Figure 1.2: Left panel: 3D CAD drawing of a printhead prototype showing (a) the melting unit, (b) the filter units, (c) the reservoir, (d) the static pressure hose, (e) the central part, and (f) the electronic driving supply. Image retrieved from [8]. Right panel: A schematic showing a single nozzle uint in the central part (e) of the printhead shown in the left panel.

Lattice Boltzmann method for contact line dynamics

접촉선 역학을 위한 Lattice Boltzmann 방법

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties, in het openbaar te verdedigen
op woensdag 7 mei 2014 om 16:00 uur

Introduction

움직이는 접촉선은 본질적으로 어디에나 존재하며, 표면에 미끄러지는 물방울은 우리가 일상에서 만나는 일반적인 예입니다. 유체 역학의 접촉선은 일반적으로 액체, 고체 및 주변 공기/증기 사이의 공통 경계라고합니다.

최근 미세 유체 공학의 발전으로 인해 접촉 라인의 역학을 제어하는 힘과 흐름 조건에 대한 근본적인 이해와 기술에 대한 많은 요구가 제기되었습니다. 이 논문은 접촉선의 물리학, 분석 및 수치 모델링 및 고무적인 산업 기하학과 관련된 측면을 포함합니다.

동기를 부여하는 산업 응용 분야는 이머전 리소그래피 (ASML)와 잉크젯 노즐 (Océ)의 프린트 헤드입니다. 이 두 가지 문제는 몇 가지 특징적인 길이 및 시간 척도, 고도로 구부러진 유체 인터페이스, 다상 흐름 및 복잡한 경계 조건을 포함하므로 분석 및 수치 연구가 어렵습니다.

포토 리소그래피는 서브 마이크론 정확도로 마스크에서 실리콘 웨이퍼로 패턴을 전송할 수 있는 복잡한 절차입니다 [1]. 포토 리소그래피 공정의 핵심 단계 중 하나는 고해상도 광학 시스템을 사용하여 실리콘 웨이퍼에 코팅 된 포토 레지스트를 DUV (심 자외선) 빛으로 노출시키는 것입니다. 광학 시스템을 사용하여 웨이퍼에 마스킹 할 수 있는 가장 작은 특징 또는 임계 치수 CD는 Rayleigh 기준으로 결정됩니다.

여기서 NA는 광학 시스템의 개구 수를 나타내고, λ는 사용 된 빛의 파장이고 k는 공정 종속 상수입니다. 광학 분야에서 광학 시스템의 개구 수 NA = n sin α는 시스템이 빛을 받아들이거나 방출 할 수 있는 각도 범위를 특성화하는 무차원 숫자입니다.

여기서 α는 렌즈의 수용 각도입니다 (0 < α <π / 2) 및 n은 렌즈와 포토 레지스트 사이의 매질의 굴절률입니다. CD의 가치가 감소하면 전자 장치가 더 작고 빨라집니다. 식에 의해 주어진 레일리 기준에 따르면. (1.1), 더 작은 CD 값은 k 또는 λ를 줄이거 나 NA를 늘림으로써 얻을 수 있습니다. 현재 KrF 및 ArF 엑시머 레이저의 경우 빛의 파장은 각각 최대 280nm 및 193nm까지 감소 될 수 있습니다 [1]. k는 분해능 향상 기술을 사용하여 0.4까지 감소 된 공정 의존 상수입니다 [2 ]. 개구 수는 sin α 또는 n을 증가시켜 증가시킬 수 있습니다.

sin α에 대한 실제 한계는 0.93으로, 이론적 한계 | sin α |에 매우 가깝습니다. ≤ 1. n을 늘리는 것이 이머전 리소그래피 사용의 기본 아이디어입니다. Immersion lithography는 렌즈와 포토 레지스트 사이의 에어 갭이 물로 대체되는 포토 리소그래피 기법입니다 (그림 1.1 (왼쪽 패널) 참조). 침지 리소그래피에 사용되는 물은 193nm 파장에 대해 1.44의 굴절률을 가진 고도로 정제 된 탈 이온수입니다 [3]. 이 굴절률 값은 분해 가능한 피처 크기의 해상도를 약 30 % 정도 증가시킵니다 [3].

이 방법은 훨씬 더 비싼 리소그래피 기술 [4]로 큰 변화를 가져 오지 않아도 된다는 장점을 가지고 더 작은 피처 크기를 달성하는 저렴한 방법입니다. 물이 웨이퍼의 포토 레지스트와 직접 접촉하기 때문에 이머전 리소그래피 기술은 주로 렌즈와 포토 레지스트의 오염 가능성과 관련된 몇 가지 문제를 야기합니다.

특히 웨이퍼 플레이트가 렌즈에 비해 Up 속도로 움직일 때 액체-공기-고체 접촉 라인도 움직입니다 (그림 1.1 (오른쪽 패널) 참조). 특정 최소 속도를 넘어 서면 전진 및 후퇴 접촉 선 (그림 1.1, 오른쪽 패널 참조)이 불안정 해지고 각각 공기를 동반하거나 액체 필름을 웨이퍼로 끌 수 있습니다 [5].

공기와 액체 필름은 결국 기포 나 액체 방울로 부서져서 리소그래피 공정에 부정적인 영향을 미칩니다. 이 논문에서 우리는 플레이트의 속도, 웨이퍼의 습윤 특성 및 주변 공기의 점도에 따라 전진 및 후퇴하는 접촉 라인의 안정성 연구에 기여했습니다.

1.1.2 Drop-on-demand inkjet printer

최신 잉크젯 인쇄 기술은 CIJ (연속 잉크젯) 및 DOD (주문형 드롭) 잉크젯의 두 가지 주요 유형으로 나눌 수 있습니다. CIJ 프린터에서 미세 노즐에서 나오는 액체 분사는 RP (Rayleigh-Plateau) 불안정성으로 인해 물방울로 분해됩니다. 이 RP 불안정성은 액체의 흐름을 정확하게 제어 할 수있는 음향 변동을 생성하는 압전 결정에 의해 유발되어 일정한 간격으로 물방울로 분해됩니다 [7].

DOD 잉크젯 프린터는 작동 원리에 따라 두 가지 범주로 더 나눌 수 있습니다 [8]. 여기서는 압전 잉크젯 (PIJ) 프린터에만 중점을 둡니다. PIJ 프린터에서 낙하 형성은 압전 소자에 의해 생성 된 압력 파에 의해 발생합니다. PIJ 프린터의 프린트 헤드 개략도가 그림 1.2에 나와 있습니다.

PIJ 프린터는 CIJ 프린터에 비해 상대적으로 느리지 만 인쇄 품질이 훨씬 더 높습니다 [7]. 프린터의 품질은 일반적으로 평방 인치당 도트 수 (dpi)로 측정되며 최신 응용 프로그램에는 더 작은 물방울 (높은 dpi)과 더 나은 정확도가 필요합니다. 방울의 정확도와 크기에 영향을 미치는 여러 요인 중에서 노즐, 노즐 플레이트의 젖음성 및 방울 형성 ​​빈도 fDOD가 중요한 역할을합니다 [8].

좋은 방울 형성을 위해 접촉 라인의 위치는 노즐 내에서 정밀하게 제어되어야 합니다. 이 논문에서는 PIJ 프린터에서 드롭 형성의 일부 측면에만 중점을 둡니다. 우리의 연구는 노즐 습윤성과 DOD 주파수가 방울 형성 ​​과정에 미치는 영향을 연구 할 수 있는 수치 도구의 개발을 목표로 합니다.

Figure 1.2: Left panel: 3D CAD drawing of a printhead prototype showing (a) the melting unit, (b) the filter units, (c) the reservoir, (d) the static pressure hose, (e) the central part, and (f) the electronic driving supply. Image retrieved from [8]. Right panel: A schematic showing a single nozzle uint in the central part (e) of the printhead shown in the left panel.
Figure 1.2: Left panel: 3D CAD drawing of a printhead prototype showing (a) the melting unit, (b) the filter units, (c) the reservoir, (d) the static pressure hose, (e) the central part, and (f) the electronic driving supply. Image retrieved from [8]. Right panel: A schematic showing a single nozzle uint in the central part (e) of the printhead shown in the left panel.
Figure 2.2: The liquid-vapor interface at the microscopic length scale obtained from a molecular dynamics (MD) simulation using Lennard-Jones potential
Figure 2.2: The liquid-vapor interface at the microscopic length scale obtained from a molecular dynamics (MD) simulation using Lennard-Jones potential. The vertical axis is in units of the molecular diameter σ and the stress shown in panel (c) is measured in /σ3 . Here,  is the energy scale corresponding to the intermolecular forces. (a) Snapshot of the liquid-vapor interface in the MD simulation. The red dotted line divides the system in two parts: Left and right. (b) Time-averaged normalized density profile ρ ∗ (z) across the interface. (c) Tangential force per unit area exerted by the left part on the right part of the system. The plot shows the difference between the normal and the tangential components of stress tensor: Π(z) = σ n − σ t . Images reproduced from [16].
Figure 2.3: Left panel: Water drops on a glass substrate
Figure 2.3: Left panel: Water drops on a glass substrate (Image source: http: // way2science. com/ molecular-theory-of-surface-tension).The red dotted line in the figure shows the position of the contact line. The shape of the big drops is affected by the force due to gravity. Right panel: Schematics of a liquid drop on a smooth non-deformable solid surface. The figure shows the contact angle, θe, in thermodynamic equilibrium.
Figure 6.1: Left panel: schematic of a single nozzle unit in the printhead
Figure 6.1: Left panel: schematic of a single nozzle unit in the printhead. Right panel: schematic of the channel-nozzle section of the printhead. The axisymmetric channel-nozzle section (right panel) is the simulation domain for our LB simulation (R = Rc).
Figure 2: Computational domain and boundary conditions for the two-dimensional flow problem

3-D transient simulation of viscoelastic coating flows

점탄성 코팅 흐름의 3-D 과도 시뮬레이션

James M. Brethour
Flow Science, Inc.
Santa Fe, New Mexico USA 87505
Presented at the 13th International Coating Science and Technology Symposium, September 10-
13, 2006, Denver, Colorado1

일시적인 프로세스의 3 차원 시뮬레이션은 자유 표면 이동 중에 왜곡을 방지하기 위해 시뮬레이션 중에 업데이트 해야 하는 복잡한 메시를 생성하기 때문에 일반적으로 사용자와 컴퓨터 모두에게 매우 어렵고 지루합니다.

고정된 규칙적인 메시를 통해 유체 운동을 추적하는 Eulerian 기술을 사용하면 이러한 어려움이 제거됩니다. 이러한 방식으로, 큰 유체 변형과 심지어 분열을 계산할 수 있습니다.

이 작업에 사용된 계산 소프트웨어인 FLOW-3D® [1]는 지속적으로 변화하는 유체 영역의 자유 표면을 추적하기 위해 Volume-of-Fluid 기반 기술의 독창적이고 진정한 형태 인 TruVOF®를 사용합니다.

이 모델에 추가 된 것은 점탄성 흐름의 시뮬레이션을 가능하게 하는 사용자 정의입니다. 점탄성 모델은 형태 텐서 [2]를 사용하여 각 유체 요소의 변형 및 회전 이력을 추적합니다. 이러한 계산은 이미 흐름 모델에 존재하는 질량 보존 및 운동량 방정식과 함께 해결됩니다. 필요한 추가 매개 변수는 탄성 계수와 이완 시간입니다.

계산 결과는 슬롯 코팅 [3]에서 하류 접촉 라인이 불안정해질 때까지 코팅액의 공급이 점차 감소하는 저 유량 한계의 실험 결과와 비교됩니다. 계산 결과는 모세관 수의 변화와 유체의 탄성 모두에 대한 실험과 잘 연관되어 있습니다.

Figure 1: Two-dimensional slice of slot coating process; in the experiments, the coating gap was maintained at 100 μm, the slot gap was 125 μm, and the vacuum pressure and web speed were continously varied.
Figure 1: Two-dimensional slice of slot coating process; in the experiments, the coating gap was maintained at 100 μm, the slot gap was 125 μm, and the vacuum pressure and web speed were continously varied.
Figure 2: Computational domain and boundary conditions for the two-dimensional flow problem
Figure 2: Computational domain and boundary conditions for the two-dimensional flow problem
Figure 3: Plot of low flow limits in slot coating as a function of capillary number and fluid elasticity. The solid markers indicate simulation results while the open markers indicate experimental results [3]. The lines represent best-fit power-law curves.
Figure 3: Plot of low flow limits in slot coating as a function of capillary number and fluid elasticity. The solid markers indicate simulation results while the open markers indicate experimental results [3]. The lines represent best-fit power-law curves.
Fig. 3. Nylon 11 impact sequence onto a preheated substrate

Impact Modeling of Thermally Sprayed Polymer Particles

Ivosevic, M., Cairncross, R. A., Knight, R., Philadelphia / USA

열 스프레이는 전통적으로 금속, 카바이드 및 세라믹 코팅을 증착하는 데 사용되어 왔지만 최근에는 HVOF (High Velocity Oxy-Fuel) 열 스프레이 공정의 높은 운동 에너지로 인해 용융 점도가 높은 폴리머의 무용제 처리도 가능하다는 사실이 밝혀졌습니다. , 유해하고 휘발성 유기 용매가 필요하지 않습니다. 이 작업의 주된 목표는 지식 기반을 개발하고 HVOF 연소 스프레이 공정에 의해 분사되는 폴리머 입자의 충격 거동에 대한 질적 이해를 개선하는 것이 었습니다. 고분자 입자의 HVOF 분사 중 입자 가속, 가열 및 충격 변형의 수치 모델이 개발되었습니다. Volume-of-Fluid (VoF) 전산 유체 역학 패키지 인 Flow3D®는 입자가 강철 기판과 충돌하는 동안 유체 역학 및 열 전달을 모델링하는 데 사용되었습니다. 입자 가속 및 열 전달 모델을 사용하여 예측 된 방사형 온도 프로파일은 저온, 고점도 코어 및 고온, 저점도 표면을 가진 폴리머 입자를 시뮬레이션하기 위해 온도 의존 점도 모델과 함께 Flow3D®의 초기 조건으로 사용되었습니다. 이 접근법은 얇은 디스크 내에서 크고 거의 반구형 인 코어를 나타내는 변형 된 입자를 예측했으며 광학 현미경을 사용하여 만든 열 스프레이 스 플랫의 실험 관찰과 일치했습니다.

폴리머 증착에 열 분무 공정을 사용하는 주요 이점은 다음과 같습니다. (i) 휘발성 유기 화합물 (VOCs)을 사용하지 않는 무용제 코팅; (ii) 거의 모든 환경 조건에서 큰 물체를 코팅 할 수있는 능력; (iii) 용융 점도가 높은 폴리머 코팅을 적용하는 능력; 및 (iv) 일반적으로 정전기 분말 코팅 및 용제 기반 페인트에 필요한 오븐 건조 또는 경화와 같은 증착 후 처리없이 “즉시 사용 가능한”코팅을 생산할 수있는 능력. 이러한 공정에 비해 주요 단점은 다음과 같습니다. (i) 낮은 증착 효율, (ii) 낮은 품질의 표면 마감 및 (iii) 높은 공정 복잡성 (종종 폴리머 용융 및 분해 온도에 의해 정의되는 좁은 공정 창). 폴리머 증착에 세 가지 열 스프레이 공정이 사용 된 것으로 알려졌습니다 [1].

  • 기존의 화염 분사.
  • HVOF 연소 스프레이.
  • 플라즈마 스프레이.

HVOF 및 플라즈마 스프레이 공정에 의해 분사되는 폴리머의 수는 제한되어 있으며 HVOF 및 플라즈마 스프레이 폴리머 코팅의 상업적 응용은 아직 개발 단계에 있습니다 [1]. 폴리머의 HVOF 스프레이는 화염 스프레이 [최대 ~ 100m / s]에 비해 상당히 높은 입자 속도 [최대 1,000m / s]로 인해 주로 주목을 받았습니다. 이는 특히 고 분자량 폴리머 및 높은 (> 5 vol. %) 세라믹 강화 함량을 갖는 폴리머 / 세라믹 복합재를 포함하여 용융 점도가 높은 코팅의 증착에있어 중요한 이점입니다.

Fig. 1. Nylon 11 splats deposited onto a room temperature glass slide.
Fig. 1. Nylon 11 splats deposited onto a room temperature glass slide.
Fig. 2. Nylon 11 splats deposited onto a preheated glass slide (200 °C).
Fig. 2. Nylon 11 splats deposited onto a preheated glass slide (200 °C).
Fig. 3. Nylon 11 impact sequence onto a preheated substrate
Fig. 3. Nylon 11 impact sequence onto a preheated substrate, (I) partially melted particle before impact, (II) “fried-egg” shaped splat, (III) post-deposition flow of a fully molten droplet, (IV) droplet shrinkage during cooling.
Fig. 5. Predicted velocities of Nylon 11 particles in an HVOF jet (total O2 + H2 gas flow rate of 1.86 g/s at Φ = 0.83).
Fig. 5. Predicted velocities of Nylon 11 particles in an HVOF jet (total O2 + H2 gas flow rate of 1.86 g/s at Φ = 0.83).
Fig. 7. Simulated deformation of a Nylon 11 droplet with a radial temperature gradient and temperaturedependent viscosity during impact.
Fig. 7. Simulated deformation of a Nylon 11 droplet with a radial temperature gradient and temperaturedependent viscosity during impact.
Simulation Gallery

Simulation Gallery

Simulation Gallery | 시뮬레이션 갤러리

시뮬레이션 비디오 갤러리에서 FLOW-3D  제품군으로 모델링 할 수 있는 다양한 가능성을 살펴보십시오 .

적층 제조 시뮬레이션 갤러리

FLOW-3D AM 은 레이저 파우더 베드 융합, 바인더 제트 및 직접 에너지 증착과 같은 적층 제조 공정을 시뮬레이션하고 분석합니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대한 매우 정확한 시뮬레이션을 제공합니다. 

Multi-material Laser Powder Bed Fusion | FLOW-3D AM

Micro and meso scale simulations using FLOW-3D AM help us understand the mixing of different materials in the melt pool and the formation of potential defects such as lack of fusion and porosity. In this simulation, the stainless steel and aluminum powders have independently-defined temperature dependent material properties that FLOW-3D AM tracks to accurately capture the melt pool dynamics. Learn more about FLOW-3D AM’s mutiphysics simulation capabilities at https://www.flow3d.com/products/flow3…

Laser Welding Simulation Gallery

FLOW-3D WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하여 공정 최적화를 달성합니다. 더 나은 공정 제어로 다공성, 열 영향 영역을 최소화하고 미세 구조 진화를 제어 할 수 있습니다. 레이저 용접 공정을 정확하게 시뮬레이션하기 위해 FLOW-3D WELD 는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화를 특징으로 합니다.

Keyhole welding simulation | FLOW-3D WELD

물 및 환경 시뮬레이션 갤러리

FLOW-3D 는 물고기 통로, 댐 파손, 배수로, 눈사태, 수력 발전 및 기타 수자원 및 환경 공학 과제 모델링을 포함하여 유압 산업에 대한 많은 응용 분야를 가지고 있습니다. 엔지니어는 수력 발전소의 기존 인프라 용량을 늘리고, 어류 통로, 수두 손실을 최소화하는 흡입구, 포 이베이 설계 및 테일 레이스 흐름을위한 개선 된 설계를 개발하고, 수세 및 퇴적 및 공기 유입을 분석 할 수 있습니다.

금속 주조 시뮬레이션 갤러리

FLOW-3D CAST  에는 캐스팅을 위해 특별히 설계된 광범위하고 강력한 물리적 모델이 포함되어 있습니다. 이러한 특수 모델에는 lost foam casting, non-Newtonian fluids, and die cycling에 대한 알고리즘이 포함됩니다. FLOW-3D CAST 의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계주기를 단축하고 비용을 절감 할 수 있는 통찰력을 제공합니다.

HPDC |Comparison of slow shot profiles and entrained air during a filling simulation |FLOW-3D CAST

Shown is a video comparing two slow shot profiles. The graphs highlight the shot profiles through time and the difference in entrained air between the slow shots. Note the lack of air entrained in shot sleeve with calculated shot profile which yields a much better controlled flow within the shot sleeve.

Coastal & Maritime Applications | FLOW-3D

FLOW-3D는 선박 설계, 슬로싱 다이내믹스, 파동 충격 및 환기 등 연안 및 해양 애플리케이션에 이상적인 소프트웨어입니다. 연안 애플리케이션의 경우 FLOW-3D는 연안 구조물에 심각한 폭풍과 쓰나미 파장의 세부 정보를 정확하게 예측하고 플래시 홍수 및 중요 구조물 홍수 및 손상 분석에 사용됩니다.

Particles | 입자

입자 / Particles

본질적으로 Lagrangian 입자는 복잡한 흐름에서 물리량을 추적하는 독특한 방법을 가지고 있습니다. 이들의 속성은 메시 해상도에 의해 덜 제한되며, 동시에 질량, 운동량 및 열 전달을 통해 유체 및 고체와 함께 매우 세부적이고 사실적으로 상호 작용할 수 있습니다. 후 처리(Post Processing) 측면에서 입자는 시각화를 향상 시킬 수 있습니다.

금속 증착 시뮬레이션으로 시각화된 Lagrangian 입자
FLOW-3D의 Lagrangian 입자 모델

FLOW-3D의 입자 모델은 전기장 효과 및 유체 흐름과의 양방향 커플 링을 포함하여 마커에서 크기와 밀도가 다른 질량 입자로 진화했습니다. 이 모델은 공기 중의 오염 물질, 금속 함유물 및 분리기에서 포착되는 파편을 추적하는데 성공적으로 적용되었습니다. 최근에는 FLOW-3D의 입자 모델이 기능을 확장하기 위한 큰 변화가 있었습니다. 현재 모델에서 입자는 기본 기능에 따라 클래스로 그룹화됩니다.

  • 마커 입자 는 단순한 질량이 없는 마커로 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 액체 입자 는 유체로 만들어지며 모든 유체 속성을 상속합니다.
  • 가스 입자 는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 보이드 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴된 기포를 표시하고 추적하는 것입니다. 이는 다른 응용 분야에서 주조시 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 프로브 입자 는 해당 위치에서 변수 값을 기록하고 보고하는 진단 장치로 사용됩니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드에서 사용자 정의 함수를 통해 사용자 정의를 할 수 있습니다.

각 입자 클래스에는 드래그 계수 및 각 숫자 입자가 물리적 입자의 구름을 나타낼 수 있는 매크로 입자 계수와 같이 클래스의 모든 입자에 적용되는 속성이 있습니다. 사용자 클래스의 입자에는 사용자가 사용자 정의 할 수 있는 세 가지 추가 속성이 있습니다.

다양한 크기와 밀도의 입자를 나타내는 재료 입자 클래스 내에서 여러 종을 정의 할 수 있습니다. 주변 유체와의 열 전달은 모든 재료 입자, 즉 질량, 액체, 가스, 보이드 및 사용자 입자에 적용되는 또 다른 기능입니다.

가스 입자의 압력은 상태 방정식과 온도 변화에 따른 변화를 사용하여 계산됩니다. 기체 입자가 유체가 없는 표면을 벗어나면 기체 영역에 부피를 추가합니다.

액체 입자의 유체는 응고 뿐만 아니라 증발 및 응축으로 인해 상 변화를 겪을 수 있습니다. 응고된 입자는 질량 입자와 유사한 고체 물체로 작동하지만 일단 들어가서 다시 녹으면 유체로 변환됩니다. 또한 2 유체 상 변화 모델이 활성화되면 액체 입자가 기체 내에서 이동하면서 증발 및 응축될 수 있으므로 스프레이 냉각 모델링에 유용합니다.

각 파티클 클래스는 FLOW-3D POST 에서 별도의 개체로 시각화 할 수 있습니다. 속도, 온도, 입자 수명 또는 고유 ID와 같은 개별 입자 속성을 색상에 사용할 수 있습니다. 표시된 입자 크기는 클래스 내에서의 변화를 반영합니다.

Lagrangian 입자를 직접 금속 증착에 적용

직접 금속 증착은 동일한 금속의 분말 스트림이 주입되는 고체 금속 기판에 용융 풀을 형성하기 위해 레이저를 사용하는 적층 제조 공정의 한 유형입니다. 분말 입자가 풀 내부에서 녹고, 풀이 다시 응고되면 일반적으로 두께가 0.2-0.8mm이고 너비가 1-2mm 인 고형화된 금속 층이 형성됩니다.

laser/powder gun 어셈블리가 기판 표면을 계속 스캔하므로 복잡한 모양을 층별로 만들 수 있습니다. 레이저 출력, 속도 및 분말 공급 사이의 적절한 균형은 공정의 성공과 효율성을 위해 중요합니다. 엔지니어의 주요 관심 사항은 다음과 같습니다.

  • 용융 풀의 크기와 모양
  • 금속 흐름 및 그 내부의 냉각 속도
  • 응고된 층의 형상

이 섹션에서 설명하는 시뮬레이션은 이러한 특성을 정확하게 예측합니다. 레이저와 기판의 움직임은 좌표계를 레이저에 부착함으로써 반전됩니다. Inconel 718 합금의 기판은 10mm/s의 일정 속도로 움직입니다. 레이저는 1.8kW의 출력으로 반경 1mm의 원형 열원으로 모델링됩니다. 3 개의 파우더 건은 0.684 g/s의 속도로 레이저 충돌 점에서 고체 금속 입자를 전달합니다. 각 건은 크기가 2 x 2 mm이고 초당 입자 비율은 105 입니다.

입자는 액체 입자 클래스를 사용하여 모델링됩니다. 모든 입자의 직경은 40 μm입니다. 매크로 입자 배율 10은 시뮬레이션에서 입자 수를 줄이는데 사용됩니다. 3백만 개의 물리적 입자를 나타내는 매 초당 시뮬레이션에서 3 x 105 개의 숫자 입자가 생성됩니다. 입자의 초기 온도는 480°C입니다. 즉, 풀에 충돌하기 전에 고체 상태입니다.

시뮬레이션은 분말을 첨가하기 전에 용융 풀이 형성 될 수 있도록, 시작한 후 2초 후에 입자 소스를 활성화하여 10초 동안 실행했습니다. 일단 풀에 들어가면 입자가 녹아 금속으로 전환되어 금속의 부피가 증가하여 궁극적으로 레이저에서 하류의 재응고 금속 층을 형성합니다. 용융 풀 모양은 대칭 평면에 표시됩니다.

새로운 Lagrangian 입자 모델은 FLOW-3D의 현재 기능을 크게 확장 할 뿐만 아니라 금속의 핵심 가스 버블 추적과 같은 향후 확장을 위한 강력한 개발 플랫폼을 만듭니다.

Laser Metal Deposition and Fluid Particles

Laser Metal Deposition and Fluid Particles

FLOW-3D는 신규 모듈을 개발 하면서, 입자 모델의 새로운 입자 클래스 중 하나인 유체 입자의 기능에 초점을 맞출 것입니다. 유체 입자는 증발 및 응고를 포함하여 유체 속성을 본질적으로 부여합니다. 유체 입자가 비교적 간단한 강우 모델링(아래의 애니메이션)에서 복잡한 레이저 증착(용접) 모델링에 이르기까지 다양한 사례가 있을 수 있습니다.

Fluid Particles

FLOW-3D에서 유체 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도로 다양한 유체 입자 종을 설정할 수 있습니다. 또한 유체 입자의 동력학은 확산 계수, 항력 계수, 난류 슈미트 수, 반발 계수 및 응고된 반발 계수와 같은 특성에 의해 제어 될 수 있습니다. 유체 입자는 열적 및 전기적 특성을 지정할 수 있습니다.

사용자는 유체 입자 생성을 위해 여러 소스를 설정할 수 있습니다. 각 소스는 이전에 정의 된 모든 유체 입자 종 또는 일부 유체 입자 종의 혼합을 가질 수 있습니다. 또한 사용자는 무작위 또는 균일한 입자 생성을 선택하고 입자가 소스에서 방출되는 속도를 정의 할 수 있습니다.

Laser Metal Deposition

레이저 금속 증착은 미세한 금속 분말을 함께 융합하여 3차원 금속 부품을 제작하는 3D printing 공정입니다. 레이저 금속 증착은 항공 우주 및 의료 정형 외과 분야에서 다양한 응용 분야에 적용됩니다. 레이저 금속 증착의 개략도는 아래와 같습니다. 전력 강도 분포, 기판의 이동 속도, 차폐 가스 압력 및 용융/응고, 상 변화 및 열전달과 같은 물리적 제어와 같은 제어 매개 변수가 함께 작동하여 레이저 금속 증착을 효과적인 적층 제조 공정으로 만듭니다.

Setting Up Laser Metal Deposition

새로운 유체 입자 모델은 분말 강도 분포를 할당하고 용융 풀 내부 및 주변에서 발생하는 복잡한 입자 – 기판 상호 작용을 포착하기 때문에 레이저 금속 증착 시뮬레이션을 설정하는 데 없어서는 안될 부분입니다.

일반 사용자들은 FLOW-3D에서 시뮬레이션을 쉽게 설정할 수 있다는 것을 알고 있습니다. 레이저 금속 증착 설정의 경우에도 다른 점은 없습니다. IN-718의 물리적 특성, 형상 생성, 입자 분말 강도 분포, 메쉬 생성 및 시뮬레이션 실행과 같은 모든 설정 단계가 간단하고 사용자 친화적입니다.

IN-718의 물성은 기판과 응고된 유체 입자 모두에 사용됩니다. 40 미크론 유체 입자가 무작위 방식으로 초당 500,000의 속도로 입자 영역에서 계산 영역으로 주입됩니다. 입자 빔은 기판의 운동 방향이 변화 될 때마다 순간적으로 정지되어 용융 풀이 급격한 속도 변화에 적응하도록 합니다.

이렇게 하면 기판에서 입자가 반사되는 것을 방지 할 수 있습니다. 기판이 5초마다 회전하기 때문에 입자 생성 속도는 아래 그림과 같이 5 초마다 0으로 떨어집니다. 기판 이동 자체는 표 형식의 속도 데이터를 사용하여 FLOW-3D에 지정됩니다. 입자는 응고된 유체 입자로 주입되어 고온의 용융 풀에 부딪혀 녹아 용융 풀 유체의 일부가 됩니다.


Substrate velocity

입자 모델 외에도 FLOW-3D의 밀도 평가, 열 전달, 표면 장력, 응고 및 점도 모델이 사용됩니다. 보다 구체적으로, 온도에 따른 표면 장력은 증착된 층의 형태에 큰 영향을 주는 Marangoni 효과를 일으킵니다.

레이저를 복제하기 위해 100 % 다공성 구성 요소가 있는 매우 기본적인 설정이 열원으로 사용됩니다. 100 % 다공성은 구성 요소 주변의 유동 역학에 영향을 미치지 않습니다. 오히려 그것은 특정 영역의 기판에 열을 효과적으로 추가합니다. 이 예비 가열 메커니즘을 자회사인 Flow Science Japan이 개발한 고급 레이저 모듈로 교체하는 작업이 현재 본격적으로 진행 중입니다. 가열 다공성 구성 요소는 각각의 층이 동일한 양의 열을 얻도록 각 층이 증착된 후에 약간 위로 이동됩니다.

Results and discussion

아래 애니메이션은 다중 층 증착을 이용한 레이저 금속 증착 공정을 보여줍니다. 기판이 방향을 변경할 때마다 입자 빔 모션이 일시적으로 중지됩니다. 또한 층이 증착됨에 따라 다공성 열원에서 각 층에 불균등 한 열이 추가되어 새로운 층의 모양이 변경됩니다.  각 층을 증착 한 후에 열원을 위로 이동해야 하는 양을 측정하는 것은 현재의 기능에서는 어렵습니다. 다만  준비중인 Flow Science Japan의 레이저 모듈은 이 문제를 해결할 수 있습니다.

전반적으로 입자 모델은 레이저 금속 증착에서 매우 중요한 공정 매개 변수인 분말 강도 분포를 정확하게 재현합니다. 입자 모델에 대한 이러한 수준의 제어 및 정교함은 적층 제조 분야의 사용자와 공급자 모두가 제조 공정을 미세 조정하는 데 도움이 될 것으로 기대합니다.

ANSI/HI 9.8 Pump Intake Design

Hydraulic Jump in a Trench Type Pump Sump

트렌치 형 펌프 배수 조의 유압 점프

이 기사는 Ibis Group의 대표인 Steve Saunders가 기고했습니다.

유압 점프는 개방형 채널 애플리케이션으로 작업하는 사람들에게 친숙한 흐름 현상입니다. Wikipedia는 수력 점프를 “개방형 채널 흐름이 초-임계에서 아임계로 갑자기 변환되는 조건”으로 정의합니다. 점프가 발생하는 위치에서 속도 헤드가 수면 상승으로 거래되는 것을 관찰 할 수 있습니다. 방수로와 같은 흐름 제어 응용 분야에서 수압 점프는 침식을 완화하기 위해 에너지를 소산하는 수단으로 의도적으로 설정됩니다. 또한 레크리에이션 목적으로 사용됩니다. 유압 점프로 생성된 정상 파도는 어떤 바다에서든 수천 마일 떨어진 서핑 공원에서 타는 방법을 서퍼를 훈련시키는데 사용됩니다. 유압 점프의 새로운 응용 분야는 점프의 에너지 전달이 다시 중단되고 정상적인 펌핑 작업 중에 침전된 고형물을 제거하는 자가 세척 트렌치 유형 펌프 섬프(sump)입니다.

트렌치 유형 집수 펌프 시뮬레이션
FLOW-3D는 유압 점프 시뮬레이션에서 신뢰할 수 있는 도구로 입증되었으며 자가 세척 트렌치 유형 펌프 섬프의 설계 및 시연에 사용되었습니다. 트렌치 형 펌프 섬프는 펌프 흡입 라인이 있는 좁은 채널로 구성됩니다. 일반적인 응용 분야는 들어오는 물에서 모래와 자갈을 걸러내는 입구 스크린이 없는 빗물 수집입니다. 아래 회로도에 예가 나와 있습니다.

ANSI/HI 9.8 Pump Intake Design
ANSI/HI 9.8 Pump Intake Design

이 수치는 ANSI / HI 9.8 펌프 흡기 설계 매뉴얼에서 발췌한 것이며 4 개의 펌프가 설치된 섬프의 평면도 및 입면도를 보여줍니다. 유입 암거, 웅덩이 바닥 및 펌프 흡입 바닥을 벗어난 높이의 배열은 이 설계 유형의 자체 청소 기능에 매우 중요합니다. 유입 암거는 최소 작동 웅덩이 수위보다 높은 고도에 있습니다. 또한 유입단의 ​​트렌치 벽은 Ogee 모양입니다. 마지막으로, 트렌치의 맨 끝에 있는 펌프 흡입 벨은 상류 펌프의 절반 높이에 설정됩니다.

Designing for Storm Events

폭풍이 닥친 후 모래와 자갈이 웅덩이 바닥에 쌓입니다. 그들은 점진적인 유압 점프를 통해 다시 매달리고 빠져 나갑니다. 청소 주기 동안 물은 유입 암거를 통해 유입되는 것보다 더 빠른 속도로 트렌치의 맨 끝에 있는 하부 펌프에 의해 배출됩니다.

이 시퀀스 동안 유압 점프는 두 가지 중요한 역할을 수행합니다. 점프 업스트림의 초임계 부분은 섬프 바닥의 모래와 자갈을 휘감아 펌핑이 되도록 다시 일시 중단합니다. 애니메이션의 색상 스케일을 보면 ogee 바닥의 수색 속도가 약 9ft/sec에 가깝다는 것을 알 수 있습니다. 한편, 점프 하류의 계단식 수면 상승은 하단 펌프에 충분한 잠수를 제공하여 섬프가 펌핑 될 때까지 계속 작동합니다.

물이 최소 정상 작동 수준 아래로 떨어지면 유입이 Ogee 모양의 벽 아래로 가속되어 궁극적으로 초임계가됩니다. 섬프의 수위가 바닥에 가까워지면 수압 점프가 형성되고 하단 원단 펌프가 흡입력을 잃을 때까지 섬프를 따라 진행됩니다. 아래 애니메이션에서 이런 일이 일어나는 것을 관찰 할 수 있습니다.

The Magnolia Storm Water Pumping Station

이 자체 세척 섬프 응용 분야에 FLOW-3D를 사용하면 트렌치 형상을 쉽게 조정하여 유압 점프 동작을 최적화 할 수 있습니다. 텍사스 엘파소에있는 Magnolia Storm Water Pumping Station은 FLOW-3D가 설계 및 평가 도구로 사용 된 예입니다. 2016 년에 시운전 된 Magnolia Storm Water Pumping Station은 폭우시 고속도로 10 번의 홍수를 방지하기 위해 건설되었습니다.

Magnolia 스테이션은자가 세척 트렌치 유형 섬프에 3 개의 대형 수직 터빈 펌프로 구성됩니다. 섬프 설계 과정에서 FLOW-3D를 사용하여 몇 가지 기하학적 변형을 평가하여 자체 세척 기능을 통해 펌프 작동 효율성 및 유지 보수 용이성에 이상적인 구성에 도달했습니다.

Figure 2. Diagram. Schematic design of a living snow fence. Source: Wyatt et al., 2012b

Design of Living Barriers to Reduce the Impacts of Snowdrifts on Illinois Freeways

눈사태가 일리노이 고속도로에 미치는 영향을 줄이기 위한 생활장벽 설계

John Petrie, et al. (2020) 일리노이 교통 센터 시리즈 번호 20-019, 연구 보고서 번호 FHWA-ICT-20-012.

Prepared By
John Petrie, Washington State University
Yan Qi, Southern Illinois University Edwardsville
Mark Cornwell, Sustainable Salting Solutions, LLC
Md Al Adib Sarker, Southern Illinois University Edwardsville
Pranesh Biswas, Southern Illinois University Edwardsville
Sen Du, Washington State University
Xianming Shi, Washington State University
Research Report No. FHWA-ICT-20-012

이 프로젝트의 목표는 일리노이 고속도로의 눈사태를 최소화하기 위해 살아있는 눈 울타리(LSF)의 설계와 배치에 대한 권고안을 개발하는 것입니다. 일리노이 고속도로에서 더 효과적이고 효율적인 눈길 및 빙판 조절 운영은 상당한 경제적, 환경적, 사회적 이익을 가져올 수 있습니다.

따라서, 일리노이 고속도로에 대한 수동적이면서도 지속 가능한 눈과 얼음 통제 수단으로서 생활 장벽의 사용을 개선하는 것이 바람직합니다. LSF는 구조용 스노우 펜스에 대한 새로운 대안으로서, 눈 표류에 대한 지속적이고 낮은 유지 보수와 비용 효율적인 솔루션을 제공하므로, 과도한 쟁기, 화학 물질 또는 도로 폐쇄의 필요성을 줄이고 겨울철 도로 안전을 개선합니다.

본 연구 이전에는 스노우 드리프트의 영향을 줄이기 위한 LSF의 현장별 설계에 대한 연구가 부족했으며, 현재의 설계 프로토콜은 반 경험적 가정을 기반으로 하여 LSF의 적절한 배치와 설계를 안내할 수 없었습니다. 이 프로젝트는 다음 접근 방식을 사용하여 수행되었습니다.

먼저, 연구팀은 일리노이주 교통부(IDOT)의 과거 스노우 이벤트 보고서를 조사하여 스노우 드리프트 동안 도로를 개방하는 데 사용되는 인력, 장비 및 자재의 자원 지출 정도를 조사했습니다. 둘째, 연구팀은 다른 북부 주들의 장벽 처리와 정책을 검토했습니다. 여기에는 역사, 설계 프로토콜, 배치 정책, 이점, 과제, 눈 울타리 수치 모델링 등이 포함됩니다. 셋째, 연구팀은 LSF 주변의 눈 표류를 수치적으로 시뮬레이션하기 위해 계산 유체 역학(CFD) 모델을 개발했습니다. 그 뒤를 이어 일리노이 고속도로 시스템에서 선택된 LSF의 현장 테스트와 모델 검증 및 교정이 실시되었습니다.

Figure 2. Diagram. Schematic design of a living snow fence. Source: Wyatt et al., 2012b
Figure 2. Diagram. Schematic design of a living snow fence. Source: Wyatt et al., 2012b
Figure 3. Diagram. Schematic of geometry and flow features for a living snow fence.
Figure 3. Diagram. Schematic of geometry and flow features for a living snow fence.

확립된 모델은 LSF의 배치 및 설계와 권고사항 개발을 지원하기 위해 사용되었습니다. 이 프로젝트는 북부 주에 있는 실무자들의 문헌과 설문 응답 모두를 검토했습니다. 최근 점점 더 많은 교통부(DOT)가 스노우 펜스의 이점을 인식하고 스노우 펜스 프로그램, 특히 LSF를 등록하거나 구현할 계획을 세우고 있습니다.

조사 결과에 따르면 거의 모든 대응 기관들이 특정 조건에 따라 다양한 설계 및 착석 프로토콜을 통해 해당 지역에 스노우 펜스 프로그램을 시작한 것으로 나타났습니다. 효과와 효율성에 영향을 미치는 요소들을 조사하여 설원의 설계방침을 보여주었습니다.

눈 울타리의 높이, 다공성 및 길이는 주요 설계 매개변수이며, 바닥 간격과 바람 방향도 고려해야 합니다. 눈 울타리가 도로에 눈사태가 발생하는 것을 방지하기 위해 좌석 위치를 고려해야 합니다. 구조적 스노우 펜스를 위해 개발된 동일한 설계 및 착석 원칙이 LSF에도 적용됩니다.

그러나 LSF의 높이, 다공성 및 스노우 드리프트 길이는 식물이 성장함에 따라 시간이 지남에 따라 변경되기 때문에 일부 수정이 필요합니다. 적절하게 설계 및 배치될 경우, 눈 울타리는 도로 안전을 개선하고 다른 이점을 제공할 수 있습니다. LSF는 환경 및 토지 소유자에게 더 비용 효과적이고 유익하기 때문에 DOT와 농부 모두에게 선호됩니다.

그러나 좁은 선로설비(ROW)가 있는 지역의 사유지에 설원을 설치할 때 몇 가지 문제가 발생합니다. 눈 울타리가 직면하고 있는 가장 큰 도전은 생산적인 땅에 울타리를 세우기 위한 토지 소유자들과의 합의를 얻는 데 어려움이 있다는 것입니다. 일부 DOT는 농부들을 보상하기 위한 특정 프로그램을 확립하는 데 성공했습니다.

본 연구에서는 IDOT’s의 눈 및 얼음 제거 비용 데이터(지역 및 주 전체, 특히 2017-18년 및 2018-19년 겨울 시즌)를 검토하여 일리노이 주에서 발생하는 눈길에 대처하는 데 사용되는 자원 지출의 범위를 파악했습니다. 겨울철 기상 심각도가 주요 영향 요인이며 해마다 다르지만 2015-16~2018-19년 겨울 동안 겨울철 제설 작업, 제빙 작업, 장비 및 재료 지출은 전반적으로 증가했습니다.

9개 IDOT 지역 중에서 1구역이 동계 운영비 지출이 가장 높았고 2, 3, 4, 6, 5, 8, 7, 9구역(6,403,000~1,2,368,000달러)이 뒤를 이었습니다. IDOT는 2016-17 시즌부터 제설비용 데이터를 별도로 수집하기 시작했습니다. 모든 팀 섹션이 눈길 구간 마일리지 조사에 응답한 것은 아니지만, 응답한 지역의 데이터를 보면 2, 3, 4, 5구역이 다른 지역보다 눈길 구간 비율(30-50%)이 더 높은 것으로 나타났습니다.

이는 겨울 총 제설 및 얼음 제거 비용에 대한 데이터와 일치하며, 제설 비용이 겨울 총 유지관리 비용의 상당 부분을 차지한다는 것을 나타냅니다. 이것은 제설 비용 데이터를 통해 확인되었습니다. 본 연구는 수치 모델을 교정하고 LSF의 효과를 평가하기 위한 데이터를 제공하기 위해 일리노이 주 고속도로 시스템에서 선택된 7개의 LSF에 대한 현장 테스트를 수행했습니다.

활동에는 사이트 선택, 사이트 설정, 사이트 모니터링, 데이터 수집 및 분석이 포함됩니다. 각 사이트에 대해 눈 깊이를 측정하여 눈 축적 패턴을 파악하고 LSF가 눈을 캡처할 가능성을 판단했습니다. 시험 장소는 두 번의 겨울 계절에 걸쳐 모니터링되었고, 몇 번의 눈 이벤트가 매년 겨울에 기록되었습니다.

눈 울타리 현장에 쌓인 눈의 양은 그들의 통제와 비교하기 위해 계산되었습니다. 수집된 데이터를 보면, 일반적으로 눈 울타리 장벽 바로 뒤의 적설량이 더 높았고, 눈 울타리에서 도로까지의 거리가 증가함에 따라 점차 감소했습니다.

적설량 결과는 거의 모든 울타리 부지의 적설량이 그들의 통제량보다 더 높은 것을 보여주었습니다. 과거 연구에서 제시한 바와 같이, 도로로부터 긴 후퇴 거리가 없음에도 불구하고, 일리노이에서 실험된 LSF는 연구 동안 경험했던 온화한 겨울 동안 눈을 날리는 데 효과적이었습니다.

그 장소들의 도로에 많은 양의 눈이 쌓였다는 증거는 없었습니다. 이 결과는 적절한 눈 울타리 후퇴 거리가 지역의 일반적인 겨울 날씨 조건을 고려해야 한다는 것을 나타내며, ROW 내의 눈 울타리는 여전히 기관에 유익할 수 있습니다.

다공성 펜스 주위의 흐름에 대한 일련의 수치 시뮬레이션은 CFD 소프트웨어 FLOW-3D-3D를 사용하여 수행되었습니다. 모델링 접근 방식은 바람 터널에서 수집된 실험실 데이터를 사용하여 균일하지 않은 다공성을 가진 울타리 주위의 흐름을 검증했습니다.

Figure 4. Diagram. (a) Streamlines and (b) velocity vectors in m/s from a CFD simulation demonstrating the recirculation region and reattachment length Lr in a pipe with a sudden expansion. Source: Carrillo et al., 2014
Figure 4. Diagram. (a) Streamlines and (b) velocity vectors in m/s from a CFD simulation demonstrating the recirculation region and reattachment length Lr in a pipe with a sudden expansion. Source: Carrillo et al., 2014

검증 후, 펜스 다공성 모델을 테스트하고 두 줄의 초목으로 구성된 펜스에 대한 행 간격의 영향을 조사하기 위해 수치 접근 방식을 사용했습니다. 시뮬레이션은 평탄한 지형에 대한 평균 풍속과 울타리 다공성 범위에 초점을 맞췄으며, 이러한 시뮬레이션의 결과는 임계 전단 속도를 사용하여 제설 영역을 추정하는 데 사용되었습니다.

지형이 평평하다고 간주할 수 없는 부지의 경우 다른 울타리 구성의 제방에 대해 시뮬레이션이 수행되었습니다. CFD 시뮬레이션은 울타리 특성의 함수로 제설량이 예상되는 지역의 길이를 추정합니다. 이후 시뮬레이션 결과를 사용하여 LSF에 대한 설계 지침을 개발합니다.

이 지침은 평평한 지형에 LSF를 배치하고 경사가 약한 LSF(수평에서 < 15°)에 대해 제시됩니다. 펜스 차질, 바람 특성, 펜스 방향, 펜스 높이 및 다공성 여부를 결정하기 위한 지침이 제공됩니다. 서 있는 옥수수 줄과 같은 여러 줄로 구성된 울타리도 다루어집니다.

Figure 7. Diagram. Diagram of the fence concept used to estimate wind-transported snow. Source: Tabler, 2003
Figure 7. Diagram. Diagram of the fence concept used to estimate wind-transported snow. Source: Tabler, 2003
Figure 8. Diagram. Schematic design of a living snow fence. Source: Wyatt et al. 2012b
Figure 8. Diagram. Schematic design of a living snow fence. Source: Wyatt et al. 2012b

경사가 가파른 제방이 있는 부지의 경우, 기단에는 담장을, 제방에는 담장을 1개 이상 포함하는 지침이 제공됩니다. 설계 절차에서는 현장에서 사용 가능한 ROW를 사용하여 도로에 눈이 쌓이지 않도록 적절한 울타리 특성(예: 높이 및 다공성)을 결정합니다. 담장 특성을 결정하기 위해 사용 가능한 길이를 사용하는 이 방법은 이전의 눈 울타리 설계 절차와 다릅니다.

과거의 절차는 겨울 시즌 동안의 총 설상 운송량을 추정하며, 전체 겨울 시즌 동안 도로에서 멀리 떨어진 곳에 눈을 저장하는 데 필요한 울타리의 특성과 차질을 결정합니다. 이러한 설계는 효과적이었지만, 결과적인 차질은 ROW가 제한된 현장에서는 달성하기가 어려울 수 있습니다.

(1) LSF의 크기를 확장하기 위해 인접한 토지 소유자와의 파트너십을 활성화하기 위한 전략입니다.
(2) ROW의 대체 사용 및 관련 비용 편익 분석입니다.
(3) LSF를 도로 사이트에 구현하는 비용과 편익을 더 잘 정량화합니다.
(4) 눈의 특징, 다양한 눈 운송 방법, 현장 경작 방법 등을 설명합니다.
ROW에 인접한 육상에서의 작업은 눈 침적과 LSF의 효율성에 영향을 미칩니다.
(5) 다양한 LSF를 구현하는 경제적인 방법입니다.
(6) 다양한 식물종이 피침에 어떻게 반응하는지 검토 후 방법을 조사합니다.
LSF의 효과를 극대화하기 위한 복사 절차를 위한 최적의 종입니다.
(7) 다양한 LSF의 성능과 수명에 영향을 미치는 환경적 요인입니다.

Figure 12. Chart. Total blowing snow and ice removal costs per district.
Figure 12. Chart. Total blowing snow and ice removal costs per district.

탠덤 빔 레이저(Tandem laser)에 의한 플럭스리스 브레이징

탠덤 빔 레이저(Tandem laser)에 의한 플럭스리스 브레이징

자료 제공: 오사카대학
자료 제공: FLOW Science Japan

자동차 경량화를 위해 주요 구성 재료인 철강과 비강도가 높은 알루미늄 접합 기술이 요구되고 있습니다. FLOW-3D Weld 에서는 플럭스의 사용을 피하기 위해 주빔에 더해 예열빔을 이용한 탠덤빔에 의한 레이저 브레이징 과정을 검토할 수 있습니다.

탠덤 빔 레이저에 의한 플럭스리스 브레이징
탠덤 빔 레이저에 의한 플럭스리스 브레이징

주빔의 영향을 용융재 초기 온도, 예열빔의 영향을 모재의 온도 분포로 각각 모델화하고, 알루미늄 합금과 아연도금강의 레이저 브레이징 과정에서의 용융재료의 젖음과 유동성을 해석하였습니다. 여기에서는 아연도금강이 ScG270(GA)인 경우와 l170(GI)인 경우를 비교하고 있습니다.

불균일한 온도장에서 FLOW3D의 표면장력 접촉각기능을 통해 누수확대 재현
불균일한 온도장에서 FLOW3D의 표면장력 접촉각기능을 통해 누수확대 재현

GI강 조인트는 GA강 조인트에 비해 용융 밀림, 퍼짐성이 뛰어납니다. FLOW-3D@에 의한 해석 결과도 실험 결과와 잘 일치합니다. 이음매의 차이 이 외에도 주빔/예열빔 출력, 빔 간의 어긋남 거리등의 최적화 설계가 가능합니다.

Figure 2. Ink fraction contours for mesh 1 through 4 (left to right) at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs.

Coupled CFD-Response Surface Method (RSM) Methodology for Optimizing Jettability Operating Conditions

분사성 작동 조건을 최적화하기 위한 결합된 CFD-Response Surface Method(RSM)

Nuno Couto 1, Valter Silva 1,2,* , João Cardoso 2, Leo M. González-Gutiérrez 3 and Antonio Souto-Iglesias 41
INEGI-FEUP, Faculty of Engineering, Porto University, 4200-465 Porto, Portugal;
nunodiniscouto@hotmail.com
2 VALORIZA, Polytechnic Institute of Portalegre, 7300-110 Portalegre, Portugal; jps.cardoso@ipportalegre.pt
3 CEHINAV, DMFPA, ETSIN, Universidad Politécnica de Madrid, 28040 Madrid, Spain; leo.gonzalez@upm.es
4 CEHINAV, DACSON, ETSIN, Universidad Politécnica de Madrid, 28040 Madrid, Spain;
antonio.souto@upm.es

  • Correspondence: valter.silva@ipportalegre.pt; Tel.: +351-245-301-592

소개

물방울 생성에 대한 이해는 여러 산업 응용 분야에서 매우 중요합니다 [ 1 ]. 잉크젯 프린팅 프로세스는 일반적으로 10 ~ 100 μm [ 1 ] 범위의 독특하고 작은 액적 크기를 특징으로 하며 연속적 또는 충동적 흐름을 사용하여 얻을 수 있습니다 (마지막 방식은 주문형 드롭 (DoD)이라고도 함). 잉크젯).

여러 장점 덕분에 DoD 방법은 산업 환경에서 상당한 수용을 얻고 있습니다 [ 2 ].DoD는 복잡한 프로세스이며 유체 속성, 노즐 형상 및 구동 파형 [ 1 , 3 ]의 세 가지 주요 범주로 분류되는 여러 매개 변수에 따라 달라집니다 .그러나 길이와 시간 척도가 모두 마이크로 오더 [ 4 ] 이기 때문에 실험을하기가 어렵습니다 .

결과적으로 실험 설정은 항상 비용이 많이 들고 복잡하며 CFD (전산 유체 역학)와 같은 고급 수치 접근 방식이 엄격한 요구 사항입니다 [ 5 , 6 ]. VOF (volume-of-fluid) 접근 방식은 액체 분해 및 액적 생성에 대한 다상 공정을 시뮬레이션하기위한 적절한 대안으로 밝혀졌으며 과거 연구에서 그대로 사용되었습니다 [ 7 , 8], 인쇄 프로세스의 맥락에서 전자는 여전히 현재 연구의 주제입니다. 

또한 VOF 체계를 사용하면 단일 운동량 방정식 세트를 해결하고 도메인 전체에 걸쳐 각 유체의 체적 분율을 추적하여 명확하게 정의된 인터페이스로 둘 이상의 혼합 불가능한 유체를 효과적으로 시뮬레이션 할 수 있습니다. Feng [ 9 ]는 VOF 접근 방식을 사용하여 일시적인 유체 인터페이스 변형 및 중단을 효과적으로 추적하는 패키지 FLOW-3D를 사용하여 낙하 배출 중 복잡한 유체 역학 프로세스를 시뮬레이션하는 선구자 작업 중 하나를 수행했습니다.

주요 목표는 볼륨 및 속도와 같은 민감한 변수를 더 잘 이해하면서 장치 개발에서 일반적인 설계 규칙을 구현하는 것이 었습니다. 이러한 종류의 공정과 관련된 주요 질문 중 하나는 안정적인 액적 형성을 위한 작동 범위의 정의입니다.

Fromm [ 10 ]은 Reynolds 수와 Weber 수의 제곱근 비율이 2보다 작으면 안정적인 방울을 생성 할 수 없다는 것을 확인했습니다. 이 무차원 값은 나중에 Z 번호로 알려졌으며 분사 가능성 범위 [ 11 ]를 정의합니다 . 문헌에서 분사 가능성을 위한 Z 간격은 1 ~ 10 [ 12 ], 4 ~ 14 [ 13 ] 또는 0.67 ~ 50 [ 14]을 찾을 수 있습니다. 

이것은 Z 값 만으로는 분사 가능성 조건을 나타낼 수 없음을 분명히 의미합니다. 실제로, 다른 속성을 가진 유체는 다른 인쇄 품질을 나타내면서 동일한 Z 값을 나타낼 수 있습니다. 액적 생성 공정과 해당 분사 성은 주로 전체 공정 품질에 큰 영향을 미치는 매개 변수 세트에 의해 결정됩니다. 

토대 메커니즘을 더 잘 이해하려면 확장 된 작동 조건 및 매개 변수 세트를 고려하여 여러 실험 또는 수치 실행을 수행해야 합니다. DoE (design-of-experiment) 접근 방식과 같은 체계적인 접근 방식이 없으면 이것은 달성하기 매우 어려운 작업이 될 수 있습니다. 최적화 문제를 해결하기 위해 반응 표면 방법을 사용하여 처음으로 체계화된 접근 방식이 개발된 Box and Wilson [ 15 ] 의 선구자 기사 이후 ,이 입증된 방법론은 많은 화학 및 산업 공정[ 16 ] 및 기타 관련 학계에 성공적으로 적용되었습니다.

예를 들어 Silva와 Rouboa [ 17 ]는 직접 메탄올 연료 전지의 출력 밀도에 영향을 미치는 관련 매개 변수를 식별하기 위해 반응 표면 방법론 (RSM)을 사용했습니다. 많은 실제 산업 응용 분야에서 실험 연구는 작동 매개 변수를 조절하기 어렵 기 때문에 제한적이지만 주로 설정을 개발하거나 실험을 실행하는 데 드는 비용이 높기 때문입니다. 

따라서 솔루션은 주요 시스템 응답을 시뮬레이션하고 예측할 수 있는 효과적인 수학적 모델의 개발에 의존합니다. DoE와 같은 최적화 방법론을 수치 모델과 결합하면 비용이 많이 들고 시간이 많이 걸리는 실험을 피하고 다양한 입력 조합을 사용하여 최적의 조건을 얻을 수 있습니다 [ 16 ]. 

실바와 루 보아 [ 18] CFD 프레임 워크 하에서 개발 된 2D Eulerian-Eulerian 바이오 매스 가스화 모델에서 얻은 결과를 RSM과 결합하여 다양한 응용 분야에서 합성 가스를 생성하기 위한 최적의 작동 조건을 찾습니다. 

저자는 입력 요인으로 인한 최상의 응답과 최소한의 변동을 모두 보장하는 작동 조건을 찾을 수 있었습니다. Frawley et al. [ 19 ] CFD 및 DoE 기술 (특히 RSM)을 결합하여 파이프의 팔꿈치에서 고체 입자 침식에 대한 다양한 주요 요인의 영향을 조사하여 침식 예측 모델을 개발할 수 있습니다.우리가 아는 한, DoD 잉크젯 프로세스의 개선 및 더 나은 이해에 적용되는 DoE 접근법 (실험적으로 또는 모든 종류의 수치 모델과 결합)을 구현하는 연구는 없습니다. 선도 기업이 이러한 접근 방식을 적용 할 가능성이 있지만 관련 결과는 민감할 수 있으므로 더 넓은 커뮤니티에서 사용할 수 없습니다. 이 사실은 DoD 잉크젯 공정에서 액적 생성에 대한 여러 매개 변수의 영향을 평가하기 위한 이러한 종류의 연구로서 현재 논문의 영향을 증가 시킬 수 있습니다.

CFD 프레임 워크 내에서 VOF 접근 방식을 사용하여 여러 컴퓨터 실험의 설계를 개발하고 RSM을 분석 도구로 사용했습니다. 충분한 수치 정확도와 수용 가능한 시간 계산 시뮬레이션의 균형을 맞추기 위해 메쉬 수렴 연구가 수행되었습니다. 설계 목적을 위해 점도, 표면 장력, 입구 속도 및 노즐 직경이 입력 요인으로 선택되었습니다. 응답은 break-up 시간과 break-up 길이였습니다.

Figure 1. Schematic of the computational domain
Figure 1. Schematic of the computational domain
Figure 2. Ink fraction contours for mesh 1 through 4 (left to right) at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs.
Figure 2. Ink fraction contours for mesh 1 through 4 (left to right) at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs.
Figure 3. Comparison between surface tensions at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 3. Comparison between surface tensions at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 4. Comparison between viscosity values at the following four time steps: (a) 6 μs, (b) 12 μs, (c) 18 μs, and (d) 24 μs.
Figure 4. Comparison between viscosity values at the following four time steps: (a) 6 μs, (b) 12 μs, (c) 18 μs, and (d) 24 μs.
Figure 5. Comparison between different nozzle diameters at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 5. Comparison between different nozzle diameters at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 6. Comparison between different inlet velocities at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 6. Comparison between different inlet velocities at the following four time steps: (a) 6 µs, (b) 12 µs, (c) 18 µs, and (d) 24 µs
Figure 8. Contour response plots for break-up time as a function of (a) surface tension and viscosity, (b) nozzle diameter and viscosity, (c) inlet velocity and viscosity, (d) nozzle diameter and surface tension, (e) inlet velocity and surface tension, and (f) inlet velocity and nozzle diameter.
Figure 8. Contour response plots for break-up time as a function of (a) surface tension and viscosity, (b) nozzle diameter and viscosity, (c) inlet velocity and viscosity, (d) nozzle diameter and surface tension, (e) inlet velocity and surface tension, and (f) inlet velocity and nozzle diameter.
Figure 12. Break-up length as a function of the We–Ca space (obtained from the 25 runs).
Figure 12. Break-up length as a function of the We–Ca space (obtained from the 25 runs).

References

  1. Hutchings, I.M.; Martin, G.D. Inkjet Technology for Digital Fabrication; John Wiley & Sons Ltd.: Hoboken, NJ,
    USA, 2013.
  2. Waasdorp, R.; Heuvel, O.; Versluis, F.; Hajee, B.; GhatKesar, M. Acessing individual 75-micron diameter
    nozzles of a desktop inkjet printer to dispense picoliter droplets on demand. RSC Adv. 2018, 8, 14765.
  3. Zhang, H.; Wang, J.; Lu, G. Numerical investigation of the influence of companion drops on drop-ondemand ink jetting. Appl. Phys. Eng. 2012, 13, 584–595.
  4. Dong, H.; Carr, W. An experimental study of drop-on-demand drop formation. Phys. Fluids 2006, 18,
    072102.
  5. Patel, M.; Pericleous, K.; Cross, M. Numerical Modelling of Circulating Fluidized beds. Int. J. Comput.
  6. Fluid Dyn. 1993, 1, 161–176. [CrossRef]
  7. Zhao, X.; Glenn, C.; Xiao, Z.; Zhang, S. CFD development for macro particle simulations. Int. J. Comput.
  8. Fluid Dyn. 2014, 28, 232–249. [CrossRef]
  9. Hasan, M.N.; Chandy, A.; Choi, J.W. Numerical analysis of post-impact droplet deformation for direct-print.
  10. Eng. Appl. Comput. Fluid Mech. 2015, 9, 543–555. [CrossRef]
  11. Ghafouri-Azar, R.; Mostaghimi, J.; Chandra, S. Numerical study of impact and solidification of a droplet
  12. over a deposited frozen splat. Int. J. Comput. Fluid Dyn. 2004, 18, 133–138. [CrossRef]
  13. Feng, J. A General Fluid Dynamic Analysis of Drop Ejection in Drop-on-Demand Ink Jet Devices. J. Imaging
  14. Sci. Technol. 2002, 46, 398–408.
  15. Fromm, J. Numerical Calculation of the Fluid Dynamics of Drop-on-Demand Jets. IBM J. Res. Dev. 1984, 28,
  16. 322–333. [CrossRef]
  17. Nallan, H.; Sadie, J.; Kitsomboonloha, R.; Volkman, S.; Subramanian, V. Systematic Design of Jettable
  18. Nanoparticle-Based Inkjet Inks: Rheology, Acoustics and Jettability. Langmuir 2014, 30, 13470–13477.
  19. [CrossRef] [PubMed]
  20. Reis, N.; Derby, B. Ink Jet Deposition of Ceramic Suspensions: Modelling and Experiments of Droplet Formation;
  21. Chapter in MRS Online Proceeding Library Archive; Cambridge University Press: Cambridge, UK, 2000;
  22. Volume 624, pp. 117–122.
  23. Jang, D.; Kim, D.; Moon, J. Influence of Fluid Physical Properties on Ink-Jet Printability. Langmuir 2009, 25,
  24. 2629–2635. [CrossRef] [PubMed]
  25. Tai, J.; Gan, H.Y.; Liang, Y.N.; Lok, B.K. Control of Droplet Formation in Inkjet Printing Using Ohnesorge
  26. Number Category: Materials and Processes. In Proceedings of the 10th Electronics Packaging Technology
  27. Conference, EPTC, Singapore, 9–12 December 2008; pp. 761–766.
  28. Box, G.; Wilson, K. On the Experimental Attainment of Optimum Conditions. J. R. Stat. Soc. Ser. B 1951, 13,
  29. 1–45.
  30. Silva, V.; Rouboa, A. Optimizing the gasification operating conditions of forest residues by coupling a
  31. two-stage equilibrium model with a response surface methodology. Fuel Process. Technol. 2014, 122, 163–169.
  32. [CrossRef]
  33. Silva, V.; Rouboa, A. Optimizing the DMFC Operating Conditions using a Response Surface Method.
  34. Appl. Math. Comput. 2012, 218, 6733–6743. [CrossRef]
  35. Silva, V.; Rouboa, A. Combining a 2-D multiphase CFD model with a Response Surface Methodology to
  36. optimize the gasification of Portuguese biomasses. Energy Convers. Manag. 2015, 99, 28–40. [CrossRef]
  37. Frawley, P.; Corish, J.; Niven, A.; Geron, M. Combination of CFD and DOE to analyse solid particle erosion
  38. in elbows. Int. J. Comput. Fluid Dyn. 2009, 23, 411–426. [CrossRef]
  39. Morrison, N.F.; Harlen, O.G. Viscoelasticity in inkjet printing. Rheol. Acta 2010, 49, 619–632. [CrossRef]
  40. ANSYS Inc. ANSYS Fluent Tutorial Guide; Release 15.0; ANSYS Inc.: Canonsburg, PA, USA, November 2013.
  41. ANSYS Inc. ANSYS Fluent Theory Guide; Release 17.0; ANSYS Inc.: Canonsburg, PA, USA, January 2016.
  42. Dinsenmeyer, R.; Fourmigué, J.F.; Caney, N.; Marty, P. Volume of fluid approach of boiling flows in
  43. concentrated solar plants. Int. J. Heat Fluid Flow 2017, 65, 177–191. [CrossRef]
  44. Das, S.; Weerasiri, L.D.; Yang, W. Influence of surface tension on bubble nucleation, formation and onset of
  45. sliding. Colloids Surf. A Physicochem. Eng. Asp. 2017, 516, 23–31. [CrossRef]
  46. Du, W.; Zhang, J.; Lu, P.; Xu, J.; Wei, W.; He, G.; Zhang, L. Advanced understanding of local wetting
  47. behaviour in gas-liquid-solid packed beds using CFD with a volume of fluid (VOF) method. Chem. Eng. Sci.
  48. 2017, 170, 378–392. [CrossRef]
  49. Shrestha, S.; Chou, K. A build surface study of Powder-Bed electron beam additive manufacturing by
  50. 3D thermo-fluid simulation and white-light interferometry. Int. J. Mach. Tools Manuf. 2017, 121, 37–49.
  51. [CrossRef]
  52. Zhong, Y.; Fang, H.; Ma, Q.; Dong, X. Analysis of droplet stability after ejection from an inkjet nozzle. J. Fluid
  53. Mech. 2018, 845, 378–391. [CrossRef]
  54. Zhang, X. Dynamics of drop formation in viscous flows. Chem. Eng. Sci. 1999, 54, 1759–1774. [CrossRef]
  55. Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 2001, 13, 3299–3305. [CrossRef]
  56. Kim, C.S.; Park, S.; Sim, W.; Kim, Y.; Yoo, Y. Modelling and characterization of an industrial inkjet head for
  57. micro-patterning on printed circuit boards. Comput. Fluids 2009, 38, 602–612. [CrossRef]
  58. ChemEngineering 2018, 2, 51 19 of 19
  59. Wang, P. Numerical Analysis of Droplet Formation and Transport of a Highly Viscous Liquid. Master’s Thesis,
  60. University of Kentucky, Lexington, KY, USA, 2014.
  61. Zhang, Z.; Xiong, R.; Corr, D.; Huang, Y. Study of Impingement Types and Printing Quality during Laser
  62. Printing of Viscoelastic Alginate Solutions. Langmuir 2016, 32, 3004–3014. [CrossRef] [PubMed]
  63. Derby, B. Inkjet Printing Ceramics: From Drops to Solid. J. Eur. Ceram. Soc. 2011, 31, 2543–2550. [CrossRef]
  64. Kim, E.; Baek, J. Numerical Study on the Effects of Non Dimensional Parameters on Drop-on-Demand
  65. Droplet Formation Dynamics and Printability Range in the up-Scaled Model. Phys. Fluids 2012, 24, 082103.
  66. [CrossRef]
Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.

Effect of substrate cooling and droplet shape and composition on the droplet evaporation and the deposition of particles

기판 냉각 및 액적 모양 및 조성이 액적 증발 및 입자 증착에 미치는 영향

by Vahid Bazargan
M.A.Sc., Mechanical Engineering, The University of British Columbia, 2008
B.Sc., Mechanical Engineering, Sharif University of Technology, 2006
B.Sc., Chemical & Petroleum Engineering, Sharif University of Technology, 2006

고착 방울은 평평한 기판에 놓인 액체 방울입니다. 작은 고정 액적이 증발하는 동안 액적의 접촉선은 고정된 접촉 영역이 있는 고정된 단계와 고정된 접촉각이 있는 고정 해제된 단계의 두 가지 단계를 거칩니다. 고정된 접촉 라인이 있는 증발은 액적 내부에서 접촉 라인을 향한 흐름을 생성합니다.

이 흐름은 입자를 운반하고 접촉 선 근처에 침전시킵니다. 이로 인해 일반적으로 관찰되는 “커피 링”현상이 발생합니다. 이 논문은 증발 과정과 고착성 액적의 증발 유도 흐름에 대한 연구를 제공하고 콜로이드 현탁액에서 입자의 침착에 대한 통찰력을 제공합니다. 여기서 우리는 먼저 작은 고착 방울의 증발을 연구하고 증발 과정에서 기판의 열전도도의 중요성에 대해 논의합니다.

현재 증발 모델이 500µm 미만의 액적 크기에 대해 심각한 오류를 생성하는 방법을 보여줍니다. 우리의 모델에는 열 효과가 포함되어 있으며, 특히 증발 잠열의 균형을 맞추기 위해 액적에 열을 제공하는 기판의 열전도도를 포함합니다. 실험 결과를 바탕으로 접촉각의 진화와 관련된 접촉 선의 가상 움직임을 정의하여 고정 및 고정 해제 단계의 전체 증발 시간을 고려합니다.

우리의 모델은 2 % 미만의 오차로 500 µm보다 작은 물방울에 대한 실험 결과와 일치합니다. 또한 유한한 크기의 라인 액적의 증발을 연구하고 증발 중 접촉 라인의 복잡한 동작에 대해 논의합니다. 에너지 공식을 적용하고 접촉 선이 구형 방울의 후퇴 접촉각보다 높은 접촉각을 가진 선 방울의 두 끝에서 후퇴하기 시작 함을 보여줍니다. 그리고 라인 방울 내부의 증발 유도 흐름을 보여줍니다.

마지막으로, 계면 활성제 존재 하에서 접촉 라인의 거동을 논의하고 입자 증착에 대한 Marangoni 흐름 효과에 대해 논의합니다. 열 Marangoni 효과는 접촉 선 근처에 증착 된 입자의 양에 영향을 미치며, 기판 온도가 낮을수록 접촉 선 근처에 증착되는 입자의 양이 많다는 것을 알 수 있습니다.

Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.
Figure 1.1: A water droplet with a radius of 1 mm resting on a glass substrate. The surface of the droplet takes on a spherical cap shape. The contact angle θ is defined by the balance of the interfacial forces.
Figure 2.1: Evaporation modes of sessile droplets on a substrate: (a) evaporation at constant contact angle (de-pinned stage) and (b) evaporation at constant contact area (pinned stage)
Figure 2.1: Evaporation modes of sessile droplets on a substrate: (a) evaporation at constant contact angle (de-pinned stage) and (b) evaporation at constant contact area (pinned stage)
Figure 2.2: A sessil droplet with its image can be profiled as the equiconvex lens formed by two intersecting spheres with radius of a.
Figure 2.2: A sessil droplet with its image can be profiled as the equiconvex lens formed by two intersecting spheres with radius of a.
Figure 2.3: The droplet life time for both evaporation modes derived from Equation 2.2.
Figure 2.3: The droplet life time for both evaporation modes derived from Equation 2.2.
Figure 2.4: A probability of escape for vapor molecules at two different sites of the surface of the droplet for diffusion controlled evaporation. The random walk path initiated from a vapor molecule is more likely to result in a return to the surface if the starting point is further away from the edge of the droplet.
Figure 2.4: A probability of escape for vapor molecules at two different sites of the surface of the droplet for diffusion controlled evaporation. The random walk path initiated from a vapor molecule is more likely to result in a return to the surface if the starting point is further away from the edge of the droplet.
Figure 2.5: Schematic of the sessile droplet on a substrate
Figure 2.5: Schematic of the sessile droplet on a substrate. The evaporation rate at the surface of the droplet is enhanced toward the edge of the droplet.
Figure 2.6: The domain mesh (a) and the solution of the Laplace equation for diffusion of the water vapor molecule with the concentration of Cv = 1.9×10−8 g/mm3 at the surface of the droplet into the ambient air with the relative humidity of 55%, i.e. φ = 0.55 (b).
Figure 2.6: The domain mesh (a) and the solution of the Laplace equation for diffusion of the water vapor molecule with the concentration of Cv = 1.9×10−8 g/mm3 at the surface of the droplet into the ambient air with the relative humidity of 55%, i.e. φ = 0.55 (b).
Figure 3.1: The portable micro printing setup. A motorized linear stage from Zaber Technologies Inc. was used to control the place and speed of the micro nozzle.
Figure 3.1: The portable micro printing setup. A motorized linear stage from Zaber Technologies Inc. was used to control the place and speed of the micro nozzle.
Figure 4.6: Temperature contours inside the substrate adjacent to the droplet
Figure 4.6: Temperature contours inside the substrate adjacent to the droplet
Figure 4.7: The effect of substrate cooling on the evaporation rate, the basic model shows the same value for all substrates.
Figure 4.7: The effect of substrate cooling on the evaporation rate, the basic model shows the same value for all substrates.

Bibliography

[1] R. G. Picknett and R. Bexon, “The evaporation of sessile or pendant drops in still air,” Journal of Colloid and Interface Science, vol. 61, pp. 336–350, Sept. 1977. → pages viii, 8, 9, 18, 42
[2] H. Y. Erbil, “Evaporation of pure liquid sessile and spherical suspended drops: A review,” Advances in Colloid and Interface Science, vol. 170, pp. 67–86, Jan. 2012. → pages 1
[3] R. Sharma, C. Y. Lee, J. H. Choi, K. Chen, and M. S. Strano, “Nanometer positioning, parallel alignment, and placement of single anisotropic nanoparticles using hydrodynamic forces in cylindrical droplets,” Nano Lett., vol. 7, no. 9, pp. 2693–2700, 2007. → pages 1, 54, 71
[4] S. Tokonami, H. Shiigi, and T. Nagaoka, “Review: Micro- and nanosized molecularly imprinted polymers for high-throughput analytical applications,” Analytica Chimica Acta, vol. 641, pp. 7–13, May 2009. →pages 71
[5] A. A. Sagade and R. Sharma, “Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature,” Sensors and Actuators B: Chemical, vol. 133, pp. 135–143, July 2008. → pages
[6] W. R. Small, C. D. Walton, J. Loos, and M. in het Panhuis, “Carbon nanotube network formation from evaporating sessile drops,” The Journal of Physical Chemistry B, vol. 110, pp. 13029–13036, July 2006. → pages 71
[7] S. H. Ko, H. Lee, and K. H. Kang, “Hydrodynamic flows in electrowetting,” Langmuir, vol. 24, pp. 1094–1101, Feb. 2008. → pages 42
[8] T. T. Nellimoottil, P. N. Rao, S. S. Ghosh, and A. Chattopadhyay, “Evaporation-induced patterns from droplets containing motile and nonmotile bacteria,” Langmuir, vol. 23, pp. 8655–8658, Aug. 2007. → pages 1
[9] R. Sharma and M. S. Strano, “Centerline placement and alignment of anisotropic nanotubes in high aspect ratio cylindrical droplets of nanometer diameter,” Advanced Materials, vol. 21, no. 1, p. 6065, 2009. → pages 1, 54, 71
[10] V. Dugas, J. Broutin, and E. Souteyrand, “Droplet evaporation study applied to DNA chip manufacturing,” Langmuir, vol. 21, pp. 9130–9136, Sept. → pages 2, 71
[11] Y.-C. Hu, Q. Zhou, Y.-F. Wang, Y.-Y. Song, and L.-S. Cui, “Formation mechanism of micro-flows in aqueous poly(ethylene oxide) droplets on a substrate at different temperatures,” Petroleum Science, vol. 10, pp. 262–268, June 2013. → pages 2, 34, 54
[12] T.-S. Wong, T.-H. Chen, X. Shen, and C.-M. Ho, “Nanochromatography driven by the coffee ring effect,” Analytical Chemistry, vol. 83, pp. 1871–1873, Mar. 2011. → pages 71
[13] J.-H. Kim, S.-B. Park, J. H. Kim, and W.-C. Zin, “Polymer transports inside evaporating water droplets at various substrate temperatures,” The Journal of Physical Chemistry C, vol. 115, pp. 15375–15383, Aug. 2011. → pages 54
[14] S. Choi, S. Stassi, A. P. Pisano, and T. I. Zohdi, “Coffee-ring effect-based three dimensional patterning of Micro/Nanoparticle assembly with a single droplet,” Langmuir, vol. 26, pp. 11690–11698, July 2010. → pages
[15] D. Wang, S. Liu, B. J. Trummer, C. Deng, and A. Wang, “Carbohydrate microarrays for the recognition of cross-reactive molecular markers of microbes and host cells,” Nature biotechnology, vol. 20, pp. 275–281, Mar. PMID: 11875429. → pages 2, 54, 71
[16] H. K. Cammenga, “Evaporation mechanisms of liquids,” Current topics in materials science, vol. 5, pp. 335–446, 1980. → pages 3
[17] C. Snow, “Potential problems and capacitance for a conductor bounded by two intersecting spheres,” Journal of Research of the National Bureau of Standards, vol. 43, p. 337, 1949. → pages 9
[18] R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, “Contact line deposits in an evaporating drop,” Physical Review E, vol. 62, p. 756, July 2000. → pages 10, 14, 18, 27, 53, 54, 71, 84
[19] H. Hu and R. G. Larson, “Evaporation of a sessile droplet on a substrate,” The Journal of Physical Chemistry B, vol. 106, pp. 1334–1344, Feb. 2002. → pages 12, 18, 29, 43, 44, 48, 49, 53, 61, 71, 84
[20] Y. O. Popov, “Evaporative deposition patterns: Spatial dimensions of the deposit,” Physical Review E, vol. 71, p. 036313, Mar. 2005. → pages 14, 27, 43, 44, 45, 54
[21] H. Gelderblom, A. G. Marin, H. Nair, A. van Houselt, L. Lefferts, J. H. Snoeijer, and D. Lohse, “How water droplets evaporate on a superhydrophobic substrate,” Physical Review E, vol. 83, no. 2, p. 026306,→ pages
[22] F. Girard, M. Antoni, S. Faure, and A. Steinchen, “Influence of heating temperature and relative humidity in the evaporation of pinned droplets,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 323, pp. 36–49, June 2008. → pages 18
[23] Y. Y. Tarasevich, “Simple analytical model of capillary flow in an evaporating sessile drop,” Physical Review E, vol. 71, p. 027301, Feb. 2005. → pages 19, 54, 62, 72
[24] A. J. Petsi and V. N. Burganos, “Potential flow inside an evaporating cylindrical line,” Physical Review E, vol. 72, p. 047301, Oct. 2005. → pages 22, 55, 62, 68, 71
[25] A. J. Petsi and V. N. Burganos, “Evaporation-induced flow in an inviscid liquid line at any contact angle,” Physical Review E, vol. 73, p. 041201, Apr.→ pages 23, 53, 55, 72
[26] H. Masoud and J. D. Felske, “Analytical solution for stokes flow inside an evaporating sessile drop: Spherical and cylindrical cap shapes,” Physics of Fluids, vol. 21, pp. 042102–042102–11, Apr. 2009. → pages 23, 55, 62, 71, 72
[27] H. Hu and R. G. Larson, “Analysis of the effects of marangoni stresses on the microflow in an evaporating sessile droplet,” Langmuir, vol. 21, pp. 3972–3980, Apr. 2005. → pages 24, 28, 53, 54, 56, 62, 68, 71, 72, 74, 84
[28] R. Bhardwaj, X. Fang, and D. Attinger, “Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study,” New Journal of Physics, vol. 11, p. 075020, July 2009. → pages 28
[29] A. Petsi, A. Kalarakis, and V. Burganos, “Deposition of brownian particles during evaporation of two-dimensional sessile droplets,” Chemical Engineering Science, vol. 65, pp. 2978–2989, May 2010. → pages 28
[30] J. Park and J. Moon, “Control of colloidal particle deposit patterns within picoliter droplets ejected by ink-jet printing,” Langmuir, vol. 22, pp. 3506–3513, Apr. 2006. → pages 28
[31] H. Hu and R. G. Larson, “Marangoni effect reverses coffee-ring depositions,” The Journal of Physical Chemistry B, vol. 110, pp. 7090–7094, Apr. 2006. → pages 29, 74
[32] K. H. Kang, S. J. Lee, C. M. Lee, and I. S. Kang, “Quantitative visualization of flow inside an evaporating droplet using the ray tracing method,” Measurement Science and Technology, vol. 15, pp. 1104–1112, June 2004. → pages 34
[33] S. T. Beyer and K. Walus, “Controlled orientation and alignment in films of single-walled carbon nanotubes using inkjet printing,” Langmuir, vol. 28, pp. 8753–8759, June 2012. → pages 42, 71
[34] G. McHale, “Surface free energy and microarray deposition technology,” Analyst, vol. 132, pp. 192–195, Feb. 2007. → pages 42
[35] R. Bhardwaj, X. Fang, P. Somasundaran, and D. Attinger, “Self-assembly of colloidal particles from evaporating droplets: Role of DLVO interactions and proposition of a phase diagram,” Langmuir, vol. 26, pp. 7833–7842, June→ pages 42
[36] G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. Sefiane, “The strong influence of substrate conductivity on droplet evaporation,” Journal of Fluid Mechanics, vol. 623, no. 1, p. 329351, 2009. → pages 44
[37] M. S. Plesset and A. Prosperetti, “Flow of vapour in a liquid enclosure,” Journal of Fluid Mechanics, vol. 78, pp. 433–444, 1976. → pages 44
[38] S. Das, P. R. Waghmare, M. Fan, N. S. K. Gunda, S. S. Roy, and S. K. Mitra, “Dynamics of liquid droplets in an evaporating drop: liquid droplet coffee stain? effect,” RSC Advances, vol. 2, pp. 8390–8401, Aug. 2012. → pages 53
[39] B. J. Fischer, “Particle convection in an evaporating colloidal droplet,” Langmuir, vol. 18, pp. 60–67, Jan. 2002. → pages 54
[40] J. L. Wilbur, A. Kumar, H. A. Biebuyck, E. Kim, and G. M. Whitesides, “Microcontact printing of self-assembled monolayers: applications in microfabrication,” Nanotechnology, vol. 7, p. 452, Dec. 1996. → pages 54
[41] T. Kawase, H. Sirringhaus, R. H. Friend, and T. Shimoda, “Inkjet printed via-hole interconnections and resistors for all-polymer transistor circuits,” Advanced Materials, vol. 13, no. 21, p. 16011605, 2001. → pages 71
[42] B.-J. de Gans, P. C. Duineveld, and U. S. Schubert, “Inkjet printing of polymers: State of the art and future developments,” Advanced Materials, vol. 16, no. 3, p. 203213, 2004. → pages 71
[43] H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, vol. 290, pp. 2123–2126, Dec. 2000. PMID:→ pages
[44] D. Soltman and V. Subramanian, “Inkjet-printed line morphologies and temperature control of the coffee ring effect,” Langmuir, vol. 24, pp. 2224–2231, Mar. 2008. → pages 54
[45] R. Tadmor and P. S. Yadav, “As-placed contact angles for sessile drops,” Journal of Colloid and Interface Science, vol. 317, pp. 241–246, Jan. 2008. → pages 56
[46] J. Drelich, “The significance and magnitude of the line tension in three-phase (solid-liquid-fluid) systems,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 116, pp. 43–54, Sept. 1996. → pages 56
[47] R. Tadmor, “Line energy, line tension and drop size,” Surface Science, vol. 602, pp. L108–L111, July 2008. → pages 69
[48] C.-H. Choi and C.-J. C. Kim, “Droplet evaporation of pure water and protein solution on nanostructured superhydrophobic surfaces of varying heights,” Langmuir, vol. 25, pp. 7561–7567, July 2009. → pages 71
[49] K. F. Baughman, R. M. Maier, T. A. Norris, B. M. Beam, A. Mudalige, J. E. Pemberton, and J. E. Curry, “Evaporative deposition patterns of bacteria from a sessile drop: Effect of changes in surface wettability due to exposure to a laboratory atmosphere,” Langmuir, vol. 26, pp. 7293–7298, May 2010.
[50] D. Brutin, B. Sobac, and C. Nicloux, “Influence of substrate nature on the evaporation of a sessile drop of blood,” Journal of Heat Transfer, vol. 134, pp. 061101–061101, May 2012. → pages 71
[51] D. Pech, M. Brunet, P.-L. Taberna, P. Simon, N. Fabre, F. Mesnilgrente, V. Condra, and H. Durou, “Elaboration of a microstructured inkjet-printed carbon electrochemical capacitor,” Journal of Power Sources, vol. 195, pp. 1266–1269, Feb. 2010. → pages 71
[52] J. Bachmann, A. Ellies, and K. Hartge, “Development and application of a new sessile drop contact angle method to assess soil water repellency,” Journal of Hydrology, vol. 231232, pp. 66–75, May 2000. → pages 71
[53] H. Y. Erbil, G. McHale, and M. I. Newton, “Drop evaporation on solid surfaces: constant contact angle mode,” Langmuir, vol. 18, no. 7, pp. 2636–2641, 2002. → pages
[54] X. Fang, B. Li, J. C. Sokolov, M. H. Rafailovich, and D. Gewaily, “Hildebrand solubility parameters measurement via sessile drops evaporation,” Applied Physics Letters, vol. 87, pp. 094103–094103–3, Aug.→ pages
[55] Y. C. Jung and B. Bhushan, “Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces,” Journal of Microscopy, vol. 229, no. 1, p. 127140, 2008. → pages 71
[56] J. Drelich, J. D. Miller, and R. J. Good, “The effect of drop (bubble) size on advancing and receding contact angles for heterogeneous and rough solid surfaces as observed with sessile-drop and captive-bubble techniques,”
Journal of Colloid and Interface Science, vol. 179, pp. 37–50, Apr. 1996. →pages 72, 75
[57] D. Bargeman and F. Van Voorst Vader, “Effect of surfactants on contact angles at nonpolar solids,” Journal of Colloid and Interface Science, vol. 42, pp. 467–472, Mar. 1973. → pages 73
[58] J. Menezes, J. Yan, and M. Sharma, “The mechanism of alteration of macroscopic contact angles by the adsorption of surfactants,” Colloids and Surfaces, vol. 38, no. 2, pp. 365–390, 1989. → pages
[59] T. Okubo, “Surface tension of structured colloidal suspensions of polystyrene and silica spheres at the air-water interface,” Journal of Colloid and Interface Science, vol. 171, pp. 55–62, Apr. 1995. → pages 73, 76
[60] R. Pyter, G. Zografi, and P. Mukerjee, “Wetting of solids by surface-active agents: The effects of unequal adsorption to vapor-liquid and solid-liquid interfaces,” Journal of Colloid and Interface Science, vol. 89, pp. 144–153, Sept. 1982. → pages 73
[61] T. Mitsui, S. Nakamura, F. Harusawa, and Y. Machida, “Changes in the interfacial tension with temperature and their effects on the particle size and stability of emulsions,” Kolloid-Zeitschrift und Zeitschrift fr Polymere, vol. 250, pp. 227–230, Mar. 1972. → pages 73
[62] S. Phongikaroon, R. Hoffmaster, K. P. Judd, G. B. Smith, and R. A. Handler, “Effect of temperature on the surface tension of soluble and insoluble surfactants of hydrodynamical importance,” Journal of Chemical & Engineering Data, vol. 50, pp. 1602–1607, Sept. 2005. → pages 73, 80
[63] V. S. Vesselovsky and V. N. Pertzov, “Adhesion of air bubbles to the solid surface,” Zh. Fiz. Khim, vol. 8, pp. 245–259, 1936. → pages 75
[64] Hideo Nakae, Ryuichi Inui, Yosuke Hirata, and Hiroyuki Saito, “Effects of surface roughness on wettability,” Acta Materialia, vol. 46, pp. 2313–2318, Apr. 1998. → pages
[65] R. J. Good and M. Koo, “The effect of drop size on contact angle,” Journal of Colloid and Interface Science, vol. 71, pp. 283–292, Sept. 1979. → pages

Figure 2. Simulation of droplet separation by EWOD

Non-Linear Electrohydrodynamics in Microfluidic Devices

미세 유체 장치의 비선형 전기 유체 역학

by Jun ZengHewlett-Packard Laboratories, Hewlett-Packard Company, 1501 Page Mill Road, Palo Alto, CA 94304, USAInt. J. Mol. Sci.201112(3), 1633-1649; https://doi.org/10.3390/ijms12031633Received: 24 January 2011 / Revised: 10 February 2011 / Accepted: 24 February 2011 / Published: 3 March 2011

Abstract

Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS) fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications. 

Keywords: dielectrophoresiselectrohydrodynamicselectrowettinglab-on-a-chipmicrofluidicsmodelingnumerical simulationreflective display

요약

미세 유체학이 시작된 이래로 전기력은 작동 유체와 충전 된 서스펜션의 움직임을 제어하고 제어하는 ​​주요 메커니즘 중 하나로 활용되어 왔습니다. 전기력은 소형 장치에서 본질적인 이점이 있습니다. 전극이 밀리미터 미만에서 수 미크론까지 작은 거리에 배치되기 때문에 매우 높은 전기장을 쉽게 얻을 수 있습니다. 

전기력은 강도가 피크에서 멀어지면서 빠르게 감소하기 때문에 고도로 국부화 될 수 있습니다. 이것은 전기력을 정밀한 공간 제어를 위한 이상적인 후보로 만듭니다.

전극의 기하학적 구조와 배치는 다양한 분포의 전기장을 설계하는 데 사용될 수 있으며, 이는 MEMS (Micro-Electro-Mechanical Systems) 제조 방법으로 쉽게 실현할 수 있습니다. 

이 논문에서 우리는 몇 가지 전기 구동 액체 처리 작업을 검토합니다. 비선형 전기 유체 역학적 효과에 중점을 둡니다. 이론적 처리 및 관련 수치 방법에 대해 논의합니다. 모델링과 시뮬레이션은 관련된 전기 유체 역학 현상을 밝히는 데 사용됩니다. 모델링 기반 조사는 응용 분야를 설명하기 위해 미세 유체 장치의 예와 결합됩니다. 

키워드 : 유전 영동 ; 전기 유체 역학 ; 전기 습윤 ; 랩 온어 칩 ; 미세 유체 ; 모델링 ; 수치 시뮬레이션 ; 반사 디스플레이

Droplet processing array Droplet based BioFlip
igure 1. Example of droplet-based digital microfluidics architecture. Above is an elevation view showing the layered structure of the chip. Below is a diagram illustrating the system (Adapted from [4]).
Figure 2. Simulation of droplet separation by EWOD
Figure 2. Simulation of droplet separation by EWOD. The top two figures illustrate the device configuration. Electric voltages are applied to all four electrodes embedded in the insulating material. The bottom left figure shows transient simulation solution. It illustrates the process of separating one droplet into two via EWOD. The bottom right figure shows the electric potential distribution inside the device. The color indicates the electric potential; the iso-potential surfaces are also drawn. The image shows the electric field is absent within the droplet body indicating the droplet is either conductive or highly polarizable.
Figure 4. Transient sequence of the Taylor cone formation
Figure 4. Transient sequence of the Taylor cone formation: simulation and experiment comparison. Experimental images are shown in the top row. Simulation results are shown in the bottom row. Their correspondence is indicated by the vertical alignment (Adapted from [4]).
Figure 6. Simulation of charge screening effect using a parallel-plate cell
Figure 6. Simulation of charge screening effect using a parallel-plate cell. Top-left image shows the electric current as function of time and driving voltage, top-right image shows the evolution of the species concentration as function of time and space, the bottom image shows the electric current readout after switching the applied voltage.
Figure 7. Transient simulation of electrohydrodynamic instability and the development of the cellular convective flow pattern.
Figure 7. Transient simulation of electrohydrodynamic instability and the development of the cellular convective flow pattern.
Figure 3. Simulation of dielectrophoresis driven axon migration
Figure 3. Simulation of dielectrophoresis driven axon migration. The set of small images on the left shows a transient simulation of single axon migration under an electric field generated by a pin electrode. The image on the right is a snapshot of a simulation where two axons are fused by dielectrophoresis using a pin electrode. Axons are outlined in white. Also shown are the iso-potential curves.

References

  1. Muller, RS. MEMS: Quo vadis in century XXI. Microelectron. Eng 200053(1–4), 47–54. [Google Scholar]
  2. Reyes, DR; Iossifidis, D; Auroux, PA; Manz, A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal.Chem 200274, 2623–2636. [Google Scholar]
  3. Levy, U; Shamai, R. Tunable optofluidic devices. Microfluid. Nanofluid 20084, 97–105. [Google Scholar]
  4. Zeng, J; Korsmeyer, FT. Principles of droplet electrohydrodynamics for lab-on-a-chip. Lab Chip 20044, 265–277. [Google Scholar]
  5. Fair, RB. Digital microfluidics: Is a true lab-on-a-chip possible? Microfluid. Nanofluid 20073, 245–281. [Google Scholar]
  6. Pollack, MG; Fair, RB; Shenderov, AD. Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl. Phys. Lett 200077(11), 1725–1726. [Google Scholar]
  7. Peykov, V; Quinn, A; Ralston, J. Electrowetting: A model for contact-angle saturation. Colloid Polym. Sci 2000278, 789–793. [Google Scholar]
  8. Verheijen, HJJ; Prins, MWJ. Reversible electrowetting and trapping of charge: Model and experiments. Langmuir 199915, 6616–6620. [Google Scholar]
  9. Mugele, F; Baret, J. Electrowetting: From basics to applications. J. Phys. Condens. Matter 200517, R705–R774. [Google Scholar]
  10. Quilliet, C; Berge, B. Electrowetting: A recent outbreak. Curr. Opin. Colloid Interface Sci 20016, 34–39. [Google Scholar]
  11. Probstein, RF. Physicochemical Hydrodynamics; Wiley: New York, NY, USA, 1994. [Google Scholar]
  12. Koo, J; Kleinstreuer, C. Liquid flow in microchannels: Experimental observations and computational analyses of microfluidics effects. J. Micromech. Microeng 200313, 568–579. [Google Scholar]
  13. Hu, G; Li, D. Multiscale phenomena in microfluidics and nanofluidics. Chem. Eng. Sci 200762, 3443–3454. [Google Scholar]
  14. Haus, HA; Melcher, JR. Electromagnetic Fields and Energy; Prentice-Hall: Englewood Cliffs, NJ, USA, 1989. [Google Scholar]
  15. Leal, LG. Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis; Butterworth-Heinemann: Oxford, UK, 1992. [Google Scholar]
  16. Collins, RT; Harris, MT; Basaran, OA. Breakup of electrified jets. J. Fluid Mech 2007588, 75–129. [Google Scholar]
  17. Sista, R; Hua, Z; Thwar, P; Sudarsan, A; Srinivasan, V; Eckhardt, A; Pollack, M; Pamula, V. Development of a digital microfluidic platform for point of care testing. Lab Chip 20088, 2091–2104. [Google Scholar]
  18. Zeng, J. Modeling and simulation of electrified droplets and its application to computer-aided design of digital microfluidics. IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst 200625(2), 224–233. [Google Scholar]
  19. Walker, SW; Bonito, A; Nochetto, RH. Mixed finite element method for electrowetting on dielectric with contact line pinning. Interface. Free Bound 201012, 85–119. [Google Scholar]
  20. Eck, C; Fontelos, M; Grün, G; Klingbeil, F; Vantzos, O. On a phase-field model for electrowetting. Interface. Free Bound 200911, 259–290. [Google Scholar]
  21. Gascoyne, PRC; Vykoukal, JV. Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc. IEEE 200492(1), 22–42. [Google Scholar]
  22. Jones, TB; Gunji, M; Washizu, M. Dielectrophoretic liquid actuation and nanodroplet formation. J. Appl. Phys 200189(3), 1441–1448. [Google Scholar]
  23. Sretavan, D; Chang, W; Keller, C; Kliot, M. Microscale surgery on single axons. Neurosurgery 200557(4), 635–646. [Google Scholar]
  24. Pohl, HA; Crane, JS. Dielectrophoresis of cells. Biophys. J 197111, 711–727. [Google Scholar]
  25. Melcher, JR; Taylor, GI. Electrohydrodynamics: A review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech 19691, 111–146. [Google Scholar]
  26. Saville, DA. Electrohydrodynamics: The taylor-melcher leaky-dielectric model. Annu. Rev. Fluid Mech 199729, 27–64. [Google Scholar]
  27. Schultz, GA; Corso, TN; Prosser, SJ; Zhang, S. A fully integrated monolithic microchip electrospray device for mass spectrometry. Anal. Chem 200072(17), 4058–4063. [Google Scholar]
  28. Killeen, K; Yin, H; Udiavar, S; Brennen, R; Juanitas, M; Poon, E; Sobek, D; van de Goor, T. Chip-MS: A polymeric microfluidic device with integrated mass-spectrometer interface. Micro Total Anal. Syst 2001, 331–332. [Google Scholar]
  29. Dukhin, SS. Electrokinetic phenomena of the second kind and their applications. Adv. Colloid Interface Sci 199135, 173–196. [Google Scholar]
  30. Wang, Y-C; Stevens, AL; Han, J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem 200577(14), 4293–4299. [Google Scholar]
  31. Kim, SJ; Wang, Y-C; Han, J. Nonlinear electrokinetic flow pattern near nanofluidic channel. Micro Total Anal. Syst 20061, 522–524. [Google Scholar]
  32. Comiskey, B; Albert, JD; Yoshizawa, H; Jacobson, J. An electrophoretic ink for all-printed reflective electronic displays. Nature 1998394(6690), 253–255. [Google Scholar]
  33. Beunis, F; Strubbe, F; Neyts, K; Bert, T; De Smet, H; Verschueren, A; Schlangen, L. P-39: Electric field compensation in electrophoretic ink display. In Proceedings of the Twenty-fifth International Display Research Conference—Eurodisplay 2005; Edinburgh, UK, 19–22 2005; pp. 344–345. [Google Scholar]
  34. Strubbe, F; Verschueren, ARM; Schlangen, LJM; Beunis, F; Neyts, K. Generation current of charged micelles in nonaqueous liquids: Measurements and simulations. J. Colloid Interface Sci 2006300, 396–403. [Google Scholar]
  35. Hsu, MF; Dufresne, ER; Weitz, DA. Charge stabilization in nonpolar solvents. Langmuir 200521, 4881–4887. [Google Scholar]
  36. Hayes, RA; Feenstra, BJ. Video-speed electronic paper based on electrowetting. Nature 2003425, 383–385. [Google Scholar]
  37. Chakrabarty, K; Su, F. Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
  38. Chakrabarty, K; Fair, RB; Zeng, J. Design tools for digital microfluidic biochips: Towards functional diversification and more than Moore. IEEE Trans.CAD Integr. Circ. Syst 201029(7), 1001–1017. [Google Scholar]
Damascene templates

High-Rate Nanoscale Offset Printing Process Using Directed Assembly and Transfer of Nanomaterials

지난 10 년 동안 나노 크기의 재료와 공정을 제품에 통합하는 데 제한적인 성공을 거두면서 나노 기술에 상당한 투자와 발전이 있었습니다.

잉크젯, 그라비아, 스크린 프린팅과 같은 접근 방식은 나노 물질을 사용하여 구조와 장치를 만드는 데 사용됩니다. [1–7] 그러나 상당히 느리고 µm 스케일 분해능 만 제공 할 수 있습니다. 다양한 모양과 크기의 100nm 미만의 특징을 달성하기 위해 딥펜 리소그래피 (DPN) [8-11] 및 소프트 리소그래피 [12-16]와 같은 다양한 기술이 개발되고 광범위하게 연구되었습니다.

DPN은 직접 쓰기 기술로, atomic force microscopy 현미경 팁을 사용하여 다양한 기판에 여러 패턴을 생성합니다. DPN을 사용한 확장 성을 해결하기 위해 단일 AFM 팁 대신 2D 형식으로 배포 된 AFM (Atomic Force Microscopy) 팁 [17,18]이 사용되었습니다. 소프트 리소그래피에서는 나노 물질을 포함하는 잉크로 적셔진 원하는 릴리프 패턴을 가진 경화된 엘라스토머가 기판과 컨 포멀 접촉하게 되며, 여기서 패턴 화 된 나노 물질이 전달되어 기판에서 원하는 특징을 달성합니다.

이 논문에서는 작거나 큰 영역에서 몇 분 만에 나노, 마이크로 또는 거시적 구조를 인쇄 할 수 있는 다중 스케일 오프셋 인쇄 접근 방식을 제시합니다. 이 프로세스는 나노 입자 (NP), 탄소 나노 튜브 (CNT) 또는 용해 된 폴리머를 포함하는 서스펜션 (잉크)에서 나노 물질의 전기 영동 방향 조립을 사용하여 특별히 제작 된 재사용 가능한 Damascene 템플릿에 패턴을 “inking” 하는 것으로 시작됩니다. 이 잉크 프로세스는 실온과 압력에서 수행됩니다.

두 번째 단계는 템플릿에 조립된 나노 물질이 다른 기판으로 전송되는 “printing”로 구성됩니다. 전송 프로세스가 끝나면 템플릿은 다음 조립 및 전송주기에서 즉시 재사용 할 수 있습니다. 이 오프셋 인쇄 프로세스를 통해 NP (폴리스티렌 라텍스 (PSL), 실리카,은) 및 CNT (다중 벽 및 단일 벽)를 100μm에서 500nm까지의 크기 범위를 가진 패턴에 조립하고 유동성 기판에 성공적으로 옮깁니다.

다양한 나노 물질을 다양한 아키텍처로 조립하기 위해 템플릿 유도 유동, 대류, 유전 영동 (DEP) 및 전기 영동 조립과 같은 몇 가지 직접 조립 프로세스가 조사되었습니다. 모세관력이 지배적인 조립 메커니즘인 유체 조립 공정은 다양한 나노 물질에 적용 할 수 있습니다.

대류 조립 공정은 현탁 메니 스커 스와 증발을 활용하여 단일 나노 입자 분해능으로 정밀 조립을 가능하게 합니다. 이러한 조립 공정 중 많은 부분이 트렌치와 같은 마이크로 및 나노 스케일 기능으로 고해상도의 직접 조립을 보여 주었지만, 확장성 부족, 느린 공정 속도 및 반복성과 같은 많은 단점이 있습니다.

DEP 어셈블리는 NP와 전극 사이에 고배향 탄소 나노 튜브 어셈블리를 사용하여 나노 와이어 및 구조를 만드는 데 사용되었습니다. 조립 효율은 전기장과 전기장 구배에 상당한 영향을 미치는 전극의 기하학적 구조와 간격에 크게 좌우됩니다. 전기 영동 기반 조립 공정은 유체 조립에 비해 훨씬 짧은 시간에 전도성 표면에 표면 전하를 가진 나노 물질을 조립하는 것을 포함합니다. [34–37]

그러나 전기 영동 조립은 조립이 전도성 표면에 발생해야 하므로 다양한 장치를 만드는 데 실용적이지 않습니다. 한 가지 해결책은 원하는 나노 스케일 구조를 기반으로 전도성 패턴이 있는 템플릿을 만들고, 전기 영동 공정을 사용하여 패턴 위에 나노 물질을 조립 한 다음 조립 된 구조를 수용 기판에 옮기는 것입니다.

그림 1a와 같이 절연 필름에 전도성 와이어와 같은 패턴 구조가있는 기존 템플릿을 사용하면 나노 스케일 와이어의 잠재적 인 큰 강하로 인해 어셈블리가 불균일 해지며 대부분의 입자는 그림 1에 표시된 마이크로 와이어 b. 또한 NP는 3D 와이어의 측벽에도 조립되므로 바람직하지 않습니다. 또한 나노 스케일 와이어와 템플릿 사이의 작은 접촉 면적으로 인해 나노 스케일 와이어는 이송 과정에서 쉽게 벗겨집니다.

Damascene templates
Figure 1. Damascene templates: a) A schematic of a conventional wire template used for electrophoretic assembly. In these templates nanowire are connected to a micrometer scale electrodes, which are in turn connected, to a large metal pad through which the potential is applied. b) SEM images of a typical nanoparticle assembly result obtained for confi guration shown in (a). c) A schematic of a Damascene template where all of the wires (nano- or micrometer scale) and the metal pad are connected to a conductive fi lm underneath the insulating fi lm. d) A schematic of Damascene template fabrication. Inset is artifi cially colored cross-sectional SEM image showing the metal nanowires to be at the same height as that of the SiO 2 and showing the conductive fi lm underneath the insulator. e) An optical image of a 3 inch Damascene template.
Offset printing
Figure 2. Offset printing: a) A schematic of the nanoscale offset printing approach. The insulating (SiO 2 ) surface of the Damascene template is selectively coated with a hydrophobic SAM (OTS). Using electrophoresis, nanomaterials are assembled on the conductive patterns of the Damascene template (“inking”), which are then transferred to a recipient substrate (“printing”). After the transfer, the template is ready for the next assembly and transfer cycle. b) SEM image of 50 nm PSL particles assembly with high density on 1 µm wide electrodes. c) Silica particles (20 nm) assembly on crossbar 2D patterns demonstrating the versatility of the Damascene template. Inset fi gure is a high-resolution image of assembled silica particles. d) SEM image of assembled SWNTs on micrometer scale patterns. e) MWNTs assembled on 100 µm features. f) Cellulose assembled on 2 µm electrodes. g) SWNTs assembled in cross bar architecture patterns. h) Flexible devices with array of transferred SWNTs and metal electrodes (printed on PEN). Inset is the microscopy image of two electropads and transferred SWNTs on PEN fi lm.
Analysis of nanomaterial assembly on electrodes
Figure 3. Analysis of nanomaterial assembly on electrodes

이것은 또한 그림 3b에 표시된대로 유한 체적 모델링 (Flow 3D)을 사용하는 전기장 윤곽 시뮬레이션 결과에 의해 확인됩니다. 전기장 강도의 윤곽은 전도성 패턴의 가장자리에있는 전기장이 중앙에있는 것보다 더 강하다는 것을 나타냅니다. 그러나 적용된 전위가 2.5V로 증가하면 그림 3c에 표시된대로 100nm 실리카 입자가 Damascene 템플릿을 가로 질러 전도성 패턴의 표면에 완전히 조립되어 조립을위한 임계 전기장 강도에 도달했음을 나타냅니다. 정렬 된 SWNT는 여과 전달 경로를 피하고 나노 튜브 사이의 접합 저항을 최소화하여 소자 성능의 최소 변화를 가져 오기 때문에 많은 응용 분야에서 고도로 조직화 된 SWNT가 필요합니다.

References

[1] M.Abulikemu, E.H.Da’as, H.Haverinen, D.Cha, M.A.Malik, G.E.Jabbour, Angew.Chem.Int.Ed.2014, 53, 599.
[2] a) Z.Lu, M.Layani, X.Zhao, L.P.Tan, T.Sun, S.Fan, Q.Yan, S.Magdassi, H.H.Hng, Small 2014, 10, 3551; b) H.Ko, J.Lee, Y.Kim, B.Lee, C.H.Jung, J.H.Choi, O.S.Kwon, K.Shin, Adv.Mater.2014, 26, 2286.
[3] C.J.Hansen, R.Saksena, D.B.Kolesky, J.J.Vericella, S.J.Kranz, G.P.Muldowney, K.T.Christensen, J.A.Lewis, Adv.Mater.2013, 25, 2.
[4] F.C.Krebs, N.Espinosa, M.Hösel, R.R.Søndergaard, M.Jørgensen, Adv.Mater.2014, 26, 29.
[5] W.Honda, S.Harada, T.Arie, S.Akita, K.Takei, Adv.Funct.Mater. 2014, 24, 3298.
[6] R.Guo, Y.Yu, Z.Xie, X.Liu, X.Zhou, Y.Gao, Z.Liu, F.Zhou, Y.Yang, Z.Zheng, Adv.Mater.2013, 25, 3343.
[7] A.Dzwilewski, T.Wågberg, L.Edman, J.Am.Chem.Soc.2009, 131, 4006.
[8] R.D.Piner, J.Zhu, F.Xu, S.Hong, C.A.Mirkin, Science 1999, 283, 661.
[9] J.-H.Lim, C.A.Mirkin, Adv.Mater.2002, 14, 1474.
[10] X.Liu, L.Fu, S.Hong, V.P.Dravid, C.A.Mirkin, Adv.Mater.2002,14, 231.
[11] D.A.Weinberger, S.Hong, C.A.Mirkin, B.W.Wessels, T.B.Higgins, Adv.Mater.2000, 12, 1600.
[12] J.P.Rolland, E.C.Hagberg, G.M.Denison, K.R.Carter, J.M.DeSimone, Angew.Chem.2004, 116, 5920.
[13] T.Granlund, T.Nyberg, L.S.Roman, M.Svensson, O.Inganäs, Adv.Mater.2000, 12, 269.
[14] Y.Xia, G.M.Whitesides, Annu.Rev.Mater.Sci.1998, 28, 153.
[15] W.S.Beh, I.T.Kim, D.Qin, Y.Xia, G.M.Whitesides.Adv.Mater. 1999, 11, 1038.
[16] Y.Yin, B.Gates, Y.Xia.Adv.Mater.2000, 12, 1426.
[17] K.Salaita, Y.Wang, J.Fragala, R.A.Vega, C.Liu, C.A.Mirkin,Angew.Chem.2006, 118, 7378.
[18] D.Bullen, S.-W.Chung, X.Wang, J.Zou, C.A.Mirkin, C.Liu, Appl.Phys.Lett.2004, 84, 789.
[19] Y.L.Kim, H.Y.Jung, S.Park, B.Li, F.Liu, J.Hao, Y.-K.Kwon, Y.J.Jung, S.Kar, Nat.Photonics 2014, 8, 239.
[20] X.Xiong, L.Jaberansari, M.G.Hahm, A.Busnaina, Y.J.Jung, Small 2007, 3, 2006.
[21] A.B.Marciel, M.Tanyeri, B.D.Wall, J.D.Tovar, C.M.Schroeder, W.L.Wilson, Adv.Mater.2013, 25, 6398.
[22] J.T.Wang, J.Wang, J.J.Han, Small 2011, 7, 1728.
[23] S.Y.Lee, S.H.Kim, H.Hwang, J.Y.Sim, S.M.Yang, Adv.Mater. 2014, 26, 2391.
[24] J.Y.Oh, J.T.Park, H.J.Jang, W.J.Cho, M.S.Islam, Adv.Mater. 2014, 26, 1929.
[25] K.W.Song, R.Costi, V.Bulovi, Adv.Mater.2013, 25, 1420.
[26] P.Maury, M.Escalante, D.N.Reinhoudt, J.Huskens, Adv.Mater. 2005, 17, 2718.
[27] Y.Xia, Y.Yin, Y.Lu, J.McLellan, Adv.Funct.Mater.2003, 13, 907.
[28] L.Jaber-Ansari, M.G.Hahm, S.Somu, Y.E.Sanz, A.Busnaina, Y.J.Jung, J.Am.Chem.Soc.2008, 131, 804.
[29] T.Kraus, L.Malaquin, H.Schmid, W.Riess, N.D.Spencer, H.Wolf,Nat.Nanotechnol.2007, 2, 570.
[30] K.D.Hermanson, S.O.Lumsdon, J.P.Williams, E.W.Kaler, O.D.Velev, Science 2001, 294, 1082.
[31] H.-W.Seo, C.-S.Han, D.-G.Choi, K.-S.Kim, Y.-H.Lee, Microelectron.Eng.2005, 81, 83.
[32] E.M.Freer, O.Grachev, X.Duan, S.Martin, D.P.Stumbo, Nat.Nanotechnol.2010, 5, 525.
[33] D.Xu, A.Subramanian, L.Dong, B.J.Nelson, IEEE Trans.Nanotechnol.2009, 8, 449.
[34] X.Xiong, P.Makaram, A.Busnaina, K.Bakhtari, S.Somu, N.McGruer, J.Park, Appl.Phys.Lett.2006, 89, 193108.
[35] R.C.Bailey, K.J.Stevenson, J.T.Hupp, Adv.Mater.2000, 12, 1930.
[36] Q.Zhang, T.Xu, D.Butterfi eld, M.J.Misner, D.Y.Ryu, T.Emrick, T.P.Russell, Nano Lett.2005, 5, 357.
[37] E.Kumacheva, R.K.Golding, M.Allard, E.H.Sargent, Adv.Mater. 2002, 14, 221.
[38] M.Wei, Z.Tao, X.Xiong, M.Kim, J.Lee, S.Somu, S.Sengupta, A.Busnaina, C.Barry, J.Mead, Macromol.Rapid Commun.2006, 27, 1826.
[39] a) D.Schwartz, S.Steinberg, J.Israelachvili, J.Zasadzinski, Phys.Rev.Lett.1992, 69, 3354; b) W.Yang, P.Thordarson, J.J.Gooding, S.P.Ringer, F.Braet, Nanotechnology 2007, 18, 412001.
[40] S.Siavoshi, C.Yilmaz, S.Somu, T.Musacchio, J.R.Upponi, V.P.Torchilin, A.Busnaina, Langmuir 2011, 27, 7301.
[41] E.Artukovic, M.Kaempgen, D.Hecht, S.Roth, G.Grüner, NanoLett.2005, 5, 757.
[42] L.Hu, D.Hecht, G.Grüner, Nano Lett.2004, 4, 2513.
[43] M.Fuhrer, J.Nygård, L.Shih, M.Forero, Y.G.Yoon, H.J.Choi, J.Ihm, S.G.Louie, A.Zettl, P.L.McEuen, Science 2000, 288,
494.
[44] J.J.Gooding, A.Chou, J.Liu, D.Losic, J.G.Shapter, D.B.Hibbert,Electrochem.Commun.2007, 9, 1677.
[45] A.Chou, T.Böcking, N.K.Singh, J.J.Gooding, Chem.Commun. 2005, 7, 842.
[46] D.Hines, V.Ballarotto, E.Williams, Y.Shao, S.Solin, J.Appl.Phys. 2007, 101, 024503.
[47] H.Park, A.Afzali, S.-J.Han, G.S.Tulevski, A.D.Franklin, J.Tersoff, J.B.Hannon, W.Haensch, Nat.Nanotechnol.2012, 7, 787.
[48] S.Somu, H.Wang, Y.Kim, L.Jaberansari, M.G.Hahm, B.Li, T.Kim, X.Xiong, Y.J.Jung, M.Upmanyu, A.Busnaina, ACS Nano 2010, 4, 4142.
[49] L.Jaber-Ansari, M.G.Hahm, T.H.Kim, S.Somu, A.Busnaina, Y.J.Jung, Appl.Phys.A 2009, 96, 373.
[50] B.Li, M.G.Hahm, Y.L.Kim, H.Y.Jung, S.Kar, Y.J.Jung, ACS Nano 2011, 5, 4826.
[51] B.Li, H.Y.Jung, H.Wang, Y.L.Kim, T.Kim, M.G.Hahm, A.Busnaina, M.Upmanyu, Y.J.Jung, Adv.Funct.Mater.2011, 21, 1810.
[52] M.A.Meitl, Z.T.Zhu, V.Kumar, K.J.Lee, X.Feng, Y.Y.Huang, I.Adesida, R.G.Nuzzo, J.A.Rogers, Nat.Mater.2005, 5, 33.
[53] F.N.Ishikawa, H.Chang, K.Ryu, P.Chen, A.Badmaev, L.GomezDe Arco, G.Shen, C.Zhou, ACS Nano 2008, 3, 73.
[54] N.Inagaki, Plasma Surface Modifi cation and Plasma Polymerization, CRC, Boca Raton, FL, USA 1996.
[55] E.Liston, L.Martinu, M.Wertheimer, J.Adhes.Sci.Technol.1993, 7, 1091.
[56] T.Tsai, C.Lee, N.Tai, W.Tuan, Appl.Phys.Lett.2009, 95, 013107.
[57] J.G.Bai, Z.Z.Zhang, J.N.Calata, G.-Q.Lu, IEEE Trans.Compon.Packag.Technol.2006, 29, 589.
[58] J.G.Toffaletti, Crit.Rev.Clin.Lab.Sci.1991, 28, 253.
[59] J.-L.Vincent, P.Dufaye, J.Berré, M.Leeman, J.-P.Degaute, R.J.Kahn, Crit.Care Med.1983, 11, 449.
[60] R.Henning, M.Weil, F.Weiner, Circ.Shock 1982, 9, 307.

Figure 11: Computational 3D snapshots of droplet impact on a sphere; W e = 26.14, Re = 42.48, density ratio=328, contact angle=76◦, Bo = 0.0908.

Application of a high density ratio lattice-Boltzmann model for the droplet impingement on flat and spherical surfaces

평면 및 구형 표면의 액적 충돌을위한 고밀도 비율 격자-볼츠만 모델 적용

Duo Zhang1,2, K. Papadikis1∗, Sai Gu1
1Xi’an Jiaotong-Liverpool University, No. 111 Ren’ai Road, Suzhou Dushu Lake Higher Education
Town, Suzhou, China 215123.
2The University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom.
Tel: 0086-512-88161752
Email: Konstantinos.Papadikis@xjtlu.edu.cn
∗Corresponding author

현재 연구에서는 고밀도 비율을 견딜 수있는 3 차원 격자 Boltzmann 모델을 사용하여 액체 방울이 평면 및 구형 타겟에 충돌하는 것을 시뮬레이션합니다. Weber 및 Reynolds 수의 범위에 대해 운동 학적, 확산, 이완 및 평형 단계와 같이 평평한 표면에 대한 액적 충돌의 4 단계를 얻었습니다. 예측 된 최대 확산 계수는 문헌에 발표 된 실험 데이터와 잘 일치합니다. 액체 방울이 구형 타겟에 미치는 영향에 대해 타겟 표면에서 필름 두께의 시간적 변화를 조사합니다. 필름 역학의 세 가지 다른 시간적 위상, 즉 초기 낙하 변형 위상, 관성 지배 위상 및 점도 지배 위상이 재현되고 연구됩니다. 액적 레이놀즈 수와 목표 대 드롭 크기 비율이 필름 흐름 역학에 미치는 영향을 조사합니다.

고체 표면의 물방울 충돌은 땅에 떨어지는 빗방울, 잉크젯 인쇄, 뜨거운 표면의 스프레이 냉각, 스프레이 페인팅 및 코팅, 플라즈마 스프레이, 연소실의 연료 스프레이, 고정식 촉매 처리와 같은 일반적인 현상입니다. 베드 반응기 및 최근에는 미세 가공 및 미세 채널 [1]. 따라서 고체 표면에 영향을 미치는 물방울에 대한 연구는 연구원들의 큰 관심을 끌고 있습니다. Rein [2]은이 현상에 대한 포괄적 인 리뷰를 발표했습니다. Rioboo 등 [3]에 의해 체계적인 연구가 수행되었으며, 여기서 건식 벽에 대한 낙하 충격의 6 가지 가능한 결과, 즉 퇴적, 신속한 스플래시, 코로나 스플래시, 후퇴 이탈, 부분 반동 및 완전 반동이 밝혀졌습니다.

Keywords: Multiphase flow, Lattice Boltzmann, high-density-ratio, droplet impact, spread
factor, film thickness

Figure 2: Computational snapshots of the droplet impact on a flat surface; W e = 52, Re = 41, density ratio=240, contact angle=96◦ .
Figure 2: Computational snapshots of the droplet impact on a flat surface; W e = 52, Re = 41, density ratio=240, contact angle=96◦ .
Figure 6: Time evolution of the spread factor for Oh = 0.177.
Figure 6: Time evolution of the spread factor for Oh = 0.177.
Figure 11: Computational 3D snapshots of droplet impact on a sphere; W e = 26.14, Re = 42.48, density ratio=328, contact angle=76◦, Bo = 0.0908.
Figure 11: Computational 3D snapshots of droplet impact on a sphere; W e = 26.14, Re = 42.48, density ratio=328, contact angle=76◦, Bo = 0.0908.
Table 2: Summary of the simulation parameters for the cases of droplet impact onto a sphere.
Table 2: Summary of the simulation parameters for the cases of droplet impact onto a sphere.

References

References
[1] A.L.Yarin, Drop impact dynamics: Splashing, spreading, receding, bouncing. . . , Annu. Rev. Fluid Mech. 38(2006) 159-192.
[2] M.Rein, Phenomena of liquid drop impact on solid and liquid surface, Fluid. Dyn.
Res. 12(1993) 61-93.
[3] R.Rioboo, M.Marengo, C.Tropea, Time evolution of liquid drop impact onto solid,
dry surfaces, Exp. Fluids. 33(2002) 112-124.
[4] A.Asai, M.Shioya, S.Hirasawa, T.Okazaki, Impact of an ink drop on paper, J Imaging
Sci Techn. 37(1993) 205-207.
[5] B.L.Scheller, D.W.Bousfield, Newtonian drop impact with a solid surface, AIChE J.
41(1995) 1357-1367.
[6] S. Chandra and C. T. Avedesian, On the collision of a droplet with a solid surface,
Proc. R. Soc. London, Ser. A 432(1991) 13.
[7] M.Pasandideh-Fard, Y.M.Qiao, S.Chandra, J.Mostaghimi, Capillary effects during
droplet impact on a solid surface, Phys Fluids. 8(1996) 650-660.
[8] T.Mao, D.C.S.Kuhn, H.Tran, Spread and rebound of liquid droplets upon impact on
flat surfaces, AIChE J. 43(1997) 2169-2179.
[9] I.V.Roisman, R.Rioboo, C.Tropea, Normal impact of a liquid drop on a dry surface:
Model for spreading and receding, Proc. R. Soc. London, Ser. A 458(2002) 1411-1430.
[10] H.Dong, W.W.Carr, D.G.Bucknall, J.F.Morris, Temporally-resolved inkjet drop impaction on surfaces, AIChE J. 53(2007), 2606-2617.
[11] L.S.Hung, S.C.Yao, Experimental investigation of the impaction of water droplets
on cylindrical objects, Int. J. Multiphase Flow 25(1999) 1545-1559.

[12] Y.Hardalupas, A.M.K.P.Taylor, J.H.Wilkins, Experimental investigation of submillimeter droplet impingement onto spherical surfaces, Int. J. Heat Fluid Flow 20 (1999)
477-485.
[13] S.Bakshi, L.V.Roisman, C.Tropea, Investigations on the impact of a drop onto a
small spherical target, Phys Fluids. 19(2007) 032102.
[14] S.Mukherjee, Numerical simulation of wall impinging drops, Ph.D.thesis, School of
Mechanical Engineering, Purdue University 2006.
[15] G.Trapaga, J.Szekely, Mathematical Modeling of the Isothermal Impingement of
Liquid Droplets in Spraying Processes, Metall. Trans. B. 22(1991) 901-914.
[16] M.Bussmann, S.Afkhami, Drop impact simulation with a velocity-dependent contact
angle, Chem. Eng. Sci. 62(2007) 7214-7224.
[17] A.Gupta, R.Kumar, Droplet impingement and breakup on a dry surface, Comput.
Fluids. 39(2010) 1696-1703.
[18] A.Gupta, R.Kumar, Two-dimensional lattice Boltzmann model for droplet impingement and breakup in ow density ratio liquids, Comm. Comp. Phys. 10(2011) 767-784.
[19] Y.Y.Yan, Y.Q.Zu, A lattice Boltzmann method for incompressible two-phase flows
on partial wetting surface with large density ratio, J. Comput. Phys. 227(2007) 763-
775.
[20] T.Inamuro, T.Ogata, S.Tajima, N.Konishi, A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys. 198(2004)
628-644.
[21] A.J.Briant, P.Papatzacos, J.M.Yeomans, Lattice Boltzmann simulations of contact
line motion in a liquid-gas system, Philos. Trans. Roy. Soc. Lond. A. 360(2002) 485-
495.

[22] A.Fakhari, M.H.Rahimian, Phase-field modeling by the method of lattice Boltzmann
equations, Phys. Rev. E. 81(2010) 036707.
[23] M.R.Swift, E.Orlandini, W.R.Osborn, J.M.Yeomans, Lattice Boltzmann simulations
of liquid-gas and binary fluid systems, Phys. Rev. E. 54(1996) 5041-5052.
[24] S.Q.Shen, F.F.Bi, Y.L.Guo, Simulation of droplets impact on curved surfaces with
lattice Boltzmann method, Int. J. Heat Mass Tranf. 55(2012) 6938-6943.
[25] X.Shan, H.Chen, Simulation of nonideal gases and liquid-gas phase transitions by
the lattice Boltzmann equation, Phys. Rev. E. 49(1994) 2941-2948.
[26] P.Yuan, L.Schaefer, Equations of state in a lattice Boltzmann model, Phys Fluids.
18(2006) 042101.
[27] D.H.Rothman, J.M.Keller, Immiscible cellular-automation fluids, J. Statist. Phys.
52(1988) 1119-1129.
[28] X.He, S.Chen, R.Zhang, A lattice Boltzmann scheme for incompressible multiphase
flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys.
152(1999) 642-663.
[29] T.Reis, T.N.Phillips, Lattice Boltzmann model for simulating immiscible two-phase
flows, J. Phys. A: Math. Theor. 40(2007) 4033-4053.
[30] S.Leclaire, M.Reggio, J.-Y.Trepanier, Numerical evaluation of two recoloring operators for an immiscible two-phase flow lattice Boltzmann model. 36(2012) 2237-2252.
[31] S.Leclaire, P.Nicolas, M.Reggio, J.-Y.Trepanier, Enhanced equilibrium distribution
functions for simulationg immiscible multiphase flows with variable density ratios in
a class of lattice Boltzmann models. 57(2013) 159-168.
[32] H.B.Huang, H.W.Zheng, X.Y.Lu, C.Shu, An evaluation of a 3D free-energy-based
lattice Boltzmann model for multiphase flows with large density ratio, Int. J. Numer.
Meth. Fluids. 63(2009) 1193-1207.

[33] T.Lee, C.L.Lin, A stable discretization of the lattice Boltzmann equation for simulation of incompressible two-phase flows at high density ratio, J. Comput. Phys.
206(2005) 16-47.
[34] H.W.Zheng, C.Shu, Y.T.Chew, A lattice Boltzmann model for multiphase flows with
large density ratio, J. Comput. Phys. 218(2006) 353-371.
[35] D.A.Perumal, A.K.Dass,Application of lattice Boltzmann method for incompressibe
viscous flows, Applied Mathematical Modelling. 37(2013) 4075-4092.

Result of simulation by changing surface tension

잉크젯 프린팅에서 해상력에 관한 컴퓨터 시뮬레이션 연구

A Study on the Simulation of the Resolution for Ink-Jet Printing

  • Lee, Ji-Eun (Dept. of Graphic Arts Engineering, Graduate School, Pukyong National University) ;
  • Youn, Jong-Tae (Dept. of Graphic Arts Information, College of Engineering, Pukyong National University) ;
  • Koo, Chul-Whoi (Dept. of Graphic Arts Information, College of Engineering, Pukyong National University)
  • 이지은 (부경대학교 대학원 인쇄공학과) ;
  • 윤종태 (부경대학교 공과대학 인쇄정보공학과) ;
  • 구철회 (부경대학교 공과대학 인쇄정보공학과)

초록

Ink-jet is part of the non impact printing that shooting the ink drop from the nozzle to paper. It is very silence and express good color. There are two types of printing that continuous and drop on demand. But drop on demand process is becoming the mainstream. these days, LCD, PDP is passed more than semiconductor industry. And we expect organic EL, FED as a next display. But product equipment, main component and technology have a gap between an advanced country and us nevertheless physical development. Expecially, previous process part is depended on imports. Ink-jet printing technology that there isn’t complicated photo lithography process is attracted, so ink-jet printing resolution is more embossed. But there were not many of ink-jet resolution thesis but ink-jet head or nozzle. Because, to out of the ink from the nozzle is unseeable and hard to experiment. Therefore this thesis was experimented and simulated how can ink-jet printer improved resolution by flow-3d simulation package program.

잉크젯은 노즐에서 종이로 잉크 방울을 분사하는 비 충격 인쇄의 일부입니다. 매우 조용하고 좋은 색상을 표현합니다. 연속 및 요청시 드롭되는 두 가지 유형의 인쇄가 있습니다. 그러나 주문형 드롭 프로세스가 주류가되고 있습니다. 요즘 LCD, PDP는 반도체 산업을 넘어서고 있습니다. 그리고 우리는 유기 EL, FED를 다음 디스플레이로 기대합니다. 그러나 제품 장비, 주요 부품 및 기술은 선진국과 우리의 물리적 발달 사이에 격차가 있습니다. 특히 이전 공정 부분은 수입품에 의존합니다. 복잡한 포토 리소그래피 공정이없는 잉크젯 프린팅 기술이 매료되어 잉크젯 프린팅 해상도가 더욱 강조됩니다. 하지만 잉크젯 해상도 논문은 많지 않고 잉크젯 헤드 나 노즐이 많았습니다. 왜냐하면 노즐에서 잉크가 빠져 나가는 것은 보이지 않고 실험하기 어렵 기 때문입니다. 따라서이 논문은 flow-3d 시뮬레이션 패키지 프로그램을 통해 잉크젯 프린터가 해상도를 향상시킬 수있는 방법을 실험하고 시뮬레이션했습니다.

국내 및 해외에 다양한 인쇄 기술이 보급되어 있는 상황에서 잉크젯 기술은 1990년대 후반부터 궤도에 올랐다. 잉크젯은 비접촉성 인쇄 기술의 하나로 인쇄 표면에 잉크 방울 들을 투사해 전자적으로 조정하기 때문에 여러 가지 장점들이 있다. 원하는 양을 원하는 때 제작 가능하고 2,400dpi이상의 높은 해상도를 가지며 잉크 방울의 크기를 조절하여 보다 정확한 이미지인 그레이 스케일 이미지를 얻을 수 있다. 따라서 사진과 같은 이미 지를 만들 수 있다. 또한 기존의 붓을 이용한 디자인에 비해 높은 해상도의 이미지를 손 쉽게 만들 수 있으므로 그래픽 디자인에 대한 적용 범위를 확장할 수 있다. 그리고 카트 리지에 저장되어 있는 잉크를 이미지에 필요한 양만큼 소비하기 때문에 생산비 절감에 유리하다. 이는 코팅 기술이 가지고 있는 원료의 소모를 획기적으로 개선할 수 있다.또 한 코팅 방법과는 달리 기판에 영향을 주지 않는다. 거칠거나 민감한 모든 종류의 표면 위에 인쇄가 가능하며, 1분당 100,000라인의 인쇄 속도로 고속 처리에 적합하다. 현재 잉 크젯 프린터의 성능을 평가하는 방법 중에 가장 기본적인 것은 해상도이다. 그렇기 때문 에 인쇄물의 해상도에서는 dpi가 무척 중요하다. dpi는 dot per inch의 약자로 1인치당 찍은 점의 수이다. dpi는 인쇄물의 해상력을 결정하는 단위이다. 예를 들어 300dpi는 1인 치에 300개의 점을 찍는 밀도로 잉크 점을 찍어 인쇄를 한다는 뜻이다. 당연히 dpi는 숫 자가 클수록 인쇄물이 더 정교해진다. 그러나 제조업체에 따라 출력 dpi 수가 다르며 요 구되는 최적의 해상도도 프린터 엔진의 특성에 따라 다르다. 일반적인 인쇄물은 200dpi 면 좋은 품질이며, 300dpi를 넘으면 매우 우수한 품질이 된다. 우리가 일상생활에서 보 는 대부분의 인쇄물은 100~300dpi 정도롤 사용한다. 잉크젯 프린터에 1,440dpi라고 쓰여 있는 것은 dot의 실질적인 것을 말하는 것이 아니라, 이상적인 종이에 잉크 방울을 려 구현할 수 있는 이론상의 수치이다. 종이에 작은 잉크 입자돌을 뿌려 번지게 하는 방법 으로 인해, 표시된 해상력만큼 재현하지 못하는 경우가 많다. 따라서 실제로는 600dpi 잉크젯 프린터라고 해도 인쇄소에서 300dpi로 출력한 것보다 품질이 떨어지기도 한다. 그러므로 좋은 품질을 얻기 위해서는 목표로 한 해상력 보다 높게 인쇄해야 하는데 그 러기 위해서는 잉크젯의 해상력에 관한 연구가 필수적이다. 잉크에서는 주로 헤드와 노즐에 관한 연구들이 많이 있지만,~9 본 논문에서는 잉크젯의 해상력에 관한 연구를 하고자 한다. 본 연구의 목적은 FLOW-3D 시뮬레이션 프로그램을 이용하여 액적의 비산 모양을 시뮬레이션 함으로서 해상력에 대한 예측을 하기 위한 것이다. 잉크 방울의 크기가 해상 력에 미친다는 것을 알고, 잉크의 물성을 변화시켜가며 액적을 줄이기 위한 시뮬레이션 을 하였다.

Simulation of the bubble jet printing by FLOW-3D
ZSimulation of the bubble jet printing by FLOW-3D
Result of simulation by changing surface tension
Result of simulation by changing surface tension
Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.

Effect of the surface morphology of solidified droplet on remelting
between neighboring aluminum droplets

Abstract

인접한 물방울 사이의 좋은 야금학적 결합은 droplet 기반 3D 프린팅에서 필수적입니다. 그러나 재용해 메커니즘이 명확하게 마스터되었지만, 콜드 랩은 균일한 알루미늄 액적 증착 제조에서 형성된 부품의 일반적인 내부 결함이며, 이는 응고된 액 적의 표면 형태를 간과하기 때문입니다.

여기에서 처음으로 물방울 사이의 융합에 대한 잔물결과 응고각의 차단 효과가 드러났습니다. 재용해의 자세한 과정을 조사하기 위해 VOF (체적 부피) 방법을 기반으로 3D 수치 모델을 개발했습니다. 실험과 시뮬레이션을 통해 인접한 액적 간의 재 용융 공정은 두 번째 액 적과 기판 사이의 과도 접촉에 따라 두 단계로 나눌 수 있음을 보여줍니다.

첫 번째 단계에서는 재용해 조건이 이론적으로 충족 되더라도 콜드 랩이 형성 될 수 있다는 직관적이지 않은 결과가 관찰됩니다. 이전에 증착된 액적 표면의 잔물결은 새로운 액적과의 직접 접촉을 차단합니다. 두 번째 단계에서는 응고 각도가 90 °보다 클 때 액체 금속이 불완전하게 채워져 바닥 표면에 콜드랩이 형성됩니다. 또한 이러한 콜드 랩은 온도 매개 변수를 개선하여 완전히 피하는 것이 어렵습니다.

이 문제를 해결하기 위해 기판의 열전도 계수를 감소시키는 새로운 전략이 제안 되었습니다. 이 방법은 잔물결을 제거하고 응고 각도를 줄임으로써 물방울 사이의 재용해를 효과적으로 촉진합니다.

Keywords: 3D printing; aluminum droplets; metallurgical bonding; ripples; solidification angle.

Fig. 1. Schematic diagram of (a) experimental setup and (b) process principle of uniform aluminum droplet deposition manufacturing.
Fig. 1. Schematic diagram of (a) experimental setup and (b) process principle of uniform aluminum droplet deposition manufacturing.
Fig. 2. Schematic diagram of the numerical model of two droplets successively depositing on the substrate.
Fig. 2. Schematic diagram of the numerical model of two droplets successively depositing on the substrate.
Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.
Fig. 3. Comparison of SEM photographs and simulation results of two neighboring aluminum droplets from (a) top view, (b) side view and (c) bottom view. The scale bar is 100 µm.
Fig. 4. Experimental and simulation images of shape evolution during two neighboring droplets successively impacting at (a) t, (b) t+0.5 ms, (c) t+1 ms, (d) t+2 ms, (e) t+3 ms and (f) t+5 ms.
Fig. 4. Experimental and simulation images of shape evolution during two neighboring droplets successively impacting at (a) t, (b) t+0.5 ms, (c) t+1 ms, (d) t+2 ms, (e) t+3 ms and (f) t+5 ms.
Fig. 5. SEM observation of (a) side view and (b) bottom view of successive deposition of aluminum droplets; (c) enlarged side view of the section of the printed metal trace in (a); (d) fracture of two neighboring droplets; (e) cross-section of two droplets successive deposition; (f) enlarged view of the selected section in (e).
Fig. 5. SEM observation of (a) side view and (b) bottom view of successive deposition of aluminum droplets; (c) enlarged side view of the section of the printed metal trace in (a); (d) fracture of two neighboring droplets; (e) cross-section of two droplets successive deposition; (f) enlarged view of the selected section in (e).
Fig. 6. Simulation results of (a) shape evolution and solid fraction distribution in Y- Z middle cross-section of two successively-deposited droplets; (b) temperature variation with time at three points (labeled A-C) on the surface of the first droplet during the deposition of the second droplet.
Fig. 6. Simulation results of (a) shape evolution and solid fraction distribution in Y- Z middle cross-section of two successively-deposited droplets; (b) temperature variation with time at three points (labeled A-C) on the surface of the first droplet during the deposition of the second droplet.

References

[1] D. Zhang, L. Qi, J. Luo, H. Yi, X. Hou, Direct fabrication of unsupported inclined aluminum pillars
based on uniform micro droplets deposition, International Journal of Machine Tools and Manufacture,
116 (2017) 18-24.
[2] H. Yi, L. Qi, J. Luo, Y. Jiang, W. Deng, Pinhole formation from liquid metal microdroplets impact
on solid surfaces, Applied Physics Letters, 108 (2016) 041601.
[3] T. Zhang, X. Wang, T. Li, Q. Guo, J. Yang, Fabrication of flexible copper-based electronics with
high-resolution and high-conductivity on paper via inkjet printing, Journal of Materials Chemistry C, 2
(2014) 286-294.
[4] T. Zhang, M. Hu, Y. Liu, Q. Guo, X. Wang, W. Zhang, W. Lau, J. Yang, A laser printing based
approach for printed electronics, Applied Physics Letters, 108 (2016) 103501.
[5] H. Gorter, M. Coenen, M. Slaats, M. Ren, W. Lu, C. Kuijpers, W. Groen, Toward inkjet printing of
small molecule organic light emitting diodes, Thin Solid Films, 532 (2013) 11-15.
[6] R. Vellacheri, A. Al-Haddad, H. Zhao, W. Wang, C. Wang, Y. Lei, High performance supercapacitor
for efficient energy storage under extreme environmental temperatures, Nano Energy, 8 (2014) 231-237.
[7] C.W. Visser, R. Pohl, C. Sun, G.W. Römer, B. Hu is in‘t Veld, D. Lohse, Toward 3D printing of
pure metals by laser‐induced forward transfer, Advanced materials, 27 (2015) 4087-4092.
[8] M. Fang, S. Chandra, C. Park, Heat transfer during deposition of molten aluminum alloy droplets to
build vertical columns, Journal of Heat Transfer, 131 (2009) 112101.
[9] Q. Xu, V. Gupta, E. Lavernia, Thermal behavior during droplet-based deposition, Acta materialia,
48 (2000) 835-849.
[10] W. Liu, G. Wang, E. Matthys, Thermal analysis and measurements for a molten metal drop
impacting on a substrate: cooling, solidification and heat transfer coefficient, International Journal of
Heat and Mass Transfer, 38 (1995) 1387-1395.
[11] R. Rangel, X. Bian, Metal-droplet deposition model including liquid deformation and substrate
remelting, International journal of heat and mass transfer, 40 (1997) 2549-2564.
[12] B. Kang, Z. Zhao, D. Poulikakos, Solidification of liquid metal droplets impacting sequentially on
a solid surface, TRANSACTIONS-AMERICAN SOCIETY OF MECHANICAL ENGINEERS
JOURNAL OF HEAT TRANSFER, 116 (1994) 436-436.

Figure 6: Fluid firing of test model

버블 제트 마이크로 액추에이터에서 기포 성장 및 액체 흐름의 수치 시뮬레이션

Numerical analysis of liquid flow characteristics according to the design parameters of a bubble jet microactuator

마이크로 액추에이터 챔버 및 노즐 내부의 유체 역학의 수치 모델이 제공됩니다. 모델에는 저장소로부터의 잉크 흐름, 기포 형성 및 성장, 노즐을 통한 배출, 리필 프로세스의 역학이 포함됩니다. 고 테이퍼 노즐은 전체 액추에이터 성능 설계에 매우 중요한 매개 변수 중 하나이기 때문에 노즐 두께, 직경 및 테이퍼 각도의 변화에 ​​따른 효과를 시뮬레이션하고 일부 결과를 실험 결과와 비교합니다.

얇고 테이퍼형 노즐을 통한 잉크 방울 배출이 보다 안정적이고 빠르고 견고하다는 것이 확인되었습니다.

키워드: Numerical smulation, Micro actuator; Bubble growth, Drop ejection, Volume of fluid

Figure 1: The commercial thermal micro actuator
Figure 1: The commercial thermal micro actuator
Table 1: Prediction results of the effects of nozzle thickness and diameter change
Table 1: Prediction results of the effects of nozzle thickness and diameter change
Figure 2: Designed polyimide nozzles
Figure 2: Designed polyimide nozzles
Figure 3: SEM photograph of one nozzle
Figure 3: SEM photograph of one nozzle
Figure 5: Geometry of test model
Figure 5: Geometry of test model
Figure 6: Fluid firing of test model
Figure 6: Fluid firing of test model

Conclusions

수치 시뮬레이션은 마이크로 버블 증가 및 낙하 방출 현상의 예측에 성공적으로 적용됩니다. 노즐 두께의 변화 결과와 비교했을 때, 우리는 얇은 노즐이 더 빠른 방울을 만든다는 것을 발견했습니다. 또한 노즐 직경이 증가하면 방울 부피가 증가할 수 있습니다. 이 수치 시뮬레이션에서는 노즐 직경의 20%를 증가시키면 방울 부피는 49.3% 증가하고 노즐 두께의 20%를 감소시키면 방울 속도는 약 8.5% 증가합니다. 노즐 테이퍼 각도 변경의 예측 결과에 따르면, 테이퍼형 노즐이 더 빠른 속도로 거의 동일한 유체량을 보인다는 결론을 내렸습니다. 방울 속도만이 방울 배출의 품질을 향상시킬 수 있는 유일한 요인은 아니지만, 방울이 빠르면 일반적으로 위성이 줄어들고, 물에 젖지 않는 상태가 개선되며, 정렬 효과가 좋아지며, 직선 방출이 가능합니다.

References

SHOWING 1-9 OF 9 REFERENCESThree-Dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer

SaveAlertResearch FeedBubble Dynamics in Boiling Under High Heat Flux Pulse Heating

SaveAlertResearch FeedLBM simulation on friction and mass flow analysis in a rough microchannel

SaveAlertResearch FeedAnalysis on the performance and internal flow of a tubular type hydro turbine for vessel cooling system

SaveAlertResearch FeedAn Introduction to Microelectromechanical Systems Engineering

  • View 2 excerpts, references background

SaveAlertResearch FeedInkjet technology and product development strategies

  • Carlsbad: Torrey Pines Research, pp. 115-117, 2000.
  • 2000

Particle tolerant architecture

  • IS&T’s NIP 16 International Conference on Digital Printing Technology, pp. 39-43, 2000.
  • 2000

Drop Generation Process in TIJ Printheads

  • IS&T’s 10th International Congress on Advances in Non-Impact Printing Technologies, pp. 169-171, 1994.
  • 1994

Bubble generation mechanism in the bubble jet recording process

  • Journal of Imaging Technology, vol. 14, pp. 120-123, 1988.
  • 1988
Deep 코팅 검증계산

The Coating Application Using the Excellent Flow Modeling Software FLOW-3D

우수한 플로우 모델링 소프트웨어 FLOW-3D를 이용한 코팅 적용 연구

FLOW-3D는 미국 Flow Science Inc.에 의해 개발된 고유한 계산 유체 동적 프로그램입니다. FORE-3D는 FORDR(장애물 표현의 단편 영역 볼륨) 유한 차이 체계를 기반으로 Navier-Stokes 전체 솔버를 가지고 있습니다.

실제 VOF(Volume of Fluid) 알고리즘은 FLOW-3D에 통합되어 신뢰할 수 있는 자유 표면 흐름 분석을 제공합니다. FLOW-3D에는 다양한 물리적 모델이 있습니다. 따라서 FLOW-3D는 잉크젯 또는 코팅 등 광범위한 산업 영역에 사용됩니다.

본 논문에서는 FLOW-3D의 특징과 동적 접촉선의 직접 연산, 코팅 적용 예제를 설명합니다.

확대한 구형 방울
확대한 구형 방울
표면 파를 수반하는 세류의 시트 모양 흐름/세류가 축퇴하여 액적을 형성하는 예
표면 파를 수반하는 세류의 시트 모양 흐름/세류가 축퇴하여 액적을 형성하는 예
Deep 코팅 검증계산
Deep 코팅 검증계산
롤 코팅 검증계산
롤 코팅 검증계산
2層 コー テ ィング計算 例/ゆ っ くりした ウェ ブ接 近
2層 コー テ ィング計算 例/ゆ っ くりした ウェ ブ接 近
カー テ ン塗 布 のエ ッジ近 傍 にお け る塗 液流 れ解 析
カー テ ン塗 布 のエ ッジ近 傍 にお け る塗 液流 れ解 析
Pinned contact line resulting in coffee ring deposits (a). Constant contact angle and mixed mode resulting in moderately more uniform deposits (b).

Inkjet Printability of Electronic Materials Important to the Manufactur Manufacture of Fully Printed O ully Printed OTFTs

Sooman Lim
Western Michigan University, sooman.lim@gmail.com

초록

본 연구에서는 OTFT(Printed Organic Thin Film Transistors) 제작에 중요한 재료의 잉크젯 인쇄성이 조사되었습니다. 잉크젯 인쇄 잉크의 분사 진화를 이해하기 위해 나노 구리 및 나노 입자 은 잉크로 시뮬레이션이 수행되었습니다. 나노 구리 잉크의 잉크젯 적합성을 예측하기 위해 온도 차이가 있는 Z와 Oh 수를 측정했습니다. FLOW-3D를 이용한 시뮬레이션 연구의 결과를 Dimatix 잉크젯 프린터를 사용하여 얻은 실험 결과와 비교했습니다.

반도체 잉크의 경우, 두 유기 반도체의 잉크젯 인쇄성 P2TDC17FT4(poly[(3,7-dipdecdecyltheno[3,2-b]theno[2′,3′:4,5]theno[2,3-diopneo] 티오페인-2,6-diopeo[2,6-diotyl)]입니다.HT(poly-3 hexylthiophene)를 비교하여 낙하 속도, 낙하 볼륨 및 점화 전압 간의 관계를 확인하고, 낙하 간격 및 기판 온도가 인쇄 품질에 미치는 영향을 확인했습니다.

이러한 연구를 통해 인쇄 가능성과 인쇄 품질은 잉크젯으로 인쇄된 상단 게이트 OTFT를 완벽하게 구현하기에 충분했습니다. 주변 조건에서 인쇄되는 P2TDC17FT4의 성능은 저비용 완전 인쇄 OTFT의 실현에 중요한 영향을 미칩니다.

후처리 연구로 은색 잉크의 유망한 대체품인 나노 구리 잉크를 IPL(Incensive Pulsed Light)로 소결시키는 것이 연구되었습니다. 잉크 필름 두께와 소결 시 필요한 에너지 사이의 관계가 확인되었습니다. 잉크 필름 두께와 관련하여 유리와 PET에 소결하는데 필요한 에너지 수준을 비교한 결과, 이 잉크의 처리 요구 사항에 대한 기판의 열적 기여도가 밝혀졌습니다. 이 조사 결과는 자재 특성 요구 사항에 대한 현재의 이해와 완전히 잉크젯으로 인쇄된 OTFT를 달성하기 위한 과제를 진전시킵니다.

Schematic design showing the principles of operation of a continuous inkjet (CIJ) printer.
Schematic design showing the principles of operation of a continuous inkjet (CIJ) printer.
Illustration of the piezo movement under an applied voltage.
Illustration of the piezo movement under an applied voltage.
Construction of a traditional piezoelectric squeeze type print head.
Construction of a traditional piezoelectric squeeze type print head.
Pinned contact line resulting in coffee ring deposits (a). Constant contact angle and mixed mode resulting in moderately more uniform deposits (b).
Pinned contact line resulting in coffee ring deposits (a). Constant contact angle and mixed mode resulting in moderately more uniform deposits (b).
Marangoni effect, where Tc is the CT line temperature, Ta is the drop apex temperature,  and a is the drop apex surface tension
Marangoni effect, where Tc is the CT line temperature, Ta is the drop apex temperature, and a is the drop apex surface tension
Comparison of drop evolution and drop ejection pictures droplet obtained experimentally and using CFD software for the nano copper ink
Comparison of drop evolution and drop ejection pictures droplet obtained experimentally and using CFD software for the nano copper ink

Granular Media

Granular 미디어

가공 및 제조 업계에서는 다양한 유형의 The granular media model를 접할 수 있습니다. 특이한 특성으로 인해 입상 재료는 유용한 목적을 위해 전달, 혼합 또는 조작하려는 엔지니어에게 어려운 문제를 제기 할 수 있습니다. 입상 매체 모델은 고체 입자와 기체 또는 액체 (예 : 모래와 공기 또는 모래와 물) 일 수있는 유체의 혼합물의 거동을 예측하는 데 사용됩니다. 입상 고체와 유체의 혼합물은 수수료 표면에 의해 제한 될 수있는 비압축성 유체로 취급됩니다. 입상 매체 모델은 고농축 입상 재료의 흐름을 위해 개발되었습니다. 이 모델은 “연속”접근 방식을 사용합니다. 즉, 모래의 연속적인 유체 표현을 기반으로 하여 개별 모래 입자를 처리하려고 하지 않습니다.

Sand flowing under gravity in two-dimensional hour glass
2 차원 모래 시계에서 중력에 의해 흐르는 모래. 작은 검은 색 선은 속도 벡터입니다. 빨간색은 대부분 완전히 채워진 모래 밀도를 나타냅니다.

Granular미디어 모델링

모래와 공기의 혼합물은 공기와 모래 재료가 개별 속도로 흐르지만 압력 및 점성 응력으로 인한 운동량 교환을 통해 결합되는 2 상 흐름입니다. 전형적인 코어 모래에서 모래 입자의 직경은 약 10 분의 1 밀리미터이며 공동으로 날려지는 모래의 부피 분율은 일반적으로 50 % 이상입니다. 이 범위에서는 모래와 공기 사이에 강력한 결합이 존재하므로 그 혼합물을 단일 복합 유체로 모델링 할 수 있습니다. 두 재료의 속도 차이로 인한 2 상 효과는 Drift-Flux라고 하는 상대 속도에 대한 근사치를 사용하여 설명됩니다.

상대 속도 접근 방식을 사용하는 이 복합 흐름은 입상 매체 모델의 기반으로 선택되었습니다. 모래/공기 혼합물은 주변 공기와의 경계에 날카로운 자유 표면이 있는 단일 유체로 표현 될 수 있다고 가정합니다. 그러나 복합 유체는 모래 다짐 정도에 따라 균일하지 않은 밀도를 가질 수 있습니다. 혼합물의 점도는 밀도와 전단 응력의 함수입니다. 운동량 전달의 대부분은 입자-입자 충돌에 의한 것이기 때문에 모래-공기 혼합물은 전단 농축 물질의 특성을 갖습니다.

캐비티의 순수한 공기 영역을 배출하기 위해 단열 기포로 처리됩니다. 단열 기포는 유체 또는 단단한 벽으로 둘러싸인 공기 영역입니다. 기포의 압력은 기포 부피의 함수이며 기포가 차지하는 영역에서 균일 한 값을 갖습니다. 통풍구는 기포 내의 공기가 공동 외부로 배출되도록 합니다.

Sand Core Blowing Applications

유체와 달리 입상매질에서는 발생할 수 있는 몇 가지 차이점을 설명하기 위해 간단한 2 차원 쐐기 모양 호퍼가 바닥에 1cm 너비 튜브로 설치되었습니다. 시뮬레이션은 바닥 튜브가 비어있는 채로 시작됩니다.

Granular media model
 
Figures 1-4 (From left to right): Initial 2D hopper configuration; Time 1.75s — Vectors are black; Time 3.0s; Time 5.0s

모래는 0.63 부피 분율의 가까운 포장 한계에서 초기화되었습니다. 배출관 입구의 바닥에있는 모래는 중력의 작용으로 떨어지기 시작하지만 위의 거의 모든 모래는 고정되어 있습니다. 1-4, 여기서 색상은 패킹으로 인한 흐름 저항입니다 (빨간색은 완벽하게 단단함). 짧은 시간에 거품과 같은 영역이 형성되고 모래의 윗면을 향해 올라갑니다. 기포가 상단에 도달 할 때까지 기포 표면 주위의 흐름 만 보이며 표면이 붕괴됩니다. 상단 표면의 움푹 들어간 부분은 측면을 34 °의 지정된 안식각으로 줄이는 국부적 흐름을 가지고 있습니다. 한편이 패턴을 반복하기 위해 바닥에 또 다른 거품이 형성됩니다.

이 새로운 모델의 적용을 설명하기 위해 D. Lefebvre, A. Mackenbrock, V. Vidal, V에 의해 “날린 코어 및 금형 설계에서 시뮬레이션 개발 및 사용”논문의 데이터와 비교하기 위해 시뮬레이션을 수행했습니다. Pavan and PM Haigh., Hommes & Fonderie, 2004 년 12 월. 데이터는 하나의 충전 포트가있는 2 차원 다이 형상에 대한 것입니다. 다이의 벤팅은 비대칭 적이 어서 벤트가 충전 패턴에 미치는 영향을 연구 할 수 있었습니다.

시뮬레이션 영역의 크기는 폭 30cm, 높이 15cm, 두께 1cm입니다. 밀도 1.508 gm/cc의 모래 / 공기 혼합물을 상자 입구에서 절대 2 기압의 압력으로 상자에 넣었습니다. 상자의 오른쪽에는 5 개의 열린 통풍구가 있고 상자의 아래쪽과 왼쪽에는 6 개의 통풍구가 더 있습니다. 이 배열은 상자의 비대칭 채우기로 이어집니다.

Sand core blowing continuum model simulation
 
Figure 5:  연속체 모델 시뮬레이션과 실험 데이터의 비교 시뮬레이션 결과는 0.035s, 0.047s 및 0.055s입니다. 색조는 혼합 농도를 나타냅니다.

계산 그리드는 수평으로 80 개의 메쉬 셀과 수직으로 40 개의 메쉬로 구성되었습니다. 시뮬레이션이 완전히 채워진 코어 박스에 도달하는 데 걸리는 시간은 0.07 초 였고 3.2GHz Pentium 4 PC 컴퓨터에서 직렬 모드로 실행되는 CPU 시간이 약 8.9 초가 필요했습니다 (만족할 정도로 작지만 물론 이것은 2D 케이스였습니다. 계산 영역에 3200 개의 셀이 있음).

연속체 모델 시뮬레이션의 결과와 Lefebvre 등 논문의 사진을 비교 한 결과가 그림 5에 나와 있습니다. 시각적 일치는 많은 세부 사항에서 매우 좋은 것으로 보입니다. 시뮬레이션은 왼쪽에 통풍구가 닫혀있는 비대칭 영향을 포착합니다.

FIG. 2. Sequence of images showing capillary-driven neck evolution and droplet formation for low-viscosity fluids

Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method

낙하 형성 및 분리는 표면 장력 구동 흐름으로 인해 가늘어지는 유체 목의 형성을 포함하여 큰 위상 변화를 수반하며, 목의 pinch-off에서 Laplace pressure와 같은 속성은 유한한 시간 특이성을 나타냅니다. 드롭 형성 중에 발생하는 큰 위상 변형과 비선형성을 정확하게 시뮬레이션하는 것은 일반적으로 pinch-off 순간에 가까운 작은 특징을 해결하기 위해서는 고해상도 및 정확도가 필요하기 때문에 수치 시뮬레이션이 계산적으로 요구됩니다.

필요한 질량 및 계산 시간을 보존하고 인터페이스를 추적하는 데 내재된 이점에도 불구하고, 초기 실무자들이 물 점도가 10배 이상인 유체에 대한 수렴 문제를 보고했기 때문에 낙하 형성 연구에 VOF(Volume-of-fluid) 방법을 활용하는 연구는 거의 없습니다.

이 기여에서, 우리는 FLOW-3D에 구현된 VOF 방법을 사용하여 물 점도보다 4배 더 높은 점도 값을 포함하여 뉴턴 유체에 대한 드리프트의 원형 자유 표면 흐름을 시뮬레이션합니다. 우리는 이 연구의 일부로 수행된 실험에 대해 시뮬레이션된 목 모양, 목 진화 속도 및 헤어짐 길이를 벤치마킹합니다.

핀치오프 역학은 관성, 점성 및 모세관 응력의 복잡한 상호 작용에 의해 결정되며, 여기서 실험과 시뮬레이션 모두에서 대조되는 자기 유사 스케일링 법칙은 종종 역학에 대해 설명합니다. 우리는 시뮬레이션된 반지름 진화 프로파일이 축 대칭 흐름에 대한 뉴턴 유체에 대해 실험적으로 관찰되고 이론적으로 예측되는 핀치오프 역학과 일치함을 보여준다. 또한, 우리는 가는 목 안에서 법칙, 속도 및 변형 필드의 스케일링에 대한 사전 요인을 결정하고, 우리는 실험과 비교할 수 있는 중단 시간과 길이뿐만 아니라 사전 요인을 VOF 방법을 사용하여 시뮬레이션할 수 있음을 보여줍니다.

experimental setup, as shown schematically in Fig. 1(a), includes a dispensing system
experimental setup, as shown schematically in Fig. 1(a), includes a dispensing system
 A numerical simulation of drop formation from a cylindrical nozzle at a constant flow rate is performed. (c) Graphical representation of the VOF approach
A numerical simulation of drop formation from a cylindrical nozzle at a constant flow rate is performed. (c) Graphical representation of the VOF approach
FIG. 2. Sequence of images showing capillary-driven neck evolution and droplet formation for low-viscosity fluids
FIG. 2. Sequence of images showing capillary-driven neck evolution and droplet formation for low-viscosity fluids. (a) A sequence of simulated images of water (0 wt. % glycerol) shows neck formation and subsequent thinning and pinch-off dynamics including the formation of the satellite drop. (b) A sequence of images shows neck radius evolution and drop detachment for the low viscosity fluid composed of 50 wt. % glycerol in water. The time step between images is 500 µs, and the scale bar represents a length of 1 mm for the two cases shown. The color bar shows the velocity field in units of cm/s. The addition of glycerol seems to exercise a relatively minor influence on pinch-off dynamics despite a five-fold increase in viscosity.
FIG. 3. Computed evolution of the minimum radius of the water neck during the drop formation and detachment process
FIG. 3. Computed evolution of the minimum radius of the water neck during the drop formation and detachment process. The instantaneous neck radius of water and the inertio-capillary fit are shown. The inset shows a self-similar nature of neck thinning dynamics close to a pinch-off moment. The characteristic cone angle of 18.1◦ as predicted by Day et al.50 and visualized in experiments52 is captured well using the VOF method.
FIG. 5. Glycerol thinning image sequence and break-up length visualization for three cases
FIG. 5. Glycerol thinning image sequence and break-up length visualization for three cases. (a) Glycerol thinning is shown through a sequence of snapshots with a time step ∆t = 5 ms and reveals quite different dynamics compared to previously seen for low viscosity fluids. The length of a filament changes significantly when the glycerol content increases above 70 wt. %. (b) Final lengths of the simulated liquid filaments before pinch-off for three cases of glycerol + water mixtures (0 wt. %, 70 wt. %, and 100 wt. %).
FIG. 8. Comparison of experiments and simulations for the case of a drop formation for 80 wt. % glycerol and water mixture
FIG. 8. Comparison of experiments and simulations for the case of a drop formation for 80 wt. % glycerol and water mixture. (a) A set of images obtained from experiments (upper row) and simulations (bottom row) with a time step of 1 ms show good agreement. The simulated drop profiles shown in the bottom row are colored by the velocity magnitude [ranging from 0 (dark blue) to 100 cm/s (red) and colored online], and velocity vectors are shown in the images. (b) Radius evolution with time of liquid filament formed during the drop formation process is shown on a log-log plot for the two cases.
Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

Mass Particles and Acoustophoretics

질량 입자 및 Acoustophoretics

주요 개발 중 하나는 FLOW-3D v11.2 버전부터 크게 개선 및 확장된 입자 모델 입니다. 사실 입자 모델에는 새로운 기능이 너무 많아서 질량 입자에 대해 여러 게시물에서 논의 할것입니다.

Acoustophoretic Particle Focusing
Acoustophoretic Particle Focusing

새 모델에서 입자는 기본 기능에 따라 다음 클래스로 그룹화됩니다.

  • 마커 입자 는 단순하고 질량이없는 마커이며 유체 흐름을 추적하는 데 가장 적합합니다.
  • 질량 입자 는 모래 알갱이 또는 내포물과 같은 고체 물체를 나타냅니다.
  • 유체 입자 는 유체 로 구성되며 응고를 포함한 유체 특성을 상속합니다.
  • 가스 입자  는 주변 유체의 온도 및 압력 부하에 따라 크기가 변하는 기포를 나타냅니다.
  • 공극 입자 는 가스 입자와 유사하지만 그 특정 기능은 붕괴 된 공극 영역을 표시하고 추적하는 것입니다. 예를 들어 주조에서 금형 충전 중에 생성되는 잠재적 다공성 결함을 예측하는 데 유용합니다.
  • 질량 / 운동량 소스 입자  는 메시에서 사용자 정의 된 질량 / 운동량 소스를 나타냅니다.
  • 프로브 입자  는 해당 위치에서 용액 양을 기록하고보고하는 진단 장치 역할을합니다. 다른 클래스의 입자로 만들 수 있습니다.
  • 사용자 입자 는 소스 코드의 사용자 정의 함수를 통해 사용자 정의 할 수 있습니다.

질량 입자

FLOW-3D 에서 질량 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도를 가진 다양한 질량 입자 종을 설정할 수 있습니다. 또한 질량 입자의 역학은 확산 계수, 항력 계수, 난류 슈미트 수 및 복원 계수와 같은 속성에 의해 제어 될 수 있습니다. 질량 입자는 열적 및 전기적 특성을 지정할 수도 있습니다.

사용자는 입자 생성을 위해 여러 소스를 설정할 수 있으며 각 소스는 이전에 정의 된 질량 입자 종 전체 또는 일부의 혼합을 가질 수 있습니다. 또한 사용자는 임의 또는 균일한 입자 생성을 선택하고 소스에서 입자가 생성되는 속도를 정의할 수도 있습니다. 전체적으로 사용자가 이 강력한 입자 모델을 사용할 수 있는 방법에는 많은 유연성이 있습니다.

Acoustophoretic Particle Separation | 음향 영동 입자 분리

Acoustophoretic Particle Separation는 질량 입자를 직접 사용할 수 있는 많은 응용 분야 중 하나 입니다. Acoustophoretics 입자 분리는 미세 유체 채널의 용액에서 많은 양의 물체를 제거하는 현대적이고 효율적인 방법을 나타냅니다. 미세 유체 용액에서 부유 고체 물체를 분리하는 능력은 의료(예 : 악성 세포 제거), 리서치(예 : 나노 입자 분리), 산업계(예 : 부유 고체 격리) 및 환경(예 : 수질 정화)등에 필요합니다. 원칙적으로 입자 분리는 음향력에 의해 이루어집니다. 원칙적으로 이러한 힘은 정상 파장에 의해 생성된 압력의 조합입니다. 진동의 진폭이 충분히 클 때 입자와 채널 벽의 충돌로 인한 유체 항력 및 임펄스 힘의 조합으로 인해 Acoustophoretics 과정에 관여하는 입자는 크기와 밀도에 따라 분리 될 수 있습니다.

우리가 아는 한, 앞서 언급 한 모든 힘의 영향을 고려한 주제에 대한 수치해석 연구는 거의 없습니다. 따라서 이 기사에서는 FLOW-3D를 사용하여 Acoustophoretics 모델링의 포괄적인 방법을 제시합니다 . FLOW-3D 의 고유한 모델링 기능을 활용하여 업데이트된 입자 모델을 사용하여 임의의 방식으로 도메인 내부에 질량 입자를 쉽게 도입한 다음 지정된 주파수에서 지정된 길이 진폭으로 전체 도메인을 진동시킬 수 있습니다. 나머지 수치 시뮬레이션 결과와 함께 마이크로 채널 진동은 FlowS3D POSTTM 및 개선된 비관성 참조 프레임 렌더링 기능을 사용하여 쉽게 시각화 할 수 있습니다 .

프로세스 매개 변수

이 분석을 위해 모서리가 100μm이고 총 길이가 1mm인 정사각형 단면을 가진 마이크로 채널을 정의하는 계산 영역이 사용되었습니다. 총 1148 개의 입자가 처음에 전체 계산 영역에 무작위 방식으로 도입되었습니다. 우리는 10Khz의 일정한 주파수와 여러 진폭에서 전체 마이크로 채널을 진동 시키기로 결정했습니다. 진폭의 길이는 3.125μm에서 50μm까지 다양했습니다. 일반적으로 진동 진폭이 클수록 빠르게 변화하는 시간적 변수 변화를 설명하기 위해 더 작은 시간 단계 크기가 필요합니다. 그럼에도 불구하고 총 분석 시간은 32 코어 독립형 워크스테이션에서 2 시간 미만이었습니다.

Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration
Figure 1. Microchannel pressure field at a) Maximum upward acceleration b) Maximum downward acceleration

결과 및 논의

그림 1에서 볼 수 있듯이 압력 장은 진동의 위상에 따라 달라집니다. 보다 구체적으로 그림 1a에서는 최대 상승 가속시 발생하는 채널 하단에 위치한 압력 선단을 관찰하고, 그림 1b에서는 최대시 발생하는 채널 상단에 위치한 압력 선단을 관찰합니다. 하향 가속. 그림 1의 두 결과는 최대 압력이 2400 Pa (약 0.24 Atm) 이상인 최대 진폭의 경우를 나타냅니다.

입자 분류의 진화를 보여주는 진폭의 다른 수준에서 마이크로 채널 모션의 애니메이션. 삽입 된 그래프는 채널 속도를 보여줍니다.

입자 분리 애니메이션은 Acoustophoretic Particle Separation 방법의 효과를 보여주고 영향을 주는 힘을 강조합니다. 입자는 주로 낮은 진폭에서 압력과 항력의 영향을 받지만 진동의 길이 진폭이 마이크로 채널의 크기와 비슷해지면 입자는 충돌로 인한 충격력으로 인해 단일 분리 평면으로 강제됩니다. 마이크로 채널의 상단 및 하단 벽. 이 모델링 방법으로 얻은 수치 결과는 4ms 미만의 전체 공정 시간 동안 90%를 초과하는 분리 수준을 나타내는 것으로 보입니다.

예비 분석을 바탕으로 Acoustophoretic Particle Separation 공정이 필요한 시간과 에너지 측면에서 입자 분리의 매우 효율적인 방법이 될 수 있다는 결론을 내릴 수 있습니다. FLOW-3D는 향상된 입자 모델을 통해 풍부한 물리적 모델과 향상된 렌더링 기능으로 인해 이러한 프로세스를 모델링하는데 매우 강력한 옵션을 제공합니다.

유체 입자의 새로운 기능과 가능한 응용 프로그램에 대해 논의 할 다음 블로그를 계속 지켜봐주십시오.

FLOW-3D를 사용한 모델링 미세 유체 응용 프로그램 의 성능과 다양성에 대해 자세히 알아보기 >

FLOW-3D 수치해석용 컴퓨터 선택 가이드 (update)

Hardware Selection for FLOW-3D Products – FLOW-3D

2021-04-14 최신 CPU 부분 업데이트 / ㈜에스티아이씨앤디 솔루션사업부

In this blog, Flow Science’s IT Manager Matthew Taylor breaks down the different hardware components and suggests some ideal configurations for getting the most out of your FLOW-3D products.

개요

본 자료는 Flow Science의 IT 매니저 Matthew Taylor가 작성한 자료를 기반으로 STI C&D에서 일부 자료를 보완한 자료입니다. 본 자료를 통해 FLOW-3D 사용자는 최상의 해석용 컴퓨터를 선택할 때 도움을 받을 수 있을 것으로 기대합니다.

수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.

따라서 수치해석용 컴퓨터의 선정을 위해서 단위 시간당 시스템이 처리하는 작업의 수나 처리량, 응답시간, 평균 대기 시간 등의 요소를 복합적으로 검토하여 결정하게 됩니다.

또한 수치해석에 적합한 성능을 가진 컴퓨터를 선별하는 방법으로 CPU 계산 처리속도인 Flops/sec 성능도 중요하지만 수치해석을 수행할 때 방대한 계산 결과를 디스크에 저장하고, 해석결과를 분석할 때는 그래픽 성능도 크게 좌우하기 때문에 SSD 디스크와 그래픽카드에도 관심을 가져야 합니다.

FLOW SCIENCE, INC. 에서는 일반적인 FLOW-3D를 지원하는 최소 컴퓨터 사양과 O/S 플랫폼 가이드를 제시하지만, 도입 담당자의 경우, 최상의 조건에서 해석 업무를 수행해야 하기 때문에 가능하면 최고의 성능을 제공하는 해석용 장비 도입이 필요합니다. 이 자료는 2021 현재 FLOW-3D 제품을 효과적으로 사용하기 위한 하드웨어 선택에 대해 사전에 검토되어야 할 내용들에 대해 자세히 설명합니다. 그리고 실행 중인 시뮬레이션 유형에 따라 다양한 구성에 대한 몇 가지 아이디어를 제공합니다.

CPU 최신 뉴스

2021년 4월 15일 기준 (https://www.itworld.co.kr/print/190283 기사 원문 발췌)

ⓒ Rob Schultz/IDG
ⓒ Rob Schultz/IDG
  • 현재 라이젠 5000 제품군과 인텔 11세대 코어 CPU가 그 어느 때보다 뛰어난 성능과 코어를 제공한다. 
    하이엔드 프로세서를 구입하고자 한다면, 라이젠 9 5900X가 최고의 선택지다. 인텔의 새로운 8코어 코어 i9-11900K 대표 제품과 동등한 수준의 성능을 제공하지만, 라이젠 칩의 12코어 24스레드 덕분에 훨씬 더 높은 생산성 성능을 제공한다. 데스크탑에서 최고 성능을 원한다면 750달러로 가격이 치솟은 라이젠 9 5950X는 무려 16코어 덕분에 훨씬 더 많은 성능을 제공한다.
    워크스테이션에서 최고 사양은 AMD Ryzen™ Threadripper™ PRO 3995WX 로 CPU 코어 수는 64개이고 스레드 수는 128코어로 거의 슈퍼컴퓨터 수준이다. 가격 조회 사이트인 다나와에서 현재 일자(2021년 4월 15일) 기준으로 검색해 보면 CPU 가격만 700만원대인 매우 고가의 CPU인 것을 알 수 있다.
AMD 3995wx
  • 인텔의 코어 i9-11900K 가격은 550달러이므로, AMD 라이젠 9 5900K와 가격이 동일하지만, 로켓 레이크의 출시 초기에는 약 615달러에 판매되고 있다. 전력 소모가 심하고 AMD 칩보다 속도가 그리 빠르지 않다. 또한 코어 i9-11900K는 8개의 코어 및 16개 스레드만 제공되므로 생산성 작업에서도 크게 뒤쳐진다. 실제로 코어 i9-11900K는 소매 가격이 450달러인 8코어 라이젠 7 5800X와 더 비슷한 성능을 보인다.  
  • CPU는 최근 수개월 동안 그래픽 카드와 함께 부족 현상을 겪고 있어 가용성이 많이 떨어지고 있다. 특히 AMD 라이젠 프로세서의 가격이 인상돼 사용자는 현명하게 구매할 필요가 있다. 
  • 인텔의 최신 칩인 11세대 로켓 레이크(Rocket Lake) 코어 프로세서는 여전히 오래된 14nm 제조 공정을 기반으로 제작됐지만, 아키텍처 자체는 인텔의 최신 10nm 아이스 레이크(Ice Lake) 코어로 만들어졌다. 코어 i9-11900K에서 볼 수 있듯이 이는 흥미롭고, 복합적인 결과를 도출한 필사적인 아이디어다. 
  • 하지만 앞으로 더 밝은 미래가 있다. 인텔의 새로운 CEO 팻 겔싱어는 최근 다른 기업을 위한 x86 칩을 구축하고 수년간 14nm에서 허덕이던 인텔의 ‘틱톡(tick-tock)’ 아키텍처를 되살리는 등 인텔의 장기적인 기술 계획을 발표했다. 
  • 성능을 향상시키는 PCIe 리사이저블 BAR(Resizable BAR) 기능은 AMD의 스마트 엑세스 메모리(Smart Access Memory)와 유사한 형태로 등장한 후에 널리 사용 가능해졌다. AMD가 라이젠 5000에 이 기능을 도입한 이후, 인텔의 최신 로켓 레이크 칩으로 확산됐다. BIOS 업데이트는 양 제조업체의 구형 프로세서 및 메인보드에 이 기능을 추가하고 있다.     

CPU의 선택

CPU는 전반적인 성능에 큰 영향을 미치며, 대부분의 경우 컴퓨터의 가장 중요한 구성 요소입니다. 그러나 데스크탑 프로세서를 구입할 때가 되면 Intel 과 AMD의 모델 번호와 사양을 이해하는 것이 어려워 보일 것입니다.
그리고, CPU 성능을 평가하는 방법에 의해 가장 좋은 CPU를 고른다고 해도 보드와, 메모리, 주변 Chip 등 여러가지 조건에 의해 성능이 달라질 수 있기 때문에 성능평가 결과를 기준으로 시스템을 구입할 경우, 단일 CPU나 부품으로 순위가 정해진 자료보다는 시스템 전체를 대상으로 평가한 순위표를 보고 선정하는 지혜가 필요합니다.

PassMark – CPU Mark High End CPUs

2021년 4월 14일 기준

PassMark - CPU Mark Updated 14th of April 2021
PassMark – CPU Mark Updated (14th of April 2021)

<출처> https://www.cpubenchmark.net/high_end_cpus.html

PassMark – CPU Mark Single Thread Performance

2021년 4월 14일 기준

수치해석을 수행하는 CPU의 경우 예산에 따라 Core가 많지 않은 CPU를 구매해야 하는 경우도 있을 수 있습니다. 보통 Core가 많다고 해석 속도가 선형으로 증가하지는 않으며, 해석 케이스에 따라 적정 Core수가 있습니다. 이 경우 예산에 맞는 성능 대비 최상의 코어 수가 있을 수 있기 때문에 Single thread Performance 도 매우 중요합니다. 아래 성능 도표를 참조하여 예산에 맞는 최적 CPU를 찾는데 도움을 받을 수 있습니다.

출처 : https://www.cpubenchmark.net/singleThread.html

PassMark - CPU Mark Single Thread Performance (Updated 14th of April 2021)
PassMark – CPU Mark Single Thread Performance (Updated 14th of April 2021)

CPU 성능 분석 방법

부동소수점 계산을 하는 수치해석과 밀접한 Computer의 연산 성능 벤치마크 방법은 대표적으로 널리 사용되는 아래와 같은 방법이 있습니다.

FLOW-3D의 CFD 솔버 성능은 CPU의 부동 소수점 성능에 전적으로 좌우되기 때문에 계산 집약적인 프로그램입니다. FlowSight 또한 CPU에 크게 의존합니다. 현재 출시된 사용 가능한 모든 CPU를 벤치마킹할 수는 없지만 상대적인 성능을 합리적으로 비교할 수는 있습니다.

특히, 수치해석 분야에서 주어진 CPU에 대해 FLOW-3D 성능을 추정하거나 여러 CPU 옵션 간의 성능을 비교하기 위한 최상의 옵션은 Standard Performance Evaluation Corporation의 SPEC CPU2017 벤치마크(현재까지 개발된 가장 최신 평가기준임)이며, 특히 SPECspeed 2017 Floating Point 결과가 CFD Solver 성능을 매우 잘 예측합니다.

이는 유료 벤치마크이므로 제공된 결과는 모든 CPU 테스트 결과를 제공하지 않습니다. 보통 제조사가 ASUS, Dell, Lenovo, HP, Huawei 정도의 제품에 대해 RAM이 많은 멀티 소켓 Intel Xeon 기계와 같은 값비싼 구성으로 된 장비 결과들을 제공합니다.

CPU 비교를 위한 또 다른 옵션은 Passmark Software의 CPU 벤치마크입니다. PerformanceTest 제품군은 유료 소프트웨어이지만 무료 평가판을 사용할 수 있습니다. 대부분의 CPU는 저렴한 옵션을 포함하여 나열됩니다. 부동 소수점 성능은 전체 벤치마크의 한 측면에 불과하지만 다양한 워크로드에서 전반적인 성능을 제대로 테스트합니다.

예산을 결정하고 해당 예산에 해당하는 CPU를 선택한 후에는 벤치마크를 사용하여 가격에 가장 적합한 성능을 결정할 수 있습니다.

<참고>

SPEC의 벤치 마크https://www.spec.org/benchmarks.html#cpu )

SPEC CPU 2017 (현재까지 가장 최근에 개발된 CPU 성능측정 기준)

다른 컴퓨터 시스템에서 컴퓨팅 계산에 대한 집약적인 워크로드를 비교하는데 사용할 수 있는 성능 측정을 제공하도록 설계된 SPEC CPU 2017에는 SPECspeed 2017 정수, SPECspeed 2017 부동 소수점, SPECrate 2017 정수 및 SPECrate 2017 부동 소수점의 4 가지 제품군으로 구성된 43 개의 벤치 마크가 포함되어 있습니다. SPEC CPU 2017에는 에너지 소비 측정을 위한 선택적 메트릭도 포함되어 있습니다.

<SPEC CPU 벤치마크 보고서>

벤치마크 결과보고서는 제조사별, 모델별로 테스트한 결과를 아래 사이트에 가면 볼 수 있습니다.

https://www.spec.org/cgi-bin/osgresults

<보고서 샘플>

  • SPEC CPU 2017

Designed to provide performance measurements that can be used to compare compute-intensive workloads on different computer systems, SPEC CPU 2017 contains 43 benchmarks organized into four suites: SPECspeed 2017 Integer, SPECspeed 2017 Floating Point, SPECrate 2017 Integer, and SPECrate 2017 Floating Point. SPEC CPU 2017 also includes an optional metric for measuring energy consumption.

클럭 대 코어

일반적으로 클럭 속도가 높은 칩은 CPU 코어를 더 적게 포함합니다. FLOW-3D는 병렬화가 잘되어 있지만, 디스크 쓰기와 같이 일부 작업은 기본적으로 단일 스레드 방식으로 수행됩니다. 따라서 데이터 출력이 빈번하거나 큰 시뮬레이션은 종종 더 많은 코어가 아닌, 더 높은 클럭 속도를 활용합니다. 마찬가지로 코어 및 소켓의 다중 스레딩은 오버헤드를 발생시키므로 작은 문제의 해석일 경우 사용되는 코어 수를 제한하면 성능이 향상될 수 있습니다.

CPU 아키텍처

CPU 아키텍처는 중요합니다. 최신 CPU는 일반적으로 사이클당 더 많은 기능을 제공합니다. 즉, 현재 세대의 CPU는 일반적으로 동일한 클럭 속도에서 이전 CPU보다 성능이 우수합니다. 또한 전력 효율이 높아져 와트당 성능이 향상될 수 있습니다. Flow Science에는 구형 멀티 소켓 12, 16, 24 코어 Xeon보다 성능이 뛰어난 최근 세대 10~12 Core i9 CPU 시스템을 보유하고 있습니다.

오버클럭

해석용 장비에서는 CPU를 오버클럭 하지 않는 것이 좋습니다. 하드웨어를 다년간의 투자라고 생각한다면, 오버클럭화는 발열을 증가시켜 수명을 단축시킵니다. CPU에 따라 안정성도 저하될 수 있습니다. CPU를 오버클럭 할 때는 세심한 열 관리가 권장됩니다.

하이퍼스레딩

<이미지출처:https://gameabout.com/krum3/4586040>

하이퍼스레딩은 물리적으로 1개의 CPU를 가상으로 2개의 CPU처럼 작동하게 하는 기술로 파이프라인의 단계수가 많고 각 단계의 길이가 짧을때 유리합니다. 다만 수치해석 처럼 모든 코어의 CPU를 100% 사용중인 장시간 수행 시뮬레이션은 일반적으로 Hyper Threading이 비활성화 된 상태에서 더 잘 수행됩니다. FLOW-3D는 100% CPU 사용률이 일반적이므로 새 하드웨어를 구성할 때 Hyper Threading을 비활성화하는 것이 좋습니다. 설정은 시스템의 BIOS 설정에서 수행합니다.

몇 가지 워크로드의 경우에는 Hyper Threading을 사용하여 약간 더 나은 성능을 보이는 경우가 있습니다. 따라서, 최상의 런타임을 위해서는 두 가지 구성중에서 어느 구성이 더 적합한지 시뮬레이션 유형을 테스트하는 것이 좋습니다.

스케일링

여러 코어를 사용할 때 성능은 선형적이지 않습니다. 예를 들어 12 코어 CPU에서 24 코어 CPU로 업그레이드해도 시뮬레이션 런타임이 절반으로 줄어들지 않습니다. 시뮬레이션 유형에 따라 16~32개 이상의 CPU 코어를 선택할 때는 FLOW-3D 및 FLOW-3D CAST의 HPC 버전을 사용하거나 FLOW-3D CLOUD로 이동하는 것을 고려하여야 합니다.

AMD Ryzen 또는 Epyc CPU

AMD는 일부 CPU로 벤치마크 차트를 석권하고 있으며 그 가격은 매우 경쟁력이 있습니다. FLOW SCIENCE, INC. 에서는 소수의 AMD CPU로 FLOW-3D를 테스트했습니다. 현재 Epyc CPU는 이상적이지 않고 Ryzen은 성능이 상당히 우수합니다. 발열은 여전히 신중하게 다뤄져야 할 문제입니다. 현재 32 코어 옵션에 영향을 주는 Windows 버그가 초기 버전에서 성능을 크게 저하시키는 것으로 알려져 있습니다. Bug Fix가 되었는지 업데이트 하여 확인하고, 해결되지 않은 경우 이러한 CPU에는 Linux를 권장됩니다.

<관련 기사>

https://www.techspot.com/news/78122-report-software-fix-can-double-threadripper-2990wx-performance.html

Graphics 고려 사항

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다.

특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.

PassMark – G3D Mark High End Videocards

출처 : https://www.videocardbenchmark.net/high_end_gpus.html

원격데스크탑 사용시 고려 사항

Flow Science는 nVidia 드라이버 버전이 341.05 이상인 nVidia Quadro K, M 또는 P 시리즈 그래픽 하드웨어를 권장합니다. 이 카드와 드라이버 조합을 사용하면 원격 데스크톱 연결이 완전한 3D 가속 기능을 갖춘 기본 하드웨어에서 자동으로 실행됩니다.

원격 데스크톱 세션에 연결할 때 nVidia Quadro 그래픽 카드가 설치되어 있지 않으면 Windows는 소프트웨어 렌더링을 사용합니다. 이는 FLOW-3D 및 FlowSight 모두 성능에 부정적인 영향을 미칩니다. FLOW-3D 가 소프트웨어 렌더링을 사용하고 있는지 확인하려면 FLOW-3D 도움말 메뉴에서 정보를 선택하십시오. GDI Generic을 소프트웨어 렌더링으로 사용하는 경우 GL_RENDERER 항목에 표시됩니다.

하드웨어 렌더링을 활성화하는 몇 가지 옵션이 있습니다. 쉬운 방법 중 하나는 실제 콘솔에서 FLOW-3D를 시작한 다음 원격 데스크톱 세션을 연결하는 것입니다. Nice Software DCV 와 같은 일부 VNC 소프트웨어는 기본적으로 하드웨어 렌더링을 사용합니다.

RAM 고려 사항

프로세서 코어당 최소 4GB의 RAM은 FLOW-3D의 좋은 출발입니다. FlowSight POST Processor를 사용하여 후처리 작업을 할 경우 상당한 양의 RAM을 사용하는 것이 좋습니다.

현재 주력제품인 DDR4보다 2배 빠른 DDR5가 곧 출시된다는 소식도 있습니다.

일반적으로 FLOW-3D를 이용하여 해석을 할 경우 격자(Mesh)수에 따라 소요되는 적정 메모리 크기는 아래와 같습니다.페이지 보기

  • 초대형 (2억개 이상의 셀) : 최소 128GB
  • 대형 (60 ~ 1억 5천만 셀) : 64 ~ 128GB
  • 중간 (30-60백만 셀) : 32-64GB
  • 작음 (3 천만 셀 이하) : 최소 32GB

HDD 고려 사항

수치해석은 해석결과 파일의 데이터 양이 매우 크기 때문에 읽고 쓰는데, 속도면에서 매우 빠른 SSD를 적용하면 성능면에서 큰 도움이 됩니다. 다만 SSD 가격이 비싸서 가성비 측면을 고려하여 적정수준에서 결정이 필요합니다.

CPU와 저장장치 간 데이터가 오고 가는 통로가 그림과 같이 3가지 방식이 있습니다. 이를 인터페이스라 부르며 SSD는 흔히 PCI-Express 와 SATA 통로를 이용합니다.

흔히 말하는 NVMe는 PCI-Express3.0 지원 SSD의 경우 SSD에 최적화된 NVMe (NonVolatile Memory Express) 전송 프로토콜을 사용합니다. 주의할 점은 MVMe중에서 SATA3 방식도 있기 때문에 잘 구별하여 구입하시기 바랍니다.

그리고 SSD를 선택할 경우에도 SSD 종류 중에서 PCI Express 타입은 매우 빠르고 가격이 고가였지만 최근에는 많이 저렴해졌습니다. 따라서 예산 범위내에서 NVMe SSD등 가장 효과적인 선택을 하는 것이 좋습니다.
( 참고 : 해석용 컴퓨터 SSD 고르기 참조 )

기존의 물리적인 하드 디스크의 경우, 디스크에 기록된 데이터를 읽기 위해서는 데이터를 읽어내는 헤드(바늘)가 물리적으로 데이터가 기록된 위치까지 이동해야 하므로 이동에 일정한 시간이 소요됩니다. (이러한 시간을 지연시간, 혹은 레이턴시 등으로 부름) 따라서 하드 디스크의 경우 데이터를 읽기 위한 요청이 주어진 뒤에 데이터를 실제로 읽기까지 일정한 시간이 소요되는데, 이 시간을 일정한 한계(약 10ms)이하로 줄이는 것이 불가능에 가까우며, 데이터가 플래터에 실제 기록된 위치에 따라서 이러한 데이터에의 접근시간 역시 차이가 나게 됩니다.

하지만 HDD의 최대 강점은 가격대비 용량입니다. 현재 상용화되어 판매하는 대용량 HDD는 12TB ~ 15TB가 공급되고 있으며, 이는 데이터 저장이나 백업용으로 가장 좋은 선택이 됩니다.
결론적으로 데이터를 직접 읽고 쓰는 드라이브는 SSD를 사용하고 보관하는 용도의 드라이브는 기존의 HDD를 사용하는 방법이 효과적인 선택이 될 수 있습니다.

PassMark – Disk Rating High End Drives

출처 : https://www.harddrivebenchmark.net/high_end_drives.html

상기 벤치마크 테스트는 테스트 조건에 따라 그 성능 곡선이 달라질 수 있기 때문에 조건을 확인할 필요가 있습니다. 예를 들어 Windows7, windows8, windows10 모두에서 테스트한 결과를 평균한 점수와 자신이 사용할 컴퓨터 O/S에서 테스트한 결과는 다를 수 있습니다. 상기 결과에 대한 테스트 환경에 대한 내용은 아래 사이트를 참고하시기 바랍니다.

참고 : 테스트 환경

페이지 보기

education_banner

FLOW-3Dv12.0 온라인 교육

FLOW-3 D v12.0 온라인 교육 과정은 미국 FSI에서 제공되는 컨텐츠로 FLOW-3D 사용자(구매/임차 및 기술지원 계약이 되어 있는 고객)에게 제공되는 교육 리소스입니다. 이 온라인 교육 과정은 FLOW-3D 기본 모델 사용법 전반에 대한 온라인 주문형 비디오를 제공합니다.

각 과정에서는 사용자가 스스로 시뮬레이션을 설정할 수 있도록 예제와 설명을 제공합니다. 모든 신규 FLOW3D사용자는 프로젝트별 시뮬레이션 작업을 시작하기 전에 기본 과정을 완료하는 것이 좋습니다.

또한 기존 사용자는 FLOW3D v12.0모델 설정 프로세스에서 사용할 수 있는 향상된 기능과 새로운 기능에 대해 배우고 기본 모델 설정 항목에 대한 리프레시로 배우는 데 유용한 새로운 교육 시리즈를 찾게 될 것입니다. 과정 비디오는 특정 주제 및 세그먼트를 쉽게 찾을 수 있도록 구성되어 있고, 즐겨 찾기에 추가될 수 있으며, 언제든지 참조할 수 있는 유용한 리소스를 제공합니다.

본 교육 과정은 미국 본사 정책에 따라 유지보수 계약이 체결된 고객 ID를 통해 미국의 Users Site 에서 제공됩니다.

FLOW-3D Training Modules

FLOW-3D GUI PART 1 OF THE FLOW-3D V12.0 TRAINING SERIES

FLOW-3D GUI

  • Introduction to FLOW-3D graphical user interface
  • Simulation Manager Tab
  • Portfolio
  • Running Simulations and the Queue
  • Runtime Diagnostics: Text Output
  • Runtime Diagnostics: Plots
  • Runtime Controls
  • FLOW-3D File Structure
    Review the important files that are created when running simulations in FLOW-3D. Access the simulation files through a link on the Simulation Manager Tab. Identify the important setup and solver outputs files
Model Setup Tab PART 2 OF THE FLOW-3D V12.0 TRAINING SERIES

모델 설정 탭

  • Introduction to the Model Setup TabIntroduction to the Model Setup Tab including an orientation to its layout and how to access model inputs though the dock widgets on the process toolbar. Options for customizing the layout of the process toolbar are also reviewed.
  • Navigating the 3D ViewportLearn the basic controls for navigating the 3D viewport. This includes mouse controls, toolbar shortcuts, saving views, and moving the pivot point.
  • Other Menu/Toolbar Navigation Options
  • Working with Dock Widget Inputs
  • Model DependenciesRecognize and understand dock widget input dependencies.
Global Settings PART 3 OF THE FLOW-3D V12.0 TRAINING SERIES

전역 설정

  • Global Dock Widget Overview
  • Pressure Type
  • Finish Time
  • Finish Options: Additional Finish Condition
  • Finish Options: Active Simulation ControlDefine a logical condition to stop the simulation using active simulation control.
  • Restart OptionsHow to manually define the Restart options to continue running a previously completed simulation.
  • Version OptionsDefine the Version options to specify the solver version and the number of processors used when starting a new simulation run.
Physics Models PART 4 OF THE FLOW-3D V12.0 TRAINING SERIES

물리 모델

  • Physics Dock Widget OverviewDescription of the available options in the Physics dock widget
  • Interface Tracking, Number of Fluids and Flow ModeBackground information on interface tracking methods and defining the number of fluids. Description of the Volume of Fluid (VOF) method for simulation of complex free surfaces, and how this affects the selection of the number of fluids. Examples are presented for one fluid and two fluid simulations.
  • Activating Physics ModelsDemonstration for how to activate physics models and how to limit the display of inactive physics models using the physics model filter.
Fluid Properties PART 5 OF THE FLOW-3D V12.0 TRAINING SERIES

유체 속성

  • Fluids Dock Widget OverviewIntroduction to the Fluids dock widget and how to define properties for fluids in the simulation.
  • Defining Fluid Properties ManuallyExample for how to manually define fluid properties.
  • Defining Fluid Properties from the Materials DatabaseExample for how to load fluid properties from the fluids database.
  • Managing the Materials Database
    How to add and edit entries in the materials database.
Geometry PART 6 OF THE FLOW-3D V12.0 TRAINING SERIES

지오메트리

  • Introduction
  • Component and Subcomponent Overview
  • Creating Subcomponents: Overview
  • Creating Subcomponents: STL
  • Creating Subcomponents: Primitives Manually
  • Creating Subcomponents: Primitives Interactively
  • Creating Subcomponents: Raster
  • Subcomponent Types
  • Subcomponent Order
  • Component Order
  • Component and Subcomponent Properties
  • Transformations
Meshing PART 7 OF THE FLOW-3D V12.0 TRAINING SERIES

Meshing

  • Meshing Introduction
  • Coordinate Systems
  • FAVOR™
  • Meshing Basics: Meshing Overview
  • Meshing Basics: Creating Mesh Blocks
  • Meshing Basics: Domain Extents
  • Meshing Basics: Global Controls
  • Meshing Basics: Local Controls
  • Reviewing Mesh Quality: FAVORize
  • Reviewing Mesh Quality: Preprocessing
  • Multi-block Meshing
  • Conforming Mesh Blocks
  • Meshing Best Practices
Boundary Conditions PART 8 OF THE FLOW-3D V12.0 TRAINING SERIES

Boundary Conditions

  • Introduction
    Introductory comments regarding how boundary conditions are applied and other considerations when defining BCs.
  • Boundaries Dock Widget Overview
  • Velocity
  • Volume Flow Rate
  • Wall
  • Symmetry
  • Grid Overlay
  • Pressure
  • Continuative
  • Outflow
    Description and example setup of the Outflow BC type.
Initial Conditions PART 9 OF THE FLOW-3D V12.0 TRAINING SERIES

Initial Conditions

  • Introduction
    Discussion of how the initial conditions and can affect simulation results and run times.
  • Options for Defining ICs
    Example: Global Settings
    Example: Fluid Regions
  • Example: Function Coefficients
    Description and example for defining spatially varying fluid properties with user defined functions.
  • Example: Pointers
    Description and example for defining an initial condition by filling contiguous cells with the Pointer object.
Output Options PART 10 OF THE FLOW-3D V12.0 TRAINING SERIES

Output Options

  • Output Dock Widget Overview
  • Spatial Data
  • Spatial Data: Restart Data
  • Spatial Data: Selected Data
  • History Data
  • Diagnostics: Short Print Data
  • Diagnostics: Long Print Data
  • Example Setup
  • Batch Post-processing
  • Batch Mode: Context File
  • Batch Mode: Manual
  • Batch Mode: Generate Reports
Baffles PART 11 OF THE FLOW-3D V12.0 TRAINING SERIES

Baffles

Introduction
An introduction to the available options for creating and defining baffle objects.
Creating Baffle Objects
Limitations
Force Outputs
Porosity
Scalar Reset Options
Summary
A summary of the important options for creating baffles and defining properties.

Measurement Devices PART 12 OF THE FLOW-3D V12.0 TRAINING SERIES

Measurement Devices

  • History Probes 
    History probes are point measurement devices and are used to record solver output at a specific location. Examples are provided for how to create these objects interactively and by defining a coordinate value.
  • Flux Surfaces 
    Flux surfaces are a special type of baffle object with a fixed porosity of 1, and are used to calculate flux quantities. Examples are provided for how to create flux surfaces and the types of data available from their output.
  • Sampling volumes 
    Sampling volumes are are three-dimensional data collection regions. Examples are provided for how to create sampling volumes and the types of data available from their output.
W&E Exercise: Ogee Weir

W&E Exercise: Ogee Weir

  • This exercise demonstrates the steps to setup a basic free surface or open channel flow simulation in FLOW-3D. It is intended to be a simple and fast running simulation that demonstrates the key setup steps that can be applied to a wide range of other common open channel flow applications. In this exercise, we will simulate flow over an ogee weir to predict the discharge capacity. Simulation results can be validated against discharge rating curves obtained from physical model measurements (USBR, 1996).  Special attention is given to the common types of boundary conditions used in open channel flow simulations and how to select them during the model setup. We also provide examples for common post-processing tasks using both FLOW-3D and FlowSight.
aerospace-sloshing-simulation

Aerospace Sloshing Dynamics

Sloshing Dynamics

우주선의 연료 탱크에서 추진체의 움직임에 대한 지식은 작동 및 성능의 다양한 측면을 이해하는 데 필수적입니다. 추진체 운동은 액체 배출, 가스 배출 및 가압과 같은 추진 기능에 영향을 미칩니다. 어떤 경우에는 추진체 운동에 의해 생성되는 힘도 알아야합니다. 이것은 액체 질량이 전체 우주선 질량의 상당 부분을 포함할 때 특히 그렇습니다.

FLOW-3D: Aircraft Fuel Tank Sloshing
FLOW-3D: Aircraft Fuel Tank Sloshing : 회전과 가속을 하는 동안 전투기의 연료 탱크 시뮬레이션

Visualizing Non-Inertial Reference Frame Motion

연료 탱크 슬로싱은 연료의 slosh 역학을 구성하며, 여기서 연료의 역학은 컨테이너와 상호 작용하여 시스템 역학을 변경할 수 있습니다. 일반적으로 연료에는 자유 표면이 있습니다. FLOW-3D는 TruVOF를 사용한 정확한 자유 표면 추적으로 인해 연료 슬로싱 역학을 시뮬레이션하는 데 탁월한 소프트웨어입니다. 또한 FLOW-3D의 NIRF (Non-Inertial Reference Frame) 모듈을 사용하면 고정된 참조 프레임에서 연료 및 움직이는 컨테이너 (연료 탱크)를 시각화하기 위한 쉽고 계산 효율적인 설정이 가능합니다.

FLOW-3D의 NIRF 모듈 기능을 강조하기 위해 우주 왕복선의 연료 슬로 싱을 보여주는 샘플 시뮬레이션이 설정됩니다. 우주 왕복선은 처음 25 초 동안 위쪽으로 가속한 다음, 다음 25 초 동안 같은 양만큼 감속합니다. 그 후 각 가속도를 사용하여 셔틀이 90도 회전한 다음 다시 선형 가속을 계속합니다. 이 복잡한 우주 왕복선 기동 중에 복잡한 자유 표면 유체 운동을 보는 것은 흥미롭습니다. RNG 난류 모델은 유체의 난류 운동 에너지를 추정하는데 사용됩니다.

애니메이션의 왼쪽 창에는 FlowSight에서 생성 된 NIRF 시각화가 표시되고 오른쪽 뷰포트에는 FlowSight를 사용하여 다시 생성된 비 NIRF 시각화가 표시됩니다. NIRF 시각화는 고정된 기준 프레임에서 유체와 탱크의 움직임을 이해하는데 도움이되므로 시스템의 전반적인 역학을 보다 관련성 있게 강조 할 수 있습니다.

Laser Welding and Additive Manufacturing

Melt Pool Modeling: Innovation in Laser Welding & Additive Manufacturing

Melt Pool Modeling - Innovation in Laser Welding & Additive Manufacturing Webinar

Additive Manufacturing 기술이 새로운 제조 방식을 계속 발전시키면서 CFD 모델링은 공정 개발 및 최적화와, 재료의 변화를 이해하고, 설계 및 연구를 수행하는 매우 유용한 도구가 되었습니다. 이 웨비나에서는 최첨단 CFD 소프트웨어 FLOW-3D AM이 레이저 파우더 베드 융합 및 직접 에너지 증착 공정에서 용융 풀 역학을 모델링하는데 어떻게 사용되는지 살펴볼 것입니다. 그런 다음 유용한 정보를 얻기 위해 모델 데이터의 추출 및 분석에 집중하고 FLOW-3D AM에서 최근에 구현된 기능에 대해 논의합니다. 마지막으로 레이저 용접 및 적층 제조 응용 분야 모두에 적용할 수 있는 관련 산업 사례 연구를 검토하여 산업 응용 분야에 소프트웨어 사용을 보여줍니다.

https://www.facebook.com/FLOW3D.CFD.Software/videos/359103388813376/

Laser Metal Deposition Simulation | FLOW-3D AM | Facebook
Laser Metal Deposition Simulation | FLOW-3D AM | Facebook
FLOW-3D - We'll be presenting and exhibiting at the 2021
FLOW-3D – We’ll be presenting and exhibiting at the 2021

등록 링크https://zoom.us/webinar/register/7516034917241/WN_tik88gXJRzult2_HDNIzPA
산지 표준시(미국 및 캐나다)의 2021년 5월 5일 11:00 오전 (현지 시간)
이벤트 주최: FLOW-3D

발표자

photo of Paree Allu

Paree AlluSenior CFD Engineer @Flow Science, Inc.Paree Allu is a Senior CFD Engineer with Flow Science, where he leads the technical and business strategy for Flow Science’s additive manufacturing and laser welding software solutions. Paree holds a Master’s Degree in Mechanical Engineering from The Ohio State University.

photo of Allyce Jackman

Allyce JackmanCFD Engineer @Flow Science, Inc.Allyce Jackman is a CFD Engineer with Flow Science, where she specializes in laser welding, coating, and complex multiphysics applications. Allyce holds a Bachelor’s Degree in Mechanical Engineering from the University of New Mexico.

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Energy

Energy

전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다. 특히 자유 표면 흐름과 관련이 높은 이러한 문제의 대부분은 FLOW-3D가 매우 정확한 분석을 제공하여 문제 해결에 적합합니다.

  • 공해에서 컨테이너 내부의 연료 또는화물 슬로싱 / Fuel or cargo sloshing inside containers on the high seas
  • 해양 플랫폼에 대한 파도 효과 / Wave effects on offshore platforms
  • 6 자유도 모션을 받는 분리 장치의 성능 최적화 / Performance optimization for separation devices undergoing 6 DOF motion
  • 파동 에너지 포착 장치 / Design of devices to capture energy from waves

Energy Case Studies

천연자원이 계속 감소함에 따라, 대체 자원과 방법을 탐구하고 가능한 한 효과적으로 현재 공급량을 사용하고 있습니다. 엔지니어는 사고를 예방하고 채굴 및 기타 에너지 수확 기법으로 인한 환경적 영향을 평가하기 위해 FLOW-3D를 사용합니다.

Tailing Breach Simulation – CFD Analysis with FLOW-3D

점성이 높은 유체, 비 뉴턴 흐름, 슬러리 또는 심지어 세분화 된 흐름의 형태를 취할 수있는 많은 채광 응용 프로그램의 잔여 물인 테일링은 악명 높은 시뮬레이션 전제를 제공합니다. FLOW-3D  는 비 뉴턴 유체, 슬러리 및 입상 흐름에 대한 특수 모델을 포함하여 이러한 분석을 수행하는 데 필요한 모든 도구를 제공합니다. FLOW-3D 의 자유 표면 유동 모델링 기능 과 결합되어  이러한 어렵고 환경 적으로 민감한 문제에 대한 탁월한 모델링 솔루션을 제공합니다.

관련 응용 분야에는 바람 강제 분석에 따른 광석 비축 더미 먼지 드리프트가 포함되며, 여기서 FLOW-3D 의 드리프트 플럭스 모델을 통해 엔지니어는 광석 침착 및 유입 패턴과 개선 솔루션의 효과를 연구 할 수 있습니다.

액화와 기계적 방해가 물과 같은 뉴턴 흐름과는 대조적으로 입자 흐름의 매우 독특한 속성 인 결국 저절로 멈추는 위반의 동적 특징의 일부라는 점에 유의하십시오.

오일 및 가스 분리기

FLOW-3D  는 기름과 물과 같은 혼합 불가능한 유체를 모델링 할 수 있으며 개방 된 환경 (주변 공기)과 관련된 구성 요소 간의 뚜렷한 인터페이스를 정확하게 추적 할 수 있습니다. 유체는 전체 도메인에 영향을 미치는 역학으로 인해 자유롭게 혼합 될 수 있습니다. 시간이 지남에 따라 유체는 연속 상과 분산 상 간의 드리프트 관계에 따라 다시 분리됩니다. 중력 분리기의 성능은 CFD 모델링을 통해 향상 될 수 있습니다.

  • 기체 및 액체 흐름의 균일성을 개선하고 파도에 의한 슬로싱으로 인한 오일과 물의 혼합을 방지하기 위해 용기 입구 구성을 개발합니다.
  • 유압 효율 및 분리 성능에 대한 내부 장비의 영향을 결정합니다.
  • 작동 조건 변화의 영향 측정
  • 소규모 현상 (다상 흐름, 방울, 입자, 기포)을 정확하게 모델링

생산 파이프 | Production Pipes

생산에 사용되는 공정 파이프의 청소 과정에서 유체가 위로 흘러도 고밀도 입자가 침전될 수 있습니다. 침전 입자를 포착하도록 장치를 설계 할 수 있습니다. 파이프 중앙에 있는 “버킷”이 그러한 잠재적 장치중 하나 입니다. 흐름 변위로 인해 버킷 외부의 상류 속도는 고밀도 입자에 대한 침전 속도보다 높으며 버킷 내부에 모여 있습니다. 표시된 디자인에서 버킷 주변의 상향 유체 속도는 입자 안정화 속도보다 높습니다. 이로 인해 입자가 버킷과 파이프 벽 사이의 틈새를 통해 빠져 나갈 수 없습니다. 따라서 시뮬레이션된 입자는 버킷을 통과하여 아래에 정착하지 않습니다.

파동 에너지 장치 모델링 | Modeling Wave Energy Devices

포인트 흡수 장치 | Point Absorber Devices

이 시뮬레이션은 상단에 부력이있는 구형 구조가있는 점 흡수 장치를 보여 주며, 들어오는 파도의 볏과 골과 함께 위아래로 이동합니다. FLOW-3D 의 움직이는 물체 모델은 x 또는 y 방향으로의 움직임을 제한하면서 z 방향으로 결합 된 움직임을 허용하는 데 사용됩니다. 진폭 5m, 파장 100m의 스톡 스파를 사용했다. RNG 모델은 파도가 점 흡수 장치와 상호 작용할 때 발생하는 난류를 포착하는 데 사용되었습니다. 예상대로 많은 난류 운동 에너지가 장치 근처에서 생성됩니다. 플롯은 난류로 인해 장치 근처의 복잡한 속도 장의 진화로 인해 질량 중심의 불규칙한 순환 운동을 보여줍니다.

다중 플랩, 하단 경첩 파동 에너지 변환기 | Multi-Flap, Bottom-Hinged Wave Energy Converter

진동하는 플랩은 바다의 파도에서 에너지를 추출하여 기계 에너지로 변환합니다. Arm은 물결에 반응하여 피벗된 조인트에 장착된 진자로 진동합니다. 플랩을 배열로 구성하여 다중 플랩 파동 에너지 변환기를 만들 수 있습니다. 아래 상단에 표시된 CFD 시뮬레이션에서 3 개의 플랩 배열이 시뮬레이션됩니다. 모든 플랩은 바닥에 경첩이 달려 있으며 폭 15m x 높이 10m x 두께 2m입니다. 어레이는 30m 깊이에서 10 초의 주파수로 4m 진폭파에서 작동합니다. 시뮬레이션은 중앙 평면을 따라 복잡한 속도 등 가면을 보여줍니다. 이는 한 플랩이 어레이 내의 다른 플랩에 미치는 영향을 연구하는 데 중요합니다. 3 개의 플랩이 유사한 동적 동작으로 시작하는 동안 플랩의 상호 작용 효과는 곧 동작을 위상에서 벗어납니다. 유사한 플랩 에너지 변환기가 오른쪽 하단에 표시됩니다. 이 시뮬레이션에서 플랩은 가장 낮은 지점에서 물에 완전히 잠 깁니다. 이러한 에너지 변환기를 Surface Piercing 플랩 에너지 변환기라고합니다. 이 두 시뮬레이션 예제는 모두 미네르바 역학 .

진동 수주 | Oscillating Water Column

진동하는 수주는 부분적으로 잠긴 중공 구조입니다. 그것은 물의 기둥 위에 공기 기둥을 둘러싸고 수면 아래의 바다로 열려 있습니다. 파도는 물 기둥을 상승 및 하강시키고, 차례로 공기 기둥을 압축 및 감압합니다. 이 갇힌 공기는 일반적으로 기류의 방향에 관계없이 회전 할 수 있는 터빈을 통해 대기로 흐르게 됩니다. 터빈의 회전은 전기를 생성하는 데 사용됩니다.

아래의 CFD 시뮬레이션은 진동하는 수주를 보여줍니다. FLOW-3D에서 포착한 물리학을 강조하기 위해 중공 구조에서 물기둥이 상승 및 하강하는 부분만 모델링  합니다. 시뮬레이션은 다른 파형 생성 선택을 제외하고 유사한 결과를 전달합니다. 아래의 시뮬레이션은 웨이브 유형 경계 조건을 사용하는 반면 그 아래의 시뮬레이션은  움직이는 물체 모델  을 사용하여 실험실에서 수행한 것처럼 차례로 웨이브를 생성하는 움직이는 플런저를 생성합니다. 각 시뮬레이션에 대해 속이 빈 구조의 압력 플롯이 표시됩니다. 결국 그 압력에 기초하여 터빈이 회전 운동으로 설정되기 때문에 챔버에서 얼마나 많은 압력이 생성되는지 아는 것이 중요합니다.

사례 연구

eadership-in-energy-and-environmental-design

Architects Achieve LEED Certification in Sustainable Buildings

LEED (Leadership in Energy and Environmental Design)는 제 3자가 친환경 건축물 인증을 제공하는 자발적 인증 시스템입니다.

FLOW-3D는 보고타(콜롬비아)의 사무실 건물에서 “IEQ-Credit2–환기 증가”라는 신뢰를 얻는 데 큰 도움을 주었습니다. 이러한 인정을 받기 위해서는 실외 공기가 ASHRAE의 표준 비율인 30%를 초과한다는 것을 증명해야만 합니다. 이 건물에서 실외 공기는 태양 광선에 의해, 가열되는 지붕 위의 2개의 유리 굴뚝에 의해 발생되는 온도 차이에 의해 발생하는 열 부력의 영향으로 제공됩니다. 이것은 바람이 불지 않는 조건에서 이루어져야 합니다.

Comparing HVAC System Designs

최근 프로젝트에서 Tecsult의 HVAC(난방, 냉방 및 환기)시스템 엔지니어는 강력한 에어컨 시스템의 두 가지 다른 구성을 고려해야 했고 노동자들에게 어떤 것이 가장 쾌적함을 제공하는지 보여주기를 원했습니다. FLOW-3D는 대체 설계를 시뮬레이션하고 비교하는 데 사용되었습니다.

이 발전소는 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있습니다. 에어컨 시스템의 목적은 건물 내 최대 온도를 35ºC로 제한하는 것입니다. 디퓨저가 하부 레벨에 위치하고 천장 근처의 환기구가 있기 때문에 천장 근처에서 최대 공기 온도가 발생하고 바닥 레벨은 반드시 몇도 더 낮습니다.

Modeling velocity of debris types

Debris Transport in a Nuclear Reactor Containment Building

이 기사는 FLOW-3D가 원자력 시설에서 봉쇄 시설의 성능을 모델링하는데 사용된 방법을 설명하며, Alion Science and Technology의 Tim Sande & Joe Tezak이 기고 한 바 있습니다.

가압수형 원자로 원자력 발전소에서 원자로 노심을 통해 순환되는 물은 약 2,080 psi 및 585°F의 압력과 온도로 유지되는 1차 배관 시스템에 밀폐됩니다. 수압이 높기 때문에 배관이 파손되면 격납건물 내에 여러 가지 이물질 유형이 생성될 수 있습니다. 이는 절연재가 장비와 균열 주변 영역의 배관에서 떨어져 나가기 때문에 발생합니다. 생성될 수 있는 다양한 유형의 이물질의 일반적인 예가 나와 있습니다(오른쪽).

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Evaluation of the Wind Effects on the Iron-Ore Stock Pile

바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.

Figure 2. Diagram. Schematic design of a living snow fence. Source: Wyatt et al., 2012b

Design of Living Barriers to Reduce the Impacts of Snowdrifts on Illinois Freeways

눈사태가 일리노이 고속도로에 미치는 영향을 줄이기 위한 생활장벽 설계 John Petrie, et al. (2020) 일리노이 교통 센터 시리즈 번호 20-019, 연구 ...
더 보기
aerospace-sloshing-simulation

Aerospace Sloshing Dynamics

Sloshing Dynamics 우주선의 연료 탱크에서 추진체의 움직임에 대한 지식은 작동 및 성능의 다양한 측면을 이해하는 데 필수적입니다. 추진체 운동은 액체 ...
더 보기
Evaluation of the Wind Effects on the Iron-Ore Stock Pile

Energy

Energy 전 세계 에너지 부문의 엔지니어는 전산 유체 역학(CFD)을 통해 해결책을 찾기 위해 광범위한 프로세스에서 매일 복잡한 설계 문제에 직면합니다 ...
더 보기
유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수) FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 ...
더 보기

연료 탱크 슬로싱

시뮬레이션 사례 설명 이 예는 제트 전투기 연료 탱크 내 연료 슬로싱을 나타냅니다. 이 시뮬레이션을 통해 엔지니어는 탱크 내 연료 ...
더 보기
2 Fluid, 1 Temperature

2 Fluid, 2 Temperature 모델

2 Fluid, 2 Temperature 모델 우주선 및 자동차 연료 탱크 및 특정 미세 유체 장치는 안전하고 효율적인 작동을 위해 정확한 ...
더 보기

자유 표면 모델링 방법

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 ...
더 보기

Oil & Gas Separators

Oil & Gas Separators FLOW-3D는 오일 및 물과 같은 혼합 불가능한 유체를 모델링할 수 있으며, 개방된 환경(주변 공기)에 관련된 구성 ...
더 보기

Particle Model(입자모델)

Lagrangian particle model(라그랑지안 입자 모델) 라그랑지안 입자 모델(Lagrangian particle model)은 서브 그리드(Sub-grid) 모델로 계산 셀보다 작은 속성과 크기가 다른 구형(Spherical) ...
더 보기

Design, Fabrication and Testing of a Water Current Energy Device / 수류 에너지 장치 설계, 제작 및 테스트

강물은 깨끗하고 재생 가능한 에너지의 믿을만한 원천입니다. 많은 장치들이 이 에너지를 사용하도록 설계되었지만, 리프트 기반 터빈은 발전 시 가장 효율적인 ...
더 보기

주조 분야

Metal Casting

주조제품, 금형의 설계 과정에서 FLOW-3D의 사용은 회사의 수익성 개선에 직접적인 영향을 줍니다.
(주)에스티아이씨앤디에서는  FLOW-3D를 통해 해결한 수많은 경험과 전문 지식을 엔지니어와 설계자에게 제공합니다.

품질 및 생산성 문제는 빠른 시간 안에 시뮬레이션을 통해 예측 가능하므로 낮은 비용으로 해결 할수 있습니다. FLOW-3D는 특별히 주조해석의 정확성 향상을 위한 다양한 설계 물리 모델들을 포함하고 있습니다.

이 모델에는 Lost Foam 주조, Non-newtonian 유체 및 금형의 다이싸이클링 해석에 대한 알고리즘 등을 포함하고 있습니다. 시뮬레이션의 정확성과 주조 제품의 품질을 향상시키고자 한다면, FLOW-3D는 여러분들의 이러한 요구를 충족시키는 제품입니다.

Ladle Pour Simulation by Nemak Poland Sp. z o.o.

유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수) FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 ...
더 보기

연료 탱크 슬로싱

시뮬레이션 사례 설명 이 예는 제트 전투기 연료 탱크 내 연료 슬로싱을 나타냅니다. 이 시뮬레이션을 통해 엔지니어는 탱크 내 연료 ...
더 보기

코어 가스(Core Gas)

코어 가스(Core Gas)   코어로 주조 모델링 (Modeling Castings with Cores) 모래 속의 화학 결합제는 용융 된 금속에 의해 가열 ...
더 보기
2 Fluid, 1 Temperature

2 Fluid, 2 Temperature 모델

2 Fluid, 2 Temperature 모델 우주선 및 자동차 연료 탱크 및 특정 미세 유체 장치는 안전하고 효율적인 작동을 위해 정확한 ...
더 보기

Tilt Pour Casting Workspace, 경동주조

Tilt Pour Casting Workspace Highlights, 경동주조 금형의 모션 제어최첨단 금형온도관리, 동적 냉각 채널, 스프레이 냉각, 금형온도 싸이클링정확한 가스 고립 및 ...
더 보기

Lost Foam Casting Workspace, 소실모형주조

Lost Foam Casting Workspace Highlights, 소실모형주조 최첨단 Foam 잔여물 추적진보된 Foam 증발 및 금속 유동 모델링응고, 다공성 및 표면 결함 ...
더 보기

Sand Core Making Workspace, 사형 중자성형

Sand Core Making Workspace Highlights, 사형 중자성형 세분화된 흐름 공기/모래 및 모래 충전압력에 의한 모배 미충진부 예측데이터베이스는 경화를 위한 유기(고온 ...
더 보기

Sand Casting Workspace, 사형주조

Sand Casting Workspace Highlights, 사형주조 모래 특성의 통합에는 투과성, 코어 가스 및 수분 함량이 포함됩니다.주입 컵 채우기 조건에 따라 동적 ...
더 보기

Low Pressure Die Casting Workspace, 저압주조

Workspace Highlights, 저압주조 매우 정확한 충진을 위한 압력 제어 주입공극, 배기 및 역압 효과를 포함한 전체 프로세스 모델링다공성과 같은 정밀한 ...
더 보기

Low Pressure Sand Casting (LPSC) Workspace, 저압사형주조

Workspace Highlights, 저압사형주조 투과성, 코어 가스 및 수분 함량을 포함한 모래 특성 통합전체 프로세스 모델링에는 보이드, 환기 및 역압 영향이 ...
더 보기

FLOW-3D CAST

FLOW-3D CAST는 다양한 금속 주조 해석이 가능한 완벽한 열유동 해석 프로그램으로, 매우 정확한 모델링과 다기능성, 사용 용이성 및 고성능 클라우드 컴퓨팅 기능을 결합한 최첨단 금속 주조 해석 시뮬레이션 플랫폼입니다. 모든 금속 주조 공정에 대해 FLOW-3D CAST는  빠르고 직관적인 해석이 가능한 작업 공간을 제공합니다. 11개 공정에 대한 Workspace, 강력한 후처리, 충진 예측, 응고 및 결함 분석을 통해 FLOW-3D CAST는 최적의 주조 제품 설계에 필요한 도구와 로드맵을 모두 제공합니다.

FLOW-3D Cast는 거의 모든 주조 공정을 모델링 할 수 있도록 설계되었습니다. FLOW-3D Cast의 매우 정확한 유동 및 응고 결과는 표면 산화물, 혼입된 공기, 매크로 및 미세 다공성과 같은 중요한 주조 결함을 포착합니다. 다른 특별한 모델링 기능으로는 로봇 스프레이 냉각 및 윤활, 샷 슬리브 흐름 프로필, 스퀴즈 핀 및 열 응력을 모델링 할 수있는 열 다이 사이클링이 있습니다.

최적화된 시뮬레이션 설계를 통해 개발 시간을 단축하고 출시 시간을 단축하며 수율을 높일 수 있습니다. FLOW-3D CAST를 사용하면 설계 및 개발 비용을 절감할 수 있습니다.

FLOW-3D CAST Continuous Casting WorkspaceFLOW-3D CAST Gravity Die Casting Workspace
FLOW-3D CAST HPDC WorkspaceFLOW-3D CAST Investment Casting WorkspaceFLOW-3D CAST Low Pressure Sand Casting Workspace
FLOW-3D CAST Low Pressure Die Casting WorkspaceFLOW-3D CAST Sand Casting WorkspaceFLOW-3D CAST Sand Core Making Workspace
Lost Foam CastingFLOW-3D CAST Tilt Pour Casting
HPDC Oxides Simulation | FLOW-3D CAST
BMW Injector Casting Process – Innovative ingate system for gravity casting
Continuous Slab Casting | FLOW-3D CAST
Horizontal Centrifugal Pipe Casting | FLOW-3D CAST
NVIDIA Logo

FLOW-3D POST와 그래픽 하드웨어

좋은 하드웨어는 향상된 FLOW-3D POST 경험을 제공

FLOW Science, inc의 최첨단 POST Processor인 FLOW-3D POST를 최대한 활용하려면 좋은 하드웨어가 있어야 합니다. 이 블로그에서 소프트웨어 엔지니어링의 GUI 개발자/관리자인 Stephen Sanchez는 이러한 하드웨어 권장 사항에 따라 최적의 FLOW-3D POST 경험을 얻을 수 있는 방법에 대해 정보를 제공 합니다.

고품질 그래픽 하드웨어

최소 3GB의 VRAM 이 있는 그래픽 카드로 시작하는 것이 좋습니다 . 이것은 많은 볼륨 렌더링을 수행할 경우 특히 중요합니다. 볼륨 렌더링은 FLOW-3D POST 의 고급 기능으로 iso-surface가 아닌 유체 도메인 전체에서 변수의 세부 사항을 시각화합니다. 이 기능은 매우 통찰력 있지만 후 처리 중에 효과적으로 사용하려면 좋은 하드웨어가 필요합니다.

다음으로 Intel 통합 그래픽을 기본 그래픽 하드웨어로 사용해서는 안됩니다. 인텔 통합 그래픽은 전용 그래픽 하드웨어가 있는 랩톱에서도 대부분의 랩톱에서 일반적입니다(자세한 내용은 아래 참조). 

대부분의 FLOW-3D POST 기능은 이 구성에서 작동하지 않으므로 Intel 통합 그래픽을 지원하지 않습니다. 

FLOW-3D POST 는 NVIDIA 그래픽 카드 와 함께 사용할 때 가장 잘 수행됩니다. FLOW-3D POST 가 잘 작동하는 것으로 확인되었으므로 Maxwell 아키텍처 제품군 이상의 NVIDIA 그래픽 하드웨어를 적극 권장 합니다. 

NVIDIA Quadro 카드는 가장 안정적인 것으로 입증되었습니다. 고급 AMD 카드도 작동해야 하지만 NVIDIA 하드웨어 및 드라이버만큼 안정적이지 않다는 사실을 발견 했으므로 항상 AMD보다 NVIDIA를 권장합니다.

Nvidia 그래픽 카드

노트북의 듀얼 그래픽 카드 – 간단하지만 숨겨진 솔루션

이제 많은 노트북에 NVIDIA 그래픽 카드와 Intel 통합 그래픽 간에 전환 할 수 있는 기능이 있습니다. NVIDIA 카드로 FLOW-3D POST 가 실행되고 있는지 확인하는 것이 중요합니다 . NVIDIA 제어판을 통해 NVIDIA 카드로 노트북을 강제로 실행할 수 있습니다.

그래픽 카드를 Nvidia로 전환

비디오 드라이버 업데이트

비디오 드라이버가 업데이트 되었는지 확인하는 것이 좋습니다. FLOW-3D POST 에서 비디오 드라이버를 업데이트하여 쉽게 해결할 수 있는 아티팩트 및 디스플레이 문제에 대한 보고가 있었습니다 . 비디오 드라이버를 최신 상태로 유지하는 것은 이러한 문제를 방지하는 좋은 방법입니다.

RAM, RAM, RAM!

메모리가 충분하지 않으면 시뮬레이션 후 처리가 불가능할뿐만 아니라 메모리 요구 사항을 인식하는 것이 중요합니다. 최대 10 배의 성능 저하로 이어질 수 있습니다! FLOW-3D POST 에 필요한 RAM 양은 여러 요소, 특히 시뮬레이션 크기에 따라 다릅니다. 사용자에게 최대한의 유연성을 제공하기 위해 메시의 셀 수에 따라 다음과 같은 RAM 권장 사항이 있습니다.

  • 초대형 (2 억 개 이상의 셀) : 최소 128GB
  • 대용량 (6 천 ~ 1 억 5 천만 셀) : 64-128GB
  • 중간 (3 천만 ~ 6 천만 셀) : 32-64GB
  • 소형 (3,000 만 셀 이하) : 최소 32GB

FLOW-3D POST 는 메모리 집약적 일 수 있습니다. 실행할 시뮬레이션 크기에 대한 대략적인 아이디어가 있는 경우, 이 지침을 가능한 한 잘 따르는 것이 좋습니다. 즉, 유연성을 극대화하고 가장 원활한 FLOW-3D POST 경험을 보장하기 위해 문제 크기에 관계없이 가능한 한 많은 RAM을 확보하는 것이 좋습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수)

FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 출력에 따라 달라집니다. 이 문서는 FLOW-3D의 출력에 대해 좀 더 복잡한 출력 변수 중 일부를 참조하는 역할을 합니다.

FLOW-3D Additional output
FLOW-3D Additional output

Distance Traveled by Fluid(유체로 이동 한 거리)

때로는 유체 입자가 이동한 거리가 중요한 경우도 있습니다. FLOW-3D에서 사용자는 모델 설정 ‣ 출력 위젯에서 유체가 이동한 거리에 대한 출력을 요청할 수 있습니다. 이 기능은 유체가 흐름 영역(경계 또는 질량 소스를 통해)에 들어간 시간 또는 유체가 도메인을 통해 이동한 거리를 계산합니다. 이 기능은 모든 시뮬레이션에도 사용할 수 있으며, 특별한 모델을 사용할 필요가 없으며, 흐름에도 영향을 미치지 않습니다. 이 모델을 사용하려면 출력 위젯으로 이동하고 추가 출력 섹션에서 “Distance traveled by fluid” 옆의 체크상자를 선택하십시오.

 노트

추가 출력 섹션은 출력 위젯의 모든 탭에서 사용할 수 있습니다.

유체 도착 시간

유체 도착 시간을 아는 것은 종종 유용합니다. 예를 들어 주조 시뮬레이션에서 주입 시간을 결정하는 데 사용할 수 있습니다. 제어 볼륨은 충전 프로세스 동안 여러 번 채워지고 비워지기 때문에 계산 셀이 채워지는 처음과 마지막 시간 모두 기록되고, 후 처리를 위해 저장될 수 있습니다. 이 작업은 출력 위젯과 추가 출력 섹션 내에서 유체 도착 시간 확인란을 선택하여 수행됩니다.

 노트

이 출력 옵션은 1 유체 자유 표면 흐름에만 사용할 수 있습니다.

유체 체류 시간

때로는 유체가 계산 영역 내에서 보내는 시간인 체류시간을 아는 것이 유용합니다. 이는 출력 ‣ Output ‣ Additional Output ‣ Fluid residence time 확인란을 선택하여 수행합니다. 여기서 S로 지정된 이 변수에 대한 전송 방정식은 단위 소스 항과 함께 Solve됩니다.

유체 체류 시간(Fluid residence time)
유체 체류 시간(Fluid residence time)

여기에서 t는 시간이며 u는 유체 속도입니다.

S의 단위는 시간이다. 계산 도메인에 들어가는 모든 유체에 대한 S의 초기값은 0입니다.

의 값은 항상 second order체계를 가진 데이터로부터 근사치를 구합니다.

이 출력 옵션은 1 유체 및 2 유체 유량 모두에 사용할 수 있습니다.

 노트

경계 조건 또는 소스에서 도메인으로 유입되는 유체가 이미 도메인에 있는 유체와 혼합될 때 체류가 감소하는 것처럼 보일 수 있습니다.

Wall Contact Time

벽면 접촉 시간 출력은 (1)개별 유체 요소가 특정 구성 요소와 접촉하는 시간 및 (2)특정 구성 요소가 유체와 접촉하는 시간을 추적합니다. 이 모델은 액체 금속이 모래 오염물과 접촉했을 때 오염과 상관 관계가 있는 proxy 변수를 제공하기 위한 것입니다. 이 출력은 최종 주조물에서 오염된 유체가 어디에 있는지 확인하는 데 사용될 수 있습니다. 접촉 시간 모델의 또 다른 해석은, 예를 들어, 용해를 통해 다소 일정한 비율로 화학물질을 방출하는 물에 잠긴 물체에 의한 강의 물의 오염입니다.

모델은 Model Setup ‣ Output ‣ Wall contact time 박스를 확인하여 활성화됩니다. 또한 Model Setup ‣ Output ‣ Geometry Data section의 각 구성요소에 대해 해당 구성요소를 계산에 포함하기 위해 반드시 설정해야 하는 Contact time flag가 있습니다.

 추가 정보

Wall Contact Time with Fluid and Component Properties: Contact Time with Fluid for more information on the input variables를 참조하십시오.

 노트

이 모델은 실제 구성 요소, 즉 고체, 다공성 매체, 코어 가스 및 충전 퇴적물 구성 요소로 제한됩니다. 접촉 시간은 유체 # 1과 관련해서만 계산됩니다.

2. 형상 데이터
2. 형상 데이터

Component wetted are

Fluid 1과 접촉하는 구성 요소의 표면 영역은 관심 구성 요소에 대한 Model Setup ‣ Output ‣ Geometry Data ‣ Wetted area 옵션을 활성화하여 History Data로 출력 될 수 있습니다.

구성 요소의 힘과 토크

Forces

Model Setup ‣ Output ‣ Geometry Data ‣ Forces 옵션을 활성화하면 부품에 대한 압력, 전단력, 탄성 및 벽 접착력을 History Data에 출력할 수 있습니다.

압력을 가지지 않은 셀(즉, 도메인 외부에 있거나 다른 구성 요소 안에 있는 셀)이 구성 요소 주변의 각 셀에 대한 압력 영역 제품을 합산하는 동안 어떻게 처리되는지를 제어하는 압력 계산에 대한 몇 가지 추가 옵션이 있습니다. 기본 동작은 이러한 셀에서 사용자 정의 기준 압력을 사용하는 것입니다. 지정되지 않은 경우 기준 압력은 초기 무효 압력인 PVOID로 기본 설정됩니다. 또는, 코드는 Reference pressure is code calculated 옵션을 선택하여 구성요소의 노출된 표면에 대한 평균 압력을 사용할 수 있습니다.

마지막으로, 일반 이동 물체의 경우, 규정된/제약을 받는 대로 물체를 이동시키는 힘을 나타내는 잔류 힘의 추가 출력이 있습니다.

Torques

Model Setup ‣ Output ‣ Force 옵션이 활성화되면 구성 요소의 토크가 계산되고 History Data에 출력됩니다. 토크는 힘-모멘트에 대한 기준점 X, 힘-모멘트에 대한 기준점 Y, 정지 구성 요소에 대한 힘-모멘트 입력에 대한 기준점 Z에 의해 지정된 지점에 대해 보고됩니다. 참조점의 기본 위치는 원점입니다.

General Moving Objects에는 몇 가지 추가 참고 사항이 있습니다. 첫째, 토크는 (1) 6-DOF 동작의 질량 위치 중심 또는 (2)고정축 및 고정점 회전의 회전 축/점에 대해 보고됩니다. 힘에서 행해지는 것과 마찬가지로, 규정된/제한된 바와 같이 물체를 이동시키는 토크를 나타내는 잔류 토크의 출력도 있습니다.

 노트

힘 및 토크 출력은 각 지오메트리 구성 요소의 일반 히스토리 데이터에 기록됩니다. 출력은 개별 힘/토크 기여 (예: 압력, 전단, 탄성, 벽 접착) 및 개별 기여도의 합으로 계산된 총 결합력/토크로 제공됩니다.

Buoyancy center and metacentric height (부력 중심 및 메타 중심 높이)

일반 이동 객체의 부력과 안정성에 대한 정보는 각 구성 요소에 대해 모델 설정 Setup 출력 ‣ 기하학적 데이터 ‣ 부력 중심 및 도량형 높이 옵션을 활성화하여 History Data에서 출력할 수 있습니다. 이렇게 하면 구성 요소의 중심 위치와 중심 높이가 출력됩니다.

  1. Advanced

FLOW-3D Advanced Output Option
FLOW-3D Advanced Output Option

Fluid vorticity & Q-criterion(유체 와동 및 Q 기준)

와동구성 요소뿐만 아니라 와동 구조를 위한 Q-criterion을 계산하고 내보내려면 Model Setup ‣ Output ‣ Advanced 탭에서 해당 확인란을 클릭하여 유체 와동 & Q-criterion을 활성화하십시오.

여기에서:

:  소용돌이 벡터의 다른 구성 요소

 Q-criterion은 속도 구배 텐서의 2차 불변성을 갖는 연결된 유체 영역으로 소용돌이를 정의합니다. 이는 전단 변형률과 와류 크기 사이의 국부적 균형을 나타내며, 와류 크기가 변형률의 크기보다 큰 영역으로 와류를 정의합니다.

Hydraulic Data and Total Hydraulic Head 3D

Hydraulic Data

깊이 기준 유압 데이터를 요청하려면 출력 ‣ 고급으로 이동한 후 유압 데이터 옆의 확인란을 선택하십시오(심층 평균 값과 중력을 -Z 방향으로 가정).

이 옵션은 FLOW-3D가 유압 시뮬레이션에 유용할 수 있는 추가 깊이 평균 데이터를 출력하도록 합니다.

  • Flow depth
  • Maximum flow depth
  • Free surface elevation
  • Velocity
  • Offset velocity
  • Froude number
  • Specific hydraulic head
  • Total hydraulic head

이 수량 각각에 대해 하나의 값 이 메쉬의 모든 (x, y) 위치에서 계산되고 수직 열의 모든 셀에 저장됩니다 (이 수량이 깊이 평균이기 때문에 z 방향으로 데이터의 변화가 없습니다). 변수는 정확도를 보장하기 위해주기마다 계산됩니다. 모든 경우에,  깊이 평균 속도, z- 방향  의 중력 가속도, 유체 깊이, 및 컬럼 내 유체의 최소 z- 좌표입니다.

  • 자유 표면 고도는 수직 기둥의 맨 위 유체 요소에 있는 자유 표면의 z-좌표로 계산됩니다.
  • The Froude number 은   

식으로 계산됩니다.

  • 유체 깊이는 깊이 평균 메쉬 열의 모든 유체의 합으로 계산됩니다.

특정 유압 헤드 

및 총 유압 헤드

변수는 다음에서 계산됩니다.  

 노트

  • 깊이 기준 유압 출력 옵션은 예리한 인터페이스가 있고 중력이 음의 z 방향으로 향할 때에만 유체 1에 유효합니다.
  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

Total Hydraulic Head 3D(총 유압 헤드 3D)

또한 총 유압 헤드 3D 옵션을 확인하여 국부적(3D) 속도 필드, 플럭스 표면에서의 유압 에너지(배플 참조) 및 플럭스 기반 유압 헤드를 사용하여 유체 1의 총 헤드를 계산할 수 있다. 3D 계산은 국부 압력을 사용하여 수행되며(즉, 압력이 유체 깊이와 관련이 있다고 가정하지 않음) 원통 좌표와 호환됩니다.

 노트

  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 문제가 발생할 수 있습니다. 이 경우, 플럭스 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산 시 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.
  • 3D 유압 헤드 계산은 입력 파일에 중력이 정의되지 않은 경우 중력 벡터의 크기를 1로 가정합니다.

Flux-averaged hydraulic head

특정 위치 (즉, 배플)의 플럭스 평균 유압 헤드는 다음과 같이 계산됩니다.

Flux-averaged hydraulic head
Flux-averaged hydraulic head

유압 헤드 계산에서는 유선이 평행하다고 가정합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치된 경우 (예: 아래에 표시된 것과 같이) 문제가 될 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정




유압 헤드 계산에서는 유선이 평행하다고 가정

이 경우 플럭스 표면에 보고된 플럭스 평균 유압 헤드는 헤드 계산 시 흐름 방향이 무시되므로 예상보다 클 수 있습니다.

FLOW-3D에는 History Probes, Flux surface, Sampling Volumes의 세 가지 주요 측정 장치가 있습니다. 이러한 장치를 시뮬레이션에 추가하는 방법은 모델 설정 섹션에 설명되어 있습니다(측정 장치 참조). 이들의 출력은 기록 데이터 편집 시간 간격으로 flsgrf 파일의 일반 기록 데이터 카탈로그에 저장됩니다. 이러한 결과는 Analyze ‣ Probe 탭에서 Probe Plots을 생성하여 액세스할 수 있습니다.

히스토리 프로브 출력

히스토리 프로브를 생성하는 단계는 모델 설정 섹션에 설명되어 있습니다(기록 프로브 참조). 시뮬레이션에 사용된 물리 모델에 따라 각각의 History Probe에서 서로 다른 출력을 사용할 수 있습니다. 프로브를 FSI/TSE로 지정하면 유한 요소 메시 안에 들어가야 하는 위치에서 응력/스트레인 데이터만 제공한다. 유체 프로브가 솔리드 형상 구성 요소에 의해 차단된 영역 내에 위치하는 경우, 기하학적 구조와 관련된 수량(예: 벽 온도)만 계산된다. 일반적으로 프로브 좌표에 의해 정의된 위치에서 이러한 양을 계산하려면 보간이 필요하다.

플럭스 표면 출력

플럭스 표면은 이를 통과하는 수량의 흐름을 측정하는데 사용되는 특별한 물체입니다. 플럭스 표면을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(플럭스 표면 참조). 각 플럭스 표면에 대해 계산된 수량은 다음과 같습니다.

  • Volume flow rate for fluid #1
  • Volume flow rate for fluid #2 (for two-fluid problems only)
  • Combined volume flow rate (for two-fluid problems only)
  • Total mass flow rate
  • Flux surface area wetted by fluid #1
  • Flux-averaged hydraulic head when 3D Hydraulic Head is requested from additional output options
  • Hydraulic energy flow when hydraulic data output is requested
  • Total number of particles of each defined species in each particle class crossing flux surface when the particle model is active
  • Flow rate for all active and passive scalars this includes scalar quantities associated with active physical models (eg. suspended sediment, air entrainment, ect.)

 노트

  • 유속과 입자수의 기호는 유동 표면을 설명하는 함수의 기호에 의해 정의된 대로 흐름이나 입자가 플럭스 표면의 음에서 양으로 교차할 때 양의 부호가 됩니다.
  • 플럭스 표면은 각 표면의 유량과 입자 수가 정확하도록 그들 사이에 적어도 두 개의 메쉬 셀이 있어야 합니다.
  • 유압 데이터 및 총 유압 헤드 3D 옵션을 사용할 때는 유압 헤드 계산이 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

샘플링 볼륨 출력

샘플링 볼륨은 해당 범위 내에서 볼륨을 측정하는 3 차원 데이터 수집 영역입니다. 샘플링 볼륨을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(샘플링 볼륨 참조). 각 샘플링 볼륨의 계산 수량은 다음과 같습니다.

  • 시료채취량 내에서 #1 유체 총량
  • 시료채취량 내 #1 유체질량 중심
  • 샘플링 용적 가장자리에 위치한 솔리드 표면을 포함하여 샘플링 용적 내의 모든 벽 경계에 작용하는 좌표계의 원점에 상대적인 유압력 및 모멘트.
  • 샘플링 용적 내 총 스칼라 종량: 이것은 부피 적분으로 계산되므로 스칼라 양이 질량 농도를 나타내면 샘플링 용적 내의 총 질량이 계산된다. 거주 시간과 같은 일부 종의 경우, 평균 값이 대신 계산됩니다.
  • 샘플링 볼륨 내의 입자 수: 각 샘플링 볼륨 내에 있는 각 입자 등급의 정의된 각 종별 입자 수(입자 모델이 활성화된 경우)
  • 운동 에너지, 난류 에너지, 난류 소실율 및 와류에 대한 질량 평균
  • 표본 체적의 6개 경계 각각에서 열 유속: 유체 대류, 유체 및 고체 성분의 전도 및 유체/구성 요소 열 전달이 포함됩니다. 각 플럭스의 기호는 좌표 방향에 의해 결정되는데, 예를 들어, 양방향의 열 플럭스도 양수입니다. 출력에서 확장 또는 최대 디버그 수준을 선택하지 않는 한 이러한 디버그 수준은 fsplt에 자동으로 표시되지 않습니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

Cad2Stl

FLOW-3D 유틸리티 프로그램 안내

이 문서에서는 FLOW-3D에서 사용할 수 있는 일부 Utility Program에 대해 설명합니다. 유틸리티 프로그램의 목적은 시뮬레이션을 수행할 때 반드시 필요한 것은 아니지만 특정 작업을 쉽게 수행할 수 있도록 돕는 것입니다. 각 개별 유틸리티의 사용법은 다음과 같습니다.

  1. 파일 변환 및 STL 품질 검사 도구

FLOW-3D는 중립 형식인 STL파일 형식만 지원하며 대부분의 CAD 패키지에서 STL형식을 지원하지만 형상을 STL형식으로 만들 수 없는 이유가 있을 수 있습니다. 이로 인해 FLOW-3D 사용자는 여러 파일 변환 유틸리티를 사용할 필요가 있을 수 있습니다. 또한 STL 파일 품질을 확인하는데 사용할 수 있는 여러 유틸리티도 사용할 수 있습니다. 아래 나열된 이러한 유틸리티는 다음 섹션에서 자세히 설명합니다.

  • Cad2Stl : 다양한 CAD 형식에서 변환 파일을 사용하는.STL파일
  • Topo2STL : 파일을topo형식에서.STL파일로 변환하는 데 사용
  • MiniMagics :.STL파일의 오류를 확인하는 데 사용
  • qAdmesh :.STL파일의 오류를 확인하고 사소한 문제를 해결하는데 사용

Cad2Stl

Cad2Stl 은 다른 CAD 파일 형식을 FLOW-3D에서 사용되는 STL 파일 형식으로 변환하기 위한 파일 변환 도구입니다. Cad2Stl 은 다음 파일 형식을 STL 형식으로 변환합니다.

  • Autodesk 3D Max :.3ds
  • Autodesk 별명 :.obj
  • IGES: .igs,.iges
  • BREP :.brep
  • 단계 : .stp,.step
  • 아바쿠스 6.2+ :.inp
  • NASTRAN :.blk
  • Marc Mentat : 고정 형식과 쉼표로 구분.dat

Cad2Stl 은 파일에서 역 법선 벡터를 보정하는 기능도 있습니다. 이 유틸리티는 유지 보수 계약이 유효한 모든 FLOW-3D 고객에게 무료로 제공되며 FLOW-3D Usre Site의 유틸리티 페이지에서 다운로드 할 수 있습니다.

Cad2Stl 은 Flow Science Japan에서 FLOW-3D 사용자를 위해 개발되었습니다 .

Cad2Stl Program
  1. 변환 목록에 변환할 파일 추가
    • 추가 -변환 목록에 파일을 추가합니다.
    • 제거 -변환 목록에서 파일을 제거합니다. 제거하려면 변환 목록에서 파일을 강조 표시하고 제거를 선택하십시오.
    • 기본적으로 파일 이름은 import file 이름과 일치하는 CAD파일을 STL파일 이름으로 지정하는데 변경이 필요하면 더블 클릭하고 이름을 바꾸면 변경할 수 있습니다.
  2. 구체화 옵션을 사용하여 STL 파일의 품질을 선택하십시오. 선택하고 볼 수 있는 네 가지 수준의 정확도가 있습니다. 파일이 변환될 때마다 STL로 작성된 파일이 표시되므로 사용자가 만족스럽거나 더 높은 수준의 세분화가 필요한지 여부를 결정할 수 있습니다. 정확성이 향상되면 파일 크기는 증가하지만 처리 시간은 크게 증가하지 않습니다. 다른 파일 형식을 한 번에 로드하고 변환할 수 있습니다. 또한 변환 프로세스가 완료되면 파일을 로드하고 표시하기 위한 대화 상자가 열립니다. 이것은 BREP, IGES및 STEP 파일 형식에만 적용됩니다.
  3. 원하는 작업을 선택하십시오. 다른 파일 형식을 한 번에 로드하고 변환할 수 있습니다. 또한 변환 프로세스가 완료되면 파일을 로드하고 표시하기 위한 대화 상자가 열립니다.
    • 변환 -파일을 변환합니다. 한 파일을 변환하려면 로드할 파일 목록에서 해당 파일을 강조 표시하여 변환하십시오.
    • 모두 변환 -모든 파일을 변환
    • 표시 -변환된 파일을 강조 표시합니다
    • 면 방향 수정 -일반 수정 루틴
    • 변환 목록 숨기기 -더 나은 부품 표시를 위해 보기 화면을 증가 시킵니다.
    • 와이어 프레임 오버레이 -각 STL 패싯의 패싯 모서리를 오버레이 합니다. 이것은 오른쪽 하단의 확인란입니다.
    • 로그 지우기 – 변환 로그 텍스트 상자에 대한 모든 데이터 출력을 지웁니다.
  4. 종료 -프로그램을 닫습니다

qAdmesh

qAdmesh는 .STL파일에 오류 가 있는지 확인하는 도구이며 연결이 끊어진 패싯, 반전된 법선, 연결이 끊어진 패싯 및 누락된 패싯과 같은 사소한 문제를 해결하는 데 사용할 수 있습니다. qAdmesh를 시작하려면:

  • GUI에서: Model Setup 탭의 Tools ‣ qAdmesh로 이동하십시오.
  • Windows: 바탕 화면 아이콘을 클릭하거나 시작 메뉴에서 FLOW-3D v12.0 폴더의 형상 도구 하위 디렉토리에 있는 Admesh 항목으로 이동하십시오.
  • Linux의 경우: $F3D_HOME/utilities/qAdmesh을 실행하십시오.

명령: qAdmesh를 열고 찾아보기 버튼을 사용하여 지오메트리 파일을 로드 하십시오. 문제를 해결하고 수정 사항으로 새 형상 파일을 생성하려면 기본 옵션을 그대로 두고 출력 유형을 선택하고 새 형상 파일의 경로를 지정하십시오. 이진 STL 은 ASCII STL 옵션 보다 작은 파일을 생성하므로 권장됩니다 (이진 및 ASCII 형식 만 FLOW-3D 로 인식됨). 그런 다음 적용을 클릭하여 파일을 확인하고 수정하십시오.

qAdmesh program
qAdmesh program

qAdmesh의 출력은 인터페이스의 메시지 섹션에 표시됩니다. 출력에는 감지된 오류와 출력 옵션이 선택된 경우 이러한 문제점을 해결하기 위해 수행할 조치가 표시됩니다.

사용자 정의 검사 옵션은 파일을 고정할 때 프로그램이 어떤 작업을 수행하는지에 대한 자세한 제어를 제공할 수 있습니다. 또한 변형 및 공차 탭에는 .STL 파일의 회전, 미러링, 크기 조정, 변환 및 병합 기능을 제공하는 옵션이 있습니다.

qAdmesh는 무료 유틸리티입니다만 FSI에서 지원하지 않습니다. qAdmesh가 문제를 해결하는 능력은 심각도에 따라 다릅니다. 문제의 수가 증가함에 따라 qAdmesh 가 문제를 해결할 수 있는 가능성이 줄어 듭니다. 문제를 해결할 수 없는 경우 CAD 패키지를 사용하여  .STL 파일을 재생성 하는 것이 좋습니다.

MiniMagics 

MiniMagics 는 무료 STL파일 시각화 및 복구 유틸리티입니다. 설치는 FLOW-3D 홈 디렉토리 의 Utilites 폴더에서 찾을 수 있으며 파일 분석 및 복구를 위한 유용한 도구로 qAdmesh에서 수행된 수정 사항을 시각화하거나 qAdmesh의 대안으로 사용할 수 있습니다.

$F3D_HOME/UtilitiesSTL

  • Topo2STL

FLOW-3D가 지원하는 유일한 CAD 파일 형식은 .STL이지만 형식을 포함하여 다른 형식의 지형 데이터를 갖는 것은 드문 일이 아닙니다. Topo2STL의 유틸리티로 변환할 수 있습니다. Topo2STL 은 Windows 시스템에서만 사용 가능하며 유틸리티 드롭 다운 메뉴에서 액세스 할 수 있습니다.

명령

  1. 지형 파일은 다음 형식의 ASCII 파일입니다. 각 선은 점을 나타내며 동일한 단위 시스템에서 3 개의 좌표 (일반적으로 피트 또는 미터)를 포함합니다. 좌표는 공백으로 구분됩니다. 선의 좌표 순서는 XYZ 여야 합니다. 여기서 Z는 표고입니다. 두 좌표는 동일한 XY 점을 공유할 수 없습니다. 포인트의 순서 (파일의 줄)는 중요하지 않습니다. 좌표를 포함하지 않는 머리글 줄이나 꼬리 줄이 없어야 합니다.
  2. Topo2stl.exe유틸리티가 추출된 위치에 있는 파일을 실행하여 Topo2STL에 액세스 할 수 있습니다.
  3. 유틸리티를 시작하면 변환할 파일을 선택하라는 topo 파일 찾아보기 창이 나타납니다. 파일 찾아보기 창을 이용하여 파일을 선택합니다.
  4. topo파일이 선택되면, Topo2STL의 창이 나타나고, X, Y의 범위와 Z 계산할 topo데이터 익스텐트가 계산되면 Topo 데이터 익스텐트 및 데이터의 총 포인트 수에 대한 정보가 Information: Topo data extents 아래에 표시됩니다.
Topo2STL
Topo2STL
Topo2STL
Topo2STL
  1. 변환에 필요한 사용자 입력은 공간 분해능 및 STL 최소 Z 좌표입니다. 기본적으로 공간 해상도는 0.002 * min (X 범위, Y 범위)이고 STL 최소 Z 좌표는 ZMIN-(ZMAX-ZMIN)입니다. 여기서 ZMIN 및 ZMAX는 Topo 데이터의 범위입니다.
    • 공간 해상도는 STL 파일을 생성하는 동안 Topo 데이터가 얼마나 정밀하게 분석되는지 제어합니다.
    • STL 최소 Z 좌표는 Topo 데이터의 ZMAX보다 작은 값이어야 합니다. 이것은 STL파일의 최소 ​​Z 두께를 효과적으로 설정합니다.
  2. Browse 버튼은 파일 출력 위치를 설정하는 데 사용할 수 있습니다.
  3. 변환을 클릭하면 변환 프로세스가 시작됩니다. 이 시점에서 변환 취소를 사용하여 변환이 완료되거나 종료될 때까지 Topo2STL 창을 닫을 수 없습니다.
Topo2STL
Topo2STL
  1. 변환이 완료 (또는 종료)되면 변환 단추가 변환 추가로 변경되어 사용자가 변환할 다른 Topo 파일을 선택할 수 있습니다.
Topo2STL
  1. FSAI를 사용한 유한 요소 메쉬 파일 형식 변환

FSAI의 도구에서 유한 요소 메시를 변환하는 유틸리티입니다 Abaqus6.2 이후 형식과 NASTRAN 벌크 형식에 사용되는 형식을 변환하는 FSAI는 유틸리티 드롭 다운 메뉴에서 액세스 할 수 있습니다. FSAI를 사용하려면 다음을 수행하십시오. EXODUS II

  • 적절한 모드에서 유틸리티를 엽니다 (초기 메쉬의 Abaqus 형식인지 NASTRAN 형식인지 여부에 따라 다름 )
  • 파일에서 생성 필드에서 입력 유한 요소 메쉬를 찾습니다.
  • 생성된 파일 위치 필드에서 원하는 출력 위치를 찾으십시오.
  • 생성된 파일 이름 필드에서 원하는 출력 파일 이름을 설정하십시오.
  • 생성을 누릅니다.

 노트

이 FSAI 프로그램을 사용하려면 FLOW-3D 와 별개의 라이센스가 필요합니다. 자세한 내용은 FLOW-3D 영업 담당자에게 문의하십시오.

  1. 계산기

유틸리티 드롭 다운 메뉴에 여러 계산기가 추가되어 알려진 매개 변수 (예: 유체 속성 등)를 기반으로 입력 수량을 추정할 수 있습니다. 사용 가능한 계산기는 다음을 계산합니다.

  • 냉각 채널의 열전달 계수
  • 재료 특성 및 시뮬레이션 시간에 따른 열 침투 깊이
  • 샷 슬리브의 유체 높이
  • 고압 다이캐스팅을 위한 피스톤 속도
  • 밸브 압력 계수
  1. MPDB (Material Properties Database) 확장

MPDB (Material Properties Database)는 FLOW-3D 와 별도로 Flow Science, Inc 에서 구입할 수 있는 타사 데이터베이스입니다. 여기에는 문헌의 다양한 온도 의존성 고체 재료 특성이 포함되어 있습니다. FLOW-3D 용 MPDB는 사용자가 FLOW-3D의 기본 데이터베이스와 호환되는 파일 형식을 내보낼 수 있도록 하여 데이터를 FLOW-3D 로 편리하게 가져올 수 있는 MPDB 독점 버전입니다. MPDB의 재료 특성은 대부분 고체상입니다. 따라서 FLOW-3D 모든 모델 고체 특성을 요구하는 데이터, 특히 유체 구조 상호 작용, 응고 및 열 응력 진화 모델을 활용할 수 있습니다.

MPDB는 다양한 형식으로 데이터를 내보낼 수 있는 독립형 데이터베이스로 사용될 수 있습니다. MPDB에 대한 일반적인 지침은 JAHM Software, Inc.를 방문하십시오. 여기에서는 FLOW-3D 와 함께 MPDB를 사용하는 방법에 대한 지침을 제공합니다. FLOW-3D 와 제대로 통합하려면 MPDB 용 실행 파일이 Windows와 Linux에 있어야 합니다. 실행 파일은 FLOW-3D GUI에 의해 감지되며 재료 메뉴 아래 MPDB에서 재료 가져오기 메뉴 항목 이 활성화됩니다. 이러한 조건 중 하나라도 충족되지 않으면 FLOW-3D GUI를 통해 액세스 할 수 없습니다. MPDB%F3D_HOME%\Utilities$F3D_HOME/UtilitiesMPDB_for_FLOW-3D

FLOW-3D MPDB
FLOW-3D MPDB

material를 클릭 MPDB에서 가져오기 및 사용자 인터페이스 MPDB는 별도의 창에서 열립니다. 재료는 주요 요소로 분류되었습니다. Materials 탭, 테이블에서 요소를 마우스 오른쪽 버튼으로 클릭하여, 사용자는 해당 요소를 포함하는 물질의 목록을 볼 수 있습니다.

(Material Properties Database)
(Material Properties Database)

예를 들어 다음 그림은 철 (Fe)이 포함된 데이터베이스의 재료 목록을 보여줍니다.

FLOW-3D MPDB(Fe)
FLOW-3D MPDB(Fe)

사용자는 다른 합금, 세라믹, 유리 또는 기타 분류되지 않은 재료를 분류하는 다른 탭으로 전환할 수도 있습니다. 다음 그림은 Al & Cu 합금 목록을 보여줍니다.

FLOW-3D MPDB(Al & Cu)
FLOW-3D MPDB(Al & Cu)
FLOW-3D MPDB(Fe,Ni - 1006 (UNS G10060))
FLOW-3D MPDB(Fe,Ni – 1006 (UNS G10060))

재료가 식별되면 재료를 두 번 클릭하면 해당 재료에 사용할 수 있는 속성 목록이 있는 별도의 창이 나타납니다. 예를 들어 Fe 및 Ni 합금에서 1006 (UNS G10060)을 엽니다. 이러한 속성이 모두 FLOW-3D에 사용되는 것은 아닙니다.

FLOW-3D MPDB(1006(UNS G10060))
FLOW-3D MPDB(1006(UNS G10060))

각 속성은 이 창의 오른쪽에서 선택할 수 있는 다른 형식으로 파일에 표시, 플로팅 또는 저장할 수 있습니다. 그러나 이러한 속성 중 일부가 FLOW-3D 로 인식되는 것은 아닙니다. 

FLOW-3D 와 호환되는 파일 형식을 생성하려면 재료 창을 닫고 FLOW-3D/SolidWorks/ANSYS 메뉴에서 시작하십시오. 재료의 특성으로 FLOW-3D로 가져올 수 있는 세 가지 파일 형식이 있습니다.  유체 데이터베이스 형식(.f3d_dbf 확장), 고체 데이터베이스 형식 (.f3d_dbs 확장), 일반 쉼표로 구분된 값(CSV형식)으로 부터 시뮬레이션에 적합한 FLOW-3D 호환 형식을 선택하십시오. MPDB의 재료는 대부분 고체이지만 사용자가 응고된 유체의 특성을 가져오려면 FLOW-3D에서 응고된 유체 특성이 유체 특성의 일부이므로 Fluids 데이터베이스 형식을 선택해야 합니다. 솔리드 및 유체 데이터베이스 파일 형식과 파일은 현재 사용자의 문서 폴더와 Windows 및 Linux에 저장됩니다.

CSV<My Documents>\FLOW-3D\gui\MaterialsDatabase/home/<user>/FLOW-3D/gui/MaterialsDatabase

이러한 위치는 FLOW-3D의 데이터베이스가 사용자 정의 재료를 찾는 곳입니다. MPDB에서 이러한 위치로 내보낸 모든 자료는 FLOW-3D의 기본 데이터베이스에 의해 선택됩니다.

1006 (UNS G10060) 철 합금을 선택하십시오.

FLOW-3D MPDB(UNS G10060)
FLOW-3D MPDB(UNS G10060)

이전에 사용 가능했던 일부 특성은 FLOW-3D 와 관련이 없기 때문에 사용 불가능 합니다. 각 속성이 처리되자 마자 플롯 되거나 해당 데이터가 표시되면 참조 및 메모 섹션이 활성화됩니다. 참조 탭 속성에서 찍은 위치를 나타내는 참고 섹션은 일반적으로 데이터의 구성과 정확성에 관한 사항이 포함되어 있습니다. 

온도에 따른 특성의 동작을 이해하는 데 도움이 되도록 각 특성을 플롯 할 수 있습니다. 또한 데이터의 유효성에 대한 경고가 있을 수 있습니다. 

예를 들어 열전도도를 먼저 플로팅하면 저온 경고가 표시됩니다. 온도의 함수로 플롯을 표시하기 전에 .f3d_dbs파일을 쓰려면 데이터베이스에 추가 버튼을 클릭하고 다음 창에서 파일에 쓸 속성을 ​​선택하십시오. 사용 가능한 단계에 대한 속성을 선택할 수 있습니다. 속성이 선택되면 데이터 쓰기 및 닫기를 클릭하십시오. 

재료 창을 닫습니다. FLOW-3D/SolidWorks/ANSYS 메뉴에서 데이터베이스를 닫습니다.

FLOW-3D MPDB(Low temperature warning)
FLOW-3D MPDB(Low temperature warning)
FLOW-3D MPDB(Temperature Plot)
FLOW-3D MPDB(Temperature Plot)

.f3d_dbs파일을 쓰려면 데이터베이스에 추가 버튼을 클릭하고 다음 창에서 파일에 쓸 속성을 ​​선택하십시오. 사용 가능한 단계에 대한 속성을 선택할 수 있습니다. 속성이 선택되면 데이터 쓰기 및 닫기를 클릭하십시오. 재료 창을 닫습니다. FLOW-3D/SolidWorks/ANSYS 메뉴에서 데이터베이스를 닫습니다.

경우에 따라 재료에 사용자에게 필요한 속성이 없습니다. 데이터베이스에 사용 가능한 속성을 추가한 후 이러한 상황에서 누락된 속성은 유사한 속성을 가진 합금 (사용자의 위험 부담)에서 얻을 수 있습니다. 데이터베이스가 열려있는 동안 FLOW-3D에서 사용될 하나의 재료에 대해 속성을 혼합하고 일치시킬 수 있습니다.

FLOW-3D MPDB(Select properties to write to file)
FLOW-3D MPDB(Select properties to write to file)

데이터베이스를 닫은 후 파일 이름을 묻는 메시지가 사용자에게 표시됩니다. 기본값은 MPDB 가 재료에 지정하는 것입니다. FLOW-3D 가 재료를 사용자 정의 재료로 인식하도록 파일의 위치와 확장자가 미리 설정되어 있습니다.

FLOW-3D MPDB(File locate position)
FLOW-3D MPDB(File locate position)

CSV파일을 선택한 경우에도 동일한 프로세스가 적용됩니다. 데이터가 파일에 기록되면 각 테이블 형식 속성 창의 값 가져오기 버튼에서 데이터를 검색할 수 있습니다.

첫 번째 열은 항상 온도입니다.

FLOW-3D MPDB(csv file)
FLOW-3D MPDB(csv file)
  1. grfedit를 사용하여 flsgrf 파일 편집

명령 줄 유틸리티이므로 runscript와 같은 적절한 환경에서 실행해야 합니다 ( Runscripts 사용 참조 ).

  • grfedit를 연 후 사용자에게 소스 파일 (flsgrf.*데이터가 복사될 파일)의 경로를 묻는 메시지가 표시됩니다. 파일의 전체 경로 (예 c:\users\username\FLOW-3D\simulation\flsgrf.simulation:)를 입력하고 <enter>를 누르십시오.
  • 이제, 파일 입력 확장의 목표 예를 들어, (데이터를 기록할 위치로 파일) 파일을 new_output. 데이터가 파일에 기록됩니다 c:\users\username\FLOW-3D\simulation\flsgrf.new_output. 대상 파일이 존재하면 파일을 덮어쓰거나 대상 파일에 데이터를 추가하라는 메시지가 표시됩니다. 대상 파일의 시간보다 늦게 시뮬레이션 시간을 가진 소스 파일 편집 만 추가됩니다.
  • 이 시점에서 프로그램은 어떤 히스토리 데이터 편집, 데이터 편집 재시작 및 대상 파일에 쓰기 위해 선택된 데이터 편집을 묻습니다. 프롬프트에 따라 작성할 데이터 편집을 선택하십시오.
  • 대상 파일을 작성한 후 프로그램이 닫히고 다른 flsgrf.*파일처럼 사용할 수 있습니다.

 노트

  • grfedit는 FLOW-3D v11.1 이상에서 작성된 결과 파일에서만 작동합니다.
  • 소스 flsgrf.*파일은 grfedit에 의해 수정되지 않습니다
  • FLOW-3D/MP의 출력 파일로 작업할 때는 flsgrf1의 위로 flsgrf 교체 하십시오 .
  • 소스 및 대상 파일 모두에 허용되는 유일한 이름은 flsgrf및 flsgrf1입니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

그림 2 : FLOW-3D를 사용한 흐름 및 형태 시뮬레이션. 파스칼 단위의 압력 및 mm 단위의 거리.

Microscopic Bubbles Switch Fiber-Optic Circuits

Figure 1: The Agilent Photonic Switching Platform
Figure 1: The Agilent Photonic Switching Platform

컴퓨터 시뮬레이션은 광섬유 회로에서 광 신호를 전환하는데 사용되는 혁신적인 스위치에서 미세 기포 문제를 이해하고 해결하는 데 중요한 역할을 했습니다. Agilent Photonic Switching Platform은 평면 광파 회로에서 잘린 작은 트렌치의 올바른 지점에 거품을 불어서 작동합니다. 버블은 광섬유 네트워크를 재구성하기 위해 광선을 다른 경로로 리디렉션 합니다. 초기 프로토타입은 기포 반사로 인해 무언가 불안정하다는 것을 나타내는 성능 문제를 보여주었습니다. 그러나 거품의 크기가 작기 때문에 문제를 진단하고 해결하는데 필요한 포괄적인 물리적 측정을 수행할 수 없었습니다.

애질런트의 선임 과학자인 John Uebbing은 전산 유체 역학 (CFD) 소프트웨어를 사용하여 거품을 시뮬레이션했습니다. 기포는 실리콘 기판에 위치한 전기 히터에 의해 유도된 증발에 의해 유지됩니다. 애질런트 팀은 트렌치 벽의 응결로 인해 유체가 축적된다는 사실을 발견했습니다. 스위치 동작의 대부분을 결정하는 것은 이러한 축적입니다. 추가 시뮬레이션을 통해 연구원들은 안정적인 신호를 제공하기 위해 장치를 변경하는 두 가지 다른 방법을 검증 할 수 있었습니다.  “처음에 우리 팀원 중 일부는 이러한 결과를 믿지 않았지만 계속된 물리적 테스트를 통해 사실이 입증되었습니다.”라고 Uebbing은 말했습니다. “CFD가 없었다면 이 문제의 해결책에 도달하지 못했을 것입니다.”

신기술 개발

광섬유 케이블은 데이터 통신 처리량을 크게 증가 시켰으며, 광 신호 전환을 위한 전기 신호로 전환한 다음 다시 광 신호로 전환하지 않고도 대량의 광섬유 데이터를 전환 할 수 있기를 원했습니다. 1990 년대 중반 Agilent Laboratories (Hewlett-Packard Labs 소속)는 전광 회로 스위치의 중요성을 인식하고 이러한 기술을 개발하기 위한 연구 프로그램을 시작했습니다. 현재 Agilent Labs의 CORL (Communications and Optical Research Laboratory) 내에 엔지니어와 과학자 팀이 구성되어 컴팩트하고 확장 가능하며 광 신호에 최소한의 영향을 미치는 이 고유한 스위치 패브릭을 개발했습니다.

 시뮬레이션은 딤플의 원인을 정확히 파악하는데 도움이 되었으며 여러 대안 솔루션을 식별하고 평가하는 데 도움이되었습니다. 버블 스위치 엔지니어링의 이러한 발전은 FLOW-3D  소프트웨어 에서 사용할 수 있는 고급 모델링 기능 없이는 불가능했을 것  입니다. 우리에게 중요한 것은 프로젝트 시작부터 Flow Science 팀이 입증한 지식과 무결성이었습니다. 우리가 이야기 한 다른 소프트웨어 회사에는 관련된 문제에 대한 표면적 이해만 있는 영업 담당자가 있었지만 Flow Science는 전문 지식을 갖춘 기술 직원을 고용하여 우리가 달성하고자 하는 것을 정확히 이해했습니다. 프로세스의 여러 단계에서 중요한 장애물을 극복 할 수 있는 중요한 도움을 제공했습니다.
– John Uebbing, 애질런트 선임 과학자

작동을 위해 Agilent Photonic Switching Platform은 두 개의 광섬유 네트워크의 교차점에 배치됩니다 (그림 1). 광 신호가 광섬유를 통해 들어 오면 직선 도파관을 통해 방해받지 않고 평면 광파 회로를 통과 할 수 있습니다. 그러나 신호가 다른 광섬유로 리디렉션되어야하는 경우 잉크젯 기술은 두 도파관 경로의 교차점에 거품을 삽입하여 광학 특성을 변경하고 신호를 출력 광섬유로의 경로 아래로 반사합니다. 기포는 거울이나 기계적으로 움직이는 부품을 사용하지 않고도 5 밀리 초 이내에 형성 및 제거 할 수 있습니다. 이 스위치는 교차된 광 도파관 배열과 인덱스 매칭되는 유체에 거품을 불어서 작동합니다. 기포는 소자 기판의 전기 히터에 의해 유도 된 증발에 의해 형성됩니다. 유체는 도파관의 교차점에 위치한 일련의 마이크로 트렌치를 채웁니다. 기포 벽으로부터의 내부 전반사로 인해 빛이 한 도파관에서 다른 도파관으로 전환됩니다. 문제는 광 도파관의 수용 각 또는 개구 수가 상당히 낮다는 것입니다. 기포의 수직 반사벽이 도파관의 축에 수직이 아니면 빛이 출력 도파관으로 제대로 반사되지 않고 신호 손실이 발생합니다.

프로토 타입의 딤플 충격 성능

초기 프로토 타입에서 광범위한 실험 테스트를 수행하여 히터 전력 및 주변 압력이 광학 반사 특성과 기포 모양 및 크기에 미치는 영향을 보여주었습니다. 이 테스트는 반사된 광 신호 대 히터 전력 곡선이 효과적인 광 스위칭에 필요한 엄격한 요구 사항을 충족하지 못하고 반사된 광 신호에 불안정성이 있음을 보여주었습니다.

그림 2 : FLOW-3D를 사용한 흐름 및 형태 시뮬레이션. 파스칼 단위의 압력 및 mm 단위의 거리.
그림 2 : FLOW-3D를 사용한 흐름 및 형태 시뮬레이션. 파스칼 단위의 압력 및 mm 단위의 거리.

컴퓨터 시뮬레이션에서 그림 2와 같이 버블의 각 면에 딤플이 형성되어 있음을 보여 주었을 때, 딤플이 전력 곡선의 혹의 원인이 되었고 반사된 신호가 그렇게 불안정한 이유 일 수 있다는 사실이 애질런트 연구팀에 나타났습니다. 센서로 물리적 측정을 수행하는 팀의 능력은 MEMS 장치의 규모까지 확장되지 않았습니다. 그들이 할 수 있는 최선은 특수 광학 장치를 사용하여 현미경 사진을 찍는 것입니다. 이 사진은 딤플이 파장 스케일에서 매우 얇기 때문에 딤플을 직접 보여줄 수 없습니다.

거품 시뮬레이션

처음에는 버블의 작동을 시뮬레이션하기 위한 여러 가지 대안이 고려되었습니다. 팀은 다양한 분석 모델을 사용하여 기포 형성을 조사했지만 이 모델은 현재 프로토 타입이 좋은 기포를 생성해야 한다고 예측했기 때문에 문제를 포착하기에는 너무 단순했습니다. 맞춤 소프트웨어를 작성하기 위해 대학 교수를 고용했지만 이 프로젝트를 완료하는 데 상당한 시간이 소요되었습니다. 그 동안 Uebbing은 문제의 복잡한 물리학을 처리 할 수 있는 상용 소프트웨어 패키지를 찾기 시작했습니다. “저는 여러 CFD 소프트웨어 개발자들과 이야기를 나눴지만 그들 중 누구도 광범위한 수정 없이 문제를 해결할 수 있는 버블 모델을 가지고 있지 않다고 판단했습니다.”라고 Uebbing은 말했습니다. “반면에 Flow Science는

Flow Science의 새로운 균질 기포 모델은 균일한 기포 압력과 온도를 가정합니다. 이것은 현실에 대한 좋은 근사치입니다. 주요 문제 중 하나는 액체, 증기 및 고체가 모두 결합되는 접점 라인의 모델링입니다. 동질 버블 모델은 이 시점에서 계산 셀의 힘과 플럭스의 균형을 맞춥니 다. Uebbing은 이전 버전의 소프트웨어를 사용하기 시작했지만 새 모델이 출시 되자마자 Uebbing은 문제를 해결해 보았습니다. “시뮬레이션 결과는 결국 실험을 설명하는 데 매우 중요한 dimple 을 보여주었습니다.”라고 Uebbing은 말했습니다. 흥미롭게도 시뮬레이션 결과 버블이 35kHz에서 진동하는 것으로 나타났습니다. 우리는 그것이 실제로 그 주파수에서 진동한다는 것을 보여주는 실험 데이터를 가져 왔지만 우리는 이유를 몰랐습니다.

현실과의 다소 예상치 못한 상관 관계는 팀에게 시뮬레이션 결과에 대한 확신을주었습니다. 시뮬레이션 결과는 문제 영역의 모든 지점에서 유속, 압력 및 온도를 보여줌으로써 테스트에서 측정 할 수 있었던 것 이상이었습니다. 이 결과로 우리는 무슨 일이 일어나고 있는지 파악할 수 있었습니다. dimple은 모세관 현상으로 인해 발생합니다. 응축액이 거품 벽에 쌓입니다. 트렌치 벽에 있는 액체의 얇은 막을 통해 빠져 나 가려고 합니다. 이러한 얇은 층을 통해 액체를 밀어 넣으려면 상당한 압력 차이가 필요합니다. 기포 벽 중앙의 높은 압력으로 인해 기포가 dimple을 형성합니다.”

문제 해결

딤플이 어떻게 형성되었는지 이해하면 안정적인 신호를 제공하기 위해 거품 모양을 수정하는 두 가지 방법이 제안되었습니다. 첫 번째는 트렌치의 유리 측벽 아래로 버블 히터를 확장하는 것입니다. 그런 다음 열이 마이크로 트렌치의 벽 위로 흘러 표면을 건조시킵니다. FLOW-3D를 사용한 시뮬레이션   은 건식 벽 거품이 매우 안정적인 스위치 신호를 제공함을 보여줍니다. 기본 물리학에 따르면 기포 온도가 벽 온도보다 낮 으면 벽이 건조해질 것입니다. 이러한 기대는 FLOW-3D  시뮬레이션 으로 확인되었습니다  .

FLOW-3D로 확인 된 두 번째 방법은 마이크로 트렌치에 소위 정적 버블을 만드는 것입니다. 장치 온도가 압력 설정 저장소 온도보다 약간 더 높으면 정적 거품이 존재합니다. 이 장치 온도는 기포를 트렌치의 모서리로 밀어 넣을 수있는 충분한 압력을 생성하지만 기포가 도파관 어레이와 히터 기판 사이의 틈을 통해 불어 나기에는 충분하지 않습니다. 이러한 정적 기포는 근처의 “crusher”기포를 사용하여 끌 수 있습니다. 이 기포는 일시적으로 충분한 과압을 생성하여 정적 기포가 붕괴되도록합니다. 분쇄기 거품 자체는 더 작은 트렌치에 있으므로 표면 장력이 작업을 완료 한 후 붕괴 될 수 있습니다. FLOW-3D 시뮬레이션은 이 모드에서 스위치 작동을 보여주기 위해 사용되었습니다.

FLOW-3D를 사용 하여 미세 유체 애플리케이션 모델링  의 성능과 다양성에 대해 자세히 알아보십시오. 

Best Ultrabooks and Premium Laptops 2021

FLOW-3D 해석용 노트북 선택 가이드

Best Ultrabooks and Premium Laptops 2021
Best Ultrabooks and Premium Laptops 2021

일반적으로 수치해석을 주 업무로 사용하는 경우 노트북을 사용하는 경우는 그리 많지 않습니다. 그 이유는 CPU 성능을 100%로 사용하는 해석 프로그램의 특성상 발열과 부품의 성능 측면에서 데스크탑이나 HPC의 성능을 따라 가기는 어렵기 때문입니다.

그럼에도 불구하고, 이동 편의성이나 발표,  Demo 등의 업무 필요성이 자주 있는 경우, 또는 계산 시간이 짧은 경량 해석을 주로 하는 경우, 노트북이 주는 이점이 크기 때문에 수치해석용 노트북을 고려하기도 합니다.

보통 수치해석용 컴퓨터를 검토하는 경우 CPU의 Core수나 클럭, 메모리, 그래픽카드 등을 신중하게 검토하게 되는데 모든 것이 예산과 직결되어 있기 때문입니다.  따라서 해석용 컴퓨터 구매 시 어떤 것을 선정 우선순위에 두는지에 따라 사양이 달라지게 됩니다.

해석용으로 노트북을 고려하는 경우, 보통 CPU의 클럭은 비교적 선택 기준이 명확합니다. 메모리 또한 용량에 따라 가격이 정해지기 때문에 이것도 비교적 명확합니다. 나머지 가격에 가장 큰 영향을 주는 것이 그래픽카드인데, 이는 그래픽 카드의 경우 일반적인 게임용이나 포토샵으로 일반적인 이미지 처리 작업을 수행하는 그래픽카드와 3차원 CAD/CAE에 사용되는 업무용 그래픽 카드는 명확하게 분리되어 있고, 이는 가격 측면에서 매우 차이가 많이 납니다.

한가지 안타까운 현실은 최근에 디지털화폐 (비트코인 등)열풍으로 인해 채굴용으로 수요가 급증하여 좋은 그래픽 카드를 적정가격으로 구입하기 어려운 상황입니다.

통상 게임용 그래픽카드는 수치해석의 경우 POST 작업시 문제가 발생하는 경우가 종종 발생하기 때문에 일반적으로 선택 우선 순위에서 충분한 확인을 한 후 구입하는 것이 좋습니다.

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 적합합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 NVIDIA의 Quadro K 시리즈와 AMD의 Fire Pro W 시리즈입니다.

특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

2021-03-23 현재 AMD FirePro Naver Shopping 검색 결과

2021-03-23 현재 NVIDIA Quadro pro graphic card : 네이버 쇼핑 (naver.com)

코어가 많은 그래픽카드의 경우 가격이 상상 이상으로 높습니다. 빠르면 빠를수록 좋겠지만 어디까지나 예산에 맞춰 구매를 해야 하는 현실을 감안할 수 밖에 없는 것 같습니다.

한가지 유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 모델에 따라 다르기는 하지만, 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상이어야 하고 1GB이상을 권장합니다.


2021-03-23 현재 그래픽카드의 성능 순위는 위와 다음과 같습니다.
출처: https://www.videocardbenchmark.net/high_end_gpus.html

High End Video Card Chart
High End Video Card Chart

주요 Notebook

출시된 모든 그래픽 카드가 노트북용으로 장착되어 출시되지는 않기 때문에, 현재 오픈마켓 검색서비스를 제공하는 네이버에서 Lenovo Quadro 그래픽카드를 사용하는 노트북을 검색하면 아래와 같습니다. 검색 시점에 따라 상위 그래픽카드를 장착한 노트북의 대략적인 가격을 볼 수 있을 것입니다.

<검색 방법>
네이버 쇼핑 검색 키워드 : 컴퓨터 제조사 + 그래픽카드 모델 + NoteBook 형태로 검색
dPtl : Lenovo quadro notebook or HP quadro notebook 또는 Lenovo firepro notebook or HP firepro notebook


( 2021-03-23 기준)

Lenovo Quadro Notebook
HP Quadro Notebook
HP Quadro Notebook

대부분 검색 시점에 따라 최신 CPU와 최신 그래픽카드를 선택하여 검색을 하면 예산에 적당한 노트북을 자신에게 맞는 최상의 노트북을 어렵지 않게 선택할 수 있습니다.

(주)에스티아이씨앤디 솔루션사업부

Numerical modelling of a two-degree-of-freedom Wave Energy Converter

Energy Presentations | 에너지 프레젠테이션

Energy Presentations | 에너지 프레젠테이션

 지난 사용자 컨퍼런스에서 에너지 산업을위한 FLOW-3D의 응용에 초점을 맞춘 사용자 프레젠테이션을 다운로드하십시오  .

2019 년

Numerical modelling of a two-degree-of-freedom Wave Energy Converter: Creation, validation and utilization of the model

2 자유도 파동 에너지 변환기의 수치 모델링 : 모델의 생성, 검증 및 활용

Eliseo Marchesi, Politecnico di Milano / Studio Frosio srl
Marco Negri 및 Stefano Malavasi, Politecnico di Milano
Filippo Palo, XC Engineering Srl

Numerical modelling of a two-degree-of-freedom Wave Energy Converter
Numerical modelling of a two-degree-of-freedom Wave Energy Converter

이 연구의 목적은 FLOW-3D를 통한 수치 모델링입니다., Politecnico di Milano에서 실험실 규모 테스트를 거친 특정 Wave Energy Converter (WEC) : 두 개의 자유도 진동 체 시스템 인 EDS (Energy Double System), 급증하는 패들. 두 본체는 서로 연결되어 있으며 각각은 지상에 반응하는 PTO (Power Take-Off)에 연결됩니다. 수치 모델은주기적인 파동으로 사용 가능한 실험 테스트에 대해 검증되었습니다. 첫 번째 시뮬레이션은 실험실 테스트의주기적인 파동을 재현하는 것을 목표로했습니다. 그런 다음 실험 시스템에 해당하는 EDS의 수치 모델을 생성하고 이전에 모델링 한주기 파를 적용했습니다. 수치 방법의 품질이 확인되면 EDS 시스템의 새로운 구성에 대한 시뮬레이션이 수행되었습니다. 첫 번째 시뮬레이션 시리즈에서는이 매개 변수가 실험 모델에서 최적화되지 않았기 때문에이를 최적화하기 위해 패들 PTO의 댐핑이 변경되었습니다. 그 후, EDS 동작은 이전에 시뮬레이션 된 주기적 파동과 에너지 적으로 동일한 임의 파동에서 조사되었습니다.

다운로드

2015 년

Numerical simulation of extreme wave loading on an axisymmetric point absorber wave energy converter in a survival sea state

생존 해상 상태에서 축 대칭 점 흡수 파 에너지 변환기에 대한 극한 파 하중의 수치 시뮬레이션

Peter Arnold, Minerva Dynamics Limited

생존 해상 상태에서 파력 에너지 변환기 (WEC)가 경험할 수있는 힘과 모멘트의 초기 평가는 개념 설계 단계에서 특히 중요합니다. 현재까지 WEC의 생존 가능성을 평가하는 데 사용되는 주요 방법은 모델 규모 탱크 테스트이지만 일반적으로 10m에서 15m 범위의 상당한 파도 높이를 갖는 생존 파도의 크기로 인해 탱크 테스트 프로그램은 소규모를 사용해야합니다. 관련 계측 및 물리적 확장 문제가있는 스케일 프로토 타입 또는 관련 비용이 더 큰 대형 프로토 타입에 의존합니다. 보다 최근에 CFD는 더 작은 계산 비용으로 인해 불규칙한 파동 스펙트럼과는 반대로, 단독 집중 또는“New Waves”를 사용하여 정적 및 부동 구조에 대한 비선형 파동 부하를 평가하는 데 사용되었습니다. 그러나 이러한 초기 연구는 WEC 설계 엔지니어가 결과 부하의 통계적 분포를 필요로하기 때문에 WEC 생존에 필요한 조건 만 제공하지만 충분하지는 않습니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다.

다운로드

Wave propagation and reflection at an inclined plane – simulations and experiments

경사면에서의 파동 전파 및 반사 – 시뮬레이션 및 실험

Boris Huber, 비엔나 기술 대학교

20m 길이의 수로에서 물리적 모델 테스트를 수행하여 수로 끝의 경사면에서 파동 전파 및 반사를 관찰했습니다. 웨이브 생성은 익스텐더 휠에 의해 앞뒤로 움직이는 바닥에 장착 된 패들로 이루어졌습니다. 파도의 전파는 수위 측정에 의해 여러 지점에서 기록되었습니다. 실험은 다양한 파동으로 실행 된 다음 FLOW-3D 로 시뮬레이션되었습니다  . 또한 CFD 시뮬레이션에서 적절한 경계 조건을 얻기 위해 돌과 천공 시트로 구성된 파동 흡수 경계를 사용한 실험을 수행하고 다른 경계 조건에서 시뮬레이션을 실행했습니다.

다운로드

2013 년

Flap type wave power device in near shore conditions

해안 근처에서 플랩 형 파력 장치

Ibis Group, Inc의 Stephen Saunders

FLOW-3D  v10.1을 솔루션 코드로 사용하여 단일 이동 플랩 파 전력 캡처 장치의 CFD 분석을 수행했습니다  . 이 작업의 목적은 프로토 타입을 제작하고 배치하기 전에 의도 한 작업 환경에서 플랩이 겪는 힘을 예측하는 것입니다. FLOW-3D  는 이동하는 공기 / 물 인터페이스의 역학을 캡처하는 데 필요한 강력한 VOF 모델 때문에 경쟁 업체보다이 프로젝트에 선택되었습니다. 또한  FLOW-3D움직이는 고체 물체를 표현하는 FAVOR ™ 방법은 움직이는 플랩을 시뮬레이션하는 데 중요합니다. 플랩 형상의 성능을 시뮬레이션하고 다가오는 파도가 플랩 표면에 수직 인 해안 근처 조건에서 평가되었습니다. 테스트 된 모델은 플랩 끝 주변의 흐름 특성을 평가하기 위해 3D로 구성됩니다. 현재까지 두 개의 바다 상태가 테스트되었습니다. 이들은 플랩에 도달하는 즉시 깨지는 깨지지 않는 팽창 및 파도입니다. 예상대로 깨지지 않는 팽창은 중립의 양쪽에서 동일한 플랩 편향과 거의 대칭 인 부드러운 플랩 동작을 유도합니다. 파동 사례를 깨는 결과는 비대칭 동작과 하중으로 훨씬 더 극적입니다.

다운로드

Ocean waves resonance analysis of an oscillating water column energy converter

진동 수주 에너지 변환기의 해양 파도 공명 분석

José Manuel Grases ; 센데 키아

SDK Marine은 진동하는 수주 챔버 내의 물에 잠긴 수력 터빈을 기반으로 파도에서 전기 에너지를 수집하는 새로운 방법을 개발하고 있습니다. FLOW-3D  는 챔버 내부와 외부의 흐름 동작을 이해하는 데 사용되었습니다. 이 프로젝트의 주요 목표는 내부 수위를 측정하고이를 외부 파 여기와 비교하여 장치의 응답을 얻는 것이 었습니다. 또한 장치의 수력을 계산하기 위해 서로 다른 수력 터빈의 거동을 시뮬레이션하기 위해 서로 다른 다공성 멤브레인을 구현했습니다.

다운로드

Design of a Sewer Transition

Design of a Sewer Transition | 하수도 전환 설계

This article was contributed by Daniel Valero, Rafael García-Bartual, Ignacio Andrés and Francisco Valles of the Polytechnic University of Valencia.

2010 년 12 월, 새로운 고속 열차 MADRID-VALENCIA (스페인)가 개통되었습니다. 건설 전에 극복해야 할 많은 기술적 문제 중 하나는 터널로 구성된 도심의 철도 입구로 발렌시아의 주요 남쪽 하수도를 벗어나게 했습니다. 이탈 도달 범위는 길이가 143 미터이며 아래에 자세히 설명된 복잡한 유압 설계를 포함하여 기존 경사와 관련하여 경사 및 단면의 중요한 변경을 포함합니다. 유압 성능은 FLOW-3D를 사용한 수치 시뮬레이션과   발렌시아 폴리 테크닉 대학교의 유압 실험실에서 물리적 모델을 통해 확인되었습니다. 최대 용량 100 m 3 / s에 대한 테스트가 수행되었습니다 .

The Sewer                          

그림 1은 하수도 기하학 설계의 주요 특징을 보여줍니다. 여기에는 철도 터널을 건넌 직후에 위치한 표준 WES 프로파일이 포함됩니다. 이 위어는 높은 유속으로 초 임계 흐름을 강제합니다. 하류에서 바람직하지 않은 흐름 조건이 설정되는 것을 방지하기 위해 둑 바로 하류에 정류 조를 설계했습니다. 이러한 장치는 연결 하류 하수도에서 높은 에너지 손실 및 임계 이하의 흐름 조건을 수반하는 유압 점프를 강제합니다. 서로 다른 배출 조건에서 흐름의 거동을 보장하기 위해 채널에 두 개의 세로 줄의 삼각형 블록이 포함되었으며, 이는 정수 조 길이에서 유압 점프를 국지화하기 위해 에너지 소산 기 역할을했습니다. 그 계단의 길이에서 수압 점프. 새로운 변형 채널과 기존 도달 지점(upstream and downstream)사이는 기하학적 요소로 부드럽게 연결합니다.(그림 2).

Figure 1. Geometry of the sewer

Figure 2. Reach 2 of the sewer

FLOW-3D Simulations

문제의 정확한 해결을 위해 계산 리소스를 최적화하기 위해 하수도를 여러 개의 중첩 된 범위로 분할하여 수력 솔루션의 연속성을 보장하고 고려 된 각 도달 범위에서 더 미세한 메시를 사용할 수 있습니다. 가장 복잡한 흐름이 정수 조에서 발생하기 때문에 이러한 도달 범위는 윤곽선과 바닥 블록에서 중앙 흐름 영역까지 점진적으로 다양한 셀 크기로 가장 높은 해상도 (6.000.000 셀)로 해결되었습니다. 유압 점프 시뮬레이션에 대한 비디오는 이 기사의 끝에 있습니다.

Figure 3. Velocity magnitude distribution

Figure 4. Turbulent kinetic energy distribution.

Figure 5. Air entrained prediction with turbulent air entrainment model

ke RNG 난류 모델이 선택되었으며, 이류에 대한 명시적인 2 차 단 조성 보존 체계가 있습니다. 자유 표면 표현에는 Split Lagrangian 방법이 사용되었습니다. 정상 상태 솔루션 이전의 과도 흐름은 더 거친 메쉬로 시뮬레이션되었습니다. 그림 3과 4는 수치 시뮬레이션의 관련 결과를 보여줍니다. 또한 수력 점프의 수치 시뮬레이션을 보여주는 비디오 가이드 기술 노트에 첨부되어 있습니다.

유압 점프에서 발생하는 공기 혼입, 특히 난류와 자유 표면 간의 상호 작용을 설명하기 위해 추가 시뮬레이션이 수행되었습니다. 그림 5는 가변 밀도 옵션을 선택하고 기본 계수 C air  = 0.5를 사용하는 FLOW-3D 의 공기 혼입 모델을 사용한 결과를 보여줍니다.

Comparison with the Physical Model

발렌시아 Polytechnic University의 수압 실험실에 실물 모형을 구축하였습니다. 모형에 사용된 척도는 1/20이었습니다. 그림 6은 weir 상단 바로 위에 있는 임계 단면의 프로파일을 보여 줍니다. 발견된 평균 깊이의 오차는 1.3% 였습니다. 유동의 다른 구조적 특성은 FLOW-3D에 의해 적절하게 재현되었다. 예를 들어, 예를 들어, 하수도가 만곡된 범위에 따른 자유 표면의 형상과 Weir의 상류로의 흐르는 자유 표면의 현상입니다.

Figure 6. Relative error at the critical section. Comparison between FLOW-3D, physical model, and HEC-RAS (US Army Corps of Engineers).

Conclusions

실험실 결과와 FLOW-3D시뮬레이션 간의 약간의 차이가 확인되지만 연구 결과는 매우 만족스럽습니다. 아래 동영상을 통해 실험 및 수치해석 결과를 비교해 보시길 바랍니다.

FLOW-3D는 가능한 많은 형상 또는 유압 설계를 테스트할 때 실험실의 실험 횟수를 줄일 수 있습니다. 또한 FLOW-3D의 파일이 속도, 와도, 난류 등과 같은 관련 분야의 상세한 시공간 분포를 제공하므로 최종 설계와 관련하여 실험실에서 수행 된 결과와 측정을 확장하는 데 도움이 될 수 있습니다. 결합된 기술은 연구에서 언급한 것과 같은 유압 기반시설의 설계, 검증 및 최적화를 위한 강력한 도구입니다.

Plate 1.1: Overall view of infiltration rig with permeable pavement

Modular Permeable Pavements | 모듈식 투과성 포장

이 기사는 Mohd Aminur Rashid ( UNITEN ), Prof Ismail Abustan (USM) 및 Prof Meor Othman Hamzah ( USM ) 가 기고했습니다.

모듈 식 투과성 포장은 전통적인 불 침투성 아스팔트 및 콘크리트 포장의 대안입니다. 물이 표면을 통해 빠르게 침투 할 수있는 능력 때문에 모듈 식 투과성 포장은 유출량과 최고 유출률을 줄일 수 있습니다. 모듈 식 투과성 포장 도로는 우수 제어를 돕는 효과적인 도구로 간주됩니다. 이 연구는  실험실 및 현장 실험 결과를 검증하기 위해 FLOW-3D 를 사용하여 투과성 포장의 변화를 모델링하고 시각화하는 데 중점을 둡니다  .

실험 설정

Plate 1.1: Overall view of infiltration rig with permeable pavement
Plate 1.1: Overall view of infiltration rig with permeable pavement
Plate 1.2: Physical model of the permeable pavement in laboratory
Plate 1.2: Physical model of the permeable pavement in laboratory

투과성 포장의 물리적 모델은 폭 525mm, 길이 565mm 인 모델의 전면보기를 위해 3면 20mm 두께의 PVC와 20mm 두께의 Perspex로 만들어진 Plate 1.2와 같이 수직 직사각형 수로에 배치되었습니다. 이 투과성 포장 도로에는 그림 1.1과 같이 표층 두께 110mm, 자갈 바닥 두께 300mm, 부기 층 두께 200mm의 세 가지 레이어가 있습니다. 서브베이스 레이어는 200mm 깊이까지 두 ​​개의 HMPS 레이어를 리그에 추가하여 구성되었습니다. 부기 층이 완성 된 후, 침투 리그에 15mm에서 20mm 크기의 세척 된 깨끗한 입방체 골재를 첨가하여 자갈 기저층을 시공 하였다. HMPS의 표면층은 5mm 깨끗한 입방체 골재가있는 PVC의 육각 기둥으로 구성됩니다.


그림 1.1 : 경계 조건 구성
Figure 1.1: Configuration of boundary conditions
Figure 1.1: Configuration of boundary conditions

모델 검증

모델은 20L / m, 15L / m, 10L / m, 5L / m의 유속에 대한 시뮬레이션 데이터와 실험실 데이터를 비교하여 검증되었습니다. 데이터는 시간 함수로서 포장 층 하단의 유체 축적 높이로 구성됩니다. 이러한 데이터는 FLOW-3D 의 짧은 런타임 때문에 선택되었습니다  . 그림 1.2는 20L / m 실험에서 관찰 된 결과와 계산 된 결과를 비교 한 것입니다. 관찰 시간과 계산 시간의 차이는 약 5 초로 매우 작습니다. 이것은 육각형 모듈 포장 시스템의 계산 모델, HMPS 및이 FLOW-3D 를 실행하는 데 사용 된 모든 데이터를 확인했습니다.  시뮬레이션은 실험실 조건과 일치했습니다. 15L / m에 대해 관찰 된 데이터와 계산 된 데이터 간의 비교가 그림 1.3에 나와 있습니다. 그래프는 동일한 추세선과 약 5 초의 차이도 보여줍니다. 그림 1.4는 10L / m에 대해 계산 된 데이터와 관찰 된 데이터 간의 비교 그래프를 보여줍니다. 이 사례는 시뮬레이션 된 데이터와 관찰 된 데이터에 대해 약 5 초 더 많은 것을 제외하고는 완전히 일치 함을 보여줍니다. 시뮬레이션 및 관찰 된 데이터는 차이가 5 초 미만인 5L / m 케이스에 대해 그림 1.5에 플롯되었습니다.

Comparison between observed and computed data
Figure 1.2: Comparison between observed and computed data on 20L/m
Figure 1.3: Comparison between observed and computed data on 15L/m
Figure 1.4: Comparison between observed and computed data on 10L/m
Figure 1.5: Comparison between observed and computed data on 5L/m

층 두께의 영향

시뮬레이션된 각 사례의 경우 속도 필드는 비슷하지만 FORD™ 방법이 형상을 해석하는 방식으로 차이를 관찰할 수 있습니다. 그물이 너무 거칠어서 PVC 육각형 기둥의 벽을 해결할 수 없을 경우 벽 내부와 외부 사이에 액체가 누출될 수 있습니다. 결과는 그림 1.9의 압력이 가장 거친 메시의 솔루션과 다른 두 메시의 메시 독립적 솔루션 사이에 뚜렷한 차이와 함께 서로 상당히 잘 일치한다는 것을 보여줍니다. 특히, 수면과 침대의 차이는 기하와 수면의 위치를 근사한 그물에 의해 발생하며, 이는 흐름장 내 세포의 0이 아닌 속도와 Fi와 같이 장애물 내 또는 수면 위 인접 세포의 0 속도 사이의 보간 차이를 초래합니다.1.10, 1.11 및 1.12입니다. 더 미세한 메시를 사용하여 불일치를 최소화해야 합니다.

Figure 1.6: Surface pavements of HMPS in FLOW-3D simulation
Figure 1.7: Effect of thickness of surface pavement on fraction of fluid
Figure 1.8: Effect of thickness of surface pavement on volume of fluid

시뮬레이션 된 각 경우에 대해 속도 필드는 비슷하지만 FAVOR ™ 방법이 형상을 해석하는 방식에서 차이가 관찰 될 수 있습니다. 메쉬가 너무 거칠어 서 PVC 육각 기둥의 벽을 해결할 수없는 경우 벽 내부와 외부 사이에 유체 누출이있을 수 있습니다. 결과는 그림 1.9의 압력이 가장 거친 메쉬의 솔루션과 다른 두 메쉬의 메쉬 독립 솔루션 사이에 현저한 차이가 있음을 알 수 있습니다. 특히 수면과 수면의 차이는 기하학과 수면의 위치를 ​​근사하는 메쉬에 의해 발생합니다. 이는 그림 1.10, 1.11 및 1.12에서와 같이 유동장에서 세포의 0이 아닌 속도와 장애물 내부 또는 수면 위의 인접한 세포의 속도가 0이 아닌 사이의 보간 차이를 초래합니다. 더 미세한 메시를 사용하여 불일치를 최소화해야합니다.

2D different thickness of surface pavement
Figure 1.9: Pressure fields for the 2D different thickness of surface pavement
Figure 1.10: Velocity fields for the 2D different thickness of surface pavement
Figure 1.11: Pressure fields for the 2D different thickness of surface pavement
Figure 1.12: Velocity fields in the z-direction for the 2D different thickness of surface pavement

결론

수행 된 테스트의 범위에서 FLOW-3D는 모듈식 포장 도로, HMPS의 흐름을 적절하게 모델링 한다는 결론을 내릴 수 있습니다. 결과는 또한 복잡한 2D 흐름이 항상 적절하게 모델링 되었음을 나타냅니다. 특히 물 표면 프로필을 물리적 모델의 프로필과 비교할 때 더욱 그렇습니다. 이는 동일한 운영 상황에서 실험 결과와 모델 결과를 비교하기 위한 이 연구의 세 번째 목표에 부합합니다. 또한 시뮬레이션은 대체 다공성 매체 모델 또는 축척 또는 프로토타입 치수로 실행할 수 있습니다. 이 연구는  FLOW-3D가 포장 구조를 통과하는 흐름의 일반적인 특성을 모델링 할 수 있을 만큼 충분히 발전되었습니다. 더 자세한 연구를 위해서는 더 강력한 컴퓨터가 필요합니다. 이러한 결과는 이 특정 경우에 유효하며 다른 디자인을 연구 할 때 지침으로 사용해야 합니다.

마지막으로 이 연구를 통해 포장 구조가 통합 유압 시스템으로 작동함을 알 수 있습니다. 이 시스템의 성능은 시스템 내의 모든 구성 요소와 관련이 있습니다. 본 연구의 다음 단계는 본 연구에서 제시 한 분석 방법을 기반으로 단순화된 모델을 개발하는 것입니다. 전산 유체 역학 모델에 사용 된 재료 특성의 추정을 개선하려면 토양 물 특성 곡선에 대해 더 많은 실험실 테스트를 수행해야 합니다.

collapsed-raised-fluid-column-figure-1-1

Steady-State Accelerator for Free-Surface Flows

자유 표면 흐름을 위한 정상 상태 가속기

이 기사에서 Tony Hirt 박사는 다가오는 FLOW-3D  v12.0 릴리스에서 사용할 수있는 새로운 Steady-State Accelerator에 대해 설명합니다  .

일시적인 흐름의 점근 적 상태를 계산하는 것보다 안정된 자유 표면 흐름을 생성하는 더 빠른 방법이 자주 필요합니다. 상황은 압축성 흐름 솔버를 사용하여 비압축성 흐름을 해결하는 것과 유사합니다. 후자의 경우 압축 파는 붕괴하는 데 오랜 시간이 걸리고 결과적으로 비압축성 흐름을 남길 수 있습니다. 이에 따라 자유 표면 흐름에서 유체는 비압축성이지만 표면 파동은 안정된 자유 표면 구성을 생성하는 데 오랜 시간이 걸릴 수 있습니다.

비압축성 흐름의 경우, 압축 파를 심각하게 감쇠시키는 반복적 인 프로세스 (즉, 압력-속도 반복)를 사용합니다. 물리적으로 반복은 압력과 같은 파동이 국부적 인 영역에 영향을 미치는 짧은 거리를 이동하도록 허용하지만 압력 장에 상당한 노이즈를 유발할 수있는 장거리 전파 및 반사를 피할 수있을만큼 빠르게 감쇠됩니다.

이 노트에서 자유 표면 셀에 적용된 간단한 압력 조정은 표면 교란에 대한 감쇠력으로 작용합니다. 이 댐핑은 안정적인 자유 표면 구성에 대한 접근을 가속화합니다.

Steady-State Accelerator Idea

유체 인터페이스 또는 자유 표면은  VOF (Volume-of-Fluid) 기술을 사용하여 FLOW-3D 에서 추적됩니다 . 유체 변수 F의 비율은 유체가 차지하는 영역을 찾습니다. 유체에 고정 된 자유 표면이있는 경우 유체를 정의하는 F 값도 안정된 값을 유지해야합니다. F가 일정하려면 표면에 수직 인 유체 속도가 0이어야합니다. 물론 표면에서의 접선 유체 속도는 0 일 필요는 없습니다. 예를 들어, 위어 위의 흐름에는 일정한 흐름이 있지만 계단에서 나오는 흐름의 위치와 모양은 변하지 않습니다.

자유 표면 흐름에 대한 정상 상태 솔버를 사용하려면 흐름의 비압축성을 유지하면서 정상 표면 속도를 0으로 유도하는 방법을 찾아야합니다.

이를 수행하는 한 가지 방법은 정상 속도를 0으로 유도하는 방식으로 표면 압력을 조정하는 것입니다. 특히 정상 속도에 비례하는 총 표면 압력에 “댐핑”압력 기여를 추가하는 것입니다. 속도는 표면 밖으로 향하고 그렇지 않으면 음수입니다.

정상 속도가 0에 가까워지면 수정 압력도 0이되어야 표면이 고정 위치를 초과하지 않게됩니다. 물론 보정이 너무 크면 오버 슈트가 발생할 수 있습니다. 따라서 안정적인 보정 적용을 위해서는 몇 가지 제한 요소가 있어야합니다.

계수 약어 ssacc 을 나타내며, S는 teady- S 테이트 액세서리 elerator이 새로운 옵션을 활성화하는 프로그램 입력에 추가되었다. ssacc 의 값 은 편리한 상한 인 1.0보다 작거나 같아야합니다. 프로그램 내에서 댐핑 압력에 자동으로 적용되는 여러 제한 기가 불안정 해 지거나 일시적인 현상에 악영향을 미치는 것을 방지합니다.

안정성 및 댐핑 리미터에 대한 이전 문제는 강조되어야합니다. 정상 상태 가속기를 사용하면 자유 표면 흐름의 모든 과도 현상이 더 이상 완전히 사실적인 것으로 볼 수 없습니다. 댐핑 압력은 물리적 인 힘이 아니라 파동 전파와 반사를 줄이는 메커니즘입니다. 댐퍼는 큰 과도 현상의 발생을 방해하지 않도록 고안되었으며 흐름이 안정됨에 따라 안정된 결과를보다 빠르게 얻는 데에만 기여해야합니다. 그러나 사용자는 리미터가 예상하지 못한 초과 댐핑에 대해 주의를 기울여야 합니다. 이는 댐핑 계수 ssacc 의 입력 값을 줄임으로써 제거 할 수 있습니다 .

두 가지 예는 정상 상태 가속기의 댐핑 메커니즘이 어떻게 작동하는지 보여줍니다.

Steady-State Accelerator Examples

Collapse of Raised Fluid Column

첫 번째 예는 길이 100cm, 깊이 5cm의 2 차원 물 웅덩이로 구성됩니다. 물을 담은 탱크의 모든 경계는 대칭 경계입니다. 수영장 중앙에는 폭 10cm, 높이 3cm의 수영장 위에 물 블록이 있습니다. 이 블록은 중력으로 인해 물에 떨어지고 충돌 지점에서 멀리 이동 한 다음 탱크 끝에서 반사되는 파도를 생성합니다. 100 초 후에도 반복되는 반사 때문에 여전히 상당한 파동 작용이 있습니다 (그림 1).

새로운 정상 상태 가속기를 계수 ssacc = 1.0 과 함께 사용하면 모든 파동이 빠르게 감쇠되어 거의 평평한 표면이됩니다. 일부 잔류 흐름은 표면 아래에 남아 있지만 점도의 작용으로 서서히 감쇠됩니다 (그림 2). 이 예에서 추가 된 댐핑은 특히 인상적입니다.

Figure 1. Column collapse without damping. Times of flow plots are 0.0, 10.0, and 100.0s. Bottom figure is the mean kinetic energy vs. time.
Figure 2. Column collapse with damping coefficient ssacc=1.0 at times of 0.0, 10.0 and 100.0s. Bottom figure is the mean kinetic energy vs. time.

 

사각형 격자에서 45 °의 정사각형 채널에서 모세관 상승

수직 채널에서 유체의 모세관 상승은 간단한 분석할 수 있으며 솔루션이 있는 양호한 정상 상태 문제입니다. 중력에 대해 상승 된 유체의 양은 벽의 접착력, 즉 접촉각의 코사인에 표면 장력 곱하기 접촉 선 길이에 의해 결정됩니다. 이 예에서 유체는 물이며 표면 장력은 70 dynes / cm이고 접촉각은 30 °입니다. 채널은 단면이 정사각형이며 가장자리 길이가 0.707cm이고 직사각형 격자에서 45 ° 회전합니다. 문제가 x 및 y 방향으로 대칭을 이루기 때문에 그리드의 사분면 만 모델링됩니다. 그리드의 바닥에는 제로 게이지 압력의 물이 있으며 그리드의 가장자리 길이는 0.0125cm (41x41x80 셀)입니다. 상승시켜야하는 이론적 유체 량은 0.04373cc입니다. 그림 3a는 정상 상태 결과를 보여줍니다. 이는 감쇠 사용 여부와 비슷합니다. 댐핑없이 계산된 유체의 양은 이론 값보다 1.74 % 높습니다. 그림 3b와 같이 댐핑이 있는 경우에는 2.24 %가 너무 높습니다. 가속기를 사용하면 정상 상태는 약 0.15 초에 도달하는 반면 표준 솔버는 0.8 초 후에 만 ​​정상 상태 솔루션을 생성하므로 5 배 이상 더 오래 걸립니다.

Figure 3a. Capillary rise in square channel without damping pressures.
Figure 3b. Histories of fluid volume in the two simulations (blue is with damping).

ssacc가 1.0보다 작으면 댐핑이 적어 수렴에 더 빨리 도달합니다. 1.0을 포함한 모든 ssacc 값은 댐핑되지 않은 ssacc = 0.0 경우와 비교하여 이론과 밀접하게 일치하고 후면 벽에 적은 양의 유체를 나타내는 수렴된 솔루션을 만듭니다.

뒤쪽 벽에있는 작은 유체 조각은 평형 위치를 초과하는 유체의 오버 슈트에서 발생하며, 이는 점성력으로 인해 정착하는 데 오랜 시간이 필요한 소량의 유체를 벽에 남기고 뒤로 떨어집니다. 이 오버 슈트는 ssacc 가 0이 아닐 때 제거됩니다 .

FIGURE 2. Grain size distribution of test site: Pea Island.

Scour Assessment of Bridge Foundations Using an In Situ Erosion Evaluation Probe 2 (ISEEP)

ISEEP (In Situ Erosion Evaluation Probe 2)를 사용한 교량 기초의 세굴 평가

M. Kayser1
and M. A. Gabr2

Abstract

이 논문의 요약 작업은 교각에서 세굴 깊이를 평가하기 위해 현장 침식 평가 프로브 (ISEEP)의 사용을 제시합니다. 2011 년 허리케인 아이린으로 피해를 입은 노스 캐롤라이나 아우터 뱅크스 부지의 수치 모델링 및 장치 배치는 제안 된 개념의 적용 가능성을 보여줍니다.

CFD (Computational Fluid Dynamics) 소프트웨어 인 FLOW-3D는 교각에서 세굴 깊이를 평가하는 데 사용되며, 그 결과는 과도한 흐름 전력 모델을 사용하여 ISEEP 추정 매개 변수를 기반으로 한 값과 비교됩니다. 세굴 깊이는 수치 분석에 사용된 것과 동일한 조건을 가정하는 경험적 방정식을 사용하여 계산됩니다.

FLOW-3D를 사용한 파라 메트릭 분석은 세굴 깊이를 정의하는 데 사용되는 매개 변수 중 연행 계수 (Ce)가 가장 큰 영향을 미치는 반면 항력 계수 (Cd)는 분석에 사용 된 값 범위 내에서 가장 작은 영향을 미친다는 것을 나타냅니다. ISEEP 데이터는 깊이 측면에서 모래층의 특성 변화를 반영하기 때문에 ISEEP 데이터를 기반으로하는 추정 된 세굴 깊이는 수치 분석에서 얻은 세굴 크기와 비교적 잘 일치합니다.

대조적으로, 경험적 방정식에서 계산 된 세굴 깊이는 주로 세굴 깊이를 과소 평가했는데, 이는 주로 방정식에 층상 토양 프로파일에 대한 규정이 없기 때문입니다. 따라서 ISEEP 데이터를 사용하면 토양층의 특성이 깊이에 따라 달라지기 때문에 세굴 매개 변수의 현장 평가의 이점을 제공합니다. 상당한 비율의 정교함을 포함하는 토양의 적용 가능성 평가를 포함하여 현장 테스트 절차와 데이터 감소 접근법에 대한 추가 검증이 권장됩니다.

INTRODUCTION

Lagasse et al. (1), 미국에는 하천과 강을 가로 지르는 488,750 개의 교량이 있었고, 수색 관련 교량 고장에 대한 연간 비용은 3 천만 달러로 추산되었습니다. 또한 지난 30 년 동안 미국에서 1,000 개 이상의 교량이 붕괴되었으며, 이러한 고장의 약 60 %는지지 기반 시스템의 과도한 수색으로 인해 발생하는 것으로보고되었습니다 (2). 따라서 이러한 구조를 지원하는 토양의 침식률과 수력 구조의 설계, 작동 및 수명 기간 동안 수색 가능성의 모니터링 및 평가와 토양 침식률 결정이 필요합니다. 초기 설계 단계에서 중요 할뿐만 아니라 이러한 침식 크기 및 비율 데이터는 유지 보수 우선 순위를 개발하고 교체 일정을 수립하는데도 필요합니다. 깊이에 따른 현장 침식 가능성을 평가하기위한 현재 기술은 Briaud 등이 개발 한 Erosion Function Apparatus (EFA)와 같은 장치에서 실험실 테스트를 위해 토양 샘플을 제거해야합니다. (2) 또는 시간에 따른 머드 라인 고도의 변화를 모니터링하여 이미 발생한 침식 만 측정합니다. 이러한 기술에 사용되는 기기는 단순한 강철 사운 딩로드에서 전자파 및 / 또는 음파 전파가있는 소나를 사용하는 원격 감지 장치에 이르기까지 다양합니다. Lu et al. (3) 음향 도플러 및 지상 침투 레이더와 같은 정교한 접근 방식은 비용이 많이 들고 빈번한 유지 보수 및 수리가 필요합니다. Hanson et al. (4)와 Hanson과 Cook (5)은 현장에서 침식 가능성의 표면 측정을 위해 수직 제트의 사용을보고했습니다. 이 저자들은 적용된 전단 응력의 형태로 충돌 제트로 인해 발생하는 응력을 렌더링하는 프레임 워크를 제시했습니다. 이 경우 잠재적 인 코어는 물이 원래 상태를 유지하는 제트의 일부로 정의됩니다.

FIGURE 1. (a) Temporary bridge along NC-12, and (b) ISEEP set-up for field testing.
FIGURE 1. (a) Temporary bridge along NC-12, and (b) ISEEP set-up for field testing.
FIGURE 2. Grain size distribution of test site: Pea Island.
FIGURE 2. Grain size distribution of test site: Pea Island.
Figure 1: PAC-UPC laboratory canal bend in operation.

1D, 2D AND 3D MODELING OF A PAC-UPC LABORATORY CANAL BEND

PAC-UPC 실험실 운하 굴곡의 1D, 2D 및 3D 모델링

Manuel Gómez, FLUMEN Research Institute. Technical University of Catalonia. Jordi Girona, 1-3. 08034
Barcelona. Spain. Phone: +00 (34) 93 401 64 75
manuel.gomez@upc.edu
Eduardo Martínez1
, FLUMEN Research Institute. Technical University of Catalonia. Jordi Girona, 1-3.
08034 Barcelona. Spain. Phone: +00 (34) 93 401 64 75
eduardo.martinez-gomariz@upc.edu

KEY WORDS
Irrigation Canals 3D, 2D and 1D computation, gate, weir, curved reach.

ABSTRACT 

개요 본 연구는 카탈로니아 공과 대학의 Campus Nord에 위치한 PAC-UPC 운하의 수력 학적 거동을 분석하기 위해 수행되었습니다. 이것은 실제 관개 운하의 모델을 구성하며, 2003 년에 건설 된 이후 관개 운하 및 제어 알고리즘과 관련된 다양한 연구 및 박사 논문에 사용되었습니다. 점유 공간을 최소화하기 위해 뱀 모양의 운하는 자체를 따라 약간의 굴곡을 생성하여 뚜렷한 수면 수준이 상승합니다. 아 임계 체제가 있어도 세부 사항을 완벽하게 분석해야하는 명확하게 관찰 할 수 있습니다. 이러한 접근 방식을 수행하기 위해 각각 1D, 2D 및 3D 분석을 고려하는 방식이 제안되었습니다. 고려 된 코드는 Hec-Ras (1D), Iber (2D) 및 Flow 3D로 각 코드의 결과를 비교 연구했습니다. 이 비교는 각각의 한계를 강조합니다. 이전에 알려진 바와 같이 3D 결과는 흐름 거동에 대한 훨씬 더 많은 정보를 제공하여 z 방향으로 형성된 재순환 영역과 소용돌이를 분석 할 수도 있습니다. 흐름 분석 후 최종 결과는 예를 들어 계측기 (레벨 센서)의 최적 위치 또는 구조의 형상에 대한 수정과 관련하여 향후 작업 및 연구를 위해 운하에서 가능한 개선을 제안합니다.

INTRODUCTION AND SCOPE OF THE STUDY

자유 표면 흐름은 특히 수로 및 하강 역학과 관련하여 수력 학에서 광범위하게 연구되는 흐름 유형입니다. 그들의 연구는 1D, 2D 또는 3D 수치 모델링을 통해 이루어질 수 있으며, 이는 하천 또는 수로의 수력 분석을 수행하는 가장 일반적인 1D 모델링입니다. 더 높은 계산 비용을 가정하더라도 2 차원 분석이 점점 더 많이 구현되지만 아직 3D 분석은 너무 자주 고려되지 않습니다. 2 차원 분석은 두 방향의 속도 성분이 세 번째 영역 (예 : 델타 영역)보다 우세한 영역에서 수행되고 3 차원 분석은 명확하게 3 차원 효과 (테디 및 복잡한 현상)가있는 국소 영역에서 수행됩니다. 더 높은 계산 비용이 필요합니다. 현재 바르셀로나의 Campus Nord 수압 연구소에는 제어 알고리즘을 테스트하는 운하 인 PAC-UPC 운하가 있습니다. 이 운하는 문과 배설물이있는 실제 관개 운하의 측면을 재현하려고합니다. 2003 년에 지어졌으며 그 이후로 관개 운하와 관련된 여러 박사 및 석사 논문이 발표되었으며 특히 운하 제어 알고리즘의 개발과 함께 발표되었습니다. 이러한 알고리즘은 수로 수 문의 자동화를 목표로하여 모든 수로 도달 흐름에서 수위를 선택한 지점에서 규정 할 수 있으며 수문은 선택한 지점 (오프 테이크)에서 원하는 수위와 수위를 보장하기 위해 이동합니다.

처음부터 굽힘 영역에서 국부적 인 과도 상승이 관찰되었습니다. 운하가 실제 관개 운하와 실제 관개 운하 제어 문제를 재현하는 것을 목표로하기 때문에 이러한 과도 상승을 연구하고 운하 시설에 대한 결과를 확인해야했습니다. 이러한 흐름 거동은 시각적으로 명확하게 관찰 할 수 있으며 이는 낮은 속도에서도 유압 현상이 발생 함을 시사합니다. 수문 아래를 통과하기 전에 수평면의 굽힘을 따라 급격한 변화가있는 흐름 궤적과 수직면에서 유선의 90 ° 회전이 생성됩니다. 이러한 경로는 속도 성분이 세 방향 모두에서 중요하며 한 방향 (1D) 또는 두 방향 (2D)에서만 널리 퍼져 있음을 나타냅니다.

Figure 1: PAC-UPC laboratory canal bend in operation.
Figure 1: PAC-UPC laboratory canal bend in operation.

그림 1은 자유 표면에서 발생하는 불규칙성을 보여줍니다. 대부분은 굴곡 옆에 있고 하류 수문과 둑의 영향으로 나타납니다. 유압 문제에 적용되는 수치 적 방법은 점점 더 많은 컴퓨팅 파워를 제공하며 시장에는 많은 오픈 소스를 포함하여 다양한 소프트웨어가 있습니다. 3D 문제의 모델링 및 시뮬레이션을위한 강력한 도구는 Flow-3D 프로그램입니다. 이 도구는이 연구에서보고 된 연구에 사용되었으며 분석은 Hec-Ras 및 Iber와 같은 오픈 소스 소프트웨어로 보완되었습니다 [6]. 따라서 1 차원, 2 차원 및 3 차원 코드를 통해 상세한 흐름 분석을 수행했습니다. 이 연구의 주요 목적은 흐름이 굴곡, 위어 및 하류 수문을 만날 때이 운하의 흐름 패턴을 자세히 이해하는 것입니다. 분명히 이러한 유동 거동 지식은 필요한 경우 측정 기기의 재배치 또는 유동 거동에 필요한 경우 굽힘 형태의 복원과 같은 2 차적이지만 덜 중요한 목표로 이어질 수 있습니다. 1D, 2D 및 3D 수치 모델링 도구를 사용하면 이러한 도구의 결과를 비교하고 각 접근 방식의 장단점을 연구 할 수 있습니다. 따라서 이 연구의 목표는

요약 :

-PAC-UPC 실험실 운하 곡선 도달에서 발생하는 흐름의 수력학적 거동을 자세히 이해합니다.
-1D, 2D 및 3D 모델링 비교 및 필요에 따라 적합성 분석.
-해석, 흐름의 수력 학적 거동, 수로 계기 재배치 가능성 및 수로 구조의 모양 수정.

  1. 운하 설명
    Canal PAC-UPC는 “Canal de Pruebas de Algoritmos de Control (Test Canal Algorithms Control)-Universitat Politècnica de Catalunya (Technical University of Catalonia)”의 머리 글자입니다. 이름에서 알 수 있듯이 관개 운하 제어, 운하 계측, 운하 모델링, 수질 측정 등의 기본 및 응용 연구를 위해 특별히 설계된 실험실 운하입니다. Campus Nord UPC의 물리적 모델 실험실에서 구현됩니다.

그 구조는 실제 관개 운하의 특성을 재현하여 나타날 수 있는 문제를 제어하기 위한 것입니다. 이러한 이유로 최대 시간 지연을 생성하기 위해 가능한 최대 길이와 경사가 0 인 운하가 건설되었습니다. 점유 면적을 최적화 하는 현재 뱀 모양을 만들기 위해 실험실의 제한된 공간이 필요하게 되었습니다. 길이 220m, 폭 44cm, 높이 1m의 직사각형 단면으로, 총 바닥 면적은 약 22.5m x 5.4m입니다.

Figure 2: Detailed scheme of the whole PAC-UPC canal.
Figure 2: Detailed scheme of the whole PAC-UPC canal.

As shown in Figure 2, the elements of the installation are as follows:

  • A header reservoir
  • 3 vertical sluice gates (G1, G3 and G5)
  • 4 rectangular weirs (W1, W2, W3 and W4)
  • 9 Level sensors (LS1 to LS9)
  • 1 control room

GENERAL APPROACH TO THE PROBLEM

3.1 소개

PAC-UPC 운하 및보다 구체적으로 위어 (W1) 및 수문 (G3)이 위치한 운하 굴곡에 대한 연구, 그림 2에 따라.
계측 요구, 특히 레벨 센서의 배치는 이러한 근관 굴곡 연구에 특별한 관심을 가졌습니다. 이 운하 설계를 사용하면 유선이 유속이 더 높을수록 운하 곡선 도달을 통해 복잡한 경로를 수행하고 수위가 국부적으로 증가하고 제어하기가 어렵고 세부 사항이없는 한 정확성을 결정하기가 어렵습니다. 연구가 이루어집니다. PAC-UPC 운하의 이러한 굴곡에서 유동의 불확실한 거동과 레벨 센서의 최상의 배치에 대한 연구를 기반으로 데이터 수집 실험 캠페인이 수행되었습니다. 이것은 10 가지 다른 조합 (흐름, 수문 개구부 및 위어의 높이)에 대한 운하 굴곡 전체에 걸쳐 10 개 지점의 깊이 측정으로 구성되었습니다. 이러한 실험 데이터는이 연구에 제시된 모델을 보정하고 검증하는 데 기본적이고 필수적입니다. 1D, 2D 및 3D 수치 모델링은 다음과 같은 두 가지 목적으로 제안됩니다. 1)이 굴곡 영역을 자세히 연구하여 운하 전체에 기기 배치를보다 정확하게 결정할 수 있습니다. 2) 1D, 2D 및 3D 모델 결과를 비교 분석하여이 사례 연구에 가장 좋은 정보를 제공하는 모델을 결정합니다.

3.2 연구 구역 설명

4 개의 굴곡부 중 3 개는 직사각형 위어 (W1, W2 및 W3)를 포함하여 운하의 한쪽에 있습니다. 위어를 보여주는 굴곡은 더 복잡한 흐름 패턴을 생성하는 굴곡이므로 (위어가 작동중인 경우) 자세한 연구가 더 흥미롭습니다. 이 경우 W1 weir가있는 굽힘이 선택되었습니다. 이 연구의 결과는 다른 굴곡에 대해 외삽 될 것이라는 점을 언급해야 합니다. 그림 2는 수위 측정과 유압 및 계측 요소가 있는 연구 영역을 강조 표시합니다. 또한 부드러운 곡선은 없지만 둥근 모서리 없이 90º에서 갑자기 방향이 변경됩니다. 연구 영역은 2D 및 3D 모델 도면으로 재현 되었으며, 각각 Iber 및 Flow-3D 프로그램으로 내보내졌습니다. 그림 3은 측정 지점의 위치와 상세한 3D 도면이 포함 된 2D 플랜트 맵을 보여줍니다.

Figure 3: Study zone. Measurement points in 2D drawing (left) and 3D drawing (right).
Figure 3: Study zone. Measurement points in 2D drawing (left) and 3D drawing (right).

3.3 Case Studies

이하 내용은 원문을 참고하시기 바랍니다.

Figure 7. Comparison of scale physical model (SMEC 2006) to FLOW 3D Model (WorleyParsons, 2008)

ANALYSIS OF FLAP GATE DESIGN AND IMPLEMENTATIONS FOR WATER DELIVERY SYSTEMS IN CALIFORNIA AND NEVADA

캘리포니아 및 네바다의 물 공급 시스템을위한 FLAP GATE 설계 및 구현 분석

상류 수위를 유압으로 제어하는 ​​게이트의 아이디어는 1940 년대 Vlugter에 의해 네덜란드에서 시작되었습니다. 그 이후로 플랩 게이트 설계는 자동 상류 수위 제어를위한 비용 효율적이고 간단한 유압 게이트로 수정 및 개발되었습니다.

문헌 검토에서 논의 된 바와 같이 플랩 게이트 설계에는 여러 가지 변형이 있지만 모든 플랩 게이트는 일부 수평 축을 중심으로 회전하는 강판으로 구성됩니다. 플랩 게이트 유형 설계에 대한 대부분의 개념은 물이 게이트에 가하는 압력에 대응하는 게이트 플레이트 상단의 균형추를 사용합니다.

수역의 수위가 증가하여 게이트에 대한 압력이 증가하고 게이트를 여는 경향이 있는 게이트 주위에 순간이 생성됩니다 (게이트 개방 커플). 반대로, 유출로 인해 수위가 감소하면 압력이 감소하고 카운터 웨이트가 게이트를 닫는 경향이 있는 반대 모멘트를 생성합니다 (게이트 클로징 커플). 플랩 게이트는 피벗 포인트에 대한 게이트 폐쇄 커플이 동일한 포인트에 대한 게이트 개방 커플과 정확하게 균형을 이루도록 설계 및 작동되어야 합니다.

그림 1에 표시된 이 두 쌍이 균형을 이루면 플랩 게이트는 다양한 유속에 대해 동일한 상류 수위를 유지할 수 있습니다. 게이트가 올바르게 설계되면 상류 수위가 몇 센티미터 이내로 제어됩니다 (Burt et al., 2001).

게이트 설계와 함께 EXCEL 설계 프로그램이 만들어져 사용 편의성, 설계 및 설치 가능성이 높아졌습니다. 오늘날 캘리포니아와 네바다에는 200 개 이상의 플랩 게이트 설치가 있습니다. 캘리포니아와 네바다의 상수도 및 관개 지역은 상수도 구조를 수정하고 업데이트하고 있습니다. 그러나 특히 물이 부족한 건기에 재배 비용을 동시에 제한해야합니다. ITRC Flap Gate는 이러한 목표를 달성하기위한 간단하고 경제적인 솔루션입니다.

Figure 1. Opening and closing couple for the flap gate design (Burt et al., 2001)

그 디자인은 가능한 최저 비용으로 정확한 배송이 필요한 물 및 관개 지역에 매력적입니다. Cal Poly Irrigation Training and Research Center (ITRC)는 ITRC 플랩 게이트를 설계하고 개발했습니다 (그림 2 참조).

Figure 2. ITRC Flap Gate Installation at Walker River Irrigation District (ITRC,
2012)
Figure 2. ITRC Flap Gate Installation at Walker River Irrigation District (ITRC,
2012)

캘리포니아와 네바다의 물 공급은 수요 증가로 인해 가능한 한 효율적이어야 합니다. 이 지역의 관개 지역의 경우 운하 또는 파이프 라인을 통해 정확하게 물을 전달할 수 있어야 합니다. 특히 최종 사용자가 할당량의 일정 비율만 받는 해에는 최종 사용자가 받는 수량이 최대한 정확해야 합니다.

농업 배달의 경우 배달 제어가 개선되어 재배자가 물을 효율적으로 사용할 수 있습니다. 상류 수위 제어 방법을 선택할 때 (유량을 제어하는) 결정 요인 중 하나는 비용입니다. 상류 수위 제어가 비싸면 물 비용도 비쌉니다. 정확성, 제어 및 비용 요구 사항으로 고객을 만족 시키기 위해 많은 관개 지역에서는 문제에 대한 해결책으로 플랩 게이트를 선택합니다. 플랩 게이트는 수위를 ± 0.5 인치 이내로 유지할 수 있으며 다양한 흐름 조건에서 안정적으로 작동 할 수 있으며 저렴합니다.

목표

이 프로젝트는 정확성, 비용 및 내구성을 고려하여 이전에 캘리포니아와 네바다에 설치된 플랩 게이트를 분석합니다. 또한이 프로젝트는 물 산업을위한 ITRC 플랩 게이트 설계를 통합하고 업데이트하는 것을 목표로 합니다.

이 보고서는 Walker River Irrigation District에 초점을 맞춘 Alta Irrigation District, Walker River Irrigation District 및 Chowchilla Water District를 포함한 여러 관개 지역 내의 플랩 게이트 설치 및 개발에 대해 자세히 설명합니다. 이러한 게이트에 대한 평가는 ITRC 플랩 게이트의 현장 설치에서 도출 된 결론을 통합하는 데 필요합니다.

또한 이 프로젝트는 저자가 ITRC의 Justin McBride와 함께 네바다 주 예 링턴에있는 Walker River Irrigation District의 ITRC Flap Gate에 대해 논의합니다. 이 프로젝트에는 FLOW-3D라는 전산 유체 역학 소프트웨어를 사용한 ITRC Flap Gate 평가도 포함됩니다. FLOW-3D 분석은 플랩 게이트의 작동 방식을 확인하고 플랩 게이트 설치에 대한 ITRC의 경험에서 발생한 이벤트를 설명하는 데 도움이 됩니다. 이 프로젝트는 Cal Poly의 Irrigation Training and Research Center (ITRC)에서 지원합니다.

수위 제어 구조 물 전달 운하에서 전달 정확도는 매우 중요합니다. 유량 제어를 통해 정확도를 제어 할 수 있다고 가정 할 수 있습니다. 반대로, 운하 운영자가 운하의 수위를 제어하는 것이 훨씬 쉽고 정확합니다.

“더욱이 중력 배출량의 제약, 운하 은행의 안정성, 잡초 성장 감소 노력, 중간 저수량 구성, 범람 위험은 수위로 표현됩니다”(Malaterre, 1995). 수위는 상류 또는 하류 수위 제어로 제어 할 수 있습니다.

그림 3은 상류 수영장 (Yup)의 수위 제어 다이어그램을 보여주고 그림 4는 하류 수영장 (Yctn)의 수위 제어 다이어그램을 보여줍니다.

Figure 3. Upstream pool water level control diagram (Malaterrre, 1995)
Figure 4. Downstream pool water level control diagram (Malaterrre, 1995)
Figure 4. Downstream pool water level control diagram (Malaterrre, 1995)

위의 수위 제어 옵션 중에서 상류 수위 제어가 가장 일반적으로 사용되는 방법입니다. 상류 수위 제어를 선택한 이유는 자동 또는 원격 제어가없는 수동 조작 때문일 수 있습니다.

상류 수위 제어는 공급 업체 중심이기 때문에 물 공급 직원이 운영하기가 더 쉽습니다 (Clemmens et al., 1989). 관개 구역 (또는 기타 물 공급 기관)이 엄격한 배달 일정을 가지고 있는 경우 상류 수위 제어가 더 나은 선택입니다 (Replogle et al., 1980). 그러나 유연한 일정이 필요한 경우 상류 수위 제어가 실용적이지 않습니다.

상류 수위 제어 시스템에서는 배송 일정 변경을 위해 1 ~ 5 일의 사전 통지가 필요합니다. 이 리드 타임은 배달 운하를 따라 저장되어 있거나 배수로를 통해 강으로 반환되는 과도한 물이 있는 경우에만 더 유연할 수 있습니다 (Clemmens et al., 1989).

수동, 원격 또는 자동 게이트, 둑, 수로 및 이들의 조합을 포함하여 상류 수위를 제어하는 ​​여러 방법이 있습니다. 사용되는 일반적인 유형의 게이트는 방사형, 수직 리프트 및 플랩 게이트입니다 (Sehgal, 1996). 상류 수위 제어 방법을 선택할 때 몇 가지 고려 사항이 있습니다.

이러한 고려 사항에는 구현 및 유지 관리 비용, 설치 및 유지 관리의 용이성, 필요한 정확도 수준, 물 공급 일정 및 유연성이 포함됩니다. 대부분의 학군에서 가장 큰 비중을 차지하는 요소는 구현 및 유지 관리 비용입니다.

설치 및 유지 보수의 용이성과 함께 비용 효율성은 플랩 게이트가 운하 또는 기타 개방 수위 공급 시스템의 상류 수위 제어를 위한 지능적인 결정을 내리는 이유입니다. “게이트의 크기와 디자인에 따라 수위 제어 <1 인치 (2.5 em)를 얻었습니다. 이러한 이유로 낮은 유지 보수 및 초기 비용으로 인해 플랩 게이트가 주요 후보입니다. … “(Burt et al. 2001).

플랩 게이트 제어 구조 및 애플리케이션의 변형. 제어 구조를 작동하기 위해 유압 차동 장치를 사용하는 플랩 게이트 개념에는 몇 가지 변형이 있습니다. 이 디자인 아이디어는 네덜란드에서 시작된 다음 미국, 중국 및 기타 국가로 옮겨 전 세계적으로 구현되었습니다.

다음은 플랩 게이트 디자인의 몇 가지 변형입니다. Xiangtan Q 형 자동 유압 플랩 게이트는 게이트가 앞뒤로 미끄러지도록 안내하는 두 개의 곡선 베어링을 사용합니다. Jiong에 따르면 게이트의 장점은 기능 안전성, 광범위한 사용 범위, 작동의 높은 신뢰성, 구조의 단순성, 숙련 된 유지 보수의 필요성 없음, 낮은 작업 및 유지 보수 비용, 더 큰 유량 및 더 나은 홍수 제거 능력을 포함합니다. 부스러기. 이 게이트의 최대 개방 각은 80 도입니다 (Jiong, 1988).

Jiong은 “1980 년 이후 중국 후난 성 Xiangtan시 근처 10 개의 게이트 위어에 최소 35 개의 Q 형 게이트가 설치되었으며 5-8 년 동안 아무런 손상없이 안전하게 작동했습니다”라고 말합니다. 그러나 상류 수위 제어를 유지하기 위해 게이트가 얼마나 정확한지에 대한 논의는 없었습니다.

여러 가지 크기의 플랩 게이트가 사용되었습니다. Seghal (1996)은 폭이 최대 100m 인 플랩 게이트에 대해 설명합니다. 비용으로 인해 플랩 게이트의 높이는 일반적으로 4m에 불과하다는 것도 언급되었습니다. 플랩 게이트의 또 다른 변형은 Chinh et al (2008)에 의해보고되었습니다.

간단한 버전의 플랩 게이트가 논에서 운하의 하류 끝에 사용되었습니다 (그림 5 참조).이 경우, 게이트의 작동을 최적화하기 위해 게이트를 통과하는 유속을 찾는 방정식이 개발되었습니다. 배수관 (Chinh et al., 2008). 유량 측정 도구로서 플랩 게이트의 정확성에 대한 논의는 없었습니다. 이 애플리케이션에서 플랩 게이트는 게이트의 다른 변형에서와 같이 상류 수위 제어에 사용되지 않았습니다.

Figure 5. Cross-section of Flap Gate Variation (Chinh, 2008)
Figure 5. Cross-section of Flap Gate Variation (Chinh, 2008)

Raemy와 Hager (1998)는 ITRC Flap Gate와 유사한 설계를 논의합니다. 그러나 채널에는 위어가 없으며 제시된 디자인은 ITRC 플랩 게이트와 달리 억제 된 측벽 조건을위한 것입니다. 이러한 설계에 대한 평가에서 Burt (2002)는 “캘리포니아에서 내가 알고있는 100 개 이상의 설치 중 어느 것도 조건을 억제하지 않았습니다”라고 말했습니다.

또한 Raemy와 Hager (1998)는 “분석이 압력 분포, 게이트의 모멘트를 결정할 수 없습니다. “이 게이트의 경우 평형 모델을 찾기위한 개방 모멘트에 대한 경험적으로 유도 된 방정식 (Litrico et al., 2005). Begemann Gate. 가장 가까운 플랩 게이트 설계 ITRC 플랩 게이트는 Begemann 게이트입니다.

Litrico et al. (2005)은 Begemann 게이트를 “상류 수위 위에 위치한 수평 축을 중심으로 회전하는 강철판이 장착 된 둑”이라고 설명합니다. Begemann 게이트를 사용하면 물은 열린 게이트의 양쪽에서 자유롭게 흐를 수 있습니다 (그림 6 참조). 하류로부터의 영향이 없을 때이 게이트는 상류 수준을 상당히 정확하게 유지할 수 있습니다. Vlugter Gate는 Begemann Gate의 변형이며 뒷면이 둥근 형태입니다. 하위에서 작동하도록 의도 병합된 조건 (Litrico et al., 2005).

Figure 6. Ten Begemann gates in the Hadejia Valley Irrigation Project North Main Canal (Litrico et al., 2005)
Figure 6. Ten Begemann gates in the Hadejia Valley Irrigation Project North Main Canal (Litrico et al., 2005)

ITRC 플랩 게이트. ITRC 플랩 게이트는이 보고서에서 논의 할 게이트입니다. 게이트는 여러 다른 연구 프로젝트의 결과입니다. Burt (200 1)는 다음과 같이 말합니다. Vlugter (1940)는 Begemann 및 Doell과 같은 다양한 구성을 조사했습니다. Brouwer (1987)는 주요 치수 비율을 포함하여 중요한 설계 원칙을 요약합니다. Raemy and Hager (1997)는 다양한 개방 각도에서 개폐 순간을 조사했으며 Brants (1995)는 인도네시아에서 그러한 게이트의 사용을 문서화했습니다.

Burt and Styles (1999)는 도미니카 공화국의 관개 프로젝트에서 잘 관리되지 않은 플랩 게이트를 관찰했습니다. Medrano와 Pitter (1997)와 Sweigard와 Dudley (1995)는 Cal Poly에있는 Irrigation Training and Research Center (ITRC)의 Water Delivery Facility에서 프로토 타입 플랩 게이트 (일반적으로 Begemann 게이트라고 함)를 작업했습니다. ITRC는 미국 매립 국 (Bureau of Reclamation)의 미드 퍼시픽 지역의 지원과 함께 Cwd (Chowchilla Water District)에 1 05 개 이상의 플랩 게이트를 건설하고 설치했습니다. ITRC 플랩 게이트 개발을위한 테스트는 부분적으로 CWD 내에서 이루어졌습니다. 많은 게이트가 기대치를 충족했지만 일부 설계 개선이 필요했습니다 (Burt et al., 2001).

Burt (2001)는 세련된 ITRC 플랩 게이트 설계에 대해 자세히 논의하고 업데이트 된 설계가 Turlock Irrigation District (ID), AltaID 및 Broadview Water District (WD)에 설치되었다고 말합니다. Stuart Styles 박사에 따르면 ITRC Flap Gates는 Walker River ID, Truckee Carson ID, Glen-Colusa ID, Merced ID, Banta-Carbona ID, Fresno ID, James ID, Oakdale ID, Pixley ID, San Luis Canal Company, Solano ID, South San Joaquin ID 및 Tulare ID. 대체 플랩 게이트 적용. 상류 수위 제어 이외의 플랩 게이트의 또 다른 적용은 물 역류 또는 작은 동물 유입을 방지하기 위해 파이프 배수구 및 펌프 배출구 끝에서 사용하는 것입니다. 그러나 게이트는 수도 시스템의 상류 수두에 제한을 부과합니다.

Replogle과 Wahlin (2003)은 배수관 끝에서 플랩 게이트 적용의 수두 손실 특성을 논의합니다. 그들은 “핀 힌지 또는 플 렉셔 스타일의 플랩 게이트는 파이프 직경의 약 1-2 %에 해당하는 작은 수두 손실을 추가합니다”라고 결론지었습니다. 이 연구는 구현자가 플랩 게이트 적용이 자신의 상황에 맞는지 여부를 결정하는 데 도움이됩니다.

FLOW-3D 전산 유체 역학 소프트웨어 및 애플리케이션

과거에는 수치 시뮬레이션에서 정확성을 입증하기 위해 광범위한 분석과 중요한 물리적 테스트가 필요했습니다. FLOW 3D는 다양한 응용 분야에서 최대 3 차원의 유동 시뮬레이션을 허용하는 전산 유체 역학 (CFD) 소프트웨어입니다. 유압 엔지니어에게이 프로그램은 “대형 수력 발전 프로젝트에서 소규모 지자체 폐수 처리 시스템”(FLOW 3D, 2014a)에 이르기까지 상황을 시뮬레이션하는 강력한 도구입니다. 이 프로그램을 통해 유압 엔지니어는 물리적 모델에 투자하기 전에 다양한 상황과 응용 분야의 변형을 테스트 할 수 있습니다.

물리적 모델과 FLOW 3D 모델 간의 비교. 물리적 모델과의 상관 관계에서 FLOW 3D의 정확도를 평가하기 위해 여러 연구가 수행되었습니다. Afshar와 Hoseini (2013)는 직사각형의 넓은 볏 위어에 대한 흐름의 실험 및 3D 수치 시뮬레이션을 비교했습니다.

그들의 목표는 직사각형의 넓은 볏 위어의 자유 표면 프로파일을 만드는 것이 었습니다. 이 문서는 FLOW 3D CFD 시뮬레이션 (그리드 유형 및 경계 조건) 및 물리적 모델에 사용 된 모든 매개 변수를 자세히 설명합니다. 수면과 유선을 예측하기 위해 여러 가지 난류 모델이 만들어졌습니다.

Afshar와 Hoseini에 따르면 “계산 결과는 실험 값과 잘 일치하는 것으로 나타났습니다”(Afshar et al, 2013). Riddette와 Ho (2013)가 극심한 홍수 동안 방사형 게이트의 흐름 유도 진동을 평가하는 또 다른 검증 프로젝트를 수행했습니다 (그림 7 참조). 방사형 게이트는 가변 영역이있는 오리피스 흐름이있는 언더 샷 게이트입니다 (USBR, 2001).

이 연구에서는 Wyangala 방수로의 방수로 방사형 게이트를 나타 내기 위해 물리적 스케일 (1:80) 및 CFD 모델이 모두 구축되었습니다. 그림 7을 참조하십시오. Riddette와 Ho는 연구에 대한 15 가지 검증 분석 사례의 결과를 논의합니다. 그들은 FLOW 3D CFD 프로그램이 “극심한 유출 동안 Wyangala Dam 방수로에서 발생하는 것과 유사한 흐름 조건 하에서 소용돌이 흘리기 빈도를 모델링 할 수 있습니다. 이것은 단순한 2D 및 3D 사례에서 가능한 것으로 나타났습니다 …”(Riddette et al., 2013). 상세한 연구에 따르면 FLOW 3D는 이러한 유형의 애플리케이션에 대해 정확한 것으로 입증되었습니다.

Figure 7. Comparison of scale physical model (SMEC 2006) to FLOW 3D Model (WorleyParsons, 2008)
Figure 7. Comparison of scale physical model (SMEC 2006) to FLOW 3D Model (WorleyParsons, 2008)

이하 내용은 원문을 참조하시면 도움이 되겠습니다.

2D velocity vector and temperature contours along the plane through door B (existing system)

작업장 환기 시스템의 평가 및 개선을 위한 CFO 기법 활용| The use of CFD techniques for the assessment and improvement of a workshop ventilation system

ST AWOLESI, MSc(Energy), BSc(Hons), Envirotrak Ltd, Cambridgeshire, UK.
HB AWBI, PhD, MSc, 8Sc, CEng, MCIBSE, University of Reading, Berkshire, UK.
MJ SEYMOUR, BSc(Hons), BSRIA, Bracknell, Berkshire, UK.
RA HILEY, MSc(Energy), BA(Hons), AEA Technology, Harwell, Oxon, UK.

SYNOPSIS

본 논문에서는 현재 환기 시스템의 성능을 검사하고 개선하여 COSHH 규정 요건을 1개 충족한다는 관점에서 작업장 내 공기 흐름 시뮬레이션에 CFO(Computational Fluid Dynamics) 기법을 적용하는 방법을 제시하고 설명합니다. 예측된 공기 흐름 패턴과 세 CFD 코드가 작업장 내의 선택된 지점에서 측정한 공기의 분배를 비교한 결과, 일반적으로 일치된 것으로 나타났으며, 기존 환기 시스템의 성능이 오염물질의 제거 가능성에 대해 불만족스러운지 확인합니다. CFD 기법을 사용하여 작업장 환기 및 오염 문제에 대한 실용적인 솔루션을 식별할 수 있었습니다.

INTRODUCTION

산업 공장에서 환기 시스템을 갖추는 목적은 열적 쾌적성을 촉진하고 유해 오염 물질에 대한 작업자의 잠재적 노출을 방지하는 것입니다. 작업장 내 근로자에게 미치는 건강상의 영향을 위해 보건 및 안전 행정부는 광범위한 산업 물질에 대한 단기 및 장기 노출에 대한 직업상 노출 제한(1) 목록을 발행합니다.

본사의 보건 물리학 부서에서 일상적으로 실시하는 현장 테스트*는 대기 오염물질의 높은 수위가 COSHH 법에 따라 요구되는 작업 한계를 초과함을 나타냅니다. 당사는 COSHH 규정에서 요구하는 대로 작업 수준 내에서 공기 오염 농도 수준을 가져오기 위해 작업장 내의 공기 흐름에 대한 광범위한 조사를 수행하도록 회사로부터 의뢰 받았습니다.

작업장 내의 공기 흐름 패턴이 상당히 복잡하다는 것을 알게 되었고, 원하는 공기 품질 개선을 달성하기 위해 실내 공기 이동에 대한 측정, 연기 흐름 시각화 및 컴퓨터 모델링을 수행할 필요가 있는 것으로 판단되었습니다.

우리의 목표는 현재의 환기 시스템을 평가하면서 이러한 방법을 간략히 보고하고 B에 워크샵 내의 오염이라는 ait의 수준을 감소시킬 수 있는 실용적인 솔루션을 제안하며, 3개의 CFO 프로그램과의 아웃·측정 및 계산 간의 합의를 평가하는 것입니다.

최근, 건물의 공기 흐름 패턴을 예측하기 위해 계산 유체 역학(CFD)의 사용에 대한 관심이 증가하고 있습니다. CFD 기법의 적용 범위를 나타내기 위해 그러한 몇 가지 예가 보고되었습니다(2) * 프로젝트의 기밀성 때문에 해당 회사의 이름을 지정할 수 없습니다.

DESCRIPTION OF THE WORKSHOP AND ITS
VENTILATION SYSTEM

작업장 및 환기 시스템에 대한 설명 메인 룸은 9m 길이 x 7 m폭 및 4.5m 높이의 주요 치수를 가진 작업장 단지의 일부입니다. 그리고 ante-room은 8m 길이 x 2m폭 x 2.5m 높이 크기를 가지고 있습니다. 아주 높아요. 여기에는 각 제어 장치와 동일한 세 가지 시설, 선반 부스, 드릴 부스, 페틀링 부스, 지역 배기 후드 및 다수의 작업 벤치가 포함되어 있습니다(그림 참조).

실내 환기 시스템은 레지스터 및 기타 개구부를 통한 공급과 추출물로 구성됩니다. 추출 측면은 앞서 언급한 세 개의 부스에 추가 추출이 있는 세 개의 용해로 위의 세 개의 국부 배기 후드와 벽면에 위치한 두 개의 일반 실내 추출물로 구성됩니다.

DISCUSSION OF RESULTS FROM MEASUREMENTS
AND SMOKE FLOW VISUALISATION

입력 측면은 메인 입구 도어(도어 B)의 개구부에서 유입되는 입력 공기가 추가된 6개의 공급 레지스터와 인접 룸을 연결하는 도어(도어 A)에 위치한 또 다른 개방으로 구성됩니다. 작업장에서 수행한 측정은 공기 흐름 패턴, 공기 온도, 속도, 인클로저 표면 온도, 입구 및 출구 공기 온도와 관련이 있습니다.

DISCUSSION OF RESULTS FROM MEASUREMENTS
AND SMOKE FLOW VISUALISATION

작업장 내의 다양한 위치에서 측정된 속도 및 압력 측정과 연기 흐름 시각화 결과, 공급 레지스터의 흡입 유량 기여도가 도어 개구부 A 및 B의 기여율보다 상당히 낮고 시간당 10회의 공기 변화라는 기계적 환기 속도보다 낮았습니다.

A.E.C.P. (3) 및 C.I.B.S.E. (4) 가이드에 의해 종료됩니다. 원칙적으로, 그러한 차이는 중요하지 않을 것입니다. 그러나 이 경우 도어 개구부에서 유입되는 공기에는 이미 오염 물질이 포함되어 있어 작업장의 오염 수준이 증가할 수 있습니다.

따라서 총 흡입 유량의 80-90% 순서로 공급 레지스터를 통과하는 공급 공기의 비율이 더 높은 것이 바람직합니다. 또한 6개의 공급 레지스터 중 하나, 다수의 로컬 추출 후드 및 2개의 일반 객실 추출물을 재설계하거나 상당한 업그레이드가 필요한 것으로 확인되었습니다.

요약하자면, 공기 흐름 측정 및 연기 흐름 시각화는 작업장 내의 공기 흐름 패턴이 두 개의 큰 흐름 영역에 의해 지배된다는 것을 나타냅니다.

작업 수준의 영역 1은 도어 A 및 B의 개구부에서 나오는 강한 에어 제트에 의해 지배되고, 다른 영역은 작업장 상층에 위치한 약한 재순환의 넓은 영역에 의해 지배됩니다.

작은 방과 관련하여, 일부 연기가 그 지역에 도달한 것으로 관측되었지만, 일단 그곳에 도달한 후에는 상당한 시간 동안 남아 있었습니다.

COMPUTER MODELLING OF AIRFLOW

측정 및 연기 흐름 시각화를 통해 작업장 내의 공기 흐름은 매우 복잡하고 3차원적이라는 것을 알 수 있었습니다. 따라서 연기 흐름 시각화 및 제한된 수의 국소 기류 측정만을 기반으로 오염 문제에 대한 해결책을 제안하는 것은 많은 중요한 흐름 특징을 간과할 수 있기 때문에 신중하지 못할 것으로 판단되었습니다.

따라서 이 문제를 조사하기 위해 긍정적인 조치를 취하기로 결정되었습니다. 이는 CFD(Computational Fluid Dynamic) 기법을 활용하여 작업장 내에 현재 존재하는 공기 흐름을 초기에 시뮬레이션한 후 가능한 변경의 영향을 조사하기 위해 구성되었습니다.

컴퓨터 시뮬레이션은 처음에는 HARWELL FLOW-3D 소프트웨어를 사용하여 HARWELL CRAY-2 슈퍼 컴퓨터 시스템에서 수행되었습니다. 작업장의 공기 흐름, 온도 및 오염 분포에 대한 계산 결과가 최근 저자 중 한 명이 제시되었으며 다음과 같은 결과를 나타냈습니다. (이하 일부 내용 생략… 자세한 내용은 하단부의 원문 참조 바랍니다.)

The workshop showing the ante-room, supply, and extract systems
The workshop showing the ante-room, supply, and extract systems
2D velocity vector and temperature contours along the plane through door B (existing system)
2D velocity vector and temperature contours along the plane through door B (existing system)
20 velocity vector and temperature contours along -the plane through furnace hood (existing system)
20 velocity vector and temperature contours along -the plane through furnace hood (existing system)
Existing system; airborne particle tracks
Existing system; airborne particle tracks
20 velocity vector along the plane through door B (proposed system)
20 velocity vector along the plane through door B (proposed system)
20 velocity vector along the plane through furnace hood (proposed system)
20 velocity vector along the plane through furnace hood (proposed system)
Proposed system; airborne particle tracks
Proposed system; airborne particle tracks
Figure 1. Right: Absolute velocities in the vertical sluice gate fish pass. Level difference between the pools is 0.20 m. Left: Isosurface of the surface structure (blue), Right and left: Isosurface of absolute velocity 1.50 m/s (yellow)

Success Criterion for Fish Passages |수력 발전소 물고기 통로

São Roque 수력 발전소 물고기 통로

이 기사는 Matthias Haselbauer, RMD Consult  및 Carlos Barreira Martinez (  Minas Gerais 연방 대학교) 가 기고했습니다  .

브라질에서는 지난 150 년 동안 지표수의 사용이 지속적으로 증가했습니다. 항행성을 유지하고, 수력을 생성하고, 홍수를 방지하기 위해 자연 흐름을 방해하는 많은 장애물과 우회로가 세워졌습니다. 강에 서식하는 물고기 및 기타 작은 동물은 이러한 변화로 고통 받습니다. 일부 종의 멸종 시점까지 어류 수가 크게 감소한 것이 관찰되었습니다. 어류, 조류 및 포유류 개체수가 동시에 감소함에 따라 먹이 사슬에 대한 인간의 엄청난 영향이 분명해졌습니다.

강을 물고기를 위해 개방하기 위해 브라질에 많은 수의 물고기 통로가 건설되었지만 생물학적 및 기술적 측면에서 효율성이 떨어지는 경우가 많았습니다. 종종 1 차원적이고 경험적인 가정을 사용하여 설계된 통로의 흐름 상황은 과도한 선택과 열악한 위치를 초래합니다. 전통적인 1 차원 디자인의 물고기 통로와 달리 오늘날 더 적절한 도구를 사용할 수 있습니다. CFD (전산 유체 역학) 시뮬레이션을 사용하면 평균 속도 필드 뿐만 아니라 물고기 통로의 유용성에 상당한 영향을 미치는 과도 흐름 효과를 조사 할 수 있습니다. 최적의 결과를 얻으려면 설계 프로세스에서 수력 학적 고려 사항과 생물학적 고려 사항의 결합이 필수적입니다.

이 연구에서는주기적인 수직 수문 물고기 통로 내부의 난류 응집 구조에 대해 논의합니다. 길이가 4.50m이고 너비가 각각 3.30 인 두 개의 웅덩이 사이에서 흐름은 0.50m의 확장이 있는 작은 수직 개구부를 통과해야 합니다 (그림 1). 

CFD 시뮬레이션은 FLOW-3D 로 수행되었습니다 . 흐름 방향의 주기적 경계 조건에서 달성 가능한 해상도는 약 2.5cm입니다. 두 웅덩이 사이의 수면 Δh의 레벨 차이는 20cm였다. 따라서 절대 속도의 최대 값은 약 2m / s ≈ Δh * 2g입니다. 전체 위치 에너지는 운동 에너지로 변환되고 나중에 풀에서 소멸됩니다. 제트가 벽에서 분리되는 고속 영역이 형성됩니다.

절대 속도 수문 물고기 통과
그림 1. 오른쪽 : 수직 수문 물고기 통과의 절대 속도. 수영장 사이의 레벨 차이는 0.20m입니다. 왼쪽 : 표면 구조의 등면 (파란색), 오른쪽 및 왼쪽 : 절대 속도 1.50m / s (노란색)의 등면

LES (Large Eddy Simulation)를 통해 순간 흐름 영역에 대한 자세한 분석이 가능했습니다. 속도 및 난류 장의 분포와 풀 내의 일관된 난류 구조는 물고기의 행동을 더 잘 이해할 수있게했습니다.

난류 압력 변동

순간 속도 또는 압력 필드는 평균 값과 해당 변동으로 나눌 수 있습니다. 변동 압력에 대한 각 방정식은 다음과 같습니다.

{\tilde{p}}’=\tilde{p}-\left\langle {\tilde{p}} \right\rangle

난류 압력 장을 살펴보면 와류 내부의 난류 압력이 음수임을 알 수 있습니다. 난류 압력의 국부적 최소값은 그림 2와 같이 대규모 와류의 코어를 나타냅니다. 물고기 통로에서 여러 개의 수평 롤러가 관찰 될 수 있습니다. 와류는 수 문의 전 단층 내부에 형성됩니다. 정점의 주행 거리가 증가하면 와류 직경이 증가하고 난류 압력 진폭이 감소하여 롤러 내부의 난류 압력이 증가합니다.

일관된 구조와 관련하여 개방 채널 흐름의 난류 압력을 분석하는 것은 매우 어렵습니다. 대규모 와류는 직접 관찰로 거의 감지 할 수 없습니다. 이는 수면의 변동과 전체 전류 내부의 관련 압력 변동 때문입니다. 표면파에 의해 유발 된 압력 변동은 다음 지수 법칙에 따라 수심 z에 따라 감소합니다 [Kundu, 2004] :

{p}’\propto {{e}^{{-kz}}}

난류 압력 장을 살펴보면 와류 내부의 난류 압력이 음수임을 알 수 있습니다. 난류 압력의 국부적 최소값은 그림 2와 같이 대규모 와류의 코어를 나타냅니다. 물고기 통로에서 여러 개의 수평 롤러가 관찰 될 수 있습니다. 와류는 수 문의 전 단층 내부에 형성됩니다. 정점의 주행 거리가 증가하면 와류 직경이 증가하고 난류 압력 진폭이 감소하여 롤러 내부의 난류 압력이 증가합니다.

개방 채널 흐름의 난류 압력
그림 2 : 난류 압력 변동의 등면 = -500 Pa.

일관된 구조와 관련하여 개방 채널 흐름의 난류 압력을 분석하는 것은 매우 어렵습니다. 대규모 와류는 직접 관찰로 거의 감지 할 수 없습니다. 이는 수면의 변동과 전체 전류 내부의 관련 압력 변동 때문입니다. 표면파에 의해 유발 된 압력 변동은 다음 지수 법칙에 따라 수심 z에 따라 감소합니다 [Kundu, 2004] :

서로 다른 압력 변동의 중첩으로 인해 표면 근처의 대규모 일관된 구조를 감지하기가 어렵습니다.

Q- 기준

와류 감지를위한 또 다른 도구는 Dubrief (2000)와 Hunt (1988)가 제안했으며, 이들은 압력, 와도 및 Q- 기준의 등면을 비교했습니다. Q- 기준은 다음과 같이 계산됩니다.

\displaystyle {{\tilde{\Omega }}{{ij}}}=\frac{1}{2}\left( {\frac{{\partial {{{\tilde{U}}}{i}}}}{{{{x}{j}}}}-\frac{{{{{\tilde{U}}}{j}}}}{{\partial {{x}_{i}}}}} \right)

\displaystyle {\tilde{\Omega }}{ij}=\frac{1}{2}\left( {\frac{\tilde{U}{i}} {x}{j}-\frac{\tilde{U}{j}} {x}_{i}} \right)

공간적으로 필터링 된 속도 구배의 비대칭 및 대칭 부분. 그림 3에서는 Q ~ = 50s-2의 계산 된 등가 곡면이 표시됩니다. Q- 기준으로 소규모 와류가 감지됩니다. 난류 압력 변동과는 달리, Q- 기준 계산을 위해 자유 표면 상태는 탐지 가능성을 방해하지 않습니다. 이는 ∇²p 계산에 선형 정압 분포가 사용되지 않기 때문 입니다. 흐름에서 흐름 방향으로 작은 헤어 라인 소용돌이를 볼 수 있습니다.

Isosurfaces 난류 압력 변동
그림 3 : 난류 압력 변동의 등면

토론

다른 스케일의 소용돌이를 시각화하면 엔지니어는 물고기가 수로를 통과해야하는 일관된 구조에 대해 좋은 느낌을 갖게됩니다. 감지 된 대규모 롤러가 주요 구조입니다. 물고기는 이러한 구조에 대한 흐름에서 안정화되어야합니다. 이 롤러의 축은 메인 스트림 방향에 부분적으로 수직이므로 물고기가 안정화를 위해 메인 핀을 사용할 수 있습니다.

소규모 구조물은 물고기의 수영 방향과 평행합니다. 물고기는 이러한 와류에서 안정화를 위해 수직 지느러미 만 사용할 수 있기 때문에 대규모 롤러보다 안정화를 위해 더 많은 노력을 기울여야합니다.

계산 된 LES 결과를 사용하여 물고기 통과 내부의 흐름 조건에 대한 생물 학자와 엔지니어 간의 예비 토론을 시작할 수 있습니다. 감지 된 난류 구조는 물고기 통과의 성공에 중요합니다. 이러한 구조를 통과하는 데는 고속 영역을 통과하는 것보다 더 많은 에너지가 필요할 수 있습니다.

다음 달에 브라질 벨루 오리 존치에있는 미나스 제 라이스 연방 대학교에서 이러한 난류 구조와 물고기가 이러한 구조를 탐색하는 능력 사이의 상관 관계를 확인하기 위해 일련의 실험실 실험이 수행 될 것입니다.

참고 문헌

Dubrief, Yves; Delcayre, Frank: On Coherent-vortex identification in turbulence. In: Journal of Turbulence 1 (2000), pp. 1-22

Haselbauer M.: Geräuscharme Fischaufstiegsgerinne – Experimentelle und numerische Analyse des Fischpasses vom Typ periodische Schütze. PhD-Thesis, Fachgebiet Hydromechanik, TU München, 2008

Hunt, J.C.R.; Wray, A.A.; Moin, P.: Eddies, streams, and convergence zones in turbulent flows. In: CTR-S88 (1988), pp. 193-208

Kundu, Pijush K; Cohen, Ira M: Fluid Mechanics. San Diego: Elsevier Academic Press, 2004

Wilczak, J. M: Large-scale eddies in the unstably stratified atmospheric surface layer. Part I: Velocity and temperature structure. In: J. Atmos. Sci. 41 (1984), pp. 3537-3550

Acknowledgement: All results were post-processed with Paraview.

Figure 1. Alaska requires minimum water depth for fish passage to be 2.5 times the height of the caudal fin (D) (Hotchkiss and Frei 2007).

EFECTS OF HYDRAULIC STRUCTURES ON FISH PASSAGE: AN EVALUATION OF 2D VS 3D HYDRAULIC ANALYSIS METHODS

물고기 통로 유압 구조효과 :2D VS 3D 유압 분석 방법의 평가

ABSTRACT

채널 스패닝 유압 구조물은 상류 물고기 이동에 대한 장벽 역할을 할 수 있습니다. 이러한 종단 적 서식지 연결의 중단과 관련된 부정적인 결과는 정확하고 실행 가능한 평가 기술의 필요성을 강조합니다.

3 차원 평가 방법은 인스트림 구조에서 복잡한 흐름을 해결하고 물고기 움직임을 정확하게 예측하는 것으로 나타났습니다. 그러나 3 차원 모델링은 시간과 리소스 요구 사항으로 인해 비실용적 일 수 있습니다.

이 연구는 2 차원 전산 유체 역학 모델과 통계 분석을 사용하여 콜로라도 주 리옹에있는 화이트 워터 공원 구조의 수력 조건을 설명하는 것을 조사합니다. 물고기의 움직임 관찰은 잠재적 인 수영 경로를 나타내는 공간적으로 명시적이고 연속적인 경로를 따라 결과 수력 변수와 쌍을 이룹니다.

로지스틱 회귀 분석은 흐름 깊이와 속도가 어류 통과와 밀접한 관련이 있음을 나타냅니다. 결합 된 깊이 및 속도 변수무지개 송어 (92 %를 정확하게 예측Oncorhynchus mykiss) 및 갈색 송어 (Salmo trutta)는 이 유압 구조에서) 움직임 관찰을 합니다.

이 연구의 결과는 2 차원 분석 방법이 3 차원 분석이 불가능한 경우 유사한 수력 학적 구조가 어류 통과에 미치는 영향을 평가하는 비용 효율적인 접근 방식을 제공할 수 있음을 시사합니다. 또한,이 연구의 결론은 비교적 낮은 수영 성능을 가진 송어와 물고기 모두에 대한 관리 및 설계 결정을 안내하는 데 사용할 수 있습니다.

서문

수력 구조물은 수생 생물의 종 방향 서식지 연결을 의도적으로든 우연히든 효과적으로 차단할 수 있습니다. 의도적 장벽은 일반적으로 침입성 종의 도입 또는 교잡을 방지하기 위해 관리자에 의해 배치됩니다 (Holthe et al. 2005; Fausch et al. 2006). 그러나 구조물을 설계하고 설치할 때 물고기 통행 촉진을 고려하지 않았기 때문에 장벽이 더 자주 생성됩니다. 따라서 인위적 장애로 인해 전 세계 수로가 분열되었습니다 (Williams et al. 2012). 철새 어종의 성공적인 수명주기를 위해서는 종단 서식지 연결이 필수적입니다 (Schlosser and Angermeier 1995). 상류 이동에 대한 지연 또는 종료는 인구에 부정적인 영향을 미치고 생태계 기능을 방해 할 수 있습니다 (Beechie et al. 2010). 

수로를 가로 지르는 수력 구조물은 어류 통행에 미치는 영향을 철저히 평가하지 않고 하천과 강에 계속 배치됩니다 (Cada 1998; Noonan et al. 2012). 그러나 강 조각화와 관련된 문제에 대한 인식이 높아짐에 따라 설계 프로세스 전반에 걸쳐 물고기 통과 문제가 해결되는 방식에서 패러다임 전환이 일어나고 있습니다 (Katopodis and Williams 2012). 비 연어 종은 경제적 가치가 높은 종을 선호하는 경우가 많지만, 칼륨 종의 상류 이동 요구가 점점 더 중요하게 고려되고 있습니다 (Santos et al. 2012; Silva et al 2012) (Katopodis 2005; Roscoe and Hinch 2010). . 천연 자원 관리자는 제안 된 수력 구조물에 대해 의견을 제시하고 허용하도록 자주 요청받으며 (Kondratieff 2015),이 검토 과정에서 엔지니어와 과학자는 설계에 대한 예상 어류 통과 성능에 대한 모델 기반 증거를 제공하도록 요청받을 수 있습니다. 어류 통행과 관련하여 기존의 수력 구조물을 평가하고 우선 순위를 정하는 여러 방법이 현재 사용 가능하지만 (Kemp et al. 2010), 이전에 이 중요한 지점에서 제안된 구조물의 통행 효율성을 평가할 수있는 정확하고 실행 가능한 승인 및 설치 도구가 필요합니다.  

이러한 요구를 해결하는 데 초점을 맞춘 이전 작업은 3D 수력 모델링 기술이 상류 어류 이동을 평가할 목적으로 채널 스패닝 구조의 복잡한 유체 역학을 적절하게 해결할 수 있음을 보여주었습니다 (Stephens 2014).

이러한 새로운 3D 분석 방법은 전체 예측 정확도가 80 % 이상 (Stephens 2014)으로 매우 효과적 일 수 있지만 3D CFD (전산 유체 역학) 모델을 개발하는 데는 시간과 리소스가 많이 사용됩니다.

추가 데이터 수집, 소프트웨어 라이선스, 모델링 전문 지식 등에 대한 필요성은 많은 하천 관리 결정에 3D 분석을 비실용적으로 만들 수 있습니다. 다양한 2D 모델 플랫폼이 홍수 배출을 추정하고 (Horritt and Bates 2002; Merwade et al. 2008) 인스 트림 평가에 광범위하게 사용 되었기 때문에 실무 엔지니어와 과학자는 대부분의 수력 구조물 프로젝트에서 2D 수력 모델링을 수행 할 가능성이 더 높습니다.

물고기 서식지 (Clark et al. 2008; Katopodis 2012). 2D 및 3D 유압 모델의 실제 비교가보고되었지만 (Lane et al. 1999; Shen and Diplas 2008; Kolden 2013), 어류 통과에 대한 2D 및 3D 모델 기반 평가의 효능을 조사한 연구는 현재에서 발견되지 않았습니다.

목표

천연 자원 관리자와 설계 엔지니어가 Stephens (2014)의 매우 효과적인 3D 방법에 더 쉽게 접근 할 수 있도록하기 위해이 연구는 자유롭게 사용할 수있는 산업 표준 2D CFD 모델 인 River2D (Steffler and Blackburn 2002)를 사용하여 타당성을 조사합니다. 수력 구조가 어류 통로에 미치는 영향을 평가합니다.

유사한 접근 방식을 기반으로하고 이전의 수력 학 및 어류 이동 데이터 세트 (Fox 2013, Kolden 2013, Stephens 2014)를 사용하여 이 2 개의 연구는 2D 분석 방법을 사용하여 St. Vrain River의 WWP (화이트 워터 파크) 구조를 평가합니다. Lyons, CO.이 연구의 구체적인 목표는 다음과 같습니다. 

1. WWP 구조에서 복잡한 유압 환경을 설명하는 2D CFD 모델을 개발합니다. 

2.이 2D CFD 모델의 결과를 사용하여 WWP 구조를 통해 잠재적 인 물고기 이동 경로를 따라 연속적이고 공간적으로 명시적인 수력 학적 설명을 생성합니다. 

3. 무지개 송어 (대해 사용 가능한 어류 이동 데이터와 가장 밀접하게 관련된 수리적 변수를 결정Oncorhynchus mykiss) 및 갈색 송어 (Salmo trutta)에합니다. 

4. 이전에 개발 된 3D 접근 방식 (Stephens 2014)의 PIT (Passive Integrated Transponder) 태그 연구의 움직임 데이터를 기반으로 한 예측 평가 능력을이 연구의 2D 접근 방식과 비교합니다. 

5. 어류 통행의 관점에서 수력 구조물에 대한 비용 효율적인 평가를 통해 천연 자원 관리자 및 설계자를 지원하기위한 권장 사항을 제공합니다.

배경

상류 어류 이동에 대한 장벽은 유속 깊이, 유속 또는 유속과 거리의 조합을 포함한 다양한 물리적 조건에 의해 생성 될 수 있습니다 (Coffman 2005; Cahoon et al. 2005). 깊이 장벽은 일반적으로 흐름 깊이가 너무 얕아 통과 시도를 허용하지 않을 때 생성됩니다.

깊이 장벽은 또한 자리 잡은 구조물의 낙하 높이 및 플런지 풀 깊이가 도약 제약으로 인해 통과를 허용하지 않을 때 존재할 수 있습니다. 유속이 구조물을 통과하려는 물고기의 수영 능력을 초과 할 때 속도 장벽이 생성되어 상류 진행을 방해합니다. 수력 구조물에 의해 생성 된 난류는 물고기의 통과에도 역할을 할 수 있습니다. 조건에 따라 난류는 물고기 수영에 긍정적 인 영향과 부정적인 영향을 모두 미칠 수 있습니다 (Liao 2007; Cotel and Webb 2012; Lacey et al. 2012).  

수영 성능 지표는 종종 기존의 수력 학적 구조가 물고기 통행의 장벽으로 작용하는지 여부를 평가하는 데 사용됩니다. 이러한 메트릭 중 가장 일반적인 것은 달리기 속도라고도 하는 버스트 수영 속도와 지구력 곡선입니다 (Castro-Santos et al. 2013).

물고기는 지속, 연장, 파열의 세 가지 수영 모드를 나타냅니다 (Peake et al. 1997). 지속적인 수영은 이론적으로 무한정 유지 될 수 있지만 장시간 및 버스트 수영 속도는 제한된 시간 동안만 유지 될 수 있습니다.

지구력 곡선은 세 가지 수영 모드 (Videler and Wardle 1991)에 걸쳐 연속적으로 수영 속도와 피로 시간 사이의 역 관계를 설명하여 생성됩니다. 버스트 수영 속도는 속도 장벽을 식별 할 때 유용하며 (Haro et al. 2004) 지구력 곡선은 잠재적 인 완전 장벽을 식별하는 데 도움이됩니다 (Castro-Santos et al. 2013). 현재 물고기 수영 성능과 난류 임계 값 또는 분포 사이의 물리적 관계는 잘 알려져 있지 않습니다 (Liao 2007).

그러나 총 운동 에너지 (TKE), 총 수력 변형, 레이놀즈 전단 응력 및 와도와 같은 일부 프록시 변수는 난류가 어류에 미치는 영향을 정량화 할 때 유용한 것으로 나타났습니다 (Nestler et al. 2008; Cotel and Webb 2012; Lacey et al. 2012; Silva et al. 2012). 

장벽은 완전 할 수 있으며, 물고기 통행을 허용하지 않거나 선택적 통행 성공이 생리적 또는 수리적 특성에 따라 결정되는 경우 부분적 일 수 있습니다. 이 연구의 목적을 위해 총 시도 횟수에 대한 성공적인 통과 횟수를 기반으로 한 인구 수준의 통과 효율을 사용하여 유압 구조로 인한 상류 이동 억제 정도를 정량화합니다 (Haro et al. 2004). 다양한 방법 개발되었습니다. 

장벽이 물고기 통로 (켐프와 O’Hanley 2010)에 영향을 미치는 방법을 정량화하기 위해  한 가지 접근 방식은 통계 모델을 사용하여 통과 효율 추정치를 0 ~ 100 %의 연속 척도로 표현할 수 있습니다. 과거에는 규칙 기반 또는 회귀 기법을 사용하여 암거 (Coffman 2005; Burford et al. 2009), 도로 횡단 (Warren and Pardew 1998) 또는 수로 실험 설정 (Haro et al. 2004)을 다양한 성공으로 평가했습니다.

통계적 방법은 다양한 척도에서 수리적 변수에 대한 정보를 결합하여 통과에 큰 영향을 미치는 변수를 식별 할 수 있습니다 (Kemp and O’Hanley 2010). 이러한 모델은 현장 기반 어류 이동 관찰을 사용하여 검증 할 수도 있습니다 (Coffman 2005; Burford 2009).

2014 년에 Stephens는 3D CFD 모델 출력 (Kolden 2013)을 활용하여 수력 구조물에서 물고기 통과를 평가하기위한 연속적이고 공간적으로 명시적인 분석 방법을 만드는 새로운 통계 방법을 개발했습니다. 이 방법은 콜로라도에있는 3 개의 파도 생성, 인공 화이트 워터 파크 (WWP) 구조물에서 수집 한 수력 측정 및 PIT 태그 통과 관찰 (Fox 2013)을 통해 검증되었습니다. 통계 결과에 따르면 Stephens (2014) 방법은 전체 정확도가 80 % 이상인 통과 효율을 예측할 수 있습니다. 

Stephens는 3D CFD 모델의 결과를 사용했지만 다른 연구에서는 2D CFD 모델을 사용하여 물고기와 관련된 규모의 복잡한 흐름을 설명하는 데 초점을 맞추 었습니다 (Lane et al. 1999; Crowder and Diplas 2000; Shen and Diplas 2008). 2D CFD 모델링의 주요 관심사는 물고기 서식지 및 수영 성능에 중요한 중간 규모 기능과 관련된 복잡성을 포착 할 수 있는지 여부였습니다 (Crowder and Diplas 2000).

혼합된 결과는 서식지 평가를 위해 모델링되는 도달 범위의 특성에 따라 2D CFD 모델이 수력 조건에 대한 적절한 설명을 제공하거나 제공하지 않을 수 있음을 보여줍니다 (Clark et al. 2008; Shen and Diplas 2008; Kozarek et al. 2010) . 서식지 또는 지형 모델링에 중점을 두는 경우 깊이 평균 2D 모델과 직접 비교할 때 3D 모델 사용이 선호되었습니다 (Lane et al. 1999; Shen and Diplas 2008). 그러나 수력 구조물에서 상류 어류의 움직임을 평가할 때 2D 및 3D 모델의 성능을 비교 평가 한 연구는 거의 없습니다. 

이 연구에서 CFD 모델의 비교는 2D 소프트웨어 River2D와 3D 소프트웨어 FLOW-3D에 중점을 둡니다 (Flow Science, 2009). 2D 모델과 3D 모델의 가장 큰 차이점은 2D 모델은 각 계산 노드에서 유압 변수의 값을 깊이 평균한다는 것입니다. 이 깊이 평균은 구조물의 물고기 친화성에 큰 영향을 미칠 수있는 중요한 흐름 특징과 경계층 효과를 배제 할 수있는 잠재력을 가지고 있습니다.

예를 들어, 수심 평균 속도 값은 WWP 구조 하류의 수력 조건이 동일한 도달 범위 내의 자연 풀에있는 것과 유사하다고 잘못 제안 할 수 있습니다. 실제로 두 유동장은 어류 개체군에 다르게 영향을 미칠 수있는 고유 한 특성을 가지고 있습니다 (Kolden 2013). River2D는 또한 정수압과 일정한 수평 속도 분포를 가정하는 반면 FLOW-3D는 이러한 가정을 피할 수 있습니다.

대부분의 2D CFD 모델링 프로그램 (Toombes and Chanson 2011)에서 요구하는 정수압 가정은 가파른 경사 (> 10 %)와 급변하는 경사 (Steffler and Blackburn 2002)에서 계산 정확도를 제한합니다. 속도 분포가 일정하다는 가정은 수직 속도 구성 요소가 무시할 수 있음을 의미하며 본질적으로 2D CFD 모델을 사용하여 2 차 흐름 및 강한 순환을 분석하는 기능을 제거합니다 (Steffler and Blackburn 2002; Toombes and Chanson 2011).

이러한 가정과 2D 물리적 표현의 단순화 된 특성을 고려할 때 2D CFD 모델이 물고기 통과 예측 평가를 위해 채널 스패닝 구조의 복잡한 유체 역학을 적절하게 해결할 수 있는지 여부는 불분명합니다.

Figure 1. Alaska requires minimum water depth for fish passage to be 2.5 times the height of the caudal fin (D) (Hotchkiss and Frei 2007).
Figure 1. Alaska requires minimum water depth for fish passage to be 2.5 times the height of the caudal fin (D) (Hotchkiss and Frei 2007).
Figure 2. Depth (m) and velocity magnitude (m/s) River2D contours for 0.42 cms.
Figure 2. Depth (m) and velocity magnitude (m/s) River2D contours for 0.42 cms.

구체적인 내용은 아래 원문을 참고하시기 바랍니다.

Figure2 Outline of a flap gate

FLAP GATE TO PREVENT URBAN AREA FROM TSUNAMI

Osamu Kiyomiya 1, and Kazuya Kuroki 2

1 일본 도쿄 와세다 대학교 토목 공학과 교수
2일본 도쿄 와세다 대학교   토목 공학과 학생

요약

저자들은 쓰나미로부터 보호하기 위해 플랩 게이트를 제안하고 게이트의 특성과 디자인 및 유압에 대한 연구를 시작했습니다. 쓰나미의 위험이 예상되면 몇 분 안에 플랩이 일어 서서 쓰나미 침해로부터 해안 거주 지역을 보호합니다.

이 백서에서는 플랩 게이트 설계에 필요한 파압 및 게이트 동작을 확인하기 위해 보어 파 생성기를 사용하여 수로 탱크에서 2 차원 유압 모델 테스트를 논의합니다. 또한, 모델 테스트 결과를 비교하기 위해 VOF 방법을 사용하여 쓰나미로 인한 수력 특성을 시뮬레이션했습니다.

수치 해석의 결과는 일반적으로 모델 테스트에서 얻은 결과를 추적했습니다. 그러나 수치 해석에서의 파압은 파단 조건에서 모델 시험 결과와 일치하지 않았습니다. Flow 3D에 의한 3 차원 FEM은 또한 플랩 게이트가 포트 입구에 설치된 포트 영역에서 쓰나미의 런업 동작을 시뮬레이션했습니다.

테스트와 계산을 통해 쓰나미 플랩 게이트는 항구 거주 지역에 대한 쓰나미 침해에 효율적입니다.

일본은 많은 생명과 재산을 잃은 해안선을 따라 많은 쓰나미 침해 이력을 가지고 있습니다. 최근에는 쓰나미가 수반되는 대규모 지진으로 인한 피해도 예측하고 있습니다. 따라서 해안 지역의 쓰나미 대책 개선이 요구됩니다. 저자들은 이러한 대책 중 하나로 플랩 게이트의 사용을 제안하고, 현재 수력 학적 특성에 대한 연구를 진행하고 있습니다.

그림 2에서 볼 수 있듯이 플랩 게이트는 하단 가장자리에 핀 메커니즘으로 설계되었으며 일반적으로 해저에 위치합니다. 쓰나미가 해안 지역을 강타 할 것으로 예상되면 플랩의 cell이 공기로 부풀려 부력이 빠르게 위로 떠오르게됩니다.

쓰나미가 지나간 후에는 문에있는 cell에 물이 채워져 다시 해저에 가라 앉습니다. 플랩 작동 시간은 쓰나미에 대해 몇 분으로 설정됩니다. 이탈리아의 “Progetto Moze”에서는 플랩 게이트의 작동 메커니즘이 이미 채택되었지만이 게이트는 폭풍 해일에는 적합하지만 쓰나미에는 적합하지 않습니다.

여기에 소개된 플랩 게이트는 해안 거주지의 쓰나미를 방지하기 위해 만이나 강 하구에 설치됩니다. 이 게이트는 도시의 쓰나미 침해를 막기 위해 해안선을 따라 육지에 설치할 수도 있습니다. 플랩 게이트 설치는 일본의 여러 지역에서 계획 단계에 있습니다. 플랩 게이트의 유효성을 확인하기 위해 유압 모델 테스트와 수치 시뮬레이션을 수행했습니다.  

Figure 1 Tsunami attacks coast line
Figure 1 Tsunami attacks coast line
Figure2 Outline of a flap gate
Figure2 Outline of a flap gate

OUTLINE OF MODEL TESTS

2.1 FLAP GATE 모델을  

부상 플랩 게이트의 두 종류가 있습니다: 첫 번째 유형은 플랩의 하부 표면에 설치된 스토퍼를 사용하여 플랩의 움직임을 제어하고 다른 하나는로드와 케이블로 트러스 메커니즘으로 플랩을 안정화합니다. 플랩은 바다 방향으로 자유롭게 이동하지만 육지로 이동할 수는 없습니다. 닫았을 때 수직이거나 바다쪽으로 기울어 진 플랩에 추가합니다.

Figure 3 Initial stage of the gate / Figure 4 Generation of Tsunami (bore wave)
Figure 3 Initial stage of the gate / Figure 4 Generation of Tsunami (bore wave)

그림 3 게이트의 초기 단계 그림 4 쓰나미 발생 (보어 웨이브) 모델의 규모는 S = 1 / 50으로 설정되었습니다. 플랩의 각도는 75°와 90°로 설정되었습니다. 텐션로드는수평에서 39° 각도로 똑 바르고 기울어 지도록 설정 됩니다. 인장로드는 직사각형 단면이 있는 3 개의 스테인리스 스틸 빔을 사용하여 제조되며 핀으로 연결됩니다. 초기 위치에서 텐션로드는 해저에 세 번 접힌 상태로 설치됩니다. 그림 3은 모델의 초기 설치 위치를 보여줍니다. 쓰나미 지루 파의 도착과 함께 플랩은 부력과 양력으로 인해 위로 떠 오릅니다. 수위가 0 일 때 보어 웨이브가 도착하더라도 수위가 상승하면 플랩이 즉시 위로 쉽게 이동할 수 있습니다. 이것은 플랩 게이트가 해안선을 따라 도로 또는 호안과 같은 육지 지역에 적용 가능하다는 것을 의미합니다. 플랩은 스티렌 폼으로 채워진 아크릴 및 폴리 염화 비닐 플레이트를 사용하여 제조되었습니다.

구조의 질량은 19.4kg이며, 모델 구조는 높이 475mm, 깊이 790mm, 두께 50mm입니다. 테스트는 그림 4에 표시된 게이트 리프트 보어 생성기를 사용하여 유량 탱크에서 수행되었습니다. 실험 수로 치수는 길이 25,000mm, 폭 1,000mm (수류 섹션) 및 높이 1,500mm입니다. 저수조는 수로 좌측에 위치하고 있으며, 무거운 무게로 현관 문 (보어 생성 게이트)을 빠르게 들어 올려 보어 웨이브를 생성합니다. 이 방법은 댐 파괴 방법이라고도합니다. 플랩 모델은 수로의 채널 바닥에 설치할 수 있도록 설계되었으며 길이 735mm, 깊이 100mm입니다.

2.2 측정 방법  

플랩 동작과 쓰나미 파형은 디지털 비디오 카메라를 사용하여 기록되었습니다. 용량 성 파고계 6 대를 설치하여 보어 파의 수위와 유속을 측정 하였다. 유속은 지정된 수위에서 미터 사이의 시간 차이를 측정 한 다음 미터 사이의 거리를 해당 시간 차이로 나누어 계산했습니다. 고정 모형 시험에서는 5cm 간격으로 9 개의 파압 계를 배치하여 파압을 측정 하였다. 진동 모델 테스트에서는 파동 압력 게이지를 5 개 위치에 설치하여 파압을 측정했습니다. 고정 모델 테스트에서는 플랩에서 작동하는 회전 모멘트를 측정하기 위해 플랩의 회전 중심에서 450mm 떨어진 위치에 플랩에 수직 인 위치에로드 셀을 부착했습니다. 진동 모델 테스트에서 스트레인 게이지는로드 장력을 측정하기 위해 플랩의 회전 중심에서 450mm 위치에로드에 부착되었습니다. 회전 모멘트는 힘의 수평 성분을 사용하여 계산되었습니다.  

테스트 결과는 아래 문서를 참고하시기 바랍니다.

Picture of scoured bed surface

EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF FLOW AND SEDIMENT TRANSPORT AROUND A SERIES OF SPUR DIKES

유동 시뮬레이션의 실험적 연구와
일련의 SPUR DIKES 주변의 침전물 수송

by
ANU ACHARYA
Copyright © Anu Acharya 2011
A Dissertation Submitted to the Faculty of the
DEPARTMENT OF CIVIL ENGINEERING AND ENGINEERING MECHANICS
In Partial Fulfillment of the Requirements
For the Degree of
DOCTOR OF PHILOSOPHY
WITH A MAJOR IN CIVIL ENGINEERING
In the Graduate College
THE UNIVERSITY OF ARIZONA

침전물 수송에 대한 집중적인 연구는 저수지 관리, 댐 운영 및 하천 내 유압 구조물 설계를 위해 하천의 총 침전물 하중을 예측하는 적절한 방정식이 필요하다는 것을 보여준다.

침전물 운송에서 사용 가능한 어떤 방정식도 총 침전물 운송 속도를 예측하는 데 보편적으로 받아들여지지 않았다. 이러한 사실들은 침전물 수송률을 예측하기 위한 이 모든 공식을 나타내기 위한 일반적인 공식의 필요성을 나타낸다.

본 논문의 첫 번째 목표는 모든 강에 대해 통합된 총 침전물 운송 방정식을 찾는 것이다. 반면, 스퍼다이크나 교각 같은 유압 구조물을 둘러싼 마찰은 구조적 안정성을 약화시키는 심각한 문제가 될 수 있다.

이러한 유압 구조 주변의 난류 흐름장 및 난류 분포에 대한 조사는 국부적 골재 메커니즘의 이해와 국부 침전물 수송에 영향을 미치는 난류 특성을 결정하기 위해 필수적이다.

또한 개방 채널의 난류 흐름의 모든 경우에 유효한 범용 난류 모델은 존재하지 않는다. 본 논문은 일련의 3대 제방 주변의 난류장과 난류 분포를 철저히 조사했다.

목표는 국부 침전물 수송 속도를 예측하기 위한 유의한 난류 특성을 결정하고 제방 주변의 난류 유역 시뮬레이션을 위한 적절한 난류 모델을 식별하는 것이다.

일반적인 통합 총 하중 방정식을 개발하기 위해, 본 연구는 총 침전물 하중을 예측하는 데 일반적으로 사용되는 31개의 공식을 평가한다. 본 연구는 서로 다른 공식에서 침대 전단 응력의 확률적 특성으로 계산된 결과의 편차를 귀인시키고 침대 전단 응력이 로그 정규 분포를 만족한다고 가정한다.

주어진 침대 전단 응력에서 몬테카를로 시뮬레이션이 각 방정식에 적용되고 일련의 침대 전단 응력이 무작위로 생성된다. 모든 방정식의 각 몬테카를로 실현에서 생성된 총 침전물 하중은 모든 방정식에서 예측된 총 침전물 하중의 표본을 나타내기 위해 조립된다. 주어진 각 침대 전단 응력에서 결과적인 총 침전물 하중(예: 표준 편차, 평균)의 통계적 특성이 계산된다.

그런 다음 모든 방정식의 평균 값을 기반으로 통일된 총 침전물 하중 방정식을 구합니다. 결과는 모든 방정식의 평균이 무차원 침대 전단 응력의 검정력 함수임을 보여주었다. 측정과 합당한 합치도는 통합 방정식이 총 침전물 하중을 예측하기 위한 어떤 개별 방정식보다 정확하다는 것을 보여준다.

일련의 스퍼다이크 주변의 흐름장 및 국소적 스컬에 대한 실험 및 수치 시뮬레이션은 고정된 평면 침대 및 스커드 침대 조건에서 수행된다. 마이크로 어쿠스틱 도플러 속도계(ADV)는 세 가지 공간 방향 모두에서 순간 속도 필드를 측정하는 데 사용되며 측정된 속도 프로파일은 난류 특성을 계산하는 데 사용됩니다.

결과는 그 지역의 골칫거리가 첫 번째 제방을 중심으로 발전한다는 것을 보여준다. 난류 강도와 플랫 베드에서 측정한 수직 방향의 평균 속도는 스칼럼 깊이와 밀접한 관련이 있다.

또한 3다이크 시리즈의 두 번째 다이크 끝에서 발생하는 최대 침대 전단 응력은 최대 스콜과 일치하지 않는다.

침대 전단 응력으로 인한 큰 침대 하중 전달은 침대 스쿠싱을 시작하지 않을 수 있지만, 난기류 폭발(예: 스위프 및 배출)은 침대 표면에서 침전물을 끌어들여 국소적 골재를 발생시킨다. 3차원 수치 모델 FLOW-3D는 평평하고 스커드 베드에서 일련의 스퍼다이크 주변의 난류 유량을 시뮬레이션하는 데 사용된다.

본 연구는 Prandtlès의 혼합 길이 모델, 하나의 방정식 모델, 표준 2- 방정식 k-e 모델, RNG(Renormalization-Group) k-e 모델 및 LES(Large Eddy Simulations) 난류 모델을 조사한다. Prandtlès의 혼합 길이 모델과 하나의 방정식 모델은 다이크 주변의 플로우 필드에 적용되지 않는다.

표준 2- 방정식 k-e 모델과 RNG k-난류 모델을 사용한 평균 흐름 필드의 결과는 실험 데이터에 가깝지만, 다른 난류 모델에서 시뮬레이션된 난류 특성은 상당한 차이를 보인다. 다른 난류 모델에서 계산된 결과는 RNG k-e 모델이 이 일련의 스퍼다이크에 대한 평균 흐름 필드를 가장 잘 예측한다는 것을 보여준다.

난류 폐쇄 모델 중 난류 운동 에너지와 같은 난류 특성의 정확한 결과를 예측할 수 있는 모델은 없다. 이러한 결과에 기초하여, 본 연구는 다이크 주변의 평균 흐름 필드를 시뮬레이션하기 위해 RNG k-e 모델을 사용할 것을 권고한다. 다양한 흐름 조건에서 이 일련의 스퍼다이크 근처의 난류 특성을 예측하기 위해 FLOW-3D 모델의 추가 개선이 필요하다.

Picture of scoured bed surface
Picture of scoured bed surface
Bed bathymetry of the developed scour hole at Q = 0.035 m3/s
Bed bathymetry of the developed scour hole at Q = 0.035 m3/s
Distribution of dimensionless mean longitudinal velocities for straight, angled dikes on flat bed and angled dikes on mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean longitudinal velocities for straight, angled dikes on flat bed and angled dikes on mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean transverse velocities for straight, angled dikes on flat bed and angled dikes on mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean transverse velocities for straight, angled dikes on flat bed and angled dikes on mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean vertical velocities for straight, angled dikes on flat bed and angled dikes on the mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean vertical velocities for straight, angled dikes on flat bed and angled dikes on the mobile bed at Q = 0.035 m3/s
Dimensionless Reynolds stresses
Dimensionless Reynolds stresses
Sketch of a subaerial landslide-induced tsunami wave

NUMERICAL SIMULATION OF THREE-DIMENSIONAL TSUNAMI GENERATION BY SUBAERIAL LANDSLIDES

SUBAERIAL LANDSLIDES에 의한 3 차원 쓰나미 생성의 수치 시뮬레이션

A Thesis by GYEONG-BO KIM
Submitted to the Office of Graduate Studies of
Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

초록

쓰나미는 해저 지진으로 인해 종종 발생하는 해안 지역에 영향을 미치는 가장 치명적인 자연 현상 중 하나입니다. 그럼에도 불구하고 밀폐된 분지, 즉 피요르드, 저수지 및 호수에서, 수중 또는 해저 산사태는 유사한 결과로 파괴적인 쓰나미를 일으킬 수 있습니다. 큰 수역에 충돌하는 수중 또는 해저 산사태가 쓰나미를 발생시킬 수 있지만, 해저 산사태는 대응하는 것보다 훨씬 더 위협적인 쓰나미 발생원입니다.

이 연구에서 우리는 지하 산사태에 의한 쓰나미 발생에 대한 실험실 규모의 실험을 수치 모델과 통합하는 것을 목표로 합니다. 이 작업은 2 개의 3 차원 Navier-Stokes (3D-NS) 모델, FLOW-3D 및 당사가 개발 한 모델 TSUNAMI3D의 수치 검증에 중점을 둡니다.

이 모델은 Georgia Institute of Technology의 Hermann Fritz 박사가 이끄는 쓰나미 연구팀이 수행 한 이전의 대규모 실험실 실험을 기반으로 검증되었습니다. 일련의 실험실 실험에서 세 가지 대규모 산사태 시나리오, 즉 피요르드 유사, 곶 및 원거리 해안선이 선택되었습니다. 이러한 시나리오는 복잡한 파도 장이 지하 산사태에 의해 생성 될 수 있음을 보여주었습니다.

파동 장의 정확한 정의와 진화는 뒤 따르는 쓰나미와 해안 지역에서의 영향을 정확하게 모델링하는 데 중요합니다. 이 연구에서는 수치 결과와 실험실 실험을 비교합니다. 토양 유변학에 대한 방법론과 주요 매개 변수는 모델 검증을 위해 정의됩니다. 모델의 결과는 쓰나미 수치 모델의 검증을 위해 National Tsunami Hazard Mitigation Program (NTHMP), National Oceanic and Atmospheric Administration (NOAA) 지침에 명시된 허용 오차 미만일 것으로 예상됩니다.

이 연구의 궁극적 인 목표는 멕시코만과 카리브해 지역의 침수지도를 구축하는 데 필요한 해저 산사태 쓰나미에 대한 3D 모델의 실제 적용을 위한 더 나은 쓰나미 계산 도구를 얻는 것입니다.

주요 분석 이미지

 Sketch of a subaerial landslide-induced tsunami wave
Figure 1.4: Sketch of a subaerial landslide-induced tsunami wave: (a) cross section
defining parameters in the direction of slide motion; (b) plan view defining coordinate
system to reference and quantify the generated tsunami wave
A typical computational domain with moving and stationary objects
Figure 2.1: A typical computational domain with moving and stationary objects. Courtesy Dr. Juan J. Horrillo, Texas A&M at Galveston.
A typical tsunami computational domain
Figure 2.2: A typical tsunami computational domain: (a) Location of variables in a computational cell. The horizontal (ui,j ) and vertical (vi,j ) velocity components are located at the right cell face and top cell faces, respectively. The pressure pi,j and VOF function Fi,j are located at the cell center; (b) Volume and side cell apertures. Courtesy Dr. Juan J. Horrillo, Texas A&M at Galveston.
Figure A.1: Configurations of boundary conditions for fjord case: FLOW-3D
Figure A.1: Configurations of boundary conditions for fjord case: FLOW-3D

<자료 안내>

원문 다운로드

Water & Environmental 논문 자료보기

Structured FAVOR™ grid in cylindrical coordinates

CFD Modeling Techniques | CFD 모델링 기술

Modeling Techniques

CFD를 폭넓게 사용한 적이 있는 사람이라면 누구나 사용할 최적의 수치 기법이 뭔가에 관한 개인적인 취향이나 선입견을 가지고 있습니다.  이 절에서는 저자가 사용한 모델링 기법의 일부와 그들이 다른 기법보다 나은 선택이라고 생각하는 이유에 대해 설명합니다.

Anyone who has used CFD extensively will have his own preferences and prejudices for what are the best numerical methods to use.  The articles in this section explain some of the modeling techniques the author has used and why he believes they are good choices with respect to other methods.

Structured FAVOR™ grid in cylindrical coordinates
Structured FAVOR™ grid in cylindrical coordinates

이 절에서는 FAVOR (Fractional-Area-Volume-Obstacle-Representation ) 법과 VOF (Volume-of-Fluid) 법에 중점을두고 있습니다.  복잡한 장애물 주위의 유체 흐름을 모델링하는 경우 많은 숙련자는 장애물의 형상으로 변형된 계산 격자를 사용하는 것을 선호합니다.  이러한 계산 격자는 일반적으로 물체 적합 격자(body-fitted grids)라고합니다.  대조적으로, FAVOR 법은 요소에 면적 점유율 및 체적 점유율이 할당된 생성이 용이한 사각형 격자가 사용됩니다.  이러한 방식의 관련성에 대해서는 FAVOR와 물체 적합 좌표계 및 No Loss with FAVOR의 절에서 논의되고 있습니다.

These articles center on the FAVOR (Fractional-Area-Volume-Obstacle-Representation) method and the VOF (Volume-of-Fluid) method.  When modeling fluid flow around complex obstacles many practitioners prefer to use computational grids that are deformed to the shape of the obstacles, these are generally referred to as body-fitted grids.  The FAVOR method, in contrast, employees easy to generate rectangular grids whose elements are assigned fractional areas and volumes.  The connection between these approaches is discussed in the articles FAVOR vs. Body-Fitted Coordinates and No Loss with FAVOR.

Structured FAVOR™ Grids

VOF와 FAVOR ™은 모두 표면 기반의 계산 방법과 달리 볼륨 기반입니다. 경계 조건이 규정되는 유체 및 장애물 표면을 직접 설명하는 것이 논리적으로 보이지만 더 나은 방법은 유체 및 고체 영역의 볼륨을 사용하는 것입니다. 볼륨에는 많은 장점이 있습니다. 시간 종속적인 계산 시뮬레이션에서 움직이고 변화하는 유체 표면을 고려하십시오. 이를 자유 표면이라고하며 그 결정은 유체 역학 솔루션의 필수적인 부분이됩니다. 유체 표면은 시간이 지남에 따라 생성 및 파괴 될 수있을뿐만 아니라 유체 볼륨을 완전히 둘러 쌀 수도 있고 그렇지 않을 수도 있습니다.

Both VOF and FAVOR™ are volume-based, as opposed to surface based, computational methods. Even though it seems logical to directly describe fluid and obstacle surfaces on which boundary conditions are to be prescribed, a better method is to use the volumes of fluid and solid regions. Volumes have many advantages. Consider fluid surfaces that move and evolve in time-dependent computational simulations. These are referred to as free surfaces and their determination becomes an integral part of a fluid dynamic solution. Fluid surfaces can not only be created and destroyed over time, but may or may not completely enclose fluid masses.

간단한 예로는 호스를 빠져나가는 물이 있다고 가정하면 물의 표면적은 바깥쪽으로 흐르면서 커지고 있습니다. 만약 그것이 방울로 분해된다면, 서로 연결되지 않은 여러 표면이 있게 됩니다. 두 개 이상의 낙하물이 충돌하고 이들의 개별 표면이 더 이상 존재하지 않는 경우, 결합 낙하물을 둘러싼 단일 표면으로 대체됩니다. 또는 단순한 유체 강하가 임의로 변형되어 표면적이 변경될 수 있지만 유체가 압축할 수 없을 때는 부피에 변동이 없습니다. 이러한 종류의 행동은 개별 표면의 규격을 문제가 되게합니다.

A simple example is water exiting a hose. The surface area of the water is growing as it flows outward. If it breaks up into drops there are then multiple surfaces that are not connected to one another. Should two or more drops collide and coalesce their individual surfaces no longer exist being replaced by a single surface surrounding the combined drops. Or a simple fluid drop can arbitrarily deform resulting in a changing surface area, but its volume is unchanged when the fluid is incompressible. This sort of behavior makes the specification of individual surfaces problematic.

 한편, 유체나 고형물의 부피를 정의하는 것은 질량의 보존(그리고 불변의 부피 형태의 비압축성)이 유지하기가 더 쉽기 때문에 이치에 맞습니다. 유체 용적은 그들이 원하는 대로 결합하고 분리될 수 있으며, 결과 표면을 쉽게 평가할 수 있습니다. Volume methods에서 표면의 위치는 부피 영역이 끝나는 위치에 있습니다.

On the other hand, defining volumes of fluids or solids makes sense because conservation of mass (and incompressibility in the form of unchanging volumes) is easier to maintain. Fluid volumes may coalesce and breakup as they will, allowing easy evaluation of their resulting surfaces. In volume methods the location of a surface is wherever the volume region ends. 

Volume methods은 강력한 numerical 도구입니다. VOF 및 FAVOR™ 기법에 이러한 기법을 구현하는 방법은 첨부된 기사에 자세히 설명되어 있다.

Volume methods are powerful numerical tools. How they are implemented in the VOF and FAVOR™ techniques is described in detail in the accompanying articles.

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

FLOW-3D Spillway Visualization

Volume of Fluid (VOF) History

Volume of Fluid (VOF)

FLOW-3D Spillway Visualization

VOF(Volume of Fluid) 방법은 이전의 MAC(Marker-and-Cell) 방법을 기반으로 한다[1]. MAC 방법은 표식기 입자를 사용하여 유체가 고정된 오일러 그리드 내에 존재하는 위치를 찾아냈다. MAC는 자유로운 표면으로 압축할 수 없는 유체의 역학을 시뮬레이션한 최초의 연산 방법이었다. 유체를 추적하기 위한 마커 입자의 사용은 특히 3차원에서 계산적으로 비용이 많이 들고, 입자가 한 그리드 소자에서 다른 그리드 소자로 이동할 때 그리드 요소 특성(질량 등)의 변화가 이산적인 변화를 겪기 때문에 연산 노이즈를 도입한다. 마커 입자를 인터페이스 추적 체계로 대체하려는 다양한 시도가 있었지만, 유체 질량이 종종 분리되거나 결합되어 인터페이스 표면의 생성과 파괴로 이어지기 때문에 대부분 실패했다.

유체 표면 대신 유체 부피를 추적하는 유체 부피(Volume of fluid method)의 발상은 유체 변수의 부피를 사용하는 것이 관례인 2상(물과 증기) 문제에 대한 연구로부터 비롯되었다. 증기의 부피 분율은 물과 증기가 혼합된 상태에서 증기의 양을 기록하는 연속 변수다. 이 체적 개념을 불압성 유체의 자유 표면을 찾기 위해 불연속 변수에까지 확장(예: 액체와 0의 단위 값)한 것은 1975년 간행물 “다차원, 과도 자유 표면 흐름 계산을 위한 방법”[2]에서 니콜스와 허트의 “다차원, 과도 자유 표면 흐름”에서 처음 입증되었다.

계산적 의미 만들기

VOF 개념은 플로우 모델이 일반적으로 압력, 밀도, 온도 등과 같은 종속 변수를 저장하기 위해 각 그리드 요소에서 하나의 숫자 값만 사용하기 때문에 계산이 타당하다. 그렇다면 왜 요소 내의 유체 분포를 정의하기 위해 둘 이상의 변수가 필요할까? 예를 들어, 원소의 유체가 둘 이상의 blob으로 분포된 경우, 각 blob에 대해 더 많은 종속 변수가 필요할 것이다. 이런 관점에서 보면 원소의 유체량만 기록하는 것이 타당하다. 그러나 문제는 체적분율 변수의 추정 불연속적 특성이다. 오일러 그리드를 통한 불연속 유체 인터페이스의 이동을 추적하려면 더 많은 정보가 필요하다.

Making Computational Sense

이 문제는 많은 출판사에서 많은 사람들이 다루어 왔다. 제안된 거의 모든 방법은 인접한 그리드 요소의 볼륨 분율 검사에 기초한 근사치의 어떤 유형에 의존한다. 예를 들어, 1차원 흐름에서는 정확한 방법을 도출하기 쉽다. 액체와 기체를 분리하는 예리한 인터페이스를 가진 1차원 도관을 따라 액체가 흐르고 있다고 가정해 보자. 인터페이스 업스트림 그리드 요소에서, 볼륨 분율은 1과 같고, 인터페이스 다운스트림에서는 볼륨 분율은 0과 같다. 0과 1 사이의 볼륨 비율 값을 갖는 인터페이스를 포함하는 그리드 요소에서 액체는 1의 볼륨 비율을 포함하는 인접 셀에 연결된 셀의 측면에 위치해야 하기 때문에 해당 셀 내에서 인터페이스를 쉽게 찾을 수 있다. 그런 다음 인터페이스는 체적 분율의 곱에 셀의 크기를 곱한 곱에 의해 액체 이웃에 연결된 셀 가장자리로부터 다운스트림 거리에 위치한다. 이 위치는 인터페이스가 날카로운 불연속성을 유지하도록 유체를 삽입할 때 사용할 수 있다. 불행하게도, 2, 3차원에서는 그리드 요소 내에서 인터페이스를 위치시키는 간단한 방법이 존재하지 않는다.

One method proposed for advecting discontinuous fluid interfaces was presented in the 1980 Los Alamos Scientific Laboratory report, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries,” [3] by Nichols, Hirt and Hotchkiss, and in a 1981 publication, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,쓴 [히트와 니콜스가 쓴 [4]. 주로 경수-원자로 안전 연구를 위한 이 프로그램의 초기 적용은 [5]와 [6]에서 확인할 수 있다.

VOF Variations | VOF 변형 모델

VOF 방법의 많은 변형이 문헌에 보고되었지만, 대부분은 원본에서 사용된 방법을 따르지 않는다[4]. 특히 원래의 VOF 방식은 주변 가스가 아닌 압축 불가능한 액체에서만 유체 역학을 위한 Navier-Stokes 방정식을 해결했다. 대신에 유체가 없는 표면은 경계 조건에 의해 처리되었고 유체가 포함된 그리드 요소의 목록은 지속적으로 업데이트되었다. 원래 모델의 가스 영역은 모멘텀을 무시할 수 있는 낮은 밀도를 가지며, 공간적으로 균일한 가스 압력을 가지는 것으로 가정했다. 다른 대부분의 VOF 모델에서 사용하는 대안은 인터페이스에 경계 조건을 설정하지 않기 위해 2-유체 시뮬레이션을 사용하는 것이다. 이 옵션은 가스 역학을 위해 해결해야 하기 때문에 원래 방법보다 상당히 많은 계산 자원을 필요로 한다. 또한 대부분의 2-유체 모델은 인터페이스에서 가스와 액체 사이에 존재하는 속도 “슬립”의 가능성을 무시한다. 슬립의 존재를 무시하고 가스/액체 혼합물의 평균 속도로 인터페이스를 이동하면 심각한 오류가 발생할 수 있다.

Modeling Fluid Advection | 모델링 유체 부착

대체 VOF 방법 개발자들이 항상 높이 평가하지 않는 또 다른 점은 VOF 유체 분율 수량 F의 첨부를 위해 모델링된 방정식이다. 원래의 방법 [4]은 F에 대한 보수적인 운송 방정식을 사용했다.

∂F∂t+∇∙(Fu→)=0

부착을 위해 레벨 설정 방법을 사용하는 것과 같은 많은 대안 VOF 공식은 비보수적 전송 방정식을 사용한다.

∂F∂t+u→∙∇F=0

보수적인 방법의 장점은 변경되어서는 안 되는 유체량을 쉽게 계산하고 표시하기 때문에 시뮬레이션에서 한 번의 간단한 불압력 정밀도 검사를 제공한다는 것이다.

TruVOF 솔루션

이용 가능한 인기 있는 상용 코드 중 FLOW-3D만이 [4]에서 참조한 원래의 1유체 모델을 기반으로 한다. 물론, 열 전달, 표면 장력, 위상 변화, 이동 장애물 및 유체 구조 상호작용과 같은 다양한 물리적 프로세스에 대한 많은 모델을 포함하여 이 소프트웨어에 대한 많은 개선이 평생에 걸쳐 이루어졌다.

다른 기사 읽기 : VOF (Volume of Fluid) 란 무엇인가? | FLOW-3D

참고문헌

References

  1. H. Harlow and J. E. Welch, “Numerical Calculation of Time-Dependent Viscous Incompressible Flow,” Phys. Fluids 8, 2182 (1965); J. E. Welch, F. H. Harlow, J. P. Shannon, and B. J. Daly, “THE MAC METHOD: A Computing Technique for Solving Viscous, Incompressible, Transient Fluid-Flow Problems Involving Free Surfaces,” Los Alamos Scientific Laboratory report LA-3425 (March 1966).
  2. D. Nichols and C. W. Hirt, “Methods for Calculating Multi-Dimensional, Transient Free Surface Flows Past Bodies,” Proc. Of the First International Conference on Numerical Ship Hydrodynamics, Gaithersburg, Maryland, October 20-23, 1975.
  3. D. Nichols, C. W. Hirt and R. S. Hotchkiss, “SOLA-VOF: A Solution Algorithm for Transient Fluid Flow with Multiple Free Boundaries,” Los Alamos Scientific Laboratory report LA-8355 (August 1980).
  4. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Jour. Computational Physics, 39, 201 (1981).
  5. D. Nichols and C. W. Hirt, Numerical Simulation of BWR Vent Clearing Hydrodynamics,” Proc. 1978 Annual Meeting ANS, San Diego, CA; Nuc. Sci. Eng. 73, 196 (1980).
  6. W. Hirt and B. D. Nichols, “A Computational Method for Free Surface Hydrodynamics,” ASME 1980 Pressure Vessels and Piping Conf. San Francisco, CA (August 1980) Jour, Pressure Vessel Technology, 103, 136 (1981)
삼성 870 EVO SATA

수치해석에 유용한 SSD (메모리디스크) 가이드

본 자료는 ITWORLD 기사에서 2021년 1월과 20일 자료와 그 이전 자료에서 발췌 인용된 자료입니다. (출처 : www.itworld.co.kr)

수치해석을 하는 경우 계산과정에서 생성되는 결과 파일 사이즈는 매우 크기 때문에, 빠른 디스크 속도는 사용자의 총 해석시간을 줄이는데 큰 도움이 됩니다.

수치해석에서 SSD가 필요한가?

수치해석 업무를 담당하는 사용자에게 SSD가 필요한가? 한마디로 말하면 수치해석을 하는 모든 사람은 보유하고 있는 수치해석 장비의 디스크를 SSD로 업그레이드하는 것이 좋다. 가장 빠른 기계식 하드 드라이브도 SSD 속도에는 미치지 못한다.

기존 노트북, 또는 데스크톱의 하드 드라이브를 SSD로 교체하면 완전히 새로운 시스템처럼 느낄 수 있다. 수치해석을 하는 사용자는 SSD를 구입하는 것은 컴퓨터를 업그레이드하는데 가장 적합한 옵션이다.

SSD는 기계식 하드 드라이브보다 기가바이트 당 비용이 더 많이 들기 때문에 초 고용량으로 제공되지 않는 경우가 많다. 속도와 저장 공간이 필요한 경우, 128GB 나 256GB의 SSD를 구입해 부팅 드라이브로 사용하고, 기존 하드 드라이브를 PC의 보조 저장 장치로 사용하면 최선의 선택이 된다.

하드 드라이브는 가격 대비 용량 측면에서 여전히 큰 이점을 제공하며, 자주 사용되지 않는 데이터를 저장하는 용도로 적합하다. 그러나 운영체제, 프로그램, 자주 사용하는 데이터에는 보유하고 있는 시스템이 지원한다면 NVMe SSD, 지원하지 않는다면 SATA SSD를 사용하는 것이 좋다.

아래 그래프를 보면 SSD를 왜 사용해야 하는지 명확해진다.

SSD Speed compare
SSD Speed compare

SATA SSD vs. NVMe SSD

시장에 SATA SSD와 NVMe SSD가 아직 공존하는 데는 이유가 있다. 메모리 기반 SSD의 잠재력을 감안할 때 결국 새로운 버스와 프로토콜이 필요할 수밖에 없으리란 점은 초기부터 명확했다. 그러나 초창기 SSD는 비교적 속도가 느렸으므로 기존 SATA 스토리지 인프라를 사용하는 편이 훨씬 더 편리했다.

SATA 버스는 버전 3.3에 이르러 16Gbps까지 발전했지만 거의 모든 상용 제품은 여전히 6Gbps에 머물러 있다(오버헤드를 더해 대략 550MBps). 버전 3.3이라 해도 현재 SSD 기술, 특히 RAID 구성으로 낼 수 있는 속도에 비하면 한참 느리다.

그 다음으로 등장한 방법은 역시 기존 기술이지만 대역폭이 훨씬 더 높은 버스 기술인 PCI 익스프레스, 즉 PCIe 활용이다. PCIe는 그래픽 및 기타 애드온 카드를 위한 기본 데이터 전송 계층이다. 3.x 세대 PCIe는 복수의 레인(대부분의 PC에서 최대 16개)을 제공하며, 각 레인은 1GBps(985MBps)에 가까운 속도로 작동한다.

PCIe는 썬더볼트 인터페이스의 기반이기도 하다. 썬더볼트는 게임용 외장 그래픽 카드, 그리고 내장 NVMe와 거의 대등한 속도를 내는 외장형 NVMe 스토리지에서 진가를 발휘하기 시작했다. 많은 사용자들이 이제 느끼고 있지만, 인텔이 썬더볼트를 버리지 않은 것은 현명한 판단이었다.

물론 PCIe 스토리지는 NVMe보다 몇 년 전에 나왔다. 그러나 이전 솔루션은 SATA, SCSI, AHCI와 같은 하드 드라이브가 스토리지 기술의 정점이었던 시절에 개발된 오래된 데이터 전송 프로토콜에 발목을 잡혔다. NVMe는 저지연 명령과 다수의 큐(최대 6만 4,000개)를 제공함으로써 스토리지의 발목을 잡았던 제약을 없앤다. 지속적인 원을 그리며 데이터가 기록되는 하드 드라이브와 달리 SSD에서는 마치 산탄처럼 데이터가 흩어져 저장되므로 특히 후자, 즉 다수의 큐가 큰 효과를 발휘한다.

SSD 선택 시 유의해서 봐야할 것

물론 저장 용량과 가격이 중요하다. 또한 긴 보증기간은 조기 데이터 사망에 대한 우려를 완화시킬 수 있다. 대부분의 SSD 제조업체는 3년 보증을 제공하며 일부 더 좋은 모델은 5년을 보증한다. 그러나 이전 세대의 SSD와는 달리, 몇 년 전에 혹독한 내구성 테스트로 입증한 것처럼 최신 SSD는 일반 소비자가 어지간히 사용해서는 마모되지 않는다.

가장 유의해야 할 것은 SSD를 PC에 연결하는 데 사용되는 기술이다.

  • SATA: 연결 유형과 전송 프로토콜을 나타내며, 대부분의 2.5인치 및 3.5인치 하드 드라이브와 SSD를 PC에 연결한다. SATA III 속도는 약 600MBps에 달할 수 있으며, 대부분의 현대 드라이브는 최대 속도를 제공한다.
  • PCIe: 이 인터페이스는 컴퓨터의 4개의 PCIe 레인을 활용해 SATA 속도를 훨씬 능가해 거의 4GBps를 제공한다(PCIe 3세대). 이런 파괴적인 속도는 강력한 NVMe 드라이브와 잘 어울린다. 메인보드의 PCIe 레인과 M.2 슬롯 모두 PCIe 인터페이스를 지원하도록 유선으로 연결할 수 있으며, “검정” M.2 드라이브를 PCIe 레인에 슬롯화할 수 있는 어댑터를 구입할 수 있다.
  • NVMe: 비휘발성 메모리 익스프레스(Non-Volatile Memory Express) 기술은 PCIe의 풍부한 대역폭을 활용해 SATA 기반 드라이브를 비교조차 못할 정도로 매우 빠른 SSD를 만든다. NVMe에 대해 더 자세히 알고 싶다면 여기를 클릭하라.
  • M.2: 설명이 쉽지 않다. 많은 사람이 M.2 드라이브가 모두 NVMe 기술과 PCIe 속도를 사용한다고 생각하지만 사실이 아니다. M.2는 단순히 폼 팩터에 불과하다. 물론 대부분의 M.2 SSD는 NVMe를 사용하지만 일부는 여전히 SATA를 사용한다. 많은 최신 울트라북이 저장을 위해 M.2를 사용한다.
  • U.2 및 mSATA: mSATA 및 U.2 SSD에서도 문제가 발생할 수 있지만, 이 형식을 지원하는 메인보드와 제품 가용성은 드물다. M.2가 대중화되기 전에 일부 구형 울트라북에 mSATA가 포함되어 있으며, 필요할 경우 드라이브를 사용할 수 있다.  

물론 속도도 중요하지만, 대부분의 최신 SSD는 SATA III 인터페이스를 지원한다. 그러나 전부 다 그런 것은 아니다.

구입전 사용자가 알아야 할 NVMe SSD

NVMe 드라이브는 구입하기 전에 어떤 특징을 갖고 있는지 알고 있어야 한다. 표준 SATA SSD는 이미 PC 부팅 시간과 로딩 시간을 대폭 단축하고 훨씬 저렴하다. NVMe 드라이브는 특히 대량으로 데이터를 정기적으로 전송하는 경우, 삼성 960 프로와 같은 M.2 폼 팩터나 또는 PCIe 드라이브가 가장 많은 효과를 누릴 수 있다. 그렇지 않으면 NVMe 드라이브는 가격만 비쌀뿐 가치도 없다.  

ⓒ Brad Chacos

NVMe SSD를 구입하기로 결정한 경우, PC에서 SSD를 처리할 수 있는지 확인해야 한다. 이는 비교적 새로운 기술이므로, 지난 몇 년 내에 제작한 메인보드만이 M.2 연결이 가능하다. 스카이레이크 시대의 AMD 라이젠과 주류 인텔 칩을 고려하라. PCIe 어댑터에 탑재된 NVMe SSD는 M.2 채택이 확산되기 전인 초기에 널리 사용됐지만 지금은 매우 드물다. NVMe SSD를 구입하기 전에 실제로 NVMe를 사용할 수 있는지 확인하고 최대한 활용하기 위해서는 4개의 PCIe 레인이 필요하다는 점에 유의해야 한다. 

NVMe 드라이브를 최대한 활용하려면 운영체제를 실행해야 하기 때문에 드라이브를 인식하고 부팅할 수 있는 시스템이 있어야 한다. 지난 1~2년 전에 구입한 PC는 NVMe 드라이브에서 부팅하는데 아무런 문제가 없지만, 좀 더 오래된 메인보드는 지원하지 않을 수 있다. 구글에서 자신의 메인보드를 검색하고 NVMe 부팅을 지원하는지 확인하라. 보드의 BIOS 업데이트를 설치해야 할 수도 있다. 하드웨어가 NVMe SSD에서 부팅할 수 없는 경우에도 보조 드라이브로 사용할 수 있어야 한다.  

아래 itworld에 기고된 최신 SSD에 대한 기사를 인용 제공합니다.

리뷰 | 삼성 870 EVO SATA, 원하는 속도와 합리적인 가격 ‘다 갖췄다’

일자 : 2021-01-20, 출처 : https://www.itworld.co.kr/print/179874

삼성은 SSD 시장에 진출한 이래로 줄곧 이 시장의 선두를 지키고 있으며, 870 EVO는 그 전통을 이어갔다. 870 EVO는 본지가 테스트한 제품 가운데 가장 빠른 SATA SSD이며, 최대 4TB 용량과 속도를 감안할 때 매우 저렴하다. 

ⓒ Samsung


다양한 사양과 적당한 가격, 그리고 5년 보증 

삼성 870 EVO는 삼성 자체 TLC(Triple-Level Cell / 3비트) V낸드(V-NAND)를 사용하는 2.5인치 SATA 6Gbps SSD다. 삼성은 일반적으로 실제 컨트롤러 기술이나 레이어 수에 관해서는 밝히지 않지만, 용량으로 봤을 때, 92 또는 96 레이어를 갖춘 삼성이 자체 설계한 컨트롤러일 가능성이 높다.

삼성은 이 드라이브를 250GB/50달러, 500GB/80달러, 1TB/140달러, 2TB/270달러, 4TB/520달러 버전으로 제공한다. 250GB 용량마다 512MB의 기본 DRAM 캐시가 있으며, 드라이브는 150TBW(쓰기 가능한 용량) 또는 5년 서비스를 보장한다. 150TBW가 먼저 도래하면 5년 보증이 무효화된다는 의미다. 대부분의 사용자는 이렇게 많은 데이터를 작성하지 못하므로 사실상 5년 보증이라고 생각하면 된다. 

ⓒ Samsung

870 EVO는 삼성의 터보라이트(TurboWrite) 가변 보조 캐시 알고리즘을 사용한다. 메인 낸드는 전압 레벨당 단일 비트만 기록해 SLC로 처리된다. 따라서 드라이브의 최대 용량에 근접할 때까지 최고의 쓰기 성능을 유지할 수 있다. 다만 SSD 성능 저하의 경험을 겪지 않으려면, 저장 용량의 75%를 넘지 않는 것이 좋다. 


테스트한 SATA SSD 제품 가운데 최고  

삼성 870 EVO는 지금까지 테스트한 전체 SATA SSD 가운데 가장 빠른 것으로 검증됐다. 특히 작은 파일에서 뛰어난 성능을 발휘했다. 그렇다고 훨씬 빠른 NVMe 기술에서의 성능과 비교하는 것은 아니다. 6Gbps SATA 자체가 제한적인 기술이다. 테스트 수치는 모든 최상위 SATA 드라이브에서 매우 유사하다. 하지만 870 EVO는 많은 작업에서 1~2초 정도 줄일 수 있으며, 장기적으로 보면 성능의 차이로 나타날 것이다. 

이번 테스트에서는 2019년형 씨게이트 아이언울프(Seagate IronWolf) 110와 비교했는데, 아이언울프 110은 모든 단계에서 870 EVO를 따라잡을 수 있는 몇 안 되는 제품이기 때문이다. 그러나 훨씬 더 비싸고 기업용으로 설계된 제품이다. 

ⓒ IDG

(그림)에서 볼 수 있듯이 지속적인 쓰기 또는 읽기 성능과 관련해 경쟁업체 간에는 거의 차이가 없다. 그러나 설계 능력과 구성요소는 랜덤/작은 파일 성능에 차이를 만들 수 있으며, 실제로 다음 (그림)과 같은 수치를 기록했다. 

크리스탈디스크마크(CrystalDiskMark) 6의 지속적인 처리량 테스트와 마찬가지로 48GB 전송에서 드라이브 간의 차이는 미미했다. 870 EVO는 여전히 12초(약 2%) 차이로 승리를 차지했다. 

ⓒ IDG

다음 (그림)에서 870 EVO가 870 QVO보다 약간 비싼 이유를 확인할 수 있었다. QVO는 보조 낸드 캐시가 부족할 때, 150Mbps로 속도가 느려진다. 870 QVO는 870 EVO처럼 낸드를 보조 캐시로 동적으로 할당하지 않는다.  

ⓒ IDG

450GB 쓰기는 1TB와 4TB 모델 모두에서 수행했으며, 예상 변동 범위 내에서 5초 차이가 난다. 이는 터보라이트가 더 큰 용량에서 제 역할을 수행하고 있음을 의미한다. 500GB 모델은 870 QVO의 QLC와 달리 TLC 기반 EVO에서는 속도가 느려질 수 있다. 


870 EVO, 가격대 최고 제품 

삼성 870 EVO는 동급 최고의 성능을 자랑하며, 모든 사용 시나리오에서 최고의 성능을 자랑한다. 대용량 파일을 작성하지 않는다면 더 저렴한 870 QVO를 선택할 수 있다. 다만 필요하다고 생각하는 용량보다 훨씬 더 많은 용량을 선택해야 한다. 비용이 문제가 되지 않을 경우, 870 EVO는 완벽한 드라이브이며, 미래형 드라이브로 권장할 수 있다. editor@itworld.co.kr

ITWORLD : 6월 업데이트 | 2020년 최고의 SSD 선택 가이드

스토리지 PCWorld SSD(Solid-State Drive)로 전환하는 것은 PC에 가장 적합한 업그레이드다. SSD을 통해 PC는 부팅 시간이 짧아지고, 프로그램 및 게임 로드 속도가 빨라지는 등, 일반적으로 컴퓨터 속도가 빨라진다. 



그러나 모든 SSD가 동일한 것은 아니다. 최고의 SSD는 저렴한 가격으로 견고한 성능을 제공한다. 가격이 문제가 되지 않을 경우, 엄청난 속도의 빠른 읽기 및 쓰기 속도를 제공한다. 

많은 SSD가 2.5인치 폼 팩터로 제공되며 기존 하드 드라이브에서 사용하는 것과 동일한 SATA 포트를 통해 PC와 통신한다. 그러나 최첨단 NVMe(Non-Volatile Memory Express) 드라이브는 메인보드의 M.2에 직접 연결하는 작은 스틱 형태의 SSD다. PCIe 어댑터에 장착되는 이 드라이브는 구입하기 전에 메인보드에 슬롯이 있는지 확인해야 한다. 그래픽 카드나 사운드 카드처럼 메인보드에 꽂을 수 있는 SSD와 미래형 3D 크로스포인트(3D XPoint) 드라이브 등이 등장함에 따라 완벽한 SSD를 선택하는 것은 예전처럼 간단하지 않다. 

그래서 이 가이드가 필요하다. 본지는 사용자 상황에 적합한 SSD를 찾기 위해 수많은 SSD를 테스트했다. 본지가 선정한 최고 인기 제품과, SSD 선택 시 무엇을 봐야 하는지 알아보도록 하자. 


최신 SSD 소식 

  • 지난해 가을, AMD의 라이젠(Ryzen) 3000 CPU가 최첨단 PCIe 4.0 스토리지 지원을 받아 출시됐지만, 그 지원은 고가의 X570 메인보드에만 국한됐다. 이제 곧, B550 메인보드는 동일한 기능을 일반인에게도 제공할 것이며, 오래된 라이젠 칩과도 호환될 것이다. 6월 16일에 발표할 것이다.   
  • X박스 시리즈 X의 초고속 스토리지 기술의 중추인 다이렉트스토리지(DirectStorage)가 윈도우에 등장한다. 마이크로소프트는 다이렉트스토리지 자체에 대해 자세히 다루지 않았지만, X박스 시리즈 X의 ‘벨로시티 스토리지(Velocity Storage)’는 정말 인상적이다. 


대부분 사용자를 위한 최고의 SSD 

SK 하이닉스 골드(SK Hynix Gold) S31 SATA SSD 

ⓒ SK Hynix

실제 시장에서 등장한 SK 하이닉스의 첫 번째 SSD는 본지가 테스트한 것 가운데 가장 빠른 SATA 드라이브임을 입증했다. 사실 SK 하이닉스는 세계에서 가장 큰 반도체 공급업체 가운데 하나로, 모든 기술을 갖고 있다. 골드 S31 가격은 적당하며 아주 좋은 드라이브다.  

삼성의 주력인 EVO SSD 제품군은 2014년 이래로 줄곧 본지의 권장 목록에서 1위를 차지했으며, 현재 삼성 860 EVO는 여전히 속도, 가격, 호환성 및 5년 보증 및 뛰어난 마법사 관리 소프트웨어의 안정성 등 조화를 원하는 사람들에게 좋은 옵션이다. 하지만 최근 새롭게 출시되는 신제품에 의해 왕좌에서 내려왔는데, 이 신인은 사실 전혀 새로운 존재는 아니었다.   

대부분의 사람은 SK 하이닉스 골드 S31을 구입하는 것이 좋다. 본지가 테스트한 가장 빠른 SATA SSD 가운데 하나일뿐만 아니라 가격도 적절하다. 

250GB 드라이브의 경우 46달러, 500GB 드라이브의 경우 64달러, 대규모 1TB 드라이브의 경우 125달러인 골드 S31은 삼성의 제품군(500GB 90달러, 1TB 모델 140달러)보다 훨씬 저렴하다. 골드 S31은 실제 48GB 복사 테스트에서 지속적인 읽기와 쓰기 작업을 위해 테스트한 드라이브 가운데 가장 빠른 드라이브임을 증명했다. 

SK 하이닉스는 정확히 제품 이름이 아니기 때문에 브랜드 자체에 대해 조금 딴지를 걸 수도 있다. 그럼에도 불구하고 SK 하이닉스는 지구상에서 가장 큰 반도체 제조업체 가운데 하나다. SK 하이닉스는 시작부터 NAND 및 컨트롤러 기술을 개발해왔으며, 수많은 대형 컴퓨터 업체의 SSD 제조업체였지만 판매선상에는 자리하지 못했다. 이제 그 선상에 섰고, 결과는 훌륭했다. 

좀 더 큰 저장 용량을 원하는 사용자라면 비싸긴 하지만 삼성 860 EVO가 1TB, 2TB, 4TB 모델을 제공하고 있다. SK 하이닉스도 골드 S31 1TB 버전을 약 110달러에 제공했지만 현재는 사용할 수 없다(이 제품은 미국에서만 출시됐으며 국내에서는 해외 직구로만 구입할 수 있다. 편집자 주). 

 
가성비 최고의 SSD 

애드링크(AddLink) S22 QLC SATA 2.5인치 SSD

ⓒ Addlink 

애드링크 S22 QLC는 장시간 쓰기 작업 중에도 속도가 느려지지 않는다. 또한 SSD 치고는 매우 싸다. 몇 가지 문제가 있음에도 불구하고 본지는 이 제품을 가성비 최고의 SSD로 선정했다. 

기존의 MLC(Multi-Level Cell) 및 TLC (Triple-Level Cell) SSD 가격이 급락하면서 제조업체는 SSD 가격을 더욱 낮추는 새로운 형태의 QLC(Quick-Level Cell) 드라이브를 출시했다. 이 새로운 기술을 통해 SSD 제조업체는 하드 드라이브와 같은 용량의 SSD를 출시함과 동시에 매우 빠른 SSD 속도에 근접하게 됐다. 

여전히 최고인 삼성 860 QVO를 포함한 QLC 드라이브의 1세대는 수십 기가바이트의 데이터를 한번에 전송하면, 쓰기 속도가 하드드라이브 수준으로 떨어졌다. 하지만 애드링크 S22 QLC SSD는 그렇지 않다. 기존 TLC SSD가 QLC 드라이브에 비해 속도 우위를 유지하지만 애드링크 S22의 경우, 이런 한계를 벗어난 데다가 가격은 512GB 63달러, 1TB 104달러에 불과하다. SK하이닉스 S31 또한 이제 거의 같은 속도라는 점은 주목할 필요가 있다. 

대량의 데이터를 한번에 이동할 계획이 없고, 더 많은 공간이 필요하다면, 삼성 860 QVO는 여전히 훌륭한 옵션이다. 실제로 애드링크의 SSD보다 조금 더 빠르다. 그러나 아마존에서 1TB는 128달러, 2TB는 250달러, 5TB는 480달러로 더 비싸다. 더 낮은 용량은 판매되지 않는다. 

그러나 더 빠르고 새로운 NVMe M.2 드라이브를 지원하는 새로운 메인 보드가 있다면 무엇을 선택해야 할까? 


최고의 NVMe SSD 

WD 블루 SN550 NVMe M.2 SSD 

ⓒ WD

100달러짜리 1TB 드라이브는 마음에 들기 쉽다. 특히 블루 SN550은 SN500보다 눈에 띄게 향상되어 거의 모든 사람에게 만족을 준다. 약간의 빈약한 SLC 캐시가 약점이긴 하지만 250GB 용량은 950MBps 쓰기 속도를 갖고 있다는 점이다. 본지는 1TB 버전을 클럭킹해 1.75GBps를 기록한 바 있다. 

성능이 가장 중요한 경우, 삼성 970 프로 또는 시게이트 파이어쿠다(Seagate FireCuda) 510이 가장 빠른 NVMe SSD이긴 하지만, 대부분의 사람은 웨스턴디지털 블루 SN550 NVMe SSD를 구입하는 것이 좋다.  

WD SSD는 NVMe 드라이브 가운데 가장 화려하지도, 앞서 언급한 대안만큼 빠르지도 않다. 하지만 비용이 훨씬 저렴하다. WD 블루 SN550은 보급형 가격(250GB 55달러, 500GB 70달러, 1TB 110달러)에도 불구하고 다른 할인된 NVMe 드라이브와는 성능에서는 조금의 차이가 있다. 신뢰성이 뛰어나고 잘 알려진 유명 브랜드의 제품으로 평균 5년 이상의 보증 기간을 제공한다. 

조금 더 뛰어난 성능을 원한다면, 애드링크 S70 NVMe SSD가 또 다른 훌륭한 옵션이다. 본지는 WD 드라이브보다 성능을 약간 선호하지만, 애드링크 SSD는 가격 인상 이후, 약 15달러가 더 비싸졌으며, WD 블루 SN550의 성능은 일상적인 컴퓨터 사용자에게 충분하다고 판단했다. 애드링크는 WD만큼 잘 알려져 있진 않지만 해당 제품에 대해 5년 보증을 제공한다. 


가장 빠른 SSD 

인텔 옵테인(Intel Optane) SSD 905P 

ⓒ Intel

인텔 SSD 905P는 본지가 테스트한 가장 빠른 NVMe 드라이브 가운데 하나였으며, 가장 비싼 드라이브이기도 하다. 그러나 내구성이 매우 우수하다는 평가를 받고 있다. 많은 양의 데이터를 작성하는 경우, 구입할만한 가치가 있다.  

성능이 가장 중요하고 가격을 생각하지 않는다면, 인텔의 옵테인 SSD 905P는 구매할 수 있는 최고의 SSD다. 이 드라이브는 다른 SSD와 같은 기존 NAND 기술을 사용하지 않고 마이크론과 인텔이 개발한 미래형 3D 크로스포인트(3D Xpoint) 기술을 기반으로 만들어졌다. 

하지만 실질적인 측면에서 옵테인 SSD 900P는 스토리지 벤치마크를 완벽하게 통과해 NAND SSD가 제공하는 약 200TBW에 비해 엄청나게 많은 8,750TBW을 자랑한다. 만약 이것이 사실이라면, 이 초고속 드라이브는 기본적으로 압도적이며, 엄청나게 좋아보인다. 

그러나 최고의 성능이 누리는 권리에 대한 대가를 지불해야 한다. 인텔 옵테인 SSD 905P는 280GB 390달러, 480GB의 경우 599달러, 1.5TB의 경우 1,130달러이며, U.2 및 PCIe 카드 형태로 제공되는 등 몇 가지 추가 옵션이 있다. 

또한 NVMe SSD보다 훨씬 비싸다. 이런 특성으로 인해 인텔 SSD는 대량의 데이터를 정기적으로 이동하는 곳에는 가장 효과적이다. 또한 옵테인 SSD 900P는 실제로 NVMe 프로토콜을 사용해 PC와 통신하기 때문에 몇 가지 추가 기준을 충족시켜야 부팅이 가능하다.    

이 제품보다 한 단계 떨어진 인텔 옵테인 SSD 900P는 905P의 미디어처 버전과 유사하지만 더 낮은 용량과 가격에서도 기존 SSD를 능가한다(280GB 버전 390달러, 480GB 모델 599달러로 대부분의 NVMe 드라이브보다 훨씬 비싸다). 

AMD의 뛰어난 라이젠 3000 시리즈 프로세서가 최첨단 기술을 지원함에 따라 초고속 PCIe 4.0 SSD가 출시되기 시작했다. 이에는 고급 AMD X570 메인보드가 필요하다. 초기 평가를 통해 실제 환경에서 대용량 파일을 이동할 때 실질적인 이점만 얻을 수 있다는 것을 알 수 있지만, 여기서 언급된 기존 PCIe 4.0 SSD보다 훨씬 빠른 속도를 약속한다. 

커세어(Corsair), 기가바이트(Gigabyte), 세이브런트(Sabrent)는 사용 가능한 첫 번째 PCIe 4.0 SSD를 출시했으며, 1TB 모델과 비슷한 성능을 약 200달러에 제공했다. 그러나 본지는 아직 이 제품들에 대해 테스트하지 않았다. 

editor@itworld.co.kr

FLOW-3D 수치해석 프로그램 Supported Platforms 보기