Figure (17): Stream Lines Indicating Average Flow Speed in the Model with Various Nose shapes, Measured at Mid-Depth and at the Flow Surface Level, at a Flow Rate of 78 Liters per Second.

Conducting experimental and numerical studies to analyze theimpact of the base nose shape on flow hydraulics in PKW weirusing FLOW-3D

FLOW-3D를 사용하여 PKW 둑의 흐름 수력학에 대한 베이스 노즈 모양의 영향을 분석하기 위한 실험 및 수치 연구 수행

Behshad Mardasi 1
Rasoul Ilkhanipour Zeynali 2
Majid Heydari 3

Abstract

Weirs are essential structures used to manage excess water flow from behind dams to downstream areas. Enhancing discharge efficiency often involves extending the effective length of Piano Key Weirs (PKW) in dams or regulating flow within irrigation and drainage networks. This study employed both numerical and laboratory investigations to assess the impact of different base nose shapes installed beneath the outlet keys and varying Input to output key width ratios (Wi/Wo) on discharges ranging from 5 to 80 liters per second. Furthermore, the study aimed to achieve research objectives and compare the performance of Piano Key Weirs with Ogee Weir. For numerical simulation, the optimal number of cells for meshing was determined, and an appropriate turbulence model was selected. The results indicated that the numerical model accurately simulated the laboratory sample with a high degree of precision. Moreover, the numerical model closely approximated PKW for all parameters Q, H, and Cd compared to the laboratory sample. The findings revealed that in laboratory models with a maximum discharge area of 80 liters per second, the weir with Wi/Wo=1.2 and a flow head value of 285 mm exhibited the lowest value, whereas the weir with Wi/Wo=0.71 and a flow head value of 305 mm showed the highest, attributed to the higher discharge in the input-output ratio. Additionally, as the ratio of flow head to weir height H/P increased, the discharge coefficient Cd decreased. Comparing the flow conditions in weirs with different base nose shapes, it was observed that the weir with a spindle nose shape (PKW1.2S) outperformed the PKW with a flat (PKW1.2), semi-cylindrical (PKW1.2CL) and triangular base nose (PKW1.2TR). The results emphasized that models featuring semi-cylindrical and flat noses exhibited notable flow deviation and abrupt disruption upon impact with the nose. However, this effect was significantly reduced in models equipped with triangular and spindle-shaped noses. Also, the coefficient of discharge in PKW1.2S and PKW1.2TR weirs, compared to the PKW1.20 weir, increased by 27% and 20%, respectively.

웨어는 댐 뒤에서 하류 지역으로의 과도한 물 흐름을 관리하는 데 사용되는 필수 구조물입니다. 배출 효율을 높이는 데에는 댐의 피아노 키 위어(PKW) 유효 길이를 연장하거나 관개 및 배수 네트워크 내 흐름을 조절하는 것이 포함됩니다.

이 연구에서는 콘센트 키 아래에 설치된 다양한 베이스 노즈 모양과 초당 5~80리터 범위의 배출에 대한 다양한 입력 대 출력 키 너비 비율(Wi/Wo)의 영향을 평가하기 위해 수치 및 실험실 조사를 모두 사용했습니다. 또한 본 연구에서는 연구 목적을 달성하고 Piano Key Weir와 Ogee Weir의 성능을 비교하는 것을 목표로 했습니다.

수치 시뮬레이션을 위해 메시 생성을 위한 최적의 셀 수를 결정하고 적절한 난류 모델을 선택했습니다. 결과는 수치 모델이 높은 정밀도로 실험실 샘플을 정확하게 시뮬레이션했음을 나타냅니다. 더욱이, 수치 모델은 실험실 샘플과 비교하여 모든 매개변수 Q, H 및 Cd에 대해 PKW에 매우 근접했습니다.

연구 결과, 최대 배출 면적이 초당 80리터인 실험실 모델에서는 Wi/Wo=1.2, 플로우 헤드 값이 285mm인 웨어가 가장 낮은 값을 나타냈고, Wi/Wo=0.71 및 a인 웨어는 가장 낮은 값을 나타냈습니다. 플로우 헤드 값은 305mm로 가장 높은 것으로 나타났는데, 이는 입출력 비율의 높은 토출량에 기인합니다. 또한, 웨어 높이에 대한 유수두 비율 H/P가 증가함에 따라 유출계수 Cd는 감소하였다.

베이스 노즈 모양이 다른 웨어의 흐름 조건을 비교해 보면, 스핀들 노즈 모양(PKW1.2S)의 웨어가 평면(PKW1.2), 반원통형(PKW1.2CL) 및 삼각형 모양의 PKW보다 성능이 우수한 것으로 관찰되었습니다. 베이스 노즈(PKW1.2TR) 결과는 반원통형 및 편평한 노즈를 특징으로 하는 모델이 노즈에 충격을 가할 때 눈에 띄는 흐름 편차와 급격한 중단을 나타냄을 강조했습니다.

그러나 삼각형 및 방추형 노즈를 장착한 모델에서는 이러한 효과가 크게 감소했습니다. 또한 PKW1.20보에 비해 PKW1.2S보와 PKW1.2TR보의 유출계수는 각각 27%, 20% 증가하였다.

Keywords

Piano Key Weir, Base Nose Shape, Flow Hydraulics, Numerical Model, Triangular
Nose Shape, Flat Nose Shape, Semi-Cylindrical Nose Shape, Spindle Nose Shape

Figure (17): Stream Lines Indicating Average Flow Speed in the Model with Various Nose shapes, Measured at Mid-Depth and at the Flow Surface Level, at a Flow Rate of 78 Liters per Second.
Figure (17): Stream Lines Indicating Average Flow Speed in the Model with Various Nose shapes, Measured at Mid-Depth and at the Flow Surface Level, at a Flow Rate of 78 Liters per Second.

Reference

  1. Chow, V.T. (1959). “Open channel hydraulics.” McGraw-Hill Book Company, New York,
    NY.
  2. Ouamane, A., and Lempérière, F. (2006). “Design of a new economic shape of weir.” Proc.,
    Intl. Symp. on Dams in the Societies of the 21st Century, 463-470, Barcelona, Spain.
  3. Crookston, B. M., Anderson, A., Shearin-Feimster, L., and Tullis, B. P. (2014). “Mitigation
    investigation of flow-induced vibrations at a rehabilitated spillway.” Proc., 5th IAHR Intl.
    Symp. on Hydraulic Structures, Univ. of Queensland Brisbane, Brisbane, Australia.
  4. Machiels, O. (2012). “Experimental study of the hydraulic behaviour of Piano Key Weirs.”
    Ph.D. Dissertation, Faculty of Applied Science, University of Liège, Liège, Belgium.
  5. Blanc, P., and Lempérière, F. (2001). “Labyrinth spillways have a promising future.” Intl. J.
    of Hydropower and Dams, 8(4), 129-131.
  6. Muslu, Y. (2001). “Numerical analysis for lateral weir flow.” J. of Irrigation and Drainage
    Eng., ASCE, 127, 246.
  7. Erpicum, S., Machiels, O., Dewals, B., Pirotton, M., and Archambeau, P. (2012).
    “Numerical and physical hydraulic modeling of Piano Key Weirs.” Proc., ASIA 2012 – 4th
    Intl. Conf. on Water Resources and Renewable Energy Development in Asia, Chiang Mai,
    Thailand.
  8. Tullis, J.P., Amanian, N., and Waldron, D. (1995). “Design of Labyrinth Spillways.” J. of
    Hydraulic Eng., ASCE, 121.
  9. Lux, F.L., and Hinchcliff, D. (1985). “Design and construction of labyrinth spillways.”
    Proc., 15th Intl. Congress on Large Dams, ICOLD, Vol. 4, 249-274, Paris, France.
  10. Erpicum, S., Laugier, F., Ho to Khanh, M., & Pfister, M. (2017). Labyrinth and Piano Key
    Weirs III–PKW 2017. CRC Press, Boca Raton, FL.
  11. Kabiri-Samani, A., and Javaheri, A. (2012). “Discharge coefficient for free and submerged flow over Piano Key weirs.” Hydraulic Research J., 50(1), 114-120.
  12. Hien, T.C., Son, H.T., and Khanh, M.H.T. (2006). “Results of some piano Key weirs
    hydraulic model tests in Vietnam.” Proc., 22nd ICOLD Congress, CIGB/ICOLD,
    Barcelona, Spain.
  13. Laugier, F., Lochu, A., Gille, C., Leite Ribeiro, M., and Boillat, J-L. (2009). “Design and
    construction of a labyrinth PKW spillway at St-Marc Dam.” Hydropower and Dams J.,
    15(5), 100-107.
  14. Cicero, G.M., Menon, J.M., Luck, M., and Pinchard, T. (2011). “Experimental study of side
    and scale effects on hydraulic performances of a Piano Key Weir.” In: Erpicum, S., Laugier,
    F., Boillat, J-L, Pirotton, M., Reverchon, B., and Schleiss, A-J (Eds.), Labyrinth and Piano
    Key Weirs, 167-172, CRC Press, London.
  15. Pralong, J., Vermeulen, J., Blancher, B., Laugier, F., Erpicum, S., Machiels, O., Pirotton,
    M., Boillat, J.L, Leite Ribeiro, M., and Schleiss, A.J. (2011). “A naming convention for the
    piano key weirs geometrical parameters.” In: Erpicum, S., Laugier, F., Boillat, J-L, Pirotton,
    M., Reverchon, B., and Schleiss, A-J (Eds.), Labyrinth and Piano Key Weirs, 271-278,
    CRC Press, London.
  16. Denys, F. J. M., and Basson, G. R. (2018). “Transient hydrodynamics of Piano Key Weirs.”
    Proc., 7th IAHR Intl. Symp. on Hydraulic Structures, ISHS2018, 518-527,
    DigitalCommons@USU, Logan, UT.
  17. Anderson, A., and Tullis, B. P. (2018). “Finite crest length weir nappe oscillation.” J. of
    Hydraulic Eng., ASCE, 144(6), 04018020. https://doi.org/10.1061/(ASCE)HY.1943-
    7900.0001461
  18. Erpicum, S., Laugier, F., Boillat, J.-L., Pirotton, M., Reverchon, B., and Schleiss, A. J.
    (2011). “Labyrinth and Piano Key Weirs–PKW 2011.” CRC Press, Boca Raton, FL.
  19. Aydin, C.M., and Emiroglu, M.E. (2011). “Determination of capacity of labyrinth side weir
    by CFD.” Flow Measurement and Instrumentation, 29, 1-8.
  20. Cicero, G.M., Delisle, J.R., Lefebvre, V., and Vermeulen, J. (2013). “Experimental and
    numerical study of the hydraulic performance of a trapezoidal PKW.” Proc., Intl. Workshop
    on Labyrinths and Piano Key Weirs PKW II 2013, 265-272, CRC Press.
  21. Anderson, R. M. (2011). “Piano Key Weir Head Discharge Relationships.” Master’s Thesis,
    Utah State University, Logan, Utah.
  22. Crookston, B.M., Anderson, R.M., and Tullis, B.P. (2018). “Free-flow discharge estimation
    method for Piano Key weir geometries.” J. of Hydro-environment Research, 19, 160-167

Lab-on-a-Chip 시스템의 혈류 역학에 대한 검토: 엔지니어링 관점

Review on Blood Flow Dynamics in Lab-on-a-Chip Systems: An Engineering Perspective

  • Bin-Jie Lai
  • Li-Tao Zhu
  • Zhe Chen*
  • Bo Ouyang*
  • , and 
  • Zheng-Hong Luo*

Abstract

다양한 수송 메커니즘 하에서, “LOC(lab-on-a-chip)” 시스템에서 유동 전단 속도 조건과 밀접한 관련이 있는 혈류 역학은 다양한 수송 현상을 초래하는 것으로 밝혀졌습니다.

본 연구는 적혈구의 동적 혈액 점도 및 탄성 거동과 같은 점탄성 특성의 역할을 통해 LOC 시스템의 혈류 패턴을 조사합니다. 모세관 및 전기삼투압의 주요 매개변수를 통해 LOC 시스템의 혈액 수송 현상에 대한 연구는 실험적, 이론적 및 수많은 수치적 접근 방식을 통해 제공됩니다.

전기 삼투압 점탄성 흐름에 의해 유발되는 교란은 특히 향후 연구 기회를 위해 혈액 및 기타 점탄성 유체를 취급하는 LOC 장치의 혼합 및 분리 기능 향상에 논의되고 적용됩니다. 또한, 본 연구는 보다 정확하고 단순화된 혈류 모델에 대한 요구와 전기역학 효과 하에서 점탄성 유체 흐름에 대한 수치 연구에 대한 강조와 같은 LOC 시스템 하에서 혈류 역학의 수치 모델링의 문제를 식별합니다.

전기역학 현상을 연구하는 동안 제타 전위 조건에 대한 보다 실용적인 가정도 강조됩니다. 본 연구는 모세관 및 전기삼투압에 의해 구동되는 미세유체 시스템의 혈류 역학에 대한 포괄적이고 학제적인 관점을 제공하는 것을 목표로 한다.

KEYWORDS: 

1. Introduction

1.1. Microfluidic Flow in Lab-on-a-Chip (LOC) Systems

Over the past several decades, the ability to control and utilize fluid flow patterns at microscales has gained considerable interest across a myriad of scientific and engineering disciplines, leading to growing interest in scientific research of microfluidics. 

(1) Microfluidics, an interdisciplinary field that straddles physics, engineering, and biotechnology, is dedicated to the behavior, precise control, and manipulation of fluids geometrically constrained to a small, typically submillimeter, scale. 

(2) The engineering community has increasingly focused on microfluidics, exploring different driving forces to enhance working fluid transport, with the aim of accurately and efficiently describing, controlling, designing, and applying microfluidic flow principles and transport phenomena, particularly for miniaturized applications. 

(3) This attention has chiefly been fueled by the potential to revolutionize diagnostic and therapeutic techniques in the biomedical and pharmaceutical sectorsUnder various driving forces in microfluidic flows, intriguing transport phenomena have bolstered confidence in sustainable and efficient applications in fields such as pharmaceutical, biochemical, and environmental science. The “lab-on-a-chip” (LOC) system harnesses microfluidic flow to enable fluid processing and the execution of laboratory tasks on a chip-sized scale. LOC systems have played a vital role in the miniaturization of laboratory operations such as mixing, chemical reaction, separation, flow control, and detection on small devices, where a wide variety of fluids is adapted. Biological fluid flow like blood and other viscoelastic fluids are notably studied among the many working fluids commonly utilized by LOC systems, owing to the optimization in small fluid sample volumed, rapid response times, precise control, and easy manipulation of flow patterns offered by the system under various driving forces. 

(4)The driving forces in blood flow can be categorized as passive or active transport mechanisms and, in some cases, both. Under various transport mechanisms, the unique design of microchannels enables different functionalities in driving, mixing, separating, and diagnosing blood and drug delivery in the blood. 

(5) Understanding and manipulating these driving forces are crucial for optimizing the performance of a LOC system. Such knowledge presents the opportunity to achieve higher efficiency and reliability in addressing cellular level challenges in medical diagnostics, forensic studies, cancer detection, and other fundamental research areas, for applications of point-of-care (POC) devices. 

(6)

1.2. Engineering Approach of Microfluidic Transport Phenomena in LOC Systems

Different transport mechanisms exhibit unique properties at submillimeter length scales in microfluidic devices, leading to significant transport phenomena that differ from those of macroscale flows. An in-depth understanding of these unique transport phenomena under microfluidic systems is often required in fluidic mechanics to fully harness the potential functionality of a LOC system to obtain systematically designed and precisely controlled transport of microfluids under their respective driving force. Fluid mechanics is considered a vital component in chemical engineering, enabling the analysis of fluid behaviors in various unit designs, ranging from large-scale reactors to separation units. Transport phenomena in fluid mechanics provide a conceptual framework for analytically and descriptively explaining why and how experimental results and physiological phenomena occur. The Navier–Stokes (N–S) equation, along with other governing equations, is often adapted to accurately describe fluid dynamics by accounting for pressure, surface properties, velocity, and temperature variations over space and time. In addition, limiting factors and nonidealities for these governing equations should be considered to impose corrections for empirical consistency before physical models are assembled for more accurate controls and efficiency. Microfluidic flow systems often deviate from ideal conditions, requiring adjustments to the standard governing equations. These deviations could arise from factors such as viscous effects, surface interactions, and non-Newtonian fluid properties from different microfluid types and geometrical layouts of microchannels. Addressing these nonidealities supports the refining of theoretical models and prediction accuracy for microfluidic flow behaviors.

The analytical calculation of coupled nonlinear governing equations, which describes the material and energy balances of systems under ideal conditions, often requires considerable computational efforts. However, advancements in computation capabilities, cost reduction, and improved accuracy have made numerical simulations using different numerical and modeling methods a powerful tool for effectively solving these complex coupled equations and modeling various transport phenomena. Computational fluid dynamics (CFD) is a numerical technique used to investigate the spatial and temporal distribution of various flow parameters. It serves as a critical approach to provide insights and reasoning for decision-making regarding the optimal designs involving fluid dynamics, even prior to complex physical model prototyping and experimental procedures. The integration of experimental data, theoretical analysis, and reliable numerical simulations from CFD enables systematic variation of analytical parameters through quantitative analysis, where adjustment to delivery of blood flow and other working fluids in LOC systems can be achieved.

Numerical methods such as the Finite-Difference Method (FDM), Finite-Element-Method (FEM), and Finite-Volume Method (FVM) are heavily employed in CFD and offer diverse approaches to achieve discretization of Eulerian flow equations through filling a mesh of the flow domain. A more in-depth review of numerical methods in CFD and its application for blood flow simulation is provided in Section 2.2.2.

1.3. Scope of the Review

In this Review, we explore and characterize the blood flow phenomena within the LOC systems, utilizing both physiological and engineering modeling approaches. Similar approaches will be taken to discuss capillary-driven flow and electric-osmotic flow (EOF) under electrokinetic phenomena as a passive and active transport scheme, respectively, for blood transport in LOC systems. Such an analysis aims to bridge the gap between physical (experimental) and engineering (analytical) perspectives in studying and manipulating blood flow delivery by different driving forces in LOC systems. Moreover, the Review hopes to benefit the interests of not only blood flow control in LOC devices but also the transport of viscoelastic fluids, which are less studied in the literature compared to that of Newtonian fluids, in LOC systems.

Section 2 examines the complex interplay between viscoelastic properties of blood and blood flow patterns under shear flow in LOC systems, while engineering numerical modeling approaches for blood flow are presented for assistance. Sections 3 and 4 look into the theoretical principles, numerical governing equations, and modeling methodologies for capillary driven flow and EOF in LOC systems as well as their impact on blood flow dynamics through the quantification of key parameters of the two driving forces. Section 5 concludes the characterized blood flow transport processes in LOC systems under these two forces. Additionally, prospective areas of research in improving the functionality of LOC devices employing blood and other viscoelastic fluids and potentially justifying mechanisms underlying microfluidic flow patterns outside of LOC systems are presented. Finally, the challenges encountered in the numerical studies of blood flow under LOC systems are acknowledged, paving the way for further research.

2. Blood Flow Phenomena

ARTICLE SECTIONS

Jump To


2.1. Physiological Blood Flow Behavior

Blood, an essential physiological fluid in the human body, serves the vital role of transporting oxygen and nutrients throughout the body. Additionally, blood is responsible for suspending various blood cells including erythrocytes (red blood cells or RBCs), leukocytes (white blood cells), and thrombocytes (blood platelets) in a plasma medium.Among the cells mentioned above, red blood cells (RBCs) comprise approximately 40–45% of the volume of healthy blood. 

(7) An RBC possesses an inherent elastic property with a biconcave shape of an average diameter of 8 μm and a thickness of 2 μm. This biconcave shape maximizes the surface-to-volume ratio, allowing RBCs to endure significant distortion while maintaining their functionality. 

(8,9) Additionally, the biconcave shape optimizes gas exchange, facilitating efficient uptake of oxygen due to the increased surface area. The inherent elasticity of RBCs allows them to undergo substantial distortion from their original biconcave shape and exhibits high flexibility, particularly in narrow channels.RBC deformability enables the cell to deform from a biconcave shape to a parachute-like configuration, despite minor differences in RBC shape dynamics under shear flow between initial cell locations. As shown in Figure 1(a), RBCs initiating with different resting shapes and orientations displaying display a similar deformation pattern 

(10) in terms of its shape. Shear flow induces an inward bending of the cell at the rear position of the rim to the final bending position, 

(11) resulting in an alignment toward the same position of the flow direction.

Figure 1. Images of varying deformation of RBCs and different dynamic blood flow behaviors. (a) The deforming shape behavior of RBCs at four different initiating positions under the same experimental conditions of a flow from left to right, (10) (b) RBC aggregation, (13) (c) CFL region. (18) Reproduced with permission from ref (10). Copyright 2011 Elsevier. Reproduced with permission from ref (13). Copyright 2022 The Authors, under the terms of the Creative Commons (CC BY 4.0) License https://creativecommons.org/licenses/by/4.0/. Reproduced with permission from ref (18). Copyright 2019 Elsevier.

The flexible property of RBCs enables them to navigate through narrow capillaries and traverse a complex network of blood vessels. The deformability of RBCs depends on various factors, including the channel geometry, RBC concentration, and the elastic properties of the RBC membrane. 

(12) Both flexibility and deformability are vital in the process of oxygen exchange among blood and tissues throughout the body, allowing cells to flow in vessels even smaller than the original cell size prior to deforming.As RBCs serve as major components in blood, their collective dynamics also hugely affect blood rheology. RBCs exhibit an aggregation phenomenon due to cell to cell interactions, such as adhesion forces, among populated cells, inducing unique blood flow patterns and rheological behaviors in microfluidic systems. For blood flow in large vessels between a diameter of 1 and 3 cm, where shear rates are not high, a constant viscosity and Newtonian behavior for blood can be assumed. However, under low shear rate conditions (0.1 s

–1) in smaller vessels such as the arteries and venules, which are within a diameter of 0.2 mm to 1 cm, blood exhibits non-Newtonian properties, such as shear-thinning viscosity and viscoelasticity due to RBC aggregation and deformability. The nonlinear viscoelastic property of blood gives rise to a complex relationship between viscosity and shear rate, primarily influenced by the highly elastic behavior of RBCs. A wide range of research on the transient behavior of the RBC shape and aggregation characteristics under varied flow circumstances has been conducted, aiming to obtain a better understanding of the interaction between blood flow shear forces from confined flows.

For a better understanding of the unique blood flow structures and rheological behaviors in microfluidic systems, some blood flow patterns are introduced in the following section.

2.1.1. RBC Aggregation

RBC aggregation is a vital phenomenon to be considered when designing LOC devices due to its impact on the viscosity of the bulk flow. Under conditions of low shear rate, such as in stagnant or low flow rate regions, RBCs tend to aggregate, forming structures known as rouleaux, resembling stacks of coins as shown in Figure 1(b). 

(13) The aggregation of RBCs increases the viscosity at the aggregated region, 

(14) hence slowing down the overall blood flow. However, when exposed to high shear rates, RBC aggregates disaggregate. As shear rates continue to increase, RBCs tend to deform, elongating and aligning themselves with the direction of the flow. 

(15) Such a dynamic shift in behavior from the cells in response to the shear rate forms the basis of the viscoelastic properties observed in whole blood. In essence, the viscosity of the blood varies according to the shear rate conditions, which are related to the velocity gradient of the system. It is significant to take the intricate relationship between shear rate conditions and the change of blood viscosity due to RBC aggregation into account since various flow driving conditions may induce varied effects on the degree of aggregation.

2.1.2. Fåhræus-Lindqvist Effect

The Fåhræus–Lindqvist (FL) effect describes the gradual decrease in the apparent viscosity of blood as the channel diameter decreases. 

(16) This effect is attributed to the migration of RBCs toward the central region in the microchannel, where the flow rate is higher, due to the presence of higher pressure and asymmetric distribution of shear forces. This migration of RBCs, typically observed at blood vessels less than 0.3 mm, toward the higher flow rate region contributes to the change in blood viscosity, which becomes dependent on the channel size. Simultaneously, the increase of the RBC concentration in the central region of the microchannel results in the formation of a less viscous region close to the microchannel wall. This region called the Cell-Free Layer (CFL), is primarily composed of plasma. 

(17) The combination of the FL effect and the following CFL formation provides a unique phenomenon that is often utilized in passive and active plasma separation mechanisms, involving branched and constriction channels for various applications in plasma separation using microfluidic systems.

2.1.3. Cell-Free Layer Formation

In microfluidic blood flow, RBCs form aggregates at the microchannel core and result in a region that is mostly devoid of RBCs near the microchannel walls, as shown in Figure 1(c). 

(18) The region is known as the cell-free layer (CFL). The CFL region is often known to possess a lower viscosity compared to other regions within the blood flow due to the lower viscosity value of plasma when compared to that of the aggregated RBCs. Therefore, a thicker CFL region composed of plasma correlates to a reduced apparent whole blood viscosity. 

(19) A thicker CFL region is often established following the RBC aggregation at the microchannel core under conditions of decreasing the tube diameter. Apart from the dependence on the RBC concentration in the microchannel core, the CFL thickness is also affected by the volume concentration of RBCs, or hematocrit, in whole blood, as well as the deformability of RBCs. Given the influence CFL thickness has on blood flow rheological parameters such as blood flow rate, which is strongly dependent on whole blood viscosity, investigating CFL thickness under shear flow is crucial for LOC systems accounting for blood flow.

2.1.4. Plasma Skimming in Bifurcation Networks

The uneven arrangement of RBCs in bifurcating microchannels, commonly termed skimming bifurcation, arises from the axial migration of RBCs within flowing streams. This uneven distribution contributes to variations in viscosity across differing sizes of bifurcating channels but offers a stabilizing effect. Notably, higher flow rates in microchannels are associated with increased hematocrit levels, resulting in higher viscosity compared with those with lower flow rates. Parametric investigations on bifurcation angle, 

(20) thickness of the CFL, 

(21) and RBC dynamics, including aggregation and deformation, 

(22) may alter the varying viscosity of blood and its flow behavior within microchannels.

2.2. Modeling on Blood Flow Dynamics

2.2.1. Blood Properties and Mathematical Models of Blood Rheology

Under different shear rate conditions in blood flow, the elastic characteristics and dynamic changes of the RBC induce a complex velocity and stress relationship, resulting in the incompatibility of blood flow characterization through standard presumptions of constant viscosity used for Newtonian fluid flow. Blood flow is categorized as a viscoelastic non-Newtonian fluid flow where constitutive equations governing this type of flow take into consideration the nonlinear viscometric properties of blood. To mathematically characterize the evolving blood viscosity and the relationship between the elasticity of RBC and the shear blood flow, respectively, across space and time of the system, a stress tensor (τ) defined by constitutive models is often coupled in the Navier–Stokes equation to account for the collective impact of the constant dynamic viscosity (η) and the elasticity from RBCs on blood flow.The dynamic viscosity of blood is heavily dependent on the shear stress applied to the cell and various parameters from the blood such as hematocrit value, plasma viscosity, mechanical properties of the RBC membrane, and red blood cell aggregation rate. The apparent blood viscosity is considered convenient for the characterization of the relationship between the evolving blood viscosity and shear rate, which can be defined by Casson’s law, as shown in eq 1.

𝜇=𝜏0𝛾˙+2𝜂𝜏0𝛾˙⎯⎯⎯⎯⎯⎯⎯√+𝜂�=�0�˙+2��0�˙+�

(1)where τ

0 is the yield stress–stress required to initiate blood flow motion, η is the Casson rheological constant, and γ̇ is the shear rate. The value of Casson’s law parameters under blood with normal hematocrit level can be defined as τ

0 = 0.0056 Pa and η = 0.0035 Pa·s. 

(23) With the known property of blood and Casson’s law parameters, an approximation can be made to the dynamic viscosity under various flow condition domains. The Power Law model is often employed to characterize the dynamic viscosity in relation to the shear rate, since precise solutions exist for specific geometries and flow circumstances, acting as a fundamental standard for definition. The Carreau and Carreau–Yasuda models can be advantageous over the Power Law model due to their ability to evaluate the dynamic viscosity at low to zero shear rate conditions. However, none of the above-mentioned models consider the memory or other elastic behavior of blood and its RBCs. Some other commonly used mathematical models and their constants for the non-Newtonian viscosity property characterization of blood are listed in Table 1 below. 

(24−26)Table 1. Comparison of Various Non-Newtonian Models for Blood Viscosity 

(24−26)

ModelNon-Newtonian ViscosityParameters
Power Law(2)n = 0.61, k = 0.42
Carreau(3)μ0 = 0.056 Pa·s, μ = 0.00345 Pa·s, λ = 3.1736 s, m = 2.406, a = 0.254
Walburn–Schneck(4)C1 = 0.000797 Pa·s, C2 = 0.0608 Pa·s, C3 = 0.00499, C4 = 14.585 g–1, TPMA = 25 g/L
Carreau–Yasuda(5)μ0 = 0.056 Pa·s, μ = 0.00345 Pa·s, λ = 1.902 s, n = 0.22, a = 1.25
Quemada(6)μp = 0.0012 Pa·s, k = 2.07, k0 = 4.33, γ̇c = 1.88 s–1

The blood rheology is commonly known to be influenced by two key physiological factors, namely, the hematocrit value (H

t) and the fibrinogen concentration (c

f), with an average value of 42% and 0.252 gd·L

–1, respectively. Particularly in low shear conditions, the presence of varying fibrinogen concentrations affects the tendency for aggregation and rouleaux formation, while the occurrence of aggregation is contingent upon specific levels of hematocrit. 

(27) The study from Apostolidis et al. 

(28) modifies the Casson model through emphasizing its reliance on hematocrit and fibrinogen concentration parameter values, owing to the extensive knowledge of the two physiological blood parameters.The viscoelastic response of blood is heavily dependent on the elasticity of the RBC, which is defined by the relationship between the deformation and stress relaxation from RBCs under a specific location of shear flow as a function of the velocity field. The stress tensor is usually characterized by constitutive equations such as the Upper-Convected Maxwell Model 

(29) and the Oldroyd-B model 

(30) to track the molecule effects under shear from different driving forces. The prominent non-Newtonian features, such as shear thinning and yield stress, have played a vital role in the characterization of blood rheology, particularly with respect to the evaluation of yield stress under low shear conditions. The nature of stress measurement in blood, typically on the order of 1 mPa, is challenging due to its low magnitude. The occurrence of the CFL complicates the measurement further due to the significant decrease in apparent viscosity near the wall over time and a consequential disparity in viscosity compared to the bulk region.In addition to shear thinning viscosity and yield stress, the formation of aggregation (rouleaux) from RBCs under low shear rates also contributes to the viscoelasticity under transient flow 

(31) and thixotropy 

(32) of whole blood. Given the difficulty in evaluating viscoelastic behavior of blood under low strain magnitudes and limitations in generalized Newtonian models, the utilization of viscoelastic models is advocated to encompass elasticity and delineate non-shear components within the stress tensor. Extending from the Oldroyd-B model, Anand et al. 

(33) developed a viscoelastic model framework for adapting elasticity within blood samples and predicting non-shear stress components. However, to also address the thixotropic effects, the model developed by Horner et al. 

(34) serves as a more comprehensive approach than the viscoelastic model from Anand et al. Thixotropy 

(32) typically occurs from the structural change of the rouleaux, where low shear rate conditions induce rouleaux formation. Correspondingly, elasticity increases, while elasticity is more representative of the isolated RBCs, under high shear rate conditions. The model of Horner et al. 

(34) considers the contribution of rouleaux to shear stress, taking into account factors such as the characteristic time for Brownian aggregation, shear-induced aggregation, and shear-induced breakage. Subsequent advancements in the model from Horner et al. often revolve around refining the three aforementioned key terms for a more substantial characterization of rouleaux dynamics. Notably, this has led to the recently developed mHAWB model 

(35) and other model iterations to enhance the accuracy of elastic and viscoelastic contributions to blood rheology, including the recently improved model suggested by Armstrong et al. 

(36)

2.2.2. Numerical Methods (FDM, FEM, FVM)

Numerical simulation has become increasingly more significant in analyzing the geometry, boundary layers of flow, and nonlinearity of hyperbolic viscoelastic flow constitutive equations. CFD is a powerful and efficient tool utilizing numerical methods to solve the governing hydrodynamic equations, such as the Navier–Stokes (N–S) equation, continuity equation, and energy conservation equation, for qualitative evaluation of fluid motion dynamics under different parameters. CFD overcomes the challenge of analytically solving nonlinear forms of differential equations by employing numerical methods such as the Finite-Difference Method (FDM), Finite-Element Method (FEM), and Finite-Volume Method (FVM) to discretize and solve the partial differential equations (PDEs), allowing for qualitative reproduction of transport phenomena and experimental observations. Different numerical methods are chosen to cope with various transport systems for optimization of the accuracy of the result and control of error during the discretization process.FDM is a straightforward approach to discretizing PDEs, replacing the continuum representation of equations with a set of finite-difference equations, which is typically applied to structured grids for efficient implementation in CFD programs. 

(37) However, FDM is often limited to simple geometries such as rectangular or block-shaped geometries and struggles with curved boundaries. In contrast, FEM divides the fluid domain into small finite grids or elements, approximating PDEs through a local description of physics. 

(38) All elements contribute to a large, sparse matrix solver. However, FEM may not always provide accurate results for systems involving significant deformation and aggregation of particles like RBCs due to large distortion of grids. 

(39) FVM evaluates PDEs following the conservation laws and discretizes the selected flow domain into small but finite size control volumes, with each grid at the center of a finite volume. 

(40) The divergence theorem allows the conversion of volume integrals of PDEs with divergence terms into surface integrals of surface fluxes across cell boundaries. Due to its conservation property, FVM offers efficient outcomes when dealing with PDEs that embody mass, momentum, and energy conservation principles. Furthermore, widely accessible software packages like the OpenFOAM toolbox 

(41) include a viscoelastic solver, making it an attractive option for viscoelastic fluid flow modeling. 

(42)

2.2.3. Modeling Methods of Blood Flow Dynamics

The complexity in the blood flow simulation arises from deformability and aggregation that RBCs exhibit during their interaction with neighboring cells under different shear rate conditions induced by blood flow. Numerical models coupled with simulation programs have been applied as a groundbreaking method to predict such unique rheological behavior exhibited by RBCs and whole blood. The conventional approach of a single-phase flow simulation is often applied to blood flow simulations within large vessels possessing a moderate shear rate. However, such a method assumes the properties of plasma, RBCs and other cellular components to be evenly distributed as average density and viscosity in blood, resulting in the inability to simulate the mechanical dynamics, such as RBC aggregation under high-shear flow field, inherent in RBCs. To accurately describe the asymmetric distribution of RBC and blood flow, multiphase flow simulation, where numerical simulations of blood flows are often modeled as two immiscible phases, RBCs and blood plasma, is proposed. A common assumption is that RBCs exhibit non-Newtonian behavior while the plasma is treated as a continuous Newtonian phase.Numerous multiphase numerical models have been proposed to simulate the influence of RBCs on blood flow dynamics by different assumptions. In large-scale simulations (above the millimeter range), continuum-based methods are wildly used due to their lower computational demands. 

(43) Eulerian multiphase flow simulations offer the solution of a set of conservation equations for each separate phase and couple the phases through common pressure and interphase exchange coefficients. Xu et al. 

(44) utilized the combined finite-discrete element method (FDEM) to replicate the dynamic behavior and distortion of RBCs subjected to fluidic forces, utilizing the Johnson–Kendall–Roberts model 

(45) to define the adhesive forces of cell-to-cell interactions. The iterative direct-forcing immersed boundary method (IBM) is commonly employed in simulations of the fluid–cell interface of blood. This method effectively captures the intricacies of the thin and flexible RBC membranes within various external flow fields. 

(46) The study by Xu et al. 

(44) also adopts this approach to bridge the fluid dynamics and RBC deformation through IBM. Yoon and You utilized the Maxwell model to define the viscosity of the RBC membrane. 

(47) It was discovered that the Maxwell model could represent the stress relaxation and unloading processes of the cell. Furthermore, the reduced flexibility of an RBC under particular situations such as infection is specified, which was unattainable by the Kelvin–Voigt model 

(48) when compared to the Maxwell model in the literature. The Yeoh hyperplastic material model was also adapted to predict the nonlinear elasticity property of RBCs with FEM employed to discretize the RBC membrane using shell-type elements. Gracka et al. 

(49) developed a numerical CFD model with a finite-volume parallel solver for multiphase blood flow simulation, where an updated Maxwell viscoelasticity model and a Discrete Phase Model are adopted. In the study, the adapted IBM, based on unstructured grids, simulates the flow behavior and shape change of the RBCs through fluid-structure coupling. It was found that the hybrid Euler–Lagrange (E–L) approach 

(50) for the development of the multiphase model offered better results in the simulated CFL region in the microchannels.To study the dynamics of individual behaviors of RBCs and the consequent non-Newtonian blood flow, cell-shape-resolved computational models are often adapted. The use of the boundary integral method has become prevalent in minimizing computational expenses, particularly in the exclusive determination of fluid velocity on the surfaces of RBCs, incorporating the option of employing IBM or particle-based techniques. The cell-shaped-resolved method has enabled an examination of cell to cell interactions within complex ambient or pulsatile flow conditions 

(51) surrounding RBC membranes. Recently, Rydquist et al. 

(52) have looked to integrate statistical information from macroscale simulations to obtain a comprehensive overview of RBC behavior within the immediate proximity of the flow through introduction of respective models characterizing membrane shape definition, tension, bending stresses of RBC membranes.At a macroscopic scale, continuum models have conventionally been adapted for assessing blood flow dynamics through the application of elasticity theory and fluid dynamics. However, particle-based methods are known for their simplicity and adaptability in modeling complex multiscale fluid structures. Meshless methods, such as the boundary element method (BEM), smoothed particle hydrodynamics (SPH), and dissipative particle dynamics (DPD), are often used in particle-based characterization of RBCs and the surrounding fluid. By representing the fluid as discrete particles, meshless methods provide insights into the status and movement of the multiphase fluid. These methods allow for the investigation of cellular structures and microscopic interactions that affect blood rheology. Non-confronting mesh methods like IBM can also be used to couple a fluid solver such as FEM, FVM, or the Lattice Boltzmann Method (LBM) through membrane representation of RBCs. In comparison to conventional CFD methods, LBM has been viewed as a favorable numerical approach for solving the N–S equations and the simulation of multiphase flows. LBM exhibits the notable advantage of being amenable to high-performance parallel computing environments due to its inherently local dynamics. In contrast to DPD and SPH where RBC membranes are modeled as physically interconnected particles, LBM employs the IBM to account for the deformation dynamics of RBCs 

(53,54) under shear flows in complex channel geometries. 

(54,55) However, it is essential to acknowledge that the utilization of LBM in simulating RBC flows often entails a significant computational overhead, being a primary challenge in this context. Krüger et al. 

(56) proposed utilizing LBM as a fluid solver, IBM to couple the fluid and FEM to compute the response of membranes to deformation under immersed fluids. This approach decouples the fluid and membranes but necessitates significant computational effort due to the requirements of both meshes and particles.Despite the accuracy of current blood flow models, simulating complex conditions remains challenging because of the high computational load and cost. Balachandran Nair et al. 

(57) suggested a reduced order model of RBC under the framework of DEM, where the RBC is represented by overlapping constituent rigid spheres. The Morse potential force is adapted to account for the RBC aggregation exhibited by cell to cell interactions among RBCs at different distances. Based upon the IBM, the reduced-order RBC model is adapted to simulate blood flow transport for validation under both single and multiple RBCs with a resolved CFD-DEM solver. 

(58) In the resolved CFD-DEM model, particle sizes are larger than the grid size for a more accurate computation of the surrounding flow field. A continuous forcing approach is taken to describe the momentum source of the governing equation prior to discretization, which is different from a Direct Forcing Method (DFM). 

(59) As no body-conforming moving mesh is required, the continuous forcing approach offers lower complexity and reduced cost when compared to the DFM. Piquet et al. 

(60) highlighted the high complexity of the DFM due to its reliance on calculating an additional immersed boundary flux for the velocity field to ensure its divergence-free condition.The fluid–structure interaction (FSI) method has been advocated to connect the dynamic interplay of RBC membranes and fluid plasma within blood flow such as the coupling of continuum–particle interactions. However, such methodology is generally adapted for anatomical configurations such as arteries 

(61,62) and capillaries, 

(63) where both the structural components and the fluid domain undergo substantial deformation due to the moving boundaries. Due to the scope of the Review being blood flow simulation within microchannels of LOC devices without deformable boundaries, the Review of the FSI method will not be further carried out.In general, three numerical methods are broadly used: mesh-based, particle-based, and hybrid mesh–particle techniques, based on the spatial scale and the fundamental numerical approach, mesh-based methods tend to neglect the effects of individual particles, assuming a continuum and being efficient in terms of time and cost. However, the particle-based approach highlights more of the microscopic and mesoscopic level, where the influence of individual RBCs is considered. A review from Freund et al. 

(64) addressed the three numerical methodologies and their respective modeling approaches of RBC dynamics. Given the complex mechanics and the diverse levels of study concerning numerical simulations of blood and cellular flow, a broad spectrum of numerical methods for blood has been subjected to extensive review. 

(64−70) Ye at al. 

(65) offered an extensive review of the application of the DPD, SPH, and LBM for numerical simulations of RBC, while Rathnayaka et al. 

(67) conducted a review of the particle-based numerical modeling for liquid marbles through drawing parallels to the transport of RBCs in microchannels. A comparative analysis between conventional CFD methods and particle-based approaches for cellular and blood flow dynamic simulation can be found under the review by Arabghahestani et al. 

(66) Literature by Li et al. 

(68) and Beris et al. 

(69) offer an overview of both continuum-based models at micro/macroscales and multiscale particle-based models encompassing various length and temporal dimensions. Furthermore, these reviews deliberate upon the potential of coupling continuum-particle methods for blood plasma and RBC modeling. Arciero et al. 

(70) investigated various modeling approaches encompassing cellular interactions, such as cell to cell or plasma interactions and the individual cellular phases. A concise overview of the reviews is provided in Table 2 for reference.

Table 2. List of Reviews for Numerical Approaches Employed in Blood Flow Simulation

ReferenceNumerical methods
Li et al. (2013) (68)Continuum-based modeling (BIM), particle-based modeling (LBM, LB-FE, SPH, DPD)
Freund (2014) (64)RBC dynamic modeling (continuum-based modeling, complementary discrete microstructure modeling), blood flow dynamic modeling (FDM, IBM, LBM, particle-mesh methods, coupled boundary integral and mesh-based methods, DPD)
Ye et al. (2016) (65)DPD, SPH, LBM, coupled IBM-Smoothed DPD
Arciero et al. (2017) (70)LBM, IBM, DPD, conventional CFD Methods (FDM, FVM, FEM)
Arabghahestani et al. (2019) (66)Particle-based methods (LBM, DPD, direct simulation Monte Carlo, molecular dynamics), SPH, conventional CFD methods (FDM, FVM, FEM)
Beris et al. (2021) (69)DPD, smoothed DPD, IBM, LBM, BIM
Rathnayaka (2022) (67)SPH, CG, LBM

3. Capillary Driven Blood Flow in LOC Systems

ARTICLE SECTIONS

Jump To


3.1. Capillary Driven Flow Phenomena

Capillary driven (CD) flow is a pivotal mechanism in passive microfluidic flow systems 

(9) such as the blood circulation system and LOC systems. 

(71) CD flow is essentially the movement of a liquid to flow against drag forces, where the capillary effect exerts a force on the liquid at the borders, causing a liquid–air meniscus to flow despite gravity or other drag forces. A capillary pressure drops across the liquid–air interface with surface tension in the capillary radius and contact angle. The capillary effect depends heavily on the interaction between the different properties of surface materials. Different values of contact angles can be manipulated and obtained under varying levels of surface wettability treatments to manipulate the surface properties, resulting in different CD blood delivery rates for medical diagnostic device microchannels. CD flow techniques are appealing for many LOC devices, because they require no external energy. However, due to the passive property of liquid propulsion by capillary forces and the long-term instability of surface treatments on channel walls, the adaptability of CD flow in geometrically complex LOC devices may be limited.

3.2. Theoretical and Numerical Modeling of Capillary Driven Blood Flow

3.2.1. Theoretical Basis and Assumptions of Microfluidic Flow

The study of transport phenomena regarding either blood flow driven by capillary forces or externally applied forces under microfluid systems all demands a comprehensive recognition of the significant differences in flow dynamics between microscale and macroscale. The fundamental assumptions and principles behind fluid transport at the microscale are discussed in this section. Such a comprehension will lay the groundwork for the following analysis of the theoretical basis of capillary forces and their role in blood transport in LOC systems.

At the macroscale, fluid dynamics are often strongly influenced by gravity due to considerable fluid mass. However, the high surface to volume ratio at the microscale shifts the balance toward surface forces (e.g., surface tension and viscous forces), much larger than the inertial force. This difference gives rise to transport phenomena unique to microscale fluid transport, such as the prevalence of laminar flow due to a very low Reynolds number (generally lower than 1). Moreover, the fluid in a microfluidic system is often assumed to be incompressible due to the small flow velocity, indicating constant fluid density in both space and time.Microfluidic flow behaviors are governed by the fundamental principles of mass and momentum conservation, which are encapsulated in the continuity equation and the Navier–Stokes (N–S) equation. The continuity equation describes the conservation of mass, while the N–S equation captures the spatial and temporal variations in velocity, pressure, and other physical parameters. Under the assumption of the negligible influence of gravity in microfluidic systems, the continuity equation and the Eulerian representation of the incompressible N–S equation can be expressed as follows:

∇·𝐮⇀=0∇·�⇀=0

(7)

−∇𝑝+𝜇∇2𝐮⇀+∇·𝝉⇀−𝐅⇀=0−∇�+�∇2�⇀+∇·�⇀−�⇀=0

(8)Here, p is the pressure, u is the fluid viscosity, 

𝝉⇀�⇀ represents the stress tensor, and F is the body force exerted by external forces if present.

3.2.2. Theoretical Basis and Modeling of Capillary Force in LOC Systems

The capillary force is often the major driving force to manipulate and transport blood without an externally applied force in LOC systems. Forces induced by the capillary effect impact the free surface of fluids and are represented not directly in the Navier–Stokes equations but through the pressure boundary conditions of the pressure term p. For hydrophilic surfaces, the liquid generally induces a contact angle between 0° and 30°, encouraging the spread and attraction of fluid under a positive cos θ condition. For this condition, the pressure drop becomes positive and generates a spontaneous flow forward. A hydrophobic solid surface repels the fluid, inducing minimal contact. Generally, hydrophobic solids exhibit a contact angle larger than 90°, inducing a negative value of cos θ. Such a value will result in a negative pressure drop and a flow in the opposite direction. The induced contact angle is often utilized to measure the wall exposure of various surface treatments on channel walls where different wettability gradients and surface tension effects for CD flows are established. Contact angles between different interfaces are obtainable through standard values or experimental methods for reference. 

(72)For the characterization of the induced force by the capillary effect, the Young–Laplace (Y–L) equation 

(73) is widely employed. In the equation, the capillary is considered a pressure boundary condition between the two interphases. Through the Y–L equation, the capillary pressure force can be determined, and subsequently, the continuity and momentum balance equations can be solved to obtain the blood filling rate. Kim et al. 

(74) studied the effects of concentration and exposure time of a nonionic surfactant, Silwet L-77, on the performance of a polydimethylsiloxane (PDMS) microchannel in terms of plasma and blood self-separation. The study characterized the capillary pressure force by incorporating the Y–L equation and further evaluated the effects of the changing contact angle due to different levels of applied channel wall surface treatments. The expression of the Y–L equation utilized by Kim et al. 

(74) is as follows:

𝑃=−𝜎(cos𝜃b+cos𝜃tℎ+cos𝜃l+cos𝜃r𝑤)�=−�(cos⁡�b+cos⁡�tℎ+cos⁡�l+cos⁡�r�)

(9)where σ is the surface tension of the liquid and θ

bθ

tθ

l, and θ

r are the contact angle values between the liquid and the bottom, top, left, and right walls, respectively. A numerical simulation through Coventor software is performed to evaluate the dynamic changes in the filling rate within the microchannel. The simulation results for the blood filling rate in the microchannel are expressed at a specific time stamp, shown in Figure 2. The results portray an increasing instantaneous filling rate of blood in the microchannel following the decrease in contact angle induced by a higher concentration of the nonionic surfactant treated to the microchannel wall.

Figure 2. Numerical simulation of filling rate of capillary driven blood flow under various contact angle conditions at a specific timestamp. (74) Reproduced with permission from ref (74). Copyright 2010 Elsevier.

When in contact with hydrophilic or hydrophobic surfaces, blood forms a meniscus with a contact angle due to surface tension. The Lucas–Washburn (L–W) equation 

(75) is one of the pioneering theoretical definitions for the position of the meniscus over time. In addition, the L–W equation provides the possibility for research to obtain the velocity of the blood formed meniscus through the derivation of the meniscus position. The L–W equation 

(75) can be shown below:

𝐿(𝑡)=𝑅𝜎cos(𝜃)𝑡2𝜇⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√�(�)=��⁡cos(�)�2�

(10)Here L(t) represents the distance of the liquid driven by the capillary forces. However, the generalized L–W equation solely assumes the constant physical properties from a Newtonian fluid rather than considering the non-Newtonian fluid behavior of blood. Cito et al. 

(76) constructed an enhanced version of the L–W equation incorporating the power law to consider the RBC aggregation and the FL effect. The non-Newtonian fluid apparent viscosity under the Power Law model is defined as

𝜇=𝑘·(𝛾˙)𝑛−1�=�·(�˙)�−1

(11)where γ̇ is the strain rate tensor defined as 

𝛾˙=12𝛾˙𝑖𝑗𝛾˙𝑗𝑖⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√�˙=12�˙���˙��. The stress tensor term τ is computed as τ = μγ̇

ij. The updated L–W equation by Cito 

(76) is expressed as

𝐿(𝑡)=𝑅[(𝑛+13𝑛+1)(𝜎cos(𝜃)𝑅𝑘)1/𝑛𝑡]𝑛/𝑛+1�(�)=�[(�+13�+1)(�⁡cos(�)��)1/��]�/�+1

(12)where k is the flow consistency index and n is the power law index, respectively. The power law index, from the Power Law model, characterizes the extent of the non-Newtonian behavior of blood. Both the consistency and power law index rely on blood properties such as hematocrit, the appearance of the FL effect, the formation of RBC aggregates, etc. The updated L–W equation computes the location and velocity of blood flow caused by capillary forces at specified time points within the LOC devices, taking into account the effects of blood flow characteristics such as RBC aggregation and the FL effect on dynamic blood viscosity.Apart from the blood flow behaviors triggered by inherent blood properties, unique flow conditions driven by capillary forces that are portrayed under different microchannel geometries also hold crucial implications for CD blood delivery. Berthier et al. 

(77) studied the spontaneous Concus–Finn condition, the condition to initiate the spontaneous capillary flow within a V-groove microchannel, as shown in Figure 3(a) both experimentally and numerically. Through experimental studies, the spontaneous Concus–Finn filament development of capillary driven blood flow is observed, as shown in Figure 3(b), while the dynamic development of blood flow is numerically simulated through CFD simulation.

Figure 3. (a) Sketch of the cross-section of Berthier’s V-groove microchannel, (b) experimental view of blood in the V-groove microchannel, (78) (c) illustration of the dynamic change of the extension of filament from FLOW 3D under capillary flow at three increasing time intervals. (78) Reproduced with permission from ref (78). Copyright 2014 Elsevier.

Berthier et al. 

(77) characterized the contact angle needed for the initiation of the capillary driving force at a zero-inlet pressure, through the half-angle (α) of the V-groove geometry layout, and its relation to the Concus–Finn filament as shown below:

𝜃<𝜋2−𝛼sin𝛼1+2(ℎ2/𝑤)sin𝛼<cos𝜃{�<�2−�sin⁡�1+2(ℎ2/�)⁡sin⁡�<cos⁡�

(13)Three possible regimes were concluded based on the contact angle value for the initiation of flow and development of Concus–Finn filament:

𝜃>𝜃1𝜃1>𝜃>𝜃0𝜃0no SCFSCF without a Concus−Finn filamentSCF without a Concus−Finn filament{�>�1no SCF�1>�>�0SCF without a Concus−Finn filament�0SCF without a Concus−Finn filament

(14)Under Newton’s Law, the force balance with low Reynolds and Capillary numbers results in the neglect of inertial terms. The force balance between the capillary forces and the viscous force induced by the channel wall is proposed to derive the analytical fluid velocity. This relation between the two forces offers insights into the average flow velocity and the penetration distance function dependent on time. The apparent blood viscosity is defined by Berthier et al. 

(78) through Casson’s law, 

(23) given in eq 1. The research used the FLOW-3D program from Flow Science Inc. software, which solves transient, free-surface problems using the FDM in multiple dimensions. The Volume of Fluid (VOF) method 

(79) is utilized to locate and track the dynamic extension of filament throughout the advancing interface within the channel ahead of the main flow at three progressing time stamps, as depicted in Figure 3(c).

4. Electro-osmotic Flow (EOF) in LOC Systems

ARTICLE SECTIONS

Jump To


The utilization of external forces, such as electric fields, has significantly broadened the possibility of manipulating microfluidic flow in LOC systems. 

(80) Externally applied electric field forces induce a fluid flow from the movement of ions in fluid terms as the “electro-osmotic flow” (EOF).Unique transport phenomena, such as enhanced flow velocity and flow instability, induced by non-Newtonian fluids, particularly viscoelastic fluids, under EOF, have sparked considerable interest in microfluidic devices with simple or complicated geometries within channels. 

(81) However, compared to the study of Newtonian fluids and even other electro-osmotic viscoelastic fluid flows, the literature focusing on the theoretical and numerical modeling of electro-osmotic blood flow is limited due to the complexity of blood properties. Consequently, to obtain a more comprehensive understanding of the complex blood flow behavior under EOF, theoretical and numerical studies of the transport phenomena in the EOF section will be based on the studies of different viscoelastic fluids under EOF rather than that of blood specifically. Despite this limitation, we believe these studies offer valuable insights that can help understand the complex behavior of blood flow under EOF.

4.1. EOF Phenomena

Electro-osmotic flow occurs at the interface between the microchannel wall and bulk phase solution. When in contact with the bulk phase, solution ions are absorbed or dissociated at the solid–liquid interface, resulting in the formation of a charge layer, as shown in Figure 4. This charged channel surface wall interacts with both negative and positive ions in the bulk sample, causing repulsion and attraction forces to create a thin layer of immobilized counterions, known as the Stern layer. The induced electric potential from the wall gradually decreases with an increase in the distance from the wall. The Stern layer potential, commonly termed the zeta potential, controls the intensity of the electrostatic interactions between mobile counterions and, consequently, the drag force from the applied electric field. Next to the Stern layer is the diffuse mobile layer, mainly composed of a mobile counterion. These two layers constitute the “electrical double layer” (EDL), the thickness of which is directly proportional to the ionic strength (concentration) of the bulk fluid. The relationship between the two parameters is characterized by a Debye length (λ

D), expressed as

𝜆𝐷=𝜖𝑘B𝑇2(𝑍𝑒)2𝑐0⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯√��=��B�2(��)2�0

(15)where ϵ is the permittivity of the electrolyte solution, k

B is the Boltzmann constant, T is the electron temperature, Z is the integer valence number, e is the elementary charge, and c

0 is the ionic density.

Figure 4. Schematic diagram of an electro-osmotic flow in a microchannel with negative surface charge. (82) Reproduced with permission from ref (82). Copyright 2012 Woodhead Publishing.

When an electric field is applied perpendicular to the EDL, viscous drag is generated due to the movement of excess ions in the EDL. Electro-osmotic forces can be attributed to the externally applied electric potential (ϕ) and the zeta potential, the system wall induced potential by charged walls (ψ). As illustrated in Figure 4, the majority of ions in the bulk phase have a uniform velocity profile, except for a shear rate condition confined within an extremely thin Stern layer. Therefore, EOF displays a unique characteristic of a “near flat” or plug flow velocity profile, different from the parabolic flow typically induced by pressure-driven microfluidic flow (Hagen–Poiseuille flow). The plug-shaped velocity profile of the EOF possesses a high shear rate above the Stern layer.Overall, the EOF velocity magnitude is typically proportional to the Debye Length (λ

D), zeta potential, and magnitude of the externally applied electric field, while a more viscous liquid reduces the EOF velocity.

4.2. Modeling on Electro-osmotic Viscoelastic Fluid Flow

4.2.1. Theoretical Basis of EOF Mechanisms

The EOF of an incompressible viscoelastic fluid is commonly governed by the continuity and incompressible N–S equations, as shown in eqs 7 and 8, where the stress tensor and the electrostatic force term are coupled. The electro-osmotic body force term F, representing the body force exerted by the externally applied electric force, is defined as 

𝐹⇀=𝑝𝐸𝐸⇀�⇀=���⇀, where ρ

E and 

𝐸⇀�⇀ are the net electric charge density and the applied external electric field, respectively.Numerous models are established to theoretically study the externally applied electric potential and the system wall induced potential by charged walls. The following Laplace equation, expressed as eq 16, is generally adapted and solved to calculate the externally applied potential (ϕ).

∇2𝜙=0∇2�=0

(16)Ion diffusion under applied electric fields, together with mass transport resulting from convection and diffusion, transports ionic solutions in bulk flow under electrokinetic processes. The Nernst–Planck equation can describe these transport methods, including convection, diffusion, and electro-diffusion. Therefore, the Nernst–Planck equation is used to determine the distribution of the ions within the electrolyte. The electric potential induced by the charged channel walls follows the Poisson–Nernst–Plank (PNP) equation, which can be written as eq 17.

∇·[𝐷𝑖∇𝑛𝑖−𝑢⇀𝑛𝑖+𝑛𝑖𝐷𝑖𝑧𝑖𝑒𝑘𝑏𝑇∇(𝜙+𝜓)]=0∇·[��∇��−�⇀��+����������∇(�+�)]=0

(17)where D

in

i, and z

i are the diffusion coefficient, ionic concentration, and ionic valence of the ionic species I, respectively. However, due to the high nonlinearity and numerical stiffness introduced by different lengths and time scales from the PNP equations, the Poisson–Boltzmann (PB) model is often considered the major simplified method of the PNP equation to characterize the potential distribution of the EDL region in microchannels. In the PB model, it is assumed that the ionic species in the fluid follow the Boltzmann distribution. This model is typically valid for steady-state problems where charge transport can be considered negligible, the EDLs do not overlap with each other, and the intrinsic potentials are low. It provides a simplified representation of the potential distribution in the EDL region. The PB equation governing the EDL electric potential distribution is described as

∇2𝜓=(2𝑒𝑧𝑛0𝜀𝜀0)sinh(𝑧𝑒𝜓𝑘b𝑇)∇2�=(2���0��0)⁡sinh(����b�)

(18)where n

0 is the ion bulk concentration, z is the ionic valence, and ε

0 is the electric permittivity in the vacuum. Under low electric potential conditions, an even further simplified model to illustrate the EOF phenomena is the Debye–Hückel (DH) model. The DH model is derived by obtaining a charge density term by expanding the exponential term of the Boltzmann equation in a Taylor series.

4.2.2. EOF Modeling for Viscoelastic Fluids

Many studies through numerical modeling were performed to obtain a deeper understanding of the effect exhibited by externally applied electric fields on viscoelastic flow in microchannels under various geometrical designs. Bello et al. 

(83) found that methylcellulose solution, a non-Newtonian polymer solution, resulted in stronger electro-osmotic mobility in experiments when compared to the predictions by the Helmholtz–Smoluchowski equation, which is commonly used to define the velocity of EOF of a Newtonian fluid. Being one of the pioneers to identify the discrepancies between the EOF of Newtonian and non-Newtonian fluids, Bello et al. attributed such discrepancies to the presence of a very high shear rate in the EDL, resulting in a change in the orientation of the polymer molecules. Park and Lee 

(84) utilized the FVM to solve the PB equation for the characterization of the electric field induced force. In the study, the concept of fractional calculus for the Oldroyd-B model was adapted to illustrate the elastic and memory effects of viscoelastic fluids in a straight microchannel They observed that fluid elasticity and increased ratio of viscoelastic fluid contribution to overall fluid viscosity had a significant impact on the volumetric flow rate and sensitivity of velocity to electric field strength compared to Newtonian fluids. Afonso et al. 

(85) derived an analytical expression for EOF of viscoelastic fluid between parallel plates using the DH model to account for a zeta potential condition below 25 mV. The study established the understanding of the electro-osmotic viscoelastic fluid flow under low zeta potential conditions. Apart from the electrokinetic forces, pressure forces can also be coupled with EOF to generate a unique fluid flow behavior within the microchannel. Sousa et al. 

(86) analytically studied the flow of a standard viscoelastic solution by combining the pressure gradient force with an externally applied electric force. It was found that, at a near wall skimming layer and the outer layer away from the wall, macromolecules migrating away from surface walls in viscoelastic fluids are observed. In the study, the Phan-Thien Tanner (PTT) constitutive model is utilized to characterize the viscoelastic properties of the solution. The approach is found to be valid when the EDL is much thinner than the skimming layer under an enhanced flow rate. Zhao and Yang 

(87) solved the PB equation and Carreau model for the characterization of the EOF mechanism and non-Newtonian fluid respectively through the FEM. The numerical results depict that, different from the EOF of Newtonian fluids, non-Newtonian fluids led to an increase of electro-osmotic mobility for shear thinning fluids but the opposite for shear thickening fluids.Like other fluid transport driving forces, EOF within unique geometrical layouts also portrays unique transport phenomena. Pimenta and Alves 

(88) utilized the FVM to perform numerical simulations of the EOF of viscoelastic fluids considering the PB equation and the Oldroyd-B model, in a cross-slot and flow-focusing microdevices. It was found that electroelastic instabilities are formed due to the development of large stresses inside the EDL with streamlined curvature at geometry corners. Bezerra et al. 

(89) used the FDM to numerically analyze the vortex formation and flow instability from an electro-osmotic non-Newtonian fluid flow in a microchannel with a nozzle geometry and parallel wall geometry setting. The PNP equation is utilized to characterize the charge motion in the EOF and the PTT model for non-Newtonian flow characterization. A constriction geometry is commonly utilized in blood flow adapted in LOC systems due to the change in blood flow behavior under narrow dimensions in a microchannel. Ji et al. 

(90) recently studied the EOF of viscoelastic fluid in a constriction microchannel connected by two relatively big reservoirs on both ends (as seen in Figure 5) filled with the polyacrylamide polymer solution, a viscoelastic fluid, and an incompressible monovalent binary electrolyte solution KCl.

Figure 5. Schematic diagram of a negatively charged constriction microchannel connected to two reservoirs at both ends. An electro-osmotic flow is induced in the system by the induced potential difference between the anode and cathode. (90) Reproduced with permission from ref (90). Copyright 2021 The Authors, under the terms of the Creative Commons (CC BY 4.0) License https://creativecommons.org/licenses/by/4.0/.

In studying the EOF of viscoelastic fluids, the Oldroyd-B model is often utilized to characterize the polymeric stress tensor and the deformation rate of the fluid. The Oldroyd-B model is expressed as follows:

𝜏=𝜂p𝜆(𝐜−𝐈)�=�p�(�−�)

(19)where η

p, λ, c, and I represent the polymer dynamic viscosity, polymer relaxation time, symmetric conformation tensor of the polymer molecules, and the identity matrix, respectively.A log-conformation tensor approach is taken to prevent convergence difficulty induced by the viscoelastic properties. The conformation tensor (c) in the polymeric stress tensor term is redefined by a new tensor (Θ) based on the natural logarithm of the c. The new tensor is defined as

Θ=ln(𝐜)=𝐑ln(𝚲)𝐑Θ=ln(�)=�⁡ln(�)�

(20)in which Λ is the diagonal matrix and R is the orthogonal matrix.Under the new conformation tensor, the induced EOF of a viscoelastic fluid is governed by the continuity and N–S equations adapting the Oldroyd-B model, which is expressed as

∂𝚯∂𝑡+𝐮·∇𝚯=𝛀Θ−ΘΩ+2𝐁+1𝜆(eΘ−𝐈)∂�∂�+�·∇�=�Θ−ΘΩ+2�+1�(eΘ−�)

(21)where Ω and B represent the anti-symmetric matrix and the symmetric traceless matrix of the decomposition of the velocity gradient tensor ∇u, respectively. The conformation tensor can be recovered by c = exp(Θ). The PB model and Laplace equation are utilized to characterize the charged channel wall induced potential and the externally applied potential.The governing equations are numerically solved through the FVM by RheoTool, 

(42) an open-source viscoelastic EOF solver on the OpenFOAM platform. A SIMPLEC (Semi-Implicit Method for Pressure Linked Equations-Consistent) algorithm was applied to solve the velocity-pressure coupling. The pressure field and velocity field were computed by the PCG (Preconditioned Conjugate Gradient) solver and the PBiCG (Preconditioned Biconjugate Gradient) solver, respectively.Ranging magnitudes of an applied electric field or fluid concentration induce both different streamlines and velocity magnitudes at various locations and times of the microchannel. In the study performed by Ji et al., 

(90) notable fluctuation of streamlines and vortex formation is formed at the upper stream entrance of the constriction as shown in Figure 6(a) and (b), respectively, due to the increase of electrokinetic effect, which is seen as a result of the increase in polymeric stress (τ

xx). 

(90) The contraction geometry enhances the EOF velocity within the constriction channel under high E

app condition (600 V/cm). Such phenomena can be attributed to the dependence of electro-osmotic viscoelastic fluid flow on the system wall surface and bulk fluid properties. 

(91)

Figure 6. Schematic diagram of vortex formation and streamlines of EOF depicting flow instability at (a) 1.71 s and (b) 1.75 s. Spatial distribution of the elastic normal stress at (c) high Eapp condition. Streamline of an electro-osmotic flow under Eapp of 600 V/cm (90) for (d) non-Newtonian and (e) Newtonian fluid through a constriction geometry. Reproduced with permission from ref (90). Copyright 2021 The Authors, under the terms of the Creative Commons (CC BY 4.0) License https://creativecommons.org/licenses/by/4.0/.

As elastic normal stress exceeds the local shear stress, flow instability and vortex formation occur. The induced elastic stress under EOF not only enhances the instability of the flow but often generates an irregular secondary flow leading to strong disturbance. 

(92) It is also vital to consider the effect of the constriction layout of microchannels on the alteration of the field strength within the system. The contraction geometry enhances a larger electric field strength compared with other locations of the channel outside the constriction region, resulting in a higher velocity gradient and stronger extension on the polymer within the viscoelastic solution. Following the high shear flow condition, a higher magnitude of stretch for polymer molecules in viscoelastic fluids exhibits larger elastic stresses and enhancement of vortex formation at the region. 

(93)As shown in Figure 6(c), significant elastic normal stress occurs at the inlet of the constriction microchannel. Such occurrence of a polymeric flow can be attributed to the dominating elongational flow, giving rise to high deformation of the polymers within the viscoelastic fluid flow, resulting in higher elastic stress from the polymers. Such phenomena at the entrance result in the difference in velocity streamline as circled in Figure 6(d) compared to that of the Newtonian fluid at the constriction entrance in Figure 6(e). 

(90) The difference between the Newtonian and polymer solution at the exit, as circled in Figure 6(d) and (e), can be attributed to the extrudate swell effect of polymers 

(94) within the viscoelastic fluid flow. The extrudate swell effect illustrates that, as polymers emerge from the constriction exit, they tend to contract in the flow direction and grow in the normal direction, resulting in an extrudate diameter greater than the channel size. The deformation of polymers within the polymeric flow at both the entrance and exit of the contraction channel facilitates the change in shear stress conditions of the flow, leading to the alteration in streamlines of flows for each region.

4.3. EOF Applications in LOC Systems

4.3.1. Mixing in LOC Systems

Rather than relying on the micromixing controlled by molecular diffusion under low Reynolds number conditions, active mixers actively leverage convective instability and vortex formation induced by electro-osmotic flows from alternating current (AC) or direct current (DC) electric fields. Such adaptation is recognized as significant breakthroughs for promotion of fluid mixing in chemical and biological applications such as drug delivery, medical diagnostics, chemical synthesis, and so on. 

(95)Many researchers proposed novel designs of electro-osmosis micromixers coupled with numerical simulations in conjunction with experimental findings to increase their understanding of the role of flow instability and vortex formation in the mixing process under electrokinetic phenomena. Matsubara and Narumi 

(96) numerically modeled the mixing process in a microchannel with four electrodes on each side of the microchannel wall, which generated a disruption through unstable electro-osmotic vortices. It was found that particle mixing was sensitive to both the convection effect induced by the main and secondary vortex within the micromixer and the change in oscillation frequency caused by the supplied AC voltage when the Reynolds number was varied. Qaderi et al. 

(97) adapted the PNP equation to numerically study the effect of the geometry and zeta potential configuration of the microchannel on the mixing process with a combined electro-osmotic pressure driven flow. It was reported that the application of heterogeneous zeta potential configuration enhances the mixing efficiency by around 23% while the height of the hurdles increases the mixing efficiency at most 48.1%. Cho et al. 

(98) utilized the PB model and Laplace equation to numerically simulate the electro-osmotic non-Newtonian fluid mixing process within a wavy and block layout of microchannel walls. The Power Law model is adapted to describe the fluid rheological characteristic. It was found that shear-thinning fluids possess a higher volumetric flow rate, which could result in poorer mixing efficiency compared to that of Newtonian fluids. Numerous studies have revealed that flow instability and vortex generation, in particular secondary vortices produced by barriers or greater magnitudes of heterogeneous zeta potential distribution, enhance mixing by increasing bulk flow velocity and reducing flow distance.To better understand the mechanism of disturbance formed in the system due to externally applied forces, known as electrokinetic instability, literature often utilize the Rayleigh (Ra) number, 

(1) as described below:

𝑅𝑎𝑣=𝑢ev𝑢eo=(𝛾−1𝛾+1)2𝑊𝛿2𝐸el2𝐻2𝜁𝛿Ra�=�ev�eo=(�−1�+1)2��2�el2�2��

(22)where γ is the conductivity ratio of the two streams and can be written as 

𝛾=𝜎el,H𝜎el,L�=�el,H�el,L. The Ra number characterizes the ratio between electroviscous and electro-osmotic flow. A high Ra

v value often results in good mixing. It is evident that fluid properties such as the conductivity (σ) of the two streams play a key role in the formation of disturbances to enhance mixing in microsystems. At the same time, electrokinetic parameters like the zeta potential (ζ) in the Ra number is critical in the characterization of electro-osmotic velocity and a slip boundary condition at the microchannel wall.To understand the mixing result along the channel, the concentration field can be defined and simulated under the assumption of steady state conditions and constant diffusion coefficient for each of the working fluid within the system through the convection–diffusion equation as below:

∂𝑐𝒊∂𝑡+∇⇀(𝑐𝑖𝑢⇀−𝐷𝑖∇⇀𝑐𝒊)=0∂��∂�+∇⇀(���⇀−��∇⇀��)=0

(23)where c

i is the species concentration of species i and D

i is the diffusion coefficient of the corresponding species.The standard deviation of concentration (σ

sd) can be adapted to evaluate the mixing quality of the system. 

(97) The standard deviation for concentration at a specific portion of the channel may be calculated using the equation below:

𝜎sd=∫10(𝐶∗(𝑦∗)−𝐶m)2d𝑦∗∫10d𝑦∗⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�sd=∫01(�*(�*)−�m)2d�*∫01d�*

(24)where C*(y*) and C

m are the non-dimensional concentration profile and the mean concentration at the portion, respectively. C* is the non-dimensional concentration and can be calculated as 

𝐶∗=𝐶𝐶ref�*=��ref, where C

ref is the reference concentration defined as the bulk solution concentration. The mean concentration profile can be calculated as 

𝐶m=∫10(𝐶∗(𝑦∗)d𝑦∗∫10d𝑦∗�m=∫01(�*(�*)d�*∫01d�*. With the standard deviation of concentration, the mixing efficiency 

(97) can then be calculated as below:

𝜀𝑥=1−𝜎sd𝜎sd,0��=1−�sd�sd,0

(25)where σ

sd,0 is the standard derivation of the case of no mixing. The value of the mixing efficiency is typically utilized in conjunction with the simulated flow field and concentration field to explore the effect of geometrical and electrokinetic parameters on the optimization of the mixing results.

5. Summary

ARTICLE SECTIONS

Jump To


5.1. Conclusion

Viscoelastic fluids such as blood flow in LOC systems are an essential topic to proceed with diagnostic analysis and research through microdevices in the biomedical and pharmaceutical industries. The complex blood flow behavior is tightly controlled by the viscoelastic characteristics of blood such as the dynamic viscosity and the elastic property of RBCs under various shear rate conditions. Furthermore, the flow behaviors under varied driving forces promote an array of microfluidic transport phenomena that are critical to the management of blood flow and other adapted viscoelastic fluids in LOC systems. This review addressed the blood flow phenomena, the complicated interplay between shear rate and blood flow behaviors, and their numerical modeling under LOC systems through the lens of the viscoelasticity characteristic. Furthermore, a theoretical understanding of capillary forces and externally applied electric forces leads to an in-depth investigation of the relationship between blood flow patterns and the key parameters of the two driving forces, the latter of which is introduced through the lens of viscoelastic fluids, coupling numerical modeling to improve the knowledge of blood flow manipulation in LOC systems. The flow disturbances triggered by the EOF of viscoelastic fluids and their impact on blood flow patterns have been deeply investigated due to their important role and applications in LOC devices. Continuous advancements of various numerical modeling methods with experimental findings through more efficient and less computationally heavy methods have served as an encouraging sign of establishing more accurate illustrations of the mechanisms for multiphase blood and other viscoelastic fluid flow transport phenomena driven by various forces. Such progress is fundamental for the manipulation of unique transport phenomena, such as the generated disturbances, to optimize functionalities offered by microdevices in LOC systems.

The following section will provide further insights into the employment of studied blood transport phenomena to improve the functionality of micro devices adapting LOC technology. A discussion of the novel roles that external driving forces play in microfluidic flow behaviors is also provided. Limitations in the computational modeling of blood flow and electrokinetic phenomena in LOC systems will also be emphasized, which may provide valuable insights for future research endeavors. These discussions aim to provide guidance and opportunities for new paths in the ongoing development of LOC devices that adapt blood flow.

5.2. Future Directions

5.2.1. Electro-osmosis Mixing in LOC Systems

Despite substantial research, mixing results through flow instability and vortex formation phenomena induced by electro-osmotic mixing still deviate from the effective mixing results offered by chaotic mixing results such as those seen in turbulent flows. However, recent discoveries of a mixing phenomenon that is generally observed under turbulent flows are found within electro-osmosis micromixers under low Reynolds number conditions. Zhao 

(99) experimentally discovered a rapid mixing process in an AC applied micromixer, where the power spectrum of concentration under an applied voltage of 20 V

p-p induces a −5/3 slope within a frequency range. This value of the slope is considered as the O–C spectrum in macroflows, which is often visible under relatively high Re conditions, such as the Taylor microscale Reynolds number Re > 500 in turbulent flows. 

(100) However, the Re value in the studied system is less than 1 at the specific location and applied voltage. A secondary flow is also suggested to occur close to microchannel walls, being attributed to the increase of convective instability within the system.Despite the experimental phenomenon proposed by Zhao et al., 

(99) the range of effects induced by vital parameters of an EOF mixing system on the enhanced mixing results and mechanisms of disturbance generated by the turbulent-like flow instability is not further characterized. Such a gap in knowledge may hinder the adaptability and commercialization of the discovery of micromixers. One of the parameters for further evaluation is the conductivity gradient of the fluid flow. A relatively strong conductivity gradient (5000:1) was adopted in the system due to the conductive properties of the two fluids. The high conductivity gradients may contribute to the relatively large Rayleigh number and differences in EDL layer thickness, resulting in an unusual disturbance in laminar flow conditions and enhanced mixing results. However, high conductivity gradients are not always achievable by the working fluids due to diverse fluid properties. The reliance on turbulent-like phenomena and rapid mixing results in a large conductivity gradient should be established to prevent the limited application of fluids for the mixing system. In addition, the proposed system utilizes distinct zeta potential distributions at the top and bottom walls due to their difference in material choices, which may be attributed to the flow instability phenomena. Further studies should be made on varying zeta potential magnitude and distribution to evaluate their effect on the slip boundary conditions of the flow and the large shear rate condition close to the channel wall of EOF. Such a study can potentially offer an optimized condition in zeta potential magnitude through material choices and geometrical layout of the zeta potential for better mixing results and manipulation of mixing fluid dynamics. The two vital parameters mentioned above can be varied with the aid of numerical simulation to understand the effect of parameters on the interaction between electro-osmotic forces and electroviscous forces. At the same time, the relationship of developed streamlines of the simulated velocity and concentration field, following their relationship with the mixing results, under the impact of these key parameters can foster more insight into the range of impact that the two parameters have on the proposed phenomena and the microfluidic dynamic principles of disturbances.

In addition, many of the current investigations of electrokinetic mixers commonly emphasize the fluid dynamics of mixing for Newtonian fluids, while the utilization of biofluids, primarily viscoelastic fluids such as blood, and their distinctive response under shear forces in these novel mixing processes of LOC systems are significantly less studied. To develop more compatible microdevice designs and efficient mixing outcomes for the biomedical industry, it is necessary to fill the knowledge gaps in the literature on electro-osmotic mixing for biofluids, where properties of elasticity, dynamic viscosity, and intricate relationship with shear flow from the fluid are further considered.

5.2.2. Electro-osmosis Separation in LOC Systems

Particle separation in LOC devices, particularly in biological research and diagnostics, is another area where disturbances may play a significant role in optimization. 

(101) Plasma analysis in LOC systems under precise control of blood flow phenomena and blood/plasma separation procedures can detect vital information about infectious diseases from particular antibodies and foreign nucleic acids for medical treatments, diagnostics, and research, 

(102) offering more efficient results and simple operating procedures compared to that of the traditional centrifugation method for blood and plasma separation. However, the adaptability of LOC devices for blood and plasma separation is often hindered by microchannel clogging, where flow velocity and plasma yield from LOC devices is reduced due to occasional RBC migration and aggregation at the filtration entrance of microdevices. 

(103)It is important to note that the EOF induces flow instability close to microchannel walls, which may provide further solutions to clogging for the separation process of the LOC systems. Mohammadi et al. 

(104) offered an anti-clogging effect of RBCs at the blood and plasma separating device filtration entry, adjacent to the surface wall, through RBC disaggregation under high shear rate conditions generated by a forward and reverse EOF direction.

Further theoretical and numerical research can be conducted to characterize the effect of high shear rate conditions near microchannel walls toward the detachment of binding blood cells on surfaces and the reversibility of aggregation. Through numerical modeling with varying electrokinetic parameters to induce different degrees of disturbances or shear conditions at channel walls, it may be possible to optimize and better understand the process of disrupting the forces that bind cells to surface walls and aggregated cells at filtration pores. RBCs that migrate close to microchannel walls are often attracted by the adhesion force between the RBC and the solid surface originating from the van der Waals forces. Following RBC migration and attachment by adhesive forces adjacent to the microchannel walls as shown in Figure 7, the increase in viscosity at the region causes a lower shear condition and encourages RBC aggregation (cell–cell interaction), which clogs filtering pores or microchannels and reduces flow velocity at filtration region. Both the impact that shear forces and disturbances may induce on cell binding forces with surface walls and other cells leading to aggregation may suggest further characterization. Kinetic parameters such as activation energy and the rate-determining step for cell binding composition attachment and detachment should be considered for modeling the dynamics of RBCs and blood flows under external forces in LOC separation devices.

Figure 7. Schematic representations of clogging at a microchannel pore following the sequence of RBC migration, cell attachment to channel walls, and aggregation. (105) Reproduced with permission from ref (105). Copyright 2018 The Authors under the terms of the Creative Commons (CC BY 4.0) License https://creativecommons.org/licenses/by/4.0/.

5.2.3. Relationship between External Forces and Microfluidic Systems

In blood flow, a thicker CFL suggests a lower blood viscosity, suggesting a complex relationship between shear stress and shear rate, affecting the blood viscosity and blood flow. Despite some experimental and numerical studies on electro-osmotic non-Newtonian fluid flow, limited literature has performed an in-depth investigation of the role that applied electric forces and other external forces could play in the process of CFL formation. Additional studies on how shear rates from external forces affect CFL formation and microfluidic flow dynamics can shed light on the mechanism of the contribution induced by external driving forces to the development of a separate phase of layer, similar to CFL, close to the microchannel walls and distinct from the surrounding fluid within the system, then influencing microfluidic flow dynamics.One of the mechanisms of phenomena to be explored is the formation of the Exclusion Zone (EZ) region following a “Self-Induced Flow” (SIF) phenomenon discovered by Li and Pollack, 

(106) as shown in Figure 8(a) and (b), respectively. A spontaneous sustained axial flow is observed when hydrophilic materials are immersed in water, resulting in the buildup of a negative layer of charges, defined as the EZ, after water molecules absorb infrared radiation (IR) energy and break down into H and OH

+.

Figure 8. Schematic representations of (a) the Exclusion Zone region and (b) the Self Induced Flow through visualization of microsphere movement within a microchannel. (106) Reproduced with permission from ref (106). Copyright 2020 The Authors under the terms of the Creative Commons (CC BY 4.0) License https://creativecommons.org/licenses/by/4.0/.

Despite the finding of such a phenomenon, the specific mechanism and role of IR energy have yet to be defined for the process of EZ development. To further develop an understanding of the role of IR energy in such phenomena, a feasible study may be seen through the lens of the relationships between external forces and microfluidic flow. In the phenomena, the increase of SIF velocity under a rise of IR radiation resonant characteristics is shown in the participation of the external electric field near the microchannel walls under electro-osmotic viscoelastic fluid flow systems. The buildup of negative charges at the hydrophilic surfaces in EZ is analogous to the mechanism of electrical double layer formation. Indeed, research has initiated the exploration of the core mechanisms for EZ formation through the lens of the electrokinetic phenomena. 

(107) Such a similarity of the role of IR energy and the transport phenomena of SIF with electrokinetic phenomena paves the way for the definition of the unknown SIF phenomena and EZ formation. Furthermore, Li and Pollack 

(106) suggest whether CFL formation might contribute to a SIF of blood using solely IR radiation, a commonly available source of energy in nature, as an external driving force. The proposition may be proven feasible with the presence of the CFL region next to the negatively charged hydrophilic endothelial glycocalyx layer, coating the luminal side of blood vessels. 

(108) Further research can dive into the resonating characteristics between the formation of the CFL region next to the hydrophilic endothelial glycocalyx layer and that of the EZ formation close to hydrophilic microchannel walls. Indeed, an increase in IR energy is known to rapidly accelerate EZ formation and SIF velocity, depicting similarity to the increase in the magnitude of electric field forces and greater shear rates at microchannel walls affecting CFL formation and EOF velocity. Such correlation depicts a future direction in whether SIF blood flow can be observed and characterized theoretically further through the lens of the relationship between blood flow and shear forces exhibited by external energy.

The intricate link between the CFL and external forces, more specifically the externally applied electric field, can receive further attention to provide a more complete framework for the mechanisms between IR radiation and EZ formation. Such characterization may also contribute to a greater comprehension of the role IR can play in CFL formation next to the endothelial glycocalyx layer as well as its role as a driving force to propel blood flow, similar to the SIF, but without the commonly assumed pressure force from heart contraction as a source of driving force.

5.3. Challenges

Although there have been significant improvements in blood flow modeling under LOC systems over the past decade, there are still notable constraints that may require special attention for numerical simulation applications to benefit the adaptability of the designs and functionalities of LOC devices. Several points that require special attention are mentioned below:

1.The majority of CFD models operate under the relationship between the viscoelasticity of blood and the shear rate conditions of flow. The relative effect exhibited by the presence of highly populated RBCs in whole blood and their forces amongst the cells themselves under complex flows often remains unclearly defined. Furthermore, the full range of cell populations in whole blood requires a much more computational load for numerical modeling. Therefore, a vital goal for future research is to evaluate a reduced modeling method where the impact of cell–cell interaction on the viscoelastic property of blood is considered.
2.Current computational methods on hemodynamics rely on continuum models based upon non-Newtonian rheology at the macroscale rather than at molecular and cellular levels. Careful considerations should be made for the development of a constructive framework for the physical and temporal scales of micro/nanoscale systems to evaluate the intricate relationship between fluid driving forces, dynamic viscosity, and elasticity.
3.Viscoelastic fluids under the impact of externally applied electric forces often deviate from the assumptions of no-slip boundary conditions due to the unique flow conditions induced by externally applied forces. Furthermore, the mechanism of vortex formation and viscoelastic flow instability at laminar flow conditions should be better defined through the lens of the microfluidic flow phenomenon to optimize the prediction of viscoelastic flow across different geometrical layouts. Mathematical models and numerical methods are needed to better predict such disturbance caused by external forces and the viscoelasticity of fluids at such a small scale.
4.Under practical situations, zeta potential distribution at channel walls frequently deviates from the common assumption of a constant distribution because of manufacturing faults or inherent surface charges prior to the introduction of electrokinetic influence. These discrepancies frequently lead to inconsistent surface potential distribution, such as excess positive ions at relatively more negatively charged walls. Accordingly, unpredicted vortex formation and flow instability may occur. Therefore, careful consideration should be given to these discrepancies and how they could trigger the transport process and unexpected results of a microdevice.

Author Information

ARTICLE SECTIONS

Jump To


  • Corresponding Authors
    • Zhe Chen – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;  Email: zaccooky@sjtu.edu.cn
    • Bo Ouyang – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;  Email: bouy93@sjtu.edu.cn
    • Zheng-Hong Luo – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;  Orcidhttps://orcid.org/0000-0001-9011-6020; Email: luozh@sjtu.edu.cn
  • Authors
    • Bin-Jie Lai – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;  Orcidhttps://orcid.org/0009-0002-8133-5381
    • Li-Tao Zhu – Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China;  Orcidhttps://orcid.org/0000-0001-6514-8864
  • NotesThe authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS

Jump To


This work was supported by the National Natural Science Foundation of China (No. 22238005) and the Postdoctoral Research Foundation of China (No. GZC20231576).

Vocabulary

ARTICLE SECTIONS

Jump To


Microfluidicsthe field of technological and scientific study that investigates fluid flow in channels with dimensions between 1 and 1000 μm
Lab-on-a-Chip Technologythe field of research and technological development aimed at integrating the micro/nanofluidic characteristics to conduct laboratory processes on handheld devices
Computational Fluid Dynamics (CFD)the method utilizing computational abilities to predict physical fluid flow behaviors mathematically through solving the governing equations of corresponding fluid flows
Shear Ratethe rate of change in velocity where one layer of fluid moves past the adjacent layer
Viscoelasticitythe property holding both elasticity and viscosity characteristics relying on the magnitude of applied shear stress and time-dependent strain
Electro-osmosisthe flow of fluid under an applied electric field when charged solid surface is in contact with the bulk fluid
Vortexthe rotating motion of a fluid revolving an axis line

References

ARTICLE SECTIONS

Jump To


This article references 108 other publications.

  1. 1Neethirajan, S.; Kobayashi, I.; Nakajima, M.; Wu, D.; Nandagopal, S.; Lin, F. Microfluidics for food, agriculture and biosystems industries. Lab Chip 201111 (9), 1574– 1586,  DOI: 10.1039/c0lc00230eViewGoogle Scholar
  2. 2Whitesides, G. M. The origins and the future of microfluidics. Nature 2006442 (7101), 368– 373,  DOI: 10.1038/nature05058ViewGoogle Scholar
  3. 3Burklund, A.; Tadimety, A.; Nie, Y.; Hao, N.; Zhang, J. X. J. Chapter One – Advances in diagnostic microfluidics; Elsevier, 2020; DOI:  DOI: 10.1016/bs.acc.2019.08.001 .ViewGoogle Scholar
  4. 4Abdulbari, H. A. Chapter 12 – Lab-on-a-chip for analysis of blood. In Nanotechnology for Hematology, Blood Transfusion, and Artificial Blood; Denizli, A., Nguyen, T. A., Rajan, M., Alam, M. F., Rahman, K., Eds.; Elsevier, 2022; pp 265– 283.ViewGoogle Scholar
  5. 5Vladisavljević, G. T.; Khalid, N.; Neves, M. A.; Kuroiwa, T.; Nakajima, M.; Uemura, K.; Ichikawa, S.; Kobayashi, I. Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery. Advanced Drug Delivery Reviews 201365 (11), 1626– 1663,  DOI: 10.1016/j.addr.2013.07.017ViewGoogle Scholar
  6. 6Kersaudy-Kerhoas, M.; Dhariwal, R.; Desmulliez, M. P. Y.; Jouvet, L. Hydrodynamic blood plasma separation in microfluidic channels. Microfluid. Nanofluid. 20108 (1), 105– 114,  DOI: 10.1007/s10404-009-0450-5ViewGoogle Scholar
  7. 7Popel, A. S.; Johnson, P. C. Microcirculation and Hemorheology. Annu. Rev. Fluid Mech. 200537 (1), 43– 69,  DOI: 10.1146/annurev.fluid.37.042604.133933ViewGoogle Scholar
  8. 8Fedosov, D. A.; Peltomäki, M.; Gompper, G. Deformation and dynamics of red blood cells in flow through cylindrical microchannels. Soft Matter 201410 (24), 4258– 4267,  DOI: 10.1039/C4SM00248BViewGoogle Scholar
  9. 9Chakraborty, S. Dynamics of capillary flow of blood into a microfluidic channel. Lab Chip 20055 (4), 421– 430,  DOI: 10.1039/b414566fViewGoogle Scholar
  10. 10Tomaiuolo, G.; Guido, S. Start-up shape dynamics of red blood cells in microcapillary flow. Microvascular Research 201182 (1), 35– 41,  DOI: 10.1016/j.mvr.2011.03.004ViewGoogle Scholar
  11. 11Sherwood, J. M.; Dusting, J.; Kaliviotis, E.; Balabani, S. The effect of red blood cell aggregation on velocity and cell-depleted layer characteristics of blood in a bifurcating microchannel. Biomicrofluidics 20126 (2), 24119,  DOI: 10.1063/1.4717755ViewGoogle Scholar
  12. 12Nader, E.; Skinner, S.; Romana, M.; Fort, R.; Lemonne, N.; Guillot, N.; Gauthier, A.; Antoine-Jonville, S.; Renoux, C.; Hardy-Dessources, M.-D. Blood Rheology: Key Parameters, Impact on Blood Flow, Role in Sickle Cell Disease and Effects of Exercise. Frontiers in Physiology 201910, 01329,  DOI: 10.3389/fphys.2019.01329ViewGoogle Scholar
  13. 13Trejo-Soto, C.; Lázaro, G. R.; Pagonabarraga, I.; Hernández-Machado, A. Microfluidics Approach to the Mechanical Properties of Red Blood Cell Membrane and Their Effect on Blood Rheology. Membranes 202212 (2), 217,  DOI: 10.3390/membranes12020217ViewGoogle Scholar
  14. 14Wagner, C.; Steffen, P.; Svetina, S. Aggregation of red blood cells: From rouleaux to clot formation. Comptes Rendus Physique 201314 (6), 459– 469,  DOI: 10.1016/j.crhy.2013.04.004ViewGoogle Scholar
  15. 15Kim, H.; Zhbanov, A.; Yang, S. Microfluidic Systems for Blood and Blood Cell Characterization. Biosensors 202313 (1), 13,  DOI: 10.3390/bios13010013ViewGoogle Scholar
  16. 16Fåhræus, R.; Lindqvist, T. THE VISCOSITY OF THE BLOOD IN NARROW CAPILLARY TUBES. American Journal of Physiology-Legacy Content 193196 (3), 562– 568,  DOI: 10.1152/ajplegacy.1931.96.3.562ViewGoogle Scholar
  17. 17Ascolese, M.; Farina, A.; Fasano, A. The Fåhræus-Lindqvist effect in small blood vessels: how does it help the heart?. J. Biol. Phys. 201945 (4), 379– 394,  DOI: 10.1007/s10867-019-09534-4ViewGoogle Scholar
  18. 18Bento, D.; Fernandes, C. S.; Miranda, J. M.; Lima, R. In vitro blood flow visualizations and cell-free layer (CFL) measurements in a microchannel network. Experimental Thermal and Fluid Science 2019109, 109847,  DOI: 10.1016/j.expthermflusci.2019.109847ViewGoogle Scholar
  19. 19Namgung, B.; Ong, P. K.; Wong, Y. H.; Lim, D.; Chun, K. J.; Kim, S. A comparative study of histogram-based thresholding methods for the determination of cell-free layer width in small blood vessels. Physiological Measurement 201031 (9), N61,  DOI: 10.1088/0967-3334/31/9/N01ViewGoogle Scholar
  20. 20Hymel, S. J.; Lan, H.; Fujioka, H.; Khismatullin, D. B. Cell trapping in Y-junction microchannels: A numerical study of the bifurcation angle effect in inertial microfluidics. Phys. Fluids (1994) 201931 (8), 082003,  DOI: 10.1063/1.5113516ViewGoogle Scholar
  21. 21Li, X.; Popel, A. S.; Karniadakis, G. E. Blood-plasma separation in Y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study. Phys. Biol. 20129 (2), 026010,  DOI: 10.1088/1478-3975/9/2/026010ViewGoogle Scholar
  22. 22Yin, X.; Thomas, T.; Zhang, J. Multiple red blood cell flows through microvascular bifurcations: Cell free layer, cell trajectory, and hematocrit separation. Microvascular Research 201389, 47– 56,  DOI: 10.1016/j.mvr.2013.05.002ViewGoogle Scholar
  23. 23Shibeshi, S. S.; Collins, W. E. The Rheology of Blood Flow in a Branched Arterial System. Appl. Rheol 200515 (6), 398– 405,  DOI: 10.1515/arh-2005-0020ViewGoogle Scholar
  24. 24Sequeira, A.; Janela, J. An Overview of Some Mathematical Models of Blood Rheology. In A Portrait of State-of-the-Art Research at the Technical University of Lisbon; Pereira, M. S., Ed.; Springer Netherlands: Dordrecht, 2007; pp 65– 87.ViewGoogle Scholar
  25. 25Walburn, F. J.; Schneck, D. J. A constitutive equation for whole human blood. Biorheology 197613, 201– 210,  DOI: 10.3233/BIR-1976-13307ViewGoogle Scholar
  26. 26Quemada, D. A rheological model for studying the hematocrit dependence of red cell-red cell and red cell-protein interactions in blood. Biorheology 198118, 501– 516,  DOI: 10.3233/BIR-1981-183-615ViewGoogle Scholar
  27. 27Varchanis, S.; Dimakopoulos, Y.; Wagner, C.; Tsamopoulos, J. How viscoelastic is human blood plasma?. Soft Matter 201814 (21), 4238– 4251,  DOI: 10.1039/C8SM00061AViewGoogle Scholar
  28. 28Apostolidis, A. J.; Moyer, A. P.; Beris, A. N. Non-Newtonian effects in simulations of coronary arterial blood flow. J. Non-Newtonian Fluid Mech. 2016233, 155– 165,  DOI: 10.1016/j.jnnfm.2016.03.008ViewGoogle Scholar
  29. 29Luo, X. Y.; Kuang, Z. B. A study on the constitutive equation of blood. J. Biomech. 199225 (8), 929– 934,  DOI: 10.1016/0021-9290(92)90233-QViewGoogle Scholar
  30. 30Oldroyd, J. G.; Wilson, A. H. On the formulation of rheological equations of state. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1950200 (1063), 523– 541,  DOI: 10.1098/rspa.1950.0035ViewGoogle Scholar
  31. 31Prado, G.; Farutin, A.; Misbah, C.; Bureau, L. Viscoelastic transient of confined red blood cells. Biophys J. 2015108 (9), 2126– 2136,  DOI: 10.1016/j.bpj.2015.03.046ViewGoogle Scholar
  32. 32Huang, C. R.; Pan, W. D.; Chen, H. Q.; Copley, A. L. Thixotropic properties of whole blood from healthy human subjects. Biorheology 198724 (6), 795– 801,  DOI: 10.3233/BIR-1987-24630ViewGoogle Scholar
  33. 33Anand, M.; Kwack, J.; Masud, A. A new generalized Oldroyd-B model for blood flow in complex geometries. International Journal of Engineering Science 201372, 78– 88,  DOI: 10.1016/j.ijengsci.2013.06.009ViewGoogle Scholar
  34. 34Horner, J. S.; Armstrong, M. J.; Wagner, N. J.; Beris, A. N. Investigation of blood rheology under steady and unidirectional large amplitude oscillatory shear. J. Rheol. 201862 (2), 577– 591,  DOI: 10.1122/1.5017623ViewGoogle Scholar
  35. 35Horner, J. S.; Armstrong, M. J.; Wagner, N. J.; Beris, A. N. Measurements of human blood viscoelasticity and thixotropy under steady and transient shear and constitutive modeling thereof. J. Rheol. 201963 (5), 799– 813,  DOI: 10.1122/1.5108737ViewGoogle Scholar
  36. 36Armstrong, M.; Tussing, J. A methodology for adding thixotropy to Oldroyd-8 family of viscoelastic models for characterization of human blood. Phys. Fluids 202032 (9), 094111,  DOI: 10.1063/5.0022501ViewGoogle Scholar
  37. 37Crank, J.; Nicolson, P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type. Mathematical Proceedings of the Cambridge Philosophical Society 194743 (1), 50– 67,  DOI: 10.1017/S0305004100023197ViewGoogle Scholar
  38. 38Clough, R. W. Original formulation of the finite element method. Finite Elements in Analysis and Design 19907 (2), 89– 101,  DOI: 10.1016/0168-874X(90)90001-UViewGoogle Scholar
  39. 39Liu, W. K.; Liu, Y.; Farrell, D.; Zhang, L.; Wang, X. S.; Fukui, Y.; Patankar, N.; Zhang, Y.; Bajaj, C.; Lee, J.Immersed finite element method and its applications to biological systems. Computer Methods in Applied Mechanics and Engineering 2006195 (13), 1722– 1749,  DOI: 10.1016/j.cma.2005.05.049ViewGoogle Scholar
  40. 40Lopes, D.; Agujetas, R.; Puga, H.; Teixeira, J.; Lima, R.; Alejo, J. P.; Ferrera, C. Analysis of finite element and finite volume methods for fluid-structure interaction simulation of blood flow in a real stenosed artery. International Journal of Mechanical Sciences 2021207, 106650,  DOI: 10.1016/j.ijmecsci.2021.106650ViewGoogle Scholar
  41. 41Favero, J. L.; Secchi, A. R.; Cardozo, N. S. M.; Jasak, H. Viscoelastic flow analysis using the software OpenFOAM and differential constitutive equations. J. Non-Newtonian Fluid Mech. 2010165 (23), 1625– 1636,  DOI: 10.1016/j.jnnfm.2010.08.010ViewGoogle Scholar
  42. 42Pimenta, F.; Alves, M. A. Stabilization of an open-source finite-volume solver for viscoelastic fluid flows. J. Non-Newtonian Fluid Mech. 2017239, 85– 104,  DOI: 10.1016/j.jnnfm.2016.12.002ViewGoogle Scholar
  43. 43Chee, C. Y.; Lee, H. P.; Lu, C. Using 3D fluid-structure interaction model to analyse the biomechanical properties of erythrocyte. Phys. Lett. A 2008372 (9), 1357– 1362,  DOI: 10.1016/j.physleta.2007.09.067ViewGoogle Scholar
  44. 44Xu, D.; Kaliviotis, E.; Munjiza, A.; Avital, E.; Ji, C.; Williams, J. Large scale simulation of red blood cell aggregation in shear flows. J. Biomech. 201346 (11), 1810– 1817,  DOI: 10.1016/j.jbiomech.2013.05.010ViewGoogle Scholar
  45. 45Johnson, K. L.; Kendall, K.; Roberts, A. Surface energy and the contact of elastic solids. Proceedings of the royal society of London. A. mathematical and physical sciences 1971324 (1558), 301– 313,  DOI: 10.1098/rspa.1971.0141ViewGoogle Scholar
  46. 46Shi, L.; Pan, T.-W.; Glowinski, R. Deformation of a single red blood cell in bounded Poiseuille flows. Phys. Rev. E 201285 (1), 016307,  DOI: 10.1103/PhysRevE.85.016307ViewGoogle Scholar
  47. 47Yoon, D.; You, D. Continuum modeling of deformation and aggregation of red blood cells. J. Biomech. 201649 (11), 2267– 2279,  DOI: 10.1016/j.jbiomech.2015.11.027ViewGoogle Scholar
  48. 48Mainardi, F.; Spada, G. Creep, relaxation and viscosity properties for basic fractional models in rheology. European Physical Journal Special Topics 2011193 (1), 133– 160,  DOI: 10.1140/epjst/e2011-01387-1ViewGoogle Scholar
  49. 49Gracka, M.; Lima, R.; Miranda, J. M.; Student, S.; Melka, B.; Ostrowski, Z. Red blood cells tracking and cell-free layer formation in a microchannel with hyperbolic contraction: A CFD model validation. Computer Methods and Programs in Biomedicine 2022226, 107117,  DOI: 10.1016/j.cmpb.2022.107117ViewGoogle Scholar
  50. 50Aryan, H.; Beigzadeh, B.; Siavashi, M. Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation. Computer Methods and Programs in Biomedicine 2022219, 106778,  DOI: 10.1016/j.cmpb.2022.106778ViewGoogle Scholar
  51. 51Czaja, B.; Závodszky, G.; Azizi Tarksalooyeh, V.; Hoekstra, A. G. Cell-resolved blood flow simulations of saccular aneurysms: effects of pulsatility and aspect ratio. J. R Soc. Interface 201815 (146), 20180485,  DOI: 10.1098/rsif.2018.0485ViewGoogle Scholar
  52. 52Rydquist, G.; Esmaily, M. A cell-resolved, Lagrangian solver for modeling red blood cell dynamics in macroscale flows. J. Comput. Phys. 2022461, 111204,  DOI: 10.1016/j.jcp.2022.111204ViewGoogle Scholar
  53. 53Dadvand, A.; Baghalnezhad, M.; Mirzaee, I.; Khoo, B. C.; Ghoreishi, S. An immersed boundary-lattice Boltzmann approach to study the dynamics of elastic membranes in viscous shear flows. Journal of Computational Science 20145 (5), 709– 718,  DOI: 10.1016/j.jocs.2014.06.006ViewGoogle Scholar
  54. 54Krüger, T.; Holmes, D.; Coveney, P. V. Deformability-based red blood cell separation in deterministic lateral displacement devices─A simulation study. Biomicrofluidics 20148 (5), 054114,  DOI: 10.1063/1.4897913ViewGoogle Scholar
  55. 55Takeishi, N.; Ito, H.; Kaneko, M.; Wada, S. Deformation of a Red Blood Cell in a Narrow Rectangular Microchannel. Micromachines 201910 (3), 199,  DOI: 10.3390/mi10030199ViewGoogle Scholar
  56. 56Krüger, T.; Varnik, F.; Raabe, D. Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Computers & Mathematics with Applications 201161 (12), 3485– 3505,  DOI: 10.1016/j.camwa.2010.03.057ViewGoogle Scholar
  57. 57Balachandran Nair, A. N.; Pirker, S.; Umundum, T.; Saeedipour, M. A reduced-order model for deformable particles with application in bio-microfluidics. Computational Particle Mechanics 20207 (3), 593– 601,  DOI: 10.1007/s40571-019-00283-8ViewGoogle Scholar
  58. 58Balachandran Nair, A. N.; Pirker, S.; Saeedipour, M. Resolved CFD-DEM simulation of blood flow with a reduced-order RBC model. Computational Particle Mechanics 20229 (4), 759– 774,  DOI: 10.1007/s40571-021-00441-xViewGoogle Scholar
  59. 59Mittal, R.; Iaccarino, G. IMMERSED BOUNDARY METHODS. Annu. Rev. Fluid Mech. 200537 (1), 239– 261,  DOI: 10.1146/annurev.fluid.37.061903.175743ViewGoogle Scholar
  60. 60Piquet, A.; Roussel, O.; Hadjadj, A. A comparative study of Brinkman penalization and direct-forcing immersed boundary methods for compressible viscous flows. Computers & Fluids 2016136, 272– 284,  DOI: 10.1016/j.compfluid.2016.06.001ViewGoogle Scholar
  61. 61Akerkouch, L.; Le, T. B. A Hybrid Continuum-Particle Approach for Fluid-Structure Interaction Simulation of Red Blood Cells in Fluid Flows. Fluids 20216 (4), 139,  DOI: 10.3390/fluids6040139ViewGoogle Scholar
  62. 62Barker, A. T.; Cai, X.-C. Scalable parallel methods for monolithic coupling in fluid-structure interaction with application to blood flow modeling. J. Comput. Phys. 2010229 (3), 642– 659,  DOI: 10.1016/j.jcp.2009.10.001ViewGoogle Scholar
  63. 63Cetin, A.; Sahin, M. A monolithic fluid-structure interaction framework applied to red blood cells. International Journal for Numerical Methods in Biomedical Engineering 201935 (2), e3171  DOI: 10.1002/cnm.3171ViewGoogle Scholar
  64. 64Freund, J. B. Numerical Simulation of Flowing Blood Cells. Annu. Rev. Fluid Mech. 201446 (1), 67– 95,  DOI: 10.1146/annurev-fluid-010313-141349ViewGoogle Scholar
  65. 65Ye, T.; Phan-Thien, N.; Lim, C. T. Particle-based simulations of red blood cells─A review. J. Biomech. 201649 (11), 2255– 2266,  DOI: 10.1016/j.jbiomech.2015.11.050ViewGoogle Scholar
  66. 66Arabghahestani, M.; Poozesh, S.; Akafuah, N. K. Advances in Computational Fluid Mechanics in Cellular Flow Manipulation: A Review. Applied Sciences 20199 (19), 4041,  DOI: 10.3390/app9194041ViewGoogle Scholar
  67. 67Rathnayaka, C. M.; From, C. S.; Geekiyanage, N. M.; Gu, Y. T.; Nguyen, N. T.; Sauret, E. Particle-Based Numerical Modelling of Liquid Marbles: Recent Advances and Future Perspectives. Archives of Computational Methods in Engineering 202229 (5), 3021– 3039,  DOI: 10.1007/s11831-021-09683-7ViewGoogle Scholar
  68. 68Li, X.; Vlahovska, P. M.; Karniadakis, G. E. Continuum- and particle-based modeling of shapes and dynamics of red blood cells in health and disease. Soft Matter 20139 (1), 28– 37,  DOI: 10.1039/C2SM26891DViewGoogle Scholar
  69. 69Beris, A. N.; Horner, J. S.; Jariwala, S.; Armstrong, M. J.; Wagner, N. J. Recent advances in blood rheology: a review. Soft Matter 202117 (47), 10591– 10613,  DOI: 10.1039/D1SM01212FViewGoogle Scholar
  70. 70Arciero, J.; Causin, P.; Malgaroli, F. Mathematical methods for modeling the microcirculation. AIMS Biophysics 20174 (3), 362– 399,  DOI: 10.3934/biophy.2017.3.362ViewGoogle Scholar
  71. 71Maria, M. S.; Chandra, T. S.; Sen, A. K. Capillary flow-driven blood plasma separation and on-chip analyte detection in microfluidic devices. Microfluid. Nanofluid. 201721 (4), 72,  DOI: 10.1007/s10404-017-1907-6ViewGoogle Scholar
  72. 72Huhtamäki, T.; Tian, X.; Korhonen, J. T.; Ras, R. H. A. Surface-wetting characterization using contact-angle measurements. Nat. Protoc. 201813 (7), 1521– 1538,  DOI: 10.1038/s41596-018-0003-zViewGoogle Scholar
  73. 73Young, T., III. An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society of London 180595, 65– 87,  DOI: 10.1098/rstl.1805.0005ViewGoogle Scholar
  74. 74Kim, Y. C.; Kim, S.-H.; Kim, D.; Park, S.-J.; Park, J.-K. Plasma extraction in a capillary-driven microfluidic device using surfactant-added poly(dimethylsiloxane). Sens. Actuators, B 2010145 (2), 861– 868,  DOI: 10.1016/j.snb.2010.01.017ViewGoogle Scholar
  75. 75Washburn, E. W. The Dynamics of Capillary Flow. Physical Review 192117 (3), 273– 283,  DOI: 10.1103/PhysRev.17.273ViewGoogle Scholar
  76. 76Cito, S.; Ahn, Y. C.; Pallares, J.; Duarte, R. M.; Chen, Z.; Madou, M.; Katakis, I. Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography. Microfluid Nanofluidics 201213 (2), 227– 237,  DOI: 10.1007/s10404-012-0950-6ViewGoogle Scholar
  77. 77Berthier, E.; Dostie, A. M.; Lee, U. N.; Berthier, J.; Theberge, A. B. Open Microfluidic Capillary Systems. Anal Chem. 201991 (14), 8739– 8750,  DOI: 10.1021/acs.analchem.9b01429ViewGoogle Scholar
  78. 78Berthier, J.; Brakke, K. A.; Furlani, E. P.; Karampelas, I. H.; Poher, V.; Gosselin, D.; Cubizolles, M.; Pouteau, P. Whole blood spontaneous capillary flow in narrow V-groove microchannels. Sens. Actuators, B 2015206, 258– 267,  DOI: 10.1016/j.snb.2014.09.040ViewGoogle Scholar
  79. 79Hirt, C. W.; Nichols, B. D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 198139 (1), 201– 225,  DOI: 10.1016/0021-9991(81)90145-5ViewGoogle Scholar
  80. 80Chen, J.-L.; Shih, W.-H.; Hsieh, W.-H. AC electro-osmotic micromixer using a face-to-face, asymmetric pair of planar electrodes. Sens. Actuators, B 2013188, 11– 21,  DOI: 10.1016/j.snb.2013.07.012ViewGoogle Scholar
  81. 81Zhao, C.; Yang, C. Electrokinetics of non-Newtonian fluids: A review. Advances in Colloid and Interface Science 2013201-202, 94– 108,  DOI: 10.1016/j.cis.2013.09.001ViewGoogle Scholar
  82. 82Oh, K. W. 6 – Lab-on-chip (LOC) devices and microfluidics for biomedical applications. In MEMS for Biomedical Applications; Bhansali, S., Vasudev, A., Eds.; Woodhead Publishing, 2012; pp 150– 171.ViewGoogle Scholar
  83. 83Bello, M. S.; De Besi, P.; Rezzonico, R.; Righetti, P. G.; Casiraghi, E. Electroosmosis of polymer solutions in fused silica capillaries. ELECTROPHORESIS 199415 (1), 623– 626,  DOI: 10.1002/elps.1150150186ViewGoogle Scholar
  84. 84Park, H. M.; Lee, W. M. Effect of viscoelasticity on the flow pattern and the volumetric flow rate in electroosmotic flows through a microchannel. Lab Chip 20088 (7), 1163– 1170,  DOI: 10.1039/b800185eViewGoogle Scholar
  85. 85Afonso, A. M.; Alves, M. A.; Pinho, F. T. Analytical solution of mixed electro-osmotic/pressure driven flows of viscoelastic fluids in microchannels. J. Non-Newtonian Fluid Mech. 2009159 (1), 50– 63,  DOI: 10.1016/j.jnnfm.2009.01.006ViewGoogle Scholar
  86. 86Sousa, J. J.; Afonso, A. M.; Pinho, F. T.; Alves, M. A. Effect of the skimming layer on electro-osmotic─Poiseuille flows of viscoelastic fluids. Microfluid. Nanofluid. 201110 (1), 107– 122,  DOI: 10.1007/s10404-010-0651-yViewGoogle Scholar
  87. 87Zhao, C.; Yang, C. Electro-osmotic mobility of non-Newtonian fluids. Biomicrofluidics 20115 (1), 014110,  DOI: 10.1063/1.3571278ViewGoogle Scholar
  88. 88Pimenta, F.; Alves, M. A. Electro-elastic instabilities in cross-shaped microchannels. J. Non-Newtonian Fluid Mech. 2018259, 61– 77,  DOI: 10.1016/j.jnnfm.2018.04.004ViewGoogle Scholar
  89. 89Bezerra, W. S.; Castelo, A.; Afonso, A. M. Numerical Study of Electro-Osmotic Fluid Flow and Vortex Formation. Micromachines (Basel) 201910 (12), 796,  DOI: 10.3390/mi10120796ViewGoogle Scholar
  90. 90Ji, J.; Qian, S.; Liu, Z. Electroosmotic Flow of Viscoelastic Fluid through a Constriction Microchannel. Micromachines (Basel) 202112 (4), 417,  DOI: 10.3390/mi12040417ViewGoogle Scholar
  91. 91Zhao, C.; Yang, C. Exact solutions for electro-osmotic flow of viscoelastic fluids in rectangular micro-channels. Applied Mathematics and Computation 2009211 (2), 502– 509,  DOI: 10.1016/j.amc.2009.01.068ViewGoogle Scholar
  92. 92Gerum, R.; Mirzahossein, E.; Eroles, M.; Elsterer, J.; Mainka, A.; Bauer, A.; Sonntag, S.; Winterl, A.; Bartl, J.; Fischer, L. Viscoelastic properties of suspended cells measured with shear flow deformation cytometry. Elife 202211, e78823,  DOI: 10.7554/eLife.78823ViewGoogle Scholar
  93. 93Sadek, S. H.; Pinho, F. T.; Alves, M. A. Electro-elastic flow instabilities of viscoelastic fluids in contraction/expansion micro-geometries. J. Non-Newtonian Fluid Mech. 2020283, 104293,  DOI: 10.1016/j.jnnfm.2020.104293ViewGoogle Scholar
  94. 94Spanjaards, M.; Peters, G.; Hulsen, M.; Anderson, P. Numerical Study of the Effect of Thixotropy on Extrudate Swell. Polymers 202113 (24), 4383,  DOI: 10.3390/polym13244383ViewGoogle Scholar
  95. 95Rashidi, S.; Bafekr, H.; Valipour, M. S.; Esfahani, J. A. A review on the application, simulation, and experiment of the electrokinetic mixers. Chemical Engineering and Processing – Process Intensification 2018126, 108– 122,  DOI: 10.1016/j.cep.2018.02.021ViewGoogle Scholar
  96. 96Matsubara, K.; Narumi, T. Microfluidic mixing using unsteady electroosmotic vortices produced by a staggered array of electrodes. Chemical Engineering Journal 2016288, 638– 647,  DOI: 10.1016/j.cej.2015.12.013ViewGoogle Scholar
  97. 97Qaderi, A.; Jamaati, J.; Bahiraei, M. CFD simulation of combined electroosmotic-pressure driven micro-mixing in a microchannel equipped with triangular hurdle and zeta-potential heterogeneity. Chemical Engineering Science 2019199, 463– 477,  DOI: 10.1016/j.ces.2019.01.034ViewGoogle Scholar
  98. 98Cho, C.-C.; Chen, C.-L.; Chen, C. o.-K. Mixing enhancement in crisscross micromixer using aperiodic electrokinetic perturbing flows. International Journal of Heat and Mass Transfer 201255 (11), 2926– 2933,  DOI: 10.1016/j.ijheatmasstransfer.2012.02.006ViewGoogle Scholar
  99. 99Zhao, W.; Yang, F.; Wang, K.; Bai, J.; Wang, G. Rapid mixing by turbulent-like electrokinetic microflow. Chemical Engineering Science 2017165, 113– 121,  DOI: 10.1016/j.ces.2017.02.027ViewGoogle Scholar
  100. 100Tran, T.; Chakraborty, P.; Guttenberg, N.; Prescott, A.; Kellay, H.; Goldburg, W.; Goldenfeld, N.; Gioia, G. Macroscopic effects of the spectral structure in turbulent flows. Nat. Phys. 20106 (6), 438– 441,  DOI: 10.1038/nphys1674ViewGoogle Scholar
  101. 101Toner, M.; Irimia, D. Blood-on-a-chip. Annu. Rev. Biomed Eng. 20057, 77– 103,  DOI: 10.1146/annurev.bioeng.7.011205.135108ViewGoogle Scholar
  102. 102Maria, M. S.; Rakesh, P. E.; Chandra, T. S.; Sen, A. K. Capillary flow of blood in a microchannel with differential wetting for blood plasma separation and on-chip glucose detection. Biomicrofluidics 201610 (5), 054108,  DOI: 10.1063/1.4962874ViewGoogle Scholar
  103. 103Tripathi, S.; Varun Kumar, Y. V. B.; Prabhakar, A.; Joshi, S. S.; Agrawal, A. Passive blood plasma separation at the microscale: a review of design principles and microdevices. Journal of Micromechanics and Microengineering 201525 (8), 083001,  DOI: 10.1088/0960-1317/25/8/083001ViewGoogle Scholar
  104. 104Mohammadi, M.; Madadi, H.; Casals-Terré, J. Microfluidic point-of-care blood panel based on a novel technique: Reversible electroosmotic flow. Biomicrofluidics 20159 (5), 054106,  DOI: 10.1063/1.4930865ViewGoogle Scholar
  105. 105Kang, D. H.; Kim, K.; Kim, Y. J. An anti-clogging method for improving the performance and lifespan of blood plasma separation devices in real-time and continuous microfluidic systems. Sci. Rep 20188 (1), 17015,  DOI: 10.1038/s41598-018-35235-4ViewGoogle Scholar
  106. 106Li, Z.; Pollack, G. H. Surface-induced flow: A natural microscopic engine using infrared energy as fuel. Science Advances 20206 (19), eaba0941  DOI: 10.1126/sciadv.aba0941ViewGoogle Scholar
  107. 107Mercado-Uribe, H.; Guevara-Pantoja, F. J.; García-Muñoz, W.; García-Maldonado, J. S.; Méndez-Alcaraz, J. M.; Ruiz-Suárez, J. C. On the evolution of the exclusion zone produced by hydrophilic surfaces: A contracted description. J. Chem. Phys. 2021154 (19), 194902,  DOI: 10.1063/5.0043084ViewGoogle Scholar
  108. 108Yalcin, O.; Jani, V. P.; Johnson, P. C.; Cabrales, P. Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle. Front Physiol 20189, 168,  DOI: 10.3389/fphys.2018.00168ViewGoogle Scholar
Figure 11. Sketch of scour mechanism around USAF under random waves.

Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves

by Ruigeng Hu 1,Hongjun Liu 2,Hao Leng 1,Peng Yu 3 andXiuhai Wang 1,2,*

1College of Environmental Science and Engineering, Ocean University of China, Qingdao 266000, China

2Key Lab of Marine Environment and Ecology (Ocean University of China), Ministry of Education, Qingdao 266000, China

3Qingdao Geo-Engineering Survering Institute, Qingdao 266100, China

*Author to whom correspondence should be addressed.

J. Mar. Sci. Eng. 20219(8), 886; https://doi.org/10.3390/jmse9080886

Received: 6 July 2021 / Revised: 8 August 2021 / Accepted: 13 August 2021 / Published: 17 August 2021

(This article belongs to the Section Ocean Engineering)

Download 

Abstract

A series of numerical simulation were conducted to study the local scour around umbrella suction anchor foundation (USAF) under random waves. In this study, the validation was carried out firstly to verify the accuracy of the present model. Furthermore, the scour evolution and scour mechanism were analyzed respectively. In addition, two revised models were proposed to predict the equilibrium scour depth Seq around USAF. At last, a parametric study was carried out to study the effects of the Froude number Fr and Euler number Eu for the Seq. The results indicate that the present numerical model is accurate and reasonable for depicting the scour morphology under random waves. The revised Raaijmakers’s model shows good agreement with the simulating results of the present study when KCs,p < 8. The predicting results of the revised stochastic model are the most favorable for n = 10 when KCrms,a < 4. The higher Fr and Eu both lead to the more intensive horseshoe vortex and larger Seq.

Keywords: 

scournumerical investigationrandom wavesequilibrium scour depthKC number

1. Introduction

The rapid expansion of cities tends to cause social and economic problems, such as environmental pollution and traffic jam. As a kind of clean energy, offshore wind power has developed rapidly in recent years. The foundation of offshore wind turbine (OWT) supports the upper tower, and suffers the cyclic loading induced by waves, tides and winds, which exerts a vital influence on the OWT system. The types of OWT foundation include the fixed and floating foundation, and the fixed foundation was used usually for nearshore wind turbine. After the construction of fixed foundation, the hydrodynamic field changes in the vicinity of the foundation, leading to the horseshoe vortex formation and streamline compression at the upside and sides of foundation respectively [1,2,3,4]. As a result, the neighboring soil would be carried away by the shear stress induced by vortex, and the scour hole would emerge in the vicinity of foundation. The scour holes increase the cantilever length, and weaken the lateral bearing capacity of foundation [5,6,7,8,9]. Moreover, the natural frequency of OWT system increases with the increase of cantilever length, causing the resonance occurs when the system natural frequency equals the wave or wind frequency [10,11,12]. Given that, an innovative foundation called umbrella suction anchor foundation (USAF) has been designed for nearshore wind power. The previous studies indicated the USAF was characterized by the favorable lateral bearing capacity with the low cost [6,13,14]. The close-up of USAF is shown in Figure 1, and it includes six parts: 1-interal buckets, 2-external skirt, 3-anchor ring, 4-anchor branch, 5-supporting rod, 6-telescopic hook. The detailed description and application method of USAF can be found in reference [13].

Jmse 09 00886 g001 550

Figure 1. The close-up of umbrella suction anchor foundation (USAF).

Numerical and experimental investigations of scour around OWT foundation under steady currents and waves have been extensively studied by many researchers [1,2,15,16,17,18,19,20,21,22,23,24]. The seabed scour can be classified as two types according to Shields parameter θ, i.e., clear bed scour (θ < θcr) or live bed scour (θ > θcr). Due to the set of foundation, the adverse hydraulic pressure gradient exists at upstream foundation edges, resulting in the streamline separation between boundary layer flow and seabed. The separating boundary layer ascended at upstream anchor edges and developed into the horseshoe vortex. Then, the horseshoe vortex moved downstream gradually along the periphery of the anchor, and the vortex shed off continually at the lee-side of the anchor, i.e., wake vortex. The core of wake vortex is a negative pressure center, liking a vacuum cleaner. Hence, the soil particles were swirled into the negative pressure core and carried away by wake vortexes. At the same time, the onset of scour at rear side occurred. Finally, the wake vortex became downflow when the turbulence energy could not support the survival of wake vortex. According to Tavouktsoglou et al. [25], the scale of pile wall boundary layer is proportional to 1/ln(Rd) (Rd is pile Reynolds), which means the turbulence intensity induced by the flow-structure interaction would decrease with Rd increases, but the effects of Rd can be neglected only if the flow around the foundation is fully turbulent [26]. According to previous studies [1,15,27,28,29,30,31,32], the scour development around pile foundation under waves was significantly influenced by Shields parameter θ and KC number simultaneously (calculated by Equation (1)). Sand ripples widely existed around pile under waves in the case of live bed scour, and the scour morphology is related with θ and KC. Compared with θKC has a greater influence on the scour morphology [21,27,28]. The influence mechanism of KC on the scour around the pile is reflected in two aspects: the horseshoe vortex at upstream and wake vortex shedding at downstream.

KC=UwmTD��=�wm��(1)

where, Uwm is the maximum velocity of the undisturbed wave-induced oscillatory flow at the sea bottom above the wave boundary layer, T is wave period, and D is pile diameter.

There are two prerequisites to satisfy the formation of horseshoe vortex at upstream pile edges: (1) the incoming flow boundary layer with sufficient thickness and (2) the magnitude of upstream adverse pressure gradient making the boundary layer separating [1,15,16,18,20]. The smaller KC results the lower adverse pressure gradient, and the boundary layer cannot separate, herein, there is almost no horseshoe vortex emerging at upside of pile. Sumer et al. [1,15] carried out several sets of wave flume experiments under regular and irregular waves respectively, and the experiment results show that there is no horseshoe vortex when KC is less than 6. While the scale and lifespan of horseshoe vortex increase evidently with the increase of KC when KC is larger than 6. Moreover, the wake vortex contributes to the scour at lee-side of pile. Similar with the case of horseshoe vortex, there is no wake vortex when KC is less than 6. The wake vortex is mainly responsible for scour around pile when KC is greater than 6 and less than O(100), while horseshoe vortex controls scour nearly when KC is greater than O(100).

Sumer et al. [1] found that the equilibrium scour depth was nil around pile when KC was less than 6 under regular waves for live bed scour, while the equilibrium scour depth increased with the increase of KC. Based on that, Sumer proposed an equilibrium scour depth predicting equation (Equation (2)). Carreiras et al. [33] revised Sumer’s equation with m = 0.06 for nonlinear waves. Different with the findings of Sumer et al. [1] and Carreiras et al. [33], Corvaro et al. [21] found the scour still occurred for KC ≈ 4, and proposed the revised equilibrium scour depth predicting equation (Equation (3)) for KC > 4.

Rudolph and Bos [2] conducted a series of wave flume experiments to investigate the scour depth around monopile under waves only, waves and currents combined respectively, indicting KC was one of key parameters in influencing equilibrium scour depth, and proposed the equilibrium scour depth predicting equation (Equation (4)) for low KC (1 < KC < 10). Through analyzing the extensive data from published literatures, Raaijmakers and Rudolph [34] developed the equilibrium scour depth predicting equation (Equation (5)) for low KC, which was suitable for waves only, waves and currents combined. Khalfin [35] carried out several sets of wave flume experiments to study scour development around monopile, and proposed the equilibrium scour depth predicting equation (Equation (6)) for low KC (0.1 < KC < 3.5). Different with above equations, the Khalfin’s equation considers the Shields parameter θ and KC number simultaneously in predicting equilibrium scour depth. The flow reversal occurred under through in one wave period, so sand particles would be carried away from lee-side of pile to upside, resulting in sand particles backfilled into the upstream scour hole [20,29]. Considering the backfilling effects, Zanke et al. [36] proposed the equilibrium scour depth predicting equation (Equation (7)) around pile by theoretical analysis, and the equation is suitable for the whole range of KC number under regular waves and currents combined.

S/D=1.3(1−exp([−m(KC−6)])�/�=1.3(1−exp(−�(��−6))(2)

where, m = 0.03 for linear waves.

S/D=1.3(1−exp([−0.02(KC−4)])�/�=1.3(1−exp(−0.02(��−4))(3)

S/D=1.3γKwaveKhw�/�=1.3��wave�ℎw(4)

where, γ is safety factor, depending on design process, typically γ = 1.5, Kwave is correction factor considering wave action, Khw is correction factor considering water depth.

S/D=1.5[tanh(hwD)]KwaveKhw�/�=1.5tanh(ℎw�)�wave�ℎw(5)

where, hw is water depth.

S/D=0.0753(θθcr−−−√−0.5)0.69KC0.68�/�=0.0753(��cr−0.5)0.69��0.68(6)

where, θ is shields parameter, θcr is critical shields parameter.

S/D=2.5(1−0.5u/uc)xrelxrel=xeff/(1+xeff)xeff=0.03(1−0.35ucr/u)(KC−6)⎫⎭⎬⎪⎪�/�=2.5(1−0.5�/��)��������=����/(1+����)����=0.03(1−0.35�cr/�)(��−6)(7)

where, u is near-bed orbital velocity amplitude, uc is critical velocity corresponding the onset of sediment motion.

S/D=1.3{1−exp[−0.03(KC2lnn+36)1/2−6]}�/�=1.31−exp−0.03(��2ln�+36)1/2−6(8)

where, n is the 1/n’th highest wave for random waves

For predicting equilibrium scour depth under irregular waves, i.e., random waves, Sumer and Fredsøe [16] found it’s suitable to take Equation (2) to predict equilibrium scour depth around pile under random waves with the root-mean-square (RMS) value of near-bed orbital velocity amplitude Um and peak wave period TP to calculate KC. Khalfin [35] recommended the RMS wave height Hrms and peak wave period TP were used to calculate KC for Equation (6). References [37,38,39,40] developed a series of stochastic theoretical models to predict equilibrium scour depth around pile under random waves, nonlinear random waves plus currents respectively. The stochastic approach thought the 1/n’th highest wave were responsible for scour in vicinity of pile under random waves, and the KC was calculated in Equation (8) with Um and mean zero-crossing wave period Tz. The results calculated by Equation (8) agree well with experimental values of Sumer and Fredsøe [16] if the 1/10′th highest wave was used. To author’s knowledge, the stochastic approach proposed by Myrhaug and Rue [37] is the only theoretical model to predict equilibrium scour depth around pile under random waves for the whole range of KC number in published documents. Other methods of predicting scour depth under random waves are mainly originated from the equation for regular waves-only, waves and currents combined, which are limited to the large KC number, such as KC > 6 for Equation (2) and KC > 4 for Equation (3) respectively. However, situations with relatively low KC number (KC < 4) often occur in reality, for example, monopile or suction anchor for OWT foundations in ocean environment. Moreover, local scour around OWT foundations under random waves has not yet been investigated fully. Therefore, further study are still needed in the aspect of scour around OWT foundations with low KC number under random waves. Given that, this study presents the scour sediment model around umbrella suction anchor foundation (USAF) under random waves. In this study, a comparison of equilibrium scour depth around USAF between this present numerical models and the previous theoretical models and experimental results was presented firstly. Then, this study gave a comprehensive analysis for the scour mechanisms around USAF. After that, two revised models were proposed according to the model of Raaijmakers and Rudolph [34] and the stochastic model developed by Myrhaug and Rue [37] respectively to predict the equilibrium scour depth. Finally, a parametric study was conducted to study the effects of the Froude number (Fr) and Euler number (Eu) to equilibrium scour depth respectively.

2. Numerical Method

2.1. Governing Equations of Flow

The following equations adopted in present model are already available in Flow 3D software. The authors used these theoretical equations to simulate scour in random waves without modification. The incompressible viscous fluid motion satisfies the Reynolds-averaged Navier-Stokes (RANS) equation, so the present numerical model solves RANS equations:

∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)=−1ρf∂p∂x+Gx+fx∂�∂�+1��(���∂�∂�+���∂�∂�+���∂�∂�)=−1�f∂�∂�+��+��(9)

∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)=−1ρf∂p∂y+Gy+fy∂�∂�+1��(���∂�∂�+���∂�∂�+���∂�∂�)=−1�f∂�∂�+��+��(10)

∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)=−1ρf∂p∂z+Gz+fz∂�∂�+1��(���∂�∂�+���∂�∂�+���∂�∂�)=−1�f∂�∂�+��+��(11)

where, VF is the volume fraction; uv, and w are the velocity components in xyz direction respectively with Cartesian coordinates; Ai is the area fraction; ρf is the fluid density, fi is the viscous fluid acceleration, Gi is the fluid body acceleration (i = xyz).

2.2. Turbulent Model

The turbulence closure is available by the turbulent model, such as one-equation, the one-equation k-ε model, the standard k-ε model, RNG k-ε turbulent model and large eddy simulation (LES) model. The LES model requires very fine mesh grid, so the computational time is large, which hinders the LES model application in engineering. The RNG k-ε model can reduce computational time greatly with high accuracy in the near-wall region. Furthermore, the RNG k-ε model computes the maximum turbulent mixing length dynamically in simulating sediment scour model. Therefore, the RNG k-ε model was adopted to study the scour around anchor under random waves [41,42].

∂kT∂T+1VF(uAx∂kT∂x+vAy∂kT∂y+wAz∂kT∂z)=PT+GT+DiffkT−εkT∂��∂�+1��(���∂��∂�+���∂��∂�+���∂��∂�)=��+��+������−���(12)

∂εT∂T+1VF(uAx∂εT∂x+vAy∂εT∂y+wAz∂εT∂z)=CDIS1εTkT(PT+CDIS3GT)+Diffε−CDIS2ε2TkT∂��∂�+1��(���∂��∂�+���∂��∂�+���∂��∂�)=����1����(��+����3��)+�����−����2��2��(13)

where, kT is specific kinetic energy involved with turbulent velocity, GT is the turbulent energy generated by buoyancy; εT is the turbulent energy dissipating rate, PT is the turbulent energy, Diffε and DiffkT are diffusion terms associated with VFAiCDIS1CDIS2 and CDIS3 are dimensionless parameters, and CDIS1CDIS3 have default values of 1.42, 0.2 respectively. CDIS2 can be obtained from PT and kT.

2.3. Sediment Scour Model

The sand particles may suffer four processes under waves, i.e., entrainment, bed load transport, suspended load transport, and deposition, so the sediment scour model should depict the above processes efficiently. In present numerical simulation, the sediment scour model includes the following aspects:

2.3.1. Entrainment and Deposition

The combination of entrainment and deposition determines the net scour rate of seabed in present sediment scour model. The entrainment lift velocity of sand particles was calculated as [43]:

ulift,i=αinsd0.3∗(θ−θcr)1.5∥g∥di(ρi−ρf)ρf−−−−−−−−−−−−√�lift,i=�����*0.3(�−�cr)1.5���(��−�f)�f(14)

where, αi is the entrainment parameter, ns is the outward point perpendicular to the seabed, d* is the dimensionless diameter of sand particles, which was calculated by Equation (15), θcr is the critical Shields parameter, g is the gravity acceleration, di is the diameter of sand particles, ρi is the density of seabed species.

d∗=di(∥g∥ρf(ρi−ρf)μ2f)1/3�*=��(��f(��−�f)�f2)1/3(15)

where μf is the fluid dynamic viscosity.

In Equation (14), the entrainment parameter αi confirms the rate at which sediment erodes when the given shear stress is larger than the critical shear stress, and the recommended value 0.018 was adopted according to the experimental data of Mastbergen and Von den Berg [43]. ns is the outward pointing normal to the seabed interface, and ns = (0,0,1) according to the Cartesian coordinates used in present numerical model.

The shields parameter was obtained from the following equation:

θ=U2f,m(ρi/ρf−1)gd50�=�f,m2(��/�f−1)��50(16)

where, Uf,m is the maximum value of the near-bed friction velocity; d50 is the median diameter of sand particles. The detailed calculation procedure of θ was available in Soulsby [44].

The critical shields parameter θcr was obtained from the Equation (17) [44]

θcr=0.31+1.2d∗+0.055[1−exp(−0.02d∗)]�cr=0.31+1.2�*+0.0551−exp(−0.02�*)(17)

The sand particles begin to deposit on seabed when the turbulence energy weaken and cann’t support the particles suspending. The setting velocity of the particles was calculated from the following equation [44]:

usettling,i=νfdi[(10.362+1.049d3∗)0.5−10.36]�settling,�=�f��(10.362+1.049�*3)0.5−10.36(18)

where νf is the fluid kinematic viscosity.

2.3.2. Bed Load Transport

This is called bed load transport when the sand particles roll or bounce over the seabed and always have contact with seabed. The bed load transport velocity was computed by [45]:

ubedload,i=qb,iδicb,ifb�bedload,�=�b,����b,��b(19)

where, qb,i is the bed load transport rate, which was obtained from Equation (20), δi is the bed load thickness, which was calculated by Equation (21), cb,i is the volume fraction of sand i in the multiple species, fb is the critical packing fraction of the seabed.

qb,i=8[∥g∥(ρi−ρfρf)d3i]1/2�b,�=8�(��−�f�f)��31/2(20)

δi=0.3d0.7∗(θθcr−1)0.5di��=0.3�*0.7(��cr−1)0.5��(21)

2.3.3. Suspended Load Transport

Through the following transport equation, the suspended sediment concentration could be acquired.

∂Cs,i∂t+∇(us,iCs,i)=∇∇(DfCs,i)∂�s,�∂�+∇(�s,��s,�)=∇∇(�f�s,�)(22)

where, Cs,i is the suspended sand particles mass concentration of sand i in the multiple species, us,i is the sand particles velocity of sand iDf is the diffusivity.

The velocity of sand i in the multiple species could be obtained from the following equation:

us,i=u¯¯+usettling,ics,i�s,�=�¯+�settling,��s,�(23)

where, u¯�¯ is the velocity of mixed fluid-particles, which can be calculated by the RANS equation with turbulence model, cs,i is the suspended sand particles volume concentration, which was computed from Equation (24).

cs,i=Cs,iρi�s,�=�s,���(24)

3. Model Setup

The seabed-USAF-wave three-dimensional scour numerical model was built using Flow-3D software. As shown in Figure 2, the model includes sandy seabed, USAF model, sea water, two baffles and porous media. The dimensions of USAF are shown in Table 1. The sandy bed (210 m in length, 30 m in width and 11 m in height) is made up of uniform fine sand with median diameter d50 = 0.041 cm. The USAF model includes upper steel tube with the length of 20 m, which was installed in the middle of seabed. The location of USAF is positioned at 140 m from the upstream inflow boundary and 70 m from the downstream outflow boundary. Two baffles were installed at two ends of seabed. In order to eliminate the wave reflection basically, the porous media was set at the outflow side on the seabed.

Jmse 09 00886 g002 550

Figure 2. (a) The sketch of seabed-USAF-wave three-dimensional model; (b) boundary condation:Wv-wave boundary, S-symmetric boundary, O-outflow boundary; (c) USAF model.

Table 1. Numerical simulating cases.

Table

3.1. Mesh Geometric Dimensions

In the simulation of the scour under the random waves, the model includes the umbrella suction anchor foundation, seabed and fluid. As shown in Figure 3, the model mesh includes global mesh grid and nested mesh grid, and the total number of grids is 1,812,000. The basic procedure for building mesh grid consists of two steps. Step 1: Divide the global mesh using regular hexahedron with size of 0.6 × 0.6. The global mesh area is cubic box, embracing the seabed and whole fluid volume, and the dimensions are 210 m in length, 30 m in width and 32 m in height. The details of determining the grid size can see the following mesh sensitivity section. Step 2: Set nested fine mesh grid in vicinity of the USAF with size of 0.3 × 0.3 so as to shorten the computation cost and improve the calculation accuracy. The encryption range is −15 m to 15 m in x direction, −15 m to 15 m in y direction and 0 m to 32 m in z direction, respectively. In order to accurately capture the free-surface dynamics, such as the fluid-air interface, the volume of fluid (VOF) method was adopted for tracking the free water surface. One specific algorithm called FAVORTM (Fractional Area/Volume Obstacle Representation) was used to define the fractional face areas and fractional volumes of the cells which are open to fluid flow.

Jmse 09 00886 g003 550

Figure 3. The sketch of mesh grid.

3.2. Boundary Conditions

As shown in Figure 2, the initial fluid length is 210 m as long as seabed. A wave boundary was specified at the upstream offshore end. The details of determining the random wave spectrum can see the following wave parameters section. The outflow boundary was set at the downstream onshore end. The symmetry boundary was used at the top and two sides of the model. The symmetric boundaries were the better strategy to improve the computation efficiency and save the calculation cost [46]. At the seabed bottom, the wall boundary was adopted, which means the u = v = w= 0. Besides, the upper steel tube of USAF was set as no-slip condition.

3.3. Wave Parameters

The random waves with JONSWAP wave spectrum were used for all simulations as realistic representation of offshore conditions. The unidirectional JONSWAP frequency spectrum was described as [47]:

S(ω)=αg2ω5exp[−54(ωpω)4]γexp[−(ω−ωp)22σ2ω2p]�(�)=��2�5exp−54(�p�)4�exp−(�−�p)22�2�p2(25)

where, α is wave energy scale parameter, which is calculated by Equation (26), ω is frequency, ωp is wave spectrum peak frequency, which can be obtained from Equation (27). γ is wave spectrum peak enhancement factor, in this study γ = 3.3. σ is spectral width factor, σ equals 0.07 for ω ≤ ωp and 0.09 for ω > ωp respectively.

α=0.0076(gXU2)−0.22�=0.0076(���2)−0.22(26)

ωp=22(gU)(gXU2)−0.33�p=22(��)(���2)−0.33(27)

where, X is fetch length, U is average wind velocity at 10 m height from mean sea level.

In present numerical model, the input key parameters include X and U for wave boundary with JONSWAP wave spectrum. The objective wave height and period are available by different combinations of X and U. In this study, we designed 9 cases with different wave heights, periods and water depths for simulating scour around USAF under random waves (see Table 2). For random waves, the wave steepness ε and Ursell number Ur were acquired form Equations (28) and (29) respectively

ε=2πgHsT2a�=2���s�a2(28)

Ur=Hsk2h3w�r=�s�2ℎw3(29)

where, Hs is significant wave height, Ta is average wave period, k is wave number, hw is water depth. The Shield parameter θ satisfies θ > θcr for all simulations in current study, indicating the live bed scour prevails.

Table 2. Numerical simulating cases.

Table

3.4. Mesh Sensitivity

In this section, a mesh sensitivity analysis was conducted to investigate the influence of mesh grid size to results and make sure the calculation is mesh size independent and converged. Three mesh grid size were chosen: Mesh 1—global mesh grid size of 0.75 × 0.75, nested fine mesh grid size of 0.4 × 0.4, and total number of grids 1,724,000, Mesh 2—global mesh grid size of 0.6 × 0.6, nested fine mesh grid size of 0.3 × 0.3, and total number of grids 1,812,000, Mesh 3—global mesh grid size of 0.4 × 0.4, nested fine mesh grid size of 0.2 × 0.2, and total number of grids 1,932,000. The near-bed shear velocity U* is an important factor for influencing scour process [1,15], so U* at the position of (4,0,11.12) was evaluated under three mesh sizes. As the Figure 4 shown, the maximum error of shear velocity ∆U*1,2 is about 39.8% between the mesh 1 and mesh 2, and 4.8% between the mesh 2 and mesh 3. According to the mesh sensitivity criterion adopted by Pang et al. [48], it’s reasonable to think the results are mesh size independent and converged with mesh 2. Additionally, the present model was built according to prototype size, and the mesh size used in present model is larger than the mesh size adopted by Higueira et al. [49] and Corvaro et al. [50]. If we choose the smallest cell size, it will take too much time. For example, the simulation with Mesh3 required about 260 h by using a computer with Intel Xeon Scalable Gold 4214 CPU @24 Cores, 2.2 GHz and 64.00 GB RAM. Therefore, in this case, considering calculation accuracy and computation efficiency, the mesh 2 was chosen for all the simulation in this study.

Jmse 09 00886 g004 550

Figure 4. Comparison of near-bed shear velocity U* with different mesh grid size.

The nested mesh block was adopted for seabed in vicinity of the USAF, which was overlapped with the global mesh block. When two mesh blocks overlap each other, the governing equations are by default solved on the mesh block with smaller average cell size (i.e., higher grid resolution). It is should be noted that the Flow 3D software used the moving mesh captures the scour evolution and automatically adjusts the time step size to be as large as possible without exceeding any of the stability limits, affecting accuracy, or unduly increasing the effort required to enforce the continuity condition [51].

3.5. Model Validation

In order to verify the reliability of the present model, the results of present study were compared with the experimental data of Khosronejad et al. [52]. The experiment was conducted in an open channel with a slender vertical pile under unidirectional currents. The comparison of scour development between the present results and the experimental results is shown in Figure 5. The Figure 5 reveals that the present results agree well with the experimental data of Khosronejad et al. [52]. In the first stage, the scour depth increases rapidly. After that, the scour depth achieves a maximum value gradually. The equilibrium scour depth calculated by the present model is basically corresponding with the experimental results of Khosronejad et al. [52], although scour depth in the present model is slightly larger than the experimental results at initial stage.

Jmse 09 00886 g005 550

Figure 5. Comparison of time evolution of scour between the present study and Khosronejad et al. [52], Petersen et al. [17].

Secondly, another comparison was further conducted between the results of present study and the experimental data of Petersen et al. [17]. The experiment was carried out in a flume with a circular vertical pile in combined waves and current. Figure 4 shows a comparison of time evolution of scour depth between the simulating and the experimental results. As Figure 5 indicates, the scour depth in this study has good overall agreement with the experimental results proposed in Petersen et al. [17]. The equilibrium scour depth calculated by the present model is 0.399 m, which equals to the experimental value basically. Overall, the above verifications prove the present model is accurate and capable in dealing with sediment scour under waves.

In addition, in order to calibrate and validate the present model for hydrodynamic parameters, the comparison of water surface elevation was carried out with laboratory experiments conducted by Stahlmann [53] for wave gauge No. 3. The Figure 6 depicts the surface wave profiles between experiments and numerical model results. The comparison indicates that there is a good agreement between the model results and experimental values, especially the locations of wave crest and trough. Comparison of the surface elevation instructs the present model has an acceptable relative error, and the model is a calibrated in terms of the hydrodynamic parameters.

Jmse 09 00886 g006 550

Figure 6. Comparison of surface elevation between the present study and Stahlmann [53].

Finally, another comparison was conducted for equilibrium scour depth or maximum scour depth under random waves with the experimental data of Sumer and Fredsøe [16] and Schendel et al. [22]. The Figure 7 shows the comparison between the numerical results and experimental data of Run01, Run05, Run21 and Run22 in Sumer and Fredsøe [16] and test A05 and A09 in Schendel et al. [22]. As shown in Figure 7, the equilibrium scour depth or maximum scour depth distributed within the ±30 error lines basically, meaning the reliability and accuracy of present model for predicting equilibrium scour depth around foundation in random waves. However, compared with the experimental values, the present model overestimated the equilibrium scour depth generally. Given that, a calibration for scour depth was carried out by multiplying the mean reduced coefficient 0.85 in following section.

Jmse 09 00886 g007 550

Figure 7. Comparison of equilibrium (or maximum) scour depth between the present study and Sumer and Fredsøe [16], Schendel et al. [22].

Through the various examination for hydrodynamic and morphology parameters, it can be concluded that the present model is a validated and calibrated model for scour under random waves. Thus, the present numerical model would be utilized for scour simulation around foundation under random waves.

4. Numerical Results and Discussions

4.1. Scour Evolution

Figure 8 displays the scour evolution for case 1–9. As shown in Figure 8a, the scour depth increased rapidly at the initial stage, and then slowed down at the transition stage, which attributes to the backfilling occurred in scour holes under live bed scour condition, resulting in the net scour decreasing. Finally, the scour reached the equilibrium state when the amount of sediment backfilling equaled to that of scouring in the scour holes, i.e., the net scour transport rate was nil. Sumer and Fredsøe [16] proposed the following formula for the scour development under waves

St=Seq(1−exp(−t/Tc))�t=�eq(1−exp(−�/�c))(30)

where Tc is time scale of scour process.

Jmse 09 00886 g008 550

Figure 8. Time evolution of scour for case 1–9: (a) Case 1–5; (b) Case 6–9.

The computing time is 3600 s and the scour development curves in Figure 8 kept fluctuating, meaning it’s still not in equilibrium scour stage in these cases. According to Sumer and Fredsøe [16], the equilibrium scour depth can be acquired by fitting the data with Equation (30). From Figure 8, it can be seen that the scour evolution obtained from Equation (30) is consistent with the present study basically at initial stage, but the scour depth predicted by Equation (30) developed slightly faster than the simulating results and the Equation (30) overestimated the scour depth to some extent. Overall, the whole tendency of the results calculated by Equation (30) agrees well with the simulating results of the present study, which means the Equation (30) is applicable to depict the scour evolution around USAF under random waves.

4.2. Scour Mechanism under Random Waves

The scour morphology and scour evolution around USAF are similar under random waves in case 1~9. Taking case 7 as an example, the scour morphology is shown in Figure 9.

Jmse 09 00886 g009 550

Figure 9. Scour morphology under different times for case 7.

From Figure 9, at the initial stage (t < 1200 s), the scour occurred at upstream foundation edges between neighboring anchor branches. The maximum scour depth appeared at the lee-side of the USAF. Correspondingly, the sediments deposited at the periphery of the USAF, and the location of the maximum accretion depth was positioned at an angle of about 45° symmetrically with respect to the wave propagating direction in the lee-side of the USAF. After that, when t > 2400 s, the location of the maximum scour depth shifted to the upside of the USAF at an angle of about 45° with respect to the wave propagating direction.

According to previous studies [1,15,16,19,30,31], the horseshoe vortex, streamline compression and wake vortex shedding were responsible for scour around foundation. The Figure 10 displays the distribution of flow velocity in vicinity of foundation, which reflects the evolving processes of horseshoe vertex.

Jmse 09 00886 g010a 550
Jmse 09 00886 g010b 550

Figure 10. Velocity profile around USAF: (a) Flow runup and down stream at upstream anchor edges; (b) Horseshoe vortex at upstream anchor edges; (c) Flow reversal during wave through stage at lee side.

As shown in Figure 10, the inflow tripped to the upstream edges of the USAF and it was blocked by the upper tube of USAF. Then, the downflow formed the horizontal axis clockwise vortex and rolled on the seabed bypassing the tube, that is, the horseshoe vortex (Figure 11). The Figure 12 displays the turbulence intensity around the tube on the seabed. From Figure 12, it can be seen that the turbulence intensity was high-intensity with respect to the region of horseshoe vortex. This phenomenon occurred because of drastic water flow momentum exchanging in the horseshoe vortex. As a result, it created the prominent shear stress on the seabed, causing the local scour at the upstream edges of USAF. Besides, the horseshoe vortex moved downstream gradually along the periphery of the tube and the wake vortex shed off continually at the lee-side of the USAF, i.e., wake vortex.

Jmse 09 00886 g011 550

Figure 11. Sketch of scour mechanism around USAF under random waves.

Jmse 09 00886 g012 550

Figure 12. Turbulence intensity: (a) Turbulence intensity of horseshoe vortex; (b) Turbulence intensity of wake vortex; (c) Turbulence intensity of accretion area.

The core of wake vortex is a negative pressure center, liking a vacuum cleaner [11,42]. Hence, the soil particles were swirled into the negative pressure core and carried away by wake vortex. At the same time, the onset of scour at rear side occurred. Finally, the wake vortex became downflow at the downside of USAF. As is shown in Figure 12, the turbulence intensity was low where the downflow occurred at lee-side, which means the turbulence energy may not be able to support the survival of wake vortex, leading to accretion happening. As mentioned in previous section, the formation of horseshoe vortex was dependent with adverse pressure gradient at upside of foundation. As shown in Figure 13, the evaluated range of pressure distribution is −15 m to 15 m in x direction. The t = 450 s and t = 1800 s indicate that the wave crest and trough arrived at the upside and lee-side of the foundation respectively, and the t = 350 s was neither the wave crest nor trough. The adverse gradient pressure reached the maximum value at t = 450 s corresponding to the wave crest phase. In this case, it’s helpful for the wave boundary separating fully from seabed, which leads to the formation of horseshoe vortex with high turbulence intensity. Therefore, the horseshoe vortex is responsible for the local scour between neighboring anchor branches at upside of USAF. What’s more, due to the combination of the horseshoe vortex and streamline compression, the maximum scour depth occurred at the upside of the USAF with an angle of about 45° corresponding to the wave propagating direction. This is consistent with the findings of Pang et al. [48] and Sumer et al. [1,15] in case of regular waves. At the wave trough phase (t = 1800 s), the pressure gradient became positive at upstream USAF edges, which hindered the separating of wave boundary from seabed. In the meantime, the flow reversal occurred (Figure 10) and the adverse gradient pressure appeared at downstream USAF edges, but the magnitude of adverse gradient pressure at lee-side was lower than the upstream gradient pressure under wave crest. In this way, the intensity of horseshoe vortex behind the USAF under wave trough was low, which explains the difference of scour depth at upstream and downstream, i.e., the scour asymmetry. In other words, the scour asymmetry at upside and downside of USAF was attributed to wave asymmetry for random waves, and the phenomenon became more evident for nonlinear waves [21]. Briefly speaking, the vortex system at wave crest phase was mainly related to the scour process around USAF under random waves.

Jmse 09 00886 g013 550

Figure 13. Pressure distribution around USAF.

4.3. Equilibrium Scour Depth

The KC number is a key parameter for horseshoe vortex emerging and evolving under waves. According to Equation (1), when pile diameter D is fixed, the KC depends on the maximum near-bed velocity Uwm and wave period T. For random waves, the Uwm can be denoted by the root-mean-square (RMS) value of near-bed velocity amplitude Uwm,rms or the significant value of near-bed velocity amplitude Uwm,s. The Uwm,rms and Uwm,s for all simulating cases of the present study are listed in Table 3 and Table 4. The T can be denoted by the mean up zero-crossing wave period Ta, peak wave period Tp, significant wave period Ts, the maximum wave period Tm, 1/10′th highest wave period Tn = 1/10 and 1/5′th highest wave period Tn = 1/5 for random waves, so the different combinations of Uwm and T will acquire different KC. The Table 3 and Table 4 list 12 types of KC, for example, the KCrms,s was calculated by Uwm,rms and Ts. Sumer and Fredsøe [16] conducted a series of wave flume experiments to investigate the scour depth around monopile under random waves, and found the equilibrium scour depth predicting equation (Equation (2)) for regular waves was applicable for random waves with KCrms,p. It should be noted that the Equation (2) is only suitable for KC > 6 under regular waves or KCrms,p > 6 under random waves.

Table 3. Uwm,rms and KC for case 1~9.

Table

Table 4. Uwm,s and KC for case 1~9.

Table

Raaijmakers and Rudolph [34] proposed the equilibrium scour depth predicting model (Equation (5)) around pile under waves, which is suitable for low KC. The format of Equation (5) is similar with the formula proposed by Breusers [54], which can predict the equilibrium scour depth around pile at different scour stages. In order to verify the applicability of Raaijmakers’s model for predicting the equilibrium scour depth around USAF under random waves, a validation of the equilibrium scour depth Seq between the present study and Raaijmakers’s equation was conducted. The position where the scour depth Seq was evaluated is the location of the maximum scour depth, and it was depicted in Figure 14. The Figure 15 displays the comparison of Seq with different KC between the present study and Raaijmakers’s model.

Jmse 09 00886 g014 550

Figure 14. Sketch of the position where the Seq was evaluated.

Jmse 09 00886 g015a 550
Jmse 09 00886 g015b 550

Figure 15. Comparison of the equilibrium scour depth between the present model and the model of Raaijmakers and Rudolph [34]: (aKCrms,sKCrms,a; (bKCrms,pKCrms,m; (cKCrms,n = 1/10KCrms,n = 1/5; (dKCs,sKCs,a; (eKCs,pKCs,m; (fKCs,n = 1/10KCs,n = 1/5.

As shown in Figure 15, there is an error in predicting Seq between the present study and Raaijmakers’s model, and Raaijmakers’s model underestimates the results generally. Although the error exists, the varying trend of Seq with KC obtained from Raaijmakers’s model is consistent with the present study basically. What’s more, the error is minimum and the Raaijmakers’s model is of relatively high accuracy for predicting scour around USAF under random waves by using KCs,p. Based on this, a further revision was made to eliminate the error as much as possible, i.e., add the deviation value ∆S/D in the Raaijmakers’s model. The revised equilibrium scour depth predicting equation based on Raaijmakers’s model can be written as

S′eq/D=1.95[tanh(hD)](1−exp(−0.012KCs,p))+ΔS/D�eq′/�=1.95tanh(ℎ�)(1−exp(−0.012��s,p))+∆�/�(31)

As the Figure 16 shown, through trial-calculation, when ∆S/D = 0.05, the results calculated by Equation (31) show good agreement with the simulating results of the present study. The maximum error is about 18.2% and the engineering requirements have been met basically. In order to further verify the accuracy of the revised model for large KC (KCs,p > 4) under random waves, a validation between the revised model and the previous experimental results [21]. The experiment was conducted in a flume (50 m in length, 1.0 m in width and 1.3 m in height) with a slender vertical pile (D = 0.1 m) under random waves. The seabed is composed of 0.13 m deep layer of sand with d50 = 0.6 mm and the water depth is 0.5 m for all tests. The significant wave height is 0.12~0.21 m and the KCs,p is 5.52~11.38. The comparison between the predicting results by Equation (31) and the experimental results of Corvaro et al. [21] is shown in Figure 17. From Figure 17, the experimental data evenly distributes around the predicted results and the prediction accuracy is favorable when KCs,p < 8. However, the gap between the predicting results and experimental data becomes large and the Equation (31) overestimates the equilibrium scour depth to some extent when KCs,p > 8.

Jmse 09 00886 g016 550

Figure 16. Comparison of Seq between the simulating results and the predicting values by Equation (31).

Jmse 09 00886 g017 550

Figure 17. Comparison of Seq/D between the Experimental results of Corvaro et al. [21] and the predicting values by Equation (31).

In ocean environment, the waves are composed of a train of sinusoidal waves with different frequencies and amplitudes. The energy of constituent waves with very large and very small frequencies is relatively low, and the energy of waves is mainly concentrated in a certain range of moderate frequencies. Myrhaug and Rue [37] thought the 1/n’th highest wave was responsible for scour and proposed the stochastic model to predict the equilibrium scour depth around pile under random waves for full range of KC. Noteworthy is that the KC was denoted by KCrms,a in the stochastic model. To verify the application of the stochastic model for predicting scour depth around USAF, a validation between the simulating results of present study and predicting results by the stochastic model with n = 2,3,5,10,20,500 was carried out respectively.

As shown in Figure 18, compared with the simulating results, the stochastic model underestimates the equilibrium scour depth around USAF generally. Although the error exists, the varying trend of Seq with KCrms,a obtained from the stochastic model is consistent with the present study basically. What’s more, the gap between the predicting values by stochastic model and the simulating results decreases with the increase of n, but for large n, for example n = 500, the varying trend diverges between the predicting values and simulating results, meaning it’s not feasible only by increasing n in stochastic model to predict the equilibrium scour depth around USAF.

Jmse 09 00886 g018 550

Figure 18. Comparison of Seq between the simulating results and the predicting values by Equation (8).

The Figure 19 lists the deviation value ∆Seq/D′ between the predicting values and simulating results with different KCrms,a and n. Then, fitted the relationship between the ∆S′and n under different KCrms,a, and the fitting curve can be written by Equation (32). The revised stochastic model (Equation (33)) can be acquired by adding ∆Seq/D′ to Equation (8).

ΔSeq/D=0.052*exp(−n/6.566)+0.068∆�eq/�=0.052*exp(−�/6.566)+0.068(32)

S′eq¯/D=S′eq/D+0.052*exp(−n/6.566)+0.068�eq′¯/�=�eq′/�+0.052*exp(−�/6.566)+0.068(33)

Jmse 09 00886 g019 550

Figure 19. The fitting line between ∆S′and n.

The comparison between the predicting results by Equation (33) and the simulating results of present study is shown in Figure 20. According to the Figure 20, the varying trend of Seq with KCrms,a obtained from the stochastic model is consistent with the present study basically. Compared with predicting results by the stochastic model, the results calculated by Equation (33) is favorable. Moreover, comparison with simulating results indicates that the predicting results are the most favorable for n = 10, which is consistent with the findings of Myrhaug and Rue [37] for equilibrium scour depth predicting around slender pile in case of random waves.

Jmse 09 00886 g020 550

Figure 20. Comparison of Seq between the simulating results and the predicting values by Equation (33).

In order to further verify the accuracy of the Equation (33) for large KC (KCrms,a > 4) under random waves, a validation was conducted between the Equation (33) and the previous experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21]. The details of experiments conducted by Corvaro et al. [21] were described in above section. Sumer and Fredsøe [16] investigated the local scour around pile under random waves. The experiments were conducted in a wave basin with a slender vertical pile (D = 0.032, 0.055 m). The seabed is composed of 0.14 m deep layer of sand with d50 = 0.2 mm and the water depth was maintained at 0.5 m. The JONSWAP wave spectrum was used and the KCrms,a was 5.29~16.95. The comparison between the predicting results by Equation (33) and the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21] are shown in Figure 21. From Figure 21, contrary to the case of low KCrms,a (KCrms,a < 4), the error between the predicting values and experimental results increases with decreasing of n for KCrms,a > 4. Therefore, the predicting results are the most favorable for n = 2 when KCrms,a > 4.

Jmse 09 00886 g021 550

Figure 21. Comparison of Seq between the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21] and the predicting values by Equation (33).

Noteworthy is that the present model was built according to prototype size, so the errors between the numerical results and experimental data of References [16,21] may be attribute to the scale effects. In laboratory experiments on scouring process, it is typically impossible to ensure a rigorous similarity of all physical parameters between the model and prototype structure, leading to the scale effects in the laboratory experiments. To avoid a cohesive behaviour, the bed material was not scaled geometrically according to model scale. As a consequence, the relatively large-scaled sediments sizes may result in the overestimation of bed load transport and underestimation of suspended load transport compared with field conditions. What’s more, the disproportional scaled sediment presumably lead to the difference of bed roughness between the model and prototype, and thus large influences for wave boundary layer on the seabed and scour process. Besides, according to Corvaro et al. [21] and Schendel et al. [55], the pile Reynolds numbers and Froude numbers both affect the scour depth for the condition of non fully developed turbulent flow in laboratory experiments.

4.4. Parametric Study

4.4.1. Influence of Froude Number

As described above, the set of foundation leads to the adverse pressure gradient appearing at upstream, leading to the wave boundary layer separating from seabed, then horseshoe vortex formatting and the horseshoe vortex are mainly responsible for scour around foundation (see Figure 22). The Froude number Fr is the key parameter to influence the scale and intensity of horseshoe vortex. The Fr under waves can be calculated by the following formula [42]

Fr=UwgD−−−√�r=�w��(34)

where Uw is the mean water particle velocity during 1/4 cycle of wave oscillation, obtained from the following formula. Noteworthy is that the root-mean-square (RMS) value of near-bed velocity amplitude Uwm,rms is used for calculating Uwm.

Uw=1T/4∫0T/4Uwmsin(t/T)dt=2πUwm�w=1�/4∫0�/4�wmsin(�/�)��=2��wm(35)

Jmse 09 00886 g022 550

Figure 22. Sketch of flow field at upstream USAF edges.

Tavouktsoglou et al. [25] proposed the following formula between Fr and the vertical location of the stagnation y

yh∝Fer�ℎ∝�r�(36)

where e is constant.

The Figure 23 displays the relationship between Seq/D and Fr of the present study. In order to compare with the simulating results, the experimental data of Corvaro et al. [21] was also depicted in Figure 23. As shown in Figure 23, the equilibrium scour depth appears a logarithmic increase as Fr increases and approaches the mathematical asymptotic value, which is also consistent with the experimental results of Corvaro et al. [21]. According to Figure 24, the adverse pressure gradient pressure at upstream USAF edges increases with the increase of Fr, which is benefit for the wave boundary layer separating from seabed, resulting in the high-intensity horseshoe vortex, hence, causing intensive scour around USAF. Based on the previous study of Tavouktsoglou et al. [25] for scour around pile under currents, the high Fr leads to the stagnation point is closer to the mean sea level for shallow water, causing the stronger downflow kinetic energy. As mentioned in previous section, the energy of downflow at upstream makes up the energy of the subsequent horseshoe vortex, so the stronger downflow kinetic energy results in the more intensive horseshoe vortex. Therefore, the higher Fr leads to the more intensive horseshoe vortex by influencing the position of stagnation point y presumably. Qi and Gao [19] carried out a series of flume tests to investigate the scour around pile under regular waves, and proposed the fitting formula between Seq/D and Fr as following

lg(Seq/D)=Aexp(B/Fr)+Clg(�eq/�)=�exp(�/�r)+�(37)

where AB and C are constant.

Jmse 09 00886 g023 550

Figure 23. The fitting curve between Seq/D and Fr.

Jmse 09 00886 g024 550

Figure 24. Sketch of adverse pressure gradient at upstream USAF edges.

Took the Equation (37) to fit the simulating results with A = −0.002, B = 0.686 and C = −0.808, and the results are shown in Figure 23. From Figure 23, the simulating results evenly distribute around the Equation (37) and the varying trend of Seq/D and Fr in present study is consistent with Equation (37) basically, meaning the Equation (37) is applicable to express the relationship of Seq/D with Fr around USAF under random waves.

4.4.2. Influence of Euler Number

The Euler number Eu is the influencing factor for the hydrodynamic field around foundation. The Eu under waves can be calculated by the following formula. The Eu can be represented by the Equation (38) for uniform cylinders [25]. The root-mean-square (RMS) value of near-bed velocity amplitude Um,rms is used for calculating Um.

Eu=U2mgD�u=�m2��(38)

where Um is depth-averaged flow velocity.

The Figure 25 displays the relationship between Seq/D and Eu of the present study. In order to compare with the simulating results, the experimental data of Sumer and Fredsøe [16] and Corvaro et al. [21] were also plotted in Figure 25. As shown in Figure 25, similar with the varying trend of Seq/D and Fr, the equilibrium scour depth appears a logarithmic increase as Eu increases and approaches the mathematical asymptotic value, which is also consistent with the experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21]. According to Figure 24, the adverse pressure gradient pressure at upstream USAF edges increases with the increasing of Eu, which is benefit for the wave boundary layer separating from seabed, inducing the high-intensity horseshoe vortex, hence, causing intensive scour around USAF.

Jmse 09 00886 g025 550

Figure 25. The fitting curve between Seq/D and Eu.

Therefore, the variation of Fr and Eu reflect the magnitude of adverse pressure gradient pressure at upstream. Given that, the Equation (37) also was used to fit the simulating results with A = 8.875, B = 0.078 and C = −9.601, and the results are shown in Figure 25. From Figure 25, the simulating results evenly distribute around the Equation (37) and the varying trend of Seq/D and Eu in present study is consistent with Equation (37) basically, meaning the Equation (37) is also applicable to express the relationship of Seq/D with Eu around USAF under random waves. Additionally, according to the above description of Fr, it can be inferred that the higher Fr and Eu both lead to the more intensive horseshoe vortex by influencing the position of stagnation point y presumably.

5. Conclusions

A series of numerical models were established to investigate the local scour around umbrella suction anchor foundation (USAF) under random waves. The numerical model was validated for hydrodynamic and morphology parameters by comparing with the experimental data of Khosronejad et al. [52], Petersen et al. [17], Sumer and Fredsøe [16] and Schendel et al. [22]. Based on the simulating results, the scour evolution and scour mechanisms around USAF under random waves were analyzed respectively. Two revised models were proposed according to the model of Raaijmakers and Rudolph [34] and the stochastic model developed by Myrhaug and Rue [37] to predict the equilibrium scour depth around USAF under random waves. Finally, a parametric study was carried out with the present model to study the effects of the Froude number Fr and Euler number Eu to the equilibrium scour depth around USAF under random waves. The main conclusions can be described as follows.(1)

The packed sediment scour model and the RNG k−ε turbulence model were used to simulate the sand particles transport processes and the flow field around UASF respectively. The scour evolution obtained by the present model agrees well with the experimental results of Khosronejad et al. [52], Petersen et al. [17], Sumer and Fredsøe [16] and Schendel et al. [22], which indicates that the present model is accurate and reasonable for depicting the scour morphology around UASF under random waves.(2)

The vortex system at wave crest phase is mainly related to the scour process around USAF under random waves. The maximum scour depth appeared at the lee-side of the USAF at the initial stage (t < 1200 s). Subsequently, when t > 2400 s, the location of the maximum scour depth shifted to the upside of the USAF at an angle of about 45° with respect to the wave propagating direction.(3)

The error is negligible and the Raaijmakers’s model is of relatively high accuracy for predicting scour around USAF under random waves when KC is calculated by KCs,p. Given that, a further revision model (Equation (31)) was proposed according to Raaijmakers’s model to predict the equilibrium scour depth around USAF under random waves and it shows good agreement with the simulating results of the present study when KCs,p < 8.(4)

Another further revision model (Equation (33)) was proposed according to the stochastic model established by Myrhaug and Rue [37] to predict the equilibrium scour depth around USAF under random waves, and the predicting results are the most favorable for n = 10 when KCrms,a < 4. However, contrary to the case of low KCrms,a, the predicting results are the most favorable for n = 2 when KCrms,a > 4 by the comparison with experimental results of Sumer and Fredsøe [16] and Corvaro et al. [21].(5)

The same formula (Equation (37)) is applicable to express the relationship of Seq/D with Eu or Fr, and it can be inferred that the higher Fr and Eu both lead to the more intensive horseshoe vortex and larger Seq.

Author Contributions

Conceptualization, H.L. (Hongjun Liu); Data curation, R.H. and P.Y.; Formal analysis, X.W. and H.L. (Hao Leng); Funding acquisition, X.W.; Writing—original draft, R.H. and P.Y.; Writing—review & editing, X.W. and H.L. (Hao Leng); The final manuscript has been approved by all the authors. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Fundamental Research Funds for the Central Universities (grant number 202061027) and the National Natural Science Foundation of China (grant number 41572247).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data presented in this study are available on request from the corresponding author.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Sumer, B.M.; Fredsøe, J.; Christiansen, N. Scour Around Vertical Pile in Waves. J. Waterw. Port. Coast. Ocean Eng. 1992118, 15–31. [Google Scholar] [CrossRef]
  2. Rudolph, D.; Bos, K. Scour around a monopile under combined wave-current conditions and low KC-numbers. In Proceedings of the 6th International Conference on Scour and Erosion, Amsterdam, The Netherlands, 1–3 November 2006; pp. 582–588. [Google Scholar]
  3. Nielsen, A.W.; Liu, X.; Sumer, B.M.; Fredsøe, J. Flow and bed shear stresses in scour protections around a pile in a current. Coast. Eng. 201372, 20–38. [Google Scholar] [CrossRef]
  4. Ahmad, N.; Bihs, H.; Myrhaug, D.; Kamath, A.; Arntsen, Ø.A. Three-dimensional numerical modelling of wave-induced scour around piles in a side-by-side arrangement. Coast. Eng. 2018138, 132–151. [Google Scholar] [CrossRef]
  5. Li, H.; Ong, M.C.; Leira, B.J.; Myrhaug, D. Effects of Soil Profile Variation and Scour on Structural Response of an Offshore Monopile Wind Turbine. J. Offshore Mech. Arct. Eng. 2018140, 042001. [Google Scholar] [CrossRef]
  6. Li, H.; Liu, H.; Liu, S. Dynamic analysis of umbrella suction anchor foundation embedded in seabed for offshore wind turbines. Géoméch. Energy Environ. 201710, 12–20. [Google Scholar] [CrossRef]
  7. Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Vanem, E.; Carvalho, H.; Correia, J.A.F.D.O. Editorial: Advanced research on offshore structures and foundation design: Part 1. Proc. Inst. Civ. Eng. Marit. Eng. 2019172, 118–123. [Google Scholar] [CrossRef]
  8. Chavez, C.E.A.; Stratigaki, V.; Wu, M.; Troch, P.; Schendel, A.; Welzel, M.; Villanueva, R.; Schlurmann, T.; De Vos, L.; Kisacik, D.; et al. Large-Scale Experiments to Improve Monopile Scour Protection Design Adapted to Climate Change—The PROTEUS Project. Energies 201912, 1709. [Google Scholar] [CrossRef][Green Version]
  9. Wu, M.; De Vos, L.; Chavez, C.E.A.; Stratigaki, V.; Fazeres-Ferradosa, T.; Rosa-Santos, P.; Taveira-Pinto, F.; Troch, P. Large Scale Experimental Study of the Scour Protection Damage Around a Monopile Foundation Under Combined Wave and Current Conditions. J. Mar. Sci. Eng. 20208, 417. [Google Scholar] [CrossRef]
  10. Sørensen, S.P.H.; Ibsen, L.B. Assessment of foundation design for offshore monopiles unprotected against scour. Ocean Eng. 201363, 17–25. [Google Scholar] [CrossRef]
  11. Prendergast, L.; Gavin, K.; Doherty, P. An investigation into the effect of scour on the natural frequency of an offshore wind turbine. Ocean Eng. 2015101, 1–11. [Google Scholar] [CrossRef][Green Version]
  12. Fazeres-Ferradosa, T.; Chambel, J.; Taveira-Pinto, F.; Rosa-Santos, P.; Taveira-Pinto, F.; Giannini, G.; Haerens, P. Scour Protections for Offshore Foundations of Marine Energy Harvesting Technologies: A Review. J. Mar. Sci. Eng. 20219, 297. [Google Scholar] [CrossRef]
  13. Yang, Q.; Yu, P.; Liu, Y.; Liu, H.; Zhang, P.; Wang, Q. Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents. Ocean Eng. 2020202, 106701. [Google Scholar] [CrossRef]
  14. Yu, P.; Hu, R.; Yang, J.; Liu, H. Numerical investigation of local scour around USAF with different hydraulic conditions under currents and waves. Ocean Eng. 2020213, 107696. [Google Scholar] [CrossRef]
  15. Sumer, B.M.; Christiansen, N.; Fredsøe, J. The horseshoe vortex and vortex shedding around a vertical wall-mounted cylinder exposed to waves. J. Fluid Mech. 1997332, 41–70. [Google Scholar] [CrossRef]
  16. Sumer, B.M.; Fredsøe, J. Scour around Pile in Combined Waves and Current. J. Hydraul. Eng. 2001127, 403–411. [Google Scholar] [CrossRef]
  17. Petersen, T.U.; Sumer, B.M.; Fredsøe, J. Time scale of scour around a pile in combined waves and current. In Proceedings of the 6th International Conference on Scour and Erosion, Paris, France, 27–31 August 2012. [Google Scholar]
  18. Petersen, T.U.; Sumer, B.M.; Fredsøe, J.; Raaijmakers, T.C.; Schouten, J.-J. Edge scour at scour protections around piles in the marine environment—Laboratory and field investigation. Coast. Eng. 2015106, 42–72. [Google Scholar] [CrossRef]
  19. Qi, W.; Gao, F. Equilibrium scour depth at offshore monopile foundation in combined waves and current. Sci. China Ser. E Technol. Sci. 201457, 1030–1039. [Google Scholar] [CrossRef][Green Version]
  20. Larsen, B.E.; Fuhrman, D.R.; Baykal, C.; Sumer, B.M. Tsunami-induced scour around monopile foundations. Coast. Eng. 2017129, 36–49. [Google Scholar] [CrossRef][Green Version]
  21. Corvaro, S.; Marini, F.; Mancinelli, A.; Lorenzoni, C.; Brocchini, M. Hydro- and Morpho-dynamics Induced by a Vertical Slender Pile under Regular and Random Waves. J. Waterw. Port. Coast. Ocean Eng. 2018144, 04018018. [Google Scholar] [CrossRef]
  22. Schendel, A.; Welzel, M.; Schlurmann, T.; Hsu, T.-W. Scour around a monopile induced by directionally spread irregular waves in combination with oblique currents. Coast. Eng. 2020161, 103751. [Google Scholar] [CrossRef]
  23. Fazeres-Ferradosa, T.; Taveira-Pinto, F.; Romão, X.; Reis, M.; das Neves, L. Reliability assessment of offshore dynamic scour protections using copulas. Wind. Eng. 201843, 506–538. [Google Scholar] [CrossRef]
  24. Fazeres-Ferradosa, T.; Welzel, M.; Schendel, A.; Baelus, L.; Santos, P.R.; Pinto, F.T. Extended characterization of damage in rubble mound scour protections. Coast. Eng. 2020158, 103671. [Google Scholar] [CrossRef]
  25. Tavouktsoglou, N.S.; Harris, J.M.; Simons, R.R.; Whitehouse, R.J.S. Equilibrium Scour-Depth Prediction around Cylindrical Structures. J. Waterw. Port. Coast. Ocean Eng. 2017143, 04017017. [Google Scholar] [CrossRef][Green Version]
  26. Ettema, R.; Melville, B.; Barkdoll, B. Scale Effect in Pier-Scour Experiments. J. Hydraul. Eng. 1998124, 639–642. [Google Scholar] [CrossRef]
  27. Umeda, S. Scour Regime and Scour Depth around a Pile in Waves. J. Coast. Res. Spec. Issue 201164, 845–849. [Google Scholar]
  28. Umeda, S. Scour process around monopiles during various phases of sea storms. J. Coast. Res. 2013165, 1599–1604. [Google Scholar] [CrossRef]
  29. Baykal, C.; Sumer, B.; Fuhrman, D.R.; Jacobsen, N.; Fredsøe, J. Numerical simulation of scour and backfilling processes around a circular pile in waves. Coast. Eng. 2017122, 87–107. [Google Scholar] [CrossRef][Green Version]
  30. Miles, J.; Martin, T.; Goddard, L. Current and wave effects around windfarm monopile foundations. Coast. Eng. 2017121, 167–178. [Google Scholar] [CrossRef][Green Version]
  31. Miozzi, M.; Corvaro, S.; Pereira, F.A.; Brocchini, M. Wave-induced morphodynamics and sediment transport around a slender vertical cylinder. Adv. Water Resour. 2019129, 263–280. [Google Scholar] [CrossRef]
  32. Yu, T.; Zhang, Y.; Zhang, S.; Shi, Z.; Chen, X.; Xu, Y.; Tang, Y. Experimental study on scour around a composite bucket foundation due to waves and current. Ocean Eng. 2019189, 106302. [Google Scholar] [CrossRef]
  33. Carreiras, J.; Larroudé, P.; Seabra-Santos, F.; Mory, M. Wave Scour Around Piles. In Proceedings of the Coastal Engineering 2000, American Society of Civil Engineers (ASCE), Sydney, Australia, 16–21 July 2000; pp. 1860–1870. [Google Scholar]
  34. Raaijmakers, T.; Rudolph, D. Time-dependent scour development under combined current and waves conditions—Laboratory experiments with online monitoring technique. In Proceedings of the 4th International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008; pp. 152–161. [Google Scholar]
  35. Khalfin, I.S. Modeling and calculation of bed score around large-diameter vertical cylinder under wave action. Water Resour. 200734, 357. [Google Scholar] [CrossRef][Green Version]
  36. Zanke, U.C.; Hsu, T.-W.; Roland, A.; Link, O.; Diab, R. Equilibrium scour depths around piles in noncohesive sediments under currents and waves. Coast. Eng. 201158, 986–991. [Google Scholar] [CrossRef]
  37. Myrhaug, D.; Rue, H. Scour below pipelines and around vertical piles in random waves. Coast. Eng. 200348, 227–242. [Google Scholar] [CrossRef]
  38. Myrhaug, D.; Ong, M.C.; Føien, H.; Gjengedal, C.; Leira, B.J. Scour below pipelines and around vertical piles due to second-order random waves plus a current. Ocean Eng. 200936, 605–616. [Google Scholar] [CrossRef]
  39. Myrhaug, D.; Ong, M.C. Random wave-induced onshore scour characteristics around submerged breakwaters using a stochastic method. Ocean Eng. 201037, 1233–1238. [Google Scholar] [CrossRef]
  40. Ong, M.C.; Myrhaug, D.; Hesten, P. Scour around vertical piles due to long-crested and short-crested nonlinear random waves plus a current. Coast. Eng. 201373, 106–114. [Google Scholar] [CrossRef]
  41. Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. Basic theory. J. Sci. Comput. 19861, 3–51. [Google Scholar] [CrossRef]
  42. Yakhot, V.; Smith, L.M. The renormalization group, the e-expansion and derivation of turbulence models. J. Sci. Comput. 19927, 35–61. [Google Scholar] [CrossRef]
  43. Mastbergen, D.R.; Berg, J.V.D. Breaching in fine sands and the generation of sustained turbidity currents in submarine canyons. Sedimentology 200350, 625–637. [Google Scholar] [CrossRef]
  44. Soulsby, R. Dynamics of Marine Sands; Thomas Telford Ltd.: London, UK, 1998. [Google Scholar] [CrossRef]
  45. Van Rijn, L.C. Sediment Transport, Part I: Bed Load Transport. J. Hydraul. Eng. 1984110, 1431–1456. [Google Scholar] [CrossRef][Green Version]
  46. Zhang, Q.; Zhou, X.-L.; Wang, J.-H. Numerical investigation of local scour around three adjacent piles with different arrangements under current. Ocean Eng. 2017142, 625–638. [Google Scholar] [CrossRef]
  47. Yu, Y.X.; Liu, S.X. Random Wave and Its Applications to Engineering, 4th ed.; Dalian University of Technology Press: Dalian, China, 2011. [Google Scholar]
  48. Pang, A.; Skote, M.; Lim, S.; Gullman-Strand, J.; Morgan, N. A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents. Appl. Ocean Res. 201657, 114–124. [Google Scholar] [CrossRef]
  49. Higuera, P.; Lara, J.L.; Losada, I.J. Three-dimensional interaction of waves and porous coastal structures using Open-FOAM®. Part I: Formulation and validation. Coast. Eng. 201483, 243–258. [Google Scholar] [CrossRef]
  50. Corvaro, S.; Crivellini, A.; Marini, F.; Cimarelli, A.; Capitanelli, L.; Mancinelli, A. Experimental and Numerical Analysis of the Hydrodynamics around a Vertical Cylinder in Waves. J. Mar. Sci. Eng. 20197, 453. [Google Scholar] [CrossRef][Green Version]
  51. Flow3D User Manual, version 11.0.3; Flow Science, Inc.: Santa Fe, NM, USA, 2013.
  52. Khosronejad, A.; Kang, S.; Sotiropoulos, F. Experimental and computational investigation of local scour around bridge piers. Adv. Water Resour. 201237, 73–85. [Google Scholar] [CrossRef]
  53. Stahlmann, A. Experimental and Numerical Modeling of Scour at Foundation Structures for Offshore Wind Turbines. Ph.D. Thesis, Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz Universität Hannover, Hannover, Germany, 2013. [Google Scholar]
  54. Breusers, H.N.C.; Nicollet, G.; Shen, H. Local Scour Around Cylindrical Piers. J. Hydraul. Res. 197715, 211–252. [Google Scholar] [CrossRef]
  55. Schendel, A.; Hildebrandt, A.; Goseberg, N.; Schlurmann, T. Processes and evolution of scour around a monopile induced by tidal currents. Coast. Eng. 2018139, 65–84. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Share and Cite

      

MDPI and ACS Style

Hu, R.; Liu, H.; Leng, H.; Yu, P.; Wang, X. Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves. J. Mar. Sci. Eng. 20219, 886. https://doi.org/10.3390/jmse9080886

AMA Style

Hu R, Liu H, Leng H, Yu P, Wang X. Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves. Journal of Marine Science and Engineering. 2021; 9(8):886. https://doi.org/10.3390/jmse9080886Chicago/Turabian Style

Hu, Ruigeng, Hongjun Liu, Hao Leng, Peng Yu, and Xiuhai Wang. 2021. “Scour Characteristics and Equilibrium Scour Depth Prediction around Umbrella Suction Anchor Foundation under Random Waves” Journal of Marine Science and Engineering 9, no. 8: 886. https://doi.org/10.3390/jmse9080886

Find Other Styles

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

For more information on the journal statistics, click here.

Multiple requests from the same IP address are counted as one view.

Fig. 1 Oscillation of a free surface due to the step reduction of gravity acceleration from kzi ≈ 9.81 to kz ≈ 0

Reorientation of Cryogenic Fluids Upon Step Reduction of Gravity

단계적 중력 감소 시 극저온 유체의 방향 전환

Malte Stief∗, Jens Gerstmann∗∗, and Michael E. Dreyer∗∗∗
ZARM, Center of Applied Space Technology and Microgravity, University of Bremen, Am Fallturm, D-28359 Bremen
Experiments to observe the surface oscillation of cryogenic liquids have been performed with liquid nitrogen inside a 50 mm
diameter right circular cylinder. The surface oscillation is driven by the capillary force that becomes dominant after a sudden
reduction of the gravity acceleration acting on the liquid. The experiments show differences from the speculated behavior and
enables one to observe new features.

Introduction and motivation

최근 몇 년 동안 Bremen의 낙하탑에서 중력의 단계적 감소 시 방향 재지향 거동과 표면 진동을 조사하기 위해 수많은 실험이 수행되었습니다[1]. 이 실험의 원리는 그림 1에 나와 있습니다.

그림 1의 왼쪽에 표시된 것처럼 오른쪽 원형 원통형 용기에 테스트 액체를 레벨 h0까지 채웁니다. 처음에 액체는 정지 상태이며 중앙에서 평평한 인터페이스를 형성합니다.

초기 중력 가속도 kzi ≈ 9.81 [m/s2]와 결과적으로 높은 BOND 수(Bo = ρkziR2/σ)로 인해 실린더의 대칭축에서. 낙하탑에서 실험 캡슐의 방출에 의해 확립된 μ-중력 환경 kz ≈ 0 [m/s2]로의 갑작스러운 전환과 함께 자유 표면은 진동 운동으로 새로운 평형 구성을 찾기 시작합니다(그림의 오른쪽) 1). 이러한 움직임은 그림 1의 중앙에 스케치되어 있습니다.

표면 진동의 구동력은 접착력과 결합된 표면 장력이며, 댐핑은 액체의 점도에 의해 제어됩니다. 위치가 zw인 벽에서 접촉선의 이동은 접촉각 γ에 의해 제어됩니다. 접촉각이 작은 액체용 γ ≈ 0◦

In recent years numerous experiments have been carried out to investigate the reorientation behavior and surface oscillations upon step reduction of gravity at the drop tower in Bremen [1]. The principals of these experiments are shown in figure 1. A right circular cylindrical container is filled up to the level h0 with the test liquid, as shown on the left of figure 1. Initially the liquid is quiescent and forms a flat interface at the center, in the symmetry axis of the cylinder, due to the initial gravity acceleration kzi ≈ 9.81 [m/s2] and the resulting high BOND number (Bo = ρkziR2/σ). With the sudden transition to the µ-gravity environment kz ≈ 0 [m/s2], which is established by the release of the experiment capsular in the drop tower, the free surface is initiated to search its new equilibrium configuration (right side of figure 1) with an oscillatory motion. These movements are sketched in the center of figure 1. The driving force for the surface oscillation is the surface tension in combination with the adhesion force where the damping is controlled by the viscosity of the liquid. The movement of the contact line at the wall, with its position zw, is governed by the contact angle γ. For liquids with small contact angle γ ≈ 0◦

Fig. 1 Oscillation of a free surface due to the step reduction of gravity acceleration from kzi ≈ 9.81 to kz ≈ 0
Fig. 1 Oscillation of a free surface due to the step reduction of gravity acceleration from kzi ≈ 9.81 to kz ≈ 0
Fig. 2 Experiment picture-series showing the oscillation of the free surface at different times for a 50 mm diameter cylinder.
Fig. 2 Experiment picture-series showing the oscillation of the free surface at different times for a 50 mm diameter cylinder.

References

[1] M. Michaelis, Kapillarinduzierte Schwingungen freier Fl¨ussigkeitsoberfl¨achen, Dissertation Universit¨at Bremen, Fortschritt-Berichte
Nr. 454 (VDI Verlag, D¨usseldorf, 2003).

Figure 5. Schematic view of flap and support structure [32]

Design Optimization of Ocean Renewable Energy Converter Using a Combined Bi-level Metaheuristic Approach

결합된 Bi-level 메타휴리스틱 접근법을 사용한 해양 재생 에너지 변환기의 설계 최적화

Erfan Amini a1, Mahdieh Nasiri b1, Navid Salami Pargoo a, Zahra Mozhgani c, Danial Golbaz d, Mehrdad Baniesmaeil e, Meysam Majidi Nezhad f, Mehdi Neshat gj, Davide Astiaso Garcia h, Georgios Sylaios i

Abstract

In recent years, there has been an increasing interest in renewable energies in view of the fact that fossil fuels are the leading cause of catastrophic environmental consequences. Ocean wave energy is a renewable energy source that is particularly prevalent in coastal areas. Since many countries have tremendous potential to extract this type of energy, a number of researchers have sought to determine certain effective factors on wave converters’ performance, with a primary emphasis on ambient factors. In this study, we used metaheuristic optimization methods to investigate the effects of geometric factors on the performance of an Oscillating Surge Wave Energy Converter (OSWEC), in addition to the effects of hydrodynamic parameters. To do so, we used CATIA software to model different geometries which were then inserted into a numerical model developed in Flow3D software. A Ribed-surface design of the converter’s flap is also introduced in this study to maximize wave-converter interaction. Besides, a Bi-level Hill Climbing Multi-Verse Optimization (HCMVO) method was also developed for this application. The results showed that the converter performs better with greater wave heights, flap freeboard heights, and shorter wave periods. Additionally, the added ribs led to more wave-converter interaction and better performance, while the distance between the flap and flume bed negatively impacted the performance. Finally, tracking the changes in the five-dimensional objective function revealed the optimum value for each parameter in all scenarios. This is achieved by the newly developed optimization algorithm, which is much faster than other existing cutting-edge metaheuristic approaches.

Keywords

Wave Energy Converter

OSWEC

Hydrodynamic Effects

Geometric Design

Metaheuristic Optimization

Multi-Verse Optimizer

1Introduction

The increase in energy demand, the limitations of fossil fuels, as well as environmental crises, such as air pollution and global warming, are the leading causes of calling more attention to harvesting renewable energy recently [1][2][3]. While still in its infancy, ocean wave energy has neither reached commercial maturity nor technological convergence. In recent decades, remarkable progress has been made in the marine energy domain, which is still in the early stage of development, to improve the technology performance level (TPL) [4][5]and technology readiness level (TRL) of wave energy converters (WECs). This has been achieved using novel modeling techniques [6][7][8][9][10][11][12][13][14] to gain the following advantages [15]: (i) As a source of sustainable energy, it contributes to the mix of energy resources that leads to greater diversity and attractiveness for coastal cities and suppliers. [16] (ii) Since wave energy can be exploited offshore and does not require any land, in-land site selection would be less expensive and undesirable visual effects would be reduced. [17] (iii) When the best layout and location of offshore site are taken into account, permanent generation of energy will be feasible (as opposed to using solar energy, for example, which is time-dependent) [18].

In general, the energy conversion process can be divided into three stages in a WEC device, including primary, secondary, and tertiary stages [19][20]. In the first stage of energy conversion, which is the subject of this study, the wave power is converted to mechanical power by wave-structure interaction (WSI) between ocean waves and structures. Moreover, the mechanical power is transferred into electricity in the second stage, in which mechanical structures are coupled with power take-off systems (PTO). At this stage, optimal control strategies are useful to tune the system dynamics to maximize power output [10][13][12]. Furthermore, the tertiary energy conversion stage revolves around transferring the non-standard AC power into direct current (DC) power for energy storage or standard AC power for grid integration [21][22]. We discuss only the first stage regardless of the secondary and tertiary stages. While Page 1 of 16 WECs include several categories and technologies such as terminators, point absorbers, and attenuators [15][23], we focus on oscillating surge wave energy converters (OSWECs) in this paper due to its high capacity for industrialization [24].

Over the past two decades, a number of studies have been conducted to understand how OSWECs’ structures and interactions between ocean waves and flaps affect converters performance. Henry et al.’s experiment on oscillating surge wave energy converters is considered as one of the most influential pieces of research [25], which demonstrated how the performance of oscillating surge wave energy converters (OSWECs) is affected by seven different factors, including wave period, wave power, flap’s relative density, water depth, free-board of the flap, the gap between the tubes, gap underneath the flap, and flap width. These parameters were assessed in their two models in order to estimate the absorbed energy from incoming waves [26][27]. In addition, Folly et al. investigated the impact of water depth on the OSWECs performance analytically, numerically, and experimentally. According to this and further similar studies, the average annual incident wave power is significantly reduced by water depth. Based on the experimental results, both the surge wave force and the power capture of OSWECs increase in shallow water [28][29]. Following this, Sarkar et al. found that under such circumstances, the device that is located near the coast performs much better than those in the open ocean [30]. On the other hand, other studies are showing that the size of the converter, including height and width, is relatively independent of the location (within similar depth) [31]. Subsequently, Schmitt et al. studied OSWECs numerically and experimentally. In fact, for the simulation of OSWEC, OpenFOAM was used to test the applicability of Reynolds-averaged Navier-Stokes (RANS) solvers. Then, the experimental model reproduced the numerical results with satisfying accuracy [32]. In another influential study, Wang et al. numerically assessed the effect of OSWEC’s width on their performance. According to their findings, as converter width increases, its efficiency decreases in short wave periods while increases in long wave periods [33]. One of the main challenges in the analysis of the OSWEC is the coupled effect of hydrodynamic and geometric variables. As a result, numerous cutting-edge geometry studies have been performed in recent years in order to find the optimal structure that maximizes power output and minimizes costs. Garcia et al. reviewed hull geometry optimization studies in the literature in [19]. In addition, Guo and Ringwood surveyed geometric optimization methods to improve the hydrodynamic performance of OSWECs at the primary stage [14]. Besides, they classified the hull geometry of OSWECs based on Figure 1. Subsequently, Whittaker et al. proposed a different design of OSWEC called Oyster2. There have been three examples of different geometries of oysters with different water depths. Based on its water depth, they determined the width and height of the converter. They also found that in the constant wave period the less the converter’s width, the less power captures the converter has [34]. Afterward, O’Boyle et al. investigated a type of OSWEC called Oyster 800. They compared the experimental and numerical models with the prototype model. In order to precisely reproduce the shape, mass distribution, and buoyancy properties of the prototype, a 40th-scale experimental model has been designed. Overall, all the models were fairly accurate according to the results [35].

Inclusive analysis of recent research avenues in the area of flap geometry has revealed that the interaction-based designs of such converters are emerging as a novel approach. An initiative workflow is designed in the current study to maximizing the wave energy extrication by such systems. To begin with, a sensitivity analysis plays its role of determining the best hydrodynamic values for installing the converter’s flap. Then, all flap dimensions and characteristics come into play to finalize the primary model. Following, interactive designs is proposed to increase the influence of incident waves on the body by adding ribs on both sides of the flap as a novel design. Finally, a new bi-level metaheuristic method is proposed to consider the effects of simultaneous changes in ribs properties and other design parameters. We hope this novel approach will be utilized to make big-scale projects less costly and justifiable. The efficiency of the method is also compared with four well known metaheuristic algorithms and out weight them for this application.

This paper is organized as follows. First, the research methodology is introduced by providing details about the numerical model implementation. To that end, we first introduced the primary model’s geometry and software details. That primary model is later verified with a benchmark study with regard to the flap angle of rotation and water surface elevation. Then, governing equations and performance criteria are presented. In the third part of the paper, we discuss the model’s sensitivity to lower and upper parts width (we proposed a two cross-sectional design for the flap), bottom elevation, and freeboard. Finally, the novel optimization approach is introduced in the final part and compared with four recent metaheuristic algorithms.

2. Numerical Methods

In this section, after a brief introduction of the numerical software, Flow3D, boundary conditions are defined. Afterwards, the numerical model implementation, along with primary model properties are described. Finally, governing equations, as part of numerical process, are discussed.

2.1Model Setup

FLOW-3D is a powerful and comprehensive CFD simulation platform for studying fluid dynamics. This software has several modules to solve many complex engineering problems. In addition, modeling complex flows is simple and effective using FLOW-3D’s robust meshing capabilities [36]. Interaction between fluid and moving objects might alter the computational range. Dynamic meshes are used in our modeling to take these changes into account. At each time step, the computational node positions change in order to adapt the meshing area to the moving object. In addition, to choose mesh dimensions, some factors are taken into account such as computational accuracy, computational time, and stability. The final grid size is selected based on the detailed procedure provided in [37]. To that end, we performed grid-independence testing on a CFD model using three different mesh grid sizes of 0.01, 0.015, and 0.02 meters. The problem geometry and boundary conditions were defined the same, and simulations were run on all three grids under the same conditions. The predicted values of the relevant variable, such as velocity, was compared between the grids. The convergence behavior of the numerical solution was analyzed by calculating the relative L2 norm error between two consecutive grids. Based on the results obtained, it was found that the grid size of 0.02 meters showed the least error, indicating that it provided the most accurate and reliable solution among the three grids. Therefore, the grid size of 0.02 meters was selected as the optimal spatial resolution for the mesh grid.

In this work, the flume dimensions are 10 meters long, 0.1 meters wide, and 2.2 meters high, which are shown in figure2. In addition, input waves with linear characteristics have a height of 0.1 meters and a period of 1.4 seconds. Among the linear wave methods included in this software, RNGk-ε and k- ε are appropriate for turbulence model. The research of Lopez et al. shows that RNGk- ε provides the most accurate simulation of turbulence in OSWECs [21]. We use CATIA software to create the flap primary model and other innovative designs for this project. The flap measures 0.1 m x 0.65 m x 0.360 m in x, y and z directions, respectively. In Figure 3, the primary model of flap and its dimensions are shown. In this simulation, five boundaries have been defined, including 1. Inlet, 2. Outlet, 3. Converter flap, 4. Bed flume, and 5. Water surface, which are shown in figure 2. Besides, to avoid wave reflection in inlet and outlet zones, Flow3D is capable of defining some areas as damping zones, the length of which has to be one to one and a half times the wavelength. Therefore, in the model, this length is considered equal to 2 meters. Furthermore, there is no slip in all the boundaries. In other words, at every single time step, the fluid velocity is zero on the bed flume, while it is equal to the flap velocity on the converter flap. According to the wave theory defined in the software, at the inlet boundary, the water velocity is called from the wave speed to be fed into the model.

2.2Verification

In the current study, we utilize the Schmitt experimental model as a benchmark for verification, which was developed at the Queen’s University of Belfast. The experiments were conducted on the flap of the converter, its rotation, and its interaction with the water surface. Thus, the details of the experiments are presented below based up on the experimental setup’s description [38]. In the experiment, the laboratory flume has a length of 20m and a width of 4.58m. Besides, in order to avoid incident wave reflection, a wave absorption source is devised at the end of the left flume. The flume bed, also, includes two parts with different slops. The flap position and dimensions of the flume can be seen in Figure4. In addition, a wave-maker with 6 paddles is installed at one end. At the opposite end, there is a beach with wire meshes. Additionally, there are 6 indicators to extract the water level elevation. In the flap model, there are three components: the fixed support structure, the hinge, and the flap. The flap measures 0.1m x 0.65m x 0.341m in x, y and z directions, respectively. In Figure5, the details are given [32]. The support structure consists of a 15 mm thick stainless steel base plate measuring 1m by 1.4m, which is screwed onto the bottom of the tank. The hinge is supported by three bearing blocks. There is a foam centerpiece on the front and back of the flap which is sandwiched between two PVC plates. Enabling changes of the flap, three metal fittings link the flap to the hinge. Moreover, in this experiment, the selected wave is generated based on sea wave data at scale 1:40. The wave height and the wave period are equal to 0.038 (m) and 2.0625 (s), respectively, which are tantamount to a wave with a period of 13 (s) and a height of 1.5 (m).

Two distinct graphs illustrate the numerical and experi-mental study results. Figure6 and Figure7 are denoting the angle of rotation of flap and surface elevation in computational and experimental models, respectively. The two figures roughly represent that the numerical and experimental models are a good match. However, for the purpose of verifying the match, we calculated the correlation coefficient (C) and root mean square error (RMSE). According to Figure6, correlation coefficient and RMSE are 0.998 and 0.003, respectively, and in Figure7 correlation coefficient and RMSE are respectively 0.999 and 0.001. Accordingly, there is a good match between the numerical and empirical models. It is worth mentioning that the small differences between the numerical and experimental outputs may be due to the error of the measuring devices and the calibration of the data collection devices.

Including continuity equation and momentum conserva- tion for incompressible fluid are given as [32][39]:(1)

where P represents the pressure, g denotes gravitational acceleration, u represents fluid velocity, and Di is damping coefficient. Likewise, the model uses the same equation. to calculate the fluid velocity in other directions as well. Considering the turbulence, we use the two-equation model of RNGK- ε. These equations are:

(3)��t(��)+����(����)=����[�eff�������]+��-��and(4)���(��)+����(����)=����[�eff�������]+�1�∗����-��2��2�Where �2� and �1� are constants. In addition, �� and �� represent the turbulent Prandtl number of � and k, respectively.

�� also denote the production of turbulent kinetic energy of k under the effect of velocity gradient, which is calculated as follows:(5)��=�eff[�����+�����]�����(6)�eff=�+��(7)�eff=�+��where � is molecular viscosity,�� represents turbulence viscosity, k denotes kinetic energy, and ∊∊ is energy dissipation rate. The values of constant coefficients in the two-equation RNGK ∊-∊ model is as shown in the Table 1 [40].Table 2.

Table 1. Constant coefficients in RNGK- model

Factors�0�1�2������
Quantity0.0124.381.421.681.391.390.084

Table 2. Flap properties

Joint height (m)0.476
Height of the center of mass (m)0.53
Weight (Kg)10.77

It is worth mentioning that the volume of fluid method is used to separate water and air phases in this software [41]. Below is the equation of this method [40].(8)����+����(���)=0where α and 1 − α are portion of water phase and air phase, respectively. As a weighting factor, each fluid phase portion is used to determine the mixture properties. Finally, using the following equations, we calculate the efficiency of converters [42][34][43]:(9)�=14|�|2�+�2+(�+�a)2(�n2-�2)2where �� represents natural frequency, I denotes the inertia of OSWEC, Ia is the added inertia, F is the complex wave force, and B denotes the hydrodynamic damping coefficient. Afterward, the capture factor of the converter is calculated by [44]:(10)��=�1/2��2����gw where �� represents the capture factor, which is the total efficiency of device per unit length of the wave crest at each time step [15], �� represent the dimensional amplitude of the incident wave, w is the flap’s width, and Cg is the group velocity of the incident wave, as below:(11)��=��0·121+2�0ℎsinh2�0ℎwhere �0 denotes the wave number, h is water depth, and H is the height of incident waves.

According to previous sections ∊,����-∊ modeling is used for all models simulated in this section. For this purpose, the empty boundary condition is used for flume walls. In order to preventing wave reflection at the inlet and outlet of the flume, the length of wave absorption is set to be at least one incident wavelength. In addition, the structured mesh is chosen, and the mesh dimensions are selected in two distinct directions. In each model, all grids have a length of 2 (cm) and a height of 1 (cm). Afterwards, as an input of the software for all of the models, we define the time step as 0.001 (s). Moreover, the run time of every simulation is 30 (s). As mentioned before, our primary model is Schmitt model, and the flap properties is given in table2. For all simulations, the flume measures 15 meters in length and 0.65 meters in width, and water depth is equal to 0.335 (m). The flap is also located 7 meters from the flume’s inlet.

Finally, in order to compare the results, the capture factor is calculated for each simulation and compared to the primary model. It is worth mentioning that capture factor refers to the ratio of absorbed wave energy to the input wave energy.

According to primary model simulation and due to the decreasing horizontal velocity with depth, the wave crest has the highest velocity. Considering the fact that the wave’s orbital velocity causes the flap to move, the contact between the upper edge of the flap and the incident wave can enhance its performance. Additionally, the numerical model shows that the dynamic pressure decreases as depth increases, and the hydrostatic pressure increases as depth increases.

To determine the OSWEC design, it is imperative to understand the correlation between the capture factor, wave period, and wave height. Therefore, as it is shown in Figure8, we plot the change in capture factor over the variations in wave period and wave height in 3D and 2D. In this diagram, the first axis features changes in wave period, the second axis displays changes in wave height, and the third axis depicts changes in capture factor. According to our wave properties in the numerical model, the wave period and wave height range from 2 to 14 seconds and 2 to 8 meters, respectively. This is due to the fact that the flap does not oscillate if the wave height is less than 2 (m), and it does not reverse if the wave height is more than 8 (m). In addition, with wave periods more than 14 (s), the wavelength would be so long that it would violate the deep-water conditions, and with wave periods less than 2 (s), the flap would not oscillate properly due to the shortness of wavelength. The results of simulation are shown in Figure 8. As it can be perceived from Figure 8, in a constant wave period, the capture factor is in direct proportion to the wave height. It is because of the fact that waves with more height have more energy to rotate the flap. Besides, in a constant wave height, the capture factor increases when the wave period increases, until a given wave period value. However, the capture factor falls after this point. These results are expected since the flap’s angular displacement is not high in lower wave periods, while the oscillating motion of that is not fast enough to activate the power take-off system in very high wave periods.

As is shown in Figure 9, we plot the change in capture factor over the variations in wave period (s) and water depth (m) in 3D. As it can be seen in this diagram, the first axis features changes in water depth (m), the second axis depicts the wave period (s), and the third axis displays OSWEC’s capture factor. The wave period ranges from 0 to 10 seconds based on our wave properties, which have been adopted from Schmitt’s model, while water depth ranges from 0 to 0.5 meters according to the flume and flap dimensions and laboratory limitations. According to Figure9, for any specific water depth, the capture factor increases in a varying rate when the wave period increases, until a given wave period value. However, the capture factor falls steadily after this point. In fact, the maximum capture factor occurs when the wave period is around 6 seconds. This trend is expected since, in a specific water depth, the flap cannot oscillate properly when the wavelength is too short. As the wave period increases, the flap can oscillate more easily, and consequently its capture factor increases. However, the capture factor drops in higher wave periods because the wavelength is too large to move the flap. Furthermore, in a constant wave period, by changing the water depth, the capture factor does not alter. In other words, the capture factor does not depend on the water depth when it is around its maximum value.

3Sensitivity Analysis

Based on previous studies, in addition to the flap design, the location of the flap relative to the water surface (freeboard) and its elevation relative to the flume bed (flap bottom elevation) play a significant role in extracting energy from the wave energy converter. This study measures the sensitivity of the model to various parameters related to the flap design including upper part width of the flap, lower part width of the flap, the freeboard, and the flap bottom elevation. Moreover, as a novel idea, we propose that the flap widths differ in the lower and upper parts. In Figure10, as an example, a flap with an upper thickness of 100 (mm) and a lower thickness of 50 (mm) and a flap with an upper thickness of 50 (mm) and a lower thickness of 100 (mm) are shown. The influence of such discrepancy between the widths of the upper and lower parts on the interaction between the wave and the flap, or in other words on the capture factor, is evaluated. To do so, other parameters are remained constant, such as the freeboard, the distance between the flap and the flume bed, and the wave properties.

In Figure11, models are simulated with distinct upper and lower widths. As it is clear in this figure, the first axis depicts the lower part width of the flap, the second axis indicates the upper part width of the flap, and the colors represent the capture factor values. Additionally, in order to consider a sufficient range of change, the flap thickness varies from half to double the value of the primary model for each part.

According to this study, the greater the discrepancy in these two parts, the lower the capture factor. It is on account of the fact that when the lower part of the flap is thicker than the upper part, and this thickness difference in these two parts is extremely conspicuous, the inertia against the motion is significant at zero degrees of rotation. Consequently, it is difficult to move the flap, which results in a low capture factor. Similarly, when the upper part of the flap is thicker than the lower part, and this thickness difference in these two parts is exceedingly noticeable, the inertia is so great that the flap can not reverse at the maximum degree of rotation. As the results indicate, the discrepancy can enhance the performance of the converter if the difference between these two parts is around 20%. As it is depicted in the Figure11, the capture factor reaches its own maximum amount, when the lower part thickness is from 5 to 6 (cm), and the upper part thickness is between 6 and 7 (cm). Consequently, as a result of this discrepancy, less material will be used, and therefore there will be less cost.

As illustrated in Figure12, this study examines the effects of freeboard (level difference between the flap top and water surface) and the flap bottom elevation (the distance between the flume bed and flap bottom) on the converter performance. In this diagram, the first axis demonstrates the freeboard and the second axis on the left side displays the flap bottom elevation, while the colors indicate the capture factor. In addition, the feasible range of freeboard is between -15 to 15 (cm) due to the limitation of the numerical model, so that we can take the wave slamming and the overtopping into consideration. Additionally, based on the Schmitt model and its scaled model of 1:40 of the base height, the flap bottom should be at least 9 (cm) high. Since the effect of surface waves is distributed over the depth of the flume, it is imperative to maintain a reasonable flap height exposed to incoming waves. Thus, the maximum flap bottom elevation is limited to 19 (cm). As the Figure12 pictures, at constant negative values of the freeboard, the capture factor is in inverse proportion with the flap bottom elevation, although slightly.

Furthermore, at constant positive values of the freeboard, the capture factor fluctuates as the flap bottom elevation decreases while it maintains an overall increasing trend. This is on account of the fact that increasing the flap bottom elevation creates turbulence flow behind the flap, which encumbers its rotation, as well as the fact that the flap surface has less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, the capture factor increases by raising the freeboard. This is due to the fact that there is overtopping with adverse impacts on the converter performance when the freeboard is negative and the flap is under the water surface. Besides, increasing the freeboard makes the wave slam more vigorously, which improves the converter performance.

Adding ribs to the flap surface, as shown in Figure13, is a novel idea that is investigated in the next section. To achieve an optimized design for the proposed geometry of the flap, we determine the optimal number and dimensions of ribs based on the flap properties as our decision variables in the optimization process. As an example, Figure13 illustrates a flap with 3 ribs on each side with specific dimensions.

Figure14 shows the flow velocity field around the flap jointed to the flume bed. During the oscillation of the flap, the pressure on the upper and lower surfaces of the flap changes dynamically due to the changing angle of attack and the resulting change in the direction of fluid flow. As the flap moves upwards, the pressure on the upper surface decreases, and the pressure on the lower surface increases. Conversely, as the flap moves downwards, the pressure on the upper surface increases, and the pressure on the lower surface decreases. This results in a cyclic pressure variation around the flap. Under certain conditions, the pressure field around the flap can exhibit significant variations in magnitude and direction, forming vortices and other flow structures. These flow structures can affect the performance of the OSWEC by altering the lift and drag forces acting on the flap.

4Design Optimization

We consider optimizing the design parameters of the flap of converter using a nature-based swarm optimization method, that fall in the category of metaheuristic algorithms [45]. Accordingly, we choose four state-of-the-art algorithms to perform an optimization study. Then, based on their performances to achieve the highest capture factor, one of them will be chosen to be combined with the Hill Climb algorithm to carry out a local search. Therefore, in the remainder of this section, we discuss the search process of each algorithm and visualize their performance and convergence curve as they try to find the best values for decision variables.

4.1. Metaheuristic Approaches

As the first considered algorithm, the Gray Wolf Optimizer (GWO) algorithm simulates the natural leadership and hunting performance of gray wolves which tend to live in colonies. Hunters must obey the alpha wolf, the leader, who is responsible for hunting. Then, the beta wolf is at the second level of the gray wolf hierarchy. A subordinate of alpha wolf, beta stands under the command of the alpha. At the next level in this hierarchy, there are the delta wolves. They are subordinate to the alpha and beta wolves. This category of wolves includes scouts, sentinels, elders, hunters, and caretakers. In this ranking, omega wolves are at the bottom, having the lowest level and obeying all other wolves. They are also allowed to eat the prey just after others have eaten. Despite the fact that they seem less important than others, they are really central to the pack survival. Since, it has been shown that without omega wolves, the entire pack would experience some problems like fighting, violence, and frustration. In this simulation, there are three primary steps of hunting including searching, surrounding, and finally attacking the prey. Mathematically model of gray wolves’ hunting technique and their social hierarchy are applied in determined by optimization. this study. As mentioned before, gray wolves can locate their prey and surround them. The alpha wolf also leads the hunt. Assuming that the alpha, beta, and delta have more knowledge about prey locations, we can mathematically simulate gray wolf hunting behavior. Hence, in addition to saving the top three best solutions obtained so far, we compel the rest of the search agents (also the omegas) to adjust their positions based on the best search agent. Encircling behavior can be mathematically modeled by the following equations: [46].(12)�→=|�→·��→(�)-�→(�)|(13)�→(�+1)=��→(�)-�→·�→(14)�→=2.�2→(15)�→=2�→·�1→-�→Where �→indicates the position vector of gray wolf, ��→ defines the vector of prey, t indicates the current iteration, and �→and �→are coefficient vectors. To force the search agent to diverge from the prey, we use �→ with random values greater than 1 or less than -1. In addition, C→ contains random values in the range [0,2], and �→ 1 and �2→ are random vectors in [0,1]. The second considered technique is the Moth Flame Optimizer (MFO) algorithm. This method revolves around the moths’ navigation mechanism, which is realized by positioning themselves and maintaining a fixed angle relative to the moon while flying. This effective mechanism helps moths to fly in a straight path. However, when the source of light is artificial, maintaining an angle with the light leads to a spiral flying path towards the source that causes the moth’s death [47]. In MFO algorithm, moths and flames are both solutions. The moths are actual search agents that fly in hyper-dimensional space by changing their position vectors, and the flames are considered pins that moths drop when searching the search space [48]. The problem’s variables are the position of moths in the space. Each moth searches around a flame and updates it in case of finding a better solution. The fitness value is the return value of each moth’s fitness (objective) function. The position vector of each moth is passed to the fitness function, and the output of the fitness function is assigned to the corresponding moth. With this mechanism, a moth never loses its best solution [49]. Some attributes of this algorithm are as follows:

  • •It takes different values to converge moth in any point around the flame.
  • •Distance to the flame is lowered to be eventually minimized.
  • •When the position gets closer to the flame, the updated positions around the flame become more frequent.

As another method, the Multi-Verse Optimizer is based on a multiverse theory which proposes there are other universes besides the one in which we all live. According to this theory, there are more than one big bang in the universe, and each big bang leads to the birth of a new universe [50]. Multi-Verse Optimizer (MVO) is mainly inspired by three phenomena in cosmology: white holes, black holes, and wormholes. A white hole has never been observed in our universe, but physicists believe the big bang could be considered a white hole [51]. Black holes, which behave completely in contrast to white holes, attract everything including light beams with their extremely high gravitational force [52]. In the multiverse theory, wormholes are time and space tunnels that allow objects to move instantly between any two corners of a universe (or even simultaneously from one universe to another) [53]. Based on these three concepts, mathematical models are designed to perform exploration, exploitation, and local search, respectively. The concept of white and black holes is implied as an exploration phase, while the concept of wormholes is considered as an exploitation phase by MVO. Additionally, each solution is analogous to a universe, and each variable in the solution represents an object in that universe. Furthermore, each solution is assigned an inflation rate, and the time is used instead of iterations. Following are the universe rules in MVO:

  • •The possibility of having white hole increases with the inflation rate.
  • •The possibility of having black hole decreases with the inflation rate.
  • •Objects tend to pass through black holes more frequently in universes with lower inflation rates.
  • •Regardless of inflation rate, wormholes may cause objects in universes to move randomly towards the best universe. [54]

Modeling the white/black hole tunnels and exchanging objects of universes mathematically was accomplished by using the roulette wheel mechanism. With every iteration, the universes are sorted according to their inflation rates, then, based on the roulette wheel, the one with the white hole is selected as the local extremum solution. This is accomplished through the following steps:

Assume that

(16)���=����1<��(��)����1≥��(��)

Where ��� represents the jth parameter of the ith universe, Ui indicates the ith universe, NI(Ui) is normalized inflation rate of the ith universe, r1 is a random number in [0,1], and j xk shows the jth parameter of the kth universe selected by a roulette wheel selection mechanism [54]. It is assumed that wormhole tunnels always exist between a universe and the best universe formed so far. This mechanism is as follows:(17)���=if�2<���:��+���×((���-���)×�4+���)�3<0.5��-���×((���-���)×�4+���)�3≥0.5����:���where Xj indicates the jth parameter of the best universe formed so far, TDR and WEP are coefficients, where Xj indicates the jth parameter of the best universelbjshows the lower bound of the jth variable, ubj is the upper bound of the jth variable, and r2, r3, and r4 are random numbers in [1][54].

Finally, one of the newest optimization algorithms is WOA. The WOA algorithm simulates the movement of prey and the whale’s discipline when looking for their prey. Among several species, Humpback whales have a specific method of hunting [55]. Humpback whales can recognize the location of prey and encircle it before hunting. The optimal design position in the search space is not known a priori, and the WOA algorithm assumes that the best candidate solution is either the target prey or close to the optimum. This foraging behavior is called the bubble-net feeding method. Two maneuvers are associated with bubbles: upward spirals and double loops. A unique behavior exhibited only by humpback whales is bubble-net feeding. In fact, The WOA algorithm starts with a set of random solutions. At each iteration, search agents update their positions for either a randomly chosen search agent or the best solution obtained so far [56][55]. When the best search agent is determined, the other search agents will attempt to update their positions toward that agent. It is important to note that humpback whales swim around their prey simultaneously in a circular, shrinking circle and along a spiral-shaped path. By using a mathematical model, the spiral bubble-net feeding maneuver is optimized. The following equation represents this behavior:(18)�→(�+1)=�′→·�bl·cos(2��)+�∗→(�)

Where:(19)�′→=|�∗→(�)-�→(�)|

X→(t+ 1) indicates the distance of the it h whale to the prey (best solution obtained so far),� is a constant for defining the shape of the logarithmic spiral, l is a random number in [−1, 1], and dot (.) is an element-by-element multiplication [55].

Comparing the four above-mentioned methods, simulations are run with 10 search agents for 400 iterations. In Figure 15, there are 20 plots the optimal values of different parameters in optimization algorithms. The five parameters of this study are freeboard, bottom elevations, number of ribs on the converter, rib thickness, and rib Height. The optimal value for each was found by optimization algorithms, naming WOA, MVO, MFO, and GWO. By looking through the first row, the freeboard parameter converges to its maximum possible value in the optimization process of GWO after 300 iterations. Similarly, MFO finds the same result as GWO. In contrast, the freeboard converges to its minimum possible value in MVO optimizing process, which indicates positioning the converter under the water. Furthermore, WOA found the optimal value of freeboard as around 0.02 after almost 200 iterations. In the second row, the bottom elevation is found at almost 0.11 (m) in all algorithms; however, the curves follow different trends in each algorithm. The third row shows the number of ribs, where results immediately reveal that it should be over 4. All algorithms coincide at 5 ribs as the optimal number in this process. The fourth row displays the trends of algorithms to find optimal rib thickness. MFO finds the optimal value early and sets it to around 0.022, while others find the same value in higher iterations. Finally, regarding the rib height, MVO, MFO, and GWO state that the optimal value is 0.06 meters, but WOA did not find a higher value than 0.039.

4.2. HCMVO Bi-level Approach

Despite several strong search characteristics of MVO and its high performance in various optimization problems, it suffers from a few deficiencies in local and global search mechanisms. For instance, it is trapped in the local optimum when wormholes stochastically generate many solutions near the best universe achieved throughout iterations, especially in solving complex multimodal problems with high dimensions [57]. Furthermore, MVO needs to be modified by an escaping strategy from the local optima to enhance the global search abilities. To address these shortages, we propose a fast and effective meta-algorithm (HCMVO) to combine MVO with a Random-restart hill-climbing local search. This meta-algorithm uses MVO on the upper level to develop global tracking and provide a range of feasible and proper solutions. The hill-climbing algorithm is designed to develop a comprehensive neighborhood search around the best-found solution proposed by the upper-level (MVO) when MVO is faced with a stagnation issue or falling into a local optimum. The performance threshold is formulated as follows.(20)Δ����THD=∑�=1�����TH��-����TH��-1�where BestTHDis the best-found solution per generation, andM is related to the domain of iterations to compute the average performance of MVO. If the proposed best solution by the local search is better than the initial one, the global best of MVO will be updated. HCMVO iteratively runs hill climbing when the performance of MVO goes down, each time with an initial condition to prepare for escaping such undesirable situations. In order to get a better balance between exploration and exploitation, the search step size linearly decreases as follows:(21)��=��-����Ma�iter��+1where iter and Maxiter are the current iteration and maximum number of evaluation, respectively. �� stands for the step size of the neighborhood search. Meanwhile, this strategy can improve the convergence rate of MVO compared with other algorithms.

Algorithm 1 shows the technical details of the proposed optimization method (HCMVO). The initial solution includes freeboard (�), bottom elevation (�), number of ribs (Nr), rib thickness (�), and rib height(�).

5. Conclusion

The high trend of diminishing worldwide energy resources has entailed a great crisis upon vulnerable societies. To withstand this effect, developing renewable energy technologies can open doors to a more reliable means, among which the wave energy converters will help the coastal residents and infrastructure. This paper set out to determine the optimized design for such devices that leads to the highest possible power output. The main goal of this research was to demonstrate the best design for an oscillating surge wave energy converter using a novel metaheuristic optimization algorithm. In this regard, the methodology was devised such that it argued the effects of influential parameters, including wave characteristics, WEC design, and interaction criteria.

To begin with, a numerical model was developed in Flow 3D software to simulate the response of the flap of a wave energy converter to incoming waves, followed by a validation study based upon a well-reputed experimental study to verify the accuracy of the model. Secondly, the hydrodynamics of the flap was investigated by incorporating the turbulence. The effect of depth, wave height, and wave period are also investigated in this part. The influence of two novel ideas on increasing the wave-converter interaction was then assessed: i) designing a flap with different widths in the upper and lower part, and ii) adding ribs on the surface of the flap. Finally, four trending single-objective metaheuristic optimization methods

Empty CellAlgorithm 1: Hill Climb Multiverse Optimization
01:procedure HCMVO
02:�=30,�=5▹���������������������������������
03:�=〈F1,B1,N,R,H1〉,…〈FN,B2,N,R,HN〉⇒lb1N⩽�⩽ubN
04:Initialize parameters�ER,�DR,�EP,Best�,���ite��▹Wormhole existence probability (WEP)
05:��=����(��)
06:��=Normalize the inflation rate��
07:for iter in[1,⋯,���iter]do
08:for�in[1,⋯,�]do
09:Update�EP,�DR,Black����Index=�
10:for���[1,⋯,�]��
11:�1=����()
12:if�1≤��(��)then
13:White HoleIndex=Roulette�heelSelection(-��)
14:�(Black HoleIndex,�)=��(White HoleIndex,�)
15:end if
16:�2=����([0,�])
17:if�2≤�EPthen
18:�3=����(),�4=����()
19:if�3<0.5then
20:�1=((��(�)-��(�))�4+��(�))
21:�(�,�)=Best�(�)+�DR�
22:else
23:�(�,�)=Best�(�)-�DR�
24:end if
25:end if
26:end for
27:end for
28:�HD=����([�1,�2,⋯,�Np])
29:Bes�TH�itr=����HD
30:ΔBestTHD=∑�=1�BestTII��-BestTII��-1�
31:ifΔBestTHD<��then▹Perform hill climbing local search
32:BestTHD=����-�lim��������THD
33:end if
34:end for
35:return�,BestTHD▹Final configuration
36:end procedure

The implementation details of the hill-climbing algorithm applied in HCMPA can be seen in Algorithm 2. One of the critical parameters isg, which denotes the resolution of the neighborhood search around the proposed global best by MVO. If we set a small step size for hill-climbing, the convergence speed will be decreased. On the other hand, a large step size reinforces the exploration ability. Still, it may reduce the exploitation ability and in return increase the act of jumping from a global optimum or surfaces with high-potential solutions. Per each decision variable, the neighborhood search evaluates two different direct searches, incremental or decremental. After assessing the generated solutions, the best candidate will be selected to iterate the search algorithm. It is noted that the hill-climbing algorithm should not be applied in the initial iteration of the optimization process due to the immense tendency for converging to local optima. Meanwhile, for optimizing largescale problems, hill-climbing is not an appropriate selection. In order to improve understanding of the proposed hybrid optimization algorithm’s steps, the flowchart of HCMVO is designed and can be seen in Figure 16.

Figure 17 shows the observed capture factor (which is the absorbed energy with respect to the available energy) by each optimization algorithm from iterations 1 to 400. The algorithms use ten search agents in their modified codes to find the optimal solutions. While GWO and MFO remain roughly constant after iterations 54 and 40, the other three algorithms keep improving the capture factor. In this case, HCMVO and MVO worked very well in the optimizing process with a capture factor obtained by the former as 0.594 and by the latter as 0.593. MFO almost found its highest value before the iteration 50, which means the exploration part of the algorithm works out well. Similarly, HCMVO does the same. However, it keeps finding the better solution during the optimization process until the last iteration, indicating the strong exploitation part of the algorithm. GWO reveals a weakness in exploration and exploitation because not only does it evoke the least capture factor value, but also the curve remains almost unchanged throughout 350 iterations.

Figure 18 illustrates complex interactions between the five optimization parameters and the capture factor for HCMVO (a), MPA (b), and MFO (c) algorithms. The first interesting observation is that there is a high level of nonlinear relationships among the setting parameters that can make a multi-modal search space. The dark blue lines represent the best-found configuration throughout the optimisation process. Based on both HCMVO (a) and MVO (b), we can infer that the dark blue lines concentrate in a specific range, showing the high convergence ability of both HCMVO and MVO. However, MFO (c) could not find the exact optimal range of the decision variables, and the best-found solutions per generation distribute mostly all around the search space.

Empty CellAlgorithm 1: Hill Climb Multiverse Optimization
01:procedure HCMVO
02:Initialization
03:Initialize the constraints��1�,��1�
04:�1�=Mi�1�+���1�/�▹Compute the step size,�is search resolution
05:So�1=〈�,�,�,�,�〉▹���������������
06:�������1=����So�1▹���������ℎ���������
07:Main loop
08:for iter≤���ita=do
09:���=���±��
10:while�≤���(Sol1)do
11:���=���+�,▹����ℎ���ℎ��������ℎ
12:fitness��iter=�������
13:t = t+1
14:end while
15:〈�����,������max〉=����������
16:���itev=���Inde�max▹�������ℎ�������������������������������ℎ�������
17:��=��-����Max��+1▹�����������������
18:end for
19:return���iter,����
20:end procedure

were utilized to illuminate the optimum values of the design parameters, and the best method was chosen to develop a new algorithm that performs both local and global search methods.

The correlation between hydrodynamic parameters and the capture factor of the converter was supported by the results. For any given water depth, the capture factor increases as the wave period increases, until a certain wave period value (6 seconds) is reached, after which the capture factor gradually decreases. It is expected since the flap cannot oscillate effectively when the wavelength is too short for a certain water depth. Conversely, when the wavelength is too long, the capture factor decreases. Furthermore, under a constant wave period, increasing the water depth does not affect the capture factor. Regarding the sensitivity analysis, the study found that increasing the flap bottom elevation causes turbulence flow behind the flap and limitation of rotation, which leads to less interaction with the incoming waves. Furthermore, while keeping the flap bottom elevation constant, increasing the freeboard improves the capture factor. Overtopping happens when the freeboard is negative and the flap is below the water surface, which has a detrimental influence on converter performance. Furthermore, raising the freeboard causes the wave impact to become more violent, which increases converter performance.

In the last part, we discussed the search process of each algorithm and visualized their performance and convergence curves as they try to find the best values for decision variables. Among the four selected metaheuristic algorithms, the Multi-verse Optimizer proved to be the most effective in achieving the best answer in terms of the WEC capture factor. However, the MVO needed modifications regarding its escape approach from the local optima in order to improve its global search capabilities. To overcome these constraints, we presented a fast and efficient meta-algorithm (HCMVO) that combines MVO with a Random-restart hill-climbing local search. On a higher level, this meta-algorithm employed MVO to generate global tracking and present a range of possible and appropriate solutions. Taken together, the results demonstrated that there is a significant degree of nonlinearity among the setup parameters that might result in a multimodal search space. Since MVO was faced with a stagnation issue or fell into a local optimum, we constructed a complete neighborhood search around the best-found solution offered by the upper level. In sum, the newly-developed algorithm proved to be highly effective for the problem compared to other similar optimization methods. The strength of the current findings may encourage future investigation on design optimization of wave energy converters using developed geometry as well as the novel approach.

CRediT authorship contribution statement

Erfan Amini: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Mahdieh Nasiri: Conceptualization, Methodology, Validation, Data curation, Writing – original draft, Writing – review & editing, Visualization. Navid Salami Pargoo: Writing – original draft, Writing – review & editing. Zahra Mozhgani: Conceptualization, Methodology. Danial Golbaz: Writing – original draft. Mehrdad Baniesmaeil: Writing – original draft. Meysam Majidi Nezhad: . Mehdi Neshat: Supervision, Conceptualization, Writing – original draft, Writing – review & editing, Visualization. Davide Astiaso Garcia: Supervision. Georgios Sylaios: Supervision.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

This research has been carried out within ILIAD (Inte-grated Digital Framework for Comprehensive Maritime Data and Information Services) project that received funding from the European Union’s H2020 programme.

Data availability

Data will be made available on request.

References

Figure 15. Velocity distribution of impinging jet on a wall under different Reynolds numbers.

Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment

by Hongbo Mi 1,2, Chuan Wang 1,3, Xuanwen Jia 3,*, Bo Hu 2, Hongliang Wang 4, Hui Wang 3 and Yong Zhu 5

1College of Mechatronics Engineering, Hainan Vocational University of Science and Technology, Haikou 571126, China

2Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China

3College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China

4School of Aerospace and Mechanical Engineering/Flight College, Changzhou Institute of Technology, Changzhou 213032, China

5National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China

*Author to whom correspondence should be addressed.Sustainability202315(6), 5159; https://doi.org/10.3390/su15065159

Received: 30 January 2023 / Revised: 4 March 2023 / Accepted: 10 March 2023 / Published: 14 March 2023(This article belongs to the Special Issue Advanced Technologies of Renewable Energy and Water Management for Sustainable Environment

Abstract

Due to their high efficiency, low heat loss and associated sustainability advantages, impinging jets have been used extensively in marine engineering, geotechnical engineering and other engineering practices. In this paper, the flow structure and impact characteristics of impinging jets with different Reynolds numbers and impact distances are systematically studied by Flow-3D based on PIV experiments. In the study, the relevant state parameters of the jets are dimensionlessly treated, obtaining not only the linear relationship between the length of the potential nucleation zone and the impinging distance, but also the linear relationship between the axial velocity and the axial distance in the impinging zone. In addition, after the jet impinges on the flat plate, the vortex action range caused by the wall-attached flow of the jet gradually decreases inward with the increase of the impinging distance. By examining the effect of Reynolds number Re on the hydraulic characteristics of the submerged impact jet, it can be found that the structure of the continuous submerged impact jet is relatively independent of the Reynolds number. At the same time, the final simulation results demonstrate the applicability of the linear relationship between the length of the potential core region and the impact distance. This study provides methodological guidance and theoretical support for relevant engineering practice and subsequent research on impinging jets, which has strong theoretical and practical significance.

Keywords: 

PIVFlow-3Dimpinging jethydraulic characteristicsimpinging distance

Sustainability 15 05159 g001 550

Figure 1. Geometric model.

Sustainability 15 05159 g002 550

Figure 2. Model grid schematic.

Sustainability 15 05159 g003 550

Figure 3. (a) Schematic diagram of the experimental setup; (b) PIV images of vertical impinging jets with velocity fields.

Sustainability 15 05159 g004 550

Figure 4. (a) Velocity distribution verification at the outlet of the jet pipe; (b) Distribution of flow angle in the mid-axis of the jet [39].

Sustainability 15 05159 g005 550

Figure 5. Along-range distribution of the dimensionless axial velocity of the jet at different impact distances.Figure 6 shows the variation of H

Sustainability 15 05159 g006 550

Figure 6. Relationship between the distribution of potential core region and the impact height H/D.

Sustainability 15 05159 g007 550

Figure 7. The relationship between the potential core length 

Sustainability 15 05159 g008 550

Figure 8. Along-range distribution of the flow angle φ of the jet at different impact distances.

Sustainability 15 05159 g009 550

Figure 9. Velocity distribution along the axis of the jet at different impinging regions.

Sustainability 15 05159 g010 550

Figure 10. The absolute value distribution of slope under different impact distances.

Sustainability 15 05159 g011a 550
Sustainability 15 05159 g011b 550

Figure 11. Velocity distribution of impinging jet on wall under different impinging distances.

Sustainability 15 05159 g012 550

Figure 12. Along-range distribution of the dimensionless axial velocity of the jet at different Reynolds numbers.

Sustainability 15 05159 g013 550

Figure 13. Along-range distribution of the flow angle φ of the jet at different Reynolds numbers.

Sustainability 15 05159 g014 550

Figure 14. Velocity distribution along the jet axis at different Reynolds numbers.

Sustainability 15 05159 g015 550

Figure 15. Velocity distribution of impinging jet on a wall under different Reynolds numbers.

References

  1. Zhang, J.; Li, Y.; Zhang, Y.; Yang, F.; Liang, C.; Tan, S. Using a high-pressure water jet-assisted tunnel boring machine to break rock. Adv. Mech. Eng. 202012, 1687814020962290. [Google Scholar] [CrossRef]
  2. Shi, X.; Zhang, G.; Xu, G.; Ma, Y.; Wu, X. Inactivating Microorganism on Medical Instrument Using Plasma Jet. High Volt. Eng. 200935, 632–635. [Google Scholar]
  3. Gao, Y.; Han, P.; Wang, F.; Cao, J.; Zhang, S. Study on the Characteristics of Water Jet Breaking Coal Rock in a Drilling Hole. Sustainability 202214, 8258. [Google Scholar] [CrossRef]
  4. Xu, W.; Wang, C.; Zhang, L.; Ge, J.; Zhang, D.; Gao, Z. Numerical study of continuous jet impinging on a rotating wall based on Wray—Agarwal turbulence model. J. Braz. Soc. Mech. Sci. Eng. 202244, 433. [Google Scholar] [CrossRef]
  5. Hu, B.; Wang, C.; Wang, H.; Yu, Q.; Liu, J.; Zhu, Y.; Ge, J.; Chen, X.; Yang, Y. Numerical Simulation Study of the Horizontal Submerged Jet Based on the Wray—Agarwal Turbulence Model. J. Mar. Sci. Eng. 202210, 1217. [Google Scholar] [CrossRef]
  6. Dahiya, A.K.; Bhuyan, B.K.; Kumar, S. Perspective study of abrasive water jet machining of composites—A review. J. Mech. Sci. Technol. 202236, 213–224. [Google Scholar] [CrossRef]
  7. Abushanab, W.S.; Moustafa, E.B.; Harish, M.; Shanmugan, S.; Elsheikh, A.H. Experimental investigation on surface characteristics of Ti6Al4V alloy during abrasive water jet machining process. Alex. Eng. J. 202261, 7529–7539. [Google Scholar] [CrossRef]
  8. Hu, B.; Wang, H.; Liu, J.; Zhu, Y.; Wang, C.; Ge, J.; Zhang, Y. A numerical study of a submerged water jet impinging on a stationary wall. J. Mar. Sci. Eng. 202210, 228. [Google Scholar] [CrossRef]
  9. Peng, J.; Shen, H.; Xie, W.; Zhai, S.; Xi, G. Influence of flow fluctuation characteristics on flow and heat transfer in different regions. J. Drain. Irrig. Mach. Eng. 202240, 826–833. [Google Scholar]
  10. Zhai, S.; Xie, F.; Yin, G.; Xi, G. Effect of gap ratio on vortex-induced vibration characteristics of different blunt bodies near-wall. J. Drain. Irrig. Mach. Eng. 202139, 1132–1138. [Google Scholar]
  11. Lin, W.; Zhou, Y.; Wang, L.; Tao, L. PIV experiment and numerical simulation of trailing vortex structure of improved INTER-MIG impeller. J. Drain. Irrig. Mach. Eng. 202139, 158–164. [Google Scholar]
  12. Han, B.; Yao, Z.; Tang, R.; Xu, H. On the supersonic impinging jet by laser Doppler velocimetry. Exp. Meas. Fluid Mech. 200216, 99–103. [Google Scholar]
  13. Darisse, A.; Lemay, J.; Benaissa, A. LDV measurements of well converged third order moments in the far field of a free turbulent round jet. Exp. Therm. Fluid Sci. 201344, 825–833. [Google Scholar] [CrossRef]
  14. Kumar, S.; Kumar, A. Effect of initial conditions on mean flow characteristics of a three dimensional turbulent wall jet. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2021235, 6177–6190. [Google Scholar] [CrossRef]
  15. Tao, D.; Zhang, R.; Ying, C. Development and application of the pollutant diffusion testing apparatus based on the image analysis. J. Saf. Environ. 201616, 247–251. [Google Scholar]
  16. Seo, H.; Kim, K.C. Experimental study on flow and turbulence characteristics of bubbly jet with low void fraction. Int. J. Multiph. Flow 2021142, 103738. [Google Scholar] [CrossRef]
  17. Wen, Q.; Sha, J.; Liu, Y. TR-PIV measurement of the turbulent submerged jet and POB analysis of the dynamic structure. J. Exp. Fluid Mech. 20144, 16–24. [Google Scholar]
  18. Yang, Y.; Zhou, L.; Shi, W.; He, Z.; Han, Y.; Xiao, Y. Interstage difference of pressure pulsation in a three-stage electrical submersible pump. J. Petrol. Sci. Eng. 2021196, 107653. [Google Scholar] [CrossRef]
  19. Tang, S.; Zhu, Y.; Yuan, S. An improved convolutional neural network with an adaptable learning rate towards multi-signal fault diagnosis of hydraulic piston pump. Adv. Eng. Inform. 202150, 101406. [Google Scholar] [CrossRef]
  20. Han, Y.; Song, X.; Li, K.; Yan, X. Hybrid modeling for submergence depth of the pumping well using stochastic configuration networks with random sampling. J. Petrol. Sci. Eng. 2022208, 109423. [Google Scholar] [CrossRef]
  21. Tang, S.; Zhu, Y.; Yuan, S. A novel adaptive convolutional neural network for fault diagnosis of hydraulic piston pump with acoustic images. Adv. Eng. Inform. 202252, 101554. [Google Scholar] [CrossRef]
  22. Long, J.; Song, X.; Shi, J.; Chen, J. Optimization and CFD Analysis on Nozzle Exit Position of Two-phase Ejector. J. Refrig. 202243, 39–45. [Google Scholar]
  23. Ni, Q.; Ruan, W. Optimization design of desilting jet pump parameters based on response surface model. J. Ship Mech. 202226, 365–374. [Google Scholar]
  24. Zhang, K.; Zhu, X.; Ren, X.; Qiu, Q.; Shen, S. Numerical investigation on the effect of nozzle position for design of high performance ejector. Appl. Therm. Eng. 2017126, 594–601. [Google Scholar] [CrossRef]
  25. Fu, W.; Liu, Z.; Li, Y.; Wu, H.; Tang, Y. Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance. Int. J. Therm. Sci. 2018132, 509–516. [Google Scholar] [CrossRef]
  26. Lucas, C.; Rusche, H.; Schroeder, A.; Koehler, J. Numerical investigation of a two-phase CO2 ejector. Int. J. Refrigeration 201443, 154–166. [Google Scholar] [CrossRef]
  27. Ma, X.; Zhu, T.; Fu, Y.; Yan, Y.; Chen, W. Numerical simulation of rock breaking by abrasive water jet. J. Coast. Res. 201993, 274–283. [Google Scholar] [CrossRef]
  28. He, L.; Liu, Y.; Shen, K.; Yang, X.; Ba, Q.; Xiong, W. Numerical research on the dynamic rock-breaking process of impact drilling with multi-nozzle water jets. J. Pet. Sci. Eng. 2021207, 109145. [Google Scholar] [CrossRef]
  29. Yu, Z.; Wang, Z.; Lei, C.; Zhou, Y.; Qiu, X. Numerical Simulation on Internal Flow Field of a Self-excited Oscillation Pulsed Jet Nozzle with Back-flow. Mech. Sci. Technol. Aerosp. Eng. 202241, 998–1002. [Google Scholar]
  30. Huang, J.; Ni, F.; Gu, L. Numerical method of FLOW-3D for sediment erosion simulation. China Harb. Eng. 201939, 6–11. [Google Scholar]
  31. Al Shaikhli, H.I.; Khassaf, S.I. Using of flow 3d as CFD materials approach in waves generation. Mater. Today Proc. 202249, 2907–2911. [Google Scholar] [CrossRef]
  32. Kosaj, R.; Alboresha, R.S.; Sulaiman, S.O. Comparison Between Numerical Flow3d Software and Laboratory Data, For Sediment Incipient Motion. IOP Conf. Ser. Earth Environ. Sci. 2022961, 012031. [Google Scholar] [CrossRef]
  33. Du, C.; Liu, X.; Zhang, J.; Wang, B.; Chen, X.; Yu, X. Long-distance water hammer protection of pipeline after pump being first lowered and then rasied. J. Drain. Irrig. Mach. Eng. 202240, 1248–1253, 1267. [Google Scholar]
  34. Gao, F.; Li, X.; Gao, Q. Experiment and numerical simulation on hydraulic characteristics of novel trapezoidal measuring weir. J. Drain. Irrig. Mach. Eng. 202240, 1104–1111. [Google Scholar]
  35. Tu, A.; Nie, X.; Li, Y.; Li, H. Experimental and simulation study on water infiltration characteristics of layered red soil. J. Drain. Irrig. Mach. Eng. 202139, 1243–1249. [Google Scholar]
  36. Chen, J.; Zeng, B.; Liu, L.; Tao, K.; Zhao, H.; Zhang, C.; Zhang, J.; Li, D. Investigating the anchorage performance of full-grouted anchor bolts with a modified numerical simulation method. Eng. Fail. Anal. 2022141, 106640. [Google Scholar] [CrossRef]
  37. Hu, B.; Yao, Y.; Wang, M.; Wang, C.; Liu, Y. Flow and Performance of the Disk Cavity of a Marine Gas Turbine at Varying Nozzle Pressure and Low Rotation Speeds: A Numerical Investigation. Machines 202311, 68. [Google Scholar] [CrossRef]
  38. Yao, J.; Wang, X.; Zhang, S.; Xu, S.; Jin, B.; Ding, S. Orthogonal test of important parameters affecting hydraulic performance of negative pressure feedback jet sprinkler. J. Drain. Irrig. Mach. Eng. 202139, 966–972. [Google Scholar]
  39. Wang, C.; Wang, X.; Shi, W.; Lu, W.; Tan, S.K.; Zhou, L. Experimental investigation on impingement of a submerged circular water jet at varying impinging angles and Reynolds numbers. Exp. Therm. Fluid Sci. 201789, 189–198. [Google Scholar] [CrossRef]
  40. Speziale, C.G.; Thangam, S. Analysis of an RNG based turbulence model for separated flows. Int. J. Eng. Sci. 199230, 1379–1388. [Google Scholar] [CrossRef]
  41. El Hassan, M.; Assoum, H.H.; Sobolik, V.; Vétel, J.; Abed-Meraim, K.; Garon, A.; Sakout, A. Experimental investigation of the wall shear stress and the vortex dynamics in a circular impinging jet. Exp. Fluids 201252, 1475–1489. [Google Scholar] [CrossRef]
  42. Fairweather, M.; Hargrave, G. Experimental investigation of an axisymmetric, impinging turbulent jet. 1. Velocity field. Exp. Fluids 200233, 464–471. [Google Scholar] [CrossRef]
  43. Ashforth-Frost, S.; Jambunathan, K. Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet. Int. Commun. Heat Mass Transf. 199623, 155–162. [Google Scholar] [CrossRef]
  44. Chen, M.; Huang, H.; Wang, D.; Lv, S.; Chen, Y. PIV tests for flow characteristics of impinging jet in a semi-closed circular pipe. J. Vib. Shock 202140, 90–97, 113. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Share and Cite

      

MDPI and ACS Style

Mi, H.; Wang, C.; Jia, X.; Hu, B.; Wang, H.; Wang, H.; Zhu, Y. Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment. Sustainability 202315, 5159. https://doi.org/10.3390/su15065159

AMA Style

Mi H, Wang C, Jia X, Hu B, Wang H, Wang H, Zhu Y. Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment. Sustainability. 2023; 15(6):5159. https://doi.org/10.3390/su15065159Chicago/Turabian Style

Mi, Hongbo, Chuan Wang, Xuanwen Jia, Bo Hu, Hongliang Wang, Hui Wang, and Yong Zhu. 2023. “Hydraulic Characteristics of Continuous Submerged Jet Impinging on a Wall by Using Numerical Simulation and PIV Experiment” Sustainability 15, no. 6: 5159. https://doi.org/10.3390/su15065159

Figure 2. Different PKW Types.

A review of Piano Key Weir as a superior alternative for dam rehabilitation

댐 복구를 위한 우수한 대안으로서의 Piano Key Weir에 대한 검토

Amiya Abhash &

K. K. Pandey

Pages 541-551 | Received 03 Mar 2020, Accepted 07 May 2020, Published online: 21 May 2020

ABSTRACT

Dams fall in ‘installations containing dangerous forces’ because of their massive impact on the environment and civilian life and property as per International humanitarian law. As such, it becomes vital for hydraulic engineers to refurbish various solutions for dam rehabilitation. This paper presents a review of a new type of weir installation called Piano Key Weir (PKW), which is becoming popular around the world for its higher spillway capacity both for existing and new dam spillway installations. This paper reviews the geometry along with structural integrity, discharging capacity, economic aspects, aeration requirements, sediment transport and erosion aspects of Piano Key Weir (PKW) as compared with other traditional spillway structures and alternatives from literature. The comparison with other alternatives shows PKW to be an excellent alternative for dam risk mitigation owing to its high spillway capabilities and economy, along with its use in both existing and new hydraulic structures.

댐은 국제 인도법에 따라 환경과 민간인 생활 및 재산에 막대한 영향을 미치기 때문에 ‘위험한 힘을 포함하는 시설물’에 속합니다. 따라서 유압 엔지니어는 댐 복구를 위한 다양한 솔루션을 재정비해야 합니다.

이 백서에서는 PKW(Piano Key Weir)라는 새로운 유형의 둑 설치에 대한 검토를 제공합니다. PKW는 기존 및 신규 댐 방수로 설치 모두에서 더 높은 방수로 용량으로 전 세계적으로 인기를 얻고 있습니다.

이 백서에서는 구조적 무결성, 배출 용량, 경제적 측면, 폭기 요구 사항, 퇴적물 운반 및 PKW(Piano Key Weir)의 침식 측면과 함께 다른 전통적인 여수로 구조 및 문헌의 대안과 비교하여 기하학을 검토합니다.

다른 대안과의 비교는 PKW가 높은 여수로 기능과 경제성으로 인해 댐 위험 완화를 위한 탁월한 대안이며 기존 및 새로운 수력 구조물 모두에 사용됨을 보여줍니다.

KEYWORDS: 

Figure 2. Different PKW Types.
Figure 2. Different PKW Types.

References

  • Anderson, R., and Tullis, B. (2011). Influence of Piano Key Weir geometry on discharge. Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B. Liège, Belgium. [Crossref][Google Scholar]
  • Anderson, R., and Tullis, B. (2012a). “Piano key weir hydraulics and labyrinth weir comparison”. J. Irrig. Drain. Eng., 139(3), 246–253. doi:https://doi.org/10.1061/(ASCE)IR.1943-4774.0000530 [Crossref][Web of Science ®][Google Scholar]
  • Anderson, R., and Tullis, B. (2012b). “Piano key weir: Reservoir versus channel application”. J. Irrig. Drain. Eng., 138(8), 773–776. doi:https://doi.org/10.1061/(ASCE)IR.1943-4774.0000464 [Crossref][Web of Science ®][Google Scholar]
  • Anderson, R.M. 2011. Piano key weir head discharge relationships, M.S. Thesis, Utah State University, Logan, Utah. [Google Scholar]
  • Bashiri, H., Dewals, B., Pirotton, M., Archambeau, P., and Erpicum, S. (2016). “Towards a new design equation for piano key weirs discharge capacity.” Proc. of the 6th International Symposium on Hydraulic Structures. Portland, USA. [Google Scholar]
  • Bianucci, S.P., Sordo Ward, Á.F., Pérez Díaz, J.I., García-Palacios, J.H., Mediero Orduña, L.J., and Garrote de Marcos, L. (2013). “Risk-based methodology for parameter calibration of a reservoir flood control model”. Natl. Hazard Earth Syst. Sci., 13(4), 965–981. doi:https://doi.org/10.5194/nhess-13-965-2013 [Crossref][Web of Science ®][Google Scholar]
  • Blancher, B., Montarros, F., and Laugier, F. (2011). Hydraulic comparison between Piano Key Weirs and labyrinth spillways. Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B. Liège, Belgium. [Crossref][Google Scholar]
  • Botha, A., Fitz, I., Moore, A., Mulder, F., and Van Deventer, N. 2013. “Application of the Piano Key Weir spillway in the Republic of South Africa”. Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs, Chatou, Paris, France, 20–22, 185. [Crossref][Google Scholar]
  • Chahartaghi, M.K., Nazari, S., and Shooshtari, M.M. 2019. “Experimental and numerical simulation of arced trapezoidal Piano Key Weirs”. Flow Meas. Instrum., 68, 101576. doi:https://doi.org/10.1016/j.flowmeasinst.2019.101576 [Crossref][Web of Science ®][Google Scholar]
  • Chi Hien, T., Thanh Son, H., and Ho Ta Khanh, M. (2006). Results of some ‘piano keys’ weir hydraulic model tests in Vietnam. Proc., 22nd Int. Congress of Large Dams, Question 87, Response 39, International Commission on Large Dams (ICOLD). Barcelona, Spain. [Google Scholar]
  • Cicero, G., Barcouda, M., Luck, M., and Vettori, E. (2011). Study of a piano key morning glory to increase the spillway capacity of the Bage dam. Proc. Int. Conf. Labyrinth Piano Key Weirs-PKW2011, Taylor & Francis, London. [Crossref][Google Scholar]
  • Cicero, G., De Miranda, D., and Luck, M. (2012). “Assessment of the code Wolf 1D PKW for predicting the hydraulic behaviour of PK-Weirs.” Congrès SHF-33èmes journées de l’hydraulique “Grands aménagements hydrauliques 2012”, Paris, France. [Google Scholar]
  • Cicero, G., and Delisle, J. (2013). “Discharge characteristics of Piano Key weirs under submerged flow”. Labyrinth and Piano Key Weirs II–PKW 2013, 101–109. [Crossref][Google Scholar]
  • Cicero, G., Delisle, J., Lefebvre, V., and Vermeulen, J. (2013). “Experimental and numerical study of the hydraulic performance of a trapezoidal Piano Key weir.” Labyrinth and Piano Key Weirs II: Proceedings of the Second International Workshop on Labyrinth and Piano key weirs, Chatou, Paris, France, 20–22, 265. [Crossref][Google Scholar]
  • Cicéro, G., Guene, C., Luck, M., Pinchard, T., Lochu, A., and Brousse, P. (2010). “Experimental optimization of a Piano Key Weir to increase the spillway capacity of the Malarce dam.” 1st IAHR European Congress, Edinbourgh, Mai 4–6, 2010. [Google Scholar]
  • Crookston, B., Anderson, R., and Tullis, B. (2018). “Free-flow discharge estimation method for Piano Key weir geometries.” J. Hydro. Environ. Res., 19, 160–167. doi:https://doi.org/10.1016/j.jher.2017.10.003 [Crossref][Web of Science ®][Google Scholar]
  • Das Singhal, G., and Sharma, N. 2011. “Rehabilitation of Sawara Kuddu Hydroelectric Project–Model studies of Piano Key Weir in India”. Proc. Int. Workshop on Labyrinths and Piano Key Weirs PKW 2011. Taylor & Francis, London. [Crossref][Google Scholar]
  • Denys, F., Basson, G., and Strasheim, J. (2017). Fluid Structure Interaction of Piano Key Weirs. Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam. [Crossref][Google Scholar]
  • Eichenberger, P. (2013). “The first commercial piano key weir in Switzerland.” Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 227. [Crossref][Google Scholar]
  • Erpicum, S., Laugier, F., Pfister, M., Pirotton, M., Cicero, G.-M., and Schleiss, A.J. 2013. Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, CRC Press. [Crossref][Google Scholar]
  • Erpicum, S., Machiels, O., Dewals, B., Pirotton, M., and Archambeau, P. (2012). “Numerical and physical hydraulic modelling of Piano Key Weirs.” Proceedings of the 4th Int. Conf. on Water Resources and Renewable Energy Development in Asia. Chiang Mai, Thailande. [Google Scholar]
  • Erpicum, S., Nagel, V., and Laugier, F. (2011). “Piano Key Weir design study at Raviege dam”. Labyrinth and Piano Key Weirs–PKW 2011, 43–50. [Crossref][Google Scholar]
  • Ervine, D., and Elsawy, E. (1975). “The effect of a falling nappe on river aeration.” Proc. 16th IAHR Congress, Sao Paulo, Brazil. [Google Scholar]
  • Falvey, H.T. 1980. “Air-water flow in hydraulic structures”. NASA STI/Recon Technical Report N, 81. [Google Scholar]
  • Gabriel-Martin, I., Sordo-Ward, A., Garrote, L., and Castillo, L.G. (2017). “Influence of initial reservoir level and gate failure in dam safety analysis. Stochastic approach.” J. Hydrol., 550, 669–684. doi:https://doi.org/10.1016/j.jhydrol.2017.05.032 [Crossref][Web of Science ®][Google Scholar]
  • Gebhardt, M., Herbst, J., Merkel, J., and Belzner, F. (2019). “Sedimentation at labyrinth weirs–an experimental study of the self-cleaning process”. J. Hydraulic Res., 57(4), 579–590. doi:https://doi.org/10.1080/00221686.2018.1494053 [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Hu, H., Qian, Z., Yang, W., Hou, D., and Du, L. (2018). “Numerical study of characteristics and discharge capacity of piano key weirs.” Flow Meas. Instrum., 62, 27–32. doi:https://doi.org/10.1016/j.flowmeasinst.2018.05.004 [Crossref][Web of Science ®][Google Scholar]
  • Javaheri, A., and Kabiri-Samani, A. (2012). “Threshold submergence of flow over PK weirs”. Int. J. Civil Geol. Eng., 6, 46–49. [Google Scholar]
  • Jayatillake, H., and Perera, K. (2013). “Design of a Piano-Key Weir for Giritale Dam spillway in Sri Lanka.” Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 151. [Crossref][Google Scholar]
  • Jayatillake, H., and Perera, K. (2017). “Adoption of a type D Piano Key Weir spillway with tapered noses at Rambawa Tank, Sri Lanka.” Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam. [Crossref][Google Scholar]
  • Jüstrich, S., Pfister, M., and Schleiss, A.J. (2016). “Mobile riverbed scour downstream of a Piano Key weir”. J. Hydraulic Eng., 142(11), 04016043. doi:https://doi.org/10.1061/(ASCE)HY.1943-7900.0001189 [Crossref][Google Scholar]
  • Kabiri-Samani, A., and Javaheri, A. (2012). “Discharge coefficients for free and submerged flow over Piano Key weirs”. J. Hydraulic Res., 50(1), 114–120. doi:https://doi.org/10.1080/00221686.2011.647888 [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Karimi, M., Attari, J., Saneie, M., and Jalili Ghazizadeh, M.R. (2018). “Side weir flow characteristics: comparison of piano key, labyrinth, and linear types”. J. Hydraulic Eng., 144(12), 04018075. doi:https://doi.org/10.1061/(ASCE)HY.1943-7900.0001539 [Crossref][Google Scholar]
  • Karimi, M., Attari, J., Saneie, M., and Jalili-Ghazizadeh, M. (2017). “Experimental study of discharge coefficient of a piano key side weir.” Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017). Proceedings of the Third International Workshop on Labyrinth and Piano key weirs 2017, Qui Nhon, Vietnam, 22–24. [Crossref][Google Scholar]
  • Khanh, M.H.T. (2013). “The Piano Key Weirs: 15 years of Research & Development–Prospect.” Labyrinth and piano key weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 3. [Crossref][Google Scholar]
  • Khanh, M.H.T. (2017). “History and development of Piano Key Weirs in Vietnam from 2004 to 2016.” Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam. [Google Scholar]
  • Khanh, M.H.T., Hien, T.C., and Hai, N.T. (2011). “Main results of the PK weir model tests in Vietnam (2004 to 2010).” Labyrinth and Piano Key Weirs, 191. Liège, Belgium. [Crossref][Google Scholar]
  • Khassaf, S.I., Aziz, L.J., and Elkatib, Z.A. (2016). “Hydraulic behavior of piano key weir type B under free flow conditions”. Int. J. Sci. Technol. Res., 5(3), 158–163. [Google Scholar]
  • Khassaf, S.I., and Al-Baghdadi, M.B. (2015). “Experimental study of non-rectangular piano key weir discharge coefficient”. J. Homepage, 6(5), 425–436. [Google Scholar]
  • Khassaf, S.I., and Al-Baghdadi, M.B.N. (2018). “Experimental investigation of submerged flow over piano key weir”. Int. J. Energy Environ., 9(3), 249–260. [Google Scholar]
  • Kwon, -H.-H., and Moon, Y.-I. (2006). “Improvement of overtopping risk evaluations using probabilistic concepts for existing dams”. Stochastic Environ. Res. Risk Assess., 20(4), 223. doi:https://doi.org/10.1007/s00477-005-0017-2 [Crossref][Web of Science ®][Google Scholar]
  • Laugier, F. (2007). “Design and construction of the first Piano Key Weir spillway at Goulours dam”. Int. J. Hydropower Dams, 14(5), 94. [Google Scholar]
  • Laugier, F., Lochu, A., Gille, C., Leite Ribeiro, M., and Boillat, J.-L. (2009). “Design and construction of a labyrinth PKW spillway at Saint-Marc dam, France”. Hydropower Dams, 16(LCH–ARTICLE–2009–023), 100–107. [Google Scholar]
  • Laugier, F., Pralong, J., and Blancher, B. (2011). “Influence of structural thickness of sidewalls on PKW spillway discharge capacity.” Proc. Intl Workshop on Labyrinths and Piano Key Weirs PKW 2011. Liège, Belgium. [Crossref][Google Scholar]
  • Le Blanc, M., Spinazzola, U., and Kocahan, H. (2011). “Labyrinth fusegate applications on free overflow spillways–Overview of recent projects.” Labyrinth and Piano Key Weirs, 261, Liège, Belgium. [Crossref][Google Scholar]
  • Leite Ribeiro, M., Bieri, M., Boillat, J.-L., Schleiss, A., Delorme, F., and Laugier, F. (2009). “Hydraulic capacity improvement of existing spillways–design of a piano key weirs.” Proc. (on CD) of the 23rd Congress of the Int. Commission on Large Dams CIGB-ICOLD. Brasilia, Brazil. [Google Scholar]
  • Leite Ribeiro, M., Bieri, M., Boillat, J.-L., Schleiss, A., Singhal, G., and Sharma, N. (2011). “Discharge capacity of piano key weirs”. J. Hydraulic Eng., 138(2), 199–203. doi:https://doi.org/10.1061/(ASCE)HY.1943-7900.0000490 [Crossref][Google Scholar]
  • Lempérière, F., and Ouamane, A. (2003). “The Piano Keys weir: a new cost-effective solution for spillways”. Int. J. Hydropower Dams, 10(5), 144–149. [Google Scholar]
  • Lempérière, F., and Vigny, J. (2011). “General comments on labyrinth and Piano Keys Weirs–The future”. Labyrinth and Piano Key weirs–PKW 2011, 289–294. [Crossref][Google Scholar]
  • Lempérière, F., Vigny, J., and Ouamane, A. (2011). General comments on Labyrinth and Piano Key Weirs: The past and present. Proc. Intl. Conf. Labyrinth and Piano Key Weirs, Liège B. Liège, Belgium. [Crossref][Google Scholar]
  • Lewin, J., Ballard, G., and Bowles, D.S. (2003). “Spillway gate reliability in the context of overall dam failure risk.” USSD Annual Lecture, Charleston, South Carolina. [Google Scholar]
  • Lodomez, M., Pirotton, M., Dewals, B., Archambeau, P., and Erpicum, S. (2017). “Could piano key weirs be subject to nappe oscillations?” Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam [Crossref][Google Scholar]
  • Machiels, O., Erpicum, S., Archambeau, P., Dewals, B., and Pirotton, M. (2009). “Large scale experimental study of piano key weirs.” Proc. 33rd IAHR Congress: Water Engineering for a Sustainable Environment, IAHR. Vancouver, Canada [Google Scholar]
  • Machiels, O., Erpicum, S., Archambeau, P., Dewals, B., and Pirotton, M. (2011a). “Piano Key Weir preliminary design method–Application to a new dam project.” Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B. Liège, Belgium. [Crossref][Google Scholar]
  • Machiels, O., Erpicum, S., Dewals, B., Archambeau, P., and Pirotton, M. (2010). “Piano Key Weirs: The experimental study of an efficient solution for rehabilitation”. WIT Trans. Ecol., 133, 95–106. [Crossref][Google Scholar]
  • Machiels, O., Erpicum, S., Dewals, B.J., Archambeau, P., and Pirotton, M. (2011b). “Experimental observation of flow characteristics over a Piano Key Weir”. J Hydraulic Res, 49(3), 359–366. doi:https://doi.org/10.1080/00221686.2011.567761 [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Machiels, O., Pirotton, M., Pierre, A., Dewals, B., and Erpicum, S. (2014). “Experimental parametric study and design of Piano Key Weirs”. J. Hydraulic Res., 52(3), 326–335. doi:https://doi.org/10.1080/00221686.2013.875070 [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Mehboudi, A., Attari, J., and Hosseini, S. (2016). “Experimental study of discharge coefficient for trapezoidal piano key weirs.” Flow Meas. Instrum., 50, 65–72. doi:https://doi.org/10.1016/j.flowmeasinst.2016.06.005 [Crossref][Web of Science ®][Google Scholar]
  • Micovic, Z., Hartford, D.N., Schaefer, M.G., and Barker, B.L. (2016). “A non-traditional approach to the analysis of flood hazard for dams”. Stochastic Environ. Res. Risk Assess., 30(2), 559–581. doi:https://doi.org/10.1007/s00477-015-1052-2 [Crossref][Web of Science ®][Google Scholar]
  • Monjezi, R., Heidarnejad, M., Masjedi, A., Purmohammadi, M.H., and Kamanbedast, A. (2018). “Laboratory investigation of the discharge coefficient of flow in arced labyrinth weirs with triangular plans.” Flow Meas. Instrum., 64, 64–70. doi:https://doi.org/10.1016/j.flowmeasinst.2018.10.011 [Crossref][Web of Science ®][Google Scholar]
  • Noseda, M., Stojnic, I., Pfister, M., and Schleiss, A.J. (2019). “Upstream Erosion and sediment passage at piano key weirs”. J. Hydraulic Eng., 145(8), 04019029. doi:https://doi.org/10.1061/(ASCE)HY.1943-7900.0001616 [Crossref][Google Scholar]
  • Oertel, M. (2015). “Discharge coefficients of piano key weirs from experimental and numerical modelS.” E= proceedings of the 36th IAHR world congress. 28 June – 3 July, The Hague, The Netherlands. [Google Scholar]
  • Ouamane, A. (2011). Nine years of study of the Piano Key Weir in the university laboratory of Biskra “lessons and reflections”. Proc. Int. Conf. Labyrinth Piano Key Weirs-PKW2011, Taylor & Francis, London. [Crossref][Google Scholar]
  • Ouamane, A., Debabeche, M., Lempérière, F., and Vigny, J. (2017). Twenty years of research in Biskra University for Labyrinths and Piano Key Weirs and associated fuse plugs. Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam. [Crossref][Google Scholar]
  • Ouamane, A., and Lempérière, F. (2006). Design of a new economic shape of weir. Proc. Int. Symp. on Dams in the Societies of the 21st Century. Barcelona, Spain. [Crossref][Google Scholar]
  • Patev, R., and Putcha, C. (2005). “Development of fault trees for risk assessment of dam gates and associated operating equipment”. Int. J. Modell. Simul., 25(3), 190–201. doi:https://doi.org/10.1080/02286203.2005.11442336 [Taylor & Francis Online][Google Scholar]
  • Paxson, G., Tullis, B., and Hertel, D. 2013. “Comparison of Piano Key Weirs with labyrinth and gated spillways: Hydraulics, cost, constructability and operations”. Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 123–130. [Crossref][Google Scholar]
  • Pfister, M., Capobianco, D., Tullis, B., and Schleiss, A.J. (2013). “Debris-blocking sensitivity of piano key weirs under reservoir-type approach flow”. J. Hydraulic Eng., 139(11), 1134–1141. doi:https://doi.org/10.1061/(ASCE)HY.1943-7900.0000780 [Crossref][Google Scholar]
  • Phillips, M., and Lesleighter, E. 2013. “Piano Key Weir spillway: Upgrade option for a major dam”. Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 159–168. [Crossref][Google Scholar]
  • Pinchard, T., Boutet, J., and Cicero, G. (2011). “Spillway capacity upgrade at Malarce dam: design of an additional Piano Key Weir spillway.” Proc. Int. Workshop on Labyrinths and Piano Key Weirs PKW. Liège, Belgium. [Crossref][Google Scholar]
  • Pralong, J., J. Vermeulen, B. Blancher, F. Laugier, S. Erpicum, O. Machiels, M. Pirotton, J.-L. Boillat, M. Leite Ribeiro and A. Schleiss (2011). “A naming convention for the piano key weirs geometrical parameters.” Labyrinth and piano key weirs, 271–278. [Crossref][Google Scholar]
  • Ribeiro, M.L., Boillat, J.-L., Schleiss, A., Laugier, F., and Albalat, C. (2007). “Rehabilitation of St-Marc dam.” Experimental optimization of a piano key weir. Proc. of 32nd Congress of IAHR, Vince, Italy. [Google Scholar]
  • Ribeiro, M.L., Pfister, M., and Schleiss, A.J. (2013). “Overview of Piano Key weir prototypes and scientific model investigations”. Labyrinth and Piano Key Weirs II, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 273. [Crossref][Google Scholar]
  • Ribeiro, M.L., Pfister, M., Schleiss, A.J., and Boillat, J.-L. (2012). “Hydraulic design of A-type piano key weirs”. J. Hydraulic Res., 50(4), 400–408. doi:https://doi.org/10.1080/00221686.2012.695041 [Taylor & Francis Online][Web of Science ®][Google Scholar]
  • Ribi, J., Spahni, B., Dorthe, D., and Pfister, M. (2017). Piano Key Weir as overflow on sedimentation basin of wastewater treatment plant. Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam [Crossref][Google Scholar]
  • Schleiss, A. (2011). “From labyrinth to piano key weirs: a historical review.” Proc. Int. Conf. Labyrinth and Piano Key Weirs Liège B. Liège, Belgium. [Crossref][Google Scholar]
  • Sharma, N., and Tiwari, H. (2013). “Experimental study on vertical velocity and submergence depth near Piano Key Weir.” Labyrinth and Piano Key Weirs II-PKW, Proceedings of the Second International Workshop on Labyrinth and Piano key weirs 2013, Chatou, Paris, France, 20–22, 93–100. [Crossref][Google Scholar]
  • Tiwari, H. (2016). Experimental Study of Turbulence Characteristics Near Piano Key Weir. PhD, Indian Institute of Technology Roorkee. [Google Scholar]
  • Tiwari, H., and Sharma, N. 2017. “Empirical and Mathematical Modeling of Head and Discharge Over Piano Key Weir”. Development of Water Resources in India. Springer, Cham. 341–354. https://doi.org/10.1007/978-3-319-55125-8_29 [Crossref][Google Scholar]
  • Valley, P., and Blancher, B. (2017). Construction and testing of two Piano Key Weirs at Charmines dam. Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), Feb 22–24, 2017, CRC Press, Qui Nhon, Vietnam. [Crossref][Google Scholar]
  • Vermeulen, J., Lassus, C., and Pinchard, T. (2017). Design of a Piano Key Weir aeration network. Labyrinth and Piano Key Weirs III: Proceedings of the 3rd International Workshop on Labyrinth and Piano Key Weirs (PKW 2017), February 22- 24,2017, Qui Nhon, Vietnam, CRC Press. [Crossref][Google Scholar]
  • Vermeulen, J., Laugier, F., Faramond, L., and Gille, C. (2011). “Lessons learnt from design and construction of EDF first Piano Key Weirs”. Labyrinth and Piano Key weirs-PKW 2011, 215–224. [Crossref][Google Scholar]

이종 금속 인터커넥트의 펄스 레이저 용접을 위한 가공 매개변수 최적화

Optimization of processing parameters for pulsed laser welding of dissimilar metal interconnects

본 논문은 독자의 편의를 위해 기계번역된 내용이어서 자세한 내용은 원문을 참고하시기 바랍니다.

NguyenThi TienaYu-LungLoabM.Mohsin RazaaCheng-YenChencChi-PinChiuc

aNational Cheng Kung University, Department of Mechanical Engineering, Tainan, Taiwan

bNational Cheng Kung University, Academy of Innovative Semiconductor and Sustainable Manufacturing, Tainan, Taiwan

cJum-bo Co., Ltd, Xinshi District, Tainan, Taiwan

Abstract

워블 전략이 포함된 펄스 레이저 용접(PLW) 방법을 사용하여 알루미늄 및 구리 이종 랩 조인트의 제조를 위한 최적의 가공 매개변수에 대해 실험 및 수치 조사가 수행됩니다. 피크 레이저 출력과 접선 용접 속도의 대표적인 조합 43개를 선택하기 위해 원형 패킹 설계 알고리즘이 먼저 사용됩니다.

선택한 매개변수는 PLW 프로세스의 전산유체역학(CFD) 모델에 제공되어 용융 풀 형상(즉, 인터페이스 폭 및 침투 깊이) 및 구리 농도를 예측합니다. 시뮬레이션 결과는 설계 공간 내에서 PLW 매개변수의 모든 조합에 대한 용융 풀 형상 및 구리 농도를 예측하기 위해 3개의 대리 모델을 교육하는 데 사용됩니다.

마지막으로, 대체 모델을 사용하여 구성된 처리 맵은 용융 영역에 균열이나 기공이 없고 향상된 기계적 및 전기적 특성이 있는 이종 조인트를 생성하는 PLW 매개변수를 결정하기 위해 세 가지 품질 기준에 따라 필터링됩니다.

제안된 최적화 접근법의 타당성은 최적의 용접 매개변수를 사용하여 생성된 실험 샘플의 전단 강도, 금속간 화합물(IMC) 형성 및 전기 접촉 저항을 평가하여 입증됩니다.

결과는 최적의 매개변수가 1209N의 높은 전단 강도와 86µΩ의 낮은 전기 접촉 저항을 생성함을 확인합니다. 또한 용융 영역에는 균열 및 기공과 같은 결함이 없습니다.

An experimental and numerical investigation is performed into the optimal processing parameters for the fabrication of aluminum and copper dissimilar lap joints using a pulsed laser welding (PLW) method with a wobble strategy. A circle packing design algorithm is first employed to select 43 representative combinations of the peak laser power and tangential welding speed. The selected parameters are then supplied to a computational fluidic dynamics (CFD) model of the PLW process to predict the melt pool geometry (i.e., interface width and penetration depth) and copper concentration. The simulation results are used to train three surrogate models to predict the melt pool geometry and copper concentration for any combination of the PLW parameters within the design space. Finally, the processing maps constructed using the surrogate models are filtered in accordance with three quality criteria to determine the PLW parameters that produce dissimilar joints with no cracks or pores in the fusion zone and enhanced mechanical and electrical properties. The validity of the proposed optimization approach is demonstrated by evaluating the shear strength, intermetallic compound (IMC) formation, and electrical contact resistance of experimental samples produced using the optimal welding parameters. The results confirm that the optimal parameters yield a high shear strength of 1209 N and a low electrical contact resistance of 86 µΩ. Moreover, the fusion zone is free of defects, such as cracks and pores.

Fig. 1. Schematic illustration of Al-Cu lap-joint arrangement
Fig. 1. Schematic illustration of Al-Cu lap-joint arrangement
Fig. 2. Machine setup (MFQS-150W_1500W
Fig. 2. Machine setup (MFQS-150W_1500W
Fig. 5. Lap-shear mechanical tests: (a) experimental setup and specimen dimensions, and (b) two different failures of lap-joint welding.
N. Thi Tien et al.
Fig. 5. Lap-shear mechanical tests: (a) experimental setup and specimen dimensions, and (b) two different failures of lap-joint welding. N. Thi Tien et al.
Fig. 9. Simulation and experimental results for melt pool profile. (a) Simulation results for melt pool cross-section, and (b) OM image of melt pool cross-section.
(Note that laser processing parameter of 830 W and 565 mm/s is chosen.).
Fig. 9. Simulation and experimental results for melt pool profile. (a) Simulation results for melt pool cross-section, and (b) OM image of melt pool cross-section. (Note that laser processing parameter of 830 W and 565 mm/s is chosen.).

References

[1]

G. Santos

Road transport and CO2 emissions: What are the challenges?

Transport Policy, 59 (2017), pp. 71-74

ArticleDownload PDFView Record in ScopusGoogle Scholar[2]

A. Das, D. Li, D. Williams, D. Greenwood

Joining technologies for automotive battery systems manufacturing

World Electric Veh. J., 9 (2) (2018), p. 22 View PDF

CrossRefGoogle Scholar[3]

M. Zwicker, M. Moghadam, W. Zhang, C. Nielsen

Automotive battery pack manufacturing–a review of battery to tab joining

J. Adv. Joining Process., 1 (2020), Article 100017

ArticleDownload PDFView Record in ScopusGoogle Scholar[4]

T. Mai, A. Spowage

Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium

Mater. Sci. Eng. A, 374 (1–2) (2004), pp. 224-233

ArticleDownload PDFView Record in ScopusGoogle Scholar[5]

S.S. Lee, T.H. Kim, S.J. Hu, W.W. Cai, J. Li, J.A. Abell

Characterization of joint quality in ultrasonic welding of battery tabs

International Manufacturing Science and Engineering Conference, vol. 54990, American Society of Mechanical Engineers (2012), pp. 249-261

Google Scholar[6]

Y. Zhou, P. Gorman, W. Tan, K. Ely

Weldability of thin sheet metals during small-scale resistance spot welding using an alternating-current power supply

J. Electron. Mater., 29 (9) (2000), pp. 1090-1099 View PDF

CrossRefView Record in ScopusGoogle Scholar[7]

S. Katayama

Handbook of laser welding technologies

Elsevier (2013)

Google Scholar[8]

A. Sadeghian, N. Iqbal

A review on dissimilar laser welding of steel-copper, steel-aluminum, aluminum-copper, and steel-nickel for electric vehicle battery manufacturing

Opt. Laser Technol., 146 (2022), Article 107595

ArticleDownload PDFView Record in ScopusGoogle Scholar[9]

M.J. Brand, P.A. Schmidt, M.F. Zaeh, A. Jossen

Welding techniques for battery cells and resulting electrical contact resistances

J. Storage Mater., 1 (2015), pp. 7-14

ArticleDownload PDFView Record in ScopusGoogle Scholar[10]

M. Jarwitz, F. Fetzer, R. Weber, T. Graf

Weld seam geometry and electrical resistance of laser-welded, aluminum-copper dissimilar joints produced with spatial beam oscillation

Metals, 8 (7) (2018), p. 510 View PDF

CrossRefView Record in ScopusGoogle Scholar[11]S. Smith, J. Blackburn, M. Gittos, P. de Bono, and P. Hilton, “Welding of dissimilar metallic materials using a scanned laser beam,” in International Congress on Applications of Lasers & Electro-Optics, 2013, vol. 2013, no. 1: Laser Institute of America, pp. 493-502.

Google Scholar[12]

P. Schmitz, J.B. Habedank, M.F. Zaeh

Spike laser welding for the electrical connection of cylindrical lithium-ion batteries

J. Laser Appl., 30 (1) (2018), Article 012004 View PDF

CrossRefView Record in ScopusGoogle Scholar[13]

P. Kah, C. Vimalraj, J. Martikainen, R. Suoranta

Factors influencing Al-Cu weld properties by intermetallic compound formation

Int. J. Mech. Mater. Eng., 10 (1) (2015), pp. 1-13

Google Scholar[14]

Z. Lei, X. Zhang, J. Liu, P. Li

Interfacial microstructure and reaction mechanism with various weld fillers on laser welding-brazing of Al/Cu lap joint

J. Manuf. Process., 67 (2021), pp. 226-240

ArticleDownload PDFView Record in ScopusGoogle Scholar[15]

T. Solchenbach, P. Plapper

Mechanical characteristics of laser braze-welded aluminium–copper connections

Opt. Laser Technol., 54 (2013), pp. 249-256

ArticleDownload PDFView Record in ScopusGoogle Scholar[16]

T. Solchenbach, P. Plapper, W. Cai

Electrical performance of laser braze-welded aluminum–copper interconnects

J. Manuf. Process., 16 (2) (2014), pp. 183-189

ArticleDownload PDFView Record in ScopusGoogle Scholar[17]

S.J. Lee, H. Nakamura, Y. Kawahito, S. Katayama

Effect of welding speed on microstructural and mechanical properties of laser lap weld joints in dissimilar Al and Cu sheets

Sci. Technol. Weld. Join., 19 (2) (2014), pp. 111-118

Google Scholar[18]

Z. Xue, S. Hu, D. Zuo, W. Cai, D. Lee, K.-A. Elijah Jr

Molten pool characterization of laser lap welded copper and aluminum

J. Phys. D Appl. Phys., 46 (49) (2013), Article 495501 View PDF

CrossRefView Record in ScopusGoogle Scholar[19]

S. Zhao, G. Yu, X. He, Y. Zhang, W. Ning

Numerical simulation and experimental investigation of laser overlap welding of Ti6Al4V and 42CrMo

J. Mater. Process. Technol., 211 (3) (2011), pp. 530-537

ArticleDownload PDFView Record in ScopusGoogle Scholar[20]

W. Huang, H. Wang, T. Rinker, W. Tan

Investigation of metal mixing in laser keyhole welding of dissimilar metals

Mater. Des., 195 (2020), Article 109056

ArticleDownload PDFView Record in ScopusGoogle Scholar[21]

E. Kaiser, G. Ambrosy, E. Papastathopoulos

Welding strategies for joining copper and aluminum by fast oscillating, high quality laser beam

High-Power Laser Materials Processing: Applications, Diagnostics, and Systems IX, vol. 11273, International Society for Optics and Photonics (2020), p. 112730C

View Record in ScopusGoogle Scholar[22]

V. Dimatteo, A. Ascari, A. Fortunato

Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials (Al-Cu and Cu-Al): Process optimization and characterization

J. Manuf. Process., 44 (2019), pp. 158-165

ArticleDownload PDFView Record in ScopusGoogle Scholar[23]

V. Dimatteo, A. Ascari, E. Liverani, A. Fortunato

Experimental investigation on the effect of spot diameter on continuous-wave laser welding of copper and aluminum thin sheets for battery manufacturing

Opt. Laser Technol., 145 (2022), Article 107495

ArticleDownload PDFView Record in ScopusGoogle Scholar[24]

D. Wu, X. Hua, F. Li, L. Huang

Understanding of spatter formation in fiber laser welding of 5083 aluminum alloy

Int. J. Heat Mass Transf., 113 (2017), pp. 730-740

ArticleDownload PDFView Record in ScopusGoogle Scholar[25]

R. Ducharme, K. Williams, P. Kapadia, J. Dowden, B. Steen, M. Glowacki

The laser welding of thin metal sheets: an integrated keyhole and weld pool model with supporting experiments

J. Phys. D Appl. Phys., 27 (8) (1994), p. 1619 View PDF

CrossRefView Record in ScopusGoogle Scholar[26]

C.W. Hirt, B.D. Nichols

Volume of fluid (VOF) method for the dynamics of free boundaries

J. Comput. Phys., 39 (1) (1981), pp. 201-225

ArticleDownload PDFGoogle Scholar[27]

W. Piekarska, M. Kubiak

Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process

Int. J. Heat Mass Transf., 54 (23–24) (2011), pp. 4966-4974

ArticleDownload PDFView Record in ScopusGoogle Scholar[28]J. Zhou, H.-L. Tsai, and P.-C. Wang, “Transport phenomena and keyhole dynamics during pulsed laser welding,” 2006.

Google Scholar[29]

D. Harrison, D. Yan, S. Blairs

The surface tension of liquid copper

J. Chem. Thermodyn., 9 (12) (1977), pp. 1111-1119

ArticleDownload PDFView Record in ScopusGoogle Scholar[30]

M. Leitner, T. Leitner, A. Schmon, K. Aziz, G. Pottlacher

Thermophysical properties of liquid aluminum

Metall. Mater. Trans. A, 48 (6) (2017), pp. 3036-3045 View PDF

This article is free to access.

CrossRefView Record in ScopusGoogle Scholar[31]

H.-C. Tran, Y.-L. Lo

Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process

Int. J. Adv. Manuf. Technol., 105 (10) (2019), pp. 4443-4460 View PDF

CrossRefView Record in ScopusGoogle Scholar[32]A. Ascari, A. Fortunato, E. Liverani, and A. Lutey, “Application of different pulsed laser sources to dissimilar welding of Cu and Al alloys,” in Proceedings of Lasers in Manufacturing Conference (LIM), 2019.

Google Scholar[33]

A. Fortunato, A. Ascari

Laser welding of thin copper and aluminum sheets: feasibility and challenges in continuous-wave welding of dissimilar metals

Lasers in Manufacturing and Materials Processing, 6 (2) (2019), pp. 136-157 View PDF

CrossRefView Record in ScopusGoogle Scholar[34]

A. Boucherit, M.-N. Avettand-Fènoël, R. Taillard

Effect of a Zn interlayer on dissimilar FSSW of Al and Cu

Mater. Des., 124 (2017), pp. 87-99

ArticleDownload PDFView Record in ScopusGoogle Scholar[35]

N. Kumar, I. Masters, A. Das

In-depth evaluation of laser-welded similar and dissimilar material tab-to-busbar electrical interconnects for electric vehicle battery pack

J. Manuf. Process., 70 (2021), pp. 78-96

ArticleDownload PDFView Record in ScopusGoogle Scholar[36]

M. Abbasi, A.K. Taheri, M. Salehi

Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process

J. Alloy. Compd., 319 (1–2) (2001), pp. 233-241

ArticleDownload PDFGoogle Scholar[37]

D. Zuo, S. Hu, J. Shen, Z. Xue

Intermediate layer characterization and fracture behavior of laser-welded copper/aluminum metal joints

Mater. Des., 58 (2014), pp. 357-362

ArticleDownload PDFView Record in ScopusGoogle Scholar[38]

S. Yan, Y. Shi

Influence of Ni interlayer on microstructure and mechanical properties of laser welded joint of Al/Cu bimetal

J. Manuf. Process., 59 (2020), pp. 343-354

ArticleDownload PDFView Record in ScopusGoogle Scholar[39]

S. Yan, Y. Shi

Influence of laser power on microstructure and mechanical property of laser-welded Al/Cu dissimilar lap joints

J. Manuf. Process., 45 (2019), pp. 312-321

ArticleDownload PDFView Record in ScopusGoogle Scholar

Extratropical cyclone damage to the seawall in Dawlish, UK: eyewitness accounts, sea level analysis and numerical modelling

영국 Dawlish의 방파제에 대한 온대 저기압 피해: 목격자 설명, 해수면 분석 및 수치 모델링

Extratropical cyclone damage to the seawall in Dawlish, UK: eyewitness accounts, sea level analysis and numerical modelling

Natural Hazards (2022)Cite this article

Abstract

2014년 2월 영국 해협(영국)과 특히 Dawlish에 영향을 미친 온대 저기압 폭풍 사슬은 남서부 지역과 영국의 나머지 지역을 연결하는 주요 철도에 심각한 피해를 입혔습니다.

이 사건으로 라인이 두 달 동안 폐쇄되어 5천만 파운드의 피해와 12억 파운드의 경제적 손실이 발생했습니다. 이 연구에서는 폭풍의 파괴력을 해독하기 위해 목격자 계정을 수집하고 해수면 데이터를 분석하며 수치 모델링을 수행합니다.

우리의 분석에 따르면 이벤트의 재난 관리는 성공적이고 효율적이었으며 폭풍 전과 도중에 인명과 재산을 구하기 위해 즉각적인 조치를 취했습니다. 파도 부이 분석에 따르면 주기가 4–8, 8–12 및 20–25초인 복잡한 삼중 봉우리 바다 상태가 존재하는 반면, 조위계 기록에 따르면 최대 0.8m의 상당한 파도와 최대 1.5m의 파도 성분이 나타났습니다.

이벤트에서 가능한 기여 요인으로 결합된 진폭. 최대 286 KN의 상당한 임펄스 파동이 손상의 시작 원인일 가능성이 가장 높았습니다. 수직 벽의 반사는 파동 진폭의 보강 간섭을 일으켜 파고가 증가하고 최대 16.1m3/s/m(벽의 미터 너비당)의 상당한 오버탑핑을 초래했습니다.

이 정보와 우리의 공학적 판단을 통해 우리는 이 사고 동안 다중 위험 계단식 실패의 가장 가능성 있는 순서는 다음과 같다고 결론을 내립니다. 조적 파괴로 이어지는 파도 충격력, 충전물 손실 및 연속적인 조수에 따른 구조물 파괴.

The February 2014 extratropical cyclonic storm chain, which impacted the English Channel (UK) and Dawlish in particular, caused significant damage to the main railway connecting the south-west region to the rest of the UK. The incident caused the line to be closed for two months, £50 million of damage and an estimated £1.2bn of economic loss. In this study, we collate eyewitness accounts, analyse sea level data and conduct numerical modelling in order to decipher the destructive forces of the storm. Our analysis reveals that the disaster management of the event was successful and efficient with immediate actions taken to save lives and property before and during the storm. Wave buoy analysis showed that a complex triple peak sea state with periods at 4–8, 8–12 and 20–25 s was present, while tide gauge records indicated that significant surge of up to 0.8 m and wave components of up to 1.5 m amplitude combined as likely contributing factors in the event. Significant impulsive wave force of up to 286 KN was the most likely initiating cause of the damage. Reflections off the vertical wall caused constructive interference of the wave amplitudes that led to increased wave height and significant overtopping of up to 16.1 m3/s/m (per metre width of wall). With this information and our engineering judgement, we conclude that the most probable sequence of multi-hazard cascading failure during this incident was: wave impact force leading to masonry failure, loss of infill and failure of the structure following successive tides.

Introduction

The progress of climate change and increasing sea levels has started to have wide ranging effects on critical engineering infrastructure (Shakou et al. 2019). The meteorological effects of increased atmospheric instability linked to warming seas mean we may be experiencing more frequent extreme storm events and more frequent series or chains of events, as well as an increase in the force of these events, a phenomenon called storminess (Mölter et al. 2016; Feser et al. 2014). Features of more extreme weather events in extratropical latitudes (30°–60°, north and south of the equator) include increased gusting winds, more frequent storm squalls, increased prolonged precipitation and rapid changes in atmospheric pressure and more frequent and significant storm surges (Dacre and Pinto 2020). A recent example of these events impacting the UK with simultaneous significant damage to coastal infrastructure was the extratropical cyclonic storm chain of winter 2013/2014 (Masselink et al. 2016; Adams and Heidarzadeh 2021). The cluster of storms had a profound effect on both coastal and inland infrastructure, bringing widespread flooding events and large insurance claims (RMS 2014).

The extreme storms of February 2014, which had a catastrophic effect on the seawall of the south Devon stretch of the UK’s south-west mainline, caused a two-month closure of the line and significant disruption to the local and regional economy (Fig. 1b) (Network Rail 2014; Dawson et al. 2016; Adams and Heidarzadeh 2021). Restoration costs were £35 m, and economic effects to the south-west region of England were estimated up to £1.2bn (Peninsula Rail Taskforce 2016). Adams and Heidarzadeh (2021) investigated the disparate cascading failure mechanisms which played a part in the failure of the railway through Dawlish and attempted to put these in the context of the historical records of infrastructure damage on the line. Subsequent severe storms in 2016 in the region have continued to cause damage and disruption to the line in the years since 2014 (Met Office 2016). Following the events of 2014, Network Rail Footnote1 who owns the network has undertaken a resilience study. As a result, it has proposed a £400 m refurbishment of the civil engineering assets that support the railway (Fig. 1) (Network Rail 2014). The new seawall structure (Fig. 1a,c), which is constructed of pre-cast concrete sections, encases the existing Brunel seawall (named after the project lead engineer, Isambard Kingdom Brunel) and has been improved with piled reinforced concrete foundations. It is now over 2 m taller to increase the available crest freeboard and incorporates wave return features to minimise wave overtopping. The project aims to increase both the resilience of the assets to extreme weather events as well as maintain or improve amenity value of the coastline for residents and visitors.

figure 1
Fig. 1

In this work, we return to the Brunel seawall and the damage it sustained during the 2014 storms which affected the assets on the evening of the 4th and daytime of the 5th of February and eventually resulted in a prolonged closure of the line. The motivation for this research is to analyse and model the damage made to the seawall and explain the damage mechanisms in order to improve the resilience of many similar coastal structures in the UK and worldwide. The innovation of this work is the multidisciplinary approach that we take comprising a combination of analysis of eyewitness accounts (social science), sea level and wave data analysis (physical science) as well as numerical modelling and engineering judgement (engineering sciences). We investigate the contemporary wave climate and sea levels by interrogating the real-time tide gauge and wave buoys installed along the south-west coast of the English Channel. We then model a typical masonry seawall (Fig. 2), applying the computational fluid dynamics package FLOW3D-Hydro,Footnote2 to quantify the magnitude of impact forces that the seawall would have experienced leading to its failure. We triangulate this information to determine the probable sequence of failures that led to the disaster in 2014.

figure 2
Fig. 2

Data and methods

Our data comprise eyewitness accounts, sea level records from coastal tide gauges and offshore wave buoys as well as structural details of the seawall. As for methodology, we analyse eyewitness data, process and investigate sea level records through Fourier transform and conduct numerical simulations using the Flow3D-Hydro package (Flow Science 2022). Details of the data and methodology are provided in the following.

Eyewitness data

The scale of damage to the seawall and its effects led the local community to document the first-hand accounts of those most closely affected by the storms including residents, local businesses, emergency responders, politicians and engineering contractors involved in the post-storm restoration work. These records now form a permanent exhibition in the local museum in DawlishFootnote3, and some of these accounts have been transcribed into a DVD account of the disaster (Dawlish Museum 2015). We have gathered data from the Dawlish Museum, national and international news reports, social media tweets and videos. Table 1 provides a summary of the eyewitness accounts. Overall, 26 entries have been collected around the time of the incident. Our analysis of the eyewitness data is provided in the third column of Table 1 and is expanded in Sect. 3.Table 1 Eyewitness accounts of damage to the Dawlish railway due to the February 2014 storm and our interpretations

Full size table

Sea level data and wave environment

Our sea level data are a collection of three tide gauge stations (Newlyn, Devonport and Swanage Pier—Fig. 5a) owned and operated by the UK National Tide and Sea Level FacilityFootnote4 for the Environment Agency and four offshore wave buoys (Dawlish, West Bay, Torbay and Chesil Beach—Fig. 6a). The tide gauge sites are all fitted with POL-EKO (www.pol-eko.com.pl) data loggers. Newlyn has a Munro float gauge with one full tide and one mid-tide pneumatic bubbler system. Devonport has a three-channel data pneumatic bubbler system, and Swanage Pier consists of a pneumatic gauge. Each has a sampling interval of 15 min, except for Swanage Pier which has a sampling interval of 10 min. The tide gauges are located within the port areas, whereas the offshore wave buoys are situated approximately 2—3.3 km from the coast at water depths of 10–15 m. The wave buoys are all Datawell Wavemaker Mk III unitsFootnote5 and come with sampling interval of 0.78 s. The buoys have a maximum saturation amplitude of 20.5 m for recording the incident waves which implies that every wave larger than this threshold will be recorded at 20.5 m. The data are provided by the British Oceanographic Data CentreFootnote6 for tide gauges and the Channel Coastal ObservatoryFootnote7 for wave buoys.

Sea level analysis

The sea level data underwent quality control to remove outliers and spikes as well as gaps in data (e.g. Heidarzadeh et al. 2022; Heidarzadeh and Satake 2015). We processed the time series of the sea level data using the Matlab signal processing tool (MathWorks 2018). For calculations of the tidal signals, we applied the tidal package TIDALFIT (Grinsted 2008), which is based on fitting tidal harmonics to the observed sea level data. To calculate the surge signals, we applied a 30-min moving average filter to the de-tided data in order to remove all wind, swell and infra-gravity waves from the time series. Based on the surge analysis and the variations of the surge component before the time period of the incident, an error margin of approximately ± 10 cm is identified for our surge analysis. Spectral analysis of the wave buoy data is performed using the fast Fourier transform (FFT) of Matlab package (Mathworks 2018).

Numerical modelling

Numerical modelling of wave-structure interaction is conducted using the computational fluid dynamics package Flow3D-Hydro version 1.1 (Flow Science 2022). Flow3D-Hydro solves the transient Navier–Stokes equations of conservation of mass and momentum using a finite difference method and on Eulerian and Lagrangian frameworks (Flow Science 2022). The aforementioned governing equations are:

∇.u=0∇.u=0

(1)

∂u∂t+u.∇u=−∇Pρ+υ∇2u+g∂u∂t+u.∇u=−∇Pρ+υ∇2u+g

(2)

where uu is the velocity vector, PP is the pressure, ρρ is the water density, υυ is the kinematic viscosity and gg is the gravitational acceleration. A Fractional Area/Volume Obstacle Representation (FAVOR) is adapted in Flow3D-Hydro, which applies solid boundaries within the Eulerian grid and calculates the fraction of areas and volume in partially blocked volume in order to compute flows on corresponding boundaries (Hirt and Nichols 1981). We validated the numerical modelling through comparing the results with Sainflou’s analytical equation for the design of vertical seawalls (Sainflou 1928; Ackhurst 2020), which is as follows:

pd=ρgHcoshk(d+z)coshkdcosσtpd=ρgHcoshk(d+z)coshkdcosσt

(3)

where pdpd is the hydrodynamic pressure, ρρ is the water density, gg is the gravitational acceleration, HH is the wave height, dd is the water depth, kk is the wavenumber, zz is the difference in still water level and mean water level, σσ is the angular frequency and tt is the time. The Sainflou’s equation (Eq. 3) is used to calculate the dynamic pressure from wave action, which is combined with static pressure on the seawall.

Using Flow3D-Hydro, a model of the Dawlish seawall was made with a computational domain which is 250.0 m in length, 15.0 m in height and 0.375 m in width (Fig. 3a). The computational domain was discretised using a single uniform grid with a mesh size of 0.125 m. The model has a wave boundary at the left side of the domain (x-min), an outflow boundary on the right side (x-max), a symmetry boundary at the bottom (z-min) and a wall boundary at the top (z-max). A wall boundary implies that water or waves are unable to pass through the boundary, whereas a symmetry boundary means that the two edges of the boundary are identical and therefore there is no flow through it. The water is considered incompressible in our model. For volume of fluid advection for the wave boundary (i.e. the left-side boundary) in our simulations, we utilised the “Split Lagrangian Method”, which guarantees the best accuracy (Flow Science, 2022).

figure 3
Fig. 3

The stability of the numerical scheme is controlled and maintained through checking the Courant number (CC) as given in the following:

C=VΔtΔxC=VΔtΔx

(4)

where VV is the velocity of the flow, ΔtΔt is the time step and ΔxΔx is the spatial step (i.e. grid size). For stability and convergence of the numerical simulations, the Courant number must be sufficiently below one (Courant et al. 1928). This is maintained by a careful adjustment of the ΔxΔx and ΔtΔt selections. Flow3D-Hydro applies a dynamic Courant number, meaning the program adjusts the value of time step (ΔtΔt) during the simulations to achieve a balance between accuracy of results and speed of simulation. In our simulation, the time step was in the range ΔtΔt = 0.0051—0.051 s.

In order to achieve the most efficient mesh resolution, we varied cell size for five values of ΔxΔx = 0.1 m, 0.125 m, 0.15 m, 0.175 m and 0.20 m. Simulations were performed for all mesh sizes, and the results were compared in terms of convergence, stability and speed of simulation (Fig. 3). A linear wave with an amplitude of 1.5 m and a period of 6 s was used for these optimisation simulations. We considered wave time histories at two gauges A and B and recorded the waves from simulations using different mesh sizes (Fig. 3). Although the results are close (Fig. 3), some limited deviations are observed for larger mesh sizes of 0.20 m and 0.175 m. We therefore selected mesh size of 0.125 m as the optimum, giving an extra safety margin as a conservative solution.

The pressure from the incident waves on the vertical wall is validated in our model by comparing them with the analytical equation of Sainflou (1928), Eq. (3), which is one of the most common set of equations for design of coastal structures (Fig. 4). The model was tested by running a linear wave of period 6 s and wave amplitude of 1.5 m against the wall, with a still water level of 4.5 m. It can be seen that the model results are very close to those from analytical equations of Sainflou (1928), indicating that our numerical model is accurately modelling the wave-structure interaction (Fig. 4).

figure 4
Fig. 4

Eyewitness account analysis

Contemporary reporting of the 4th and 5th February 2014 storms by the main national news outlets in the UK highlights the extreme nature of the events and the significant damage and disruption they were likely to have on the communities of the south-west of England. In interviews, this was reinforced by Network Rail engineers who, even at this early stage, were forecasting remedial engineering works to last for at least 6 weeks. One week later, following subsequent storms the cascading nature of the events was obvious. Multiple breaches of the seawall had taken place with up to 35 separate landslide events and significant damage to parapet walls along the coastal route also were reported. Residents of the area reported extreme effects of the storm, one likening it to an earthquake and reporting water ingress through doors windows and even through vertical chimneys (Table 1). This suggests extreme wave overtopping volumes and large wave impact forces. One resident described the structural effects as: “the house was jumping up and down on its footings”.

Disaster management plans were quickly and effectively put into action by the local council, police service and National Rail. A major incident was declared, and decisions regarding evacuation of the residents under threat were taken around 2100 h on the night of 4th February when reports of initial damage to the seawall were received (Table 1). Local hotels were asked to provide short-term refuge to residents while local leisure facilities were prepared to accept residents later that evening. Initial repair work to the railway line was hampered by successive high spring tides and storms in the following days although significant progress was still made when weather conditions permitted (Table 1).

Sea level observations and spectral analysis

The results of surge and wave analyses are presented in Figs. 5 and 6. A surge height of up to 0.8 m was recorded in the examined tide gauge stations (Fig. 5b-d). Two main episodes of high surge heights are identified: the first surge started on 3rd February 2014 at 03:00 (UTC) and lasted until 4th of February 2014 at 00:00; the second event occurred in the period 4th February 2014 15:00 to 5th February 2014 at 17:00 (Fig. 5b-d). These data imply surge durations of 21 h and 26 h for the first and the second events, respectively. Based on the surge data in Fig. 5, we note that the storm event of early February 2014 and the associated surges was a relatively powerful one, which impacted at least 230 km of the south coast of England, from Land’s End to Weymouth, with large surge heights.

figure 5
Fig. 5
figure 6
Fig. 6

Based on wave buoy records, the maximum recorded amplitudes are at least 20.5 m in Dawlish and West Bay, 1.9 m in Tor Bay and 4.9 m in Chesil (Fig. 6a-b). The buoys at Tor Bay and Chesil recorded dual peak period bands of 4–8 and 8–12 s, whereas at Dawlish and West Bay registered triple peak period bands at 4–8, 8–12 and 20–25 s (Fig. 6c, d). It is important to note that the long-period waves at 20–25 s occur with short durations (approximately 2 min) while the waves at the other two bands of 4–8 and 8–12 s appear to be present at all times during the storm event.

The wave component at the period band of 4–8 s can be most likely attributed to normal coastal waves while the one at 8–12 s, which is longer, is most likely the swell component of the storm. Regarding the third component of the waves with long period of 20 -25 s, which occurs with short durations of 2 min, there are two hypotheses; it is either the result of a local (port and harbour) and regional (the Lyme Bay) oscillations (eg. Rabinovich 1997; Heidarzadeh and Satake 2014; Wang et al. 1992), or due to an abnormally long swell. To test the first hypothesis, we consider various water bodies such as Lyme Bay (approximate dimensions of 70 km × 20 km with an average water depth of 30 m; Fig. 6), several local bays (approximate dimensions of 3.6 km × 0.6 km with an average water depth of 6 m) and harbours (approximate dimensions of 0.5 km × 0.5 km with an average water depth of 4 m). Their water depths are based on the online Marine navigation website.Footnote8 According to Rabinovich (2010), the oscillation modes of a semi-enclosed rectangle basin are given by the following equation:

Tmn=2gd−−√[(m2L)2+(nW)2]−1/2Tmn=2gd[(m2L)2+(nW)2]−1/2

(5)

where TmnTmn is the oscillation period, gg is the gravitational acceleration, dd is the water depth, LL is the length of the basin, WW is the width of the basin, m=1,2,3,…m=1,2,3,… and n=0,1,2,3,…n=0,1,2,3,…; mm and nn are the counters of the different modes. Applying Eq. (5) to the aforementioned water bodies results in oscillation modes of at least 5 min, which is far longer than the observed period of 20–25 s. Therefore, we rule out the first hypothesis and infer that the long period of 20–25 s is most likely a long swell wave coming from distant sources. As discussed by Rabinovich (1997) and Wang et al. (2022), comparison between sea level spectra before and after the incident is a useful method to distinguish the spectrum of the weather event. A visual inspection of Fig. 6 reveals that the forcing at the period band of 20–25 s is non-existent before the incident.

Numerical simulations of wave loading and overtopping

Based on the results of sea level data analyses in the previous section (Fig. 6), we use a dual peak wave spectrum with peak periods of 10.0 s and 25.0 s for numerical simulations because such a wave would be comprised of the most energetic signals of the storm. For variations of water depth (2.0–4.0 m), coastal wave amplitude (0.5–1.5 m) (Fig. 7) and storm surge height (0.5–0.8 m) (Fig. 5), we developed 20 scenarios (Scn) which we used in numerical simulations (Table 2). Data during the incident indicated that water depth was up to the crest level of the seawall (approximately 4 m water depth); therefore, we varied water depth from 2 to 4 m in our simulation scenarios. Regarding wave amplitudes, we referred to the variations at a nearby tide gauge station (West Bay) which showed wave amplitude up to 1.2 m (Fig. 7). Therefore, wave amplitude was varied from 0.5 m to 1.5 m by considering a factor a safety of 25% for the maximum wave amplitude. As for the storm surge component, time series of storm surges calculated at three coastal stations adjacent to Dawlish showed that it was in the range of 0.5 m to 0.8 m (Fig. 5). These 20 scenarios would help to study uncertainties associated with wave amplitudes and pressures. Figure 8 shows snapshots of wave propagation and impacts on the seawall at different times.

figure 7
Fig. 7

Table 2 The 20 scenarios considered for numerical simulations in this study

Full size table

figure 8
Fig. 8

Results of wave amplitude simulations

Large wave amplitudes can induce significant wave forcing on the structure and cause overtopping of the seawall, which could eventually cascade to other hazards such as erosion of the backfill and scour (Adams and Heidarzadeh, 2021). The first 10 scenarios of our modelling efforts are for the same incident wave amplitudes of 0.5 m, which occur at different water depths (2.0–4.0 m) and storm surge heights (0.5–0.8 m) (Table 2 and Fig. 9). This is because we aim at studying the impacts of effective water depth (deff—the sum of mean sea level and surge height) on the time histories of wave amplitudes as the storm evolves. As seen in Fig. 9a, by decreasing effective water depth, wave amplitude increases. For example, for Scn-1 with effective depth of 4.5 m, the maximum amplitude of the first wave is 1.6 m, whereas it is 2.9 m for Scn-2 with effective depth of 3.5 m. However, due to intensive reflections and interferences of the waves in front of the vertical seawall, such a relationship is barely seen for the second and the third wave peaks. It is important to note that the later peaks (second or third) produce the largest waves rather than the first wave. Extraordinary wave amplifications are seen for the Scn-2 (deff = 3.5 m) and Scn-7 (deff = 3.3 m), where the corresponding wave amplitudes are 4.5 m and 3.7 m, respectively. This may indicate that the effective water depth of deff = 3.3–3.5 m is possibly a critical water depth for this structure resulting in maximum wave amplitudes under similar storms. In the second wave impact, the combined wave height (i.e. the wave amplitude plus the effective water depth), which is ultimately an indicator of wave overtopping, shows that the largest wave heights are generated by Scn-2, 7 and 8 (Fig. 9a) with effective water depths of 3.5 m, 3.3 m and 3.8 m and combined heights of 8.0 m, 7.0 m and 6.9 m (Fig. 9b). Since the height of seawall is 5.4 m, the combined wave heights for Scn-2, 7 and 8 are greater than the crest height of the seawall by 2.6 m, 1.6 m and 1.5 m, respectively, which indicates wave overtopping.

figure 9
Fig. 9

For scenarios 11–20 (Fig. 10), with incident wave amplitudes of 1.5 m (Table 2), the largest wave amplitudes are produced by Scn-17 (deff = 3.3 m), Scn-13 (deff = 2.5 m) and Scn-12 (deff = 3.5 m), which are 5.6 m, 5.1 m and 4.5 m. The maximum combined wave heights belong to Scn-11 (deff = 4.5 m) and Scn-17 (deff = 3.3 m), with combined wave heights of 9.0 m and 8.9 m (Fig. 10b), which are greater than the crest height of the seawall by 4.6 m and 3.5 m, respectively.

figure 10
Fig. 10

Our simulations for all 20 scenarios reveal that the first wave is not always the largest and wave interactions, reflections and interferences play major roles in amplifying the waves in front of the seawall. This is primarily because the wall is fully vertical and therefore has a reflection coefficient of close to one (i.e. full reflection). Simulations show that the combined wave height is up to 4.6 m higher than the crest height of the wall, implying that severe overtopping would be expected.

Results of wave loading calculations

The pressure calculations for scenarios 1–10 are given in Fig. 11 and those of scenarios 11–20 in Fig. 12. The total pressure distribution in Figs. 1112 mostly follows a triangular shape with maximum pressure at the seafloor as expected from the Sainflou (1928) design equations. These pressure plots comprise both static (due to mean sea level in front of the wall) and dynamic (combined effects of surge and wave) pressures. For incident wave amplitudes of 0.5 m (Fig. 11), the maximum wave pressure varies in the range of 35–63 kPa. At the sea surface, it is in the range of 4–20 kPa (Fig. 11). For some scenarios (Scn-2 and 7), the pressure distribution deviates from a triangular shape and shows larger pressures at the top, which is attributed to the wave impacts and partial breaking at the sea surface. This adds an additional triangle-shaped pressure distribution at the sea surface elevation consistent with the design procedure developed by Goda (2000) for braking waves. The maximum force on the seawall due to scenarios 1–10, which is calculated by integrating the maximum pressure distribution over the wave-facing surface of the seawall, is in the range of 92–190 KN (Table 2).

figure 11
Fig. 11
figure 12
Fig. 12

For scenarios 11–20, with incident wave amplitude of 1.5 m, wave pressures of 45–78 kPa and 7–120 kPa, for  the bottom and top of the wall, respectively, were observed (Fig. 12). Most of the plots show a triangular pressure distribution, except for Scn-11 and 15. A significant increase in wave impact pressure is seen for Scn-15 at the top of the structure, where a maximum pressure of approximately 120 kPa is produced while other scenarios give a pressure of 7–32 kPa for the sea surface. In other words, the pressure from Scn-15 is approximately four times larger than the other scenarios. Such a significant increase of the pressure at the top is most likely attributed to the breaking wave impact loads as detailed by Goda (2000) and Cuomo et al. (2010). The wave simulation snapshots in Fig. 8 show that the wave breaks before reaching the wall. The maximum force due to scenarios 11–20 is 120–286 KN.

The breaking wave impacts peaking at 286 KN in our simulations suggest destabilisation of the upper masonry blocks, probably by grout malfunction. This significant impact force initiated the failure of the seawall which in turn caused extensive ballast erosion. Wave impact damage was proposed by Adams and Heidarzadeh (2021) as one of the primary mechanisms in the 2014 Dawlish disaster. In the multi-hazard risk model proposed by these authors, damage mechanism III (failure pathway 5 in Adams and Heidarzadeh, 2021) was characterised by wave impact force causing damage to the masonry elements, leading to failure of the upper sections of the seawall and loss of infill material. As blocks were removed, access to the track bed was increased for inbound waves allowing infill material from behind the seawall to be fluidised and subsequently removed by backwash. The loss of infill material critically compromised the stability of the seawall and directly led to structural failure. In parallel, significant wave overtopping (discussed in the next section) led to ballast washout and cascaded, in combination with masonry damage, to catastrophic failure of the wall and suspension of the rails in mid-air (Fig. 1b), leaving the railway inoperable for two months.

Wave Overtopping

The two most important factors contributing to the 2014 Dawlish railway catastrophe were wave impact forces and overtopping. Figure 13 gives the instantaneous overtopping rates for different scenarios, which experienced overtopping. It can be seen that the overtopping rates range from 0.5 m3/s/m to 16.1 m3/s/m (Fig. 13). Time histories of the wave overtopping rates show that the phenomenon occurs intermittently, and each time lasts 1.0–7.0 s. It is clear that the longer the overtopping time, the larger the volume of the water poured on the structure. The largest wave overtopping rates of 16.1 m3/s/m and 14.4 m3/s/m belong to Scn-20 and 11, respectively. These are the two scenarios that also give the largest combined wave heights (Fig. 10b).

figure 13
Fig. 13

The cumulative overtopping curves (Figs. 1415) show the total water volume overtopped the structure during the entire simulation time. This is an important hazard factor as it determines the level of soil saturation, water pore pressure in the soil and soil erosion (Van der Meer et al. 2018). The maximum volume belongs to Scn-20, which is 65.0 m3/m (m-cubed of water per metre length of the wall). The overtopping volumes are 42.7 m3/m for Scn-11 and 28.8 m3/m for Scn-19. The overtopping volume is in the range of 0.7–65.0 m3/m for all scenarios.

figure 14
Fig. 14
figure 15
Fig. 15

For comparison, we compare our modelling results with those estimated using empirical equations. For the case of the Dawlish seawall, we apply the equation proposed by Van Der Meer et al. (2018) to estimate wave overtopping rates, based on a set of decision criteria which are the influence of foreshore, vertical wall, possible breaking waves and low freeboard:

qgH3m−−−−√=0.0155(Hmhs)12e(−2.2RcHm)qgHm3=0.0155(Hmhs)12e(−2.2RcHm)

(6)

where qq is the mean overtopping rate per metre length of the seawall (m3/s/m), gg is the acceleration due to gravity, HmHm is the incident wave height at the toe of the structure, RcRc is the wall crest height above mean sea level, hshs is the deep-water significant wave height and e(x)e(x) is the exponential function. It is noted that Eq. (6) is valid for 0.1<RcHm<1.350.1<RcHm<1.35. For the case of the Dawlish seawall and considering the scenarios with larger incident wave amplitude of 1.5 m (hshs= 1.5 m), the incident wave height at the toe of the structure is HmHm = 2.2—5.6 m, and the wall crest height above mean sea level is RcRc = 0.6–2.9 m. As a result, Eq. (6) gives mean overtopping rates up to approximately 2.9 m3/s/m. A visual inspection of simulated overtopping rates in Fig. 13 for Scn 11–20 shows that the mean value of the simulated overtopping rates (Fig. 13) is close to estimates using Eq. (6).

Discussion and conclusions

We applied a combination of eyewitness account analysis, sea level data analysis and numerical modelling in combination with our engineering judgement to explain the damage to the Dawlish railway seawall in February 2014. Main findings are:

  • Eyewitness data analysis showed that the extreme nature of the event was well forecasted in the hours prior to the storm impact; however, the magnitude of the risks to the structures was not well understood. Multiple hazards were activated simultaneously, and the effects cascaded to amplify the damage. Disaster management was effective, exemplified by the establishment of an emergency rendezvous point and temporary evacuation centre during the storm, indicating a high level of hazard awareness and preparedness.
  • Based on sea level data analysis, we identified triple peak period bands at 4–8, 8–12 and 20–25 s in the sea level data. Storm surge heights and wave oscillations were up to 0.8 m and 1.5 m, respectively.
  • Based on the numerical simulations of 20 scenarios with different water depths, incident wave amplitudes, surge heights and peak periods, we found that the wave oscillations at the foot of the seawall result in multiple wave interactions and interferences. Consequently, large wave amplitudes, up to 4.6 m higher than the height of the seawall, were generated and overtopped the wall. Extreme impulsive wave impact forces of up to 286 KN were generated by the waves interacting with the seawall.
  • We measured maximum wave overtopping rates of 0.5–16.1 m3/s/m for our scenarios. The cumulative overtopping water volumes per metre length of the wall were 0.7–65.0 m3/m.
  • Analysis of all the evidence combined with our engineering judgement suggests that the most likely initiating cause of the failure was impulsive wave impact forces destabilising one or more grouted joints between adjacent masonry blocks in the wall. Maximum observed pressures of 286 KN in our simulations are four times greater in magnitude than background pressures leading to block removal and initiating failure. Therefore, the sequence of cascading events was :1) impulsive wave impact force causing damage to masonry, 2) failure of the upper sections of the seawall, 3) loss of infill resulting in a reduction of structural strength in the landward direction, 4) ballast washout as wave overtopping and inbound wave activity increased and 5) progressive structural failure following successive tides.

From a risk mitigation point of view, the stability of the seawall in the face of future energetic cyclonic storm events and sea level rise will become a critical factor in protecting the rail network. Mitigation efforts will involve significant infrastructure investment to strengthen the civil engineering assets combined with improved hazard warning systems consisting of meteorological forecasting and real-time wave observations and instrumentation. These efforts must take into account the amenity value of coastal railway infrastructure to local communities and the significant number of tourists who visit every year. In this regard, public awareness and active engagement in the planning and execution of the project will be crucial in order to secure local stakeholder support for the significant infrastructure project that will be required for future resilience.

Notes

  1. https://www.networkrail.co.uk/..
  2. https://www.flow3d.com/products/flow-3d-hydro/.
  3. https://www.devonmuseums.net/Dawlish-Museum/Devon-Museums/.
  4. https://ntslf.org/.
  5. https://www.datawell.nl/Products/Buoys/DirectionalWaveriderMkIII.aspx.
  6. https://www.bodc.ac.uk/.
  7. https://coastalmonitoring.org/cco/.
  8. https://webapp.navionics.com/#boating@8&key=iactHlwfP.

References

Download references

Acknowledgements

We are grateful to Brunel University London for administering the scholarship awarded to KA. The Flow3D-Hydro used in this research for numerical modelling is licenced to Brunel University London through an academic programme contract. We sincerely thank Prof Harsh Gupta (Editor-in-Chief) and two anonymous reviewers for their constructive review comments.

Funding

This project was funded by the UK Engineering and Physical Sciences Research Council (EPSRC) through a PhD scholarship to Keith Adams.

Author information

Authors and Affiliations

  1. Department of Civil and Environmental Engineering, Brunel University London, Uxbridge, UB8 3PH, UKKeith Adams
  2. Department of Architecture and Civil Engineering, University of Bath, Bath, BA2 7AY, UKMohammad Heidarzadeh

Corresponding author

Correspondence to Keith Adams.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Availability of data

All data used in this study are provided in the body of the article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Adams, K., Heidarzadeh, M. Extratropical cyclone damage to the seawall in Dawlish, UK: eyewitness accounts, sea level analysis and numerical modelling. Nat Hazards (2022). https://doi.org/10.1007/s11069-022-05692-2

Download citation

  • Received17 May 2022
  • Accepted17 October 2022
  • Published14 November 2022
  • DOIhttps://doi.org/10.1007/s11069-022-05692-2

Share this article

Anyone you share the following link with will be able to read this content:Get shareable link

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Storm surge
  • Cyclone
  • Railway
  • Climate change
  • Infrastructure
  • Resilience
Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.

알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

린 첸 가오 양 미시 옹 장 춘밍 왕
Lin Chen , Gaoyang Mi , Xiong Zhang , Chunming Wang *
중국 우한시 화중과학기술대학 재료공학부, 430074

Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

Abstract

A numerical model of 1.5 mm 6061/5182 aluminum alloys thin sheets lap joints under laser sinusoidal oscillation (sine) welding and laser welding (SLW) weld was developed to simulate temperature distribution and melt flow. Unlike the common energy distribution of SLW, the sinusoidal oscillation of laser beam greatly homogenized the energy distribution and reduced the energy peak. The energy peaks were located at both sides of the sine weld, resulting in the tooth-shaped sectional formation. This paper illustrated the effect of the temperature gradient (G) and solidification rate (R) on the solidification microstructure by simulation. Results indicated that the center of the sine weld had a wider area with low G/R, promoting the formation of a wider equiaxed grain zone, and the columnar grains were slenderer because of greater GR. The porosity-free and non-penetration welds were obtained by the laser sinusoidal oscillation. The reasons were that the molten pool volume was enlarged, the volume proportion of keyhole was reduced and the turbulence in the molten pool was gentled, which was observed by the high-speed imaging and simulation results of melt flow. The tensile test of both welds showed a tensile fracture form along the fusion line, and the tensile strength of sine weld was significantly better than that of the SLW weld. This was because that the wider equiaxed grain area reduced the tendency of cracks and the finer grain size close to the fracture location. Defect-free and excellent welds are of great significance to the new energy vehicles industry.

온도 분포 및 용융 흐름을 시뮬레이션하기 위해 레이저 사인파 진동 (사인) 용접 및 레이저 용접 (SLW) 용접에서 1.5mm 6061/5182 알루미늄 합금 박판 랩 조인트 의 수치 모델이 개발되었습니다. SLW의 일반적인 에너지 분포와 달리 레이저 빔의 사인파 진동은 에너지 분포를 크게 균질화하고 에너지 피크를 줄였습니다. 에너지 피크는 사인 용접의 양쪽에 위치하여 톱니 모양의 단면이 형성되었습니다. 이 논문은 온도 구배(G)와 응고 속도 의 영향을 설명했습니다.(R) 시뮬레이션에 의한 응고 미세 구조. 결과는 사인 용접의 중심이 낮은 G/R로 더 넓은 영역을 가짐으로써 더 넓은 등축 결정립 영역의 형성을 촉진하고 더 큰 GR로 인해 주상 결정립 이 더 가늘다는 것을 나타냅니다. 다공성 및 비관통 용접은 레이저 사인파 진동에 의해 얻어졌습니다. 그 이유는 용융 풀의 부피가 확대되고 열쇠 구멍의 부피 비율이 감소하며 용융 풀의 난류가 완만해졌기 때문이며, 이는 용융 흐름의 고속 이미징 및 시뮬레이션 결과에서 관찰되었습니다. 두 용접부 의 인장시험 은 융착선을 따라 인장파괴형태를인장강도사인 용접의 경우 SLW 용접보다 훨씬 우수했습니다. 이는 등축 결정립 영역이 넓을수록 균열 경향이 감소하고 파단 위치에 근접한 입자 크기가 미세 하기 때문입니다. 결함이 없고 우수한 용접은 신에너지 자동차 산업에 매우 중요합니다.

Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.
Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.
Fig. 2. Finite element mesh.
Fig. 2. Finite element mesh.
Fig. 3. Weld morphologies of cross-section and upper surface for the two welds: (a) sine pattern weld; (b) SLW weld.
Fig. 3. Weld morphologies of cross-section and upper surface for the two welds: (a) sine pattern weld; (b) SLW weld.
Fig. 4. Calculation of laser energy distribution: (a)-(c) sine pattern weld; (d)-(f) SLW weld.
Fig. 4. Calculation of laser energy distribution: (a)-(c) sine pattern weld; (d)-(f) SLW weld.
Fig. 5. The partially melted region of zone A.
Fig. 5. The partially melted region of zone A.
Fig. 6. The simulated profiles of melted region for the two welds: (a) SLW weld; (b) sine pattern weld.
Fig. 6. The simulated profiles of melted region for the two welds: (a) SLW weld; (b) sine pattern weld.
Fig. 7. The temperature field simulation results of cross section for sine pattern weld.
Fig. 7. The temperature field simulation results of cross section for sine pattern weld.
Fig. 8. Dynamic behavior of the molten pool at the same time interval of 0.004 s within one oscillating period: (a) SLW weld; (b) sine pattern weld.
Fig. 8. Dynamic behavior of the molten pool at the same time interval of 0.004 s within one oscillating period: (a) SLW weld; (b) sine pattern weld.
Fig. 9. The temperature field and flow field of the molten pool for the SLW weld: (a)~(f) t = 80 ms~100 ms.
Fig. 9. The temperature field and flow field of the molten pool for the SLW weld: (a)~(f) t = 80 ms~100 ms.
Fig. 10. The temperature field and flow field of the molten pool for the sine pattern weld: (a)~(f) t = 151 ms~171 ms.
Fig. 10. The temperature field and flow field of the molten pool for the sine pattern weld: (a)~(f) t = 151 ms~171 ms.
Fig. 11. The evolution of the molten pool volume and keyhole depth within one period.
Fig. 11. The evolution of the molten pool volume and keyhole depth within one period.
Fig. 12. The X-ray inspection results for the two welds: (a) SLW weld, (b) sine pattern weld.
Fig. 12. The X-ray inspection results for the two welds: (a) SLW weld, (b) sine pattern weld.
Fig. 13. Comparison of the solidification parameters for sine and SLW patterns: (a) the temperature field simulated results of the molten pool upper surfaces; (b) temperature gradient G and solidification rate R along the molten pool boundary isotherm from weld centerline to the fusion boundary; (c) G/R; (d) GR.
Fig. 13. Comparison of the solidification parameters for sine and SLW patterns: (a) the temperature field simulated results of the molten pool upper surfaces; (b) temperature gradient G and solidification rate R along the molten pool boundary isotherm from weld centerline to the fusion boundary; (c) G/R; (d) GR.
Fig. 14. The EBSD results of equiaxed grain zone in the weld center of: (a) sine pattern weld; (b) SLW weld; (c) grain size.
Fig. 14. The EBSD results of equiaxed grain zone in the weld center of: (a) sine pattern weld; (b) SLW weld; (c) grain size.
Fig. 15. (a) EBSD results of horizontal sections of SLW weld and sine pattern weld; (b) The columnar crystal widths of SLW weld and sine pattern weld.
Fig. 15. (a) EBSD results of horizontal sections of SLW weld and sine pattern weld; (b) The columnar crystal widths of SLW weld and sine pattern weld.
Fig. 16. (a) The tensile test results of the two welds; (b) Fracture location of SLW weld; (b) Fracture location of sine pattern weld.
Fig. 16. (a) The tensile test results of the two welds; (b) Fracture location of SLW weld; (b) Fracture location of sine pattern weld.

Keywords

Laser welding, Sinusoidal oscillating, Energy distribution, Numerical simulation, Molten pool flow, Grain structure

References

Chen, X., 2014. Study on laser-MAG Hybrid Weaving Welding Charateristics. Master
thesis. Harbin Institute of Technology, China.
Chen, G., Wang, B., Mao, S., Zhong, P., He, J., 2019. Research on the “∞”-shaped laser
scanning welding process for aluminum alloy. Opt. Laser Technol. 115, 32–41.
Cho, W.-I., Na, S.-J., Cho, M.-H., Lee, J.-S., 2010. Numerical study of alloying element
distribution in CO2 laser–GMA hybrid welding. Comput. Mater. Sci. 49, 792–800.
Cho, W.-I., Na, S.-J., Thomy, C., Vollertsen, F., 2012. Numerical simulation of molten
pool dynamics in high power disk laser welding. J. Mater. Process. Technol. 212,
262–275.
Das, A., Butterworth, I., Masters, I., Williams, D., 2018. Microstructure and mechanical
properties of gap-bridged remote laser welded (RLW) automotive grade AA 5182
joints. Mater. Charact. 145, 697–712.
Fetzer, F., Sommer, M., Weber, R., Weberpals, J.-P., Graf, T., 2018. Reduction of pores by
means of laser beam oscillation during remote welding of AlMgSi. Opt. Lasers Eng.
108, 68–77.
Geng, S., Jiang, P., Shao, X., Guo, L., Gao, X., 2020. Heat transfer and fluid flow and their
effects on the solidification microstructure in full-penetration laser welding of
aluminum sheet. J. Mater. Sci. Technol. 46, 50–63.
Hagenlocher, C., Sommer, M., Fetzer, F., Weber, R., Graf, T., 2018a. Optimization of the
solidification conditions by means of beam oscillation during laser beam welding of
aluminum. Mater. Des. 160, 1178–1185.
Hagenlocher, C., Weller, D., Weber, R., Graf, T., 2018b. Reduction of the hot cracking
susceptibility of laser beam welds in AlMgSi alloys by increasing the number of grain
boundaries. Sci. Technol. Weld. Join. 24, 313–319.
Hagenlocher, C., Fetzer, F., Weller, D., Weber, R., Graf, T., 2019. Explicit analytical
expressions for the influence of welding parameters on the grain structure of laser
beam welds in aluminium alloys. Mater. Des. 174, 107791.
Han, X., Tang, X., Wang, T., Shao, C., Lu, F., Cui, H., 2018. Role of ambient pressure in
keyhole dynamics based on beam transmission path method for laser welding on Al
alloy. Int. J. Adv. Manuf. Technol. 99, 1639–1651.
Hao, K., Li, G., Gao, M., Zeng, X., 2015. Weld formation mechanism of fiber laser
oscillating welding of austenitic stainless steel. J. Mater. Process. Technol. 225,
77–83.
Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys. 39, 201–225.
Jiang, Z., Chen, X., Li, H., Lei, Z., Chen, Y., Wu, S., Wang, Y., 2020. Grain refinement and
laser energy distribution during laser oscillating welding of Invar alloy. Mater. Des.
186, 108195.
Kaplan, A., 1994. A model of deep penetration laser welding based on calculation of the
keyhole profile. J. Phys. D Appl. Phys. 27, 1805–1814.
Kou, S., 2002. Welding Metallurgy, 2nd ed. Wiley-Interscience, New Jersey, USA.
Kuryntsev, S.V., Gilmutdinov, A.K., 2015. The effect of laser beam wobbling mode in
welding process for structural steels. Int. J. Adv. Manuf. Technol. 81, 1683–1691.
Li, P., Nie, F., Dong, H., Li, S., Yang, G., Zhang, H., 2018. Pulse MIG welding of 6061-T6/
A356-T6 aluminum alloy dissimilar T-joint. J. Mater. Eng. Perform. 27, 4760–4769.
Liu, T., Mu, Z., Hu, R., Pang, S., 2019. Sinusoidal oscillating laser welding of 7075
aluminum alloy: hydrodynamics, porosity formation and optimization. Int. J. Heat
Mass Transf. 140, 346–358.
Seto, N., Katayama, S., Matsunawa, A., 2000. High-speed simultaneous observation of
plasma and keyhole behavior during high power CO2 laser welding: effect of
shielding gas on porosity formation. J. Laser Appl. 12, 245–250.
Tang, Z., Vollertsen, F., 2014. Influence of grain refinement on hot cracking in laser
welding of aluminum. Weld. World 58, 355–366.
Wang, L., Gao, M., Zhang, C., Zeng, X., 2016. Effect of beam oscillating pattern on weld
characterization of laser welding of AA6061-T6 aluminum alloy. Mater. Des. 108,
707–717.
Wang, L., Gao, M., Zeng, X., 2018. Experiment and prediction of weld morphology for
laser oscillating welding of AA6061 aluminium alloy. Sci. Technol. Weld. Join. 24,
334–341.
Yamazaki, Y., Abe, Y., Hioki, Y., Nakatani, M., Kitagawa, A., Nakata, K., 2016.
Fundamental study of narrow-gap welding with oscillation laser beam. Weld. Int. 30,
699–707.
Yuan, Z., Tu, Y., Yuan, T., Zhang, Y., Huang, Y., 2021. Size effects on mechanical
properties of pure industrial aluminum sheet for micro/meso scale plastic
deformation: experiment and modeling. J. Alloys. Compd. 859, 157752.
Zou, J., 2016. Characteristics of laser scanning welding process for 5A06 aluminum alloy
thick plate with narrow gap. Materials Processing Engineering. Harbin Welding
Institute, China. Master thesis.

Flow Field in a Sloped Channel with Damaged and Undamaged Piers: Numerical and Experimental Studies

Flow Field in a Sloped Channel with Damaged and Undamaged Piers: Numerical and Experimental Studies

Ehsan OveiciOmid Tayari & Navid Jalalkamali
KSCE Journal of Civil Engineering volume 25, pages4240–4251 (2021)Cite this article

Abstract

본 논문은 경사가 완만한 수로에서 손상되거나 손상되지 않은 교각 주변의 유동 패턴을 분석했습니다. 실험은 길이가 12m이고 기울기가 0.008인 직선 수로에서 수행되었습니다. Acoustic Doppler Velocimeter(ADV)를 이용하여 3차원 유속 데이터를 수집하였고, 그 결과를 PIV(Particle Image Velocimetry) 데이터와 분석하여 비교하였습니다.

다중 블록 옵션이 있는 취수구의 퇴적물 시뮬레이션(SSIIM)은 이 연구에서 흐름의 수치 시뮬레이션을 위해 통합되었습니다. 일반적으로 비교에서 얻은 결과는 수치 데이터와 실험 데이터 간의 적절한 일치를 나타냅니다. 결과는 모든 경우에 수로 입구에서 2m 거리에서 기복적 수압 점프가 발생했음을 보여주었습니다.

경사진 수로의 최대 베드 전단응력은 2개의 손상 및 손상되지 않은 교각을 설치하기 위한 수평 수로의 12배였습니다. 이와 같은 경사수로 교각의 위치에 따라 상류측 수위는 수평수로의 유사한 조건에 비해 72.5% 감소한 반면, 이 감소량은 경사면에서 다른 경우에 비해 8.3% 감소하였다. 채널 또한 두 교각이 있는 경우 최대 Froude 수는 수평 수로의 5.7배였습니다.

This paper analyzed the flow pattern around damaged and undamaged bridge piers in a channel with a mild slope. The experiments were carried out on a straight channel with a length of 12 meters and a slope of 0.008. Acoustic Doppler velocimeter (ADV) was employed to collect three-dimensional flow velocity data, and the results were analyzed and compared with particle image velocimetry (PIV) data. Sediment Simulation in Intakes with Multiblock option (SSIIM) was incorporated for the numerical simulation of the flow in this study. Generally, the results obtained from the comparisons referred to the appropriate agreement between the numerical and the experimental data. The results showed that an undular hydraulic jump occurred at a distance of two meters from the channel entrance in every case; the maximum bed shear stress in the sloped channel was 12 times that in a horizontal channel for installing two damaged and undamaged piers. With this position of the piers in the sloped channel, the upstream water level underwent a 72.5% reduction compared to similar conditions in a horizontal channel, while the amount of this water level decrease was equal to 8.3% compared to the other cases in a sloped channel. In addition, with the presence of both piers, the maximum Froude number was 5.7 times that in a horizontal channel.

This is a preview of subscription content, access via your institution.

References

Download references

Fig. 4. Numerical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; (d) Juam-1; (e) Andong-3; (f) Imha-2; (g) Imha-3; and (h) Juam-3.

Interference of Dual Spillways Operations

Jai Hong Lee, Ph.D., P.E., M.ASCE; Pierre Y. Julien, Ph.D., M.ASCE; and Christopher I. Thornton, Ph.D., P.E., M.ASCE

Abstract

이중 여수로 간섭은 여수로가 서로 가깝게 배치될 때 수압 성능의 손실을 나타냅니다. 배수로 간섭은 물리적 실험과 수치 시뮬레이션을 모두 사용하여 조사됩니다.

이중 여수로 구성의 4개 물리적 모델의 단계 및 배출 측정값을 한국의 4개 댐 부지에서 Flow-3D 계산 결과와 비교합니다.

두 개의 배수로를 함께 사용하는 것을 각 배수로의 단일 작동과 비교합니다. 두 여수로를 동시에 운영할 경우 두 여수로를 통한 총 유량은 최대 7.6%까지 감소합니다.

간섭 계수는 단계 He가 설계 단계 Hd를 초과하고 두 배수로를 분리하는 거리 D가 배수로 너비 W에 비해 짧을 때 가장 중요합니다. 매개변수 DHd/WHe는 계산 및 측정된 간섭 계수와 매우 잘 관련됩니다.

안동댐 설계방류에 대한 홍수경로 예시는 간섭계수를 적용한 경우와 적용하지 않은 경우 저수지 수위의 차이가 42cm임을 보여줍니다. 결과적으로 댐 안전을 위해 추가 여수로의 너비(간섭 계수 포함)를 늘려야 합니다.

Dual spillway interference refers to the loss of hydraulic performance of spillways when they are placed close together. Spillway interference is examined using both physical experiments and numerical simulations. Stage and discharge measurements from four physical models with dual spillways configurations are compared to the Flow-3D computational results at four dam sites in South Korea. The conjunctive use of two spillways is compared with the singular operation of each spillway. When both spillways are operated at the same time, the total flow rate through the two spillways is reduced by up to 7.6%. Interference coefficients are most significant when the stage He exceeds the design stage Hd and when the distance D separating two spillways is short compared to the spillway width W. The parameter DHd/WHecorrelates very well with the calculated and measured interference coefficients. A flood routing example for the design discharge at Andong dam shows a 42 cm difference in reservoir water level with and without application of the interference coefficient. Consequently, the width of additional spillways (including the interference coefficient) should be increased for dam safety.

Fig. 1. Definition sketch for dual spillways
Fig. 1. Definition sketch for dual spillways
Fig. 2. Stage-discharge rating curves for dual spillway operations.
Fig. 2. Stage-discharge rating curves for dual spillway operations.
Fig. 3. Physical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; and (d) Juam-1
Fig. 3. Physical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; and (d) Juam-1
Fig. 4. Numerical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; (d) Juam-1; (e) Andong-3; (f) Imha-2; (g) Imha-3; and (h) Juam-3.
Fig. 4. Numerical modeling of dual spillways: (a) Andong-1; (b) Andong-2; (c) Imha-1; (d) Juam-1; (e) Andong-3; (f) Imha-2; (g) Imha-3; and (h) Juam-3.
Fig. 4. (Continued.)
Fig. 4. (Continued.)
Fig. 5. Meshes and calculation domain for numerical modeling of Andong dam.
Fig. 5. Meshes and calculation domain for numerical modeling of Andong dam.
Fig. 6. Stage-discharge rating curve for existing and additional spillways (Andong-1): (a) existing spillway; (b) additional spillway; and (c) dual spillway simulations.
Fig. 6. Stage-discharge rating curve for existing and additional spillways (Andong-1): (a) existing spillway; (b) additional spillway; and (c) dual spillway simulations.
Fig. 7. Discharge comparison of physical experiments and numerical simulations. The upper panel is the comparative result for the existing spillway (ES) and the lower panel is for the additional spillway (AS) at four dams.
Fig. 7. Discharge comparison of physical experiments and numerical simulations. The upper panel is the comparative result for the existing spillway (ES) and the lower panel is for the additional spillway (AS) at four dams.
Fig. 8. Interference coefficients for dual spillways simulations with various scenarios.
Fig. 8. Interference coefficients for dual spillways simulations with various scenarios.
Fig. 9. Regression model for the distance-width ratio (D=W) and head ratio (Hd=He) by dual spillway simulations
Fig. 9. Regression model for the distance-width ratio (D=W) and head ratio (Hd=He) by dual spillway simulations
Fig. 10. Physical and numerical model validation: (a) numerical modeling; (b) solids of overflow weir of the spillway; and (c) physical models of reservoir and spillway
Fig. 10. Physical and numerical model validation: (a) numerical modeling; (b) solids of overflow weir of the spillway; and (c) physical models of reservoir and spillway
Fig. 11. Interference coefficients for dual spillways operations with various scenarios. The dashed lines indicate the results of the validation model with dual conditions of 1 þ 2, 1 þ 4, 1 þ 6, 3 þ 4, and 4 þ 5.
Fig. 11. Interference coefficients for dual spillways operations with various scenarios. The dashed lines indicate the results of the validation model with dual conditions of 1 þ 2, 1 þ 4, 1 þ 6, 3 þ 4, and 4 þ 5.
Fig. 12. Results of reservoir operations under the PMF at Andong dam.
Fig. 12. Results of reservoir operations under the PMF at Andong dam.

References

Cassidy, J. J. 1965. “Irrotational flow over spillways of finite height.”
J. Eng. Mech. Div. 91 (6): 155–173.
Chanel, P., and J. Doering. 2008. “Assessment of spillway modeling using
computational fluid dynamics.” Can. J. Civ. Eng. 35 (12): 1481–1485.
https://doi.org/10.1139/L08-094.
Chow, V. T. 1959. Open-channel hydraulics, 365–380. New York:
McGraw-Hill.
Ho, D., B. Cooper, K. Riddette, and S. Donohoo. 2006. “Application of
numerical modelling to spillways in Australia.” In Proc., Int. Symp.
on Dams in the Societies of the 21st Century, 22nd Int. Congress on
Large Dams (ICOLD), edited by L. Berga, et al. London: Taylor &
Francis.
Huff, F. A. 1967. “Time distribution of rainfall in heavy storms.” Water
Resour. Res. 3 (4): 1007–1019. https://doi.org/10.1029/WR003i004
p01007.
Kim, D. G., and J. H. Park. 2005. “Analysis of flow structure over ogeespillway in consideration of scale and roughness effects by using CFD
model.” KSCE J. Civ. Eng. 9 (2): 161–169. https://doi.org/10.1007
/BF02829067.
Koutsunis, N. A. 2015. “Impact of climatic changes on downstream hydraulic geometry and its influence on flood hydrograph
routing—Applied to the bluestone dam watershed.” M.S. degree,
Dept. of Civil and Environmental Engineering, Colorado State Univ.
Lee, J. H., and P. Y. Julien. 2016a. “ENSO impacts on temperature over
South Korea.” Int. J. Climatol. 36 (11): 3651. https://doi.org/10.1002
/joc.4581.
Lee, J. H., and P. Y. Julien. 2016b. “Teleconnections of the ENSO and
South Korean precipitation patterns.” J. Hydrol. 534: 237–250.
https://doi.org/10.1016/j.jhydrol.2016.01.011.
Lee, J. H., and P. Y. Julien. 2017. “Influence of the El Nino/southern ˜
oscillation on South Korean streamflow variability.” Hydrol. Processes
31 (12): 2162–2178. https://doi.org/10.1002/hyp.11168.
Li, S., S. Cain, N. Wosnik, C. Miller, H. Kocahan, and R. Wyckoff. 2011.
“Numerical modeling of probable maximum flood flowing through a
system of spillways.” J. Hydraul. Eng. 137 (1): 66–74. https://doi.org
/10.1061/(ASCE)HY.1943-7900.0000279.
MOCT (Ministry of Construction and Transportation). 2003. Hydraulic
model study of Soyanggang multipurpose dam auxiliary spillway.
[In Korean.] Governing City, South Korea: MOCT.
Olsen, N. R., and H. M. Kjellesvig. 1998. “Three-dimensional numerical
flow modeling for estimation of spillway capacity.” J. Hydraul. Res.
36 (5): 775–784. https://doi.org/10.1080/00221689809498602.
Savage, B. M., and M. C. Johnson. 2001. “Flow over ogee spillway:
Physical and numerical model case study.” J. Hydraul. Eng. 127 (8):
640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640).
USACE (US Army Corps of Engineers). 2008. Hydrologic modeling
system HEC-HMS, user’s manual version 3.2. Davis, CA: USACE.
USBR (US Bureau of Reclamation). 1980. Hydraulic laboratory techniques: A water resources technical publication. Denver: US Dept.
of the Interior, Bureau of Reclamation.
Yakhot, V., and S. A. Orszag. 1986. “Renormalization group analysis of
turbulence. I: Basic theory.” J. Sci. Comput. 1 (1): 3–51. https://doi
.org/10.1007/BF01061452.
Yakhot, V., and L. M. Smith. 1992. “The renormalization group, the
e-expansion and derivation of turbulence models.” J. Sci. Comput.
7 (1): 35–61. https://doi.org/10.1007/BF01060210.
Zeng, J., L. Zhang, M. Ansar, E. Damisse, and J. A. Gonzalez-Castro. 2017.
“Applications of computational fluid dynamics to flow ratings at prototype spillways and weirs. I: Data generation and validation.” J. Irrig.
Drain. Eng. 143 (1): 04016072. https://doi.org/10.1061/(ASCE)IR
.1943-4774.0001112.

Fig. 2 Schematic diagram of the experimental Rijke tube

RIJKE 튜브 내부의 열음향 장에 대한 새로운 조사

A novel investigation of the thermoacoustic field inside a Rijke tube

B. EntezamW. Van Moorhem and J. MajdalaniPublished Online:22 Aug 2012 https://doi.org/10.2514/6.1998-2582

Abstract

이 논문에서는 Rijke 튜브 내부의 시간 종속 유동장의 실험 연구 및 계산 시뮬레이션에서 진행한 결과를 제시하고 해석합니다. 기존의 추측과 스케일링 분석을 기반으로 한 이론적 논의가 진행됩니다. 주요 결과에는 열 구동 진동에서 중요한 역할을 하는 것으로 보이는 유사성 매개변수가 포함됩니다. 이 매개변수는 열 섭동을 속도, 압력 및 특성 길이의 제곱과 관련시킵니다. 열 진동을 압력 및 속도 진동의 결합된 효과에 기인하는 간단한 이론은 계산, 실험 및 스케일링 고려 사항을 통해 논의됩니다. 이전의 분석 이론은 열 진동을 속도 또는 압력 진동에 연결했기 때문에 현재 분석 모델은 기존 추측에 동의하고 조정합니다. Rayleigh 기준에 따라 열원은 Rijke-tube 하단에서 1/4의 임계 거리에 위치해야 공명이 발생합니다. 이 관찰은 결합이 최대화되는 임계점이 음향 속도와 압력의 곱인 음향 강도가 가장 큰 공간 위치에 해당하기 때문에 제안된 해석을 확인합니다. 수치 시뮬레이션은 Rijke 튜브 내부의 압력 진동이 열 입력이 증가함에 따라 기하급수적으로 증가한다는 것을 보여줍니다. 충분히 작은 열 입력으로 음향 싱크가 소스를 초과하고 음향 감쇠가 발생합니다. 열 입력이 임계 임계값 이상으로 증가하면 음향 싱크가 불충분해져서 ​​내부 에너지 축적으로 인해 빠른 음향 증폭이 발생합니다.

In this paper, results proceeding from experimental studies and computational simulations of the time-dependent flowfield inside a Rijke tube are presented and interpreted. A theoretical discussion based on existing speculations and scaling analyses is carried out. The main results include a similarity parameter that appears to play an important role in the heat driven oscillations. This parameter relates heat perturbations to velocity, pressure, and the square of a characteristic length. A simple theory that attributes heat oscillations to the combined effects of pressure and velocity oscillations is discussed via computational, experimental, and scaling considerations. Since previous analytical theories link heat oscillations to either velocity or pressure oscillations, the current analytical model agrees with and reconciles between existing speculations. In compliance with the Rayleigh criterion, it is found that the heat source must be positioned at a critical distance of 1/4 from the Rijke-tube lower end for resonance to occur. This observation confirms our proposed interpretation since the critical point where coupling is maximized corresponds to a spatial location where the acoustic intensity, product of both acoustic velocities and pressures, is largest. Numerical simulations show that pressure oscillations inside the Rijke tube grow exponentially with increasing heat input With a sufficiently small heat input, the acoustic sinks exceed the sources and acoustic damping takes place. When the heat input is augmented beyond a critical threshold, acoustic sinks become insufficient causing rapid acoustic amplification by virtue of internal energy accumulation.

Fig. 2 Schematic diagram of the experimental Rijke tube
Fig. 2 Schematic diagram of the experimental Rijke tube
A novel investigation of the thermoacoustic field inside a Rijke tube
A novel investigation of the thermoacoustic field inside a Rijke tube

References

‘Entezam, B., Majdalani, J., and Van Moorhem, W. K.,
“Modeling of a Rijke-Tube Pulse Combustor Using
Computational Fluid Dynamics,” AIAA Paper 97-2718,
Seattle, WA, July 1997.

2George, W., and Reethof, G., “On the Fragility of
Acoustically Agglomerated Submicron Fly Ash
Particles,” Journal of Vibration, Acoustics, Stress, and
Reliability in Design, Vol. 108, July 1986, pp. 322-329.
3Tiwary R., and Reethof, G., “Hydrodynamic
Interaction of Spherical Aerosol Particles in a High
Intensity Acoustic Field,” Journal of Sound and
Vibration, Vol. 108, 1986, pp. 33-49.
4Reethof, G., “Acoustic Agglomeration of Power Plant
Fly Ash for Environmental and Hot Gas Clean-up,”
Transaction of the ASME, Vol. 110, Oct., 1988, pp.
552-557.
5
Song, L., Reethof, G., and Koopmann, G. H., “An
Improved Simulation Model of Acoustic
Agglomeration,” NCA Vol. 5, 89-WA, American
Society of Mechanical Engineers, Winter Annual
Meeting, San Francisco, CA, Dec., 10-15, 1989.
6Reethof, G., Koopmann, G. H., and Dorchak, T.,
“Acoustic Agglomeration for Paniculate Control at
High Temperature and high Pressure – Some Recent
results,” NCA Vol. 4, 89-WA, American Society of
Mechanical Engineers, Winter Annual Meeting, San
Francisco, CA, Dec., 10-15, 1989.
7Richards , G. A., and Bedick, R. C, “Application of
Acoustics in Advanced Energy Systems,” NCA Vol. 3,
89-WA, American Society of Mechanical Engineers,
Winter Annual Meeting, San Francisco, CA, Dec., 10-
15, 1989.
8Yavuzkurt, S., Ha, M. Y., Reethof, G., and Koopmann,
G., “Effect of Acoustic Field on the Combustion of
Coal Particles in a Rat Flame Burner,” Proceedings of
the Ist
Annual Pittsburgh Coal Conference, Pittsburgh,
PA, Sep., 1984, pp. 53-58.
^rice, E. W., “Review of Combustion Instability
Characteristics of Solid Propellants,” Advances in
Tactical Rocket Propulsion, AGARD Conference
Proceedings, No. 1, Part 2, Chap. 5, Technivision
Services, Maidenhead, England, 1968, pp. 141-194.
10Zinn, B.T., “State of the Art and Research Needs of
Pulsating Combustion,” NCA Vol. 19, 84-WA,
American Society of Mechanical Engineers, 1984.
“Rayleigh, J.W.S., The Theory of Sound, Vol. 1 and 2,
Dover Publications, New York, 1945, pp. 231-235.
12Zinn, B.T., Miller, N., Carvalho, J.A. Jr., and Daniel.
B. R., “Pulsating Combustion of Coal in a Rijke Type
Combustor,” Proceedings of the 19th International
Symposium on Combustion, 1982, pp. 1197-1203.
13Evans, R.E., and Putnam, A.A., “Rijke Tube
Apparatus,” Journal of Applied Physics, Vol. 360,
1966.
14Feldman, K. T., “Review of the Literature on Rijke
Thermoacoustic Phenomena, ” Journal of Sound and
Vibration, Vol. 7, 1968, pp. 83-89.
15Carvalho, J.R., Ferreira, C., Bressan, C., and Ferreira,
G., “Definition of Heater Location to Drive Maximum
Amplitude Acoustic Oscillations hi a Rijke Tube,”
Combustion and Flame, Vol. 76, 1989, pp. 17-27.
16Raun, R.L., Beckstead, M. W., Finlinson, J. C. , and
Brooks, K. P., “A Review of Rijke Tubes, Rijke
Burners and Related Devices,” Progress in Energy and
Combustion Science, Vol. 19, 1993, pp. 313-364.
17Chu, B. T., “Stability of Systems Containing a HeatSource-The Rayleigh Criterion, “NACA Research
Memorandum 56D27, 1956.
18Zinn, B. T., Daniel, B. R., and Shesdari, T.S.,
“Application of Pulsating Combustion in the Burning of
Solid Fuels,” Proceedings of the Symposium on Pulse
Combustion Technology for Heating Applications,
Argonne National Laboratory, 1979, pp. 239-248.
19Feldman, K.T., “Review of the Literature on
Soundhauss Thermoacoustic Phenomena ” Journal of
Sound and Vibration, Vol. 7, 1968, pp. 71-82.
20Flow Science Incorporated, Los Alamos, New
Mexico.

Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

Lin Chen, Gaoyang Mi, Xiong Zhang, Chunming Wang
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

Abstract

레이저 사인파 진동(사인) 용접 및 레이저 용접(SLW)에서 1.5mm 6061/5182 알루미늄 합금 박판 랩 조인트의 수치 모델이 온도 분포와 용융 흐름을 시뮬레이션하기 위해 개발되었습니다.

SLW의 일반적인 에너지 분포와 달리 레이저 빔의 사인파 진동은 에너지 분포를 크게 균질화하고 에너지 피크를 줄였습니다. 에너지 피크는 사인 용접의 양쪽에 위치하여 톱니 모양의 단면이 형성되었습니다. 이 논문은 시뮬레이션을 통해 응고 미세구조에 대한 온도 구배(G)와 응고 속도(R)의 영향을 설명했습니다.

결과는 사인 용접의 중심이 낮은 G/R로 더 넓은 영역을 가짐으로써 더 넓은 등축 결정립 영역의 형성을 촉진하고 더 큰 GR로 인해 주상 결정립이 더 가늘다는 것을 나타냅니다. 다공성 및 비관통 용접은 레이저 사인파 진동에 의해 얻어졌습니다.

그 이유는 용융 풀의 부피가 확대되고 열쇠 구멍의 부피 비율이 감소하며 용융 풀의 난류가 완만해졌기 때문이며, 이는 용융 흐름의 고속 이미징 및 시뮬레이션 결과에서 관찰되었습니다. 두 용접부의 인장시험에서 융착선을 따라 인장파괴 형태를 보였고 사인 용접부의 인장강도가 SLW 용접부보다 유의하게 우수하였습니다.

이는 등축 결정립 영역이 넓을수록 균열 경향이 감소하고 파단 위치에 근접한 입자 크기가 미세하기 때문입니다. 결함이 없고 우수한 용접은 신에너지 자동차 산업에 매우 중요합니다.

A numerical model of 1.5 mm 6061/5182 aluminum alloys thin sheets lap joints under laser sinusoidal oscillation (sine) welding and laser welding (SLW) weld was developed to simulate temperature distribution and melt flow. Unlike the common energy distribution of SLW, the sinusoidal oscillation of laser beam greatly homogenized the energy distribution and reduced the energy peak. The energy peaks were located at both sides of the sine weld, resulting in the tooth-shaped sectional formation. This paper illustrated the effect of the temperature gradient (G) and solidification rate (R) on the solidification microstructure by simulation. Results indicated that the center of the sine weld had a wider area with low G/R, promoting the formation of a wider equiaxed grain zone, and the columnar grains were slenderer because of greater GR. The porosity-free and non-penetration welds were obtained by the laser sinusoidal oscillation. The reasons were that the molten pool volume was enlarged, the volume proportion of keyhole was reduced and the turbulence in the molten pool was gentled, which was observed by the high-speed imaging and simulation results of melt flow. The tensile test of both welds showed a tensile fracture form along the fusion line, and the tensile strength of sine weld was significantly better than that of the SLW weld. This was because that the wider equiaxed grain area reduced the tendency of cracks and the finer grain size close to the fracture location. Defect-free and excellent welds are of great significance to the new energy vehicles industry.

Keywords

Laser weldingSinusoidal oscillatingEnergy distributionNumerical simulationMolten pool flowGrain structure

Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Fig. 1. Schematic description of the laser welding process considered in this study.

Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding

Won-Ik Cho, Peer Woizeschke
Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Straße 5, Bremen 28359, Germany

Received 30 July 2020, Revised 3 October 2020, Accepted 18 October 2020, Available online 1 November 2020.

Abstract

Molten pool flow and heat transfer in a laser welding process using beam oscillation and filler wire feeding were calculated using computational fluid dynamics (CFD). There are various indirect methods used to analyze the molten pool dynamics in fusion welding. In this work, based on the simulation results, the surface fluctuation was directly measured to enable a more intuitive analysis, and then the signal was analyzed using the Fourier transform and wavelet transform in terms of the beam oscillation frequency and buttonhole formation. The 1st frequency (2 x beam oscillation frequency, the so-called chopping frequency), 2nd frequency (4 x beam oscillation frequency), and beam oscillation frequency components were the main components found. The 1st and 2nd frequency components were caused by the effect of the chopping process and lumped line energy. The beam oscillation frequency component was related to rapid, unstable molten pool behavior. The wavelet transform effectively analyzed the rapid behaviors based on the change of the frequency components over time.

Korea Abstract

빔 진동 및 필러 와이어 공급을 사용하는 레이저 용접 공정에서 용융 풀 흐름 및 열 전달은 CFD (전산 유체 역학)를 사용하여 계산되었습니다. 용융 용접에서 용융 풀 역학을 분석하는 데 사용되는 다양한 간접 방법이 있습니다.

본 연구에서는 시뮬레이션 결과를 바탕으로 보다 직관적 인 분석이 가능하도록 표면 변동을 직접 측정 한 후 빔 발진 주파수 및 버튼 홀 형성 측면에서 푸리에 변환 및 웨이블릿 변환을 사용하여 신호를 분석했습니다.

1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분이 발견 된 주요 구성 요소였습니다. 1 차 및 2 차 주파수 성분은 쵸핑 공정과 집중 라인 에너지의 영향으로 인해 발생했습니다.

빔 진동 주파수 성분은 빠르고 불안정한 용융 풀 동작과 관련이 있습니다. 웨이블릿 변환은 시간 경과에 따른 주파수 구성 요소의 변화를 기반으로 빠른 동작을 효과적으로 분석했습니다.

1 . 소개

융합 용접에서 용융 풀 역학은 용접 결함과 시각적 이음새 품질에 직접적인 영향을 미칩니다. 이러한 역학을 연구하기 위해 고속 카메라를 사용하는 직접 방법과 광학 또는 음향 신호를 사용하는 간접 방법과 같은 다양한 측정 방법을 사용하여 여러 실험 방법을 고려했습니다. 시간 도메인의 원래 신호는 특별히 주파수 도메인에서 변환 된 신호로 변환되어 용융 풀 동작에 영향을 미치는 주파수 성분을 분석합니다. Kotecki et al. (1972)는 고속 카메라를 사용하여 가스 텅스텐 아크 용접에서 용융 풀을 관찰했습니다. [1]. 그들은 120Hz 리플 DC 출력을 가진 용접 전원을 사용할 때 용융 풀 진동 주파수가 120Hz임을 보여주었습니다. 전원을 끈 후 진동 주파수는 용융 풀의 고유 주파수를 나타내는 용융 풀 크기와 관련이 있습니다. 진동은 응고 중에 용접 표면 스케일링을 생성했습니다. Zacksenhouse and Hardt (1983)는 레이저 섀도 잉 동작 측정 기술을 사용하여 가스 텅스텐 아크 용접에서 완전히 관통 된 용융 풀의 동작을 측정했습니다 [2] . 그들은 2.5mm 두께의 강판에서 6mm 풀 반경 (고정 용접)에 대해 용융 풀의 고유 주파수가 18.9Hz라는 것을 발견했습니다. Semak et al. (1995) 고속 카메라를 사용하여 레이저 스폿 용접에서 용융 풀 및 키홀 역학 조사 [3]. 그들은 깊이가 약 3mm이고 반경이 약 3mm 인 용융 풀에서 200Hz의 낮은 체적 진동 주파수를 관찰했습니다. 0.45mm Aendenroomer와 den Ouden (1998)은 강철의 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동을보고했습니다 [4] . 그들은 침투 깊이에 따라 진동 모드 변화를 보였고 주파수는 50Hz에서 150Hz 사이에서 변화했습니다. 주파수는 완전히 침투 된 용융 풀에서 더 낮았습니다. Hermans와 den Ouden (1999)은 단락 가스 금속 아크 용접에서 용융 풀 진동을 분석했습니다. [5]. 그들은 용융 풀의 단락 주파수와 고유 주파수가 같을 때 부분적으로 침투 된 용융 풀의 경우 공정 안정성이 향상되었음을 보여주었습니다. Yudodibroto et al. (2004)는 가스 텅스텐 아크 용접에서 용융 풀 진동에 대한 필러 와이어의 영향을 조사했습니다 [6] . 그들은 금속 전달이 특히 부분적으로 침투 된 용융 풀에서 진동 거동을 방해한다는 것을 보여주었습니다. Geiger et al. (2009) 레이저 키홀 용접에서 발광 분석 [7]. 신호의 주파수 분석을 사용하여 용융 풀 (1.5kHz 미만)과 키홀 (약 3kHz)에 해당하는 진동 주파수 범위를 찾았습니다. Kägeler와 Schmidt (2010)는 레이저 용접에서 용융 풀 크기의 변화를 관찰하기 위해 고속 카메라를 사용했습니다 [8] . 그들은 용융 풀에서 지배적 인 저주파 진동 성분 (100Hz 미만)을 발견했습니다. Shi et al. (2015) 고속 카메라를 사용하여 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동 주파수 분석 [9]. 그들은 용접 침투 깊이가 작을수록 용융 풀의 진동 빈도가 더 높다는 것을 보여주었습니다. 추출 된 진동 주파수는 완전 용입 용접의 경우 85Hz 미만 이었지만 부분 용입 용접의 경우 110Hz에서 125Hz 사이였습니다. Volpp와 Vollertsen (2016)은 레이저 키홀 역학을 분석하기 위해 광학 신호를 사용했습니다 [10] . 그들은 공간 레이저 강도 분포로 인해 0.8에서 154 kHz 사이의 고주파 범위에서 피크를 발견했습니다. 위에서 언급 한 실험적 접근법은 공정 조건, 측정 방법 및 측정 된 위치에 따라 수십 Hz에서 수십 kHz까지 광범위한 용융 풀 역학에 대한 결과를 보여 주었다는 점에 유의해야합니다.

융합 용접에서 용융 풀 역학을 연구하기 위해 분석 접근 방식도 사용되었습니다. Zacksenhouse와 Hardt (1983)는 2.5mm 두께의 강판에서 대칭형 완전 관통 용융 풀의 고유 진동수를 계산했습니다 [2] . 매스 스프링 해석 모델을 사용하여 용융 풀 반경 6mm (고정 용접)에 대해 20.4Hz (실험에서 18.9Hz)의 고유 진동수와 3mm 풀 반경 (연속 용접)에 대해 40Hz의 고유 진동수를 예측했습니다. ). Postacioglu et al. (1989)는 원통형 용융 풀과 키홀을 가정하여 레이저 용접의 용융 풀에서 키홀 진동의 고유 진동수를 계산했습니다 .. 특정 열쇠 구멍 모양의 경우 약 900Hz의 기본 주파수가 계산되었습니다. Postacioglu et al. (1991)은 또한 레이저 용접에서 용접 속도를 고려하기 위해 타원형 용융 풀의 고유 진동수를 계산했습니다 [12] . 그들은 타원형 용융 풀의 모양이 고유 진동수에 영향을 미친다는 것을 보여주었습니다. 고유 진동수는 축의 길이 비율이 낮았으며, 즉 타원의 반장 축과 반 단축의 비율이 낮았습니다. Kroos et al. (1993)은 축 대칭 용융 풀과 키홀을 가정하여 레이저 키홀 용접의 동적 거동에 대한 이론적 모델을 개발했습니다 .. 키홀 폐쇄 시간은 0.1ms였으며 안정성 분석은 약 500Hz의 주파수에서 공진과 같은 진동을 예측했습니다. Maruo와 Hirata (1993)는 완전 관통 아크 용접에서 용융 풀을 모델링했습니다 [14] . 그들은 녹은 웅덩이가 정적 타원 모양을 가지고 있다고 가정했습니다. 그들은 고유 진동수와 진동 모드 사이의 관계를 조사하고 용융 풀 크기가 감소함에 따라 고유 진동수가 증가한다는 것을 보여주었습니다. Klein et al. (1994)는 원통형 키홀 모양을 사용하여 완전 침투 레이저 용접에서 키홀 진동을 연구했습니다 [15] . 그들은 점성 감쇠로 인해 키홀 진동이 낮은 kHz 범위로 제한된다는 것을 보여주었습니다. Klein et al. (1996)은 또한 레이저 출력의 작은 변동이 강한 키홀 진동으로 이어질 수 있음을 보여주었습니다[16] . 그들은 키홀 진동의 주요 공진 주파수 범위가 500 ~ 3500Hz라는 것을 발견했습니다. Andersen et al. (1997)은 고정 가스 텅스텐 아크 용접 [17] 에서 고정 된 원통형 모양을 가정하여 용융 풀의 고유 진동수를 예측 했으며 완전 용입 용접에서 용융 풀 폭이 증가함에 따라 감소하는 것으로 나타났습니다. 3.175mm 두께의 강판의 경우 주파수는 20Hz ~ 100Hz 범위였습니다. 위에 표시된 분석 방법은 일반적으로 단순한 용융 풀 모양을 가정하고 고유 진동수를 계산했습니다. 이것은 단순한 용융 풀 모양으로 고정 용접 공정을 분석하는 데 충분하지만 대부분의 용접 사례를 설명하는 과도 용접 공정에서 용융 풀 역학 분석에는 적합하지 않습니다.

반면에 수치 접근 방식은 고온 및 강한 빛과 같은 실험적 제한없이 자세한 정보를 제공하기 때문에 용융 풀 역학을 분석하는 이점이 있습니다. 전산 유체 역학 (CFD)의 수치 시뮬레이션 기술이 발전함에 따라 용융 풀 역학 분석에 대한 많은 연구가 수행되었습니다. 실제 용융 표면 변화는 VOF (체적 부피) 방법을 사용하여 계산할 수 있습니다. Cho et al. (2010) CO 2 레이저-아크 하이브리드 용접 공정을 위한 수학적 모델 개발 [18], 구형 방울이 생성 된 금속 와이어의 용융 과정이 와이어 공급 속도와 일치한다고 가정합니다. 그들은 필러 와이어가 희석되는 용융 풀 동작을 보여주었습니다. Cho et al. (2012)는 높은 빔 품질과 높은 금속 흡수율로 인해 업계에서 널리 사용되는 디스크 레이저 키홀 용접으로 수학적 모델을 확장했습니다 [19] . 그들은 열쇠 구멍에서 레이저 광선 번들의 다중 반사를 고려하고 용융 풀에서 keyholing과 같은 빠른 표면 변화를 자세히보고했습니다. 최근 CFD 시뮬레이션은 험핑 (Otto et al., 2016 [20] ) 및 기공 (Lin et al., 2017 [21] )과 같은보다 구체적인 현상을 분석하는데도 사용되었습니다 .) 레이저 용접에서. 그러나 용융 풀 역학과 관련된 연구는 거의 수행되지 않았습니다. Ko et al. (2000)은 수치 시뮬레이션을 사용하여 가스 텅스텐 아크 용접 풀의 동적 거동을 조사했습니다 [22] . 그들은 완전히 침투 된 용융 풀이 부분적으로 침투 된 풀보다 낮은 주파수에서 진동한다는 것을 보여주었습니다. 진동은 수십 분의 1 초 내에 무시할 수있는 크기로 감쇠되었습니다. Geiger et al. (2009)는 또한 수치 시뮬레이션을 사용하여 레이저 용접에서 용융 풀 거동을 보여주었습니다 [7]. 그들은 계산 된 증발 속도를 주파수 분석에 사용하여 공정에서 나오는 빛의 실험 결과와 비교했습니다. 판금 레이저 용접에서 중요한 공간 빔 진동 및 추가 필러 재료가있는 공정에 대한 용융 풀 역학에 대한 연구도 불충분합니다. Hu et al. (2018)은 금속 전달 메커니즘을 밝히기 위해 전자빔 3D 프린팅에서 와이어 공급 모델링을 수행했습니다. 그들은 주로 열 입력에 의해 결정되는 액체 브리지 전이, 액적 전이 및 중간 전이의 세 가지 유형의 금속 전달 모드를 보여주었습니다 .. Meng et al. (2020)은 레이저 빔 용접에서 용융 풀에 필러 와이어에 의해 추가 된 추가 요소의 전자기 교반 효과를 모델링했습니다. 용가재의 연속적인 액체 브릿지 이동이 가정되었고, 그 결과 전자기 교반의 영향이 키홀 깊이에 미미한 반면 필러 와이어 혼합을 향상 시켰습니다 [24] . Cho et al. (2017) 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하여 레이저 용접을위한 시뮬레이션 모델 개발 [25]. 그들은 시뮬레이션을 사용하여 특정 용접 현상, 즉 용융 풀의 단추 구멍 형성을 보여주었습니다. Cho et al. (2018)은 다중 반사 수와 전력 흡수량의 푸리에 변환을 사용하여 주파수 영역에서 소위 쵸핑 주파수 (2 x 빔 발진 주파수) 성분을 발견했습니다 [26] . 그러나 그들은 용융 풀 역학을 분석하기 위해 간접 신호를 사용했습니다. 따라서보다 직관적 인 분석을 위해서는 표면의 변동을 직접 측정해야합니다.

이 연구는 이전 연구에서 개발 된 레이저 용접 모델을 사용하여 3 차원 과도 CFD 시뮬레이션을 수행하여 빔 진동 및 필러 와이어 공급을 포함한 레이저 용접 공정에서 용융 풀 역학을 조사합니다. 용융 된 풀 표면의 시간적 변화는 시뮬레이션 결과에서 추출되었습니다. 추출 된 데이터는 주파수 영역뿐만 아니라 시간-주파수 영역에서도 분석되었습니다. 신호 처리를 통해 도출 된 결과는 특징적인 용융 풀 역학을 나타내며 빔 진동 주파수 및 단추 구멍 형성 측면에서 레이저 용접의 역학을 줄일 수있는 잠재력을 제공합니다.

2 . 방법론

그림 1도 1은 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하는 레이저 용접 프로세스의 개략적 설명을 보여줍니다. 1mm 두께의 알루미늄 합금 (AlSi1MgMn) 시트는 시트 표면에 초점을 맞춘 멀티 kW 파이버 레이저 (YLR-8000S, IPG Photonics, USA)를 사용하여 용접되었습니다. 시트는 에어 갭이있는 맞대기 이음으로 정렬되었습니다. 1 차원 스캐너 (ILV DC-Scanner, Ingenieurbüro für Lasertechnik + Verschleiss-Schutz (ILV), 독일)를 사용하여 레이저 빔의 1 차원 정현파 진동을 실현했습니다. 이 스캔 시스템에서 최대 진동 폭은 250Hz의 진동 주파수에서 1.4mm입니다. 오정렬에 대한 공차를 개선하기 위해 동일한 최대 너비 값이 사용되었습니다. 와이어 공급 시스템은 1을 공급했습니다. 2mm 직경의 알루미늄 합금 (AlSi5) 필러 와이어를 일정한 공급 속도로 에어 갭을 채 웁니다. 1mm 에어 갭의 경우 와이어 이송 속도는 용접 속도의 1.5 배 값으로 설정되었으며 참조 실험 조건은 문헌에서 얻었습니다 (Schultz, 2015 참조).[27] ).

그림 1

CFD 시뮬레이션은 레이저 용접에서 열 전달 및 용융 풀 동작을 계산하기 위해 수행되었습니다. 그림 2 는 CFD 시뮬레이션을위한 계산 영역을 보여줍니다. 실온에서 1.2mm 직경의 필러 와이어가 공급되고 레이저 빔이 진동했습니다. 1mm 두께의 공작물이 용접 속도로 왼쪽에서 오른쪽으로 이동했습니다. 0.1mm의 최소 메쉬 크기가 도메인에서 생성되었습니다. 침투 깊이가 더 깊은 이전 연구의 메쉬 테스트 결과는 0.2mm 이하의 메쉬 크기로 시뮬레이션 정확도가 확보 된 것으로 나타 났으므로 [28] 본 연구에서 사용 된 메쉬 크기가 적절할 수 있습니다. 도메인을 구성하는 세포의 수는 약 120 만 개였습니다. 1 번 테이블사용 된 레이저 용접 매개 변수를 보여줍니다. 용융 풀 역학 측면에서 다양한 진동 주파수와 에어 갭 크기가 고려되었으며 12 개의 용접 사례가 표 2 에 나와 있습니다. 표 3 은 시뮬레이션에 사용 된 알루미늄 합금과 순수 알루미늄 (Cho et al., 2018 [26] )의 표면 장력 계수를 제외하고 온도와 무관 한 열-물리적 재료 특성을 보여줍니다 . 여기서 표면 장력 계수는 액체 온도에서 온도와 표면 장력 계수 사이의 선형 관계를 가진 유일한 온도 의존적 ​​특성이었습니다.

그림 2

표 1 . . 레이저 용접 매개 변수.

레이저 용접 매개 변수
레이저 빔 파워3.0kW
빔 허리 반경50µm *
용접 속도6.0m / 분
와이어 공급 속도9.0m / 분
빔 진동 폭1.4mm
빔 진동 주파수100Hz, 150Hz, 200Hz, 250Hz
에어 갭 크기0.8mm, 0.9mm, 1.0mm, 1.1mm

반경은 1.07μm의 파장, 4.2mm • mrad의 빔 품질, 시준 초점 거리 및 초점 렌즈 200mm, 광섬유 직경 100μm의 원형 빔을 가정하여 계산되었습니다.

표 2 . 이 연구에서 고려한 용접 사례.

에어 갭 크기 [mm]진동 주파수 [Hz]
100150200250
0.9사례 1엑스엑스엑스
1.0사례 2사례 4사례 7사례 10
1.1사례 3사례 5사례 8사례 11
1.2엑스사례 6사례 912면

표 3 . 시뮬레이션에 사용 된 열 물리적 재료 특성 (Cho et al., 2018 [26] ).

특성상징
밀도ρ2700kg / m3
열 전도성케이1.7×102Wm K
점도ν1.15×10−삼kg / ms
표면 장력 계수 티엘*γ엘0.871 J / m2
표면 장력 온도 구배 *−1.55×10−4J / m 2 K
표면 장력 계수γγ엘−ㅏ(티−티엘)
비열8.5×102J / kg K
융합 잠열h에스엘3.36×105J / kg
기화 잠열 *hV1.05×107J / kg
Solidus 온도티에스847K
Liquidus 온도티엘905K
끓는점 *티비2743K

순수한 알루미늄.

시뮬레이션을 위해 단상 뉴턴 유체와 비압축성 층류가 가정되었습니다. 질량, 운동량 및 에너지 보존의 지배 방정식을 해결하여 계산 영역에서 속도, 압력 및 온도 분포를 얻었습니다. VOF 방법은 자유 표면 경계를 찾는 데 사용되었습니다. 스칼라 보존 방정식을 추가로 도입하여 용융 풀에서 충전재의 부피 분율을 계산했습니다. 시뮬레이션에 사용 된 레이저 용접의 수학적 모델은 다음과 같습니다. 레이저 빔은 가우스와 같은 전력 밀도 분포를 기반으로 697 개의 광선 에너지 번들로 나뉩니다. 광선 추적 방법을 사용하여 다중 반사를 고려했습니다. 재료에 대한 레이저 빔의 반사 (또는 흡수) 에너지는 프레 넬 반사 모델을 사용하여 계산되었습니다. 온도에 따른 흡수율의 변화를 고려 하였다. 혼합물의 흡수율은베이스 및 충전제 물질 분획의 가중 평균을 사용하여 계산되었습니다. 반동 압력과 부력도 고려되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다.[29] . 계산에는 48GB RAM이 장착 된 Intel® Xeon® 프로세서 E5649로 구성된 워크 스테이션이 사용되었습니다. 계산 시스템을 사용하여 0.2 초 레이저 용접을 시뮬레이션하는 데 약 18 시간이 걸렸습니다. 지배 방정식 (Cho and Woizeschke, 2020 [30] ) 및 레이저 용접 모델 (Cho et al., 2018 [26] )에 대한 자세한 설명은 부록 A 에서 확인할 수 있습니다 .

그림 3 은 용융 풀 변동의 직접 측정에 대한 개략적 설명을 보여줍니다. 용융 풀의 역학을 분석하기 위해 시뮬레이션 중에 용융 풀 표면의 시간적 변동 운동을 측정했습니다. 상단 및 하단 표면 모두에서 10kHz의 샘플링 주파수로 변동을 측정 한 반면, 측정 위치는 X 축의 레이저 빔 위치에서 2mm 떨어진 용접 중심선에있었습니다. 그림 4시간 신호를 분석하는 데 사용되는 푸리에 변환 및 웨이블릿 변환의 개략적 설명을 보여줍니다. 측정 된 시간 신호는 고속 푸리에 변환 (FFT) 방법을 사용하여 주파수 영역으로 변환되었습니다. 결과는 측정 기간 동안 평균화 된 주파수 성분의 크기를 보여줍니다. 웨이블릿 변환 방법은 시간-주파수 영역에서 국부적 인 특성을 찾는 데 사용되었습니다. 결과는 주파수 구성 요소의 크기뿐만 아니라 시간 변화도 보여줍니다.

그림 3
그림 4

3 . 결과

이 연구 에서는 표 2에 표시된 12 가지 용접 사례 를 시뮬레이션했습니다. 그림 5 는 3 차원 시뮬레이션 결과를 평면도 와 바닥면으로 보여줍니다. 결과는 용융 된 풀의 거동에 따라 분류 할 수 있습니다 : 단추 구멍 형성 없음 (녹색), 안정 또는 불안정 단추 구멍 있음 (파란색), 불안정한 단추 구멍으로 인한 구멍 결함 (빨간색). 일반적인 열쇠 구멍보다 훨씬 큰 직경을 가진 단추 구멍은 레이저 용접의 특정 진동 조건에서 나타날 수 있습니다 (Vollertsen, 2016 [31]). 진동 주파수가 증가함에 따라 용접 이음 부 코스 및 스케일링 측면에서 시각적 이음새 품질이 향상되었습니다. 고주파에서 스케일링은 무시할 수있을 정도 였고 코스는 균질했습니다. 언더컷 결함의 발생도 감소했습니다. 그러나 관통 결함 부족 (case 7, case 10)이 나타났다. 에어 갭은 단추 구멍 형성에 중요했습니다. 에어 갭 크기가 증가함에 따라 단추 구멍이 더 쉽게 형성되었지만 구멍 결함으로 더 쉽게 남아 있습니다. 안정적인 단추 구멍 형성은 고려 된 공극 조건의 좁은 영역에서만 나타납니다.

그림 5

그림 6 은 시뮬레이션과 실험에서 융합 영역의 모양을 보여줍니다. 버튼 홀이없는 경우 1, 불안정한 버튼 홀 형성이있는 경우 8, 안정적인 버튼 홀 형성이있는 경우 11의 3 가지 경우에 대해 시뮬레이션 결과와 실험 결과를 비교하여 유사성을 나타냈다. 본 연구에서 고려한 용접 조건의 경우 표면 품질 결과는 Fig. 5 와 같이 큰 차이를 보였으 나 단면 융착 영역 [26] 과 형상은 큰 차이를 보이지 않았다.

그림 6

무화과. 7 과 8 은 각각 100Hz와 250Hz의 진동 주파수에서 시뮬레이션 결과를 기반으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여줍니다. 이전 연구에서 볼 수 있듯이 레이저 빔의 진동 주파수는 단추 구멍 형성과 밀접한 관련이 있습니다 (Cho et al., 2018 [26] 참조 ). 그림 7 (a) 및 (b)는 각각 시뮬레이션 및 실험을 기반으로 한 진동 주파수 100Hz에서 대표적인 용융 풀 동작을 보여줍니다. 완전히 관통 된 키홀 및 버튼 홀 형성은 관찰되지 않았으며 응고 후 거친 비드 표면이 남았습니다. 그림 7(c)와 (d)는 각각 윗면과 바닥면의 표면 변동에 대한 시뮬레이션 결과를 기반으로 한 용융 풀 역학 분석을 보여줍니다. 샘플링 데이터는 상단 표면이 공작물의 상단 표면 위치에서 평균적으로 변동하는 반면 하단 표면은 공작물의 하단 표면 위치에서 평균적으로 변동하는 것으로 나타났습니다. 표면 변동의 푸리에 변환 및 웨이블릿 변환 결과는 명확한 1  주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수, Cho et al., 2018 [26] 참조 ) 및 2  주파수 (4 x 빔 발진)를 보여줍니다. 주파수) 두 표면의 구성 요소, 그러나 바닥 표면과 첫 번째에 대한 결과주파수 성분이 더 강합니다. 반면 그림 8 (a)와 (b)에서 보는 바와 같이 250Hz의 진동 주파수에서 시뮬레이션과 실험 결과는 안정된 버튼 홀 형성과 응고 후 매끄러운 비드 표면을 나타냈다. 그림 8 의 샘플링 신호의 진폭은 그림 7 의 진폭 보다 작으며 푸리에 변환 및 웨이블릿 변환의 결과에서 중요한 주파수 성분이 발견되지 않았습니다.

Fi 7
그림 8

Fig. 9 는 진동 주파수 200Hz에서 시뮬레이션 결과를 바탕으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여준다. 이 주파수에서 Fig. 9 (a)와 (b) 에서 보는 바와 같이 , 시뮬레이션과 실험 모두에서 불안정한 buttonhole 거동이 관찰되었다. 바닥면에서 샘플링 데이터의 푸리에 변환 및 웨이블릿 변환의 결과 빔 발진 주파수 성분이 발견되었습니다.

그림 9

4 . 토론

시뮬레이션 및 실험 결과는 비드 표면 품질이 향상되고 빔 진동 주파수가 증가함에 따라 버튼 홀이 형성되는 것으로 나타났습니다. 표면의 변동 데이터에 대한 푸리에 변환 및 웨이블릿 변환의 결과에 따라 다음과 같은 주요 주파수 구성 요소가 발견되었습니다. 1  및 2 버튼 홀 형성이없는 주파수, 불안정한 용융 풀 거동이있는 빔 진동 주파수, 안정적인 버튼 홀 형성이있는 중요한 주파수 성분이 없습니다. 이들 중 불안정한 용융 풀 동작과 관련된 빔 진동 주파수 성분은 완전히 관통 된 키홀과 반복적으로 생성 및 붕괴되는 불안정한 버튼 홀의 특성으로 인해 웨이블릿 변환 결과에서 명확한 실선 형태로 나타나지 않았습니다. 분석 결과는 윗면보다 바닥면에서 더 분명했습니다. 이는 필러 와이어 공급 및 키홀 링 공정에서 강한 하향 흐름으로 인해 용융 풀 역학이 바닥 표면 영역에서 더 강했기 때문입니다. 진동 주파수가 증가함에 따라 용융 풀 역학과 상단 표면과 하단 표면 간의 차이가 감소했습니다.

첫 번째 주파수 (2 x 빔 진동 주파수)는이 연구에서 관찰 된 가장 분명한 구성 요소였습니다. Schultz et al. (2018)은 또한 실험을 통해 동일한 성분을 발견했습니다 [32] , 용융 풀 표면 운동에 대한 푸리에 분석을 수행했습니다. 첫 번째 주파수 성분은 빔 발진주기 당 두 개의 주요 이벤트가 있음을 의미합니다. 이것은 레이저 빔이 빔 진동주기 당 두 번 와이어를 절단하거나 절단하는 프로세스와 일치합니다. 용융 된 와이어 팁은 낮은 진동 주파수에서 고르지 않고 날카로운 모서리를 갖는 것으로 나타났습니다 (Cho et al., 2018 [26] ). 이것은 첫 번째 원인이 될 수 있습니다.용융 된 풀에서 지배적이되는 주파수 성분. 진동 주파수가 증가하면 용융 된 와이어 팁이 더 균일 해 지므로 효과가 감소합니다. 용접 방향으로의 정현파 횡 방향 빔 진동을 통한 에너지 집중도 빔 진동주기 당 두 번 발생합니다. 그림 10 은 발진 주파수에 따른 레이저 빔의 라인 에너지 (단위 길이 당 에너지)의 변화를 보여줍니다. 그림 10 b) 의 라인 에너지 는 레이저 출력을 공정 속도로 나누어 계산했습니다. 여기서 처리 속도는(w이자형엘디나는엔지에스피이자형이자형디)2+(디(에스나는엔유에스영형나는디ㅏ엘wㅏV이자형나는엔에프나는지.10ㅏ))디티)2. 낮은 발진 주파수에서 라인 에너지는 발진 폭의 양쪽 끝에 과도하게 집중됩니다. 이러한 집중된 에너지는 과도한 키홀 링 프로세스를 초래하므로 언더컷 결함이 나타날 수있는 높은 흐름 역학이 발생합니다. 진동 주파수가 증가함에 따라 집중 에너지는 더 작은 조각으로 나뉩니다. 따라서 높은 진동 주파수에서 과도한 키홀 링 및 수반되는 언더컷 결함의 발생이 감소되었습니다. 위에서 언급 한 두 가지 현상 (불균일 한 와이어 팁과 집중된 라인 에너지)은 빔 발진주기 당 두 번 발생하며 발진 주파수가 증가하면 그 효과가 감소합니다. 따라서 저주파 에서 2  주파수 성분 (4 x 빔 발진 주파수)이 나타나는 것은이 두 현상의 동시 작용입니다.

그림 10

두 가지 현상 중 첫 번째 주파수 에 대한 주된 효과 는 집중된 라인 에너지입니다. Cho et al. (2018)은 전력 흡수 데이터를 푸리에 변환을 사용하여 분석했을 때 1  주파수 성분이 더 우세 해졌고, 2  주파수 성분은 발진 주파수가 증가함에 따라 상대적으로 약화 되었음을 보여주었습니다 [26] . 용융 된 와이어 팁은 또한 빈도가 증가함에 따라 더욱 균일 해졌습니다. 결과는 진동 주파수의 증가가 용융 풀에 대한 와이어의 영향을 제거하는 것으로 나타났습니다. 따라서 발진 주파수가 증가함에 따라 라인 에너지 집중의 영향 만 남을 수 있습니다. 그림 10 과 같이, 집중 선 에너지가 작은 조각으로 분할되기 때문에 효과도 감소하지만 최대 값이 변경되지 않았기 때문에 여전히 효과적입니다.

빔 진동 주파수 성분은 불안정한 단추 구멍 및 열쇠 구멍 붕괴를 수반하는 불안정한 용융 풀 동작과 관련이 있습니다. 언더컷 결함이있는 케이스 8 (발진 주파수 200Hz)에서 발진 주파수 성분이 관찰되었습니다. 이것은 특히 완전히 관통 된 열쇠 구멍과 불안정한 단추 구멍에서 불안정한 용융 풀 동작을 보여주었습니다. 경우 10 (진동 주파수 250Hz)의 경우 상대적으로 건강한 비드가 형성 되었으나, 도 11 (a) 와 같이 웨이블릿 변환 결과에서 t1의 시간 간격으로 진동 주파수 성분이 관찰되었다 . 이 시간 간격 t1의 용융 풀 거동은 그림 11에 나와 있습니다.(비). 완전히 관통 된 열쇠 구멍이 즉시 무너지는 것이 분명하게 관찰되었습니다. 이것은 진동 주파수 성분이 불안정한 용융 풀 거동과 밀접한 관련이 있음을 보여줍니다. 발견 된 주파수 성분으로부터 완전히 관통 된 열쇠 구멍과 같은 불안정한 용융 풀 거동을 예측할 수 있습니다. 완전히 관통 된 키홀이 반복적으로 붕괴되기 때문에 빔 진동 주파수 성분은 그림 9 (d) 와 같이 웨이블릿 변환 결과에서 명확한 실선 형태로 보이지 않습니다 .

그림 11

Cho and Woizeschke (2020)에 따르면 단추 구멍 형성은 자체 지속 가능한 카테 노이드처럼 작용하기 때문에 용융 풀 역학을 감소시킬 수 있습니다 [30] . 그림 12 는 버튼 홀 형성 측면에서 t2의 시간 간격에서 용융 풀 거동의 변화를 보여줍니다. 단추 구멍은 t2의 간헐적 인 부분에만 형성되었습니다. 1st 이후이 시간 동안 웨이블릿 변환의 결과로 주파수 성분이 사라졌고, 버튼 홀 형성은 용융 풀 역학을 줄이는 데 효과적이었습니다. 따라서, 웨이블릿 변환의 결과로 주파수 성분이 지워지는 것을 관찰함으로써 버튼 홀 형성을 예측할 수있다. 이와 관련하여 웨이블릿 변환 기술은 시간에 따른 용융 풀 변화를 나타낼 수 있습니다. 이 기술은 향후 용융 풀 동작을 모니터링하는 데 사용될 수 있습니다.

그림 12

5 . 결론

CFD 시뮬레이션 결과를 사용하여 빔 진동 및 필러 와이어 공급을 통한 레이저 용접에서 용융 풀 역학을 분석 할 수있었습니다. 용융 풀 표면의 변동 데이터의 푸리에 변환 및 웨이블릿 변환은 여기서 용융 풀 역학을 분석하는 데 사용되었습니다. 결과는 다음과 같은 결론으로 ​​이어집니다.1.

 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2  주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분은 푸리에 변환 및 웨이블릿 변환 분석에서 발견 된 주요 성분이었습니다.2.

 주파수와 2  주파수 성분 의 출현은 두 가지 사건, 즉 레이저 빔에 의한 필러 와이어의 절단 공정과 집중된 레이저 라인 에너지의 효과의 결과였습니다. 이는 빔 진동주기 당 두 번 발생했습니다. 따라서 두 번째 주파수 성분은 동시 작용으로 인해 발생했습니다. 빔 진동 주파수 성분은 불안정한 용융 풀 동작과 관련이 있습니다. 구성 요소는 열쇠 구멍과 단추 구멍의 붕괴와 함께 나타났습니다.삼.

낮은 발진 주파수에서는 1  주파수와 2  주파수 성분이 함께 나타 났지만 발진 주파수가 증가함에 따라 그 크기가 함께 감소했습니다. 집중 선 에너지는 주파수가 증가함에 따라 최대 값이 변하지 않는 반면, 잘게 잘린 선단이 평평 해져 그 효과가 사라졌기 때문에 쵸핑 프로세스보다 더 큰 영향을 미쳤습니다.4.

용융 풀 거동의 빠른 시간적 변화는 웨이블릿 변환 방법을 사용하여 분석되었습니다. 따라서이 방법은 열쇠 구멍 및 단추 구멍의 형성 및 붕괴와 같은 일시적인 용융 풀 변화를 해석하는 데 사용할 수 있습니다.

CRediT 저자 기여 성명

조원익 : 개념화, 방법론, 소프트웨어, 검증, 형식 분석, 조사, 데이터 큐 레이션, 글쓰기-원고, 글쓰기-검토 및 편집. Peer Woizeschke : 감독, 프로젝트 관리, 작문-검토 및 편집.

경쟁 관심의 선언

저자는이 논문에보고 된 작업에 영향을 미칠 수있는 경쟁적인 재정적 이해 관계 나 개인적 관계가 없다고 선언합니다.

감사의 말

이 작업은 알루미늄 합금 용접 역량 센터 (Centr-Al)에서 수행되었습니다. Deutsche Forschungsgemeinschaft (DFG, 프로젝트 번호 290705638 , “용접 풀 캐비티를 생성하여 레이저 깊은 용입 용접에서 매끄러운 이음매 표면”) 의 자금은 감사하게도 인정됩니다.

부록 A . 사용 된 지배 방정식 및 레이저 용접 모델

1 . 지배 방정식 (Cho 및 Woizeschke [ 30 ])

-대량 보존 방정식,(A1)∇·V→=미디엄˙에스ρ어디, V→속도 벡터입니다. ρ밀도이고 미디엄˙에스필러 와이어를 공급하여 질량 소스의 비율입니다. 단위미디엄에스단위 부피당 질량입니다. WFS (와이어 공급 속도) 및 필러 와이어의 직경과 같은 매스 소스 및 필러 와이어 조건,디w계산 영역에서 다음과 같은 관계가 있습니다.(A2)미디엄=∫미디엄에스디V=미디엄0+씨×ρ×W에프에스×π디w24×티어디, 미디엄총 질량, 미디엄0초기 총 질량, V볼륨입니다.씨단위 변환 계수입니다. 티시간입니다.

-운동량 보존 방정식,(A3)∂V→∂티+V→·∇V→=−1ρ∇피+ν∇2V→−케이V→+미디엄˙에스ρ(V에스→−V→)+지어디, 피압력입니다. ν동적 점도입니다. 케이뭉툭한 영역의 다공성 매체 모델에 대한 항력 계수, V에스→질량 소스에 대한 속도 벡터입니다. 지신체 힘으로 인한 신체 가속도입니다.

-에너지 절약 방정식,(A4)∂h∂티+V→·∇h=1ρ∇·(케이∇티)+h˙에스어디, h특정 엔탈피입니다. 케이열전도율, 티온도이고 h˙에스특정 엔탈피 소스로, Eq 의 질량 소스와 연관됩니다 (A1) . 계산 영역의 총 에너지,이자형다음과 같이 계산됩니다.(A5)이자형=∫미디엄에스h에스디V=∫미디엄에스씨Vw티w디V어디, 씨Vw질량 원의 비열, 티w질량 소스의 온도입니다.

또한, 엔탈피 기반 연속체 모델을 사용하여 고체-액체 상 전이를 고려했습니다.

-VOF 방정식,(A6)∂에프∂티+∇·(V→에프)=에프˙에스어디, 에프유체가 차지하는 부피 분율이며 0과 1 사이의 값을 가지며 에프˙에스질량의 소스와 연결된 유체의 체적 분율의 비율 식. (A1) . 질량 공급원에 해당하는 부피 분율은 다음에 할당됩니다.에프에스.

-스칼라 보존 방정식,(A7)∂Φ∂티+∇·(V→Φ)=Φ˙에스어디, Φ필러 와이어의 스칼라 값입니다. 셀의 유체가 전적으로 필러 와이어로 구성된 경우Φ1이고 유체에 대한 필러 와이어의 부피 분율에 따라 0과 1 사이에서 변경됩니다. Φ˙에스Eq 에서 질량 소스에 연결된 스칼라 소스의 비율입니다 (A1) . 스칼라 소스는 전적으로 필러 와이어이기 때문에 1에 할당됩니다. 확산 효과는 고려되지 않았습니다.

2 . 레이저 용접 모델 (Cho et al. [26] )

흡수율을 계산하기 위해 프레 넬 반사 모델을 사용했습니다. ㅏ=1−ρ씨재료의 표면 상에 도시 된 바와 같이 수학 식. (A8) 원 편광 빔의 경우.(A8)ㅏ=1−ρ씨=1−12(ρ에스+ρ피)어디,ρ에스=(엔1씨영형에스θ−피)2+큐2(엔1씨영형에스θ+피)2+큐2,ρ에스=(피−엔1에스나는엔θ티ㅏ엔θ)2+큐2(피+엔1에스나는엔θ티ㅏ엔θ)2+큐2,피2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22+[엔22−케이22−(엔1에스나는엔θ)2]},큐2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22−[엔22−케이22−(엔1에스나는엔θ)2]}.어디, 복잡한 인덱스 엔1과 케이1반사 지수와 공기의 흡수 지수이며 엔2과 케이2공작물을위한 것입니다. θ입사각입니다. 도시 된 바와 같이 수학 식. (A9)에서 , 혼합물의 흡수율은 식에서 얻은 모재 및 필러 와이어 분획의 가중 평균이됩니다 . (A7) .(A9)ㅏ미디엄나는엑스티유아르 자형이자형=Φㅏw나는아르 자형이자형+(1−Φ)ㅏ비ㅏ에스이자형어디, ㅏ비ㅏ에스이자형과 ㅏw나는아르 자형이자형각각 비금속과 필러 와이어의 흡수율입니다.

자유 표면 경계에서의 반동 압력 에이 싱은 Eq. (A10) .(A10)피아르 자형(티)≅0.54피에스ㅏ티(티)=0.54피0이자형엑스피(엘V티−티비아르 자형¯티티비)어디, 피에스ㅏ티포화 압력, 피0대기압입니다. 엘V기화의 잠열, 티비끓는 온도이고 아르 자형¯보편적 인 기체 상수입니다.

참고 문헌

D.J. Kotecki, D.L. Cheever, D.G. Howden
Mechanism of ripple formation during weld solidification
Weld. J., 51 (8) (1972), pp. 386s-391s
Google Scholar
[2]
M. Zacksenhouse, D.E. Hardt
Weld pool impedance identification for size measurement and control
J. Dyn. Syst. Meas. Control, 105 (3) (1983), pp. 179-184
CrossRefView Record in ScopusGoogle Scholar
[3]
V.V. Semak, J.A. Hopkins, M.H. McCay, T.D. McCay
Melt pool dynamics during laser welding
J. Phys. D, 28 (1995), pp. 2443-2450
CrossRefView Record in ScopusGoogle Scholar
[4]
A.J.R. Aendenroomer, G. den Ouden
Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding
Weld. J., 77 (5) (1998), pp. 181s-187s
Google Scholar
[5]
M.J.M. Hermans, G. den Ouden
Process behavior and stability in short circuit gas metal arc welding
Weld. J., 78 (4) (1999), pp. 137-141
View Record in ScopusGoogle Scholar
[6]
B.Y.B. Yudodibroto, M.J.M. Hermans, Y. Hirata, G. den Ouden
Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding
Sci. Technol. Weld. Join., 9 (2) (2004), pp. 163-168
View Record in ScopusGoogle Scholar
[7]
M. Geiger, K.-H. Leitz, H. Koch, A. Otto
A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets
Prod. Eng. Res. Dev., 3 (2009), pp. 127-136
CrossRefView Record in ScopusGoogle Scholar
[8]
C. Kägeler, M. Schmidt
Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets
Phys. Procedia, 5 (2010), pp. 447-453
ArticleDownload PDFView Record in ScopusGoogle Scholar
[9]
Y. Shi, G. Zhang, X.J. Ma, Y.F. Gu, J.K. Huang, D. Fan
Laser-vision-based measurement and analysis of weld pool oscillation frequency in GTAW-P
Weld. J., 94 (2015), pp. 176s-187s
Google Scholar
[10]
J. Volpp, F. Vollertsen
Keyhole stability during laser welding—part I: modelling and evaluation
Prod. Eng.-Res. Dev., 10 (2016), pp. 443-457
CrossRefView Record in ScopusGoogle Scholar
[11]
N. Postacioglu, P. Kapadia, J. Dowden
Capillary waves on the weld pool in penetration welding with a laser
J. Phys. D, 22 (1989), pp. 1050-1061
CrossRefView Record in ScopusGoogle Scholar
[12]
N. Postacioglu, P. Kapadia, J. Dowden
Theory of the oscillations of an ellipsoidal weld pool in laser welding
J. Phys. D, 24 (1991), pp. 1288-1292
CrossRefView Record in ScopusGoogle Scholar
[13]
J. Kroos, U. Gratzke, M. Vicanek, G. Simon
Dynamic behaviour of the keyhole in laser welding
J. Phys. D, 26 (1993), pp. 481-486
View Record in ScopusGoogle Scholar
[14]
H. Maruo, Y. Hirata
Natural frequency and oscillation modes of weld pools. 1st Report: weld pool oscillation in full penetration welding of thin plate
Weld. Int., 7 (8) (1993), pp. 614-619
CrossRefView Record in ScopusGoogle Scholar
[15]
T. Klein, M. Vicanek, J. Kroos, I. Decker, G. Simon
Oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 27 (1994), pp. 2023-2030
CrossRefView Record in ScopusGoogle Scholar
[16]
T. Klein, M. Vicanek, G. Simon
Forced oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 29 (1996), pp. 322-332
View Record in ScopusGoogle Scholar
[17]
K. Andersen, G.E. Cook, R.J. Barnett, A.M. Strauss
Synchronous weld pool oscillation for monitoring and control
IEEE Trans. Ind. Appl., 33 (2) (1997), pp. 464-471
View Record in ScopusGoogle Scholar
[18]
W.-I. Cho, S.-J. Na, M.-H. Cho, J.-S. Lee
Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding
Comput. Mater. Sci., 49 (2010), pp. 792-800
ArticleDownload PDFView Record in ScopusGoogle Scholar
[19]
W.-I. Cho, S.-J. Na, C. Thomy, F. Vollertsen
Numerical simulation of molten pool dynamics in high power disk laser welding
J. Mater. Process. Technol., 212 (2012), pp. 262-275
ArticleDownload PDFView Record in ScopusGoogle Scholar
[20]
A. Otto, A. Patschger, M. Seiler
Numerical and experimental investigations of humping phenomena in laser micro welding
Phys. Procedia, 83 (2016), pp. 1415-1423
ArticleDownload PDFView Record in ScopusGoogle Scholar
[21]
R. Lin, H.-P. Wang, F. Lu, J. Solomon, B.E. Carlson
Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys
Int. J. Heat Mass Trans., 108 (2017), pp. 244-256
ArticleDownload PDFView Record in ScopusGoogle Scholar
[22]
S.H. Ko, C.D. Yoo, D.F. Farson, S.K. Choi
Mathematical modeling of the dynamic behavior of gas tungsten arc weld pools
Metall. Mater. Trans. B., 31B (2000), pp. 1465-1473
CrossRefView Record in ScopusGoogle Scholar
[23]
R. Hu, X. Chen, G. Yang, S. Gong, S. Pang
Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion
Int. J. Heat Mass Transf., 126 (2018), pp. 877-887
ArticleDownload PDFView Record in ScopusGoogle Scholar
[24]
X. Meng, A. Artinov, M. Bachmann, M. Rethmeier
Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding
J. Laser Appl., 32 (2020), Article 022026
CrossRefGoogle Scholar
[25]
W.-I. Cho, V. Schultz, F. Vollertsen
Simulation of the buttonhole formation during laser welding with wire feeding and beam oscillation
L. Overmeyer, U. Reisgen, A. Ostendorf, M. Schmidt (Eds.), Proceedings of the Lasers in Manufacturing, German Scientific Laser Society, Munich, Germany (2017)
Google Scholar
[26]
W.-I. Cho, V. Schultz, P. Woizeschke
Numerical study of the effect of the oscillation frequency in buttonhole welding
J. Mater. Process. Technol., 261 (2018), pp. 202-212
ArticleDownload PDFView Record in ScopusGoogle Scholar
[27]
V. Schultz, T. Seefeld, F. Vollertsen
Bridging Large Air Gaps by Laser Welding with Beam Oscillation
International Conference on Application of Lasers in Manufacturing, New Delhi, India (2015), pp. 31-32
CrossRefGoogle Scholar
[28]
W.-I. Cho, S.-J. Na
Impact of wavelengths of CO2, disk, and green lasers on fusion zone shape in laser welding of steel
J. Weld. Join., 38 (3) (2020), pp. 235-240
CrossRefView Record in ScopusGoogle Scholar
[29]
FLOW-3D User Manual. 2017. Version 11.2.1.06, Flow Science Inc.
Google Scholar
[30]
W.-I. Cho, P. Woizeschke
Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal
Int. J. Heat Mass Transf., 152 (2020), Article 119528
ArticleDownload PDFView Record in ScopusGoogle Scholar
[31]
F. Vollertsen
Loopless production: definition and examples from joining
69th IIW Annual Assembly and International Conference, Melbourne, Australia (2016)
Google Scholar
[32]
V. Schultz, W.-I. Cho, A. Merkel, P. Woizeschke
Deep penetration laser welding with high seam surface quality due to buttonhole welding
Proc. of the IIW Annual Assembly, Com. IV, Bali, Indonesia (2018)
IIW-Doc. IV-1390-18

Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.

Investigation on Laser Welding of Al Ribbon to Cu Sheet: Weldability, Microstructure, and Mechanical and Electrical Properties

알루미늄 리본과 구리 시트의 레이저 용접에 대한 조사 : 용접성, 미세 구조, 기계적 및 전기적 특성

Won‐Sang Shin 1,†, Dae‐Won Cho 2,†, Donghyuck Jung 1, Heeshin Kang 3, Jeng O Kim 3, Yoon‐Jun Kim 1,*
and Changkyoo Park 3,*

Al 리본과 Cu 시트의 펄스 레이저 용접은 전력 전자 모듈의 전기적 상호 연결에 대해 조사되었습니다. 결함 없는 Al / Cu 조인트를 얻기 위해 레이저 출력, 스캔 속도 및 열 입력이 서로 다른 다양한 실험 조건이 사용되었습니다. Al / Cu 레이저 용접 중에 금속 간 화합물이 용접 영역에 형성되었습니다. 전자 탐침 마이크로 분석기와 투과 전자 현미경으로 Al4Cu9, Al2Cu, AlCu 등으로 밝혀진 금속 간 화합물의 상을 확인했습니다. 전산 유체 역학 시뮬레이션은 Marangoni 효과가 용융 풀의 순환을 유도하여 혼합물을 생성하는 것으로 나타났습니다. Al과 Cu의 결합과 Al / Cu 조인트에서 소용돌이 모양의 구조 형성. Al / Cu 접합부의 인장 전단강도와 전기 저항을 측정하였으며 용접 면적과 강한 상관 관계를 보였다. Al / Cu 접합부의 용접 면적이 증가함에 따라 기계적 강도의 감소와 전기 저항의 증가가 측정 되었습니다. 또한 무결점 Al / Cu 접합을 위한 공정 창을 개발하고 Al / Cu 레이저 브레이즈 용접을 위한 실험 조건을 조사하여 Al / Cu 접합에서 금속 간 화합물 형성을 최소화했습니다.

Introduction

전기 상호 연결은 전력 전자 모듈을 패키징하는 데 중요합니다. 우수한 기계적 및 전기적 특성을 가진 견고한 전기적 상호 연결은 전력 전자 모듈의 전기적 고장을 방지하는 데 필수적입니다. 저항 스폿 용접, 브레이징, 납땜 및 초음파 용접 (USW)이 전기 상호 연결에 사용되었습니다.

납땜과 납땜 모두 저온 공정으로 인해 접합부에서 한계 변형과 잔류 응력이 발생합니다 [1]. 필러 합금은 두 공정 모두 견고한 전기 접촉을 달성하는 데 필수적입니다. 따라서 조인트는 서로 접촉하는 서로 다른 금속으로 구성됩니다.

결과적으로 조인트는 부식 환경에서 갈바닉 부식에 취약 할 수 있습니다 [2,3]. 더욱이, 비금속과 충전재 사이의 친화도를 고려해야 하기 때문에 제한된 충전재 만 특정 조인트에 사용할 수 있습니다 [1]. USW는 용접 온도가 낮고 용접 시간이 짧기 때문에 접합부의 변형이 비교적 적습니다.

따라서 이는 특히 연질 재료 (예 : Al, Cu, Ag, Au 및 Ni)의 경우 기존 접합 방법을 대체하고 있습니다 [4–6]. 그러나 Cu를위한 USW 공정의 경우, 표면 산화물이 강해 용접성이 저하되는 것을 방지하기 위해 Cu 표면에 Sn 또는 Ni 코팅이 필요하며, 이는 공정 속도를 늦추고 산업적 응용을위한 경제적 측면을 악화시킨다 [7 , 8].

레이저 용접은 쉬운 제어, 고정밀 및 원격 처리의 특성으로 인해 전력 전자 모듈의 전기 연결에 대한 유망한 후보입니다. 열의 영향을 받는 작은 영역과 변형은 전기 접점의 손상을 최소화 할 것으로 예상됩니다 [9-11]. 또한 레이저 용접을 위해 추가 표면 준비가 필요하지 않습니다.

이종 재료의 용접은 산업 응용 분야에서 중요했습니다. 더욱이 그림 1 [12,13]에서 볼 수 있듯이 전기 연결을위한 와이어 또는 리본 본딩에 여러 다른 조인트가 필요하기 때문에 전력 전자 모듈에서 필수적인 기술이되고 있습니다.

전기 접점의 다양한 조합 중에서 Al과 Cu는 높은 전기 전도성으로 인해 전기 연결에 중요한 재료로 종종 간주됩니다 [14]. 그러나 Al과 Cu의 서로 다른 용접은 금속 간 화합물 (IMC)의 형성을 촉진하고 동시에 Al / Cu 조인트의 기계적 및 전기적 특성에 영향을 줍니다. 일반적으로 Al / Cu 조인트 내부에 IMC가 있으면 연성 및 전기 저항에 해를 끼치므로 균열이 쉽게 발생하고 용접을 통한 전기 전도도를 방해합니다 [15,16].

따라서 견고한 Al / Cu 조인트를 얻으려면 IMC의 형성을 피해야합니다. 여러 연구에서 Al 및 Cu 시트의 레이저 빔 용접을 조사했습니다. 연속파 (CW) 레이저가 Al / Cu 조인트에 사용되었습니다 [17-23]. 큰 열 입력과 상당한 IMC 형성으로 인해 용접 영역에서 많은 균열이 관찰되었습니다 [18,19].

CW 레이저 빔의 공간 진동은 Al / Cu 조인트의 용접 품질을 향상시키는 것으로 나타났습니다. 직선 CW 레이저 빔 [18-20]과 비교하여 용접 영역에서 IMC 크기가 더 작은 기공과 균열이 더 적습니다.

Al과 Cu 시트의 겹침 접합에는 CW 단일 모드 파이버 레이저를 사용했으며, IMC 형성을 억제하여 높은 용접 속도 (즉, 50m / min)에서 견고한 Al / Cu 접합을 얻었습니다 [22]. Mai et al. [23]은 다른 Al / Cu 용접을 달성하기 위해 펄스 레이저를 사용했습니다.

그들은 Al / Cu 용접성이 레이저 공정 매개 변수에 크게 의존한다는 것을 밝혔으며 100mm / min 미만의 스캔 속도에서 균열없는 Al / Cu 접합을 달성하는 데 성공했습니다.

본문 내용 생략 : 문서 하단부의 원문보기를 참고하시기 바랍니다.

Figure 1. Schematic diagram of the insulated gate bipolar transistors (IGBT) power module. Red‐dotted box indicated the electrical connections
Figure 1. Schematic diagram of the insulated gate bipolar transistors (IGBT) power module. Red‐dotted box indicated the electrical connections
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.
Figure 3. Schematic diagram of the numerical simulation domain and boundary conditions.
Figure 3. Schematic diagram of the numerical simulation domain and boundary conditions.
Figure 4. Experimental setup for the four‐point electrical resistance measurement.
Figure 4. Experimental setup for the four‐point electrical resistance measurement.
Figure 5. Cross‐sectional OM image of the Al/Cu joints in parallel to the laser welding direction. The laser power and scan speed were set at 2300 W and 20 mm/s, respectively.
Figure 5. Cross‐sectional OM image of the Al/Cu joints in parallel to the laser welding direction. The laser power and scan speed were set at 2300 W and 20 mm/s, respectively.
Figure 6 shows the cross‐sectional SEM images of the Al/Cu joints, and corresponding EPMA element mapping of Al and Cu for the (a) 23/20, (b) 25/28.6, (c) 25/15.4, and (d) 27/20.
Figure 6 shows the cross‐sectional SEM images of the Al/Cu joints, and corresponding EPMA element mapping of Al and Cu for the (a) 23/20,
Figure 6. Cross‐sectional SEM image and elemental distribution mapping of Al and Cu elements for the (a) 23/20, (b) 25/28.6, (c) 25/15.4, and (d) 27/20.
Figure 6. Cross‐sectional SEM image and elemental distribution mapping of Al and Cu elements for the (d) 27/20.
Figure 7. EPMA line scan analysis and identification of the IMCs for the (a) 23/20 and (b) 25/15.4.
Figure 7. EPMA line scan analysis and identification of the IMCs for the (a) 23/20 and (b) 25/15.4.
Figure 8. TEM analysis for the 25/28.6. (a) Indicating the location of TEM analysis in SEM image of the welding zone. (b) TEM bright‐field image and SAED pattern insets, examined at the location (1) in figure (a), confirmed Al‐rich phase (white globular shape) and Al2Cu eutectic phase (gray region), and (c) TEM bright‐field image and SAED pattern inset of Al4Cu9, examined at the location (2) in figure (a).
Figure 8. TEM analysis for the 25/28.6. (a) Indicating the location of TEM analysis in SEM image of the welding zone. (b) TEM bright‐field image and SAED pattern insets, examined at the location (1) in figure (a), confirmed Al‐rich phase (white globular shape) and Al2Cu eutectic phase (gray region), and (c) TEM bright‐field image and SAED pattern inset of Al4Cu9, examined at the location (2) in figure (a).
Figure 9. Temperature profiles and molten pool flow on transverse cross‐section (y–z plane at x = 1.23 cm): (a) Negative surface tension gradient for the 23/20 (Case 1), (b) negative surface tension gradient for the 25/15.4 (Case 2), (c) positive surface tension gradient for the 25/15.4 (Case 3), and (d) without surface tension for the 25/15.4 (Case 4).
Figure 9. Temperature profiles and molten pool flow on transverse cross‐section (y–z plane at x = 1.23 cm): (a) Negative surface tension gradient for the 23/20 (Case 1), (b) negative surface tension gradient for the 25/15.4 (Case 2), (c) positive surface tension gradient for the 25/15.4 (Case 3), and (d) without surface tension for the 25/15.4 (Case 4).
Figure 12. Results of the tensile shear tests for the (a) 23/20: fracture at the Al ribbon and (b) 25/15.4: fracture at the weld
Figure 12. Results of the tensile shear tests for the (a) 23/20: fracture at the Al ribbon and (b) 25/15.4: fracture at the weld
Figure 13. Stress–strain curves obtained by the tensile shear tests.
Figure 13. Stress–strain curves obtained by the tensile shear tests.

References

  1. Schwartz, M.M.; Aircraft, S. Introduction to Brazing and Soldering. ASM Int. 2018, 6, doi.org/10.31399/asm.hb.v06.a0001344.
  2. Vianco, P.T. Corrosion issues in solder joint design and service. Weld. J. 1999, 78, 39–46.
  3. Shi, Y.; Li, J.; Zhang, G.; Huang, J.; Gu, Y. Corrosion Behavior of Aluminum‐Steel Weld‐Brazing Joint. J. Mater. Eng. Perform.
    2016, 25, 1916–1923, doi:10.1007/s11665‐016‐2020‐9.
  4. Harman, G.G. Wire Bonding in Microelectronics: Materials, Processes, Reliability and Yield, 3rd ed; McGraw‐Hill Education: New
    York, NY, USA, 2010; ISBN 9780071642651.
  5. Aonuma, M.; Nakata, K. Dissimilar metal joining of ZK60 magnesium alloy and titanium by friction stir welding. Mater. Sci.
    Eng. B Solid State Mater. Adv. Technol. 2012, 177, 543–548, doi:10.1016/j.mseb.2011.12.031.
  6. Sasaki, T.; Watanabe, T.; Hosokawa, Y.; Yanagisawa, A. Analysis for relative motion in ultrasonic welding of aluminium sheet.
    Sci. Technol. Weld. Jt. 2012, 18, 19–24, doi:10.1179/1362171812Y.0000000066.
  7. Maeda, M.; Sato, T.; Inoue, N.; Yagi, D.; Takahashi, Y. Anomalous microstructure formed at the interface between copper ribbon
    and tin‐deposited copper plate by ultrasonic bonding. Microelectron. Reliab. 2011, 51, 130–136, doi:10.1016/j.microrel.2010.05.009.
  8. Maeda, M.; Yagi, D.; Takahashi, Y. Interfacial microstructure between copper ribbon and nickel‐coated copper plate formed by
    ultrasonic bonding. Q. J. Jpn. Weld. Soc. 2013, 31, 188–191, doi:10.2207/qjjws.31.188s.
  9. Sun, Z.; Ion, J.C. Laser welding of dissimilar metal combinations. J. Mater. Sci. 1995, 30, 4205–4214, doi:10.1007/BF00361499.
  10. Yan, S.; Hong, Z.; Watanabe, T.; Jingguo, T. CW/PW dual‐beam YAG laser welding of steel/aluminum alloy sheets. Opt. Lasers
    Eng. 2010, 48, 732–736, doi:10.1016/j.optlaseng.2010.03.015.
  11. Mehlmann, B.; Gehlen, E.; Olowinsky, A.; Gillner, A. Laser micro welding for ribbon bonding. Phys. Procedia 2014, 56, 776–781,
    doi:10.1016/j.phpro.2014.08.085.
  12. Nwanoro, K.C.; Lu, H.; Yin, C.; Bailey, C. An analysis of the reliability and design optimization of aluminium ribbon bonds in
    power electronics modules using computer simulation method. Microelectron. Reliab. 2018, 87, 1–14,
    doi:10.1016/j.microrel.2018.05.013.
  13. Li, H.; Cao, B.; Yang, J.W.; Liu, J. Modeling of resistance heat assisted ultrasonic welding of Cu‐Al joint. J. Mater. Process. Technol.
    2018, 256, 121–130, doi:10.1016/j.jmatprotec.2018.02.008.
  14. Davis, J.R. Copper and Copper Alloys. In ASM Speciality Handbook; ASM International: Almere, The Netherlands, 2001; ISBN
    2001022956
  1. Rabkin, D.M.; Ryabov, V.R.; Lozovskaya, A.V.; Dovzhenko, V.A. Preparation and properties of copper‐aluminum intermetallic
    compounds. Sov. Powder Metall. Met. Ceram. 1970, 9, 695–700, doi:10.1007/BF00803820.
  2. Chen, C.Y.; Chen, H.L.; Hwang, W.S. Influence of interfacial structure development on the fracture mechanism and bond
    strength of aluminum/copper bimetal plate. Mater. Trans. 2006, 47, 1232–1239, doi:10.2320/matertrans.47.1232.
  3. Schmidt, P.A.; Schweier, M.; Zaeh, M.F. Joining of lithium‐ion batteries using laser beam welding: Electrical losses of welded
    aluminum and copper joints. J. Laser Appl. 2012, 915, doi:10.2351/1.5062563.
  4. Smith, S.; Blackburn, J.; Gittos, M.; De Bono, P.; Hilton, P. Welding of dissimilar metallic materials using a scanned laser beam.
    J. Laser Appl. 2013, 493, doi:10.2351/1.5062921.
  5. Solchenbach, T.; Plapper, P. Mechanical characteristics of laser braze‐welded aluminium‐copper connections. Opt. Laser Technol.
    2013, 54, 249–256, doi:10.1016/j.optlastec.2013.06.003.
  6. Kraetzsch, M.; Standfuss, J.; Klotzbach, A.; Kaspar, J.; Brenner, B.; Beyer, E. Laser Beam Welding with High‐Frequency Beam
    Oscillation: Welding of Dissimilar Materials with Brilliant Fiber Lasers. Phys. Procedia 2011, 12, 142–149,
    doi:10.1016/j.phpro.2011.03.018.
  7. Solchenbach, T.; Plapper, P.; Cai, W. Electrical performance of laser braze‐welded aluminum‐copper interconnects. J. Manuf.
    Process. 2014, 16, 183–189, doi:10.1016/j.jmapro.2013.12.002.
  8. Lee, S.J.; Nakamura, H.; Kawahito, Y.; Katayama, S. Effect of welding speed on microstructural and mechanical properties of
    laser lap weld joints in dissimilar Al and Cu sheets. Sci. Technol. Weld. Jt. 2014, 19, 111–118, doi:10.1179/1362171813Y.0000000168.
  9. Mai, T.A.; Spowage, A.C. Characterisation of dissimilar joints in laser welding of steel‐kovar, copper‐steel and copper‐
    aluminium. Mater. Sci. Eng. A 2004, 374, 224–233, doi:10.1016/j.msea.2004.02.025.
  10. Zhang, G.; Takahashi, Y.; Heng, Z.; Takashima, K.; Misawa, K. Ultrasonic weldability of al ribbon to cu sheet and the dissimilar
    joint formation mode. Mater. Trans. 2015, 56, 1842–1851, doi:10.2320/matertrans.M2015251.
  11. Zhu, B.; Zhen, L.; Xia, H.; Su, J.; Niu, S.; Wu, L.; Tan, C.; Chen, B. Effect of the scanning path on the nanosecond pulse laser
    welded Al/Cu lapped joint. Opt. Laser Technol. 2021, 139, 106945, doi.org/10.1016/j.optlastec.2021.106945.
  12. Kumar, A.; Gupta, M.P.; Banerjee, J.; Neogy, S.; Keskar, N.; Bhatt, R.B.; Behere, P.G.; Biswas, D.J. Micro‐Welding of Stainless
    Steel and Copper Foils Using a Nano‐Second Pulsed Fiber Laser. Lasers Manuf. Mater. Process. 2019, 6, 158–172,
    doi.org/10.1007/s40516‐019‐00088‐w.
  13. Trinh, L.N.; Lee, D. The Characteristics of Laser Welding of a Thin Aluminum Tab and Steel Battery Case for Lithium‐Ion
    Battery. Metals 2020, 10, 842, doi.org/10.3390/met10060842.
  14. Cho, D.W.; Park, J.H.; Moon, H.S. A study on molten pool behavior in the one pulse one drop GMAW process using
    computational fluid dynamics. Int. J. Heat Mass Transf. 2019, 139, 848–859, doi:10.1016/j.ijheatmasstransfer.2019.05.038.
  15. Cho, W.I.; Na, S.J.; Cho, M.H.; Lee, J.S. Numerical study of alloying element distribution in CO2 laser‐GMA hybrid welding.
    Comput. Mater. Sci. 2010, 49, 792–800, doi:10.1016/j.commatsci.2010.06.025.
  16. Cho, D.W.; Kiran, D.V.; Na, S.J. Analysis of molten pool behavior by flux‐wall guided metal transfer in low‐current submerged
    arc welding process. Int. J. Heat Mass Transf. 2017, 110, 104–112, doi:10.1016/j.ijheatmasstransfer.2017.02.060.
  17. Cho, W.‐I.; Na, S.‐J. Impact of Wavelengths of CO2, Disk, and Green Lasers on Fusion Zone Shape in Laser Welding of Steel. J.
    Weld. Jt. 2020, 38, 235–240, doi:10.5781/jwj.2020.38.3.1.
  18. Sim, A.; Chun, E.J.; Cho, D.W. Numerical Simulation of Surface Softening Behavior for Laser Heat Treated Cu‐Bearing Medium
    Carbon Steel. Met. Mater. Int. 2020, 26, 1207–1217, doi:10.1007/s12540‐019‐00577‐9.
  19. Jarwitz, M.; Fetzer, F.; Weber, R.; Graf, T. Weld seam geometry and electrical resistance of laser‐welded, aluminum‐copper
    dissimilar joints produced with spatial beam oscillation. Metals 2018, 8, 510, doi:10.3390/met8070510.
  20. Weigl, M.; Albert, F.; Schmidt, M. Enhancing the ductility of laser‐welde copper‐aluminum connections by using adapted filler
    materia. Phys. Procedia 2011, 12, 335–341, doi:10.1016/j.phpro.2011.03.141.
  21. Chen, J.; Lai, Y.S.; Wang, Y.W.; Kao, C.R. Investigation of growth behavior of Al‐Cu intermetallic compounds in Cu wire
    bonding. Microelectron. Reliab. 2011, 51, 125–129, doi:10.1016/j.microrel.2010.09.034.
  22. Chen, H.; Yang, L.; Long, J. First‐principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al‐
    Cu intermetallic compounds. Superlattices Microstruct. 2015, 79, 156–165, doi:10.1016/j.spmi.2014.11.005.
  23. Liu, H.J.; Shen, J.J.; Zhou, L.; Zhao, Y.Q.; Liu, C.; Kuang, L.Y. Microstructural characterisation and mechanical properties of
    friction stir welded joints of aluminium alloy to copper. Sci. Technol. Weld. Jt. 2011, 16, 92–99,
    doi:10.1179/1362171810Y.0000000007.
  24. Hug, E.; Bellido, N. Brittleness study of intermetallic (Cu, Al) layers in copper‐clad aluminium thin wires. Mater. Sci. Eng. A
    2011, 528, 7103–7106, doi:10.1016/j.msea.2011.05.077.
  25. Braunović, M.; Alexandrov, N. Intermetallic Compounds At Aluminum‐To‐Copper Electrical Interfaces: Effect of Temperature
    And Electric Current. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1994, 17, 78–85, doi:10.1109/95.296372.
  26. Lee, W.B.; Bang, K.S.; Jung, S.B. Effects of intermetallic compound on the electrical and mechanical properties of friction welded
    Cu/Al bimetallic joints during annealing. J. Alloys Compd. 2005, 390, 212–219, doi:10.1016/j.jallcom.2004.07.057.
Laser Oscillation Welding

Laser Oscillation Welding | 레이저 진동 용접

Laser Oscillation Welding

시뮬레이션 설명

이 시뮬레이션은 8Hz 주파수에서 2개의 AISI 1026 강철 조각 사이의 진동 용접을 시연합니다. FLOW-3D AM을 사용하여 브리지 간격 거리에 사용되는 다양한 진동 용접 기법을 조사할 수 있습니다. 이 시뮬레이션을 실행하려면 FLOW-3D WELD가 필요합니다.

시뮬레이션 세부 정보

버전#: FLOW-3D v11.2와 FLOW-3D WELD가 결합됨
만든 날짜: 2020년 12월

본 사례에 대해 궁금하신 사항이 있으시면 언제든지 기술지원팀에 연락주세요.

Laser Keyhole Welding (레이저 키홀 용접)

진동이 없는 레이저 키홀 용접


진동이 없는 레이저 용접의 문제점

  • 틈새 조건에서 허용 오차가 낮아지는 좁은 조인트 폭
  • 레이저가 꺼질 때 끝의 큰 구멍
  • 속도가 높아 침투가 불충분 할 수 있음
  • 사용 가능한 레이저 출력으로부터 제한을 받음

진동이 있는 레이저 랩 용접

  • 키홀의 붕괴를 방지하는 고속 스캐닝이 가능
    – 다공성을 최소화함
  • 인터페이스 간극에서 브리지 간격을 조정하여 조인트 폭을 조정할 수 있는 유연성을 제공함

진동이 있는 레이저 용접의 장점

  • 성능 및 스타일링을 위한 제품을 개선
  • 최초의 품질에서 요구를 충족시키기위해 결함을 감소
  • 성능의 요구 사항을 충족시킬 수 있는 맞춤형 용접 형상

진동 용접 : 실험 결과


모델 검증


한 사이클 내의 키홀의 움직임

  • 진동이 없을 때 : 일관된 전도 또는 키홀 용접
  • 진동이 있을 때 : 전도 용접을 하며 경로 및 시간에 따라 한 번의 주기 내에서 얕은 키홀과 깊은 키홀이 용접 간 전환 가능

진동을 이용한 레이저 용접의 장점

  • 진동을 이용한 최초 품질이 향상됨
  • 키홀로 인한 다공성을 피하면서 빠른 용접 속도를 가능하게 함
  • 전력 변조가 사용되지 않는 경우에 각 주기 내에서 키홀과 전도 모델 간의 전환이 가능
  • 진동의 매개 변수를 변경하여 중요한 용접의 너겟 치수 및 강도의 조정이 가능
  • 시트 간의 틈 브리징을 개선

What’s happening at the melt pool?/레이저 가공

Laser keyhole welding

레이저 키홀(Keyhole) 가공(No oscillations/진동 고려하지 않을 경우)

높은 속도에서 다공성을 감소시키는 경우(Reduced porosity at high speed-mechanism)

고속 레이저 가공(진동 고려하지 않음)해석 시 고려사항

  • 틈새 조건에 대한 허용 오차가 낮아지는 좁은 조인트(Joint) 너비
  • 레이저가 꺼질 때 큰 끝 분화구(Large end crater)
  • 속도가 높을 때 불충분한 침투(Penetration)
  • 제한된 사용가능한 레이저 출력 : 6kW

진동을 고려한 레이저 랩(Lap) 용접

  • 키홀(Keyhole) 붕괴를 방지하는 고속 스캐닝 가능
    – 다공성(Porosity) 최소화
  • 인터페이스 간극(Interface gaps)에서 브리지 간격(Bridge gaps)을 조정하여 조인트(Joint) 폭을 조정할 수 있는 유연성 제공

진동을 고려한 레이저 용접 : 실험 결과와 비교

모델 검증

사이클(One cycle) 내에서 키홀(Keyhole) 역학

  • 진동을 고려하지 않을 경우 : 일관된 전도 또는 키홀 용접
  • 진동을 고려할 경우 : 경로와 일정에 따라 한 번의 주기내에서 전도 용접, 얕은 키홀(Keyhole)과 깊은 키홀(Keyhole) 용접 간 전환 가능

진동을 고려한 레이저 가공의 이점

  • 진동을 통한 최초 품질 향상
  • 키홀(Keyhole)로 인한 다공성(Porosity)을 피하면서 높은 용접 속도 가능
  • 전력 변조가 사용되지 않는 경우, 각 주기내에서 키홀(Keyhole) 및 전도 모델간 전환
  • 진동 매개 변수 변경을 통해 중요 용접 너겟(Nugget) 치수 및 강도 조정 가능
  • 시트 간 틈 브리징(Gap gridging) 개선

Additive Manufacturing & Welding Bibliography

Additive Manufacturing & Welding Bibliography

다음은 적층 제조 및 용접 참고 문헌의 기술 문서 모음입니다. 이 모든 논문에는 FLOW-3D AM 결과가 나와 있습니다. FLOW-3D AM을 사용하여 적층 제조, 레이저 용접 및 기타 용접 기술에서 발견되는 프로세스를 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

2024년 11월 20일 update

121-24 Lovejoy Mutswatiwa, Lauren Katch, Nathan John Kizer, Judith Anne Todd, Tao Sun, Samuel James Clark, Kamel Fezzaa, Jordan Lum, David Matthew Stobbe, Griffin Jones, Kenneth Charles Meinert Jr., Andrea Paola Argüelles, Christopher Micheal Kube, High-speed synchrotron X-ray imaging of melt pool dynamics during ultrasonic melt processing of Al6061, Communications Materials, 5; 143, 2024. doi.org/10.1038/s43246-024-00584-3

120-24 Mysore Nagaraja Kishore, Dong Qian, Masakazu Soshi, Wei Li, Conforming mesh modeling of multi-physics effect on residual stress in multi-layer powder bed fusion process, Journal of Manufacturing Processes, 124; pp. 793-804, 2024. doi.org/10.1016/j.jmapro.2024.06.033

113-24 Yusufu Ekubaru, Takuya Nakabayashi, Tomoharu Fujiwara, Behrang Poorganji, Processing windows of Ni625 alloy fabricated using direct energy deposition, Advanced Engineering Materials, 2024. doi.org/10.1002/adem.202400962

111-24 Ruijie Liu, Melt pool dynamic modelling for the titanium-based metal additive manufacturing process, Thesis, The University of Auckland, 2024.

104-24 Ju Wang, Meng Li, Huarong Zhang, Zhe Liu, Xiaodan Li, Dengzhi Yao, Yuhang Wu, Qiong Wu, Xizhong An, Shujun Li, Jian Wang, Xing Zhang , Cumulative effects of powder beds and melted areas on pore defects in electron beam powder bed fusion of tungsten, Powder Technology, 443; 119971, 2024. doi.org/10.1016/j.powtec.2024.119971

100-24 Xuesong Gao, Aryan Aryan, Wei Zhang, Numerical analysis of rotating scans’ effect on surface roughness in laser-powder bed fusion, Journal of Materials Research and Technology, 30; pp. 8671-8682, 2024. doi.org/10.1016/j.jmrt.2024.05.214

95-24 Yongbiao Wang, Yue Zhang, Junjie Jiang, Yang Zhang, Hongyang Cui, Xintian Liu, Yujuan Wu, Cross-scale simulation of macro/microstructure evolution during selective laser melting of Mg–Gd–Y alloy, Metallurgical and Materials Transactions B , 2024. doi.org/10.1007/s11663-024-03104-3

94-24 Yang Chu, Haichuan Shi, Peilei Zhang, Zhishui Yu, Hua Yan, Qinghua Lu, Shijie Song, Kaichang Yu, Simulation-assisted parameter optimization and tribological behavior of graphene reinforced IN718 matrix composite prepared by SLM, Intermetallics, 170; 108307, 2024. doi.org/10.1016/j.intermet.2024.108307

92-24 Ying Wei, Song Han, Shiwei Yu, Ziwei Chen, Ziang Li, Hailong Wang, Wenbo Cheng, Mingzhe An , Parameter impact on 3D concrete printing from single to multi-layer stacking, Automation in Construction, 164; 105449, 2024. doi.org/10.1016/j.autcon.2024.105449

90-24 Chuanbin Du, Yuewei Ai, Yiyuan Wang, Chenglong Ye, The effect mechanism of laser beam defocusing on the surface quality of IN718 alloy prepared by laser powder bed fusion, Powder Technology, 443; 119841, 2024. doi.org/10.1016/j.powtec.2024.119841

88-24 Arash Samaei, Joseph P. Leonor, Zhengtao Gan, Zhongsheng Sang, Xiaoyu Xie, Brian J. Simonds, Wing Kam Liu, Gregory J. Wagner, Benchmark study of melt pool and keyhole dynamics, laser absorptance, and porosity in additive manufacturing of Ti-6Al-4V, Progress in Additive Manufacturing, 2024. doi.org/10.1007/s40964-024-00637-6

83-24 Ao Fu, Zhonghao Xie, Jian Wang, Yuankui Cao, Bingfeng Wang, Jia Li, Qihong Fang, Xiaofeng Li, Bin Liu, Yong Liu, Controlling of cellular substructure and its effect on mechanical properties of FeCoCrNiMo0.2 high entropy alloy fabricated by selective laser melting, Materials Science and Engineering: A, 901; 146547, 2024. doi.org/10.1016/j.msea.2024.146547

82-24 Fatemeh Bodaghi, Mojtaba Movahedi, Suck-Joo Na, Lin-Jie Zhang, Amir Hossein Kokabi, Effect of welding current and speed on solidification cracking susceptibility in gas tungsten arc fillet welding of dissimilar aluminum alloys: Coupling a weld simulation and a cracking criterion, Journal of Materials Research and Technology, 30: pp. 4777-4785, 2024. doi.org/10.1016/j.jmrt.2024.04.195

81-24 Myeonghwan Choi, Dae-Won Cho, Kwang-Hyeon Lee, Seonghoon Yoo, Sangyong Nam, Namhyun Kang, Severe Mn vaporization for partial-penetrated laser keyhole welds of high-manganese cryogenic steel, International Journal of Heat and Mass Transfer, 227; 125567, 2024. doi.org/10.1016/j.ijheatmasstransfer.2024.125567

78-24 An Wang, Qianglong Wei, Zijue Tang, J.P. Oliviera, Chu Lun Alex Leung, Pengyuan Ren, Xiaolin Zhang, Yi Wu, Haowei Wang, Hongze Wang, Effects of hatch spacing on pore segregation and mechanical properties during blue laser directed energy deposition of AlSi10Mg, Additive Manufacturing, 85; 104147, 2024. doi.org/10.1016/j.addma.2024.104147

77-24 Jeongho Yang, Seonghun Ji, Du-Rim Eo, Jongcheon Yoon, Parviz Kahhal, Hyub Lee, Sang Hu Park, Effect of abnormal powder feeding on mechanical properties of fabricated part in directed energy deposition, International Journal of Precision Engineering and Manufacturing – Green Technology, 2024. doi.org/10.1007/s40684-024-00620-0

72-24 Minglei Qu, Jiandong Yuan, Ali Nabaa, Junye Huang, Chihpin Andrew Chuang, Lianyi Chen, Melting and solidification dynamics during laser melting of reaction-based metal matrix composites uncovered by in-situ synchrotron X-ray diffraction, Acta Materialia, 271; 119875, 2024. doi.org/10.1016/j.actamat.2024.119875

71-24 Chenze Li, Manish Jain, Qian Liu, Zhuohan Cao, Michael Ferry, Jamie J. Kruzic, Bernd Gludovatz, Xiaopeng Li, Multi-scale microstructure manipulation of an additively manufactured CoCrNi medium entropy alloy for superior mechanical properties and tunable mechanical anisotropy, Additive Manufacturing, 84; 104104, 2024. doi.org/10.1016/j.addma.2024.104104

68-24 Jialu Wang, Shuaicheng Zhu, Miaojin Jiang, Yunwei Gui, Huadong Fu, Jianxin Xie, Solidification track morphology, residual stress behavior, and microstructure evolution mechanism of FGH96-R nickel-based superalloys during laser powder bed fusion process, Journal of Materials Engineering and Performance, 2024. doi.org/10.1007/s11665-024-09326-5

66-24 Erik Holmen Olofsson, Ashley Dan, Michael Roland, Ninna Halberg Jokil, Rohit Ramachandran, Jesper Henri Hattel, Numerical modeling of fill-level and residence time in starve-fed single-screw extrusion: a dimensionality reduction study from a 3D CFD model to a 2D convection-diffusion model, The International Journal of Advanced Manufacturing Technology, 132; pp. 1111-1125, 2024. doi.org/10.1007/s00170-024-13378-1

64-24 Feipeng An, Linjie Zhang, Wei Ma, Suck Joo Na, Influences of the powder size and process parameters on the quasi-stability of molten pool shape in powder bed fusion-laser beam of molybdenum, Journal of Materials Engineering and Performance, 2024. doi.org/10.1007/s11665-024-09328-3

63-24 Haodong Chen, Xin Lin, Yajing Sun, Shuhao Wang, Kunpeng Zhu, Binbin Dan, Revealing formation mechanism of end of process depression in laser powder bed fusion by multi-physics meso-scale simulation, Virtual and Physical Prototyping, 19.1; e2326599, 2024. doi.org/10.1080/17452759.2024.2326599

57-24 Masayuki Okugawa, Kenji Saito, Haruki Yoshima, Katsuhiko Sawaizumi, Sukeharu Nomoto, Makoto Watanabe, Takayoshi Nakano, Yuichiro Koizumi, Solute segregation in a rapidly solidified Hastelloy-X Ni-based superalloy during laser powder bed fusion investigated by phase-field and computational thermal-fluid dynamics simulations, Additive Manufacturing, 84; 104079, 2024. doi.org/10.1016/j.addma.2024.104079

51-24 Jeongho Yang, Dongseok Kang, Si Mo Yeon, Yong Son, Sang Hu Park, Interval island laser-scanning strategy of Ti–6Al–4V part additively manufactured for anisotropic stress reduction, International Journal of Precision Engineering and Manufacturing, 25; pp. 1087-1099, 2024. doi.org/10.1007/s12541-024-00967-z

50-24 James Lamb, Ruben Ochoa, Adriana Eres-Castellanos, Jonah Klemm-Toole, McLean P. Echlin, Tao Sun, Kamel Fezzaa, Amy Clarke, Tresa M. Pollack, Quantification of melt pool dynamics and microstructure during simulated additive manufacturing, Scripta Materialia, 245; 116036, 2024. doi.org/10.1016/j.scriptamat.2024.116036

41-24 Xiong Zhang, Chunjin Wang, Benny C.F. Cheung, Gaoyang Mi, Chunming Wang, Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition, Journal of the American Ceramic Society, 107.6; pp. 3724-3734, 2024. doi.org/10.1111/jace.19718

38-24 Hao-Ping Yeh, Mohamad Bayat, Amirhossein Arzani, Jesper H. Hattel, Accelerated process parameter selection of polymer-based selective laser sintering via hybrid physics-informed neural network and finite element surrogate modelling, Applied Mathematical Modelling, 130; pp. 693-712, 2024. doi.org/10.1016/j.apm.2024.03.030

34-24 Khalid El Abbaoui, Issam Al Korachi, Mostapha El Jai, Berin Šeta, Md. Tusher Mollah, 3D concrete printing using computational fluid dynamics: Modeling of material extrusion with slip boundaries, Journal of Manufacturing Processes, 118; pp. 448-459, 2024. doi.org/10.1016/j.jmapro.2024.03.042

33-24 Hao Lu, Lida Zhu, Pengsheng Xue, Boling Yan, Yanpeng Hao, Zhichao Yang, Jinsheng Ning, Chuanliang Shi, Hao Wang, Ultrasonic machining response and improvement mechanism for differentiated bio-CoCrMo alloys manufactured by directed energy deposition, Journal of Materials Science & Technology, 193; pp. 226-243, 2024. doi.org/10.1016/j.jmst.2023.12.037

32-24 Yinghang Liu, Zhe Song, Yi Guo, Gaoming Zhu, Yunhao Fan, Huamiao Wang, Wentao Yan, Xiaoqin Zeng, Leyun Wang, Simultaneously enhancing strength and ductility of LPBF Ti alloy via trace Y2O3 nanoparticle addition, Journal of Materials Science & Technology, 191; pp. 146-156, 2024. doi.org/10.1016/j.jmst.2024.01.011

27-24 Zehui Liu, Yiyang Hu, Mingyang Zhang, Wei Zhang, Jun Wang, Wenbo Lei, Chunming Wang, Surface morphology evolution mechanisms of pulse laser polishing mold steel, International Journal of Mechanical Sciences, 269; 109039, 2024. doi.org/10.1016/j.ijmecsci.2024.109039

25-24 Muhammad Arif Mahmood, Kashif Ishfaq, Marwan Khraisheh, Inconel-718 processing windows by directed energy deposition: a framework combining computational fluid dynamics and machine learning models with experimental validation, The International Journal of Advanced Manufacturing Technology, 130; pp. 3997-4011, 2024. doi.org/10.1007/s00170-024-12980-7

24-24   Jinsheng Ning, Lida Zhu, Shuhao Wang, Zhichao Yang, Peihua Xu, Pengsheng Xue, Hao Lu, Miao Yu, Yunhang Zhao, Jiachen Li, Susmita Bose, Amit Bandyopadhyay, Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study, International Journal of Extreme Manufacturing, 6; 025001, 2024. doi.org/10.1088/2631-7990/ad172f

18-24   Delong Jia, Dong Zhou, Peng Yi, Chuanwei Zhang, Junru Li, Yankuo Guo, Shengyue Zhang, Yanhui Li, Splat deposition stress formation mechanism of droplets impacting onto texture, International Journal of Mechanical Sciences, 266; 109002, 2024. doi.org/10.1016/j.ijmecsci.2024.109002

11-24   Dae Gune Jung, Ji Young Park, Choong Mo Ryu, Jong Jin Hwang, Seung Jae Moon, Numerical study of laser welding of 270 μm thick silicon-steel sheets for electrical motors, Metals, 14.1; 24, 2024. doi.org/10.3390/met14010024

8-24   Zhifu Yao, Longke Bao, Mujin Yang, Yuechao Chen, Minglin He, Jiang Yi, Xintong Yang, Tao Yang, Yilu Zhao, Cuiping Wang, Zheng Zhong, Shuai Wang, Xingjun Liu, Thermally stabe strong <101> texture in additively manufactured cobalt-based superalloys, Scripta Materialia, 242; 115942, 2024. doi.org/10.1016/j.scriptamat.2023.115942

5-24   Xi Shu, Chunyu Wang, Guoqing Chen, Chunju Wang, Lining Sun, Pre-melted electron beam freeform fabrication additive manufacturing: modeling and numerical simulation, Welding in the World, 68; pp. 163-176, 2024. doi.org/10.1007/s40194-023-01647-8

4-24   Lin Gao, Andrew C. Chuang, Peter Kenesei, Zhongshu Ren, Lilly Balderson, Tao Sun, An operando synchrotron study on the effect of wire melting state on solidification microstructures of Inconel 718 in wire-laser directed energy deposition, International Journal of Machine Tools and Manufacture, 194; 104089, 2024. doi.org/10.1016/j.ijmachtools.2023.104089

3-24 Kunjie Dai, Xing He, Decheng Kong, Chaofang Dong, Multi-physical field simulation to yield defect-free IN718 alloy fabricated by laser powder bed fusion, Materials Letters, 355; 135437, 2024. doi.org/10.1016/j.matlet.2023.135437

2-24 You Wang, Yinkai Xie, Huaixue Li, Caiyou Zeng, Ming Xu, Hongqiang Zhang, In-situ monitoring plume, spattering behavior and revealing their relationship with melt flow in laser powder bed fusion of nickel-based superalloy, Journal of Materials Science & Technology, 177; pp. 44-58, 2024. doi.org/10.1016/j.jmst.2023.07.068

1-24 Yukai Chen, Hongtu Xu, Yu Lu, Yin Wang, Shuangyuzhou Wang, Ke Huang, Qi Zhang, Prediction of microstructure for Inconel 718 laser welding process using multi-scale model, Proceedings of the 14th International Conference on the Technology of Plasticity – Current Trends in the Technology of Plasticity, pp. 713-722, 2024. doi.org/10.1007/978-3-031-41341-4_75

211-23 Giovanni Chianese, Qamar Hayat, Sharhid Jabar, Pasquale Franciosa, Darek Ceglarek, Stanislao Patalano, A multi-physics CFD study to investigate the impact of laser beam shaping on metal mixing and molten pool dynamics during laser welding of copper to steel for battery terminal-to-casing connections, Journal of Materials Processing Technology, 322; 118202, 2023. doi.org/10.1016/j.jmatprotec.2023.118202

207-23 Dong Liu, Jiaqi Pei, Hua Hou, Xiaofeng Niu, Yuhong Zhao, Optimizing solidification dendrites and process parameters for laser powder bed fusion additive manufacturing of GH3536 superalloy by finite volume and phase-field method, Journal of Materials Research and Technology, 27; pp. 3323-3338, 2023. doi.org/10.1016/j.jmrt.2023.10.188

206-23 Houshang Yin, Jingfan Yang, Ralf D. Fischer, Zilong Zhang, Bart Prorok, Lang Yuan, Xiaoyuan Lou, Pulsed laser additive manufacturing for 316L stainless steel: a new approach to control subgrain cellular structure, JOM, 75; pp. 5027-5036, 2023. doi.org/10.1007/s11837-023-06177-8

205-23 Francis Ogoke, William Lee, Ning-Yu Kao, Alexander Myers, Jack Beuth, Jonathan Malen, Amir Barati Farimani, Convolutional neural networks for melt depth prediction and visualization in laser powder bed fusion, The International Journal of Advanced Manufacturing Technology, 129; pp. 3047-3062, 2023. doi.org/10.1007/s00170-023-12384-z

202-23 Habib Hamed Zargari, Kazuhiro Ito, Abhay Sharma, Effect of workpiece vibration frequency on heat distribution and material flow in the molten pool in tandem-pulsed gas metal arc welding, The International Journal of Advanced Manufacturing Technology, 129; pp. 2507-2522, 2023. doi.org/10.1007/s00170-023-12424-8

199-23 Yukai Chen, Yin Wang, Hao Li, Yu Lu, Bin Han, Qi Zhang, Effects of process parameters on the microstructure of Inconel 718 during powder bed fusion based on cellular automata approach, Virtual and Physical Prototyping, 18.1; e2251032, 2023. doi.org/10.1080/17452759.2023.2251032

197-23 Qiong Wu, Chuang Qiao, Yuhang Wu, Zhe Liu, Xiaodan Li, Ju Wang, Xizhong An, Aijun Huang, Chao Voon Samuel Lim, Numerical investigation on the reuse of recycled powders in powder bed fusion additive manufacturing, Additive Manufacturing, 77; 103821, 2023. doi.org/10.1016/j.addma.2023.103821

196-23 Daicong Zhang, Chunhui Jing, Wei Guo, Yuan Xiao, Jun Luo, Lehua Qi, Microchannels formed using metal microdroplets, Micromachines, 14.10; 1922, 2023. doi.org/10.3390/mi14101922

195-23 Trong-Nhan Le, Santosh Rauniyar, V.H. Nismath, Kevin Chou, An investigation into the effects of contouring process parameters on the up-skin surface characteristics in laser powder-bed fusion process, Manufacturing Letters, 35; Supplement, pp. 707-716, 2023. doi.org/10.1016/j.mfglet.2023.08.085

194-23 Kyubok Lee, Teresa J. Rinker, Masoud M. Pour, Wayne Cai, Wenkang Huang, Wenda Tan, Jennifer Bracey, Jingjing Li, A study on cracks and IMCs in laser welding of Al and Cu, Manufacturing Letters, 35; Supplement, pp. 221-231, 2023. doi.org/10.1016/j.mfglet.2023.08.026

192-23 Kunjie Dai, Xing He, Wei Zhang, Decheng Kong, Rong Guo, Minlei Hu, Ketai He, Chaofang Dong, Tailoring the microstructure and mechanical properties for Hastelloy X alloy by laser powder bed fusion via scanning strategy, Materials & Design, 235; 112386, 2023. doi.org/10.1016/j.matdes.2023.112386

191-23 Jun Du, Daqing Wang, Jimiao He, Yongheng Zhang, Zhike Peng, Influence of droplet size and ejection frequency on molten pool dynamics and deposition morphology in TIG-aided droplet deposition manufacturing, International Communications in Heat and Mass Transfer, 148; 107075, 2023. doi.org/10.1016/j.icheatmasstransfer.2023.107075

188-23 Jin-Hyeong Park, Du-Song Kim, Dae-Won Cho, Jaewoong Kim, Changmin Pyo, Influence of thermal flow and predicting phase transformation on various welding positions, Heat and Mass Transfer, 2023. doi.org/10.1007/s00231-023-03429-w

184-23 Lin Gao, Jishnu Bhattacharyya, Wenhao Lin, Zhongshu Ren, Andrew C. Chuang, Pavel D. Shevchenko, Viktor Nikitin, Ji Ma, Sean R. Agnew, Tao Sun, Tailoring material microstructure and property in wire-laser directed energy deposition through a wiggle deposition strategy, Additive Manufacturing, 77; 103801, 2023. doi.org/10.1016/j.addma.2023.103801

182-23 Liping Guo, Hanjie Liu, Hongze Wang, Qianglong Wei, Jiahui Zhang, Yingyan Chen, Chu Lun Alex Leung, Qing Lian, Yi Wu, Yu Zou, Haowei Wang, A high-fidelity comprehensive framework for the additive manufacturing printability assessment, Journal of Manufacturing Processes, 105; pp. 219-231, 2023. doi.org/10.1016/j.jmapro.2023.09.041

172-23 Liping Guo, Hanjie Liu, Hongze Wang, Qianglong Wei, Yakai Xiao, Zijue Tang, Yi Wu, Haowei Wang, Identifying the keyhole stability and pore formation mechanisms in laser powder bed fusion additive manufacturing, Journal of Materials Processing Technology, 321; 118153, 2023. doi.org/10.1016/j.jmatprotec.2023.118153

171-23 Yuhang Wu, Qiong Wu, Meng Li, Ju Wang, Dengzhi Yao, Hao Luo, Xizhong An, Haitao Fu, Hao Zhang, Xiaohong Yang, Qingchuan Zou, Shujun Li, Haibin Ji, Xing Zhang, Numerical investigation on effects of operating conditions and final dimension predictions in laser powder bed fusion of molybdenum, Additive Manufacturing, 76; 103783, 2023. doi.org/10.1016/j.addma.2023.103783

158-23 K. El Abbaoui, I. Al Korachi, M.T. Mollah, J. Spangenberg, Numerical modelling of planned corner deposition in 3D concrete printing, Archives of Materials Science and Engineering, 121.2; pp. 71-79, 2023. doi.org/10.5604/01.3001.0053.8488

156-23 Liping Guo, Hanjie Liu, Hongze Wang, Valentino A.M. Cristino, C.T. Kwok, Qianglong Wei, Zijue Tang, Yi Wu, Haowei Wang, Deepening the scientific understanding of different phenomenology in laser powder bed fusion by an integrated framework, International Journal of Heat and Mass Transfer, 216; 124596, 2023. doi.org/10.1016/j.ijheatmasstransfer.2023.124596

154-23 Zhiyong Li, Xiuli He, Shaoxia Li, Xinfeng Kan, Yanjun Yin, Gang Yu, Sulfur-induced transitions of thermal behavior and flow dynamics in laser powder bed fusion of 316L powders, Thermal Science and Engineering Progress, 45; 102072, 2023. doi.org/10.1016/j.tsep.2023.102072

149-23 Shardul Kamat, Wayne Cai, Teresa J. Rinker, Jennifer Bracey, Liang Xi, Wenda Tan, A novel integrated process-performance model for laser welding of multi-layer battery foils and tabs, Journal of Materials Processing Technology, 320; 118121, 2023. doi.org/10.1016/j.jmatprotec.2023.118121

148-23 Reza Ghomashchi, Shahrooz Nafisi, Solidification of Al12Si melt pool in laser powder bed fusion, Journal of Materials En gineering and Performance, 2023. doi.org/10.1007/s11665-023-08502-3

133-23 Hesam Moghadasi, Md Tusher Mollah, Deepak Marla, Hamid Saffari, Jon Spangenberg, Computational fluid dynamics modeling of top-down digital light processing additive manufacturing, Polymers, 15.11; 2459, 2023. doi.org/10.3390/polym15112459

131-23 Luca Santoro, Raffaella Sesana, Rosario Molica Nardo, Francesca Curà, In line defect detection in steel welding process by means of thermography, Experimental Mechanics in Engineering and Biomechanics – Proceedings ICEM20, 19981, 2023.

128-23 Md Tusher Mollah, Raphaël Comminal, Wilson Ricardo Leal da Silva, Berin Šeta, Jon Spangenberg, Computational fluid dynamics modelling and experimental analysis of reinforcement bar integration in 3D concrete printing, Cement and Concrete Research, 173; 107263, 2023. doi.org/10.1016/j.cemconres.2023.107263

123-23 Arash Samaei, Zhongsheng Sang, Jennifer A. Glerum, Jon-Erik Mogonye, Gregory J. Wagner, Multiphysics modeling of mixing and material transport in additive manufacturing with multicomponent powder beds, Additive Manufacturing, 67; 103481, 2023. doi.org/10.1016/j.addma.2023.103481

122-23 Chu Han, Ping Jiang, Shaoning Geng, Lingyu Guo, Kun Liu, Inhomogeneous microstructure distribution and its formation mechanism in deep penetration laser welding of medium-thick aluminum-lithium alloy plates, Optics & Laser Technology, 167; 109783, 2023. doi.org/10.1016/j.optlastec.2023.109783

111-23 Alexander J. Myers, Guadalupe Quirarte, Francis Ogoke, Brandon M. Lane, Syed Zia Uddin, Amir Barati Farimani, Jack L. Beuth, Jonathan A. Malen, High-resolution melt pool thermal imaging for metals additive manufacturing using the two-color method with a color camera, Additive Manufacturing, 73; 103663, 2023. doi.org/10.1016/j.addma.2023.103663

107-23 M. Mohsin Raza, Yu-Lung Lo, Hua-Bin Lee, Chang Yu-Tsung, Computational modeling of laser welding for aluminum–copper joints using a circular strategy, Journal of Materials Research and Technology, 25; pp. 3350-3364, 2023. doi.org/10.1016/j.jmrt.2023.06.122

106-23 H.Z. Lu, L.H. Liu, X. Luo, H.W. Ma, W.S. Cai, R. Lupoi, S. Yin, C. Yang, Formation mechanism of heterogeneous microstructures and shape memory effect in NiTi shape memory alloy fabricated via laser powder bed fusion, Materials & Design, 232; 112107, 2023. doi.org/10.1016/j.matdes.2023.112107

105-23 Harun Kahya, Hakan Gurun, Gokhan Kucukturk, Experimental and analytical investigation of the re-melting effect in the manufacturing of 316L by direct energy deposition (DED) method, Metals, 13.6; 1144, 2023. doi.org/10.3390/met13061144

100-23 Dongju Chen, Gang Li, Peng Wang, Zhiqiang Zeng, Yuhang Tang, Numerical simulation of melt pool size and flow evolution for laser powder bed fusion of powder grade Ti6Al4V, Finite Elements in Analysis and Design, 223; 103971, 2023. doi.org/10.1016/j.finel.2023.103971

97-23 Mahyar Khorasani, Martin Leary, David Downing, Jason Rogers, Amirhossein Ghasemi, Ian Gibson, Simon Brudler, Bernard Rolfe, Milan Brandt, Stuart Bateman, Numerical and experimental investigations on manufacturability of Al–Si–10Mg thin wall structures made by LB-PBF, Thin-Walled Structures, 188; 110814, 2023. doi.org/10.1016/j.tws.2023.110814

95-23 M.S. Serdeczny, Laser welding of dissimilar materials – simulation driven optimization of process parameters, IOP Conference Series: Materials Science and Engineering, 1281; 012018, 2023. doi.org/10.1088/1757-899X/1281/1/012018

90-23 Lin Liu, Tubin Liu, Xi Dong, Min Huang, Fusheng Cao, Mingli Qin, Numerical simulation of thermal dynamic behavior and morphology evolution of the molten pool of selective laser melting BN/316L stainless steel composite, Journal of Materials Engineering and Performance, 2023. doi.org/10.1007/s11665-023-08210-y

89-23 M. P. Serdeczny, A. Jackman, High fidelity modelling of bead geometry in directed energy deposition – simulation driven optimization, Journal of Physics: Conference Series, NOLAMP19, 2023.

88-23 Lu Wang, Shuhao Wang, Yanming Zhang, Wentao Yan, Multi-phase flow simulation of powder streaming in laser-based directed energy deposition, International Journal of Heat and Mass Transfer, 212; 124240, 2023. doi.org/10.1016/j.ijheatmasstransfer.2023.124240

80-23 Mahyar Khorasani, AmirHossein Ghasemi, Martin Leary, David Downing, Ian Gibson, Elmira G. Sharabian, Jithin Kozuthala Veetil, Milan Brandt, Stuart Batement, Bernard Rolfe, Benchmark models for conduction and keyhole modes in laser-based powder bed fusion of Inconel 718, Optics & Laser Technology, 164; 109509, 2023. doi.org/10.1016/j.optlastec.2023.109509

78-23   Md. Tusher Mollah, Raphaël Comminal, Marcin P. Serdeczny, Berin Šeta, Jon Spangenberg, Computational analysis of yield stress buildup and stability of deposited layers in material extrusion additive manufacturing, Additive Manufacturing, 71; 103605, 2023. doi.org/10.1016/j.addma.2023.103605

76-23   Asif Ur Rehman, Kashif Azher, Abid Ullah, Celal Sami Tüfekci, Metin Uymaz Salamci, Binder jetting of SS316L: a computational approach for droplet-powder interaction, Rapid Prototyping Journal, 2023. doi.org/10.1108/RPJ-08-2022-0264

75-23   Dengzhi Yao, Ju Wang, Hao Luo, Yuhang Wu, Xizhong An, Thermal behavior and control during multi-track laser powder bed fusion of 316 L stainless steel, Additive Manufacturing, 70; 103562, 2023. doi.org/10.1016/j.addma.2023.103562

61-23   Yaqing Hou, Hang Su, Hao Zhang, Fafa Li, Xuandong Wang, Yazhou He, Dupeng He, An integrated simulation model towards laser powder bed fusion in-situ alloying technology, Materials & Design, 228; 111795, 2023. doi.org/10.1016/j.matdes.2023.111795

56-23   Maohong Yang, Guiyi Wu, Xiangwei Li, Shuyan Zhang, Honghong Wang, Jiankang Huang, Influence of heat source model on the behavior of laser cladding pool, Journal of Laser Applications, 35.2; 2023. doi.org/10.2351/7.0000963

45-23   Daniel Martinez, Philip King, Santosh Reddy Sama, Jay Sim, Hakan Toykoc, Guha Manogharan, Effect of freezing range on reducing casting defects through 3D sand-printed mold designs, The International Journal of Advanced Manufacturing Technology, 2023. doi.org/10.1007/s00170-023-11112-x

39-23   Peter S. Cook, David J. Ritchie, Determining the laser absorptivity of Ti-6Al-4V during laser powder bed fusion by calibrated melt pool simulation, Optics & Laser Technology, 162; 109247. 2023. doi.org/10.1016/j.optlastec.2023.109247

36-23   Yixuan Chen, Weihao Wang, Yao Ou, Yingna Wu, Zirong Zhai, Rui Yang, Impact of laser power and scanning velocity on microstructure and mechanical properties of Inconel 738LC alloys fabricated by laser powder bed fusion, TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings, pp. 138-149, 2023. doi.org/10.1007/978-3-031-22524-6_15

34-23   Chao Kang, Ikki Ikeda, Motoki Sakaguchi, Recoil and solidification of a paraffin droplet impacted on a metal substrate: Numerical study and experimental verification, Journal of Fluids and Structures, 118; 103839, 2023. doi.org/10.1016/j.jfluidstructs.2023.103839

30-23   Fei Wang, Tiechui Yuan, Ruidi Li, Shiqi Lin, Zhonghao Xie, Lanbo Li, Valentino Cristino, Rong Xu, Bing liu, Comparative study on microstructures and mechanical properties of ultra ductility single-phase Nb40Ti40Ta20 refractory medium entropy alloy by selective laser melting and vacuum arc melting, Journal of Alloys and Compounds, 942; 169065, 2023. doi.org/10.1016/j.jallcom.2023.169065

29-23   Haejin Lee, Yeonghwan Song, Seungkyun Yim, Kenta Aoyagi, Akihiko Chiba, Byoungsoo Lee, Influence of linear energy on side surface roughness in powder bed fusion electron beam melting process: Coupled experimental and simulation study, Powder Technology, 418; 118292, 2023.

27-23   Yinan Chen, Bo Li, Double-phase refractory medium entropy alloy NbMoTi via selective laser melting (SLM) additive manufacturing, Journal of Physics: Conference Series, 2419; 012074, 2023. doi.org/10.1088/1742-6596/2419/1/012074

23-23   Yunwei Gui, Kenta Aoyagi, Akihiko Chiba, Development of macro-defect-free PBF-EB-processed Ti–6Al–4V alloys with superior plasticity using PREP-synthesized powder and machine learning-assisted process optimization, Materials Science and Engineering: A, 864; 144595, 2023. doi.org/10.1016/j.msea.2023.144595

21-23   Tatsuhiko Sakai, Yasuhiro Okamoto, Nozomi Taura, Riku Saito, Akira Okada, Effect of scanning speed on molten metal behaviour under angled irradiation with a continuous-wave laser, Journal of Materials Processing Technology, 313; 117866, 2023. doi.org/10.1016/j.jmatprotec.2023.117866

19-23   Gianna M. Valentino, Arunima Banerjee, Alexander lark, Christopher M. Barr, Seth H. Myers, Ian D. McCue, Influence of laser processing parameters on the density-ductility tradeoff in additively manufactured pure tantalum, Additive Manufacturing Letters, 4; 100117, 2023. doi.org/10.1016/j.addlet.2022.100117

15-23   Runbo Jiang, Zhongshu Ren, Joseph Aroh, Amir Mostafaei, Benjamin Gould, Tao Sun, Anthony D. Rollett, Quantifying equiaxed vs epitaxial solidification in laser melting of CMSX-4 single crystal superalloy, Metallurgical and Materials Transactions A, 54; pp. 808-822, 2023. doi.org/10.1007/s11661-022-06929-2

14-23   Nguyen Thi Tien, Yu-Lung Lo, M. Mohsin Raza, Cheng-Yen Chen, Chi-Pin Chiu, Optimization of processing parameters for pulsed laser welding of dissimilar metal interconnects, Optics & Laser Technology, 159; 109022, 2023. doi.org/10.1016/j.optlastec.2022.109022

9-23 Hou Yi Chia, Wentao Yan, High-fidelity modeling of metal additive manufacturing, Additive Manufacturing Technology: Design, Optimization, and Modeling, Ed. Kun Zhou, 2023.

8-23 Akash Aggarwal, Yung C. Shin, Arvind Kumar, Investigation of the transient coupling between the dynamic laser beam absorptance and the melt pool – vapor depression morphology in laser powder bed fusion process, International Journal of Heat and Mass Transfer, 201.2; 123663, 2023. doi.org/10.1016/j.ijheatmasstransfer.2022.123663

199-22 Md. Tusher Mollah, Raphaël Comminal, Marcin P. Serdeczny, David B. Pedersen, Jon Spangenberg, Numerical predictions of bottom layer stability in material extrusion additive manufacturing, JOM, 74; pp. 1096-1101, 2022. doi.org/10.1007/s11837-021-05035-9

198-22 Md. Tusher Mollah, Amirpasha Moetazedian, Andy Gleadall, Jiongyi Yan, Wayne Edgar Alphonso, Raphael Comminal, Berin Seta, Tony Lock, Jon Spangenberg, Investigation on corner precision at different corner angles in material extrusion additive manufacturing: An experimental and computational fluid dynamics analysis, Proceedings of the 33rd Annual Solid Freeform Fabrication Symposium, 2022.

197-22 Md. Tusher Mollah, Marcin P. Serdeczny, Raphaël Comminal, Berin Šeta, Marco Brander, David B. Pedersen, Jon Spangenberg, A numerical investigation of the inter-layer bond and surface roughness during the yield stress buildup in wet-on-wet material extrusion additive manufacturing, ASPE and euspen Summer Topical Meeting, 77, 2022.

182-22   Chan Kyu Kim, Dae-Won Cho, Seok Kim, Sang Woo Song, Kang Myung Seo, Young Tae Cho, High-throughput metal 3D printing pen enabled by a continuous molten droplet transfer, Advanced Science, 2205085, 2022. doi.org/10.1002/advs.202205085

180-22 Xu Kaikai, Gong Yadong, Zhang Qiang, Numerical simulation of dynamic analysis of molten pool in the process of direct energy deposition, The International Journal of Advanced Manufacturing Technology, 2022. doi.org/10.1007/s00170-022-10271-7

179-22 Yasuhiro Okamoto, Nozomi Taura, Akira Okada, Study on laser drilling process of solid metal on its liquid, International Journal of Electrical Machining, 27; 2022. doi.org/10.2526/ijem.27.35

175-22 Lu Min, Xhi Xiaojie, Lu Peipei, Wu Meiping, Forming quality and wettability of surface texture on CuSn10 fabricated by laser powder bed fusion, AIP Advances, 12.12; 125114, 2022. doi.org/10.1063/5.0122076

174-22 Thinus Van Rhijn, Willie Du Preez, Maina Maringa, Dean Kouprianoff, An investigation into the optimization of the selective laser melting process parameters for Ti6Al4V through numerical modelling, JOM, 2022. doi.org/10.1007/s11837-022-05608-2

171-22 Jonathan Yoshioka, Mohsen Eshraghi, Temporal evolution of temperature gradient and solidification rate in laser powder bed fusion additive manufacturing, Heat and Mass Transfer, 2022. doi.org/10.1007/s00231-022-03318-8

170-22 Subin Shrestha and Kevin Chou, Residual heat effect on the melt pool geometry during the laser powder bed fusion process, Journal of Manufacturing and Materials Processing, 6.6; 153, 2022. doi.org/10.3390/jmmp6060153

169-22 Aryan Aryan, Obinna Chukwubuzo, Desmond Bourgeois, Wei Zhang, Hardness prediction by incorporating heat transfer and molten pool fluid flow in a mult-pass, multi-layer weld for onsite repair of Grade 91 steel, U.S. Department of Energy Office of Scientific and Technical Information, DOE-OSU-0032067, 2022. doi.org/10.2172/1898594

158-22 Dafan Du, Lu Wang, Anping Dong, Wentao Yan, Guoliang Zhu, Baode Sun, Promoting the densification and grain refinement with assistance of static magnetic field in laser powder bed fusion, International Journal of Machine Tools and Manufacture, 183; 103965, 2022. doi.org/10.1016/j.ijmachtools.2022.103965

157-22 Han Chu, Jiang Ping, Geng Shaoning, Liu Kun, Nucleation mechanism in oscillating laser welds of 2024 aluminium alloy: A combined experimental and numerical study, Optics & Laser Technology, 158.A; 108812, 2022. doi.org/10.1016/j.optlastec.2022.108812

153-22 Zixiang Li, Yinan Cui, Baohua Chang, Guan Liu, Ze Pu, Haoyu Zhang, Zhiyue Liang, Changmeng Liu, Li Wang, Dong Du, Manipulating molten pool in in-situ additive manufacturing of Ti-22Al-25 Nb through alternating dual-electron beams, Additive Manufacturing, 60.A; 103230, 2022. doi.org/10.1016/j.addma.2022.103230

149-22   Qian Chen, Yao Fu, Albert C. To, Multiphysics modeling of particle spattering and induced defect formation mechanism in Inconel 718 laser powder bed fusion, The International Journal of Advanced Manufacturing Technology, 123; pp. 783-791, 2022. doi.org/10.1007/s00170-022-10201-7

146-22   Zixuan Wan, Hui-ping Wang, Jingjing Li, Baixuan Yang, Joshua Solomon, Blair Carlson, Effect of welding mode on remote laser stitch welding of zinc-coated steel with different sheet thickness combinations, Journal of Manufacturing Science and Engineering, MANU-21-1598, 2022. doi.org/10.1115/1.4055792

143-22   Du-Rim Eo, Seong-Gyu Chung, JeongHo Yang, Won Tae Cho, Sun-Hong Park, Jung-Wook Cho, Surface modification of high-Mn steel via laser-DED: Microstructural characterization and hot crack susceptibility of clad layer, Materials & Design, 223; 111188, 2022. doi.org/10.1016/j.matdes.2022.111188

142-22   Zichuan Fu, Xiangman Zhou, Bin Luo, Qihua Tian, Numerical simulation study of the effect of weld current on WAAM welding pool dynamic and weld bead morphology, International Conference on Mechanical Design and Simulation, Proceedings, 12261; 122614G, 2022. doi.org/10.1117/12.2639074

132-22   Yiyu Huang, Zhonghao Xie, Wenshu Li, Haoyu Chen, Bin Liu, Bingfeng Wang, Dynamic mechanical properties of the selective laser melting NiCrFeCoMo0.2 high entropy alloy and the microstructure of molten pool, Journal of Alloys and Compounds, 927; 167011, 2022. doi.org/10.1016/j.jallcom.2022.167011

126-22   Jingqi Zhang, Yingang Liu, Gang Sha, Shenbao Jin, Ziyong Hou, Mohamad Bayat, Nan Yang, Qiyang Tan, Yu Yin, Shiyang Liu, Jesper Henri Hattel, Matthew Dargusch, Xiaoxu Huang, Ming-Xing Zhang, Designing against phase and property heterogeneities in additively manufactured titanium alloys, Nature Communications, 13; 4660, 2022. doi.org/10.1038/s41467-022-32446-2

119-22   Xu Kaikai, Gong Yadong, Zhao Qiang, Numerical simulation on molten pool flow of Inconel718 alloy based on VOF during additive manufacturing, Materials Today Communications, 33; 104147, 2022. doi.org/10.1016/j.mtcomm.2022.104147

118-22   AmirPouya Hemmasian, Francis Ogoke, Parand Akbari, Jonathan Malen, Jack Beuth, Amir Barati Farimani, Surrogate modeling of melt pool thermal field using deep learning, SSRN, 2022. doi.org/10.2139/ssrn.4190835

117-22   Chiara Ransenigo, Marialaura Tocci, Filippo Palo, Paola Ginestra, Elisabetta Ceretti, Marcello Gelfi, Annalisa Pola, Evolution of melt pool and porosity during laser powder bed fusion of Ti6Al4V alloy: Numerical modelling and experimental validation, Lasers in Manufacturing and Materials Processing, 2022. doi.org/10.1007/s40516-022-00185-3

112-22   Chris Jasien, Alec Saville, Chandler Gus Becker, Jonah Klemm-Toole, Kamel Fezzaa, Tao Sun, Tresa Pollock, Amy J. Clarke, In situ x-ray radiography and computational modeling to predict grain morphology in β-titanium during simulated additive manufacturing, Metals, 12.7; 1217, 2022. doi.org/10.3390/met12071217

110-22   Haotian Zhou, Haijun Su, Yinuo Guo, Peixin Yang, Yuan Liu, Zhonglin Shen, Di Zhao, Haifang Liu, Taiwen Huang, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu, Formation and evolution mechanisms of pores in Inconel 718 during selective laser melting: Meso-scale modeling and experimental investigations, Journal of Manufacturing Processes, 81; pp. 202-213, 2022. doi.org/10.1016/j.jmapro.2022.06.072

109-22   Yufan Zhao, Huakang Bian, Hao Wang, Aoyagi Kenta, Yamanaka Kenta, Akihiko Chiba, Non-equilibrium solidification behavior associated with powder characteristics during electron beam additive manufacturing, Materials & Design, 221; 110915, 2022. doi.org/10.1016/j.matdes.2022.110915

107-22   Dan Lönn, David Spångberg, Study of process parameters in laser beam welding of copper hairpins, Thesis, University of Skövde, 2022.

106-22   Liping Guo, Hongze Wang, Qianglong Wei, Hanjie Liu, An Wang, Yi Wu, Haowei Wang, A comprehensive model to quantify the effects of additional nano-particles on the printability in laser powder bed fusion of aluminum alloy and composite, Additive Manufacturing, 58; 103011, 2022. doi.org/10.1016/j.addma.2022.103011

104-22   Hongjiang Pan, Thomas Dahmen, Mohamad Bayat, Kang Lin, Xiaodan Zhang, Independent effects of laser power and scanning speed on IN718’s precipitation and mechanical properties produced by LBPF plus heat treatment, Materials Science and Engineering: A, 849; 143530, 2022. doi.org/10.1016/j.msea.2022.143530

101-22   Yufan Zhao, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba, A survey on basic influencing factors of solidified grain morphology during electron beam melting, Materials & Design, 221; 110927, 2022. doi.org/10.1016/j.matdes.2022.110927

98-22   Jon Spangenberg, Wilson Ricardo Leal da Silva, Md. Tusher Mollah, Raphaël Comminal, Thomas Juul Andersen, Henrik Stang, Integrating reinforcement with 3D concrete printing: Experiments and numerical modelling, Third RILEM International Conference on Concrete and Digital Fabrication, Eds. Ana Blanco, Peter Kinnell, Richard Buswell, Sergio Cavalaro, pp. 379-384, 2022.

93-22   Minglei Qu, Qilin Guo, Luis I. Escano, Samuel J. Clark Kamel Fezzaa, Lianyi Chen, Mitigating keyhole pore formation by nanoparticles during laser powder bed fusion additive manufacturing, Additive Manufacturing Letters, 100068, 2022. doi.org/10.1016/j.addlet.2022.100068

86-22   Patiparn Ninpetch, Prasert Chalermkarnnon, Pruet Kowitwarangkul, Multiphysics simulation of thermal-fluid behavior in laser powder bed fusion of H13 steel: Influence of layer thickness and energy input, Metals and Materials International, 2022. doi.org/10.1007/s12540-022-01239-z

85-22   Merve Biyikli, Taner Karagoz, Metin Calli, Talha Muslim, A. Alper Ozalp, Ali Bayram, Single track geometry prediction of laser metal deposited 316L-Si via multi-physics modelling and regression analysis with experimental validation, Metals and Materials International, 2022. doi.org/10.1007/s12540-022-01243-3

76-22   Zhichao Yang, Shuhao Wang, Lida Zhu, Jinsheng Ning, Bo Xin, Yichao Dun, Wentao Yan, Manipulating molten pool dynamics during metal 3D printing by ultrasound, Applied Physics Reviews, 9; 021416, 2022. doi.org/10.1063/5.0082461

73-22   Yu Sun, Liqun Li, Yu Hao, Sanbao Lin, Xinhua Tang, Fenggui Lu, Numerical modeling on formation of periodic chain-like pores in high power laser welding of thick steel plate, Journal of Materials Processing Technology, 306; 117638, 2022. doi.org/10.1016/j.jmatprotec.2022.117638

67-22   Yu Hao, Hiu-Ping Wang, Yu Sun, Liqun Li, Yihan Wu, Fenggui Lu, The evaporation behavior of zince and its effect on spattering in laser overlap welding of galvanized steels, Journal of Materials Processing Technology, 306; 117625, 2022. doi.org/10.1016/j.jmatprotec.2022.117625

65-22   Yanhua Zhao, Chuanbin Du, Peifu Wang, Wei Meng, Changming Li, The mechanism of in-situ laser polishing and its effect on the surface quality of nickel-based alloy fabricated by selective laser melting, Metals, 12.5; 778, 2022. doi.org/10.3390/met12050778

58-22   W.E. Alphonso, M. Bayat, M. Baier, S. Carmignato, J.H. Hattel, Multi-physics numerical modelling of 316L Austenitic stainless steel in laser powder bed fusion process at meso-scale, 17th UK Heat Transfer Conference (UKHTC2021), Manchester, UK, April 4-6, 2022.

57-22   Brandon Hayes, Travis Hainsworth, Robert MacCurdy, Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting, Additive Manufacturing, in press, 102785, 2022. doi.org/10.1016/j.addma.2022.102785

55-22   Xiang Wang, Lin-Jie Zhang, Jie Ning, Suck-joo Na, Fluid thermodynamic simulation of Ti-6Al-4V alloy in laser wire deposition, 3D Printing and Additive Manufacturing, 2022. doi.org/10.1089/3dp.2021.0159

54-22   Junhao Zhao, Binbin Wang, Tong Liu, Liangshu Luo, Yanan Wang, Xiaonan Zheng, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu, Dayong Chen, Study of in situ formed quasicrystals in Al-Mn based alloys fabricated by SLM, Journal of Alloys and Compounds, 909; 164847, 2022. doi.org/10.1016/j.jallcom.2022.164847

48-22   Yueming Sun, Jianxing Ma, Fei Peng, Konstantin G. Kornev, Making droplets from highly viscous liquids by pushing a wire through a tube, Physics of Fluids, 34; 032119, 2022. doi.org/10.1063/5.0082003

46-22   H.Z. Lu, T. Chen, H. Liu, H. Wang, X. Luo, C.H. Song, Constructing function domains in NiTi shape memory alloys by additive manufacturing, Virtual and Physical Prototyping, 17.3; 2022. doi.org/10.1080/17452759.2022.2053821

42-22   Islam Hassan, P. Ravi Selvaganapathy, Microfluidic printheads for highly switchable multimaterial 3D printing of soft materials, Advanced Materials Technologies, 2101709, 2022. doi.org/10.1002/admt.202101709

41-22   Nan Yang, Youping Gong, Honghao Chen, Wenxin Li, Chuanping Zhou, Rougang Zhou, Huifeng Shao, Personalized artificial tibia bone structure design and processing based on laser powder bed fusion, Machines, 10.3; 205, 2022. doi.org/10.3390/machines10030205

31-22   Bo Shen, Raghav Gnanasambandam, Rongxuan Wang, Zhenyu (James) Kong, Multi-Task Gaussian process upper confidence bound for hyperparameter tuning and its application for simulation studies of additive manufacturing, IISE Transactions, 2022. doi.org/10.1080/24725854.2022.2039813

27-22   Lida Zhu, Shuhao Wang, Hao Lu, Dongxing Qi, Dan Wang, Zhichao Yang, Investigation on synergism between additive and subtractive manufacturing for curved thin-walled structure, Virtual and Physical Prototyping, 17.2; 2022. doi.org/10.1080/17452759.2022.2029009

24-22   Hoon Sohn, Peipei Liu, Hansol Yoon, Kiyoon Yi, Liu Yang, Sangjun Kim, Real-time porosity reduction during metal directed energy deposition using a pulse laser, Journal of Materials Science & Technology, 116; pp. 214-223. doi.org/10.1016/j.jmst.2021.12.013

18-22   Yaohong Xiao, Zixuan Wan, Pengwei Liu, Zhuo Wang, Jingjing Li, Lei Chen, Quantitative simulations of grain nucleation and growth at additively manufactured bimetallic interfaces of SS316L and IN625, Journal of Materials Processing Technology, 302; 117506, 2022. doi.org/10.1016/j.jmatprotec.2022.117506

06-22   Amal Charles, Mohamad Bayat, Ahmed Elkaseer, Lore Thijs, Jesper Henri Hattel, Steffen Scholz, Elucidation of dross formation in laser powder bed fusion at down-facing surfaces: Phenomenon-oriented multiphysics simulation and experimental validation, Additive Manufacturing, 50; 102551, 2022. doi.org/10.1016/j.addma.2021.102551

05-22   Feilong Ji, Xunpeng Qin, Zeqi Hu, Xiaochen Xiong, Mao Ni, Mengwu Wu, Influence of ultrasonic vibration on molten pool behavior and deposition layer forming morphology for wire and arc additive manufacturing, International Communications in Heat and Mass Transfer, 130; 105789, 2022. doi.org/10.1016/j.icheatmasstransfer.2021.105789

150-21   Daniel Knüttel, Stefano Baraldo, Anna Valente, Konrad Wegener, Emanuele Carpanzano, Model based learning for efficient modelling of heat transfer dynamics, Procedia CIRP, 102; pp. 252-257, 2021. doi.org/10.1016/j.procir.2021.09.043

149-21   T. van Rhijn, W. du Preez, M. Maringa, D. Kouprianoff, Towards predicting process parameters for selective laser melting of titanium alloys through the modelling of melt pool characteristics, Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie, 40.1; 2021. 

148-21   Qian Chen, Multiscale process modeling of residual deformation and defect formation for laser powder bed fusion additive manufacturing, Thesis, University of Pittsburgh, Pittsburgh, PA USA, 2021. 

147-21   Pareekshith Allu, Developing process parameters through CFD simulations, Lasers in Manufacturing Conference, 2021.

143-21   Asif Ur Rehman, Muhammad Arif Mahmood, Fatih Pitir, Metin Uymaz Salamci, Andrei C. Popescu, Ion N. Mihailescu, Spatter formation and splashing induced defects in laser-based powder bed fusion of AlSi10Mg alloy: A novel hydrodynamics modelling with empirical testing, Metals, 11.12; 2023, 2021. doi.org/10.3390/met11122023

142-21   Islam Hassan, Ponnambalam Ravi Selvaganapathy, A microfluidic printhead with integrated hybrid mixing by sequential injection for multimaterial 3D printing, Additive Manufacturing, 102559, 2021. doi.org/10.1016/j.addma.2021.102559

137-21   Ting-Yu Cheng, Ying-Chih Liao, Enhancing drop mixing in powder bed by alternative particle arrangements with contradictory hydrophilicity, Journal of the Taiwan Institute of Chemical Engineers, 104160, 2021. doi.org/10.1016/j.jtice.2021.104160

134-21   Asif Ur Rehman, Muhammad Arif Mahmood, Fatih Pitir, Metin Uymaz Salamci, Andrei C. Popescu, Ion N. Mihailescu, Keyhole formation by laser drilling in laser powder bed fusion of Ti6Al4V biomedical alloy: Mesoscopic computational fluid dynamics simulation versus mathematical modelling using empirical validation, Nanomaterials, 11.2; 3284, 2021. doi.org/10.3390/nano11123284

128-21   Sang-Woo Han, Won-Ik Cho, Lin-Jie Zhang, Suck-Joo Na, Coupled simulation of thermal-metallurgical-mechanical behavior in laser keyhole welding of AH36 steel, Materials & Design, 212; 110275, 2021. doi.org/10.1016/j.matdes.2021.110275

127-21   Jiankang Huang, Zhuoxuan Li, Shurong Yu, Xiaoquan Yu, Ding Fan, Real-time observation and numerical simulation of the molten pool flow and mass transfer behavior during wire arc additive manufacturing, Welding in the World, 2021. doi.org/10.1007/s40194-021-01214-z

123-21   Boxue Song, Tianbiao Yu, Xingyu Jiang, Wenchao Xi, Xiaoli Lin, Zhelun Ma, ZhaoWang, Development of the molten pool and solidification characterization in single bead multilayer direct energy deposition, Additive Manufacturing, 102479, 2021. doi.org/10.1016/j.addma.2021.102479

112-21   Kathryn Small, Ian D. McCue, Katrina Johnston, Ian Donaldson, Mitra L. Taheri, Precision modification of microstructure and properties through laser engraving, JOM, 2021. doi.org/10.1007/s11837-021-04959-6

111-21   Yongki Lee, Jason Cheon, Byung-Kwon Min, Cheolhee Kim, Modelling of fume particle behaviour and coupling glass contamination during vacuum laser beam welding, Science and Technology of Welding and Joining, 2021. doi.org/10.1080/13621718.2021.1990658

110-21   Menglin Liu, Hao Yi, Huajun Cao, Rufeng Huang, Le Jia, Heat accumulation effect in metal droplet-based 3D printing: Evolution mechanism and elimination strategy, Additive Manufacturing, 48.A; 102413, 2021. doi.org/10.1016/j.addma.2021.102413

108-21   Nozomi Taura, Akiya Mitsunobu, Tatsuhiko Sakai, Yasuhiro Okamoto, Akira Okada, Formation and its mechanism of high-speed micro-grooving on metal surface by angled CW laser irradiation, Journal of Laser Micro/Nanoengineering, 16.2, 2021. doi.org/10.2961/jlmn.2021.02.2006

105-21   Jon Spangenberg, Wilson Ricardo Leal da Silva, Raphaël Comminal, Md. Tusher Mollah, Thomas Juul Andersen, Henrik Stang, Numerical simulation of multi-layer 3D concrete printing, RILEM Technical Letters, 6; pp. 119-123, 2021. doi.org/10.21809/rilemtechlett.2021.142

104-21   Lin Chen, Chunming Wang, Gaoyang Mi, Xiong Zhang, Effects of laser oscillating frequency on energy distribution, molten pool morphology and grain structure of AA6061/AA5182 aluminum alloys lap welding, Journal of Materials Research and Technology, 15; pp. 3133-3148, 2021. doi.org/10.1016/j.jmrt.2021.09.141

101-21   R.J.M. Wolfs, T.A.M. Salet, N. Roussel, Filament geometry control in extrusion-based additive manufacturing of concrete: The good, the bad and the ugly, Cement and Concrete Research, 150; 106615, 2021. doi.org/10.1016/j.cemconres.2021.106615

89-21   Wenlin Ye, Jin Bao, Jie Lei, Yichang Huang, Zhihao Li, Peisheng Li, Ying Zhang, Multiphysics modeling of thermal behavior of commercial pure titanium powder during selective laser melting, Metals and Materials International, 2021. doi.org/10.1007/s12540-021-01019-1

81-21   Lin Chen, Gaoyang Mi, Xiong Zhang, Chunming Wang, Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding, Journals of Materials Processing Technology, 298; 117314, 2021. doi.org/10.1016/j.jmatprotec.2021.117314

77-21   Yujie Cui, Yufan Zhao, Haruko Numata, Kenta Yamanaka, Huakang Bian, Kenta Aoyagi, Akihiko Chiba, Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process, Powder Technology, 393; pp. 301-311, 2021. doi.org/10.1016/j.powtec.2021.07.062

76-21   Md Tusher Mollah, Raphaël Comminal, Marcin P. Serdeczny, David B. Pedersen, Jon Spangenberg, Stability and deformations of deposited layers in material extrusion additive manufacturing, Additive Manufacturing, 46; 102193, 2021. doi.org/10.1016/j.addma.2021.102193

72-21   S. Sabooni, A. Chabok, S.C. Feng, H. Blaauw, T.C. Pijper, H.J. Yang, Y.T. Pei, Laser powder bed fusion of 17–4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties, Additive Manufacturing, 46; 102176, 2021. doi.org/10.1016/j.addma.2021.102176

71-21   Yu Hao, Nannan Chena, Hui-Ping Wang, Blair E. Carlson, Fenggui Lu, Effect of zinc vapor forces on spattering in partial penetration laser welding of zinc-coated steels, Journal of Materials Processing Technology, 298; 117282, 2021. doi.org/10.1016/j.jmatprotec.2021.117282

67-21   Lu Wang, Wentao Yan, Thermoelectric magnetohydrodynamic model for laser-based metal additive manufacturing, Physical Review Applied, 15.6; 064051, 2021. doi.org/10.1103/PhysRevApplied.15.064051

61-21   Ian D. McCue, Gianna M. Valentino, Douglas B. Trigg, Andrew M. Lennon, Chuck E. Hebert, Drew P. Seker, Salahudin M. Nimer, James P. Mastrandrea, Morgana M. Trexler, Steven M. Storck, Controlled shape-morphing metallic components for deployable structures, Materials & Design, 208; 109935, 2021. doi.org/10.1016/j.matdes.2021.109935

60-21   Mahyar Khorasani, AmirHossein Ghasemi, Martin Leary, William O’Neil, Ian Gibson, Laura Cordova, Bernard Rolfe, Numerical and analytical investigation on meltpool temperature of laser-based powder bed fusion of IN718, International Journal of Heat and Mass Transfer, 177; 121477, 2021. doi.org/10.1016/j.ijheatmasstransfer.2021.121477

57-21   Dae-Won Cho, Yeong-Do Park, Muralimohan Cheepu, Numerical simulation of slag movement from Marangoni flow for GMAW with computational fluid dynamics, International Communications in Heat and Mass Transfer, 125; 105243, 2021. doi.org/10.1016/j.icheatmasstransfer.2021.105243

55-21   Won-Sang Shin, Dae-Won Cho, Donghyuck Jung, Heeshin Kang, Jeng O Kim, Yoon-Jun Kim, Changkyoo Park, Investigation on laser welding of Al ribbon to Cu sheet: Weldability, microstructure and mechanical and electrical properties, Metals, 11.5; 831, 2021. doi.org/10.3390/met11050831

50-21   Mohamad Bayat, Venkata K. Nadimpalli, Francesco G. Biondani, Sina Jafarzadeh, Jesper Thorborg, Niels S. Tiedje, Giuliano Bissacco, David B. Pedersen, Jesper H. Hattel, On the role of the powder stream on the heat and fluid flow conditions during directed energy deposition of maraging steel—Multiphysics modeling and experimental validation, Additive Manufacturing, 43;102021, 2021. doi.org/10.1016/j.addma.2021.102021

47-21   Subin Shrestha, Kevin Chou, An investigation into melting modes in selective laser melting of Inconel 625 powder: single track geometry and porosity, The International Journal of Advanced Manufacturing Technology, 2021. doi.org/10.1007/s00170-021-07105-3

34-21   Haokun Sun, Xin Chu, Cheng Luo, Haoxiu Chen, Zhiying Liu, Yansong Zhang, Yu Zou, Selective laser melting for joining dissimilar materials: Investigations ofiInterfacial characteristics and in situ alloying, Metallurgical and Materials Transactions A, 52; pp. 1540-1550, 2021. doi.org/10.1007/s11661-021-06178-9

32-21   Shanshan Zhang, Subin Shrestha, Kevin Chou, On mesoscopic surface formation in metal laser powder-bed fusion process, Supplimental Proceedings, TMS 150th Annual Meeting & Exhibition (Virtual), pp. 149-161, 2021. doi.org/10.1007/978-3-030-65261-6_14

22-21   Patiparn Ninpetch, Pruet Kowitwarangkul, Sitthipong Mahathanabodee, Prasert Chalermkarnnon, Phadungsak Rattanadecho, Computational investigation of thermal behavior and molten metal flow with moving laser heat source for selective laser melting process, Case Studies in Thermal Engineering, 24; 100860, 2021. doi.org/10.1016/j.csite.2021.100860

19-21   M.B. Abrami, C. Ransenigo, M. Tocci, A. Pola, M. Obeidi, D. Brabazon, Numerical simulation of laser powder bed fusion processes, La Metallurgia Italiana, February; pp. 81-89, 2021.

16-21   Wenjun Ge, Jerry Y.H. Fuh, Suck Joo Na, Numerical modelling of keyhole formation in selective laser melting of Ti6Al4V, Journal of Manufacturing Processes, 62; pp. 646-654, 2021. doi.org/10.1016/j.jmapro.2021.01.005

11-21   Mohamad Bayat, Venkata K. Nadimpalli, David B. Pedersen, Jesper H. Hattel, A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys, International Journal of Heat and Mass Transfer, 166; 120766, 2021. doi.org/10.1016/j.ijheatmasstransfer.2020.120766

10-21   Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba, Thermal properties of powder beds in energy absorption and heat transfer during additive manufacturing with electron beam, Powder Technology, 381; pp. 44-54, 2021. doi.org/10.1016/j.powtec.2020.11.082

9-21   Subin Shrestha, Kevin Chou, A study of transient and steady-state regions from single-track deposition in laser powder bed fusion, Journal of Manufacturing Processes, 61; pp. 226-235, 2021. doi.org/10.1016/j.jmapro.2020.11.023

6-21   Qian Chen, Yunhao Zhao, Seth Strayer, Yufan Zhao, Kenta Aoyagi, Yuichiro Koizumi, Akihiko Chiba, Wei Xiong, Albert C. To, Elucidating the effect of preheating temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment, Additive Manufacturing, 37; 101642, 2021. doi.org/10.1016/j.addma.2020.101642

04-21   Won-Ik Cho, Peer Woizeschke, Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding, International Journal of Heat and Mass Transfer, 164; 120623, 2021. doi.org/10.1016/j.ijheatmasstransfer.2020.120623

128-20   Mahmood Al Bashir, Rajeev Nair, Martina M. Sanchez, Anil Mahapatro, Improving fluid retention properties of 316L stainless steel using nanosecond pulsed laser surface texturing, Journal of Laser Applications, 32.4, 2020. doi.org/10.2351/7.0000199

127-20   Eric Riedel, Niklas Bergedieck, Stefan Scharf, CFD simulation based investigation of cavitation cynamics during high intensity ultrasonic treatment of A356, Metals, 10.11; 1529, 2020. doi.org/10.3390/met10111529

126-20   Benjamin Himmel, Material jetting of aluminium: Analysis of a novel additive manufacturing process, Thesis, Technical University of Munich, Munich, Germany, 2020. 

121-20   Yufan Zhao, Yujie Cui, Haruko Numata, Huakang Bian, Kimio Wako, Kenta Yamanaka, Kenta Aoyagi, Akihiko Chiba, Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process, Scientific Reports, 10; 18446, 2020. doi.org/10.1038/s41598-020-75503-w

116-20   Raphael Comminal, Wilson Ricardo Leal da Silva, Thomas Juul Andersen, Henrik Stang, Jon Spangenberg, Modelling of 3D concrete printing based on computational fluid dynamics, Cement and Concrete Research, 138; 106256, 2020. doi.org/10.1016/j.cemconres.2020.106256

112-20   Peng Liu, Lijin Huan, Yu Gan, Yuyu Lei, Effect of plate thickness on weld pool dynamics and keyhole-induced porosity formation in laser welding of Al alloy, The International Journal of Advanced Manufacturing Technology, 111; pp. 735-747, 2020. doi.org/10.1007/s00170-020-05818-5

108-20   Fan Chen, Wentao Yan, High-fidelity modelling of thermal stress for additive manufacturing by linking thermal-fluid and mechanical models, Materials & Design, 196; 109185, 2020. doi.org/10.1016/j.matdes.2020.109185

104-20   Yunfu Tian, Lijun Yang, Dejin Zhao, Yiming Huang, Jiajing Pan, Numerical analysis of powder bed generation and single track forming for selective laser melting of SS316L stainless steel, Journal of Manufacturing Processes, 58; pp. 964-974, 2020. doi.org/10.1016/j.jmapro.2020.09.002

100-20   Raphaël Comminal, Sina Jafarzadeh, Marcin Serdeczny, Jon Spangenberg, Estimations of interlayer contacts in extrusion additive manufacturing using a CFD model, International Conference on Additive Manufacturing in Products and Applications (AMPA), Zurich, Switzerland, September 1-3: Industrializing Additive Manufacturing, pp. 241-250, 2020. doi.org/10.1007/978-3-030-54334-1_17

97-20   Paree Allu, CFD simulation for metal Additive Manufacturing: Applications in laser- and sinter-based processes, Metal AM, 6.4; pp. 151-158, 2020.

95-20   Yufan Zhao, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba, Role of operating and environmental conditions in determining molten pool dynamics during electron beam melting and selective laser melting, Additive Manufacturing, 36; 101559, 2020. doi.org/10.1016/j.addma.2020.101559

94-20   Yan Zeng, David Himmler, Peter Randelzhofer, Carolin Körner, Processing of in situ Al3Ti/Al composites by advanced high shear technology: influence of mixing speed, The International Journal of Advanced Manufacturing Technology, 110; pp. 1589-1599, 2020. doi.org/10.1007/s00170-020-05956-w

93-20   H. Hamed Zargari, K. Ito, M. Kumar, A. Sharma, Visualizing the vibration effect on the tandem-pulsed gas metal arc welding in the presence of surface tension active elements, International Journal of Heat and Mass Transfer, 161; 120310, 2020. doi.org/10.1016/j.ijheatmasstransfer.2020.120310

90-20   Guangxi Zhao, Jun Du, Zhengying Wei, Siyuan Xu, Ruwei Geng, Numerical analysis of aluminum alloy fused coating process, Journal of the Brazilian Society of Mechanical Science and Engineering, 42; 483, 2020. doi.org/10.1007/s40430-020-02569-y

85-20   Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, Investigation of metal mixing in laser keyhold welding of dissimilar metals, Materials & Design, 195; 109056, 2020. doi.org/10.1016/j.matdes.2020.109056

82-20   Pan Lu, Zhang Cheng-Lin, Wang Liang, Liu Tong, Liu Jiang-lin, Molten pool structure, temperature and velocity flow in selective laser melting AlCu5MnCdVA alloy, Materials Research Express, 7; 086516, 2020. doi.org/10.1088/2053-1591/abadcf

80-20   Yujie Cui, Yufan Zhao, Haruko Numata, Huakang Bian, Kimio Wako, Kento Yamanaka, Kenta Aoyagi, Chen Zhang, Akihiko Chiba, Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4 V alloy powder, Powder Technology, 376; pp. 363-372, 2020. doi.org/10.1016/j.powtec.2020.08.027

78-20   F.Q. Liu, L. Wei, S.Q. Shi, H.L. Wei, On the varieties of build features during multi-layer laser directed energy deposition, Additive Manufacturing, 36; 101491, 2020. doi.org/10.1016/j.addma.2020.101491

75-20   Nannan Chen, Zixuan Wan, Hui-Ping Wang, Jingjing Li, Joshua Solomon, Blair E. Carlson, Effect of Al single bond Si coating on laser spot welding of press hardened steel and process improvement with annular stirring, Materials & Design, 195; 108986, 2020. doi.org/10.1016/j.matdes.2020.108986

72-20   Yujie Cui, Kenta Aoyagi, Yufan Zhao, Kenta Yamanaka, Yuichiro Hayasaka, Yuichiro Koizumi, Tadashi Fujieda, Akihiko Chiba, Manufacturing of a nanosized TiB strengthened Ti-based alloy via electron beam powder bed fusion, Additive Manufacturing, 36; 101472, 2020. doi.org/10.1016/j.addma.2020.101472

64-20   Dong-Rong Liu, Shuhao Wang, Wentao Yan, Grain structure evolution in transition-mode melting in direct energy deposition, Materials & Design, 194; 108919, 2020. doi.org/10.1016/j.matdes.2020.108919

61-20   Raphael Comminal, Wilson Ricardo Leal da Silva, Thomas Juul Andersen, Henrik Stang, Jon Spangenberg, Influence of processing parameters on the layer geometry in 3D concrete printing: Experiments and modelling, 2nd RILEM International Conference on Concrete and Digital Fabrication, RILEM Bookseries, 28; pp. 852-862, 2020. doi.org/10.1007/978-3-030-49916-7_83

60-20   Marcin P. Serdeczny, Raphaël Comminal, Md. Tusher Mollah, David B. Pedersen, Jon Spangenberg, Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing, Additive Manufacturing, 36; 101454, 2020. doi.org/10.1016/j.addma.2020.101454

58-20   H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy, Mechanistic models for additive manufacturing of metallic components, Progress in Materials Science, 116; 100703, 2020. doi.org/10.1016/j.pmatsci.2020.100703

55-20   Masoud Mohammadpour, Experimental study and numerical simulation of heat transfer and fluid flow in laser welded and brazed joints, Thesis, Southern Methodist University, Dallas, TX, US; Available in Mechanical Engineering Research Theses and Dissertations, 24, 2020.

48-20   Masoud Mohammadpour, Baixuan Yang, Hui-Ping Wang, John Forrest, Michael Poss, Blair Carlson, Radovan Kovacevica, Influence of laser beam inclination angle on galvanized steel laser braze quality, Optics and Laser Technology, 129; 106303, 2020. doi.org/10.1016/j.optlastec.2020.106303

34-20   Binqi Liu, Gang Fang, Liping Lei, Wei Liu, A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM), Applied Mathematical Modeling, 79; pp. 506-520, 2020. doi.org/10.1016/j.apm.2019.10.049

27-20   Xuesong Gao, Guilherme Abreu Farira, Wei Zhang and Kevin Wheeler, Numerical analysis of non-spherical particle effect on molten pool dynamics in laser-powder bed fusion additive manufacturing, Computational Materials Science, 179, art. no. 109648, 2020. doi.org/10.1016/j.commatsci.2020.109648

26-20   Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka and Akihiko Chiba, Isothermal γ → ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing, Journal of Materials Science & Technology, 50, pp. 162-170, 2020. doi.org/10.1016/j.jmst.2019.11.040

21-20   Won-Ik Cho and Peer Woizeschke, Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal, International Journal of Heat and Mass Transfer, 152, art. no. 119528, 2020. doi.org/10.1016/j.ijheatmasstransfer.2020.119528

06-20  Wei Xing, Di Ouyang, Zhen Chen and Lin Liu, Effect of energy density on defect evolution in 3D printed Zr-based metallic glasses by selective laser melting, Science China Physics, Mechanics & Astronomy, 63, art. no. 226111, 2020. doi.org/10.1007/s11433-019-1485-8

04-20   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

02-20   Dongsheng Wu, Shinichi Tashiro, Ziang Wu, Kazufumi Nomura, Xueming Hua, and Manabu Tanaka, Analysis of heat transfer and material flow in hybrid KPAW-GMAW process based on the novel three dimensional CFD simulation, International Journal of Heat and Mass Transfer, 147, art. no. 118921, 2020. doi.org/10.1016/j.ijheatmasstransfer.2019.118921

01-20   Xiang Huang, Siying Lin, Zhenxiang Bu, Xiaolong Lin, Weijin Yi, Zhihong Lin, Peiqin Xie, and Lingyun Wang, Research on nozzle and needle combination for high frequency piezostack-driven dispenser, International Journal of Adhesion and Adhesives, 96, 2020. doi.org/10.1016/j.ijadhadh.2019.102453

88-19   Bo Cheng and Charles Tuffile, Numerical study of porosity formation with implementation of laser multiple reflection in selective laser melting, Proceedings Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing, ASME 2019 14th International Manufacturing Science and Engineering Conference, Erie, Pennsylvania, USA, June 10-14, 2019. doi.org/10.1115/MSEC2019-2891

87-19   Shuhao Wang, Lida Zhu, Jerry Ying His Fuh, Haiquan Zhang, and Wentao Yan, Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition, Optics and Lasers in Engineering, 127:105950, 2019. doi.org/10.1016/j.optlaseng.2019.105950

78-19   Bo Cheng, Lukas Loeber, Hannes Willeck, Udo Hartel, and Charles Tuffile, Computational investigation of melt pool process dynamics and pore formation in laser powder bed fusion, Journal of Materials Engineering and Performance, 28:11, 6565-6578, 2019. doi.org/10.1007/s11665-019-04435-y

77-19   David Souders, Pareekshith Allu, Anurag Chandorkar, and Ruendy Castillo, Application of computational fluid dynamics in developing process parameters for additive manufacturing, Additive Manufacturing Journal, 9th International Conference on 3D Printing and Additive Manufacturing Technologies (AM 2019), Bangalore, India, September 7-9, 2019.

75-19   Raphaël Comminal, Marcin Piotr Serdeczny, Navid Ranjbar, Mehdi Mehrali, David Bue Pedersen, Henrik Stang, Jon Spangenberg, Modelling of material deposition in big area additive manufacturing and 3D concrete printing, Proceedings, Advancing Precision in Additive Manufacturing, Nantes, France, September 16-18, 2019.

73-19   Baohua Chang, Zhang Yuan, Hao Cheng, Haigang Li, Dong Du 1, and Jiguo Shan, A study on the influences of welding position on the keyhole and molten pool behavior in laser welding of a titanium alloy, Metals, 9:1082, 2019. doi.org/10.3390/met9101082

57-19     Shengjie Deng, Hui-Ping Wang, Fenggui Lu, Joshua Solomon, and Blair E. Carlson, Investigation of spatter occurrence in remote laser spiral welding of zinc-coated steels, International Journal of Heat and Mass Transfer, Vol. 140, pp. 269-280, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.06.009

53-19     Mohamad Bayat, Aditi Thanki, Sankhya Mohanty, Ann Witvrouw, Shoufeng Yang, Jesper Thorborg, Niels Skat Tieldje, and Jesper Henri Hattel, Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation, Additive Manufacturing, Vol. 30, 2019. doi.org/10.1016/j.addma.2019.100835

51-19     P. Ninpetch, P. Kowitwarangkul, S. Mahathanabodee, R. Tongsri, and P. Ratanadecho, Thermal and melting track simulations of laser powder bed fusion (L-PBF), International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi.org/10.1088/1757-899X/526/1/012030

46-19     Hongze Wang and Yu Zou, Microscale interaction between laser and metal powder in powder-bed additive manufacturing: Conduction mode versus keyhole mode, International Journal of Heat and Mass Transfer, Vol. 142, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.118473

45-19     Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, and Akihiko Chiba, Manipulating local heat accumulation towards controlled quality and microstructure of a Co-Cr-Mo alloy in powder bed fusion with electron beam, Materials Letters, Vol. 254, pp. 269-272, 2019. doi.org/10.1016/j.matlet.2019.07.078

44-19     Guoxiang Xu, Lin Li, Houxiao Wang, Pengfei Li, Qinghu Guo, Qingxian Hu, and Baoshuai Du, Simulation and experimental studies of keyhole induced porosity in laser-MIG hybrid fillet welding of aluminum alloy in the horizontal position, Optics & Laser Technology, Vol. 119, 2019. doi.org/10.1016/j.optlastec.2019.105667

38-19     Subin Shrestha and Y. Kevin Chou, A numerical study on the keyhole formation during laser powder bed fusion process, Journal of Manufacturing Science and Engineering, Vol. 141, No. 10, 2019. doi.org/10.1115/1.4044100

34-19     Dae-Won Cho, Jin-Hyeong Park, and Hyeong-Soon Moon, A study on molten pool behavior in the one pulse one drop GMAW process using computational fluid dynamics, International Journal of Heat and Mass Transfer, Vol. 139, pp. 848-859, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.05.038

30-19     Mohamad Bayat, Sankhya Mohanty, and Jesper Henri Hattel, Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF, International Journal of Heat and Mass Transfer, Vol. 139, pp. 95-114, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.05.003

29-19     Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Daixiu Wei, Kenta Yamanaka, and Akihiko Chiba, Comprehensive study on mechanisms for grain morphology evolution and texture development in powder bed fusion with electron beam of Co–Cr–Mo alloy, Materialia, Vol. 6, 2019. doi.org/10.1016/j.mtla.2019.100346

28-19     Pareekshith Allu, Computational fluid dynamics modeling in additive manufacturing processes, The Minerals, Metals & Materials Society (TMS) 148th Annual Meeting & Exhibition, San Antonio, Texas, USA, March 10-14, 2019.

24-19     Simulation Software: Use, Advantages & Limitations, The Additive Manufacturing and Welding Magazine, Vol. 2, No. 2, 2019

22-19     Hunchul Jeong, Kyungbae Park, Sungjin Baek, and Jungho Cho, Thermal efficiency decision of variable polarity aluminum arc welding through molten pool analysis, International Journal of Heat and Mass Transfer, Vol. 138, pp. 729-737, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.04.089

07-19   Guangxi Zhao, Jun Du, Zhengying Wei, Ruwei Geng and Siyuan Xu, Numerical analysis of arc driving forces and temperature distribution in pulsed TIG welding, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 41, No. 60, 2019. doi.org/10.1007/s40430-018-1563-0

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

03-19   Dongsheng Wu, Anh Van Nguyen, Shinichi Tashiro, Xueming Hua and Manabu Tanaka, Elucidation of the weld pool convection and keyhole formation mechanism in the keyhold plasma arc welding, International Journal of Heat and Mass Transfer, Vol. 131, pp. 920-931, 2019. doi.org/10.1016/j.ijheatmasstransfer.2018.11.108

97-18   Wentao Yan, Ya Qian, Wenjun Ge, Stephen Lin, Wing Kam Liu, Feng Lin, Gregory J. Wagner, Meso-scale modeling of multiple-layer fabrication process in Selective Electron Beam Melting: Inter-layer/track voids formation, Materials & Design, 2018. doi.org/10.1016/j.matdes.2017.12.031

84-18   Bo Cheng, Xiaobai Li, Charles Tuffile, Alexander Ilin, Hannes Willeck and Udo Hartel, Multi-physics modeling of single track scanning in selective laser melting: Powder compaction effect, Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, pp. 1887-1902, 2018.

81-18 Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Daixiu Wei, Kenta Yamanaka and Akihiko Chiba, Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy, Additive Manufacturing, Vol. 26, pp. 202-214, 2019. doi.org/10.1016/j.addma.2018.12.002

77-18   Jun Du and Zhengying Wei, Numerical investigation of thermocapillary-induced deposited shape in fused-coating additive manufacturing process of aluminum alloy, Journal of Physics Communications, Vol. 2, No. 11, 2018. doi.org/10.1088/2399-6528/aaedc7

76-18   Yu Xiang, Shuzhe Zhang, Zhengying We, Junfeng Li, Pei Wei, Zhen Chen, Lixiang Yang and Lihao Jiang, Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V, Applied Physics A, 124:685, 2018. doi.org/10.1007/s00339-018-2056-9

74-18   Paree Allu, CFD simulations for laser welding of Al Alloys, Proceedings, Die Casting Congress & Exposition, Indianapolis, IN, October 15-17, 2018.

72-18   Hunchul Jeong, Kyungbae Park, Sungjin Baek, Dong-Yoon Kim, Moon-Jin Kang and Jungho Cho, Three-dimensional numerical analysis of weld pool in GMAW with fillet joint, International Journal of Precision Engineering and Manufacturing, Vol. 19, No. 8, pp. 1171-1177, 2018. doi.org/10.1007/s12541-018-0138-4

60-18   R.W. Geng, J. Du, Z.Y. Wei and G.X. Zhao, An adaptive-domain-growth method for phase field simulation of dendrite growth in arc preheated fused-coating additive manufacturing, IOP Conference Series: Journal of Physics: Conference Series 1063, 012077, 2018. doi.org/10.1088/1742-6596/1063/1/012077

59-18   Guangxi Zhao, Jun Du, Zhengying Wei, Ruwei Geng and Siyuan Xu, Coupling analysis of molten pool during fused coating process with arc preheating, IOP Conference Series: Journal of Physics: Conference Series 1063, 012076, 2018. doi.org/10.1088/1742-6596/1063/1/012076 (Available at http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012076/pdf and in shared drive)

58-18   Siyuan Xu, Zhengying Wei, Jun Du, Guangxi Zhao and Wei Liu, Numerical simulation and analysis of metal fused coating forming, IOP Conference Series: Journal of Physics: Conference Series 1063, 012075, 2018. doi.org/10.1088/1742-6596/1063/1/012075

55-18   Jason Cheon, Jin-Young Yoon, Cheolhee Kim and Suck-Joo Na, A study on transient flow characteristic in friction stir welding with realtime interface tracking by direct surface calculation, Journal of Materials Processing Tech., vol. 255, pp. 621-634, 2018.

54-18   V. Sukhotskiy, P. Vishnoi, I. H. Karampelas, S. Vader, Z. Vader, and E. P. Furlani, Magnetohydrodynamic drop-on-demand liquid metal additive manufacturing: System overview and modeling, Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer, Niagara Falls, Canada, June 7 – 9, 2018; Paper no. 155, 2018. doi.org/10.11159/ffhmt18.155

52-18   Michael Hilbinger, Claudia Stadelmann, Matthias List and Robert F. Singer, Temconex® – Kontinuierliche Pulverextrusion: Verbessertes Verständnis mit Hilfe der numerischen Simulation, Hochleistungsmetalle und Prozesse für den Leichtbau der Zukunft, Tagungsband 10. Ranshofener Leichtmetalltage, 13-14 Juni 2018, Linz, pp. 175-186, 2018.

38-18   Zhen Chen, Yu Xiang, Zhengying Wei, Pei Wei, Bingheng Lu, Lijuan Zhang and Jun Du, Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification, Applied Physics A, vol. 124, pp. 313, 2018. doi.org/10.1007/s00339-018-1737-8

19-18   Chenxiao Zhu, Jason Cheon, Xinhua Tang, Suck-Joo Na, and Haichao Cui, Molten pool behaviors and their influences on welding defects in narrow gap GMAW of 5083 Al-alloy, International Journal of Heat and Mass Transfer, vol. 126:A, pp.1206-1221, 2018. doi.org/10.1016/j.ijheatmasstransfer.2018.05.132

16-18   P. Schneider, V. Sukhotskiy, T. Siskar, L. Christie and I.H. Karampelas, Additive Manufacturing of Microfluidic Components via Wax Extrusion, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 162 – 165, 2018.

09-18   The Furlani Research Group, Magnetohydrodynamic Liquid Metal 3D Printing, Department of Chemical and Biological Engineering, © University at Buffalo, May 2018.

08-18   Benjamin Himmel, Dominik Rumschöttel and Wolfram Volk, Thermal process simulation of droplet based metal printing with aluminium, Production Engineering, March 2018 © German Academic Society for Production Engineering (WGP) 2018.

07-18   Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba and Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Tech. 254 (2018) 72–78.

60-17   Pei Wei, Zhengying Wei, Zhen Chen, Yuyang He and Jun Du, Thermal behavior in single track during selective laser melting of AlSi10Mg powder, Applied Physics A: Materials Science & Processing, 123:604, 2017. doi.org/10.1007/z00339-017-1194-9

51-17   Koichi Ishizaka, Keijiro Saitoh, Eisaku Ito, Masanori Yuri, and Junichiro Masada, Key Technologies for 1700°C Class Ultra High Temperature Gas Turbine, Mitsubishi Heavy Industries Technical Review, vol. 54, no. 3, 2017.

49-17   Yu-Che Wu, Weng-Sing Hwang, Cheng-Hung San, Chih-Hsiang Chang and Huey-Jiuan Lin, Parametric study of surface morphology for selective laser melting on Ti6Al4V powder bed with numerical and experimental methods, International Journal of Material Forming, © Springer-Verlag France SAS, part of Springer Nature 2017. doi.org/10.1007/s12289-017-1391-2.

37-17   V. Sukhotskiy, I. H. Karampelas, G. Garg, A. Verma, M. Tong, S. Vader, Z. Vader, and E. P. Furlani, Magnetohydrodynamic Drop-on-Demand Liquid Metal 3D Printing, Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

15-17   I.H. Karampelas, S. Vader, Z. Vader, V. Sukhotskiy, A. Verma, G. Garg, M. Tong and E.P. Furlani, Drop-on-Demand 3D Metal Printing, Informatics, Electronics and Microsystems TechConnect Briefs 2017, Vol. 4

14-17   Jason Cheon and Suck-Joo Na, Prediction of welding residual stress with real-time phase transformation by CFD thermal analysis, International Journal of Mechanical Sciences 131–132 (2017) 37–51.

91-16   Y. S. Lee and D. F. Farson, Surface tension-powered build dimension control in laser additive manufacturing process, Int J Adv Manuf Technol (2016) 85:1035–1044, doi.org/10.1007/s00170-015-7974-5.

84-16   Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E. Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer 108 (2017) 244–256, Available online December 2016.

68-16   Dongsheng Wu, Xueming Hua, Dingjian Ye and Fang Li, Understanding of humping formation and suppression mechanisms using the numerical simulation, International Journal of Heat and Mass Transfer, Volume 104, January 2017, Pages 634–643, Published online 2016.

39-16   Chien-Hsun Wang, Ho-Lin Tsai, Yu-Che Wu and Weng-Sing Hwang, Investigation of molten metal droplet deposition and solidification for 3D printing techniques, IOP Publishing, J. Micromech. Microeng. 26 (2016) 095012 (14pp), doi: 10.1088/0960-1317/26/9/095012, July 8, 2016

29-16   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Advances in Magnetohydrodynamic Liquid Metal Jet Printing, Nanotech 2016 Conference & Expo, May 22-25, Washington, DC.

26-16   Y.S. Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, S2214-8604(16)30087-2, doi.org/10.1016/j.addma.2016.05.003, ADDMA 86.

123-15   Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser welding repair for single crystal blades, Proceedings of International Gas Turbine Congress, pp. 1354-1358, 2015.

122-15   Y.S. Lee, W. Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, Proceedings, 26th Solid Freeform Fabrication Symposium, Austin, Texas, 2015. 

116-15   Yousub Lee, Simulation of Laser Additive Manufacturing and its Applications, Ph.D. Thesis: Graduate Program in Welding Engineering, The Ohio State University, 2015, Copyright by Yousub Lee 2015

103-15   Ligang Wu, Jason Cheon, Degala Venkata Kiran, and Suck-Joo Na, CFD Simulations of GMA Welding of Horizontal Fillet Joints based on Coordinate Rotation of Arc Models, Journal of Materials Processing Technology, Available online December 29, 2015

96-15   Jason Cheon, Degala Venkata Kiran, and Suck-Joo Na, Thermal metallurgical analysis of GMA welded AH36 steel using CFD – FEM framework, Materials & Design, Volume 91, February 5 2016, Pages 230-241, published online November 2015

86-15   Yousub Lee and Dave F. Farson, Simulation of transport phenomena and melt pool shape for multiple layer additive manufacturing, J. Laser Appl. 28, 012006 (2016). doi: 10.2351/1.4935711, published online 2015.

63-15   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Magnetohydrodynamic Liquid Metal Jet Printing, TechConnect World Innovation Conference & Expo, Washington, D.C., June 14-17, 2015

46-15   Adwaith Gupta, 3D Printing Multi-Material, Single Printhead Simulation, Advanced Qualification of Additive Manufacturing Materials Workshop, July 20 – 21, 2015, Santa Fe, NM

25-15   Dae-Won Cho and Suck-Joo Na, Molten pool behaviors for second pass V-groove GMAW, International Journal of Heat and Mass Transfer 88 (2015) 945–956.

21-15   Jungho Cho, Dave F. Farson, Kendall J. Hollis and John O. Milewski, Numerical analysis of weld pool oscillation in laser welding, Journal of Mechanical Science and Technology 29 (4) (2015) 1715~1722, www.springerlink.com/content/1738-494x, doi.org/10.1007/s12206-015-0344-2.

82-14  Yousub Lee, Mark Nordin, Sudarsanam Suresh Babu, and Dave F. Farson, Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition, Metallurgical and Materials Transactions B, August 2014, Volume 45, Issue 4, pp 1520-1529

59-14   Y.S. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Influence of Fluid Convection on Weld Pool Formation in Laser Cladding, Welding Research/ August 2014, VOL. 93

18-14  L.J. Zhang, J.X. Zhang, A. Gumenyuk, M. Rethmeier, and S.J. Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology (2014), doi.org/10.1016/j.jmatprotec.2014.03.016.

36-13  Dae-Won Cho,Woo-Hyun Song, Min-Hyun Cho, and Suck-Joo Na, Analysis of Submerged Arc Welding Process by Three-Dimensional Computational Fluid Dynamics Simulations, Journal of Materials Processing Technology, 2013. doi.org/10.1016/j.jmatprotec.2013.06.017

12-13 D.W. Cho, S.J. Na, M.H. Cho, J.S. Lee, A study on V-groove GMAW for various welding positions, Journal of Materials Processing Technology, April 2013, doi.org/10.1016/j.jmatprotec.2013.02.015.

01-13  Dae-Won Cho & Suck-Joo Na & Min-Hyun Cho & Jong-Sub Lee, Simulations of weld pool dynamics in V-groove GTA and GMA welding, Weld World, doi.org/10.1007/s40194-012-0017-z, © International Institute of Welding 2013.

63-12  D.W. Cho, S.H. Lee, S.J. Na, Characterization of welding arc and weld pool formation in vacuum gas hollow tungsten arc welding, Journal of Materials Processing Technology, doi.org/10.1016/j.jmatprotec.2012.09.024, September 2012.

77-10  Lim, Y. C.; Yu, X.; Cho, J. H.; et al., Effect of magnetic stirring on grain structure refinement Part 1-Autogenous nickel alloy welds, Science and Technology of Welding and Joining, Volume: 15 Issue: 7, Pages: 583-589, doi.org/10.1179/136217110X12720264008277, October 2010

18-10 K Saida, H Ohnishi, K Nishimoto, Fluxless laser brazing of aluminium alloy to galvanized steel using a tandem beam–dissimilar laser brazing of aluminium alloy and steels, Welding International, 2010

58-09  Cho, Jung-Ho; Farson, Dave F.; Milewski, John O.; et al., Weld pool flows during initial stages of keyhole formation in laser welding, Journal of Physics D-Applied Physics, Volume: 42 Issue: 17 Article Number: 175502 ; doi.org/10.1088/0022-3727/42/17/175502, September 2009

57-09  Lim, Y. C.; Farson, D. F.; Cho, M. H.; et al., Stationary GMAW-P weld metal deposit spreading, Science and Technology of Welding and Joining, Volume: 14 Issue: 7 ;Pages: 626-635, doi.org/10.1179/136217109X441173, October 2009

1-09 J.-H. Cho and S.-J. Na, Three-Dimensional Analysis of Molten Pool in GMA-Laser Hybrid Welding, Welding Journal, February 2009, Vol. 88

52-07   Huey-Jiuan Lin and Wei-Kuo Chang, Design of a sheet forming apparatus for overflow fusion process by numerical simulation, Journal of Non-Crystalline Solids 353 (2007) 2817–2825.

50-07  Cho, Min Hyun; Farson, Dave F., Understanding bead hump formation in gas metal arc welding using a numerical simulation, Metallurgical and Mateials Transactions B-Process Metallurgy and Materials Processing Science, Volume: 38, Issue: 2, Pages: 305-319, doi.org/10.1007/s11663-007-9034-5, April 2007

49-07  Cho, M. H.; Farson, D. F., Simulation study of a hybrid process for the prevention of weld bead hump formation, Welding Journal Volume: 86, Issue: 9, Pages: 253S-262S, September 2007

48-07  Cho, M. H.; Farson, D. F.; Lim, Y. C.; et al., Hybrid laser/arc welding process for controlling bead profile, Science and Technology of Welding and Joining, Volume: 12 Issue: 8, Pages: 677-688, doi.org/10.1179/174329307X236878, November 2007

47-07   Min Hyun Cho, Dave F. Farson, Understanding Bead Hump Formation in Gas Metal Arc Welding Using a Numerical Simulation, Metallurgical and Materials Transactions B, Volume 38, Issue 2, pp 305-319, April 2007

36-06  Cho, M. H.; Lim, Y. C.; Farson, D. F., Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape, Welding Journal, Volume: 85 Issue: 12, Pages: 271S-283S, December 2006

Aerospace Bibliography

아래는 항공 우주 분야에 대한 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. FLOW-3D를 사용하여 항공 우주 산업을 위한 응용 프로그램을 성공적으로 시뮬레이션  하는 방법에 대해 자세히 알아보십시오.

Aerospace Bibliography

2024년 8월 12일 Update

Below is a collection of technical papers in our Aerospace Bibliography. All of these papers feature FLOW-3D results. Learn more about how  FLOW-3D can be used to successfully simulate applications for the Aerospace Industry.

5-24 Yiming Sun, Hanwen Deng, Xinyu Liu, Xiaoming Kang, Simulation of liquid cone formation on the tip apex of indium field emission electric propulsion thrusters, Plasma Science and Technology, 2024. doi.org/10.1088/2058-6272/ad0d5b

208-23   Jason Hartwig, Narottama Esser, Shreykumar Jain, David Souders, Allen Prasad Varghese, Angelo Tafuni, CFD modeling of bidirectional PMDs inside cryogenic propellant tanks onboard parabolic flights, Journal of Spacecraft and Rockets, 2023. doi.org/10.2514/1.A35808

26-23   Jason Hartwig, Narottama Esser, Shreykumar Jain, David Souders, Allen Prasad Varghese, Angelantonio Tafuni, CFD design and analysis of a perforated plate for the control of cryogenic flow under reduced gravity, AIAA Scitech Forum, 2023. doi.org/10.2514/6.2023-0133

78-22   Timothy Aaron Blackman, Propellant optimization for a pulsed solid propellant thruster system for small satellites, Thesis, Florida Institute of Technology, 2022.

10-22   Nathan F. Andrews, Shane B. Coogan, Ellen Smith, Oliver Ouyang, Stephen Reiman, Brian Pincock, Bryan Munro, A three-dimensional, quick-running analysis method for large amplitude liquid slosh and bulk fluid motion in flight vehicles, AIAA Scitech Forum, AAIA 2022-0071, 2022. doi.org/10.2514/6.2022-0071

98-21   Pengxiang Hu, Zhihua Zhao, Shutao Yang, Yaoxiang Zeng, Feng Qi, Study on equivalent sloshing mass locations for liquid-filled cylindrical tanks, Journal of Spacecraft and Rockets, 2021. doi.org/10.2514/1.A35098

62-20   Zhang Dazhi, Meng Li, Li Yong-Qiang, Numerical simulation analysis of liquid transportation in capsule-type vane tank under microgravity, Microgravity Science and Technology, 32.3, 2020. doi.org/10.1007/s12217-020-09811-1

08-20   Li Yong-Qiang, Dong Jun-Yan and Rui Wei, Numerical simulation for capillary driven flow in capsule-type vane tank with clearances under microgravity, Microgravity Science and Technology, 2020. doi.org/10.1007/s12217-019-09773-z

107-19   Martin Konopka, Extension of a standard flow solver for simulating phase change in cryogenic tanks, Journal of Thermophysics and Heat Transfer, 33.3, 2019. doi.org/10.2514/1.T5546

79-19   Baotang Zhuang, Yong Li, Jintao Liu, and Wei Rui, Numerical simulation of fluid transport along parallel vanes for vane type propellant tanks, Microgravity Science and Technology, pp. 1-10, 2019. doi:10.1007/s12217-019-09746-2

54-19     Robert E. Manning, Ian Ballinger, Manoj Bhatia, and Mack Dowdy, Design of the Europa Clipper propellant management device, AIAA Propulsion and Energy 2019 Forum, Indianapolis, Indiana, August 19-22, 2019. doi:10.2514/6.2019-3858

48-19     Lei Wang, Tian Yan, Jiaojiao Wang, Shixuan Ye, Yanzhong Li, Rui Zhuan, and Bin Wang, CFD investigation on thermodynamic characteristics in liquid hydrogen tank during successive varied-gravity conditions, Cryogenics, Vol. 103, 2019. doi:10.1016/j.cryogenics.2019.102973

01-18   Martin Konopka, Extension of a Standard Flow Solver for Simulating Phase Change in Cryogenic Tanks, 018 AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, (AIAA 2018-1818), https://doi.org/10.2514/6.2018-1818

69-16   Philipp Behruzi and Francesco De Rose, Coupling sloshing, GNC and rigid body motions during ballistic flight phases, Propulsion and Energy Forum, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, July 25-27, 2016, Salt Lake City, UT.

55-16   Martin Konopka, Peter Noeding, Jörg Klatte, Philipp Behruzi, Jens Gerstmann, Anton Stark, Nicolas Darkow, Analysis of LN2 Filling, Draining, Stratification and Sloshing Experiments, 46th AIAA Fluid Dynamics Conference, Washington, D.C.

95-15   D Frank, Control of fluid mass center in the Gravity Probe B space mission Dewar, © 2015 IOP Publishing Ltd, Classical and Quantum Gravity, Volume 32, Number 22, November 17, 2015

58-15   Diana Gaulke and Michael E. Dreyer, CFD Simulation of Capillary Transport of Liquid Between Parallel Perforated Plates using FLOW-3D, Microgravity Science and Technology, August 2015

55-15   Sebastian Schmitt and Michael E. Dreyer, Free Surface Oscillations of Liquid Hydrogen in Microgravity Conditions, Cryogenics, doi:10.1016/j.cryogenics.2015.07.004, July 26, 2015

53-15   Jeffrey Moder and Kevin Breisacher, Preliminary Simulations of Ullage Dynamics in Microgravity during Jet Mixing Portion of the Tank Pressure Control Experiments, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015

52-15   Philipp Behruzi, Diana Gaulke, Joerg Klatte, Nicolas Fries, Development of the MPCV ESM propellant tanks, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015

51-15   Grant O. Musgrove and Shane B. Coogan, Validation and Rules-of-Thumb for Computational Predictions of Liquid Slosh Dynamics, 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015

23-15   Eckart Fuhrmann, Michael Dreyer, Steffen Basting, and Eberhard Bänsch, Free surface deformation and heat transfer by thermocapillary convection, Heat and Mass Transfer, June 2015, © SpringerLink

09-15   Zhicheng Zhou and Hua Huang, Constraint Surface Model for Large Amplitude Sloshing of the spacecraft with Multiple Tanks, Acta Astronautica, http://dx.doi.org/10.1016/j.actaastro.2015.02.023

43-14   C. Ludwig and M.E. Dreyer, Investigations on thermodynamic phenomena of the active-pressurization process of a cryogenic propellant tankCryogenics (2014), doi: http://dx.doi.org/10.1016/j.cryogenics.2014.05.005.

40-14   M. Berci, S. Mascetti; A. Incognito, P. H. Gaskell, and V. V. Toropov, Dynamic Response of Typical Section Using Variable-Fidelity Fluid Dynamics and Gust-Modeling Approaches—With Correction Methods, Journal of Aerospace Engineering, © ASCE, ISSN 0893-1321/04014026(20), May 2014.

22-14  M. Lazzarin, M. Biolo, A. Bettella, M. Manente, R. DaForno, and D. Pavarin, EUCLID satellite: Sloshing model development through computational fluid dynamics, Aerospace Science and Technology, JID:AESCTE AID:3040 /FLA, Available online 12 April 2014.

75-13   Carina Ludwig and Michael Dreyer, Analyses of Cryogenic Propellant Tank Pressurization based upon Experiments and Numerical Simulations, 5TH EUROPEAN CONFERENCE FOR AERONAUTICS AND SPACE SCIENCES (EUCASS), Munich, Germany, 1-5 July 2013

49-13 Damien Theureau, Astrium; Jean Mignot, French Space Agency (CNES); Sebastien Tanguy, Fluid Mechanics Institute of Toulouse (IMFT), Integration of low g sloshing models with spacecraft attitude control simulators, Chapter DOI: 10.2514/6.2013-4961, August 2013.

44-13  Philipp Behruzi, Jörg Klatte and Gaston Netter, Passive Phase Separation in Cryogenic Upper Stage Tanks, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 14 – 17, 2013, San Jose, CA.

43-13  Philipp Behruzi, Jörg Klatte, Nicolas Fries, Andreas Schütte, Burkhard Schmitz and Horst Köhler, Cryogenic Propellant Management Sounding Rocket Experiments on TEXUS 48, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 14 – 17, 2013, San Jose, CA.

113-12  M. Lazzarin, M. Biolo, A. Bettella, and R. Da Forno, EUCLID Mission: Theoretical Sloshing Model and CFD Comparison, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 30 July – 01 August 2012, Atlanta, Georgia

34-12  N. Fries , P. Behruzi, T. Arndt, M. Winter, G. Netter, U. Renner, Modelling of fluid motion in spacecraft propellant tanks – Sloshing, Space Propulsion 2012 conference, 7th-10th May 2012, Bordeaux

55-11   P. Behruzi, F. de Rose, P. Netzlaf, H. Strauch, Ballistic Phase Management for Cryogenic Upper Stages, DGLR Conference, Bremen, Germany, 2011

11-11 Philipp Behruzi, Hans Strauch, and Francesco de Rose, Coasting Phase Propellant Management for Upper Stages, 38th COSPAR Scientific Assembly, 18-15 July 2010, Bremen, Germany. PowerPoint presentation.

73-10    Amber Bakkum, Kimberly Schultz, Jonathan Braun, Kevin M Crosby, Stephanie Finnvik, Isa Fritz, Bradley Frye, Cecilia Grove, Katelyn Hartstern, Samantha Kreppel and Emily Schiavone, Investigation of Propellant Sloshing and Zero Gravity Equilibrium for the Orion Service Module Propellant Tanks, Wisconsin Space Conference, Yingst, R. A., & Wisconsin Space Grant Consortium. (2010). Dawn of a new age: 20th Annual Wisconsin Space Conference, August 19-20, 2010. Green Bay, Wis: Wisconsin Space Grant Consortium; University of Wisconsin-Green Bay.

35-10   Kevin Breisacher and Jeffrey Moder, Computational Fluid Dynamics (CFD) Simulations of Jet Mixing in Tanks of Different Scales, NASA/TM—2010-216749

21-10 Berci M., Mascetti S., Incognito A., Gaskell P.H., Toropov V.V., Gust Response of a Typical Section Via CFD and Analytical Solutions, V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, Lisbon, Portugal, 14-17 June 2010 (A companion PowerPoint presentation in pdf format is available upon request)

49-08   Jens Gerstmann, Michael Dreyer, et al., Dependency of the apparent contact angle on nonisothermal conditions, PHYSICS OF FLUIDS 20, 042101 (2008)

35-07 N. Fries, K. Odic and M. Dreyer, Wicking of Perfectly Wetting Liquids into a Metallic Mesh, Proceedings of the 2nd International Conference on Porous Media and its Applications in Science and Engineering, ICPM2, Kauai, Hawaii, USA, June 17-21, 2007

08-07 Gary Grayson, Alfredo Lopez, Frank Chandler, Leon Hastings, Ali Hedayat, and James Brethour, CFD Modeling of Helium Pressurant Effects on Cryogenic Tank Pressure Rise Rates in Normal Gravity, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, © 2007 by The Boeing Company. Published by the American Institute of Aeronautics and Astronautics, Inc. with permission. AIAA 2007-5524, 8 – 11 July 2007

34-06 Phillipp Behruzi, Mark Michaelis and Gaël Khimeche, Behavior of the Cryogenic Propellant Tanks during the First Flight of the Ariane 5 ESC-A Upper Stage, 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 9-12 July 2006, Sacramento, California, © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

12-06 G. D. Grayson, A. Lopez, F. O. Chandler, L. J. Hastings, S. P. Tucker, Cryogenic Tank Modeling for the Saturn AS-203 Experiment, AIAA 2006-5258, presented at the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, July 9-12, 2006, Sacramento, CA.

29-02 O. Bayle, V. L’Hullier, M. Ganet, P. Delpy, J.L. Francart and D. Paris, Influence of the ATV Propellant Sloshing on the GNC Performance, AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 5-8 August 2002, © 2002 by EADS Launch Vehicles

42-01 C. Figus and L. Ounougha, Correlations between Neutral Buoyancy Tests and CFD, Spacecraft Propulsion, Third International Conference held 10-13 October, 2000 at Cannes, France. European Space Agency ESASP-465, 2001, p.547

24-01 Hiroshi Nishino, Shujiro Sawai, & Katsumi Furukawa, Prediction of Sloshing Dynamics in Spinning Spherical Tanks, Mitsubishi Heavy Industry, The Institute of Space and Astronautical Science 9th Workshop on Astrodynamics and Flight Mechanics (1999)

5-96 D. J. Frank, Dynamics of Superfluid Helium in Low-Gravity: A Progress Report, Advanced Technology Center, Lockheed Martin Missiles & Space, Palo Alto, CA 94304, USA, To be published in Proceedings of 1996 NASA/JPL Microgravity Low Temperature Physics Workshop, April 1996

7-95 G. D. Grayson, Coupled Thermodynamic-Fluid-Dynamic Solution for a Liquid Hydrogen Tank, Journal of Spacecraft and Rockets, Vol. 32, No. 5, September-October 1995

5-94 G. Ross, Dynamics of Superfluid Helium in Low Gravity, dissertation submitted to Dept. Mech. Engrg. and Committee on Graduate Studies of Stanford University for Ph.D. degree, July 1994

9-93 N. H. Hughes, Numerical Stability Problem Encountered Modeling Large Liquid Mass in Micro Gravity, The Boeing Company, presented at the AAS/AIAA Astrodynamics Specialist Conference, Victoria, B.C., Canada, August 16-19, 1993

8-93 G. D. Grayson and J. Navickas, Interaction Between Fluid-Dynamic and Thermodynamic Phenomena in a Cryogenic Upper Stage, McDonnell Douglas, AIAA-93-2753, presented at the AIAA 28th Thermophysics Conference, Orlando, FL, July 6-9, 1993

7-93 G. Grayson and E. DiStefano, Propellant Acquisition for Single Stage Rocket Technology, McDonnell Douglas, AIAA-93-2283, presented at the AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Monterey, CA, June 28-30, 1993

6-93 Y. Letourneur and J. Sicilian, Propellant Reorientation Effects on the Attitude of the Main Cryotechnic Stage of Ariane V, Aerospatiale, Les Mureaux and Flow Science Inc, presented at the AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Monterey, CA, June 28-30, 1993

4-92 J. M. Sicilian, Evaluation of Space Vehicle Dynamics Including Fluid Slosh and Applied Forces, Flow Science report (FSI-92-47-01), August 1992

9-91 G. P. Sasmal, J. I. Hochstein, M. C. Wendl, Washington University and T. L. Hardy, NASA Lewis Research Center, Computational Modeling of the Pressurization Process in a NASP Vehicle Propellant Tank Experimental Simulation, (AIAA 91-2407), AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Sacramento, CA, June 24-26, 1991

8-91 M. F. Fisher, G. R. Schmidt, and J. J. Martin,  Analysis of Cryogenic Propellant Behavior in Microgravity and Low Thrust Environments, NASA-Marshall Space Flight Center, AIAA/SAE/ASME/ASEE 27th Joint Propulsion Conference, Sacramento, CA, June 24-26, 1991

15-90 T. L. Hardy and T. M. Tomasik, Prediction of the Ullage Gas Thermal Stratification in a NASP Vehicle Propellant Tank Experimental Simulation Using FLOW-3D, NASA Technical Memorandum 103217, NASA-Lewis Research Center, Cleveland, OH, July 1990

6-90 J. Navickas, McDonnell Douglas Space Systems Co., Huntington Beach, CA and P.Y. Cheng, McDonnell Douglas Aircraft Co., St. Louis, MO, Effect of Propellant Sloshing on the Design of Space Vehicle Propellant Storage Systems, presented at the 26th AIAA/SAE/ASME/ASEE Joint Propulsion Conference, Orlando World Center, Orlando, FL, July 16-18, 1990

1-90 S. M. Dominick and J. R. Tegart, Fluid Dynamics and Thermodynamics of a Low Gravity Liquid Tank Filling Method, AIAA 28th Aerospace Sciences Meeting, AAIA-90-0509, Reno, NV, January 1990.

9-89 S. Lin and D. K. Warinner, FLOW-3D Analysis of Pressure Responses in an Enclosed Launching System, presented at the Symposium on Computational Experiments, PVP ASME Conference, Honolulu, HI, July 22-27, 1989

3-89 C. W. Hirt, Flow in a Solid-Propellant Rocket Chamber, Flow Science Technical Note #17, March 1989 (FSI-89-TN17)

1-89 J. Navickas, E. C. Cady, and J. L. Ditter, Suspension of Solid Particles in the Aerospace Plane’s Slush Hydrogen Tanks, McDonnell Douglas Astronautics Co. report, Huntington Beach, CA, 1988, presented at the Symposium on Computational Experiments, PVP ASME Conference, Honolulu, HI, July 22-27, 1989

11-88 J. Navickas, Prediction of a Liquid Tank Thermal Stratification by a Finite Difference Computing Method, presented to AIAA/ASEE/ASME/SAE 24th Joint Propulsion Conference, Boston, MA, 11-14 July 1988

10-88 J. Navickas, Space-Based System Disturbances Caused by On-Board Fluid Motion During System Maneuvers, presented to 1st National Fluid Dynamics Congress, Cincinnati, OH, July 24-28, 1988

9-88 J. Navickas, E. C. Cady, and T. L. Flaska, Modeling of Solid-Liquid Circulation in the National Aerospace Plane’s Slush Hydrogen Tanks, Advanced Propulsion, Advanced Technology Center, McDonnell Douglas Astronautics Co., Huntington Beach, CA, May 24, 1988

3-88 J. M. Sicilian and C. W. Hirt, Nozzle/Case Joint Analysis with CFD Analysis Using the FLOW-3D Program, in Redesigned Solid Rocket Motor Circumferential Flow Technical Interchange Meeting Final Report, NASA-TWR-17788, February 1988

11-87 C. W. Hirt, A Perspective on NASA-VOF3D vs. FLOW-3D, Flow Science report, December 1987 (FSI-87-00-3)

8-87 J. M. Sicilian, Fluid Slosh in a Rotating and Accelerating Tank, Flow Science report, Sept. 1987 (FSI-87-37-1)

5-87 J. J. Der and C.L. Stevens, Liquid Propellant Tank Ullage Bubble Deformation and Breakup in Low Gravity Reorientation, AIAA/SAE/ASME/ASEE 23rd Joint Propulsion Conference, San Diego, Calif., June 1987 (AIAA-87-2021)

3-87 J. Navickas and J. Ditter, Effect of the Propellant Storage Tank Geometric Configuration on the Resultant Disturbing Forces and Moments during Low-Gravity Maneuvers, McDonnell Douglas Astronautics report, MDAC H2589, April 1987, presented at 1987 ASME Winter Annual Meeting

1-87 J. J. Der and C. L. Stevens, Low-Gravity Bubble Reorientation in Liquid Propellant Tanks, AIAA 25th Aerospace Sciences Meeting, Reno, Nevada, January 12-15, 1987 (AIAA-87-0622)

7-86 J. Navickas, C. R. Cross, and D. D. Van Winkle, Propellant Tank Forces Resulting from Fluid Motion in a Low-Gravity Field, ASME Symposium in Microgravity Fluid Mechanics, Winter Annual Meeting, Anaheim, CA, December 7-12, 1986

6-86 J. Navickas and C. R. Cross, Some Typical Applications of the HYDR3D CodeFLOW-3D Experience Conference, Redondo Beach, California, November 6-7, 1986

5-86 R. E. Martin, Effects of Transient Propellant Dynamics on Deployment of Large Liquid Stages in Zero-Gravity with Application to Shuttle-Centaur, 37th Annual Astronautical Congress, Innsbruck, Austria, Oct. 3-10, 1986 (IAF-86-119), Acta Astronautical Vol. 15, No. 6/7, pp. 331-340, 1987

4-86 C. W. Hirt, FLOW-3D Test Problems for Two-Fluid Sloshing, Flow Science report, July 1986 (FSI-86-31-1)

6-85 John I. Hochstein, Computational Prediction of Propellant Motion During Separation of a Centaur G-Prime Vehicle from the Shuttle, NASA report, Washington University, St. Louis, MO, December 1985 (WU/CFDL-85/1)

4-85 T. W. Eastes, Y. M. Chang, C. W. Hirt, and J. M. Sicilian, Zero-Gravity Slosh Analysis, ASME Winter Annual Meeting, Miami, Florida, November 1985

3-84 J. M. Sicilian and C. W. Hirt, Numerical Simulation of Propellant Sloshing for Spacecraft, ASME Winter Annual Meeting, New Orleans, LA, December 9-14, 1984

General Applications Bibliography

다음은 일반 응용 분야의 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. 복잡한 다중 물리와 관련된 문제를 성공적으로 시뮬레이션하기 위해 FLOW-3D를 사용 하는 방법에 대해 자세히 알아보십시오.

Below is a collection of technical papers in our General Applications Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate problems that involve complex multiphysics.

2024년 8월 12일 Upate

204-23   Togo Shinonaga, Hibiki Tajima, Yasuhiro Okamoto, Akira Okada, Application of large-area electron beam irradiation to micro-edge filleting, Journal of Manufacturing Processes, 107; pp. 65-73, 2023. doi.org/10.1016/j.jmapro.2023.10.039

167-23   Xiaoyong Cheng, Zhixian Cao, Ji Li, Alistair Borthwick, A numerical study of the settling of non-spherical particles in quiescent water, Physics of Fluids, 35.9; 2023. doi.org/10.1063/5.0165555

109-23 Dileep Karnam, Yu-Lung Lo, Chia-Hua Yang, Simulation study and parameter optimization of laser TSV using artificial neural networks, Journal of Materials Research and Technology, 25; pp. 3712-3727, 2023. doi.org/10.1016/j.jmrt.2023.06.199

66-23   Erik Holmen Olofsson, Michael Roland, Jon Spangenberg, Ninna Halberg Jokil, Jesper Henri Hattel, A CFD model with free surface tracking: predicting fill level and residence time in a starve-fed single-screw extruder, The International Journal of Advanced Manufacturing Technology, 126; pp. 3579-3591, 2023. doi.org/10.1007/s00170-023-11329-w

20-23   Giampiero Sciortino, Valentina Lombardi, Pietro Prestininzi, Modelling of cantilever-based flow energy harvesters featuring C-shaped vibration inducers: The role of the fluid/beam interaction, Applied Sciences, 13.1; 416, 2023. doi.org/10.3390/app13010416

134-22   Guozheng Ma, Shuying Chen, Haidou Wang, Impact spread behavior of flying droplets and properties of splats, Micro Process and Quality Control of Plasma Spraying, pp. 87-202, 2022. doi.org/10.1007/978-981-19-2742-3_3

111-22   Chia-Lin Chiu, Chia-Ming Fan, Chia-Ren Chu, Numerical analysis of two spheres falling side by side, Physics of Fluids, 34; 072112, 2022. doi.org/10.1063/5.0096534

58-21   Ruizhe Liu, Haidong Zhao, Experimental study and numerical simulation of infiltration of AlSi12 alloys into Si porous preforms with micro-computed tomography inspection characteristics, Journal of the Ceramic Society of Japan, 129.6; pp. 315-322, 2021. doi.org/10.2109/jcersj2.21018

56-20   Nils Steinau, CFD modeling of ascending Strombolian gas slugs through a constricted volcanic conduit considering a non-linear rheology, Thesis, Universität Hamburg, Hamburg, Germany, 2020.

30-20   Bita Bayatsarmadi, Mike Horne, Theo Rodopoulos and Dayalan Gunasegaram, Intensifying diffusion-limited reactions by using static mixer electrodes in a novel electrochemical flow cell, Journal of The Electrochemical Society, 167.6, 2020. doi.org/10.1149/1945-7111/ab7e8f

75-19   Raphaël Comminal, Marcin Piotr Serdeczny, Navid Ranjbar, Mehdi Mehrali, David Bue Pedersen, Henrik Stang, Jon Spangenberg, Modelling of material deposition in big area additive manufacturing and 3D concrete printing, Proceedings, Advancing Precision in Additive Manufacturing, Nantes, France, September 16-18, 2019.

35-19     Sung-Won Ha, Tae-Won Kim, Joo-Hwan Choi, and Young-Jin Park, Study for flow phenomenon in the circulation water pump chamber using the Flow-3D model, Journal of the Korea Academia-Industrial Cooperation Society, Vol. 20, No. 4, pp. 580-589, 2019. doi: 10.5762/KAIS.2019.20.4.580

27-19     Rolands Cepuritis, Elisabeth L. Skare, Evgeny Ramenskiy, Ernst Mørtsell, Sverre Smeplass, Shizhao Li, Stefan Jacobsen, and Jon Spangeberg, Analysing limitations of the FlowCyl as a one-point viscometer test for cement paste, Construction and Building Materials, Vol. 218, pp. 333-340, 2019. doi: 10.1016.j.conbuildmat.2019.05.127

26-19     Shanshan Hu, Lunliang Duan, Qianbing Wan, and Jian Wang, Evaluation of needle movement effect on root canal irrigation using a computational fluid dynamics model, BioMedical Engineering OnLine, Vol. 18, No. 52, 2019. doi: 10.1186/s12938-019-0679-5

83-18   Elisabeth Leite Skare, Stefan Jacobsen, Rolands Cepuritis, Sverre Smeplass and Jon Spangenberg, Decreasing the magnitude of shear rates in the FlowCyl, Proceedings of the 12th fib International PhD Symposium in Civil Engineering, Prague, Czech Republic, August 29-31, 2018.

71-18   Marc Bascompta, Jordi Vives, Lluís Sanmiqeul and José Juan de Felipe, CFD friction factors verification in an underground mine, Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering, August 16 – 18, 2018, Madrid, Spain, Paper No. MMME 105, 2018. doi.org/10.11159/mmme18.105

56-18   J. Spangenberg, A. Uzala, M.W. Nielsen and J.H. Hattel, A robustness analysis of the bonding process of joints in wind turbine blades, International Journal of Adhesion and Adhesives, vol. 85, pp. 281-285, 2018. doi.org/10.1016/j.ijadhadh.2018.06.009

21-18   Zhang Weikang and Gong Hongwei, Numerical Simulation Study on Characteristics of Airtight Water Film with Flow Deflectors, IOP Conference Series: Earth and Environmental Science vol. 153, no. 3, pp. 032025, 2018. doi.org/10.1088/1755-1315/153/3/032025

59-17  Han Eol Park and In Cheol Bang, Design study on mixing performance of rotational vanes in subchannel with fuel rod bundles, Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, October 26-27, 2017.

58-17  Jian Zhou, Claudia Cenedese, Tim Williams and Megan Ball, On the propagation of gravity currents over and through a submerged array of circular cylinders, Journal of Fluid Mechanics, Vol. 831, pp. 394-417, 2017. doi.org/10.1017/jfm.2017.604

24-17   Zhiyuan Ge, Wojciech Nemec, Rob L. Gawthorpe, Atle Rotevatn and Ernst W.M. Hansen, Response of unconfined turbidity current to relay-ramp topography: insights from process-based numerical modelling, doi: 10.1111/bre.12255 This article is protected by copyright. All rights reserved.

06-17   Masoud Hosseinpoor, Kamal H. Khayat, Ammar Yahia, Numerical simulation of self-consolidating concrete flow as a heterogeneous material in L-Box set-up: coupled effect of reinforcing bars and aggregate content on flow characteristics, A. Mater Struct (2017) 50: 163. doi:10.1617/s11527-017-1032-8

94-16   Mehran Seyed Ahmadi, Markus Bussmann and Stavros A. Argyropoulos, Mass transfer correlations for dissolution of cylindrical additions in liquid metals with gas agitation, International Journal of Heat and Mass Transfer, Volume 97, June 2016, Pages 767-778

83-16   Masoud Hosseinpoor, Numerical simulation of fresh SCC flow in wall and beam elements using flow dynamics models, Ph.D. Thesis: University of Sherbrooke, September 2016.

51-16   Aditi Verma, Application of computational transport analysis – Oil spill dynamics, Master Thesis: State University of New York at Buffalo, 2016, 56 pages; 1012775

37-16   Hannah Dietterich, Einat Lev, and Jiangzhi Chen, Benchmarking computational fluid dynamics models for lava flow simulation, Geophysical Research Abstracts, Vol. 18, EGU2016-2202, 2016, EGU General Assembly 2016, © Author(s) 2016. CC Attribution 3.0 License.

 19-16   A.J. Vellinga, M.J.B. Cartigny, E.W.M. Hansen, P.J. Tallinga, M.A. Clare, E.J. Sumner and J.T. Eggenhuisen, Process-based Modelling of Turbidity Currents – From Computational Fluid-dynamics to Depositional Signature, Second Conference on Forward Modelling of Sedimentary Systems, 25 April 2016, DOI: 10.3997/2214-4609.201600374

106-15    Hidetaka Oguma, Koji Tsukimoto, Saneyuki Goya, Yoshifumi Okajima, Kouichi Ishizaka, and Eisaku Ito, Development of Advanced Materials and Manufacturing Technologies for High-efficiency Gas Turbines, Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4, December 2015

93-15   James M. Brethour, Modelling of Cavitation within Highly Transient Flows with the Volume of Fluid Method, 1st Pan-American Congress on Computational Mechanics, April 27-29, 2015

90-15   Troy Shinbrot, Matthew Rutala, Andrea Montessori, Pietro Prestininzi and Sauro Succi, Paradoxical ratcheting in cornstarch, Phys. Fluids 27, 103101 (2015); http://dx.doi.org/10.1063/1.4934709

84-15   Nicolas Roussel, Annika Gram, Massimiliano Cremonesi, Liberato Ferrara, Knut Krenzer, Viktor Mechtcherine, Sergiy Shyshko, Jan Skocec, Jon Spangenberg, Oldrich Svec, Lars Nyholm Thrane and Ksenija Vasilic, Numerical simulations of concrete flow: A benchmark comparison, Cem. Concr. Res. (2015), http://dx.doi.org/10.1016/j.cemconres.2015.09.022

02-15   David Souders, FLOW-3D Version 11 Enhances CFD Simulation, Desktop Engineering, January 2015

125-14   Herbert Obame Mve, Romuald Rullière, Rémi Goulet and Phillippe Haberschill, Numerical Analysis of Heat Transfer of a Flow Confined by Wire Screen in Lithium Bromide Absorption Process, Defect and Diffusion Forum, ISSN: 1662-9507, Vol. 348, pp 40-50, doi:10.4028/www.scientific.net/DDF.348.40, © 2014 Trans Tech Publications, Switzerland

55-14   Agni Arumugam Selvi, Effect of Linear Direction Oscillation on Grain Refinement, Master’s Thesis: The Ohio State University, Graduate Program in Mechanical Engineering, Copyright by Agni Arumugam Selvi, 2014

99-13   R. C. Givler and M. J. Martinez, Computational Model of Miniature Pulsating Heat Pipes, SANDIA REPORT, SAND2012-4750, Unlimited Release, Printed January 2013.

82-13    Shizhao Li, Jon Spangenberg, Jesper Hattel, A CFD Approach for Prediction of Unintended Porosities in Aluminum Syntactic Foam A Preliminary Study, 8th International Conference on Porous Metals and Metallic Foams (METFOAM 2013), Raleigh, NC, June 2013

81-13   S. Li, J. Spangenberg, J. H. Hattel, A CFD Model for Prediction of Unintended Porosities in Metal Matrix Composites A Preliminary Study, 19th International Conference on Composite Materials (ICCM 2013), Montreal, Canada, July 2013

78-13   Haitham A. Hussein, Rozi Abdullah, Sobri, Harun and Mohammed Abdulkhaleq, Numerical Model of Baffle Location Effect on Flow Pattern in Oil and Water Gravity Separator Tanks, World Applied Sciences Journal 26 (10): 1351-1356, 2013, ISSN 1818-4952, DOI: 10.5829/idosi.wasj.2013.26.10.1239, © IDOSI Publications, 2013

74-13  Laetitia Martinie, Jean-Francois Lataste, and Nicolas Roussel, Fiber orientation during casting of UHPFRC: electrical resistivity measurements, image analysis and numerical simulations, Materials and Structures, DOI 10.1617/s11527-013-0205-3, November 2013. Available for purchase online at SpringerLink.

67-13 Stefan Jacobsen, Rolands Cepuritis, Ya Peng, Mette R. Geiker, and Jon Spangenberg, Visualizing and simulating flow conditions in concrete form filling using Pigments, Construction and Building Materials 49 (2013) 328–342, © 2013 Elsevier Ltd. All rights reserved. Available for purchase at ScienceDirect.

60-13 Huey-Jiuan Lin, Fu-Yuan Hsu, Chun-Yu Chiu, Chien-Kuo Liu, Ruey-Yi Lee, Simulation of Glass Molding Process for Planar Type SOFC Sealing Devices, Key Engineering Materials, 573, 131, September 2013. Available for purchase at Scientific.net.

32-13 M A Rashid, I Abustan and M O Hamzah, Numerical simulation of a 3-D flow within a storage area hexagonal modular pavement systems, 4th International Conference on Energy and Environment 2013 (ICEE 2013), IOP Conf. Series: Earth and Environmental Science 16 (2013) 012056 doi:10.1088/1755-1315/16/1/012056. Full paper available at IOP.

105-12 Jon Spangenberg, Numerisk modellering af formfyldning ved støbning i selvkompakterende beton, Ph.D. Thesis: Technical University of Denmark, ID: 0eeede98-fb07-4800-86e2-0a6baeb1e7a3, 2012.

100-12 Nurul Hasan, Validation of CFD models using FLOW-3D for a Submerged Liquid Jet, Ninth International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 10-12 December 2012.

87-12  Abustan, Ismail, Hamzah, Meor Othman and Rashid, Mohd Aminur, A 3-Dimensional Numerical Study of a Flow within a Permeable Pavement, OIDA International Journal of Sustainable Development, Vol. 04, No. 02, pp. 37-44, April 2012.

86-12 Abustan, Ismail, Hamzah, Meor Othman and Rashid, Mohd Aminur, Review of Permeable Pavement Systems in Malaysia Conditions, OIDA International Journal of Sustainable Development, Vol. 04, No. 02, pp. 27-36, April 2012.

85-12  Mohd Aminur Rashid, Ismail Abustan, Meor Othman Hamzah, Infiltration Characteristic Modeling Using FLOW-3D within a Modular Pavement, Procedia Engineering, Volume 50, 2012, Pages 658-667, ISSN 1877-7058, 10.1016/j.proeng.2012.10.072.

73-12  Mohd Aminur Rashid, Ismail Abustan, Meor Othman Hamzah, Infiltration Characteristic Modeling Using FLOW-3D within a Modular Pavement, Procedia Engineering, Volume 50, 2012, Pages 658-667, ISSN 1877-7058, 10.1016/j.proeng.2012.10.072.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

56-12  Giancarlo Alfonsi, Agostino Lauria, Leonardo Primavera, Flow structures around large-diameter circular cylinder, Journal of Flow Visualization and Image Processing, DOI: 10.1615/JFlowVisImageProc.2012005088, 2012. Available for purchase online at Begell Digital Library.

49-12  M. Janocko, M.B.J. Cartigny, W. Nemec, E.W.M. Hansen, Turbidity current hydraulics and sediment deposition in erodible sinuous channels: laboratory experiments and numerical simulations, Marine and Petroleum Geology, Available online 17 September 2012. Available for purchase online at SciVerse.

32-12  Fatih Karadagli, Bruce E. Rittmann, Drew C. McAvoy, and John E. Richardson, Effect of Turbulence on the Disintegration Rate of Flushable Consumer Products, Water Environment Research, Volume 84, Number 5, May 2012

31-12    D. Valero Huerta and R. García-Bartual, Optimization of Air Conditioning Diffusers Location in Large Agricultural Warehouses Using CFD Techniques, International Conference of Agricultural Engineering (CIGR-AgEng2012) Valencia, Spain, July 8-12, 2012

16-12 Yi Fan Fu, Wei Dong, Ying Li, Yi Tan, Ming Hui Yi, Akira Kawasaki, Simulation of the Effects of the Physical Properties on Particle Formation of Pulsated Orifice Ejection Method (POEM), 2012, Advanced Materials Research, 509, 161. Available for purchase online at Scientific.Net.

92-11  Giancarlo Alfonsi, Agostino Lauria, Leonardo Primavera, The lower vertical structure past the Ahmed car model, International Conference on Computational Science, ICCS 2011. Available for purchase online at Begell Digital Library.

80-11  Ismail Abustan, Meor Othman Hamzah, Mohd Aminur Rashid, A 3-Dimensional Numerical Study of a Flow within a Permeable Pavement, OIDA International Conference on Sustainable Development, ISSN 1923-6670, Putrajaya, Malaysia, 5-7th December 2011

66-11   H. Kondo, T. Furukawa, Y. Hirakawa, K. Nakamura, M. Ida, K.Watanabe, T. Kanemura, E. Wakai, H. Horiike, N. Yamaoka, H. Sugiura, T. Terai, A. Suzuki, J. Yagi, S. Fukada, H. Nakamura, I. Matsushita, F. Groeschel, K. Fujishiro, P. Garin and H. Kimura, IFMIF-EVEDA lithium test loop design and fabrication technology of target assembly as a key componentNuclear Fusion Volume 51 Number 12, doi:10.1088/0029-5515/51/12/123008

49-11     N.I. Vatin, A.A. Girgidov, K.I. Strelets, Numerical modelling the three-dimensional velocity field in the cyclone, Inzhenerno-Stroitel’nyi Zhurnal, No. 4, 2011. In Russian.

41-11    Maiko Hosoda, Taichi Hirano, and Keiji Sakai, Low-Viscosity Measurement by Capillary Electromagnetically Spinning Technique, © 2011 The Japan Society of Applied Physics, Japanese Journal of Applied Physics, July 20, 2011.

18-11  Ortloff, C.R., Vogel, M., Spray cooling heat transfer — Test and CFD analysis, Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2011 27th Annual IEEE, 20-24 March 2011, pp 245 – 252, San Jose, CA, 10.1109/STHERM.2011.5767208.

82-10   Dr. John Abbott, Two problems on the flow of viscous sheets of molten glass, 26th Annual Workshop on Mathematical Problems in Industry, Rensselear Polytechnic Institute, June 14-18, 2010

57-10  Chouet, B. A., Dawson, P. B., James, M. R. and Lane, S. J., Seismic source mechanism of degassing bursts at Kilauea Volcano, Hawaii: Results from waveform inversion in the 10–50 s band, J. Geophys. Res., 115, B09311, doi:10.1029/2009JB006661, September 2010. Available online at JOURNAL OF GEOPHYSICAL RESEARCH.

55-10 Pamela Waterman, FEA and CFD: Getting Better All the Time, Desktop Engineering, December 2010.

53-10  Nicolas Fries, Capillary transport processes in porous materials – experiment and model, Cuvillier Verlag Göttingen; 2010; ISBN 978-3-86955-507-2. Available at www.cuvillier.de  and www.amazon.de.

45-10  Meiring Beyers, Thomas Harms, and Johan Stander, Mitigating snowdrift at the elevated SANAE IV research station in Antarctica CFD simulation and field application, The Fifth International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, North Carolina, USA, May 23-27, 2010.

31-10 J. Spangenberg, N. Roussel, J.H. Hattel, J. Thorborg, M.R. Geiker, H. Stang and J. Skocek, Prediction of the Impact of Flow-Induced Inhomogeneities in Self-Compacting Concrete (SCC), Ch. 25 of “Design, Production and Placement of Self-Consolidating Concrete,” RILEM Bookseries, 2010, Volume 1, Part 5, 209-215, DOI: 10.1007/978-90-481-9664-7_18. Available online at Springer Link.

28-10 Sirisha Burra, Daniel P. Nicolella, W. Loren Francis, Christopher J. Freitas, Nicholas J. Mueschke, Kristin Poole, and Jean X. Jiang, Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels, Proc Natl Acad Sci U S A. 2010 Jul 19. [Epub ahead of print], Available for purchase at PNAS.

19-10 Michael T. Tolley, Michael Kalontarov, Jonas Neubert, David Erickson and Hod Lipson, Stochastic Modular Robotic Systems A Study of Fluidic Assembly Strategies, IEEE Transactions on Robotics, Vol. 26, NO. 3, June 2010

59-17   Han Eol Park and In Cheol Bang, Design study on mixing performance of rotational vanes in subchannel with fuel rod bundles, Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, October 26-27, 2017.

44-09 Micah Fuller, Fabian Bombardelli, Deb Niemeier, Particulate Matter Modeling in Near-Road Vegetation Environments, Contract AQ-04-01: Developing Effective and Quantifiable Air Quality Mitigation Measures, UC Davis, Caltrans, September 2009

28-09 D. C. Lo, Dong-Taur Su and Jan-Ming Chen (2009), Application of Computational Fluid Dynamics Simulations to the Analysis of Bank Effects in Restricted Waters, Journal of Navigation, 62, pp 477-491, doi:10.1017/S037346330900527X; Purchase the article online (clicking on this link will take you to the Cambridge Journals website).

24-09 Richard C. Givler and Mario J. Martinez, Modeling of Pulsating Heat Pipes, Sandia Report, SAND2009-4520, Sandia National Laboratories, August 2009.

45-08  J. Saeki, Seikei Kakou, Three-Dimensional Flow Analysis of a Thermosetting Compound in a Motor Stator, 20, 750-754 (2008) [in Japanese] (Zipped file contains paper and appendices)

38-08 Yoshifumi Kuriyama, Ken’ichi Yano and Masafumi Hamaguchi, Trajectory Planning for Meal Assist Robot Considering Spilling Avoidance, 17th IEEE International Conference on Control Applications, Part of 2008 1EEE Multi-conference on Systems and Control, San Antonio, Texas, September 3-5, 2008

29-08 Ernst W.M. Hansen, Wojciech Nemec and Snorre Heimsund, Numerical CFD simulations — a new tool for the modelling of turbidity currents and sand dispersal in deep-water basins, Production Geoscience 2008 in Stavanger, Norway, © 2008

17-08 James, M. R., Lane, S. J. & Corder, S. B., Modelling the rapid near-surface expansion of gas slugs in low-viscosity magmas, In Lane S. J., Gilbert J. S. (eds) Fluid Motion in Volcanic Conduits: A Source of Seismic and Acoustic Signals. Geol. Soc., London, Spec. Pub., 307, 147-167, doi: 10.1144/SP307.9. 2008

16-08 Stefano Malavasi, Nicola Trabucchi, Numerical Investigation of the Flow Around a Rectangular Cylinder Near a Solid Wall, BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications, Milano, Italy, July 2008

41-07 Nicolas Roussel, Mette R. Geiker, Frederic Dufour, Lars N. Thrane and Peter Szabo, Computational modeling of concrete flow General Overview, Cement and Concrete Research 37 (2007) 1298-1307, © 2007 Elsevier Ltd.

40-07 Nemec, W., Heimsund, S., Xu, J. & Hansen, E.W.M., Numerical CFD simulation of turbidity currents, British Sedimentological Research Group (BSRG) Annual Meeting, Birmingham, 17-18 December 2007

39-07 Heimsund, S, Xu, J. & Nemec, W., Numerical Simulation of Recent Turbidity Currents in the Monterey Canyon System, Offshore California, American Geophysical Union Fall Meeting, 10-14 December 2007

32-07 James, M. R., Lane, S. J. & Corder, S. B., Modeling the near-surface expansion of gas slugs in basaltic magmaEos Trans. A.G.U., 88(52), Fall Meet. Suppl.. Abs. V12B-03. 2007

31-07 James, M. R., Lane, S. J. and Corder, S. B., Degassing low-viscosity magma: Quantifying the transition between passive bubble-burst and explosive activityE.G.U. Geophys. Res. Abstr., 905336, SRef-ID: 1607-7962/gra/EGU2007-A-05336. 2007

35-06  S. Green and C. Manepally, Software Validation Report for FLOW-3D Version 9.0, Center for Nuclear Waste Regulatory Analyses, August 2006

33-06 N. Roussel, Correlation between yield stress and slump: Comparison between numerical simulations and concrete rheometers results, © RILEM 2006, Materials and Structures (2006) 39:501-509, Purchase online at Springer Link.

32-06 Heimsund, S., Möller, N. and Guargena, C., FLOW-3D simulation of the Ormen Lange field, mid-Norway, In: Hoyanagi, K., Takano, O. and Kano, K. (Ed.), Abstracts, International Association of Sedimentologists 17th International Sedimentological Congress, Fukuoka, Vol. B, p. 107, 2006

10-06 Gengsheng Wei, An Implicit Method to Solve Problems of Rigid Body Motion Coupled with Fluid Flow, Flow Science Technical Note #76, FSI-05-TN76.

8-06 Gengsheng Wei, Three-Dimensional Collision Modeling for Rigid Bodies and its Coupling with Fluid Flow Computation, Flow Science Technical Note #75, FSI-06-TN75.

34-05  Young Bae Kim, Kyung Do Kim, Sang Eui Hong, Jong Goo Kim, Man Ho Park, and Ju Hyun Kim, and Jae Keun Kweon, 3D Simulation of PU Foaming Flow in a Refrigerator Cabinet, Appliance Magazine.com, January 2005.

33-05 N. Roussel, Fifty-cent rheo-meter for yield stress measurements From slump to spreading flow, @2005 by The Society of Rheolgoy, Inc., J. Rheol. 49(3), 705-718 May/June (2005)

32-05 Heimsund, S., Möller, N., Guargena, C. and Thompson, L., Field-scale modeling of turbidity currents by FLOW-3D simulations, In: Workshop Abstracts, Modeling of Turbidity Currents and Related Gravity Currents, University of California, Santa Barbara, 2 p., (2005)

15-05 Gengsheng Wei, A Fixed-Mesh Method for General Moving Objects, Flow Science Technical Note #73, FSI-05-TN73

14-05 James M. Brethour, Incremental Thermoelastic Stress Model, Flow Science Technical Note #72, FSI-05-TN72

9-05 Gengsheng Wei, A Fixed-Mesh Method for General Moving Objects in Fluid Flow, Modern Physics Letters B, Vol. 19, Nos. 28-29 (2005) 1719-1722

1-05 C.W. Hirt, Electro-Hydrodynamics of Semi-Conductive Fluids: With Application to Electro-Spraying Flow Science Technical Note #70, FSI-05-TN70

35-04  J. Saeki, T. Kono and T. Teramae, Seikei Kakou, Formulation of Mathematical Models for Estimating Residual Stress and Strain Components Correlated with 3-D Flow of Thermosetting Compounds, 16, 5, 309-316 (2004) [in Japanese]. (Zipped file contains paper and appendices)

31-04 Heimsund, S., Möller, N., Guargena, C. and Thompson, L., The control of seafloor topography on turbidite sand dispersal in the Ormen Lange field: a large-scale application of FLOW-3D simulations, In: Martinsen, O.J. (Ed.), Abstracts and Proceedings of the Geological Society of Norway (NGF), Deep Water Sedimentary Systems of Arctic and North Atlantic Margins, Stavanger, 3, p. 25, (2004)

26-04 Beyers, J.H.M., Harms, T.M. and Sundsbø, P.A., 2004, Numerical simulation of three dimensional, transient snow drifting around a cube, Journal of wind engineering and industrial aerodynamics, vol. 92, pp. 725-747, ISSN 0167-6105

25-04 Beyers, J.H.M, Harms, T.M. and Sundsbø, P.A., 2004, Numerical simulation of snow drifting around an elevated obstacle, Proceedings of the 5th conference on snow engineering, Davos, Switzerland, pp.185-191

17-04 Michael Barkhudarov, Multi-Block Gridding Technique for FLOW-3D (Revised), Flow Science Technical Note #59-R2, FSI-00-TN59-R2

36-03 Heimsund, S., Hansen, E.W.M. and Nemec, W., Numerical CFD simulation of turbidity currents and comparison with laboratory data, In: Hodgetts, D., Hodgson, D. and Smith, R. (Ed.), Slope Modelling Workshop Abstracts, Experimental, Reservoir and Forward Modelling of Turbidity Currents and Deep-Water Sedimentary Systems, Liverpool Univ., p. 13., (2003b)

35-03 Heimsund, S., Hansen, E.W.M. and Nemec, W. Computational 3-D fluid-dynamics model for sediment transport, erosion and deposition by turbidity currents, In: Nakrem, H.A. (Ed.), Abstracts and Proceedings of the Geological Society of Norway (NGF), Den 18. Vinterkonferansen, Oslo, 1, p. 39., (2003a)

33-03 Beyers, J.H.M., Sundsbø, P.A. and Harms, T.M., 2003, Numerical simulation and verification of drifting snow around a cube, Proceedings of the 11th international conference on wind engineering, Texas Tech University, Lubbock, Texas, USA, pp. 1886-1893

27-03 Jun Zeng, Daniel Sobek and Tom Korsmeyer, Electro-Hydrodynamic Modeling of Electrospray Ionization CAD for a µFluidic Device-Mass Spectrometer Interface, Agilent Technologies Inc, paper presented at Transducers 2003, June 03 Boston (note: Reference #10 is to FLOW-3D)

25-03 J. M Brethour, Moving Boundaries an Eularian Approach, Moving Boundaries VII, Computational Modelling of Free and Moving Boundary Problems, A. A. Mammoli & C.A. Brebbia, WIT Press

19-03 James Brethour, Incremental Elastic Stress Model, Flow Science Technical Note (FSI-03-TN64)

18-03 Michael Barkhudarov, Semi-Lagrangian VOF Advection Method for FLOW-3D, Flow Science Technical Note (FSI-03-TN63)

11-02 Junichi Saeki and Tsutomu Kono, Three-Dimensional Flow Analysis of a Thermosetting Compound during Mold Filling, Polymer Processing Society 18th Annual Meeting, June 2002, Guimares, Portugal.

46-01 Yasunori Iwai, Takumi Hayashi, Toshihiko Yamanishi, Kazuhiro Kobayashi and Masataka Nishi, Simulation of Tritium Behavior after Intended Tritium Release in Ventilated Room, Journal of Nuclear Science and Technology, Vol. 38, No. 1, p. 63-75, January 2001

23-01 Borre Bang, Dag Lukkassen, Application of Homogenization Theory Related to Stokes Flow in Porous Media, Applications of Mathematics, Narvik, Norway, No 4, pp. 309-319.

15-01 Ernst Hansen, SINTEF Energy Research, Trondheim, Norway, Computer Simulation Helps Increase Flow Rate in Three-Phase Separator, Drilling Marketplace, Vol 55, No 10, May 15, 2001, pp.14

10-01 Ernst Hansen, SINTEF Energy Research, Phenomeological Modeling and Simulation of Fluid Flow and Separation Behaviour in Offshore Gravity Separators, PVP-Col 431, Emerging Technologies for Fluids, Structures and Fluids, Structures and Fluid Structure Interaction — 2001, ASME 2001, pp. 23-29

7-01 C. Bohm, D. A. Weiss, and C. Tropea, Multi-droplet Impact onto Solid Walls Droplet-droplet Interaction and Collision of Kinemeatic Discontinuities, DaimlerChrysler Research and Technology, ILASS-Europe 2000, September 11-13, 2000

6-01 Ernst Hansen, Simulation Raises Separator Flow RateEngineering Talk, March 21, 2001

3-01 M. Sick, H. Keck, G. Vullioud, and E. Parkinson, New Challenges in Pelton Research

1-01 Y. Darsht, K. Kuvanov, A. Puzanov, I. Kholkin, FLOW-3D in Designing Hydraulic Systems for Heavy Machinery  (in Russian), SAPR I Grafika (CAD and Graphics), August 2000, pp. 50-55.

22-00 A. K. Temu, O. K. Sønju and E. W. M. Hansen, Criteria for Minimum Particle Deposition onto a Cylinder in Crossflow, International Symposium on Multiphase Flow and Transport Phenomena, November 2000, Tekirova, Antalya, Turkey

21-00 Claus Maier, Stefan aus der Wiesche and Eberhard P. Hofer, Impact of Microdrops on Solid Surfaces for DNA-Synthesis, Department of Measurement, Control and Microtechnology, University of Ulm, Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, pp. 586-589

11-00 Thomas K. Thiis, A Comparison of Numerical Simulations and Full-scale Measurements of Snowdrifts around Buildings, Wind and Structures – ISSN: 1226-6116,Vol. 3, nr. 2 (2000), pp. 73-81

10-00 P.A. Sundsbo and B. Bang, Snow drift control in residential areas-Field measurements and numerical simulations, Fourth International Conference on Snow Engineering, pp. 377-382

9-00 Thomas K. Thiis and Christian Jaedicke, The Snowdrift Pattern Around Two Cubical Obstacles with Varying Distance—Measurement and Numerical Simulations, Snow Engineering, edited by Hjorth-Hansen, et al, Balkema, Rotterdam, 2000, pp.369-375.

8-00 Thomas K. Thiis and Christian Jaedicke, Changes in the Snowdrift Pattern Caused by a Building Extension—Investigations Through Scale Modeling and Numerical Simulations, Snow Engineering, edited by Hjorth-Hansen, et al, Balkema, Rotterdam, 2000, pp. 363-368

7-00 Bruce Letellier, Louis Restrepo, and Clinton Shaffer, Near-Field Dispersion of Fission Products in Complex Terrain Using a 3-D Turbulent Fluid-Flow Model, CCPS International Conference, San Francisco, CA, September 28-October 1, 1999

6-00 Bruce Letellier, Patrick McClure, and Louis Restrepo, Source-Term and Building-Wake Consequence Modeling for the GODIVA IV Reactor at Los Alamos National Laboratory, 1999 Safety Analysis Workshop, Portland, Oregon, June 13-18, 1999

11-99 Thomas K. Thiis and Yngvar Gjessing, Large-scale Measurements of Snowdrifts Around Flat-roofed and Single-pitch-roofed Buildings, Cold Regions Science and Technology 30, Narvik, Norway, May 17, 1999, pp. 175-181

3-99 A. A. Gubaidullin, Jr., T. N. Dinh, and B. R. Sehgal, Analysis of Natural Convection Heat Transfer and Flows in Internally Heated Stratified Liquid, accepted for publication 33rd Natl. Heat Transfer Conf. CD proceedings, Albuquerque, NM, August 15-17, 1999

20-98 Mark W. Silva, A Computational Study of Highly Viscous Impinging Jets, published by the Amarillo National Resource Center for Plutonium, ANRCP-1998-18, November 1998

17-98 P. A. Sundsbo and B. Bang, 1998, Calculation of Snowdrift Around Roadside Safety Barriers, Proc of the International Snow Science Workshop, Sept. 1998, Sunriver, Oregon, USA 279-283

11-98 P-A Sundsbo, Numerical simulations of wind deflection fins to control snow accumulation in building steps, Journal of Wind Engineering and Industrial Aerodynamics 74-76 (1998) 543-552

23-97  P.E. O’Donoghue, M.F. Kanninen, C.P. Leung, G. Demofonti, and S. Venzi, The development and validation of a dynamic propagation model for gas transmission pipelines, Intl J. Pres. Ves. & Piping 70 (1997) 11-25, P11 : S0308 – 0161 (96) 00012 – 9.

22-97  Christopher J. Matice, Simulation of High Speed Filling, Presented at High Speed Processing & Filling of Plastic Containers, SME, Chicago, Illinois, November 11, 1997.

12-97 B. Entezam and W. K. Van Moorhem, University of Utah, Salt Lake City, UT and J. Majdalani, Marquette University, Milwaukee, WI, Modeling of a Rijke-Tube Pulse Combustor Using Computational Fluid Dynamics, presented at 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Seattle, WA, July 6-9, 1997.

11-97 B. Entezam, Computational and Experimental Investigation of Unsteady Flowfield Inside the Rijke Tube, doctoral thesis submitted to University of Utah, Dept. Mechanical Engineering, Salt Lake City, UT, June 1997

2-97 K. Fujisaki, T. Ueyama, and K. Okazawa, Magnetohydrodynamic Calculation of In-Mold Electromagnetic Stirring, Nippon Steel Corp., IEEE Transactions on Magnetics, Vol. 33, No. 2, March 1997

1-97 P. A. Sundsbo, Four Layer Modelling and Numerical Simulations of Snow Drift, to be submitted to the Journal of Glaciology, 1997

23-96 Andy K Palmer, Computational Fluid Dynamic Software Comparison and Electrostatic Precipitator Modeling, Presented to the Faculty of California State University, Summer 1996

21-96 P. A. Sundsbo, Computer Simulation of Snow-Drift around Structures, Proceedings of the 4th Symposium on Building Physics in the Nordic Countries, Vol. 2, 533-539, Finland, 9-10 Sep. 1996

20-96 P. A. Sundsbo and E.W.M. Hansen, Modelling and Numerical Simulation of Snow-Drift around Snow Fences, Proceedings of the 3rd International Conference on Snow Engineering, Sendai, Japan, 26-31 May 1996

19-96 P. A. Sundsbo, Numerical Modelling and Simulation of Snow Accumulations around Porous FencesProceedings of the International Snow Science Workshop, Banff, Alberta, Canada, 6-10 Oct. 1996

18-96 T. Iverson, Editor, Applied Modelling and Simulation, Proceedings of the 38th SIMS Simulation Conference, Norwegian University of Science and Technology, Trondheim, Norway, June 11-13, 1996

17-96 C. L. Parish, Modeling Compressible Flow Through an Orifice Stack Using Numerical Methods, thesis submitted for M.S. Mech. Engineering, NM State University, Las Cruces, NM, December 1996

15-96 T. Wiik and R. K. Calay, A Study of Balcony on Flow-Field and Wind Loads for Low-Rise Buildings, Fourth Symposium on Building Physics in the Nordic Countries, Dipoli, Espoo, Finland, September 1996

14-96 T. Wiik, E.W.M. Hansen, The Assessment of Wind Loads on Roof Overhang of Low-Rise Buildings, Second International Symposium Wind Engineering, Fort Collins, CO, September 1996

13-96 T. Wiik, R. K. Calay, and A. Holdo, A Study of Effects of Eaves on Flow-Field and Wind Loads for Low-Rise Houses, Third International Colloquium on Bluff Body Aerodynamics and Applications, Blacksburg, Virginia, August 1996

11-96 Y. Miyamoto and M. Harada, A Flow Analysis accompanied by Formation of the Liquid Droplets shown with an Animation Display Technique, SEA Corporation, presented at Visualization Information Conference, Tokyo, Japan, July 17, 1996

8-96 J. Bakken, E. Naess, T. Engebretsen, and E. W. M. Hansen, Fluid Flow in Porous Media, proceedings of the 38th SIMS Simulations Conference, Norwegian Univ. of Science & Technology, Trondheim, Norway, June 11-13, 1996

7-96E. W. M. Hansen, Performance of Oil/Water Gravity Separators Imposed to Motion, proceedings of the 38th SIMS Simulations Conference, Norwegian Univ. of Science & Technology, Trondheim, Norway, June 11-13, 1996

8-95 J. J. Francis, Computational Hydrodynamic Study of Flow through a Vertical Slurry Heat Exchanger, NSF Summer Research Program, Dept. Mech. Engineering, Univ. of Nevada Las Vegas, August 9, 1995

4-94 J. L. Ditter and C. W. Hirt, A Scalable Model for Mixing Vessels, Flow Science report, FSI-94-00-1, presented at the 1994 ASME Fluids Engineering Summer Meeting, Incline Village, NV, June 1994

3-94 A. Nielsen, B. Bang, P. A. Sundsbo and T. Wiik, Computer Simulation of Windspeed, Windpressure and Snow Accumulation around Buildings (SNOW-SIM), 1st International Conference on HVAC in Cold Climate, Rovaniemi, Finland, from Narvik Institute of Technology, Narvik, Norway, March 1994

2-94 J. M. Sicilian, Addition of an Extended Bubble Model to FLOW-3D, Flow Science report, FSI-94-58-1, March 1994

1-94 T. Hong, C. Zhu, P. Cal and L-S Fan, Numerical Modeling of Basic Modes of Formation and Interactions of Bubbles in Liquids, Dept. Chem. Engineering, Ohio State University, Columbus, OH 43210, March 1994

14-93 J. L. Ditter and C. W. Hirt, A Scalable Model for Stir Tanks, Flow Science Technical Note #38, December 1993 (FSI-93-TN38)

13-93 J. Partinen, N. Saluja and J. K. Kirtley, Jr., Experimental and Computational Investigation of Rotary Electromagnetic Stirring in a Woods Metal System, Dept. of Math, Science and Engr. and Dept. of Electrical Engr. and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

12-93 J. Partinen, N. Saluja and J. K. Kirtley, Jr., Modeling of Surface Deformation in an Electromagnetically Stirred Metallic Melt, Dept. of Math, Science, and Engr. and Dept. of Electrical Engr. and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

10-93 C. Philippe, Summary Report on Test Calculations with FLOW-3D/CAST93, (coupled-rigid-body dynamics model), ESTEC, Noordwijk, The Netherlands, September 17, 1993

5-93 J. M. Sicilian, J. L. Ditter and C. L. Bronisz, FLOW-3D Analyses of CFD Triathlon Benchmark, Flow Science report, presented at the ASME Fluids Engineering Conference, Washington DC, June 20-24, 1993

4-93 T. Wiik, Ventilation of the Attic due to Wind Loads on Low-Rise Buildings, paper for 3rd Symposium of Building Physics in Nordic Countries, Narvik Institute of Technology, Narvik, Norway, summer 1993

3-93 E. W. M. Hansen, Modelling and Simulation of Separation Effects and Fluid Flow Behaviour in Process-Units, SIMS’93 – 35th Simulation Conference, Kongsberg, Norway, June 9-11, 1993

2-93 M. A. Briones, R. S. Brodsky and J. J. Chalmers, Computer Simulation of the Rupture of a Gas Bubble at a Gas-Liquid Interface and its Implications in Animal Cell Damage, Dept. Chemical Engineering, Ohio State University, Manuscript No. RB68, April 1993

11-92 G. Trapaga, E. F. Matthys, J. J. Valencia and J. Szekely, Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numerical and Experimental Results, Metallurgical Transactions B, Vol. 23B, pp. 701-718, December 1992

10-92 J. B. Dalin, J. M. Le Guilly, P. Le Roy and E. Maas, Numerical Simulations Applied to the Production of Automotive Foundry Components, Numerical Methods in Industrial Forming Processes, Wood & Zienkiewicz (eds), Balkema, Rotterdam, 1992

5-92 C. W. Hirt, Volume-Fraction Techniques: Powerful Tools for Flow Modeling, Flow Science report (FSI-92-00-02), presented at the Computational Wind Engineering Conference, University of Tokyo, August 1992

3-92 C. L. Bronisz and C.W. Hirt, Lubricant Flow in a Rotary Lip Seal, Flow Science Technical Note #33, February 1992 (FSI-92-TN33)

16-91 A. Nielsen, SNOW-SIM – Computer Model for Simulation of Wind and Snow Loads on Buildings and Structures, Building Science, Narvik Institute of Technology, Narvik, Norway, (not dated)

15-91 E. W. M. Hansen, H. Heitmann, B. Laska, A. Ellingsen, O. Ostby, T. B. Morrow and F. T. Dodge, Fluid Flow Modelling of Gravity Separators, SINTEF, Norway and Southwest Research Institute, Texas, Elsevier Science Publishers, 1991

14-91 E. W. M. Hansen, H. Heitmann, B. Laska and M. Loes, Numerical Simulation of Fluid Flow Behaviour Inside, and Redesign of a Field Separator, SINTEF, Norway and STATOIL, Norway (not dated)

13-91 G. Trapaga and J. Szekely, Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes, Metallurgical Transactions, Vol. 22B, pp. 901-914, December 1991

11-91 N. Saluja and J. Szekely, Velocity Fields and Free Surface Phenomena in an Inductively Stirred Mercury Pool, European Journal of Mechanics, B/Fluids, Vol. 10, No. 5, pp. 563-572, Oct. 1991

4-90 J. M. Sicilian, A Note on Implementing Specified Velocities and Momentum Sources, Flow Science report, September 1990 (FSI-90-00-5)

13-90 P. Jonsson, N. Saluja, O. J. Ilegbusi, and J. Szekely, Fluid Flow Phenomena in the Filling of Cylindrical Molds Using Newtonian (Turbulent) and Non-Newtonian (Power Law) Fluids, submitted to Trans. of the American Foundrymen’s Soc., June 1990

12-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, On the Computation of the Velocity Fields and the Dynamic Free Surface Generated in a Liquid Metal Column by a Rotating Magnetic Field, submitted to J. Fluid Mech., July 1990

7-90 C. L. Bronisz and C. W. Hirt, Modeling Unsaturated Flow in Porous Media: A FLOW-3D Extension, Flow Science report, July 1990 (FSI-90-48-2)

5-90 C. L. Bronisz and C. W. Hirt, Hydrodynamic Ram Simulations Using FLOW-3D, Flow Science report, May 1990 (FSI-90-49-1)

3-90 C. W. Hirt, Turbojet Plume Flow Analysis, Flow Science report, February 1990 (FSI-90-45-1)

5-89 K. S. Eckhoff and E. W. M. Hansen, Mathematical Modelling and Numerical Investigation of Separation in Two-Phase Rotating Flow, SINTEF-Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology, Trondheim, Norway, Report No. OR 22 1907.00.01.89, 29 April 1989

2-89 J. M. Sicilian and J. R. Tegart, Comparisons of FLOW-3D Calculations with Very Large Amplitude Slosh Data, presented at the Symposium on Computational Experiments, PVP ASME Conference, Honolulu, HI, July 22-27, 1989

2-88 J. M. Sicilian and C. W. Hirt, AFT Field Joint: CFD Analysis Using the FLOW-3D Program, in Redesigned Solid Rocket Motor Circumferential Flow Technical Interchange Meeting Final Report, NASA-TWR-17788, February 1988

14-87 C. J. Freitas, S. T. Green, and T. B. Morrow, Fluid Dynamics Associated with Ductile Pipeline Fracture, Southwest Research Institute report presented at ASME Winter Annual Meeting, Boston, MA, December 1987

13-87 J. Sicilian, The FLOW-3D Model for Thermal Conduction in Solids, Flow Science report, Dec. 1987 (FSI-87-00-4)

7-87 C.W. Hirt, Vectored Nozzle Flow with Turbulence Modeling, Flow Science report, Sept. 1987 (FSI-87-29-1)

4-87 J.M. Sicilian, C.W. Hirt, and R. P. Harper, FLOW-3D: Computational Modeling Power for Scientists and Engineers, Flow Science report, 1987 (FSI-87-00-1)

3-86 J. M. Sicilian, Natural-Convection Heat-Transfer Analysis, Flow Science Technical Note #4, June 1986 (FSI-86-00-TN4)

2-86 J. Navickas and C. R. Cross, Air Circulation Characteristics and Convective Losses in a 5-MW Molten Salt Cavity Solar Receiver, ASME 8th Annual Conference on Solar Engineering, Anaheim, California, April 13-16, 1986

5-85 C. W. Hirt and R. P. Harper, Calculations of Vent Clearing in a Chemical Process Tank, Flow Science report, December 1985 (FSI-85-28-1)

2-84 Applications of SOLA-3D/FSI to Fluid Slosh, Flow Science report, May 1984

Coastal & Maritime Bibliography

Coastal & Maritime Bibliography

다음은 연안 및 해양 분야의 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. FLOW-3D를 사용하여 연안 및 해양 시설물을 성공적으로 시뮬레이션 하는 방법에 대해 자세히 알아보십시오.

2024년 11월 20일 Update

119-24 Faris Ali Hamood Al-Towayti, Hee-Min Teh, Zhe Ma, Idris Ahmed Jae, Agusril Syamsir, Ebrahim Hamid Hussein Al-Qadami, Hydrodynamic performance assessment of emerged, alternatively submerged and submerged semicircular breakwater: An experimental and computational study, Journal of Marine Science and Engineering, 12; 1105, 2024. doi.org/10.3390/jmse12071105

117-24 Dong Zeng, Wuyang Bi, Yi Yu, Yun Yan, Weiqiu Chen, Yong Yao, Cheng Zhang, Tianyu Wu, Prediction of local scouring of offshore wind turbine foundations based on the amplification principle of local seabed shear stress, The 34th International Ocean and Polar Engineering Conference, ISOPE-I-24-125, 2024.

116-24 Chen-Shan Kung, Ya-Cing You, Pei-Yu Lee, Siu-Yu Pan, The air entrainment effect of pump blades operation under different water depths, The 34th International Ocean and Polar Engineering Conference, ISOPE-I-24-595, 2024.

114-24 Chen-Shan Kung, Siu-Yu Pan, Pei-Yu Lee, Ya-Cing You, Sediment flushing of different angle on density outflow, The 34th International Ocean and Polar Engineering Conference, ISOPE-I-24-183, 2024.

102-24 Mary Kathryn Walker, Computational fluid dynamics study of perforated monopiles, Thesis, Florida Institute of Technology, 2024.

80-24 Deniz Velioglu Sogut, Erdinc Sogut, Ali Farhadzadeh, Tian-Jian Hsu, Non-equilibrium scour evolution around an emerged structure exposed to a transient wave, Journal of Marine Science and Engineering, 12; 946, 2024. doi.org/10.3390/jmse12060946

79-24 Sujantoko, D.R. Ahidah, W. Wardhana, E.B. Djatmiko, M. Mustain, Numerical modeling of wave reflection and transmission in I-shaped floating breakwater series, IOP Conference Series: Earth and Environmental Science, 1321; 012010, 2024. doi.org/10.1088/1755-1315/1321/1/012010

75-24 Sahel Sohrabi, Mohamad Ali Lofollahi Yaghin, Alireza Mojtahedi, Mohamad Hosein Aminfar, Mehran Dadashzadeh, Experimental and numerical investigation of a hybrid floating breakwater-WEC system, Ocean Engineering, 303; 117613, 2024. doi.org/10.1016/j.oceaneng.2024.117613

73-24 Penghui Wang, Chunning Ji, Xiping Sun, Dong Xu, Chao Ying, Development and test of FDEM–FLOW-3D—A CFD–DEM model for the fluid–structure interaction of AccropodeTM blocks under wave loads, Ocean Engineering, 303; 117735, 2024. doi.org/10.1016/j.oceaneng.2024.117735

67-24 Alexander Schendel, Stefan Schimmels, Mario Welzel, Philippe April-LeQuéré, Abdolmajid Mohammadian, Clemens Krautwald, Jacob Stolle, Ioan Nistor, Nils Goseberg, Spatiotemporal scouring processes around a square column on a sloped beach induced by tsunami bores, Journal of Waterway, Port, Coastal, and Ocean Engineering, 150.3; 2024. https://doi.org/10.1061/JWPED5.WWENG-2052

65-24 Kaiqi Yu, Elda Miramontes, Matthieu J.B. Cartigny, Yuping Yang, Jingping Xu, The impacts of profile concavity on turbidite deposits: Insights from the submarine canyons on global continental margins, Geomorphology, 454; 109157, 2024. doi.org/10.1016/j.geomorph.2024.109157

61-24 M.T. Mansouri Kia, H.R. Sheibani, A. Hoback, Initial maintenance notes about the first river ship lock in Iran, Journal of Hydraulic and Water Engineering, 1.2; pp. 143-162, 2024.

47-24 Cheng Yee Ng, Nauman Riyaz Maldar, Muk Chen Ong, Numerical investigation on performance enhancement in a drag-based hydrokinetic turbine with a diffuser, Ocean Engineering, 298; 117179, 2024. doi.org/10.1016/j.oceaneng.2024.117179

26-24 Zegao Yin, Guoqing Li, Fei Wu, Zihan Ni, Feifan Li, Experimental and numerical study on hydrodynamic characteristics of a bottom-hinged pitching flap breakwater under regular waves, Ocean Engineering, 293; 116665, 2024. doi.org/10.1016/j.oceaneng.2024.116665

21-24   Young-Ki Moon, Chang-Ill Yoo, Jong-Min Lee, Sang-Hyub Lee, Han-Sam Yoon, Evaluation of pedestrian safety for wave overtopping by ship-induced waves in waterfront revetment, Journal of Coastal Research, 116; pp.314-318, 2024. doi.org/10.2112/JCR-SI116-064.1

14-24   Hongliang Wang, Xuanwen Jia, Chuan Wang, Bo Hu, Weidong Cao, Shanshan Li, Hui Wang, Study on the sand-scouring characteristics of pulsed submerged jets based on experiments and numerical models, Journal of Marine Science and Engineering, 12.1; 57, 2024. doi.org/10.3390/jmse12010057

239-23 Sara Tuozzo, Angela Di Leo, Mariano Buccino, Fabio Dentale, Eugenio Pugliese Carratelli, Mario Calabrese, The effect of wind stress on wave overtopping on vertical seawall, Coastal Engineering Proceedings, 37; 2023. doi.org/10.9753/icce.v37.papers.49

224-23   Helia Molaei Nodeh, Reza Dezvareh, Mahdi Yousefifard, Numerical analysis of the effects of rubble mound breakwater geometry under the effect of nonlinear wave force, Arabian Journal for Science and Engineering, 2023. doi.org/10.1007/s13369-023-08520-2

212-23   Feifei Cao, Mingqi Yu, Meng Han, Bing Liu, Zhiwen Wei, Juan Jiang, Huiyuan Tian, Hongda Shi, Yanni Li, WECs microarray effect on the coupled dynamic response and power performance of a floating combined wind and wave energy system, Renewable Energy, 219.2; 119476, 2023. doi.org/10.1016/j.renene.2023.119476

210-23   H. Omara, Sherif M. Elsayed, Karim Adel Nassar, Reda Diab, Ahmed Tawfik, Hydrodynamic and morphologic investigating of the discrepancy in flow performance between inclined rectangular and oblong piers, Ocean Engineering, 288.2; 116132, 2023. doi.org/10.1016/j.oceaneng.2023.116132

190-23   M.F. Ahmad, M.I. Ramli, M.A. Musa, S.E.G. Goh, C.W.M.N Che Wan Othman, E.H. Ariffin, N.A. Mokhtar, Numerical simulation for overtopping discharge on tetrapod breakwater, AIP Conference Proceedings, 2746.1; 2023. doi.org/10.1063/5.0153371

183-23   Youkou Dong, Enjin Zhao, Lan Cui, Yizhe Li, Yang Wang, Dynamic performance of suspended pipelines with permeable wrappers under solitary waves, Journal of Marine Science and Engineering, 11.10; 1872, 2023. doi.org/10.3390/jmse11101872

176-23   Guoxu Niu, Yaoyong Chen, Jiao Lu, Jing Zhang, Ning Fan, Determination of formulae for the hydrodynamic performance of a fixed box-type free surface breakwater in the intermediate water, Journal of Marine Science and Engineering, 11.9; 1812, 2023. doi.org/10.3390/jmse11091812

168-23   Yupeng Ren, Huiguang Zhou, Houjie Wang, Xiao Wu, Guohui Xu, Qingsheng Meng, Study on the critical sediment concentration determining the optimal transport capability of submarine sediment flows with different particle size composition, Marine Geology, 464; 107142, 2023. doi.org/10.1016/j.margeo.2023.107142

163-23   Ahmad Fitriadhy, Sheikh Fakruradzi, Alamsyah Kurniawan, Nita Yuanita, Anuar Abu Bakar, 3D computational fluid dynamic investigation on wave transmission behind low-crested submerged geo-bag breakwater, CFD Letters, 15.10; 2023. doi.org/10.37934/cfdl.15.10.1222

162-23   Ramtin Sabeti, Landslide-generated tsunami waves-physical and numerical modelling, International Seminar on Tsunami Research, University of Bath, 2023.

161-23   Duy Linh Du, Study on the optimal location for pile-rock breakwater in reducing wave height in Dong Hai District, Bac Lieu Province, Vietnam, Thesis, Can Tho University, 2023.

160-23   Duy Linh Du, Dai Bang Pham, Van Duy Dinh, Tan Ngoc Cao, Van Ty Tran, Gia Bao Tran, Hieu Duc Tran, Modelling the wave reduction effectiveness of pile-rock breakwater using FLOW-3D, (in Vietnamese) Journal of Materials and Construction, 13.04; 2023. doi.org/10.54772/jomc.04.2023.537

151-23 Zhiguo Zhang, Jinpeng Chen, Tong Ye, Zhengguo Zhu, Mengxi Zhang, Yutao Pan, Wave-induced response of seepage pressure around shield tunnel in sand seabed slope, International Journal of Geomechanics, 23.10; 2023. doi.org/10.1061/IJGNAI.GMENG-8072

147-23 Jiale Li, Jijian Lian, Haijun Wang, Yaohua Guo, Sha Liu, Yutong Zhang, FengWu Zhang, Numerical study of the local scour characteristics of bottom-supported installation platforms during the installation of a monopile, Ships and Offshore Structures, 2023. doi.org/10.1080/17445302.2023.2243700

144-23 Weixang Liang, Min Lou, Changhong Fan, Deguang Zhao, Xiang Li, Coupling effect of vortex-induced vibration and local scour of double tandem pipelines in steady current, Ocean Engineering, 286.1; 115495, 2023. doi.org/10.1016/j.oceaneng.2023.11549

136-23 Zegao Yin, Jiahao Li, Yanxu Wang, Haojian Wang, Tianxu Yin, Solitary wave attenuation characteristics of mangroves and multi-parameter prediction model, Ocean Engineering, 285.2; 115372, 2023. doi.org/10.1016/j.oceaneng.2023.115372

130-23 Sheng Wang, Chaozhe Yuan, Yuchi Hao, Xiaowei Yan, Feasibility analysis of laying and construction of deep-water dredging sinking pipeline, The 33rd International Ocean and Polar Engineering Conference, ISOPE-1-23-030, 2023.

127-23 Chen-Shan Kung, Ya-Cing You, Pei-Yu Lee, Siu-Yu Pan, Yu-Chun Chen, The air entrainment effect stability on the marine pipeline, The 33rd International Ocean and Polar Engineering Conference, ISOPE-I-23-242, 2023.

126-23 Yuting Wang, Zhaode Zhang, Yuan Zhang, Numerical simulationa and measurement of artificial flow creation in reclamation projects, The 33rd International Ocean and Polar Engineering Conference, ISOPE-1-23-168, 2023.

125-23 Chen-Shan Kung, Siu-Yu Pan, Pei-Yu Lee, Ya-Cing You, Yu-Chun Chen, Numerical simulation of wave motion on the submarine HDPE pipe system, The 33rd International Ocean and Polar Engineering Conference, ISOPE-I-23-327, 2023.

115-23 Qishun Li, Yanpeng Hao, Peng Zhang, Haotian Tan, Wanxing Tian, Linhao Chen, Lin Yang, Numerical study of the local scouring process and influencing factors of semi-exposed submarine cables, Journal of Marine Science and Engineering, 11.7; 1349, 2023. doi.org/10.3390/jmse11071349

113-23 Minxi Zhang, Hanyan Zhao, Dongliang Zhao, Shaolin Yue, Huan Zhou, Xudong Zhao, Carlo Gualtieri, Guoliang Yu, Numerical study of the flow at a vertical pile with net-like scour protection mat, Journal of Ocean Engineering and Science, 2023. doi.org/10.1016/j.joes.2023.06.002

108-23 Seyed A. Ghaherinezhad, M. Behdarvandi Askar, Investigating effect of changing vegetation height with irregular layout on reduction of waves using FLOW-3D numerical model, Journal of Hydraulic and Water Engineering, 1.1; pp.55-64, 2023. doi.org/10.22044/JHWE.2023.12844.1004

92-23 Tongshun Yu, Xingyu Chen, Yuying Tang, Junrong Wang, Yuqiao Wang, Shuting Huang, Numerical modelling of wave run-up heights and loads on multi-degree-of-freedom buoy wave energy converters, Applied Energy, 344; 121255, 2023. doi.org/10.1016/j.apenergy.2023.121255

85-23   Emilee A. Wissmach, Biomimicry of natural reef hydrodynamics in an artificial spur and groove reef formation, Thesis, Florida Institute of Technology, 2023.

81-23   Zhi Fan, Feifei Cao, Hongda Shi, Numerical simulation on the energy capture spectrum of heaving buoy wave energy converter, Ocean Engineering, 280; 114475, 2023. doi.org/10.1016/j.oceaneng.2023.114475

72-23   Zegao Yin, Fei Wu, Yingni Luan, Xuecong Zhang, Xiutao Jiang, Jie Xiong, Hydrodynamic and aeration characteristics of an aerator of a surging water tank with a vertical baffle under a horizontal sinusoidal motion, Ocean Engineering, 287; 114396, 2023. doi.org/10.1016/j.oceaneng.2023.114396

71-23   Erfan Amini, Mahdieh Nasiri, Navid Salami Pargoo, Zahra Mozhgani, Danial Golbaz, Mehrdad Baniesmaeil, Meysam Majidi Nezhad, Mehdi Neshat, Davide Astiaso Garcia, Georgios Sylaios, Design optimization of ocean renewable energy converter using a combined Bi-level metaheuristic approach, Energy Conversion and Management: X, 19; 100371, 2023. doi.org/10.1016/j.ecmx.2023.100371

70-23   Ali Ghasemi, Rouholla Amirabadi, Ulrich Reza Kamalian, Numerical investigation of hydrodynamic responses and statistical analysis of imposed forces for various geometries of the crown structure of caisson breakwater, Ocean Engineering, 278; 114358, 2023. doi.org/10.1016/j.oceaneng.2023.114358

67-23   Aisyah Dwi Puspasari, Jyh-Haw Tang, Numerical simulation of scouring around groups of six cylinders with different flow directions, Journal of the Chinese Institute of Engineers, 46.4; 2023. doi.org/10.1080/02533839.2023.2194919

62-23   Rob Nairn, Qimiao Lu, Rebecca Quan, Matthew Hoy, Dain Gillen, Data collection and modeling in support of the Mid-Breton Sediment Diversion Project, Coastal Sediments, 2023. doi.org/10.1142/9789811275135_0246

55-23   Yupeng Ren, Hao Tian, Zhiyuan Chen, Guohui Xu, Lejun Liu, Yibing Li, Two kinds of waves causing the resuspension of deep-sea sediments: excitation and internal solitary waves, Journal of Ocean University of China, 22; pp. 429-440, 2023. doi.org/10.1007/s11802-023-5293-2

42-23   Antonija Harasti, Gordon Gilja, Simulation of equilibrium scour hole development around riprap sloping structure using the numerical model, EGU General Assembly, 2023. doi.org/10.5194/egusphere-egu23-6811

25-23   Ke Hu, Xinglan Bai, Murilo A. Vaz, Numerical simulation on the local scour processing and influencing factors of submarine pipeline, Journal of Marine Science and Engineering, 11.1; 234, 2023. doi.org/10.3390/jmse11010234

12-23   Fan Zhang, Zhipeng Zang, Ming Zhao, Jinfeng Zhang, Numerical investigations on scour and flow around two crossing pipelines on a sandy seabed, Journal of Marine Science and Engineering, 10.12; 2019, 2023. doi.org/10.3390/jmse10122019

10-23 Wenshe Zhou, Yongzhou Cheng, Zhiyuan Lin, Numerical simulation of long-wave wave dissipation in near-water flat-plate array breakwaters, Ocean Engineering, 268; 113377, 2023. doi.org/10.1016/j.oceaneng.2022.113377

181-22   Ramtin Sabeti, Mohammad Heidarzadeh, Numerical simulations of water waves generated by subaerial granular and solid-block landslides: Validation, comparison, and predictive equations, Ocean Engineering, 266.3; 112853, 2022. doi.org/10.1016/j.oceaneng.2022.112853 

167-22 Zhiyong Zhang, Cunhong Pan, Jian Zeng, Fuyuan Chen, Hao Qin, Kun He, Kui Zhu, Enjin Zhao, Hydrodynamics of tidal bore overflow on the spur dike and its infuence on the local scour, Ocean Engineering, 266.4; 113140, 2022. doi.org/10.1016/j.oceaneng.2022.113140

166-22 Nguyet-Minh Nguyen, Duong Do Van, Duy Tu Le, Quyen Nguyen, Bang Tran, Thanh Cong Nguyen, David Wright, Ahad Hasan Tanim, Phong Nguyen Thanh, Duong Tran Anh, Physical and numerical modeling of four different shapes of breakwaters to test the suspended sediment trapping capacity in the Mekong Delta, Estuarine, Coastal and Shelf Science, 279; 108141, 2022. doi.org/10.1016/j.ecss.2022.108141

163-22 Sahameddin Mahmoudi Kurdistani, Giuseppe Roberto Tomasicchio, Felice D’Alessandro, Antonio Francone, Formula for wave transmission at submerged homogeneous porous breakwaters, Ocean Engineering, 266.4; 113053, 2022. doi.org/10.1016/j.oceaneng.2022.113053

162-22 Kai Wei, Xueshuang Yin, Numerical study into configuration of horizontal flanges on hydrodynamic performance of moored box-type floating breakwater, Ocean Engineering, 266.4; 112991, 2022. doi.org/10.1016/j.oceaneng.2022.112991

161-22 Sung-Chul Jang, Jin-Yong Jeong, Seung-Woo Lee, Dongha Kim, Identifying hydraulic characteristics related to fishery activities using numerical analysis and an automatic identification system of a fishing vessel, Journal of Marine Science and Engineering, 10; 1619, 2022. doi.org/10.3390/jmse10111619

156-22 Keith Adams, Mohammad Heidarzadeh, Extratropical cyclone damage to the seawall in Dawlish, UK: Eyewitness accounts, sea level analysis and numerical modelling, Natural Hazards, 2022. doi.org/10.1007/s11069-022-05692-2

155-22 Youxiang Lu, Zhenlu Wang, Zegao Yin, Guoxiang Wu, Bingchen Liang, Experimental and numerical studies on local scour around closely spaced circular piles under the action of steady current, Journal of Marine Science and Engineering, 10; 1569, 2022. doi.org/10.3390/jmse10111569

152-22 Nauman Riyaz Maldar, Ng Cheng Yee, Elif Oguz, Shwetank Krishna, Performance investigation of a drag-based hydrokinetic turbine considering the effect of deflector, flow velocity, and blade shape, Ocean Engineering, 266.2; 112765, 2022. doi.org/10.1016/j.oceaneng.2022.112765

148-22   Ramtin Sabeti, Mohammad Heidarzadeh, Numerical simulations of water waves generated by subaerial granular and solid-block landslides: Validation, comparison, and predictive equations, Ocean Engineering, 266.3; 112853, 2022. doi.org/10.1016/j.oceaneng.2022.112853

145-22   I-Fan Tseng, Chih-Hung Hsu, Po-Hung Yeh, Ting-Chieh Lin, Physical mechanism for seabed scouring around a breakwater—a case study in Mailiao Port, Journal of Marine Science and Engineering, 10; 1386, 2022. doi.org/10.3390/jmse10101386

144-22   Jiarui Yu, Baozeng Yue, Bole Ma, Isogeometric analysis with level set method for large-amplitude liquid sloshing, Ocean Engineering, 265; 112613, 2022. doi.org/10.1016/j.oceaneng.2022.112613

141-22   Qi Yang, Peng Yu, Hongjun Liu, Computational investigation of scour characteristics of USAF in multi-specie sand under steady current, Ocean Engineering, 262; 112141, 2022. doi.org/10.1016/j.oceaneng.2022.112141

128-22   Atish Deoraj, Calvin Wells, Justin Pringle, Derek Stretch, On the reef scale hydrodynamics at Sodwana Bay, South Africa, Environmental Fluid Mechanics, 2022. doi.org/10.1007/s10652-022-09896-9

108-22   Angela Di Leo, Mariano Buccino, Fabio Dentale, Eugenio Pugliese Carratelli, CFD analysis of wind effect on wave overtopping, 32nd International Ocean and Polar Engineering Conference,  ISOPE-I-22-428, 2022.

105-22   Pin-Tzu Su, Chen-shan Kung, Effects of currents and sediment flushing on marine pipes, 32nd International Ocean and Polar Engineering Conference, ISOPE-I-22-153, 2022.

89-22   Kai Wei, Cong Zhou, Bo Xu, Spatial distribution models of horizontal and vertical wave impact pressure on the elevated box structure, Applied Ocean Research, 125; 103245, 2022. doi.org/10.1016/j.apor.2022.103245

87-22   Tran Thuy Linh, Numerical modelling (3D) of wave interaction with porous structures in the Mekong Delta coastal zone, Thesis, Ho Chi Minh City University of Technology, 2022.

82-22   Seyyed-Mahmood Ghassemizadeh, Mohammad Javad Ketabdari, Modeling of solitary wave interaction with curved-facing seawalls using numerical method, Advances in Civil Engineering, 5649637, 2022. doi.org/10.1155/2022/5649637

81-22   Raphael Alwan, Boyin Ding, David M. Skene, Zhaobin Li, Luke G. Bennetts, On the structure of waves radiated by a submerged cylinder undergoing large-amplitude heave motions, 32nd International Ocean and Polar Engineering Conference, Shanghai, China, June 5-10, 2022. doi.org/10.1111/jfr3.12828

77-22   Weiyun Chen, Linchong Huang, Dan Wang, Chao Liu, Lingyu Xu, Zhi Ding, Effects of siltation and desiltation on the wave-induced stability of foundation trench of immersed tunnel, Soil Dynamics and Earthquake Engineering, 160; 107360, 2022. doi.org/10.1016/j.soildyn.2022.107360

63-22   Yongzhou Cheng, Zhiyuan Lin, Gan Hu, Xing Lyu, Numerical simulation of the hydrodynamic characteristics of the porous I-type composite breakwater, Journal of Marine Science and Application, 21; pp. 140-150, 2022. doi.org/10.1007/s11804-022-00251-4

37-22   Ray-Yeng Yang, Chuan-Wen Wang, Chin-Cheng Huang, Cheng-Hsien Chung, Chung-Pang, Chen, Chih-Jung Huang, The 1:20 scaled hydraulic model test and field experiment of barge-type floating offshore wind turbine system, Ocean Engineering, 247.1; 110486, 2022. doi.org/10.1016/j.oceaneng.2021.110486

35-22   Mingchao Cui, Zhisong Li, Chenglin Zhang, Xiaoyu Guo, Statistical investigation into the flow field of closed aquaculture tanks aboard a platform under periodic oscillation, Ocean Engineering, 248; 110677, 2022. doi.org/10.1016/j.oceaneng.2022.110677

30-22   Jijian Lian, Jiale Li, Yaohua Guo, Haijun Wang, Xu Yang, Numerical study on local scour characteristics of multi-bucket jacket foundation considering exposed height, Applied Ocean Research, 121; 103092. doi.org/10.1016/j.apor.2022.103092

19-22   J.J. Wiegerink, T.E. Baldock, D.P. Callaghan, C.M. Wang, Slosh suppression blocks – A concept for mitigating fluid motions in floating closed containment fish pen in high energy environments, Applied Ocean Research, 120; 103068, 2022. doi.org/10.1016/j.apor.2022.103068

9-22   Amir Bordbar, Soroosh Sharifi, Hassan Hemida, Investigation of scour around two side-by-side piles with different spacing ratios in live-bed, Lecture Notes in Civil Engineering, 208; pp. 302-309, 2022. doi.org/10.1007/978-981-16-7735-9_33

7-22   Jinzhao Li, Xuan Kong, Yilin Yang, Lu Deng, Wen Xiong, CFD investigations of tsunami-induced scour around bridge piers, Ocean Engineering, 244; 110373, 2022. doi.org/10.1016/j.oceaneng.2021.110373

3-22   Ana Gomes, José Pinho, Wave loads assessment on coastal structures at inundation risk using CFD modelling, Climate Change and Water Security, 178; pp. 207-218, 2022. doi.org/10.1007/978-981-16-5501-2_17

2-22   Ramtin Sabeti, Mohammad Heidarzadeh, Numerical simulations of tsunami wave generation by submarine landslides: Validation and sensitivity analysis to landslide parameters, Journal of Waterway, Port, Coastal, and Ocean Engineering, 148.2; 05021016, 2022. doi.org/10.1061/(ASCE)WW.1943-5460.0000694

146-21   Ming-ming Liu, Hao-cheng Wang, Guo-qiang Tang, Fei-fei Shao, Xin Jin, Investigation of local scour around two vertical piles by using numerical method, Ocean Engineering, 244; 110405, 2021. doi.org/10.1016/j.oceaneng.2021.110405

135-21   Jian Guo, Jiyi Wu, Tao Wang, Prediction of local scour depth of sea-crossing bridges based on the energy balance theory, Ships and Offshore Structures, 16.10, 2021. doi.org/10.1080/17445302.2021.2005362

133-21   Sahel Sohrabi, Mohamad Ali Lofollahi Yaghin, Mohamad Hosein Aminfar, Alireza Mojtahedi, Experimental and numerical investigation of hydrodynamic performance of a sloping floating breakwater with and without chain-net, Iranian Journal of Science and Technology: Transactions of Civil Engineering, , 2021. doi.org/10.1007/s40996-021-00780-y

131-21   Seyed Morteza Marashian, Mehdi Adjami, Ahmad Rezaee Mazyak, Numerical modelling investigation of wave interaction on composite berm breakwater, China Ocean Engineering, 35; pp. 631-645, 2021. doi.org/10.1007/s13344-021-0060-x

124-21   Ramin Safari Ghaleh, Omid Aminoroayaie Yamini, S. Hooman Mousavi, Mohammad Reza Kavianpour, Numerical modeling of failure mechanisms in articulated concrete block mattress as a sustainable coastal protection structure, Sustainability, 13.22; pp. 1-19, 2021.

118-21   A. Keshavarz, M. Vaghefi, G. Ahmadi, Investigation of flow patterns around rectangular and oblong peirs with collar located in a 180-degree sharp bend, Scientia Iranica A, 28.5; pp. 2479-2492, 2021.

109-21   Jacek Jachowski, Edyta Książkiewicz, Izabela Szwoch, Determination of the aerodynamic drag of pneumatic life rafts as a factor for increasing the reliability of rescue operations, Polish Maritime Research, 28.3; p. 128-136, 2021. doi.org/10.2478/pomr-2021-0040

107-21   Jiay Han, Bing Zhu, Baojie Lu, Hao Ding, Ke Li, Liang Cheng, Bo Huang, The influence of incident angles and length-diameter ratios on the round-ended cylinder under regular wave action, Ocean Engineering, 240; 109980, 2021. doi.org/10.1016/j.oceaneng.2021.109980

96-21   Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Michael Strasser, Bernhard Gems, Triggers and consequences of landslide-induced impulse waves – 3D dynamic reconstruction of the Taan Fiord 2015 tsunami event, Engineering Geology, 294; 106384, 2021. doi.org/10.1016/j.enggeo.2021.106384

95-21   Ahmed A. Romya, Hossam M. Moghazy, M.M. Iskander, Ahmed M. Abdelrazek, Performance assessment of corrugated semi-circular breakwaters for coastal protection, Alexandria Engineering Journal, in press, 2021. doi.org/10.1016/j.aej.2021.08.086

87-21   Ruigeng Hu, Hongjun Liu, Hao Leng, Peng Yu, Xiuhai Wang, Scour characteristics and equilibrium scour depth prediction around umbrella suction anchor foundation under random waves, Journal of Marine Science and Engineering, 9; 886, 2021. doi.org/10.3390/jmse9080886

78-21   Sahir Asrari, Habib Hakimzadeh, Nazila Kardan, Investigation on the local scour beneath piggyback pipelines under clear-water conditions, China Ocean Engineering, 35; pp. 422-431, 2021. doi.org/10.1007/s13344-021-0039-7

64-21   Pin-Tzu Su, Chen-shan Kung, Effects of diffusers on discharging jet, 31st International Ocean and Polar Engineering Conference (ISOPE), Rhodes, Greece, June 20-25, 2021.

62-21   Fei Wu, Wei Li, Shuzhao Li, Xiaopeng Shen, Delong Dong, Numerical simulation of scour of backfill soil by jetting flows on the top of buried caisson, 31st International Ocean and Polar Engineering Conference (ISOPE), Rhodes, Greece, June 20-25, 2021.

56-21   Murat Aksel, Oral Yagci, V.S. Ozgur Kirca, Eryilmaz Erdog, Naghmeh Heidari, A comparitive analysis of coherent structures around a pile over rigid-bed and scoured-bottom, Ocean Engineering, 226; 108759, 2021. doi.org/10.1016/j.oceaneng.2021.108759

52-21   Byeong Wook Lee, Changhoon Lee, Equation for ship wave crests in a uniform current in the entire range of water depths, Coastal Engineering, 167; 103900, 2021. doi.org/10.1016/j.coastaleng.2021.103900

43-21   Agnieszka Faulkner, Claire E. Bulgin, Christopher J. Merchant, Characterising industrial thermal plumes in coastal regions using 3-D numerical simulations, Environmental Research Communications, 3; 045003, 2021. doi.org/10.1088/2515-7620/abf62e

39-21   Fan Yang, Yiqi Zhang, Chao Liu, Tieli Wang, Dongin Jiang, Yan Jin, Numerical and experimental investigations of flow pattern and anti-vortex measures of forebay in a multi-unit pumping station, Water, 13.7; 935, 2021. doi.org/10.3390/w13070935

30-21   Norfadhlina Khalid, Aqil Azraie Che Shamshudin, Megat Khalid Puteri Zarina, Analysis on wave generation and hull: Modification for fishing vessels, Advanced Engineering for Processes and Technologies II: Advanced Structured Materials, 147; pp. 77-89, 2021. doi.org/10.1007/978-3-030-67307-9_9

28-21   Jae-Sang Jung, Jae-Seon Yoon, Seokkoo Kang, Seokil Jeong, Seung Oh Lee, Yong-Sung Park, Discharge characteristics of drainage gates on Saemangeum tidal dyke, South Korea, KSCE Journal of Engineering, 25; pp. 1308-1325, 2021. doi.org/10.1007/s12205-021-0590-z

24-21   Ali Temel, Mustafa Dogan, Time dependent investigation of the wave induced scour at the trunk section of a rubble mound breakwater, Ocean Engineering, 221; 108564, 2021. doi.org/10.1016/j.oceaneng.2020.108564

13-21   P.X. Zou, L.Z. Chen, The coupled tube-mooring system SFT hydrodynamic characteristics under wave excitations, Proceedings, 14th International Conference on Vibration Problems, Crete, Greece, September 1 – 4, 2019, pp. 907-923, 2021. doi.org/10.1007/978-981-15-8049-9_55

122-20  M.A. Musa, M.F. Roslan, M.F. Ahmad, A.M. Muzathik, M.A. Mustapa, A. Fitriadhy, M.H. Mohd, M.A.A. Rahman, The influence of ramp shape parameters on performance of overtopping breakwater for energy conversion, Journal of Marine Science and Engineering, 8.11; 875, 2020. doi.org/10.3390/jmse8110875

120-20  Lee Hooi Chie, Ahmad Khairi Abd Wahab, Derivation of engineering design criteria for flow field around intake structure: A numerical simulation study, Journal of Marine Science and Engineering, 8.10; 827, 2020.  doi.org/10.3390/jmse8100827

109-20  Mario Maiolo, Riccardo Alvise Mel, Salvatore Sinopoli, A stepwise approach to beach restoration at Calabaia Beach, Water, 12.10; 2677, 2020. doi.org/10.3390/w12102677

107-20  S. Deshpande, P. Sundsbø, S. Das, Ship resistance analysis using CFD simulations in Flow-3D, International Journal of Multiphysics, 14.3; pp. 227-236, 2020. doi.org/10.21152/1750-9548.14.3.227

103-20   Mahmood Nematollahi, Mohammad Navim Moghid, Numerical simulation of spatial distribution of wave overtopping on non-reshaping berm breakwaters, Journal of Marine Science and Application, 19; pp. 301-316, 2020. doi.org/10.1007/s11804-020-00147-1

98-20   Lin Zhao, Ning Wang, Qian Li, Analysis of flow characteristics and wave dissipation performances of a new structure, Proceedings, 30th International Ocean and Polar Engineering Conference (ISOPE), Online, October 11-16, ISOPE-I-20-3289, 2020.

96-20   Xiaoyu Guo, Zhisong Li, Mingchao Cui, Benlong Wang, Numerical investigation on flow characteristics of water in the fish tank on a force-rolling aquaculture platform, Ocean Engineering, 217; 107936, 2020. doi.org/10.1016/j.oceaneng.2020.107936

92-20   Yong-Jun Cho, Scour controlling effect of hybrid mono-pile as a substructure of offshore wind turbine: A numerical study, Journal of Marine Science and Engineering, 8.9; 637, 2020. doi.org/10.3390/jmse8090637

89-20   Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Michael Strasser, Bernhard Gems, The
1958 Lituya Bay tsunami – pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software
Flow-3D
, Natural Hazards and Earth Systems Sciences, 20; pp. 2255–2279, 2020. doi.org/10.5194/nhess-20-2255-2020

81-20   Eliseo Marchesi, Marco Negri, Stefano Malavasi, Development and analysis of a numerical model for a two-oscillating-body wave energy converter in shallow water, Ocean Engineering, 214; 107765, 2020. doi.org/10.1016/j.oceaneng.2020.107765

79-20   Zegao Yin, Yanxu Wang, Yong Liu, Wei Zou, Wave attenuation by rigid emergent vegetation under combined wave and current flows, Ocean Engineering, 213; 107632, 2020. doi.org/10.1016/j.oceaneng.2020.107632

71-20   B. Pan, N. Belyaev, FLOW-3D software for substantiation the layout of the port water area, IOP Conference Series: Materials Science and Engineering, Construction Mechanics, Hydraulics and Water Resources Engineering (CONMECHYDRO), Tashkent, Uzbekistan, 23-25 April, 883; 012020, 2020. doi.org/10.1088/1757-899X/883/1/012020

51-20       Yupeng Ren, Xingbei Xu, Guohui Xu, Zhiqin Liu, Measurement and calculation of particle trajectory of liquefied soil under wave action, Applied Ocean Research, 101; 102202, 2020. doi.org/10.1016/j.apor.2020.102202

50-20       C.C. Battiston, F.A. Bombardelli, E.B.C. Schettini, M.G. Marques, Mean flow and turbulence statistics through a sluice gate in a navigation lock system: A numerical study, European Journal of Mechanics – B/Fluids, 84; pp.155-163, 2020. doi.org/10.1016/j.euromechflu.2020.06.003

49-20     Ahmad Fitriadhy, Nur Amira Adam, Nurul Aqilah Mansor, Mohammad Fadhli Ahmad, Ahmad Jusoh, Noraieni Hj. Mokhtar, Mohd Sofiyan Sulaiman, CFD investigation into the effect of heave plate on vertical motion responses of a floating jetty, CFD Letters, 12.5; pp. 24-35, 2020. doi.org/10.37934/cfdl.12.5.2435

40-20       P. April Le Quéré, I. Nistor, A. Mohammadian, Numerical modeling of tsunami-induced scouring around a square column: Performance assessment of FLOW-3D and Delft3D, Journal of Coastal Research (preprint), 2020. doi.org/10.2112/JCOASTRES-D-19-00181

38-20       Sahameddin Mahmoudi Kurdistani, Giuseppe Roberto Tomasicchio, Daniele Conte, Stefano Mascetti, Sensitivity analysis of existing exponential empirical formulas for pore pressure distribution inside breakwater core using numerical modeling, Italian Journal of Engineering Geology and Environment, 1; pp. 65-71, 2020. doi.org/10.4408/IJEGE.2020-01.S-08

36-20       Mohammadamin Torabi, Bruce Savage, Efficiency improvement of a novel submerged oscillating water column (SOWC) energy harvester, Proceedings, World Environmental and Water Resources Congress (Cancelled), Henderson, Nevada, May 17–21, 2020. doi.org/10.1061/9780784482940.003

32-20       Adriano Henrique Tognato, Modelagem CFD da interação entre hidrodinâmica costeira e quebra-mar submerso: estudo de caso da Ponta da Praia em Santos, SP (CFD modeling of interaction between sea waves and submerged breakwater at Ponta de Praia – Santos, SP: a case study, Thesis, Universidad Estadual de Campinas, Campinas, Brazil, 2020.

29-20   Ana Gomes, José L. S. Pinho, Tiago Valente, José S. Antunes do Carmo and Arkal V. Hegde, Performance assessment of a semi-circular breakwater through CFD modelling, Journal of Marine Science and Engineering, 8.3, art. no. 226, 2020. doi.org/10.3390/jmse8030226

23-20  Qi Yang, Peng Yu, Yifan Liu, Hongjun Liu, Peng Zhang and Quandi Wang, Scour characteristics of an offshore umbrella suction anchor foundation under the combined actions of waves and currents, Ocean Engineering, 202, art. no. 106701, 2020. doi.org/10.1016/j.oceaneng.2019.106701

04-20  Bingchen Liang, Shengtao Du, Xinying Pan and Libang Zhang, Local scour for vertical piles in steady currents: review of mechanisms, influencing factors and empirical equations, Journal of Marine Science and Engineering, 8.1, art. no. 4, 2020. doi.org/10.3390/jmse8010004

104-19   A. Fitriadhy, S.F. Abdullah, M. Hairil, M.F. Ahmad and A. Jusoh, Optimized modelling on lateral separation of twin pontoon-net floating breakwater, Journal of Mechanical Engineering and Sciences, 13.4, pp. 5764-5779, 2019. doi.org/10.15282/jmes.13.4.2019.04.0460

103-19  Ahmad Fitriadhy, Nurul Aqilah Mansor, Nur Adlina Aldin and Adi Maimun, CFD analysis on course stability of an asymmetrical bridle towline model of a towed ship, CFD Letters, 11.12, pp. 43-52, 2019.

90-19   Eric P. Lemont and Karthik Ramaswamy, Computational fluid dynamics in coastal engineering: Verification of a breakwater design in the Torres Strait, Proceedings, pp. 762-768, Australian Coasts and Ports 2019 Conference, Hobart, Australia, September 10-13, 2019.

86-19   Mohammed Arab Fatiha, Benoît Augier, François Deniset, Pascal Casari, and Jacques André Astolfi, Morphing hydrofoil model driven by compliant composite structure and internal pressure, Journal of Marine Science and Engineering, 7:423, 2019. doi.org/10.3390/jmse7120423

83-19   Cong-Uy Nguyen, So-Young Lee, Thanh-Canh Huynh, Heon-Tae Kim, and Jeong-Tae Kim, Vibration characteristics of offshore wind turbine tower with gravity-based foundation under wave excitation, Smart Structures and Systems, 23:5, pp. 405-420, 2019. doi.org/10.12989/sss.2019.23.5.405

68-19   B.W. Lee and C. Lee, Development of an equation for ship wave crests in a current in whole water depths, Proceedings, 10th International Conference on Asian and Pacific Coasts (APAC 2019), Hanoi, Vietnam, September 25-28, 2019; pp. 207-212, 2019. doi.org/10.1007/978-981-15-0291-0_29

62-19   Byeong Wook Lee and Changhoon Lee, Equation for ship wave crests in the entire range of water depths, Coastal Engineering, 153:103542, 2019. doi.org/10.1016/j.coastaleng.2019.103542

23-19     Mariano Buccino, Mohammad Daliri, Fabio Dentale, Angela Di Leo, and Mario Calabrese, CFD experiments on a low crested sloping top caisson breakwater, Part 1: Nature of loadings and global stability, Ocean Engineering, Vol. 182, pp. 259-282, 2019. doi.org/10.1016/j.oceaneng.2019.04.017

21-19     Mahsa Ghazian Arabi, Deniz Velioglu Sogut, Ali Khosronejad, Ahmet C. Yalciner, and Ali Farhadzadeh, A numerical and experimental study of local hydrodynamics due to interactions between a solitary wave and an impervious structure, Coastal Engineering, Vol. 147, pp. 43-62, 2019. doi.org/10.1016/j.coastaleng.2019.02.004

15-19     Chencong Liao, Jinjian Chen, and Yizhou Zhang, Accumulation of pore water pressure in a homogeneous sandy seabed around a rocking mono-pile subjected to wave loads, Vol. 173, pp. 810-822, 2019. doi.org/10.1016/j.oceaneng.2018.12.072

09-19     Yaoyong Chen, Guoxu Niu, and Yuliang Ma, Study on hydrodynamics of a new comb-type floating breakwater fixed on the water surface, 2018 International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2018), Wuhan, China, December 14-16, 2018, E3S Web of Conferences Vol. 79, Art. No. 02003, 2019. doi.org/10.1051/e3sconf/20197902003

08-19     Hongda Shi, Zhi Han, and Chenyu Zhao, Numerical study on the optimization design of the conical bottom heaving buoy convertor, Ocean Engineering, Vol. 173, pp. 235-243, 2019. doi.org/10.1016/j.oceaneng.2018.12.061

06-19   S. Hemavathi, R. Manjula and N. Ponmani, Numerical modelling and experimental investigation on the effect of wave attenuation due to coastal vegetation, Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), Vol. 2, pp. 99-110, 2019. doi.org/10.1007/978-981-13-3134-3_9

87-18   Muhammad Syazwan Bazli, Omar Yaakob and Kang Hooi Siang, Validation study of u-oscillating water column device using computational fluid dynamic (CFD) simulation, 11thInternational Conference on Marine Technology, Kuala Lumpur, Malaysia, August 13-14, 2018.

86-18   Nur Adlina Aldin, Ahmad Fitriadhy, Nurul Aqilah Mansor, and Adi Maimun, CFD analysis on unsteady yaw motion characteristic of a towed ship, 11th International Conference on Marine Technology, Kuala Lumpur, Malaysia, August 13-14, 2018.

78-18 A.A. Abo Zaid, W.E. Mahmod, A.S. Koraim, E.M. Heikal and H.E. Fath, Wave interaction of partially immersed semicircular breakwater suspended on piles using FLOW-3D, CSME Conference Proceedings, Toronto, Canada, May 27-30, 2018.

73-18   Jian Zhou and Subhas K. Venayagamoorthy, Near-field mean flow dynamics of a cylindrical canopy patch suspended in deep water, Journal of Fluid Mechanics, Vol. 858, pp. 634-655, 2018. doi.org/10.1017/jfm.2018.775

69-18   Keisuke Yoshida, Shiro Maeno, Tomihiro Iiboshi and Daisuke Araki, Estimation of hydrodynamic forces acting on concrete blocks of toe protection works for coastal dikes by tsunami overflows, Applied Ocean Research, Vol. 80, pp. 181-196, 2018. doi.org/10.1016/j.apor.2018.09.001

68-18   Zegao Yin, Yanxu Wang and Xiaoyu Yang, Regular wave run-up attenuation on a slope by emergent rigid vegetation, Journal of Coastal Research (in-press), 2018. doi.org/10.2112/JCOASTRES-D-17-00200.1

65-18   Dagui Tong, Chencong Liao, Jinjian Chen and Qi Zhang, Numerical simulation of a sandy seabed response to water surface waves propagating on current, Journal of Marine Science and Engineering, Vol. 6, No. 3, 2018. doi.org/10.3390/jmse6030088

61-18   Manuel Gerardo Verduzco-Zapata, Aramis Olivos-Ortiz, Marco Liñán-Cabello, Christian Ortega-Ortiz, Marco Galicia-Pérez, Chris Matthews, and Omar Cervantes-Rosas, Development of a Desalination System Driven by Low Energy Ocean Surface Waves, Journal of Coastal Research: Special Issue 85 – Proceedings of the 15th International Coastal Symposium, pp. 1321 – 1325, 2018. doi.org/10.2112/SI85-265.1

37-18   Songsen Xu, Chunshuo Jiao, Meng Ning and Sheng Dong, Analysis of Buoyancy Module Auxiliary Installation Technology Based on Numerical Simulation, Journal of Ocean University of China, vol. 17, no. 2, pp. 267-280, 2018. doi.org/10.1007/s11802-018-3305-4

36-18   Deniz Velioglu Sogut and Ahmet Cevdet Yalciner, Performance comparison of NAMI DANCE and FLOW-3D® models in tsunami propagation, inundation and currents using NTHMP benchmark problems, Pure and Applied Geophysics, pp. 1-39, 2018. doi.org/10.1007/s00024-018-1907-9

26-18   Mohammad Sarfaraz and Ali Pak, Numerical investigation of the stability of armour units in low-crested breakwaters using combined SPH–Polyhedral DEM method, Journal of Fluids and Structures, vol. 81, pp. 14-35, 2018. doi.org/10.1016/j.jfluidstructs.2018.04.016

25-18   Yen-Lung Chen and Shih-Chun Hsiao, Numerical modeling of a buoyant round jet under regular waves, Ocean Engineering, vol. 161, pp. 154-167, 2018. doi.org/10.1016/j.oceaneng.2018.04.093

13-18   Yizhou Zhang, Chencong Liao, Jinjian Chen, Dagui Tong, and Jianhua Wang, Numerical analysis of interaction between seabed and mono-pile subjected to dynamic wave loadings considering the pile rocking effect, Ocean Engineering, Volume 155, 1 May 2018, Pages 173-188, doi.org/10.1016/j.oceaneng.2018.02.041

11-18  Ching-Piao Tsai, Chun-Han Ko and Ying-Chi Chen, Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter, Open Access Sustainability 2018, 10(3), 643; doi:10.3390/su10030643, © Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2018.

58-17   Jian Zhou, Claudia Cenedese, Tim Williams and Megan Ball, On the propagation of gravity currents over and through a submerged array of circular cylinders, Journal of Fluid Mechanics, Vol. 831, pp. 394-417, 2017. doi.org/10.1017/jfm.2017.604

56-17   Yu-Shu Kuo, Chih-Yin Chung, Shih-Chun Hsiao and Yu-Kai Wang, Hydrodynamic characteristics of Oscillating Water Column caisson breakwaters, Renewable Energy, vol. 103, pp. 439-447, 2017. doi.org/10.1016/j.renene.2016.11.028

47-17   Jae-Nam Cho, Chang-Geun Song, Kyu-Nam Hwang and Seung-Oh Lee, Experimental assessment of suspended sediment concentration changed by solitary wave, Journal of Marine Science and Technology, Vol. 25, No. 6, pp. 649-655 (2017) 649 DOI: 10.6119/JMST-017-1226-04

45-17   Muhammad Aldhiansyah Rifqi Fauzi, Haryo Dwito Armono, Mahmud Mustain and Aniendhita Rizki Amalia, Comparison Study of Various Type Artificial Reef Performance in Reducing Wave Height, Regional Conference in Civil Engineering (RCCE) 430 The Third International Conference on Civil Engineering Research (ICCER) August 1st-2nd 2017, Surabaya – Indonesia.

44-17   Fabio Dentale, Ferdinando Reale, Angela Di Leo, and Eugenio Pugliese Carratelli, A CFD approach to rubble mound breakwater design, International Journal of Naval Architecture and Ocean Engineering, Available online 30 December 2017.

39-17   Milad Rashidinasab and Mehdi Behdarvandi Askar, Modeling the Pressure Distribution and the Changes of Water Level around the Offshore Platforms Exposed to Waves, Using the Numerical Model of FLOW-3D, Computational Water, Energy, and Environmental Engineering, 2017, 6, 97-106, http://www.scirp.org/journal/cweee, ISSN Online: 2168-1570, ISSN Print: 2168-1562

30-17   Omid Nourani and Mehdi Behdarvandi Askar, Comparison of the Effect of Tetrapod Block and Armor X block on Reducing Wave Overtopping in Breakwaters, Open Journal of Marine Science, 2017, 7, 472-484 http://www.scirp.org/journal/ojms ISSN Online: 2161-7392.

29-17   J.A. Vasquez, Modelling the generation and propagation of landslide generated waves, Leadership in Sustainable Infrastructure, Annual Conference – Vancouver, May 31 – June 3, 2017

28-17   Manuel G. Verduzco-Zapata, Francisco J. Ocampo-Torres, Chris Matthews, Aramis Olivos-Ortiz, Diego E. and Galván-Pozos, Development of a Wave Powered Desalination Device Numerical Modelling, Proceedings of the 12th European Wave and Tidal Energy Conference 27th Aug -1st Sept 2017, Cork, Ireland

20-17   Chu-Kuan Lin, Jaw-Guei Lin, Ya-Lan Chen, Chin-Shen Chang, Seabed Change and Soil Resistance Assessment of Jack up Foundation, Proceedings of the Twenty-seventh (2017) International Ocean and Polar Engineering Conference, San Francisco, CA, USA, June 25-30, 2017, Copyright © 2017 by the International Society of Offshore and Polar Engineers (ISOPE), ISBN 978-1-880653-97-5; ISSN 1098-6189.

19-17   Velioğlu Deniz, Advanced Two- and Three-Dimensional Tsunami – Models Benchmarking and Validation, Ph.D Thesis:, Middle East Technical University, June 2017

18-17   Farrokh Mahnamfar and Abdüsselam Altunkaynak, Comparison of numerical and experimental analyses for optimizing the geometry of OWC systems, Ocean Engineering 130 (2017) 10–24.

07-17   Jonas Čerka, Rima Mickevičienė, Žydrūnas Ašmontas, Lukas Norkevičius, Tomas Žapnickas, Vasilij Djačkov and Peilin Zhou, Optimization of the research vessel hull form by using numerical simulation, Ocean Engineering 139 (2017) 33–38

05-17   Liang, B.; Ma, S.; Pan, X., and Lee, D.Y., Numerical modelling of wave run-up with interaction between wave and dolosse breakwater, In: Lee, J.L.; Griffiths, T.; Lotan, A.; Suh, K.-S., and Lee, J. (eds.), 2017, The 2nd International Water Safety Symposium. Journal of Coastal Research, Special Issue No. 79, pp. 294-298. Coconut Creek (Florida), ISSN 0749-0208.

02-17   A. Yazid Maliki, M. Azlan Musa, Ahmad M.F., Zamri I., Omar Y., Comparison of numerical and experimental results for overtopping discharge of the OBREC wave energy converter, Journal of Engineering Science and Technology, In Press, © School of Engineering, Taylor’s University

01-17   Tanvir Sayeed, Bruce Colbourne, David Molyneux, Ayhan Akinturk, Experimental and numerical investigation of wave forces on partially submerged bodies in close proximity to a fixed structure, Ocean Engineering, Volume 132, Pages 70–91, March 2017

101-16 Xin Li, Liang-yu Xu, Jian-Min Yang, Study of fluid resonance between two side-by-side floating barges, Journal of Hydrodynamics, vol. B-28, no. 5, pp. 767-777, 2016. doi.org/10.1016/S1001-6058(16)60679-0

81-16   Loretta Gnavi, Deep water challenges: development of depositional models to support geohazard assessment for submarine facilities, Ph.D. Thesis: Politecnico di Torino, May 2016

80-16   Mohammed Ibrahim, Hany Ahmed, Mostafa Abd Alall and A.S. Koraim, Proposing and investigating the efficiency of vertical perforated breakwater, International Journal of Scientific & Engineering Research, Volume 7, Issue 3, March 2016, ISSN 2229-5518

72-16   Yen-Lung Chen and Shih-Chun Hsiao, Generation of 3D water waves using mass source wavemaker applied to Navier–Stokes model, Coastal Engineering 109 (2016) 76–95.

64-16   Jae Nam Cho, Dong Hyun Kim and Seung Oh Lee, Experimental Study of Shape and Pressure Characteristics of Solitary Wave generated by Sluice Gate for Various Conditions, Journal of the Korean Society of Safety, Vol. 31, No. 2, pp. 70-75, April 2016, Copyright @ 2016 by The Korean Society of Safety (pISSN 1738-3803, eISSN 2383-9953) All right reserved. http://dx.doi.org/10.14346/JKOSOS.2016.31.2.70

56-16   Ali A. Babajani, Mohammad Jafari and Parinaz Hafezi Sefat, Numerical investigation of distance effect between two Searasers for hydrodynamic performance, Alexandria Engineering Journal, June 2016.

53-16   Hwang-Ki Lee, Byeong-Kuk Kim, Jongkyu Kim and Hyeon-Ju Kim, OTEC thermal dispersion in coastal waters of Tarawa, Kiribati, OCEANS 2016 – Shanghai, April 2016, 10.1109/OCEANSAP.2016.7485548, © IEEE.

50-16   Mohsin A. R. Irkal, S. Nallayarasu and S. K. Bhattacharyya, CFD simulation of roll damping characteristics of a ship midsection with bilge keel, Proceedings of the ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2016, June 19-24, 2016, Busan, South Korea

49-16   Bill Baird, Seth Logan, Wim Van Der Molen, Trevor Elliot and Don Zimmer, Thoughts on the future of physical models in coastal engineering, Proceedings of the 6th International Conference on the Application of Physical Modelling in Coastal and Port Engineering and Science (Coastlab16) Ottawa, Canada, May 10-13, 2016 Copyright ©: Creative Commons CC BY-NC-ND 4.0

47-16   KH Kim et. al, Numerical analysis on the effects of shoal on the ship wave, Applied Engineering, Materials and Mechanics: Proceedings of the 2016 International Conference on Applied Engineering, Materials and Mechanics (ICAEMM 2016)

17-16  Nan-Jing Wu, Shih-Chun Hsiao, Hsin-Hung Chen, and Ray-Yeng Yang, The study on solitary waves generated by a piston-type wave maker, Ocean Engineering, 117(2016)114–129

13-16   Maryam Deilami-Tarifi, Mehdi Behdarvandi-Askar, Vahid Chegini, and Sadegh Haghighi-Pou, Modeling of the Changes in Flow Velocity on Seawalls under Different Conditions Using FLOW-3DSoftware, Open Journal of Marine Science, 2016, 6, 317-322, Published Online April 2016 in SciRes.

01-16   Mohsin A.R. Irkal, S. Nallayarasu, and S.K. Bhattacharyya, CFD approach to roll damping of ship with bilge keel with experimental validation, Applied Ocean Research, Volume 55, February 2016, Pages 1–17

121-15   Josh Carter, Scott Fenical, Craig Hunter and Joshua Todd, CFD modeling for the analysis of living shoreline structure performance, Coastal Structures and Solutions to Coastal Disasters Joint Conference, Boston, MA, Sept. 9-11, 2015. © 2017 by the American Society of Civil Engineers. doi.org/10.1061/9780784480304.047

114-15   Jisheng Zhang, Peng Gao, Jinhai Zheng, Xiuguang Wu, Yuxuan Peng and Tiantian Zhang, Current-induced seabed scour around a pile-supported horizontal-axis tidal stream turbine, Journal of Marine Science and Technology, Vol. 23, No. 6, pp. 929-936 (2015) 929, DOI: 10.6119/JMST-015-0610-11

108-15  Tiecheng Wang, Tao Meng, and Hailong Zha, Analysis of Tsunami Effect and Structural Response, ISSN 1330-3651 (Print), ISSN 1848-6339 (Online), DOI: 10.17559/TV-20150122115308

107-15   Jie Chen, Changbo Jiang, Wu Yang, Guizhen Xiao, Laboratory study on protection of tsunami-induced scour by offshore breakwaters, Natural Hazards, 2015, 1-19

85-15   Majid A. Bhinder, M.T. Rahmati, C.G. Mingham and G.A. Aggidis, Numerical hydrodynamic modelling of a pitching wave energy converter, European Journal of Computational Mechanics, Volume 24, Issue 4, 2015, DOI: 10.1080/17797179.2015.1096228

65-15   Giancarlo Alfonsi, Numerical Simulations of Wave-Induced Flow Fields around Large-Diameter Surface-Piercing Vertical Circular CylinderComputation 20153(3), 386-426; doi:10.3390/computation3030386

61-15   Bingchen Liang, Duo Li, Xinying Pan and Guangxin Jiang, Numerical Study of Local Scour of Pipeline under Combined Wave and Current Conditions, Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21-26, 2015 Copyright © 2015 by the International Society of Offshore and Polar Engineers (ISOPE) ISBN 978-1-880653-89-0; ISSN 1098-6189.

60-15   Chun-Han Ko, Ching-Piao Tsai, Ying-Chi Chen, and Tri-Octaviani Sihombing, Numerical Simulations of Wave and Flow Variations between Submerged Breakwaters and Slope Seawall, Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference Kona, Big Island, Hawaii, USA, June 21-26, 2015 Copyright © 2015 by the International Society of Offshore and Polar Engineers (ISOPE) ISBN 978-1-880653-89-0; ISSN 1098-6189.

57-15   Giacomo Viccione and Settimio Ferlisi, A numerical investigation of the interaction between debris flows and defense barriers, Advances in Environmental and Geological Science and Engineering, ISBN: 978-1-61804-314-6, 2015

56-15   Vittorio Bovolin, Eugenio Pugliese Carratelli and Giacomo Viccione, A numerical study of liquid impact on inclined surfaces, Advances in Environmental and Geological Science and Engineering, ISBN: 978-1-61804-314-6, 2015

49-15   Fabio Dentale, Giovanna Donnarumma, Eugenio Pugliese Carratelli, and Ferdinando Reale, A numerical method to analyze the interaction between sea waves and rubble mound emerged breakwaters, WSEAS TRANSACTIONS on FLUID MECHANICS, E-ISSN: 2224-347X, Volume 10, 2015

45-15   Diego Vicinanza, Daniela Salerno, Fabio Dentale and Mariano Buccino, Structural Response of Seawave Slot-cone Generator (SSG) from Random Wave CFD Simulations, Proceedings of the Twenty-fifth (2015) International Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, USA, June 21-26, 2015, Copyright © 2015 by the International Society of Offshore and Polar Engineers (ISOPE), ISBN 978-1-880653-89-0; ISSN 1098-6189

38-15   Yen-Lung Chen, Shih-Chun Hsiao, Yu-Cheng Hou, Han-Lun Wu and Yuan Chieh Wu, Numerical Simulation of a Neutrally Buoyant Round Jet in a Wave Environment, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

34-15   Dieter Vanneste and Peter Troch, 2D numerical simulation of large-scale physical model tests of wave interaction with a rubble-mound breakwater, Coastal Engineering, Volume 103, September 2015, Pages 22–41.

29-15   Masanobu Toyoda, Hiroki Kusumoto, and Kazuo Watanabe, Intrinsically Safe Cryogenic Cargo Containment System of IHI-SPB LNG Tank, IHI Engineering Review, Vol. 47, No. 2, 2015.

24-15   Xixi Pan, Shiming Wang, and Yongcheng Liang, Three-dimensional simulation of floating wave power device, International Power, Electronics and Materials Engineering Conference (IPEMEC 2015)

05-15   M. A. Bhinder, A. Babarit, L. Gentaz, and P. Ferrant, Potential Time Domain Model with Viscous Correction and CFD Analysis of a Generic Surging Floating Wave Energy Converter, (2015), doi: http://dx.doi.org/10.1016/j.ijome.2015.01.005

137-14   A. Najafi-Jilani, M. Zakiri Niri and Nader Naderi, Simulating three dimensional wave run-up over breakwaters covered by antifer units, Int. J. Nav. Archit. Ocean Eng. (2014) 6:297~306

128-14   Dong Chule Kim, Byung Ho Choi, Kyeong Ok Kim and Efim Pelinovsky, Extreme tsunami runup simulation at Babi Island due to 1992 Flores tsunami and Okushiri due to 1993 Hokkido tsunami, Geophysical Research Abstracts, Vol. 16, EGU2014-1341, 2014, EGU General Assembly 2014, © Author(s) 2013. CC Attribution 3.0 License.

123-14   Irkal Mohsin A.R., S. Nallayarasu and S.K. Bhattacharyya, Experimental and CFD Simulation of Roll Motion of Ship with Bilge Keel, International Conference on Computational and Experimental Marine Hydrodynamics MARHY 2014 3-4 December 2014, Chennai, India.

101-14  Dieter Vanneste, Corrado Altomare, Tomohiro Suzuki, Peter Troch and Toon Verwaest, Comparison of Numerical Models for Wave Overtopping and Impact on a Sea Wall, Coastal Engineering 2014

91-14   Fabio Dentale, Giovanna Donnarumma, and Eugenio Pugliese Carratelli, Numerical wave interaction with tetrapods breakwater, Int. J. Nav. Archit. Ocean Eng. (2014) 6:0~0, http://dx.doi.org/10.2478/IJNAOE-2013-0214, ⓒSNAK, 2014, pISSN: 2092-6782, eISSN: 2092-6790

87-14   Philipp Behruzi, Simulation of breaking wave impacts on a flat wall, The 15th International Workshop on Trends In Numerical and Physical Modeling for Industrial Multiphase Flows, Cargèse, Corsica, October 13th–17th, 2014

86-14   Chuan Sim and Sung-uk Choi, Three-Dimensional Scour at Submarine Pipelines under Indefinite Boundary Conditions, 2014

83-14   Hongda Shi, Dong Wang, Jinghui Song, and Zhe Ma, Systematic Design of a Heaving Buoy Wave Energy Device, 5th International Conference on Ocean Energy, 4th November, Halifax, 2014

71-14   Hadi Sabziyan, Hassan Ghassemi, Farhood Azarsina, and Saeid Kazemi, Effect of Mooring Lines Pattern in a Semi-submersible Platform at Surge and Sway Movements, Journal of Ocean Research, 2014, Vol. 2, No. 1, 17-22 Available online at http://pubs.sciepub.com/jor/2/1/4 © Science and Education Publishing DOI:10.12691/jor-2-1-4

56-14   Fernandez-Montblanc, T., Izquierdo, A., and Bethencourt, M., Modelling the oceanographic conditions during storm following the Battle of Trafalgar, Encuentro de la Oceanografıa Fısica Espanola 2014

52-14   Fabio Dentale, Giovanna Donnarumma, and Eugenio Pugliese Carratelli, A new numerical approach to the study of the interaction between wave motion and roubble mound breakwaters, Latest Trends in Engineering Mechanics, Structures, Engineering Geology, ISBN: 978-960-474-376-6

49-14   H. Ahmed and A. Schlenkhoff, Numerical Investigation of Wave Interaction with Double Vertical Slotted Walls, World Academy of Science, Engineering and Technology, International Journal of Environmental, Ecological, Geological and Mining Engineering Vol:8 No:8, 2014

32-14  Richard Keough, Victoria Mullaley, Hilary Sinclair, and Greg Walsh, Design, Fabrication and Testing of a Water Current Energy Device, Memorial University of Newfoundland, Faculty of Engineering and Applied Science, Mechanical Design Project II – ENGI 8926, April 2014

25-14    Paulius Rapalis, Vytautas Smailys, Vygintas Daukšys, Nadežda Zamiatina, and Vasilij Djačkov, Vandens  – Duju Silumos Mainai Gaz-Lifto Tipo Skruberyje,Technologijos mokslo darbai Vakarų Lietuvoje, Vol 9 > Rapalis. Available for download at http://journals.ku.lt/index.php/TMD/article/view/259.

92-13   Matteo Tirindelli, Scott Fenical and Vladimir Shepsis, State-of-the-Art Methods for Extreme Wave Loading on Bridges and Coastal Highways, Seventh National Seismic Conference on Bridges and Highways (7NSC), May 20-22, 2013, Oakland, CA

89-13 Worakanok Thanyamanta, Don Bass and David Molyneux, Prediction of sloshing effects using a coupled non-linear seakeeping and CFD code, Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, OMAE2013, June 9-14, 2013, Nantes, France. Available for purchase online at ASME.

83-13   B.W. Lee and C. Lee, Development of Wave Power Generation Device with Resonance Channels, Proceedings of the 7th International Conference on Asian and Pacific Coasts (APAC 2013) Bali, Indonesia, September 24-26, 2013

68-13   Fabio Dentale, Giovanna Donnarumma, and Eugenio Pugliese Carratelli, Rubble Mound Breakwater Run-Up, Reflection and Overtopping by Numerical 3D Simulation, ICE Conference, September 2013, Edinburgh (UK).

66-13  Peter Arnold, Validation of FLOW-3D against Experimental Data for an Axi-Symmetric Point Absorber WEC, © wavebob™, 2013

62-13 Yanan Li, Junwei Zhou, Dazheng Wang and Yonggang Cui, Resistance and Strength Analysis of Three Hulls with ifferent Knuckles, Advanced Materials Research Vols. 779-780 (2013) pp 615-618, © (2013) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMR.779-780.615.

61-13  M.R. Soliman, Satoru Ushijima, Nobu Miyagi and Tetsuay Sumi, Density Current Simulation Using Two-Dimensional High Resolution Model, Annuals of Disas. Prev. Res. Inst., Kyoto Univ., No 56 B, 2013.

59-13  Guang Wei Liu, Qing He Zhang, and Jin Feng Zhang, Wave Forces on the Composite Bucket Foundation of Offshore Wind Turbines, Applied Mechanics and Materials, 405-408, 1420, September 2013. Available for purchase online at Scientific.net.

50-13  Joel Darnell and Vladimir Shepsis, Pontoon Launch Analysis, Design and Performance, Ports 2013, © ASCE 2013. Available for purchase online at ASCE.

45-13 Min-chi Li, Numerical Simulation of Wave Overtopping Rate at Sloping Seawalls with Different Configurations of Wave Dissipators, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-Sen University. Abstract only available here: http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0701113-144919.

22-13  Nahidul Khan, Jonathan Smith, and Michael Hinchey, Models with all the right curves, © Journal of Ocean Technology, The Journal of Ocean Technology, Vol. 8, No. 1, 2013.

20-13  Efim Pelinovsky, Dong-Chul Kim, Kyeong-Ok Kim and Byung-Ho Choi, Three-dimensional simulation of extreme runup heights during the 2004 Indonesian and 2011 Japanese tsunamis, EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-1760. Online at: http://adsabs.harvard.edu/abs/2013EGUGA..15.1760P.

18-13 Dazheng Wang, Fei Ma, and Lei Mei, Optimization of a 17m Catamaran based on the Resistance Performance, Advanced Materials Research Vols. 690-693, pp 3414-3418, © Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMR.690-693.3414, May 2013.

16-13  Dong Chule Kim, Kyeong Ok Kim, Efim Pelinovsky, Ira Didenkulova, and Byung Ho Choi, Three-dimensional tsunami runup simulation for the port of Koborinai on the Sanriku coast of Japan, Journal of Coastal Research, Special Issue No. 65, 2013.

15-13  Dong Chule Kim, Kyeong Ok Kim, Byung Ho Choi, Kyung Hwan Kim, and Efin Pelinovsky, Three –dimensional runup simulation of the 2004 Ocean tsunami at the Lhok Nga twin peaks, Journal of Coastal Research, Special Issue No. 65, 2013.

14-13  Jae-Seol Shim, Jinah Kim, Dong-Shul Kim, Kiyoung Heo, Kideok Do, and Sun-Jung Park, Storm surge inundation simulations comparing three-dimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea, Journal of Coastal Research, Special Issue No. 65, 2013.

115-12  Worakanok Thanyamanta and David Molyneux, Prediction of Stabilizing Moments and Effects of U-Tube Anti-Roll Tank Geometry Using CFD, ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, Volume 5: Ocean Engineering; CFD and VIV, Rio de Janeiro, Brazil, July 1–6, 2012, ISBN: 978-0-7918-4492-2, Copyright © 2012 by ASME

114-12   Dane Kristopher Behrens, The Russian River Estuary: Inlet Morphology, Management, and Estuarine Scalar Field Response, Ph.D. Thesis: Civil and Environmental Engineering, UC Davis, © 2012 by Dane Kristopher Behrens. All Rights Reserved.

111-12  James E. Beget, Zygmunt Kowalik, Juan Horrillo, Fahad Mohammed, Brian C. McFall, and Gyeong-Bo Kim, NEeSR-CR Tsunami Generation by Landslides Integrating Laboratory Scale Experiments, Numerical Models and Natural Scale Applications, George E. Brown, Jr. Network for Earthquake Engineering Simulation Research, July 2012, Boston, MA.

110-12   Gyeong-Bo Kim, Numerical Simulation of Three-Dimensional Tsunami Generation by Subaerial Landslides, M.S. Thesis: Texas A&M University, Copyright 2012 Gyeong-Bo Kim, December 2012

109-12 D. Vanneste, Experimental and Numerical study of Wave-Induced Porous Flow in Rubble-Mound Breakwaters, Ph.D. thesis (Chapters 5 and 6), Faculty of Engineering and Architecture, Ghent University, Ghent (Belgium), 2012.

104-12 Junwoo Choi, Kab Keun Kwon, and Sung Bum Yoon, Tsunami Inundation Simulation of a Built-up Area using Equivalent Resistance Coefficient, Coastal Engineering Journal, Vol. 54, No. 2 (2012) 1250015 (25 pages), © World Scientific Publishing Company and Japan Society of Civil Engineers, DOI: 10.1142/S0578563412500155

94-12 Parviz Ghadimi, Abbas Dashtimanesh, Mohammad Farsi, and Saeed Najafi, Investigation of free surface flow generated by a planing flat plate using smoothed particle hydrodynamics method and FLOW-3D simulations, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, December 7, 2012 1475090212465235. Available for purchase online at sage journals.

92-12    Panayotis Prinos, Maria Tsakiri, and Dimitris Souliotis, A Numerical Simulation of the WOS and the Wave Propagation along a Coastal Dike, Coastal Engineering 2012.

88-12  Nahidul Khan and Michael Hinchey, Adaptive Backstepping Control of Marine Current Energy Conversion System, PKP Open Conference Systems, IEEE Newfoundland and Labrador Section, 2012.

72-12   F. Dentale, G. Donnarumma, and E. Pugliese Carratelli, Wave Run Up and Reflection on Tridimensional Virtual, Journal of Hydrogeology & Hydrologic Engineering, 2012, 1:1, http://dx.doi.org/10.4172/jhhe.1000102.

64-12  Anders Wedel Nielsen, Xiaofeng Liu, B. Mutlu Sumer, Jørgen Fredsøe, Flow and bed shear stresses in scour protections around a pile in a current, Coastal Engineering, Volume 72, February 2013, Pages 20–38.

56-12  Giancarlo Alfonsi, Agostino Lauria, Leonardo Primavera, Flow structures around large-diameter circular cylinder, Journal of Flow Visualization and Image Processing, 2012. DOI:10.1615/JFlowVisImageProc.2012005088.

51-12  Chun-Ho Chen, Study on the Application of FLOW-3D for Wave Energy Dissipation by a Porous Structure, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University, July 2012. In Chinese.

37-12  Yu-Ren Chen, Numerical Modeling on Internal Solitary Wave propagation over an obstacle using FLOW-3D, Master’s Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University June 2012. In Chinese.

26-12  D.C. Lo Numerical simulation of hydrodynamic interaction produced during the overtaking and the head-on encounter process of two ships, Engineering Computations: International Journal for Computer-Aided Engineering and Software, Vol. 29 No. 1, 2012. pp. 83-10, Emerald Group Publishing Limited, www.emeraldinsight.com/0264-4401.htm.

14-12  Bahaa Elsharnouby, Akram Soliman, Mohamed Elnaggar, and Mohamed Elshahat, Study of environment friendly porous suspended breakwater for the Egyptian Northwestern Coast, Ocean Engineering 48 (2012) 47-58. Available for purchase online at Science Direct.

11-12  Sang-Ho Oh, Young Min Oh, Ji-Young Kim, Keum-Seok Kang, A case study on the design of condenser effluent outlet of thermal power plant to reduce foam emitted to surrounding seacoast, Ocean Engineering, Volume 47, June 2012, Pages 58–64. Available for purchase online at SciVerse.

101-11 Tsunami – A Growing Disaster, edited by Mohammad Mokhtari, ISBN 978-953-307-431-3, 232 pages, Publisher: InTech, Chapters published December 16, 2011 under CC BY 3.0 license, DOI: 10.5772/922. Available for download at Intech.

100-11 Kwang-Oh Ko, Jun-Woo Choi, Sung-Bum Yoon, and Chang-Beom Park, Internal Wave Generation in FLOW-3D Model, Proceedings of the Twenty-first (2011) International Offshore and Polar Engineering Conference, Maui, Hawaii, USA, June 19-24, 2011, Copyright © 2011 by the International Society of Offshore and Polar Engineers (ISOPE), ISBN 978-1-880653-96-8 (Set); ISSN 1098-6189 (Set); www.isope.org

95-11  S. Brizzolara, L. Savio, M. Viviani, Y. Chen, P. Temarel, N. Couty, S. Hoflack, L. Diebold, N. Moirod and A. Souto Iglesias, Comparison of experimental and numerical sloshing loads in partially filled tanks, Ships and Offshore StructuresVol. 6, Nos. 1–2, 2011, 15–43. Available for purchase online at Francis & Taylor.

85-11 Andrew Eoghan Maguire, Hydrodynamics, control and numerical modelling of absorbing wavemakers, thesis: The University of Edinburgh, 2011.

74-11  Jonathan Smith, Nahidul Khan and Michael Hinchey, CFD Simulation of AUV Depth Control, Paper presented at NECEC 2011, St. John’s, Newfoundland and Labrador, Canada. Abstract available online.

70-11  G. Kim, S.-H. Oh, K.S. Lee, I.S. Han, J.W. Chae, and S.-J Ahn, Numerical Investigation on Water Discharge Capability of Sluice Caisson of Tidal Power Plant, Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 2011), December 14-16, 2011, Hong Kong, China.

69-11  G. Alfonsi, A. Lauria, and L. Primavera, Wave-Field Flow Structures Developing Around Large-Diameter Vertical Circular Cylinder, Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 2011), December 14-16, 2011, Hong Kong, China.

68-11    C. Lee, B.W. Lee, Y.J. Kim, and K.O. Ko, Ship Wave Crests in Intermediate-Depth Water, Proceedings of the Sixth International Conference on Asian and Pacific Coasts (APAC 2011), December 14-16, 2011, Hong Kong, China.

63-11   Worakanok Thanyamanta, Paul Herrington, and David Molyneux, Wave patterns, wave induced forces and moments for a gravity based structure predicted using CFD, Proceedings of the ASME 2011, 30th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2011, Rotterdam, The Netherlands, June 19-24, 2011.

61-11  Jun Jin and Bo Meng, Computation of wave loads on the superstructures of coastal highway bridges, Ocean Engineering, available online October 19, 2011, ISSN 0029-8018, 10.1016/j.oceaneng.2011.09.029. Available for purchase at Science Direct.

36-11    Nadir Yilmaz, Geoffrey E. Trapp, Scott M. Gagan, Timothy R. Emmerich, CFD Supported Examination of Buoy Design for Wave Energy Conversion, IGEC-VI-2011-173, pp: 537-541

28-11  Rodolfo Bolaños, Laurent O. Amoudry and Ken Doyle, Effects of Instrumented Bottom Tripods on Process Measurements, Journal of Atmospheric and Oceanic Technology, June 2011, Vol. 28, No. 6: pp. 827-837. Available online at: AMS Journals Online.

81-10    Ashwin Lohithakshan Parambath, Impact of Tsunamis on Near Shore Wind Power Units, M.S. Thesis: Texas A&M University, Copyright 2010 Ashwin Lohithakshan Parambath December 2010.

80-10    Juan J. Horrillo, Amanda L. Wood, Charles Williams, Ashwin Parambath, and Gyeong-Bo Kim, Construction of Tsunami Inundation Maps in the Gulf of Mexico, Report to the National Tsunami Hazard Mitigation Program, December 2010.

69-10    George A Aggidis and Clive Mingham, A Joint Numerical and Experimental Study of a Surging Point Absorbing Wave Energy Converter (WRASPA), Joule Centre Research Grant Joint Final Report (Lancaster University and Macnhester Metropolitan University), Joule Grant No: JIRP306/02, 2010

67-10  Kazuhiko Terashima, Ryuji Ito, Yoshiyuki Noda, Yoji Masui and Takahiro Iwasa, Innovative Integrated Simulator for Agile Control Design on Shipboard Crane Considering Ship and Load Sway, 2010 IEEE International Conference on Control Applications, Part of 2010 IEEE Multi-Conference on Systems and Control, Yokohama, Japan, September 8-10, 2010

66-10  Shan-Hwei Ou, Tai-Wen Hsu, Jian-Feng Lin, Jian-Wu Lai, Shih-Hsiang Lin, Chen-Chen Chang, Yuan-Jyh Lan, Experimental and Numerical Studies on Wave Transformation over Artificial Reefs, Proceedings of the International Conference on Coastal Engineering, No 32 (2010), Shanghai, China, 2010.

65-10 Tai-Wen Hsu, Jian-Wu Lai, Yuan-Jyh Lan, Experimental and Numerical Studies on Wave Propagation over Coarse Grained Sloping Beach, Proceedings of the International Conference on Coastal Engineering, No 32 (2010), Shanghai, China, 2010.

26-10 R. Marcer, C. Berhault, C. de Jouëtte, N. Moirod and L. Shen, Validation of CFD Codes for Slamming, V European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2010, J.C.F. Pereira and A. Sequeira (Eds), Lisbon, Portugal, 14-17 June 2010

25-10 J.M. Zhan, Z. Dong, W. Jiang, and Y.S. Li, Numerical Simulation of wave transformation and runup incorporating porous media wave absorber and turbulence models, Ocean Engineering (2010), doi: 10.1016/j.oceaneng.2010.06.005. Available for purchase at Science Direct.

17-10 F. Dentale, S.D. Russo, E. Pugliese Carratelli, S. Mascetti, A New Numerical Approach to Study the Wave Motion with Breakwaters and the Armor Stability, Marine Technology Reporter, May 2010

01-10 F. Dentale, S.D. Russo, E. Pugliese Carratelli, Innovative Numerical Simulation to Study the Fluid withing Rubble Mound Breakwaters and the Armour Stability, 17th Armourstone Wallingford Armourstone Meeting, Wallingford, UK, February 2010.

52-09  Mark Reed, Øistein Johansen, Frode Leirvik, and Bård Brørs, Numerical Algorithm to Compute the Effects of Breaking Waves on Surface Oil Spilled at Sea, Final Report, Second revision, SINTEF, October 2009.

49-09  Anna Pellicioli, Indagine Numerica Sulla Resistenza Idrodinamica Di Uno Scafo In Presenza Di Superficie Libera, thesis: Univerista Degli Studi Di Bergamo, 2008/2009. In Italian. Available upon request.

46-09 Carlos Guedes Soares, P.K. Das, Analysis and Design of Marine Structures, CRC Press; 1 Har/Cdr edition (March 2, 2009), 0415549345

32-09 M.A. Binder, C.G. Mingham, D.M. Causon, M.T. Rahmati, G.A. Aggidis, R.V. Chaplin, Numerical Modelling of a Surging Point Absorber Wave Energy Converter, 8th European Wave and Tidal Energy Conference EWTEC 2009, Uppsala, Sweden, 7-10 September 2009

28-09 D. C. Lo, Dong-Taur Su and Jan-Ming Chen (2009), Application of Computational Fluid Dynamics Simulations to the Analysis of Bank Effects in Restricted Waters, Journal of Navigation, 62, pp 477-491, doi:10.1017/S037346330900527X; Purchase the article online (clicking on this link will take you to the Cambridge Journals website).

26-09 Fabio Dentale, E. Pugliese Carratelli, S.D. Russo, and Stefano Mascetti, Advanced Numerical Simulations on the Interaction between Waves and Rubble Mound Breakwaters, Journal of the Engineering Association for Offshore and Marine in Italy, (translation from the Italian)

25-09 F. Dentale, B. Messina, E. Pugliese Carratelli, S. Mascetti, Studio numerico avanzato sul moto di filtrazione in ambito marittimo, A & C, Analisi e Calcolo, Giugno 2009 (in Italian)

22-09 M.A. Bhinder, C.G. Mingham, D.M. Causon, M.T. Rahmati, G.A. Aggidis and R.V. Chaplin, A Joint Numerical And Experimental Study Of a Surging Point Absorbing Wave Energy Converter (WRASPA)2, Proceedings of the ASME 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2009-79392, Honolulu, Hawaii, May 31-June 5, 2009

8-09 Basu, D., S. Green, K. Das, R. Janetzke, and J. Stamatakos, Numerical Simulation of Surface Waves Generated by a Subaerial Landslide at Lituya Bay, 28th International Conference on Ocean, Offshore and Arctic Engineering, May 31–June 5, 2009, Honolulu, Hawaii

17-09 Das, K., R. Janetzke, D. Basu, S. Green, and J. Stamatakos, Numerical Simulations of Tsunami Wave Generation by Submarine and Aerial Landslides Using RANS and SPH Models, 28th International Conference on Ocean, Offshore and Arctic Engineering, May 31–June 5, 2009, Honolulu, Hawaii

16-09 Basu, D., S. Green, K. Das, R. Janetzke, and J. Stamatakos, Navier-Stokes Simulations of Surface Waves Generated by Submarine Landslides Effect of Slide Geometry and Turbulence, 2009 Society of Petroleum Engineering Americas E&P Environmental & Safety Conference, March 23–25, 2009, San Antonio, Texas.

48-08    Osamu Kiyomiya1 and Kazuya Kuroki, Flap Gate to Prevent Urban Area from Tsunami, The 14th World Conference on Earthquake Engineering, October 12-17, 2008, Beijing, China

43-08  Eldina Fatimah, Ahmad Khairi Abd. Wahab, and Hadibah Ismail, Numerical modeling approach of an artificial mangrove root system (ArMs) submerged breakwater as wetland habitat protector, COPEDEC VII, Dubai UAE, 2008.

40-08 Giacomo Viccione, Fabio Dentale, and Vittorio Bovolin, Simulation of Wave Impact Pressure on Vertical Structures with the SPH Method, 3rd ERCOFTAC SPHERIC workshop on SPH applications, Laussanne, Switzerland, June 4-6, 2008.

39-08 Kang, Young-Seung, Kim, Pyeong-Joong, Hyun, Sang-Kwon and Sung, Ha-Keun, Numerical Simulation of Ship-induced Wave Using FLOW-3D, Journal of Korean Society of Coastal and Ocean Engineers / v.20, no.3, 2008, pp.255-267, ISSN: 1976-8192, http://ksci.kisti.re.kr/search/article/articleView.ksci?articleBean.artSeq=HOHODK_2008_v20n3_255

35-08 B.W. Nam, S.H. Shin, K.Y. Hong, S.W. Hong, Numerical Simulation of Wave Flow over the Spiral-Reef Overtopping Device, Proceedings of the Eighth (2008) ISOPE Pacific/Asia Offshore Mechanics Symposium, Bangkok, Thailand, November 10-14, 2008, © 2008 by The International Society of Offshore and Polar Engineers, ISBN 978-1-880653-52-4

34-08 B. H. Choi, E. Pelinovsky, D.C. Kim, I. Didenkulova and S.-B. Woo, Two and three-dimensional computation of solitary wave runup on non-plane beach, Nonlin. Processes Geophys., 15, 489-502, 2008, www.nonlin-processes-geophys.net/15/489/2008 (c) Author(s) 2008.

23-08 Barb Schmitz, Tecplot, Nastran & FLOW-3D Win the Race, Desktop Engineering’s Elements of Analysis, September 2008

38-07 Choi, B.-H., Kim, D. C., Pelinovsky, E., and Woo, S. B., Three-dimensional simulation of tsunami run-up around conical island, Coast. Eng., Vol. 54, Issue 8, 618-629, 2007.

33-07 Mirela Zalar, Sime Malenica, Zoran Mravak, Nicolas Moirod, Some Aspects of Direct Calculation Methods for the Assessment of LNG Tank Structure Under Sloshing Impacts, La Asociación Española del Gas (sedigas) Spain 2007

20-07 Oceanic Consulting Corporation, Berthing Studies for LNG Carriers in the Calcasieu River Waterway, Making Waves: Newsletter of Oceanic Consulting Corporation, Winter 2007

10-07 Gildas Colleter, Breaking wave uplift and overtopping on a horizontal deck using physical and numerical modeling, Coasts and Ports 2007 Conference in Melbourne, Australia

18-06 Brizzolara, Stefano and Rizzuto, Enrico, Wind Heeling Moments on Very Large Ships. Some Insights through CFD Results, Proceedings on the 9th International Conference on Stability of Ships and Ocean Vehicles, Rio de Janeiro, September 25, 2006

16-06 Ransau, Samuel R, and Hansen, Ernst W.M., Numerical Simulations of Sloshing in Rectangular Tanks, Proceedings of OMAE2006, 25th International Conference on Offshore Mechanics and Arctic Engineering, Hamburg, Germany, June 4-9, 2006

15-06 Ema Muk-Pavic, Shin Chin and Don Spencer, Validation of the CFD code FLOW-3D for the free surface flow around the ships’; hulls, 14th Annual Conference of the CFD Society of Canada, Kingston, Canada, July 16-18, 2006

3-06 Hansen, E.W.M. and Geir J. Rørtveit, Numerical Simulation of Fluid Mechanisms and Separation Behaviour in Offshore Gravity Separators, Chapter 16 in Emulsions and Emulsion Stability, 2nd Edition, edited by Johan Sjøblom, Taylor & Francis, 2006

24-05 Hansen E.W., Separation Offshore Survey – Design-Redesign of Gravity Separators, Exploration & Production: The Oil & Gas Review 2005 – Issue 2

8-05 T. Kristiansen, R. Baarholm, C.T. Stansberg, G. Rortveit and E.W.M. Hansen, Kinematics in a Diffracted Wave Field Particle Image Velocimetry (PIV) and Numerical Models, Presented at the 24th International Conference on Offshore Mechanics and Arctic Engineering, OMAE 67176, Halkidiki, Greece, June 12-17, 2005

7-05 C.T. Stansberg, R. Baarholm, T. Kristiansen, E.W.M. Hansen and G. Rortveit, Extreme Wave Amplification and Impact Loads on Offshore Structures, presented at the 2005 Offshore Technology Conference, Houston, TX, May 2-5, 2005

16-04 Carl Trygve Stansberg, Kjetil Berget, Oyvind Hellan, Ole A. Hermundstad, Jan R. Hoff and Trygve Kristiansen and Ernst Hansen, Prediction of Green Sea Loads on FPSO in Random Seas, presented at the 14th International Offshore and Polar Engineering Conference (ISOPE 2004), Toulon, France, May 2004

15-04 Š. Malenica, M. Zalar, J.M. Orozco, B. LeGallo & X.B. Chen, Linear and Non-Linear Effects of Sloshing on Ship Motions, 23rd International Conference on Offshore Mechanics and Artic Engineering, OMAE 2004, Vancouver, June 2004

11-04 Don Bass, David Molyneux, Kevin McTaggart, Simulating Wave Action in the Well Deck of Landing Platform Dock Ships Using Computational Fluid Dynamics

37-03  Sreenivasa C Chopakatla, A CFD Model for Wave Transformations and Breaking in the Surf Zone, thesis: Master of Science, The Ohio State Univeristy, 2003.

29-02   O. Bayle, V. L’Hullier, M. Ganet, P. Delpy, J.L. Francart and D. Paris, Influence of the ATV Propellant Sloshing on the GNC Performance, AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, California, 5-8 August 2002, © 2002 by EADS Launch Vehicles

25-02 Y. Kim, Numerical Analysis of Sloshing Problem, American Bureau of Shipping, Research Dept, Houston, TX

10-02 Peter Chang III & Xiongjun Wu, Entrainment Correlations Based on a Fuel-Water Stratified Shear Flow, Proceedings of FEDSM2002, 2002 ASME Fluids Engineering Decision Summer Meeting, July 14-18, 2002, Montreal, Quebec, Canada

37-01 Ismail B. Celik, Allen E. Badeau Jr., Andrew Burt and Sherif Kandil, A Single Fluid Transport Model For Computation of Stratified Immiscible Liquid-Liquid Flows, Mechanical and Aerospace Engineering Department, West Virginia University, Proceedings of the XXIX IAHR Congress, September 2001. Beijing, China

14-01 Charles Ortloff, CTC/United Defense, Computer Simulation Analyzed Typhoon Damage to FPSOs, Marine News, April 30, 2001, pp. 22-23

8-01 Charles Ortloff, Computer Simulations Analyze Wave Damage to Offloading Vessels, Marine News, April 30, 2001, pp. 22-23

25-00 Faltinsen, O.A. and Rognebakke, O.F., Sloshing in Rectangular Tanks and Interaction with Ship Motions-Sloshing, Int. Conf. on Ship and Shipping Research NAV, Venice, Italy, 2000.

20-97   C.R. Ortloff, Numerical Test Tank Simulation of Ocean Engineering Problems by Computational Fluid Dynamics, Offshore Technology Conference Paper 8269B, Houston, TX, 1997

19-97   C.R. Ortloff and M. Krafft, Numerical Test Tanks-Computer Simulation-Test Verification of Major Ocean Engineering Problems for the Off-Shore Oil Industry, OTC 8269A, Offshore Technology Conference, Copyright 1997, Houston, Texas, May 1997

9-94 P. A. Chang, C-W Lin, CD-NSWC, Hydrodynamic Analysis of Oil Outflow from Double Hull Tankers, The Advanced Double-Hull Technical Symposium, Gaithersburg, MD, October 25-26, 1994.

8-90 C. W. Hirt, Computational Modeling of Cavitation, Flow Science report, July 1990, presented at the 2nd International Symposium on Performance Enhancement for Marine Applications, Newport, RI, October 14-16, 1990

10-87 H. W. Meldner, USA’s Revolutionary Appendages and CFD, CORDTRAN Corp. Report presented at AIAA and SNAME 17th Annual International Symposium on Sailing, Stanford University, Palo Alto, CA, Oct. 31-Nov. 1, 1987

3-85 C. W. Hirt and J. M. Sicilian, A Porosity Technique for the Definition of Obstacles in Rectangular Cell Meshes, Fourth International Conference on Ship Hydrodynamics, Washington, DC, September 1985

Water & Environmental Bibliography

다음은 수자원 및 환경 분야에 대한 참고 문 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  해석 결과를 사용하였습니다. FLOW-3D  를 사용하여 수처리 및 환경 산업을 위한 응용 프로그램을 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

Water and Environmental Bibliography

2024년 11월 20일 Update

118-24 Lei Liao, Jia Li, Min Chen, Ruidong An, Effects of hydraulic cues in barrier environments on fish navigation downstream of dams, Journal of Environmental Management, 365; 121495, 2024. doi.org/10.1016/j.jenvman.2024.121495

115-24 H. Liu, Y.G. Cheng, Z.Y. Yang, J. Zhang, J.Y. Fan, W.X. Li, Effect of uneven inflow on hydrodynamic performance of bulb turbine, Journal of Physics: Conference Series, 2752; 012032, 2024. doi.org/10.1088/1742-6596/2752/1/012032

112-24 Jian Guo, Bowen Weng, Jiyi Wu, Investigation of the energy loss in cylindrical bridge piers scour depth prediction on sand-bed, Ocean Engineering, 309.1; 118513, 2024. doi.org/10.1016/j.oceaneng.2024.118513

110-24 Siyu Chen, Xiyen Liu, Junyao Tang, Ying Gao, Tianyou Zhang, Linhao Gu, Tao Ma, Can Chen, Study on the influence of design parameters of porous asphalt pavement on drainage performance, Journal of Hydrology, 638; 131514, 2024. doi.org/10.1016/j.jhydrol.2024.131514

108-24 Abubaker Sami Dheyab, Mustafa Günal, Experimental and numerical study for local scour around cylindrical bridge pier in non-cohesive sediment bed, 4th International Congress of Engineering and Natural Sciences (ICENSS), 2024.

106-24 P. Asabian, C.D. Rennie, N. Egsgard, Experimental and numerical investigation of the flow-structure of river surf waves, River Flow 2022, eds. Ana Maria Ferreira da Silva, Colin Rennie, Susan Gaskin, Jay Lacey, Bruce MacVicar, 2024.

105-24 M. Cihan Aydin, Ali Emre Ulu, Ercan Işık, Nizamettin Hamidi, An experimental and numerical investigation of hydraulic performance of in-channel triangular labyrinth weir for free overflow, ISH Journal of Hydraulic Engineering, pp. 1-10, 2024. doi.org/10.1080/09715010.2024.2363224

103-24 Yazhou Wang, Jinrong Da, Yuchen Luo, Sirui He, Zuocong Tian, Ziyi Xue, Zehao Li, Xianyu Zhao, Desheng Yin, Hui Peng, Xiang Liu, Xiaoning Liu , Minimization of heavy metal adsorption in struvite through effective separation and manipulation of flow field, Journal of Hazardous Materials, 474; 134820, 2024. doi.org/10.1016/j.jhazmat.2024.134820

101-24 Davut Yilmaz, Tugce Basar, Arzu Ozkaya, Assessing the pressure variation in the plunge pool of Yusufeli dam, Dams and Reservoirs, 2024. doi.org/10.1680/jdare.2024.1

99-24 Azim Turan, High resolution flash flood forecasting by combining a hydrometeorological modeling system with a computational fluid dynamics model, Thesis, Middle East Technical University, 2024.

97-24 Umut Aykan, Numerical investigation of vortex formation at single and multiple symmetric horizontal intakes, Thesis, Middle East Technical University, 2024.

91-24 Di Wang, Xiaoyong Cheng, Zhixuan Cao, Jinyun Deng, Three-dimensional flow structure in a confluence-bifurcation unit, Engineering Applications of Computational Fluid Mechanics, 18.1; 2024. doi.org/10.1080/19942060.2024.2349076

86-24 M.Z. Qamar, M.K. Verma, A.P. Meshram, Physical and numerical modelling for settling efficiency of desilting chamber, ISH Journal of Hydraulic Engineering, 30.3; 2024. doi.org/10.1080/09715010.2024.2345338

85-24 Ruichen Xu, Duane C. Chapman, Caroline M. Elliott, Bruce C. Call, Robert B. Jacobson, Binbin Wang, Ecological inferences on invasive carp survival using hydrodynamics and egg drift models, Scientific Reports, 14; 9556, 2024. doi.org/10.1038/s41598-024-60189-1

84-24 M. Cihan Aydin, Ali Emre Ulu, Ercan Işik, Experimental and numerical investigation of rectangular labyrinth weirs in an open channel, Water Management , 2024. doi.org/10.1680/jwama.22.00112

76-24 Chyan-Deng Jan, Litan Dey, Slump-flow channel test for evaluating the relations between spreading and rheological parameters of sediment mixtures, European Journal of Mechanics – B/Fluids, 106; pp. 137-147, 2024. doi.org/10.1016/j.euromechflu.2024.04.005

74-24 Abhishek K. Pandey, Pranab K. Mohapatra, 3D numerical simulations of the bed evolution at an open-channel junction in flood conditions, Journal of Irrigation and Drainage Engineering, 150.3; 2024. doi.org/10.1061/JIDEDH.IRENG-10321

70-24 Jianing Rao, Qi Wei, Lian Tang, Yuanming Wang, Ruifeng Liang, Kefeng Li, A design of a nature-like fishway to solve the fractured river connectivity caused by small hydropower based on hydrodynamics and fish behaviors, Environmental Science and Pollution Research, 31; pp. 27883-27896, 2024. doi.org/10.1007/s11356-024-33034-1

69-24 M. Cihan Aydin, Ali Emre Ulu, Ercan Işık, Determination of effective flow behaviors on discharge performance of trapezoidal labyrinth weirs using numerical and physical models, Modeling Earth Systems and Environment, 10; pp. 3763-3776, 2024. doi.org/10.1007/s40808-024-01996-3

62-24 Ramtin Sabeti, Mohammad Heidarzadeh, Estimating maximum initial wave amplitude of subaerial landslide tsunamis: A three-dimensional modelling approach, Ocean Modelling, 189; 102360, 2024. doi.org/10.1016/j.ocemod.2024.102360

60-24 Mahdi Ebrahimi, Mirali Mohammadi, Sayed Mohammad Hadi Meshkati, Farhad Imanshoar, Embankment dams overtopping breach: A numerical investigation of hydraulic results, Iranian Journal of Science and Technology: Transactions of Civil Engineering, 2024. doi.org/10.1007/s40996-024-01387-9

59-24 Behshad Mardasi, Rasoul Ilkhanipour Zeynali, Majid Heydari, Conducting experimental and numerical studies to analyze the impact of the base nose shape on flow hydraulics in PKW weir using FLOW-3D, Journal of Hydraulic Structures, 9.4; pp. 88-113, 2024. doi.org/10.22055/JHS.2024.45888.1284

58-24 Ramtin Sabeti, Mohammad Heidarzadeh, Alessandro Romano, Gabriel Barajas Ojeda, Javier L. Lara, Three-dimensional simulations of subaerial landslide-generated waves: Comparing OpenFOAM and FLOW-3D HYDRO models, Pure and Applied Geophysics, 181; pp. 1075-1093, 2024. doi.org/10.1007/s00024-024-03443-x

56-24 Ali Poorkarimi, Khaled Mafakheri, Shahrzad Maleki, Effect of inlet and baffle position on the removal efficiency of sedimentation tank using FLOW-3D software, Journal of Hydraulic Structures, 9.4; pp. 76-87, 2024. doi.org/10.22055/jhs.2024.44817.1265

55-24 P Sujith Nair, Aniruddha D. Ghare, Ankur Kapoor, An approach to hydraulic design of conical central baffle flumes, Flow Measurement and Instrumentation, 97; 102573, 2024. doi.org/10.1016/j.flowmeasinst.2024.102573

54-24 Isabelle Cheff, Julie Taylor, Andrew Mitchell, Kathleen Horita, Darren Shepherd, Steven Rintoul, Rob Millar, Evaluating uncertainty in debris flood modelling for the design of a steep built channel, EGU General Assembly, EGU24-20781, 2024. doi.org/10.5194/egusphere-egu24-20781

53-24 Antonija Harasti, Gordon Gilja, Josip Vuco, Jelena Boban, Manousos Valyrakis, Temporal development of the scour hole next to the riprap sloping structure, EGU General Assembly, EGU24-10349, 2024. doi.org/10.5194/egusphere-egu24-10349

52-24 Gordon Gilja, Antonija Harasti, Dea Delija, Iva Mejašić, Manousos Valyrakis, Change in flow field next to riprap sloping structure caused by variability of scoured bathymetry, EGU General Assembly, EGU24-10417, 2024. doi.org/10.5194/egusphere-egu24-10417

49-24 Mehdi Hamidi, Mehran Sadeqlu, Ali Mahdian Khalili, Investigating the design and arrangement of dual submerged vanes as mitigation countermeasure of bridge pier scour depth using a numerical approach, Ocean Engineering, 299; 117270, 2024. doi.org/10.1016/j.oceaneng.2024.117270

48-24 Yingying Wang, Mouchao Lv, Wen’e Wang, Ming Meng, Discharge formula and hydraulics of rectangular side weirs in the small channel and field inlet, Water, 16.5; 713, 2024. doi.org/10.3390/w16050713

45-24 José Saldanha Matos, Filipa Ferreira, Lisbon Master Plans and nature-based solutions, Urban Green Spaces – New Perspectives for Urban Resilience, Eds. Cristina M. Monteiro, Cristina Santos, Cristina Matos, Ana Briga Sá. doi.org/10.5772/intechopen.113870

44-24 Muhanad Al-Jubouri, Richard P. Ray, Enhancing pier local scour prediction in the presence of floating debris, Pollack Periodica, 2024. doi.org/10.1556/606.2023.00952

42-24 Huanquan Yang, Jiabao Ma, Xueying Liu, Numerical simulation research on energy dissipation characteristics of fish scale weir, ES3 Web of Conferences, 490; 03005, 2024. doi.org/10.1051/e3sconf/202449003005

39-24 Henry-John Wright, Investigation of novel deflector shapes for uncontrolled spillways, Thesis, Stellenbosch University, 2024.

37-24 Filipe Romão, Ana L. Quaresma, Joana Simão, Francisco J. Bravo-Córdoba, Teresa Viseu, José M. Santos, Francisco J. Sanz-Ronda, António N. Pi, Debating the rules: an experimental approach to assess cyprinid passage performance thresholds in vertical slot fishways, Water, 16.3; 439, 2024. doi.org/10.3390/w16030439

36-24 Berkay Erat, Efe Barbaros, Kerem Taştan, Experimental and numerical investigation on flow and scour upstream of pipe intake structures, Arabian Journal for Science and Engineering, 49; pp. 5973-5987, 2024. doi.org/10.1007/s13369-023-08539-5

31-24 Mahmoud T. Ghonim, Ashraf Jatwary, Magdy H. Mowafy, Martina Zelenakova, Hany F. Abd-Elhamid, H. Omara, Hazem M. Eldeeb, Estimating the peak outflow and maximum erosion rate during the breach of embankment dam, Water, 16.3; 399, 2024. doi.org/10.3390/w16030399

30-24 Deli Qiu, Jiangdong Xu, Hai Lin, Numerical analysis of the overtopping failure of the tailings dam model based on inception similarity optimization, Applied Sciences, 14.3; 990, 2024. doi.org/10.3390/app14030990

29-24 Tino Kostić, Yuanjie Ren, Stephan Theobald, 3D-CFD analysis of bedload transport in channel bifurcations, Journal of Hydroinformatics, 26.2; 480, 2024. doi.org/10.2166/hydro.2024.175

28-24 Chenhao Zhang, Xin Li, Renyu Zhou, Bernard A. Engel, Yubao Wang, Hydraulic characteristics and flow measurement performance of portable primary and subsidiary fish-shaped flumes in U-shaped channels, Flow Measurement and Instrumentation, 96; 102539, 2024. doi.org/10.1016/j.flowmeasinst.2024.102539

23-24   Arash Ahmadi, Amir H. Azimi, Effects of ramp slope and discharge on hydraulic performance of submerged hump weirs, Flow Measurement and Instrumentation, 96; 102520, 2024. doi.org/10.1016/j.flowmeasinst.2023.102520

20-24   Parisa Mirkhorli, Amir Ghaderi, Forough Alizadeh Sanami, Mirali Mohammadi, Alban Kuriqi, An investigation on hydraulic aspects of rectangular labyrinth pool and weir fishway using FLOW-3D, Arabian Journal for Science and Engineering, 2024. doi.org/10.1007/s13369-023-08537-7

17-24   Veysi Kartal, M. Emin Emiroglu, Numerical simulation of the flow passing through the side weir-gate, Flow Measurement and Instrumentation, 95; 102519, 2024. doi.org/10.1016/j.flowmeasinst.2023.102519

16-24   Junqi Chen, Wen Zhang, Chen Cao, Han Yin, Jia Wang, Wankun Li, Yanhao Zheng, The effect of the check dam on the sediment transport and control in debris flow events, Engineering Geology, 329; 107397, 2024. doi.org/10.1016/j.enggeo.2023.107397

15-24   Jingxin Mao, Yijun Wang, Hao Zhang, Xiaofei Jing, Study on the influence of urban water supply pipeline leakage on the scouring failure law of cohesive soil subgrade, Water, 16.1; 93, 2024. doi.org/10.3390/w16010093

13-24   Ramtin Sabeti, Mohammad Heidarzadeh, Alessandro Romano, Gabriel Barajas Ojeda, Javier L. Lara, Three-dimensional simulations of subaerial landslide-generated wave: comparing OpenFOAM and FLOW-3D HYDRO models, Pure and Applied Geophysics, 2024. doi.org/10.1007/s00024-024-03443-x

12-24   Damoon Mohammad Ali Nezhadian, Hossein Hamidifar, Effects of floating debris on flow characteristics around slotted bridge piers: a numerical simulation, Water, 16.1; 90, 2024. doi.org/10.3390/w16010090

10-24   Zhong Gao, Jinpeng Liu, Wen He, Bokai Lu, Manman Wang, Zikai Tang, Study of a tailings dam failure pattern and post-failure effects under flooding conditions, Water, 16.1; 68, 2024. doi.org/10.3390/w16010068

9-24   Yilin Yang, Jinzhao Li, Waner Zou, Benshuang Chen, Numerical investigation of flow and scour around complex bridge piers in wind-wave-current conditions, Journal of Marine Science and Engineering, 12.1; 23, 2024. doi.org/10.3390/jmse12010023

7-24   Penfeng Li, Haixiao Jing, Guodong Li, Generation and prediction of water waves induced by rigid piston-like landslide, Natural Hazards, 120; pp. 2683-2704, 2024. doi.org/10.1007/s11069-023-06300-7

6-24   Jie-yuan Zhang, Xing-Guo Yang, Gang Fan, Hai-bo Li, Jia-wen Zhou, Physical and numerical modeling of a landslide dam breach and flood routing process, Journal of Hydrology, 628; 130552, 2024. doi.org/10.1016/j.jhydrol.2023.130552

241-23 Kamyab Habibi, Farinaz Erfani Fard, Seyed Amin Asghari Pari, Investigation of the flow field around bridge piers on a non-eroding bed using FLOW-3D, 22nd Iranian Conference on Hydraulics, 2023.

240-23 Dong Hyun Kim, Su-Hyun Yang, Sung Sik Joo, Seung Oh Lee, Analysis of flow velocity in the channel according to the type of revetments blocks using 3D numerical model, Journal of Korean Society of Disaster and Security, 16.4; pp. 9-18, 2023.

238-23 Mohamed Elberry, Abdelazim Ali, Fahmy Abdelhaleem, Amir Ibrahim, Numerical investigations of stilling basin efficiency downstream radial gates – A case study of New Assuit Barrage, Egypt, Journal of Water and Land Development, 59 (X-XII); pp. 126-134, 2023. doi.org/10.24425/jwld.2023.147237

237-23 Oğuzhan Uluyurt, Numerical investigation of energy dissipation using macro roughness elements in a stilling basin, Thesis, Middle East Technical University, 2023.

236-23   Mohamed Galal Eltarabily, Mohamed Kamel Elshaarawy, Mohamed Elkiki, Tarek Selim, Computational fluid dynamics and artificial neural networks for modelling lined irrigation canals with low-density polyethylene and cement concrete liners, Irrigation and Drainage, 2023. doi.org/10.1002/ird.2911

234-23   Saman Baharvand, Babak Lashkar-Ara, Hydrodynamic and biological assessment of modified meander C-type fishway to pass rainbow trout (Oncorhynchus mykiss) fish species, Scientia Iranica, 2023.

232-23   Chung R. Song, Richard L. Wood, Basil Abualshar, Bashar Al-Nimri, Mark O’Brien, Mitra Nasimi, Erosion resistant rock shoulder, Nebraska Department of Transportation, Final Report SPR-P1(20), 2023.

230-23   Rongzhao Zhang, Wen Xiong, Xiaolong Ma, C.S. Cai, A forensic investigation of progressive bridge collapse under floods and asymmetric scour validated by incident video footages, Structure and Infrastructure Engineering, 2023. doi.org/10.1080/15732479.2023.2290701

229-23   Vivek Sharma Jai, Hydraulic simulation and numerical investigation of the flow in the stepped spillway with the help of FLOW-3D software, International Journal of Innovative Science and Research Technology, 8; 2023. doi.org/10.5281/zenodo.8076943

228-23   Hao Chen, Yang Tang, Jinyuan Li, Faxin Zhu, Xianbin Teng, The influence of impinging distance variable on the effect of submerged jet scour, Journal of Physics: Conference Series, 2660; 012004, 2023. doi.org/10.1088/1742-6596/2660/1/012004

225-23   Kyle Thomson, Towards safer bridges: Overcoming 2D model limitations and reducing flood risks through computational fluid dynamics, IPWEA Annual Conference Gold Coast, 2023.

223-23   Chong-xun Wang, Jia-wen Zhou, Chang-bing Zhang, Yu-xiang Hu, Hao Chen, Hai-bo Li, Failure mechanism analysis and mass movement assessment of a post‑earthquake high slope, Arabian Journal of Geosciences, 16; 683, 2023. doi.org/10.1007/s12517-023-11737-y

222-23   Alaa Ghzayel, Anthony Beaudoin, Sébastien Jarny, Three-dimensional numerical study of a local scour downstream of a submerged sluice gate using two hydro-morphodynamic models, SedFoam and FLOW-3D, Comptes Rendus. Mécanique, 351.G2; pp. 525-550, 2023. doi.org/10.5802/crmeca.223

221-23   Othon José Rocha, Luiz Renato Martini Filho, Caio Gripp Benevente, Letícia Imbuzeiro, Modelagem CFD-3D aplicada ao setor de mineração (3D CFD modeling applied to the mining sector), 34th Seminario Nacional de Grandes Barragens, 2023.

220-23   Gaetano Crispino, David Dorthe, Corrado Gisonni, Michael Pfister, Optimal hydraulic design of supercritical bend manholes, Proceedings of the 40th IAHR World Congress, Eds. Helmut Habersack, Michael Tritthart, Lisa Waldenberger, 2023. doi.org/10.3850/978-90-833476-1-5_iahr40wc-p0090-cd

218-23   Arun Goel, Aditya Thakare, M.K. Verma, M.Z. Qamar, Evaluation of design approaches of desilting basins for hydroelectric projects in Himalayan region, ISH Journal of Hydraulic Engineering, 30.1; pp. 122-131, 2023. doi.org/10.1080/09715010.2023.2283593

215-23   Ahmed Ashour, Emam Salah, Numerical study of energy dissipation in baffled stepped spillway using FLOW-3D, International Journal of Research in Engineering, Science and Management, 6.11; 2023.

214-23   Farshid Mosaddeghi, Mete Koken, Ismail Aydin, Finite volume analysis of dam breaking subjected to earthquake accelerations, Journal of Hydraulic Research, 61.6; pp. 845-865, 2023. doi.org/10.1080/00221686.2023.2259858

213-23   Habib Ahmari, Ashish Bhurtyal, Srinivas Prabakar, Qazi Ashique Mowla, Saman Baharvand, Hassan Alsaud, Laboratory testing of engineered media for biofiltration swales, University of Texas Arlington, Project No. TRN6835 Final Report, 2023.

209-23   Cong Trieu Tran, Cong Ty Trinh, Prediction of the vortex evolution and influence analysis of rough bed in a hydraulic jump with the Omega-Liutex method, Tehnički Vjesnik, 30.6; 2023. doi.org/10.17559/TV-20230206000327

203-23   Muhammad Waqas Zaffar, Ishtiaq Hassan, Zulfiqar Ali, Kaleem Sarwar, Muhammad Hassan, Muhammad Taimoor Mustafa, Faizan Ahmed Waris, Numerical investigation of hydraulic jumps with USBR and wedge-shaped baffle block basins for lower tailwater, AQUA – Water Infrastructure, Ecosystems and Society, 72.11; 2081, 2023. doi.org/10.2166/aqua.2023.261

201-23   E.F.R. Bollaert, Digital cloud-based platform to predict rock scour at high-head dams, Role of Dams and Reservoirs in a Successful Energy Transition, Eds. Robert Boes, Patrice Droz, Raphael Leroy, 2023. doi.org/10.1201/9781003440420

200-23   Iacopo Vona, Oysters’ integration on submerged breakwaters as nature-based solution for coastal protection within estuarine environments, Thesis, University of Maryland, 2023.

198-23   Hao Chen, Xianbin Teng, Zhibin Zhang, Faxin Zhu, Jie Wang, Zhaohao Zhang, Numerical analysis of the influence of the impinging distance on the scouring efficiency of submerged jets, Fluid Dynamics & Materials Processing, 20.2; pp. 429-445, 2023. doi.org/10.32604/fdmp.2023.030585

193-23   Chen Peng, Liuweikai Gu, Qiming Zhong, Numerical simulation of dam failure process based on FLOW-3D, Advances in Frontier Research on Engineering Structures, pp. 545-550, 2023. doi.org/10.3233/ATDE230245

189-23   Rebecca G. Englert, Age J. Vellinga, Matthieu J.B. Cartigny, Michael A. Clare, Joris T. Eggenhuisen, Stephen M. Hubbard, Controls on upstream-migrating bed forms in sandy submarine channels, Geology, 51.12; PP. 1137-1142, 2023. doi.org/10.1130/G51385.1

187-23   J.W. Kim, S.B. Woo, A numerical approach to the treatment of submerged water exchange processes through the sluice gates of a tidal power plant, Renewable Energy, 219.1; 119408, 2023. doi.org/10.1016/j.renene.2023.119408

186-23   Chan Jin Jeong, Hyung Jun Park, Hyung Suk Kim, Seung Oh Lee, Study on fish-friendly flow characteristic in stepped fishway, Proceedings of the Korean Water Resources Association Conference, 2023. (In Korean)

185-23   Jaehwan Yoo, Sedong Jang, Byunghyun Kim, Analysis of coastal city flooding in 2D and 3D considering extreme conditions and climate change, Proceedings of the Korean Water Resources Association Conference, 2023. (In Korean)

180-23   Prathyush Nallamothu, Jonathan Gregory, Jordan Leh, Daniel P. Zielinski, Jesse L. Eickholt, Semi-automated inquiry of fish launch angle and speed for hazard analysis, Fishes, 8.10; 476, 2023. doi.org/10.3390/fishes8100476

179-23   Reza Norouzi, Parisa Ebadzadeh, Veli Sume, Rasoul Daneshfaraz, Upstream vortices of a sluice gate: an experimental and numerical study, AQUA – Water Infrastructure, Ecosystems and Society, 72.10; 1906, 2023. doi.org/10.2166/aqua.2023.269

178-23   Bai Hao Li, How Tion Puay, Muhammad Azfar Bin Hamidi, Influence of spur dike’s angle on sand bar formation in a rectangular channel, IOP Conference Series: Earth and Environmental Science, 1238; 012027, 2023. doi.org/10.1088/1755-1315/1238/1/012027

177-23   Hao Zhe Khor, How Tion Puay, Influence of gate lip angle on downpull forces for vertical lift gates, IOP Conference Series: Earth and Environmental Science, 1238; 012019, 2023. doi.org/10.1088/1755-1315/1238/1/012019

175-23   Juan Francisco Macián-Pérez, Rafael García-Bartual, P. Amparo López-Jiménez, Francisco José Vallés-Morán, Numerical modeling of hydraulic jumps at negative steps to improve energy dissipation in stilling basins, Applied Water Science, 13.203; 2023. doi.org/10.1007/s13201-023-01985-4

174-23   Ahintha Kandamby, Dusty Myers, Narrows bypass chute CFD analysis, Dam Safety, 2023.

173-23   H. Jalili, R.C. Mahon, M.F. Martinez, J.W. Nicklow, Sediment sluicing from the reservoirs with high efficiency, SEDHYD, 2023.

170-23   Ramith Fernando, Gangfu Zhang, Beyond 2D: Unravelling bridge hydraulics with CFD modelling, 24th Queensland Water Symposium, 2023.

169-23   K. Licht, G. Lončar, H. Posavčić, I. Halkijević, Short-time numerical simulation of ultrasonically assisted electrochemical removal of strontium from water, 18th International Conference on Environmental Science and Technology (CEST), 2023.

166-23   Ebrahim Hamid Hussein Al-Qadami, Mohd Adib Mohammad Razi, Wawan Septiawan Damanik, Zahiraniza Mustaffa, Eduardo Martinez-Gomariz, Fang Yenn Teo, Anwar Ameen Hezam Saeed, Understanding the stability of passenger vehicles exposed to water flows through 3D CFD modelling, Sustainability, 15.17; 13262, 2023. doi.org/10.3390/su151713262

165-23   Ebrahim Hamid Hussein Al-Qadami, Mohd Adib Mohammad Razi, Wawan Septiawan Damanik, Zahiraniza Mustaffa, Eduardo Martinez-Gomariz, Fang Yenn Teo, Anwar Ameen Hezam Saeed, 3-dimensional numerical study on the critical orientation of the flooded passenger vehicles, Engineering Letters, 31.3; 2023.

159-23 Ruosi Zha, Weiwen Zhao, Decheng Wan, Numerical study of wave-ice floe interactions and overwash by a meshfree particle method, Ocean Engineering, 286.2; 115681, 2023. doi.org/10.1016/j.oceaneng.2023.115681

157-23 Hamidreza Abbaszadeh, Kiyoumars Roushangar, Zahra Salahpour, Theoretical and numerical investigation of the sluice and radial gates discharge coefficient in the conditions of sill application, Iranian Journal of Irrigation and Drainage, 2023.

155-23 Ting Zhang, Qunwei Dai, Dejun An, R. Agustin Mors, Qiongfang Li, Ricardo A. Astini, Jingwen He, Jie Cui, Ruiyang Jiang, Faqin Dong, Zheng Dang, Effective mechanisms in the formation of pool-rimstone dams in continental carbonate systems: The case study of Huanglong, China, Sedimentary Geology, 455; 106486, 2023. doi.org/10.1016/j.sedgeo.2023.106486

153-23 Jyh-Haw Tang, Aisyah Puspasari, Numerical simulation of scouring around four cylindrical piles with different inclination angles arrangements, Proceedings of the 4th International Conference on Advanced Engineering and Technology (ICATECH), 1; pp. 139-145, 2023. doi.org/10.5220/0012115500003680

152-23 Yasser El-Saie, Osama Saleh, Marihan El-Sayed, Abdelazim Ali, Eslam El-Tohamy, Yasser Mohamed Sadek, Dissipation of water energy by using a special stilling basin via three-dimensional numerical model, The Open Civil Engineering Journal, 17; 2023.

150-23 Shelby J. Koldewyn, Using computational fluid dynamics for predicting hydraulic performance of arced labyrinth weirs, Thesis, Utah State University, 2023.

146-23 Lav Kumar Gupta, Manish Pandey, P. Anand Raj, Numerical modeling of scour and erosion processes around spur dike, CLEAN Soil Air Water, 2023. doi.org/10.1002/clen.202300135

145-23 Nariman Mehranfar, Morteza Kolahdoozan, Shervin Faghihirad, Development of multiphase solver for the modeling of turbidity currents (the case study of Dez Dam), International Journal of Multiphase Flow, 168; 104586, 2023. doi.org/10.1016/j.ijmultiphaseflow.2023.104586

143-23 Fei Ma, Lei You, Jin Liu, Estimation in jet deflection angle of deflector on the chutes, ISH Journal of Hydraulic Engineering, 2023. doi.org/10.1080/09715010.2023.2241416

142-23 Ali Emre Ulu, M. Cihan Aydin, Fevzi Önen, Energy dissipation potentials of grouped spur dikes in an open channel, Water Resources Management, 37; pp. 4491-4506, 2023. doi.org/10.1007/s11269-023-03571-4

141-23 Haofei Feng, Shengtao Du, David Z. Zhu, Numerical study of effects of flushing gate height and sediment bed properties on cleaning efficiency in a simplified self-cleaning device, Water Science & Technology, 88.3; pp. 542-555, 2023. doi.org/10.2166/wst.2023.245

140-23 Brian Fox, 3D CFD modeling with FLOW-3D HYDRO, Proceedings, SEDHYD, 2023.

139-23 Masoumeh (Negar) Ghahramani, Improved empirical and numerical predictive modelling of potential tailings dam breaches and their downstream impacts, Thesis, The University of British Columbia, 2023.

138-23 Rui-Tao Yin, Bing Zhu, Shuai-Wei Yuan, Jun-Nan Li, Zhen-Yu Yang, Zhi-Ying Yang, Dynamic analyses of long-span cable-stayed and suspension cooperative system bridge under combined actions of wind and regular wave loads, Applied Ocean Research, 138; 103683, 2023. doi.org/10.1016/j.apor.2023.103683

137-23 Xuefeng Chen, Shikang Liu, Yuanming Wang, Yuetong Hao, Kefeng Li, Hongtao Wang, Ruifeng Liang, Restoration of a fish-attracting flow field downstream of a dam based on the swimming ability of endemic fishes: A case study in the upper Yangtze River basin, Journal of Environmental Management, 345; 118694, 2023. doi.org/10.1016/j.jenvman.2023.118694

135-23 Nelson Cely Calixto, Melquisedec Cortés Zambrano, Alberto Galvis Castaño, Gustavo Carrillo Soto, Analysis of a three-dimensional numerical modeling approach for predicting scour processes in longitudinal walls of granular bedding rivers, EUREKA: Physics and Engineering, 4; 2023. doi.org/10.21303/2461-4262.2023.002682

134-23 Tarek Selim, Abdelrahman Kamal Hamed, Mohamed Elkiki, Mohamed Galal Eltarabily, Numerical investigation of flow characteristics and energy dissipation over piano key and trapezoidal labyrinth weirs under free-flow conditions, Modeling Earth Systems and Environment, 2023. doi.org/10.1007/s40808-023-01844-w

132-23 Gang Lei, Hongbao Huang, Xiongan Fan, Junan Su, Qingxiang Wang, Xiaoliang Wang, Kai Peng, Jianmin Zhang, Influence of the transition section shape on the cavitation characteristics of the bottom outlet, Water Supply, 23.8; pp. 3061-3077, 2023. doi.org/10.2166/ws.2023.181

129-23 Rasoul Daneshfaraz, Reza Norouzi, John Patrick Abraham, Parisa Ebadzadeh, Behnaz Akhondi, Maryam Abar, Determination of flow characteristics over sharp-crested triangular plan form weirs using numerical simulation, Water Science, 37.1; 2023. doi.org/10.1080/23570008.2023.2236384

124-23 Imad Habeeb Obead, Ahmed Rahim Sahib, Mathematical models for simulating the hydraulic behavior of flow deflectors: laboratory and CFD-based study, Innovative Infrastructure Solutions, 8; 213, 2023. doi.org/10.1007/s41062-023-01170-1

120-23 Kwang-Su Kim, Jong-Song Jo, Improving the power output estimation for a tidal power plant: a case study, Energy, 2023. doi.org/10.1680/jener.23.00007

119-23 Hanif Pourshahbaz, Tadros Ghobrial, Ahmad Shakibaeinia, Evaluating a CFD model for three-dimensional simulation of ice structure interaction, CGU HS Committee on River Ice Processes and the Environment (CRIPE), 22nd Workshop on the Hydraulics of Ice-Covered Rivers, 2023.

118-23 Sruthi T. Kalathil, Venu Chandra, Experimental and numerical investigation on the hydraulic design criteria for a step-pool nature-like fishway, Progress in Physical Geography: Earth and Environment, 2023. doi.org/10.1177/03091333231187619

117-23 Lav Kumar Gupta, Manish Pandey, P. Anand Raj, Numerical simulation of local scour around the pier with and without airfoil collar (AFC) using FLOW-3D, Environmental Fluid Mechanics, 2023. doi.org/10.1007/s10652-023-09932-2

116-23 Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, Gianluca Botter, Local processes with a global impact: unraveling the dynamics of gas evasion in a step-and-pool configuration, Biogeosciences, 20; pp. 3261-3271, 2023. doi.org/10.5194/bg-20-3261-2023

114-23 Muhammad Waqas Zaffar, Ishtiaq Hassan, Numerical investigation of hydraulic jump for different stilling basins using FLOW-3D, AQUA – Water Infrastructure, Ecosystems and Society, 72.7; pp. 1320-1343, 2023. doi.org/10.2166/aqua.2023.290

112-23 J. Chandrashekhar Iyer, E.J. James, Indispensability of model studies in the design of settling basins of hydropower projects in river basins with high sediment yield, Fluid Mechanics and Hydraulics, pp. 367-381, 2023. doi.org/10.1007/978-981-19-9151-6_30

110-23 Ehsan Afaridegan, Nosratollah Amanian, Abbas Parsaie, Amin Gharehbaghi, Hydraulic investigation of modified semi-cylindrical weirs, Flow Measurement and Instrumentation, 93; 102405, 2023. doi.org/10.1016/j.flowmeasinst.2023.102405

103-23 Jin Yang, Weqiang Su, Binhua Li, Calculation of natural alluvial separation of sandy tailings slurry based on FLOW-3D, Mechanics in Engineering, 45.3; pp. 559-564, 2023.

101-23 Tutku Ezgi Yönter, Modeling of river flow and flow dynamics near junctions, Thesis, Middle East Technical University, 2023.

99-23 Mohammad Sadeghpour, Mohammad Vaghefi, Seyed Hamed Meraji, Artificial roughness dimensions and their influence on bed topography variations downstream of a culvert: An experimental study, Water Resources Management, 37; pp. 4143-4157, 2023. doi.org/10.1007/s11269-023-03543-8

98-23 M. Aksel, Numerical analysis of the flow structure around inclined solid cylinder and its effect on bed shear stress distribution, Journal of Applied Fluid Mechanics, 16.8; pp. 1627-1639, 2023. doi.org/10.47176/jafm.16.08.1697

96-23 Waqed H. Hassan, Nidaa Ali Shabat, Numerical investigation of the optimum angle for open channel junction, Civil Engineering Journal, 9.5; 2023. doi.org/10.28991/CEJ-2023-09-05-07

94-23 Emad Khanahmadi, Amir Ahmad Dehghani, Seyed Nasrollah Alenabi, Navid Dehghani, Edward Barry, Hydraulic of curved type-B piano key weirs characteristics under free flow conditions, Modeling Earth Systems and Environment, 2023. doi.org/10.1007/s40808-023-01790-7

93-23 Laura-Louise Alicke, Improved priming of a siphon spillway with the use of a flexible membrane researched through numerical modeling, Thesis, Idaho State University, 2023.

91-23 Wahidullah Hakim Safi, Pranab K. Mohapatra, Flow past: An artificial channel confluence with mobile bed, World Environmental and Water Resources Congress, 2023. doi.org/10.1061/9780784484852.023

86-23 Ghasem Aghashirmohammadi, Mohammad Heidarnejad, Mohammad Hossein Purmohammadi, Alireza Masjedi, Experimental and numerical study the effect of flow splitters on trapezoidal and triangular labyrinth weirs, Water Science, 37.1; 2023. doi.org/10.1080/23570008.2023.2210391

84-23 Nikolaos Xafoulis, Evangelia Farsirotou, Spyridon Kotsopoulos, Three-dimensional computational flow dynamics analysis of free-surface flow in a converging channel, Energy Systems, 2023. doi.org/10.1007/s12667-023-00575-2

83-23 Navid Zarrabi, Mohammad Navid Moghim, Mohammad Reza Eftakhar, A semi-analytical study of fiber reinforced concrete abrasion-erosion through water-borne sand-jet flow in hydraulic structures, Tribology International, 185; 108568, 2023. doi.org/10.1016/j.triboint.2023.108568

82-23 Somayyeh Saffar, Abbas Safaei, Farnoush Aghaee Daneshvar, Mohsen Solimani Babarsad, FLOW-3D numerical modeling of converged side weir, Iranian Journal of Science and Technology: Transactions of Civil Engineering, 2023. doi.org/10.1007/s40996-023-01077-y

79-23 Wangshu Wei, Optimization of the mixing in a produced water storage tank using CFD, World Environmental and Water Resources Congress, Eds. Sajjad Ahmad, Regan Murray, 2023. doi.org/10.1061/9780784484852

77-23   Paolo Peruzzo, Matteo Cappozzo, Nicola Durighetto, Gianluca Botter, Local processes with global impact: unraveling the dynamics of gas evasion in a step-and-pool configuration, Biogeosciences, 2023. doi.org/10.5194/bg-2023-68

74-23   Kaywan Othman Ahmed, Nazim Nariman, Dara Muhammad Hawez, Ozgur Kisi, Ata Amini, Predicting and optimizing the influenced parameters for culvert outlet scouring utilizing coupled FLOW 3D-surrogate modeling, Iranian Journal of Science and Technology: Transactions of Civil Engineering, 47; pp. 1763-1776, 2023. doi.org/10.1007/s40996-023-01096-9

73-23   Ashkan Pilbala, Mahmood Shafai Bejestan, Seyed Mohsen Sajjadi, Luigi Fraccarollo, Investigation of the different models of elliptical-Lopac gate performance under submerged flow conditions, Water Resources Management, 2023. doi.org/10.1007/s11269-023-03512-1

69-23   Chonoor Abdi Chooplou, Masoud Ghodsian, Davoud Abediakbar, Aram Ghafouri, An experimental and numerical study on the flow field and scour downstream of rectangular piano key weirs with crest indentations, Innovative Infrastructure Solutions, 8; 140, 2023. doi.org/10.1007/s41062-023-01108-7

68-23   Mahmood Shafai Bajestan, Mostafa Adineh, Hesam Ghodousi, Numerical modeling of sediment washing (flushing) in dams (Case study of Sefidrood dam), Journal of Irrigation Sciences and Engineering, 2023.

65-23   Charles R. Ortloff, CFD investigations of water supply and distribution systems of ancient old and new world archaeological sites to recover ancient water engineering technologies, Water, 15.7; 1363, 2023. doi.org/10.3390/w15071363

63-23   Rasoul Daneshfaraz, Reza Norouzi, Parisa Ebadzadeh, Alban Kuriqi, Effect of geometric shapes of chimney weir on discharge coefficient, Journal of Applied Water Engineering and Research, 2023. doi.org/10.1080/23249676.2023.2192977

59-23   Hongbo Mi, Chuan Wang, Xuanwen Jia, Bo Hu, Hongliang Wang, Hui Wang, Yong Zhu, Hydraulic characteristics of continuous submerged jet impinging on a wall by using numerical simulation and PIV experiment, Sustainability, 15.6; 5159, 2023. doi.org/10.3390/su15065159

58-23   O.P. Maurya, K.K. Nandi, S. Modalavalasa, S. Dutta, Flow hydrodynamics influences due to flood plain sand mining in a meandering channel, Sustainable Environment (NERC 2022), Eds. D. Deka, S.K. Majumder, M.K., Purkait, 2023. doi.org/10.1007/978-981-19-8464-8_16

57-23   Harshvardhan Harshvardhan, Deo Raj Kaushal, CFD modelling of local scour and flow field around isolated and in-line bridge piers using FLOW-3D, EGU General Assembly, EGU23-3820, 2023. doi.org/10.5194/egusphere-egu23-3820

54-23   Reza Nematzadeh, Gholam-Abbas Barani, Ehsan Fadaei-Kermani, Numerical investigation of bed-load changes on sediment flushing cavity, Journal of Hydraulic Structures, 4; 2023. doi.org/10.22055/jhs.2023.42542.1237

53-23   Rasoul Daneshfaraz, Reza Norouzi, Parisa Ebadzadeh, Alban Kuriqi, Influence of sill integration in labyrinth sluice gate hydraulic performance, Innovative Infrastructure Solutions, 8.118; 2023. doi.org/10.1007/s41062-023-01083-z

52-23   Shu Jiang, Yutong Hua, Mengxing He, Ying-Tien Lin, Biyun Sheng, Effect of a circular cylinder on hydrodynamic characteristics over a strongly curved channel, Sustainability, 15.6; 4890, 2023. doi.org/10.3390/su15064890

51-23   Ehsan Aminvash, Kiyoumars Roushangar, Numerical investigation of the effect of the frontal slope of simple and blocky stepped spillway with sem-circular crest on its hydraulic parameters, Iranian Journal of Irrigation and Drainage, 17.1; pp. 102-116, 2023.

50-23   Shizhuang Chen, Anchi Shi, Weiya Xu, Long Yan, Huanling Wang, Lei Tian, Wei-Chau Xie, Numerical investigation of landslide-induced waves: a case study of Wangjiashan landslide in Baihetan Reservoir, China, Bulletin of Engineering Geology and the Environment, 82.110; 2023. doi.org/10.1007/s10064-023-03148-w

49-23   Jiří Procházka, Modelling flow distribution in inlet galleries, VTEI, 1; 2023. doi.org/10.46555/VTEI.2022.11.002

47-23   M. Cihan Aydin, Ali Emre Ulu, Numerical investigation of labyrinth‑shaft spillway, Applied Water Science, 13.89; 2023. doi.org/10.1007/s13201-023-01896-4

46-23   Guangwei Lu, Jinxin Liu, Zhixian Cao, Youwei Li, Xueting Lei, Ying Li, A computational study of 3D flow structure in two consecutive bends subject to the influence of tributary inflow in the middle Yangtze River, Engineering Applications of Computational Fluid Mechanics, 17.1; 2183901, 2023. doi.org/10.1080/19942060.2023.2183901

44-23   Xun Huang, Zhijian Zhang, Guoping Xiang, Sensitivity analysis of a built environment exposed to the synthetic monophasic viscous debris flow impacts with 3-D numerical simulations, Natural Hazards and Earth Systems Sciences, 23; pp. 871-889, 2023. doi.org/10.5194/nhess-23-871-2023

43-23   Yisheng Zhang, Jiangfei Wang, Qi Zhou, Haisong Li, Wei Tang, Investigation of the reduction of sediment deposition and river flow resistance around dimpled surface piers, Environmental Science and Pollution Research, 2023. doi.org/10.1007/s11356-023-26034-0

41-23   Nejib Hassen Abdullahi, Zulfequar Ahmad, Experimental and CFD studies on the flow field and bed morphology in the vicinity of a sediment mining pit, EGU General Assembly, 2023. doi.org/10.5194/egusphere-egu23-446

40-23   Seonghyeon Ju, Jongchan Yi, Junho Lee, Jiyoon Kim, Chaehwi Lim, Jihoon Lee, Kyungtae Kim, Yeojoon Yoon, High-efficiency microplastic sampling device improved using CFD analysis, Sustainability, 15.5; 3907, 2023. doi.org/10.3390/su15053907

37-23   Muhammad Waqas Zaffar, Ishtiaq Hassan, Hydraulic investigation of stilling basins of the barrage before and after remodelling using FLOW-3D, Water Supply, 23.2; pp. 796-820, 2023. doi.org/10.2166/ws.2023.032

35-23   Mehmet Cihan, Ali Emre Ulu, Developing and testing a novel pressure-controlled hydraulic profile for siphon-shaft spillways, Flow Measurement and Instrumentation, 90; 102332, 2023. doi.org/10.1016/j.flowmeasinst.2023.102332

28-23   Yuhan Li, Deshen Chen, Yan Zhang, Hongliang Qian, Jiangyang Pan, Yinghan Huang, Boo Cheong Khoo, Thermal structure and hydrodynamic analysis for a new type of flexible temperature-control curtain, Journal of Hydrology, 618; 129170, 2023. doi.org/10.1016/j.jhydrol.2023.129170

22-23   Rong Lu, Wei Jiang, Jingjing Xiao, Dongdong Yuan, Yupeng Li, Yukai Hou, Congcong Liu, Evaluation of moisture migration characteristics of permeable asphalt pavement: Field research, Journal of Environmental Management, 330; 117176, 2023. doi.org/10.1016/j.jenvman.2022.117176

18-23   Thu Hien-T. Le, Van Chien Nguyen, Cong Phuc Dang, Thanh Thin-T. Nguyen, Bach Quynh-T. Pham, Ngoc Thoa Le, Numerical assessment on hydraulic safety of existing conveyance structures, Modeling Earth Systems and Environment, 2023. doi.org/10.1007/s40808-022-01685-z

17-23   Meysam Nouri, Parveen Sihag, Ozgur Kisi, Mohammad Hemmati, Shamsuddin Shahid, Rana Muhammad Adnan, Prediction of the discharge coefficient in compound broad-crested weir gate by supervised data mining techniques, Sustainability, 15.1; 433, 2023. doi.org/10.3390/su15010433

16-23   Mohammad Bananmah, Mohammad Reza Nikoo, Mehrdad Ghorbani Mooselu, Amir H. Gandomi, Optimum design of the chute-flip bucket system using evolutionary algorithms considering conflicts between decision-makers, Expert Systems with Applications, 216; 119480, 2023. doi.org/10.1016/j.eswa.2022.119480

13-23   Xiaoyu Yi, Wenkai Feng, Botao Li, Baoguo Yin, Xiujun Dong, Chunlei Xin, Mingtang Wu, Deformation characteristics, mechanisms, and potential impulse wave assessment of the Wulipo landslide in the Baihetan reservoir region, China, Landslides, 20; pp. 615-628, 2023. doi.org/10.1007/s10346-022-02010-6

11-23 Şebnem Elçi, Oğuz Hazar, Nisa Bahadıroğlu, Derya Karakaya, Aslı Bor, Destratification of thermally stratified water columns by air diffusers, Journal of Hydro-environment Research, 46; pp. 44-59, 2023. doi.org/10.1016/j.jher.2022.12.001

7-23 Shikang Liu, Yuxiang Jian, Pengcheng Li, Ruifeng Liang, Xuefeng Chen, Yunong Qin, Yuanming Wang, Kefeng Li, Optimization schemes to significantly improve the upstream migration of fish: A case study in the lower Yangtze River basin, Ecological Engineering, 186; 106838, 2023. doi.org/10.1016/j.ecoleng.2022.106838

6-23 Maryam Shahabi, Javad Ahadiyan, Mehdi Ghomeshi, Marjan Narimousa, Christos Katopodis, Numerical study of the effect of a V-shaped weir on turbulence characteristics and velocity in V-weir fishways, River Research and Applications, 2023. doi.org/10.1002/rra.4064

5-23 Muhammad Nur Aiman Bin Roslan, Hee Min Teh, Faris Ali Hamood Al-Towayti, Numerical simulations of wave diffraction around a low-crested semicircular breakwater, Proceedings of the 5th International Conference on Water Resources (ICWR), Lecture Notes in Civil Engineering, 293.1; pp. 421-433, 2023. doi.org/10.1007/978-981-19-5947-9_34

4-23 V.K. Krishnasamy, M.H. Jamal, M.R. Haniffah, Modelling of wave runup and overtopping over Accropode II breakwater, Proceedings of the 5th International Conference on Water Resources (ICWR), Lecture Notes in Civil Engineering, 293.1; pp. 435-444, 2023. doi.org/10.1007/978-981-19-5947-9_35

3-23 Anas S. Ghamam, Mohammed A. Abohatem, Mohd Ridza Bin Mohd Haniffah, Ilya K. Othman, The relationship between flow and pressure head of partially submerged orifice through CFD modelling using Flow-3D, Proceedings of the 5th International Conference on Water Resources (ICWR), Lecture Notes in Civil Engineering, 293.1; pp. 235-250, 2023. doi.org/10.1007/978-981-19-5947-9_20

2-23 M.Y. Zainab, A.L.S. Zebedee, A.W. Ahmad Khairi, I. Zulhilmi, A. Shahabuddin, Modelling of an embankment failure using Flow-3D, Proceedings of the 5th International Conference on Water Resources (ICWR), Lecture Notes in Civil Engineering, 293.1; pp. 273-282, 2023. doi.org/10.1007/978-981-19-5947-9_23

1-23 Gaetano Crispino, David Dorthe, Corrado Gisonni, Michael Pfister, Hydraulic capacity of bend manholes for supercritical flow, Journal of Irrigation and Drainage Engineering, 149.2; 2022. doi.org/10.1061/JIDEDH.IRENG-10014

178-22 Greg Collecutt, Urs Baeumer, Shuang Gao, Bill Syme, Bridge deck afflux modelling — benchmarking of CFD and SWE codes to real-world data, Hydrology & Water Resources Symposium, 2022.

177-22 Kyle Thomson, Mitchell Redenbach, Understanding cone fishway flow regimes with CFD, Hydrology & Water Resources Symposium, 2022.

176-22 Kyle Thomson, Practical application of CFD for fish passage design, Hydrology & Water Resources Symposium, 2022.

173-22 Melquisedec Cortés Zambrano, Helmer Edgardo Monroy González, Wilson Enrique Amaya Tequia, Three-dimensional numerical evaluation of hydraulic efficiency and discharge coefficient in grate inlets, Environmental Research, Engineering and Management, 78.4; 2022. doi.org/10.5755/j01.erem.78.4.31243

168-22 Mohammad Javadi Rad, Pedram Eshaghieh Firoozbadi, Fatemeh Rostami, Numerical investigation of the effect dimensions of rectangular sedimentation tanks on its hydraulic efficiency using Flow-3D Software, Acta Technica Jaurinensis, 15.4; 2022. doi.org/10.14513/actatechjaur.00672

165-22 Saman Mostafazadeh-Fard, Zohrab Samani, Dissipating culvert end design for erosion control using CFD platform FLOW-3D numerical simulation modeling, Journal of Pipeline Systems Engineering and Practice, 14.1; 2022. doi.org/10.1061/JPSEA2.PSENG-1373

164-22 Mohammad Ahmadi, Alban Kuriqi, Hossein Mohammad Nezhad, Amir Ghaderi, Mirali Mohammadi, Innovative configuration of vertical slot fishway to enhance fish swimming conditions, Journal of Hydrodynamics, 34; pp. 917-933, 2022. doi.org/10.1007/s42241-022-0071-y

160-22 Serife Yurdagul Kumcu, Kamil Ispir, Experimental and numerical modeling of various energy dissipator designs in chute channels, Applied Water Science, 12; 266, 2022. doi.org/10.1007/s13201-022-01792-3

154-22 Usama Majeed, Najam us Saqib, Muhammad Akbar, Numerical analysis of energy dissipator options using computational fluid dynamics modeling — a case study of Mirani Dam, Arabian Journal of Geosciences, 15; 1614, 2022. doi.org/10.1007/s12517-022-10888-8

151-22 Meibao Chen, Xiaofei Jing, Xiaohua Liu, Xuewei Huang, Wen Nie, Multiscale investigations of overtopping erosion in reinforced tailings dam induced by mud-water mixture overflow, Geofluids, 7209176, 2022. doi.org/10.1155/2022/7209176

150-22   Daniel Damov, Francis Lepage, Michel Tremblay, Arian Cueto Bergner, Marc Villaneuve, Frank Scarcelli, Gord McPhail, Calabogie GS redevelopment—Capacity upgrade and hydraulic design, CDA Annual Conference, Proceedings, 2022.

147-22   Hien T.T. Le, Chien Van Nguyen, Duc-Hau Le, Numerical study of sediment scour at meander flume outlet of boxed culvert diversion work, PLoS One, 17.9; e0275347, 2022. doi.org/10.1371/journal.pone.0275347

140-22   Jackson Tellez-Alvarez, Manuel Gómez, Beniamino Russo, Numerical simulation of the hydraulic behavior of stepped stairs in a metro station, Advances in Hydroinformatics, Eds. P. Gourbesville, G. Caignaert, pp. 1001-1009, 2022. doi.org/10.1007/978-981-19-1600-7_62

139-22   Juan Yu, Keyao Liu, Anbin Li, Mingfei Yang, Xiaodong Gao, Xining Zhao, Yaohui Cai, The effect of plug height and inflow rate on water flow characteristics in furrow irrigation, Agronomy, 12; 2225, 2022. doi.org/10.3390/agronomy12092225

138-22   Nejib Hassen Abdullahi, Zulfequar Ahmad, Flow and morphological characteristics in mining pits of a river through numerical and experimental modeling, Modeling Earth Systems and Environment, 2022. doi.org/10.1007/s40808-022-01530-3

137-22   Romain N.H.M. Van Mol, Christian Mörtl, Azin Amini, Sofia Siachou, Anton Schleiss, Giovanni De Cesare, Plunge pool scour and bank erosion: assessment of protection measures for Ilarion dam by physical and numerical modelling, HYDRO 2022, Proceedings, 27.02, 2022.

136-22   Yong Cheng, Yude Song, Chunye Liu, Wene Wang, Xiaotao Hu, Numerical simulation research on the diversion characteristics of a trapezoidal channel, Water, 14.17; 2706, 2022. doi.org/10.3390/w14172706

135-22   Zegao Yin, Yao Li, Jiahao Li, Zihan Zheng, Zihan Ni, Fuxiang Zheng, Experimental and numerical study on hydrodynamic characteristics of a breakwater with inclined perforated slots under regular waves, Ocean Engineering, 264; 112190, 2022. doi.org/10.1016/j.oceaneng.2022.112190

133-22   Azin Amini, Martin Wickenhauser, Azad Koliji, Three-dimensional numerical modelling of Al-Salam storm water pumping station in Saudi Arabia, 39th IAHR World Congress, 2022. doi.org/10.3850/IAHR-39WC2521716X20221013

131-22   Alireza Koshkonesh, Mohammad Daliri, Khuram Riaz, Fariba Ahmadi Dehrashid, Farhad Bahmanpouri, Silvia Di Francesco, Dam-break flow dynamics over a stepped channel with vegetation, Journal of Hydrology, 613.A; 128395, 2022. doi.org/10.1016/j.jhydrol.2022.128395

129-22   Leona Repnik, Samuel Vorlet, Mona Seyfeddine, Asin Amini, Romain Dubuis, Giovanni De Cesare, Pierre Bourqui, Pierre-Adil Abdelmoula, Underground flow section modification below the new M3 Flon Metro station in Lausanne, Advances in Hydroinformatics, Eds. P. Gourbesville, G. Caignaert, pp. 979-999, 2022. doi.org/10.1007/978-981-19-1600-7_61

127-22   Qin Panpan, Huang Bolin, Li Bin, Chen Xiaoting, Jiang Xiannian, Hazard analysis of landslide blocking a river in Guang’an Village, Wuxi County, Chongqing, China, Landslides, 2022. doi.org/10.1007/s10346-022-01943-2

124-22   Vaishali P. Gadhe, S.R. Patnaik, M.R. Bhajantri, V.V. Bhosekar, Physical and numerical modeling of flow pattern near upstream guide wall of Jigaon Dam spillway, Maharashtra, River and Coastal Engineering, Water Science and Technology Library 117; pp. 237-247, 2022. doi.org/10.1007/978-3-031-05057-2_21

123-22   M.Z. Qamar, M.K. Verma, A.P. Meshram, Neena Isaac, Numerical simulation of desilting chamber using Flow 3D, River and Coastal Engineering, Water Science and Technology Library 117; pp. 177-186, 2022. doi.org/10.1007/978-3-031-05057-2_16

122-22   Abbas Parsaie, Saleh Jaafer Suleiman Shareef, Amir Hamzeh Haghiabi, Raad Hoobi Irzooki, Rasul M. Khalaf, Numerical simulation of flow on circular crested stepped spillway, Applied Water Science, 12; 215, 2022. doi.org/10.1007/s13201-022-01737-w

121-22   Kazuki Kikuchi, Hajime Naruse, Morphological function of trace fossil Paleodictyon: An approach from fluid simulation, Paleontological Research, 26.4; pp. 378-389, 2022. doi.org/10.2517/PR210001

120-22   Najam us Saqib, Muhammad Akbar, Huali Pan, Guoqiang Ou, Numerical investigation of pressure profiles and energy dissipation across the stepped spillway having curved treads using FLOW 3D, Arabian Journal of Geosciences, 15; 1363, 2022. doi.org/10.1007/s12517-022-10505-8

116-22   Ayşegül Özgenç Aksoy, Mustafa Doğan, Semire Oğuzhan Güven, Görkem Tanır, Mehmet Şükrü Güney, Experimental and numerical investigation of the flood waves due to partial dam break, Iranian Journal of Science and Technology: Transactions of Civil Engineering, 2022. doi.org/10.1007/s40996-022-00919-5

115-22   Abdol Mahdi Behroozi, Mohammad Vaghefi, Experimental and numerical study of the effect of zigzag crests with various geometries on the performance of A-type piano key weirs, Water Resources Management, 2022. doi.org/10.1007/s11269-022-03261-7

114-22   Xun Huang, Zhijian Zhang, Guoping Xiang, Sensitivity analysis of a built environment exposed to debris flow impacts with 3-D numerical simulations, Natural Hazards and Earth Systems Sciences, 2022. doi.org/10.5194/nhess-2022-173

113-22   Ahmad Ferdowsi, Mahdi Valikhan-Anaraki, Saeed Farzin, Sayed-Farhad Mousavi, A new combination approach for optimal design of sedimentation tanks based on hydrodynamic simulation model and machine learning algorithms, Physics and Chemistry of the Earth, 103201, 2022. doi.org/10.1016/j.pce.2022.103201

103-22   Wangshu Wei, Optimization of the mixing in produced water (PW) retention tank with computational fluid dynamics (CFD) modeling, Produced Water Society Permian Basin, 2022.

100-22   Michael Rasmussen, Using computational fluid dynamics to predict flow through the West Crack Breach of the Great Salt Lake railroad causeway, Thesis, Utah State University, 2022.

99-22   Emad Khanahmadi, Amir Ahmad Dehghani, Mehdi Meftah Halaghi, Esmaeil Kordi, Farhad Bahmanpouri, Investigating the characteristic of hydraulic T-jump on rough bed based on experimental and numerical modeling, Modeling Earth Systems and Environment, 2022. doi.org/10.1007/s40808-022-01434-2

97-22   Andrea Franco, A multidisciplinary approach for landslide-generated impulse wave assessment in natural mountain basins from a cascade analysis perspective, Thesis, University of Innsbruck, 2022.

96-22   Geng Li, Binbin Wang, Simulation of the flow field and scour evolution by turbulent wall jets under a sluice gate, Journal of Hydro-environment Research, 43; pp. 22-32, 2022. doi.org/10.1016/j.jher.2022.06.002

95-22   Philippe April LeQuéré, Ioan Nistor, Abdolmajid Mohammadian, Stefan Schimmels, Hydrodynamics and associated scour around a free-standing structure due to turbulent bores, Journal of Waterway, Port, Coastal, and Ocean Engineering, 148.5; 2022.

94-22   Ramtin Sobhkhiz Foumani, Alireza Mardookhpour, Numerical simulation of geotechnical effects on local scour in inclined pier group with Flow-3D software, Water Resources Engineering Journal, 15.52; 2022. doi.org/10.30495/wej.2021.20404.2114

92-22   Geng Li, Binbin Wang, Caroline M. Elliott, Bruce C.Call, Duane C. Chapman, Robert B. Jacobson, A three-dimensional Lagrangian particle tracking model for predicting transport of eggs of rheophilic-spawning carps in turbulent rivers, Ecological Modelling, 470; 110035, 2022. doi.org/10.1016/j.ecolmodel.2022.110035

91-22   Ebrahim Hamid Hussein Al-Qadami, Zahiraniza Mustaffa, Mohamed Ezzat Al-Atroush, Eduardo Martinez-Gomariz, Fang Yenn Teo, Yasser El-Husseini, A numerical approach to understand the responses of passenger vehicles moving through floodwaters, Journal of Flood Risk Management, 2022. doi.org/10.1111/jfr3.12828

90-22   Jafar Chabokpour, Hazi Md Azamathulla, Numerical simulation of pollution transport and hydrodynamic characteristics through the river confluence using FLOW 3D, Water Supply, 2022. doi.org/10.2166/ws.2022.237

88-22   Michael Rasmussen, Som Dutta, Bethany T. Neilson, Brian Mark Crookston, CFD model of the density-driven bidirectional flows through the West Crack Breach in the Great Salt Lake causeway, Water, 13.17; 2423, 2022. doi.org/10.3390/w13172423

84-22   M. Sobhi Alasta, Ahmed Shakir Ali Ali, Saman Ebrahimi, Muhammad Masood Ashiq, Abubaker Sami Dheyab, Adnan AlMasri, Anass Alqatanani, Mahdis Khorram, Modeling of local scour depth around bridge pier using FLOW 3D, CPRASE: Transactions of Civil and Environmental Engineering, 8.2; 2781, 2022.

83-22   Mostafa Taherian, Seyed Ahmad Reza Saeidi Hosseini, Abdolmajid Mohammadian, Overview of outfall discharge modeling with a focus on turbulence modeling approaches, Advances in Fluid Mechanics: Modelling and Simulations, Eds. Dia Zeidan, Eric Goncalves Da Silva, Jochen Merker, Lucy T. Zhang, 2022.

80-22   Soraya Naderi, Mehdi Daryaee, Seyed Mahmood Kashefipour, Mohammadreza Zayeri, Numerical and experimental study of flow pattern due to a plate installed upstream of orifice in pressurized flushing of dam reservoirs, Iranian Journal of Science and Technology: Transactions of Civil Engineering, 2022. doi.org/10.1007/s40996-022-00896-9

79-22   Mahmood Nemati Qalee Maskan, Khosrow Hosseini, Effects of the simultaneous presence of bridge pier and abutment on the change of erodible bed using FLOW-3D, Journal of Iranian Water Engineering Research, 1.1; pp. 57-69, 2022. doi.org/10.22034/IJWER.2022.312074.1012

75-22   Steven Matthew Klawitter, L-shaped spillway crest leg interface geometry impacts, Thesis, University of Colorado at Denver, 2022.

72-22   Md. Mukdiul Islam, Md. Samiun Basir, Badal Mahalder, Local scour analysis around single pier and group of piers in tandem arrangement using FLOW 3D, 6th International Conference on Civil Engineering for Sustainable Development (ICCESD 2022), Khulna, Bangladesh, February 10-12, 2022.

69-22   Kuo-Wei Liao, Zhen-Zhi Wang, Investigation of air-bubble screen on reducing scour in river facility, EGU General Assembly, EGU22-1137, 2022. doi.org/10.5194/egusphere-egu22-1137

68-22   Cüneyt Yavuz, Energy dissipation scale for dam prototypes, ADYU Mühendislik Bilimleri Dergisi (Adıyaman University Journal of Engineering Sciences), 16; pp. 105-116, 2022.

66-22   Ji-jian Lian, Shu-guang Zhang, Jun-ling He, An improved numerical model of ski-jump flood discharge atomization, Journal of Mountain Science, 19; pp. 1263-1273, 2022. doi.org/10.1007/s11629-021-7158-8

62-22   Ali Montazeri, Amirabbas Abedini, Milad Aminzadeh, Numerical investigation of pollution transport around a single non-submerged spur dike, Journal of Contaminant Hydrology, 248; 104018, 2022. doi.org/10.1016/j.jconhyd.2022.104018

61-22   Junhao Zhang, Yining Sun, Zhixian Cao, Ji Li, Flow structure at reservoir-tributary confluence with high sediment load, EGU General Assembly, Vienna, Austria, May 23-27, 2022. doi.org/10.5194/egusphere-egu22-1419

60-22   S. Modalavalasa, V. Chembolu, V. Kulkarni, S. Dutta, Numerical and experimental investigation of effect of green river corridor on main channel hydraulics, Recent Trends in River Corridor Management, Lecture Notes in Civil Engineering 229, pp. 165-176, 2022.

59-22   Philippe April LeQuéré, Scouring around multiple structures in extreme flow conditions, Thesis, University of Ottawa, Ottawa, ON, Canada, 2022.

51-22   Xianzheng Zhang, Chenxiao Tang, Yajie Yu, Chuan Tang, Ning Li, Jiang Xiong, Ming Chen, Some considerations for using numerical methods to simulate possible debris flows: The case of the 2013 and 2020 Wayao debris flows (Sichuan, China), Water, 14.7; 1050, 2022. doi.org/10.3390/w14071050

50-22   Daniel Valero, Daniel B. Bung, Sebastien Erpicum, Yann Peltier, Benjamin Dewals, Unsteady shallow meandering flows in rectangular reservoirs: A modal analysis of URANS modelling, Journal of Hydro-environment Research, 42; pp. 12-20, 2022. doi.org/10.1016/j.jher.2022.03.002

49-22   Behzad Noroozi, Jalal Bazargan, Comparing the behavior of ogee and piano key weirs under unsteady flows, Journal of Irrigation and Water Engineering, 12.3; pp. 97-120. doi.org/10.22125/iwe.2022.146390

47-22   Chen Xiaoting, Huang Bolin, Li Bin, Jiang Xiannian, Risk assessment study on landslide-generated impulse waves: case study from Zhongliang Reservoir in Chongqing, China, Bulletin of Engineering Geology and the Environment, 81; 158, 2022. doi.org/10.1007/s10064-022-02629-8

45-22   Mehmet Cihan Aydin, Havva Seda Aytemur, Ali Emre Ulu, Experimental and numerical investigation on hydraulic performance of slit-check dams in subcritical flow condition, Water Resources Management, 36; pp. 1693-1710, 2022. doi.org/10.1007/s11269-022-03103-6

43-22   Suresh Modalavalasa, Vinay Chembolu, Subashisa Dutta, Vinayak Kulkarni, Combined effect of bridge piers and floodplain vegetation on main channel hydraulics, Experimental Thermal and Fluid Science, 136; 110669, 2022. doi.org/10.1016/j.expthermflusci.2022.110669

40-22   Mohammad Bagherzadeh, Farhad Mousavi, Mohammad Manafpour, Reza Mirzaee, Khosrow Hoseini, Numerical simulation and application of soft computing in estimating vertical drop energy dissipation with horizontal serrated edge, Water Supply, 127, 2022. doi.org/10.2166/ws.2022.127

39-22   Masumeh Rostam Abadi, Saeed Kazemi Mohsenabadi, Numerical study of the weir angle on the flow pattern and scour around the submerged weirs, International Journal of Modern Physics C, 2022. doi.org/10.1142/S0129183122501108

38-22   Vahid Hassanzadeh Vayghan, Mirali Mohammadi, Behzad Shakouri, Experimental and numerical examination of flow resistance in plane bed streams, Arabian Journal of Geosciences, 15; 483, 2022. doi.org/10.1007/s12517-022-09691-2

36-22   Kyong Oh Baek, Byong Jo Min, Investigation for flow characteristics of ice-harbor type fishway installed at mid-sized streams in Korea, Journal of Korea Water Resources Association, 55.1; pp. 33-42, 2022. 

34-22   Kyong Oh Baek, Jeong-Min Lee, Eun-Jin Han, Young-Do Kim, Evaluating attraction and passage efficiencies of pool-weir type fishways based on hydraulic analysis, Applied Sciences, 12.4; 1880, 2022. doi.org/10.3390/app12041880

33-22   Christopher Paschmann, David F. Vetsch, Robert M. Boes, Design of desanding facilities for hydropower schemes based on trapping efficiency, Water, 14.4; 520, 2022. doi.org/10.3390/w14040520

29-22   Mehdi Heyrani, Abdolmajid Mohammadian, Ioan Nistor, Omerul Faruk Dursun, Application of numerical and experimental modeling to improve the efficiency of Parshall flumes: A review of the state-of-the-art, Hydrology, 9.2; 26 2022. doi.org/10.3390/hydrology9020026

28-22   Kiyoumars Roushangar, Samira Akhgar, Saman Shanazi, The effect of triangular prismatic elements on the hydraulic performance of stepped spillways in the skimming flow regime: An experimental study and numerical modeling, Journal of Hydroinformatics, 2022. doi.org/10.2166/hydro.2022.031

26-22   Jorge Augusto Toapaxi Alvarez, Roberto Silva, Cristina Torres, Modelación numérica tridimensional del medidor de caudal Palmer-Bowlus aplicando el programa FLOW-3D (Three-dimensional numerical modeling of the Palmer-Bowlus measuring flume applying the FLOW-3D program), Revista Politécnica, 49.1; 2022. doi.org/10.33333/rp.vol49n1.04 

25-22   Shubing Dai, Sheng Jin, Numerical investigations of unsteady critical flow conditions over an obstacle using three models, Physics of Fluids, 34.2; 2022. doi.org/10.1063/5.0077585

23-22   Negar Ghahramani, H. Joanna Chen, Daley Clohan, Shielan Liu, Marcelo Llano-Serna, Nahyan M. Rana, Scott McDougall, Stephen G. Evans, W. Andy Take, A benchmarking study of four numerical runout models for the simulation of tailings flows, Science of the Total Environment, 827; 154245, 2022. doi.org/10.1016/j.scitotenv.2022.154245

22-22   Bahador Fatehi-Nobarian, Razieh Panahi, Vahid Nourani, Investigation of the Effect of Velocity on Secondary Currents in Semicircular Channels on Hydraulic Jump Parameters, Iranian Journal of Science and Technology: Transactions of Civil Engineering, 2022. doi.org/10.1007/s40996-021-00800-x

21-22   G. Viccione, C. Izzo, Three-dimensional CFD modelling of urban flood forces on buildings: A case study, Journal of Physics: Conference Series, 2162; 012020, 2022. doi.org/10.1088/1742-6596/2162/1/012020

20-22   Tohid Jamali Rovesht, Mohammad Manafpour, Mehdi Lotfi, Effects of flow condition and chute geometry on the shockwaves formed on chute spillway, Journal of Water Supply: Research and Technology-Aqua, 71.2; pp. 312-329, 2022. doi.org/10.2166/aqua.2022.139

17-22   Yansong Zhang, Jianping Chen, Fujun Zhou, Yiding Bao, Jianhua Yan, Yiwei Zhang, Yongchao Li, Feifan Gu, Qing Wang, Combined numerical investigation of the Gangda paleolandslide runout and associated dam breach flood propagation in the upper Jinsha River, SE Tibetan Plateau, Landslides, 2022. doi.org/10.1007/s10346-021-01768-5

16-22   I.A. Hernández-Rodríguez, J. López-Ortega, G. González-Blanco, R. Beristain-Cardoso, Performance of the UASB reactor during wastewater treatment and the effect of the biogas bubbles on its hydrodynamics, Environmental Technology, pp. 1-21, 2022. doi.org/10.1080/09593330.2022.2028015

15-22   Xu Deng, Sizhong He, Zhouhong Cao, Numerical investigation of the local scour around a coconut tree root foundation under wave-current joint actions, Ocean Engineering, 245; 110563, 2022. doi.org/10.1016/j.oceaneng.2022.110563

14-22   Rasool Kosaj, Rafid S. Alboresha, Sadeq O. Sulaiman, Comparison between numerical Flow3d software and laboratory data, for sediment incipient motion, IOP Conference Series: Earth and Environmental Science, 961; 012031, 2022. doi.org/10.1088/1755-1315/961/1/012031

13-22   Joseph M. Sinclair, S. Karan Venayagamoorthy, Timothy K. Gates, Some insights on flow over sharp-crested weirs using computational fluid dynamics: Implications for enhanced flow measurement, Journal of Irrigation and Drainage Engineering, 148.6; 2022. doi.org/10.1061/(ASCE)IR.1943-4774.0001652

12-22   Mete Koken, Ismail Aydin, Serhan Ademoglu, An iterative hydraulic design methodology based on numerical modeling for piano key weirs, Journal of Hydro-environment Research, 40; pp. 131-141, 2022. doi.org/10.1016/j.jher.2022.01.002

11-22   Najam us Saqib, Muhammad Akbar, Huali Pan, Guoqiang Ou, Muhammad Mohsin, Assad Ali, Azka Amin, Numerical analysis of pressure profiles and energy dissipation across stepped spillways having curved risers, Applied Sciences, 12.1; 448, 2022. doi.org/10.3390/app12010448

9-22   Amir Bordbar, Soroosh Sharifi, Hassan Hemida, Investigation of scour around two side-by-side piles with different spacing ratios in live-bed, Lecture Notes in Civil Engineering, 208; pp. 302-309, 2022. doi.org/10.1007/978-981-16-7735-9_33

8-22    Jian-cheng Li, Wei Wang, Yan-ming Zheng, Xiao-hao Wen, Jing Feng, Li Sheng, Chen Wang, Ming-kun Qiu, Using computational fluid dynamic simulation with Flow-3D to reveal the origin of the mushroom stone in the Xiqiao Mountain of Guangdong, China, Journal of Mountain Science, 19; pp. 1-15, 2022. doi.org/10.1007/s11629-021-7019-5

4-22   Ankur Kapoor, Aniruddha D. Ghare, Avinash M. Badar, CFD simulations of conical central baffle flumes, Journal of Irrigation and Drainage Engineering, 148.2, 2022. doi.org/10.1061/(ASCE)IR.1943-4774.0001653

2-22   Ramtin Sabeti, Mohammad Heidarzadeh, Numerical simulations of tsunami wave generation by submarine landslides: Validation and sensitivity analysis to landslide parameters, Journal of Waterway, Port, Coastal, and Ocean Engineering, 148.2; 05021016, 2022. doi.org/10.1061/(ASCE)WW.1943-5460.0000694

1-22   Juan Francisco Fuentes-Pérez, Ana L. Quaresma, Antonio Pinheiro, Francisco Javier Sanz-Ronda, OpenFOAM vs FLOW-3D: A comparative study of vertical slot fishway modelling, Ecological Engineering, 174, 2022.

145-21   Ebrahim Hamid Hussein Al-Qadami, Zahiraniza Mustaffa, Eduardo Martínez-Gomariz, Khamaruzaman Wan Yusof, Abdurrasheed S. Abdurrasheed, Syed Muzzamil Hussain Shah, Numerical simulation to assess floating instability of small passenger vehicle under sub-critical flow, Lecture Notes in Civil Engineering, 132; pp. 258-265, 2021. doi.org/10.1007/978-981-33-6311-3_30

140-21   J. Zulfan, B.M.Ginting, Investigation of spillway rating curve via theoretical formula, laboratory experiment, and 3D numerical modeling: A case study of the Riam Kiwa Dam, Indonesia, IOP Conference Series: Earth and Environmental Science, 930; 012030, 2021. doi.org/10.1088/1755-1315/930/1/012030

130-21   A.S.N. Amirah, F.Y. Boon, K.A. Nihla, Z.M. Salwa, A.W. Mahyun, N. Yaacof, Numerical simulation of flow within a storage area of HDPE modular pavement, IOP Conference Series: Earth and Environmental Science, 920; 012044, 2021. doi.org/10.1088/1755-1315/920/1/012044

129-21   Z.M. Yusof, Z.A.L. Shirling, A.K.A. Wahab, Z. Ismail, S. Amerudin, A hydrodynamic model of an embankment breaching due to overtopping flow using FLOW-3D, IOP Conference Series: Earth and Environmental Science, 920; 012036, 2021. doi.org/10.1088/1755-1315/920/1/012036

125-21   Ketaki H. Kulkarni, Ganesh A. Hinge, Comparative study of experimental and CFD analysis for predicting discharge coefficient of compound broad crested weir, Water Supply, 2021. doi.org/10.2166/ws.2021.403

119-21   Yan Liang, Yiqun Hou, Wangbin Hu, David Johnson, Junxing Wang, Flow velocity preference of Schizothorax oconnori Lloyd swimming upstream, Global Ecology and Conservation, 32; e01902, 2021. doi.org/10.1016/j.gecco.2021.e01902

116-21   Atabak Feizi, Aysan Ezati, Shadi Alizadeh Marallo, Investigation of hydrodynamic characteristics of flow caused by dam break around a downstream obstacle considering different reservoir shapes, Numerical Methods in Civil Engineering, 6.2; pp. 36-48, 2021.

114-21   Jackson Tellez-Alvarez, Manuel Gómez, Beniamino Russo, Marko Amezaga-Kutija, Numerical and experimental approaches toestimate discharge coefficients and energy loss coefficients in pressurized grated inlets, Hydrology, 8.4; 162, 2021. doi.org/10.3390/hydrology8040162

113-21   Alireza Khoshkonesh, Blaise Nsom, Fariba Ahmadi Dehrashid, Payam Heidarian, Khuram Riaz, Comparison of the SWE and 3D models in simulation of the dam-break flow over the mobile bed, 5th Scientific Conference of Applied Research in Science and Technology of Iran, 2021.

103-21   Farshid Mosaddeghi, Numerical modeling of dam breach in concrete gravity dams, Thesis, Middle East Technical University, Ankara, Turkey, 2021.

102-21   Xu Deng, Sizhong He, Zhouhong Cao, Tao Wu, Numerical investigation of the hydrodynamic response of an impermeable sea-wall subjected to artificial submarine landslide-induced tsunamis, Landslides, 2021. doi.org/10.1007/s10346-021-01773-8

100-21   Jinmeng Yang, Zhenzhong Shen, Jing Zhang, Xiaomin Teng, Wenbing Zhang, Jie Dai, Experimental and numerical investigation of flow over a spillway bend with different combinations of permeable spur dikes, Water Supply, ws2021335, 2021. doi.org/10.2166/ws.2021.335

99-21   Nigel A. Temple, Josh Adams, Evan Blythe, Zidane Twersky, Steve Blair, Rick Harter, Investigating the performance of novel oyster reef materials in Apalachicola Bay, Florida, ASBPA National Coastal Conference, New Orleans, LA, USA, September 28-October 1, 2021.

94-21   Xiaoyang Shen, Mario Oertel, Comparitive study of nonsymmetrical trapezoidal and rectangular piano key weirs with varying key width ratios, Journal of Hydraulic Engineering, 147.11, 2021. doi.org/10.1061/(ASCE)HY.1943-7900.0001942

93-21   Aysar Tuama Al-Awadi, Mahmoud Saleh Al-Khafaji, CFD-based model for estimating the river bed morphological characteristics near cylindrical bridge piers due to debris accumulation, Water Resources, 48; pp. 763-773, 2021. doi.org/10.1134/S0097807821050031

92-21   Juan Francisco Macián-Pérez, Francisco José Vallés-Morán, Rafael García-Bartual, Assessment of the performance of a modified USBR Type II stilling basin by a validated CFD model, Journal of Irrigation and Drainage Engineering , 147.11, 2021. doi.org/10.1061/(ASCE)IR.1943-4774.0001623

91-21   Ali Yıldız, Ali İhsan Martı, Mustafa Göğüş, Numerical and experimental modelling of flow at Tyrolean weirs, Flow Measurement and Instrumentation, 81; 102040, 2021. doi.org/10.1016/j.flowmeasinst.2021.102040

90-21   Yasamin Aghaei, Fouad Kilanehei, Shervin Faghihirad, Mohammad Nazari-Sharabian, Dynamic pressure at flip buckets of chute spillways: A numerical study, International Journal of Civil Engineering, 2021. doi.org/10.1007/s40999-021-00670-4

88-21   Shang-tuo Qian, Yan Zhang, Hui Xu, Xiao-sheng Wang, Jian-gang Feng, Zhi-xiang Li, Effects of surface roughness on overflow discharge of embankment weirs, Journal of Hydrodynamics, 33; pp. 773-781, 2021. doi.org/10.1007/s42241-021-0068-y

86-21   Alkistis Stergiopoulou, Vassilios Stergiopoulos, CFD simulations of tubular Archimedean screw turbines harnessing the small hydropotential of Greek watercourses, International Journal of Energy and Environment, 12.1; pp. 19-30, 2021.

85-21   Jun-tao Ren, Xue-fei Wu, Ting Zhang, A 3-D numerical simulation of the characteristics of open channel flows with submerged rigid vegetation, Journal of Hydrodynamics, 33; pp. 833-843, 2021. doi.org/10.1007/s42241-021-0063-3

84-21   Rasoul Daneshfaraz, Amir Ghaderi, Maryam Sattariyan, Babak Alinejad, Mahdi Majedi Asl, Silvia Di Francesco, Investigation of local scouring around hydrodynamic and circular pile groups under the influence of river material harvesting pits, Water, 13.6; 2192, 2021. doi.org/10.3390/w13162192

83-21   Mahdi Feizbahr, Navid Tonekaboni, Guang-Jun Jiang, Hong-Xia Chen, Optimized vegetation density to dissipate energy of flood flow in open canals, Mathematical Problems in Engineering, 2021; 9048808, 2021. doi.org/10.1155/2021/9048808

80-21   Wenjun Liu, Bo Wang, Yakun Guo, Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale, Journal of Hydrology, 602; 126752, 2021. doi.org/10.1016/j.jhydrol.2021.126752

79-21   Zhen-Dong Shen, Yang Zhang, The three-dimensional simulation of granular mixtures weir, IOP Conference Series: Earth and Environmental Science, 820; 012024, 2021. doi.org/10.1088/1755-1315/820/1/012024

75-21   Mehrdad Ghorbani Mooselu, Mohammad Reza Nikoo, Parnian Hashempour Bakhtiari, Nooshin Bakhtiari Rayani, Azizallah Izady, Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques, Applied Soft Computing, 110; 107721, 2021. doi.org/10.1016/j.asoc.2021.107721

73-21   Romain Van Mol, Plunge pool rehabilitation with prismatic concrete elements – Case study and physical model of Ilarion dam in Greece, Infoscience (EPFL Scientific Publications), 2021.

70-21   Khosro Morovati, Christopher Homer, Fuqiang Tian, Hongchang Hu, Opening configuration design effects on pooled stepped chutes, Journal of Hydraulic Engineering, 147.9, 2021. doi.org/10.1061%2F(ASCE)HY.1943-7900.0001897

68-21   R. Daneshfaraz, E. Aminvash, S. Di Francesco, A. Najibi, J. Abraham, Three-dimensional study of the effect of block roughness geometry on inclined drop, Numerical Methods in Civil Engineering, 6.1; pp. 1-9, 2021. 

66-21   Benjamin Hohermuth, Lukas Schmoker, Robert M. Boes, David Vetsch, Numerical simulation of air entrainment in uniform chute flow, Journal of Hydraulic Research, 59.3; pp. 378-391, 2021. doi.org/10.1080/00221686.2020.1780492

65-21   Junjun Tan, Honglin Tan, Elsa Goerig, Senfan Ke, Haizhen Huang, Zhixiong Liu, Xiaotao Shi, Optimization of fishway attraction flow based on endemic fish swimming performance and hydraulics, Ecological Engineering, 170; 106332, 2021. doi.org/10.1016/j.ecoleng.2021.106332

63-21   Erdinc Ikinciogullari, Muhammet Emin Emiroglu, Mehmet Cihan Aydin, Comparison of scour properties of classical and trapezoidal labyrinth weirs, Arabian Journal for Science and Engineering, 2021. doi.org/10.1007/s13369-021-05832-z

59-21   Elias Wehrmeister, José J. Ota, Separation in overflow spillways: A computational analysis, Journal of Hydraulic Research, 59, 2021. doi.org/10.1080/00221686.2021.1908438

53-21   Zongxian Liang, John Ditter, Riadh Atta, Brian Fox, Karthik Ramaswamy, Numerical modeling of tailings dam break using a Herschel-Bulkley rheological model, USSD Annual Conference, online, May 11-21, 2021. 

51-21   Yansong Zhang, Jianping Chen, Chun Tan, Yiding Bao, Xudong Han, Jianhua Yan, Qaiser Mehmood, A novel approach to simulating debris flow runout via a three-dimensional CFD code: A case study of Xiaojia Gully, Bulletin of Engineering Geology and the Environment, 80.5, 2021. doi.org/10.1007/s10064-021-02270-x

49-21   Ramtin Sabeti, Mohammad Heidarzadeh, Preliminary results of numerical simulation of submarine landslide-generated waves, EGU General Assembly 2021, online, April 19-30, 2021. doi.org/10.5194/egusphere-egu21-284

48-21   Anh Tuan Le, Ken Hiramatsu, Tatsuro Nishiyama, Hydraulic comparison between piano key weir and rectangular labyrinth weir, International Journal of GEOMATE, 20.82; pp. 153-160, 2021. doi.org/10.21660/2021.82.j2106

46-21   Maoyi Luo, Faxing Zhang, Zhaoming Song, Liyuan Zhang, Characteristics of flow movement in complex canal system and its influence on sudden pollution accidents, Mathematical Problems in Engineering, 6617385, 2021. doi.org/10.1155/2021/6617385

42-21   Jakub Major, Martin Orfánus, Zbyněk Zachoval, Flow over broad-crested weir with inflow by approach shaft – Numerical model, Civil Engineering Journal, 30.1; 19, 2021. doi.org/10.14311/CEJ.2021.01.0019 

41-21   Amir Ghaderi, Saeed Abbasi, Experimental and numerical study of the effects of geometric appendance elements on energy dissipation over stepped spillway, Water, 13.7; 957, 2021. doi.org/10.3390/w13070957

38-21   Ana L. Quaresma, António N. Pinheiro, Modelling of pool-type fishways flows: Efficiency and scale effects assessment, Water, 13.6; 851, 2021. doi.org/10.3390/w13060851

37-21   Alireza Khoshkonesh, Blaise Nsom, Farhad Bahmanpouri, Fariba Ahmadi Dehrashid, Atefah Adeli, Numerical study of the dynamics and structure of a partial dam-break flow using the VOF Method, Water Resources Management, 35; pp. 1513-1528, 2021. doi.org/10.1007/s11269-021-02799-2

36-21   Amir Ghaderi, Mehdi Dasineh, Francesco Aristodemo, Constanza Aricò, Numerical simulations of the flow field of a submerged hydraulic jump over triangular macroroughnesses, Water, 13.5; 674, 2021. doi.org/10.3390/w13050674

35-21   Hongliang Qi, Junxing Zheng, Chenguang Zhang, Modeling excess shear stress around tandem piers of the longitudinal bridge by computational fluid dynamics, Journal of Applied Water Engineering and Research, 2021. doi.org/10.1080/23249676.2021.1884614

31-21   Seth Siefken, Robert Ettema, Ari Posner, Drew Baird, Optimal configuration of rock vanes and bendway weirs for river bends: Numerical-model insights, Journal of Hydraulic Engineering, 147.5, 2021. doi.org/10.1061/(ASCE)HY.1943-7900.0001871

29-21   Débora Magalhães Chácara, Waldyr Lopes Oliveira Filho, Rheology of mine tailings deposits for dam break analyses, REM – International Engineering Journal, 74.2; pp. 235-243, 2021. doi.org/10.1590/0370-44672020740098

27-21   Ling Peng, Ting Zhang, Youtong Rong, Chunqi Hu, Ping Feng, Numerical investigation of the impact of a dam-break induced flood on a structure, Ocean Engineering, 223; 108669, 2021. doi.org/10.1016/j.oceaneng.2021.108669

26-21   Qi-dong Hou, Hai-bo Li, Yu-Xiang Hu, Shun-chao Qi, Jian-wen Zhou, Overtopping process and structural safety analyses of the earth-rock fill dam with a concrete core wall by using numerical simulations, Arabian Journal of Geosciences, 14; 234, 2021. doi.org/10.1007/s12517-021-06639-w

25-21   Filipe Romão, Ana L. Quaresma, José M. Santos, Susana D. Amaral, Paulo Branco, António N. Pinheiro, Performance and fish transit time over vertical slots, Water, 13.3; 275, 2021. doi.org/10.3390/w13030275

23-21   Jiahou Hu, Chengwei Na, Yi Wang, Study on discharge velocity of tailings mortar in dam break based on FLOW-3D, IOP Conference Series: Earth and Environmental Science, 6th International Conference on Hydraulic and Civil Engineering, Xi’an, China, December 11-13, 2020, 643; 012052, 2021. doi.org/10.1088/1755-1315/643/1/012052

21-21   Asad H. Aldefae, Rusul A. Alkhafaji, Experimental and numerical modeling to investigate the riverbank’s stability, SN Applied Sciences, 3; 164, 2021. doi.org/10.1007/s42452-021-04168-5

20-21   Yangliang Lu, Jinbu Yin, Zhou Yang, Kebang Wei, Zhiming Liu, Numerical study of fluctuating pressure on stilling basin slabwith sudden lateral enlargement and bottom drop, Water, 13.2; 238, 2021. doi.org/10.3390/w13020238

18-21   Prashant Prakash Huddar, Vishwanath Govind Bhave, Hydraulic structure design with 3D CFD model, Proceedings, 25th International Conference on Hydraulics, Water Resources and Coastal Engineering (HYDRO 2020), Odisha, India, March 26-28, 2021.

17-21   Morteza Sadat Helbar, Atefah Parvaresh Rizi, Javad Farhoudi, Amir Mohammadi, 3D flow simulation to improve the design and operation of the dam bottom outlets, Arabian Journal of Geosciences, 14; 90, 2021. doi.org/10.1007/s12517-020-06378-4

15-21   Charles R. Ortloff, Roman hydraulic engineering: The Pont du Gard Aqueduct and Nemausus (Nîmes) Castellum, Water, 13.1; 54, 2021. doi.org/10.3390/w13010054

12-21   Mehdi Karami Moghadam, Ata Amini, Ehsan Karami Moghadam, Numerical study of energy dissipation and block barriers in stepped spillways, Journal of Hydroinformatics, 23.2; pp. 284-297, 2021. doi.org/10.2166/hydro.2020.245

08-21   Prajakta P. Gadge, M. R. Bhajantri, V. V. Bhosekar, Numerical simulations of air entraining characteristics over high head chute spillway aerator, Proceedings, ICOLD Symposium on Sustainable Development of Dams and River Basins, New Dehli, India, February 24 – 27, 2021.

07-21   Pankaj Lawande, Computational fluid dynamics simulation methodologies for stilling basins, Proceedings, ICOLD Symposium on Sustainable Development of Dams and River Basins, New Dehli, India, February 24 – 27, 2021.

Below is a collection of technical papers in our Water & Environmental Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate applications for the Water & Environmental Industry.

02-21   Aytaç Güven, Ahmed Hussein Mahmood, Numerical investigation of flow characteristics over stepped spillways, Water Supply, in press, 2021. doi.org/10.2166/ws.2020.283

01-21   Le Thi Thu Hien, Nguyen Van Chien, Investigate impact force of dam-break flow against structures by both 2D and 3D numerical simulations, Water, 13.3; 344, 2021. doi.org/10.3390/w13030344

125-20   Farhad Bahmanpouri, Mohammad Daliri, Alireza Khoshkonesh, Masoud Montazeri Namin, Mariano Buccino, Bed compaction effect on dam break flow over erodible bed; experimental and numerical modeling, Journal of Hydrology, in press, 2020. doi.org/10.1016/j.jhydrol.2020.125645

209-23   Cong Trieu Tran, Cong Ty Trinh, Prediction of the vortex evolution and influence analysis of rough bed in a hydraulic jump with the Omega-Liutex method, Tehnički Vjesnik, 30.6; 2023. doi.org/10.17559/TV-20230206000327

203-23   Muhammad Waqas Zaffar, Ishtiaq Hassan, Zulfiqar Ali, Kaleem Sarwar, Muhammad Hassan, Muhammad Taimoor Mustafa, Faizan Ahmed Waris, Numerical investigation of hydraulic jumps with USBR and wedge-shaped baffle block basins for lower tailwater, AQUA – Water Infrastructure, Ecosystems and Society, 72.11; 2081, 2023. doi.org/10.2166/aqua.2023.261

201-23   E.F.R. Bollaert, Digital cloud-based platform to predict rock scour at high-head dams, Role of Dams and Reservoirs in a Successful Energy Transition, Eds. Robert Boes, Patrice Droz, Raphael Leroy, 2023. doi.org/10.1201/9781003440420

200-23   Iacopo Vona, Oysters’ integration on submerged breakwaters as nature-based solution for coastal protection within estuarine environments, Thesis, University of Maryland, 2023.

198-23   Hao Chen, Xianbin Teng, Zhibin Zhang, Faxin Zhu, Jie Wang, Zhaohao Zhang, Numerical analysis of the influence of the impinging distance on the scouring efficiency of submerged jets, Fluid Dynamics & Materials Processing, 20.2; pp. 429-445, 2023. doi.org/10.32604/fdmp.2023.030585

193-23   Chen Peng, Liuweikai Gu, Qiming Zhong, Numerical simulation of dam failure process based on FLOW-3D, Advances in Frontier Research on Engineering Structures, pp. 545-550, 2023. doi.org/10.3233/ATDE230245

189-23   Rebecca G. Englert, Age J. Vellinga, Matthieu J.B. Cartigny, Michael A. Clare, Joris T. Eggenhuisen, Stephen M. Hubbard, Controls on upstream-migrating bed forms in sandy submarine channels, Geology, 51.12; PP. 1137-1142, 2023. doi.org/10.1130/G51385.1

187-23   J.W. Kim, S.B. Woo, A numerical approach to the treatment of submerged water exchange processes through the sluice gates of a tidal power plant, Renewable Energy, 219.1; 119408, 2023. doi.org/10.1016/j.renene.2023.119408

186-23   Chan Jin Jeong, Hyung Jun Park, Hyung Suk Kim, Seung Oh Lee, Study on fish-friendly flow characteristic in stepped fishway, Proceedings of the Korean Water Resources Association Conference, 2023. (In Korean)

185-23   Jaehwan Yoo, Sedong Jang, Byunghyun Kim, Analysis of coastal city flooding in 2D and 3D considering extreme conditions and climate change, Proceedings of the Korean Water Resources Association Conference, 2023. (In Korean)

180-23   Prathyush Nallamothu, Jonathan Gregory, Jordan Leh, Daniel P. Zielinski, Jesse L. Eickholt, Semi-automated inquiry of fish launch angle and speed for hazard analysis, Fishes, 8.10; 476, 2023. doi.org/10.3390/fishes8100476

179-23   Reza Norouzi, Parisa Ebadzadeh, Veli Sume, Rasoul Daneshfaraz, Upstream vortices of a sluice gate: an experimental and numerical study, AQUA – Water Infrastructure, Ecosystems and Society, 72.10; 1906, 2023. doi.org/10.2166/aqua.2023.269

178-23   Bai Hao Li, How Tion Puay, Muhammad Azfar Bin Hamidi, Influence of spur dike’s angle on sand bar formation in a rectangular channel, IOP Conference Series: Earth and Environmental Science, 1238; 012027, 2023. doi.org/10.1088/1755-1315/1238/1/012027

177-23   Hao Zhe Khor, How Tion Puay, Influence of gate lip angle on downpull forces for vertical lift gates, IOP Conference Series: Earth and Environmental Science, 1238; 012019, 2023. doi.org/10.1088/1755-1315/1238/1/012019

175-23   Juan Francisco Macián-Pérez, Rafael García-Bartual, P. Amparo López-Jiménez, Francisco José Vallés-Morán, Numerical modeling of hydraulic jumps at negative steps to improve energy dissipation in stilling basins, Applied Water Science, 13.203; 2023. doi.org/10.1007/s13201-023-01985-4

174-23   Ahintha Kandamby, Dusty Myers, Narrows bypass chute CFD analysis, Dam Safety, 2023.

173-23   H. Jalili, R.C. Mahon, M.F. Martinez, J.W. Nicklow, Sediment sluicing from the reservoirs with high efficiency, SEDHYD, 2023.

170-23   Ramith Fernando, Gangfu Zhang, Beyond 2D: Unravelling bridge hydraulics with CFD modelling, 24th Queensland Water Symposium, 2023.

169-23   K. Licht, G. Lončar, H. Posavčić, I. Halkijević, Short-time numerical simulation of ultrasonically assisted electrochemical removal of strontium from water, 18th International Conference on Environmental Science and Technology (CEST), 2023.

166-23   Ebrahim Hamid Hussein Al-Qadami, Mohd Adib Mohammad Razi, Wawan Septiawan Damanik, Zahiraniza Mustaffa, Eduardo Martinez-Gomariz, Fang Yenn Teo, Anwar Ameen Hezam Saeed, Understanding the stability of passenger vehicles exposed to water flows through 3D CFD modelling, Sustainability, 15.17; 13262, 2023. doi.org/10.3390/su151713262

165-23   Ebrahim Hamid Hussein Al-Qadami, Mohd Adib Mohammad Razi, Wawan Septiawan Damanik, Zahiraniza Mustaffa, Eduardo Martinez-Gomariz, Fang Yenn Teo, Anwar Ameen Hezam Saeed, 3-dimensional numerical study on the critical orientation of the flooded passenger vehicles, Engineering Letters, 31.3; 2023.

124-20   John Petrie, Yan Qi, Mark Cornwell, Md Al Adib Sarker, Pranesh Biswas, Sen Du, Xianming Shi, Design of living barriers to reduce the impacts of snowdrifts on Illinois freeways, Illinois Center for Transportation Series No. 20-019, Research Report No. FHWA-ICT-20-012, 2020. doi.org/10.36501/0197-9191/20-019

123-20   Mohammad Reza Namaee, Jueyi Sui, Yongsheng Wu, Natalie Linklater, Three-dimensional numerical simulation of local scour in the vicinity of circular side-by-side bridge piers with ice cover, Canadian Journal of Civil Engineering, 2020. doi.org/10.1139/cjce-2019-0360

119-20   Tuğçe Yıldırım, Experimental and numerical investigation of vortex formation at multiple horizontal intakes, Thesis, Middle East Technical University, Ankara, Turkey, , 2020.

118-20   Amir Ghaderi, Mehdi Dasineh, Francesco Aristodemo, Ali Ghahramanzadeh, Characteristics of free and submerged hydraulic jumps over different macroroughnesses, Journal of Hydroinformatics, 22.6; pp. 1554-1572, 2020. doi.org/10.2166/hydro.2020.298

117-20   Rasoul Daneshfaraz, Amir Ghaderi, Aliakbar Akhtari, Silvia Di Francesco, On the effect of block roughness in ogee spillways with flip buckets, Fluids, 5.4; 182, 2020. doi.org/10.3390/fluids5040182

115-20   Chi Yao, Ligong Wu, Jianhua Yang, Influences of tailings particle size on overtopping tailings dam failures, Mine Water and the Environment, 2020. doi.org/10.1007/s10230-020-00725-3

114-20  Rizgar Ahmed Karim, Jowhar Rasheed Mohammed, A comparison study between CFD analysis and PIV technique for velocity distribution over the Standard Ogee crested spillways, Heliyon, 6.10; e05165, 2020. doi.org/10.1016/j.heliyon.2020.e05165

113-20   Théo St. Pierre Ostrander, Analyzing hydraulics of broad crested lateral weirs, Thesis, University of Innsbruck, Innsbruck, Austria, 2020.

111-20   Mahla Tajari, Amir Ahmad Dehghani, Mehdi Meftah Halaghi, Hazi Azamathulla, Use of bottom slots and submerged vanes for controlling sediment upstream of duckbill weirs, Water Supply, 20.8; pp. 3393-3403, 2020. doi.org/10.2166/ws.2020.238

110-20   Jian Zhou, Subhas K. Venayagamoorthy, How does three-dimensional canopy geometry affect the front propagation of a gravity current?, Physics of Fluids, 32.9; 096605, 2020. doi.org/10.1063/5.0019760

106-20   Juan Francisco Macián-Pérez, Arnau Bayón, Rafael García-Bartual, P. Amparo López-Jiménez, Characterization of structural properties in high reynolds hydraulic jump based on CFD and physical modeling approaches, Journal of Hydraulic Engineering, 146.12, 2020. doi.org/10.1061/(ASCE)HY.1943-7900.0001820

105-20   Bin Deng, He Tao, Changbo Jian, Ke Qu, Numerical investigation on hydrodynamic characteristics of landslide-induced impulse waves in narrow river-valley reservoirs, IEEE Access, 8; pp. 165285-165297, 2020. doi.org/10.1109/ACCESS.2020.3022651

102-20   Mojtaba Mehraein, Mohammadamin Torabi, Yousef Sangsefidi, Bruce MacVicar, Numerical simulation of free flow through side orifice in a circular open-channel using response surface method, Flow Measurement and Instrumentation, 76; 101825, 2020. doi.org/10.1016/j.flowmeasinst.2020.101825

101-20   Juan Francisco Macián Pérez, Numerical and physical modelling approaches to the study of the hydraulic jump and its application in large-dam stilling basins, Thesis, Universitat Politècnica de València, Valencia, Spain, 2020.

99-20   Chen-Shan Kung, Pin-Tzu Su, Chin-Pin Ko, Pei-Yu Lee, Application of multiple intake heads in engineering field, Proceedings, 30th International Ocean and Polar Engineering Conference (ISOPE), Online, October 11-17,  ISOPE-I-20-3116, 2020.

Below is a collection of technical papers in our Water & Environmental Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate applications for the Water & Environmental Industry.

91-20      Selahattin Kocaman, Stefania Evangelista, Giacomo Viccione, Hasan Güzel, Experimental and numerical analysis of 3D dam-break waves in an enclosed domain with a single oriented obstacle, Environmental Science Proceedings, 2; 35, 2020. doi.org/10.3390/environsciproc2020002035

89-20      Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Michael Strasser, Bernhard Gems, The 1958 Lituya Bay tsunami – pre-event bathymetry reconstruction and 3D numerical modelling utilising the computational fluid dynamics software Flow-3D, Natural Hazards and Earth Systems Sciences, 20; pp. 2255–2279, 2020. doi.org/10.5194/nhess-20-2255-2020

88-20      Cesar Simon, Eddy J. Langendoen, Jorge D. Abad, Alejandro Mendoza, On the governing equations for horizontal and vertical coupling of one- and two-dimensional open channel flow models, Journal of Hydraulic Research, 58.5; pp. 709-724, 2020. doi.org/10.1080/00221686.2019.1671507

87-20       Mohammad Nazari-Sharabian, Moses Karakouzian, Donald Hayes, Flow topology in the confluence of an open channel with lateral drainage pipe, Hydrology, 7.3; 57, 2020. doi.org/10.3390/hydrology7030057

84-20       Naohiro Takeichi, Takeshi Katagiri, Harumi Yoneda, Shusaku Inoue, Yusuke Shintani, Virtual Reality approaches for evacuation simulation of various disasters, Collective Dynamics (originally presented in Proceedings from the 9th International Conference on Pedestrian and Evacuation Dynamics (PED2018), Lund, Sweden, August 21-23, 2018), 5, 2020. doi.org/10.17815/CD.2020.93

83-20       Eric Lemont, Jonathan Hill, Ryan Edison, A problematic installation: CFD modelling of waste stabilisation pond mixing alternatives, Ozwater’20, Australian Water Association, Online, June 2, 2020, 2020.

77-20       Peng Yu, Ruigeng Hu, Jinmu Yang, Hongjun Liu, Numerical investigation of local scour around USAF with different hydraulic conditions under currents and waves, Ocean Engineering, 213; 107696, 2020. doi.org/10.1016/j.oceaneng.2020.107696

76-20       Alireza Mojtahedi, Nasim Soori, Majid Mohammadian, Energy dissipation evaluation for stepped spillway using a fuzzy inference system, SN Applied Sciences, 2; 1466, 2020. doi.org/10.1007/s42452-020-03258-0

74-20       Jackson D., Tellez Alvarez E., Manuel Gómez, Beniamino Russo, Modelling of surcharge flow through grated inlet, Advances in Hydroinformatics: SimHydro 2019 – Models for Extreme Situations and Crisis Management, Nice, France, June 12-14, 2019, pp. 839-847, 2020. doi.org/10.1007/978-981-15-5436-0_65

73-20       Saurav Dulal, Bhola NS Ghimire, Santosh Bhattarai, Ram Krishna Regmi, Numerical simulation of flow through settling basin: A case study of Budhi-Ganga Hydropower Project (BHP), International Journal of Engineering Research & Technology (IJERT), 9.7; pp. 992-998, 2020.

70-20       B. Nandi, S. Das, A. Mazumdar, Experimental analysis and numerical simulation of hydraulic jump, IOP Conference Series: Earth and Environmental Science, 2020 6th International Conference on Environment and Renewable Energy, Hanoi, Vietnam, February 24-26, 505; 012024, 2020. doi.org/10.1088/1755-1315/505/1/012024

69-20       Amir Ghaderi, Rasoul Daneshfaraz, Mehdi Dasineh, Silvia Di Francesco, Energy dissipation and hydraulics of flow over trapezoidal–triangular labyrinth weirs, Water (Special Issue: Combined Numerical and Experimental Methodology for Fluid–Structure Interactions in Free Surface Flows), 12.7; 1992, 2020. doi.org/10.3390/w12071992

68-20       Jia Ni, Linwei Wang, Xixian Chen, Luan Luan Xue, Isam Shahrour, Effect of the fish-bone dam angle on the flow mechanisms of a fish-bone type dividing dyke, Marine Technology Society Journal, 54.3; pp. 58-67, 2020. doi.org/10.4031/MTSJ.54.3.9

67-20       Yu Zhuang, Yueping Yin, Aiguo Xing, Kaiping Jin, Combined numerical investigation of the Yigong rock slide-debris avalanche and subsequent dam-break flood propagation in Tibet, China, Landslides, 17; pp. 2217-2229, 2020. doi.org/10.1007/s10346-020-01449-9

66-20       A. Ghaderi, R. Daneshfaraz, S. Abbasi, J. Abraham, Numerical analysis of the hydraulic characteristics of modified labyrinth weirs, International Journal of Energy and Water Resources, 4.2, 2020. doi.org/10.1007/s42108-020-00082-5

65-20      D.P. Zielinski, S. Miehls, G. Burns, C. Coutant, Adult sea lamprey espond to induced turbulence in a low current system, Journal of Ecohydraulics, 5, 2020. doi.org/10.1080/24705357.2020.1775504

63-20       Raffaella Pellegrino, Miguel Ángel Toledo, Víctor Aragoncillo, Discharge flow rate for the initiation of jet flow in sky-jump spillways, Water, Special Issue: Planning and Management of Hydraulic Infrastructure, 12.6; 1814, 2020. doi.org/10.3390/w12061814

59-20       Nesreen Taha, Maged M. El-Feky, Atef A. El-Saiad, Ismail Fathy, Numerical investigation of scour characteristics downstream of blocked culverts, Alexandria Engineering Journal, 59.5; pp. 3503-3513, 2020. doi.org/10.1016/j.aej.2020.05.032

57-20       Charles Ortloff, The Hydraulic State: Science and Society in the Ancient World, Routledge, London, UK, eBook ISBN: 9781003015192, 2020. doi.org/10.4324/9781003015192

54-20       Navid Aghajani, Hojat Karami, Hamed Sarkardeh, Sayed‐Farhad Mousavi, Experimental and numerical investigation on effect of trash rack on flow properties at power intakes, Journal of Applied Mathematics and Mechanics (ZAMM), online pre-issue, 2020. doi.org/10.1002/zamm.202000017

53-20     Tian Zhou, Theodore Endreny, The straightening of a river meander leads to extensive losses in flow complexity and ecosystem services, Water (Special Issue: A Systems Approach of River and River Basin Restoration), 12.6; 1680, 2020. doi.org/10.3390/w12061680

50-20       C.C. Battiston, F.A. Bombardelli, E.B.C. Schettini, M.G. Marques, Mean flow and turbulence statistics through a sluice gate in a navigation lock system: A numerical study, European Journal of Mechanics – B/Fluids, 84; pp.155-163, 2020. doi.org/10.1016/j.euromechflu.2020.06.003

47-20       Mohammad Nazari-Sharabian, Aliasghar Nazari-Sharabian, Moses Karakouzian, Mehrdad Karami, Sacrificial piles as scour countermeasures in river bridges: A numerical study using FLOW-3D, Civil Engineering Journal, 6.6; pp. 1091-1103, 2020. doi.org/10.28991/cej-2020-03091531

44-20    Leena Jaydeep Shevade, L. James Lo, Franco A. Montalto, Numerical 3D model development and validation of curb-cut inlet for efficiency prediction, Water, 12; 1791, 2020. doi.org/10.3390/w12061791

43-20       Vitor Hugo Pereira de Morais, Tiago Zenker Gireli, Paulo Vatavuk, Numerical and experimental models applied to an ogee crest spillway and roller bucket stilling basin, Brazilian Journal of Water Resources, 2020. doi.org/10.1590/2318-0331.252020190005

42-20       Chen Xie, Qin Chen, Gang Fan, Chen Chen, Numerical simulation of the natural erosion and breaching process of the “10.11” Baige Landslide Dam on the Jinsha River, Dam Breach Modelling and Risk Disposal, pp. 376-377, International Conference on Embankment Dams (ICED), Beijing, China, June 5 – 7, 2020. doi.org/10.1007/978-3-030-46351-9_40

41-20       Niloofar Aghili Mahabadi, Hamed Reza Zarif Sanayei, Performance evaluation of bilateral side slopes in piano key weirs by numerical simulation, Modeling Earth Systems and Environment, 6; pp. 1477-1486, 2020. doi.org/10.1007/s40808-020-00764-3

40-20       P. April Le Quéré, I. Nistor, A. Mohammadian, Numerical modeling of tsunami-induced scouring around a square column: Performance assessment of FLOW-3D and Delft3D, Journal of Coastal Research (preprint), 2020. doi.org/10.2112/JCOASTRES-D-19-00181

39-20       Jian Zhou, Subhas K. Venayagamoorthy, Impact of ambient stable stratification on gravity currents propagating over a submerged canopy, Journal of Fluid Mechanics, 898; A15, 2020. doi.org/10.1017/jfm.2020.418

37-20     Aliasghar Azma, Yongxiang Zhang, The effect of variations of flow from tributary channel on the flow behavior in a T-shape confluence, Processes, 8; 614, 2020. doi.org/10.3390/pr8050614

35-20     Selahattin Kocaman, Hasan Güzel, Stefania Evangelista, Hatice Ozmen-Cagatay, Giacomo Viccione, Experimental and numerical analysis of a dam-break flow through different contraction geometries of the channel, Water, 12; 1124, 2020. doi.org/10.3390/w12041124

32-20       Adriano Henrique Tognato, Modelagem CFD da interação entre hidrodinâmica costeira e quebra-mar submerso: estudo de caso da Ponta da Praia em Santos, SP (CFD modeling of interaction between sea waves and submerged breakwater at Ponta de Praia – Santos, SP: a case study, Thesis, Universidad Estadual de Campinas, Campinas, Brazil, 2020.

31-20   Hamidreza Samma, Amir Khosrojerdi, Masoumeh Rostam-Abadi, Mojtaba Mehraein and Yovanni Cataño-Lopera, Numerical simulation of scour and flow field over movable bed induced by a submerged wall jet, Journal of Hydroinformatics, 22.2, pp. 385-401, 2020. doi.org/10.2166/hydro.2020.091

28-20   Halah Kais Jalal and Waqed H. Hassan, Three-dimensional numerical simulation of local scour around circular bridge pier using FLOW-3D software, IOP Conference Series: Materials Science and Engineering, art. no. 012150, 3rd International Conference on Engineering Sciences, Kerbala, Iraq, November 4-6, 2019745. doi.org/10.1088/1757-899X/745/1/012150

25-20   Faizal Yusuf and Zoran Micovic, Prototype-scale investigation of spillway cavitation damage and numerical modeling of mitigation options, Journal of Hydraulic Engineering, 146.2, 2020. doi.org/10.1061/(ASCE)HY.1943-7900.0001671

24-20   Huan Zhang, Zegao Yin, Yipei Miao, Minghui Xia and Yingnan Feng, Hydrodynamic performance investigation on an upper and lower water exchange device, Aquacultural Engineering, 90, art. no. 102072, 2020. doi.org/10.1016/j.aquaeng.2020.102072

22-20   Yu-xiang Hu, Zhi-you Yu and Jian-wen Zhou, Numerical simulation of landslide-generated waves during the 11 October 2018 Baige landslide at the Jinsha River, Landslides, 2020. doi.org/10.1007/s10346-020-01382-x

19-20   Amir Ghaderi, Mehdi Dasineh, Saeed Abbasi and John Abraham, Investigation of trapezoidal sharp-crested side weir discharge coefficients under subcritical flow regimes using CFD, Applied Water Science, 10, art. no. 31, 2020. doi.org/10.1007/s13201-019-1112-8

18-20   Amir Ghaderi, Saeed Abbasi, John Abraham and Hazi Mohammad Azamathulla, Efficiency of trapezoidal labyrinth shaped stepped spillways, Flow Measurement and Instrumentation, 72, art. no. 101711, 2020. doi.org/10.1016/j.flowmeasinst.2020.101711

16-20   Majid Omidi Arjenaki and Hamed Reza Zarif Sanayei, Numerical investigation of energy dissipation rate in stepped spillways with lateral slopes using experimental model development approach, Modeling Earth Systems and Environment, 2020. doi.org/10.1007/s40808-020-00714-z

15-20   Bo Wang, Wenjun Liu, Wei Wang, Jianmin Zhang, Yunliang Chen, Yong Peng, Xin Liu and Sha Yang, Experimental and numerical investigations of similarity for dam-break flows on wet bed, Journal of Hydrology, 583, art. no. 124598, 2020. doi.org/10.1016/j.jhydrol.2020.124598

14-20   Halah Kais Jalal and Waqed H. Hassan, Effect of bridge pier shape on depth of scour, IOP Conference Series: Materials Science and Engineering, art. no. 012001, 3rd International Conference on Engineering Sciences, Kerbala, Iraq, November 4-6, 2019671. doi.org/10.1088/1757-899X/671/1/012001

13-20   Shahad R. Mohammed, Basim K. Nile and Waqed H. Hassan, Modelling stilling basins for sewage networks, IOP Conference Series: Materials Science and Engineering, art. no. 012111, 3rd International Conference on Engineering Sciences, Kerbala, Iraq, November 4-6, 2019671. doi.org/10.1088/1757-899X/671/1/012111

11-20   Xin Li, Liping Jin, Bernie A. Engel, Zeng Wang, Wene Wang, Wuquan He and Yubao Wang, Influence of the structure of cylindrical mobile flumes on hydraulic performance characteristics in U-shaped channels, Flow Measurement and Instrumentation, 72, art. no. 101708, 2020. doi.org/10.1016/j.flowmeasinst.2020.101708

10-20   Nima Aein, Mohsen Najarchi, Seyyed Mohammad Mirhosseini Hezaveh, Mohammad Mehdi Najafizadeh and Ehsanollah Zeigham, Simulation and prediction of discharge coefficient of combined weir–gate structure, Proceedings of the Institution of Civil Engineers – Water Management (ahead of print), 2020. doi.org/10.1680/jwama.19.00047

03-20   Agostino Lauria, Francesco Calomino, Giancarlo Alfonsi, and Antonino D’Ippolito, Discharge coefficients for sluice gates set in weirs at different upstream wall inclinations, Water, 12, art. no. 245, 2020. doi.org/10.3390/w12010245

113-19   Ruidong An, Jia Li, Typical biological behavior of migration and flow pattern creating for fish schooling, E-Proceedings, 38th IAHR World Congress, Panama City, Panama, September 1-6, 2019.

112-19   Wenjun Liu, Bo Wang, Hang Wang, Jianmin Zhang, Yunliang Chen, Yong Peng, Xin Liu, Sha Yang, Experimental and numerical modeling of dam-break flows in wet downstream conditions, E-Proceedings, 38th IAHR World Congress, Panama City, Panama, September 1-6, 2019.

111-19   Zhang Chendi, Liu Yingjun, Xu Mengzhen, Wang Zhaoyin, The 3D numerical study on flow properties of individual step-pool, Proceedings: 14th International Symposium on River Sedimentation, Chengdu, China, September 16-19, 2019.

110-19   Mason Garfield, The effects of scour on the flow field at a bendway weir, Thesis: Colorado State University, Fort Collins, Colorado, Colorado State University, Fort Collins, Colorado.

109-19   Seth Siefken, Computational fluid dynamics models of Rio Grande bends fitted with rock vanes or bendway weirs, Thesis: Colorado State University, Fort Collins, Colorado, Colorado State University, Fort Collins, Colorado.

108-19   Benjamin Israel Devadason and Paul Schweiger, Decoding the drowning machines: Using CFD modeling to predict and design solutions to remediate the dangerous hydraulic roller at low head dams, The Journal of Dam Safety, 17.1, pp. 20-31, 2019.

106-19   Amir Ghaderi and Saeed Abbasi, CFD simulations of local scouring around airfoil-shaped bridge piers with and without collar, Sādhanā, art. no. 216, 2019. doi.org/10.1007/s12046-019-1196-8

105-19   Jacob van Alwon, Numerical and physical modelling of aerated skimming flows over stepped spillways, Thesis, University of Leeds, Leeds, United Kingdom, 2019.

100-19   E.H. Hussein Al-Qadami, A.S. Abdurrasheed, Z. Mustaffa, K.W. Yusof, M.A. Malek and A. Ab Ghani, Numerical modelling of flow characteristics over sharp crested triangular hump, Results in Engineering, 4, art. no. 100052, 2019. doi.org/10.1016/j.rineng.2019.100052

99-19   Agostino Lauria, Francesco Calomino, Giancarlo Alfonsi, and Antonino D’Ippolito, Discharge coefficients for sluice gates set in weirs at different upstream wall inclinations, Water, 12.1, art. no. 245, 2019. doi.org/10.3390/w12010245

98-19   Redvan Ghasemlounia and M. Sedat Kabdasli, Surface suspended sediment distribution pattern for an unexpected flood event at Lake Koycegiz, Turkey, Proceedings, 14th National Conference on Watershed Management Sciences and Engineering, Urmia, Iran, July 16-17, 2019.

97-19   Brian Fox, Best practices for simulating hydraulic structures with CFD, Proceedings, Dam Safety 2019, Orlando, Florida, USA, September 8-12, 2019.

96-19   John Wendelbo, Verification of CFD predictions of self-aeration onset on stepped chute spillways, Proceedings, Dam Safety 2019, Orlando, Florida, USA, September 8-12, 2019.

95-19   Pankaj Lawande, Anurag Chandorkar and Adhirath Mane, Predicting discharge rating curves for tainter gate controlled spillway using CFD simulations, Proceedings, 24th HYDRO 2019, International Conference, Hyderabad, India, December 18-20, 2019.

91-19   Gyeong-Bo Kim, Wei Cheng, Richards C. Sunny, Juan J. Horrillo, Brian C. McFall, Fahad Mohammed, Hermann M. Fritz, James Beget, and Zygmunt Kowalik , Three Dimensional Landslide Generated Tsunamis: Numerical and Physical Model Comparisons, Landslides, 2019. doi.org/10.1007/s10346-019-01308-2

85-19   Susana D. Amaral, Ana L. Quaresma, Paulo Branco, Filipe Romão, Christos Katopodis, Maria T. Ferreira, António N. Pinheiro, and José M. Santos, Assessment of retrofitted ramped weirs to improve passage of potamodromous fish, Water, 11, art. no. 2441, 2019. doi.org/10.3390/w11122441

82-19   Shubing Dai, Yong He, Jijian Yang, Yulei ma, Sheng Jin, and Chao Liang, Numerical study of cascading dam-break characteristics using SWEs and RANS, Water Supply, 2019. doi.org/10.2166/ws.2019.168

81-19   Kyong Oh Baek, Evaluation technique for efficiency of fishway based on hydraulic analysis, Journal of Korea Water Resources Association, 52.spc2, pp. 855-863, 2019. doi.org/10.3741/JKWRA.2019.52.S-2.855

80-19   Yongye Li, Yuan Gao, Xiaomeng Jia, Xihuan Sun, and Xuelan Zhang, Numerical simulations of hydraulic characteristics of a flow discharge measurement process with a plate flowmeter in a U-channel, Water, art. no. 2392, 2019. doi.org/10.3390/w11112382

76-19   Youtong Rong, Ting Zhang, Yanchen Zheng, Chunqi Hu, Ling Peng, and Ping Feng, Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry, Journal of Hydrology, in press, 2019. doi.org/10.1016/j.jhydrol.2019.124308

74-19   Youtong Rong, Ting Zhang, Ling Peng, and Ping Feng, Three-dimensional numerical simulation of dam discharge and flood routing in Wudu Reservoir, Water, 11, art. no. 2157, 2019. doi.org/10.3390/w11102157

70-19   Le Thi Thu Hien, Study the flow over chute spillway by both numerical and physical models, Proceedings, pp. 845-851, 10th International Conference on Asian and Pacific Coasts (APAC 2019), Hanoi, Vietnam, September 25-28, 2019. doi.org/10.1007/978-981-15-0291-0_116

69-19   T. Vinh Cuong, N. Thanh Hung, V. Thanh Te, P. Anh Tuan, Analysis of spur dikes spatial layout to river bed degradation under reversing tidal flow, Proceedings, pp. 737-744, 10th International Conference on Asian and Pacific Coasts (APAC 2019), Hanoi, Vietnam, September 25-28, 2019. doi.org/10.1007/978-981-15-0291-0_101

67-19   Zongshi Dong, Junxing Wang, David Florian Vetsch, Robert Michael Boes, and Guangming Tan, Numerical simulation of air–water two-phase flow on stepped spillways behind X-shaped flaring gate piers under very high unit discharge, Water, 11, art. no. 1956, 2019. doi.org/10.3390/w11101956

66-19   Tony L. Wahl, Effect of boundary layer conditions on uplift pressures at open offset spillway joints, Sustainable and Safe Dams Around the World: Proceedings, 2019. doi.org/10.1201/9780429319778-182

65-19   John Petrie, Kun Zhang, and Mahmoud Shehata, Numerical simulation of snow deposition around living snow fences, Community Center for Environmentally Sustainable Transportation in Cold Climates (CESTiCC), Project Report, 2019.

64-19   Andrea Franco, Jasper Moernaut, Barbara Schneider-Muntau, Markus Aufleger, Michael Strasser, and Bernhard Gems, Lituya Bay 1958 Tsunami – detailed pre-event bathymetry reconstruction and 3D-numerical modelling utilizing the CFD software FLOW-3D, Natural Hazards and Earth Systems Sciences, under review, 2019. doi.org/10.5194/nhess-2019-285

63-19   J. Patarroyo, D. Damov, D. Shepherd, G. Snyder, M. Tremblay, and M. Villeneuve, Hydraulic design of stepped spillway using CFD supported by physical modelling: Muskrat Falls hydroelectric generating facility, Sustainable and Safe Dams Around the World: Proceedings, , pp. 205-219, 2019. doi.org/10.1201/9780429319778-19

61-19   A.S. Abdurrasheed, K.W. Yusof, E.H. Hussein Alqadami, H. Takaijudin, A.A. Ghani, M.M. Muhammad, A.T. Sholagberu, M.K. Zainalfikry, M. Osman, and M.S. Patel, Modelling of flow parameters through subsurface drainage modules for application in BIOECODS, Water, 11, art. no. 1823, 2019. doi.org/10.3390/w11091823

59-19     Brian Fox and Robert Feurich, CFD analysis of local scour at bridge piers, Proceedings of the Federal Interagency Sedimentation and Hydraulic Modeling Conference (SEDHYD), Reno, Nevada, June 24-28, 2019.

56-19     Pankaj Lawande, Brian Fox, and Anurag Chandorkar, Three dimensional CFD modeling of flow over a tainter gate spillway, International Dam Safety Conference, Bhubaneswar, Odisha, India, February 13-14, 2019.

49-19     Yousef Sangsefidi, Bruce MacVicar, Masoud Ghodsian, Mojtaba Mehraein, Mohammadamin Torabi, and Bruce M. Savage, Evaluation of flow characteristics in labyrinth weirs using response surface methodology, Flow Measurement and Instrumentation, Vol. 69, 2019. doi: 10.1016/j.flowmeasinst.2019.101617

43-19     Gongyun Liao, Zancheng Tang, and Fei Zhu, Self-cleaning performance of double-layer porous asphalt pavements with different granular diameters and layer combinations, 19th COTA International Conference of Transportation, Nanjing, China, July 6-8, 2019.

42-19     Tsung-Chun Ho, Gwo-Jang Hwang, Kao-Shu Hwang, Kuo-Cheng Hsieh, and Lung-Wei Chen, Experimental and numerical study on desilting efficiency of the bypassing tunnel for Nan-Hua reservoir, 3rd International Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, April 9-12, 2019.

41-19     Chang-Ting Hsieh, Sheng-Yung Hsu, and Chin-Pin Ko, Planning of sluicing tunnel in front of the Wushe dam – retrofit the existing water diversion tunnel as an example, 3rd International Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, April 9-12, 2019.

40-19     Chi-Lin Yang, Pang-ku Yang, Fu-June Wang, and Kuo-Cheng Hsieh, Study on the transportation of high-concentration sediment flow and the operation of sediment de-silting in Deji Reservoir, 3rd International Workshop on Sediment Bypass Tunnels, Taipei, Taiwan, April 9-12, 2019.

39-19   Sam Glovik and John Wendelbo, Advanced CFD air entrainment capabilities for baffle drop structure design, NYWEA 91st Annual Meeting, New York, NY, February 3-6, 2019.

36-19     Ahmed M. Helmi, Heba T. Essawy, and Ahmed Wagdy, Three-dimensional numerical study of stacked drop manholes, Journal of Irrigation and Drainage Engineering, Vol. 145, No. 9, 2019. doi: 10.1061/(ASCE)IR.1943-4774.0001414

33-19     M. Cihan Aydin, A. Emre Ulu, and Çimen Karaduman, Investigation of aeration performance of Ilısu Dam outlet using two-phase flow model, Applied Water Science, Vol. 9, No. 111, 2019. doi: 10.1007/s13201-019-0982-0

16-19     Bernard Twaróg, The analysis of the reactive work of the Alden Turbine, Technical Transactions I, Environmental Engineering, 2019. doi: 10.4467/2353737XCT.19.010.10050

14-19     Guodong Li, Xingnan Li, Jian Ning, and Yabing Deng, Numerical simulation and engineering application of a dovetail-shaped bucket, Water, Vol. 11, No. 2, 2019. doi: 10.3390/w11020242

13-19     Ilaria Rendina, Giacomo Viccione, and Leonardo Cascini, Kinematics of flow mass movements on inclined surfaces, Theoretical and Computational Fluid Dynamics, Vol. 33, No. 2, pp. 107-123, 2019. doi: 10.1007/s00162-019-00486-y

10-19     O.K. Saleh, E.A. Elnikhely, and Fathy Ismail, Minimizing the hydraulic side effects of weirs construction by using labyrinth weirs, Flow Measurement and Instrumentation, Vol. 66, pp. 1-11, 2019. doi: 10.1016/j.flowmeasinst.2019.01.016

05-19   Hakan Ersoy, Murat Karahan, Kenan Gelişli, Aykut Akgün, Tuğçe Anılan, M. Oğuz Sünnetci, Bilgehan Kul Yahşi, Modelling of the landslide-induced impulse waves in the Artvin Dam reservoir by empirical approach and 3D numerical simulation, Engineering Geology, Vol. 249, pp. 112-128, 2019. doi: 10.1016/j.enggeo.2018.12.025

96-18     Kyung-Seop Sin, Robert Ettema, Christopher I. Thornton, Numerical modeling to assess the influence of bendway weirs on flow distribution in river beds, Task 4 of Study: Native Channel Topography and Rock-Weir Structure Channel-Maintenance Techniques, U.S. Dept. of the Interior. CSU-HYD Report No. 2018-1, 2018.

95-18   Thulfikar Razzak Al-Husseini, Hayder A. Al-Yousify and Munaf A. Al-Ramahee, Experimental and numerical study of the effect of the downstream spillway face’s angle on the stilling basin’s energy dissipation, International Journal of Civil Engineering and Technology, 9.8, pp. 1327-1337, 2018.

94-18   J. Michalski and J. Wendelbo, Utilizing CFD methods as a forensic tool in pipeline systems to assess air/water transient issues, Proceedings, 7, pp. 5519-5527, 91st Water Environment Federation Technical Exhibition & Conference (WEFTEC), New Orleans, LA, United States, September 29 – October 3, 2018. doi.org/10.2175/193864718825138817

79-18 Harold Alvarez and John Wendelbo, Estudio de 3 modelos matemáticos para similar olas producidas por derrumbes en embalses y esfuerzos en compuertas, XXVIII Congreso Latinoamericano de Hidráulica, Buenos Aires, Argentina, September 2018. (In Spanish)

70-18   Michael Pfister, Gaetano Crispino, Thierry Fuchsmann, Jean-Marc Ribi and Corrado Gisonni, Multiple inflow branches at supercritical-type vortex drop shaft, Journal of Hydraulic Engineering, Vol. 144, No. 11, 2018. doi.org/10.1061/(ASCE)HY.1943-7900.0001530

67-18   F. Nunes, J. Matos and I. Meireles, Numerical modelling of skimming flow over small converging spillways, 3rd International Conference on Protection against Overtopping, June 6-8, 2018, Grange-over-Sands, UK, 2018.

66-18   Maria João Costa, Maria Teresa Ferreira, António N. Pinheiro and Isabel Boavida, The potential of lateral refuges for Iberian barbel under simulated hydropeaking conditions, Ecological Engineering, Vol. 124, 2018. doi.org/10.1016/j.ecoleng.2018.07.029

63-18   Michael J. Seluga, Frederick Vincent, Samuel Glovick and Brad Murray, A new approach to hydraulics in baffle drop shafts to address dry and wet weather flow in combined sewer tunnels, North American Tunneling Conference Proceedings, June 24-27, 2018, Washington, D.C. pp. 448-461, 2018. © Society for Mining, Metallurgy & Exploration

62-18   Ana Quaresma, Filipe Romão, Paulo Branco, Maria Teresa Ferreira and António N. Pinheiro, Multi slot versus single slot pool-type fishways: A modelling approach to compare hydrodynamics, Ecological Engineering, Vol. 122, pp. 197-206, 2018. doi.org/10.1016/j.ecoleng.2018.08.006

57-18   Amir Isfahani, CFD modeling of piano key weirs using FLOW-3D, International Dam Safety Conference, January 23-24, 2018, Thiruvananthapuram, Kerala, India; Technical Session 1A, Uncertainties and Risk Management in Dams, 2018.

49-18   Jessica M. Thompson, Jon M. Hathaway and John S. Schwartz, Three-dimensional modeling of the hydraulic function and channel stability of regenerative stormwater conveyances, Journal of Sustainable Water in the Built Environment, vol. 4, no.3, 2018. doi.org/10.1061/JSWBAY.0000861

46-18   A.B. Veksler and S.Z. Safin, Hydraulic regimes and downstream scour at the Kama Hydropower Plant, Power Technology and Engineering, vol. 51, no. 5, pp. 2-13, 2018. doi.org/10.1007/s10749-018-0862-z

45-18   H. Omara and A. Tawfik, Numerical study of local scour around bridge piers, 9th Annual Conference on Environmental Science and Development, Paris, France, Feb. 7-9, 2018; IOP Conference Series: Earth and Environmental Sciences, vol. 151, 2018. doi.org:10.1088/1755-1315/151/1/012013

40-18   Vincent Libaud, Christophe Daux and Yanis Oukid, Practical Capacities and Challenges of 3D CFD Modelling: Feedback Experience in Engineering Projects, Advances in Hydroinformatics, pp. 767-780, 2018. doi.org/10.1007/978-981-10-7218-5_55

39-18   Khosro Morovati and Afshin Eghbalzadeh, Study of inception point, void fraction and pressure over pooled stepped spillways using FLOW-3D, International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28, no. 4, pp.982-998, 2018. doi.org/10.1108/HFF-03-2017-0112

34-18   Tomasz Siuta, The impact of deepening the stilling basin on the characteristics of hydraulic jump, Technical Transactions, vol. 3, pp. 173-186, 2018.

32-18   Azin Movahedi, M.R. Kavianpour, M. R and Omid Aminoroayaie Yamini, Evaluation and modeling scouring and sedimentation around downstream of large dams, Environmental Earth Sciences, vol. 77, no. 8, pp. 320, 2018. doi.org/10.1007/s12665-018-7487-2

31-18   Yang Song, Ling-Lei Zhang, Jia Li, Min Chen and Yao-Wen Zhang, Mechanism of the influence of hydrodynamics on Microcystis aeruginosa, a dominant bloom species in reservoirs, Science of The Total Environment, vol. 636, pp. 230-239, 2018. doi.org/10.1016/j.scitotenv.2018.04.257

30-18   Shaolin Yang, Wanli Yang, Shunquan Qin, Qiao Li and Bing Yang, Numerical study on characteristics of dam-break wave, Ocean Engineering, vol. 159, pp.358-371, 2018. doi.org/10.1016/j.oceaneng.2018.04.011

27-18   Rachel E. Chisolm and Daene C. McKinney, Dynamics of avalanche-generated impulse waves: three-dimensional hydrodynamic simulations and sensitivity analysis, Natural Hazards and Earth System Sciences, vol. 18, pp. 1373-1393, 2018. doi.org/10.5194/nhess-18-1373-2018.

24-18   Han Hu, Zhongdong Qian, Wei Yang, Dongmei Hou and Lan Du, Numerical study of characteristics and discharge capacity of piano key weirs, Flow Measurement and Instrumentation, vol. 62, pp. 27-32, 2018. doi.org/10.1016/j.flowmeasinst.2018.05.004

23-18   Manoochehr Fathi-Moghaddam, Mohammad Tavakol Sadrabadi and Mostafa Rahmanshahi, Numerical simulation of the hydraulic performance of triangular and trapezoidal gabion weirs in free flow condition, Flow Measurement and Instrumentation, vol. 62, pp. 93-104, 2018. doi.org/10.1016/j.flowmeasinst.2018.05.005

22-18   Anastasios I.Stamou, Georgios Mitsopoulos, Peter Rutschmann and Minh Duc Bui, Verification of a 3D CFD model for vertical slot fish-passes, Environmental Fluid Mechanics, June 2018. doi.org/10.1007/s10652-018-9602-z

17-18   Nikou Jalayeri, John Wendelbo, Joe Groeneveld, Andrew John Bearlin, and John Gulliver, Boundary dam total dissolved gas analysis using a CFD model, Proceedings from the U.S. Society on Dams Annual Conference, April 30 – May 4, 2018, © 2018 U.S. Society on Dams.

12-18   Bernard Twaróg, Interaction between hydraulic conditions and structures – fluid structure interaction problem solving. A case study of a hydraulic structure, Technical Transactions 2/2018, Environmental Engineering, DOI: 10.4467/2353737XCT.18.029.8002

06-18   Oscar Herrera-Granados, Turbulence Flow Modeling of One-Sharp-Groyne Field, © Springer International Publishing AG 2018, M. B. Kalinowska et al. (eds.), Free Surface Flows and Transport Processes, GeoPlanet: Earth and Planetary Sciences, https://doi.org/10.1007/978-3-319-70914-7_12

05-18  Shangtuo Qian, Jianhua Wu, Yu Zhou and Fei Ma, Discussion of “Hydraulic Performance of an Embankment Weir with Rough Crest” by Stefan Felder and Nushan Islam, J. Hydraul. Eng., 2018, 144(4): 07018003, © ASCE.

04-18   Faezeh Tajabadi, Ehsan Jabbari and Hamed Sarkardeh, Effect of the end sill angle on the hydrodynamic parameters of a stilling basin, DOI 10.1140/epjp/i2018-11837-y, Eur. Phys. J. Plus (2018) 133: 10

03-18   Dhemi Harlan, Dantje K. Natakusumah, Mohammad Bagus Adityawan, Hernawan Mahfudz and Fitra Adinata, 3D Numerical Modeling of Flow in Sedimentation Basin, MATEC Web of Conferences 147, 03012 (2018), https://doi.org/10.1051/matecconf/201814703012 SIBE 2017

02-18   ARKAN IBRAHIM, AZHEEN KARIM and Mustafa GÜNAL, Simulation of local scour development downstream of broad-crested weir with inclined apron, European Journal of Science and Technology Special Issue, pp. 57-61, January 2018, Copyright © 2017 EJOSAT.

62-17   Abbas Mansoori, Shadi Erfanian and Farhad Khamchin Moghadam, A study of the conditions of energy dissipation in stepped spillways with A-shaped step using FLOW-3D, Civil Engineering Journal, 3.10, 2017.

57-17   Ben Modra, Brett Miller, Nigel Moon and Andrew Berghuis, Physical model testing of a bespoke articulated concrete block (ACB) fishway, 13th Hydraulics in Water Engineering Conference, Sydney, Nov. 13-18, 2017; Engineers Australia, pp. 301-309, 2017.

53-17   C. Gonzalez, U. Baeumer and C. Russell, Natural disaster relief and recovery arrangements Fitzroy project, bridge scour remediation, 13th Hydraulics in Water Engineering Conference, Sydney. Nov. 13-18, 2017; Engineers Australia, pp. 274-281, 2017.

52-17   Nigel Moon, Russell Merz, Sarah Luu and Daley Clohan, Utilising CFD modelling to conceptualise a novel rock ramp fishway design, 13th Hydraulics in Water Engineering Conference, Sydney, Nov. 13-18, 2017; Engineers Australia, pp. 382-389, 2017.

50-17   B.M. Crookston, R.M. Anderson and B.P. Tullis, Free-flow discharge estimation method for Piano Key weir geometries, Journal of Hydro-environment Research (2017), http://dx.doi.org/10.1016/j.jher.2017.10.003.

48-17   Jian Zhou, Physics of Environmental Flows Interacting with Obstacles, PhD Thesis: Colorado State University, Copyright by Jian Zhou 2017, All Rights Reserved.

46-17   Michael Sturn, Bernhard Gems, Markus Aufleger, Bruno Mazzorana, Maria Papathoma-Köhle and Sven Fuchs, Scale Model Measurements of Impact Forces on Obstacles Induced by Bed-load Transport Processes, Proceedings of the 37th IAHR World Congress August 13 – 18, 2017, Kuala Lumpur, Malaysia.

43-17   Paula Beceiro, Maria do Céu Almeida and Jorge Matos, Numerical modelling of air-water flows in sewer drops, Available Online 28 April 2017, wst2017246; DOI: 10.2166/wst.2017.246

42-17   Arnau Bayon, Juan Pablo Toro,  Fabián A.Bombardelli, Jorge Matose and Petra Amparo López-Jiménez, Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways, Journal of Hydro-environment Research, Available online 26 October 2017

40-17   Sturm M, Gems B, Mazzorana B, Gabl R and Aufleger M, Validation of physical and 3D numerical modelling of hydrodynamic flow impacts on objects (Validierung experimenteller und 3-D-numerischer Untersuchungen zur Einwirkung hydrodynamischer Fließprozesse auf Objekte), Bozen-Bolzano Institutional Archive (BIA), ISSN: 0043-0978, https://bia.unibz.it/handle/10863/3893, 2017

38-17   Tsung-Hsien Huang, Chyan-Deng Jan, and Yu-Chao Hsu, Numerical Simulations of Water Surface Profiles and Vortex Structure in a Vortex Settling Basin by using FLOW-3D, Journal of Marine Science and Technology, Vol. 25, No. 5, pp. 531-542 (2017) 531, DOI: 10.6119/JMST-017-0509-1

36-17   Jacob van Alwon, Duncan Borman and Andrew Sleigh, Numerical Modelling of Aerated Flows Over Stepped Spillways, 37th IAHR World Congress, 2017.

35-17   Abolfazl Nazari Giglou, John Alex Mccorquodale and Luca Solari, Numerical study on the effect of the spur dikes on sedimentation pattern, Ain Shams Engineering Journal, Available online 8 March 2017.

33-17   Giovanni De Cesare, Khalid Essyad, Paloma Furlan, Vu Nam Khuong, Sean Mulligan, Experimental study at prototype scale of a self-priming free surface siphon, Congrès SHF : SIMHYDRO 2017, Nice, 14-16 June

32-17   Kathryn Plymesser and Joel Cahoon, Pressure gradients in a steeppass fishway using a computational fluid dynamics model, Ecological Engineering 108 (2017) 277–283.

31-17   M. Ghasemi, S. Soltani-Gerdefaramarzi, The Scour Bridge Simulation around a Cylindrical Pier Using FLOW-3D, Journal of Hydrosciences and Environment 1(2): 2017 46-54

27-17   John Wendelbo and Brian Fox, CFD modeling of Piano Key weirs: validation and numerical parameter space analysis, 2017 Dam Safety, San Antonio, September 10-14, 2017, Copyright © 2017 Association of State Dam Safety Officials, Inc. All Rights Reserved.

26-17   Brian Fox and John Wendelbo, Numerical modeling of Piano Key Weirs using FLOW-3D, USSD Annual Conference, Anaheim, CA, April 3- 7, 2017

25-17   Rasoul Daneshfaraz, Sina Sadeghfam and Ali Ghahramanzadeh, Three-dimensional Numerical Investigation of Flow through Screens as Energy Dissipators, Canadian Journal of Civil Engineering, https://doi.org/10.1139/cjce-2017-0273

23-17   J.M, Duguay, R.W.J. Lacey and J. Gaucher, A case study of a pool and weir fishway modeled with OpenFOAM and FLOW-3D, Ecological Engineering, Volume 103, Part A, June 2017, Pages 31-42

22-17   Hanif Pourshahbaz, Saeed Abbasi and Poorya Taghvaei, Numerical scour modeling around parallel spur dikes in FLOW-3D, https://doi.org/10.5194/dwes-2017-21, Drinking Water Engineering and Science, © Author(s) 2017

21-17   Hamid Mirzaei, Zohreh Heydari and Majid Fazli, The effect of meshing and comparing different models of turbulence in topographic prediction of bed and amplitude of flow around the groin in 90-degree arc with movable bed, Modeling Earth Systems and Environment, pp 1–16, July 2017

13-17   Lan Qi, Hui Chen, Xiao Wang, Wencai Fei and Donghai Liu, Establishment and application of three-dimensional realistic river terrain in the numerical modeling of flow over spillways, Water Science & Technology: Water Supply | in press | 2017.

11-17   Allison, M.A., Yuill, B.T., Meselhe, E.A., Marsh, J.K., Kolker, A.S., Ameen, A.D., Observational and numerical particle tracking to examine sediment dynamics in a Mississippi River delta diversion, Estuarine, Coastal and Shelf Science (2017), doi: 10.1016/j.ecss.2017.06.004.

09-17   Hamid Mirzaei, Zohreh Heydari and Majid Fazli, The effect of meshing and comparing different turbulence models in predicting the topography of bed and flow field in the 90 degree bend with moving bed, M. Model. Earth Syst. Environ. (2017). doi:10.1007/s40808-017-0336-6

03-17   Luis G. Castillo and José M. Carrillo, Comparison of methods to estimate the scour downstream of a ski jump, Civil Engineering Department, Universidad Politécnica de Cartagena, UPCT Paseo Alfonso XIII, 52 – 30203 Cartagena, Spain, International Journal of Multiphase Flow 92 (2017) 171–180.

103-16 Daniel Valero and Rafael Garcia-Bartual, Calibration of an Air Entrainment Model for CFD Spillway Applications, Advances in Hydroinformatics, P. Gourbesville et al. (eds), pp. 571-582, 2016. doi.org/10.1007/978-981-287-615-7_38

97-16   M. Taghavi and H. Ghodousi, A Comparison on Discharge Coefficients of Side and Normal Weirs with Suspended Flow Load using FLOW-3D, Indian Journal of Science and Technology, Vol 9(3), doi.org/10.17485/ijst/2016/v9i3/78537, January 2016.

96-16   Luis G. Castillo and José M. Carrillo, Scour, Velocities and Pressures Evaluations Produced by Spillway and Outlets of DamWater 2016, 8(3), 68; doi.org/10.3390/w8030068.

95-16   Majid Heydari and Alireza KhoshKonesh, The Comparison of the Performance of Prandtl Mixing Length, Turbulence Kinetic Energy, K-e, RNG and LES Turbulence Models in Simulation of the Positive Wave Motion Caused by Dam Break on the Erodible Bed, Indian Journal of Science and Technology, Vol 9(7), 2016. doi.org/10.17485/ijst/2016/v9i7/87856

93-16   Saleh I. Khassaf, Ali N. Attiyah and Hayder A. Al-Yousify, Experimental investigation of compound side weir with modeling using computational fluid dynamic, International Journal of Energy and Environment, Volume 7, Issue 2, 2016 pp.169-178

92-16   Jason Duguay and Jay Lacey, Modeling: OpenFOAM CFD Modeling Case Study of a Pool and Weir Fishway with Implications for Free-Surface Flows, International Conference on Engineering and Ecohydrology for Fish Passage 2016

90-16   Giacomo Viccione, Vittorio Bovolin and Eugenio Pugliese Carratelli, A numerical investigation of liquid impact on planar surfaces, ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering, Greece, June 2016.

89-16   Giacomo Viccione, A numerical investigation of flow dynamics over a trapezoidal smooth open channel, ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering, Greece, June 2016.

87-16  Jian Zhou and Subhas K. Venayagamoorthy, Numerical simulations of intrusive gravity currents interacting with a bottom-mounted obstacle in a continuously stratified ambient, Environmental Fluid Mechanics, 17; 191–209, 2016. doi: 10.1007/s10652-016-9454-3

86-16   Charles R. Ortloff, Similitude in Archaeology: Examining Agricultural System Science in PreColumbian Civilizations of Ancient Peru and Bolivia, Hydrol Current Res 7:259. doi: 10.4172/2157-7587.1000259, October 2016.

85-16   Charles R. Ortloff, New Discoveries and Perspectives on Water Management at 300 Bc – Ad 1100 Tiwanaku’s Urban Center (Bolivia), MOJ Civil Eng 1(3): 00014. DOI: 10.15406/mojce.2016.01.00014.

82-16   S. Paudel and N. Saenger, Grid refinement study for three dimensional CFD model involving incompressible free surface flow and rotating object, Computers & Fluids, Volume 143, http://dx.doi.org/10.1016/j.compfluid.2016.10.025, 17 January 2017, Pages 134–140

77-16   José A. Vásquez, Daniel M. Robb, MODELACIÓN CFD DE ROTURA DE PRESAS EN PRESENCIA DE OBSTÁCULOS, XXVII CONGRESO LATINOAMERICANO DE HIDRÁULICA, LIMA, PERÚ, 28 AL 30 DE SETIEMBRE DE 2016.

76-16   José A. Vásquez and Guilherme de Lima, MODELACIÓN CFD DE ONDAS TSUNAMI EN RESERVORIOS, LAGOS Y MINAS CAUSADAS POR DESLIZAMIENTOS DE LADERAS, XXVII CONGRESO LATINOAMERICANO DE HIDRÁULICA, LIMA, PERÚ, 28 AL 30 DE SETIEMBRE DE 2016.

75-16   Bernhard Gems, Bruno Mazzorana, Thomas Hofer, Michael Sturm, Roman Gabl and Markus Aufleger, 3-D hydrodynamic modelling of flood impacts on a building and indoor flooding processes, Nat. Hazards Earth Syst. Sci., 16, 1351-1368, 2016, http://www.nat-hazards-earth-syst-sci.net/16/1351/2016/, doi:10.5194/nhess-16-1351-2016 © Author(s) 2016. This work is distributed under the Creative Commons Attribution 3.0 License.

74-16   Roman Gabl, Jakob Seibl, Manfred Pfeifer, Bernhard Gems and Markus Aufleger, 3D-numerische Modellansätze für die Berechnung von Lawineneinstößen in Speicher (Concepts to simulate avalanche impacts into a reservoir based on 3D-numerics), Österr Wasser- und Abfallw (2016). doi:10.1007/s00506-016-0346-z.

73-16   Sebastian Krzyzagorski, Roman Gabl, Jakob Seibl, Heidi Böttcher and Markus Aufleger, Implementierung eines schräg angeströmten Rechens in die 3D-numerische Berechnung mit FLOW-3D (Implementation of an angled trash rack in the 3D-numerical simulation with FLOW-3D), Österr Wasser- und Abfallw (2016) 68: 146. doi:10.1007/s00506-016-0299-2.

71-16   Khosro Morovati, Afshin Eghbalzadeh and Saba Soori, Numerical Study of Energy Dissipation of Pooled Stepped Spillways, Civil Engineering Journal Vol. 2, No. 5, May, 2016.

66-16   Sooyoung Kim, Seo-hye Choi and Seung Oh Lee, Analysis of Influence for Breach Flow According to Asymmetry of Breach Cross-section, Journal of the Korea Academia-Industrial cooperation Society, Vol. 17, No. 5 pp. 557-565, 2016, http://dx.doi.org/10.5762/KAIS.2016.17.5.557, ISSN 1975-4701 / eISSN 2288-4688.

65-16   Dae-Geun Kim, Analysis of Overflow Characteristics around a Circular-Crested Weir by Using Numerical Model, Journal of Korean Society of Water and Wastewater Vol. 30, No. 2, April 2016.

63-16   Farzad Ferdos and Bijan Dargahi, A study of turbulent flow in largescale porous media at high Reynolds numbers. Part II: flow physics, Journal of Hydraulic Research, 2016, DOI: 10.1080/00221686.2016.1211185.

62-16   Farzad Ferdos and Bijan Dargahi, A study of turbulent flow in largescale porous media at high Reynolds numbers. Part I: numerical validation, Journal of Hydraulic Research, 2016, DOI: 10.1080/00221686.2016.1211184.

60-16   Chia-Lin Chiu, Chia-Ming Fan and Shun-Chung Tsung, Numerical modeling for  periodic oscillation of free overfall in a vertical drop pool, DOI: 10.1061/(ASCE)HY.1943-7900.0001236. © 2016 American Society of Civil Engineers.

54-16   Serife Yurdagul Kumcu, Investigation of Flow Over Spillway Modeling and Comparison between Experimental Data and CFD Analysis, KSCE Journal of Civil Engineering, (0000) 00(0):1-10, Copyright 2016 Korean Society of Civil Engineers, DOI 10.1007/s12205-016-1257-z.

52-16   Gharehbaghi, A., Kaya, B. and Saadatnejadgharahassanlou, Two-Dimensional Bed Variation Models Under Non-equilibrium Conditions in Turbulent Streams, H. Arab J Sci Eng (2016). doi:10.1007/s13369-016-2258-4

48-16   M. Mohsin Munir, Taimoor Ahmed, Javed Munir and Usman Rasheed, Application of Computational Flow Dynamics Analysis for Surge Inception and Propagation for Low Head Hydropower Projects, Proceedings of the Pakistan Academy of Sciences: Pakistan Academy of Sciences, A. Physical and Computational Sciences 53 (2): 177–185 (2016), Copyright © Pakistan Academy of Sciences

46-16   Manuel Gómez, Joan Recasens, Beniamino Russo and Eduardo Martínez-Gomariz, Assessment of inlet efficiency through a 3D simulation: numerical and experimental comparison, wst2016326; DOI: 10.2166/wst.2016.326, August 2016

45-16   Chia-Ying Chang, Frederick N.-F. Chou, Yang-Yih Chen, Yi-Chern Hsieh, Chia-Tzu Chang, Analytical and experimental investigation of hydrodynamic performance and chamber optimization of oscillating water column system, Energy 113 (2016) 597-614

42-16   Bung, D. and Valero, D., Application of the Optical Flow Method to Velocity Determination, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016, doi:10.15142/T3150628160853 (ISBN 978-1-884575-75-4).

41-16   Valero, D., Bung, D., Crookston, B. and Matos, J., Numerical investigation of USBR type III stilling basin performance downstream of smooth and stepped spillways, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016, doi:10.15142/T340628160853 (ISBN 978-1-884575-75-4).

40-16   Bruce M. Savage, Brian M. Crookston and Greg S. Paxson, Physical and Numerical Modeling of Large Headwater Ratios for a 15° Labyrinth Spillway, J. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0001186, 04016046.

36-16   Kai-Wen Hsiao, Yu-Chao Hsu, Chyan-Deng Jan, and Yu-Wen Su, Characteristics of Hydraulic Shock Waves in an Inclined Chute Contraction by Using Three Dimensional Numerical Model, Geophysical Research Abstracts, Vol. 18, EGU 2016-11505, 2016, EGU General Assembly 2016, © Author(s) 2016. CC Attribution 3.0 License.

34-16   Dunlop, S., Willig, I., Paul, G., Cabinet Gorge Dam Spillway Modifications for TDG Abatement – Design Evolution and Field Performance, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management. 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June, 2016, doi:10.15142/T3650628160853 (ISBN 978-1-884575-75-4).

33-16   Crispino, G., Dorthe, D., Fuchsmann, T., Gisonni, C., Pfister, M., Junction chamber at vortex drop shaft: case study of Cossonay, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June 2016, doi:10.15142/T350628160853 (ISBN 978-1-884575-75-4).

32-16  Brown, K., Crookston, B., Investigating Supercritical Flows in Curved Open Channels with Three Dimensional Numerical Modeling, In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June, 2016, doi:10.15142/T3580628160853 (ISBN 978-1-884575-75-4).

31-16  Cicero, G, Influence of some geometrical parameters on Piano Key Weir discharge efficiency,In B. Crookston & B. Tullis (Eds.), Hydraulic Structures and Water System Management, 6th IAHR International Symposium on Hydraulic Structures, Portland, OR, 27-30 June, 2016, doi:10.15142/T3320628160853 (ISBN 978-1-884575-75-4).

28-16   Anthoula Gkesouli, Maria Nitsa, Anastasios I. Stamou, Peter Rutschmann and Minh Duc Bui, Modeling the effect of wind in rectangular settling tanks for water supply, DOI: 10.1080/19443994.2016.1195290, Desalination and Water Treatment, June 22, 2016.

27-16   Eugenio Pugliese Carratelli, Giacomo Viccione and Vittorio Bovolin, Free surface flow impact on a vertical wall: a numerical assessment, Theor. Comput. Fluid Dyn., DOI 10.1007/s00162-016-0386-9, February 2016.

25-16   Daniel Valero and Daniel B. Bung, Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow, Environmental Modelling & Software 82 (2016) 218e228.

24-16   Il Won Seo, Young Do Kim, Yong Sung Park and Chang Geun Song, Spillway discharges by modification of weir shapes and overflow surroundings, Environmental Earth Sciences, March 2016, 75:496, 14 March 2016

23-16   Du Han Lee, Myounghwan Kim and Dong Sop Rhee, Evacuation Safety Evaluation of Inundated Stairs Using 3D Numerical Simulation, International Journal of Smart Home Vol. 10, No. 3, (2016), pp.149-158 http://dx.doi.org/10.14257/ijsh.2016.10.3.15

22-16   Arnau Bayon, Daniel Valero, Rafael García-Bartual, Francisco Jose Valles-Moran and Amparo Lopez-Jimenez, Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump, Environmental Modelling & Software 80 (2016) 322e335.

21-16   Shima Bahadori and Mehdi Behdarvandi Askar, Investigating the Effect of Relative Width on Momentum Transfer between Main Channel and Floodplain in Rough Rectangular Compound Channel Sunder Varius Relative Depth Condition, Open Journal of Geology, 2016, 6, 225-231, Published Online April 2016 in SciRes.

18-16   Ali Ahrari,  Hong Lei, Montassar Aidi Sharif, Kalyanmoy Deb and  Xiaobo Tan, Optimum Design of Artificial Lateral Line Systems for Object Tracking under Uncertain Conditions, COIN Report Number: 2016006

16-16   Elena Battisacco, Giovanni De Cesare and Anton J. Schleiss, Re-establishment of a uniform discharge on the Olympic fountain in Lausanne, Journal of Applied Water Engineering and Research, (2016) DOI: 10.1080/23249676.2016.1163648.

14-16   Shima Bahadori, Mehdi and Behdarvandi Askar, Investigating the Simultaneous Effect of Relative Width and Relative Roughness on Apparent Shear Stress in Symmetric Compound Rectangular Channels, JOURNAL OF CURRENT RESEARCH IN SCIENCE, ISSN 2322-5009 CODEN (USA): JCRSDJ, S (1), 2016: 654-660

12-16   Charles R. Ortloff, Hydraulic Engineering Innovations at 100 BC- AD 300 Nabataean Petra (Jordan), In conference proceedings: De Aquaeductu atque Aqua Urbium Lyciae Pamphyliae Pisidiae. The Legacy of Sextus Julius Frontinus, Antalya, Turkey, G. Wiplinger, ed.  ISBN: 978-90-429-3361-3, 2016 Peeters Publisher, Leuven, Belgium.

11-16 G. Robblee, S. Kees and B.M. Crookston, Schnabel Engineering; and K. Keel, Town of Hillsborough, Ensuring Water Supply Reliability with Innovative PK Weir Spillway Design, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

10-16 Tina Stanard and Victor Vasquez, Freese and Nichols, Inc.; Ruth Haberman, Upper Brushy Creek Water Control and Improvement District; Blake Tullis, Utah State University; and Bruce Savage, Idaho State University, Importance of Site Considerations for Labyrinth Spillway Hydraulic Design — Upper Brushy Creek Dam 7 Modernization, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

09-16 James R. Crowder, Brian M. Crookston, Bradley T. Boyer and J. Tyler Coats, Schnabel Engineering, Cultivating Ingenuity and Safety in Alabama: The Taming of Lake Ogletree Reservoir, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

08-16 Frank Lan, Robert Waddell and Michael Zusi, AECOM; and Brian Grant, Montana DNRC, Replacing Ruby Dam Outlet Uses Computational Fluid Dynamics to Model Energy Dissipation, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

07-16 Elise N. Dombeck, Federal Energy Regulatory Commission, Applications of FLOW-3D for Stability Analyses of Concrete Spillways at FERC Projects, 36th USSD Annual Meeting and Conference, Denver, CO, April 11-15, 2016

06-16   Farhad Ghazizadeh and M. Azhdary Moghaddam, An Experimental and Numerical Comparison of Flow Hydraulic Parameters in Circular Crested Weir Using FLOW-3D, Civil Engineering Journal Vol. 2, No. 1, January, 2016

05-16   Sadegh Dehdar-behbahani and Abbas Parsaie, Numerical modeling of flow pattern in dam spillway’s guide wall. Case study: Balaroud dam, Iran, doi:10.1016/j.aej.2016.01.006, February 2016.

04-16   Oscar Herrera-Granados and Stanisław W. Kostecki, Numerical and physical modeling of water flow over the ogee weir of the new Niedów barrage, DOI: 10.1515/johh-2016-0013, J. Hydrol. Hydromech., 64, 2016, 1, 67–74

03-16   B. Gems, B. Mazzorana, T. Hofer, M. Sturm, R. Gabl, M. Aufleger, 3D-hydrodynamic modelling of flood impacts on a building and indoor flooding processes, Nat. Hazards Earth Syst. Sci. Discuss., doi:10.5194/nhess-2015-326, 2016, Manuscript under review for journal Nat. Hazards Earth Syst. Sci., Published: 19 January 2016 © Author(s) 2016. CC-BY 3.0 License.

124-15 Yousef Sangsefidi, Mojtaba Mehraein, and Masoud Ghodsian, Numerical simulation of flow over labyrinth spillways, Scientia Iranica, Transaction A, 22(5), 1779–1787, 2015.

120-15   Du Han Lee, Myounghwan Kim and Dong Sop Rhee, Analysis of Critical Evacuation Condition on Inundated Stairs Using Numerical Simulation, Advanced Science and Technology Letters Vol.120 (GST 2015), pp.522-525 http://dx.doi.org/10.14257/astl.2015.120.104

119-15  Shiqiang Ye and Paul Toth, Bank Erosion Control at Frederickhouse Dam, Ontario, CDA 2015 Annual Conference, Congrès annuel 2015 de l’ACB, Mississauga, ON, Canada, 2015 Oct 5-8

118-15  D.M. Robb and J.A. Vasquez, Numerical simulation of dam-break flows using depth-averaged hydrodynamic and three-dimensional CFD models, 22nd Canadian Hydrotechnical Conference, Montreal, Quebec, April 29 – May 2, 2015

117-15 Ashkan. Reisi, Parastoo. Salah, and Mohamad Reza. Kavianpour, Impact of Chute Walls Convergence Angle on Flow Characteristics of Spillways using Numerical Modeling, International Journal of Chemical, Environmental & Biological Sciences (IJCEBS), Volume 3, Issue 3 (2015) ISSN 2320–4087 (Online)

115-15  Ivana Vouk, Field and Numerical Investigation of Mixing and Transport of Ammonia in the Ottawa River, Master’s Thesis: Department of Civil Engineering, University of Ottawa, August 2015, © Ivana Vouk, Canada 2016.

113-15   J. Amblard, C. Pams Capoccioni, D. Nivon, L. Mellal, G. De Cesare, T. Ghilardi, M. Jafarnejad and E. Battisacco, Analysis of Ballast Transport in the Event of Overflowing of the Drainage System on High Speed Lines, International Journal of Railway Technology, Volume 4, 2015. doi:10.4203/ijr, t.4.xx.xx , ©Saxe-Coburg Publications, 2015

111-15   Y. Oukid, V. Libaud and C. Daux, 3D CFD modelling of spillways -Practical feedback on capabilities and challenges, Hydropower & Dams Issue Six, 2015

110-15  Zhiyong Zhang and Yuanping Yang, Numerical Study on Onset Condition of Scour Below Offshore Pipeline Under Reversing Tidal Flow, © EJGE, Vol. 20 [2015], Bund. 25

109-15  He Baohua, Numerical Simulation Analysis of Karst Tunnel Water Bursting Movement, © EJGE, Vol. 20 [2015], Bund. 25

105-15   Ali Yıldız and A. İhsan Martı, Comparison of Experimental Study and CFD Analysis of the Flow Under a Sluice Gate, Proceedings of International Conference on Structural Architectural and Civil Engineering Held on 21-22, Nov, 2015, in Dubai, ISBN:9788193137321

104-15  Yehui Zhu and Liquan Xie, Numerical Analysis of Flow Effects on Water Interface over a Submarine Pipeline, Resources, Environment and Engineering II: Proceedings of the 2nd Technical Congress on Resources, Environment and Engineering (CREE 2015, Hong Kong, 25-26 September 2015), Edited by Liquan Xie, CRC Press 2015, Pages 99–104, DOI: 10.1201/b19136-16.

100-15  Yizhou Xiao, Wene Wang, Xiaotao Hu, and Yan Zhou, Experimental and numerical research on portable short-throat flume in the field, Flow Measurement and Instrumentation, doi:10.1016/j.flowmeasinst.2015.11.003, Available online December 8, 2015

99-15   Mehdi Taghavi and Hesam Ghodousi, Simulation of Flow Suspended Load in Weirs by Using FLOW-3D Model, Civil Engineering Journal Vol. 1, No. 1, November 2015

98-15   Azin Movahedi, Ali Delavari and Massoud Farahi, Designing Manhole in Water Transmission Lines Using FLOW-3D Numerical Model, Civil Engineering Journal Vol. 1, No. 1, November 2015

97-15   R. Gabl, J. Seibl, B. Gems, and M. Aufleger, 3-D numerical approach to simulate the overtopping volume caused by an impulse wave comparable to avalanche impact in a reservoir, Nat. Hazards Earth Syst. Sci., 15, 2617-2630, doi:10.5194/nhess-15-2617-2015, 2015.

94-15   Jason Matthew Duguay and Jay Lacey, Numerical Study of an Innovative Fish Ladder Design for Perched Culverts, Canadian Journal of Civil Engineering, 10.1139/cjce-2014-0436, November 2015

92-15   H. A. Hussein, R. Abdulla and  M. A. Md Said, Computational Investigation of Inlet Baffle Height on the Flow in a Rectangular Oil/Water Separator Tanks, Applied Mechanics and Materials, Vol. 802, pp. 587-592, Oct. 2015

91-15   Mahmoud Mohammad Rezapour Tabari and Shiva Tavakoli, Effects of Stepped Spillway Geometry on Flow Pattern and Energy DissipationArabian Journal for Science and Engineering, October 2015

87-15   Erin R. Ryan, Effects of Hydraulic Structures on Fish Passage – An Evaluation of 2D vs 3D Hydraulic Analysis Methods, Master’s Thesis: Civil and Environmental Engineering, Colorado State University, Summer 2015, Copyright by Erin Rose Ryan 2015

79-15   Ana L. Quaresma, Is CFD an efficient tool to develop pool type fishways? International Conference on Engineering and Ecohydrology for Fish Passage. Paper 20, June 24, 2015

78-15   Amir Alavi, Don Murray, Claude Chartrand and Derek McCoy, CFD Modeling Provides Value Engineering, Hydro Review, October 2015

75-15   Rebekka Czerny, Classification of flow patterns in a nature-oriented fishway based on 3D hydraulic simulation results, International Conference on Engineering and Ecohydrology for Fish Passage. Paper 39, June 22, 2015

73-15   Frank Seidel, Hybrid model approach for designing fish ways – example fish lift system at Baldeney/Ruhr and fishway at Geesthacht /Elbet, International Conference on Engineering and Ecohydrology for Fish Passage 2015

72-15   G. Guyot, B. Huber, and A. Pittion-Rossillon, Assessment of a numerical method to forecast vortices with a scaled model, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

71-15   Abbas Parsaie, Amir Hamzeh Haghiabi and Amir Moradinejad, CFD modeling of flow pattern in spillway’s approach channel, Sustainable Water Resources Management, September 2015, Volume 1, Issue 3, pp 245-251

70-15   T. Liepert, A. Kuhlmann, G. Haimer, M.D. Bui and P. Rutschmann, Optimization of Fish Pass Entrance Location at a Hydropower Plant Considering Site-Specific Constraints, Proceedings of the 14th International Conference on Environmental Science and Technology, Rhodes, Greece, 3-5 September 2015

67-15   Alkistis Stergiopoulou and Efrossini Kalkani, Towards a first CFD study of modern horizontal axis Archimedean water current turbines, Volume: 02 Issue: 04, ISO 9001:2008 Certified Journal © 2015, IRJET, July 2015

66-15   Won Choi, Jeongbae Jeon, Jinseon Park, Jeong Jae Lee and Seongsoo Yoon, System reliability analysis of downstream spillways based on collapse of upstream spillways, Int J Agric & Biol Eng, 2015; 8(4): 140-150.

64-15   Szu-Hsien Peng and Chuan Tang, Development and Application of Two-Dimensional Numerical Model on Shallow Water Flows Using Finite Volume Method, Journal of Applied Mathematics and Physics, 2015, 3, 989-996, Published Online August 2015 in SciRes. http://www.scirp.org/journal/jamp, http://dx.doi.org/10.4236/jamp.2015.38121

62-15   Cuneyt Yavuz, Ali Ersin Dincer, Kutay Yilmaz and Samet Dursun, Head Loss Estimation of Water Jets from Flip Bucket of Cakmak-1 Diversion Weir and HEPP, RESEARCH GATE, August 2015 DOI: 10.13140/RG.2.1.3650.5440

54-15   Guo-bin Xu, Li-na Zhao, and Chih Ted Yang, Derivation and verification of minimum energy dissipation rate principle of fluid based on minimum entropy production rate principle, International Journal of Sediment Research, August 2015

50-15   Vafa Khoolosi, Sedat Kabdaşli, and Sevda Farrokhpour, Modeling and Comparison of Water Waves Caused by Landslides into Reservoirs, Watershed Management 2015 © ASCE 2015.

48-15   Mohammad Rostami and Maaroof Siosemarde, Human Life Saving by Simulation of Dam Break using FLOW-3D (A Case Study: Upper Gotvand Dam), www.sciencejournal.in, Volume- 4 Issue- 3 (2015) ISSN: 2319–4731 (p); 2319–5037 (e) © 2015 DAMA International. All rights reserved.

47-15   E. Kolden, B. D. Fox, B. P. Bledsoe and M. C. Kondratieff, Modelling Whitewater Park Hydraulics and Fish Habitat in Colorado, River Res. Applic., doi: 10.1002/rra.2931, 2015

43-15   Firouz Ghasemzadeh, Behzad Parsa, and Mojtaba Noury, Numerical Study of Overflow Capacity of Spillways, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

42-15   Mario Oertel, Numerical Modeling of Free-Surface Flows in Practical Applications, Chapter 8 in Rivers – Physical, Fluvial and Environmental Processes (GeoPlanet: Earth and Planetary Sciences), by Pawel Rowiński and Artur Radecki-Pawlik, July 2, 2015

39-15   R. Gabl, J. Seibl, B. Gems, and M. Aufleger, 3-D-numerical approach to simulate an avalanche impact into a reservoir, Nat. Hazards Earth Syst. Sci. Discuss., 3, 4121–4157, 2015, www.nat-hazards-earth-syst-sci-discuss.net/3/4121/2015/, doi:10.5194/nhessd-3-4121-2015, © Author(s) 2015. CC Attribution 3.0 License.

37-15   Mario Oertel, Discharge Coefficients of Piano Key Weirs from Experimental and Numerical Models, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

36-15   Jessica Klein and Mario Oertel, Comparison between Crossbar Block Ramp and Vertical Slot Fish Pass via Numerical 3D CFD Simulation, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

35-15   Mario Oertel, Jan P. Balmes and Daniel B. Bung, Numerical Simulation of Erosion Processes on Crossbar Block Ramps, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

33-15   Daniel Valero and Daniel B. Bung, Hybrid Investigation of Air Transport Processes in Moderately Sloped Stepped Spillway Flows, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

32-15   Deniz Velioglu, Nuray Denli Tokyay, and Ali Ersin Dincer, A Numerical and Experimental Study on the Characteristics of Hydraulic Jumps on Rough Beds, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

31-15   J.C.C. Amorim, R.C.R. Amante, and V.D. Barbosa, Experimental and Numerical Modeling of Flow in a Stilling Basin, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

30-15   Luna B.J. César, Salas V. Christian, Gracia S. Jesús, and Ortiz M. Victor, Comparative Analysis of the Modification of Turbulence and Its Effects on a Trapezoidal Section Stilling Basin, E-proceedings of the 36th IAHR World Congress, 28 June – 3 July, 2015, The Hague, the Netherlands

27-15   L. Castillo, J. Carrillo, and M. Álvarez, Complementary Methods for Determining the Sedimentation and Flushing in a Reservoir, J. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0001050 , 05015004, 2015.

22-15   Mohammad Vaghefi, Mohammad Shakerdargah and Maryam Akbari, Numerical investigation of the effect of Froude number on flow pattern around a submerged T-shaped spur dike in a 90º bend, © Turkish Journal of Engineering & Environmental Sciences, 03.04.2015, doi:10.3906/muh-1405-2

18-15   S. Michael Scurlock, Amanda L. Cox, Drew C. Baird, Christopher I. Thornton and Steven R. Abt, Hybrid Modeling of River Training Structures in Sinuous Channels, SEDHYD 2015, Joint 10th Federal Interagency Sedimentation Conference, 5th Federal Interagency Hydrologic Modeling Conference, April 19-23, 2015, Reno, Nevada

13-15   Selahattin Kocaman and Hatice Ozmen-Cagatay, Investigation of dam-break induced shock waves impact on a vertical wall, Journal of Hydrology (2015), doi: http://dx.doi.org/10.1016/j.jhydrol.2015.03.040.

12-15   Nguyen Cong Thanh and Wang Ling-Ling, Physical and Numerical Model of Flow through the Spillways with a Breast Wall, KSCE Journal of Civil Engineering (0000) 00(0):1-8, Copyright 2015 Korean Society of Civil Engineers, DOI 10.1007/s12205-015-0742-0, April 10, 2015.

10-15   Yueping Yin, Bolin Huang, Guangning Liu and Shichang Wang, Potential risk analysis on a Jianchuandong dangerous rockmass-generated impulse wave in the Three Gorges Reservoir, China, Environ Earth Sci, DOI 10.1007/s12665-015-4278-x, © Springer-Verlag Berlin Heidelberg 2015

08-15   Yue-ping Yin, Bolin Huang, Xiaoting Chen, Guangning Liu and Shichang Wang, Numerical analysis on wave generated by the Qianjiangping landslide in Three Gorges Reservoir, China, 10.1007/s10346-015-0564-7, © Springer-Verlag Berlin Heidelberg 2015

07-15   M. Vaghefi, A. Ahmadi and B. Faraji, The Effect of Support Structure on Flow Patterns Around T-Shape Spur Dike in 90° Bend Channel, Arabian Journal for Science and Engineering, February 2015,

06-15   Sajjad Mohammadpour Zalaki, Hosein Fathian, Ebrahim Zalaghi and Farhad Kalantar Hormozi, Investigation of hydraulic parameters and cavitation in Kheir Abad flood release structure, Canadian Journal of Civil Engineering, February 2015

04-15  Der-Chang Lo, Jin-Shuen Liou, and Shyy Woei Chang, Hydrodynamic Performances of Air-Water Flows in Gullies with and without Swirl Generation Vanes for Drainage Systems of Buildings, Water 2015, 7(2), 679-696; doi:10.3390/w7020679

01-15   William Daley Clohan, Three-Dimensional Numerical Simulations of Subaerial Landslide Generated Waves, Master’s Thesis: Civil Engineering, The University of British Columbia (Vancouver), January 2015 © William Daley Clohan, 2015. Available upon request.

136-14   Charles R. Ortloff, Hydraulic Engineering in 300 BCE- CE 300 Petra (Jordan), Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

135-14   Charles R. Ortloff, Land, Labor, Water and Technology in Precolumbian South America, Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

134-14   Charles R. Ortloff, Hydrologic Engineering of the 300 BCE- CE 1100 Precolumbian Tiwanaku State (Bolivia), Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

133-14   Charles R. Ortloff, Water engineering at Petra (Jordan): Recreating the decision process underlying hydraulic engineering of the Wadi Mataha pipeline system, Journal of Archaeological Science, April 2014. 44. 91–97. 10.1016/j.jas.2014.01.015.

132-14   Charles R. Ortloff, Hydraulic Engineering in Ancient Peru and Bolivia, Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

131-14    Charles R. Ortloff, Water Management in Ancient Peru, Living Reference Work Entry, Encyclopedia of Ancient Science, Technology and Medicine in Nonwestern Cultures, Springer Publishing, Berlin Germany, 2014.

130-14  Kordula Schwarzwälder and Peter Rutschmann, Sampling bacteria with a laser, Geophysical Research Abstracts Vol. 16, EGU2014-15144, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

129-14   Kordula Schwarzwälder, Eve Walters and Peter Rutschmann, Bacteria fate and transport in a river, Geophysical Research Abstracts Vol. 16, EGU2014-14022, 2014 EGU General Assembly 2014 © Author(s) 2014. CC Attribution 3.0 License.

127-14   Charles R. Ortloff, Hydraulic Engineering in Petra, Living Reference Work Entry, Encyclopedia of the History of Science, Technology, and Medicine in Non-Western Cultures, pp 1-13, 03 July 2014

124-14  G. Wei. M. Grünzner and F. Semler, Combination of 2D shallow water and full 3D numerical modeling for sediment transport in reservoirs and basins, Reservoir Sedimentation – Schleiss et al. (Eds) © 2014 Taylor & Francis Group, London, ISBN 978-1-138-02675-9.

121-14    A. Bayón-Barrachina, D. Valero, F. Vallès-Morán, and P.A. López-Jiménez, Comparison of CFD Models for Multiphase Flow Evolution in Bridge Scour Processes, 5th International Junior Researcher and Engineer Workshop on Hydraulic Structures, Spa, Belgium, 28-30 August 2014

120-14  D. Valero, R. García-Bartual and J. Marco, Optimisation of Stilling Basin Chute Blocks Using a Calibrated Multiphase RANS Model, 5th International Junior Researcher and Engineer Workshop on Hydraulic Structures, Spa, Belgium, 28-30 August 2014

119-14   R. Gabl, B. Gems, M. Plörer, R. Klar, T. Gschnitzer, S. Achleitner, and M. Aufleger, Numerical Simulations in Hydraulic Engineering, Computational Engineering, 2014, pp 195-224, April 2014

118-14  Kerilyn Ambrosini, Analysis of Flap Gate Design and Implementations for Water Delivery Systems in California and Nevada, BioResource and Agricultural Engineering, BioResource and Agricultural Engineering Department, California Polytechnic State University, San Luis Obispo, 2014

117-14  Amir Moradinejad, Abas Parssai, Mohamad Noriemamzade, Numerical Modeling of Flow Pattern In Kamal Saleh Dam Spillway Approach Channel, App. Sci. Report.10 (2), 2014: 82-89, © PSCI Publications

116-14  Luis G. Castillo and José M. Carrillo, Characterization of the Dynamic Actions and Scour Estimation Downstream of a Dam, 1st International Seminar on Dam Protection against Overtopping and Accidental Leakage, M.Á. Toledo, R. Morán, E. Oñate (Eds), Madrid, 24-25 November 2014

115-14  Luis G. Castillo, José M. Carrillo, Juan T. García, Antonio Vigueras-Rodríguez, Numerical Simulations and Laboratory Measurements in Hydraulic Jumps, 11th International Conference on Hydroinformatics, HIC 2014, New York City, USA

114-14  Du Han Lee, Young Joo Kim, and Samhee Lee, Numerical modeling of bed form induced hyporheic exchangePaddy and Water Environment, August 2014, Volume 12, Issue 1 Supplement, pp 89-97

112-14  Ed Zapel, Hank Nelson, Brian Hughes, Steve Fry, Options for Reducing Total Dissolved Gas at the Long Lake Hydroelectric Facility, Hydrovision International, July 22-24, 2014, Nashville, TN

111-14  Jason Duguay, Jay Lace, Dave Penny and Ken Hannaford, Evolution of an Innovative Fish Ladder Design to Address Issues of Perched Culverts, 2014 Conference of the Transportation Association of Canada, Montreal, Quebec

106-14   Manuel Gomez and Eduardo Martinez, 1D, 2D and 3D Modeling of a PAC-UPC Laboratory Canal Bend, SimHydro 2014: Modelling of rapid transitory flows, 11-13 June 2014, Sophia Antipolis

105-14 Jason Duguay and Jay Lacey, Numerical Validation of an Innovative Fish Baffle Design in Response to Fish Passage Issues at Perched Culverts, CSPI Technical Bulletin, January 14, 2014

104-14  Di Ning, Di,  A Computational Study on Hydraulic Jumps, including Air Entrainment, Master’s Thesis: Civil and Environmental Engineering, University of California, Davis, 2014, 1569799, Copyright ProQuest, UMI Dissertations Publishing 2014

103-14  S. M. Sayah, S. Bonanni, Ph. Heller, and M. Volpato, Physical and Numerical Modelling of Cerro del Águila Dam -Hydraulic and Sedimentation, DOI: 10.13140/2.1.5042.1122 Conference: Hydro 2014

102-14   Khosrow Hosseini, Shahab Rikhtegar, Hojat Karami, Keivan Bina, Application of Numerical Modeling to Assess Geometry Effect of Racks on Performance of Bottom Intakes, Arabian Journal for Science and Engineering, December 2014

98-14  Aysel Duru, Numerical Modelling of Contracted Sharp Crested Weirs, Master’s Thesis: The Graduate School of Natural and Applied Sciences of Middle East Technical University, November 2014

97-14  M Angulo, S Liscia, A Lopez and C Lucino, Experimental validation of a low-head turbine intake designed by CFD following Fisher and Franke guidelines, 27th IAHR Symposium on Hydraulic Machinery and Systems (IAHR 2014), IOP Publishing, IOP Conf. Series: Earth and Environmental Science 22 (2013) 042014 doi:10.1088/1755-1315/22/4/042014

94-14   Hamidreza Babaali, Abolfazl Shamsai, and Hamidreza Vosoughifar, Computational Modeling of the Hydraulic Jump in the Stilling Basin with ConvergenceWalls Using CFD Codes, Arab J Sci Eng, DOI 10.1007/s13369-014-1466-z, October 2014

93-14   A.J. Vellinga, M.J.B. Cartigny, J.T. Eggenhuisen, E.W.M. Hansen, and R. Rouzairol, Morphodynamics of supercritical-flow bedforms using depth-resolved computational fluid dynamics model, International Association of Sedimentologists, Geneva, 2014.

88-14   Marcelo A. Somos-Valenzuela, Rachel E. Chisolm, Daene C. McKinney, and Denny Rivas, Inundation Modeling of a Potential Glacial Lake Outburst Flood in Huaraz, Peru, CRWR Online Report 14-01, March 2014

84-14   Hossein Shahheydari, Ehsan Jafari Nodoshan, Reza Barati, and Mehdi Azhdary Moghadam, Discharge coefficient and energy dissipation over stepped spillway under skimming flow regimeKSCE Journal of Civil Engineering, 10.1007/s12205-013-0749-3, November 2014

81-14   Gaël Epely-Chauvin, Giovanni De Cesare and Sebastian Schwindt, Numerical Modelling of Plunge Pool Scour Evolution in Non-Cohesive Sediments, Engineering Applications of Computational Fluid Mechanics Vol. 8, No. 4, pp. 477–487 (2014).

79-14   Liquan Xie, Yanhui Xu, and Wenrui Huang, Numerical Study on Hydrodynamic Mechanism of Sediment Trapping by Geotextile Mattress with Sloping Curtain (GMSC), Proceedings of the Eleventh (2014) Pacific/Asia Offshore Mechanics Symposium Shanghai, China, October 12-16, 2014 Copyright © 2014 by The International Society of Offshore and Polar Engineers, ISBN 978–1 880653 90-6: ISSN 1946-004X.

78-14  D. N. Powell and A. A. Khan, Flow Field Upstream of an Orifice under Fixed Bed and Equilibrium Scour ConditionsJ. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0000960, 04014076, 2014.

76-14   Berk Sezenöz, Numerical Modelling of Continuous Transverse Grates for Hydraulic Efficiency, Master’s Thesis: The Graduate School of Natural and Applied Sciences of Middle East Technical University, October 2014

75-14   Francesco Calomino and Agostino Lauria, 3-D Underflow of a Sluice Gate at a Channel Inlet; Experimental Results and CFD Simulations, Journal of Civil Engineering and Urbanism, Volume 4, Issue 5: 501-508 (2014)

73-14   Som Dutta, Talia E. Tokyay, Yovanni A. Cataño-Lopera, Sergio Serafinod and Marcelo H. Garcia, Application of computational fluid dynamic modeling to improve flow and grit transport in Terence J. O’Brien Water Reclamation Plant, Chicago, Illinois, Journal of Hydraulic Research, DOI: 10.1080/00221686.2014.949883, October 2014

72-14   Ali Heidari, Poria Ghassemi, Evaluation of step’s slope on energy dissipation in stepped spillway, International Journal of Engineering & Technology, 3 (4) (2014) 501-505, ©Science Publishing Corporation, www.sciencepubco.com/index.php/IJET, doi: 10.14419/ijet.v3i4.3561

70-14   M. Tabatabai, M. Heidarnejad, A. Bordbar, Numerical Study of Flow Patterns in Stilling Basin with Sinusoidal Bed using FLOW-3D Model, Advances in Environmental Biology, 8(13) August 2014, Pages: 787-792

66-14   John S. Schwartz, Keil J. Neff, Frank E. Dworak, Robert R. Woockman, Restoring riffle-pool structure in an incised, straightened urban stream channel using an ecohydraulic modeling approach, Ecol. Eng. (2014), doi.org/10.1016/j.ecoleng.2014.06.002

65-14  Laura Rozumalski and Michael Fullarton, CFD Modeling to Design a Fish Lift Entrance, Hydro Review, July 2014

64-14   Pam Waterman, Scaled for Success: Computational Fluid Dynamics Analysis Prompts Swift Stormwater System Improvements in Indianapolis, WaterWorld, August 2014.

63-14   Markus Grünzner and Peter Rutschmann, Large Eddy Simulation  – Ein Beitrag zur Auflösung turbulenter Strömungsstrukturen in technischen Fischaufstiegshilfen; (LES – resolving turbulent flow in technical fish bypasses), Tagungsband Internationales Symposium in Zurich, Wasser- und Flussbau im Alpenraum, Versuchsanstalt fur Wasserbau, Hydrologie und Glaziologie, ETH Zurich. In German.

62-14   Jason Duguay, Jay Lace, Dave Penny, and Ken Hannaford, Evolution of an Innovative Fish Ladder Design to Address Issues of Perched Culverts, 2014 Conference of the Transportation Association of Canada, Montreal, Quebec

60-14   Kordula Schwarzwälder, Minh Duc Bui, and Peter Rutschmann, Simulation of bacteria transport processes in a river with FLOW-3D, Geophysical Research Abstracts, Vol. 16, EGU2014-12993, 2014, EGU General Assembly 2014, © Author(s) 2014. CC Attribution 3.0 License.

58-14   Eray Usta, Numercial Investigation of Hydraulic Characteristics of Laleili Dam Spillway and Comparison with Physical Model Study, Master’s Thesis: The Graduate School of Natural and Applied Sciences of Middle East Technical University, May 2014

57-14   Selahattin Kocaman, Prediction of Backwater Profiles due to Bridges in a Compound Channel Using CFD, Hindawi Publishing Corporation, Advances in Mechanical Engineering, Volume 2014, Article ID 905217, 9 pages, http://dx.doi.org/10.1155/2014/905217

54-14   Ines C. Meireles, Fabian A. Bombardelli, and Jorge Matos, Air entrainment onset in skimming flows on steep stepped spillways: an analysis, (2014) Journal of Hydraulic Research, 52:3, 375-385, DOI: 10.1080/00221686.2013.878401

53-14   Charles R Ortloff, Groundwater Management in the 300 bce-1100ce Pre-Columbian City of Tiwanaku (Bolivia), Hydrol Current Res 5: 168. doi:10.4172/2157-7587.1000168, 2014

50-14   Mohanad A. Kholdier, Weir-Baffled Culvert Hydrodynamics Evaluation for Fish Passage using Particle Image Velocimetry and Computational Fluid Dynamic Techniques, Ph.D. Thesis: Utah State University (2014). All Graduate Theses and Dissertations. Paper 3078. http://digitalcommons.usu.edu/etd/3078

48-14   Yu-Heng Lin, Study on raceway pond for microalgae culturing system, Master Thesis: Department of Marine Environment and Engineering, National Sun Yat-sen University, August 2014. In Chinese

38-14   David Ingram, Robin Wallacey, Adam Robinsonz and Ian Bryden, The design and commissioning of the first, circular, combined current and wave test basin, Proceedings of Oceans 2014 MTS/IEEE, Taipei, Taiwan, IEEE, April 2014

36-14   Charles R. Ortloff, Hydraulic Engineering in Precolumbian Peru and Bolivia, The Encyclopedia of the History of Science, Technology and Medicine in Non-Western Cultures, Springer-Verlag, Volumes II and III, Heidelberg, Germany, 2014.

35-14   Charles R. Ortloff, Hydraulic Engineering in BC 100- AD 300 Petra (Jordan), The Encyclopedia of the History of Science, Technology and Medicine in Non-Western Cultures, Springer-Verlag, Volumes II and III, Heidelberg, Germany, 2014.

34-14   Charles R. Ortloff, Hydraulic Engineering in Precolumbian Peru and Bolivia, The Encyclopedia of the History of Science, Technology and Medicine in Non-Western Cultures, Springer-Verlag, Volumes II and III, Heidelberg, Germany, 2014.

33-14   Roman Gabl, Bernhard Gems, Giovanni De Cesare, and Markus Aufleger, Contribution to Quality Standards for 3D-Numerical Simulations with FLOW-3D, Wasserwirtschaft (ISSN: 0043-0978), vol. 104, num. 3, p. 15-20, Wiesbaden: Springer Vieweg-Springer Fachmedien Wiesbaden Gmbh, 2014. Available for download at the University of Innsbruck. In German.

31-14   E. Fadaei-Kermani and G.A. Barani, Numerical simulation of flow over spillway based on the CFD method, Scientia Iranica A, 21(1), 91-97, 2014

30-14   Luis G. Castillo  and José M. Carrillo, Scour Analysis Downstream of Paute-Cardenillo Dam, © 3rd IAHR Europe Congress, Book of Proceedings, 2014, Porto, Portugal.

29-14    L. G. Castillo, M. A. Álvarez, and J. M. Carrillo, Numerical modeling of sedimentation and flushing at the Paute-Cardenillo Reservoir, ASCE-EWRI. International Perspective on Water Resources and Environment Quito, January 8-10, 2014

28-14   L. G. Castillo and J. M. CarrilloScour estimation of the Paute-Cardenillo Dam, ASCE-EWRI. International Perspective on Water Resources and Environment Quito, January 8-10, 2014.

27-14   Luis G. Castillo, Manual A. Álvarez and José M. Carrillo, Analysis of Sedimentation and Flushing into the Reservoir Paute-Cardenillo© 3rd IAHR Europe Congress, Book of Proceedings, 2014, Porto, Portugal.

24-14   Carter R. Newell and John Richardson, The Effects of Ambient and Aquaculture Structure Hydrodynamics on the Food Supply and Demand of Mussel Rafts, Journal of Shellfish Research, 33(1):257-272, DOI: http://dx.doi.org/10.2983/035.033.0125, 0125, 2014.

16-14   Han Hu, Jiesheng Huang, Zhongdong Qian, Wenxin Huai, and Genjian Yu, Hydraulic Analysis of Parabolic Flume for Flow Measurement, Flow Measurement and Instrumentation, http://dx.doi.org/10.1016/j.flowmeasinst.2014.03.002, 2014.

14-14   Seung Oh Lee, Sooyoung Kim, Moonil Kim, Kyoung Jae Lim and Younghun Jung, The Effect of Hydraulic Characteristics on Algal Bloom in an Artificial Seawater Canal: A Case Study in Songdo City, South Korea, Water 2014, 6, 399-413; doi:10.3390/w6020399, ISSN 2073-4441, www.mdpi.com/journal/water

13-14   Kathryn Elizabeth Plymesser, Modeling Fish Passage and Energy Expenditure for American Shad in a Steeppass Fishway using Computational Fluid Dynamics, Ph.D. Thesis: Montana State University, January 2014, © Kathryn Elizabeth Plymesser, 2014, All Rights Reserved.

12-14   Sangdo An and Pierre Y. Julien, Three-Dimensional Modeling of Turbid Density Currents in Imha Reservoir, J. Hydraul. Eng., 10.1061/(ASCE)HY.1943-7900.0000851, 05014004, 2014.

09-14   B. Gems, M. Wörndl, R. Gabl, C. Weber, and M. Aufleger, Experimental and numerical study on the design of a deposition basin outlet structure at a mountain debris cone, Nat. Hazards Earth Syst. Sci., 14, 175–187, 2014, www.nat-hazards-earth-syst-sci.net/14/175/2014/, doi:10.5194/nhess-14-175-2014, © Author(s) 2014. CC Attribution 3.0 License.

07-14   Charles R. Ortloff, Water Engineering at Petra (Jordan): Recreating the Decision Process underlying Hydraulic Engineering of the Wadi Mataha Pipeline System, Journal of Archaeological Science, Available online January 2014.

06-14   Hatice Ozmen-Cagatay, Selahattin Kocaman, Hasan Guzel, Investigation of dam-break flood waves in a dry channel with a hump, Journal of Hydro-environment Research, Available online January 2014.

05-14   Shawn P. Clark, Jonathan Scott Toews, and Rob Tkach, Beyond average velocity: Modeling velocity distributions in partially-filled culverts to support fish passage guidelines, International Journal of River Basin Management, DOI10.1080/15715124.2013.879591, January 2014.

04-14   Giovanni De Cesare, Martin Bieri, Stéphane Terrier, Sylvain Candolfi, Martin Wickenhäuser and Gaël Micoulet, Optimization of a Shared Tailrace Channel of Two Pumped-Storage Plants by Physical and Numerical Modeling, Advances in Hydroinformatics Springer Hydrogeology 2014, pp 291-305.

03-14   Grégory Guyot, Hela Maaloul and Antoine Archer, A Vortex Modeling with 3D CFD, Advances in Hydroinformatics Springer Hydrogeology 2014, pp 433-444.

02-14   Géraldine Milési and Stéphane Causse, 3D Numerical Modeling of a Side-Channel Spillway, Advances in Hydroinformatics Springer Hydrogeology 2014, pp 487-498.

01-14   Mohammad R. Namaee, Mohammad Rostami, S. Jalaledini and Mahdi Habibi, A 3-Dimensional Numerical Simulation of Flow Over a Broad-Crested Side Weir, Advances in Hydroinformatics, Springer Hydrogeology 2014, pp 511-523.

104-13   Alireza Nowroozpour, H. Musavi Jahromi and A. Dastgheib, Studying different cases of wedge shape deflectors on energy dissipation in flip bucket using CFD model, Proceedings, 6th International Perspective on Water Resources & the Environment Conference (IPWE), Izmir, Turkey, January 7-9, 2013.

102-13   Shari Dunlop, Isaac Willig and Roger L. Kay, Emergency Response to Erosion at Fort Peck Spillway: Hydraulic Analysis and Design, ICOLD 2013 International Symposium, Seattle, WA.

101-13   Taeho Kang and Heebeom Shin, Dam Emergency Action Plans in Korea, ICOLD 2013 International Symposium, Seattle, WA.

100-13   John Hess, Jeffrey Wisniewski, David Neff and Mike Forrest, A New Auxiliary Spillway for Folsom Dam, ICOLD 2013 International Symposium, Seattle, WA.

98-13   Neda Sharif and Amin Rostami Ravori, Experimental and Numerical Study of the Effect of Flow Separation on Dissipating Energy in Compound Bucket, 2013 5th International Conference on Chemical, Biological and Environmental Engineering (ICBEE 2013); 2013 2nd International Conference on Civil Engineering (ICCEN 2013)

97-13  A. Stergiopoulou, V. Stergiopoulos, and E. Kalkani, Contributions to the Study of Hydrodynamic Behaviour of Innovative Archimedean Screw Turbines Recovering the Hydropotential of Watercourses and of Coastal Currents, Proceedings of the 13th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 2013

96-13   Shokry Abdelaziz, Minh Duc Bui, Namihira Atsushi, and Peter Rutschmann, Numerical Simulation of Flow and Upstream Fish Movement inside a Pool-and-Weir Fishway, Proceedings of 2013 IAHR World Congress, Chengdu, China

95-13  Guodong Li, Lan Lang, and Jian Ning, 3D Numerical Simulation of Flow and Local Scour around a Spur Dike, Proceedings of 2013 IAHR World Congress, Chengdu, China

93-13   Matthew C. Kondratieff and Eric E. Richer, Stream Habitat Investigations and Assistance, Federal Aid Project F-161-R19, Federal Aid in Fish and Wildlife Restoration, Job Progress Report, Colorado Parks & Wildlife, Aquatic Wildlife Research Section, Fort Collins, Colorado, August 2013. Available upon request

92-13   Matteo Tirindelli, Scott Fenical and Vladimir Shepsis, State-of-the-Art Methods for Extreme Wave Loading on Bridges and Coastal Highways, Seventh National Seismic Conference on Bridges and Highways (7NSC), May 20-22, 2013, Oakland, CA

91-13   Cecia Millán Barrera, Víctor Manuel Arroyo Correa, Jorge Armando Laurel Castillo, Modeling contaminant transport with aerobic biodegradation in a shallow water body, Proceedings of 2013 IAHR Congress © 2013 Tsinghua University Press, Beijing

80-13  Brian Fox, Matthew Kondratieff, Brian Bledsoe, Christopher Myrick, Eco-Hydraulic Evaluation of Whitewater Parks as Fish Passage Barriers, International Conference on Engineering and Ecohydrology for Fish Passage, June 25-27, 2013, Oregon State University. Presentation available for download on the Scholarworks site.

79-13  Changsung Kim, Jongtae Kim, Joongu Kang, Analysis of the Cause for the Collapse of a Temporary Bridge Using Numerical Simulation, Engineering, 2013, 5, 997-1005, (http://www.scirp.org/journal/eng), Copyright © 2013 Changsung Kim et al. Published Online December 2013

76-13   Riley J. Olsen, Michael C. Johnson, and Steven L. Barfuss, Low-Head Dam Reverse Roller Remediation Options, Journal of Hydraulic Engineering, November 2013; doi:10.1061/(ASCE)HY.1943-7900.0000848.

72-13  M. Pfister, E. Battisacco, G. De Cesare, and A.J. Schleiss, Scale effects related to the rating curve of cylindrically crested Piano Key weirs, Labyrinth and Piano Key Weirs II – PKW 2013 – Erpicum et al. (eds), © 2014 Taylor & Francis Group, London, ISBN 978-1-138-00085-8.

71-13  F. Laugier, J. Vermeulen, and V. Lefebvre, Overview of Piano KeyWeirs experience developed at EDF during the past few years, Labyrinth and Piano Key Weirs II – PKW 2013 – Erpicum et al. (eds), © 2014 Taylor & Francis Group, London, ISBN 978-1-138-00085-8.

70-13   G.M. Cicero, J.R. Delisle, V. Lefebvre, and J. Vermeulen, Experimental and numerical study of the hydraulic performance of a trapezoidal Piano Key weir, Labyrinth and Piano Key Weirs II – PKW 2013 – Erpicum et al. (eds, © 2014 Taylor & Francis Group, London, ISBN 978-1-138-00085-8.

69-13   V. Lefebvre, J. Vermeulen, and B. Blancher, Influence of geometrical parameters on PK-Weirs discharge with 3D numerical analysis, Labyrinth and Piano Key Weirs II – PKW 2013 – Erpicum et al. (eds), © 2014 Taylor & Francis Group, London, ISBN 978-1-138-00085-8.

65-13 Alkistis Stergiopoulou and Efrossini Kalkani, Towards a First CFD Study of Innovative Archimedean Inclined Axis Hydropower Turbines, International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, Vol. 2 Issue 9, September 2013.

58-13  Timothy Sassaman, Andrew Johansson, Ryan Jones, and Marianne Walter, Hydraulic Analysis of a Pumped Storage Pond Using Complementary Methods, Hydrovision 2013 Conference Proceedings, Denver, CO, July 2013.

57-13  Jose Vasquez, Kara Hurtig, and Brian Hughes, Computational Fluid Dynamics (CFD) Modeling of Run-of-River Intakes, Hydrovision 2013 Conference Proceedings, Denver, CO July 2013.

56-13  David Souders, Jayesh Kariya, and Jeff Burnham, Validation of a Hybrid 3-Dimensional and 2-Dimensional Flow Modeling Technique for an Instanenous Dam-Break, Hydrovision 2013 Conference Proceedings, Denver, CO July 2013.

55-13  Keith Moen, Dan Kirschbaum, Joe Groeneveld, Steve Smith and Kimberly Pate, Sluiceway Deflector Design as part of the Boundary TDG Abatement Program, Hydrovision 2013 Conference Proceedings, Denver, CO, July 2013.

54-13  S. Temeepattanapongsa, G. P. Merkley, S. L. Barfuss and B. Smith, Generic unified rating for Cutthroat flumes, Irrig Sci, DOI 10.1007/s00271-013-0411-3, Springer-Verlag Berlin Heidelberg 2013, August 2013.

53-13 Hossein Afshar and Seyed Hooman Hoseini, Experimental and 3-D Numerical Simulation of Flow over a Rectangular Broad-Crested Weir, International Journal of Engineering and Advanced Technology (IJEAT), ISSN: 2249-8958, Volume 2, Issue 6, August 2013

52-13  Abdulmajid Matinfard (Kabi), Mohammad Heidarnejad, Javad Ahadian, Effect of Changes in the Hydraulic Conditions on the Velocity Distribution around a L-Shaped Spur Dike at the River Bend, Technical Journal of Engineering and Applied Sciences Available online at www.tjeas.com ©2013 TJEAS Journal-2013-3-16/1862-1868 ISSN 2051-0853 ©2013 TJEAS

51-13  Elham Radaei, Sahar Nikbin, and Mahdi Shahrokhi, Numerical Investigation of Angled Baffle on the Flow Pattern in a Rectangular Primary Sedimentation Tank, RCEE, Research in Civil and Environmental Engineering 1 (2013) 79-91.

48-13   Mohammad Kayser, Mohammed A. Gabr, Assessment of Scour on Bridge Foundations by Means of In Situ Erosion Evaluation Probe, Transportation Research Record: Journal of the Transportation Research Board, 0361-1981 (Print), Volume 2335 / 2013, pp 72-78. 10.3141/2335-08, August 2013.

47-13  Wei Ping Yin et al., 2013, Three-Dimensional Water Temperature and Hydrodynamic Simulation of Xiangxi River Estuary, Advanced Materials Research, 726-731, 3212, August, 2013.

41-13   N. Nekoue, R. Mahajan, J. Hamrick, and H. Rodriguez, Selective Withdrawal Hydraulic Study Using Computational Fluid Dynamics Modeling, World Environmental and Water Resources Congress 2013: pp. 1808-1813. doi: 10.1061/9780784412947.177.

40-13  Eleanor Kolden, Modeling in a three-dimensional world: whitewater park hydraulics and their impact on aquatic habitat in Colorado, Thesis: Master of Science, Civil and Environmental Engineering, Colorado State University. Full thesis available online at Colorado State University.

38-13  Prashant Huddar P.E. and Yashodhan Dhopavkar, CFD Use in Water – Insight, Foresight, and Efficiency, CFD Application in Water Engineering, Bangalore, India, June 2013.

37-13 B. Gems, M. Wörndl, R. Gabl, C. Weber, and M. Aufleger, Experimental and numerical study on the design of a deposition basin outlet structure at a mountain debris cone, Nat. Hazards Earth Syst. Sci. Discuss., 1, 3169–3200, 2013, www.nat-hazards-earth-syst-sci-discuss.net/1/3169/2013/, doi:10.5194/nhessd-1-3169-2013, © Author(s) 2013. Full paper online at: Natural Hazards and Earth System Sciences.

33-13   Tian Zhou and Theodore A. Endreny, Reshaping of the hyporheic zone beneath river restoration structures: Flume and hydrodynamic experiments, Water Resources Research, DOI: 10.1002/wrcr.20384, ©2013. American Geophysical Union. All Rights Reserved.

31-13  Francesco Calomino and Agostino Lauria, MOTO ALL’IMBOCCO DI UN CANALE RETTANGOLARE CONTROLLATO DA PARATOIA PIANA. Analisi sperimentale e modellazione numerica 3DFLOW AT THE INTAKE OF THE RECTANGULAR CHANNEL ;CONTROLLED BY A FLAT SLUICE GATE. Experimental and Numerical 3D ModelL’acqua, pp. 29-36, © Idrotecnica Italiana, 2013. In Italian and English.

30-13  Vinod V. Nair and S.K. Bhattacharyya, Numerical Study of Water Impact of Rigid Sphere under the Action of Gravity CFD Application in Water Engineering, Bangalore, India, June 2013. Abstract only.

29-13   Amar Pal Singh, Faisal Bhat, Ekta Gupta, 3-D Spillway Simulations of Ratle HEP (J&K) for the Assessment of Design Alternatives to be Tested in Model Studies, CFD Application in Water Engineering, Bangalore, India, June 2013.

28-13  Shun-Chung Tsung, Jihn-Sung Lai, and Der-Liang Young, Velocity distribution and discharge calculation at a sharp-crested weir, Paddy Water Environ, DOI 10.1007/s10333-013-0378-y, © Springer Japan 2013, May 2013.

27-13  Karen Riddette and David Ho, Assessment of Spillway Modeling Using Computational Fluid DynamicsANCOLD Proceedings of Technical Groups, 2013.

21-13  Tsung-Hsien Huang and Chyan-Deng Jan, Simulation of Velocity Distribution for Water Flow in a Vortex-Chamber-Type Sediment Extractor, EGU General Assembly 2013, held 7-12 April, 2013 in Vienna, Austria, id. EGU2013-7061. Online at: http://adsabs.harvard.edu/abs/2013EGUGA..15.7061H

19-13  Riley J. Olsen, Hazard Classification and Hydraulic Remediation Options for Flat-Topped and Ogee-Crested Low- Head Dams, Thesis: Master of Science in Civil and Environmental Engineering, Utah State University, All Graduate Theses and Dissertations. Paper 1538. http://digitalcommons.usu.edu/etd/1538, 2013.

17-13  Mohammad-Hossein Erfanain-Azmoudeh and Amir Abbas Kamanbedast, Determine the Appropriate Location of Aerator System on Gotvandolia Dam’s Spillway Using FLOW-3D, American-Eurasian J. Agric. & Environ. Sci., 13 (3): 378-383, 2013, ISSN 1818-6769, © IDOSI Publications, 2013.

13-13   Chia-Cheng Tsai, Yueh-Ting Lin, and Tai-Wen Hsu, On the weak viscous effect of the reflection and transmission over an arbitrary topography, Phys. Fluids 25, 043103 (2013); http://dx.doi.org/10.1063/1.4799099 (21 pages).

07-13  M. Kayser and M. A. Gabr, Scour Assessment of Bridge Foundations Using an In Situ Erosion Evaluation Probe (ISEEP), 92nd Transportation Research Board Annual Meeting, January 13-17, 2013, Washington, D.C.

06-13   Yovanni A. Cataño-Lopera, Blake J. Landry, Jorge D. Abad, and Marcelo H. García, Experimental and Numerical Study of the Flow Structure around Two Partially Buried Objects on a Deformed Bed, Journal of Hydraulic Engineering © ASCE /March 2013, 269-283.

04-13  Safinaz El-Solh, SPH Modeling of Solitary Waves and Resulting Hydrodynamic Forces on Vertical and Sloping Walls, Thesis: Master of Applied Science in Civil Engineering, Department of Civil Engineering, University of Ottawa, October 2012, © Safinaz El-Solh, Ottawa, Canada, 2013. Full paper available online at uOttawa.

108-12  Hatice Ozmen-Cagatay and Selahattin Kocaman, Investigation of Dam-Break Flow Over Abruptly Contracting Channel With Trapezoidal-Shaped Lateral Obstacles, Journal of Fluids Engineering © 2012 by ASME August 2012, Vol. 134 / 081204-1

102-12 B.M. Crookston, G.S. Paxson, and B.M. Savage, Hydraulic Performance of Labryinth Weirs for High Headwater Ratios, 4th IAHR International Symposium on Hydraulic Structures, 9-11 February 2012, Porto, Portugal, ISBN: 978-989-8509-01-7.

101-12 Jungseok Ho and Wonil Kim, Discrete Phase Modeling Study for Particle Motion in Storm Water Retention, KSCE Journal of Civil Engineering (2012) 16(6):1071-1078, DOI 10.1007/s12205-012-1304-3.

99-12  Charles R. Ortloff and Michael E. Mosely, Environmental change at a Late Archaic period site in north central coast Perú, Ñawpa Pacha, Journal of Andean Archaeology, Volume 32, Number 2 / December 2012, ISSN: 0077-6297 (Print); 2051-6207 (Online), Left Coast Press, Inc.

98-12  Tao Wang and Vincent H. Chu, Manning Friction in Steep Open-channel Flow, Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 2012.

96-12  Zhi Yong Dong, Qi Qi Chen, Yong Gang, and Bin Shi, Experimental and Numerical Study of Hydrodynamic Cavitation of Orifice Plates with Multiple Triangular Holes, Applied Mechanics and Materials, Volumes 256-259, Advances in Civil Engineering, December 2012.

95-12  Arjmandi H., Ghomeshi M.,  Ahadiayn J., and Goleij G., Prediction of Plunge Point in the Density Current using RNG Turbulence Modeling, Water and Soil Science (Agricultural Science) Spring 2012; 22(1):171-185. Abstract available online at the Scientific Online Database.

84-12  Li Ping Zhao, Jian Qiu Zhang, Lei Chen, Xuan Xie, Jun Qiang Cheng, Study of Hydrodynamic Characteristics of the Sloping Breakwater of Circular Protective Facing, Advanced Materials Research (Volumes 588 – 589), Advances in Mechanics Engineering, 1781-1785, 10.4028/www.scientific.net/AMR.588-589.1781.

83-12 Parviz Ghadimi, Abbas Dashtimanesh, and Seyed Reza Djeddi, Study of water entry of circular cylinder by using analytical and numerical solutions, J. Braz. Soc. Mech. Sci. & Eng. 2012, vol.34, n.3, pp. 225-232 . ISSN 1678-5878. http://dx.doi.org/10.1590/S1678-58782012000300001.

81-12  R. Gabl, S. Achleitner, A. Sendlhofer, T. Höckner, M. Schmitter and M. Aufleger, Side-channel spillway – Hybrid modeling, Hydraulic Measurements and Experimental Methods 2012, EWRI/ASCE, August 12-15, 2012, Snowbird, Utah.

80-12  Akin Aybar, Computational Modelling of Free Surface Flow in Intake Structures using FLOW-3D Software, Thesis: MS in Civil Engineering, The Graduate School of Natural and Applied Sciences of Middle East Technical University, June 2012.

74-12  Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, Saeed Reza Sabbagh Yazdi, and Syafalni Syafalni, Computational investigations of baffle configuration effects on the performance of primary sedimentation tanks, Water and Environment Journal, 22 October 2012, © 2012 CIWEM.

68-12  Jalal Attari and Mohammad Sarfaraz, Transitional Steps Zone in Steeply Stepped Spillways, 9th International Congress on Civil Engineering, May 8-10, 2012, Isfahan University of Technology (IUT), Isfahan, Iran

67-12  Mohammad Sarfaraz, Jalal Attari and Michael Pfister, Numerical Computation of Inception Point Location for Steeply Sloping Stepped Spillways, 9th International Congress on Civil Engineering, May 8-10, 2012, Isfahan University of Technology (IUT), Isfahan, Iran

64-12  Anders Wedel Nielsen, Xiaofeng Liu, B. Mutlu Sumer, Jørgen Fredsøe, Flow and bed shear stresses in scour protections around a pile in a current, Coastal Engineering, Volume 72, February 2013, Pages 20–38.

62-12  Ehab A. Meselhe, Ioannis Georgiou, Mead A. Allison, John A McCorquodale, Numerical Modeling of Hydrodynamics and Sediment Transport in Lower Mississippi at a Proposed Delta Building Diversion, Journal of Hydrology, October 2012.

60-12  Markus Grünzner and Gerhard Haimerl, Numerical Simulation Downstream Attraction Flow at Danube Weir Donauwörth, 9th ISE 2012, Vienna, Austria.

59-12 M. Grünzner, A 3 Dimensional Numerical (LES) and Physical ‘Golf Ball’ Model in Comparison to 1 Dimensional Approach, Hydraulic Measurements and Experimental Methods 2012, EWRI/ASCE, August 12-15, 2012, Snowbird, Utah

58-12  Shawn P. Clark, Jonathan S. Toews, Martin Hunt and Rob Tkach, Physical and Numerical Modeling in Support of Fish Passage Regulations, 9th ISE 2012, Vienna, Austria.

57-12  Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, Syafalni, Numerical Modeling of Baffle Location Effects on the Flow Pattern of Primary Sedimentation Tanks, Applied Mathematical Modelling, Available online October 2012, http://dx.doi.org/10.1016/j.apm.2012.09.060.

50-12  Gricelda Ramirez, A Virtual Flow Meter to Develop Velocity-Index Ratings and Evaluate the Effect of Flow Disturbances on these Ratings, Master’s Thesis: Department of Civil Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2012.

43-12  A. A. Girgidov, A. D. Girgidov and M. P. Fedorov, Use of dispersing springboards to reduce near-bottom velocity in a toe basin, Power Technology and Engineering (formerly Hydrotechnical Construction), Volume 46, Number 2 (2012), 113-115, DOI: 10.1007/s10749-012-0316-y.

40-12  Jong Pil Park, Kyung Sik Choi, Ji Hwan Jeong, Gyung Min Choi, Ju Yeop Park, and Man Woong Kim, Experimental and numerical evaluation of debris transport augmentation by turbulence during the recirculation-cooling phase, Nuclear Engineering and Design 250 (2012) 520-537

39-12  Hossein Basser, Abdollah Ardeshir, Hojat Karami, Numerical simulation of flow pattern around spur dikes series in rigid bed, 9th International Congress on Civil Engineering, May 8-10, 2012 Isfahan University of Technology (IUT), Isfahan, Iran

38-12  Sathaporn Temeepattanapongsa, Unified Equations for Cutthroat Flumes Derived from a Three-Dimensional Hydraulic Model, (2012). Thesis: Utah State University, All Graduate Theses and Dissertations. Paper 1308. Available online at: http://digitalcommons.usu.edu/etd/1308

36-12 Robert Feurich, Jacques Boubée, Nils Reidar B. Olsen, Improvement of fish passage in culverts using CFD, Ecological Engineering, Volume 47, October 2012, Pages 1–8.

35-12 Yovanni A. Cataño-Lopera and Jorge D. Abad, Flow Structure around a Partially Buried Object in a Simulated River Bed, World Environmental And Water Resources Congress 2012, Albuquerque, New Mexico, United States, May 20-24, 2012.

33-12  Fatemeh Rostami, Saeed Reza Sabbagh Yazdi, Md Azlin Md Said and Mahdi Shahrokhi, Numerical simulation of undular jumps on graveled bed using volume of fluid method, Water Science & Technology Vol 66 No 5 pp 909–917 © IWA Publishing 2012 doi:10.2166/wst.2012.213.

30-12  Saman Abbasi and Amir Abbas Kamanbedast, Investigation of Effect of Changes in Dimension and Hydraulic of Stepped Spillways for Maximization Energy Dissipation, World Applied Sciences Journal 18 (2): 261-267, 2012, ISSN 1818-4952, © IDOSI Publications, 2012, DOI: 10.5829/idosi.wasj.2012.18.02.492

24-12  Mario Oertel, Jan Mönkemöller and Andreas Schlenkhoff, Artificial stationary breaking surf waves in a physical and numerical model, Journal of Hydraulic Research, 50:3, 338-343, 2012.

23-12  Mario Oertel, Cross-bar block ramps:Flow regimes – flow resistance – energy dissipation – stability, thesis, Bericht Nr. 20, 2012, © 2011/12 Dr. Mario Oertel, Hydraulic Engineering Section, Bergische University of Wuppertal. Duplication only with author’s permission.

20-12  M. Oertel and A. Schlenkhoff, Crossbar Block Ramps: Flow Regimes, Energy Dissipation, Friction Factors, and Drag Forces, Journal of Hydraulic Engineering © ASCE, May 2012, pp. 440-448.

19-12  Mohsen Maghrebi, Saeed Alizadeh, and Rahim Lotfi, Numerical Simulation of Flow Over Rectangular Broad Crested Weir, 1st International and 3rd National Conference on Dams and Hydropower in Iran, Tehran, Iran, February 8 – February 9, 2012

18-12  Alireza Daneshkhah and Hamidreza Vosoughifar, Solution of Flow Field Equations to Investigate the Best Turbulent Model of Flow over a Standard Ogee Spillway, 1st International and 3rd National Conference on Dams and Hydropower in Iran, Tehran, Iran, February 8 – February 9, 2012

03-12  Hamed Taghizadeh, Seyed Ali Akbar Salehi Neyshabour and Firouz Ghasemzadeh, Dynamic Pressure Fluctuations in Stepped Three-Side Spillway, Iranica Journal of Energy & Environment 3 (1): 95-104, 2012, ISSN 2079-2115

02-12   Kim, Seojun, Yu, Kwonkyu, Yoon, Byungman, and Lim, Yoonsung, A numerical study on hydraulic characteristics in the ice Harbor-type fishway, KSCE Journal of Civil Engineering, 2012-02-01, Issn: 1226-7988, pp 265- 272, Volume: 16, Issue: 2, Doi: 10.1007/s12205-012-0010-5.

105-11 Hatice Ozmen Cagatay and Selahattin Kocaman, Dam-break Flow in the Presence of Obstacle: Experiment and CFD Simulation, Engineering Applications of Computational Fluid Mechancis, Vol. 5, No. 4, pp. 541-552, 2011

102-11 Sang Do An, Interflow Dynamics and Three-Dimensional Modeling of Turbid Density Currents in IMHA Reservoir, South Korea, thesis: Doctor of Philosophy, Department of Civil and Environmental Engineering at Colorado State University, 2011.

101-11 Tsunami – A Growing Disaster, edited by Mohammad Mokhtari, ISBN 978-953-307-431-3, 232 pages, Publisher: InTech, Chapters published December 16, 2011 under CC BY 3.0 license, DOI: 10.5772/922. Available for download at Intech.

98-11  Selahattin Kocaman and Hasan Guzel, Numerical and Experimental Investigation of Dam-Break Wave on a Single Building Situated Downstream, Epoka Conference Systems, 1st International Balkans Conference on Challenges of Civil Engineering, 19-21 May 2011, EPOKA University, Tirana, Albania.

97-11   T. Endreny, L. Lautz, and D. I. Siegel, Hyporheic flow path response to hydraulic jumps at river steps: Flume and hydrodynamic models, WATER RESOURCES RESEARCH, VOL. 47, W02517, doi:10.1029/2009WR008631, 2011.

96-11   Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said and Syafalni, Numerical Simulation of Influence of Inlet Configuration on Flow Pattern in Primary Rectangular Sedimentation Tanks, World Applied Sciences Journal 15 (7): 1024-1031, 2011, ISSN 1818-4952, © IDOSI Publications, 2011. Full article available online at IODSI.

94-11  Kathleen H. Frizell, Summary of Hydraulic Studies for Ladder and Flume Fishway Design- Nimbus Hatchery Fish Passage Project, Hydraulic Laboratory Report HL-2010-04, U.S. Department of the Interior Bureau of Reclamation Technical Service Center Hydraulic Investigations and Laboratory Services Group, December 2011

88-11   Abdelaziz, S, Bui, MD, Rutschmann, P, Numerical Investigation of Flow and Sediment Transport around a Circular Bridge Pier, Proceedings of the 34th World Congress of the International Association for Hydro- Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, ACT: Engineers Australia, 2011: 2624-2630.

86-11  M. Heidarnejad, D. Halvai and M. Bina, The Proper Option for Discharge the Turbidity Current and Hydraulic Analysis of Dez Dam Reservoir, World Applied Sciences Journal 13 (9): 2052-2056, 2011, ISSN 1818-4952 © IDOSI Publications, 2011

84-11  Martina Reichstetter and Hubert Chanson, Physical and Numerical Modelling of Negative Surges in Open Channels, School of Civil Engineering at the University of Queensland, Report CH84/11, ISBN No. 9781742720388, © Reichstetter and Chanson, 2011.

83-11  Reda M. Abd El-Hady Rady, 2D-3D Modeling of Flow Over Sharp-Crested Weirs, Journal of Applied Sciences Research, 7(12): 2495-2505, ISSN 1819-544X, 2011.

78-11  S. Abbasi, A. Kamanbedast and J. Ahadian, Numerical Investigation of Angle and Geometric of L-Shape Groin on the Flow and Erosion Regime at River Bends, World Applied Sciences Journal 15 (2): 279-284, 2011, ISSN 1818-4952 © IDOSI Publications, 2011.

75-11  Mario Oertel and Daniel B. Bung, Initial stage of two-dimensional dam-break waves: laboratory versus VOF, Journal of Hydraulic Research, DOI: 10.1080/00221686.2011.639981, Available online: 08 Dec 2011.

73-11  T.N. Aziz and A.A. Khan, Simulation of Vertical Plane Turbulent Jet in Shallow Water, Advances in Civil Engineering, vol. 2011, Article ID 292904, 10 pages, 2011. doi:10.1155/2011/292904.

67-11   Chung R. Song, ASCE, Jinwon Kim, Ge Wang, and Alexander H.-D. Cheng, Reducing Erosion of Earthen Levees Using Engineered Flood Wall SurfaceJournal of Geotechnical and Geoenvironmental Engineering, Vol. 137, No. 10, October 2011, pp. 874-881, http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000500.

64-11  Mahdi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, Syafalni, The Effect of Number of Baffles on the Improvement Efficiency of Primary Sedimentation Tanks, Available online 11 November 2011, ISSN 0307-904X, 10.1016/j.apm.2011.11.001.

62-11  Jana Hadler, Klaus Broekel, Low head hydropower – its design and economic potential, World Renewable Energy Congress 2011, Sweden, May 8-13, 2011.

60-11 Md. Imtiaj Hassan and Nahidul Khan, Performance of a Quarter-Pitch Twisted Savonius Turbine, The International Conference and Utility Exhibition 2011, Pattaya City, Thailand, 28-30 September 2011.

59-11   Erin K. Gleason, Ashraful Islam, Liaqat Khan, Darrne Brinker and Mike Miller, Spillway Analysis Techniques Using Traditional and 3-D Computational Fluid Dynamics Modeling, Dam Safety 2011, National Harbor, MD, September 25-29, 2011.

58-11  William Rahmeyer, Steve Barfuss, and Bruce Savage, Composite Modeling of Hydraulic Structures, Dam Safety 2011, National Harbor, MD, September 25-29, 2011.

57-11  B. Dasgupta, K. Das, D. Basu, and R. Green, Computational Methodology to Predict Rock Block Erosion in Plunge Pools, Dam Safety 2011, National Harbor, MD, September 25-29, 2011.

56-11  Jeff Burnham, Modeling Dams with Computational Fluid Dynamics- Past Success and New Directions, Dam Safety 2011, National Harbor, MD, September 25-29, 2011.

52-11  Madhi Shahrokhi, Fatemeh Rostami, Md Azlin Md Said, and Syafalni, The Computational Modeling of Baffle Configuration in the Primary Sedimentation Tanks, 2011 2nd International Conference on Environmental Science and Technology IPCBEE vol 6. (2011) IACSIT Press, Singapore.

47-11  Stefan Haun, Nils Reidar B. Olsen and Robert Feurich, Numerical Modeling of Flow over Trapezoidal Broad-Crested Weir, Engineering Applications of Computational Fluid Mechanics Vol 5., No. 3, pp. 397-405, 2011.

42-11  Anu Acharya, Experimental Study and Numerical Simulation of Flow and Sediment Transport around a Series of Spur Dikes, thesis: The University of Arizona Graduate College, Copyright © Anu Acharya 2011, July 2011.

38-11  Mehdi Shahosseini, Amirabbas Kamanbedast and Roozbeh Aghamajidi, Investigation of Hydraulic Conditions around Bridge Piers and Determination of Shear Stress using Numerical Methods, World Environmental and Water Resources Congress 2011, © ASCE 2011.

35-11  L. Toombes and H. Chanson, Numerical Limitations of Hydraulic Models, 34th IAHR World Congress, 33rd Hydrology & Water Resources Symposium, 10th Hydraulics Conference, Brisbane, Australia, 26 June – 1 July 2011.

34-11  Mohammad Sarfaraz, and Jalal Attari, Numerical Simulation of Uniform Flow Region over a Steeply Sloping Stepped Spillway, 6th National Congress on Civil Engineering, Semnan University, Semnan, Iran, April 26-27, 2011.

30-11  John Richardson and Pamela Waterman, Stemming the Flood, Mechanical Engineering, Vol. 133/No.7 July 2011

29-11  G. Möller & R. Boes, D. Theiner & A. Fankhauser, G. De Cesare & A. Schleiss, Hybrid modeling of sediment management during drawdown of Räterichsboden reservoir, Dams and Reservoirs under Changing Challenges – Schleiss & Boes (Eds), © 2011 Taylor & Francis Group, London, ISBN 978-0-415-68267-1.

24-11  Liaqat A. Khan, Computational Fluid Dynamics Modeling of Emergency Overflows through an Energy Dissipation Structure of a Water Treatment Plant, ASCE Conf. Proc. doi:10.1061/41173(414)155, World Environmental and Water Resources Congress 2011.

23-11  Anu Acharya and Jennifer G. Duan, Three Dimensional Simulation of Flow Field around Series of Spur Dikes, ASCE Conf. Proc. doi:10.1061/41173(414)218, World Environmental and Water Resources Congress 2011.

22-11  Mehdi Shahosseini, Amirabbas Kamanbedast, and Roozbeh Aghamajidi, Investigation of Hydraulic Conditions around Bridge Piers and Determination of Shear Stress Using Numerical Method, ASCE Conf. Proc. doi:10.1061/41173(414)435, World Environmental and Water Resources Congress 2011.

20-11  Jong Pil Park, Ji Hwan Jeong, Won Tae Kim, Man Woong Kim and Ju Yeop Park, Debris transport evaluation during the blow-down phase of a LOCA using computational fluid dynamics, Nuclear Engineering and Design, June 2011, ISSN 0029-5493, DOI: 10.1016/j.nucengdes.2011.05.017.

13-11 Ehab A. Meselhe, Myrtle Grove Delta Building Diversion Project, The Geological Society of America, South-Central Section – 45th Annual Meeting, New Orleans, Louisiana, March 2011.

12-11  Bryan Heiner and Steven L. Barfuss, Parshall Flume and Discharge Corrections Wall Staff Gauge and Centerline Measurements, Journal of Irrigation and Drainage Engineering, posted ahead of print February 1, 2011, DOI:10.1061/(ASCE)IR.1943-4774.0000355, © 2011 by the American Society of Civil Engineers.

06-11  T. Endreny, L. Lautz, and D. Siegel, Hyporheic flow path response to hydraulic jumps at river steps- Hydrostatic model simulations, Water Resources Research, Vol. 47, W02518, doi: 10.1029/2010WR010014, 2011, © 2011 by the American Geophysical Union, 0043-1397/11/2010WR010014

03-11  Jinwon Kim, Chung R. Song, Ge Wang and Alexander H.-D. Cheng Reducing Erosion of Earthen Levees Using Engineered Flood Wall Surface, Journal of Geotechnical and Geoenvironmental Engineering, © ASCE, January 2011.

02-11  F. Montagna, G. Bellotti and M. Di Risio, 3D numerical modeling of landslide-generated tsunamis around a conical island, Springer Link, Earth and Environmental Science, Natural Hazards, DOI: 10.1007/s11069-010-9689-0, Online First™, 7 January 2011.

83-10   S. Abdelaziz, M.D. Bui and P. Rutschmann, Numerical simulation of scour development due to submerged horizontal jet, River Flow 2010, eds. Dittrich, Koll, Aberle & Geisenhainer, © 2010 Bundesanstalt für Wasserbau, ISBN 978-3-939230-00-7.

79-10  Daniel J. Howes, Charles M. Burt, and Brett F. Sanders, Subcritical Contraction for Improved Open-Channel Flow Measurement Accuracy with an Upward-Looking ADVM, J. Irrig. Drain Eng. 2010.136:617-626.

78-10  M. Kaheh, S. M. Kashefipour, and A. Dehghani, Comparison of k-ε and RNG k-ε Turbulent Models for Estimation of Velocity Profiles along the Hydraulic Jump, presented at the 6th International Symposium on Environmental Hydraulics, Athens, Greece, June 2010.

75-10  Shahrokh Amiraslani, Jafar Fahimi, Hossein Mehdinezhad, The Numerical Investigation of Free Falling Jet’s Effect on the Scour of Plunge Pool, XVIII International Conference on Water Resources CMWR 2010 J. Carrera (Ed) CIMNE, Barcelona 2010

74-10  M. Ho Ta Khanh, Truong Chi Hien, and Dinh Sy Quat, Study and construction of PK Weirs in Vietnam (2004 to 2011), 78th Annual Meeting of the International Commission on Large Dams,  VNCOLD, Hanoi, Vietnam, May 23-26, 2010.

72-10  DKH Ho and KM Riddette, Application of computational fluid dynamics to evaluate hydraulic performance of spillways in Australia, © Institution of Engineers Australia, 2010, Australian Journal of Civil Engineering, Vol 6 No 1, 2010.

71-10  Cecilia Lucino, Sergio Liscia y Gonzalo Duro, Vortex Detection in Pump Sumps by Means of CFD, XXIV Latin American Congress on Hydraulics, Punta Del Este, Uruguay, November 2010; Deteccion de Vortices en Darsenas de Bombeo Mediante Modelacion MatematicaAvailable in English and Spanish.

64-10 Jose (Pepe) Vasquez, Assessing Sediment Movement by CFD Particle Tracking, 2nd Joint Federal Interagency Conference, Las Vegas, Nevada, June 27-July 1, 2010.

63-10 Sung-Min Cho, Foundation Design of the Incheon Bridge, Geotechnical Engineering Journal of the SEAGS & AGSSEA Vol 41 No.4, ISSN0046-5828, December 2010.

61-10  I. Meireles, F.A. Bombardelli and J. Matos, Experimental and Numerical Investigation of the Non-Aerated Skimming Flow on Stepped Spillways Over Embankment Dams, Presented at the 2010 IAHR European Congress, Edinburgh, UK, May 4-6, 2010.

60-10  Mario Oertel, G. Heinz and A. Schlenkhoff, Physical and Numerical Modelling of Rough Ramps and Slides, Presented at the 2010 IAHR European Congress, Edinburgh, UK, May 4-6, 2010.

59-10  Fatemeh Rostami, Mahdi Shahrokhi, Md Azlin Md Said, Rozi Abdullah and Syafalni, Numerical modeling on inlet aperture effects on flow pattern in primary settling tanks, Applied Mathematical Modelling, Copyright © 2010 Elsevier Inc., DOI: 10.1016/j.apm.2010.12.007, December 2010.

56-10  G. B. Sahoo, F Bombardelli, D. Behrens and J.L. Largier, Estimation of Stratification and Mixing of a Closed River System Using FLOW-3D, American Geophysical Union, Fall Meeting 2010, abstract #H31G-1091

50-10  Sung-Duk Kim, Ho-Jin Lee and Sang-Do An, Improvement of hydraulic stability for spillway using CFD model, International Journal of the Physical Sciences Vol. 5(6), pp. 774-780, June 2010. Available online at http://www.academicjournals.org/IJPS, ISSN 1992

49-10  Md. Imtiaj Hassan, Tariq Iqbal, Nahidul Khan, Michael Hinchey, Vlastimil Masek, CFD Analysis of a Twisted Savonius Turbine, PKP Open Conference Systems, IEEE Newfoundland and Labrador Section, October 2010

46-10  Hatice Ozmen-Cagatay and Selahattin Kocaman, Dam-break flows during initial stage using SWE and RANS approaches, Journal of Hydraulic Research, Vol 48, No. 5 (2010), pp. 603-611, doi: 10.108/00221686.2010.507342, © 2010 International Association for Hydro-Environment Engineering and Research.

44-10  Marie-Hélène Briand, Catherine Tremblay, Yannick Bossé, Julian Gacek, Carola Alfaro, and Richard Blanchet, Ashlu Creek hydroelectric project- Design and optimization of hydraulic structures under construction, CDA 2010 Annual Conference, Congrès annuel 2010 de l’A CB, Niagra Falls, ON, Canada, 2010 Oct 2-7.

43-10 Gordon McPhail, Justin Lacelle, Bert Smith, and Dave MacMillan, Upgrading of Boundary Dam Spillway, CDA 2010 Annual Conference, Congrès annuel 2010 de l’A CB, Niagra Falls, ON, Canada, 2010 Oct 2-7.

40-10 Selahattin Kocamana; Galip Seckinb; Kutsi S. Erduran, 3D model for prediction of flow profiles around bridges, DOI: 10.1080/00221686.2010.507340, Journal of Hydraulic Research, Volume 48, Issue 4 August 2010, pages 521 – 525. Available online at: informaworld

38-10  Kevin M. Sydor and Pamela J. Waterman, Engineering and Design: The Value of CFD Modeling in Designing a Hydro Plant, Hydro Review, Volume 29, Issue 6, September 2010 Available online at HydroWorld.com

33-10  Fabián A. Bombardelli, Inês Meireles and Jorge Matos, Laboratory measurements and multi-block numerical simulations of the mean flow and turbulence, SpringerLink, Environmental Fluid Mechanics, Online First™, 26 August 2010

30-10 Bijan Dargahi, Flow characteristics of bottom outlets with moving gates, IAHR, Journal of Hydraulic Research, Vol. 48, No. 4 (2010), pp. 476-482, doi: 10.1080/00221686.20101.507001, © 2010 International Association for Hydro-Environment Engineering and Research

24-10 Shuang Ming Wang and Kevin Sydor, Power Intake Velocity Modeling Using FLOW-3D at Kelsey Generating Station, Canadian Dam Association Bulletin, Vol. 21. No. 2, Spring 2010, pp: 16-21

20-10 Jungseok Ho, Todd Marti and Julie Coonrod, Flood debris filtering structure for urban storm water treatment, DOI: 10.1080/00221686.2010.481834, Journal of Hydraulic Research, Volume 48, Issue 3, pages 320 – 328, June 2010.

16-10 J. Jacobsen and N. R. B. Olsen, Three-dimensional numerical modeling of the capacity for a complex spillway, Proceedings of the ICE – Water Management, Volume 163, Issue 6, pages 283 –288, ISSN: 1741-7589, E-ISSN: 1751-7729.

13-10 J. Ho, J. Coonrod, L. J. Hanna, B. W. Mefford, Hydrodynamic modelling study of a fish exclusion system for a river diversion, River Research and Applications Volume 9999, mIssue 9999, Copyright © 2005 John Wiley & Sons, Ltd.

12-10 Nils Rüther, Jens Jacobsen, Nils Reidar B. Olsen and Geir Vatne, Prediction of the three-dimensional flow field and bed shear stresses in a regulated river in mid-Norway, Hydrology Research Vol 41 No 2 pp 145–152 © IWA Publishing 2010, doi:10.2166/nh.2010.064.

11-10 Xing Fang, Shoudong Jiang, and Shoeb R. Alam, Numerical Simulations of Efficiency of Curb-Opening Inlets, J. Hydr. Engrg. Volume 136, Issue 1, pp. 62-66 (January 2010).

54-09    K.W. Frizell, J.P. Kubitschek, and R.F. Einhellig, Folsom Dam Joint Federal Project Existing Spillway Modeling – Discharge Capacity Studies, American River Division Central Valley Project Mid-Pacific Region, Hydraulic Laboratory Report HL-2009-02, US Department of the Interior, Bureau of Reclamation, Denver, Colorado, September 2009

50-09  Mark Fabian, Variation in Hyporheic Exchange with Discharge and Slope in a Tropical Mountain Stream, thesis: State University of New York, College of Environmental Science & Forestry, 2009. Available online: http://gradworks.umi.com/14/82/1482174.html.

48-09 Junwoo Choi, Kwang Oh Ko, and Sung Bum Yoon, 3D Numerical Simulation for Equivalent Resistance Coefficient for Flooded Built-Up Areas, Asian and Pacific Coasts 2009 (pp 245-251), Proceedings of the 5th International Conference on APAC 2009, Singapore, 13 – 16 October 2009

47-09 Young-Il Kim, Chang-Jin Ahn, Chae-Young Lee, Byung-Uk Bae, Computational Fluid Dynamics for Optimal Design of Horizontal-Flow Baffled-Channel Powdered Activated Carbon Contactors, Mary Ann Liebert, Inc. publishers, Volume: 26 Issue 1: January 15, 2009.

43-09 Charles R. Ortloff, Water Engineering in the Ancient World: Archaeological and Climate Perspectives on Societies of Ancient South America, Meso-America, the Middle East and South East Asia, Oxford University Press, ISBN13: 978-0-19-923909-2ISBN10: 0-19-923909-6, December 2009 Available at Oxford University Press (clicking on this link will take you to OUP’s website).

40-09 Ge Wang, Chung R. Song, Jinwon Kim and Alexander, H.-D Cheng, Numerical Study of Erosion-proof of Loose Sand in an Overtopped Plunging Scour Process — FLOW-3D, The 2009 Joint ASCE-ASME-SES Conference on Mechanics and Materials, Blacksburg, Virginia, June 24-27, 2009

39-09 Charles R. Ortloff, Water Engineering in the Ancient World: Archaeological and Climate Perspectives on Societies of Ancient South America, the Middle East, and South-East Asia(Hardcover), Oxford University Press, USA (October 15, 2009), ISBN-10: 0199239096; ISBN-13: 978-0199239092 Buy Water Engineering in the Ancient World on Amazon.com.

38-09 David S. Brown, Don MacDonell, Kevin Sydor, and Nicolas Barnes, An Integrated Computational Fluid Dynamics and Fish Habitat Suitability Model for the Pointe Du Bois Generating Station, CDA 2009 Annual Conference, Congres annuel 2009 de l’A CB, Whistler, BC, Canada, 2009 Oct 3-8, pdf pages: 53-66

37-09 Warren Gendzelevich, Andrew Baryla, Joe Groenveld, and Doug McNeil, Red River Floodway Expansion Project-Design and Construction of the Outlet Structure, CDA 2009 Annual Conference, Congres annuel 2009 de l’A CB, Whistler, BC, Canada, 2009 Oct 3-8, pdf pages: 13-26

36-09 Jose A. Vasquez and Jose J. Roncal, Testing River2D and FLOW-3D for Sudden Dam-Break Flow Simulations, CDA 2009 Annual Conference, Congres annuel 2009 de l’A CB, Whistler, BC, Canada, 2009 Oct 3-8, pdf pages: 44-55

33-09 Pamela J. Waterman, Modeling Commercial Aquaculture Systems Employing FLOW-3D, (clicking on this link will take you to Desktop Engineering’s website) Desktop Engineering, November 2009

29-09 Bruce M. Savage, Michael C. Johnson, Brett Towler, Hydrodynamic Forces on a Spillway- Can we calculate them?, Dam Safety 2009, Hollywood, FL, USA, October 2009

27-09 Charles “Chick” Sweeney, Keith Moen, and Daniel Kirschbaum, Hydraulic Design of Total Dissolved Gas Mitigation Measures for Boundary Dam, Waterpower XVI, © PennWell Corporation, Spokane, WA, USA, July 2009

23-09 J.A. Vasquez and B.W. Walsh, CFD simulation of local scour in complex piers under tidal flow, 33rd IAHR Congress: Water Engineering for a Sustainable Environment, © 2009 by International Association of Hydraulic Engineering & Research (IAHR), ISBN: 978-94-90365-01-1

15-09 Kaushik Das, Steve Green, Debashis Basu, Ron Janetzke, and John Stamatakos, Effect of Slide Deformation and Geometry on Waves Generated by Submarine Landslides- A Numerical Investigation, Copyright 2009, Offshore Technology Conference, Houston, Texas, USA, May 4-7, 2009

5-09 Remi Robbe, Douglas Sparks, Calculation of the Rating Curves for the Matawin Dam’s Bottom Sluice Gates using FLOW-3D, Conference of the Société Hydrotechnique de France (SHF), 20-21 January 2009, Paris, France. (in French)

4-09 Frederic Laugier, Gregory Guyot, Eric Valette, Benoit Blancher, Arnaud Oguic, Lily Lincker, Engineering Use of Hydrodynamic 3D Simulation to Assess Spillway Discharge Capacity, Conference of the Société Hydrotechnique de France (SHF), 20-21 January 2009, Paris, France. (in French)

50-08   H. Avila and R.Pitt, The Calibration and use of CFD Models to Examine Scour from Stormwater Treatment Devices – Hydrodynamic Analysis, 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 2008

47-08    Greg Paxson, Brian Crookston, Bruce Savage, Blake Tullis, and Frederick Lux III, The Hydraulic Design Toolbox- Theory and Modeling for the Lake Townsend Spillway Replacement Project, Assoc. of State Dam Safety Officials (ASDSO), Indian Wells, CA, September 2008.

46-08  Sh. Amirslani, M. Pirestani and A.A.S. Neyshabouri, The 3D numerical simulation of scour by free falling jet and compare geometric parameters of scour hole with DOT, River flow 2008-Altinakar, Kokipar, Gogus, Tayfur, Kumcu & Yildirim (eds) © 2008 Kubaba Congress Department and Travel Services ISBN 978-605-601360201

44-08  Paul Guy Chanel, An Evaluation of Computational Fluid Dynamics for Spillway Modeling, thesis: Department of Civil Engineering, University of Manitoba, Copyright © 2008 by Paul Guy Chanel

41-08 Jinwei Qiu, Gravel transport estimation and flow simulation over low-water stream crossings, thesis: Lamar University – Beaumont, 2008, 255 pages; AAT 3415945

37-08 Dae-Geun Kim, Numerical analysis of free flow past a sluice gate, KSCE Journal of Civil Engineering, Volume 11, Number 2 / March, 2007, 127-132.

36-08 Shuang Ming Wang and Kevin Sydor, Power Intake Velocity Modeling using FLOW-3D at Kelsey Generating Station, CDA 2008 Annual Conference, Congres annuel 2008 de l’ACB, Winnipeg, MB, Canada, September 27-October 2, 2008, du 27 septembre au 2 octobre 2008

33-08 Daniel B. Bung, Arndt Hildebrandt, Mario Oertel, Andreas Schlenkhoff and Torsten Schlurmann, Bore Propagation Over a Submerged Horizontal Plate by Physical and Numerical Simulation, ICCE 2008, Hamburg, Germany

32-08 Paul G. Chanel and John C. Doering, Assessment of Spillway Modeling Using Computational Fluid Dynamics, Canadian Journal of Civil Engineering, 35: 1481-1485 (2008), doi: 10.1139/L08-094 © NRC Canada

31-08 M. Oertel & A. Schlenkhoff, Flood wave propagation and flooding of underground facilities, River Flow 2008, © 2008, International Conference on Fluvial Hydraulics, Izmir, Turkey, September, 2008

18-08 Efrem Teklemariam, Bernie Shumilak, Don Murray, and Graham K. Holder, Combining Computational and Physical Modeling to Design the Keeyask Station, Hydro Review, © HCI Publications, July 2008

15-08 Jorge D. Abad; Bruce L. Rhoads; İnci Güneralp; and Marcelo H. García, Flow Structure at Different Stages in a Meander-Bend with Bendway Weirs, Journal of Hydraulic Engineering © ASCE, August 2008

11-08 Sreenivasa C. Chopakatla, Thomas C. Lippmann and John E. Richardson, Field Verification of a Computational Fluid Dynamics Model for Wave Transformation and Breaking in the Surf Zone, J. Wtrwy., Port, Coast., and Oc. Engrg., Volume 134, Issue 2, pp. 71-80 (March/April 2008) Abstract Only

51-07   Richmond MC, TJ Carlson, JA Serkowski, CB Cook, JP Duncan, and WA Perkins, Characterizing the Fish Passage Environment at The Dalles Dam Spillway: 2001-2004, PNNL-16521, Pacific Northwest National Laboratory, Richland, WA, 2007. Available upon request

46-07 Uplift and Crack Flow Resulting from High Velocity Discharges Over Open Offset Joints, Reclamation, Managing Water in the West, U.S. Department of the Interior, Bureau of Reclamation, Report DSO-07-07, December 2007

45-07 Selahattin Kocaman, thesis: Department of Civil Engineering, Institute of Natural and Applied Sciences, University of Çukurova, Experimental and Theoretical Investigation of Dam Break Problem, 2007. In Turkish. Available on request.

44-07   Saeed-reza Sabbagh-yazdi, Fatemeh Rostami, Habib Rezaei-manizani, and Nikos E. Mastorakis, Comparison of the Results of 2D and 3D Numerical Modeling of Flow over Spillway chutes with Vertical Curvatures, International Journal of Computers, Issue 4, Volume 1, 2007.

43-07    Staša Vošnjak and Jure Mlacnik, Verification of a FLOW-3D mathematical model by a physical hydraulic model of a turbine intake structure, International Conference and exhibition Hydro 2007, 15- 17 October 2007, Granada, Spain. New approaches for a new era: proceedings. [S.l.]: Aqua-Media International Ltd., 2007, 7 str. [COBISS.SI-ID 4991329]

42-07   Merlynn D. Bender, Joseph P. Kubitschek, Tracy B. Vermeyen, Temperature Modeling of Folsom Lake, Lake Natoma, and the Lower American River, Special Report, Sacramento County, California, April 2007

37-07 Heather D. Smith, Flow and Sediment Dynamics Around Three-Dimensional Structures in Coastal Environments, thesis: The Ohio State Unviersity, 2007 (available upon request)

34-07   P.G. Chanel and J.C. Doering, An Evaluation of Computational Fluid Dynamics for Spillway Modeling, 16th Australasian Fluid Mechanics Conference, Gold Coast, Australia, December 2007

29-07   J. Groeneveld, C. Sweeney, C. Mannheim, C. Simonsen, S. Fry, K. Moen, Comparison of Intake Pressures in Physical and Numerical Models of the Cabinet Gorge Dam Tunnel, Waterpower XV, Copyright HCI Publications, July 2007

25-07   Jungseok Ho, Hong Koo Yeo, Julie Coonrod, Won-Sik Ahn, Numerical Modeling Study for Flow Pattern Changes Induced by Single Groyne, IAHR Conference Proc., Harmonizing the Demands of Art and Nature in Hydraulics, IAHR, July 2007, Venice, Italy.

24-07   Jungseok Ho, Julie Coonrod, Todd Marti, Storm Water Best Management Practice- Development of Debris Filtering Structure for Supercritical Flow, EWRI Conference Proc. of World Water and Environmental Resources Congress, ASCE, May 2007, Tampa, Florida.

21-07 David S. Mueller, and Chad R. Wagner, Correcting Acoustic Doppler Current Profiler Discharge Measurements Biased by Sediment Transport, Journal of Hydraulic Engineering, Volume 133, Issue 12, pp. 1329-1336 (December 2007), Copyright © 2007, ASCE. All rights reserved.

19-07   A. Richard Griffith, James H. Rutherford, A. Alavi, David D. Moore, J. Groeneveld, Stability Review of the Wanapum Spillway Using CFD Analysis, Canadian Dam Association Bulletin, Fall 2007

06-07   John E. Richardson, CFD Saves the Alewife- Computer simulation helps the Alewife return to its Mt. Desert Island spawning grounds, Desktop Engineering, July 2007; Hatchery International, July/August 2007

39-06    Dae Geun Kim and Hong Yeun Cho, Modeling the buoyant flow of heated water discharged from surface and submerged side outfalls in shallow and deep water with a cross flow, Environ Fluid Mech (2006) 6: 501. https://doi.org/10.1007/s10652-006-9006-3

38-06   Cook, C., B. Dibrani, M. Richmond, M. Bleich, P. Titzler, T. Fu, Hydraulic Characteristics of the Lower Snake River during Periods of Juvenile Fall Chinook Salmon Migration, 2002-2006 Final Report, Project No. 200202700, 176 electronic pages, (BPA Report DOE/BP-00000652-29)

37-06  Cook CB, MC Richmond, and JA Serkowski, The Dalles Dam, Columbia River: Spillway Improvement CFD Study, PNNL-14768, Pacific Northwest National Laboratory, Richland, WA, 2006. Available upon request

31-06 John P. Raiford and Abdul A. Khan, Numerical Modeling of Internal Flow Structure in Submerged Hydraulic Jumps, ASCE Conf. Proc. 200, 49 (2006), DOI:10.1061/40856(200)49

29-06    Michael C. Johnson and Bruce Savage, Physical and Numerical Comparison of Flow over Ogee Spillway in the Presence of Tailwater, Journal of Hydraulic Engineering © ASCE, December 2006

28-06   Greg Paxson and Bruce Savage, Labyrinth Spillways- Comparison of Two Popular U.S.A. Design Methods and Consideration of Non-standard Approach Conditions and Geometries, International Junior Researcher and Engineer Workshop on Hydraulic Structures, Report CH61/06, Div. of Civil Eng., The University of Queensland, Brisbane, Australia-ISBN 1864998687

22-06   Brent Mefford and Jim Higgs, Link River Falls Passage Investigation – Flow Velocity Simulation, Water Resources Research Laboratory, February 2006

27-06  Jungseok Ho, Leslie Hanna, Brent Mefford, and Julie Coonrod, Numerical Modeling Study for Fish Screen at River Intake Channel, EWRI Conference Proc. of World Water and Environmental Resources Congress, ASCE, May 2006, Omaha, Nebraska.

17-06  Woolgar, Robert and Eddy, Wilmore, Using Computational Fluid Dynamics to Address Fish Passage Concerns at the Grand Falls-Windsor Hydroelectric Development, Canadian Dam Association meeting, Quebec City, Canada October 2006

14-06  Fuamba, M., Role and behavior of surge chamber in hydropower- Case of the Robert Bourassa hydroelectric power plant in Quebec, Canada, Dams and Reservoirs, Societies and Environment in the 21st Century- Berga et al (eds) @ 2006 Taylor & Francis Group, London, ISBN 0 415 40423 1

13-06  D.K.H. Ho, B.W. Cooper, K.M. Riddette, S.M. Donohoo, Application of numerical modelling to spillways in Australia, Dams and Reservoirs, Societies and Environment in the 21st Century—Berga et al (eds) © 2006 Taylor & Francis Group, London, ISBN 0 415 40423 1

4-06 James Dexter, William Faisst, Mike Duer and Jerry Flanagan, Computer Simulation Helps Prevent Nitrification of Storage Reservoir, Waterworld, March 2006, pp 18-24

36-05   P. Coussot, N. Rousell, Jarny and H. Chanson, (2005), Continuous or Catastrophic Solid-Liquid Transition in Jammed Systems, Physics of Fluids, Vol. 17, No. 1, Article 011703, 4 pages (ISSN 0031-9171).

35-05    Dae Geun Kim and Jae Hyun Park, Analysis of Flow Structure over Ogee-Spillway in Consideration of Scale and Roughness Effects by Using CFD Model,  KSCE Journal of Civil Engineering. Volume 9, Number 2, March 2005, pp 161 – 169.

31-05 Frank James Dworak, Characterizing Turbulence Structure along Woody Vegetated Banks in Incised Channels: Implications for Stream Restoration, thesis: The University of Tennessee, Knoxville, December 2005 (available upon request)

29-05 Gessler, Dan and Rasmussen, Bernie, Before the Flood, Desktop Engineering, October 2005

25-05   Jorge D. Abad and Marcelo H. Garcia, Hydrodynamics in Kinoshita-generated meandering bends- Importance for river-planform evolution, 4th IAHR Symposium on River, Coastal and Estuarine Morphodynamics, October 4-7, 2005, Urbana, Illinois

23-05 Kristiansen T., Baarholm R., Stansberg C.T., Rørtveit G.J. and Hansen E.W., Steep Wave Kinematics and Interaction with a Vertical Column, Presented at The Fifth International Symposium on Ocean Wave Measurement and Analysis (Waves 2005), Spain, July, 2005

16-05 Dan Gessler, CFD Modeling of Spillway Performance, Proceedings of the 2005 World Water and Environmental Resources Congress (sponsored by Environmental and Water Resources Institute of the American Society of Civil Engineers), May 15-19, 2005, Anchorage, Alaska

12-05 Charles Ortloff, The Water Supply and Distribution System of the Nabataean City of Petra (Jordan), 300 BC- AD 300, Cambridge Archaeological Journal 15:1, 93-109

33-04    Jose Carlos C. Amorim, Cavalcanti Renata Rodrigues, and Marcelo G. Marques, A Numerical and Experimental Study of Hydraulic Jump Stilling Basin, Advances in Hydro-Science and Engineering, Volume VI, Presented at the International Conference on Hydro-Science and Engineering, 2004

23-04   Jose F. Rodriguez, Fabian A. Bombardelli, Marcelo H. Garcia, Kelly Frothingham, Bruce L. Rhoads and Jorge D. Abad, High-Resolution Numerical Simulation of Flow Through a Highly Sinuous River Reach, Water Resources Management, 18:177-199, 2004.

18-04   John Richardson and Douglas Dixon, Modeling the Hydraulics Zone of Influence of Connecticut Yankee Nuclear Plants Cooling Water Intake Structure, a chapter in The Connecticut River Ecological Study (1965-1973) Revisited: Ecology of the Lower Connecticut River 1973-2003, Paul M. Jacobson, Douglas A. Dixon, William C. Leggett, Barton C. Marcy, Jr., and Ronald R. Massengill, editors; Published by American Fisheries Society, Publication date: November 2004, ISBN 1-888569-66-2

10-04   Bruce Savage, Kathleen Frizell, and Jimmy Crowder, Brains versus Brawn- The Changing World of Hydraulic Model Studies

7-04   C. B. Cook and M. C. Richmond, Monitoring and Simulating 3-D Density Currents and the Confluence of the Snake and Clearwater Rivers, Proceedings of EWRI World

24-03  David Ho, Karen Boyes, Shane Donohoo, and Brian Cooper, Numerical Flow Analysis for Spillways, 43rd ANCOLD Conference, Hobart, Tasmania, 24-29 October 2003

15-03   Ho, Dr K H, Boyes, S M, Donohoo, S M, Investigation of Spillway Behaviour Under Increased Maximum Flood by Computational Fluid Dynamics Technique, Proc Conf 14th Australian Fluid Mechanics, Adelaide, Australia, December 2001, 577-580

14-03   Ho, Dr K H, Donohoo, S M, Boyes, K M, Lock, C C, Numerical Analysis and the Real World- It Looks Pretty, but is It Right?, Proceedings of the NAFEMS World Congress, May 2003, Orlando, FL

13-03 Brethour, J. M., Sediment Scour, Flow Science Technical Note (FSI-03-TN62)

26-02   Sungyul Yoo, Kiwon Hong and Manha Hwang, A 3-dimensional numerical study of flow patterns around a multipurpose dam, 2002 Hydroinformatics Conference, Cardiff, Wales

23-02   Christopher B. Cook, Marshall C. Richmond, John A. Serkowski, and Laurie L. Ebner, Free-Surface Computational Fluid Dynamics Modeling of a Spillway and Tailrace- Case Study of The Dalles Project, Hydrovision 2002, 29 July -†2 Aug, 2002 Portland, OR

13-02   Efrem Teklemariam, Brian W. Korbaylo, Joe L. Groeneveld & David M. Fuchs, Computational Fluid Dynamics- Diverse Applications In Hydropower Project’s Design and Analysis, June 11-14, 2002, CWRA 55th Annual Conference, Winnipeg, Manitoba, CA

12-02   Snorre Heimsund, Ernst Hansen, W Nemec, Computational 3-D Fluid Dynamics Model for Sediment Transport, Erosion, and Deposition by Turbidity Currents, 16th International Sedimentological Congress Abstract Volume (2002) XX-XX

9-02   D. T. Souders & C. W. Hirt, Modeling Roughness Effects in Open Channel Flows, Flow Science Technical Note (FSI-02-TN60), May 2002

47-01    Fabián A. Bombardelli and Marcelo H. García, Three-dimensional Hydrodynamic Modeling of Density Currents in the Chicago River, Illinois, CIVIL ENGINEERING SERIES, UILU-ENG-01-2001 Hydraulic Engineering Series No. # 68, ISSN: 0442-1744, 2001

44-01   Christopher B. Cook and Marshall C. Richmond, Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models, Report Number: PNNL-13467, May 2001

40-01 Joe L. Groeneveld, Kevin M. Sydor and David M. Fuchs (Acres Manitoba Ltd., Winnipeg, Manitoba, Canada) and Efrem Teklemariam and Brian W. Korbaylo (Manitoba Hydro, Winnipeg, Manitoba, Canada), Optimization of Hydraulic Design Using Computational Fluid Dynamics, Waterpower XII, July 9-11, 2001, Salt Lake City, Utah

39-01   Savage, B.M and Johnson, M.C., Flow over Ogee Spillway- Physical and Numerical Model Case Study, Journal of Hydraulic Engineering, ASCE, August 2001, pp. 640-649

38-01   Newell, Carter, Sustainable Mussel Culture- A Millenial Perspective, Bulletin of the Aquaculture Association of Canada, August 2001, pp 15-21

36-01   Diane L. Foster, Ohio State University, Numerical Simulations of Sediment Transport and Scour Around Mines, paper presented to the Office of Naval Research, Mine Burial Prediction Program, 2001

35-01 Heather D. Smith, Diane L. Foster, Ohio State University, The Modeling of Flow Around a Cylinder and Scour Hole, Poster prepared for the Office of Naval Research, Mine Burial Prediction Program, 2002

28-01   Brethour, J.M., Transient 3D Model for Lifting, Transporting, and Depositing Solid Material, Proc. 3rd Intrn. Environmental Hydraulics, Dec. 5-8, 2001, Tempe, AZ

25-01  Yuichi Kitamura, Takahiro Kato, & Petek Kitamura, Mathematical Modeling for Fish Adaptive Behavior in a Current, Proceedings of the 2001International Symposium of Environmental Hydraulics, Chigaski R&D Center

22-01 C. R. Ortloff, D. P. Crouch, The Urban Water Supply and Distribution System of the Ionian City of Ephesos in the Roman Imperial Period, CTC/United Defense Journal of Archeological Science (2001), pp 843-860

13-01 I. Lavedrine, and Darren Woolf, ARUP Research and Development, Application of CFD Modelling to Hydraulic Structures, CCWI 2001, Leicaster United Kingdom, 3-5 September 2001, De Montfort University

4-01 Rodriguez, Garcia, Bombardelli, Guzman, Rhoads, and Herricks, Naturalization of Urban Streams Using In-Channel Structures, Joint Conference on Water Resources Engineering and Water Resources Planning and Management, ASCE, July 30-August 2, 2000, Minneapolis, Minnesota

27-00    Tony L. Wahl, John A. Replogle, Brain T. Wahlin, and James A. Higgs, New Developments in Design and Application of Long-Throated Flumes, 2000 Joint Conference on Water Resources Engineering and Water Resources Planning & Management, Minneapolis, Minnesota, July 30-August 2, 2000.

5-00   John E. Richardson and Karel Pryl, Computer Simulation Helps Prague Modernize and Expand Sewer System, Water Engineering and Management, June, 2000, pp. 10-13; and in Municipal World, June, 2000, pp. 19-20,30

3-00 Efrem Teklemariam and John L. Groeneveld, Solving Problems in Design and Dam Safety with Computational Fluid Dynamics, Hydro Review, May, 2000, pp.48-52

1-00 Scott F. Bradford, Numerical Simulation of Surf Zone Dynamics, Journal of Waterway, Port, Coastal and Ocean Engineering, January/February, 2000, pp.1-13

9-99 John E. Richardson and Karel Pryl, Computational Fluid Dynamics, CE News, October, 1999, pp. 74-76

4-99 J. Groeneveld, Computer Simulation Leads to Faster, Cheaper Options, Water Engineering & Management magazine, pp.14-17, June 1999

16-98 C. R. Ortloff, Hydraulic Analysis of a Self-Cleaning Drainage Outlet at the Hellenistic City of Priene, Journal Archaeological Science, 25, 1211-1220, Article No. as980292, 1998

13-98 J. F. Echols, M.A. Pratt, K. A. Williams, Using CFD to Model Flow in Large Circulating Water Systems, Proc. PowerGen International, Orlando, FL, Dec. 9-11, 1998.

12-98 K. A. Williams, I. A. Diaz-Tous, P. Ulovg, Reduction in Pumping Power Requirements of the Circulation Water (CW) System at TU Electric’s Martin Lake Plant Using Computation Fluid Dynamics (CFD), ASME Mechanical Engineering Magazine, Jan. 1999

8-98 D. Hrabak, K. Pryl, J. Richardson, Calibration of Flowmeters using FLOW-3D Software, Hydroinform, a.s., Prague, CTU Prague, Flow Science Inc, USA, proceedings from the 3rd International Novatech Conference, Lyon, France, May 4-6, 1998

16-96 E. J. Kent and J.E. Richardson, Three-Dimensional Hydraulic Analysis for Calculation of Scour at Bridge Piers with Fender Systems, Earth Tech, Concord, NK and Flow Science Inc, Los Alamos, NM report, December 1996

12-96 J. E. Richardson, Control of Hydraulic Jump by Abrupt Drop, XXVII IAHR Congress, Water for a Changing Global Community, San Francisco, August 10, 1997

6-96 Y. Miyamoto, A Three-Dimensional Analysis around the Open Area of a Tsunami Breakwater, technical report, SEA Corporation, Tokyo, Japan, to be presented at the HYDROINFORMATICS 96 Conference, Zurich, Switzerland, Sept. 11-13, 1996

4-95 J. E. Richardson, V. G. Panchang and E. Kent, Three-Dimensional Numerical Simulation of Flow Around Bridge Sub-structures, presented at the Hydraulics ’95 ASCE Conference, San Antonio, TX, Aug. 1995

3-95 Y. Miyamoto and K. Ishino, Three Dimensional Flow Analysis in Open Channel, presented at the IAHR Conference, HYDRA 2000, Vol. 1, Thomas Telford, London, Sept. 1995

16-94 M. S. Gosselin and D. M. Sheppard, Time Rate of Local Scour, proceedings of ASCE Conf. on Water Resources Engineering, San Antonio, TX, August 1994

8-94 C. W. Hirt, Weir Discharges and Counter Currents, Flow Science report, FSI-94-00-3, to be presented at the Hydroinformatics Conference, IHE Delft, The Netherlands, Sept. 1994

7-94 C. W. Hirt and K. A.Williams, FLOW-3D Predictions for Free Discharge and Submerged Parshall Flumes, Flow Science Technical Note #40, August 1994 (FSI-94-TN40)

11-93 K. Ishino, H. Otani, R. Okada and Y. Nakagawa, The Flow Structure Around a Cylindrical Pier for the Flow of Transcritical Reynolds Number, Taisei Corp., Honshu Shikoku Bridge Authority, Akashi Kaikyo Ohashi Substructure Construction, Proc. XXV, Congress Intern. Assoc. Hydraulic Res., V, 417-424 (1993) Tokyo, Japan

6-87 J.M. Sicilian, FLOW-3D Model for Flow in a Water Turbine Passage, Flow Science report, July 1987 (FSI-87-36-1)

휴리스틱 분석

Heuristic Analysis

Finite-difference equations may have rapidly growing and oscillating solutions that in no way resemble the solutions expected from the partial differential equations they are meant to approximate. Such solutions are said to exhibit computational instability. Clearly, it is desirable to avoid these numerical disasters. For linear difference equations with constant coefficients, computational stability can be determined using a Fourier method pioneered by von Neumann (see the article in this series “Computational Stability.” Unfortunately, most equations of physical interest are either nonlinear, or have non-constant coefficients, or both.

유한 차분 방정식의 계산 결과에서 본래 근사하는 편미분 방정식에서 예상되는 것과 크게 다르게 급속하게 증가하고 부호가 자주 반전하는 솔루션을 얻을 수 있습니다.  이러한 솔루션이 나타내는 행동을 “계산 불안정성”라고합니다.  물론 이러한 해석은 바람직하지 않습니다.  상수 계수를 따른 선형 차분 방정식의 계산 안정성을 확인하는 방법으로는 von Neumann 의한 푸리에 방법을 사용할 수 있습니다 (본 시리즈 “계산 안정성” 참조).  불행히도, 물리 현상을 나타내는 대부분의 방정식은 비선형이거나 비 상수 계수를 수반하거나 또는 둘 다입니다.

Heuristic Analysis Methods

In this article a simple heuristic analysis method is described for investigating the computational stability of such finite-difference equations. An important by-product of this type of analysis is that it often suggests simple ways to eliminate the instabilities and at the same time increase the accuracy of the approximations.

이 책에서는 위의 유한 차분 방정식의 계산 안정성을 조사하기위한 간단한 휴리스틱 분석 방법에 대해 설명합니다.  이 유형의 분석은 많은 경우에 불안정을 제거하는 방법을 보여뿐만 아니라 근사치의 정확도를 높이는 방법도 보여주는 뛰어난 특징이 있습니다.

The approach described here is called “heuristic” because it is not rigorous or complete, but it often works and can provide a great deal of useful information. Reference [1] is the original publication describing the heuristic stability method from which much of this article has been taken.

여기서 설명하는 방법은 엄격하지도 완전하지도 않은 것으로부터 “추론”이라고되어 있지만, 많은 경우에 유효하고 유용한 정보를 많이 제공합니다.  안정성을 분석하기위한 휴리스틱 기법에 대해 작성된 참고 문헌 [1]은이 책에서 다루고 많은 정보 출처 소스입니다.

Heuristic analysis is based on the rather simple idea of reducing a finite-difference equation back to a partial differential equation by expanding each of its terms in a Taylor series and keeping only terms to a certain order in the expansion. This expansion is in powers of the space and time increments, which are assumed to be small to begin with.

휴리스틱 분석은 유한 차분 방정식을 전개하고 각항을 테일러 급수로 나타내 특정 차수까지의 항만을 남김으로 편미분 방정식에 귀착시키는 비교적 간단한 개념을 기반으로합니다.  이 확장은 처음에는 작은 것으로 예상되는 공간 증가 및 시간 증분의 거듭 제곱으로 표시됩니다.

Certainly such an expansion must, to lowest order, reproduce the original partial differential equation, otherwise, it would not be a good approximation. Oftentimes this requirement is referred to as the “consistency” of the approximation. Terms beyond the lowest order in the expansion are referred to as truncation errors.

이러한 확장은 원래의 미분 방정식을 최소 차수까지 재현하는 것이 필수적입니다.  그렇지 않으면 좋은 근사치를 얻을 수 없습니다.  이 요구 사항은 종종 근사치의 ‘일치 성’이라고 합니다.  전개 된 최소 차수 다음은 절단 오류라고합니다.

The basic concept of a heuristic analysis is that the Taylor-expanded equation is a more accurate representation of the difference equation than the original partial differential equation. Even keeping only a few truncation error terms should result in a partial differential equation that is more closely related to the difference equation. With this in mind, the following discussion will show that an examination of the truncated equation can sometimes reveal properties shared with the difference equation such as stability problems, necessary initial conditions and/or serious inaccuracies.

휴리스틱 분석은 테일러 전개 방정식 쪽이 원래 편미분 방정식보다 차분 방정식을보다 정밀하게 나타내고 있다는 기본 개념을 기반으로합니다.  절단 오차 부분을 일부 남긴 경우에도 항은 차분 방정식에 가까운 편미분 방정식입니다.  이 점을 염두에 두면서 여기에서 계산을 중단 한 식을 조사함으로써 안정성 문제 필요한 초기 조건 심각한 부정확성 등 차등 방정식과 일반적인 특성이 밝혀 질 것을 보여 있습니다.

To begin, we consider the same linear partial differential equation that was discussed in the first article on stability: Computational Stability.

첫째, 안정성에 쓰여진 ” 계산 안정성”에서 사용한 것과 동일한 선형 편미분 방정식 생각합니다.

Linear Equation Example

The equation for one-dimensional advection-diffusion of a variable u(x,t) is

여기에서는 변수 u (x, t)의 1 차의 이류 확산 방정식을 이용합니다.

(1)     \displaystyle \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}=\nu \frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}.

The convection velocity c and the diffusion coefficient ν are assumed to be constants. Solutions of this equation are known to be bounded and otherwise well-behaved.

대류 속도 c와 확산 계수 ν은 상수로 간주합니다.  이 방정식의 해는 경계이며, 양호한 거동을 나타내는 것을 알 수 있습니다.

What will be shown here is that the stability of a simple finite-difference approximation to Eq. 1 can be determined from an examination of the truncations errors resulting from a Taylor series expansion of a the difference equation. Not only does this process reveal that there are two basic types of instability, but we shall be able to make a direct comparison between the heuristic method and the von Neumann type of Fourier analysis carried out in Computational Stability. This comparison provides a useful rule-of-thumb for which truncation error terms to keep and which to eliminate from the Taylor expansion in order to evaluate the difference equation’s stability.

여기에서는 차분 방정식의 테일러 급수 전개로 인한 절단 오차를 조사하는 것으로, 식 1에 대한 간단한 유한 차분 근사의 안정성을 판단 할 수있는 것을 나타냅니다.  이 프로세스는 불안정성은 기본적으로 두 가지 유형이 있다는 것을 밝혀 질뿐만 아니라 휴리스틱 기법과 “계산 안정성”에서 이용한 von Neumann 유형의 푸리에 분석을 직접 비교할 수 있게 되는 것 있습니다.  이러한 비교를 통해 차이 방정식의 안정성을 평가하는데 테일러 전개로 인한 절단 오차 중 유지해야 할 항목과 배제 할 부분을 결정하는 데 유용한 경험규칙을 얻을 수 있습니다.

The simple, explicit finite-difference equation approximating Eq. 1 discussed in Computational Stability is

다음 수식은 “계산 안정성”에서 설명한 식 1을 근사하는 간결하고 양적인 유한 차분 방정식입니다.

(2)     \displaystyle \frac{u_{j}^{n+1}-u_{j}^{n}}{\delta t}=-\frac{c}{2\delta x}\left( u_{j+1}^{n}-u_{j-1}^{n} \right)+\frac{\nu }{\delta {{x}^{2}}}\left( u_{j+1}^{n}-2u_{j}^{n}+u_{j-1}^{n} \right)

where, e.g., ujn denotes u(jδx,nδt). This is called a forward-in-time approximation that allows all j location values to be computed at time step n+1, provided all the j values at step n are known. In other words, the difference equation requires one initial condition to start things off, just as the original partial differential equation also requires a single initial condition because it only involves a single time derivative.

여기서, u j n은 u (jδx, nδt)을 나타냅니다.  이것은 시간의 전진 차분 근사라는 것으로, 시간 단계 n의 공간 내의 위치 j 값이 모두 알려진이면 단계 n + 1의 모든 j 값을 계산할 수 있습니다.  즉, 원래의 미분 방정식에서 1 개의 초기 조건이 필요할뿐만 아니라 하나의 시간 미분만을 포함하기 때문에 차분 방정식에서 계산을 시작함에있어서 초기 조건이 하나 필요합니다.

It may be observed that difference equation, Eq. 2, has the property that each space and time location (jδx,nδt) will affect points at time step n+1 at locations j-1, j and j+1. That is, point (jδx,nδt) has a region of influence at later time bounded by lines having slopes ±δx/δt in x-t space. These are similar to characteristic lines along which signals can propagate. For example, the original equation, Eq. 1, has a characteristic line with slope c along which a disturbance advects. In the discrete equation, however, the characteristic lines are not physical characteristics but computational ones defining the region where the difference equation changes data values resulting from a change in value at a particular point.

차분 방정식 2는 공간 위치 및 시간 위치 (jδx, nδt)마다 타임 단계 n + 1의 위치 j-1, j, j + 1의 각 점에 영향을주는 특성을 볼 수 있습니다.  즉, 점 (jδx, nδt)는 현재보다 먼저있는 시간에서, xt 공간에서 기울기 ± δx / δt를 가진 선이 경계가되는 영향 영역을 가지고 있습니다.  이것은 신호의 전달을 나타내는 특성 곡선과 비슷합니다.  예를 들어, 원래 식 1은 교란의 이류를 나타내는 기울기 c의 특성 선을 가지고 있습니다.  그러나 이산 방정식의 특성 선은 물리적 특성을 나타내는 것이 아니라 특정 시점의 값의 변화에 따라 차이 방정식의 데이터 값이 변화하는 영역을 정의하는 계산의 특성을 나타냅니다.

We saw in the Computational Stability article that a Fourier series technique could be used to determine a set of three stability conditions for the difference equation, Eq.2. Here we shall see what can be learned from looking at the truncation errors associated with the approximating equation, Eq. 2.

” 계산 안정성”에서는 푸리에 급수에 의한 방법을 이용하여 차등 방정식 2에 대한 3 개의 안정 조건을 이끌어 낼 것을 알 수있었습니다.  이 책에서는 근사 식 2에 관련된 중단 오차를 조사함으로써 얻은 정보에 대해 설명합니다.

Truncation Error Evaluation

Assume that each term in Eq. 2 is a continuous and differentiable function of x and t. Then, for example, “uj+1,n would be u(xj+δx,tn) and can be expanded about the point (xj,tn) in a Taylor series in powers of δx. Carrying out the expansion in δx and δt for all the terms in Eq.2 yields,

식 2 절은 x 및 t의 연속 미분 가능한 함수로 간주합니다.  그러면 예를 들어, u j + 1, n, n은 u (x j + δx, t n)이되고, 점 (x j, t n)의 주위에 δx의 거듭 제곱에서 테일러 급수 전개를 할 수 있습니다.  식 2의 모든 사항에 대해 δx 및 δt로 확장하면 다음 식을 얻습니다.

(3)     \displaystyle \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}-\nu \frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=-\frac{1}{2}\delta t\frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}+O\left( \delta {{x}^{2}},\delta {{t}^{2}} \right).

All second and higher order terms in δx and δt have been lumped into the order symbol O(δx2 ,δt2). This is a consistent approximation because it reduces to the original partial differential equation, Eq. 1, when δx and δt tend to zero.

2 차 이상의 δx 및 δt 절은 주문 기호를 사용하여 O (δx 2, δt 2)라고 기술되어 있습니다.  δx 및 δt가 제로에 접근 할 때, 원래의 편미분 방정식 1로 귀착하기 때문에 이것은 일관성 있는 근사치라고 할 수 있습니다.

Comparison of Fourier and Truncation Error Analysis

In the article Computational Stability a typical Fourier mode of the form

“계산 안정성”에서는 다음과 같은 형식의 전형적인 푸리에 모드

\displaystyle P_{j}^{n}\propto {{r}^{n}}{{e}^{{ikxj}}}

was substituted into the difference equation, Eq.2, to obtain an equation for r,

이를 차등 방정식 2에 대입하면 r을 구하는 식을 얻었습니다.

(4)     \displaystyle r=1-\left( \frac{ic\delta t}{\delta x} \right)\sin \left( k\delta x \right)-\left( \frac{2\nu \delta t}{\delta {{x}^{2}}} \right)\left[ 1-\cos \left( k\delta x \right) \right].

Computational stability of the difference equation requires that the magnitude of r remain less than or equal to 1.0.

차분 방정식의 계산 안정성을 실현하려면 r의 절대 값을 1.0 이하로하는 것이 필요합니다.

If we insert a Fourier mode of the form exp(i(kx+wt)) into the truncated Eq. 3, it will be seen that the result is the same as Eq. 4 with r=exp(iwδt) and then expanded in powers of wδt, plus the sine and cosine expanded in powers of kδx. This confirms that the two results are the same, as they should be to O(δx2,δt2) retained in Eq. 3.

exp (i (kx + wt)) 형식의 푸리에 모드를 계산을 중단 한 식 3에 대입하면 r = exp (iwδt)되고, wδt의 거듭 제곱에서 전개되고 더 sin과 cos는 kδx의 거듭 제곱 전개되고 식 4와 같은 결과를 얻을 수 있는 것을 알 수 있습니다.  식 3에서 개최 된 O (δx 2, δt 2)와 같이 두 결과는 동일하다고 확정됩니다.

However, the comparison also indicates that to keep the basic form of r in Eq. 4, with its real and imaginary parts, we must keep at least the first non-zero terms from the sine and cosine when they are expanded in powers of kδx. The first non-zero term in the imaginary contribution to r comes from sin(kδx) and is proportion to kδx, which corresponds to the first derivative with respect to x in Eq.3. The first non-zero term in the real part of r (other than 1) comes from cos(kδx) and is proportional to (kδx)2, which corresponds to the second derivative with respect to x in Eq. 3.

그러나 이 비교에서는 식 4의 실수 부와 허수 부로 구성된 r의 기본 형식을 유지하려면 kδx의 제곱으로 전개 된 때 적어도 sin과 cos의 첫 번째 non-zero 항을 유지 해야한다고 표시됩니다.  r의 허수 부분의 첫 번째 non-zero 항은 sin (kδx)로부터 유도 된 것으로, kδx에 비례합니다.  이것은 식 3의 x에 대한 1 차 도함수에 대응합니다.  r의 실수 부 최초의 non-zero 항 (1 제외)은 cos (kδx)로부터 유도 된 것으로, (kδx) 2에 비례합니다.  이것은 식 3의 x에 관한 2 차 도함수에 대응합니다.

These observations lead to the rule-of-thumb that for the truncated equation to reproduce the lowest order real and imaginary parts of the amplification factor r, it is necessary to retain the lowest order even and odd derivatives with respect to each independent variable in the truncation error. In Eq. 3 there is only one first order term proportional to δt and it is a second derivative with respect to t. There are no first order terms proportional to δx.

이러한 점에서 계산을 끊은 식으로 진폭 계수 r의 최소 차수의 실수 부와 허수 부를 재현하려면 중단 오차에서 각 독립 변수에 대해 최소 차수의 짝수와 홀수 함수 (도함수) 을 유지해야한다는 경험식을 지도합니다.  식 3에서 δt에 비례하는 1 차 항은 하나만에서 t에 대한 2 차 도함수입니다.  δx에 비례하는 1 차 항은 없습니다.

Examining the Truncated Equation for Stability

Using the above rule-of-thumb, the truncated equation is,

위의 경험식을 사용하면 계산을 중단 한 식은 다음과 같이됩니다.

(5)     \displaystyle \frac{\delta t}{2}\frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}+\frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}-\nu \frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}=0

The first important thing to note is that this is not identical to the original partial differential equation, Eq. 1. The claim made here is that Eq. 5 is a better approximation of the finite-difference equation than Eq. 1 and because of this we can obtain information about the stability properties of the difference equation. This, in fact, is the case.

여기에서 먼저주의해야 할 점은이 표현은 원래 편미분 방정식 1과 동일하지 않다는 것입니다.  여기에서 증명하고 싶은 것은, 식 5 식 1보다 유한 차분 방정식을 양호하게 근사 할 식이며, 따라서 차이 방정식의 안정성을 나타내는 특성에 대한 정보를 얻을 수 있다는 점입니다.  바로 이것이 증명됩니다.

Recall that the difference equation propagated information into a region of influence bounded by lines whose slopes are dx/dt=±δx/δt. Similarly, the truncated Eq. 5 has a hyperbolic (i.e., wave) character because of the second space and second time derivatives, and the effective wave speeds are ±(2ν/δt)½. If the difference equation is to have any hope of approximating the truncated equation then its region of influence must at least encompass the region of influence of the truncated equation, which leads to the condition

전술 한 바와 같이 차등 방정식은 기울기 dx / dt = ± δx / δt를 가진 선이 경계가되는 영향 영역에 정보가 전달됩니다.  마찬가지로 계산을 중단 한 식 5는 공간에 대한 2 차 도함수 및 시간에 대한 2 차 도함수에 의해 쌍곡선 (즉, 파동)의 특성을 가지고 유효한 파동 속도는 ± (2ν / δt ) ½입니다.  차분 방정식으로 계산을 중단 한 식을 근사하려면 그 영향 영역이 적어도 계산을 끊은 식의 영향 영역을 포함하고 있어야합니다.  그러면 다음의 조건이 도출됩니다.

(6)     \displaystyle \frac{2\nu }{\delta t}\le {{\left( \frac{\delta x}{\delta t} \right)}^{2}}   or   \displaystyle \frac{2\nu \delta t}{\delta {{x}^{2}}}\le 1.

Courant, Friedrichs and Lewy [2] used a similar region of influence condition, now called the Courant condition, which restricts the distance a wave travels in one time increment to less than one space increment. A violation of the Courant condition leads to an oscillating and exponentially growing instability. Condition Eq. 6 is precisely one of the stability conditions found from Fourier analysis in Computational Stability.

Courant, Friedrichs 및 Lewy [2]는 유사한 영향 영역에 관한 조건을 사용했습니다.  현재 이것은 “쿨랑 조건”이라고 불리며 하나의 시간 증분 사이에 파도가 전파하는 거리가 하나의 공간 증분 미만으로 제한된다는 것입니다.  쿨랑 조건이 충족되지 않은 경우, 부호의 빈번한 반전이나 기하 급수적 인 증가를 수반 불안정성이 생깁니다.  조건식 6은 바로 ‘ 계산 안정성 “푸리에 분석에서 도출 한 안정 조건의 하나입니다.

A similar Courant-type condition can be inferred from the two first order derivative terms (the advective terms) in the truncated Eq. 5, which propagate information with speed c,

계산을 중단 한 식 5의 2 개의 1 차 도함수 항 (이류 항)에서 다음과 같은 유사한 쿨랑 유형 조건을 추측 할 수 있습니다.  여기에서 정보는 속도 c로 전달합니다.

(7)     \displaystyle \frac{c\delta t}{\delta x}\le 1.

This stability condition, also identified in Computational Stability, likewise leads to an oscillating and growing instability when violated.

이 안정 조건도 “계산 안정성”로 표시 한 것으로, 충족되지 않을 때뿐만 아니라 부호의 반전이나 증가를 수반 불안정성이 생깁니다.

To uncover a third stability condition we must first rewrite the truncated equation by converting the δt term to have space instead of time derivatives, but in a way that still maintains the first order of the expansion. This is done by differentiating Eq. 3 by t and neglecting all first and higher order terms,

세 번째 안정 조건을 도출 먼저, δt 항을 변환하여 계산을 중단 한 식을 다시 작성합니다.  이 때 배포 1 차 항이 유지되도록 시간 도함수 대신 공간 도함수를 갖도록 변환합니다.  이것은 식 3을 t로 미분 1 차 이상의 항을 무시합니다.

(8)     \displaystyle \frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}+c\frac{\partial }{\partial x}\frac{\partial u}{\partial t}-\nu \frac{{{\partial }^{2}}}{\partial {{x}^{2}}}\frac{\partial u}{\partial t}=O\left( \delta t \right)

Next replace the first time derivative of u by t in this equation using Eq. 1 to obtain

그런 식 1을 이용하여이 식 u / t 시간의 1 차 도함수를 대체하여 다음의 식을 얻는다.

(9)     \displaystyle \frac{{{\partial }^{2}}u}{\partial {{t}^{2}}}={{c}^{2}}\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}-2c\nu \frac{{{\partial }^{3}}u}{\partial {{x}^{3}}}+{{\nu }^{2}}\frac{{{\partial }^{4}}u}{\partial {{x}^{4}}}+O\left( \delta t \right)

Finally, rewrite the truncated Eq.5 using this result for the δt term

마지막으로,이 결과를 이용하여 δt 사항에 대해 계산을 중단 한 식 5를 다시 작성합니다.

(10)     \displaystyle \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}=\left( \nu -\frac{{{c}^{2}}\delta t}{2} \right)\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}+c\nu \delta t\frac{{{\partial }^{3}}u}{\partial {{x}^{3}}}-\frac{{{\nu }^{2}}\delta t}{2}\frac{{{\partial }^{4}}u}{\partial {{x}^{4}}}.

This result is identical to what would have been obtained by Taylor expanding the original finite-difference equation about the point x=jδx and t=(n+½)δt (and would probably have been easier).

마지막으로 얻어진 수식은 원래 유한 차분 방정식을 점 x = jδx 및 t = (n + ½) δt의 주위에 테일러 전개하고 (아마도 더 쉽게) 제공하는 것과 같은 식입니다.

According to our rule-of-thumb the last two terms on the right side proportional to δt can be dropped because they involve higher order derivatives than what is in the first δt term on the right side, which leaves,

위의 경험칙에서 δt에 비례 우변의 마지막 두 절은 우변의 첫 번째 δt 항에 포함 된 것보다 고차 도함수를 포함하기 때문에 폐기합니다.

(11)     \displaystyle \frac{\partial u}{\partial t}+c\frac{\partial u}{\partial x}=\left( \nu -\frac{{{c}^{2}}\delta t}{2} \right)\frac{{{\partial }^{2}}u}{\partial {{x}^{2}}}.

This is an alternative form for the truncated equation that retains only the lowest order (first) truncation errors and only those that contain the lowest even and odd derivatives with respect to each independent variable.

이것은 계산을 끊은 식의 대체 형식으로 최소 차수 (1 차)의 중단 오차와 각 독립 변수에 대해 최소의 짝수와 홀수 함수 (도함수)을 포함 것만을 보유하고 있습니다.

Equation 11 is nearly the same as the original Eq. 1, except for a modified diffusion coefficient. The significant thing here is that the diffusion coefficient can be negative. As long as the diffusion coefficient is positive solutions of Eq. 11 exhibit exponentially damped behavior, but with a negative coefficient solutions have an exponentially growing character, i.e., a computational instability! Thus, a further condition for computational stability is that the diffusion coefficient remains positive,

식 11는 변형 된 확산 계수를 제외하고는 원래의 식 1과 거의 동일합니다.  여기서 중요한 것은, 확산 계수는 마이너스가 될 가능성이있는 것입니다.  확산 계수가 양수로 한 식 11의 해는 기하 급수적으로 감쇠 거동을 나타내지 만 계수가 음수 솔루션은 기하 급수적으로 증가하는 특성을 보인다, 즉 계산의 불안정성이 생깁니다 .  따라서 계산 안정성을 구현하기위한 또 하나의 조건으로 확산 계수가 정의되는 것을 결정합니다.

(12)     \displaystyle \frac{{{c}^{2}}\delta t}{2}\le \nu

In this case the instability is a pure growing one without the oscillations in sign associated with the two earlier region-of-influence conditions. If instability is encountered, knowing whether it is exhibiting an oscillation in sign or not will identify it as either a region-of-influence violation or a negative diffusion coefficient. Having this knowledge makes it easier to find a remedy for the instability.

이 케이스의 불안정성은 전술의 영향 영역에 관한 두 가지 조건에 관련한 부호 반전을 수반하는 것이 아니라 단순히 증가하는 특성입니다.  불안정성이 보여진다 부호의 빈번한 반전을 수반 여부를 파악하여 영향 영역에 관한 조건 또는 음의 확산 계수에 관한 조건 중이 충족되지 않았는지 확인 할 수 있습니다.  이러한 정보를 파악할 수 있으면 불안정을 해소하는 방법을 쉽게 찾을 수 있습니다.

Application to Two-Dimensional Fluid Flow

A two-dimensional example (x,z) of water flowing under a laboratory scale sluice gate offers a test for examining a computational instability arising from non-linearity in the governing equations. The physical problem consists of water held behind a gate with an elevation of 0.9ft. Downstream (right) of the gate there is a water pool of depth 0.14 ft. Gravity is 32.2 ft/s2 in the negative z direction (down). At time t=0 the gate is raised up a distance of 0.125ft and water surges out into the pool. Figure 1 shows the resulting flow obtained with a Navier-Stokes solver [3] at t=0.35s. The solver used for this example has been optimized to automatically eliminate instabilities so none are apparent in this case, but it is possible to force the program to use non-optimum settings.

실험실 규모의 수문 아래를 통과하는 2 차원 (x, z)의 흐름의 예는 지배 방정식의 비선형 성으로 인한 계산 불안정성을 조사 테스트합니다.  이 물리 현상 문제는 0.9 피트 높이까지 물을 막아서있는 수문이 있습니다.  수문 하류 측 (오른쪽)의 수심은 0.14 피트입니다.  중력이 -z 방향 (아래쪽)에 32.2 피트 / s 2입니다.  시간 t = 0에 수문은 0.125 피트 상승하고 물이 하류로 흘러갑니다.  그림 1은 나비에 스톡스 솔버[3]을 이용하여 얻은 t = 0.35s의 흐름을 나타냅니다.  이 예에서 사용 된 솔버는 불안정성을 자동으로 제거하도록 최적화되어 있기 때문에이 경우에는 불안정성은 볼 수 없습니다.  그러나 프로그램에 최적화되지 않은 설정을 강제로 실행할 수 있습니다.

Computational stability issues

Figure 1 (left). Flow under a sluice gate. No unstable behavior is observed.
Figure 2 (right). Flow instability developing when computed with small time step and no viscosity.

To demonstrate some unstable behavior we first examine a heuristic analysis performed on the vertical velocity equation used in the simulation. Focus is on the effective diffusion coefficients for the z direction velocity w, while all other truncation errors are ignored,

불안정한 거동을 실례로 설명하기 위해 먼저 시뮬레이션에 사용 된 수직 속도 식에 대해 수행 한 휴리스틱 분석을 고찰합니다.  여기에서 z 방향 속도 w에 대한 효과적인 확산 계수에 초점을 맞추고 있으며, 다른 모든 중단 오차는 무시합니다.

(13)     \displaystyle \frac{\partial w}{\partial t}+u\frac{\partial w}{\partial x}+w\frac{\partial w}{\partial z}+\frac{\partial }{\partial z}\left( \frac{p}{\rho } \right)+g=\left( \nu +\frac{\alpha u\delta x}{2}-\frac{{{u}^{3}}\delta t}{2}-\frac{\delta {{x}^{2}}}{4}\frac{\partial u}{\partial x} \right)\frac{{{\partial }^{2}}w}{\partial {{x}^{2}}}+\left( \nu +\frac{\alpha w\delta z}{2}-\frac{{{w}^{2}}\delta t}{2}-\frac{\delta {{z}^{2}}}{2}\frac{\partial w}{\partial z} \right)\frac{{{\partial }^{2}}w}{\partial {{z}^{2}}}

The diffusion of w in the x and z directions are expressed by the two terms on the right side of Eq. 13, where ν is the fluid viscosity and α is a parameter that modifies the numerical approximation of the term describing the u advection of w, i.e., the second term on the left side of the above equation. When α=0 the finite-difference advection approximation is said to be centered about the location of w, but when α=1 an upstream or “donor cell” approximation is used.

x 및 z 방향의 w의 확산은 식 13의 우변의 두 항으로 표현되어 있습니다.  여기서, v는 유체 점성, α는 w의 u 이류를 나타내는 항 (식 13의 좌변의 제 2 항)의 수치 근사를 수정하는 매개 변수입니다.  α = 0 일 때, 이류의 유한 차분 근사 w의 위치를 중심으로 한 근사하지만, α = 1 일 때, 상류 측 또는 “도나세루」에 의한 근사를 사용합니다.

The first thing to notice is that if ν=0 and a centered difference approximation is also used (α=0) then the lowest order term in the two effective viscosity coefficients are proportional to δt and are negative. This clearly leads to unstable behavior, and is a well known property of the central difference approximation. Adding enough viscosity to keep the diffusion coefficient positive is also an established procedure to gain stability, but at the possible cost of introducing too much diffusion. The upstream difference option, α=1, is a reasonable compromise; provided the condition wδt<δx is maintained, the diffusion coefficients are positive (provided the δx2 and δz2 terms are small) and the simulation will be stable.

먼저 주의해야 할 점은 ν = 0이고 중심 차분 근사를 사용하는 경우 (α = 0), 2 개의 유효 점성 계수의 최소 차수의 항은 δt에 비례하고, 부가됩니다.  이것은 분명 불안정한 거동을 이끌 것으로, 중심 차분 근사의 잘 알려진 특성입니다.  확산 계수를 양수 유지하기 위해 충분한 점성을 추가 수법도 안정성을 얻는 데에서 확립 된 방법이지만, 확산이 커질 위험성도 있습니다.  상류 측에서 차분 옵션 α = 1은 합리적인 타협이다.  조건 wδt <δx이 충족되는 한, 확산 계수는 양이며 (δx 2 및 δz 2 항이 작은 경우) 시뮬레이션도 안정됩니다.

If the δx2 and δz2 terms in the diffusion coefficients are not small there is a possibility of unstable behavior. To demonstrate this we set the viscosity to zero and reduce the amount of upstream differencing by setting α=0.05. To keep the negative δt term less than the a term a very small time step δt=0.00025 is used. With these settings the resulting simulation is shown in Fig. 2. An instability in the z velocity has developed just upstream of the sluice gate, which is shown close up in Fig. 3 (where color indicates the z velocity magnitude).

확산 계수의 δx 2 및 δz 2 항이 작지 않은 경우 불안정한 거동이 발생할 수 있습니다.  이를 설명하기 위해 점성을 0으로 설정하고 상류의 차이 량을 α = 0.05로 줄입니다.  부정적인 δt 항이 a 항보다 작아 지도록 매우 작은 시간 단계 δt = 0.00025을 사용합니다.  이러한 설정에서 실행 된 시뮬레이션을 그림 2에 나타냅니다.  수문 상류 측에서 z 속도의 불안정성이 발생하고 있습니다.  그림 3은 그 확대도를 나타냅니다 (색상은 z 속도의 크기를 나타낸다).

This instability is a result of a negative x-direction diffusion coefficient, which is coming from the δx2 term. A negative value results from the fact that the flow upstream of the gate is compressing in the z direction, but expanding in the x direction, which means that the x derivative of u in the δx2 term is positive in this region resulting in a net negative diffusion coefficient.

이 불안정은 δx 2 항에 의하여 부정되었다 x 방향의 확산 계수에 기인합니다.  수문 상류의 흐름은 z 방향으로 압축하고 있습니다 만, x 방향으로 팽창하고 있기 때문에 음수입니다.  즉,이 영역에서는 δx 2 항의 u의 x 방향 도함수는 긍정적이고 순으로 부정적인 확산 계수입니다.

A check on this conclusion can be made by adding in a little viscosity ν=0.0093 to compensate for the negative δx2 term. Figure 4 shows that this change does, indeed, stabilize the flow.

이 결론을 확인하려면 부정적인 δx 2 항을 보정하기 위해 약간 점성을 추가합니다 (ν = 0.0093).  그림 4는이 작은 변화에 의해 흐름이 확실히 안정된 것을 알 수 있습니다.

This example demonstrates that truncation error terms arising from non-linear terms in the original equation influence the computational stability of the difference equation. This type of instability cannot be found by a von Neumann type Fourier analysis. Perhaps most important of all is that when troublesome truncation errors are found to exist this knowledge can be used to alter the finite difference equations to eliminate those errors.

이 예에서는 원래의 방정식의 비선형 항으로 인해 중단 오차 항은 차분 방정식의 계산 안정성에 영향을 미치는 것으로 나타했습니다.  이 유형의 불안정은 von Neumann 유형의 푸리에 분석에서 찾을 수 없습니다.  가장 중요한 것은 문제가 될 수있는 중단 오차가 존재하는 것으로 판명 될 때이 지식을 이용하여 유한 차분 방정식을 수정하여 이러한 오차를 제거 할 수 있습니다.

Totally unstable flow versus stable flow

Figure 3 (left). Close up of locally unstable flow caused by negative δx2 term. Color indicates z velocity.
Figure 4 (right). Same as Fig. 3 with a small amount of viscosity added to compensate for negative δx2 term.

Summary

To summarize, it has been shown that all the stability conditions associated with a linear finite-difference equation, Eq.2, can be identified using a heuristic truncation error approach. This approach not only identifies the instabilities, it also indicates what can be done to eliminate them. For instance, for a region-of-influence violation only a reduction in the time-step increment will solve the problem, but if there is a negative diffusion coefficient then adding more diffusion to compensate for the errors is one way to regain stability. Knowing the origin of a negative diffusion error may also suggest how the original finite-difference equation might be modified to avoid this problem.

이 책에서는 선형 유한 차분 방정식Eq.2에 관련된 모든 안정 조건을 중단 오차에 대한 경험적 접근에 의해 특정 할 수 있는지를 보여주었습니다.  이 방법은 불안정성을 특정 할 수있을 뿐만 아니라 그것을 제거하는 방법을 보여줍니다.  예를 들어, 영향 영역에 대한 조건이 충족되지 않을 경우 시간 단계를 줄일 수 밖에 없어 문제를 해결할 수 없지만, 음의 확산 계수가 존재하는 경우는 확산을 확대하고 오차를 보정하여 안정성을 되찾는 방법 도 있습니다.  음의 확산 오차의 원인을 아는 것은이 문제를 해결 할 수 있도록 원래의 유한 차분 방정식을 어떻게 해결 하는가하는 방법을 알려 줄 수 있습니다.

The most significant aspect of the heuristic approach is that it is not limited to linear equations with constant coefficients, as was shown in connection with the example of flow under a sluice gate. No special assumptions were necessary to form the approximating truncated equation. The goal was simply to reverse the procedure of writing a difference equation to approximate a partial differential equation, and instead to write a partial differential equation that approximates the difference equation. A simple rule-of-thumb was described for constructing the truncated equation. This approximating equation was then used to check for region-of-influence violations and for possible negative diffusion coefficients both features that lead to unstable solutions.

휴리스틱 접근법의 가장 중요한 특징은 상수 계수를 따른 선형 방정식에 한정되지 않는다는 점입니다.  이것은 수문 아래를 통과하는 흐름의 예에서 나타났습니다.  계산을 끊은 식의 근사 식을 세우는 데 특별한 가정이 필요하지 않았습니다.  편미분 방정식을 근사하는 차분 방정식을 설명하는 것이 아니라 차분 방정식을 근사하는 편미분 방정식을 기술한다는 단순히 역순를 할 목적이었습니다.  계산을 중단 한 식을 세우기위한 간단한 경험칙에 대해서도 설명했습니다.  이 근사 식을 사용하여 솔루션의 불안정으로 이어질 영향 영역에 대한 조건이 충족되어 있는지, 또한 음의 확산 계수가 존재하는지의 두 관점을 확인했습니다.

Several additional examples involving compressible and incompressible fluid dynamics simulations can be found in the original heuristic stability paper [1], which further show how the heuristic approach can be applied to real, practical, non-linear problems.

안정성에 관한 경험적 분석에 대해 기술 된 참고 문헌 [1]에는 압축 흐름 및 비 압축 흐름을 따른 몇 가지 유체 역학 시뮬레이션 예가 나와 있습니다.  또 경험적 접근을 실제 비선형 문제에 적용하는 방법에 대해 자세히 나와 있습니다.

References

  1. C.W. Hirt, Heuristic Stability Theory for Finite-Difference Equations, J. Comp. Phys., 2, 339 (1968).
  2. R. Courant, K.O. Friedricks and H. Lewy, Math. Ann. 100, 32 (1928).
  3. The commercial software package FLOW-3D from Flow Science, Inc., Santa Fe, NM, USA.