FLOW-3D What’s New Ver.12.0

FLOW-3D v12.0은 그래픽 사용자 인터페이스 (GUI)의 설계 및 기능에서 매우 큰 변화를 이룬 제품으로 모델 설정을 단순화하고 사용자 워크 플로를 향상시킵니다. 최첨단 Immersed Boundary Method(침수경계 방법)은 FLOW-3D v12.0 솔루션의 정확성을 높여줍니다. 다른 주요 기능으로는 슬러지 침강 모델, 2-Fluid 2-Temperature 모델 및 Steady State Accelerator가 있으며,이를 통해 사용자는 자유 표면 흐름을 더욱 빠르게 모델링 할 수 있습니다.

Physical and Numerical Model

Immersed boundary method

힘과 에너지 손실에 대한 정확한 예측은 고체 주위의 흐름과 관련된 많은 엔지니어링 문제를 모델링하는 데 중요합니다. 새 릴리스 FLOW-3 Dv1.2.0에는 이러한 문제점 해결을 위해 설계된 새로운 고스트 셀 기반 Immersed Boundary Method (IBM)가 있습니다. IBM은 내 외부 흐름 해석을 위해, 벽 근처에서 보다 정확한 해를 제공하여 드래그 앤 리프트 힘의 계산을 향상시킵니다.힘과 에너지 손실의 정확한 예측은 고체 주위의 흐름을 포함하는 많은 공학적 문제를 모델링 하는데 중요합니다.

Two-field temperature for the two-fluid model

2 유체 열전달 모델은 각 유체에 대한 에너지 전달 방정식을 분리하기 위해 확장되었습니다. 각 유체는 이제 자체 온도 변수를 가지므로 인터페이스 근처의 열 및 물질 전달 솔루션의 정확도가 향상됩니다. 인터페이스에서의 열전달은 이제 시간의 표 함수가 될 수 있는 사용자 정의 열전달 계수에 의해 제어됩니다.

블로그 보기

Sludge settling model

새로운 슬러지 정착 모델은 수처리 애플리케이션에 부가되어 사용자들이 수 처리 탱크와 클래리퍼의 고형 폐기물 역학을 모델링 할 수 있게 해 줍니다. 침전 속도가 분산상의 액적 크기의 함수 인 드리프트-플럭스 모델과 달리, 침전 속도는 슬러지 농도의 함수이며 기능 및 표 형식으로 입력 할 수 있습니다.

개발노트 읽기

Steady-state accelerator for free surface flows

이름에서 알 수 있듯이 정상 상태 가속기는 정상 상태 솔루션에 대한 접근을 빠르게합니다.
이것은 작은 진폭 중력과 모세관 표면파를 감쇠시킴으로써 달성되며 자유 표면 흐름에만 적용 할 수 있습니다.

개발노트 읽기

Void particles

Void particles 가 기포 및 상 변화 모델에 추가되었습니다. Void particles는 붕괴 된 Void 영역을 나타내며, 항력 및 압력을 통해 유체와 상호 작용하는 작은 기포로 작용합니다. 주변 유체 압력에 따라 크기가 변하고 시뮬레이션이 끝날 때의 최종 위치는 공기 유입 가능성을 나타냅니다.

Sediment scour model

퇴적물 수송 및 침식 모델은 정확성과 안정성을 향상시키기 위해 정비되었습니다. 특히 퇴적물 종의 질량 보존이 크게 개선되었습니다.

개발 노트 읽기>

Outflow pressure boundary condition

고정 압력 경계 조건에는 압력 및 유체 분율을 제외한 모든 유량이 해당 경계의 상류의 유량 조건을 반영하는 ‘유출’옵션이 포함됩니다. 유출 압력 경계 조건은 고정 압력 및 연속 경계 조건의 하이브리드입니다.

Moving particle sources

시뮬레이션 중에 입자 소스를 이동할 수 있습니다. 시간에 따른 병진 및 회전 속도는 표 형식으로 정의됩니다. 입자 소스의 운동은 소스에서 방출 된 입자의 초기 속도에 추가됩니다.

Variable center of gravity

기변 무게중심은 중력 및 비관 성 기준 프레임 모델에서, 시간의 함수로서 무게 중심의 위치는 외부 파일에서 테이블로서 정의 될 수있다. 이 기능은 연료를 소비하고 분리 단계를 수행하는 로켓과 같은 모형을 모델링 할 때 유용합니다.

공기 유입 모델

가장 간단한 부피 기반 공기 유입 모델 옵션이 기존 질량 기반 모델로 대체되었습니다. 질량 기반 모델은 부피와 달리 주변 유체 압력에 따라 부피가 변화하는 동안 흡입된 공기량이 보존되기 때문에 물리학적 모델입니다.

Tracer diffusion

유동 표면에서 생성된 추적 물질은 분자 및 난류 확산 과정에 의해 확산될 수 있으며, 예를 들어 실제 오염 물질의 동작을 모방한다.

Model Setup

Simulation units

온도를 포함하여 단위 시스템은 완전히 정의해야하는데 표준 단위 시스템이 제공됩니다. 또한 사용자는 다양한 옵션 중에서 질량, 시간 및 길이 단위를 정의 할 수 있으므로 사용자 정의가 가능한 편리한 단위를 사용할 수 있습니다. 사용자는 압력이 게이지 또는 절대 단위로 정의되는지 여부도 지정해야합니다. 기본 시뮬레이션 단위는 기본 설정에서 설정할 수 있습니다. 단위를 완전히 정의하면 FLOW-3D 가 물리량의 기본값을 정의하고 범용 상수를 설정하여 사용자가 요구하는 작업량을 최소화 할 수 있습니다.

Shallow water model

Manning’s roughness in shallow water model

Manning의 거칠기 계수는 지형 표면의 전단 응력 평가를 위해 얕은 물 모델에서 구현되었습니다. 표면 결함의 크기를 기반으로 기존 거칠기 모델을 보완하며 이 모델과 함께 사용할 수 있습니다. 표준 거칠기와 마찬가지로 매닝 계수는 구성 요소 또는 하위 구성 요소의 속성이거나 지형 래스터 데이터 세트에서 가져올 수 있습니다.

Mesh generation

하단 및 상단 경계 좌표의 정의만으로 수직 방향의 메시 설정이 단순화되었습니다.

Component transformations

사용자는 이제 여러 하위 구성 요소로 구성된 구성 요소에 회전, 변환 및 스케일링 변환을 적용하여 복잡한 형상 어셈블리 설정 프로세스를 단순화 할 수 있습니다. GMO (General Moving Object) 구성 요소의 경우, 이러한 변환을 구성 요소의 대칭 축과 정렬되도록 신체에 맞는 좌표계에 적용 할 수 있습니다.

Changing the number of threads at runtime

시뮬레이션 중에 솔버가 사용하는 스레드 수를 변경하는 기능이 런타임 옵션 대화 상자에 추가되어 사용 가능한 스레드를 추가하거나 다른 태스크에 자원이 필요한 경우 스레드 수를 줄일 수 있습니다.

Probe-controlled heat sources

활성 시뮬레이션 제어가 형상 구성 요소와 관련된 heat sources로 확장되었습니다. 히스토리 프로브로 열 방출을 제어 할 수 있습니다.

Time-dependent temperature at sources     

질량 및 질량 / 운동량 소스의 유체 온도는 이제 테이블 입력을 사용하여 시간의 함수로 정의 할 수 있습니다.

Emissivity coefficients

공극으로의 복사 열 전달을위한 방사율 계수는 이제 사용자가 방사율과 스테판-볼츠만 상수를 지정하도록 요구하지 않고 직접 정의됩니다. 후자는 이제 단위 시스템을 기반으로 솔버에 의해 자동으로 설정됩니다.

Output

  • 등속 필드 솔버 옵션을 사용할 때 유량 속도를 선택한 데이터 로 출력 할 수 있습니다 .
  • 벽 접착력으로 인한 지오메트리 구성 요소의 토크 는 기존 벽 접착력의 출력 외에도 일반 이력 데이터에 별도의 수량으로 출력됩니다.
  • 난류 모델 출력이 요청 될 때 난류 에너지 및 소산과 함께 전단 속도 및 y +가 선택된 데이터로 자동 출력됩니다 .
  • 공기 유입 모델 출력에 몇 가지 수량이 추가되었습니다. 자유 표면을 포함하는 모든 셀에서 혼입 된 공기 및 빠져 나가는 공기의 체적 플럭스가 재시작 및 선택된 데이터로 출력되어 사용자에게 공기가 혼입 및 탈선되는 위치 및 시간에 대한 자세한 정보를 제공합니다. 전체 계산 영역 및 각 샘플링 볼륨 에 대해이 두 수량의 시간 및 공간 통합 등가물 이 일반 히스토리 로 출력됩니다.
  • 솔버의 출력 파일 flsgrf 의 최종 크기 는 시뮬레이션이 끝날 때보 고됩니다.
  • 2 유체 시뮬레이션의 경우, 기존의 출력 수량 유체 체류 시간 및 유체 가 이동 한 거리는 이제 유체 # 1 및 # 2와 유체의 혼합물에 대해 별도로 계산됩니다.
  • 질량 입자의 경우 각 종의 총 부피와 질량이 계산되어 전체 계산 영역, 샘플링 볼륨 및 플럭스 표면에 대한 일반 히스토리 로 출력되어 입자 종 수에 대한 현재 출력을 보완합니다.
  • 예를 들어 사용자가 가스 미순환을 식별하고 연료 탱크의 환기 시스템을 설계하는 데 도움이 되도록 마지막 국부적 가스 압력이 옵션 출력량으로 추가되었습니다. 이 양은 유체가 채워지기 전에 셀의 마지막 간극 압력을 기록하며, 단열 버블 모델과 함께 사용됩니다.

New Customizable Source Routines

사용자 정의 가능한 새로운 소스 루틴이 추가되었으며 사용자의 개발 환경에서 액세스 할 수 있습니다.

소스 루틴 이름설명
cav_prod_cal캐비 테이션 생산 및 확산 속도
sldg_uset슬러지 정착 속도
phchg_mass_flux증발 및 응축에 의한 질량 흐름
flhtccl유체#1과#2사이의 열 전달 계수
dsize_cal2상 유동에서의 동적 낙하 크기 모델의 충돌 및 이탈율
elstc_custom.점탄성 유체에 대한 응력 방정식의 소스 용어

Brand New User Interface

FLOW-3D의 사용자 인터페이스가 완전히 재설계되어 사용자의 작업 흐름을 획기적으로 간소화하는 최신의 타일 구조를 제공합니다.

Dock widgets 설정

Physics, Fluids, Mesh 및 FAVOR ™를 포함한 모든 설정 작업이 형상 창 주위의 dock widgets으로 변환되어 모델 설정을 단일 탭으로 압축 할 수 있습니다. 이 전환을 통해 이전 버전의 복잡한 트리가 훨씬 깔끔하고 효율적인 메뉴 표시로 바뀌어 모델 설정 탭을 떠나지 않고도 모든 매개 변수에 쉽게 액세스 할 수 있습니다.

New Model Setup icons
With our new Model Setup design comes new icons, representing each step of the setup process.
New Physics icons
Our Physics icons are designed to be easily differentiated from one another at a glance, while providing clear visual representation of each model’s purpose and use.

RSS feed

새 RSS 피드부터 FLOW-3D v12.0 의 시뮬레이션 관리자 탭이 개선되었습니다 . FLOW-3D 를 시작하면 사용자에게 Flow Science의 최신 뉴스, 이벤트 및 블로그 게시물이 표시됩니다.

Configurable simulation monitor

시뮬레이션을 실행할 때 중요한 작업은 모니터링입니다. FLOW-3Dv12.0에서는 사용자가 시뮬레이션을 더 잘 모니터링할 수 있도록 Simulation Manager의 플로팅 기능이 향상되었습니다. 사용자는 시뮬레이션 런타임 그래프를 통해 모니터링할 사용 가능한 모든 일반 기록 데이터 변수를 선택하고 각 그래프에 여러 변수를 추가할 수 있습니다. 이제 런타임에서 사용할 수 있는 일반 기록 데이터는 다음과 같습니다.

  • 최소/최대 유체 온도
  • 프로브 위치의 온도
  • 유동 표면 위치에서의 유량
  • 시뮬레이션 진단(예:시간 단계, 안정성 한계)
Runtime plots of the flow rate at the gates of the large dam / Large dam with flux surfaces at the gates

Conforming mesh visualization

사용자는 이제 새로운 FAVOR ™ 독 위젯을 통해 적합한 메쉬 블록을 시각화 할 수 있습니다 .

Large raster and STL data

데이터를 처리하는 데 걸리는 시간으로 인해 큰 형상 데이터를 처리하는 것은 어려울 수 있습니다. 대형 지오메트리 데이터를 처리하는 데 여전히 상당한 시간이 소요될 수 있지만 FLOW-3D는 이제 이러한 대형 데이터 세트를 백그라운드 작업으로로드하여 사용자가 데이터를 처리하는 동안 완벽하게 응답하고 중단없는 인터페이스에서 계속 작업 할 수 있습니다.

[FLOW-3D 물리모델] Viscosity and Turbulence / 점도와 난류

Viscosity and Turbulence

 

Wall Effects: Slip, Shear, and Component Roughness

유체가 고체 주위에서 움직일 때 유동은 유동속도, 난류, 그리고 경계면의 조도에 따른 저항을 만난다. 이런 경계 유동의 효과는 추가의 전단응력, 항력 그리고 (퇴적기반인 경우)부식을 초래한다. 이런 벽(또는 경계)효과를 모델링하는 것은 표면의 미끄러짐의 조건, 표면조도 그리고 벽 효과 속도분포를 적절히 규명할 수 있는 격자크기에 대한 주의를 요한다. 이런 변수 각각을 모델링하는 접근법을 밑에서 기술한다.

Wall Slip 

Slip 은 유동경계에서 상대 유동속도의 존재를 기술한다. 일반적으로 표면조건은 no-slip, partial-slip 그리고 free-slip 으로 기술된다.

Free-slip 표면은 표면에 수직한 속도 분포에 변화가 없는 표면이며 가끔 밀도의 자리 수가 차이가 나는 두 유체(물과 공기같이)간의 경계면을 기술하는데 이용된다. Partial-slip 경계는 경계에서의 유체속도가 부분적으로 감소되는 것을 기술하며, 예를 들면, 파이프 내 유화 처리된 파이프 내의 기름유동을 기술하는데 이용된다. 단연코 가장 흔한 경계조건 형태는 no-slip boundaries 경계이며 거의 모든 유체/고체 경계를 기술한다.

형상요소와 격자 벽에서의 점성경계조건은 벽 전단응력(상세내용은 이론 매뉴얼의 Wall-Shear Stress 참조)에 선형으로 비례하는 slip 속도를 포함한다. 비례계수는 마찰계수이며 지정되지 않은 마찰계수나 벽 형태의 영역 경계를 가지는 고체요소에 전반적으로 적용된다. 이 전반적 계수는 Model Setup → Physics tab → Viscosity and Turbulence dialog → Wall Shear Boundary Conditions → Friction Coefficient 에서 지정될 수 있다. 전반적 마찰계수는 모든 벽 형태의 경계에 적용되고 모든 고체요소에 대한 디폴트 값을 정의한다.

일반적 값 보다 우선하는 요소 특정 마찰계수가 정의될 수 있다: Model Setup → Meshing & Geometry → Component → Surface Properties → Static Friction Coefficient.

 

마찰계수가 무한대에 이를 때, 벽 slip 속도는 0(no-slip)에 근접한다. 임의의 큰 값을 지정하는 것을 피하기 위해 no-slip 선정이 마찰계수에 음의 값을 정의함으로써 활성화된다. 유한한 양의 값은 partial-slip 경계를 뜻한다. 0은 free-slip 경계조건을 지정한다. 유한한 양의 마찰계수는 부분-slip 경계가 된다. 디폴트로 Static friction coefficient = -1.0이며 모든 지정되지 않은 요소는 no-slip 표면을 갖는다.

각주: 부분 slip 이 난류모델 사용 시 기존요소에 대해 정의되면 경고가 나타날 것이다.

No-slip 과 partial-slip 표면은 Model Setup Fluids Properties Fluid # Viscosity 하에서 정의된 동적 점성을 필요로 한다.

 

Wall Shear 

벽 전단응력은 유동이 없는 면적부분에서 접선속도를 0으로 가정함으로써 모델링 된다. 0인 접선속도는 접선속도를 가지는 격자경계에서 그리고 이동체의 표면에 대해 수정될 수 있다.

벽 전단응력은 Viscous Flow Model Setup Physics Viscosity and Turbulence 보조 창에서 활성화되고 양의 유체 ViscosityModel Setup Fluids 탭에서 지정될 때 계산된다.

전단응력은 요소 Surface Roughness 계수(Model Setup Meshing & Geometry Component Surface Properties) 가 음수가 아닌 한(즉, 0이아닌 마찰계수에 대해) 자동적으로(하지만 자동적으로 출력되지는 않는다)요소 no-slip 과 partial-slip 요소에 대해 계산된다. 전단응력은 Model Setup Output Activate Shear Stress 에서 Activate Shear Stress 를 선택하고 General Critical Shear Stress = 0으로 지정함으로써 출력될 수 있다.

요소 특정 전단응력은 관심요소에 대해 Output 탭 하단에서 Pressure and Shear Force Output 를 선택함으로 출력될 수 있다.

전단응력과 밀접하게 연결되어 있는 변형률은 Model Setup Output Additional Output Strain Rate 를 선택함으로써 Restart Selected Data 출력에 추가될 수 있다.

전단응력, 변형률, 그리고 벽 근처 속도 분포를 정확히 모델링 하는 것은 격자가 적절히 해결되어야 한다는 것을 필요로 한다.  고체요소 또는 벽면에 인접한 첫 번째 셀은 로그 또는 층류의 벽 속도 분포가 적용되는 지역에 있어야 한다.  벽을 따라 셀들은 표면이 격자선상에 있으면 표면에 수직이거나 벽면을 포함한다.

유동이 Laminar(Viscosity and Turbulence physics 보조창에서 지정되는)이면 속도분포는 직접 미분에 의해 계산된다. 셀의 평균속도는 항상 정확하고 속도분포는 격자가 정련되면 더 잘 해석된다. 최적 셀 크기는 단지 필요한 분포 정확성과 허용되는 계산시간에 달려있으며 셀의 크기가 작아질수록 증가한다.

Turbulence 모델이 활성화되면 벽이나 고체요소 가까운 첫 번째 셀은 항상 밑에 보여진 로그법칙 구역에 상응하는 로그 분포에 따라 속도를 가지게 된다. 벽을 따르는 첫 번째 셀은 점성 sub-layer 를 포함하고 충분히 경계층의 로그법칙 구역 내에 있도록 크기가 정해져야 한다. 만약에 첫 번째 셀의 바깥쪽이 점성 sub-layer나 외부 또는 자유흐름 지역까지 포함한다면 그 때는 계산된 로그법칙 벽 근처 속도와 전단응력이  물리적 양으로부터 벗어나서 이들은 로그법칙관계와 일치하지 않는다.

 

적절한 범위의 셀 크기를 찾는 것은 고체 표면에 수직한 경계층의 높이(두께)를 추정하는 문제이다. 이에 대한 도움이 되는 값은 벽으로부터의 무차원 수직거리 y+, 가끔 viscous length 라고도 불리며 위의 무차원 속도 u+ 와 관련하여 보여진다. 아래 식에서 uτ 는 전단속도, τw 는 고체상의 전단응력, y 는 고체로부터의 수직거리, ρf 는 유체밀도 그리고 µf 는 유체의 동적(분자) 점도이다.

y+를 추정하기 위해 전단응력 τw 가 수동으로 추정되어야 하고 관심 있는 독자는 이를 위해 수리학 문헌을 참조한다. 일반적으로 y+(셀 크기의 함수로)는 30(이 값에서 내부 층이 로그법칙구역으로 부드럽게 변화하고) 보다 커야 하고 유동의 Reynolds 수와 경계층의 두께에 의존하는 값보다 작아야 한다(일반적으로 100 – 500 합당한 상한이다). τw의 수작업추정이 불가능하면 여러 번의 모사가 관찰값(전단응력 또는 속도)이 안정화되는”최적값”을 위해 반복되어야 한다. 고체표면에서 변수값을 계산하기 위해 이용된 근사값은 유체가 충분히 발달한 유동이라는 것을 가정하고 충분히 발달하지 못한 유동에 대한 결과를 해석할 때는 유의하여야 한다.

요소표면이 격자선 방향과 일치하면 고정점들이 표면에서 그리고 표면으로부터 적절한 거리에서 사용되어야 한다(막 설명된 바와 같이 첫 셀 거리 yy+ 기준을 맞추도록). 물체표면이 격자선과 평행하지 않으면 nested 격자블록을 적절한 곳에서 사용하여 표면에 가장 가까운 셀들이 적절한 간격을 가지도록 한다.

 

Component Roughness

요소표면에서의 벽 전단응력은 표면조도를 정의함으로써 수정할 수 있다. 조도는 길이의 단위를 가지며 분자점도에 fluid_density × roughness × relative velocity의 곱을 더함으로써 통상 전단응력 계산에 포함되고 있는데 여기서 relative velocity는 지역 유체속도와 벽 속도(정지된 벽이나 요소는 0)간의 차이이다. 이를 이행하면 laminar 유동모델의 벽 전단응력은 다음과 같다.

여기서

  • k 는 조도
  • ν 는 동점성계수
  • u 는 상대속도이며
  • δy 는 표면에 interest(관련된) 수직한 길이 규모이다.

조도가 충분히 클 때 응력은 다음에 비례한다.

Turbulent 유동모델에서 벽의 법칙 관계는 점도의 변화(즉 ν 에서 ν + ku로)가 ν/u 에 의해 정의된 특정길이 규모로부터 로그의존도를 k로 자동적으로 변환하는 것을 제외하고는 부드러운 벽에서와 마찬가지의 같은 형태를 지니며 k 는 두 특정 길이 중 큰 것이다.

수치해석에서 의미가 있기 위해 조도는 비록 큰 값이 사용될 수도 있지만 요소경계에서의 격자 셀 크기 보다 작아야 한다. 조도를 가지는 요소는 no-slip 표면(음의 static friction coefficient 를 통해)으로 주어져야 한다.

FLOW-3D 에서 조도변수 k 는 개별적으로 Meshing and Geometry Geometry Component Properties Surface Properties Surface Roughness 의 각 요소에서 지정될 수 있다.

Surface Roughness는 Moody diagrams 에서 기준된 조도처럼 균일하게 분포된 표면조도 요소의 평균 높이로 정의된다. 실제표면이 균일한 조도를 가지면 이 높이가 직접적으로 적용되나 균일하지 않으면 정확한 결과를 줄 equivalent 조도 값이 선정되어야 한다. 예를 들면 일반적인 평균속도, 수력반경, 그리고 수력 구배와 관련된 Manning 방정식은 Manning 계수와 관련된 수리반경이 알려질 때 FLOW-3DSurface Roughness 로 변환될 수 있는 등가의 조도변수(Manning의 n)를 사용한다.

여기서

  • V 는 채널 및 도관 내 평균유속
  • Rh 는 수력반경(윤변에 의해 나누어진 유체 단면적)
  • S 는 유동이 수력 구배, 특히(그리고 가끔 부정확하게) 도관이나 채널의 물리적 구배로 가정되며 1.49는 변화인자이고 모든 다른 단위는 미터/킬로그램/초(SI단위로)이며
  • n 은 Manning 조도이다.

균일하지 않은 표면에서 등가 균일조도는 밑에 보여진 것과 같이 Manning의 n 그리고 추정된 수력반경 또는 직경으로부터 계산될 수 있다. 여기서 Surface RoughnessFLOW-3D 에서 이용되는 조도변수이며 모든 변수들은SI 단위(미터) 이고 유동은 완전한 난류유동이며 수리학적으로 고르지 않다. 수력직경 DhRh 의 4배수로 정의된다(Dh = 4 Rh).

위에서 주어진 환원은 파이프와 등가 도관에 대한 Swamee-Jain 방정식으로부터 유도 된다.

여기서 다음 가정이 적용된다.

  • αmanning 는 feet 일 경우 1.486, meter 일 경우 1.0
  • 는Manning 방정식 가정이 옳을 때 1.0
  • ReD 는 5.74보다 훨씬 크다.이는 Manning의 n이 원래 측정된 유동단계에 상응하는 수리직경에 대해서만 기술적으로 유효하다. 이 변환은 다음과 같이 체크된다: mortar콘크리트에 대한 일반적 문헌 값은 0.013이다. n 이 수력반경 1.25ft(수력직경 5ft)인 채널에서 측정되었고 이때 는 0.0033ft또는 1mm인데 이는 mortar cement의 전형적인 문헌 값이다. 계산된 Surface Roughness 값은 대략 1과 10ft사이의 수력직경에 대한 값이다. 수력직경범위에 대한 제약은 항상 체크되어야 한다.각주: Surface Roughness > 0 는 상 변화 모델에서 요소표면 가까이의 액체에 의한 과열 발생 기능을 정지시킨다(Cavitation and Bubble Formation (Nucleation)를 참조한다).Surface Roughness의 값은 요소/유체 열 전달에 영향이 없다. 요소 – 유체로의 열 유속이 표면조도에 따라 증가되려면 요소에 대한 열 전달 면적의 승수가 되는 Surface Area Multiplier 변수를 사용한다. 디폴트로 Surface Area Multiplier = 1.0이다. Surface Area Multiplier = 0 은 유체와 요소 간 열교환 뿐만 아니라 요소 Mass source (사용되면)기능도 불가능하게 한다.
  • Temperature and Strain Rate Dependent Viscosity

    비뉴튼 유체는 점도가 변하는 유동조건에 따라 일정하지 않은 유체이다. 어떤 유체는 shear-thickening 즉 전단 하에서 농축되고 다른 유체는 shear-thinning(전단유동화), 즉 높은 전단 하에서 점도가 감소한다. 또한 온도가 변하는 모사에서 점도는 일반적으로 온도에 의존한다. 어떤 유체의 점도는 이력에 의존한다; 이런 유체는 thixotropic 이며 Thixotropic Fluids 모델을 필요로 한다.

    FLOW-3D 에서는 유체1만 비뉴튼일 수 있다. 2유체모사에서 비뉴튼 유체를 설정하기 위해 Viscous flow in Physics Viscosity and turbulence 를 활성화시킨다. 난류는 일반적으로 비뉴튼 유동에서 중요하지 않다; 그러나 난류선택은 할 수 있다. Turbulence Models은 비뉴튼 유체거동에 고려되지 않는 경험론에 의존한다. 그러므로 난류모델은 보통 비뉴튼 유동에는 유효하지 않으며 비뉴튼 유체에 대해서는 주의하여 사용되어야 한다.

    Fluids Properties Fluid 1 Viscosity 에서 펼쳐지는 메뉴로부터 점도 모델을 선택할 수 있다. 기본값은 상수이다. 비뉴튼 모델은 Temperature Dependent Table, Strain Rate Dependent Table, Strain Rate Dependent Function, Strain Rate and Temperature Dependent Function, Carreau Function, 그리고 Power Law를 포함한다:

Temperature Dependent Table이나 Strain Rate Dependent Table이 선택되면 온도나 변형률의 함수로 점도의 표 데이터를 입력하게 하는 Tabular 버튼을 클릭한다.

각주: 사용자 정의 표 데이터는 전처리에서 솔버가 최적으로 사용하게 내부데이터 구조로 전환된다. 전환은 입력표의 등 간격을 가지는 새 표로의 remapping(재사상)을 포함한다. 온도 또는 변형률 의존 점도를 위한 내부표의 처음과 마지막 점은 각 입력 표로부터 취해지며 그사이의 점들의 수는 10000으로 고정된다.  선형 보간이 전환 중 이용된다.

이 접근은 일반적으로 부드럽게 변하는 데이터에 대해서는 적합하다. 그러나 점도가 온도나 내부표의 간격에 비교될만하게 변형률의 범주에서 상당히 변하는 경우에 변환은 에러를 발생시킬 수도 있다. 이를 피하는 방법은 가능한 한 최대로 입력 표에서 온도와 변형률의 범위를 줄이는 것이다. 그래서 정확도를 높이기 위해 내부표의 간격을 줄이게 된다.

Strain Rate and Temperature Dependent Function 또는 Strain Rate Dependent Function이 선택되면 유체점도는 사용자지정 계수 λ00, λ0, λ1, λ2, n 그리고 µ를 가지는 변형률 및/또는 온도의 함수로 정의된다. 온도 의존도는 상수 a, b c 로 정의된다.

이 계수들은 다음 구성요소 관계를 가지는 점도를 정의한다.

Where 여기서

그리고 µ0 는 정상 상수 점도값(GUI 에서 Viscosity 옆의)으로 정의되는 전단이 없을 경우의 점도며 T* Fluids Properties Reference Temperature 로 정의된다. 적절한 계수의 선정은 사용자가 비뉴튼 유체거동에 대한 다양한 근사치를 사용하게 한다.

Carreau Function 선택을 택하면 점도를 변형률에 연관시키는 단순한 함수가 사용된다:

 

여기서는 Carreau 모델에 연관된 변수들만 정의되어야 한다; 이들은 GUI에서 활성화 된 것으로 보여진다. 이들은 Carreau 형태 유체의 점도 정의를 단순화한다.

Power Law 모델이 선정되면 또 다른 점도를 변형률에 연관시키는 단순한 함수가 사용된다:

여기서는 power-law 모델에 연관된 변수들만이 정의되어야 한다; 이 들은 GUI 에서 활성화 된 것으로 보여진다. 이들은 power-law 형태 유체의 점도정의를 단순화한다.

어떤 비뉴튼 유체모델이 사용될 때 전처리는 두 개의 추가 그림을 prpplt 파일에 그린다. 하나는 주어진 온도에서의 동적 점도 대 변형률이고 다른 하나는 주어진 변형률에서의 점도 대 온도이다. 전처리가 그림의 범위와 변형률 및 온도의 값을 선택하는 것이 어려우므로 사용자는 Input Variable Summary and Units 장의 User Defined Variables 절에서 기술된 바와 같이 4개의 소위 임시변수를 사용하는 환경을 정의할 수 있다.

  • DUM1은 점도 대 변형률이 그려지는 온도를 정의하며 이는 또한 점도 대 온도 그림을 위한 중앙 온도 값이다;
  • DUM2는 점도 대 온도 그림을 위한 DUM1-0.5*DUM2 로부터 DUM1 + 0.5*DUM2까지의 그림 범위를 정의한다.
  • DUM3는 은 점도 대 온도가 그려지는 변형률을 정의하며 또한 점도 대 변형률 그림을 위한 중앙 변형률 값이다;
  • DUM4는 점도 대 변형률 그림을 위한 DUM3-0.5*DUM4 부터 DUM3 + 0.5*DUM4까지의 그림 범위를 정의한다.

각주:

  • 변형률 의존점도에서 1차변수는 ‖eij‖ = 로 정의되는 변형률 크기이다. 같은 변수가 모사 중에 Strain rate magnitude로 출력된다.
  • 비뉴튼 유체유동은 낮은 Reynolds 수에서 가끔 발생한다. 결과적으로 시간간격 크기는 Explicit viscous stress solver가 사용되면 점성전단응력에 의해 조절된다. 모사속도를 상당히 낮추는 제약을 피하기 위해 Numerics Viscous stress solver options Successive under-relaxation또는Line implicit 를 지정함으로써 Implicit 점성응력 솔버가 대신 이용될 수 있다. 그러나 유동에 커다란 점성 구배가 존재하면 수렴은 늦어질 수도 있다.
  • 수치해석 문제점을 방지하기 위해 최대 점성을 약 1E + 15 로 제한하는 점도 계산 내에 추가  방편이 있다.

또한 다음을 참조한다

  • Outflow Boundary Conditions 에서 격자 경계조건의 논의
  • Thixotropic Fluids
  • Wall Slip. 벽 Slip

Thixotropic Fluids / 요변성 유체

요변성 유체의 겉보기 점도는 시간의 직접 함수이다. 겉보기 유체점도가 국부적 정상상태에 도달하는 속도를 조절하는 묽어짐 과 농축율의 관점에서 시간 의존도가 FLOW-3D에서 기술된다. 정상상태점도는 일반적으로 전단율과 온도의 함수일 것이다. 정상상태의 점도가 겉보기 점도보다 클 때 후자는 농축율에 따라 유동시점에서 증가할 것이다. 반대로 겉보기 점도가 정상상태 점도보다 클 때 묽어지는 율에 따라 겉보기점도는 감소할 것이다. 요변성 유체는 항상 비뉴튼성이고 또한 FLOW-3D 에서 정의되어야 한다 (Temperature and Strain Rate Dependent Viscosity참조).

요변성 점도 모델은 Physics Viscosity and Turbulence Thixotropic viscosity 를 선택함으로써 활성화된다.

묽어짐, Fluids Properties Viscosity Thixotropic Constant Thinning Rate, 그리고 농축, Constant Thickening Rate에 의한 이완율을 위한 두 개의 상수가 있다.

 

 

Strain Rate Sensitivity 계수가 정의되면 묽어지는 비율 α 또한 변형률에 의존할 수 있다.

where:여기서

  • µ0 Constant Thinning Rate 이고
  • µ1 Strain Rate Sensitivity 이다

Constant Thinning rate Constant Thickening rate 는 시간의 역수인 차원을 가지며 Strain Rate Sensitivity 는 무차원이다. 모든 율 계수는 기본값으로0이다. – 즉, 비요변성 효과.

정상상태에서 원하는 재료 거동을 근사하는 비뉴튼 점도모델(see Temperature and Strain Rate Dependent Viscosity참조)을 정의해야 한다. 물질을 정의하기 위해 Fluids Properties Viscosity 가지에서 변수들을 사용한다. 또 트리에서 Initial and boundary viscosity 값을 지정한다.

요변성 모사에서 점도는 매우 커질 수 있으므로 고점도 유동을 위한 외재적 알고리즘에 의해 요구되는 작은 시간단계 크기를 피하기 위해 Numerics Viscous stress solver options 로부터 Successive under-relaxation이나 Line implicit 를 선택할 수 있다.

각주: 입력 및 출력 변형률은 실제로는 변형률의 크기이다.

또한 Wall Slip Temperature and Strain Rate Dependent Viscosity 를 참조한다.

Turbulence

점성 평가(난류 종결)를 위한 6개의 옵션이 FLOW-3D 에 존재한다. 원하는 평가를 Physics > Viscosity and turbulence 에서 선정한다. 모든 모델에서 점성모델이 활성화되어야 하고 약의 동점성 값을 필요로 한다. 먼저 viscous flow 를 활성화한 후 유체 1 (그리고 있으면 유체 2 )의 점도를 Fluids Properties Viscosity 에서 입력한다.

이 모델 각각의 상세내용은 Theory 장의 Turbulence Models 절을 참조한다.

난류의 초기나 경계조건이 지정되지 않으면 초기나 경계에서의 난류운동에너지의 값은 프로그램에 의해 작은 값으로 지정되는데 이는 층류를 나타낸다. 유입유동이 난류이면 경험에 의해 상류유동의 난류 정도는 평균유동속도의 10%에 상응하는 잔잔한 유동에서의 난류유동변동이 가정된다. 예를 들면, 20m/s의 평균상류유동에서 난류속도변동의 크기가 2m/s이고, 난류운동에너지(단위 질량당)의 경계 값은 다음과 같다.

프로그램 기본값은 난류모델에서 나타나는 상수들을 지정하는 데 이용된다. 이 계수 값들은 일반적으로 권고되지 않지만 필요에 따라 변경될 수도 있다.

가장 작은 영역 차원(한 셀을 가지는 방향을 제외한)의 기본값0.07인 형상효과나 실제유동장의 규모를  반영하지 않으므로 Turbulent mixing length가 1방정식 난류에너지모델 사용자에 의해 지정되어야 한다. 이 변수는 유동에 존재하는 난류 와류의 특정규모를 기술하고 난류점도계수 최대 허용치를 정의하는데 이용된다.

Maximum turbulent mixing length는 계산된 난류의 점도가 너무 크지 않게 하도록 난류소산 ε 의 최소제한을 정하기 위해 Two-equation k ε model, the Renormalized group (RNG) model, 그리고 Two-equation k ω model에 의해 이용된다. 이 값은 Dynamically computed 선택이 Fluids Properties Viscosity window(상기 참조)로부터 자동적으로 모사 중에 시간과 위치의 함수로 계산된다. 다른 방법으로는 사용자가 Maximum turbulent mixing length 값을 Constant를 선택하여 옆의 편집상자에 값을 입력함으로써 기술할 수 있다.

Maximum turbulent mixing length가 클수록 모사 중 난류소산은 작아진다.  난류소산은 난류 점도 식의 분모에 나타나므로 난류점도는 특히 작은 전단율을 가지는 유동지역에서 커지게 된다. 역으로 작은 Maximum turbulent mixing length값은 작은 난류점도를 유발할 것이므로 난류를 과도하게 감쇠시킬 것이다.

예를 들면, 여수로 모사에서 Maximum turbulent mixing length 를 계산하는데 이용된 길이 규모가 여수로 상의 유동의 깊이일 수 있다; 고압 주조에서 길이규모는 러너의 가장 작은 폭일 수도 있다; 파이프 및 관 유동에서는 길이 규모는 유동채널의 수력직경일 수 있다. 일단 길이규모가 결정되면 Maximum turbulent mixing length는 길이 규모의 0.07, 또는 7%로 결정된다.

유입경계에서, 사용자는 난류 운동에너지와 소산을 직접 지정할 수 있다. 소산 없이 난류 운동에너지의 값이 주어지면 그 때의 소산 값은 자동적으로 편집상자 내에 정의된 Maximum turbulent mixing length 의 값에 의해 계산되거나 주어지지 않으면 기본값이다.

각주: 난류 평가를 위해 사용된 공식이 프로그램 시작 시 바뀔 수도 있다(General Restart Turbulence 참조). 난류이송방정식  (k ε, RNG, k ω 또는 One-equation) 을 포함하는 난류모델에서 이 방정식에서의 점성 확산 항은 항상 외재적으로 근사되므로 내재적 점성 알고리즘을 사용하는 것은 추천되지 않는다.

See also:

이론 매뉴얼 Turbulence Models 을 참조한다.

Viscous Heating

점성가열 모델은 Physics Viscosity and turbulence Activate viscous heating를 체크함으로써 활성화 된다. Viscous flow Turbulence options 아래서 선택되어야 함에 주의한다.

See also:

이 기능에 대한 상세정보를 위해 Theory 매뉴얼의 Thermal Diffusion and Sources를 참조한다.

Note:

  • 이 옵션은 Physics Heat transfer 가 활성화되어야 한다.
  • 0이아닌 유체 동점성이 Fluids 의 유체 입력에서 정의되는 경우만 사용된다.

Viscosity Output점성 출력

유체점도는 온도, 변형률 또는 난류 같은 다른 변수의 함수일 때 마다 자동적으로 후처리에서 저장된다. 반대로 점도가 상수이면 예를 들어 뉴튼 유체의 층류 유동에서는 일반적으로 후처리에서 이용 하지 못 한다. 사용자는 Output 탭의 Additional Output 절에서 Dynamic Viscosity 를 요청함으로써 디폴트 거동을 무효화할 수 있다. 이 기능은 특히 유체점도가 계산되는 FORTRAN routine mucal.F가 사용자에 의해 수정될 때 유용하다.

 

 

 

래스터 파일 사용 및 가져오기

Using and Importing Raster Files

GIS 어플리케이션과 관련하여, 래스터 데이터는 공간 데이터가 셀의 행렬로 표현되는 현실 세계의 추상화입니다. 데이터의 위치는 값의 순서에 내재되어 있으며 ASCII 형식의 행과 열로 구성된 균일 한 x 및 y 위치를 사용합니다. 행과 열의 각 데이터 값은 수량을 나타냅니다. FLOW-3D에서 이것은 표면 높이 또는 표면 거칠기 일 수 있습니다. 지표면 고도 인 경우 FLOW-3D는 정보를 사용하여 고도 값을 기반으로 토폴로지를 작성합니다. 거칠기가있는 경우 데이터는 표면 변형의 크기를 나타내거나 Manning의 n과 상관 관계가 있습니다. 이 정보는 궁극적으로 흐름에 대한 저항력 (마찰 계수)을 나타냅니다. 이 기사에서는 FLOW-3D의 토폴로지와 표면 거칠기에 대해 래스터 파일을 사용하는 방법에 대해 설명합니다.

Format

여기에 표시된 것은 래스터 파일을 FLOW-3D로 읽는 데 필요한 형식입니다. 6 개의 행의 헤더 데이터와 그 다음에 표면 높이 또는 표면 거칠기를 나타내는 행과 열의 행렬이옵니다. 헤더 데이터에는 다음이 포함됩니다.
– ncols = 데이터 열 수 (즉, x 방향의 위치)
– nrows = 데이터 행 수 (즉, y 방향의 위치)
– xllcorner = 래스터 그리드에서 x 최소 좌표를 식별합니다. 값은 래스터 셀의 절반만큼 오른쪽으로 이동합니다. 셀 가장자리에 있지 않습니다.
– yllcorner  = 래스터 그리드에서 y 최소 좌표를 식별합니다. 값은 래스터 셀의 절반만큼 위쪽으로 이동합니다. 셀 가장자리에 있지 않습니다.
– cellsize = 각 데이터 포인트 간의 x와 y 간격
– nodata_value = 주어진 위치에 값이 없음을 의미하는 값

Importing a raster file

래스터 파일을 가져 오려면 그림 2와 같이 Meshing & Geometry 탭 아래의 ASC 버튼을 새 구성 요소로 선택합니다. 그런 다음 Add 버튼을 선택하고 파일을 탐색합니다. 파일을 추가하고 OK를 선택하면 Solid 또는 Surface Roughness로 추가하라는 메시지가 나타납니다.

그림 3의 대화 상자는 솔리드 서피스로 가져올 지 표면 거칠기로 가져올지를 선택하는 것이며 새 구성 요소를 추가 할 때만 나타납니다. 기존 구성 요소에 추가 할 때마다 유형이 기존 구성 요소 정의의 유형과 자동으로 일치하도록 결정됩니다. 솔리드 유형 인 경우 각 가져 오기는 토폴로지로 간주되는 하위 구성 요소를 추가합니다. 표면 거칠기 유형 인 경우 각 가져 오기는 표면 거칠기로 간주되는 하위 구성 요소를 추가합니다.

Import as a solid

솔리드로 가져 오려면 솔리드 라디오 단추를 선택하고 원하는 경우 이름을 입력하십시오. 래스터 파일의 모든 nodata_value 데이터 포인트에는 누락 된 데이터를 높이를 나타내는 값으로 바꾸는 옵션이 GUI에 있습니다. 따라서 바닥을 만듭니다. GUI에서 이는 토폴로지를 나타내는 가져온 하위 구성 요소 목록 아래에 있습니다.

Import as roughness

거칠기로 가져 오려면 표면 거칠기 라디오 버튼을 선택하고 이름을 입력하십시오 (원하는 경우). 구성 요소 유형은 가져온 표면 거칠기입니다. 또한 필요한 범례 파일에 대한 프롬프트가 표시됩니다. 이 파일은 래스터 조도 파일의 정수 조도 코드와 FLOW-3D의 조도 조도 값을 관련시킵니다.
범례 파일의 형식은 유연합니다. 헤더의 텍스트 정보는 관련 데이터가 첫 번째 행에서부터 읽혀지기 때문에 허용됩니다. 데이터는 공백, 탭 또는 쉼표로 구분할 수있는 두 개의 열로 구성됩니다. 첫 번째 열은 거친 파일의 정수 코드에 해당하고 두 번째 열은 FLOW-3D의 거칠기를 정의합니다.
범례 파일은 전역 목록 아래의 기하학 트리 구조 아래에 추가됩니다.

Applying roughness to components

그림 6은 구성 요소 1이 토폴로지로 가져온 래스터 파일을 사용하여 솔리드를 나타내는 설치의 트리 구조를 나타냅니다. 구성 요소 2는 관련 범례 파일을 포함하는 거칠기로 가져온 래스터 파일을 사용하여 공간적으로 변화하는 표면 거칠기를 정의합니다. 그림과 같이 글로벌 목록 아래에 범례 파일에 대한 경로가 있습니다. 구성 요소 1의 구성 요소 유형은 단색입니다. 구성 요소 2는 표면 거칠기로 구성 요소 유형을 갖습니다.

“표면 거칠기”구성 요소 (구성 요소 2)에 의해 정의 된 공간적으로 변화하는 표면 거칠기는 구성 요소 1의 표면 특성 섹션에서 “조도 파일 사용”플래그를 선택하여 토폴로지 구성 요소 (구성 요소 1)에 매핑됩니다 (그림 7 ). 이 플래그는 솔버가 구성 요소 2가 구성 요소 1과 겹치는 래스터 데이터에 정의 된 표면 거칠기를 사용하도록 지시합니다. 토폴로지 래스터 파일에 해당 위치에 “nodata_value”가 있으면 대신 구성 요소 1에 대해 정의 된 구성 요소 / 하위 구성 요소 조도를 사용합니다 .

Transformation center

가져온 래스터 데이터의 좌표는 종종 좌표 중심점 0,0,0에서 멀리 떨어진 위치를 가질 수 있기 때문에 회전 중심을 회전 및 확대 / 축소에 도움이되는 위치로 변경하는 옵션이 있습니다. 설정하지 않으면 회전 및 확대 / 축소가 좌표축 중심을 기준으로 발생합니다. 따라서 가져온 형상을 탐색하기가 어렵습니다.

로컬 좌표 중심을 기준으로 구성 요소를 회전 시키려면 각 방향에서 최소 및 최대 범위의 평균값을 선택하십시오. 예를 들어, x-min이 9.98e6 미터이고 x-max가 9.96e6 미터 인 경우 평균값 (중간)은 9.97e6 미터입니다. 동일한 논리가 y 방향에 적용됩니다. 그림 8은 구성 요소 1에 대한 변형 중심을 설정하는 예입니다.

Summary

래스터 파일은 토폴로지와 표면 거칠기에 사용할 수있는 일반적인 지형 정보입니다. 이 데이터를 FLOW-3D로 직접 가져올 수 있으면 데이터를 간단하고 직접적으로 가져올 수 있습니다. 이 튜토리얼에서는 사용자가 래스터 데이터를 가져 와서 모델에 적용하는 방법을 알 수 있도록 프로세스를 설명합니다.

Coating Bibliography

아래는 코팅 참고 문헌의 기술 문서 모음입니다. 
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. FLOW-3D를 사용하여 코팅 공정을 성공적으로 시뮬레이션  하는 방법에 대해 자세히 알아보십시오.

Coating Bibliography

Below is a collection of technical papers in our Coating Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate coating processes.

50-19     Peng Yi, Delong Jia, Xianghua Zhan, Pengun Xu, and Javad Mostaghimi, Coating solidification mechanism during plasma-sprayed filling the laser textured grooves, International Journal of Heat and Mass Transfer, Vol. 142, 2019. doi:10.1016/j.ijheatmasstransfer.2019.118451

01-19   Jelena Dinic and Vivek Sharma, Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method, Physics of Fluids, Vol. 31, 2019. doi: 10.1063/1.5061715

85-18   Zia Jang, Oliver Litfin and Antonio Delgado, A semi-analytical approach for prediction of volume flow rate in nip-fed reverse roll coating process, Proceedings in Applied Mathematics and Mechanics, Vol. 18, no. 1, Special Issue: 89th Annual Meeting of the International Association of Applied Mathematics and Mechanics, 2018. doi: 10.1002/pamm.201800317

80-14   Hiroaki Koyama, Kazuhiro Fukada, Yoshitaka Murakami, Satoshi Inoue, and Tatsuya Shimoda, Investigation of Roll-to-Sheet Imprinting for the Fabrication of Thin-film Transistor Electrodes, IEICE TRAN, ELECTRON, VOL.E97-C, NO.11, November 2014

46-14   Isabell Vogeler, Andreas Olbers, Bettina Willinger and Antonio Delgado, Numerical investigation of the onset of air entrainment in forward roll coating, 17th International Coating Science and Technology Symposium September 7-10, 2014 San Diego, CA, USA

17-12  Chi-Feng Lin, Bo-Kai Wang, Carlos Tiu and Ta-Jo Liu, On the Pinning of Downstream Meniscus for Slot Die Coating, Advances in Polymer Technology, Vol. 00, No. 0, 1-9 (2012) © 2012 Wiley Periodicals, Inc. Available online at Wiley.

01-11  Reid Chesterfield, Andrew Johnson, Charlie Lang, Matthew Stainer, and Jonathan Ziebarth, Solution-Coating Technology for AMOLED Displays, Information Display Magazine, 1/11 0362-0972/01/2011-024 © SID 2011.

61-09 Yi-Rong Chang, Chi-Feng Lin and Ta-Jo Liu, Start-up of slot die coating, Polymer Engineering and Science, Vol. 49, pp. 1158-1167, 2009. doi:10.1002/pen.21360

26-06  James M. Brethour, 3-D transient simulation of viscoelastic coating flows, 13th International Coating Science and Technology Symposium, September 2006, Denver, Colorado

19-06  Ivosevic, M., Cairncross, R. A., and Knight, R., 3D Predictions of Thermally Sprayed Polymer Splats Modeling Particle Acceleration, Heating and Deformation on Impact with a Flat Substrate, Int. J. of Heat and Mass Transfer, 49, pp. 3285 – 3297, 2006

9-06  M. Ivosevic, R. A. Cairncross, R. Knight, T. E. Twardowski, V. Gupta, Drexel University, Philadelphia, PA; J. A. Baldoni, Duke University, Durham, NC, Effect of Substrate Roughness on Splatting Behavior of HVOF Sprayed Polymer Particles Modeling and Experiments, International Thermal Spray Conference, Seattle, WA, May 2006.

26-05  Ivosevic, M., Cairncross, R. A., Knight, R., Impact Modeling of Thermally Sprayed Polymer Particles, Proc. International Thermal Spray Conference [ITSC-2005], Eds., DVS/IIW/ASM-TSS, Basel, Switzerland, May 2005.

11-05  Brethour, J., Simulation of Viscoelastic Coating Flows with a Volume-of-fluid Technique, in Proceedings of the 6th European Coating Symposium, Bradford, UK, 2005

1-05 C.W. Hirt, Electro-Hydrodynamics of Semi-Conductive Fluids: With Application to Electro-Spraying, Flow Science Technical Note #70, FSI-05-TN70

38-04 K.H. Ho and Y.Y. Zhao, Modelling thermal development of liquid metal flow on rotating disc in centrifugal atomisation, Materials Science and Engineering, A365, pp. 336-340, 2004. doi:10.1016/j.msea.2003.09.044

30-04  M. Ivosevic, R.A. Cairncross, and R. Knight, Impact Modeling of HVOF Sprayed Polymer Particles, Presented at the 12th International Coating Science and Technology Symposium, Rochester, New York, September 23-25, 2004

29-04  J.M. Brethour and C.W. Hirt, Stains Arising from Dried Liquid Drops, Presented at the 12th International Coating Science and Technology Symposium, Rochester, New York, September 23-25, 2004

20-03  James Brethour, Filling and Emptying of Gravure Cells–A CFD Analysis, Convertech Pacific October 2002, Vol. 10, No 4, p 34-37

4-03   M. Toivakka, Numerical Investigation of Droplet Impact Spreading in Spray Coating of Paper, In Proceedings of 2003 TAPPI 8th Advanced Coating Fundamentals Symposium, TAPPI Press, Atlanta, 2003

28-02  J.M. Brethour and H. Benkreira, Filling and Emptying of Gravure Cells—Experiment and CFD Comparison, 11th International Coating Science and Technology Symposium, September 23-25, 2002, Minneapolis, Minnesota

22-02  Hirt, C.W., and Brethour, J.M., Contact Line on Rough Surfaces with Application to Air Entrainment, Presented at the 11th International Coating Science and Technology Symposium, September 23-25, 2002, Minneapolis, Minnesota. Unpublished.

17-01  J. M. Brethour, C. W. Hirt, Moving Contact Lines on Rough Surfaces, 4th European Coating Symposium, 2001, Belgium

16-01  J. M. Brethour, Filling and Emptying of Gravure Cells–-A CFD Analysis, proceedings of the 4th European Coating Symposium 2001, October 1-4, 2001, Brussels, Belgium

26-00 Ronald H. Miller and Gary S. Strumolo, A Self-Consistent Transient Paint Simulation, Proceedings of IMEC2000: 2000 ASME International Mechanical Engineering Congress and Exposition, November 2000, Orlando, Florida

6-99  C. W. Hirt, Direct Computation of Dynamic Contact Angles and Contact Lines, ECC99 Coating Conference, Erlangen, Germany (FSI-99-00-2), Sept. 1999

7-98 J. E. Richardson and Y. Becker, Three-Dimensional Simulation of Slot Coating Edge Effects, Flow Science Inc, and Polaroid Corporation, presented at the 9th International Coating Science and Technology Symposium, Newark, DE, May 18-20, 1998

6-98  C. W. Hirt and E. Choinski, Simulation of the Wet-Start Process in Slot Coating, Flow Science Inc, and Polaroid Corporation, presented at the 9th International Coating Science and Technology Symposium, Newark, DE, May 18-20, 1998

3-97  C. W. Hirt and J. E. Richardson of Flow Science Inc, and K.S. Chen, Sandia National Laboratory, Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique, presented at the 50th Annual Conference of the Society for Imaging and Science Technology, Boston, MA 18-23 May 1997

2-96 C. W. Hirt, K. S. Chen, Simulation of Slide-Coating Flows Using a Fixed Grid and a Volume-of-Fluid Front-Tracking Technique, presented a the 8th International Coating Process Science & Technology Symposium, February 25-29, 1996, New Orleans, LA

FLOW-3D/MP Features List

FLOW-3D/MP Features

FLOW-3D/MP v6.1 은 FLOW-3D v11.1 솔버에 기초하여 물리 모델, 특징 및 그래픽 사용자 인터페이스가 동일합니다. FLOW-3D v11.1의 새로운 기능은 아래 파란색으로 표시되어 있으며 FLOW-3D/MP v6.1 에서 사용할 수 있습니다. 새로운 개발 기능에 대한 자세한 설명은 FLOW-3D v11.1에서 새로운 기능을 참조하십시오.

Meshing & Geometry

  • Structured finite difference/control volume meshes for fluid and thermal solutions
  • Finite element meshes in Cartesian and cylindrical coordinates for structural analysis
  • Multi-Block gridding with nested, linked, partially overlapping and conforming mesh blocks
  • Fractional areas/volumes (FAVOR™) for efficient & accurate geometry definition
  • Mesh quality checking
  • Basic Solids Modeler
  • Import CAD data
  • Import/export finite element meshes via Exodus-II file format
  • Grid & geometry independence
  • Cartesian or cylindrical coordinates
Flow Type Options
  • Internal, external & free-surface flows
  • 3D, 2D & 1D problems
  • Transient flows
  • Inviscid, viscous laminar & turbulent flows
  • Hybrid shallow water/3D flows
  • Non-inertial reference frame motion
  • Multiple scalar species
  • Two-phase flows
  • Heat transfer with phase change
  • Saturated & unsaturated porous media
Physical Modeling Options
  • Fluid structure interaction
  • Thermally-induced stresses
  • Plastic deformation of solids
  • Granular flow
  • Moisture drying
  • Solid solute dissolution
  • Sediment transport and scour
  • Cavitation (potential, passive tracking, active tracking)
  • Phase change (liquid-vapor, liquid-solid)
  • Surface tension
  • Thermocapillary effects
  • Wall adhesion
  • Wall roughness
  • Vapor & gas bubbles
  • Solidification & melting
  • Mass/momentum/energy sources
  • Shear, density & temperature-dependent viscosity
  • Thixotropic viscosity
  • Visco-elastic-plastic fluids
  • Elastic membranes & walls
  • Evaporation residue
  • Electro-mechanical effects
  • Dielectric phenomena
  • Electro-osmosis
  • Electrostatic particles
  • Joule heating
  • Air entrainment
  • Molecular & turbulent diffusion
  • Temperature-dependent material properties
  • Spray cooling
Flow Definition Options
  • General boundary conditions
    • Symmetry
    • Rigid and flexible walls
    • Continuative
    • Periodic
    • Specified pressure
    • Specified velocity
    • Outflow
    • Grid overlay
    • Hydrostatic pressure
    • Volume flow rate
    • Non-linear periodic and solitary surface waves
    • Rating curve and natural hydraulics
    • Wave absorbing layer
  • Restart from previous simulation
  • Continuation of a simulation
  • Overlay boundary conditions
  • Change mesh and modeling options
  • Change model parameters
Thermal Modeling Options
  • Natural convection
  • Forced convection
  • Conduction in fluid & solid
  • Fluid-solid heat transfer
  • Distributed energy sources/sinks in fluids and solids
  • Radiation
  • Viscous heating
  • Orthotropic thermal conductivity
  • Thermally-induced stresses
Turbulence Models
  • RNG model
  • Two-equation k-epsilon model
  • Two-equation k-omega model
  • Large eddy simulation
Metal Casting Models
  • Thermal stress & deformations
  • Iron solidification
  • Sand core blowing
  • Sand core drying
  • Permeable molds
  • Solidification & melting
  • Solidification shrinkage with interdendritic feeding
  • Micro & macro porosity
  • Binary alloy segregation
  • Thermal die cycling
  • Surface oxide defects
  • Cavitation potential
  • Lost-foam casting
  • Semi-solid material
  • Core gas generation
  • Back pressure & vents
  • Shot sleeves
  • PQ2 diagram
  • Squeeze pins
  • Filters
  • Air entrainment
  • Temperature-dependent material properties
  • Cooling channels
  • Fluid/wall contact time
Numerical Modeling Options
  • TruVOF Volume-of-Fluid (VOF) method for fluid interfaces
  • First and second order advection
  • Sharp and diffuse interface tracking
  • Implicit & explicit numerical methods
  • GMRES, point and line relaxation pressure solvers
  • User-defined variables, subroutines & output
  • Utilities for runtime interaction during execution
Fluid Modeling Options
  • One incompressible fluid – confined or with free surfaces
  • Two incompressible fluids – miscible or with sharp interfaces
  • Compressible fluid – subsonic, transonic, supersonic
  • Stratified fluid
  • Acoustic phenomena
  • Mass particles with variable density or diameter
Shallow Flow Models
  • General topography
  • Raster data interface
  • Subcomponent-specific surface roughness
  • Wind shear
  • Ground roughness effects
  • Laminar & turbulent flow
  • Sediment transport and scour
  • Surface tension
  • Heat transfer
  • Wetting & drying
Advanced Physical Models
  • General Moving Object model with 6 DOF–prescribed and fully-coupled motion
  • Rotating/spinning objects
  • Collision model
  • Tethered moving objects (springs, ropes, mooring lines)
  • Flexing membranes and walls
  • Porosity
  • Finite element based elastic-plastic deformation
  • Finite element based thermal stress evolution due to thermal changes in a solidifying fluid
  • Combusting solid components
Chemistry Models
  • Stiff equation solver for chemical rate equations
  • Stationary or advected species
Porous Media Models
  • Saturated and unsaturated flow
  • Variable porosity
  • Directional porosity
  • General flow losses (linear & quadratic)
  • Capillary pressure
  • Heat transfer in porous media
  • Van Genunchten model for unsaturated flow
Discrete Particle Models
  • Massless marker particles
  • Mass particles of variable size/mass
  • Linear & quadratic fluid-dynamic drag
  • Monte-Carlo diffusion
  • Particle-Fluid momentum coupling
  • Coefficient of restitution or sticky particles
  • Point or volumetric particle sources
  • Charged particles
  • Probe particles
Two-Phase & Two-Component Models
  • Liquid/liquid & gas/liquid interfaces
  • Variable density mixtures
  • Compressible fluid with a dispersed incompressible component
  • Drift flux
  • Two-component, vapor/non-condensable gases
  • Phase transformations for gas-liquid & liquid-solid
  • Adiabatic bubbles
  • Bubbles with phase change
  • Continuum fluid with discrete particles
  • Scalar transport
  • Homogeneous bubbles
  • Super-cooling
Coupling with Other Programs
  • Geometry input from Stereolithography (STL) files – binary or ASCII
  • Direct interfaces with EnSight®, FieldView® & Tecplot® visualization software
  • Finite element solution import/export via Exodus-II file format
  • PLOT3D output
  • Neutral file output
  • Extensive customization possibilities
  • Solid Properties Materials Database
Data Processing Options
  • State-of-the-art post-processing tool, FlowSight™
  • Batch post-processing
  • Report generation
  • Automatic or custom results analysis
  • High-quality OpenGL-based graphics
  • Color or B/W vector, contour, 3D surface & particle plots
  • Moving and stationary probes
  • Measurement baffles
  • Arbitrary sampling volumes
  • Force & moment output
  • Animation output
  • PostScript, JPEG & Bitmap output
  • Streamlines
  • Flow tracers
User Conveniences
  • Active simulation control (based on measurement of probes)
  • Mesh generators
  • Mesh quality checking
  • Tabular time-dependent input using external files
  • Automatic time-step control for accuracy & stability
  • Automatic convergence control
  • Mentor help to optimize efficiency
  • Change simulation parameters while solver runs
  • Launch and manage multiple simulations
  • Automatic simulation termination based on user-defined criteria
  • Run simulation on remote servers using remote solving
Multi-Processor Computing

FLOW-3D Features

The features in blue are newly-released in FLOW-3D v12.0.

Meshing & Geometry

  • Structured finite difference/control volume meshes for fluid and thermal solutions
  • Finite element meshes in Cartesian and cylindrical coordinates for structural analysis
  • Multi-Block gridding with nested, linked, partially overlapping and conforming mesh blocks
  • Conforming meshes extended to arbitrary shapes
  • Fractional areas/volumes (FAVOR™) for efficient & accurate geometry definition
  • Closing gaps in geometry
  • Mesh quality checking
  • Basic Solids Modeler
  • Import CAD data
  • Import/export finite element meshes via Exodus-II file format
  • Grid & geometry independence
  • Cartesian or cylindrical coordinates

Flow Type Options

  • Internal, external & free-surface flows
  • 3D, 2D & 1D problems
  • Transient flows
  • Inviscid, viscous laminar & turbulent flows
  • Hybrid shallow water/3D flows
  • Non-inertial reference frame motion
  • Multiple scalar species
  • Two-phase flows
  • Heat transfer with phase change
  • Saturated & unsaturated porous media

Physical Modeling Options

  • Fluid structure interaction
  • Thermally-induced stresses
  • Plastic deformation of solids
  • Granular flow
  • Moisture drying
  • Solid solute dissolution
  • Sediment transport and scour
  • Sludge settling
  • Cavitation (potential, passive tracking, active tracking)
  • Phase change (liquid-vapor, liquid-solid)
  • Surface tension
  • Thermocapillary effects
  • Wall adhesion
  • Wall roughness
  • Vapor & gas bubbles
  • Solidification & melting
  • Mass/momentum/energy sources
  • Shear, density & temperature-dependent viscosity
  • Thixotropic viscosity
  • Visco-elastic-plastic fluids
  • Elastic membranes & walls
  • Evaporation residue
  • Electro-mechanical effects
  • Dielectric phenomena
  • Electro-osmosis
  • Electrostatic particles
  • Joule heating
  • Air entrainment
  • Molecular & turbulent diffusion
  • Temperature-dependent material properties
  • Spray cooling

Flow Definition Options

  • General boundary conditions
    • Symmetry
    • Rigid and flexible walls
    • Continuative
    • Periodic
    • Specified pressure
    • Specified velocity
    • Outflow
    • Outflow pressure
    • Outflow boundaries with wave absorbing layers
    • Grid overlay
    • Hydrostatic pressure
    • Volume flow rate
    • Non-linear periodic and solitary surface waves
    • Rating curve and natural hydraulics
    • Wave absorbing layer
  • Restart from previous simulation
  • Continuation of a simulation
  • Overlay boundary conditions
  • Change mesh and modeling options
  • Change model parameters

Thermal Modeling Options

  • Natural convection
  • Forced convection
  • Conduction in fluid & solid
  • Fluid-solid heat transfer
  • Distributed energy sources/sinks in fluids and solids
  • Radiation
  • Viscous heating
  • Orthotropic thermal conductivity
  • Thermally-induced stresses

Numerical Modeling Options

  • TruVOF Volume-of-Fluid (VOF) method for fluid interfaces
  • Steady state accelerator for free-surface flows
  • First and second order advection
  • Sharp and diffuse interface tracking
  • Implicit & explicit numerical methods
  • Immersed boundary method
  • GMRES, point and line relaxation pressure solvers
  • User-defined variables, subroutines & output
  • Utilities for runtime interaction during execution

Fluid Modeling Options

  • One incompressible fluid – confined or with free surfaces
  • Two incompressible fluids – miscible or with sharp interfaces
  • Compressible fluid – subsonic, transonic, supersonic
  • Stratified fluid
  • Acoustic phenomena
  • Mass particles with variable density or diameter

Shallow Flow Models

  • General topography
  • Raster data interface
  • Subcomponent-specific surface roughness
  • Wind shear
  • Ground roughness effects
  • Manning’s roughness
  • Laminar & turbulent flow
  • Sediment transport and scour
  • Surface tension
  • Heat transfer
  • Wetting & drying

Turbulence Models

  • RNG model
  • Two-equation k-epsilon model
  • Two-equation k-omega model
  • Large eddy simulation

Advanced Physical Models

  • General Moving Object model with 6 DOF–prescribed and fully-coupled motion
  • Rotating/spinning objects
  • Collision model
  • Tethered moving objects (springs, ropes, breaking mooring lines)
  • Flexing membranes and walls
  • Porosity
  • Finite element based elastic-plastic deformation
  • Finite element based thermal stress evolution due to thermal changes in a solidifying fluid
  • Combusting solid components

Chemistry Models

  • Stiff equation solver for chemical rate equations
  • Stationary or advected species

Porous Media Models

  • Saturated and unsaturated flow
  • Variable porosity
  • Directional porosity
  • General flow losses (linear & quadratic)
  • Capillary pressure
  • Heat transfer in porous media
  • Van Genunchten model for unsaturated flow

Discrete Particle Models

  • Massless marker particles
  • Multi-species material particles of variable size and mass
  • Solid, fluid, gas particles
  • Void particles tracking collapsed void regions
  • Non-linear fluid-dynamic drag
  • Added mass effects
  • Monte-Carlo diffusion
  • Particle-fluid momentum coupling
  • Coefficient of restitution or sticky particles
  • Point or volumetric particle sources
  • Initial particle blocks
  • Heat transfer with fluid
  • Evaporation and condensation
  • Solidification and melting
  • Coulomb and dielectric forces
  • Probe particles

Two-Phase & Two-Component Models

  • Liquid/liquid & gas/liquid interfaces
  • Variable density mixtures
  • Compressible fluid with a dispersed incompressible component
  • Drift flux with dynamic droplet size
  • Two-component, vapor/non-condensable gases
  • Phase transformations for gas-liquid & liquid-solid
  • Adiabatic bubbles
  • Bubbles with phase change
  • Continuum fluid with discrete particles
  • Scalar transport
  • Homogeneous bubbles
  • Super-cooling
  • Two-field temperature

Coupling with Other Programs

  • Geometry input from Stereolithography (STL) files – binary or ASCII
  • Direct interfaces with EnSight®, FieldView® & Tecplot® visualization software
  • Finite element solution import/export via Exodus-II file format
  • PLOT3D output
  • Neutral file output
  • Extensive customization possibilities
  • Solid Properties Materials Database

Data Processing Options

  • State-of-the-art post-processing tool, FlowSight™
  • Batch post-processing
  • Report generation
  • Automatic or custom results analysis
  • High-quality OpenGL-based graphics
  • Color or B/W vector, contour, 3D surface & particle plots
  • Moving and stationary probes
  • Visualization of non-inertial reference frame motion
  • Measurement baffles
  • Arbitrary sampling volumes
  • Force & moment output
  • Animation output
  • PostScript, JPEG & Bitmap output
  • Streamlines
  • Flow tracers

User Conveniences

  • Active simulation control (based on measurement of probes)
  • Mesh generators
  • Mesh quality checking
  • Tabular time-dependent input using external files
  • Automatic time-step control for accuracy & stability
  • Automatic convergence control
  • Mentor help to optimize efficiency
  • Units on all variables
  • Custom units
  • Component transformations
  • Moving particle sources
  • Change simulation parameters while solver runs
  • Launch and manage multiple simulations
  • Automatic simulation termination based on user-defined criteria
  • Run simulation on remote servers using remote solving
  • Copy boundary conditions to other mesh blocks

Multi-Processor Computing

  • Shared memory computers
  • Distributed memory clusters

FlowSight

  • Particle visualization
  • Velocity vector fields
  • Streamlines & pathlines
  • Iso-surfaces
  • 2D, 3D and arbitrary clips
  • Volume render
  • Probe data
  • History data
  • Vortex cores
  • Link multiple results
  • Multiple data views
  • Non-inertial reference frame
  • Spline clip