Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s.

Optimization Algorithms and Engineering: Recent Advances and Applications

Mahdi Feizbahr,1 Navid Tonekaboni,2Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4Show moreAcademic Editor: Mohammad YazdiReceived08 Apr 2021Revised18 Jun 2021Accepted17 Jul 2021Published11 Aug 2021

Abstract

Vegetation along the river increases the roughness and reduces the average flow velocity, reduces flow energy, and changes the flow velocity profile in the cross section of the river. Many canals and rivers in nature are covered with vegetation during the floods. Canal’s roughness is strongly affected by plants and therefore it has a great effect on flow resistance during flood. Roughness resistance against the flow due to the plants depends on the flow conditions and plant, so the model should simulate the current velocity by considering the effects of velocity, depth of flow, and type of vegetation along the canal. Total of 48 models have been simulated to investigate the effect of roughness in the canal. The results indicated that, by enhancing the velocity, the effect of vegetation in decreasing the bed velocity is negligible, while when the current has lower speed, the effect of vegetation on decreasing the bed velocity is obviously considerable.


강의 식생은 거칠기를 증가시키고 평균 유속을 감소시키며, 유속 에너지를 감소시키고 강의 단면에서 유속 프로파일을 변경합니다. 자연의 많은 운하와 강은 홍수 동안 초목으로 덮여 있습니다. 운하의 조도는 식물의 영향을 많이 받으므로 홍수시 유동저항에 큰 영향을 미칩니다. 식물로 인한 흐름에 대한 거칠기 저항은 흐름 조건 및 식물에 따라 다르므로 모델은 유속, 흐름 깊이 및 운하를 따라 식생 유형의 영향을 고려하여 현재 속도를 시뮬레이션해야 합니다. 근관의 거칠기의 영향을 조사하기 위해 총 48개의 모델이 시뮬레이션되었습니다. 결과는 유속을 높임으로써 유속을 감소시키는 식생의 영향은 무시할 수 있는 반면, 해류가 더 낮은 유속일 때 유속을 감소시키는 식생의 영향은 분명히 상당함을 나타냈다.

1. Introduction

Considering the impact of each variable is a very popular field within the analytical and statistical methods and intelligent systems [114]. This can help research for better modeling considering the relation of variables or interaction of them toward reaching a better condition for the objective function in control and engineering [1527]. Consequently, it is necessary to study the effects of the passive factors on the active domain [2836]. Because of the effect of vegetation on reducing the discharge capacity of rivers [37], pruning plants was necessary to improve the condition of rivers. One of the important effects of vegetation in river protection is the action of roots, which cause soil consolidation and soil structure improvement and, by enhancing the shear strength of soil, increase the resistance of canal walls against the erosive force of water. The outer limbs of the plant increase the roughness of the canal walls and reduce the flow velocity and deplete the flow energy in vicinity of the walls. Vegetation by reducing the shear stress of the canal bed reduces flood discharge and sedimentation in the intervals between vegetation and increases the stability of the walls [3841].

One of the main factors influencing the speed, depth, and extent of flood in this method is Manning’s roughness coefficient. On the other hand, soil cover [42], especially vegetation, is one of the most determining factors in Manning’s roughness coefficient. Therefore, it is expected that those seasonal changes in the vegetation of the region will play an important role in the calculated value of Manning’s roughness coefficient and ultimately in predicting the flood wave behavior [4345]. The roughness caused by plants’ resistance to flood current depends on the flow and plant conditions. Flow conditions include depth and velocity of the plant, and plant conditions include plant type, hardness or flexibility, dimensions, density, and shape of the plant [46]. In general, the issue discussed in this research is the optimization of flood-induced flow in canals by considering the effect of vegetation-induced roughness. Therefore, the effect of plants on the roughness coefficient and canal transmission coefficient and in consequence the flow depth should be evaluated [4748].

Current resistance is generally known by its roughness coefficient. The equation that is mainly used in this field is Manning equation. The ratio of shear velocity to average current velocity  is another form of current resistance. The reason for using the  ratio is that it is dimensionless and has a strong theoretical basis. The reason for using Manning roughness coefficient is its pervasiveness. According to Freeman et al. [49], the Manning roughness coefficient for plants was calculated according to the Kouwen and Unny [50] method for incremental resistance. This method involves increasing the roughness for various surface and plant irregularities. Manning’s roughness coefficient has all the factors affecting the resistance of the canal. Therefore, the appropriate way to more accurately estimate this coefficient is to know the factors affecting this coefficient [51].

To calculate the flow rate, velocity, and depth of flow in canals as well as flood and sediment estimation, it is important to evaluate the flow resistance. To determine the flow resistance in open ducts, Manning, Chézy, and Darcy–Weisbach relations are used [52]. In these relations, there are parameters such as Manning’s roughness coefficient (n), Chézy roughness coefficient (C), and Darcy–Weisbach coefficient (f). All three of these coefficients are a kind of flow resistance coefficient that is widely used in the equations governing flow in rivers [53].

The three relations that express the relationship between the average flow velocity (V) and the resistance and geometric and hydraulic coefficients of the canal are as follows:where nf, and c are Manning, Darcy–Weisbach, and Chézy coefficients, respectively. V = average flow velocity, R = hydraulic radius, Sf = slope of energy line, which in uniform flow is equal to the slope of the canal bed,  = gravitational acceleration, and Kn is a coefficient whose value is equal to 1 in the SI system and 1.486 in the English system. The coefficients of resistance in equations (1) to (3) are related as follows:

Based on the boundary layer theory, the flow resistance for rough substrates is determined from the following general relation:where f = Darcy–Weisbach coefficient of friction, y = flow depth, Ks = bed roughness size, and A = constant coefficient.

On the other hand, the relationship between the Darcy–Weisbach coefficient of friction and the shear velocity of the flow is as follows:

By using equation (6), equation (5) is converted as follows:

Investigation on the effect of vegetation arrangement on shear velocity of flow in laboratory conditions showed that, with increasing the shear Reynolds number (), the numerical value of the  ratio also increases; in other words the amount of roughness coefficient increases with a slight difference in the cases without vegetation, checkered arrangement, and cross arrangement, respectively [54].

Roughness in river vegetation is simulated in mathematical models with a variable floor slope flume by different densities and discharges. The vegetation considered submerged in the bed of the flume. Results showed that, with increasing vegetation density, canal roughness and flow shear speed increase and with increasing flow rate and depth, Manning’s roughness coefficient decreases. Factors affecting the roughness caused by vegetation include the effect of plant density and arrangement on flow resistance, the effect of flow velocity on flow resistance, and the effect of depth [4555].

One of the works that has been done on the effect of vegetation on the roughness coefficient is Darby [56] study, which investigates a flood wave model that considers all the effects of vegetation on the roughness coefficient. There are currently two methods for estimating vegetation roughness. One method is to add the thrust force effect to Manning’s equation [475758] and the other method is to increase the canal bed roughness (Manning-Strickler coefficient) [455961]. These two methods provide acceptable results in models designed to simulate floodplain flow. Wang et al. [62] simulate the floodplain with submerged vegetation using these two methods and to increase the accuracy of the results, they suggested using the effective height of the plant under running water instead of using the actual height of the plant. Freeman et al. [49] provided equations for determining the coefficient of vegetation roughness under different conditions. Lee et al. [63] proposed a method for calculating the Manning coefficient using the flow velocity ratio at different depths. Much research has been done on the Manning roughness coefficient in rivers, and researchers [496366] sought to obtain a specific number for n to use in river engineering. However, since the depth and geometric conditions of rivers are completely variable in different places, the values of Manning roughness coefficient have changed subsequently, and it has not been possible to choose a fixed number. In river engineering software, the Manning roughness coefficient is determined only for specific and constant conditions or normal flow. Lee et al. [63] stated that seasonal conditions, density, and type of vegetation should also be considered. Hydraulic roughness and Manning roughness coefficient n of the plant were obtained by estimating the total Manning roughness coefficient from the matching of the measured water surface curve and water surface height. The following equation is used for the flow surface curve:where  is the depth of water change, S0 is the slope of the canal floor, Sf is the slope of the energy line, and Fr is the Froude number which is obtained from the following equation:where D is the characteristic length of the canal. Flood flow velocity is one of the important parameters of flood waves, which is very important in calculating the water level profile and energy consumption. In the cases where there are many limitations for researchers due to the wide range of experimental dimensions and the variety of design parameters, the use of numerical methods that are able to estimate the rest of the unknown results with acceptable accuracy is economically justified.

FLOW-3D software uses Finite Difference Method (FDM) for numerical solution of two-dimensional and three-dimensional flow. This software is dedicated to computational fluid dynamics (CFD) and is provided by Flow Science [67]. The flow is divided into networks with tubular cells. For each cell there are values of dependent variables and all variables are calculated in the center of the cell, except for the velocity, which is calculated at the center of the cell. In this software, two numerical techniques have been used for geometric simulation, FAVOR™ (Fractional-Area-Volume-Obstacle-Representation) and the VOF (Volume-of-Fluid) method. The equations used at this model for this research include the principle of mass survival and the magnitude of motion as follows. The fluid motion equations in three dimensions, including the Navier–Stokes equations with some additional terms, are as follows:where  are mass accelerations in the directions xyz and  are viscosity accelerations in the directions xyz and are obtained from the following equations:

Shear stresses  in equation (11) are obtained from the following equations:

The standard model is used for high Reynolds currents, but in this model, RNG theory allows the analytical differential formula to be used for the effective viscosity that occurs at low Reynolds numbers. Therefore, the RNG model can be used for low and high Reynolds currents.

Weather changes are high and this affects many factors continuously. The presence of vegetation in any area reduces the velocity of surface flows and prevents soil erosion, so vegetation will have a significant impact on reducing destructive floods. One of the methods of erosion protection in floodplain watersheds is the use of biological methods. The presence of vegetation in watersheds reduces the flow rate during floods and prevents soil erosion. The external organs of plants increase the roughness and decrease the velocity of water flow and thus reduce its shear stress energy. One of the important factors with which the hydraulic resistance of plants is expressed is the roughness coefficient. Measuring the roughness coefficient of plants and investigating their effect on reducing velocity and shear stress of flow is of special importance.

Roughness coefficients in canals are affected by two main factors, namely, flow conditions and vegetation characteristics [68]. So far, much research has been done on the effect of the roughness factor created by vegetation, but the issue of plant density has received less attention. For this purpose, this study was conducted to investigate the effect of vegetation density on flow velocity changes.

In a study conducted using a software model on three density modes in the submerged state effect on flow velocity changes in 48 different modes was investigated (Table 1).Table 1 The studied models.

The number of cells used in this simulation is equal to 1955888 cells. The boundary conditions were introduced to the model as a constant speed and depth (Figure 1). At the output boundary, due to the presence of supercritical current, no parameter for the current is considered. Absolute roughness for floors and walls was introduced to the model (Figure 1). In this case, the flow was assumed to be nonviscous and air entry into the flow was not considered. After  seconds, this model reached a convergence accuracy of .

Figure 1 The simulated model and its boundary conditions.

Due to the fact that it is not possible to model the vegetation in FLOW-3D software, in this research, the vegetation of small soft plants was studied so that Manning’s coefficients can be entered into the canal bed in the form of roughness coefficients obtained from the studies of Chow [69] in similar conditions. In practice, in such modeling, the effect of plant height is eliminated due to the small height of herbaceous plants, and modeling can provide relatively acceptable results in these conditions.

48 models with input velocities proportional to the height of the regular semihexagonal canal were considered to create supercritical conditions. Manning coefficients were applied based on Chow [69] studies in order to control the canal bed. Speed profiles were drawn and discussed.

Any control and simulation system has some inputs that we should determine to test any technology [7077]. Determination and true implementation of such parameters is one of the key steps of any simulation [237881] and computing procedure [8286]. The input current is created by applying the flow rate through the VFR (Volume Flow Rate) option and the output flow is considered Output and for other borders the Symmetry option is considered.

Simulation of the models and checking their action and responses and observing how a process behaves is one of the accepted methods in engineering and science [8788]. For verification of FLOW-3D software, the results of computer simulations are compared with laboratory measurements and according to the values of computational error, convergence error, and the time required for convergence, the most appropriate option for real-time simulation is selected (Figures 2 and 3 ).

Figure 2 Modeling the plant with cylindrical tubes at the bottom of the canal.

Figure 3 Velocity profiles in positions 2 and 5.

The canal is 7 meters long, 0.5 meters wide, and 0.8 meters deep. This test was used to validate the application of the software to predict the flow rate parameters. In this experiment, instead of using the plant, cylindrical pipes were used in the bottom of the canal.

The conditions of this modeling are similar to the laboratory conditions and the boundary conditions used in the laboratory were used for numerical modeling. The critical flow enters the simulation model from the upstream boundary, so in the upstream boundary conditions, critical velocity and depth are considered. The flow at the downstream boundary is supercritical, so no parameters are applied to the downstream boundary.

The software well predicts the process of changing the speed profile in the open canal along with the considered obstacles. The error in the calculated speed values can be due to the complexity of the flow and the interaction of the turbulence caused by the roughness of the floor with the turbulence caused by the three-dimensional cycles in the hydraulic jump. As a result, the software is able to predict the speed distribution in open canals.

2. Modeling Results

After analyzing the models, the results were shown in graphs (Figures 414 ). The total number of experiments in this study was 48 due to the limitations of modeling.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 4 Flow velocity profiles for canals with a depth of 1 m and flow velocities of 3–3.3 m/s. Canal with a depth of 1 meter and a flow velocity of (a) 3 meters per second, (b) 3.1 meters per second, (c) 3.2 meters per second, and (d) 3.3 meters per second.

Figure 5 Canal diagram with a depth of 1 meter and a flow rate of 3 meters per second.

Figure 6 Canal diagram with a depth of 1 meter and a flow rate of 3.1 meters per second.

Figure 7 Canal diagram with a depth of 1 meter and a flow rate of 3.2 meters per second.

Figure 8 Canal diagram with a depth of 1 meter and a flow rate of 3.3 meters per second.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 9 Flow velocity profiles for canals with a depth of 2 m and flow velocities of 4–4.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

Figure 10 Canal diagram with a depth of 2 meters and a flow rate of 4 meters per second.

Figure 11 Canal diagram with a depth of 2 meters and a flow rate of 4.1 meters per second.

Figure 12 Canal diagram with a depth of 2 meters and a flow rate of 4.2 meters per second.

Figure 13 Canal diagram with a depth of 2 meters and a flow rate of 4.3 meters per second.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 14 Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

To investigate the effects of roughness with flow velocity, the trend of flow velocity changes at different depths and with supercritical flow to a Froude number proportional to the depth of the section has been obtained.

According to the velocity profiles of Figure 5, it can be seen that, with the increasing of Manning’s coefficient, the canal bed speed decreases.

According to Figures 5 to 8, it can be found that, with increasing the Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the models 1 to 12, which can be justified by increasing the speed and of course increasing the Froude number.

According to Figure 10, we see that, with increasing Manning’s coefficient, the canal bed speed decreases.

According to Figure 11, we see that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 510, which can be justified by increasing the speed and, of course, increasing the Froude number.

With increasing Manning’s coefficient, the canal bed speed decreases (Figure 12). But this deceleration is more noticeable than the deceleration of the higher models (Figures 58 and 1011), which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 13, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5 to 12, which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 15, with increasing Manning’s coefficient, the canal bed speed decreases.

Figure 15 Canal diagram with a depth of 3 meters and a flow rate of 5 meters per second.

According to Figure 16, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher model, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 16 Canal diagram with a depth of 3 meters and a flow rate of 5.1 meters per second.

According to Figure 17, it is clear that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 17 Canal diagram with a depth of 3 meters and a flow rate of 5.2 meters per second.

According to Figure 18, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 18 Canal diagram with a depth of 3 meters and a flow rate of 5.3 meters per second.

According to Figure 19, it can be seen that the vegetation placed in front of the flow input velocity has negligible effect on the reduction of velocity, which of course can be justified due to the flexibility of the vegetation. The only unusual thing is the unexpected decrease in floor speed of 3 m/s compared to higher speeds.(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 19 Comparison of velocity profiles with the same plant densities (depth 1 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 1 m; (b) plant densities of 50%, depth 1 m; and (c) plant densities of 75%, depth 1 m.

According to Figure 20, by increasing the speed of vegetation, the effect of vegetation on reducing the flow rate becomes more noticeable. And the role of input current does not have much effect in reducing speed.(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 20 Comparison of velocity profiles with the same plant densities (depth 2 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 2 m; (b) plant densities of 50%, depth 2 m; and (c) plant densities of 75%, depth 2 m.

According to Figure 21, it can be seen that, with increasing speed, the effect of vegetation on reducing the bed flow rate becomes more noticeable and the role of the input current does not have much effect. In general, it can be seen that, by increasing the speed of the input current, the slope of the profiles increases from the bed to the water surface and due to the fact that, in software, the roughness coefficient applies to the channel floor only in the boundary conditions, this can be perfectly justified. Of course, it can be noted that, due to the flexible conditions of the vegetation of the bed, this modeling can show acceptable results for such grasses in the canal floor. In the next directions, we may try application of swarm-based optimization methods for modeling and finding the most effective factors in this research [27815188994]. In future, we can also apply the simulation logic and software of this research for other domains such as power engineering [9599].(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 21 Comparison of velocity profiles with the same plant densities (depth 3 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 3 m; (b) plant densities of 50%, depth 3 m; and (c) plant densities of 75%, depth 3 m.

3. Conclusion

The effects of vegetation on the flood canal were investigated by numerical modeling with FLOW-3D software. After analyzing the results, the following conclusions were reached:(i)Increasing the density of vegetation reduces the velocity of the canal floor but has no effect on the velocity of the canal surface.(ii)Increasing the Froude number is directly related to increasing the speed of the canal floor.(iii)In the canal with a depth of one meter, a sudden increase in speed can be observed from the lowest speed and higher speed, which is justified by the sudden increase in Froude number.(iv)As the inlet flow rate increases, the slope of the profiles from the bed to the water surface increases.(v)By reducing the Froude number, the effect of vegetation on reducing the flow bed rate becomes more noticeable. And the input velocity in reducing the velocity of the canal floor does not have much effect.(vi)At a flow rate between 3 and 3.3 meters per second due to the shallow depth of the canal and the higher landing number a more critical area is observed in which the flow bed velocity in this area is between 2.86 and 3.1 m/s.(vii)Due to the critical flow velocity and the slight effect of the roughness of the horseshoe vortex floor, it is not visible and is only partially observed in models 1-2-3 and 21.(viii)As the flow rate increases, the effect of vegetation on the rate of bed reduction decreases.(ix)In conditions where less current intensity is passing, vegetation has a greater effect on reducing current intensity and energy consumption increases.(x)In the case of using the flow rate of 0.8 cubic meters per second, the velocity distribution and flow regime show about 20% more energy consumption than in the case of using the flow rate of 1.3 cubic meters per second.

Nomenclature

n:Manning’s roughness coefficient
C:Chézy roughness coefficient
f:Darcy–Weisbach coefficient
V:Flow velocity
R:Hydraulic radius
g:Gravitational acceleration
y:Flow depth
Ks:Bed roughness
A:Constant coefficient
:Reynolds number
y/∂x:Depth of water change
S0:Slope of the canal floor
Sf:Slope of energy line
Fr:Froude number
D:Characteristic length of the canal
G:Mass acceleration
:Shear stresses.

Data Availability

All data are included within the paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. H. Yu, L. Jie, W. Gui et al., “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 20, pp. 1–29, 2020.View at: Publisher Site | Google Scholar
  2. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  3. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, Article ID 106684, 2021.View at: Publisher Site | Google Scholar
  4. C. Yu, M. Chen, K. Chen et al., “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 4, pp. 1–28, 2021.View at: Publisher Site | Google Scholar
  5. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 8, Article ID 106728, 2020.View at: Google Scholar
  6. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, Article ID 106642, 2021.View at: Publisher Site | Google Scholar
  7. Y. Zhang, R. Liu, X. Wang et al., “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 430, 2020.View at: Google Scholar
  8. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  9. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  10. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  11. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  12. M. Wang, H. Chen, B. Yang et al., “Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses,” Neurocomputing, vol. 267, pp. 69–84, 2017.View at: Publisher Site | Google Scholar
  13. L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging satellite and gauge precipitation,” Journal of Hydrology, vol. 558, pp. 275–289, 2018.View at: Publisher Site | Google Scholar
  14. F. J. Golrokh, G. Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  15. D. Zhao, L. Lei, F. Yu et al., “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 8, Article ID 106510, 2020.View at: Google Scholar
  16. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 517, pp. 1–30, 2020.View at: Publisher Site | Google Scholar
  17. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  18. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  19. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  20. Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.View at: Publisher Site | Google Scholar
  21. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, Article ID 105946, 2020.View at: Publisher Site | Google Scholar
  22. Y. Chen, J. Li, H. Lu, and P. Yan, “Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains,” Journal of Cleaner Production, vol. 278, Article ID 123209, 2020.View at: Google Scholar
  23. H. Tang, Y. Xu, A. Lin et al., “Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers,” IEEE Access, vol. 8, pp. 35546–35562, 2020.View at: Publisher Site | Google Scholar
  24. H.-J. Ma and G.-H. Yang, “Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3240–3255, 2015.View at: Google Scholar
  25. H.-J. Ma and L.-X. Xu, “Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory,” IEEE Transactions on Automatic Control, vol. 66, 2020.View at: Google Scholar
  26. H. J. Ma, L. X. Xu, and G. H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Cybernetics, vol. 51, pp. 1–16, 2019.View at: Publisher Site | Google Scholar
  27. J. Hu, M. Wang, C. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,” Science China Technological Sciences, vol. 63, no. 1, pp. 65–72, 2020.View at: Publisher Site | Google Scholar
  28. C. Zhang, H. Li, Y. Qian, C. Chen, and X. Zhou, “Locality-constrained discriminative matrix regression for robust face identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  29. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  30. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, 2020.View at: Google Scholar
  31. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 03, p. 1, 2020.View at: Publisher Site | Google Scholar
  32. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 197-198, Article ID 103003, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, p. 1, 2020.View at: Publisher Site | Google Scholar
  34. L. He, J. Shen, and Y. Zhang, “Ecological vulnerability assessment for ecological conservation and environmental management,” Journal of Environmental Management, vol. 206, pp. 1115–1125, 2018.View at: Publisher Site | Google Scholar
  35. Y. Chen, W. Zheng, W. Li, and Y. Huang, “Large group Activity security risk assessment and risk early warning based on random forest algorithm,” Pattern Recognition Letters, vol. 144, pp. 1–5, 2021.View at: Publisher Site | Google Scholar
  36. J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, and Q. Pan, “Object traversing by monocular UAV in outdoor environment,” Asian Journal of Control, vol. 25, 2020.View at: Google Scholar
  37. P. Tian, H. Lu, W. Feng, Y. Guan, and Y. Xue, “Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin,” Catena, vol. 187, Article ID 104340, 2020.View at: Publisher Site | Google Scholar
  38. A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud, and R. C. Sidle, “Desirable plant root traits for protecting natural and engineered slopes against landslides,” Plant and Soil, vol. 324, no. 1, pp. 1–30, 2009.View at: Publisher Site | Google Scholar
  39. T. B. Devi, A. Sharma, and B. Kumar, “Studies on emergent flow over vegetative channel bed with downward seepage,” Hydrological Sciences Journal, vol. 62, no. 3, pp. 408–420, 2017.View at: Google Scholar
  40. G. Ireland, M. Volpi, and G. Petropoulos, “Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood,” Remote Sensing, vol. 7, no. 3, pp. 3372–3399, 2015.View at: Publisher Site | Google Scholar
  41. L. Goodarzi and S. Javadi, “Assessment of aquifer vulnerability using the DRASTIC model; a case study of the Dezful-Andimeshk Aquifer,” Computational Research Progress in Applied Science & Engineering, vol. 2, no. 1, pp. 17–22, 2016.View at: Google Scholar
  42. K. Zhang, Q. Wang, L. Chao et al., “Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China,” Journal of Hydrology, vol. 574, pp. 903–914, 2019.View at: Publisher Site | Google Scholar
  43. L. De Doncker, P. Troch, R. Verhoeven, K. Bal, P. Meire, and J. Quintelier, “Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river,” Environmental Fluid Mechanics, vol. 9, no. 5, pp. 549–567, 2009.View at: Publisher Site | Google Scholar
  44. M. Fathi-Moghadam and K. Drikvandi, “Manning roughness coefficient for rivers and flood plains with non-submerged vegetation,” International Journal of Hydraulic Engineering, vol. 1, no. 1, pp. 1–4, 2012.View at: Google Scholar
  45. F.-C. Wu, H. W. Shen, and Y.-J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, vol. 125, no. 9, pp. 934–942, 1999.View at: Publisher Site | Google Scholar
  46. M. K. Wood, “Rangeland vegetation-hydrologic interactions,” in Vegetation Science Applications for Rangeland Analysis and Management, vol. 3, pp. 469–491, Springer, 1988.View at: Publisher Site | Google Scholar
  47. C. Wilson, O. Yagci, H.-P. Rauch, and N. Olsen, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, vol. 327, no. 1-2, pp. 13–21, 2006.View at: Publisher Site | Google Scholar
  48. R. Yazarloo, M. Khamehchian, and M. R. Nikoodel, “Observational-computational 3d engineering geological model and geotechnical characteristics of young sediments of golestan province,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  49. G. E. Freeman, W. H. Rahmeyer, and R. R. Copeland, “Determination of resistance due to shrubs and woody vegetation,” International Journal of River Basin Management, vol. 19, 2000.View at: Google Scholar
  50. N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” Journal of the Hydraulics Division, vol. 99, no. 5, pp. 713–728, 1973.View at: Publisher Site | Google Scholar
  51. S. Hosseini and J. Abrishami, Open Channel Hydraulics, Elsevier, Amsterdam, Netherlands, 2007.
  52. C. S. James, A. L. Birkhead, A. A. Jordanova, and J. J. O’Sullivan, “Flow resistance of emergent vegetation,” Journal of Hydraulic Research, vol. 42, no. 4, pp. 390–398, 2004.View at: Publisher Site | Google Scholar
  53. F. Huthoff and D. Augustijn, “Channel roughness in 1D steady uniform flow: Manning or Chézy?,,” NCR-days, vol. 102, 2004.View at: Google Scholar
  54. M. S. Sabegh, M. Saneie, M. Habibi, A. A. Abbasi, and M. Ghadimkhani, “Experimental investigation on the effect of river bank tree planting array, on shear velocity,” Journal of Watershed Engineering and Management, vol. 2, no. 4, 2011.View at: Google Scholar
  55. A. Errico, V. Pasquino, M. Maxwald, G. B. Chirico, L. Solari, and F. Preti, “The effect of flexible vegetation on flow in drainage channels: estimation of roughness coefficients at the real scale,” Ecological Engineering, vol. 120, pp. 411–421, 2018.View at: Publisher Site | Google Scholar
  56. S. E. Darby, “Effect of riparian vegetation on flow resistance and flood potential,” Journal of Hydraulic Engineering, vol. 125, no. 5, pp. 443–454, 1999.View at: Publisher Site | Google Scholar
  57. V. Kutija and H. Thi Minh Hong, “A numerical model for assessing the additional resistance to flow introduced by flexible vegetation,” Journal of Hydraulic Research, vol. 34, no. 1, pp. 99–114, 1996.View at: Publisher Site | Google Scholar
  58. T. Fischer-Antze, T. Stoesser, P. Bates, and N. R. B. Olsen, “3D numerical modelling of open-channel flow with submerged vegetation,” Journal of Hydraulic Research, vol. 39, no. 3, pp. 303–310, 2001.View at: Publisher Site | Google Scholar
  59. U. Stephan and D. Gutknecht, “Hydraulic resistance of submerged flexible vegetation,” Journal of Hydrology, vol. 269, no. 1-2, pp. 27–43, 2002.View at: Publisher Site | Google Scholar
  60. F. G. Carollo, V. Ferro, and D. Termini, “Flow resistance law in channels with flexible submerged vegetation,” Journal of Hydraulic Engineering, vol. 131, no. 7, pp. 554–564, 2005.View at: Publisher Site | Google Scholar
  61. W. Fu-sheng, “Flow resistance of flexible vegetation in open channel,” Journal of Hydraulic Engineering, vol. S1, 2007.View at: Google Scholar
  62. P.-f. Wang, C. Wang, and D. Z. Zhu, “Hydraulic resistance of submerged vegetation related to effective height,” Journal of Hydrodynamics, vol. 22, no. 2, pp. 265–273, 2010.View at: Publisher Site | Google Scholar
  63. J. K. Lee, L. C. Roig, H. L. Jenter, and H. M. Visser, “Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades,” Ecological Engineering, vol. 22, no. 4-5, pp. 237–248, 2004.View at: Publisher Site | Google Scholar
  64. G. J. Arcement and V. R. Schneider, Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains, US Government Printing Office, Washington, DC, USA, 1989.
  65. Y. Ding and S. S. Y. Wang, “Identification of Manning’s roughness coefficients in channel network using adjoint analysis,” International Journal of Computational Fluid Dynamics, vol. 19, no. 1, pp. 3–13, 2005.View at: Publisher Site | Google Scholar
  66. E. T. Engman, “Roughness coefficients for routing surface runoff,” Journal of Irrigation and Drainage Engineering, vol. 112, no. 1, pp. 39–53, 1986.View at: Publisher Site | Google Scholar
  67. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Publisher Site | Google Scholar
  68. M. Farzadkhoo, A. Keshavarzi, H. Hamidifar, and M. Javan, “Sudden pollutant discharge in vegetated compound meandering rivers,” Catena, vol. 182, Article ID 104155, 2019.View at: Publisher Site | Google Scholar
  69. V. T. Chow, Open-channel Hydraulics, Mcgraw-Hill Civil Engineering Series, Chennai, TN, India, 1959.
  70. X. Zhang, R. Jing, Z. Li, Z. Li, X. Chen, and C.-Y. Su, “Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 916–928, 2020.View at: Google Scholar
  71. C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective,” Optics and Lasers in Engineering, vol. 71, pp. 20–32, 2015.View at: Publisher Site | Google Scholar
  72. C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Scientific Reports, vol. 7, no. 1, pp. 7654–7722, 2017.View at: Publisher Site | Google Scholar
  73. B.-H. Li, Y. Liu, A.-M. Zhang, W.-H. Wang, and S. Wan, “A survey on blocking technology of entity resolution,” Journal of Computer Science and Technology, vol. 35, no. 4, pp. 769–793, 2020.View at: Publisher Site | Google Scholar
  74. Y. Liu, B. Zhang, Y. Feng et al., “Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array,” Applied Sciences, vol. 10, no. 21, p. 7924, 2020.View at: Publisher Site | Google Scholar
  75. J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, and Q. Pan, “Convergent multiagent formation control with collision avoidance,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1805–1818, 2020.View at: Publisher Site | Google Scholar
  76. M. B. Movahhed, J. Ayoubinejad, F. N. Asl, and M. Feizbahr, “The effect of rain on pedestrians crossing speed,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 6, no. 3, 2020.View at: Google Scholar
  77. A. Li, D. Spano, J. Krivochiza et al., “A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 796–839, 2020.View at: Publisher Site | Google Scholar
  78. W. Zhu, C. Ma, X. Zhao et al., “Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine,” IEEE Access, vol. 8, pp. 61107–61123, 2020.View at: Publisher Site | Google Scholar
  79. G. Liu, W. Jia, M. Wang et al., “Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine,” IEEE Access, vol. 8, pp. 46895–46908, 2020.View at: Publisher Site | Google Scholar
  80. Y. Wei, H. Lv, M. Chen et al., “Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone harris hawks optimizer,” IEEE Access, vol. 8, pp. 76841–76855, 2020.View at: Publisher Site | Google Scholar
  81. A. Lin, Q. Wu, A. A. Heidari et al., “Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-Nearest neighbor classifier,” Ieee Access, vol. 7, pp. 67235–67248, 2019.View at: Publisher Site | Google Scholar
  82. Y. Fan, P. Wang, A. A. Heidari et al., “Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis,” Expert Systems with Applications, vol. 157, Article ID 113486, 2020.View at: Publisher Site | Google Scholar
  83. E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva et al., “An efficient Harris hawks-inspired image segmentation method,” Expert Systems with Applications, vol. 155, Article ID 113428, 2020.View at: Publisher Site | Google Scholar
  84. S. Jiao, G. Chong, C. Huang et al., “Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models,” Energy, vol. 203, Article ID 117804, 2020.View at: Publisher Site | Google Scholar
  85. Z. Xu, Z. Hu, A. A. Heidari et al., “Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis,” Expert Systems with Applications, vol. 150, Article ID 113282, 2020.View at: Publisher Site | Google Scholar
  86. A. Abbassi, R. Abbassi, A. A. Heidari et al., “Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,” Energy, vol. 198, Article ID 117333, 2020.View at: Publisher Site | Google Scholar
  87. M. Mahmoodi and K. K. Aminjan, “Numerical simulation of flow through sukhoi 24 air inlet,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  88. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  89. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  90. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “Bayesian hierarchical model-based information fusion for degradation analysis considering non-competing relationship,” IEEE Access, vol. 7, pp. 175222–175227, 2019.View at: Publisher Site | Google Scholar
  91. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “A Bayesian approach for degradation analysis with individual differences,” IEEE Access, vol. 7, pp. 175033–175040, 2019.View at: Publisher Site | Google Scholar
  92. M. M. A. Malakoutian, Y. Malakoutian, P. Mostafapour, and S. Z. D. Abed, “Prediction for monthly rainfall of six meteorological regions and TRNC (case study: north Cyprus),” ENG Transactions, vol. 2, no. 2, 2021.View at: Google Scholar
  93. H. Arslan, M. Ranjbar, and Z. Mutlum, “Maximum sound transmission loss in multi-chamber reactive silencers: are two chambers enough?,,” ENG Transactions, vol. 2, no. 1, 2021.View at: Google Scholar
  94. N. Tonekaboni, M. Feizbahr, N. Tonekaboni, G.-J. Jiang, and H.-X. Chen, “Optimization of solar CCHP systems with collector enhanced by porous media and nanofluid,” Mathematical Problems in Engineering, vol. 2021, Article ID 9984840, 12 pages, 2021.View at: Publisher Site | Google Scholar
  95. Z. Niu, B. Zhang, J. Wang et al., “The research on 220GHz multicarrier high-speed communication system,” China Communications, vol. 17, no. 3, pp. 131–139, 2020.View at: Publisher Site | Google Scholar
  96. B. Zhang, Z. Niu, J. Wang et al., “Four‐hundred gigahertz broadband multi‐branch waveguide coupler,” IET Microwaves, Antennas & Propagation, vol. 14, no. 11, pp. 1175–1179, 2020.View at: Publisher Site | Google Scholar
  97. Z.-Q. Niu, L. Yang, B. Zhang et al., “A mechanical reliability study of 3dB waveguide hybrid couplers in the submillimeter and terahertz band,” Journal of Zhejiang University Science, vol. 1, no. 1, 1998.View at: Google Scholar
  98. B. Zhang, D. Ji, D. Fang, S. Liang, Y. Fan, and X. Chen, “A novel 220-GHz GaN diode on-chip tripler with high driven power,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 780–783, 2019.View at: Publisher Site | Google Scholar
  99. M. Taleghani and A. Taleghani, “Identification and ranking of factors affecting the implementation of knowledge management engineering based on TOPSIS technique,” ENG Transactions, vol. 1, no. 1, 2020.View at: Google Scholar
Figure 1. The push barge model in 1:20 geometrical scale during field experiments.

Experimental Method for the Measurements and Numerical Investigations of Force Generated on the Rotating Cylinder under Water Flow

by Teresa Abramowicz-Gerigk 1,*,Zbigniew Burciu 1,Jacek Jachowski 1,Oskar Kreft 2,Dawid Majewski 3,Barbara Stachurska 3,Wojciech Sulisz 3 andPiotr Szmytkiewicz 3

1Faculty of Navigation, Gdynia Maritime University, 81-225 Gdynia, Poland
2AREX Ltd., 81-212 Gdynia, Poland
3Institute of Hydro-Engineering of Polish Academy of Sciences, 80-328 Gdansk, Poland
*Author to whom correspondence should be addressed.
Academic Editor: Remco J. WiegerinkSensors202121(6), 2216; https://doi.org/10.3390/s21062216
Received: 20 January 2021 / Revised: 9 March 2021 / Accepted: 18 March 2021 / Published: 22 March 2021(This article belongs to the Special Issue Sensing in Flow Analysis)

Abstract

본 논문은 자유 표면 효과를 포함한 균일한 흐름 하에서 회전하는 실린더 (로터)에 발생하는 유체 역학적 힘의 실험 테스트 설정 및 측정 방법을 제시합니다. 실험 테스트 설정은 고급 유량 생성 및 측정 시스템을 갖춘 수로 탱크에 설치된 고유 한 구조였습니다.

테스트 설정은 로터 드라이브가 있는 베어링 장착 플랫폼과 유체 역학적 힘을 측정하는 센서로 구성되었습니다. 낮은 길이 대 직경 비율 실린더는 얕은 흘수 강 바지선의 선수 로터 방향타 모델로 선택되었습니다. 로터 역학은 최대 550rpm의 회전 속도와 최대 0.85m / s의 수류 속도에 대해 테스트되었습니다.

실린더의 낮은 종횡비와 자유 표면 효과는 생성 된 유체 역학적 힘에 영향을 미치는 현상에 상당한 영향을 미쳤습니다. 회전자 길이 대 직경 비율, 회전 속도 대 유속 비율 및 양력에 대한 레이놀즈 수의 영향을 분석했습니다. 실험 결과에 대한 계산 모델의 유효성이 표시됩니다. 결과는 시뮬레이션 및 실험에 대한 결과의 유사한 경향을 보여줍니다.

The paper presents the experimental test setup and measurement method of hydrodynamic force generated on the rotating cylinder (rotor) under uniform flow including the free surface effect. The experimental test setup was a unique construction installed in the flume tank equipped with advanced flow generating and measuring systems.

The test setup consisted of a bearing mounted platform with rotor drive and sensors measuring the hydrodynamic force. The low length to diameter ratio cylinders were selected as models of bow rotor rudders of a shallow draft river barge. The rotor dynamics was tested for the rotational speeds up to 550 rpm and water current velocity up to 0.85 m/s. The low aspect ratio of the cylinder and free surface effect had significant impacts on the phenomena influencing the generated hydrodynamic force. The effects of the rotor length to diameter ratio, rotational velocity to flow velocity ratio, and the Reynolds number on the lift force were analyzed. The validation of the computational model against experimental results is presented. The results show a similar trend of results for the simulation and experiment.

Keywords: rotating cylinderforce sensor with built-in amplifierstrain gauge sensorCFD analysis

Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 2. Scheme of the measurement area.
Figure 2. Scheme of the measurement area.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 16. Measured (EXP) and computed (CFD) lift force values.
Figure 16. Measured (EXP) and computed (CFD) lift force values.

결론

결론은 다음과 같습니다.
계산 결과가 일반적으로 실험 데이터와 일치하는 경우 계산 결과는 검증 된 것으로 간주되며 추가 예측에 사용할 수 있습니다. 검증 실험을 통해 메쉬 밀도와 난류 모델을 결정할 수있었습니다.
작은 전류 속도 0.4m / s 및 0.5m / s에서 직경 D3의 로터에 대해 계산 된 양력 값은 회전 속도가 200rpm 이상일 때의 실험 값과 달랐습니다. 그 이유는 실험 중에 관찰 된 강한 진동과 수치 시뮬레이션에서 모델링되지 않은 유동 분리 때문이었습니다.
D2 직경을 가진 로터의 경우 작은 rpm에서 양력의 반대 부호가 관찰되었습니다. 이 현상은 시뮬레이션 중에 관찰되지 않았습니다.
제시된 실험 테스트 설정은 드라이브,지지 구조물 및 측정 장치에 손상을 주지 않고 진동을 포함한 모든 현상을 관찰 할 수 있도록 구성되었습니다. Wang et al. [14]는 동일한 α 값에서 실린더 종횡비가 증가함에 따라 와류 유발 진동이 증가하는 것을 관찰했습니다.
실험의 원활한 진행은 장치 손상 가능성과 함께 약 4의 α에 영향을 미쳤습니다. 본 연구에서는 α = 4.8에서 시작하는 가장 큰 직경의 실린더에서 가장 강한 진동이 관찰되었습니다.
제시된 연구는 로터 생성 흐름의 능동적 제어에 대한 추가 연구의 첫 번째 부분으로 유체 역학적 힘의 신뢰할 수 있는 실험적 예측 방법을 설명했습니다 [22]. , 바람, 파도 [23].
논문의 참신함은 저상 실린더에 대해 회 전자에서 생성 된 유체 역학적 힘을 모델링 할 수있는 가능성에 대한 조사입니다.
이 방법의 주요 장점은 자유 표면 효과 및 유동 유도 회 전자 진동과 관련된 현상을 포함하여 회 전자 생성 유동장 및 유체 역학적 힘을 관찰 할 수 있다는 것입니다. 제안 된 테스트 설정 구성은 유체 역학적 힘의 매개 변수 연구, 스케일 효과 조사 및 낮은 전류 속도와 큰 회전 속도에서 큰 불일치가 확인 된 CFD 시뮬레이션 모델의 검증에 사용될 것입니다.

References

  1. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. An Innovative Steering System for a River Push Barge Operated in Environmentally Sensitive Areas. Pol. Marit. Res. 201724, 27–34. [Google Scholar] [CrossRef]
  2. Abramowicz-Gerigk, T.; Burciu, Z.; Krata, P.; Jachowski, J. Steering system for a waterborne inland unit. Patent 420664, 2017. [Google Scholar]
  3. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. Parametric study on the flow field generated by river barge bow steering systems. Sci. J. Marit. Univ. Szczec. 201960, 9–17. [Google Scholar]
  4. Gerigk, M.; Wójtowicz, S. An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle. TransnavInt. J. Mar. Navig. Saf. Sea Transp. 20159, 591–596. [Google Scholar] [CrossRef]
  5. Thouault, N.; Breitsamter, C.; Adams, N.A.; Seifert, J.; Badalamenti, C.; Prince, S.A. Numerical Analysis of a Rotating Cylinder with Spanwise Disks. AIAA J. 201250, 271–283. [Google Scholar] [CrossRef]
  6. Badr, H.M.; Coutanceau, M.; Dennis, S.C.R.; Menard, C. Unsteady flow past a rotating circular cylinder at Reynolds numbers 10 3 and 10 4. J. Fluid Mech. 1990220, 459. [Google Scholar] [CrossRef]
  7. Karabelas, S.; Koumroglou, B.; Argyropoulos, C.; Markatos, N. High Reynolds number turbulent flow past a rotating cylinder. Appl. Math. Model. 201236, 379–398. [Google Scholar] [CrossRef]
  8. Chen, W.; Rheem, C.-K. Experimental investigation of rotating cylinders in flow. J. Mar. Sci. Technol. 201924, 111–122. [Google Scholar] [CrossRef]
  9. Zhou, B.; Wang, X.; Guo, W.; Gho, W.M.; Tan, S.K. Experimental study on flow past a circular cylinder with rough surface. Ocean Eng. 2015109, 7–13. [Google Scholar] [CrossRef]
  10. Tokumaru, P.T.; Dimotakis, P.E. The lift of a cylinder executing rotary motions in a uniform flow. J. Fluid Mech. 1993255, 1–10. [Google Scholar] [CrossRef]
  11. Wong, K.W.L.; Zhao, J.; Jacono, D.L.; Thompson, M.C.; Sheridan, J. Experimental investigation of flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 2017829, 486–511. [Google Scholar] [CrossRef]
  12. Bourguet, R.; Jacono, D.L. Flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 2014740, 342–380. [Google Scholar] [CrossRef]
  13. Carstensen, S.; Mandviwalla, X.; Vita, L.; Schmidt, P. Lift of a Rotating Circular Cylinder in Unsteady Flows. J. Ocean Wind Energy 20141, 41–49. Available online: http://www.isope.org/publications (accessed on 15 January 2021).
  14. Wang, W.; Wang, Y.; Zhao, D.; Pang, Y.; Guo, C.; Wang, Y. Numerical and Experimental Analysis of the Hydrodynamic Performance of a Three-Dimensional Finite-Length Rotating Cylinder. J. Mar. Sci. Appl. 202019, 388–397. [Google Scholar] [CrossRef]
  15. Mobini, K.; Niazi, M. Simulation of unsteady flow around a rotating circular cylinder at various Reynolds numbers. JMEUT 201746, 249–257. Available online: https://www.researchgate.net/publication/323447030_Simulation_of_Unsteady_Flow_Around_a_Rotating_Circular_Cylinder_at_Various_Reynolds_Numbers (accessed on 15 January 2021).
  16. Babarit, A.; Delvoye, S.; Arnal, V.; Davoust, L.; Wackers, J. Wave and Current Generation in Wave Flumes Using Axial-Flow Pumps. In Proceedings of the 36th International Conference on Ocean, Offshore and Artic Engineering (OMAE2017), Trondheim, Norway, 25–30 June 2017; pp. 1–10. [Google Scholar] [CrossRef]
  17. Nortek Manuals. The Comprehensive Manual for Velocimeters. 2018. Available online: https://support.nortekgroup.com/hc/en-us/articles/360029839351-The-Comprehensive-Manual-Velocimeters (accessed on 15 January 2021).
  18. Stachurska, B.; Majewski, D. Propagation of Surface waves under currents—Analysis of measurements in wave flume of IBW PAN. IMiG 20144, 280–290. [Google Scholar]
  19. Lohrmann, A.; Cabrera, R.; Kraus, N. Acoustic-Doppler Velocimeter (ADV) for laboratory use. In Fundamentals and Advancements in Hydraulic Measuremensts and Experimentation; Buffalo: New York, NY, USA, 1994. [Google Scholar]
  20. Stachurska, B.; Majewski, D. Experimental Measurements of Current Velocity in Wave Flume of IBW PAN; Internal Report; Institute of Hydro-Engineering of Polish Academy of Sciences: Gdańsk, Poland, 2013. (In Polish) [Google Scholar]
  21. FLOW-3D. Available online: https://www.flow3d.com/ (accessed on 15 January 2021).
  22. He, J.W.; Glowinski, R.; Metcalfe, R.; Nordlander, A.; Periaux, J. Active control and drag optimization for flow past a circular cylinder: Oscillatory cylinder rotation. J. Comput. Phys. 2000163, 83–117. [Google Scholar] [CrossRef]
  23. Lebkowski, A. Analysis of the Use of Electric Drive Systems for Crew Transfer Vessels Servicing Offshore Wind Farms. Energies 202013, 1466. [Google Scholar] [CrossRef]
The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Numerical investigation of flow characteristics over stepped spillways

Güven, Aytaç
Mahmood, Ahmed Hussein
Water Supply (2021) 21 (3): 1344–1355.
https://doi.org/10.2166/ws.2020.283Article history

Abstract

Spillways are constructed to evacuate flood discharge safely so that a flood wave does not overtop the dam body. There are different types of spillways, with the ogee type being the conventional one. A stepped spillway is an example of a nonconventional spillway. The turbulent flow over a stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over a stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with an experimental study done by others in the literature. Two models of a stepped spillway with different discharge for each model were simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which are exhibited in terms of graphics and statistical tables.

배수로는 홍수가 댐 몸체 위로 넘치지 않도록 안전하게 홍수를 피할 수 있도록 건설되었습니다. 다른 유형의 배수로가 있으며, ogee 유형이 기존 유형입니다. 계단식 배수로는 비 전통적인 배수로의 예입니다. 계단식 배수로 위의 난류는 Flow-3D 패키지를 사용하여 수치적으로 연구되었습니다.

세로 유속, 온도 분포, 밀도 및 화학 농도와 같은 다양한 유체 흐름 특성은 Flow-3D로 잘 시뮬레이션 할 수 있습니다. 이 연구에서는 계단식 배수로에 대한 공기 혼입, 속도 분포 및 동적 압력 분포와 같은 유동 특성에 대한 경사 변화의 영향을 Flow-3D로 모델링 했습니다.

수치 모델의 결과는 문헌에서 다른 사람들이 수행한 실험 연구와 비교되었습니다. 각 모델에 대해 서로 다른 배출이 있는 계단식 배수로의 두 모델이 시뮬레이션되었습니다. 실험 모델의 난류 흐름은 수치 모델의 Renormalized Group (RNG) 난류 계획에 의해 시뮬레이션되었습니다. 수치 결과와 관찰 된 결과 사이에 좋은 일치가 이루어졌으며, 이는 그래픽 및 통계 테이블로 표시됩니다.

HIGHLIGHTS

ListenReadSpeaker webReader: Listen

  • A numerical model was developed for stepped spillways.
  • The turbulent flow was simulated by the Renormalized Group (RNG) model.
  • Both numerical and experimental results showed that flow characteristics are greatly affected by abrupt slope change on the steps.

Keyword

CFDnumerical modellingslope changestepped spillwayturbulent flow

INTRODUCTION

댐 구조는 물 보호가 생활의 핵심이기 때문에 물을 저장하거나 물을 운반하는 전 세계에서 가장 중요한 프로젝트입니다. 그리고 여수로는 댐의 가장 중요한 부분 중 하나로 분류됩니다. 홍수로 인한 파괴 나 피해로부터 댐을 보호하기 위해 여수로가 건설됩니다.

수력 발전, 항해, 레크리에이션 및 어업의 중요성을 감안할 때 댐 건설 및 홍수 통제는 전 세계적으로 매우 중요한 문제로 간주 될 수 있습니다. 많은 유형의 배수로가 있지만 가장 일반적인 유형은 다음과 같습니다 : ogee 배수로, 자유 낙하 배수로, 사이펀 배수로, 슈트 배수로, 측면 채널 배수로, 터널 배수로, 샤프트 배수로 및 계단식 배수로.

그리고 모든 여수로는 입구 채널, 제어 구조, 배출 캐리어 및 출구 채널의 네 가지 필수 구성 요소로 구성됩니다. 특히 롤러 압축 콘크리트 (RCC) 댐 건설 기술과 더 쉽고 빠르며 저렴한 건설 기술로 분류 된 계단식 배수로 건설과 관련하여 최근 수십 년 동안 많은 계단식 배수로가 건설되었습니다 (Chanson 2002; Felder & Chanson 2011).

계단식 배수로 구조는 캐비테이션 위험을 감소시키는 에너지 소산 속도를 증가시킵니다 (Boes & Hager 2003b). 계단식 배수로는 다양한 조건에서 더 매력적으로 만드는 장점이 있습니다.

계단식 배수로의 흐름 거동은 일반적으로 낮잠, 천이 및 스키밍 흐름 체제의 세 가지 다른 영역으로 분류됩니다 (Chanson 2002). 유속이 낮을 때 nappe 흐름 체제가 발생하고 자유 낙하하는 낮잠의 시퀀스로 특징 지워지는 반면, 스키밍 흐름 체제에서는 물이 외부 계단 가장자리 위의 유사 바닥에서 일관된 흐름으로 계단 위로 흐릅니다.

또한 주요 흐름에서 3 차원 재순환 소용돌이가 발생한다는 것도 분명합니다 (예 : Chanson 2002; Gonzalez & Chanson 2008). 계단 가장자리 근처의 의사 바닥에서 흐름의 방향은 가상 바닥과 가상으로 정렬됩니다. Takahashi & Ohtsu (2012)에 따르면, 스키밍 흐름 체제에서 주어진 유속에 대해 흐름은 계단 가장자리 근처의 수평 계단면에 영향을 미치고 슈트 경사가 감소하면 충돌 영역의 면적이 증가합니다. 전이 흐름 체제는 나페 흐름과 스키밍 흐름 체제 사이에서 발생합니다. 계단식 배수로를 설계 할 때 스키밍 흐름 체계를 고려해야합니다 (예 : Chanson 1994, Matos 2000, Chanson 2002, Boes & Hager 2003a).

CFD (Computational Fluid Dynamics), 즉 수력 공학의 수치 모델은 일반적으로 물리적 모델에 소요되는 총 비용과 시간을 줄여줍니다. 따라서 수치 모델은 실험 모델보다 빠르고 저렴한 것으로 분류되며 동시에 하나 이상의 목적으로 사용될 수도 있습니다. 사용 가능한 많은 CFD 소프트웨어 패키지가 있지만 가장 널리 사용되는 것은 FLOW-3D입니다. 이 연구에서는 Flow 3D 소프트웨어를 사용하여 유량이 서로 다른 두 모델에 대해 계단식 배수로에서 공기 농도, 속도 분포 및 동적 압력 분포를 시뮬레이션합니다.

Roshan et al. (2010)은 서로 다른 수의 계단 및 배출을 가진 계단식 배수로의 두 가지 물리적 모델에 대한 흐름 체제 및 에너지 소산 조사를 연구했습니다. 실험 모델의 기울기는 각각 19.2 %, 12 단계와 23 단계의 수입니다. 결과는 23 단계 물리적 모델에서 관찰 된 흐름 영역이 12 단계 모델보다 더 수용 가능한 것으로 간주되었음을 보여줍니다. 그러나 12 단계 모델의 에너지 손실은 23 단계 모델보다 더 많았습니다. 그리고 실험은 스키밍 흐름 체제에서 23 단계 모델의 에너지 소산이 12 단계 모델보다 약 12 ​​% 더 적다는 것을 관찰했습니다.

Ghaderi et al. (2020a)는 계단 크기와 유속이 다른 정련 매개 변수의 영향을 조사하기 위해 계단식 배수로에 대한 실험 연구를 수행했습니다. 그 결과, 흐름 체계가 냅페 흐름 체계에서 발생하는 최소 scouring 깊이와 같은 scouring 구멍 치수에 영향을 미친다는 것을 보여주었습니다. 또한 테일 워터 깊이와 계단 크기는 최대 scouring깊이에 대한 실제 매개 변수입니다. 테일 워터의 깊이를 6.31cm에서 8.54 및 11.82cm로 늘림으로써 수세 깊이가 각각 18.56 % 및 11.42 % 증가했습니다. 또한 이 증가하는 테일 워터 깊이는 scouring 길이를 각각 31.43 % 및 16.55 % 감소 시킵니다. 또한 유속을 높이면 Froude 수가 증가하고 흐름의 운동량이 증가하면 scouring이 촉진됩니다. 또한 결과는 중간의 scouring이 횡단면의 측벽보다 적다는 것을 나타냅니다. 계단식 배수로 하류의 최대 scouring 깊이를 예측 한 후 실험 결과와 비교하기 위한 실험식이 제안 되었습니다. 그리고 비교 결과 제안 된 공식은 각각 3.86 %와 9.31 %의 상대 오차와 최대 오차 내에서 scouring 깊이를 예측할 수 있음을 보여주었습니다.

Ghaderi et al. (2020b)는 사다리꼴 미로 모양 (TLS) 단계의 수치 조사를 했습니다. 결과는 이러한 유형의 배수로가 확대 비율 LT / Wt (LT는 총 가장자리 길이, Wt는 배수로의 폭)를 증가시키기 때문에 더 나은 성능을 갖는 것으로 관찰되었습니다. 또한 사다리꼴 미로 모양의 계단식 배수로는 더 큰 마찰 계수와 더 낮은 잔류 수두를 가지고 있습니다. 마찰 계수는 다양한 배율에 대해 0.79에서 1.33까지 다르며 평평한 계단식 배수로의 경우 대략 0.66과 같습니다. 또한 TLS 계단식 배수로에서 잔류 수두의 비율 (Hres / dc)은 약 2.89이고 평평한 계단식 배수로의 경우 약 4.32와 같습니다.

Shahheydari et al. (2015)는 Flow-3D 소프트웨어, RNG k-ε 모델 및 VOF (Volume of Fluid) 방법을 사용하여 배출 계수 및 에너지 소산과 같은 자유 표면 흐름의 프로파일을 연구하여 스키밍 흐름 체제에서 계단식 배수로에 대한 흐름을 조사했습니다. 실험 결과와 비교했습니다. 결과는 에너지 소산 율과 방전 계수율의 관계가 역으로 실험 모델의 결과와 잘 일치 함을 보여 주었다.

Mohammad Rezapour Tabari & Tavakoli (2016)는 계단 높이 (h), 계단 길이 (L), 계단 수 (Ns) 및 단위 폭의 방전 (q)과 같은 다양한 매개 변수가 계단식 에너지 ​​소산에 미치는 영향을 조사했습니다. 방수로. 그들은 해석에 FLOW-3D 소프트웨어를 사용하여 계단식 배수로에서 에너지 손실과 임계 흐름 깊이 사이의 관계를 평가했습니다. 또한 유동 난류에 사용되는 방정식과 표준 k-ɛ 모델을 풀기 위해 유한 체적 방법을 적용했습니다. 결과에 따르면 스텝 수가 증가하고 유량 배출량이 증가하면 에너지 손실이 감소합니다. 얻은 결과를 다른 연구와 비교하고 경험적, 수학적 조사를 수행하여 결국 합격 가능한 결과를 얻었습니다.

METHODOLOGY

ListenReadSpeaker webReader: ListenFor all numerical models the basic principle is very similar: a set of partial differential equations (PDE) present the physical problems. The flow of fluids (gas and liquid) are governed by the conservation laws of mass, momentum and energy. For Computational Fluid Dynamics (CFD), the PDE system is substituted by a set of algebraic equations which can be worked out by using numerical methods (Versteeg & Malalasekera 2007). Flow-3D uses the finite volume approach to solve the Reynolds Averaged Navier-Stokes (RANS) equation, by applying the technique of Fractional Area/Volume Obstacle Representation (FAVOR) to define an obstacle (Flow Science Inc. 2012). Equations (1) and (2) are RANS and continuity equations with FAVOR variables that are applied for incompressible flows.

formula

(1)

formula

(2)where  is the velocity in xi direction, t is the time,  is the fractional area open to flow in the subscript directions,  is the volume fraction of fluid in each cell, p is the hydrostatic pressure,  is the density, is the gravitational force in subscript directions and  is the Reynolds stresses.

Turbulence modelling is one of three key elements in CFD (Gunal 1996). There are many types of turbulence models, but the most common are Zero-equation models, One-equation models, Two-equation models, Reynolds Stress/Flux models and Algebraic Stress/Flux models. In FLOW-3D software, five turbulence models are available. The formulation used in the FLOW-3D software differs slightly from other formulations that includes the influence of the fractional areas/volumes of the FAVORTM method and generalizes the turbulence production (or decay) associated with buoyancy forces. The latter generalization, for example, includes buoyancy effects associated with non-inertial accelerations.

The available turbulence models in Flow-3D software are the Prandtl Mixing Length Model, the One-Equation Turbulent Energy Model, the Two-Equation Standard  Model, the Two-Equation Renormalization-Group (RNG) Model and large Eddy Simulation Model (Flow Science Inc. 2012).In this research the RNG model was selected because this model is more commonly used than other models in dealing with particles; moreover, it is more accurate to work with air entrainment and other particles. In general, the RNG model is classified as a more widely-used application than the standard k-ɛ model. And in particular, the RNG model is more accurate in flows that have strong shear regions than the standard k-ɛ model and it is defined to describe low intensity turbulent flows. For the turbulent dissipation  it solves an additional transport equation:

formula

(3)where CDIS1, CDIS2, and CDIS3 are dimensionless parameters and the user can modify them. The diffusion of dissipation, Diff ɛ, is

formula

(4)where uv and w are the x, y and z coordinates of the fluid velocity; ⁠, ⁠,  and ⁠, are FLOW-3D’s FAVORTM defined terms;  and  are turbulence due to shearing and buoyancy effects, respectively. R and  are related to the cylindrical coordinate system. The default values of RMTKE, CDIS1 and CNU differ, being 1.39, 1.42 and 0.085 respectively. And CDIS2 is calculated from turbulent production (⁠⁠) and turbulent kinetic energy (⁠⁠).The kinematic turbulent viscosity is the same in all turbulence transport models and is calculated from

formula

(5)where ⁠: is the turbulent kinematic viscosity.  is defined as the numerical challenge between the RNG and the two-equation k-ɛ models, found in the equation below. To avoid an unphysically large result for  in Equation (3), since this equation could produce a value for  very close to zero and also because the physical value of  may approach to zero in such cases, the value of  is calculated from the following equation:

formula

(6)where ⁠: the turbulent length scale.

VOF and FAVOR are classifications of volume-fraction methods. In these two methods, firstly the area should be subdivided into a control volume grid or a small element. Each flow parameter like velocity, temperature and pressure values within the element are computed for each element containing liquids. Generally, these values represent the volumetric average of values in the elements.Numerous methods have been used recently to solve free infinite boundaries in the various numerical simulations. VOF is an easy and powerful method created based on the concept of a fractional intensity of fluid. A significant number of studies have confirmed that this method is more flexible and efficient than others dealing with the configurations of a complex free boundary. By using VOF technology the Flow-3D free surface was modelled and first declared in Hirt & Nichols (1981). In the VOF method there are three ingredients: a planner to define the surface, an algorithm for tracking the surface as a net mediator moving over a computational grid, and application of the boundary conditions to the surface. Configurations of the fluids are defined in terms of VOF function, F (x, y, z, t) (Hirt & Nichols 1981). And this VOF function shows the volume of flow per unit volume

formula

(7)

formula

(8)

formula

(9)where  is the density of the fluid, is a turbulent diffusion term,  is a mass source,  is the fractional volume open to flow. The components of velocity (u, v, w) are in the direction of coordinates (x, y, z) or (r, ⁠).  in the x-direction is the fractional area open to flow,  and  are identical area fractions for flow in the y and z directions. The R coefficient is based on the selection of the coordinate system.

The FAVOR method is a different method and uses another volume fraction technique, which is only used to define the geometry, such as the volume of liquid in each cell used to determine the position of fluid surfaces. Another fractional volume can be used to define the solid surface. Then, this information is used to determine the boundary conditions of the wall that the flow should be adapted for.

Case study

ListenReadSpeaker webReader: Listen

In this study, the experimental results of Ostad Mirza (2016) was simulated. In a channel composed of two 4 m long modules, with a transparent sidewall of height 0.6 m and 0.5 m width. The upstream chute slope (i.e. pseudo-bottom angle) Ɵ1 = 50°, the downstream chute slope Ɵ2 = 30° or 18.6°, the step heights h = 0.06 m, the total number of steps along the 50° chute 41 steps, the total number of steps along the 30° chute 34 steps and the total number of steps along the 18.6° chute 20 steps.

The flume inflow tool contained a jetbox with a maximum opening set to 0.12 meters, designed for passing the maximum unit discharge of 0.48 m2/s. The measurements of the flow properties (i.e. air concentration and velocity) were computed perpendicular to the pseudo-bottom as shown in Figure 1 at the centre of twenty stream-wise cross-sections, along the stepped chute, (i.e. in five steps up on the slope change and fifteen steps down on the slope change, namely from step number −09 to +23 on 50°–30° slope change, or from −09 to +15 on 50°–18.6° slope change, respectively).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).
Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).

Pressure sensors were arranged with the x/l values for different slope change as shown in Table 1, where x is the distance from the step edge, along the horizontal step face, and l is the length of the horizontal step face. The location of pressure sensors is shown in Table 1.Table 1

Location of pressure sensors on horizontal step faces

Θ(°)L(m)x/l (–)
50.0 0.050 0.35 0.64 – – – 
30.0 0.104 0.17 0.50 0.84 – – 
18.6 0.178 0.10 0.30 0.50 0.7 0.88 
Location of pressure sensors on horizontal step faces
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.

Numerical model set-up

ListenReadSpeaker webReader: Listen

A 3D numerical model of hydraulic phenomena was simulated based on an experimental study by Ostad Mirza (2016). The water surcharge and flow pressure over the stepped spillway was computed for two models of a stepped spillway with different discharge for each model. In this study, the package was used to simulate the flow parameters such as air entrainment, velocity distribution and dynamic pressures. The solver uses the finite volume technique to discretize the computational domain. In every test run, one incompressible fluid flow with a free surface flow selected at 20̊ was used for this simulation model. Table 2 shows the variables used in test runs.Table 2

Variables used in test runs

Test no.Θ1 (°)Θ2 (°)h(m)d0q (m3s1)dc/h (–)
50 18.6 0.06 0.045 0.1 2.6 
50 18.6 0.06 0.082 0.235 4.6 
50 30.0 0.06 0.045 0.1 2.6 
50 30.0 0.06 0.082 0.235 4.6 
Table 2 Variables used in test runs

For stepped spillway simulation, several parameters should be specified to get accurate simulations, which is the scope of this research. Viscosity and turbulent, gravity and non-inertial reference frame, air entrainment, density evaluation and drift-flux should be activated for these simulations. There are five different choices in the ‘viscosity and turbulent’ option, in the viscosity flow and Renormalized Group (RNG) model. Then a dynamical model is selected as the second option, the ‘gravity and non-inertial reference frame’. Only the z-component was inputted as a negative 9.81 m/s2 and this value represents gravitational acceleration but in the same option the x and y components will be zero. Air entrainment is selected. Finally, in the drift-flux model, the density of phase one is input as (water) 1,000 kg/m3 and the density of phase two (air) as 1.225 kg/m3. Minimum volume fraction of phase one is input equal to 0.1 and maximum volume fraction of phase two to 1 to allow air concentration to reach 90%, then the option allowing gas to escape at free surface is selected, to obtain closer simulation.

The flow domain is divided into small regions relatively by the mesh in Flow-3D numerical model. Cells are the smallest part of the mesh, in which flow characteristics such as air concentration, velocity and dynamic pressure are calculated. The accuracy of the results and simulation time depends directly on the mesh block size so the cell size is very important. Orthogonal mesh was used in cartesian coordinate systems. A smaller cell size provides more accuracy for results, so we reduced the number of cells whilst including enough accuracy. In this study, the size of cells in x, y and z directions was selected as 0.015 m after several trials.

Figure 3 shows the 3D computational domain model 50–18.6 slope change, that is 6.0 m length, 0.50 m width and 4.23 m height. The 3D model of the computational domain model 50–30 slope changes this to 6.0 m length, 0.50 m width and 5.068 m height and the size of meshes in x, y, and z directions are 0.015 m. For the 50–18.6 slope change model: both total number of active and passive cells = 4,009,952, total number of active cells = 3,352,307, include real cells (used for solving the flow equations) = 3,316,269, open real cells = 3,316,269, fully blocked real cells equal to zero, external boundary cells were 36,038, inter-block boundary cells = 0 (Flow-3D report). For 50–30 slope change model: both total number of active and passive cells = 4,760,002, total number of active cells equal to 4,272,109, including real cells (used for solving the flow equations) were 3,990,878, open real cells = 3,990,878 fully blocked real cells = zero, external boundary cells were 281,231, inter-block boundary cells = 0 (Flow-3D report).

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.
Figure3 The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

Figure 3VIEW LARGEDOWNLOAD SLIDE

The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.

When solving the Navier-Stokes equation and continuous equations, boundary conditions should be applied. The most important work of boundary conditions is to create flow conditions similar to physical status. The Flow-3D software has many types of boundary condition; each type can be used for the specific condition of the models. The boundary conditions in Flow-3D are symmetry, continuative, specific pressure, grid overlay, wave, wall, periodic, specific velocity, outflow, and volume flow rate.

There are two options to input finite flow rate in the Flow-3D software either for inlet discharge of the system or for the outlet discharge of the domain: specified velocity and volume flow rate. In this research, the X-minimum boundary condition, volume flow rate, has been chosen. For X-maximum boundary condition, outflow was selected because there is nothing to be calculated at the end of the flume. The volume flow rate and the elevation of surface water was set for Q = 0.1 and 0.235 m3/s respectively (Figure 2).

The bottom (Z-min) is prepared as a wall boundary condition and the top (Z-max) is computed as a pressure boundary condition, and for both (Y-min) and (Y-max) as symmetry.

RESULTS AND DISCUSSION

ListenReadSpeaker webReader: Listen

The air concentration distribution profiles in two models of stepped spillway were obtained at an acquisition time equal to 25 seconds in skimming flow for both upstream and downstream of a slope change 50°–18.6° and 50°–30° for different discharge as in Table 2, and as shown in Figure 4 for 50°–18.6° slope change and Figure 5 for 50°–30° slope change configuration for dc/h = 4.6. The simulation results of the air concentration are very close to the experimental results in all curves and fairly close to that predicted by the advection-diffusion model for the air bubbles suggested by Chanson (1997) on a constant sloping chute.

Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
Figure 4 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6. VIEW LARGEDOWNLOAD SLIDE Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure 4VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.

Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.
Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 5VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.

Figure 6VIEW LARGEDOWNLOAD SLIDE

Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.
Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.

Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.
Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

Figure 7VIEW LARGEDOWNLOAD SLIDE

Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.

But as is shown in all above mentioned figures it is clear that at the pseudo-bottom the CFD results of air concentration are less than experimental ones until the depth of water reaches a quarter of the total depth of water. Also the direction of the curves are parallel to each other when going up towards the surface water and are incorporated approximately near the surface water. For all curves, the cross-section is separate between upstream and downstream steps. Therefore the (-) sign for steps represents a step upstream of the slope change cross-section and the (+) sign represents a step downstream of the slope change cross-section.

The dimensionless velocity distribution (V/V90) profile was acquired at an acquisition time equal to 25 seconds in skimming flow of the upstream and downstream slope change for both 50°–18.6° and 50°–30° slope change. The simulation results are compared with the experimental ones showing that for all curves there is close similarity for each point between the observed and experimental results. The curves increase parallel to each other and they merge near at the surface water as shown in Figure 6 for slope change 50°–18.6° configuration and Figure 7 for slope change 50°–30° configuration. However, at step numbers +1 and +5 in Figure 7 there are few differences between the simulated and observed results, namely the simulation curves ascend regularly meaning the velocity increases regularly from the pseudo-bottom up to the surface water.

Figure 8 (50°–18.6° slope change) and Figure 9 (50°–30° slope change) compare the simulation results and the experimental results for the presented dimensionless dynamic pressure distribution for different points on the stepped spillway. The results show a good agreement with the experimental and numerical simulations in all curves. For some points, few discrepancies can be noted in pressure magnitudes between the simulated and the observed ones, but they are in the acceptable range. Although the experimental data do not completely agree with the simulated results, there is an overall agreement.

Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 8VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number  −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

Figure 9VIEW LARGEDOWNLOAD SLIDE

Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.

The pressure profiles were acquired at an acquisition time equal to 70 seconds in skimming flow on 50°–18.6°, where p is the measured dynamic pressure, h is step height and ϒ is water specific weight. A negative sign for steps represents a step upstream of the slope change cross-section and a positive sign represents a step downstream of the slope change cross-section.

Figure 10 shows the experimental streamwise development of dimensionless pressure on the 50°–18.6° slope change for dc/h = 4.6, x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute compared with the numerical simulation. It is obvious from Figure 10 that the streamwise development of dimensionless pressure before slope change (steps number −1, −2 and −3) both of the experimental and simulated results are close to each other. However, it is clear that there is a little difference between the results of the streamwise development of dimensionless pressure at step numbers +1, +2 and +3. Moreover, from step number +3 to the end, the curves get close to each other.

Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.
Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 10VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.

Figure 11 compares the experimental and the numerical results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute. It is apparent that the outcomes of the experimental work are close to the numerical results, however, the results of the simulation are above the experimental ones before the slope change, but the results of the simulation descend below the experimental ones after the slope change till the end.

Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.
Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

Figure 11VIEW LARGEDOWNLOAD SLIDE

Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.

CONCLUSION

ListenReadSpeaker webReader: Listen

In this research, numerical modelling was attempted to investigate the effect of abrupt slope change on the flow properties (air entrainment, velocity distribution and dynamic pressure) over a stepped spillway with two different models and various flow rates in a skimming flow regime by using the CFD technique. The numerical model was verified and compared with the experimental results of Ostad Mirza (2016). The same domain of the numerical model was inputted as in experimental models to reduce errors as much as possible.

Flow-3D is a well modelled tool that deals with particles. In this research, the model deals well with air entrainment particles by observing their results with experimental results. And the reason for the small difference between the numerical and the experimental results is that the program deals with particles more accurately than the laboratory. In general, both numerical and experimental results showed that near to the slope change the flow bulking, air entrainment, velocity distribution and dynamic pressure are greatly affected by abrupt slope change on the steps. Although the extent of the slope change was relatively small, the influence of the slope change was major on flow characteristics.

The Renormalized Group (RNG) model was selected as a turbulence solver. For 3D modelling, orthogonal mesh was used as a computational domain and the mesh grid size used for X, Y, and Z direction was equal to 0.015 m. In CFD modelling, air concentration and velocity distribution were recorded for a period of 25 seconds, but dynamic pressure was recorded for a period of 70 seconds. The results showed that there is a good agreement between the numerical and the physical models. So, it can be concluded that the proposed CFD model is very suitable for use in simulating and analysing the design of hydraulic structures.

이 연구에서 수치 모델링은 두 가지 다른 모델과 다양한 유속을 사용하여 스키밍 흐름 영역에서 계단식 배수로에 대한 유동 특성 (공기 혼입, 속도 분포 및 동적 압력)에 대한 급격한 경사 변화의 영향을 조사하기 위해 시도되었습니다. CFD 기술. 수치 모델을 검증하여 Ostad Mirza (2016)의 실험 결과와 비교 하였다. 오차를 최대한 줄이기 위해 실험 모형과 동일한 수치 모형을 입력 하였다.

Flow-3D는 파티클을 다루는 잘 모델링 된 도구입니다. 이 연구에서 모델은 실험 결과를 통해 결과를 관찰하여 공기 혼입 입자를 잘 처리합니다. 그리고 수치와 실험 결과의 차이가 작은 이유는 프로그램이 실험실보다 입자를 더 정확하게 다루기 때문입니다. 일반적으로 수치 및 실험 결과는 경사에 가까워지면 유동 벌킹, 공기 혼입, 속도 분포 및 동적 압력이 계단의 급격한 경사 변화에 크게 영향을받는 것으로 나타났습니다. 사면 변화의 정도는 상대적으로 작았지만 사면 변화의 영향은 유동 특성에 큰 영향을 미쳤다.

Renormalized Group (RNG) 모델이 난류 솔버로 선택되었습니다. 3D 모델링의 경우 계산 영역으로 직교 메쉬가 사용되었으며 X, Y, Z 방향에 사용 된 메쉬 그리드 크기는 0.015m입니다. CFD 모델링에서 공기 농도와 속도 분포는 25 초 동안 기록되었지만 동적 압력은 70 초 동안 기록되었습니다. 결과는 수치 모델과 물리적 모델간에 좋은 일치가 있음을 보여줍니다. 따라서 제안 된 CFD 모델은 수력 구조물의 설계 시뮬레이션 및 해석에 매우 적합하다는 결론을 내릴 수 있습니다.

DATA AVAILABILITY STATEMENT

ListenReadSpeaker webReader: Listen

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Boes R. M. Hager W. H. 2003a Hydraulic design of stepped spillways. Journal of Hydraulic Engineering 129 (9), 671–679.
Google Scholar
Boes R. M. Hager W. H. 2003b Two-Phase flow characteristics of stepped spillways. Journal of Hydraulic Engineering 129 (9), 661–670.
Google Scholar
Chanson H. 1994 Hydraulics of skimming flows over stepped channels and spillways. Journal of Hydraulic Research 32 (3), 445–460.
Google Scholar
Chanson H. 1997 Air Bubble Entrainment in Free Surface Turbulent Shear Flows. Academic Press, London.
Google Scholar
Chanson H. 2002 The Hydraulics of Stepped Chutes and Spillways. Balkema, Lisse, The Netherlands.
Google Scholar
Felder S. Chanson H. 2011 Energy dissipation down a stepped spillway with nonuniform step heights. Journal of Hydraulic Engineering 137 (11), 1543–1548.
Google Scholar
Flow Science, Inc. 2012 FLOW-3D v10-1 User Manual. Flow Science, Inc., Santa Fe, CA.
Ghaderi A. Daneshfaraz R. Torabi M. Abraham J. Azamathulla H. M. 2020a Experimental investigation on effective scouring parameters downstream from stepped spillways. Water Supply 20 (5), 1988–1998.
Google Scholar
Ghaderi A. Abbasi S. Abraham J. Azamathulla H. M. 2020b Efficiency of trapezoidal labyrinth shaped stepped spillways. Flow Measurement and Instrumentation 72, 101711.
Google Scholar
Gonzalez C. A. Chanson H. 2008 Turbulence and cavity recirculation in air-water skimming flows on a stepped spillway. Journal of Hydraulic Research 46 (1), 65–72.
Google Scholar
Gunal M. 1996 Numerical and Experimental Investigation of Hydraulic Jumps. PhD Thesis, University of Manchester, Institute of Science and Technology, Manchester, UK.
Hirt C. W. Nichols B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 39 (1), 201–225.
Google Scholar
Matos J. 2000 Hydraulic design of stepped spillways over RCC dams. In: Intl Workshop on Hydraulics of Stepped Spillways (H.-E. Minor & W. Hager, eds). Balkema Publ, Zurich, pp. 187–194.
Google Scholar
Mohammad Rezapour Tabari M. Tavakoli S. 2016 Effects of stepped spillway geometry on flow pattern and energy dissipation. Arabian Journal for Science & Engineering (Springer Science & Business Media BV) 41 (4), 1215–1224.
Google Scholar
Ostad Mirza M. J. 2016 Experimental Study on the Influence of Abrupt Slope Changes on Flow Characteristics Over Stepped Spillways. Communications du Laboratoire de Constructions Hydrauliques, No. 64 (A. J. Schleiss, ed.). Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
Roshan R. Azamathulla H. M. Marosi M. Sarkardeh H. Pahlavan H. Ab Ghani A. 2010 Hydraulics of stepped spillways with different numbers of steps. Dams and Reservoirs 20 (3), 131–136.
Google Scholar
Shahheydari H. Nodoshan E. J. Barati R. Moghadam M. A. 2015 Discharge coefficient and energy dissipation over stepped spillway under skimming flow regime. KSCE Journal of Civil Engineering 19 (4), 1174–1182.
Google Scholar
Takahashi M. Ohtsu I. 2012 Aerated flow characteristics of skimming flow over stepped chutes. Journal of Hydraulic Research 50 (4), 427–434.
Google Scholar
Versteeg H. K. Malalasekera W. 2007 An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Pearson Education, Harlow.
Google Scholar
© 2021 The Authors
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence (CC BY 4.0), which permits copying, adaptation and redistribution, provided the original work is properly cited (http://creativecommons.org/licenses/by/4.0/).

Fig. 2. Semi-Lagrangian cellwise advection. (a) Forward advection scheme, (b) Backward advection scheme.

Three-dimensional cellwise conservative unsplit geometric VOF schemes

3차원 셀별 보수 미분할 기하학적 VOF 체계

Raphaël Comminal, JonSpangenberg

Abstract

This work presents two unsplit geometric VOF schemes that extend the two-dimensional cellwise conservative unsplit (CCU) scheme [Comminal et al., J. Comput. Phys. 283 (2015) 582–608] to three dimensions. The novelty of the 3D-CCU schemes lies in the representation of the streaksurfaces of donating regions by polyhedral surfaces whose vertices are calculated with the 4th order Runge-Kutta scheme. Moreover, the advected liquid volumes are computed using a truncation algorithm [López et al., J. Comput. Phys. 392 (2019) 666–693] suited for arbitrary non-convex and self-intersecting polyhedra, which removes the need for tetrahedral decomposition. The 3D-CCU advection schemes were coupled to three interface reconstruction methods (Youngs’ method, the Mixed Youngs-Centered scheme, and the Least-Square Fit algorithm). The resulting VOF methods were tested in classical benchmark advection tests, including translation, rigid-body rotation, shear and deformation flows. The proposed 3D-CCU schemes conserve the liquid volume and maintain the physical boundedness of liquid volume fractions to the machine precision. The 3D-CCU schemes perform favorably compared to other unsplit geometric VOF schemes when coupled to Youngs’ interface reconstruction method. Moreover, the 3D-CCU schemes coupled to the Least-Square Fit algorithm are more accurate than most other VOF schemes that use a second-order accurate interface reconstruction, except those where a 3D extension of the Mosso-Swartz interface reconstruction is employed. The comparison of the different VOF schemes highlights the importance of coupling accurate interface reconstruction methods with accurate unsplit advection schemes.

이 연구는 2 차원 CCU (Cellwise Conservative Unsplit) 방식을 확장하는 두 가지 분할되지 않은 기하학적 VOF 방식을 제시합니다 [Comminal et al., J. Comput. Phys. 283 (2015) 582–608]을 3 차원으로 변경했습니다. 3D-CCU 체계의 참신함은 4 차 Runge-Kutta 체계로 정점이 계산되는 다면체 표면으로 기부 지역의 줄무늬 표면을 표현하는 데 있습니다.

더욱, 가변 액체 부피는 절단 알고리즘을 사용하여 계산됩니다 [López et al., J. Comput. Phys. 392 (2019) 666–693]은 임의의 볼록하지 않고 자기 교차하는 다면체에 적합하며, 이는 사면체 분해의 필요성을 제거합니다. 3D-CCU 이류 계획은 세 가지 인터페이스 재구성 방법 (Youngs의 방법, Mixed Youngs-Centered 계획 및 Least-Square Fit 알고리즘)과 결합되었습니다. 결과 VOF 방법은 평행 이동, 강체 회전, 전단 및 변형 흐름을 포함한 고전적인 벤치 마크 이류 테스트에서 테스트되었습니다.

제안된 3D-CCU 방식은 액체 부피를 보존하고 기계 정밀도에 대한 액체 부피 분율의 물리적 경계를 유지합니다. 3D-CCU 방식은 Youngs의 인터페이스 재구성 방식과 결합 할 때 다른 분할되지 않은 기하학적 VOF 방식에 비해 우수한 성능을 발휘합니다.

또한 Least-Square Fit 알고리즘과 결합 된 3D-CCU 체계는 Mosso-Swartz 인터페이스 재구성의 3D 확장이 사용되는 경우를 제외하고 2 차 정확한 인터페이스 재구성을 사용하는 대부분의 다른 VOF 체계보다 더 정확합니다. 서로 다른 VOF 체계의 비교는 정확한 인터페이스 재구성 방법과 정확한 분할되지 않은 이류 체계를 결합하는 것의 중요성을 강조합니다.

Keywords

Volume-of-fluid methodUnsplit geometric schemeCellwise advectionSemi-Lagrangian trackingVolume conservation

Fig. 1. Eulerian fluxwise advection. (a) Positive donating region with respect to the left cell; (b) Negative donating region; (c) Intersection of a donating region with the cell's face, yielding a positive and a negative region; (d) Temporally-consistent donating regions equivalent to a cellwise advection; (e) Temporal inconsistency of adjacent donating regions.
Fig. 1. Eulerian fluxwise advection. (a) Positive donating region with respect to the left cell; (b) Negative donating region; (c) Intersection of a donating region with the cell’s face, yielding a positive and a negative region; (d) Temporally-consistent donating regions equivalent to a cellwise advection; (e) Temporal inconsistency of adjacent donating regions.
Fig. 2. Semi-Lagrangian cellwise advection. (a) Forward advection scheme, (b) Backward advection scheme.
Fig. 2. Semi-Lagrangian cellwise advection. (a) Forward advection scheme, (b) Backward advection scheme.
Fig. 3. (a) Cartesian grid cell. (b) Images of the cell's vertices with ruled surfaces. (c) Polyhedral cell's image with triangulated faces.
Fig. 3. (a) Cartesian grid cell. (b) Images of the cell’s vertices with ruled surfaces. (c) Polyhedral cell’s image with triangulated faces.
Fig. 4. Construction of donating regions. (a) Streakline of a cell's vertex P0 represented by the 2-segment polygonal line P0–P1/2–P1. (b) Triangulated streaksurface of a cell's edge P0Q0. (c) Streaktube of a cell's face P0Q0R0S0. (d) Pyramidal volume flux correction  ⁎  capping the donating region of the face P0Q0R0S0.
Fig. 4. Construction of donating regions. (a) Streakline of a cell’s vertex P0 represented by the 2-segment polygonal line P0–P1/2–P1. (b) Triangulated streaksurface of a cell’s edge P0Q0. (c) Streaktube of a cell’s face P0Q0R0S0. (d) Pyramidal volume flux correction ⁎ capping the donating region of the face P0Q0R0S0.
Fig. 5. Interface reconstruction. (a) PLIC polygon in the grid cell, (b) Non-planar image of the PLIC polygon inside the cell's image by isomorphism, (c) Planar PLIC inside the cell's image by computation of the average normal vector. (Triangulation of the cell's image faces are omitted for clarity.)
Fig. 5. Interface reconstruction. (a) PLIC polygon in the grid cell, (b) Non-planar image of the PLIC polygon inside the cell’s image by isomorphism, (c) Planar PLIC inside the cell’s image by computation of the average normal vector. (Triangulation of the cell’s image faces are omitted for clarity.)
Fig. 6. Convergence of the geometric errors in the translation tests.
Fig. 6. Convergence of the geometric errors in the translation tests.
Fig. 7. Reconstructed PLIC polygons (in light blue) superimposed to the exact sphere position (in dark blue) at the end of the rotation tests for the LSF method and CFL = 1.
Fig. 7. Reconstructed PLIC polygons (in light blue) superimposed to the exact sphere position (in dark blue) at the end of the rotation tests for the LSF method and CFL = 1.
Fig. 8. Reconstructed PLIC polygons in the shear tests, at Tf/2 (top row) and Tf (bottom row). Blue polygons are computed with the LSF procedure; green polygons with centered column differences; red polygons with Youngs' method.
Fig. 8. Reconstructed PLIC polygons in the shear tests, at Tf/2 (top row) and Tf (bottom row). Blue polygons are computed with the LSF procedure; green polygons with centered column differences; red polygons with Youngs’ method.
Fig. 9. Reconstructed PLIC polygons in the deformation tests, at Tf/2 (top row) and Tf (bottom row). Blue polygons are computed with the LSF procedure; green polygons with centered column differences; red polygons with Youngs' method.
Fig. 9. Reconstructed PLIC polygons in the deformation tests, at Tf/2 (top row) and Tf (bottom row). Blue polygons are computed with the LSF procedure; green polygons with centered column differences; red polygons with Youngs’ method.

References
[1]
C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics 39 (1981) 201–225. https://doi.org/10.1016/0021-9991(81)90145-5.
Google Scholar
[2]
F.H. Harlow, J.E. Welch, Numerical Calculation of Time-Dependent Viscous Incompressible Flow of Fluid with Free Surface, The Physics of Fluids 8 (1965) 2182–2189. https://doi.org/10.1063/1.1761178.
Google Scholar
[3]
S. McKee, M.F. Tomé, V.G. Ferreira, J.A. Cuminato, A. Castelo, F.S. Sousa, N. Mangiavacchi, The MAC method, Computers & Fluids 37 (2008) 907–930. https://doi.org/10.1016/j.compfluid.2007.10.006.
Google Scholar
[4]
G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.-J. Jan, A front-tracking method for the computations of multiphase flow, Journal of Computational Physics 169 (2001) 708–759. https://doi.org/10.1006/jcph.2001.6726.
Google Scholar
[5]
S. Shin, D. Juric, Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity, Journal of Computational Physics 180 (2002) 427–470. https://doi.org/10.1006/jcph.2002.7086.
Google Scholar
[6]
M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational Physics 114 (1994) 146–159. https://doi.org/10.1006/jcph.1994.1155.
Google Scholar
[7]
E. Olsson, G. Kreiss, A conservative level set method for two phase flow, Journal of Computational Physics 210 (2005) 225–246. https://doi.org/10.1016/j.jcp.2005.04.007.
Google Scholar
[8]
D. Jacqmin, Calculation of two-phase Navier–Stokes flows using phase-field modeling, Journal of Computational Physics 155 (1999) 96–127. https://doi.org/10.1006/jcph.1999.6332.
Google Scholar
[9]
M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows, Journal of Computational Physics 162 (2000) 301–337. https://doi.org/10.1006/jcph.2000.6537.
Google Scholar
[10]
M. Sussman, A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles, Journal of Computational Physics 187 (2003) 110–136. https://doi.org/10.1016/S0021-9991(03)00087-1.
Google Scholar
[11]
N. Balcázar, O. Lehmkuhl, L. Jofre, J. Rigola, A. Oliva, A coupled volume-of-fluid/level-set method for simulation of two-phase flows on unstructured meshes, Computers & Fluids 124 (2016) 12–29. https://doi.org/10.1016/j.compfluid.2015.10.005.
Google Scholar
[12]
Y. Liu, X. Yu, A coupled phase–field and volume-of-fluid method for accurate representation of limiting water wave deformation, Journal of Computational Physics 321 (2016) 459–475. https://doi.org/10.1016/j.jcp.2016.05.059.
Google Scholar
[13]
E. Aulisa, S. Manservisi, R. Scardovelli, A surface marker algorithm coupled to an area-preserving marker redistribution method for three-dimensional interface tracking, Journal of Computational Physics 197 (2004) 555–584. https://doi.org/10.1016/j.jcp.2003.12.009.
Google Scholar
[14]
D. Enright, R. Fedkiw, J. Ferziger, I. Mitchell, A hybrid particle level set method for improved interface capturing, Journal of Computational Physics 183 (2002) 83–116. https://doi.org/10.1006/jcph.2002.7166.
Google Scholar
[15]
T. Marić, H. Marschall, D. Bothe, lentFoam – A hybrid Level Set/Front Tracking method on unstructured meshes, Computers & Fluids 113 (2015) 20–31. https://doi.org/10.1016/j.compfluid.2014.12.019.
Google Scholar
[16]
S. Mirjalili, S.S. Jain, M. Dodd, Interface-capturing methods for two-phase flows: An overview and recent developments, In: Center for Turbulence Research Annual Research Briefs (2017) 117–135.
Google Scholar
[17]
D. Fuster, A. Bagué, T. Boeck, L. Le Moyne, A. Leboissetier, S. Popinet, P. Ray, R. Scardovelli, S. Zaleski, Simulation of primary atomization with an octree adaptive mesh refinement and VOF method, International Journal of Multiphase Flow 35 (2009) 550–565. https://doi.org/10.1016/j.ijmultiphaseflow.2009.02.014.
Google Scholar
[18]
X. Chen, D. Ma, V. Yang, S. Popinet, High-fidelity simulations of impinging jet atomization, Atomization and Sprays 23 (2013) 1079–1101. https://doi.org/10.1615/AtomizSpr.2013007619.
Google Scholar
[19]
J. Delteil, S. Vincent, A. Erriguible, P. Subra-Paternault, Numerical investigations in Rayleigh breakup of round liquid jets with VOF methods, Computers & Fluids 50 (2011) 10–23. https://doi.org/10.1016/j.compfluid.2011.05.010.
Google Scholar
[20]
Agbaglah, S. Delaux, D. Fuster, J. Hoepffner, C. Josserand, S. Popinet, P. Ray, R. Scardovelli, S. Zaleski, Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method, Comptes Rendus Mecanique 339 (2011) 194–207. https://doi.org/10.1016/j.crme.2010.12.006.
Google Scholar
[21]
H. Grosshans, A. Movaghar, L. Cao, M. Oevermann, R.Z. Szász, L. Fuchs, Sensitivity of VOF simulations of the liquid jet breakup to physical and numerical parameters, Computers & Fluids 136 (2016) 312–323. https://doi.org/10.1016/j.compfluid.2016.06.018.
Google Scholar
[22]
D. Lörstad, L. Fuchs, High-order surface tension VOF-model for 3D bubble flows with high density ratio, Journal of Computational Physics 200 (2004) 153–176. https://doi.org/10.1016/j.jcp.2004.04.001.
Google Scholar
[23]
D. Fuster, S. Popinet, An all-Mach method for the simulation of bubble dynamics problems in the presence of surface tension, Journal of Computational Physics 374 (2018) 752–768. https://doi.org/10.1016/j.jcp.2018.07.055.
Google Scholar
[24]
N. Nikolopoulos, K.S. Nikas, G. Bergeles, A numerical investigation of central binary collision of droplets, Computers & Fluids 38 (2009) 1191–1202. https://doi.org/10.1016/j.compfluid.2008.11.007.
Google Scholar
[25]
G. Strotos, I. Malgarinos, N. Nikolopoulos, M. Gavaises, Predicting droplet deformation and breakup for moderate Weber numbers, International Journal of Multiphase Flow 85 (2016) 96–109. https://doi.org/10.1016/j.ijmultiphaseflow.2016.06.001.
Google Scholar
[26]
D. Jiao, K. Jiao, F. Zhang, Q. Du, Direct numerical simulation of droplet deformation in turbulent flows with different velocity profiles, Fuel 247 (2019) 302–314. https://doi.org/10.1016/j.fuel.2019.03.010.
Google Scholar
[27]
F. Giussani, F. Piscaglia, G. Saez-Mischlich, J. Hèlie, A three-phase VOF solver for the simulation of in-nozzle cavitation effects on liquid atomization, Journal of Computational Physics 406 (2020) 109068. https://doi.org/10.1016/j.jcp.2019.109068.
Google Scholar
[28]
M.R. Pendar, E. Roohi, Investigation of cavitation around 3D hemispherical head-form body and conical cavitators using different turbulence and cavitation models, Ocean Engineering 112 (2016) 287–306. https://doi.org/10.1016/j.oceaneng.2015.12.010.
Google Scholar
[29]
Flow Science, Inc., Santa Fe, NM, USA. FLOW-3D® Version 12.0 (2019). https://www.flow3d.com.
Google Scholar
[30]
O. Ubbink, R.I. Issa, A method for capturing sharp fluid interfaces on arbitrary meshes, Journal of Computational Physics 153 (1999) 26–50. https://doi.org/10.1006/jcph.1999.6276.
Google Scholar
[31]
S. Muzaferija, A two-fluid Navier-Stokes solver to simulate water entry, In: Proceedings of 22nd Symposium on Naval Architecture (1999) 638–651.
Google Scholar
[32]
M. Darwish, F. Moukalled, Convective schemes for capturing interfaces of free-surface flows on unstructured grids, Numerical Heat Transfer, Part B: Fundamentals 49 (2006) 19–42. https://doi.org/10.1080/10407790500272137.
Google Scholar
[33]
S.S. Deshpande, L. Anumolu, M.F. Trujillo, Evaluating the performance of the two-phase flow solver interFoam, Computational Science & Discovery 5 (2012) 014016. https://doi.org/10.1088/1749-4699/5/1/014016.
Google Scholar
[34]
J.A. Heyns, A.G. Malan, T.M. Harms, O.F. Oxtoby, Development of a compressive surface capturing formulation for modelling free-surface flow by using the volume-of-fluid approach, International Journal for Numerical Methods in Fluids 71 (2013) 788–804. https://doi.org/10.1002/fld.3694.
Google Scholar
[35]
S. Ii, K. Sugiyama, S. Takeuchi, S. Takagi, Y. Matsumoto, F. Xiao, An interface capturing method with a continuous function: The THINC method with multi-dimensional reconstruction, Journal of Computational Physics 231 (2012) 2328–2358. https://doi.org/10.1016/j.jcp.2011.11.038.
Google Scholar
[36]
B. Xie, S. Ii, F. Xiao, An efficient and accurate algebraic interface capturing method for unstructured grids in 2 and 3 dimensions: The THINC method with quadratic surface representation, International Journal for Numerical Methods in Fluids 76 (2014) 1025–1042. https://doi.org/10.1016/j.jcp.2013.11.034.
Google Scholar
[37]
Q. Zhang, On Donating Regions: Lagrangian Flux through a Fixed Curve, SIAM Review 55 (2013) 443–461. https://doi.org/10.1137/100796406.
Google Scholar
[38]
E. Aulisa, S. Manservisi, R. Scardovelli, S. Zaleski, Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry, Journal of Computational Physics 225 (2007) 2301–2319. https://doi.org/10.1016/j.jcp.2007.03.015.
Google Scholar
[39]
G.D. Weymouth, D.K.-P. Yue, Conservative Volume-of-Fluid method for free-surface simulations on Cartesian-grids, Journal of Computational Physics 229 (2010) 2853–2865. https://doi.org/10.1016/j.jcp.2009.12.018.
Google Scholar
[40]
C.S. Wu, D.L. Young, H.C. Wu, Simulations of multidimensional interfacial flows by an improved volume-of-fluid method, International Journal of Heat and Mass Transfer 60 (2013) 739–755. https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.049.
Google Scholar
[41]
T. Marić, D.B. Kothe, D. Bothe, Unstructured un-split geometrical Volume-of-Fluid methods – A review, Journal of Computational Physics 420 (2020) 109695. https://doi.org/10.1016/j.jcp.2020.109695.
Google Scholar
[42]
Q. Zhang, On a Family of Unsplit Advection Algorithms for Volume-of-Fluid Methods, SIAM Journal on Numerical Analysis 51 (2013) 2822–2850. https://doi.org/10.1137/120897882.
Google Scholar
[43]
W.J. Rider, D.B. Kothe, Reconstructing Volume Tracking, Journal of Computational Physics 141 (1998) 112–152. https://doi.org/10.1006/jcph.1998.5906.
Google Scholar
[44]
J. López, J. Hernández, P. Gómez, F. Faura, A volume of fluid method based on multidimensional advection and spline interface reconstruction, Journal of Computational Physics 195 (2004) 718–742. https://doi.org/10.1016/j.jcp.2003.10.030.
Google Scholar
[45]
D.J.E. Harvie, D.F. Fletcher, A new volume of fluid advection algorithm: the defined donating region scheme, International Journal for Numerical Methods in Fluids 35 (2001) 151–172. https://doi.org/10.1002/1097-0363(20010130)35:2<151::AID-FLD87>3.0.CO;2-4.
Google Scholar
[46]
D.J.E. Harvie, D.F. Fletcher, A New Volume of Fluid Advection Algorithm: The Stream Scheme, Journal of Computational Physics 162 (2000) 1–32. https://doi.org/10.1006/jcph.2000.6510.
Google Scholar
[47]
J.E. Pilliod Jr., E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, Journal of Computational Physics 199 (2004) 465–502. https://doi.org/10.1016/j.jcp.2003.12.023.
Google Scholar
[48]
A. Cervone, S. Manservisi, R. Scardovelli, S. Zaleski, A geometrical predictor–corrector advection scheme and its application to the volume fraction function, Journal of Computational Physics 228 (2009) 406–419. https://doi.org/10.1016/j.jcp.2008.09.016.
Google Scholar
[49]
R. Comminal, J. Spangenberg, J.H. Hattel, Cellwise conservative unsplit advection for the volume of fluid method, Journal of Computational Physics 283 (2015) 582–608. https://doi.org/10.1016/j.jcp.2014.12.003.
Google Scholar
[50]
J. Mencinger, I. Žun, A PLIC–VOF method suited for adaptive moving grids, Journal of Computational Physics 230 (2011) 644–663. https://doi.org/10.1016/j.jcp.2010.10.010.
Google Scholar
[51]
P. Liovic, M. Rudman, J.-L. Liow, D. Lakehal, D. Kothe, A 3D unsplit-advection volume tracking algorithm with planarity-preserving interface reconstruction, Computers & Fluids 35 (2006) 1011–1032. https://doi.org/10.1016/j.compfluid.2005.09.003.
Google Scholar
[52]
J. Hernández, J. López, P. Gómez, C. Zanzi, F. Faura, A new volume of fluid method in three dimensions—Part I: Multidimensional advection method with face-matched flux polyhedra, International Journal for Numerical Methods in Fluids 58 (2008) 897–921. https://doi.org/10.1002/fld.1776.
Google Scholar
[53]
V. Le Chenadec, H. Pitsch, A 3D Unsplit Forward/Backward Volume-of-Fluid Approach and Coupling to the Level Set Method, Journal of Computational Physics 233 (2013) 10–33. https://doi.org/10.1016/j.jcp.2012.07.019.
Google Scholar
[54]
M. Owkes, O. Desjardins, A computational framework for conservative, three-dimensional, unsplit, geometric transport with application to the volume-of-fluid (VOF) method, Journal of Computational Physics 270 (2014) 587–612. https://doi.org/10.1016/j.jcp.2014.04.022.
Google Scholar
[55]
L. Jofre, O. Lehmkuhl, J. Castro, A. Oliva, A 3-D Volume-of-Fluid advection method based on cell-vertex velocities for unstructured meshes, Computers & Fluids 94 (2014) 14–29. https://doi.org/10.1016/j.compfluid.2014.02.001.
Google Scholar
[56]
T. Marić, H. Marschall, D. Bothe, voFoam – A geometrical Volume of Fluid algorithm on arbitrary unstructured meshes with local dynamic adaptive mesh refinement using OpenFOAM, arXiv preprint (2013) arXiv:1305.3417.
Google Scholar
[57]
T. Marić, H. Marschall, D. Bothe, An enhanced un-split face-vertex flux-based VoF method, Journal of Computational Physics 371 (2018) 967–993. https://doi.org/10.1016/j.jcp.2018.03.048.
Google Scholar
[58]
C.B. Ivey, P. Moin, Conservative volume of fluid advection method on unstructured grids in three dimensions, In: Center for Turbulence Research Annual Research Briefs (2012) 179–192.
Google Scholar
[59]
C.B. Ivey, P. Moin, Conservative and bounded volume-of-fluid advection on unstructured grids, Journal of Computational Physics 350 (2017) 387–419. https://doi.org/10.1016/j.jcp.2017.08.054.
Google Scholar
[60]
J. Roenby, H. Bredmose, H. Jasak, A computational method for sharp interface advection, Royal Society Open Science 3 (2016) 160405. https://doi.org/10.1098/rsos.160405.
Google Scholar
[61]
J. López, P. Gómez, C. Zanzi, F. Faura, H. Hernández, Application of Non-Convex Analytic and Geometric Tools to a PLIC-VOF Method. In: ASME International Mechanical Engineering Congress and Exposition (2016) V007T09A005. https://doi.org/10.1115/IMECE2016-67409.
Google Scholar
[62]
J. López, J. Hernández, P. Gómez, F. Faura, Non-convex analytical and geometrical tools for volume truncation, initialization and conservation enforcement in VOF methods, Journal of Computational Physics 392 (2019) 666–693. https://doi.org/10.1016/j.jcp.2019.04.055.
Google Scholar
[63]
J. López, J. Hernández, P. Gómez, C. Zanzi, R. Zamora, VOFTools 5: An extension to non-convex geometries of calculation tools for volume of fluid methods, Computer Physics Communications (2020) 107277. https://doi.org/10.1016/j.cpc.2020.107277.
Google Scholar
[64]
D.L. Youngs, Time-dependent multi-material flow with large fluid distortion, In: Numerical Methods for Fluid Dynamics, Eds: K.W. Morton, M.J. Baines, Academic Press New York, 1982, pp. 273–285.
Google Scholar
[65]
R. Scardovelli, S. Zaleski, Interface reconstruction with least-square fit and split Eulerian–Lagrangian advection, International Journal for Numerical Methods in Fluids 41 (2003) 251–274. https://doi.org/10.1002/fld.431.
Google Scholar
[66]
R. Scardovelli, S. Zaleski, Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids, Journal of Computational Physics 164 (2000) 228–237. https://doi.org/10.1006/jcph.2000.6567.
Google Scholar
[67]
D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, Journal of Computational Physics 152 (1999) 423–456. https://doi.org/10.1006/jcph.1998.6168.
Google Scholar
[68]
V. Dyadechko, M. Shashkov, Moment-of-fluid interface reconstruction, Los Alamos Report LA-UR-07-1537 (2007).
Google Scholar
[69]
F. Tampieri, Newell’s method for computing the plane equation of a polygon, In: Graphics Gems III (1992) 231–232. https://doi.org/10.1016/B978-0-08-050755-2.50052-X.
Google Scholar
[70]
J. López, J. Hernández, P. Gómez, F. Faura, A new volume conservation enforcement method for PLIC reconstruction in general convex grids, Journal of Computational Physics 316 (2016) 338–359. https://doi.org/10.1016/j.jcp.2016.04.018.
Google Scholar
[71]
C.W.S. Bruner, Geometric Properties of Arbitrary Polyhedra in Terms of Face Geometry, AIAA Journal 33 (1995) 1350–1350. https://doi.org/10.2514/3.12556.
Google Scholar
[72]
R.N. Goldman, Area of planar polygons and volume of polyhedra, In: Graphics Gems II (1991) 170–171. https://doi.org/10.1016/B978-0-08-050754-5.50043-8.
Google Scholar
[73]
B. Freireich, M. Kodam, C. Wassgren, An exact method for determining local solid fractions in discrete element method simulations, AIChE Journal 56 (2010) 3036–3048. https://doi.org/10.1002/aic.12223.
Google Scholar
[74]
J. López, C. Zanzi, P. Gómez, F. Faura, J. Hernández, A new volume of fluid method in three dimensions—Part II: Piecewise-planar interface reconstruction with cubic-Bézier fit, International Journal for Numerical Methods in Fluids 58 (2008) 923–944. https://doi.org/10.1002/fld.1775.
Google Scholar
[75]
P. Cifani, W.R. Michalek, G.J.M. Priems, J.G. Kuerten, C.W.M. van der Geld, B.J. Geurts, A comparison between the surface compression method and an interface reconstruction method for the VOF approach, Computers & Fluids 136 (2016) 421–435. https://doi.org/10.1016/j.compfluid.2016.06.026.
Google Scholar
[76]
A. Asuri Mukundan, T. Ménard, J.C. Brändle de Motta, A. Berlemont, A 3D Moment of Fluid method for simulating complex turbulent multiphase flows, Computers & Fluids 198 (2020) 104364. https://doi.org/10.1016/j.compfluid.2019.104364.
Google Scholar
[77]
C.B. Ivey, P. Moin, Accurate interface normal and curvature estimates on three-dimensional unstructured non-convex polyhedral meshes, Journal of Computational Physics 300 (2015) 365–386. https://doi.org/10.1016/j.jcp.2015.07.055.
Google Scholar
[78]
H.T. Ahn, M. Shashkov, Multi-material interface reconstruction on generalized polyhedral meshes, Journal of Computational Physics 226 (2007) 2096–2132. https://doi.org/10.1016/j.jcp.2007.06.033.
Google Scholar
[79]
G. Černe, S. Petelin, I. Tiselj, Numerical errors of the volume-of-fluid interface tracking algorithm, International Journal for Numerical Methods in Fluids 38 (2002) 329–350. https://doi.org/10.1002/fld.228.
Google Scholar
[80]
S.J. Mosso, B.K. Swartz, D.B. Kothe, R.C. Ferrell, A parallel, volume-tracking algorithm for unstructured meshes, In: Parallel Computational Fluid Dynamics 1996: Algorithms and Results Using Advanced Computers, 1997, pp. 368–375. https://doi.org/10.1016/B978-044482327-4/50113-3.
Google Scholar
1
This definition of the CFL number is different from the usual definition used in multi-dimensional algebraic advection schemes. However, the component-wise definition is more meaningful in the context of geometric VOF schemes, because it determines the number of layers of cells around the interfacial cells where the liquid volume fractions need to be updated.

A photo of HeMOSU-1.

FLOW-3D를 이용한 해상 자켓구조물 주변의 세굴 수치모의 실험

Numerical Simulation Test of Scour around Offshore Jacket Structure using FLOW-3D

J Korean Soc Coast Ocean Eng. 2015;27(6):373-381Publication date (electronic) : 2015 December 31doi : https://doi.org/10.9765/KSCOE.2015.27.6.373Dong Hui Ko*Shin Taek Jeong,**Nam Sun Oh****Hae Poong Engineering Inc.**Department of Civil and Environmental Engineering, Wonkwang University***Ocean·Plant Construction Engineering, Mokpo Maritime National University
고동휘*, 정신택,**, 오남선***

*(주)해풍기술**원광대학교 토목환경공학과***목포해양대학교 해양·플랜트건설공학과

Abstract

해상풍력 기기, 해상 플랫폼과 같은 구조물이 해상에서 빈번하게 설치되면서 세굴에 관한 영향도 중요시되고 있다. 이러한 세굴 영향을 검토하기 위해 세굴 수치모의 실험을 수행한다. 일반적으로 수치모의 조건은 일방향 흐름에 대해서만 검토가 이뤄지고 있으며 서해안과 같은 왕복성 조류 흐름에 대해서는 검토되지 않는다. 본 연구에서는 서해안에 설치된 HeMOSU-1호 해상 자켓구조물 주변에서 발생하는 세굴 현상을 FLOW-3D를 이용하여 수치모의하였다. 해석 조건으로는 일방향 흐름과 조석현상을 고려한 왕복성 흐름을 고려하였으며, 이를 현장 관측값과 비교하였다. 10,000초 동안의 수치모의 결과, 일방향의 흐름 조건에서는 1.32 m의 최대 세굴심이 발생하였으며, 양방향 흐름 조건에서는 1.44 m의 최대 세굴심이 발생하였다. 한편, 현장 관측값의 경우 약 1.5~2.0 m의 세굴심이 발생하여 양방향의 흐름에 대한 해석 결과와 근사한 값을 보였다.

Keywords 세굴일방향 흐름왕복성 조류 흐름해상 자켓구조물FLOW-3D최대 세굴심, scouruni-directional flowbi-directional tidal current flowoffshore jacket substructureFlow-3Dmaximum scour depth

As offshore structures such as offshore wind and offshore platforms have been installed frequently in ocean, scour effects are considered important. To test the scour effect, numerical simulation of scour has been carried out. However, the test was usually conducted under the uni-directional flow without bi-directional current flow in western sea of Korea. Thus, in this paper, numerical simulations of scour around offshore jacket substructure of HeMOSU-1 installed in western sea of Korea are conducted using FLOW-3D. The conditions are uni-directional and bi-directional flow considering tidal current. And these results are compared to measured data. The analysis results for 10,000 sec show that under uni-directional conditions, maximum scour depth was about 1.32 m and under bi-directional conditions, about 1.44 m maximum scour depth occurred around the structure. Meanwhile, about 1.5~2.0 m scour depths occurred in field observation and the result of field test is similar to result under bi-directional conditions.

1. 서 론

최근 해상풍력기기, 해상플랫폼과 같은 해상구조물 설치가 빈번해지면서 해상구조물의 안정성을 저하시키는 요인에 대한 대응 연구가 필요하다. 특히 해상에서의 구조물 설치는 육상과 달리 수력학적 하중이 작용하게 되기 때문에 파랑에 의한 구조물과의 진동, 세굴 현상에 대하여 철저한 사전 검토가 요구된다. 특히, 해상 기초에서 발생하는 세굴은 조류 및 파랑 등 유체 흐름과 구조물 사이의 상호작용으로 인해 해저 입자가 유실되는 현상으로 정의할 수 있으며 해상 외력 조건에 포함되어 설계시 고려하도록 제안하고 있다(IEC, 2009).구조물을 해상에 설치하게 되면 구조물이 흐름을 방해하는 장애요인으로 작용하여 구조물 주위에 부분적으로 더 빠른 유속이 발생하게 된다. 이러한 유속 변화는 압력 분포 변화에 기인하게 되어 해양구조물 주위에 아래로 흐르는 유속(downflow), 말굽형 와류(horseshoe vortex) 그리고 후류 와류(wake vortex)가 나타난다. 결국, 유속과 흐름의 변화를 야기하고 하상전단응력과 유사이동 능력을 증가시켜 해저 입자를 유실시키며 구조물의 안정성을 위협하는 요인으로 작용하게 된다. 이러한 세굴 현상이 계속 진행되면 해상풍력 지지구조물 기초의 지지력이 감소하게 될 뿐만 아니라 지지면의 유실로 상부반력 작용에 편심을 유발하여 기초의 전도를 초래한다. 또한 세굴에 의한 기초의 부등 침하가 크게 발생하면 상부 해상풍력 지지구조물에 보다 큰 단면력이 작용하므로 세굴에 의한 붕괴가 발생할 수 있다. 이처럼 세굴은 기초지지구조물을 붕괴하고, 침하와 얕은 기초의 변형을 초래하며, 구조물의 동적 성능을 변화시키기 때문에 설계 및 시공 유지관리시 사전에 세굴심도 산정, 세굴 완화 대책 등을 고려하여야 한다.또한 각종 설계 기준서에서는 세굴에 대해 다양하게 제시하고 있다. IEC(2009)ABS(2013)BSH(2007)MMAF(2005)에서는 세굴에 대한 영향을 검토할 것을 주문하지만 심도 산정 등 세굴에 대한 구체적인 내용은 언급하지 않고 전반적인 내용만 수록하고 있다. 그러나 DNV(2010)CEM(2006)에서는 경험 공식을 이용한 세굴 심도 산정 등 구체적인 내용을 광범위하게 수록하고 있어 세굴에 대한 영향 검토시 활용가능하다. 그 외의 기준서에서는 수치 모델 등을 통한 세굴 검토를 주문하고 있어 사용자들이 직접 판단하도록 제안하고 있다.그러나 세굴은 유속, 수심, 구조물 폭, 형상, 해저입자 등에 의해 결정되기 때문에 세굴의 영향 정도를 정확하게 예측하기란 쉽지 않지만 수리 모형 실험 또는 CFD(Computational Fluid Dynamics)를 이용한 수치 해석을 통해 지반 침식 및 퇴적으로 인한 지형변화를 예측할 수 있다. 한편, 침식과 퇴적 등 구조물 설치로 인한 해저 지형 변화를 예측하는 모델은 다양하지만, 본 연구에서는 Flowscience의 3차원 유동해석모델인 Flow-3D 모델을 사용하였다.해상 구조물은 목적에 따라 비교적 수심이 낮은 지역에 설치가 용이하다. 국내의 경우, 서남해안과 같이 비교적 연안역이 넓고 수심이 낮은 지역에 구조물을 설치하는 것이 비용 및 유지관리 측면에서 유리할 수 있다. 그러나 국내 서남해안 지역은 왕복성 흐름, 즉 조류가 발생하는 지역으로 흐름의 방향이 시간에 따라 변화하게 된다. 따라서, 세굴 수치 모의시 이러한 왕복성 흐름을 고려해야한다. 그러나 대부분의 수치 모델 적용시 조류가 우세한 지역에서도 일방향의 흐름에 대해서만 검토하며 왕복성 흐름에 의한 지층의 침식과 퇴적작용으로 인해 발생하는 해저 입자의 상호 보충 효과는 배제되게 된다. 또한 이로 인해 수치모델 결과에 많은 의구심이 발생하게 되며 현실성이 결여된 해석으로 보여질 수 있다. 이러한 왕복흐름의 영향을 검토하기 위해 Kim and Gang(2011)은 조류의 왕복류 흐름을 고려하여 지반의 수리 저항 성능 실험을 수행하였으며, 양방향이 일방향 흐름보다 세굴이 크게 발생하는 것을 발표하였다. 또한 Kim et al.(2012)은 흐름의 입사각에 따른 수리저항 실험을 수행하였으며 입사각이 커짐에 따라 세굴률이 증가하는 것으로 나타났다.본 연구에서는 단일방향 고정유속 그리고 양방향 변동유속조건에서 발생하는 지형 변화와 세굴 현상을 수치 모의하였으며, 이러한 비선형성 흐름변화에 따른 세굴 영향 정도를 검토하였다. 더불어 현장 관측 자료와의 비교를 통해 서남해안과 같은 왕복성 흐름이 발생하는 지역에서의 세굴 예측시 적절한 모델 수립 방안을 제안하고자 한다.

2. 수치해석 모형

본 연구에서는 Autodesk의 3D max 프로그램을 이용하여 지지구조물 형상을 제작하였으며, 수치해석은 미국 Flowscience가 개발한 범용 유동해석 프로그램인 FLOW-3D(Ver. 11.0.4.5)를 사용하였다. 좌표계는 직교 좌표계를 사용하였으며 복잡한 3차원 형상의 표현을 위하여 FAVOR 기법(Fractional Area/Volume Obstacle Representation Method)을 사용하였다. 또한 유한차분법에 FAVOR 기법을 도입한 유한체적법의 접근법을 사용하였으며 직교좌표계 에서 비압축성 유체의 3차원 흐름을 해석하기 위한 지배방정식으로는 연속방정식과 운동방정식이 사용되었다. 난류모형으로는 RNG(renormalized group)모델을 사용하였다.

2.1 FLOW-3D의 지배방정식

수식은 MathML 표현문제로 본 문서의 하단부의 원문바로가기 링크를 통해 원문을 참고하시기 바랍니다.

2.1.1 연속방정식

직교좌표계 (x,y,z)에서 비압축성 유체는 압축성 유체의 연속방정식에서 유도될 수 있으며 다음 식 (1)과 같다.

(1)

∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ
여기서, u, v, w는 (x,y,z) 방향별 유체속도, Ax, Ay, Az는 각 방향별 유체 흐름을 위해 확보된 면적비 (Area fraction), ρ는 유체 밀도, RSOR은 질량생성/소멸(Mass source/sink)항이다.

2.1.2 운동방정식

본 모형은 3차원 난류모형이므로 각각의 방향에 따른 운동량 방정식은 다음 식(2)~(4)와 같다.

(2)

∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)   =−1ρ∂p∂x+Gx+fx−bx−RSORρVFu∂u∂t+1VF(uAx∂u∂x+vAy∂u∂y+wAz∂u∂z)   =−1ρ∂p∂x+Gx+fx−bx−RSORρVFu

(3)

∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)   =−1ρ∂p∂y+Gy+fy−by−RSORρVFv∂v∂t+1VF(uAx∂v∂x+vAy∂v∂y+wAz∂v∂z)   =−1ρ∂p∂y+Gy+fy−by−RSORρVFv

(4)

∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)   =−1ρ∂p∂z+Gz+fz−bz−RSORρVFw∂w∂t+1VF(uAx∂w∂x+vAy∂w∂y+wAz∂w∂z)   =−1ρ∂p∂z+Gz+fz−bz−RSORρVFw여기서, RSOR은 질량생성/소멸(Mass source/sink)항, VF는 체적비 (Volume fraction), p는 압력, Gx, Gy, Gz는 방향별 체적력항, fx, fy, fz는 방향별 점성력항, bx, by, bz는 다공질 매체에서 방향별 흐름 손실이다.그리고 점성계수 µ에 대하여 점성력항은 다음 식 (5)~(7)과 같다.

(5)

ρVffx=wsx−{∂∂x(Axτxx)+R∂∂y(Ayτxy)+∂∂z(Azτxz)+ζx(Axτxx−Ayτyy)}ρVffx=wsx−{∂∂x(Axτxx)+R∂∂y(Ayτxy)+∂∂z(Azτxz)+ζx(Axτxx−Ayτyy)}

(6)

ρVffy=wsy−{∂∂x(Axτxy)+R∂∂y(Ayτyy)+∂∂z(Azτyz)+ζx(Axτxx−Ayτxy)}ρVffy=wsy−{∂∂x(Axτxy)+R∂∂y(Ayτyy)+∂∂z(Azτyz)+ζx(Axτxx−Ayτxy)}

(7)

ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}ρVffz=wsz−{∂∂x(Axτxz)+R∂∂y(Ayτyz)+∂∂z(Azτzz)+ζx(Axτzz)}여기서, wsx, wsy, wsz는 벽전단응력이며, 벽전단응력은 벽 근처에서 벽 법칙 (law of the wall)을 따르며, 식 (8)~(13)에 의해 표현되어진다.

(8)

τxx=−2μ{∂u∂x−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τxx=−2μ{∂u∂x−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(9)

τyy=−2μ{R∂v∂y+ζux−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τyy=−2μ{R∂v∂y+ζux−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(10)

τzz=−2μ{R∂w∂y−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}τzz=−2μ{R∂w∂y−13(∂u∂x+R∂v∂y+∂w∂z+ζux)}

(11)

τxy=−μ{∂v∂x+R∂u∂y−ζvx}τxy=−μ{∂v∂x+R∂u∂y−ζvx}

(12)

τxz=−μ{∂u∂y+∂w∂x}τxz=−μ{∂u∂y+∂w∂x}

(13)

τyz=−μ{∂v∂z+R∂w∂y}τyz=−μ{∂v∂z+R∂w∂y}

2.1.3 Sediment scour model

Flow-3D 모델에서 사용하는 sediment scour model은 해저입자의 특성에 따라 해저 입자의 침식, 이송, 전단과 흐름 변화로 인한 퇴적물의 교란 그리고 하상 이동을 계산한다.

2.1.3.1 The critical Shields parameter

무차원 한계소류력(the dimensionless critical Shields parameter)은 Soulsby-Whitehouse 식에 의해 다음 식 (14)와 같이 나타낼 수 있다(Soulsby, 1997).

(14)

θcr,i=0.31+1.2R∗i+0.055[1−exp(−0.02R∗i)]θcr,i=0.31+1.2Ri*+0.055[1−exp(−0.02Ri*)]여기서 무차원 상수, R∗iRi*는 다음 식 (15)와 같다.

(15)

R∗i=ds,i0.1(ρs,i−ρf)ρf∥g∥ds,i−−−−−−−−−−−−−−−−−−−√μfRi*=ds,i0.1(ρs,i−ρf)ρf‖g‖ds,iμf여기서 ρs, i는 해저 입자의 밀도, ρf는 유체 밀도, ds, i는 해저입자 직경, g는 중력가속도이다.한편, 안식각에 따라 한계소류력은 다음 식 (16)과 같이 표현될 수 있다.

(16)

θ′cr,i=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2β−−−−−−−−−−−−−−−−−−−−√tanψiθcr,i′=θcr,icosψsinβ+cos2βtan2ψi−sin2ψsin2βtanψi여기서, β는 하상 경사각, ψi는 해저입자의 안식각, ψ는 유체와 해저경사의 사잇각이다.또한 local Shields number는 국부 전단응력, τ에 기초하여 다음 식 (17)과 같이 계산할 수 있다.

(17)

θi=τ∥g∥ds,i(ρs,i−ρf)θi=τ‖g‖ds,i(ρs,i−ρf)여기서, ||g||g 는 중력 벡터의 크기이며, τ는 식 (8)~(13)의 벽 법칙을 이용하여 계산할 수 있다.

2.1.3.2 동반이행(Entrainment)과 퇴적

다음 식은 해저 지반과 부유사 사이의 교란을 나타내는 동반이행과 퇴적 현상을 계산한다. 해저입자의 동반이행 속도의 계산식은 다음 식 (18)과 같으며 부유사로 전환되는 해저의 양을 계산한다.

(18)

ulift,i=αinsd0.3∗(θi−θ′cr,i)1.5∥g∥ds,i(ρs,i−ρf)ρf−−−−−−−−−−−−−−√ulift,i=αinsd*0.3(θi−θcr,i′)1.5‖g‖ds,i(ρs,i−ρf)ρf여기서, αi는 동반이행 매개변수이며, ns는 the packed bed interface에서의 법선벡터, µ는 유체의 동점성계수 그리고 d*은 무차원 입자 직경으로 다음 식 (19)와 같다.

(19)

d∗=ds,i[ρf(ρs,i−ρf)∥g∥μ2]1/3d*=ds,i[ρf(ρs,i−ρf)‖g‖μ2]1/3또한 퇴적 모델에서 사용하는 침강 속도 식은 다음 식 (20)같이 나타낼 수 있다.

(20)

usettling,i=νfds,i[(10.362+1.049d3∗)0.5−10.36]usettling,i=νfds,i[(10.362+1.049d*3)0.5−10.36]여기서, νf는 유체의 운동점성계수이다.

2.1.3.3 하상이동 모델(Bedload transport)

하상이동 모델은 해저면에 대한 단위 폭당 침전물의 체적흐름을 예측하는데 사용되며 다음 식 (21)과 같이 표현되어진다.

(21)

Φi=βi(θi−θ′cr,i)1.5Φi=βi(θi−θcr,i′)1.5여기서 Φi는 무차원 하상이동률이며 βi는 일반적으로 8.0의 값을 사용한다(van Rijn, 1984).단위 폭당 체적 하상이동률, qi는 다음 식 (22)와 같이 나타낼 수 있다.

(22)

qb,i=fb,i Φi[∥g∥(ρs,i−ρfρf)d3s,i]1/2qb,i=fb,i Φi[‖g‖(ρs,i−ρfρf)ds,i3]1/2여기서, fb, i는 해저층의 입자별 체적률이다.또한 하상이동 속도를 계산하기 위해 다음 식 (23)에 의해 해저면층 두께를 계산할 수 있다.

(23)

δi=0.3ds,id0.7∗(θiθ′cr,i−1)0.5δi=0.3ds,id*0.7(θiθcr,i′−1)0.5그리고 하상이동 속도 식은 다음 식 (24)와 같이 계산되어진다.

(24)

ubedload,i=qb,iδifb,iubedload,i=qb,iδifb,i

2.2 모델 구성 및 해역 조건

2.2.1 해역 조건 및 적용 구조물

본 수치해석은 위도와 안마도 사이의 해양 조건을 적용하였으며 지점은 Fig. 1과 같다.

jkscoe-27-6-373f1.gifFig. 1.Iso-water depth contour map in western sea of Korea.

본 해석 대상 해역은 서해안의 조석 현상이 뚜렷한 지역으로 조류 흐름이 지배적이며 위도의 조화분석의 결과를 보면 조석형태수가 0.21로서 반일주조 형태를 취한다. 또한 북동류의 창조류와 남서류의 낙조류의 특성을 보이며 조류의 크기는 대상 영역에서 0.7~1 m/s의 최강유속 분포를 보이는 것으로 발표된 바 있다. 또한 대상 해역의 시추조사 결과를 바탕으로 해저조건은 0.0353 mm 로 설정하였고(KORDI, 2011), 수위는 등수심도를 바탕으로 15 m로 하였다.한편, 풍황자원 분석을 통한 단지 세부설계 기초자료 제공, 유속, 조류 등 해양 환경변화 계측을 통한 환경영향평가 기초자료 제공을 목적으로 Fig. 2와 같이 해상기상탑(HeMOSU-1호)을 설치하여 운영하고 있다. HeMOSU-1호는 평균해수면 기준 100 m 높이이며, 중량은 100 톤의 자켓구조물로 2010년 설치되었다. 본 연구에서는 HeMOSU-1호의 제원을 활용하여 수치 모의하였으며, 2013년 7월(설치 후 약 3년 경과) 현장 관측을 수행하였다.

jkscoe-27-6-373f2.gifFig. 2.A photo of HeMOSU-1.

2.2.2 모델 구성

본 연구에서는 왕복성 조류의 영향을 살펴보기 위해 2 case에 대하여 해석하였다. 먼저, Case 1은 1 m/s의 고정 유속을 가진 일방향 흐름에 대한 해석이며, Case 2는 -1~1 m/s의 유속분포를 가진 양방향 흐름에 대한 해석이다. 여기서 (-)부호는 방향을 의미한다. Fig. 3은 시간대별 유속 분포를 나타낸 것이다.

jkscoe-27-6-373f3.gifFig. 3.Comparison of current speed conditions.

2.2.3 구조물 형상 및 격자

HeMOSU-1호 기상 타워 자켓 구조물 형상은 Fig. 4, 격자 정보는 Table 1과 같으며, 본 연구에서는 총 2,883,000 개의 직교 가변 격자체계를 구성하였다.

jkscoe-27-6-373f4.gifFig. 4.3 Dimensional plot of jacket structure.
Table 1.

Grid information of jacket structure

Xmin/Xmax(m)Ymin/Ymax(m)Zmin/Zmax(m)No. of x gridNo. of y gridNo. of z grid
−100/100−40/40−9/2031015560
Download Table

한편, 계산영역의 격자 형상은 Fig. 5와 같다.

jkscoe-27-6-373f5.gifFig. 5.3 dimensional grid of jacket structure.

2.3 계산 조건

계산영역의 경계 조건으로, Case 1의 경우, 유입부는 유속 조건을 주었으며 유출부는 outflow 조건을 적용하였다. 그리고 Case 2의 경우, 왕복성 흐름을 표현하기 위해 유입부와 유출부 조건을 유속 조건으로 설정하였다. 또한 2가지 경우 모두 상부는 자유수면을 표현하기 위해 pressure로 하였으며 하부는 지반 조건의 특성을 가진 wall 조건을 적용하였다. 양측면은 Symmetry 조건으로 대칭면으로 정의하여 대칭면에 수직한 방향의 에너지와 질량의 유출입이 없고 대칭면에 평행한 방향의 유동저항이 없는 경우로 조건을 설정하였다. 본 연구에서 케이스별 입력 조건을 다음 Table 2에 정리하였다.

Table 2.

Basic information of two scour simulation tests

CaseStructure typeVelocityDirectionAnalysis time
Case 1Jacket1 m/sUnidirectional10,000 sec
Case 2−1~1 m/sBidirectional
Download Table

FLOW-3D는 자유표면을 가진 유동장의 계산에서 정상상태 해석이 불가능하므로 비정상유동 난류해석을 수행하게 되는데 정지 상태의 조건은 조위를 설정하였다. 또한 유속의 초기 흐름은 난류상태의 비정상흐름이 되므로 본 해석에서는 정상상태의 해석 수행을 위해 1,000초의 유동 해석을 수행하였으며 그 후에 10,000초의 sediment scour 모델을 수행하였다. 해수의 밀도는 1,025 kg/m3의 점성유체로 설정하였으며 RNG(renormalized group) 난류 모델을 적용하였다.Go to : Goto

3. 수치모형 실험 결과

3.1 Case 1

본 케이스에서는 1 m/s의 유속을 가진 흐름이 구조물 주변을 흐를 때, 발생하는 세굴에 대해서 수치 모의하였다. Fig. 6은 X-Z 평면의 유속 분포도이고 Fig. 7은 X-Y 평면의 유속 분포이다. 구조물 주변에서 약간의 유속 변화가 발생했지만 전체적으로 1 m/s의 정상 유동 상태를 띄고 있다.

jkscoe-27-6-373f6.gifFig. 6.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Z plane).
jkscoe-27-6-373f7.gifFig. 7.Current speed distribution in computational domain of case 1 at t = 10,000 sec (X–Y plane).

이러한 흐름과 구조물과의 상호 작용에 의한 세굴 현상이 발생되며 Fig. 8에 구조물 주변 지형 변화를 나타내었다. 유속이 발생하는 구조물의 전면부는 대체로 침식이 일어나 해저지반이 초기 상태보다 낮아진 것을 확인할 수 있으며, 또한 전면부의 지반이 유실되어 구조물 후면부에 최대 0.13 m까지 퇴적된 것을 확인할 수 있다.

jkscoe-27-6-373f8.gifFig. 8.Sea-bed elevation change of case 1 at t = 10,000 sec.

일방향 흐름인 Case 1의 경우에는 Fig. 9와 같이 10,000초 후 구조물 주변에 최대 1.32 m의 세굴이 발생하는 것으로 나타났다. 또한 구조물 뒤쪽으로는 퇴적이 일어났으며, 구조물 전면부에는 침식작용이 일어나고 있다.

jkscoe-27-6-373f9.gifFig. 9.Scour phenomenon around jacket substructure(Case 1).

3.2 Case 2

서해안은 조석현상으로 인해 왕복성 조류 흐름이 나타나고 있으며 대상해역은 -1~1 m/s의 유속분포를 가지고 있다. 본 연구에서는 이러한 특성을 고려한 왕복성 흐름에 대해서 수치모의하였다.다음 Fig. 10은 X-Z 평면의 유속 분포도이며 Fig. 11은 X-Y 평면의 유속 분포도이다.

jkscoe-27-6-373f10.gifFig. 10.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Z plane).
jkscoe-27-6-373f11.gifFig. 11.Current speed distribution in computational domain of case 2 at t = 10,000 sec (X–Y plane).

양방향 흐름인 Case 2의 경우에는 Fig. 12와 같이 10,000초후 구조물 주변에 최대 1.44 m의 세굴이 발생하는 것으로 나타났다. 특히 구조물 내부에 조류 흐름 방향으로 침식 작용이 일어나고 있는 것으로 나타났다.

jkscoe-27-6-373f12.gifFig. 12.Sea-bed elevation change of case 2 at t = 10,000 sec.

Fig. 13은 3차원 수치해석 모의 결과이다.

jkscoe-27-6-373f13.gifFig. 13.Scour phenomenon around jacket substructure(Case 2).

3.3 현장 관측

본 연구에서는 수치모의 실험의 검증을 위해 HeMOSU-1호 기상 타워를 대상으로 하여 2013년 7월 1일 수심 측량을 실시하였다.HeMOSU-1호 주변의 수심측량은 Knudsen sounder 1620과 미국 Trimble사의 DGPS를 이용하여 실시하였다. 매 작업시 Bar-Check를 실시하고, 수중 음파속도는 1,500 m/s로 결정하여 조위 보정을 통해 수심을 측량하였다. 측량선의 해상위치자료는 DGPS를 사용하여 UTM 좌표계로 변환을 실시하였다. 한편, 수심측량은 해면이 정온할 때 실시하였으며 관측 자료의 변동성을 제거하기 위해 2013년 7월 1일 10시~13시에 걸쳐 수심 측량한 자료를 동시간대에 국립해양조사원에서 제공한 위도 자료를 활용해 조위 보정하였다. 다음 Fig. 14는 위도 조위 관측소의 현장관측시간대 조위 시계열 그래프이다.

jkscoe-27-6-373f14.gifFig. 14.Time series of tidal data at Wido (2013.7.1).

2013년 7월 1일 오전 10시부터 오후 1시에 걸쳐 수심측량한 결과를 이용하여 0.5 m 간격으로 등수심도를 작성하였으며 그 결과는 Fig. 15와 같다. 기상탑 내부 해역은 선박이 접근할 수 없기 때문에 측량을 실시하지 않고 Blanking 처리하였다.

jkscoe-27-6-373f15.gifFig. 15.Iso-depth contour map around HeMOSU-1.

대상 해역의 수심은 대부분 -15 m이나 4개의 Jacket 구조물 주변에서는 세굴이 발생하여 수심의 변화가 나타났다. 특히 L-3, L-4 주변에서 최대 1.5~2.0 m의 세굴이 발생한 것으로 보였으며, L-4 주변에서는 넓은 범위에 걸쳐 세굴이 발생하였다. 창조류는 북동, 낙조류는 남서 방향으로 흐르는 조류 방향성을 고려하였을 때, L-4 주변은 조류방향과 동일하게 세굴이 발생하고 있었으며, 보다 상세한 세굴형태는 원형 구조물 내부 방향의 세굴 심도를 측정하여 파악하여야 할 것으로 판단된다.관측결과 최대 1.5~2.0 m인 점을 고려하면 양방향 흐름을 대상으로 장기간에 걸쳐 모의실험을 진행하는 경우, 실제 현상에 더 근접하는 결과를 얻을 수 있을 것으로 사료된다.Go to : Goto

4. 결론 및 토의

본 연구에서는 자켓구조물인 해상기상탑 HeMOSU-1 주변에서 발생하는 세굴현상을 검토하기 위하여 2013년 7월 1일 현장 관측을 수행하고, FLOW-3D를 이용하여 수치모의 실험을 수행하였다. 실험 조건으로는 먼저 1 m/s의 유속을 가진 일방향 흐름과 -1~1 m/s의 흐름 분포를 가진 왕복성 흐름에 대해서 수치모의를 수행하였다. 그 결과 일방향 흐름의 경우, 10,000 초에 이르렀을 때 1.32 m, 왕복성 흐름의 경우 동일 시간에서 1.44 m의 최대 세굴심도가 발생하였다. 동일한 구조물에 대해서 현장 관측 결과는 1.5~2.0 m로 관측되어 일방향 흐름보다 왕복성 흐름의 경우 실제 현상에 더 근사한 것으로 판단되었다. 이는 일방향 흐름의 경우, Fig. 8에서 보는 바와 같이 구조물 후면에 퇴적과 함께 해저입자의 맞물림이 견고해져 해저 지반의 저항력이 커지는 현상에 기인한 것으로 판단된다. 반면 양방향 흐름의 경우, 흐름의 변화로 인해 맞물림이 약해지고 이로 인해 지반의 저항력이 일방향 흐름보다 약해져 세굴이 더 크게 발생하는 것으로 판단되었다.또한 장시간에 걸쳐 모델링을 수행하는 경우, 보다 근사한 결과를 얻을 수 있을 것을 사료되며, 신형식 기초 구조물을 개발하여 세굴을 저감할 수 있는 지 여부를 판단하는 등의 추가 연구가 필요하다.Go to : GotoInternational Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.

감사의 글

본 연구는 지식경제 기술혁신사업인 “승강식 해상플랫폼을 가진 수직 진자운동형 30kW급 파력발전기 개발(과제번호 :20133010071570)”와 첨단항만건설기술개발사업인 “해상풍력 지지구조 설계기준 및 콘크리트 지지구조물 기술 개발(과제번호:20120093)”의 일환으로 수행되었습니다.Go to : Goto

References

American Bureau of Shipping (ABS). (2013). Guide for Building and Classing Bottom-Founded Offshore Wind turbine Installations.

API RP 2A WSD. (2005). Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms-Working Stress Design, API.

Det Norske Veritas (DNV). (2010). OS-J101 Design of Offshore Wind Turbine Structures.

Federal Maritime and Hydrographic Agency (BSH). (2007). Standard. Design of Offshore Wind Turbines.

FLOW SCIENCE. (2014). FLOW-3D User’s Manual, Version 11.0.4.5.

International Electrotechnical Commission (IEC). (2009). IEC 61400-3: Wind turbines – Part 3: Design Requirements for Offshore Wind Turbines, Edition 1.0, IEC.

International Organization for Standardization (ISO). (2007). ISO 19902: Petroleum and Natural Gas Industries – Fixed Steel Offshore Structures.

Kim, YS, Kang, GO. (2011). Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow, Journal of Korean Society of Coastal and Ocean Engineers. 23(1):118-125 (in Korean).

Kim, YS, Han, BD, Kang, GO. (2012). Effect of Incidence Angle of Current on the Hydraulic Resistance Capacity of Clayey Soil, Journal of Korean Society of Coastal and Ocean Engineers. 24(1):26-35 (in Korean).

KORDI. (2011). BSPN64710-2275-2. An Analysis on the Marine Characteristics and Design Supporting for Offshore Wind Power Plant (in Korean).

Ministry of Maritime Affairs and Fisheries. (2005). Harbor and fishery design criteria (in Korean).

Soulsby, R. (1997). Dynamics of marine sands. Thomas Telford Publications, London.

U.S. Army Corps of Engineers. (2006). Coastal Engineering Manual, Part II : Coastal Hydrodynamics, Chapter II–2, Meteorology and Wave Climate.

van Rijn, L. (1984). Sediment transport, Part II:bed load transport, Journal of Hydraulic Engineering, 110(10):1431-1456.

Mixing Tank with FLOW-3D

CFD Stirs Up Mixing 일반

CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.

“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아  피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .

흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!

예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.

Giving Mixing Its Due

“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .

이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.

“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.

이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.

동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.

CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.

컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .

그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.

반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.

“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.


Ottewell2
Seán Ottewell은 Chemical Processing의 편집장입니다. sottewell@putman.net으로 이메일을 보낼 수 있습니다 .

기사 원문 : https://www.chemicalprocessing.com/articles/2017/cfd-stirs-up-mixing/

Figure 2.6 ESI apparatus for offline analysis with microscope imaging.

MODELING AND CHARACTERIZATION OF MICROFABRICATED EMITTERS: IN PURSUIT OF IMPROVED ESI-MS PERFORMANCE

미세 가공 방사체의 모델링 및 특성화 : 개선된 ESI-MS 성능 추구

by XINYUN WU

A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Master of Science Queen’s University Kingston, Ontario, Canada December, 2011 Copyright © Xinyun Wu, 2011

Abstract

ESI (Electrospray ionization)는 특히 탁월한 감도, 견고성 및 단순성으로 대형 생체 분자를 분석하는 데있어 질량 분석 (MS)에 매우 귀중한 기술이었습니다. ESI 기술 개발에 많은 노력을 기울였습니다. 그 형태와 기하학적 구조가 전기 분무 성능과 추가 MS 감지에 중추적 인 것으로 입증 되었기 때문입니다.

막힘 및 낮은 처리량을 포함하여 전통적인 단일 홀 이미터의 본질적인 문제는 기술의 적용 가능성을 제한합니다. 이 문제를 해결하기 위해 현재 프로젝트는 향상된 ESI-MS 분석을위한 다중 전자 분무(MES) 방출기를 개발하는데 초점을 맞추고 있습니다.

이 논문에서는 스프레이 전류 측정을 위한 전기 분무와 오프라인 전기 분무 실험을 위한 전산 유체 역학 (CFD) 시뮬레이션의 공동 작업이 수행되었습니다. 전기 분무 성능에 대한 다양한 이미터 설계의 영향을 테스트하기 위해 수치 시뮬레이션이 사용되었으며 실험실 결과는 가이드 및 검증으로 사용되었습니다.

CFD 코드는 Taylor-Melcher 누설 유전체 모델(LDM)을 기반으로 하며 과도 전기 분무 공정이 성공적으로 시뮬레이션되었습니다.

이 방법은 750 μm 내경 (i.d.) 이미 터를 통해 먼저 검증되었으며 20 μm i.d.에 추가로 적용되었습니다. 모델. 전기 분무 공정의 여러 단계가 시각적으로 시연되었으며 다양한 적용 전기장 및 유속에서 분무 전류의 변화에 ​​대한 정량적 조사는 이전 시뮬레이션 및 측정과 잘 일치합니다.

단일 조리개 프로토 타입을 기반으로 2 홀 및 3 홀 이미터로 MES 시뮬레이션을 수행했습니다. 시뮬레이션 예측은 실험 결과와 유사하게 비교되었습니다. 이 작업의 증거는 CFD 시뮬레이션이 MES의 이미 터 설계를 테스트하는 효과적인 수치 도구로 사용될 수 있음을 입증했습니다.

이 작업에서 달성 된 마이크로 스케일 에미 터 전기 분무의 성공적인 시뮬레이션에 대한 벤치마킹 결과는 현재까지 발표 된 전기 분무에 대한 동적 시뮬레이션의 가장 작은 규모로 여겨집니다.

Co-Authorship

공동 저자: 이 논문에 대한 모든 연구는 Natalie M. Cann 박사와 Richard D. Oleschuk 박사의 지도하에 완료되었습니다. 다중 전자 분무에 관한 4 장에서 제시된 연구 작업의 일부는 Ramin Wright가 공동 저술했으며, 이 작업은 press에서 다음 논문에서 인용되었습니다.

ibson,G.T.T.; Wright, R.D.; Oleschuk, R.D. Multiple electrosprays generated from a single poly carbonate microstructured fibre. Journal of Mass Spectrometry, 2011, in press.

Chapter 1 Introduction

소프트 이온화 방법으로 ESI (electrospray ionization)의 도입은 질량 분석법 (MS)의 적용 가능성에 혁명을 일으켰습니다. 이 기술의 부드러운 특징은 상대적으로 높은 전하를 가진 이온을 생성하는 고유한 이점으로 인해 액상에서 직접 펩티드 및 단백질과 같은 큰 생체 분자를 분석 할 수 있게했습니다 [1].

지난 10 년 동안 ESI-MS는 놀라운 성장을 보였으며 현재는 단백질 체학, 대사 체학, 글리코 믹스, 합성 화학자를 위한 식별 도구 등 다양한 생화학 분야에서 광범위하게 채택되고 있습니다 [2-3].

ESI-MS는 겔 전기 영동과 같은 생물학적 분자에 대한 기존의 질량 측정 기술보다 훨씬 빠르고 민감하며 정확합니다. 또한, 액체상에서 직접 분석 할 수 있는 큰 비 휘발성 분자의 능력은 고성능 액체 크로마토 그래피 (HPLC) 및 모세관 전기 영동 (CE)과 같은 업스트림 분리 기술과의 결합을 가능하게합니다 [4].

일반적인 ESI 공정은 일반적으로 액적 형성, 액적 수축 및 기상 이온의 최종 형성을 포함합니다. 일렉트로 스프레이의 성능에 영향을 미치는 많은 요소 중에서 스프레이를 위한 이미터의 구조 (즉, 기하학, 모양 등)가 중요한 요소입니다.

전통적인 전기 분무 이미터는 일반적으로 풀링 또는 에칭 기술로 제작 된 단일 채널 테이퍼 형 또는 비 테이퍼 형입니다. 그러나 이러한 이미터는 종종 막힘, 부적절한 처리량 등과 같은 문제로 어려움을 겪습니다. [5]

향상된 감도 및 샘플 활용을 위해 다중 스프레이를 생성하는 새로운 이미터 설계 개발로 분명한 발전이 있었습니다. 새로운 ESI 이미터 설계에 대한 연구는 실험적으로나 이론적으로 큰 관심을 불러 일으켰습니다 [3]. 그러나 ESI의 복잡한 물리적 과정은 팁 형상 외에도 많은 다른 변수에 의존하기 때문에 연구간 직접 비교의 어려움은 장애물이 됩니다.

또한 새로운 나노 이미터 제조 및 테스트 비용이 상당히 높을 수 있습니다. 이 논문은 CFD 시뮬레이션 도구를 활용하여 가상 랩을 설정함으로써 이러한 문제를 해결합니다. 다른 매개 변수로 인해 상호 연결된 변경 없이 다양한 이미터 설계를 비교할 수 있도록 이상적으로 균일한 물리적 조건을 제공합니다.

맞춤 제작된 프로토 타입의 실험 측정 값도 수집되어 더 나은 계산 체계를 형성하는 데 도움이 되는 지침과 검증을 모두 제공합니다. 특히 이 분야의 주요 미래 플랫폼으로 여겨지는 다중 노즐 이미 터 설계에 중점을 둘 것입니다.

전기 분무 거동에 영향을 미치는 요인에 대한 추가 기본 연구는 다양한 기하학적 및 작동 매개 변수와 관련하여 수행됩니다. 이는 보다 효율적이고 견고한 이미터의 개발을 가능하게 할 뿐만 아니라 더 넓은 영역에서 ESI의 적용을 향상시킬 수 있습니다.

Figure 1.1Schematic setup for ESI-MS technique
Figure 1.1Schematic setup for ESI-MS technique
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.2 Schematic of major processes occurring in electrospray [5].
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.3 Illustration of detailed geometric parameters of a spraying Taylor cone wherera is the radius of curvature of the best fitting circle at the tip of the cone; re is the radius of the emission region for droplets at the tip of a Taylor cone;is the liquid cone angle.
Figure 1.4 (A)Externally tapered emitter  (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.4 (A)Externally tapered emitter (B) Optical image of a clogged tapered emitter with normal use [46].
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.5 (A)Three by three configuration of an emitter array made with polycarbonate using laser ablation; (B) Photomicrograph of nine stable electrosprays generated from the nine-emitter array [52]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.6 SEM images of the distal ends of four multichannel nanoelectrospray emitters and a tapered emitter: (A) 30 orifice emitter; (B) 54 orifice emitter; (C) 84 orifice emitter; (D) 168 orifice emitter; Scale bars in A, B, and C represent 50 μm, and 100 μm in D[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.7 Photomicrographs of electrospray from of a 168-hole MCN emitter at different flow rates. (A) A traditional integrated Taylor cone observed from offline electrospray of water with 0.1% formic acid at 300 nL/min; (B) A mist of coalesced Taylor cones observed from offline electrospray at 25 nL/min[54]
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 1.8 Circular arrays of etched emitters for better electric field homogeneity [53].
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 2.6 ESI apparatus for offline analysis with microscope imaging.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 3.9 Typical panel for displaying instant simulation result during simulation process.
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times    (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.3 Generation of a Taylor cone-jet mode (simulation) plotted with iso-potential lines at times (Top to bottom panels correspond to 0.002 s, 0.012 s, 0.018 s, 0.08 s respectively).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).
Figure 5.8 (A) Taylor cone-jet profiles with different contact angle of 30 degrees and 20 degrees (B) under the same physical conditions of 6 kV and 0.04 m/s. (C) Cone-jet profile generated from a tapered tip with a 20 degree contact angle at 6 kV and 0.04 m/s (as a comparison with (B)).

Omit below: Please refer to the original text for the full content.

Bibliography

1. Mclafferty, F.W., Tandem Fourier-Transform Mass-Spectrometry of Large Molecules.Abstracts of Papers of the American Chemical Society, 1986. 192: p. 21-Anyl. 2. Griffiths, W.J. and Y.Q. Wang, Mass spectrometry: from proteomics to metabolomics and lipidomics. Chemical Society Reviews, 2009. 38(7): p. 1882-1896. 3. Gibson, G.T.T., S.M. Mugo, and R.D. Oleschuk, Nanoelectrospray Emitters: Trends and Perspective. Mass Spectrometry Reviews, 2009. 28(6): p. 918-936. 4. Cech, N.B. and C.G. Enke, Practical implications of some recent studies in electrospray ionization fundamentals. Mass Spectrometry Reviews, 2001. 20(6): p. 362-387. 5. Su, S., Development and Application of Non-tapered Electrospray Emitters for Nano-ESI Mass Spectrometry, in Chemistry. 2008, Queen’s University: Kingston. p. 185. 6. Zeleny, J., The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical Review, 1914. 3(2): p. 69-91. 7. Dole, M., L.L. Mack, and R.L. Hines, Molecular Beams of Macroions. Journal of Chemical Physics, 1968. 49(5): p. 2240-&. 8. Yamashita, M. and J.B. Fenn, Negative-Ion Production with the Electrospray Ion-Source.Journal of Physical Chemistry, 1984. 88(20): p. 4671-4675. 9. Kebarle, P. and U.H. Verkerk, Electrospray: From Ions in Solution to Ions in the Gas Phase, What We Know Now. Mass Spectrometry Reviews, 2009. 28(6): p. 898-917. 10. Taylor, G., Disintegration of Water Drops in Electric Field. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1964. 280(138): p. 383. 11. Cole, R.B., Some tenets pertaining to electrospray ionization mass spectrometry. Journal of Mass Spectrometry, 2000. 35(7): p. 763-772. 12. Rayleigh, L., On the equilibrium of liquid conducting masses charged with electricity.Philos. Mag., 1882. 14: p. 184-186. 13. Mack, L.L., et al., Molecular Beams of Macroions .2. Journal of Chemical Physics, 1970. 52(10): p. 4977-&. 14. Gamero-Castano, M. and J.F. de la Mora, Kinetics of small ion evaporation from the charge and mass distribution of multiply charged clusters in electrosprays. Journal of Mass Spectrometry, 2000. 35(7): p. 790-803. 15. Gamero-Castano, M. and J.F. de la Mora, Modulations in the abundance of salt clusters in electrosprays. Analytical Chemistry, 2000. 72(7): p. 1426-1429. 16. Loscertales, I.G. and J.F. Delamora, Experiments on the Kinetics of Field Evaporation of Small Ions from Droplets. Journal of Chemical Physics, 1995. 103(12): p. 5041-5060. 17. Rohner, T.C., N. Lion, and H.H. Girault, Electrochemical and theoretical aspects of electrospray ionisation. Physical Chemistry Chemical Physics, 2004. 6(12): p. 3056-3068.

18. Iribarne, J.V. and B.A. Thomson, Evaporation of Small Ions from Charged Droplets.Journal of Chemical Physics, 1976. 64(6): p. 2287-2294. 19. Meng, C.K. and J.B. Fenn, Formation of Charged Clusters during Electrospray Ionization of Organic Solute Species. Organic Mass Spectrometry, 1991. 26(6): p. 542-549. 20. Nohmi, T. and J.B. Fenn, Electrospray Mass-Spectrometry of Poly(Ethylene Glycols) with Molecular-Weights up to 5 Million. Journal of the American Chemical Society, 1992. 114(9): p. 3241-3246. 21. de la Mora, J.F., Electrospray ionization of large multiply charged species proceeds via Dole’s charged residue mechanism. Analytica Chimica Acta, 2000. 406(1): p. 93-104. 22. Iavarone, A.T., J.C. Jurchen, and E.R. Williams, Supercharged protein and peptide lone formed by electrospray ionization. Analytical Chemistry, 2001. 73(7): p. 1455-1460. 23. Hogan, C.J., et al., Charge carrier field emission determines the number of charges on native state proteins in electrospray ionization. Journal of the American Chemical Society, 2008. 130(22): p. 6926-+. 24. Nguyen, S. and J.B. Fenn, Gas-phase ions of solute species from charged droplets of solutions. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(4): p. 1111-1117. 25. Luedtke, W.D., et al., Nanojets, electrospray, and ion field evaporation: Molecular dynamics simulations and laboratory experiments. Journal of Physical Chemistry A, 2008. 112(40): p. 9628-9649. 26. Enke, C.G., A predictive model for matrix and analyte effects in electrospray ionization of singly-charged ionic analytes. Analytical Chemistry, 1997. 69(23): p. 4885-4893. 27. Maze, J.T., T.C. Jones, and M.F. Jarrold, Negative droplets from positive electrospray.Journal of Physical Chemistry A, 2006. 110(46): p. 12607-12612. 28. Kebarle, P. and M. Peschke, On the mechanisms by which the charged droplets produced by electrospray lead to gas phase ions. Analytica Chimica Acta, 2000. 406(1): p. 11-35. 29. Loeb, L.B., A.F. Kip, and G.G. Hudson, Pulses in negative point-to-plane corona.Physical Review, 1941. 60(10): p. 714-722. 30. Cole, R.B., Electrospray ionization mass spectrometry : fundamentals, instrumentation, and applications. 1997, New York: Wiley. xix, 577 p. 31. Smith, D.P.H., The Electrohydrodynamic Atomization of Liquids. Ieee Transactions on Industry Applications, 1986. 22(3): p. 527-535. 32. Taylor, G.I. and A.D. Mcewan, Stability of a Horizontal Fluid Interface in a Vertical Electric Field. Journal of Fluid Mechanics, 1965. 22: p. 1-&. 33. Ikonomou, M.G., A.T. Blades, and P. Kebarle, Electrospray Mass-Spectrometry of Methanol and Water Solutions Suppression of Electric-Discharge with Sf6 Gas. Journal of the American Society for Mass Spectrometry, 1991. 2(6): p. 497-505.

34. Wampler, F.M., A.T. Blades, and P. Kebarle, Negative-Ion Electrospray Mass-Spectrometry of Nucleotides – Ionization from Water Solution with Sf6 Discharge Suppression. Journal of the American Society for Mass Spectrometry, 1993. 4(4): p. 289-295. 35. Marginean, I., P. Nemes, and A. Vertes, Order-chaos-order transitions in electrosprays: The electrified dripping faucet. Physical Review Letters, 2006. 97(6): p. -. 36. Marginean, I., P. Nemes, and A. Vertes, Astable regime in electrosprays. Physical Review E, 2007. 76(2): p. -. 37. Nemes, P., I. Marginean, and A. Vertes, Spraying mode effect on droplet formation and ion chemistry in electrosprays. Analytical Chemistry, 2007. 79(8): p. 3105-3116. 38. Marginean, I., et al., Electrospray characteristic curves: In pursuit of improved performance in the nanoflow regime. Analytical Chemistry, 2007. 79(21): p. 8030-8036. 39. Page, J.S., et al., Subambient pressure ionization with nanoelectrospray source and interface for improved sensitivity in mass spectrometry. Analytical Chemistry, 2008. 80(5): p. 1800-1805. 40. Delamora, J.F. and I.G. Loscertales, The Current Emitted by Highly Conducting Taylor Cones. Journal of Fluid Mechanics, 1994. 260: p. 155-184. 41. Ganan-Calvo, A.M., On the general scaling theory for electrospraying. Journal of Fluid Mechanics, 2004. 507: p. 203-212. 42. Smith, D.R., G. Sagerman, and T.D. Wood, Design and development of an interchangeable nanomicroelectrospray source for a quadrupole mass spectrometer.Review of Scientific Instruments, 2003. 74(10): p. 4474-4477. 43. Barnidge, D.R., S. Nilsson, and K.E. Markides, A design for low-flow sheathless electrospray emitters. Analytical Chemistry, 1999. 71(19): p. 4115-4118. 44. Guzzetta, A.W., R.A. Thakur, and I.C. Mylchreest, A robust micro-electrospray ionization technique for high-throughput liquid chromatography/mass spectrometry proteomics using a sanded metal needle as an emitter. Rapid Communications in Mass Spectrometry, 2002. 16(21): p. 2067-2072. 45. Wilm, M. and M. Mann, Analytical properties of the nanoelectrospray ion source.Analytical Chemistry, 1996. 68(1): p. 1-8. 46. Covey, T.R. and D. Pinto, Practical Spectroscopy. Vol. 32. 2002. 47. Kelly, R.T., et al., Nanoelectrospray emitter arrays providing interemitter electric field uniformity. Analytical Chemistry, 2008. 80(14): p. 5660-5665. 48. Choi, Y.S. and T.D. Wood, Polyaniline-coated nanoelectrospray emitters treated with hydrophobic polymers at the tip. Rapid Communications in Mass Spectrometry, 2007. 21(13): p. 2101-2108. 49. Tojo, H., Properties of an electrospray emitter coated with material of low surface energy. Journal of Chromatography A, 2004. 1056(1-2): p. 223-228.

50. Liu, J., et al., Electrospray ionization with a pointed carbon fiber emitter. Analytical Chemistry, 2004. 76(13): p. 3599-3606. 51. Sen, A.K., et al., Modeling and characterization of a carbon fiber emitter for electrospray ionization. Journal of Micromechanics and Microengineering, 2006. 16(3): p. 620-630. 52. Tang, K.Q., et al., Generation of multiple electrosprays using microfabricated emitter arrays for improved mass spectrometric sensitivity. Analytical Chemistry, 2001. 73(8): p. 1658-1663. 53. Deng, W. and A. Gomez, Influence of space charge on the scale-up of multiplexed electrosprays. Journal of Aerosol Science, 2007. 38(10): p. 1062-1078. 54. Su, S.Q., et al., Microstructured Photonic Fibers as Multichannel Electrospray Emitters.Analytical Chemistry, 2009. 81(17): p. 7281-7287. 55. Sen, A.K., J. Darabi, and D.R. Knapp, Simulation and parametric study of a novel multi-spray emitter for ESI-MS applications. Microfluidics and Nanofluidics, 2007. 3(3): p. 283-298. 56. Hayati, I., A. Bailey, and T.F. Tadros, Investigations into the Mechanism of Electrohydrodynamic Spraying of Liquids .2. Mechanism of Stable Jet Formation and Electrical Forces Acting on a Liquid Cone. Journal of Colloid and Interface Science, 1987. 117(1): p. 222-230. 57. Glonti, G.A., On the Theory of the Stability of Liquid Jets in an Electric Field. Soviet Physics Jetp-Ussr, 1958. 7(5): p. 917-918. 58. Nayyar, N.K. and G.S. Murty, The Stability of a Dielectric Liquid Jet in the Presence of a Longitudinal Electric Field. Proceedings of the Physical Society of London, 1960. 75(483): p. 369-373. 59. Allan, R.S. and S.G. Mason, Particle Behaviour in Shear and Electric Fields .1. Deformation and Burst of Fluid Drops. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1962. 267(1328): p. 45-&. 60. Melcher, J.R. and G.I. Taylor, Electrohydrodynamics – a Review of Role of Interfacial Shear Stresses. Annual Review of Fluid Mechanics, 1969. 1: p. 111-&. 61. Saville, D.A., Electrohydrodynamics: The Taylor-Melcher leaky dielectric model. Annual Review of Fluid Mechanics, 1997. 29: p. 27-64. 62. Carretero Benignos, J.A. and Massachusetts Institute of Technology. Dept. of Mechanical Engineering., Numerical simulation of a single emitter colloid thruster in pure droplet cone-jet mode. 2005. p. 117 leaves. 63. Hartman, R.P.A., et al., The evolution of electrohydrodynamic sprays produced in the cone-jet mode, a physical model. Journal of Electrostatics, 1999. 47(3): p. 143-170. 64. Hartman, R.P.A., et al., Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet. Journal of Aerosol Science, 1999. 30(7): p. 823-849.

65. Yoon, S.S., et al., Modeling multi-jet mode electrostatic atomization using boundary element methods. Journal of Electrostatics, 2001. 50(2): p. 91-108. 66. Zeng, J., D. Sobek, and T. Korsmeyer, Electro-hydrodynamic modeling of electrospray ionization: Cad for a mu fluidic device – Mass spectrometer interface. Boston Transducers’03: Digest of Technical Papers, Vols 1 and 2, 2003: p. 1275-1278, 1938. 67. Lastow, O. and W. Balachandran, Numerical simulation of electrohydrodynamic (EHD) atomization. Journal of Electrostatics, 2006. 64(12): p. 850-859. 68. http://www.flow3d.com. 69. Valaskovic, G.A., et al., Attomole-Sensitivity Electrospray Source for Large-Molecule Mass-Spectrometry. Analytical Chemistry, 1995. 67(20): p. 3802-3805. 70. Kriger, M.S., K.D. Cook, and R.S. Ramsey, Durable Gold-Coated Fused-Silica Capillaries for Use in Electrospray Mass-Spectrometry. Analytical Chemistry, 1995. 67(2): p. 385-389. 71. Fang, L.L., et al., Online Time-of-Flight Mass-Spectrometric Analysis of Peptides Separated by Capillary Electrophoresis. Analytical Chemistry, 1994. 66(21): p. 3696-3701. 72. Cao, P. and M. Moini, A novel sheathless interface for capillary electrophoresis/electrospray ionization mass spectrometry using an in-capillary electrode. Journal of the American Society for Mass Spectrometry, 1997. 8(5): p. 561-564. 73. Fong, K.W.Y. and T.W.D. Chan, A novel nonmetallized tip for electrospray mass spectrometry at nanoliter flow rate. Journal of the American Society for Mass Spectrometry, 1999. 10(1): p. 72-75. 74. Emmett, M.R. and R.M. Caprioli, Micro-Electrospray Mass-Spectrometry – Ultra-High-Sensitivity Analysis of Peptides and Proteins. Journal of the American Society for Mass Spectrometry, 1994. 5(7): p. 605-613. 75. Gatlin, C.L., et al., Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography microspray and nanospray mass spectrometry. Analytical Biochemistry, 1998. 263(1): p. 93-101. 76. Aturki, Z., et al., On-line CE-MS using pressurized liquid junction nanoflow electrospray interface and surface-coated capillaries. Electrophoresis, 2006. 27(23): p. 4666-4673. 77. Edwards, J.L., et al., Negative mode sheathless capillary electrophoresis electrospray ionization-mass spectrometry for metabolite analysis of prokaryotes. Journal of Chromatography A, 2006. 1106(1-2): p. 80-88. 78. http://www.kiriama.com/kiriama%20single-mode%20polymer%20fibers_009.htm. 79. Wilm, M.S. and M. Mann, Electrospray and Taylor-Cone Theory, Doles Beam of Macromolecules at Last. International Journal of Mass Spectrometry, 1994. 136(2-3): p. 167-180.

80. Hirt, C.W. and B.D. Nichols, Volume of Fluid (Vof) Method for the Dynamics of Free Boundaries. Journal of Computational Physics, 1981. 39(1): p. 201-225. 81. Melcher, J.R., Continuum electromechanics. 1981, Cambridge, Mass.: MIT Press. 1 v. (various pagings). 82. http://www.flow3d.com/cfd-101/cfd-101-FAVOR.html. 83. http://www.flow3d.com/cfd-101/cfd-101-FAVOR-no-loss.html. 84. Savage, B.M. and M.C. Johnson, Flow over ogee spillway: Physical and numerical model case study. Journal of Hydraulic Engineering-Asce, 2001. 127(8): p. 640-649. 85. http://www.flow3d.com/cfd-101/cfd-101-free-surface-fluid-flow.html. 86. Graham T. T. Gibson, R.D.W.a.R.D.O., Multiple electrosprays generated from a single poly carbonate microstructured fibre. Mass Spectrometry, 2011. 87. Smith, R.D., et al., Analytical characterization of the electrospray ion source in the nanoflow regime. Analytical Chemistry, 2008. 80(17): p. 6573-6579. 88. Hirt, C.W., Electro-hydrodynamics of semi-conductive fluids: with application to electro-spraying. Flow Science Technical Note, 2004. 70(FSI–04–TN70): p. 1-7. 89. de la Mora, J.F., The fluid dynamics of Taylor cones. Annual Review of Fluid Mechanics, 2007. 39: p. 217-243. 90. Cloupeau, M. and B. Prunetfoch, Electrostatic Spraying of Liquids in Cone-Jet Mode.Journal of Electrostatics, 1989. 22(2): p. 135-159. 91. Hayati, I., A.I. Bailey, and T.F. Tadros, Investigations into the Mechanisms of Electrohydrodynamic Spraying of Liquids .1. Effect of Electric-Field and the Environment on Pendant Drops and Factors Affecting the Formation of Stable Jets and Atomization. Journal of Colloid and Interface Science, 1987. 117(1): p. 205-221. 92. FLOW-3D User Manual, Ver. 9.4. 93. Sen, A.K., J. Darabi, and D.R. Knapp, Analysis of Droplet Generation in Electrospray Using a Carbon Fiber Based Microfluidic Emitter. Journal of Fluids Engineering-Transactions of the Asme, 2011. 133(7).

Simulation of EPS foam decomposition in the lost foam casting process

X.J. Liu a,∗, S.H. Bhavnani b,1, R.A. Overfelt c,2
a United States Steel Corporation, Great Lakes Works, #1 Quality Drive, Ecorse, MI 48229, United States b 213 Ross Hall, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341, United States c 202 Ross Hall, Department of Mechanical Engineering, Materials Engineering Program, Auburn University, Auburn, AL 36849-5341, United States
Received 17 April 2006; received in revised form 14 July 2006; accepted 21 August 2006

Keywords: Lost foam casting; Heat transfer coefficient; Gas pressure; VOF-FAVOR

LFC (Loss Foam Casting) 공정에서 부드러운 몰드 충진의 중요성은 오랫동안 인식되어 왔습니다. 충진 공정이 균일할수록 생산되는 주조 제품의 품질이 향상됩니다. 성공적인 컴퓨터 시뮬레이션은 금형 충전 공정에서 복잡한 메커니즘과 다양한 공정 매개 변수의 상호 작용을 더 잘 이해함으로써 새로운 주조 제품 설계의 시도 횟수를 줄이고 리드 타임을 줄이는데 도움이 될 수 있습니다.

이 연구에서는 용융 알루미늄의 유체 흐름과 금속과 발포 폴리스티렌 (EPS) 폼 패턴 사이의 계면 갭에 관련된 열 전달을 시뮬레이션하기 위해 전산 유체 역학 (CFD) 모델이 개발되었습니다.

상업용 코드 FLOW-3D는 VOF (Volume of Fluid) 방법으로 용융 금속의 전면을 추적 할 수 있고 FAVOR (Fractional Area / Volume Ratios) 방법으로 복잡한 부품을 모델링 할 수 있기 때문에 사용되었습니다. 이 코드는 폼 열화 및 코팅 투과성과 관련된 기체 갭 압력을 기반으로 다양한 계면 열 전달 계수 (VHTC)의 효과를 포함하도록 수정되었습니다.

수정은 실험 연구에 대해 검증되었으며 비교는 FLOW-3D의 기본 상수 열 전달 (CHTC) 모델보다 더 나은 일치를 보여주었습니다. 금속 전면 온도는 VHTC 모델에 의해 실험적 불확실성 내에서 예측되었습니다. 몰드 충전 패턴과 1-4 초의 충전 시간 차이는 여러 형상에 대해 CHTC 모델보다 VHTC 모델에 의해 더 정확하게 포착되었습니다. 이 연구는 전통적으로 매우 경험적인 분야에서 중요한 프로세스 및 설계 변수의 효과에 대한 추가 통찰력을 제공했습니다.

지난 20 년 동안 LFC (Loss Foam Casting) 공정은 코어가 필요없는 복잡한 부품을 제조하기 위해 널리 채택되었습니다. 이는 자동차 제조업체가 현재 LFC 기술을 사용하여 광범위한 엔진 블록과 실린더 헤드를 생산하기 때문에 알루미늄 주조 산업에서 특히 그렇습니다.

기본 절차, 적용 및 장점은 [1]에서 찾을 수 있습니다. LFC 프로세스는 주로 숙련 된 실무자의 경험적 지식을 기반으로 개발되었습니다. 발포 폴리스티렌 (EPS) 발포 분해의 수치 모델링은 최근에야 설계 및 공정 변수를 최적화하는 데 유용한 통찰력을 제공 할 수있는 지점에 도달했습니다. LFC 공정에서 원하는 모양의 발포 폴리스티렌 폼 패턴을 적절한 게이팅 시스템이있는 모래 주형에 배치합니다.

폼 패턴은 용융 금속 전면이 패턴으로 진행될 때 붕괴, 용융, 기화 및 열화를 겪습니다. 전진하는 금속 전면과 후퇴하는 폼 패턴 사이의 간격 인 운동 영역은 Warner et al. [2] LFC 프로세스를 모델링합니다. 금형 충진 과정에서 분해 산물은 운동 영역에서 코팅층을 통해 모래로 빠져 나갑니다.

용융 금속과 폼 패턴 사이의 복잡한 반응은 LFC 공정의 시뮬레이션을 극도로 어렵게 만듭니다. SOLA-VOF (SOLution AlgorithmVolume of Fluid) 방법이 Hirt와 Nichols [3]에 의해 처음 공식화 되었기 때문에 빈 금형을 사용한 전통적인 모래 주조 시뮬레이션은 광범위하게 연구되었습니다.

Lost foam 주조 공정은 기존의 모래 주조와 많은 특성을 공유하기 때문에이 새로운 공정을 모델링하는 데 적용된 이론과 기술은 대부분 기존의 모래 주조를 위해 개발 된 시뮬레이션 방법에서 비롯되었습니다. 패턴 분해 속도가 금속성 헤드와 금속 전면 온도의 선형 함수라고 가정함으로써 Wang et al. [4]는 기존의 모래 주조의 기존 컴퓨터 프로그램을 기반으로 복잡한 3D 형상에서 Lost foam 주조 공정을 시뮬레이션했습니다.

Liu et al. [5]는 금속 앞쪽 속도를 예측하기 위한 간단한 1D 수학적 모델과 함께 운동 영역의 배압을 포함했습니다. Mirbagheri et al. [6]은 SOLA-VOF 기술을 기반으로 금속 전면의 자유 표면에 대한 압력 보정 방식을 사용하는 Foam 열화 모델을 개발했습니다.

Kuo et al.에 의해 유사한 배압 방식이 채택되었습니다. [7] 운동량 방정식에서이 힘의 값은 실험 결과에 따라 패턴의 충전 순서를 연구하기 위해 조정되었습니다.

이러한 시뮬레이션의 대부분은 LFC 공정의 충전 속도가 기존의 모래 주조 공정보다 훨씬 느린 것으로 성공적으로 예측합니다. 그러나 Foam 분해의 역할은 대부분 모델의 일부가 아니며 시뮬레이션을 수행하려면 실험 데이터 또는 경험적 함수가 필요합니다.

현재 연구는 일정한 열전달 계수 (CHTC)를 사용하는 상용 코드 FLOW-3D의 기본 LFC 모델을 수정하여 Foam 열화와 관련된 기체 갭 압력에 따라 다양한 열전달 계수 (VHTC)의 영향을 포함합니다. 코팅 투과성. 수정은 여러 공정 변수에 대한 실험 연구에 대해 검증되었습니다.

또한, 손실 된 폼 주조에서 가장 중요한 문제인 결함 형성은 문헌에서 인용 된 수치 작업에서 모델링되지 않았습니다. 접힘, 내부 기공 및 표면 기포와 같은 열분해 결함은 LFC 작업에서 많은 양의 스크랩을 설명합니다. FLOW-3D의 결함 예측 기능은 프로세스를 이해하고 최적화하는데 매우 중요합니다.

Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).

References

[1] S. Shivkumar, L. Wang, D. Apelian, The lost-foam casting of aluminum alloy components, JOM 42 (11) (1990) 38–44.
[2] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyrolysis defect reduction in lost foam castings, AFS Trans. 106 (1998) 777–785.
[3] C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1) (1981) 201–225.
[4] C. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Computational analysis of fluid flow and heat transfer during the EPC process, AFS Trans. 101 (1993) 897–904.
[5] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, J. Mater. Sci. 37 (14) (2002) 2997–3003.
[6] S.M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami, Simulation of melt flow in coated mould cavity in the lost foam casting process, J. Mater. Process. Technol. 142 (2003) 493–507.
[7] J.-H. Kuo, J.-C. Chen, Y.-N. Pan, W.-S. Hwang, Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation, Mater. Trans. 44 (10) (2003) 2169–2174.
[8] C.W. Hirt, Flow-3D User’s Manual, Flow Science Inc., 2005.
[9] E.S. Duff, Fluid flow aspects of solidification modeling: simulation of low pressure die casting, The University of Queensland, Ph.D. Thesis, 1999.
[10] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, The effects of foam density and metal velocity on the heat and mass transfer in the lost foam casting process, in: Proceedings of the ASME Summer Heat Transfer Conference, 2003,
pp. 317–323.
[11] W. Sun, P. Scarber Jr., H. Littleton, Validation and improvement of computer modeling of the lost foam casting process via real time X-ray technology, in: Multiphase Phenomena and CFD Modeling and Simulation in
Materials Processes, Minerals, Metals and Materials Society, 2004, pp. 245–251.
[12] T.V. Molibog, Modeling of metal/pattern replacement in the lost foam casting process, Materials Engineering, University of Alabama, Birmingham, Ph.D. Thesis, 2002.
[13] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Measurement of kinetic zone temperature and heat transfer coefficient in the lost foam casting process, ASME Int. Mech. Eng. Congr. (2004) 411–418.
[14] X. Yao, An experimental analysis of casting formation in the expendable
pattern casting (EPC) process, Department of Materials Science and Engineering, Worcester Polytechnic Institute, M.S. Thesis, 1994.
[15] M.R. Barkhudarov, C.W. Hirt, Tracking defects, Die Casting Engineer 43 (1) (1999) 44–52.
[16] C.W. Hirt, Modeling the Lost Foam Process with Defect PredictionsProgress Report: Lost-Foam Model Extensions, Wicking, Flow Science Inc., 1999.
[17] D. Wang, Thermophysical Properties, Solidification Design Center, Auburn University, 2001.
[18] S. Shivkumar, B. Gallois, Physico-chemical aspects of the full mold casting of aluminum alloys, part II: metal flow in simple patterns, AFS Trans. 95 (1987) 801–812.

Deep 코팅 검증계산

The Coating Application Using the Excellent Flow Modeling Software FLOW-3D

우수한 플로우 모델링 소프트웨어 FLOW-3D를 이용한 코팅 적용 연구

FLOW-3D는 미국 Flow Science Inc.에 의해 개발된 고유한 계산 유체 동적 프로그램입니다. FORE-3D는 FORDR(장애물 표현의 단편 영역 볼륨) 유한 차이 체계를 기반으로 Navier-Stokes 전체 솔버를 가지고 있습니다.

실제 VOF(Volume of Fluid) 알고리즘은 FLOW-3D에 통합되어 신뢰할 수 있는 자유 표면 흐름 분석을 제공합니다. FLOW-3D에는 다양한 물리적 모델이 있습니다. 따라서 FLOW-3D는 잉크젯 또는 코팅 등 광범위한 산업 영역에 사용됩니다.

본 논문에서는 FLOW-3D의 특징과 동적 접촉선의 직접 연산, 코팅 적용 예제를 설명합니다.

확대한 구형 방울
확대한 구형 방울
표면 파를 수반하는 세류의 시트 모양 흐름/세류가 축퇴하여 액적을 형성하는 예
표면 파를 수반하는 세류의 시트 모양 흐름/세류가 축퇴하여 액적을 형성하는 예
Deep 코팅 검증계산
Deep 코팅 검증계산
롤 코팅 검증계산
롤 코팅 검증계산
2層 コー テ ィング計算 例/ゆ っ くりした ウェ ブ接 近
2層 コー テ ィング計算 例/ゆ っ くりした ウェ ブ接 近
カー テ ン塗 布 のエ ッジ近 傍 にお け る塗 液流 れ解 析
カー テ ン塗 布 のエ ッジ近 傍 にお け る塗 液流 れ解 析
education_banner

FLOW-3Dv12.0 온라인 교육

FLOW-3 D v12.0 온라인 교육 과정은 미국 FSI에서 제공되는 컨텐츠로 FLOW-3D 사용자(구매/임차 및 기술지원 계약이 되어 있는 고객)에게 제공되는 교육 리소스입니다. 이 온라인 교육 과정은 FLOW-3D 기본 모델 사용법 전반에 대한 온라인 주문형 비디오를 제공합니다.

각 과정에서는 사용자가 스스로 시뮬레이션을 설정할 수 있도록 예제와 설명을 제공합니다. 모든 신규 FLOW3D사용자는 프로젝트별 시뮬레이션 작업을 시작하기 전에 기본 과정을 완료하는 것이 좋습니다.

또한 기존 사용자는 FLOW3D v12.0모델 설정 프로세스에서 사용할 수 있는 향상된 기능과 새로운 기능에 대해 배우고 기본 모델 설정 항목에 대한 리프레시로 배우는 데 유용한 새로운 교육 시리즈를 찾게 될 것입니다. 과정 비디오는 특정 주제 및 세그먼트를 쉽게 찾을 수 있도록 구성되어 있고, 즐겨 찾기에 추가될 수 있으며, 언제든지 참조할 수 있는 유용한 리소스를 제공합니다.

본 교육 과정은 미국 본사 정책에 따라 유지보수 계약이 체결된 고객 ID를 통해 미국의 Users Site 에서 제공됩니다.

FLOW-3D Training Modules

FLOW-3D GUI PART 1 OF THE FLOW-3D V12.0 TRAINING SERIES

FLOW-3D GUI

  • Introduction to FLOW-3D graphical user interface
  • Simulation Manager Tab
  • Portfolio
  • Running Simulations and the Queue
  • Runtime Diagnostics: Text Output
  • Runtime Diagnostics: Plots
  • Runtime Controls
  • FLOW-3D File Structure
    Review the important files that are created when running simulations in FLOW-3D. Access the simulation files through a link on the Simulation Manager Tab. Identify the important setup and solver outputs files
Model Setup Tab PART 2 OF THE FLOW-3D V12.0 TRAINING SERIES

모델 설정 탭

  • Introduction to the Model Setup TabIntroduction to the Model Setup Tab including an orientation to its layout and how to access model inputs though the dock widgets on the process toolbar. Options for customizing the layout of the process toolbar are also reviewed.
  • Navigating the 3D ViewportLearn the basic controls for navigating the 3D viewport. This includes mouse controls, toolbar shortcuts, saving views, and moving the pivot point.
  • Other Menu/Toolbar Navigation Options
  • Working with Dock Widget Inputs
  • Model DependenciesRecognize and understand dock widget input dependencies.
Global Settings PART 3 OF THE FLOW-3D V12.0 TRAINING SERIES

전역 설정

  • Global Dock Widget Overview
  • Pressure Type
  • Finish Time
  • Finish Options: Additional Finish Condition
  • Finish Options: Active Simulation ControlDefine a logical condition to stop the simulation using active simulation control.
  • Restart OptionsHow to manually define the Restart options to continue running a previously completed simulation.
  • Version OptionsDefine the Version options to specify the solver version and the number of processors used when starting a new simulation run.
Physics Models PART 4 OF THE FLOW-3D V12.0 TRAINING SERIES

물리 모델

  • Physics Dock Widget OverviewDescription of the available options in the Physics dock widget
  • Interface Tracking, Number of Fluids and Flow ModeBackground information on interface tracking methods and defining the number of fluids. Description of the Volume of Fluid (VOF) method for simulation of complex free surfaces, and how this affects the selection of the number of fluids. Examples are presented for one fluid and two fluid simulations.
  • Activating Physics ModelsDemonstration for how to activate physics models and how to limit the display of inactive physics models using the physics model filter.
Fluid Properties PART 5 OF THE FLOW-3D V12.0 TRAINING SERIES

유체 속성

  • Fluids Dock Widget OverviewIntroduction to the Fluids dock widget and how to define properties for fluids in the simulation.
  • Defining Fluid Properties ManuallyExample for how to manually define fluid properties.
  • Defining Fluid Properties from the Materials DatabaseExample for how to load fluid properties from the fluids database.
  • Managing the Materials Database
    How to add and edit entries in the materials database.
Geometry PART 6 OF THE FLOW-3D V12.0 TRAINING SERIES

지오메트리

  • Introduction
  • Component and Subcomponent Overview
  • Creating Subcomponents: Overview
  • Creating Subcomponents: STL
  • Creating Subcomponents: Primitives Manually
  • Creating Subcomponents: Primitives Interactively
  • Creating Subcomponents: Raster
  • Subcomponent Types
  • Subcomponent Order
  • Component Order
  • Component and Subcomponent Properties
  • Transformations
Meshing PART 7 OF THE FLOW-3D V12.0 TRAINING SERIES

Meshing

  • Meshing Introduction
  • Coordinate Systems
  • FAVOR™
  • Meshing Basics: Meshing Overview
  • Meshing Basics: Creating Mesh Blocks
  • Meshing Basics: Domain Extents
  • Meshing Basics: Global Controls
  • Meshing Basics: Local Controls
  • Reviewing Mesh Quality: FAVORize
  • Reviewing Mesh Quality: Preprocessing
  • Multi-block Meshing
  • Conforming Mesh Blocks
  • Meshing Best Practices
Boundary Conditions PART 8 OF THE FLOW-3D V12.0 TRAINING SERIES

Boundary Conditions

  • Introduction
    Introductory comments regarding how boundary conditions are applied and other considerations when defining BCs.
  • Boundaries Dock Widget Overview
  • Velocity
  • Volume Flow Rate
  • Wall
  • Symmetry
  • Grid Overlay
  • Pressure
  • Continuative
  • Outflow
    Description and example setup of the Outflow BC type.
Initial Conditions PART 9 OF THE FLOW-3D V12.0 TRAINING SERIES

Initial Conditions

  • Introduction
    Discussion of how the initial conditions and can affect simulation results and run times.
  • Options for Defining ICs
    Example: Global Settings
    Example: Fluid Regions
  • Example: Function Coefficients
    Description and example for defining spatially varying fluid properties with user defined functions.
  • Example: Pointers
    Description and example for defining an initial condition by filling contiguous cells with the Pointer object.
Output Options PART 10 OF THE FLOW-3D V12.0 TRAINING SERIES

Output Options

  • Output Dock Widget Overview
  • Spatial Data
  • Spatial Data: Restart Data
  • Spatial Data: Selected Data
  • History Data
  • Diagnostics: Short Print Data
  • Diagnostics: Long Print Data
  • Example Setup
  • Batch Post-processing
  • Batch Mode: Context File
  • Batch Mode: Manual
  • Batch Mode: Generate Reports
Baffles PART 11 OF THE FLOW-3D V12.0 TRAINING SERIES

Baffles

Introduction
An introduction to the available options for creating and defining baffle objects.
Creating Baffle Objects
Limitations
Force Outputs
Porosity
Scalar Reset Options
Summary
A summary of the important options for creating baffles and defining properties.

Measurement Devices PART 12 OF THE FLOW-3D V12.0 TRAINING SERIES

Measurement Devices

  • History Probes 
    History probes are point measurement devices and are used to record solver output at a specific location. Examples are provided for how to create these objects interactively and by defining a coordinate value.
  • Flux Surfaces 
    Flux surfaces are a special type of baffle object with a fixed porosity of 1, and are used to calculate flux quantities. Examples are provided for how to create flux surfaces and the types of data available from their output.
  • Sampling volumes 
    Sampling volumes are are three-dimensional data collection regions. Examples are provided for how to create sampling volumes and the types of data available from their output.
W&E Exercise: Ogee Weir

W&E Exercise: Ogee Weir

  • This exercise demonstrates the steps to setup a basic free surface or open channel flow simulation in FLOW-3D. It is intended to be a simple and fast running simulation that demonstrates the key setup steps that can be applied to a wide range of other common open channel flow applications. In this exercise, we will simulate flow over an ogee weir to predict the discharge capacity. Simulation results can be validated against discharge rating curves obtained from physical model measurements (USBR, 1996).  Special attention is given to the common types of boundary conditions used in open channel flow simulations and how to select them during the model setup. We also provide examples for common post-processing tasks using both FLOW-3D and FlowSight.
Numerical modelling of a two-degree-of-freedom Wave Energy Converter

Energy Presentations | 에너지 프레젠테이션

Energy Presentations | 에너지 프레젠테이션

 지난 사용자 컨퍼런스에서 에너지 산업을위한 FLOW-3D의 응용에 초점을 맞춘 사용자 프레젠테이션을 다운로드하십시오  .

2019 년

Numerical modelling of a two-degree-of-freedom Wave Energy Converter: Creation, validation and utilization of the model

2 자유도 파동 에너지 변환기의 수치 모델링 : 모델의 생성, 검증 및 활용

Eliseo Marchesi, Politecnico di Milano / Studio Frosio srl
Marco Negri 및 Stefano Malavasi, Politecnico di Milano
Filippo Palo, XC Engineering Srl

Numerical modelling of a two-degree-of-freedom Wave Energy Converter
Numerical modelling of a two-degree-of-freedom Wave Energy Converter

이 연구의 목적은 FLOW-3D를 통한 수치 모델링입니다., Politecnico di Milano에서 실험실 규모 테스트를 거친 특정 Wave Energy Converter (WEC) : 두 개의 자유도 진동 체 시스템 인 EDS (Energy Double System), 급증하는 패들. 두 본체는 서로 연결되어 있으며 각각은 지상에 반응하는 PTO (Power Take-Off)에 연결됩니다. 수치 모델은주기적인 파동으로 사용 가능한 실험 테스트에 대해 검증되었습니다. 첫 번째 시뮬레이션은 실험실 테스트의주기적인 파동을 재현하는 것을 목표로했습니다. 그런 다음 실험 시스템에 해당하는 EDS의 수치 모델을 생성하고 이전에 모델링 한주기 파를 적용했습니다. 수치 방법의 품질이 확인되면 EDS 시스템의 새로운 구성에 대한 시뮬레이션이 수행되었습니다. 첫 번째 시뮬레이션 시리즈에서는이 매개 변수가 실험 모델에서 최적화되지 않았기 때문에이를 최적화하기 위해 패들 PTO의 댐핑이 변경되었습니다. 그 후, EDS 동작은 이전에 시뮬레이션 된 주기적 파동과 에너지 적으로 동일한 임의 파동에서 조사되었습니다.

다운로드

2015 년

Numerical simulation of extreme wave loading on an axisymmetric point absorber wave energy converter in a survival sea state

생존 해상 상태에서 축 대칭 점 흡수 파 에너지 변환기에 대한 극한 파 하중의 수치 시뮬레이션

Peter Arnold, Minerva Dynamics Limited

생존 해상 상태에서 파력 에너지 변환기 (WEC)가 경험할 수있는 힘과 모멘트의 초기 평가는 개념 설계 단계에서 특히 중요합니다. 현재까지 WEC의 생존 가능성을 평가하는 데 사용되는 주요 방법은 모델 규모 탱크 테스트이지만 일반적으로 10m에서 15m 범위의 상당한 파도 높이를 갖는 생존 파도의 크기로 인해 탱크 테스트 프로그램은 소규모를 사용해야합니다. 관련 계측 및 물리적 확장 문제가있는 스케일 프로토 타입 또는 관련 비용이 더 큰 대형 프로토 타입에 의존합니다. 보다 최근에 CFD는 더 작은 계산 비용으로 인해 불규칙한 파동 스펙트럼과는 반대로, 단독 집중 또는“New Waves”를 사용하여 정적 및 부동 구조에 대한 비선형 파동 부하를 평가하는 데 사용되었습니다. 그러나 이러한 초기 연구는 WEC 설계 엔지니어가 결과 부하의 통계적 분포를 필요로하기 때문에 WEC 생존에 필요한 조건 만 제공하지만 충분하지는 않습니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다. 이 연구의 목적은 해법을 얻기 위해 스펙트럼 성분 수와 메시 미세 조정 수준 및 파동 탱크 폭이 감소 된 불규칙 파 스펙트럼을 활용하여 CFD 모델에서 모델링 가정에 첨부 된 중요성을 재분배하는 것입니다. 합리적인 시간 척도로. 그 결과 WEC 운동 및 하중은 주요 통계 매개 변수 측면에서 35 스케일 축 대칭 점 흡수기의 생존에 대한 고 충실도 탱크 테스트 결과와 비교됩니다.

다운로드

Wave propagation and reflection at an inclined plane – simulations and experiments

경사면에서의 파동 전파 및 반사 – 시뮬레이션 및 실험

Boris Huber, 비엔나 기술 대학교

20m 길이의 수로에서 물리적 모델 테스트를 수행하여 수로 끝의 경사면에서 파동 전파 및 반사를 관찰했습니다. 웨이브 생성은 익스텐더 휠에 의해 앞뒤로 움직이는 바닥에 장착 된 패들로 이루어졌습니다. 파도의 전파는 수위 측정에 의해 여러 지점에서 기록되었습니다. 실험은 다양한 파동으로 실행 된 다음 FLOW-3D 로 시뮬레이션되었습니다  . 또한 CFD 시뮬레이션에서 적절한 경계 조건을 얻기 위해 돌과 천공 시트로 구성된 파동 흡수 경계를 사용한 실험을 수행하고 다른 경계 조건에서 시뮬레이션을 실행했습니다.

다운로드

2013 년

Flap type wave power device in near shore conditions

해안 근처에서 플랩 형 파력 장치

Ibis Group, Inc의 Stephen Saunders

FLOW-3D  v10.1을 솔루션 코드로 사용하여 단일 이동 플랩 파 전력 캡처 장치의 CFD 분석을 수행했습니다  . 이 작업의 목적은 프로토 타입을 제작하고 배치하기 전에 의도 한 작업 환경에서 플랩이 겪는 힘을 예측하는 것입니다. FLOW-3D  는 이동하는 공기 / 물 인터페이스의 역학을 캡처하는 데 필요한 강력한 VOF 모델 때문에 경쟁 업체보다이 프로젝트에 선택되었습니다. 또한  FLOW-3D움직이는 고체 물체를 표현하는 FAVOR ™ 방법은 움직이는 플랩을 시뮬레이션하는 데 중요합니다. 플랩 형상의 성능을 시뮬레이션하고 다가오는 파도가 플랩 표면에 수직 인 해안 근처 조건에서 평가되었습니다. 테스트 된 모델은 플랩 끝 주변의 흐름 특성을 평가하기 위해 3D로 구성됩니다. 현재까지 두 개의 바다 상태가 테스트되었습니다. 이들은 플랩에 도달하는 즉시 깨지는 깨지지 않는 팽창 및 파도입니다. 예상대로 깨지지 않는 팽창은 중립의 양쪽에서 동일한 플랩 편향과 거의 대칭 인 부드러운 플랩 동작을 유도합니다. 파동 사례를 깨는 결과는 비대칭 동작과 하중으로 훨씬 더 극적입니다.

다운로드

Ocean waves resonance analysis of an oscillating water column energy converter

진동 수주 에너지 변환기의 해양 파도 공명 분석

José Manuel Grases ; 센데 키아

SDK Marine은 진동하는 수주 챔버 내의 물에 잠긴 수력 터빈을 기반으로 파도에서 전기 에너지를 수집하는 새로운 방법을 개발하고 있습니다. FLOW-3D  는 챔버 내부와 외부의 흐름 동작을 이해하는 데 사용되었습니다. 이 프로젝트의 주요 목표는 내부 수위를 측정하고이를 외부 파 여기와 비교하여 장치의 응답을 얻는 것이 었습니다. 또한 장치의 수력을 계산하기 위해 서로 다른 수력 터빈의 거동을 시뮬레이션하기 위해 서로 다른 다공성 멤브레인을 구현했습니다.

다운로드

Plate 1.1: Overall view of infiltration rig with permeable pavement

Modular Permeable Pavements | 모듈식 투과성 포장

이 기사는 Mohd Aminur Rashid ( UNITEN ), Prof Ismail Abustan (USM) 및 Prof Meor Othman Hamzah ( USM ) 가 기고했습니다.

모듈 식 투과성 포장은 전통적인 불 침투성 아스팔트 및 콘크리트 포장의 대안입니다. 물이 표면을 통해 빠르게 침투 할 수있는 능력 때문에 모듈 식 투과성 포장은 유출량과 최고 유출률을 줄일 수 있습니다. 모듈 식 투과성 포장 도로는 우수 제어를 돕는 효과적인 도구로 간주됩니다. 이 연구는  실험실 및 현장 실험 결과를 검증하기 위해 FLOW-3D 를 사용하여 투과성 포장의 변화를 모델링하고 시각화하는 데 중점을 둡니다  .

실험 설정

Plate 1.1: Overall view of infiltration rig with permeable pavement
Plate 1.1: Overall view of infiltration rig with permeable pavement
Plate 1.2: Physical model of the permeable pavement in laboratory
Plate 1.2: Physical model of the permeable pavement in laboratory

투과성 포장의 물리적 모델은 폭 525mm, 길이 565mm 인 모델의 전면보기를 위해 3면 20mm 두께의 PVC와 20mm 두께의 Perspex로 만들어진 Plate 1.2와 같이 수직 직사각형 수로에 배치되었습니다. 이 투과성 포장 도로에는 그림 1.1과 같이 표층 두께 110mm, 자갈 바닥 두께 300mm, 부기 층 두께 200mm의 세 가지 레이어가 있습니다. 서브베이스 레이어는 200mm 깊이까지 두 ​​개의 HMPS 레이어를 리그에 추가하여 구성되었습니다. 부기 층이 완성 된 후, 침투 리그에 15mm에서 20mm 크기의 세척 된 깨끗한 입방체 골재를 첨가하여 자갈 기저층을 시공 하였다. HMPS의 표면층은 5mm 깨끗한 입방체 골재가있는 PVC의 육각 기둥으로 구성됩니다.


그림 1.1 : 경계 조건 구성
Figure 1.1: Configuration of boundary conditions
Figure 1.1: Configuration of boundary conditions

모델 검증

모델은 20L / m, 15L / m, 10L / m, 5L / m의 유속에 대한 시뮬레이션 데이터와 실험실 데이터를 비교하여 검증되었습니다. 데이터는 시간 함수로서 포장 층 하단의 유체 축적 높이로 구성됩니다. 이러한 데이터는 FLOW-3D 의 짧은 런타임 때문에 선택되었습니다  . 그림 1.2는 20L / m 실험에서 관찰 된 결과와 계산 된 결과를 비교 한 것입니다. 관찰 시간과 계산 시간의 차이는 약 5 초로 매우 작습니다. 이것은 육각형 모듈 포장 시스템의 계산 모델, HMPS 및이 FLOW-3D 를 실행하는 데 사용 된 모든 데이터를 확인했습니다.  시뮬레이션은 실험실 조건과 일치했습니다. 15L / m에 대해 관찰 된 데이터와 계산 된 데이터 간의 비교가 그림 1.3에 나와 있습니다. 그래프는 동일한 추세선과 약 5 초의 차이도 보여줍니다. 그림 1.4는 10L / m에 대해 계산 된 데이터와 관찰 된 데이터 간의 비교 그래프를 보여줍니다. 이 사례는 시뮬레이션 된 데이터와 관찰 된 데이터에 대해 약 5 초 더 많은 것을 제외하고는 완전히 일치 함을 보여줍니다. 시뮬레이션 및 관찰 된 데이터는 차이가 5 초 미만인 5L / m 케이스에 대해 그림 1.5에 플롯되었습니다.

Comparison between observed and computed data
Figure 1.2: Comparison between observed and computed data on 20L/m
Figure 1.3: Comparison between observed and computed data on 15L/m
Figure 1.4: Comparison between observed and computed data on 10L/m
Figure 1.5: Comparison between observed and computed data on 5L/m

층 두께의 영향

시뮬레이션된 각 사례의 경우 속도 필드는 비슷하지만 FORD™ 방법이 형상을 해석하는 방식으로 차이를 관찰할 수 있습니다. 그물이 너무 거칠어서 PVC 육각형 기둥의 벽을 해결할 수 없을 경우 벽 내부와 외부 사이에 액체가 누출될 수 있습니다. 결과는 그림 1.9의 압력이 가장 거친 메시의 솔루션과 다른 두 메시의 메시 독립적 솔루션 사이에 뚜렷한 차이와 함께 서로 상당히 잘 일치한다는 것을 보여줍니다. 특히, 수면과 침대의 차이는 기하와 수면의 위치를 근사한 그물에 의해 발생하며, 이는 흐름장 내 세포의 0이 아닌 속도와 Fi와 같이 장애물 내 또는 수면 위 인접 세포의 0 속도 사이의 보간 차이를 초래합니다.1.10, 1.11 및 1.12입니다. 더 미세한 메시를 사용하여 불일치를 최소화해야 합니다.

Figure 1.6: Surface pavements of HMPS in FLOW-3D simulation
Figure 1.7: Effect of thickness of surface pavement on fraction of fluid
Figure 1.8: Effect of thickness of surface pavement on volume of fluid

시뮬레이션 된 각 경우에 대해 속도 필드는 비슷하지만 FAVOR ™ 방법이 형상을 해석하는 방식에서 차이가 관찰 될 수 있습니다. 메쉬가 너무 거칠어 서 PVC 육각 기둥의 벽을 해결할 수없는 경우 벽 내부와 외부 사이에 유체 누출이있을 수 있습니다. 결과는 그림 1.9의 압력이 가장 거친 메쉬의 솔루션과 다른 두 메쉬의 메쉬 독립 솔루션 사이에 현저한 차이가 있음을 알 수 있습니다. 특히 수면과 수면의 차이는 기하학과 수면의 위치를 ​​근사하는 메쉬에 의해 발생합니다. 이는 그림 1.10, 1.11 및 1.12에서와 같이 유동장에서 세포의 0이 아닌 속도와 장애물 내부 또는 수면 위의 인접한 세포의 속도가 0이 아닌 사이의 보간 차이를 초래합니다. 더 미세한 메시를 사용하여 불일치를 최소화해야합니다.

2D different thickness of surface pavement
Figure 1.9: Pressure fields for the 2D different thickness of surface pavement
Figure 1.10: Velocity fields for the 2D different thickness of surface pavement
Figure 1.11: Pressure fields for the 2D different thickness of surface pavement
Figure 1.12: Velocity fields in the z-direction for the 2D different thickness of surface pavement

결론

수행 된 테스트의 범위에서 FLOW-3D는 모듈식 포장 도로, HMPS의 흐름을 적절하게 모델링 한다는 결론을 내릴 수 있습니다. 결과는 또한 복잡한 2D 흐름이 항상 적절하게 모델링 되었음을 나타냅니다. 특히 물 표면 프로필을 물리적 모델의 프로필과 비교할 때 더욱 그렇습니다. 이는 동일한 운영 상황에서 실험 결과와 모델 결과를 비교하기 위한 이 연구의 세 번째 목표에 부합합니다. 또한 시뮬레이션은 대체 다공성 매체 모델 또는 축척 또는 프로토타입 치수로 실행할 수 있습니다. 이 연구는  FLOW-3D가 포장 구조를 통과하는 흐름의 일반적인 특성을 모델링 할 수 있을 만큼 충분히 발전되었습니다. 더 자세한 연구를 위해서는 더 강력한 컴퓨터가 필요합니다. 이러한 결과는 이 특정 경우에 유효하며 다른 디자인을 연구 할 때 지침으로 사용해야 합니다.

마지막으로 이 연구를 통해 포장 구조가 통합 유압 시스템으로 작동함을 알 수 있습니다. 이 시스템의 성능은 시스템 내의 모든 구성 요소와 관련이 있습니다. 본 연구의 다음 단계는 본 연구에서 제시 한 분석 방법을 기반으로 단순화된 모델을 개발하는 것입니다. 전산 유체 역학 모델에 사용 된 재료 특성의 추정을 개선하려면 토양 물 특성 곡선에 대해 더 많은 실험실 테스트를 수행해야 합니다.

Structured FAVOR™ grid in cylindrical coordinates

CFD Modeling Techniques | CFD 모델링 기술

Modeling Techniques

CFD를 폭넓게 사용한 적이 있는 사람이라면 누구나 사용할 최적의 수치 기법이 뭔가에 관한 개인적인 취향이나 선입견을 가지고 있습니다.  이 절에서는 저자가 사용한 모델링 기법의 일부와 그들이 다른 기법보다 나은 선택이라고 생각하는 이유에 대해 설명합니다.

Anyone who has used CFD extensively will have his own preferences and prejudices for what are the best numerical methods to use.  The articles in this section explain some of the modeling techniques the author has used and why he believes they are good choices with respect to other methods.

Structured FAVOR™ grid in cylindrical coordinates
Structured FAVOR™ grid in cylindrical coordinates

이 절에서는 FAVOR (Fractional-Area-Volume-Obstacle-Representation ) 법과 VOF (Volume-of-Fluid) 법에 중점을두고 있습니다.  복잡한 장애물 주위의 유체 흐름을 모델링하는 경우 많은 숙련자는 장애물의 형상으로 변형된 계산 격자를 사용하는 것을 선호합니다.  이러한 계산 격자는 일반적으로 물체 적합 격자(body-fitted grids)라고합니다.  대조적으로, FAVOR 법은 요소에 면적 점유율 및 체적 점유율이 할당된 생성이 용이한 사각형 격자가 사용됩니다.  이러한 방식의 관련성에 대해서는 FAVOR와 물체 적합 좌표계 및 No Loss with FAVOR의 절에서 논의되고 있습니다.

These articles center on the FAVOR (Fractional-Area-Volume-Obstacle-Representation) method and the VOF (Volume-of-Fluid) method.  When modeling fluid flow around complex obstacles many practitioners prefer to use computational grids that are deformed to the shape of the obstacles, these are generally referred to as body-fitted grids.  The FAVOR method, in contrast, employees easy to generate rectangular grids whose elements are assigned fractional areas and volumes.  The connection between these approaches is discussed in the articles FAVOR vs. Body-Fitted Coordinates and No Loss with FAVOR.

Structured FAVOR™ Grids

VOF와 FAVOR ™은 모두 표면 기반의 계산 방법과 달리 볼륨 기반입니다. 경계 조건이 규정되는 유체 및 장애물 표면을 직접 설명하는 것이 논리적으로 보이지만 더 나은 방법은 유체 및 고체 영역의 볼륨을 사용하는 것입니다. 볼륨에는 많은 장점이 있습니다. 시간 종속적인 계산 시뮬레이션에서 움직이고 변화하는 유체 표면을 고려하십시오. 이를 자유 표면이라고하며 그 결정은 유체 역학 솔루션의 필수적인 부분이됩니다. 유체 표면은 시간이 지남에 따라 생성 및 파괴 될 수있을뿐만 아니라 유체 볼륨을 완전히 둘러 쌀 수도 있고 그렇지 않을 수도 있습니다.

Both VOF and FAVOR™ are volume-based, as opposed to surface based, computational methods. Even though it seems logical to directly describe fluid and obstacle surfaces on which boundary conditions are to be prescribed, a better method is to use the volumes of fluid and solid regions. Volumes have many advantages. Consider fluid surfaces that move and evolve in time-dependent computational simulations. These are referred to as free surfaces and their determination becomes an integral part of a fluid dynamic solution. Fluid surfaces can not only be created and destroyed over time, but may or may not completely enclose fluid masses.

간단한 예로는 호스를 빠져나가는 물이 있다고 가정하면 물의 표면적은 바깥쪽으로 흐르면서 커지고 있습니다. 만약 그것이 방울로 분해된다면, 서로 연결되지 않은 여러 표면이 있게 됩니다. 두 개 이상의 낙하물이 충돌하고 이들의 개별 표면이 더 이상 존재하지 않는 경우, 결합 낙하물을 둘러싼 단일 표면으로 대체됩니다. 또는 단순한 유체 강하가 임의로 변형되어 표면적이 변경될 수 있지만 유체가 압축할 수 없을 때는 부피에 변동이 없습니다. 이러한 종류의 행동은 개별 표면의 규격을 문제가 되게합니다.

A simple example is water exiting a hose. The surface area of the water is growing as it flows outward. If it breaks up into drops there are then multiple surfaces that are not connected to one another. Should two or more drops collide and coalesce their individual surfaces no longer exist being replaced by a single surface surrounding the combined drops. Or a simple fluid drop can arbitrarily deform resulting in a changing surface area, but its volume is unchanged when the fluid is incompressible. This sort of behavior makes the specification of individual surfaces problematic.

 한편, 유체나 고형물의 부피를 정의하는 것은 질량의 보존(그리고 불변의 부피 형태의 비압축성)이 유지하기가 더 쉽기 때문에 이치에 맞습니다. 유체 용적은 그들이 원하는 대로 결합하고 분리될 수 있으며, 결과 표면을 쉽게 평가할 수 있습니다. Volume methods에서 표면의 위치는 부피 영역이 끝나는 위치에 있습니다.

On the other hand, defining volumes of fluids or solids makes sense because conservation of mass (and incompressibility in the form of unchanging volumes) is easier to maintain. Fluid volumes may coalesce and breakup as they will, allowing easy evaluation of their resulting surfaces. In volume methods the location of a surface is wherever the volume region ends. 

Volume methods은 강력한 numerical 도구입니다. VOF 및 FAVOR™ 기법에 이러한 기법을 구현하는 방법은 첨부된 기사에 자세히 설명되어 있다.

Volume methods are powerful numerical tools. How they are implemented in the VOF and FAVOR™ techniques is described in detail in the accompanying articles.

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Figure 5. 3D view of scour under square tide conditions (every 300 s).

조수 흐름이 있는 복잡한 교각에서 scour CFD 시뮬레이션

CFD simulation of local scour in complex piers under tidal flow

J. A. Vasquez1,2, and B. W. Walsh1,3
1 Northwest Hydraulic Consultants, 30 Gostick Place, North Vancouver, BC, Canada,
V7M 3G3; PH (604) 980-6011; FAX (604) 980-9264;
2 email: JVasquez@nhc-van.com
3 email: BWalsh@nhc-van.com

ABSTRACT

우리는 상용 CFD (Computational Fluid Dynamics) 모델 Flow-3D를 사용하여 조수 흐름 아래의 복잡한 교각에서 지역 scour의 질적 시뮬레이션을 보고합니다. 이 모델은 대형 piles 캡과 10 개의 원통형 piles로 구성된 복잡한 부두에서 scour 개발의 초기 단계를 계산하는 데 적용되었습니다. Flow-3D는 piles 사이에서 예상되는 상호 작용을 정확하게 재현 할 수있었습니다. CFD 모델은 또한 조류 역류 하에서 3- piles 그룹의 scour 시뮬레이션을 위해 적용되었습니다. 그 결과는 문헌에보고 된 측정치와 질적으로 일치하여 Flow-3D가 다양한 흐름 조건에서 복잡한 교각을위한 유압 설계 도구로서의 잠재력을 가지고 있음을 보여줍니다.

INTRODUCTION

캐나다 밴쿠버에 있는 프레이저 강과 피트 강 모두에서 현재 여러 다리가 건설 중이거나 최종 설계 단계에 있습니다. 이 다리는 상대적으로 크고 300m에서 1000m 사이의 수로 폭에 걸쳐 있으며 강바닥에 위치한 여러 개의 큰 교각에서 지원됩니다.

일반적으로 케이슨 또는 코퍼 댐을 사용하여 지어진 말뚝 위에 세워진 거대한 단단한 교각이 있는 오래된 교량과 달리, 새로운 교각은 일반적으로 떠 다니는 바지선에서 원통형 말뚝을 땅으로 밀어내어 지어집니다.

말뚝 상단의 수평 말뚝 캡은 수면에 위치하며 상부 구조에서 말뚝 기초까지 힘을 전달하고 선박 충돌을 방지하는 데 사용됩니다. piles 캡의 높이는 하단 및 상단 높이가 최저 및 최고 수위를 덮도록 설계되어 모든 흐름 조건에서 볼 수 있습니다.

piles 캡의 기하학적 구조와 piles의 레이아웃은 다소 복잡 할 수 있으며, 반드시 로컬 scour 예측 변수에서 가정 한 고전적인 교각 모양을 따르는 것은 아닙니다. 그림 1은 6 각형 패턴으로 배열된 두 그룹의 piles 위에 아령 모양의 piles 캡이 있는 프레이저 강의 교각 부두의 예를 보여줍니다.

지속 가능한 환경을 위한 물 공학 (그림 2) 두 개의 다른 직경으로 만들어진 10 개의 piles 위에 둥근 끝이 있는 직사각형 piles 캡으로 만들어진 피트 강의 교각 부두. 복잡한 교각에서 scour을 계산하기위한 일부 분석 공식이 존재합니다.

예를 들어, HEC-18 매뉴얼 (Richardson and Davis 2001)은 교각 스템, piles 캡 및 piles 그룹에 의해 생성된 세 가지 scour 구성 요소를 추가하여 총 scour 깊이를 계산합니다.

말뚝 그룹은 폭이 그룹에 있는 말뚝의 투영된 폭과 동일한 솔리드 말뚝으로 대체되고 말뚝 간격 및 정렬된 행 수의 효과에 대한 수정 계수를 곱합니다. Ataie-Ashtiani와 Beheshti (2006)는 지역 scour (piles 캡이 없는)에서 piles 그룹화의 효과를 연구했습니다.

그들의 실험 결과는 나란히 배열된 매우 밀접하게 배치된 말뚝의 경우 scour 깊이가 50 % 증가할 수 있음을 보여주었습니다. 탠덤 배열의 경우 전면 piles의 scour이 증가하고 후면 차폐 piles의 경우 감소합니다.

어쨌든 말뚝 사이의 간격 S가 말뚝 직경 D의 4 배 (S/D> 4)보다 크면 scour 증폭 효과가 사라지는 경향이 있습니다. 그러나 이러한 공식은 piles이 격자 모양의 레이아웃으로 균일하게 배치되어 있다고 가정합니다.

이는 그림 1과 2에 표시된 교각에서는 분명히 해당되지 않습니다. 문제를 더욱 복잡하게 하기 위해 프레이저 강과 특히 피트 강이 대상입니다.

Figure 1. Example of bridge pier with dumbbell-shaped pile cap and hexagonal pile layout, showing also scour hole measured in a physical model.

교각의 조석 scour은 단방향 scour과 동일한 세부 사항으로 연구되지 않았지만 실제로 주제에 대한 몇 가지 주목할 만한 연구가 있습니다.

Escarameia (1998)는 흐름 방향, 조수주기 기간, 수심, 교각 모양 및 퇴적물 크기에 대한 역전의 영향을 단일 원형 및 직사각형 교각의 국부 scour에 미치는 영향을 평가하여 조류 흐름 조건 하에서 국부 scour의 실험적 조사를 수행했습니다. 예상대로 퇴적물 크기는 국부 scour 깊이에 영향을 미치지 않았습니다.

조수 조건에서 최대 수세 깊이는 베드 폼이 존재하지 않는 경우 일방향 흐름에 대해 항상 평형 scour 깊이 아래로 유지되었습니다 (맑은 물 수세미). 직사각형 교각의 scour 깊이는 정사각형 교각보다 10 ~ 14 % 더 작은 것으로 나타났습니다. 정사각형 교각에서는 조수주기 동안 교각의 상류와 하류에 생성된 scour 구멍이 병합되는데 교각이 직사각형 인 경우에는 발생하지 않습니다.

May and Escarameia (2002)는 정사각형 및 정현파 조수를 사용하여 조수 조건 하에서 지역 scour의 시간적 진화를 연구했습니다. 그들은 맑은 물 scour에서 조수 흐름의 수력 학적 구조에서의 평형 scour이 일방향 유동을 사용하는 scour보다 훨씬 적을 수 있다고 결론지었습니다. 그러나 라이브 베드 scour에서 평형 깊이는 각 조수주기에서 scour 구멍이 더 빠르게 발생하고 구조물 주변에 모래 언덕이 형성되어 단방향 흐름 값에 가까울 수 있습니다.

Margheritini et al. (2006) 은 퇴적물 이동 (살상 조건)과 함께 단방향 및 조수 흐름에서 대 구경 말뚝 주변의 국부 scour 실험을 수행했습니다. 두 경우의 최종 평형 scour은 비슷했습니다. 조수 흐름의 scour 구멍은 대칭이며 원형 모양이고 일방향 scour 구멍보다 부피가 더 큽니다.

현재 물리적 모델링은 사용 가능한 scour 방정식의 가정을 따르지 않는 복잡한 모양을 가진 교각에서 로컬 scour를 평가하기위한 유일한 실용적인 엔지니어링 도구로 보입니다.

3 차원 (3D) 수치 모델링은 단일 원통형 말뚝에서 국부 scour을 재현하기 위해 성공적으로 적용되었지만, 복잡한 교각의 모델 scour이나 조류 역류 하의 말뚝 그룹에는 적용되지 않았습니다. 이 논문의 목적은 상업적으로 이용 가능한 3D 전산 유체 역학 (CFD) 모델을 사용하여 실제 복잡한 부두와 조수 역전 하에서 이상적인 3 파일 그룹에서 지역 scour의 예비 정성 결과를 제시하는 것입니다.

NUMERICAL MODELING OF PIER SCOUR

Olsen과 Melaan (1993)의 초기 작업 이후 여러 3D 수치 모델이 단일 원통형 부두에서 국소 scour을 모델링하는 데 성공적으로 적용되었습니다 (Roulund et al. 2005의 검토 참조). 그러나 복잡한 교각에서 3D scour 시뮬레이션은 거의 시도되지 않았습니다. 그 이유는 두 가지입니다.

대부분의 모델은 복잡한 교각의 형상을 수용하기 어려운 구조화된 곡선 형 경계 맞춤 그리드를 기반으로 합니다. 또 다른 중요한 제한 사항은 계산 시간이며, 이는 실제 모델에서 로컬 scour 테스트를 수행하는 데 필요한 시간보다 훨씬 큽니다.

그럼에도 불구하고 수치 모델은 귀중한 정보를 제공할 수 있으며 컴퓨터 속도가 더욱 향상될 것으로 예상되는 미래에 큰 잠재력을 가지고 있습니다. 여기에 사용된 CFD 모델은 뉴 멕시코 주 산타페의 Flow Science에서 개발한 Flow-3D입니다. Flow-3D는 유압 엔지니어링 애플리케이션을 위한 특수 모듈이 포함된 상용 CFD 패키지입니다.

구조화된 직교 그리드를 사용함에도 불구하고, 직사각형 계산 셀이 장애물에 의해 부분적으로 차단될 수 있도록 하는 FAVOR (fractional area/volume method)를 적용하여 복잡한 형상을 모델링 할 수 있습니다. 날카로운 자유 표면 (예: 수압 점프, 공기 중 자유 제트)은 VOF (Volume-of-Fluid) 방법으로 모델링 됩니다.

Flow-3D는 Brethour (2001)에 의해 자세히 설명된 대로 지역 scour을 모델링하는 고유 한 기능도 가지고 있습니다. 이러한 기능은 그림 2에 설명되어 있으며, 모델이 맑은 물 조건에서 복잡한 부두의 형상과 scour 개발의 초기 단계를 재현할 수 있는 방법을 보여줍니다.

그림 2에 표시된 복잡한 부두는 길이 51.5m, 너비 12.5m, 두께 6.7m의 끝이 둥근 파일 캡을 포함합니다. 파일 캡 아래에는 세 개의 개별 파일 그룹이 있습니다. 직경이 2.4m 인 3 개의 파일로 구성된 두 그룹 (U & D)은 파일 캡의 상류 및 하류 끝에 위치하며, 4 개의 작은 1.8m 파일 (C)은 중앙 주위에 있습니다.

파일 캡의 바닥은 침대 위 약 13m입니다. 수치 메쉬는 길이 115m, 너비 50m, 높이 22m였으며 균일 한 셀 크기는 0.5m (46,176 셀)입니다. 시뮬레이션은 수심 15.8m, 일정한 유속 1.5m/s, 퇴적물 크기 0.35mm에 대해 수행되었습니다. Flow-3D는 지역 scour에 대한 파일 간섭의 영향을 평가하는 데 사용되었습니다. 과도한 계산 시간이 필요하여 장기 시뮬레이션을 수행할 수 없었기 때문에 처음 1 시간 동안 scour 시작 만 시뮬레이션 했습니다.

말뚝 사이의 상대적 간격 S/D를 고려할 때, 그림 2에 표시된 Flow3D 결과는 Ataie-Ashtiani와 Beheshti (2006)가보고 한 말뚝 간의 상호 작용에 관한 실험적 관찰과 매우 잘 일치합니다. 결과는 부두 중심 주변의 C 말뚝이 2 쌍처럼 나란히 행동한다는 것을 시사합니다.

왼쪽과 오른짝이었는 두 쌍의 말뚝 사이에 간섭이 없는 것으로 보입니다 (C1-C2 및 C3-C4, S/D = 4); 파일 C1 (C2)은 scour (S/D = 2.3)으로부터 파일 C3 (C4)를 보호하는 것처럼 보입니다.

그림 2는 또한 파일 캡의 양쪽 끝에 있는 3 개 파일 그룹 U 및 D의 수세공 구멍이 이미 병합되어 3 개 파일 간의 강력한 상호 작용을 시사합니다 (S/D = 0.9). 또한 3- 파일 그룹 U는 더 작은 파일 C를 보호하지 않는 것 같습니다 (S/D> 5).

Figure 2. Initial scour development computed by Flow-3D in complex pier.

최대 평형 scour 깊이를 계산할 수는 없었지만, 복잡한 부두에서 말뚝과 말뚝 캡 사이의 상호 작용에 대해 얻은 통찰력은 scour 과정과 scour 대책의 잠재적 설계를 이해하는 데 여전히 중요합니다.

MODELING TIDAL SCOUR OF PILE GROUP

지속 가능한 환경을위한 물 공학 말뚝 그룹의 조수 조사 모델링 불안정한 조수 흐름의 잠재적 영향을 평가하기 위해 Flow-3D를 사용한 정성 시뮬레이션이 수행되었습니다.

전체 교각을 시뮬레이션하는 것이 불가능했기 때문에 이상화된 3- piles 그룹 (piles 캡 없음)이 거친 메시를 사용하여 재현되었습니다. 원통형 piles의 직경은 최소 간격 S / D = 0.95로 삼각형 패턴으로 배열 된 2m였습니다. 메쉬 셀 크기는 0.5m입니다.

이러한 메쉬 크기는 piles 주변 흐름의 모든 3D 세부 사항을 해결하기에 충분한 해상도를 제공하지 않지만 계산 시간을 관리 가능한 수준으로 유지하는 데 필요한 것으로 간주되었습니다.

따라서 이러한 예비 시뮬레이션은 정 성적이며 Flow-3D의 기능을 대략적으로 평가하기위한 탐색 적 특성을 가지고 있습니다. 수로는 길이 40m, 너비 16m, 높이 6.5m였습니다. 입구 / 출구의 첫 번째와 마지막 10m는 난류의 완전한 발달을 허용하기 위해 단단한 거친 베드로 만들어졌습니다.

3 개의 말뚝이있는 수로의 중앙 부분은 0.75mm의 모래로 만들어졌습니다. 수심은 2.5m였습니다. 유속의 조석 반전은 정사각형 및 정현파 조석을 사용하여 시뮬레이션되었습니다 (그림 3). 제곱 조는 Escarameia (1998)와 Margheritini et al. (2006). 단방향 흐름의 경우 조수 피크 (2m / s)를 사용했습니다.

Figure 3. idealized tidal velocity used for numerical simulations.

900 초에서 채널 중심선을 따라 세로로 된 베드 프로piles은 그림 4에서 단방향 흐름과 사인 곡선에 대해 보여집니다. 그림 5는 제곱 조수 시나리오에 대해 300 초마다 일련의 3D 이미지를 보여 주지만 화살표는 흐름 방향을 나타냅니다. 마지막으로, 세 가지 흐름 시나리오에 대한 scour의 시간적 진화가 그림 6에 나와 있습니다.

Figure 4. Computed centerline bed profiles after 900 s for unidirectional flow (left) and sinusoidal tide (right).

Figure 5. 3D view of scour under square tide conditions (every 300 s).
Figure 5. 3D view of scour under square tide conditions (every 300 s).
Figure 6. Temporal evolution of maximum scour depth under steady and tidal flow conditions (grid resolution is 0.5 m)
Figure 6. Temporal evolution of maximum scour depth under steady and tidal
flow conditions (grid resolution is 0.5 m)

단방향 흐름에서 scour는 상류에서 발생하고 퇴적물은 더미 뒤에 축적됩니다 (그림 4). 조수 조건에서 흐름 반전은 이전 조수주기에서 개발 된 scour hole을 일시적으로 채웁니다. scour의 계산 된 시간적 진화 (그림 6)는 Margheritini et al.의 실험과 유사합니다(2006). 조석 수조는 처음에 증가하지만 흐름이 역전되면 약간 감소하여 다음주기에 다시 자라납니다.

Flow-3D는 Escarameia (1998)와 일치하여 시뮬레이션의 맑은 물 조건에 대해 조석 정찰이 단방향 정찰보다 약간 낮다고 예측했습니다. 그러나 사용된 거친 0.5m 메시 해상도로 인해 정확한 scour 감소 크기를 정확하게 해결할 수 없습니다. 또한, 모델은 평형 scour 깊이를 달성 할만큼 충분히 오래 실행되지 않았습니다.

CONCLUSION

Flow-3D는 구조화된 경계 맞춤 그리드의 일반적인 제한없이 복잡한 구조에서 로컬 scour을 모델링 할 수 있는 기능을 갖춘 최초의 CFD 상용 모델 일 것입니다.

큰 piles 캡과 여러 개의 piles로 구성된 복잡한 부두에 적용했을 때 Flow-3D는 piles 간의 상호 작용을 정확하게 예측할 수 있었으며 실제 엔지니어링 응용 프로그램을 위한 설계 도구로서의 잠재력을 보여주었습니다.

Flow-3D를 사용하여 맑은 물의 조수 흐름 하에서 이상적인 3- piles 그룹의 정 성적 시뮬레이션은 동일한 최고 속도의 단방향 흐름에 비해 흐름 반전이 있는 조수 조건에서 scour 깊이가 감소함을 보여주었습니다.

이러한 수치 결과는 실험 데이터와 일치합니다. 그러나 모델을 정량적으로 검증하려면 더 미세한 그리드를 사용하는 추가 연구가 필요합니다. 현재 Flow-3D 및 일반적으로 CFD 모델의 주요 실제 제한은 계산 시간입니다.

구조를 모델링하는 데 매우 큰 그리드가 필요한 경우 장기 평형 조사를 계산하려면 물리적 모델을 실행하는 데 필요한 것보다 훨씬 더 많은 계산 시간이 필요할 수 있습니다.

논문 원본 링크 : CFD simulation of local scour in complex piers under tidal flow

기타 참고 자료 : https://flow3d.co.kr/scouring-knowledge/

REFERENCES

Ataie-Ashtiani, B. and Beheshti, A.A. (2006). “Experimental investigation of clearwater local scour at pile groups”. J. Hyd. Eng., ASCE, 132(10), 1100-1104.
Brethour, J. M. (2001). Transient 3-D model for lifting, transporting and depositing
solid material. 2001 International Symposium on Environmental Hydraulics,
Tempe, Arizona (http://flow3d.info/pdfs/tp/wat_env_tp/FloSci-Bib28-01.pdf).
Escarameia, M. (1998). Laboratory investigation of scour around large structures in
tidal waters. Conf. Basics of Sediment Transport and Scouring. HR
Wallingford (http://kfki.baw.de/conferences/ICHE/1998-Cottbus/55.pdf).
May, R.W.P. and Escarameia, M. (2002). Local scour around structures in tidal flows.
First International Conference on Scour Foundations, Texas A&M University.
Margheritini, L., Martinelli, L., Lamberti, A. and Frigaard, P. (2006). Erosione
indotta da onde e correnti di marea attorno a pali di grande diametro. XXX
Convegni di Idraulica e Construzioni Idrauliche, Rome, September 2006
(http://www.idra2006.it/referee/files/L356.pdf).

Rivulet Formation in Slide Coating

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique

Volume-of-Fluid 기법을 사용한 과도 및 3 차원 코팅 흐름 시뮬레이션

슬라이드 코팅 흐름은 정밀 필름 코팅 제품의 제조에 널리 사용됩니다. 코팅 속도를 높이고 코팅 필름의 성능을 향상시키기 위해 슬라이드 코팅 공정을 더 잘 이해하기 위해 상당한 노력을 기울이고 있습니다. 예를 들어 Chen1과 같이 잘 정의 된 한계 이상으로 코팅 속도를 높이면 코팅 비드가 완전히 파손될 수 있음이 입증되었습니다.

이 논문에서는 유체 표면의 임의, 3 차원 및 시간에 따른 변형을 설명 할 수있는 계산 방법에서 얻은 슬라이드 코팅 흐름의 시뮬레이션 결과를 제시합니다. 상용 프로그램에서 사용할 수있는이 방법은 VOF (Volume-of-Fluid) 기술 3,4로 유체를 추적하는 고정 그리드를 사용합니다. 표면 장력, 벽 접착력, 유체 운동량 및 점성 응력은 분석에서 완전히 설명됩니다.

기본 방법은 딥 코팅 데이터와의 비교를 통해 설명됩니다 5. 그런 다음 접촉 선과 동적 접촉각이 우리의 방법에서 암시 적으로 처리되는 방법에 대한 논의를 제시합니다. VOF 기술을 사용하기 때문에 유체를 포함하는 각 제어 볼륨에 작용하는 힘의 합계 만 필요합니다. 그러면 접촉 선의 위치와 동적 접촉각이 계산 된 힘 균형에서 자동으로 발생합니다. 우리의 기술은 코팅 흐름에서 시작 및 비드 분해 현상의 예와 함께 설명됩니다.

그림에서 볼 수 있듯이 신속한 공정의 경우 당사의 접근 방식은 기존 분석 방법으로는 달성하기 어려운 코팅 공정 설계 및 최적화 시뮬레이션을위한 효율성과 견고성을 제공합니다.

Introduction

모든 코팅 공정에는 일정한 조건을 달성하기 전에 코팅 재료가 큰 변형을 겪는 일종의 시작 기간이 포함됩니다. 시작 프로세스의 우수한 특성화는 낭비를 줄이고 프로세스가 원하는 한계 내에서 작동하는지 확인하는 데 종종 중요합니다.

다양한 섭동에 대한 코팅 흐름의 과도 ​​응답에 대한 유사한 이해가 또한 바람직하여 코팅 비드의 파손 및 코팅의 불균일성을 피할 수 있습니다. 코팅 흐름의 역학은 일반적으로 비선형이고 다양한 경쟁 물리적 프로세스의 결합 된 상호 작용을 포함하기 때문에 이론적 조사를 수행하기 위해 특수한 계산 도구에 의존해야합니다.

이 작업을 위해 선택한 모델링 도구의 장점은 고정 그리드를 통해 임의의 유체 변형을 추적 할 수있는 강력한 수치 기법 인 VOF (Volume-of-Fluid) 방법을 사용한다는 것입니다. 코팅 흐름 분석에 중요한 프로그램의 다른 기능과 함께 이것이 수행되는 방식은 다음 섹션에서 설명합니다.

Overview of Numerical Method

여기에 사용 된 수치 프로그램 FLOW-3D®는 1960 년대 중반 Los Alamos National Laboratory에서 개발 된 Marker-and-Cell (MAC) 방법 6에서 유래되었습니다. 원래 MAC 방법에 대한 많은 개선이 수년에 걸쳐 이루어졌습니다.

본 출원에서 가장 흥미로운 것은 유체 영역을 찾기 위해 연속적인 유체 부피 함수에 의해 개별 마커 입자를 대체하는 것입니다. VOF 방법에서는 관심있는 계산 영역을 포함하는 사각형 제어 볼륨의 고정 그리드가 구성됩니다. 각 제어 볼륨에 대해 숫자 F는 액체가 차지하는 볼륨의 비율을 표시하기 위해 유지됩니다.

F 함수를 사용하는 것 외에도 VOF 방법은 날카로운 액체-가스 인터페이스를 유지하는 방식으로 직사각형 셀의 고정 그리드를 통해 F 함수를 전진시키기 위해 특수 수치 기법을 사용합니다. 마지막으로 VOF 방법은 경계면에서 적절한 법선 및 접선 응력 조건을 충족하기 위해 신중하게 구현 된 자유 표면 경계 조건 세트를 사용합니다. 접근 방식의 또 다른 특징은 복잡한 기하학적 영역을 정의하는 방식입니다.

장애물은 제어 볼륨의 일부를 차단할 수 있도록하여 고정 그리드에 포함됩니다. 각 제어 볼륨에서 흐름을 위해 열린 분수 영역 및 볼륨은 지오메트리 표현으로 저장됩니다. FAVOR 방법 7이라고하는이 방법은 형상을 질량, 운동량 및 에너지에 대한 이산화 된 방정식에 자동으로 통합합니다. VOF 및 FAVOR 방법을 사용하면 코팅 문제에 대한 지오메트리 및 초기 유체 구성을 정의하는 데 필요한 복잡한 그리드 생성 프로세스가 없기 때문에 시간과 노력이 절약됩니다.

다음 섹션에서는 플랫 시트에 코팅을 담그는 응용 프로그램과 함께 기본적인 수치 방법의 유용성을 설명합니다.

Dip Coating – A Validation Test

Lee와 Tallmadge는 액체 수조에서 수직으로 인출 된 평판에 딥 코팅하는 과정에 대해 광범위한 조사를 수행했습니다.

이 프로세스는 다양한 상업용 응용 프로그램에서 널리 사용됩니다. 그들의 연구는 2 차원 흐름 (즉, 가장자리 효과 없음)에 초점을 맞추고 실험 데이터에 맞는 경험적 매개 변수를 포함하는 분석 표면 프로파일로 구성되었습니다. 0.085에서 23.9 사이의 모세관 수에 대한 실험 데이터가 수집되었으며, 레이놀즈 수는 0.044에서 12.7 사이입니다. 필름 두께에 대한 실험 데이터는 약 10 % 이하로 추정되는 오류를 가졌습니다.

이 실험에 대한 계산 모델은 코팅 할 시트의 수직 (접선) 속도와 동일한 수직 (접선) 속도가 주어진 직사각형 욕조로 구성되어 매우 간단합니다. 처음에 코팅액은 수평면을 가지며 시트는 충동 적으로 시작됩니다 (그림 1c 참조). 다양한 모세관 수 사례가 시뮬레이션되었으며 모든 경우에 예측 된 필름 두께는 실험 오차 범위 내에있었습니다. 예를 들어 모세관 번호 1.17에 해당하는 경우를 고려하십시오. 시트를 3.31cm / s에서 수조 (밀도 0.885gm / cc, 표면 장력 32.7dynes / cm 및 점도 1159.4cp를 갖는 점성 윤활유)에서 꺼냈다. 우리는 2.5cm의 욕조 너비와 2.0cm의 깊이 (35 x 25 그리드 셀)를 사용했습니다.

필름 흐름을 캡처하기 위해 욕조 위의 2.0cm 영역이 모델에 포함되었습니다 (수직으로 추가 25 개 셀 필요). 수조의 오른쪽은 유체 높이가 일정하게 유지되고 압력이 수압이고 흐름이 계산 영역으로 들어갈 수있는 열린 경계 였지만 휴식에서 시작해야했습니다. 이른바 “정체”경계 조건은 움직이는 시트의 오른쪽으로 충분히 멀리 떨어져있는 경우 수평 무한 욕조에 대한 좋은 근사치입니다. 모델링이 필요한 수조의 폭을 설정하기 위해 여러 가지 계산이 수행되었으며, 필름 두께가이 폭에 크게 민감하지 않다는 것이 밝혀졌으며 그 결과는 실험에서도 발견되었습니다.

그림 1a는 초기 조건, 그림 1b는 계산 된 과도 상태의 스냅 샷, 그림 1c는 최종 정상 상태 결과를 보여줍니다. 처음에 시트에 의해 그려지는 액체 팁의 모양은 정적 접촉각 (즉, 시트와 액체 사이의 접착력)에 따라 달라지며 임의로 10 도로 취해졌습니다. 액체가 끌어 올려짐에 따라, 배출되는 액체 필름을 대체하기 위해 시트쪽으로 흐름이 시작되어야한다는 신호로서 함몰 파가 나머지 수조에 대한 신호로 오른쪽으로 이동합니다. 약 5.0 초만에 정상 상태에 도달합니다. 필름 두께는 0.145cm로 계산되었으며, 이는 0.142cm의 측정 값과 매우 일치합니다.

Rivulet Formation in Slide Coating
Rivulet Formation in Slide Coating

자세한 내용은 본문을 참고하시기 바랍니다.

업무에 적합한 올바른 CFD 소프트웨어 선택 방법

업무에 적합한 올바른 CFD 소프트웨어 선택 방법

많은 제품들이 모두 자신의 소프트웨어가 가장 적합하다고 말하기 떄문에, 사람들은 자신의 업무에 적합한 CFD 소프트웨어 선택에 어려움을 겪습니다. 그 이유는 유체 흐름 및 열 전달 분석을 위한 소프트웨어 패키지는 다양한 형태로 제공됩니다. 이러한 패키지는 물리적 근사치와 수치적 솔루션 기법이 크게 다르기 때문에 적합한 패키지를 선택하는 것이 어렵습니다.

아래 내용에서 올바른 CFD 소프트웨어를 선택할 때 고려해야 할 중요한 항목을 설명합니다.

Spillway’s tailrace over natural rock

1. 메싱 및 지오메트리

유한 요소 또는 “바디 맞춤 좌표”를 사용하는 솔루션 방법은 유동 영역의 기하학적 구조를 준수하는 해석용 그리드를 생성해야합니다. 정확한 수치 근사를 위해 허용 가능한 요소 크기와 모양으로 이러한 그리드를 생성하는 것은 쉽지 않은 작업입니다. 복잡한 경우 이러한 유형의 그리드 생성에는 며칠 또는 몇주의 노력이 소요될 수 있습니다. 일부 프로그램은 직사각형 그리드 요소만 사용하여 이러한 생성 문제를 제거하려고 시도하지만 흐름 및 열 전달 특성을 변경하는 “계단현상” 경계 문제를 해결해야 합니다. FLOW-3D는 FAVOR ™ (분수 면적 / 체적) 방법을 사용하여 기하학적 특성이 매끄럽게 포함된 생성하기 쉬운 직사각형 그리드를 사용하여 두 문제를 모두 해결합니다. 간단하고 강력한 솔리드 모델러가 FLOW-3D와 함께 패키지로 제공되거나 사용자가 CAD 프로그램에서 기하학적 데이터를 가져올 수 있습니다.

2. 운동량 방정식과 대략적인 흐름 모델

유체 운동량의 정확한 처리는 여러 가지 이유로 중요합니다. 첫째, 복잡한 지오메트리를 통해 유체가 어떻게 흐를지 예측할 수 있는 유일한 방법입니다. 둘째, 유체에 의해 가해지는 동적 힘 (즉, 압력)은 모멘텀을고려하여야만 계산할 수 있습니다. 마지막으로, 열 에너지의 대류 이동을 계산하려면 개별 유체 입자가 다른 유체 입자 및 제한 경계와 관련하여 어떻게 움직이는지를 정확하게 파악할 수 있어야 합니다.

이것은 운동량의 정확한 처리를 의미합니다. 모멘텀의 보존을 대략적으로만 하는 단순화된 흐름 모델은 실제적인 유체 구성과 온도 분포를 예측하는데 사용할 수 없기 때문에 FLOW-3D에서는 사용되지 않습니다.

3. 액체-고체 열 전달 영역

액체와 고체 (예 : 금속-금형) 사이의 열 전달에는 계면 영역의 정확한 추정이 필요합니다. 계단 경계는 이 영역을 과대 평가합니다. 예를 들어, 실린더의 표면적은 27 %의 비율로 과대 평가됩니다. FLOW-3D 전 처리기의 각 제어 볼륨에 대해 FAVOR ™ 방법에 의해 정확한 계면 영역이 자동으로 계산됩니다.

4. 액체-고체 열 전달에 대한 볼륨 효과 제어

제어 볼륨의 크기는 액체 / 고체 인터페이스를 포함하는 제어 볼륨에서도 열이 흐르기 때문에 액체와 고체 사이에서 교환되는 열의 속도와 양에 영향을 미칠 수 있습니다. FLOW-3D에서는 액체-고체 인터페이스에서 열 전달 속도를 계산할 때 체적 크기와 전도도가 고려됩니다.

5. 암시성(Implicitness)과 정확성

비선형 및 결합 방정식에 대한 암시적 방법에는 각 반복에서 under-relaxation 특성이 있는 반복 솔루션 방법이 필요합니다. 이 동작은 일부 상황에서 심각한 오류 (또는 매우 느린 수렴)를 일으킬 수 있습니다 (예 : 큰 종횡비로 제어 볼륨을 사용하거나 실제로 중요하지 않은 효과를 예상하여 암시성이 사용되는 경우).

FLOW-3D에서는 계산 노력FLOW-3D에서는 계산 작업이 덜 필요하기 때문에 가능한 경우 언제나 명시적 수치 방법을 사용하며, 수치 안정성 요구 사항은 정확도 요구 사항과 동일합니다. Implicit vs. Explicit Numerical Methods 문서에서 자세히 알아보세요.

6. 대류 전송을 위한 암시적 수치 방법 (Implicit Numerical Methods)

임의적으로 큰 시간 단계 크기를 계산에 사용할 수 있는 암시적 수치 기법은 CPU 시간을 줄이는데 널리 사용되는 방법입니다. 불행히도 이러한 방법은 대류 해석에 정확하지 않습니다. 암시적 방법은 근사 방정식에 확산 효과를 도입하여 시간 단계 독립성을 얻습니다. 물리적 확산(예 : 열전도)에 수치적 확산을 추가하는 것은 확산 속도만 수정하기 때문에 심각한 문제를 일으키지 않을 수 있습니다. 그러나 대류 과정에 수치 확산을 추가하면 모델링되는 물리적 현상의 특성이 완전히 바뀝니다. FLOW-3D에서 시간 단계는 프로그램에 의해 자동으로 제어되어 정확한 시간 근사치를 보장합니다.

7. 이완 및 수렴 매개 변수 (Relaxation and Convergence Parameters)

암시적 근사를 사용하는 수치 방법은 하나 이상의 수렴 및 이완 매개 변수를 선택해야합니다. 이러한 매개 변수를 잘못 선택하면 발산 또는 수렴 속도가 느려질 수 있습니다. FLOW-3D에서는 하나의 수렴 및 하나의 이완 매개 변수만 사용되며, 두 매개 변수는 프로그램에 의해 동적으로 선택됩니다. 사용자는 수치해석 솔버를 제어하는 ​​매개 변수를 설정할 필요가 없습니다.

8. 자유 표면 추적

액체-가스 인터페이스 (즉, 자유 표면)를 모델링하는 데 사용되는 두 가지 방법이 있습니다. 그 중 하나는 액체 및 가스 영역의 흐름을 계산하고 계면을 유체 밀도의 급격한 변화로 처리하는 것입니다. 일반적으로 밀도 불연속성은 고차 수치 근사를 사용하여 모델링됩니다.

불행히도, 이 치료는 몇몇 그리드 셀에 걸쳐 인터페이스가 매끄럽게 진행되도록 해주며, 그러한 인터페이스에 일반적으로 존재하는 접선 유속의 급격한 변화는 설명하지 않습니다. 또한 이 기법은 가스가 계산 영역으로 유입되는 액체로 대체될 경우 탈출 포트 또는 가스의 싱크로도 보완해야 합니다. 또한 이러한 방법은 일반적으로 유체의 비압축성을 만족시키기 위해 더 많은 노력을 기울여야 합니다.  가스 영역은 거의 균일한 압력 조정을 통해 솔루션 수렴 속도를 늦추는 경향이 있기 때문에 이러한 현상이 발생합니다.

FLOW-3D에서는 다른 기술인 VOF (Volume-of-Fluid) 방법이 사용됩니다. 이것은 인터페이스가 단계 불연속으로 긴밀하게 유지되는 진정한 3 차원 인터페이스 추적 체계입니다. 또한 선택적 표면 장력을 포함하여 수직 및 접선 응력 경계 조건이 인터페이스에 적용됩니다. 가스 영역은 사용자가 모델에 포함되도록 요청하지 않는 한 계산되지 않습니다.

Porous Materials

Porous Materials

다공성 매체에서의 유체 수송을 수치적으로 모델링하는 것은 어려운 일이 될 수 있지만, FLOW-3D에는 다공성 물질과 관련된 문제를 해결하기 위한 많은 중요한 기능이 포함되어 있습니다. FAVOR™  기술에는 사용자가 연속적인 다공성 미디어를 나타낼 수 있도록 필요한 다공성 변수가 포함되어 있습니다. FLOW-3D를 사용하면 포화 및 불포화 유량 조건을 모두 시뮬레이션할 수 있습니다. 전력 법칙 관계를 통해 사용자는 불포화 유량 조건에서 모세관 압력(capillary pressure)과 포화도 사이의 비선형 관계를 모형화할 수 있습니다.

별도의 주입 및 배출 곡선을 사용하여 이력 현상을 모델링할 수 있습니다. 서로 직접 접촉하는 경우에도 서로 다른 다공성, 투과성 및 습윤성 특성을 서로 다른 장애물에 할당할 수 있습니다. 투과성은 흐름 방향에 따라 지정할 수 있으므로 다공성 매체의 비등방성 동작을 모델링할 수 있습니다. 유체와 다공성 매체 사이의 열 전달이 고려될 수 있습니다.

Settling Tanks

Settling Tanks

FLOW3D의 침전물 제거 및 드리프트 플럭스 모델은 침전 탱크, 이차 클라리퍼 및 기타 유사한 구조물을 따라 순환하는 입자의 정착 과정을 모델링 하는 데 매우 유용한 도구입니다. 이러한 모델을 사용하면 사용자가 입자 지름, 드래그 계수 등과 같은 개별 특성을 사용하여 모델에 여러개의 구성을 입력할 수 있습니다.

표준 출력물에는 유체 내 침전물 농도와 포장된 침전물 축적 및 가까운 기하학의 단단한 표면에 누적되는 비율이 포함됩니다. 전체적으로 시스템의 추가적인 유압 특성(예:전체적인 유압 효율과 잔류 시간)은 스칼라 추적 모델의 동시 사용을 통해 쉽게 얻을 수 있다. 이동 물체(밸브나 게이트 개방의 작용 등)를 포함하여 단순하고 효율적으로 솔리드 객체를 표현하는 FLOW-3DFAVOR™방법을 사용하면 재메싱 작업에 소요되는 시간이 최소화된 기하학적 매개 변수 공간을 매우 효율적으로 연구할 수 있습니다.

FLOW-3D에서 벽, 다공성 벽 또는 플럭스 측정 표면의 역할을 할 수 있는 완화된 객체는 이러한 유형의 시뮬레이션에 사용할 수 있는 모델링 접근 방식에 추가적인 유연성을 제공합니다.

FLOW-3D 튜토리얼 V12

FLOW-3D 튜토리얼 V12

빠른 시작

이 튜토리얼 매뉴얼은 FLOW-3D 처음 사용하는 사용자에게 그래픽 사용자 인터페이스(GUI)의 주요 구성 요소를 쉽게 익히도록 하고, 다양한 시뮬레이션의 설정 및 실행 방법을 안내하기 위한 것입니다.

이 매뉴얼에 있는 실습과정은 FLOW-3D의 기본 사항을 다루기 위한 것입니다. 이 매뉴얼에서 제시하는 문제는 다양한 주제를 설명하고, 발생할 수 있는 많은 질문을 해결하기 위해 선정되었습니다. 이 매뉴얼의 실습과정은 FLOW-3D실행하는 컴퓨터에 앉아 사용하는 것이 가장 좋습니다.

CFD 사용 철학에 대한 간단한 섹션 다음에는 중요 파일과 시뮬레이션 파일을 실행하는 방법이 소개되어 있습니다. 이 소개 섹션 다음에는 모델 설정, 시뮬레이션 실행 및 포스트 프로세스, Simulation Manager 탐색 방법에 대한 설명이 있습니다. 이러한 각 단계에 대한 자세한 내용은 모델 설정, 컴퓨팅 결과 및 후처리 장에서 확인할 수 있습니다.

1.CFD 사용에 대한 철학

CFD (Computational Fluid Dynamics)는 유체 흐름(질량, 운동량 및 에너지 보존)에 대한 지배 방정식의 컴퓨터 솔루션입니다. 지정된 지배방정식은 이론 장에 설명된 Numerical방법을 사용하여 이산화되고 계산됩니다.

CFD 소프트웨어를 사용하는 것은 여러 면에서 실험을 설정하는 것과 유사합니다. 실제 상황을 시뮬레이션하기 위해 실험을 올바르게 설정하지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 같은 방법으로 수치 모델이 실제 상황을 정확하게 나타내지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 사용자는 어떤 것이 중요한지, 어떻게 표현해야 하는지를 결정해야 합니다. 시작하기 전에 다음과 같은 질문을 하는 것이 중요합니다.

  • CFD 계산에서 무엇을 알고 싶습니까?
  • 중요한 현상을 포착하기 위해 규모와 Mesh는 어떻게 설계되어야 하는가?
  • 실제 물리적 상황을 가장 잘 나타내는 경계 조건은 무엇입니까?
  • 어떤 종류의 유체를 사용해야합니까?
  • 이 문제에 어떤 유체 특성이 중요합니까?
  • 다른 어떤 물리적 현상이 중요합니까?
  • 초기 유체 상태는 어떻게 됩니까?
  • 어떤 단위 시스템을 사용해야합니까?

모델링 되는 문제가 실제 상황을 가능한 한 유사하게 나타내는지 확인하는 것이 중요합니다. 사용자는 복잡한 시뮬레이션 작업을 해결 가능한 부분으로 나누는 것이 좋습니다.

복잡한 물리 효과를 추가하기 전에, 간단하고 쉽게 이해할 수 있는 근사값으로 점차적으로 시작하여 프로세스 진행하십시오. 간단한 손 계산(베르누이 방정식, 에너지 균형, 파동
전파, 경계층 성장 등)은 물리 및 매개 변수를 선택하는데 도움이 되고, 결과와 비교할 수 있는 점검항목을 제공합니다.

CFD의 장단점을 이해하면 분석을 진행하는데 도움이 될 수 있습니다. CFD는 다음과 같은 경우 탁월한 분석 옵션입니다.

  • 기하 구조, 물리학 또는 필요한 상세 수준으로 인해 표준 엔지니어링 계산이 유용하지 않은 경우가 많습니다.
  • 실제 실험은 비용이 많이 소요됩니다.
  • 실험에서 수집할 수 있는 것보다 유체흐름에 대한 자세한 정보가 필요한 경우 유용합니다.
  • 위험하거나 적대적인 조건, 확장이 잘되지 않는 프로세스 등으로 인해 정확한 실험 측정을 하기가 어려운 경우
  • 복잡한 흐름 정보에 대한 커뮤니케이션

CFD는 다음과 같은 경우에 덜 효과적입니다.

  • 솔루션이 계산 리소스가 매우 많이 소요되거나, 도메인 크기를 줄이기 위한 가정 또는 해결되지 않은 물리적 현상을 설명하기 위한 반 임계 모델이 필요한 경우
  • CFD 시뮬레이션에 대한 입력이 되는 중요한 물리적 현상이 알려지지 않은 경우
  • 물리적 현상이 잘 이해되지 않거나 매우 복잡한 경우

CFD를 사용할 때 명심해야 할 몇 가지 중요한 참고 사항이 있습니다.

  • CFD는 규정된 초기 및 경계 조건에 따라 지정된 지배 방정식의 수치해석 솔루션입니다. 따라서 모델 설정, 즉 어떤 방정식을 풀어야 하는지, 재료 특성, 초기 조건 및 경계 조건이, 가능한 한 물리적 상황과 최대한 일치해야 합니다.
  • 방정식의 수치 해는 일반적으로 어떤 종류의 근사치를 필요로 합니다. 물리적 모델에 대한 가정과 해결방법을 검토한 후 사용하는 것이 좋습니다.
  • 디지털 컴퓨터는 숫자가 유한 정밀도로 이진수로 표시되는 방식으로 인해 반올림 오류가 발생합니다. 이는 문제를 악화시키기 때문에 매우 근소한 숫자의 차이를 계산해야 하는 상황을 피하십시오. 이러한 상황의 예는 시뮬레이션 도메인이 원점에서 멀리 떨어져 있을 때입니다.

 

2.중요한 파일

FLOW-3D 시뮬레이션과 관련된 많은 파일이 있습니다. 가장 중요한 것들이 아래에 설명되어 있습니다. 모든 prepin.* 파일의 명칭에서 prepin는 파일 형식을 의미하며, 별표시* 위치는 시뮬레이션 이름을 의미합니다. ( : prepin.example_simulation.)

  • ·prepin.*: 시뮬레이션용 입력 파일입니다. 시뮬레이션 설정을 설명하는 모든 입력 변수가 포함되어 있습니다.
  • ·prpgrf.*: 이것은 전 처리기 출력 파일입니다. 여기에는 계산된 초기 조건이 포함되며 시뮬레이션을 실행하기 전에 설정을 확인하는 데 사용될 수 있습니다.
  • ·flsgrf.*: 솔버 출력 파일입니다. 시뮬레이션의 최종 결과가 포함됩니다.
  • ·prperr.*, report.*, prpout.*: 이 파일들은 Preprocessor Diagnostic Files.
  • ·hd3err.*, hd3msg.*, hd3out.*: 이 파일들은 Solver Diagnostic Files.

모든 시뮬레이션 파일은 단일 폴더에 함께 유지하므로, 설명이 될 수 있는 시뮬레이션 이름을 사용하는 것이 좋습니다. 그러나 매우 긴 파일 이름은 운영 체제에 따라 문제가 될 수 있습니다.

노트

  • 시뮬레이션 이름이 inp(즉, 입력 파일이 있다면 prepin.inp) 출력 및 진단 파일은 모두 .dat이름을 갖습니다. 예: flsgrf.dat.
  • 모든 입력 파일은 네트워크 위치의 컴퓨터 대신 로컬 디렉토리에 저장하는 것이 좋습니다. 이것은 솔버가 더 빠르게 실행되고 GUI의 응답 속도가 빨라지며 실행중인 시뮬레이션을 방해하는 네트워크 문제 가능성을 제거합니다.

3.시뮬레이션 관리자

FLOW-3D 시뮬레이션 관리자의 탭은 주로 시뮬레이션을 실행할 수 있도록 시뮬레이션 환경을 구성하고 실행 시뮬레이션에 대한 상태 정보를 표시하는데 사용됩니다.

작업 공간 (Workspaces)

작업 공간(Workspaces)Simulation Manager의 필수 부분이며 파일을 FLOW-3D에서 처리하는 방식입니다. 기본적으로 시뮬레이션을 포함하고 구성하는 폴더입니다. 몇 가지 예를 들면 시뮬레이션과 또 다른 작업 공간인 검증 사례를 포함하도록 할 수 있습니다:

포트폴리오의 작업 공간

새로운 작업 공간 만들기

튜토리얼에서는 작성하려는 시뮬레이션을 포함할 작업 공간(Workspaces)을 작성하십시오.

1.File -> New workspace 이동

2.작업 공간 이름으로 Tutorial를 입력하십시오.

3.기본 위치는 현재 사용자의 홈 디렉토리에 있습니다. 다른 곳에서 찾을 수 있지만 기본 위치가 우리의 목적에 적합합니다.

4.하위 디렉토리를 사용하여 작업 공간 이름 만들기 확인란을 선택합니다. 이렇게 하면 파일 시스템에서 작업 공간에 대한 새로운 하위 디렉토리가 만들어져 시뮬레이션 파일을 훨씬 쉽게 구성할 수 있습니다.

새로운 작업 공간 만들기

5.확인을 눌러 새 작업 공간을 작성하십시오. 이제 포트폴리오에 표시됩니다.

새로운 작업 공간 만들기

작업 공간 닫기

포트폴리오를 정리하고 탐색하기 쉽도록 필요 없는 작업공간을 닫는 것이 편리합니다. 작업 공간을 닫으면 포트폴리오에서 해당 작업 공간만 제거됩니다. 그러나, 컴퓨터에서 작업 공간을 삭제하지는 않습니다.

작업 공간을 닫으려면

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 작업 Close Workspace 선택하십시오. 또는 포트폴리오에서 작업 공간을 선택 (왼쪽 클릭) 하고 Delete 키를 누를 수 있습니다.

2.작업 공간을 닫을 것인지 묻는 메세지가 표시됩니다. 예를 선택하십시오.

3.포트폴리오는 더 이상 닫힌 작업 공간을 포함하지 않습니다.

기존 작업 공간 열기

오래된 작업 공간을 열어야 할 때가 있을 것입니다. 예를 들어, 새 프로젝트에 유사한 시뮬레이션을 작성하기 전에 기존 시뮬레이션의 설정을 검토할 수 있습니다. 기존 작업 공간을 열려면

1.File -> Open Workspace를 선택하십시오

2.작업 공간 파일이 있는 디렉토리를 찾으십시오. Tutorial.FLOW-3D_Workspace.

작업 공간 열기

3.작업 공간을 로드 하려면 OK누르십시오.

작업 공간에서 시뮬레이션 작업

작업 공간을 사용하는 방법을 알았으니, 여기에 시뮬레이션을 추가해 봅시다.

Example를 추가하십시오

작업 공간에 작업 시뮬레이션을 추가하는 가장 간단한 방법은 포함된 예제 시뮬레이션 중 하나를 추가하는 것입니다. FLOW-3D의 다양한 기능을 사용하는
방법을 보여주기 위해 설계된 간단하고 빠른 시뮬레이션입니다. 기존 작업 공간에 예제를 추가하려면 다음을 수행하십시오.

1.포트폴리오에서 원하는 작업 공간을 강조 표시하십시오

2.File -> Add example 선택하십시오. 또는 작업공간을 마우스 오른쪽 버튼으로 클릭하고 예제 추가선택할 수 있습니다.

3.예제 대화 상자에서 예제를 선택하고 열기를 누르십시오. 자연 대류(Natural Convection) 예제를 선택했습니다.

시뮬레이션 예제 추가

4.새 시뮬레이션 대화 상자가 열립니다.

5.디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋으므로 기본 시뮬레이션 이름과 위치를 잘 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 쉽게 만들어 줍니다.

6.시뮬레이션을 위한 단위 시스템을 선택하십시오. 표준 단위 시스템이 권장되지만 각 단위를 독립적으로 선택하기 위해 사용자 지정 단위 시스템을 선택할 수 있습니다.

7.확인을 눌러 새 시뮬레이션을 작업 공간에 추가하십시오.

작업 공간에서의 시뮬레이션

작업 공간에서 시뮬레이션 제거

작업 공간에서 시뮬레이션을 제거해야 하는 경우가 있습니다 (이는 작업 공간에서 시뮬레이션을 제거만 하며, 컴퓨터에서 시뮬레이션을 삭제하지는 않습니다). 작업 공간에서 시뮬레이션을 제거하려면 다음을 수행하십시오.

1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 시뮬레이션 제거를 선택하십시오. 또는 작업 공간에서 시뮬레이션을 선택 (왼쪽 클릭)하고 Delete 키를 누를 수 있습니다.

2.작업 공간에는 더 이상 시뮬레이션이 포함되지 않습니다.

모든 작업 공간 및 디스크에서 시뮬레이션 삭제

작업 공간에서 시뮬레이션을 제거하는 것 외에도 디스크에서 모든 시뮬레이션 파일을 삭제해야 할 수도 있습니다. 작업 공간에서 시뮬레이션을 제거하고 디스크에서 시뮬레이션
파일을 삭제하려면 다음을 수행하십시오.

1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 단추로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 모든 작업 공간 및 디스크에서 시뮬레이션
삭제를
선택하십시오.

2.시뮬레이션 디렉토리에서 삭제할 파일을 선택할 수 있는 창이 나타납니다. 삭제할 파일을 선택한 다음 확인을 눌러 해당 파일을 삭제하거나 취소를 눌러 작업을 중단하십시오.

3.OK를 선택한 경우 선택한 작업 공간은 더 이상 시뮬레이션을 포함하지 않습니다. 선택한 작업 공간의 모든 시뮬레이션 파일은 디렉토리에서 삭제됩니다.

경고

이 작업은 취소할 수 없으므로 계속하기 확인 후 파일을 삭제해야 합니다.

작업 공간에 기존 시뮬레이션 추가

기존 시뮬레이션을 작업 공간에 추가하려면 다음을 수행하십시오.

1.열린 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 기존 시뮬레이션 추가 선택합니다. 작업 공간을 선택한 다음 File->Add Existing Simulation 을 선택할 수도 있습니다.

2.prepin.*파일 위치로 이동하여 열기를 선택하십시오.

작업 공간에 기존 시뮬레이션 추가

3.시뮬레이션이 이제 작업 공간에 나타납니다.

작업 공간에 새로운 시뮬레이션 추가

대부분의 경우 기존 시뮬레이션을 사용하는 대신 새 시뮬레이션을 작성하게 됩니다. 작업 공간에 새로운 시뮬레이션을 추가하려면:

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 새 시뮬레이션 추가 선택하십시오.

2.시뮬레이션 이름을 입력하라는 message가 표시됩니다. 이 예제에서는 heat transfer example 불러오십시오.

3.그런 다음 드롭다운 목록을 사용하여 시뮬레이션을 위한 단위 시스템을 결정합니다. 사용 가능한 옵션은 질량, 길이, 시간, 전기요금
각각 g, cm, s, coul기준의 Kg, m, s, CGS입니다. 또한 엔지니어링 단위도 사용할 수 있으며, slug, ft, s의 기초 단위가 있지만, 전기
충전을 위한 단위는 없습니다. 이러한 옵션 중 어느 것도 해당되지 않는 경우, 질량, 길이, 시간 및 전기요금에 대한 기준 등을 사용자 정의하여 사용자 지정 단위 시스템을 사용할 수 있습니다.

4.온도 단위는 드롭다운 목록을 사용하여 지정해야 합니다. 사용 가능한 옵션은 SI CGS 단위의 경우 Celsius
Kelvin, 엔지니어링 단위의 경우 Fahrenheit Rankine입니다. Custom units(사용자 정의 단위) 옵션을 선택한 경우, 사용 가능한 온도 단위는 질량
및 길이에 대해 선택한 기본 단위에 따라 변경됩니다.

노트

새 시뮬레이션의 시뮬레이션 단위는 신중하게 선택하십시오. 일단 설정하면 단위를 변경할 수 없습니다.

5.이 시뮬레이션에 사용된 템플릿이 기본 템플릿이 됩니다. 템플릿은 포함된 설정을 새 시뮬레이션에 적용하는 저장된 값 세트입니다. 다른 템플릿을 사용해야하는 경우
찾아보기 아이콘 (
browse_icon_v12)을 클릭하여 사용 가능한 템플릿 목록에서 선택하십시오.

6.기본 시뮬레이션 이름과 위치는 디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 훨씬 쉽게 만듭니다. 시뮬레이션을 다른 위치에 저장하려면 찾아보기 아이콘 ( browse_icon_v12)을 사용하여 원하는 위치로 이동하십시오.

7.확인을 클릭하여 작업 공간에 새 시뮬레이션을 추가하십시오.

heat transfer example

새로운 시뮬레이션 추가

다른 옵션

우리는 지금 이러한 옵션을 사용하지 않는 동안, 이 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하여 추가 옵션에 대한 액세스를 제공합니다.

일반적으로 사용되는 Add Simulation Copy… 그리고 Add Restart Simulation…을 추가합니다. 첫 번째 옵션은 기존 시뮬레이션의 사본을
작성하고, 두 번째 옵션은 기존 시뮬레이션을 복사하고 원래 시뮬레이션의 결과를 다시 시작 시뮬레이션의 초기 조건으로 사용하도록 다시 시작 옵션을 구성합니다.

추가 정보

재시작 시뮬레이션에 대한 자세한 내용은 도움말에서 모델 설정 장의 재시작 섹션을 참조하십시오.

전처리 및 시뮬레이션 실행

시뮬레이션 전처리

시뮬레이션 전처리는 초기 조건을 계산하고 입력 파일에서 일부 진단 테스트를 실행합니다. 문제가 올바르게 구성되었는지 확인하거나 전 처리기의 진단 정보가 필요한 경우에
유용합니다. 시뮬레이션을 실행하기 전에 전처리할 필요가 없습니다. 시뮬레이션을 전처리 하려면

1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Preprocess Simulation->Local 선택합니다. 이 경우 입력 파일 heat transfer example이 아직 완전히 정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.

2.전처리 프로세스가 시작되고 Simulation Manager 하단의 텍스트 창에 일부 정보가 인쇄된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의 아이콘도 시뮬레이션이 성공적으로 처리되었음을 나타내도록 변경됩니다.

추가 정보

자세한 내용은 도움말의 컴퓨팅 결과 장의 전처리 섹션을 참조하십시오.

시뮬레이션 실행

시뮬레이션을 실행하면 입력 파일에 정의된 문제에 대한 지배 방정식(물리적 모델, 형상, 초기 조건, 경계 조건 등)이 해석됩니다. 시뮬레이션을 실행하려면

1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Run Simulation->Local을 선택하십시오. 이 경우 입력 파일 heat transfer example이 아직 완전히
정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.

2.솔버가 시작되고 시뮬레이션 관리자 하단의 텍스트 창에 일부 정보가 인쇄되고 플롯이 업데이트 된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의
아이콘도 시뮬레이션이 성공적으로 실행되었음을 나타내도록 변경됩니다. 또한 솔버가 실행되는 동안 큐에 시뮬레이션이 나타나는 것을 볼 수 있으며, 완료되면 사라집니다
.

추가 정보

시뮬레이션 실행 및 진단 읽기에 대한 자세한 내용은 도움말의 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.

작업 공간에서 모든 시뮬레이션 실행

작업 공간을 마우스 오른쪽 버튼으로 클릭하고 Simulate Workspace->Local을 선택하여 작업 공간에서 모든 시뮬레이션을 실행할 수도 있습니다.

추가 정보

자세한 내용은 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.

대기열

사전 처리 또는 실행에 작업이 제출되면 큐의 맨 아래에 시뮬레이션이 자동으로 추가됩니다. 그런 다음 솔버에 사용 가능한 라이센스 및 계산 리소스가 있으면 시뮬레이션이 사전 처리되거나 실행됩니다. 대기열에 있지만 아직 전처리 또는 실행되지 않은 시뮬레이션은 대기열 맨 아래의 컨트롤을 사용하여 대기열에서 다시 정렬하거나 대기열에서 제거할 수 있습니다.

추가 정보

자세한 내용은 컴퓨팅 결과 장을 참조하십시오.

파일 시스템에서 파일 찾기

어떤 이유로 구조물 파일에 액세스해야 하는 경우 (아마 *.STL 폴더에 파일을 배치해야 함) 표시된 파일 경로를 시뮬레이션 입력 파일로 클릭하여 파일 시스템의 해당 위치로 이동할 수 있습니다.

파일 링크

4.모델 설정

Model Setup(모델 설정) 탭은 시뮬레이션 관리자에서 현재 선택한 시뮬레이션에 대한 입력 매개 변수를 정의하는 곳입니다. 여기에는 전역설정, 물리학 모델, 유체,
기하학, 메싱, 구성요소 특성, 초기 조건, 경계 조건, 출력 옵션 및 숫자가 포함된다.

이 섹션은 물에 잠긴 모래(; 파랑)의 바닥에서 가열된 구리 블록(; 빨간색)에 의해 발생하는 열 기둥(아래)을 보여주는 간단한 시뮬레이션 설정 방법을 안내합니다.

예제 문제

이 튜토리얼은 방법이나 모델이 어떻게 작동하는지, 옵션을 선택한 이유 등에 대한 포괄적인 논의를 의도한 것이 아니며, 이 특정 시뮬레이션을 설정하기 위해 수행해야 할 사항에
대한 간략한 개요일 뿐입니다. 여기서 행해지는 것에 대한 방법/모델과 추론의 세부사항은 사용 설명서의 다른 장에서 확인할 수 있습니다.

시작하려면 새 작업 공간을 작성하고 새 시뮬레이션을 추가하십시오. 이를 수행하는 방법에 대한 지침은 새 작업 공간 작성 및 작업 공간에 새 시뮬레이션 추가를 참조하십시오.

탐색

모델 설정은 주로 빨간색으로 표시된 처음 9 개의 아이콘의 탐색을 통해 수행됩니다. 각 아이콘은 시뮬레이션의 특정 측면을 구성하기 위한 위젯을 엽니다. Global에서 시작하여 Numerics로 끝나는 다음 섹션은 각 위젯의 목적을 보여줍니다.

시뮬레이션의 다양한 측면을 정의하기위한 탐색 아이콘

통제 수단

다음은 FLOW-3D 사용자 인터페이스의 그래픽 디스플레이 영역에서 사용되는 마우스 컨트롤입니다.

행동

버튼/

동작

기술

회전

왼쪽

길게 클릭

마우스 왼쪽 버튼을 클릭 한 채로 Meshing & Geometry 창에서
마우스를 움직입니다. 그에 따라 모델이 회전합니다.

중간 버튼/스크롤

스크롤/클릭 한
상태

마우스를 앞뒤로 움직여 확대/축소하려면 가운데 휠을 굴리거나 마우스 가운데 버튼을 클릭
한 상태로 유지하십시오.

우측

길게 클릭

마우스 오른쪽 버튼을 클릭 한 채로 창에서 마우스를 움직입니다. 모델이 마우스와 함께 움직입니다.

객체에 초점 설정

해당 없음

객체 위에 커서를 놓기

커서를 개체 위로 가져 가면 마우스 오른쪽 버튼 클릭 메뉴를
통해 추가 조작을 위해 개체가 활성화됩니다. 개체가 활성화되면 강조 표시됩니다. Meshing & Geometry 탭에서 Tools->
Mouse Hover
Selection
환경 설정 이 활성화된 경우에만
수행됩니다.

선택

왼쪽

더블 클릭

객체를 두 번 클릭하면 마우스 오른쪽 버튼 메뉴를 통해 추가
조작을 위해 객체를 선택하고 활성화합니다. Meshing
& Geometry
탭에서 Tools
->Mouse Hover Selection 환경 설정 이
비활성화 된 경우에만 활성화됩니다.

액세스 객체 속성

우측

딸깍 하는 소리

강조 표시된 객체를 마우스 오른쪽 버튼으로 클릭하면 객체
식별, 표시/숨기기, 활성화/비활성화, 투명도 조정 등의 옵션 목록이 표시됩니다.

커서 좌표 반환 (프로브)

왼쪽

Shift + 클릭

Shift 키를 누르면 커서가 대상으로 바뀝니다. Shift 키를 누른 상태에서 클릭하면 화면의 왼쪽 하단에 표시된 표면의 좌표가 표시됩니다.

피벗 점 배치

왼쪽

cntrl + 클릭

Ctrl 키를 누르고 있으면 커서가 피벗 아이콘으로 바뀝니다. Ctrl 키를 누른 상태에서 클릭하여 피벗 점을 설정하십시오. 뷰가
피벗 점을 중심으로 회전합니다. 토글 사용자 정의 피벗 피벗 점을 끕니다.
보기 창 위의 버튼을 누릅니다.

도움이
되는 툴바 옵션도 있습니다. 옵션의 목적을 찾으려면 아이콘 위로 마우스를 가져갑니다.

메시 및 지오메트리 탭의 컨트롤

글로벌

이 매뉴얼에 대한 시뮬레이션을 만들려면 원하는 작업 공간을 마우스 오른쪽 단추로 클릭하고 새 시뮬레이션 추가를 선택하십시오. 매뉴얼 섹션의 새 시뮬레이션 추가 작업 공간에 설명된 대로 이름을 ‘heat transfer example’로 지정하고 작업 공간에 추가하십시오. SI Kelvin을 각각 단위 시스템과 온도로 선택합니다. 일단 설정되면
시뮬레이션을 위한 단위는 변경할 수 없다는 점을 기억하십시오.

글로벌 아이콘 f3d_global_icon을 클릭하여 글로벌 위젯을 여십시오. 여기에서 정의된 단위가 표시되고 시뮬레이션 완료 시간이 설정됩니다. 이 시뮬레이션의 경우 완료 시간을 200 초로 설정하십시오. 시뮬레이션에 대한 중요한 세부 정보는 여기 노트 필드에도 추가할 수 있습니다.

글로벌 탭 예를 들어 문제

추가 정보

자세한 내용은 모델 설정 장의 전역 섹션을 참조하십시오.

물리

물리 f3d_models_icon아이콘을 클릭하여 물리 위젯을 엽니다.

모델 선택을위한 물리 위젯

이 문제의 경우, 하나의 유체, 자유 표면, 경계 및 비압축/제한 압축의 기본 설정이 모두 정확합니다.

관련 물리 메커니즘(, 추가 지배 방정식 또는 지배 방정식 용어)은 물리 위젯에서 정의됩니다. 모델을 활성화하려면 해당 모델의 아이콘을 마우스 왼쪽 버튼으로 클릭하고활성화 선택하십시오. 이 시뮬레이션을 위해서는 다음 모델을 활성화해야 합니다.

·Density evaluation(밀도 평가): 이 모델은 열 기둥을 생성하는 밀도 변화를 설명합니다. 다른 양(: 온도 또는 스칼라)의 함수로 평가된 밀도를 선택하고 Include volumetric thermal expansion 상자를 선택하십시오.

문제 평가를위한 밀도 평가 모델

·Gravity and non-inertial reference frame(중력 및 비 관성 기준 프레임): 중력을 나타내는 힘이 추가되므로 Z 중력 성분에 -9.81을 입력하십시오.

예를 들어 중력 모델

·
Heat transfer(열 전달): 이 모델은 유체와 고체 물체 사이의 열 전달을 설명합니다. 이 시뮬레이션의 경우 First order for the Fluid internal Energy advection를 선택하고 Fluid to solid heat transfer를 활성화하려면 확인란을 선택하십시오. 나머지 옵션은 기본값으로 두어야합니다.

열전달 모델 예 : 문제

·
Viscosity and turbulence(점성 및 난류): 이 모델은 유체의 점성 응력을 설명합니다. Viscous flow 옵션을 선택하고 나머지 옵션은 기본값으로 두십시오.

예를 들어 문제의 점도 모델

추가 정보

자세한 내용은 모델 설정 장의 물리 섹션을 참조하십시오.

유체

유체의 속성은 모델 설정 탭의 유체 위젯에 정의되어 있습니다. 유체 위젯은 수직 도구 모음에서 Fluids f3d_fluids_icon f3d_fluids_icon아이콘을 클릭하여 액세스할 수 있습니다. 먼저 유체 옵션 1 이 속성 옵션으로 선택되어 있는지 확인하십시오. 유체 1의 속성은 수동으로 입력할 수 있지만 일반적인 유체의 속성을 설정하는 빠른 방법은 재료 속성로드 버튼Matdatbas을 클릭하여 재료 데이터베이스에서 유체를 로드하는 것입니다. 다음으로, 원하는 재료를 탐색하십시오. 이 경우 Fluids->Liquids->Water_at_20_C를 선택하고 Load를 클릭하십시오.

이 시뮬레이션에는 데이터베이스에 없는 특성인 체적 열 팽창 계수가 필요합니다. 밀도 하위 탭에서 207e-6을 입력하십시오. 최종 속성 세트는 다음과 같아야 합니다.

유체 특성 (예 : 문제)

추가 정보

자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.

Geometry(기하)

기하형상 f3d_geometry_icon아이콘을 클릭하여 물리 위젯을 엽니다.

이 시뮬레이션을 위해 생성해야 하는 두 가지 형상은 구리 블록과 모래층이 있습니다. 둘 다 프리미티브를 사용하여 작성합니다. 보다 현실적인 시뮬레이션은 Primitives, Stereolithography(STL) Geometry File (s)/또는 Raster File (s)을 사용하여 지오메트리를 정의할 수 있습니다.

구리 블록을 만들려면 먼저 지정된 상자 형상 아이콘을 클릭하여 작성합니다. 구리 블록을 x y 방향 원점에서 +/- 2cm 연장하고 z 방향으로 0-4cm 연장합니다. 나머지 옵션은 그대로 두고 블럭을 솔리드로 만들고 새 구성 요소에 추가합니다.

예제 문제에 대한 구리 블록 정의

하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 자동으로 열린 구성요소 추가 대화상자에서 Type as General(솔리드)을 그대로 두고 Name(이름) 필드에 Copper block을 입력한 다음 OK(확인)를 선택하여 구성요소 정의를 완료하십시오.

상자아이콘을 다시 클릭하여 베드 하위 구성 요소를 작성하십시오. 아래 표시된 범위를 사용하고 컴포넌트에 추가 선택 사항을 새 컴포넌트(2)로 설정하십시오.

예를 들어 침대 문제 정의

하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 대화 형으로 이름 필드에서Bed를 입력한 후 구성요소 정의를 마칩니다. 최종 형상은 다음과 같이 표시됩니다.

예제 문제에 대한 형상 정의

새 구성 요소를 추가하면 가로 및 세로 방향으로 그래픽 표시 창에 길이 스케일이 자동으로 생성됩니다. 눈금자 도구를 사용하여 생성된 기하학적 객체의 범위를 빠르게 측정할 수 있습니다.

노트

표시 영역에는 지오메트리 모양 정의만 표시되므로 객체가 솔리드인지 구멍인지에 대한 정보는 표시되지 않습니다. 즐겨 찾기옵션을 사용하여 Mesh 후에 나중에 수행할 수 있습니다.

추가 정보

자세한 내용은 도움말 모델 설정 장의 형상 섹션을 참조하십시오.

구성 요소 속성

열전달 모델은 고체 구성 요소의 전도 방정식을 해결하기 위해 재료 특성이 필요합니다. 이러한 속성은 이 아이콘f3d_geometry_icon을 클릭하여 구성 요소 속성 위젯에서 설정합니다.

구성 요소 특성 위젯

각 구성 요소에는 솔리드 특성 및 표면 특성이 정의 되어 있어야합니다. 구리 블록에 대해 이를 설정하려면 먼저 형상 위젯에서 구성 요소 1: copper block 요소를 선택하십시오. 그런 다음 컴포넌트 특성 위젯에서 솔리드 특성을 선택하고 다음과 같이 특성을 정의하십시오.

구리 블록 고체 특성

여기에서 두 번째 구성 요소(베드)에 대해 설명된 구성 요소 특성 정의를 위한 대체 방법을 사용할 수 있습니다. 이 방법에서는 구성 요소 2: 베드 구성 요소를 클릭하고 재료 필드 옆에 있는 재료 특성로드 Matdatbas 아이콘을 선택하여 시작합니다. 다음으로 재료를 탐색합니다. 이 경우 Solids->Sands->Sand_Quartz 선택하고 Load를 선택하십시오.

베드 솔리드 속성

추가 정보

l 자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.

l 주어진 물리적 모델에 필요한 속성에 대한 자세한 내용은 모델 참조 장을 참조하십시오.

Meshing(메싱)

Mesh Mesh 위젯에서 생성 및 정의되며, 위젯을 통해 액세스 할 수 있습니다. f3d_mesh_icon아이콘을 눌러 add_iconMesh를 추가합니다. Mesh의 범위를 형상에 빠르게 적용하려면 형상에 맞추기 라디오 버튼을 선택하고 오프셋 라디오 버튼을 백분율로 유지합니다. 블록 속성에서 셀 크기를 0.004로 설정하십시오.

메시 블록을 형상에 맞추기

Mesh 상단은 z 방향으로 위쪽으로 확장해야 합니다. Z-Direciton 탭을 선택하고 Mesh Plane 2 0.2를 입력합니다.

z 높이 조정

이 시뮬레이션은 2D가 될 것입니다. 동일한 프로세스에 따라 Y 방향 범위를 -0.005 0.005 로 설정하십시오. 그리고 합계 셀을 1로 설정하십시오.

y 메쉬 평면 조정

최종 Mesh는 그래픽 디스플레이 창 바로 위의 Mesh->Flow Mesh->View 모드 드롭 다운 메뉴에서 옵션을 변경하여 다른 방식으로 볼 수 있습니다. 그리드 라인 마다 그리드 선을 표시합니다 옵션은 Mesh Plane의 옵션만 표시됩니다 Plane Mesh 및 개요 옵션은 Mesh의 범위를 보여줍니다.

또한 솔버가 Mesh의 최종 지오메트리를 인식하는 방법은 FAVOR TM 알고리즘을 사용하여 형상 정의를 면적 분수 및 부피 분수로 변환합니다. 이렇게 하려면 즐겨 찾기아이콘을 클릭한 다음 생성을 선택하십시오.

호의

잠시 후 회색 영역이 고체 물질을 나타내는 아래와 같은 형상을 표시해야 합니다.

선호하는 결과

추가 정보

l Mesh에 대한 자세한 내용은 모델 설정 장의 Mesh 섹션을 참조하십시오.

l FAVORTM FAVORize
옵션에 대한 자세한 내용은 모델 설정 즐겨 찾기장의 Reviewing the FAVORized Geometry and Mesh 섹션을 참조하십시오.

경계 조건

FLOW-3D는 구성 요소 유형 및 활성 물리적 모델에 기초한 구성 요소에 적절한 경계 조건을 자동으로 적용합니다. 그러나 경계 조건 위젯에서 Mesh 블록면의 경계 조건은 각 Mesh 블록에 대해 수동으로 설정해야 합니다(f3d_bc_icon ).

이 매뉴얼의 경우 경계 조건 중 3 가지가 경계조건( X Min , X Max, Z Max 경계)을 기본 대칭 조건조건부터 변경해야 합니다.

·X Min :

o경계 조건 위젯의 경계 섹션 아래에 있는 X Min 목록을 클릭하십시오. Type에서 경계 유형을 Velocity로 설정하고 X 속도에 대해 0.001을 입력하십시오.

XMIN 경계 조건

·다음으로, 유체 분율 사용에서 유체 표고 사용으로 드롭다운 상자를 변경하고 유체 높이를 0.15로 설정하십시오.

·마지막으로 온도를 298K로 설정하십시오.

XMIN 경계 조건

·
X Max :

o경계 조건 위젯의 경계 섹션 아래에 있는 X 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.

o다음으로, 유체 분율 사용에서 유체 높이 사용으로 드롭다운 상자를 변경하고 유체 높이를 0.15로 설정하십시오.

o마지막으로 온도를 298K로 맞춥니다.

oXMAX 경계 조건

·
Z 최대 :

o경계 조건 위젯의 경계 섹션 아래에 있는 Z 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.

o다음으로 유체 분율을 0.0으로 설정하십시오.

o마지막으로 온도를 298K로 맞춘다.

ZMAX 경계 조건

추가 정보

자세한 내용은 모델 설정 장의 Mesh 경계 조건 섹션을 참조하십시오.

초기 조건

도메인 내부의 솔리드 객체(구성 요소)와 유체 모두에 대해 초기 조건을 설정해야 합니다.

·
구성 요소 :이 시뮬레이션에서 솔리드 객체에 필요한 유일한 초기 조건은 초기 온도입니다. 이것은 각 구성 요소에 대한 위젯에 설정되어 있는 구성 요소 속성에 대해 수행한 것과 유사한 방식으로 구성 요소를 등록합니다. 구성 요소 속성을 설정할 때 이전과 동일한 방법으로 구성 요소 1의 초기 온도를 350K로 설정하고 구성 요소 2의 초기 온도를 298K로 설정하십시오.

유체 초기 조건

유체: 유체의 초기 조건을 설정하기 위해 조금 더 설정해야 합니다. 이 경우 유체 구성, 온도, 속도 및 압력 분포를 모두 설정해야 합니다. 유체 초기 조건은 초기 위젯을 설정하고 초기 f3d_initial_icon를 클릭하면 열립니다.

f3d_initial_icon 아이콘을 선택한 후 유체 목록에서 압력을 선택하고 온도를 298K로 설정합니다. x, y, z 속도를 0.0으로 설정하십시오.

유체 초기 조건

다음으로, 높이/볼륨 목록과 유체 높이 사용 드롭다운 버튼을 선택합니다. 유체 높이를 0.15로 설정하십시오.

유체 초기 조건 계속

추가 정보

자세한 내용은 모델 설정 장의 초기 조건 섹션을 참조하십시오.

출력

FLOW-3D 옵션에는 결과 파일에 기록될 데이터와 출력 위젯에서 발견된 빈도를 제어하는 7가지 데이터 유형이 있습니다. 출력 f3d_output_icon 아이콘을 클릭합니다.

다른 데이터 유형은 다음과 같습니다.

·Restart: 모든 흐름 변수. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.

·Selected: 사용자가 선택한 흐름 변수 만. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.

·History: 하나의 변수와 시간의 변화를 보여주는 데이터. 예는 시간 단계 크기, 평균 운동 에너지, 배플에서의 유속 등을 포함합니다. 기본 출력 주기 = 시뮬레이션 시간의 1/100.

·Short print: hd3msg.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.

·Long print : hd3out.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.

·Solidification: 응고 모델이 활성화 된 경우에만 사용 가능합니다.

·FSI TSE: 변형 가능한 솔리드에 대한 추가 출력 옵션.

일반적으로 이 시뮬레이션에는 기본 출력 속도가 적합합니다. 그러나 Selected Data의 일부 추가 구성은 유용합니다. Selected data interval 0.5로 설정한 다음 Fluid 온도, Fluid velocity, Macroscopic density Wall 온도 옆에 있는 상자를 선택합니다. 그러면 이러한 값이 0.5초마다 출력됩니다.

출력 탭 설정

추가 정보

자세한 내용은 모델 설정 장의 출력 섹션을 참조하십시오.

Numerics

기본 Numerics 옵션은 대부분의 시뮬레이션에서 잘 작동하므로 기본 옵션에서 벗어나야 하는 충분한 이유가 없는 경우에는 현재 그대로 두는 것이 가장 좋습니다.

이것으로 모델 설정 섹션에서 시작된 예제 문제의 설정을 마칩니다. 이제 실행할 준비가 되었으므로 전처리 및 시뮬레이션 실행의 단계에 따라 시뮬레이션을 실행하십시오.

추가 정보

자세한 내용은 모델 설정 장의 Numerics 옵션 섹션을 참조하십시오.

일반 시뮬레이션 설정 점검 목록

시뮬레이션을 설정하는 데 필요한 단계에 대한 개략적인 개요가 아래에 나와 있습니다. 이 목록은 포괄적인 목록이 아닙니다. 일반적인 단계, 고려해야 할 몇 가지 중요한 사항 및 권장되는 설정 순서를 간단히 설명하는 안내서일 뿐입니다.

시작하기 전에

1.물리적 문제의 다이어그램을 그리기 및 주석 달기 : 이 다이어그램에는 기하학적 치수, 유체의 위치, 관련 힘, 움직이는 물체의 속도, 관련 열 전달 메커니즘 등이 포함되어야 합니다. 완성된 다이어그램은 문제에 대한 모든 관련 엔지니어링 정보로 인한 물리적 문제에 대한 이미지여야 합니다.

2.모델링 접근법 결정: 주석이 달린 다이어그램을 가이드로 사용하여 문제점에 접근하는 방법을 결정 : 문제가 되는 유체의 수, 혼화 가능한 경우, 하나 이상의 유체에서 방정식을 풀어야하는 경우 및 압축성이 중요한지 파악하여 시작하십시오. 그런 다음 어떤 물리적 메커니즘이 중요한지 결정하십시오. 이러한 각 옵션 (: 유체 유형, 열 전달 메커니즘 등)에 대한 관련 엔지니어링 정보를 다이어그램에 추가하십시오. 물리적 메커니즘이 포함되거나 무시된 이유를 정당화하려고 합니다. 이를 통해 시뮬레이션 프로세스 초기에 오류를 수정하는 데 시간이 거의 걸리지 않는 초기에 실수를 잡을 수 있습니다.

3.다이어그램에 계산 영역을 그리고, 계산 영역의 가장자리에 있는 물리적 상황 설명 : 경계의 물리적 상황을 가장 잘 나타내는 경계 조건 유형을 기록합니다. 사용 가능한 경계 조건 유형이 경계의 물리적 상황에 대한 합리적인 근사치가 아닌 경우 이 경계를 다른 곳으로 이동해야 합니다.

모델 설정 : 일반

1.문제, 시뮬레이션의 목적, 사례 번호 등을 설명하는 메모를 추가하십시오. 메모는 향후 사용자 또는 나중에 참조할 수 있도록 설정을 설명하고 정당화하는 데 도움이 됩니다. 시뮬레이션의 목적, 분석 방법 등을 논의해야합니다.

2.사용할 솔버와 프로세서 수를 선택하십시오.

3.단위 시스템 선택: 소규모 문제를 모델링 할 때는 작은 단위 ( : mm-gm-msec)사용하고 규모가 큰 문제는 큰 단위 ( : SI)를 사용하십시오. 이를 통해 기계 정밀도로 인한 반올림 오류를 방지할 수 있습니다.

4.유체 수, 인터페이스 추적 옵션 및 유량 모드를 선택하십시오. 주석이 달린 다이어그램을 이 단계의 지침으로 사용하십시오. 유체의 수는 질량, 운동량 및 에너지 보존을 관장하는 방정식이 유체 분율 f> 0(유체 1을 나타내는) 또는 유체 분획 f \ geq 0(유체 1 및 유체 2)이 있는 영역에서 해결되는지 여부를 나타냅니다. 인터페이스
추적 옵션은 유체 분율의 변화가 급격한지 또는 확산되어야 하는지 여부를 정의하는 반면, 흐름 모드는 f = 0두 유체 문제에서 처리되는 영역을 정의합니다.

5.마감 조건 정의: 시뮬레이션 종료 시점을 선택합니다. 시간, 채우기 비율 또는 기타 정상 상태 측정을 기반으로 할 수 있습니다.

6.기존 결과에서 시뮬레이션을 다시 시작하는 방법 정의 (선택 사항): 기존 결과 파일에서 시뮬레이션을 다시 시작할 때 다시 시작 옵션이 적용됩니다. 재시작 옵션은 재시작 소스 파일에서 가져온 정보와 시뮬레이션의 초기 조건을 사용하여 재설정되는 정보를 정의합니다.

모델 설정 : 물리

1.주석이 달린 다이어그램을 기반으로 관련 실제 모델 활성화

모델 설정 : 유체

1.유체의 속성 정의 1: 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 대한 적절한 물리적 속성을 정의하십시오.

2.유체 2의 속성 정의 (사용하는 경우): 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 적절한 물리적 속성을 정의하십시오.

3.인터페이스의 속성 정의: f = 1 f = 0의 영역 사이의 인터페이스 속성을 정의하십시오. 여기에는 표면 장력, 상 변화 및 확산에 대한 특성이 포함됩니다.

모델 설정 : Mesh 및 형상

1.모든 STL 파일의 오류 점검: ADmesh, netfabb Studio 또는 유사한 프로그램을 사용하여 모든 STL 파일의 오류를 점검하십시오. 이는 모델 설정에 시간을 소비하기 전에 형상
정의와 관련된 문제를 파악하는 데 도움이 됩니다.

2.모든 하위 구성 요소 및 구성 요소 가져 오기 및 정의 : 주석이 달린 다이어그램에 설명 된 대로 실제 사례와 일치하도록 3D 솔리드 형상을 정의합니다. 최종 결과는 물리적 형상의 정확한 복제본이어야 합니다. 각 부분에 설명적인 이름을 사용하고 대량 소스가 될 구성 요소를 포함하십시오.

3.모든 구성 요소의 속성 정의: 주석이 달린 다이어그램에 그려진 내용을 기반으로 각 구성 요소의 모든 재료 속성, 표면 속성, 모션 속성 등을 정의합니다. 경계 조건이 정의될 때까지 질량 소스 특성을 정의하기를 기다리십시오.

4.스프링과 로프 및 각각에 대한 관련 속성을 정의합니다.

5.주석이 달린 다이어그램에 설명된 시뮬레이션 도메인과 일치하도록 Mesh를 정의하십시오. 도메인의 모서리가 다이어그램에서 식별된 위치에 있는지 확인하십시오. 또한 인터페이스 (셀이 0 <f <1있는 셀과 셀이 f = 1다른 셀 이 있는 셀)를 식별하려면 세 개의 셀이 필요합니다.f = 0 ). 최소 5 개의 셀이 예상되는 가장 얇은 연속 영역에 맞도록 충분히 작은 셀을 사용하십시오. f = 1 f = 0 .

6.지오메트리를 정의하는 모든 배플 정의

7.경계 조건, 질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 정의: 경계 조건 (질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 포함)은 모든 방정식을 풀기 위해 주어진 위치에서 솔루션을 규정합니다. 주석이 달린 다이어그램을 사용하여 각 경계 (또는 소스 등)에 지정된 내용이 유동 솔루션, 열 전달 솔루션, 전위 등에 대한 현실과 일치하는지 확인하십시오.

8.유체 및 구성 요소의 초기 조건을 정의합니다. 초기 조건은 모든 방정식 (유량 솔루션, 열 전달 솔루션, 전위 등)에 대해 모든 영역에서 솔루션을 규정합니다.t = 0 .주석이
달린 다이어그램을 사용하여 초기 조건에 지정된 내용이 현재 현실에 대한 근사치인지 확인하십시오. 유체 영역뿐만 아니라 구성 요소의 초기 조건을 설정해야 합니다.

9.모든 측정 장치 정의 (샘플링 볼륨, 플럭스 표면 및 히스토리 프로브)

모델 설정 : 출력

1.출력 기준 (시간, 채우기 비율 또는 응고된 비율)을 선택하십시오.

2.재시작 데이터에 추가할 출력을 선택하십시오.

3.선택한 데이터에 기록할 정보를 선택하십시오.

4.재시작, 선택, 히스토리, 짧은 인쇄 및 긴 인쇄 데이터의 출력 속도 정의 : 기본 속도는 재시작 및 긴 인쇄 데이터의 경우 (10개 출력)/(시뮬레이션 종료 시간) 및 선택한 기록, 짧은 인쇄 데이터의 경우 (100개 출력)/(시뮬레이션 종료 시간)입니다.

모델 설정 : 숫자

1.기본값이 아닌 필수 숫자 옵션을 선택 FLOW-3D의 숫자 옵션은 고급 사용자를 대상으로 하며, 지배 방정식을 해결하는 데 사용되는 숫자 근사치 및 방법을 상당히 제어할 수 있습니다. 이러한 옵션 중 일부를 잘못 사용하면 솔루션에 문제가 발생할 수 있으므로 일반적으로 이 옵션의 기능을 먼저 이해하고 조정의 정당성을 갖추지 않고는 이러한 설정을 조정하지 않습니다.

5.FLOW-3D에서 후 처리

이 섹션에서는 FLOW-3D에 통합된 포스트 프로세서를 사용하는 방법에 대해 설명합니다. 보다 강력한 외부 포스트프로세서 FlowSight에 대한 튜토리얼은 FlowSight 설명서를 참조하십시오. 또한 이 섹션에서는 Flow Over A Weir 예제 문제를 실행하여 생성된 결과 파일을 사용합니다. 이 예제 문제를 실행하는 방법에 대한 지침은 예제 추가 및 시뮬레이션 사전 처리 및 실행을 참조합니다.

FlowSight 사용에 대한 기본 참조는 FlowSight Help->helpLocal Help 메뉴에서 액세스하는 FlowSight 사용자 설명서입니다.

추가 정보

기존 플롯

기존 플롯은 솔버가 자동으로 생성하는 사전 정의된 플롯입니다. 사용자 정의 플롯은 아래의 사용자 정의 플롯 섹션에 설명되어 있습니다.

1.분석 탭을 클릭하십시오. FLOW-3D 결과 대화 상자가 표시됩니다; 메세지가 나타나지 않으면 (분석 탭이 열림) 결과 파일 열기를 선택하여 동일한 대화 상자를 엽니다.

2.기존 라디오 버튼을 선택하십시오. 데이터 파일 경로 상자에 두 가지 유형의 파일이 표시됩니다 (있는 경우). 이름이 prpplt.*있는 파일 에는 전처리 flsplt.*기에 의해 자동으로 작성된 플롯이 포함되고 이름이 있는 파일에는 입력 파일에 사전 지정된 플롯 뿐만 아니라 후 처리기에 의해 자동으로 작성된 플롯이 포함됩니다.

3. 확인을 선택 flsplt.Flow_Over_A_Weir하고 클릭하십시오. 그러면 디스플레이 탭이 자동으로 열립니다.

기존 결과 대화 상자

4.사용 가능한 플롯 목록이 오른쪽에 나타납니다. 목록에서 해당 플롯의 이름을 클릭하면 특정 플롯을 볼 수 있습니다. 플롯 26 이 아래에 나와 있습니다.

기존 플롯보기

커스텀 플롯

1.분석 탭으로 돌아갑니다. 대화 상자를 열려면 결과 파일 열기를 선택하십시오.

2.전체 출력 파일을 보려면 사용자 정의 단일 선택 단추를 선택하십시오. 전체 출력 파일에는 prpgrf.*파일과 파일이 포함됩니다 flsgrf.*. 시뮬레이션이 실행되었으므로 전 처리기 출력 파일이 삭제되어 flsgrf파일에 통합되었습니다.

3.flsgrf.Flow_Over_A_Weir대화 상자 에서 파일을 선택하고 확인을 클릭하십시오.

FLOW-3D 결과 대화 상자

이제 분석 탭이 표시됩니다. 시뮬레이션 결과를 시각화 하는 방법에는 여러 가지가 있습니다. 사용 가능한 플롯 유형은 다음과 같습니다.

·Custom : 이 매뉴얼 의 FLSINP 파일을 사용하여 플롯합니다. 사용자 정의 섹션의 출력 코드를 사용하여 출력 플롯을 수동으로 수정하는 데 사용할 수 있습니다. 이것은 고급 옵션입니다.

·프로브 : 개별 셀, 경계, 구성 요소 및 도메인 전체(전역) 변수 대 시간에 대한 그래픽 및 텍스트 출력을 표시합니다. 자세한 내용은 프로브 플롯 프로브 : 특정 시점의 데이터와 시간 을 참조하십시오.

·1-D : 셀 데이터는 X, Y 또는 Z 방향의 셀 라인을 따라 볼 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 자세한 내용은 1-D 플롯 1-D : 라인을 따른 데이터 시간 을 참조하십시오.

·2-D : 셀 데이터는 XY, YZ 또는 XZ 평면에서 볼 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 속도 벡터 및 입자를 추가할 수 있습니다. 자세한 내용은 2 차원 플롯 2 차원 : 평면의 데이터와 시간의 데이터 를 참조하십시오.

·3-D : 유체와 고체의 표면 플롯을 생성하고 셀 데이터로 채색 할 수 있습니다. 속도 벡터, 입자 (있는 경우) 및 유선과 같은 추가 정보를 추가할 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 자세한 내용은 3D 플롯 3D : 표면의 데이터 시간 을 참조하십시오.

·텍스트 출력 : cell-by-cell 재시작, 선택 및 응고 데이터를 텍스트 파일에 쓸 수 있습니다. 자세한 내용은 텍스트 출력 텍스트 : ASCII 형식의 공간 데이터 출력 시간 을 참조하십시오.

·중립 파일 : 재시작 및 선택된 데이터는 별도의 텍스트 파일에 정의 된 지정된 지점(보간 또는 셀 중심)에서 출력 될 수 있습니다. 자세한 내용은 중립 파일 : 사용자 정의 좌표에서의 공간 데이터 출력 시간 을 참조하십시오.

·FSI TSE : 유한 요소 유체 / 고체 상호 작용 및 열 응력 진화 물리학 패키지에서 출력됩니다. 자세한 내용은 FSI / TSE : 표면의 구조 데이터와 시간 을 참조하십시오.

3 차원 도표

1.Analyze -> 3-D 탭을 선택하십시오.

2.Iso-surface = Fraction of fluid 선택하십시오. 이것은 표면을 그리는 데 사용되는 변수입니다. 선택한 등면 변수에 대한 등고선 값 기준을 충족하는 모든 셀을 통해 표면이 그려집니다. 유체의 분율이 기본값이며 유체 표면이 표시됩니다.

등 면형

3.색상 변수 = 압력을 선택하십시오. 이 선택은 등위면의 색을 지정하는 데 사용되는 변수를 결정합니다 (이 경우 유체 표면은 압력에 의해 색이 그려집니다).

색상 변수 유형

4.Component iso-surface overlay = Solid volume 선택하십시오. 솔리드 볼륨 은 유체와 함께 솔리드 구성 요소를 표시합니다. 이전 단계에서는 체적 분수의 보완을 등위면으로 선택하여 이 작업을 수행했지만 이 옵션을 사용하면 유체와 고체 표면을 동시에 플롯 할 수 있습니다.

등표면 옵션

5.이동 시간 프레임의 최소 및 최대 위치들 (0 내지 1.25 )에 슬라이더 위치.

시간대 옵션

6.렌더 버튼을 클릭하여 디스플레이 탭으로 전환하고 t = 0.0에서 1.25 초 사이에 일련의 11 플롯을 생성하여 압력에 의해 채색된 유체 표면과 위어 구조를 보여줍니다. 데이터 다시 시작 이 선택되었으므로 11 개의 플롯이 있습니다.

7.사용 가능한 플롯이 사용 가능한 시간 프레임 목록에 나열됩니다. 다음을 클릭하여 시간 프레임 사이를 이동하거나 시간 프레임을 두 번 클릭하여 표시하십시오. 첫 번째 및 마지막 시간 프레임은 다음과 같아야 합니다.

위어 구조 렌더링

8.Analyze -> 3-D 탭으로 돌아가서 Data Source 그룹에서 Selected data 라디오 버튼을 선택하십시오.

데이터 소스

9.시간 프레임 선택기의 두 슬라이더가 모두 오른쪽에 있으므로 마지막 시간 프레임 만 생성됩니다. 사용 가능한 시간 프레임이 많고 렌더링하는데 시간이 오래 걸리므로 선택한 데이터를 선택하면 인터페이스에서 자동으로 수행됩니다. 사용 가능한 모든 시간 프레임을 렌더링 하려면 왼쪽 슬라이더를 Time Frame Min = 0 으로 이동하십시오.

10. 렌더링 버튼을 클릭하십시오. 몇 초 안에 뷰가 디스플레이 창으로 전환되고 101 개의 플롯이 사용 가능한 시간 프레임 목록에 나열됩니다. 시간 프레임 사이를 이동하려면 다음을 반복해서 클릭하십시오.

대칭 흐름 표시

위어 중심 아래로 대칭 평면을 사용하여 시뮬레이션을 설정했으므로 위어 구조의 절반만 시뮬레이션되고 표시됩니다. 프리젠테이션 목적으로 대칭 모델의 두 반쪽을 모두 표시할
수 있습니다.

1.아래와 같이 Analyze -> 3-D 탭으로 돌아가서 Open Symmetry Boundaries 확인란을 선택하십시오.

열린 대칭 경계

2.렌더링을 클릭하십시오. 유체 표면이 디스플레이 탭의 대칭 경계에서 열린 상태로 나타납니다.

3.화면 위의 도구 모음 메뉴에서 도구 -> 대칭을 선택하십시오.

4.대화 상자에서 Y 방향 확인란을 선택하여 Y = 0 평면에서 결과를 미러링합니다.

대조

5.적용 닫기를 선택하십시오.

6.마지막 시간 프레임을 두 번 클릭하십시오. 디스플레이는 아래와 같이 전체 위어 구조를 보여줍니다.

전체 위어 구조

3 차원 애니메이션 만들기

다음 단계는 3 차원 유체 표면의 애니메이션을 만드는 것입니다. 애니메이션은 사용 가능한 시간 프레임 목록의 프레임에서 만든 동영상입니다. 애니메이션의 시각적 효과를 향상시키려면 모든 프레임에 공통 색상 스케일을 적용하는 것이 좋습니다.

1.분석 -> 3-D 탭으로 돌아갑니다.

2.윤곽 제한 그룹 상자에서 전역 라디오 버튼을 모두 선택하십시오.

윤곽 제한

3.렌더 클릭 하여 다시 그리고 디스플레이 탭으로 돌아갑니다.

4.도구 -> 대칭 -> Y 방향 -> 적용 선택을 반복하여 Y = 0 평면에서 결과를 반영합니다.

5.선택 도구 -> 애니메이션 -> 러버 밴드 캡처를 다음과 같이 선택 확인 Mesh지가 나타납니다 그것을 읽은 후.

러버 밴드 캡처

6.마우스 왼쪽 버튼을 클릭 한 상태에서 드래그하여 애니메이션을 적용할 화면 부분을 선택하십시오. 선택한 영역 주위에 선택 상자가 나타납니다.

X, Y, 너비 및 높이 상자

7.디스플레이 창 위에서 빨간색 캡처 버튼을 선택하십시오. 애니메이션을 시작하는 대화 상자가 나타납니다.

8.애니메이션의 기본 이름은 out.avi입니다. 아래에 표시된 것처럼 보다 구체적인 이름이 권장됩니다.

9.기본 프레임 속도는 초당 10 프레임입니다. 이 시뮬레이션의 마감 시간은 1.25 초이고, 일정한 시간 간격으로 100 개의 플롯이 있으므로실제속도는 초당 80 프레임입니다. 너무 빠를 수 있으므로 대신 5 입력 하고 확인을 누르십시오.

AVI 캡처

10. 각 시간 프레임이 표시 창에 렌더링 되고 비트 맵 파일이 시뮬레이션 디렉토리에 작성됩니다. 이 프로세스가 완료되면 다음 대화 상자가 나타납니다.

생성 된 이미지 소스 파일

  1. 프로세스의 다음 단계를 시작하려면 확인 버튼을 클릭하십시오. 새로운 프로세스 (BMP2VAI.exe)가 시작되고 압축 방법을 선택할 수 있는 새로운 비디오 압축 창이 나타납니다. 다른 창 뒤에 숨겨져 있으면 앞으로 가져옵니다.
  2. 애니메이션의 기본 압축은 압축되지 않습니다. 파일 크기가 너무 커서 뷰어에 로드 할 수 없으므로 대부분의 애니메이션에는 권장되지 않습니다. Windows를 사용하는 경우 Microsoft Video 1, Linux를 사용하는 경우 Cinepak 선택하십시오. 여기에서 선택하는 것은 컴퓨터에서 사용할 수 있는 비디오 코덱과 비디오를 표시하는 데 사용하는 기계에서 사용할 수 있는 것입니다.
  3. 애니메이션 속도가 데이터 속도에 의해 제한되지 않도록 데이터 속도 확인란을 선택 취소하십시오.
비디오 압축

  1. 압축 프로세스를 시작하려면 확인을 클릭하십시오. 압축이 완료되면 다음 대화 상자가 나타납니다.
AVI 파일 생성

  1. 확인을 클릭하십시오. 애니메이션 프로세스가 완료되었습니다.
  2. Windows 탐색기에서 .avi 파일을 찾는 가장 빠른 방법 은 시뮬레이션 관리자 탭으로 이동하여 시뮬레이션 입력 파일 링크를 클릭하는 것 입니다.
  3. .avi파일 을 두 번 클릭하여 애니메이션을 재생 하십시오. 이전에 선택한 압축 형식을 읽을 수 있는 올바른 코덱이 설치되어 있지 않으면 오픈 소스 다중 코덱 비디오 플레이어 설치를 고려하십시오.

2 차원 도표

1.Analyze -> 2-D 탭을 선택하십시오. 이 시뮬레이션의 결과를 보는 데 가장 유용한 평면은 평면 Y = 0.0에있는 위어 중심선의 XZ 평면입니다.

2.XZ 평면 라디오 버튼을 선택하십시오.

3.Y 제한 슬라이더를 모두 Y = 0.25 (Y = 0.0에 가장 가까운 셀 중심 y 좌표)로 드래그 합니다. 또한 동일한 위치가 J = 2 로 식별되어 해당 셀이 도메인에서 두 번째임을 나타냅니다. 첫 번째 셀 (J = 1) Mesh 외부에 있으며 경계
조건 속성을 계산하는 데 사용됩니다. 기본
윤곽 변수는 압력이며 기본 속도 벡터는 기본적으로 선택됩니다. 솔리드 형상은 모든 2D 플롯과 함께 자동으로 표시되므로 3D 플롯과 같이 활성화 할 필요가 없습니다.

4.벡터 옵션을 클릭하고 X = 2 Z = 2 입력하십시오. 벡터는 이제 다른 모든 셀에 플롯 됩니다. 벡터 옵션을 적용하려면 확인을 선택하십시오.

벡터 옵션

5.Y = 0 평면에서 2 차원 압력 플롯의 시간 시퀀스를 생성하려면 렌더링을 클릭하십시오. T = 0.0 (왼쪽) 인 다음과 유사한 그래픽이 나타납니다. T = 0.125 (중간); 그리고 T = 1.25 (오른쪽).

2D 결과

6.디스플레이 화면의 오른쪽 상단에 있는 형식 버튼을 선택하십시오.

형식 옵션

7.선 색상, 벡터 길이 및 화살촉 크기 변경과 같은 다양한 옵션을 시험해보십시오. 변경 사항을 보려면 적용을 선택하십시오. 완료되면 재설정 확인을 선택하여
기본 설정으로 돌아가서 대화 상자를 닫습니다. 모든 플롯에 대해 선호하는 옵션 세트가 있는 경우
저장 버튼을 선택하여 저장할 수 있습니다.

1 차원 도표

  1. 분석 -> 1-D 탭을 선택하십시오. 이 탭에서는 하나 이상의 플롯 시간에서 셀 행을 따라 압력, 유체 깊이, 유체 상승 및 속도와 같은 셀별 출력 변수의 꺾은 선형
    차트 플롯을 사용할 수 있습니다.
  2. 데이터 소스 로 선택을 선택합니다. 사용 가능한 변수는 이제 더 빈번한 플로팅을 위해 선택된 변수 만 표시합니다.
  3. 자유 변수 표고데이터 변수 로 선택하십시오. 유압 데이터출력 탭에서 선택되었으므로 사용할 수 있습니다.
ID 그래픽을 위해 선택된 데이터

  1. 이 시뮬레이션의 흐름 방향은 주로 x 축과 평행하므로 X 방향을 선택하십시오.
  2. Y 방향 슬라이더를 0.25(J = 2)로 이동하여 Y 방향에서 흐름 중심선에 가장 가까운 셀이 표시됩니다.
  3. 기본적으로 전체 X 범위가 표시됩니다. 플롯의 범위를 제한하려는 경우 X 방향 슬라이더를 이동할 수 있습니다. Z 방향 슬라이더의 위치는 주어진 x, y 위치에서 z 셀의 각 열에 대해 하나의 자유 표면 높이만 기록되므로 중요하지 않습니다. 시간 프레임 슬라이더는 0초와 1.25초여야 합니다.
흘러가는 방향

  1. 렌더링을 클릭하십시오. t = 0.0에서 t = 1.25s까지의 시리즈 플롯이 디스플레이 탭의 플롯 목록에 나열됩니다. 이러한 플롯을 볼 수 있는 여러 가지 모드가
    있습니다. 기본 모드는
    단일 모드이며 형식 버튼 아래의 드롭 다운 상자에 표시됩니다.
기본 단일 모드

  1. 다양한 시간에 유체 표면 높이의 플롯을 비교하려면 드롭 다운 상자에서 오버레이 모드를 선택하십시오.
  2. 오른쪽 창에서 플롯 1, 13 101 선택하려면 클릭하십시오. 플롯 이름에는 또한 기록된 시간이 표시됩니다 (t = 0.0, 0.15s 1.25 ). 출력은 아래와 같이 나타납니다.
자유 표면 고도

  1. 이 플롯을 비트 맵 또는 포스트 스크립트 파일에 저장하려면 출력 버튼을 선택하십시오.
  2. 확인 화면에 플롯 오버레이 플롯을 캡처하는 확인란을 (그리고 단 하나의 출력 파일을).