Temperature contours& velocity vectors just after spray off

Cryo H2 저장에 대한 NASA의 관점

DOE Hydrogen Storage Workshop
Marriott Crystal Gateway
Arlington, VA
February 15, 2011
David J. Chato
NASA Glenn Research Center
Michael P. Doherty
NASA Glenn Research Center

Objectives

Purposes of this Presentation
• To show the role of Cryogenics in NASA prior missions
• To show recent NASA accomplishments in cryogenic fluid management technology
• To highlight the importance of long term cryogenic storage to future NASA missions (especially Human Space flight)

What is Cryogenic Fluid Management?

The Cartoon Guide to Cryogenic Fluid Management Illustrating Key Concepts in Iconic Form

GRC Cryogenic Fluid Management Accomplishments

Baseline CFD Models Validated Against K-Site, MHTB, and S-IVB Data

Objective:
Perform model development and validation of the baseline computational fluid
dynamics (CFD) codes Flow-3D (with point source spray model) and Fluent (with
lumped-ullage model) for three self-pressurization experiments and one set of spray bar
thermodynamic vent system (TVS) experiments. Accuracy of CFD codes assessed by
comparing experimental data and CFD predictions for ullage pressure versus time.

Key Accomplishment/Deliverable/Milestone:
• Develop lumped-ullage model (non-moving zero-thickness interface) enabling
reduced simulations times compared to Flow-3D, but with limitations on accuracy and
applicability to situations with significant interface movement.
• Lumped-ullage with spray model development completed, but not tested and
validated due to loss of key researcher in June 2009. New person identified to
complete this work by end of FY10. (Updated milestone report will be issued).

Flow-3D Volume of Fluid (VOF) and Fluent lumped-ullage models
validated against 2 ground-based and 1 flight experiment for LH2 selfpressurization with relative error in ullage pressure generally within 5%,
reaching 8-12% at higher liquid fill levels, and up to 18% for the Fluent
lumped-ullage simulations of the flight test (S-IVB AS 203)
• Flow-3D point source spray model developed and validated against
MHTB LH2 spray bar pressure control 1g experiment with ullage
pressure errors up to 26% for pressure rise and 47% for pressure decay

Significance:
• Two CFD models have been developed with errors quantified for selfpressurization and pressure control of cryogenic storage tanks.
• Baseline CFD models are now available Exploration mission
applications (including in-space low gravity applications) and
design/post-analysis of current CFM experimental work. Applications to
Altair and EDS tanks have already occurred and/or are underway.

Temperature contours& velocity
vectors just after spray off
Temperature contours& velocity vectors just after spray off
Flow-3D results: MHTB LH2 1g test, 50% fill
Flow-3D results: MHTB LH2 1g test, 50% fill