Prediction of the ullage gas thermal stratification in a NASP vehicle propellant tank experimental simulation using FLOW-3D

As part of the National Aero-Space Plane (NASP) project, the multi-dimensional effects of gravitational force, initial tank pressure, initial ullage temperature, and heat transfer rate on the 2-D temperature profiles were studied. FLOW-3D, a commercial finite difference fluid flow model, was used for the evaluation. These effects were examined on the basis of previous liquid hydrogen experimental data with gaseous hydrogen pressurant. FLOW-3D results were compared against an existing 1-D model. In addition, the effects of mesh size and convergence criteria on the analytical results were investigated. Suggestions for future modifications and uses of FLOW-3D for modeling of a NASP tank are also presented.

Document ID : 19900016844

Document Type : Technical Memorandum (TM)

AuthorsHardy, Terry L.

(NASA Lewis Research Center Cleveland, OH, United States)Tomsik, Thomas M.
(NASA Lewis Research Center Cleveland, OH, United States)

Date Acquired : September 6, 2013

Publication Date : July 1, 1990

Subject CategoryPropellants And Fuels : Report/Patent NumberNASA-TM-103217E-5629NAS 1.15:103217

Funding Number(s)PROJECT: RTOP 763-01-21

Distribution Limits : Public

Copyright : Work of the US Gov. Public Use Permitted.

Prediction of the ullage gas thermal stratification in a NASP vehicle propellant tank experimental simulation using FLOW-3D
Prediction of the ullage gas thermal stratification in a NASP vehicle propellant tank experimental simulation using FLOW-3D
Prediction of the ullage gas thermal stratification in a NASP vehicle propellant tank experimental simulation using FLOW-3D
Prediction of the ullage gas thermal stratification in a NASP vehicle propellant tank experimental simulation using FLOW-3D

Available Downloads

19900016844.pdf