electromagnetic metal casting computation designs Fig1

A survey of electromagnetic metal casting computation designs, present approaches, future possibilities, and practical issues

The European Physical Journal Plus volume 136, Article number: 704 (2021) Cite this article

Abstract

Electromagnetic metal casting (EMC) is a casting technique that uses electromagnetic energy to heat metal powders. It is a faster, cleaner, and less time-consuming operation. Solid metals create issues in electromagnetics since they reflect the electromagnetic radiation rather than consume it—electromagnetic energy processing results in sounded pieces with higher-ranking material properties and a more excellent microstructure solution. For the physical production of the electromagnetic casting process, knowledge of electromagnetic material interaction is critical. Even where the heated material is an excellent electromagnetic absorber, the total heating quality is sometimes insufficient. Numerical modelling works on finding the proper coupled effects between properties to bring out the most effective operation. The main parameters influencing the quality of output of the EMC process are: power dissipated per unit volume into the material, penetration depth of electromagnetics, complex magnetic permeability and complex dielectric permittivity. The contact mechanism and interference pattern also, in turn, determines the quality of the process. Only a few parameters, such as the environment’s temperature, the interference pattern, and the rate of metal solidification, can be controlled by AI models. Neural networks are used to achieve exact outcomes by stimulating the neurons in the human brain. Additive manufacturing (AM) is used to design mold and cores for metal casting. The models outperformed the traditional DFA optimization approach, which is susceptible to local minima. The system works only offline, so real-time analysis and corrections are not yet possible.

Korea Abstract

전자기 금속 주조 (EMC)는 전자기 에너지를 사용하여 금속 분말을 가열하는 주조 기술입니다. 더 빠르고 깨끗하며 시간이 덜 소요되는 작업입니다.

고체 금속은 전자기 복사를 소비하는 대신 반사하기 때문에 전자기학에서 문제를 일으킵니다. 전자기 에너지 처리는 더 높은 등급의 재료 특성과 더 우수한 미세 구조 솔루션을 가진 사운드 조각을 만듭니다.

전자기 주조 공정의 물리적 생산을 위해서는 전자기 물질 상호 작용에 대한 지식이 중요합니다. 가열된 물질이 우수한 전자기 흡수재인 경우에도 전체 가열 품질이 때때로 불충분합니다. 수치 모델링은 가장 효과적인 작업을 이끌어 내기 위해 속성 간의 적절한 결합 효과를 찾는데 사용됩니다.

EMC 공정의 출력 품질에 영향을 미치는 주요 매개 변수는 단위 부피당 재료로 분산되는 전력, 전자기의 침투 깊이, 복합 자기 투과성 및 복합 유전율입니다. 접촉 메커니즘과 간섭 패턴 또한 공정의 품질을 결정합니다. 환경 온도, 간섭 패턴 및 금속 응고 속도와 같은 몇 가지 매개 변수 만 AI 모델로 제어 할 수 있습니다.

신경망은 인간 뇌의 뉴런을 자극하여 정확한 결과를 얻기 위해 사용됩니다. 적층 제조 (AM)는 금속 주조용 몰드 및 코어를 설계하는 데 사용됩니다. 모델은 로컬 최소값에 영향을 받기 쉬운 기존 DFA 최적화 접근 방식을 능가했습니다. 이 시스템은 오프라인에서만 작동하므로 실시간 분석 및 수정은 아직 불가능합니다.

electromagnetic metal casting computation designs Fig1
electromagnetic metal casting computation designs Fig1
electromagnetic metal casting computation designs Fig2
electromagnetic metal casting computation designs Fig2
electromagnetic metal casting computation designs Fig3
electromagnetic metal casting computation designs Fig3
electromagnetic metal casting computation designs Fig4
electromagnetic metal casting computation designs Fig4
electromagnetic metal casting computation designs Fig5
electromagnetic metal casting computation designs Fig5
electromagnetic metal casting computation designs Fig6
electromagnetic metal casting computation designs Fig6
electromagnetic metal casting computation designs Fig7
electromagnetic metal casting computation designs Fig7
electromagnetic metal casting computation designs Fig8
electromagnetic metal casting computation designs Fig8
electromagnetic metal casting computation designs Fig9
electromagnetic metal casting computation designs Fig9

References

  1. 1.J. Sun, W. Wang, Q. Yue, Review on electromagnetic-matter interaction fundamentals and efficient electromagnetic-associated heating strategies. Materials 9(4), 231 (2016). https://doi.org/10.3390/ma9040231ADS Article Google Scholar 
  2. 2.E. Ghasali, A. Fazili, M. Alizadeh, K. Shirvanimoghaddam, T. Ebadzadeh, Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, electromagnetic and spark plasma sintering methods. Materials 10(11), 1255 (2017). https://doi.org/10.3390/ma10111255ADS Article Google Scholar 
  3. 3.D. Agrawal, Latest global developments in electromagnetic materials processing. Mater. Res. Innov. 14(1), 3–8 (2010). https://doi.org/10.1179/143307510×12599329342926Article Google Scholar 
  4. 4.S. Singh, P. Singh, D. Gupta, V. Jain, R. Kumar, S. Kaushal, Development and characterization of electromagnetic processed cast iron joint. Eng. Sci. Technol. Int. J. (2018). https://doi.org/10.1016/j.jestch.2018.10.012Article Google Scholar 
  5. 5.S. Singh, D. Gupta, V. Jain, Electromagnetic melting and processing of metal–ceramic composite castings. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232(7), 1235–1243 (2016). https://doi.org/10.1177/0954405416666900Article Google Scholar 
  6. 6.S. Singh, D. Gupta, V. Jain, Novel electromagnetic composite casting process: theory, feasibility and characterization. Mater. Des. 111, 51–59 (2016). https://doi.org/10.1016/j.matdes.2016.08.071Article Google Scholar 
  7. 7.J. Lucas, J, What are electromagnetics? LiveScience. (2018). https://www.livescience.com/50259-Electromagnetics.html
  8. 8.R. Samyal, A.K. Bagha, R. Bedi, the casting of materials using electromagnetic energy: a review. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.255Article Google Scholar 
  9. 9.S. Singh, D. Gupta, V. Jain, Processing of Ni-WC-8Co MMC casting through electromagnetic melting. Mater. Manuf. Process. (2017). https://doi.org/10.1080/10426914.2017.1291954Article Google Scholar 
  10. 10.R. Singh, S. Singh, V. Mahajan, Investigations for dimensional accuracy of investment casting process after cycle time reduction by advancements in shell moulding. Procedia Mater. Sci. 6, 859–865 (2014). https://doi.org/10.1016/j.mspro.2014.07.103Article Google Scholar 
  11. 11.R.R. Mishra, A.K. Sharma, On melting characteristics of bulk Al-7039 alloy during in-situ electromagnetic casting. Appl. Therm. Eng. 111, 660–675 (2017). https://doi.org/10.1016/j.applthermaleng.2016.09.122Article Google Scholar 
  12. 12.S. Zhang, 10 Different types of casting process. (2021). MachineMfg.com, https://www.machinemfg.com/types-of-casting/
  13. 13.Envirocare, Foundry health risks. (2013). https://envirocare.org/foundry-health-risks/
  14. 14.S.S. Gajmal, D.N. Raut, A review of opportunities and challenges in electromagnetic assisted casting. Recent Trends Product. Eng. 2(1) (2019)
  15. 15.R.R. Mishra, A.K. Sharma, Electromagnetic-material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Compos. Part A (2015). https://doi.org/10.1016/j.compositesa.2015.10.035Article Google Scholar 
  16. 16.S. Chandrasekaran, T. Basak, S. Ramanathan, Experimental and theoretical investigation on electromagnetic melting of metals. J. Mater. Process. Technol. 211(3), 482–487 (2011). https://doi.org/10.1016/j.jmatprotec.2010.11.001Article Google Scholar 
  17. 17.C.R. Bird, J.M. Mertz, U.S. Patent No. 4655276. (U.S. Patent and Trademark Office, Washington, DC, 1987)
  18. 18.R.R. Mishra, A.K. Sharma, Experimental investigation on in-situ electromagnetic casting of copper. IOP Conf. Ser. Mater. Sci. Eng. 346, 012052 (2018). https://doi.org/10.1088/1757-899x/346/1/012052Article Google Scholar 
  19. 19.V. Gangwar, S. Kumar, V. Singh, H. Singh, Effect of process parameters on hardness of AA-6063 in-situ electromagnetic casting by using taguchi method, in IOP Conference Series: Materials Science and Engineering, vol. 804(1) (IOP Publishing, 2020), p. 012019
  20. 20.X. Ye, S. Guo, L. Yang, J. Gao, J. Peng, T. Hu, L. Wang, M. Hou, Q. Luo, New utilization approach of electromagnetic thermal energy: preparation of metallic matrix diamond tool bit by electromagnetic hot-press sintering. J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.03.183Article Google Scholar 
  21. 21.S. Das, A.K. Mukhopadhyay, S. Datta, D. Basu, Prospects of Electromagnetic processing: an overview. Bull. Mater. Sci. 32(1), 1–13 (2009). https://doi.org/10.1007/s12034-009-0001-4Article Google Scholar 
  22. 22.K.L. Glass, D.M. Ashby, U.S. Patent No. 9050656. (U.S. Patent and Trademark Office, Washington, DC, 2015)
  23. 23.S. Verma, P. Gupta, S. Srivastava, S. Kumar, A. Anand, An overview: casting/melting of non ferrous metallic materials using domestic electromagnetic oven. J. Mater. Sci. Mech. Eng. 4(4), (2017). p-ISSN: 2393-9095; e-ISSN: 2393-9109
  24. 24.S.S. Panda, V. Singh, A. Upadhyaya, D. Agrawal, Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and electromagnetic furnaces. Scripta Mater. 54(12), 2179–2183 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.034Article Google Scholar 
  25. 25.Y. Zhang, S. Yang, S. Wang, X. Liu, L. Li, Microwave/freeze casting assisted fabrication of carbon frameworks derived from embedded upholder in tremella for superior performance supercapacitors. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.08.006Article Google Scholar 
  26. 26.D. Thomas, P. Abhilash, M.T. Sebastian, Casting and characterization of LiMgPO4 glass free LTCC tape for electromagnetic applications. J. Eur. Ceram. Soc. 33(1), 87–93 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.08.002Article Google Scholar 
  27. 27.M.H. Awida, N. Shah, B. Warren, E. Ripley, A.E. Fathy, Modeling of an industrial Electromagnetic furnace for metal casting applications. 2008 IEEE MTT-S Int. Electromagn. Symp. Digest. (2008). https://doi.org/10.1109/mwsym.2008.4633143Article Google Scholar 
  28. 28.P.K. Loharkar, A. Ingle, S. Jhavar, Parametric review of electromagnetic-based materials processing and its applications. J. Market. Res. 8(3), 3306–3326 (2019). https://doi.org/10.1016/j.jmrt.2019.04.004Article Google Scholar 
  29. 29.E.B. Ripley, J.A. Oberhaus, WWWeb search power page-melting and heat treating metals using electromagnetic heating-the potential of electromagnetic metal processing techniques for a wide variety of metals and alloys is. Ind. Heat. 72(5), 65–70 (2005)Google Scholar 
  30. 30.J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design (Butterworth-Heinemann, 2015)Google Scholar 
  31. 31.B. Ravi, Metal Casting: Computer-Aided Design and Analysis, 1st edn. (PHI Learning Ltd, 2005)Google Scholar 
  32. 32.D.E. Clark, W.H. Sutton, Electromagnetic processing of materials. Annu. Rev. Mater. Sci. 26(1), 299–331 (1996)ADS Article Google Scholar 
  33. 33.A.D. Abdullin, New capabilities of software package ProCAST 2011 for modeling foundry operations. Metallurgist 56(5–6), 323–328 (2012). https://doi.org/10.1007/s11015-012-9578-8Article Google Scholar 
  34. 34.J. Ha, P. Cleary, V. Alguine, T. Nguyen, Simulation of die filling in gravity die casting using SPH and MAGMAsoft, in Proceedings of 2nd International Conference on CFD in Minerals & Process Industries (1999) pp. 423–428
  35. 35.M. Sirviö, M. Woś, Casting directly from a computer model by using advanced simulation software FLOW-3D Cast Ž. Arch. Foundry Eng. 9(1), 79–82 (2009)Google Scholar 
  36. 36.NOVACAST Systems, Nova-Solid/Flow Brochure, NOVACAST, Ronneby (2015)
  37. 37.AutoCAST-X1 Brochure, 3D Foundry Tech, Mumbai
  38. 38.EKK, Inc. Metal Casting Simulation Software and Consulting Services, CAPCAST Brochure
  39. 39.P. Muenprasertdee, Solidification modeling of iron castings using SOLIDCast (2007)
  40. 40.CasCAE, CT-CasTest Inc. Oy, Kerava
  41. 41.E. Dominguez-Tortajada, J. Monzo-Cabrera, A. Diaz-Morcillo, Uniform electric field distribution in electromagnetic heating applicators by means of genetic algorithms optimization of dielectric multilayer structures. IEEE Trans. Electromagn. Theory Tech. 55(1), 85–91 (2007). https://doi.org/10.1109/tmtt.2006.886913ADS Article Google Scholar 
  42. 42.B. Warren, M.H. Awida, A.E. Fathy, Electromagnetic heating of metals. IET Electromagn. Antennas Propag. 6(2), 196–205 (2012)Article Google Scholar 
  43. 43.S. Ashouri, M. Nili-Ahmadabadi, M. Moradi, M. Iranpour, Semi-solid microstructure evolution during reheating of aluminum A356 alloy deformed severely by ECAP. J. Alloy. Compd. 466(1–2), 67–72 (2008). https://doi.org/10.1016/j.jallcom.2007.11.010Article Google Scholar 
  44. 44.Penn State, Metal Parts Made In The Electromagnetic Oven. ScienceDaily. (1999) Retrieved May 8, 2021, from www.sciencedaily.com/releases/1999/06/990622055733.htm
  45. 45.R.R. Mishra, A.K. Sharma, A review of research trends in electromagnetic processing of metal-based materials and opportunities in electromagnetic metal casting. Crit. Rev. Solid State Mater. Sci. 41(3), 217–255 (2016). https://doi.org/10.1080/10408436.2016.1142421ADS Article Google Scholar 
  46. 46.D.K. Ghodgaonkar, V.V. Varadan, V.K. Varadan, Free-space measurement of complex permittivity and complex permeability of magnetic materials at Electromagnetic frequencies. IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990). https://doi.org/10.1109/19.52520Article Google Scholar 
  47. 47.J. Baker-Jarvis, E.J. Vanzura, W.A. Kissick, Improved technique for determining complex permittivity with the transmission/reflection method. Microw. Theory Tech. IEEE Trans. 38, 1096–1103 (1990)ADS Article Google Scholar 
  48. 48.M. Bologna, A. Petri, B. Tellini, C. Zappacosta, Effective magnetic permeability measurementin composite resonator structures. Instrum. Meas. IEEE Trans. 59, 1200–1206 (2010)Article Google Scholar 
  49. 49.B. Ravi, G.L. Datta, Metal casting–back to future, in 52nd Indian Foundry Congress, (2004)
  50. 50.D. El Khaled, N. Novas, J.A. Gazquez, F. Manzano-Agugliaro. Microwave dielectric heating: applications on metals processing. Renew. Sustain. Energy Rev. 82, 2880–2892 (2018). https://doi.org/10.1016/j.rser.2017.10.043Article Google Scholar 
  51. 51.H. Sekiguchi, Y. Mori, Steam plasma reforming using Electromagnetic discharge. Thin Solid Films 435, 44–48 (2003)ADS Article Google Scholar 
  52. 52.J. Sun, W. Wang, C. Zhao, Y. Zhang, C. Ma, Q. Yue, Study on the coupled effect of wave absorption and metal discharge generation under electromagnetic irradiation. Ind. Eng. Chem. Res. 53, 2042–2051 (2014)Article Google Scholar 
  53. 53.K.I. Rybakov, E.A. Olevsky, E.V. Krikun, Electromagnetic sintering: fundamentals and modeling. J. Am. Ceram. Soc. 96(4), 1003–1020 (2013). https://doi.org/10.1111/jace.12278Article Google Scholar 
  54. 54.A.K. Shukla, A. Mondal, A. Upadhyaya, Numerical modeling of electromagnetic heating. Sci. Sinter. 42(1), 99–124 (2010)Article Google Scholar 
  55. 55.M. Chiumenti, C. Agelet de Saracibar, M. Cervera, On the numerical modeling of the thermomechanical contact for metal casting analysis. J. Heat Transf. 130(6), (2008). https://doi.org/10.1115/1.2897923Article MATH Google Scholar 
  56. 56.B. Ravi, Metal Casting: Computer-Aided Design and Analysis. (PHI Learning Pvt. Ltd., 2005)
  57. 57.J.H. Lee, S.D. Noh, H.-J. Kim, Y.-S. Kang, Implementation of cyber-physical production systems for quality prediction and operation control in metal casting. Sensors 18, 1428 (2018). https://doi.org/10.3390/s18051428ADS Article Google Scholar 
  58. 58.B. Aksoy, M. Koru, Estimation of casting mold interfacial heat transfer coefficient in pressure die casting process by artificial intelligence methods. Arab. J. Sci. Eng. 45, 8969–8980 (2020). https://doi.org/10.1007/s13369-020-04648-7Article Google Scholar 
  59. 59.S.S. Miriyala, V.R. Subramanian, K. Mitra, TRANSFORM-ANN for online optimization of complex industrial processes: casting process as case study. Eur. J. Oper. Res. 264(1), 294–309 (2018). https://doi.org/10.1016/j.ejor.2017.05.026MathSciNet Article MATH Google Scholar 
  60. 60.J.K. Kittu, G.C.M. Patel, M. Parappagoudar, Modeling of pressure die casting process: an artificial intelligence approach. Int. J. Metalcast. (2015). https://doi.org/10.1007/s40962-015-0001-7Article Google Scholar 
  61. 61.W. Chen, B. Gutmann, C.O. Kappe, Characterization of electromagnetic-induced electric discharge phenomena in metal-solvent mixtures. ChemistryOpen 1, 39–48 (2012)Article Google Scholar 
  62. 62.J. Walker, A. Prokop, C. Lynagh, B. Vuksanovich, B. Conner, K. Rogers, J. Thiel, E. MacDonald, Real-time process monitoring of core shifts during metal casting with wireless sensing and 3D sand printing. Addit. Manuf. (2019). https://doi.org/10.1016/j.addma.2019.02.018Article Google Scholar 
  63. 63.G.C. Manjunath Patel, A.K. Shettigar, M.B. Parappagoudar, A systematic approach to model and optimize wear behaviour of castings produced by squeeze casting process. J. Manuf. Process. 32, 199–212 (2018). https://doi.org/10.1016/j.jmapro.2018.02.004Article Google Scholar 
  64. 64.G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, An intelligent system for squeeze casting process—soft computing based approach. Int. J. Adv. Manuf. Technol. 86, 3051–3065 (2016). https://doi.org/10.1007/s00170-016-8416-8Article Google Scholar 
  65. 65.M. Ferguson, R. Ak, Y.T. Lee, K.H. Law, Automatic localization of casting defects with convolutional neural networks, in 2017 IEEE International Conference on Big Data (Big Data) (Boston, MA, USA, 2017), pp. 1726–1735. https://doi.org/10.1109/BigData.2017.8258115.
  66. 66.P.K.D.V. Yarlagadda, Prediction of die casting process parameters by using an artificial neural network model for zinc alloys. Int. J. Prod. Res. 38(1), 119–139 (2000). https://doi.org/10.1080/002075400189617Article MATH Google Scholar 
  67. 67.G.C. ManjunathPatel, A.K. Shettigar, P. Krishna, M.B. Parappagoudar, Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process. Appl. Soft Comput. 59, 418–437 (2017). https://doi.org/10.1016/j.asoc.2017.06.018Article Google Scholar 
  68. 68.J. Zheng, Q. Wang, P. Zhao et al., Optimization of high-pressure die-casting process parameters using artificial neural network. Int. J. Adv. Manuf. Technol. 44, 667–674 (2009). https://doi.org/10.1007/s00170-008-1886-6Article Google Scholar 
  69. 69.E. Mares, J. Sokolowski, Artificial intelligence-based control system for the analysis of metal casting properties. J. Achiev. Mater. Manuf. Eng. 40, 149–154 (2010)Google Scholar 
  70. 70.K.S. Senthil, S. Muthukumaran, C. Chandrasekhar Reddy, Suitability of friction welding of tube to tube plate using an external tool process for different tube diameters—a study. Exp. Tech. 37(6), 8–14 (2013)Article Google Scholar 
  71. 71.N.K. Bhoi, H. Singh, S. Pratap, P.K. Jain, Electromagnetic material processing: a clean, green, and sustainable approach. Sustain. Eng. Prod. Manuf. Technol. (2019). https://doi.org/10.1016/b978-0-12-816564-5.00001-3Article Google Scholar 
  72. 72.K.S. Senthil, D.A. Daniel, An investigation of boiler grade tube and tube plate without block by using friction welding process. Mater. Today Proc. 5(2), 8567–8576 (2018)Article Google Scholar 
  73. 73.E. Hetmaniok, D. Słota, A. Zielonka, Restoration of the cooling conditions in a three-dimensional continuous casting process using artificial intelligence algorithms. Appl. Math. Modell. 39(16), 4797–4807 (2015). https://doi.org/10.1016/j.apm.2015.03.056Article MATH Google Scholar 
  74. 74.C.V. Kumar, S. Muthukumaran, A. Pradeep, S.S. Kumaran, Optimizational study of friction welding of steel tube to aluminum tube plate using an external tool process. Int. J. Mech. Mater. Eng. 6(2), 300–306 (2011)Google Scholar 
  75. 75.T. Adithiyaa, D. Chandramohan, T. Sathish, Optimal prediction of process parameters by GWO-KNN in stirring-squeeze casting of AA2219 reinforced metal matrix composites. Mater. Today Proc. 150, 1598 (2020). https://doi.org/10.1016/j.matpr.2019.10.051Article Google Scholar 
  76. 76.B.P. Pehrson, A.F. Moore (2014). U.S. Patent No. 8708031 (U.S. Patent and Trademark Office, Washington, DC, 2014)
  77. 77.Liu, J., & Rynerson, M. L. (2008). U.S. Patent No. 7,461,684. Washington, DC: U.S. Patent and Trademark Office.
  78. 78.K. Salonitis, B. Zeng, H.A. Mehrabi, M. Jolly, The challenges for energy efficient casting processes. Procedia CIRP 40, 24–29 (2016). https://doi.org/10.1016/j.procir.2016.01.043Article Google Scholar 
  79. 79.R.R. Mishra, A.K. Sharma, Effect of solidification environment on microstructure and indentation hardness of Al–Zn–Mg alloy casts developed using electromagnetic heating. Int. J. Metal Cast. 10, 1–13 (2017). https://doi.org/10.1007/s40962-017-0176-1Article Google Scholar 
  80. 80.R.R. Mishra, A.K. Sharma, Effect of susceptor and Mold material on microstructure of in-situ electromagnetic casts of Al–Zn–Mg alloy. Mater. Des. 131, 428–440 (2017). https://doi.org/10.1016/j.matdes.2017.06.038Article Google Scholar 
  81. 81.S. Kaushal, S. Bohra, D. Gupta, V. Jain, On processing and characterization of Cu–Mo-based castings through electromagnetic heating. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00481-8Article Google Scholar 
  82. 82.S. Nandwani, S. Vardhan, A.K. Bagha, A literature review on the exposure time of electromagnetic based welding of different materials. Mater. Today Proc. (2019). https://doi.org/10.1016/j.matpr.2019.10.056Article Google Scholar 
  83. 83.F.J.B. Brum, S.C. Amico, I. Vedana, J.A. Spim, Electromagnetic dewaxing applied to the investment casting process. J. Mater. Process. Technol. 209(7), 3166–3171 (2009). https://doi.org/10.1016/j.jmatprotec.2008.07.024Article Google Scholar 
  84. 84.M.P. Reddy, R.A. Shakoor, G. Parande, V. Manakari, F. Ubaid, A.M.A. Mohamed, M. Gupta, Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through electromagnetic sintering and hot extrusion techniques. Prog. Nat. Sci. Mater. Int. 27(5), 606–614 (2017). https://doi.org/10.1016/j.pnsc.2017.08.015Article Google Scholar 
  85. 85.V.R. Kalamkar, K. Monkova, (Eds.), Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. (2021) https://doi.org/10.1007/978-981-15-3639-7
  86. 86.V. Bist, A.K. Sharma, P. Kumar, Development and microstructural characterisations of the lead casting using electromagnetic technology. Manager’s J. Mech. Eng. 4(4), 6 (2014). https://doi.org/10.26634/jme.4.4.2840Article Google Scholar 
  87. 87.A. Sharma, A. Chouhan, L. Pavithran, U. Chadha, S.K. Selvaraj, Implementation of LSS framework in automotive component manufacturing: a review, current scenario and future directions. Mater Today: Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.02.374Article Google Scholar 
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).

Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions

레이저 파우더 베드 융합 오버행 영역에서 표면 거칠기의 원인에 대한 실험 및 수치 조사

Shaochuan Feng,Amar M. Kamat,Soheil Sabooni &Yutao PeiPages S66-S84 | Received 18 Jan 2021, Accepted 25 Feb 2021, Published online: 10 Mar 2021

ABSTRACT

Surface roughness of laser powder bed fusion (L-PBF) printed overhang regions is a major contributor to deteriorated shape accuracy/surface quality. This study investigates the mechanisms behind the evolution of surface roughness (Ra) in overhang regions. The evolution of surface morphology is the result of a combination of border track contour, powder adhesion, warp deformation, and dross formation, which is strongly related to the overhang angle (θ). When 0° ≤ θ ≤ 15°, the overhang angle does not affect Ra significantly since only a small area of the melt pool boundaries contacts the powder bed resulting in slight powder adhesion. When 15° < θ ≤ 50°, powder adhesion is enhanced by the melt pool sinking and the increased contact area between the melt pool boundary and powder bed. When θ > 50°, large waviness of the overhang contour, adhesion of powder clusters, severe warp deformation and dross formation increase Ra sharply.

레이저 파우더 베드 퓨전 (L-PBF) 프린팅 오버행 영역의 표면 거칠기는 형상 정확도 / 표면 품질 저하의 주요 원인입니다. 이 연구 는 오버행 영역에서 표면 거칠기 (Ra ) 의 진화 뒤에 있는 메커니즘을 조사합니다 . 표면 형태의 진화는 오버행 각도 ( θ ) 와 밀접한 관련이있는 경계 트랙 윤곽, 분말 접착, 뒤틀림 변형 및 드로스 형성의 조합의 결과입니다 . 0° ≤  θ  ≤ 15° 인 경우 , 용융풀 경계의 작은 영역 만 분말 베드와 접촉하여 약간의 분말 접착이 발생하기 때문에 오버행 각도가 R a에 큰 영향을 주지 않습니다 . 15° < θ 일 때  ≤ 50°, 용융 풀 싱킹 및 용융 풀 경계와 분말 베드 사이의 증가된 접촉 면적으로 분말 접착력이 향상됩니다. θ  > 50° 일 때 오버행 윤곽의 큰 파형, 분말 클러스터의 접착, 심한 휨 변형 및 드 로스 형성이 Ra 급격히 증가 합니다.

KEYWORDS: Laser powder bed fusion (L-PBF), melt pool dynamics, overhang region, shape deviation, surface roughness

1. Introduction

레이저 분말 베드 융합 (L-PBF)은 첨단 적층 제조 (AM) 기술로, 집중된 레이저 빔을 사용하여 금속 분말을 선택적으로 융합하여 슬라이스 된 3D 컴퓨터 지원에 따라 층별로 3 차원 (3D) 금속 부품을 구축합니다. 설계 (CAD) 모델 (Chatham, Long 및 Williams 2019 ; Tan, Zhu 및 Zhou 2020 ). 재료가 인쇄 층 아래에 ​​존재하는지 여부에 따라 인쇄 영역은 각각 솔리드 영역 또는 돌출 영역으로 분류 될 수 있습니다. 따라서 오버행 영역은 고체 기판이 아니라 분말 베드 바로 위에 건설되는 특수 구조입니다 (Patterson, Messimer 및 Farrington 2017). 오버행 영역은지지 구조를 포함하거나 포함하지 않고 구축 할 수 있으며, 지지대가있는 돌출 영역의 L-PBF는 지지체가 더 낮은 밀도로 구축된다는 점을 제외 하고 (Wang and Chou 2018 ) 고체 기판의 공정과 유사합니다 (따라서 기계적 강도가 낮기 때문에 L-PBF 공정 후 기계적으로 쉽게 제거 할 수 있습니다. 따라서지지 구조로 인쇄 된 오버행 영역은 L-PBF 공정 후 지지물 제거, 연삭 및 연마와 같은 추가 후 처리 단계가 필요합니다.

수평 내부 채널의 제작과 같은 일부 특정 경우에는 공정 후 지지대를 제거하기가 어려우므로 채널 상단 절반의 돌출부 영역을 지지대없이 건설해야합니다 (Hopkinson and Dickens 2000 ). 수평 내부 채널에 사용할 수없는지지 구조 외에도 내부 표면, 특히 등각 냉각 채널 (Feng, Kamat 및 Pei 2021 ) 에서 발생하는 복잡한 3D 채널 네트워크의 경우 표면 마감 프로세스를 구현하는 것도 어렵습니다 . 결과적으로 오버행 영역은 (i) 잔류 응력에 의한 변형, (ii) 계단 효과 (Kuo et al. 2020 ; Li et al. 2020 )로 인해 설계된 모양에서 벗어날 수 있습니다 .) 및 (iii) 원하지 않는 분말 소결로 인한 향상된 표면 거칠기; 여기서, 앞의 두 요소는 일반적으로 mm 길이 스케일에서 ‘매크로’편차로 분류되고 후자는 일반적으로 µm 길이 스케일에서 ‘마이크로’편차로 인식됩니다.

열 응력에 의한 변형은 오버행 영역에서 발생하는 중요한 문제입니다 (Patterson, Messimer 및 Farrington 2017 ). 국부적 인 용융 / 냉각은 용융 풀 내부 및 주변에서 큰 온도 구배를 유도하여 응고 된 층에 집중적 인 열 응력을 유발합니다. 열 응력에 의한 뒤틀림은 고체 영역을 현저하게 변형하지 않습니다. 이러한 영역은 아래의 여러 레이어에 의해 제한되기 때문입니다. 반면에 오버행 영역은 구속되지 않고 공정 중 응력 완화로 인해 상당한 변형이 발생합니다 (Kamat 및 Pei 2019 ). 더욱이 용융 깊이는 레이어 두께보다 큽니다 (이전 레이어도 재용 해되어 빌드 된 레이어간에 충분한 결합을 보장하기 때문입니다 [Yadroitsev et al. 2013 ; Kamath et al.2014 ]),응고 된 두께가 설계된 두께보다 크기 때문에형태 편차 (예 : 드 로스 [Charles et al. 2020 ; Feng et al. 2020 ])가 발생합니다. 마이크로 스케일에서 인쇄 된 표면 (R a 및 S a ∼ 10 μm)은 기계적으로 가공 된 표면보다 거칠다 (Duval-Chaneac et al. 2018 ; Wen et al. 2018 ). 이 문제는고형화 된 용융 풀의 가장자리에 부착 된 용융되지 않은 분말의 결과로 표면 거칠기 (R a )가 일반적으로 약 20 μm인 오버행 영역에서 특히 심각합니다 (Mazur et al. 2016 ; Pakkanen et al. 2016 ).

오버행 각도 ( θ , 빌드 방향과 관련하여 측정)는 오버행 영역의 뒤틀림 편향과 표면 거칠기에 영향을 미치는 중요한 매개 변수입니다 (Kamat and Pei 2019 ; Mingear et al. 2019 ). θ ∼ 45 ° 의 오버행 각도 는 일반적으로지지 구조없이 오버행 영역을 인쇄 할 수있는 임계 값으로 합의됩니다 (Pakkanen et al. 2016 ; Kadirgama et al. 2018 ). θ 일 때이 임계 값보다 크면 오버행 영역을 허용 가능한 표면 품질로 인쇄 할 수 없습니다. 오버행 각도 외에도 레이저 매개 변수 (레이저 에너지 밀도와 관련된)는 용융 풀의 모양 / 크기 및 용융 풀 역학에 영향을줌으로써 오버행 영역의 표면 거칠기에 영향을줍니다 (Wang et al. 2013 ; Mingear et al . 2019 ).

용융 풀 역학은 고체 (Shrestha 및 Chou 2018 ) 및 오버행 (Le et al. 2020 ) 영역 모두에서 수행되는 L-PBF 공정을 포함한 레이저 재료 가공의 일반적인 물리적 현상입니다 . 용융 풀 모양, 크기 및 냉각 속도는 잔류 응력으로 인한 변형과 ​​표면 거칠기에 모두 영향을 미치므로 처리 매개 변수와 표면 형태 / 품질 사이의 다리 역할을하며 용융 풀을 이해하기 위해 수치 시뮬레이션을 사용하여 추가 조사를 수행 할 수 있습니다. 거동과 표면 거칠기에 미치는 영향. 현재까지 고체 영역의 L-PBF 동안 용융 풀 동작을 시뮬레이션하기 위해 여러 연구가 수행되었습니다. 유한 요소 방법 (FEM)과 같은 시뮬레이션 기술 (Roberts et al. 2009 ; Du et al.2019 ), 유한 차분 법 (FDM) (Wu et al. 2018 ), 전산 유체 역학 (CFD) (Lee and Zhang 2016 ), 임의의 Lagrangian-Eulerian 방법 (ALE) (Khairallah and Anderson 2014 )을 사용하여 증발 반동 압력 (Hu et al. 2018 ) 및 Marangoni 대류 (Zhang et al. 2018 ) 현상을포함하는 열 전달 (온도 장) 및 물질 전달 (용융 흐름) 프로세스. 또한 이산 요소법 (DEM)을 사용하여 무작위 분산 분말 베드를 생성했습니다 (Lee and Zhang 2016 ; Wu et al. 2018 ). 이 모델은 분말 규모의 L-PBF 공정을 시뮬레이션했습니다 (Khairallah et al. 2016) 메조 스케일 (Khairallah 및 Anderson 2014 ), 단일 트랙 (Leitz et al. 2017 )에서 다중 트랙 (Foroozmehr et al. 2016 ) 및 다중 레이어 (Huang, Khamesee 및 Toyserkani 2019 )로.

그러나 결과적인 표면 거칠기를 결정하는 오버행 영역의 용융 풀 역학은 문헌에서 거의 관심을받지 못했습니다. 솔리드 영역의 L-PBF에 대한 기존 시뮬레이션 모델이 어느 정도 참조가 될 수 있지만 오버행 영역과 솔리드 영역 간의 용융 풀 역학에는 상당한 차이가 있습니다. 오버행 영역에서 용융 금속은 분말 입자 사이의 틈새로 아래로 흘러 용융 풀이 다공성 분말 베드가 제공하는 약한 지지체 아래로 가라 앉습니다. 이것은 중력과 표면 장력의 영향이 용융 풀의 결과적인 모양 / 크기를 결정하는 데 중요하며, 결과적으로 오버행 영역의 마이크로 스케일 형태의 진화에 중요합니다. 또한 분말 입자 사이의 공극, 열 조건 (예 : 에너지 흡수,2019 ; Karimi et al. 2020 ; 노래와 영 2020 ). 표면 거칠기는 (마이크로) 형상 편차를 증가시킬뿐만 아니라 주기적 하중 동안 미세 균열의 시작 지점 역할을함으로써 기계적 강도를 저하시킵니다 (Günther et al. 2018 ). 오버행 영역의 높은 표면 거칠기는 (마이크로) 정확도 / 품질에 대한 엄격한 요구 사항이있는 부품 제조에서 L-PBF의 적용을 제한합니다.

본 연구는 실험 및 시뮬레이션 연구를 사용하여 오버행 영역 (지지물없이 제작)의 미세 형상 편차 형성 메커니즘과 표면 거칠기의 기원을 체계적이고 포괄적으로 조사합니다. 결합 된 DEM-CFD 시뮬레이션 모델은 경계 트랙 윤곽, 분말 접착 및 뒤틀림 변형의 효과를 고려하여 오버행 영역의 용융 풀 역학과 표면 형태의 형성 메커니즘을 나타 내기 위해 개발되었습니다. 표면 거칠기 R의 시뮬레이션 및 단일 요인 L-PBF 인쇄 실험을 사용하여 오버행 각도의 함수로 연구됩니다. 용융 풀의 침몰과 관련된 오버행 영역에서 분말 접착의 세 가지 메커니즘이 식별되고 자세히 설명됩니다. 마지막으로, 인쇄 된 오버행 영역에서 높은 표면 거칠기 문제를 완화 할 수 있는 잠재적 솔루션에 대해 간략하게 설명합니다.

The shape and size of the L-PBF printed samples are illustrated in Figure 1
The shape and size of the L-PBF printed samples are illustrated in Figure 1
Figure 2. Borders in the overhang region depending on the overhang angle θ
Figure 2. Borders in the overhang region depending on the overhang angle θ
Figure 3. (a) Profile of the volumetric heat source, (b) the model geometry of single-track printing on a solid substrate (unit: µm), and (c) the comparison of melt pool dimensions obtained from the experiment (right half) and simulation (left half) for a calibrated optical penetration depth of 110 µm (laser power 200 W and scan speed 800 mm/s, solidified layer thickness 30 µm, powder size 10–45 µm).
Figure 3. (a) Profile of the volumetric heat source, (b) the model geometry of single-track printing on a solid substrate (unit: µm), and (c) the comparison of melt pool dimensions obtained from the experiment (right half) and simulation (left half) for a calibrated optical penetration depth of 110 µm (laser power 200 W and scan speed 800 mm/s, solidified layer thickness 30 µm, powder size 10–45 µm).
Figure 4. The model geometry of an overhang being L-PBF processed: (a) 3D view and (b) right view.
Figure 4. The model geometry of an overhang being L-PBF processed: (a) 3D view and (b) right view.
Figure 5. The cross-sectional contour of border tracks in a 45° overhang region.
Figure 5. The cross-sectional contour of border tracks in a 45° overhang region.
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).
Figure 7. The overhang contour is contributed by (a) only outer borders when θ ≤ 60° (b) both inner borders and outer borders when θ > 60°.
Figure 7. The overhang contour is contributed by (a) only outer borders when θ ≤ 60° (b) both inner borders and outer borders when θ > 60°.
Figure 8. Schematic of powder adhesion on a 45° overhang region.
Figure 8. Schematic of powder adhesion on a 45° overhang region.
Figure 9. The L-PBF printed samples with various overhang angle (a) θ = 0° (cube), (b) θ = 30°, (c) θ = 45°, (d) θ = 55° and (e) θ = 60°.
Figure 9. The L-PBF printed samples with various overhang angle (a) θ = 0° (cube), (b) θ = 30°, (c) θ = 45°, (d) θ = 55° and (e) θ = 60°.
Figure 10. Two mechanisms of powder adhesion related to the overhang angle: (a) simulation-predicted, θ = 45°; (b) simulation-predicted, θ = 60°; (c, e) optical micrographs, θ = 45°; (d, f) optical micrographs, θ = 60°. (e) and (f) are partial enlargement of (c) and (d), respectively.
Figure 10. Two mechanisms of powder adhesion related to the overhang angle: (a) simulation-predicted, θ = 45°; (b) simulation-predicted, θ = 60°; (c, e) optical micrographs, θ = 45°; (d, f) optical micrographs, θ = 60°. (e) and (f) are partial enlargement of (c) and (d), respectively.
Figure 11. Simulation-predicted surface morphology in the overhang region at different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45°, (d) θ = 60° and (e) θ = 80° (Blue solid lines: simulation-predicted contour; red dashed lines: the planar profile of designed overhang region specified by the overhang angles).
Figure 11. Simulation-predicted surface morphology in the overhang region at different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45°, (d) θ = 60° and (e) θ = 80° (Blue solid lines: simulation-predicted contour; red dashed lines: the planar profile of designed overhang region specified by the overhang angles).
Figure 12. Effect of overhang angle on surface roughness Ra in overhang regions
Figure 12. Effect of overhang angle on surface roughness Ra in overhang regions
Figure 13. Surface morphology of L-PBF printed overhang regions with different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45° and (d) θ = 60° (overhang border parameters: P = 100 W, v = 1000 mm/s).
Figure 13. Surface morphology of L-PBF printed overhang regions with different overhang angle: (a) θ = 15°, (b) θ = 30°, (c) θ = 45° and (d) θ = 60° (overhang border parameters: P = 100 W, v = 1000 mm/s).
Figure 14. Effect of (a) laser power (scan speed = 1000 mm/s) and (b) scan speed (lase power = 100 W) on surface roughness Ra in overhang regions (θ = 45°, laser power and scan speed referred to overhang border parameters, and the other process parameters are listed in Table 2).
Figure 14. Effect of (a) laser power (scan speed = 1000 mm/s) and (b) scan speed (lase power = 100 W) on surface roughness Ra in overhang regions (θ = 45°, laser power and scan speed referred to overhang border parameters, and the other process parameters are listed in Table 2).

References

  • Cai, Chao, Chrupcala Radoslaw, Jinliang Zhang, Qian Yan, Shifeng Wen, Bo Song, and Yusheng Shi. 2019. “In-Situ Preparation and Formation of TiB/Ti-6Al-4V Nanocomposite via Laser Additive Manufacturing: Microstructure Evolution and Tribological Behavior.” Powder Technology 342: 73–84. doi:10.1016/j.powtec.2018.09.088. [Crossref], [Web of Science ®], [Google Scholar]
  • Cai, Chao, Wei Shian Tey, Jiayao Chen, Wei Zhu, Xingjian Liu, Tong Liu, Lihua Zhao, and Kun Zhou. 2021. “Comparative Study on 3D Printing of Polyamide 12 by Selective Laser Sintering and Multi Jet Fusion.” Journal of Materials Processing Technology 288 (August 2020): 116882. doi:10.1016/j.jmatprotec.2020.116882. [Crossref], [Web of Science ®], [Google Scholar]
  • Cai, Chao, Xu Wu, Wan Liu, Wei Zhu, Hui Chen, Jasper Dong Qiu Chua, Chen Nan Sun, Jie Liu, Qingsong Wei, and Yusheng Shi. 2020. “Selective Laser Melting of Near-α Titanium Alloy Ti-6Al-2Zr-1Mo-1V: Parameter Optimization, Heat Treatment and Mechanical Performance.” Journal of Materials Science and Technology 57: 51–64. doi:10.1016/j.jmst.2020.05.004. [Crossref], [Web of Science ®], [Google Scholar]
  • Charles, Amal, Ahmed Elkaseer, Lore Thijs, and Steffen G. Scholz. 2020. “Dimensional Errors Due to Overhanging Features in Laser Powder Bed Fusion Parts Made of Ti-6Al-4V.” Applied Sciences 10 (7): 2416. doi:10.3390/app10072416. [Crossref], [Google Scholar]
  • Chatham, Camden A., Timothy E. Long, and Christopher B. Williams. 2019. “A Review of the Process Physics and Material Screening Methods for Polymer Powder Bed Fusion Additive Manufacturing.” Progress in Polymer Science 93: 68–95. doi:10.1016/j.progpolymsci.2019.03.003. [Crossref], [Web of Science ®], [Google Scholar]
  • Du, Yang, Xinyu You, Fengbin Qiao, Lijie Guo, and Zhengwu Liu. 2019. “A Model for Predicting the Temperature Field during Selective Laser Melting.” Results in Physics 12 (November 2018): 52–60. doi:10.1016/j.rinp.2018.11.031. [Crossref], [Web of Science ®], [Google Scholar]
  • Duval-Chaneac, M. S., S. Han, C. Claudin, F. Salvatore, J. Bajolet, and J. Rech. 2018. “Experimental Study on Finishing of Internal Laser Melting (SLM) Surface with Abrasive Flow Machining (AFM).” Precision Engineering 54 (July 2017): 1–6. doi:10.1016/j.precisioneng.2018.03.006. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Shijie Chen, Amar M. Kamat, Ru Zhang, Mingji Huang, and Liangcai Hu. 2020. “Investigation on Shape Deviation of Horizontal Interior Circular Channels Fabricated by Laser Powder Bed Fusion.” Additive Manufacturing 36 (December): 101585. doi:10.1016/j.addma.2020.101585. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Chuanzhen Huang, Jun Wang, Hongtao Zhu, Peng Yao, and Zhanqiang Liu. 2017. “An Analytical Model for the Prediction of Temperature Distribution and Evolution in Hybrid Laser-Waterjet Micro-Machining.” Precision Engineering 47: 33–45. doi:10.1016/j.precisioneng.2016.07.002. [Crossref], [Web of Science ®], [Google Scholar]
  • Feng, Shaochuan, Amar M. Kamat, and Yutao Pei. 2021. “Design and Fabrication of Conformal Cooling Channels in Molds: Review and Progress Updates.” International Journal of Heat and Mass Transfer. doi:10.1016/j.ijheatmasstransfer.2021.121082. [Crossref], [PubMed], [Web of Science ®], [Google Scholar]
  • Flow-3D V11.2 Documentation. 2016. Flow Science, Inc. [Crossref], [Google Scholar]
  • Foroozmehr, Ali, Mohsen Badrossamay, Ehsan Foroozmehr, and Sa’id Golabi. 2016. “Finite Element Simulation of Selective Laser Melting Process Considering Optical Penetration Depth of Laser in Powder Bed.” Materials and Design 89: 255–263. doi:10.1016/j.matdes.2015.10.002. [Crossref], [Web of Science ®], [Google Scholar]
  • “Geometrical Product Specifications (GPS) — Surface Texture: Profile Method — Rules and Procedures for the Assessment of Surface Texture (ISO 4288).” 1996. International Organization for Standardization. https://www.iso.org/standard/2096.html. [Google Scholar]
  • Günther, Johannes, Stefan Leuders, Peter Koppa, Thomas Tröster, Sebastian Henkel, Horst Biermann, and Thomas Niendorf. 2018. “On the Effect of Internal Channels and Surface Roughness on the High-Cycle Fatigue Performance of Ti-6Al-4V Processed by SLM.” Materials & Design 143: 1–11. doi:10.1016/j.matdes.2018.01.042. [Crossref], [Web of Science ®], [Google Scholar]
  • Hopkinson, Neil, and Phill Dickens. 2000. “Conformal Cooling and Heating Channels Using Laser Sintered Tools.” In Solid Freeform Fabrication Conference, 490–497. Texas. doi:10.26153/tsw/3075. [Crossref], [Google Scholar]
  • Hu, Zhiheng, Haihong Zhu, Changchun Zhang, Hu Zhang, Ting Qi, and Xiaoyan Zeng. 2018. “Contact Angle Evolution during Selective Laser Melting.” Materials and Design 139: 304–313. doi:10.1016/j.matdes.2017.11.002. [Crossref], [Web of Science ®], [Google Scholar]
  • Hu, Cheng, Kejia Zhuang, Jian Weng, and Donglin Pu. 2019. “Three-Dimensional Analytical Modeling of Cutting Temperature for Round Insert Considering Semi-Infinite Boundary and Non-Uniform Heat Partition.” International Journal of Mechanical Sciences 155 (October 2018): 536–553. doi:10.1016/j.ijmecsci.2019.03.019. [Crossref], [Web of Science ®], [Google Scholar]
  • Huang, Yuze, Mir Behrad Khamesee, and Ehsan Toyserkani. 2019. “A New Physics-Based Model for Laser Directed Energy Deposition (Powder-Fed Additive Manufacturing): From Single-Track to Multi-Track and Multi-Layer.” Optics & Laser Technology 109 (August 2018): 584–599. doi:10.1016/j.optlastec.2018.08.015. [Crossref], [Web of Science ®], [Google Scholar]
  • Kadirgama, K., W. S. W. Harun, F. Tarlochan, M. Samykano, D. Ramasamy, Mohd Zaidi Azir, and H. Mehboob. 2018. “Statistical and Optimize of Lattice Structures with Selective Laser Melting (SLM) of Ti6AL4V Material.” International Journal of Advanced Manufacturing Technology 97 (1–4): 495–510. doi:10.1007/s00170-018-1913-1. [Crossref], [Web of Science ®], [Google Scholar]
  • Kamat, Amar M, and Yutao Pei. 2019. “An Analytical Method to Predict and Compensate for Residual Stress-Induced Deformation in Overhanging Regions of Internal Channels Fabricated Using Powder Bed Fusion.” Additive Manufacturing 29 (March): 100796. doi:10.1016/j.addma.2019.100796. [Crossref], [Web of Science ®], [Google Scholar]
  • Kamath, Chandrika, Bassem El-Dasher, Gilbert F. Gallegos, Wayne E. King, and Aaron Sisto. 2014. “Density of Additively-Manufactured, 316L SS Parts Using Laser Powder-Bed Fusion at Powers up to 400 W.” International Journal of Advanced Manufacturing Technology 74 (1–4): 65–78. doi:10.1007/s00170-014-5954-9. [Crossref], [Web of Science ®], [Google Scholar]
  • Karimi, J., C. Suryanarayana, I. Okulov, and K. G. Prashanth. 2020. “Selective Laser Melting of Ti6Al4V: Effect of Laser Re-Melting.” Materials Science and Engineering A (July): 140558. doi:10.1016/j.msea.2020.140558. [Crossref], [Web of Science ®], [Google Scholar]
  • Khairallah, Saad A., and Andy Anderson. 2014. “Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder.” Journal of Materials Processing Technology 214 (11): 2627–2636. doi:10.1016/j.jmatprotec.2014.06.001. [Crossref], [Web of Science ®], [Google Scholar]
  • Khairallah, Saad A., Andrew T. Anderson, Alexander Rubenchik, and Wayne E. King. 2016. “Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones.” Edited by Adedeji B. Badiru, Vhance V. Valencia, and David Liu. Acta Materialia 108 (April): 36–45. doi:10.1016/j.actamat.2016.02.014. [Crossref], [Web of Science ®], [Google Scholar]
  • Kuo, C. N., C. K. Chua, P. C. Peng, Y. W. Chen, S. L. Sing, S. Huang, and Y. L. Su. 2020. “Microstructure Evolution and Mechanical Property Response via 3D Printing Parameter Development of Al–Sc Alloy.” Virtual and Physical Prototyping 15 (1): 120–129. doi:10.1080/17452759.2019.1698967. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Le, K. Q., C. H. Wong, K. H. G. Chua, C. Tang, and H. Du. 2020. “Discontinuity of Overhanging Melt Track in Selective Laser Melting Process.” International Journal of Heat and Mass Transfer 162 (December): 120284. doi:10.1016/j.ijheatmasstransfer.2020.120284. [Crossref], [Web of Science ®], [Google Scholar]
  • Lee, Y. S., and W. Zhang. 2016. “Modeling of Heat Transfer, Fluid Flow and Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser Powder Bed Fusion.” Additive Manufacturing 12: 178–188. doi:10.1016/j.addma.2016.05.003. [Crossref], [Web of Science ®], [Google Scholar]
  • Leitz, K. H., P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L. S. Sigl. 2017. “Multi-Physical Simulation of Selective Laser Melting.” Metal Powder Report 72 (5): 331–338. doi:10.1016/j.mprp.2016.04.004. [Crossref], [Google Scholar]
  • Li, Jian, Jing Hu, Yi Zhu, Xiaowen Yu, Mengfei Yu, and Huayong Yang. 2020. “Surface Roughness Control of Root Analogue Dental Implants Fabricated Using Selective Laser Melting.” Additive Manufacturing 34 (September 2019): 101283. doi:10.1016/j.addma.2020.101283. [Crossref], [Web of Science ®], [Google Scholar]
  • Li, Yingli, Kun Zhou, Pengfei Tan, Shu Beng Tor, Chee Kai Chua, and Kah Fai Leong. 2018. “Modeling Temperature and Residual Stress Fields in Selective Laser Melting.” International Journal of Mechanical Sciences 136 (February): 24–35. doi:10.1016/j.ijmecsci.2017.12.001. [Crossref], [Web of Science ®], [Google Scholar]
  • Mazur, MacIej, Martin Leary, Matthew McMillan, Joe Elambasseril, and Milan Brandt. 2016. “SLM Additive Manufacture of H13 Tool Steel with Conformal Cooling and Structural Lattices.” Rapid Prototyping Journal 22 (3): 504–518. doi:10.1108/RPJ-06-2014-0075. [Crossref], [Web of Science ®], [Google Scholar]
  • Mingear, Jacob, Bing Zhang, Darren Hartl, and Alaa Elwany. 2019. “Effect of Process Parameters and Electropolishing on the Surface Roughness of Interior Channels in Additively Manufactured Nickel-Titanium Shape Memory Alloy Actuators.” Additive Manufacturing 27 (October 2018): 565–575. doi:10.1016/j.addma.2019.03.027. [Crossref], [Web of Science ®], [Google Scholar]
  • Pakkanen, Jukka, Flaviana Calignano, Francesco Trevisan, Massimo Lorusso, Elisa Paola Ambrosio, Diego Manfredi, and Paolo Fino. 2016. “Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys.” Metallurgical and Materials Transactions A 47 (8): 3837–3844. doi:10.1007/s11661-016-3478-7. [Crossref], [Web of Science ®], [Google Scholar]
  • Patterson, Albert E., Sherri L. Messimer, and Phillip A. Farrington. 2017. “Overhanging Features and the SLM/DMLS Residual Stresses Problem: Review and Future Research Need.” Technologies 5 (4): 15. doi:10.3390/technologies5020015. [Crossref], [Web of Science ®], [Google Scholar]
  • Roberts, I. A., C. J. Wang, R. Esterlein, M. Stanford, and D. J. Mynors. 2009. “A Three-Dimensional Finite Element Analysis of the Temperature Field during Laser Melting of Metal Powders in Additive Layer Manufacturing.” International Journal of Machine Tools and Manufacture 49 (12–13): 916–923. doi:10.1016/j.ijmachtools.2009.07.004. [Crossref], [Web of Science ®], [Google Scholar]
  • Shrestha, Subin, and Kevin Chou. 2018. “Computational Analysis of Thermo-Fluid Dynamics with Metallic Powder in SLM.” In CFD Modeling and Simulation in Materials Processing 2018, edited by Laurentiu Nastac, Koulis Pericleous, Adrian S. Sabau, Lifeng Zhang, and Brian G. Thomas, 85–95. Cham, Switzerland: Springer Nature. doi:10.1007/978-3-319-72059-3_9. [Crossref], [Google Scholar]
  • Sing, S. L., and W. Y. Yeong. 2020. “Laser Powder Bed Fusion for Metal Additive Manufacturing: Perspectives on Recent Developments.” Virtual and Physical Prototyping 15 (3): 359–370. doi:10.1080/17452759.2020.1779999. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
  • Šmilauer, Václav, Emanuele Catalano, Bruno Chareyre, Sergei Dorofeenko, Jérôme Duriez, Nolan Dyck, Jan Eliáš, et al. 2015. Yade Documentation. 2nd ed. The Yade Project. doi:10.5281/zenodo.34073. [Crossref], [Google Scholar]
  • Tan, Pengfei, Fei Shen, Biao Li, and Kun Zhou. 2019. “A Thermo-Metallurgical-Mechanical Model for Selective Laser Melting of Ti6Al4V.” Materials & Design 168 (April): 107642. doi:10.1016/j.matdes.2019.107642. [Crossref], [Web of Science ®], [Google Scholar]
  • Tan, Lisa Jiaying, Wei Zhu, and Kun Zhou. 2020. “Recent Progress on Polymer Materials for Additive Manufacturing.” Advanced Functional Materials 30 (43): 1–54. doi:10.1002/adfm.202003062. [Crossref], [Web of Science ®], [Google Scholar]
  • Wang, Xiaoqing, and Kevin Chou. 2018. “Effect of Support Structures on Ti-6Al-4V Overhang Parts Fabricated by Powder Bed Fusion Electron Beam Additive Manufacturing.” Journal of Materials Processing Technology 257 (February): 65–78. doi:10.1016/j.jmatprotec.2018.02.038. [Crossref], [Web of Science ®], [Google Scholar]
  • Wang, Di, Yongqiang Yang, Ziheng Yi, and Xubin Su. 2013. “Research on the Fabricating Quality Optimization of the Overhanging Surface in SLM Process.” International Journal of Advanced Manufacturing Technology 65 (9–12): 1471–1484. doi:10.1007/s00170-012-4271-4. [Crossref], [Web of Science ®], [Google Scholar]
  • Wen, Peng, Maximilian Voshage, Lucas Jauer, Yanzhe Chen, Yu Qin, Reinhart Poprawe, and Johannes Henrich Schleifenbaum. 2018. “Laser Additive Manufacturing of Zn Metal Parts for Biodegradable Applications: Processing, Formation Quality and Mechanical Properties.” Materials and Design 155: 36–45. doi:10.1016/j.matdes.2018.05.057. [Crossref], [Web of Science ®], [Google Scholar]
  • Wu, Yu-che, Cheng-hung San, Chih-hsiang Chang, Huey-jiuan Lin, Raed Marwan, Shuhei Baba, and Weng-Sing Hwang. 2018. “Numerical Modeling of Melt-Pool Behavior in Selective Laser Melting with Random Powder Distribution and Experimental Validation.” Journal of Materials Processing Technology 254 (November 2017): 72–78. doi:10.1016/j.jmatprotec.2017.11.032. [Crossref], [Web of Science ®], [Google Scholar]
  • Yadroitsev, I., P. Krakhmalev, I. Yadroitsava, S. Johansson, and I. Smurov. 2013. “Energy Input Effect on Morphology and Microstructure of Selective Laser Melting Single Track from Metallic Powder.” Journal of Materials Processing Technology 213 (4): 606–613. doi:10.1016/j.jmatprotec.2012.11.014. [Crossref], [Web of Science ®], [Google Scholar]
  • Yu, Wenhui, Swee Leong Sing, Chee Kai Chua, and Xuelei Tian. 2019. “Influence of Re-Melting on Surface Roughness and Porosity of AlSi10Mg Parts Fabricated by Selective Laser Melting.” Journal of Alloys and Compounds 792: 574–581. doi:10.1016/j.jallcom.2019.04.017. [Crossref], [Web of Science ®], [Google Scholar]
  • Zhang, Dongyun, Pudan Zhang, Zhen Liu, Zhe Feng, Chengjie Wang, and Yanwu Guo. 2018. “Thermofluid Field of Molten Pool and Its Effects during Selective Laser Melting (SLM) of Inconel 718 Alloy.” Additive Manufacturing 21 (100): 567–578. doi:10.1016/j.addma.2018.03.031. [Crossref], [Web of Science ®], [Google Scholar]
Fig. 1. Schematic description of the laser welding process considered in this study.

Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding

Won-Ik Cho, Peer Woizeschke
Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Straße 5, Bremen 28359, Germany

Received 30 July 2020, Revised 3 October 2020, Accepted 18 October 2020, Available online 1 November 2020.

Abstract

Molten pool flow and heat transfer in a laser welding process using beam oscillation and filler wire feeding were calculated using computational fluid dynamics (CFD). There are various indirect methods used to analyze the molten pool dynamics in fusion welding. In this work, based on the simulation results, the surface fluctuation was directly measured to enable a more intuitive analysis, and then the signal was analyzed using the Fourier transform and wavelet transform in terms of the beam oscillation frequency and buttonhole formation. The 1st frequency (2 x beam oscillation frequency, the so-called chopping frequency), 2nd frequency (4 x beam oscillation frequency), and beam oscillation frequency components were the main components found. The 1st and 2nd frequency components were caused by the effect of the chopping process and lumped line energy. The beam oscillation frequency component was related to rapid, unstable molten pool behavior. The wavelet transform effectively analyzed the rapid behaviors based on the change of the frequency components over time.

Korea Abstract

빔 진동 및 필러 와이어 공급을 사용하는 레이저 용접 공정에서 용융 풀 흐름 및 열 전달은 CFD (전산 유체 역학)를 사용하여 계산되었습니다. 용융 용접에서 용융 풀 역학을 분석하는 데 사용되는 다양한 간접 방법이 있습니다.

본 연구에서는 시뮬레이션 결과를 바탕으로 보다 직관적 인 분석이 가능하도록 표면 변동을 직접 측정 한 후 빔 발진 주파수 및 버튼 홀 형성 측면에서 푸리에 변환 및 웨이블릿 변환을 사용하여 신호를 분석했습니다.

1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분이 발견 된 주요 구성 요소였습니다. 1 차 및 2 차 주파수 성분은 쵸핑 공정과 집중 라인 에너지의 영향으로 인해 발생했습니다.

빔 진동 주파수 성분은 빠르고 불안정한 용융 풀 동작과 관련이 있습니다. 웨이블릿 변환은 시간 경과에 따른 주파수 구성 요소의 변화를 기반으로 빠른 동작을 효과적으로 분석했습니다.

1 . 소개

융합 용접에서 용융 풀 역학은 용접 결함과 시각적 이음새 품질에 직접적인 영향을 미칩니다. 이러한 역학을 연구하기 위해 고속 카메라를 사용하는 직접 방법과 광학 또는 음향 신호를 사용하는 간접 방법과 같은 다양한 측정 방법을 사용하여 여러 실험 방법을 고려했습니다. 시간 도메인의 원래 신호는 특별히 주파수 도메인에서 변환 된 신호로 변환되어 용융 풀 동작에 영향을 미치는 주파수 성분을 분석합니다. Kotecki et al. (1972)는 고속 카메라를 사용하여 가스 텅스텐 아크 용접에서 용융 풀을 관찰했습니다. [1]. 그들은 120Hz 리플 DC 출력을 가진 용접 전원을 사용할 때 용융 풀 진동 주파수가 120Hz임을 보여주었습니다. 전원을 끈 후 진동 주파수는 용융 풀의 고유 주파수를 나타내는 용융 풀 크기와 관련이 있습니다. 진동은 응고 중에 용접 표면 스케일링을 생성했습니다. Zacksenhouse and Hardt (1983)는 레이저 섀도 잉 동작 측정 기술을 사용하여 가스 텅스텐 아크 용접에서 완전히 관통 된 용융 풀의 동작을 측정했습니다 [2] . 그들은 2.5mm 두께의 강판에서 6mm 풀 반경 (고정 용접)에 대해 용융 풀의 고유 주파수가 18.9Hz라는 것을 발견했습니다. Semak et al. (1995) 고속 카메라를 사용하여 레이저 스폿 용접에서 용융 풀 및 키홀 역학 조사 [3]. 그들은 깊이가 약 3mm이고 반경이 약 3mm 인 용융 풀에서 200Hz의 낮은 체적 진동 주파수를 관찰했습니다. 0.45mm Aendenroomer와 den Ouden (1998)은 강철의 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동을보고했습니다 [4] . 그들은 침투 깊이에 따라 진동 모드 변화를 보였고 주파수는 50Hz에서 150Hz 사이에서 변화했습니다. 주파수는 완전히 침투 된 용융 풀에서 더 낮았습니다. Hermans와 den Ouden (1999)은 단락 가스 금속 아크 용접에서 용융 풀 진동을 분석했습니다. [5]. 그들은 용융 풀의 단락 주파수와 고유 주파수가 같을 때 부분적으로 침투 된 용융 풀의 경우 공정 안정성이 향상되었음을 보여주었습니다. Yudodibroto et al. (2004)는 가스 텅스텐 아크 용접에서 용융 풀 진동에 대한 필러 와이어의 영향을 조사했습니다 [6] . 그들은 금속 전달이 특히 부분적으로 침투 된 용융 풀에서 진동 거동을 방해한다는 것을 보여주었습니다. Geiger et al. (2009) 레이저 키홀 용접에서 발광 분석 [7]. 신호의 주파수 분석을 사용하여 용융 풀 (1.5kHz 미만)과 키홀 (약 3kHz)에 해당하는 진동 주파수 범위를 찾았습니다. Kägeler와 Schmidt (2010)는 레이저 용접에서 용융 풀 크기의 변화를 관찰하기 위해 고속 카메라를 사용했습니다 [8] . 그들은 용융 풀에서 지배적 인 저주파 진동 성분 (100Hz 미만)을 발견했습니다. Shi et al. (2015) 고속 카메라를 사용하여 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동 주파수 분석 [9]. 그들은 용접 침투 깊이가 작을수록 용융 풀의 진동 빈도가 더 높다는 것을 보여주었습니다. 추출 된 진동 주파수는 완전 용입 용접의 경우 85Hz 미만 이었지만 부분 용입 용접의 경우 110Hz에서 125Hz 사이였습니다. Volpp와 Vollertsen (2016)은 레이저 키홀 역학을 분석하기 위해 광학 신호를 사용했습니다 [10] . 그들은 공간 레이저 강도 분포로 인해 0.8에서 154 kHz 사이의 고주파 범위에서 피크를 발견했습니다. 위에서 언급 한 실험적 접근법은 공정 조건, 측정 방법 및 측정 된 위치에 따라 수십 Hz에서 수십 kHz까지 광범위한 용융 풀 역학에 대한 결과를 보여 주었다는 점에 유의해야합니다.

융합 용접에서 용융 풀 역학을 연구하기 위해 분석 접근 방식도 사용되었습니다. Zacksenhouse와 Hardt (1983)는 2.5mm 두께의 강판에서 대칭형 완전 관통 용융 풀의 고유 진동수를 계산했습니다 [2] . 매스 스프링 해석 모델을 사용하여 용융 풀 반경 6mm (고정 용접)에 대해 20.4Hz (실험에서 18.9Hz)의 고유 진동수와 3mm 풀 반경 (연속 용접)에 대해 40Hz의 고유 진동수를 예측했습니다. ). Postacioglu et al. (1989)는 원통형 용융 풀과 키홀을 가정하여 레이저 용접의 용융 풀에서 키홀 진동의 고유 진동수를 계산했습니다 .. 특정 열쇠 구멍 모양의 경우 약 900Hz의 기본 주파수가 계산되었습니다. Postacioglu et al. (1991)은 또한 레이저 용접에서 용접 속도를 고려하기 위해 타원형 용융 풀의 고유 진동수를 계산했습니다 [12] . 그들은 타원형 용융 풀의 모양이 고유 진동수에 영향을 미친다는 것을 보여주었습니다. 고유 진동수는 축의 길이 비율이 낮았으며, 즉 타원의 반장 축과 반 단축의 비율이 낮았습니다. Kroos et al. (1993)은 축 대칭 용융 풀과 키홀을 가정하여 레이저 키홀 용접의 동적 거동에 대한 이론적 모델을 개발했습니다 .. 키홀 폐쇄 시간은 0.1ms였으며 안정성 분석은 약 500Hz의 주파수에서 공진과 같은 진동을 예측했습니다. Maruo와 Hirata (1993)는 완전 관통 아크 용접에서 용융 풀을 모델링했습니다 [14] . 그들은 녹은 웅덩이가 정적 타원 모양을 가지고 있다고 가정했습니다. 그들은 고유 진동수와 진동 모드 사이의 관계를 조사하고 용융 풀 크기가 감소함에 따라 고유 진동수가 증가한다는 것을 보여주었습니다. Klein et al. (1994)는 원통형 키홀 모양을 사용하여 완전 침투 레이저 용접에서 키홀 진동을 연구했습니다 [15] . 그들은 점성 감쇠로 인해 키홀 진동이 낮은 kHz 범위로 제한된다는 것을 보여주었습니다. Klein et al. (1996)은 또한 레이저 출력의 작은 변동이 강한 키홀 진동으로 이어질 수 있음을 보여주었습니다[16] . 그들은 키홀 진동의 주요 공진 주파수 범위가 500 ~ 3500Hz라는 것을 발견했습니다. Andersen et al. (1997)은 고정 가스 텅스텐 아크 용접 [17] 에서 고정 된 원통형 모양을 가정하여 용융 풀의 고유 진동수를 예측 했으며 완전 용입 용접에서 용융 풀 폭이 증가함에 따라 감소하는 것으로 나타났습니다. 3.175mm 두께의 강판의 경우 주파수는 20Hz ~ 100Hz 범위였습니다. 위에 표시된 분석 방법은 일반적으로 단순한 용융 풀 모양을 가정하고 고유 진동수를 계산했습니다. 이것은 단순한 용융 풀 모양으로 고정 용접 공정을 분석하는 데 충분하지만 대부분의 용접 사례를 설명하는 과도 용접 공정에서 용융 풀 역학 분석에는 적합하지 않습니다.

반면에 수치 접근 방식은 고온 및 강한 빛과 같은 실험적 제한없이 자세한 정보를 제공하기 때문에 용융 풀 역학을 분석하는 이점이 있습니다. 전산 유체 역학 (CFD)의 수치 시뮬레이션 기술이 발전함에 따라 용융 풀 역학 분석에 대한 많은 연구가 수행되었습니다. 실제 용융 표면 변화는 VOF (체적 부피) 방법을 사용하여 계산할 수 있습니다. Cho et al. (2010) CO 2 레이저-아크 하이브리드 용접 공정을 위한 수학적 모델 개발 [18], 구형 방울이 생성 된 금속 와이어의 용융 과정이 와이어 공급 속도와 일치한다고 가정합니다. 그들은 필러 와이어가 희석되는 용융 풀 동작을 보여주었습니다. Cho et al. (2012)는 높은 빔 품질과 높은 금속 흡수율로 인해 업계에서 널리 사용되는 디스크 레이저 키홀 용접으로 수학적 모델을 확장했습니다 [19] . 그들은 열쇠 구멍에서 레이저 광선 번들의 다중 반사를 고려하고 용융 풀에서 keyholing과 같은 빠른 표면 변화를 자세히보고했습니다. 최근 CFD 시뮬레이션은 험핑 (Otto et al., 2016 [20] ) 및 기공 (Lin et al., 2017 [21] )과 같은보다 구체적인 현상을 분석하는데도 사용되었습니다 .) 레이저 용접에서. 그러나 용융 풀 역학과 관련된 연구는 거의 수행되지 않았습니다. Ko et al. (2000)은 수치 시뮬레이션을 사용하여 가스 텅스텐 아크 용접 풀의 동적 거동을 조사했습니다 [22] . 그들은 완전히 침투 된 용융 풀이 부분적으로 침투 된 풀보다 낮은 주파수에서 진동한다는 것을 보여주었습니다. 진동은 수십 분의 1 초 내에 무시할 수있는 크기로 감쇠되었습니다. Geiger et al. (2009)는 또한 수치 시뮬레이션을 사용하여 레이저 용접에서 용융 풀 거동을 보여주었습니다 [7]. 그들은 계산 된 증발 속도를 주파수 분석에 사용하여 공정에서 나오는 빛의 실험 결과와 비교했습니다. 판금 레이저 용접에서 중요한 공간 빔 진동 및 추가 필러 재료가있는 공정에 대한 용융 풀 역학에 대한 연구도 불충분합니다. Hu et al. (2018)은 금속 전달 메커니즘을 밝히기 위해 전자빔 3D 프린팅에서 와이어 공급 모델링을 수행했습니다. 그들은 주로 열 입력에 의해 결정되는 액체 브리지 전이, 액적 전이 및 중간 전이의 세 가지 유형의 금속 전달 모드를 보여주었습니다 .. Meng et al. (2020)은 레이저 빔 용접에서 용융 풀에 필러 와이어에 의해 추가 된 추가 요소의 전자기 교반 효과를 모델링했습니다. 용가재의 연속적인 액체 브릿지 이동이 가정되었고, 그 결과 전자기 교반의 영향이 키홀 깊이에 미미한 반면 필러 와이어 혼합을 향상 시켰습니다 [24] . Cho et al. (2017) 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하여 레이저 용접을위한 시뮬레이션 모델 개발 [25]. 그들은 시뮬레이션을 사용하여 특정 용접 현상, 즉 용융 풀의 단추 구멍 형성을 보여주었습니다. Cho et al. (2018)은 다중 반사 수와 전력 흡수량의 푸리에 변환을 사용하여 주파수 영역에서 소위 쵸핑 주파수 (2 x 빔 발진 주파수) 성분을 발견했습니다 [26] . 그러나 그들은 용융 풀 역학을 분석하기 위해 간접 신호를 사용했습니다. 따라서보다 직관적 인 분석을 위해서는 표면의 변동을 직접 측정해야합니다.

이 연구는 이전 연구에서 개발 된 레이저 용접 모델을 사용하여 3 차원 과도 CFD 시뮬레이션을 수행하여 빔 진동 및 필러 와이어 공급을 포함한 레이저 용접 공정에서 용융 풀 역학을 조사합니다. 용융 된 풀 표면의 시간적 변화는 시뮬레이션 결과에서 추출되었습니다. 추출 된 데이터는 주파수 영역뿐만 아니라 시간-주파수 영역에서도 분석되었습니다. 신호 처리를 통해 도출 된 결과는 특징적인 용융 풀 역학을 나타내며 빔 진동 주파수 및 단추 구멍 형성 측면에서 레이저 용접의 역학을 줄일 수있는 잠재력을 제공합니다.

2 . 방법론

그림 1도 1은 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하는 레이저 용접 프로세스의 개략적 설명을 보여줍니다. 1mm 두께의 알루미늄 합금 (AlSi1MgMn) 시트는 시트 표면에 초점을 맞춘 멀티 kW 파이버 레이저 (YLR-8000S, IPG Photonics, USA)를 사용하여 용접되었습니다. 시트는 에어 갭이있는 맞대기 이음으로 정렬되었습니다. 1 차원 스캐너 (ILV DC-Scanner, Ingenieurbüro für Lasertechnik + Verschleiss-Schutz (ILV), 독일)를 사용하여 레이저 빔의 1 차원 정현파 진동을 실현했습니다. 이 스캔 시스템에서 최대 진동 폭은 250Hz의 진동 주파수에서 1.4mm입니다. 오정렬에 대한 공차를 개선하기 위해 동일한 최대 너비 값이 사용되었습니다. 와이어 공급 시스템은 1을 공급했습니다. 2mm 직경의 알루미늄 합금 (AlSi5) 필러 와이어를 일정한 공급 속도로 에어 갭을 채 웁니다. 1mm 에어 갭의 경우 와이어 이송 속도는 용접 속도의 1.5 배 값으로 설정되었으며 참조 실험 조건은 문헌에서 얻었습니다 (Schultz, 2015 참조).[27] ).

그림 1

CFD 시뮬레이션은 레이저 용접에서 열 전달 및 용융 풀 동작을 계산하기 위해 수행되었습니다. 그림 2 는 CFD 시뮬레이션을위한 계산 영역을 보여줍니다. 실온에서 1.2mm 직경의 필러 와이어가 공급되고 레이저 빔이 진동했습니다. 1mm 두께의 공작물이 용접 속도로 왼쪽에서 오른쪽으로 이동했습니다. 0.1mm의 최소 메쉬 크기가 도메인에서 생성되었습니다. 침투 깊이가 더 깊은 이전 연구의 메쉬 테스트 결과는 0.2mm 이하의 메쉬 크기로 시뮬레이션 정확도가 확보 된 것으로 나타 났으므로 [28] 본 연구에서 사용 된 메쉬 크기가 적절할 수 있습니다. 도메인을 구성하는 세포의 수는 약 120 만 개였습니다. 1 번 테이블사용 된 레이저 용접 매개 변수를 보여줍니다. 용융 풀 역학 측면에서 다양한 진동 주파수와 에어 갭 크기가 고려되었으며 12 개의 용접 사례가 표 2 에 나와 있습니다. 표 3 은 시뮬레이션에 사용 된 알루미늄 합금과 순수 알루미늄 (Cho et al., 2018 [26] )의 표면 장력 계수를 제외하고 온도와 무관 한 열-물리적 재료 특성을 보여줍니다 . 여기서 표면 장력 계수는 액체 온도에서 온도와 표면 장력 계수 사이의 선형 관계를 가진 유일한 온도 의존적 ​​특성이었습니다.

그림 2

표 1 . . 레이저 용접 매개 변수.

레이저 용접 매개 변수
레이저 빔 파워3.0kW
빔 허리 반경50µm *
용접 속도6.0m / 분
와이어 공급 속도9.0m / 분
빔 진동 폭1.4mm
빔 진동 주파수100Hz, 150Hz, 200Hz, 250Hz
에어 갭 크기0.8mm, 0.9mm, 1.0mm, 1.1mm

반경은 1.07μm의 파장, 4.2mm • mrad의 빔 품질, 시준 초점 거리 및 초점 렌즈 200mm, 광섬유 직경 100μm의 원형 빔을 가정하여 계산되었습니다.

표 2 . 이 연구에서 고려한 용접 사례.

에어 갭 크기 [mm]진동 주파수 [Hz]
100150200250
0.9사례 1엑스엑스엑스
1.0사례 2사례 4사례 7사례 10
1.1사례 3사례 5사례 8사례 11
1.2엑스사례 6사례 912면

표 3 . 시뮬레이션에 사용 된 열 물리적 재료 특성 (Cho et al., 2018 [26] ).

특성상징
밀도ρ2700kg / m3
열 전도성케이1.7×102Wm K
점도ν1.15×10−삼kg / ms
표면 장력 계수 티엘*γ엘0.871 J / m2
표면 장력 온도 구배 *−1.55×10−4J / m 2 K
표면 장력 계수γγ엘−ㅏ(티−티엘)
비열8.5×102J / kg K
융합 잠열h에스엘3.36×105J / kg
기화 잠열 *hV1.05×107J / kg
Solidus 온도티에스847K
Liquidus 온도티엘905K
끓는점 *티비2743K

순수한 알루미늄.

시뮬레이션을 위해 단상 뉴턴 유체와 비압축성 층류가 가정되었습니다. 질량, 운동량 및 에너지 보존의 지배 방정식을 해결하여 계산 영역에서 속도, 압력 및 온도 분포를 얻었습니다. VOF 방법은 자유 표면 경계를 찾는 데 사용되었습니다. 스칼라 보존 방정식을 추가로 도입하여 용융 풀에서 충전재의 부피 분율을 계산했습니다. 시뮬레이션에 사용 된 레이저 용접의 수학적 모델은 다음과 같습니다. 레이저 빔은 가우스와 같은 전력 밀도 분포를 기반으로 697 개의 광선 에너지 번들로 나뉩니다. 광선 추적 방법을 사용하여 다중 반사를 고려했습니다. 재료에 대한 레이저 빔의 반사 (또는 흡수) 에너지는 프레 넬 반사 모델을 사용하여 계산되었습니다. 온도에 따른 흡수율의 변화를 고려 하였다. 혼합물의 흡수율은베이스 및 충전제 물질 분획의 가중 평균을 사용하여 계산되었습니다. 반동 압력과 부력도 고려되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다.[29] . 계산에는 48GB RAM이 장착 된 Intel® Xeon® 프로세서 E5649로 구성된 워크 스테이션이 사용되었습니다. 계산 시스템을 사용하여 0.2 초 레이저 용접을 시뮬레이션하는 데 약 18 시간이 걸렸습니다. 지배 방정식 (Cho and Woizeschke, 2020 [30] ) 및 레이저 용접 모델 (Cho et al., 2018 [26] )에 대한 자세한 설명은 부록 A 에서 확인할 수 있습니다 .

그림 3 은 용융 풀 변동의 직접 측정에 대한 개략적 설명을 보여줍니다. 용융 풀의 역학을 분석하기 위해 시뮬레이션 중에 용융 풀 표면의 시간적 변동 운동을 측정했습니다. 상단 및 하단 표면 모두에서 10kHz의 샘플링 주파수로 변동을 측정 한 반면, 측정 위치는 X 축의 레이저 빔 위치에서 2mm 떨어진 용접 중심선에있었습니다. 그림 4시간 신호를 분석하는 데 사용되는 푸리에 변환 및 웨이블릿 변환의 개략적 설명을 보여줍니다. 측정 된 시간 신호는 고속 푸리에 변환 (FFT) 방법을 사용하여 주파수 영역으로 변환되었습니다. 결과는 측정 기간 동안 평균화 된 주파수 성분의 크기를 보여줍니다. 웨이블릿 변환 방법은 시간-주파수 영역에서 국부적 인 특성을 찾는 데 사용되었습니다. 결과는 주파수 구성 요소의 크기뿐만 아니라 시간 변화도 보여줍니다.

그림 3
그림 4

3 . 결과

이 연구 에서는 표 2에 표시된 12 가지 용접 사례 를 시뮬레이션했습니다. 그림 5 는 3 차원 시뮬레이션 결과를 평면도 와 바닥면으로 보여줍니다. 결과는 용융 된 풀의 거동에 따라 분류 할 수 있습니다 : 단추 구멍 형성 없음 (녹색), 안정 또는 불안정 단추 구멍 있음 (파란색), 불안정한 단추 구멍으로 인한 구멍 결함 (빨간색). 일반적인 열쇠 구멍보다 훨씬 큰 직경을 가진 단추 구멍은 레이저 용접의 특정 진동 조건에서 나타날 수 있습니다 (Vollertsen, 2016 [31]). 진동 주파수가 증가함에 따라 용접 이음 부 코스 및 스케일링 측면에서 시각적 이음새 품질이 향상되었습니다. 고주파에서 스케일링은 무시할 수있을 정도 였고 코스는 균질했습니다. 언더컷 결함의 발생도 감소했습니다. 그러나 관통 결함 부족 (case 7, case 10)이 나타났다. 에어 갭은 단추 구멍 형성에 중요했습니다. 에어 갭 크기가 증가함에 따라 단추 구멍이 더 쉽게 형성되었지만 구멍 결함으로 더 쉽게 남아 있습니다. 안정적인 단추 구멍 형성은 고려 된 공극 조건의 좁은 영역에서만 나타납니다.

그림 5

그림 6 은 시뮬레이션과 실험에서 융합 영역의 모양을 보여줍니다. 버튼 홀이없는 경우 1, 불안정한 버튼 홀 형성이있는 경우 8, 안정적인 버튼 홀 형성이있는 경우 11의 3 가지 경우에 대해 시뮬레이션 결과와 실험 결과를 비교하여 유사성을 나타냈다. 본 연구에서 고려한 용접 조건의 경우 표면 품질 결과는 Fig. 5 와 같이 큰 차이를 보였으 나 단면 융착 영역 [26] 과 형상은 큰 차이를 보이지 않았다.

그림 6

무화과. 7 과 8 은 각각 100Hz와 250Hz의 진동 주파수에서 시뮬레이션 결과를 기반으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여줍니다. 이전 연구에서 볼 수 있듯이 레이저 빔의 진동 주파수는 단추 구멍 형성과 밀접한 관련이 있습니다 (Cho et al., 2018 [26] 참조 ). 그림 7 (a) 및 (b)는 각각 시뮬레이션 및 실험을 기반으로 한 진동 주파수 100Hz에서 대표적인 용융 풀 동작을 보여줍니다. 완전히 관통 된 키홀 및 버튼 홀 형성은 관찰되지 않았으며 응고 후 거친 비드 표면이 남았습니다. 그림 7(c)와 (d)는 각각 윗면과 바닥면의 표면 변동에 대한 시뮬레이션 결과를 기반으로 한 용융 풀 역학 분석을 보여줍니다. 샘플링 데이터는 상단 표면이 공작물의 상단 표면 위치에서 평균적으로 변동하는 반면 하단 표면은 공작물의 하단 표면 위치에서 평균적으로 변동하는 것으로 나타났습니다. 표면 변동의 푸리에 변환 및 웨이블릿 변환 결과는 명확한 1  주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수, Cho et al., 2018 [26] 참조 ) 및 2  주파수 (4 x 빔 발진)를 보여줍니다. 주파수) 두 표면의 구성 요소, 그러나 바닥 표면과 첫 번째에 대한 결과주파수 성분이 더 강합니다. 반면 그림 8 (a)와 (b)에서 보는 바와 같이 250Hz의 진동 주파수에서 시뮬레이션과 실험 결과는 안정된 버튼 홀 형성과 응고 후 매끄러운 비드 표면을 나타냈다. 그림 8 의 샘플링 신호의 진폭은 그림 7 의 진폭 보다 작으며 푸리에 변환 및 웨이블릿 변환의 결과에서 중요한 주파수 성분이 발견되지 않았습니다.

Fi 7
그림 8

Fig. 9 는 진동 주파수 200Hz에서 시뮬레이션 결과를 바탕으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여준다. 이 주파수에서 Fig. 9 (a)와 (b) 에서 보는 바와 같이 , 시뮬레이션과 실험 모두에서 불안정한 buttonhole 거동이 관찰되었다. 바닥면에서 샘플링 데이터의 푸리에 변환 및 웨이블릿 변환의 결과 빔 발진 주파수 성분이 발견되었습니다.

그림 9

4 . 토론

시뮬레이션 및 실험 결과는 비드 표면 품질이 향상되고 빔 진동 주파수가 증가함에 따라 버튼 홀이 형성되는 것으로 나타났습니다. 표면의 변동 데이터에 대한 푸리에 변환 및 웨이블릿 변환의 결과에 따라 다음과 같은 주요 주파수 구성 요소가 발견되었습니다. 1  및 2 버튼 홀 형성이없는 주파수, 불안정한 용융 풀 거동이있는 빔 진동 주파수, 안정적인 버튼 홀 형성이있는 중요한 주파수 성분이 없습니다. 이들 중 불안정한 용융 풀 동작과 관련된 빔 진동 주파수 성분은 완전히 관통 된 키홀과 반복적으로 생성 및 붕괴되는 불안정한 버튼 홀의 특성으로 인해 웨이블릿 변환 결과에서 명확한 실선 형태로 나타나지 않았습니다. 분석 결과는 윗면보다 바닥면에서 더 분명했습니다. 이는 필러 와이어 공급 및 키홀 링 공정에서 강한 하향 흐름으로 인해 용융 풀 역학이 바닥 표면 영역에서 더 강했기 때문입니다. 진동 주파수가 증가함에 따라 용융 풀 역학과 상단 표면과 하단 표면 간의 차이가 감소했습니다.

첫 번째 주파수 (2 x 빔 진동 주파수)는이 연구에서 관찰 된 가장 분명한 구성 요소였습니다. Schultz et al. (2018)은 또한 실험을 통해 동일한 성분을 발견했습니다 [32] , 용융 풀 표면 운동에 대한 푸리에 분석을 수행했습니다. 첫 번째 주파수 성분은 빔 발진주기 당 두 개의 주요 이벤트가 있음을 의미합니다. 이것은 레이저 빔이 빔 진동주기 당 두 번 와이어를 절단하거나 절단하는 프로세스와 일치합니다. 용융 된 와이어 팁은 낮은 진동 주파수에서 고르지 않고 날카로운 모서리를 갖는 것으로 나타났습니다 (Cho et al., 2018 [26] ). 이것은 첫 번째 원인이 될 수 있습니다.용융 된 풀에서 지배적이되는 주파수 성분. 진동 주파수가 증가하면 용융 된 와이어 팁이 더 균일 해 지므로 효과가 감소합니다. 용접 방향으로의 정현파 횡 방향 빔 진동을 통한 에너지 집중도 빔 진동주기 당 두 번 발생합니다. 그림 10 은 발진 주파수에 따른 레이저 빔의 라인 에너지 (단위 길이 당 에너지)의 변화를 보여줍니다. 그림 10 b) 의 라인 에너지 는 레이저 출력을 공정 속도로 나누어 계산했습니다. 여기서 처리 속도는(w이자형엘디나는엔지에스피이자형이자형디)2+(디(에스나는엔유에스영형나는디ㅏ엘wㅏV이자형나는엔에프나는지.10ㅏ))디티)2. 낮은 발진 주파수에서 라인 에너지는 발진 폭의 양쪽 끝에 과도하게 집중됩니다. 이러한 집중된 에너지는 과도한 키홀 링 프로세스를 초래하므로 언더컷 결함이 나타날 수있는 높은 흐름 역학이 발생합니다. 진동 주파수가 증가함에 따라 집중 에너지는 더 작은 조각으로 나뉩니다. 따라서 높은 진동 주파수에서 과도한 키홀 링 및 수반되는 언더컷 결함의 발생이 감소되었습니다. 위에서 언급 한 두 가지 현상 (불균일 한 와이어 팁과 집중된 라인 에너지)은 빔 발진주기 당 두 번 발생하며 발진 주파수가 증가하면 그 효과가 감소합니다. 따라서 저주파 에서 2  주파수 성분 (4 x 빔 발진 주파수)이 나타나는 것은이 두 현상의 동시 작용입니다.

그림 10

두 가지 현상 중 첫 번째 주파수 에 대한 주된 효과 는 집중된 라인 에너지입니다. Cho et al. (2018)은 전력 흡수 데이터를 푸리에 변환을 사용하여 분석했을 때 1  주파수 성분이 더 우세 해졌고, 2  주파수 성분은 발진 주파수가 증가함에 따라 상대적으로 약화 되었음을 보여주었습니다 [26] . 용융 된 와이어 팁은 또한 빈도가 증가함에 따라 더욱 균일 해졌습니다. 결과는 진동 주파수의 증가가 용융 풀에 대한 와이어의 영향을 제거하는 것으로 나타났습니다. 따라서 발진 주파수가 증가함에 따라 라인 에너지 집중의 영향 만 남을 수 있습니다. 그림 10 과 같이, 집중 선 에너지가 작은 조각으로 분할되기 때문에 효과도 감소하지만 최대 값이 변경되지 않았기 때문에 여전히 효과적입니다.

빔 진동 주파수 성분은 불안정한 단추 구멍 및 열쇠 구멍 붕괴를 수반하는 불안정한 용융 풀 동작과 관련이 있습니다. 언더컷 결함이있는 케이스 8 (발진 주파수 200Hz)에서 발진 주파수 성분이 관찰되었습니다. 이것은 특히 완전히 관통 된 열쇠 구멍과 불안정한 단추 구멍에서 불안정한 용융 풀 동작을 보여주었습니다. 경우 10 (진동 주파수 250Hz)의 경우 상대적으로 건강한 비드가 형성 되었으나, 도 11 (a) 와 같이 웨이블릿 변환 결과에서 t1의 시간 간격으로 진동 주파수 성분이 관찰되었다 . 이 시간 간격 t1의 용융 풀 거동은 그림 11에 나와 있습니다.(비). 완전히 관통 된 열쇠 구멍이 즉시 무너지는 것이 분명하게 관찰되었습니다. 이것은 진동 주파수 성분이 불안정한 용융 풀 거동과 밀접한 관련이 있음을 보여줍니다. 발견 된 주파수 성분으로부터 완전히 관통 된 열쇠 구멍과 같은 불안정한 용융 풀 거동을 예측할 수 있습니다. 완전히 관통 된 키홀이 반복적으로 붕괴되기 때문에 빔 진동 주파수 성분은 그림 9 (d) 와 같이 웨이블릿 변환 결과에서 명확한 실선 형태로 보이지 않습니다 .

그림 11

Cho and Woizeschke (2020)에 따르면 단추 구멍 형성은 자체 지속 가능한 카테 노이드처럼 작용하기 때문에 용융 풀 역학을 감소시킬 수 있습니다 [30] . 그림 12 는 버튼 홀 형성 측면에서 t2의 시간 간격에서 용융 풀 거동의 변화를 보여줍니다. 단추 구멍은 t2의 간헐적 인 부분에만 형성되었습니다. 1st 이후이 시간 동안 웨이블릿 변환의 결과로 주파수 성분이 사라졌고, 버튼 홀 형성은 용융 풀 역학을 줄이는 데 효과적이었습니다. 따라서, 웨이블릿 변환의 결과로 주파수 성분이 지워지는 것을 관찰함으로써 버튼 홀 형성을 예측할 수있다. 이와 관련하여 웨이블릿 변환 기술은 시간에 따른 용융 풀 변화를 나타낼 수 있습니다. 이 기술은 향후 용융 풀 동작을 모니터링하는 데 사용될 수 있습니다.

그림 12

5 . 결론

CFD 시뮬레이션 결과를 사용하여 빔 진동 및 필러 와이어 공급을 통한 레이저 용접에서 용융 풀 역학을 분석 할 수있었습니다. 용융 풀 표면의 변동 데이터의 푸리에 변환 및 웨이블릿 변환은 여기서 용융 풀 역학을 분석하는 데 사용되었습니다. 결과는 다음과 같은 결론으로 ​​이어집니다.1.

 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2  주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분은 푸리에 변환 및 웨이블릿 변환 분석에서 발견 된 주요 성분이었습니다.2.

 주파수와 2  주파수 성분 의 출현은 두 가지 사건, 즉 레이저 빔에 의한 필러 와이어의 절단 공정과 집중된 레이저 라인 에너지의 효과의 결과였습니다. 이는 빔 진동주기 당 두 번 발생했습니다. 따라서 두 번째 주파수 성분은 동시 작용으로 인해 발생했습니다. 빔 진동 주파수 성분은 불안정한 용융 풀 동작과 관련이 있습니다. 구성 요소는 열쇠 구멍과 단추 구멍의 붕괴와 함께 나타났습니다.삼.

낮은 발진 주파수에서는 1  주파수와 2  주파수 성분이 함께 나타 났지만 발진 주파수가 증가함에 따라 그 크기가 함께 감소했습니다. 집중 선 에너지는 주파수가 증가함에 따라 최대 값이 변하지 않는 반면, 잘게 잘린 선단이 평평 해져 그 효과가 사라졌기 때문에 쵸핑 프로세스보다 더 큰 영향을 미쳤습니다.4.

용융 풀 거동의 빠른 시간적 변화는 웨이블릿 변환 방법을 사용하여 분석되었습니다. 따라서이 방법은 열쇠 구멍 및 단추 구멍의 형성 및 붕괴와 같은 일시적인 용융 풀 변화를 해석하는 데 사용할 수 있습니다.

CRediT 저자 기여 성명

조원익 : 개념화, 방법론, 소프트웨어, 검증, 형식 분석, 조사, 데이터 큐 레이션, 글쓰기-원고, 글쓰기-검토 및 편집. Peer Woizeschke : 감독, 프로젝트 관리, 작문-검토 및 편집.

경쟁 관심의 선언

저자는이 논문에보고 된 작업에 영향을 미칠 수있는 경쟁적인 재정적 이해 관계 나 개인적 관계가 없다고 선언합니다.

감사의 말

이 작업은 알루미늄 합금 용접 역량 센터 (Centr-Al)에서 수행되었습니다. Deutsche Forschungsgemeinschaft (DFG, 프로젝트 번호 290705638 , “용접 풀 캐비티를 생성하여 레이저 깊은 용입 용접에서 매끄러운 이음매 표면”) 의 자금은 감사하게도 인정됩니다.

부록 A . 사용 된 지배 방정식 및 레이저 용접 모델

1 . 지배 방정식 (Cho 및 Woizeschke [ 30 ])

-대량 보존 방정식,(A1)∇·V→=미디엄˙에스ρ어디, V→속도 벡터입니다. ρ밀도이고 미디엄˙에스필러 와이어를 공급하여 질량 소스의 비율입니다. 단위미디엄에스단위 부피당 질량입니다. WFS (와이어 공급 속도) 및 필러 와이어의 직경과 같은 매스 소스 및 필러 와이어 조건,디w계산 영역에서 다음과 같은 관계가 있습니다.(A2)미디엄=∫미디엄에스디V=미디엄0+씨×ρ×W에프에스×π디w24×티어디, 미디엄총 질량, 미디엄0초기 총 질량, V볼륨입니다.씨단위 변환 계수입니다. 티시간입니다.

-운동량 보존 방정식,(A3)∂V→∂티+V→·∇V→=−1ρ∇피+ν∇2V→−케이V→+미디엄˙에스ρ(V에스→−V→)+지어디, 피압력입니다. ν동적 점도입니다. 케이뭉툭한 영역의 다공성 매체 모델에 대한 항력 계수, V에스→질량 소스에 대한 속도 벡터입니다. 지신체 힘으로 인한 신체 가속도입니다.

-에너지 절약 방정식,(A4)∂h∂티+V→·∇h=1ρ∇·(케이∇티)+h˙에스어디, h특정 엔탈피입니다. 케이열전도율, 티온도이고 h˙에스특정 엔탈피 소스로, Eq 의 질량 소스와 연관됩니다 (A1) . 계산 영역의 총 에너지,이자형다음과 같이 계산됩니다.(A5)이자형=∫미디엄에스h에스디V=∫미디엄에스씨Vw티w디V어디, 씨Vw질량 원의 비열, 티w질량 소스의 온도입니다.

또한, 엔탈피 기반 연속체 모델을 사용하여 고체-액체 상 전이를 고려했습니다.

-VOF 방정식,(A6)∂에프∂티+∇·(V→에프)=에프˙에스어디, 에프유체가 차지하는 부피 분율이며 0과 1 사이의 값을 가지며 에프˙에스질량의 소스와 연결된 유체의 체적 분율의 비율 식. (A1) . 질량 공급원에 해당하는 부피 분율은 다음에 할당됩니다.에프에스.

-스칼라 보존 방정식,(A7)∂Φ∂티+∇·(V→Φ)=Φ˙에스어디, Φ필러 와이어의 스칼라 값입니다. 셀의 유체가 전적으로 필러 와이어로 구성된 경우Φ1이고 유체에 대한 필러 와이어의 부피 분율에 따라 0과 1 사이에서 변경됩니다. Φ˙에스Eq 에서 질량 소스에 연결된 스칼라 소스의 비율입니다 (A1) . 스칼라 소스는 전적으로 필러 와이어이기 때문에 1에 할당됩니다. 확산 효과는 고려되지 않았습니다.

2 . 레이저 용접 모델 (Cho et al. [26] )

흡수율을 계산하기 위해 프레 넬 반사 모델을 사용했습니다. ㅏ=1−ρ씨재료의 표면 상에 도시 된 바와 같이 수학 식. (A8) 원 편광 빔의 경우.(A8)ㅏ=1−ρ씨=1−12(ρ에스+ρ피)어디,ρ에스=(엔1씨영형에스θ−피)2+큐2(엔1씨영형에스θ+피)2+큐2,ρ에스=(피−엔1에스나는엔θ티ㅏ엔θ)2+큐2(피+엔1에스나는엔θ티ㅏ엔θ)2+큐2,피2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22+[엔22−케이22−(엔1에스나는엔θ)2]},큐2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22−[엔22−케이22−(엔1에스나는엔θ)2]}.어디, 복잡한 인덱스 엔1과 케이1반사 지수와 공기의 흡수 지수이며 엔2과 케이2공작물을위한 것입니다. θ입사각입니다. 도시 된 바와 같이 수학 식. (A9)에서 , 혼합물의 흡수율은 식에서 얻은 모재 및 필러 와이어 분획의 가중 평균이됩니다 . (A7) .(A9)ㅏ미디엄나는엑스티유아르 자형이자형=Φㅏw나는아르 자형이자형+(1−Φ)ㅏ비ㅏ에스이자형어디, ㅏ비ㅏ에스이자형과 ㅏw나는아르 자형이자형각각 비금속과 필러 와이어의 흡수율입니다.

자유 표면 경계에서의 반동 압력 에이 싱은 Eq. (A10) .(A10)피아르 자형(티)≅0.54피에스ㅏ티(티)=0.54피0이자형엑스피(엘V티−티비아르 자형¯티티비)어디, 피에스ㅏ티포화 압력, 피0대기압입니다. 엘V기화의 잠열, 티비끓는 온도이고 아르 자형¯보편적 인 기체 상수입니다.

참고 문헌

D.J. Kotecki, D.L. Cheever, D.G. Howden
Mechanism of ripple formation during weld solidification
Weld. J., 51 (8) (1972), pp. 386s-391s
Google Scholar
[2]
M. Zacksenhouse, D.E. Hardt
Weld pool impedance identification for size measurement and control
J. Dyn. Syst. Meas. Control, 105 (3) (1983), pp. 179-184
CrossRefView Record in ScopusGoogle Scholar
[3]
V.V. Semak, J.A. Hopkins, M.H. McCay, T.D. McCay
Melt pool dynamics during laser welding
J. Phys. D, 28 (1995), pp. 2443-2450
CrossRefView Record in ScopusGoogle Scholar
[4]
A.J.R. Aendenroomer, G. den Ouden
Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding
Weld. J., 77 (5) (1998), pp. 181s-187s
Google Scholar
[5]
M.J.M. Hermans, G. den Ouden
Process behavior and stability in short circuit gas metal arc welding
Weld. J., 78 (4) (1999), pp. 137-141
View Record in ScopusGoogle Scholar
[6]
B.Y.B. Yudodibroto, M.J.M. Hermans, Y. Hirata, G. den Ouden
Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding
Sci. Technol. Weld. Join., 9 (2) (2004), pp. 163-168
View Record in ScopusGoogle Scholar
[7]
M. Geiger, K.-H. Leitz, H. Koch, A. Otto
A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets
Prod. Eng. Res. Dev., 3 (2009), pp. 127-136
CrossRefView Record in ScopusGoogle Scholar
[8]
C. Kägeler, M. Schmidt
Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets
Phys. Procedia, 5 (2010), pp. 447-453
ArticleDownload PDFView Record in ScopusGoogle Scholar
[9]
Y. Shi, G. Zhang, X.J. Ma, Y.F. Gu, J.K. Huang, D. Fan
Laser-vision-based measurement and analysis of weld pool oscillation frequency in GTAW-P
Weld. J., 94 (2015), pp. 176s-187s
Google Scholar
[10]
J. Volpp, F. Vollertsen
Keyhole stability during laser welding—part I: modelling and evaluation
Prod. Eng.-Res. Dev., 10 (2016), pp. 443-457
CrossRefView Record in ScopusGoogle Scholar
[11]
N. Postacioglu, P. Kapadia, J. Dowden
Capillary waves on the weld pool in penetration welding with a laser
J. Phys. D, 22 (1989), pp. 1050-1061
CrossRefView Record in ScopusGoogle Scholar
[12]
N. Postacioglu, P. Kapadia, J. Dowden
Theory of the oscillations of an ellipsoidal weld pool in laser welding
J. Phys. D, 24 (1991), pp. 1288-1292
CrossRefView Record in ScopusGoogle Scholar
[13]
J. Kroos, U. Gratzke, M. Vicanek, G. Simon
Dynamic behaviour of the keyhole in laser welding
J. Phys. D, 26 (1993), pp. 481-486
View Record in ScopusGoogle Scholar
[14]
H. Maruo, Y. Hirata
Natural frequency and oscillation modes of weld pools. 1st Report: weld pool oscillation in full penetration welding of thin plate
Weld. Int., 7 (8) (1993), pp. 614-619
CrossRefView Record in ScopusGoogle Scholar
[15]
T. Klein, M. Vicanek, J. Kroos, I. Decker, G. Simon
Oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 27 (1994), pp. 2023-2030
CrossRefView Record in ScopusGoogle Scholar
[16]
T. Klein, M. Vicanek, G. Simon
Forced oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 29 (1996), pp. 322-332
View Record in ScopusGoogle Scholar
[17]
K. Andersen, G.E. Cook, R.J. Barnett, A.M. Strauss
Synchronous weld pool oscillation for monitoring and control
IEEE Trans. Ind. Appl., 33 (2) (1997), pp. 464-471
View Record in ScopusGoogle Scholar
[18]
W.-I. Cho, S.-J. Na, M.-H. Cho, J.-S. Lee
Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding
Comput. Mater. Sci., 49 (2010), pp. 792-800
ArticleDownload PDFView Record in ScopusGoogle Scholar
[19]
W.-I. Cho, S.-J. Na, C. Thomy, F. Vollertsen
Numerical simulation of molten pool dynamics in high power disk laser welding
J. Mater. Process. Technol., 212 (2012), pp. 262-275
ArticleDownload PDFView Record in ScopusGoogle Scholar
[20]
A. Otto, A. Patschger, M. Seiler
Numerical and experimental investigations of humping phenomena in laser micro welding
Phys. Procedia, 83 (2016), pp. 1415-1423
ArticleDownload PDFView Record in ScopusGoogle Scholar
[21]
R. Lin, H.-P. Wang, F. Lu, J. Solomon, B.E. Carlson
Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys
Int. J. Heat Mass Trans., 108 (2017), pp. 244-256
ArticleDownload PDFView Record in ScopusGoogle Scholar
[22]
S.H. Ko, C.D. Yoo, D.F. Farson, S.K. Choi
Mathematical modeling of the dynamic behavior of gas tungsten arc weld pools
Metall. Mater. Trans. B., 31B (2000), pp. 1465-1473
CrossRefView Record in ScopusGoogle Scholar
[23]
R. Hu, X. Chen, G. Yang, S. Gong, S. Pang
Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion
Int. J. Heat Mass Transf., 126 (2018), pp. 877-887
ArticleDownload PDFView Record in ScopusGoogle Scholar
[24]
X. Meng, A. Artinov, M. Bachmann, M. Rethmeier
Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding
J. Laser Appl., 32 (2020), Article 022026
CrossRefGoogle Scholar
[25]
W.-I. Cho, V. Schultz, F. Vollertsen
Simulation of the buttonhole formation during laser welding with wire feeding and beam oscillation
L. Overmeyer, U. Reisgen, A. Ostendorf, M. Schmidt (Eds.), Proceedings of the Lasers in Manufacturing, German Scientific Laser Society, Munich, Germany (2017)
Google Scholar
[26]
W.-I. Cho, V. Schultz, P. Woizeschke
Numerical study of the effect of the oscillation frequency in buttonhole welding
J. Mater. Process. Technol., 261 (2018), pp. 202-212
ArticleDownload PDFView Record in ScopusGoogle Scholar
[27]
V. Schultz, T. Seefeld, F. Vollertsen
Bridging Large Air Gaps by Laser Welding with Beam Oscillation
International Conference on Application of Lasers in Manufacturing, New Delhi, India (2015), pp. 31-32
CrossRefGoogle Scholar
[28]
W.-I. Cho, S.-J. Na
Impact of wavelengths of CO2, disk, and green lasers on fusion zone shape in laser welding of steel
J. Weld. Join., 38 (3) (2020), pp. 235-240
CrossRefView Record in ScopusGoogle Scholar
[29]
FLOW-3D User Manual. 2017. Version 11.2.1.06, Flow Science Inc.
Google Scholar
[30]
W.-I. Cho, P. Woizeschke
Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal
Int. J. Heat Mass Transf., 152 (2020), Article 119528
ArticleDownload PDFView Record in ScopusGoogle Scholar
[31]
F. Vollertsen
Loopless production: definition and examples from joining
69th IIW Annual Assembly and International Conference, Melbourne, Australia (2016)
Google Scholar
[32]
V. Schultz, W.-I. Cho, A. Merkel, P. Woizeschke
Deep penetration laser welding with high seam surface quality due to buttonhole welding
Proc. of the IIW Annual Assembly, Com. IV, Bali, Indonesia (2018)
IIW-Doc. IV-1390-18

Fig. 1.Schematic of wire feeding in a melting line.

Evaluation on the Efficiency of Cored Wire Feeding in Addition of Alloying Elements into Cu Melt

Bok-Hyun Kang*, Ki-Young Kim
Korea University of Technology and Education

코어드 와이어 피딩에 의한 Cu 용탕에의 합금 첨가 시 효율 평가

Abstract

To add alloying elements into a pure copper melt, the wire-feeding efficiency of cored (alloy containing) wire was evaluated using a commercial, computational fluid-dynamics program. The model design was based on an industrial-scale production line. The variables calculated included wire feed rate, melt temperature, wire diameter, melt flow rate and wire temperature. Efficiency was evaluated after a series of calculations based on the penetration depth of the alloy-wire into the molten copper bath. Of the five variables investigated, the wire feed rate and wire diameter were the most influential factors affecting the feeding efficiency of the cored-wire.

Keywords: Cored wire feeding, Cu melt, Efficiency, Alloying elements

1. 서론

소재산업이 고품질, 환경친화적,저에너지 소비기술을 지향하면서 보다 고효율 공정의 활용이 증가하는 추세에 있다. 철강이나 비철소재에 있어서도 탈산, 탈황, 개재물 처리 및 합금화 등과 같은 청정화를 위한 용탕 처리 뿐만 아니라목표하는 합금의 화학 조성의 정확한 조절이 요구되고 있다.

분말 원재료를 금속 피복재 등으로 감싸서 와이어의 형태로 만들고 이를 릴에 감은 후 순차적으로 풀어서 용탕에 투입하는 코어드 와이어(cored wire)방식은 첨가되는 원재료의 손실을 최소화하고 높은 효율성을 얻을 수 있는 이점이 있다.

용강의 탈산을 위한 Ca투입 시에도 Ca분말을 피복하여 사용한 경우의 회수율이 높아지고,미량의 V나 Al를 합금원소로참가할 때에도 효율적이라고 보고되고 있다[1-5]. 그리고 코어드 와이어를 사용할 경우의 용해 메커니즘에 대한 모델 및 열전달에 관한연구도 보고된 바 있다[6-9].

또한 철강산업에서 뿐만 아니라 주철 제조시에도 코어드 와이어법이 이용되고 있는데, 주철의 구상화 처리[10], 선철의 탈황[11]등에서도 활용이 되고 있다.

한편, 비철산업에서는 코어드 와이어법이 아직 활발히 채용이 되지 않고 있는 상태이나, 전자부품 용동 합금소재와 같이정밀한 합금화가 필요하거나 산화가 용이하여 분말로 첨가 시 회수율이 낮은 원소의 합금 시 그 활용이 기대되고 있다.

실제 정확한 장입 계산으로 합금 원소를 투입 하더라도 최종 목표 조성을 관리하는 것은 쉽지 않다. 특히 산화가 쉬운원소의 경우 용탕에 투입했을 때 회수율의 변동성이 심하고, 마이크로 합금화(micro alloying)와 같이 첨가량이 매우 적다면 화학조성의 조절이 더욱 어렵고, 회수율의 예측 또한 힘들다.

일반적으로 동합금의 제조시 합금원소는 용해 라인에서 연속적으로 첨가 되는데, 기존 공정라인에서의 합금화는 배합로에서 합금원소를 덩어리 또는 분말형태로 투입하여 진행한다. 그러나 이러한 배합방식은 많은 양의 분진 발생으로 작업 환경을 나쁘게 하고, 특히 분말의 상태로 용탕과 접촉하므로 산화가 용이하여 회수율의 변동이 심한 단점이 있다.

동합금 제조에 있어서 코어드 와이어법의 적용에 대한 실험실적 연구는 수행된 바 있으나[12], 다양한 공정변수를 고려하기 위해서는 실제 동합금의 용해, 연주라인에서 실험하는 것은 어려우므로, 전산모사를 활용하여 각 변수의 영향을 알아보는 것도 효과적인 방법 중의 하나이다.

본 연구에서는 아직까지 Cu 합금의 제조에 사용되지 않은 코어드 와이어 피딩법의 전산모사를 통하여 와이어 피딩 시의효율에 미치는 공정변수의 영향을 조사하였다.

2.연구방법

Fig. 1은 용해라인에서의 와이어피딩 모식도를 나타낸 것으로, 배합로에서 합금을 투입한다고 가정하였다. 또한 용탕의유속은 연주되는 슬라브의 유량과 용탕유로의 단면적으로 유로내에서의 용탕유속을 산출하였고, 이러한 용탕의 흐름을가정하여 유체의X+ 방향으로의 유속을 정의하였다.

Fig. 2는계산모델을 나타낸 것으로 100×500×20 mm 크기의 모델을 길이 방향으로 50개, 높이 방향으로 250개, 두께 방향으로 10개의 소로 나누었다. 용탕은 순 Cu로 가정하였고, 와이어의 재질은 Cu이며, 튜브 안에 Cu 분말이 들어있는 것으로 가정하였다.

계산상 합금분말은 정의가 안되기 때문에, 코어드 와이어의 밀도는 벌크 재질 밀도의60%의 밀도로 입력 하였다. 계산에 사용한 재질별 물성은T able 1과 같다.

용탕의 흐름, Cu용탕과 와이어 사이의 열 이동은 상용 유체해석 소프트웨어인 Flow-3D를 이용하여 3차원 계산을 수행하였다. 계산 변수는 와이어의 송급속도, 용탕의 온도, 와이어의 직경, 용탕의 흐름 속도 및 와이어의 온도로 하였으며, 상세는 Table2와 같다. 와이어의 송급 속도는 Z- 방향으로 당겨지는 것으로 입력하였다.

Fig. 1.Schematic of wire feeding in a melting line.
Fig. 1.Schematic of wire feeding in a melting line.

<중략>…….

Flg. 2.Three dimensional model for wire feeding simulation
Flg. 2.Three dimensional model for wire feeding simulation
Fig. 3.Change in solid fraction of the cored wire during feeding: (I)initial heating, (II) transient melting, (III) steady statemelting
Fig. 3.Change in solid fraction of the cored wire during feeding: (I)initial heating, (II) transient melting, (III) steady statemelting
Fig. 4.Solid fraction contours with wire feed rate at steady state: melt temp. 1473 K, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K
Fig. 4.Solid fraction contours with wire feed rate at steady state: melt temp. 1473 K, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K

Fig. 5.Effect of wire feed rate on the penetration depth of wire at itssolid fraction of 0.7.
Fig. 5.Effect of wire feed rate on the penetration depth of wire at itssolid fraction of 0.7.
ig. 6.Solid fraction contours with melt temperature at steady state: wire feed rate 7 m/s, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K
ig. 6.Solid fraction contours with melt temperature at steady state: wire feed rate 7 m/s, wire dia. 10 mm, melt flow rate 1.7 m/s, wire temp.303 K
Fig. 7.Solid fraction contours with wire diameter at steady state: wire feed rate 7 m/s, melt temp. 1473 K, melt flow rate 1.7 m/s, wiretemp.303 K
Fig. 7.Solid fraction contours with wire diameter at steady state: wire feed rate 7 m/s, melt temp. 1473 K, melt flow rate 1.7 m/s, wiretemp.303 K
Fig. 8.Effect of wire diameter on the penetration depth of wire at itssolid fraction of 0.7
Fig. 8.Effect of wire diameter on the penetration depth of wire at itssolid fraction of 0.7
ig. 9.Effect of melt flow rate on the penetration depth of wire.
ig. 9.Effect of melt flow rate on the penetration depth of wire.
Fig. 10.Effect of wire temperature on the penetration depth of wire
Fig. 10.Effect of wire temperature on the penetration depth of wire

<중략>…

4. 결론

코어드와이어 피딩 공정을 와이어의 송급 속도, 용탕의 온도, 와이어의 직경, 용탕의 흐름 속도 및 와이어의 온도를 공정변수로 하여 전산 모사하고, 피딩공정의 효율은 와이어의 침투 깊이로 평가하였다.

그 결과, 와이어의 송급 속도와 와이어의 직경이 와이어의 침투 깊이에 가장 영향이 큰 것으로 나타났다. 즉 와이어가 용탕의 상면 가까이에서 용해되어 버리면 산화가 용이하게 되고, 부상하여 슬래그 중으로 들어가기 쉬우므로 효율이 떨어지나, 용탕의 저부에서 용해되면, 대부분 Cu 용탕 중으로 녹아 들어가므로 첨가하는 합금 원소의 회수율이 높아지게 됨을 기대할 수 있다. 연속 주조 라인에서는 빌렛의 최종 조성의 조절이 중요한데, 와이어의 직경과 적정 송급 속도의 조화가 필요하다.

References

[1] P. Murray, Metallurgist, “Use of cored wire to introducemetallic powders into molten metal”,41(1997) 53-55.
[2] S. Basak, R. Kumar Dhal and G. G. Roy, Ironmaking andSteelmaking, “Efficacy and recovery of calcium during CaSicored wire injection in steel melts”,37(2010) 161-168.
[3] D.A. Dyudkin, V.V. Kisilenko, V.P. Onishchuk, A.A. Larionov,and B.V. Neboga, Metallurgist, “Effectiveness of alloyingsteel with vanadium from cored wire”,46(2002) 203-204.
[4] Y. Heikiki and M. Juha, Scandinavian J. of Metallurgy, “Steelcomposition adjustment by wire feeding at Rautaruukki OyRaaha steel works”,19(1990) 142-145.
[5] S.V. Kazakov, A.A. Neretin, S.M. Chumakov, S.D. Zinchenkoand A. B. Lyatin, Metallurgist, “Treatment of converter steelwith calcium-aluminum wire”,42(1998) 173-175.
[6] S. Sanyal, S. Chandra, S. Kumar and G.G. Roy, Steel ResearchInt., “Dissolution kinetics of cored wire in molten steel”,77(2006) 541-549.
[7] S. Sanyal, S. Chandra, S. Kumar and G.G. Roy, ISIJ Int., “AnImproved Model of Cored Wire Injection in Steel Melts”,44(2004) 1157-1166.
[8] S. Sanyal, J.K. Saha, S. Chandra and C. Bhanu, ISIJ Int.,“Model based optimazation of aluminum wire injection insteel melts”,46(2006) 779-781.
[9] M.G. Kim, D.C. Hwang, J.J. Choi, S.Y. Yoon, B.J. Ye, J.H.Kim and W.B. Kim, J. KFS, “Heat Flow Analysis of FerriticStainless Steel Melt during Ti wire feeding”,29(2009) 277-283.
[10] I. Ruiz, F. Wolfsgruber and J. L. Enriquez, Inter. J. of CastMetals Research, “Production of ductile iron with the coredwire technology”,16(2003) 7-10.
[11] A.M. Zborshchik, Metallurgist, “Cost-effectiveness of de-sulfurizing pig iron with magnesium-bearing cored wire”,45(2001) 360-362.
[12] B.H. Kang, W.H. Lee, J.Y. Cho, M.J. Lee and K.Y. Kim,Advanced Mater. Reasearch, “Yield of alloying elements fedby cored wire into a copper melt”,690-693(2013) 62-65

Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.

The effect of alloying elements of gas metal arc welding (GMAW) wire on weld pool flow and slag formation location in cold metal transfer (CMT)

가스 금속 아크 용접 (GMAW) 와이어의 합금 원소가 CMT (Cold Metal Transfer)에서 용접 풀 흐름 및 슬래그 형성 위치에 미치는 영향

Md. R. U. Ahsan1,3, Muralimohan. Cheepu2, Yeong-Do Park* 2,3
1Department of Mechanical Engineering, International University of Business, Agriculture and Technology,
Dhaka 1230, Bangladesh.
r.ahsan06me@gmail.com
2Department of Advanced Materials and Industrial Management Engineering, Dong-Eui University, Busan
47340, Republic of Korea.
muralicheepu@gmail.com
3Department of Advanced Materials Engineering, Dong-Eui University, B

Abstract

용접시 표면 장력 구동 흐름 또는 마랑고니 흐름은 용접 비드 모양을 제어하는데 중요한 역할을 하므로 용접 접합 품질에 영향을 미칩니다. 용해된 금속의 표면 장력은 보통 음의 온도 계수를 가지므로 용접 풀이 중심에서 토우 방향으로 흐르게 됩니다.

표면 장력의 이 온도 계수는 황(S), 산소(O), 셀레늄(Se) 및 텔루륨(Te)과 같은 표면 활성 요소가 있는 경우 양의 계수로 변경할 수 있습니다. 소모품에 존재하는 탈산화 원소의 양이 용접 금속에 존재하는 산소량을 결정합니다. 탈산화제 양이 적으면 용접 금속에 산소 농도가 높아집니다.

적절한 양의 산소가 있으면 용융지에 표면 장력 구배의 양의 온도 계수가 발생할 수 있습니다. 이 경우 용접 풀은 토우에서 중앙 방향으로 흐릅니다. 그 결과, 아크와 용융지에 있는 화농성 반응의 경우, 합금 요소의 다양한 산화물이 슬래그(slag)라고 합니다. 슬래그는 용융지 표면에 떠서 용융지 흐름 패턴에 따라 누적됩니다.

그 결과, 슬래그는 용융지 흐름 패턴에 따라 용접 비드 중심 또는 토우 중심을 따라 형성됩니다. 슬래그는 용접 비드의 외관과 도장 접착력을 저하시키므로 제거해야 합니다. 쉽게 분리할 수 있기 때문에 용접 비드 중심 부근에서 슬래그가 형성되는 것이 좋습니다.

용접 풀의 현장 고속 비디오 촬영, 용접 금속 화학 성분 분석, 소모품 합금 요소가 용접 풀 흐름 패턴 및 슬래그 형성 위치에 미치는 영향이 공개되어 CMT-GMAW의 생산성 향상을 위해 용접 소모품 선택을 용이하게 할 수 있습니다.

The surface tension driven flow or Marangoni flow in welding plays an important role in governing weld bead shape hence affecting the weld joint quality. The surface tension of molten metal usually has a negative temperature coefficient causing the weld pool to flow from the center towards the toe.

This temperature coefficient of the surface tension can be altered to be a positive one in the presence of surface-active elements like sulfur (S), oxygen (O), selenium (Se) and tellurium (Te). The amount of deoxidizing elements present in the consumables governs the amount of oxygen present in the weld metal. The presence of a lower amount of deoxidizers results in higher concentration of oxygen in the weld metal.

The presence of adequate amount of oxygen can result in a positive temperature coefficient of surface tension gradient in the weld pool. In such situation, the weld pool flows from the toe towards the direction of the center. As a result, of pyrometallurgical reactions in the arc and the weld pool various oxides of the alloying elements are former which are referred as slag.

The slags float on the weld pool surface and accumulate following the weld pool flow pattern. As a result, slags form either along the center of the weld bead or the toe depending on the weld pool flow pattern. The slags need to be removed as they degrade the weld bead appearance and paint adhesiveness.

Due to easy detachability, slag formation near the center of the weld bead is desired. From in-situ high-speed videography of weld pool, weld metal chemical composition analysis, the effect of consumables alloying elements on weld pool flow pattern and slag formation location are disclosed, which can facilitate the selection of the welding consumables for better productivity in CMT-GMAW.

Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.
Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.
Fig. 2: High-speed movie frames and schematic showing the weld pool flow pattern and the slag formation location for wire 1 and wire 2.
Fig. 2: High-speed movie frames and schematic showing the weld pool flow pattern and the slag formation location for wire 1 and wire 2.
Fig. 3: Quantitative analysis data on slag formation for different wire.
Fig. 3: Quantitative analysis data on slag formation for different wire.

References

[1] S. Lu, H. Fujii, and K. Nogi: “Marangoni convection and weld shape variations in He-CO2 shielded gas
tungsten arc welding on SUS304 stainless steel,” J. Mater. Sci., Vol. 43, No. 13 (2008), pp. 4583–4591.
[2] Y. Wang and H. L. Tsai: “Effects of surface active elements on weld pool fluid flow and weld penetration in
gas metal arc welding,” Metall. Mater. Trans. B, Vol. 32, No. 3 (2001), pp. 501–515.
[3] P. Sahoo, T. Debroy, and M. J. McNallan: “Surface tension of binary metal-surface active solute systems under
conditions relevant to welding metallurgy,” Metall. Trans. B, Vol. 19, No. 2 (1988), pp. 483–491.
[4] M. J. Mcnallan and T. Debroy: “Effect of Temperature and in Fe-Ni-Cr Alloys Containing Sulfur,”Metall.
Trans. B,Vol. 22, No. 4 (1991) pp. 557-560.
[5] S. Kou, C. Limmaneevichitr, and P. S. Wei: “Oscillatory Marangoni flow: A fundamental study by conductionmode laser spot welding,” Weld. J., Vol. 90, No. 12 (2011), pp. 229–240.
[6] M. Hasegawa, M. Watabe, and W. H. Young: “Theory of the surface tension of liquid metals,” J. Phys. F Met.
Phys., Vol. 11, No. 8 (2000), pp. 173–177.
[7] C. Heiple and J. Roper: “Effect of selenium on GTAW fusion zone geometry,” Weld. J., (1981), pp. 143–145.
[8] C. R. Heiple and J. R. Roper: “Mechanism for Minor Element Effect on {GTA} Fusion Zone Geometry,”
Weld. J., Vol. 61, (1982)pp. 97–102.
[9] C. Heiple, J. Roper, R. Stagner, and R. Aden: “Surface active element effects on the shape of GTA, laser and
electron beam welds,” Weld. J., (1983) pp. 72–77.
[10] C. R. Heiple and P. Burgardt: “Effects of SO2 Shielding Gas Additions on GTA Weld Shape,” Weld. J., (1985)
pp. 159–162.
[11] P. F. Mendez, and T. W. Eagar: “Penetration and Defect Formation in High-Current Arc Welding,” Weld. J.,
(2003) pp. 296–306.
[12] B. Ribic, S. Tsukamoto, R. Rai, and T. DebRoy: “Role of surface-active elements during keyhole-mode laser
welding,” J. Phys. D. Appl. Phys., Vol. 44, No. 48 (2011), pp. 485–203.
[13] C. Limmaneevichitr and S. Kou, “Experiments to simulate effect of Marangoni convection on weld pool shape,”
Weld. J., Vol. 79, (2000)pp. 231–237.
[14] C. Limmaneevichitr and S. Kou: “Visualization of Marangoni convection in simulated weld pools containing a
surface-active agent,” Weld. J., vol. 79, No. 11 (2000), pp. 324–330.
[15] Y. Wang and H. L. Tsai: “Impingement of filler droplets and weld pool dynamics during gas metal arc welding
process,” Int. J. Heat Mass Transf., Vol. 44, No. 11 (2001), pp. 2067–2080.
[16] S. Liu: “Pyrometallurgical Studies of Molten Metal Droplets for the Characterization of Gas Metal Arc
Welding,” Proc 9thTrends in Welding Research Conf., Chicago, Illinois, June 2012, pp. 353–361.
[17] Y. Umehara, R. Suzuki and T. Nakano: “Development of the innovative GMA wire improving the flow
direction of molten pool” Quart. J. Japan Weld. Soc., Vol. 27, NO. 2 (2009), pp. 163–168.

Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section

A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process

Keyhole에 대한 수치적 연구 : 레이저 분말 중 형성 베드 퓨전 공정

Subin Shrestha1
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: subin.shrestha@louisville.edu

Y. Kevin Chou
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: kevin.chou@louisville.edu

LPBF (Laser Powder Bed fusion) 공정 중 용융 풀의 동적 현상은 복잡하고 공정 매개 변수에 민감합니다. 에너지 밀도 입력이 특정 임계 값을 초과하면 키홀이라고 하는 거대한 증기 함몰이 형성 될 수 있습니다.

이 연구는 수치 분석을 통해 LPBF 과정에서 키홀 거동 및 관련 기공 형성을 이해하는 데 중점을 둡니다. 이를 위해 이산 분말 입자가 있는 열 유동 모델이 개발되었습니다.

이산 요소 방법 (DEM)에서 얻은 분말 분포는 계산 영역에 통합되어 FLOW-3D를 사용하는 3D 프로세스 물리학 모델을 개발합니다.

전도 모드 중 용융 풀 형성과 용융의 키홀 모드가 식별되고 설명되었습니다. 높은 에너지 밀도는 증기 기둥의 형성으로 이어지고 결과적으로 레이저 스캔 트랙 아래에 구멍이 생깁니다.

또한 다양한 레이저 출력과 스캔 속도로 인한 Keyhole 모양을 조사합니다. 수치 결과는 동일한 에너지 밀도에서도 레이저 출력이 증가함에 따라 Keyhole크기가 증가 함을 나타냅니다. Keyhole은 더 높은 출력에서 ​​안정되어 레이저 스캔 중 Keyhole 발생을 줄일 수 있습니다.

The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.

Keywords: additive manufacturing, keyhole, laser powder bed fusion, porosity

Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 2 3D computational domain used for single-track simulation
Fig. 2 3D computational domain used for single-track simulation
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 4 Powder and substrate melting during laser application
Fig. 4 Powder and substrate melting during laser application
Fig. 5 Melt region formed after complete melting and solidification
Fig. 5 Melt region formed after complete melting and solidification
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 12 Melt region formed after complete melting and solidification
Fig. 12 Melt region formed after complete melting and solidification
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm

References

[1] Bauereiß, A., Scharowsky, T., and Körner, C., 2014, “Defect Generation and
Propagation Mechanism During Additive Manufacturing by Selective Beam
Melting,” J. Mater. Process. Technol., 214(11), pp. 2522–2528.
[2] Gong, H., Rafi, K., Gu, H., Starr, T., and Stucker, B., 2014, “Analysis of Defect
Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive
Manufacturing Processes,” Add. Manuf., 1(2014), pp. 87–98.
[3] Wang, Y., Kamath, C., Voisin, T., and Li, Z., 2018, “A Processing Diagram for
High-Density Ti-6Al-4V by Selective Laser Melting,” Rapid Prototyping J., 24
(9), pp. 1469–1478.
[4] Khairallah, S. A., and Anderson, A., 2014, “Mesoscopic Simulation Model of
Selective Laser Melting of Stainless Steel Powder,” J. Mater. Process. Technol.,
214(11), pp. 2627–2636.
[5] Yadroitsev, I., Gusarov, A., Yadroitsava, I., and Smurov, I., 2010, “Single Track
Formation in Selective Laser Melting of Metal Powders,” J. Mater. Process.
Technol., 210(12), pp. 1624–1631.
[6] Xia, M., Gu, D., Yu, G., Dai, D., Chen, H., and Shi, Q., 2016, “Influence of Hatch
Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability
During Additive Manufacturing of Inconel 718 Alloy,” Int. J. Mach. Tools
Manuf., 109(2016), pp. 147–157.
[7] Lee, Y., and Zhang, W., 2016, “Modeling of Heat Transfer, Fluid Flow and
Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser
Powder bed Fusion,” Add. Manuf., 12(2016), pp. 178–188.
[8] Wu, Y.-C., San, C.-H., Chang, C.-H., Lin, H.-J., Marwan, R., Baba, S., and
Hwang, W.-S., 2018, “Numerical Modeling of Melt-Pool Behavior in Selective
Laser Melting with Random Powder Distribution and Experimental
Validation,” J. Mater. Process. Technol., 254(2018), pp. 72–78.
[9] Khairallah, S. A., Anderson, A. T., Rubenchik, A., and King, W. E., 2016, “Laser
Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and
Formation Mechanisms of Pores, Spatter, and Denudation Zones,” Acta
Materialia, 108(2016), pp. 36–45.
[10] Tan, J., Tang, C., and Wong, C., 2018, “A Computational Study on Porosity
Evolution in Parts Produced by Selective Laser Melting,” Metall. Mater. Trans.
A, 49A(8), pp. 3663–3673.
[11] Leitz, K.-H., Singer, P., Plankensteiner, A., Tabernig, B., Kestler, H., and Sigl,
L. J. M. P. R., 2017, “Multi-Physical Simulation of Selective Laser Melting,”
Metal Powder Report, 72(5), pp. 331–338.
[12] Zhao, C., Fezzaa, K., Cunningham, R. W., Wen, H., Carlo, F., Chen, L., Rollett,
A. D., and Sun, T., 2017, “Real-time Monitoring of Laser Powder Bed Fusion
Process Using High-Speed X-ray Imaging and Diffraction,” Sci. Rep., 7(1),
p. 3602.
[13] Parab, N. D., Zhao, C., Cunningham, R., Escano, L. I., Fezzaa, K., Everhart, W.,
Rollett, A. D., Chen, L., and Sun, T., 2018, “Ultrafast X-ray Imaging of Laser–
Metal Additive Manufacturing Processes,” J. Synchrotron Radiat., 25(5),
pp. 1467–1477.
[14] Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T.,
and Rollett, A. D., 2019, “Keyhole Threshold and Morphology in Laser Melting
Revealed by Ultrahigh-Speed X-Ray Imaging,” Science, 363(6429), pp. 849–852.
[15] Shrestha, S., Starr, T., and Chou, K., 2019, “A Study of Keyhole Porosity in
Selective Laser Melting: Single Track Scanning With Micro-CT Analysis,”
ASME J. Manuf. Sci. Eng., 141(7), pp. 1–23.
[16] Ye, J., Rubenchik, A. M., Crumb, M. F., Guss, G., and Matthews, M. J., 2018,
“Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive
Manufacturing of Metals,” Proceedings of the CLEO: Science and Innovations,
Optical Society of America, San Jose, CA, May 13–18, Optical Society of
America, p. JW2A.117.
[17] Mishra, B., and Rajamani, R. K., 1992, “The Discrete Element Method for the
Simulation of Ball Mills,” Appl. Math. Modell., 16(11), pp. 598–604.
[18] Yan, W., Qian, Y., Ge, W., Lin, S., Liu, W. K., Lin, F., and Wagner, G. J., 2018,
“Meso-Scale Modeling of Multiple-Layer Fabrication Process in Selective
Electron Beam Melting: Inter-Layer/Track Voids Formation,” Materials and
Design, 141(2018), pp. 210–219.
[19] Kloss, C., Goniva, C., Hager, A., Amberger, S., and Pirker, S., 2012, “Models,
Algorithms and Validation for Opensource DEM and CFD–DEM,” Prog.
Comput. Fluid Dynam. Int. J., 12(2–3), pp. 140–152.
[20] Escano, L. I., Parab, N. D., Xiong, L., Guo, Q., Zhao, C., Fezzaa, K., Everhart,
W., Sun, T., and Chen, L., 2018, “Revealing Particle-Scale Powder Spreading
Dynamics in Powder-Bed-Based Additive Manufacturing Process by
High-Speed X-Ray Imaging,” Sci. Rep., 8(1), p. 15079.
[21] Gong, H., Gu, H., Zeng, K., Dilip, J., Pal, D., Stucker, B., Christiansen, D., Beuth,
J., and Lewandowski, J. J., 2014, “Melt Pool Characterization for Selective Laser
Melting of Ti-6Al-4V Pre-Alloyed Powder,” Proceedings of the Solid Freeform
Fabrication Symposium, Austin, TX, Aug. 4–6, pp. 256–267.
[22] Mills, K. C., 2002, Recommended Values of Thermophysical Properties for
Selected Commercial Alloys, Woodhead Publishing, Cambridge, UK.
[23] Shrestha, S., and Chou, K., 2017, “A Build Surface Study of Powder-Bed
Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and
White-Light Interferometry,” Int. J. Mach. Tools Manuf., 121(2017), pp. 37–49.
[24] Cho, J.-H., and Na, S.-J., 2006, “Implementation of Real-Time Multiple
Reflection and Fresnel Absorption of Laser Beam in Keyhole,” J. Phys. D:
Appl. Phys., 39(24), p. 5372.
[25] Dilip, J., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., and Stucker, B.,
2017, “Influence of Processing Parameters on the Evolution of Melt Pool,
Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective
Laser Melting,” Prog. Add. Manuf., 2(3), pp. 157–167.
[26] Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J.-P. R., and Schoenung,
J. M., 2017, “On the Limitations of Volumetric Energy Density as a Design
Parameter for Selective Laser Melting,” Mater. Des., 113(2017), pp. 331–340.
[27] Kroos, J., Gratzke, U., and Simon, G., 1993, “Towards a Self-Consistent Model of
the Keyhole in Penetration Laser Beam Welding,” J. Phys. D: Appl. Phys., 26(3),
p. 474.
[28] Martin, A., Calta, N., Hammons, J., Khairallah, S., Nielsen, M., Shuttlesworth, R.,
Sinclair, N., Matthews, M., Jeffries, J., and Willey, T., 2019, “Ultrafast Dynamics
of Laser-Metal Interactions in Additive Manufacturing Alloys Captured by In Situ
X-Ray Imaging,” Mater. Today Adv., 1(2019), p. 100002.
[29] Shrestha, S., Starr, T., and Chou, K., 2018, “Individual and coupled contributions
of laser power and scanning speed towards process-induced porosity in selective
laser melting,” Proceedings of the Solid Freeform Fabrication Symposium,
Austin, TX, Aug. 13–15, pp. 1400–1409.
[30] Hann, D., Iammi, J., and Folkes, J., 2011, “A Simple Methodology for Predicting
Laser-Weld Properties From Material and Laser Parameters,” J. Phys. D: Appl.
Phys., 44(44), p. 445401.
[31] Trapp, J., Rubenchik, A. M., Guss, G., and Matthews, M. J., 2017, “In Situ
Absorptivity Measurements of Metallic Powders During Laser Powder-bed
Fusion Additive Manufacturing,” Appl. Mat. Today, 9(2017), pp. 341–349.

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D WELD Products

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D@ WELD는 레이저 용접 공정에 대한 정확한 시뮬레이션 기능을 제공하여 최적화된 공정을 개발하게 합니다. 더 나은 공정 제어를 통해 기공, 열 영향 영역을 최소화하고 미세 구조 변화를 제어할 수 있습니다.

레이저 용접 프로세스를 정확하게 시뮬레이션하기 위해 FLOW-3D@ WELD는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화와 같은 모든 관련 물리 모델을 제공합니다.

Laser Welding

최근에는 뛰어난 생산성과 속도, 낮은 열 입력이 결합되어 기존의 용접 프로세스를 대체하는 레이저 용접 프로세스가 주목 받고 있습니다. 레이저 용접이 제공하는 장점은 용접강도가 좋고, 열 영향 부위가 작으며, 정밀도가 낮고 변형이 적으며, 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접 할 수 있는 기능이 있습니다.

FLOW-3D@는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 프로세스 최적화를 달성하는 데 도움이 됩니다.

보다 나은 프로세스 제어를 통해 기공을 최소화할 수 있습니다. 열 영향부위 및 미세조직을 제어가 가능합니다. FLOW-3D는 자유표면 추적 알고리즘을 통해 매우 복잡한 용접 POOL 시뮬레이션을 해석하는데 매우 적합합니다.

용접 모듈은 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발압력, shield gas 효과, 용융 풀의 반동압력 및 다중 레이저 반사와 같은 물리적 모델을 FLOW-3D에 적용하기 위해 개발되었습니다. 키홀 용접과 같은 현실적인 프로세스 시뮬레이션을 위해서는 모든 관련 물리적 현상을 적용하는 것이 중요합니다.

FLOW-3D는 레이저 용접의 conduction and keyhole 방식을 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D를 사용하여 용접역학을 분석하고, 공정 매개 변수를 최적화하여 기공을 최소화하며, 레이저 용접공정에서의 dendrite 결정 성장 양상을 예측합니다.

Shallow penetration weld (top left); deep penetration weld with shield gas effects (top right); deep penetration weld with shield gas and evaporation pressure (bottom left); and deep penetration weld with shield gas, evaporation pressure and multiple laser reflections effects (bottom right).

Full Penetration Laser Welding Experiments

한국 카이스트와 독일 BAM은 16K kW레이저를 사용하여 10mm강판에 완전 침투 레이저 용접 실험을 수행하였습니다. CCD카메라의 도움을 받아 완전 용입 레이저 용접으로 형성된 상단 및 하단 용융풀 거동을 확인할 수 있었습니다. 그들은 또한 FLOW-3D 로 용접 공정 해석으로 해석과 실험결과의 경향이 일치하는 것을 알 수 있었습니다.

Experimental setup with CCD cameras observing the top and bottom molten pools
Schematic of computation domain in FLOW-3D

 

Simulation results at the top show melt pool lengths of 8mm and 15mm, whereas experiments indicated melt pool lengths of 7mm and 13mm

Laser Welding Porosity Case Study

General Motors, Michigan, 중국의 상하이 대학교는 용접 공정 변수, 즉 keyhole 용접에서 기공의 발생에 대해 용접 속도 및 용접 각도와 같은 공정 매개 변수가 미치는 영향을 알아보기 위해 협력하여 연구를 진행하였습니다.

레이저 용접된 Al 접합부 단면의 기공을 분석합니다. Keyhole이 유도 된 기공들은 유동 역학으로 인해 발생되고 균열을 일으킬 수 있습니다. 최적화 공정의 매개변수는 이러한 종류의 기공을 완화할 수 있습니다. FLOW-3D를 사용하여 연구원들은 증발 및 반동 압력, 용융풀, 온도에 따른 표면장력 및 Keyhole내의 다중 레이저 반사, 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

연구진은 시뮬레이션 모델을 기반으로 Keyhole 용접에서 생성된 기공들의 주요 원인으로 불안정한 Keyhole을 규정하였습니다. 아래 이미지에서 볼 수 있듯이 뒤쪽 용융 풀의 과도한 재순환은 뒤쪽 용융 풀이 앞쪽 용융 풀 경계를 무너뜨리며 기공들을 생성시킵니다. 갇힌 공간이 증가하는 응고 전면에 의해 갇혔을때 기공들이 발생되었습니다.

Distribution of porosity in longitudinal welding sections as seen in simulations (top) and experiments (bottom)

용접 속도가 빠를수록 더 큰 keyhole이 생성되며 이로 인해, 보다 안정적인 keyhole이 생성됩니다. 연구진은 FLOW-3D를 사용하여 용접 속도와 용접 경사각으로 기공들의 생성을 완화시킬 수 있었습니다.


관련 기술자료

Stability and deformations of deposited layers in material extrusion additive manufacturing

Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques

Md TusherMollah, Raphaël Comminal, Marcin P.Serdeczny, David B.Pedersen, Jon SpangenbergDepartment of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark ...
더 보기
Fig. 1. Schematic of (a) geometry of the simulation model, (b) A-A cross-section presenting the locations of point probes for recording temperature history (unit: µm).

Laser powder bed fusion of 17-4 PH stainless steel: a comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties

17-4 PH 스테인리스강의 레이저 분말 베드 융합: 열처리가 미세조직의 진화 및 기계적 특성에 미치는 영향에 대한 비교 연구 panelS.Saboonia, A.Chaboka, ...
더 보기
Laser powder bed fusion Figure

A study of transient and steady-state regions from single-track deposition in laser powder bed fusion

SubinShrestha KevinChou J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40292, United States Abstract The surface morphology of ...
더 보기
참조 : YS Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion , S2214-8604 (16) 30087-2, doi.org/10.1016/j.addma .2016.05.003 , ADDMA 86.

FLOW-3D AM 미세 구조 예측 | 열 응력 해석

미세 구조 예측 냉각 속도 및 온도 구배와 같은 FLOW-3D AM 데이터를 미세 구조 모델에 입력하여 결정 성장 및 수상 ...
더 보기
electromagnetic metal casting computation designs Fig1

A survey of electromagnetic metal casting computation designs, present approaches, future possibilities, and practical issues

Aditya Raj, S Ram Kishore, Lanz Jose, Atul Kumar Karn, Utkarsh Chadha & Senthil Kumaran Selvaraj The European Physical Journal ...
더 보기
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).

Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions

레이저 파우더 베드 융합 오버행 영역에서 표면 거칠기의 원인에 대한 실험 및 수치 조사 Shaochuan Feng,Amar M. Kamat,Soheil Sabooni &Yutao ...
더 보기
Hierarchical grain refinement during the laser additive manufacturing of Ti-6Al-4V alloys by the addition of micron-sized refractory particles

Hierarchical grain refinement during the laser additive manufacturing of Ti-6Al-4V alloys by the addition of micron-sized refractory particles

Xiang Wang  Lin-Jie Zhang  Jie Ning  Sen Li  Liang-Liang Zhang  Jian Long State Key Laboratory for Mechanical Behavior of Materials, ...
더 보기
Fig. 1. Schematic description of the laser welding process considered in this study.

Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding

Won-Ik Cho, Peer WoizeschkeBremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Straße 5, Bremen 28359, Germany Received 30 July 2020, Revised ...
더 보기
A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys Fig7

A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys

Mohamad Bayat Venkata K. Nadimpalli David B. Pedersen Jesper H. Hattel Department of mechanical engineering, Technical University of Denmark (DTU), ...
더 보기
Effect of Y2O3 on microstructure

Hierarchical grain refinement during the laser additive manufacturing of Ti-6Al-4V alloys by the addition of micron-sized refractory particles

미크론 크기의 내화물 입자를 추가하여 Ti-6Al-4V 합금의 레이저 적층 제조중 계층적 입자 미세 조정 Xiang Wang, Lin-Jie Zhang, Jie Ning, ...
더 보기
The realm of operations of FLOW-3D

ADDITIVE MANUFACTURING SIMULATIONS

Capabilities of FLOW-3D

FLOW-3D는 자유 표면 유체 흐름 시뮬레이션을 전문으로하는 다중 물리 CFD 소프트웨어입니다. 자유 표면의 동적 진화를 추적하는 소프트웨어의 알고리즘인 VOF (Volume of Fluid) 방법은 Flow Science의 설립자인 Tony Hirt 박사가 개척했습니다.

또한 FLOW-3D에는 금속 주조, 잉크젯 인쇄, 레이저 용접 및 적층 제조 (AM)와 같은 광범위한 응용 분야를 시뮬레이션하기위한 물리 모델이 내장되어 있습니다.
적층 제조 시뮬레이션 소프트웨어, 특히 L-PBF (레이저 파우더 베드 융합 공정)의 현상 유지는 열 왜곡, 잔류 응력 및지지 구조 생성과 같은 부분 규모 모델링에 도움이되는 열 기계 시뮬레이션에 초점을 맞추고 있습니다.

유용하지만 용융 풀 역학 및 볼링 및 다공성과 같은 관련 결함에 대한 정보는 일반적으로 이러한 접근 방식의 영역 밖에 있습니다. 용융 풀 내의 유체 흐름, 열 전달 및 표면 장력이 열 구배 및 냉각 속도에 영향을 미치며 이는 다시 미세 구조 진화에 영향을 미친다는 점을 명심하는 것도 중요합니다.

FLOW-3D와 이산 요소법 (DEM) 및 WELD 모듈을 사용하여 분말 및 용융 풀 규모에서 시뮬레이션 할 수 있습니다.
구현되는 관련 물리학에는 점성 흐름, 열 전달, 응고, 상 변화, 반동 압력, 차폐 가스 압력, 표면 장력, 움직이는 물체 및 분말 / 입자 역학이 포함됩니다. 이러한 접근 방식은 합금에 대한 공정을 성공적으로 개발할 수 있게 하고, AM 기계 제조업체와 AM 기술의 최종 사용자 모두에게 관심있는 미세 구조 진화에 대한 통찰력을 제공하는데 도움이 됩니다.

The realm of operations of FLOW-3D
The realm of operations of FLOW-3D

FLOW-3D는 레이저 분말 베드 융합 (L-PBF), 직접 에너지 증착 (DED) 및 바인더 제트 공정으로 확장되는 기능을 가지고 있습니다.
FLOW-3D를 사용하면 분말 확산 및 패킹, 레이저 / 입자 상호 작용, 용융 풀 역학, 표면 형태 및 후속 미세 구조 진화를 정확하게 시뮬레이션 할 수 있습니다. 이러한 기능은 FLOW-3D에 고유하며 계산 효율성이 높은 방식으로 달성됩니다.

예를 들어 1.0mm x 0.4mm x 0.3mm 크기의 계산 영역에서 레이저 빔의 단일 트랙을 시뮬레이션하기 위해 레이저 용융 모델은 단 8 개의 물리적 코어에서 약 2 시간이 걸립니다.
FLOW-3D는 모든 관련 물리 구현 간의 격차를 해소하는 동시에 업계 및 연구 표준에서 허용하는 시간 프레임으로 결과를 생성합니다. 분말 패킹, 롤러를 통한 파워 확산, 분말의 레이저 용융, 용융 풀 형성 및 응고를 고려하고 다층 분말 베드 융합 공정을 위해 이러한 단계를 순차적으로 반복하여 FLOW-3D에서 전체 AM 공정을 시뮬레이션 할 수 있습니다.

FLOW-3D의 다층 시뮬레이션은 이전에 응고된 층의 열 이력을 저장한다는 점에서 독특하며, 열 전달을 고려하여 이전에 응고된 층에 확산된 새로운 분말 입자 세트에 대해 시뮬레이션이 수행됩니다.
또한, 응고 된 베드의 열 왜곡 및 잔류 응력은 FLOW-3D를 사용하여 평가할 수 있으며, 보다 복잡한 분석을 수행하기 위해 FLOW-3D의 압력 및 온도 데이터를 Abaqus 및 MSC Nastran과 같은 FEA 소프트웨어로 내보낼 수 있습니다.

Sequence of a multi-layer L-PBF simulation setup in FLOW-3D

Ease of Use

FLOW-3D는 다양한 응용 분야에서 거의 40 년 동안 사용되어 왔습니다. 사용자 피드백을 기반으로 UI 개발자는 소프트웨어를 사용하기 매우 직관적으로 만들었으며 새로운 사용자는 시뮬레이션 설정의 순서를 거의 또는 전혀 어려움없이 이해합니다.
사용자는 FLOW3D에서 구현 된 다양한 모델의 이론에 정통하며 새로운 실험을 설계 할 수 있습니다. 실습 튜토리얼, 비디오 강의, 예제 시뮬레이션 및 기술 노트의 저장소도 사용할 수 있습니다.
사용자가 특정 수준의 경험에 도달하면 고급 수치 교육 및 소프트웨어 사용자 지정 교육을 사용할 수 있습니다.

Available Literature

실험 데이터에 대해 FLOW-3D 모델을 검증하는 몇 가지 독립적으로 발표된 연구가 있습니다. 여기에서 수록된 저널 논문은 레이저 용접 및 적층 제조 공정으로 제한됩니다. 더 많은 참조는 당사 웹 사이트에서 확인할 수 있습니다.

Laser Welding

  1. L.J.Zhang, J.X.Zhang, A.Gumenyuk, M.Rethmeier, S.J.Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology, Volume 214, Issue 8, 2014.
    A study by researchers from BAM in Germany, KAIST in Korea, and State Key Laboratory of Mechanical Behavior of Materials in China that focuses on keyhole dynamics and full penetration laser welding of steel plates.
  2. Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E.
    Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer, Volume 108, Part A, 2017.
    General Motors (GM) and Shangai University collaborated on a study on the influence of welding speed and weld angle of inclination on porosity occurrence in laser keyhole welding.
  3. Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser Welding Repair for Single Crystal Blades, International Gas Turbine Congress, Tokyo, 2015.
    Mitsubishi Heavy Industry’s study on laser welding repair using laser cladding for single Ni crystal alloys used in gas turbine blades.

Additive Manufacturing

  1. Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba, Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Technology, Volume 254, 2018
    This paper discusses powder bed compaction with random packing for different powder-size distributions, and the importance of considering evaporation effects in the melting process to validate the melt pool dimensions.
  2. Lee, Y.S., and W.Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA. 2015
    A study conducted by Ohio State University researchers to understand the influence of process parameters in formation of balling defects.
  3. Y.S. Lee, W.Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Additive Manufacturing, Volume 12, Part B, 2016
    A study conducted by Ohio State University researchers to understand the influence of solidification parameters, calculated from the temperature fields, on solidification morphology and grain size using existing theoretical models in laser powder bed fusion processes.

 

 

What’s happening at the melt pool?/레이저 가공

Laser keyhole welding

레이저 키홀(Keyhole) 가공(No oscillations/진동 고려하지 않을 경우)

높은 속도에서 다공성을 감소시키는 경우(Reduced porosity at high speed-mechanism)

고속 레이저 가공(진동 고려하지 않음)해석 시 고려사항

  • 틈새 조건에 대한 허용 오차가 낮아지는 좁은 조인트(Joint) 너비
  • 레이저가 꺼질 때 큰 끝 분화구(Large end crater)
  • 속도가 높을 때 불충분한 침투(Penetration)
  • 제한된 사용가능한 레이저 출력 : 6kW

진동을 고려한 레이저 랩(Lap) 용접

  • 키홀(Keyhole) 붕괴를 방지하는 고속 스캐닝 가능
    – 다공성(Porosity) 최소화
  • 인터페이스 간극(Interface gaps)에서 브리지 간격(Bridge gaps)을 조정하여 조인트(Joint) 폭을 조정할 수 있는 유연성 제공

진동을 고려한 레이저 용접 : 실험 결과와 비교

모델 검증

사이클(One cycle) 내에서 키홀(Keyhole) 역학

  • 진동을 고려하지 않을 경우 : 일관된 전도 또는 키홀 용접
  • 진동을 고려할 경우 : 경로와 일정에 따라 한 번의 주기내에서 전도 용접, 얕은 키홀(Keyhole)과 깊은 키홀(Keyhole) 용접 간 전환 가능

진동을 고려한 레이저 가공의 이점

  • 진동을 통한 최초 품질 향상
  • 키홀(Keyhole)로 인한 다공성(Porosity)을 피하면서 높은 용접 속도 가능
  • 전력 변조가 사용되지 않는 경우, 각 주기내에서 키홀(Keyhole) 및 전도 모델간 전환
  • 진동 매개 변수 변경을 통해 중요 용접 너겟(Nugget) 치수 및 강도 조정 가능
  • 시트 간 틈 브리징(Gap gridging) 개선

Laser Welding and Additive Manufacturing

Application

  • Shallow penetration weld (Shallow 침투 용접)
  • Deep penetration weld (Deep 침투 용접)
  • Laser-arc hybrid welding(레이저-아크 하이브리드 용접)
  • Laser repair technology
  • Laser cladding(레이저 클레딩)
  • Laser powder bed fusion process

관련 물리 모델

  • Viscous Flows and Turbulence(점성 유체 및 난류 모델)
  • Surface Tension(표면장력)
  • General Moving Objects(GMO)
  • Heat Transfer(열전달)
  • Visco-elasto-plasticity(점탄성)
  • Solidification(응고)
  • Thermal Stresses(열응력)

Laser/Heat source(레이저/열원)

  • 레이저 출력 및 용접 속도 향상
    – 더 큰 키홀(Keyhole) 개방 및 깊이 변동이 적음
    – 후면 용융 풀 (Moltan Pool)의 난기류가 최소화된 키홀(Keyhole) 앞부분 벽(Wall)에 레이저 빔(Laser beam)이 노출
    – 다공성 형성(Porosity formation) 최소화

Laser beam motion(레이저 빔 모션)

  • 레이저 빔(Laser beam) 기울기 증가
    – 큰 각도에서 유사한 방향을 따라 작용하는 중력 및 반동 압력으로 인해 후면 용융 풀(Moltan pool)에서 층류(Laminar flow)가 관찰
    – 다공성 발생(Porosity occurrence) 최소화

해석 사례

  • Laser metal deposition(레이저 금속 증착) -Single layer
  • 40마이크론 유체 입자 주입 (500,000/sec)
  • 레이저 출력 : 100W
  • 스캔속도 : 1cm/sec
  • 레이저 빔 직경 : 2mm
  • 재질 : IN-718 meterail alloy
  • Laser metal deposition(레이저 금속 증착) – Multilayer
  • Laser powder bed fusion process
  • FLOW-3D DEM 및 FLOW-3D WELD 고려
    – 용융 영역(Melt region)
    – 용융 풀(Melt pool)의 속도 및 온도
    – 고체 영역(Solid fraction)
  • 레이저 방사(Laser irradiation) 조건
    – 출력 : 200W
    – 스캔속도 : 3m/s
    – Spot radius : 0.1mm

정밀주조품의 수축 결함 예측

정밀 주조품의 수축 결함 예측

정밀 주조 공정은 가장 오래된 주조 공정 중 하나로 기원전 4000년 이후에 보편화되었습니다. 이 과정은 용해된 금속을 소모품(왁스)패턴으로 생성된 세라믹 쉘에 주입하는 과정을 수반합니다. 일찍이 그것은 금, 은, 구리와 청동 합금으로 장신구와 우상을 만드는데 사용되었습니다.

정밀 주조공정은 1897년 아이오와 주, 위원회 블러프스의 Barabas Frederick Philbrook이 묘사한 대로 치과의사들이 왕관과 인레이를 만들기 위해 그것을 사용하기 시작한 19세기 말 현대 산업공정으로 사용되기 시작했습니다. 1940년대에는 제2차 세계대전 당시 기존 방법으로는 형성될 수 없거나 지나치게 많은 가공이 필요한 특수 합금의 정밀 순모형 제조 기술에 대한 수요로 인해 투자 주조 공정이 증가하였습니다.

오늘날 정밀 주조 공정은 표면 마감 및 치수 정확도가 우수하여 거의 순 형태에 가까운 철, 비철 및 초합금의 소형 산업용 부품을 생산하는데 주로 사용됩니다.

정밀 주조 공정은 다음 네 가지 주요 단계로 구성됩니다.

  • 왁스 패턴 생성 후, 패턴 클러스터 또는 ‘트리’를 만들기 위해 게이트 시스템으로 청소 및 조립합니다.
  • 나무는 세라믹 쉘을 얻기 위해 미세 모래와 Course한 모래 입자의 슬러리로 번갈아 코팅됩니다.
  • 용기는 건조되고, 왁스를 녹이기 위해 가열되며, 강도를 높이고 주입 준비합니다.
  • 마침내 주조 합금이 용해되어 예열된 쉘에 주입됩니다. 응고 후에 쉘이 파손되어 주조 부품을 얻습니다.

Figure 1. Solid model of the casting geometry

정밀 주조 공정에서 얻은 부품은 많은 중요한 용도에 사용되므로 내부적인 결함이 없어야 합니다. 정밀 주조 공정에서 발생하는 주요 결함은 세라믹 포함, 균열, 변형, 플래시, 주탕불량, 수축, 슬래그 포함, 탕경계등입니다. 얻은 주조물의 품질을 예측하려면 금속-몰드 열 전달계수, 주입 온도 등 다양한 주조 공정 매개 변수의 영향을 연구해야 합니다. 즉, 쉘 두께 및 쉘 열 전달계수가 그것입니다. 현대 컴퓨터 시스템 및 시뮬레이션 소프트웨어의 출현과 함께 금형 충진 및 응고 시뮬레이션은 주조공장에서 결함을 예측하고 설계를 최적화하는데 점점 더 많이 사용되고 있습니다.

이 연구의 주요 목적은 정밀 주조 공정에서 주요 요소인 복사 열 전달과 정밀 주조 공정에 고유한 쉘 금형이 FLOW-3D에서 효과적으로 구현될 수 있는지를 조사하는 것입니다. FLOW-3D를 사용하여 간단한 형상을 위한 정밀 주조공정의 주입 및 응고 시뮬레이션을 수행함으로써 두 구성요소의 서로 다른 효과를 조사합니다. 다양한 위치에서 얻은 온도의 수치는 문헌 [1]에보고 된 실험 결과로 검증됩니다. 복사 열 전달계수, 쉘 몰드 두께, 탕구 및 게이트의 위치에 대한 영향도 조사했습니다.

Shell mold

Figure 2. Shell mold

Methodology

현재 연구에서 사용된 계산 형상은 그림 1에 나와 있습니다. 쉘 몰드는 다음 단계를 사용하여 작성되었습니다.

  • complement 1로 형상을 FLOW-3D로 가져오고 지정된 셀 크기로 가져온 형상을 중심으로 메쉬 블록을 작성합니다.
  • “complement”유형의 component1의 첫 번째 하위 구성 요소를 만들어 하위 구성 요소 외부의 모든 항목을 메쉬의 범위까지 확고하게 만듭니다.
  • 솔리드 데이터베이스에서 이 솔리드 블록의 금형 재질 특성을 정의하십시오.
  • 솔리드 특성 GUI의 구성 요소 특성에서 “Thermal penetration depth”를 정의하는 옵션이 있습니다. 여기서 쉘 두께 값을 정의 할 수 있습니다.
  • 이제 전처리기를 실행하십시오.
  • Analyze 탭>3D 탭으로 이동 한 다음 이전 단계에서 생성 한 prpgrf 파일을 엽니다. ‘Iso-surface’와 ‘color variable’에서 “thermally active component volume”을 선택하고 “Render”을 선택하십시오.
  • Display에 이제 형상의 셸 부분 만 표시됩니다.
  • 개체 목록 (창의 왼쪽 하단)에서 “component 1″을 선택하고 “component 1″을 마우스 오른쪽 단추로 클릭 한 다음 “stl로 내보내기”를 선택하여 이 곡면을 STL 파일로 저장하십시오.
Two mesh blocks

Figure 3. The view of the two mesh blocks for the creation of a void with discretization

쉘 몰드 용 STL 파일을 만든 후에, 이 파일을 component 1로 새 시뮬레이션으로 가져오고 이전에 작성한 주조 형상을 하위 구성 요소로 가져오고 유형을 ‘hole’으로 선택합니다. 쉘 몰드와 함께 주조 형상이 그림 2에 나와 있습니다. 이것은 우리의 계산 영역으로 사용됩니다. 다음은 계산 영역을 cubical/rectangular셀로 분할하기 위한 메쉬를 만드는 것입니다. 메쉬 블록을 작성하여 FLOW-3D에서 메쉬를 생성합니다. 현재의 작업을 위해 2.5mm의 고정된 셀 크기가 선택된 그림 3에 표시된 균일한 메쉬 옵션을 선택했습니다. 입력 위치 주변에 메시 블록 2가 사용되는 현재 시뮬레이션을 위해 메시 블록 2개가 생성되었습니다. 쉘과 주변 공기 사이의 30°C에서의 열 전달을 고려하여 쉘 주위에 보이드 영역이 정의됩니다. 이 영역은 ‘heat transfer type 1’이 있는 보이드 영역으로 선택되며 셸과 주변 공기 사이에 열 전달 계수 값이 지정됩니다. heat transfer type 1은 방사선을 포함한 종합 열 전달 계수가 됩니다.
쉘 주형에 선택된 재료는 zircon이며 열 특성은 Sabau and Vishwanathan에 의해 수행된 실험에서 얻을 수 있습니다[2]. 표 1은 연구에 사용된 재료에 대해 지정된 값을 보여 줍니다.

MATERIAL PROPERTY VALUE UNIT
Fluid –AluminiumA356 alloy Density  2437 kg/m³
Thermal conductivity 116.8 W/(m K)
Specific heat 1074 J/(kg K)
Latent heat 433.22 kJ/m³
Liquidus temperature 608 0C
Solidus temperature 552.4 0C
Zircon Mold Thermal conductivity 1.09 W/(m K)
Specific heat* Density 1.63E+06 J/( m³ 

Initial and boundary conditions used are show in Table 2.

Mold temperature 430°C
Melt pouring temperature 680°C
Filling time 7 s
Interface heat transfer coefficient 850 W/m2K
Heat transfer coefficient between ambient and mold (radiation effect) 30 -100 W/m2K

Table 2. Initial and boundary conditions used for the simulation

Sprue basin에 들어가는 용융물의 초기 속도와 온도는 메시 블록 2의 상단 경계에서 속도 경계 조건으로 주어집니다. 기본적으로 다른 모든 경계는 대칭 유형으로 설정됩니다.

Results & Discussion

Validation with reported experimental results

Experimental and numerical comparison

충전 및 응고 동안 냉각 곡선을 얻기 위한 실험에서 Sabuet.al[1]에 의해 선택된 네 개의 위치가 검증 목적으로 사용되었습니다. 그들은 C1, C2, S11, S12및 S21로 언급됩니다. C1과 C2지점은 주물의 플레이트의 중심에 있으며 S11, S12및 S21은 모두 쉘에 위치합니다. 이러한 위치에서의 온도 변화는 그림 4와 같습니다.
온도 프로파일의 수치 및 실험결과의 차이가 허용한계 안에 있음을 알 수 있습니다. probe points C1과 C2의 경우, 수치와 실험 결과 사이의 차이는 응고 중에 5%, 응고 후 냉각 시 12% 이내입니다. 쉘의 점에 대한 수치 결과는 실험 결과보다 약 5% 높습니다. 이는 쉘 재료에 열 물리학적 특성을 할당할 때 발생하는 가정과 쉘 열 전달 계수의 값 때문일 수 있습니다.

Fill sequence & solidification pattern for two different sprue locations

2 개의 상이한 탕구 위치에서 용탕 충전 순서는 5a 및 5b에 나와 있습니다. 최종 탕구가 더 많은 splashing을 생성하므로 결함으로 이어질 수 있습니다. 탕구가 중간에 놓여지면 흐름은 보다 균일 해지고 두 주조 단면에서 비슷한 온도 분포를 보입니다. 50 % 응고 후의 온도 프로파일의 2D 도면은 두 경우 모두 그림 5c 및 5d에 나와 있습니다. 수축 위치에서 볼 때 두 탕구 위치가 결함을 일으키는 것은 분명합니다.

Fill sequence at different time intervals when the sprue is located at one end
Figure 5a. Fill sequence at different time intervals when the sprue is located at one end

 

Fill sequence at different time intervals when the sprue is located in the middle
Figure 5b. Fill sequence at different time intervals when the sprue is located in the middle

2D temperature profile after 50% solidification when the sprue is located at one end
Figure 5c. 2D temperature profile after 50% solidification when the sprue is located at one end
2D temperature profile after 50% solidification when the sprue is located in the middle
Figure 5d. 2D temperature profile after 50% solidification when the sprue is located in the middle
Effect of shell thickness

정밀 주조에 대한 쉘 두께의 효과를 연구하기 위해 두께가 7.2, 10, 15 및 20 mm인 주물을 선정하였습니다. 그림 6a 및 6b는 주조품의 특정 위치에서 냉각 곡선을 나타내며, 이는 C1으로 나타내고 쉘 몰드 내의 특정 위치에 있으며, 응고 중에 S11로 나타납니다. 세라믹 쉘의 두께가 7.2 mm에서 15 mm로 증가하면 냉각 속도가 감소하여 응고 시간이 길어지는 것을 볼 수 있습니다.

Effect of shell heat transfer coefficient

쉘 열 전달 계수는 열이 쉘 몰드의 외부 벽에서 방사선을 통해 주변 공기로 열을 방출하는 속도를 나타냅니다. 이 효과를 조사하기 위해 열 전달 계수의 값을 20에서 80W/m2K까지 다양하게 했습니다. 7a 및 7b로부터, h의 변화는 주조 재료 및 쉘의 냉각 속도에 중요한 영향을 미친다는 것을 알 수 있습니다. 열 전달 계수가 20에서 80W/m2K로 증가하면 C1에서의 응고 시간이 812 초에서 334 초 (약 44 %)로 감소되었음을 알 수 있습니다. 따라서, h의 값을 변화시키는 것은 주물의 미세 구조에 영향을 미칩니다.

Temperature profile 1
Figure 6a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various shell thickness values
Temperature profile 2
Figure 6b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various shell thickness values
Temperature profile at location C1
Figure 7a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient
Temperature profile at location S11
Figure 7b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient

Conclusions

정밀 주조 공정의 몰드 충진 및 응고 시뮬레이션은 FLOW-3D를 사용하여 수행되었습니다. 주조 공정에 대한 주조 매개변수의 영향을 연구하기 위해 파라메트릭 연구가 수행되었습니다. 본 연구에서 다음과 같은 결론을 도출 할 수 있습니다.

  • FLOW-3D는 멀티 캐비티 몰드의 주입 및 응고 모델링이 가능합니다. 프로브 위치의 예측 온도 프로파일은 실험 데이터의 허용오차 이내였다.
  • 쉘 두께의 경우, 두 경우 모두 셸의 임계 두께가 있으며, 그 이상으로 열 전달 특성이 역행하는 것으로 확인되었습니다. 셸 두께가 증가함에 따라 응고 시간이 임계 두께까지 증가하여 감소하기 시작했습니다. 원래 형상의 경우 임계 두께는 15~20mm인 반면 수정된 형상의 경우 10mm와 15mm 사이에 있다.
  • 쉘과 대기 사이의 열 전달 계수 h는 열 전달 특성에 가장 큰 영향을 미치는 것으로 나타났습니다. h가 20에서 80W/m2K로 4 배 증가할 때 탕구의 중심에서 응고 시간이 40 % 이상 감소했습니다.

References

Sabau, A.S., Numerical Simulation of the Investment Casting Process, Transactions of the American Foundry Society, vol. 113, Paper No. 05-160, 2005.

Sabau, A.S., and Viswanathan, S., Thermophysical Properties of Zircon and Fused Silica-based Shells used in the Investment Casting ProcessTransactions of the American Foundry Society, vol. 112, Paper No. 04-081, 2004.

레이저 용접 수치해석(FLOW WELD)

Laser Welding

뛰어난 생산성과 속도, 낮은 열 입력이 결합되어 기존의 용접 프로세스를 대체하는 레이저 용접 프로세스가 있습니다. 레이저 용접이 제공하는 장점은 용접강도가 좋고, 열 영향 부위가 작으며, 정밀도가 높고 변형이 적으며 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접 할 수 있는 기능이 있습니다.

FLOW-3D는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 프로세스 최적화를 달성하는 데 도움이 됩니다. 보다 나은 프로세스 제어를 통해 다공성을 최소화할 수 있습니다. 열 영향부위 및 마이크로-구조를 제어합니다. FLOW-3D는 자유표면 추적 알고리즘으로 인해 매우 복잡한 용접 풀 시뮬레이션을 해석하는데 적합합니다. 용접의 추가 모듈은 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발압력, shield gas효과, 용융 풀의 반동압력 및 다중 레이저반사와 같은 물리적 모델을 FLOW-3D에 통합하기 위해 개발되었습니다. Keyhole 용접과 같은 현실적인 프로세스 시뮬레이션을 위해서는 모든 관련 물리적 현상을 포착하는 것이 중요합니다.

FLOW-3D는 레이저 용접의 conduction and keyhole 방식을 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D를 사용하여 용접역학을 분석하고, 공정 매개 변수를 최적화하여 다공성을 최소화하며, 레이저 용접공정의 수지결정 성장을 예측합니다.

Shallow penetration weld (top left); deep penetration weld with shield gas effects (top right); deep penetration weld with shield gas and evaporation pressure (bottom left); and deep penetration weld with shield gas, evaporation pressure and multiple laser reflections effects (bottom right).

Full Penetration Laser Welding Experiments

한국 카이스트와 독일 BAM은 16KW레이저를 사용하여 10mm강판에 완전 침투 레이저 용접 실험을 수행하였습니다. CCD카메라의 도움을 받아 완전 용입 레이저 용접으로 형성된 상단 및 하단 용융지 역학을 포착할 수 있었습니다. 그들은 또한 FLOW-3D공정을 시뮬레이션하여 해석과 실험결과가 경향이 일치하는 것을 나타내었습니다.

Experimental setup with CCD cameras observing the top and bottom molten pools
 
Simulation results at the top show melt pool lengths of 8mm and 15mm, whereas experiments indicated melt pool lengths of 7mm and 13mm
 
 
 
 
Schematic of computation domain in FLOW-3D

 

Laser Welding Porosity Case Study

General Motors, Michigan, 중국의 상하이 대학교는 공정변수, 즉 keyhole 용접에서 다공성 발생 에 대해 용접속도 및 용접각도와 같은 공정 매개 변수가 미치는 영향을 이해하기 위해 협력하여 연구를 진행하였습니다.

 
레이저 용접된 Al 접합부 단면의 다공성을 용접합니다. Keyhole 유도 된 다공성은 유동 역학으로 인해 발생되고 균열을 일으킬 수 있습니다. 최적화 공정의 매개변수는 이러한 종류의 다공성을 완화할 수 있습니다. FLOW-3D를 사용하여 연구원들은 증발 및 반동 압력, 용융풀, 온도에 따른 표면장력 및 Keyhole내의 다중 레이저 반사, 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

연구진은 시뮬레이션 모델을 기반으로 Keyhole용접에서 유도된 다공성의 주요 원인으로 불안정한Keyhole을 규정하였습니다. 아래 이미지에서 볼 수 있듯이 뒤쪽 용융 풀의 과도한 재순환은 뒤쪽 용융 풀이 앞쪽 용융 풀 경계를 무너뜨리며 다공성을 초래시킵니다. 갇힌 공간이 증가하는 응고 전면에 의해 포착되었을 때 다공성이 유도되었습니다.

용접 속도가 빠를수록 더 큰 keyhole이 생성되며 이로 인해보다 안정적인 keyhole이 구성됩니다. 연구진은 FLOW-3D를 사용하여 높은 용접 속도와 큰 용접 경사각으로 다공성을 완화시킬 수 있다고 예측했습니다.

 
 
Distribution of porosity in longitudinal welding sections as seen in simulations (top) and experiments (bottom)

용접분야 활용

Conduction 용접

하이브리드 레이저 용접

깊은 용접 레이저용접

레이저 적층 공법

TIG 용접

이종소재 레이저 용접

Additive Manufacturing & Welding Bibliography

Additive Manufacturing & Welding Bibliography

다음은 적층 제조 및 용접 참고 문헌의 기술 문서 모음입니다. 이 모든 논문에는 FLOW-3D AM 결과가 나와 있습니다. FLOW-3D AM을 사용하여 적층 제조, 레이저 용접 및 기타 용접 기술에서 발견되는 프로세스를 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

2021년 6월 25일 update

34-21   Haokun Sun, Xin Chu, Cheng Luo, Haoxiu Chen, Zhiying Liu, Yansong Zhang, Yu Zou, Selective laser melting for joining dissimilar materials: Investigations ofiInterfacial characteristics and in situ alloying, Metallurgical and Materials Transactions A, 52; pp. 1540-1550, 2021. doi.org/10.1007/s11661-021-06178-9

32-21   Shanshan Zhang, Subin Shrestha, Kevin Chou, On mesoscopic surface formation in metal laser powder-bed fusion process, Supplimental Proceedings, TMS 150th Annual Meeting & Exhibition (Virtual), pp. 149-161, 2021. doi.org/10.1007/978-3-030-65261-6_14

22-21   Patiparn Ninpetch, Pruet Kowitwarangkul, Sitthipong Mahathanabodee, Prasert Chalermkarnnon, Phadungsak Rattanadecho, Computational investigation of thermal behavior and molten metal flow with moving laser heat source for selective laser melting process, Case Studies in Thermal Engineering, 24; 100860, 2021. doi.org/10.1016/j.csite.2021.100860

19-21   M.B. Abrami, C. Ransenigo, M. Tocci, A. Pola, M. Obeidi, D. Brabazon, Numerical simulation of laser powder bed fusion processes, La Metallurgia Italiana, February; pp. 81-89, 2021.

16-21   Wenjun Ge, Jerry Y.H. Fuh, Suck Joo Na, Numerical modelling of keyhole formation in selective laser melting of Ti6Al4V, Journal of Manufacturing Processes, 62; pp. 646-654, 2021. doi.org/10.1016/j.jmapro.2021.01.005

11-21   Mohamad Bayat, Venkata K. Nadimpalli, David B. Pedersen, Jesper H. Hattel, A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys, International Journal of Heat and Mass Transfer, 166; 120766, 2021. doi.org/10.1016/j.ijheatmasstransfer.2020.120766

10-21   Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba, Thermal properties of powder beds in energy absorption and heat transfer during additive manufacturing with electron beam, Powder Technology, 381; pp. 44-54, 2021. doi.org/10.1016/j.powtec.2020.11.082

9-21   Subin Shrestha, Kevin Chou, A study of transient and steady-state regions from single-track deposition in laser powder bed fusion, Journal of Manufacturing Processes, 61; pp. 226-235, 2021. doi.org/10.1016/j.jmapro.2020.11.023

6-21   Qian Chen, Yunhao Zhao, Seth Strayer, Yufan Zhao, Kenta Aoyagi, Yuichiro Koizumi, Akihiko Chiba, Wei Xiong, Albert C. To, Elucidating the effect of preheating temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment, Additive Manufacturing, 37; 101642, 2021. doi.org/10.1016/j.addma.2020.101642

04-21   Won-Ik Cho, Peer Woizeschke, Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding, International Journal of Heat and Mass Transfer, 164; 120623, 2021. doi.org/10.1016/j.ijheatmasstransfer.2020.120623

121-20   Yufan Zhao, Yujie Cui, Haruko Numata, Huakang Bian, Kimio Wako, Kenta Yamanaka, Kenta Aoyagi, Akihiko Chiba, Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process, Scientific Reports, 10; 18446, 2020. doi.org/10.1038/s41598-020-75503-w

116-20   Raphael Comminal, Wilson Ricardo Leal da Silva, Thomas Juul Andersen, Henrik Stang, Jon Spangenberg, Modelling of 3D concrete printing based on computational fluid dynamics, Cement and Concrete Research, 138; 106256, 2020. doi.org/10.1016/j.cemconres.2020.106256

112-20   Peng Liu, Lijin Huan, Yu Gan, Yuyu Lei, Effect of plate thickness on weld pool dynamics and keyhole-induced porosity formation in laser welding of Al alloy, The International Journal of Advanced Manufacturing Technology, 111; pp. 735-747, 2020. doi.org/10.1007/s00170-020-05818-5

108-20   Fan Chen, Wentao Yan, High-fidelity modelling of thermal stress for additive manufacturing by linking thermal-fluid and mechanical models, Materials & Design, 196; 109185, 2020. doi.org/10.1016/j.matdes.2020.109185

104-20   Yunfu Tian, Lijun Yang, Dejin Zhao, Yiming Huang, Jiajing Pan, Numerical analysis of powder bed generation and single track forming for selective laser melting of SS316L stainless steel, Journal of Manufacturing Processes, 58; pp. 964-974, 2020. doi.org/10.1016/j.jmapro.2020.09.002

100-20   Raphaël Comminal, Sina Jafarzadeh, Marcin Serdeczny, Jon Spangenberg, Estimations of interlayer contacts in extrusion additive manufacturing using a CFD model, International Conference on Additive Manufacturing in Products and Applications (AMPA), Zurich, Switzerland, September 1-3: Industrializing Additive Manufacturing, pp. 241-250, 2020. doi.org/10.1007/978-3-030-54334-1_17

97-20   Paree Allu, CFD simulation for metal Additive Manufacturing: Applications in laser- and sinter-based processes, Metal AM, 6.4; pp. 151-158, 2020.

95-20   Yufan Zhao, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba, Role of operating and environmental conditions in determining molten pool dynamics during electron beam melting and selective laser melting, Additive Manufacturing, 36; 101559, 2020. doi.org/10.1016/j.addma.2020.101559

94-20   Yan Zeng, David Himmler, Peter Randelzhofer, Carolin Körner, Processing of in situ Al3Ti/Al composites by advanced high shear technology: influence of mixing speed, The International Journal of Advanced Manufacturing Technology, 110; pp. 1589-1599, 2020. doi.org/10.1007/s00170-020-05956-w

93-20   H. Hamed Zargari, K. Ito, M. Kumar, A. Sharma, Visualizing the vibration effect on the tandem-pulsed gas metal arc welding in the presence of surface tension active elements, International Journal of Heat and Mass Transfer, 161; 120310, 2020. doi.org/10.1016/j.ijheatmasstransfer.2020.120310

90-20   Guangxi Zhao, Jun Du, Zhengying Wei, Siyuan Xu, Ruwei Geng, Numerical analysis of aluminum alloy fused coating process, Journal of the Brazilian Society of Mechanical Science and Engineering, 42; 483, 2020. doi.org/10.1007/s40430-020-02569-y

85-20   Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, Investigation of metal mixing in laser keyhold welding of dissimilar metals, Materials & Design, 195; 109056, 2020. doi.org/10.1016/j.matdes.2020.109056

82-20   Pan Lu, Zhang Cheng-Lin, Wang Liang, Liu Tong, Liu Jiang-lin, Molten pool structure, temperature and velocity flow in selective laser melting AlCu5MnCdVA alloy, Materials Research Express, 7; 086516, 2020. doi.org/10.1088/2053-1591/abadcf

80-20   Yujie Cui, Yufan Zhao, Haruko Numata, Huakang Bian, Kimio Wako, Kento Yamanaka, Kenta Aoyagi, Chen Zhang, Akihiko Chiba, Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4 V alloy powder, Powder Technology, 376; pp. 363-372, 2020. doi.org/10.1016/j.powtec.2020.08.027

78-20   F.Q. Liu, L. Wei, S.Q. Shi, H.L. Wei, On the varieties of build features during multi-layer laser directed energy deposition, Additive Manufacturing, 36; 101491, 2020. doi.org/10.1016/j.addma.2020.101491

75-20   Nannan Chen, Zixuan Wan, Hui-Ping Wang, Jingjing Li, Joshua Solomon, Blair E. Carlson, Effect of Al single bond Si coating on laser spot welding of press hardened steel and process improvement with annular stirring, Materials & Design, 195; 108986, 2020. doi.org/10.1016/j.matdes.2020.108986

72-20   Yujie Cui, Kenta Aoyagi, Yufan Zhao, Kenta Yamanaka, Yuichiro Hayasaka, Yuichiro Koizumi, Tadashi Fujieda, Akihiko Chiba, Manufacturing of a nanosized TiB strengthened Ti-based alloy via electron beam powder bed fusion, Additive Manufacturing, 36; 101472, 2020. doi.org/10.1016/j.addma.2020.101472

64-20   Dong-Rong Liu, Shuhao Wang, Wentao Yan, Grain structure evolution in transition-mode melting in direct energy deposition, Materials & Design, 194; 108919, 2020. doi.org/10.1016/j.matdes.2020.108919

61-20   Raphael Comminal, Wilson Ricardo Leal da Silva, Thomas Juul Andersen, Henrik Stang, Jon Spangenberg, Influence of processing parameters on the layer geometry in 3D concrete printing: Experiments and modelling, 2nd RILEM International Conference on Concrete and Digital Fabrication, RILEM Bookseries, 28; pp. 852-862, 2020. doi.org/10.1007/978-3-030-49916-7_83

60-20   Marcin P. Serdeczny, Raphaël Comminal, Md. Tusher Mollah, David B. Pedersen, Jon Spangenberg, Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing, Additive Manufacturing, 36; 101454, 2020. doi.org/10.1016/j.addma.2020.101454

58-20   H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy, Mechanistic models for additive manufacturing of metallic components, Progress in Materials Science, preprint, 2020. doi.org/10.1016/j.pmatsci.2020.100703

55-20   Masoud Mohammadpour, Experimental study and numerical simulation of heat transfer and fluid flow in laser welded and brazed joints, Thesis, Southern Methodist University, Dallas, TX, US; Available in Mechanical Engineering Research Theses and Dissertations, 24, 2020.

48-20   Masoud Mohammadpour, Baixuan Yang, Hui-Ping Wang, John Forrest, Michael Poss, Blair Carlson, Radovan Kovacevica, Influence of laser beam inclination angle on galvanized steel laser braze quality, Optics and Laser Technology, 129; 106303, 2020. doi.org/10.1016/j.optlastec.2020.106303

34-20   Binqi Liu, Gang Fang, Liping Lei, Wei Liu, A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM), Applied Mathematical Modeling, 79; pp. 506-520, 2020. doi.org/10.1016/j.apm.2019.10.049

27-20   Xuesong Gao, Guilherme Abreu Farira, Wei Zhang and Kevin Wheeler, Numerical analysis of non-spherical particle effect on molten pool dynamics in laser-powder bed fusion additive manufacturing, Computational Materials Science, 179, art. no. 109648, 2020. doi.org/10.1016/j.commatsci.2020.109648

26-20   Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka and Akihiko Chiba, Isothermal γ → ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing, Journal of Materials Science & Technology, 50, pp. 162-170, 2020. doi.org/10.1016/j.jmst.2019.11.040

21-20   Won-Ik Cho and Peer Woizeschke, Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal, International Journal of Heat and Mass Transfer, 152, art. no. 119528, 2020. doi.org/10.1016/j.ijheatmasstransfer.2020.119528

06-20  Wei Xing, Di Ouyang, Zhen Chen and Lin Liu, Effect of energy density on defect evolution in 3D printed Zr-based metallic glasses by selective laser melting, Science China Physics, Mechanics & Astronomy, 63, art. no. 226111, 2020. doi.org/10.1007/s11433-019-1485-8

04-20   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

02-20   Dongsheng Wu, Shinichi Tashiro, Ziang Wu, Kazufumi Nomura, Xueming Hua, and Manabu Tanaka, Analysis of heat transfer and material flow in hybrid KPAW-GMAW process based on the novel three dimensional CFD simulation, International Journal of Heat and Mass Transfer, 147, art. no. 118921, 2020. doi.org/10.1016/j.ijheatmasstransfer.2019.118921

01-20   Xiang Huang, Siying Lin, Zhenxiang Bu, Xiaolong Lin, Weijin Yi, Zhihong Lin, Peiqin Xie, and Lingyun Wang, Research on nozzle and needle combination for high frequency piezostack-driven dispenser, International Journal of Adhesion and Adhesives, 96, 2020. doi.org/10.1016/j.ijadhadh.2019.102453

88-19   Bo Cheng and Charles Tuffile, Numerical study of porosity formation with implementation of laser multiple reflection in selective laser melting, Proceedings Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing, ASME 2019 14th International Manufacturing Science and Engineering Conference, Erie, Pennsylvania, USA, June 10-14, 2019. doi.org/10.1115/MSEC2019-2891

87-19   Shuhao Wang, Lida Zhu, Jerry Ying His Fuh, Haiquan Zhang, and Wentao Yan, Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition, Optics and Lasers in Engineering, 127:105950, 2019. doi.org/10.1016/j.optlaseng.2019.105950

78-19   Bo Cheng, Lukas Loeber, Hannes Willeck, Udo Hartel, and Charles Tuffile, Computational investigation of melt pool process dynamics and pore formation in laser powder bed fusion, Journal of Materials Engineering and Performance, 28:11, 6565-6578, 2019. doi.org/10.1007/s11665-019-04435-y

77-19   David Souders, Pareekshith Allu, Anurag Chandorkar, and Ruendy Castillo, Application of computational fluid dynamics in developing process parameters for additive manufacturing, Additive Manufacturing Journal, 9th International Conference on 3D Printing and Additive Manufacturing Technologies (AM 2019), Bangalore, India, September 7-9, 2019.

75-19   Raphaël Comminal, Marcin Piotr Serdeczny, Navid Ranjbar, Mehdi Mehrali, David Bue Pedersen, Henrik Stang, Jon Spangenberg, Modelling of material deposition in big area additive manufacturing and 3D concrete printing, Proceedings, Advancing Precision in Additive Manufacturing, Nantes, France, September 16-18, 2019.

73-19   Baohua Chang, Zhang Yuan, Hao Cheng, Haigang Li, Dong Du 1, and Jiguo Shan, A study on the influences of welding position on the keyhole and molten pool behavior in laser welding of a titanium alloy, Metals, 9:1082, 2019. doi.org/10.3390/met9101082

57-19     Shengjie Deng, Hui-Ping Wang, Fenggui Lu, Joshua Solomon, and Blair E. Carlson, Investigation of spatter occurrence in remote laser spiral welding of zinc-coated steels, International Journal of Heat and Mass Transfer, Vol. 140, pp. 269-280, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.06.009

53-19     Mohamad Bayat, Aditi Thanki, Sankhya Mohanty, Ann Witvrouw, Shoufeng Yang, Jesper Thorborg, Niels Skat Tieldje, and Jesper Henri Hattel, Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation, Additive Manufacturing, Vol. 30, 2019. doi.org/10.1016/j.addma.2019.100835

51-19     P. Ninpetch, P. Kowitwarangkul, S. Mahathanabodee, R. Tongsri, and P. Ratanadecho, Thermal and melting track simulations of laser powder bed fusion (L-PBF), International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi.org/10.1088/1757-899X/526/1/012030

46-19     Hongze Wang and Yu Zou, Microscale interaction between laser and metal powder in powder-bed additive manufacturing: Conduction mode versus keyhole mode, International Journal of Heat and Mass Transfer, Vol. 142, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.118473

45-19     Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, and Akihiko Chiba, Manipulating local heat accumulation towards controlled quality and microstructure of a Co-Cr-Mo alloy in powder bed fusion with electron beam, Materials Letters, Vol. 254, pp. 269-272, 2019. doi.org/10.1016/j.matlet.2019.07.078

44-19     Guoxiang Xu, Lin Li, Houxiao Wang, Pengfei Li, Qinghu Guo, Qingxian Hu, and Baoshuai Du, Simulation and experimental studies of keyhole induced porosity in laser-MIG hybrid fillet welding of aluminum alloy in the horizontal position, Optics & Laser Technology, Vol. 119, 2019. doi.org/10.1016/j.optlastec.2019.105667

38-19     Subin Shrestha and Y. Kevin Chou, A numerical study on the keyhole formation during laser powder bed fusion process, Journal of Manufacturing Science and Engineering, Vol. 141, No. 10, 2019. doi.org/10.1115/1.4044100

34-19     Dae-Won Cho, Jin-Hyeong Park, and Hyeong-Soon Moon, A study on molten pool behavior in the one pulse one drop GMAW process using computational fluid dynamics, International Journal of Heat and Mass Transfer, Vol. 139, pp. 848-859, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.05.038

30-19     Mohamad Bayat, Sankhya Mohanty, and Jesper Henri Hattel, Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF, International Journal of Heat and Mass Transfer, Vol. 139, pp. 95-114, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.05.003

29-19     Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Daixiu Wei, Kenta Yamanaka, and Akihiko Chiba, Comprehensive study on mechanisms for grain morphology evolution and texture development in powder bed fusion with electron beam of Co–Cr–Mo alloy, Materialia, Vol. 6, 2019. doi.org/10.1016/j.mtla.2019.100346

28-19     Pareekshith Allu, Computational fluid dynamics modeling in additive manufacturing processes, The Minerals, Metals & Materials Society (TMS) 148th Annual Meeting & Exhibition, San Antonio, Texas, USA, March 10-14, 2019.

24-19     Simulation Software: Use, Advantages & Limitations, The Additive Manufacturing and Welding Magazine, Vol. 2, No. 2, 2019

22-19     Hunchul Jeong, Kyungbae Park, Sungjin Baek, and Jungho Cho, Thermal efficiency decision of variable polarity aluminum arc welding through molten pool analysis, International Journal of Heat and Mass Transfer, Vol. 138, pp. 729-737, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.04.089

07-19   Guangxi Zhao, Jun Du, Zhengying Wei, Ruwei Geng and Siyuan Xu, Numerical analysis of arc driving forces and temperature distribution in pulsed TIG welding, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 41, No. 60, 2019. doi.org/10.1007/s40430-018-1563-0

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

03-19   Dongsheng Wu, Anh Van Nguyen, Shinichi Tashiro, Xueming Hua and Manabu Tanaka, Elucidation of the weld pool convection and keyhole formation mechanism in the keyhold plasma arc welding, International Journal of Heat and Mass Transfer, Vol. 131, pp. 920-931, 2019. doi.org/10.1016/j.ijheatmasstransfer.2018.11.108

97-18   Wentao Yan, Ya Qian, Wenjun Ge, Stephen Lin, Wing Kam Liu, Feng Lin, Gregory J. Wagner, Meso-scale modeling of multiple-layer fabrication process in Selective Electron Beam Melting: Inter-layer/track voids formation, Materials & Design, 2018. doi.org/10.1016/j.matdes.2017.12.031

84-18   Bo Cheng, Xiaobai Li, Charles Tuffile, Alexander Ilin, Hannes Willeck and Udo Hartel, Multi-physics modeling of single track scanning in selective laser melting: Powder compaction effect, Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, pp. 1887-1902, 2018.

81-18 Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Daixiu Wei, Kenta Yamanaka and Akihiko Chiba, Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy, Additive Manufacturing, Vol. 26, pp. 202-214, 2019. doi.org/10.1016/j.addma.2018.12.002

77-18   Jun Du and Zhengying Wei, Numerical investigation of thermocapillary-induced deposited shape in fused-coating additive manufacturing process of aluminum alloy, Journal of Physics Communications, Vol. 2, No. 11, 2018. doi.org/10.1088/2399-6528/aaedc7

76-18   Yu Xiang, Shuzhe Zhang, Zhengying We, Junfeng Li, Pei Wei, Zhen Chen, Lixiang Yang and Lihao Jiang, Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V, Applied Physics A, 124:685, 2018. doi.org/10.1007/s00339-018-2056-9

74-18   Paree Allu, CFD simulations for laser welding of Al Alloys, Proceedings, Die Casting Congress & Exposition, Indianapolis, IN, October 15-17, 2018.

72-18   Hunchul Jeong, Kyungbae Park, Sungjin Baek, Dong-Yoon Kim, Moon-Jin Kang and Jungho Cho, Three-dimensional numerical analysis of weld pool in GMAW with fillet joint, International Journal of Precision Engineering and Manufacturing, Vol. 19, No. 8, pp. 1171-1177, 2018. doi.org/10.1007/s12541-018-0138-4

60-18   R.W. Geng, J. Du, Z.Y. Wei and G.X. Zhao, An adaptive-domain-growth method for phase field simulation of dendrite growth in arc preheated fused-coating additive manufacturing, IOP Conference Series: Journal of Physics: Conference Series 1063, 012077, 2018. doi.org/10.1088/1742-6596/1063/1/012077 (Available at http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012077/pdf and in shared drive)

59-18   Guangxi Zhao, Jun Du, Zhengying Wei, Ruwei Geng and Siyuan Xu, Coupling analysis of molten pool during fused coating process with arc preheating, IOP Conference Series: Journal of Physics: Conference Series 1063, 012076, 2018. doi.org/10.1088/1742-6596/1063/1/012076 (Available at http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012076/pdf and in shared drive)

58-18   Siyuan Xu, Zhengying Wei, Jun Du, Guangxi Zhao and Wei Liu, Numerical simulation and analysis of metal fused coating forming, IOP Conference Series: Journal of Physics: Conference Series 1063, 012075, 2018. doi.org/10.1088/1742-6596/1063/1/012075

55-18   Jason Cheon, Jin-Young Yoon, Cheolhee Kim and Suck-Joo Na, A study on transient flow characteristic in friction stir welding with realtime interface tracking by direct surface calculation, Journal of Materials Processing Tech., vol. 255, pp. 621-634, 2018.

54-18   V. Sukhotskiy, P. Vishnoi, I. H. Karampelas, S. Vader, Z. Vader, and E. P. Furlani, Magnetohydrodynamic drop-on-demand liquid metal additive manufacturing: System overview and modeling, Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer, Niagara Falls, Canada, June 7 – 9, 2018; Paper no. 155, 2018. doi.org/10.11159/ffhmt18.155

52-18   Michael Hilbinger, Claudia Stadelmann, Matthias List and Robert F. Singer, Temconex® – Kontinuierliche Pulverextrusion: Verbessertes Verständnis mit Hilfe der numerischen Simulation, Hochleistungsmetalle und Prozesse für den Leichtbau der Zukunft, Tagungsband 10. Ranshofener Leichtmetalltage, 13-14 Juni 2018, Linz, pp. 175-186, 2018.

38-18   Zhen Chen, Yu Xiang, Zhengying Wei, Pei Wei, Bingheng Lu, Lijuan Zhang and Jun Du, Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification, Applied Physics A, vol. 124, pp. 313, 2018. doi.org/10.1007/s00339-018-1737-8

19-18   Chenxiao Zhu, Jason Cheon, Xinhua Tang, Suck-Joo Na, and Haichao Cui, Molten pool behaviors and their influences on welding defects in narrow gap GMAW of 5083 Al-alloy, International Journal of Heat and Mass Transfer, vol. 126:A, pp.1206-1221, 2018. doi.org/10.1016/j.ijheatmasstransfer.2018.05.132

16-18   P. Schneider, V. Sukhotskiy, T. Siskar, L. Christie and I.H. Karampelas, Additive Manufacturing of Microfluidic Components via Wax Extrusion, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 162 – 165, 2018.

09-18   The Furlani Research Group, Magnetohydrodynamic Liquid Metal 3D Printing, Department of Chemical and Biological Engineering, © University at Buffalo, May 2018.

08-18   Benjamin Himmel, Dominik Rumschöttel and Wolfram Volk, Thermal process simulation of droplet based metal printing with aluminium, Production Engineering, March 2018 © German Academic Society for Production Engineering (WGP) 2018.

07-18   Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba and Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Tech. 254 (2018) 72–78.

60-17   Pei Wei, Zhengying Wei, Zhen Chen, Yuyang He and Jun Du, Thermal behavior in single track during selective laser melting of AlSi10Mg powder, Applied Physics A: Materials Science & Processing, 123:604, 2017. doi.org/10.1007/z00339-017-1194-9

51-17   Koichi Ishizaka, Keijiro Saitoh, Eisaku Ito, Masanori Yuri, and Junichiro Masada, Key Technologies for 1700°C Class Ultra High Temperature Gas Turbine, Mitsubishi Heavy Industries Technical Review, vol. 54, no. 3, 2017.

49-17   Yu-Che Wu, Weng-Sing Hwang, Cheng-Hung San, Chih-Hsiang Chang and Huey-Jiuan Lin, Parametric study of surface morphology for selective laser melting on Ti6Al4V powder bed with numerical and experimental methods, International Journal of Material Forming, © Springer-Verlag France SAS, part of Springer Nature 2017. doi.org/10.1007/s12289-017-1391-2.

37-17   V. Sukhotskiy, I. H. Karampelas, G. Garg, A. Verma, M. Tong, S. Vader, Z. Vader, and E. P. Furlani, Magnetohydrodynamic Drop-on-Demand Liquid Metal 3D Printing, Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

15-17   I.H. Karampelas, S. Vader, Z. Vader, V. Sukhotskiy, A. Verma, G. Garg, M. Tong and E.P. Furlani, Drop-on-Demand 3D Metal Printing, Informatics, Electronics and Microsystems TechConnect Briefs 2017, Vol. 4

14-17   Jason Cheon and Suck-Joo Na, Prediction of welding residual stress with real-time phase transformation by CFD thermal analysis, International Journal of Mechanical Sciences 131–132 (2017) 37–51.

91-16   Y. S. Lee and D. F. Farson, Surface tension-powered build dimension control in laser additive manufacturing process, Int J Adv Manuf Technol (2016) 85:1035–1044, doi.org/10.1007/s00170-015-7974-5.

84-16   Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E. Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer 108 (2017) 244–256, Available online December 2016.

68-16   Dongsheng Wu, Xueming Hua, Dingjian Ye and Fang Li, Understanding of humping formation and suppression mechanisms using the numerical simulation, International Journal of Heat and Mass Transfer, Volume 104, January 2017, Pages 634–643, Published online 2016.

39-16   Chien-Hsun Wang, Ho-Lin Tsai, Yu-Che Wu and Weng-Sing Hwang, Investigation of molten metal droplet deposition and solidification for 3D printing techniques, IOP Publishing, J. Micromech. Microeng. 26 (2016) 095012 (14pp), doi: 10.1088/0960-1317/26/9/095012, July 8, 2016

29-16   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Advances in Magnetohydrodynamic Liquid Metal Jet Printing, Nanotech 2016 Conference & Expo, May 22-25, Washington, DC.

26-16   Y.S. Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, S2214-8604(16)30087-2, doi.org/10.1016/j.addma.2016.05.003, ADDMA 86.

123-15   Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser welding repair for single crystal blades, Proceedings of International Gas Turbine Congress, pp. 1354-1358, 2015.

116-15   Yousub Lee, Simulation of Laser Additive Manufacturing and its Applications, Ph.D. Thesis: Graduate Program in Welding Engineering, The Ohio State University, 2015, Copyright by Yousub Lee 2015

103-15   Ligang Wu, Jason Cheon, Degala Venkata Kiran, and Suck-Joo Na, CFD Simulations of GMA Welding of Horizontal Fillet Joints based on Coordinate Rotation of Arc Models, Journal of Materials Processing Technology, Available online December 29, 2015

96-15   Jason Cheon, Degala Venkata Kiran, and Suck-Joo Na, Thermal metallurgical analysis of GMA welded AH36 steel using CFD – FEM framework, Materials & Design, Volume 91, February 5 2016, Pages 230-241, published online November 2015

86-15   Yousub Lee and Dave F. Farson, Simulation of transport phenomena and melt pool shape for multiple layer additive manufacturing, J. Laser Appl. 28, 012006 (2016). doi: 10.2351/1.4935711, published online 2015.

63-15   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Magnetohydrodynamic Liquid Metal Jet Printing, TechConnect World Innovation Conference & Expo, Washington, D.C., June 14-17, 2015

46-15   Adwaith Gupta, 3D Printing Multi-Material, Single Printhead Simulation, Advanced Qualification of Additive Manufacturing Materials Workshop, July 20 – 21, 2015, Santa Fe, NM

25-15   Dae-Won Cho and Suck-Joo Na, Molten pool behaviors for second pass V-groove GMAW, International Journal of Heat and Mass Transfer 88 (2015) 945–956.

21-15   Jungho Cho, Dave F. Farson, Kendall J. Hollis and John O. Milewski, Numerical analysis of weld pool oscillation in laser welding, Journal of Mechanical Science and Technology 29 (4) (2015) 1715~1722, www.springerlink.com/content/1738-494x, doi.org/10.1007/s12206-015-0344-2.

82-14  Yousub Lee, Mark Nordin, Sudarsanam Suresh Babu, and Dave F. Farson, Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition, Metallurgical and Materials Transactions B, August 2014, Volume 45, Issue 4, pp 1520-1529

59-14   Y.S. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Influence of Fluid Convection on Weld Pool Formation in Laser Cladding, Welding Research/ August 2014, VOL. 93

18-14  L.J. Zhang, J.X. Zhang, A. Gumenyuk, M. Rethmeier, and S.J. Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology (2014), doi.org/10.1016/j.jmatprotec.2014.03.016.

36-13  Dae-Won Cho,Woo-Hyun Song, Min-Hyun Cho, and Suck-Joo Na, Analysis of Submerged Arc Welding Process by Three-Dimensional Computational Fluid Dynamics Simulations, Journal of Materials Processing Technology, 2013. doi.org/10.1016/j.jmatprotec.2013.06.017

12-13 D.W. Cho, S.J. Na, M.H. Cho, J.S. Lee, A study on V-groove GMAW for various welding positions, Journal of Materials Processing Technology, April 2013, doi.org/10.1016/j.jmatprotec.2013.02.015.

01-13  Dae-Won Cho & Suck-Joo Na & Min-Hyun Cho & Jong-Sub Lee, Simulations of weld pool dynamics in V-groove GTA and GMA welding, Weld World, doi.org/10.1007/s40194-012-0017-z, © International Institute of Welding 2013.

63-12  D.W. Cho, S.H. Lee, S.J. Na, Characterization of welding arc and weld pool formation in vacuum gas hollow tungsten arc welding, Journal of Materials Processing Technology, doi.org/10.1016/j.jmatprotec.2012.09.024, September 2012.

77-10  Lim, Y. C.; Yu, X.; Cho, J. H.; et al., Effect of magnetic stirring on grain structure refinement Part 1-Autogenous nickel alloy welds, Science and Technology of Welding and Joining, Volume: 15 Issue: 7, Pages: 583-589, doi.org/10.1179/136217110X12720264008277, October 2010

18-10 K Saida, H Ohnishi, K Nishimoto, Fluxless laser brazing of aluminium alloy to galvanized steel using a tandem beam–dissimilar laser brazing of aluminium alloy and steels, Welding International, 2010

58-09  Cho, Jung-Ho; Farson, Dave F.; Milewski, John O.; et al., Weld pool flows during initial stages of keyhole formation in laser welding, Journal of Physics D-Applied Physics, Volume: 42 Issue: 17 Article Number: 175502 ; doi.org/10.1088/0022-3727/42/17/175502, September 2009

57-09  Lim, Y. C.; Farson, D. F.; Cho, M. H.; et al., Stationary GMAW-P weld metal deposit spreading, Science and Technology of Welding and Joining, Volume: 14 Issue: 7 ;Pages: 626-635, doi.org/10.1179/136217109X441173, October 2009

1-09 J.-H. Cho and S.-J. Na, Three-Dimensional Analysis of Molten Pool in GMA-Laser Hybrid Welding, Welding Journal, February 2009, Vol. 88

52-07   Huey-Jiuan Lin and Wei-Kuo Chang, Design of a sheet forming apparatus for overflow fusion process by numerical simulation, Journal of Non-Crystalline Solids 353 (2007) 2817–2825.

50-07  Cho, Min Hyun; Farson, Dave F., Understanding bead hump formation in gas metal arc welding using a numerical simulation, Metallurgical and Mateials Transactions B-Process Metallurgy and Materials Processing Science, Volume: 38, Issue: 2, Pages: 305-319, doi.org/10.1007/s11663-007-9034-5, April 2007

49-07  Cho, M. H.; Farson, D. F., Simulation study of a hybrid process for the prevention of weld bead hump formation, Welding Journal Volume: 86, Issue: 9, Pages: 253S-262S, September 2007

48-07  Cho, M. H.; Farson, D. F.; Lim, Y. C.; et al., Hybrid laser/arc welding process for controlling bead profile, Science and Technology of Welding and Joining, Volume: 12 Issue: 8, Pages: 677-688, doi.org/10.1179/174329307X236878, November 2007

47-07   Min Hyun Cho, Dave F. Farson, Understanding Bead Hump Formation in Gas Metal Arc Welding Using a Numerical Simulation, Metallurgical and Materials Transactions B, Volume 38, Issue 2, pp 305-319, April 2007

36-06  Cho, M. H.; Lim, Y. C.; Farson, D. F., Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape, Welding Journal, Volume: 85 Issue: 12, Pages: 271S-283S, December 2006

FLOW-3D CAST 사양

FLOW-3D CAST Feature

CAST virtual foundry conference banner

Active Simulation Control

실행중인 해석의 제어 파라미터는 History probes에서 사용자가 정의한 조건에 따라, 런타임 동안에 자동으로 변경 될 수 있습니다. History probes에 의해 기록된 시뮬레이션 변수는 경계 조건, mass source 및 General Moving Object 기능을 이용하여, 시간에 따른 개체의 동작을 제어하기 위해 사용될 수있습니다. 예를 들어, 고압다이캐스팅 해석에서 게이트에 설정한 History probes에 유체가 도달하면, 그 정보를 캡처하는 데이터 출력 주파수를 증가시켜 플런저의 속도를 고속으로 자동 전환 될 수있습니다. 고압다이캐스팅 해석은 유체가 게이트에 도달 할 때 자동으로 고속 전환됩니다. 이 프로세스는 새로운 실행 시뮬레이션 제어 기능을 통해 자동으로 진행됩니다. 저속 구간에서 플런저의 움직임은 trigger 슬리브의 용융물에 혼입되는 공기의 양을 최소화하기 위해 Barkhudarov 방법 1을 사용하여 계산됩니다. 이 결과는 훨씬 더 높은 품질의 주조품이 나올수 있도록 설계하는데 도움이 될 수 있습니다. Read the development note > Read the blog post >

Batch Postprocessing & Report Generation

Batch 후처리 및 보고서 생성은 해석 결과 분석시 사용자의 해석 처리 시간을 절약하기 위해 개발되었습니다. Batch 후처리는, 해석이 완료된 후, 사용자가 애니메이션, 시나리오, 그래프, 텍스트 데이터 시리즈를 정의하여 자동으로 생성되도록 할 수 있습니다. 그래픽 요청은 백그라운드에서 FlowSight를 실행하여 처리되도록 FLOW-3D Cast에 정의되어 있습니다. 원하는 해석 결과를 생성할 수 있는 컨텍스트 파일을 사용하면 Batch 후처리 기능을 사용할 수 있습니다. Batch 후처리가 완료되면, 사용자는 쉽게 자신의 관리자, 동료, 또는 클라이언트에 보낼 수있는 HTML5 형식의 완벽한 기능을 갖춘 보고서를 만들 수 있습니다. 이미지 및 동영상도 보고서에 포함 할 수 있고, 사용자는 텍스트, 캡션, 참고 문헌의 형식을 완벽하게 제어 하고 유지할 수 있습니다. Read the blog post >

Metal Casting Models

Squeeze Pin Model

스퀴즈 핀은 주조시 주입 공급이 어려운 영역에서, 응고하는 동안 금속 수축을 보상하기 위해 사용되는 실제의 다이 캐스팅 머신의 동작을 모델링하는 해석을 할 수 있습니다. 스퀴즈 핀은 선택된 표면에 cylinderical squeeze pin을 추가하여, STL 파일 또는 대화식으로 생성 될 수 있습니다. Read the development note >

Intensification Pressure Model

새로운 플런저 타입 형상이 추가 되었습니다. 강화된 압력 조건으로 macro-shrinkage 와 micro-porosity 제거를 지정할 수 있습니다.

Thermal Die Cycling model

FLOW-3D Cast v4.1's full process thermal die cycling model

다이싸이클링 (Thermal die cycling, TDC) 모델에 새로운 두 가지의 단계가 추가되었습니다. 금형이 열린 상태에서 제품이 여전히 금형 내부에 있는 ejection 단계와, 금형이 닫혔지만 사출 바로전의 preparation 단계가 추가되었습니다. 또한, 마지막 싸이클만이 아닌 모든 금형 싸이클 모두 수렴된 결과를 전달하기 위해 TDC 솔버가 성능 손실 없이 최적화 되었습니다. Read the blog post >

Valves and Vents

Modeling valves and vents in FLOW-3D Cast v4.1

밸브와 밴트의 외부 압력과 온도는 이제 사용자가 다이 캐스팅 공정에서 충진중에 보다 실제적인 동작을 정의 할 수 있도록, 시간의 표 함수로서 정의 할 수있습니다. 밸브 및 벤트의 압력 및 온도는 프로세스 설계 단계에서 유용한 제품 내부에 설정된 프로브에 의해 제어 될 수 있습니다.

PQ2 Diagram

PQ2다이어그램의 사용은 사용자가 더 나은 슬리브의 플런저 실제 움직임과 유사하게 적용 할 수 있습니다. 새로운 기능은 실제 공정 변수가 아직 알려져 있지 않았을 때 다이캐스팅 설계 단계 중에 특히 유용합니다. Read the blog post >

Cooling Channels

냉각 채널은 금형 각각의 냉각 유로에 의해 제거되거나 추가된 열의 총량에 의해 제어 될 수 있습니다. Read the development note >

Air Entrainment Model

Air entrainment 모델에 compressibility를 입력하는 새로운 옵션이 추가되었습니다. 고압 다이캐스팅의 충진 공정과 같은 경우, 공기 압축성은 유체 압력의 변화로 인한 유체의 흐름에 중요한 인자가 됩니다.
 

Cavitation Model

캐비테이션 모델은 유동 조건의 더 넓은 범위에 걸쳐 유체의 캐비테이션 거동을 나타내도록 개선되었습니다. 캐비테이션 생성에 대한 새로운 옵션은 경험적 관계를 기반으로, 기존의 일정한 속도로 생성되는 방식에서 보완되었습니다. 새로운 passive gas model 옵션은 open bubbles이 아닌 유체내에 cavitationg gas를 추적하여, 계산에 필요한 격자와 계산시간을 줄일 수 있습니다. Read the development note >

Two-fluid Phase Change Model

Two-fluid phase change model 은 과냉각을 포함하도록 확장되었습니다. 일정한 과냉각 온도를 정의하고 가스 온도가 응축이 일어나기 전에 포화점 이하로 내려갈 수 있게 함으로써 구현됩니다.

Simulation Results and Analysis

Simulation Results File Editor

사용자가 FLOW-3D Cast v4.1 결과 파일들을 병합 및 제거 할 수 있는 편집 유틸리티

Linking flsgrf.* files

Restart 해석 결과 파일들(flsgrf.*)은 FlowSight 에서 하나의 연속적인 애니메이션 결과를 표시하기 위해 restart source 결과로 링크될 수 있습니다.

Fluid/wall Contact Time

A new spatial quantity has been added to the solution output that stores the time that metal spent in contact with each geometric component, as well as the time spent by each component with metal.

용탕이 각 geometry 컴포넌트를 접촉한 시간과 각 컴포넌트가 용탕과의 접촉 시간을 나타내는 새로운 공간적 양이 해석 아웃풋에 추가 되었습니다.

Performance and Usability

Calculators

열전달 계수, 열 침투 깊이, 밸브 손실 계수, 슬리브에 용탕량(깊이), 플런저의 속도를 계산할 수 있는 Calculators 기능이 Model Setup 창에서 바로 가능해졌습니다. 또한 유틸리티 메뉴에서도 가능합니다.

Thermal Die Cycling

Heat transfer database in FLOW-3D Cast v4.1

열전달 계수 데이터베이스와 각 싸이클 단계들이 입력되어있어 간편하게 다이싸이클링 해석을 하실 수 있습니다.

GMRES Pressure Solver

GMRES pressure solver의 속도가 솔버 데이터 구조의 최적화로 인해 2배까지 향상되었습니다. 이로 인해 메모리 사용량이 20% 미만으로 증가할 수 있습니다. Read the blog post >

Sampling Volumes

Sampling volume 기능은 STL로 정의할 수 있습니다. 각 sampling volume에 의해 계산된 양들의 목록은 유체의 부피, 최대/최소 온도, 파티클의 갯수와 같은 전체 해석 영역에 대해 모두 같은 양이 되도록 확장되었습니다.

 

FSI/TSE Model

구조분석 모델의 성능이 부분적인 coupling으로 해석 솔버의 병렬화와 최적화를 통해 향상되었습니다.

Workspaces

Workspaces 를 이전에 설치된 FLOW-3D에서 가져올 수 있습니다. Workspaces 와 사용자가 선택한 시뮬레이션들을 복사할 수 있습니다.

Expanded Simulation Pre-check

Simulation pre-check 기능은 preprocessor checks를 포함하고, 문제가 발생하는 경우 링크됩니다.

Improved Transparency

Depth-peeling 옵션은 transparent geometries 를 좀 더 잘 표현하고, v4.0보다 10배 빨라졌습니다.

Interactive Tools

Baffles, history probes, void/fluid pointers, valves, mass-momentum sources, squeeze pins에 대한 새로운 대화형 생성 기능이 추가되었습니다. 또한 probing과 clipping 도구들이 대화형으로 개선되었습니다.

General Enable/Disable

모든 objects (e.g., mesh blocks)은 활성화/비활성화 할 수 있습니다.

Estimated Remaining Simulation Time

솔버 메세지 파일에 short-print로 추정된 잔여 해석 시간이 추가 되었습니다.

Tabular Data

테이블 형식의 데이터에서 선택된 데이터를 마우스 오른쪽 버튼을 클릭하여 csv파일 또는 외부 파일에 복사, 저장할 수 있습니다.

1 23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

[FLOW-3D 물리모델]General Moving Objects / 일반이동물체

General Moving Objects / 일반이동물체

Basics / 기초

The general moving objects (GMO) model in FLOW-3D can simulate rigid body motion, which is either userprescribed (prescribed motion) or dynamically coupled with fluid flow (coupled motion). If an object’s motion is prescribed, fluid flow is affected by the object’s motion, but the object’s motion is not affected by fluid flow. If an object has coupled motion, however, the object’s motion and fluid flow are coupled dynamically and affect each other. In both cases, a moving object can possess six degrees of freedom (DOF), or rotate about a fixed point or a fixed axis. The GMO model allows the location of the fixed point or axis to be arbitrary (it can be inside or outside the object and the computational domain), but the fixed axis must be parallel to one of the three coordinate axes of the space reference system. In one simulation, multiple moving objects with independent motion types can exist (the total number of moving and non-moving components cannot exceed 500). Any object under coupled motion can undergo simultaneous collisions with other moving and non-moving objects and wall and symmetry mesh boundaries (See Collision). The model also allows the existence of multiple (up to 100) elastic linear and torsion springs, elastic ropes and mooring lines which are attached to moving objects and apply forces or torques to them (See Elastic Springs & Ropes and Mooring Lines).

FLOW-3D에서 일반 이동물체인 GMO 모델은 강체운동을 모사(simulate)할 수 있는데, 이는 사용자가 기술하는 운동(지정운동)이거나 유체 유동과 동력학적인(결합된) 운동일 수 있다. 물체의 운동이 지정되면 유체 유동은 이 운동에 의해 영향을 받으나, 물체의 운동은 유체에 의해 영향을 받지 않는다. 그러나 물체가 결합된 운동을 하면 물체와 유체는 동역학적으로 연결되어 서로 영향을 미친다.

이 두 경우에 물체는6 자유도 운동을 할 수 있고, 고정된 점이나 축에 대해 회전할 수가 있다. GMO모델은 고정점이나 고정축의 위치를 임의로 설정할 수 있으나(이는 물체나 계산영역의 내부 또는 외부가 될 수 있다) 고정축은 공간좌표계의 좌표중의 하나에 평행하여야 한다.

어떤 모사(simulate)에서 고유의 운동형태를 갖는 다수의 운동물체가 존재할 수 있다(이동 및 고정된 물체의 전체수는500개를 초과하지 못한다). 결합운동을 하는 물체는 다른 이동/비이동 물체 그리고 벽과 대칭 경계 격자면에서 충돌할 수가 있다(충돌참조). 이 모델은 (100개까지) 다수의 탄성선형과 비틀림 스프링, 탄성로프와 이동 물체에 부착된 탄성력과 회전력을 갖는 계류선들을 표현할 수 있다(Elastic Springs & Ropes 와 Mooring Lines참조). .

In general, the motion of a rigid body can be described with six velocity components: three for translation and three for rotation. In the most general cases of coupled motion, all the available velocity components are coupled with fluid flow. However, the velocity components can also be partially prescribed and partially coupled in complex coupledmotion problems (e.g., a ship in a stream can have its pitch, roll and heave to be coupled but yaw, sway and surge prescribed). For coupled motion only, in addition to the hydraulic, gravitational, inertial and spring forces and torques which are calculated by the code, additional control forces can be prescribed by the user. The control forces can be defined either as up to five forces with their application points fixed on the object or as a net control force and torque. The net control force is applied to the GMO’s mass center, while the control torque is applied about the mass center for 6-DOF motion, and about the fixed point or fixed axis for those kinds of motions. The inertial force and torque exist only if the Non-inertial Reference Frame model is activated.

일반적으로 강체의 운동은 6개의 속도 성분으로 기술될 수 있다: 3개의 이동과3개의 회전. 가장 일반적인 결합 운동의 경우에, 모든 가능한 속도성분들은 유동과 연결되어 있다. 그러나 속도 성분들은 복잡한 결합운동 문제에서는 부분적으로 지정되고 일부는 결합될 수 있다(즉 유속내의 선박에서 pitch, roll and heave는 결합된 운동을 하고 yaw, sway and surge 는 지정될 수있다). 단 결합운동 문제에서는 코드 내에서 계산되는 수력, 중력, 관성 그리고 스프링 힘과 토크에 추가적인 조절할 수 있는 힘(control force) 들이 사용자에 의해 기술될 수 있다. 조절 힘(control force)들은 물체의 지정된 위치에 작용하는5개까지의 힘이나 또는 순수 힘과 토크로 정의 될 수 있다. 순수 조절힘은 GMO의 질량 중심에 작용하지만, 조절토크는6 자유도 운동의 질량중심에 대해 이런 운동을 하기 위한 고정축이나 점들에 대해 적용된다. 관성력과 토크는 단지 비 관성계 모델이 활성화되면 존재한다.

In FLOW-3D, a GMO is classified as a geometry component that is either porous or non-porous. As with stationary components, a GMO can be composed of a number of geometry subcomponents. Each subcomponent can be defined either by quadratic functions and primitives, or by STL data, and can be solid, hole or complement. If STL files are used, since GMO geometry is re-generated at every time step in the computation, the user should strive to minimize the number of triangle facets used to define the GMO to achieve faster execution of the solver while maintaining the necessary level of the geometry resolution. For mass properties, different subcomponents of an object can possess different mass densities.

FLOW-3D 에서 한 개의 GMO 는 다공질 또는 비 다공질의 형상요소로 간주된다. 정지된 구성요소에서와 같이 한 개의 GMO 는 다수의 형상 서브구성요소로 구성될 수 있다. 각 서브구성요소는 2차 함수와 기초 요소 또는 STL 데이터로 정의될 수 있고 고체, 공간 또는 이의 보완일 수 있다. 만약 STL 파일이 사용된다면 GMO 형상은 계산 중에 매 시간에서 재 생성되므로 사용자는 형상 정밀도에 필요한 수준을 유지하는 한편, 빠른 계산을 위해 GMO를 정의하는데 사용되는 삼각면의 수를 줄이려고 노력해야 한다. 질량물성을 위해 한 물체의 다른 서브구성요소는 다른 질량밀도를 가질 수 있다.

In order to define the motion of a GMO and interpret the computational results correctly, the user needs to understand the body-fixed reference system (body system) which is always fixed on the object and experiences the same motion. In the FLOW-3D preprocessor, the body system (x’, y’, z’) is automatically set up for each GMO. The initial directions of its coordinate axes (at t = 0) are the same as those of the space system (x, y, z). The origin of the body system is fixed at the GMO’s reference point which is a point automatically set on each moving object in accordance with the object’s motion type.

GMO 의 운동을 정의하고 계산결과를 정확히 이해하기 위해, 사용자는 항상 물체에 고정되고, 물체와 같은 운동을 하는 물체에, 고정된 기준계(물체계)를 이해할 필요가 있다. FLOW-3D 의 전처리에서 물체계(x’, y’, z’) 가 자동으로 각 GMO 에 대해 설정된다. 좌표축(t = 0에서) 의 초기방향은 공간계(x, y, z) 의 것과 같다. 물체계의 원점은 물체의 이동형상에 일치하는 각 이동체 상에 자동으로 설정된 GMO 의 기준점에 고정되어 있다.

 

The reference point is: 기준점은 다음과 같다.

  • the object’s mass center for the coupled 6-DOF motion;

결합된6자유도 운동의 질량중심

  • the fixed point for the fixed-point motion;

고정점 운동을 위한 고정점

  • a point on the fixed axis for the fixed-axis rotation;

고정축 회전을 위한 고정축 상의 점

  • a user-defined reference point for the prescribed 6-DOF motion.

기술된6자유도 운동을 위한 사용자 지정의 기준점

  • If the reference point is not given by users for the prescribed 6-DOF motion, it is set by the code at the mass center (if mass properties are given) or the geometry center (if mass properties are not given) of the object.

기준점이 기술된6자유도 운동을 위해 사용자가 지정하지 않으면 코드에 의해 질량중심 (질량물성이 주어지면) 또는 형상중심(질량물성이 안 주어지면)에 지정된다.

 

The GMO’s motion can be defined through the GUI using four steps:

GMO 운동은 4단계를 거쳐 GUI 를통하여 정의될수있다.

  1. Activate the GMO model;

GMO 모델을 활성화한다

  1. Create the GMO’s initial geometry;

GMO의 초기형상을 생성한다

  1. Specify the GMO’s motion-related parameters, and

GMO의 운동관련 변수들을 지정하고.

  1. Define the GMO’s mass properties.

GMO 질량물성을 정의한다

Without the activation of the GMO model in step 1, the object created as a GMO will be treated as a non-moving object, even if steps 2 to 4 are accomplished.

1단계의 GMO 모델 활성화가 없으면 2~4의 단계가 이루어져도 GMO 로 생성된 물체는 비 이동 물체로 간주될 것이다.

Step 1: Activate the GMO Model GMO 모델활성화

To activate the GMO model, go to Model Setup Physics Moving and simple deforming objects and check the Activate general moving objects (GMO) model box.

GMO 모델을 활성화하기 위해 Model Setup Physics Moving and simple deforming objects 로 가서 Activate general moving objects (GMO) model 박스를 체크한다.

The GMO model has two numerical methods to treat the interaction between fluid and moving objects: an explicit and an implicit method. If no coupled motion exists, the two methods are identical. For coupled motion, the explicit method, in general, works only for heavy GMO problem, i.e., all moving objects under coupled motion have larger mass densities than that of fluid and their added mass is relatively small. The implicit method, however, works for both heavy and light GMO problems. A light GMO problem means at least one of the moving objects under coupled motion has smaller mass densities than that of fluid or their added mass is large. The user may change the selection on the Moving and deforming objects panel or on the Numerics tab Moving object/fluid coupling.

GMO 모델은 유체와 움직이는 물체간의 상호작용을 다루기위해 두 수치해석법을 이용한다: explicit 방법과implicit 방법. 결합 운동이 없으면 두 방법은 동일하다. 결합된 운동에서는 외재적 방법은 일반적으로 무거운 GMO 문제에 사용된다, 즉 결합된 운동을 하는 모든 이동물체는 유체밀도보다 크고 이의 부가질량이 작을 경우이다. 그러나 내재적 방법은 무겁거나 가벼운 GMO 문제에 모두 사용된다. 가벼운 GMO 문제는 결합운동 시에 최소한 하나의 이동물체가 유체밀도보다 작고 이의 부가질량이 클 경우이다. 사용자는 Moving and deforming objects패널이나 Numerics tab Moving object/fluid coupling 상에서 선택을 바꿀 수 있다.

  1. Step 2: Create the GMO’s Initial Geometry GMO의 초기형상을 생성한다

 

In the Meshing & Geometry tab, create the desired geometry for the GMO components using either primitives and/or imported STL files in the same way as is done for any stationary component. The component can be either standard or porous. To set up a porous component, refer to Porous Media. Note that the Copy function cannot be used with geometry components representing GMOs.

정지상태의 구성요소 생성의 경우와 마찬가지로 Meshing & Geometry 탭에서 기초 요소와/또는 외부로부터의 STL 파일을 이용하여 GMO 구성요소의 원하는 형상을 생성한다. 구성요소는 standard이거나porous일 수 있다. 다공성요소를 설정하기 위해 Porous Media 를 참조하라. Copy 기능은 GMO를 나타내는 형상 구성요소에 사용할 수 없음에 주목한다.

Step 3: Specify the GMO’s Motion Related Parameters GMO의 운동관련변수들을 지정한다

The following section discusses how to set up parameters for prescribed and coupled 6-DOF motion, fixed-point motion and fixed-axis motion. The user can go directly to the appropriate part.

다음 섹션은 “지정되고 결합된 6자유도운동”, “고정점 운동과 고정축 운동을 위한 매개변수를 어떻게 설정하는지”에 대해 논한다. 사용자는 직접 해당부분을 참조할 수 있다.

Prescribed 6-DOF Motion 지정된 6자유도운동

In Meshing & Geometry Geometry Component (the desired GMO component) Type of Moving Object, select Prescribed motion. Go to Component Properties Type of Moving Object Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select 6 Degrees of Freedom in the combo box.

Meshing & Geometry Geometry Component (the desired GMO component) Type of Moving Object 에서 Prescribed motion 을 선택한다. Component Properties Type of Moving Object Moving Object Properties Edit Motion Constraints 로 가서 Type of Constraint 밑에서 combo 박스에 있는 6 Degrees of Freedom 를 선택한다.

To define the object’s velocity, go to the Initial/Prescribed Velocities tab in the Moving object setup window. The prescribed 6-DOF motion is described as a superimposition of a translation of a reference point and a rotation about the reference point. The reference point can be anywhere inside or outside the moving object and the computational domain. The user needs to enter its initial x, y and z coordinates (at t = 0) in the provided edit boxes. By default, the reference point is determined by the preprocessor in two different ways depending on whether the object’s mass properties are given: if mass properties (either mass density or integrated mass properties) are given, then the mass center of the moving object is used as the reference point; otherwise, the object’s geometric center will be calculated and used as the reference point.

물체의 속도를 정의하기 위해 Moving object setup 의 창에 있는 Initial/Prescribed Velocities 탭으로 이동한다. 지정된 6자유도 운동은 기준점의 이동과 기준점에 대한 회전의 중첩으로 기술된다. 기준점은 이동체의 내부 또는 외부 그리고 계산영역 외부일 수도 있다. 사용자는 주어진 편집박스 내에 이의 초기 x, y 와 z 좌표값(t = 0에서)을 입력할 필요가 있다. 디폴트로 기준점은 물체의 질량 물성이 주어지는가에 따라 두 가지로 전처리 과정에서 결정된다: 질량물성(질량밀도나 전체질량물성)이 주어지면 이동체의 질량중심이 기준점으로 사용되고 아니면 이동체의 형상중심이 계산되고 기준점으로 이용된다.

With the reference point provided (or left for the code to calculate), users can define the translational velocity components for the reference point in space system and the angular velocity components (in radians/time) in body system. Each velocity component can be defined either as a sinusoidal or a piecewise linear function of time by making a selection in the corresponding combo box. For a constant velocity component, choose Non-Sinusoidal and simply enter its value in the corresponding input box (the default value is 0.0). If a velocity component is Non-sinusoidal and time-dependent, click on the corresponding Tabular button to open a data table and enter values for the velocity component and time. Alternatively, the user can also import a data file for the velocity component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and velocity from left to right and must have a csv extension. If the velocity component is sinusoidal in time, then enter the values for Amplitude, Frequency (in Hz) and Initial Phase (in degrees) in the input boxes.

기준점이 주어지면(또는 코드 내에서 계산이 되면) 사용자는 공간계 기준점에 대해 translational velocity components 를 그리고 물체계에서angular velocity components (radians/시간으로)를 정의할 수 있다. 각 속도 성분은 상응하는 combo box 에서 선택함으로써 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정 속도 성분에 대해서 Non-Sinusoidal 을 선택하고 단순히 상응하는 combo 박스에 값을 넣는다(디폴트 값은0이다). 속도성분이 Non-Sinusoidal 이고 시간의 함수이면 데이터 테이블을 열고 상응하는 Tabular 버튼을 클릭하고 속도성분과 시간을 넣는다. 다른 방법으로는 사용자가 Tabular Import Values를 클릭함으로써 속도성분대 시간의 데이터파일을 읽어 들일 수가 있다. 이 파일은 시간과 속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 속도 성분이 시간에 따른 사인파이면 입력박스에서의 Amplitude, Frequency (in Hz) 그리고 Initial Phase (in degrees) 값을 입력한다.

The expression for the sinusoidal velocity component is

사인파 속도의 식은

v = Asin(2πft + ϕ0)

where: 여기서

  • A is the amplitude, 진폭
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다.
  •  
  • Users can set limits for the translational displacements of the object’s reference point in both negative and positive x, y and z directions in space system. The displacements are measured from the initial location of the reference point. During motion, the reference point cannot go beyond these limits but can move back to the allowed range after it reaches a limit. To set the limits for translation, go to the Motion Constraints tab and enter the maximum displacements allowed in the corresponding input boxes, using absolute values. By default, these values are infinite. Note the Limits for rotation is only for fixed-axis rotation thus cannot be set for 6-DOF motion.사용자는 공간계에서 음이나 양의 x, y 그리고 z 방향으로 물체 기준점의 이동변위를 제한할 수 있다. 변위는 기준점의 초기위치로부터 정해진다. 운동중에 기준점은 이 제한을 넘어갈 수 없지만 이 제한에 도달한 후에 허용된 범위만큼 돌아올 수 있다. 이동의 제한을 설정하기 위해 Motion Constraints 탭으로가서 절대값을 사용하여 상응하는 입력박스 안에 허용된 최대변위를 넣는다. the Limits for rotation 는 고정축 회전에만 해당하므로 6자유도 운동에는 지정될 수 없다.Prescribed Fixed-point Motion지정된 고정점운동In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Prescribed motion. Go to Moving object properties Edit Motion Constraints. Under Type of Constraint, select Fixed point rotation in the combo box and enter the x, y and z coordinates of the fixed point in the corresponding input boxes.Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object 에서 Prescribed motion 을 선택한다. Moving object properties Edit Motion Constraints 로 가서 Type of Constraint 밑에서 combo box 에있는 Fixed point rotation을 선택하고 상응하는 입력박스에서 고정점의 the x, y 및 z 좌표를 입력한다.To define the velocity of the object, go to the Initial/Prescribed Velocities tab in the Moving object setup window. The velocity components to be defined are the x, y and z components of the angular velocity (in radians/time) in the body system. Each velocity component can be defined as either a sinusoidal or a piecewise linear function of time by making a selection in the corresponding combo box. For a constant velocity component, choose Non-Sinusoidal and simply enter its value in its input box (the default value is 0.0). If a velocity component is time-variant and Non-sinusoidal, click on the Tabular button to open a data table and enter the values for the velocity component and time. Alternatively, the user can also import a data file for the velocity component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and velocity component from left to right and must have a csv extension. If the velocity component is sinusoidal in time, then enter the values for Amplitude, Frequency (in cycles/time) and Initial Phase (in degrees) in the corresponding input boxes.

    물체의 속도를 정의하기 위해 Moving object setup 의 창에 있는 Initial/Prescribed Velocities 탭으로 간다. 정의되어야 할 속도성분은 물체계에서 각속도  (radians/시간으로) 를 x, y 및 z 성분으로 정의할 수 있다

    각 속도 성분은 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다.

    일정속도 성분에 대해서 Non-Sinusoidal 을 선택하고 단순히 상응하는 combo box 박스에 값을 넣는다(디폴트 값은0이다). 속도성분이 Non-Sinusoidal 이고 시간의 함수이면 데이터 테이블을 열고 상응하는 Tabular 버튼을 클릭하고 속도성분과 시간을 넣는다. 그렇지 않으면 사용자가 Tabular Import Values 를 클릭함으로써 속도성분대 시간의 데이터 파일을 읽어 들일 수가 있다. 이 파일은 시간과 속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 속도성분이 시간에 따른 사인파이면 상응하는 입력박스에서 Amplitude, Frequency (in Hz) 와 Initial Phase (in degrees) 값을 입력한다.

    The expression for a sinusoidal angular velocity component is

    ω = Asin(2πft + ϕ0)

    where: 여기서

    • A is the amplitude, 진폭
    • f is the frequency, and주기이며
    • ϕ0 is the initial phase. 초기위상이다.

    Prescribed Fixed-Axis Motion

    In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Prescribed motion. Go to Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select Fixed X-Axis Rotation or Fixed Y-Axis Rotation or Fixed Z-Axis Rotation in the combo box depending on which coordinate axis the rotational axis is parallel to.

    Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object 에서 Prescribed motion 을 선택한다. Moving object properties Edit Motion Constraints 로 가서Type of Constraint밑에서 회전축이 어떤 좌표축에 평행인가에 따라 combo box 에있는 Fixed X-Axis Rotation 또는 Fixed Y-Axis Rotation 또는 Fixed Z-Axis Rotation 를 선택한다.

    Coordinates of the rotational axis need be given in two of the three input boxes for Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate and Fixed Axis/Point Z Coordinate. For example, if the rotational axis is parallel to the z-axis, then the x and y coordinates for the rotational axis must be defined. Users can also set limits for the object’s rotational angle in both positive and negative directions. The rotational angle (i.e., angular displacement) is a vector and measured from the object’s initial orientation based on the right-hand rule. Its value is positive if it points in the positive direction of the coordinate axis which the rotational axis is parallel to. The object cannot rotate beyond these limits but can rotate back to the allowed angular range after it reaches a limit. To set the limits for rotation, in Motion Constraints Limits for rotation, enter the Maximum rotational angle allowed in negative and positive directions in the corresponding input boxes, using absolute values in degrees. By default, these values are infinite.

    회전축 좌표는 3개 Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate Fixed Axis/Point Z Coordinate 중 2개의 입력박스에서 주어져야 한다. 예를 들면 회전축이 z 축에 평행 하다면 이 회전축의 the x 와 y 좌표가 정의 되어야 한다. 사용자는 물체의 양음 방향의 회전각도를 제한할 수 있다. 회전각 (즉, 각변위)은 벡터이며 오른손 법칙에 따른 물체의 초기 방향으로부터 측정된다. 이는 회전축에 평행한 좌표축의 양방향을 가리키면 양의 값이다. 물체는 제한 값을 지나 회전할 수 없지만 이 값에 도달한 후 허용된 각변위로 되돌아갈 수 있다. 회전의 제한을 설정하기 위해 Motion Constraints Limits for rotation 내에서 상응하는 입력박스에서 음이나 양의방향으로 허용된 Maximum rotational angle 을 입력한다. 이의 디폴트 값은 무한대이다.

To define the angular velocity of an object (in radians/time), go to Initial/Prescribed Velocities. The angular velocity can be defined either as a sinusoidal or a piecewise linear function of time by making a selection in the corresponding combo box. For a constant angular velocity, choose Non-Sinusoidal and simply enter its value in its input box (the default value is 0.0). If it is Non-sinusoidal in time, click on the corresponding Tabular button to open a data table and enter the values for the angular velocity and time. Alternatively, the user can also import a data file for the velocity component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and angular velocity from left to right and must have a csv extension. If the angular velocity is sinusoidal in time, then enter the values for Amplitude, Frequency (in cycles/time) and Initial Phase (in degrees) in the corresponding input boxes.

물체의 각속도(radians/시간으로)를 정의하기 위해 Initial/Prescribed Velocities 탭으로 간다. 각속도는 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정 각속도에 대해서 Non-Sinusoidal 을 선택하고, 이에 상응하는 combo box 에 단순히 값을 넣는다(디폴트 값은0.0이다). 이것이 Non-Sinusoidal 이고 시간의 함수이면 데이터 테이블을 불러와, 상응하는 Tabular 버튼을 클릭하고 각속도와 시간을 넣는다. 그렇지 않으면 사용자가 Tabular Import Values 를 클릭함으로써 속도 성분대 시간의 데이터 파일을 읽어 들일 수가 있다. 이 파일은 시간과 각속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 각속도가 시간에 따른 사인파이면 입력박스에서의 Amplitude, Frequency (in Hz) 그리고 Initial Phase (in degrees) 값을 입력한다.

 

The expression for a sinusoidal angular velocity is사인파 각속도식은

ω = Asin(2πft + ϕ0)

where: 여기서

  • A is the amplitude, 진폭
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다.

Coupled 6-DOF motion 결합된 6자유도운동

In Meshing & Geometry → Geometry → Component (the desired GMO component) → Component Properties → Type of Moving Object, select Coupled motion. Go to Moving Object Properties → Edit → Motion Constraints. Under Type of Constraint, select 6 Degrees of Freedom in the combo box.

Meshing & Geometry → Geometry → Component (the desired GMO component) → Type of Moving Object 에서 Coupled motion 을 선택한다. Moving Object Properties → Edit → Motion Constraints 로가서 Type of Constraint 밑에서 combo 박스에 있는 6 Degrees of Freedom 를 선택한다.

 

Users need to define the initial velocities for the object. Go to the Initial/Prescribed Velocities tab. Enter the x, y, and z components of the initial velocity of the GMO’s mass center in X Initial Velocity, Y Initial Velocity and Z Initial Velocity, respectively. Enter the x’, y’ and z’ components of the initial angular velocity (in radians/time) in the body system in X Initial Angular Velocity, Y Initial Angular Velocity and Z Initial Angular Velocity, respectively. By default, the initial velocity components are zero.

사용자는 물체에 대한 초기속도를 정의해야 한다. Initial/Prescribed Velocities 탭으로 간다. 각 X Initial Velocity, Y Initial Velocity 그리고 Z Initial Velocity 로 GMO 질량중심의 초기속도의 x, y 와 z 성분값(t = 0에서)을 입력한다. 물체 계에서의 X Initial Angular Velocity, Y Initial Angular Velocity 그리고 Z Initial Angular Velocity (radians/시간으로)로 초기 각속도의 x’, y’ 및 z’ 성분값을 입력한다.

 

For coupled 6-DOF motion, user-prescribed control force(s) and torque exerting on the object can be defined either in the space system or the body system. They are combined with the hydraulic, gravitational, inertial and spring forces and torques to determine the object’s motion. There are two different ways to define control force(s) and torque: prescribe either a total force and a total torque about the object’s mass center or multiple forces with their application points fixed on the object. By default, all the control force(s) and torque are equal to zero.

결합된6자유도운동에서 물체에 미치는 사용자 지정 조절 힘과 토크는 물체계 또는 공간계에서 정의될 수 있다. 이들은 물체의 운동을 결정하는 수력, 중력, 관성력 스프링 힘 그리고 토크이다. 이 조절 힘과 토크를 정의하는 두 가지 방법이 있다: 물체의 질량중심에 대한 전체의 힘과 토크를 지정하거나 물체에 고정된 점들에 작용하는 다수의 힘들을 지정하는 것이다. 디폴트는 모든 조절 힘과 토크가0이다.

To prescribe total force and total torque, in the Control Forces and Torques tab, choose Define Total Force and Total Torque in the combo box. Further select In Space System or In Body System depending on which reference system the control force and torque are define in. If a component of the force or the torque is a constant, it can be specified in the corresponding edit box (default is zero). If it varies with time, then click on the Tabular button to bring up a data input table and enter the values for the component and time. The time-variant force and torque are treated as piecewise-linear functions of time during simulation. Alternatively, instead of filling the data table line by line, the user can also import a data file for the force/torque component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and the force/torque component from left to right and must have a csv extension.

전체의 힘과 토크를 지정하기 위해 Control Forces and Torques 탭 안의 combo box 에서 Define Total Force and Total Torque 를 선택한다. 추가로 조절 힘과 토크가 정의되는 기준계에 따른 In Space System 이나 In Body System 을 선택한다. 힘 또는 토크의 한 성분이 상수이면 상응하는 편집박스에 지정된다(디폴트는0). 이것이 시간에 따라 변하면 데이터 테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 성분과 시간 값을 넣는다. 그렇지 않으면 한 줄씩 데이터 테이블을 채우는 대신에 사용자가 Tabular Import Values 를 클릭함으로써 force/torque component versus time 을 읽어 들일 수가 있다. 이 파일은 시간과 힘/토크를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다

If, instead, control forces and their application points need to be defined, then in the Control Forces and Torques tab choose Define Multiple Forces and Application Points in the combo box. Users can specify up to five forces. For each force, in the editor boxes, choose the force index (1 to 5) and then select Force components in Space System or Body System depending on which reference system the force is defined in. In field on the left, enter the initial coordinates (at t = 0) for the force’s application point. In the field on the right, prescribe components of the force in x, y and z directions of the body or space system. For a constant force component, enter its value in the corresponding edit box. If it varies with time, then click on the Tabular button to bring up a data input table and enter values for the force component versus time. Tabular force input is approximated with a piecewise-linear function of time. Alternatively, the user can import a data file for the force versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and from left to right and must have a csv extension.

대신에 조절힘과 그 적용점들이 정의되어야 한다면 Control Forces and Torques 탭에서 combo box 안에 있는 Define Multiple Forces and Application Points 를 선택한다. 사용자는5개까지의 힘을 지정할 수 있다. 각 힘에 대해, 편집박스 내에서, force index(1에서 5) 를 선정하고 힘이 정의되는 기준계에 따라 Force components in 에서 Space System Body System 을 선택한다. 좌측 칸에 힘 적용점의 초기좌표(t=0에서)를 입력한다. 우측 칸에 물체 또는 공간계에 따른 x, y 그리고 z 방향에서의 힘의 성분을 넣는다. 힘 성분이 상수이면 그 값을 상응하는 편집박스에서 입력한다. 이것이 시간에 따라 변하면 데이터 테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 힘성분 대 시간값을 넣는다. 이렇게 입력된 값들은 구간별 선형함수로 근사 된다.  다른 방법으로 사용자가 Tabular Import Values 를 클릭함으로써 힘과 시간에 대한 데이터파일을 읽어 들일 수가 있다. 이파일은 시간과 힘/토크를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다.

 

Motion constraints can be imposed to the object to decrease the number of the degrees of freedom to less than six. This selection is made by setting part of its translational and rotational velocity components as Prescribed motion while leaving the other components to coupled motion in Motion Constraints tab Translational and Rotational Options. Note that the translational and rotational components are in the space system and the body system, respectively. Then go to the Initial/Prescribed Velocities tab to define their values. A prescribed velocity component can be defined as either a sinusoidal or piecewise linear function of time in the combo box. For a constant velocity component, choose Non-Sinusoidal and enter its value in its input box (the default value is 0.0). If the velocity component is timedependent and non-sinusoidal, click on the Tabular button to open a data table and enter the values for the velocity component and time. Alternatively, the user can import a data file for the velocity component versus time by clicking Tabular Import values. The file must have two columns of data which represent time and the angular velocity component from left to right and must have a csv extension. It is treated as a piecewise-linear function of time in the code. If it is a sinusoidal function of time, instead, enter its Amplitude, Frequency (in Hz) and Initial Phase (in degrees) in the edit boxes.

6자유도 보다 운동의 자유도를 줄이기 위해 운동의 제약이 물체에 가해질 수 있다. 이 선택은 일부의 이동과 회전속도 성분을 Prescribed motion 으로 다른 성분들은 Motion Constraints tab Translational and Rotational Options 에서 coupled motion 결합운동으로 설정함으로써 이루어진다. 이동과 회전은 각기 공간계와 물체계로 되어있다는 것에 주목한다. 이 때에 Initial/Prescribed Velocities 탭으로 가서 이 값을 정의한다. 지정속도 성분은 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정속도 성분에 대해서 Non-Sinusoidal 을 선택하고 입력박스에서 값을 넣는다(디폴트 값은0이다). 속도성분이 시간의 함수이고 Non-Sinusoidal 이면 데이터 테이블을 열고 Tabular 버튼을 클릭하고 속도 성분과 시간 값을 넣는다. 다른 방법으로는 사용자가 Tabular Import Values 를 클릭함으로써 속도성분 대 시간의 데이터 파일을 읽어 들일 수가 있다. 이 파일은 좌로부터 우로의 시간과 각속도 성분을 나타내는 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 이렇게 입력된 값들은 코드 내에서 구간별 선형함수로 근사 된다. 대신에 시간의 함수이면 편집박스에서의 Amplitude, Frequency (in Hz) 그리고 Initial Phase (in degrees) 값을 입력한다.

 

The expression for a sinusoidal velocity component is사인파 속도식은

v = Asin(2πft + ϕ0)

where:

  • A is the amplitude, 진폭
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다.

Users can also set limits for displacements of the object’s mass center in both negative and positive x, y and z directions in the space system, measured from its initial location. The mass center cannot go beyond these limits but can move back to the allowed motion range after it reaches a limit. To specify these limits, open the Motion Constraints tab and in the Limits for translation area, enter the absolute values of maximum displacements in the desired coordinate directions. There are no Limits for rotation for an object with 6-DOF coupled motion.

사용자는 초기 조건으로부터 측정된 공간계에서의 음이나 양의 x, y 그리고 z 방향으로 물체 질량중심의 변위를 제한할 수 있다. 질량중심은 이 제한을 지나갈 수 없지만 이 제한에 도달한 후에 허용된 범위로 돌아올 수 있다. 이동의 제한을 설정하기 위해 Motion Constraints 탭을 열고 Limits for translation에서 원하는 좌표방향에서의 최대 절대변위 값을 넣는다. 6자유도 운동을 갖는 물체에 대한 Limits for rotation 은 없다.

 

Coupled Fixed-Point Motion 결합된 고정점운동

In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Coupled motion. Go to Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select Fixed point rotation in the combo box and enter the x, y and z coordinates of the fixed point in the corresponding input boxes. The Limits for rotation and Limits for translation cannot be set for fixed-point motion.

Meshing & Geometry → Geometry → Component (the desired GMO component) → Component Properties → Type of Moving Object 에서 Coupled motion 을 선택한다. Moving Object Properties → Edit → Motion Constraints 로 가서 Type of Constraint 밑에서 combo 박스에있는 Fixed point rotation 를 선택하고 상응하는 입력 상자 안에 있는 고정점의 x, y 및 z 좌표를 입력한다. Limits for rotation 와 Limits for translation 는 고정점 운동에 대해 선택될 수 없다.

 

Definition of the initial velocity for the object is required. Go to the Initial/Prescribed Velocities tab and enter the x, y and z components of initial angular velocity (in rad/time) in the boxes for X Initial Angular velocity, Y Initial Angular velocity and Z Initial Angular velocity. Their default values are zero.

물체의 초기속도 정의가 필요하다. Initial/Prescribed Velocities 탭으로 가서 X Initial Angular velocity, Y Initial Angular velocity 그리고 Z Initial Angular velocity 를 위한 상자에서 초기 각속도  (rad/시간) 의 the x, y 및 z 성분을 넣는다.

 

Further constraints of motion can be imposed to the object to decrease its number of degrees of freedom. This is done in the Motion Constraints tab by setting part of its rotational components as prescribed motion while leaving the others as coupled motion in the combo box for Translational and rotational options. Note that the rotational components are in the body system. By default, the prescribed velocity components are equal to zero. To specify a non-zero velocity component, go to the Initial/Prescribed Velocities tab. It can be defined as either a sinusoidal or a piecewise linear function of time by making selection in the corresponding combo box. For a constant velocity component, choose Non-Sinusoidal and simply enter its value in the input box (the default value is 0.0). If it is non-sinusoidal timedependent, click on the Tabular button to open a data table and enter the values for the velocity component and time. Alternatively, the user can import a data file for the velocity component versus time by clicking Tabular Import values. The file must have two columns of data which represent time and the angular velocity component from left to right and must have a csv extension. If the velocity component is a sinusoidal function of time, enter the values for Amplitude, Frequency (in Hz) and Initial Phase (in degrees) in the input boxes.

운동의 자유도를 줄이기 위해 운동의 제약이 물체에 가해질 수 있다. 이 선택은 일부의 회전속도 성분을 Prescribed motion 으로 다른 성분들은 Translational and rotational options를 위한 상자에서 coupled motion 으로 Motion Constraints 탭에서 설정함으로써 이루어진다. 회전성분은 물체계로 되어있다는 것에 주목한다. 디폴트로 지정속도 성분들은 0이다. 0이 아닌 속도성분을 지정하기 위해 Initial/Prescribed Velocities탭으로 간다. 지정속도 성분은 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정속도 성분에 대해서 Non-Sinusoidal 을 선택하고 단순히 입력박스에서 값을 넣는다(디폴트 값은0이다). 속도성분이 시간의 함수이고 Non-Sinusoidal 이면 데이터 테이블을 열고 Tabular 버튼을 클릭하고 속도 성분과 시간 값을 넣는다. 다른 방법으로는   사용자가 Tabular Import Values 를 클릭함으로써 속도 성분 대 시간의 데이터파일을 읽어들일 수 가 있다. 이 파일은 좌로부터 우로의 시간과 각속도 성분을 나타내는 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 속도성분이 사인파의 시간의 함수이면 입력상자에서 Amplitude, Frequency (in Hz) and Initial Phase (in degrees) 값을 넣는다.

The expression for a sinusoidal velocity component is사인파속도성분식은

ω = Asin(2πft + ϕ0)

where: 여기서

  • A is the amplitude진폭,
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다

 

User-prescribed total torque exerting on the object can also be defined. They are combined with the hydraulic, gravitational, inertial and spring torques to determine the object’s rotation.

또한 사용자에 의해 지정된 물체에 작용하는 전체 토크가 지정될 수 있다. 이들은 물체의 회전을 결정하기 위해 수력, 중력, 관성력과 스프링에 의한 토크와 결합되어 있다.

In the Control Forces and Torques tab, choose Define Total Force and Total Torque in the combo box. Further, select In Space System or In Body System depending on which reference system the control torque is define in. If the torque is constant, it can be simply set in the provided edit box for its x, y and z components. For a time-dependent control torque, click the Tabular button to bring up data tables and then enter the values of time and the torque components. The control torque is treated as a piecewise-linear function of time. As an option, instead of filling the data table line by line, the user can also import a data file for the angular velocity versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and velocity from left to right and must have a csv extension.

Control Forces and Torques 탭에서 combo box 상자 안의 Define Total Force and Total Torque 를 선택한다. 추가로 조절 토크가 정의되는 기준계에 따른 공간계 In Space System 나 물체계 In Body System 을 선택한다.  토크가 상수이면 its x, y 및 z 성분을 위한 주어진 편집상자에서 지정된다. 이것이   시간에 따라 변하는 조절 토크이면 데이터 테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 성분과 토크 성분값을 넣는다. 제어토크는 구간 내 시간의 선형함수로 간주된다. 선택으로 한 줄씩 데이터 테이블을 채우는 대신에 사용자가 Tabular Import Values 을 클릭함으로써 각속도 대 시간 읽어 들일 수가 있다. 이 파일은 시간과 속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며  csv 확장자를 가져야 한다

 

Coupled Fixed-Axis Motion  결합된 고정축운동

In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Coupled motion. Go to Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select Fixed X-Axis Rotation or Fixed Y-Axis Rotation or Fixed Z-Axis Rotation in the combo box depending on which coordinate axis the rotational axis is parallel to.

Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object 에서 Coupled motion 을 선택한다. Moving Object Properties Edit Motion Constraints 로 가서 Type of Constraint 밑에서 회전축이 어느 좌표축과 평행한지에 따라 combo 박스에있는 Fixed X-Axis Rotation또는Fixed Y-Axis Rotation 또는 Fixed Z-Axis Rotation 를 선택한다.

 

Coordinates of the rotational axis need be given in two of the three input boxes for Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate and Fixed Axis/Point Z Coordinate. For example, if the rotational axis is parallel to the z-axis, then the x and y coordinates for the rotational axis must be defined. Users can also set limits for the object’s rotational angle in both positive and negative directions. The rotational angle (i.e., angular displacement) is a vector and measured from the object’s initial orientation based on the right-hand rule. Its value is positive if it points to the positive direction of the coordinate axis which the rotational axis is parallel to. The object cannot rotate beyond these limits but can rotate back to the allowed angular range after it reaches a limit. To set the limits for rotation, in Motion Constraints Limits for rotation, enter the maximum rotational allowed in negative and positive directions in the corresponding input boxes, using absolute values in degrees. By default, these values are infinite.

회전축좌표는 3개 Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate Fixed Axis/Point Z Coordinate 중 2개의 입력박스에서 주어져야 한다. 예를들면 회전축이 z 축에 평행하다면 이 회전축의 the x 와 y 좌표가 정의되어야 한다. 사용자는 물체의 양과 음 방향의 회전각도를 제한할 수 있다. 회전각 (즉, 각변위)은 벡터이며 오른손 법칙에 따라 물체의 초기 방향으로 부터 측정된다. 이것이 회전축에 평행한 좌표축의 양방향을 가리키면 양의 값이다. 물체는 제한 값을 지나 회전할 수 없지만 이 값에 도달한 후 허용된 각 변위로 되돌아갈 수 있다. 회전의 제한을 설정하기 위해 Motion Constraints Limits for rotation 내에서 상응하는 입력박스에서 음이나 양의방향으로 허용된 Maximum rotational angle 을 입력한다. 이의 디폴트 값은 무한대이다.

 

A definition of the initial angular velocity for the object is required. In the Initial/Prescribed Velocities tab, enter the initial angular velocity (in radians per time) in x, y or z direction in the corresponding input box in the Angular velocity components area, depending on the orientation of the rotational axis. The default value is zero.

User-prescribed total torque exerting on the object can be defined. They are combined with the hydraulic, gravitational, inertial and spring torques to determine the object’s rotation. In the Control Forces and Torques tab, choose Define Total Force and Total Torque in the combo box. If the torque is constant, it can be simply set in the provided edit box for x, y or z component of the torque, depending on direction of the coordinate axis which the rotational axis is parallel to. For a time-dependent control torque, click the corresponding Tabular button to bring up a data table and then enter the values of time and the torque. The control torque is treated as a piecewise-linear function of time in computation. As an option, instead of filling the data table line by line, the user can also import a data file for the torque versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and torque from left to right and must have a csv extension. The torque about the fixed axis is the same in the space and body systems, thus the choice of In space system or In body system options makes no difference to the computation. User-prescribed total control force and multiple forces are not allowed for the fixed-axis motion.

물체의 초기 각속도 정의가 필요하다. Initial/Prescribed Velocities 탭에서 회전축의 방향에 따라 the Angular velocity components 면에서 x, y 및 z 방향으로 초기 각속도(시간당radians으로)를 넣는다. 디폴트는0이다. 사용자에 의해 지정된 물체에 작용하는 전체 토크가 정의될 수 있다, 이들은 물체의 회전을 결정하기 위해 수력, 중력, 관성력과 스프링에 의한 토크와 결합되어 있다. Control Forces and Torques 탭 안의 combo box 에서 Define Total Force and Total Torque 을 선택한다.  토크가 상수이면 회전축이 평행한 좌표축의 방향에 따라, 토크의 x, y 또는 z 성분을 위한 주어진 편집박스에서 단순히 지정된다. 따라 변하면 데이터테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 시간과 토크를 넣는다. 제어토크는 계산시 구간 내 시간의 함수로 간주된다. 선택으로 한 줄씩 데이터 테이블을 채우는 대신에 사용자가 Tabular Import Values 를 클릭함으로써 토크대 시간의 파일을 읽어 들일 수 가 있다. 이 파일은 시간과 토크를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 고정축에 대한 토크는 공간과 시간계에서 같으므로 In space system 이나 In body system 의 선택은 계산에 차이가 없다. 사용자가 지정하는 전체 제어 힘과 다중의 힘은 고정축 운동에서는 허용되지 않는다.

Step 4: Specify the GMO’s Mass Properties GMO 질량물성을 정의한다

Definition of the mass properties is required for any moving object with coupled motion and is optional for objects with prescribed motion. If the mass properties are provided for a prescribed-motion object, the solver will calculate and output the residual control force and torque, which complement the gravitational, hydraulic, spring, inertial and user-prescribed control forces and torques to maintain the prescribed motion. To specify the mass properties, click on Mass Properties to open the dialog window. Two options are available for the mass properties definition: provide mass density or the integrated mass properties including the total mass, mass center and the moment of inertia tensor.

질량물성의 정의가 결합운동을 하는 이동체에 대해 필요하지만 지정운동을 하는 이동체에는 선택적이다. 지정운동체에 대해 질량 물성이 주어지면 solver 는 지정 운동을 유지하기 위해 중력, 수력, 관성력, 스프링 힘과 사용자 지정의 힘과 토크를 보완하는 잔여 조절 힘과 토크를 계산하고 출력할 것이다. 질량물성을 지정하기 위한 대화창을 열기 위해 Mass Properties를 클릭한다. 이를 위해 두 가지 선택이 있다: 질량밀도 또는 전체질량, 질량중심과 관성모멘트텐서를 포함하는 통합 질량 물성을 제공한다.

The option to provide mass density is convenient if the object has a uniform density or all its subcomponents have uniform densities. In this case, the preprocessor will calculate the integrated mass properties for the object. In the Mass Properties tab, select Define Density in the combo box and enter the density value in the Mass Density input box. By default, each subcomponent of the object takes this value as its own mass density. If a subcomponent has a different density, define it under that subcomponent in the geometry tree, Geometry Component Subcomponents Subcomponent (the desired component) Mass Density.

물체나 이 물체의 소 구성요소가 균일한 밀도를 가지면 질량밀도를 주는 선택이 편하다. 이 경우 전처리과정이 이에 대한 모든 통합 질량물성을 계산할 것이다. Mass Properties 탭에서 combo 박스에 있는 Define Density 를 선택하고 Mass Density 입력박스에서 밀도 값을 넣는다. 디폴트로 물체의 소 구성 요소의 밀도는 물체의 밀도와 같다. 만약에 소 구성요소가 다른 밀도를 가지면 이를 형상체계에 있는 Geometry Component Subcomponents Subcomponent (the desired component) Mass Density 소구성요소에서 정의한다.

 

The option to provide integrated mass properties is useful if the object’s mass, mass center and moment of inertia tensor are known parameters regardless of whether the object’s density is uniform or not. In the Mass Properties tab, choose Define Integrated Mass Properties in the combo box and enter the following parameters in the input boxes depending on the type of motion: Total mass, initial mass center location (at t = 0) and moment of inertia tensor about mass center for 6-DOF and fixed-point motion types;

통합 질량 물성의 사용은 물체의 밀도가 균일한지와 무관하게 물체의 질량, 질량중심, 관성모멘트 텐서 등이 알려진 변수일 경우에 유용하다. Mass Properties 탭에서 combo 박스에있는 Define Integrated Mass Properties 을 선택하고 운동형태에 따라 입력상자 안에 다음 변수들을 넣는다:

 

  • Total mass, initial mass center location (at t = 0) and moment of inertia about fixed axis for fixed-axis motion type.

전체 질량, 초기 질량중심 위치(t=0에서), 그리고 6자유도 및 고정점 운동 형태를 위한 질량중심에 관한 관성모멘트텐서

Output출력

For each GMO component, the solver outputs time variations of several solution variables that characterize the object’s motion. These variables can be accessed during post-processing in the General history data catalog and can be viewed either graphically or in a text format. For both prescribed and coupled types of motion with the mass properties provided, the user can find the following variables:

각 GMO 요소에 대해solver는 물체의 운동 특성을 보여주는 대여섯 개의 해석변수의 시간에 대한 변화를 출력한다. 이 변수들은 General history 데이터카탈로그에서 후처리중에 텍스트나 도식으로 볼 수 있다. 주어진 질량을 갖는 지정과 결합운동에 대해 사용자는 다음 변수들을 이용할 수가 있다.

  1. Mass center coordinates in space system공간계 내의 질량중심좌표
  2. Mass center velocity in space system공간계 내의 질량중심 속도
  3. Angular velocity in body system물체계 내의 각속도
  4. Hydraulic force in space system공간계 내의 수리력
  5. Hydraulic torque in body system물체계 내의 수리토크
  6. Combined kinetic energy of translation and rotation 이동과 회전의 결합운동에너지

There will be no output for items 1, 2 and 6 for any prescribed-motion GMO if the mass properties are not provided. Additional output of history data include:

질량물성이 주어지지 않으면 지정운동을 하는 GMO 에대해 상기 1,2와6에대한 출력은없다. 추가적이력데이터의 출력은

  • Location and velocity of the reference point for a prescribed 6-DOF motion지정된6자유도운동을 위한 기준점의 위치와 속도
  • Rotational angle for a fixed-axis motion

고정축 운동을 위한 회전각

  • Residual control force and torque in both space and body systems for any prescribed motion and a coupled motion with constraints (fixed axis, fixed point and prescribed velocity components)

지정운동 및 구속을 갖는 결합운동(고정축, 고정점, 그리고 지정속도성분)에 대한 두 공간과 물체계에서의 잔여 제어 힘과 토크

  • Spring force/torque and deformation

스프링 힘과 토크 및 변형

  • Mooring line extension and maximum tension force

계류선 신장 및 최대인장력

  • Mooring line tension forces at two ends in the x, y and z directions

x, y 및 z 방향에서 양끝에 작용하는 계류선 인장력

 

As an option, the history data for a GMO with 6-DOF motion can also include the buoyancy center and the metacentric heights for rotations about x and y axes of the space system, which is useful for stability analysis of a floating object. Go to Geometry Component (the desired moving object) Output Buoyancy Center and Metacentric Height, and select Yes. The buoyancy center is defined as the mass center of the fluid displaced by the object. The metacentric height (GM) is the distance from the gravitational center (point G) to the metacenter (point M). It is positive (negative) if point G is below (above) M.

선택사항으로 GMO 6자유도의 이력데이터는 부력중심과 부력물체의 안정성 해석에 유용한 공간계의 x와 y 축에 대한 회전을 위한 metacentric 높이를 포함한다. Geometry Component (the desired moving object) Output Buoyancy Center and Metacentric Height 로가서 Yes 를 선택한다. 부력 중심은 물체에 의해 배수된 부분을 차지하는 유체의 질량중심으로 정의된다. The metacentric height (GM) 은 중력중심(점 G) 에서 metacenter (점M)까지이다. 점 G가 M보다 밑(위)이면 양(음)이다.

 

GMO components can participate in heat transfer just like any stationary solid component. When defining specific heat of a GMO component, Component Properties Solid Properties Density*Specific Heat must be given.

GMO 요소는 여느 정지 고체 요소와 같이 열전달을 포함 할 수 있다. GMO 요소의 비열을 정의할 때 Component Properties Solid Properties Density*Specific Heat 가 주어져야 한다.

 

Two options are available when defining heat sources for a GMO component: use the specific heat flux, or the total power. When the total power is used, the heat fluxes along the open surface of the moving object are adjusted at every time step to maintain a constant total power. If the surface area varies significantly with time, so will the heat fluxes. When the specific heat is used instead, then the fluxes will be constant, but the total power may vary as the surface area changes during the object’s motion. To define heat source for a GMO component, go to Component Properties Solid Properties Heat Source type Total amount or Specific amount.

GMO 요소의 열 소스를 정의할 때 두 가지 선택이 있다: 비열유속 또는 전체 일률(power)를 사용하는 것이다. 전체 일률이 사용되면 이동체의 개표면을 통한 열 유속은 일정 전체 일률을 유지하기 위해 매 시간 단계 마다 조정된다. 표면적이 시간에 따라 상당히 변하면 열유속도 그러할 것이다. 대신에 비열이 사용되면 열 유속은 일정할 것이고 전체일률은 표면적이 이동체의 운동에 따라 변할 때 변할 수도 있다. GMO 요소의 열소스를 정의하기 위해 to Component Properties Solid Properties Heat Source type Total amount or Specific amount 로 간다.

 

Mass sources/sinks can also be defined on the open surfaces of a GMO component. Details can be found in Mass

Sources. 질량소스나 싱크 또한 GMO 요소의 개표면 상에 정의될 수 있다. 자세한 것은 in Mass Sources 에서 볼 수 있다.

Although the GMO model can be used with most physical models and numerical options, limitations exist. To use the model properly, it is noted that

GMO 모델은 대부분의 다른 물리적 모델이나 수치해석 선택과 같이 사용될 수 있지만 제한이 따른다. 모델을 제대로 사용하기 위해 다음 사항들에 유의한다.

  • For coupled motion, the explicit and implicit GMO methods perform differently. The implicit GMO method works for both heavy and light moving objects. The explicit GMO method, however, only works for heavy object problems (i.e., the density of moving object is higher than the fluid density).

결합운동에 대해 내재적과 외재적 GMO 방법은 다르게 작동한다. 내재적 GMO 방법은 무겁거나 가벼운 이동물체에 이용될 수 있지만 외재적 GMO 방법은 무거운 물체의 이동에만 이용한다(즉, 이동물체의 밀도가 유체의 밀도보다 크다).

  • When the explicit GMO method is used, solution for fully coupled moving objects may become unstable if the added mass of the fluid surrounding the object exceeds the object’s mass.

외재적 GMO 방법이 사용될 때 물체 주위 유체의 부가질량이 물체의 질량보다 크면 완전결합 이동물체의 해석은 불안정하게 된다.

  • If there are no GMO components with coupled motion, then the implicit and explicit methods are identical and the choice of one makes no difference to the computational results.

결합운동을 하는 GMO 요소가 없으면 내재적과 외재적 방법은 같고 어느 하나를 사용해도 계산결과에 차이가 없다.

  • The implicit method does not necessarily take more CPU time than the explicit method, even though the former required more computational work, because it improves numerical stability and convergence, and allows for larger time step. It is thus recommended for all GMO problems.

내재적 방법은 수치(해석) 안정성과 수렴이 개선되고 더 큰 시간 단계를 가능하게 해주기 때문에 더 많은 계산을 필요로 하지만 외재적 방법보다 항상 더 많이 CPU시간을 필요로 하지는 않는다. 따라서 모든 문제에 권장된다.

  • It is recommended that the limited compressibility be specified in the fluid properties to improve numerical stability by reducing pressure fluctuations in the fluid.

유체내의 압력 변동을 줄임으로써 수치해석안정성을 증가시키기 위해 제한된 압축성이 유체 물성에서 지정되도록 권장된다.

  • In the simulation result, fluctuations of hydraulic force may exist due to numerical reasons. To reduce these fluctuations, the user can set No f-packing for free-surface problems in Numerics Volume of fluid advection Advanced options and set FAVOR tolerance to 0.0001 in Numerics Time-step controls Advanced Options Stability enhancement. It is noted that an unnecessarily small FAVORTM tolerance factor can cause small time steps and slow down the computation.

모사(simulate)결과에서 수리력의 변동이 수치적인 이유로 존재할 수 있다. 이 변동을 줄이기 위해 사용자는 Numerics Volume of fluid advection Advanced options 에서 자유표면 문제에 대해 No f-packing 을 지정하고 FAVOR tolerance Numerics Time-step controls Advanced Options Stability enhancement 에서 0.0001로 지정할 수 있다. 불필요하게 작은 FAVORTM tolerance 인자는 작은시간 단계를 발생시키고 계산을 더디게 할 수 있다.

  • In order to calculate the fluid force on a moving object accurately, the computational mesh needs to be reasonably fine in every part of the domain where the moving object is expected to be in contact with fluid.

이동물체에 대한 유체의 힘을 정확히 계산하기 위해 이동체가 유체와 접촉할 것으로 예상되는 영역내의 모든 부분에서 적절히 미세한 계산격자를 사용해야한다.

  • An object can move completely outside the computational domain during a computation. When this happens, the hydraulic forces and torques vanish, but the object still moves under actions of gravitational, spring, inertial and control forces and torques. For example, an object experiences free fall outside the domain under the gravitational force in the absence of all other forces and torques.

물체는 계산 동안에 완전히 계산영역 외부로 이동할 수 있다. 이럴 경우 수리력과 토크는 사라지지만 물체는 중력, 스프링힘, 관성력 및 조절 힘과 토크의 영향으로 움직인다. 예를 들면 물체는 모든 다른 힘과 토크가 없는 경우에 중력장 안에 있는 영역외부에서 자유낙하를 할 것이다.

  • If mass density is given, then the moving object must initially be placed completely within the computational domain and the mesh around it should be reasonably fine so that its integrated mass properties (the total mass, mass center and moment of inertia tensor) can be calculated accurately by the code

질량밀도가 주어지면 초기에 물체가 완전히 계산영역 내에 위치하고 있어야 하고 이 주변의 격자는 적절히 미세하게 하여 이의 통합 질량물성(전체질량, 질량중심 그리고 관성모멘트텐서)이 이 코드에 의해 정확히 계산될 수 있어야 한다.

  • If a moving object is composed of multiple subcomponents, they should have overlap in places of contact so that no unphysical gaps are created during motion when the original geometry is converted to area and volume fractions. If different subcomponents are given with different mass densities, this overlap should be small to avoid big errors in mass property calculation.

이동체가 다수의 소 구성요소로 이루어져 있다면 원래 형상이 면적과 체적율로 전환될 때 이들은 접촉부에 중첩이 있어야만 이동 시에 실제로 존재하지 않은 간격이 발생 안 한다. 다른 소구성요소가 다른 질량밀도로 주어지면 이 간격은 질량물성 계산시 큰 에러를 줄이기 위해 작아야 한다.

  • A moving object cannot be of a phantom component type like lost foam or a deforming object.

이동체는 lost foam 이나 변형물체 같은 phantom 구성요소가 될 수 없다.

  • The GMO model works with the electric field model the same way as the stationary objects, but no additional forces associated with electrical field are computed for moving objects.

GMO 모델은 정지 물체와 같은 전장모델과 이용할 수 있으나, 전장 관련 추가적 힘은 계산되지 않는다.

  • If a GMO is porous, light in density and high in porous media drag coefficients, then the simulation may experience convergence difficulties.

GMO가 밀도가 가볍고 다공매질 저항계수가 큰 다공질이면 모사(simulate)에 수렴의 어려움이 있을 수 있다.

  • A Courant-type stability criterion is used to calculate the maximum allowed time-step size for GMO components. The stability limit ensures that the object does not move more than one computational cell in a single time step for accuracy and stability of the solution. Thus the time step is also limited by the speed of the moving objects during computation.

GMO 구성요소에 대해 Courant 형의 안정성 기준이 최대허용 시간 단계 크기를 계산하도록 이용된다. 안정성 제한은 해석의 정확성과 안정성을 위해 물체가 하나의 시간 단계에 하나 이상의 계산 셀을 지나가지 않도록 보장하는 것이다. 그러므로 시간 단계는 계산시 또한 이동체의 속도에 의해 제한된다.

Note:

  • Time-Saving Tip: For prescribed motion, users can preview the object motion in a so-called “dry run” prior to the full flow simulation. To do so, simply remove all fluid from the computational domain to allow for faster execution. Upon the completion of the simulation the motion of the GMO objects can be previewed by post-processing the results. 시간절약팁: 지정운동에서 사용자는 실제 전체 유동 계산 전에 소위 “dry run” 이라는 형태로 GMO 물체의 운동을 미리 볼 수 있다. 이러기 위해 빠른 계산을 하기 위해 계산영역 내로부터 모든 유체를 단순히 제거한다. 모사(simulate)가 끝나면 운동은 결과를 후처리함으로써 미리 볼 수 있다.
  • The residual forces (and torques) are computed for the directions in which the motion of the object is prescribed/constrained. They are defined as the difference between the total force on an object (computed from the prescribed mass*acceleration) and the computed forces on the object from pressure, shear, gravity, specified control forces, etc. As such, they represent the force required to move the object as prescribed.

잔류력(그리고 토크)은 물체의 이동이 지정되거나 제약되는 방향으로 계산된다. 이들은 물체에 작용하는 전체 힘(지정 질량*가속도로부터 구해지는)과 압력, 전단력, 중력, 지정된 조절력 등으로부터 물체에 가해지는 계산된 힘과의 차이로 정의된다.

Collision충돌

The GMO model allows users to have multiple moving objects in one problem, and each of them can possess independent type of coupled or prescribed motion. At any moment of time, each object under coupled motion can collide with any other moving objects (of a coupled- or prescribed-motion type), non-moving objects as well as wall- and symmetry-type mesh boundaries. Without the collision model, objects may penetrate and overlap each other.

GMO 모델에서 사용자는 한 문제에서 다수의 이동체를 지정할 수 있고 각 이동체는 결합 또는 지정된 별도 운동을 할 수가 있다. 어느 순간에서 결합 운동을 하는 각 물체는 벽 또는 대칭형 격자 경계뿐만 아니라 다른 이동체들(결합운동 이나 지정운동을 하는), 그리고 정지하고 있는 물체와 충돌할 수 있다.  충돌모델 없으면 물체는 각기 침투하거나 중첩될 수가 있다.

The GMO collision model is activated by selecting Physics Moving and simple deforming objects Activate collision model. It requires the activation of the GMO model first, done in the same panel. For a GMO problem with only prescribed-motion objects, it is noted that the collision model has no effect on the computation: interpenetration of the objects can still happen.

GMO 충돌모델은 Physics Moving and simple deforming objects Activate collision model 를 선택함으로써 활성화된다. 먼저 같은 패널에서 GMO 모델을 활성화한다. 단지 지정된 운동을 하는 GMO 물체 문제에 대해 충돌모델은 계산에 영향을 안 미친다는 것을 주목한다: 그래도 물체의 침투는 가능하다.

The model allows each individual collision to be fully elastic, completely plastic, or partially elastic, depending on the value of Stronge’s energetic restitution coefficient, which is an input parameter. In general, a collision experiences two phases: compression and restitution, which are associated with loss and recovery of kinetic energy. The Stronge’s restitution coefficient is a measure of kinetic energy recovery in the restitution phase. It depends on the material, surface geometry and impact velocity of the colliding objects. The range of its values is from zero to one. The value of one corresponds to a fully elastic collision, i.e., all kinetic energy lost in the compression is recovered in the restitution (if the collision is frictionless). Conversely, a zero restitution coefficient means a fully plastic collision, that is, there is no restitution phase after compression thus recovery of the kinetic energy cannot occur. A rough estimate of the restitution coefficient can be conducted through a simple experiment. Drop a sphere from height h0 onto a level anvil made of the same material and measure the rebound height h. The restitution coefficient can be obtained as h/h0. In this model, the restitution coefficient is an object-specific constant. A global value of the restitution coefficient that applies to all moving and non-moving objects is set in Physics Moving and simple deforming objects Coefficient of restitution.

입력 변수인 Stronge 의 에너지 반발계수의 값에 따라 모델은 물체의 완전탄성, 완전소성 또는 탄성의 각기 충돌을 다룰 수 있다. 일반적으로 충돌은 두 단계로 나뉜다: 압축과 반발이며 이들은 운동에너지의 손실및 회복과 연관되어 있다. Stronge 의 반발계수는 반발단계에서의 에너지회복의 척도이다. 이는 물질, 표면형상 그리고 충돌하는 물체의 충격속도에 의존한다.

이값은 0과1사이이다. 1은 완전탄성충돌이며 압축에서 손실된 모든 운동에너지가 반발에서 회복된다(충돌에마찰이없다면). 역으로, 0의 반발계수는 완전소성충돌로 즉 압축 후에 반발이 없으며 운동에너지의 회복은 일어나지 않는다. 반발계수의 개략 추정치는 단순한 실험을 통해 얻어질 수 있다.

높이 h0에서 구를 같은 재질로 만들어진 anvil (모루?)위로 떨어뜨려 반발높이 h 를 측정한다. 반발계수는 h/h0로얻어진다. 이모델에서 반발계수는 물질에 특정한 상수이다. 모든 이동과 비 이동물체에 적용되는 반발계수의 포괄적인 값은 Physics Moving and simple deforming objects Coefficient of restitution 에서 지정된다.

 

Friction can be included at the contact point of each pair of colliding bodies by defining the Coulomb’s friction coefficient. A global value of the friction coefficient that applies to all collisions is set in Physics General moving objects Coefficient of friction. Friction forces apply when the friction coefficient is positive; a collision is frictionless for the zero value of the friction coefficient, which is the default. The existence of friction in a collision always causes a loss of kinetic energy.

마찰은 Coulomb 마찰계수를 정의함으로써 충돌하는 각 물체의 접촉 점에 작용한다. 모든 충돌에 적용되는 마찰계수의 포괄적 값은 Physics General moving objects Coefficient of friction 에서 설정된다. 마찰력은 마찰계수가 양일 경우 작용한다; 충돌시 마찰계수가0일 경우 마찰력이 없고, 이는 디폴트이다. 충돌 시 마찰력의 존재는 항상 운동에너지의 손실을 뜻한다.

 

The global values of the restitution and friction coefficients are also used in the collisions at the wall-type mesh boundaries, while collisions of the moving objects with the symmetry mesh boundaries are always fully elastic and frictionless.

포괄적 마찰 및 반발계수는 또한 벽 형태의 경계에서 충돌이 발생할 경우에도 사용될 수 있으나 이동체의 대칭격자 경계와의 충돌은 항상 완전탄성이고 마찰이 없다.

 

The object-specific values for the restitution and friction coefficients are defined in the tab Model Setup Meshing & Geometry. In the geometry tree on the left, click on Geometry Component (the desired component) Component Properties Collision Properties and then enter their values in the corresponding data boxes. If an impact occurs between two objects with different values of restitution coefficients, the smaller value is used in that collision calculation. The same is true for the friction coefficient.

물체에 특정한 반발 및 마찰계수는 탭 Model Setup Meshing & Geometry 에서 정의된다. 좌측의 형상체계에서 on Geometry Component (the desired component) Component Properties Collision Properties 를 클릭하고 상응하는 데이터박스에 그 값들을 입력한다. 다른 반발계수를 갖는 두 물체 사이에 충격이 발생하면 그 충돌 계산에 작은 마찰계수 값이 이용된다. 이는 마찰의 경우에도 마찬가지이다.

Continuous contact, including sliding, rolling and resting of an object on top of another object, is simulated through a series of small-amplitude collisions, called micro-collisions. Micro-collisions are calculated in the same way as the ordinary collisions thus no additional parameters are needed. The amplitude of the micro-collisions is usually small and negligible. In case the collsion strength is obvious in continuous contact, using smaller time step may reduce the collision amplitude.

미끄러짐, 회전, 및 타물체상에 정지하고 있는 물체를 포함하는 지속적인 접촉은 미세충돌이라고 불리는 일련의 소 진폭 충돌에 의해 모사(simulate)된다. 미세 충돌은 추가적인 매개변수 필요 없이 보통충돌과 같은 방식으로 계산된다. 충돌강도가 지속적 접촉에서 현저한 경우 더 작은 시간간격을 시용하는 것이 충돌 진촉을 감소시킬지도 모른다.

 

If the collision model is activated but the user needs two specific objects to have no collision throughout the computation, he can open the text editor (File Edit Simulation) and set ICLIDOB(m,n) = 0 in namelist OBS, where m and n are the corresponding component indexes. An example of such a case is when an object (component index m) rotates about a pivot – another object (component index n). If the former has a fixed-axis motion type, then calculating the collisions with the pivot is not necessary. Moreover, ignoring these collisions makes the computation more accurate and more efficient. If no collisions between a GMO component m with all other objects and mesh boundaries are desired, then set ICLIDOB(m,m) to be zero. By default, ICLIDOB(m,n) = 1 and ICLIDOB(m,m) = 1, which means collision is allowed.

충돌모델이 활성화되고 시용자가 모사(simulate)동안에 충돌하지 않는 두 특정 물체를 필요로 하면 텍스트편집(File Edit Simulation) 을 열어 namelist OBS 에서 ICLIDOB(m,n) = 0 를 지정하는데, 여기서 m n 은 상응하는 구성 요소 색인이다.

이런 예는 한 물체(component index m)가 경첩축인 다른 물체(component index n)에대해 회전할 경우이다. 전자가 고정축에 대한 운동형태이면 경첩 축과의 충돌은 계산할 필요가 없다. 더구나 이런 충돌을 무시하는 것이 계산상 더 정확하고 효율적이다.

한 GMO component 구성요소 m 과 모든 다른 물체나 격자 경계와의 충돌이 없다면 ICLIDOB(m,m) 를 0으로 지정한다. 디폴트는 ICLIDOB(m,n) = 1 이며 이는 충돌이 허용됨을 뜻한다.

 

To use the model prpperly, users should be noted that

모델을 적절히 사용하기 위해서 사용자는 다음에 주목한다.

  • The collision model is based on the impact theory for two colliding objects with one contact point. If multiple contact points exist for two colliding objects (e.g. surface contact) or one object has simultaneous contact with more than one objects, object overlap may and may not occur if the model is used, varing from case to case.

충돌모델은 한 접촉점을 갖는 두 물체의 충돌이론에 의거한다. 이 모델 사용시 두 물체의 충돌에 다수의 접촉점이 존재(즉 표면접촉같이)하거나 한 물체가 동시에 다른 물체들과 충돌하면 경우에 따라 중첩이 발생할 수도 있고 안 할 수도 있다.

  • To use the model, one of the two colliding object must be under coupled motion, and the other can have coupled or prescribed motion or no motion. The coupled motion can be 6-DOF motion, translation, fixed-axis rotation or fixed-point rotation. For other constrained motion, (e.g., rotation is coupled in one direction but prescribed in another direction), the model is not valid, and mechanical energy of the colliding objects may have conservation problem.

이 모델사용 시 두 충돌 물체중의 하나는 결합운동을 하여야 하고 다른 물체는 결합 또는 지정 운동 또는 정지하고 있을 수 있다. 결합운동은 6자유도 운동일 수 있다(이동, 고정축 또는 고정점 회전). 다른 구속 운동(즉, 한 방향에서는 결합 운동이지만 다른 방향에서는 지정 운동)에서 이 모델은 유효하지 않고 충돌물체의 역학에너지는 보존문제가 발생할는지도 모른다.

  • The model works with and without existence of fluid in the computational domain. It is required, however, that the contact point for a collision be within the computational domain, whereas the colliding bodies can be partially outside the domain at the moment of the collision. If two objects are completely outside the domain, their collision is not detected although their motions are still tracked.

이 모델은 계산 영역 내 유체의 존재 유무에 상관없이 작동한다. 그러나 충돌 시 접촉점은 계산 영역 내에 존재해야 하나 충돌체는 충돌 시 부분적으로 영역외부에 있어도 된다. 두 물체가 완전히 영역 외부에 있으면 이들의 운동은 그래도 추적되지만 충돌은 감지되지 못한다.

  • Collisions are not calculated between a baffle and a moving object: they can overlap when they contact.

이동물체와 배플간의 충돌은 계산되지 않는다: 이들이 접촉하면 중첩될 수 있다.

The model does not calculate impact force and collision time. Instead, it calculates impulse that is the product of the two quantities. Therefore, there is no output of impact force and collision time.

이 모델은 충격 힘과 충돌시간은 계산하지 않는다. 대신에 두 양의 곱인 impulse 를계산한다. 그러므로 충격 힘과 충돌시간에 대한 출력이 없다.

PQ2 Analysis PQ2 해석

PQ2 analysis is important for high pressure die casting. The goal of the PQ2 analysis is to optimally match the die’s designed gating system to the part requirements and the machine’s capability. PQ2 diagram is the basic tool used for PQ2 analysis.

PQ2 해석은 고압주조에서 중요하다. 이 해석의 목적은 부품 요건 및 기계의 용량에 따른 다이의 설계된 게이트 시스템을 최적화시키기 위한 것이다. PQ2 도표는 PQ2해석을 위한 기본 도구이다.

According to the Bernoulli’s equation, the metal pressure at the gate is proportional to the flow rate squared:

베르누이 정리에 의하면 게이트에서의 금속압력은 유량의 제곱에 비례한다.

P Q2                                                                                     (11.5)

where: 여기서

  • P is the metal pressure at the gate, and P 는 게이트에서의 압력이며
  • Q is the metal flow rate at the gate. Q 는 게이트에서의 유량이다.
  • The machine performance line follows the same relationship. 기계성능 곡선도 같은 관계를 따른다.

Based on the die resistance, machine performance, and the part requirements, an operating windows can be determined from the PQ2 diagram, as shown below. The die and the machine has to operate within the operating windows.

다이 저항, 기계성능, 그리고 부품 요건에 따라 운영범위가 밑에 보여진 바와 같이 PQ2 도표에서 결정될 수 있다. 다이와 기계는 운영범위 내에서 작동되어야 한다.

Model Setup모델설정

PQ2 analysis can only be performed on moving object with prescribed motion. The PQ2 analysis can be activated in Meshing & Geometry Component Properties Moving Object. PQ2 analysis can only be performed on one component.

PQ2해석은 단지 지정운동을 하는 이동체에서만 실행될 수 있다. 이는 Meshing & Geometry Component Properties Moving Object 에서 활성화된다. 또 이는 단지 한 개의 구성요소에 대해서만 실행될 수 있다.

The parameters Maximum pressure and Maximum flow rate define the machine performance line.

매개변수 Maximum pressure Maximum flow rate 는 기계성능 곡선을 정의한다.

During the design stage, the process parameters specified might not optimal, such that the resulting pressure is beyond the machine capability. If this happens, the option Adjust velocity can be selected so that the piston velocity is automatically adjusted to match the machine capability. If Adjust velocity is selected, at every time step the pressure at the piston head will be compared with the machine performance pressure to see if it is beyond the machine capability. If it is beyond the machine capability, the flow rate is then reduced to match the machine capability. The reduction is instantaneous and no machine inertia is considered. Once the pressure drops below the machine performance line, the piston will then accelerate to the prescribed velocity. The acceleration has to be less than the machine Maximum acceleration specified.

설계시에 초래된 압력이 기계 성능 이상으로 되는 것같이 지정된 공정 변수들이 최적화가 되지 않았을지도 모른다.  이런 경우에 Adjust velocity 를 선택할 수 가 있고 피스톤속도는 기계성능에 맞게끔 자동적으로 조절될 수 있다. 만약 Adjust velocity 가 선택되면 매 시간단계에서 피스톤헤드의 압력이 기계 성능 이상인지를 알기 위해 기계성능 압력과 비교될 것이다. 압력이 기계 성능 이상이라면 유량은 기계성능을 맞추기 위해 감소될 것이다. 감소는 순간적으로 이루어지고 기계의 관성은 고려되지 않는다. 일단 압력이 성능 이하로 줄어들면 피스톤은 지정속도로 가속할 것이다. 가속도는 기계의 지정된 Maximum acceleration 보다 작아야 할 것이다. .

 

If Adjust velocity is selected, the machine parameters Maximum pressure and Maximum flow rate have to be provided. The Maximum acceleration is also required, however, it is by default to be infinite if not provided.

Adjust velocity 가 선택되면 기계시스템 변수 Maximum pressure Maximum flow rate 가 주어져야 한다. 또한 Maximum acceleration 가 필요하나 주어지지 않으면 디폴트 값은0이다.

 

For high pressure die casting, the fast shot stage is very short. But it is this stage that is of interest. The pressure and flow rate are written as general history data. The data output interval has to be very small to capture all the features in this stage. To reduce FLSGRF file size, only when flow rate reaches Minimum flow rate, the history data output interval is reduced to every two time steps. If Minimum flow rate is not provided, it is default to 1/3 of the Maximum flow rate. Note that the only purpose of Minimum flow rate is to change the history data output frequency.

고압주조에서 고속충진단계는 아주 짧은데 우리는 이 단계에 관심이 있다. 압력과 유량은 일반 이력 데이터로 기록된다. 데이터출력 간격은 이 단계에서의 모든 양상을 보기 위해 아주 작아야 한다. FLSGRF 파일 크기를 줄이기 위해 유량이 Minimum flow rate 에 도달했을 때만 이력데이터 출력 간격은 두 시간 간격에 한번으로 감소된다. Minimum flow rate 가 주어지지 않으면 Maximum flow rate 의 1/3이 디폴트값이다. 단지, Minimum flow rate 를 사용하는 목적은 이력 데이터 출력 간격을 변경하는 것임에 주목한다.

 

Due to the limitation of the FAVORTM, the piston head area computed may fluctuate as piston pushing through the shot sleeve. As a result, the metal flow rate computed may also fluctuate. To reduce the fluctuation, Shot sleeve diameter is recommended to be provided, so that it can be used to correct the metal flow rate. If only half of the domain is modeled, the diameter needs to be scaled to reflect the real cross section area in the simulation.

FAVORTM 제약에 따라 계산된 피스톤헤드 면적은 피스톤이 shot sleeve 를 통해 움직일 때 변할 수 있다. 결과적으로 계산된 액체금속 유량이 변할 수 있다. 이를 줄이기 위해 Shot sleeve diameter 를 주는 것이 필요하고, 이로부터 액체금속 유량을 정정할 수 있다.  만약에 단지 영역의 반만 모델이 되면 직경은 모사(simulate)시에 실제 단면적을 나타내기 위해 비례되어야 한다.

Postprocessing 후처리

If PQ2 analysis is chosen, the pressure, flow rate, and prescribed velocity of the specified moving object will be written to FLSGRF file as General history data. If Adjust velocity is selected, the adjusted velocity will also be written as General history data. In addition, the PQ2 diagram can be drawn directly from the history data in FlowSight.

PQ2해석이 선택되면 압력, 유량 그리고 특정 이동체의 지정속도가 General history 데이터로 FLSGRF 파일에 쓰여질 것이다. Adjust velocity 가 선택되면 조절된 속도 또한 General history 데이터로 쓰여질 것이다. 추가로 PQ2 도표는 직접 Flow Sight에서 이력데이터로 그려질 수 있다.

Elastic Springs & Ropes 탄성 스프링과 로프

The GMO model allows existence of elastic springs (linear and torsion springs) and ropes which exert forces or torques on objects under coupled motion. Users can define up to 100 springs and ropes in one simulation, and each moving object can be arbitrarily connected to multiple springs and ropes. For a linear spring, the elastic restoring force Fe is along the length of the spring and satisfies Hooke’s law of elasticity,

GMO 모델은 결합운동하는 물체에 힘과 토크를 미치는 탄성스프링(선형과 비틀림 스프링)과 로프로 이용될 수 있다. 사용자는 한 모사(simulate)에서 100개까지의 스프링과 로프를 정의할 수 있고 각 이동체는 임의로 다수의 스프링과 로프에 연결될 수 있다. 선형 스프링에서 탄성회복력 Fe 는 스프링의 길이 방향을 따라서 작용하며 Hooke 의 탄성법을 만족한다.

Fe = kl l

where: 여기서

  • kl is the spring coefficient,

kl 는스프링상수

  • l is the spring’s length change from its free condition,

l 는 스프링의 길이 변화량

  • Fe is a pressure force when the spring is compressed, and a tension force when stretched.

Fe 는 스프링이 압축되었을 때는 압축힘이며 늘어났을 때는 인장력이다.

An elastic rope also obeys Hooke’s law. It generates tension force only if stretched, but when compressed it is relaxed and the restoring force vanishes as would be the case of a slack rope.

탄성 로프 또한 Hooke 의 탄성법칙을 따른다. 단지 인장의 경우에만 인장력을   발생시키나 압축의 경우 느슨한 로프의 경우에서와 같이 느슨해지고 복원력은 사라진다.

A torsion spring produces a restoring torque T on a moving object with fixed-axis when the spring is twisted, following the angular form of Hooke’s law,

비틀림 스프링은 스프링이 비틀렸을 때 의 각 형태의 Hooke 법칙을 따라 고정 회전축을 갖는 이동체에 복원 토크 T 를 일으킨다.

Te = kθ θ

where: 여기서

  • kθ is the spring coefficient in the unit of [torque]/degree, and

kθ  [torque]/degree 는 단위의 스프링상수 그리고

  • θ is the angular deformation of the spring.

θ 는 스프링의 각변형

  • It is assumed that there is no elastic limit for the springs and ropes, namely Hooke’s law always holds no matter how big the deformation is.

스프링과 로프에는 탄성한계가 없다고 가정된다. 즉 아무리 스프링과 로프의 변형이 커도 Hooke 의 법칙이 작용한다고 가정된다.

A linear damping force associated with a spring/rope and a damping torque associated with a torsion spring may also be defined. The damping force Fd is exerted on the moving object at the attachment point of the spring/rope. Its line of action is along the spring/rope, and its value is proportional to the time rate of the spring/rope length,

스프링/로프에서의 선형 감쇠력 그리고 비틀림 스프링에서의 감쇠토크가 또한 정의된다. 감쇠력 Fd 는 스프링/로프의 부착점이 있는 이동체에 작용한다. 이의 작용선은 스프링/로프를 따라서이며 그 값은 스프링/로프 길이의 시간당 변화율에 비례한다.

dl

Fd = −cl

dt

Note the damping force for a rope vanishes when the rope is relaxed.

로프의 감쇠력은 로프가 느슨해질 때 없어진다.

The damping torque Td can only be applied on an object with a fixed-axis rotation. Its direction is opposite to the angular velocity, and its value is proportional to the angular velocity value,

감쇠 토크 Td 는 단지 고정축 회전을 하는 물체에만 적용된다. 그 방향은 각속도에 반대방향이고 값은 각속도 값에 비례한다.

Td = −cdω

where ω (in rad/time) is the angular velocity of the moving object.

여기서 ω (in rad/time) 는 이동체의 각속도이다.

 

In this model, a linear spring or rope can have one end attached to a moving object under coupled motion and the other end fixed in space or attached to another moving object under either prescribed or coupled motion. A torsion spring, however, must have one end attached to an object under coupled fixed-axis motion and the other end fixed in space. It is assumed that the rotation axis of the object and the axis of the torsion spring are the same. As a result, the torque applied by the spring on the object is around the object’s rotation axis, and the deformation angle of the spring is equal to the angular displacement of the object from where the spring is in free condition.

이 모델에서 선형 스프링 또는 로프는 한쪽 끝은 결합 운동하는 물체에 그리고 다른 끝은 공간에 고정되어 있거나 지정 또는 결합 운동을 하는 다른 이동체에 연결될 수 있다. 그러나 비틀림 스프링은 한 끝은 결합된 운동을 하는 물체에, 그리고 다른 한끝은 공간에 고정되어 있어야 한다. 물체의 회전축 및 비틀림 스프링의 축은 같다고 가정된다. 결과적으로 물체에 스프링에 의해 가해진 토크는 물체의 회전축둘레로 작용하며 스프링의 각 변형은 스프링의 자유위치로부터의 각변위와 같다.

 

A linear spring has a block length due to the thickness of the spring coil. It is the length of the spring at which the spring’s compression motion is blocked by its coil and cannot be compressed any further. This model allows for three types of linear springs:

선형스프링은 스프링 코일의 두께에 의한 차단 거리가 있다. 이는 스프링의 압축 운동이 그 코일에 의해 방해되어 더 이상 압축될 수 없는 스프링의 길이이다. 이 모델은 3가지의 선형 스프링을 고려할 수 있다.

  • Compression and extension spring: a spring that can be both compressed and extended. Its block length, by default, is 10% of its free length (the length of the spring in the force-free condition).

압축 및 확장스프링: 압축되거나 확장될 수 있는 스프링이며 이의 차단거리는 디폴트로 자유길이(힘을 받지 않을 때의 스프링의 길이) 의 10%이다

  • Extension spring: a spring that can only be extended. Its block length is always equal to its free length.

확장스프링: 확장될 수 있는 스프링이며 차단거리는 항상 자유 길이와 같다.

  • Compression spring: a spring that applies force only when it is compressed. When it is stretched, the force on the connected object vanishes. Its default block length is 10% of its free length.

압축스프링: 단지 압축되었을 경우에만 힘이 작용한다.  늘어날 경우 연결된 물체에 힘은 없고, 이의 디폴트 길이는 자유 길이의 10%이다.

To define a spring or rope, go to Model Setup Meshing Geometry. Click on the spring icon to bring up the Springs and Ropes window. Right click on Springs and Ropes to add a spring or rope. In the combo box for Type, select the type for the spring or rope.

스프링이나 로프를 정의하기 위해 Model Setup Meshing Geometry 로 가서 Springs and Ropes 창을 불러오기 위해 스프링 아이콘을 클릭한다. 스프링이나 로프를 추가하기 위해 Springs and Ropes 를 오른쪽 클릭한다. Type 을위한 combo 상자에서 스프링이나 로프를 선택한다.

  • Linear spring and rope: Click to open the branches for End 1 and End 2 which represent the initial coordinates of the ends of the spring/rope. In each branch, go to Component # and select the index of the moving object which the spring end is connected to. If the end is not connected to any moving component, i.e., is fixed in space, select None. In the X, Y and Z edit boxes, enter the initial coordinates of the spring’s end. Each end can be placed anywhere inside or outside the moving object and the computational domain. Enter Free Length (the length of the spring/rope in the force-free condition), Block Length, Spring Coefficient (required) and Damping Coefficient (default is 0.0). Note that the Block Length is deactivated for rope and extension spring because the former has no block length while the latter always has its block length equal to its free length. By default, the free length is set equal to the initial distance between the two ends.

선형 스프링과 로프: 스프링/로프의 양쪽 끝의 초기좌표를 나타내는 End 1 End 2 를 위한 branches를 열기 위해 클릭한다. 각 branch 에서 Component #로 가서 스프링의 끝이 연결되어 있는 이동체의 색인을 설정한다. 끝이 어떤 이동체에 연결되어 있지 않다면, 즉 공간에 고정되어 있다면 None 을 선택한다. X, Y Z 편집상자에서 스프링 끝의 초기좌표를 입력한다. 각 끝은 이동체나 계산 영역의 내, 외부 어디에도 놓여질 수 있다.

Free Length (힘이없는상태에서의 스프링/로프의 길이), Block Length, Spring Coefficient (필요함) 그리고 Damping Coefficient (디폴트는0.0)를 입력한다. 로프와 인장스프링에서는 Block Length 가 비 활성화됨을 주목하는데 그 이유는 전자는 Block Length 가 없고 후자는 항상 자유 길이와 같은 Block Length 를 가지기 때문이다.

디폴트로 자유길이는 양쪽 끝 사이의 초기길이와 같게 설정된다.

  • Torsion spring: End 1 represents the spring’s end that is attached to a moving object under fixed-axis rotation, and End 2 the end fixed in space. Click to open the branch for End 1. In the combo box for Component #, select the index of the moving object which End 1 is attached to. Then enter Spring Coefficient (required, in unit of [torque]/degree) and Damping Coefficient (default is 0.0). Finally enter the Initial Torque in the input box. The initial torque is the torque of the spring applied on the moving object at t = 0. It is positive if it is in the positive direction of the coordinate axis which the rotation axis of the moving object is parallel to.

비틀림 스프링: End 1은 고정축 회전을 하는 이동체에 연결된 스프링의 끝을 나타내고 End 2는 공간에 고정된 끝을 나타낸다. End 1의 branch 를 열기 위해 클릭한다. Component #를위한 combo 상자에서 End 1 이 연결된 이동체의 색인을 선택한다. 그런 후에 Spring Coefficient ([torque]/degree의 단위로 필요) 와 Damping Coefficient (디폴트는0.0)를 입력한다.

마지막으로 입력 상자에서 Initial Torque 를 넣는다. 초기토크는 t = 0일 때 이동체에 적용된 스프링의 토크이다. 이동체의 회전축이 평행한 좌표축의 양의 방향이면 양의 값이다.

After the simulation is complete, users can display the calculated deformation and force (or torque) of each spring and rope as functions of time. Go to Analyze Probe Data source and check General history. In the variable list under Data variables, find the Spring/rope index followed by spring/rope length extension from free state, spring/rope force and/or spring torque. Then check Output form Text or Graphical and click Render to display the data. Positive/negative values of spring force and length extension mean the linear spring or rope is stretched/compressed relative to its free state and the restoring force is a tension/pressure force. Positive/negative values of the torque of a torsion spring means its deformation angle (a vector) measured from its free state is in the negative/positive direction of the coordinate axis which its axis is parallel to.

모사(simulate)가 끝난 후에 사용자는 시간의 함수로 각 스프링의 계산된 변형과 힘(토크)를 나타낼 수 있다. Analyze Probe Data source 로가서 General history 를 체크한다. Data variables 에 있는 변수 목록에서 spring/rope length extension from free state, spring/rope force 과/또는 spring torque 로 이어지는 스프링/로프의 색인을 찾는다. 그리고 Output form Text 또는 Graphical 를 체크하고 데이터를 나타내기 위해 Render 를 클릭한다.

스프링 힘과 인장길이의 양/음의 값은 선 스프링과 로프가 자유상태에 대해 상대적으로 늘어나거나 압축된 것을 뜻한다. 비틀림스프링 토크의 양/음의값은 축에 평행한 좌표 축의 양/음의 방향에 대해 측정된 변형각(벡터)을 뜻한다.

 

It is noted that the spring/rope calculation is explicitly coupled with GMO motion calculation. If a numerical instability occurs it is recommended that users activate the implicit GMO model, define limited compressibility of fluid, or decrease time step.

스프링/로프 계산은 GMO 운동계산과 외재적으로 결합되어 있음에 주목한다. 수치 불안정성이 발생하면 사용자는 내재적 GMO모델을 활성화하고 유체의 제한적 압축성을 정의하던가 또는 시간간격을 줄이는 것을 추천한다.

Mooring Lines 계류선

The mooring line model allows moving objects with prescribed or coupled motion to be connected to fixed anchors or other moving or non-moving objects via compliant mooring lines. Multiple mooring lines are allowed in one simulation, and their connections to the moving objects are arbitrary. The mooring lines can be taut or slack and may fully or partially rest on sea/river floor. The model considers gravity, buoyancy, fluid drag and tension force on the mooring lines. The mooring lines are assumed to be cylinders with uniform diameter and material distributions, and each line can have its own length, diameter, mass density and other physical properties. The model numerically calculates the full 3D dynamics of the mooring lines and their dynamic interactions with the tethered moving objects.

계류선 모델링은 유연한 계류선을 이용하여 지정 또는 결합운동을 하는 이동체가 고정 닻 또는 다른 이동 또는 고정물체에 연결되는 것을 가능하게 해준다. 다수의 계류선도 한 모사(simulate)내에서 가능하며 이들의 이동체에의 연결은 인위적이다.

계류선은 팽팽하거나 느슨할 수 있고 전체 또는 부분이 해저나 하상에 위치할 수 있다. 이 모델은 계류선에 작용하는 중력, 부력, 유체저항 및 인장력을 고려할 수 있다. 계류선은 일정직경과 균일분포의 원통형으로 가정되고 각 선은 각 길이, 직경, 밀도 및 기타 물리적 물성을 가질 수 있다. 이 모델은 수치적으로 3차원계류선 운동 및 선에 의해 묶여진 이동체와의 동적 상호작용을 계산한다.

 

The model allows the mooring lines to be partially or completely outside the computational domain. When a line is anchored deep in water, depending on the vertical size of the domain, the lower part of the line can be located below the domain bottom where there is no computation of fluid flow. In this case, it is assumed that uniform water current exists below the domain for that part of mooring line, and the corresponding drag force is evaluated based on the uniform deep water velocity. Limitations exist for the model. It does not consider bending stiffness of mooring lines. Interactions between mooring lines are ignored. When simulating mooring line networks, free nodes are not allowed.

이 모델은 계류선이 계산 영역의 완전히 또는 부분적으로 외부에 위치하게 할 수 있다. 계류선은 영역의 심해에 앵커되어 있을 때 수직(세로)크기에 따라 선의 하부는 유동 계산이 없는 영역 바닥에 위치할 수 있다. 이 경우 계류선의 하부가 있는 영역하부에는 균일한 유속이 존재한다고 가정되고 이에 상응하는 유속저항은 균일한 심해유속에 근거하여 계산된다.

이모델은 제약이 있는데 선의 굽힘 강도는 고려하지 않는다. 선간의 상호작용도 무시된다. 선간의 관계를 모사(simulate)활 때 자유접속점은 허용되지 않는다.

 

To define a mooring line, go to Model Setup Meshing & Geometry. Click on the spring icon to bring up the Springs, Ropes and Mooring Lines window. Right click on Springs / Ropes / Mooring Lines to add a mooring line. Click on Mooring Lines Deep Water Velocity and enter x, y and z components of the deep water velocity (default value is zero). Click on Mooring Line # and enter the physical and numerical properties of the mooring line.

계류선을 정의하기위해 Model Setup Meshing & Geometry 로간다. Springs, Ropes and Mooring Lines 창을 불러오기 위해 스프링 아이콘을 클릭한다. 계류선을 추가하기위해 Springs / Ropes / Mooring Lines 에서 오른쪽 클릭을 하고 Mooring Lines Deep Water Velocity 를클릭해서 심해속도의 x, y 및 z 성분을 입력한다(디폴트는0이다). Mooring Line # 를 클릭하고 선의 물리적 및 수치적 물성들을 입력한다.

 

Microfluidics Bibliography

Microfluidics Bibliography

다음은 Microfluidics Bibliography의 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 특징으로  합니다. 미세 유체 공정 및 장치 를 성공적으로 시뮬레이션하기 위해 FLOW-3D 를 사용 하는 방법에 대해 자세히 알아보십시오  .

2021년 6월 25일 Update

Below is a collection of technical papers in our Microfluidics Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate microfluidic processes and devices.

14-21   Jian-Chiun Liou, Chih-Wei Peng, Philippe Basset, Zhen-Xi Chen, DNA printing integrated multiplexer driver microelectronic mechanical system head (IDMH) and microfluidic flow estimation, Micromachines, 12.1; 25, 2021. doi.org/10.3390/mi12010025

08-20   Li Yong-Qiang, Dong Jun-Yan and Rui Wei, Numerical simulation for capillary driven flow in capsule-type vane tank with clearances under microgravity, Microgravity Science and Technology, 2020. doi.org/10.1007/s12217-019-09773-z

89-19   Tim Dreckmann, Julien Boeuf, Imke-Sonja Ludwig, Jorg Lumkemann, and Jorg Huwyler, Low volume aseptic filling: impact of pump systems on shear stress, European Journal of Pharmeceutics and Biopharmeceutics, in press, 2019. doi:10.1016/j.ejpb.2019.12.006

88-19   V. Amiri Roodan, J. Gomez-Pastora, C. Gonzalez-Fernandez, I.H. Karampelas, E. Bringas, E.P. Furlani, and I. Ortiz, CFD analysis of the generation and manipulation of ferrofluid droplets, TechConnect Briefs, pp. 182-185, 2019. TechConnect World Innovation Conference & Expo, Boston, Massachussetts, USA, June 17-19, 2019.

55-19     Julio Aleman, Sunil K. George, Samuel Herberg, Mahesh Devarasetty, Christopher D. Porada, Aleksander Skardal, and Graça Almeida‐Porada, Deconstructed microfluidic bone marrow on‐a‐chip to study normal and malignant hemopoietic cell–niche interactions, Small, 2019. doi: 10.1002/smll.201902971

37-19     Feng Lin Ng, Miniaturized 3D fibrous scaffold on stereolithography-printed microfluidic perfusion culture, Doctoral Thesis, Nanyang Technological University, Singapore, 2019.

32-19     Jenifer Gómez-Pastora, Ioannis H. Karampelas, Eugenio Bringas, Edward P. Furlani, and Inmaculada Ortiz, Numerical analysis of bead magnetophoresis from flowing blood in a continuous-flow microchannel: Implications to the bead-fluid interactions, Nature: Scientific Reports, Vol. 9, No. 7265, 2019. doi: 10.1038/s41598-019-43827-x

01-19  Jelena Dinic and Vivek Sharma, Computational analysis of self-similar capillary-driven thinning and pinch-off dynamics during dripping using the volume-of-fluid method, Physics of Fluids, Vol. 31, 2019. doi: 10.1063/1.5061715

75-18   Tobias Ladner, Sebastian Odenwald, Kevin Kerls, Gerald Zieres, Adeline Boillon and Julien Bœuf, CFD supported investigation of shear induced by bottom-mounted magnetic stirrer in monoclonal antibody formulation, Pharmaceutical Research, Vol. 35, 2018. doi: 10.1007/s11095-018-2492-4

53-18   Venoos Amiri Roodan, Jenifer Gómez-Pastora, Aditi Verma, Eugenio Bringas, Inmaculada Ortiz and Edward P. Furlani, Computational analysis of magnetic droplet generation and manipulation in microfluidic devices, Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer, Niagara Falls, Canada, June 7 – 9, 2018; Paper no. 154, 2018.  doi: 10.11159/ffhmt18.154

35-18   Jenifer Gómez-Pastora, Cristina González Fernández, Marcos Fallanza, Eugenio Bringas and Inmaculada Ortiz, Flow patterns and mass transfer performance of miscible liquid-liquid flows in various microchannels: Numerical and experimental studies, Chemical Engineering Journal, vol. 344, pp. 487-497, 2018. doi: 10.1016/j.cej.2018.03.110

16-18   P. Schneider, V. Sukhotskiy, T. Siskar, L. Christie and I.H. Karampelas, Additive Manufacturing of Microfluidic Components via Wax Extrusion, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 162 – 165, 2018.

15-18   J. Gómez-Pastora, I.H. Karampelas, A.Q. Alorabi, M.D. Tarn, E. Bringas, A. Iles, V.N. Paunov, N. Pamme, E.P. Furlani, I. Ortiz, CFD analysis and experimental validation of magnetic droplet generation and deflection across multilaminar flow streams, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 182-185, 2018.

14-18   J. Gómez-Pastora, C. González-Fernández, I.H. Karampelas, E. Bringas, E.P. Furlani, and I. Ortiz, Design of Magnetic Blood Cleansing Microdevices through Experimentally Validated CFD Modeling, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 170-173, 2018.

10-18   A. Gupta, I.H. Karampelas, J. Kitting, Numerical modeling of the formation of dynamically configurable L2 lens in a microchannel, Biotech, Biomaterials and Biomedical TechConnect Briefs, Vol. 3, pp. 186 – 189, 2018.

17-17   I.H. Karampelas, J. Gómez-Pastora, M.J. Cowan, E. Bringas, I. Ortiz and E.P. Furlani, Numerical Analysis of Acoustophoretic Discrete Particle Focusing in Microchannels, Biotech, Biomaterials and Biomedical TechConnect Briefs 2017, Vol. 3

16-17   J. Gómez-Pastora, I.H. Karampelas, E. Bringas, E.P. Furlani and I. Ortiz, CFD analysis of particle magnetophoresis in multiphase continuous-flow bioseparators, Biotech, Biomaterials and Biomedical TechConnect Briefs 2017, Vol. 3

15-17   I.H. Karampelas, S. Vader, Z. Vader, V. Sukhotskiy, A. Verma, G. Garg, M. Tong and E.P. Furlani, Drop-on-Demand 3D Metal Printing, Informatics, Electronics and Microsystems TechConnect Briefs 2017, Vol. 4

102-16   J. Brindha, RA.G. Privita Edwina, P.K. Rajesh and P.Rani, “Influence of rheological properties of protein bio-inks on printability: A simulation and validation study,” Materials Today: Proceedings, vol. 3, no.10, pp. 3285-3295, 2016. doi: 10.1016/j.matpr.2016.10.010

99-16   Ioannis H. Karampelas, Kai Liu, Fatema Alali, and Edward P. Furlani, Plasmonic Nanoframes for Photothermal Energy Conversion, J. Phys. Chem. C, 2016, 120 (13), pp 7256–7264

98-16   Jelena Dinic and Vivek Sharma, Drop formation, pinch-off dynamics and liquid transfer of simple and complex fluidshttp://meetings.aps.org/link/BAPS.2016.MAR.B53.12, APS March Meeting 2016, Volume 61, Number 2, March 14–18, 2016, Baltimore, Maryland

67-16  Vahid Bazargan and Boris Stoeber, Effect of substrate conductivity on the evaporation of small sessile droplets, PHYSICAL REVIEW E 94, 033103 (2016), doi: 10.1103/PhysRevE.94.033103

57-16   Ioannis Karampelas, Computational analysis of pulsed-laser plasmon-enhanced photothermal energy conversion and nanobubble generation in the nanoscale, PhD Dissertation: Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, July 2016

44-16   Takeshi Sawada et al., Prognostic impact of circulating tumor cell detected using a novel fluidic cell microarray chip system in patients with breast cancer, EBioMedicine, Available online 27 July 2016, doi: 10.1016/j.ebiom.2016.07.027.

39-16   Chien-Hsun Wang, Ho-Lin Tsai, Yu-Che Wu and Weng-Sing Hwang, Investigation of molten metal droplet deposition and solidification for 3D printing techniques, IOP Publishing, J. Micromech. Microeng. 26 (2016) 095012 (14pp), doi: 10.1088/0960-1317/26/9/095012, July 8, 2016

30-16   Ioannis H. Karampelas, Kai Liu and Edward P. Furlani, Plasmonic Nanocages as Photothermal Transducers for Nanobubble Cancer Therapy, Nanotech 2016 Conference & Expo, May 22-25, Washington, DC.

29-16   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Advances in Magnetohydrodynamic Liquid Metal Jet Printing, Nanotech 2016 Conference & Expo, May 22-25, Washington, DC.

02-16  Stephen D. Hoath (Editor), Fundamentals of Inkjet Printing: The Science of Inkjet and Droplets, ISBN: 978-3-527-33785-9, 472 pages, February 2016 (see chapters 2 and 3 for FLOW-3D results)

125-15   J. Berthier, K.A. Brakke, E.P. Furlani, I.H. Karampelas, V. Poher, D. Gosselin, M. Cubinzolles and P. Pouteau, Whole blood spontaneous capillary flow in narrow V-groove microchannels, Sensors and Actuators B: Chemical, 206, pp. 258-267, 2015.

86-15   Yousub Lee and Dave F. Farson, Simulation of transport phenomena and melt pool shape for multiple layer additive manufacturing, J. Laser Appl. 28, 012006 (2016). doi: 10.2351/1.4935711, published online 2015.

77-15   Ho-Lin Tsai, Weng-Sing Hwang, Jhih-Kai Wang, Wen-Chih Peng and Shin-Hau Chen, Fabrication of Microdots Using Piezoelectric Dispensing Technique for Viscous Fluids, Materials 2015, 8(10), 7006-7016. doi: 10.3390/ma8105355

63-15   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Magnetohydrodynamic Liquid Metal Jet Printing, TechConnect World Innovation Conference & Expo, Washington, D.C., June 14-17, 2015

46-15   Adwaith Gupta, 3D Printing Multi-Material, Single Printhead Simulation, Advanced Qualification of Additive Manufacturing Materials Workshop, July 20 – 21, 2015, Santa Fe, NM

28-15   Yongqiang Li, Mingzhu Hu, Ling Liu, Yin-Yin Su, Li Duan, and Qi Kang, Study of Capillary Driven Flow in an Interior Corner of Rounded Wall Under MicrogravityMicrogravity Science and Technology, June 2015

20-15   Pamela J. Waterman, Diversity in Medical Simulation Applications, Desktop Engineering, May 2015, pp 22-26,

16-15   Saurabh Singh, Ann Junghans, Erik Watkins, Yash Kapoor, Ryan Toomey, and Jaroslaw Majewski, Effects of Fluid Shear Stress on Polyelectrolyte Multilayers by Neutron Scattering Studies, © 2015 American Chemical Society, DOI: 10.1021/acs.langmuir.5b00037, Langmuir 2015, 31, 2870−2878, February 17, 2015

11-15   Cheng-Han Wu and Weng-Sing Hwang, The effect of process condition of the ink-jet printing process on the molten metallic droplet formation through the analysis of fluid propagation direction, Canadian Journal of Physics, 2015. doi: 10.1139/cjp-2014-0259

03-15 Hanchul Cho, Sivasubramanian Somu, Jin Young Lee, Hobin Jeong and Ahmed Busnaina, High-Rate Nanoscale Offset Printing Process Using Directed Assembly and Transfer of Nanomaterials, Adv. Materials, doi: 10.1002/adma.201404769, February 2015

122-14  Albert Chi, Sebastian Curi, Kevin Clayton, David Luciano, Kameron Klauber, Alfredo Alexander-Katz, Sebastián D’hers and Noel M Elman, Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics, Research Gate, doi: 10.1007/s13346-014-0198-7, July 2014

113-14 Cihan Yilmaz, Arif E. Cetin, Georgia Goutzamanidis, Jun Huang, Sivasubramanian Somu, Hatice Altug, Dongguang Wei and Ahmed Busnaina, Three-Dimensional Crystalline and Homogeneous Metallic Nanostructures Using Directed Assembly of Nanoparticles, 10.1021/nn500084g, © 2014 American Chemical Society, April 2014

110-14 Koushik Ponnuru, Jincheng Wu, Preeti Ashok, Emmanuel S. Tzanakakis and Edward P. Furlani, Analysis of Stem Cell Culture Performance in a Microcarrier Bioreactor System, Nanotech, Washington, D.C., June 15-18, 2014

109-14   Ioannis H. Karampelas, Young Hwa Kim and Edward P. Furlani, Numerical Analysis of Laser Induced Photothermal Effects using Colloidal Plasmonic Nanostructures, Nanotech, Washington, D.C., June 15-18, 2014

108-14   Chenxu Liu, Xiaozheng Xue and Edward P. Furlani, Numerical Analysis of Fully-Coupled Particle-Fluid Transport and Free-Flow Magnetophoretic Sorting in Microfluidic Systems, Nanotech, Washington, D.C., June 15-18, 2014

95-14   Cheng-Han Wu, Weng-Sing Hwang, The effect of the echo-time of a bipolar pulse waveform on molten metallic droplet formation by squeeze mode piezoelectric inkjet printing, Accepted November 2014, Microelectronics Reliability (2014) , © 2014 Elsevier Ltd. All rights reserved.

85-14   Sudhir Srivastava, Lattice Boltzmann method for contact line dynamics, ISBN: 978-90-386-3608-5, Copyright © 2014 S. Srivastava

61-14   Chenxu Liu, A Computational Model for Predicting Fully-Coupled Particle-Fluid Dynamics and Self-Assembly for Magnetic Particle Applications, Master’s Thesis: State University of New York at Buffalo, 2014, 75 pages; 1561583, http://gradworks.umi.com/15/61/1561583.html

41-14 Albert Chi, Sebastian Curi, Kevin Clayton, David Luciano, Kameron Klauber, Alfredo Alexander-Katz, Sebastian D’hers, and Noel M. Elman, Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics, Drug Deliv. and Transl. Res., DOI 10.1007/s13346-014-0198-7, # Controlled Release Society 2014. Available for purchase online at SpringerLink.

21-14  Suk-Hee Park, Ung Hyun Koh, Mina Kim, Dong-Yol Yang, Kahp-Yang Suh and Jennifer Hyunjong Shin, Hierarchical multilayer assembly of an ordered nanofibrous scaffold via thermal fusion bonding, Biofabrication 6 (2014) 024107 (10pp), doi:10.1088/1758-5082/6/2/024107, IOP Publishing, 2014. Available for purchase online at IOP.

17-14   Vahid Bazargan, Effect of substrate cooling and droplet shape and composition on the droplet evaporation and the deposition of particles, Ph.D. Thesis: Department of Mechanical Engineering, The University of British Columbia, March 2014, © Vahid Bazargan, 2014

73-13  Oliver G. Harlen, J. Rafael Castrejón-Pita, and Arturo Castrejon-Pita, Asymmetric Detachment from Angled Nozzles Plates in Drop-on Demand Inkjet Printing, NIP & Digital Fabrication Conference, 2013 International Conference on Digital Printing Technologies. Pages 253-549, pp. 277-280(4)

63-13  Fatema Alali, Ioannis H. Karampelas, Young Hwa Kim, and Edward P. Furlani, Photonic and Thermofluidic Analysis of Colloidal Plasmonic Nanorings and Nanotori for Pulsed-Laser Photothermal ApplicationsJ. Phys. Chem. C, Article ASAP, DOI: 10.1021/jp406986y, Copyright © 2013 American Chemical Society, September 2013.

25-13  Sudhir Srivastava, Theo Driessen, Roger Jeurissen, Herma Wijshoff, and Federico Toschi, Lattice Boltzmann Method to Study the Contraction of a Viscous Ligament, International Journal of Modern Physics © World Scientific Publishing Company, May 2013.

11-13  Li-Chieh Hsu, Yong-Jhih Chen, Jia-Huang Liou, Numerical Investigation in the Factors on the Pool Boiling, Applied Mechanics and Materials Vol. 311 (2013) pp 456-461, © (2013) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.311.456. Available for purchase online at Scientific.Net.

10-13 Pamela J. Waterman, CFD: Shaping the Medical World, Desktop Engineering, April 2013. Full article available online at Desktop Engineering.

90-12 Charles R. Ortloff and Martin Vogel, Spray Cooling Heat Transfer- Test and CFD Analysis, Electronics Cooling, June 2012. Available online at Electronics Cooling.

79-12    Daniel Parsaoran Siregar, Numerical simulation of evaporation and absorption of inkjet printed droplets, Ph.D. Thesis: Technische Universiteit Eindhoven, September 18, 2012, Copyright 2012 by D.P. Siregar, ISBN: 978-90-386-3190-5.

71-12   Jong-hyeon Chang, Kyu-Dong Jung, Eunsung Lee, Minseog Choi, Seungwan Lee, and Woonbae Kim, Varifocal liquid lens based on microelectrofluidic technology, Optics Letters, Vol. 37, Issue 21, pp. 4377-4379 (2012) http://dx.doi.org/10.1364/OL.37.004377

70-12   Jong-hyeon Chang, Kyu-Dong Jung, Eunsung Lee, Minseog Choi, and Seunwan Lee, Microelectrofluidic Iris for Variable ApertureProc. SPIE 8252, MOEMS and Miniaturized Systems XI, 82520O (February 9, 2012); doi:10.1117/12.906587

69-12   Jong-hyeon Chang, Eunsung Lee, Kyu-Dong Jung, Seungwan Lee, Minseog Choi, and  Woonbae Kim, Microelectrofluidic Lens for Variable CurvatureProc. SPIE 8486, Current Developments in Lens Design and Optical Engineering XIII, 84860X (October 11, 2012); doi:10.1117/12.925852.

61-12  Biddut Bhattacharjee, Study of Droplet Splitting in an Electrowetting Based Digital Microfluidic System, Thesis: Doctor of Philosophy in the College of Graduate Studies (Applied Sciences), The University of British Columbia, September 2012, © Biddut Bhattacharjee.

55-12 Hejun Li, Pengyun Wang, Lehua Qi, Hansong Zuo, Songyi Zhong, Xianghui Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Computational Materials Science, Volume 65, December 2012, Pages 291–301. Available for purchase online at SciVerse.

54-12   Edward P. Furlani, Anthony Nunez, Gianmarco Vizzeri, Modeling Fluid Structure-Interactions for Biomechanical Analysis of the Human Eye, Nanotech Conference & Expo, June 18-21, 2012, Santa Clara, CA.

53-12   Xinyun Wu, Richard D. Oleschuk and Natalie M. Cann, Characterization of microstructured fibre emitters in pursuit of improved nano electrospray ionization performance, The Royal Society of Chemistry 2012, http://pubs.rsc.org, DOI: 10.1039/c2an35249d, May 2012

25-12    Edward P. Furlani, Ioannis H. Karampelas and Qian Xie, Analysis of Pulsed Laser Plasmon-assisted Photothermal Heating and Bubble Generation at the Nanoscale, Lab on a Chip, 10.1039/C2LC40495H, Received 01 May 2012, Accepted 07 Jun 2012. First published on the web 13 Jun 2012.

22-12  R.A. Sultanov, D. Guster, Numerical Modeling and Simulations of Pulsatile Human Blood Flow in Different 3D-Geometries, Book chapter #21 in Fluid Dynamics, Computational Modeling and Applications (2012), ISBN: 978-953-51-0052-2, p. 475 [18 pages]. Available online at INTECH.

21-12  Guo-Wei Huang, Tzu-Yi Hung, and Chin-Tai Chen, Design, Simulation, and Verification of Fluidic Light-Guide Chips with Various Geometries of Micro Polymer Channels, NEMS 2012, Kyoto, Japan, March 5-8, 2012. Available for purchase online at IEEE.

103-11   Suk-Hee Park, Development of Three-Dimensional Scaffolds containing Electrospun Nanofibers and their Applications to Tissue Regeneration, Ph.D. Thesis: School of Mechanical, Aersospace and Systems Engineering, Division of Mechanical Engineering, KAIST, 2011.

81-11   Xinyun Wu, Modeling and Characterization of Microfabricated Emitters-In Pursuit of Improved ESI-MS Performance, thesis: Department of Chemistry, Queen’s University, December 2011, Copyright © Xinyun Wu, 2011

79-11  Cong Lu, A Cell Preparation Stage for Automatic Cell Injection, thesis: Graduate Department of Mechanical and Industrial Engineering, University of Toronto, Copyright © Cong Lu, 2011

77-11 Ge Bai, W. Thomas Leach, Computational fluid dynamics (CFD) insights into agitation stress methods in biopharmaceutical development, International Journal of Pharmaceutics, Available online 8 December 2011, ISSN 0378-5173, 10.1016/j.ijpharm.2011.11.044. Available online at SciVerse.

72-11  M.R. Barkhudarov, C.W. Hirt, D. Milano, and G. Wei, Comments on a Comparison of CFD Software for Microfluidic Applications, Flow Science Technical Note #93, FSI-11-TN93, December 2011

45-11  Chang-Wei Kang, Jiak Kwang Tan, Lunsheng Pan, Cheng Yee Low and Ahmed Jaffar, Numerical and experimental investigations of splat geometric characteristics during oblique impact of plasma spraying, Applied Surface Science, In Press, Corrected Proof, Available online 20 July 2011, ISSN 0169-4332, DOI: 10.1016/j.apsusc.2011.06.081. Available to purchase online at SciVers

33-11  Edward P. Furlani, Mark T. Swihart, Natalia Litchinitser, Christopher N. Delametter and Melissa Carter, Modeling Nanoscale Plasmon-assisted Bubble Nucleation and Applications, Nanotech Conference and Expo 2011, Boston, MA, June 13-16, 2011

32-11  Lu, Cong and Mills, James K., Three cell separation design for realizing automatic cell injection, Complex Medical Engineering (CME), 2011 IEEE/ICME, pp: 599 – 603, Harbin, China, 10.1109/ICCME.2011.5876811, June 2011. Available online at IEEEXplore.

25-11 Issam M. Bahadur, James K. Mills, Fluidic vacuum-based biological cell holding device with piezoelectrically induced vibration, Complex Medical Engineering (CME), 2011 IEEE/ICME International Conference on, 22-25 May 2011, pp: 85 – 90, Harbin, China. Available online at: IEEE Xplore.

14-11  Edward P. Furlani, Roshni Biswas, Alexander N. Cartwright and Natalia M. Litchinitser, Antiresonant guiding optofluidic biosensor, doi:10.1016/j.optcom.2011.04.014, Optics Communication, April 2011

05-11 Hyeju Eom and Keun Park, Integrated numerical analysis to evaluate replication characteristics of micro channels in a locally heated mold by selective induction, International Journal of Precision Engineering and Manufacturing, Volume 12, Number 1, 53-60, DOI: 10.1007/s12541-011-0007-x, 2011. Available online at: SpringerLink.

70-10  I.N. Volnov, V.S. Nagornyi, Modeling Processes for Generation of Streams of Monodispersed Fluid Droplets in Electro-inkjet Applications, Science and Technology News, St. Petersburg State Polytechnic University, 4, pp 294-300, 2010. In Russian.

62-10  F. Mobadersani, M. Eskandarzade, S. Azizi and S. Abbasnezhad, Effect of Ambient Pressure on Bubble Growth in Micro-Channel and Its Pumping Effect, ESDA2010-24436, pp. 577-584, doi:10.1115/ESDA2010-24436, ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis (ESDA2010), Istanbul, Turkey, July 12–14, 2010. Available online at the ASME Digital Library.

58-10 Tsung-Yi Ho, Jun Zeng, and Chakrabarty, K, Digital microfluidic biochips: A vision for functional diversity and more than moore, Computer-Aided Design (ICCAD), 2010 IEEE/ACM International Conference on, DOI: 10.1109/ICCAD.2010.5654199, © IEEE, November 2010. Available online at IEEE Explore.

51-10  Regina Bleul, Marion Ritzi-Lehnert, Julian Höth, Nico Scharpfenecker, Ines Frese, Dominik Düchs, Sabine Brunklaus, Thomas E. Hansen-Hagge, Franz-Josef Meyer-Almes, Klaus S. Drese, Compact, cost-efficient microfluidics-based stopped-flow device, Anal Bioanal Chem, DOI 10.1007/s00216-010-4446-5, Available online at Springer, November 2010

22-10    Krishendu Chakrabarty, Richard B. Fair and Jun Zeng, Design Tools for Digital Microfluidic Biochips Toward Functional Diversification and More than Moore, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 29, No. 7, July 2010

14-10 E. P. Furlani and M. S. Hanchak, Nonlinear analysis of the deformation and breakup of viscous microjets using the method of lines, International Journal for Numerical Methods in Fluids (2010), © 2010 John Wiley & Sons, Ltd., Published online in Wiley InterScience. DOI: 10.1002/fld.2205

55-09 R.A. Sultanov, and D. Guster, Computer simulations of  pulsatile human blood flow through 3D models of the human aortic arch, vessels of simple geometry and a bifurcated artery, Proceedings of the 31st Annual International Conference of the IEEE EMBS (Engineering in Medicine and Biology Society), Minneapolis, September 2-6, 2009, p.p. 4704-4710.

30-09 Anurag Chandorkar and Shayan Palit, Simulation of Droplet Dynamics and Mixing in Microfluidic Devices using a VOF-Based Method, Sensors & Transducers journal, ISSN 1726-5479 © 2009 by IFSA, Vol.7, Special Issue “MEMS: From Micro Devices to Wireless Systems,” October 2009, pp. 136-149.

13-09 E.P. Furlani, M.C. Carter, Analysis of an Electrostatically Actuated MEMS Drop Ejector, Presented at Nanotech Conference & Expo 2009, Houston, Texas, USA, May 3-7, 2009

12-09 A. Chandorkar, S. Palit, Simulation of Droplet-Based Microfluidics Devices Using a Volume-of-Fluid Approach, Presented at Nanotech Conference & Expo 2009, Houston, Texas, USA, May 3-7, 2009

3-09 Christopher N. Delametter, FLOW-3D Speeds MEMS Inkjet Development, Desktop Engineering, January 2009

42-08  Tien-Li Chang, Jung-Chang Wang, Chun-Chi Chen, Ya-Wei Lee, Ta-Hsin Chou, A non-fluorine mold release agent for Ni stamp in nanoimprint process, Microelectronic Engineering 85 (2008) 1608–1612

26-08 Pamela J. Waterman, First-Pass CFD Analyses – Part 2, Desktop Engineering, November 2008

09-08 M. Ren and H. Wijshoff, Thermal effect on the penetration of an ink droplet onto a porous medium, Proc. Eurotherm2008 MNH, 1 (2008)

04-08 Delametter, Christopher N., MEMS development in less than half the time, Small Times, Online Edition, May 2008

02-08 Renat A. Sultanov, Dennis Guster, Brent Engelbrekt and Richard Blankenbecler, 3D Computer Simulations of Pulsatile Human Blood Flows in Vessels and in the Aortic Arch – Investigation of Non-Newtonian Characteristics of Human Blood, The Journal of Computational Physics, arXiv:0802.2362v1 [physics.comp-ph], February 2008

01-08 Herman Wijshoff, thesis: University of Twente, Structure- and fluid dynamics in piezo inkjet printheads, ISBN 978-90-365-2582-4, Venlo, The Netherlands January 2008.

30-07 A. K. Sen, J. Darabi, and D. R. Knapp, Simulation and parametric study of a novel multi-spray emitter for ESI–MS applications, Microfluidics and Nanofluidics, Volume 3, Number 3, June 2007, pp. 283-298(16)

28-07 Dan Soltman and Vivek Subramanian, Inkjet-Printed Line Morphologies and Temperature Control of the Coffee Ring Effect, Langmuir; 2008; ASAP Web Release Date: 16-Jan-2008; (Research Article) DOI: 10.1021/la7026847

23-07 A K Sen and J Darabi, Droplet ejection performance of a monolithic thermal inkjet print head, Journal of Micromechanical and Microengineering,vol.17, pp.1420-1427 (2007) doi:10.1088/0960-1317/17/8/002; Abstract only.

18-07 Herman Wisjhoff, Better Printheads Via Simulation, Desktop Engineering, October 2007, Vol. 13, Issue 2

17-07 Jos de Jong, Ph.D. Thesis: University of Twente, Air entrapment in piezo inkjet printing, ISBN 978-90-365-2483-4, April 2007

15-07 Krishnendu Chakrabarty and Jun Zeng, (Ed.), Design Automation Methods and Tools for Microfluidics-Based Biochips, Springer, September 2006.

14-07 Fei Su and Jun Zeng, Computer-aided design and test for digital microfluidics, IEEE Design & Test of Computers, 24(1), 2007, 60-70.

13-07 Jun Zeng, Modeling and simulation of electrified droplets and its application to computer-aided design of digital microfluidics, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 25(2), 2006, 224-233.

12-07 Krishnendu Chakrabarty and Jun Zeng, (2005), Automated top-down design for microfluidic biochips, ACM Journal on Emerging Technologies in Computing Systems, 1(3), 2005, 186–223.

01-07 Wijshoff, Herman, Drop formation mechanisms in piezo-acoustic inkjet, NSTI-Nanotech 2007, ISBN 1420061844 Vol. 3, 2007)

23-06 John J. Uebbing, Stephan Hengstler, Dale Schroeder, Shalini Venkatesh, and Rick Haven, Heat and Fluid Flow in an Optical Switch Bubble, Journal of Microelectromechanical Systems, Vol. 15, No. 6, December 2006

21-06 Wijshoff, Herman, Manipulating Drop Formation in Piezo Acoustic Inkjet, Proc. IS&T’s NIP22, 79 (2006)

20-06 J. de Jong, H. Reinten, M. van den Berg, H. Wijshoff, M. Versluis, G. de Bruin, A. Prosperetti and D. Lohse, Air entrapment in piezo-driven inkjet printheads, J. Acoust. Soc. Am. 120(3), 1257 (2006)

11-06 A. K. Sen, J. Darabi, D. R. Knapp and J. Liu, Modeling and Characterization of a Carbon Fiber Emitter for Electrospray Ionization, 1 MEMS and Microsystems Laboratory, Department of Mechanical Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, USA, 2 Department of Pharmacology, Medical University of South Carolina, Charleston, SC

5-06 E. P. Furlani, B. G. Price, G. Hawkins, and A. G. Lopez, Thermally Induced Marangoni Instability of Liquid Microjets with Application to Continuous Inkjet Printing, Proceedings of NSTI Nanotech Conference 2006, Vol. 2, pp 534-537.

28-05 O B Fawehinmi, P H Gaskell, P K Jimack, N Kapur, and H M Thompson, A combined experimental and computational fluid dynamics analysis of the dynamics of drop formation, May 2005. DOI: 10.1243/095440605X31788

5-05 E. P. Furlani, Thermal Modulation and Instability of Newtonian Liquid Microjets, presented at Nanotech 2005, Anaheim, CA, May 8-12, 2005.

1-05 C.W. Hirt, Electro-Hydrodynamics of Semi-Conductive Fluids: With Application to Electro-Spraying, Flow Science Technical Note #70, FSI-05-TN70

19-04 G. F. Yao, Modeling of Electroosmosis Without Resolving Physics Inside a Electric Double Layer, Flow Science Technical Note (FSI-04-TN69)

12-04 Jun Zeng and Tom Korsmeyer, Principles of Droplet Electrohydrodynamics for Lab-on-a-Chip, Lab. Chip. Journal, 2004, 4(4), 265-277

9-04 Constantine N. Anagnostopoulos, James M. Chwalek, Christopher N. Delametter, Gilbert A. Hawkins, David L. Jeanmaire, John A. Lebens, Ali Lopez, and David P. Trauernicht, Micro-Jet Nozzle Array for Precise Droplet Metering and Steering Having Increased Droplet Deflection, Proceedings of the 12th International Conference on Solid State Sensors, Actuators and Microsystems, sponsored by IEEE, Boston, June 8-12, 2003, pp. 368-71

8-04 Christopher N. Delametter, David P. Trauernicht, James M. Chwalek, Novel Microfluidic Jet Deflection – Significant Modeling Challenge with Great Application Potential, Technical Proceedings of the 2002 International Conference on Modeling and Simulation of Microsystems sponsored by NSTI, San Juan, Puerto Rico, April 21-25, 2002, pp. 44-47

6-04 D. Vadillo*, G. Desie**, A Soucemarianadin*, Spreading Behavior of Single and Multiple Drops, *Laboratoire des Ecoulements Geophysiques et Industriels (LEGI), and **AGFA-Gevaert Group N.V., XXI ICTAM, 15-21 August 2004, Warsaw, Poland

2-04 Herman Wijshoff, Free Surface Flow and Acousto-Elastic Interaction in Piezo Inkjet, Nanotech 2004, sponsored by the Nano Science & Technology Institute, Boston, MA, March 2004

30-03 D Souders, I Khan and GF Yao, Alessandro Incognito, and Matteo Corrado, A Numerical Model for Simulation of Combined Electroosmotic and Pressure Driven Flow in Microdevices, 7th International Symposium on Fluid Control, Measurement and Visualization

27-03 Jun Zeng, Daniel Sobek and Tom Korsmeyer, Electro-Hydrodynamic Modeling of Electrospray Ionization – CAD for a µFluidic Device-Mass Spectrometer Interface, Agilent Technologies Inc, paper presented at Transducers 2003, June 03 Boston (note: Reference #10 is to FLOW-3D)

17-03 John Uebbing, Switching Fiber-optic Circuits with Microscopic Bubbles, Sensors Magazine, May 2003, Vol 20, No 5, p 36-42

16-03 CFD Speeds Development of MEMS-based Printing Technology, MicroNano Magazine, June 2003, Vol 8, No 6, p 16

3-03 Simulation Speeds Design of Microfluidic Medical Devices, R&D Magazine, March 2003, pp 18-19

1-03 Simulations Help Microscopic Bubbles Switch Fiber-Optic Circuits, Agilent Technologies, Fiberoptic Product News, January 2003, pp 22-23

27-02 Feng, James Q., A General Fluid Dynamic Analysis of Drop Ejection in Drop-on-Demand Ink Jet Devices, Journal of Imaging Science and Technology®, Volume 46, Number 5, September/October 2002

1-02 Feixia Pan, Joel Kubby, and Jingkuang Chen, Numerical Simulation of Fluid Structure Interaction in a MEMS Diaphragm Drop Ejector, Xerox Wilson Research Center, Institute of Physics Publishing, Journal of Micromechanics and Microengineering, 12 (2002), PII: SO960-1317(02)27439-2, pp. 70-76

48-01   Rainer Gruber, Radial Mass Transfer Enhancement in Bubble-Train Flow, PhD thesis in Engineering Sciences, Rheinisch- Westf alischen Technische Hochschule Aachen, December 2001.

34-01 Furlani, E.P., Delametter, C.N., Chwalek, J.M., and Trauernicht, D., Surface Tension Induced Instability of Viscous Liquid Jets, Fourth International Conference on Modeling and Simulation of Microsystems, April 2001

12-01 C. N. Delametter, Eastman Kodak Company, Micro Resolution, Mechanical Engineering, Col 123/No 7, July 2001, pp 70-72

11-01 C. N. Delametter, Eastman Kodak Company, Surface Tension Induced Instability of Viscous Liquid Jets, Technical Proceeding of the Fourth International Conference on Modeling and Simulation of Microsystems, April 2001

9-01 Aman Khan, Unipath Limited Research and Development, Effects of Reynolds Number on Surface Rolling in Small Drops, PVP-Col 431, Emerging Technologies for Fluids, Structures and Fluids, Structures and Fluid Structure Interaction — 2001

2-00 Narayan V. Deshpande, Significance of Inertance and Resistance in Fluidics of Thermal Ink-Jet Transducers, Journal of Imaging Science and Technology, Volume 40, Number 5, Sept./Oct. 1996, pp.457-461

4-98 D. Deitz, Connecting the Dots with CFD, Mechanical Engineering Magazine, pp. 90-91, March 1998

14-94 M. P. O’Hare, N. V. Deshpande, and D. J. Drake, Drop Generation Processes in TIJ Printheads, Xerox Corporation, Adv. Imaging Business Unit, IS&T’s Tenth International Congress on Advances in Non-Impact Printing, Tech. 1994

14-92 Asai, A.,Three-Dimensional Calculation of Bubble Growth and Drop Ejection in a Bubble Jet Printer, Journal of Fluids Engineering Vol. 114 December 1992:638-641