Figure 1 Mitochondrial Weir Dam

Shen Zhen-dong*1, 2, Zhang Yang1, 2
1Zhejiang Guangchuan Engineering Consultation Co., Ltd., Hangzhou, 310020,
Zhejiang, China
2Zhejiang Institute of Hydraulics &Estuary, Hangzhou 310020, Zhejiang, China


최근 몇 년 동안 생태학적 수자원 보존 공학의 발전으로 많은 새로운 댐 디자인이 등장했습니다. 본 논문에서는 체계적인 소면보 연구와 조사를 바탕으로 새로운 종류의 입상 혼합물 위어를 제시하였습니다.

입상보의 수치해석은 Flow-3D를 이용하여 수행하였으며, 그 결과를 물리적 모델 실험결과와 비교하였습니다. 유속, 유속 분포 및 둑의 파손에 대한 수치 시뮬레이션 결과는 실험 결과와 잘 일치하며, 이는 3차원 수학적 모델이 물리적 모델 실험과 결합되어 모든 입상 혼합물 둑을 시뮬레이션할 수 있음을 나타냅니다.

이 방법을 이용하여 특성 및 수리학적 매개변수를 분석하면 생태보의 후속 연구를 위한 기술적 지원을 제공할 수 있습니다.

In recent years, with the development of ecological water conservancy engineering,
many new weir designs have also emerged. This paper has put forward a new kind of granular
mixtures weir based on the systematic carding weir researches, combined with investigation. The
numerical simulation of granular weir is carried out by using Flow-3D,and the results are
compared with the physical model experiment results. The numerical simulation results of the
flow velocity, flow distribution and the failure of the weir are in good agreement with the
experimental results, which indicates that the 3-D mathematical model can be combined with
physical model experiments to simulate the granular mixtures weir in all directions. Using this
method to analysis the characteristics and hydraulic parameters can provide technical support
for the follow-up research of ecological weir.

Figure 1 Mitochondrial Weir Dam
Figure 1 Mitochondrial Weir Dam
Table 1 Numerical simulation programme table
Table 1 Numerical simulation programme table
Figure 4 Final Damage of Weir in Different Projects
Figure 4 Final Damage of Weir in Different Projects


[1] Ma Y.Y, Yan Y, Wang S.Y, Jin D, Gong Y.x, Lu Q, Wang Y.T, Yue F.J. (2012) Study on
Distribution Characteristics and Historical Value of Ancient Weirs in Zhejiang Province .
Zhejiang Hydrotechnics, 04:47-50.
[2] Jin H.J. (2016) Design of Weir Dam in Flood Control Engineering. A Brief Discussion Science
and Technology Economic Guide 9.
[3] Chang Q. (2017) Experimental Study on Flow Characteristics of Tooth Weir and Z Weir.
Shandong Agricultural University.
[4] Wu G.J, Liu X.P, Fang S.S, Sun W.H, Hou B. (2011) Hydraulic Characteristics of Low Practical
Weir and Its Influence on Engineering; Journal of Yangtze River Scientific Research Institute,
[5] Jiang D, Li G.D, Li S.S. (2019) Experimental study on discharge characteristics of different
upstream-downstream overhang ratios of piano key weir; Water Resources and Hydropower
Engineering, 50(07):124-130.
[6] Liu X.P, Hu S.L, Ren Q.M, Zhao J. (2015) Study on impact from sedimentation of low-head
broken line practical weir. Water Resources and Hydropower Engineering, (03):136-140.
[7] GUAN D,MELVILLE B,FRIEDRICH H. (2014) Flow patterns and turbulence structures in a
scour hole downstream of a submerged weir. Journal of Hydraulic Engineering, 140(1):68-
[8] Lu WANG. GUAN D.W, Yan Y.X, Zheng J.H, Bruce MELVILLE, Lu W. (2017) Research
Progress on scour at weir-like structures. Advances Water Science , 28(02):311-318.
[9] Zhang C, Sun S.K. (2017) Study and improvement on hydraulic characteristics of turning-section
pools with various angles for vertical slot fish way. Water Resources and Hydropower
Engineering, 48(11):20-25.
[10] Bian Y.H. (2015)Study on Several Hydraulic Problems of Vertical Slot Fishways. China Institute
of Water Resources and Hydropower Research.
[11] Zhang D.R. The Influence of Water-related Engineering on Flood-control in Mountainous
Watershed on Mike21FM. China Institute of Water Resources and Hydropower Research.
[12] Chen D.H, Chen Z. (2005) Three dimensional simulation of flow over weirs. Engineering Journal
of Wuhan University, (05):56-58+64.
[13] MOHAMMADPOUR R,GHANI A A, AZAMATHULLA H M. (2013) Numerical modeling of
3-d flow on porous broad crested weirs. Applied Mathematical Modelling, 37(22):9324-9337.