Watershed area

Analysis on inundation characteristics by compound external forces in coastal areas

연안 지역의 복합 외력에 의한 침수 특성 분석

Taeuk KangaDongkyun SunbSangho Leec*
강 태욱a선 동균b이 상호c*
aResearch Professor, Disaster Prevention Research Institute, Pukyong National University, Busan, KoreabResearcher, Disaster Prevention Research Institute, Pukyong National University, Busan, KoreacProfessor, Department of Civil Engineering, Pukyong National University, Busan, Korea
a부경대학교 방재연구소 전임연구교수b부경대학교 방재연구소 연구원c부경대학교 공과대학 토목공학과 교수*Corresponding Author

ABSTRACT

연안 지역은 강우, 조위, 월파 등 여러가지 외력에 의해 침수가 발생될 수 있다. 이에 이 연구에서는 연안 지역에서 발생될 수 있는 단일 및 복합 외력에 의한 지역별 침수 특성을 분석하였다. 연구에서 고려한 외력은 강우와 폭풍 해일에 의한 조위 및 월파이고, 분석 대상지역은 남해안 및 서해안의 4개 지역이다. 유역의 강우-유출 및 2차원 지표면 침수 분석에는 XP-SWMM이 사용되었고, 폭풍 해일에 의한 외력인 조위 및 월파량 산정에는 ADCSWAN (ADCIRC와 UnSWAN) 모형과 FLOW-3D 모형이 각각 활용되었다. 단일 외력을 이용한 분석 결과, 대부분의 연안 지역에서는 강우에 의한 침수 영향보다 폭풍 해일에 의한 침수 영향이 크게 나타났다. 복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였다. 다만, 특정 지역에서는 복합 외력을 고려함에 따라 단일 외력만을 고려한 침수모의에서 나타나지 않았던 새로운 침수 영역이 발생하기도 하였다. 이러한 지역의 침수 피해 저감을 위해서는 복합 외력을 고려한 분석이 요구되는 것으로 판단되었다.키워드연안 지역 침수 분석 강우 폭풍 해일 복합 외력

The various external forces can cause inundation in coastal areas. This study is to analyze regional characteristics caused by single or compound external forces that can occur in coastal areas. Storm surge (tide level and wave overtopping) and rainfall were considered as the external forces in this study. The inundation analysis were applied to four coastal areas, located on the west and south coast in Republic of Korea. XP-SWMM was used to simulate rainfall-runoff phenomena and 2D ground surface inundation for watershed. A coupled model of ADCIRC and SWAN (ADCSWAN) was used to analyze tide level by storm surge and the FLOW-3D model was used to estimate wave overtopping. As a result of using a single external force, the inundation influence due to storm surge in most of the coastal areas was greater than rainfall. The results of using compound external forces were quite similar to those combined using one external force independently. However, a case of considering compound external forces sometimes created new inundation areas that didn’t appear when considering only a single external force. The analysis considering compound external forces was required to reduce inundation damage in these areas.KeywordsCoastal area Inundation analysis Rainfall Storm surge Compound external forces

MAIN

1. 서 론

우리나라는 반도에 위치하여 삼면이 바다로 둘러싸여 있는 지리적 특성을 가지고 있다. 이에 따라 해양 산업을 중심으로 부산, 인천, 울산 등 대규모의 광역도시가 발달하였을 뿐만 아니라, 창원, 포항, 군산, 목포, 여수 등의 중․소규모 도시들도 발달되어 있다. 또한, 최근에는 연안 지역이 바다를 전망으로 하는 입지 조건을 가지고 있어 개발 선호도가 높고, 이에 따라 부산시 해운대의 마린시티, 엘시티와 같은 주거 및 상업시설의 개발이 지속되고 있다(Kang et al., 2019b).

한편, 최근 기후변화에 따른 지구 온난화 현상으로 평균 해수면이 상승하고, 해수면 온도도 상승하면서 태풍 및 강우의 강도가 커지고 있어 전 세계적으로 자연 재해로 인한 피해가 증가하고 있다(Kim et al., 2016). 실제로 2020년에는 최장기간의 장마가 발생하여 부산, 울산은 물론, 전국에서 50명의 인명 피해와 3,489세대의 이재민이 발생하였다1). 특히, 연안 지역은 강우, 만조 시 해수면 상승, 폭풍 해일(storm surge)에 의한 월파(wave overtopping) 등 복합적인 외력(compound external forces)에 의해 침수될 수 있다(Lee et al., 2020). 일례로, 2016년 태풍 차바 시 부산시 해운대구의 마린시티는 강우와 폭풍 해일에 의한 월파가 발생함에 따라 대규모 침수를 유발하였다(Kang et al., 2019b). 또한, 2020년 7월 23일에 부산에서는 시간당 81.6 mm의 집중호우와 약최고고조위를 상회하는 만조가 동시에 발생하였고, 이로 인해 감조 하천인 동천의 수위가 크게 상승하여 하천이 범람하였다(KSCE, 2021).

연안 지역의 복합 외력을 고려한 침수 분석에 관한 사례로서, 우선 강우와 조위를 고려한 연구 사례는 다음과 같다. Han et al. (2014)은 XP-SWMM을 이용하여 창원시 배수 구역을 대상으로 침수 모의를 수행하였는데, 연안 도시의 침수 모의에는 조위의 영향을 반드시 고려해야 함을 제시하였다. Choi et al. (2018a)은 경남 사천시 선구동 일대에 대하여 초과 강우 및 해수면 상승 시나리오를 조합하여 침수 분석을 수행하였다. Choi et al. (2018b)은 XP-SWMM을 이용하여 여수시 연등천 및 여수시청 지역에 대하여 강우 시나리오와 해수위 상승 시나리오를 고려한 복합 원인에 의한 침수 모의를 수행하여 홍수예경보 기준표를 작성하였다. 한편, 강우, 조위, 월파를 고려한 연구 사례로서, Song et al. (2017)은 부산시 해운대구 수영만 일원에 대하여 XP-SWMM으로 월파량의 적용 유무에 따른 침수 면적을 비교하였다. Suh and Kim (2018)은 부산시 마린시티 지역을 대상으로 태풍 차바 때 EurOtop의 경험식을 ADSWAN에 적용하여 월파량을 반영하였다. Chen et al. (2017)은 TELEMAC-2D 및 SWMM을 기반으로 한 극한 강우, 월파 및 조위를 고려하여 중국 해안 원자력 발전소의 침수를 예측하고 분석하기 위한 결합 모델을 개발한 바 있다. 한편, Lee et al. (2020)은 수리‧수문학 분야와 해양공학 분야에서 사용되는 물리 모형의 기술적 연계를 통해 연안 지역의 침수 모의의 재현성을 높였다.

상기의 연구들은 공통적으로 연안 지역에 대하여 복합 외력을 고려했을 때 발생되는 침수 현상의 재현 또는 예측을 목적으로 수행되었다. 이 연구는 이와 차별하여 복합 외력을 고려하는 경우 나타날 수 있는 연안 지역의 침수 특성 분석을 목적으로 수행되었다. 이를 위해 단일 외력을 독립적으로 고려했을 때 발생되는 침수 양상과 동시에 고려하는 경우의 침수 현상을 비교, 분석하였다. 복합 외력에 의한 지역적 침수 특성 분석은 우리나라 남해안과 서해안에 위치한 4개 지역에 대하여 적용되었다.

1) 장연제, 47일째 이어진 긴 장마, 50명 인명피해… 9년만에 최대, 동아닷컴, 2020년 8월 9일 수정, 2021년 3월 4일 접속, https://www.donga.com/news/article/all/20200809/102369692/2

2. 연구 방법

2.1 연안 지역의 침수 영향 인자

연안 지역의 침수는 크게 세 가지의 메카니즘으로 발생될 수 있다. 우선, 연안 지역은 바다와 인접하고 있기 때문에 그 영향을 직접적으로 받는다. Kim (2018)에 의하면, 연안 지역의 침수는 폭풍 해일에 의해 상승한 조위와 월파로 인해 발생될 수 있다(Table 1). 특히, 경상남도의 창원과 통영, 인천광역시의 소래포구 어시장 등 남해안 및 서해안 지역의 일부는 백중사리, 슈퍼문(super moon) 등 만조 시 조위의 상승으로 인한 침수가 발생하는 지역이 존재한다(Kang et al., 2019a). 두 번째는 강우에 의한 내수 침수 발생이다. ME (2011)에서는 도시 지역의 우수 관거를 10 ~ 30년 빈도로 계획하도록 지정하고 있고, 펌프 시설은 30 ~ 50년 빈도의 홍수를 배수시킬 수 있도록 정하고 있다. 하지만 최근에는 기후변화의 영향으로 도시 지역 배수시설의 설계 빈도를 초과하는 강우가 빈번하게 나타나고 있다. 실제로 2016년의 태풍 차바 시 울산 기상관측소에 관측된 시간 최대 강우량은 106.0 mm로서, 이는 300년 빈도 이상의 강우량에 해당하였다(Kang et al., 2019a). 따라서 배수시설의 설계 빈도 이상의 강우는 연안 도시 지역의 침수를 유발할 수 있다. 세 번째, 하천이 인접한 연안 도시에서는 하천의 범람으로 인해 침수가 발생할 수 있다. 하천의 경우, 기본계획이 수립되기는 하지만, 설계 빈도를 상회하는 강우의 발생, 제방, 수문 등 홍수 방어시설의 기능 저하, 예산 등의 문제로 하천기본계획 이행의 지연 등에 의해 범람할 가능성이 존재한다.

Table 1.

Type of natural hazard damage in coastal areas (Kim, 2018)

ItemRisk factor
Facilities damage∙ Breaking of coastal facilities by wave
– Breakwater, revetment, lighters wharf etc.
∙ Local scouring at the toe of the structures by wave
∙ Road collapse by wave overtopping
Inundation damage∙ Inundation damage by wave overtopping
∙ Inundation of coastal lowlands by storm surge
Erosion damage∙ Backshore erosion due to high swell waves
∙ Shoreline changes caused by construction of coastal erosion control structure
∙ Sediment transport due to the construction of artificial structures

상기의 내용을 종합하면, 연안 지역은 조위 및 월파에 의한 침수, 강우에 의한 내수 침수, 하천 범람에 의한 침수로 구분될 수 있다. 이 연구에서는 폭풍 해일에 의한 조위 상승 및 월파와 강우를 연안 지역의 침수 유발 외력으로 고려하였다. 하천 범람의 경우, 상대적으로 사례가 희소하여 제외하였다.

2.2 복합 외력을 고려한 침수 모의 방법

이 연구에서는 조위 및 월파와 강우를 연안 지역의 침수 발생에 관한 외력 조건으로 고려하였다. 따라서 해당 외력 조건을 고려하여 침수 분석을 수행할 수 있어야 한다. 이와 관련하여 Lee et al. (2020)은 Fig. 1과 같이 수리‧수문 및 해양공학 분야에서 사용되는 물리 기반 모형의 연계를 통해 조위, 월파, 강우를 고려한 침수 분석 방법을 제시하였고, 이 연구에서는 해당 방법을 이용하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F1.jpg
Fig. 1.

Connection among the models for inundation analysis in coastal areas (Lee et al., 2020)

우선, 태풍에 의해 발생되는 폭풍 해일의 영향을 분석하기 위해서는 태풍에 의해 발생되는 기압 강하, 해상풍, 진행 속도 등을 고려하여 해수면의 변화 양상 및 조석-해일-파랑을 충분히 재현 가능해야 한다. 이 연구에서는 국내․외에서 검증 및 공인된 폭풍 해일 모형인 ADCIRC 모형과 파랑 모형인 UnSWAN이 결합된 ADCSWAN (coupled model of ADCIRC and UnSWAN)을 이용하였다. 정수압 가정의 ADCSWAN은 월파량 산정에 단순 경험식을 적용하는 단점이 있지만 넓은 영역을 모의할 수 있고, FLOW-3D는 해안선의 경계를 고해상도로 재현이 가능하다. 이에 연구에서는 먼 바다 영역에 대해서는 ADCSWAN을 이용하여 분석하였고, 연안 주변의 바다 영역과 월파량 산정에 대해서는 FLOW-3D 모형을 이용하였다. 한편, 연안 지역의 침수 모의를 위해서는 유역에서 발생하는 강우-유출 현상과 우수 관거 등의 배수 체계에 대한 분석이 가능해야 한다. 또한, 배수 체계로부터 범람한 물이 지표면을 따라 흘러가는 현상을 해석할 수 있어야 하고, 바다의 조위 및 월파량을 경계조건으로 반영할 수 있어야 한다. 이 연구에서는 이러한 현상을 모의할 수 있고, 도시 침수 모의에 활용도가 높은 XP-SWMM을 이용하였다.

2.3 침수 분석 대상지역

연구의 대상지역은 조위 및 월파에 의한 침수와 강우에 의한 내수 침수의 영향이 복합적으로 발생할 수 있는 남해안과 서해안에 위치한 4개 지역이다. Table 2는 침수 분석 대상지역을 정리하여 나타낸 표이고, Fig. 2는 각 지역의 유역 경계를 나타낸 그림이다.

Table 2.

Target region for inundation analysis

ClassificationAdministrative districtTarget regionArea
(km2)
Main cause of inundationPump
facility
Number of
major outfall
The south
coast
Haundae-gu, BusanMarine City area0.53Wave overtopping9
Haundae-gu, BusanCentum City area4.76Poor interior drainage at high tide level12
The west
coast
GunsanJungang-dong area0.79Poor interior drainage at high tide level23
BoryeongOcheon Port area0.41High tide level5

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F2.jpg
Fig. 2.

Watershed area

남해안의 분석 대상지역 중 부산시 해운대구의 마린시티는 바다 조망을 중심으로 조성된 주거지 및 상업시설 중심의 개발지역이다. 마린시티는 2016년 태풍 차바 및 2018년 태풍 콩레이 등 태풍 내습 시 월파에 의한 해수 월류로 인해 도로 및 상가 일부가 침수를 겪은 지역이다. 부산시 해운대구의 센텀시티는 과거 수영만 매립지였던 곳에 조성된 주거지 및 상업시설 중심의 신도시 지역이다. 센텀시티 유역의 북쪽은 해발고도 El. 634 m의 장산이 위치하는 등 산지 특성도 가지고 있어 상대적으로 유역 면적이 넓고, 배수시설의 규모도 크고 복잡하다. 하지만 수영강 하구의 저지대 지역에 위치함에 따라 강우 시 내수 배제가 불량하고, 특히 만조 시 침수가 잦은 지역이다.

서해안 분석 대상지역 중 전라북도 군산시의 중앙동 일원은 군산시 내항 내측에 조성된 구도시로서, 금강 및 경포천 하구에 위치하는 저지대이다. 이에 따라 군산시 풍수해저감종합계획에서는 해당 지역을 3개의 영역으로 구분하여 내수재해 위험지구(영동지구, 중동지구, 경암지구)로 지정하였고, 이 연구에서는 해당 지역을 모두 고려하였다. 한편, 군산시 중앙동 일원은 특히, 만조 시 내수 배제가 매우 불량하여 2개의 펌프시설이 운영되고 있다. 충청남도 보령시의 오천면에 위치한 오천항은 배후의 산지를 포함한 소규모 유역에 위치한다. 서해안의 특성에 따라 조석 간만의 차가 크고, 특히 태풍 내습 시 폭풍 해일에 의한 침수가 잦은 지역이다. 산지의 강우-유출수는 복개된 2개의 수로를 통해 바다로 배제되고, 상가들이 위치한 연안 주변 지역에는 강우-유출수 배제를 위한 3개의 배수 체계가 구성되어 있다.

3. 연구 결과

3.1 침수 모의 모형 구축

XP-SWMM을 이용하여 분석 대상지역별 침수 모의 모형을 구축하였다. 적절한 침수 분석 수행을 위해 지역별 수치지형도, 도시 공간 정보 시스템(urban information system, UIS), 하수 관망도 등의 수치 자료와 현장 조사를 통해 유역의 배수 체계를 구성하였다. 그리고 2차원 침수 분석을 위해 무인 드론 및 육상 라이다(LiDAR) 측량을 수행하여 평면해상도가 1 m 이하인 고해상도 수치지형모형(digital terrain model, DTM)을 구성하였고, 침수 모의 격자를 생성하였다.

Fig. 3은 XP-SWMM의 상세 구축 사례로서 부산시 마린시티 배수 유역에 대한 소유역 및 관거 분할 등을 통해 구성한 배수 체계와 고해상도 측량 결과를 이용하여 구성한 수치표면모형(digital surface model, DSM)을 나타낸다. Fig. 4는 각 대상지역에 대해 XP-SWMM을 이용하여 구축한 침수 모의 모형을 나타낸다. 침수 분석을 위해서는 침수 모의 영역에 대한 설정이 필요한데, 다수의 사전 모의를 통해 유역 내에서 침수가 발생되는 지역을 검토하여 결정하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F3.jpg
Fig. 3.

Analysis of watershed drainage system and high-resolution survey for Marine City

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F4.jpg
Fig. 4.

Simulation model for inundation analysis by target region using XP-SWMM

한편, 이 연구에서는 월파량 및 조위의 산정 과정과 침수 모의 모형의 보정에 관한 내용 등은 다루지 않았다. 관련된 내용은 선행 연구인 Kang et al. (2019b)와 Lee et al. (2020)을 참조할 수 있다.

3.2 침수 모의 설정

3.2.1 분석 방법

복합 외력에 의한 침수 영향을 검토하기 위해서는 외력 조건에 대한 빈도와 지속기간의 설정이 필요하다. 이 연구에서는 재해 현상이 충분히 나타날 수 있도록 강우와 조위 및 월파의 빈도를 모두 100년으로 설정하였다. 이때, 조위와 월파량의 산정에는 만조(약최고고조위) 시, 100년 빈도에 해당하는 태풍 내습에 따른 폭풍 해일의 발생 조건을 고려하였다.

지역별 강우 발생 특성과 유역 특성을 고려하기 위해 MOIS (2017)의 방재성능목표 기준에 따라 임계 지속기간을 결정하여 대상지역별 강우의 지속기간으로 설정하였다. 이때, 강우의 시간 분포는 MLTM (2011)의 Huff 3분위를 이용하였다. 그리고 조위와 월파의 경우, 일반적인 폭풍 해일의 지속기간을 고려하여 5시간으로 결정하였다. 한편, 침수 모의를 위한 계산 시간 간격, 2차원 모의 격자 등의 입력자료는 분석 대상지역의 유역 규모와 침수 분석 대상 영역을 고려하여 결정하였다. 참고로 침수 분석에 사용된 수치지형모형은 1 m 급의 고해상도로 구성되었지만, 2차원 침수 모의 격자의 크기는 지역별로 3 ~ 4 m이다. 이는 연구에서 사용된 XP-SWMM의 격자 수(100,000개) 제약에 따른 설정이나, Sun (2021)은 민감도 분석을 통해 2차원 침수 분석을 위한 적정 격자 크기를 3 ~ 4.5 m로 제시한 바 있다.

Table 3은 이 연구에서 설정한 침수 모의 조건과 분석 방법을 정리하여 나타낸 표이다.

Table 3.

Simulation condition and method

ClassificationTarget regionSimulation conditionSimulation method
RainfallStorm surgeSimulation time interval2D
grid size
Return
period
DurationTemporal
distribution
Return
period
DurationWatershed
routing
Channel
routing
2D
inundation
The south coastMarine City area100 yr1 hr3rd quartile
of Huff’s
method
1005 hr5 min10 sec1 sec3 m
Centum City area1 hr1005 min10 sec1 sec4 m
The west coastJungang-dong area2 hr1005 min10 sec1 sec3.5 m
Ocheon Port area1 hr1001 min10 sec1 sec3 m

3.2.2 복합 재해의 동시 고려

이 연구의 대상지역들은 모두 소규모의 해안가 도시지역이고, 이러한 지역에 대한 강우의 임계지속기간은 1시간 ~ 2시간이나, 이 연구에서 분석한 폭풍 해일의 지속기간은 5시간으로 강우의 지속기간과 폭풍 해일의 지속기간이 상이하다. 이에 이 연구에서는 서로 다른 지속기간을 가진 강우와 폭풍 해일 또는 조위를 고려하기 위해 강우의 중심과 폭풍 해일의 중심이 동일한 시간에 위치하도록 설정하였다(Fig. 5).

XP-SWMM은 폭풍 해일이 지속되는 5시간 전체를 모의하도록 설정하였고, 폭풍 해일이 가장 큰 시점에 강우의 중심이 위치하도록 강우 발생 시기를 결정하였다. 다만, 부산 마린시티의 경우, 폭풍 해일에 의한 피해가 주로 월파에 의해 발생되므로 강우의 중심과 월파의 중심을 일치시켰고(Fig. 5(a)), 상대적으로 조위의 영향이 큰 3개 지역은 강우의 중심과 조위의 중심을 맞추었다. Fig. 5(b)는 군산시 중앙동 지역의 복합 외력에 의한 침수 분석에 사용된 강우와 조위의 조합이다.

한편, 100년 빈도의 확률강우량만을 고려한 침수 분석에서는 유역 유출부의 경계조건으로 우수 관거의 설계 조건을 고려하여 약최고고조위가 일정하게 유지되도록 설정하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F5.jpg
Fig. 5.

Consideration of external force conditions with different durations

3.2.3 XP-SWMM의 월파량 고려

XP-SWMM에 ADCSWAN 및 FLOW-3D 모형에 의해 산정된 월파량을 입력하기 위해 해안가 지역에 절점을 생성하여 월파 현상을 구현하였다. XP-SWMM에서 월파량을 입력하기 위한 절점의 위치는 FLOW-3D 모형에서 월파량을 산정한 격자의 중심 위치이다.

Fig. 6(a)는 마린시티 지역에 대한 월파량 입력 지점을 나타낸 것으로서, 유역 경계 주변에 동일 간격으로 원으로 표시한 지점들이 해당된다. Fig. 6(b)는 XP-SWMM에 월파량 입력 지점들을 반영하고, 하나의 절점에 월파량 시계열을 입력한 화면을 나타낸다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F6.jpg
Fig. 6.

Considering wave overtopping on XP-SWMM

3.3 침수 모의 결과

3.3.1 단일 외력에 의한 침수 모의 결과

Fig. 7은 단일 외력을 고려한 지역별 침수 모의 결과이다. 즉, Fig. 7의 왼쪽 그림들은 지역별로 100년 빈도 강우에 의한 침수 모의 결과를 나타내고, Fig. 7의 오른쪽 그림들은 만조 시 100년 빈도 폭풍 해일에 의한 침수 모의 결과이다. 대체로 강우에 의한 침수 영역은 유역 중․상류 지역의 유역 전반에 걸쳐 발생하였고, 폭풍 해일에 의한 침수 영역은 해안가 전면부에 위치하는 것을 볼 수 있다. 이는 폭풍 해일에 의한 조위 상승과 월파의 영향이 상류로 갈수록 감소하기 때문이다.

한편, 4개 지역 모두에서 공통적으로 강우에 비해 폭풍 해일에 의한 침수 영향이 상대적으로 크게 분석되었다. 이러한 결과는 연안 지역의 경우, 폭풍 해일에 대비한 침수 피해 저감 노력이 보다 중요함을 의미한다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F7.jpg
Fig. 7.

Simulation results by single external force (left: rainfall, right: storm surge)

3.3.2 복합 외력에 의한 침수 모의 결과

Fig. 8은 복합 외력을 고려한 지역별 침수 모의 결과이다. 즉, 강우 및 폭풍 해일을 동시에 고려함에 따라 발생된 침수 영역을 나타낸다. 복합 외력을 고려하는 경우, 단일 외력만을 고려한 분석 결과(Fig. 7)보다 침수 영역은 넓어졌고, 침수심은 깊어졌다.

복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였고, 이는 일반적으로 예상할 수 있는 결과이다. 주목할만한 결과는 군산시 중앙동의 침수 분석에서 나타났다. 즉, 군산시 중앙동의 경우, 단일 외력만을 고려한 침수 모의 결과에서 나타나지 않았던 새로운 침수 영역이 발생하였다(Fig. 8(c)). 이와 관련된 상세 내용은 3.4절의 고찰에서 기술하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F8.jpg
Fig. 8.

Simulation results by compound external forces

3.4 결과 고찰

외력 조건별 침수의 영향을 정량적으로 비교하기 위해 침수 면적을 이용하였다. 이 연구에서는 강우만에 의해 유발된 침수 면적을 기준(기준값: 1)으로 하고, 폭풍 해일(조위+월파량)에 의한 침수 면적과 복합 외력에 의한 침수 면적의 상대적 비율로 분석하였다(Table 4).

Table 4.

Impact evaluation for inundation area by external force

ConditionMarine City, BusanCentum City, BusanJungang-dong area,
Gunsan
Ocheon Port area,
Boryeong
Inundation area
(km2)
RateInundation area
(km2)
RateInundation area
(km2)
RateInundation area
(km2)
Rate
Single
external force
Rainfall (①)0.01641.00.07591.00.04571.00.01751.0
Storm surge (②)0.03632.210.06850.900.14633.200.04122.35
Compound
external forces
Combination
(①+②)
0.05243.190.15051.980.26325.760.04732.70

분석 결과, 부산 센텀시티를 제외한 3개 지역은 모두 폭풍 해일에 의한 침수 면적이 강우에 의한 침수 면적에 비해 2.2 ~ 3.2배 넓은 것으로 분석되었다. 한편, 복합 외력에 의한 침수 면적은 마린시티와 센텀시티의 경우, 각각의 외력에 의한 침수 면적의 합과 유사하게 나타났다. 이는 각각의 외력에 의한 침수 영역이 상이하여 거의 중복되지 않음을 의미한다. 반면에, 오천항에서는 각각의 외력에 의한 침수 면적의 합이 복합 외력에 의한 면적보다 크게 나타났다. 이는 오천항의 경우, 유역면적이 작고 배수 체계가 비교적 단순하여 강우와 폭풍 해일에 의한 침수 영역이 중복되기 때문인 것으로 분석되었다(Fig. 7(d)).

군산시 중앙동 일대의 경우, 복합 외력에 의한 침수 면적이 각각의 독립적인 외력 조건에 의한 침수 면적의 합에 비해 37.1% 크게 나타났다. 이러한 현상의 원인을 분석하기 위해 복합 외력 조건에서만 나타난 우수 관거(Fig. 8(c)의 A 구간)에 대하여 종단을 검토하였다(Fig. 9). Fig. 9(a)는 강우만에 의해 분석된 우수 관거 내 흐름 종단을 나타내고, Fig. 9(b)는 폭풍 해일만에 의한 우수 관거의 종단이다. 그림을 통해 각각의 독립적인 외력 조건 하에서는 해당 구간에서 침수가 발생되지 않은 것을 볼 수 있다. 다만, 강우만을 고려하더라도 우수 관거는 만관이 된 상태를 확인할 수 있다(Fig. 9(a)). 반면에, 만관 상태에서 폭풍 해일이 함께 고려됨에 따라 해수 범람과 조위 상승에 의해 우수 배제가 불량하게 되었고, 이로 인해 침수가 유발된 것으로 분석되었다(Fig. 9(c)). 따라서 이러한 지역은 복합 외력에 대한 취약지구로 판단할 수 있고, 단일 외력의 고려만으로는 침수를 예상하기 어려운 지역임을 알 수 있다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F9.jpg
Fig. 9.

A part of drainage profiles by external force in Jungang-dong area, Gunsan

4. 결 론

이 연구에서는 외력 조건에 따른 연안 지역의 침수 특성을 분석하였다. 연구에서 고려된 외력 조건은 두 가지로서 강우와 폭풍 해일(조위와 월파)이다. 분석 대상 연안 지역으로는 남해안에 위치하는 2개 지역(부산시 해운대구의 마린시티와 센텀시티)과 서해안의 2개 지역(군산시 중앙동 일원 및 보령시 오천항)이 선정되었다.

복합 외력을 고려한 연안 지역의 침수 모의를 위해서는 유역의 강우-유출 현상과 바다의 조위 및 월파량을 경계조건으로 반영할 수 있는 침수 모의 모형이 요구되는데, 이 연구에서는 XP-SWMM을 이용하였다. 한편, 조위 및 월파량 산정에는 ADCSWAN (ADCIRC와 UnSWAN) 및 FLOW-3D 모형이 이용되었다.

연안 지역별 침수 모의는 100년 빈도의 강우와 폭풍 해일을 독립적으로 고려한 경우와 복합적으로 고려한 경우를 구분하여 수행되었다. 우선, 외력을 독립적으로 고려한 결과, 대체로 폭풍 해일만 고려한 경우가 강우만 고려한 경우에 비해 침수 영향이 크게 나타났다. 따라서 연안 지역의 경우, 폭풍 해일에 의한 침수 피해 방지 계획이 상대적으로 중요한 것으로 분석되었다. 두 번째, 복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였다. 다만, 특정 지역에서는 복합 외력을 고려함에 따라 단일 외력만을 고려한 침수 모의에서 나타나지 않았던 새로운 침수 영역이 발생하기도 하였다. 이러한 결과는 독립적인 외력 조건에서는 우수 관거가 만관 또는 그 이하의 상태가 되지만, 두 가지의 외력이 동시에 고려됨에 따라 우수 관거의 통수능 한계를 초과하여 나타났다. 이러한 지역은 복합 외력에 대한 취약지구로 판단되었고, 해당 지역의 적절한 침수 방지 대책 수립을 위해서는 복합적인 외력 조건이 고려되어야 함을 시사하였다.

현행, 자연재해저감종합계획에서는 침수와 관련된 재해 원인 지역을 내수재해, 해안재해, 하천재해 등으로 구분하고 있다. 하지만 이 연구에서 검토된 바와 같이, 연안 지역의 침수 원인은 복합적으로 나타날 뿐만 아니라, 복합 외력을 고려함에 따라 추가적으로 나타날 수 있는 침수 위험 지역도 존재한다. 따라서 기존의 획일적인 재해 원인의 구분보다는 지역의 특성에 맞는 복합적인 재해 원인을 검토할 필요가 있음을 제안한다.

Acknowledgements

본 논문은 행정안전부 극한 재난대응 기반기술 개발사업의 일환인 “해안가 복합재난 위험지역 피해저감 기술개발(연구과제번호: 2018-MOIS31-008)”의 지원으로 수행되었습니다.

References

1
Chen, X., Ji, P., Wu, Y., and Zhao, L. (2017). “Coupling simulation of overland flooding and underground network drainage in a coastal nuclear power plant.” Nuclear Engineering and Design, Vol. 325, pp. 129-134. 10.1016/j.nucengdes.2017.09.028
2
Choi, G., Song, Y., and Lee, J. (2018a). “Analysis of flood occurrence type according to complex characteristics of coastal cities.” 2018 Conference of the Korean Society of Hazard Mitigation, KOSHAM, p. 180.
3
Choi, J., Park, K., Choi, S., and Jun, H. (2018b). “A forecasting and alarm system for reducing damage from inland inundation in coastal urban areas: A case study of Yeosu City.” Journal of Korean Society of Hazard Mitigation, Vol. 18, No. 7, pp. 475-484. 10.9798/KOSHAM.2018.18.7.475
4
Han, H., Kim, Y., Kang, N., and, Kim, H.S. (2014). “Inundation analysis of a coastal urban area considering tide level.” 2014 Conference of Korean Society of Civil Engineers, KSCE, pp. 1507-1508.
5
Kang, T., Lee, S., and Sun, D. (2019a). “A technical review for reducing inundation damage to high-rise and underground-linked complex buildings in Coastal Areas (1): Proposal for analytical method.” Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 35-43. 10.9798/KOSHAM.2019.19.5.35
6
Kang, T., Lee, S., Choi, H., and Yoon, S. (2019b). “A technical review for reducing inundation damage to high-rise and underground-linked complex buildings in coastal areas (2): Case analysis for application.” Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 45-53. 10.9798/KOSHAM.2019.19.5.45
7
Kim, J.O., Kim, J.Y., and Lee, W.H. (2016). “Analysis on complex disaster information contents for building disaster map of coastal cities.” Journal of the Korean Association of Geographic Information Studies, Vol. 19, No. 3, pp. 43-60. 10.11108/kagis.2016.19.3.043
8
Kim, P.J. (2018). Improvement measures on the risk area designation of coastal disaster in consideration of natural hazards. Ph.D. dissertation, Chonnam National University.
9
Korean Society of Civil Engineers (KSCE) (2021). A report on the cause analysis and countermeasures establishment for Dongcheon flooding and lowland inundation. Busan/Ulsan, Gyungnam branch.
10
Lee, S., Kang, T., Sun, D., and Park, J.J. (2020). “Enhancing an analysis method of compound flooding in coastal areas by linking flow simulation models of coasts and watershed.” Sustainability, Vol. 12, No. 16, 6572. 10.3390/su12166572
11
Ministry of Environment (ME) (2011). Standard for sewerage facilities. Korea Water and Wastewater Works Association.
12
Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). Improvement and complementary research for probability rainfall.
13
Ministry of the Interior and Safety (MOIS) (2017). Criteria for establishment and operation of disaster prevention performance target by region: Considering future climate change impacts.
14
Song, Y., Joo, J., Lee, J., and Park, M. (2017). “A study on estimation of inundation area in coastal urban area applying wave overtopping.” Journal of Korean Society of Hazard Mitigation, Vol. 17, No. 2, pp. 501-510. 10.9798/KOSHAM.2017.17.2.501
15
Suh, S.W., and Kim, H.J. (2018). “Simulation of wave overtopping and inundation over a dike caused by Typhoon Chaba at Marine City, Busan, Korea.” Journal of Coastal Research, Vol. 85, pp. 711-715.
16
Sun, D. (2021). Sensitivity analysis of XP-SWMM for inundation analysis in coastal area. M.Sc. Thesis, Pukyong National University.

Watershed area

Analysis on inundation characteristics by compound external forces in coastal areas

연안 지역의 복합 외력에 의한 침수 특성 분석

Taeuk KangaDongkyun SunbSangho Leec*
강 태욱a선 동균b이 상호c*
aResearch Professor, Disaster Prevention Research Institute, Pukyong National University, Busan, KoreabResearcher, Disaster Prevention Research Institute, Pukyong National University, Busan, KoreacProfessor, Department of Civil Engineering, Pukyong National University, Busan, Korea
a부경대학교 방재연구소 전임연구교수b부경대학교 방재연구소 연구원c부경대학교 공과대학 토목공학과 교수*Corresponding Author

ABSTRACT

연안 지역은 강우, 조위, 월파 등 여러가지 외력에 의해 침수가 발생될 수 있다. 이에 이 연구에서는 연안 지역에서 발생될 수 있는 단일 및 복합 외력에 의한 지역별 침수 특성을 분석하였다. 연구에서 고려한 외력은 강우와 폭풍 해일에 의한 조위 및 월파이고, 분석 대상지역은 남해안 및 서해안의 4개 지역이다. 유역의 강우-유출 및 2차원 지표면 침수 분석에는 XP-SWMM이 사용되었고, 폭풍 해일에 의한 외력인 조위 및 월파량 산정에는 ADCSWAN (ADCIRC와 UnSWAN) 모형과 FLOW-3D 모형이 각각 활용되었다. 단일 외력을 이용한 분석 결과, 대부분의 연안 지역에서는 강우에 의한 침수 영향보다 폭풍 해일에 의한 침수 영향이 크게 나타났다. 복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였다. 다만, 특정 지역에서는 복합 외력을 고려함에 따라 단일 외력만을 고려한 침수모의에서 나타나지 않았던 새로운 침수 영역이 발생하기도 하였다. 이러한 지역의 침수 피해 저감을 위해서는 복합 외력을 고려한 분석이 요구되는 것으로 판단되었다.키워드연안 지역 침수 분석 강우 폭풍 해일 복합 외력

The various external forces can cause inundation in coastal areas. This study is to analyze regional characteristics caused by single or compound external forces that can occur in coastal areas. Storm surge (tide level and wave overtopping) and rainfall were considered as the external forces in this study. The inundation analysis were applied to four coastal areas, located on the west and south coast in Republic of Korea. XP-SWMM was used to simulate rainfall-runoff phenomena and 2D ground surface inundation for watershed. A coupled model of ADCIRC and SWAN (ADCSWAN) was used to analyze tide level by storm surge and the FLOW-3D model was used to estimate wave overtopping. As a result of using a single external force, the inundation influence due to storm surge in most of the coastal areas was greater than rainfall. The results of using compound external forces were quite similar to those combined using one external force independently. However, a case of considering compound external forces sometimes created new inundation areas that didn’t appear when considering only a single external force. The analysis considering compound external forces was required to reduce inundation damage in these areas.KeywordsCoastal area Inundation analysis Rainfall Storm surge Compound external forces

MAIN

1. 서 론

우리나라는 반도에 위치하여 삼면이 바다로 둘러싸여 있는 지리적 특성을 가지고 있다. 이에 따라 해양 산업을 중심으로 부산, 인천, 울산 등 대규모의 광역도시가 발달하였을 뿐만 아니라, 창원, 포항, 군산, 목포, 여수 등의 중․소규모 도시들도 발달되어 있다. 또한, 최근에는 연안 지역이 바다를 전망으로 하는 입지 조건을 가지고 있어 개발 선호도가 높고, 이에 따라 부산시 해운대의 마린시티, 엘시티와 같은 주거 및 상업시설의 개발이 지속되고 있다(Kang et al., 2019b).

한편, 최근 기후변화에 따른 지구 온난화 현상으로 평균 해수면이 상승하고, 해수면 온도도 상승하면서 태풍 및 강우의 강도가 커지고 있어 전 세계적으로 자연 재해로 인한 피해가 증가하고 있다(Kim et al., 2016). 실제로 2020년에는 최장기간의 장마가 발생하여 부산, 울산은 물론, 전국에서 50명의 인명 피해와 3,489세대의 이재민이 발생하였다1). 특히, 연안 지역은 강우, 만조 시 해수면 상승, 폭풍 해일(storm surge)에 의한 월파(wave overtopping) 등 복합적인 외력(compound external forces)에 의해 침수될 수 있다(Lee et al., 2020). 일례로, 2016년 태풍 차바 시 부산시 해운대구의 마린시티는 강우와 폭풍 해일에 의한 월파가 발생함에 따라 대규모 침수를 유발하였다(Kang et al., 2019b). 또한, 2020년 7월 23일에 부산에서는 시간당 81.6 mm의 집중호우와 약최고고조위를 상회하는 만조가 동시에 발생하였고, 이로 인해 감조 하천인 동천의 수위가 크게 상승하여 하천이 범람하였다(KSCE, 2021).

연안 지역의 복합 외력을 고려한 침수 분석에 관한 사례로서, 우선 강우와 조위를 고려한 연구 사례는 다음과 같다. Han et al. (2014)은 XP-SWMM을 이용하여 창원시 배수 구역을 대상으로 침수 모의를 수행하였는데, 연안 도시의 침수 모의에는 조위의 영향을 반드시 고려해야 함을 제시하였다. Choi et al. (2018a)은 경남 사천시 선구동 일대에 대하여 초과 강우 및 해수면 상승 시나리오를 조합하여 침수 분석을 수행하였다. Choi et al. (2018b)은 XP-SWMM을 이용하여 여수시 연등천 및 여수시청 지역에 대하여 강우 시나리오와 해수위 상승 시나리오를 고려한 복합 원인에 의한 침수 모의를 수행하여 홍수예경보 기준표를 작성하였다. 한편, 강우, 조위, 월파를 고려한 연구 사례로서, Song et al. (2017)은 부산시 해운대구 수영만 일원에 대하여 XP-SWMM으로 월파량의 적용 유무에 따른 침수 면적을 비교하였다. Suh and Kim (2018)은 부산시 마린시티 지역을 대상으로 태풍 차바 때 EurOtop의 경험식을 ADSWAN에 적용하여 월파량을 반영하였다. Chen et al. (2017)은 TELEMAC-2D 및 SWMM을 기반으로 한 극한 강우, 월파 및 조위를 고려하여 중국 해안 원자력 발전소의 침수를 예측하고 분석하기 위한 결합 모델을 개발한 바 있다. 한편, Lee et al. (2020)은 수리‧수문학 분야와 해양공학 분야에서 사용되는 물리 모형의 기술적 연계를 통해 연안 지역의 침수 모의의 재현성을 높였다.

상기의 연구들은 공통적으로 연안 지역에 대하여 복합 외력을 고려했을 때 발생되는 침수 현상의 재현 또는 예측을 목적으로 수행되었다. 이 연구는 이와 차별하여 복합 외력을 고려하는 경우 나타날 수 있는 연안 지역의 침수 특성 분석을 목적으로 수행되었다. 이를 위해 단일 외력을 독립적으로 고려했을 때 발생되는 침수 양상과 동시에 고려하는 경우의 침수 현상을 비교, 분석하였다. 복합 외력에 의한 지역적 침수 특성 분석은 우리나라 남해안과 서해안에 위치한 4개 지역에 대하여 적용되었다.

1) 장연제, 47일째 이어진 긴 장마, 50명 인명피해… 9년만에 최대, 동아닷컴, 2020년 8월 9일 수정, 2021년 3월 4일 접속, https://www.donga.com/news/article/all/20200809/102369692/2

2. 연구 방법

2.1 연안 지역의 침수 영향 인자

연안 지역의 침수는 크게 세 가지의 메카니즘으로 발생될 수 있다. 우선, 연안 지역은 바다와 인접하고 있기 때문에 그 영향을 직접적으로 받는다. Kim (2018)에 의하면, 연안 지역의 침수는 폭풍 해일에 의해 상승한 조위와 월파로 인해 발생될 수 있다(Table 1). 특히, 경상남도의 창원과 통영, 인천광역시의 소래포구 어시장 등 남해안 및 서해안 지역의 일부는 백중사리, 슈퍼문(super moon) 등 만조 시 조위의 상승으로 인한 침수가 발생하는 지역이 존재한다(Kang et al., 2019a). 두 번째는 강우에 의한 내수 침수 발생이다. ME (2011)에서는 도시 지역의 우수 관거를 10 ~ 30년 빈도로 계획하도록 지정하고 있고, 펌프 시설은 30 ~ 50년 빈도의 홍수를 배수시킬 수 있도록 정하고 있다. 하지만 최근에는 기후변화의 영향으로 도시 지역 배수시설의 설계 빈도를 초과하는 강우가 빈번하게 나타나고 있다. 실제로 2016년의 태풍 차바 시 울산 기상관측소에 관측된 시간 최대 강우량은 106.0 mm로서, 이는 300년 빈도 이상의 강우량에 해당하였다(Kang et al., 2019a). 따라서 배수시설의 설계 빈도 이상의 강우는 연안 도시 지역의 침수를 유발할 수 있다. 세 번째, 하천이 인접한 연안 도시에서는 하천의 범람으로 인해 침수가 발생할 수 있다. 하천의 경우, 기본계획이 수립되기는 하지만, 설계 빈도를 상회하는 강우의 발생, 제방, 수문 등 홍수 방어시설의 기능 저하, 예산 등의 문제로 하천기본계획 이행의 지연 등에 의해 범람할 가능성이 존재한다.

Table 1.

Type of natural hazard damage in coastal areas (Kim, 2018)

ItemRisk factor
Facilities damage∙ Breaking of coastal facilities by wave
– Breakwater, revetment, lighters wharf etc.
∙ Local scouring at the toe of the structures by wave
∙ Road collapse by wave overtopping
Inundation damage∙ Inundation damage by wave overtopping
∙ Inundation of coastal lowlands by storm surge
Erosion damage∙ Backshore erosion due to high swell waves
∙ Shoreline changes caused by construction of coastal erosion control structure
∙ Sediment transport due to the construction of artificial structures

상기의 내용을 종합하면, 연안 지역은 조위 및 월파에 의한 침수, 강우에 의한 내수 침수, 하천 범람에 의한 침수로 구분될 수 있다. 이 연구에서는 폭풍 해일에 의한 조위 상승 및 월파와 강우를 연안 지역의 침수 유발 외력으로 고려하였다. 하천 범람의 경우, 상대적으로 사례가 희소하여 제외하였다.

2.2 복합 외력을 고려한 침수 모의 방법

이 연구에서는 조위 및 월파와 강우를 연안 지역의 침수 발생에 관한 외력 조건으로 고려하였다. 따라서 해당 외력 조건을 고려하여 침수 분석을 수행할 수 있어야 한다. 이와 관련하여 Lee et al. (2020)은 Fig. 1과 같이 수리‧수문 및 해양공학 분야에서 사용되는 물리 기반 모형의 연계를 통해 조위, 월파, 강우를 고려한 침수 분석 방법을 제시하였고, 이 연구에서는 해당 방법을 이용하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F1.jpg
Fig. 1.

Connection among the models for inundation analysis in coastal areas (Lee et al., 2020)

우선, 태풍에 의해 발생되는 폭풍 해일의 영향을 분석하기 위해서는 태풍에 의해 발생되는 기압 강하, 해상풍, 진행 속도 등을 고려하여 해수면의 변화 양상 및 조석-해일-파랑을 충분히 재현 가능해야 한다. 이 연구에서는 국내․외에서 검증 및 공인된 폭풍 해일 모형인 ADCIRC 모형과 파랑 모형인 UnSWAN이 결합된 ADCSWAN (coupled model of ADCIRC and UnSWAN)을 이용하였다. 정수압 가정의 ADCSWAN은 월파량 산정에 단순 경험식을 적용하는 단점이 있지만 넓은 영역을 모의할 수 있고, FLOW-3D는 해안선의 경계를 고해상도로 재현이 가능하다. 이에 연구에서는 먼 바다 영역에 대해서는 ADCSWAN을 이용하여 분석하였고, 연안 주변의 바다 영역과 월파량 산정에 대해서는 FLOW-3D 모형을 이용하였다. 한편, 연안 지역의 침수 모의를 위해서는 유역에서 발생하는 강우-유출 현상과 우수 관거 등의 배수 체계에 대한 분석이 가능해야 한다. 또한, 배수 체계로부터 범람한 물이 지표면을 따라 흘러가는 현상을 해석할 수 있어야 하고, 바다의 조위 및 월파량을 경계조건으로 반영할 수 있어야 한다. 이 연구에서는 이러한 현상을 모의할 수 있고, 도시 침수 모의에 활용도가 높은 XP-SWMM을 이용하였다.

2.3 침수 분석 대상지역

연구의 대상지역은 조위 및 월파에 의한 침수와 강우에 의한 내수 침수의 영향이 복합적으로 발생할 수 있는 남해안과 서해안에 위치한 4개 지역이다. Table 2는 침수 분석 대상지역을 정리하여 나타낸 표이고, Fig. 2는 각 지역의 유역 경계를 나타낸 그림이다.

Table 2.

Target region for inundation analysis

ClassificationAdministrative districtTarget regionArea
(km2)
Main cause of inundationPump
facility
Number of
major outfall
The south
coast
Haundae-gu, BusanMarine City area0.53Wave overtopping9
Haundae-gu, BusanCentum City area4.76Poor interior drainage at high tide level12
The west
coast
GunsanJungang-dong area0.79Poor interior drainage at high tide level23
BoryeongOcheon Port area0.41High tide level5

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F2.jpg
Fig. 2.

Watershed area

남해안의 분석 대상지역 중 부산시 해운대구의 마린시티는 바다 조망을 중심으로 조성된 주거지 및 상업시설 중심의 개발지역이다. 마린시티는 2016년 태풍 차바 및 2018년 태풍 콩레이 등 태풍 내습 시 월파에 의한 해수 월류로 인해 도로 및 상가 일부가 침수를 겪은 지역이다. 부산시 해운대구의 센텀시티는 과거 수영만 매립지였던 곳에 조성된 주거지 및 상업시설 중심의 신도시 지역이다. 센텀시티 유역의 북쪽은 해발고도 El. 634 m의 장산이 위치하는 등 산지 특성도 가지고 있어 상대적으로 유역 면적이 넓고, 배수시설의 규모도 크고 복잡하다. 하지만 수영강 하구의 저지대 지역에 위치함에 따라 강우 시 내수 배제가 불량하고, 특히 만조 시 침수가 잦은 지역이다.

서해안 분석 대상지역 중 전라북도 군산시의 중앙동 일원은 군산시 내항 내측에 조성된 구도시로서, 금강 및 경포천 하구에 위치하는 저지대이다. 이에 따라 군산시 풍수해저감종합계획에서는 해당 지역을 3개의 영역으로 구분하여 내수재해 위험지구(영동지구, 중동지구, 경암지구)로 지정하였고, 이 연구에서는 해당 지역을 모두 고려하였다. 한편, 군산시 중앙동 일원은 특히, 만조 시 내수 배제가 매우 불량하여 2개의 펌프시설이 운영되고 있다. 충청남도 보령시의 오천면에 위치한 오천항은 배후의 산지를 포함한 소규모 유역에 위치한다. 서해안의 특성에 따라 조석 간만의 차가 크고, 특히 태풍 내습 시 폭풍 해일에 의한 침수가 잦은 지역이다. 산지의 강우-유출수는 복개된 2개의 수로를 통해 바다로 배제되고, 상가들이 위치한 연안 주변 지역에는 강우-유출수 배제를 위한 3개의 배수 체계가 구성되어 있다.

3. 연구 결과

3.1 침수 모의 모형 구축

XP-SWMM을 이용하여 분석 대상지역별 침수 모의 모형을 구축하였다. 적절한 침수 분석 수행을 위해 지역별 수치지형도, 도시 공간 정보 시스템(urban information system, UIS), 하수 관망도 등의 수치 자료와 현장 조사를 통해 유역의 배수 체계를 구성하였다. 그리고 2차원 침수 분석을 위해 무인 드론 및 육상 라이다(LiDAR) 측량을 수행하여 평면해상도가 1 m 이하인 고해상도 수치지형모형(digital terrain model, DTM)을 구성하였고, 침수 모의 격자를 생성하였다.

Fig. 3은 XP-SWMM의 상세 구축 사례로서 부산시 마린시티 배수 유역에 대한 소유역 및 관거 분할 등을 통해 구성한 배수 체계와 고해상도 측량 결과를 이용하여 구성한 수치표면모형(digital surface model, DSM)을 나타낸다. Fig. 4는 각 대상지역에 대해 XP-SWMM을 이용하여 구축한 침수 모의 모형을 나타낸다. 침수 분석을 위해서는 침수 모의 영역에 대한 설정이 필요한데, 다수의 사전 모의를 통해 유역 내에서 침수가 발생되는 지역을 검토하여 결정하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F3.jpg
Fig. 3.

Analysis of watershed drainage system and high-resolution survey for Marine City

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F4.jpg
Fig. 4.

Simulation model for inundation analysis by target region using XP-SWMM

한편, 이 연구에서는 월파량 및 조위의 산정 과정과 침수 모의 모형의 보정에 관한 내용 등은 다루지 않았다. 관련된 내용은 선행 연구인 Kang et al. (2019b)와 Lee et al. (2020)을 참조할 수 있다.

3.2 침수 모의 설정

3.2.1 분석 방법

복합 외력에 의한 침수 영향을 검토하기 위해서는 외력 조건에 대한 빈도와 지속기간의 설정이 필요하다. 이 연구에서는 재해 현상이 충분히 나타날 수 있도록 강우와 조위 및 월파의 빈도를 모두 100년으로 설정하였다. 이때, 조위와 월파량의 산정에는 만조(약최고고조위) 시, 100년 빈도에 해당하는 태풍 내습에 따른 폭풍 해일의 발생 조건을 고려하였다.

지역별 강우 발생 특성과 유역 특성을 고려하기 위해 MOIS (2017)의 방재성능목표 기준에 따라 임계 지속기간을 결정하여 대상지역별 강우의 지속기간으로 설정하였다. 이때, 강우의 시간 분포는 MLTM (2011)의 Huff 3분위를 이용하였다. 그리고 조위와 월파의 경우, 일반적인 폭풍 해일의 지속기간을 고려하여 5시간으로 결정하였다. 한편, 침수 모의를 위한 계산 시간 간격, 2차원 모의 격자 등의 입력자료는 분석 대상지역의 유역 규모와 침수 분석 대상 영역을 고려하여 결정하였다. 참고로 침수 분석에 사용된 수치지형모형은 1 m 급의 고해상도로 구성되었지만, 2차원 침수 모의 격자의 크기는 지역별로 3 ~ 4 m이다. 이는 연구에서 사용된 XP-SWMM의 격자 수(100,000개) 제약에 따른 설정이나, Sun (2021)은 민감도 분석을 통해 2차원 침수 분석을 위한 적정 격자 크기를 3 ~ 4.5 m로 제시한 바 있다.

Table 3은 이 연구에서 설정한 침수 모의 조건과 분석 방법을 정리하여 나타낸 표이다.

Table 3.

Simulation condition and method

ClassificationTarget regionSimulation conditionSimulation method
RainfallStorm surgeSimulation time interval2D
grid size
Return
period
DurationTemporal
distribution
Return
period
DurationWatershed
routing
Channel
routing
2D
inundation
The south coastMarine City area100 yr1 hr3rd quartile
of Huff’s
method
1005 hr5 min10 sec1 sec3 m
Centum City area1 hr1005 min10 sec1 sec4 m
The west coastJungang-dong area2 hr1005 min10 sec1 sec3.5 m
Ocheon Port area1 hr1001 min10 sec1 sec3 m

3.2.2 복합 재해의 동시 고려

이 연구의 대상지역들은 모두 소규모의 해안가 도시지역이고, 이러한 지역에 대한 강우의 임계지속기간은 1시간 ~ 2시간이나, 이 연구에서 분석한 폭풍 해일의 지속기간은 5시간으로 강우의 지속기간과 폭풍 해일의 지속기간이 상이하다. 이에 이 연구에서는 서로 다른 지속기간을 가진 강우와 폭풍 해일 또는 조위를 고려하기 위해 강우의 중심과 폭풍 해일의 중심이 동일한 시간에 위치하도록 설정하였다(Fig. 5).

XP-SWMM은 폭풍 해일이 지속되는 5시간 전체를 모의하도록 설정하였고, 폭풍 해일이 가장 큰 시점에 강우의 중심이 위치하도록 강우 발생 시기를 결정하였다. 다만, 부산 마린시티의 경우, 폭풍 해일에 의한 피해가 주로 월파에 의해 발생되므로 강우의 중심과 월파의 중심을 일치시켰고(Fig. 5(a)), 상대적으로 조위의 영향이 큰 3개 지역은 강우의 중심과 조위의 중심을 맞추었다. Fig. 5(b)는 군산시 중앙동 지역의 복합 외력에 의한 침수 분석에 사용된 강우와 조위의 조합이다.

한편, 100년 빈도의 확률강우량만을 고려한 침수 분석에서는 유역 유출부의 경계조건으로 우수 관거의 설계 조건을 고려하여 약최고고조위가 일정하게 유지되도록 설정하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F5.jpg
Fig. 5.

Consideration of external force conditions with different durations

3.2.3 XP-SWMM의 월파량 고려

XP-SWMM에 ADCSWAN 및 FLOW-3D 모형에 의해 산정된 월파량을 입력하기 위해 해안가 지역에 절점을 생성하여 월파 현상을 구현하였다. XP-SWMM에서 월파량을 입력하기 위한 절점의 위치는 FLOW-3D 모형에서 월파량을 산정한 격자의 중심 위치이다.

Fig. 6(a)는 마린시티 지역에 대한 월파량 입력 지점을 나타낸 것으로서, 유역 경계 주변에 동일 간격으로 원으로 표시한 지점들이 해당된다. Fig. 6(b)는 XP-SWMM에 월파량 입력 지점들을 반영하고, 하나의 절점에 월파량 시계열을 입력한 화면을 나타낸다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F6.jpg
Fig. 6.

Considering wave overtopping on XP-SWMM

3.3 침수 모의 결과

3.3.1 단일 외력에 의한 침수 모의 결과

Fig. 7은 단일 외력을 고려한 지역별 침수 모의 결과이다. 즉, Fig. 7의 왼쪽 그림들은 지역별로 100년 빈도 강우에 의한 침수 모의 결과를 나타내고, Fig. 7의 오른쪽 그림들은 만조 시 100년 빈도 폭풍 해일에 의한 침수 모의 결과이다. 대체로 강우에 의한 침수 영역은 유역 중․상류 지역의 유역 전반에 걸쳐 발생하였고, 폭풍 해일에 의한 침수 영역은 해안가 전면부에 위치하는 것을 볼 수 있다. 이는 폭풍 해일에 의한 조위 상승과 월파의 영향이 상류로 갈수록 감소하기 때문이다.

한편, 4개 지역 모두에서 공통적으로 강우에 비해 폭풍 해일에 의한 침수 영향이 상대적으로 크게 분석되었다. 이러한 결과는 연안 지역의 경우, 폭풍 해일에 대비한 침수 피해 저감 노력이 보다 중요함을 의미한다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F7.jpg
Fig. 7.

Simulation results by single external force (left: rainfall, right: storm surge)

3.3.2 복합 외력에 의한 침수 모의 결과

Fig. 8은 복합 외력을 고려한 지역별 침수 모의 결과이다. 즉, 강우 및 폭풍 해일을 동시에 고려함에 따라 발생된 침수 영역을 나타낸다. 복합 외력을 고려하는 경우, 단일 외력만을 고려한 분석 결과(Fig. 7)보다 침수 영역은 넓어졌고, 침수심은 깊어졌다.

복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였고, 이는 일반적으로 예상할 수 있는 결과이다. 주목할만한 결과는 군산시 중앙동의 침수 분석에서 나타났다. 즉, 군산시 중앙동의 경우, 단일 외력만을 고려한 침수 모의 결과에서 나타나지 않았던 새로운 침수 영역이 발생하였다(Fig. 8(c)). 이와 관련된 상세 내용은 3.4절의 고찰에서 기술하였다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F8.jpg
Fig. 8.

Simulation results by compound external forces

3.4 결과 고찰

외력 조건별 침수의 영향을 정량적으로 비교하기 위해 침수 면적을 이용하였다. 이 연구에서는 강우만에 의해 유발된 침수 면적을 기준(기준값: 1)으로 하고, 폭풍 해일(조위+월파량)에 의한 침수 면적과 복합 외력에 의한 침수 면적의 상대적 비율로 분석하였다(Table 4).

Table 4.

Impact evaluation for inundation area by external force

ConditionMarine City, BusanCentum City, BusanJungang-dong area,
Gunsan
Ocheon Port area,
Boryeong
Inundation area
(km2)
RateInundation area
(km2)
RateInundation area
(km2)
RateInundation area
(km2)
Rate
Single
external force
Rainfall (①)0.01641.00.07591.00.04571.00.01751.0
Storm surge (②)0.03632.210.06850.900.14633.200.04122.35
Compound
external forces
Combination
(①+②)
0.05243.190.15051.980.26325.760.04732.70

분석 결과, 부산 센텀시티를 제외한 3개 지역은 모두 폭풍 해일에 의한 침수 면적이 강우에 의한 침수 면적에 비해 2.2 ~ 3.2배 넓은 것으로 분석되었다. 한편, 복합 외력에 의한 침수 면적은 마린시티와 센텀시티의 경우, 각각의 외력에 의한 침수 면적의 합과 유사하게 나타났다. 이는 각각의 외력에 의한 침수 영역이 상이하여 거의 중복되지 않음을 의미한다. 반면에, 오천항에서는 각각의 외력에 의한 침수 면적의 합이 복합 외력에 의한 면적보다 크게 나타났다. 이는 오천항의 경우, 유역면적이 작고 배수 체계가 비교적 단순하여 강우와 폭풍 해일에 의한 침수 영역이 중복되기 때문인 것으로 분석되었다(Fig. 7(d)).

군산시 중앙동 일대의 경우, 복합 외력에 의한 침수 면적이 각각의 독립적인 외력 조건에 의한 침수 면적의 합에 비해 37.1% 크게 나타났다. 이러한 현상의 원인을 분석하기 위해 복합 외력 조건에서만 나타난 우수 관거(Fig. 8(c)의 A 구간)에 대하여 종단을 검토하였다(Fig. 9). Fig. 9(a)는 강우만에 의해 분석된 우수 관거 내 흐름 종단을 나타내고, Fig. 9(b)는 폭풍 해일만에 의한 우수 관거의 종단이다. 그림을 통해 각각의 독립적인 외력 조건 하에서는 해당 구간에서 침수가 발생되지 않은 것을 볼 수 있다. 다만, 강우만을 고려하더라도 우수 관거는 만관이 된 상태를 확인할 수 있다(Fig. 9(a)). 반면에, 만관 상태에서 폭풍 해일이 함께 고려됨에 따라 해수 범람과 조위 상승에 의해 우수 배제가 불량하게 되었고, 이로 인해 침수가 유발된 것으로 분석되었다(Fig. 9(c)). 따라서 이러한 지역은 복합 외력에 대한 취약지구로 판단할 수 있고, 단일 외력의 고려만으로는 침수를 예상하기 어려운 지역임을 알 수 있다.

/media/sites/kwra/2021-054-07/N0200540702/images/kwra_54_07_02_F9.jpg
Fig. 9.

A part of drainage profiles by external force in Jungang-dong area, Gunsan

4. 결 론

이 연구에서는 외력 조건에 따른 연안 지역의 침수 특성을 분석하였다. 연구에서 고려된 외력 조건은 두 가지로서 강우와 폭풍 해일(조위와 월파)이다. 분석 대상 연안 지역으로는 남해안에 위치하는 2개 지역(부산시 해운대구의 마린시티와 센텀시티)과 서해안의 2개 지역(군산시 중앙동 일원 및 보령시 오천항)이 선정되었다.

복합 외력을 고려한 연안 지역의 침수 모의를 위해서는 유역의 강우-유출 현상과 바다의 조위 및 월파량을 경계조건으로 반영할 수 있는 침수 모의 모형이 요구되는데, 이 연구에서는 XP-SWMM을 이용하였다. 한편, 조위 및 월파량 산정에는 ADCSWAN (ADCIRC와 UnSWAN) 및 FLOW-3D 모형이 이용되었다.

연안 지역별 침수 모의는 100년 빈도의 강우와 폭풍 해일을 독립적으로 고려한 경우와 복합적으로 고려한 경우를 구분하여 수행되었다. 우선, 외력을 독립적으로 고려한 결과, 대체로 폭풍 해일만 고려한 경우가 강우만 고려한 경우에 비해 침수 영향이 크게 나타났다. 따라서 연안 지역의 경우, 폭풍 해일에 의한 침수 피해 방지 계획이 상대적으로 중요한 것으로 분석되었다. 두 번째, 복합 외력에 의한 침수 분석 결과는 대체로 단일 외력에 의한 침수 모의 결과를 중첩시켜 나타낸 결과와 유사하였다. 다만, 특정 지역에서는 복합 외력을 고려함에 따라 단일 외력만을 고려한 침수 모의에서 나타나지 않았던 새로운 침수 영역이 발생하기도 하였다. 이러한 결과는 독립적인 외력 조건에서는 우수 관거가 만관 또는 그 이하의 상태가 되지만, 두 가지의 외력이 동시에 고려됨에 따라 우수 관거의 통수능 한계를 초과하여 나타났다. 이러한 지역은 복합 외력에 대한 취약지구로 판단되었고, 해당 지역의 적절한 침수 방지 대책 수립을 위해서는 복합적인 외력 조건이 고려되어야 함을 시사하였다.

현행, 자연재해저감종합계획에서는 침수와 관련된 재해 원인 지역을 내수재해, 해안재해, 하천재해 등으로 구분하고 있다. 하지만 이 연구에서 검토된 바와 같이, 연안 지역의 침수 원인은 복합적으로 나타날 뿐만 아니라, 복합 외력을 고려함에 따라 추가적으로 나타날 수 있는 침수 위험 지역도 존재한다. 따라서 기존의 획일적인 재해 원인의 구분보다는 지역의 특성에 맞는 복합적인 재해 원인을 검토할 필요가 있음을 제안한다.

Acknowledgements

본 논문은 행정안전부 극한 재난대응 기반기술 개발사업의 일환인 “해안가 복합재난 위험지역 피해저감 기술개발(연구과제번호: 2018-MOIS31-008)”의 지원으로 수행되었습니다.

References

1
Chen, X., Ji, P., Wu, Y., and Zhao, L. (2017). “Coupling simulation of overland flooding and underground network drainage in a coastal nuclear power plant.” Nuclear Engineering and Design, Vol. 325, pp. 129-134. 10.1016/j.nucengdes.2017.09.028
2
Choi, G., Song, Y., and Lee, J. (2018a). “Analysis of flood occurrence type according to complex characteristics of coastal cities.” 2018 Conference of the Korean Society of Hazard Mitigation, KOSHAM, p. 180.
3
Choi, J., Park, K., Choi, S., and Jun, H. (2018b). “A forecasting and alarm system for reducing damage from inland inundation in coastal urban areas: A case study of Yeosu City.” Journal of Korean Society of Hazard Mitigation, Vol. 18, No. 7, pp. 475-484. 10.9798/KOSHAM.2018.18.7.475
4
Han, H., Kim, Y., Kang, N., and, Kim, H.S. (2014). “Inundation analysis of a coastal urban area considering tide level.” 2014 Conference of Korean Society of Civil Engineers, KSCE, pp. 1507-1508.
5
Kang, T., Lee, S., and Sun, D. (2019a). “A technical review for reducing inundation damage to high-rise and underground-linked complex buildings in Coastal Areas (1): Proposal for analytical method.” Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 35-43. 10.9798/KOSHAM.2019.19.5.35
6
Kang, T., Lee, S., Choi, H., and Yoon, S. (2019b). “A technical review for reducing inundation damage to high-rise and underground-linked complex buildings in coastal areas (2): Case analysis for application.” Journal of Korean Society of Hazard Mitigation, Vol. 19, No. 5, pp. 45-53. 10.9798/KOSHAM.2019.19.5.45
7
Kim, J.O., Kim, J.Y., and Lee, W.H. (2016). “Analysis on complex disaster information contents for building disaster map of coastal cities.” Journal of the Korean Association of Geographic Information Studies, Vol. 19, No. 3, pp. 43-60. 10.11108/kagis.2016.19.3.043
8
Kim, P.J. (2018). Improvement measures on the risk area designation of coastal disaster in consideration of natural hazards. Ph.D. dissertation, Chonnam National University.
9
Korean Society of Civil Engineers (KSCE) (2021). A report on the cause analysis and countermeasures establishment for Dongcheon flooding and lowland inundation. Busan/Ulsan, Gyungnam branch.
10
Lee, S., Kang, T., Sun, D., and Park, J.J. (2020). “Enhancing an analysis method of compound flooding in coastal areas by linking flow simulation models of coasts and watershed.” Sustainability, Vol. 12, No. 16, 6572. 10.3390/su12166572
11
Ministry of Environment (ME) (2011). Standard for sewerage facilities. Korea Water and Wastewater Works Association.
12
Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). Improvement and complementary research for probability rainfall.
13
Ministry of the Interior and Safety (MOIS) (2017). Criteria for establishment and operation of disaster prevention performance target by region: Considering future climate change impacts.
14
Song, Y., Joo, J., Lee, J., and Park, M. (2017). “A study on estimation of inundation area in coastal urban area applying wave overtopping.” Journal of Korean Society of Hazard Mitigation, Vol. 17, No. 2, pp. 501-510. 10.9798/KOSHAM.2017.17.2.501
15
Suh, S.W., and Kim, H.J. (2018). “Simulation of wave overtopping and inundation over a dike caused by Typhoon Chaba at Marine City, Busan, Korea.” Journal of Coastal Research, Vol. 85, pp. 711-715.
16
Sun, D. (2021). Sensitivity analysis of XP-SWMM for inundation analysis in coastal area. M.Sc. Thesis, Pukyong National University.

Fig. 3. Breakwaters model in Flow-3D with meshing geometry and boundary (a) circular slots (b) square slots.

Study of Unconventional Alternatives to Vertical Breakwater

수직 방파제에 대한 비전통적 대안 연구

Karim Badr Hussein and Mohamed Ibrahim
Lecturer of Irrigation and Hydraulics, Faculty of Engineering, Al-Azhar University
Corresponding author E-mail: badrkarim713@yahoo.com

Abstract

방파제의 주요 목적은 항만 내부의 안정을 유지하여 선박의 안전과 운영의 용이성을 달성하는데 도움이 되기 때문에 강한 파도와 폭풍으로부터 항만, 해변 또는 해변 시설을 보호하는 것입니다.

이 연구는 수직 방파제에 대한 비전통적인 대안을 연구하는 것을 목표로 합니다. 이 연구에서는 유체역학적 성능의 연구 및 평가를 위해 구현된 수직파 장벽의 두 가지 다른 모델을 선택했습니다.

첫 번째 모델은 원형 슬롯이 있는 수직 벽이고 두 번째 모델은 사각형 슬롯이 있는 수직 벽입니다. 두 모델을 비교한 결과 정사각형 슬롯은 원형 슬롯보다 파동의 전송을 5~20% 감소시키는 것으로 나타났습니다.

두 개의 원형 홈이 있는 벽을 사용하면 단일 벽에 비해 파동 전송이 최대 30% 감소하고 파동 에너지 분산이 최대 40% 증가합니다. 상대 길이(h/L)가 증가함에 따라 수평파력이 증가합니다.

다공성 = 0.25에서 상대파력(F/Fo)은 다공성 = 0.50에서보다 10~30% 더 컸습니다. 개구부에서 파동 속도가 높고 파동 에너지 소산 계수도 높습니다. 파동 진폭이 클수록 파동 에너지 소산 계수가 커집니다.

Key words: Coastal, Breakwater, FLOW-3D, Numerical Models, Energy Dissipation, Vertical Wall.

Introduction

모든 국가에서 해안 지역은 가장 중요하고 중요한 지역 중 하나입니다. 연안지역과 항만은 대외무역 촉진, 연안관광 개발 및 활성화 등 다양한 분야에 기여하고 있어 경제적 파급효과가 매우 크며, 일자리 창출은 물론 도시근린 정착 및 안정에도 기여한다. 젊은이들에게 강력한 수익을 제공하는 가능성과 어항을 건설하여 어획량을 늘리는 것입니다. [1].

그러나 해안선 부근의 파도, 바람, 조수, 조류 등의 자연 현상은 해변과 해안 지역의 안정성에 영향을 미칩니다. 따라서 연안 보전 서비스는 연안 환경의 균형을 유지하고 보존하는 데 중요한 역할을 합니다. 거센 파도로부터 항구와 해변 시설을 보호하는 방파제 방파제. 방파제는 선박이 안전하게 정박할 수 있는 조용한 지역을 제공하고 건설 및 석유 및 광물 발견 동안 임시 보호를 제공합니다.

파도는 방파제에 부딪힐 때 많은 에너지를 잃습니다. 방파제는 눈에 보이거나 떠 있거나 수중일 수 있으며 다양한 크기, 재료 및 출력 표준이 있습니다[11]. 전통적인 장벽 또는 눈에 보이는 격벽은 매우 효율적이지만 해변의 미적 비전을 가립니다. 많은 건축 자재가 필요하고 건설 비용이 증가합니다[9].

이에 반해 부유방벽은 자재가 필요없고 공사비가 저렴하지만 그 효과는 제한적입니다. 결과적으로 수중 파티션은 이러한 종류의 단점을 방지하기 때문에 더 나은 옵션 중 하나로 간주됩니다.

수중 방벽은 가장 중요한 해변 방어 시설 중 하나이며, 수중 방벽의 장점 중 하나는 투명 방벽에 비해 건설 비용이 비교적 저렴하고 물이 앞에서 뒤로 흐를 수 있다는 것입니다[3].

멤브레인 아래에서 물이 재생됩니다. 또한 바다의 미적 이미지를 왜곡하지 않고 조망을 방해하지 않아 인근 해변에 미치는 영향도 미미하다[18]. 반면에 잠긴 방파제는 건설 후 가라앉으면서 파도 에너지를 분산시키고 해안선을 방어하는 효과를 잃습니다. 장벽의 품질은 높은 수위의 영향도 받습니다.

결과적으로 해안 보호의 가장 중요한 측면 중 하나는 수중 방파제의 효율성을 향상시키는 것입니다. 수직 방파제 이러한 유형의 방파제는 바다를 향한 수직면이 있는 설비입니다[10]. 이러한 장벽은 파도 에너지의 일부가 해안이나 보호할 수역에 도달하는 것을 방지하여 파도를 진정시키는 역할을 합니다[16].

수직 방파제는 블록, 케이슨, 시트 파일 또는 셀룰러로 구성될 수 있습니다. 이 연구는 정사각형 및 원형 구멍이 있는 천공된 수직 방파제의 유체역학적 성능에 대한 연구를 제시하는 것을 목적으로 합니다.

이 논문은 또한 제안된 모델의 유체역학적 효율뿐만 아니라 이 분야의 유사한 연구와 비교되었습니다. 이것은 다음 헤드라인으로 이 백서에 나와 있습니다.

 Materials and methods.
 Results and discussion.
 Conclusions and recommendations.

Fig. 1. The open channel
Fig. 1. The open channel
Fig. 2. Breakwaters model (a) perforated wall with circular slots and (b) perforated wall with square slots.
Fig. 2. Breakwaters model (a) perforated wall with circular slots and (b) perforated wall with square slots.
Fig. 3. Breakwaters model in Flow-3D with meshing geometry and boundary (a) circular slots (b) square slots.
Fig. 3. Breakwaters model in Flow-3D with meshing geometry and boundary (a) circular slots (b) square slots.
Fig. 4. Details and dimensions of proposed breakwater
Fig. 4. Details and dimensions of proposed breakwater
Fig 5 .Wave profiles using (Flow-3D) at wave period (T) = 1.2 sec for perforated walls with circular slots at behind model (Ht).
Fig 5 .Wave profiles using (Flow-3D) at wave period (T) = 1.2 sec for perforated walls with circular slots at behind model (Ht).
Fig. 11. Velocity distribution through slots at (a) quarter wave period, (b) half wave period and (c) three quarters wave period.
Fig. 11. Velocity distribution through slots at (a) quarter wave period, (b) half wave period and (c) three quarters wave period.
Fig. 13. Velocity vectors at front, between and behind barriers.
Fig. 13. Velocity vectors at front, between and behind barriers.

Conclusion & Recommendations

얻어진 결과에 대한 이전 분석을 바탕으로 도달한 결론은 다음과 같습니다.
 결과와 연구에 따르면 FLOW-3D는 수직으로 구멍이 뚫린 벽이 있는 선형 파동과 파동의 관계를 설명하는 강력한 능력을 가지고 있습니다. 또한 실험실 데이터 및 반분석 결과의 가장 중요한 측면을 복제할 수 있습니다. FLOW-3D에 의해 생성된 수치적 결과는 훌륭합니다.
 사각슬롯은 원형슬롯에 비해 파동의 투과율이 5:20% 감소합니다.
 한 쌍의 원형 슬롯 벽을 사용하면 단일 벽에 비해 파동 투과율이 최대 30% 감소하고 파동 에너지 분산이 최대 40% 증가합니다.
 수평파력은 상대길이(h/L)가 증가할수록 증가한다. 다공성 = 0.25에서 상대파력(F/Fo)은 다공성 = 0.50에서보다 10~30% 더 높았다.
 파도가 원 모양으로 움직이고 큰 원이 위쪽에 있었다가 점차 아래쪽으로 내려갑니다.  개구부에서 파동 속도가 높았고 파동 에너지 소산 계수도 높았습니다. 파동 진폭이 높을수록 파동 에너지 소산 계수가 높아집니다.

REFERENCES

[1] Bahaa Elsharnouby and Mohamed, E. (2012). “Study of environment
friendly porous suspended breakwater for the Egyptian Northwestern
Coast” J. of Ocean Engineering, Vol. 48, 47-58.
[2] Huang Z. (2007) “Wave interaction with one or two rows of closely
spaced rectangular cylinders” J. Ocean Eng Vol. 34,1584–1591.
[3] Huang, C. J.; Chang, H. H.; and Hwung, H. H., 2003. “Structural
permeability effects on the interaction of a solitary wave and a
submerged breakwater,” Coastal Engineering. Vol. 49, pp. 1-24.
[4] Hsu, H-H. & Wu, Y-C., 1999. “Numerical solution for the second-order
wave interaction with porous structures.” International Journal for
Numerical Methods in Fluids, Vol. 29 Issue 3, pp. 265-288.
[5] Isaacson, M., Baldwim, J., Premasiro, S. and Yang, G., (1999) “Wave
interaction with double slotted barriers.” J. Applied Ocean Research,
Vol. 21, No. 2, pp. 81-91.
[6] Isaacson, M., Premasiro, S. and Yang, G. (1998) “Wave Interaction with
Vertical Slotted Barrier” J. Waterway, Port, Coastal and Ocean Eng.,
ASCE, Vol. 124, No. 3.
[7] Ji, C.H. and Suh, K.D. (2010) “Wave interactions with multiple-row
curtainwall-pile breakwaters” J.Coastal Engineering vol. 57 issue 5, p.
500-512.
[8] Koraim, A. S., Iskander, M.M. and Elsayed, W. R. (2014)
“Hydrodynamic performance of double rows of piles suspending
horizontal c shaped bars” J. Coastal Engineering, Vol. 84, P. 81-96.
[9] Koraim, A. S., Iskander, M.M. and Elsayed, W. R. (2013)
“Hydrodynamic performance of double rows of piles suspending
horizontal c shaped bars” J. Coastal Engineering, Vol. 84, P. 81-96.
[10] Koraim, A. S. and Salem, T. N. (2012) “The hydrodynamic
characteristics of a single suspended row of half pipes under regular
waves” J. Ocean Engineering, Vol. 50, P. 1-9.
[11] Laju, K., Sundar, V. & Sundaravadivelu, R., 2011. “Hydrodynamic
characteristics of pile supported skirt breakwater models.” Journal of
Ocean Re, 33,12-22.
[12] Lin, P.; and Karunarathna, .S.A., 2007. “Numerical study of solitary
wave interaction with porous breakwaters,” J. of waterway, port,
coastal and ocean engineering. , pp. 352-363.
[13] Moh. Ibrahim (2017) “Linear Wave Interaction with Permeable
Breakwaters” A Thesis Submitted for Partial Fulfillment of Doctor of
Philosophy Degree in Civil Eng., al-Azhar University.
[14] Mansard, E .P. D. & Funke, E. R., 1980. “The measurement of incident
and reflected spectra using a least squares method.” In Proc. 17th
Coastal Eng. Conf., Sydney, Australia, pp 159-174.
[15] Nadji Chioukh et al (2017) “Reflection and Transmission of Regular
Waves from/Through Single and Double Perforated Thin Walls”
China Ocean Eng., 2017, Vol. 31, No. 4, P. 466–475.
[16] Rageh, O., Koraim, A. (2010b). “Hydraulic performance of vertical
walls with horizontal slots used as breakwater”. J.Coastal Engineering,
Vol. 57, 745–746. 12.
[17] Suh KD, Jung HY and Pyun CK (2007) “Wave reflection and
transmission by curtain wall–pile breakwaters using circular piles”. J.
Ocean Eng,Vol. 34(14–15), 2100–2106.
[18] Suh, K. D., Shin, S. & Cox, D. T., 2006. “Hydrodynamic
characteristics of Pile-Supported vertical wall breakwaters.” J. of
Waterways, Port, Coastal and Ocean Engineering, Vol.132, No.2,
pp.83-96.

Figure 3. Flow velocity on seawall in A2-3 modeling.

Modeling of the Changes in Flow Velocity on Seawalls under Different Conditions Using FLOW-3D Software

Open Journal of Marine Science
Vol.06 No.02(2016), Article ID:65874,6 pages
10.4236/ojms.2016.62026

FLOW-3D 소프트웨어를 사용하여 다양한 조건에서 Seawalls의 흐름 속도 변경 모델링

Maryam Deilami-Tarifi1, Mehdi Behdarvandi-Askar2*, Vahid Chegini3, Sadegh Haghighi-Pour4
1Department of Coastal Engineering, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran

2Department of Marine Structures, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
3Iran National Center for Oceanography and Atmospheric Sciences, Tehran, Iran
4Department of Civil Engineering, Excellence in Education Center of Jihad University of Khuzestan, Ahvaz, Iran
Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

ABSTRACT

방파벽은 파도힘의 수준을 감소시키고 다른 구조물로부터 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 이와 관련하여 이러한 구조에 대한 보다 정확한 조사는 다른 관점에서 매우 중요합니다. 이 연구는 다른 레이아웃과 경사면에서 장애물을 고려하여 방파제 크라운의 속도 변화를 조사합니다. FLOW-3D는 모델링을 위한 이 연구에서 사용되었습니다. 모델링의 결과는 장애물의 존재가 방파벽의 크라운의 유량을 줄이는 결정적인 역할을 한다는 것을 보여줍니다. 또한, 예상대로, 상류 방파의 경사계는 벽의 가장 낮은 속도가 D-상태 레이아웃과 45°의 경사에서 발생하므로 이 속도를 줄이는 데 매우 결정적입니다.

Keywords: 플로우 속도, 방파제 크라운, 모델링, Flow Velocity, Seawall Crown, Modeling, FLOW-3D

1. 소개

방파벽은 파도의 속도를 감소시키고 다른 구조물을 보호하기 위해 건설되는 보호 구조물 중 하나입니다. 등대는 일반적으로 방파벽에 의해 보호되는 구조 중 하나입니다. 따라서, 방파성상에 통과하는 물의 부피의 중요성 외에도, 이 구조물에 대한 크라운의 통과-흐름의 속도는 이러한 벽 뒤에 있는 구조물에 추진력과 충동을 만드는 속도 요인의 중요성 때문에 매우 중요하다. 기본적으로 업스트림 경사면에서 장애물을 생성하고 업스트림 경사의 속도는 이 속도의 양을 줄이는 데 매우 효과적일 수 있습니다. 그러나 특정 경사면에서 최적의 장애물 레이아웃에 도달하기 위해 모델링하여 이 문제를 정확하게 조사해야 합니다. 본 연구에서는, FLOW-3D의 3차원 모델이 언급된 문제점을 조사하는 데 사용된다 [1].

2. 연구 역사

여러 연구는 파도가 해양 구조물을 덮어 넘나는 데 초점을 맞추고 있습니다. 이러한 방법은 지속적으로 바다 파도로부터 해안을 보호하기 위해 구조물의 오버 토핑을 정확하게 예측했다. 2002년까지 거의 6,500건의 시험이 실시되었습니다. 일반 파도의 물리적 모델도 미국에서 수행되었습니다 [2] . 무작위 파도의 가장 완벽한 세트는 오웬에 의해 완료되었다 (1980). 오웬은 오버 토핑과 바다 벽의 높이와 오버 토핑의 정도 사이의 관계를 연구하기 위해 물리적 모델 테스트의 번호를 수행 [3] . 그는 오버 토핑의 정도는 파도 높이 및 파도 기간과 같은 환경 조건뿐만 아니라 구조 재료의 기하학 및 유형에 따라 달라지며 있음을 보여주었습니다. 이러한 요인의 조합을 조사해야 합니다. 폰 마이어와 듀발 (1992) 연구의 또 다른 시리즈를 수행 [4] .

3. 재료 및 방법

이 연구에서는 68개의 다양한 형상이 모델링용 소프트웨어에 제공되며 다음 표 1에간단히 소개됩니다. 이 68 개의 다른 기하학에는 4 개의 다른 슬로프, 4 개의 다른 레이아웃 및 4 개의 다른 장애물 높이및 장애물이없는 4 개의 상태및 다른 경사에서만 포함 [5] . 그런 다음, 이러한 서로 다른 형상 및 상태는 FLOW-3D 3차원 모델을 사용하여 동일한 조건에서 평가 및 분석됩니다.

표 1. 변수지정.

4. 숫자 모델

FLOW-3D 소프트웨어는 3차원 유동 필드 분석을 통해 유체 역학 분야에서 강력한 유압 시뮬레이터 응용 프로그램입니다. 모델에서 지배하는 방정식은 다른 유사한 모델과 마찬가지로 Navier-Stokes 방정식과 질량 방정식의 보존[6]입니다.

이 응용 프로그램의 채널을 모델링하려면 일반 조건(모든 시스템의 시뮬레이션 포함), 물리적 조건, 형상 및 모델 해결 네트워크, 출력 및 관련 옵션을 조정해야 합니다. 온도도는 시스템 단위, SI 및 온도에 대해 선택되었습니다.

물리적 인 측면에서, 소프트웨어는 현상을 지배하는 물리학의 원칙에 따라 관련 조건을 선택할 수 있습니다. 이 연구를 지배하는 물리적 조건은 중력과 점도와 난기류입니다. 이 소프트웨어의 난기류는 5 가지 모델에 의해 자극되고이 연구에 사용되는 모델은 재정상화 그룹 (RNG)이었습니다. 난기류의 이 모델에서, K-모델에서 실험적으로 계산된 상수값은 암시적으로 파생된다[7].

그 후 유체를 정의해야 합니다. 이 연구의 선택된 유체는 섭씨 20도물[ 8]이다.

다음 단계는 형상을 정의하고 시뮬레이션에서 중요한 네트워크를 해결하는 것입니다 [9]. FLOW3D를 사용하면 소프트웨어에서 사용할 수 있는 도구로 많은 유체 현상을 묘사할 수 있습니다. 채널 형상을 정의하면 네트워크를 해결해야 합니다. 소프트웨어의 정의된 해결 네트워크는 네트워크 크기, 셀 수 및 X, Y 및 Z 및 경계 조건의 세 가지 좌표에서 해당 치수를 포함한 일반(입방) 해결 네트워크의 형태입니다. 네트워크 셀 치수의 크기가 작을수록 시뮬레이션을 위한 프로그램의 기능과 정밀도가 높을수록[10]이됩니다.

5. 결과

다른 그림에서 관찰할 수 있으므로 다이어그램은 두 가지 유형으로, 먼저 그림 1-4를 포함하는 소프트웨어의 직접 출력과 다른 숫자 5-7을 변경 프로세스의 다이어그램으로 포함합니다. 그러나 그림 1-4에서는 경사면 중 하나에서 출력이 소프트웨어 출력에서 직접 가져온다는 점을 언급해야 합니다.

언급된 수치와 관련하여, 이러한 속도는 장애물없이 상태의 상류 경사면에서 최대인 반면 방파제의 상류 경사면에서 가장 높은 속도 비율이 발생한다는 것을 이해할 수 있다. 흥미로운 점은 가장 낮은 속도는 일반적으로 방파제 크라운에 존재한다는 것입니다.

그림 5-8에서 볼 수 있듯이, 상류 방파제의 모든 다른 경사 상태에서, 가장 높은 유량 속도는 10cm 높이와 가장 낮은 속도의 장애물과 관련이 있으며 50cm 높이의 장애물과 관련이 있다. 그 이유는 장애물과의 충돌로 인해 잠재적 에너지로 변환되는 유동 운동 에너지의 가치가 장애물의 높이를 증가시켜 증가하기 때문입니다. 따라서, 높이가

그림 1. A1 모델링의 방파제의 흐름 속도.

그림 2. A2-1 모델링의 방파제의 흐름 속도.

Figure 3. Flow velocity on seawall in A2-3 modeling.

그림 4. A3-1 모델링의 방파제의 흐름 속도.

그림 5. 방파제 유형 A(61° 경사)의 흐름 속도 의 변화.

그림 6. 방파제 형 B (56 ° 경사)의 흐름 속도의 변화.

그림 7. 방파제 유형 C(51° 경사)의 흐름 속도 의 변화.

그림 8. 방파제 유형 D(45° 경사)의 흐름 속도 변경입니다.

해당 유동 운동 에너지는 각 장애물에 대한 흐름의 충돌에서 잠재적 에너지의 해당 높이로 변환되며, 흐름 속도가 잠시 0이 되고 장애물을 건너면 속도가 증가한다. 장애물의 높이가 낮은 것이든, 순간적인 제로 속도 상태가 줄어들고 흐름은 더 높은 속도와 함께 계속 움직입니다.

6. 결론

Also, as it can be observed, the highest difference of velocity in all the figures is between the obstacles with 10
cm height and the obstacles with 50 cm height. Also, this amount of difference in velocity for difference between the obstacles with 10 cm and 20 cm heights is higher than that of the differences in the obstacles with 20
cm and 30 cm heights which can be related to the special conditions in flow hydraulic in that range of height.

또한, 관찰할 수 있으므로 모든 수치에서 속도의 가장 높은 차이는 높이 가 10cm의 장애물과 높이가 50cm인 장애물 사이에 있습니다. 또한, 10cm와 20cm 높이의 장애물 사이의 차이에 대한 속도차이는 20cm 및 30cm 높이의 장애물의 차이보다 높으며, 이는 그 높이 범위에서 유압의 특별한 조건과 관련이 있을 수 있다.

이 논문 인용

메리암 데일라미-타리피, 메디 베다르반디-아스카르, 바히드 체기니, 사데 그 하그하이-부어(2016) FLOW-3D 소프트웨어를 사용하여 다양한 조건하에서 해벽에 흐르는 속도의 변화를 모델링한다. 해양 과학의 오픈 저널,06,317-322. doi: 10.4236/ojms.2016.62026

참조

  1. 1. Owen, M.W. (1980) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England.   [Citation Time(s):1]
  2. 2. van der Meer, J.W. and Janssen, J.P.F.M. (1995) Wave Run-Up and Wave Overtopping at Dikes. In: Kobayashi, N. and Demirbilek, Z., Eds., Wave Forces on Inclined and Vertical Wall Structures, ASCE, New York.   [Citation Time(s):1]
  3. 3. CIRIA/CUR (1995) Manual on the Use of Rock in Hydraulic Engineering. CUR/RWS Report 169, A.A. Balkema, Rotterdam.   [Citation Time(s):1]
  4. 4. Pullen, T., Allsop, N.W.H., Bruce, T., Kortenhaus, A., Schuttrumpf, H. and van der Meer, J.W. (2007) EurOtop— Wave Overtopping of Seadefences and Related Structures Assessment Manual.
    http://www.overtopping-manual.com/manual.html?   [Citation Time(s):1]
  5. 5. De Wall, J.P. and Van der Meer, J.W. (1992) Wave Run-Up and Overtopping at Coastal Structures. ASCE, Proceeding of 23rd ICCE, Venice, 1758-1771.   [Citation Time(s):1]
  6. 6. De Gerloni, M., Franco, L. and Passoni, G. (1991) The Safety of Breakwaters against Wave Overtopping. Proceedings of ICE Conference on Breakwaters and Coastal Structures, Thomas Telford, London.   [Citation Time(s):1]
  7. 7. Fenton, J.D. (1988) The Numerical Solution of Steady Water Wave Problems. Computers & Geosciences, 14.
    http://dx.doi.org/10.1016/0098-3004(88)90066-0   [Citation Time(s):1]
  8. 8. Owen, M.W. (1982) Design of Seawalls Allowing for Wave Overtopping. Rep. EX924, Hydraulics Research Wallingford, England.   [Citation Time(s):1]
  9. 9. Allsop, W., Bruce, T., Pearson, J. and Besley, P. (2006) Wave Overtopping at Vertical and Steep Seawall.   [Citation Time(s):1]
  10. 10. TAW (1974) Technical Advisory Committee on Protection against Inundation, Wave Run-Up and Overtopping. Government Publishing Office, The Hague.   [Citation Time(s):1]
Interaction between oblique waves and arc-shaped breakwater

Interaction between oblique waves and arc-shaped breakwater: Wave action on the breakwater and wave transformation behind it

XinyuHanaShengDongaYizhiWangb
aCollege of Engineering, Ocean University of China, Qingdao, 266100, China
bShandong Harbour Engineering Group Co., Ltd., Rizhao, 276826, China

Highlights

Interaction of oblique waves and the arc-shaped breakwater was simulated.

Wave force and pressure distribution along central axis were analysed.

Arc curvature has little effect on the maximum wave force of different sections.

Overtopping-induced Hmax behind breakwater up to 0.7 times of incident wave height.

Abstract

The hydrodynamic interaction between oblique waves and an arc-shaped breakwater and the wave field behind it. A three-dimensional computational fluid dynamic model was used to simulate the interaction between the oblique waves and arc-shaped breakwater. The pressure distribution and wave force in the different sections under different wave directions were measured by experiments to validate the numerical results. The pressure distribution and wave force in the arc-shaped vertical part of the breakwater along the central axis were further analysed using numerical model. The maximum positive and negative forces in each section along the central axis were compared. The results indicated that the arc curvature exerted little effect on the maximum wave force in the different sections. The wave height behind the breakwater was obviously smaller than that at the front. With the decrease in the incident angle, the influence of diffraction on the wave field gradually decreased. Under east–southeast waves, the maximum wave height behind the breakwater caused by overtopping was approximately 0.7 times the incident-wave height. In the spatial distribution of the wave period behind the breakwater, some areas with smaller periods existed, which may be caused by the overtopping flow that broke behind the breakwater.

경사파와 호 모양의 방파제와 그 뒤에 있는 파동 장 사이의 유체 역학적 상호 작용. 3 차원 전산 유체 역학 모델을 사용하여 사선 파와 호 모양의 방파제 사이의 상호 작용을 시뮬레이션했습니다.

서로 다른 파동 방향에서 서로 다른 섹션의 압력 분포와 파력은 수치 결과를 검증하기 위해 실험을 통해 측정 되었습니다. 방파제 중심 축을 따라 호 모양의 수직 부분의 압력 분포와 파력은 수치 모델을 사용하여 추가로 분석되었습니다.

중심 축을 따라 각 섹션에서 최대 양의 힘과 음의 힘을 비교했습니다. 결과는 아크 곡률이 다른 섹션에서 최대 파력에 거의 영향을 미치지 않음을 나타냅니다. 방파제 뒤의 파도 높이는 정면보다 분명히 작았습니다. 입사각이 감소함에 따라 파동 장에 대한 회절의 영향이 점차 감소했습니다.

동-남동 파 하에서 오버 탑으로 인한 방파제 뒤의 최대 파고는 입사 파고의 약 0.7 배였다. 방파제 뒤의 파동주기의 공간적 분포에는 방파제 뒤에서 파열 된 과잉 흐름에 의해 발생할 수 있는 더 작은주기를 가진 일부 지역이 존재했습니다.

Keywords

Arc-shaped breakwater3D numerical modelWave forcePressure distributionWave height and period behind breakwater

Figures -Interaction between oblique waves and arc-shaped breakwater
Figures -Interaction between oblique waves and arc-shaped breakwater
Figures-Interaction between oblique waves and arc-shaped breakwater2
Figures-Interaction between oblique waves and arc-shaped breakwater2

Recommended articles

Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.

Storm surge inundation simulations comparing three-dimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea

Jae-Seol Shim†, Jinah Kim†, Dong-Chul Kim‡, Kiyoung Heo†, Kideok Do†, Sun-Jung Park ‡
† Coastal Disaster Research Center,
Korea Institute of Ocean Science &
Technology, 426-744, Ansan, Gyeonggi,
Korea
jsshim@kiost.ac
jakim@kiost.ac
kyheo21@kiost.ac
kddo@kiost.ac
‡ Technology R&D Institute
Hyein E&C Co., Ltd., Seoul 157-861,
Korea
skkkdc@chol.com
Nayana_sj@nate.com

ABSTRACT

Shim, J., Kim, J., Kim, D., Heo, K., Do, K., Park, S., 2013. Storm surge inundation simulations comparing threedimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea. In:
Conley, D.C., Masselink, G., Russell, P.E. and O’Hare, T.J. (eds.), Proceedings 12th International Coastal Symposium
(Plymouth, England), Journal of Coastal Research, Special Issue No. 65, pp. 392-397, ISSN 0749-0208.
Severe storm surge inundation was caused by the typhoon Maemi in Masan Bay, South Korea in September 2003. To
investigate the differences in the storm surge inundation simulated by three-dimensional (3D) and two-dimensional
models, we used the ADvanced CIRCulation model (ADCIRC) and 3D computational fluid dynamics (CFD) model
(FLOW3D). The simulation results were compared to the flood plain map of Masan Bay following the typhoon Maemi.
To improve the accuracy of FLOW3D, we used a high-resolution digital surface model with a few tens of centimeterresolution, produced by aerial LIDAR survey. Comparison of the results between ADCRIC and FLOW3D simulations shows that the inclusion of detailed information on buildings and topography has an impact, delaying seawater propagation and resulting in a reduced inundation depth and flooding area. Furthermore, we simulated the effect of the installation of a storm surge barrier on the storm surge inundation. The barrier acted to decrease the water volume of the inundation and delayed the arrival time of the storm surge, implying that the storm surge barrier provides more time for residents’ evacuation.

Keywords: Typhoon Maemi, digital surface elevation model, Reynolds-Averaged NavierStokes equations.

2003 년 9 월 대한민국 마산만 태풍 매미에 의해 심한 폭풍 해일 침수가 발생했습니다. 3 차원 (3D) 및 2 차원 모델로 시뮬레이션 한 폭풍 해일 침수의 차이를 조사하기 위해 ADvanced CIRCulation 모델 ( ADCIRC) 및 3D 전산 유체 역학 (CFD) 모델 (FLOW3D).

시뮬레이션 결과는 태풍 매미 이후 마산만 범람원 지도와 비교되었다. FLOW-3D의 정확도를 높이기 위해 우리는 항공 LIDAR 측량으로 생성된 수십 센티미터 해상도의 고해상도 디지털 표면 모델을 사용했습니다.

ADCRIC과 FLOW3D 시뮬레이션의 결과를 비교하면 건물과 지형에 대한 자세한 정보를 포함하면 해수 전파가 지연되고 침수 깊이와 침수 면적이 감소하는 것으로 나타났습니다.

또한, 폭풍 해일 침수에 대한 폭풍 해일 장벽 설치의 효과를 시뮬레이션했습니다. 이 장벽은 침수 물량을 줄이고 폭풍 해일 도착 시간을 지연시키는 역할을 하여 폭풍 해일 장벽이 주민들의 대피에 더 많은 시간을 제공한다는 것을 의미합니다.

INTRODUCTION

2003 년 9 월 12 일 태풍 매미로 인한 강한 폭풍 해일이 남해안을 강타했습니다. 마산 만 일대는 심한 폭풍우 침수로 인해 최악의 피해를 입었고 광범위한 홍수를 겪었습니다. 따라서 마산 만에 예방 체계를 구축하기 위해 폭풍 해일에 의한 침수에 대한 수치 예측을 시도하는 선행 연구가 수행되었다 (Park et al. 2011).

그러나 일반적인 2 차원 (2D) 또는 3 차원 (3D) 수압 가정을 사용할 때 지형의 해상도는 복잡한 해안 구조를 표현하기에 충분하지 않습니다. 따라서 우리는 마산 만의 고해상도 지형도를 통해 전산 유체 역학 (CFD)의 침수 시뮬레이션을 제시한다.

태풍 매미는 2003 년 9 월 12 일 12시 (UTC)에 한반도에 상륙하여 남동부 해안을 따라 추적했습니다 (그림 1). 2003 년 9 월 13 일 6시 (UTC)에 동 일본해로 이동하여 온대 저기압이되었습니다.

풍속과 기압면에서 한국을 강타한 가장 강력한 태풍 중 하나입니다. 특히 마산 만에 접해있는 마산시는 폭풍 해일 홍수로 최악의 피해를 입어 32 명이 사망하고 심각한 해안 피해를 입었다. 태풍이 지나가는 동안 중앙 기압은 950hPa, 진행 속도는 45kmh-1로 마산항의 조 위계를 통해 최대 약 2.3m의 서지 높이를 기록했다.

마산 만에 접한 주거 및 상업 지역은 홍수가 심했고 지하 시설은 폭풍 해일로 침수로 어려움을 겪었습니다 (Yasuda et al. 2005). 이 논문에서는 3D CFD 모델 (FLOW 3D)과 2D ADvanced CIRCulation 모델 (ADCIRC)을 사용하여 기록 된 마산 만에서 가장 큰 폭풍 해일 중 하나에 의해 생성 된 해안 침수를 시뮬레이션했습니다.

건물의 높이와 공간 정보를 포함하는 디지털 표면 모델 (DSM)은 LiDAR (Airborne Light Detection and Ranging)에 의해 만들어졌으며, 폭풍 해일 침수 모델, 즉 3D CFD 모델 (FLOW 3D)의 입력 데이터로 사용되었습니다. ). 또한 ADCIRC의 시뮬레이션 결과는 FLOW3D의 경계 조건으로 사용됩니다.

본 연구의 목적은 극심한 침수 높이와 해안 육지로의 범람을 포함하여 마산 만에서 태풍 매미로 인한 폭풍 해일 침수를 재현하는 것이다.

<중략>………………

Figure 1. The best track and the central pressures of the typhoon Maemi from the Joint Typhoon Warning Center (JTWC). Open circles indicate the locations of the typhoon in 3 h intervals. Filled circles represent locations of the cited stations; A, B, C and D indicate Jeju, Yeosu, Tongyoung, and Masan, respectively.
Figure 1. The best track and the central pressures of the typhoon Maemi from the Joint Typhoon Warning Center (JTWC). Open circles indicate the locations of the typhoon in 3 h intervals. Filled circles represent locations of the cited stations; A, B, C and D indicate Jeju, Yeosu, Tongyoung, and Masan, respectively.
Figure 2. Model domain with FEM mesh for Typhoon Maemi.
Figure 2. Model domain with FEM mesh for Typhoon Maemi.
Figure 3. Validation of surge height for the four major tidal stations on the south coast of the Korea.
Figure 3. Validation of surge height for the four major tidal stations on the south coast of the Korea.
Figure 4. Inundation depth results from (a) ADCIRC, (b) FLOW3D, and (c) inundation field surveying hazard map following typhoon Maemi.
Figure 4. Inundation depth results from (a) ADCIRC, (b) FLOW3D, and (c) inundation field surveying hazard map following typhoon Maemi.
Figure 5. Inundation depth results computed by Flow3D at each time period following arrival of storm surge wave at harbor mouth.
Figure 5. Inundation depth results computed by Flow3D at each time period following arrival of storm surge wave at harbor mouth.
Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.
Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.

LITERATURE CITED

Bunya S, Kubatko EJ, Westerink JJ, Dawson C.,2010. A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Computer Methods in Applied Mechanics and Engineering, Oceanography and Coastal Research, 198, 1548-1562.
Chan, J.C.L. & Shi, J.,1996. Long term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophysical Research Letters 23, 2765-2767.
Choi, B.H., Kim, D.C., Pelinovsky, E. and Woo, S.B., 2007. Threedimensional simulation of tsunami run-up around conical island. Coastal Engineering, 54, 618-629.
Choi, B.H., Pelinovsky, E., Kim, D.C., Didenkulova, I. and Woo, S.B., Two- and three-dimensional computation of solitary wave runup on non-plane beach. Nonlinear Processes in Geophysics, 15, 489-502.
Choi B.H., Pelinovsky E., Kim D.C., Lee H.J., Min B.I. and Kim K.H., Three-dimensional simulation of 1983 central East (Japan) Sea earthquake tsunami at the Imwon Port (Korea). Ocean Engineering, 35, 1545-1559.
Choi, B.H., Eum, H.M., Kim, H.S., Jeong, W.M. & Shim, J.S., 2004. Wave-tide-surge coupled simulation for typhoon Maemi, Workshop on waves and storm surges around Korean peninsula, 121-144.
Choi, K.S., & Kim, B.J., 2007. Climatological characteristics of tropical cyclone making landfall over the Korean Peninsula. Journal of the Korean Meteorological Society 43, 97-109.
Clark, J.D. & Chu, P., 2002. Interannual variation of tropical cyclone activity over the central North Pacific. Journal of the Meteorological Society of Japan, 80, 403-418.
Davies, A.M. & Flather, R.A., 1978. Application of numerical models of the North West European continental shelf and the North Sea to the computation of the storm surges of November to December 1973.
Deutsche Hydrographische Zeitschrift Ergänzungsheft Reihe A, 14, 72. Flow Science, 2010. FLOW-3D User’s Manual. Fujita, T., 1952. Pressure distribution in a typhoon. Geophysical Magazine 23.
Garratt, J.R., 1977. Review of drag coefficients over oceans and continents. Monthly Weather Review, 105, 915-929.
Gary Padgett, 2004. Gary Padgett September 2003 Tropical Weather Summary. Typhoon 2000.
Goda Y., Kishira Y. and Kamiyama Y., 1975. Laboratory investigation on the overtopping rate of seawalls by irregular waves, Report of Port and Harbour Research Inst.,14(4), 3-44.
Heaps, N.S., 1965. Storm surges on a continental shelf. Philos. Trans. R. Soc. London, Ser. 257, 351-383.
Hirt, C.W. and Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201-225.
Holland, G.J., 1980. An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Monthly Weather Review, 108, 1212-1218.
Independent Levee Investigation Team, 2006. Investigation of the Performance of the New Orleans Flood Protection Systems in Hurricane Katrina on August 29, 2005
Klotzbach, P. J. , 2006. Trends in global tropical cyclone activity over the past twenty years (1986-2005). Geophysical Research Letters, 33.
Large, W.G. & Pond, S., 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11, 324-336.
Landsea, C.W., Nicholls, N., Gray, W.M. & Avila, L.A., 1996. Downward trends in the frequency of intense Atlantic hurricanes during the past five decades. Geophysical Research Letters, 23, 1697-1700.
Lighthill, J., Holland, G., Gray, W., Landsea, C., Creig, G., Evans, J., Kurikara, Y. and Guard, C., 1994. Global climate change and tropical cyclones. Bulletin of the American Meteorological Society, 75, 2147- 2157.
Luettich, R.A. & Westerink, J.J., 2004. Formulation and Numerical Implementation of the 2D/3D ADCIRC finite element model version 44.XX.
Matsumoto, K., Takanezawa, T. & Ooe, M., 2000. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan, Journal of Oceanography, 56(5) 567-581.
Mitsuyasu, H. and Kusaba, T., 1984. Drag Coefficient over Water Surface Under the Action of Strong Wind. Natural Disaster Science, 6, 43-50.
Mitsuyasu, H., F. Tasai, T. Suhara, S. Mizuno, M. Ohkusu, T. Honda and K. Rikiishi, 1980. Observation of the power spectrum of ocean waves using a cloverleaf buoy. Journal of Physical Oceanography, 10, 286- 296.
Multiple Lines of Defense Assessment Team, 2007. Comprehensive Recommendations Supporting the Use of the Multiple Lines of Defense Strategy to Sustain Coastal Louisiana.
Myers, V.A. and Malkin, W., 1961. Some Properties of Hurricane Wind Fields as Deduced from Trajectories. U.S. Weather Bureau, National Hurricane Research Project, Report 49.
Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito and Y. Yamazaki, 2006. The operational JMA Nonhydrostatic Mesoscale Model. Monthly Weather Review, 134, 1266-1298.
Shibaki H., Nakai K., Suzuyama K. and Watanabe A., 2004. Multi-level storm surge model incorporating density stratification and wave-setup. Proc. of 29th Int. Conf. on Coastal Eng., ASCE, 1539-1551.JSCE (1999). Hydraulic formulas, page 245 (in Japanese).
Shibaki, H., Suzuyama, K., Kim, J.I., & Sun, L., 2007. Numerical simulation of storm surge inundation induced by overflow, overtopping and dike breach. Asian and Pacific Coasts 2007, Nanjing, China.
Smagorinsky J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91, 99- 164.
Smith, S.D. & Banke, E.G., 1975. Variation of the sea surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorological Society, 101, 665-673.
Versteeg, H.K., Malalasekera, W., 1995.An introduction to computational fluid dynamics. The Finite Volume Method. Prentice Hall, 257p.
Wang Xinian, Yin Qingjiang, Zhang Baoming, 1991. Research and Applications of a Forecasting Model of Typhoon Surges in China Seas. Advances In Water Science.
Wu, J., 1982. Wind-Stress Coefficients over Sea Surface from Breeze to Hurricane. Journal of Geophysical Research, 87, 9704-9706.
Yeh, H., Liu, P., Synolakis, C., 1996. Long-wave Runup Models. World Scientific.
Yakhot, V. and Orszag, S.A., 1986. Renormalization group analysis of turbulence, I. Basic theory. Journal of Scientific Computing, 1, 1-51.
Yakhot, V. and Smith, L.M., 1992. The renormalization group, the expansion and derivation of turbulence models, Journal of Scientific Computing, 7, 35-61
Yasuda, T., T. Hiraishi, H. Kawai, K. Nagase, S.W. Kang, and W.M. Jeong, 2005. Field survey and computation analysis of storm surge disaster in Masan due to Typhoon Maemi, Proceedings of Asian and Pacific Coasts 2005, Jeju, Korea.

Fig. 3. Mesh and depth map for the storm surge model of ADCSWAN model.

ADCSWAN과 FLOW-3D 모델을 이용한 태풍 차바 내습 시 부산 마린시티의 침수범람 재현

최흥배․엄호식†․박종집․강태욱
*, *** ㈜지오시스템리서치 선임, ** ㈜지오시스템리서치 책임, **** 부경대학교 박사

Reproduction of Flood Inundation in Marine City, Busan During the Typhoon Chaba Invasion Using ADCSWAN and FLOW-3D Models

요 약 : 최근 연안지역의 대규모 개발로 인해 고파랑 내습과 강한 태풍으로 발생된 월파는 연안지역의 많은 인명 및 재산피해를 발생시 켰으나 연안지역의 특성을 고려한 침수·범람 연구는 미비한 실정이다. 본 연구는 ADCSWAN(ADCIRC+SWAN) 모델과 FLOW-3D 모델을 적용 하여 해일 및 파랑의 복합요소에 대한 침수범람을 재현하기 위한 방법론에 대한 연구이다. 본 연구에서는 ADCSWAN(ADCIRC+SWAN) 모 델을 이용하여 FLOW-3D 모델의 경계자료(해수위, 파랑)를 추출하고, FLOW-3D 모델 입력값으로 적용하여 태풍 차바 통과시 부산 마린시 티를 대상으로 해일과 월파에 의한 침수범람을 재현하였다. 또한 기존 월파량 경험식과 FLOW-3D 모델로 계산된 월파량을 비교하였으며, 침수범람은 한국국토정보공사의 침수흔적도를 활용하여 정성적인 검증을 수행하여, 본 연구의 유효성을 검토하였다.

Keywords : ADCSWAN, FLOW-3D, 태풍 차바, 월파, 침수범람, Typhoon Chaba, Wave overtopping, Inundation

서 론

연안지역에 인접한 도시지역의 침수피해는 일반적인 도 시침수피해의 특성뿐만 아니라 연안지역의 조위상승 및 월 파현상이 포함된 복합적인 형태의 침수피해가 발생한다. 최근 지구온난화로 인한 기후변화는 평균해수면 상승과 태풍 의 강도 증가로 인해 해안지역의 재해 위험을 높이고 있지 만, 해안지역의 대규모 매립과 개발로 인해 인명손실과 재 산피해를 야기하는 위험도를 증가시켰다. 해안지역은 만조시 해수면 상승, 폭풍해일로 인한 월류 및 월파와 같은 요인에 의해 침수가 발생할 수 있다. 실제로 2003년 태풍 매미로 인한 마산만 조수가 예보치와 비교하여 2 m 이상 상승하여 많은 지역이 침수 및 인명·재산 피해가 발생되었으며, 2016년 태풍 차바는 폭풍해일 내습시 동반되 는 고파랑 발생으로 부산 해운대구 마린 시티에 대규모 침 수범람을 발생시켰다. 그러나 국내 연안도시지역의 특성을 고려한 월파 및 침수에 대한 연구는 미비한 실정이다(Song et al., 2017). 하지만 복잡한 지형이나 연안지역의 경우 방파 제 및 구조물의 형상에 따른 월파를 정밀하게 계산하기 위 해 3차원 전산유체 수치모형(CFD)의 가능성 여부가 검토되 어 왔다. 그러나 지금까지 대부분의 전산유체 수치모형은 그 적용성의 한계성과 큰 영역에 대해 직접 수치모의 하여 월파량을 산정한 예는 드물다. Le Roy et al.(2014)는 프랑스 도시지역에서 월파로 인한 해 안 홍수 문제를 해결하기 위해 XBeach 수치모델 및 경험적 (EurOtop) 모델을 사용하여 최대 월파량과 처오름을 추정하 였다. 우리나라의 설계기준서인 “항만 및 어항 설계기준(Ministry of Oceans and Fisheries, 2014)” 경우에는 월파량 산정은 Goda 도표를 단순 직립식 구조물 및 소파호안에 적용하는 것을 제안하였다(Goda, 1970; Goda et al., 1975; Goda, 1985) 월파량 산정과 관련된 최근 연구 경향은 월파량 산정식을 대부분 지수함수 형태로 표현하고 있으며, 여유고와 입사파 고를 입력변수로 하여 월파량 산정이 가능하도록 제시하고 있다(van der Meer and Janssen, 1995; Franco and Franco, 1999; EurOtop, 2007; Anderson and Burcharth, 2009 등). 태풍에 의해 발생하는 폭풍해일의 영향을 예측하기 위해 서는 기본적으로 태풍에 의한 기압 강하, 해상풍, 진행 속도 등에 의한 해수면 변화 양상 및 조석-해일-파랑에 대해 충분 히 재현 가능해야 한다(Kang et al., 2019). 본 연구에서는 태풍 차바 내습시 폭풍해일 ADCSWAN (coupled model of ADCIRC and SWAN)모델과 FLOW-3D 수치 모형 결합을 통해 월파 특성을 재현하고 경험식을 통한 월 파량을 비교·검토하였다.

  1. 연구 개요
    2.1 대상 태풍

본 연구의 대상지역은 대한민국 부산 해안가에 위치한 수 변도시로, 수영만 매립지 일부에 조성된 주거형 타운 지역 이다. 주요 건물이 해안선에 인접해 있으며, 지역 주민의 바 다를 볼 수 있는 조망권 확보를 위해 월파로 인한 방지대책 이 제한적으로 설치되어 있다. 이러한 지역적 특성으로 인 해 2016년 태풍 차바와 2018년 태풍 콩 라이(Kong-Rai) 때 폭 우와 폭풍해일 동반으로 월파와 강우로 인해 마린 시티 주 변의 많은 도로와 상가 침수가 발생되었다.

Fig. 1. Typhoon Chaba route (KMA & JMA)
Fig. 1. Typhoon Chaba route (KMA & JMA)

ADCSWAN과 FLOW-3D 모델을 이용한 태풍 차바 내습 시 부산 마린시티의 침수범람 재현

Fig. 2. Marine City during Typhoon Chaba in 2016.
Fig. 2. Marine City during Typhoon Chaba in 2016.

2016년 발생한 제 18호 태풍 ‘차바(이하 Chaba로 표기함)’ 는 2016년 9월 28일 오전 3시에 중심기압 1,000 hPa, 최대풍속 18 m/s, 강풍 반경 280 km 크기의 ‘소형’ 열대폭풍으로 미국 괌 동쪽 약 590 km 부근 해상에서 발생하여 한반도의 제주 특별자치도 서귀포시와 경상남도 거제시, 부산광역시를 순 차적으로 통과하여 10월 6일 0시에 일본 센다이 서쪽 약 380 km부근 해상에서 중심기압 985 hPa의 온대저기압으로 세력 이 약화되면서 소멸하였다. 태풍의 일시별 정보와 피해사진 을 Fig. 1 및 Fig. 2에 제시하였다.

2.2 적용 모델
2.2.1 ADCSWAN(ADCIRC+SWAN) model

태풍에 의해 발생되는 폭풍해일의 영향을 예측하기 위해 서는 지형적인 특성과 태풍에 의한 기압강하, 해상풍, 진행 속도 등에 의한 해수면 변화 양상 및 조석-해일-파랑에 대 해 충분히 재현 가능해야 한다(Ferreira et al., 2014a, 2014b). 본 연구에서는 태풍에 의해 발생 가능한 현상에 대해 기존 의 다양한 연구에서 적용 및 활용성이 확보된 폭풍해일ADCIRC(ADvanced CIRCulation) 모델과 SWAN(Simulating WAves Nearshore) 파랑모델이 결합된 ADCSWAN(coupled model of ADCIRC and SWAN) 모델을 이용하였다(Dietrich et al., 2011; Suh et al., 2015; Xie et al., 2016; Deb and Ferreira, 2018). 사용한 ADCIRC 모델은 유한요소 유체역학모델로, 수직적 으로 통합된 일반파 연속방정식(generalised wave continuity equation: GWCE)과 운동량 방정식(각각 식(1)과 (2))을 적용하 는 2D 버전(Luettich and Westerink, 2004)을 사용하였다.

<중략> ….

Fig. 3. Mesh and depth map for the storm surge model of ADCSWAN model.
Fig. 3. Mesh and depth map for the storm surge model of ADCSWAN model.
Fig. 5. Simulation boundary of FLOW3D Model [a) Input boundary of wave and storm surge, b) output boundary of wave overtopping rate].
Fig. 5. Simulation boundary of FLOW3D Model [a) Input boundary of wave and storm surge, b) output boundary of wave overtopping rate].
Fig. 6. Verification of tidal level and storm surge during Typhoon Chaba(1618), Pre : tidal predication.
Fig. 6. Verification of tidal level and storm surge during Typhoon Chaba(1618), Pre : tidal predication.
Fig. 7. Verification of significant wave height the Typhoon Chaba.
Fig. 7. Verification of significant wave height the Typhoon Chaba.
Fig. 8. Averaged overtopping rate by empirical formula and FLOW3D model at Marine City during Typhoon Chaba.
Fig. 8. Averaged overtopping rate by empirical formula and FLOW3D model at Marine City during Typhoon Chaba.
Fig. 9. Comparison of inundation results due to Typhoon Chaba [a)Archived inundation map on Marine City area, b) Simulation results obtained from wave overtopping).
Fig. 9. Comparison of inundation results due to Typhoon Chaba [a)Archived inundation map on Marine City area, b) Simulation results obtained from wave overtopping).

<중략>…………

결 론

본 연구에서는 폭풍해일 모델과 3차원 전산유체 모델 연 계를 통해 태풍 차바 통과시 마린시티를 대상으로 침수범람 을 재현하였다. 먼저, 기존 월파량 경험식(EurOtop, 2016)과 FLOW-3D모델 로 산정된 월파량을 비교하였으며. 비교결과 경험식으로 산 정된 월파량은 2.237 m³/m/s이며, FLOW-3D로 계산된 월파량 은 6.438 m³/m/s로 약 2.8배의 차이를 보였다. 이는 경험식이 고파랑에 의한 처오름 등 실제 현상재현에 한계점을 가지고 있기 때문으로 사료된다. 태풍 차바로 인한 수위상승과 폭풍해일 등의 복합적 피해 가 발생한 부산 마린시티 적용결과 현장조사(침수흔적도)와 정량적 비교는 불가능하지만 침수범람 범위의 경우 현장조 사와 비교하여 유효한 결과를 도출할 수 있었다. 기존 월파량 추정은 경험식을 적용하여 산정하였으나, 본 연구에서는 동적모델(FLOW-3D)을 적용하여 월파량을 산정 하였다. 동적모델을 적용할 경우 해당지역의 보다 정확한 형상을 구현할 수 있다는 점에서 기존 경험식에 비하여 정 도 높은 월파량 재현이 가능한 것으로 판단된다. 현재 우리나라 연안을 대상으로 제작된 해안침수예상도 는 해일에 의한 침수범람을 외력요인으로 하고 있으나, 실제 발생하는 침수범람은 해일뿐만 아니라 월파의 영향이 크 게 발생하기도 한다. 본 연구에서는 해일과 월파에 의한 복 합원인에 의한 침수범람을 재현하기 위한 방법론에 대한 연 구를 수행하였다.

References

[1] Anderson, T. L. and H. F. Burcharth(2009), Three-dimensionalinvestigation of wave overtopping on rubble mound structures,Coastal Engineering, Vol. 56, No. 2, pp. 180-189.
[2] Booij, N., R. C. Ris, and L. H. Holthuijsen(1999), Athird-generation wave model for coastal regions: 1. Modeldescription and validation, J. Geophys. Res., Vol. 104, No.C4, pp. 7649-7666.
[3] Deb, M. and C. M. Ferreira(2018), Simulation of cycloneinduced storm surges in the low-lying delta of Bangladeshusing coupled hydrodynamic and wave model (SWAN +ADCIRC), J. Flood Risk Manag., Vol. 11, No. S2, pp.750-765.
[4] Dietrich, J. C., M. Zijlema, J. J. Westerink, L. H. Holthuijsen,C. Dawson, R. A. Luettich, R. E. Jensen, J. M. Smith, G. S.Stelling, and G. W. Stone(2011), Modeling hurricane wavesand storm surge using integrally-coupled scalable computations,Coast Eng., Vol. 58, No. 1, pp. 45-65.
[5] Dietrich, J. C., S. Bunya, J. J. Westerink, B. A. Ebersole, J.M. Smith, J. H. Atkinson, R. Jensen, D. T. Resio, R. A.Luettich, C. Dawson, V. J. Cardone, A. T. Cox, M. D.Powell, H. J. Westerink, and H. J. Roberts(2010), A highresolution coupled riverine flow, tide, wind, wind wave andstorm surge model for southern Louisiana and Mississippi.Part II: Synoptic description and analyses of HurricanesKatrina and Rita. Mon. Weather Rev., Vol. 138, No. 2, pp.378-404.
[6] EurOtop(2016), Manual on wave overtopping of sea defencesand related structures. An overtopping manual largely basedon European research, but for worldwide application. SecondEdition. Authors: J. W. van der Meer, N. W. H. Allsop, T. Bruce, J. DeRouck, A. Kortenhaus, T. Pullen, H. Schuttrumpf,P. Troch, and B. Zanuttigh, www.overtopping-manual.com.
[7] EurOtop(2007), EurOtop – Wave overtopping of sea defencesand related structures: Assessment Manual.
[8] Ferreira, C. M., J. L. Irish, and F. Olivera(2014a), Quantifyingthe potential impact of land cover changes due to sea-levelrise on storm surge on lower Texas coast bays, Coast Eng.,Vol. 94, pp. 102-111.
[9] Ferreira, C. M., J. L. Irish, and F. Olivera(2014b), Uncertaintyin hurricane surge simulation due to land cover specification,J. Geophys. Res. Ocean., Vol. 119, No. 3, pp. 1812-1827.
[10] Goda, Y.(1970), Estimation of the rate of irregular waveovertopping at seawalls, Technical Report of Port and AirportResearch Institute, Vol. 9, No. 4, pp. 3-42.
[11] Goda, Y.(1985), Random seas and design of maritimestructures 1st editionth ed. World Scientific Publishing.
[12] Goda, Y., Y. Kishira, and Y. Kamiyama(1975), Laboratoryinvestigation on the overtoppping rate of seawalls by irregularwaves, Technical Report of Port and Airport ResearchInstitute, Vol. 14, No. 4, pp. 3-44.
[13] Hasselmann, K., T. P. Barnett, E. Bouws, H. Carlson, D. E.Cartwright, E. Enke, J. A. Ewing, H. Gienapp, D. E.Hasselmann, P. Kruseman, A. Meerburg, P. Muller, D. J.Olbers, K. Richter, W. Sell, and H. Walden(1973),Measurement of wind-wave growth and swell decay duringthe Joint North Sea Wave Project (JONSWAP), Dtsch.Hydrogr. Z. Suppl., Vol. 12, No. A8, pp. 1-95.
[14] Kang, T. W., S. H. Lee, H. B. Choi, and S. B. Yoon(2019),A Technical Review for Reducing Inundation Damage toHigh-Rise and Underground-Linked Complex Buildings inCoastal Areas (2): Case Analysis for Application, J. KoreanSoc. Hazard Mitig., Vol. 19, No. 5 (Oct.), pp. 45-53.
[15] Le Roy, S., R. Pedreros, C. André, F. Paris, S. Lecacheux, F.Marche, C. Vinchon(2014), Coastal flooding of urban areas byovertopping: dynamic modelling application to the Johannastorm (2008) in Gâvres (France), Natural Hazard and EarthSystem Sciences Discussions, Vol. 2, No. 8, pp. 4947-4985l.
[16] Luettich, R. A. and J. J. Westerink(2004), Formulation andNumerical Implementation of the 2D/3D ADCIRC FiniteElement Model Version 44.XX.
[17] Ministry of Oceans and Fisheries(2014), Harbour and FisheryDesign Criteria.
[18] Song, Y., J. Joo, J. Lee, and M. Park(2017), A Study onEstimation of Inundation Area in Coastal Urban Area Applying Wave Overtopping, J. Korean Soc. Hazard Mitig.,Vol. 17(2), pp. 501-510.
[19] Suh, S. W., H. Y. Lee, H. J. Kim, and J. G. Fleming(2015),An efficient early warning system for typhoon storm surgebased on time-varying advisories by coupled ADCIRC andSWAN, Ocean Dyn. 65, pp. 617-646.
[20] Van der Meer, J. W. and H. Janssen(1995). Wave run-up andovertopping at dikes, Wave forces on inclined and verticalwall structures, ASCE.
[21] Xie, D. M., Q. P. Zou, and J. W. Cannon(2016), Applicationof SWAN + ADCIRC to tide-surge and wave simulation inGulf of Maine during Patriot’s Day storm, Water Sci. Eng.,Vol. 9, No. 1, pp. 33-41.
[22] Yoon, H. S., J. H. Park, and Y. H. Jeon(2017), A Study onWave Overtopping of the Seawall at Haeundae Marine CityDuring the Passing of Typhoon Chaba, J. Korean Soc. Mar.Environ. Energy, Vol. 20(3), pp. 152-159.

A photo of HeMOSU-1.

FLOW-3D를 이용한 해상 자켓구조물 주변의 세굴 수치모의 실험

Numerical Simulation Test of Scour around Offshore Jacket Structure using FLOW-3D

J Korean Soc Coast Ocean Eng. 2015;27(6):373-381Publication date (electronic) : 2015 December 31doi : https://doi.org/10.9765/KSCOE.2015.27.6.373Dong Hui Ko*Shin Taek Jeong,**Nam Sun Oh****Hae Poong Engineering Inc.**Department of Civil and Environmental Engineering, Wonkwang University***Ocean·Plant Construction Engineering, Mokpo Maritime National University
고동휘*, 정신택,**, 오남선***

*(주)해풍기술**원광대학교 토목환경공학과***목포해양대학교 해양·플랜트건설공학과

Abstract

해상풍력 기기, 해상 플랫폼과 같은 구조물이 해상에서 빈번하게 설치되면서 세굴에 관한 영향도 중요시되고 있다. 이러한 세굴 영향을 검토하기 위해 세굴 수치모의 실험을 수행한다. 일반적으로 수치모의 조건은 일방향 흐름에 대해서만 검토가 이뤄지고 있으며 서해안과 같은 왕복성 조류 흐름에 대해서는 검토되지 않는다. 본 연구에서는 서해안에 설치된 HeMOSU-1호 해상 자켓구조물 주변에서 발생하는 세굴 현상을 FLOW-3D를 이용하여 수치모의하였다. 해석 조건으로는 일방향 흐름과 조석현상을 고려한 왕복성 흐름을 고려하였으며, 이를 현장 관측값과 비교하였다. 10,000초 동안의 수치모의 결과, 일방향의 흐름 조건에서는 1.32 m의 최대 세굴심이 발생하였으며, 양방향 흐름 조건에서는 1.44 m의 최대 세굴심이 발생하였다. 한편, 현장 관측값의 경우 약 1.5~2.0 m의 세굴심이 발생하여 양방향의 흐름에 대한 해석 결과와 근사한 값을 보였다.

Keywords 세굴일방향 흐름왕복성 조류 흐름해상 자켓구조물FLOW-3D최대 세굴심, scouruni-directional flowbi-directional tidal current flowoffshore jacket substructureFlow-3Dmaximum scour depth

As offshore structures such as offshore wind and offshore platforms have been installed frequently in ocean, scour effects are considered important. To test the scour effect, numerical simulation of scour has been carried out. However, the test was usually conducted under the uni-directional flow without bi-directional current flow in western sea of Korea. Thus, in this paper, numerical simulations of scour around offshore jacket substructure of HeMOSU-1 installed in western sea of Korea are conducted using FLOW-3D. The conditions are uni-directional and bi-directional flow considering tidal current. And these results are compared to measured data. The analysis results for 10,000 sec show that under uni-directional conditions, maximum scour depth was about 1.32 m and under bi-directional conditions, about 1.44 m maximum scour depth occurred around the structure. Meanwhile, about 1.5~2.0 m scour depths occurred in field observation and the result of field test is similar to result under bi-directional conditions.

1. 서 론

최근 해상풍력기기, 해상플랫폼과 같은 해상구조물 설치가 빈번해지면서 해상구조물의 안정성을 저하시키는 요인에 대한 대응 연구가 필요하다. 특히 해상에서의 구조물 설치는 육상과 달리 수력학적 하중이 작용하게 되기 때문에 파랑에 의한 구조물과의 진동, 세굴 현상에 대하여 철저한 사전 검토가 요구된다. 특히, 해상 기초에서 발생하는 세굴은 조류 및 파랑 등 유체 흐름과 구조물 사이의 상호작용으로 인해 해저 입자가 유실되는 현상으로 정의할 수 있으며 해상 외력 조건에 포함되어 설계시 고려하도록 제안하고 있다(IEC, 2009).구조물을 해상에 설치하게 되면 구조물이 흐름을 방해하는 장애요인으로 작용하여 구조물 주위에 부분적으로 더 빠른 유속이 발생하게 된다. 이러한 유속 변화는 압력 분포 변화에 기인하게 되어 해양구조물 주위에 아래로 흐르는 유속(downflow), 말굽형 와류(horseshoe vortex) 그리고 후류 와류(wake vortex)가 나타난다. 결국, 유속과 흐름의 변화를 야기하고 하상전단응력과 유사이동 능력을 증가시켜 해저 입자를 유실시키며 구조물의 안정성을 위협하는 요인으로 작용하게 된다. 이러한 세굴 현상이 계속 진행되면 해상풍력 지지구조물 기초의 지지력이 감소하게 될 뿐만 아니라 지지면의 유실로 상부반력 작용에 편심을 유발하여 기초의 전도를 초래한다. 또한 세굴에 의한 기초의 부등 침하가 크게 발생하면 상부 해상풍력 지지구조물에 보다 큰 단면력이 작용하므로 세굴에 의한 붕괴가 발생할 수 있다. 이처럼 세굴은 기초지지구조물을 붕괴하고, 침하와 얕은 기초의 변형을 초래하며, 구조물의 동적 성능을 변화시키기 때문에 설계 및 시공 유지관리시 사전에 세굴심도 산정, 세굴 완화 대책 등을 고려하여야 한다.또한 각종 설계 기준서에서는 세굴에 대해 다양하게 제시하고 있다. IEC(2009)ABS(2013)BSH(2007)MMAF(2005)에서는 세굴에 대한 영향을 검토할 것을 주문하지만 심도 산정 등 세굴에 대한 구체적인 내용은 언급하지 않고 전반적인 내용만 수록하고 있다. 그러나 DNV(2010)CEM(2006)에서는 경험 공식을 이용한 세굴 심도 산정 등 구체적인 내용을 광범위하게 수록하고 있어 세굴에 대한 영향 검토시 활용가능하다. 그 외의 기준서에서는 수치 모델 등을 통한 세굴 검토를 주문하고 있어 사용자들이 직접 판단하도록 제안하고 있다.그러나 세굴은 유속, 수심, 구조물 폭, 형상, 해저입자 등에 의해 결정되기 때문에 세굴의 영향 정도를 정확하게 예측하기란 쉽지 않지만 수리 모형 실험 또는 CFD(Computational Fluid Dynamics)를 이용한 수치 해석을 통해 지반 침식 및 퇴적으로 인한 지형변화를 예측할 수 있다. 한편, 침식과 퇴적 등 구조물 설치로 인한 해저 지형 변화를 예측하는 모델은 다양하지만, 본 연구에서는 Flowscience의 3차원 유동해석모델인 Flow-3D 모델을 사용하였다.해상 구조물은 목적에 따라 비교적 수심이 낮은 지역에 설치가 용이하다. 국내의 경우, 서남해안과 같이 비교적 연안역이 넓고 수심이 낮은 지역에 구조물을 설치하는 것이 비용 및 유지관리 측면에서 유리할 수 있다. 그러나 국내 서남해안 지역은 왕복성 흐름, 즉 조류가 발생하는 지역으로 흐름의 방향이 시간에 따라 변화하게 된다. 따라서, 세굴 수치 모의시 이러한 왕복성 흐름을 고려해야한다. 그러나 대부분의 수치 모델 적용시 조류가 우세한 지역에서도 일방향의 흐름에 대해서만 검토하며 왕복성 흐름에 의한 지층의 침식과 퇴적작용으로 인해 발생하는 해저 입자의 상호 보충 효과는 배제되게 된다. 또한 이로 인해 수치모델 결과에 많은 의구심이 발생하게 되며 현실성이 결여된 해석으로 보여질 수 있다. 이러한 왕복흐름의 영향을 검토하기 위해 Kim and Gang(2011)은 조류의 왕복류 흐름을 고려하여 지반의 수리 저항 성능 실험을 수행하였으며, 양방향이 일방향 흐름보다 세굴이 크게 발생하는 것을 발표하였다. 또한 Kim et al.(2012)은 흐름의 입사각에 따른 수리저항 실험을 수행하였으며 입사각이 커짐에 따라 세굴률이 증가하는 것으로 나타났다.본 연구에서는 단일방향 고정유속 그리고 양방향 변동유속조건에서 발생하는 지형 변화와 세굴 현상을 수치 모의하였으며, 이러한 비선형성 흐름변화에 따른 세굴 영향 정도를 검토하였다. 더불어 현장 관측 자료와의 비교를 통해 서남해안과 같은 왕복성 흐름이 발생하는 지역에서의 세굴 예측시 적절한 모델 수립 방안을 제안하고자 한다.

2. 수치해석 모형

본 연구에서는 Autodesk의 3D max 프로그램을 이용하여 지지구조물 형상을 제작하였으며, 수치해석은 미국 Flowscience가 개발한 범용 유동해석 프로그램인 FLOW-3D(Ver. 11.0.4.5)를 사용하였다. 좌표계는 직교 좌표계를 사용하였으며 복잡한 3차원 형상의 표현을 위하여 FAVOR 기법(Fractional Area/Volume Obstacle Representation Method)을 사용하였다. 또한 유한차분법에 FAVOR 기법을 도입한 유한체적법의 접근법을 사용하였으며 직교좌표계 에서 비압축성 유체의 3차원 흐름을 해석하기 위한 지배방정식으로는 연속방정식과 운동방정식이 사용되었다. 난류모형으로는 RNG(renormalized group)모델을 사용하였다.

2.1 FLOW-3D의 지배방정식

수식은 MathML 표현문제로 본 문서의 하단부의 원문바로가기 링크를 통해 원문을 참고하시기 바랍니다.

2.1.1 연속방정식

직교좌표계 (x,y,z)에서 비압축성 유체는 압축성 유체의 연속방정식에서 유도될 수 있으며 다음 식 (1)과 같다.

(1)

∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ
여기서, u, v, w는 (x,y,z) 방향별 유체속도, Ax, Ay, Az는 각 방향별 유체 흐름을 위해 확보된 면적비 (Area fraction), ρ는 유체 밀도, RSOR은 질량생성/소멸(Mass source/sink)항이다.

2.1.2 운동방정식

본 모형은 3차원 난류모형이므로 각각의 방향에 따른 운동량 방정식은 다음 식(2)~(4)와 같다.

(2)

∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)   =−1ρ∂p∂x+Gx+fx−bx−RSORρVFu∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)   =−1ρ∂p∂x+Gx+fx−bx−RSORρVFu

(3)

∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)   =−1ρ∂p∂y+Gy+fy−by−RSORρVFv∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)   =−1ρ∂p∂y+Gy+fy−by−RSORρVFv

(4)

∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)   =−1ρ∂p∂z+Gz+fz−bz−RSORρVFw∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)   =−1ρ∂p∂z+Gz+fz−bz−RSORρVFw여기서, RSOR은 질량생성/소멸(Mass source/sink)항, VF는 체적비 (Volume fraction), p는 압력, Gx, Gy, Gz는 방향별 체적력항, fx, fy, fz는 방향별 점성력항, bx, by, bz는 다공질 매체에서 방향별 흐름 손실이다.그리고 점성계수 µ에 대하여 점성력항은 다음 식 (5)~(7)과 같다.

(5)

ρVffx=wsx−{∂∂x(Axτxx)+R∂∂y(Ayτxy)+∂∂z(Azτxz)+ζx(Axτxx−Ayτyy)}ρVffx=wsx−{∂∂x(Axτxx)+R∂∂y(Ayτxy)+∂∂z(Azτxz)+ζx(Axτxx−Ayτyy)}

(6)

ρVffy=wsy−{∂∂x(Axτxy)+R∂∂y(Ayτyy)+∂∂z(Azτyz)+ζx(Axτxx−Ayτxy)}ρVffy=wsy−{∂∂x(Axτxy)+R∂∂y(Ayτyy)+∂∂z(Azτyz)+ζx(Axτxx−Ayτxy)}

(7)

ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}여기서, wsx, wsy, wsz는 벽전단응력이며, 벽전단응력은 벽 근처에서 벽 법칙 (law of the wall)을 따르며, 식 (8)~(13)에 의해 표현되어진다.

(8)

τxx=−2μ{∂u∂x−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τxx=−2μ{∂u∂x−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(9)

τyy=−2μ{R∂v∂y+ζux−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τyy=−2μ{R∂v∂y+ζux−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(10)

τzz=−2μ{R∂w∂y−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τzz=−2μ{R∂w∂y−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(11)

τxy=−μ{∂v∂x+R∂u∂y−ζvx}τxy=−μ{∂v∂x+R∂u∂y−ζvx}

(12)

τxz=−μ{∂u∂y+∂w∂x}τxz=−μ{∂u∂y+∂w∂x}

(13)

τyz=−μ{∂v∂z+R∂w∂y}τyz=−μ{∂v∂z+R∂w∂y}

2.1.3 Sediment scour model

Flow-3D 모델에서 사용하는 sediment scour model은 해저입자의 특성에 따라 해저 입자의 침식, 이송, 전단과 흐름 변화로 인한 퇴적물의 교란 그리고 하상 이동을 계산한다.

2.1.3.1 The critical Shields parameter

무차원 한계소류력(the dimensionless critical Shields parameter)은 Soulsby-Whitehouse 식에 의해 다음 식 (14)와 같이 나타낼 수 있다(Soulsby, 1997).

(14)

θcr,i=0.31+1.2R∗i+0.055[1−exp(−0.02R∗i)]θcr,i=0.31+1.2Ri*+0.055[1−exp(−0.02Ri*)]여기서 무차원 상수, R∗iRi*는 다음 식 (15)와 같다.

(15)

R∗i=ds,i0.1(ρs,i−ρf)ρf∥g∥ds,i−−−−−−−−−−−−−−−−−−−√μfRi*=ds,i0.1(ρs,i−ρf)ρf‖g‖ds,iμf여기서 ρs, i는 해저 입자의 밀도, ρf는 유체 밀도, ds, i는 해저입자 직경, g는 중력가속도이다.한편, 안식각에 따라 한계소류력은 다음 식 (16)과 같이 표현될 수 있다.

(16)

θ′cr,i=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2β−−−−−−−−−−−−−−−−−−−−√tanψiθcr,i′=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2βtanψi여기서, β는 하상 경사각, ψi는 해저입자의 안식각, ψ는 유체와 해저경사의 사잇각이다.또한 local Shields number는 국부 전단응력, τ에 기초하여 다음 식 (17)과 같이 계산할 수 있다.

(17)

θi=τ∥g∥ds,i(ρs,i−ρf)θi=τ‖g‖ds,i(ρs,i−ρf)여기서, ||g||g 는 중력 벡터의 크기이며, τ는 식 (8)~(13)의 벽 법칙을 이용하여 계산할 수 있다.

2.1.3.2 동반이행(Entrainment)과 퇴적

다음 식은 해저 지반과 부유사 사이의 교란을 나타내는 동반이행과 퇴적 현상을 계산한다. 해저입자의 동반이행 속도의 계산식은 다음 식 (18)과 같으며 부유사로 전환되는 해저의 양을 계산한다.

(18)

ulift,i=αinsd0.3∗(θi−θ′cr,i)1.5∥g∥ds,i(ρs,i−ρf)ρf−−−−−−−−−−−−−−√ulift,i=αinsd*0.3(θi−θcr,i′)1.5‖g‖ds,i(ρs,i−ρf)ρf여기서, αi는 동반이행 매개변수이며, ns는 the packed bed interface에서의 법선벡터, µ는 유체의 동점성계수 그리고 d*은 무차원 입자 직경으로 다음 식 (19)와 같다.

(19)

d∗=ds,i[ρf(ρs,i−ρf)∥g∥μ2]1/3d*=ds,i[ρf(ρs,i−ρf)‖g‖μ2]1/3또한 퇴적 모델에서 사용하는 침강 속도 식은 다음 식 (20)같이 나타낼 수 있다.

(20)

usettling,i=νfds,i[(10.362+1.049d3∗)0.5−10.36]usettling,i=νfds,i[(10.362+1.049d*3)0.5−10.36]여기서, νf는 유체의 운동점성계수이다.

2.1.3.3 하상이동 모델(Bedload transport)

하상이동 모델은 해저면에 대한 단위 폭당 침전물의 체적흐름을 예측하는데 사용되며 다음 식 (21)과 같이 표현되어진다.

(21)

Φi=βi(θi−θ′cr,i)1.5Φi=βi(θi−θcr,i′)1.5여기서 Φi는 무차원 하상이동률이며 βi는 일반적으로 8.0의 값을 사용한다(van Rijn, 1984).단위 폭당 체적 하상이동률, qi는 다음 식 (22)와 같이 나타낼 수 있다.

(22)

qb,i=fb,i Φi[∥g∥(ρs,i−ρfρf)d3s,i]1/2qb,i=fb,i Φi[‖g‖(ρs,i−ρfρf)ds,i3]1/2여기서, fb, i는 해저층의 입자별 체적률이다.또한 하상이동 속도를 계산하기 위해 다음 식 (23)에 의해 해저면층 두께를 계산할 수 있다.

(23)

δi=0.3ds,id0.7∗(θiθ′cr,i−1)0.5δi=0.3ds,id*0.7(θiθcr,i′−1)0.5그리고 하상이동 속도 식은 다음 식 (24)와 같이 계산되어진다.

(24)

ubedload,i=qb,iδifb,iubedload,i=qb,iδifb,i

2.2 모델 구성 및 해역 조건

2.2.1 해역 조건 및 적용 구조물

본 수치해석은 위도와 안마도 사이의 해양 조건을 적용하였으며 지점은 Fig. 1과 같다.

jkscoe-27-6-373f1.gifFig. 1.Iso-water depth contour map in western sea of Korea.

본 해석 대상 해역은 서해안의 조석 현상이 뚜렷한 지역으로 조류 흐름이 지배적이며 위도의 조화분석의 결과를 보면 조석형태수가 0.21로서 반일주조 형태를 취한다. 또한 북동류의 창조류와 남서류의 낙조류의 특성을 보이며 조류의 크기는 대상 영역에서 0.7~1 m/s의 최강유속 분포를 보이는 것으로 발표된 바 있다. 또한 대상 해역의 시추조사 결과를 바탕으로 해저조건은 0.0353 mm 로 설정하였고(KORDI, 2011), 수위는 등수심도를 바탕으로 15 m로 하였다.한편, 풍황자원 분석을 통한 단지 세부설계 기초자료 제공, 유속, 조류 등 해양 환경변화 계측을 통한 환경영향평가 기초자료 제공을 목적으로 Fig. 2와 같이 해상기상탑(HeMOSU-1호)을 설치하여 운영하고 있다. HeMOSU-1호는 평균해수면 기준 100 m 높이이며, 중량은 100 톤의 자켓구조물로 2010년 설치되었다. 본 연구에서는 HeMOSU-1호의 제원을 활용하여 수치 모의하였으며, 2013년 7월(설치 후 약 3년 경과) 현장 관측을 수행하였다.

jkscoe-27-6-373f2.gifFig. 2.A photo of HeMOSU-1.

2.2.2 모델 구성

본 연구에서는 왕복성 조류의 영향을 살펴보기 위해 2 case에 대하여 해석하였다. 먼저, Case 1은 1 m/s의 고정 유속을 가진 일방향 흐름에 대한 해석이며, Case 2는 -1~1 m/s의 유속분포를 가진 양방향 흐름에 대한 해석이다. 여기서 (-)부호는 방향을 의미한다. Fig. 3은 시간대별 유속 분포를 나타낸 것이다.

jkscoe-27-6-373f3.gifFig. 3.Comparison of current speed conditions.

2.2.3 구조물 형상 및 격자

HeMOSU-1호 기상 타워 자켓 구조물 형상은 Fig. 4, 격자 정보는 Table 1과 같으며, 본 연구에서는 총 2,883,000 개의 직교 가변 격자체계를 구성하였다.

jkscoe-27-6-373f4.gifFig. 4.3 Dimensional plot of jacket structure.
Table 1.

Grid information of jacket structure

Xmin/Xmax(m)Ymin/Ymax(m)Zmin/Zmax(m)No. of x gridNo. of y gridNo. of z grid
−100/100−40/40−9/2031015560
Download Table

한편, 계산영역의 격자 형상은 Fig. 5와 같다.

jkscoe-27-6-373f5.gifFig. 5.3 dimensional grid of jacket structure.

2.3 계산 조건

계산영역의 경계 조건으로, Case 1의 경우, 유입부는 유속 조건을 주었으며 유출부는 outflow 조건을 적용하였다. 그리고 Case 2의 경우, 왕복성 흐름을 표현하기 위해 유입부와 유출부 조건을 유속 조건으로 설정하였다. 또한 2가지 경우 모두 상부는 자유수면을 표현하기 위해 pressure로 하였으며 하부는 지반 조건의 특성을 가진 wall 조건을 적용하였다. 양측면은 Symmetry 조건으로 대칭면으로 정의하여 대칭면에 수직한 방향의 에너지와 질량의 유출입이 없고 대칭면에 평행한 방향의 유동저항이 없는 경우로 조건을 설정하였다. 본 연구에서 케이스별 입력 조건을 다음 Table 2에 정리하였다.

Table 2.

Basic information of two scour simulation tests

CaseStructure typeVelocityDirectionAnalysis time
Case 1Jacket1 m/sUnidirectional10,000 sec
Case 2−1~1 m/sBidirectional
Download Table

FLOW-3D는 자유표면을 가진 유동장의 계산에서 정상상태 해석이 불가능하므로 비정상유동 난류해석을 수행하게 되는데 정지 상태의 조건은 조위를 설정하였다. 또한 유속의 초기 흐름은 난류상태의 비정상흐름이 되므로 본 해석에서는 정상상태의 해석 수행을 위해 1,000초의 유동 해석을 수행하였으며 그 후에 10,000초의 sediment scour 모델을 수행하였다. 해수의 밀도는 1,025 kg/m3의 점성유체로 설정하였으며 RNG(renormalized group) 난류 모델을 적용하였다.Go to : Goto

3. 수치모형 실험 결과

3.1 Case 1

본 케이스에서는 1 m/s의 유속을 가진 흐름이 구조물 주변을 흐를 때, 발생하는 세굴에 대해서 수치 모의하였다. Fig. 6은 X-Z 평면의 유속 분포도이고 Fig. 7은 X-Y 평면의 유속 분포이다. 구조물 주변에서 약간의 유속 변화가 발생했지만 전체적으로 1 m/s의 정상 유동 상태를 띄고 있다.

jkscoe-27-6-373f6.gifFig. 6.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Z plane).
jkscoe-27-6-373f7.gifFig. 7.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Y plane).

이러한 흐름과 구조물과의 상호 작용에 의한 세굴 현상이 발생되며 Fig. 8에 구조물 주변 지형 변화를 나타내었다. 유속이 발생하는 구조물의 전면부는 대체로 침식이 일어나 해저지반이 초기 상태보다 낮아진 것을 확인할 수 있으며, 또한 전면부의 지반이 유실되어 구조물 후면부에 최대 0.13 m까지 퇴적된 것을 확인할 수 있다.

jkscoe-27-6-373f8.gifFig. 8.Sea-bed elevation change of case 1 at t = 10,000 sec.

일방향 흐름인 Case 1의 경우에는 Fig. 9와 같이 10,000초 후 구조물 주변에 최대 1.32 m의 세굴이 발생하는 것으로 나타났다. 또한 구조물 뒤쪽으로는 퇴적이 일어났으며, 구조물 전면부에는 침식작용이 일어나고 있다.

jkscoe-27-6-373f9.gifFig. 9.Scour phenomenon around jacket substructure(Case 1).

3.2 Case 2

서해안은 조석현상으로 인해 왕복성 조류 흐름이 나타나고 있으며 대상해역은 -1~1 m/s의 유속분포를 가지고 있다. 본 연구에서는 이러한 특성을 고려한 왕복성 흐름에 대해서 수치모의하였다.다음 Fig. 10은 X-Z 평면의 유속 분포도이며 Fig. 11은 X-Y 평면의 유속 분포도이다.

jkscoe-27-6-373f10.gifFig. 10.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Z plane).
jkscoe-27-6-373f11.gifFig. 11.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Y plane).

양방향 흐름인 Case 2의 경우에는 Fig. 12와 같이 10,000초후 구조물 주변에 최대 1.44 m의 세굴이 발생하는 것으로 나타났다. 특히 구조물 내부에 조류 흐름 방향으로 침식 작용이 일어나고 있는 것으로 나타났다.

jkscoe-27-6-373f12.gifFig. 12.Sea-bed elevation change of case 2 at t = 10,000 sec.

Fig. 13은 3차원 수치해석 모의 결과이다.

jkscoe-27-6-373f13.gifFig. 13.Scour phenomenon around jacket substructure(Case 2).

3.3 현장 관측

본 연구에서는 수치모의 실험의 검증을 위해 HeMOSU-1호 기상 타워를 대상으로 하여 2013년 7월 1일 수심 측량을 실시하였다.HeMOSU-1호 주변의 수심측량은 Knudsen sounder 1620과 미국 Trimble사의 DGPS를 이용하여 실시하였다. 매 작업시 Bar-Check를 실시하고, 수중 음파속도는 1,500 m/s로 결정하여 조위 보정을 통해 수심을 측량하였다. 측량선의 해상위치자료는 DGPS를 사용하여 UTM 좌표계로 변환을 실시하였다. 한편, 수심측량은 해면이 정온할 때 실시하였으며 관측 자료의 변동성을 제거하기 위해 2013년 7월 1일 10시~13시에 걸쳐 수심 측량한 자료를 동시간대에 국립해양조사원에서 제공한 위도 자료를 활용해 조위 보정하였다. 다음 Fig. 14는 위도 조위 관측소의 현장관측시간대 조위 시계열 그래프이다.

jkscoe-27-6-373f14.gifFig. 14.Time series of tidal data at Wido (2013.7.1).

2013년 7월 1일 오전 10시부터 오후 1시에 걸쳐 수심측량한 결과를 이용하여 0.5 m 간격으로 등수심도를 작성하였으며 그 결과는 Fig. 15와 같다. 기상탑 내부 해역은 선박이 접근할 수 없기 때문에 측량을 실시하지 않고 Blanking 처리하였다.

jkscoe-27-6-373f15.gifFig. 15.Iso-depth contour map around HeMOSU-1.

대상 해역의 수심은 대부분 -15 m이나 4개의 Jacket 구조물 주변에서는 세굴이 발생하여 수심의 변화가 나타났다. 특히 L-3, L-4 주변에서 최대 1.5~2.0 m의 세굴이 발생한 것으로 보였으며, L-4 주변에서는 넓은 범위에 걸쳐 세굴이 발생하였다. 창조류는 북동, 낙조류는 남서 방향으로 흐르는 조류 방향성을 고려하였을 때, L-4 주변은 조류방향과 동일하게 세굴이 발생하고 있었으며, 보다 상세한 세굴형태는 원형 구조물 내부 방향의 세굴 심도를 측정하여 파악하여야 할 것으로 판단된다.관측결과 최대 1.5~2.0 m인 점을 고려하면 양방향 흐름을 대상으로 장기간에 걸쳐 모의실험을 진행하는 경우, 실제 현상에 더 근접하는 결과를 얻을 수 있을 것으로 사료된다.Go to : Goto

4. 결론 및 토의

본 연구에서는 자켓구조물인 해상기상탑 HeMOSU-1 주변에서 발생하는 세굴현상을 검토하기 위하여 2013년 7월 1일 현장 관측을 수행하고, FLOW-3D를 이용하여 수치모의 실험을 수행하였다. 실험 조건으로는 먼저 1 m/s의 유속을 가진 일방향 흐름과 -1~1 m/s의 흐름 분포를 가진 왕복성 흐름에 대해서 수치모의를 수행하였다. 그 결과 일방향 흐름의 경우, 10,000 초에 이르렀을 때 1.32 m, 왕복성 흐름의 경우 동일 시간에서 1.44 m의 최대 세굴심도가 발생하였다. 동일한 구조물에 대해서 현장 관측 결과는 1.5~2.0 m로 관측되어 일방향 흐름보다 왕복성 흐름의 경우 실제 현상에 더 근사한 것으로 판단되었다. 이는 일방향 흐름의 경우, Fig. 8에서 보는 바와 같이 구조물 후면에 퇴적과 함께 해저입자의 맞물림이 견고해져 해저 지반의 저항력이 커지는 현상에 기인한 것으로 판단된다. 반면 양방향 흐름의 경우, 흐름의 변화로 인해 맞물림이 약해지고 이로 인해 지반의 저항력이 일방향 흐름보다 약해져 세굴이 더 크게 발생하는 것으로 판단되었다.또한 장시간에 걸쳐 모델링을 수행하는 경우, 보다 근사한 결과를 얻을 수 있을 것을 사료되며, 신형식 기초 구조물을 개발하여 세굴을 저감할 수 있는 지 여부를 판단하는 등의 추가 연구가 필요하다.Go to : GotoInternational Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.

감사의 글

본 연구는 지식경제 기술혁신사업인 “승강식 해상플랫폼을 가진 수직 진자운동형 30kW급 파력발전기 개발(과제번호 :20133010071570)”와 첨단항만건설기술개발사업인 “해상풍력 지지구조 설계기준 및 콘크리트 지지구조물 기술 개발(과제번호:20120093)”의 일환으로 수행되었습니다.Go to : Goto

References

American Bureau of Shipping (ABS). (2013). Guide for Building and Classing Bottom-Founded Offshore Wind turbine Installations.

API RP 2A WSD. (2005). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, API.

Det Norske Veritas (DNV). (2010). OS-J101 Design of Offshore Wind Turbine Structures.

Federal Maritime and Hydrographic Agency (BSH). (2007). Standard. Design of Offshore Wind Turbines.

FLOW SCIENCE. (2014). FLOW-3D User’s Manual, Version 11.0.4.5.

International Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.

International Organization for Standardization (ISO). (2007). ISO 19902: Petroleum and Natural Gas Industries – Fixed Steel Offshore Structures.

Kim, YS, Kang, GO. (2011). Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow, Journal of Korean Society of Coastal and Ocean Engineers. 23(1):118-125 (in Korean).

Kim, YS, Han, BD, Kang, GO. (2012). Effect of Incidence Angle of Current on the Hydraulic Resistance Capacity of Clayey Soil, Journal of Korean Society of Coastal and Ocean Engineers. 24(1):26-35 (in Korean).

KORDI. (2011). BSPN64710-2275-2. An Analysis on the Marine Characteristics and Design Supporting for Offshore Wind Power Plant (in Korean).

Ministry of Maritime Affairs and Fisheries. (2005). Harbor and fishery design criteria (in Korean).

Soulsby, R. (1997). Dynamics of marine sands. Thomas Telford Publications, London.

U.S. Army Corps of Engineers. (2006). Coastal Engineering Manual, Part II : Coastal Hydrodynamics, Chapter II–2, Meteorology and Wave Climate.

van Rijn, L. (1984). Sediment transport, Part II:bed load transport, Journal of Hydraulic Engineering, 110(10):1431-1456.

Figure 6. Scour depth (in negative value) at different views around pier

Three-dimensional numerical simulation of local scour around circular bridge pier using Flow-3D software

Flow-3D 소프트웨어를 이용한 원형 교각 주변 지역 scour의 3 차원 수치 시뮬레이션

To cite this article: Halah Kais Jalal and Waqed H. Hassan 2020 IOP Conf. Ser.: Mater. Sci. Eng. 745 012150

Halah Kais Jalal1
, Waqed H. Hassan2
1 Graduate student, Civil Engineering Department, University of Kerbala, Kerbala, Iraq.
2 Professor, University of Kerbala, Kerbala, Iraq.
E-mail: halah.q@s.uokerbala.edu.iq, Waaqidh@uokerbala.edu.iq

Abstract

주어진 값의 내부 드리프트를 나타내는 다항식 순서 또는 자체 정의 함수 목록을 제공 할 수 있습니다. 이 드리프트는 kriging 보간 동안 내부적으로 적합합니다. 다음에서는 선형 드리프트가 추가된 인공 데이터를 생성합니다. 그런 다음 결과 샘플은 Universal kriging의 입력으로 사용됩니다. 그런 다음 보간 중에 “선형”드리프트가 추정됩니다. 추정된 평균 / 드리프트에만 액세스하기 위해 호출 루틴에 스위치 only_mean을 제공합니다. 원형 교각 주변의 국부 수색 문제는 Flow-3D 모델을 사용하여 전산 유체 역학 (CFD)에서 국부적 진화를 나타냅니다. 교각 설계에서 중요한 scour 및 scour 구멍의 최대 깊이. 이 연구의 목적은 교각 주변의 수색 깊이를 정확하게 시뮬레이션하고 예측하는 수치 시뮬레이션 모델 Flow-3D의 능력을 검증하는 것입니다. 이 검증은 수치 결과를 Melville 실험실 실험 모델과 비교하여 수행됩니다. 30 분후 수치 결과에서 얻은 원형 부두 주변의 최대 scour 깊이는 3.6cm이고 Melville 모델에서 얻은 scour 깊이는 4cm입니다. 이 결과에 따르면 수치 모델과 실험 모델 간의 오류율 비율은 10 %에 가깝습니다. 결과는 실험 결과와 함께 좋은 검증을 보여주었습니다. 마지막으로 제안 된 Flow-3D 모델은 교각 주변의 수색 깊이를 예측하고 시뮬레이션 하는데 효과적인 도구를 고려하고 잠재적인 결과를 예측하는 경제적인 방법을 고려했습니다.

The problem of local scouring around circular bridge pier has been studied numerically
by Computational Fluid Dynamics (CFD) using Flow-3D model to represent the evolution of local
scour and the maximum depth of the scour hole which is important in the bridge pier design. The
aim of this study is to verify the ability of the numerical simulation model Flow-3D to accurately
simulate and predict the scour depth around the bridge pier. This verification is conducted by
comparison the numerical results with Melville laboratory experimental model. The maximum
scours depth around the circular pier obtained from numerical results after 30 min is 3.6 cm, while
the scouring depth obtained from Melville model is 4 cm. According to these results, the error rate
ratio between the numerical and experimental models is close to 10%. The results showed a good
validation with experimental results. Finally, the proposed Flow-3D model considered an effective
tool in predicting and simulating the scour depth around bridge pier and considered an economic
method to predict potential results.
Keywords: Local scour, Flow-3D, CFD, Verfication

scour은 흐르는 물의 침식 작용으로 정의 할 수 있으며, 이는 가까운 교각 및 교각에서 베드를 제거하고 침식합니다 [1]. 다리의 교각 주변을 scour하는 것은 다리의 실패 원인이 충돌 및 과부하와 함께 엄청난 인명 손실과 경제적 영향으로 이어지는 주요 원인 중 하나로 간주됩니다 [2], 지역 scour 예측, 특히 최대 scour 깊이는 다음과 같습니다.

교량 설계, 유지 보수 및 평가에 필수적입니다. 전 세계의 많은 연구자들은 다양한 관점과 다양한 조건에서 광범위하게 scour 문제를 연구했습니다.

교량 부지에서 만든 scour에는 일반적으로 세 가지 유형이 포함되어 있습니다. 일반 scour, 수축 scour 및 국부 scour [3], 세 가지 scour 유형 중, scour는 다리와 관련된 위험에서 가장 중요한 역할을 하기 때문에, local scour는 이 연구의 중요한 부분으로 간주됩니다.

많은 선행 연구가 경험적 테스트를 사용하여 교량의 국부 scour을 분석하는 기술과 방법론을 목표로 했습니다 [4], [5], [6], [7], [8], [9], [10], [11] . 이러한 경험적 scour 테스트의 대부분은 비용이 많이 들고 노동 집약적이기 때문에 크고 중요한 교량에서 종종 수행됩니다.

그러나 가장 인기 있는 고속도로 교량의 경우 경험적 테스트가 적용되지 않지만 이러한 일반 교량에서 scour이 자주 발생하지만 일부 연구에서는 경제적이고 실용적인 목적으로 교량 scour에 대한 분석 솔루션을 조사했습니다.

지난 몇 년 동안 전산 유체 역학 (CFD를 사용하여 산업 및 환경 응용 분야에서 유체 흐름 동작을 결정하는 데 사용)을 더 많이 사용할 수 있는 컴퓨터 및 소프트웨어의 기능이 증가함에 따라 scour의 3 차원 시뮬레이션 방법이 더욱 널리 보급되었습니다.

FLUENT, CFX, PHOENIX와 같은 CFD 소프트웨어는 실험 설정과 여러면에서 유사하므로 이 수치 시뮬레이션의 원래 개념은 속도계와 같은 확장된 부속품을 사용하여 물리적 모델을 설계하고 구성하는 것입니다. 복잡한 모델 실험실 조건에서 모델링하기 어려운 모델은 수치 시뮬레이션을 사용하여 간단하게 모델링 할 수 있습니다.

좋은 수치 모델은 확실히 모델 테스트를 보완 할 수 있으며 설계 엔지니어가 모델 테스트를 수행 할 수 있는 가장 중요한 사례를 식별하는 데 도움이 될 수 있다는 것이 널리 알려져 있습니다.

복잡한 문제와 대규모 모델 연구를 해결할 수 있는 매력적인 아이디어입니다. 실제 결과를 결정하기 위해 추가 작업자 또는 기존의 대규모 설정이 필요하지 않습니다.

CFD (Computational Fluid Dynamics) 방법은 Navier-Stokes의 이산화 및 해석과 계산 셀의 연속성 방정식을 통해 유동 프로세스 시뮬레이션에 항상 사용됩니다. 현재 연구에서 상용 코드 Flow-3D는 교각 주변의 scour 깊이를 모델링하는 데 사용됩니다.

Flow-3D 모델은 유압 공학 응용을 위한 특수 장치가 있는 CFD 패키지입니다. 수치 기법은 다중 스케일 다중 물리 흐름 문제를 얻기 위해 과도 및 3 차원 솔루션에 대한 유체 운동 방정식을 해결하는 데 사용됩니다.

물리적 옵션과 수치 옵션의 조합을 통해 사용자는 Flow-3D를 광범위한 유체 흐름 및 열 전달 현상에 적용 할 수 있으며 다양한 유압 문제를 해결하는 데 널리 사용됩니다 [12]. Flow-3D에 의한 scour의 수치 시뮬레이션은 많은 연구자들에 의해 제안 되었습니다.

Flow-3D에 의한 Scour의 수치 시뮬레이션은 많은 연구자들에 의해 제안 되었습니다.

예를 들어, [13]은 Scour Hole 내의 원형 브리지 부두의 기초에서 발생하는 흐름을 시뮬레이션하기 위해 Flow-3D를 사용했고, [14]는 조수 아래의 복잡한 브리지 피어에서 국소 스캐닝을 시뮬레이션하기 위해 숫자 모델을 사용했고 [15]는 Flow-3D를 사용했습니다.다양한 조건에서 국부적 골절 깊이의 더미 모양과 [16] CFD 코드를 사용하여 3D 흐름과 다양한 모양의 교량 부두 주위의 국부적 스캐닝을 시뮬레이션했습니다.

이 모든 연구는 맑은 물 조건에서 흐르는 물이 주로 흐름과 강바닥 사이의 대부분의 상호 작용으로 이어진다는 가설을 세웠습니다.

본 논문에서는 [4]의 실험실 모델에 의한 수치 시뮬레이션 검증을 통해 교량 주변의 국부 scour 실험 결과를 CFD 코드 Flow-3D의 수치 시뮬레이션 결과와 비교하여 검증을 목적으로 합니다. 이 검증의 주요 목적은 교량 부두 주변의 scour 깊이를 예측할 때 수치 모델 Flow-3D의 효과를 테스트하는 것입니다.

Figure 1. Plan view of Melville experimental setup [4]
Figure 1. Plan view of Melville experimental setup [4]
Figure 2. Geometry of the numerical model configured by the FLOW-3D
Figure 2. Geometry of the numerical model configured by the FLOW-3D
Figure 3. Effect of Cell Size on Scour Depth
Figure 3. Effect of Cell Size on Scour Depth
Figure 4. Meshing Plane Structure Around a Circular Pier
Figure 4. Meshing Plane Structure Around a Circular Pier
Figure 6. Scour depth (in negative value) at different views around pier
Figure 6. Scour depth (in negative value) at different views around pier
Figure 7. Contour Lines Represented the Depth of Scour Around Circular Bridge Pier for Melville Model
Figure 7. Contour Lines Represented the Depth of Scour Around Circular Bridge Pier for Melville Model
Figure 8. Contour Lines Represented the Depth of Scour Around the bridge Pier for the Numerical model
Figure 8. Contour Lines Represented the Depth of Scour Around the bridge Pier for the Numerical model
Figure 9. Scour depth against time around cylindrical pier.
Figure 9. Scour depth against time around cylindrical pier.
Figure 10. Contour map of flow velocity around a pier at 30 min resulted by Melville [4]
Figure 10. Contour map of flow velocity around a pier at 30 min resulted by Melville [4]
Figure 11. Contour map of flow velocity distribution around a pier at 30 min resulted by numerical simulation.
Figure 11. Contour map of flow velocity distribution around a pier at 30 min resulted by numerical simulation.

Conclusion

이 연구는 교각에서 scour깊이의 발달을 예측하는 데 있어 이 수치 시뮬레이션의 효과를 검증하는 것을 목표로 합니다. 검증은 30 분의 scour 깊이 공식화 후 Flow-3D의 수치 결과를 Melville 실험 모델과 비교하여 결론을 내립니다.

결과의 비교는 최대 수세공 깊이에 대한 오류율이 10 %임을 나타내며,이 관찰은 수치 및 실험 작업 사이에 좋은 검증을 보여 주므로 수치 시뮬레이션은 scour 깊이를 성공적으로 재현합니다.

이러한 결과에 따르면 제안된 수치 모델 Flow-3D는 교각 주변의 scour 깊이와 유동장을 시뮬레이션하고 예측하는데 효과적인 도구로 간주되었습니다.

References
[1] Breusers Nicollet and Shen 1977 Local scour around cylindrical piers Journal of Hydraulic
Research, IAHR,15 (3): 211-252.
[2] Shepherd R. and Frost J D 1995 Failures in civil engineering: Structural, foundation and
geoenvironmental case studies Journal of Hydraulic Engineering, Puolisher ASCE.
[3] Cheremisinoff N P and Cheng S L 1987 Hydraulic mechanics 2 Civil Engineering Practice,
Technomic Published Company, Lancaster, Pennsylvania, U.S.A. 780 p.
[4] Melville B W 1975 Local scour at bridge sites University of Auckland, New Zealand, phd. Thesis,
Dept. of Civil eng., Rep. No. 117.
[5] Abdul-Nour M 1990 Scouring depth around multiple M.Sc. Thesis , Department of Irrigation and
Drainage , University of Baghdad.
[6] Hosny M M 1995 Experimental study of local scour around circular bridge piers in cohesive soils
Colorado State University, Fort Collins.
[7] Ansari S A Kothyari U C and Ranga Raju K G 2002 Influence of cohesion on scour around bridge
piers Journal of Hydraulic Research, IAHR, pp. 40(6): 717-729.
[8] Khsaf S I 2010 A study of scour around Al-Kufa bridge piers Kufa Engineering
Journal.Vol.1No.1,2010, University of Kufa / College Engineering / Civil Department.
[9] Hassan W H Jassem M H and Mohammed S S 2018 A GA-HP Model for the Optimal Design of
Sewer Networks Water Resour. Manag., vol. 32, no. 3, pp. 865–879.
[10] Hassan W H 2017 Application of a genetic algorithm for the optimization of a cutoff wall under
hydraulic structures J. Appl. Water Eng. Res., vol. 5, no. 1, pp. 22–30, Jan.
[11] Ataie-Ashtiani B 2013 Flow field around single and tandem piers Flow Turbulence and Combustion
Journal of Hydraulic Engineering,volume 9429.
[12] Flow -3D manual 2014 Flow-3D user manual version 11, Flow Science Santa Fe, NM.
[13] Richardson J E and Panchang V G 1998 Three-Dimensional Simulation of Scour Inducing Flow at
Bridge Piers Journal of Hydraulic Engineering, 124(5), pp. 530–540. doi: 10.1061/(asce)0733-
9429(1998)124:5(530).
[14] Vasquez J and Walsh B 2009 CFD simulation of local scour in complex piers under tidal flow
Proceedings of the thirty-third IAHR Congress: Water Engineering for a Sustainable Environment,
(604), pp. 913–920.
[15] W H H and Halah k Jalal 2019 Effect of Bridge Pier Shape on Depth of Scour Iop, Conf. Ser.,(under
puplication).
[16] Obeid Z H 2016 3D numerical simulation of local scouring and velocity distributions around bridge
piers with different shapes A Peer Reviewed International Journal of Asian Academic Research
Associates, 20(16), p. 2801. doi: 10.1186/1757-7241-20-67.
[17] Drikakis D 2003 Advances in turbulent flow computations using high-resolution methods Progress
in Aerospace Sciences, 39(6–7), pp. 405–424. doi: 10.1016/S03760421(03)00075-7.
[18] Yakhot and Orszag 1986 Renormalization Group Analysis of Turbulence, Basic Theory Journal of
Scientific Computing, pp. 3–51. 1, pp. 3–51.
[19] Mastbergen D R and Van Den Berg J H 2003 Breaching in fine sands and the generation of
sustained turbidity currents in submarine canyons Sedimentology, 50(4), pp. 625–637. doi:
10.1046/j.1365-3091.2003.00554.x.
[20] Soulsby R L and Whitehouse R J S W 1997 Threshold of sediment motion in Coastal Environments
Proc. Combined Australian Coastal Engineering and Port Conference, EA, pp. 149-154.
[21] Meyer-Peter E and Müller R 1948 Formulas for bed-load transport Proceedings of the 2nd Meeting
of the International Association for Hydraulic Structures Research, 39– 64.
[22] Wei G Brethour J Grünzner M and Burnham J 2014 Sedimentation Scour Model Flow Science
Report 03-14.

圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)

Numerical Modeling on Internal Solitary Wave propagation over an obstacle using Flow-3D

Keyword: Internal solitary waves, Numerical, Flow-3D, Computational Fluid Dynamics

연구자 : Yu-Ren Chen
지도교수 : Dr John R C Hsu
June 2012

기술과 수치 알고리즘의 발전으로 파도가 해양이나 항만 구조물에 미치는 영향에 대한 많은 연구가 개발되었으며,보다 정확한 결과를 얻기 위해 고효율 수치 계산 소프트웨어를 사용할 수 있습니다. 현재 내부 파 생성, 전송, 파동의 물리적 메커니즘은 국내외 해양 분야에서 중요한 연구 주제 중 하나입니다.

이 연구는 FLOW-3D 전산 유체 역학 (Computational Fluid Dynamics, CFD) 소프트웨어를 사용하여 상층의 담수와 하층의 담수를 시뮬레이션합니다. 바닷물의 밀도 계층화 유체는 중력 혼합 붕괴 방식을 사용하여 내부 파도를 생성하고 긴 경사와 같은 일반적인 장애물을 통해 파형 진화 및 유동장 분포를 탐구합니다.

짧은 플랫폼 사다리꼴 경사와 이등변 삼각형. 이 기사에서는 또한 소프트웨어 작동 설정과 FLOW-3D를 내부 파 실험에 적용하는 방법을 소개하고, 이전 실험 조건과 결과를 참조하여 내부 파 전송 과정을 시뮬레이션합니다. 시뮬레이션 결과는 실험 데이터를 확인하고 첫 번째 분석을 시뮬레이션합니다.

중력 붕괴 방식의 게이트의 개방 속도가 내부 파의 전송 시간 및 진폭에 미치는 영향; 시뮬레이션 결과는 게이트 개방 속도가 빠르고 내부 파의 진폭이 크고 전송 속도가 빠릅니다. ; 반대로 게이트 개방 속도가 느리면 내부 파의 진폭이 작고 전송 속도가 느리지 만 둘 다 비선형 비례 관계.

이 연구는 또한 다양한 장애물 (긴 기울기, 사다리꼴 기울기가있는 짧은 플랫폼, 이등변 삼각형)을 통한 내부 고독 파의 전송 과정을 시뮬레이션하고 단일 장애물을 통과하는 내부 파도의 파형 진화, 와류 및 유동장 변화를 논의합니다.

연구를 통해 우리가 매우 미세한 그리드를 사용하고 수치 시뮬레이션의 그래픽 출력을 열심히 분석 할 수 있다면 실험실 실험 관찰보다 내부 고독 파의 전송 특성을 더 잘 이해할 수 있다고 믿습니다.

요약

서로 다른 특성을 가진 두 유체의 계면에있는 파동을 계면 파라고합니다. 바다에서는 표층의 기압 변화에 의해 형성된 바람 장이 공기와 바다의 경계 파인 해면에 불어 올 때 변동을 일으킨다. 기체 또는 유체의 밀도 층화가 발생할 때 외부 힘 (예 : 바람, 압력, 파도 및 조류, 중력 등)에 의해 교란되면 내부 파도라고하는 경계면에서 변동이 발생할 수 있으므로 내부 파도가 발생할 수 있습니다. 웨이브는 밀도가 다른 층화 된 유체의 웨이브 현상입니다.

대기의 내부 파도와 같이 일상 생활에서 볼 수있는 내부 파도는 특히 오후 또는 비가 내리기 전에 깊고 얕은 altocumulus 구름 층으로 하늘에 자주 나타납니다. 대기 중의 내부 파의 움직임은 공기의 흐름에 영향을 주어 기류를 상승시키고 공기 중의 수증기가 물방울로 응축되어 구름이되도록합니다.

반대로 기류가 가라 앉으면 수증기가 응결이 쉽지 않습니다. 구름이 있어도 내부의 파도가 응결하기 어렵습니다. 소산되어 루버와 같은 altocumulus 구름을 형성합니다. 안정된 밀도와 층화 상태의 자연 수체는 외부 세계에 의해 교란 될 때 내부 파동 운동을 겪게됩니다.

예를 들어, 밀도가 안정되고 층화가 분명한 호수에서 바람 장은 수면에 파도에서 파생 된 내부 파동을 일으켜 물의 질량이 전달되고 호수 가장자리로 물이 축적되어 수위가 높아집니다. 위치 에너지를 형성하는 축적 영역; 수역이 가라 앉기 시작하면 위치 에너지를 운동 에너지로 변환하고 남미 콜롬비아의 Babine Lake의 내부 파동 거동과 같은 내부 파동 운동을 생성 할 수도 있습니다 (Farmer, 1978). ). 염분, 밀도 또는 온도가 안정된 바다에서는 조수와 지형의 영향으로 수역이 행성의 중력에 따라 움직입니다.

격렬한 기복이있는 지형을 통과 할 때 내부 파동이 발생합니다. ; 중국 해에서 발견되는 남쪽 내부 파도에서와 같이 (Hsu et al., 2000). 파동은 심해에서 얕은 물로 전달되며, 얕아 짐, 깨짐, 혼합, 소용돌이, 굴절, 회절 및 반사가있을 것입니다. 내부 파 전달은 일종의 파동이기 때문에 위에서 언급 한 파동 특성도 갖습니다.

해양 내부 파도는 길이가 수백 미터에서 수십 킬로미터에 이르는 광범위한 파장을 가지고 있으며,주기는 몇 분 정도 빠르며 수십 시간 정도 느리며 진폭은 몇 미터에서 수백 미터. 해양 내부 파도가 움직일 때 층화 위와 아래의 물 흐름 방향이 반대가되어 현재 전단 작용으로 인해 층화 경계면에서 큰 비틀림 힘이 발생합니다.

바다에 기초 말뚝과 같은 구조물이있는 경우 석유 시추 플랫폼의 고정 케이블은 큰 비틀림을 견딜 수 없어 파손될 가능성이 매우 높습니다 (Bole et al. 1994). 빽빽한 클라인 경계 근처에서 항해하는 잠수함이 해양 내부 파도 활동을 만나게되면 내부 파도에 의한 상승 전류로 인해 잠수함이 해저에 수면에 닿거나 충돌하여 잠수함이 손상 될 수 있습니다.

그러나 바다의 내부 파는 바람직하지 않으며 매우 중요한 역할을합니다. 예를 들어, 내부 파가 심해 지역에서 근해 대륙붕으로 전달되면 상하수 체가 교환됩니다. 해저에 영양분을 운반합니다. 선반 가장자리까지 생물학적 성장을 촉진하고 해당 지역의 생태 환경을 조절하며 (Osborne and Bruch et al., 1980; Sandstorm and Elliot et al., 1984) 어업 자원을 풍부하게합니다.

위에서 언급 한 항목 외에도 해저에 대한 케이블 및 파이프 라인, 수중 음파 탐지기, 해양 생물 환경, 군사 활동 등이 해양 내부 파도의 영향에 포함되므로 해양 내부 파도에 대한 연구가 매우 중요합니다.

최근 내부 파를 연구하는 방법에는 분석 이론 도출, 현장 조사 및 관찰, 실험실 실험 분석이 포함됩니다. 그러나 과학 기술의 급속한 발전, 발전과 발전, 컴퓨터의 대중화, 수치 계산 방법의 진화로 해양 공학과 관련된 많은 파동 효과는 일반적으로 수치 시뮬레이션 방법으로 해결됩니다.

또한 수치 연산 방법의 비용이 현장 조사 관측 및 실험실 실험 해석보다 저렴하고 시뮬레이션 결과를 더 빨리 얻을 수 있기 때문에 본 논문에서는 전산 유체 역학 (전산 유체 역학, 참조)의 FLOW-를 선정 하였다. 3D 소프트웨어는 내부 파 생성, 전송, 장애물 통과, 점차 소멸하는 움직임 과정을 시뮬레이션하고, 내부 파의 변화 과정을 분석하고 비교하기 위해 이전 실험실 모델 실험을 참조합니다.

圖1. 1  南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 1 南海孤立內波空間分布圖(Hsu et al., 2000)
圖1. 2  障礙高度與分層流體厚度關係之示意圖
圖1. 2 障礙高度與分層流體厚度關係之示意圖
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 1 下沉型內孤立波通過梯形障礙的實驗配置圖(鄭明宏,2011)
圖3. 3  實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 實驗室下沉型內孤立波經過13°斜坡梯形障礙物的連續組圖(鄭明宏,2011)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 3 (a) 實驗室下沉型內孤立波(鄭明宏,2011;θ=13°,T = t0 = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖3. 5 比較實驗室(上圖)內孤立波(圖3. 3 (a))與FLOW-3D模擬(下圖)的傳遞波形(θ=13°,t = 42 s)
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場
圖4. 6閘門開啟速率0.14 m/s之等密度線及流場

圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)
圖4. 53 內波在三角形前坡反轉為順時針渦流,後坡面上形成逆時針渦流(t = 63 s)

Reference

Apel, J.R., Holbrook, J.R, Tsai, J. and Liu, A.K. (1985). The Sulu Sea internal soliton experiment. J. Phys. Oceanography, 15(12): 1625-1651. Ariyaratnam, J. (1998). Investigation of slope stability under internal wave action. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia. Baines, P.G. (1983). Tidal motion in submarine canyons – a laboratory experiment. J. Physical Oceanography, 13: 310-328. Benjamin, T.B. (1966). Internal waves of finite amplitude and permanent form. J. Fluid Mech., 25: 241-270. Bole, J.B., Ebbesmeyer, J.J. and Romea, R.D. (1994). Soliton currents in South China Sea: measurements and theoretical modelling. Proc. 26th Annual Offshore Tech. Conf., Houston, Texas. 367-375. Burnside, W. (1889). On the small wave-motions of a heterogeneous fluid under gravity. Proc. Lond., Math. Soc., (1) xx, 392-397. Chen C.Y., J.R-C. Hsu, H.H. Chen, C.F. Kuo and Cheng M.H (2007). Laboratory observations on internal solitary wave evolution on steep and inverse uniform slopes. Ocean Engineering, 34: 157-170. Cheng M.H., J.R-C. Hsu, C.Y. Chen (2005). Numerical model for internal solitary wave evolution on impermeable variable seabad, Proc.27th Ocean Eng, pp.355-359. Choi, W. and Camassa, R. (1996). Weakly nonlinear internal waves in a two-fluid system. J. Fluid Mech., 313: 83-103. Ebbesmeyer, C.C., and Romea, R.D. (1992). Final design parameters for solitons at selected locations in South China Sea. Final and supplementary reports prepared for Amoco Production Company, 209pp. plus appendices. Ekman, V. M., (1904). “On dead-water, Norwegian North Polar Expedition”, 1893-1896. Scientific Results, 5(15):1-150. Farmer, D.M. (1978). Observation of long nonlinear internal waves in a lake. J. Phys. Oceanography, 8(1): 63-73. Garret, C. and Munk, W. (1972). Space-time scales of internal waves. Geophys. Fluid Dyn., 3: 225-264. Gill, A.E. (1982). Atmosphere-Ocean Dynamics. International Geophysical Series, Vol. 30, San Diego, CA: Academic Press. Harleman, D.R.F. (1961). Stratified flow. Ch. 26 in Handbook of Fluid Dynamics (ed., V. Streeter), NY: McGraw-Hill, (26): 1-21. Helfrich, K.R. (1992). Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech., 243: 133-154.

Helfrich, K.R. and Melville, W.K. (1986). On long nonlinear internal waves over slope-shelf topography. J. Fluid Mech., 167: 285-308. Honji, H., Matsunaga, N., Sugihara, Y. and Sakai, K. (1995). Experimental observation of interanl symmetric solitary waves in a two-layer fluid. Fluid Dynamics Research, 15 (2): 89-102. Hsu, M.K., Liu, A.K., and Liu, C. (2000). A study of internal waves in the China Sea and Yellow Sea using SAR. Continental Shelf Research, 20: 389-410. Johns, K. (1999). Interaction of an internal wave with a submerged sill in a two-layer fluid. B.Eng. (Hons.) thesis, Dept. of Environmental Eng., University of Western Australia, Australia Kao, T.W., Pan, F.S. and Renouard, D. (1985). Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope. J. Fluid Mech. 159: 19-53. Koop, C.G. and Butler, G. (1981). An investigation of internal solitary waves in a two-fluid system. J. Fluid Mech., 112: 225-251. Lin, T.W. (2001). A study on internal waves characteristics in north of South China Sea, Master Thesis, Institute of Oceanography, National Taiwan Univ., Taiwan. (In Chinese). Lynett, P., Wu, T.-R. and Liu, P. L.-F. (2002), Modeling wave runup with depth-integrated equations, Coastal Engineering, Vol. 46, pp. 89-107. Ming-Hung Cheng,John R.-C. Hsu, Chen-Yuan Chen and Cheng-Wu Chen (2009). Modelling the propagation of an internal solitary wave across double ridges and a shelf-slope.Environ Fluid Mech,9:321–340. Ming-Hung Cheng and John R.C. Hsu (2011). Effect of frontal slope on waveform evolution of a depression interfacial solitary wave across a trapezoidal obstacle. Ocean Engineering. Matsuno, Y. (1993). A unified theory of nonlinear wave propagation in two-layer fluid systems. J. Phys. Soc. Japan, 62: 1902-1916. Michallet, H. and Barthelemy, E. (1998). Experimental study of interfacial solitary waves. J. Fluid Mech., 366: 159-177. Muller, P. and X. Liu (2000). Scattering of internal waves at finite topography in two dimensions. Part I: Theory and case studies, J. Phys. Oceanogr., 30: 532-549 Nagashima, H. (1971). Reflection and breaking of internal waves on a sloping beach. J. Oceanographical Soc. Japan, 27(1): 1-6. Nansen, F. (1902). The oceanography of the north polar basin. Sci. Results, Norwegian North Polar Expedition 1893-1896, 3: 9. Osborne, A.R. and Burch, T.L. (1980). Internal solitons in the Andaman Sea. Science, 208 (43): 451-460

82 Russell, J.S. (1844). On waves. Report of the 14th Meeting of the British Association for the Advancement of Science, York, 311-390. Sandstrom, H. and Elliot J. A. (1984). Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. Journal of Geophysical Research, 89 (C4): 6415-6428. Stokes G.G. (1847). On the Theory of Oscillatory Waves. Transactions of the Cambridge Philosophical Society, 8: 441–455. Strutt, J. W., Lord Rayleigh. (1883). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density.Proceedings of the London mathematical society, 8: pp. 170-177. Sveen, J.K., Guo, Y., Davies, P.A. and Grue, J. (2002). On the breaking of internal solitary waves at a ridge. J. Fluid Mech., 469 (25): 161-188. Vlasenko, V., and Hutter, K. (2002). Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. of Physical Oceanography, 32(6), pp.1779-1793. Wessels F. and Hutter K. (1996). Interaction of internal waves with a topographic sill in a two-layered fluid. J. Phys. Oceanogr , 26: 5-20

유압 헤드 계산에서는 유선이 평행하다고 가정

FLOW-3D Output variables(출력 변수)

Output variables(출력 변수)

FLOW-3D에서 주어진 시뮬레이션의 정확한 출력은 어떤 물리적 모델, 출력 위젯에 정의된 추가 출력 및 특정 구성 요소별 출력에 따라 달라집니다. 이 문서는 FLOW-3D의 출력에 대해 좀 더 복잡한 출력 변수 중 일부를 참조하는 역할을 합니다.

FLOW-3D Additional output
FLOW-3D Additional output

Distance Traveled by Fluid(유체로 이동 한 거리)

때로는 유체 입자가 이동한 거리가 중요한 경우도 있습니다. FLOW-3D에서 사용자는 모델 설정 ‣ 출력 위젯에서 유체가 이동한 거리에 대한 출력을 요청할 수 있습니다. 이 기능은 유체가 흐름 영역(경계 또는 질량 소스를 통해)에 들어간 시간 또는 유체가 도메인을 통해 이동한 거리를 계산합니다. 이 기능은 모든 시뮬레이션에도 사용할 수 있으며, 특별한 모델을 사용할 필요가 없으며, 흐름에도 영향을 미치지 않습니다. 이 모델을 사용하려면 출력 위젯으로 이동하고 추가 출력 섹션에서 “Distance traveled by fluid” 옆의 체크상자를 선택하십시오.

 노트

추가 출력 섹션은 출력 위젯의 모든 탭에서 사용할 수 있습니다.

유체 도착 시간

유체 도착 시간을 아는 것은 종종 유용합니다. 예를 들어 주조 시뮬레이션에서 주입 시간을 결정하는 데 사용할 수 있습니다. 제어 볼륨은 충전 프로세스 동안 여러 번 채워지고 비워지기 때문에 계산 셀이 채워지는 처음과 마지막 시간 모두 기록되고, 후 처리를 위해 저장될 수 있습니다. 이 작업은 출력 위젯과 추가 출력 섹션 내에서 유체 도착 시간 확인란을 선택하여 수행됩니다.

 노트

이 출력 옵션은 1 유체 자유 표면 흐름에만 사용할 수 있습니다.

유체 체류 시간

때로는 유체가 계산 영역 내에서 보내는 시간인 체류시간을 아는 것이 유용합니다. 이는 출력 ‣ Output ‣ Additional Output ‣ Fluid residence time 확인란을 선택하여 수행합니다. 여기서 S로 지정된 이 변수에 대한 전송 방정식은 단위 소스 항과 함께 Solve됩니다.

유체 체류 시간(Fluid residence time)
유체 체류 시간(Fluid residence time)

여기에서 t는 시간이며 u는 유체 속도입니다.

S의 단위는 시간이다. 계산 도메인에 들어가는 모든 유체에 대한 S의 초기값은 0입니다.

의 값은 항상 second order체계를 가진 데이터로부터 근사치를 구합니다.

이 출력 옵션은 1 유체 및 2 유체 유량 모두에 사용할 수 있습니다.

 노트

경계 조건 또는 소스에서 도메인으로 유입되는 유체가 이미 도메인에 있는 유체와 혼합될 때 체류가 감소하는 것처럼 보일 수 있습니다.

Wall Contact Time

벽면 접촉 시간 출력은 (1)개별 유체 요소가 특정 구성 요소와 접촉하는 시간 및 (2)특정 구성 요소가 유체와 접촉하는 시간을 추적합니다. 이 모델은 액체 금속이 모래 오염물과 접촉했을 때 오염과 상관 관계가 있는 proxy 변수를 제공하기 위한 것입니다. 이 출력은 최종 주조물에서 오염된 유체가 어디에 있는지 확인하는 데 사용될 수 있습니다. 접촉 시간 모델의 또 다른 해석은, 예를 들어, 용해를 통해 다소 일정한 비율로 화학물질을 방출하는 물에 잠긴 물체에 의한 강의 물의 오염입니다.

모델은 Model Setup ‣ Output ‣ Wall contact time 박스를 확인하여 활성화됩니다. 또한 Model Setup ‣ Output ‣ Geometry Data section의 각 구성요소에 대해 해당 구성요소를 계산에 포함하기 위해 반드시 설정해야 하는 Contact time flag가 있습니다.

 추가 정보

Wall Contact Time with Fluid and Component Properties: Contact Time with Fluid for more information on the input variables를 참조하십시오.

 노트

이 모델은 실제 구성 요소, 즉 고체, 다공성 매체, 코어 가스 및 충전 퇴적물 구성 요소로 제한됩니다. 접촉 시간은 유체 # 1과 관련해서만 계산됩니다.

2. 형상 데이터
2. 형상 데이터

Component wetted are

Fluid 1과 접촉하는 구성 요소의 표면 영역은 관심 구성 요소에 대한 Model Setup ‣ Output ‣ Geometry Data ‣ Wetted area 옵션을 활성화하여 History Data로 출력 될 수 있습니다.

구성 요소의 힘과 토크

Forces

Model Setup ‣ Output ‣ Geometry Data ‣ Forces 옵션을 활성화하면 부품에 대한 압력, 전단력, 탄성 및 벽 접착력을 History Data에 출력할 수 있습니다.

압력을 가지지 않은 셀(즉, 도메인 외부에 있거나 다른 구성 요소 안에 있는 셀)이 구성 요소 주변의 각 셀에 대한 압력 영역 제품을 합산하는 동안 어떻게 처리되는지를 제어하는 압력 계산에 대한 몇 가지 추가 옵션이 있습니다. 기본 동작은 이러한 셀에서 사용자 정의 기준 압력을 사용하는 것입니다. 지정되지 않은 경우 기준 압력은 초기 무효 압력인 PVOID로 기본 설정됩니다. 또는, 코드는 Reference pressure is code calculated 옵션을 선택하여 구성요소의 노출된 표면에 대한 평균 압력을 사용할 수 있습니다.

마지막으로, 일반 이동 물체의 경우, 규정된/제약을 받는 대로 물체를 이동시키는 힘을 나타내는 잔류 힘의 추가 출력이 있습니다.

Torques

Model Setup ‣ Output ‣ Force 옵션이 활성화되면 구성 요소의 토크가 계산되고 History Data에 출력됩니다. 토크는 힘-모멘트에 대한 기준점 X, 힘-모멘트에 대한 기준점 Y, 정지 구성 요소에 대한 힘-모멘트 입력에 대한 기준점 Z에 의해 지정된 지점에 대해 보고됩니다. 참조점의 기본 위치는 원점입니다.

General Moving Objects에는 몇 가지 추가 참고 사항이 있습니다. 첫째, 토크는 (1) 6-DOF 동작의 질량 위치 중심 또는 (2)고정축 및 고정점 회전의 회전 축/점에 대해 보고됩니다. 힘에서 행해지는 것과 마찬가지로, 규정된/제한된 바와 같이 물체를 이동시키는 토크를 나타내는 잔류 토크의 출력도 있습니다.

 노트

힘 및 토크 출력은 각 지오메트리 구성 요소의 일반 히스토리 데이터에 기록됩니다. 출력은 개별 힘/토크 기여 (예: 압력, 전단, 탄성, 벽 접착) 및 개별 기여도의 합으로 계산된 총 결합력/토크로 제공됩니다.

Buoyancy center and metacentric height (부력 중심 및 메타 중심 높이)

일반 이동 객체의 부력과 안정성에 대한 정보는 각 구성 요소에 대해 모델 설정 Setup 출력 ‣ 기하학적 데이터 ‣ 부력 중심 및 도량형 높이 옵션을 활성화하여 History Data에서 출력할 수 있습니다. 이렇게 하면 구성 요소의 중심 위치와 중심 높이가 출력됩니다.

  1. Advanced

FLOW-3D Advanced Output Option
FLOW-3D Advanced Output Option

Fluid vorticity & Q-criterion(유체 와동 및 Q 기준)

와동구성 요소뿐만 아니라 와동 구조를 위한 Q-criterion을 계산하고 내보내려면 Model Setup ‣ Output ‣ Advanced 탭에서 해당 확인란을 클릭하여 유체 와동 & Q-criterion을 활성화하십시오.

여기에서:

:  소용돌이 벡터의 다른 구성 요소

 Q-criterion은 속도 구배 텐서의 2차 불변성을 갖는 연결된 유체 영역으로 소용돌이를 정의합니다. 이는 전단 변형률과 와류 크기 사이의 국부적 균형을 나타내며, 와류 크기가 변형률의 크기보다 큰 영역으로 와류를 정의합니다.

Hydraulic Data and Total Hydraulic Head 3D

Hydraulic Data

깊이 기준 유압 데이터를 요청하려면 출력 ‣ 고급으로 이동한 후 유압 데이터 옆의 확인란을 선택하십시오(심층 평균 값과 중력을 -Z 방향으로 가정).

이 옵션은 FLOW-3D가 유압 시뮬레이션에 유용할 수 있는 추가 깊이 평균 데이터를 출력하도록 합니다.

  • Flow depth
  • Maximum flow depth
  • Free surface elevation
  • Velocity
  • Offset velocity
  • Froude number
  • Specific hydraulic head
  • Total hydraulic head

이 수량 각각에 대해 하나의 값 이 메쉬의 모든 (x, y) 위치에서 계산되고 수직 열의 모든 셀에 저장됩니다 (이 수량이 깊이 평균이기 때문에 z 방향으로 데이터의 변화가 없습니다). 변수는 정확도를 보장하기 위해주기마다 계산됩니다. 모든 경우에,  깊이 평균 속도, z- 방향  의 중력 가속도, 유체 깊이, 및 컬럼 내 유체의 최소 z- 좌표입니다.

  • 자유 표면 고도는 수직 기둥의 맨 위 유체 요소에 있는 자유 표면의 z-좌표로 계산됩니다.
  • The Froude number 은   

식으로 계산됩니다.

  • 유체 깊이는 깊이 평균 메쉬 열의 모든 유체의 합으로 계산됩니다.

특정 유압 헤드 

및 총 유압 헤드

변수는 다음에서 계산됩니다.  

 노트

  • 깊이 기준 유압 출력 옵션은 예리한 인터페이스가 있고 중력이 음의 z 방향으로 향할 때에만 유체 1에 유효합니다.
  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

Total Hydraulic Head 3D(총 유압 헤드 3D)

또한 총 유압 헤드 3D 옵션을 확인하여 국부적(3D) 속도 필드, 플럭스 표면에서의 유압 에너지(배플 참조) 및 플럭스 기반 유압 헤드를 사용하여 유체 1의 총 헤드를 계산할 수 있다. 3D 계산은 국부 압력을 사용하여 수행되며(즉, 압력이 유체 깊이와 관련이 있다고 가정하지 않음) 원통 좌표와 호환됩니다.

 노트

  • 유압 헤드 계산은 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 문제가 발생할 수 있습니다. 이 경우, 플럭스 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산 시 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.
  • 3D 유압 헤드 계산은 입력 파일에 중력이 정의되지 않은 경우 중력 벡터의 크기를 1로 가정합니다.

Flux-averaged hydraulic head

특정 위치 (즉, 배플)의 플럭스 평균 유압 헤드는 다음과 같이 계산됩니다.

Flux-averaged hydraulic head
Flux-averaged hydraulic head

유압 헤드 계산에서는 유선이 평행하다고 가정합니다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치된 경우 (예: 아래에 표시된 것과 같이) 문제가 될 수 있습니다.

유압 헤드 계산에서는 유선이 평행하다고 가정




유압 헤드 계산에서는 유선이 평행하다고 가정

이 경우 플럭스 표면에 보고된 플럭스 평균 유압 헤드는 헤드 계산 시 흐름 방향이 무시되므로 예상보다 클 수 있습니다.

FLOW-3D에는 History Probes, Flux surface, Sampling Volumes의 세 가지 주요 측정 장치가 있습니다. 이러한 장치를 시뮬레이션에 추가하는 방법은 모델 설정 섹션에 설명되어 있습니다(측정 장치 참조). 이들의 출력은 기록 데이터 편집 시간 간격으로 flsgrf 파일의 일반 기록 데이터 카탈로그에 저장됩니다. 이러한 결과는 Analyze ‣ Probe 탭에서 Probe Plots을 생성하여 액세스할 수 있습니다.

히스토리 프로브 출력

히스토리 프로브를 생성하는 단계는 모델 설정 섹션에 설명되어 있습니다(기록 프로브 참조). 시뮬레이션에 사용된 물리 모델에 따라 각각의 History Probe에서 서로 다른 출력을 사용할 수 있습니다. 프로브를 FSI/TSE로 지정하면 유한 요소 메시 안에 들어가야 하는 위치에서 응력/스트레인 데이터만 제공한다. 유체 프로브가 솔리드 형상 구성 요소에 의해 차단된 영역 내에 위치하는 경우, 기하학적 구조와 관련된 수량(예: 벽 온도)만 계산된다. 일반적으로 프로브 좌표에 의해 정의된 위치에서 이러한 양을 계산하려면 보간이 필요하다.

플럭스 표면 출력

플럭스 표면은 이를 통과하는 수량의 흐름을 측정하는데 사용되는 특별한 물체입니다. 플럭스 표면을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(플럭스 표면 참조). 각 플럭스 표면에 대해 계산된 수량은 다음과 같습니다.

  • Volume flow rate for fluid #1
  • Volume flow rate for fluid #2 (for two-fluid problems only)
  • Combined volume flow rate (for two-fluid problems only)
  • Total mass flow rate
  • Flux surface area wetted by fluid #1
  • Flux-averaged hydraulic head when 3D Hydraulic Head is requested from additional output options
  • Hydraulic energy flow when hydraulic data output is requested
  • Total number of particles of each defined species in each particle class crossing flux surface when the particle model is active
  • Flow rate for all active and passive scalars this includes scalar quantities associated with active physical models (eg. suspended sediment, air entrainment, ect.)

 노트

  • 유속과 입자수의 기호는 유동 표면을 설명하는 함수의 기호에 의해 정의된 대로 흐름이나 입자가 플럭스 표면의 음에서 양으로 교차할 때 양의 부호가 됩니다.
  • 플럭스 표면은 각 표면의 유량과 입자 수가 정확하도록 그들 사이에 적어도 두 개의 메쉬 셀이 있어야 합니다.
  • 유압 데이터 및 총 유압 헤드 3D 옵션을 사용할 때는 유압 헤드 계산이 스트림 라인이 평행하다고 가정한다는 점을 유념해야 한다. 예를 들어 플럭스 표면이 재순환 흐름 영역에 배치되는 경우 이 문제가 발생할 수 있습니다. 이 경우, 유량 표면에서 보고된 유량 평균 유압 헤드는 헤드의 계산에서 흐름 방향이 무시되기 때문에 예상보다 클 수 있습니다.

샘플링 볼륨 출력

샘플링 볼륨은 해당 범위 내에서 볼륨을 측정하는 3 차원 데이터 수집 영역입니다. 샘플링 볼륨을 만드는 단계는 모델 설정 섹션에 설명되어 있습니다(샘플링 볼륨 참조). 각 샘플링 볼륨의 계산 수량은 다음과 같습니다.

  • 시료채취량 내에서 #1 유체 총량
  • 시료채취량 내 #1 유체질량 중심
  • 샘플링 용적 가장자리에 위치한 솔리드 표면을 포함하여 샘플링 용적 내의 모든 벽 경계에 작용하는 좌표계의 원점에 상대적인 유압력 및 모멘트.
  • 샘플링 용적 내 총 스칼라 종량: 이것은 부피 적분으로 계산되므로 스칼라 양이 질량 농도를 나타내면 샘플링 용적 내의 총 질량이 계산된다. 거주 시간과 같은 일부 종의 경우, 평균 값이 대신 계산됩니다.
  • 샘플링 볼륨 내의 입자 수: 각 샘플링 볼륨 내에 있는 각 입자 등급의 정의된 각 종별 입자 수(입자 모델이 활성화된 경우)
  • 운동 에너지, 난류 에너지, 난류 소실율 및 와류에 대한 질량 평균
  • 표본 체적의 6개 경계 각각에서 열 유속: 유체 대류, 유체 및 고체 성분의 전도 및 유체/구성 요소 열 전달이 포함됩니다. 각 플럭스의 기호는 좌표 방향에 의해 결정되는데, 예를 들어, 양방향의 열 플럭스도 양수입니다. 출력에서 확장 또는 최대 디버그 수준을 선택하지 않는 한 이러한 디버그 수준은 fsplt에 자동으로 표시되지 않습니다.

FLOW-3D 및TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

Picture of scoured bed surface

EXPERIMENTAL STUDY AND NUMERICAL SIMULATION OF FLOW AND SEDIMENT TRANSPORT AROUND A SERIES OF SPUR DIKES

유동 시뮬레이션의 실험적 연구와
일련의 SPUR DIKES 주변의 침전물 수송

by
ANU ACHARYA
Copyright © Anu Acharya 2011
A Dissertation Submitted to the Faculty of the
DEPARTMENT OF CIVIL ENGINEERING AND ENGINEERING MECHANICS
In Partial Fulfillment of the Requirements
For the Degree of
DOCTOR OF PHILOSOPHY
WITH A MAJOR IN CIVIL ENGINEERING
In the Graduate College
THE UNIVERSITY OF ARIZONA

침전물 수송에 대한 집중적인 연구는 저수지 관리, 댐 운영 및 하천 내 유압 구조물 설계를 위해 하천의 총 침전물 하중을 예측하는 적절한 방정식이 필요하다는 것을 보여준다.

침전물 운송에서 사용 가능한 어떤 방정식도 총 침전물 운송 속도를 예측하는 데 보편적으로 받아들여지지 않았다. 이러한 사실들은 침전물 수송률을 예측하기 위한 이 모든 공식을 나타내기 위한 일반적인 공식의 필요성을 나타낸다.

본 논문의 첫 번째 목표는 모든 강에 대해 통합된 총 침전물 운송 방정식을 찾는 것이다. 반면, 스퍼다이크나 교각 같은 유압 구조물을 둘러싼 마찰은 구조적 안정성을 약화시키는 심각한 문제가 될 수 있다.

이러한 유압 구조 주변의 난류 흐름장 및 난류 분포에 대한 조사는 국부적 골재 메커니즘의 이해와 국부 침전물 수송에 영향을 미치는 난류 특성을 결정하기 위해 필수적이다.

또한 개방 채널의 난류 흐름의 모든 경우에 유효한 범용 난류 모델은 존재하지 않는다. 본 논문은 일련의 3대 제방 주변의 난류장과 난류 분포를 철저히 조사했다.

목표는 국부 침전물 수송 속도를 예측하기 위한 유의한 난류 특성을 결정하고 제방 주변의 난류 유역 시뮬레이션을 위한 적절한 난류 모델을 식별하는 것이다.

일반적인 통합 총 하중 방정식을 개발하기 위해, 본 연구는 총 침전물 하중을 예측하는 데 일반적으로 사용되는 31개의 공식을 평가한다. 본 연구는 서로 다른 공식에서 침대 전단 응력의 확률적 특성으로 계산된 결과의 편차를 귀인시키고 침대 전단 응력이 로그 정규 분포를 만족한다고 가정한다.

주어진 침대 전단 응력에서 몬테카를로 시뮬레이션이 각 방정식에 적용되고 일련의 침대 전단 응력이 무작위로 생성된다. 모든 방정식의 각 몬테카를로 실현에서 생성된 총 침전물 하중은 모든 방정식에서 예측된 총 침전물 하중의 표본을 나타내기 위해 조립된다. 주어진 각 침대 전단 응력에서 결과적인 총 침전물 하중(예: 표준 편차, 평균)의 통계적 특성이 계산된다.

그런 다음 모든 방정식의 평균 값을 기반으로 통일된 총 침전물 하중 방정식을 구합니다. 결과는 모든 방정식의 평균이 무차원 침대 전단 응력의 검정력 함수임을 보여주었다. 측정과 합당한 합치도는 통합 방정식이 총 침전물 하중을 예측하기 위한 어떤 개별 방정식보다 정확하다는 것을 보여준다.

일련의 스퍼다이크 주변의 흐름장 및 국소적 스컬에 대한 실험 및 수치 시뮬레이션은 고정된 평면 침대 및 스커드 침대 조건에서 수행된다. 마이크로 어쿠스틱 도플러 속도계(ADV)는 세 가지 공간 방향 모두에서 순간 속도 필드를 측정하는 데 사용되며 측정된 속도 프로파일은 난류 특성을 계산하는 데 사용됩니다.

결과는 그 지역의 골칫거리가 첫 번째 제방을 중심으로 발전한다는 것을 보여준다. 난류 강도와 플랫 베드에서 측정한 수직 방향의 평균 속도는 스칼럼 깊이와 밀접한 관련이 있다.

또한 3다이크 시리즈의 두 번째 다이크 끝에서 발생하는 최대 침대 전단 응력은 최대 스콜과 일치하지 않는다.

침대 전단 응력으로 인한 큰 침대 하중 전달은 침대 스쿠싱을 시작하지 않을 수 있지만, 난기류 폭발(예: 스위프 및 배출)은 침대 표면에서 침전물을 끌어들여 국소적 골재를 발생시킨다. 3차원 수치 모델 FLOW-3D는 평평하고 스커드 베드에서 일련의 스퍼다이크 주변의 난류 유량을 시뮬레이션하는 데 사용된다.

본 연구는 Prandtlès의 혼합 길이 모델, 하나의 방정식 모델, 표준 2- 방정식 k-e 모델, RNG(Renormalization-Group) k-e 모델 및 LES(Large Eddy Simulations) 난류 모델을 조사한다. Prandtlès의 혼합 길이 모델과 하나의 방정식 모델은 다이크 주변의 플로우 필드에 적용되지 않는다.

표준 2- 방정식 k-e 모델과 RNG k-난류 모델을 사용한 평균 흐름 필드의 결과는 실험 데이터에 가깝지만, 다른 난류 모델에서 시뮬레이션된 난류 특성은 상당한 차이를 보인다. 다른 난류 모델에서 계산된 결과는 RNG k-e 모델이 이 일련의 스퍼다이크에 대한 평균 흐름 필드를 가장 잘 예측한다는 것을 보여준다.

난류 폐쇄 모델 중 난류 운동 에너지와 같은 난류 특성의 정확한 결과를 예측할 수 있는 모델은 없다. 이러한 결과에 기초하여, 본 연구는 다이크 주변의 평균 흐름 필드를 시뮬레이션하기 위해 RNG k-e 모델을 사용할 것을 권고한다. 다양한 흐름 조건에서 이 일련의 스퍼다이크 근처의 난류 특성을 예측하기 위해 FLOW-3D 모델의 추가 개선이 필요하다.

Picture of scoured bed surface
Picture of scoured bed surface
Bed bathymetry of the developed scour hole at Q = 0.035 m3/s
Bed bathymetry of the developed scour hole at Q = 0.035 m3/s
Distribution of dimensionless mean longitudinal velocities for straight, angled dikes on flat bed and angled dikes on mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean longitudinal velocities for straight, angled dikes on flat bed and angled dikes on mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean transverse velocities for straight, angled dikes on flat bed and angled dikes on mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean transverse velocities for straight, angled dikes on flat bed and angled dikes on mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean vertical velocities for straight, angled dikes on flat bed and angled dikes on the mobile bed at Q = 0.035 m3/s
Distribution of dimensionless mean vertical velocities for straight, angled dikes on flat bed and angled dikes on the mobile bed at Q = 0.035 m3/s
Dimensionless Reynolds stresses
Dimensionless Reynolds stresses
Sketch of a subaerial landslide-induced tsunami wave

NUMERICAL SIMULATION OF THREE-DIMENSIONAL TSUNAMI GENERATION BY SUBAERIAL LANDSLIDES

SUBAERIAL LANDSLIDES에 의한 3 차원 쓰나미 생성의 수치 시뮬레이션

A Thesis by GYEONG-BO KIM
Submitted to the Office of Graduate Studies of
Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

초록

쓰나미는 해저 지진으로 인해 종종 발생하는 해안 지역에 영향을 미치는 가장 치명적인 자연 현상 중 하나입니다. 그럼에도 불구하고 밀폐된 분지, 즉 피요르드, 저수지 및 호수에서, 수중 또는 해저 산사태는 유사한 결과로 파괴적인 쓰나미를 일으킬 수 있습니다. 큰 수역에 충돌하는 수중 또는 해저 산사태가 쓰나미를 발생시킬 수 있지만, 해저 산사태는 대응하는 것보다 훨씬 더 위협적인 쓰나미 발생원입니다.

이 연구에서 우리는 지하 산사태에 의한 쓰나미 발생에 대한 실험실 규모의 실험을 수치 모델과 통합하는 것을 목표로 합니다. 이 작업은 2 개의 3 차원 Navier-Stokes (3D-NS) 모델, FLOW-3D 및 당사가 개발 한 모델 TSUNAMI3D의 수치 검증에 중점을 둡니다.

이 모델은 Georgia Institute of Technology의 Hermann Fritz 박사가 이끄는 쓰나미 연구팀이 수행 한 이전의 대규모 실험실 실험을 기반으로 검증되었습니다. 일련의 실험실 실험에서 세 가지 대규모 산사태 시나리오, 즉 피요르드 유사, 곶 및 원거리 해안선이 선택되었습니다. 이러한 시나리오는 복잡한 파도 장이 지하 산사태에 의해 생성 될 수 있음을 보여주었습니다.

파동 장의 정확한 정의와 진화는 뒤 따르는 쓰나미와 해안 지역에서의 영향을 정확하게 모델링하는 데 중요합니다. 이 연구에서는 수치 결과와 실험실 실험을 비교합니다. 토양 유변학에 대한 방법론과 주요 매개 변수는 모델 검증을 위해 정의됩니다. 모델의 결과는 쓰나미 수치 모델의 검증을 위해 National Tsunami Hazard Mitigation Program (NTHMP), National Oceanic and Atmospheric Administration (NOAA) 지침에 명시된 허용 오차 미만일 것으로 예상됩니다.

이 연구의 궁극적 인 목표는 멕시코만과 카리브해 지역의 침수지도를 구축하는 데 필요한 해저 산사태 쓰나미에 대한 3D 모델의 실제 적용을 위한 더 나은 쓰나미 계산 도구를 얻는 것입니다.

주요 분석 이미지

 Sketch of a subaerial landslide-induced tsunami wave
Figure 1.4: Sketch of a subaerial landslide-induced tsunami wave: (a) cross section
defining parameters in the direction of slide motion; (b) plan view defining coordinate
system to reference and quantify the generated tsunami wave
A typical computational domain with moving and stationary objects
Figure 2.1: A typical computational domain with moving and stationary objects. Courtesy Dr. Juan J. Horrillo, Texas A&M at Galveston.
A typical tsunami computational domain
Figure 2.2: A typical tsunami computational domain: (a) Location of variables in a computational cell. The horizontal (ui,j ) and vertical (vi,j ) velocity components are located at the right cell face and top cell faces, respectively. The pressure pi,j and VOF function Fi,j are located at the cell center; (b) Volume and side cell apertures. Courtesy Dr. Juan J. Horrillo, Texas A&M at Galveston.
Figure A.1: Configurations of boundary conditions for fjord case: FLOW-3D
Figure A.1: Configurations of boundary conditions for fjord case: FLOW-3D

<자료 안내>

원문 다운로드

Water & Environmental 논문 자료보기

Figure 5. 3D view of scour under square tide conditions (every 300 s).

조수 흐름이 있는 복잡한 교각에서 scour CFD 시뮬레이션

CFD simulation of local scour in complex piers under tidal flow

J. A. Vasquez1,2, and B. W. Walsh1,3
1 Northwest Hydraulic Consultants, 30 Gostick Place, North Vancouver, BC, Canada,
V7M 3G3; PH (604) 980-6011; FAX (604) 980-9264;
2 email: JVasquez@nhc-van.com
3 email: BWalsh@nhc-van.com

ABSTRACT

우리는 상용 CFD (Computational Fluid Dynamics) 모델 Flow-3D를 사용하여 조수 흐름 아래의 복잡한 교각에서 지역 scour의 질적 시뮬레이션을 보고합니다. 이 모델은 대형 piles 캡과 10 개의 원통형 piles로 구성된 복잡한 부두에서 scour 개발의 초기 단계를 계산하는 데 적용되었습니다. Flow-3D는 piles 사이에서 예상되는 상호 작용을 정확하게 재현 할 수있었습니다. CFD 모델은 또한 조류 역류 하에서 3- piles 그룹의 scour 시뮬레이션을 위해 적용되었습니다. 그 결과는 문헌에보고 된 측정치와 질적으로 일치하여 Flow-3D가 다양한 흐름 조건에서 복잡한 교각을위한 유압 설계 도구로서의 잠재력을 가지고 있음을 보여줍니다.

INTRODUCTION

캐나다 밴쿠버에 있는 프레이저 강과 피트 강 모두에서 현재 여러 다리가 건설 중이거나 최종 설계 단계에 있습니다. 이 다리는 상대적으로 크고 300m에서 1000m 사이의 수로 폭에 걸쳐 있으며 강바닥에 위치한 여러 개의 큰 교각에서 지원됩니다.

일반적으로 케이슨 또는 코퍼 댐을 사용하여 지어진 말뚝 위에 세워진 거대한 단단한 교각이 있는 오래된 교량과 달리, 새로운 교각은 일반적으로 떠 다니는 바지선에서 원통형 말뚝을 땅으로 밀어내어 지어집니다.

말뚝 상단의 수평 말뚝 캡은 수면에 위치하며 상부 구조에서 말뚝 기초까지 힘을 전달하고 선박 충돌을 방지하는 데 사용됩니다. piles 캡의 높이는 하단 및 상단 높이가 최저 및 최고 수위를 덮도록 설계되어 모든 흐름 조건에서 볼 수 있습니다.

piles 캡의 기하학적 구조와 piles의 레이아웃은 다소 복잡 할 수 있으며, 반드시 로컬 scour 예측 변수에서 가정 한 고전적인 교각 모양을 따르는 것은 아닙니다. 그림 1은 6 각형 패턴으로 배열된 두 그룹의 piles 위에 아령 모양의 piles 캡이 있는 프레이저 강의 교각 부두의 예를 보여줍니다.

지속 가능한 환경을 위한 물 공학 (그림 2) 두 개의 다른 직경으로 만들어진 10 개의 piles 위에 둥근 끝이 있는 직사각형 piles 캡으로 만들어진 피트 강의 교각 부두. 복잡한 교각에서 scour을 계산하기위한 일부 분석 공식이 존재합니다.

예를 들어, HEC-18 매뉴얼 (Richardson and Davis 2001)은 교각 스템, piles 캡 및 piles 그룹에 의해 생성된 세 가지 scour 구성 요소를 추가하여 총 scour 깊이를 계산합니다.

말뚝 그룹은 폭이 그룹에 있는 말뚝의 투영된 폭과 동일한 솔리드 말뚝으로 대체되고 말뚝 간격 및 정렬된 행 수의 효과에 대한 수정 계수를 곱합니다. Ataie-Ashtiani와 Beheshti (2006)는 지역 scour (piles 캡이 없는)에서 piles 그룹화의 효과를 연구했습니다.

그들의 실험 결과는 나란히 배열된 매우 밀접하게 배치된 말뚝의 경우 scour 깊이가 50 % 증가할 수 있음을 보여주었습니다. 탠덤 배열의 경우 전면 piles의 scour이 증가하고 후면 차폐 piles의 경우 감소합니다.

어쨌든 말뚝 사이의 간격 S가 말뚝 직경 D의 4 배 (S/D> 4)보다 크면 scour 증폭 효과가 사라지는 경향이 있습니다. 그러나 이러한 공식은 piles이 격자 모양의 레이아웃으로 균일하게 배치되어 있다고 가정합니다.

이는 그림 1과 2에 표시된 교각에서는 분명히 해당되지 않습니다. 문제를 더욱 복잡하게 하기 위해 프레이저 강과 특히 피트 강이 대상입니다.

Figure 1. Example of bridge pier with dumbbell-shaped pile cap and hexagonal pile layout, showing also scour hole measured in a physical model.

교각의 조석 scour은 단방향 scour과 동일한 세부 사항으로 연구되지 않았지만 실제로 주제에 대한 몇 가지 주목할 만한 연구가 있습니다.

Escarameia (1998)는 흐름 방향, 조수주기 기간, 수심, 교각 모양 및 퇴적물 크기에 대한 역전의 영향을 단일 원형 및 직사각형 교각의 국부 scour에 미치는 영향을 평가하여 조류 흐름 조건 하에서 국부 scour의 실험적 조사를 수행했습니다. 예상대로 퇴적물 크기는 국부 scour 깊이에 영향을 미치지 않았습니다.

조수 조건에서 최대 수세 깊이는 베드 폼이 존재하지 않는 경우 일방향 흐름에 대해 항상 평형 scour 깊이 아래로 유지되었습니다 (맑은 물 수세미). 직사각형 교각의 scour 깊이는 정사각형 교각보다 10 ~ 14 % 더 작은 것으로 나타났습니다. 정사각형 교각에서는 조수주기 동안 교각의 상류와 하류에 생성된 scour 구멍이 병합되는데 교각이 직사각형 인 경우에는 발생하지 않습니다.

May and Escarameia (2002)는 정사각형 및 정현파 조수를 사용하여 조수 조건 하에서 지역 scour의 시간적 진화를 연구했습니다. 그들은 맑은 물 scour에서 조수 흐름의 수력 학적 구조에서의 평형 scour이 일방향 유동을 사용하는 scour보다 훨씬 적을 수 있다고 결론지었습니다. 그러나 라이브 베드 scour에서 평형 깊이는 각 조수주기에서 scour 구멍이 더 빠르게 발생하고 구조물 주변에 모래 언덕이 형성되어 단방향 흐름 값에 가까울 수 있습니다.

Margheritini et al. (2006) 은 퇴적물 이동 (살상 조건)과 함께 단방향 및 조수 흐름에서 대 구경 말뚝 주변의 국부 scour 실험을 수행했습니다. 두 경우의 최종 평형 scour은 비슷했습니다. 조수 흐름의 scour 구멍은 대칭이며 원형 모양이고 일방향 scour 구멍보다 부피가 더 큽니다.

현재 물리적 모델링은 사용 가능한 scour 방정식의 가정을 따르지 않는 복잡한 모양을 가진 교각에서 로컬 scour를 평가하기위한 유일한 실용적인 엔지니어링 도구로 보입니다.

3 차원 (3D) 수치 모델링은 단일 원통형 말뚝에서 국부 scour을 재현하기 위해 성공적으로 적용되었지만, 복잡한 교각의 모델 scour이나 조류 역류 하의 말뚝 그룹에는 적용되지 않았습니다. 이 논문의 목적은 상업적으로 이용 가능한 3D 전산 유체 역학 (CFD) 모델을 사용하여 실제 복잡한 부두와 조수 역전 하에서 이상적인 3 파일 그룹에서 지역 scour의 예비 정성 결과를 제시하는 것입니다.

NUMERICAL MODELING OF PIER SCOUR

Olsen과 Melaan (1993)의 초기 작업 이후 여러 3D 수치 모델이 단일 원통형 부두에서 국소 scour을 모델링하는 데 성공적으로 적용되었습니다 (Roulund et al. 2005의 검토 참조). 그러나 복잡한 교각에서 3D scour 시뮬레이션은 거의 시도되지 않았습니다. 그 이유는 두 가지입니다.

대부분의 모델은 복잡한 교각의 형상을 수용하기 어려운 구조화된 곡선 형 경계 맞춤 그리드를 기반으로 합니다. 또 다른 중요한 제한 사항은 계산 시간이며, 이는 실제 모델에서 로컬 scour 테스트를 수행하는 데 필요한 시간보다 훨씬 큽니다.

그럼에도 불구하고 수치 모델은 귀중한 정보를 제공할 수 있으며 컴퓨터 속도가 더욱 향상될 것으로 예상되는 미래에 큰 잠재력을 가지고 있습니다. 여기에 사용된 CFD 모델은 뉴 멕시코 주 산타페의 Flow Science에서 개발한 Flow-3D입니다. Flow-3D는 유압 엔지니어링 애플리케이션을 위한 특수 모듈이 포함된 상용 CFD 패키지입니다.

구조화된 직교 그리드를 사용함에도 불구하고, 직사각형 계산 셀이 장애물에 의해 부분적으로 차단될 수 있도록 하는 FAVOR (fractional area/volume method)를 적용하여 복잡한 형상을 모델링 할 수 있습니다. 날카로운 자유 표면 (예: 수압 점프, 공기 중 자유 제트)은 VOF (Volume-of-Fluid) 방법으로 모델링 됩니다.

Flow-3D는 Brethour (2001)에 의해 자세히 설명된 대로 지역 scour을 모델링하는 고유 한 기능도 가지고 있습니다. 이러한 기능은 그림 2에 설명되어 있으며, 모델이 맑은 물 조건에서 복잡한 부두의 형상과 scour 개발의 초기 단계를 재현할 수 있는 방법을 보여줍니다.

그림 2에 표시된 복잡한 부두는 길이 51.5m, 너비 12.5m, 두께 6.7m의 끝이 둥근 파일 캡을 포함합니다. 파일 캡 아래에는 세 개의 개별 파일 그룹이 있습니다. 직경이 2.4m 인 3 개의 파일로 구성된 두 그룹 (U & D)은 파일 캡의 상류 및 하류 끝에 위치하며, 4 개의 작은 1.8m 파일 (C)은 중앙 주위에 있습니다.

파일 캡의 바닥은 침대 위 약 13m입니다. 수치 메쉬는 길이 115m, 너비 50m, 높이 22m였으며 균일 한 셀 크기는 0.5m (46,176 셀)입니다. 시뮬레이션은 수심 15.8m, 일정한 유속 1.5m/s, 퇴적물 크기 0.35mm에 대해 수행되었습니다. Flow-3D는 지역 scour에 대한 파일 간섭의 영향을 평가하는 데 사용되었습니다. 과도한 계산 시간이 필요하여 장기 시뮬레이션을 수행할 수 없었기 때문에 처음 1 시간 동안 scour 시작 만 시뮬레이션 했습니다.

말뚝 사이의 상대적 간격 S/D를 고려할 때, 그림 2에 표시된 Flow3D 결과는 Ataie-Ashtiani와 Beheshti (2006)가보고 한 말뚝 간의 상호 작용에 관한 실험적 관찰과 매우 잘 일치합니다. 결과는 부두 중심 주변의 C 말뚝이 2 쌍처럼 나란히 행동한다는 것을 시사합니다.

왼쪽과 오른짝이었는 두 쌍의 말뚝 사이에 간섭이 없는 것으로 보입니다 (C1-C2 및 C3-C4, S/D = 4); 파일 C1 (C2)은 scour (S/D = 2.3)으로부터 파일 C3 (C4)를 보호하는 것처럼 보입니다.

그림 2는 또한 파일 캡의 양쪽 끝에 있는 3 개 파일 그룹 U 및 D의 수세공 구멍이 이미 병합되어 3 개 파일 간의 강력한 상호 작용을 시사합니다 (S/D = 0.9). 또한 3- 파일 그룹 U는 더 작은 파일 C를 보호하지 않는 것 같습니다 (S/D> 5).

Figure 2. Initial scour development computed by Flow-3D in complex pier.

최대 평형 scour 깊이를 계산할 수는 없었지만, 복잡한 부두에서 말뚝과 말뚝 캡 사이의 상호 작용에 대해 얻은 통찰력은 scour 과정과 scour 대책의 잠재적 설계를 이해하는 데 여전히 중요합니다.

MODELING TIDAL SCOUR OF PILE GROUP

지속 가능한 환경을위한 물 공학 말뚝 그룹의 조수 조사 모델링 불안정한 조수 흐름의 잠재적 영향을 평가하기 위해 Flow-3D를 사용한 정성 시뮬레이션이 수행되었습니다.

전체 교각을 시뮬레이션하는 것이 불가능했기 때문에 이상화된 3- piles 그룹 (piles 캡 없음)이 거친 메시를 사용하여 재현되었습니다. 원통형 piles의 직경은 최소 간격 S / D = 0.95로 삼각형 패턴으로 배열 된 2m였습니다. 메쉬 셀 크기는 0.5m입니다.

이러한 메쉬 크기는 piles 주변 흐름의 모든 3D 세부 사항을 해결하기에 충분한 해상도를 제공하지 않지만 계산 시간을 관리 가능한 수준으로 유지하는 데 필요한 것으로 간주되었습니다.

따라서 이러한 예비 시뮬레이션은 정 성적이며 Flow-3D의 기능을 대략적으로 평가하기위한 탐색 적 특성을 가지고 있습니다. 수로는 길이 40m, 너비 16m, 높이 6.5m였습니다. 입구 / 출구의 첫 번째와 마지막 10m는 난류의 완전한 발달을 허용하기 위해 단단한 거친 베드로 만들어졌습니다.

3 개의 말뚝이있는 수로의 중앙 부분은 0.75mm의 모래로 만들어졌습니다. 수심은 2.5m였습니다. 유속의 조석 반전은 정사각형 및 정현파 조석을 사용하여 시뮬레이션되었습니다 (그림 3). 제곱 조는 Escarameia (1998)와 Margheritini et al. (2006). 단방향 흐름의 경우 조수 피크 (2m / s)를 사용했습니다.

Figure 3. idealized tidal velocity used for numerical simulations.

900 초에서 채널 중심선을 따라 세로로 된 베드 프로piles은 그림 4에서 단방향 흐름과 사인 곡선에 대해 보여집니다. 그림 5는 제곱 조수 시나리오에 대해 300 초마다 일련의 3D 이미지를 보여 주지만 화살표는 흐름 방향을 나타냅니다. 마지막으로, 세 가지 흐름 시나리오에 대한 scour의 시간적 진화가 그림 6에 나와 있습니다.

Figure 4. Computed centerline bed profiles after 900 s for unidirectional flow (left) and sinusoidal tide (right).

Figure 5. 3D view of scour under square tide conditions (every 300 s).
Figure 5. 3D view of scour under square tide conditions (every 300 s).
Figure 6. Temporal evolution of maximum scour depth under steady and tidal flow conditions (grid resolution is 0.5 m)
Figure 6. Temporal evolution of maximum scour depth under steady and tidal
flow conditions (grid resolution is 0.5 m)

단방향 흐름에서 scour는 상류에서 발생하고 퇴적물은 더미 뒤에 축적됩니다 (그림 4). 조수 조건에서 흐름 반전은 이전 조수주기에서 개발 된 scour hole을 일시적으로 채웁니다. scour의 계산 된 시간적 진화 (그림 6)는 Margheritini et al.의 실험과 유사합니다(2006). 조석 수조는 처음에 증가하지만 흐름이 역전되면 약간 감소하여 다음주기에 다시 자라납니다.

Flow-3D는 Escarameia (1998)와 일치하여 시뮬레이션의 맑은 물 조건에 대해 조석 정찰이 단방향 정찰보다 약간 낮다고 예측했습니다. 그러나 사용된 거친 0.5m 메시 해상도로 인해 정확한 scour 감소 크기를 정확하게 해결할 수 없습니다. 또한, 모델은 평형 scour 깊이를 달성 할만큼 충분히 오래 실행되지 않았습니다.

CONCLUSION

Flow-3D는 구조화된 경계 맞춤 그리드의 일반적인 제한없이 복잡한 구조에서 로컬 scour을 모델링 할 수 있는 기능을 갖춘 최초의 CFD 상용 모델 일 것입니다.

큰 piles 캡과 여러 개의 piles로 구성된 복잡한 부두에 적용했을 때 Flow-3D는 piles 간의 상호 작용을 정확하게 예측할 수 있었으며 실제 엔지니어링 응용 프로그램을 위한 설계 도구로서의 잠재력을 보여주었습니다.

Flow-3D를 사용하여 맑은 물의 조수 흐름 하에서 이상적인 3- piles 그룹의 정 성적 시뮬레이션은 동일한 최고 속도의 단방향 흐름에 비해 흐름 반전이 있는 조수 조건에서 scour 깊이가 감소함을 보여주었습니다.

이러한 수치 결과는 실험 데이터와 일치합니다. 그러나 모델을 정량적으로 검증하려면 더 미세한 그리드를 사용하는 추가 연구가 필요합니다. 현재 Flow-3D 및 일반적으로 CFD 모델의 주요 실제 제한은 계산 시간입니다.

구조를 모델링하는 데 매우 큰 그리드가 필요한 경우 장기 평형 조사를 계산하려면 물리적 모델을 실행하는 데 필요한 것보다 훨씬 더 많은 계산 시간이 필요할 수 있습니다.

논문 원본 링크 : CFD simulation of local scour in complex piers under tidal flow

기타 참고 자료 : https://flow3d.co.kr/scouring-knowledge/

REFERENCES

Ataie-Ashtiani, B. and Beheshti, A.A. (2006). “Experimental investigation of clearwater local scour at pile groups”. J. Hyd. Eng., ASCE, 132(10), 1100-1104.
Brethour, J. M. (2001). Transient 3-D model for lifting, transporting and depositing
solid material. 2001 International Symposium on Environmental Hydraulics,
Tempe, Arizona (http://flow3d.info/pdfs/tp/wat_env_tp/FloSci-Bib28-01.pdf).
Escarameia, M. (1998). Laboratory investigation of scour around large structures in
tidal waters. Conf. Basics of Sediment Transport and Scouring. HR
Wallingford (http://kfki.baw.de/conferences/ICHE/1998-Cottbus/55.pdf).
May, R.W.P. and Escarameia, M. (2002). Local scour around structures in tidal flows.
First International Conference on Scour Foundations, Texas A&M University.
Margheritini, L., Martinelli, L., Lamberti, A. and Frigaard, P. (2006). Erosione
indotta da onde e correnti di marea attorno a pali di grande diametro. XXX
Convegni di Idraulica e Construzioni Idrauliche, Rome, September 2006
(http://www.idra2006.it/referee/files/L356.pdf).

Scouring Tip2

유체유동이 일어나지 않는 경사면의 scouring 현상에 대한 이해

해석 조건

  • Inflow : velocity=1.23m/s
  • Outflow : Air pressure
  • Sediment condition
Scouring Tip1
Scouring Tip2
  1. 유체유동이 일어나지 않는 경사면에 scouring이 일어나는 이유가 무엇인가?
  2. Sediment가 점착력이 있는 경우(clay)는 어떤 변수로 입력해야 하는가?

Tip 1)유동이없는부분에 scouring이나타나는이유:

현재 scouring model은 물에잠겨있는 부분에 대해 해석을 하게되어 있으므로 packed sediment부분은 fluid region(with infinite drag)이 존재하게됩니다. 그러므로 fluid region이 없다 하더라도 packed sediment가 경사면에 존재하면 중력에 의해  내부유체의 유동이 생겨 위 예제와 같이 미소한  scouring이 표면에 물이 없는 경사면에서도 발생하는것입니다. 그러므로 이를 없애기 위해서는 물이 없는 경사면 부분은 별도의 solid로 규정하면 이 문제를 피할수 있습니다.

Tip2 ) clay가 sticky하면 일반적으로 유동의 상대운동이 감소될것이므로 drag coefficient 나 Richardson Zaki coefficient multiplier를 증가시켜 변화를 조사해 볼 수 있습니다.

<기타 Scouring 자료>

Coastal & Maritime Bibliography

Water & Environmental Bibliography

Sediment Transport Model

CFD simulation of local scour in complex piers under tidal flow

Numerical Simulations of Sediment Transport and Scour Around Mines

The Numerical Investigation of Free Falling Jet’s Effect on the Scour of Plunge Pool

Current-induced seabed scour around a pile-supported horizontal-axis tidal stream turbine

Numerical Investigation of Angle and Geometric of L-Shape Groin on the Flow and Erosion Regime at River Bends

Comparison of CFD Models for Multiphase Flow Evolution in Bridge Scour Processes

Coastal applications using FLOW-3D/연안(해변) FLOW-3D해석사례

배수(Backwaters)이론

  • Air entrainment(공기 혼입 모델)
  • Turbulence(난류 모델)
  • Waves(파동 모델)
  • Sediment scour and deposition(세굴 모델)

하구 매커니즘(Estuarine mechanisms)

  • Air entrainment(공기 혼입 모델)
  • Turbulence(난류 모델)
  • Density Evaluation(밀도 유동 모델)
  • Wind

Wave generation

  • Solitary Wave
  • Linear Wave
  • JONSWAP
  • Pierson-Moskowitz
  • Stokes Wave

Wave 생성하는 모델은 크게 위의 5가지 모델이 있습니다. 아래는 위의 5가지 모델에 대한 해석 사례를 보여줍니다. 이를 참고하시면 해석에 도움이 됩니다.

부두에서 파도 부하 추정, 물리적 모델링 및 수치테스트, 새로운 Wave에 대한 고유 2차원 비선형 접근방식 등의 FLOW-3D결과는 실제 실험 데이터와 잘 일치함을 보여줍니다.

  • Eillott, T., and Fullarton, M., “Cyclone wave loads on wharf structure using the new wave approach”, FLOW-3D Americas User conference, 2014

세굴 모델(Sediment scour and deposition)

Sediment scour and deposition
  • Critical Shields number definition(임계 Shields 수) : 0.05
  • Bed Load Transport Rate equation : Meyer-Peter & Muller equation
  • Richardson-Zaki coefficient multipller : 1
  • 다음과 같이 Wave와 세굴(Sediment)를 같이 고려해서 해석하는 것을 추천합니다.
    – 퇴적물 탱크의 파동(Solitary wave)
    – 무연탄 및 모래
    – 움직이는 물체 모델을 사용하여 생성된 파도

해석 결과

Air Entrainment(공기혼입) Analysis

일부 자유 표면 유동에서 난류 또는 특정 유동조건으로 인해 자유 표면에 가스(Air)가 혼입될 수 있습니다. 그러므로 유동 해석시 가스(Air) 혼입에 대한 고려를 해야합니다.

공기혼입의 예시

  • 댐 수문게이트
  • 정화장치 부문
  • Dam aerated flow region(댐 공기 유동 영역) etc.

Air entrainment physical processes(공기 혼입 물리 프로세스)

  • Entrained air transprot(혼입 공기 수송 모델)
    : 혼입계수(The Entrainment rate coefficient)는 0.5가 적합
    : 표면장력(The surface tension) 고려
  • Bulking : Variable density(가변 밀도 모델)
    : 유입 유체의 밀도 조정은 유체 및 공기 밀도의 조합을 설명하기 위해 자동으로 계산됩니다. 결과적으로, 체적 유량은 유체 및 혼입 된 공기 혼합물의 총 체적 유량이며, 경계(Boundary)에서 공기의 농도를 정의 할 때 사용자가 고려해야합니다.
  • Turbulence model(RANS, RNG etc.)
    : 공기 혼입(Air entrainment) 모델을 사용할 때 적절한 난류모델을 고려해야 합니다. 난류 모델에 대한 설명은 아래 링크를 참조하시길 바랍니다.

/wp-admin/post.php?post=2873&action=edit

  • Buoyancy : Variable density + Drift-Flux(부력의 효과)
    : 부력(Buoyancy force) 효과를 고려하면 드리프트 플럭스 모델(Drift-Flux model)과의 상호 작용을 설명 할 수 있습니다. 이 경우, 기포는 밀도의 차이로 인해 유체 내에서 이동할 수 있으며 유체 운동에 영향을 줄 수 있습니다.

공기 혼입 모델(Air entrainement model) 해석 사례

Particle Model(입자모델)

Lagrangian particle model(라그랑지안 입자 모델)

라그랑지안 입자 모델(Lagrangian particle model)은 서브 그리드(Sub-grid) 모델로 계산 셀보다 작은 속성과 크기가 다른 구형(Spherical) 입자의 움직임을 추적할 수 있는 계산 모델입니다.

해석 사례

  • Aeration tank modelling(산기 탱크 모델링)
  • Bubble diffuser system(버블디퓨저 시스템)
  • Drug delivery etc.

Particle options

  • Marker particles – Massless
  • Mass particles – Solid spheres
  • Fluid particles – Droplets of fluid
  • Gas particles – Bubbles of gas

가정 및 한계(Assumptions & Limitations)

  • 입자크기(Particle size) << 격자크기(Mesh size)
  • 입자간의 상호작용을 고려하지 않습니다.
  • 입자 갯수에 제한

Marker Particles(마커 입자)

마커 입자(Marker particles)는 흐름(Flow)에 영향을 미치지 않고 주변 유체의 속도에 따라 움직이지 않는 질량이 없는 상태의 입자입니다. 그러므로, 유체 분자의 시각화로 간주될 수 있습니다.

계산영역에 마커 입자(Marker particles)를 적용함으로써, 개별 유체 분자가 따르는 경로(Paths)를 시각화할 수 있습니다.

Mass Particles(질량 입자)

질량 입자(Mass particles)는 특정 직경과 밀도를 가진 고체 구체(Spheres)로 고려됩니다. 따라서, 질량 입자(Mass particles)는 계산 영역에서 현탁된 고체(Suspended solids)의 운동을 모델링하기 위해 사용됩니다.

Fluid particles(유체 입자)

유체 입자(Fluid particles)는 유체#1의 액적(Droplets of Fluid#1)으로 생각할 수 있습니다. 유체 입자(Fluid particles)는 유체 스프레이(Fluid sprays), 적층 제조(additive manufacturing), 용접(Welding) 등과 같은 계산 셀보다 작은 모델링 유체 부피를 포함하는 수많은 시뮬레이션에 사용될 수 있습니다.

Gas particles(가스 입자)

가스 입자(Gas particles)는 가스의 구형(Spherical) 버블과 유체, 공극(Void) 및 고체 물체와의 상호 작용을 시뮬레이션하는데 사용됩니다.

Wave Forces on Coastal Bridges

Wave Forces on Coastal Bridges

This article was contributed by Jun Jin, Assistant Professor in the Maritime Systems Engineering Department at Texas A&M University at Galveston.

 

최근 몇 년 동안 허리케인은 멕시코만 연안의 4개 주에서 여러 해안 고속도로 교량에 구조적 피해를 입혔습니다. 허리케인 피해를 방지하기 위해 연안 교량에 가해지는 파도 하중의 크기는 합리적인 정확성을 가지고 결정되어야 합니다. 일반적으로 구조에 대한 파도 하중의 계산은 구조 상호작용의 여러 특성으로 인해 복잡해집니다. 이 본문은 이러한 복잡한 문제들 중 해결할 수 있는 몇 가지를 보여줍니다.

Validation of Stokes Nonlinear Wave Solution in FLOW-3D

FLOW-3D는 해안 교량의 파도 하중을 계산하고 구조물 고도 및 녹색갑판 위의 물 하중에 대한 영향을 조사하기 위해 사용되었습니다.  FLOW-3D에서 StokesWave의 정확도를 평가하기 위해 계산 도메인의 세개 지점을 선택했습니다(그림 1). 시뮬레이션을 하는 동안, 각 입자 소스는 초당 10개의 입자를 방출했습니다. 입자 궤적은 그림 1에 표시되어 있습니다. 한 지점의 입자 속도를 이론적 결과와 비교했습니다(그림 2a 및 2b). FLOW-3D에 의해 계산된 입자의 역학은 Stokes비선형 파동이론과 잘 일치한다고 결론내렸습니다.

Figure 1. Particle trajectories and pressure variation during a wave simulation

Figure 2a. Comparison of computed particle velocities of a point with theoretical results

Figure 2b. Comparison of computed particle velocities of a point with theoretical results

 

Wave Loads vs. Superstructure Elevations

다리 갑판을 다른 높이로 설정하고 2m파형 높이와 6초 주기의 파형으로 시뮬레이션을 수행했습니다. 그림 3은 파형력이 최대치에 있을 때의 파동 단면과 압력 등고선을 보여 줍니다.

Figure 3. Wave profile and pressure contours at different moments (Pressure unit: Pa).

Flow Field under Bridge Deck

시뮬레이션은 다른 파도 높이로 실행되었습니다. 그림 4에서 볼 수 있듯이 교량 바닥판 밑의 유동장은 복잡합니다. 대들보와 상부 구조물에 의해 형성된 개방된 공간내에서, 물의 흐름은 경계를 따라 원형패턴으로 있었습니다. 또한 유동의 복잡성은 웨이브 높이가 증가함에 따라 증가하는 것으로 관찰되었다.

Observations

시뮬레이션 결과에서 다음과 같은 결론을 도출할 수 있습니다.

  1. 상부 구조물의 높이가 증가함에 따라 교량 상부 구조물의 수직 방향 파동력이 감소하는 반면, 수평 방향 파형력은 교량의 상부 구조물의 상부 표면이 웨이브 높이의 아래에 있을 때 큰 영향을 미치지 않습니다.
  2. 교량 상층부의 물 하중은 파고와 함께 증가합니다. 파손이 거의 발생하는 경우 최대 물 하중이 최대 수직 파력의 50 %를 초과했습니다. 그러나 그린 워터 하중과 상향 파력 사이의 위상차로 인해 수직 파력의 최대 값은 물의 부하에 의해 현저히 감소하지는 않았습니다.
  3. 교량 상부 구조물 주위의 유동장은 평행한 대들보에 의해 차단됩니다. 그러므로 웨이브 힘에 대한 순전히 기반한 방법은 웨이브 힘을 계산하는데 사용할 수 없습니다.

Figure 4. Vectors of water particle velocity at the moment of maximum wave force (Velocity unit: m/s)

Learn more about the power and versatility of modeling coastal and maritime applications with FLOW-3D>

 

 

Landslide-Induced Wave Hazard

Landslide-Induced Wave Hazard 

Figure 1. The outskirts of Chungtangh village

인도 Sikkim에 위치한 The Teesta III Hydropower Project는 가파르고 좁은 히말라야 계곡에 위치한 60m의 Concrete Face Rockfill Dam (CFRD)이 포함되어 있습니다. 이 계곡은 지진 활동이 활발하며 가파른 경사면은 산사태를 발생시킬 수 있습니다. 댐 상류 저수지의 산사태로 CFRD를 범람할 수 있다는 우려가 있었습니다. 몇 초 이상 과도하게 지속되면 오버플로우로 인해 CFRD가 잘못될 수 있습니다. 비록 댐이 무너지지 않았지만, 여전히 Chungtangh에 있는 상류쪽 작은 마을은 홍수가 날 것이라는 우려가 있었습니다.

Teesta강 계곡의 가장 가파른 경사면은 댐의 바로 상류에 위치해 있는데, 댐의 산사태가 가장 일어날 가능성이 높은 지역입니다. 이 분석의 목적은 저수지에 대한 산사태를 시뮬레이션하고 그 결과로 발생하는 파도가 댐에 넘치는지 여부를 결정하는 것이었습니다.

Moving Objects Model Used to Simulate Landslide                                      

Tecsult는 저수지의 침전물과 퇴적물을 모델링하는데 성공적이었기 때문에 FLOW-3D를 선택하여 이를 시뮬레이션하였습니다. 저수지의 시뮬레이션은 시작점으로 사용되었습니다. FLOW-3D의 Moving Objects모델은 산사태를 시뮬레이션하는데 사용되었으며 VOF모델은 웨이브 생성을 시뮬레이션하는 데 사용되었습니다.

저수지의 산사태를 추정하기 위해서는 여러가지 방법이 고려되었습니다. 경험적 방법은 흔히 산사태가 발생한 파도를 평가하는데 사용되지만, 이러한 방법은 여러가지 면에서 부족합니다. 이러한 방법은 근접 필드 또는 스플래시 영역에 대한 정보를 제공하지 않습니다. 댐은 슬라이드 면과 매우 가깝기 때문에 스플래시 영역을 아는 것이 중요했습니다. CFRD는 몇 초 이상 overflow를 견딜 수 없었습니다. FLOW-3D는 미끄러운 지형 질량과 물 사이의 완전 결합된 상호 작용을 계산하여 시나리오를 3 차원에서 시뮬레이션하는 방법을 제공합니다.

이 문제를 시뮬레이션하기 위해 간단하고 작은 크기의 자유 낙하 블록으로 구성된 실험과 비교하였습니다. 이 경우는 아래 동영상에 나와 있습니다. 그 결과로 생긴 파도 높이는 그 실험과 잘 맞았습니다.

이 모델의 STL파일은 FLOW-3D로 직접 가져옵니다. 예상 산사태 지역의 크기는 지질 정보와 주변 산사태 관측치를 바탕으로 결정되었습니다. 30,000m³, 100m높이의 산사태가 310만 셀의 메쉬로 시뮬레이션 되었습니다. 높이가 1m인 측면 3m의 균일한 셀을 사용했습니다. 최대 슬라이딩 속도는 진입 지점에서 23m/s에 도달했습니다. 파도는 높이 8m, 속도 10m/s로 댐에 도달하여 몇 초 동안 범람했습니다. 그 결과로 상류 마을에서는 홍수가 나타나지 않았습니다.

Figure 3. Prediction of wave height in the splash zone and near field in a small reservoir, with refraction.

Figure 4. Wave heights plotted against each other

Figure 5. Downstream view of TEEST III dam and water intake CATIA model

Conclusions

이 작업의 주된 관심사는 댐의 범람으로 인해 댐과 Chungtangh 마을이 파괴될 수 있었다는 것입니다. 그러나 시뮬레이션에 따르면 댐은 잠시 동안만 범람했고 파도는 마을에 닿지 않았습니다. Chungtangh마을은 강 위에 충분히 높기 때문에, 그것을 범람시키기 위해서는 상당한 파도의 높이가 필요할 것입니다.

 

Wave Forces on Coastal Bridges

Wave Forces on Coastal Bridges

This article was contributed by Jun Jin, Assistant Professor in the Maritime Systems Engineering Department at Texas A&M University at Galveston.

 

최근 몇 년 동안 허리케인은 멕시코만 연안의 4 개 주에서 여러 해안 고속도로 교량에 구조적 피해를 입혔습니다. 허리케인 피해를 방지하기 위해 연안 교량에 가해지는 파도 하중의 크기는 합리적인 정확성을 가지고 결정되어야 합니다. 일반적으로 구조에 대한 파도 하중의 계산은 구조 상호작용의 여러 특성으로 인해 복잡해집니다. 이 본문은 이러한 복잡한 문제들 중 해결할 수 있는 몇 가지를 보여줍니다.

Validation of Stokes Nonlinear Wave Solution in FLOW-3D

FLOW-3D는 해안 교량의 파도 하중을 계산하고 구조물 고도 및 녹색갑판 위의 물 하중에 대한 영향을 조사하기 위해 사용되었습니다.  FLOW-3D에서 StokesWave의 정확도를 평가하기 위해 계산 도메인의 세개 지점을 선택했습니다(그림 1). 시뮬레이션을 하는 동안, 각 입자 소스는 초당 10개의 입자를 방출했습니다. 입자 궤적은 그림 1에 표시되어 있습니다. 한 지점의 입자 속도를 이론적 결과와 비교했습니다(그림 2a 및 2b). FLOW-3D에 의해 계산된 입자의 역학은 Stokes비선형 파동이론과 잘 일치한다고 결론내렸습니다.

Figure 1. Particle trajectories and pressure variation during a wave simulation

Figure 2a. Comparison of computed particle velocities of a point with theoretical results

Figure 2b. Comparison of computed particle velocities of a point with theoretical results

 

Wave Loads vs. Superstructure Elevations

다리 갑판을 다른 높이로 설정하고 2m파형 높이와 6초 주기의 파형으로 시뮬레이션을 수행했습니다. 그림 3은 파형력이 최대치에 있을 때의 파동 단면과 압력 등고선을 보여 줍니다.

Figure 3. Wave profile and pressure contours at different moments (Pressure unit: Pa).

Flow Field under Bridge Deck

시뮬레이션은 다른 파도 높이로 실행되었습니다. 그림 4에서 볼 수 있듯이 교량 바닥판 밑의 유동장은 복잡합니다. 대들보와 상부 구조물에 의해 형성된 개방된 공간내에서, 물의 흐름은 경계를 따라 원형패턴으로 있었습니다. 또한 유동의 복잡성은 웨이브 높이가 증가함에 따라 증가하는 것으로 관찰되었다.

Observations

시뮬레이션 결과에서 다음과 같은 결론을 도출할 수 있습니다.

  1. 상부 구조물의 높이가 증가함에 따라 교량 상부 구조물의 수직 방향 파동력이 감소하는 반면, 수평 방향 파형력은 교량의 상부 구조물의 상부 표면이 웨이브 높이의 아래에 있을 때 큰 영향을 미치지 않습니다.
  2. 교량 상층부의 물 하중은 파고와 함께 증가합니다. 파손이 거의 발생하는 경우 최대 물 하중이 최대 수직 파력의 50 %를 초과했습니다. 그러나 그린 워터 하중과 상향 파력 사이의 위상차로 인해 수직 파력의 최대 값은 물의 부하에 의해 현저히 감소하지는 않았습니다.
  3. 교량 상부 구조물 주위의 유동장은 평행한 대들보에 의해 차단됩니다. 그러므로 웨이브 힘에 대한 순전히 기반한 방법은 웨이브 힘을 계산하는데 사용할 수 없습니다.

Figure 4. Vectors of water particle velocity at the moment of maximum wave force (Velocity unit: m/s)

Learn more about the power and versatility of modeling coastal and maritime applications with FLOW-3D>

 

 

Interaction Between Waves and Breakwaters

Interaction Between Waves and Breakwaters

This article is an adapted version of an article  published in the journal of the Engineering Association for Offshore and Marine in Italy by Fabio Dentale, E. Pugliese Carratelli, S.D. Russo, and Stefano Mascetti. The first three authors are users at the University of Salerno; Mr. Mascetti is an engineer at XC Engineering, Flow Science’s associate for Italy and France.

 

방파제의 설계는 복잡한 자연 시스템 (바다와 해안)과 인공 구조물 (방파제)의 상호 작용에 대한 완전한 이해가 필요합니다. 일반적으로 설계 작업은 광범위한 물리적 모델링을 수반하므로 비용이 많이 들고 시간이 오래 걸릴 수 있습니다. 최근까지 방파제의 복잡한 측면은 상세한 수치 시뮬레이션에 너무 어려웠습니다. 이것은 물이 비정상적인 동작으로 복잡한 경로를 통해 흐르는 콘크리트 또는 암석 블록으로 구성된 방파제의 경우 특히 그렇습니다.

컴퓨팅 기술의 진보로 수치, 물리적 조사 간의 격차가 좁혀졌습니다. 상호 작용하는 개별 블록으로 구성된 견고한 구조를 정확하게 표현할 수 있으므로 블록 사이의 빈 공간 내에 수치적으로 유동 영역을 생성 할 수 있습니다. 이것은 방류수가 균일한 다공성 매질로 근사되는 Classical Darcy 주제에 고려될 수 없는 대류항 및 난류의 영향을 포함한 전체 유체 역학적 거동의 영향을 평가할 수 있게 합니다

Modeling Rubble Mound Breakwaters

The following examples describe cases where rubble mound breakwaters are modelled on the basis of their real geometry, taking into account the hydrodynamic interactions with the wave motion.

잔재물 분쇄기 모델링

다음의 사례는 잔해 분쇄물이 파도 운동과의 유체 역학적 상호 작용을 고려하여 실제 형상을 기반으로 모델링된 경우를 설명합니다.

Figure 1: Artificial blocks

Figure 2a: Submerged Breakwaters

Figures 2b and 2c: Emerged Breakwater – Accropode regular & Accropode irregular

 

방파제의 개략적인 표현을 고려하여 구체 세트로 재현한 것으로 the cube, the modified cube, the antifer, the tetrapod, the accropode, the accropode II, the coreloc, the xbloc,and the xbloc base 등과 같은 일반적으로 사용되는 인공 블록을 고려하기 위해 개발되었습니다. (그림 1).

방파제는 물에 잠기거나 잠긴 경우에는 문헌에 나와 있는 표준 실험식을 사용하여 크기를 결정하고 실제 기하학적 패턴을 따르는 전체 크기, 구조 및 물리적 모델링과 같이 수치적으로 구성했습니다 (그림. 2).

제안된 절차의 품질을 검증하기 위해 침수된 방파제에 대해 세 가지 기하학적 구조를 고려했다. 즉, 부유, 다공성, 고형물과 부유물(그림 2a)이 출현한 방파제의 경우, 두 가지 다른 기하학적 구조를 사용했다(Fig. 2b – 2c).

방파제가 결정되면 기하학적 구조을 FLOW-3D로 가져 와서 유체 역학적 작용을 평가 및 Wave propagation의 연구를 위해 테스트했습니다. 시뮬레이션은 RNG 난류 모델과 coarse격자 안쪽에 중첩된 미세한 격자가 있는 전산메쉬를 사용하여 Navier-Stokes 방정식을 3 차원으로 통합하여 수행되었습니다.

수중 장벽 (계산 영역: 90 × 1.9 × 6.5m)의 경우, 포함된 메쉬 블록은 동일한 크기 (0.30 × 0.27 × 0.30m)의 46,200 개의 요소로 구성되며 중첩된 블록은 2,353,412 개의 요소로 구성하였습니다(0.061 × 0.055 × 0.061m).

방파제에도 동일한 기준이 적용되었습니다. 포함된 격자 블록은 150,000개의 요소(0.50×0.20×0.30m)로 구성되며, 중첩된 블록은 2,025,000개의 요소(0.10× 0.10×0.10m)로 생성되었습니다.

Figures 3a and 3b: Mesh views of submerged breakwater (3a above) & emerged breakwater (3b below)

Figures 4b: Emerged Breakwater – Accropode regular

Figures 4a: Submerged breakwater

결과 중 일부는 다음 이미지에 요약되어 있습니다. 그림 4에서 3 차원 영역의 2 차원 단면을 따른 압력 및 난류 에너지가 나타납니다. 그림 5에는 서로 다른 순간에 잡힌 자유 표면의 3 차원 형상이 나타나있습니다.

유동경로를 따라 개별 솔리드 요소의 윤곽의 유체 역학에 의한 유동 변화는 쉽게 검출 가능합니다. 이것은 자유 표면의 3 차원 재구성에서 가장 잘 드러나며 (그림 5) 방파제에 대한 파동 작용의 효과가보다 자세하게 표현됩니다.

Figures 5a: Submerged breakwater.

Figures 5b: Emerged Breakwater – Accropode regular.

Figures 5c: Emerged Breakwater – Accropode irregular  

Conclusions

잠수함이나 해상 구조물 간의 상호 작용을 정확히 표현하기 위한 Navier-Stoke기반 수치 시뮬레이션을 활용한 방법, 그리고 유체 움직임이 입증되었습니다. 시뮬레이션은 난류 시뮬레이션을 위한 RANS와 자유 표면 계산을 포함하는 첨단 컴퓨터 유체 동적 소프트웨어 시스템(FLOW-3D)을 사용하여 수행되었습니다.

이 결과는 블록 사이의 경로 내에서 유체 운동의 상세한 그림을 제공함으로써 기존의 흐름 방법보다 더 정확한 시뮬레이션을 제공함을 보여줍니다. 블록을 사용하여 기존의 누설 흐름 방법보다 더 정확한 시뮬레이션을 제공합니다. 원칙적으로 모든 관련 부품(필터, 코어 및 토우)에서 구조물이 물에 잠기거나 나타나는 경우 시뮬레이션이 가능하며 제한은 없습니다.

Further studies will be aimed at assessing the stability of individual blocks through the use of the Moving Object model in FLOW-3D.

 

Immersed Boundary Method

Immersed Boundary Method

이 기사에서 개발자인 Zongxian Liane박사는 곧 출시될 FLOW-3D v11.3에서 사용할 수 있는 새로운 Immersed Boundary Method에 대해 설명합니다.

힘과 에너지 손실에 대한 정확한 예측은 오리피스 판에서의 배출, 장애물을 지나가는 흐름 및 갑작스런 수축 관에서의 흐름과 같은 많은 엔지니어링 문제를 분석하는데 중요합니다. 셀 면적 및 부피 Method인 FAVORTM은 30년 전에 도입된 이래로 FLOW-3D의 표준 솔버로 적용되었으며 벽 근처의 운동량 fluxes를 근사화하는 간단한 방법을 사용했습니다 (Hirt and Sicilian 1985). 벽이나 자유 표면 근처에서 운동 이류항을 계산할 때 솔리드 또는 보이드 영역 내에 위치한 속도 값은  경계층의 모양을 제거하기 위해 0으로 설정됩니다. 물리적 관점에서 이 방법은 벽의 돌출부에 자유 미끄러짐(비침투)경계 조건을 적용하여 인공 경계층(Hirt1993)을 억제한다.

운동량 방정식에서 플럭스의 손실은 압력에 의해 보상됩니다. 특정 상황에서는 플럭스손실을 보상하는 압력의 비율이 시간에 따라 증가하며, 단일 유전물질로 표현되는 “세속적 불안정성”이라고 하는 수치적 불안정성을 야기할 수 있습니다. 속도의 증가 이러한 불안정성의 전개를 방지하기 위해, 경험적 기법을 사용하여 불안정성이 발생할 수 있는 위치에서 플럭스를 “보정” 했습니다. 그러나 이 방법은 선원으로부터의 플럭스 손실을 해결하지 못하며, 때때로 압력 변동과 같은 용액의 비정치적인 동작을 초래할 수 있습니다.

ghost – 내접 경계법 (Mittal et al., 2008)에 기초한 이류 항을 근사화하는 기법은 FLOW-3D v11.3을 위해 개발되었다. 이 내접 경계 방법 기술은 근본적으로이 문제를 해결하고보다 정확한 압력과 힘 예측을 제공합니다. ghost – 내접 경계법은 복잡한 형상을 포함하는 문제에서 전통적인 데카르트 그리드 근사법에서 강화 된 경계 처리로서 최근에 출현했다. 이 방법은 경계를 처리하는 수단 일 뿐이므로 기존의 해석기 구조가 비교적 적게 변경되어 기존의 FLOW-3D 해석기에 모델로 쉽게 추가 될 수 있으며 FLOW-3D의 다른 물리적 모델과 호환됩니다. 다양한 보간 방법과 함께 가중치 평균 프로브 기술을 사용하여 다른 지오메트리 구성을 처리합니다. 새 모델은 3D 메쉬 블록 또는 하이브리드 3D / 얕은 워터 메쉬 블록이있는 플로우에는 작동하지만 얕은 워터 메쉬에는 적합하지 않습니다.

Immersed Boundary Method Results

새로 도입된 경계 방법 모델의 간단한 예는 직경 1m의 원형 오리피스에서 물이 방출되는 것입니다. 물 용기의 길이는 10m, 폭은 10m, 오리피스 중앙부까지의 수위는 6m이다. 애니메이션에 표시된 것처럼 오리피스 Q에서 표고, h및 볼륨 유량의 강하는 각각 2차 곡선과 선형 곡선을 따릅니다. 

시뮬레이션에서 배출 Cd의 평균 계수는 0.660으로, 비대칭 값 0.611보다 약 8% 큽니다(SwameeandSwamee, 2010). immersed boundary solver 을 사용한 시뮬레이션은 이중 인터페이스(Xeon E5-2623 v3)에서 약 19시간이 소요된다. 반면에 the standard solver의 방전 계수와 벽-블록은 각각 0.800과 39시간이 소요된다.

또 다른 예는 NAVY 선박 모델 선체에 대한 총 저항력의 계산입니다. 이 경우, 선체 길이는 5.72m이고, 드래프트는 0.248m이다. 평균유속은 2.10m/s이고, 레이놀즈 수는 약 12 × 106입니다. 이 해석은 대칭이므로 선체의 절반만 모델링됩니다. 계산 영역은 길이 30m, 너비 8m, 깊이 5.5m입니다. 선체 절반에 대해 실험적으로 얻어진 총 저항력의 평균은 22.62N이다 (Larsson et al., 2003). the standard solver의 총 저항력의 평균은 24.41N이었으며 실험 결과보다 7.9 % 차이가 있으며 immersed boundary solver 경우 총 저항력의 평균은 22.43N이었고 0.8 % 더 낮았습니다 (오류가 8 개 줄었습니다. 또한 immersed 경계 솔버는 약 40 시간 만에 완성되었으며 표준 솔버보다 8 시간 빠릅니다).

References

Hirt, C., & Sicilian, J. (1985). A porosity technique for the definition of obstacles in rectangular cell meshes. International Conference on Numerical Ship Hydrodynamics, 4th. Washington, D.C.

Hirt, C. (1993). Volume-fraction techniques: powerful tools for wind engineering. Journal of Wind Engineering and Industrial Aerodynamics, 46 & 47, 327-338.

Mittal, R., Dong, H., Bozkurttas, M., Najjar, F., Vargas, A., & von Loebbecke, A. (2008). A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. Journal of computational physics, 227(10), 4825-4852.

Swamee, P., & Swamee , N., (2010). Discharge equation of a circular sharp-crested orifice. Journal of Hydraulic Research, 48(1), 106-107.

파도 / Waves

파도 / Waves

FLOW-3D 는 비정형 파뿐만 아니라 일반 선형 및 비선형파 표면을 시뮬레이션 할 수 있는 기능이 있습니다. 선형파는 작은 진폭 및 급경사를 갖는 사인파 표면 프로파일을 가지며, 비선형파는 선형 파보다 더 큰 진폭 (유한 진폭), 더 뾰족한 볏 및 평탄한 골짜기를 갖는다. 비선형 파는 파동 문자와 그 해를 구하기 위해 사용 된 수학적 방법에 따라 스톡 (stookes), 코니이드 (cnoidal) 파 및 독방 파로 분류 될 수 있습니다.

그림 1. 다른 진행파의 프로파일 비교
도 1 및도 2에 도시 된 바와 같이, 스톡스 파는 심층 및 과도수의 주기적인 파이다. Cnoidal 파는 얕은 물과 중간 물에서 긴주기적인 파이고 Stokes 파보다 더 뾰족한 볏과 평평한 골짜기를 가지고 있습니다. 스톡스와 코니 형 파와 달리 독방 파는 얕은 물과 과도 수에서 존재하는 비 주기적 파이다. 그것은 하나의 산마루와 물마루를 가지며 완전히 방해받지 않은 수면 위입니다. 수학적으로 파장이 무한대가 될 때 그것은 코니 형 파의 제한적인 경우입니다. 심층수, 과도 수 및 파도에 대한 얕은 물의 분류는 표 1에서 찾아 볼 수있다.

그림 2. 다양한 파도의 적용 범위 (Le Méhauté, 1976, Sorensen, 2005 및 USACE, 2008). d : 평균 수심; H : 파고; T : 파주기; g : 중력 가속도

선형 파 이론 (Airy, 1845)이 많은 응용 분야에서 사용되었지만 비선형 파 이론은 파동의 진폭이 작지 않은 경우 선형 파 이론보다 정확도가 크게 향상되었습니다. FLOW-3D 에서 3 개의 비선형 파 이론이 5 차 스톡스 파 이론 (Fenton, 1985), 스톡스 및 코니이드 파에 대한 푸리에 급수 방법 (Fenton, 1999), McCowan의 독방 파 이론 (McCowan, 1891, Munk, 1949). 그 중에서 Fenton의 Fourier 시리즈 방법은 선형 물, 스톡 (Stokes) 및 코니형 (cnoidal) 파를 포함하여 심층수, 과도 수 및 얕은 물에서 모든 종류의 주기적 전파 파들에 유효합니다. 또한 다른 웨이브 이론보다 정확도가 높습니다 (USACE, 2008). 따라서 모든 수심에서 선형 및 비선형 주기파의 모든 유형을 생성하는 것이 권장되는 방법입니다. solitary wave의 경우, FLOW-3D 에 사용 된 McCowan의 이론은 Boussinesq (1871)에 의해 개발 된 다른 널리 사용되는 이론보다 더 높은 주문 정확도를 갖는다.

그림 3. PM과 JOHNSWAP 스펙트럼 (USCE, 2006에서 적응)

Classifications d /\lambda
Deep water 1/2 to ∞
Transitional water 1/20 to 1/2
Shallow water 0 to 1/20

불규칙한 물결은 파도의 물성이 일정하지 않은 자연적인 바다의 상태를 나타냅니다. FLOW-3D에서 불규칙한 파동은 다양한 진폭과 주파수 및 임의의 위상 변이를 갖는 많은 선형 성분 파의 중첩으로 표현됩니다. Pierson-Moskowitz (Pierson and Moskowitz, 1964)와 JONSWAP 파력 에너지 스펙트럼 (Hasselmann, et al., 1973)은 FLOW-3D에서 구성 요소 파를 생성하기 위해 구현된다. 다른 웨이브 에너지 스펙트럼은 사용자 정의 데이터 파일을 가져와서 사용할 수 있습니다.

계산 시간을 절약하기 위해 웨이브는 메시 블록 경계에서뿐만 아니라 초기 조건으로 정의 될 수 있습니다.

아래의 애니메이션은 웨이브 초기화가 있거나없는 웨이브의 모든 유형에 대한 예제를 보여줍니다.
선형 및 비선형 수위 시뮬레이션을 위해 FLOW-3D 의 성공적인 적용이 이루어졌습니다. Bhinder 외의 예를 참조하십시오. al (2009), Chen (2012), Hsu et. al (2012) Thanyamanta et. al (2011) 및 Yilmaz et. 자세한 내용은 알 (2011)을 참조하십시오.






References

Airy, G. B., 1845, Tides and Waves, Encyc. Metrop. Article 102.

Bhinder, M. A., Mingham, C. G., Causon, D. M., Rahmati, M. T., Aggidis, G. A. and Chaplin, R.V., 2009, A Joint Numerical And Experimental Study Of a Surging Point Absorbing Wave Energy Converter (WRASPA), Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79392, Honolulu, Hawaii.

Boussinesq, J., 1871, Theorie de L’intumescence Liquide Appelee Onde Solitaire ou de Translation se Propageant dans un Canal Rectangulaire, Comptes Rendus Acad. Sci. Paris, Vol 72, pp. 755-759.

Chen, C. H., 2012, Study on the Application of FLOW-3D for Wave Energy Dissipation by a Porous Structure, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University.

Fenton, J. D., 1985, A Fifth-Order Stokes Theory for Steady Waves, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol. 111, No. 2.

Fenton, J. D., 1999, Numerical Methods for Nonlinear Waves, Advances in Coastal and Ocean Engineering, Vol. 5, ed. P.L.-F. Liu, pp. 241-324, World Scientific: Singapore, 1999.

Hasselmann, K., Barnet, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Muller, P., Olbers, D. J., Richter, K., Sell, W., and Walden, H., 1973, Measurement of Wind-Wave Growth and Swell Decay During the Joint North Sea Wave Project (JONSWAP), German Hydrographic Institute, Amburg.

Hsu, T. W., Lai, J. W. and Lan, Y., J., 2012, Experimental and Numerical Studies on Wave Propagation over Coarse Grained Sloping Beach, Proceedings of the International Conference on Coastal Engineering, No 32 (2010), Shanghai, China.

Kamphuis, J. M., 2000, Introduction to Coastal Engineering and Management, World Scientific, Singapore.

Le Méhauté, B., 1976, An Introduction to Hydrodynamics and Water Waves, Springer-Verlag.

McCowan, J., 1891, On the solitary wave, Philosophical Magazine, Vol. 32, pp. 45-58.

Munk, W. H., 1949, The Solitary Wave Theory and Its Application to Surf Problems, Annals New York Acad. Sci., Vol 51, pp 376-423.

Pierson W. J. and Moskowitz, L., 1964, A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitiagordskii, J. Geophys. Res. 9, pp. 5181-5190.

Thanyamanta, W., Herrington, P. and Molyneux, D., 2011, Wave patterns, wave induced forces and moments for a gravity based structure predicted using CFD, Proceedings of the ASME 2011, 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011, Rotterdam, The Netherlands.

USACE (U.S. Army Corps of Engineers), 2006, Coastal Engineering Manual, EM 1110-2-1100, Washington, DC.

Yilmaz, N., Trapp, G. E., Gagan, S. M. and Emmerich, T., R., 2011 CFD Supported Examination of Buoy Design for Wave Energy Conversion, IGEC-VI-2011-173, pp. 537-541

퇴적, 세굴(쇄굴) / Sediment Scour

퇴적-세굴(쇄굴) / Sediment Scour

유체 역학과 완벽하게 연계된 FLOW-3D 의 sediment scour model은 침전물 수송, 부유물 운반, 인입 및 퇴적을 포함하여 비 점착성 토양의 모든 퇴적물 이동 과정을 모의 실험합니다 (Wei 등, 2014). 입자 크기, 질량 밀도 및 임계 전단 응력과 같은 다른 성질을 갖는 다중 퇴적물 종을 허용합니다. 예를 들어, 중간 모래, 거친 모래 및 자갈은 시뮬레이션에서 세 가지 종으로 분류 할 수 있습니다. 이 모델은 3D 흐름과 2D 얕은 물 흐름에 모두 적용됩니다.

모델에서, 퇴적물의 충진 층은 퇴적물 종의 상이한 조합을 갖는 다수의 하위 구성 요소로 구성 될 수있는 하나의 기하학적 구성 요소에 의해 정의됩니다. 충전된 베드는 면적 및 부피 분율을 사용하는 FAVORTM 기술에 의해 기술된다. 베드 인터페이스를 포함하는 메쉬 셀에서 인터페이스의 위치, 방향 및 면적이 계산되어 베드 전단 응력, 임계 실드 매개 변수, 침식 속도 및 베드로의 전송 속도를 결정합니다. 3 차원 난류 유동에서의 전단 응력은 매체 입자 크기 50 에 비례하는 층 표면 거칠기를 고려한 표준 벽 함수를 사용하여 평가됩니다. 2D 얕은 물의 경우, 층 전단 응력 계산은 항력 계수가 사용자 정의이거나 수심과 층 표면 거칠기를 사용하여 국부적으로 계산 된 2 차 법칙을 따릅니다.

그림 1. t = 8 분에서의 유량
이 모델은 Meyer-Peter와 Muller (1948)의 방정식을 사용하여 베드 인터페이스를 포함하는 각 메쉬 셀에서의 베드로드 이송을 계산합니다. 서브 메쉬 (submesh) 방법은 메쉬 셀에서 이웃에있는 각 메쉬 셀로 이동하는 입자의 양을 결정하는 데 사용됩니다. 부유 퇴적물 농도는 퇴적물 수송 방정식을 풀음으로써 얻어집니다. 침식의 계산은 침전물 유입 및 침전을 동시에 고려합니다. entrainment에서 입자의 리프팅 속도는 Winterwerp et al. (1992). 퇴적시의 침강 속도는 3D 유동에 대한 퇴적물의 표류 속도와 같지만 얕은 수류에 대해서는 현존 방정식을 사용하여 계산됩니다 (Soulsby, 1997). 드리프트 플럭스 이론 (Breitour and Hirt, 2009)은 입자의 드리프트 속도를 계산하는 데 사용됩니다.

그림 2. t = 8 분의 구멍 채취
이 페이지의 예는 3 개의 원통형 교각을 중심으로 한, 맑은 물 정화에 대한 시뮬레이션입니다. 교각의 지름은 1.5m이며, 교각은 2m 간격으로 나란히 배치되어 있습니다. 다가오는 유량은 실린더와 정렬되며 2m/s의 속도를가집니다. 베드 재료는 모래 (직경 5mm), 자갈 (10mm) 및 거친 자갈 (20mm) 인 세 가지 퇴적물 종으로 구성됩니다. 그림 1, 2 및 3은 8 분간 실린더 주변의 흐름, 채취 구멍 및 채취 깊이 분포를 보여줍니다.

그림 3. t = 8min에서의 정련 깊이 (양수 값) 및 침전 높이 (양수 값)
이 모델에 대한 더 자세한 정보는 침전물 퇴적에 관한 Flow Science Report를 다운로드하십시오.

Modeling Turbulent Entrainment of Air at a Free Surface

Overview
In free-surface flows the turbulence in the liquid may be sufficient to disturb the surface to the point of entraining air into the flow. This process is important, for example, in water treatment where air is needed to sustain microorganisms for water purification and in rivers and streams for sustaining a healthy fish population. Air entrainment is typically engineered into spillways downstream of hydropower plants to reduce the possibility of cavitation damage at the base of the spillway. Other situations where air entrainment is undesirable are in the sprue and runner systems used by metal casters, and in the filling of liquid containers used for consumer products.
The importance of being able to predict the amount and distribution of entrained air at a free liquid surface has led to the development of a unique model that can be easily inserted into FLOW-3D® as a user customization. The model has two options. One option, to be used when the volume fraction of entrained air is relatively low, uses a scalar variable to record the air volume fraction. This model is passive in that it does not alter the dynamics of the flow.
A second air-entrainment model, option two, is based on a variable density formulation. This model includes the “bulking” of fluid volume by the addition of air and the buoyancy effects associated with entrained air. However, this dynamically coupled model cannot be used in connection with heat transport and natural (thermal) convection.
In both model options the same basic entrainment process is used that is based on a competition between the stabilizing forces of gravity and surface tension and the destabilizing effects of surface turbulence. The model is described in the next section. Because turbulence is the main cause of entrainment, a turbulence-transport model must be used in connection with the air-entrainment model (i.e., ifvis=3 or 4). It is recommended that the RNG version of the more traditional k-epsilon turbulence model be employed. All the validation tests reported in this Technical Note were performed using the RNG turbulence model.