weller, A New Approach to VOF-Based Interface Capturing Methods
    for Incompressible and Compressible Flow, A New Approach to VOF-Based
    Interface Capturing Methods for Incompressible and Compressible Flow, 4,
    OpenCFD Ltd., 2008 Report TR/HGW.
    [43] G. Boeing, Visual analysis of nonlinear dynamical systems: chaos, fractals, selfsimilarity and the limits of prediction, Systems 4 (4) (2016) 37, doi:10.3390/
    systems4040037.

    Fig. 2. Schematic indication of the separate parts comprising the rotary kiln model, together with the energy fluxes from Eq. (1).

    화염 모델링, 열 전달 및 클링커 화학을 포함한 시멘트 가마에 대한 CFD 예측

    E Mastorakos Massias 1C.D Tsakiroglou D.A Goussis V.N Burganos A.C Payatakes 2

    Abstract

    실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 방사선에 대한 Monte Carlo 방법, 가마 벽의 에너지 방정식에 대한 유한 체적 코드 및 클링커에 대한 화학 반응을 포함한 에너지 보존 방정식 및 종에 대한 새로운 코드. 기상의 온도 장, 벽으로의 복사 열유속, 가마 및 클링커 온도에 대한 예측 간의 반복적인 절차는 내부 벽 온도의 분포를 명시적으로 예측하는 데 사용됩니다. 여기에는 열 흐름 계산이 포함됩니다. 수갑. 가스와 가마 벽 사이의 주요 열 전달 모드는 복사에 의한 것이며 내화물을 통해 환경으로 손실되는 열은 입력 열의 약 10%이고 추가로 40%는 장입 가열 및 클링커 형성. 예측은 실제 규모의 시멘트 가마에서 경험과 제한된 측정을 기반으로 한 경향과 일치합니다.

    키워드

    산업용 CFD, 로타리 가마, 클링커 형성, 복사 열전달, Industrial CFD, Rotary kilns, Clinker formation, Radiative heat transfer

    1 . 소개

    시멘트 산업은 에너지의 주요 소비자이며, 미국에서 산업 사용자의 총 화석 연료 소비량의 약 1.4%를 차지하며 [1] 일반적인 비에너지 사용량은 제조된 클링커 1kg당 약 3.2MJ [2] 입니다. CaCO 3  →  CaO  +  CO 2 반응이 일어나기 때문입니다., 클링커 형성의 첫 번째 단계는 높은 흡열성입니다. 시멘트 가마에서 에너지를 절약하기 위한 현재의 경향은 일반적으로 길이가 약 100m이고 직경이 약 5m인 회전 실린더인 가마를 떠나는 배기 가스로부터 에너지를 보다 효율적으로 회수하는 것과 저열량 연료의 사용에 중점을 둡니다. 값. 2-5초 정도의 화염 체류 시간을 허용하고 2200K의 높은 온도에 도달하는 회전 가마의 특성은 또한 시멘트 가마를 유기 폐기물 및 용제에 대한 상업용 소각로에 대한 경쟁력 있는 대안으로 만듭니다 [3]. 클링커의 형성이 이러한 2차 액체 연료의 사용으로 인한 화염의 변화로부터 어떤 식으로든 영향을 받지 않도록 하고, 대기 중으로 방출되는 오염 물질의 양에 대한 현재 및 미래 제한을 준수할 수 있도록, 화염 구조의 세부 사항과 화염에서 고체 충전물로의 열 전달을 더 잘 이해할 필요가 있습니다.

    최근 시멘트 가마 4 , 5 , 6 , 7 에서 유동장 및 석탄 연소의 이론적 모델링복사 열 전달을 포함한 전산 유체 역학(CFD) 코드를 사용하여 달성되었습니다. 이러한 결과는 시멘트 가마에 대한 최초의 결과였으며 화염 길이, 산소 소비 등과 관련하여 실험적으로 관찰된 경향을 재현했기 때문에 그러한 코드가 수용 가능한 정확도로 대규모 산업용 용광로에 사용될 수 있음을 보여주었습니다. 킬른과 클링커는 포함하지 않았고, 벽온도의 경계조건은 가스온도와 용액영역의 열유속에 영향을 미치므로 계산에 필요한 경계조건은 예측하지 않고 실험적 측정에 기초하였다. 기상에 대한 CFD 솔루션은 앞으로의 주요 단계이지만 회전 가마를 포괄적으로 모델링하는 데만으로는 충분하지 않습니다.

    내화물의 열 전달과 전하에 대한 세부 사항은 다양한 저자 8 , 9 , 10 , 11에 의해 조사되었습니다 . 충전물(보통 잘 혼합된 것으로 가정)은 노출된 표면에 직접 복사되는 열 외에도 전도에 의해 가마 벽에서 가열됩니다. 가장 완전한 이론적 노력에서, 가마 벽 (내화물)에 대한 3 차원 열전도 방정식을 해결하고, 두 개 또는 세 개의 인접하는 영역으로 한정 한 좌표 축 방향에서 어느 방사선 방사선 열전달 영역 모델과 결합 [ 10] 또는 자세히 해결 [11]. 그러나 클링커 형성 중에 일어나는 화학 반응은 고려되지 않았고 기체 상이 균일한 온도로 고정되어 필요한 수준의 정확도로 처리되지 않았습니다.

    최종적으로 연소에 의해 방출되는 에너지(일부)를 받는 고체 전하가 화학 반응을 거쳐 최종 제품인 클링커를 형성합니다. 이것들은 [12]에 설명된 주요 특징에 대한 단순화된 모델과 함께 시멘트 화학 문헌에서 광범위한 조사의 주제였습니다 . 그 작업에서, 고체 온도 및 조성의 축 방향 전개를 설명하는 odes가 공식화되고 해결되었지만, 전하에 대한 열유속 및 따라서 클링커 형성 속도를 결정하는 가스 및 벽 온도는 1차원으로 근사되었습니다. 자세한 화염 계산이 없는 모델.

    화염, 벽 및 장입물에 대한 위의 이론적 모델 중 어느 것도 회전식 가마 작동을 위한 진정한 예측 도구로 충분하지 않다는 것이 분명합니다. 국부 가스 온도(CFD 계산 결과 중 하나)는 벽 온도에 크게 의존합니다. 클링커 형성은 에너지를 흡수하므로 지역 가스 및 벽 온도에 따라 달라지며 둘 다 화염에 의존합니다. 벽은 화염에서 클링커로의 순 열 전달에서 “중개자” 역할을 하며, 내화재 두께에 따라 환경으로 피할 수 없는 열 손실이 발생합니다. 이러한 상호 의존성은 가마의 거동에 중요하며 개별 프로세스를 개별적으로 계산하는 데 중점을 두었기 때문에 문헌에서 발견된 수학적 모델로는 다루기 어렵습니다.

    본 논문에서 우리는 위에 설명된 유형의 세 가지 개별 모델을 결합하여 수행되는 회전식 시멘트 가마에서 발생하는 대부분의 공정에 대한 포괄적인 모듈식 모델을 제시합니다. 우리 작업은 4 , 5 , 6 , 7 에서와 같이 석탄 연소를 위한 다차원 CFD 코드로 기체 상태를 처리합니다 . 10 , 11 에서와 같이 가마 벽의 3차원 열전도 방정식을 풉니다 . 9 , 12 와 유사한 모델로 잘 혼합된 전하 온도 및 조성을 해결합니다.. 3개의 모듈(화염, 벽, 전하)은 내화물에 입사하는 열유속의 축 분포에 대해 수렴이 달성될 때까지 반복적으로 계산됩니다. 충전 온도 및 구성. 따라서 이전 작업에 비해 현재의 주요 이점은 완전성에 있습니다. 이는 가스-킬른-클링커 시스템의 다양한 부분에서 에너지 흐름의 정량화를 통해 킬른 작동에 대한 더 나은 이해를 가능하게 하고 여기에서 사용된 방법을 건조 및 소각과 같은 다른 회전 킬른 응용 분야에 적용할 수 있게 합니다.

    이 문서의 특정 목적은 회전식 시멘트 가마에 대한 포괄적인 모델을 제시하고 화염에서 클링커로의 에너지 플럭스와 가마에서 열 손실을 정량화하는 것입니다. 이 문서의 나머지 부분은 다음과 같이 구성됩니다. 2장 에서는 다양한 모델과 해법을 제시하고 3장 에서는 그 결과를 제시하고 논의한다 . 여기에는 본격적인 회전식 시멘트 가마의 제한된 측정값과의 비교가 포함됩니다. 이 논문은 가장 중요한 결론의 요약으로 끝납니다.

    2 . 모델 공식화

    2.1 . 개요

    Fig. 1 은 시멘트 로터리 킬른의 단면을 보여준다. 가마의 회전은 전하의 움직임을 유도하여 후자를 대략적으로 잘 혼합되도록 합니다 [10] , 여기에서 채택할 가정입니다. 우리는 이 코팅을 클링커와 유사한 물리적 특성의 고체 재료로 모델링하여 가마 내화물에 부착된 클링커의 존재를 허용할 것입니다. 우리는 이 층의 두께가 가마를 따라 균일하다고 가정합니다. 이것은 아마도 지나치게 단순화한 것일 수 있지만 관련 데이터를 사용할 수 없습니다. 모델 설명을 진행하기 전에 그림 2 에 개략적으로 표시된 회전식 가마의 다양한 에너지 흐름을 이해하는 것이 중요합니다 .

    석탄 연소에 의해 방출되는 에너지(단위 시간당)( 석탄 )는 배기 가스(Δ 가스 )와 함께 가마 밖으로 흘러 가마 벽에 직접 복사( rad ) 및 대류( conv )됩니다. 공급 및 배기 덕트( rad,1  + rad,2 ) 에 대한 축 방향의 복사에 의해 작은 부분이 손실됩니다 . 전하 가마 시스템은 복사( rad ) 및 대류( conv )에 의해 가스로부터 에너지(Δ cl )를 흡수 하고 주변으로 열을 잃습니다( Q 손실 ). 전체 에너지 균형에서 개별 항의 계산, 즉(1a)큐석탄=ΔH가스-Q라드-Q전환-Q일, 1-Q일, 2,(1b)큐라드+Q전환=ΔH클+Q손실여기에서 다음 섹션에 설명된 대로 가스, 가마 및 클링커에 대한 이산화 에너지를 국부적으로 해결함으로써 수행됩니다.

    2.2 . CFD 코드

    가스 운동량, 종 농도 및 에너지의 Favre 평균 방정식은 표준 k – ε 모델을 사용하여 방사 모듈(RAD-3D)과 함께 상업적으로 이용 가능한 축대칭 CFD 코드(FLOW-3D)에 의해 해결됩니다. [13] . 기하학이 실제로 3차원이고 벽 온도의 각도 분포가 존재하지만 합리적인 시간과 현재 워크스테이션에서 완전한 3으로 솔루션을 얻을 수 있도록 기체상을 축대칭으로 취급합니다. -D를 요구하는 해상도로 계산하려면 슈퍼컴퓨터에 의존해야 합니다. FLOW-3D에서 사용되는 다양한 하위 모델의 일부 기능과 벽 경계 조건에 대한 특수 처리는 다음과 같습니다.

    2.2.1 . 석탄 연소

    Rossin-Rammler 크기 분포(45μm 평균 직경, 1.3 지수 [6] )를 따르는 석탄 입자 는 CPU 시간을 줄이기 위해 솔루션 영역(즉, 확률적 구성 요소 없이)에서 결정론적으로 추적되었지만 분산을 과소 평가하는 단점이 있습니다 . 14] . 입자는 2-반응 모델에 따라 휘발되도록 허용되었고 휘발성 연소는 무한히 빠른 것으로 간주되었습니다. 석탄 연소에 대한 설명의 세부 사항은 FLOW-3D에서 석탄 휘발 및 열분해의 “표준” 상수 집합이 합리적인 결과를 제공하고 Ref. [5] .

    2.2.2 . 복사와 대류

    가스의 복사 강도는 RAD-3D 모듈을 사용하여 80,000개의 입자로 Monte-Carlo 방법으로 계산되었습니다. 가마는 반경 방향으로 7개, 축 방향으로 19개(크기가 0.1  ×  1.0 m와 0.2  ×  5.0 m 사이)로 불균일한 구역으로 나뉘었으며 각 구역 에서 방사선 강도가 균일하다고 가정했습니다. 방사선 모듈의 출력은 내부적으로 FLOW-3D에 대한 유체 계산에 인터페이스되고 외부적으로 벽 및 클링커에 대한 코드에 인터페이스되었습니다( 섹션 2.3 섹션 2.4 참조). 방사선 패키지의 이산화된 구역은 CFD 그리드의 셀보다 훨씬 커야 하므로 구역에 온도 평균이 형성될 수 있는 많은 셀이 포함될 수 있다는 점을 이해하는 것이 중요합니다. 상대적으로 조잡한 복사 구역의 분해능과 Monte-Carlo 방법의 통계적 특성은 구역의 복사 열유속이 더 미세한 구역화 및 더 많은 입자로 몇 번의 실행에 의해 결정된 바와 같이 최대 약 10%까지 부정확할 수 있음을 의미합니다. 또한 경계면에 입사하는 열유속은 영역 크기보다 미세한 분해능으로 결정할 수 없으므로 복사 열유속은 벽에 인접한 19개 영역 각각의 중심에서만 계산됩니다. 0.15m -1 의 흡수 계수는 Ref.[11] . 엄밀히 말하면, 흡수 계수는 국부적 가스 조성과 온도의 함수이므로 균일하지 않아야 합니다. 그러나 가스 조성은 가마의 일부만 차지하는 화염 내에서만 변 하므로( 3절 참조 ) 균일한 흡수 계수를 가정하는 것이 합리적입니다. 또한, 현재 버전의 소프트웨어는 FLOW-3D의 반복 프로세스 동안 이 요소의 자동 재조정을 허용하지 않습니다. 여기서 로컬 가스 특성이 계산되므로 일정하고 균일한 흡수 계수가 필요합니다.

    최종적으로, 벽에서 대류 열전달이 플로우 3D 패키지에서 표준 출력 표준 “벽 기능”제형에 혼입 난류 경계층에 대한 식에 기초하고,의 속도 경계 조건과 유사한 K – ε 모델. FLOW-3D 및 RAD-3D에서 입력으로 사용하고 출력으로 계산된 다양한 양은 그림 3에 개략적으로 표시 됩니다.

    2.2.3 . 그리드

    반경 방향 47개, 축 방향 155개 노드를 갖는 불균일한 격자를 사용하였으며 격자 독립성 연구를 수행한 결과 충분하다고 판단하였다. 유사한 크기의 그리드도 Refs에서 적절한 것으로 밝혀졌습니다. 4 , 5 , 6 , 7 . 매우 높은 축 방향 및 소용돌이 속도로 인해 석탄 버너 유정에 가까운 지역을 해결하기 위해 특별한 주의를 기울였습니다. HP 715/100MHz 워크스테이션에서 이 그리드의 일반적인 CPU 시간은 10시간이었습니다.

    2.2.4 . 경계 조건

    벽 온도에 대한 경계 조건은 기체상 및 복사 솔버 모두에 필요하다는 것을 인식하는 것이 중요합니다. 아래에서는 4 , 5 , 6 , 7 을 규정하기 보다는 축대칭 그리드에 대한 이 온도 분포를 예측하는 대략적인 방법을 설명합니다 .

    내벽 온도 w ( in , x , ϕ ) 의 각도 분포 가 알려져 있다고 가정합니다 . 그런 다음 전체 3차원 문제를 “동등한” 축대칭 문제로 줄이기 위해 가상의 내벽 온도 RAD ( x )는(2)2πε에티4라드(x) = ε클∫0ㄷ티4클(엑스)디ϕ + ε에∫ㄷ2π티4에(아르 자형~에, x, ϕ)디ϕ”효과적인” 경계 조건으로 사용할 수 있습니다. RAD ( x )는 방위각으로 평균화된 “복사 가중” 온도입니다. 필요한 경계 조건으로 이 온도를 사용하는 것은 복사가 열 전달을 지배한다는 기대에 의해 동기가 부여됩니다(후반부 확인, 섹션 3.4 ). 따라서 전체 3차원 문제와 이 “유효한” 축대칭 문제에서 가스에서 가마로의 전체 에너지 흐름은 거의 동일할 것으로 예상됩니다.  의 사용 (2) 축대칭 코드로 기체상 및 복사장을 계산할 수 있으므로 엔지니어링 워크스테이션을 사용하여 문제를 다루기 쉽습니다.

    고려되는 가마의 규모와 온도에서 가스는 광학적으로 두꺼운 것으로 간주될 수 있습니다. 솔루션(나중에 제시됨)은 평균 경로 길이(즉, “광자”의 모든 에너지가 흡수되기 전의 평균 길이)가 약 3.2m임을 보여주며, 이는 가마 내경 4.1m보다 작습니다. 이것은 내벽에 입사하는 복사 플럭스가 국부적 벽과 가스 온도에 강하게 의존하고 더 먼 축 또는 방위각 위치에서 벽의 온도에 약하게만 의존함을 의미합니다. 이것은 기체상에 사용된 축대칭 근사에 대한 신뢰를 줍니다. 그것은 또한 Refs의 “구역 방법”을 의미합니다. 8 , 9 , 10표면에 입사하는 방사선이 1-2 구역 길이보다 더 먼 축 위치와 무관한 것으로 간주되는 경우에는 충분했을 것입니다.

    2.3 . 가마 온도

    내부 소성로 표면 온도 w ( in , x , ϕ )는 Eq. 에서 필요합니다 (2) 및 가마 벽 에너지 방정식의 솔루션 결과의 일부입니다. 각속도 ω로 회전하는 좌표계 에서 후자는 [10] 이 됩니다 .(3)ω∂(ϱ에씨피티에)∂ϕ=1아르 자형∂∂아르 자형에게에아르 자형∂티에∂아르 자형+1아르 자형2∂∂ϕ에게에∂티에∂ϕ+∂∂엑스에게에∂티에∂엑스경계 조건에 따라(3a)r=R~에,Θ<ϕ⩽2π:에게∂티에∂아르 자형=q라드(x)+q전환(엑스),(3b)r=R~에, 0 <ϕ⩽Θ:에게∂티에∂아르 자형=qw–cl(x, ϕ) = hw–cl티클(x)-T에(아르 자형~에, x, ϕ),(3c)r=R밖, 0 <ϕ⩽2π:.케이∂티에∂아르 자형=h쉿티쉿-T∞+ ε쉿티4쉿-T4∞.

    전도도, 밀도 및 비열용량에 대한 값은 실제 가마에 사용되는 내화물 재료에 대한 제조업체 정보에서 가져옵니다 [15] . 외부 쉘 온도 sh = w ( out , x , ϕ )는 x 및 ϕ 에 따라 달라질 수 있습니다 .

    위 방정식에 대한 몇 가지 의견이 있습니다. 에서는 식. (3a) 에서 열유속의 방위각 의존성이 제거되었습니다. 이전에 언급했듯이 흐름은 광학적으로 두꺼운 것으로 간주됩니다. 즉, 화염이 너무 방사되고 너무 넓기 때문에 벽면 요소가 화염을 가로질러 반대쪽 벽을 “보지” 않습니다. 따라서 rad ( x , ϕ ) 의 계산은 다른 각도 위치로부터의 복사를 포함할 필요 없이 가스 ( r , x ) 및 로컬 w ( in , x , ϕ )를 기반으로 할 수 있습니다. 여기부터 qrad ( x )는 Eq. 의 방위각 평균 온도를 기반으로 하는 축대칭 RAD-3D 솔루션에서 가져옵니다 (2) , 결과적인 rad ( x )는 어떤 의미에서 방위각으로 평균된 열유속입니다. 식 따라서 (3a) 는 우리가 이 열유속을 모든 ϕ 에 등분포한다는 것을 의미합니다 . Eq 에서 rad 의 각도 변화를 무시한다는 점에 유의하십시오 . (3a) 는 Refs. [10] 또는 [11] 이 우선되어야 합니다.

    소성로와 장입물 사이의 열전달 계수 w-cl 은 소성로의 에너지 흐름과 온도를 정확하게 예측하는 데 중요하지만 잘 알려져 있지 않습니다. 500 W / m의 전형적인 값  K는 여기에 제시된 결과 사용되고있다 [8] . 계산된 w ( r , x , ϕ ) 및 RAD ( x) 이 계수의 선택에 따라 달라지지만 예측은 질적으로 변하지 않습니다. 껍질에서 대기로의 열 전달은 복사와 별도로 강제 및 자연 대류를 통해 발생합니다. 자연 대류에 대한 열전달 계수는 Ref. [11] , 현재 조건에서 약 5 W/m 2 K의 일반적인 값 을 사용합니다. 그러나 쉘에 불어오는 외부 팬은 과열을 피하기 위해 산업에서 종종 사용되며 이러한 효과는 총 sh =30 W/m 2 K 를 사용하여 여기에서 모델링 되었습니다. 방사율에는 다음 값이 사용되었습니다. ε w = ε cl = 0.9 및 ε sh = 0.8.

    식 (3) 은 가마의 방사형 기울기가 훨씬 더 가파르기 때문에 방위각 및 축 전도를 무시한 후 명시적 유한 체적 방법으로 해결되었습니다. 방사형으로 50개 노드와 축 방향으로 19개 노드가 있는 균일하지 않은 그리드가 사용되었으며 회전으로 인한 화염에 주기적으로 노출되는 표면으로 인해 발생하는 빠른 온도 변화를 따르기 위해 내부 표면에서 적절한 방사형 분해능이 사용되었습니다. 동일한 이유로 사용 된 작은 단계(Δ ϕ = π /100)는 가마의 큰 열 관성과 함께 가마 벽 온도가 수렴되도록 하기 위해 2시간 정도의 CPU 시간이 필요했습니다.

    2.4 . 수갑

    가마에 대한 모델의 마지막 부분은 클링커 온도 및 조성 보존 방정식에 관한 것으로, 축 방향 기울기만 고려하고 전도는 무시합니다.(4)씨피V클디(ϱ클티클)디엑스=−엘wclㄷㅏ클∫0ㄷ큐w–cl(x, ϕ)디ϕ +엘gclㅏ클큐라드(x)+q전환(엑스)−∑나Nsp아르 자형나시간0, 나는에프+씨피티,(5)V클디(ϱ클와이나)디엑스=r나,(6)V클디ϱ클디엑스=−r무엇2,여기서 cl 은 속도 cl 로 흐르는 전하가 덮는 단면적 이며 둘 다 일정하다고 가정하고 gcl =2 in sin( Θ /2) 전하로 덮인 섹터의 현( 그림 1 ) , WCL = Θ 에서는 , SP 화학 종의 수와 r에 난을 (kg / m의 형성 속도 순 3 종의) I를 . 전하의 밀도는 Eq를 감소시킵니다 (6) CO 2 에 대한 질량 손실로 인한하소하는 동안 초기 값은 총 질량 유량이 ϱ cl cl cl 과 같도록 선택되었습니다 . 참고 ρ (CL)이 있다 하지 전하 느슨하게 포장 된 입자로 이루어지는 것으로 생각 될 수있는 바와 같이, 충전 재료 밀도하지만 벌크 밀도. 우리는 또한 전하의 실제 입상 흐름 패턴을 조사하는 것보다 적은 것은 모델의 신뢰성에 크게 추가되지 않는 임시 설명 [10] 이라고 믿기 때문에 전하의 전도를 무시 합니다. 전하는 CaCO 3 , CaO, SiO 2 , Al 2 O 3 , Fe 로 구성된 것으로 가정합니다.2 O 3 , C2S, C3S, C3A 및 C4AF로, 마지막 4종은 클링커화 중에 형성된 복합 염에 대해 시멘트 화학자가 사용하는 특수 표기법으로 표시됩니다. 다음과 같은 화학 반응을 가정합니다 [12] .

    (나)CaCO3→높은+무엇2k = 108특급(−175728/RT)
    (Ⅱ)높은+2SiO2→C2Sk = 107특급(−240000/RT)
    (Ⅲ)높은+C2S→C3Sk = 109특급(−420000/RT)
    (IV)3높은+로2그만큼3→C3Ak = 108특급(−310000/RT)
    (V)4높은+로2그만큼3+철2그만큼3→Q4AFk = 108특급(−330000/RT)

    상기 시행 착오에 의해 선택되는 아 레니 우스 식에 사용되는 사전 지수 인자 및 활성화 온도는 카코에 대한 활성화 에너지를 제외하고, 가마의 출구에서의 전하의 예상 조성물을 얻었다 (3) 에서 촬영 한 분해 참조 [16] . 우리는 이러한 반응이 임시 모델임을 강조합니다. 실제로 고체상의 화학반응은 다양한 종의 결정들 사이의 계면에서 일어나며 확산이 제한적 이지만 [17] , 클링커 화학에 대한 상세한 처리는 본 연구의 범위를 벗어난다.

    클링커 형성의 마지막 단계로 간주되는 반응 (III)은 고온에서 액상이 존재할 때만 발생합니다. 클링커의 용융은 액체 분획 fus 에 대해서도 해결함으로써 모델링되었습니다 .(7)엘소란V클디(ϱ클와이소란)디엑스=RHS의식(4)만약 T의 CL이 융해 온도와 같거나보다 커진다 T의 FUS 와 T의 FUS 의 = 1560 K. 상한 Y의 FUS = 0.3 수행 하였다 [17] 상기 식을. (7) 무시되었다.

    상미분 방정식, , Gear 방식과 통합되었습니다. 가마 온도에 대한 유한 체적 코드( 2.3절 )와 클링커에 대한 코드는 반복적으로 해결되었으며( 그림 4 ), 이는 벽 클링커 열유속 w–cl ( x , ϕ ).

    2.5 . 최종 커플링

    전체 문제(가스, 가마, 장입)는 반복 방식으로 해결되었습니다. RAD 의 균일한 분포에서 시작 하여 기체상은 rad ( x ) 및 conv ( x ) 의 축 분포를 제공하도록 해결되었습니다 . 이것들은 다음에서 사용되었습니다., 그 솔루션의 새로운 추정 결과 RAD ( X 통해) 식. (2) . 그런 다음 FLOW3D-RAD3D 실행이 6차 다항식 피팅의 계수 형태로 프로그램에 도입된 새로운 경계 조건으로 반복되었습니다. 의 연속 추정치 사이에 0.5 미만의 밑에 이완 인자 RAD ( X)는 벽 온도에 대한 복사 열유속의 민감도가 크기 때문에 필요한 것으로 밝혀졌습니다. 일반적으로 HP 715 워크스테이션에서 10일 정도의 총 CPU 시간에 해당하는 내벽 온도(연속 반복이 40K 이상 변하지 않을 때 정의됨)의 수렴을 달성하기 위해 이러한 단계 사이에 약 10번의 반복이 필요했습니다. . 그림 5 는 균일한 값(1600K)에서 시작하여 최종 프로파일까지 RAD ( x ) 의 수렴 이력을 보여줍니다 .

    2.6 . 가마 조건

    사용된 일부 매개변수에 대한 작동 조건 및 값은 표 1 표 2 표 3에 나와 있습니다. 이 값은 시멘트 회전 가마의 전형입니다.

    표 1 . 공기 및 석탄 입자 입구 조건

    수송소용돌이중고등 학년석탄
    m (kg/s)2.2531.7592.91045.9304.0
     (m/s)77.136.576.112.7336.5
    V (m/s)−20.7063.900
    W (m/s)00112.800
     (케이)3183833181273383

    표 2 . 클링커 조성(질량 분율)

    밀가루가마 입구가마 출구
    m (kg/s)50.37439.81532.775
     (케이)11001785
    CACO 30.79470.402180
    높은00.338010.0229
    그런가 20.14340.181430
    알 2 O 30.03490.04420
    철 2 O 30.02700.034160
    C2S000.1808
    C3S000.5981
    C3A000.0731
    Q4AF000.1242
    소성 인자00.61.0

    소성 계수 카코의 비율을 3 의 CaO로 변환 된 FARINE있다.

    표 3 . 재료 속성 및 기타 매개변수

    ω (래드/초)0.5
    V의 CL (m / s)0.035
     (K)300
    sh (W/m 2 K)30
    w–cl (W/m 2 K)500
    ε w , ε cl0.9
    ε 0.8
    C의 P (클링커) (킬로 / kg K)1.5
    ϱ cl (kg/m 3 )1200
    fus (kJ/kg)418.4
    p (벽) (kJ/kg K)1.5
    ϱ w (kg/m 3 )1600–3000
    k는 w (W / m K)0.6–3.0
    석탄 열 방출(kJ/kg)25475

    3 . 결과 및 토론

    이 섹션에서는 먼저 화염 구조에 대한 정보와 함께 예측된 공기역학적 패턴의 세부사항을 제시합니다. 소성로 내화물의 온도 분포와 클링커 조성의 변화를 설명합니다. 이 섹션은 가마의 전체 에너지 균형과 가능한 모델 개선에 대한 논의로 끝납니다.

    3.1 . 화염 구조

    그림 6 은 명확성을 위해 방사상 좌표가 과장된 온도의 등고선 플롯을 보여줍니다. 석탄은 주입 지점에서 약 1m 지점에서 약간 축에서 벗어나 점화되며 최대 화염 온도(약 2400K)는 경험에 따라 약 40m 하류에서 도달합니다 [15] . 완전한 입자 소진에 대한 가장 긴 시간은 버너에서 45m에 해당하는 약 1.4초였습니다. 방사형 온도 프로파일( 그림 7 ) 은 온도의 상당한 불균일성이 있음을 보여주지만 출구 프로파일이 본질적으로 평평해짐에 따라 하류에서 감소합니다. 또한 벽에 인접한 가스가 더 차가운 열 경계층이 존재한다는 것이 분명합니다.석탄 노즐에서 최대 30m까지 벽보다 이것은 이 영역에서 대류에 의한 열 전달이 음(즉, 기체 쪽으로)임을 의미하며, 3.4절 에서 더 자세히 논의된 지점 입니다.

    버너 출구 바로 하류에 길이가 약 1 버너 직경인 재순환 구역이 있는데( 그림 8 ), 여기에서 화염이 더 하류에서 발화하기 때문에 소용돌이 안정화 화염 [7] 에서와 같이 화염 안정화에 기여하지 않습니다 . 그러나 액체 연료를 사용할 때는 중요할 수 있으므로 버너에 가까운 그리드의 세부 사항을 강조해야 합니다. 버너에서 처음 몇 미터는 매우 높은 전단력과 높은 난류 에너지 생산을 포함하며 이것이 그리드 미세 조정을 강조하는 또 다른 이유입니다. 휘발성 물질 연소 영역( x =10m, r =1m) 에서 k 및 ε 의 일반적인 예측 값 은 24.3 및 142m 2 /s입니다.3 , 각각. 대규모 난류 시간은 171ms이고 Kolmogorov 시간 규모는 1.1ms입니다. 휘발성 물질의 연소는 0.1ms(일반적인 탄화수소 연료) 정도의 시간 규모에서 발생하며, 이는 가마의 소규모 난류 시간보다 10배 더 짧습니다. 따라서 이 흐름에서 연소에 대한 유한 속도 동역학을 포함할 필요는 없으며 “혼합 연소” 근사가 합리적입니다.

    3.2 . 가마 온도 분포

    중심선에서 계산된 가스 온도, 온도 RAD ( x ) 및 클링커 온도는 그림 9 에서 비교됩니다 . 최고 가스 온도는 25~40m 사이에 위치하며 내화 내부 표면 온도도 최고점입니다. 클링커는 놀랍게도 가마에서 나오기 전 마지막 몇 미터 동안 벽보다 뜨겁 습니다. 복사에 의해 내화물에 입사하는 열유속은 대류에 의한 것보다 1-2 배 더 높으며( 그림 10 ) 가마의 처음 10m에 대한 총 열 전달 은 가스를  합니다. 이 관찰의 중요성은 나중에 논의됩니다.

    대류로 인한 에너지 플럭스는 화염에서 가마까지의 전체 에너지 플럭스의 매우 작은 부분인 것으로 밝혀졌습니다( 그림 10 ). 여기서 예측된 대류의 작은 기여는 Ref. [11] . 그 작업에서 대류 열 전달 계산에 사용된 가스 온도는 가마 단면의 평균이었고 따라서 축 근처에 있는 화염의 기여로 인해 벽 부근의 온도보다 훨씬 높았습니다. . 여기에서 우리는 온도와 가스 속도 및 난류 운동 에너지의 국부적 값을 기반으로 하는 보다 정확한 열전달 계수를 사용했기 때문에 보다 정확한 결과를 기대합니다.

    예측된 벽 온도는 모든 방향에서 불균일합니다. Fig. 11 은 가마가 회전함에 따라 화염에 노출되었을 때 벽이 가스에 의해 연속적으로 가열되고 클링커에 열을 공급하여 냉각되는 것을 보여준다. 이것은 약 100K의 일반적인 각도 온도 변화를 갖는 대부분의 가마 길이에 해당됩니다. 대조적으로 버너에 가까우면 벽 은 (0 < ϕ < π /2) 동안 클링커에서 열을 얻고 다음으로 열을  습니다. 노출될 때의 가스( π /2 < ϕ < 2 π ). 벽과 클링커 온도가 같으면서 방위각 변화가 없는 경우가 발생할 수 있습니다( 그림 11 ,        x = 17.5m). 이 온도 변화가 작은 것으로 간주될 수 있지만 벽에서 클링커까지의 열유속을 계산하는 위치에 있으려면 전체 3차원 내벽 온도 분포를 계산해야 합니다(0  < ϕ 범위에서 발생 < π /2).   

    그림 12 는 ϕ에 독립적인 외부(쉘) 온도와 함께 고체의 큰 비열로 인해 각도 방향의 변화 영역이 벽으로 약 1cm만 확장됨을 보여줍니다( 그림 12b) .. 벽 온도 방사 분포는 가스 온도, 입사 방사선 및 내화 재료의 특성이 변하기 때문에 축 방향 거리에 따라 달라집니다. 정확한 예측을 위해서는 내화물에 부착된 클링커 코팅의 두께에 대한 정확한 지식이 필요합니다. 여기에서 우리는 이 코팅을 클링커와 유사한 물성을 가진 균일한 두께의 재료로 취급했습니다. 그러나 이 코팅층의 실제 물리적 특성과 두께 분포에 관한 실험 데이터를 사용하여 예측의 신뢰성이 향상될 것입니다.

    마지막으로, 그림 13 은 외부 쉘 온도가 화염 영역에서 최고조에 달하고 대략적으로 실험 경향을 따른다는 것을 보여줍니다 [15] . 외부 가마 외피는 다양한 강철 두께, 방사율(외피 착색으로 인한) 및 열 전달 계수(송풍기 간격으로 인한)를 갖고 가마는 가변 내화 두께(에 의한 침식으로 인해)를 갖기 때문에 정확한 비교는 의미가 없습니다. 클링커), 여기에 사용된 가정과 반대입니다. 전체 규모 가마는 또한 차등 코팅 및 내화 침식으로 인한 최대 ±100K의 쉘 온도 각도 변동을 보여줍니다 [15] . 따라서 우리는 그림 13 의 일치 가 실제 가마의 복잡성을 고려할 때 예상할 수 있는 만큼 우수 하다고 믿습니다 .

    이 섹션에 제시된 예측은 가마 내부의 열 전달 경로에 대한 다음 그림을 뒷받침합니다. 대부분의 가마 길이에서 장입물은 화염으로부터의 복사와 벽으로부터의 열 전도에 의해 가열되고 있습니다. 장입물이 내화물보다 더 차갑기 때문입니다. 가마가 회전함에 따라 내화물은 화염에 노출될 때 열을 얻고 이를 클링커에 공급합니다( 그림 11 ). 벽의 이 “재생” 작용은 Refs. 9 , 10 및 현재 결과에서 재현되었습니다. 그러나 버너 근처에서 반대 에너지 흐름이 발생합니다( 그림 11 , 작은 x). 여기의 가스는 아직 충분히 뜨겁지 않아 내화물이나 장입물에 에너지를 공급하지 않습니다. 이 영역에서 벽은 다가오는 전하에 의해 열을 얻으므로 고체가 없을 때보다 더 뜨겁게 유지됩니다. 벽과 전하가 대류와 복사에 의해 가스에 열을 공급합니다. 우리는 이것을 “음의 재생” 작용으로 식별할 수 있으며 가마의 더 높은 온도 영역( x  >  15m) 에서 클링커에 의해 흡수된 에너지에 의해 유지됩니다 . 전반적으로 클링커는 x  >  15 m 에서 열을 흡수 하고 0  < x < 15 m 에서 일부를 가스로 되돌려 줍니다.   

    이 상호 작용은 간단하지 않으며 쉽게 예상할 수 없습니다. 이는 예를 들어 고체를 액체 연료로 대체하여 화염을 수정하면 열유속 분포를 변경하여 최종 클링커 온도에 중대한 영향을 미칠 수 있음을 의미합니다. 현재의 포괄적인 모델이 제공하는 세부 사항은 가마에서 이러한 변화를 평가하는 데 도움이 될 것입니다.

    3.3 . 클링커 온도 및 조성

    클링커 온도( 그림 9 )는 가장 높은 화염 온도에 도달하는 축 방향 위치에서 거의 최고조에 달하며 클링커는 약 1780K에서 킬른에 존재하며 이는 시멘트 킬른에서 실험 측정값에 가까운 값입니다 [15] . 초기 및 최종 클링커 조성은 표 2 에 나와 있으며 실제 가마에서 작동 값에 가깝습니다 [15] . 다양한 클링커 성분의 축방향 분포( 그림 14 )는 완전한 하소를 위해 고체 유입구에서 약 25m, C2S, C3A 및 C4AF 생성을 위해 추가로 10m가 소요됨을 보여줍니다. 첫 번째 액체상은 x 에서 발견됩니다.=50m이고 액화는 경험과 일치하는 예측인 매우 직후에 완료됩니다 [17] . 클링커화 반응(R-III)은 모델에서 액체가 나타날 때 시작되는 것으로 가정되었으며, 그림 14 에서 클링커화에는 나머지 길이의 거의 전체가 완료되어야 한다는 것이 분명 합니다. 예측은 전체적으로 시멘트 가마 운영의 경험과 일치하며 여기에 사용된 화학적 및 물리적 매개변수가 현실적인 값을 가지고 있음을 의미합니다.

    3.4 . 글로벌 에너지 균형

    전지구적 에너지 균형은 기체상(FLOW-3D 및 RAD-3D에 의한)과 소성로 장입 시스템에 대한 솔루션에서 쉽게 계산할 수 있으며 표 4 에 나와 있습니다. CFD 코드는 방사 모듈과 함께 에너지를 약 2%까지 절약합니다. 작은 것으로 간주되는 이 오류는 주로 RAD-3D의 영역 이산화와 Monte-Carlo 계산의 유한한 입자 수로 인해 발생하는 오류에 기인하며 CPU 시간을 희생하여 개선할 수 있습니다. 소성로-클링커 계산의 정확도는 더 나쁩니다. 소성로-클링커 시스템에 입력되는 에너지의 약 10% 오류( rad  + conv )입니다. 이는 수렴된 솔루션이 식 (3) , 그리고 보다 정확한 암시적 솔버에 의해 개선될 수 있습니다.

    표 4 . CFD 그리드 및 가마-클링커 조합에 대한 글로벌 에너지 균형

    가스(MW)
    라드 , 1−2.47
    라드 , 2−2.72
    큐 라드−57.12
    전환0.04
    석탄101.2
    Δ 가스41.25
    균형2.32
    가마 클링커
    큐 라드57.12
    전환−0.04
    손실−10.45
    Δ H의 CL40.99
    균형5.64

    에너지 흐름의 정의는 그림 2 를 참조하십시오 .

    시멘트 회전식 가마의 에너지 사용에 관한 몇 가지 흥미로운 결론은 표 4 의 결과를 통해 얻을 수 있습니다 . 연소에 의해 방출되는 에너지의 약 40%는 전하 가열 및 클링커 형성에 필요하고 약 10%는 내화물을 통해 대기로 손실됩니다. 나머지의 대부분은 본질적으로 배기 가스와 함께 소성로 밖으로 흐릅니다. 이 중 일부는 소성로 외부의 예비 하소기 및 사이클론에서 회수됩니다. 내부 가마 벽과 장입 온도를 자세히 다루는 여기에 제시된 포괄적인 모델에 의존하지 않고는 국지적 가스 온도를 정확하게 예측하고 이에 따라 향후 연구에서 오염 물질 형성을 예측하는 것이 불가능하다는 것이 분명합니다.

    3.5 . 논의

    여기에 제시된 회전식 시멘트 가마 작동에 대한 포괄적인 모델의 결과는 합리적이며 실험적으로 관찰된 경향을 재현합니다. 이전 모델링 작업에 비해 이 작업의 주요 이점은 가마에서 발생하는 대부분의 물리적 프로세스를 포함한다는 점입니다. 특히, 가스 온도와 클링커로의 열유속 및 이에 따른 클링커 형성을 결정하는 데 가장 중요한 양인 내벽 온도는 실험 데이터를 사용하여 규정된 것이 아니라 예측되었습니다. 이 특정 기능은 현재 모델을 진정한 예측형으로 만듭니다.

    우리는 전체 3차원 문제를 공기역학에 대한 “동등한” 축대칭 문제로 줄이는 방법을 포함했습니다( 식 (2) ). 이를 통해 현재 워크스테이션에서 솔루션을 얻을 수 있습니다. 모델의 모듈식 특성, 즉 공기역학, 복사, 가마 및 장입에 대한 별도의 코드는 해당 모듈만 수정하면 다른 회전 가마 응용 프로그램(예: 소각 및 건조)에도 사용할 수 있음을 의미합니다. 예를 들어, 고형 폐기물의 소각은 현재 코드로 모델링할 수 있지만 적절한 화학.

    실험 데이터와의 상세한 비교는 이용 가능한 측정이 거의 없고 현지 시멘트 회사에서 제공한 경험적 데이터로 제한되어 매우 어렵습니다 [15] . 비교는 앞서 지적한 바와 같이 출구 클링커 조성과 온도가 산업적 경험( 표 2 ) 이내 이고, 배기 가스 조성은 공장 굴뚝에서 측정된 값에 가깝고(“가짜 공기” 희석을 허용한 후), 가마 외피 온도는 측정 범위 내에 있습니다( 그림 13 ). 이 동의는 모델이 프로세스의 정확한 표현임을 시사합니다.

    더 높은 정확도의 예측을 달성하려면 모델의 다양한 부분에서 개선이 필요합니다. 내화물의 정확한 두께(즉, 내화물과 부착된 클링커)를 설정해야 합니다. 이는 가마 벽을 통해 주변으로 열 손실이 발생하여 외부 쉘 온도에 영향을 미치기 때문입니다. 새 내화물이 있는 가마에서 쉘 온도 측정과 자세한 비교가 이루어져야 합니다(불균일한 코팅 두께가 방지되도록). 벽 재료의 물리적 특성(열용량, 밀도, 전도도)의 적절한 값을 사용해야 합니다. 가장 큰 불확실성은 클링커 코팅의 가정된 특성에 관한 것입니다. 내벽 표면의 방사율과 가스의 흡수 계수를 더 자세히 조사해야 합니다. 가마에 입사하는 복사 열유속에 영향을 미치므로 벽 온도에 영향을 줄 수 있습니다. 클링커의 온도는 사용된 비열 용량에 따라 달라지므로 정확한 평가에 각별한 주의가 필요합니다. 화염의 국지적 온도와 종 구성에 대한 지식은 CFD 코드를 검증하는 데 매우 유용할 것이지만 그러한 적대적인 환경에서 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다. 그러한 적대적인 환경에서의 측정은 분명히 달성하기 매우 어렵습니다. 마지막으로 클링커 화학 및 전하 이동은 개선할 수 있는 영역입니다.

    이러한 모든 잠재적 개선과 모델과 관련된 불확실성에도 불구하고 가마의 모든 에너지 경로가 적절한 세부 사항으로 모델링되었기 때문에 전체 동작은 최소한 질적으로 정확합니다. 클링커 출구 구성, 쉘 온도 및 배기 가스 구성과 같은 중요한 양은 허용 가능한 정확도로 예측됩니다. 이 모델은 버너, 연료 유형, 품질 및 수량, 예비 하소 수준( 표 2 ) 또는 고형물 유량 등의 변경과 같은 많은 상황에서 산업계에 매우 유용할 것으로 예상됩니다 . 소성로 운영자는 최종 클링커 구성이 여전히 허용 가능하고 현재의 포괄적인 모델이 이 방향에 도움이 될 수 있는지 확인해야 합니다.

    4 . 결론

    실제 작동 조건에서 석탄 연소 회전 시멘트 가마의 클링커 형성은 석탄 화염과 가마 사이의 열 교환, 가마와 역류 고체 사이의 열 교환, 고형물을 최종 제품(클링커)으로 변환합니다. 방사선에 대한 Monte-Carlo 방법을 포함하는 축대칭 CFD 코드(상용 패키지 FLOW-3D)가 기상에 사용되었습니다. 가마 벽의 온도는 유한 체적 열전도 코드로 계산되었으며 클링커에 대한 종 및 에너지 보존 방정식도 공식화 및 해결되었습니다. 기체 온도 필드에 대한 예측 사이의 반복적인 절차, 벽에 대한 복사 열 유속, 가마 및 클링커 온도는 실험에서 이러한 정보를 사용한 이전 모델링 노력과 달리 내벽 온도 분포를 명시적으로 계산하는 데 사용되었습니다. 접선 좌표에 대한 통합은 CFD 코드에 필요한 경계 조건으로 사용되는 “유효” 내벽 온도의 축 분포를 초래했습니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다. CFD 코드에 필요한 경계 조건으로 사용됩니다. 이 절차를 통해 클링커로의 열 흐름 계산이 가능하고 축대칭 CFD 코드로 3차원 문제를 대략적으로 처리할 수 있습니다.

    결과는 복사가 가스와 가마 벽 사이의 대부분의 열 전달을 설명하는 반면 내화물을 통한 환경으로의 열 손실은 입력 열의 약 10%를 설명한다는 것을 보여줍니다. 화학 반응과 충전물의 가열은 연소 에너지의 약 40%를 흡수합니다. 따라서 이러한 사항을 반드시 고려해야 합니다. 예측은 실제 규모의 시멘트 가마에서 얻은 경험과 측정값을 기반으로 한 경향과 일치합니다.

    감사의 말

    이 작업은 과학 및 기술을 위한 그리스 사무국 프로젝트 EPET-II/649의 자금 지원을 받았습니다. Mr.P에게 진심으로 감사드립니다. 시멘트 가마에 관한 지침 및 데이터는 그리스 TITAN SA의 Panagiotopoulos에게 문의하십시오.

    References
    1 S.R. Turns, An Introduction to Combustion, Concepts and Applications, McGraw-Hill, New York, 1996
    Google Scholar
    2 V. Johansen, T.V. Kouznetsova, Clinker formation and new processes, Presented at the Ninth International Congress on the Chemistry of Cement, India, 1992; also RAMBOLL Bulletin No. 42, 1993
    Google Scholar
    3 Basel Convention, UNEP Document No. 93-7758, 1993
    Google Scholar
    4 N.C Markatos
    Mathematical modelling of single and two-phase flow problems in the process industries
    Revue de l’Institut Français du Pétrole, 48 (1993), p. 631
    View PDFCrossRefView Record in ScopusGoogle Scholar
    5 T. Avgeropoulos, J.P. Glekas, C. Papadopoulos, Numerical simulation of the combustion aerodynamics inside a rotary cement kiln, in: Pilavachi (Ed.), Energy Efficiency in Process Technology, Elsevier, London, 1993, p. 767
    Google Scholar
    6 F.C. Lockwood, B. Shen, T. Lowes, Numerical study of petroleum coke fired cement kiln flames, Presented at the Third International Conference on Combustion Technologies for a Clean Environment, Lisbon, 1995
    Google Scholar
    7 F.C. Lockwood, B. Shen, Performance predictions of pulverised-coal flames of power station furnace and cement kiln types, Twenty-Fifth Symposium International on Combustion, The Combustion Institute, 1994 p. 503
    Google Scholar
    8 P.V Barr, J.K Brimacombe, A.P Watkinson
    A heat-transfer model for the rotary kiln: Part II, development of the cross-section model
    Metallurgical Transactions B, 20B (1989), p. 403
    View Record in ScopusGoogle Scholar
    9 V Frisch, R Jeschar
    Possibilities for optimizing the burning process in rotary cement kilns
    Zement-Kalk-Gips, 36 (1983), p. 549
    View Record in ScopusGoogle Scholar
    10 A.A Boateng, P.V Barr
    A thermal model for the rotary kiln including heat transfer within the bed
    Int. J. Heat Mass Transfer, 39 (1996), p. 2131
    ArticleDownload PDFView Record in ScopusGoogle Scholar
    11 M.G. Carvahlo, T. Farias, A. Martius, A three-dimensional modelling of the radiative heat transfer in a cement kiln, in: Carvahlo et al. (Eds.), Combustion Technologies for a Clean Environment, Gordon and Breach, London, 1995, p. 146
    Google Scholar
    12 H.A Spang
    A dynamic model of a cement kiln
    Automatica, 8 (1972), p. 309
    ArticleDownload PDFView Record in ScopusGoogle Scholar
    13 CFDS, FLOW-3D Users Manual, AEA Harwell, UK
    Google Scholar
    14 E Mastorakos, J.J McGuirk, A.M.K.P Taylor
    The origin of turbulence acquired by heavy particles in a round, turbulent jet
    Part. Part. Syst. Charact., 7 (1990), p. 203
    View PDFCrossRefView Record in ScopusGoogle Scholar
    15 P. Panagiotopoulos, TITAN S.A. Cement Company, Personal communication, 1996
    Google Scholar
    16 M.S Murthy, B.R Harish, K.S Rajanandam, K.Y Ajoy Pavan Kumar
    Investigation on the kinetics of thermal decomposition of calcium carbonate
    Chem. Eng. Sci., 49 (1996), p. 2198
    Google Scholar
    17 V. Johansen, Cement production and chemistry, Presented at the Symposium on Cement Manufacturing and Chemistry, Anaheim, November 1989; also RAMBOLL Bulletin No. 41, 1993
    Google Scholar
    1 Also at Department of Mechanical Engineering, University of Patras, Greece.

    2 Also at Department of Chemical Engineering, University of Patras, Greece.

    Heat and Mass Transfer in a Cryogenic Tank in Case of Active-Pressurization

    능동 가압의 경우 극저온 탱크의 열 및 물질 전달

    Heat and Mass Transfer in a Cryogenic Tank in Case of Active-Pressurization

    하이라이트

    헤닝 슈플러 옌스 게르스트만DLR 독일 항공 우주 센터, 우주 시스템 연구소, 28359 Bremen, Germany

    상변화 및 공액 열전달을 포함하는 압축성 2상 솔버 개발.

    분석 솔루션으로 솔버를 성공적으로 검증.

    극저온 탱크의 압력 및 온도 변화에 대한 정확한 시뮬레이션.

    자유 표면에서의 물질 전달 분석.

    Abstract

    압력 요구 사항을 예측하는 것은 극저온 추진 시스템의 주요 과제 중 하나입니다. 이러한 맥락에서 증발 및 응축 현상을 고려한 탱크 여압을 시뮬레이션하기 위한 수치 모델을 개발하여 적용하였습니다. 

    새로운 솔버는 PISO(splitting of operator) 알고리즘이 있는 압력 암시적 방법을 기반으로 하는 OpenFOAM의 약한 압축성 다상 솔버와 기울기 기반 위상 변화 모델을 결합합니다. 날카로운 인터페이스를 유지하기 위해 인터페이스에 인접한 셀에 질량 소스 용어가 적용됩니다. 

    첫째, 모델은 1차원 상 변화 문제와 중력이 없는 상태에서 과열된 액체에서 증기 기포의 성장이라는 두 가지 분석 솔루션에 대해 검증되었습니다. 

    두 번째 단계에서는 검증된 모델을 극저온 가압 실험에 적용했습니다. 측정된 압력 거동은 수치 모델이 양호한 근사값으로 확인될 수 있습니다. 

    수치 모델을 사용하면 물리적 거동에 대한 추가 통찰력을 얻을 수 있습니다. 응축 및 증발 효과는 가압 중 및 가압 후의 압력 발생에 상당한 영향을 미칩니다. 기액 계면에서 일어나는 상변화로 인한 질량유동은 계면의 위치와 시간에 따라 달라진다. 벽에서 직접적으로 증발이 지배적이며 액체 표면의 중앙 영역에서 응결이 발생합니다. 

    응축 및 증발 효과는 가압 중 및 가압 후의 압력 발생에 상당한 영향을 미칩니다. 기액 계면에서 일어나는 상변화로 인한 질량유동은 계면의 위치와 시간에 따라 달라진다. 벽에서 직접적으로 증발이 지배적이며 액체 표면의 중앙 영역에서 응결이 발생합니다. 

    응축 및 증발 효과는 가압 중 및 가압 후의 압력 발생에 상당한 영향을 미칩니다. 기액 계면에서 일어나는 상변화로 인한 질량유동은 계면의 위치와 시간에 따라 달라진다. 벽에서 직접적으로 증발이 지배적이며 액체 표면의 중앙 영역에서 응결이 발생합니다.

    Predicting the pressurant requirements is one of the key challenges for cryogenic propulsion systems. In this context, a numerical model to simulate the tank pressurization that considers evaporation and condensation phenomena was developed and applied. The novel solver combines the a gradient-based phase change model with a weakly compressible multiphase solver of OpenFOAM based on the pressure implicit method with splitting of operator (PISO) algorithm. To maintain a sharp interface the mass source terms are applied to the cells adjacent to the interface. First, the model is validated against two analytical solutions: the one-dimensional phase change problem and secondly, the growth of a vapor bubble in a superheated liquid in the absence of gravity. In a second step, the validated model was applied to a cryogenic pressurization experiment. The measured pressure behavior could be confirmed with the numerical model being in a good approximation. With the numerical model further insights into the physical behavior could be achieved. The condensation and evaporation effects have a significant impact on the pressure development during and after the pressurization. The mass flows due to phase change occurring at the vapor-liquid interface depend on interface location and time. Directly at the wall, evaporation becomes dominant while condensation occurs at the center area of the liquid surface.

    1. Fig. 1. Calculation of the gradient at the interface: On the left side the interface…
    2. Fig. 2. Mass source term distribution: First the sharp mass source term ρ0, which is…
    3. Fig. 3. a) Layout of the Stefan-Problem: a vapor is located between a liquid and a…
    4. Fig. 4. Bubble in a superheated liquid: The left side depicts the calculated and…
    5. Fig. 5. Modified drawing of the dewar (as documented in [5] [6]; dimensions in mm) and…
    6. Fig. 6. Schematic presentation of the pressure evoluation in the dewar: Initial…
    7. Fig. 7. Simulation of the pressurization phase: The diagram shows the pressure…
    8. Fig. 8. Turbulent thermal diffusivity in pressurization and relaxation phase
    9. Fig. 9. Comparison of the pressure evolution in the relaxation phase of the solver with…
    10. Fig. 10. On the left side the temperature evolution in the bulk of the gas phase is shown
    11. Fig. 11. Heat Flux profile over the interface caused by evaporation with details of the…
    12. Fig. 12. Temperatures field with velocity vectors at 420 seconds after the start of the…
    13. Fig. 13. Heat transfer to the liquid from the wall and the freesurface with and without…

    Hide figures

    키워드

    Pressurization, Phase Change, CFD, Propellant Management, 가압, 상 변화, 추진제 관리

    Probabilistic investigation of cavitation occurrence in chute spillway based on the results of Flow-3D numerical modeling

    Flow-3D 수치 모델링 결과를 기반으로 하는 슈트 여수로의 캐비테이션 발생 확률적 조사

    Probabilistic investigation of cavitation occurrence in chute spillway based on the results of Flow-3D numerical modeling

    Amin Hasanalipour Shahrabadi1*, Mehdi Azhdary Moghaddam2

    1-University of Sistan and Baluchestan،amin.h.shahrabadi@gmail.com

    2-University of Sistan and Baluchestan،Mazhdary@eng.usb.ac.ir

    Abstract

    Probabilistic designation is a powerful tool in hydraulic engineering. The uncertainty caused by random phenomenon in hydraulic design may be important. Uncertainty can be expressed in terms of probability density function, confidence interval, or statistical torques such as standard deviation or coefficient of variation of random parameters. Controlling cavitation occurrence is one of the most important factors in chute spillways designing due to the flow’s high velocity and the negative pressure (Azhdary Moghaddam & Hasanalipour Shahrabadi, ۲۰۲۰). By increasing dam’s height, overflow velocity increases on the weir and threats the structure and it may cause structural failure due to cavitation (Chanson, ۲۰۱۳). Cavitation occurs when the fluid pressure reaches its vapor pressure. Since high velocity and low pressure can cause cavitation, aeration has been recognized as one of the best ways to deal with cavitation (Pettersson, ۲۰۱۲). This study, considering the extracted results from the Flow-۳D numerical model of the chute spillway of Darian dam, investigates the probability of cavitation occurrence and examines its reliability. Hydraulic uncertainty in the design of this hydraulic structure can be attributed to the uncertainty of the hydraulic performance analysis. Therefore, knowing about the uncertainty characteristics of hydraulic engineering systems for assessing their reliability seems necessary (Yen et al., ۱۹۹۳). Hence, designation and operation of hydraulic engineering systems are always subject to uncertainties and probable failures. The reliability, ps, of a hydraulic engineering system is defined as the probability of safety in which the resistance, R, of the system exceeds the load, L, as follows (Chen, ۲۰۱۵): p_s=P(L≤R) (۱) Where P(۰) is probability. The failure probability, p_f, is a reliability complement and is expressed as follows: p_f=P[(L>R)]=۱- p_s (۲) Reliability development based on analytical methods of engineering applications has come in many references (Tung & Mays, ۱۹۸۰ and Yen & Tung, ۱۹۹۳). Therefore, based on reliability, in a control method, the probability of cavitation occurrence in the chute spillway can be investigated. In reliability analysis, the probabilistic calculations must be expressed in terms of a limited conditional function, W(X)=W(X_L ,X_R)as follows: p_s=P[W(X_L ,X_R)≥۰]= P[W(X)≥۰] (۳) Where X is the vector of basic random variables in load and resistance functions. In the reliability analysis, if W(X)> ۰, the system will be secure and in the W(X) <۰ system will fail. Accordingly, the eliability index, β, is used, which is defined as the ratio of the mean value, μ_W, to standard deviation, σ_W, the limited conditional function W(X) is defined as follows (Cornell, ۱۹۶۹): β=μ_W/σ_W (۴) The present study was carried out using the obtained results from the model developed by ۱:۵۰ scale plexiglass at the Water Research Institute of Iran. In this laboratory model, which consists of an inlet channel and a convergent thrower chute spillway, two aerators in the form of deflector were used at the intervals of ۲۱۱ and ۲۷۰ at the beginning of chute, in order to cope with cavitation phenomenon during the chute. An air duct was also used for air inlet on the left and right walls of the spillway. To measure the effective parameters in cavitation, seven discharges have been passed through spillway. As the pressure and average velocity are determined, the values of the cavitation index are calculated and compared with the values of the critical cavitation index, σ_cr. At any point when σ≤σ_cr, there is a danger of corrosion in that range (Chanson, ۱۹۹۳). In order to obtain uncertainty and calculate the reliability index of cavitation occurrence during a chute, it is needed to extract the limited conditional function. Therefore, for a constant flow between two points of flow, there would be the Bernoulli (energy) relation as follows (Falvey, ۱۹۹۰): σ= ( P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗^۲/۲g) (۵) Where P_atm is the atmospheric pressure, γ is the unit weight of the water volume, θ is the angle of the ramp to the horizon, r is the curvature radius of the vertical arc, and h cos⁡θ is the flow depth perpendicular to the floor. Therefore, the limited conditional function can be written as follows: W(X)=(P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗^۲/۲g) -σ_cr (۶) Flow-۳D is a powerful software in fluid dynamics. One of the major capabilities of this software is to model free-surface flows using finite volume method for hydraulic analysis. The spillway was modeled in three modes, without using aerator, ramp aerator, and ramp combination with aeration duct as detailed in Flow-۳D software. For each of the mentioned modes, seven discharges were tested. According to Equation (۶), velocity and pressure play a decisive and important role in the cavitation occurrence phenomenon. Therefore, the reliability should be evaluated with FORM (First Order Reliable Method) based on the probability distribution functions For this purpose, the most suitable probability distribution function of random variables of velocity and pressure on a laboratory model was extracted in different sections using Easy fit software. Probability distribution function is also considered normal for the other variables in the limited conditional function. These values are estimated for the constant gravity at altitudes of ۵۰۰ to ۷۰۰۰ m above the sea level for the unit weight, and vapor pressure at ۵ to ۳۵° C. For the critical cavitation index variable, the standard deviation is considered as ۰.۰۱. According to the conducted tests, for the velocity random variable, GEV (Generalized Extreme Value) distribution function, and for the pressure random variable, Burr (۴P) distribution function were presented as the best distribution function. The important point is to not follow the normal distribution above the random variables. Therefore, in order to evaluate the reliability with the FORM method, according to the above distributions, they should be converted into normal variables based on the existing methods. To this end, the non-normal distributions are transformed into the normal distribution by the method of Rackwitz and Fiiessler so that the value of the cumulative distribution function is equivalent to the original abnormal distribution at the design point of x_(i*). This point has the least distance from the origin in the standardized space of the boundary plane or the same limited conditional function. The reliability index will be equal to ۰.۴۲۰۴ before installing the aerator. As a result, reliability, p_s, and failure probability, p_f, are ۰.۶۶۲۹ and ۰.۳۳۷۱, respectively. This number indicates a high percentage for cavitation occurrence. Therefore, the use of aerator is inevitable to prevent imminent damage from cavitation. To deal with cavitation as planned in the laboratory, two aerators with listed specifications are embedded in a location where the cavitation index is critical. In order to analyze the reliability of cavitation occurrence after the aerator installation, the steps of the Hasofer-Lind algorithm are repeated. The modeling of ramps was performed separately in Flow-۳D software in order to compare the performance of aeration ducts as well as the probability of failure between aeration by ramp and the combination of ramps and aeration ducts. Installing an aerator in combination with a ramp and aerator duct greatly reduces the probability of cavitation occurrence. By installing aerator, the probability of cavitation occurrence will decrease in to about ۴ %. However, in the case of aeration only through the ramp, the risk of failure is equal to ۱۰%.

    확률적 지정은 수력 공학에서 강력한 도구입니다. 유압 설계에서 임의 현상으로 인한 불확실성이 중요할 수 있습니다. 불확실성은 확률 밀도 함수, 신뢰 구간 또는 표준 편차 또는 무작위 매개변수의 변동 계수와 같은 통계적 토크로 표현될 수 있습니다. 캐비테이션 발생을 제어하는 ​​것은 흐름의 높은 속도와 음압으로 인해 슈트 여수로 설계에서 가장 중요한 요소 중 하나입니다(Azhdary Moghaddam & Hasanalipour Shahrabadi, ۲۰۲۰). 댐의 높이를 높이면 둑의 범람속도가 증가하여 구조물을 위협하고 캐비테이션으로 인한 구조물의 파손을 유발할 수 있다(Chanson, ۲۰۱۳). 캐비테이션은 유체 압력이 증기압에 도달할 때 발생합니다. 높은 속도와 낮은 압력은 캐비테이션을 유발할 수 있으므로, 통기는 캐비테이션을 처리하는 가장 좋은 방법 중 하나로 인식되어 왔습니다(Pettersson, ۲۰۱۲). 본 연구에서는 Darian 댐의 슈트 여수로의 Flow-۳D 수치모델에서 추출된 결과를 고려하여 캐비테이션 발생 확률을 조사하고 그 신뢰성을 조사하였다. 이 수력구조의 설계에서 수력학적 불확실성은 수력성능 해석의 불확실성에 기인할 수 있다. 따라서 신뢰성을 평가하기 위해서는 수력공학 시스템의 불확도 특성에 대한 지식이 필요해 보인다(Yen et al., ۱۹۹۳). 따라서 수력 공학 시스템의 지정 및 작동은 항상 불확실성과 가능한 고장의 영향을 받습니다. 유압 공학 시스템의 신뢰성 ps는 저항 R, 시스템의 부하 L은 다음과 같이 초과됩니다(Chen, ۲۰۱۵): p_s=P(L≤R)(۱) 여기서 P(۰)은 확률입니다. 고장 확률 p_f는 신뢰도 보완이며 다음과 같이 표현됩니다. Mays, ۱۹۸۰ 및 Yen & Tung, ۱۹۹۳). 따라서 신뢰성을 기반으로 제어 방법에서 슈트 여수로의 캐비테이션 발생 확률을 조사할 수 있습니다. 신뢰도 분석에서 확률적 계산은 제한된 조건부 함수 W(X)=W(X_L , X_R)은 다음과 같습니다. p_s=P[W(X_L,X_R)≥۰]= P[W(X)≥۰] (۳) 여기서 X는 부하 및 저항 함수의 기본 랜덤 변수 벡터입니다. 신뢰도 분석에서 W(X)> ۰이면 시스템은 안전하고 W(X) <۰에서는 시스템이 실패합니다. 따라서 표준편차 σ_W에 대한 평균값 μ_W의 비율로 정의되는 신뢰도 지수 β가 사용되며, 제한된 조건부 함수 W(X)는 다음과 같이 정의됩니다(Cornell, ۱۹۶۹). β= μ_W/σ_W (۴) 본 연구는 이란 물연구소의 ۱:۵۰ scale plexiglass로 개발된 모델로부터 얻은 결과를 이용하여 수행하였다. 이 실험 모델에서, 입구 수로와 수렴형 투수 슈트 여수로로 구성되며 슈트 중 캐비테이션 현상에 대처하기 위해 슈트 초기에 ۲۱۱과 ۲۷۰ 간격으로 편향기 형태의 2개의 에어레이터를 사용하였다. 여수로 좌우 벽의 공기 유입구에도 공기 덕트가 사용되었습니다. 캐비테이션의 효과적인 매개변수를 측정하기 위해 7번의 배출이 방수로를 통과했습니다. 압력과 평균 속도가 결정되면 캐비테이션 지수 값이 계산되고 임계 캐비테이션 지수 σ_cr 값과 비교됩니다. σ≤σ_cr일 때 그 범위에서 부식의 위험이 있다(Chanson, ۱۹۹۳). 슈트 중 캐비테이션 발생의 불확실성을 구하고 신뢰도 지수를 계산하기 위해서는 제한된 조건부 함수를 추출할 필요가 있다. 따라서 두 지점 사이의 일정한 흐름에 대해 다음과 같은 Bernoulli(에너지) 관계가 있습니다(Falvey, ۱۹۹۰). σ= ( P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗 ^۲/۲g) (۵) 여기서 P_atm은 대기압, γ는 물의 단위 중량, θ는 수평선에 대한 경사로의 각도, r은 수직 호의 곡률 반경, h cos⁡ θ는 바닥에 수직인 흐름 깊이입니다. 따라서 제한된 조건부 함수는 다음과 같이 쓸 수 있습니다. W(X)=(P_atm/γ- P_V/γ+h cos⁡θ )/(〖V_۰〗^۲/۲g) -σ_cr (۶) Flow-۳D는 유체 역학의 강력한 소프트웨어. 이 소프트웨어의 주요 기능 중 하나는 수리학적 해석을 위해 유한 체적 방법을 사용하여 자유 표면 흐름을 모델링하는 것입니다. 방수로는 Flow-۳D 소프트웨어에 자세히 설명된 바와 같이 폭기 장치, 램프 폭기 장치 및 폭기 덕트가 있는 램프 조합을 사용하지 않고 세 가지 모드로 모델링되었습니다. 언급된 각 모드에 대해 7개의 방전이 테스트되었습니다. 식 (۶)에 따르면 속도와 압력은 캐비테이션 발생 현상에 결정적이고 중요한 역할을 합니다. 따라서 확률분포함수에 기반한 FORM(First Order Reliable Method)으로 신뢰도를 평가해야 한다 이를 위해 실험실 모델에 대한 속도와 압력의 확률변수 중 가장 적합한 확률분포함수를 Easy fit을 이용하여 구간별로 추출하였다. 소프트웨어. 확률 분포 함수는 제한된 조건부 함수의 다른 변수에 대해서도 정상으로 간주됩니다. 이 값은 단위 중량의 경우 해발 ۵۰۰ ~ ۷۰۰۰ m 고도에서의 일정한 중력과 ۵ ~ ۳۵ ° C에서의 증기압으로 추정됩니다. 임계 캐비테이션 지수 변수의 표준 편차는 ۰.۰۱으로 간주됩니다. . 수행된 시험에 따르면 속도 확률변수는 GEV(Generalized Extreme Value) 분포함수로, 압력변수는 Burr(۴P) 분포함수가 가장 좋은 분포함수로 제시되었다. 중요한 점은 확률 변수 위의 정규 분포를 따르지 않는 것입니다. 따라서 FORM 방법으로 신뢰도를 평가하기 위해서는 위의 분포에 따라 기존 방법을 기반으로 정규 변수로 변환해야 합니다. 이를 위해, 비정규분포를 Rackwitz와 Fiiessler의 방법에 의해 정규분포로 변환하여 누적분포함수의 값이 x_(i*)의 설계점에서 원래의 비정상분포와 같도록 한다. 이 점은 경계면의 표준화된 공간 또는 동일한 제한된 조건부 함수에서 원점으로부터 최소 거리를 갖습니다. 신뢰성 지수는 폭기 장치를 설치하기 전의 ۰.۴۲۰۴과 같습니다. 그 결과 신뢰도 p_s와 고장확률 p_f는 각각 ۰.۶۶۲۹과 ۰.۳۳۷۱이다. 이 숫자는 캐비테이션 발생의 높은 비율을 나타냅니다. 따라서 캐비테이션으로 인한 즉각적인 손상을 방지하기 위해 폭기 장치의 사용이 불가피합니다. 실험실에서 계획한 대로 캐비테이션을 처리하기 위해, 나열된 사양을 가진 두 개의 폭기 장치는 캐비테이션 지수가 중요한 위치에 내장되어 있습니다. 폭기장치 설치 후 캐비테이션 발생의 신뢰성을 분석하기 위해 Hasofer-Lind 알고리즘의 단계를 반복합니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 폭기 설치 후 캐비테이션 발생의 신뢰성을 분석하기 위해 Hasofer-Lind 알고리즘의 단계를 반복합니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 폭기장치 설치 후 캐비테이션 발생의 신뢰성을 분석하기 위해 Hasofer-Lind 알고리즘의 단계를 반복합니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 경사로의 모델링은 폭기 덕트의 성능과 경사로에 의한 폭기 및 경사로와 폭기 덕트의 조합 사이의 실패 확률을 비교하기 위해 Flow-۳D 소프트웨어에서 별도로 수행되었습니다. 경사로 및 ​​폭기 덕트와 함께 폭기 장치를 설치하면 캐비테이션 발생 가능성이 크게 줄어듭니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다. 에어레이터를 설치하면 캐비테이션 발생 확률이 약 ۴%로 감소합니다. 그러나 램프를 통한 폭기의 경우 실패 위험은 ۱۰%와 같습니다.

    Keywords

    Aerator Probable Failure Reliability Method FORM Flow ۳D. 

    Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively

    추가 생산용 전자빔 조사에 의한 316L 스테인리스 용융 · 응고 거동

    Melting and Solidification Behavior of 316L Steel Induced by Electron-Beam Irradiation for Additive Manufacturing

    付加製造用電子ビーム照射による 316L ステンレス鋼の溶融・凝固挙動

    奥 川 将 行*・宮 田 雄一朗*・王     雷*・能 勢 和 史*
    小 泉 雄一郎*・中 野 貴 由*
    Masayuki OKUGAWA, Yuichiro MIYATA, Lei WANG, Kazufumi NOSE,
    Yuichiro KOIZUMI and Takayoshi NAKANO

    Abstract

    적층 제조(AM) 기술은 복잡한 형상의 3D 부품을 쉽게 만들고 미세 구조 제어를 통해 재료 특성을 크게 제어할 수 있기 때문에 많은 관심을 받았습니다. PBF(Powderbed fusion) 방식의 AM 공정에서는 금속 분말을 레이저나 전자빔으로 녹이고 응고시키는 과정을 반복하여 3D 부품을 제작합니다.

    일반적으로 응고 미세구조는 Hunt[Mater. 과학. 영어 65, 75(1984)]. 그러나 CET 이론이 일반 316L 스테인리스강에서도 높은 G와 R로 인해 PBF형 AM 공정에 적용될 수 있을지는 불확실하다.

    본 연구에서는 미세구조와 응고 조건 간의 관계를 밝히기 위해 전자빔 조사에 의해 유도된 316L 강의 응고 미세구조를 분석하고 CtFD(Computational Thermal-Fluid Dynamics) 방법을 사용하여 고체/액체 계면에서의 응고 조건을 평가했습니다.

    CET 이론과 반대로 높은 G 조건에서 등축 결정립이 종종 형성되는 것으로 밝혀졌다. CtFD 시뮬레이션은 약 400 mm s-1의 속도까지 유체 흐름이 있음을 보여 주며 수상 돌기의 파편 및 이동의 영향으로 등축 결정립이 형성됨을 시사했습니다.

    Additive manufacturing(AM)technologies have attracted much attention because it enables us to build 3D parts with complicated geometry easily and control material properties significantly via the control of microstructures. In the powderbed fusion(PBF)type AM process, 3D parts are fabricated by repeating a process of melting and solidifying metal powders by laser or electron beams. In general, the solidification microstructures can be predicted from solidification conditions defined by the combination of temperature gradient G and solidification rate R on the basis of columnar-equiaxed transition(CET)theory proposed by Hunt [Mater. Sci. Eng. 65, 75(1984)]. However, it is unclear whether the CET theory can be applied to the PBF type AM process because of the high G and R, even for general 316L stainless steel. In this study, to reveal relationships between microstructures and solidification conditions, we have analyzed solidification microstructures of 316L steel induced by electronbeam irradiation and evaluated solidification conditions at the solid/liquid interface using a computational thermal-fluid dynamics (CtFD)method. It was found that equiaxed grains were often formed under high G conditions contrary to the CET theory. CtFD simulation revealed that there is a fluid flow up to a velocity of about 400 mm s-1, and suggested that equiaxed grains are formed owing to the effect of fragmentations and migrations of dendrites.

    Keywords

    Additive Manufacturing, 316L Stainless Steel, Powder Bed Fusion, Electron Beam Melting, Computational Thermal
    Fluid Dynamics Simulation

    Fig. 1 Width, height, and height differences calculated from laser microscope analysis of melt tracks formed by scanning electron beam. Fig. 2(a)Scanning electron microscope(SEM)image and(b) corresponding electron back-scattering diffraction(EBSD) IPF-map taken from the electron-beam irradiated region in P900-V100 sample. Fig. 3 Average grain size and their aspect ratio calculated from EBSD IPF-map taken from the electron-beam irradiated region.
    Fig. 1 Width, height, and height differences calculated from laser microscope analysis of melt tracks formed by scanning electron beam. Fig. 2(a)Scanning electron microscope(SEM)image and(b) corresponding electron back-scattering diffraction(EBSD) IPF-map taken from the electron-beam irradiated region in P900-V100 sample. Fig. 3 Average grain size and their aspect ratio calculated from EBSD IPF-map taken from the electron-beam irradiated region.
    Fig. 4 Comparison of experimental SEM image and computational thermal fluid dynamics(CtFD)simulated melt pool with a beam diameter of 700 μm and absorption rates of(a)0.3,(b)0.5, and (c)0.7. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively.
    Fig. 4 Comparison of experimental SEM image and computational thermal fluid dynamics(CtFD)simulated melt pool with a beam diameter of 700 μm and absorption rates of(a)0.3,(b)0.5, and (c)0.7. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively.
    Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively
    Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively
    Fig. 6 Depth of melt tracks calculated from experimental SEM image and CtFD simulation results.
    Fig. 6 Depth of melt tracks calculated from experimental SEM image and CtFD simulation results.
    Fig. 7 G-R plots of 316L steel colored by(a)aspect ratio of crystalline grains and(b)fluid velocity.
    Fig. 7 G-R plots of 316L steel colored by(a)aspect ratio of crystalline grains and(b)fluid velocity.
    Fig. 8 Comparison of solidification microstructure(EBSD IPF-map)of melt region formed by scanning electron beam and corresponding snap shot of CtFD simulation colored by fluid velocity
    Fig. 8 Comparison of solidification microstructure(EBSD IPF-map)of melt region formed by scanning electron beam and corresponding snap shot of CtFD simulation colored by fluid velocity

    References

    1) M.C. Sow, T. De Terris, O. Castelnau, Z. Hamouche, F. Coste, R.
    Fabbro and P. Peyre: “Influence of beam diameter on Laser Powder

    Bed Fusion(L-PBF)process”, Addit. Manuf. 36(2020), 101532.
    2) J.C. Simmons, X. Chen, A. Azizi, M.A. Daeumer, P.Y. Zavalij, G.
    Zhou and S.N. Schiffres: “Influence of processing and microstructure
    on the local and bulk thermal conductivity of selective laser melted
    316L stainless steel”, Addit. Manuf. 32(2020), 100996.
    3) S. Dryepondt, P. Nandwana, P. Fernandez-Zelaia and F. List:
    “Microstructure and High Temperature Tensile properties of 316L
    Fabricated by Laser Powder-Bed Fusion”, Addit. Manuf. 37(2020),
    101723.
    4) S.H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa and T.
    Nakano: “Excellent mechanical and corrosion properties of austenitic
    stainless steel with a unique crystallographic lamellar microstructure
    via selective laser melting”, Scr. Mater. 159(2019), 89-93.
    5) T. Ishimoto, S. Wu, Y. Ito, S.H. Sun, H. Amano and T. Nakano:
    “Crystallographic orientation control of 316L austenitic stainless
    steel via selective laser melting”, ISIJ Int. 60(2020), 1758-1764.
    6) T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun and T. Nakano:
    “Crystallographic texture control of beta-type Ti-15Mo-5Zr3Al alloy by selective laser melting for the development of novel
    implants with a biocompatible low Young’s modulus”, Scr. Mater.
    132(2017), 34-38.
    7) X. Ding, Y. Koizumi, D. Wei and A. Chiba: “Effect of process
    parameters on melt pool geometry and microstructure development
    for electron beam melting of IN718: A systematic single bead
    analysis study”, Addit. Manuf. 26(2019), 215-226.
    8) K. Karayagiz, L. Johnson, R. Seede, V. Attari, B. Zhang, X. Huang,
    S. Ghosh, T. Duong, I. Karaman, A. Elwany and R. Arróyave: “Finite
    interface dissipation phase field modeling of Ni-Nb under additive
    manufacturing conditions”, Acta Mater. 185(2020), 320-339.
    9) M.M. Kirka, Y. Lee, D.A. Greeley, A. Okello, M.J. Goin, M.T.
    Pearce and R.R. Dehoff: “Strategy for Texture Management in
    Metals Additive Manufacturing”, JOM, 69(2017), 523-531.
    10) S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M.
    Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee and
    R.R. Dehoff: “Additive Manufacturing of Nickel Superalloys:
    Opportunities for Innovation and Challenges Related to
    Qualification”, Metall. Mater. Trans. A. 49(2018), 3764-3780.
    11) M.R. Gotterbarm, A.M. Rausch and C. Körner: “Fabrication of
    Single Crystals through a μ-Helix Grain Selection Process during
    Electron Beam Metal Additive Manufacturing”, Metals, 10(2020),
    313.
    12) J.D.D. Hunt: “Steady state columnar and equiaxed growth of
    dendrites and eutectic”, Mater. Sci. Eng. 65(1984), 75-83.
    13) S. Bontha, N.W. Klingbeil, P.A. Kobryn and H.L. Fraser: “Effects of
    process variables and size-scale on solidification microstructure in
    beam-based fabrication of bulky 3D structures”, Mater. Sci. Eng. A.
    513-514(2009), 311-318.
    14) J. Gockel and J. Beuth: “Understanding Ti-6Al-4V microstructure
    control in additive manufacturing via process maps”, 24th Int. SFF
    Symp. – An Addit. Manuf. Conf. SFF 2013.(2013), 666-674.
    15) B. Schoinochoritis, D. Chantzis and K. Salonitis: “Simulation of
    metallic powder bed additive manufacturing processes with the finite
    element method: A critical review”, Proc. of Instit. Mech. Eng., Part
    B: J. Eng. Manuf. 231(2017), 96-117.
    16)小泉雄一郎: “計算機シミュレーションを用いたAdditive
    Manufacturing プロセス最適化予測”, スマートプロセス学会誌,
    8-4(2019), 132-138.
    17) Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka and A. Chiba:
    “Molten pool behavior and effect of fluid flow on solidification
    conditions in selective electron beam melting(SEBM)of a
    biomedical Co-Cr-Mo alloy”, Addit. Manuf. 26(2019), 202-214.
    18) C. Tang, J.L. Tan and C.H. Wong: “A numerical investigation on
    the physical mechanisms of single track defects in selective laser
    melting”, Int. J. Heat Mass Transf. 126(2018), 957-968.
    19) Technical data for Iron, [Online]. Available: http://periodictable.com/
    Elements/026/data.html. [Accessed: 8-Feb-2021].
    20) N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J.
    Turner, N. Carl-son and S.S. Babu: “Numerical modeling of heattransfer and the influence of process parameters on tailoring the grain
    morphology of IN718 in electron beam additive manufacturing”,
    Acta Mater. 112(2016), 303-314.
    21) S. Morita, Y. Miki and K. Toishi: “Introduction of Dendrite
    Fragmentation to Microstructure Calculation by Cellular Automaton
    Method”, Tetsu-to-Hagane. 104(2018), 559-566.
    22) H. Esaka and M. Tamura: “Model Experiment Using Succinonitrile
    on the Formation of Equiaxed Grains caused by Forced Convection”,
    Tetsu-to-Hagane. 86(2000), 252-258.

    Fig. 1. Hydraulic jump flow structure.

    Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

    낮은 레이놀즈 수 유압 점프의 수치 모델링에서 OpenFOAM 및 FLOW-3D의 성능 평가

    ArnauBayona DanielValerob RafaelGarcía-Bartuala Francisco ​JoséVallés-Morána P. AmparoLópez-Jiméneza

    Abstract

    A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.

    CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.

    VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.

    모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.

    Keywords

    CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number

    References

    Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a
    review. J. Hydraulic Res. 35 (1), 81e98.
    Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface
    reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468.
    Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647.
    Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev.
    Fluid Mech. 42 (2010), 111e133.
    Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using

    OpenFOAM. J. Hydroinformatics 17 (4), 662e678.
    Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees
    (Paris, France).
    Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,
    Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C.,
    Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
    Characterising performance of environmental models. Environ. Model. Softw.
    40, 1e20.
    Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop
    Impact: Numerical Simulations and Theoretical Modeling. Imperial College of
    Science, Technology and Medicine, UK.
    Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s  eance. Le 
    Remou et sur la Propagation des Ondes, 12, pp. 21e112.
    Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD
    problems. Elsevier Appl. Numer. Math. 26 (1), 135e151.
    Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and
    evaluation applied to computational fluid dynamics for environmental fluid
    mechanics. Environ. Model. Softw. 33, 1e22.
    Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ.
    Fluid Mech. 11 (3), 263e288.
    Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows
    past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic
    Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7.
    Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined
    three-hole conductivity probe for void fraction and velocity measurement in
    airewater flows. Exp. fluids 48 (1), 17e31.
    Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid
    Mech. 286, 1e23.
    Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de
    translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759.
    Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic
    jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics
    Division.
    Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J.
    heat fluid flow 18 (1), 45e54.
    Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329.
    Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment
    Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress.
    Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe
    Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign.
    Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in
    hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752.
    Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of
    uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130
    (7), 1e4.
    Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909.
    Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press.
    Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/
    Fluids 26.3(2007) 367e384.
    Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In:
    Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor
    & Francis Group, ABalkema Book.
    Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in
    hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44.
    Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a
    computational fluid dynamics (CFD) model for air entrainment at spillway
    aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838.
    Can. J. Civ. Eng. 37 (1), 135e138.
    Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended
    load. Taylor & Francis J. Hydraulic Res. 32, 87e101.
    Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144.
    Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in
    a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607.
    Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis
    J. Hydraulic Res. 51 (3), 223e243.
    Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media.
    Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface.
    Environ. Model. Softw. 13 (3), 247e255.
    Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New
    York.
    Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic
    calculations. Elsevier J. Comput. Phys. 4 (1), 97e117.
    De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic
    jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173.
    Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model 
    for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int.
    Conf. Hydroinformatics 1, 63e70.
    Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep.
    N. 81, 26429.
    Fawer, C., 1937. Etude de quelquesecoulements permanents 
    a filets courbes (‘Study
    of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French).
    Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on
    air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3),
    217e238.
    Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a
    hydraulic jump. J. Hydraulic Res. 48 (4), 504e508.
    Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling
    basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2),
    101e113.
    Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer.
    Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic
    Res. 27 (5), 565e583.
    Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal
    modelling code in fluvial environments. Environ. Model. Softw. 26 (12),
    1685e1695.
    Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1.
    Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free
    boundaries. J. Comput. Phys. 39 (1), 201e225.
    Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D.
    Nonlinear Phenom. 12 (1), 396e407.
    Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load
    discharge formulations for transient flow in 1D and 2D situations.
    J. Hydroinformatics 15 (4).
    Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid
    Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations.
    Elsevier.
    Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction
    on flow and dispersion in urban street canyons using the RNG keε turbulence
    model. Atmos. Environ. 38 (19), 3039e3048.
    Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier
    J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158.
    Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of
    low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520.
    Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped
    Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. :
    http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February
    27th 2014.
    Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic
    jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218.
    Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and
    transport in a hydraulic jump using two-fluid RANS and DES turbulence
    models. Heat Mass Transf. 47 (8), 911e919.
    Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity 
    measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods
    2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58.
    Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming
    flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385.
    McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional
    Gas Turbine Cascades.
    Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of
    Hydraulic Research. Taylor &Francis 37 (4), 541e558.
    Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers.
    Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and
    turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159.
    Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free
    surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685.
    Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of
    bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154.
    Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence
    scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids
    11, 1581e1595.
    Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings
    of the Fifth International Conference on Numerical Methods in Fluid Dynamics
    June 28-July 2. 1976 Twente University, Enschede, pp. 330e340.
    Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves:
    laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97.
    Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman
    Institute for Fluid Dynamics.
    Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial
    neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70.
    OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free
    Software Foundation Inc.
    Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water
    resources technical publication. Eng. Monogr. 25.
    Pope, S.B., 2000. Turbulent Flows. Cambridge university press.
    Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of
    hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215.
    Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow.
    Cambridge University Press.
    Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91
    (HY5), 107e132.
    Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps.
    Taylor & Francis J. Hydraulic Res. 10 (4), 409e430.
    Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a
    hydraulic jump (original title, in Spanish: “Simulacioncomputacional del
    resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672.
    Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966.
    Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at
    High Phase Fractions. Imperial College of Science, Technology and Medicine, UK.
    Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec
    application aux crues des riviereset a l’introduction de mareesdansleurslits.
    Comptesrendus des seances de l’Academie des Sciences.
    Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer.
    Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat
    Fluid Flow 21 (3), 252e263.
    Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for
    separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4.
    Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study.
    University of Stavanger, Norway.
    Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces.
    Imperial College of Science, Technology and Medicine, UK.
    Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD
    spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/
    10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water.
    Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in
    moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR
    World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands).
    Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J.
    Comput. Phys 23 (3), 263e275.
    Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der
    Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76.
    Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase
    flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16
    (DOI: 10.1007/s00348-014-1847-9).
    Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition
    technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/
    s00348-014-1775-8.
    Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in
    hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE)
    HY.1943-7900.0001010. Paper 04015010, 10 pages.
    Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic
    jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The
    Netherlands.
    Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
    12, 620e631.
    Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA).
    Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex
    dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-

    1. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www.
      sciencedirect.com/science/article/pii/S0301932215000336.
      Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design
      Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands.
      Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of
      turbulence models for shear flows by a double expansion technique, Physics of
      Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520.
      Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics
      code. Tech. Rep. 44 (92), 35e35.
      Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps:
      free-surface fluctuation and integral turbulent scale measurements. Environ.
      fluid Mech. 13 (2), 189e204.
      Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble
      velocities in free hydraulic jumps for small to intermediate froude numbers.
      J. Hydraulic Eng.

    FLOW DEM

    FLOW-3D DEM Module 개요

    FLOW DEM 은 FLOW-3D 의 기체 및 액체 유동 해석에 DEM(Discrete Element Method : 개별 요소법)공법인 입자의 거동을 분석해주는 모듈입니다.

    dem9

    dem10
    주요 기능 :고체 요소의 충돌, 스프링(Spring) / 대시 포트(Dash Pot) 모델 적용 Void, 1 fluid, 2 fluid(자유 계면 포함) 각각의 모드에 대응 가변 밀도 / 가변 직경 입자 크기조절로 입자 특성을 유지하면서 입자 수를 감소 독립적인 DEM의 Sub Time Step 이용

    Discrete Element Method : 개별 요소법

    다수의 고체 요소의 충돌 운동을 분석하는 데 유용합니다. 유동 해석과 함께 사용하면 광범위한 용도에 응용을 할 수 있습니다.

    dem1

    입자 간의 충돌

    Voigt model은 스프링(Spring) 및 대시 포트(Dash pot)의 조합에 의해 입자 충돌 시의 힘을 평가합니다. 탄성력 부분은 스프링 모델에서,
    비탄성 충돌의 에너지 소산부분은 대시 포트 모델에서 시뮬레이션되고 있으며, 중량 및 항력은 작용하는 외력으로 고려 될 수 있습니다.

    분석 모드

    기본적으로 이용하는 운동 방정식은 FLOW-3D 에 사용되는 질량 입자의 운동 방정식과 같은 것이지만, 여기에 DEM으로
    평가되는 항목이 추가되기 형태로되어 있으며, 실제 시뮬레이션으로는 ‘void + DEM’, ‘1 Fluid + DEM’ , ‘ 1 Fluid 자유계면 + DEM ‘을 기본 유동 모드로 취급이 가능합니다.

    dem4

    입자 유형

    입자 타입도 표준 기능의 질량 입자 모델처럼 입자 크기 (반경)와 밀도가 동일한 것 외, 크기는 같지만 밀도가 다른 것이나 밀도는 같지만 크기가 다른 것 등도 취급 가능합니다. 이로 인해 표준 질량 입자 모델에서는 입자 간의 상호 작용이 고려되어 있지 않기 때문에 모든 아래에 가라 앉아 버리고 있었지만, FLOW DEM을 이용하여 기하학적 관계를 평가하는 것이 가능합니다.

    dem7

    응용 분야

    1. Mechanical Engineering 분야

    수지 충전, 스쿠류 이송, 분말 이송 / Resin filling, screw conveyance, powder conveyance

    2. Civil Engineering분야

    3. Civil Engineering 분야

    파편, 자갈, 낙 성/ Debris flow, gravel, falling rock

    dem11

    3. Chemical Engineering, Pharmaceutics 분야

    유동층, 사이클론, 교반기 / Fluidized bed, cyclone, stirrer

    dem12

    4. MEMS, Electrical Engineering 분야

    하전 입자를 포함한 전기장 해석 등

    dem15

    입자 그룹 가시화

    그룹 가시화

    DEM은 일반적으로 다수의 입자를 필요로하는 분석을 상정하고 있습니다. 
    다만 이 경우, 계산 부하가 높아 지므로 현실적인 계산자원을 고려하면, 입자 수가 너무 많아 현실적으로 취급 할 수 없는 경우 입자의 특성은 유지하고 숫자를 줄여 가시화할 필요가 있습니다 .
    일반적인 유동해석 계산의 메쉬 해상도에 해당합니다.
    메쉬 수 많음 (계산 부하 큼) → 소 (계산 부하 적음)
    입자 수 다 (계산 부하 큼) → 소 (계산 부하 적음)

    원래 입자수

    입자 사이즈를 키운경우

    그룹 가시화

    • 입자 수를 줄이기 위해 그대로 입경을 크게했을 경우와 그룹 가시화 한 경우의 비교.
    • 입자 크기를 크게하면 개별 입자 특성이 달라지기 때문에 거동이 달라진다. (본 사례에서는 부력이 커진다.)
    • 그룹 가시화의 경우 개별 특성은 동일 원래의 거동과 대체로 일치한다.

    주조 시뮬레이션에 DEM 적용

    그룹 가시화 비교 예

    그룹 가시화한 경우와 입경을 크게하여 수를 줄인 경우, 입경을 크게하면
    개별 입자 특성이 변화하여 거동이 바뀌어 버리기 때문에 실제 계산으로는 사용할 수 어렵습니다.

    중자 모래 분사 분석

    DEM에서의 계산부하를 생각할 때는 입자모델에 의한 안정제한을 고려해야 하지만 서브타임스텝이라는 개념을 도입함으로써 입자의 경우와 유체의 경우의 타임스텝을 바꾸고 필요이상으로 계산시간을 들이지 않고 효율적으로 계산하는 것을 가능하게 하고 있습니다.

    이를 통해 예를 들어 중자사 분사 시뮬레이션 실험에서는 이러한 문제로 자주 이용되는 빙엄 유체에서는 실험과의 정합성이 별로 좋지 않기 때문에 당사에서는 이전부터 입상류 모델이라는 모델을 개발하고 연속체로부터의 접근에서도 실험과의 높은 정합성을 실현할 수 있는 모델화를 해왔는데, 이번에 DEM을 사용해도 그것과 거의 같은 결과를 얻습니다. 할 수 있음을 확인할 수 있었다.

    Reference :

    • Lefebvre D., Mackenbrock A., Vidal V., Pavan V. and Haigh PM, 2004,
    • Development and use of simulation in the Design of Blown Cores and Moulds

    FLOW-3D AM

    flow3d AM-product
    FLOW-3D AM-product

    와이어 파우더 기반 DED | Wire Powder Based DED

    일부 연구자들은 부품을 만들기 위해 더 넓은 범위의 처리 조건을 사용하여 하이브리드 와이어 분말 기반 DED 시스템을 찾고 있습니다. 예를 들어, 이 시뮬레이션은 다양한 분말 및 와이어 이송 속도를 가진 하이브리드 시스템을 살펴봅니다.

    와이어 기반 DED | Wire Based DED

    와이어 기반 DED는 분말 기반 DED보다 처리량이 높고 낭비가 적지만 재료 구성 및 증착 방향 측면에서 유연성이 떨어집니다. FLOW-3D AM 은 와이어 기반 DED의 처리 결과를 이해하는데 유용하며 최적화 연구를 통해 빌드에 대한 와이어 이송 속도 및 직경과 같은 최상의 처리 매개 변수를 찾을 수 있습니다.

    FLOW-3D AM은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대해 매우 정확한 시뮬레이션을 제공합니다.

    3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다.  FLOW-3D  AM  은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.

    파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.

    FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.

    레이저 파우더 베드 퓨전 (L-PBF)

    LPBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.

    FLOW-3D DEM FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM  은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.

    파우더 베드 부설 공정

    FLOW-3D DEM을 통해 분말 크기 분포, 재료 특성, 응집 효과는 물론 롤러 또는 블레이드 움직임 및 상호 작용과 같은 기하학적 효과와 관련된 분말 확산 및 압축을 이해할 수 있습니다. 이러한 시뮬레이션은 공정 매개 변수가 후속 인쇄 공정에서 용융 풀 역학에 직접적인 영향을 미치는 패킹 밀도와 같은 분말 베드 특성에 어떻게 영향을 미치는지에 대한 정확한 이해를 제공합니다.

    다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.

    파우더 베드 분포 다양한 입자 크기 분포
    세 가지 다른 입자 크기 분포를 사용하여 파우더 베드 배치
    파우더 베드 압축 결과
    세 가지 다른 입자 크기 분포를 사용한 분말 베드 압축

    입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.

    FLOW-3D AM  시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.

    Melting | 파우더 베드 용해

    DEM 시뮬레이션에서 파우더 베드가 생성되면 STL 파일로 추출됩니다. 다음 단계는 CFD를 사용하여 레이저 용융 공정을 시뮬레이션하는 것입니다. 여기서는 레이저 빔과 파우더 베드의 상호 작용을 모델링 합니다. 이 프로세스를 정확하게 포착하기 위해 물리학에는 점성 흐름, 용융 풀 내의 레이저 반사 (광선 추적을 통해), 열 전달, 응고, 상 변화 및 기화, 반동 압력, 차폐 가스 압력 및 표면 장력이 포함됩니다. 이 모든 물리학은 이 복잡한 프로세스를 정확하게 시뮬레이션하기 위해 TruVOF 방법을 기반으로 개발되었습니다.

    레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.

    용융 풀이 응고되면 FLOW-3D AM  압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.

    Multilayer | 다층 적층 제조

    용융 풀 트랙이 응고되면 DEM을 사용하여 이전에 응고된 층에 새로운 분말 층의 확산을 시뮬레이션 할 수 있습니다. 유사하게, 레이저 용융은 새로운 분말 층에서 수행되어 후속 층 간의 융합 조건을 분석 할 수 있습니다.

    해석 진행 절차는 첫 번째 용융층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.

    다층 적층 적층 제조 시뮬레이션

    LPBF의 키홀 링 | Keyholing in LPBF

    키홀링 중 다공성은 어떻게 형성됩니까? 이것은 TU Denmark의 연구원들이 FLOW-3D AM을 사용하여 답변한 질문이었습니다. 레이저 빔의 적용으로 기판이 녹으면 기화 및 상 변화로 인한 반동 압력이 용융 풀을 압박합니다. 반동 압력으로 인한 하향 흐름과 레이저 반사로 인한 추가 레이저 에너지 흡수가 공존하면 폭주 효과가 발생하여 용융 풀이 Keyholing으로 전환됩니다. 결국, 키홀 벽을 따라 온도가 변하기 때문에 표면 장력으로 인해 벽이 뭉쳐져서 진행되는 응고 전선에 의해 갇힐 수 있는 공극이 생겨 다공성이 발생합니다. FLOW-3D AM 레이저 파우더 베드 융합 공정 모듈은 키홀링 및 다공성 형성을 시뮬레이션 하는데 필요한 모든 물리 모델을 보유하고 있습니다.

    바인더 분사 (Binder jetting)

    Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.

    Scan Strategy | 스캔 전략

    스캔 전략은 온도 구배 및 냉각 속도에 영향을 미치기 때문에 미세 구조에 직접적인 영향을 미칩니다. 연구원들은 FLOW-3D AM 을 사용하여 결함 형성과 응고된 금속의 미세 구조에 영향을 줄 수 있는 트랙 사이에서 발생하는 재 용융을 이해하기 위한 최적의 스캔 전략을 탐색하고 있습니다. FLOW-3D AM 은 하나 또는 여러 레이저에 대해 시간에 따른 방향 속도를 구현할 때 완전한 유연성을 제공합니다.

    Beam Shaping | 빔 형성

    레이저 출력 및 스캔 전략 외에도 레이저 빔 모양과 열유속 분포는 LPBF 공정에서 용융 풀 역학에 큰 영향을 미칩니다. AM 기계 제조업체는 공정 안정성 및 처리량에 대해 다중 코어 및 임의 모양의 레이저 빔 사용을 모색하고 있습니다. FLOW-3D AM을 사용하면 멀티 코어 및 임의 모양의 빔 프로파일을 구현할 수 있으므로 생산량을 늘리고 부품 품질을 개선하기 위한 최상의 구성에 대한 통찰력을 제공 할 수 있습니다.

    이 영역에서 수행 된 일부 작업에 대해 자세히 알아 보려면 “The Next Frontier of Metal AM”웨비나를 시청하십시오.

    Multi-material Powder Bed Fusion | 다중 재료 분말 베드 융합

    이 시뮬레이션에서 스테인리스 강 및 알루미늄 분말은 FLOW-3D AM 이 용융 풀 역학을 정확하게 포착하기 위해 추적하는 독립적으로 정의 된 온도 의존 재료 특성을 가지고 있습니다. 시뮬레이션은 용융 풀에서 재료 혼합을 이해하는 데 도움이됩니다.

    다중 재료 용접 사례 연구

    이종 금속의 레이저 키홀 용접에서 금속 혼합 조사

    GM과 University of Utah의 연구원들은 FLOW-3D WELD 를 사용 하여 레이저 키홀 용접을 통한 이종 금속의 혼합을 이해했습니다. 그들은 반동 압력 및 Marangoni 대류와 관련하여 구리와 알루미늄의 혼합 농도에 대한 레이저 출력 및 스캔 속도의 영향을 조사했습니다. 그들은 시뮬레이션을 실험 결과와 비교했으며 샘플 내의 절단 단면에서 재료 농도 사이에 좋은 일치를 발견했습니다.

    이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
    이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
    참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056
    참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056

    방향성 에너지 증착

    FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.

    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig7

    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys

    Mohamad Bayat Venkata K. Nadimpalli David B. Pedersen Jesper H. Hattel
    Department of mechanical engineering, Technical University of Denmark (DTU), Building 425, 2800 Kgs., Lyngby, Denmark

    Received 21 August 2020, Revised 18 November 2020, Accepted 25 November 2020, Available online 15 December 2020.

    Abstract

    Several different interfacial forces affect the free surface of liquid metals during metal additive manufacturing processes. One of these is thermo-capillarity or the so-called Marangoni effect. In this work, a novel framework is introduced for unraveling the effects of thermo-capillarity on the melt pool morphology/size and its thermo-fluid conditions during the Laser Powder Bed Fusion (L-PBF) process. In this respect, a multi-physics numerical model is developed based on the commercial software package Flow-3D. The model is verified and validated via mesh-independency analysis and by comparison of the predicted melt pool profile with those from lab-scale single-track experiments. Two sets of parametric studies are carried out to find the role of both positive and inverse thermo-capillarity on the melt pool shape and its thermal and fluid dynamics conditions. The thermo-fluid conditions of the melt pool are further investigated using appropriate dimensionless numbers. The results show that for the higher Marangoni number cases, the melt pool temperature drops, and at the same time, the temperature field becomes more uniform. Also, it is shown that at higher Marangoni numbers, temperature gradients decrease, thus reducing the role of conduction in the heat transfer from the melt pool. Furthermore, for the first time, a novel methodology is introduced for the calculation of the melt pool’s average Nusselt number. The average Nusselt numbers calculated for the positive and inverse thermo-capillarity are then used for finding the effective liquid conductivity required for a computationally cheaper pure heat conduction simulation. The results show that the deviation between the average melt pool temperature, using the pure conduction model with effective conductivity, and the one obtained from the advanced fluid dynamics model is less than 2%.

    Keywords

    Thermo-capillarity, Melt pool, Heat and fluid flow, Numerical model, L-PBF

    Korea Abstract

    금속 적층 제조 공정 중 액체 금속의 자유 표면에 여러 가지 다른 계면력이 영향을 미칩니다. 이들 중 하나는 열 모세관 또는 소위 Marangoni 효과입니다.

    이 작업에서는 L-PBF (Laser Powder Bed Fusion) 공정 중 용융 풀 형태 / 크기 및 열 유동 조건에 대한 열 모세관의 영향을 밝히기 위한 새로운 프레임워크가 도입되었습니다.

    이러한 점에서 상용 소프트웨어 패키지 Flow-3D를 기반으로 다중 물리 수치 모델이 개발되었습니다. 모델은 메쉬 독립 분석을 통해 그리고 예측 된 용융 풀 프로필을 실험실 규모의 단일 트랙 실험에서 얻은 프로필과 비교하여 검증 및 검증됩니다.

    용융 풀 모양과 열 및 유체 역학 조건에 대한 양 및 역 열 모세관의 역할을 찾기 위해 두 세트의 매개 변수 연구가 수행됩니다. 용융 풀의 열 유동 조건은 적절한 무 차원 숫자를 사용하여 추가로 조사됩니다.

    결과는 Marangoni 수가 더 높은 경우 용융 풀 온도가 떨어지고 동시에 온도 필드가 더 균일 해짐을 보여줍니다. 또한 Marangoni 수가 높을수록 온도 구배가 감소하여 용융 풀에서 열 전달에서 전도의 역할이 감소하는 것으로 나타났습니다.

    또한 용융 풀의 평균 Nusselt 수를 계산하기위한 새로운 방법론이 처음으로 도입되었습니다. 그런 다음 양수 및 역 열 모세관에 대해 계산 된 평균 Nusselt 수는 계산적으로 더 저렴한 순수 열 전도 시뮬레이션에 필요한 효과적인 액체 전도도를 찾는 데 사용됩니다. 결과는 유효 전도도가 있는 순수 전도 모델을 사용한 평균 용융 풀 온도와 고급 유체 역학 모델에서 얻은 편차가 2 % 미만임을 보여줍니다.

    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig1
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig1
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig2
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig2
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig3
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig3
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig4
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig4
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig5
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig5
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig6
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig6
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig7
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig7
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig8
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig8
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig9
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig9
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig10
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig10
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig11
    A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig11
    Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.

    On-chip fabrication and in-flow 3D-printing of cellladen microgel constructs: From chip to scaffold materials in one integral process

    cellladen 마이크로 겔 구조의 온칩 제작 및 인플 로우 3D 프린팅 : 하나의 통합 프로세스에서 칩에서 스캐폴드 재료까지

    Benjamin Reineke 1,2, Ilona Paulus 3, Jonas Hazur 6, Madita Vollmer 4, Gültekin Tamgüney 4,5, Stephan Hauschild1
    , Aldo R. Boccacini 6, Jürgen Groll 3, Stephan Förster *1,2
    1 Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
    2 Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany
    3 Department of Functional Materials in Medicine and Dentistry (FMZ) and Bavarian Polymer Institute (BPI),
    University of Würzburg, 97070 Würzburg, Germany
    4 Forschungszentrum Jülich GmbH, Institute of Biological Information Processing – Structural Biochemistry (IBI7), Jülich, Germany
    5 Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie, Düsseldorf, Germany
    6 Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany

    Summary

    Bioprinting has evolved into a thriving technology for the fabrication of cell-laden scaffolds. Bioinks are the most critical component for bioprinting. Recently, microgels have been introduced as a very promising bioink enabling cell protection and the control of the cellular microenvironment. However, their microfluidic fabrication inherently seemed to be a limitation. Here we introduce a direct coupling of microfluidics and 3D-printing for the microfluidic production of cell-laden microgels with direct in-flow bioprinting into stable scaffolds. The methodology enables the continuous on-chip encapsulation of cells into monodisperse microdroplets with subsequent in-flow cross-linking to produce cell-laden microgels, which after exiting a microtubing are automatically jammed into thin continuous microgel filaments. The integration into a 3D printhead allows direct in-flow printing of the filaments into free-standing three-dimensional scaffolds. The method is demonstrated for different cross-linking methods and cell lines. With this advancement, microfluidics is no longer a bottleneck for biofabrication.

    Bioprinting은 세포가있는 스캐 폴드 제작을 위한 번성하는 기술로 진화했습니다. 바이오 잉크는 바이오 프린팅에 가장 중요한 구성 요소입니다. 최근 마이크로 젤은 세포 보호 및 세포 미세 환경 제어를 가능하게 하는 매우 유망한 바이오 잉크로 도입되었습니다.

    그러나 이들의 미세 유체 제작은 본질적으로 한계로 보였습니다. 여기에서 우리는 안정적인 스캐 폴드에 직접 유입 바이오 프린팅을 사용하여 세포가 실린 마이크로 겔의 미세 유체 생산을 위한 미세 유체 및 3D 프린팅의 직접 결합을 소개합니다.

    이 방법론은 세포를 단 분산 미세 방울로 연속 온칩 캡슐화하고 후속 유입 교차 연결을 통해 세포가 가득한 마이크로 겔을 생성 할 수 있으며, 이는 마이크로 튜브를 종료 한 후 얇은 연속 마이크로 겔 필라멘트에 자동으로 걸린다. 3D 프린트 헤드에 통합되어 필라멘트를 독립형 3 차원 스캐 폴드로 직접 유입 인쇄 할 수 있습니다.

    이 방법은 다양한 가교 방법 및 세포주에 대해 설명됩니다. 이러한 발전으로 미세 유체 학은 더 이상 바이오 패브리 케이션의 병목 현상이 아닙니다.

    Bioprinting은 신체 조직을 모방하거나 대체하기위한 3 차원 세포 실장 구조를 제작하는 새로운 기술입니다.

    (1) 조직 공학 및 약물 전달뿐만 아니라 질병 연구 및 치료 개발에 중요한 역할을합니다. 바이오 프린팅에서 세포와 물질은 바이오 잉크 (2,3)로 공식화되어 계층 적으로 구조화 된 3D 스캐 폴드로 직접 인쇄됩니다. 바이오 프린팅의 궁극적 인 목표는 3 차원 적으로 제작 된 구조적 배열이 생물학적 성숙을 촉진하고 가속화한다는 근거를 바탕으로 표적 조직 또는 기관의 전체 또는 부분 기능을 나타내는 세포가있는 스캐 폴드를 생산하는 것입니다.

    (4) 따라서 바이오 잉크는 바이오 프린팅 기술의 중요한 구성 요소입니다. 그들은 주로 세포와 생물 활성 분자를 캡슐화 할 수있는 물질, 즉 하이드로 겔에 의존하며 압출 인쇄와 같은 적합한 인쇄 기술에 사용하여 원하는 3 차원 스캐 폴드 또는 구조물을 제작할 수 있습니다. 바이오 잉크의 설계는 유동성 및 탄성 특성을 미세 조정하여 압출 중에 충분히 전단 얇게 만들고,이어서 응고 후 원하는 기계적 안정성과 탄성을 빠르게 개발하여 안정적인 스캐 폴드를 형성해야하기 때문에 까다롭습니다.

    또한, 바이오 잉크는 생체 적합성이어야하며 세포 생존력과 적절한 제조 후 행동을 촉진 할 수있을만큼 충분히 생체 기능적이어야하며 충분한 영양분과 산소를 ​​공급할 수 있어야합니다. 바이오 잉크로 가장 두드러진 하이드로 겔 전구체 용액이 사용되며, 때로는 약간 사전 가교된 형태로 사용되며, 프린팅 후 가교되어 구조를 안정화합니다.

    종종 발생하는 문제는 세포 침강, 불균일 혼합 및 생체 적합성 제형과 인쇄 사이의 상충 관계이며, 세포가 유동 제형에서 전단력을 직접 경험하기 때문에 결과적인 모양 충실도입니다. 이러한 한계를 극복하기 위해 Highley et al.

    (5) 최근 microgel bioinks의 사용을 제안했습니다. 콜로이드 특성으로 인해 마이크로 겔 바이오 잉크는 전단 얇아지고 정지 상태에서 빠르게 응고되는 반면 부드러운 콜로이드에로드 된 세포는 전단 보호됩니다. 인쇄 된 마이크로 겔 스캐 폴드는 계면 중합체 얽힘이 충분하지 않은 경우 2 차 가교에 의해 추가로 안정화 될 수 있습니다.

    Microgels는 세포 미세 환경을 조정하는 이점을 더 제공합니다. 따라서, 세포가 가득 찬 마이크로 겔을 제조하는 방법은 이미 개발되었으며, 특히 매우 균일 한 크기의 마이크로 겔을 연속 공정으로 제작할 수있는 마이크로 유체 학 분야에서 이미 개발되었습니다. (6-8) 마이크로 겔은 EDTA- 복합체 (11,12) 또는 열 유도에 의해 조절 될 수있는 알기 네이트 / Ca2 + 이온 복합체 형성 (9,10)과 같은 물리적 가교에 의해 형성 될 수 있음이 입증되었습니다. 젤라틴 용액을 20 ° C 이하로 냉각하는 것과 같은 겔화. (9,13) 화학적 가교 반응은 마이크로 겔의 더 큰 안정성과 더 나은 기계적 특성을 제공합니다.

    예를 들면 기능화 된 젤라틴, 히알루 노 레이트, 폴리에틸렌 글리콜 또는 폴리 글리세롤 (12, 14-16)에 대한 마이클 유형 반응, 폴리 글리세롤 (17) 및 광 가교 (18)에 대한 아 지드-알킨 클릭 반응은 다음과 같은 광개시제 및 가교기를 필요로 합니다. 폴리에틸렌 글리콜에 대해 나타났습니다.

    캡슐화된 세포에는 줄기 세포 (9,12,14,15), 크립트 및 페 이어 세포 (10), 간 세포 (HepG2) 및 내피 세포 (HUVEC) (18), NIH 3T3 섬유 아세포 (6)가 포함됩니다. 지금까지 Fan et al.에 의해 세포가 실린 마이크로 겔을 기반으로하는 기능성 스캐 폴드의 제작이 보여졌습니다.

    (19) 겔 -MA 마이크로 겔의 에멀젼 기반 제조 및 Compaan et al. (20) 젤라틴 마이크로 겔 충전제 입자. 미세 유체 생성 마이크로 겔의 경우 이것은 최근 Highley et al.에 의해 처음으로 입증되었습니다. (5). 마이크로 겔 기반 바이오 잉크 및 스캐 폴드에 대한 바이오 프린팅에 대한 지금까지 제한된 수의 연구에 대한 이유는 소량의 마이크로 겔을 생성하는 마이크로 유체의 필수 조합과 교차 결합, 준비를 포함하는 여러 포스트 칩 배치 공정 단계가 뒤 따르기 때문입니다. bioink의, 그리고 원하는 스캐 폴드에 후속 bioprinting.

    이것은 현재 microgel biofabrication을 시간 소모적이고 생산성이 낮은 다단계 공정으로 만듭니다. 따라서 원하는 스캐 폴드의 제조를위한 마이크로 겔 및 바이오 프린팅을위한 미세 유체가 하나의 연속적이고 자동화 가능한 프로세스에 통합 될 수 있다면 매우 바람직 할 것입니다.

    여기에서 우리는 미세 유체 칩이 세포를 방울로 온칩 캡슐화하도록 설계 될 수 있음을 보여줍니다. 이는 마이크로 겔을 생성하기 위해 흐름에서 광 가교 결합 된 다음 다운 스트림 마이크로 튜브에서 자동으로 잼되어 얇은 마이크로 겔 필라멘트를 지속적으로 형성합니다. 마이크로 튜브는 3D 프린터의 프린트 헤드에 통합되어 필라멘트를 독립형 3 차원으로 직접 유입 인쇄합니다.

    Results and discussion

    Microfluidic device and controlled droplet production

    우리의 목표는 (i) 낮은 전단 응력 세포 캡슐화, (ii) 물리적 또는 화학적 가교에 대한 가변성, (iii) 미세 액적 직경의 큰 변화, (iv)이를 결합 할 수 있는 기능을 위한 미세 유체 칩을 3D 프린터로 설계하는 것이었습니다.

    따라서 디자인은 높은 세포 생존력을 위해 좁은 채널 섹션 내의 세포에 대한 전단력을 최소화해야 합니다. 다양한 물리적 및 화학적 가교 반응을 수행 할 수 있도록 입구 채널 설계는 세포, 폴리머, 가교 및 추가 제제를 포함하는 용액의 순차적 혼합을 허용해야 합니다. 단일 세포 캡슐화가 필요한 경우 미세 방울은 300 µm에서 50 µm까지 제어 가능한 직경을 가져야 106 / ml의 세포 밀도에 도달 할 수 있습니다.

    Fig. 1: Three-dimensional schematic view of the multilayer double 3D-focusing microfluidic channel system, (b) control of droplet diameter via the Capiilary number Ca, and accessible hydrodynamic regimes for droplet production: squeezing (c), dripping (d) and jetting (e). The scale bars are 200 µm.
    Fig. 1: Three-dimensional schematic view of the multilayer double 3D-focusing microfluidic channel system, (b) control of droplet diameter via the Capiilary number Ca, and accessible hydrodynamic regimes for droplet production: squeezing (c), dripping (d) and jetting (e). The scale bars are 200 µm.

    따라서 우리는 두 개의 후속 혼합 교차로 3 차원 흐름 초점을 허용 한 다음 제어 된 액적 형성을위한 하류 좁은 오리피스가 뒤 따르는 채널 설계를 사용했습니다. 디자인은 그림 1에 개략적으로 표시되어 있습니다. 여기에는 세포와 전구체 폴리머를 포함하는 중앙 스트림 용액을위한 입구 채널과 완충 용액, 배양 배지, 생리 활성 물질 또는 가교제를 포함 할 수있는 두 개의 측면 채널이 있습니다. 측면 채널 흐름은 입구 채널 흐름을 세포에 대한 전단력이 최소 인 채널의 중앙에 3 차원 적으로 집중시킵니다. 그 후, 수성 스트림은 액적 형성을 제어하는 ​​좁은 오리피스 섹션으로 들어가기 위해 오일 상으로 3 차원 적으로 집중됩니다. 좁은 섹션은 다양한 유체 역학 체제에 액세스하여 다양한 범위에 걸쳐 액적 크기를 변경할 수 있습니다. 다운 스트림 채널은 방울이 채널 중심 유선에서 안정적인 방울 트레인을 형성하도록 충분히 좁게 유지됩니다. 3D 이중 초점 칩은 다층 기술을 사용하는 소프트 리소그래피로 제작되었으며 지원 정보 (그림 S2-S4, S7)에 설명 된대로 흐름이 시뮬레이션되었습니다. 액적 분해는 외부 유체에 의해 가해지는 점성 전단력 𝐹𝑠ℎ𝑒ar 표면 장력에서 발생하는 고정 계면 력 𝐹𝐹𝛾𝛾을 초과 할 때 발생합니다. 두 힘은 직접 연속 유상 η 평균 유입 흐름 속도 (V)의 점도 환산 수 무차 모세관 수가 CA = 𝐹𝑠ℎ𝑒ar/𝐹γ, 그리고 CA = 𝐹𝑠ℎ𝑒ar/𝐹γ = 같은 표면 장력 γ가 관련 𝜂𝜂 𝛾. 캐 필러 리 수에 따라 액적 생성을위한 다양한 유체 역학 체제를 구별 할 수 있습니다. c) 분사 체제 (Ca> 1). (21-25) 그림 1에서 볼 수 있듯이 가변 3D 수축 설계를 사용하면 액적 생산을위한 세 가지 유체 역학 체제에 모두 액세스 할 수 있으며 모세관 수는 액적 생산을위한 주요 제어 매개 변수입니다. 체적 유량, 오일 점도 및 계면 장력을 조정하여 50 ~ 300 µm 범위의 목표 범위에서 액적 직경을 정밀하게 제어 할 수 있습니다. 각 점도 및 계면 장력은 지원 정보의 표 SI에 요약되어 있습니다.

    Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.
    Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are jammed into a filament that is directly 3D-printed into the scaffold.
    Fig. 3: a) Photograph of a standard meander-shaped layer fabricated by microgel filament deposition printing. The lines have a thickness of 300 µm. b) photograph of a cross-bar pattern obtained by on-top deposition of several microgel filaments. The average linewidth is 1 mm. c) photograph of a donut-shaped microgel construct. The microgels have been fluorescently labelled by FITC-dextran to demonstrate the intrinsic microporosity corresponding to the black non-fluorescent regions, d) light microscopy image of a construct edge showing that fused adhesive microgels form a continuous, three-dimensional selfsupporting scaffold with intrinsic micropores.
    Fig. 3: a) Photograph of a standard meander-shaped layer fabricated by microgel filament deposition printing. The lines have a thickness of 300 µm. b) photograph of a cross-bar pattern obtained by on-top deposition of several microgel filaments. The average linewidth is 1 mm. c) photograph of a donut-shaped microgel construct. The microgels have been fluorescently labelled by FITC-dextran to demonstrate the intrinsic microporosity corresponding to the black non-fluorescent regions, d) light microscopy image of a construct edge showing that fused adhesive microgels form a continuous, three-dimensional selfsupporting scaffold with intrinsic micropores.
    Fig. 4: a) Scheme of the perfusion chamber consisting of an upstream and downstream chamber, perfusion ports, and removable scaffolds to stabilize the microgel construct during 3D-printing, b) photograph of a microgel construct in the perfusion chamber directly after printing and removal of the scaffolds, c) confocal microscopy image of the permeation front of a fluorescent dye, where the high dye concentration in the micropores can be clearly seen, d) confocal microscopy image of YFP-labelled HEK-cells within a microgel construct.
    Fig. 4: a) Scheme of the perfusion chamber consisting of an upstream and downstream chamber, perfusion ports, and removable scaffolds to stabilize the microgel construct during 3D-printing, b) photograph of a microgel construct in the perfusion chamber directly after printing and removal of the scaffolds, c) confocal microscopy image of the permeation front of a fluorescent dye, where the high dye concentration in the micropores can be clearly seen, d) confocal microscopy image of YFP-labelled HEK-cells within a microgel construct.
    Fig. 5: a) Layer-by-layer printing of microgel construct with integrated perfusion channel. After printing of the first layer, a hollow perfusion channel is inserted. Subsequently, the second and third layers are printed. b) The construct is directly printed into a perfusion chamber. The perfusion chamber provides whole construct permeation via flows cin and cout, as well as independent flow through the perfusion channel via flows vin and vout. c) Photograph of a perfusion chamber containing the construct directly after printing. The flow of the fluorescein solution through the integrated PVA hollow channel is clearly visible.
    Fig. 5: a) Layer-by-layer printing of microgel construct with integrated perfusion channel. After printing of the first layer, a hollow perfusion channel is inserted. Subsequently, the second and third layers are printed. b) The construct is directly printed into a perfusion chamber. The perfusion chamber provides whole construct permeation via flows cin and cout, as well as independent flow through the perfusion channel via flows vin and vout. c) Photograph of a perfusion chamber containing the construct directly after printing. The flow of the fluorescein solution through the integrated PVA hollow channel is clearly visible.
    Fig. 6: a) Photograph of an alginate capsule fiber formed after exiting the microtube. b) Confocal fluorescence microscopy image of part of a 3D-printed alginate capsule construct. The fluorescence arises from encapsulated fluorescently labelled polystyrene microbeads to demonstrate the integrity and stability of the alginate capsules.
    Fig. 6: a) Photograph of an alginate capsule fiber formed after exiting the microtube. b) Confocal fluorescence microscopy image of part of a 3D-printed alginate capsule construct. The fluorescence arises from encapsulated fluorescently labelled polystyrene microbeads to demonstrate the integrity and stability of the alginate capsules.

    1. A. Atala, Chem. Rev. 2020, 120, 10545-10546.
    2. J. Groll, J. A. Burdick, D. W. Cho, B. Derby, M. Gelinsky, S. C. Heilshorn, T. Jüngst, J. Malda, V. A
      Mironov, K. Nakayama, A. Ovisanikov, W. Sun, S. Takeuchi, J. J. Yoo, T. B. F. Woodfield,
      Biofabrication 2019, 11, 013001.
    3. W. Sun, B. Starly, A. C. Daly, J. A. Burdick, J. Groll, G. Skeldon, W. Shu, Y. Sakai, M. Shinohara,
      M. Nishikawa, J. Jang, D.-W. Cho, M. Nie, S. Takeuchi, S. Ostrovidov, A. Khademhosseini, R. D. Kamm,
      V. Mironov, L. Moroni, I. T. Ozbolat, Biofabrication 2020, 12, 022002.
    4. R. Levato, T. Juengst, R. G. Scheuring, T. Blunk, J. Groll, J. Malda, Adv. Mater. 2020, 32, 1906423.
    5. C. B. Highley, K. H. Song, A. C. Daly, J. A. Burdick, Adv. Sci. 2019, 6, 1801076.
    6. D. Velasco, E. Tumarkin, E. Kumacheva, Small 2012, 8, 1633-1642.
    7. W. Jiang, M. Li, Z. Chen, K. W. Leong, Lab Chip 2016, 16, 4482-4506.
    8. A. C. Daly, L. Riley, T. Segura, J. A. Burdick, Nat. Rev. 2020, 5, 20-43.
    9. A. S. Mao, B. Özkale, N. J. Shah, K. H. Vining, T. Descombes, L. Zhang, C. M. Tringides, S.-W.
      Wong, J.-W. Shin, D. T. Scadden, D. A. Weitz, D. J. Mooney, Proc. Natl. Acad. Sci. 2019, 116, 15392-
      15397.
    10. S. R. Pajoumshariati, M. Azizi, D. Wesner, P. G. Miller, M. L. Shuler, A. Abbaspourrad, ACS Appl.
      Mater. Interfaces 2018, 10, 9235-9246.
    11. A. S. Mao, J.-W. Shin, S. Utech, H. Wang, O. Uzun, W. Li, M. Cooper, Y. Hu, L. Zhang, D. A.
      Weitz, D. J. Mooney, Nat. Mater. 2017, 16, 236-243.
    12. P. S. Lienemann, T. Rossow, A. S. Mao, Q. Vallmajo-Martin, M. Ehrbar, D. J. Mooney, Lab Chip,
      2017, 17, 727.
    13. F. Chen, J. Xue, J. Zhang, M. Bai, X. Yu, X.; C. Fan, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 2889-
      2896.
    14. Q. Feng, Q. Li, H. Wen, J. Chen, M. Liang, H. Huang, D. Lan, H. Dong, X. Cao, Adv. Funct. Mater.,
      2019, 29, 1096690.
    15. L. P. B. Guerzoni, T. Yoshinari, D. B. Gehlen, D. Rommel, T. Haraszti, M. Akashi, L. De Laporte,
      Biomacromolecules 2019, 20, 3746-3754
    16. T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, S. Seiffert, J. Am.
      Chem. Soc. 2012, 134, 4983-4989.
    17. E. Kapourani, F. Neumann, K. Achazi, J. Dernedde, R. Haag, Macromol. Bioscience 2018, 18,
      1800116
    18. H. Wang, H. Liu, H. Liu, W. Su, W. Chen, J. Qin, Adv. Mater. Technol. 2019, 4, 1800632.
    19. C. Fan, S.-H. Zhan, Z.-X. Dong, W. Yang, W.-S. Deng, X. Liu, P. Suna, D.-A. Wang, Mater. Sci.
      Eng. C 2019, 108, 110399.
    20. A. M. Compaan, K. Song, W. Chai, Y. Huang, ACS Appl. Mater. Interfaces 2020, 12, 7855-7868.
    21. S. L. Anna, H. C. Mayer, Phys. Fluids 2006, 18, 121512.
    22. T. Ward, M. Faivre, M. Abkarian, H. A. Stone, Electrophoresis 2005, 26, 3716-3724.
    23. F. Lapierre, N. Wu, Y. Zhu, Proc. SPIE 2011, 8204, 82040H-1.
    24. C. A. Stan, S. K. Y. Tang, G. M. Whitesides, Anal. Chem. 2009, 81, 2399-2402.
    25. J. Tan, J. H. Xu, S. W. Li, G. S. Luo, Chem. Eng. J. 2008, 136, 306-311.
    26. R.-C. Luo, C.-H. Chen, Soft 2012, 1, 1-23.
    27. C. H. Choi, J. H. Jung, T. S. Hwang, C. S. Lee, Macromol. Res. 2009, 17, 163-167.
    28. A. J. D. Krüger, O. Bakirman, P. B. Guerzoni, A. Jans, D. B. Gehlen, D. Rommel, T. Haraszti, A. J.
      C. Kuehne, L. De Laporte, Adv. Mater. 2019, 31, 1903668.
    29. D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, J. A. Lewis, Proc. Natl. Acad. Sci. 2016, 113,
      3179-3184
    30. A. K. Miri, I. Mirzaee, S. Hassan, S. M. Oskui, D. Nieto, A. Khademhosseini, Y. S. Zhang, Lab Chip
      2019, 19, 2019.
    31. F. A. Plamper, W. Richtering Acc. Chem. Res. 2017, 50, 131-140.
    32. S. Sun, M. Li, A. Liu, Int. J. Adhesion Adhesives 2013, 41, 98-106.
    Figure 4.9 Flow analysis results using FLOW3D of the metal flow and solidification in the main cavity. (The velocity is in m/s.)

    Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation

    Alexandre Reikher
    A Dissertation Submitted in
    Partial Fulfillment of the
    Requirements for the Degree of
    Doctor of Philosophy
    In Engineering
    at
    The University of Wisconsin Milwaukee
    December 2012

    ABSTRACT

    얇은 벽 부품의 주조는 오늘날 다이 캐스트 산업의 현실이 되었습니다. 전산 유체 역학 분석은 생산 개발 프로세스의 필수적인 부분입니다. 일반적으로 에너지 방정식과 결합 된 3 차원 Navier-Stokes 방정식은 유동 및 응고 패턴, 유동 선단의 위치, 함수로서 고체-액체 인터페이스의 위치를 ​​이해하기 위해 해결되어야 합니다.

    캐비티 충전 및 응고 과정에서 시간. 얇은 벽 주조에 대한 지배 방정식의 일반적인 솔루션에는 많은 수의 계산 셀이 필요하므로 솔루션을 생성하는 데 비현실적으로 오랜 시간이 걸립니다.

    Hele Shaw 유동 모델링 접근법을 사용하면 평면 외 유동을 무시함으로써 얇은 캐비티의 유동 문제 해결을 단순화 할 수 있습니다. 추가적인 이점으로, 문제는 3 차원 문제에서 2 차원 문제로 축소됩니다. 그러나 Hele-Shaw 근사는 흐름의 점성력이 관성력보다 훨씬 더 높아야하며,이 경우 Navier-Stokes 방정식은 Reynolds의 윤활 방정식으로 축소됩니다.

    그러나 다이 캐스트 공정의 빠른 사출 속도로 인해 관성력을 무시할 수 없습니다. 따라서 윤활 방정식은 흐름의 관성 효과를 포함하도록 수정되어야 합니다.

    이 박사 학위 논문에서는 얇은 공동에서 응고와 함께 액체 금속의 정상 상태 및 과도 흐름을 모델링하기 위한 빠른 수치 알고리즘이 개발되었습니다. 설명된 문제는 저온 챔버, 고압 다이 캐스트 공정, 특히 얇은 환기 채널에서 관찰되는 금속 흐름 현상과 밀접한 관련이 있습니다.

    채널의 금속 흐름 속도가 고체-액체 계면 속도보다 훨씬 높다는 사실을 사용하여 두께에 따른 열 전달을 처리하면서 금속 흐름을 주어진 시간 단계에서 안정된 것으로 처리하여 새로운 수치 알고리즘을 개발했습니다.

    일시적인 방향. 얇은 캐비티의 흐름은 채널 두께에 대한 운동량과 연속성 방정식을 통합 한 후 2 차원으로 처리되고 열 전달은 두께 방향의 1 차원 현상으로 모델링 됩니다. 엇갈린 격자 배열은 유동 지배 방정식을 이산화하는데 사용되며 결과적인 편미분 방정식 세트는 SIMPLE (Semi-Implicit Method for Pressure Linked Equations) 알고리즘을 사용하여 해결됩니다.

    상 변화를 수반하는 두께 방향 열 전달 문제는 제어 볼륨 공식을 사용하여 해결됩니다. 고체-액체 계면의 위치와 모양은 솔루션의 일부로 Stefan 조건을 사용하여 찾을 수 있습니다. 시뮬레이션 결과는 응고와 함께 전체 3 차원 흐름 및 열 전달 방정식을 해결하는 상용 소프트웨어 FLOW-3D®의 예측과 잘 비교되는 것으로 나타났습니다.

    제안된 수치 알고리즘은 또한 얇은 채널에서 일시적인 금속 충전 및 응고 문제를 해결하기 위해 적용되었습니다. 움직이는 고체-액체 인터페이스의 존재는 이제 반복적으로 해결되는 일련의 흐름 방정식에 비선형 성을 도입합니다.

    다시 한번, FLOW3D®의 예측과 잘 일치하는 것이 관찰되었습니다.

    이 두 연구는 제안 된 관성 수정 레이놀즈의 윤활 방정식과 함께 두께를 통한 열 손실 및 응고 모델을 성공적으로 구현하여 다이 캐스트 공정 중에 얇은 채널에서 액체 금속의 유동 및 응고에 대한 빠른 분석을 제공 할 수 있음을 나타냅니다. CPU 시간을 대폭 절약하여 얻은 이러한 시뮬레이션 결과는 다이 캐스트 다이의 환기 채널을 설계하는 동안 빠른 초기 분석을 제공하는 데 사용할 수 있습니다.

    Figure 1.3. Schematic representation of steps in the hot chamber die-cast process: a.  plunger pushes metal from the sleeve through the gating system into the cavity; b. after  solidification process is complete, the die opens; c. the part is ejected from the cavity.
    Figure 1.3. Schematic representation of steps in the hot chamber die-cast process: a. plunger pushes metal from the sleeve through the gating system into the cavity; b. after solidification process is complete, the die opens; c. the part is ejected from the cavity.
    Figure 1.5. Schematic representation of steps in the cold chamber die-cast process: a.  molten metal is ladled into the shot sleeve; b. hydraulic cylinder applies pressure on  plunger; c. plunger pushes metal from the sleeve through the gating system into the  cavity; d. high pressure is maintained during solidification; e. after solidification is  complete, the die opens; f. the part is ejected from the cavity.
    Figure 1.5. Schematic representation of steps in the cold chamber die-cast process: a. molten metal is ladled into the shot sleeve; b. hydraulic cylinder applies pressure on plunger; c. plunger pushes metal from the sleeve through the gating system into the cavity; d. high pressure is maintained during solidification; e. after solidification is complete, the die opens; f. the part is ejected from the cavity.
    Figure 4.6 A schematic of a die-cast die with shot sleeve and plunger: 1) Shot  sleeve, 2) Plunger, 3) Stationary half of the die-cast die, 4) Ejector half of the die-cast die,  5) Mold cavity, 6) Ventilation channel.
    Figure 4.6 A schematic of a die-cast die with shot sleeve and plunger: 1) Shot sleeve, 2) Plunger, 3) Stationary half of the die-cast die, 4) Ejector half of the die-cast die, 5) Mold cavity, 6) Ventilation channel.
    Figure 4.8 A picture (a ‘full shot’) of a part made using the die-cast process. The  overflows are created when the metal front, after filling the main cavity, fills up the  machined ‘overflow’ pockets in the die-cast mold. Ventilation channel is last to fill-up.
    Figure 4.8 A picture (a ‘full shot’) of a part made using the die-cast process. The overflows are created when the metal front, after filling the main cavity, fills up the machined ‘overflow’ pockets in the die-cast mold. Ventilation channel is last to fill-up.
    Figure 4.9 Flow analysis results using FLOW3D of the metal flow and solidification in the main cavity. (The velocity is in m/s.)
    Figure 4.9 Flow analysis results using FLOW3D of the metal flow and solidification in the main cavity. (The velocity is in m/s.)
    Figure 4.10 Temperature distribution in the considered cavity of the die-cast die, filled  with liquid metal at the end of the fill process. (The temperature is in 0C.)
    Figure 4.10 Temperature distribution in the considered cavity of the die-cast die, filled with liquid metal at the end of the fill process. (The temperature is in 0C.)
    Figure 4.16 Experimentally observed solidified metal in the ventilation channel; a)  Measured length of metal flow in the ventilation channel after solidification stops it; b)  Enlarged image of the solidified metal in the channel
    Figure 4.16 Experimentally observed solidified metal in the ventilation channel; a) Measured length of metal flow in the ventilation channel after solidification stops it; b) Enlarged image of the solidified metal in the channel
    Figure 1: Die configuration for a multi-attribute composite die for high die life and self-lubricating surface

    Innovative Die Material and Lubrication Strategies for Clean and Energy Conserving Forging Technologies

    청정 및 에너지 절약 단조 기술을 위한 혁신적인 다이 재료 및 윤활 전략

    이 최종 기술 보고서에는 수상 번호 DE-FC07-01ID14206에 따라 미국 에너지 부에서 부분적으로 자금을 지원 한 “청정 및 에너지 절약 단조 기술을위한 혁신적인 다이 재료 및 윤활 전략”프로젝트에서 수행 된 작업이 포함되어 있습니다. 프로젝트 수행을위한 계약 시간은 2001 년 9 월 30 일부터 2005 년 9 월 29 일까지였습니다. 그러나 DOE / OIT는 2003 년과 2004 년 회계 연도 지난 2 년 동안 자금을 제공 할 수 없었고 프로젝트는 2003-04 회계 연도에 조기 종료되었습니다. 결과적으로 많은 주요 연구 과제가 특정 이정표를 달성하기 위해 수정되거나 완료되지 않고 종료되었습니다. Ohio State University의 산업, 용접 및 시스템 공학 교수 인 Rajiv Shivpuri 박사는이 프로젝트의 프로젝트 책임자이자 수석 조사자였습니다. 이상은 오하이오 주립 대학 연구 재단 (OSURF)에서 관리했습니다. OSURF는 모든 재정 및 행정 문제도 담당했습니다. 재정 보고서는 별도로 제출됩니다. 에너지 부서, 산업 기술 사무소의 프로그램 관리자는 Golden Office의 Mr. Ramesh Jain과 Mr. Dibyajyoti Aichbhowmik이었습니다.
    이 프로젝트의 주요 성과는 다음과 같습니다.

    • 단조 산업 및 해당 공급 업체와 함께 산업 응용 분야를위한 혁신적인 다이 재료 및 윤활 전략을 탐색하기위한 주요 협력 노력이 수립되었습니다. 여기에는 단조 산업과 협력하는 워크숍과 심포지엄이 포함되었습니다. 단조 산업 전체에 결과를 전파하기 위해 단조 산업 기술 컨퍼런스에서 발표되었습니다.

    • 단조 산업 협회와 단조 산업 교육 연구 재단의 후원으로 단조 기술 우수 센터 설립. 이 센터의 일부로 산업, OSU, 오하이오 주 및 DOE 지원과 함께 2 개의 단조 셀이 설치되었습니다. 1300 톤 기계식 프레스 셀과 350 톤 유압 프레스 셀입니다. 이것은 단조 연구에 150 만 달러를 투입 한 것입니다.

    • LENS (Laser Enhanced Net Shaping) 기반 니켈 알루미나 이드 코팅 오버레이 (자세한 내용은 부록 A 참조)를 포함하여 혁신적인 다이 코팅이 탐색되었습니다.

    • 열간 단조 응용 분야를위한 금형 재료를 최적으로 선택하고 설계하기 위해 혁신적인 실험 설정 및 예측 열 연화 소프트웨어가 개발되었습니다 (부록 B, C 및 D).

    • 윤활 전략 및 단일 액적 기반 윤활 모델은 확산 및 열 전달을위한 열간 단조 윤활제의 최적 증착을 위해 개발되었습니다 (부록 E 및 F).

    • 윤활유 분해 및 바운스 용 모델이 개발되었습니다. 이 모델은 뜨거운 다이 표면의 흑연 윤활로 인한 공기 및 지하수 오염을 줄이는 데 사용할 수 있습니다.

    (부록 G). 이 보고서는 Shivpuri 박사와 Yijun Zhu (연구원)가 작성했습니다. 여기에는 다른 외부 또는 내부 지원과 함께 프로젝트 종료 후 일부 연구 계획 및 프로젝트 기간 동안 완료된 작업에 대한 세부 정보가 포함되어 있습니다.

    1.1 프로젝트 목표

    이 프로젝트의 목표는 혁신적인 다이 재료 및 윤활 전략을 개발 및 구현하여 다이 수명을 8 배 늘리고, 에너지 투입량을 15 % 줄이며, 부품 당 에너지 비용을 50 % 줄이며, 윤활유에서 나오는 미립자 배출량을 90 % 줄이며, 다이 관련 가동 시간을 90 %까지 늘립니다.

    단조 산업, 공급 업체 (철강 및 알루미늄 생산 업체 (IOF), 윤활유, 표면 기술 및 다이 소재 공급 업체) 및 고객 (OEM)에 미치는 최대의 광범위한 에너지 영향을 위해 전략이 선택되었습니다.

    여기에는 최적의 윤활제 스프레이 기술, 고급 표면 엔지니어링에 의한 열간 단조의 흑연 제거, 경사 다이 재료 및 다이 엔지니어링, 열간 단조를위한 윤활 및 다이 활성화 등이 포함됩니다.

    미국의 단조 산업은 1997 년에 약 120 억 달러였습니다 (DOD 국가 안보). 평가). 제품 총 판매 가치의 약 15 %가 에너지에 할당되며 연간 약 50 조 BTU입니다. 흑연 사용 (열간 단조) 및 냉간 단조 전환 코팅 사용으로 인한 환경 영향은 제품 비용에 20 % 이상 추가 될 것으로 예상됩니다.

    Figure 1: Die configuration for a multi-attribute composite die for high die life and self-lubricating surface
    Figure 1: Die configuration for a multi-attribute composite die for high die life and self-lubricating surface

    BACKGROUND

    실온 (저온) 및 고온 (온 및 고온)에서 수행되는 단조는 진화하는 야금, 공구 표면의 마찰 및 금속의 흐름 특성을 포함하는 잘 이해되지 않는 복잡한 현상입니다. 이 프로젝트에서 다루어 진 기술적 장애물은 다음과 같습니다.

    • 냉간 및 열간 단조의 윤활 작용에 대한 지식 부족. 윤활유 및 윤활 기술의 선택은 윤활유 및 장비 공급 업체에 맡겨집니다. 이로 인해 윤활유의 과도하고 불량한 사용과 과도한 환경 오염이 발생합니다.

    • 고급 단조 응용 분야를위한 새로운 표면 엔지니어링 및 다이 재료 기술의 성숙도가 부족합니다. 실제 생산에서이를 구현하는 데 따른 기술적 및 재정적 위험이 매우 높아 사용을 제한합니다. 이러한 기술의 시장 침투는 거의 존재하지 않습니다.

    • 다이와 윤활 시스템의 설계 최적화를위한 계산 도구가 부족합니다.

    윤활유 및 다이 소재 기술에서 다음과 같은 전략을 통해 프로젝트 목표를 실현할 계획이었습니다.

    • 전략 # 1 : 오염을 제거하고, 윤활제 사용을 줄이며, 다이 냉각 감소로 인한 그물 성형을 가능하게하는 윤활제 스프레이 공정의 최적 설계를위한 시스템 개발. 또한 흑연 기반 윤활유의 필요성을 줄여줍니다.

    • 전략 # 2 : 철 및 비철 부품의 온간 단조 (빌릿 가열이 1250F에서 900F로 감소)를위한 다이 수명과 공정을 개선하기 위한 윤활제 및 다이 코팅 가능 요소를 개발합니다. 단조 온도를 낮추면 공차가 개선되고 부품 당 에너지가 크게 절약됩니다.

    • 전략 # 3 : 저 마찰 다이 표면 엔지니어링 (DLC (비철) 및 WC / C 코팅)을 사용하여 냉간 단조 빌릿에 인광 코팅을 사용하지 않습니다.

    • 전략 # 4 : 열간 단조 금형을위한 고급 표면 클래딩 (렌즈 및 열 스프레이에 의한 단단한 표면) 및 이중 코팅 기술을 개발합니다. 기존의 코팅과 표면 공학 기술은 상당한 이득을 얻지 못했습니다.

    • 전략 # 5 : 재료 및 공정 설계를 통해 냉간 및 열간 단조에서 공정 중 다이 고장을 제거하고 예측 다이 유지 보수를위한 소프트웨어를 개발합니다. 이는 스크랩 감소 및 다이 관련 다운 타임에 상당한 영향을 미칩니다.

    개발중인 많은 기술은 수치 모델링, 윤활 및 냉각수 기술, 표면 기술, 재료의 신속한 프로토 타이핑, 레이저 기술 등과 같은 교차 절단 R & D 가능 요소를 다루고 있습니다. 이러한 기술은 지원 산업의 로드맵에서도 중요한 기술로 확인되었습니다.

    미래의 산업으로. IOF를 위해 250 조 BTU의 에너지 절약과 3500 톤의 오염 물질이 예상됩니다. 프로젝트가 전액 지원을받지 못하고 프로젝트가 2004 년 9 월 30 일에 종료되었으므로 전략 # 1, # 4, # 5 만 추구했습니다. 연구 및 구현에 대한 세부 사항은 부록에 포함되어 있습니다.

    Effect of lubricant heat

    템퍼링, 마모 및 공구 열화에 대한 단조 윤활유의 효과를 평가하기 위해 다양한 열 전달 계수로 여러 시뮬레이션을 수행했습니다. 컴퓨터 시뮬레이션에 사용 된 열전달 계수의 값은 얻은 값과 일치하며 경우에 따라 Sridhar 등이 오하이오 주립 대학에서 수행 한 테스트에서 추정 한 값입니다. 사용 된 계면 열전달 계수의 값은 12 KW / m2 ° C, 24 KW / m2 ° C 및 33 KW / m2 ° C였으며, 이는 20 부, 30 부 및 100 부 물로 희석 된 수성 흑연 윤활제에 해당합니다 (희석 비율 1:20, 1:30 및 1 : 100). 이러한 각 희석 비율에 대해 3000 및 5000 샷 후 상부 다이의 경도 분포는 그림 C.3, C.4 및 C.5에 나와 있습니다. 희석 비 1:20에 대한 표면 경도 분포는 그림 C.6에 나와 있습니다.

    Figure C. 2: stage gear blank forging sequence (Courtesy: Sypris Technologies
    Figure C. 2: stage gear blank forging sequence (Courtesy: Sypris Technologies
    Figure C. 3: Hardness distribution after 3000 and 5000 shots, heat transfer coefficient used = 12 KW/m2°C, press type: mechanical press
    Figure C. 3: Hardness distribution after 3000 and 5000 shots, heat transfer coefficient used = 12 KW/m2°C, press type: mechanical press

    F.5.3 Results of the Lubricant Properties

    표 F.1은 윤활유의 측정 된 특성을 보여줍니다. DP는 107 및 CA 모세관 작용 방법에서 펜던트 드롭 방법을 나타냅니다. 테스트 된 액체에는 순수한 물이 포함됩니다. 다음과 같은 사실을 관찰 할 수 있습니다. a). 더 높은 표면 장력을 가진 더 높은 희석 비율 회사; 비). 희석 비율이 1 : 1보다 큰 액체의 경우 표면 장력이 물의 장력에 접근합니다. 드롭 펜던트 법으로 추정 한 모든 표면 장력은 동일한 경향을 공유하지만 약 10dynes / cm에 대해 모세관 작용법에 의한 것보다 작다는 것을 알 수 있습니다. 물의 표면 장력이 72.8dynes / cm라는 점을 감안할 때 모세관 작용법에서 얻은 결과가 실제 값에 더 가깝다고 생각합니다.

    Figure F. 10: simulation results of lubricant 1:1 with 4mm diameter droplet at impact velocity 10cm/s.
    Figure F. 10: simulation results of lubricant 1:1 with 4mm diameter droplet at impact velocity 10cm/s.
    Figure F. 12: Experimental results of maxξ v.s. TD. We = 27.
    Figure F. 12: Experimental results of maxξ v.s. TD. We = 27.
    Figure G. 1: Dryoff process of a lubricant droplet at film boiling: (a)- (c) fluid dynamic process, (d). quasi-steady dryoff process.
    Figure G. 1: Dryoff process of a lubricant droplet at film boiling: (a)- (c) fluid dynamic process, (d). quasi-steady dryoff process.
    圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)

    Numerical Modeling on Internal Solitary Wave propagation over an obstacle using Flow-3D

    Keyword: Internal solitary waves, Numerical, Flow-3D, Computational Fluid Dynamics

    연구자 : Yu-Ren Chen
    지도교수 : Dr John R C Hsu
    June 2012

    기술과 수치 알고리즘의 발전으로 파도가 해양이나 항만 구조물에 미치는 영향에 대한 많은 연구가 개발되었으며,보다 정확한 결과를 얻기 위해 고효율 수치 계산 소프트웨어를 사용할 수 있습니다. 현재 내부 파 생성, 전송, 파동의 물리적 메커니즘은 국내외 해양 분야에서 중요한 연구 주제 중 하나입니다.

    이 연구는 FLOW-3D 전산 유체 역학 (Computational Fluid Dynamics, CFD) 소프트웨어를 사용하여 상층의 담수와 하층의 담수를 시뮬레이션합니다. 바닷물의 밀도 계층화 유체는 중력 혼합 붕괴 방식을 사용하여 내부 파도를 생성하고 긴 경사와 같은 일반적인 장애물을 통해 파형 진화 및 유동장 분포를 탐구합니다.

    짧은 플랫폼 사다리꼴 경사와 이등변 삼각형. 이 기사에서는 또한 소프트웨어 작동 설정과 FLOW-3D를 내부 파 실험에 적용하는 방법을 소개하고, 이전 실험 조건과 결과를 참조하여 내부 파 전송 과정을 시뮬레이션합니다. 시뮬레이션 결과는 실험 데이터를 확인하고 첫 번째 분석을 시뮬레이션합니다.

    중력 붕괴 방식의 게이트의 개방 속도가 내부 파의 전송 시간 및 진폭에 미치는 영향; 시뮬레이션 결과는 게이트 개방 속도가 빠르고 내부 파의 진폭이 크고 전송 속도가 빠릅니다. ; 반대로 게이트 개방 속도가 느리면 내부 파의 진폭이 작고 전송 속도가 느리지 만 둘 다 비선형 비례 관계.

    이 연구는 또한 다양한 장애물 (긴 기울기, 사다리꼴 기울기가있는 짧은 플랫폼, 이등변 삼각형)을 통한 내부 고독 파의 전송 과정을 시뮬레이션하고 단일 장애물을 통과하는 내부 파도의 파형 진화, 와류 및 유동장 변화를 논의합니다.

    연구를 통해 우리가 매우 미세한 그리드를 사용하고 수치 시뮬레이션의 그래픽 출력을 열심히 분석 할 수 있다면 실험실 실험 관찰보다 내부 고독 파의 전송 특성을 더 잘 이해할 수 있다고 믿습니다.

    요약

    서로 다른 특성을 가진 두 유체의 계면에있는 파동을 계면 파라고합니다. 바다에서는 표층의 기압 변화에 의해 형성된 바람 장이 공기와 바다의 경계 파인 해면에 불어 올 때 변동을 일으킨다. 기체 또는 유체의 밀도 층화가 발생할 때 외부 힘 (예 : 바람, 압력, 파도 및 조류, 중력 등)에 의해 교란되면 내부 파도라고하는 경계면에서 변동이 발생할 수 있으므로 내부 파도가 발생할 수 있습니다. 웨이브는 밀도가 다른 층화 된 유체의 웨이브 현상입니다.

    대기의 내부 파도와 같이 일상 생활에서 볼 수있는 내부 파도는 특히 오후 또는 비가 내리기 전에 깊고 얕은 altocumulus 구름 층으로 하늘에 자주 나타납니다. 대기 중의 내부 파의 움직임은 공기의 흐름에 영향을 주어 기류를 상승시키고 공기 중의 수증기가 물방울로 응축되어 구름이되도록합니다.

    반대로 기류가 가라 앉으면 수증기가 응결이 쉽지 않습니다. 구름이 있어도 내부의 파도가 응결하기 어렵습니다. 소산되어 루버와 같은 altocumulus 구름을 형성합니다. 안정된 밀도와 층화 상태의 자연 수체는 외부 세계에 의해 교란 될 때 내부 파동 운동을 겪게됩니다.

    예를 들어, 밀도가 안정되고 층화가 분명한 호수에서 바람 장은 수면에 파도에서 파생 된 내부 파동을 일으켜 물의 질량이 전달되고 호수 가장자리로 물이 축적되어 수위가 높아집니다. 위치 에너지를 형성하는 축적 영역; 수역이 가라 앉기 시작하면 위치 에너지를 운동 에너지로 변환하고 남미 콜롬비아의 Babine Lake의 내부 파동 거동과 같은 내부 파동 운동을 생성 할 수도 있습니다 (Farmer, 1978). ). 염분, 밀도 또는 온도가 안정된 바다에서는 조수와 지형의 영향으로 수역이 행성의 중력에 따라 움직입니다.

    격렬한 기복이있는 지형을 통과 할 때 내부 파동이 발생합니다. ; 중국 해에서 발견되는 남쪽 내부 파도에서와 같이 (Hsu et al., 2000). 파동은 심해에서 얕은 물로 전달되며, 얕아 짐, 깨짐, 혼합, 소용돌이, 굴절, 회절 및 반사가있을 것입니다. 내부 파 전달은 일종의 파동이기 때문에 위에서 언급 한 파동 특성도 갖습니다.

    해양 내부 파도는 길이가 수백 미터에서 수십 킬로미터에 이르는 광범위한 파장을 가지고 있으며,주기는 몇 분 정도 빠르며 수십 시간 정도 느리며 진폭은 몇 미터에서 수백 미터. 해양 내부 파도가 움직일 때 층화 위와 아래의 물 흐름 방향이 반대가되어 현재 전단 작용으로 인해 층화 경계면에서 큰 비틀림 힘이 발생합니다.

    바다에 기초 말뚝과 같은 구조물이있는 경우 석유 시추 플랫폼의 고정 케이블은 큰 비틀림을 견딜 수 없어 파손될 가능성이 매우 높습니다 (Bole et al. 1994). 빽빽한 클라인 경계 근처에서 항해하는 잠수함이 해양 내부 파도 활동을 만나게되면 내부 파도에 의한 상승 전류로 인해 잠수함이 해저에 수면에 닿거나 충돌하여 잠수함이 손상 될 수 있습니다.

    그러나 바다의 내부 파는 바람직하지 않으며 매우 중요한 역할을합니다. 예를 들어, 내부 파가 심해 지역에서 근해 대륙붕으로 전달되면 상하수 체가 교환됩니다. 해저에 영양분을 운반합니다. 선반 가장자리까지 생물학적 성장을 촉진하고 해당 지역의 생태 환경을 조절하며 (Osborne and Bruch et al., 1980; Sandstorm and Elliot et al., 1984) 어업 자원을 풍부하게합니다.

    위에서 언급 한 항목 외에도 해저에 대한 케이블 및 파이프 라인, 수중 음파 탐지기, 해양 생물 환경, 군사 활동 등이 해양 내부 파도의 영향에 포함되므로 해양 내부 파도에 대한 연구가 매우 중요합니다.

    최근 내부 파를 연구하는 방법에는 분석 이론 도출, 현장 조사 및 관찰, 실험실 실험 분석이 포함됩니다. 그러나 과학 기술의 급속한 발전, 발전과 발전, 컴퓨터의 대중화, 수치 계산 방법의 진화로 해양 공학과 관련된 많은 파동 효과는 일반적으로 수치 시뮬레이션 방법으로 해결됩니다.

    또한 수치 연산 방법의 비용이 현장 조사 관측 및 실험실 실험 해석보다 저렴하고 시뮬레이션 결과를 더 빨리 얻을 수 있기 때문에 본 논문에서는 전산 유체 역학 (전산 유체 역학, 참조)의 FLOW-를 선정 하였다. 3D 소프트웨어는 내부 파 생성, 전송, 장애물 통과, 점차 소멸하는 움직임 과정을 시뮬레이션하고, 내부 파의 변화 과정을 분석하고 비교하기 위해 이전 실험실 모델 실험을 참조합니다.

    圖1. 1  南海孤立內波空間分布圖(Hsu et al., 2000)
    圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)
    圖1. 2  障礙高度與分層流體厚度關係之示意圖
    圖1. 2 障礙高度與分層流體厚度關係之示意圖
    圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
    圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
    圖3. 3  實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
    圖3. 3 實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
    圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
    圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
    圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
    圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
    圖4. 6閘門開啟速率0.14 m/s之等密度線及流場
    圖4. 6閘門開啟速率0.14 m/s之等密度線及流場

    圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)
    圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)

    Reference

    Apel, J.R., Holbrook, J.R, Tsai, J. and Liu, A.K. (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanography, 15(12): 1625-1651. Ariyaratnam, J. (1998). Investigation of slope stability under internal wave action. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia. Baines, P.G. (1983). Tidal motion in submarine canyons – a laboratory experiment. J. Physical Oceanography, 13: 310-328. Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25: 241-270. Bole, J.B., Ebbesmeyer, J.J. and Romea, R.D. (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas. 367-375. Burnside, W. (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Soc., (1) xx, 392-397. Chen C.Y., J.R-C. Hsu, H.H. Chen, C.F. Kuo and Cheng M.H (2007). Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Engineering, 34: 157-170. Cheng M.H., J.R-C. Hsu, C.Y. Chen (2005). Numerical model for internal solitary wave evolution on impermeable variable seabad, Proc.27th Ocean Eng, pp.355-359. Choi, W. and Camassa, R. (1996). Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 313: 83-103. Ebbesmeyer, C.C., and Romea, R.D. (1992). Final design parameters for solitons at selected locations in South China Sea. Final and supplementary reports prepared for Amoco Production Company, 209pp. plus appendices. Ekman, V. M., (1904). “On dead-water, Norwegian North Polar Expedition”, 1893-1896. Scientific Results, 5(15):1-150. Farmer, D.M. (1978). Observation of long nonlinear internal waves in a lake. J. Phys. Oceanography, 8(1): 63-73. Garret, C. and Munk, W. (1972). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264. Gill, A.E. (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press. Harleman, D.R.F. (1961). Stratified flow. Ch. 26 in Handbook of Fluid Dynamics (ed., V. Streeter), NY: McGraw-Hill, (26): 1-21. Helfrich, K.R. (1992). Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech., 243: 133-154.

    Helfrich, K.R. and Melville, W.K. (1986). On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167: 285-308. Honji, H., Matsunaga, N., Sugihara, Y. and Sakai, K. (1995). Experimental observation of interanl symmetric solitary waves in a two-layer fluid. Fluid Dynamics Research, 15 (2): 89-102. Hsu, M.K., Liu, A.K., and Liu, C. (2000). A study of internal waves in the China Sea and Yellow Sea using SAR. Continental Shelf Research, 20: 389-410. Johns, K. (1999). Interaction of an internal wave with a submerged sill in a two-layer fluid. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia Kao, T.W., Pan, F.S. and Renouard, D. (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech. 159: 19-53. Koop, C.G. and Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251. Lin, T.W. (2001). A study on internal waves characteristics in north of South China Sea, Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan. (In Chinese). Lynett, P., Wu, T.-R. and Liu, P. L.-F. (2002), Modeling wave runup with depth-integrated equations, Coastal Engineering, Vol. 46, pp. 89-107. Ming-Hung Cheng,John R.-C. Hsu, Chen-Yuan Chen and Cheng-Wu Chen (2009). Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope.Environ Fluid Mech,9:321–340. Ming-Hung Cheng and John R.C. Hsu (2011). Effect of frontal slope on waveform evolution of a depression interfacial solitary wave across a trapezoidal obstacle. Ocean Engineering. Matsuno, Y. (1993). A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan, 62: 1902-1916. Michallet, H. and Barthelemy, E. (1998). Experimental study of interfacial solitary waves. J. Fluid Mech., 366: 159-177. Muller, P. and X. Liu (2000). Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies, J. Phys. Oceanogr., 30: 532-549 Nagashima, H. (1971). Reflection and breaking of internal waves on a sloping beach. J. Oceanographical Soc. Japan, 27(1): 1-6. Nansen, F. (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition 1893-1896, 3: 9. Osborne, A.R. and Burch, T.L. (1980). Internal solitons in the Andaman Sea. Science, 208 (43): 451-460

    82 Russell, J.S. (1844). On waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311-390. Sandstrom, H. and Elliot J. A. (1984). Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. Journal of Geophysical Research, 89 (C4): 6415-6428. Stokes G.G. (1847). On the Theory of Oscillatory Waves. Transactions of the Cambridge Philosophical Society, 8: 441–455. Strutt, J. W., Lord Rayleigh. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density.Proceedings of the London mathematical society, 8: pp. 170-177. Sveen, J.K., Guo, Y., Davies, P.A. and Grue, J. (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188. Vlasenko, V., and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. of Physical Oceanography, 32(6), pp.1779-1793. Wessels F. and Hutter K. (1996). Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr , 26: 5-20

    Mixing Tank with FLOW-3D

    CFD Stirs Up Mixing 일반

    CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.

    “병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아  피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .

    흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!

    예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.

    Giving Mixing Its Due

    “화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .

    이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.

    “모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.

    이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.

    동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.

    CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.

    컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .

    그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.

    반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.

    “복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.



    Seán Ottewell은 Chemical Processing의 편집장입니다. sottewell@putman.net으로 이메일을 보낼 수 있습니다 .

    기사 원문 : https://www.chemicalprocessing.com/articles/2017/cfd-stirs-up-mixing/

    CASE2-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)

    FLOW-3D WELD 용접 사례

    FLOW-3D WELD를 이용한 용접 해석 사례를 소개합니다.

    1. 열전도 형 용접 (레이저)
        두께가 다른 모재 맞대기
    2. 하이브리드
        레이저 / 아크 하이브리드
    3. 깊이 용해 형 (키 홀)
        알루미늄 평판에 의한 용해 깊이, 형상 확인
    4. 레이저 고기 모듬
        파우더 공급 및 용해
    5. 아크 용접
        오버레이 피팅 관통 평가
    6. 레이저 용접 (무릎 관절)
        무릎 관절의 실험과의 비교
    7. Selective Laser Sintering (3D printing)
        3 차원 프린터에의 응용

    레이저 용접의 특징

    에너지 밀도가 높고, 다른 재료도 시간 차이없이 녹아구슬 폭이 좁은비접촉 표면 성상 및 품질이 좋은제어 성이 우수전기 ⇒ 광 변환 효율이 나쁘다반사율이 높은 흡수율이 떨어진다weld_example1

    열전도 형 용접

    weld_example2

    열전도 형 용접 결과

    weld_example3weld_example4

    하이브리드

    강판의 레이저 / 아크 하이브리드 용접의 분석을 실시했습니다.

    분석 조건

    weld_example5CO2 레이저 출력 : 3.5kw디 포커스 값 : 0 mm레이저 스폿 지름 : 0.3mm아크 전류 : 180A아크 전압 : 26V용접 속도 : 1m / min열원 사이의 거리 : 3mm금속 : 900 MPa high strength steel

    메쉬

    weld_example6

    해석과 실험과의 비교

    온도의 단위는 [K]입니다.

    weld_example7

    깊이 용해형 (키 홀)

    해석 모델weld_example83D 온도 표시weld_example9

    레이저 금속 침전 Laser Metal Deposition (LMD)

    파우더 공급 레이저에 의한 용해

    해석 모델weld_example103D 온도 표시weld_example11

    아크 용접

    TIG (Tungsten Inert Gas)방전 전극으로 텅스텐을 사용불활성 (Inert) 가스를 사용 (아르곤, 헬륨 등)목적에 따라 필러 금속을 첨가 (와이어 or 필러 봉)공업 적으로 사용되는 대부분의 금속에 대응weld_example12

    분석 조건

    weld_example13

    분석 결과 : 온도 등고선 [K]

    TIG (Tungsten Inert Gas)모재 온도가 상승하고 조금 늦게 용융 풀이 확대표면 장력에 의해 용융 풀 바닥은 녹아 떨어지지 않는 weld_example14

    분석 결과 : 용융 부의 교반

    TIG (Tungsten Inert Gas)상하 모재를 분류하고 교반의 모습을 확인weld_example15

    분석 결과 : 용융 부 교반 유속 벡터

    TIG (Tungsten Inert Gas)아크 압력 차폐 가스에 의한 함몰표면 장력에 의한 계면 위치의 회복계면의 진동weld_example16

    분석 결과 : 구슬 모양

    TIG (Tungsten Inert Gas)상하면 구슬 폭용접 시작부터 정상까지의 과도적인 변화weld_example17

    분석 결과 : 고출력의 경우 온도 등고선 [K]

    TIG (Tungsten Inert Gas)고출력 의해 함몰이 커진다용융 풀의 두께가 얇아지고 관통하는weld_example18

    레이저 용접 (무릎 관절)

    weld_example19

    분석 결과와 실제의 단면 비교

    weld_example20

    Selective Laser Sintering (3D printing)

    weld_example21

    선택적 레이저 용융 분석

    weld_example22weld_example24
    weld_example23

    Simulation of EPS foam decomposition in the lost foam casting process

    X.J. Liu a,∗, S.H. Bhavnani b,1, R.A. Overfelt c,2
    a United States Steel Corporation, Great Lakes Works, #1 Quality Drive, Ecorse, MI 48229, United States b 213 Ross Hall, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341, United States c 202 Ross Hall, Department of Mechanical Engineering, Materials Engineering Program, Auburn University, Auburn, AL 36849-5341, United States
    Received 17 April 2006; received in revised form 14 July 2006; accepted 21 August 2006

    Keywords: Lost foam casting; Heat transfer coefficient; Gas pressure; VOF-FAVOR

    LFC (Loss Foam Casting) 공정에서 부드러운 몰드 충진의 중요성은 오랫동안 인식되어 왔습니다. 충진 공정이 균일할수록 생산되는 주조 제품의 품질이 향상됩니다. 성공적인 컴퓨터 시뮬레이션은 금형 충전 공정에서 복잡한 메커니즘과 다양한 공정 매개 변수의 상호 작용을 더 잘 이해함으로써 새로운 주조 제품 설계의 시도 횟수를 줄이고 리드 타임을 줄이는데 도움이 될 수 있습니다.

    이 연구에서는 용융 알루미늄의 유체 흐름과 금속과 발포 폴리스티렌 (EPS) 폼 패턴 사이의 계면 갭에 관련된 열 전달을 시뮬레이션하기 위해 전산 유체 역학 (CFD) 모델이 개발되었습니다.

    상업용 코드 FLOW-3D는 VOF (Volume of Fluid) 방법으로 용융 금속의 전면을 추적 할 수 있고 FAVOR (Fractional Area / Volume Ratios) 방법으로 복잡한 부품을 모델링 할 수 있기 때문에 사용되었습니다. 이 코드는 폼 열화 및 코팅 투과성과 관련된 기체 갭 압력을 기반으로 다양한 계면 열 전달 계수 (VHTC)의 효과를 포함하도록 수정되었습니다.

    수정은 실험 연구에 대해 검증되었으며 비교는 FLOW-3D의 기본 상수 열 전달 (CHTC) 모델보다 더 나은 일치를 보여주었습니다. 금속 전면 온도는 VHTC 모델에 의해 실험적 불확실성 내에서 예측되었습니다. 몰드 충전 패턴과 1-4 초의 충전 시간 차이는 여러 형상에 대해 CHTC 모델보다 VHTC 모델에 의해 더 정확하게 포착되었습니다. 이 연구는 전통적으로 매우 경험적인 분야에서 중요한 프로세스 및 설계 변수의 효과에 대한 추가 통찰력을 제공했습니다.

    지난 20 년 동안 LFC (Loss Foam Casting) 공정은 코어가 필요없는 복잡한 부품을 제조하기 위해 널리 채택되었습니다. 이는 자동차 제조업체가 현재 LFC 기술을 사용하여 광범위한 엔진 블록과 실린더 헤드를 생산하기 때문에 알루미늄 주조 산업에서 특히 그렇습니다.

    기본 절차, 적용 및 장점은 [1]에서 찾을 수 있습니다. LFC 프로세스는 주로 숙련 된 실무자의 경험적 지식을 기반으로 개발되었습니다. 발포 폴리스티렌 (EPS) 발포 분해의 수치 모델링은 최근에야 설계 및 공정 변수를 최적화하는 데 유용한 통찰력을 제공 할 수있는 지점에 도달했습니다. LFC 공정에서 원하는 모양의 발포 폴리스티렌 폼 패턴을 적절한 게이팅 시스템이있는 모래 주형에 배치합니다.

    폼 패턴은 용융 금속 전면이 패턴으로 진행될 때 붕괴, 용융, 기화 및 열화를 겪습니다. 전진하는 금속 전면과 후퇴하는 폼 패턴 사이의 간격 인 운동 영역은 Warner et al. [2] LFC 프로세스를 모델링합니다. 금형 충진 과정에서 분해 산물은 운동 영역에서 코팅층을 통해 모래로 빠져 나갑니다.

    용융 금속과 폼 패턴 사이의 복잡한 반응은 LFC 공정의 시뮬레이션을 극도로 어렵게 만듭니다. SOLA-VOF (SOLution AlgorithmVolume of Fluid) 방법이 Hirt와 Nichols [3]에 의해 처음 공식화 되었기 때문에 빈 금형을 사용한 전통적인 모래 주조 시뮬레이션은 광범위하게 연구되었습니다.

    Lost foam 주조 공정은 기존의 모래 주조와 많은 특성을 공유하기 때문에이 새로운 공정을 모델링하는 데 적용된 이론과 기술은 대부분 기존의 모래 주조를 위해 개발 된 시뮬레이션 방법에서 비롯되었습니다. 패턴 분해 속도가 금속성 헤드와 금속 전면 온도의 선형 함수라고 가정함으로써 Wang et al. [4]는 기존의 모래 주조의 기존 컴퓨터 프로그램을 기반으로 복잡한 3D 형상에서 Lost foam 주조 공정을 시뮬레이션했습니다.

    Liu et al. [5]는 금속 앞쪽 속도를 예측하기 위한 간단한 1D 수학적 모델과 함께 운동 영역의 배압을 포함했습니다. Mirbagheri et al. [6]은 SOLA-VOF 기술을 기반으로 금속 전면의 자유 표면에 대한 압력 보정 방식을 사용하는 Foam 열화 모델을 개발했습니다.

    Kuo et al.에 의해 유사한 배압 방식이 채택되었습니다. [7] 운동량 방정식에서이 힘의 값은 실험 결과에 따라 패턴의 충전 순서를 연구하기 위해 조정되었습니다.

    이러한 시뮬레이션의 대부분은 LFC 공정의 충전 속도가 기존의 모래 주조 공정보다 훨씬 느린 것으로 성공적으로 예측합니다. 그러나 Foam 분해의 역할은 대부분 모델의 일부가 아니며 시뮬레이션을 수행하려면 실험 데이터 또는 경험적 함수가 필요합니다.

    현재 연구는 일정한 열전달 계수 (CHTC)를 사용하는 상용 코드 FLOW-3D의 기본 LFC 모델을 수정하여 Foam 열화와 관련된 기체 갭 압력에 따라 다양한 열전달 계수 (VHTC)의 영향을 포함합니다. 코팅 투과성. 수정은 여러 공정 변수에 대한 실험 연구에 대해 검증되었습니다.

    또한, 손실 된 폼 주조에서 가장 중요한 문제인 결함 형성은 문헌에서 인용 된 수치 작업에서 모델링되지 않았습니다. 접힘, 내부 기공 및 표면 기포와 같은 열분해 결함은 LFC 작업에서 많은 양의 스크랩을 설명합니다. FLOW-3D의 결함 예측 기능은 프로세스를 이해하고 최적화하는데 매우 중요합니다.

    Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
    Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
    Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).
    Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).

    References

    [1] S. Shivkumar, L. Wang, D. Apelian, The lost-foam casting of aluminum alloy components, JOM 42 (11) (1990) 38–44.
    [2] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyrolysis defect reduction in lost foam castings, AFS Trans. 106 (1998) 777–785.
    [3] C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1) (1981) 201–225.
    [4] C. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Computational analysis of fluid flow and heat transfer during the EPC process, AFS Trans. 101 (1993) 897–904.
    [5] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, J. Mater. Sci. 37 (14) (2002) 2997–3003.
    [6] S.M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami, Simulation of melt flow in coated mould cavity in the lost foam casting process, J. Mater. Process. Technol. 142 (2003) 493–507.
    [7] J.-H. Kuo, J.-C. Chen, Y.-N. Pan, W.-S. Hwang, Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation, Mater. Trans. 44 (10) (2003) 2169–2174.
    [8] C.W. Hirt, Flow-3D User’s Manual, Flow Science Inc., 2005.
    [9] E.S. Duff, Fluid flow aspects of solidification modeling: simulation of low pressure die casting, The University of Queensland, Ph.D. Thesis, 1999.
    [10] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, The effects of foam density and metal velocity on the heat and mass transfer in the lost foam casting process, in: Proceedings of the ASME Summer Heat Transfer Conference, 2003,
    pp. 317–323.
    [11] W. Sun, P. Scarber Jr., H. Littleton, Validation and improvement of computer modeling of the lost foam casting process via real time X-ray technology, in: Multiphase Phenomena and CFD Modeling and Simulation in
    Materials Processes, Minerals, Metals and Materials Society, 2004, pp. 245–251.
    [12] T.V. Molibog, Modeling of metal/pattern replacement in the lost foam casting process, Materials Engineering, University of Alabama, Birmingham, Ph.D. Thesis, 2002.
    [13] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Measurement of kinetic zone temperature and heat transfer coefficient in the lost foam casting process, ASME Int. Mech. Eng. Congr. (2004) 411–418.
    [14] X. Yao, An experimental analysis of casting formation in the expendable
    pattern casting (EPC) process, Department of Materials Science and Engineering, Worcester Polytechnic Institute, M.S. Thesis, 1994.
    [15] M.R. Barkhudarov, C.W. Hirt, Tracking defects, Die Casting Engineer 43 (1) (1999) 44–52.
    [16] C.W. Hirt, Modeling the Lost Foam Process with Defect PredictionsProgress Report: Lost-Foam Model Extensions, Wicking, Flow Science Inc., 1999.
    [17] D. Wang, Thermophysical Properties, Solidification Design Center, Auburn University, 2001.
    [18] S. Shivkumar, B. Gallois, Physico-chemical aspects of the full mold casting of aluminum alloys, part II: metal flow in simple patterns, AFS Trans. 95 (1987) 801–812.

    Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.

    Effect of substrate cooling and droplet shape and composition on the droplet evaporation and the deposition of particles

    기판 냉각 및 액적 모양 및 조성이 액적 증발 및 입자 증착에 미치는 영향

    by Vahid Bazargan
    M.A.Sc., Mechanical Engineering, The University of British Columbia, 2008
    B.Sc., Mechanical Engineering, Sharif University of Technology, 2006
    B.Sc., Chemical & Petroleum Engineering, Sharif University of Technology, 2006

    고착 방울은 평평한 기판에 놓인 액체 방울입니다. 작은 고정 액적이 증발하는 동안 액적의 접촉선은 고정된 접촉 영역이 있는 고정된 단계와 고정된 접촉각이 있는 고정 해제된 단계의 두 가지 단계를 거칩니다. 고정된 접촉 라인이 있는 증발은 액적 내부에서 접촉 라인을 향한 흐름을 생성합니다.

    이 흐름은 입자를 운반하고 접촉 선 근처에 침전시킵니다. 이로 인해 일반적으로 관찰되는 “커피 링”현상이 발생합니다. 이 논문은 증발 과정과 고착성 액적의 증발 유도 흐름에 대한 연구를 제공하고 콜로이드 현탁액에서 입자의 침착에 대한 통찰력을 제공합니다. 여기서 우리는 먼저 작은 고착 방울의 증발을 연구하고 증발 과정에서 기판의 열전도도의 중요성에 대해 논의합니다.

    현재 증발 모델이 500µm 미만의 액적 크기에 대해 심각한 오류를 생성하는 방법을 보여줍니다. 우리의 모델에는 열 효과가 포함되어 있으며, 특히 증발 잠열의 균형을 맞추기 위해 액적에 열을 제공하는 기판의 열전도도를 포함합니다. 실험 결과를 바탕으로 접촉각의 진화와 관련된 접촉 선의 가상 움직임을 정의하여 고정 및 고정 해제 단계의 전체 증발 시간을 고려합니다.

    우리의 모델은 2 % 미만의 오차로 500 µm보다 작은 물방울에 대한 실험 결과와 일치합니다. 또한 유한한 크기의 라인 액적의 증발을 연구하고 증발 중 접촉 라인의 복잡한 동작에 대해 논의합니다. 에너지 공식을 적용하고 접촉 선이 구형 방울의 후퇴 접촉각보다 높은 접촉각을 가진 선 방울의 두 끝에서 후퇴하기 시작 함을 보여줍니다. 그리고 라인 방울 내부의 증발 유도 흐름을 보여줍니다.

    마지막으로, 계면 활성제 존재 하에서 접촉 라인의 거동을 논의하고 입자 증착에 대한 Marangoni 흐름 효과에 대해 논의합니다. 열 Marangoni 효과는 접촉 선 근처에 증착 된 입자의 양에 영향을 미치며, 기판 온도가 낮을수록 접촉 선 근처에 증착되는 입자의 양이 많다는 것을 알 수 있습니다.

    Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.
    Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.
    Figure 2.1: Evaporation modes of sessile droplets on a substrate: (a) evaporation at constant contact angle (de-pinned stage) and (b) evaporation at constant contact area (pinned stage)
    Figure 2.1: Evaporation modes of sessile droplets on a substrate: (a) evaporation at constant contact angle (de-pinned stage) and (b) evaporation at constant contact area (pinned stage)
    Figure 2.2: A sessil droplet with its image can be profiled as the equiconvex lens formed by two intersecting spheres with radius of a.
    Figure 2.2: A sessil droplet with its image can be profiled as the equiconvex lens formed by two intersecting spheres with radius of a.
    Figure 2.3: The droplet life time for both evaporation modes derived from Equation 2.2.
    Figure 2.3: The droplet life time for both evaporation modes derived from Equation 2.2.
    Figure 2.4: A probability of escape for vapor molecules at two different sites of the surface of the droplet for diffusion controlled evaporation. The random walk path initiated from a vapor molecule is more likely to result in a return to the surface if the starting point is further away from the edge of the droplet.
    Figure 2.4: A probability of escape for vapor molecules at two different sites of the surface of the droplet for diffusion controlled evaporation. The random walk path initiated from a vapor molecule is more likely to result in a return to the surface if the starting point is further away from the edge of the droplet.
    Figure 2.5: Schematic of the sessile droplet on a substrate
    Figure 2.5: Schematic of the sessile droplet on a substrate. The evaporation rate at the surface of the droplet is enhanced toward the edge of the droplet.
    Figure 2.6: The domain mesh (a) and the solution of the Laplace equation for diffusion of the water vapor molecule with the concentration of Cv = 1.9×10−8 g/mm3 at the surface of the droplet into the ambient air with the relative humidity of 55%, i.e. φ = 0.55 (b).
    Figure 2.6: The domain mesh (a) and the solution of the Laplace equation for diffusion of the water vapor molecule with the concentration of Cv = 1.9×10−8 g/mm3 at the surface of the droplet into the ambient air with the relative humidity of 55%, i.e. φ = 0.55 (b).
    Figure 3.1: The portable micro printing setup. A motorized linear stage from Zaber Technologies Inc. was used to control the place and speed of the micro nozzle.
    Figure 3.1: The portable micro printing setup. A motorized linear stage from Zaber Technologies Inc. was used to control the place and speed of the micro nozzle.
    Figure 4.6: Temperature contours inside the substrate adjacent to the droplet
    Figure 4.6: Temperature contours inside the substrate adjacent to the droplet
    Figure 4.7: The effect of substrate cooling on the evaporation rate, the basic model shows the same value for all substrates.
    Figure 4.7: The effect of substrate cooling on the evaporation rate, the basic model shows the same value for all substrates.

    Bibliography

    [1] R. G. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” Journal of Colloid and Interface Science, vol. 61, pp. 336–350, Sept. 1977. → pages viii, 8, 9, 18, 42
    [2] H. Y. Erbil, “Evaporation of pure liquid sessile and spherical suspended drops: A review,” Advances in Colloid and Interface Science, vol. 170, pp. 67–86, Jan. 2012. → pages 1
    [3] R. Sharma, C. Y. Lee, J. H. Choi, K. Chen, and M. S. Strano, “Nanometer positioning, parallel alignment, and placement of single anisotropic nanoparticles using hydrodynamic forces in cylindrical droplets,” Nano Lett., vol. 7, no. 9, pp. 2693–2700, 2007. → pages 1, 54, 71
    [4] S. Tokonami, H. Shiigi, and T. Nagaoka, “Review: Micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications,” Analytica Chimica Acta, vol. 641, pp. 7–13, May 2009. →pages 71
    [5] A. A. Sagade and R. Sharma, “Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature,” Sensors and Actuators B: Chemical, vol. 133, pp. 135–143, July 2008. → pages
    [6] W. R. Small, C. D. Walton, J. Loos, and M. in het Panhuis, “Carbon nanotube network formation from evaporating sessile drops,” The Journal of Physical Chemistry B, vol. 110, pp. 13029–13036, July 2006. → pages 71
    [7] S. H. Ko, H. Lee, and K. H. Kang, “Hydrodynamic flows in electrowetting,” Langmuir, vol. 24, pp. 1094–1101, Feb. 2008. → pages 42
    [8] T. T. Nellimoottil, P. N. Rao, S. S. Ghosh, and A. Chattopadhyay, “Evaporation-induced patterns from droplets containing motile and nonmotile bacteria,” Langmuir, vol. 23, pp. 8655–8658, Aug. 2007. → pages 1
    [9] R. Sharma and M. S. Strano, “Centerline placement and alignment of anisotropic nanotubes in high aspect ratio cylindrical droplets of nanometer diameter,” Advanced Materials, vol. 21, no. 1, p. 6065, 2009. → pages 1, 54, 71
    [10] V. Dugas, J. Broutin, and E. Souteyrand, “Droplet evaporation study applied to DNA chip manufacturing,” Langmuir, vol. 21, pp. 9130–9136, Sept. → pages 2, 71
    [11] Y.-C. Hu, Q. Zhou, Y.-F. Wang, Y.-Y. Song, and L.-S. Cui, “Formation mechanism of micro-flows in aqueous poly(ethylene oxide) droplets on a substrate at different temperatures,” Petroleum Science, vol. 10, pp. 262–268, June 2013. → pages 2, 34, 54
    [12] T.-S. Wong, T.-H. Chen, X. Shen, and C.-M. Ho, “Nanochromatography driven by the coffee ring effect,” Analytical Chemistry, vol. 83, pp. 1871–1873, Mar. 2011. → pages 71
    [13] J.-H. Kim, S.-B. Park, J. H. Kim, and W.-C. Zin, “Polymer transports inside evaporating water droplets at various substrate temperatures,” The Journal of Physical Chemistry C, vol. 115, pp. 15375–15383, Aug. 2011. → pages 54
    [14] S. Choi, S. Stassi, A. P. Pisano, and T. I. Zohdi, “Coffee-ring effect-based three dimensional patterning of Micro/Nanoparticle assembly with a single droplet,” Langmuir, vol. 26, pp. 11690–11698, July 2010. → pages
    [15] D. Wang, S. Liu, B. J. Trummer, C. Deng, and A. Wang, “Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells,” Nature biotechnology, vol. 20, pp. 275–281, Mar. PMID: 11875429. → pages 2, 54, 71
    [16] H. K. Cammenga, “Evaporation mechanisms of liquids,” Current topics in materials science, vol. 5, pp. 335–446, 1980. → pages 3
    [17] C. Snow, “Potential problems and capacitance for a conductor bounded by two intersecting spheres,” Journal of Research of the National Bureau of Standards, vol. 43, p. 337, 1949. → pages 9
    [18] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Physical Review E, vol. 62, p. 756, July 2000. → pages 10, 14, 18, 27, 53, 54, 71, 84
    [19] H. Hu and R. G. Larson, “Evaporation of a sessile droplet on a substrate,” The Journal of Physical Chemistry B, vol. 106, pp. 1334–1344, Feb. 2002. → pages 12, 18, 29, 43, 44, 48, 49, 53, 61, 71, 84
    [20] Y. O. Popov, “Evaporative deposition patterns: Spatial dimensions of the deposit,” Physical Review E, vol. 71, p. 036313, Mar. 2005. → pages 14, 27, 43, 44, 45, 54
    [21] H. Gelderblom, A. G. Marin, H. Nair, A. van Houselt, L. Lefferts, J. H. Snoeijer, and D. Lohse, “How water droplets evaporate on a superhydrophobic substrate,” Physical Review E, vol. 83, no. 2, p. 026306,→ pages
    [22] F. Girard, M. Antoni, S. Faure, and A. Steinchen, “Influence of heating temperature and relative humidity in the evaporation of pinned droplets,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 323, pp. 36–49, June 2008. → pages 18
    [23] Y. Y. Tarasevich, “Simple analytical model of capillary flow in an evaporating sessile drop,” Physical Review E, vol. 71, p. 027301, Feb. 2005. → pages 19, 54, 62, 72
    [24] A. J. Petsi and V. N. Burganos, “Potential flow inside an evaporating cylindrical line,” Physical Review E, vol. 72, p. 047301, Oct. 2005. → pages 22, 55, 62, 68, 71
    [25] A. J. Petsi and V. N. Burganos, “Evaporation-induced flow in an inviscid liquid line at any contact angle,” Physical Review E, vol. 73, p. 041201, Apr.→ pages 23, 53, 55, 72
    [26] H. Masoud and J. D. Felske, “Analytical solution for stokes flow inside an evaporating sessile drop: Spherical and cylindrical cap shapes,” Physics of Fluids, vol. 21, pp. 042102–042102–11, Apr. 2009. → pages 23, 55, 62, 71, 72
    [27] H. Hu and R. G. Larson, “Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet,” Langmuir, vol. 21, pp. 3972–3980, Apr. 2005. → pages 24, 28, 53, 54, 56, 62, 68, 71, 72, 74, 84
    [28] R. Bhardwaj, X. Fang, and D. Attinger, “Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study,” New Journal of Physics, vol. 11, p. 075020, July 2009. → pages 28
    [29] A. Petsi, A. Kalarakis, and V. Burganos, “Deposition of brownian particles during evaporation of two-dimensional sessile droplets,” Chemical Engineering Science, vol. 65, pp. 2978–2989, May 2010. → pages 28
    [30] J. Park and J. Moon, “Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing,” Langmuir, vol. 22, pp. 3506–3513, Apr. 2006. → pages 28
    [31] H. Hu and R. G. Larson, “Marangoni effect reverses coffee-ring depositions,” The Journal of Physical Chemistry B, vol. 110, pp. 7090–7094, Apr. 2006. → pages 29, 74
    [32] K. H. Kang, S. J. Lee, C. M. Lee, and I. S. Kang, “Quantitative visualization of flow inside an evaporating droplet using the ray tracing method,” Measurement Science and Technology, vol. 15, pp. 1104–1112, June 2004. → pages 34
    [33] S. T. Beyer and K. Walus, “Controlled orientation and alignment in films of single-walled carbon nanotubes using inkjet printing,” Langmuir, vol. 28, pp. 8753–8759, June 2012. → pages 42, 71
    [34] G. McHale, “Surface free energy and microarray deposition technology,” Analyst, vol. 132, pp. 192–195, Feb. 2007. → pages 42
    [35] R. Bhardwaj, X. Fang, P. Somasundaran, and D. Attinger, “Self-assembly of colloidal particles from evaporating droplets: Role of DLVO interactions and proposition of a phase diagram,” Langmuir, vol. 26, pp. 7833–7842, June→ pages 42
    [36] G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, “The strong influence of substrate conductivity on droplet evaporation,” Journal of Fluid Mechanics, vol. 623, no. 1, p. 329351, 2009. → pages 44
    [37] M. S. Plesset and A. Prosperetti, “Flow of vapour in a liquid enclosure,” Journal of Fluid Mechanics, vol. 78, pp. 433–444, 1976. → pages 44
    [38] S. Das, P. R. Waghmare, M. Fan, N. S. K. Gunda, S. S. Roy, and S. K. Mitra, “Dynamics of liquid droplets in an evaporating drop: liquid droplet coffee stain? effect,” RSC Advances, vol. 2, pp. 8390–8401, Aug. 2012. → pages 53
    [39] B. J. Fischer, “Particle convection in an evaporating colloidal droplet,” Langmuir, vol. 18, pp. 60–67, Jan. 2002. → pages 54
    [40] J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, and G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology, vol. 7, p. 452, Dec. 1996. → pages 54
    [41] T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, “Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits,” Advanced Materials, vol. 13, no. 21, p. 16011605, 2001. → pages 71
    [42] B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: State of the art and future developments,” Advanced Materials, vol. 16, no. 3, p. 203213, 2004. → pages 71
    [43] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, pp. 2123–2126, Dec. 2000. PMID:→ pages
    [44] D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir, vol. 24, pp. 2224–2231, Mar. 2008. → pages 54
    [45] R. Tadmor and P. S. Yadav, “As-placed contact angles for sessile drops,” Journal of Colloid and Interface Science, vol. 317, pp. 241–246, Jan. 2008. → pages 56
    [46] J. Drelich, “The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 116, pp. 43–54, Sept. 1996. → pages 56
    [47] R. Tadmor, “Line energy, line tension and drop size,” Surface Science, vol. 602, pp. L108–L111, July 2008. → pages 69
    [48] C.-H. Choi and C.-J. C. Kim, “Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights,” Langmuir, vol. 25, pp. 7561–7567, July 2009. → pages 71
    [49] K. F. Baughman, R. M. Maier, T. A. Norris, B. M. Beam, A. Mudalige, J. E. Pemberton, and J. E. Curry, “Evaporative deposition patterns of bacteria from a sessile drop: Effect of changes in surface wettability due to exposure to a laboratory atmosphere,” Langmuir, vol. 26, pp. 7293–7298, May 2010.
    [50] D. Brutin, B. Sobac, and C. Nicloux, “Influence of substrate nature on the evaporation of a sessile drop of blood,” Journal of Heat Transfer, vol. 134, pp. 061101–061101, May 2012. → pages 71
    [51] D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Condra, and H. Durou, “Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor,” Journal of Power Sources, vol. 195, pp. 1266–1269, Feb. 2010. → pages 71
    [52] J. Bachmann, A. Ellies, and K. Hartge, “Development and application of a new sessile drop contact angle method to assess soil water repellency,” Journal of Hydrology, vol. 231232, pp. 66–75, May 2000. → pages 71
    [53] H. Y. Erbil, G. McHale, and M. I. Newton, “Drop evaporation on solid surfaces: constant contact angle mode,” Langmuir, vol. 18, no. 7, pp. 2636–2641, 2002. → pages
    [54] X. Fang, B. Li, J. C. Sokolov, M. H. Rafailovich, and D. Gewaily, “Hildebrand solubility parameters measurement via sessile drops evaporation,” Applied Physics Letters, vol. 87, pp. 094103–094103–3, Aug.→ pages
    [55] Y. C. Jung and B. Bhushan, “Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces,” Journal of Microscopy, vol. 229, no. 1, p. 127140, 2008. → pages 71
    [56] J. Drelich, J. D. Miller, and R. J. Good, “The effect of drop (bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques,”
    Journal of Colloid and Interface Science, vol. 179, pp. 37–50, Apr. 1996. →pages 72, 75
    [57] D. Bargeman and F. Van Voorst Vader, “Effect of surfactants on contact angles at nonpolar solids,” Journal of Colloid and Interface Science, vol. 42, pp. 467–472, Mar. 1973. → pages 73
    [58] J. Menezes, J. Yan, and M. Sharma, “The mechanism of alteration of macroscopic contact angles by the adsorption of surfactants,” Colloids and Surfaces, vol. 38, no. 2, pp. 365–390, 1989. → pages
    [59] T. Okubo, “Surface tension of structured colloidal suspensions of polystyrene and silica spheres at the air-water interface,” Journal of Colloid and Interface Science, vol. 171, pp. 55–62, Apr. 1995. → pages 73, 76
    [60] R. Pyter, G. Zografi, and P. Mukerjee, “Wetting of solids by surface-active agents: The effects of unequal adsorption to vapor-liquid and solid-liquid interfaces,” Journal of Colloid and Interface Science, vol. 89, pp. 144–153, Sept. 1982. → pages 73
    [61] T. Mitsui, S. Nakamura, F. Harusawa, and Y. Machida, “Changes in the interfacial tension with temperature and their effects on the particle size and stability of emulsions,” Kolloid-Zeitschrift und Zeitschrift fr Polymere, vol. 250, pp. 227–230, Mar. 1972. → pages 73
    [62] S. Phongikaroon, R. Hoffmaster, K. P. Judd, G. B. Smith, and R. A. Handler, “Effect of temperature on the surface tension of soluble and insoluble surfactants of hydrodynamical importance,” Journal of Chemical & Engineering Data, vol. 50, pp. 1602–1607, Sept. 2005. → pages 73, 80
    [63] V. S. Vesselovsky and V. N. Pertzov, “Adhesion of air bubbles to the solid surface,” Zh. Fiz. Khim, vol. 8, pp. 245–259, 1936. → pages 75
    [64] Hideo Nakae, Ryuichi Inui, Yosuke Hirata, and Hiroyuki Saito, “Effects of surface roughness on wettability,” Acta Materialia, vol. 46, pp. 2313–2318, Apr. 1998. → pages
    [65] R. J. Good and M. Koo, “The effect of drop size on contact angle,” Journal of Colloid and Interface Science, vol. 71, pp. 283–292, Sept. 1979. → pages

    FLOW-3D Weld

    FLOW-3D Weld

    FLOW-3D  WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하여 공정 최적화를 달성합니다. 더 나은 공정 제어를 통해 다공성, 열 영향 영역을 최소화하고, 미세 구조 변화를 제어 할 수 있습니다. 레이저 용접 프로세스를 정확하게 시뮬레이션하기 위해 FLOW-3D WELD 는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화와 같은 모든 관련 물리학을 구현합니다.

     

    낮은 열 입력,  뛰어난 생산성, 속도는 기존의 용접 방법을 대체하는 레이저 용접 프로세스로 이어집니다. 레이저 용접이 제공하는 장점 중 일부는 더 나은 용접 강도, 더 작은 열 영향 영역, 더 정밀한 정밀도, 최소 변형 및 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 / 합금을 용접 할 수있는 능력을 포함합니다.

    공정 최적화

    FLOW-3D WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 공정 최적화를 달성하는 데 도움이됩니다. 더 나은 공정 제어로 다공성을 최소화하고 열 영향을받는 영역을 제한하며 미세 구조 변화를 제어 할 수 있습니다. FLOW-3D WELD 는 자유 표면 추적 알고리즘으로 인해 매우 복잡한 용접 풀을 시뮬레이션하는 데 매우 적합합니다. FLOW-3D WELD 는 관련 물리적 모델을 FLOW-3D 에 추가로 통합하여 개발되었습니다.  레이저 소스에 의해 생성된 열유속, 용융 금속의 증발 압력, 차폐 가스 효과, 용융 풀의 반동 압력 및 키홀 용접의 다중 레이저 반사. 현실적인 공정 시뮬레이션을 위해 모든 관련 물리 현상을 포착하는 것이 중요합니다.

     

    얕은 용입 용접 (왼쪽 상단); 실드 가스 효과가 있는 깊은 용입 용접 (오른쪽 상단); 쉴드 가스 및 증발 압력을 사용한 심 용입 용접 (왼쪽 하단); 쉴드 가스, 증발 압력 및 다중 레이저 반사 효과 (오른쪽 하단)를 사용한 깊은 침투 용접.

    FLOW-3D WELD 는 레이저 용접의 전도 모드와 키홀 모드를 모두 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D WELD 를 사용하여 용융 풀 역학을 분석하고 공정 매개 변수를 최적화하여 다공성을 최소화하며 레이저 용접 수리 공정에서 결정 성장을 예측합니다.

    완전 관통 레이저 용접 실험

    한국의 KAIST와 독일의 BAM은 16K kW 레이저를 사용하여 10mm 강판에 완전 침투 레이저 용접 실험을 수행했습니다. CCD 카메라의 도움으로 그들은 완전 침투 레이저 용접으로 인해 형성된 상단 및 하단 용융 풀 역학을 포착 할 수있었습니다. 그들은 또한 FLOW-3D WELD 에서 프로세스를  시뮬레이션하고 시뮬레이션과 실험 결과 사이에 좋은 일치를 얻었습니다.

    실험 설정 레이저 용접
    CCD 카메라로 상단 및 하단 용융 풀을 관찰하는 실험 설정
    레이저 용접 회로도
    FLOW-3D의 계산 영역 개략도
    레이저 용접 시뮬레이션 실험 결과
    상단의 시뮬레이션 결과는 용융 풀 길이가 8mm 및 15mm 인 반면 실험에서는 용융 풀 길이가 7mm 및 13mm임을 나타냅니다.
     

    레이저 용접 다공성 사례 연구

    General Motors, Michigan 및 Shanghai University는 중국의 공정 매개 변수, 즉 용접 속도 및 용접 경사각이 키홀 용접에서 다공성 발생에 미치는 영향을 이해하기 위해 상세한 연구를 공동으로 진행했습니다.

    키홀 유도 용접 다공성
    레이저 용접된 알루미늄 조인트 단면의 용접 다공성, 키홀 유도 다공성은 유동 역학으로 인해 발생하며 균열을 일으킬 수 있습니다. 최적화 된 공정 매개 변수는 이러한 종류의 다공성을 완화 할 수 있습니다.

    연구원들은 FLOW-3D WELD를 사용 하여 증발 및 반동 압력, 용융풀 역학, 온도 의존적 ​​표면 장력 및 키홀 내에서 여러 번의 레이저 반사 동안 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

    시뮬레이션 모델을 기반으로 연구진은 키홀 용접에서 유도 다공성의 주요 원인으로 불안정한 키홀을 식별했습니다. 아래 이미지에서 볼 수 있듯이 후방 용융 풀의 과도한 재순환으로 인해 후방 용융 풀이 전방 용융 풀 벽에서 붕괴되고 공극이 발생하여 다공성이 발생합니다. 이러한 갇힌 공극이 진행되는 응고 경계에 의해 포착되었을 때 다공성이 유도되었습니다.

    높은 용접 속도에서는 더 큰 키홀 개구부가 있으며 이는 일반적으로 더 안정적인 키홀 구성을 가져옵니다. 사용 FLOW-3D 용접 , 연구진은 그 높은 용접 속도와 경사도 완화 다공성의 큰 용접 각도를 예측했습니다.

    레이저 용접 수치 실험 결과
    시뮬레이션 (위) 및 실험 (아래)에서 볼 수있는 세로 용접 섹션의 다공성 분포

    FLOW Weld

    FLOW Weld  모듈은 용접 해석에 필요한 모델을 FLOW-3D 에 추가하는 추가 모듈입니다.

    FLOW-3D 의 표면 장력 자유 표면 분석, 용융, 응고, 증발, 상 변화 모델 등의 기본 기능을

    응용하여 각종 용접 현상을 분석 할 수 있습니다.

    주요 기능 :열원 모델 (출력 지정, 가우스분포, 디 포커스 등) 열원의 자유로운 이동 증발 압력 (그에 따른 반력) 실드 가스 압력 다중 반사 용접에 관한 대표적인 출력 (온도 구배 냉각 속도, 에너지 분포 등)
    분석 용도 :높은 방사선 강도와 고온에 의해 직접 관찰이 어려운 현상을 시각화 온도, 열, 용접 속도, 위치 관계, 재료 물성 등의 매개 변수 연구 결함 예측 (기공, 응고, 수축 등)

    FLOW -3D Weld 분석 기능

    weld_flow
    1. 열원 모델의 이동
        출력량 지정, 가우스분포
    2. 에너지 밀도의 분포 , 가공 속도
        가우스 테이블 입력
    3. 증발 압력
        온도 의존성
    4. 다중 반사
        용해 깊이에 미치는 영향
    5. 결과 처리
        용해 모양, 에너지 분포, 온도 구배 냉각 속도
    6. 다양항형상의 레이저와 거동 (+ csv 파일로드)
        다양한 모양을 csv 파일 형식으로 정의 회전 + 이동
        임의 형상 이동을 csv 파일로 로드 (나선형)
    7.  이종 재료
        이종 재료의 용접
    8.  3D Printing Method  
        Cladding 적층공정

    1. 열원 모델의 이동

    weld16-1weld16-2
    에너지 밀도공간 분포

    2. 에너지 밀도의 분포, 가공 속도

    열 플럭스 r 방향의 분포 단면은 원형으로, r 방향으로 열유속 분포를 제공합니다.

    에너지 밀도의 공간적 분포

    가우스 : 원추형의 경우는 조사 방향으로 변화하고 열유속의 면적 분은 동일합니다.

    가공 속도

    가공 노즐을 x, y, z 방향, 시간 – 속도의 테이블에서 지정합니다.
    또한 노즐 (광원) 위치 좌표 조사 방향 벡터 성분을 지정합니다.

    3. 증발 압력

    에너지 밀도가 높은 경우, 용융 부 계면이 증발하고 그 반력에 의해 계면에 함몰이 발생합니다.
    특히 깊은 용융부를 포함한 레이저 용접은 증발 압력을 고려한 모델링이 필요합니다.

    증발 압력의 평가는 일반적인 수학적 모델이 없기 때문에 다음 모델 식을 사용합니다.

    증발 가스의 상승 효과 (키 홀, 스퍼터 등)

    증기의 상승 흐름의 영향을 동압, 전단력으로 평가합니다.

    weld5-1 

    4. 다중 반사

    키홀 거동의 비교

    weld9
    다중 반사 없음다중 반사 있음

    다중 반사를 고려한 레이저

    weld10

    5. 결과 처리

    용접 기능에 관한 대표적인 출력 예입니다.

    6. 다양한 형상의 레이저와 거동 (+ csv 파일 읽기)

    weld17weld18

    7. 이종 재료

    이종 재료 간이 분석

    재료 : 철, 구리

    밀도고상율
    weld19

    이종 재료를 이용한 레이저 용접

    재료 : 구리, 철

    재료 체적 비율온도
    weld20

    8. 금속 3D 프린팅 기법  

    – 적층 제조 (Additive Manufacturing) 공정

    – DED(Direct Energy Deposition) 공정 

    FLOW-3D HYDRO

    FLOW-3D HYDRO 2023R2
    FLOW-3D HYDRO 2023R2

    FLOW-3D HYDRO 2023R2 의 새로운 기능

    새로운 결과 파일 형식

    FLOW-3D POST 2023R2는 EXODUS II 형식을 기반으로 하는 완전히 새로운 결과 파일 형식을 도입하여 더 빠른 후처리를 가능하게 합니다. 이 새로운 파일 형식은 크고 복잡한 시뮬레이션의 후처리 작업에 소요되는 시간을 크게 줄이는 동시에(평균 최대 5배!) 다른 시각화 도구와의 연결성을 향상시킵니다.

    FLOW-3D POST 2023R2 에서 사용자는 이제 선택한 데이터를 flsgrf  또는 EXODUS II 파일 형식으로 쓸 수 있습니다 . 새로운 EXODUS II 파일 형식은 각 개체에 대해 유한 요소 메시를 활용하므로 사용자는 다른 호환 가능한 포스트 프로세서 및 FEA 코드를 사용하여 FLOW-3D HYDRO 결과를 열 수도 있습니다. 새로운 워크플로우를 통해 사용자는 크고 복잡한 사례를 신속하게 시각화하고 임의 슬라이싱, 볼륨 렌더링 및 통계를 사용하여 보조 정보를 추출할 수 있습니다. 

    혼입 공기 시뮬레이션
    FLOW-3D POST 의 새로운 EXODUS II 파일 형식에서 볼륨 렌더링 기능을 사용하여 동반된 공기를 보여주는 예입니다 .

    새로운 결과 파일 형식은 hydr3d 솔버의 성능을 저하시키지 않으면서 flsgrf 에 비해 시각화 작업 흐름에서 놀라운 속도 향상을 자랑합니다. 이 흥미로운 새로운 개발은 결과 분석의 속도와 유연성이 향상되어 원활한 시뮬레이션 경험을 제공합니다. 

    FLOW-3D POST 의 새로운 시각화 기능 에 대해 자세히 알아보세요 .

    난류 모델 개선

    FLOW-3D HYDRO 2023R2는 2방정식(RANS) 난류 모델에 대한 동적 혼합 길이 계산을 크게 개선했습니다. 거의 층류 흐름 체계와 같은 특정 제한 사례에서는 이전 버전의 코드 계산 제한기가 때때로 과도하게 예측되어 사용자가 특정 혼합 길이를 수동으로 입력해야 할 수 있습니다. 

    새로운 동적 혼합 길이 계산은 이러한 상황에서 난류 길이와 시간 규모를 더 잘 설명하며, 이제 사용자는 고정(물리 기반) 혼합 길이를 설정하는 대신 더 넓은 범위의 흐름에 동적 모델을 적용할 수 있습니다.

    접촉식 탱크 혼합 시뮬레이션
    적절한 고정 혼합 길이와 비교하여 접촉 탱크의 혼합 시뮬레이션을 위한 기존 동적 혼합 길이 모델과 새로운 동적 혼합 길이 모델 간의 비교

    정수압 초기화

    사용자가 미리 정의된 유체 영역에서 정수압을 초기화해야 하는 경우가 많습니다. 이전에는 대규모의 복잡한 시뮬레이션에서 정수압 솔버의 수렴 속도가 느려지는 경우가 있었습니다. FLOW-3D HYDRO 2023R2는 정수압 솔버의 성능을 크게 향상시켜 전처리 단계에서 최대 6배 빠르게 수렴할 수 있도록 해줍니다.

    확장된 지형 표현 지원

    GeoTIFF 지원

    2023R2 릴리스에서 FLOW-3D HYDRO는 기본적으로 래스터 지형 및 수심 측량을 위한 GeoTIFF(.tif) 파일 형식을 지원합니다. 이제 사용자는 GeoTIFF 파일을 사용자 인터페이스로 직접 가져올 수 있습니다. 

    GeoTIFF 래스터 파일의 예
    FLOW-3D HYDRO 에서 렌더링된 GeoTIFF(.tif) 래스터 파일의 예

    LandXML 지원

    측량 데이터가 균일하지 않거나 래스터 표면의 해상도가 충분하지 않은 경우 TIN 표면은 LandXML(.xml) 파일 형식을 통해 향상된 지형 지도를 제공합니다. FLOW-3D HYDRO 2023R2는 기본적으로 LandXML 파일을 가져옵니다. 

    래스터 파일과의 향상된 상호 작용

    래스터 파일은 고해상도에서 넓은 지형 영역을 다루는 경우가 많으므로 사용자 인터페이스에서 3D 표현의 상호 작용 속도가 느려질 수 있습니다. 이제 사용자는 3D 표현의 품질을 제어하여 렌더링 시간을 크게 줄이고 상호 작용성을 크게 향상시킬 수 있습니다.

    FLOW-3D HYDRO 2023R1 의 새로운 기능

    FLOW-3D 소프트웨어 제품군의 모든 제품은 2023R1에서 IT 관련 개선 사항을 받았습니다. 

    FLOW-3D HYDRO 2023R1은 이제 Windows 11 및 RHEL 8을 지원합니다. Linux 설치 프로그램은 누락된 종속성을 보고하도록 개선되었으며 더 이상 루트 수준 권한이 필요하지 않으므로 설치가 더 쉽고 안전해집니다. 그리고 워크플로를 자동화한 분들을 위해 입력 파일 변환기에 명령줄 인터페이스를 추가하여 스크립트 환경에서도 워크플로가 업데이트된 입력 파일로 작동하는지 확인할 수 있습니다.

    천수(shallow water) 난류 모델

    난류는 물과 환경 흐름장의 주요 측면이며, 특히 천수(shallow water) 근사치로 모델링된 영역에서는 더욱 그렇습니다. 우리는 모델링 위험을 줄이고 더 나은 결과를 제공하기 위해 세 가지 새로운 난류 모델, 일정한 확산도, 혼합 길이 및 Smagorinsky 모델을 포함하도록 천수(shallow water) 모델의 난류 처리를 개선했습니다.

    방사제 주변의 흐름

    FLOW-3D HYDRO 2022R2 의 새로운 기능

    FLOW-3D HYDRO 2022R2 출시로 Flow Science는 FLOW-3D HYDRO 의 워크스테이션과 HPC 버전을 통합하여 단일 노드 CPU 구성에서 다중 노드에 이르기까지 모든 유형의 하드웨어 아키텍처를 활용할 수 있는 단일 솔버 엔진을 제공했습니다. 병렬 고성능 컴퓨팅 실행. 추가 개발에는 향상된 공기 동반 기능과 물 및 환경 응용 분야에 대한 경계 조건 정의 개선이 포함됩니다.

    통합 솔버

    우리는 FLOW-3D 제품을 단일 통합 솔버로 마이그레이션하여 로컬 워크스테이션이나 고성능 컴퓨팅 하드웨어 환경에서 원활하게 실행했습니다.

    많은 사용자가 노트북이나 로컬 워크스테이션에서 모델을 실행하지만, 고성능 컴퓨팅 클러스터에서도 더 큰 모델을 실행합니다. 2022R2 릴리스에서는 통합 솔버를 통해 사용자가 HPC 솔루션의 OpenMP/MPI 하이브리드 병렬화와 동일한 이점을 활용하여 워크스테이션과 노트북에서 실행할 수 있습니다.

    성능 확장의 예
    증가하는 CPU 코어 수를 사용한 성능 확장의 예
    메쉬 분해 - 2소켓 워크스테이션
    2소켓 워크스테이션에서 OpenMP/MPI 하이브리드 병렬화를 위한 메시 분해의 예

    멀티 소켓 워크스테이션

    다중 소켓 워크스테이션은 이제 매우 일반적이며 대규모 시뮬레이션을 실행할 수 있습니다. 새로운 통합 솔버를 사용하면 이러한 유형의 하드웨어를 사용하는 사용자는 일반적으로 HPC 클러스터 구성에서만 사용할 수 있었던 OpenMP/MPI 하이브리드 병렬화를 활용하여 모델을 실행할 수 있어 성능이 향상되는 것을 확인할 수 있습니다.

    낮은 수준의 루틴으로 향상된 벡터화 및 메모리 액세스

    대부분의 테스트 사례에서 10~20% 정도의 성능 향상이 관찰되었으며 일부 사례에서는 20%를 초과하는 런타임 이점이 나타났습니다.

    정제된 체적 대류 안정성 한계

    시간 단계 안정성 제한은 모델 런타임의 주요 동인이며, 2022R2에서는 새로운 시간 단계 안정성 제한인 3D 대류 안정성 제한을 숫자 위젯에서 사용할 수 있습니다. 실행 중이고 대류가 제한된(cx, cy 또는 cz 제한) 모델의 경우 새 옵션은 일반적인 속도 향상을 30% 정도 보여줍니다.

    압력 솔버 프리컨디셔너

    경우에 따라 까다로운 흐름 구성의 경우 과도한 압력 솔버 반복으로 인해 실행 시간이 길어질 수 있습니다. 이러한 어려운 경우 2022R2에서는 모델이 너무 많이 반복되면 FLOW-3D가 자동으로 새로운 사전 조절기를 활성화하여 압력 수렴을 돕습니다. 테스트의 런타임은 1.9에서 335까지 더 빨라졌습니다!

    점탄성 유체에 대한 로그 형태 텐서 방법

    점탄성 유체에 대한 새로운 솔버 옵션을 사용자가 사용할 수 있으며 특히 높은 Weissenberg 수에 효과적입니다.

    FLOW-3D HYDRO 경계 조건 개선

    FLOW-3D HYDRO 2022R2 에서는 물 적용 경계 조건에 대한 두 가지 개선 사항을 사용할 수 있습니다 . 천수(shallow water)의 유량 경계 조건이 개선되어 보다 현실적이고 공간적으로 변화하는 속도 프로파일을 생성하므로 사용자는 정확도를 잃지 않고 도메인 크기를 줄일 수 있습니다. 자연적인 입구 경계 조건의 경우 정격 곡선 완화 시간 옵션을 사용하여 과도 조건에 대한 응답을 향상시킬 수 있습니다.

    스트림 방향의 다양한 속도 프로파일
    입구 경계에서 흐름 방향으로 변하는 속도 프로파일의 예

    향상된 공기 동반 기능

    디퓨저 및 유사한 기포 흐름 응용 분야의 경우 이제 질량 공급원을 사용하여 물기둥에 공기를 유입할 수 있습니다. 또한, 동반 공기 및 용존 산소의 난류 확산에 대한 기본값이 업데이트되었습니다.

    디퓨저 모델의 예
    디퓨저 모델의 예: 이제 질량 소스를 사용하여 물기둥에 공기를 유입할 수 있습니다.

    FLOW-3D HYDRO 아카이브 의 새로운 기능

    LOW-3D HYDRO 2022R1 의 새로운 기능

    FLOW-3D HYDRO 의 새로운 기능

    제품 개요

    최근 FLOW Science, Inc에서는 토목 및 환경 엔지니어링 산업을위한 완벽한 CFD 모델링 솔루션인 FLOW-3D HYDRO 제품을 출시했습니다. 기존 FLOW-3D 사용자이거나 유압 엔지니어링 관행에 CFD 모델링 기능을 사용하시는 것에 관심이 있는 경우, 언제든지 아래 연락처로 연락주세요.
    연락처 : 02-2026-0442
    이메일 : flow3d@stikorea.co.kr

    FLOW-3D HYDRO 는 더 높은 수준의 정확도와 모델 해상도를 제공하기 위해 3D 비 유압 모델링 기능이 필요한 경우 고급 모델링 도구로 사용할 수 있습니다. 일반적인 모델링 응용 분야는 소형 댐 / 인프라, 운송 수력학, 복잡한 3D 하천 수력학, 열 부력 연기, 배수구 및 오염 물질 수송과 관련됩니다. 

    FLOW-3D HYDRO의 핵심 기능은 전체 3D 모델과 동적으로 연결될 수있는 천수(shallow water) 모델입니다. 

    이 기능을 통해 사용자는 멀티 스케일 모델링 애플리케이션을위한 모델 도메인을 확장하여 필요한 모델 해상도로 계산 효율성을 극대화 할 수 있습니다. FLOW-3D HYDRO  또한 강 및 환경 응용 분야에 특화된 추가 기능과 고급 물리학을 포함합니다.

    시뮬레이션 템플릿

    FLOW-3D HYDRO 의 작업 공간 템플릿으로 시간을 절약하고 실수를 방지하며 일관된 모델을 실행하십시오 . 작업 공간 템플릿은 일반적인 응용 분야에 대한 유체 속성, 물리적 모델, 수치 설정 및 시뮬레이션 출력을 미리로드합니다.

    작업 공간 템플릿은 7 가지 모델 클래스에 사용할 수 있습니다.

    • 자유 표면 – TruVOF (기본값)
    • 공기 유입
    • 열 기둥
    • 퇴적물 수송
    • 천수(shallow water)
    • 자유 표면 – 2 유체 VOF
    • 자유 표면 없음

    사전로드 된 예제 시뮬레이션

    FLOW-3D HYDRO 의 40 개 이상의 사전로드 된 물 중심 예제 시뮬레이션 라이브러리는 애플리케이션 모델링을위한 훌륭한 시작점을 제공합니다. 사전로드 된 예제 시뮬레이션은 모델러에게 모델 설정 및 모범 사례의 로드맵뿐만 아니라 대부분의 애플리케이션에 대한 자세한 시작점을 제공합니다.이전다음

    비디오 튜토리얼

    비디오 자습서는 새로운 사용자가 다양한 응용 프로그램을 모델링하는 방법을 빠르게 배울 수있는 훌륭한 경로를 제공합니다. FLOW-3D HYDRO 비디오 튜토리얼 기능 :

    • 광범위한 응용 및 물리학을위한 AZ 단계별 기록
    • “사용 방법”정보
    • 모범 사례를위한 팁
    • CAD / GIS 데이터, 시뮬레이션 파일 및 후 처리 파일

    고급 솔버 개발

    Tailings Model

    새로운 Tailings Model은 tailings dam failure로 인한 tailings runout을 시뮬레이션하기위한 고급 기능을 제공합니다. tailings정의에 대한 다층 접근 방식과 함께 미세하고 거친 입자 구성을 나타내는 이중 모드 점도 모델은 모든 방법으로 건설 된 tailings 댐의 모델링을 허용합니다. 

    천수(shallow water), 3D 및 하이브리드 3D / 천수(shallow water) 메싱을 포함한 유연한 메싱을 통해 얕은 지역에서 빠른 솔루션을 제공하면서 다층 tailings의 복잡성을 정확하게 모델링 할 수 있습니다. 점성 경계층의 정확한 표현을 위해 천수(shallow water) 메시에 2 층 Herschel-Bulkley 점도 모델을 사용할 수 있습니다.

    모델 하이라이트

    • 미세 입자 및 거친 입자 광미 조성물을위한 이중 모드 점도 모델
    • 침전, 패킹 및 입자 종의 난류 확산을 포함한 Tailings  수송
    • 천수(shallow water) 메시를위한 2 층 Herschel-Bulkley 점도 모델
    • 3D, 천수(shallow water), 3D / 천수(shallow water) 하이브리드 메시를 포함한 유연한 메시 접근 방식
    • Multi-layer, variable composition tailings for general definition of tailings dam construction

    Shallow Water

    FLOW-3D HYDRO 의 천수(shallow water) 모델링 기능은 3D 메시를 천수(shallow water) 메시와 결합하여 탁월한 모델링 다양성을 제공하는 고유 한 하이브리드 메시를 사용합니다. 압력 솔버의 수치 개선으로 더 안정적이고 빠른 시뮬레이션이 가능합니다. 하이브리드 메쉬의 하단 전단 응력 계산이 크게 향상되어 정확도가 더욱 향상되었습니다. 지형에 거칠기를 적용하는 새로운 방법에는 Strickler, Chezy, Nikuradse, Colebrook-White, Haaland 및 Ramette 방정식이 포함됩니다.

    Two-Fluid VOF Model

    sharp 인터페이스가 있거나 없는 압축 가능 또는 비압축성 2 유체 모델은 항상 1 유체 자유 표면 모델과 함께 FLOW-3D 에서 사용할 수 있습니다 . 사실, sharp 인터페이스 처리는 TruVOF 기술을 자유 표면 모델과 공유하며 상용 CFD 소프트웨어에서 고유합니다. 최근 개발에는 2- 필드 온도 및 인터페이스 슬립 모델이 포함되었습니다. 이 모델은 오일 / 물, 액체 / 증기, 물 / 공기 및 기타 2 상 시스템에 성공적으로 적용되었습니다.

    FLOW-3D HYDRO 는 2- 유체 솔루션의 정확성과 안정성에서 두 가지 중요한 발전을보고 있습니다. 운동량과 질량 보존 방정식의 강화 된 결합은 특히 액체 / 기체 흐름에서 계면에서 운동량 보존을 향상시킵니다. 연속성 방정식에서 제한된 압축성 항의 확장 된 근사값은 더 빠르고 안정적인 2 유체 압력 솔버를 만듭니다.

    예를 들어, 터널 및 드롭 샤프트 설계와 같은 유압 응용 분야에서 공기가 종종 중요한 역할을 하기 때문에 두 개발 모두 FLOW-3D HYDRO 릴리스에 적시에 적용됩니다. 일반적으로 낮은 마하 수로 인해 이러한 경우 물과 공기에 제한된 압축성이 사용됩니다.

    고성능 컴퓨팅 및 클라우드

    고성능 컴퓨팅 FLOW-3D HYDRO

    일반 워크스테이션 또는 랩톱으로 많은 작업을 수행 할 수 있지만, 대형 시뮬레이션과 고화질 시뮬레이션은 더 많은 CPU 코어를 활용함으로써 엄청난 이점을 얻을 수 있습니다. FLOW-3D CLOUD 및 고성능 컴퓨팅은 더 빠르고 정확한 모델을 실행할 수있는 더 빠른 런타임과 더 많은 선택권을 제공합니다.

    하천 및 환경 중심 애플리케이션

    TRANSPORTATION HYDRAULICS
SMALL DAMS AND DIVERSIONS
RIVER HYDRAULICS
SEDIMENT TRANSPORT AND DEPOSITION
OUTFALLS EFFLUENTS
THERMAL PLUMES BUOYANT FLOWS

    Case Studies

    CFD가 레이저 용접을 만나면 : 불꽃이 어떻게 날아갑니까?

    Pareekshith Allu Senior CFD Engineer | Additive Manufacturing | Laser Welding | Business Development

    When CFD meets laser welding: How sparks fly!

    CFD 또는 전산 유체 역학은 수치적 방법을 사용하여 유체 흐름을 연구하는 것입니다. 유체 흐름의 기본 방정식에는 솔루션 해가 없으므로 컴퓨터를 사용하여 방정식을 반복적으로 계산하는 수치해석 방법으로 해결합니다. 일반적으로 CFD 도구는 공기 역학, 엔진 연소, 물 및 환경 흐름, 미세 유체 및 제조 공정에서 광범위한 연구 및 엔지니어링 문제에 적용될 수 있습니다. CFD가 개발에 중요한 역할을 한 기술을 매일 접할 가능성이 있습니다. FLOW-3D 소프트웨어 제품 제조업체인 Flow Science Inc.에서는 자유 표면 흐름 문제 라고하는 특수한 문제 해결에 중점을 둡니다 . 

    자유 표면 흐름이란 무엇입니까? 밀도 차이가 큰 두 유체간에 인터페이스가 공유되는 분야는 자유 표면 흐름입니다. 예를 들어, 기체-액체 경계면이 제한되지 않고 시간에 따라 자유롭게 움직이고 변경할 수 있다는 점에서 강의 물과 주변 공기 사이에 자유 표면이 존재합니다. FLOW-3D 솔버의 기본 DNA 인 Volume of Fluid 또는 VoF 방법 은 자유 표면의 진화를 추적하는 강력한 계산 기술입니다. 우리는 지난 40 년 동안 이 문제에 거의 전적으로 집중했습니다.

    자유 표면 흐름은 제조산업 분야에서도 널리 사용됩니다. 금속 주조에서는 용융 금속과 용융 금속이 채우는 금형 또는 다이의 공기 사이에 자유 표면이 존재합니다. L-PBF ( Laser Powder Bed fusion) 라고하는 적층 제조 공정에서 레이저를 사용하여 분말 입자를 녹이고 융합하여 공정에서 자유 표면 용융 풀을 만듭니다. 그리고 레이저 용접에서는 레이저 빔에 의해 녹아서 두 개의 금속 부품 / 부품을 함께 융합 할 때 형성되는 자유 표면 용융 풀이 있습니다. 

    이 게시물에서는 레이저 용접 공정에 대한 CFD 시뮬레이션이 유용한 이유를 설명합니다.

    레이저 기술은 지난 몇 년 동안 상당히 발전했으며 이제 다른 레이저 제조업체는 다양한 파장에서 펄싱 기능이 있는 고출력 레이저를 제공 할 수 있습니다. 레이저와 로봇 자동화 시스템, 컨트롤러 및 프로세스 센서의 통합은 다양한 제조 산업에서 사용을 확대하여 열 입력이 적고 열 영향 영역이 더 작은 레이저 용접 조인트를 가능하게합니다. 

    레이저-재료 상호 작용은 복잡하며이를 정확하게 모델링하려면 이러한 시간적 및 공간적 규모와 관련된 물리학을 구현해야합니다. 레이저 열원은 표면에 에너지를 축적하여 기판을 녹이고 용융 금속 풀을 만듭니다. 용융 풀은 전력, 속도 및 스캔 경로와 같은 레이저 가공 매개 변수와 용융 풀의 자유 표면에 동적 증기압을 적용하는 차폐 가스의 영향을 더 많이받습니다. 또한 용접되는 기판의 재료 특성이 중요한 역할을합니다. 용융된 풀의 상 변화와 증발은 용융 풀을 더욱 압박하는 반동 압력을 유발할 수있는 반면 표면 장력은 풀 내의 유체 대류에 영향을줍니다. 키홀 링이있는 경우 레이저 광선이 키홀 내에 갇혀 추가 반사 영향을 받을 수 있습니다. 기판에 더 많은 에너지를 전달합니다. 불안정한 키홀이 붕괴되면 갇힌 공극이 진행되는 응고 경계에 의해 포착되는 다공성 형성으로 이어질 수 있습니다. 

    분명히 많은 일이 진행되고 있습니다. 이것이 CFD 시뮬레이션이 강력 할 수있는 곳이며 FLOW-3D WELD를 개발할 때 레이저-재료 상호 작용을 이해하는 데 많은 노력을 기울이는 이유입니다. 자유 표면 추적 및 레이저 에너지 증착, 차폐 가스 역학, 상 변화, 반동 압력, 표면 장력, 레이저 광선 추적 및 응고와 함께 유체 및 열 흐름 방정식을 통합하는 물리 기반 모델은 레이저의 복잡한 상호 작용을 캡처하는 데 매우 정확합니다. 용접과정을 해석하는 기능은 용융 풀의 안정성에 대한 다양한 공정 매개 변수의 영향을 분리하고 엔지니어와 연구원이 용접 일정을 최적화하는 데 도움이 될 수 있습니다.

    CFD 시뮬레이션은 레이저 용접 프로세스를 분석하고 개선하는데 도움이되는 프레임 워크를 제공 할 수 있습니다. 불안정한 용융 풀은 키홀 유발 다공성, 파열 및 스패 터와 같은 결함을 초래할 수 있기 때문에 용융 풀의 작동 방식을 이해하는 것은 조인트의 품질에 매우 중요합니다. 그 후, FLOW-3D WELD 모델의 출력인 응고된 용융 풀 데이터 및 열 구배와 같은 결과를 미세 구조 또는 유한 요소 분석 모델에 입력하여 각각 결정 성장 및 열 응력 진화를위한 길을 닦을 수 있습니다.

    이 게시물이 CFD를 사용하여 레이저 용접 프로세스를 시뮬레이션하는 이점을 이해하는데 도움이 되기를 바랍니다.

    레이저 용접 공정을 더 잘 이해하기 위해 CFD 시뮬레이션 적용을 고려해 보셨습니까? 어떤 특징 / 물리 현상이 모델링되기를 원하십니까? 질문과 의견이 있으면 언제든지 flow3d@stikorea.co.kr 또는 미국 본사의 paree.allu@flow3d.com에게 연락하십시오.

    바람이 개방형 철광석 골재 저장소에 미치는 영향 분석 (비산먼지 배출 방지 연구)

    다양한 구성에 대한 비산 먼지 배출

    이 기사는 Dhananjay Sharma, EI, CFM, 유압 모델링 엔지니어, AECOM 에 의해 기고되었습니다  .

    바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km2 철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.

    두 가지 다른 구성(옵션 A와 B)을 FLOW-3D로 모델링하여 비산먼지 배출의 영향을 연구했습니다. 옵션 A에는 4줄에 9개 더미가 있는 36개의 비축량이 있고 옵션 B에는 1줄에 총 16개의 비축량이 있습니다.

    또한 장벽이 있는 공기와 장벽이 없는 공기의 속도를 비교하기 위해 비축물 주변을 따라 30미터 높이의 장벽을 모델링할 수도 있습니다. 10m 높이에서 기준 초속 7.5m(m/s)의 풍속이 두 구성을 모두 모델링하는데 사용되었습니다. 비축 옵션 A와 B에 대해 네 가지 풍향 방향이 분석되었습니다.

    물리적 및 수치 적 모델링

    초기 모델 설정

    FLOW-3D 에서 비산 먼지 배출을 모델링하기  위해, 공기 온도는 15 ° C로 가정되었습니다. 단일의 균일한 비압축성 유체 옵션이 선택되었습니다. z 방향에서 -9.81 m / s의 중력이 사용되었습니다. 유체는 점성과 난류로 간주되었습니다. 2- 방정식 (ke) 모델은 옵션 A 및 B 구성 모두에 대해 표면 마찰없이 난류를 계산하는데 사용되었습니다.

    초기 조건

    1/7 power 법칙 (pproximately a logrithmic law-of-the-wall distribution)에 기반한 속도 프로파일이 각 시뮬레이션에 대한 초기 조건으로 지정되었습니다. 비축 분석에서 가장 관심있는 기준 속도는 12 및 7.5m / s입니다. 풍속을 증가시키고 파일에 인접한 속도에 미치는 영향을 측정하여 분석을 수행했으며, 레이놀즈 스케일링이 이러한 속도에 대해 유지된다는 것을 확인했습니다 (즉, 들어오는 풍속 스케일링과 파일에 인접한 속도 스케일링 간의 선형 관계).   그런 다음 7.5m / s의 속도 만 사용하여 FLOW-3D 시뮬레이션을 구성했습니다. 이러한 시뮬레이션의 결과는 12m / s 조건을 충족하도록 확장 할 수 있습니다.

    풍력 프로파일 power 법칙을 사용하여 10m에서 7.5m / s 이상 및 이하의 다양한 높이에 대한 속도를 추정했습니다. 경계에서 속도를 적용하는 이 방법은 경계를 따라 지형 변화를 허용하지 않습니다. 기준 속도는 서쪽, 남서부 및 남풍 방향에 대해 해발 10 미터에서 할당되었습니다. 동풍의 경우, 속도는 뒤쪽 (Y- 최대) 경계에서 경사 10 미터 위의 기준 높이에 할당되었습니다.

    풍력 프로파일 power 법칙은 z 방향으로 최대 360m까지 모든 미터에서 계산되었습니다. 속도는 메쉬 크기와 동일한 간격으로 평균화되었습니다. 속도가 할당된 높이 간격은 2, 4, 6, 8, 10, 20, 70, 181, 270 및 360 미터입니다. 속도 프로파일을 설정 한 후 각 높이 간격에 대한 값은 네 가지 풍향 (서쪽, 남서쪽, 남쪽 및 동쪽) 각각에 대해 X 및 Y 구성 요소로 세분화되었습니다. 초기 조건은 메쉬 블록의 외부면에 할당되어 비축에 도달하기 전에 속도 프로파일이 개발 될 수있는 충분한 수평 공간을 남겼습니다.

    풍력 프로필 power 법칙은 다음과 같습니다.

    \ displaystyle {{u} _ {x}} = {{u} _ {r}} {{\ left ({\ frac {{{{z} _ {x}}}} {{{{z} _ { r}}}}} \ right)} ^ {\ propto}}, 여기서

    U x  = 높이에서의 풍속 x
    U r  = 기준 높이에서의 풍속
    Z x  = 높이 x
    Z r  = 기준 높이
    α = 1/7 ‐ 대기 안정성 계수

    지형

    3 개의 지형파일인 스테레오리소그래피 (STL) 파일이 생성되어 모델에 통합되었습니다. 개별 파일은 지형, 창고 및 기둥에 해당합니다. 옵션 A와 B에 대해 다른 STL 파일이 생성되었습니다.

    메싱

    모델 도메인은 각 풍향에 대해 조정되었습니다. 메쉬 크기는 옵션 A의 경우 240 만에서 330 만 셀, 옵션 B의 경우 130 만 셀입니다. 정확하게 기둥 근처에 높이 2m, 길이 4m, 너비 4m의 셀 크기를 사용했습니다. 해당 지역의 속도를 계산합니다.

    경계 조건

    비축 시뮬레이션에는 네 가지 경계 유형이 사용되었습니다. 모든 풍향에 대해 상단 경계 (Z-max)가 정체 압력으로 지정되었습니다. 바람의 방향에 따라 두 개의 측벽이 유출 경계 조건으로 지정되었습니다. 나머지 두 측벽에는 그리드 오버레이 경계가 지정되었습니다. 그리드 오버레이를 사용하면 초기 조건의 속도를 모델에 입력 할 수 있습니다. 중첩 된 블록을 사용하여 원하는 메시 해상도와 배율을 만들었습니다. 내포된 블록 사이의 경계면에서 대칭 경계 조건이 사용되었습니다. 대칭을 사용하면 블록간에 정보를 전송할 수 있습니다. 그림 1은 서쪽 풍향 (y 방향)에 대한 경계 조건 설정을 보여줍니다. 다른 풍향의 경우 경계 조건을 적용하는 데 유사한 방법이 사용되었습니다.

    경계 조건 서쪽 풍향
    그림 1. 서쪽 풍향의 경계 조건

    장벽

    FLOW-3D 의 배플 기능은 비축된 곳의 주변에 바람 장벽을 만드는데 사용되었습니다. 옵션 A와 B의 배플은 높이가 30 미터였으며 지형을 따라 여러 부분으로 구성되었습니다. 모델링된 장벽은 본질적으로 다공성입니다. 34 %의 다공성 값 (즉, 34 % 개방 면적) 및 해당 속도 대 압력 강하 값은 장벽 제조업체에서 얻었습니다. FLOW-3D의  모델과 연관된 흐름 다공성 손실이 지정될 수있는 배플 알고리즘을 사용합니다. 배플은 무한히 얇고 부피를 차지하지 않습니다.

    시뮬레이션 결과

    옵션 A

    옵션 A의 경우 풍속 7.5m / s에 대한 장벽이 있거나없는 4 가지 풍향을 분석하고 시뮬레이션했습니다.

    바람의 방향배리어없는 최대 속도 (m / s)배리어가있는 최대 속도 (m / s)최대 속도 감소
    서부13.58611.27817 %
    남서부13.04510.79617 %
    남쪽12.35212.122 %
    동쪽9.768.59712 %

    각 시뮬레이션의 최대 속도와 장벽과 장벽이 없는 경우 사이의 최대 속도 감소는 위의 표 1에 나와 있습니다. 장벽은 남풍의 최대 속도에 가장 적은 영향을 미칩니다. 옵션 A에 대한 장벽 추가로 최대 속도가 2 % 감소했습니다. 장벽은 서풍 또는 남서풍이있는 전체 파일 케이스의 속도에 가장 큰 영향을 미쳤습니다. 최대 속도는 서풍과 남서풍 모두에서 17 % 감소했습니다.

    옵션 B

    옵션 B의 경우 풍속 7.5m / s에 대한 장벽이 있거나없는 네 가지 풍향을 분석하고 시뮬레이션했습니다.

    그림 2. 옵션 A : 장벽이없는 서풍의 비축량에서 계산 된 속도 크기
    장벽이있는 속도 크기 서풍
    그림 3. 옵션 A : 장벽이있는 서풍 방향의 비축에서 계산 된 속도 크기
    바람의 방향배리어없는 최대 속도 (m / s)배리어 포함 최대 속도 (m / s)최대 속도 감소
    서부15.9711.3629 %
    남서부15.149.2139 %
    남쪽13.410.124 %
    동쪽12.787.1544 %
    그림 4. 옵션 B. 장벽이없는 동풍의 비축량에서 계산 된 속도 크기
    그림 5. 옵션 B : 장벽이있는 동풍의 비축에서 계산 된 속도 크기

    결론

    모델 결과는 비축물 주변에 장벽을 추가하는 것이 속도를 줄이고 비산먼지 배출을 방지하는데 도움이 된다는 것을 분명히 보여주었습니다. 현장 주변의 장벽 추가와 관련된 비용이 있지만, 이 옵션은 먼지 배출량을 줄임으로써 환경 규범을 달성하는 데 도움이 될 것입니다. 모델 결과를 보면 FLOW-3D가 비산먼지 방출을 연구하기 위한 정확하고 신뢰할 수 있는 도구로 사용될 수 있다는 것이 분명합니다. 추가 설계 변경과 철골 배치의 새로운 옵션이 제안될 경우 FLOW-3D에서 쉽게 모델링하여 비용 및 환경적으로 효과적인 최적의 구성을 결정할 수 있습니다.

    2 Fluid, 1 Temperature

    2 Fluid, 2 Temperature 모델

    2 Fluid, 2 Temperature 모델

    우주선 및 자동차 연료 탱크 및 특정 미세 유체 장치는 안전하고 효율적인 작동을 위해 정확한 액체 및 기체 상태 모델링이 필요합니다. 이러한 시스템에 유체 계면이 존재하는 것 외에도, 열 전달 및 상 변화의 물리학도 정확하게 포착해야합니다. 얼마나 복잡합니까!

    이러한 복잡한 시나리오를 시뮬레이션하기 위해 FLOW-3D v12.0에는 2 Fluid, 2 Temperature 모델이 도입되었습니다.

     

    단순화 된 모델 : 2 Fluid, 1 Temperature

    FLOW-3D 의 인터페이스 추적 방법인 TruVOF는 열 전달 및 위상 변화를 포함하여 2 Fluid 모델과 함께 작동합니다. 그러나,이 모델의 단순화 중 하나는, 인터페이스를 갖는 메쉬 셀의 온도가 다음의 개략도에 도시 된 바와 같이 혼합물 온도 (따라서 단순화 된 모델) Tmix로 표현된다는 것입니다.

    온도가 경계면을 가로 질러 연속적이고 매끄러 울 때 혼합물 근사치가 적절하지만, 열-물리적 특성의 큰 차이로 인해 액체 및 가스가 있는 경우에는 이를 추정 할 수 없습니다. 이러한 시스템에서 용액의 정확도는 액체-기체 혼합물을 함유하는 셀에서 유체 에너지 및 온도의 평균으로부터 발생하는 과도한 수치 확산에 의해 압도 될 수 있습니다. 단순화 된 온도 슬립 모델은 이러한 경우 부분적인 솔루션만 제공합니다.

    단순화 된 모델-2 Fluid, 1 Temperature

    종합 모델 : 2 Fluid, 2 Temperature

    1 Temperature 접근 방식의 결함을 극복하기 위해 2 Fluid 솔루션에 대한 2 Temperature 모델이 버전 11.3에 도입되었습니다. 여기에는 아래 회로도에 표시된 것처럼 각 유체에 대한 에너지 전달 방정식을 해결하고 각 상의 온도를 저장하는 작업이 포함됩니다. 자유 표면이 있는 메쉬 셀은 이제 액체 (T1)와 가스 (T2) 온도를 모두 나타냅니다.

    종합 모델 : 2 유체, 2 온도

    탱크 슬로싱(Tank sloshing)

    탱크 슬로싱에 대한 이 사례 연구에서, 액체는 초기 온도 300K이고 가스는 400K입니다. 단순화 된 모델과 포괄적인 모델 사이의 수치 확산 정도의 차이는 아래 애니메이션에 나와 있습니다. 온도 윤곽에서 시간이 지남에 따라 용액의 수치 확산은 1 Temperature 접근 방식으로 보여지고 계면 물리를 완전히 가리게 됩니다.

    단순화 된 모델 : 2 Fluid, 1 Temperature

    종합 모델 : 2 Fluid, 2 Temperature

    공기중 드롭 용접(Drop welding in air)

    이 낙하 용접 사례 연구에서 액체 금속은 중력 하에서 2300K에서 공기를 통해 고체화 된 금속 베드로 떨어집니다. 공기 및 베드 초기 온도는 293K입니다. simplified model에서는 수치 확산으로 인해 액체 금속 낙하 온도가 베드에 도달하기 전에도 급격히 감소하기 시작합니다. 반면에 comprehensive model에서는 방울이 초기 온도를 유지하여 훨씬 더 나은 솔루션을 제공합니다.

    단순화 된 모델을 사용한 온도 필드 진화

    종합 모델의 온도 필드

    FLOW-3D의 2 Fluid, 2 Temperature 모델과 유체 인터페이스 추적을 결합하면 사용자는 특히 연료 슬로싱 시스템과 같이 복잡한 열전달 및 위상 변화 문제를 정확하게 모델링 할 수 있습니다.

    이 새로운 모델에 대한 제안이나 의견은 adwaith@flow3d.com에 문의하십시오.

    FLOW-3D 용접해석 개요

    FLOW-3D 용접해석 개요

    자료 제공: FLOW Science Japan

    용접은 금속의 상변화, 용융시의 유동, 방열에 의한 응고 등을 포함한 복잡한 물리 현상입니다. FLOW-3D@에는 그 현상을 정밀하게 모델링하는 기능이 있고, 용접 현상을 충실하게 재현할 수 있습니다.

    특히 용융 금속의 유동은 표면 장력의 영향이 강하고, 그 해석은 정확한 자유 계면의 추적이 필요합니다.

    FLOW-3D@의 정확한 계면 추적 기능인 TruVOF®는 그 현상을 파악하기에 매우 적합합니다.

    해석 조건으로 레이저의 power, spot size, distance, 움직임(분사방향) 등을 입력할 수 있으며, 보호가스는 밀도와 유속으로 설정 할 수 있습니다. 스패터의 분출 해석은 현재 지원되지 않습니다.

    해석 결과로 용접 비드의 폭, 깊이, 기공의 유무 등 관찰할 수 있습니다.

    열응력 해석은 FLOW-3D 유동 해석 결과를 Abaqus 등의 구조해석 프로그램에서 불러와서 별도로 열응력 해석을 수행해야 합니다.

    해석 필요성

    FLOW-3D 를 이용한 용접해석은

    • 높은 방사 강도와 고온으로 직접 관찰하기 어려운 내부 현상의 상세 내용을 가시화
    • 온도, 열, 용접 속도, 위치 관계, 재료 물성 등의 파라미터 연구 검토
    • 결함 예측 (공기연행, 응고 수축, 금속 산화) 등의 필요성

    해석을 통해 얻는 이점

    금속의 상변화, 용융시의 유체의 힘, 방열에 의한 응고 등의 물리모델 용접 현상을 분석할 수 있습니다.

    또한 용융시에는 표면장력의 영향이 강하고, 자유계면을 추적하는 수치해석 방법에 대해 높은 정밀도가 요구됩니다. FLOW-3D@는 이러한 요구사항을 잘 처리할 수 있는 장점을 가지고 있어, 용접 용융-응고의 연속적인 현상을 정확하게 파악합니다.

    Rivulet Formation in Slide Coating

    Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique

    Volume-of-Fluid 기법을 사용한 과도 및 3 차원 코팅 흐름 시뮬레이션

    슬라이드 코팅 흐름은 정밀 필름 코팅 제품의 제조에 널리 사용됩니다. 코팅 속도를 높이고 코팅 필름의 성능을 향상시키기 위해 슬라이드 코팅 공정을 더 잘 이해하기 위해 상당한 노력을 기울이고 있습니다. 예를 들어 Chen1과 같이 잘 정의 된 한계 이상으로 코팅 속도를 높이면 코팅 비드가 완전히 파손될 수 있음이 입증되었습니다.

    이 논문에서는 유체 표면의 임의, 3 차원 및 시간에 따른 변형을 설명 할 수있는 계산 방법에서 얻은 슬라이드 코팅 흐름의 시뮬레이션 결과를 제시합니다. 상용 프로그램에서 사용할 수있는이 방법은 VOF (Volume-of-Fluid) 기술 3,4로 유체를 추적하는 고정 그리드를 사용합니다. 표면 장력, 벽 접착력, 유체 운동량 및 점성 응력은 분석에서 완전히 설명됩니다.

    기본 방법은 딥 코팅 데이터와의 비교를 통해 설명됩니다 5. 그런 다음 접촉 선과 동적 접촉각이 우리의 방법에서 암시 적으로 처리되는 방법에 대한 논의를 제시합니다. VOF 기술을 사용하기 때문에 유체를 포함하는 각 제어 볼륨에 작용하는 힘의 합계 만 필요합니다. 그러면 접촉 선의 위치와 동적 접촉각이 계산 된 힘 균형에서 자동으로 발생합니다. 우리의 기술은 코팅 흐름에서 시작 및 비드 분해 현상의 예와 함께 설명됩니다.

    그림에서 볼 수 있듯이 신속한 공정의 경우 당사의 접근 방식은 기존 분석 방법으로는 달성하기 어려운 코팅 공정 설계 및 최적화 시뮬레이션을위한 효율성과 견고성을 제공합니다.

    Introduction

    모든 코팅 공정에는 일정한 조건을 달성하기 전에 코팅 재료가 큰 변형을 겪는 일종의 시작 기간이 포함됩니다. 시작 프로세스의 우수한 특성화는 낭비를 줄이고 프로세스가 원하는 한계 내에서 작동하는지 확인하는 데 종종 중요합니다.

    다양한 섭동에 대한 코팅 흐름의 과도 ​​응답에 대한 유사한 이해가 또한 바람직하여 코팅 비드의 파손 및 코팅의 불균일성을 피할 수 있습니다. 코팅 흐름의 역학은 일반적으로 비선형이고 다양한 경쟁 물리적 프로세스의 결합 된 상호 작용을 포함하기 때문에 이론적 조사를 수행하기 위해 특수한 계산 도구에 의존해야합니다.

    이 작업을 위해 선택한 모델링 도구의 장점은 고정 그리드를 통해 임의의 유체 변형을 추적 할 수있는 강력한 수치 기법 인 VOF (Volume-of-Fluid) 방법을 사용한다는 것입니다. 코팅 흐름 분석에 중요한 프로그램의 다른 기능과 함께 이것이 수행되는 방식은 다음 섹션에서 설명합니다.

    Overview of Numerical Method

    여기에 사용 된 수치 프로그램 FLOW-3D®는 1960 년대 중반 Los Alamos National Laboratory에서 개발 된 Marker-and-Cell (MAC) 방법 6에서 유래되었습니다. 원래 MAC 방법에 대한 많은 개선이 수년에 걸쳐 이루어졌습니다.

    본 출원에서 가장 흥미로운 것은 유체 영역을 찾기 위해 연속적인 유체 부피 함수에 의해 개별 마커 입자를 대체하는 것입니다. VOF 방법에서는 관심있는 계산 영역을 포함하는 사각형 제어 볼륨의 고정 그리드가 구성됩니다. 각 제어 볼륨에 대해 숫자 F는 액체가 차지하는 볼륨의 비율을 표시하기 위해 유지됩니다.

    F 함수를 사용하는 것 외에도 VOF 방법은 날카로운 액체-가스 인터페이스를 유지하는 방식으로 직사각형 셀의 고정 그리드를 통해 F 함수를 전진시키기 위해 특수 수치 기법을 사용합니다. 마지막으로 VOF 방법은 경계면에서 적절한 법선 및 접선 응력 조건을 충족하기 위해 신중하게 구현 된 자유 표면 경계 조건 세트를 사용합니다. 접근 방식의 또 다른 특징은 복잡한 기하학적 영역을 정의하는 방식입니다.

    장애물은 제어 볼륨의 일부를 차단할 수 있도록하여 고정 그리드에 포함됩니다. 각 제어 볼륨에서 흐름을 위해 열린 분수 영역 및 볼륨은 지오메트리 표현으로 저장됩니다. FAVOR 방법 7이라고하는이 방법은 형상을 질량, 운동량 및 에너지에 대한 이산화 된 방정식에 자동으로 통합합니다. VOF 및 FAVOR 방법을 사용하면 코팅 문제에 대한 지오메트리 및 초기 유체 구성을 정의하는 데 필요한 복잡한 그리드 생성 프로세스가 없기 때문에 시간과 노력이 절약됩니다.

    다음 섹션에서는 플랫 시트에 코팅을 담그는 응용 프로그램과 함께 기본적인 수치 방법의 유용성을 설명합니다.

    Dip Coating – A Validation Test

    Lee와 Tallmadge는 액체 수조에서 수직으로 인출 된 평판에 딥 코팅하는 과정에 대해 광범위한 조사를 수행했습니다.

    이 프로세스는 다양한 상업용 응용 프로그램에서 널리 사용됩니다. 그들의 연구는 2 차원 흐름 (즉, 가장자리 효과 없음)에 초점을 맞추고 실험 데이터에 맞는 경험적 매개 변수를 포함하는 분석 표면 프로파일로 구성되었습니다. 0.085에서 23.9 사이의 모세관 수에 대한 실험 데이터가 수집되었으며, 레이놀즈 수는 0.044에서 12.7 사이입니다. 필름 두께에 대한 실험 데이터는 약 10 % 이하로 추정되는 오류를 가졌습니다.

    이 실험에 대한 계산 모델은 코팅 할 시트의 수직 (접선) 속도와 동일한 수직 (접선) 속도가 주어진 직사각형 욕조로 구성되어 매우 간단합니다. 처음에 코팅액은 수평면을 가지며 시트는 충동 적으로 시작됩니다 (그림 1c 참조). 다양한 모세관 수 사례가 시뮬레이션되었으며 모든 경우에 예측 된 필름 두께는 실험 오차 범위 내에있었습니다. 예를 들어 모세관 번호 1.17에 해당하는 경우를 고려하십시오. 시트를 3.31cm / s에서 수조 (밀도 0.885gm / cc, 표면 장력 32.7dynes / cm 및 점도 1159.4cp를 갖는 점성 윤활유)에서 꺼냈다. 우리는 2.5cm의 욕조 너비와 2.0cm의 깊이 (35 x 25 그리드 셀)를 사용했습니다.

    필름 흐름을 캡처하기 위해 욕조 위의 2.0cm 영역이 모델에 포함되었습니다 (수직으로 추가 25 개 셀 필요). 수조의 오른쪽은 유체 높이가 일정하게 유지되고 압력이 수압이고 흐름이 계산 영역으로 들어갈 수있는 열린 경계 였지만 휴식에서 시작해야했습니다. 이른바 “정체”경계 조건은 움직이는 시트의 오른쪽으로 충분히 멀리 떨어져있는 경우 수평 무한 욕조에 대한 좋은 근사치입니다. 모델링이 필요한 수조의 폭을 설정하기 위해 여러 가지 계산이 수행되었으며, 필름 두께가이 폭에 크게 민감하지 않다는 것이 밝혀졌으며 그 결과는 실험에서도 발견되었습니다.

    그림 1a는 초기 조건, 그림 1b는 계산 된 과도 상태의 스냅 샷, 그림 1c는 최종 정상 상태 결과를 보여줍니다. 처음에 시트에 의해 그려지는 액체 팁의 모양은 정적 접촉각 (즉, 시트와 액체 사이의 접착력)에 따라 달라지며 임의로 10 도로 취해졌습니다. 액체가 끌어 올려짐에 따라, 배출되는 액체 필름을 대체하기 위해 시트쪽으로 흐름이 시작되어야한다는 신호로서 함몰 파가 나머지 수조에 대한 신호로 오른쪽으로 이동합니다. 약 5.0 초만에 정상 상태에 도달합니다. 필름 두께는 0.145cm로 계산되었으며, 이는 0.142cm의 측정 값과 매우 일치합니다.

    Rivulet Formation in Slide Coating
    Rivulet Formation in Slide Coating

    자세한 내용은 본문을 참고하시기 바랍니다.

    Cavitation | 캐비테이션

    캐비테이션이란 무엇입니까?

    The spillways of the Glen Canyon dam in 1983 (Lee and Hoopes, 1996).

    캐비테이션은 유체 흐름의 매우 낮은 압력 또는 포화 압력을 높이는 온도 상승으로 인해 유체 내에서 증기 또는 기포가 빠르게 발생하는 것입니다. 기포의 갑작스런 출현 (및 후속 붕괴)은 비압축성 유체 내에서 압력의 급격한 변화를 일으켜 심각한 기계적 손상을 일으킬 수 있습니다. 캐비테이션에 의해 유도 된 힘은 1983 년 Glen Canyon 댐의 배수로에서 경험 한 손상에서 볼 수 있듯이 며칠 내에 수 피트의 암석을 침식 할 가능성이 있습니다 (Lee and Hoopes, 1996).

    또한 고압 다이 캐스팅에서 캐비테이션이 발생할 수 있습니다. 다이의 수축 및 곡선을 통한 용융 합금의 빠른 이동은 급속한 압력 강하를 초래하고 후속 캐비테이션으로 이어질 수 있습니다. 생성된 증기 기포는 최종 주조에서 다공성을 유발하거나 더 나쁜 경우 다이에 손상을 일으켜 주조품을 훼손시키고 다이 수명을 감소시킬 수 있습니다.

    캐비테이션은 터빈과 파이프에 손상을 줄 수 있고, 댐의 배수로에서 콘크리트를 침식하는 등의 원인이 될 수 있습니다. 아래 이미지는 댐의 배수로 바닥 근처의 콘크리트 침식을 보여줍니다. 댐에 사용되는 콘크리트는 일반적으로 강도가 높지만 캐비테이션은 여전히 그것을 부식시킬 수 있습니다.

    Eroded concrete due to cavitation on the spillway of a dam

    캐비테이션은 때때로 오염 물질과 유기 분자를 분해하고, 소수성 화학 물질을 결합하고, 캐비테이션 기포의 파열로 인해 생성 된 충격파를 통해 신장 결석을 파괴하고, 혼합을위한 난류를 증가시켜 수질 정화와 같은 특정 산업 응용 분야에서 의도적으로 유도됩니다.

    따라서 캐비테이션이 발생할 가능성이있는 위치와 그 강도를 이해하는 것이 중요합니다. 캐비테이션을 실험을 수행하거나 실험 결과의 현상을 시각화하는 것이 어렵고, 잠재적으로 손상 될 수 있으므로 수치해석 시뮬레이션으로 검토하는 것이 매우 필요하고, 유용합니다.

    Real-World Applications | 실제 응용 분야

    • 물 및 환경 구조 내에서 손상을 주는 캐비테이션 시뮬레이션
    • 다이 손상 및 주조 다공성을 유발할 수 있는 고압 다이 캐스팅 중 캐비테이션 시뮬레이션
    • MEMS 장치 내의 열 거품 형성 시뮬레이션
    • 열 전달 표면의 비등 거동 예측
    • 캐비테이션 역학으로 인한 혼합 예측

    Modeling Cavitation in FLOW-3D

    FLOW-3D의 캐비테이션 모델은 thermal bubble jets 와 MEMS devices를 시뮬레이션하는데 성공적으로 사용되었습니다. FLOW-3D는 “active”또는 “passive” 모델 옵션을 제공합니다. Active 모델은 기포 영역을 열고 수동 모델은 흐름을 통해 캐비테이션 기포의 존재를 추적하고 전파하지만, 기포 영역의 형성을 시작하지는 않습니다.

    Active모델은 더 큰 캐비테이션 영역이 예상되고 유동장에 영향을 미치는 경우에 가장 적합하며, Passive모델은 작은 기포의 간단한 모양이 예상되는 시뮬레이션에 가장 적합합니다. 활성 모델과 에너지 전송 계산을 통해 위상 변화도 옵션입니다. 기포는 계면에서의 증발 또는 응축으로 인해 추가로 팽창하거나 수축 할 수 있습니다.

    Sample Results

    아래 시뮬레이션은 수축 노즐을 보여줍니다. 애니메이션은 매우 일시적인 진동 동작을 보여주는 캐비테이션 버블의 진화를 보여줍니다. 캐비테이션 부피 분율은 초기 연속 액체에서 캐비테이션의 시작을 시각화하기 위해 플롯됩니다.

    아래 애니메이션은 진입 속도가 8m/s이고 수렴 기울기가 18 °이고 발산 기울기가 8 ° 인 벤츄리 내의 캐비테이션을 보여줍니다. 다시 말하지만, 캐비테이션의 과도 동작은 잘 모델링되어 있으며, 모델은 22ms의 실험 결과와 비교하여 17.4ms의 캐비테이션주기 기간을 예측합니다 (Stutz and Reboud 1997).

    Cavitation in a venturi

    물 탱크를 통해 이동하는 고속 발사체를 시뮬레이션하여 발사체 후류에서 생성 된 저압 영역의 공동 기둥을 보여줍니다. 발사체의 초기 속도는 600m / s입니다. 아래는 탱크의 움직임과 후행하는 캐비테이션 유체의 애니메이션입니다. 발사체가 감속함에 따라 캐비테이션 기둥의 반경이 좁아집니다.

    @

    High-speed bullet

    References

    Lee, W., Hoopes, J.A., 1996, Prediction of Cavitation Damage for Spillways, Journal of Hydraulic Engineering, 122(9): 481-488.

    Plesset, M.S., Prosperetti, A., 1977, Bubble Dynamics and Cavitation, Annual Revue of Fluid Mech, 9: 145-185.

    Rouse, H., 1946. Elementary Mechanics of Fluids, New York: Dover Publications, Inc.

    Stutz, B., Reboud, J.L., 1997, Experiments on unsteady cavitation, Experiments in Fluids, 22: 191-198.

    자유 표면 모델링 방법

    본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

    Free Surface Modeling Methods

    An interface between a gas and liquid is often referred to as a free surface. The reason for the “free” designation arises from the large difference in the densities of the gas and liquid (e.g., the ratio of density for water to air is 1000). A low gas density means that its inertia can generally be ignored compared to that of the liquid. In this sense the liquid moves independently, or freely, with respect to the gas. The only influence of the gas is the pressure it exerts on the liquid surface. In other words, the gas-liquid surface is not constrained, but free.

    자유 표면 모델링 방법

    기체와 액체 사이의 계면은 종종 자유 표면이라고합니다.  ‘자유’라는 호칭이 된 것은 기체와 액체의 밀도가 크게 다르기 때문입니다 (예를 들어, 물 공기에 대한 밀도 비는 1000입니다).  기체의 밀도가 낮다는 것은 액체의 관성에 비해 기체의 관성은 일반적으로 무시할 수 있다는 것을 의미합니다.  이러한 의미에서, 액체는 기체에 대해 독립적으로, 즉 자유롭게 움직입니다.  기체의 유일한 효과는 액체의 표면에 대한 압력입니다.  즉, 기체와 액체의 표면은 제약되어있는 것이 아니라 자유롭다는 것입니다.

    In heat-transfer texts the term ‘Stephen Problem’ is often used to describe free boundary problems. In this case, however, the boundaries are phase boundaries, e.g., the boundary between ice and water that changes in response to the heat supplied from convective fluid currents.

    열전달에 관한 문서는 자유 경계 문제를 묘사할 때 “Stephen Problem’”라는 용어가 자주 사용됩니다.  그러나 여기에서 경계는 상(phase) 경계, 즉 대류적인 유체의 흐름에 의해 공급된 열에 반응하여 변화하는 얼음과 물 사이의 경계 등을 말합니다.

    Whatever the name, it should be obvious that the presence of a free or moving boundary introduces serious complications for any type of analysis. For all but the simplest of problems, it is necessary to resort to numerical solutions. Even then, free surfaces require the introduction of special methods to define their location, their movement, and their influence on a flow.

    이름이 무엇이든, 자유 또는 이동 경계가 존재한다는 것은 어떤 유형의 분석에도 복잡한 문제를 야기한다는 것은 분명합니다. 가장 간단한 문제를 제외한 모든 문제에 대해서는 수치 해석에 의존할 필요가 있습니다. 그 경우에도 자유 표면은 위치, 이동 및 흐름에 미치는 영향을 정의하기 위한 특별한 방법이 필요합니다.

    In the following discussion we will briefly review the types of numerical approaches that have been used to model free surfaces, indicating the advantages and disadvantages of each method. Regardless of the method employed, there are three essential features needed to properly model free surfaces:

    1. A scheme is needed to describe the shape and location of a surface,
    2. An algorithm is required to evolve the shape and location with time, and
    3. Free-surface boundary conditions must be applied at the surface.

    다음 설명에서는 자유 표면 모델링에 사용되어 온 다양한 유형의 수치적 접근에 대해 간략하게 검토하고 각 방법의 장단점을 설명합니다. 어떤 방법을 사용하는지에 관계없이 자유롭게 표면을 적절히 모델화하는 다음의 3 가지 기능이 필요합니다.

    1. 표면의 형상과 위치를 설명하는 방식
    2. 시간에 따라 모양과 위치를 업데이트 하는 알고리즘
    3. 표면에 적용할 자유 표면 경계 조건

    Lagrangian Grid Methods

    Conceptually, the simplest means of defining and tracking a free surface is to construct a Lagrangian grid that is imbedded in and moves with the fluid. Many finite-element methods use this approach. Because the grid and fluid move together, the grid automatically tracks free surfaces.

    라그랑주 격자 법

    개념적으로 자유 표면을 정의하고 추적하는 가장 간단한 방법은 유체와 함께 이동하는 라그랑주 격자를 구성하는 것입니다. 많은 유한 요소 방법이 이 접근 방식을 사용합니다. 격자와 유체가 함께 움직이기 때문에 격자는 자동으로 자유 표면을 추적합니다.

    At a surface it is necessary to modify the approximating equations to include the proper boundary conditions and to account for the fact that fluid exists only on one side of the boundary. If this is not done, asymmetries develop that eventually destroy the accuracy of a simulation.

    표면에서 적절한 경계 조건을 포함하고 유체가 경계의 한면에만 존재한다는 사실을 설명하기 위해 근사 방정식을 수정해야합니다. 이것이 수행되지 않으면 결국 시뮬레이션의 정확도를 훼손하는 비대칭이 발생합니다.

    The principal limitation of Lagrangian methods is that they cannot track surfaces that break apart or intersect. Even large amplitude surface motions can be difficult to track without introducing regridding techniques such as the Arbitrary-Lagrangian-Eulerian (ALE) method. References 1970 and 1974 may be consulted for early examples of these approaches.

    라그랑지안 방법의 주요 제한은 분리되거나 교차하는 표면을 추적 할 수 없다는 것입니다. ALE (Arbitrary-Lagrangian-Eulerian) 방법과 같은 격자 재생성 기법을 도입하지 않으면 진폭이 큰 표면 움직임도 추적하기 어려울 수 있습니다. 이러한 접근법의 초기 예를 보려면 참고 문헌 1970 및 1974를 참조하십시오.

    The remaining free-surface methods discussed here use a fixed, Eulerian grid as the basis for computations so that more complicated surface motions may be treated.

    여기에서 논의된 나머지 자유 표면 방법은 보다 복잡한 표면 움직임을 처리할 수 있도록 고정된 오일러 그리드를 계산의 기준으로 사용합니다.

    Surface Height Method

    Low amplitude sloshing, shallow water waves, and other free-surface motions in which the surface does not deviate too far from horizontal, can be described by the height, H, of the surface relative to some reference elevation. Time evolution of the height is governed by the kinematic equation, where (u,v,w) are fluid velocities in the (x,y,z) directions. This equation is a mathematical expression of the fact that the surface must move with the fluid:

    표면 높이 법

    낮은 진폭의 슬로 싱, 얕은 물결 및 표면이 수평에서 너무 멀리 벗어나지 않는 기타 자유 표면 운동은 일부 기준 고도에 대한 표면의 높이 H로 설명 할 수 있습니다. 높이의 시간 진화는 운동학 방정식에 의해 제어되며, 여기서 (u, v, w)는 (x, y, z) 방향의 유체 속도입니다. 이 방정식은 표면이 유체와 함께 움직여야한다는 사실을 수학적으로 표현한 것입니다.

    Finite-difference approximations to this equation are easy to implement. Further, only the height values at a set of horizontal locations must be recorded so the memory requirements for a three-dimensional numerical solution are extremely small. Finally, the application of free-surface boundary conditions is also simplified by the condition on the surface that it remains nearly horizontal. Examples of this technique can be found in References 1971 and 1975.

    이 방정식의 유한 차분 근사를 쉽게 실행할 수 있습니다.  또한 3 차원 수치 해법의 메모리 요구 사항이 극도로 작아지도록 같은 높이의 위치 값만을 기록해야합니다.  마지막으로 자유 표면 경계 조건의 적용도 거의 수평을 유지하는 표면의 조건에 의해 간소화됩니다.  이 방법의 예는 참고 문헌의 1971 및 1975을 참조하십시오.

    Marker-and-Cell (MAC) Method

    The earliest numerical method devised for time-dependent, free-surface, flow problems was the Marker-and-Cell (MAC) method (see Ref. 1965). This scheme is based on a fixed, Eulerian grid of control volumes. The location of fluid within the grid is determined by a set of marker particles that move with the fluid, but otherwise have no volume, mass or other properties.

    MAC 방법

    시간 의존성을 가지는 자유 표면 흐름의 문제에 대해 처음 고안된 수치 법이 MAC (Marker-and-Cell) 법입니다 (참고 문헌 1965 참조).  이 구조는 컨트롤 볼륨 고정 오일러 격자를 기반으로합니다.  격자 내의 유체의 위치는 유체와 함께 움직이고, 그 이외는 부피, 질량, 기타 특성을 갖지 않는 일련의 마커 입자에 의해 결정됩니다.

    Grid cells containing markers are considered occupied by fluid, while those without markers are empty (or void). A free surface is defined to exist in any grid cell that contains particles and that also has at least one neighboring grid cell that is void. The location and orientation of the surface within the cell was not part of the original MAC method.

    마커를 포함한 격자 셀은 유체로 채워져있는 것으로 간주되며 마커가 없는 격자 셀은 빈(무효)것입니다.  입자를 포함하고, 적어도 하나의 인접 격자 셀이 무효인 격자의 자유 표면은 존재하는 것으로 정의됩니다.  셀 표면의 위치와 방향은 원래의 MAC 법에 포함되지 않았습니다.

    Evolution of surfaces was computed by moving the markers with locally interpolated fluid velocities. Some special treatments were required to define the fluid properties in newly filled grid cells and to cancel values in cells that are emptied.

    표면의 발전(개선)은 국소적으로 보간된 유체 속도로 마커를 이동하여 계산되었습니다.  새롭게 충전된 격자 셀의 유체 특성을 정의하거나 비어있는 셀의 값을 취소하거나 하려면 특별한 처리가 필요했습니다.

    The application of free-surface boundary conditions consisted of assigning the gas pressure to all surface cells. Also, velocity components were assigned to all locations on or immediately outside the surface in such a way as to approximate conditions of incompressibility and zero-surface shear stress.

    자유 표면 경계 조건의 적용은 모든 표면 셀에 가스 압력을 할당하는 것으로 구성되었습니다. 또한 속도 성분은 비압축성 및 제로 표면 전단 응력의 조건을 근사화하는 방식으로 표면 위 또는 외부의 모든 위치에 할당되었습니다.

    The extraordinary success of the MAC method in solving a wide range of complicated free-surface flow problems is well documented in numerous publications. One reason for this success is that the markers do not track surfaces directly, but instead track fluid volumes. Surfaces are simply the boundaries of the volumes, and in this sense surfaces may appear, merge or disappear as volumes break apart or coalesce.

    폭넓게 복잡한 자유 표면 흐름 문제 해결에 MAC 법이 놀라운 성공을 거두고 있는 것은 수많은 문헌에서 충분히 입증되고 있습니다.  이 성공 이유 중 하나는 마커가 표면을 직접 추적하는 것이 아니라 유체의 체적을 추적하는 것입니다.  표면은 체적의 경계에 불과하며, 그러한 의미에서 표면은 분할 또는 합체된 부피로 출현(appear), 병합, 소멸 할 가능성이 있습니다.

    A variety of improvements have contributed to an increase in the accuracy and applicability of the original MAC method. For example, applying gas pressures at interpolated surface locations within cells improves the accuracy in problems driven by hydrostatic forces, while the inclusion of surface tension forces extends the method to a wider class of problems (see Refs. 1969, 1975).

    다양한 개선으로 인해 원래 MAC 방법의 정확성과 적용 가능성이 증가했습니다. 예를 들어, 셀 내 보간 된 표면 위치에 가스 압력을 적용하면 정 수력으로 인한 문제의 정확도가 향상되는 반면 표면 장력의 포함은 방법을 더 광범위한 문제로 확장합니다 (참조 문헌. 1969, 1975).

    In spite of its successes, the MAC method has been used primarily for two-dimensional simulations because it requires considerable memory and CPU time to accommodate the necessary number of marker particles. Typically, an average of about 16 markers in each grid cell is needed to ensure an accurate tracking of surfaces undergoing large deformations.

    수많은 성공에도 불구하고 MAC 방법은 필요한 수의 마커 입자를 수용하기 위해 상당한 메모리와 CPU 시간이 필요하기 때문에 주로 2 차원 시뮬레이션에 사용되었습니다. 일반적으로 큰 변형을 겪는 표면의 정확한 추적을 보장하려면 각 그리드 셀에 평균 약 16 개의 마커가 필요합니다.

    Another limitation of marker particles is that they don’t do a very good job of following flow processes in regions involving converging/diverging flows. Markers are usually interpreted as tracking the centroids of small fluid elements. However, when those fluid elements get pulled into long convoluted strands, the markers may no longer be good indicators of the fluid configuration. This can be seen, for example, at flow stagnation points where markers pile up in one direction, but are drawn apart in a perpendicular direction. If they are pulled apart enough (i.e., further than one grid cell width) unphysical voids may develop in the flow.

    마커 입자의 또 다른 한계는 수렴 / 발산 흐름이 포함된 영역에서 흐름 프로세스를 따라가는 작업을 잘 수행하지 못한다는 것입니다. 마커는 일반적으로 작은 유체 요소의 중심을 추적하는 것으로 해석됩니다. 그러나 이러한 유체 요소가 길고 복잡한 가닥으로 당겨지면 마커가 더 이상 유체 구성의 좋은 지표가 될 수 없습니다. 예를 들어 마커가 한 방향으로 쌓여 있지만 수직 방향으로 떨어져 있는 흐름 정체 지점에서 볼 수 있습니다. 충분히 분리되면 (즉, 하나의 그리드 셀 너비 이상) 비 물리적 공극이 흐름에서 발생할 수 있습니다.

    Surface Marker Method

    One way to limit the memory and CPU time consumption of markers is to keep marker particles only on surfaces and not in the interior of fluid regions. Of course, this removes the volume tracking property of the MAC method and requires additional logic to determine when and how surfaces break apart or coalesce.

    표면 마커 법

    마커의 메모리 및 CPU 시간의 소비를 제한하는 방법 중 하나는 마커 입자를 유체 영역의 내부가 아니라 표면에만 보존하는 것입니다.  물론 이는 MAC 법의 체적 추적 특성이 배제되기 때문에 표면이 분할 또는 합체하는 방식과 시기를 특정하기위한 논리를 추가해야합니다.

    In two dimensions the marker particles on a surface can be arranged in a linear order along the surface. This arrangement introduces several advantages, such as being able to maintain a uniform particle spacing and simplifying the computation of intersections between different surfaces. Surface markers also provide a convenient way to locate the surface within a grid cell for the application of boundary conditions.

    2 차원의 경우 표면 마커 입자는 표면을 따라 선형으로 배치 할 수 있습니다.  이 배열은 입자의 간격을 균일하게 유지할 수있는 별도의 표면이 교차하는 부분의 계산이 쉽다는 등 몇 가지 장점이 있습니다.  또한 표면 마커를 사용하여 경계 조건을 적용하면 격자 셀의 표면을 간단한 방법으로 찾을 수 있습니다.

    Unfortunately, in three-dimensions there is no simple way to order particles on surfaces, and this leads to a major failing of the surface marker technique. Regions may exist where surfaces are expanding and no markers fill the space. Without markers the configuration of the surface is unknown, consequently there is no way to add markers. Reference 1975 contains examples that show the advantages and limitations of this method.

    불행히도 3 차원에서는 표면에 입자를 정렬하는 간단한 방법이 없으며 이로 인해 표면 마커 기술이 크게 실패합니다. 표면이 확장되고 마커가 공간을 채우지 않는 영역이 존재할 수 있습니다. 마커가 없으면 표면의 구성을 알 수 없으므로 마커를 추가 할 방법이 없습니다.
    참고 문헌 1975이 방법의 장점과 한계를 보여주는 예제가 포함되어 있습니다.

    Volume-of-Fluid (VOF) Method

    The last method to be discussed is based on the concept of a fluid volume fraction. The idea for this approach originated as a way to have the powerful volume-tracking feature of the MAC method without its large memory and CPU costs.

    VOF (Volume-of-Fluid) 법

    마지막으로 설명하는 방법은 유체 부피 분율의 개념을 기반으로합니다. 이 접근 방식에 대한 아이디어는 대용량 메모리 및 CPU 비용없이 MAC 방식의 강력한 볼륨 추적 기능을 갖는 방법에서 시작되었습니다.

    Within each grid cell (control volume) it is customary to retain only one value for each flow quantity (e.g., pressure, velocity, temperature, etc.) For this reason it makes little sense to retain more information for locating a free surface. Following this reasoning, the use of a single quantity, the fluid volume fraction in each grid cell, is consistent with the resolution of the other flow quantities.

    각 격자 셀 (제어 체적) 내에서 각 유량 (예 : 압력, 속도, 온도 등)에 대해 하나의 값만 유지하는 것이 일반적입니다. 이러한 이유로 자유 표면을 찾기 위해 더 많은 정보를 유지하는 것은 거의 의미가 없습니다. 이러한 추론에 따라 각 격자 셀의 유체 부피 분율인 단일 수량의 사용은 다른 유량의 해상도와 일치합니다.

    If we know the amount of fluid in each cell it is possible to locate surfaces, as well as determine surface slopes and surface curvatures. Surfaces are easy to locate because they lie in cells partially filled with fluid or between cells full of fluid and cells that have no fluid.

    각 셀 내의 유체의 양을 알고 있는 경우, 표면의 위치 뿐만 아니라  표면 경사와 표면 곡률을 결정하는 것이 가능합니다.  표면은 유체 가 부분 충전 된 셀 또는 유체가 전체에 충전 된 셀과 유체가 전혀없는 셀 사이에 존재하기 때문에 쉽게 찾을 수 있습니다.

    Slopes and curvatures are computed by using the fluid volume fractions in neighboring cells. It is essential to remember that the volume fraction should be a step function, i.e., having a value of either one or zero. Knowing this, the volume fractions in neighboring cells can then be used to locate the position of fluid (and its slope and curvature) within a particular cell.

    경사와 곡률은 인접 셀의 유체 체적 점유율을 사용하여 계산됩니다.  체적 점유율은 계단 함수(step function)이어야 합니다, 즉, 값이 1 또는 0 인 것을 기억하는 것이 중요합니다.  이 것을 안다면, 인접 셀의 부피 점유율을 사용하여 특정 셀 내의 유체의 위치 (및 그 경사와 곡률)을 찾을 수 있습니다.

    Free-surface boundary conditions must be applied as in the MAC method, i.e., assigning the proper gas pressure (plus equivalent surface tension pressure) as well as determining what velocity components outside the surface should be used to satisfy a zero shear-stress condition at the surface. In practice, it is sometimes simpler to assign velocity gradients instead of velocity components at surfaces.

    자유 표면 경계 조건을 MAC 법과 동일하게 적용해야 합니다.  즉, 적절한 기체 압력 (및 대응하는 표면 장력)을 할당하고, 또한 표면에서 제로 전단 응력을 충족 시키려면 표면 외부의 어떤 속도 성분을 사용할 필요가 있는지를 확인합니다.  사실, 표면에서의 속도 성분 대신 속도 구배를 지정하는 것이보다 쉬울 수 있습니다.

    Finally, to compute the time evolution of surfaces, a technique is needed to move volume fractions through a grid in such a way that the step-function nature of the distribution is retained. The basic kinematic equation for fluid fractions is similar to that for the height-function method, where F is the fraction of fluid function:

    마지막으로, 표면의 시간 변화를 계산하려면 분포의 계단 함수의 성질이 유지되는 방법으로 격자를 통과하고 부피 점유율을 이동하는 방법이 필요합니다.  유체 점유율의 기본적인 운동학방정식은 높이 함수(height-function) 법과 유사합니다.  F는 유체 점유율 함수입니다.

    A straightforward numerical approximation cannot be used to model this equation because numerical diffusion and dispersion errors destroy the sharp, step-function nature of the F distribution.

    이 방정식을 모델링 할 때 간단한 수치 근사는 사용할 수 없습니다.  수치의 확산과 분산 오류는 F 분포의 명확한 계단 함수(step-function)의 성질이 손상되기 때문입니다.

    It is easy to accurately model the solution to this equation in one dimension such that the F distribution retains its zero or one values. Imagine fluid is filling a column of cells from bottom to top. At some instant the fluid interface is in the middle region of a cell whose neighbor below is filled and whose neighbor above is empty. The fluid orientation in the neighboring cells means the interface must be located above the bottom of the cell by an amount equal to the fluid fraction in the cell. Then the computation of how much fluid to move into the empty cell above can be modified to first allow the empty region of the surface-containing cell to fill before transmitting fluid on to the next cell.

    F 분포가 0 또는 1의 값을 유지하는 같은 1 차원에서이 방정식의 해를 정확하게 모델링하는 것은 간단합니다.  1 열의 셀에 위에서 아래까지 유체가 충전되는 경우를 상상해보십시오.  어느 순간에 액체 계면은 셀의 중간 영역에 있고, 그 아래쪽의 인접 셀은 충전되어 있고, 상단 인접 셀은 비어 있습니다.  인접 셀 내의 유체의 방향은 계면과 셀의 하단과의 거리가 셀 내의 유체 점유율과 같아야 한다는 것을 의미합니다.  그 다음 먼저 표면을 포함하는 셀의 빈 공간을 충전 한 후 다음 셀로 유체를 보내도록 위쪽의 빈 셀에 이동하는 유체의 양의 계산을 변경할 수 있습니다.

    In two or three dimensions a similar procedure of using information from neighboring cells can be used, but it is not possible to be as accurate as in the one-dimensional case. The problem with more than one dimension is that an exact determination of the shape and location of the surface cannot be made. Nevertheless, this technique can be made to work well as evidenced by the large number of successful applications that have been completed using the VOF method. References 1975, 1980, and 1981 should be consulted for the original work on this technique.

    2 차원과 3 차원에서 인접 셀의 정보를 사용하는 유사한 절차를 사용할 수 있지만, 1 차원의 경우만큼 정확하게 하는 것은 불가능합니다.  2 차원 이상의 경우의 문제는 표면의 모양과 위치를 정확히 알 수없는 것입니다.  그래도 VOF 법을 사용하여 달성 된 다수의 성공 사례에서 알 수 있듯이 이 방법을 잘 작동시킬 수 있습니다.  이 기법에 관한 초기의 연구 내용은 참고 문헌 1975,1980,1981를 참조하십시오.

    The VOF method has lived up to its goal of providing a method that is as powerful as the MAC method without the overhead of that method. Its use of volume tracking as opposed to surface-tracking function means that it is robust enough to handle the breakup and coalescence of fluid masses. Further, because it uses a continuous function it does not suffer from the lack of divisibility that discrete particles exhibit.

    VOF 법은 MAC 법만큼 강력한 기술을 오버 헤드없이 제공한다는 목표를 달성 해 왔습니다.  표면 추적이 아닌 부피 추적 기능을 사용하는 것은 유체 질량의 분할과 합체를 처리하는 데 충분한 내구성을 가지고 있다는 것을 의미합니다.  또한 연속 함수를 사용하기 때문에 이산된 입자에서 발생하는 숫자를 나눌 수 없는 문제를 겪지 않게 됩니다.

    Variable-Density Approximation to the VOF Method

    One feature of the VOF method that requires special treatment is the application of boundary conditions. As a surface moves through a grid, the cells containing fluid continually change, which means that the solution region is also changing. At the free boundaries of this changing region the proper free surface stress conditions must also be applied.

    VOF 법의 가변 밀도 근사

    VOF 법의 특수 처리가 필요한 기능 중 하나는 경계 조건의 적용입니다.  표면이 격자를 통과하여 이동할 때 유체를 포함하는 셀은 끊임없이 변화합니다.  즉, 계산 영역도 변화하고 있다는 것입니다.  이 변화하고있는 영역의 자유 경계에는 적절한 자유 표면 응력 조건도 적용해야합니다.

    Updating the flow region and applying boundary conditions is not a trivial task. For this reason some approximations to the VOF method have been used in which flow is computed in both liquid and gas regions. Typically, this is done by treating the flow as a single fluid having a variable density. The F function is used to define the density. An argument is then made that because the flow equations are solved in both liquid and gas regions there is no need to set interfacial boundary conditions.

    유체 영역의 업데이트 및 경계 조건의 적용은 중요한 작업입니다.  따라서 액체와 기체의 두 영역에서 흐름이 계산되는 VOF 법에 약간의 근사가 사용되어 왔습니다.  일반적으로 가변 밀도를 가진 단일 유체로 흐름을 처리함으로써 이루어집니다.  밀도를 정의하려면 F 함수를 사용합니다.  그리고, 흐름 방정식은 액체와 기체의 두 영역에서 계산되기 때문에 계면의 경계 조건을 설정할 필요가 없다는 논증이 이루어집니다.

    Unfortunately, this approach does not work very well in practice for two reasons. First, the sensitivity of a gas region to pressure changes is generally much greater than that in liquid regions. This makes it difficult to achieve convergence in the coupled pressure-velocity solution. Sometimes very large CPU times are required with this technique.

    공교롭게도 이 방법은 두 가지 이유로 인해 실제로는 그다지 잘 작동하지 않습니다.  하나는 압력의 변화에 대한 기체 영역의 감도가 일반적으로 액체 영역보다 훨씬 큰 것입니다.  따라서 압력 – 속도 결합 해법 수렴을 달성하는 것은 어렵습니다.  이 기술은 필요한 CPU 시간이 매우 커질 수 있습니다.

    The second, and more significant, reason is associated with the possibility of a tangential velocity discontinuity at interfaces. Because of their different responses to pressure, gas and liquid velocities at an interface are usually quite different. In the Variable-Density model interfaces are moved with an average velocity, but this often leads to unrealistic movement of the interfaces.

    두 번째 더 중요한 이유는 계면에서 접선 속도가 불연속이되는 가능성에 관련이 있습니다.  압력에 대한 반응이 다르기 때문에 계면에서 기체와 액체의 속도는 일반적으로 크게 다릅니다.  가변 밀도 모델은 계면은 평균 속도로 동작하지만, 이는 계면의 움직임이 비현실적으로 되는 경우가 많습니다.

    Even though the Variable-Density method is sometimes referred to as a VOF method, because is uses a fraction-of-fluid function, this designation is incorrect. For accurately tracking sharp liquid-gas interfaces it is necessary to actually treat the interface as a discontinuity. This means it is necessary to have a technique to define an interface discontinuity, as well as a way to impose the proper boundary conditions at that interface. It is also necessary to use a special numerical method to track interface motions though a grid without destroying its character as a discontinuity.

    가변 밀도 방법은 유체 분율 함수를 사용하기 때문에 VOF 방법이라고도하지만 이것은 올바르지 않습니다. 날카로운 액체-가스 인터페이스를 정확하게 추적하려면 인터페이스를 실제로 불연속으로 처리해야합니다. 즉, 인터페이스 불연속성을 정의하는 기술과 해당 인터페이스에서 적절한 경계 조건을 적용하는 방법이 필요합니다. 또한 불연속성으로 특성을 훼손하지 않고 격자를 통해 인터페이스 동작을 추적하기 위해 특수한 수치 방법을 사용해야합니다.

    Summary

    A brief discussion of the various techniques used to numerically model free surfaces has been given here with some comments about their relative advantages and disadvantages. Readers should not be surprised to learn that there have been numerous variations of these basic techniques proposed over the years. Probably the most successful of the methods is the VOF technique because of its simplicity and robustness. It is this method, with some refinement, that is used in the FLOW-3D program.

    여기에서는 자유 표면을 수치적으로 모델링 할 때 사용하는 다양한 방법에 대해 상대적인 장점과 단점에 대한 설명을 포함하여 쉽게 설명하였습니다.  오랜 세월에 걸쳐 이러한 기본적인 방법이 많이 제안되어 온 것을 알고도 독자 여러분은 놀라지 않을 것입니다.  아마도 가장 성과를 거둔 방법은 간결하고 강력한 VOF 법 입니다.  이 방법에 일부 개량을 더한 것이 현재 FLOW-3D 프로그램에서 사용되고 있습니다.

    Attempts to improve the VOF method have centered on better, more accurate, ways to move fluid fractions through a grid. Other developments have attempted to apply the method in connection with body-fitted grids and to employ more than one fluid fraction function in order to model more than one fluid component. A discussion of these developments is beyond the scope of this introduction.

    VOF 법의 개선은 더 나은, 더 정확한 방법으로 유체 점유율을 격자를 통과하여 이동하는 것에 중점을 두어 왔습니다.  기타 개발은 물체 적합 격자(body-fitted grids) 관련 기법을 적용하거나 여러 유체 성분을 모델링하기 위해 여러 유체 점유율 함수를 채용하기도 했습니다.  이러한 개발에 대한 논의는 여기에서의 설명 범위를 벗어납니다.

    References

    1965 Harlow, F.H. and Welch, J.E., Numerical Calculation of Time-Dependent Viscous Incompressible Flow, Phys. Fluids 8, 2182.

    1969 Daly, B.J., Numerical Study of the Effect of Surface Tension on Interface Instability, Phys. Fluids 12, 1340.

    1970 Hirt, C.W., Cook, J.L. and Butler, T.D., A Lagrangian Method for Calculating the Dynamics of an Incompressible Fluid with Free Surface, J. Comp. Phys. 5, 103.

    1971 Nichols, B.D. and Hirt, C.W.,Calculating Three-Dimensional Free Surface Flows in the Vicinity of Submerged and Exposed Structures, J. Comp. Phys. 12, 234.

    1974 Hirt, C.W., Amsden, A.A., and Cook, J.L.,An Arbitrary Lagrangian-Eulerian Computing Method for all Flow Speeds, J. Comp. Phys., 14, 227.

    1975 Nichols, B.D. and Hirt, C.W., Methods for Calculating Multidimensional, Transient Free Surface Flows Past Bodies, Proc. of the First International Conf. On Num. Ship Hydrodynamics, Gaithersburg, ML, Oct. 20-23.

    1980 Nichols, B.D. and Hirt, C.W., Numerical Simulation of BWR Vent-Clearing Hydrodynamics, Nucl. Sci. Eng. 73, 196.

    1981 Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comp. Phys. 39, 201.

    업무에 적합한 올바른 CFD 소프트웨어 선택 방법

    업무에 적합한 올바른 CFD 소프트웨어 선택 방법

    많은 제품들이 모두 자신의 소프트웨어가 가장 적합하다고 말하기 떄문에, 사람들은 자신의 업무에 적합한 CFD 소프트웨어 선택에 어려움을 겪습니다. 그 이유는 유체 흐름 및 열 전달 분석을 위한 소프트웨어 패키지는 다양한 형태로 제공됩니다. 이러한 패키지는 물리적 근사치와 수치적 솔루션 기법이 크게 다르기 때문에 적합한 패키지를 선택하는 것이 어렵습니다.

    아래 내용에서 올바른 CFD 소프트웨어를 선택할 때 고려해야 할 중요한 항목을 설명합니다.

    Spillway’s tailrace over natural rock

    1. 메싱 및 지오메트리

    유한 요소 또는 “바디 맞춤 좌표”를 사용하는 솔루션 방법은 유동 영역의 기하학적 구조를 준수하는 해석용 그리드를 생성해야합니다. 정확한 수치 근사를 위해 허용 가능한 요소 크기와 모양으로 이러한 그리드를 생성하는 것은 쉽지 않은 작업입니다. 복잡한 경우 이러한 유형의 그리드 생성에는 며칠 또는 몇주의 노력이 소요될 수 있습니다. 일부 프로그램은 직사각형 그리드 요소만 사용하여 이러한 생성 문제를 제거하려고 시도하지만 흐름 및 열 전달 특성을 변경하는 “계단현상” 경계 문제를 해결해야 합니다. FLOW-3D는 FAVOR ™ (분수 면적 / 체적) 방법을 사용하여 기하학적 특성이 매끄럽게 포함된 생성하기 쉬운 직사각형 그리드를 사용하여 두 문제를 모두 해결합니다. 간단하고 강력한 솔리드 모델러가 FLOW-3D와 함께 패키지로 제공되거나 사용자가 CAD 프로그램에서 기하학적 데이터를 가져올 수 있습니다.

    2. 운동량 방정식과 대략적인 흐름 모델

    유체 운동량의 정확한 처리는 여러 가지 이유로 중요합니다. 첫째, 복잡한 지오메트리를 통해 유체가 어떻게 흐를지 예측할 수 있는 유일한 방법입니다. 둘째, 유체에 의해 가해지는 동적 힘 (즉, 압력)은 모멘텀을고려하여야만 계산할 수 있습니다. 마지막으로, 열 에너지의 대류 이동을 계산하려면 개별 유체 입자가 다른 유체 입자 및 제한 경계와 관련하여 어떻게 움직이는지를 정확하게 파악할 수 있어야 합니다.

    이것은 운동량의 정확한 처리를 의미합니다. 모멘텀의 보존을 대략적으로만 하는 단순화된 흐름 모델은 실제적인 유체 구성과 온도 분포를 예측하는데 사용할 수 없기 때문에 FLOW-3D에서는 사용되지 않습니다.

    3. 액체-고체 열 전달 영역

    액체와 고체 (예 : 금속-금형) 사이의 열 전달에는 계면 영역의 정확한 추정이 필요합니다. 계단 경계는 이 영역을 과대 평가합니다. 예를 들어, 실린더의 표면적은 27 %의 비율로 과대 평가됩니다. FLOW-3D 전 처리기의 각 제어 볼륨에 대해 FAVOR ™ 방법에 의해 정확한 계면 영역이 자동으로 계산됩니다.

    4. 액체-고체 열 전달에 대한 볼륨 효과 제어

    제어 볼륨의 크기는 액체 / 고체 인터페이스를 포함하는 제어 볼륨에서도 열이 흐르기 때문에 액체와 고체 사이에서 교환되는 열의 속도와 양에 영향을 미칠 수 있습니다. FLOW-3D에서는 액체-고체 인터페이스에서 열 전달 속도를 계산할 때 체적 크기와 전도도가 고려됩니다.

    5. 암시성(Implicitness)과 정확성

    비선형 및 결합 방정식에 대한 암시적 방법에는 각 반복에서 under-relaxation 특성이 있는 반복 솔루션 방법이 필요합니다. 이 동작은 일부 상황에서 심각한 오류 (또는 매우 느린 수렴)를 일으킬 수 있습니다 (예 : 큰 종횡비로 제어 볼륨을 사용하거나 실제로 중요하지 않은 효과를 예상하여 암시성이 사용되는 경우).

    FLOW-3D에서는 계산 노력FLOW-3D에서는 계산 작업이 덜 필요하기 때문에 가능한 경우 언제나 명시적 수치 방법을 사용하며, 수치 안정성 요구 사항은 정확도 요구 사항과 동일합니다. Implicit vs. Explicit Numerical Methods 문서에서 자세히 알아보세요.

    6. 대류 전송을 위한 암시적 수치 방법 (Implicit Numerical Methods)

    임의적으로 큰 시간 단계 크기를 계산에 사용할 수 있는 암시적 수치 기법은 CPU 시간을 줄이는데 널리 사용되는 방법입니다. 불행히도 이러한 방법은 대류 해석에 정확하지 않습니다. 암시적 방법은 근사 방정식에 확산 효과를 도입하여 시간 단계 독립성을 얻습니다. 물리적 확산(예 : 열전도)에 수치적 확산을 추가하는 것은 확산 속도만 수정하기 때문에 심각한 문제를 일으키지 않을 수 있습니다. 그러나 대류 과정에 수치 확산을 추가하면 모델링되는 물리적 현상의 특성이 완전히 바뀝니다. FLOW-3D에서 시간 단계는 프로그램에 의해 자동으로 제어되어 정확한 시간 근사치를 보장합니다.

    7. 이완 및 수렴 매개 변수 (Relaxation and Convergence Parameters)

    암시적 근사를 사용하는 수치 방법은 하나 이상의 수렴 및 이완 매개 변수를 선택해야합니다. 이러한 매개 변수를 잘못 선택하면 발산 또는 수렴 속도가 느려질 수 있습니다. FLOW-3D에서는 하나의 수렴 및 하나의 이완 매개 변수만 사용되며, 두 매개 변수는 프로그램에 의해 동적으로 선택됩니다. 사용자는 수치해석 솔버를 제어하는 ​​매개 변수를 설정할 필요가 없습니다.

    8. 자유 표면 추적

    액체-가스 인터페이스 (즉, 자유 표면)를 모델링하는 데 사용되는 두 가지 방법이 있습니다. 그 중 하나는 액체 및 가스 영역의 흐름을 계산하고 계면을 유체 밀도의 급격한 변화로 처리하는 것입니다. 일반적으로 밀도 불연속성은 고차 수치 근사를 사용하여 모델링됩니다.

    불행히도, 이 치료는 몇몇 그리드 셀에 걸쳐 인터페이스가 매끄럽게 진행되도록 해주며, 그러한 인터페이스에 일반적으로 존재하는 접선 유속의 급격한 변화는 설명하지 않습니다. 또한 이 기법은 가스가 계산 영역으로 유입되는 액체로 대체될 경우 탈출 포트 또는 가스의 싱크로도 보완해야 합니다. 또한 이러한 방법은 일반적으로 유체의 비압축성을 만족시키기 위해 더 많은 노력을 기울여야 합니다.  가스 영역은 거의 균일한 압력 조정을 통해 솔루션 수렴 속도를 늦추는 경향이 있기 때문에 이러한 현상이 발생합니다.

    FLOW-3D에서는 다른 기술인 VOF (Volume-of-Fluid) 방법이 사용됩니다. 이것은 인터페이스가 단계 불연속으로 긴밀하게 유지되는 진정한 3 차원 인터페이스 추적 체계입니다. 또한 선택적 표면 장력을 포함하여 수직 및 접선 응력 경계 조건이 인터페이스에 적용됩니다. 가스 영역은 사용자가 모델에 포함되도록 요청하지 않는 한 계산되지 않습니다.

    Moving Boundaries: An Eulerian Approach

    Moving Boundaries: An Eulerian Approach

    많은 문제에서, 유체 및 고체 영역의 내부 경계가 그 안에서 이동할 수 있도록하면서 공간에 고정 된 그리드를 유지하는 것이 유리합니다. 이는 리 메싱의 필요성을 피할 수 있으므로 이러한 경계의 형태에 급격한 변화가 발생할 때마다 적절합니다. 메시 생성도 크게 단순화되었습니다.

    고정 그리드 내에서 유체 인터페이스, 침전물, 응고 된 유체 및 탄성 재료의 경계 이동을 모델링하기위한 다양한 접근 방식이 표시됩니다. 유체 경계의 이동은 VOF (Volume-of-Fluid) 방법의 변형으로 수행되며, 각 계산 셀에서 유체의 양을 나타내는 양이 고정 메시를 통해 조정됩니다.

    퇴적물의 침식 및 퇴적은 퇴적물 수색 모델을 사용하여 계산됩니다. 국부적 인 침식 속도는 패킹 된 퇴적물 / 유체 경계면에 존재하는 국부적 인 전단 응력을 기반으로하며, 증착은 Stokes 유동 근사치로 예측됩니다.

    Emptying of gravure cell (same cell dimensions as filling case); a
    three-dimensional perspective is shown. The transfer roll surface
    (block at top) is moving away from the gravure roll at 0.5m/s. The
    static contact of the fluid with all surfaces is 30°. The elapsed time
    is 150

    충진 층 경계면은 퇴적물 농도와 퇴적물의 포장 분율에 따라 달라집니다. 용융 금속은 온도가 빙점 아래로 떨어지면 굳을 수 있습니다. 응고 된 “유체”는 동결 및 용융을 유발하는 열유속의 양으로부터 결정된대로 표면이 증가하거나 수축하는 고체처럼 처리됩니다.

    탄성 응력은 응고 된 재료 / 공기 인터페이스를 예측하는 VOF 방법을 사용하여 동일한 고정 그리드 내의 운동량 균형에 탄성 응력 계산을 추가하여 응고 된 영역에서 계산됩니다.

    매우 일시적인 흐름 문제의 경우 유체와 공극 공간 사이 또는 두 개의 혼합 불가능한 유체 사이에있는 유체 인터페이스는 문제의 역학에 따라 자유롭게 움직여야합니다.

    한 가지 해결책은 인터페이스와 함께 변형되는 메시를 만드는 것입니다. 이것은 시뮬레이션 중에 인터페이스의 형태가 거의 변경되지 않는 상황에서 잘 작동합니다. 그러나보다 일반적인 경우에는 시뮬레이션 중에 새 메시를 반복적으로 생성해야하거나 변경되지 않은 메시 내에서 자유 표면 경계를 생성하는 방법이 필요합니다. 이 작업은 후자를 제시합니다. VOF (Vol-of-fluid) 함수는 자유 표면의 위치를 추적하는 데 사용됩니다. 또한이 함수는 곡률을 계산하여 표면 장력의 영향을 예측하는 데 사용됩니다.

    <원문보기> Moving-Boundaries-an-Eularian-Approach.pdf

    Flushing

    Flushing

    화장실이 어떻게 작동하는지 궁금한 적이 있습니까? 사실 꽤 복잡합니다. 손잡이를 밀면 물이 용기를 채우기 시작합니다. 용기의 유체 레벨이 트랩 상단 (보울 뒤) 위로 올라가면 위어 유형의 흐름이 시작됩니다. 흐름이 충분히 빠르면 트랩 상단에 거품이 형성되어 사이펀이 생성됩니다. 그 시점에서 사이펀은 용기에서 물을 빼내고 변기가 내립니다.

    많은 지역에서 물 절약은 중요한 문제이며 가정과 상업용 모두에 저 유량 화장실이 필요합니다. 그러나 화장실이 첫 번째 시도에서 작업을 완료하지 못하면 물 절약 목표가 실패합니다. FLOW-3D는 최적의 결과를 얻기 위해 다양한 설계를 모델링하는 데 사용할 수 있습니다.

    Toilet Flushing Examples

    아래 3D 애니메이션에서 FLOW-3D는 물 동작의 세척 순서를 보여줍니다. 물의 두 영역이 공과 함께 초기화됩니다. 공은 6 자유도의 완전 결합 유체-고체 모션을 시뮬레이션하기 위해 움직이는 물체 모델(GMO)을 사용하여 모델링됩니다. 중력은 수세식 탱크에서 물을 용기로 밀어 넣습니다. 분석은 정체 영역과 공이 영역을 벗어나는 기간을 나타내는 흐름 프로파일과 압력 윤곽을 보여줍니다. 공 대신 다른 질량과 모양을 사용할 수 있습니다. 플러싱 과정에서 잔여 물도 분석 할 수 있습니다.

    아래의 횡단면 플롯은 수조의 흐름 재순환과 상세한 흐름 프로필을 보여줍니다. Collision 모델은 규정된 반발 및 마찰 계수를 기반으로 바운싱을 예측하는 공을 시뮬레이션하는 데 사용되었습니다. 물과 공기 사이의 일시적인 예리한 경계면은 FLOW-3D의 TruVOF 방법을 사용하여 잘 유지됩니다.

    Agitational Stresses

    Agitational Stresses / 동요 스트레스

    This article was contributed by Ge Bai, Scientist, MedImmune LLC.

    Agitation instruments and glass vial

    Agitation 연구는 생물 요법 발달에 있어 흔하고 중요한 부분이지만, 관련된 스트레스의 근본적인 특성과 단백질 안정성에 대한 영향은 완전히 이해되지 않았습니다. 동요된 스트레스 방법의 특성화는 단백질 분해 메커니즘이나 특정 민감도를 식별하는데 매우 중요합니다. 전단, 경계면, 캐비 테이션 또는 기타 유체 및 계면 장력에 의한 응력은 실험적 방법으로 측정하기 어렵거나 불가능합니다. 최근에는 다양한 주파수에서 회전 장치(Rotator), 궤도 셰이커, 자석 교반기, 와류 혼합기(그림 1참조)를 포함한 다양한 계측기를 사용하여 3-4S 유리 바이알에서 동요하는 액체의 유체 역학을 모델링하여 단백질 안정성에 잠재적으로 중요한 응력을 확인하고 정량화하였습니다. 25°C에서 물의 유동성 특성이 이러한 시뮬레이션에 사용되었습니다.

    Gaining better understanding on agitational stresses applied to proteins for biopharmaceutical development

    표준 FLOW3D코드는 최대 시스템 전단율, 볼륨 평균 전단률, 공기-액체 및 고체-액체 인터페이스 근처의 볼륨 평균 전단률, 총 전단, 고체-액체 인터페이스의 면적, 그리고 공기음 재생 인터페이스와 같은 단백질에 대한 잠재적으로 유해한 응력을 수치적으로 계산할 수 있도록 맞춤화하였다. 표준 소프트웨어 패키지의 추가 출력으로 표시됩니다. 시뮬레이션과 실험 사이에 바이알에 있는 유체의 자유 표면 형태를 비교하여 CFD모델을 검증하였습니다(그림 2).

    Orbital schaker simulation
    그림 2. CFD시뮬레이션과 300rpm정상 상태에서의(A)궤도 쉐이커와(B)35rpm, 55°위치에서의 회전 장치(Rotator)회전 장치(Rotator)에 대한 실험 사이의 유체 없는 표면 형태 비교.
    Instantaneous shear rates
    그림 3. 최대 진동 주파수(A)궤도 쉐이커,(B)자기 교반기,(C)와류 혼합기 및(D)회전 장치(Rotator)에서의 경계면 부근에서의 순간 전단율.

    응력(전단 속도 및 인터페이스 생성 속도)의 예와 공기 액상 및 고체 액체 인터페이스에서의 비교는 그림 3과 그림 4에 나와 있다. 전체적으로, 와류 혼합기는 가장 강한 응력을 제공하는 반면, 자석 교반기는 소수성 절 표면에 국소적으로 강한 전단을 제시하였다. 회전 장치(Rotator)는 부드러운 유체 응력을 제공하지만 낮은 회전 주파수를 고려할 때 공기-물 내부 영역 및 표면 응력은 상대적으로 높습니다. 궤도 셰이커는 중간 수준의 스트레스를 제공하지만 일관된 생체-생체 동질성을 위한 크고 안정적인 플랫폼의 이점을 제공합니다.

    Air-liquid interface generation rates
    그림 4. 최대 진동 주파수(A)궤도 쉐이커,(B)자기 교반기,(C)와류 혼합기 및(D)회전 장치(Rotator)에서의 공기 액상 인터페이스 생성 속도.

    우리는 설명한 각각의 동요된 방법에서 유리 용기 안의 액체에 복수의 응력이 동시에 작용한다는 것을 발견했다. 이러한 스트레스는 다양한 방법에 따라 다양했으며 종종 교란 주파수의 강력한 기능으로 밝혀졌다. 또한 알려진 유형과 강도의 스트레스를 가진 적절한 촉진 방법을 선택하면 단백질 저하 메커니즘에 대한 영향을 더 잘 이해하는 데 도움이 될 수 있다는 것도 알아냈다. 우리는 CFD가 실험 시스템에서 유체 응력의 특성을 파악하고 실제 조건에 대한 관련성을 검증하는 데 중요한 역할을 할 수 있다고 결론지었습니다.

    생명 공학 응용 분야

    표준 FLOW-3D 코드는 시스템 전단 속도, 부피 평균 전단 속도, 공기-액체 및 고체-액체 계면 근처의 부피 평균 전단 속도, 총 전단, 고체 면적과 같은 단백질에 잠재적으로 유해한 응력이 발생하도록 맞춤화되었습니다. 액체 인터페이스 및 공기-액체 인터페이스 재생률을 수치적으로 계산하고, 표준 소프트웨어 패키지의 추가 출력과 비교할 수 있습니다. 시뮬레이션과 실험 사이에 VIAL에있는 유체의 자유 표면 모양을 비교하여 CFD 모델을 검증했습니다 (그림 2).

    Orbital schaker simulation
    Figure 2. Comparison of the shape of fluid free surface between CFD simulation and experiment for (A) orbital shaker at 300 rpm at steady state and (B) rotator at 35 rpm, 55° position.
    Instantaneous shear rates
    Figure 3. Instantaneous shear rates near interfaces at maximum agitation frequencies (A) orbital shaker, (B) magnetic stirrer, (C) vortex mixer and (D) rotator.

    응력(전단 속도 및 인터페이스 생성 속도)의 예와 공기 액상 및 고체 액체 인터페이스에서의 비교는 그림 3과 그림 4에 나와 있습니다. 전체적으로, 와류 혼합기는 가장 강한 응력을 제공하는 반면, 자석 교반기는 hydrophobic stir bar 표면에 국소적으로 강한 전단을 제시합니다. 회전 장치(Rotator)는 부드러운 유체 응력을 제공하지만 낮은 회전 주파수를 고려할 때 공기-물 내부 영역 및 표면 응력은 상대적으로 높습니다. 궤도 셰이커는 중간 수준의 스트레스를 제공하지만 일관된 생체-생체 동질성을 위한 크고 안정적인 플랫폼의 이점을 제공합니다.

    Air-liquid interface generation rates
    Figure 4. Air-liquid interface generation rates at maximum agitation frequencies (A) orbital shaker, (B) magnetic stirrer, (C) vortex mixer and (D) rotator.

    우리는 설명한 각각의 교반 방법에서 유리 용기 안의 액체에 여러가지 응력이 동시에 작용한다는 것을 발견했다. 이러한 스트레스는 다양한 방법에 따라 다양했으며 종종 교란 주파수의 강력한 기능으로 밝혀졌다. 또한 알려진 유형과 강도의 스트레스를 가진 적절한 촉진 방법을 선택하면 단백질 분해 메커니즘에 대한 영향을 더 잘 이해하는 데 도움이 될 수 있다는 것도 알아냈습니다. 우리는 CFD가 실험 시스템에서 유체 응력의 특성을 파악하고 실제 조건에 대한 관련성을 검증하는 데 중요한 역할을 할 수 있다고 결론지었습니다.

    다공성 매체 / Porous Media

    다공성 매체 / Porous Media

    FLOW-3D는 다공성 매체 내의 포화 및 불포화 흐름을 모두 시뮬레이션할 수 있습니다. 포화된 다공성 미디어 흐름은 포화 구역과 불포화 구역 사이에 예리한(또는 거의 날카로운) 계면이 있고 계면에 특정 모세관 압력이 존재하는 상황에 적용됩니다. 이러한 상황은 지하수 흐름에서 발생합니다. 불포화 다공성 미디어 흐름은 포화 구역에서 불포화 구역으로 점진적으로 전환되는 상황에 적용됩니다. 이러한 상황에서는 설정된 모세관 압력이 없습니다. 모세관 압력은 현재 포화 수준과 다공성 물질 내 포화 이력의 함수입니다.

    두 경우 모두 각 성분에 대해 서로 다른 다공성, 투과성 및 습윤성(모세관 압력 또는 모세관 압력 대 포화도)을 독립적으로 지정할 수 있으며 투과성은 등방성(모든 방향에서 동일) 또는 비등방성(흐름 방향에 따라 달라짐)일 수 있습니다.

    아래 동영상은 종이와 같은 다공성 물질로 스며드는 물방울의 경우를 보여줍니다. 이 경우 다공성 물질은 불포화 상태로 모델링되므로 습윤성은 국부 포화에 따라 달라집니다. 이미 젖은 영역은 모세관 압력이 더 강한 반면, 낙하 가장자리에 있는 영역은 모세관 압력이 더 낮습니다. 이 작업은 별도의 주입 및 배출 곡선을 사용하여 수행됩니다. 따라서 방울이 재료에 균일하게 퍼지지 않습니다. 이러한 행동은 젖은 종이 타월을 짜는 것으로 볼 수 있습니다; 모든 물을 짜내는 것보다 종이를 적시는 것이 훨씬 쉽습니다.


    다공성 매질에 흡수 된 물방울 시뮬레이션

    다공성 매체에서의 불포화 흐름은 포화 흐름 조건에서는 존재하지 않는 많은 복잡한 현상을 수반합니다. 예를 들어 구성을 알 수 없는 자유 경계와 모세관 힘이 존재하여 액체를 포화도가 낮은 영역으로 끌어들이는 큰 음압을 발생시킬 수 있습니다. 또한 모세관 압력은 실험적인 판단과 모델링을 더욱 어렵게 만드는 이력(hysteresis) 동작을 보일 수 있습니다. 불포화 흐름과 관련된 합병증은 가장 간단한 경우를 제외한 모든 상황에서 수치적 해결 절차의 필요성을 나타냅니다. 이러한 유형의 흐름의 자유 표면적인 측면 때문에, FLOW-3D® 프로그램을 불포화 흐름의 일반적인 사례로 확장할 것을 생각하는 것은 당연합니다. 이 확장 작업을 수행하는 데 필요한 수정 사항은 아래 보고서에 설명되어 있습니다. 이후의 섹션에서 더 자세히 설명했듯이, 물질을 통과하는 흐름을 정확하게 모형화하기 위해서는 다공성 물질과 이를 관통하는 액체에 대한 충분한 경험적 데이터가 필요합니다. 모세관 압력과 투과성을 위해 여기에 보고된 모델에는 일부 재료에 대한 수정이 필요할 수 있는 일반적인 특성이 있습니다.

    보고서 원문  : UNSATURATED FLOW IN POROUS MEDIA

    Micro/Biofluidics with FLOW-3D – Liquid handling (액체 취급)

    나노리터 물방울의 정밀 분배

    • 섬세하고 정확한 분석
    • 원액의 소비를 정확하게 제어할 수 있음
    • 유체 특성/동역학에 기반한 공정 파라미터
      – 자유 표면 흐름의 복잡성을 고려
      – 자연스러운 모세관 중심 불안정을 고려
      – 씨닝 및 핀치 오프를 고려

    방울의 형성 및 분리

    • 모세관, 관성, 점성 및 중력의 복잡한 상호 작용
    • 표면 장력과 점성력이 “핀치 오프”를 넘어가면 분리가 발생
    • FLOW-3D는 예측할 수 있음
      – 근본적인 응력
      – 확장된 유동장
      – 희석된 액체 필라멘트 내의 유동장을 시각화

    미세 방울의 병합을 위한 유전영동

    • 유전영동력은 불균일한 전기장(일반적으로 AC전기장)에서 움직임을 유발함
    • 나노리터 유체 또는 나노 규모 입자의 특성을 다루고 처리하는데 사용

    유동 집중

    • 다유체 계면 장력 파악
    • 방울 형성의 세부 사항 확인
    • 미세 방울의 진화 파악 (형태/크기)

    자기 혈액 정화 마이크로 장치의 최적화

    Optimization of Magnetic Blood Cleansing Microdevices

    자기 혈액 정화 마이크로 장치의 최적화

    이 기사는 스페인 칸타 브리아 대학 (University of Cantabria) 화학과 및 버팔로 (뉴욕), 미국 뉴욕 주립 대학 생화학공학과의 enifer Gómez-Pastora, Eugenio Bringas, Inmaculada Ortiza 및 Edward P. Furlanib에 의해 기고되었습니다.

    Separation of toxins with magnetic particles. Why is it so important?

    자성 입자와 독소의 분리. 왜 그렇게 중요한가?

    자성 입자의 사용은 최근 독성 물질의 혈류에서 다른 독소가 체외로 포획되는 해독 (disoxification) 과정으로 확대되었습니다. 생체 유체의 해독은 많은 수의 임상 상태에서 가장 생각할 수있는 치료법이며, 일부는 패혈증과 같은 높은 사망률과 관련이 있습니다. 이것은 혈류를 통해 퍼지면서 신체의 방어력을 압도하는 미생물 감염에 의한 치명적인 질병입니다. 이는 미국 내에서만 연간 1800 만 명의 사람들에게 고통을주고 매년 20 만 명이 넘는 사망을 초래하는 병원 중환자 실에서의 주요 사망 원인을 나타냅니다. 정확한 치료를 시행하기 전에 사망률이 매 시간마다 9 % 나 증가한다는 것을 볼수 있습니다. 따라서 최첨단 병원 중환자 실에서도 독소를 신속하게 제거하는 것이 가장 중요합니다.

    우리는 현재 치료법의 한계가 독소 격리 제로서 자성 비드를 사용하는 것과 같은 새로운 전략의 개발을 필요로한다는 것을 발견했습니다. 입자의 자기 적 특성으로 인해 병원체의 포획이 완료되면 영구 자석에 의해 생성 된 외부 자기장을 사용하여 환자의 혈액과의 분리가 연속적으로 수행 될 수 있습니다. 지난 10 년 동안 개발 된 다중 자기 마이크로 세퍼레이터로부터 우리는 2 상 연속 흐름 시스템의 사용을 제안했습니다. 이러한 시스템은 흐름 제한 및 생체 유체의 임의의 분해 (즉, 포획 영역 내의 세포의 비특이적 포획)가 회피되어 시간 경과에 따른 시스템의 효능 및 용량을 유지하기 때문에 최선의 대안일 것입니다 [1]. 그러나 이러한 프로세스의 최적화는 덜 연구되었고 합리적 설계는 종종 수학적 설명과 관련된 복잡성으로 인해 부족합니다. 따라서 우리는 체외 해독 과정의 설계를 최적화하기 위해 FLOW-3D로 다중 위상 시스템 내부의 흐르는 혈류로부터 자기 구슬의 분리를 모델링했습니다. 그림1에 나타난 제안된 분리기 디자인에서, 비드는 상부 입구를 통해 연속적으로 주입되고, 자기 구배의 적용에 의해 편향되고 유동 버퍼 스트림으로 수집됩니다. 유체 위상의 혼합을 피하면서 효율적인 분리를 달성하기 위해, 자력 및 유체력을 신중하게 연구하고 최적화했습니다. 구슬이 편향 될 때 입자 – 유체 상호 작용에 대한 상세한 연구도 제공됩니다.

    그림 1. 제안 된 microfluidic bioseparator의 도식 다이어그램 ([2]에서 채택).

    Modeling approach with FLOW-3D

    첫번째로 보여지는 생체 분리기 내부의 자기 영동 입자 수송을 예측하기위한 모델은 CFD 기반의 오일러 – 라그랑지안 (Eulerian-Lagrangian) 접근법으로 구성됩니다. Navier-Stokes 방정식을 풀어서 예측 한 유체 이동은 오일러 접근법을 사용하여 계산되지만, 우리는 비드 역학을 모델링하기 위해 라그랑지안 프레임 워크를 사용했습니다. 라그랑지안 (Lagrangian) 접근법에 따르면 입자는 개별 단위로 모델링되었으며 각각의 궤도는 고전적인 뉴턴 역학을 적용하여 추정되었습니다. 분리 동안 입자에 작용하는 힘은 다르지만 영구 자석에 의해 생성 된 자기 구배 하에서 비드 궤적을 예측하기위한 지배적 인 자력 및 유동력만 고려했습니다. 유체의 동일한 유입 속도를 유지하면서 채널의 하부 벽과 자석의 상단 사이의 거리를 변화시킴으로써 다른 입자 궤적 및 따라서 분리 효능을 얻었습니다 (버퍼에 대해 0.035mS-1, m • s-1). 우리가 개발 한 모델링 노력에 대한 자세한 내용은 출판 된 연구 [1, 2]에서 찾을 수 있습니다.

    그림 2. 자석과 마이크로 채널 사이의 거리 “d”를 변화시킴으로써 제공되는 서로 다른 자기장 하에서의 입자 궤적 (빨간색 선) ([2]에서 채택). 윤곽 플롯은 채널에서 예상되는 평균 유체 속도 크기를 나타냅니다.

    Particle magnetophoresis results

    입자 자기 영동 결과

    자석의 위치를 ​​변화시킴으로써, 우리는 가변 자장 구배가 발생하고, 따라서 상이한 분리 효율이 얻어짐을 입증했습니다. 그림 2는 자석과 채널 사이의 거리 d가 다른 입자의 궤도를 보여줍니다. 0 ~ 1mm 사이의 거리에서 모든 입자는 입구에서 원래 위치와 별개로 분리됩니다. 더 큰 거리의 경우, 낮은 자기력으로 인해 분리가 불완전합니다. 완전한 입자 분리를 위해서는 중 ~ 고 자력이 필요합니다. 그러나, 우리는 높은 자력이 유체 패턴의 섭동과 유체 계면의 파손으로 이끄는 입자의 극도의 가속으로 인해 해독 목적에 바람직하지 않음을 입증했습니다 (그림 3 참조). 따라서 중간 자력이 나타나게됩니다. 완전한 비드 분리가 혈액의 완전성을 유지하면서 달성 될 수 있기 때문에 이러한 종류의 시스템에 가장 적합할 수 있습니다.

    그림 3. 입자가 a) d = 0 mm 및 b) d = 1.15 mm에 대해 상간 경계면을 횡단 할 때의 속도 벡터. c) d = 0 mm 및 b) d = 1.15 mm ([2]에서 채택)에 대한 그 당시의 혈액 체적 분율.

    Conclusions

    본 연구에서는 다중 위상 연속 흐름 마이크로 디바이스에서 혈액으로부터 자기 비드 분리 과정을 예측하고 최적화 하기위한 새로운 FLOW-3D 모델을 소개했습니다. 이 모델은 입자에 작용하는 우세한 힘을 고려하고 개별 입자의 궤도, 분리에 필요한 시간 및 혈액 / 버퍼 동시 흐름의 섭동을 포함하여 분리 과정의 중요한 세부 사항을 연구하는데 사용될 수 있습니다 . 이 연구의 핵심 요소는 유체 장에서 입자 – 유체 상호 작용의 영향을 고려하면서 장치에서 동시에 흐르는 두 유체 간의 상호 작용을 연구 한 것입니다. 솔루션이 채널의 길이를 따라 독립적으로 흐르고 각각의 출구에서 분리되어 가능한 혈액 손실이나 용해를 피하기 때문에 이러한 문제는 매우 중요합니다. 여기에 이어지는 방법론은 핵심 작동 변수 및 매개 변수를 고려하여 입자 분리를 예측하는 데 사용할 수 있으므로 합리적인 설계 지침을 제공합니다. 일반적으로 혈액 해독 과정뿐만 아니라 미세 유체 장치 내부에 여러 개의 구속 된 액체 상을 포함하는 다른 연구를위한 파라 메트릭 분석 및 최적화에도 적용됩니다. 우리의 미래 연구는 새로운 혈액 해독 과정을 설계하기 위해 전혈을 사용하는 과정의 실험적 분석과 자성 분리 단계의 독소 제거와 통합에 초점을 맞출 것입니다.

    References

    [1] Gómez-Pastora et al., Separation and Purification Technology2017, 172, 16–31.

    [2] Gómez-Pastora et al., Journal of Physical Chemistry C2017, 121, 7466−7477.

    FLOW-3D Home

    

    수치해석(CFD)이 필요하십니까? 아마 FLOW-3D 는 귀하가 찾으시는 분야에 가장 적합한 최적의 수치해석 소프트웨어일 것입니다.
    천천히 당사의 홈페이지 내용을 살펴보시면 FLOW-3D 의 기술적인 강점과 어떤 분야에 어떻게 적용하여 효과를 볼 수 있는지 알 수 있습니다.FLOW-3D 는 범용 3 차원 수치해석(CFD) 소프트웨어로, 특히 자유표면(자유수면)을 가진 유동흐름을 정확하게 예측하는 분야에서는 타의 추종을 불허하는 성능을 자랑합니다. FLOW-3D 는 수 많은 물리적 유동현상에 대한 시뮬레이션 모델을 제공하여 설계 및 운영단계에서 엔지니어에게 귀중한 통찰력을 제공할 수 있는 세계적인 CFD 소프트웨어입니다.FLOW-3D 는 해석에 필요한 모든 기능을 제공하는 풀 패키지 소프트웨어로, 격자 및 결과 분석에 추가 비용이 필요 없습니다.
    또한 기존의 CAD 시스템이나 타 소프트웨어에서 생성된 모델데이터를 STL로 읽을 수 있기 때문에 기존 모델데이터를 쉽게 활용할 수 있습니다.
    FLOW-3D 의 가장 큰 특징은 단 몇번의 조작만으로 격자를 생성할 수 있으며, 초보자도 쉽게 시작할 수 있고, 매우 뛰어난 정확성을 가지고 있다는 점 입니다.

    FLOW-3DFDM (Finite Difference Method : 유한차분법)에 따라 비정상 흐름을 해석하는범용 3 차원 CFD 소프트웨어로, 비압축성 및 압축성을 고려한 2차원 / 3차원 열 유동 문제, 상 변화, 다양한 점성 현상 및 유체–구조 연성 등의 다중 물리 문제를 해석할 수 있으며, 특히 자유표면 및 두 유체사이 계면에 대한 고속 · 고정밀도 해석에 탁월합니다.

    수치해석과 관련하여 궁금하신 사항은 언제든지 부담없이 문의 해주십시오.
    감사합니다.

    FLOW-3D 제품 안내
    FLOW-3D 제품 안내

    FLOW-3D MP버전 안내
    FLOW-3D MP버전 안내

    FLOW-3D Cast 버전 안내
    FLOW-3D Cast 버전 안내

    Technical Resource

    FLOW-3D 당사의 주력 제품으로 강력하고 매우 정확한 다중 물리 전산 유체역학(CFD) 패키지 프로그램…
    Read More >>
    FLOW-3D/MP 는 매우 큰 영역 또는 긴 runtime 문제를 해결하기 위해 고성능 컴퓨팅을 사용할 수…
    Read More >>
    FLOW-3D Cast 는 다양한 주조 공정의 충전 및 응고, 결함 분포 예측이 가능한 3차원 유동해석 프로그램…
    Read More >>
    FLOW-3D 제품에 대한 기술자료와 이론 및 논문 등 다양한 기술자료를 제공합…
    Read More >>
    신규소식 기술자료

    USBR baffle block

    Numerical investigation of hydraulic jumps with USBR and wedge-shaped baffle block basins for lower tailwater

    하부 테일워터를 위한 USBR 및 쐐기형 배플 블록 분지를 사용한 유압 점프의 수치적 조사 Muhammad Waqas Zaffar; Ishtiaq Hassan; Zulfiqar Ali; Kaleem Sarwar; Muhammad Hassan; Muhammad Taimoor Mustafa; Faizan Ahmed ...
    Overflow water film

    Numerical Simulation Study on Characteristics of Airtight Water Film with Flow Deflectors

    유동 편향기가 있는 밀폐수막의 특성에 관한 수치해석 연구 Zhang Weikang, Gong Hongwei Abstract In practical use, there is shrinkage in the width direction in existing overflow water film. This study ...
    Scouring

    Non-Equilibrium Scour Evolution around an Emerged Structure Exposed to a Transient Wave

    일시적인 파도에 노출된 구조에서의 비평형 세굴 결과 Deniz Velioglu Sogut ,Erdinc Sogut ,Ali Farhadzadeh,Tian-Jian Hsu Abstract The present study evaluates the performance of two numerical approaches in estimating non-equilibrium scour ...
    Coating_image

    Template-Free Scalable Fabrication of Linearly Periodic Microstructures by Controlling Ribbing Defects Phenomenon in Forward Roll Coating for Multifunctional Applications

    다기능 응용을 위한 Forward Roll Coating 공정의 리브 경함 형상 제어를 통한 선형 주기적 미세구조물의 템플릿 프리 제작 Md Didarul Islam, Himendra Perera, Benjamin Black, Matthew Phillips,Muh-Jang Chen, Greyson Hodges, ...
    Omega-Liutex Method

    Prediction of the Vortex Evolution and Influence Analysis of Rough Bed in a Hydraulic Jump with the Omega-Liutex Method

    Omega-Luitex법을 이용한 수력점프 발생시 러프 베드의 와류 진화 예측 및 영향 분석 Cong Trieu Tran, Cong Ty Trinh Abstract The dissipation of energy downstream of hydropower projects is a significant ...
    Image_Sacrificial_Pier

    Sacrificial Piles as Scour Countermeasures in River Bridges A Numerical Study using FLOW-3D

    하천 교량의 파괴 대책으로서 희생파일에 대한 FLOW-3D를 이용한 수치 연구 Mohammad Nazari-Sharabian, Aliasghar Nazari-Sharabian, Moses Karakouzian, Mehrdad Karami Abstract Scour is defined as the erosive action of flowing water, as ...
    Computational Fluid Dynamics Study of Perforated Monopiles

    Computational Fluid Dynamics Study of Perforated Monopiles

    Mary Kathryn WalkerFlorida Institute of Technology, mwalker2022@my.fit.edu Robert J. Weaver, Ph.D.Associate ProfessorOcean Engineering and Marine SciencesMajor Advisor Chungkuk Jin, Ph.D.Assistant ProfessorOcean Engineering and Marine Sciences Kelli Z. Hunsucker, Ph.D.Assistant ProfessorOcean ...
    Numerical Investigation of the Local Scour for Tripod Pile Foundation

    Numerical Investigation of the Local Scour for Tripod Pile Foundation

    Waqed H. Hassan | Zahraa Mohammad Fadhe* | Rifqa F. Thiab | Karrar MahdiCivil Engineering Department, Faculty of Engineering, University of Warith Al-Anbiyaa, Kerbala 56001, IraqCivil Engineering Department, Faculty of Engineering, University of Kerbala, Kerbala 56001, ...
    Investigating effects of lateral inflow characteristics on main flow using numerical modeling

    Investigating effects of lateral inflow characteristics on main flow using numerical modeling

    수치모델링을 이용한 측면 유입특성이 본류에 미치는 영향 조사 Mohammad Raze Raeisi Dehkordi1*, Amir Hossein Yeganeh Mazhar1, Farzaneh Kheradzare21- PhD. Student in the Department of Construction and Water Management, Science and ...
    Difference Analysis of Wave Disaster Characteristics Induced by Landslides of Different Water Entry Scales

    다양한 크기의 산사태로 인한 물 침입으로 인한 해일 위험 특성의 차이 분석.

    Difference Analysis of Wave Disaster Characteristics Induced by Landslides of Different Water Entry Scales 王雷, 解明礼, 黄会宝, 柯虎, 高强人民珠江 2024年45卷第2期DOI:10.3969/j.issn.1001-9235.2024.02.003 纸质出版日期:2024 Abstract This paper conducts a three-dimensional numerical analysis on ...
    Local Scour Depth Around Bridge Piers: Performance Evaluation of Dimensional Analysis-based Empirical Equations and AI Techniques

    Local Scour Depth Around Bridge Piers: Performance Evaluation of Dimensional Analysis-based Empirical Equations and AI Techniques

    Abstract Artificial Intelligence (AI) techniques, such as Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS), and dimensional analysis-based empirical equations (DAEEs), can estimate scour depth around bridge piers ...
    An investigation of the effect of the pulse width and amplitude on sand bed scouring by a vertical submerged pulsed jet

    An investigation of the effect of the pulse width and amplitude on sand bed scouring by a vertical submerged pulsed jet

    수직 수중 펄스 제트에 의한 모래층 정련에 대한 펄스 폭과 진폭의 영향 조사 Chuan Wang abc, Hao Yu b, Yang Yang b, Zhenjun Gao c, Bin Xi b, Hui Wang b, Yulong Yao b aInternational Shipping Research Institute, GongQing Institute of Science and Technology, Jiujiang, 332020, ChinabCollege of Hydraulic Science ...
    Fig. 1. Protection matt over the scour pit.

    Numerical study of the flow at a vertical pile with net-like scourprotection matt

    그물형 세굴방지 매트를 사용한 수직말뚝의 유동에 대한 수치적 연구 Minxi Zhanga,b, Hanyan Zhaoc, Dongliang Zhao d, Shaolin Yuee, Huan Zhoue,Xudong Zhaoa, Carlo Gualtierif, Guoliang Yua,b,∗a SKLOE, School of Naval Architecture, ...
    Fig 1. (a) The Location of the Bahman Shir dam (upstream), (b) Bahman Shir dam (downstream dam) and (c) Mared Dam. Note: The borders of the countries are not exact.

    Initial Maintenance Notes about the First River Ship Lock in Iran

    M.T. Mansouri Kia1,2, H.R. Sheibani 3, A. Hoback 41 Manager of Dam and Power Plant Construction, Khuzestan Water and Power Authority (KWPA), Ahwaz, Iran.2 Ph.D., Department of Civil Engineering, Payame ...
    Figure 3 – Free surface views. Bottom left: k-ε RNG model. Bottom right: LES.

    Physical Modeling and CFD Comparison: Case Study of a HydroCombined Power Station in Spillway Mode

    물리적 모델링 및 CFD 비교: 방수로 모드의 HydroCombined 발전소 사례 연구 Gonzalo Duró, Mariano De Dios, Alfredo López, Sergio O. Liscia ABSTRACT This study presents comparisons between the results of ...
    Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition

    Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition

    텅스텐 카바이드의 초고속 레이저 제거: 임계값 범위의 정량화 및 특징 전환 해석 Xiong Zhang, Chunjin Wang, Benny C. F. Cheung, Gaoyang Mi, Chunming WangFirst published: 07 February 2024https://doi.org/10.1111/jace.19718 Abstract Tungsten carbide was manufactured by ...
    Numerical Investigation of the Local Scour for Tripod Pile Foundation.

    Numerical Investigation of the Local Scour for Tripod Pile Foundation.

    Hassan, Waqed H.; Fadhe, Zahraa Mohammad; Thiab, Rifqa F.; Mahdi, Karrar 초록 This work investigates numerically a local scour moves in irregular waves around tripods. It is constructed and proven ...
    Embankment Dams Overtopping Breach: A Numerical Investigation of Hydraulic Results

    Embankment Dams Overtopping Breach: A Numerical Investigation of Hydraulic Results

    Mahdi Ebrahimi, Mirali Mohammadi, Sayed Mohammad Hadi Meshkati & Farhad Imanshoar Abstract The overtopping breach is the most probable reason of embankment dam failures. Hence, the investigation of the mentioned phenomenon is one of ...
    Figure 1: Scheme of liquid metal printing process

    Effect of Aging Heat Treatment in an Al-4008 Produced byLiquid Metal Printing

    C. M. LadeiroDepartment of Metallurgical and Materials Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. RobertoFrias, 4200-465 PORTO, Portugal (up201806112@fe.up.pt) ORCID 0009-0003-8587-2309F. L. NunesDepartment of Metallurgical and Materials Engineering, ...
    Figure (17): Stream Lines Indicating Average Flow Speed in the Model with Various Nose shapes, Measured at Mid-Depth and at the Flow Surface Level, at a Flow Rate of 78 Liters per Second.

    Conducting experimental and numerical studies to analyze theimpact of the base nose shape on flow hydraulics in PKW weirusing FLOW-3D

    FLOW-3D를 사용하여 PKW 둑의 흐름 수력학에 대한 베이스 노즈 모양의 영향을 분석하기 위한 실험 및 수치 연구 수행 Behshad Mardasi 1Rasoul Ilkhanipour Zeynali 2Majid Heydari 3 Abstract Weirs are essential ...
    그림 12: 시간 경과에 따른 속도 카운터: 30초 그림 13: 시간 경과에 따른 속도 카운터: 20초

    Gemelo digital del puente de Kalix: cargas estructurales de futuros eventos climáticos extremos

    Kalix Bridge 디지털 트윈: 미래 극한 기후 현상으로 인한 구조적 부하 Este documento está relacionado con un proyecto en curso para el cual se está desarrollando e implementando un gemelo ...
    NUMERICAL ANALYSIS OF THE HYDRODYNAMICS CHARACTERISTICS OF TORPEDO ANCHOR INSTALLATION UNDER THE INFLUENCE OF OCEAN CURRENTS

    魚雷錨擲錨過程受海流擲下之運移特性數值分析

    번역된 기고 제목: 해류의 영향에 따른 어뢰 앵커 설치의 유체 역학 특성에 대한 수치 분석 Translated title of the contribution: NUMERICAL ANALYSIS OF THE HYDRODYNAMICS CHARACTERISTICS OF TORPEDO ANCHOR INSTALLATION ...

    Discharge Coefficient of a Two-Rectangle Compound Weir combined with a Semicircular Gate beneath it under Various Hydraulic and Geometric Conditions

    다양한 수력학적 및 기하학적 조건에서 아래에 반원형 게이트가 결합된 두 개의 직사각형 복합 웨어의 배수 계수 ABSTRACT Two-component composite hydraulic structures are commonly employed in irrigation systems. The first component, ...
    The impacts of profile concavity on turbidite deposits: Insights from the submarine canyons on global continental margins

    The impacts of profile concavity on turbidite deposits: Insights from the submarine canyons on global continental margins

    프로필 오목부가 탁도 퇴적물에 미치는 영향: 전 세계 대륙 경계에 대한 해저 협곡의 통찰력 Kaiqi Yu a, Elda Miramontes bc, Matthieu J.B. Cartigny d, Yuping Yang a, Jingping Xu aaDepartment of Ocean Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Rd., ...
    Fig. 3. Free surface and substrate profiles in all Sp and Ls cases at t = 1 s, t = 3 s, and t = 5 s, arranged left to right (note: the colour contours correspond to the horizontal component of the flow velocity (u), expressed in m/s).

    Numerical investigation of dam break flow over erodible beds with diverse substrate level variations

    다양한 기질 수준 변화를 갖는 침식성 층 위의 댐 파손 흐름에 대한 수치 조사 Alireza Khoshkonesh1, Blaise Nsom2, Saeid Okhravi3*, Fariba Ahmadi Dehrashid4, Payam Heidarian5,Silvia DiFrancesco61 Department of Geography, School ...
    그림 10. 수문이 고르지 않게 열리는 경우의 시뮬레이션 결과

    홍수 시즌에 하수구를 운영할 때 흐름 회로를 제어하는 ​​기술, 푸토코무네 제방을 통해 제방에 적용

    요약 대규모 홍수 구호 작업에 대한 일반적인 흐름 회로 현상의 영향은 많은 보고서에서 연구되었으며 비교적 자세하게 연구되었습니다. 그러나 유량 변동이 제방 암거 작동에 미치는 악영향에 대해서는 많이 언급되지 않았습니다. 실제 ...
    Figure 3. The simulated temperature distribution and single-layer multi-track isothermograms of LPBF Hastelloy X, located at the bottom of the powder bed, are presented for various laser energy densities. (a) depicts the single-point temperature distribution at the bottom of the powder bed, followed by the isothermograms corresponding to laser energy densities of (b) 31 J/mm3 , (c) 43 J/mm3 , (d) 53 J/mm3 , (e) 67 J/mm3 , and (f) 91 J/mm3 .

    An integrated multiscale simulation guiding the processing optimisation for additively manufactured nickel-based superalloys

    적층 가공된 니켈 기반 초합금의 가공 최적화를 안내하는 통합 멀티스케일 시뮬레이션 Xing He, Bing Yang, Decheng Kong, Kunjie Dai, Xiaoqing Ni, Zhanghua Chen& Chaofang Dong ABSTRACT Microstructural defects in laser ...

    FLOW-3D DEM

    FLOW DEM

     

    FLOW DEM 은 FLOW-3D 의 기체 및 액체 유동 해석에 DEM(Discrete Element Method : 개별 요소법) 기법인 입자의 거동을 분석해주는 제품입니다.

    입자 – 입자 간, 입자 – 벽 사이의 접촉이나 상호 작용을 모델링 할 수 있으므로 보다 현실적인 입자 거동의 해석이 가능합니다. 
    또한 유체 부분은 전문적인 FLOW-3D 분석 기능을 사용하기 때문에 유체 와 입자거동의 연성해석을 정밀하게 또한 효율적으로 분석할 수 있습니다.

    주요 기능 :
    • 고체 요소의 충돌, 스프링(Spring) / 대시 포트(Dash Pot) 모델 적용
    • Void, 1 fluid, 2 fluid(자유 계면 포함) 각각의 모드에 대응
    • 가변 밀도 / 가변 직경
    • 입자 크기조절로 입자 특성을 유지하면서 입자 수를 감소
    • 독립적인 DEM의 Sub Time Step 이용

    Discrete Element Method : 개별 요소법

    다수의 고체 요소의 충돌 운동을 분석하는 데 유용합니다. 유동 해석과 함께 사용하면 광범위한 용도에 응용을 할 수 있습니다.

    dem1
    dem2

    입자 간의 충돌

    Voigt model은 스프링(Spring) 및 대시 포트(Dash pot)의 조합에 의해 입자 충돌 시의 힘을 평가합니다. 탄성력 부분은 스프링 모델에서,
    비탄성 충돌의 에너지 소산부분은 대시 포트 모델에서 시뮬레이션되고 있으며, 중량 및 항력은 작용하는 외력으로 고려 될 수 있습니다.

     
    • 스프링 : 변형에 관련된 힘
    • 대시 포트 : 충돌시의 상대 속도에 관련된 힘
      (점성 감쇠)
    • 스프링 및 대시 포트를 병렬로 연결
      ⇒ Voigt model
    • 힘은 법선 방향과 접선 방향으로 나누어진다

    분석 모드

    기본적으로 이용하는 운동 방정식은 FLOW-3D 에 사용되는 질량 입자의 운동 방정식과 같은 것이지만, 여기에 DEM으로 평가되는 항목이 추가되는 형태로 되어 있으며, 실제 시뮬레이션으로는 ‘void + DEM’, ‘1 Fluid + DEM’ , ‘ 1 Fluid 자유계면 + DEM ‘을 기본 유동 모드로 취급이 가능합니다.

    dem4
    dem5
    dem6
    void + DEM1-fluid + DEM1-fluid 자유계면 + DEM

    입자 유형

    입자 타입도 표준 기능의 질량 입자 모델처럼 입자 크기 (반경)와 밀도가 동일한 것 외, 크기는 같지만 밀도가 다른 것이나 밀도는 같지만 크기가 다른 것 등도 취급 가능합니다. 이로 인해 표준 질량 입자 모델에서는 입자 간의 상호 작용이 고려되어 있지 않기 때문에 모든 아래에 가라 앉아 버리고 있었지만, FLOW DEM을 이용하여 기하학적 관계를 평가하는 것이 가능합니다.

    dem7-균일
    -밀도 변화
    -입자크기 변화

    응용 분야

    1. Mechanical Engineering 분야

    Resin filling, screw conveyance, powder conveyance

    dem8
    dem9
    dem10

    2. Civil Engineering분야

    Debris flow, gravel, falling rock

    dem11
    dem2

    3. Chemical Engineering, Pharmaceutics 분야

    Fluidized bed, cyclone, stirrer

    dem12
    dem13
    dem14

    4. MEMS, Electrical Engineering 분야

    전기 입자를 포함한 전기장 해석 등

    dem15

    dem16

     

     

     

     

     

     

     

    Coarse Graining

    DEM은 일반적으로 다수의 입자를 필요로 하는 해석에 사용이 되고 있습니다. 다만 이 경우, 계산 부하가 높아지므로 현실적인 계산자원을 고려하면, 입자 수가 줄여 해석할 필요가 있습니다 .

    Particle Size Increase 경우

     

    중자 모래 분사 분석

    DEM에서의 계산부하를 생각할 때는 입자모델에 의한 안정제한을 고려해야 하지만 서브타임스텝이라는 개념을 도입함으로써 입자의 경우와 유체의 경우의 타임스텝을 바꾸고 필요이상으로 계산시간을 들이지 않고 효율적으로 계산하는 것을 가능하게 하고 있습니다.

    이를 통해 예를 들어 중자사 분사 시뮬레이션 실험에서는 이러한 문제로 자주 이용되는 빙엄 유체에서는 실험과의 정합성이 별로 좋지 않기 때문에 당사에서는 이전부터 입상류 모델이라는 모델을 개발하고 연속체로부터의 접근에서도 실험과의 높은 정합성을 실현할 수 있는 모델화를 해왔는데, 이번에 DEM을 사용해도 그것과 거의 같은 결과를 얻습니다. 할 수 있음을 확인할 수 있었다.

    Reference :

    • Lefebvre D., Mackenbrock A., Vidal V., Pavan V. and Haigh PM, 2004,
    • Development and use of simulation in the Design of Blown Cores and Moulds

    CFD에 대해서

    What You Should Know About CFD Modeling when Selecting a CFD Package

    유체 흐름 및 열 전달 해석용 소프트웨어 패키지에는 여러 형태가 있습니다. 물리적 근사와 수치 해법의 기법이 패키지마다 크게 다르기 때문에 적절한 패키지를 선택하는 것은 매우 어렵습니다. 다음 설명에서는 열유동 시뮬레이션 소프트웨어를 선택할 때 고려해야 할 중요한 몇 가지를 소개합니다.

    Software packages for fluid flow and heat transfer analysis come in many forms. These packages differ greatly in their physical approximations and numerical solution techniques, which makes the selection of a suitable package a challenging proposition. The following discussion covers some important items to consider when choosing flow simulation software.

    Meshing and Geometry

    유한 요소 또는 “body-fitted coordinates”를 채용하고 있는 수치해석 방법은 유체 영역의 기하학적 형상에 적합한 격자를 생성해야 합니다. 정확한 수치 근사치를 얻기 위해 허용 할 수 있는 요소 크기 및 형상에서 이러한 격자를 생성하는 것은 매우 중요한 작업입니다.

    복잡한 경우에는 이와 같은 방법으로 격자를 생성하면 며칠 또는 몇 주가 걸릴 수 있습니다.  어떤 프로그램은 사각형의 격자 요소만을 사용함으로써 문제를 해결하려고 하지만, 그럴 경우에는 경계부분에 계단이 생기고 흐름과 열전달 특성이 달라지는 문제에 직면하게 됩니다.

    FLOW-3D는 FAVOR™(면적율 / 부피 비율)법 을 사용하여 지오메트리의 특성을 원활하게 포함하므로써, 간단한 사각형 격자만으로도 두 문제를 해결할 수 있습니다.  또한, 간단하고 강력한 솔리드 모델러가 FLOW-3D 패키지에 기본 포함되어 있으며, CAD 프로그램에서 생성한 기하형상 데이터를 가져올 수 있습니다.

    Solution methods that employ finite-element or “body-fitted coordinates” require the generation of a solution grid that conforms to the geometry of the flow region. It is a non-trivial task to generate these grids with acceptable element sizes and shapes for accurate numerical approximations. In complicated cases this type of grid generation may consume days or even weeks of effort. Some programs attemptto eliminate this generation problem by using only rectangular grid elements, but then they must contend with “stair-step” boundaries that alter flow and heat-transfer properties. FLOW-3D solves both problems by using easy-to-generate rectangular grids in which geometric features are smoothly embedded using the FAVOR™ (fractional area/volume) method. A simple and powerful solids modeler is packaged with FLOW-3D or users may import geometric data from a CAD program.

    Momentum Equation vs. Approximate Flow Models

    유체 운동량의 정확한 처리가 중요한 몇 가지 이유가 있습니다.  첫째, 이것은 복잡한 기하학적 형상에서 유체가 어떻게 흐르는지를 예측하는 유일한 방법입니다.  둘째, 액체에 의하여 걸린 동적인 힘(압력)은 운동량에서만 계산할 수 있습니다.  마지막으로, 열 에너지의 대류 수송을 계산하려면 다른 유체 입자 및 경계에 대한 개별 유체 입자의 상대적인 움직임을 정확하게 파악하는 것이 필요합니다. 이것은 운동량의 정확한 처리를 의미합니다.  운동량 보존을 대충 근사하기만 한 CFD 모델은 FLOW-3D에서는 사용되지 않습니다.  이러한 모델은 현실적인 유체 구성 및 온도 분포 예측에 사용할 수 없기 때문입니다.

    An accurate treatment of fluid momentum is important for several reasons. First, it is the only way to predict how fluid will flow through complicated geometry. Second, the dynamic forces (i.e., pressures) exerted by the fluid can only be computed from momentum considerations. Finally, to compute the convective transport of thermal energy, it is necessary to have an accurate picture of how individual fluid particles move in relation to other fluid particles and confining boundaries. This implies an accurate treatment of momentum. Simplified flow models that only crudely approximate the conservation of momentum are not used in FLOW-3D because they cannot be used to predict realistic fluid configurations and temperature distributions.

    Liquid-Solid Heat Transfer Area

    액체와 고체 사이 (금속 주형 등)의 열전달은 경계면 면적의 정확한 추정이 필요합니다.  경계가 계단 모양으로 되어 있는 경우, 보통 이 면적이 크게 추정됩니다.  예를 들어, 실린더의 표면적은 약 27 %정도 크게 추정됩니다.  FLOW-3D의 경우 정확한 경계면 면적은 FAVOR™법에 따라 FLOW-3D 전처리기에서 컨트롤 볼륨마다 자동으로 계산됩니다.

    Heat transfer between a liquid and a solid (e.g., metal-to-mold) requires an accurate estimate of the interfacial area. Stair-step boundaries over-estimate this area; for example, the surface area of a cylinder would be over-estimated by a factor of 27%. Accurate interfacial areas are automatically computed by the FAVOR™ method for each control volume in the FLOW-3D pre-processor.

    Control Volume Effects on Liquid-Solid Heat Transfer

    컨트롤 볼륨의 크기가 액체와 고체 사이에서 교환되는 열 비율과 양에 영향을 줄 수 있습니다.  이것은 열이 액체와 고체의 경계면을 포함하는 컨트롤 볼륨을 흐를 필요가 있기 때문입니다.  FLOW-3D는 액체와 고체의 경계면에 걸쳐 열 전달률을 계산할 때 컨트롤 볼륨의 크기와 전도율이 고려됩니다.

    The size of control volumes can influence the rate and amount of heat exchanged between a liquid and solid because heat must also flow in the control volumes containing the liquid/solid interface. In FLOW-3D control volume sizes and their conductivities are accounted for when computing heat transfer rates across liquid-solid interfaces.

    Implicitness and Accuracy

    비선형 방정식과 결합 방정식의 Implicit 방법은 반복 될 때마다 under-relaxation 특성을 갖는 반복적 해법이 필요합니다.  이 동작은 상황에 따라 심각한 오류 (또는 수렴 속도의 급격한 하락)가 발생할 수 있습니다.  예를 들어, 비율이 큰 컨트롤 볼륨을 사용하는 경우나, 실제로는 중요하지 않은 효과를 예상하고 암시적인 해법을 사용하는 경우 등입니다.  FLOW-3D는 가능한 명시적인 수치해법이 사용되고 있습니다.  이것은 필요한 계산량이 적고, 수치 안정성의 요구 사항이 요구된 정밀도에 상응하기 때문입니다.  자세한 내용은 “암시적인 수치해법과 명시적인 수치해법“을 참조하십시오.

    Implicit methods for nonlinear and coupled equations require iterative solution methods that have the character of an under-relaxation in each iteration. This behavior can cause significant errors (or very slow convergence) in some situations, for example, when using control volumes with large aspect ratios or when the implicitness is used in anticipation of an effect that is not actually significant. In FLOW-3D explicit numerical methods are used whenever possible because they require less computational effort, and their numerical stability requirements are equivalent to accuracy requirements. Read more in the Implicit vs. Explicit Numerical Methods article.

    Implicit Numerical Methods For Convective Transport

    모든 크기의 타임 스텝 크기를 계산에 사용할 수 있는 암시적인 수치 기법은 CPU 시간을 줄이기 위해 많이 사용되는 방법입니다.  불행하게도, 이 방법은 대류 현상 해석에 대해 정확하지 않습니다.  암시적인 해법은 근사 방정식에 확산 효과를 도입함으로써 시간 단계의 독립성을 획득합니다.  수치 확산을 물리적 확산 (열전도 등)에 추가해도 확산율이 변경될 뿐이므로 심각한 문제가 되지 않을 수 있습니다.  그러나 수치 확산(발산)을 대류 과정에 추가하면 모델링 대상의 물리 현상의 특성은 완전히 다르게 됩니다.  FLOW-3D는 시간의 정확한 근사치를 보장하기 위해 프로그램에 의해 time step이 자동으로 제어됩니다.

    Implicit numerical techniques that allow arbitrarily large time-step sizes to be used in calculations are a popular way to reduce CPU time requirements. Unfortunately, these methods are not accurate for convective processes. Implicit methods gain their time-step independence by introducing diffusive effects into the approximating equations. The addition of numerical diffusion to physical diffusion, e.g., to heat conduction, may not cause a serious problem as it only modifies the diffusion rate. However, adding numerical diffusion to convective processes completely changes the character of the physical phenomena being modeled. In FLOW-3D time steps are automatically controlled by the program to ensure time-accurate approximations.

    Relaxation and Convergence Parameters

    암시적으로 근사치를 사용하는 수치법은 하나 이상의 수렴 및 완화(이완)의 매개 변수를 선택해야 합니다.  이러한 매개 변수를 신중하게 선택하지 않으면 발산하거나 수렴에 시간이 걸리는 경우가 있습니다.  FLOW-3D를 융합하는 매개 변수와 완화(이완) 매개 변수를 하나씩만 사용하여 두 매개 변수는 프로그램에 의해 동적으로 선택됩니다.  수치 해법을 제어하는 매개 변수를 사용자가 설정할 필요는 없습니다.

    Numerical methods that use implicit approximations also require the selection of one or more convergence and relaxation parameters. Making poor choices for these parameters can lead to either divergences or slow convergence rates. Only one convergence and one relaxation parameter are used in FLOW-3D, and both parameters are dynamically selected by the program. Users are not required to set any parameters controlling the numerical solver.

    Free-Surface Tracking

    액체와 기체의 경계면 (자유 표면 등)의 모델링에 사용되는 방법은 두 가지가 있습니다.  하나는 액체, 기체 두 영역의 흐름을 계산하고 경계면을 유체 밀도의 급격한 변화로 처리하는 방법입니다.

    일반적으로 밀도의 불연속은 고차 수치 근사를 사용하여 모델링됩니다.  불행하게도 이 프로세스는 소수의 격자 셀에서 경계면이 평탄화되고, 이러한 경계면에 보통 존재하는 유체흐름의 접선 속도의 급격한 변화는 고려되지 않습니다.

    기체가 계산 영역에 들어가는 액체로 대체되는 경우에는 이 방법에는 기체의 출구 포트 또는 출구 싱크도 보충 할 필요가 있습니다.  또한 이러한 방법은 일반적으로 유체의 비압축성를 충족하기 위해 더 많은 노력이 필요합니다.  이것이 발생하는 기체 영역에 거의 균일 한 압력 조정이 필요하며, 이를 통해 계산 수렴 시간이 소요되기 때문입니다.

    FLOW-3D는 VOF (Volume-of-Fluid) 법 이라는 독창적인 방법이 사용되고 있습니다.  이것은 진정한 3 차원 경계면 추적 방식으로, 경계면을  3 차원 인터페이스로 추적하는 체계입니다.  또한 옵션의 표면 장력을 포함한 일반적인 접선 응력 경계 조건은 경계면에 적용됩니다.  기체 영역은 모델에 포함하도록 사용자가 요청하지 않는 한 계산되지 않습니다.

    There are two methods used to model liquid-gas interfaces (i.e., free surfaces). One of these is to compute flow in both the liquid and gas regions and to treat the interface as a sharp change in fluid density. Typically, the density discontinuity is modeled using higher-order numerical approximations. Unfortunately, this treatment allows the interface to smooth out over a few grid cells and does not account for a corresponding sharp change in tangential flow velocity that generally exists at such interfaces. This technique must also be supplemented with escape ports or sinks for the gas if it is to be replaced by liquid entering a computational region. Further, such methods must typically work harder to satisfy the incompressibility of the fluids. This happens because gas regions must have nearly uniform pressure adjustments which tend to slow down the solution convergence rate. A different technique, the Volume-of-Fluid (VOF) method, is used in FLOW-3D. This is a true three-dimensional interface tracking scheme in which the interface is closely maintained as a step discontinuity. Moreover, normal and tangential stress boundary conditions, including optional surface tension forces, are applied at the interface. Gas regions are not computed unless the user requests these regions to be included in the model.

    본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

    CFD가 처음이신가요?

    소개

    본 자료는 전산유체역학(CFD)를 처음 접하시는 분들의 이해를 돕기 위해 작성되었습니다. 보통 열유동해석, 그냥 유동해석 또는 수치해석 중에서 유체를 다루는 해석이라고 쉽게 이해할 수 있겠습니다.

    내용 안내

    A general description of how to think about computational fluid dynamics (CFD) is given in the article, Simulating Fluid Flow with Free Surfaces. This article introduces the idea of reducing a simulation region into small volume control elements for which algebraic equations are constructed to describe the conservation of mass, momentum and energy exchanges with neighboring elements. Additionally, a simple method is introduced for a means of describing the motion of free fluid interfaces within the region of control elements.

    전산 유체 역학 (CFD)의 개념에 대한 일반적인 설명은 자유 표면의 유동 시뮬레이션에 기술되어 있습니다. 이 절에서는 시뮬레이션 영역을 미소 체적 제어 요소로 세분화하는 아이디어를 적용하여, 볼륨 컨트롤 요소에 대해 질량 및 운동량 보존, 인접 요소와의 에너지 교환을 설명하는 대수 방정식이 구성됩니다. 또한 컨트롤 요소의 영역 내에서 자유롭게 유체 계면의 운동을 설명하는 간단한 방법도 설명되어 있습니다.

    Also for beginners, the article, What you should know about CFD modeling when selecting a CFD software, contains brief summaries of a variety of issues that are important considerations for constructing numerical solutions to fluid dynamic problems. Many of these issues, such as meshing, geometry representation, implicit versus explicit numerical methods and relaxation/convergence parameters are explored in greater detail in the remaining articles in CFD-101.

    또한 CFD를 처음 접하시는 분들을 위해, CFD 소프트웨어 선택시 전산 유체 역학 모델링에 대해 알아야 할 것에는 유체 역학 문제에서 수치 해석을 수행하기위한 중요하게 고려하는 다양한 이슈에 대한 내용도 포함되어 있습니다. 이러한 많은 이슈에는 메쉬, 기하 형상 표현, implicit 방법과 explicit 방법, relaxation/convergence 매개 변수 등이 있는데 본 CFD-101에 상세히 설명되어 있습니다.

    CFD 해석 | 격자(Mesh) 공간

    본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

    Increasing Productivity by Reducing Ejection Times

    Increasing Productivity by Reducing Ejection Times

    This article was contributed by Eugene Moore of Hellebusch Tool & Die

    시뮬레이션 소프트웨어는 설계자와 엔지니어가 주조 공정의 세부 사항을 이해하고 경쟁사보다 저렴한 비용으로 고품질 부품을 일관성 있게 제작할 수 있게 해주는 유용한 도구입니다. 고압 다이캐스팅에서 시뮬레이션 소프트웨어는 주조 내로 금속을 공급하고 난류로 인한 공기 유입을 방지하기 위해 샷 슬리브 팁의 타이밍을 개선하고 오버 플로우에 대한 가장 효과적인 위치를 식별하는 더 나은 게이팅 시스템을 설계하는 데 사용됩니다. 이 기사에서는 프로세스 시간을 단축하기 위해 부품을 다이에서 배출하기 전에 시간을 줄이는 방법을 살펴 보겠습니다.

    비스킷은 주조 과정에서 고형화 된 마지막 장소이기 때문에 우리의 노력에 집중할 수 있는 자연스러운 곳이며 따라서 부품을 언제 꺼낼 수 있는지를 결정합니다. 따라서 비스킷의 응고 시간을 줄일 수 있다면 전반적인 공정 시간을 줄일 수 있습니다. 이를 수행하는 한 가지 방법은 유체와 접촉하는 영역의 양을 늘려 샷팁을 통해 금속에서 더 많은 열을 제거하는 것입니다. 이 경우 정확하게 적용할 수는 없지만, 아래에 표시된 정상상태 대류 방정식을 사용하면 이 접근법의 기초가 가장 쉽게 표시됩니다.

    이 방정식에서 열 흐름은 대류 열 전달 계수이고, 금속 팁과 샷 팁 온도의 차이이며, 금속과 접촉하는 샷 팁의 표면적입니다. 그림 1에서 볼 수 있듯이 오늘날 시장에서 볼 수 있는 다양한 형태의 플런저 팁이 금속과 접촉하는 표면적을 증가시키도록 설계되었습니다.

    Figure 1: Plunger tips varying in size and surface area [1]

    비스킷에서 제거된 열을 증가시키는 또 다른 방법은 비스켓에서 샷 팁과 금속 사이의 온도 차이를 조절하는 것입니다. 이는 그림 2 에서처럼 냉각 선을 팁에 추가하여 수행됩니다. 이 접근법의 단점은 피스톤 어셈블리에 상당한 복잡성을 추가한다는 것입니다.

    Figure 2: Cooling within plunger tip [2]

    New design

    이 기사에서 FLOW-3D Cast를 사용하여 새로운 플런저 팁 디자인을 분석하고 수정되지 않은 표준 원통형 팁과 비교했습니다. 그림 3에서와 같이 끝 부분에 별 모양의 컷 아웃이 있는 원통형 팁으로 구성된 수정된 팁은 수정되지 않은 샷 팁보다 20 % 더 많은 표면적을 갖습니다. 팁은 분석을 위해 물로 냉각되지 않습니다.

    Figure 3: Shape of the modified tip to give 20% increase in area

     

    Analysis

    각 샷 팁 디자인에 대해 충진 (샷 팁 모션 포함) 및 응고 (플로우 미포함) 시뮬레이션을 실행했습니다. 모든 다른 매개 변수는 사례간에 동일합니다. 주요 관심사는 두 가지입니다. 즉, 충전 중 흐름 패턴과 전반적인 응고 시간입니다. 샷 팁 디자인이 파동 및 공기 유입을 유발하는 경우 팁 또는 샷 슬리브 프로파일을 다시 설계해야 하기 때문에 충진 중 흐름 패턴이 중요합니다.

    첫 번째 비교는 그림 4에 표시된 샷 슬리브의 흐름 패턴입니다. 이 그림은 수정 된 팁이 있거나 없는 샷 슬리브 중 유체의 이미지를 보여 주며 팁의 모양이 샷 슬리브에 영향을 주지 않는 것으로 나타났습니다. 흐름 패턴. 샷 프로파일에 거의 영향을 주지 않기 때문에 응고에 집중할 수 있습니다.

    Figure 4: Flow patterns in the shot sleeves from both tips.

     

    두 번째 비교는 응고 시간입니다. 그림 5는 시간의 함수로서 팁의 평균 온도, 시간의 함수로서 금속으로부터 팁으로의 열 유속 및 추출시의 액체 금속의 온도 프로파일을 비교합니다

    Figure 5: The above time plots show the average temperature in tip on the upper left hand corner and the heat flux from the metal to the tip in the upper right hand corner. The images below this show the metal temperature within the biscuit of the two castings.

    그림 5에서 볼 수 있듯이, 그래프는 금속에서 더 많은 열을 추출했기 때문에 수정 된 팁의 평균 온도가 더 높음을 보여줍니다. 이것은 또한 열 유속 플롯에 표시됩니다. 그래프 아래의 이미지는 비스킷과 탄환의 경계면에서 액체금속을 보여줍니다. 데이터는 수정된 팁을 사용하여 열 제거가 12.7 % 증가한 것을 보여줍니다.

    Conclusions

    샷 팁 디자인은 주조 부품의 응고 시간에 눈에 띄는 영향을 미칩니다. 시뮬레이션 소프트웨어는 효과를 분석하고 이 지식을 사용하여 프로세스 매개변수를 최적화하는 방법을 제공합니다.

     

    References
    [1] http://www.metalminotti.it/copper-alloys-semi-and-finished-products/plunger-tips-for-die-casting/
    [2] http://www.castool.com/product/plunger-rod

    Learn more about the versatility and power of modeling metal casting processes with FLOW-3D Cast >

    Kodak Develops New Printhead Design in 1/3rd the Time

    Kodak Develops New Printhead Design in 1/3rd the Time

     

    Eastman Kodak Company가 잉크젯 프린팅 시장에 진입했을 때 회사는 낭비 할 시간이 없었습니다. Kodak은 프리미엄 안료-기반 잉크를 사용하여 잉크 카트리지를 교체하지 않고 프린트 헤드를 프린터에 통합하여 수명이 오래 지속되고 잉크 비용을 크게 절감하는 생생한 컬러의 사진 인쇄물을 제공함으로써 비즈니스 진출을 계획했습니다. 이러한 발전으로 완전히 새로운 프린트 헤드 개발이 필요했습니다. 업계 경험에 따르면 완전히 새로운 잉크젯 프린터 기술을 개발하는데 보통 8-10 년이 걸렸습니다. Kodak 연구원은 프로젝트의 시간 제약조건을 충족시키기 위해 매우 정확한 시뮬레이션 소프트웨어와 설계를 최적화하는 체계적인 방법이 모두 필요하다는 것을 알고 있었습니다. FLOW-3D 및 D-optimal 설계 실험 (DOE)을 사용하여 Kodak 연구원은 불과 3 년 만에 작업을 완료했습니다.

    KODAK EASYSHARE 5500 all-in-one printer

     

    Innovative Ink Leads to New Printer Line

    Kodak의 EASYSHARE 프린터 라인을 형성하는 핵심 혁신은 염료-기반 잉크와 동일한 수준의 광택을 제공하지만 훨씬 오래 지속되는 안료-기반 잉크의 개발이었습니다. Kodak 엔지니어는 이 새로운 잉크를 용지 및 기타 용지에 정확하게 공급하면서 기존의 프린트 헤드보다 훨씬 긴 수명을 제공 할 수 있는 프린트 헤드를 개발할 필요가 있었습니다.

    FLOW-3D는 우수한 경향 예측뿐만 아니라 시각적 관찰도 우수한 질적인 결과를 제공합니다. 마찬가지로 소프트웨어는 설계 민감도를 정확하게 예측합니다. 결과적으로, FLOW-3D는 Kodak의 첨단 연구 및 개발 활동을 지원하는 귀중한 통찰력을 제공했습니다.

    – Christopher Delametter, Senior Research Scientist, Eastman Kodak Company

     

    Simulation Spotlight: Homogeneous Bubble Model

    Homogenous Thermal Bubble model                

    Kodak 엔지니어는 유체 및 열 흐름에 증기 기포의 형성을 연결하는 균일한 버블 모델을 통합하는 FLOW-3D를 사용하여 프린트 헤드 작동을 정확하게 시뮬레이션 했습니다. thin-film stack내의 열원은 고체 구조내에서의 전도 및 유체 / 고체 계면에서의 열전달에 의해 잉크로 운반됩니다. 유체에서 과열 온도에 이르면 증기 거품이 폭발적으로 형성됩니다. 기포는 균질 한 압력과 온도를 갖는 것으로 가정되며, 그 동역학은 증기에 대한 Clapeyron 방정식에 의해 지배된다. 기포 / 액체 계면에서의 질량 및 열교환은 기포가 팽창함에 따라 계속되고, 질량 유속은 운동 이론에 따라 결정됩니다. 표면장력과 점성영역도 시뮬레이션에 포함됩니다. 모델에서의 힘과 플럭스의 적절한 구현은 자유 표면의 정확한 추적에 달려 있는데, 이는 TruVOF 방법론을 사용하여 달성되며 계산의 중요한 부분입니다.

     

    Design of Experiments

    DOE를 사용하여 CFD를 구동함으로써 Kodak 연구원은 경쟁사보다 훨씬 짧은 시간에 프린트 헤드 디자인을 최적화 할 수 있었습니다. 시뮬레이션의 장점은 연구원이 색상 중 하나에 대해보다 최적의 잉크 배합을 발견했을 때 나타나며 프로젝트 후반부에 분명했습니다. 잉크는 이러한 장점을 이용하기 위해 신속하게 재구성되었습니다. 그러나 프린트 헤드를 1 년 이상 재설계해야 할 필요가 있을까요? 다행히 Kodak 연구원은 이미 잉크 특성에 대한 민감성 연구를 수행했으므로 단일 시뮬레이션을 추가하지 않고도 기존의 프린트 헤드 설계가 제대로 작동 할 것이라고 신속하게 판단했습니다. 따라서 EASYSHARE 프린터 제품군은 프로젝트가 시작된 지 불과 3 년 만에 출시되었으며, 일반적으로 새로운 잉크젯 기술을 시장에 출시하는 데 소요되는 시간은 약 3 분의 1입니다.

    Comparison between physical experiments and simulation—Early experimental device configuration.

     

    Learn more about the power and versatility of modeling microfluidic applications with FLOW-3D >

    Thermal Stress Evolution

    Thermal Stress Evolution

    FLOW-3D의 열 응력 진화 (TSE) 모델은 모델링 할 수있는 주조 공정의 범위를 확장합니다. FSI / TSE 모델은 주변 유체의 압력 력, 온도 구배 및 지정된 구속 조건에 대한 응답으로 솔리드 및 응고 부품의 모델 응력 및 변형에 대한 유한 요소 접근법을 사용하여 유체와 솔리드 간의 완전 결합 상호 작용을 설명합니다.

    불균일 냉각으로 인해 응고 과정에서 열 응력이 발생합니다. 이러한 응력은 주형 벽의 수축과 주조 모양의 불규칙성에 영향을받습니다.

    위의 시뮬레이션은 고형 알루미늄 V6 엔진 블록의 Von Mises 응력을 보여줍니다. 이 블록은 강철 다이 내에서 주조 된 알루미늄 A380 합금으로 구성됩니다. 알루미늄의 주입 온도는 527 ° C 였고 초기 다이 온도는 125 ° C였다. 부품을 다이에서 60 초 동안 냉각시킨 후 다이를 열고 주변 조건 (125 ° C)에서 부품을 9 분 동안 계속 냉각시켜 총 10 분의 시뮬레이션 시간을 가졌다. 보여진 폰 미제스 응력은 부품 내부의 전단 응력의 크기를 측정 한 것으로, 파열이 가장 많이 발생하는 부위를 나타냅니다. 응력은 금형과 응고 금속에서 동시에 계산 될 수 있습니다. 메싱은 FLOW-3D의 구조화 된 메쉬를 초기 템플릿으로 사용하여 자동으로 수행 할 수 있습니다. 사용자는 중첩 또는 링크 된 메쉬 블록을 생성하고 V11.0의 새로운 준수 메쉬 기능을 사용하여 메쉬의 로컬 해상도를 제어 할 수 있습니다. 또는 Exodus-II 형식의 타사 메쉬 생성 소프트웨어에서 Finite Element 메쉬를 가져 오는 옵션이 있습니다.

    Simulating Thermal Stress

    아래 그림은 강철 다이 내에 알루미늄 A380 합금 주물로 구성된 알루미늄 커버입니다. 주입 온도는 654 ℃이고 초기 다이 온도는 240 ℃이다. 부품은 6 초 동안 다이 내에서 냉각되어 부품이 완전히 고화되었다 (러너 시스템 제외). 그런 다음 다이를 열고 부품을 주변 조건 (25 ° C)에서 10 초 더 냉각시켰다. 러너 시스템을 제거한 후 주위 조건에서 10 초간 더 냉각시켰다. 여기에 표시된 일반 변위는 가장 큰 변형 영역을 강조하기 위해 30 번 확대 된 부품 표면의 동작을 나타냅니다.

    Component Coupling within the Fluid-Structure Interaction and Thermal Stress Evolution Models

    FLOW-3D v11의 새로운 기능은 인접한 유체 구조 상호 작용 (FSI) 구성 요소 및 / 또는 열 응력 진화 (TSE) 응고 유체 영역 사이의 탄성 응력을 허용하는 기존의 유한 요소 역학 해석법으로의 업그레이드입니다. 결합. 이 새로운 기능은 복잡하고 변형이 심한 다중 재료 부품 (예 : 몰드에서 금속 주 조용 응고 또는 바이메탈 게이지)의 열 응력과 변형을 시뮬레이션하고 연결된 유압에서 힘을 시뮬레이션하는 것을 포함하여 풍부한 모델링 가능성을 열어줍니다. 레이디 얼 게이트 및 파이프 라인 지원 시스템과 같은

    모델에는 복잡한 프로세스를 효율적으로 계산할 수있는 몇 가지 옵션이 있습니다.

    No coupling

    이 옵션은 인접한 FSI 구성 요소가 스트레스를 교환하지 않는 단순화 된 사례를 나타냅니다. 이것은 계산 상 효율적이며 구성 요소 간의 응력 상호 작용이 중요하지 않은 시나리오에 적합합니다.

    Full coupling

    전체 커플 링 옵션은 함께 융합되었지만 재료 특성이 다른 이웃 FSI 구성 요소를 모델링하기위한 것입니다. 두 구성 요소는 서로 떨어져서 당기거나 서로 밀어 낼 수 없지만 인터페이스의 응력은 구성 요소간에 전송됩니다. 이는 바이메탈 스트립과 같은 접합 구조를 모델링하는 데 이상적입니다.

    Partial coupling

    부분 커플 링 옵션은 인접한 FSI 구성 요소가 마찰 및 수직력을 통해 상호 작용하지만 분리 될 수있는 일반적인 문제를 모델링하기위한 것입니다. 이 옵션은 FSI 구성 요소와 TSE 응고 유체 영역을 결합하는 데 사용할 수 있으므로 다이에서 냉각되는 부품과 주조 부품에 대한 열 응력의 영향을 조사하는 데 이상적입니다.

    모델의 새로운 기능을보다 자세히 보여주기 위해 두 가지 시뮬레이션이 제공됩니다. 첫 번째 상황은 전체 커플 링 옵션을 사용하여 시간에 따라 변화하는 온도에 따라 바이메탈 스트립 벤딩을 모델링하는 반면 두 번째 예는 다이 커플 링에서 V6 엔진 블록의 응고 중 열 응력을 보는 부분 커플 링 모델의 사용을 보여줍니다 .

    Full Coupling Example: Bimetallic Strip

    전체 커플 링 옵션의 가장 단순한 예 중 하나는 온도 구배에 따른 바이메탈 스트립의 움직임입니다. 이러한 스트립은 두 개의 금속이 온도 변화에 반응하여 동일한 속도로 팽창하지 않기 때문에 열 스위치 및 굴곡에서 일반적으로 사용됩니다. 시뮬레이션에서 모델링 된 바이메탈 스트립은 그림 1에서와 같이 동일 치수의 구리 스트립에 접합 된 길이 15cm, 두께 0.5cm의 강철 스트립으로 구성된 캔틸레버 빔입니다.

    Schematic of bimetallic strip

    그림 1 : 예제 시뮬레이션에 사용 된 바이메탈 스트립의 개략도. 검은 색 화살표는 처짐이 탐지 된 곳을 나타냅니다. 긍정적 인 처짐은 상향이다.
    이어서, 스트립을 온도가 70 초 이상 균일하게 변화하는 환경에 두었다. 그림 2는 시뮬레이션을위한 스트립 팁의 편향과 시간 경과에 따른 다양한 온도에서의 분석 솔루션을 보여줍니다. 결과는 온도가 변했을 때와 스트립의 열 관성으로 인한 스트립의 응답 사이의 약간의 지연을 포함하여 몇 가지 흥미로운 특징을 보여줍니다. 이 지연은 해석 솔루션이 온도의 순간 변화를 가정하기 때문에 계산 된 해석 편차와 해석 편향 사이의 타이밍 차이에 영향을 미칩니다. 변위의 진폭 차이는 분석 결과에서 무한히 얇은 스트립의 가정에 기인 할 수 있습니다. 계산 모델의 두께는 장착 지점에서 추가 응력을 추가하여 처짐이 증가합니다.

    Bimetallic deflection plot FLOW-3D

    그림 2 : 시뮬레이션 시간 동안 스트립의 끝에서의 처짐. 플롯에는 해석 적 (밝은 파란색) 및 계산 된 (빨간색) 편향과 스트립의 평균 온도 (진한 파란색)가 표시됩니다.

    Partial Coupling Example: Metal Casting within a Deformable Die

    Temperature profile of a v6 engine block

    그림 3 : V6 엔진 블록의 온도 프로파일 단면도. 시뮬레이션 시작 7 초.

    두 번째 예제 시뮬레이션은 부분 결합 모델을 사용하여 변형 가능한 스틸 다이 내의 금속 주조물에 응력이 발생하는 것을 보여줍니다. 다이의 두 반쪽과 응고 된 유체는 서로 부분적으로 결합되어있어 정상 응력과 마찰을 통해 상호 작용합니다. 이 시뮬레이션은 금형과 주조 부품의 열 응력 변화가 770K의 고 상선 온도 바로 아래에서 293K의 주변 온도까지 냉각되는 것을 보여줍니다. 주조 부품은 A380 알루미늄 합금으로 이루어져 있으며 금형 반은 H-13 강으로 구성됩니다.

    캐스트 부품과 주변 다이의 유한 요소 메쉬는 그림 3과 같이 3,665,533 개의 요소와 3,862,378 개의 노드로 구성됩니다. 또한 다이 반쪽과 TSE 응고 된 유체 영역 각각에 대해 서로 다른 메쉬가 표시됩니다. 앞면에있는 빨간색 원은지지 피스톤 (그림에서는 보이지 않음)으로 인한 것입니다.


    그림 4는 충진 후 고압 다이 캐스팅 부품 300s의 주조물 온도와 변위 크기로 채색 된 강철 다이 조각을 결합한 이미지를 보여줍니다. 이 시뮬레이션에서, 다이는 응고 알루미늄에 결합되어 응력이 그들 사이에 전달됩니다. 변위 크기는 다이의 에지에서 0에서부터 주조에 인접한 0.1mm 이상까지 다양합니다.

    몰드와 응고 된 유체 표면 사이의 계면에서의 응력은 부분적으로 결합되고, 구속 된 수축이 보일 수있다. 그림 4는 시뮬레이션을 통해 주조 부품과 다이 반제품의 절반에 발생하는 변형을 보여줍니다. 다이 반쪽과 주물은 온도가 감소함에 따라 다른 속도로 줄어들므로 간섭 영역에 큰 응력이 발생하고 잠재적 문제 영역이 있음을 나타냅니다. 금형과 부품의 결합 응력을 계산하면 각 부품 내에서 발생하는 응력을 더 잘 예측하고 부품 품질을 개선하고 공구 수명을 연장하는 방법에 대한 통찰력을 얻을 수 있습니다.

    Conclusion

    서로 다른 솔리드 오브젝트의 상호 작용은 현대의 설계 및 엔지니어링에서 중요한 부분입니다. FLOW-3D에 대한 FSI 구성 요소와 TSE 응고 유체 영역 간의 새로운 커플 링 옵션을 추가하면 오늘날의 엔지니어가 정기적으로 겪게되는 복잡한 형상을 평가할 수있는 유용한 도구를 제공합니다.

    FLOW-3D 제품소개

    About FLOW-3D


    FLOW-3D 2022R2
    FLOW-3D 2022R2

    FLOW-3D 개발 회사

    Flow Science Inc Logo Green.svg
    IndustryComputational Fluid Dynamics Software
    Founded1980
    FounderDr. C.W. “Tony” Hirt
    Headquarters
    Santa Fe, New Mexico, USA
    United States
    Key people
    Dr. Amir Isfahani, President & CEO
    ProductsFLOW-3D, FLOW-3D CAST, FLOW-3D AM, FLOW-3D CLOUD, FlowSight
    ServicesCFD consultation and services

    FLOW-3D 개요

    FLOW-3D는 미국 뉴멕시코주(New Mexico) 로스알라모스(Los Alamos)에 있는 Flow Scicence, Inc에서 개발한 범용 전산유체역학(Computational Fluid Dynamics) 프로그램입니다. 로스알라모스 국립연구소의 수치유체역학 연구실에서 F.Harlow, B. Nichols 및 T.Hirt 등에 의해 개발된 MAC(Marker and Cell) 방법과 SOLA-VOF 방식을 기초로 하여, Hirt 박사가 1980년에 Flow Science, Inc사를 설립하여 계속 프로그램을 발전시켰으며 1985년부터 FLOW-3D를 전세계에 배포하였습니다.

    유체의 3차원 거동 해석을 수행하는데 사용되는 CFD모형은 몇몇 있으나, 유동해석에 적용할 물리모델 선정은 해석의 정밀도와 밀접한 관계가 있으므로, 해석하고자 하는 대상의 유동 특성을 분석하여 신중하게 결정하여야 합니다.

    FLOW-3D는 자유표면(Free Surface) 해석에 있어서 매우 정확한 해석 결과를 제공합니다. 해석방법은 자유표면을 포함한 비정상 유동 상태를 기본으로 하며, 연속방정식, 3차원 운동량 보전방정식(Navier-Stokes eq.) 및 에너지 보존방정식 등을 적용할 수 있습니다.

    FLOW-3D는 유한차분법을 사용하고 있으며, 유한요소법(FEM, Finite Element Method), 경계요소법(Boundary Element Method)등을 포함하여 자유표면을 포함하는 유동장 해석(Fluid Flow Analysis)에서 공기와 액체의 경계면을 정밀하게 표현 가능합니다.

    유체의 난류 해석에 대해서는 혼합길이 모형, 난류 에너지 모형, RNG(Renormalized Group Theory)  k-ε 모형, k-ω 모형, LES 모형 등 6개 모형을 적용할 수 있으며, 자유표면 해석을 위하여 VOF(Volume of Fluid) 방정식을 사용하고, 격자 생성시 사용자가 가장 쉽게 만들 수 있는 직각형상격자는 형상을 더욱 정확하게 표현하기 위해 FAVOR(Fractional Area Volume Obstacle Representation) 기법을 각 방정식에 적용하고 있습니다.

    FLOW-3D는 비압축성(Incompressible Fluid Flow), 압축성 유체(Compressible Fluid Flow)의 유동현상 뿐만 아니라 고체와의 열전달 현상을 해석할 수 있으며, 비정상 상태의 해석을 기본으로 합니다.

    FLOW-3D v12.0은 모델 설정을 간소화하고 사용자 워크 플로우를 개선하는 GUI(그래픽 사용자 인터페이스)의 설계 및 기능에 있어 중요한 변화를 가져왔습니다. 최첨단 Immersed Boundary Method는 FLOW-3Dv12.0솔루션의 정확도를 높여 줍니다. 다른 특징적인 주요 개발에는 슬러지 안착 모델, 2-유체 2-온도 모델, 사용자가 자유 표면 흐름을 훨씬 더 빠르게 모델링 할 수 있는 Steady State Accelerator등이 있습니다.

    물리 및 수치 모델

    Immersed Boundary Method

    힘과 에너지 손실에 대한 정확한 예측은 솔리드 바디 주변의 흐름과 관련된 많은 엔지니어링 문제를 모델링하는 데 중요합니다. FLOW-3D v12.0의 릴리스에는 이러한 문제 해결을 위해 설계된 새로운 고스트 셀 기반 Immersed Boundary Method (IBM)가 포함되어 있습니다. IBM은 내부 및 외부 흐름을 위해 벽 근처 해석을 위해 보다 정확한 솔루션을 제공하여 드래그 앤 리프트 힘의 계산을 개선합니다.

    Two-field temperature for the two-fluid model

    2유체 열 전달 모델은 각 유체에 대한 에너지 전달 공식을 분리하도록 확장되었습니다. 이제 각 유체에는 고유한 온도 변수가 있어 인터페이스 근처의 열 및 물질 전달 솔루션의 정확도를 향상시킵니다. 인터페이스에서의 열 전달은 시간의 표 함수가 될 수 있는 사용자 정의 열 전달 계수에 의해 제어됩니다.

    슬러지 침전 모델 / Sludge settling model

    중요 추가 기능인 새로운 슬러지 침전 모델은 도시 수처리 시설물 응용 분야에 사용하면 수처리 탱크 및 정화기의 고형 폐기물 역학을 모델링 할 수 있습니다. 침전 속도가 확산된 위상의 방울 크기에 대한 함수인 드리프트-플럭스 모델과 달리, 침전 속도는 슬러지 농도의 함수이며 기능적인 형태와 표 형태로 모두 입력 할 수 있습니다.

    Steady-state accelerator for free surface flows

    이름이 암시하듯이, 정상 상태 가속기는 안정된 상태의 솔루션에 대한 접근을 가속화합니다. 이는 작은 진폭의 중력과 모세관 현상을 감쇠하여 이루어지며 자유 표면 흐름에만 적용됩니다.

    꾸준한 상태 가속기

    Void particles

    보이드 입자가 버블 및 위상 변경 모델에 추가되었습니다. 보이드 입자는 항력과 압력 힘을 통해 유체와 상호 작용하는 작은 기포의 역할을 하는 붕괴된 보이드 영역을 나타냅니다. 주변 유체 압력에 따라 크기가 변경되고 시뮬레이션이 끝난 후 최종 위치는 공기 침투 가능성을 나타냅니다.

    Sediment scour model

    침전물의 정확성과 안정성을 향상시키기 위해 침전물의 운반과 침식 모델을 정밀 조사하였다. 특히, 침전물 종에 대한 질량 보존이 크게 개선되었습니다.

    Outflow pressure boundary condition

    고정 압력 경계 조건에는 이제 압력 및 유체 비율을 제외한 모든 유량이 해당 경계의 상류에 있는 흐름 조건을 반영하는 ‘유출’ 옵션이 포함됩니다. 유출 압력 경계 조건은 고정 압력 및 연속성 경계 조건의 혼합입니다.

    Moving particle sources

    시뮬레이션 중에 입자 소스는 이동할 수 있습니다. 시간에 따른 변환 및 회전 속도는 표 형식으로 정의됩니다. 입자 소스의 운동은 소스에서 방출 된 입자의 초기 속도에 추가됩니다.

    Variable center of gravity

    중력 및 비 관성 기준 프레임 모델에서 시간 함수로서의 무게 중심의 위치는 외부 파일의 표로 정의할 수 있습니다. 이 기능은 연료를 소모하는 로켓을 모델링하고 단계를 분리할 때 유용합니다.

    공기 유입 모델

    가장 간단한 부피 기반 공기 유입 모델 옵션이 기존 질량 기반 모델로 대체되었습니다.  질량 기반 모델은 부피와 달리 주변 유체 압력에 따라 부피가 변화하는 동안 흡입된 공기량이 보존되기 때문에 물리학적 모델입니다.

    Air entrainment model in FLOW-3D v12.0

    Tracer diffusion / 트레이서 확산

    유동 표면에서 생성된 추적 물질은 분자 및 난류 확산 과정에 의해 확산될 수 있으며, 예를 들어 실제 오염 물질의 거동을 모방합니다.

    모델 설정

    시뮬레이션 단위

    이제 온도를 포함하여 단위계 시스템을 완전히 정의해야 합니다. 표준 단위 시스템이 제공됩니다. 또한 사용자는 선택한 옵션에서 질량, 시간 및 길이 단위를 정의하여 편리하며, 사용자 정의된 단위를 사용할 수 있습니다. 사용자는 또한 압력이 게이지 단위로 정의되는지 절대 단위로 정의되는지 여부를 지정해야 합니다. 기본 시뮬레이션 단위는 Preferences(기본 설정)에서 설정할 수 있습니다. 단위를 완벽하게 정의하면 FLOW-3D는 물리적 수량에 대한 기본 값을 정의하고 범용 상수를 설정할 수 있으므로 사용자가 필요로 하는 작업량을 최소화할 수 있습니다.

    Shallow water model

    천수(shallow water) 모델에서 매닝의 거칠기

    Manning의 거칠기 계수는 지형 표면의 전단 응력 평가를 위해 천수(shallow water) 모델에서 구현되었습니다. 표면 결함의 크기를 기반으로 기존 거칠기 모델을 보완하며이 모델과 함께 사용할 수 있습니다. 표준 거칠기와 마찬가지로 매닝 계수는 구성 요소 또는 하위 구성 요소의 속성이거나 지형 래스터 데이터 세트에서 가져올 수 있습니다.

    메시 생성

    하단 및 상단 경계 좌표의 정의만으로 수직 방향의 메시 설정이 단순화되었습니다.

    구성 요소 변환

    사용자는 이제 여러 하위 구성 요소로 구성된 구성 요소에 회전, 변환 및 스케일링 변환을 적용하여 복잡한 형상 어셈블리 설정 프로세스를 단순화 할 수 있습니다. GMO (General Moving Object) 구성 요소의 경우, 이러한 변환을 구성 요소의 대칭 축과 정렬되도록 신체에 맞는 좌표계에 적용 할 수 있습니다.

    런타임시 스레드 수 변경

    시뮬레이션 중에 솔버가 사용하는 스레드 수를 변경하는 기능이 런타임 옵션 대화 상자에 추가되어 사용 가능한 스레드를 추가하거나 다른 태스크에 자원이 필요한 경우 스레드 수를 줄일 수 있습니다.

    프로브 제어 열원

    활성 시뮬레이션 제어가 형상 구성 요소와 관련된 heat sources로 확장되었습니다.  history probes로 열 방출을 제어 할 수 있습니다.

    소스에서 시간에 따른 온도

    질량 및 질량/모멘트 소스의 유체 온도는 이제 테이블 입력을 사용하여 시간의 함수로 정의 할 수 있습니다.

    방사율 계수

    공극으로의 복사 열 전달을위한 방사율 계수는 이제 사용자가 방사율과 스테판-볼츠만 상수를 지정하도록 요구하지 않고 직접 정의됩니다. 후자는 이제 단위 시스템을 기반으로 솔버에 의해 자동으로 설정됩니다.

    Output

    • 등속 필드 솔버 옵션을 사용할 때 유량 속도를 선택한 데이터로 출력 할 수 있습니다.
    • 벽 접착력으로 인한 지오메트리 구성 요소의 토크는 기존 벽 접착력 출력과 함께 별도의 수량으로 일반 이력 데이터에 출력됩니다.
    • 난류 모델 출력이 요청 될 때 난류 에너지 및 소산과 함께 전단 속도 및 y +가 선택된 데이터로 자동 출력됩니다.
    • 공기 유입 모델 출력에 몇 가지 수량이 추가되었습니다. 자유 표면을 포함하는 모든 셀에서 혼입 된 공기 및 빠져 나가는 공기의 체적 플럭스가 재시작 및 선택된 데이터로 출력되어 사용자에게 공기가 혼입 및 탈선되는 위치 및 시간에 대한 자세한 정보를 제공합니다. 전체 계산 영역 및 각 샘플링 볼륨 에 대해이 두 수량의 시간 및 공간 통합 등가물이 일반 히스토리 로 출력됩니다.
    • 솔버의 출력 파일 flsgrf 의 최종 크기는 시뮬레이션이 끝날 때 보고됩니다.
    • 2 유체 시뮬레이션의 경우, 기존의 출력 수량 유체 체류 시간 및 유체 가 이동 한 거리는 이제 유체 # 1 및 # 2와 유체의 혼합물에 대해 별도로 계산됩니다.
    • 질량 입자의 경우, 각 종의 총 부피 및 질량이 계산되어 전체 계산 영역, 샘플링 볼륨 및 플럭스 표면에 대한 일반 히스토리 로 출력되어 입자 종 수에 대한 현재 출력을 보완합니다.
    • 최종 로컬 가스 압력 은 사용자가 가스 포획을 식별하고 연료 탱크의 배기 시스템 설계를 지원하는 데 도움이되는 선택적 출력량으로 추가되었습니다. 이 양은 유체로 채워지기 전에 셀의 마지막 공극 압력을 기록하며 단열 버블 모델과 함께 사용됩니다.

    새로운 맞춤형 소스 루틴

    새로운 사용자 정의 가능 소스 루틴이 추가되었으며 사용자의 개발 환경에서 액세스 할 수 있습니다.

    소스 루틴 이름기술
    cav_prod_calCavitation 생성과 소산 비율
    sldg_uset슬러지 침전 속도
    phchg_mass_flux증발 및 응축으로 인한 질량 플럭스
    flhtccl유체 # 1과 # 2 사이의 열전달 계수
    dsize_cal2 상 흐름에서 동적 액적 크기 모델의 응집 및 분해 속도
    elstc_custom점탄성 유체에 대한 응력 방정식의 Source Terms

    새로운 사용자 인터페이스

    FLOW-3D 사용자 인터페이스는 완전히 새롭게 디자인되어 현대적이고 평평한 구조로 사용자의 작업 흐름을 획기적으로 간소화합니다.

    Setup dock widgets

    Physics, Fluids, Mesh 및 FAVOR ™를 포함한 모든 설정 작업이 지오 메트리 윈도우 주변에서 독 위젯으로 변환되어 모델 설정을 단일 탭으로 요약할 수 있습니다. 이러한 전환으로 인해 이전 버전의 복잡한 접이식 트리가 훨씬 깨끗하고 효율적인 메뉴 프레젠테이션으로 대체되어 사용자는 ModelSetup탭을 떠나지 않고도 모든 매개 변수에 쉽게 액세스 할 수 있습니다.

    New Model Setup icons

    새로운 모델 설정 디자인에는 설정 프로세스의 각 단계를 나타내는 새로운 아이콘이 있습니다.

    Model setup icons - FLOW-3D v12.0

    New Physics icons

    RSS feed

    새 RSS 피드부터 FLOW-3D v12.0의 시뮬레이션 관리자 탭이 개선되었습니다. FLOW-3D 를 시작하면 사용자에게 Flow Science의 최신 뉴스, 이벤트 및 블로그 게시물이 표시됩니다.

    RSS feed - FLOW-3D

    Configurable simulation monitor

    시뮬레이션을 실행할 때 중요한 작업은 모니터링입니다. FLOW-3Dv1.0에서는 사용자가 시뮬레이션을 더 잘 모니터링할 수 있도록 SimulationManager의 플로팅 기능이 향상되었습니다. 사용자는 시뮬레이션 런타임 그래프를 통해 모니터링할 사용 가능한 모든 일반 기록 데이터 변수를 선택하고 각 그래프에 여러 변수를 추가할 수 있습니다. 이제 런타임에서 사용할 수 있는 일반 기록 데이터는 다음과 같습니다.

    • 최소/최대 유체 온도
    • 프로브 위치의 온도
    • 유동 표면 위치에서의 유