Jai Hong Lee, Ph.D., P.E., M.ASCE; Pierre Y. Julien, Ph.D., M.ASCE; and Christopher I. Thornton, Ph.D., P.E., M.ASCE
Abstract
이중 여수로 간섭은 여수로가 서로 가깝게 배치될 때 수압 성능의 손실을 나타냅니다. 배수로 간섭은 물리적 실험과 수치 시뮬레이션을 모두 사용하여 조사됩니다.
이중 여수로 구성의 4개 물리적 모델의 단계 및 배출 측정값을 한국의 4개 댐 부지에서 Flow-3D 계산 결과와 비교합니다.
두 개의 배수로를 함께 사용하는 것을 각 배수로의 단일 작동과 비교합니다. 두 여수로를 동시에 운영할 경우 두 여수로를 통한 총 유량은 최대 7.6%까지 감소합니다.
간섭 계수는 단계 He가 설계 단계 Hd를 초과하고 두 배수로를 분리하는 거리 D가 배수로 너비 W에 비해 짧을 때 가장 중요합니다. 매개변수 DHd/WHe는 계산 및 측정된 간섭 계수와 매우 잘 관련됩니다.
안동댐 설계방류에 대한 홍수경로 예시는 간섭계수를 적용한 경우와 적용하지 않은 경우 저수지 수위의 차이가 42cm임을 보여줍니다. 결과적으로 댐 안전을 위해 추가 여수로의 너비(간섭 계수 포함)를 늘려야 합니다.
Dual spillway interference refers to the loss of hydraulic performance of spillways when they are placed close together. Spillway interference is examined using both physical experiments and numerical simulations. Stage and discharge measurements from four physical models with dual spillways configurations are compared to the Flow-3D computational results at four dam sites in South Korea. The conjunctive use of two spillways is compared with the singular operation of each spillway. When both spillways are operated at the same time, the total flow rate through the two spillways is reduced by up to 7.6%. Interference coefficients are most significant when the stage He exceeds the design stage Hd and when the distance D separating two spillways is short compared to the spillway width W. The parameter DHd/WHecorrelates very well with the calculated and measured interference coefficients. A flood routing example for the design discharge at Andong dam shows a 42 cm difference in reservoir water level with and without application of the interference coefficient. Consequently, the width of additional spillways (including the interference coefficient) should be increased for dam safety.













References
Cassidy, J. J. 1965. “Irrotational flow over spillways of finite height.”
J. Eng. Mech. Div. 91 (6): 155–173.
Chanel, P., and J. Doering. 2008. “Assessment of spillway modeling using
computational fluid dynamics.” Can. J. Civ. Eng. 35 (12): 1481–1485.
https://doi.org/10.1139/L08-094.
Chow, V. T. 1959. Open-channel hydraulics, 365–380. New York:
McGraw-Hill.
Ho, D., B. Cooper, K. Riddette, and S. Donohoo. 2006. “Application of
numerical modelling to spillways in Australia.” In Proc., Int. Symp.
on Dams in the Societies of the 21st Century, 22nd Int. Congress on
Large Dams (ICOLD), edited by L. Berga, et al. London: Taylor &
Francis.
Huff, F. A. 1967. “Time distribution of rainfall in heavy storms.” Water
Resour. Res. 3 (4): 1007–1019. https://doi.org/10.1029/WR003i004
p01007.
Kim, D. G., and J. H. Park. 2005. “Analysis of flow structure over ogeespillway in consideration of scale and roughness effects by using CFD
model.” KSCE J. Civ. Eng. 9 (2): 161–169. https://doi.org/10.1007
/BF02829067.
Koutsunis, N. A. 2015. “Impact of climatic changes on downstream hydraulic geometry and its influence on flood hydrograph
routing—Applied to the bluestone dam watershed.” M.S. degree,
Dept. of Civil and Environmental Engineering, Colorado State Univ.
Lee, J. H., and P. Y. Julien. 2016a. “ENSO impacts on temperature over
South Korea.” Int. J. Climatol. 36 (11): 3651. https://doi.org/10.1002
/joc.4581.
Lee, J. H., and P. Y. Julien. 2016b. “Teleconnections of the ENSO and
South Korean precipitation patterns.” J. Hydrol. 534: 237–250.
https://doi.org/10.1016/j.jhydrol.2016.01.011.
Lee, J. H., and P. Y. Julien. 2017. “Influence of the El Nino/southern ˜
oscillation on South Korean streamflow variability.” Hydrol. Processes
31 (12): 2162–2178. https://doi.org/10.1002/hyp.11168.
Li, S., S. Cain, N. Wosnik, C. Miller, H. Kocahan, and R. Wyckoff. 2011.
“Numerical modeling of probable maximum flood flowing through a
system of spillways.” J. Hydraul. Eng. 137 (1): 66–74. https://doi.org
/10.1061/(ASCE)HY.1943-7900.0000279.
MOCT (Ministry of Construction and Transportation). 2003. Hydraulic
model study of Soyanggang multipurpose dam auxiliary spillway.
[In Korean.] Governing City, South Korea: MOCT.
Olsen, N. R., and H. M. Kjellesvig. 1998. “Three-dimensional numerical
flow modeling for estimation of spillway capacity.” J. Hydraul. Res.
36 (5): 775–784. https://doi.org/10.1080/00221689809498602.
Savage, B. M., and M. C. Johnson. 2001. “Flow over ogee spillway:
Physical and numerical model case study.” J. Hydraul. Eng. 127 (8):
640–649. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:8(640).
USACE (US Army Corps of Engineers). 2008. Hydrologic modeling
system HEC-HMS, user’s manual version 3.2. Davis, CA: USACE.
USBR (US Bureau of Reclamation). 1980. Hydraulic laboratory techniques: A water resources technical publication. Denver: US Dept.
of the Interior, Bureau of Reclamation.
Yakhot, V., and S. A. Orszag. 1986. “Renormalization group analysis of
turbulence. I: Basic theory.” J. Sci. Comput. 1 (1): 3–51. https://doi
.org/10.1007/BF01061452.
Yakhot, V., and L. M. Smith. 1992. “The renormalization group, the
e-expansion and derivation of turbulence models.” J. Sci. Comput.
7 (1): 35–61. https://doi.org/10.1007/BF01060210.
Zeng, J., L. Zhang, M. Ansar, E. Damisse, and J. A. Gonzalez-Castro. 2017.
“Applications of computational fluid dynamics to flow ratings at prototype spillways and weirs. I: Data generation and validation.” J. Irrig.
Drain. Eng. 143 (1): 04016072. https://doi.org/10.1061/(ASCE)IR
.1943-4774.0001112.