LFP

AA 6061 합금의 3D 레이저 포일 프린팅(3D LFP) 최적화: 수치 및 실험적 분석

연구 배경 및 목적

  • 문제 정의: 3D 레이저 포일 프린팅(LFP)은 금속 포일을 적층하여 정밀한 구조물을 제작하는 기술로, 레이저 용접을 통해 층을 쌓아가는 방식을 사용한다.
    • 금속 포일빠른 냉각 속도효율적인 열전도를 제공하여 미세 입자(fine-grained) 구조 형성에 유리하다.
    • 그러나 알루미늄 합금(AA 6061)과 같은 고반사율 금속레이저 용접할 때, 스패터(spattering), 기포(bubble) 형성, 미세 균열(microcrack)과 같은 결함이 발생할 위험이 크다.
  • 연구 목적:
    • Laser Circular Oscillation Welding (LCOW) 기술을 LFP 공정에 적용하여 레이저 용접 결함을 줄이는 방법 연구.
    • 인공신경망(ANN, Artificial Neural Network)과 FLOW-3D 시뮬레이션을 결합하여 최적의 용접 공정 매개변수 도출.
    • 실험 및 시뮬레이션 결과 비교를 통해 모델 신뢰성 검증용접 품질 향상 방안 제시.

연구 방법

  1. LCOW 기술 적용 및 실험 설정
    • AA 6061 포일(두께 0.3mm)과 기판(두께 5mm)을 사용하여 연속 파이버 레이저 시스템(최대 출력 1000W, 스캔 속도 550 mm/s, 스캔 주파수 227 Hz)으로 실험.
    • 레이저 빔의 원형 진동(Circular Oscillation) 모션을 사용하여 용융 풀(Molten Pool) 형상 및 위치 제어.
    • FLOW-3D 소프트웨어를 통해 열원 모델링 및 유체의 자유 표면 이동을 추적.
    • 에너지 밀도가 가우시안(Gaussian) 분포를 따른다고 가정하고, 볼륨 오브 플루이드(VOF) 기법을 사용하여 키홀(Keyhole) 형상 변화 추적.
  2. 시뮬레이션 및 ANN 모델 개발
    • FLOW-3D 시뮬레이션 데이터를 활용하여 ANN 모델을 학습시켜 용접 풀 깊이 및 온도 예측.
    • 원형 패킹 디자인(Circle Packing Design) 기법을 사용하여 36개의 시뮬레이션 데이터를 ANN 학습에 사용.
    • ANN 모델은 평균 99%의 예측 정확도(R=0.99)를 보여, 신뢰성 높은 프로세싱 맵(Processing Map) 생성.
    • 레이저 출력, 스캔 속도 및 주파수에 따른 용접 풀 깊이 및 폭 최적화.

주요 결과

  1. 실험 및 시뮬레이션 비교 분석
    • 최적화된 공정 매개변수: 레이저 출력 800W, 스캔 속도 550 mm/s, 스캔 주파수 227 Hz.
    • FLOW-3D 시뮬레이션 모델의 예측 오차는 약 10% 내외로, 실험 결과와 높은 일치도를 보임.
    • 용접 부위의 상부 표면에서 균열(cracks)이나 기공(porosity)이 발견되지 않음.
    • 샘플 단면에서의 기공율(Porosity)은 0.12%로 매우 낮음.
  2. 프로세싱 맵 분석 및 최적화 매개변수 도출
    • 용접 풀 깊이(0.6 ~ 0.95 mm) 및 폭(1.05 mm 이상)이 균열과 기공을 최소화하는 최적의 조건으로 설정.
    • 스캔 주파수 150 Hz 이상에서 알루미늄 합금의 열균열 감수성(hot cracking susceptibility) 감소.
    • 세부 영역별 프로세싱 맵을 통해 다양한 용접 조건에 대한 품질 특성 분석.
  3. 다양한 실험 조건에 따른 결과 비교
    • LCOW(Laser Circular Oscillation Welding) 전략을 적용한 샘플에서는 균열과 기공 발생이 거의 없었음.
    • 비진동 레이저 용접(NOLW) 전략에서는 0.41%의 기공율을 보인 반면, LCOW 샘플에서는 0.12%로 현저히 감소.
    • LCOW 전략 적용 시 표면 거칠기(Surface Roughness) Sa 값은 7.27μm, NOLW 샘플은 20.87μm로, LCOW가 더 매끄러운 표면 제공.

결론 및 향후 연구

  • 결론:
    • FLOW-3D 시뮬레이션과 ANN 모델을 활용한 공정 최적화 방법AA 6061 합금의 3D LFP 공정에서 뛰어난 성능을 입증.
    • LCOW 기술을 통해 기공과 균열을 줄일 수 있으며, 용접 품질을 크게 향상시킴.
    • 최적화된 공정 매개변수 적용 시 용접 표면 거칠기 및 기공율을 최소화할 수 있음.
  • 향후 연구 방향:
    • 새로운 소재와 기술의 발전에 따라 LCOW 최적화 매개변수의 지속적인 재평가 필요.
    • 마이크로구조(Microstructure) 모델링을 통한 시뮬레이션 결과의 정밀도 향상.
    • AI 및 머신러닝을 통한 실시간 용접 품질 예측 모델 개발.

연구의 의의

본 연구는 FLOW-3D 및 ANN 모델을 활용한 3D LFP 공정 최적화 방법을 제시하고, 레이저 용접 시 발생할 수 있는 결함을 최소화할 수 있는 새로운 접근법을 제시하여, 산업 현장에서의 적용 가능성을 입증하고 알루미늄 합금의 용접 품질을 향상시킬 수 있다​.

Reference

  1. C.-H. Hung, T. Turk, M. H. Sehhat, and M. C. Leu, “Development andexperimental study of an automated laser-foil-printing additive manufacturingsystem,” Rapid Prototyping Journal, vol. 28, no. 6, pp. 1013-1022, 2022.
  2. C.-H. Hung, W.-T. Chen, M. H. Sehhat, and M. C. Leu, “The effect of laser weldingmodes on mechanical properties and microstructure of 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing,” TheInternational Journal of Advanced Manufacturing Technology, vol. 112, pp.867-877, 2021.
  3. C. Chen, Y. Shen, and H.-L. Tsai, “A foil-based additive manufacturingtechnology for metal parts,” Journal of Manufacturing Science and Engineering,vol. 139, no. 2, p. 024501, 2017.
  4. C.-H. Hung, Y. Shen, M.-C. Leu, and H.-L. Tsai, “Mechanical Properties of 304LParts Made by Laser-Foil-Printing Technology,” 2017.
  5. C.-H. Hung, A. Sutton, Y. Li, Y. Shen, H.-L. Tsai, and M. C. Leu, “Enhancedmechanical properties for 304L stainless steel parts fabricated by laser-foil11 printing additive manufacturing,” Journal of Manufacturing Processes, vol. 45,pp. 438-446, 2019/09/01/ 2019, doi:https://doi.org/10.1016/j.jmapro.2019.07.030.
  6. C.-H. Hung et al., “Aluminum parts fabricated by laser-foil-printing additivemanufacturing: processing, microstructure, and mechanical properties,”Materials, vol. 13, no. 2, p. 414, 2020.
  7. Y. Kawahito, N. Matsumoto, Y. Abe, and S. Katayama, “Laser absorption ofaluminium alloy in high brightness and high power fibre laser welding,”Welding International, vol. 26, no. 4, pp. 275-281, 2012.
  8. M. Sheikhi, F. M. Ghaini, and H. Assadi, “Prediction of solidification cracking inpulsed laser welding of 2024 aluminum alloy,” Acta Materialia, vol. 82, pp. 491-502, 2015.
  9. J. F. Ready, Industrial applications of lasers. Elsevier, 1997.
  10. H.-Y. Wang, Y.-L. Lo, H.-C. Tran, M. M. Raza, and T.-N. Le, “Systematic approachfor reducing micro-crack formation in Inconel 713LC components fabricated bylaser powder bed fusion,” Rapid Prototyping Journal, vol. 27, no. 8, pp. 1548-1561, 2021.
  11. H.-H. Chen, Y.-L. Lo, Y.-Y. Hsu, and K.-L. Lai, “Systematic optimization of L-PBFprocessing parameters for Al alloy 6061 with YSZ nanoparticles,” Optics & LaserTechnology, vol. 167, p. 109676, 2023/12/01/ 2023, doi:https://doi.org/10.1016/j.optlastec.2023.109676.
  12. M. Kang, J. Cheon, D. H. Kam, and C. Kim, “The hot cracking susceptibilitysubjected the laser beam oscillation welding on 6XXX aluminum alloy with apartial penetration joint,” Journal of Laser Applications, vol. 33, no. 1, 2020, doi:10.2351/7.0000319.
  13. J. Han, Y. Shi, J.-c. Guo, K. Volodymyr, W.-y. Le, and F.-x. Dai, “Porosity inhibitionof aluminum alloy by power-modulated laser welding and mechanismanalysis,” Journal of Manufacturing Processes, vol. 102, pp. 827-838, 2023.
  14. V. V. Pamarthi, T. Sun, A. Das, and P. Franciosa, “Tailoring the weldmicrostructure to prevent solidification cracking in remote laser welding ofAA6005 aluminium alloys using adjustable ringmode beam,” Journal ofMaterials Research and Technology, vol. 25, pp. 7154-7168, 2023.
  15. L. Wang, M. Gao, C. Zhang, and X. Zeng, “Effect of beam oscillating pattern onweld characterization of laser welding of AA6061-T6 aluminum alloy,”Materials & Design, vol. 108, pp. 707-717, 2016.
  16. L. Cen, W. Du, M. Gong, Y. Lu, C. Zhang, and M. Gao, “Effect of high-frequencybeam oscillation on microstructures and cracks in laser cladding of Al-Cu-Mgalloys,” Surface and Coatings Technology, vol. 447, p. 128852, 2022.
  17. C. Zhang, Y. Yu, C. Chen, X. Zeng, and M. Gao, “Suppressing porosity of a laserkeyhole welded Al-6Mg alloy via beam oscillation,” Journal of MaterialsProcessing Technology, vol. 278, p. 116382, 2020.
  18. W. Ke, X. Bu, J. Oliveira, W. Xu, Z. Wang, and Z. Zeng, “Modeling and numericalstudy of keyhole-induced porosity formation in laser beam oscillating weldingof 5A06 aluminum alloy,” Optics & Laser Technology, vol. 133, p. 106540, 2021.
  19. W. Tao and S. Yang, “Weld zone porosity elimination process in remote laserwelding of AA5182-O aluminum alloy lap-joints,” Journal of MaterialsProcessing Technology, vol. 286, p. 116826, 2020.
  20. F. Fetzer, M. Sommer, R. Weber, J.-P. Weberpals, and T. Graf, “Reduction ofpores by means of laser beam oscillation during remote welding of AlMgSi,”Optics and Lasers in Engineering, vol. 108, pp. 68-77, 2018.
  21. S. Li, G. Mi, and C. Wang, “A study on laser beam oscillating weldingcharacteristics for the 5083 aluminum alloy: Morphology, microstructure andmechanical properties,” Journal of Manufacturing Processes, vol. 53, pp. 12-20,2020.
  22. M. Kang, H. N. Han, and C. Kim, “Microstructure and solidification cracksusceptibility of Al 6014 molten alloy subjected to a spatially oscillated laserbeam,” Materials, vol. 11, no. 4, p. 648, 2018.
  23. C. Hagenlocher, M. Sommer, F. Fetzer, R. Weber, and T. Graf, “Optimization ofthe solidification conditions by means of beam oscillation during laser beamwelding of aluminum,” Materials & Design, vol. 160, pp. 1178-1185, 2018.
  24. H. Cheng et al., “Processing modes in laser beam oscillating welding of Al6Cualloy,” Journal of Manufacturing Processes, vol. 68, pp. 1261-1270, 2021.
  25. M. Wu, Z. Luo, Y. Li, L. Liu, and S. Ao, “Effect of oscillation modes on weldformation and pores of laser welding in the horizontal position,” Optics & LaserTechnology, vol. 158, p. 108801, 2023.
  26. H.-C. Tran and Y.-L. Lo, “Systematic approach for determining optimalprocessing parameters to produce parts with high density in selective lasermelting process,” The International Journal of Advanced ManufacturingTechnology, vol. 105, pp. 4443-4460, 2019.
  27. T.-C. Huang, C.-H. Hung, and Y. Lin, “Residual stress reduction in Ti-6Al-4V partsfabricated by laser-foil-printing process,” Optics & Laser Technology, vol. 177,p. 111157, 2024.
  28. V. Dimatteo, A. Ascari, and A. Fortunato, “Continuous laser welding with spatialbeam oscillation of dissimilar thin sheet materials (Al-Cu and Cu-Al): Processoptimization and characterization,” Journal of Manufacturing Processes, vol. 44,pp. 158-165, 2019.
  29. R. Lin, H.-p. Wang, F. Lu, J. Solomon, and B. E. Carlson, “Numerical study ofkeyhole dynamics and keyhole-induced porosity formation in remote laserwelding of Al alloys,” International Journal of Heat and Mass Transfer, vol. 108,pp. 244-256, 2017.
  30. W.-I. Cho, S.-J. Na, C. Thomy, and F. Vollertsen, “Numerical simulation of moltenpool dynamics in high power disk laser welding,” Journal of MaterialsProcessing Technology, vol. 212, no. 1, pp. 262-275, 2012.
  31. J.-H. Cho and S.-J. Na, “Implementation of real-time multiple reflection andFresnel absorption of laser beam in keyhole,” Journal of Physics D: AppliedPhysics, vol. 39, no. 24, p. 5372, 2006.
  32. D. Wu, X. Hua, F. Li, and L. Huang, “Understanding of spatter formation in fiberlaser welding of 5083 aluminum alloy,” International Journal of Heat and MassTransfer, vol. 113, pp. 730-740, 2017.
  33. K.-T. Fang, R. Li, and A. Sudjianto, Design and modeling for computerexperiments. CRC press, 2005.
  34. Y.-X. Wang, C.-H. Hung, H. Pommerenke, S.-H. Wu, and T.-Y. Liu, “Fabrication ofcrack-free aluminum alloy 6061 parts using laser foil printing process,” RapidPrototyping Journal, vol. 30, no. 4, pp. 722-732, 2024.