impulse wave

FLOW-3D를 이용한 활성 단층 인근 동시 산사태 발생에 따른 충격파 시뮬레이션: 터키 남동부 체틴 댐 저수지 사례 연구

연구 목적

  • 본 논문은 FLOW-3D를 활용하여 체틴 댐 저수지에서 발생할 수 있는 **충격파(impulse wave)**의 특성을 3D 수치 시뮬레이션으로 분석함.
  • 활성 단층 지역에서 발생하는 산사태가 저수지 내에서 충격파를 유발하는 메커니즘을 연구함.
  • 단일 산사태와 동시 다발적 산사태가 발생할 경우의 충격파 영향을 비교 분석함.
  • 충격파의 간섭(interference) 효과가 저수지 내 파랑 특성과 댐 구조물에 미치는 영향을 평가함.

연구 방법

  1. 지질 및 지형 모델링
    • 연구 지역은 터키 남동부 체틴 댐 저수지로, 아라비아판과 타우루스판이 만나는 조산대에 위치함.
    • 댐과 저수지 주변의 주요 단층 구조와 산사태 가능 지역을 고려하여 3D 지형 모델을 생성함.
    • 1/25,000 축척의 디지털 지형 데이터를 사용하여 저수지 및 주변 지형을 모델링함.
  2. FLOW-3D 시뮬레이션 설정
    • VOF(Volume of Fluid) 방법을 사용하여 자유수면과 산사태 물질 간의 상호작용을 해석함.
    • RNG k−εk-\varepsilonk−ε 난류 모델을 적용하여 유체 흐름과 충격파 전파 특성을 평가함.
    • 부분적으로 잠긴 산사태(4900m 거리)와 완전히 노출된 산사태(800m 거리)를 각각 독립적으로 모델링하고, 이후 두 산사태가 동시에 발생하는 경우를 시뮬레이션함.
  3. 결과 비교 및 검증
    • 개별 산사태와 동시 산사태가 발생했을 때의 충격파 높이와 전파 속도를 비교함.
    • 실험 및 문헌 데이터를 활용하여 시뮬레이션 결과의 신뢰성을 검증함.
    • 충격파 간섭 현상이 발생하는 위치와 그 영향 범위를 분석함.
  4. 추가 분석
    • 충격파의 증폭(constructive interference) 또는 감쇠(destructive interference) 여부를 평가함.
    • 저수지 경계 및 댐 구조물과의 충돌이 파형 변화에 미치는 영향을 연구함.
    • 충격파의 전파 거리와 수심에 따른 에너지 소산 효과를 분석함.

주요 결과

  1. 산사태별 충격파 특성
    • 산사태 1(800m 거리, 육상 산사태): 34초 후 댐에 도달, 최대 파고 4.0m 발생.
    • 산사태 2(4900m 거리, 부분 침수 산사태): 205초 후 댐에 도달, 최대 파고 4.2m 발생.
    • 단일 산사태의 경우, 발생 위치에 따라 파고와 도달 시간이 달라짐.
  2. 동시 발생 산사태의 파랑 간섭 효과
    • 두 충격파가 97초 후 상호 충돌하며 최대 5.7m의 파고를 형성함.
    • 댐 인근에서 최종적으로 5.6m의 파고가 형성되었으며, 이는 개별 산사태보다 1.4m 증가한 수치임.
    • 예상과 달리 충격파가 서로 상쇄되지 않고 증폭(interference amplification) 되는 현상이 관찰됨.
  3. 저수지 내 충격파 감쇠 현상
    • 충격파는 저수지 지형과 충돌하면서 일부 감쇠됨.
    • 산사태에서 댐까지의 거리, 산사태 질량, 충격각도에 따라 파랑의 감쇠율이 달라짐.
    • 5km 이상 이동한 충격파는 경로 상 장애물에 의해 에너지가 감소하는 경향을 보임.
  4. 댐 안전성 및 설계 시 고려사항
    • 활성 단층 인근의 저수지는 동시 다발적 산사태로 인한 복합 충격파 위험을 고려해야 함.
    • 기존 단일 충격파 분석만으로는 실제 위험성을 과소평가할 가능성이 있음.
    • 향후 연구에서는 실규모 실험과 추가적인 CFD 모델링을 통해 댐 설계 및 운영 기준을 개선해야 함.

결론

  • FLOW-3D를 이용한 시뮬레이션 결과, 충격파는 개별 산사태보다 동시 산사태에서 더 높은 파고를 형성함.
  • 충격파의 간섭 효과로 인해 댐 인근에서 5.6m의 높은 파고가 발생할 가능성이 있음.
  • 산사태의 발생 위치, 저수지 지형, 파랑 간섭 효과 등을 종합적으로 고려해야 함.
  • 향후 연구에서는 다중 산사태 시뮬레이션을 추가로 수행하여 댐의 안전성을 정량적으로 평가해야 함.

Reference

  1. Abdollahi A, Mason HB (2019) Tsunami-induced pore water pressure response of unsaturated soil beds: numerical formulation and experiments. Comput Geotech 110:19–27. https://doi.org/10.1016/j.compgeo.2019.02.012
  2. Açıkbaş D, Akgül A, Erdoğan LT (1981) Güneydoğu Anadolu’nun hidrokarbon olanakları ve Baykan-Şirvan-Pervari yöresinin jeolojisi. TPAO Report, Ankara (in Turkish)
  3. Bazykina AY, Mikhailichenko SY, Fomin VV (2018) Numerical simulation of tsunami in the Black Sea caused by the earthquake on September 12, 1927. Phys Oceanogr 25:295–304. https://doi.org/10.22449/1573-160x-2018-4-295-304
  4. Bonaccorso A, Calvari S, Garf G et al (2003) Dynamics of the December 2002 fank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geophys Res Lett 30:1–4. https://doi.org/10.1029/2003GL017702
  5. Bregoli F, Bateman A, Medina V (2017) Tsunamis generated by fast granular landslides: 3D experiments and empirical predictors. J Hydraul Res 55:743–758. https://doi.org/10.1080/00221686.2017.1289259
  6. Brethour JM, Hirt CW (2009) Drift model for two-component fows. Flow Sci Inc 1–7
  7. Choudhury D (1973) Introduction to the renormalization group method and turbulence modeling. Fluent Incorporated
  8. Day S, Llanes P, Silver E et al (2015) Submarine landslide deposits of the historical lateral collapse of Ritter Island, Papua New Guinea. Mar Pet Geol 67:419–438. https://doi.org/10.1016/j.marpetgeo.2015.05.017
  9. De-Girolamo P, Cecioni C, Montagna F et al (2009) Numerical modelling of landslide generated tsunamis around a Conical Island. In: Proceedings of the Coastal Engineering Conference, pp 1287–1299
  10. Di Risio M, De Girolamo P, Bellotti G et al (2009) Landslide-generated tsunamis runup at the coast of a conical island: new physical model experiments. J Geophys Res Ocean 114:1–16. https://doi.org/10.1029/2008JC004858
  11. Ersoy H, Karahan M, Gelişli K et al (2019) Modelling of the landslideinduced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation. Eng Geol 249:112–128. https://doi.org/10.1016/j.enggeo.2018.12.025
  12. Ersoy H, Karahan M, Öztürk HH (2020) Baraj Rezervuarlarında Heyelanlardan Kaynaklanacak İtki Dalga Özelliklerinin Ampirik İlişkilerle Değerlendirilmesi: Borçka Barajı Örneği. DOAD 6:248–257. https://doi.org/10.21324/dacd.621377 (in Turkish with English abstract)
  13. Evers FM, Hager WH (2015) Impulse wave generation: comparison of free granular with mesh-packed slides. J Mar Sci Eng 3:100–110. https://doi.org/10.3390/jmse3010100
  14. Franco A, Moernaut J, Schneider-Muntau B, Strasser M, Gems B (2021a) Triggers and consequences of landslide-induced impulse waves–3D dynamic reconstruction of the Taan Fiord 2015 tsunami event. Eng Geol 294:106384. https://doi.org/10.1016/j.enggeo.2021.106384
  15. Franco A, Schneider-Muntau B, Roberts NJ, Clague JJ, Gems B (2021b) Geometry-based preliminary quantifcation of landslideınduced ımpulse wave attenuation in mountain lakes. Appl Sci 11:11614. https://doi.org/10.3390/app112411614
  16. Fritz HM, Hager WH, Minor HE (2004) Near feld characteristics of landslide generated impulse waves. J. Waterw. Port. Coast Ocean Eng 130:287–302
  17. Fritz HM, Mohammed F, Yoo J (2009) Lituya bay landslide impact generated mega-tsunami 50th anniversary. In: Cummins PR, Satake K, Kong LSL (eds) Tsunami science four years after the 2004 Indian Ocean Tsunami. Pageoph Topical Volumes. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0346-0064-4_9
  18. Gabl R, Seibl J, Gems B, Aufeger M (2015) 3-D numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir. Nat Hazards Earth Syst Sci 15:2617–2630. https://doi.org/10.5194/nhess-15-2617-2015
  19. Grilli ST, Vogelmann S, Watts P (2002) Development of a 3D numerical wave tank for modeling tsunami generation by underwater landslides. Eng Anal Bound Elem 26:301–313. https://doi.org/ 10.1016/S0955-7997(01)00113-8
  20. Heller V (2007) Landslide generated impulse waves: prediction of near feld characteristics. ETH Zurich, Zürich (Dissertation)
  21. Heller V, Bruggemann M, Spinneken J, Rogers BD (2016) Composite modelling of subaerial landslide-tsunamis in diferent water body geometries and novel insight into slide and wave kinematics. Coast Eng 109:20–41. https://doi.org/10.1016/j.coastaleng.2015. 12.004
  22. Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port, Coast Ocean Eng 136:145–155. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000037
  23. Heller V, Hager WH, Minor HE (2009) Landslide generated impulse waves in reservoirs: Basics and computation. Mitteilungen der Versuchsanstalt fur Wasserbau, Hydrol und Glaziologie an der Eidgenoss Tech Hochschule Zurich 1–172
  24. Hendron AJ, Patton FD (1987) The vaiont slide – a geotechnical analysis based on new geologic observations of the failure surface. Eng Geol 24:475–491. https://doi.org/10.1139/t87-023 Hibiki T, Ishii M (2003) One-demensional drift-fux model for twophase fow in a large diameter pipe. Int J Heat Mass Transf 46:1773–1790. https://doi.org/10.1016/S0017-9310(02)00473-8
  25. Huang BL, Wang SC (2017) Wave attenuation mechanism of crossplates applied in landslide-induced tsunami in river course. JMt Sci 14:649–661. https://doi.org/10.1007/s11629-016-4218-6Hughes SA (1993) Physical models and laboratory techniques in coastal engineering. World Scientifc
  26. Kafe J, Tuladhar BM (2018) Landslide-water interaction for partially submerged landslide. J Nepal Math Soc 1:22–29
  27. Karahan M, Ersoy H, Akgun A (2020a) A 3D numerical simulation-based methodology for assessment of landslide-generated impulse waves: a case study of the Tersun Dam reservoir (NE Turkey). Landslides 17:2777–2794. https://doi.org/10.1007/ s10346-020-01440-4
  28. Karahan M, Ersoy H, Anilan T (2020b) İtki dalgalarının oluşumunda ölçek etkisi, hareket süresi ve çarpma hızının model deneyler ve 3 boyutlu nümerik simülasyonlarla değerlendirilmesi (in Turkish with English abstract). GUFBED 10:514–525
  29. Kesseler M, Heller V, Turnbull B (2018) A laboratory-numerical approach for modelling scale efects in dry granular slides. Landslides 15:2145–2159. https://doi.org/10.1007/s10346-018-1023-zKim G-B (2012) Numerical simulation of three-dimensional tsunami generation by subaerial landslides. Texas A&M University (Dissertation)
  30. Kocaman S, Ozmen-Cagatay H (2015) Investigation of dam-break induced shock waves impact on a vertical wall. J Hydrol 525:1–12. https://doi.org/10.1016/j.jhydrol.2015.03.040
  31. Li G, Chen G, Li P, Jing H (2019) Efcient and accurate 3-D numerical modelling of landslide Tsunami. Water (switzerland) 11:1–17. https://doi.org/10.3390/w11102033
  32. Li DQ, Ding YN, Tang XS, Liu Y (2021a) Probabilistic risk assessment of landslide-induced surges considering the spatial variability of soils. Eng Geol 283:105976. https://doi.org/10.1016/j.enggeo.2020.105976
  33. Li Y, Pang R, Xu B, Wang X, Fan Q, Jiang F (2021b) GPDEM-based stochastic seismic response analysis of high concrete-faced rockfll dam with spatial variability of rockfll properties based on plastic deformation. Comput Geotech 139:104416. https://doi.org/10.1016/j.compgeo.2021.104416
  34. Liu PLF, Wu TR, Raichlen F et al (2005) Runup and rundown generated by three-dimensional sliding masses. J Fluid Mech 536:107–144. https://doi.org/10.1017/S0022112005004799
  35. Montagna F, Bellotti G, Di Risio M (2011) 3D numerical modeling of landslide-generated tsunamis around a conical island. Nat Hazards 58:591–608. https://doi.org/10.1007/s11069-010-9689-0
  36. Pang R, Xu B, Kong X, Zhou Y, Zou D (2018) Seismic performance evaluation of high CFRD slopes subjected to near-fault ground motions based on generalized probability density evolution method. Eng Geol 246:391–401. https://doi.org/10.1016/j.enggeo.2018.09.004
  37. Pang R, Xu B, Zhou Y, Song L (2021) Seismic time-history response and system reliability analysis of slopes considering uncertainty of multi-parameters and earthquake excitations. Comput Geotech 136:104245. https://doi.org/10.1016/j.compgeo.2021.104245
  38. Perinçek D (1980) IX. Bölge Hakkâri-Yüksekovaçukurca-BeytüşşebapUludere-Pervari dolayının jeolojisi. TPAO Report, Ankara (inTurkish)
  39. Perinçek D (1990) Hakkari ili ve dolayının stratigrafsi, GDA Türkiye(in Turkish). Bull Turk Assoc Pet Geol 2:21–68
  40. Perinçek D (2016) Cetin Baraj Gövdesi ve Dolayinin Jeolojisi ve Heyelan Araştırmasi. Türkiye Jeol Bülteni 59:167–210
  41. Perinçek D, Günay Y, Kozlu H (1987) New observation on strike-slip faults in east and southeast Anatolia. In: 7th Biannual Petroleum Congress of Turkey, Ankara Quecedo M, Pastor M, Herreros MI (2004) Numerical modelling of impulse wave generated by fast landslides. Int J Numer Methods Eng 59:1633–1656. https://doi.org/10.1002/nme.934
  42. Shen Y, Whittaker CN, Lane EM, Power W, Melville BW (2022) Interference efect on tsunami generation by segmented seafoor deformations. Ocean Eng 245:110244. https://doi.org/10.1016/j.oceaneng.2021.110244
  43. Shi C, An Y, Wu Q et al (2016) Numerical simulation of landslidegenerated waves using a soil-water coupling smoothed particle hydrodynamics model. Adv Water Resour 92:130–141. https://doi.org/10.1016/j.advwatres.2016.04.002
  44. Smith RC, Hill J, Collins GS et al (2016) Comparing approaches for numerical modelling of tsunami generation by deformable submarine slides. Ocean Model 100:125–140. https://doi.org/10.1016/j.ocemod.2016.02.007
  45. Spesivtsev P, Sinkov K, Osiptsov A (2013) Comparison of drift-fux and multi-fuid approaches to modeling of multiphase fow in oil and gas wells. In: WIT Transactions on Engineering Sciences, pp 89–99
  46. Tolun N (1954) Güneydoğu Anadolu’nun stratigrafsi ve tektoniği. MTA Report, Ankara (in Turkish)
  47. Utmanoğulları M (2012) Geology, subsurface geology and hydrocarbon possibilities of around of Şirvan Özpınar (Siirt). Çanakkale Onsekiz Mart University (Dissertation)
  48. Vacondio R, Mignosa P, Pagani S (2013) 3D SPH numerical simulation of the wave generated by the vajont rockslide. Adv Water Resour 59:146–156. https://doi.org/10.1016/j.advwatres.2013.06.009
  49. Wang J, Ward SN, Xiao L (2019) Tsunami Squares modeling of landslide generated impulsive waves and its application to the 1792 Unzen-Mayuyama mega-slide in Japan. Eng Geol 256:121–137. https://doi.org/10.1016/j.enggeo.2019.04.020
  50. Wang D, Wang Z, Li Y et al (2020) Characteristics and dynamic process analysis of the 2018 Mabian consequent landslide in Sichuan Province, China. Bull Eng Geol Environ 79:3337–3359. https://doi.org/10.1007/s10064-020-01784-0
  51. Wang W, Chen G, Yin K et al (2015) Modeling of landslide generated waves in Three Gorges Reservoir, China using SPH method. In: 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, ARC 2015: New Innovations and Sustainability, pp 1183–1188
  52. Xu WJ, Yao ZG, Luo YT, Dong XY (2020) Study on landslideinduced wave disasters using a 3D coupled SPH-DEM method. Bull Eng Geol Environ 79:467–483. https://doi.org/10.1007/s10064-019-01558-3
  53. Xu WJ, Wang YJ, Dong XY (2021) Infuence of reservoir water level variations on slope stability and evaluation of landslide tsunami.Bull Eng Geol Environ 80:4891–4907. https://doi.org/10.1007/s10064-021-02218-1
  54. Yavari-Ramshe S, Ataie-Ashtiani B (2016) Numerical modeling of subaerial and submarine landslide-generated tsunami waves–recent advances and future challenges. Landslides 13:1325–1368. https://doi.org/10.1007/s10346-016-0734-2
  55. Yin YP, Huang B, Chen X et al (2015) Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China. Landslides 12:355–364. https://doi.org/10.1007/s10346-015-0564-7
  56. Yılmaz Y, Yiğitbaş E (1990) GD Anadolu’nun farklı ofiyolitikmetamorfk birlikleri ve bunların jeolojik evrimdeki rolü (in Turkish). Türkiye 8:128–140 Zhang T, Yan E, Cheng J, Zheng Y (2010) Mechanism of reservoir water in the deformation of Hefeng landslide. J Earth Sci 21:870–875. https://doi.org/10.1007/s12583-010-0139-4
  57. Zhang Y, Li D, Chen L et al (2020) Numerical analysis of landslidegenerated impulse waves afected by the reservoir eometry. Eng Geol 266:1–15. https://doi.org/10.1016/j.enggeo.2019.105390
  58. Zhao T, Utili S, Crosta GB (2016) Rockslide and ımpulse wave modelling in the Vajont Reservoir by DEM-CFD analyses.Rock Mech Rock Eng 49:2437–2456. https://doi.org/10.1007/s00603-015-0731-0