planar representation (cross-section at tank centre).

Analysis of cryogenic propellant behaviour in microgravity and low thrust environments*

미세 중력 및 저 추력 환경에서 극저온 추진체 거동 분석

M.F. Fisher, G.R. Schmidt and J.J. Martin
NASA Marshall Space Flight Center, Huntsville, AL 35824, USA

Abstract

우주선 비행 작업 (예 : 엔진 재시동 및 유체 전달) 중 극저온 추진제의 동작과 반응을 이해하는 것은 추진체 설계에서 매우 중요한 측면입니다. 엔진 연소 전 적절한 안정과 임무의 모든 단계에서 효과적인 차량 제어를 보장하려면 유체 움직임 및 슬로시 증폭에 대한 정확한 예측이 필요합니다.

이러한 유형의 분석을 강화하기 위해 Marshall Space Flight Center (MSFC)는 최근 Flow Sciences Inc에서 개발 한 CFD 패키지인 FLOW-3D를 인수했습니다. 이 문서에서는 FLOW-3D 모델 예측을 MSFC 드롭 타워 테스트 데이터와 비교한 최근 검증에 대해 설명합니다. 테스트는 원래 Saturn S-IVB 단계 액체 수소 (LH 2) 탱크의 설계 및 성능 평가를 지원하기 위해 1960 년대에 수행되었지만, 데이터는 FLOW-3D 모델의 정확성을 검증하는데 유용한 것으로 입증되었습니다.

Understanding the behaviour and response of cryogenic propellants during spacecraft flight operations (e.g., engine restart and fluid transfer) is an extremely important aspect of vehicle design. Accurate predictions of fluid motion and slosh amplification are needed to ensure proper settling prior to engine burn and effective vehicle control throughout all phases of the mission. To augment analyses of this type, Marshall Space Flight Center (MSFC) recently acquired FLOW-3D, a CFD package developed by Flow Sciences Inc. This paper describes a recent validation in which FLOW-3D model predictions were compared with MSFC drop tower test data. Although the tests were originally conducted in the 1960s to support design and performance assessments of the Saturn S-IVB stage liquid hydrogen (LH 2) tank, the data have proven useful for verifying the accuracy of the FLOW3D model.

Keywords: space cryogenics; propellants; microgravity

planar representation (cross-section at tank centre).
planar representation (cross-section at tank centre).
Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).

Coupled Simulation of Vehicle Dynamics and Tank Slosh. Phase 1 Report. Testing and Validation of Tank Slosh Analysis

Prepared byGlenn R. WendelSteven T. GreenRussell C. Burkey

Abstract:

차량 동력학의 컴퓨터 시뮬레이션은 차량 설계에서 귀중한 도구가 되었다. 그러나 그들은 차량의 탱크에서 유체 슬로싱의 복잡한 역학을 정확하게 시뮬레이션할 수 없다. 

유체 슬로쉬를 예측할 수 있는 컴퓨터 유체역학 CFD 분석 소프트웨어를 이용할 수 있지만, 군용 차량 애플리케이션용 유체 슬로쉬를 정확하게 예측하는데 이 소프트웨어의 사용은 입증되지 않았다. 이것은 차량 역학 분석과 결합된 CFD 분석의 사용을 개발 및 입증하여 유체 수송 시스템의 역학을 보다 정확하게 예측하는 다중 효소 프로그램의 첫 번째 단계다. 

이 단계의 목적은 일반적인 기동에 직면한 차량의 움직임에 따른 탱크에서 슬로시 역학을 예측하는 CFD 분석을 검증하는 것이다. 이를 위해, 5톤 FMTV 트럭을 시뮬레이션하는 시험 설비뿐만 아니라, 1/4 규모의 TOD 탱크 모델이 건설되었다. CFD 분석과 실험실 시험의 반응력과 유동 운동을 차선 변경과 요철을 포함한 6가지 모의 차량 기동에서 비교했다. 

CFD 분석은 상용 소프트웨어 패키지인 FLOW-3D-로 수행되었다. 테스트 탱크의 해당 측정값과 비교하기 위해 빈 탱크의 강체 동적 해석의 힘과 모멘트 예측에 순유체 힘과 모멘트 예측이 추가되었다. 

전반적으로, 그 결과는 CFD가 트럭에 탑재된 수상 수송 탱크의 유체 운동 및 유체 구조 상호작용 연구에 성공적으로 적용될 수 있음을 보여준다. 예측된 롤 모멘트와 측정된 롤 모멘트 사이에는 좋은 상관관계가 있다. 

여기에 제시된 CFD 시뮬레이션의 빠른 전환 시간을 감안할 때, 전술에 대한 전체 차량 반응의 높은 충실도 시뮬레이션을 위해 차량 강체 차체 동적 분석을 유체 역학 분석과 결합하는 것이 바람직하다는 전망이 나온다.

Computer simulation of vehicle dynamics has become a valuable tool in the design of vehicles. They are, however, unable to accurately simulate the complex dynamics of fluid sloshing in a tank on the vehicle. Computational Fluid Dynamics CFD analysis software is available that can predict fluid slosh, however, the use of this software in accurately predicting fluid slosh for a military vehicle application has not been demonstrated. This is the first phase of a multiphase program to develop and demonstrate the use of CFD analysis, coupled with vehicle dynamics analysis, to more accurately predict the dynamics of a fluid transport system. The objective of this phase is to validate the CFD analysis in predicting slosh dynamics on a tank subjected to motions of a vehicle encountering typical maneuvers. To accomplish this, a one-quarter-scale model of a TOLD tank was constructed, as well as a test fixture to simulate a five-ton FMTV truck. The reaction forces and the fluid motions of the CFD analysis and the laboratory test were compared for six simulated vehicle maneuvers including lane changes and bumps. The CFD analysis was conducted with the commercially available software package, FLOW-3D-. The net fluid force and moment predictions were added to the force and moment predictions of a rigid body dynamic analysis of the empty tank alone to compare to the corresponding measured values for the test tank. Overall, the results show that CFD can successfully be applied to the study of fluid motions and the fluid- structure interactions in truck-mounted water transport tanks. There is good correlation between the predicted and measured roll moment. Given the rapid turnaround time for the CFD simulations presented here, the outlook is encouraging for coupling a vehicle rigid body dynamics analysis to a fluid dynamics analysis for a high fidelity simulation of the complete vehicle response to maneuvers.

Keywords

Keywords: COMPUTATIONAL,FLUID,DYNAMICS,VEHICLES,*SLOSHING,TEST,AND,EVALUATION,COMPUTER,PROGRAMS,COMPUTERIZED,SIMULATION,COUPLING(INTERACTION),SIMULATION,ROLL,LABORATORY,TESTS,PREDICTIONS,VALIDATION,INTERACTIONS,MILITARY,VEHICLES,REACTION,TIME,MOTION,RESPONSE,TRANSPORT,MILITARY,APPLICATIONS,FLUIDS,TRUCKS,MANEUVERS,RIGIDITY,TEST,FIXTURES,WATER,TANKS

CFD 분석과 실험실 테스트의 작용력과 유체 운동은 다음과 같은 시뮬레이션 된 차량 기동에 대해 비교되었습니다.

  • AVTP Lane Change at 20 mph
  • AVTP Lane Change at 40 mph
  • 9” Half-Round Symmetric Bump at 10 mph
  • 12” Half-Round Symmetric Bump at 5 mph
  • 9” Trapezoidal Asymmetric Bump at 15 mph
  • 12” Trapezoidal Asymmetric Bump at 10 mph

CFD 분석은 상용 소프트웨어 패키지 FLOW-3D를 사용하여 수행되었습니다.

Rear Axle Roll Moment, 40-mph Lane Change.
Rear Axle Roll Moment, 40-mph Lane Change.
Figure 2.1.  Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).
Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).
Figure 2.2.  Test Setup Drawing.The load cell locations and the coordinate systems used in the testing and analysis are defined as shown.
Figure 2.2. Test Setup Drawing.The load cell locations and the coordinate systems used in the testing and analysis are defined as shown.
Figure 3.1.  Computational Mesh Definition
Figure 3.1. Computational Mesh Definition
Figure 3.2.  Rear Axle Roll Moment, 20-mph Lane Change
Figure 3.2. Rear Axle Roll Moment, 20-mph Lane Change
Figure 3.3.  Rear Axle Roll Moment, 40-mph Lane Change
Figure 3.3. Rear Axle Roll Moment, 40-mph Lane Change
Figure 3.4.  Rear Axle Roll Moment, 9” Trapezoidal Bump at 15 mph
Figure 3.4. Rear Axle Roll Moment, 9” Trapezoidal Bump at 15 mph
Figure 3.5.  Rear Axle Roll Moment, 12” Trapezoidal Bump at 10 mph
Figure 3.5. Rear Axle Roll Moment, 12” Trapezoidal Bump at 10 mph
Figure 3.8.  Fluid Configuration for 20-mph Lane Change.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction.  Theinset in the video image is viewing the tank from the left side of the vehicle.
Figure 3.8. Fluid Configuration for 20-mph Lane Change.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction. Theinset in the video image is viewing the tank from the left side of the vehicle.
Figure 3.9.  Fluid Configuration for 12” Trapezoidal Bump at 10 mph.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction.  Theinset in the video image is viewing the tank from the left side of the vehicle.
Figure 3.9. Fluid Configuration for 12” Trapezoidal Bump at 10 mph.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction. Theinset in the video image is viewing the tank from the left side of the vehicle.

REFERENCES

Abramson, H.N. [1966], The Dynamic Behavior of Liquids in Moving Containers,NASA SP-106.Flow Science, Inc. [2001], FLOW-3D, Version 8.0.1, Santa Fe, New Mexico.Working Model, Inc. [1997], Working Model 3D, Version 2.0, San Mateo, California.Coleman, H.W., Steele, W.G. [1989], Experimentation and Uncertainty Analysis forEngineers, John Wiley and Sons, New York, 1989

Capsule-type Vane Tank

Numerical Simulation Analysis of Liquid Transportation in Capsule-type Vane Tank under Microgravity

Microgravity 하에서 캡슐형 베인 탱크의 액체 수송에 대한 수치 시뮬레이션 분석

Abstract

Li Yong-Qiang1,2 & Dong Jun-Yan1 & Rui Wei
1Received: 17 June 2019 /Accepted: 4 December 2019
#Springer Nature B.V. 2020

In order to research the influence of the guide vane on liquid transmission performance in a tank under microgravity, simulation analysis was carried out with FLOW-3D software. Firstly, it compared the working condition under the charging rate of 10% with the corresponding experiment results of the drop tower and validated the correctness of the simulation process. And then it changed the structure parameters of the guide vane, researched the influence of different quantity, gap and thickness on climbing rate of liquid, and analyzed the causing reasons of these effects in-depth. This paper provided a reference for the design of internal guiding vane of microgravity tank.

본 논문은 가이드 베인이 미세 중력 상태의 탱크에서 액체 전달 성능에 미치는 영향을 연구하기 위해 FLOW-3D 소프트웨어를 사용하여 시뮬레이션 분석을 수행했습니다. 첫째, 10 % 충전율 하에서 작업 조건을 드롭 타워의 해당 실험 결과와 비교하여 시뮬레이션 프로세스의 정확성을 검증했다. 그리고 가이드 베인의 구조 매개 변수를 변경하고, 액체의 상승 속도에 대한 양, 간격 및 두께의 영향을 연구하고 이러한 영향의 원인을 심도있게 분석했습니다. 이 논문은 미세 중력 탱크의 내부 안내 날개 설계에 대한 참고 자료를 제공했습니다.

Capsule-type Vane Tank
Capsule-type Vane Tank
The relationship curve between the square of climbing height and time with a = 6 mm
The relationship curve between the square of climbing height and time with a = 6 mm
The relationship curve between the vane’s liquid transportation and time under different width a
The relationship curve between the vane’s liquid transportation and time under different width a
FIGURE 1. - FLOW-3D MODEL OF K-SITE TANK PRESSUR-IZATION.

Prediction of the Ullage Gas Thermal Stratification in a NASP Vehicle Propellant Tank Experimental Simulation Using FLOW-3D

FLOW-3D를 사용한 NASP 차량 추진 탱크 실험 시뮬레이션에서 Ullage 가스 열 층화 예측

Personal AuthorHardy, T. L.; Tomsik, T. M.

NASP (National Aero-Space Plane) 프로젝트의 일환으로 2D 온도 프로파일에 대한 중력, 초기 탱크 압력, 초기 유면 온도 및 열 전달 속도의 다차원 효과를 연구했습니다.

상업용 유한 차분 유체 흐름 모델인 FLOW-3D가 평가에 사용되었습니다. 이러한 효과는 기체 수소 가압제를 사용한 이전 액체 수소 실험 데이터를 기반으로 조사되었습니다.

FLOW-3D 결과는 기존 1D 모델과 비교되었습니다. 또한 메쉬 크기와 수렴 기준이 분석 결과에 미치는 영향을 조사했습니다. NASP 탱크 모델링을위한 향후 수정 및 FLOW-3D 사용에 대한 제안도 제공됩니다.

KeywordsAerospace planesComputer programsFluid flowHeat transferNational aerospace plane programPropellant tanksUllageComputational gridsConvergenceFinite difference theoryLiquid hydrogenMathematical modelsSimulationStratificationTemperature profiles
FIGURE 1. - FLOW-3D MODEL OF K-SITE TANK PRESSUR-IZATION.
FIGURE 1. – FLOW-3D MODEL OF K-SITE TANK PRESSUR-IZATION.
FIGURE 3. - EFFECT OF GRAVITY ON TEMPERATURE CONTOURS
FIGURE 3. – EFFECT OF GRAVITY ON TEMPERATURE CONTOURS
FIGURE 6.- EFFECT OF INITIAL PRESSURE ON VELOCITY PROFILE
FIGURE 6.- EFFECT OF INITIAL PRESSURE ON VELOCITY PROFILE
FIGURE 10. - EFFECT OF INITIAL TEMPERATURE ON TEMPERATURE CONTOURS
FIGURE 10. – EFFECT OF INITIAL TEMPERATURE ON TEMPERATURE CONTOURS
FIGURE 13. - EFFECT OF HEAT TRANSFER ON TEMPERATURE CONTOURS
FIGURE 13. – EFFECT OF HEAT TRANSFER ON TEMPERATURE CONTOURS
FIGURE 16. - EFFECT OF CONVERGENCE CRITERIA ON TEMPERATURE CONTOURS, 55 PERCENT ULLAGE, Pi = 17.4 PSI, 6 = 32.2 FT/SECZ, 24 SEC PRESSURIZATION
FIGURE 16. – EFFECT OF CONVERGENCE CRITERIA ON TEMPERATURE CONTOURS, 55 PERCENT ULLAGE, Pi = 17.4 PSI, 6 = 32.2 FT/SECZ, 24 SEC PRESSURIZATION
FIGURE 17. - COMPAR ISON OF CENTERLINE TEMPERATURES USING VARIOUS CONVERGENCE CRITERIA, 55 PERCENT ULLAGE, G = 32,2 FT/SEC2, P;= 17.4 PSI, 24 SEC PRESSURIZATION.
FIGURE 17. – COMPAR ISON OF CENTERLINE TEMPERATURES USING VARIOUS CONVERGENCE CRITERIA, 55 PERCENT ULLAGE, G = 32,2 FT/SEC2, P;= 17.4 PSI, 24 SEC PRESSURIZATION.
FIGURE 19. - EFFECT OF CONVERGENCE CRITERIA ON VELOCITY PROFILE,
FIGURE 19. – EFFECT OF CONVERGENCE CRITERIA ON VELOCITY PROFILE,
FIGURE 21. - EFFECT OF MESH SIZE ON TEMPERA- TURE CONTOURS, 55 PERCENT ULLAGE, Pi = 17.4 PSI, G = 0.0 FT/SEC2, , e = . 02, dt = , 005 SEC, 24 SEC PRESSURIZATION.
FIGURE 21. – EFFECT OF MESH SIZE ON TEMPERA- TURE CONTOURS, 55 PERCENT ULLAGE, Pi = 17.4 PSI, G = 0.0 FT/SEC2, , e = . 02, dt = , 005 SEC, 24 SEC PRESSURIZATION.

Comparison of FLOW-3D calculations with very large amplitude slosh data

매우 큰 진폭 슬로시 데이터와 FLOW-3D 계산 비교

소속 표시 : Sicilian, J. M.;Tegart, J. R.

Abstract

액체 모션 및 유체력의 3차원 흐름 컴퓨터 시뮬레이션은 기존 테스트 데이터와 상관관계가 있습니다. 하나의 실험 데이터 세트는 우주 왕복선 외부 탱크의 산소 탱크의 스케일 모델을 기반으로 하며, 다른 세트는 서브 스케일 탱크에서 제어된 가속 환경을 생성하는 낙하 탑 테스트에서 파생됩니다.

다양한 드롭 타워 실험의 시뮬레이션은 큰 유체 변위 조건에서 총 유체 움직임을 예측하는 신뢰할 수 있는 능력을 보여줍니다. 컨테이너에 유체가 가해지는 힘의 예측은 이전 계산에 비해 개선되고, 예측된 힘은 측정된 데이터와 타이밍과 추세에 동의하며, 양력 측정 및 예측의 크기에 대한 불확실성은 그 사이의 관찰된 차이를 설명하기에 충분하다는 점에 유의합니다.

IN: Computational experiments; Proceedings of the ASME/JSME Pressure Vessels and Piping Conference, Honolulu, HI, July 23-27, 1989 (A90-32339 13-31). New York, American Society of Mechanical Engineers, 1989, p. 23-30.

Figure 3-3 E200U+ PMD sponge draining

CORRELATIONS BETWEEN NEUTRAL BUOYANCY TESTS AND CED

Abstract

NEUTRAL BUOYANCY 테스트는 표면 장력 장치의 기능 검증을 위해 Matra Marconi Space에서 잘 알려진 테스트 기능입니다. 새로운 Eurostar 3000 PMD를 검증하고 성능을 E2000 + PMD의 성능과 비교하기 위해 완전한 저수지가 중성 부력 테스트 벤치에서 테스트되었습니다. 또한, 일시적 및 고정 모세관 현상에 대한 우리의 지식을 연관시키고 개선하기 위해 수치 시뮬레이션이 수행되었습니다. 다양한 결과에 대한 토론과 상관 관계가 제시됩니다. 다양한 도구의 한계가 표시되고 E3000 개선의 간단한 예가 모델링됩니다.

Figure 2-2 Propellant position under acceleration
Figure 2-2 Propellant position under acceleration
Figure 2-3 E2000+ PMD
Figure 2-3 E2000+ PMD
Figure 3-1 Propellant position under acceleration
Figure 3-1 Propellant position under acceleration
Figure 3-2 Propellant position under acceleration
Figure 3-2 Propellant position under acceleration
Figure 3-3 E200U+ PMD sponge draining
Figure 3-3 E200U+ PMD sponge draining
Figure 3-5 Improved PMD sponge draining
Figure 3-5 Improved PMD sponge draining
Figure 4-1 E2000+ reservoir
Figure 4-1 E2000+ reservoir
FIG. 4: The RF of a lopsided neckpinch geometry through the Type-1 singularity using surgery and yielding the geometry as a direct product of two 3-spheres. We use axial symmetry of our model to suppress one dimension and the resulting two-lobed geometry can be visualized in Euclidean 3-space (our evolution was fortunately isometrically embeddable in R 3 ). The middle 3’rd and 4’th figure occur at the same time (t = 183.0) in the evolution. They illustrate the explicit manifold surgery, where the spherical caps (two icosahedrons )are placed on the ends of the left and right lobes. This is the first numerical illustration of Thurston’s geometrization procedure that we are aware of. This surface has 3438 edges, 1580 triangle-based frustum blocks and 960 vertices, although symmetry reduces the number of edges to 80 icosahedral {si} edges and 79 axial {ai} edges.

A Realization of Thurstons Geometrization: Discrete Ricci Flow with Surgery∗

Paul M. Alsing1
, Warner A. Miller2† & Shing-Tung Yau3
1 Air Force Research Laboratory, Information Directorate, Rome, NY 13441
2 Department of Physics, Florida Atlantic University, Boca Raton, FL 33431
3 Department of Mathematics, Harvard University, Cambridge, MA 02138

Hamilton의 Ricci 흐름 (RF) 방정식은 최근 d 차원 부분 선형 (PL) 단순 기하학의 모서리 길이에 대한 자율 1 차 비선형 미분 방정식의 희소 결합 시스템으로 표현되었습니다. 더 최근에, 이 DRF (Discrete Ricci Flow) 방정식 시스템은 각 에지에 연결된 Forman-Ricci 텐서를 명시적으로 구성하여 1 차 미분 연산자를 대각화하고 각 시간 단계에서 큰 희소 행렬을 반전할 필요가 없도록 더욱 단순화되었습니다.

우리는 최근에 이러한 방정식이 축 대칭 3-기하 구조에 대해 해당 연속체 RF 방정식에 수렴한다는 것을 분석적으로나 수치적으로 보여주었습니다.

우리는 여기서 이러한 DRF 방정식이 수술을 사용하여 Type-1 넥 핀치 특이점을 통해 명시적으로 통합함으로써 이산 3D 축 대칭 넥 핀치 형상에 대한 Thurston의 형상화 절차에 대한 명시적인 수치 실현을 보여줍니다.

진화를 완료하려면 입방 스플라인 기반 적응형 메시가 필요했습니다. 우리의 수치적으로 효율적인 시뮬레이션은 충분히 조여진 축 대칭 형상의 예상되는 Thurston 분해를 고유 한 기하학적 구조 (각각 3 구 형상으로 축소되는 두 로브의 직접 곱)로 산출합니다. 곡률의 구조는 Forman이 그래프에서 Ricci 곡률을 표현할 때 나타나는 정점 및 가장자리 가중치 중 하나를 더 잘 알리는 데 사용될 수 있습니다.

Thurstons Geometrization의 실현 : Surgery을 통한 Discrete Ricci Flow

FIG. 2: A two dimensional representation of the 3D neckpinch geometry of Angenent and Knopf (continuum on top, and discrete on bottom). In 3D the continuum cross-sections are 3-spheres and not circles, and in our discrete model the cross sections are icosahedrons and not hexagons. The 3D cells are triangle-based frustum blocks as opposed to the trapezoids depicted in the bottom of the figure. Here the variable ac measures the proper distance from the equator, and s is the length of the icosahedron edges
FIG. 2: A two dimensional representation of the 3D neckpinch geometry of Angenent and Knopf (continuum on top, and discrete on bottom). In 3D the continuum cross-sections are 3-spheres and not circles, and in our discrete model the cross sections are icosahedrons and not hexagons. The 3D cells are triangle-based frustum blocks as opposed to the trapezoids depicted in the bottom of the figure. Here the variable ac measures the proper distance from the equator, and s is the length of the icosahedron edges
FIG. 3: An illustration of the icosahedron neckpinch geometry for nine cross-sectional icosahedra (top), and its dual dodecahedral lattice (bottom). The lattice is composed of triangle-based frustum blocks, and the dual lattice is composed of pentagonal-based frustum blocks. The expressions for the sectional, scalar, and Ricci curvature uses the dual lattice with its dodecahedral cross sections.
FIG. 3: An illustration of the icosahedron neckpinch geometry for nine cross-sectional icosahedra (top), and its dual dodecahedral lattice (bottom). The lattice is composed of triangle-based frustum blocks, and the dual lattice is composed of pentagonal-based frustum blocks. The expressions for the sectional, scalar, and Ricci curvature uses the dual lattice with its dodecahedral cross sections.
FIG. 4: The RF of a lopsided neckpinch geometry through the Type-1 singularity using surgery and yielding the geometry as a direct product of two 3-spheres. We use axial symmetry of our model to suppress one dimension and the resulting two-lobed geometry can be visualized in Euclidean 3-space (our evolution was fortunately isometrically embeddable in R 3 ). The middle 3’rd and 4’th figure occur at the same time (t = 183.0) in the evolution. They illustrate the explicit manifold surgery, where the spherical caps (two icosahedrons )are placed on the ends of the left and right lobes. This is the first numerical illustration of Thurston’s geometrization procedure that we are aware of. This surface has 3438 edges, 1580 triangle-based frustum blocks and 960 vertices, although symmetry reduces the number of edges to 80 icosahedral {si} edges and 79 axial {ai} edges.
FIG. 4: The RF of a lopsided neckpinch geometry through the Type-1 singularity using surgery and yielding the geometry as a direct product of two 3-spheres. We use axial symmetry of our model to suppress one dimension and the resulting two-lobed geometry can be visualized in Euclidean 3-space (our evolution was fortunately isometrically embeddable in R 3 ). The middle 3’rd and 4’th figure occur at the same time (t = 183.0) in the evolution. They illustrate the explicit manifold surgery, where the spherical caps (two icosahedrons )are placed on the ends of the left and right lobes. This is the first numerical illustration of Thurston’s geometrization procedure that we are aware of. This surface has 3438 edges, 1580 triangle-based frustum blocks and 960 vertices, although symmetry reduces the number of edges to 80 icosahedral {si} edges and 79 axial {ai} edges.
FIG. 5: A 2-dimensional cross section of a lopsided neckpinch geometry evolving under RF through the Type-1 singularity. Surgery yields two disconnected 3D ovoids and each becomes spherical under the RF evolution. The resulting geometry is a direct product of two 3-spheres. As the lobed geometry collapses a pinch occurs at t= 183. At this point we remove the axial edges at the pinch and cap each end of the left and right lobe with a new icosahedra. These two surfaces (pre and post surgery) are the 3rd and 4th layers inside the initial surface. After surgery, we remesh both the left and right 3-dimensional ovoids using cubic spline interpolation. This is, to our knowledge, the first numerical realization for PL manifolds of Thurston’s geometrization procedure. This particular surface has 3348 edges, 1580 triangle-based frustum blocks and 960 vertices, although symmetry reduces the number of edges to 80 icosahedral {si} edges and 79 axial {ai} edges.
FIG. 5: A 2-dimensional cross section of a lopsided neckpinch geometry evolving under RF through the Type-1 singularity. Surgery yields two disconnected 3D ovoids and each becomes spherical under the RF evolution. The resulting geometry is a direct product of two 3-spheres. As the lobed geometry collapses a pinch occurs at t= 183. At this point we remove the axial edges at the pinch and cap each end of the left and right lobe with a new icosahedra. These two surfaces (pre and post surgery) are the 3rd and 4th layers inside the initial surface. After surgery, we remesh both the left and right 3-dimensional ovoids using cubic spline interpolation. This is, to our knowledge, the first numerical realization for PL manifolds of Thurston’s geometrization procedure. This particular surface has 3348 edges, 1580 triangle-based frustum blocks and 960 vertices, although symmetry reduces the number of edges to 80 icosahedral {si} edges and 79 axial {ai} edges.
FIG. 6: After the manifold surgery the lobe was closed using a spherical cap with proper matching conditions as illustrated in this figure. This involved reassigning the values to two of the s variables and two of the a values. This procedure offers no essential advantage over the simpler procedure consisting of just capping the surgery with an icosahedron and remeshing.
FIG. 6: After the manifold surgery the lobe was closed using a spherical cap with proper matching conditions as illustrated in this figure. This involved reassigning the values to two of the s variables and two of the a values. This procedure offers no essential advantage over the simpler procedure consisting of just capping the surgery with an icosahedron and remeshing.
Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.

Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales

NASA/TM—2010-216749

Kevin Breisacher and Jeffrey Moder
Glenn Research Center, Cleveland, Ohio

Prepared for the57th Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Meetingsponsored by the JANNAF Interagency Propulsion CommitteeColorado Springs, Colorado, May 3–7, 2010

Abstract

극저온 추진제의 장기 공간 저장을 위해 축류 제트 믹서는 탱크 압력을 제어하고 열 층화를 줄이기위한 하나의 개념입니다. 1960 년대부터 현재까지 10 피트 이하의 탱크 직경에 대한 광범위한 지상 테스트 데이터가 존재합니다.

Ares V EDS (Earth Departure Stage) LH2 탱크 용으로 계획된 것과 같이 직경이 30 피트 정도 인 탱크 용 축류 제트 믹서를 설계하려면 훨씬 더 작은 탱크에서 사용 가능한 실험 데이터를 확장하고 미세 중력을 설계해야 합니다.

이 연구는 10 배 차이가 나는 2 개의 탱크 크기에서 기존의 지상 기반 축류 제트 혼합 실험의 시뮬레이션을 수행하여 이러한 규모의 변화를 처리하는 전산 유체 역학 (CFD)의 능력을 평가합니다. 저궤도 (LEO) 해안 동안 Ares V 스케일 EDS LH2 탱크에 대한 여러 축 제트 구성의 시뮬레이션이 평가되고 선택된 결과도 제공됩니다.

두 가지 탱크 크기 (직경 1 및 10 피트)의 물을 사용하여 General Dynamics에서 1960 년대에 수행한 제트 혼합 실험 데이터를 사용하여 CFD 정확도를 평가합니다. 제트 노즐 직경은 직경 1 피트 탱크 실험의 경우 0.032 ~ 0.25 인치, 직경 10 피트 탱크 실험의 경우 0.625 ~ 0.875 인치였습니다.

제트 믹서를 켜기 전에 두 탱크에서 열 층화 층이 생성되었습니다. 제트 믹서 효율은 층화 층이 섞일 때까지 탱크의 열전대 레이크의 온도를 모니터링하여 결정되었습니다. 염료는 층화된 탱크에 자주 주입되었고 침투가 기록되었습니다. 실험 데이터에서 사용 가능한 속도나 난류량은 없었습니다.

제시된 시뮬레이션에는 자유 표면 추적 (Flow Science, Inc.의 FLOW-3D)이 포함된 시판되고 시간 정확도가 높은 다차원 CFD 코드가 사용됩니다. 서로 다른 시간에 탱크의 다양한 축 위치에서 계산 된 온도와 실험적으로 관찰된 온도를 비교합니다. 획득한 합의에 대한 다양한 모델링 매개 변수의 영향을 평가합니다.

Introduction

Constellation 프로그램의 일부인 Ares V는 우주 비행사를 달로 돌려 보내도록 설계된 무거운 리프트 발사기입니다. Ares V 스택의 일부인 EDS (Earth Departure Stage)는 지구의 중력에서 벗어나 승무원 차량과 달 착륙선을 달로 보내는데 필요합니다.

이러한 차량의 질량과 달로 보내는 데 필요한 에너지 때문에 EDS의 액체 수소(LH2)와 액체 산소(LO2) 추진제 탱크는 매우 클 것입니다(직경 10m). 탱크 내부로의 환경적 열 누출로 인해 혼합 장치를 포함한 열역학적 환기 시스템(TV)은 설계 한계 내에서 탱크 압력을 유지하고 엔진 시동에 필요한 한도 내에서 액체 온도를 유지하기 위해 며칠의 순서에 따라 공간 내 저장 기간 동안 필요할 수 있습니다.

이러한 혼합 장치 중 하나는 그림 1과 2와 같이 탱크 바닥 근처에 있는 (순가속과 관련하여) 탱크 축을 따라 중심에 있는 축 제트입니다. 축방향 제트 혼합기와 TVS에 통합된 것은 1960년대 중반부터 연구되어 왔으며(참조 1~5), 광범위한 축방향 제트 접지 테스트 데이터(비사이로젠(참조 1~9), 극저온(참조 10~16) 유체 사용), 에탄올을 사용한 일부 드롭 타워 테스트 데이터(참조 17 및 18)가 있습니다. 극저온 추진제를 사용하는 축방향 제트에 대한 기존 접지 테스트 데이터는 3m(10ft) 이하의 탱크 직경으로 제한됩니다.

저자가 알고 있는 바와 같이, 현재 임계 미달의 극저온 추진체를 사용하는 폐쇄형 탱크에 축방향 제트가 포함된 낙하탑, 항공기 또는 우주 비행 시험 데이터는 없습니다.

축방향 제트(Axial jet)는 지구 저궤도(LEO) 연안의 며칠 동안 EDS LH2 탱크에서 작동하는 혼합 장치의 후보 중 하나입니다. 제안된 EDS 탱크 척도의 극저온 저장 탱크에서 작동하는 축 제트 실험 데이터가 존재하지 않기 때문에, EDS 탱크를 위한 축 제트 TV의 초기 설계는 기존 데이터에 대해 고정된 상관 관계 및 CFD 분석에 의존할 필요가 있습니다.

이 연구는 두 개의 탱크 척도에서 크기 순서로 다른 축방향 제트 열분해 성능을 예측하기 위한 CFD 정확도 평가의 현재 진행 상황을 보고합니다. CFD 시뮬레이션은 물을 작동 유체로 사용하는 접지 테스트 축 제트 데이터(참조 1 – 4)와 비교됩니다. 이 평가를 위해 선택된 CFD 코드는 Flow Science(참조 21)의 상용 코드 FLOW-3D로, 극저온 저장 탱크 및 축방향 제트(참조 22~24)의 이전 분석에서 사용되었습니다.

LEO의 대표적인 EDS LH2 탱크에 대한 예비 축 제트 시뮬레이션도 여러 축 제트 구성에 대해 수행됩니다. 이러한 축방향 제트 구성의 열분해 성능을 평가하고 선택된 결과를 제시합니다.

이러한 예비 축방향 제트 EDS 시뮬레이션은 비교적 짧은 시간 동안 혼합기 성능만 평가합니다. 탱크 열 누출, 위상 변화 및 일반적인 자기 압력(제트 오프)/압력 붕괴(제트 온) 사이클을 포함한 보다 상세한 시뮬레이션이 향후 작업에서 추진될 수 있습니다.

Figure 1.—Schematic of the small water tank / Figure 2.—Schematic of the large water tank
Figure 1.—Schematic of the small water tank / Figure 2.—Schematic of the large water tank
Figure 5.—Temperature contours for large tank jet mixing simulation. (Temperature contour range 294 to 302 K)
Figure 5.—Temperature contours for large tank jet mixing simulation. (Temperature contour range 294 to 302 K)

상세 내용은 원문을 참조하시기 바랍니다.


Figure 9.—Schematic of a representative EDS scale propellant tank.
Figure 9.—Schematic of a representative EDS scale propellant tank.
Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.
Figure 10.—Temperature contour time sequence for an EDS scale propellant tank at a jet mixing velocity of 0.06 m/s.
Figure 14.—Temperature contour at t = 1000 s for the five jet mixer with a 0.06 m/s jet velocity
Figure 14.—Temperature contour at t = 1000 s for the five jet mixer with a 0.06 m/s jet velocity

Summary and Conclusions

사용 가능한 유사성 상관 관계를 사용하는 스케일링 전략은 EDS 클래스 제트 믹서에 대한 적절한 제트 크기 및 작동 조건을 결정하기 위해 개발되었습니다. 물 탱크 시뮬레이션에서 결정된 모델링 매개 변수를 사용하여 열 층화를 제어하기 위해 제트 믹서를 사용하여 EDS 등급 추진제 탱크의 혼합 이력에 대한 CFD 시뮬레이션을 수행했습니다.

시뮬레이션 결과는 다양한 믹싱 동작을 보여 주며 유사성 매개 변수의 사용에서 예상되는 것과 일치했습니다. 이러한 결과는 하위 규모 테스트 및 유사성 상관 관계와 함께 CFD 시뮬레이션이 EDS 등급 탱크를위한 효율적인 제트 믹서 설계를 허용 할 것이라는 확신을 제공합니다.

CFD 시뮬레이션은 다양한 크기의 직경과 제트를 가진 탱크의 제트 믹서에서 수행되었습니다. 1 피트 직경의 물 탱크에서 제트 혼합에 대해 사용 가능한 실험 데이터와 합리적으로 일치하는 모델링 매개 변수가 결정되었습니다. 동일한 모델링 매개 변수를 사용하여 대략 10 배 정도 떨어져있는 스케일로 워터 제트 혼합 실험에서 혼합을 시뮬레이션했습니다. 시뮬레이션 결과는 실험 온도 데이터와 잘 일치하는 것으로 나타났습니다.

References 1.Poth, L.J., Van Hook, J.R., Wheeler, D.M. and Kee, C.R., “A Study of Cryogenic Propellant Mixing Techniques. Volume 1 – Mixer design and experimental investigations,” NASA CR-73908, Nov 1968. 2.Poth, L.J., Van Hook, J.R., Wheeler, D.M. and Kee, C.R., “A Study of Cryogenic Propellant Mixing Techniques. Volume 2 – Experimental data Final report,” NASA CR-73909, Nov 1968. 3.Scale Experimental Mixing Investigations and Liquid-Oxygen Mixer Design,” NASA CR-113897, Sep 1970. 4.Van Hook, J.R. and Poth, L.J., “Study of Cryogenic Fluid Mixing Techniques. Volume 1 – Large-Van Hook, J.R., “Study of Cryogenic Fluid Mixing Techniques. Volume 2 – Large-Scale Mixing Data,” NASA CR-113914, Sep 1970. 5.Poth, L.J. and Van Hook, J.R., “Control of the Thermodynamic State of Space-Stored Cryogens by Jet Mixing,” J. Spacecraft, Vol. 9, No. 5, 1972. 6.Lovrich, T.N. and Schwartz, S.H., “Development of Thermal Stratification and Destratification Scaling Concepts – Volume II. Stratification Experimental Data,” NASA CR-143945, 1975. 7.Dominick, S.M., “Mixing Induced Condensation Inside Propellant Tanks,” AIAA–1984–0514. 8.Meserole, J.S., Jones, O.S., Brennan, S.M. and Fortini, A., “Mixing-Induced Ullage Condensation and Fluid Destratification,” AIAA–1987–2018. 9.Barsi, S., Kassemi, M., Panzarella, C.H. and Alexander, J.I., “A Tank Self-Pressurization Experiment Using a Model Fluid in Normal Gravity,” AIAA–2005–1143. 10.Stark, J.A. and Blatt, M.H., “Cryogenic Zero-Gravity Prototype Vent System,” NAS8-20146, Convair Report GDC-DDB67-006, Oct 1967. 11.Bullard, B.R., “Liquid Propellant Thermal Conditioning System Test Program,” NAS3-12033, Lockheed Missiles & Space Co., NASA CR-72971, July 1972. 12.Erickson, R.C., “Space LOX Vent System,” NAS8-26972, General Dynamics Convair Report CASD-NAS 75-021, April 1975.

13.Lin, C.S., Hasan, M.M. and Nyland, T.W., “Mixing and Transient Interface Condensation of a Liquid Hydrogen Tank,” NASA TM-106201 (or AIAA–1993–1968), 1993. 14.Lin, C.S., Hasan, M.M. and Van Dresar, N.T., “Experimental Investigation of Jet-Induced Mixing of a Large Liquid Hydrogen Storage Tank,” NASA TM-106629 (or AIAA–1994–2079), 1994. 15.Olsen, A.D., Cady, E.C., Jenkins, D.S. and Hastings, L., “Solar Thermal Upper Stage Cryogenic System Engineering Checkout Test,” AIAA–1999–2604. 16.Van Overbeke, T.J., “Thermodynamic Vent System Test in a Low Earth Orbit Simulation,” NASA/TM—2004-213193 (or AIAA–2004–3838), Oct 2004. 17.Aydelott, J.C., “Axial Jet Mixing of Ethanol in Cylindrical Containers During Weightlessness,” NASA-TP-1487, July 1979. 18.Aydelott, J.C., “Axial Modeling of Space Vehicle Propellant Mixing,” NASA-TP-2107, Jan 1983. 19.Bentz, M.D., “Tank Pressure Control in Low Gravity by Jet Mixing,” NASA CR–191012, Mar. 1993. 20.Hasan, M.M., Lin, C.S., Knoll, R.H. and Bentz, M.D., “Tank Pressure Control Experiment: Thermal Phenomena in Microgravity,” NASA-TP-3564, 1996. 21.FLOW-3D User’s Manual, version 9.4, Flow Science, Inc., Santa Fe, NM 2009. 22.Grayson, G.D., Lopez, A., Chandler, F.O., Hastings, L.J. and Tucker, S.P., “Cryogenic Tank Modeling for the Saturn AS-203 Experiment,” AIAA–2006–5258. 23.Lopez, A., Grayson, G.D., Chandler, F.O., Hastings, L.J., and Hedayat, A., “Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks,” AIAA–2007–5552. 24.Lopez, A., Grayson, G.D., Chandler, F.O., Hastings, L.J. and Hedayat, A., “Cryogenic Pressure Control Modeling for Ellipsoidal Space Tanks in Reduced Gravity,” AIAA–2008–5104. 25.Thomas, R.M., “Condensation of Steam on Water in Turbulent Motion,” Int. J. Multiphase Flow, Vol. 5, No. 1, pp. 1–15, 1979. 26.Zimmerli, G.A., Asipauskas, M., Chen, Y. and Weislogel, M.M., “A Study of Fluid Interface Configurations in Exploration Vehicle Propellant Tanks,” AIAA–2010–1294.

aerospace-sloshing-simulation

Aerospace Sloshing Dynamics

Sloshing Dynamics

우주선의 연료 탱크에서 추진체의 움직임에 대한 지식은 작동 및 성능의 다양한 측면을 이해하는 데 필수적입니다. 추진체 운동은 액체 배출, 가스 배출 및 가압과 같은 추진 기능에 영향을 미칩니다. 어떤 경우에는 추진체 운동에 의해 생성되는 힘도 알아야합니다. 이것은 액체 질량이 전체 우주선 질량의 상당 부분을 포함할 때 특히 그렇습니다.

FLOW-3D: Aircraft Fuel Tank Sloshing
FLOW-3D: Aircraft Fuel Tank Sloshing : 회전과 가속을 하는 동안 전투기의 연료 탱크 시뮬레이션

Visualizing Non-Inertial Reference Frame Motion

연료 탱크 슬로싱은 연료의 slosh 역학을 구성하며, 여기서 연료의 역학은 컨테이너와 상호 작용하여 시스템 역학을 변경할 수 있습니다. 일반적으로 연료에는 자유 표면이 있습니다. FLOW-3D는 TruVOF를 사용한 정확한 자유 표면 추적으로 인해 연료 슬로싱 역학을 시뮬레이션하는 데 탁월한 소프트웨어입니다. 또한 FLOW-3D의 NIRF (Non-Inertial Reference Frame) 모듈을 사용하면 고정된 참조 프레임에서 연료 및 움직이는 컨테이너 (연료 탱크)를 시각화하기 위한 쉽고 계산 효율적인 설정이 가능합니다.

FLOW-3D의 NIRF 모듈 기능을 강조하기 위해 우주 왕복선의 연료 슬로 싱을 보여주는 샘플 시뮬레이션이 설정됩니다. 우주 왕복선은 처음 25 초 동안 위쪽으로 가속한 다음, 다음 25 초 동안 같은 양만큼 감속합니다. 그 후 각 가속도를 사용하여 셔틀이 90도 회전한 다음 다시 선형 가속을 계속합니다. 이 복잡한 우주 왕복선 기동 중에 복잡한 자유 표면 유체 운동을 보는 것은 흥미롭습니다. RNG 난류 모델은 유체의 난류 운동 에너지를 추정하는데 사용됩니다.

애니메이션의 왼쪽 창에는 FlowSight에서 생성 된 NIRF 시각화가 표시되고 오른쪽 뷰포트에는 FlowSight를 사용하여 다시 생성된 비 NIRF 시각화가 표시됩니다. NIRF 시각화는 고정된 기준 프레임에서 유체와 탱크의 움직임을 이해하는데 도움이되므로 시스템의 전반적인 역학을 보다 관련성 있게 강조 할 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수)

FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 출력에 따라 달라집니다. 이 문서는 FLOW-3D의 출력에 대해 좀 더 복잡한 출력 변수 중 일부를 참조하는 역할을 합니다.

FLOW-3D Additional output
FLOW-3D Additional output

Distance Traveled by Fluid(유체로 이동 한 거리)

때로는 유체 입자가 이동한 거리가 중요한 경우도 있습니다. FLOW-3D에서 사용자는 모델 설정 ‣ 출력 위젯에서 유체가 이동한 거리에 대한 출력을 요청할 수 있습니다. 이 기능은 유체가 흐름 영역(경계 또는 질량 소스를 통해)에 들어간 시간 또는 유체가 도메인을 통해 이동한 거리를 계산합니다. 이 기능은 모든 시뮬레이션에도 사용할 수 있으며, 특별한 모델을 사용할 필요가 없으며, 흐름에도 영향을 미치지 않습니다. 이 모델을 사용하려면 출력 위젯으로 이동하고 추가 출력 섹션에서 “Distance traveled by fluid” 옆의 체크상자를 선택하십시오.

 노트

추가 출력 섹션은 출력 위젯의 모든 탭에서 사용할 수 있습니다.

유체 도착 시간

유체 도착 시간을 아는 것은 종종 유용합니다. 예를 들어 주조 시뮬레이션에서 주입 시간을 결정하는 데 사용할 수 있습니다. 제어 볼륨은 충전 프로세스 동안 여러 번 채워지고 비워지기 때문에 계산 셀이 채워지는 처음과 마지막 시간 모두 기록되고, 후 처리를 위해 저장될 수 있습니다. 이 작업은 출력 위젯과 추가 출력 섹션 내에서 유체 도착 시간 확인란을 선택하여 수행됩니다.

 노트

이 출력 옵션은 1 유체 자유 표면 흐름에만 사용할 수 있습니다.

유체 체류 시간

때로는 유체가 계산 영역 내에서 보내는 시간인 체류시간을 아는 것이 유용합니다. 이는 출력 ‣ Output ‣ Additional Output ‣ Fluid residence time 확인란을 선택하여 수행합니다. 여기서 S로 지정된 이 변수에 대한 전송 방정식은 단위 소스 항과 함께 Solve됩니다.

유체 체류 시간(Fluid residence time)
유체 체류 시간(Fluid residence time)

여기에서 t는 시간이며 u는 유체 속도입니다.

S의 단위는 시간이다. 계산 도메인에 들어가는 모든 유체에 대한 S의 초기값은 0입니다.

의 값은 항상 second order체계를 가진 데이터로부터 근사치를 구합니다.

이 출력 옵션은 1 유체 및 2 유체 유량 모두에 사용할 수 있습니다.

 노트

경계 조건 또는 소스에서 도메인으로 유입되는 유체가 이미 도메인에 있는 유체와 혼합될 때 체류가 감소하는 것처럼 보일 수 있습니다.

Wall Contact Time

벽면 접촉 시간 출력은 (1)개별 유체 요소가 특정 구성 요소와 접촉하는 시간 및 (2)특정 구성 요소가 유체와 접촉하는 시간을 추적합니다. 이 모델은 액체 금속이 모래 오염물과 접촉했을 때 오염과 상관 관계가 있는 proxy 변수를 제공하기 위한 것입니다. 이 출력은 최종 주조물에서 오염된 유체가 어디에 있는지 확인하는 데 사용될 수 있습니다. 접촉 시간 모델의 또 다른 해석은, 예를 들어, 용해를 통해 다소 일정한 비율로 화학물질을 방출하는 물에 잠긴 물체에 의한 강의 물의 오염입니다.

모델은 Model Setup ‣ Output ‣ Wall contact time 박스를 확인하여 활성화됩니다. 또한 Model Setup ‣ Output ‣ Geometry Data section의 각 구성요소에 대해 해당 구성요소를 계산에 포함하기 위해 반드시 설정해야 하는 Contact time flag가 있습니다.

 추가 정보

Wall Contact Time with Fluid and Component Properties: Contact Time with Fluid for more information on the input variables를 참조하십시오.

 노트

이 모델은 실제 구성 요소, 즉 고체, 다공성 매체, 코어 가스 및 충전 퇴적물 구성 요소로 제한됩니다. 접촉 시간은 유체 # 1과 관련해서만 계산됩니다.

2. 형상 데이터
2. 형상 데이터

Component wetted are

Fluid 1과 접촉하는 구성 요소의 표면 영역은 관심 구성 요소에 대한 Model Setup ‣ Output ‣ Geometry Data ‣ Wetted area 옵션을 활성화하여 History Data로 출력 될 수 있습니다.

구성 요소의 힘과 토크

Forces

Model Setup ‣ Output ‣ Geometry Data ‣ Forces 옵션을 활성화하면 부품에 대한 압력, 전단력, 탄성 및 벽 접착력을 History Data에 출력할 수 있습니다.

압력을 가지지 않은 셀(즉, 도메인 외부에 있거나 다른 구성 요소 안에 있는 셀)이 구성 요소 주변의 각 셀에 대한 압력 영역 제품을 합산하는 동안 어떻게 처리되는지를 제어하는 압력 계산에 대한 몇 가지 추가 옵션이 있습니다. 기본 동작은 이러한 셀에서 사용자 정의 기준 압력을 사용하는 것입니다. 지정되지 않은 경우 기준 압력은 초기 무효 압력인 PVOID로 기본 설정됩니다. 또는, 코드는 Reference pressure is code calculated 옵션을 선택하여 구성요소의 노출된 표면에 대한 평균 압력을 사용할 수 있습니다.

마지막으로, 일반 이동 물체의 경우, 규정된/제약을 받는 대로 물체를 이동시키는 힘을 나타내는 잔류 힘의 추가 출력이 있습니다.

Torques

Model Setup ‣ Output ‣ Force 옵션이 활성화되면 구성 요소의 토크가 계산되고 History Data에 출력됩니다. 토크는 힘-모멘트에 대한 기준점 X, 힘-모멘트에 대한 기준점 Y, 정지 구성 요소에 대한 힘-모멘트 입력에 대한 기준점 Z에 의해 지정된 지점에 대해 보고됩니다. 참조점의 기본 위치는 원점입니다.

General Moving Objects에는 몇 가지 추가 참고 사항이 있습니다. 첫째, 토크는 (1) 6-DOF 동작의 질량 위치 중심 또는 (2)고정축 및 고정점 회전의 회전 축/점에 대해 보고됩니다. 힘에서 행해지는 것과 마찬가지로, 규정된/제한된 바와 같이 물체를 이동시키는 토크를 나타내는 잔류 토크의 출력도 있습니다.

 노트

힘 및 토크 출력은 각 지오메트리 구성 요소의 일반 히스토리 데이터에 기록됩니다. 출력은 개별 힘/토크 기여 (예: 압력, 전단, 탄성, 벽 접착) 및 개별 기여도의 합으로 계산된 총 결합력/토크로 제공됩니다.

Buoyancy center and metacentric height (부력 중심 및 메타 중심 높이)

일반 이동 객체의 부력과 안정성에 대한 정보는 각 구성 요소에 대해 모델 설정 Setup 출력 ‣ 기하학적 데이터 ‣ 부력 중심 및 도량형 높이 옵션을 활성화하여 History Data에서 출력할 수 있습니다. 이렇게 하면 구성 요소의 중심 위치와 중심 높이가 출력됩니다.

  1. Advanced

FLOW-3D Advanced Output Option
FLOW-3D Advanced Output Option

Fluid vorticity & Q-criterion(유체 와동 및 Q 기준)

와동구성 요소뿐만 아니라 와동 구조를 위한 Q-criterion을 계산하고 내보내려면 Model Setup ‣ Output ‣ Advanced 탭에서 해당 확인란을 클릭하여 유체 와동 & Q-criterion을 활성화하십시오.

여기에서:

:  소용돌이 벡터의 다른 구성 요소

 Q-criterion은 속도 구배 텐서의 2차 불변성을 갖는 연결된 유체 영역으로 소용돌이를 정의합니다. 이는 전단 변형률과 와류 크기 사이의 국부적 균형을 나타내며, 와류 크기가 변형률의 크기보다 큰 영역으로 와류를 정의합니다.

Hydraulic Data and Total Hydraulic Head 3D

Hydraulic Data

깊이 기준 유압 데이터를 요청하려면 출력 ‣ 고급으로 이동한 후 유압 데이터 옆의 확인란을 선택하십시오(심층 평균 값과 중력을 -Z 방향으로 가정).

이 옵션은 FLOW-3D가 유압 시뮬레이션에 유용할 수 있는 추가 깊이 평균 데이터를 출력하도록 합니다.

  • Flow depth
  • Maximum flow depth
  • Free surface elevation
  • Velocity
  • Offset velocity
  • Froude number
  • Specific hydraulic head
  • Total hydraulic head

이 수량 각각에 대해 하나의 값 이 메쉬의 모든 (x, y) 위치에서 계산되고 수직 열의 모든 셀에 저장됩니다 (이 수량이 깊이 평균이기 때문에 z 방향으로 데이터의 변화가 없습니다). 변수는 정확도를 보장하기 위해주기마다 계산됩니다. 모든 경우에,  깊이 평균 속도, z- 방향  의 중력 가속도, 유체 깊이, 및 컬럼 내 유체의 최소 z- 좌표입니다.

  • 자유 표면 고도는 수직 기둥의 맨 위 유체 요소에 있는 자유 표면의 z-좌표로 계산됩니다.
  • The Froude number 은   

식으로 계산됩니다.

  • 유체 깊이는 깊이 평균 메쉬 열의 모든 유체의 합으로 계산됩니다.

특정 유압 헤드 

및 총 유압 헤드

변수는 다음에서 계산됩니다.  

 노트

  • 깊이 기준 유압 출력 옵션은 예리한 인터페이스가 있고 중력이 음의 z 방향으로 향할 때에만 유체 1에 유효합니다.
  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

Total Hydraulic Head 3D(총 유압 헤드 3D)

또한 총 유압 헤드 3D 옵션을 확인하여 국부적(3D) 속도 필드, 플럭스 표면에서의 유압 에너지(배플 참조) 및 플럭스 기반 유압 헤드를 사용하여 유체 1의 총 헤드를 계산할 수 있다. 3D 계산은 국부 압력을 사용하여 수행되며(즉, 압력이 유체 깊이와 관련이 있다고 가정하지 않음) 원통 좌표와 호환됩니다.

 노트

  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 문제가 발생할 수 있습니다. 이 경우, 플럭스 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산 시 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.
  • 3D 유압 헤드 계산은 입력 파일에 중력이 정의되지 않은 경우 중력 벡터의 크기를 1로 가정합니다.

Flux-averaged hydraulic head

특정 위치 (즉, 배플)의 플럭스 평균 유압 헤드는 다음과 같이 계산됩니다.

Flux-averaged hydraulic head
Flux-averaged hydraulic head

유압 헤드 계산에서는 유선이 평행하다고 가정합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치된 경우 (예: 아래에 표시된 것과 같이) 문제가 될 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정




유압 헤드 계산에서는 유선이 평행하다고 가정

이 경우 플럭스 표면에 보고된 플럭스 평균 유압 헤드는 헤드 계산 시 흐름 방향이 무시되므로 예상보다 클 수 있습니다.

FLOW-3D에는 History Probes, Flux surface, Sampling Volumes의 세 가지 주요 측정 장치가 있습니다. 이러한 장치를 시뮬레이션에 추가하는 방법은 모델 설정 섹션에 설명되어 있습니다(측정 장치 참조). 이들의 출력은 기록 데이터 편집 시간 간격으로 flsgrf 파일의 일반 기록 데이터 카탈로그에 저장됩니다. 이러한 결과는 Analyze ‣ Probe 탭에서 Probe Plots을 생성하여 액세스할 수 있습니다.

히스토리 프로브 출력

히스토리 프로브를 생성하는 단계는 모델 설정 섹션에 설명되어 있습니다(기록 프로브 참조). 시뮬레이션에 사용된 물리 모델에 따라 각각의 History Probe에서 서로 다른 출력을 사용할 수 있습니다. 프로브를 FSI/TSE로 지정하면 유한 요소 메시 안에 들어가야 하는 위치에서 응력/스트레인 데이터만 제공한다. 유체 프로브가 솔리드 형상 구성 요소에 의해 차단된 영역 내에 위치하는 경우, 기하학적 구조와 관련된 수량(예: 벽 온도)만 계산된다. 일반적으로 프로브 좌표에 의해 정의된 위치에서 이러한 양을 계산하려면 보간이 필요하다.

플럭스 표면 출력

플럭스 표면은 이를 통과하는 수량의 흐름을 측정하는데 사용되는 특별한 물체입니다. 플럭스 표면을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(플럭스 표면 참조). 각 플럭스 표면에 대해 계산된 수량은 다음과 같습니다.

  • Volume flow rate for fluid #1
  • Volume flow rate for fluid #2 (for two-fluid problems only)
  • Combined volume flow rate (for two-fluid problems only)
  • Total mass flow rate
  • Flux surface area wetted by fluid #1
  • Flux-averaged hydraulic head when 3D Hydraulic Head is requested from additional output options
  • Hydraulic energy flow when hydraulic data output is requested
  • Total number of particles of each defined species in each particle class crossing flux surface when the particle model is active
  • Flow rate for all active and passive scalars this includes scalar quantities associated with active physical models (eg. suspended sediment, air entrainment, ect.)

 노트

  • 유속과 입자수의 기호는 유동 표면을 설명하는 함수의 기호에 의해 정의된 대로 흐름이나 입자가 플럭스 표면의 음에서 양으로 교차할 때 양의 부호가 됩니다.
  • 플럭스 표면은 각 표면의 유량과 입자 수가 정확하도록 그들 사이에 적어도 두 개의 메쉬 셀이 있어야 합니다.
  • 유압 데이터 및 총 유압 헤드 3D 옵션을 사용할 때는 유압 헤드 계산이 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

샘플링 볼륨 출력

샘플링 볼륨은 해당 범위 내에서 볼륨을 측정하는 3 차원 데이터 수집 영역입니다. 샘플링 볼륨을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(샘플링 볼륨 참조). 각 샘플링 볼륨의 계산 수량은 다음과 같습니다.

  • 시료채취량 내에서 #1 유체 총량
  • 시료채취량 내 #1 유체질량 중심
  • 샘플링 용적 가장자리에 위치한 솔리드 표면을 포함하여 샘플링 용적 내의 모든 벽 경계에 작용하는 좌표계의 원점에 상대적인 유압력 및 모멘트.
  • 샘플링 용적 내 총 스칼라 종량: 이것은 부피 적분으로 계산되므로 스칼라 양이 질량 농도를 나타내면 샘플링 용적 내의 총 질량이 계산된다. 거주 시간과 같은 일부 종의 경우, 평균 값이 대신 계산됩니다.
  • 샘플링 볼륨 내의 입자 수: 각 샘플링 볼륨 내에 있는 각 입자 등급의 정의된 각 종별 입자 수(입자 모델이 활성화된 경우)
  • 운동 에너지, 난류 에너지, 난류 소실율 및 와류에 대한 질량 평균
  • 표본 체적의 6개 경계 각각에서 열 유속: 유체 대류, 유체 및 고체 성분의 전도 및 유체/구성 요소 열 전달이 포함됩니다. 각 플럭스의 기호는 좌표 방향에 의해 결정되는데, 예를 들어, 양방향의 열 플럭스도 양수입니다. 출력에서 확장 또는 최대 디버그 수준을 선택하지 않는 한 이러한 디버그 수준은 fsplt에 자동으로 표시되지 않습니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

연료 탱크 슬로싱

시뮬레이션 사례 설명

이 예는 제트 전투기 연료 탱크 내 연료 슬로싱을 나타냅니다. 이 시뮬레이션을 통해 엔지니어는 탱크 내 연료 모션을 제어하는 배플의 성능을 평가하고 적절한 제어 시스템을 설계할 수 있습니다.

자세한 내용이 궁금하시면 언제든지 기술지원팀에 연락주시기 바랍니다.

This example represents fuel sloshing in a jet fighter fuel tank. The simulation allows engineers to evaluate the performance of the baffles in controlling the fuel motion in the tank and to design appropriate control systems.

Fuel Tank Sloshing
2 Fluid, 1 Temperature

2 Fluid, 2 Temperature 모델

2 Fluid, 2 Temperature 모델

우주선 및 자동차 연료 탱크 및 특정 미세 유체 장치는 안전하고 효율적인 작동을 위해 정확한 액체 및 기체 상태 모델링이 필요합니다. 이러한 시스템에 유체 계면이 존재하는 것 외에도, 열 전달 및 상 변화의 물리학도 정확하게 포착해야합니다. 얼마나 복잡합니까!

이러한 복잡한 시나리오를 시뮬레이션하기 위해 FLOW-3D v12.0에는 2 Fluid, 2 Temperature 모델이 도입되었습니다.

 

단순화 된 모델 : 2 Fluid, 1 Temperature

FLOW-3D 의 인터페이스 추적 방법인 TruVOF는 열 전달 및 위상 변화를 포함하여 2 Fluid 모델과 함께 작동합니다. 그러나,이 모델의 단순화 중 하나는, 인터페이스를 갖는 메쉬 셀의 온도가 다음의 개략도에 도시 된 바와 같이 혼합물 온도 (따라서 단순화 된 모델) Tmix로 표현된다는 것입니다.

온도가 경계면을 가로 질러 연속적이고 매끄러 울 때 혼합물 근사치가 적절하지만, 열-물리적 특성의 큰 차이로 인해 액체 및 가스가 있는 경우에는 이를 추정 할 수 없습니다. 이러한 시스템에서 용액의 정확도는 액체-기체 혼합물을 함유하는 셀에서 유체 에너지 및 온도의 평균으로부터 발생하는 과도한 수치 확산에 의해 압도 될 수 있습니다. 단순화 된 온도 슬립 모델은 이러한 경우 부분적인 솔루션만 제공합니다.

단순화 된 모델-2 Fluid, 1 Temperature

종합 모델 : 2 Fluid, 2 Temperature

1 Temperature 접근 방식의 결함을 극복하기 위해 2 Fluid 솔루션에 대한 2 Temperature 모델이 버전 11.3에 도입되었습니다. 여기에는 아래 회로도에 표시된 것처럼 각 유체에 대한 에너지 전달 방정식을 해결하고 각 상의 온도를 저장하는 작업이 포함됩니다. 자유 표면이 있는 메쉬 셀은 이제 액체 (T1)와 가스 (T2) 온도를 모두 나타냅니다.

종합 모델 : 2 유체, 2 온도

탱크 슬로싱(Tank sloshing)

탱크 슬로싱에 대한 이 사례 연구에서, 액체는 초기 온도 300K이고 가스는 400K입니다. 단순화 된 모델과 포괄적인 모델 사이의 수치 확산 정도의 차이는 아래 애니메이션에 나와 있습니다. 온도 윤곽에서 시간이 지남에 따라 용액의 수치 확산은 1 Temperature 접근 방식으로 보여지고 계면 물리를 완전히 가리게 됩니다.

단순화 된 모델 : 2 Fluid, 1 Temperature

종합 모델 : 2 Fluid, 2 Temperature

공기중 드롭 용접(Drop welding in air)

이 낙하 용접 사례 연구에서 액체 금속은 중력 하에서 2300K에서 공기를 통해 고체화 된 금속 베드로 떨어집니다. 공기 및 베드 초기 온도는 293K입니다. simplified model에서는 수치 확산으로 인해 액체 금속 낙하 온도가 베드에 도달하기 전에도 급격히 감소하기 시작합니다. 반면에 comprehensive model에서는 방울이 초기 온도를 유지하여 훨씬 더 나은 솔루션을 제공합니다.

단순화 된 모델을 사용한 온도 필드 진화

종합 모델의 온도 필드

FLOW-3D의 2 Fluid, 2 Temperature 모델과 유체 인터페이스 추적을 결합하면 사용자는 특히 연료 슬로싱 시스템과 같이 복잡한 열전달 및 위상 변화 문제를 정확하게 모델링 할 수 있습니다.

이 새로운 모델에 대한 제안이나 의견은 adwaith@flow3d.com에 문의하십시오.

자유 표면 모델링 방법

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Free Surface Modeling Methods

An interface between a gas and liquid is often referred to as a free surface. The reason for the “free” designation arises from the large difference in the densities of the gas and liquid (e.g., the ratio of density for water to air is 1000). A low gas density means that its inertia can generally be ignored compared to that of the liquid. In this sense the liquid moves independently, or freely, with respect to the gas. The only influence of the gas is the pressure it exerts on the liquid surface. In other words, the gas-liquid surface is not constrained, but free.

자유 표면 모델링 방법

기체와 액체 사이의 계면은 종종 자유 표면이라고합니다.  ‘자유’라는 호칭이 된 것은 기체와 액체의 밀도가 크게 다르기 때문입니다 (예를 들어, 물 공기에 대한 밀도 비는 1000입니다).  기체의 밀도가 낮다는 것은 액체의 관성에 비해 기체의 관성은 일반적으로 무시할 수 있다는 것을 의미합니다.  이러한 의미에서, 액체는 기체에 대해 독립적으로, 즉 자유롭게 움직입니다.  기체의 유일한 효과는 액체의 표면에 대한 압력입니다.  즉, 기체와 액체의 표면은 제약되어있는 것이 아니라 자유롭다는 것입니다.

In heat-transfer texts the term ‘Stephen Problem’ is often used to describe free boundary problems. In this case, however, the boundaries are phase boundaries, e.g., the boundary between ice and water that changes in response to the heat supplied from convective fluid currents.

열전달에 관한 문서는 자유 경계 문제를 묘사할 때 “Stephen Problem’”라는 용어가 자주 사용됩니다.  그러나 여기에서 경계는 상(phase) 경계, 즉 대류적인 유체의 흐름에 의해 공급된 열에 반응하여 변화하는 얼음과 물 사이의 경계 등을 말합니다.

Whatever the name, it should be obvious that the presence of a free or moving boundary introduces serious complications for any type of analysis. For all but the simplest of problems, it is necessary to resort to numerical solutions. Even then, free surfaces require the introduction of special methods to define their location, their movement, and their influence on a flow.

이름이 무엇이든, 자유 또는 이동 경계가 존재한다는 것은 어떤 유형의 분석에도 복잡한 문제를 야기한다는 것은 분명합니다. 가장 간단한 문제를 제외한 모든 문제에 대해서는 수치 해석에 의존할 필요가 있습니다. 그 경우에도 자유 표면은 위치, 이동 및 흐름에 미치는 영향을 정의하기 위한 특별한 방법이 필요합니다.

In the following discussion we will briefly review the types of numerical approaches that have been used to model free surfaces, indicating the advantages and disadvantages of each method. Regardless of the method employed, there are three essential features needed to properly model free surfaces:

  1. A scheme is needed to describe the shape and location of a surface,
  2. An algorithm is required to evolve the shape and location with time, and
  3. Free-surface boundary conditions must be applied at the surface.

다음 설명에서는 자유 표면 모델링에 사용되어 온 다양한 유형의 수치적 접근에 대해 간략하게 검토하고 각 방법의 장단점을 설명합니다. 어떤 방법을 사용하는지에 관계없이 자유롭게 표면을 적절히 모델화하는 다음의 3 가지 기능이 필요합니다.

  1. 표면의 형상과 위치를 설명하는 방식
  2. 시간에 따라 모양과 위치를 업데이트 하는 알고리즘
  3. 표면에 적용할 자유 표면 경계 조건

Lagrangian Grid Methods

Conceptually, the simplest means of defining and tracking a free surface is to construct a Lagrangian grid that is imbedded in and moves with the fluid. Many finite-element methods use this approach. Because the grid and fluid move together, the grid automatically tracks free surfaces.

라그랑주 격자 법

개념적으로 자유 표면을 정의하고 추적하는 가장 간단한 방법은 유체와 함께 이동하는 라그랑주 격자를 구성하는 것입니다. 많은 유한 요소 방법이 이 접근 방식을 사용합니다. 격자와 유체가 함께 움직이기 때문에 격자는 자동으로 자유 표면을 추적합니다.

At a surface it is necessary to modify the approximating equations to include the proper boundary conditions and to account for the fact that fluid exists only on one side of the boundary. If this is not done, asymmetries develop that eventually destroy the accuracy of a simulation.

표면에서 적절한 경계 조건을 포함하고 유체가 경계의 한면에만 존재한다는 사실을 설명하기 위해 근사 방정식을 수정해야합니다. 이것이 수행되지 않으면 결국 시뮬레이션의 정확도를 훼손하는 비대칭이 발생합니다.

The principal limitation of Lagrangian methods is that they cannot track surfaces that break apart or intersect. Even large amplitude surface motions can be difficult to track without introducing regridding techniques such as the Arbitrary-Lagrangian-Eulerian (ALE) method. References 1970 and 1974 may be consulted for early examples of these approaches.

라그랑지안 방법의 주요 제한은 분리되거나 교차하는 표면을 추적 할 수 없다는 것입니다. ALE (Arbitrary-Lagrangian-Eulerian) 방법과 같은 격자 재생성 기법을 도입하지 않으면 진폭이 큰 표면 움직임도 추적하기 어려울 수 있습니다. 이러한 접근법의 초기 예를 보려면 참고 문헌 1970 및 1974를 참조하십시오.

The remaining free-surface methods discussed here use a fixed, Eulerian grid as the basis for computations so that more complicated surface motions may be treated.

여기에서 논의된 나머지 자유 표면 방법은 보다 복잡한 표면 움직임을 처리할 수 있도록 고정된 오일러 그리드를 계산의 기준으로 사용합니다.

Surface Height Method

Low amplitude sloshing, shallow water waves, and other free-surface motions in which the surface does not deviate too far from horizontal, can be described by the height, H, of the surface relative to some reference elevation. Time evolution of the height is governed by the kinematic equation, where (u,v,w) are fluid velocities in the (x,y,z) directions. This equation is a mathematical expression of the fact that the surface must move with the fluid:

표면 높이 법

낮은 진폭의 슬로 싱, 얕은 물결 및 표면이 수평에서 너무 멀리 벗어나지 않는 기타 자유 표면 운동은 일부 기준 고도에 대한 표면의 높이 H로 설명 할 수 있습니다. 높이의 시간 진화는 운동학 방정식에 의해 제어되며, 여기서 (u, v, w)는 (x, y, z) 방향의 유체 속도입니다. 이 방정식은 표면이 유체와 함께 움직여야한다는 사실을 수학적으로 표현한 것입니다.

Finite-difference approximations to this equation are easy to implement. Further, only the height values at a set of horizontal locations must be recorded so the memory requirements for a three-dimensional numerical solution are extremely small. Finally, the application of free-surface boundary conditions is also simplified by the condition on the surface that it remains nearly horizontal. Examples of this technique can be found in References 1971 and 1975.

이 방정식의 유한 차분 근사를 쉽게 실행할 수 있습니다.  또한 3 차원 수치 해법의 메모리 요구 사항이 극도로 작아지도록 같은 높이의 위치 값만을 기록해야합니다.  마지막으로 자유 표면 경계 조건의 적용도 거의 수평을 유지하는 표면의 조건에 의해 간소화됩니다.  이 방법의 예는 참고 문헌의 1971 및 1975을 참조하십시오.

Marker-and-Cell (MAC) Method

The earliest numerical method devised for time-dependent, free-surface, flow problems was the Marker-and-Cell (MAC) method (see Ref. 1965). This scheme is based on a fixed, Eulerian grid of control volumes. The location of fluid within the grid is determined by a set of marker particles that move with the fluid, but otherwise have no volume, mass or other properties.

MAC 방법

시간 의존성을 가지는 자유 표면 흐름의 문제에 대해 처음 고안된 수치 법이 MAC (Marker-and-Cell) 법입니다 (참고 문헌 1965 참조).  이 구조는 컨트롤 볼륨 고정 오일러 격자를 기반으로합니다.  격자 내의 유체의 위치는 유체와 함께 움직이고, 그 이외는 부피, 질량, 기타 특성을 갖지 않는 일련의 마커 입자에 의해 결정됩니다.

Grid cells containing markers are considered occupied by fluid, while those without markers are empty (or void). A free surface is defined to exist in any grid cell that contains particles and that also has at least one neighboring grid cell that is void. The location and orientation of the surface within the cell was not part of the original MAC method.

마커를 포함한 격자 셀은 유체로 채워져있는 것으로 간주되며 마커가 없는 격자 셀은 빈(무효)것입니다.  입자를 포함하고, 적어도 하나의 인접 격자 셀이 무효인 격자의 자유 표면은 존재하는 것으로 정의됩니다.  셀 표면의 위치와 방향은 원래의 MAC 법에 포함되지 않았습니다.

Evolution of surfaces was computed by moving the markers with locally interpolated fluid velocities. Some special treatments were required to define the fluid properties in newly filled grid cells and to cancel values in cells that are emptied.

표면의 발전(개선)은 국소적으로 보간된 유체 속도로 마커를 이동하여 계산되었습니다.  새롭게 충전된 격자 셀의 유체 특성을 정의하거나 비어있는 셀의 값을 취소하거나 하려면 특별한 처리가 필요했습니다.

The application of free-surface boundary conditions consisted of assigning the gas pressure to all surface cells. Also, velocity components were assigned to all locations on or immediately outside the surface in such a way as to approximate conditions of incompressibility and zero-surface shear stress.

자유 표면 경계 조건의 적용은 모든 표면 셀에 가스 압력을 할당하는 것으로 구성되었습니다. 또한 속도 성분은 비압축성 및 제로 표면 전단 응력의 조건을 근사화하는 방식으로 표면 위 또는 외부의 모든 위치에 할당되었습니다.

The extraordinary success of the MAC method in solving a wide range of complicated free-surface flow problems is well documented in numerous publications. One reason for this success is that the markers do not track surfaces directly, but instead track fluid volumes. Surfaces are simply the boundaries of the volumes, and in this sense surfaces may appear, merge or disappear as volumes break apart or coalesce.

폭넓게 복잡한 자유 표면 흐름 문제 해결에 MAC 법이 놀라운 성공을 거두고 있는 것은 수많은 문헌에서 충분히 입증되고 있습니다.  이 성공 이유 중 하나는 마커가 표면을 직접 추적하는 것이 아니라 유체의 체적을 추적하는 것입니다.  표면은 체적의 경계에 불과하며, 그러한 의미에서 표면은 분할 또는 합체된 부피로 출현(appear), 병합, 소멸 할 가능성이 있습니다.

A variety of improvements have contributed to an increase in the accuracy and applicability of the original MAC method. For example, applying gas pressures at interpolated surface locations within cells improves the accuracy in problems driven by hydrostatic forces, while the inclusion of surface tension forces extends the method to a wider class of problems (see Refs. 1969, 1975).

다양한 개선으로 인해 원래 MAC 방법의 정확성과 적용 가능성이 증가했습니다. 예를 들어, 셀 내 보간 된 표면 위치에 가스 압력을 적용하면 정 수력으로 인한 문제의 정확도가 향상되는 반면 표면 장력의 포함은 방법을 더 광범위한 문제로 확장합니다 (참조 문헌. 1969, 1975).

In spite of its successes, the MAC method has been used primarily for two-dimensional simulations because it requires considerable memory and CPU time to accommodate the necessary number of marker particles. Typically, an average of about 16 markers in each grid cell is needed to ensure an accurate tracking of surfaces undergoing large deformations.

수많은 성공에도 불구하고 MAC 방법은 필요한 수의 마커 입자를 수용하기 위해 상당한 메모리와 CPU 시간이 필요하기 때문에 주로 2 차원 시뮬레이션에 사용되었습니다. 일반적으로 큰 변형을 겪는 표면의 정확한 추적을 보장하려면 각 그리드 셀에 평균 약 16 개의 마커가 필요합니다.

Another limitation of marker particles is that they don’t do a very good job of following flow processes in regions involving converging/diverging flows. Markers are usually interpreted as tracking the centroids of small fluid elements. However, when those fluid elements get pulled into long convoluted strands, the markers may no longer be good indicators of the fluid configuration. This can be seen, for example, at flow stagnation points where markers pile up in one direction, but are drawn apart in a perpendicular direction. If they are pulled apart enough (i.e., further than one grid cell width) unphysical voids may develop in the flow.

마커 입자의 또 다른 한계는 수렴 / 발산 흐름이 포함된 영역에서 흐름 프로세스를 따라가는 작업을 잘 수행하지 못한다는 것입니다. 마커는 일반적으로 작은 유체 요소의 중심을 추적하는 것으로 해석됩니다. 그러나 이러한 유체 요소가 길고 복잡한 가닥으로 당겨지면 마커가 더 이상 유체 구성의 좋은 지표가 될 수 없습니다. 예를 들어 마커가 한 방향으로 쌓여 있지만 수직 방향으로 떨어져 있는 흐름 정체 지점에서 볼 수 있습니다. 충분히 분리되면 (즉, 하나의 그리드 셀 너비 이상) 비 물리적 공극이 흐름에서 발생할 수 있습니다.

Surface Marker Method

One way to limit the memory and CPU time consumption of markers is to keep marker particles only on surfaces and not in the interior of fluid regions. Of course, this removes the volume tracking property of the MAC method and requires additional logic to determine when and how surfaces break apart or coalesce.

표면 마커 법

마커의 메모리 및 CPU 시간의 소비를 제한하는 방법 중 하나는 마커 입자를 유체 영역의 내부가 아니라 표면에만 보존하는 것입니다.  물론 이는 MAC 법의 체적 추적 특성이 배제되기 때문에 표면이 분할 또는 합체하는 방식과 시기를 특정하기위한 논리를 추가해야합니다.

In two dimensions the marker particles on a surface can be arranged in a linear order along the surface. This arrangement introduces several advantages, such as being able to maintain a uniform particle spacing and simplifying the computation of intersections between different surfaces. Surface markers also provide a convenient way to locate the surface within a grid cell for the application of boundary conditions.

2 차원의 경우 표면 마커 입자는 표면을 따라 선형으로 배치 할 수 있습니다.  이 배열은 입자의 간격을 균일하게 유지할 수있는 별도의 표면이 교차하는 부분의 계산이 쉽다는 등 몇 가지 장점이 있습니다.  또한 표면 마커를 사용하여 경계 조건을 적용하면 격자 셀의 표면을 간단한 방법으로 찾을 수 있습니다.

Unfortunately, in three-dimensions there is no simple way to order particles on surfaces, and this leads to a major failing of the surface marker technique. Regions may exist where surfaces are expanding and no markers fill the space. Without markers the configuration of the surface is unknown, consequently there is no way to add markers. Reference 1975 contains examples that show the advantages and limitations of this method.

불행히도 3 차원에서는 표면에 입자를 정렬하는 간단한 방법이 없으며 이로 인해 표면 마커 기술이 크게 실패합니다. 표면이 확장되고 마커가 공간을 채우지 않는 영역이 존재할 수 있습니다. 마커가 없으면 표면의 구성을 알 수 없으므로 마커를 추가 할 방법이 없습니다.
참고 문헌 1975이 방법의 장점과 한계를 보여주는 예제가 포함되어 있습니다.

Volume-of-Fluid (VOF) Method

The last method to be discussed is based on the concept of a fluid volume fraction. The idea for this approach originated as a way to have the powerful volume-tracking feature of the MAC method without its large memory and CPU costs.

VOF (Volume-of-Fluid) 법

마지막으로 설명하는 방법은 유체 부피 분율의 개념을 기반으로합니다. 이 접근 방식에 대한 아이디어는 대용량 메모리 및 CPU 비용없이 MAC 방식의 강력한 볼륨 추적 기능을 갖는 방법에서 시작되었습니다.

Within each grid cell (control volume) it is customary to retain only one value for each flow quantity (e.g., pressure, velocity, temperature, etc.) For this reason it makes little sense to retain more information for locating a free surface. Following this reasoning, the use of a single quantity, the fluid volume fraction in each grid cell, is consistent with the resolution of the other flow quantities.

각 격자 셀 (제어 체적) 내에서 각 유량 (예 : 압력, 속도, 온도 등)에 대해 하나의 값만 유지하는 것이 일반적입니다. 이러한 이유로 자유 표면을 찾기 위해 더 많은 정보를 유지하는 것은 거의 의미가 없습니다. 이러한 추론에 따라 각 격자 셀의 유체 부피 분율인 단일 수량의 사용은 다른 유량의 해상도와 일치합니다.

If we know the amount of fluid in each cell it is possible to locate surfaces, as well as determine surface slopes and surface curvatures. Surfaces are easy to locate because they lie in cells partially filled with fluid or between cells full of fluid and cells that have no fluid.

각 셀 내의 유체의 양을 알고 있는 경우, 표면의 위치 뿐만 아니라  표면 경사와 표면 곡률을 결정하는 것이 가능합니다.  표면은 유체 가 부분 충전 된 셀 또는 유체가 전체에 충전 된 셀과 유체가 전혀없는 셀 사이에 존재하기 때문에 쉽게 찾을 수 있습니다.

Slopes and curvatures are computed by using the fluid volume fractions in neighboring cells. It is essential to remember that the volume fraction should be a step function, i.e., having a value of either one or zero. Knowing this, the volume fractions in neighboring cells can then be used to locate the position of fluid (and its slope and curvature) within a particular cell.

경사와 곡률은 인접 셀의 유체 체적 점유율을 사용하여 계산됩니다.  체적 점유율은 계단 함수(step function)이어야 합니다, 즉, 값이 1 또는 0 인 것을 기억하는 것이 중요합니다.  이 것을 안다면, 인접 셀의 부피 점유율을 사용하여 특정 셀 내의 유체의 위치 (및 그 경사와 곡률)을 찾을 수 있습니다.

Free-surface boundary conditions must be applied as in the MAC method, i.e., assigning the proper gas pressure (plus equivalent surface tension pressure) as well as determining what velocity components outside the surface should be used to satisfy a zero shear-stress condition at the surface. In practice, it is sometimes simpler to assign velocity gradients instead of velocity components at surfaces.

자유 표면 경계 조건을 MAC 법과 동일하게 적용해야 합니다.  즉, 적절한 기체 압력 (및 대응하는 표면 장력)을 할당하고, 또한 표면에서 제로 전단 응력을 충족 시키려면 표면 외부의 어떤 속도 성분을 사용할 필요가 있는지를 확인합니다.  사실, 표면에서의 속도 성분 대신 속도 구배를 지정하는 것이보다 쉬울 수 있습니다.

Finally, to compute the time evolution of surfaces, a technique is needed to move volume fractions through a grid in such a way that the step-function nature of the distribution is retained. The basic kinematic equation for fluid fractions is similar to that for the height-function method, where F is the fraction of fluid function:

마지막으로, 표면의 시간 변화를 계산하려면 분포의 계단 함수의 성질이 유지되는 방법으로 격자를 통과하고 부피 점유율을 이동하는 방법이 필요합니다.  유체 점유율의 기본적인 운동학방정식은 높이 함수(height-function) 법과 유사합니다.  F는 유체 점유율 함수입니다.

A straightforward numerical approximation cannot be used to model this equation because numerical diffusion and dispersion errors destroy the sharp, step-function nature of the F distribution.

이 방정식을 모델링 할 때 간단한 수치 근사는 사용할 수 없습니다.  수치의 확산과 분산 오류는 F 분포의 명확한 계단 함수(step-function)의 성질이 손상되기 때문입니다.

It is easy to accurately model the solution to this equation in one dimension such that the F distribution retains its zero or one values. Imagine fluid is filling a column of cells from bottom to top. At some instant the fluid interface is in the middle region of a cell whose neighbor below is filled and whose neighbor above is empty. The fluid orientation in the neighboring cells means the interface must be located above the bottom of the cell by an amount equal to the fluid fraction in the cell. Then the computation of how much fluid to move into the empty cell above can be modified to first allow the empty region of the surface-containing cell to fill before transmitting fluid on to the next cell.

F 분포가 0 또는 1의 값을 유지하는 같은 1 차원에서이 방정식의 해를 정확하게 모델링하는 것은 간단합니다.  1 열의 셀에 위에서 아래까지 유체가 충전되는 경우를 상상해보십시오.  어느 순간에 액체 계면은 셀의 중간 영역에 있고, 그 아래쪽의 인접 셀은 충전되어 있고, 상단 인접 셀은 비어 있습니다.  인접 셀 내의 유체의 방향은 계면과 셀의 하단과의 거리가 셀 내의 유체 점유율과 같아야 한다는 것을 의미합니다.  그 다음 먼저 표면을 포함하는 셀의 빈 공간을 충전 한 후 다음 셀로 유체를 보내도록 위쪽의 빈 셀에 이동하는 유체의 양의 계산을 변경할 수 있습니다.

In two or three dimensions a similar procedure of using information from neighboring cells can be used, but it is not possible to be as accurate as in the one-dimensional case. The problem with more than one dimension is that an exact determination of the shape and location of the surface cannot be made. Nevertheless, this technique can be made to work well as evidenced by the large number of successful applications that have been completed using the VOF method. References 1975, 1980, and 1981 should be consulted for the original work on this technique.

2 차원과 3 차원에서 인접 셀의 정보를 사용하는 유사한 절차를 사용할 수 있지만, 1 차원의 경우만큼 정확하게 하는 것은 불가능합니다.  2 차원 이상의 경우의 문제는 표면의 모양과 위치를 정확히 알 수없는 것입니다.  그래도 VOF 법을 사용하여 달성 된 다수의 성공 사례에서 알 수 있듯이 이 방법을 잘 작동시킬 수 있습니다.  이 기법에 관한 초기의 연구 내용은 참고 문헌 1975,1980,1981를 참조하십시오.

The VOF method has lived up to its goal of providing a method that is as powerful as the MAC method without the overhead of that method. Its use of volume tracking as opposed to surface-tracking function means that it is robust enough to handle the breakup and coalescence of fluid masses. Further, because it uses a continuous function it does not suffer from the lack of divisibility that discrete particles exhibit.

VOF 법은 MAC 법만큼 강력한 기술을 오버 헤드없이 제공한다는 목표를 달성 해 왔습니다.  표면 추적이 아닌 부피 추적 기능을 사용하는 것은 유체 질량의 분할과 합체를 처리하는 데 충분한 내구성을 가지고 있다는 것을 의미합니다.  또한 연속 함수를 사용하기 때문에 이산된 입자에서 발생하는 숫자를 나눌 수 없는 문제를 겪지 않게 됩니다.

Variable-Density Approximation to the VOF Method

One feature of the VOF method that requires special treatment is the application of boundary conditions. As a surface moves through a grid, the cells containing fluid continually change, which means that the solution region is also changing. At the free boundaries of this changing region the proper free surface stress conditions must also be applied.

VOF 법의 가변 밀도 근사

VOF 법의 특수 처리가 필요한 기능 중 하나는 경계 조건의 적용입니다.  표면이 격자를 통과하여 이동할 때 유체를 포함하는 셀은 끊임없이 변화합니다.  즉, 계산 영역도 변화하고 있다는 것입니다.  이 변화하고있는 영역의 자유 경계에는 적절한 자유 표면 응력 조건도 적용해야합니다.

Updating the flow region and applying boundary conditions is not a trivial task. For this reason some approximations to the VOF method have been used in which flow is computed in both liquid and gas regions. Typically, this is done by treating the flow as a single fluid having a variable density. The F function is used to define the density. An argument is then made that because the flow equations are solved in both liquid and gas regions there is no need to set interfacial boundary conditions.

유체 영역의 업데이트 및 경계 조건의 적용은 중요한 작업입니다.  따라서 액체와 기체의 두 영역에서 흐름이 계산되는 VOF 법에 약간의 근사가 사용되어 왔습니다.  일반적으로 가변 밀도를 가진 단일 유체로 흐름을 처리함으로써 이루어집니다.  밀도를 정의하려면 F 함수를 사용합니다.  그리고, 흐름 방정식은 액체와 기체의 두 영역에서 계산되기 때문에 계면의 경계 조건을 설정할 필요가 없다는 논증이 이루어집니다.

Unfortunately, this approach does not work very well in practice for two reasons. First, the sensitivity of a gas region to pressure changes is generally much greater than that in liquid regions. This makes it difficult to achieve convergence in the coupled pressure-velocity solution. Sometimes very large CPU times are required with this technique.

공교롭게도 이 방법은 두 가지 이유로 인해 실제로는 그다지 잘 작동하지 않습니다.  하나는 압력의 변화에 대한 기체 영역의 감도가 일반적으로 액체 영역보다 훨씬 큰 것입니다.  따라서 압력 – 속도 결합 해법 수렴을 달성하는 것은 어렵습니다.  이 기술은 필요한 CPU 시간이 매우 커질 수 있습니다.

The second, and more significant, reason is associated with the possibility of a tangential velocity discontinuity at interfaces. Because of their different responses to pressure, gas and liquid velocities at an interface are usually quite different. In the Variable-Density model interfaces are moved with an average velocity, but this often leads to unrealistic movement of the interfaces.

두 번째 더 중요한 이유는 계면에서 접선 속도가 불연속이되는 가능성에 관련이 있습니다.  압력에 대한 반응이 다르기 때문에 계면에서 기체와 액체의 속도는 일반적으로 크게 다릅니다.  가변 밀도 모델은 계면은 평균 속도로 동작하지만, 이는 계면의 움직임이 비현실적으로 되는 경우가 많습니다.

Even though the Variable-Density method is sometimes referred to as a VOF method, because is uses a fraction-of-fluid function, this designation is incorrect. For accurately tracking sharp liquid-gas interfaces it is necessary to actually treat the interface as a discontinuity. This means it is necessary to have a technique to define an interface discontinuity, as well as a way to impose the proper boundary conditions at that interface. It is also necessary to use a special numerical method to track interface motions though a grid without destroying its character as a discontinuity.

가변 밀도 방법은 유체 분율 함수를 사용하기 때문에 VOF 방법이라고도하지만 이것은 올바르지 않습니다. 날카로운 액체-가스 인터페이스를 정확하게 추적하려면 인터페이스를 실제로 불연속으로 처리해야합니다. 즉, 인터페이스 불연속성을 정의하는 기술과 해당 인터페이스에서 적절한 경계 조건을 적용하는 방법이 필요합니다. 또한 불연속성으로 특성을 훼손하지 않고 격자를 통해 인터페이스 동작을 추적하기 위해 특수한 수치 방법을 사용해야합니다.

Summary

A brief discussion of the various techniques used to numerically model free surfaces has been given here with some comments about their relative advantages and disadvantages. Readers should not be surprised to learn that there have been numerous variations of these basic techniques proposed over the years. Probably the most successful of the methods is the VOF technique because of its simplicity and robustness. It is this method, with some refinement, that is used in the FLOW-3D program.

여기에서는 자유 표면을 수치적으로 모델링 할 때 사용하는 다양한 방법에 대해 상대적인 장점과 단점에 대한 설명을 포함하여 쉽게 설명하였습니다.  오랜 세월에 걸쳐 이러한 기본적인 방법이 많이 제안되어 온 것을 알고도 독자 여러분은 놀라지 않을 것입니다.  아마도 가장 성과를 거둔 방법은 간결하고 강력한 VOF 법 입니다.  이 방법에 일부 개량을 더한 것이 현재 FLOW-3D 프로그램에서 사용되고 있습니다.

Attempts to improve the VOF method have centered on better, more accurate, ways to move fluid fractions through a grid. Other developments have attempted to apply the method in connection with body-fitted grids and to employ more than one fluid fraction function in order to model more than one fluid component. A discussion of these developments is beyond the scope of this introduction.

VOF 법의 개선은 더 나은, 더 정확한 방법으로 유체 점유율을 격자를 통과하여 이동하는 것에 중점을 두어 왔습니다.  기타 개발은 물체 적합 격자(body-fitted grids) 관련 기법을 적용하거나 여러 유체 성분을 모델링하기 위해 여러 유체 점유율 함수를 채용하기도 했습니다.  이러한 개발에 대한 논의는 여기에서의 설명 범위를 벗어납니다.

References

1965 Harlow, F.H. and Welch, J.E., Numerical Calculation of Time-Dependent Viscous Incompressible Flow, Phys. Fluids 8, 2182.

1969 Daly, B.J., Numerical Study of the Effect of Surface Tension on Interface Instability, Phys. Fluids 12, 1340.

1970 Hirt, C.W., Cook, J.L. and Butler, T.D., A Lagrangian Method for Calculating the Dynamics of an Incompressible Fluid with Free Surface, J. Comp. Phys. 5, 103.

1971 Nichols, B.D. and Hirt, C.W.,Calculating Three-Dimensional Free Surface Flows in the Vicinity of Submerged and Exposed Structures, J. Comp. Phys. 12, 234.

1974 Hirt, C.W., Amsden, A.A., and Cook, J.L.,An Arbitrary Lagrangian-Eulerian Computing Method for all Flow Speeds, J. Comp. Phys., 14, 227.

1975 Nichols, B.D. and Hirt, C.W., Methods for Calculating Multidimensional, Transient Free Surface Flows Past Bodies, Proc. of the First International Conf. On Num. Ship Hydrodynamics, Gaithersburg, ML, Oct. 20-23.

1980 Nichols, B.D. and Hirt, C.W., Numerical Simulation of BWR Vent-Clearing Hydrodynamics, Nucl. Sci. Eng. 73, 196.

1981 Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comp. Phys. 39, 201.

Particle Model(입자모델)

Lagrangian particle model(라그랑지안 입자 모델)

라그랑지안 입자 모델(Lagrangian particle model)은 서브 그리드(Sub-grid) 모델로 계산 셀보다 작은 속성과 크기가 다른 구형(Spherical) 입자의 움직임을 추적할 수 있는 계산 모델입니다.

해석 사례

  • Aeration tank modelling(산기 탱크 모델링)
  • Bubble diffuser system(버블디퓨저 시스템)
  • Drug delivery etc.

Particle options

  • Marker particles – Massless
  • Mass particles – Solid spheres
  • Fluid particles – Droplets of fluid
  • Gas particles – Bubbles of gas

가정 및 한계(Assumptions & Limitations)

  • 입자크기(Particle size) << 격자크기(Mesh size)
  • 입자간의 상호작용을 고려하지 않습니다.
  • 입자 갯수에 제한

Marker Particles(마커 입자)

마커 입자(Marker particles)는 흐름(Flow)에 영향을 미치지 않고 주변 유체의 속도에 따라 움직이지 않는 질량이 없는 상태의 입자입니다. 그러므로, 유체 분자의 시각화로 간주될 수 있습니다.

계산영역에 마커 입자(Marker particles)를 적용함으로써, 개별 유체 분자가 따르는 경로(Paths)를 시각화할 수 있습니다.

Mass Particles(질량 입자)

질량 입자(Mass particles)는 특정 직경과 밀도를 가진 고체 구체(Spheres)로 고려됩니다. 따라서, 질량 입자(Mass particles)는 계산 영역에서 현탁된 고체(Suspended solids)의 운동을 모델링하기 위해 사용됩니다.

Fluid particles(유체 입자)

유체 입자(Fluid particles)는 유체#1의 액적(Droplets of Fluid#1)으로 생각할 수 있습니다. 유체 입자(Fluid particles)는 유체 스프레이(Fluid sprays), 적층 제조(additive manufacturing), 용접(Welding) 등과 같은 계산 셀보다 작은 모델링 유체 부피를 포함하는 수많은 시뮬레이션에 사용될 수 있습니다.

Gas particles(가스 입자)

가스 입자(Gas particles)는 가스의 구형(Spherical) 버블과 유체, 공극(Void) 및 고체 물체와의 상호 작용을 시뮬레이션하는데 사용됩니다.

FLOW-3D의 활용 및 설계 적용 사례 (5)

항공우주 분야의 활용

FLOW-3D를 활용한 항공우주 분야의 주요한 사례는 슬로싱(sloshing)에 의한 유체의 유동 영향을 평가하는 해석과 기상(gas phase) 유체에 대한 아음속 및 초음속 유동 해석으로 크게 나눌 수 있다.

슬로싱 유동 해석
슬로싱(sloshing)은 탱크 내부에 적재된 유체가 외부의 가진에 의하여 발생하는 유동 현상이다. 이는 흔히 볼 수 있는 컵 내부 물의 유동부터 항공기 및 선박, 우주선의 연료탱크 내부 유동까지 다양한 분야에서 나타나는 유동 현상이다. 이러한 슬로싱의 영향은 유체와 탱크의 상호 작용으로 충격 압력이 발생하게 되며, 슬로싱에 의한 충격이 계속 반복되면서 탱크 내부에 피로로 인한 균열(crack)로 탱크의 파괴를 초래할 수 있다.
그 동안 슬로싱 현상을 연구하기 위해 많은 실험과 수치 해석이 수행되어 왔다. 우주 로켓의 연료 탱크와 관련된 슬로싱 유동에 대하여 많은 연구들이 진행된 바 있고, 1980년대 이후에는 LNG 수송선이 증가하면서 선박 내의 슬로싱 유동에 대한 많은 연구가 진행되었다. 실험적인 연구 방법은 많은 실험비용과 시간 및 장비가 요구되기 때문에 이를 대치하기 위하여 많은 수치해석이 시도되어 왔다. 
Faltinsen은 진동하는 2차원 슬로싱 문제에 대하여 수치해석을 하였고, Wu et al은 유한 요소 법을 이용하여 3차원 수치해석을 시도하였다. 자유표면 문제에 대해서 수치적 확산을 줄이기 위하여 Takewaki and Yabe에 의하여 CIP(constrained interpolation profile) 기법이 개발 되었고, Yang and Kim은 2009년 물과 공기의 다상 문제를 해석하는 CCUP(Cip-combined and unified procedure) 기법을 이용하여 슬로싱 문제에 대한 수치해석을 수행하였다. 3차원 열유동 해석 프로그램인 FLOW-3D를 이용한 해석은 2006년 Lee et el.에 의하여 수행된 바 있다. 
현재까지 슬로싱 현상을 해석하기 위하여 많은 수치기법들이 개발되고 이용되어 왔지만, 슬로싱의 특성상 강한 비선형 자유표면에 대한 정확한 해석에 어려움이 남아있다. 이러한 비선형 슬로싱 문제에 대하여 FLOW-3D를 이용하여 수치해석하였고, 앞서 진행되었던 실험 및 수치해석 연구 결과의 압력 및 자유표면의 형상을 비교하였다.
해석결과와 실험을 비교하기 위하여 해석을 진행하였으며, 탱크의 형상을 <그림 1>에 나타냈다. 이 모델에 대한 실험은 1991년 히타치(Hitachi) 조선 연구소와 대우조선해양에서 수행한 바 있다.


그림 1. 스키매틱 다이어그램(schematic diagram) without baffles, fluid filling 50%

초기에 탱크는 정지상태로부터, 다음 식과 같이 좌우로 병진운동을 하게 된다.

다운로드 : [ 5회_201805_analysis_flow3d ]

작성자 | 민창원_에스티아이C&D 솔루션 사업부 과장,  조애령_에스티아이C&D 솔루션 사업부 차장
이메일 | flow3d@stikorea.co.kr
홈페이지 | www.flow3d.co.kr

출처 : CAD&Graphics 2018년 05월호

No Loss with FAVOR™

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

No Loss with FAVOR™

Mampaey and Xu1 showed how Cartesian grid representations of curved flow channels, using a zigzag approximation for the walls, can result in substantial numerical flow losses. There are two sources for these losses. The first source arises from changes in flow direction at a zigzag in the grid boundary. Each abrupt direction change is accompanied by a small loss in kinetic energy. The second source of flow loss may arise from poor approximations of fluid momentum advection near a zigzag boundary. If the finite-difference algorithm uses velocity data located in solid regions outside the channel, these values generally contribute to a slowing down of the flow, i.e., result in a loss of energy.

FAVOR TM를 사용한 손실 제로

Mampaey 와 Xu (아래 자료 참조)는 벽에 대해 지그재그 근사를 사용하여 곡선 유로를 직교 격자로 나타낸 결과 상당한 수치적 유동 손실이 발생할 수 있음을 보여줍니다.  이 손실에는 두 가지 원인이 있습니다.  첫 번째 원인은 격자 경계의 지그재그 부분에서 흐름의 방향이 변화하는 것입니다.  방향이 급변 할 때마다 운동 에너지는 조금씩 감소합니다.  유동 손실의 두 번째 원인으로 생각되는 것은 지그재그 경계 부근의 유체 운동량 이류(advection)의 근사치가 불충분 한 것입니다.  유로의 외부 고체 영역의 속도 데이터를 유한 차분 알고리즘에서 사용하는 경우 이 값이 유속 저하되는 것은 일반적이며, 그 결과 에너지 손실이 발생합니다.

No loss with FAVOR

Flow Loss Reduction

Since FLOW-3D uses a Cartesian grid, it is reasonable to ask if it too suffers from numerical flow losses. The answer is no, it does not. The Fractional Area-Volume Obstacle Representation, FAVOR™, method used exclusively in FLOW-3D eliminates zigzag direction changes by smoothly blocking out fractional portions of grid cell faces and volumes. FAVOR™ also has a collection of special algorithms for computing interfacial areas, evaluating wall stresses, enhancing numerical stability, and for computing advection along solid boundaries.

유동 손실의 감소

FLOW-3D는 직교 격자를 사용하고 있기 때문에 수치적 유동 손실의 영향에 대한 의문이 나오는 것은 당연합니다.  대답은 ‘노’입니다.  영향은 없습니다.  FLOW-3D에서 독점적으로 사용되는 FAVOR TM (Fractional Area-Volume Obstacle Representation) 법에서는 격자 셀면이나 체적의 세세한 부분을 매끄럽게 블록 분류하여 지그재그 방향 변화를 제거합니다 .  FAVOR TM는 계면 면적 계산, 벽 응력의 평가, 수치 안정성 강화, 고체 경계에 따른 이류의 계산 등을 목적으로 한 일련의 특수한 알고리즘도 포함되어 있습니다.

Energy Conservation Example

A simple demonstration of energy conservation in FLOW-3D is provided by a variation of the Mampaey and Xu experiment. In the figure, we show the lower half of a circular channel with fluid located in the left half. The fluid is initially at rest, but gravity is directed downwards causing the fluid to flow to the right side of the channel. In the absence of flow losses, the fluid should reach the same height on the right side as it started from on the left side.

에너지 보존의 예

FLOW-3D의 에너지 절약에 대한 부분을 Mampaey 와 Xu 의 실험을 응용하여 쉽게 보여줍니다.  그림은 원형 수로의 하단에서 왼쪽에 유체가 배치되어있는 모습을 보여줍니다.  이 유체는 처음에는 정지하고 있습니다 만, 아래로 중력이 걸려 있기 때문에 유체는 수로의 오른쪽으로 흐릅니다.  유동 손실이 없는 경우 이 유체는 오른쪽으로 흐를 때 왼쪽에서 첫 번째 상태와 같은 높이에 도달해야합니다.

FLOW-3D simulations of this problem show a realistic sloshing distortion of the free surface (figure above) and the center of mass of the fluid rises to nearly its initial height on the right side of the channel indicating little flow loss. This result is all the more remarkable considering the coarse gridding.

이 문제를 FLOW-3D로 시뮬레이션하면 자유 표면의 리얼한 슬로싱 왜곡은 있지만 (위 그림 참조) 유체의 질량 중심은 수로의 오른쪽에서 처음과 거의 같은 높이까지 상승하고 유동 손실이 거의없는 것을 보여줍니다.  격자가 거친 것을 고려하면이 결과는 더욱 주목할만 합니다.

Reference

Mampaey, F. and Xu, Zhi-An, Simulation and Experimental Validation of Mould Filling, Proc. Modeling of Casting, Welding and Advanced Solidification Processes VII, London, September 10-12, p.3 (1995).

Sloshing & Slamming

Sloshing & Slamming

가속도 및 LNG 선 등의 글로벌 항해 선박 안에서 발생하는 내부 슬로싱으로 인해 발생하는 하중은 선박의 안전 설계에 매우 중요한 요소입니다. 선박들은 파 슬로싱 같은 중요한 내부 강제력을 경험할 수 있습니다. 여기에서 화물칸 탱크는 컨테이너 시스템에서 추가적인 하중을 경험하게 됩니다. FLOW-3D의 비 관성 기준 프레임 모델(Non-Inertial Reference Frame model )은 복잡한 운동 파라미터를 정확하게 용기 내의 액체의 움직임을 추적할 수 있도록 사용되어 집니다.

FLOW-3D’s TruVOF 접근 방식은“Green water” (hull over-topping 과 wave spray로 인해 선체를 덮은 물) 뿐 아니라 Slamming analysis같은 현상들에게 적절한 답을 줄 수 있습니다.

FLOW-3D accurately predicts liquid cargo and propellant motion in fuel tanks. Simulation courtesy of Bureau Veritas.