## Experimental and numerical study of flow at a 90 degree lateral turnout with enhanced roughness coefficient and invert level changes

Maryam Bagheri^{a}, Seyed M. Ali Zomorodian^{b}, Masih Zolghadrc, H. M^{d}. Azamathulla ^{d},*

and C. Venkata Siva Rama Prasad^{e}^{a }Hydraulic Structures, Department of Water Engineering, Shiraz University, Shiraz, Iran^{b }Department of Water Engineering, College of Agriculture, Shiraz University, Shiraz, Iran^{c }Department of Water Sciences Engineering, College of Agriculture, Jahrom University, Jahrom, Iran^{d} Civil & Environmental Engineering, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad^{e} Department of Civil Engineering, St. Peters Engineering College, Hyderabad, India

*Corresponding author. E-mail: azmatheditor@gmail.com

## ABSTRACT

측면 분기기(흡입구)의 상류측에서 유동 분리는 분기기 입구에서 맴돌이 전류를 일으키는 중요한 문제입니다. 이는 흐름의 유효 폭, 분기 용량 및 효율성을 감소시킵니다. 따라서 분리구역의 크기를 파악하고 그 크기를 줄이기 위한 방안을 제시하는 것이 필수적이다.

본 연구에서는 분리 구역의 크기를 줄이기 위한 방법으로 분출구 입구에 7가지 유형의 조면화 요소와 4가지 다른 방류가 있는 3가지 다른 베드 인버트 레벨의 설치(총 84회 실험)를 조사했습니다. 또한 3D 전산 유체 역학(CFD) 모델을 사용하여 분리 구역의 흐름 패턴과 치수를 평가했습니다.

결과는 조도 계수를 향상시키면 분리 영역 치수를 최대 38%까지 줄일 수 있는 반면 드롭 구현 효과는 사용된 조도 계수에 따라 이 영역을 다르게 축소할 수 있음을 보여주었습니다. 두 방법을 결합하면 분리 구역 치수를 최대 63%까지 줄일 수 있습니다.

Flow separation at the upstream side of lateral turnouts (intakes) is a critical issue causing eddy currents at the turnout entrance. It reduces the effective width of flow, turnout capacity and efficiency. Therefore, it is essential to identify the dimensions of the separation zone and propose remedies to reduce its dimensions.

Installation of 7 types of roughening elements at the turnout entrance and 3 different bed invert levels, with 4 different discharges (making a total of 84 experiments) were examined in this study as a method to reduce the dimensions of the separation zone. Additionally, a 3-D Computational Fluid Dynamic (CFD) model was utilized to evaluate the flow pattern and dimensions of the separation zone.

Results showed that enhancing the roughness coefficient can reduce the separation zone dimensions up to 38% while the drop implementation effect can scale down this area differently based on the roughness coefficient used. Combining both methods can reduce the separation zone dimensions up to 63%.

## Key words

discharge ratio, flow separation zone, intake, three dimensional simulation

## REFERENCES

Abbasi, A., Ghodsian, M., Habibi, M. & Salehi Neishabouri, S. A. 2004 Experimental investigation on dimensions of flow separation zone at

lateral intakeentrance. Research & Construction; Pajouhesh va Sazandegi 62, 38–44. (In Persian).

Al-Zubaidy, R. & Hilo, A. 2021 Numerical investigation of flow behavior at the lateral intake using Computational Fluid Dynamics (CFD).

Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2021.11.172.

Chow, V. T. 1959 Open Channel Hydraulics. McGraw-Hill, New York.

Jalili, H., Hosseinzadeh Dalir, A. & Farsadizadeh, D. 2011 Effect of intake geometry on the sediment transport and lateral flow pattern.

Iranian Water Research Journal 5 (9), 1–10. (In Persian).

Jamshidi, A., Farsadizadeh, D. & Hosseinzadeh Dalir, A. 2016 Variations of flow separation zone at lateral intake entrance using submerged

vanes. Journal of Civil Engineering Urban 6 (3), 54–63. Journal homepage. Available from: www.ojceu.ir/main.

Karami Moghaddam, K. & Keshavarzi, A. 2007 Investigation of flow structure in lateral intakes of 55° and 90° with rounded entrance edge.

In: 03 National Congress on Civil Engineering University of Tabriz. Available from: https://civilica.com/doc/16317. (In Persian).

Karami, H., Farzin, S., Sadrabadi, M. T. & Moazeni, H. 2017 Simulation of flow pattern at rectangular lateral intake with different dike and

submerged vane scenarios. Journal of Water Science and Engineering 10 (3), 246–255. https://doi.org/10.1016/j.wse.2017.10.001.

Kasthuri, B. & Pundarikanthan, N. V. 1987 Discussion on separation zone at open- channel junction. Journal of Hydraulic Engineering

113 (4), 543–548.

Keshavarzi, A. & Habibi, L. 2005 Optimizing water intake angle by flow separation analysis. Journal of Irrigation and Drain 54, 543–552.

https://doi.org/10.1002/ird.207.

Kirkgöz, M. S. & Ardiçlioğ

lu, M. 1997 Velocity profiles of developing and developed open channel flow. Journal of Hydraulic Engineering

1099–1105. 10.1061/(ASCE)0733-9429(1997)123:12(1099).

Nakato, T., Kennedy, J. F. & Bauerly, D. 1990 Pumpstation intake-shoaling control with submerge vanes. Journal of Hydraulic Engineering.

https://doi.org/10.1061/(ASCE)0733-9429(1990)116:1(119).

Neary, V. S. & Odgaard, J. A. 1993 Three-dimensional flow structure at open channel diversions. Journal of Hydraulic Engineering. ASCE 119

(11), 1224–1230. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:11(1223).

Nikbin, S. & Borghei, S. M. 2011 Experimental investigation of submerged vanes effect on dimensions of flow separation zone at a 90°

openchannel junction. In: 06rd National Congress on Civil Engineering University of Semnan. (In Persian). Available from: https://

civilica.com/doc/120494.

Odgaard, J. A. & Wang, Y. 1991 Sediment management with submerged vanes, I: theory. Journal of Hydraulic Engineering 117 (3), 267–283.

Ramamurthy, A. S., Junying, Q. & Diep, V. 2007 Numerical and experimental study of dividing open-channel flows. Journal of Hydraulic

Engineering. See: https://doi.org/10.1061/(ASCE)0733-9429(2007)133:10(1135).

Seyedian, S., Karami Moghaddam, K. & Shafai Begestan, M. 2008 Determining the optimal radius in lateral intakes of 55° and 90° using

variation of flow velocity. In: 07th Iranian Hydraulic Conference. Power & Water University of Technology (PWUT). (In Persian).

Available from: https://civilica.com/doc/56251.

Zolghadr, M. & Shafai Bejestan, M. 2020 Six legged concrete (SLC) elements as scour countermeasures at wing wall bridge abutments.

International Journal of River Basin Management. doi: 10.1080/15715124.2020.1726357.

Zolghadr, M., Zomorodian, S. M. A., Shabani, R. & Azamatulla Md., H. 2021 Migration of sand mining pit in rivers: an experimental,

numerical and case study. Measurement. https://doi.org/10.1016/j.measurement.2020.108944