FLOW-3D를 이용한 활성 단층 인근 동시 산사태 발생에 따른 충격파 시뮬레이션: 터키 남동부 체틴 댐 저수지 사례 연구
연구 목적
- 본 논문은 FLOW-3D를 활용하여 체틴 댐 저수지에서 발생할 수 있는 **충격파(impulse wave)**의 특성을 3D 수치 시뮬레이션으로 분석함.
- 활성 단층 지역에서 발생하는 산사태가 저수지 내에서 충격파를 유발하는 메커니즘을 연구함.
- 단일 산사태와 동시 다발적 산사태가 발생할 경우의 충격파 영향을 비교 분석함.
- 충격파의 간섭(interference) 효과가 저수지 내 파랑 특성과 댐 구조물에 미치는 영향을 평가함.
연구 방법
- 지질 및 지형 모델링
- 연구 지역은 터키 남동부 체틴 댐 저수지로, 아라비아판과 타우루스판이 만나는 조산대에 위치함.
- 댐과 저수지 주변의 주요 단층 구조와 산사태 가능 지역을 고려하여 3D 지형 모델을 생성함.
- 1/25,000 축척의 디지털 지형 데이터를 사용하여 저수지 및 주변 지형을 모델링함.
- FLOW-3D 시뮬레이션 설정
- VOF(Volume of Fluid) 방법을 사용하여 자유수면과 산사태 물질 간의 상호작용을 해석함.
- RNG k−εk-\varepsilonk−ε 난류 모델을 적용하여 유체 흐름과 충격파 전파 특성을 평가함.
- 부분적으로 잠긴 산사태(4900m 거리)와 완전히 노출된 산사태(800m 거리)를 각각 독립적으로 모델링하고, 이후 두 산사태가 동시에 발생하는 경우를 시뮬레이션함.
- 결과 비교 및 검증
- 개별 산사태와 동시 산사태가 발생했을 때의 충격파 높이와 전파 속도를 비교함.
- 실험 및 문헌 데이터를 활용하여 시뮬레이션 결과의 신뢰성을 검증함.
- 충격파 간섭 현상이 발생하는 위치와 그 영향 범위를 분석함.
- 추가 분석
- 충격파의 증폭(constructive interference) 또는 감쇠(destructive interference) 여부를 평가함.
- 저수지 경계 및 댐 구조물과의 충돌이 파형 변화에 미치는 영향을 연구함.
- 충격파의 전파 거리와 수심에 따른 에너지 소산 효과를 분석함.
주요 결과
- 산사태별 충격파 특성
- 산사태 1(800m 거리, 육상 산사태): 34초 후 댐에 도달, 최대 파고 4.0m 발생.
- 산사태 2(4900m 거리, 부분 침수 산사태): 205초 후 댐에 도달, 최대 파고 4.2m 발생.
- 단일 산사태의 경우, 발생 위치에 따라 파고와 도달 시간이 달라짐.
- 동시 발생 산사태의 파랑 간섭 효과
- 두 충격파가 97초 후 상호 충돌하며 최대 5.7m의 파고를 형성함.
- 댐 인근에서 최종적으로 5.6m의 파고가 형성되었으며, 이는 개별 산사태보다 1.4m 증가한 수치임.
- 예상과 달리 충격파가 서로 상쇄되지 않고 증폭(interference amplification) 되는 현상이 관찰됨.
- 저수지 내 충격파 감쇠 현상
- 충격파는 저수지 지형과 충돌하면서 일부 감쇠됨.
- 산사태에서 댐까지의 거리, 산사태 질량, 충격각도에 따라 파랑의 감쇠율이 달라짐.
- 5km 이상 이동한 충격파는 경로 상 장애물에 의해 에너지가 감소하는 경향을 보임.
- 댐 안전성 및 설계 시 고려사항
- 활성 단층 인근의 저수지는 동시 다발적 산사태로 인한 복합 충격파 위험을 고려해야 함.
- 기존 단일 충격파 분석만으로는 실제 위험성을 과소평가할 가능성이 있음.
- 향후 연구에서는 실규모 실험과 추가적인 CFD 모델링을 통해 댐 설계 및 운영 기준을 개선해야 함.
결론
- FLOW-3D를 이용한 시뮬레이션 결과, 충격파는 개별 산사태보다 동시 산사태에서 더 높은 파고를 형성함.
- 충격파의 간섭 효과로 인해 댐 인근에서 5.6m의 높은 파고가 발생할 가능성이 있음.
- 산사태의 발생 위치, 저수지 지형, 파랑 간섭 효과 등을 종합적으로 고려해야 함.
- 향후 연구에서는 다중 산사태 시뮬레이션을 추가로 수행하여 댐의 안전성을 정량적으로 평가해야 함.
Reference
- Abdollahi A, Mason HB (2019) Tsunami-induced pore water pressure response of unsaturated soil beds: numerical formulation and experiments. Comput Geotech 110:19–27. https://doi.org/10.1016/j.compgeo.2019.02.012
- Açıkbaş D, Akgül A, Erdoğan LT (1981) Güneydoğu Anadolu’nun hidrokarbon olanakları ve Baykan-Şirvan-Pervari yöresinin jeolojisi. TPAO Report, Ankara (in Turkish)
- Bazykina AY, Mikhailichenko SY, Fomin VV (2018) Numerical simulation of tsunami in the Black Sea caused by the earthquake on September 12, 1927. Phys Oceanogr 25:295–304. https://doi.org/10.22449/1573-160x-2018-4-295-304
- Bonaccorso A, Calvari S, Garf G et al (2003) Dynamics of the December 2002 fank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geophys Res Lett 30:1–4. https://doi.org/10.1029/2003GL017702
- Bregoli F, Bateman A, Medina V (2017) Tsunamis generated by fast granular landslides: 3D experiments and empirical predictors. J Hydraul Res 55:743–758. https://doi.org/10.1080/00221686.2017.1289259
- Brethour JM, Hirt CW (2009) Drift model for two-component fows. Flow Sci Inc 1–7
- Choudhury D (1973) Introduction to the renormalization group method and turbulence modeling. Fluent Incorporated
- Day S, Llanes P, Silver E et al (2015) Submarine landslide deposits of the historical lateral collapse of Ritter Island, Papua New Guinea. Mar Pet Geol 67:419–438. https://doi.org/10.1016/j.marpetgeo.2015.05.017
- De-Girolamo P, Cecioni C, Montagna F et al (2009) Numerical modelling of landslide generated tsunamis around a Conical Island. In: Proceedings of the Coastal Engineering Conference, pp 1287–1299
- Di Risio M, De Girolamo P, Bellotti G et al (2009) Landslide-generated tsunamis runup at the coast of a conical island: new physical model experiments. J Geophys Res Ocean 114:1–16. https://doi.org/10.1029/2008JC004858
- Ersoy H, Karahan M, Gelişli K et al (2019) Modelling of the landslideinduced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation. Eng Geol 249:112–128. https://doi.org/10.1016/j.enggeo.2018.12.025
- Ersoy H, Karahan M, Öztürk HH (2020) Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği. DOAD 6:248–257. https://doi.org/10.21324/dacd.621377 (in Turkish with English abstract)
- Evers FM, Hager WH (2015) Impulse wave generation: comparison of free granular with mesh-packed slides. J Mar Sci Eng 3:100–110. https://doi.org/10.3390/jmse3010100
- Franco A, Moernaut J, Schneider-Muntau B, Strasser M, Gems B (2021a) Triggers and consequences of landslide-induced impulse waves–3D dynamic reconstruction of the Taan Fiord 2015 tsunami event. Eng Geol 294:106384. https://doi.org/10.1016/j.enggeo.2021.106384
- Franco A, Schneider-Muntau B, Roberts NJ, Clague JJ, Gems B (2021b) Geometry-based preliminary quantifcation of landslideınduced ımpulse wave attenuation in mountain lakes. Appl Sci 11:11614. https://doi.org/10.3390/app112411614
- Fritz HM, Hager WH, Minor HE (2004) Near feld characteristics of landslide generated impulse waves. J. Waterw. Port. Coast Ocean Eng 130:287–302
- Fritz HM, Mohammed F, Yoo J (2009) Lituya bay landslide impact generated mega-tsunami 50th anniversary. In: Cummins PR, Satake K, Kong LSL (eds) Tsunami science four years after the 2004 Indian Ocean Tsunami. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0346-0064-4_9
- Gabl R, Seibl J, Gems B, Aufeger M (2015) 3-D numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir. Nat Hazards Earth Syst Sci 15:2617–2630. https://doi.org/10.5194/nhess-15-2617-2015
- Grilli ST, Vogelmann S, Watts P (2002) Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Eng Anal Bound Elem 26:301–313. https://doi.org/ 10.1016/S0955-7997(01)00113-8
- Heller V (2007) Landslide generated impulse waves: prediction of near feld characteristics. ETH Zurich, Zürich (Dissertation)
- Heller V, Bruggemann M, Spinneken J, Rogers BD (2016) Composite modelling of subaerial landslide-tsunamis in diferent water body geometries and novel insight into slide and wave kinematics. Coast Eng 109:20–41. https://doi.org/10.1016/j.coastaleng.2015. 12.004
- Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port, Coast Ocean Eng 136:145–155. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000037
- Heller V, Hager WH, Minor HE (2009) Landslide generated impulse waves in reservoirs: Basics and computation. Mitteilungen der Versuchsanstalt fur Wasserbau, Hydrol und Glaziologie an der Eidgenoss Tech Hochschule Zurich 1–172
- Hendron AJ, Patton FD (1987) The vaiont slide – a geotechnical analysis based on new geologic observations of the failure surface. Eng Geol 24:475–491. https://doi.org/10.1139/t87-023 Hibiki T, Ishii M (2003) One-demensional drift-fux model for twophase fow in a large diameter pipe. Int J Heat Mass Transf 46:1773–1790. https://doi.org/10.1016/S0017-9310(02)00473-8
- Huang BL, Wang SC (2017) Wave attenuation mechanism of crossplates applied in landslide-induced tsunami in river course. JMt Sci 14:649–661. https://doi.org/10.1007/s11629-016-4218-6Hughes SA (1993) Physical models and laboratory techniques in coastal engineering. World Scientifc
- Kafe J, Tuladhar BM (2018) Landslide-water interaction for partially submerged landslide. J Nepal Math Soc 1:22–29
- Karahan M, Ersoy H, Akgun A (2020a) A 3D numerical simulation-based methodology for assessment of landslide-generated impulse waves: a case study of the Tersun Dam reservoir (NE Turkey). Landslides 17:2777–2794. https://doi.org/10.1007/ s10346-020-01440-4
- Karahan M, Ersoy H, Anilan T (2020b) İtki dalgalarının oluşumunda ölçek etkisi, hareket süresi ve çarpma hızının model deneyler ve 3 boyutlu nümerik simülasyonlarla değerlendirilmesi (in Turkish with English abstract). GUFBED 10:514–525
- Kesseler M, Heller V, Turnbull B (2018) A laboratory-numerical approach for modelling scale efects in dry granular slides. Landslides 15:2145–2159. https://doi.org/10.1007/s10346-018-1023-zKim G-B (2012) Numerical simulation of three-dimensional tsunami generation by subaerial landslides. Texas A&M University (Dissertation)
- Kocaman S, Ozmen-Cagatay H (2015) Investigation of dam-break induced shock waves impact on a vertical wall. J Hydrol 525:1–12. https://doi.org/10.1016/j.jhydrol.2015.03.040
- Li G, Chen G, Li P, Jing H (2019) Efcient and accurate 3-D numerical modelling of landslide Tsunami. Water (switzerland) 11:1–17. https://doi.org/10.3390/w11102033
- Li DQ, Ding YN, Tang XS, Liu Y (2021a) Probabilistic risk assessment of landslide-induced surges considering the spatial variability of soils. Eng Geol 283:105976. https://doi.org/10.1016/j.enggeo.2020.105976
- Li Y, Pang R, Xu B, Wang X, Fan Q, Jiang F (2021b) GPDEM-based stochastic seismic response analysis of high concrete-faced rockfll dam with spatial variability of rockfll properties based on plastic deformation. Comput Geotech 139:104416. https://doi.org/10.1016/j.compgeo.2021.104416
- Liu PLF, Wu TR, Raichlen F et al (2005) Runup and rundown generated by three-dimensional sliding masses. J Fluid Mech 536:107–144. https://doi.org/10.1017/S0022112005004799
- Montagna F, Bellotti G, Di Risio M (2011) 3D numerical modeling of landslide-generated tsunamis around a conical island. Nat Hazards 58:591–608. https://doi.org/10.1007/s11069-010-9689-0
- Pang R, Xu B, Kong X, Zhou Y, Zou D (2018) Seismic performance evaluation of high CFRD slopes subjected to near-fault ground motions based on generalized probability density evolution method. Eng Geol 246:391–401. https://doi.org/10.1016/j.enggeo.2018.09.004
- Pang R, Xu B, Zhou Y, Song L (2021) Seismic time-history response and system reliability analysis of slopes considering uncertainty of multi-parameters and earthquake excitations. Comput Geotech 136:104245. https://doi.org/10.1016/j.compgeo.2021.104245
- Perinçek D (1980) IX. Bölge Hakkâri-Yüksekovaçukurca-BeytüşşebapUludere-Pervari dolayının jeolojisi. TPAO Report, Ankara (inTurkish)
- Perinçek D (1990) Hakkari ili ve dolayının stratigrafsi, GDA Türkiye(in Turkish). Bull Turk Assoc Pet Geol 2:21–68
- Perinçek D (2016) Cetin Baraj Gövdesi ve Dolayinin Jeolojisi ve Heyelan Araştırmasi. Türkiye Jeol Bülteni 59:167–210
- Perinçek D, Günay Y, Kozlu H (1987) New observation on strike-slip faults in east and southeast Anatolia. In: 7th Biannual Petroleum Congress of Turkey, Ankara Quecedo M, Pastor M, Herreros MI (2004) Numerical modelling of impulse wave generated by fast landslides. Int J Numer Methods Eng 59:1633–1656. https://doi.org/10.1002/nme.934
- Shen Y, Whittaker CN, Lane EM, Power W, Melville BW (2022) Interference efect on tsunami generation by segmented seafoor deformations. Ocean Eng 245:110244. https://doi.org/10.1016/j.oceaneng.2021.110244
- Shi C, An Y, Wu Q et al (2016) Numerical simulation of landslidegenerated waves using a soil-water coupling smoothed particle hydrodynamics model. Adv Water Resour 92:130–141. https://doi.org/10.1016/j.advwatres.2016.04.002
- Smith RC, Hill J, Collins GS et al (2016) Comparing approaches for numerical modelling of tsunami generation by deformable submarine slides. Ocean Model 100:125–140. https://doi.org/10.1016/j.ocemod.2016.02.007
- Spesivtsev P, Sinkov K, Osiptsov A (2013) Comparison of drift-fux and multi-fuid approaches to modeling of multiphase fow in oil and gas wells. In: WIT Transactions on Engineering Sciences, pp 89–99
- Tolun N (1954) Güneydoğu Anadolu’nun stratigrafsi ve tektoniği. MTA Report, Ankara (in Turkish)
- Utmanoğulları M (2012) Geology, subsurface geology and hydrocarbon possibilities of around of Şirvan Özpınar (Siirt). Çanakkale Onsekiz Mart University (Dissertation)
- Vacondio R, Mignosa P, Pagani S (2013) 3D SPH numerical simulation of the wave generated by the vajont rockslide. Adv Water Resour 59:146–156. https://doi.org/10.1016/j.advwatres.2013.06.009
- Wang J, Ward SN, Xiao L (2019) Tsunami Squares modeling of landslide generated impulsive waves and its application to the 1792 Unzen-Mayuyama mega-slide in Japan. Eng Geol 256:121–137. https://doi.org/10.1016/j.enggeo.2019.04.020
- Wang D, Wang Z, Li Y et al (2020) Characteristics and dynamic process analysis of the 2018 Mabian consequent landslide in Sichuan Province, China. Bull Eng Geol Environ 79:3337–3359. https://doi.org/10.1007/s10064-020-01784-0
- Wang W, Chen G, Yin K et al (2015) Modeling of landslide generated waves in Three Gorges Reservoir, China using SPH method. In: 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, pp 1183–1188
- Xu WJ, Yao ZG, Luo YT, Dong XY (2020) Study on landslideinduced wave disasters using a 3D coupled SPH-DEM method. Bull Eng Geol Environ 79:467–483. https://doi.org/10.1007/s10064-019-01558-3
- Xu WJ, Wang YJ, Dong XY (2021) Infuence of reservoir water level variations on slope stability and evaluation of landslide tsunami.Bull Eng Geol Environ 80:4891–4907. https://doi.org/10.1007/s10064-021-02218-1
- Yavari-Ramshe S, Ataie-Ashtiani B (2016) Numerical modeling of subaerial and submarine landslide-generated tsunami waves–recent advances and future challenges. Landslides 13:1325–1368. https://doi.org/10.1007/s10346-016-0734-2
- Yin YP, Huang B, Chen X et al (2015) Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China. Landslides 12:355–364. https://doi.org/10.1007/s10346-015-0564-7
- Yılmaz Y, Yiğitbaş E (1990) GD Anadolu’nun farklı ofiyolitikmetamorfk birlikleri ve bunların jeolojik evrimdeki rolü (in Turkish). Türkiye 8:128–140 Zhang T, Yan E, Cheng J, Zheng Y (2010) Mechanism of reservoir water in the deformation of Hefeng landslide. J Earth Sci 21:870–875. https://doi.org/10.1007/s12583-010-0139-4
- Zhang Y, Li D, Chen L et al (2020) Numerical analysis of landslidegenerated impulse waves afected by the reservoir eometry. Eng Geol 266:1–15. https://doi.org/10.1016/j.enggeo.2019.105390
- Zhao T, Utili S, Crosta GB (2016) Rockslide and ımpulse wave modelling in the Vajont Reservoir by DEM-CFD analyses.Rock Mech Rock Eng 49:2437–2456. https://doi.org/10.1007/s00603-015-0731-0








