kinetic energy

FLOW-3D 소프트웨어를 이용한 직사각형 침전지(Rectangular Sedimentation Tank) 치수가 수리 효율(Hydraulic Efficiency)에 미치는 영향에 대한 수치적 연구

연구 배경 및 목적

  • 문제 정의: 침전지(Settling Basin)는 수처리 및 폐수 처리 공정에서 입자 침전(Sediment Separation)을 위해 중요한 역할을 한다.
    • 침전지의 효율을 높이기 위해서는 원활하고 균일한 흐름을 유지하고, 순환 영역(Circulation Zone)을 최소화해야 한다.
    • 기존 설계 방법은 경험적 공식에 의존하여 유체의 역학적 세부 사항을 충분히 고려하지 못하는 한계가 있다.
  • 연구 목적:
    • FLOW-3D 소프트웨어를 사용하여 직사각형 침전지의 치수(Length/Width 및 Length/Depth 비율)가 흐름 패턴과 수리 효율에 미치는 영향을 분석.
    • 침전지의 순환 영역 감소 및 침전 효율 최적화를 목표로 함.
    • L/W(길이/너비) 및 L/d(길이/깊이) 비율 변화를 통한 최적의 침전지 설계 조건 도출.

연구 방법

  1. 수치 모델링 및 시뮬레이션 설정
    • FLOW-3D 소프트웨어VOF(Volume of Fluid) 기법FAVOR(Fractional Area/Volume Obstacle Representation) 기법을 사용하여 유동 및 지형 모델링.
    • k-ε 난류 모델을 사용하여 유동 패턴을 시뮬레이션.
    • 침전지 설계:
      • 입구(Inlet) 및 출구(Outlet) 위치와 부피모든 시나리오에서 동일하게 유지.
      • 직사각형 침전지의 L/W 비율: 1, 2, 4, 8 (Case 1~4)
      • L/d 비율: 5, 7, 10 (Case 5, 3, 6)
    • 모델 검증:
      • Shahrokhi et al. 실험 데이터와 비교하여 수치 모델의 신뢰성 평가.
  2. 침전지 치수 시나리오
    • L/W 비율 시나리오:
      • 길이 증가와 너비 감소를 동시에 적용하여 순환 영역의 부피 변화 분석.
      • Case 1(정사각형, L/W = 1)부터 Case 4(L/W = 8)까지 비교.
    • L/d 비율 시나리오:
      • 깊이 감소와 함께 길이 고정(2 m) 조건에서 순환 영역 및 에너지 분포 분석.
      • Case 5(L/d = 5), Case 3(L/d = 7), Case 6(L/d = 10) 비교.

주요 결과

  1. L/W 비율 변화에 따른 영향
    • 순환 영역 부피 감소 효과:
      • L/W 비율 증가 시, 순환 영역 부피가 53% → 22%로 감소.
      • 정사각형 탱크(L/W = 1)에서 순환 영역 부피는 53%, L/W = 8에서는 22%로 감소.
    • 유속 및 에너지 분포 변화:
      • 최대 운동 에너지(red zone)가 80% → 30%로 감소.
      • 이는 입자 침전 효율을 크게 개선함을 의미.
  2. L/d 비율 변화에 따른 영향
    • 순환 영역 감소 효과:
      • L/d 비율 증가(5 → 10) 시, 순환 영역 부피 54% → 16%로 감소.
      • 깊이 감소(0.4m → 0.2m) 시, 순환 영역 감소유속 균일화 효과 발생.
    • 운동 에너지 분포 개선:
      • 최대 운동 에너지 영역 길이1.5m → 0.9m로 감소.
      • 이는 침전지 바닥에 부드럽고 균일한 흐름을 형성하여 침전 효율을 향상시킴.
  3. 모델 검증 결과
    • FLOW-3D 시뮬레이션 결과실험 데이터 간 높은 일치도 확인.
    • 속도 프로파일의 평균 제곱근 오차(RMSE)가 x 방향 0.11, 0.07, 0.08, z 방향 0.13, 0.10, 0.19로 분석됨.
    • 이는 유동 패턴 예측 정확도가 높음을 의미.

결론 및 향후 연구

  • 결론:
    • FLOW-3D를 활용한 침전지 설계 최적화 가능성 입증.
    • L/W 비율이 4 이상, L/d 비율이 7 이상일 때 최적의 침전 효율을 제공.
    • 순환 영역 부피를 감소시켜 입자 침전 성능을 개선할 수 있음.
    • 최적화된 설계건설 및 유지보수 비용 절감에도 기여할 수 있음.
  • 향후 연구 방향:
    • 다양한 형태의 침전지(L자형 등)를 대상으로 L/W 및 L/d 비율에 따른 추가 연구 필요.
    • 다양한 유동 조건 및 입자 특성을 고려한 수치 모델 고도화.
    • AI 및 머신러닝을 활용한 실시간 침전지 성능 예측 모델 개발.

연구의 의의

이 연구는 FLOW-3D 소프트웨어를 통해 직사각형 침전지의 치수 최적화를 위한 설계 가이드라인을 제공하며, 수처리 및 폐수 처리 공정의 효율을 극대화할 수 있는 실질적인 데이터와 설계 기준을 제시한다​.

Reference

  1. H. Asgharzadeh, B. Firoozabadi, H. Afshin,Experimental investigation of effects of baffleconfigurations on the performance of asecondary sedimentation tank, SharifUniversity of Technology (2011) pp. 938-949.
  2. Metcalf & Eddy 2003. Wastewater engineeringtreatment and reuse, New York, McGraw-Hill.
  3. S. Kawamura, Integrated design and operationof water treatment facilities, 2nd ed.; JohnWiley and Sons Inc.: New York, NY, USA,(2000) pp. 159–160.
  4. A. Razmi1, B. Firoozabadi1, G. Ahmadi,Experimental and numerical approach toenlargement of performance of primary settlingtanks, Journal of Applied Fluid Mechanics 2 (1)(2009) pp. 1-12.https://doi.org/10.36884/JAFM.2.01.11850
  5. F. Rostami, M. Shahrokhi, Md Azlin Md Said,A. Rozi, Syafalni, Numerical modeling on inletaperture effects on flow pattern in primarysettling tanks, Applied MathematicalModelling 35 (6) (2011) pp. 3012-3020.https://doi.org/10.1016/j.apm.2010.12.007
  6. M. Shahrokhi, Influence of Baffle structure onthe improvment efficiency of primaryrectangular sedimentation tank, UniversitiSains Malaysia (2012) pp. 42-99.
  7. M. Patziger, Computational fluid dynamicsinvestigation of shallow circular secondarysettling tanks: inlet geometry and performanceindicators, Chemical engineering research anddesign 112 (2016) pp. 122–131.https://doi.org/10.1016/j.cherd.2016.06.018
  8. B. Lee, Evaluation of double perforated bafflesinstalled in rectangular secondary clarifiers,(2017).
  9. Y. Liu, P. Zhang, W. Wei, Simulation of theeffect of a baffle on the flow patterns andhydraulic efficiency in a sedimentation tank.Desalination and Water Treatment, 57 (54)(2016) pp.1-10.https://doi.org/10.1080/19443994.2016.1157521
  10. H. Zanganeh, S. Narakorn, Three-dimensionalVIV prediction model for a long flexiblecylinder with axial dynamics and mean dragmagnifications. Journal of Fluids andStructures (2016) pp. 127–146.https://doi.org/10.1016/j.jfluidstructs.2016.07.004
  11. M. Javadi Rad, M. Shahrokhi, T. Rajaee,Numerical investigation of the number ofbaffles effect on the efficiency of primarysedimentation tank in true dimensions,Modares Civil Engineering Journal (M.C.E.J)17 (5) (2017) pp. 49-59.
  12. S. Zhou, C. Vitasovic, J.A. McCorquodale, S.Lipke, M. DeNicola, P. Saurer, Improvingperformance of large rectangular secondaryclarifier. Available online: (28 April 2017).https://hydrosims.com/files/Optimization_Rectangular_Clarifiers.pdf
  13. B. Amin nezhad, A. Lajvardi, The effect ofbasin shape on the amount of sediment,Bibliography number: 4535528, (2017).
  14. A. Alighardashi, D. Goodarzi, Simulation ofdepth and wind effects on the hydraulicefficiency of sedimentation tanks, Water andEnvironment Journal, 34 (4) (2019) pp. 432-440.https://doi.org/10.1111/wej.12478
  15. F. Bouisfi, A. Bouisfi, H. Ouarriche, M. E.Bouhali, M. Chaoui, Improving RemovalEfficiency of Sedimentation Tanks UsingDifferent Inlet and Outlet Position, FMETransactions, 47 (4) (2019) pp. 894-900.https://doi.org/10.5937/fmet1904894B
  16. N. Patel, J. Ruparelia, J. Barve, Experimentaland simulation study of rectangular andcircular primary clarifier for wastewatertreatment, Environmental Technology &Innovation, 23 (2021) pp.1-12.https://doi.org/10.1016/j.eti.2021.101610
  17. R. Monk , J.F. Willis, Designing watertreatment facilities. JounalAWWA, 79 (2)(1987) pp. 45-57 .https://doi.org/10.1002/j.1551-8833.1987.tb02798.x
  18. A. L. Stamou, E. W. Adams, W. Rodi,Numerical modeling of flow and settling inprimary rectangular clarifiers, Journal ofHydraulic Research. 27 (1989) pp. 665-682.https://doi.org/10.1080/00221688909499117
  19. C. W. Hirt, B. D. Nichols, Volume of Fluid(VOF) Method for the Dynamics of FreeBoundaries. Journal of Computational Physics39 (1) (1981) pp. 201-225.https://doi.org/10.1016/0021-9991(81)90145-5
  20. Flow-3D Users Manuals, v 11.1. (2016).M. Javadi Rad et al. – Acta Technica Jaurinensis, Vol. 15, No. 4, pp. 207-220, 2022220
  21. A. Ghaderi, M. Dasineh, F. Aristodemo, A.Ghahramanzadeh, Characteristics of free andsubmerged hydraulic jumps over differentmacroroughnesses, Journal of Hydroinformatics, 22 (6) (2020) pp. 1554-1572.https://doi.org/10.2166/hydro.2020.298
  22. M. Ahmadi, A. Ghaderi, H. MohammadNezhad, A. Kuriqi, S. D. Francesco, NumericalInvestigation of Hydraulics in a Vertical SlotFishway with Upgraded Configurations,Water, 13 (19) (2021) pp. 1-23.https://doi.org/10.3390/w13192711
  23. S. Abbasi, S. Fatemi, A. Ghaderi, S. D. Francesco, The Effect of Geometric Parameters of the Antivortex on a Triangular Labyrinth SideWeir, Water, 13 (1) (2020) pp. 2-25. https://doi.org/10.3390/w13010014
  24. Flow-3D, Help, V.11.2, Flow Science Inc