중간 단계, 땅은 여전히 ​​대부분 물에 젖은 상태임

폭우에 따른 홍수 시뮬레이션

Flash Flood Simulation

최근에는 우리나라에서도 국지성 폭우가 빈발하고, 기상 이변에 따라 단시간의 폭우에 의해 돌발 홍수가 발생하고 있습니다.

FLOW-3D를 이용한 수치해석으로 홍수 발생시 주요 피해지역이 어떻게 분포될지, 상류피해 영역과 하류피해 영역을 사전에 검토하여 피해를 최소화할 수 있는 의사결정에 도움을 줄 수 있습니다.

FLOW-3D 사용자들이 이미 알고 있듯이, 우리는 보통 극단적인 이벤트 모델링, 복잡한 자유 표면 등을 매우 잘 예측합니다. 이상하게도 첫 번째 질문은 강수량을 모형화할 수 있는가 하는 것이었습니다. 역사적으로 우리의 소프트웨어는 홍수 평야/방류형 문제에 특별히 사용되지 않았습니다. 2D 솔루션이 대부분 잘 작동하기 때문에 이것을 해결하기 위해 일주일 동안 아침을 먹었는데, 돌발 홍수의 경우, 내 결론은 우리가 그것을 매우 잘 한다는 것이다.

돌발홍수 연구에 사용된 지형
돌발홍수 연구에 사용된 지형, 상부 층은 다공성이고 하부 층은 기반암임

여기에 사용된 두 가지 주요 모델은 매스 소스 와 다공성 매체 모델 입니다.

강우전 초기상태
강우전 초기상태

이 시뮬레이션을 설정하는 방법은 다공성 매체인 상부층이있는 지형이 있다는 것입니다. 이 층은 불투과성 기반암과 겹칩니다. 또한 상부 층은 상부 표면의 유체 공급원으로 정의됩니다.

이 시뮬레이션에서 180분 동안 지속되는 강수와 함께 돌발 홍수를 모델링하고 있습니다. 하층은 기반암이며 초기에 예상 한대로 흐름은 상층, 투과성 층으로의 침투와 일반적인 이류 / 네비어스톡스 현상에 의해 제어됩니다. 투과 층이 포화되면 지표수 현상이 더 많이 나타나기 시작하며, 이는 차례로 협곡의 더 낮은 고도에서 급류 흐름으로 이어집니다.

중간 단계, 땅은 여전히 ​​대부분 물에 젖은 상태임
중간 단계, 땅은 여전히 ​​대부분 물에 젖은 상태임

노력의 결과로 중요하고 실행 가능한 정보를 쉽게 시각화할 수 있습니다. 이 경우 우리는 두 가지 상황을 동시에 시뮬레이션했습니다: 협곡(도메인 오른쪽)에서 형성된 런오프와 후속 급류 그리고 미니 캐니언에서 인접한 이미 존재하는 수역(도메인 왼쪽)으로의 런오프.

강수량 맵은 전체 영역에 걸쳐 공간적으로 또는 일시적으로 모두 완전히 정의될 수 있으며, 다공성 행동은 포화 매체와 비포화 매체 모두에 대해 모델링할 수 있습니다.

폭우 후 급류 형성
폭우 후 급류 형성. 오른쪽의 협곡에서 물이 고이고 주요 급류가 형성되고 왼쪽의 기존 수역으로 무거운 방류 줄기가 있습니다.

마지막으로 큰 부피의 흐름과 물이 고이는 것을 볼 것으로 예상했던 하단 (고도 측면) 근처에 위치한 프로브에 위치한 수심의 시계열을 보는 것은 매우 흥미 롭습니다. 

처음에는 다공성 층이 물을 적극적으로 흡수하는 동안 지표수 풀링이 보이지 않습니다. 그런 다음 층이 포화되면 강수 유입과 급류를 통한 유출 사이의 정상 상태 균형을 관찰 할 때까지 수심의 급격한 증가를 관찰됩니다.

마지막으로 영역을 다양한 하위 구성 요소로 타일링하여 강수율 매핑을 훨씬 더 정교하게 만들 수 있습니다.

바람이 개방형 철광석 골재 저장소에 미치는 영향 분석 (비산먼지 배출 방지 연구)

다양한 구성에 대한 비산 먼지 배출

이 기사는 Dhananjay Sharma, EI, CFM, 유압 모델링 엔지니어, AECOM 에 의해 기고되었습니다  .

바람이 개방형 골재 저장소에 미치는 영향은 전 세계적으로 환경 문제가 되고 있습니다. 2.7km2 철골 저장소 부지에서 이런 문제가 관찰되었습니다. 이 시설은 철도 운송차량를 통해 광석을 공급받는데, 이 운송차량은 자동 덤프에 의해 비워집니다. 그런 다음 이 광석은 일련의 컨베이어와 이송 지점을 통과하여 저장 장소중 하나로 운송됩니다. 비산먼지 배출은 풍력이 비축된량에 미치는 영향의 결과로 관찰된 결과입니다.

두 가지 다른 구성(옵션 A와 B)을 FLOW-3D로 모델링하여 비산먼지 배출의 영향을 연구했습니다. 옵션 A에는 4줄에 9개 더미가 있는 36개의 비축량이 있고 옵션 B에는 1줄에 총 16개의 비축량이 있습니다.

또한 장벽이 있는 공기와 장벽이 없는 공기의 속도를 비교하기 위해 비축물 주변을 따라 30미터 높이의 장벽을 모델링할 수도 있습니다. 10m 높이에서 기준 초속 7.5m(m/s)의 풍속이 두 구성을 모두 모델링하는데 사용되었습니다. 비축 옵션 A와 B에 대해 네 가지 풍향 방향이 분석되었습니다.

물리적 및 수치 적 모델링

초기 모델 설정

FLOW-3D 에서 비산 먼지 배출을 모델링하기  위해, 공기 온도는 15 ° C로 가정되었습니다. 단일의 균일한 비압축성 유체 옵션이 선택되었습니다. z 방향에서 -9.81 m / s의 중력이 사용되었습니다. 유체는 점성과 난류로 간주되었습니다. 2- 방정식 (ke) 모델은 옵션 A 및 B 구성 모두에 대해 표면 마찰없이 난류를 계산하는데 사용되었습니다.

초기 조건

1/7 power 법칙 (pproximately a logrithmic law-of-the-wall distribution)에 기반한 속도 프로파일이 각 시뮬레이션에 대한 초기 조건으로 지정되었습니다. 비축 분석에서 가장 관심있는 기준 속도는 12 및 7.5m / s입니다. 풍속을 증가시키고 파일에 인접한 속도에 미치는 영향을 측정하여 분석을 수행했으며, 레이놀즈 스케일링이 이러한 속도에 대해 유지된다는 것을 확인했습니다 (즉, 들어오는 풍속 스케일링과 파일에 인접한 속도 스케일링 간의 선형 관계).   그런 다음 7.5m / s의 속도 만 사용하여 FLOW-3D 시뮬레이션을 구성했습니다. 이러한 시뮬레이션의 결과는 12m / s 조건을 충족하도록 확장 할 수 있습니다.

풍력 프로파일 power 법칙을 사용하여 10m에서 7.5m / s 이상 및 이하의 다양한 높이에 대한 속도를 추정했습니다. 경계에서 속도를 적용하는 이 방법은 경계를 따라 지형 변화를 허용하지 않습니다. 기준 속도는 서쪽, 남서부 및 남풍 방향에 대해 해발 10 미터에서 할당되었습니다. 동풍의 경우, 속도는 뒤쪽 (Y- 최대) 경계에서 경사 10 미터 위의 기준 높이에 할당되었습니다.

풍력 프로파일 power 법칙은 z 방향으로 최대 360m까지 모든 미터에서 계산되었습니다. 속도는 메쉬 크기와 동일한 간격으로 평균화되었습니다. 속도가 할당된 높이 간격은 2, 4, 6, 8, 10, 20, 70, 181, 270 및 360 미터입니다. 속도 프로파일을 설정 한 후 각 높이 간격에 대한 값은 네 가지 풍향 (서쪽, 남서쪽, 남쪽 및 동쪽) 각각에 대해 X 및 Y 구성 요소로 세분화되었습니다. 초기 조건은 메쉬 블록의 외부면에 할당되어 비축에 도달하기 전에 속도 프로파일이 개발 될 수있는 충분한 수평 공간을 남겼습니다.

풍력 프로필 power 법칙은 다음과 같습니다.

\ displaystyle {{u} _ {x}} = {{u} _ {r}} {{\ left ({\ frac {{{{z} _ {x}}}} {{{{z} _ { r}}}}} \ right)} ^ {\ propto}}, 여기서

U x  = 높이에서의 풍속 x
U r  = 기준 높이에서의 풍속
Z x  = 높이 x
Z r  = 기준 높이
α = 1/7 ‐ 대기 안정성 계수

지형

3 개의 지형파일인 스테레오리소그래피 (STL) 파일이 생성되어 모델에 통합되었습니다. 개별 파일은 지형, 창고 및 기둥에 해당합니다. 옵션 A와 B에 대해 다른 STL 파일이 생성되었습니다.

메싱

모델 도메인은 각 풍향에 대해 조정되었습니다. 메쉬 크기는 옵션 A의 경우 240 만에서 330 만 셀, 옵션 B의 경우 130 만 셀입니다. 정확하게 기둥 근처에 높이 2m, 길이 4m, 너비 4m의 셀 크기를 사용했습니다. 해당 지역의 속도를 계산합니다.

경계 조건

비축 시뮬레이션에는 네 가지 경계 유형이 사용되었습니다. 모든 풍향에 대해 상단 경계 (Z-max)가 정체 압력으로 지정되었습니다. 바람의 방향에 따라 두 개의 측벽이 유출 경계 조건으로 지정되었습니다. 나머지 두 측벽에는 그리드 오버레이 경계가 지정되었습니다. 그리드 오버레이를 사용하면 초기 조건의 속도를 모델에 입력 할 수 있습니다. 중첩 된 블록을 사용하여 원하는 메시 해상도와 배율을 만들었습니다. 내포된 블록 사이의 경계면에서 대칭 경계 조건이 사용되었습니다. 대칭을 사용하면 블록간에 정보를 전송할 수 있습니다. 그림 1은 서쪽 풍향 (y 방향)에 대한 경계 조건 설정을 보여줍니다. 다른 풍향의 경우 경계 조건을 적용하는 데 유사한 방법이 사용되었습니다.

경계 조건 서쪽 풍향
그림 1. 서쪽 풍향의 경계 조건

장벽

FLOW-3D 의 배플 기능은 비축된 곳의 주변에 바람 장벽을 만드는데 사용되었습니다. 옵션 A와 B의 배플은 높이가 30 미터였으며 지형을 따라 여러 부분으로 구성되었습니다. 모델링된 장벽은 본질적으로 다공성입니다. 34 %의 다공성 값 (즉, 34 % 개방 면적) 및 해당 속도 대 압력 강하 값은 장벽 제조업체에서 얻었습니다. FLOW-3D의  모델과 연관된 흐름 다공성 손실이 지정될 수있는 배플 알고리즘을 사용합니다. 배플은 무한히 얇고 부피를 차지하지 않습니다.

시뮬레이션 결과

옵션 A

옵션 A의 경우 풍속 7.5m / s에 대한 장벽이 있거나없는 4 가지 풍향을 분석하고 시뮬레이션했습니다.

바람의 방향배리어없는 최대 속도 (m / s)배리어가있는 최대 속도 (m / s)최대 속도 감소
서부13.58611.27817 %
남서부13.04510.79617 %
남쪽12.35212.122 %
동쪽9.768.59712 %

각 시뮬레이션의 최대 속도와 장벽과 장벽이 없는 경우 사이의 최대 속도 감소는 위의 표 1에 나와 있습니다. 장벽은 남풍의 최대 속도에 가장 적은 영향을 미칩니다. 옵션 A에 대한 장벽 추가로 최대 속도가 2 % 감소했습니다. 장벽은 서풍 또는 남서풍이있는 전체 파일 케이스의 속도에 가장 큰 영향을 미쳤습니다. 최대 속도는 서풍과 남서풍 모두에서 17 % 감소했습니다.

옵션 B

옵션 B의 경우 풍속 7.5m / s에 대한 장벽이 있거나없는 네 가지 풍향을 분석하고 시뮬레이션했습니다.

그림 2. 옵션 A : 장벽이없는 서풍의 비축량에서 계산 된 속도 크기
장벽이있는 속도 크기 서풍
그림 3. 옵션 A : 장벽이있는 서풍 방향의 비축에서 계산 된 속도 크기
바람의 방향배리어없는 최대 속도 (m / s)배리어 포함 최대 속도 (m / s)최대 속도 감소
서부15.9711.3629 %
남서부15.149.2139 %
남쪽13.410.124 %
동쪽12.787.1544 %
그림 4. 옵션 B. 장벽이없는 동풍의 비축량에서 계산 된 속도 크기
그림 5. 옵션 B : 장벽이있는 동풍의 비축에서 계산 된 속도 크기

결론

모델 결과는 비축물 주변에 장벽을 추가하는 것이 속도를 줄이고 비산먼지 배출을 방지하는데 도움이 된다는 것을 분명히 보여주었습니다. 현장 주변의 장벽 추가와 관련된 비용이 있지만, 이 옵션은 먼지 배출량을 줄임으로써 환경 규범을 달성하는 데 도움이 될 것입니다. 모델 결과를 보면 FLOW-3D가 비산먼지 방출을 연구하기 위한 정확하고 신뢰할 수 있는 도구로 사용될 수 있다는 것이 분명합니다. 추가 설계 변경과 철골 배치의 새로운 옵션이 제안될 경우 FLOW-3D에서 쉽게 모델링하여 비용 및 환경적으로 효과적인 최적의 구성을 결정할 수 있습니다.

FLOW-3D What’s New Ver.12.0

FLOW-3D v12.0은 그래픽 사용자 인터페이스 (GUI)의 설계 및 기능에서 매우 큰 변화를 이룬 제품으로 모델 설정을 단순화하고 사용자 워크 플로를 향상시킵니다. 최첨단 Immersed Boundary Method(침수경계 방법)은 FLOW-3D v12.0 솔루션의 정확성을 높여줍니다. 다른 주요 기능으로는 슬러지 침강 모델, 2-Fluid 2-Temperature 모델 및 Steady State Accelerator가 있으며,이를 통해 사용자는 자유 표면 흐름을 더욱 빠르게 모델링 할 수 있습니다.

Physical and Numerical Model

Immersed boundary method

힘과 에너지 손실에 대한 정확한 예측은 고체 주위의 흐름과 관련된 많은 엔지니어링 문제를 모델링하는 데 중요합니다. 새 릴리스 FLOW-3 Dv1.2.0에는 이러한 문제점 해결을 위해 설계된 새로운 고스트 셀 기반 Immersed Boundary Method (IBM)가 있습니다. IBM은 내 외부 흐름 해석을 위해, 벽 근처에서 보다 정확한 해를 제공하여 드래그 앤 리프트 힘의 계산을 향상시킵니다.힘과 에너지 손실의 정확한 예측은 고체 주위의 흐름을 포함하는 많은 공학적 문제를 모델링 하는데 중요합니다.

Two-field temperature for the two-fluid model

2 유체 열전달 모델은 각 유체에 대한 에너지 전달 방정식을 분리하기 위해 확장되었습니다. 각 유체는 이제 자체 온도 변수를 가지므로 인터페이스 근처의 열 및 물질 전달 솔루션의 정확도가 향상됩니다. 인터페이스에서의 열전달은 이제 시간의 표 함수가 될 수 있는 사용자 정의 열전달 계수에 의해 제어됩니다.

블로그 보기

Sludge settling model

새로운 슬러지 정착 모델은 수처리 애플리케이션에 부가되어 사용자들이 수 처리 탱크와 클래리퍼의 고형 폐기물 역학을 모델링 할 수 있게 해 줍니다. 침전 속도가 분산상의 액적 크기의 함수 인 드리프트-플럭스 모델과 달리, 침전 속도는 슬러지 농도의 함수이며 기능 및 표 형식으로 입력 할 수 있습니다.

개발노트 읽기

Steady-state accelerator for free surface flows

이름에서 알 수 있듯이 정상 상태 가속기는 정상 상태 솔루션에 대한 접근을 빠르게합니다.
이것은 작은 진폭 중력과 모세관 표면파를 감쇠시킴으로써 달성되며 자유 표면 흐름에만 적용 할 수 있습니다.

개발노트 읽기

Void particles

Void particles 가 기포 및 상 변화 모델에 추가되었습니다. Void particles는 붕괴 된 Void 영역을 나타내며, 항력 및 압력을 통해 유체와 상호 작용하는 작은 기포로 작용합니다. 주변 유체 압력에 따라 크기가 변하고 시뮬레이션이 끝날 때의 최종 위치는 공기 유입 가능성을 나타냅니다.

Sediment scour model

퇴적물 수송 및 침식 모델은 정확성과 안정성을 향상시키기 위해 정비되었습니다. 특히 퇴적물 종의 질량 보존이 크게 개선되었습니다.

개발 노트 읽기>

Outflow pressure boundary condition

고정 압력 경계 조건에는 압력 및 유체 분율을 제외한 모든 유량이 해당 경계의 상류의 유량 조건을 반영하는 ‘유출’옵션이 포함됩니다. 유출 압력 경계 조건은 고정 압력 및 연속 경계 조건의 하이브리드입니다.

Moving particle sources

시뮬레이션 중에 입자 소스를 이동할 수 있습니다. 시간에 따른 병진 및 회전 속도는 표 형식으로 정의됩니다. 입자 소스의 운동은 소스에서 방출 된 입자의 초기 속도에 추가됩니다.

Variable center of gravity

기변 무게중심은 중력 및 비관 성 기준 프레임 모델에서, 시간의 함수로서 무게 중심의 위치는 외부 파일에서 테이블로서 정의 될 수있다. 이 기능은 연료를 소비하고 분리 단계를 수행하는 로켓과 같은 모형을 모델링 할 때 유용합니다.

공기 유입 모델

가장 간단한 부피 기반 공기 유입 모델 옵션이 기존 질량 기반 모델로 대체되었습니다. 질량 기반 모델은 부피와 달리 주변 유체 압력에 따라 부피가 변화하는 동안 흡입된 공기량이 보존되기 때문에 물리학적 모델입니다.

Tracer diffusion

유동 표면에서 생성된 추적 물질은 분자 및 난류 확산 과정에 의해 확산될 수 있으며, 예를 들어 실제 오염 물질의 동작을 모방한다.

Model Setup

Simulation units

온도를 포함하여 단위 시스템은 완전히 정의해야하는데 표준 단위 시스템이 제공됩니다. 또한 사용자는 다양한 옵션 중에서 질량, 시간 및 길이 단위를 정의 할 수 있으므로 사용자 정의가 가능한 편리한 단위를 사용할 수 있습니다. 사용자는 압력이 게이지 또는 절대 단위로 정의되는지 여부도 지정해야합니다. 기본 시뮬레이션 단위는 기본 설정에서 설정할 수 있습니다. 단위를 완전히 정의하면 FLOW-3D 가 물리량의 기본값을 정의하고 범용 상수를 설정하여 사용자가 요구하는 작업량을 최소화 할 수 있습니다.

Shallow water model

Manning’s roughness in shallow water model

Manning의 거칠기 계수는 지형 표면의 전단 응력 평가를 위해 얕은 물 모델에서 구현되었습니다. 표면 결함의 크기를 기반으로 기존 거칠기 모델을 보완하며 이 모델과 함께 사용할 수 있습니다. 표준 거칠기와 마찬가지로 매닝 계수는 구성 요소 또는 하위 구성 요소의 속성이거나 지형 래스터 데이터 세트에서 가져올 수 있습니다.

Mesh generation

하단 및 상단 경계 좌표의 정의만으로 수직 방향의 메시 설정이 단순화되었습니다.

Component transformations

사용자는 이제 여러 하위 구성 요소로 구성된 구성 요소에 회전, 변환 및 스케일링 변환을 적용하여 복잡한 형상 어셈블리 설정 프로세스를 단순화 할 수 있습니다. GMO (General Moving Object) 구성 요소의 경우, 이러한 변환을 구성 요소의 대칭 축과 정렬되도록 신체에 맞는 좌표계에 적용 할 수 있습니다.

Changing the number of threads at runtime

시뮬레이션 중에 솔버가 사용하는 스레드 수를 변경하는 기능이 런타임 옵션 대화 상자에 추가되어 사용 가능한 스레드를 추가하거나 다른 태스크에 자원이 필요한 경우 스레드 수를 줄일 수 있습니다.

Probe-controlled heat sources

활성 시뮬레이션 제어가 형상 구성 요소와 관련된 heat sources로 확장되었습니다. 히스토리 프로브로 열 방출을 제어 할 수 있습니다.

Time-dependent temperature at sources     

질량 및 질량 / 운동량 소스의 유체 온도는 이제 테이블 입력을 사용하여 시간의 함수로 정의 할 수 있습니다.

Emissivity coefficients

공극으로의 복사 열 전달을위한 방사율 계수는 이제 사용자가 방사율과 스테판-볼츠만 상수를 지정하도록 요구하지 않고 직접 정의됩니다. 후자는 이제 단위 시스템을 기반으로 솔버에 의해 자동으로 설정됩니다.

Output

  • 등속 필드 솔버 옵션을 사용할 때 유량 속도를 선택한 데이터 로 출력 할 수 있습니다 .
  • 벽 접착력으로 인한 지오메트리 구성 요소의 토크 는 기존 벽 접착력의 출력 외에도 일반 이력 데이터에 별도의 수량으로 출력됩니다.
  • 난류 모델 출력이 요청 될 때 난류 에너지 및 소산과 함께 전단 속도 및 y +가 선택된 데이터로 자동 출력됩니다 .
  • 공기 유입 모델 출력에 몇 가지 수량이 추가되었습니다. 자유 표면을 포함하는 모든 셀에서 혼입 된 공기 및 빠져 나가는 공기의 체적 플럭스가 재시작 및 선택된 데이터로 출력되어 사용자에게 공기가 혼입 및 탈선되는 위치 및 시간에 대한 자세한 정보를 제공합니다. 전체 계산 영역 및 각 샘플링 볼륨 에 대해이 두 수량의 시간 및 공간 통합 등가물 이 일반 히스토리 로 출력됩니다.
  • 솔버의 출력 파일 flsgrf 의 최종 크기 는 시뮬레이션이 끝날 때보 고됩니다.
  • 2 유체 시뮬레이션의 경우, 기존의 출력 수량 유체 체류 시간 및 유체 가 이동 한 거리는 이제 유체 # 1 및 # 2와 유체의 혼합물에 대해 별도로 계산됩니다.
  • 질량 입자의 경우 각 종의 총 부피와 질량이 계산되어 전체 계산 영역, 샘플링 볼륨 및 플럭스 표면에 대한 일반 히스토리 로 출력되어 입자 종 수에 대한 현재 출력을 보완합니다.
  • 예를 들어 사용자가 가스 미순환을 식별하고 연료 탱크의 환기 시스템을 설계하는 데 도움이 되도록 마지막 국부적 가스 압력이 옵션 출력량으로 추가되었습니다. 이 양은 유체가 채워지기 전에 셀의 마지막 간극 압력을 기록하며, 단열 버블 모델과 함께 사용됩니다.

New Customizable Source Routines

사용자 정의 가능한 새로운 소스 루틴이 추가되었으며 사용자의 개발 환경에서 액세스 할 수 있습니다.

소스 루틴 이름설명
cav_prod_cal캐비 테이션 생산 및 확산 속도
sldg_uset슬러지 정착 속도
phchg_mass_flux증발 및 응축에 의한 질량 흐름
flhtccl유체#1과#2사이의 열 전달 계수
dsize_cal2상 유동에서의 동적 낙하 크기 모델의 충돌 및 이탈율
elstc_custom.점탄성 유체에 대한 응력 방정식의 소스 용어

Brand New User Interface

FLOW-3D의 사용자 인터페이스가 완전히 재설계되어 사용자의 작업 흐름을 획기적으로 간소화하는 최신의 타일 구조를 제공합니다.

Dock widgets 설정

Physics, Fluids, Mesh 및 FAVOR ™를 포함한 모든 설정 작업이 형상 창 주위의 dock widgets으로 변환되어 모델 설정을 단일 탭으로 압축 할 수 있습니다. 이 전환을 통해 이전 버전의 복잡한 트리가 훨씬 깔끔하고 효율적인 메뉴 표시로 바뀌어 모델 설정 탭을 떠나지 않고도 모든 매개 변수에 쉽게 액세스 할 수 있습니다.

New Model Setup icons
With our new Model Setup design comes new icons, representing each step of the setup process.
New Physics icons
Our Physics icons are designed to be easily differentiated from one another at a glance, while providing clear visual representation of each model’s purpose and use.

RSS feed

새 RSS 피드부터 FLOW-3D v12.0 의 시뮬레이션 관리자 탭이 개선되었습니다 . FLOW-3D 를 시작하면 사용자에게 Flow Science의 최신 뉴스, 이벤트 및 블로그 게시물이 표시됩니다.

Configurable simulation monitor

시뮬레이션을 실행할 때 중요한 작업은 모니터링입니다. FLOW-3Dv12.0에서는 사용자가 시뮬레이션을 더 잘 모니터링할 수 있도록 Simulation Manager의 플로팅 기능이 향상되었습니다. 사용자는 시뮬레이션 런타임 그래프를 통해 모니터링할 사용 가능한 모든 일반 기록 데이터 변수를 선택하고 각 그래프에 여러 변수를 추가할 수 있습니다. 이제 런타임에서 사용할 수 있는 일반 기록 데이터는 다음과 같습니다.

  • 최소/최대 유체 온도
  • 프로브 위치의 온도
  • 유동 표면 위치에서의 유량
  • 시뮬레이션 진단(예:시간 단계, 안정성 한계)
Runtime plots of the flow rate at the gates of the large dam / Large dam with flux surfaces at the gates

Conforming mesh visualization

사용자는 이제 새로운 FAVOR ™ 독 위젯을 통해 적합한 메쉬 블록을 시각화 할 수 있습니다 .

Large raster and STL data

데이터를 처리하는 데 걸리는 시간으로 인해 큰 형상 데이터를 처리하는 것은 어려울 수 있습니다. 대형 지오메트리 데이터를 처리하는 데 여전히 상당한 시간이 소요될 수 있지만 FLOW-3D는 이제 이러한 대형 데이터 세트를 백그라운드 작업으로로드하여 사용자가 데이터를 처리하는 동안 완벽하게 응답하고 중단없는 인터페이스에서 계속 작업 할 수 있습니다.

래스터 파일 사용 및 가져오기

Using and Importing Raster Files

GIS 어플리케이션과 관련하여, 래스터 데이터는 공간 데이터가 셀의 행렬로 표현되는 현실 세계의 추상화입니다. 데이터의 위치는 값의 순서에 내재되어 있으며 ASCII 형식의 행과 열로 구성된 균일 한 x 및 y 위치를 사용합니다. 행과 열의 각 데이터 값은 수량을 나타냅니다. FLOW-3D에서 이것은 표면 높이 또는 표면 거칠기 일 수 있습니다. 지표면 고도 인 경우 FLOW-3D는 정보를 사용하여 고도 값을 기반으로 토폴로지를 작성합니다. 거칠기가있는 경우 데이터는 표면 변형의 크기를 나타내거나 Manning의 n과 상관 관계가 있습니다. 이 정보는 궁극적으로 흐름에 대한 저항력 (마찰 계수)을 나타냅니다. 이 기사에서는 FLOW-3D의 토폴로지와 표면 거칠기에 대해 래스터 파일을 사용하는 방법에 대해 설명합니다.

Format

여기에 표시된 것은 래스터 파일을 FLOW-3D로 읽는 데 필요한 형식입니다. 6 개의 행의 헤더 데이터와 그 다음에 표면 높이 또는 표면 거칠기를 나타내는 행과 열의 행렬이옵니다. 헤더 데이터에는 다음이 포함됩니다.
– ncols = 데이터 열 수 (즉, x 방향의 위치)
– nrows = 데이터 행 수 (즉, y 방향의 위치)
– xllcorner = 래스터 그리드에서 x 최소 좌표를 식별합니다. 값은 래스터 셀의 절반만큼 오른쪽으로 이동합니다. 셀 가장자리에 있지 않습니다.
– yllcorner  = 래스터 그리드에서 y 최소 좌표를 식별합니다. 값은 래스터 셀의 절반만큼 위쪽으로 이동합니다. 셀 가장자리에 있지 않습니다.
– cellsize = 각 데이터 포인트 간의 x와 y 간격
– nodata_value = 주어진 위치에 값이 없음을 의미하는 값

Importing a raster file

래스터 파일을 가져 오려면 그림 2와 같이 Meshing & Geometry 탭 아래의 ASC 버튼을 새 구성 요소로 선택합니다. 그런 다음 Add 버튼을 선택하고 파일을 탐색합니다. 파일을 추가하고 OK를 선택하면 Solid 또는 Surface Roughness로 추가하라는 메시지가 나타납니다.

그림 3의 대화 상자는 솔리드 서피스로 가져올 지 표면 거칠기로 가져올지를 선택하는 것이며 새 구성 요소를 추가 할 때만 나타납니다. 기존 구성 요소에 추가 할 때마다 유형이 기존 구성 요소 정의의 유형과 자동으로 일치하도록 결정됩니다. 솔리드 유형 인 경우 각 가져 오기는 토폴로지로 간주되는 하위 구성 요소를 추가합니다. 표면 거칠기 유형 인 경우 각 가져 오기는 표면 거칠기로 간주되는 하위 구성 요소를 추가합니다.

Import as a solid

솔리드로 가져 오려면 솔리드 라디오 단추를 선택하고 원하는 경우 이름을 입력하십시오. 래스터 파일의 모든 nodata_value 데이터 포인트에는 누락 된 데이터를 높이를 나타내는 값으로 바꾸는 옵션이 GUI에 있습니다. 따라서 바닥을 만듭니다. GUI에서 이는 토폴로지를 나타내는 가져온 하위 구성 요소 목록 아래에 있습니다.

Import as roughness

거칠기로 가져 오려면 표면 거칠기 라디오 버튼을 선택하고 이름을 입력하십시오 (원하는 경우). 구성 요소 유형은 가져온 표면 거칠기입니다. 또한 필요한 범례 파일에 대한 프롬프트가 표시됩니다. 이 파일은 래스터 조도 파일의 정수 조도 코드와 FLOW-3D의 조도 조도 값을 관련시킵니다.
범례 파일의 형식은 유연합니다. 헤더의 텍스트 정보는 관련 데이터가 첫 번째 행에서부터 읽혀지기 때문에 허용됩니다. 데이터는 공백, 탭 또는 쉼표로 구분할 수있는 두 개의 열로 구성됩니다. 첫 번째 열은 거친 파일의 정수 코드에 해당하고 두 번째 열은 FLOW-3D의 거칠기를 정의합니다.
범례 파일은 전역 목록 아래의 기하학 트리 구조 아래에 추가됩니다.

Applying roughness to components

그림 6은 구성 요소 1이 토폴로지로 가져온 래스터 파일을 사용하여 솔리드를 나타내는 설치의 트리 구조를 나타냅니다. 구성 요소 2는 관련 범례 파일을 포함하는 거칠기로 가져온 래스터 파일을 사용하여 공간적으로 변화하는 표면 거칠기를 정의합니다. 그림과 같이 글로벌 목록 아래에 범례 파일에 대한 경로가 있습니다. 구성 요소 1의 구성 요소 유형은 단색입니다. 구성 요소 2는 표면 거칠기로 구성 요소 유형을 갖습니다.

“표면 거칠기”구성 요소 (구성 요소 2)에 의해 정의 된 공간적으로 변화하는 표면 거칠기는 구성 요소 1의 표면 특성 섹션에서 “조도 파일 사용”플래그를 선택하여 토폴로지 구성 요소 (구성 요소 1)에 매핑됩니다 (그림 7 ). 이 플래그는 솔버가 구성 요소 2가 구성 요소 1과 겹치는 래스터 데이터에 정의 된 표면 거칠기를 사용하도록 지시합니다. 토폴로지 래스터 파일에 해당 위치에 “nodata_value”가 있으면 대신 구성 요소 1에 대해 정의 된 구성 요소 / 하위 구성 요소 조도를 사용합니다 .

Transformation center

가져온 래스터 데이터의 좌표는 종종 좌표 중심점 0,0,0에서 멀리 떨어진 위치를 가질 수 있기 때문에 회전 중심을 회전 및 확대 / 축소에 도움이되는 위치로 변경하는 옵션이 있습니다. 설정하지 않으면 회전 및 확대 / 축소가 좌표축 중심을 기준으로 발생합니다. 따라서 가져온 형상을 탐색하기가 어렵습니다.

로컬 좌표 중심을 기준으로 구성 요소를 회전 시키려면 각 방향에서 최소 및 최대 범위의 평균값을 선택하십시오. 예를 들어, x-min이 9.98e6 미터이고 x-max가 9.96e6 미터 인 경우 평균값 (중간)은 9.97e6 미터입니다. 동일한 논리가 y 방향에 적용됩니다. 그림 8은 구성 요소 1에 대한 변형 중심을 설정하는 예입니다.

Summary

래스터 파일은 토폴로지와 표면 거칠기에 사용할 수있는 일반적인 지형 정보입니다. 이 데이터를 FLOW-3D로 직접 가져올 수 있으면 데이터를 간단하고 직접적으로 가져올 수 있습니다. 이 튜토리얼에서는 사용자가 래스터 데이터를 가져 와서 모델에 적용하는 방법을 알 수 있도록 프로세스를 설명합니다.

FLOW-3D 제품소개

About FLOW-3D


HPC-enabled FLOW-3D v12.0

FLOW-3D 개발 회사

Flow Science Inc Logo Green.svg
IndustryComputational Fluid Dynamics Software
Founded1980
FounderDr. C.W. “Tony” Hirt
Headquarters
Santa Fe, New Mexico, USA
United States
Key people
Dr. Amir Isfahani, President & CEO
ProductsFLOW-3D, FLOW-3D CAST, FLOW-3D AM, FLOW-3D CLOUD, FlowSight
ServicesCFD consultation and services

FLOW-3D 개요

FLOW-3D는 미국 뉴멕시코주(New Mexico) 로스알라모스(Los Alamos)에 있는 Flow Scicence, Inc에서 개발한 범용 전산유체역학(Computational Fluid Dynamics) 프로그램입니다. 로스알라모스 국립연구소의 수치유체역학 연구실에서 F.Harlow, B. Nichols 및 T.Hirt 등에 의해 개발된 MAC(Marker and Cell) 방법과 SOLA-VOF 방식을 기초로 하여, Hirt 박사가 1980년에 Flow Science, Inc사를 설립하여 계속 프로그램을 발전시켰으며 1985년부터 FLOW-3D를 전세계에 배포하였습니다.

유체의 3차원 거동 해석을 수행하는데 사용되는 CFD모형은 몇몇 있으나, 유동해석에 적용할 물리모델 선정은 해석의 정밀도와 밀접한 관계가 있으므로, 해석하고자 하는 대상의 유동 특성을 분석하여 신중하게 결정하여야 합니다.

FLOW-3D는 자유표면(Free Surface) 해석에 있어서 매우 정확한 해석 결과를 제공합니다. 해석방법은 자유표면을 포함한 비정상 유동 상태를 기본으로 하며, 연속방정식, 3차원 운동량 보전방정식(Navier-Stokes eq.) 및 에너지 보존방정식 등을 적용할 수 있습니다.

FLOW-3D는 유한차분법을 사용하고 있으며, 유한요소법(FEM, Finite Element Method), 경계요소법(Boundary Element Method)등을 포함하여 자유표면을 포함하는 유동장 해석(Fluid Flow Analysis)에서 공기와 액체의 경계면을 정밀하게 표현 가능합니다.

유체의 난류 해석에 대해서는 혼합길이 모형, 난류 에너지 모형, RNG(Renormalized Group Theory)  k-ε 모형, k-ω 모형, LES 모형 등 6개 모형을 적용할 수 있으며, 자유표면 해석을 위하여 VOF(Volume of Fluid) 방정식을 사용하고, 격자 생성시 사용자가 가장 쉽게 만들 수 있는 직각형상격자는 형상을 더욱 정확하게 표현하기 위해 FAVOR(Fractional Area Volume Obstacle Representation) 기법을 각 방정식에 적용하고 있습니다.

FLOW-3D는 비압축성(Incompressible Fluid Flow), 압축성 유체(Compressible Fluid Flow)의 유동현상 뿐만 아니라 고체와의 열전달 현상을 해석할 수 있으며, 비정상 상태의 해석을 기본으로 합니다.

FLOW-3D v12.0은 모델 설정을 간소화하고 사용자 워크 플로우를 개선하는 GUI(그래픽 사용자 인터페이스)의 설계 및 기능에 있어 중요한 변화를 가져왔습니다. 최첨단 Immersed Boundary Method는 FLOW-3Dv12.0솔루션의 정확도를 높여 줍니다. 다른 특징적인 주요 개발에는 슬러지 안착 모델, 2-유체 2-온도 모델, 사용자가 자유 표면 흐름을 훨씬 더 빠르게 모델링 할 수 있는 Steady State Accelerator등이 있습니다.

물리 및 수치 모델

Immersed Boundary Method

힘과 에너지 손실에 대한 정확한 예측은 솔리드 바디 주변의 흐름과 관련된 많은 엔지니어링 문제를 모델링하는 데 중요합니다. FLOW-3D v12.0의 릴리스에는 이러한 문제 해결을 위해 설계된 새로운 고스트 셀 기반 Immersed Boundary Method (IBM)가 포함되어 있습니다. IBM은 내부 및 외부 흐름을 위해 벽 근처 해석을 위해 보다 정확한 솔루션을 제공하여 드래그 앤 리프트 힘의 계산을 개선합니다.

Two-field temperature for the two-fluid model

2유체 열 전달 모델은 각 유체에 대한 에너지 전달 공식을 분리하도록 확장되었습니다. 이제 각 유체에는 고유한 온도 변수가 있어 인터페이스 근처의 열 및 물질 전달 솔루션의 정확도를 향상시킵니다. 인터페이스에서의 열 전달은 시간의 표 함수가 될 수 있는 사용자 정의 열 전달 계수에 의해 제어됩니다.

슬러지 침전 모델 / Sludge settling model

중요 추가 기능인 새로운 슬러지 침전 모델은 도시 수처리 시설물 응용 분야에 사용하면 수처리 탱크 및 정화기의 고형 폐기물 역학을 모델링 할 수 있습니다. 침전 속도가 확산된 위상의 방울 크기에 대한 함수인 드리프트-플럭스 모델과 달리, 침전 속도는 슬러지 농도의 함수이며 기능적인 형태와 표 형태로 모두 입력 할 수 있습니다.

Steady-state accelerator for free surface flows

이름이 암시하듯이, 정상 상태 가속기는 안정된 상태의 솔루션에 대한 접근을 가속화합니다. 이는 작은 진폭의 중력과 모세관 현상을 감쇠하여 이루어지며 자유 표면 흐름에만 적용됩니다.

꾸준한 상태 가속기

Void particles

보이드 입자가 버블 및 위상 변경 모델에 추가되었습니다. 보이드 입자는 항력과 압력 힘을 통해 유체와 상호 작용하는 작은 기포의 역할을 하는 붕괴된 보이드 영역을 나타냅니다. 주변 유체 압력에 따라 크기가 변경되고 시뮬레이션이 끝난 후 최종 위치는 공기 침투 가능성을 나타냅니다.

Sediment scour model

침전물의 정확성과 안정성을 향상시키기 위해 침전물의 운반과 침식 모델을 정밀 조사하였다. 특히, 침전물 종에 대한 질량 보존이 크게 개선되었습니다.

Outflow pressure boundary condition

고정 압력 경계 조건에는 이제 압력 및 유체 비율을 제외한 모든 유량이 해당 경계의 상류에 있는 흐름 조건을 반영하는 ‘유출’ 옵션이 포함됩니다. 유출 압력 경계 조건은 고정 압력 및 연속성 경계 조건의 혼합입니다.

Moving particle sources

시뮬레이션 중에 입자 소스는 이동할 수 있습니다. 시간에 따른 변환 및 회전 속도는 표 형식으로 정의됩니다. 입자 소스의 운동은 소스에서 방출 된 입자의 초기 속도에 추가됩니다.

Variable center of gravity

중력 및 비 관성 기준 프레임 모델에서 시간 함수로서의 무게 중심의 위치는 외부 파일의 표로 정의할 수 있습니다. 이 기능은 연료를 소모하는 로켓을 모델링하고 단계를 분리할 때 유용합니다.

공기 유입 모델

가장 간단한 부피 기반 공기 유입 모델 옵션이 기존 질량 기반 모델로 대체되었습니다.  질량 기반 모델은 부피와 달리 주변 유체 압력에 따라 부피가 변화하는 동안 흡입된 공기량이 보존되기 때문에 물리학적 모델입니다.

Air entrainment model in FLOW-3D v12.0

Tracer diffusion / 트레이서 확산

유동 표면에서 생성된 추적 물질은 분자 및 난류 확산 과정에 의해 확산될 수 있으며, 예를 들어 실제 오염 물질의 거동을 모방합니다.

모델 설정

시뮬레이션 단위

이제 온도를 포함하여 단위계 시스템을 완전히 정의해야 합니다. 표준 단위 시스템이 제공됩니다. 또한 사용자는 선택한 옵션에서 질량, 시간 및 길이 단위를 정의하여 편리하며, 사용자 정의된 단위를 사용할 수 있습니다. 사용자는 또한 압력이 게이지 단위로 정의되는지 절대 단위로 정의되는지 여부를 지정해야 합니다. 기본 시뮬레이션 단위는 Preferences(기본 설정)에서 설정할 수 있습니다. 단위를 완벽하게 정의하면 FLOW-3D는 물리적 수량에 대한 기본 값을 정의하고 범용 상수를 설정할 수 있으므로 사용자가 필요로 하는 작업량을 최소화할 수 있습니다.

Shallow water model

얕은 물 모델에서 매닝의 거칠기

Manning의 거칠기 계수는 지형 표면의 전단 응력 평가를 위해 얕은 물 모델에서 구현되었습니다. 표면 결함의 크기를 기반으로 기존 거칠기 모델을 보완하며이 모델과 함께 사용할 수 있습니다. 표준 거칠기와 마찬가지로 매닝 계수는 구성 요소 또는 하위 구성 요소의 속성이거나 지형 래스터 데이터 세트에서 가져올 수 있습니다.

메시 생성

하단 및 상단 경계 좌표의 정의만으로 수직 방향의 메시 설정이 단순화되었습니다.

구성 요소 변환

사용자는 이제 여러 하위 구성 요소로 구성된 구성 요소에 회전, 변환 및 스케일링 변환을 적용하여 복잡한 형상 어셈블리 설정 프로세스를 단순화 할 수 있습니다. GMO (General Moving Object) 구성 요소의 경우, 이러한 변환을 구성 요소의 대칭 축과 정렬되도록 신체에 맞는 좌표계에 적용 할 수 있습니다.

런타임시 스레드 수 변경

시뮬레이션 중에 솔버가 사용하는 스레드 수를 변경하는 기능이 런타임 옵션 대화 상자에 추가되어 사용 가능한 스레드를 추가하거나 다른 태스크에 자원이 필요한 경우 스레드 수를 줄일 수 있습니다.

프로브 제어 열원

활성 시뮬레이션 제어가 형상 구성 요소와 관련된 heat sources로 확장되었습니다.  history probes로 열 방출을 제어 할 수 있습니다.

소스에서 시간에 따른 온도

질량 및 질량/모멘트 소스의 유체 온도는 이제 테이블 입력을 사용하여 시간의 함수로 정의 할 수 있습니다.

방사율 계수

공극으로의 복사 열 전달을위한 방사율 계수는 이제 사용자가 방사율과 스테판-볼츠만 상수를 지정하도록 요구하지 않고 직접 정의됩니다. 후자는 이제 단위 시스템을 기반으로 솔버에 의해 자동으로 설정됩니다.

Output

  • 등속 필드 솔버 옵션을 사용할 때 유량 속도를 선택한 데이터로 출력 할 수 있습니다.
  • 벽 접착력으로 인한 지오메트리 구성 요소의 토크는 기존 벽 접착력 출력과 함께 별도의 수량으로 일반 이력 데이터에 출력됩니다.
  • 난류 모델 출력이 요청 될 때 난류 에너지 및 소산과 함께 전단 속도 및 y +가 선택된 데이터로 자동 출력됩니다.
  • 공기 유입 모델 출력에 몇 가지 수량이 추가되었습니다. 자유 표면을 포함하는 모든 셀에서 혼입 된 공기 및 빠져 나가는 공기의 체적 플럭스가 재시작 및 선택된 데이터로 출력되어 사용자에게 공기가 혼입 및 탈선되는 위치 및 시간에 대한 자세한 정보를 제공합니다. 전체 계산 영역 및 각 샘플링 볼륨 에 대해이 두 수량의 시간 및 공간 통합 등가물이 일반 히스토리 로 출력됩니다.
  • 솔버의 출력 파일 flsgrf 의 최종 크기는 시뮬레이션이 끝날 때 보고됩니다.
  • 2 유체 시뮬레이션의 경우, 기존의 출력 수량 유체 체류 시간 및 유체 가 이동 한 거리는 이제 유체 # 1 및 # 2와 유체의 혼합물에 대해 별도로 계산됩니다.
  • 질량 입자의 경우, 각 종의 총 부피 및 질량이 계산되어 전체 계산 영역, 샘플링 볼륨 및 플럭스 표면에 대한 일반 히스토리 로 출력되어 입자 종 수에 대한 현재 출력을 보완합니다.
  • 최종 로컬 가스 압력 은 사용자가 가스 포획을 식별하고 연료 탱크의 배기 시스템 설계를 지원하는 데 도움이되는 선택적 출력량으로 추가되었습니다. 이 양은 유체로 채워지기 전에 셀의 마지막 공극 압력을 기록하며 단열 버블 모델과 함께 사용됩니다.

새로운 맞춤형 소스 루틴

새로운 사용자 정의 가능 소스 루틴이 추가되었으며 사용자의 개발 환경에서 액세스 할 수 있습니다.

소스 루틴 이름기술
cav_prod_calCavitation 생성과 소산 비율
sldg_uset슬러지 침전 속도
phchg_mass_flux증발 및 응축으로 인한 질량 플럭스
flhtccl유체 # 1과 # 2 사이의 열전달 계수
dsize_cal2 상 흐름에서 동적 액적 크기 모델의 응집 및 분해 속도
elstc_custom점탄성 유체에 대한 응력 방정식의 Source Terms

새로운 사용자 인터페이스

FLOW-3D 사용자 인터페이스는 완전히 새롭게 디자인되어 현대적이고 평평한 구조로 사용자의 작업 흐름을 획기적으로 간소화합니다.

Setup dock widgets

Physics, Fluids, Mesh 및 FAVOR ™를 포함한 모든 설정 작업이 지오 메트리 윈도우 주변에서 독 위젯으로 변환되어 모델 설정을 단일 탭으로 요약할 수 있습니다. 이러한 전환으로 인해 이전 버전의 복잡한 접이식 트리가 훨씬 깨끗하고 효율적인 메뉴 프레젠테이션으로 대체되어 사용자는 ModelSetup탭을 떠나지 않고도 모든 매개 변수에 쉽게 액세스 할 수 있습니다.

New Model Setup icons

새로운 모델 설정 디자인에는 설정 프로세스의 각 단계를 나타내는 새로운 아이콘이 있습니다.

Model setup icons - FLOW-3D v12.0

New Physics icons

RSS feed

새 RSS 피드부터 FLOW-3D v12.0의 시뮬레이션 관리자 탭이 개선되었습니다. FLOW-3D 를 시작하면 사용자에게 Flow Science의 최신 뉴스, 이벤트 및 블로그 게시물이 표시됩니다.

RSS feed - FLOW-3D

Configurable simulation monitor

시뮬레이션을 실행할 때 중요한 작업은 모니터링입니다. FLOW-3Dv1.0에서는 사용자가 시뮬레이션을 더 잘 모니터링할 수 있도록 SimulationManager의 플로팅 기능이 향상되었습니다. 사용자는 시뮬레이션 런타임 그래프를 통해 모니터링할 사용 가능한 모든 일반 기록 데이터 변수를 선택하고 각 그래프에 여러 변수를 추가할 수 있습니다. 이제 런타임에서 사용할 수 있는 일반 기록 데이터는 다음과 같습니다.

  • 최소/최대 유체 온도
  • 프로브 위치의 온도
  • 유동 표면 위치에서의 유량
  • 시뮬레이션 진단(예:시간 단계, 안정성 한계)
출입문에 유동 표면이 있는 대형 댐
Runtime plots of the flow rate at the gates of the large dam

Conforming 메쉬 시각화

사용자는 이제 새로운 FAVOR ™ 독 위젯을 통해 적합한 메쉬 블록을 시각화 할 수 있습니다.Visualize conforming mesh blocks

Large raster and STL data

데이터를 처리하는 데 걸리는 시간 때문에 큰 지오 메트리 데이터를 처리하는 것은 수고스러울 수 있습니다. 대형 지오 메트리 데이터를 처리하는 데는 여전히 상당한 시간이 걸릴 수 있지만, FLOW-3D는 이제 이러한 대규모 데이터 세트를 백그라운드 작업으로 로드하여 사용자가 데이터를 처리하는 동안 완전히 응답하고 중단 없는 인터페이스에서 작업을 계속할 수 있습니다

Breakwater Structures

Breakwater Structures

복잡한 지형과 해안 구조를 통해 큰 진폭의 비선형 파를 모델링 할 수 있는 FLOW-3D의 능력은 간단한 선형 파에서 복잡한 바다 상태에 이르기까지 파도의 강제 유체 역학적 방파제 구조물의 성능을 분석 할 수 있는 이상적인 도구입니다. 수신 파로부터 운동 에너지를 제거하여 구조물 의 강도를 측정하는 것 이외에도 FLOW-3D는 사용자로 하여금 퇴적물 전송의 상세한 분석을 수행 할 수 있게 하며 방파제 요소에 작용하는 힘의 평가도 가능합니다. 생태학적 요구로 인해 통합 연안 구조가 더 중요해 지는 상황에서 FLOW-3D는 엔지니어로 하여금 구조물의 주위에 흐름 패턴의 세부 사항을 평가할 수 있습니다.

Rubble-mound Breakwaters Simulation

Rubble-mound Breakwaters Simulation

테트라포드 방파제는 종종 극심한 파동 하중의 영향으로부터 해안선을 보호하고 긴 해안 표류를 막기 위해 사용됩니다. 엔지니어는 FLOW-3D를 사용하여 보호 레이어, 파동 반사 계수 및 이러한 구조와 관련된 볼륨 overtopping volumes 을 추정할 수 있습니다.

FLOW-3D/MP Software Overview

FLOW-3D/MP Overview

FLOW-3D/MP 는 엔지니어가 계산할 도메인이 매우 크거나 시뮬레이션 실행 시간이 너무 많이 소요될 것 같은 문제를 해결 하기 위해 고성능 컴퓨팅 클러스터에서 실행되도록 설계한 FLOW-3D의 분산 메모리 버전입니다. FLOW-3D/MP는 클러스터의 컴퓨팅 노드에서 여러 CPU 코어에 계산 속도를 높이기 위해 병렬화하는 하이브리드 MPI-OpenMP의 방법을 사용합니다. 시뮬레이션 도메인에 따라서 그들 사이의 연산 작업을 분할 클러스터의 연산 노드에 분산된 여러 서브 도메인으로 분할됩니다. 다른 서브 도메인의 결과의 동기화는 메시지 교환 인터페이스 (MPI) 라이브러리를 통 이용하여 노드 사이에서 데이터를 교환함으로써 수행됩니다. 각각의 하위 도메인 내에서의 OpenMP 스레드는 계산을 더욱 병렬화하게 됩니다. 솔버의 성능을 강화하는 MPI와 OpenMP 병렬 처리 결과의 조합은 매우 오래 걸리는 시뮬레이션의 실행 시간을 줄이는 효과가 큽니다.

Why use FLOW-3D/MP?

현재 하드웨어가 멀티 코어, 멀티 CPU 노드 (즉 ccNUMA 공유 메모리)인 고성능 컴퓨팅 (HPC)인 경우 구성은 Infiniband와 같은 고속 네트워크 인프라 스트럭처를 통해 연결됩니다.
더 좋은 연산 성능과 효율의 장점, 전력소비 절감과 비용 감소 및 우수한 유연성을 위해 멀티코어 클러스터 시스템은 과학분야와 같은 고성능 컴퓨팅이 필요한 분야에서 널리사용되고 있습니다.

사용자 지원을 강화하고 멀티 코어 클러스터 솔루션의 정확성을 향상시키기 위해 그리드 해상도를 높이는 등 더 많은 기능을 강화시키고 있습니다.
FLOW-3D/MP는 설계 및 솔루션 정확도를 유지하고 실행시간을 크게 감소시키는 등 클러스터 시스템에서 최고의 기능을 발휘할 수 있도록 최적화되었습니다.
마지막으로, 독립형 스테이션의 메모리 제한은 FLOW-3D / MP의 분산 메모리 접근방식으로 해결 될 수 있습니다.

What kind of performance can I expect?

물론, FLOW-3D/MP의 실제 성능은 시뮬레이션에 따라 다르지만, 솔버는 금속 주조, 물, 환경, 미세 유체 및 항공 우주 등 다양한 애플리케이션을 위해 512 코어까지 확장하여 보여 주었습니다. 여러가지 경우에 대한 성능 그래프와 함께 세부 사항은 벤치 마크의 페이지에 제시했습니다.

How to use FLOW-3D/MP?

FLOW-3D/MP는 일반적으로 클러스터 컴퓨터에 설치되고 실행됩니다. 클러스터 계산은 슈퍼 컴퓨팅 시설의 독립 실행 형 클러스터 또는 일부가 될 수 있습니다. FLOW-3D/ MP와 함께 제공되는 그래픽 사용자 인터페이스는 사용자가 쉽게 설정하고 시뮬레이션을 실행할 수 있습니다. PBS, Torque, SGE와 같은 작업 스케줄러를 사용하여 실행되는 대규모 클러스터 시뮬레이션의 경우, 사용자는 highly configurable 및 독립적인 작업 스케줄러 제출 유틸리티에 액세스 할 수 있습니다.

What’s in FLOW-3D/MP v6.1?

FLOW-3D/MP V6.1은 FLOW-3D v11.1을 기반으로합니다. 일부 주요 기능은 새로운 입자 모델(particle model), 스퀴즈 핀 모델( squeeze pins model), 계류 라인(mooring lines)과 활성화된 시뮬레이션 제어를 포함합니다. 모든 모델은 FLOW-3D/MP에 대해 하이브리드 MPI-OpenMP의 방법론과 호환됩니다. FLOW-3D / MP의 계산 부하 균형은 매우 중요하고 솔버의 성능에 크게 영향을 미칩니다. 로드 밸런싱은 정적(시뮬레이션이 시작되기 전) 및 동적(시뮬레이션 진행중)으로 분류 될 수있습니다.
정적로드 밸런싱을 달성하기 위해, FLOW-3D/MP는 여러 하위 도메인 (MPI 도메인)에 있는 하나의 계산 도메인을 분할하는 자동 분해 도구를 제공하여, 그들 사이를 균등하게 활성화된 cells을 배분합니다. 서브 도메인 사이의 동기화 시간을 최소화하는 것은 성능을 향상시킵니다.
V6.1에서 상기 분해 단계는 사용자의 경험을 반영하여 셋업에서 중단을 피하기 위해 해석 단계와 결합되었습니다. 동적로드 균형을 달성하기 위해, 동적 스레드 밸런싱 기능은 시뮬레이션 과정 동안의 OpenMP 스레드를 조정하는데 사용될 수있습니다. one-fluid에서, 자유 표면 시뮬레이션은 최대 20 %의 성능 향상이 이 기능을 사용하여 달성되었습니다.
V6.1의 다른 중요한 개선은 복잡한 지형 모델링 홍수 이벤트에 사용하여 GMRES 압력 솔버, 일괄 처리 및 보고서 생성의 최적화, 래스터 데이터 인터페이스를 포함합니다. 새로운 모델과 기능에 대한 자세한 내용은 FLOW-3D의 v11.1 페이지를 참조하십시오. * 성능 메트릭은 시뮬레이션은 24 시간에서 실행될 수있는 횟수로 정의된다. 높은 막대가 더 나은 성능을 나타냅니다.

수자원 분야

실제 지형을 적용하여 3차원 shallow water hybrid model을 이용한 댐 붕괴 시뮬레이션

FLOW-3D는 자유표면 흐름이 있는 수치해석 알고리듬에 의해 유동의 표면이 시공간적으로 변하는 모사를 위한 이상적인 도구라고 할 수 있습니다. 자유 표면은 물과 공기 같은 높은 비율의 밀도 변화를 가지는 유체들 사이의 특정한 경계을 일컫습니다. 자유 표면 흐름을 모델링하는 것은 일반적인 유동방정식과 난류 모델이 결합 된 고급 알고리즘을 필요로 합니다. 이 기능은 FLOW-3D로 하여금 침수 구조에 의해 형성된 방수, 수력 점프 및 수면 변화의 흐름의 궤적을 포착 할 수 있습니다.   Downloads

Hydraulics 적용사례 자료 다운로드 (STI C&D)
WaterTreatments 적용사례 자료 다운로드 (STI C&D)

FLOW-3D Water & Environmental Brochure (FSI) Bibliography

Models

Case Studies

Conference Proceedings