Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

중력을 사용한 미세 유체 입자 분류

Microfluidics Particle Sorting Using Gravity

미세 유체 입자 분류는 진단, 화학적 및 생물학적 분석, 식품 및 화학 처리, 환경 평가에 적용됩니다. 이전 블로그에서 유체 역학을 사용한 미세 유체 입자 분류에 대해 이야기했습니다 . 같은 주제를 바탕으로 중력을 사용하여 미세 입자를 분류하는 또 다른 방법에 대해 논의하겠습니다. 아래 애니메이션에서 볼 수 있습니다.

유비쿼터스 중력(Ubiquitous gravity)은 미세 유체 장치에서 미세 입자를 분류하는 데 사용할 수 있습니다. 중력이 입자의 움직임에 수직으로 작용할 때 입자는 반경에 따른 속도로 안정됩니다. 또한 입자의 운동은 입자의 밀도, 유체의 밀도 및 유체의 점도 사이의 차이에서 비롯된 유체 역학적 효과의 영향을받습니다. 아래 이미지는 중력 분류 기술 회로도를 보여줍니다.

Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류
Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

부력 대 항력

앞서 언급했듯이 중력은 서로 다른 입자가 서로 다른 속도로 침전되도록합니다. 모든 입자의 밀도가 같고 입자 밀도가 주변 유체의 밀도보다 낮 으면 부력 우세와 항력 우세라는 두 가지 유형의 분류를 사용할 수 있습니다. 반경이 더 큰 입자는 더 많은 부력을 경험하고 작은 입자 위의 경로를 따르는 경향이 있습니다. 그러나 외장 액체 (입자를 운반하는 용액)의 유입 속도가 충분히 높으면 항력 효과가 우세하기 시작하고 더 큰 입자가 더 작은 입자의 경로 아래로 이동하는 경향이 있습니다.

FLOW-3D 시뮬레이션 결과

경쟁하는 부력과 항력은 아래 FLOW-3D 에서 얻은 시뮬레이션 결과에서 명확하게 볼 수 있습니다 . 그림 1은 부력 지배적 인 입자 분류의 경우를 보여줍니다. 더 큰 (빨간색) 입자는 수평 채널의 상단을 향해 정렬됩니다. Fig. 2에 나타난 결과는 부력이 우세한 경우의 유입 초 속도를 20 배로 설정 한 후 얻은 것이다. 더 높은 입구 속도에서 더 큰 입자는 더 많은 운동량을 전달하므로 그 위치는 수직 부력의 영향을받지 않습니다. 따라서 입자는 수평 채널의 상단으로 올라가지 않습니다. 대신 그들은 계속해서 바닥으로 이동합니다.

부력

Buoyancy dominant sorting
Buoyancy dominant sorting

Drag

Figure 2. Drag dominant sorting
Figure 2. Drag dominant sorting

LOW-3D 의 입자 모델은입자 분류 또는 기타 입자 역학과 관련된 미세 유체 시뮬레이션에 성공적이고 쉽게 사용할 수 있습니다. 지금까지 우리는 FLOW-3D 의 입자 모델을사용하여 두 가지 입자 분류 기술을 보았습니다. 하나는 유체 역학을 사용하고 다른 하나는 중력을 사용합니다.

Rivulet Formation in Slide Coating

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique

Volume-of-Fluid 기법을 사용한 과도 및 3 차원 코팅 흐름 시뮬레이션

슬라이드 코팅 흐름은 정밀 필름 코팅 제품의 제조에 널리 사용됩니다. 코팅 속도를 높이고 코팅 필름의 성능을 향상시키기 위해 슬라이드 코팅 공정을 더 잘 이해하기 위해 상당한 노력을 기울이고 있습니다. 예를 들어 Chen1과 같이 잘 정의 된 한계 이상으로 코팅 속도를 높이면 코팅 비드가 완전히 파손될 수 있음이 입증되었습니다.

이 논문에서는 유체 표면의 임의, 3 차원 및 시간에 따른 변형을 설명 할 수있는 계산 방법에서 얻은 슬라이드 코팅 흐름의 시뮬레이션 결과를 제시합니다. 상용 프로그램에서 사용할 수있는이 방법은 VOF (Volume-of-Fluid) 기술 3,4로 유체를 추적하는 고정 그리드를 사용합니다. 표면 장력, 벽 접착력, 유체 운동량 및 점성 응력은 분석에서 완전히 설명됩니다.

기본 방법은 딥 코팅 데이터와의 비교를 통해 설명됩니다 5. 그런 다음 접촉 선과 동적 접촉각이 우리의 방법에서 암시 적으로 처리되는 방법에 대한 논의를 제시합니다. VOF 기술을 사용하기 때문에 유체를 포함하는 각 제어 볼륨에 작용하는 힘의 합계 만 필요합니다. 그러면 접촉 선의 위치와 동적 접촉각이 계산 된 힘 균형에서 자동으로 발생합니다. 우리의 기술은 코팅 흐름에서 시작 및 비드 분해 현상의 예와 함께 설명됩니다.

그림에서 볼 수 있듯이 신속한 공정의 경우 당사의 접근 방식은 기존 분석 방법으로는 달성하기 어려운 코팅 공정 설계 및 최적화 시뮬레이션을위한 효율성과 견고성을 제공합니다.

Introduction

모든 코팅 공정에는 일정한 조건을 달성하기 전에 코팅 재료가 큰 변형을 겪는 일종의 시작 기간이 포함됩니다. 시작 프로세스의 우수한 특성화는 낭비를 줄이고 프로세스가 원하는 한계 내에서 작동하는지 확인하는 데 종종 중요합니다.

다양한 섭동에 대한 코팅 흐름의 과도 ​​응답에 대한 유사한 이해가 또한 바람직하여 코팅 비드의 파손 및 코팅의 불균일성을 피할 수 있습니다. 코팅 흐름의 역학은 일반적으로 비선형이고 다양한 경쟁 물리적 프로세스의 결합 된 상호 작용을 포함하기 때문에 이론적 조사를 수행하기 위해 특수한 계산 도구에 의존해야합니다.

이 작업을 위해 선택한 모델링 도구의 장점은 고정 그리드를 통해 임의의 유체 변형을 추적 할 수있는 강력한 수치 기법 인 VOF (Volume-of-Fluid) 방법을 사용한다는 것입니다. 코팅 흐름 분석에 중요한 프로그램의 다른 기능과 함께 이것이 수행되는 방식은 다음 섹션에서 설명합니다.

Overview of Numerical Method

여기에 사용 된 수치 프로그램 FLOW-3D®는 1960 년대 중반 Los Alamos National Laboratory에서 개발 된 Marker-and-Cell (MAC) 방법 6에서 유래되었습니다. 원래 MAC 방법에 대한 많은 개선이 수년에 걸쳐 이루어졌습니다.

본 출원에서 가장 흥미로운 것은 유체 영역을 찾기 위해 연속적인 유체 부피 함수에 의해 개별 마커 입자를 대체하는 것입니다. VOF 방법에서는 관심있는 계산 영역을 포함하는 사각형 제어 볼륨의 고정 그리드가 구성됩니다. 각 제어 볼륨에 대해 숫자 F는 액체가 차지하는 볼륨의 비율을 표시하기 위해 유지됩니다.

F 함수를 사용하는 것 외에도 VOF 방법은 날카로운 액체-가스 인터페이스를 유지하는 방식으로 직사각형 셀의 고정 그리드를 통해 F 함수를 전진시키기 위해 특수 수치 기법을 사용합니다. 마지막으로 VOF 방법은 경계면에서 적절한 법선 및 접선 응력 조건을 충족하기 위해 신중하게 구현 된 자유 표면 경계 조건 세트를 사용합니다. 접근 방식의 또 다른 특징은 복잡한 기하학적 영역을 정의하는 방식입니다.

장애물은 제어 볼륨의 일부를 차단할 수 있도록하여 고정 그리드에 포함됩니다. 각 제어 볼륨에서 흐름을 위해 열린 분수 영역 및 볼륨은 지오메트리 표현으로 저장됩니다. FAVOR 방법 7이라고하는이 방법은 형상을 질량, 운동량 및 에너지에 대한 이산화 된 방정식에 자동으로 통합합니다. VOF 및 FAVOR 방법을 사용하면 코팅 문제에 대한 지오메트리 및 초기 유체 구성을 정의하는 데 필요한 복잡한 그리드 생성 프로세스가 없기 때문에 시간과 노력이 절약됩니다.

다음 섹션에서는 플랫 시트에 코팅을 담그는 응용 프로그램과 함께 기본적인 수치 방법의 유용성을 설명합니다.

Dip Coating – A Validation Test

Lee와 Tallmadge는 액체 수조에서 수직으로 인출 된 평판에 딥 코팅하는 과정에 대해 광범위한 조사를 수행했습니다.

이 프로세스는 다양한 상업용 응용 프로그램에서 널리 사용됩니다. 그들의 연구는 2 차원 흐름 (즉, 가장자리 효과 없음)에 초점을 맞추고 실험 데이터에 맞는 경험적 매개 변수를 포함하는 분석 표면 프로파일로 구성되었습니다. 0.085에서 23.9 사이의 모세관 수에 대한 실험 데이터가 수집되었으며, 레이놀즈 수는 0.044에서 12.7 사이입니다. 필름 두께에 대한 실험 데이터는 약 10 % 이하로 추정되는 오류를 가졌습니다.

이 실험에 대한 계산 모델은 코팅 할 시트의 수직 (접선) 속도와 동일한 수직 (접선) 속도가 주어진 직사각형 욕조로 구성되어 매우 간단합니다. 처음에 코팅액은 수평면을 가지며 시트는 충동 적으로 시작됩니다 (그림 1c 참조). 다양한 모세관 수 사례가 시뮬레이션되었으며 모든 경우에 예측 된 필름 두께는 실험 오차 범위 내에있었습니다. 예를 들어 모세관 번호 1.17에 해당하는 경우를 고려하십시오. 시트를 3.31cm / s에서 수조 (밀도 0.885gm / cc, 표면 장력 32.7dynes / cm 및 점도 1159.4cp를 갖는 점성 윤활유)에서 꺼냈다. 우리는 2.5cm의 욕조 너비와 2.0cm의 깊이 (35 x 25 그리드 셀)를 사용했습니다.

필름 흐름을 캡처하기 위해 욕조 위의 2.0cm 영역이 모델에 포함되었습니다 (수직으로 추가 25 개 셀 필요). 수조의 오른쪽은 유체 높이가 일정하게 유지되고 압력이 수압이고 흐름이 계산 영역으로 들어갈 수있는 열린 경계 였지만 휴식에서 시작해야했습니다. 이른바 “정체”경계 조건은 움직이는 시트의 오른쪽으로 충분히 멀리 떨어져있는 경우 수평 무한 욕조에 대한 좋은 근사치입니다. 모델링이 필요한 수조의 폭을 설정하기 위해 여러 가지 계산이 수행되었으며, 필름 두께가이 폭에 크게 민감하지 않다는 것이 밝혀졌으며 그 결과는 실험에서도 발견되었습니다.

그림 1a는 초기 조건, 그림 1b는 계산 된 과도 상태의 스냅 샷, 그림 1c는 최종 정상 상태 결과를 보여줍니다. 처음에 시트에 의해 그려지는 액체 팁의 모양은 정적 접촉각 (즉, 시트와 액체 사이의 접착력)에 따라 달라지며 임의로 10 도로 취해졌습니다. 액체가 끌어 올려짐에 따라, 배출되는 액체 필름을 대체하기 위해 시트쪽으로 흐름이 시작되어야한다는 신호로서 함몰 파가 나머지 수조에 대한 신호로 오른쪽으로 이동합니다. 약 5.0 초만에 정상 상태에 도달합니다. 필름 두께는 0.145cm로 계산되었으며, 이는 0.142cm의 측정 값과 매우 일치합니다.

Rivulet Formation in Slide Coating
Rivulet Formation in Slide Coating

자세한 내용은 본문을 참고하시기 바랍니다.

접촉선의 고정(Contact Line Pinning)

접촉선의 고정(Contact Line Pinning)

증발하는 빗방울에서 남은 잔류의 물은 새로 씻은 자동차에서 좋지 못할 수 있습니다. 그러나, 동일한 증발 공정은, 예를 들어, 드롭 잔류 물이 인쇄 된 이미지 또는 텍스트의 일부가되는 잉크젯 인쇄에서 유리할 수있다. 그러나 동일한 증발 과정이 어떤 경우엔 도움이 될 수 있습니다 예를 들면, 잉크 찌꺼기가 인쇄 된 이미지나 텍스트의 일부가 되는 잉크젯 인쇄가 그렇습니다.

액체 방울의 증발로 인한 잔류의 물이 예상치 못한 방식으로 나타날 수 있습니다. 커피 링 얼룩이 잘 알려진 예이며, 커피의 잔류의 물이 물방울의 바깥 쪽 가장자리에 모여 얇은 원형 링 얼룩이 남습니다. 이 현상은 흥미로운 유체역학적인 과정의 결과입니다. 커피 링 얼룩이 형성 되려면 액체가 증착 된 고체 표면에 고정 된 접촉선이 있어야합니다. 고정 된 접촉선은 액체 방울이 고체 기판과 교차하는 액체 방울의 외부의 가장자리가 방울이 증발함에 따라 정지 상태를 유지함을 의미합니다. 증발은 기판의 열에 의해 발생하며 방울의 얇은 외부의 가장자리에서 가장 크게 생깁니다. 표면 장력은 액체가 증발하면서 손실 된 액체를 대체하기 위해 가장자리를 향해 발생하게 됩니다. 이는 결국 더 많은 용질을 가장자리로 운반하며 모든 액체가 증발 한 후, 결과적으로 커피 링 얼룩을 형성하게하는 더 높은 농도의 용질 잔류 물을 생성합니다.

모델링 접근법

FLOW-3D v12.0의 최신 업데이트로 인해 ‘접촉선의 고정’ 모델이 개발되었으며, 소프트웨어의 기능이 표면 장력 중심의 애플리케이션으로도 광범위하게 확장되었습니다. 표면 접촉의 고정 및 비고정 특성은 잉크젯 인쇄, 코팅 및 스프레이 냉각에서 중요한 역할을 합니다. 습윤 특성에 대한 표면 공법은 미세 유체 장치에서 액체 샘플의 이동을 제어하는 ​​데 사용될 수 있습니다. 모델의 주요 특징은 방울의 가장자리를 고정 위치에 고정하는 수단을 제공하는 것입니다. 형상 구성 요소 및 하위 구성 요소중에 표면에 ‘고정’ 속성을 지정할 수 있습니다. 유체의 접촉선은 처음 표면과 접촉하는 곳에 고정됩니다. 전방 속도를 0으로 유지하면 고정이 적용됩니다. 유체는 접촉선과 표면을 따라 이동하는 것이 아니라 롤오버하여 접촉점을 지나야만 이동할 수 있습니다.

커피 링 얼룩 검증

그림 1은 평평한 수평 표면에 놓인 원형 물방울의 결과를 보여줍니다. 표면은 30 ℃의 일정한 온도로 유지됩니다. 초기 유체 온도는 20 ℃이고 주변 공극의 온도는 일정한 20 ℃입니다. 유체는 밀도 0.967 g/cm3, 점도 0.02022 poise, 비열 1.645e+07 cm2/s/K, 열전도도 1.2964e+4 g*cm/s3/K, 표면 장력 계수 33.15 g/cm2의 일반적인 잉크를 나타냅니다.

그림 1. 고정 된 접촉선을 사용하여 건조 공정 중의 물방울 모양의 변화.

액적 표면의 초기 곡률 반경은 7.5e-03 cm이고, 차지하는 공간은 반경 4.5e-03 cm의 원이며, 겉보기의 초기 접촉각은 37.87 도입니다. 그림 1-a를 참조하시기 바랍니다. 지정된 정적 접촉각은 0 도입니다.

정압에 의한 상변화 모델이 활성화됩니다. 공극 내의 증기 분압은 0이고 상변화 수용 계수는 Rsize = 0.01 입니다.

잉크가 건조될 때 기판 상에 고체가 잔류하는 물이 형성되는 것을 포착하기 위해 잔류 물 모델도 켜집니다. 유체에 용해 된 안료의 농도는 초기 농도 0.01 g/cm3 이고 최대 농도 rmax = 1.1625 g/cm3 에서 운반이 가능한 스칼라로 표시됩니다. 용해 된 안료는 질량 평균을 기준으로 안료의 단위질량당 0.05 poise의 속도로 유체의 순 점도를 향상시킵니다.

이 공정은 3.0 도의 방위 방향으로 하나의 셀에 걸쳐있는 축 대칭 원통형 메쉬로 모델링됩니다. (x 간격 = 6e-05 cm, z 간격 = 4e-05 cm.)

그림 1은 유체가 증발함에 따라 접촉선이 고정 된 상태를 유지하고 있음을 보여줍니다. 0 도의 정적 접촉각 조건은 액적의 중심을 향한 압력 구배를 가져오고, 이는 접촉선 방향으로의 유동을 생성합니다. 용해 된 안료의 농도는 증발로 인해 자유 표면 근처에서 증가하며, 흐름을 따라 농도는 접촉선을 향해 더욱 재분배합니다. (그림 2). 액체가 계속 증발함에 따라, 남아있는 액체의 안료 농도는 증가합니다. 농도가 최대 rmax에 도달하면, 과잉된 안료는 고체가 잔류하는 물로 전환됩니다.

그림2. g / cm3 단위의 안료 농도 및 t = 2.0ms에서의 흐름 패턴. 흐름은 고정 된 접촉선을 향하여 안료 농도가 증가합니다.

접촉선 근처의 유체가 먼저 건조되어 고체가 잔류하는 물이 남습니다. 해당 영역의 유체에 안료 농도가 높기 때문에 고체가 잔류하는 물의 특징인 ‘커피 링’ 패턴이 기판 표면에 생성됩니다. (그림 3 및 4). 안료의 총 질량(용해 + 건조 잔류 물)은 초기 질량의 0.025 % 이내로 보존됩니다.

그림 3. 모든 유체가 증발 된 후 기판 표면에 건조된 잔류 물의 분포 (단위 : g / cm3) .
가장 높은 농도는 고정 된 접촉선의 위치에 있으며, 이는 ‘커피 링’ 효과를 만들어냅니다.
그림 4. 유체가 완전히 증발 한 후 초기 액적의 반경을 따라 건조된 잔류 물의 예상 분포.

물방울 벽의 검증

그림5. 수직 벽에 고정 된 물방울의 변형 : t = 0 ms (파란색), t = 4e-02 ms (연한 파랑) t = 0.2 ms (빨간색).
해당 이미지는 “Effects of microscale topography”, Y.V.Kalinin, V.Berejnov and R. E. Thorne, Langmuir 25, 5391-5397. (2009). 에서의 이미지입니다.

접촉선 고정 응용의 두 번째 예는 수직의 벽에 고정 된 한 방울의 액체 알루미늄의 거동입니다. 유체 밀도는 2.7 g / cm3, 표면 장력 계수 200 g / cm2 및 점도 0.27 poise입니다. 정적 접촉각은 0 도입니다.

초기의 겉보기의 접촉각이 90도가 되도록 반경 0.5cm의 물방울을 수직 벽에 놓습니다 (그림 5). 7e+06 cm/s2의 중력 크기는 표면 장력의 복원 작용을 없애고 액적이 눈에 띄도록 변형시키기 위하여 인위적으로 향상되었습니다. 결과들은 비슷한 크기의 물방울에 대한 실험 결과와의 질적 비교를 포함하여 그림 5에서 보여줍니다.

요약

FLOW-3D의 접촉선 고정 모델은 표면 장력 및 벽의 접착 기능을 확장하여 표면 공법에서 복잡한 상호 작용을 모델링합니다. 접촉선 고정이 실제로 응용되는 분야에 관하여 더 많은 예시와 추가적인 참조를 찾으신다면 여기에서 찾을 수 있습니다.

Non-Newtonian Fluids

Non-Newtonian Fluids

혈액, 케첩, 치약, 샴푸, 페인트 및 로션과 같은 비 뉴턴 유체는 점도가 다양한 복잡한 유변학을 가지고 있습니다. FLOW-3D는 변형 및 온도에 따라 달라지는 비 뉴턴 점도를 가진 유체를 모델링합니다. 전단 및 온도 의존 점도는 Carreau, 거듭 제곱 법칙 함수 또는 단순히 표 형식 입력을 통해 설명됩니다. 일부 폴리머, 세라믹 및 반고체 금속의 특성인 시간 의존적 또는 요 변성 거동(thixotropic behavior)도 시뮬레이션 할 수 있습니다.

Hand Lotion Pump

핸드 로션 펌프는 종종 몇 가지 설계 문제와 관련이 있습니다. 펌프가 공극을 막지 않고 효과적으로 작동하고 로션을 연속적으로 생성하는 것이 중요합니다. 좋은 디자인은 노력을 덜 필요로하며 이상적으로는 로션을 원하는 위치로 향하게합니다. FLOW-3D의 움직이는 물체 모델은 노즐이 아래로 밀리는 것을 시뮬레이션하여 저장소의 로션을 가압하는 데 사용됩니다. 로션의 압력과 로션을 추출하는 데 필요한 힘을 연구 할 수 있습니다. 동일한 고정 구조화 된 메시 내에서 여러 설계 변수를 쉽게 분석 할 수 있습니다.

FLOW-3D’s TruVOF method accurately captures the pulsating lotion as the ball regulates the frequency of dispensing lotion.

접촉선의 이해(Contact Line Insights)

접촉선의 이해(Contact Line Insights)

FLOW-3D는 코팅 성능 향상에 관심이있는 엔지니어에게 이상적인 수치 모델링 기능을 많이 갖추고 있습니다. 전산 시뮬레이션은 코팅 흐름에 영향을 미치는 여러 물리적 과정의 상대적 중요성과 효과를 연구 할 수있는 훌륭한 방법입니다. 물리적인 테스트에서 항상 프로세스를 분리하거나 해당 프로세스의 크기를 임의로 조정할 수있는 것은 아닙니다. 여기에서는 리 볼렛 형성(rivulet formation), 핑거링(fingering), 증발, 거친 표면에서의 접촉선 이동 및 유체 흡수와  관련하여 정적 및 동적 접촉각에 대하여 FLOW-3D의 처리에 대해 설명합니다.

 

정적 및 동적 접촉각(Static and Dynamic Contact Angles)

FLOW-3D는 정적 접촉각의 함수로 동적 접촉각을 정확하게 계산하고 입력으로 설정하며 자유 표면 인터페이스에서 작용하는 관련된 힘을 정확하게 계산하여 유체의 소수성을 캡처 할 수 있습니다. 아래 시뮬레이션은 물방울이 경사를 따라 내려갈 때 정적 접촉각이 동적 접촉각에 미치는 영향을 보여줍니다.

 

흡수(Absorption)

종이 기판에 액 적의 충격 및 흡수는 전산 유체 역학 소프트웨어를 사용하여 연구 할 수 있습니다. 여기서 FLOW-3D는 섬유층에서 물방울 충돌을 시뮬레이션하는데 사용되며 표면 장력, 접촉각 및 점도와 관련된 유체 전면의 전파를 살펴 봅니다.

 

 

아래의 FLOW-3D 시뮬레이션에서, 낙하는 직경이 40 미크론이며 초기 하향 속도는 300 cm / s입니다. 기재는 종이이고, 기공률이 30 % 인 20 미크론 두께입니다.

 

 

액체 필름의 핑거링(Fingering in Liquid Films)

FLOW-3D에서 동적 접촉선은 동적 접촉각이나 접촉선의 위치를 ​​지정할 필요없이 직접 모델링됩니다. 이는 소량의 유체에서 유체에 영향을 미치는 모든 동적 힘을 포함하는 수치 모델을 사용하여 수행됩니다. 정적 접촉각은 액체-고체 접착력을 특성화 하는데 사용됩니다.

액체 시트의 핑거링. 왼쪽은 0 °, 오른쪽은 70 °

여기서, 이러한 접근법의 힘의 적용은 경사 표면 아래로 흐르는 액체 필름에서 관찰 된 핑거링에 의해 제공됩니다. 실험적 관찰에 따르면 두 가지 뚜렷한 핑거링 패턴이 발생합니다. 첫 번째 패턴은 작은 정적 접촉각(즉, 습윤 조건)이며 상하한이 모두 하향으로 움직이는 쐐기형 핑거를 나타냅니다. 두 번째 패턴은 큰 정적 접촉각(즉, 습윤 조건이 열악함)이며 가장 균일한 폭을 가진 긴 핑거이고 가장 큰 한계점은 하향으로 움직이지 않는 것이 특징입니다.

 

 

증발 효과(Evaporative Effects)

퇴적(Deposit)

분산 된 고체 물질을 함유하는 액 적은 고체 표면에서 건조 될 때, 함유하고 있는 고체 물질을 침전물로서 남깁니다. 이 침전물의 형상이 많은 인쇄 공정, 청소 및 코팅 공정에 중요한 영향을 미칩니다. 한 종류의 퇴적물의 전형적인 예는 위의 이미지와 같이 엎질러 진 커피 패치의 둘레를 따라 링 얼룩이 형성되는 “커피 링” 문제입니다. 이 유형의 링 침전물은 액체의 증발로 인한 표면 장력 구동 흐름의 결과로, 특히 낙하 둘레에서 발생합니다.

 

건조(Drying)

FLOW-3D의 증발 잔류 액체 모델은 건조 후 톨루엔으로 형성된 잔류된 물의 3D형상을 시뮬레이션합니다. (30 배 확대)

건조는 코팅 공정의 중요한 부분입니다. 하지만 건조의 결함으로 잘 도포 된 코팅을 완전히 취소 할 수도 있습니다. 건조 중에 온도 및 용질 구배는 밀도 및 표면 장력 구배로 인해 코팅 내 유동을 유도 할 수 있으며, 이는 코팅 품질을 잠재적으로 파괴 할 수 있습니다. FLOW-3D의 증발 잔류 물 모델을 사용하면 건조로 인한 흐름을 시뮬레이션하고 값 비싼 물리적 실험에 소요되는 시간을 줄일 수 있습니다.

 

모델링 링 형성(Modeling Ring Formation)

증발에 의해 접촉 라인에서 생성 된 흐름 시뮬레이션

윗쪽 그림에서 FLOW-3D는 증발이 가장 큰 접촉선에서의 증착으로 인해 에지 피닝(edge pinning)이 발생함을 보여줍니다. 증발은 증발로 인한 열 손실로 인해 액체를 냉각시킵니다 (색상은 온도를 나타냄). 동시에 고체 표면은 전도에 의해 액체를 가열합니다. 접촉선 주변에서 증발이 가장 커서, 액체가 접촉선을 향해 흘러 정적 조건을 재설정합니다. 최종 결과는 액체가 완전히 증발하는 액체 가장자리에 현탁 된 고체의 증착입니다.

 

 

참고
[1] Deegan, R., Bakajin, O., Dupont, T. et al. Capillary flow as the cause of ring stains from dried liquid drops, Nature 389, 827–829 (1997).

 

Capillary Flows

Capillary Flows

모세관 흐름은 일반적으로 미세 유체 장치에서 발생합니다. 예를 들어, 바이오 칩 설계에서 긴 마이크로 채널은 종종 액체 용액을 한 장소에서 다른 장소로 전달하는 데 사용됩니다. 입구 채널은 액체 저장소에 연결되고 표면 장력이 액체를 마이크로 채널로 당깁니다(액체가 칩 표면에 “습기”되는 경우). 이 페이지에서는 충전, 흡수 및 전환과 같은 모세관 흐름 분석에서 FLOW-3D에 대한 몇 가지 특정 용도에 대해 다룹니다.

Marangoni Flows

마랑고니는 그 중심에 가열된 물 접시에 흐릅니다. 균일하지 않은 표면 장력에 의해 발생하는 흐름은 20ºC의 초기 온도에서 깊이 0.75cm의 얕은 8.0cm의 물 접시에 의해 입증됩니다. 원형 접시 중앙에 놓인 원통형 막대는 직경 0.5cm로 80Cº의 온도로 가열되고 0.05cm의 깊이까지 수면에 잠깁니다. 핫 로드 주변의 물이 가열되면 표면 장력이 0.1678dyne/cm/ºC만큼 감소하여 표면이 접시의 바깥쪽 림 쪽으로 수축됩니다. 수축은 처음에 표면에 뿌려진 질량이 없는 마커 입자에 의해 나타납니다.

Capillary Filling

모세관 충전 공정을 이해하는 것은 칩 설계에 중요합니다. 액체 흐름 경로의 기하학적 구조가 다르면 기포를 고정할 수 있는 등의 모세관 충진 동작이 달라질 수 있습니다. 충전 프로세스에 대한 지식은 설계자가 챔버, 결합 기둥, 분할 및 밸브와 같은 칩의 내부 구조를 정렬하는 데 도움이 됩니다. 오른쪽의 시뮬레이션은 모세관 작용의 분석적 예측을 검증합니다. 모세관 충전은 표면 장력과 중력에 의해 균형을 이루며, 이는 FLOW-3D로 정확하게 예측되는 기본 공정입니다.

Thermocapillary Switch

910/5000광선의 경로 안팎으로 이동하는 소량의 액체는 굴절이나 반사를 통해 다른 경로로 방향을 바꿀 수 있습니다. 이 개념은 광선이 광섬유에 들어가면 내부 반사에 의해 포착되는 광섬유와 관련하여 특히 매력적입니다. 복잡한 광학 회로를 만들려면 한 광섬유에서 다른 광섬유로 빛을 리디렉션 할 수있는 “스위치”가 필요합니다.

제안 된 한 가지 개념은 열 모세관을 기반으로합니다. 광섬유 광선을 교차하는 마이크로 채널에 액체의 작은 방울을 놓습니다. 방울이 채널을 따라 빔이 통과해야하는 곳으로 이동하면 빔이 다른 섬유로 반사됩니다. 방울은 양면을 다르게 가열하여 이동합니다. 이것은 방울이 채널의 더 차가운 끝쪽으로 당겨 지도록 방울의 양쪽에있는 반월판의 표면 장력의 변화를 일으 킵니다.

Whole Blood Spontaneous Capillary Flow

Sketch of the cross section of the device (w=150 µm, h1=300 µm, h2=1200 µm, α=14.5o)

모세관 기반 마이크로 시스템은 추가 작동 메커니즘이 필요하지 않기 때문에 저렴하고 제작하기 쉽습니다. 마이크로펌프나 주사기와 같은 일반적인 마이크로 시스템은 부피가 크고 휴대할 수 없는 흐름 작동을 필요로 합니다.

버팔로 대학의 최근 연구는 모세관 유동 작용을 사용하여 미세 기기에서 액체를 이동시키는 간단한 해결책을 연구했습니다. 이 작업은 FLOW-3D를 사용하여 수정된 V-그루브 채널에서 자발적 모세관 흐름을 시뮬레이션합니다. 좁은 V-그루브 기하학(왼쪽)은 전혈과 같은 높은 점도의 유체도 이 유체를 통해 이동할 수 있기 때문에 좋은 솔루션을 제공합니다. 홈의 끝부분은 자발적인 모세관 흐름을 촉진하고 평행판은 충분한 혈액수송을 보장합니다.

본 연구에서는 FLOW-3D를 사용하여 채널 내 유체 헤드의 유속과 액체 전방의 진행을 추정합니다.

결과는 실험 및 분석(간단한) 결과와 비교됩니다. 아래 그림은 수치, 실험 및 분석 결과의 비교를 보여줍니다. FLOW-3D 결과는 실험 결과와 매우 일치합니다.

FLOW-3D Results

Analysis A: FLOW-3D results in red circles at the mid flow height, experimental results in green dots recorded at the medium fluid height, analytical results in green dashes
Analysis B: FLOW-3D results in red circles at the mid flow height, experimental results in green dots recorded at the medium fluid height, analytical results in green dashes

Animation of the results post-processed in FlowSight.

References

J. Berthiera, K.A. Brakke, E.P. Furlani, I.H. Karampelas, V. Pohera, D. Gosselin, M. Cubizolles, P. Pouteau, Whole blood spontaneous capillary flow in narrow V-groove microchannels, Sensors and Actuators B: Chemical, 2014

화학기반 응고모델 / chemistry-based solidification

FLOW-3D CAST v5.1의 새로운 최첨단 화학 기반 응고 모델은 업계를 주조 시뮬레이션의 다음 개척지로 발전시켜 사용자에게 캐스트 부품의 강도와 무결성을 예측하는 동시에 스크랩을 줄이고 제품 안전 및 성능 요구 사항을 충족합니다.

응고 모델 기능

새로운 응고 모델은 핵 생성, 분리 및 냉각 조건을 고려한 온도 및 화학의 진화로부터 잠열, 열전도율, 열용량, 밀도, 점도 등 응고 경로 및 재료 특성을 계산합니다.

응고 모델은 SDAS (secondary dendrite arm sapcing) 및 입자 크기와 같은 구성 및 냉각 조건을 기반으로 미세 구조 진화를 예측합니다. 또한 확산 및 이류로 인한 거시적 분리를 예측합니다. 기계적 특성과 미세 구조 간의 경험적 관계는 실험 측정을 기반으로합니다. 독특하고 강력한 미세 구조 및 기계적 특성 예측 기능을 갖춘 새로운 응고 모델은 미세 다공성 예측을위한 무 차원 Niyama 기준과 같은 다른 모델의 기반을 마련합니다.

응고 미세 구조 및 다공성 결함은 주조의 기계적 특성에 영향을 미치는 주요 요인입니다. 차례로 국부적 인 미세 구조는 합금의 화학적 조성, 응고 속도 및 합금 원소의 분리로 인한 화학적 비균질성에 의해 결정됩니다. 새로운 응고 모델을 사용하여 공정 설계자는 다양한 공정 매개 변수 및 합금 구성이 기계적 특성에 미치는 영향을 결정하여 가능한 최고 품질의 안전한 제품을 생산하기 위해 주조 성능을 최적화 할 수 있습니다.

Solidification of AlSi9Cu3

Aluminium A356

응고 모델에는 전체 모델과 단순화 된 모델이 모두 포함되어있어 사용자가 시뮬레이션 워크 플로를 더 잘 제어 할 수 있습니다. 전체 모델은 용융물이 응고됨에 따라 화학적 조성과 상 변화를 고려하는 반면, 단순화 된 모델은 더 빠른 런타임을 제공하고 전체 모델만큼 많은 메모리를 필요로하지 않습니다. 전체 모델을 기반으로 한 재시작 시뮬레이션은 단순화 된 모델에서 시작할 수 있으며 그 반대의 경우도 마찬가지입니다. 이는 시뮬레이션의 여러 단계뿐만 아니라 다양한 유형의 시뮬레이션에 적합한 모델을 사용할 수있는 완벽한 유연성을 제공합니다.

리소스를 적게 사용한다는 분명한 이점이 있으므로 사용자는 가능한 한 단순화 된 모델을 사용하는 것이 좋습니다. 사용자는 매크로 분리가 중요한 경우 전체 모델을 사용하는 것이 좋습니다. 열 다이 사이클링 시뮬레이션의 경우 이러한 모델링 시나리오에서는 전체 분석이 필요하지 않기 때문에 소프트웨어에 의해 단순화 된 모델이 적용됩니다.

벽이 얇은 일부 주조의 경우 확산 및 이류에 기반한 매크로 분리는 중요하지 않습니다. 이러한 주물에서 응고 경로는 전체적으로 거의 동일하며 각 개별 계산 셀에 대해 응고 중에 조성 및 위상 진화를 추적 할 필요가 없습니다. 이러한 유형의 시나리오의 경우 사용자가 단순화 된 응고 모델을 사용하여 솔루션에 더 빨리 도달하는 것이 좋습니다.

Coating Application/코팅분야 응용

해석 조건

  • Viscosity(점도) = 0.204 Pa-s
  • Density(밀도) = 965 kg/m^3
  • Surface tension(표면 장력) = 0.035N/m
  • Roll coating

물리 모델

  • Surface tension(표면 장력) 모델
  • Viscosity(점도)
  • Moving Objects(운동)

Classic Inlet Flooded Regime

Revers Operating Regime

Inlet Starved Operating Regime

  • 2D 시뮬레이션은 작동 코팅 윈도우의 빠른 평가를 제공
  • 계단식, 공기 유입, 기아 및 런백을 식별
  • 리빙(Ribbing)은 3D 분석이 필요

해석 결과

Laser Metal Deposition and Fluid Particles

Laser Metal Deposition and Fluid Particles

FLOW-3D의 신규 모듈 개발을 하면서, 입자 모델의 새로운 입자 부류 중 하나인 유체 입자의 기능에 초점을 맞출 것입니다. 유체 입자는 증발 및 응고를 포함하여 유체 속성을 본질적으로 부여합니다. 유체 입자가 비교적 간단한 강우 모델링(아래의 애니메이션)에서 복잡한 레이저 증착(용접) 모델링에 이르기까지 다양한 사례가 있을 수 있습니다.

Fluid Particles

FLOW-3D에서 유체 입자 옵션이 활성화 되면 사용자는 다양한 직경과 밀도의 다양한 유체 입자 종을 설정할 수 있습니다. 또한 유체 입자의 동력학은 확산 계수, 항력 계수, 난류 슈미트 수, 반발 계수 및 응고 된 반발 계수와 같은 특성에 의해 제어 될 수 있습니다. 유체 입자는 열적 및 전기적 특성을 부여 받을 수도 있습니다.

사용자는 유체 입자 생성을 위해 여러 소스를 설정할 수 있습니다. 각 소스는 이전에 정의 된 모든 유체 입자 종 또는 일부 유체 입자 종의 혼합을 가질 수 있습니다. 또한 사용자는 무작위 또는 균일 한 파티클 생성을 선택하고 파티클이 소스에서 추출되는 속도를 정의 할 수 있습니다.

Laser Metal Deposition

레이저 금속 증착은 함께 미세한 금속 분말을 융합하여 입체 금속 부품을 제작하는 3D printing 공정이다. 레이저 금속 증착는 항공 우주 및 의료 정형 외과 분야에서 다양한 응용 프로그램을 찾습니다. 레이저 금속 증착의 개략도는 아래와 같습니다. 전력 밀도 분포, 기판의 이동 속도, 차폐 가스 압력 및 용융 / 응고, 상 변화 및 열전달과 같은 물리적 제어와 같은 제어 매개 변수가 함께 작동하여 레이저 금속 증착을 효과적인 첨가제 제조 공정으로 만듭니다.

 

Setting Up Laser Metal Deposition

새로운 유체 입자 모델은 분말 강도 분포를 할당하고 용융 풀 주변에서 발생하는 복잡한 입자 – 기판 상호 작용을 포착하기 때문에 레이저 금속 증착 시뮬레이션을 설정하는 데 없어서는 안될 부분입니다.

일반의 사용자들은 FLOW-3D에서 시뮬레이션을 쉽게 설정할 수 있다는 점을 계속 알고 있을 것입니다. 레이저 금속 증착 설정의 경우에도 다른 점은 없습니다. IN-718의 물리적 특성, 형상 생성, 입자 분말 강도 분포, 메쉬 생성 및 시뮬레이션 실행과 같은 모든 설정 단계는 직접적이고 사용자 친화적입니다.

IN-718의 물성은 기판과 응고 된 유체 입자 모두에 사용됩니다. 40 미크론 유체 입자가 무작위 방식으로 초당 500,000의 속도로 입자 영역에서 계산 영역으로 주입됩니다. 입자 빔은 기판의 운동 방향이 변화 될 때마다 순간적으로 정지되어 용융 풀이 급격한 속도 변화에 적응하도록 합니다. 이렇게 하면 기판에서 입자가 반사되는 것을 방지 할 수 있습니다. 매 5 초마다 기판이 회전하기 때문에 입자 생성 속도는 아래 그림과 같이 5 초마다 0으로 떨어집니다. 기판 이동 자체는 표 형식의 속도 데이터를 사용하여 FLOW-3D에 지정됩니다. 입자는 응고 된 유체 입자로 주입되어 고온의 용융 풀에 부딪혀 녹아 용융 풀 유체의 일부가 됩니다.


Substrate velocity

입자 모델 외에도 FLOW-3D의 밀도 평가, 열 전달, 표면 장력, 응고 및 점도 모델이 사용됩니다. 보다 구체적으로, 온도에 따른 표면 장력은 증착 된 층의 형태에 큰 영향을주는 Marangoni 효과를 일으킵니다.

레이저를 복제하기 위해 100 % 다공성 구성 요소가있는 매우 기본적인 설정이 열원으로 사용됩니다. 100 % 다공성은 구성 요소 주변의 유동 역학에 영향을 미치지 않습니다. 오히려 그것은 특정 영역의 기판에 열을 효과적으로 부가한다. 이 예비 가열 메커니즘을 자회사인 Flow Science Japan이 개발 한 고급 레이저 모듈로 교체하는 작업이 현재 본격적으로 진행 중입니다. 가열 다공성 구성 요소는 각각의 층이 동일한 양의 열을 얻도록 각 층이 증착 된 후에 약간 위로 이동됩니다.

Results and discussion

아래 애니메이션은 다중 층 증착을 이용한 레이저 금속 증착 공정을 보여줍니다. 기판이 방향을 바꿀 때마다 입자 빔 동작의 일시적인 정지를 확인하십시오. 또한, 층이 증착됨에 따라, 새로운 층의 형상은 다공성 열원으로부터 각 층에 열의 불균등 한 첨가로 인해 변화됩니다. 각 층을 증착 한 후에 열원을 위로 이동해야 하는 양을 측정하는 것은 현재의 기능에서는 어렵습니다. 다만  준비중인 Flow Science Japan의 레이저 모듈은 이 문제를 해결할 수 있습니다.

전반적으로 입자 모델은 레이저 금속 증착에서 매우 중요한 공정 매개 변수 인 분말 강도 분포를 정확하게 재현합니다. 입자 모델과 같은 수준의 제어와 정교함은 첨가제 제조 분야의 사용자와 공급자 모두가 제조 프로세스를 미세 조정하는 데 도움이 될 것으로 기대합니다.

[FLOW-3D 물리모델] Viscosity and Turbulence / 점도와 난류

Viscosity and Turbulence

 

Wall Effects: Slip, Shear, and Component Roughness

유체가 고체 주위에서 움직일 때 유동은 유동속도, 난류, 그리고 경계면의 조도에 따른 저항을 만난다. 이런 경계 유동의 효과는 추가의 전단응력, 항력 그리고 (퇴적기반인 경우)부식을 초래한다. 이런 벽(또는 경계)효과를 모델링하는 것은 표면의 미끄러짐의 조건, 표면조도 그리고 벽 효과 속도분포를 적절히 규명할 수 있는 격자크기에 대한 주의를 요한다. 이런 변수 각각을 모델링하는 접근법을 밑에서 기술한다.

Wall Slip 

Slip 은 유동경계에서 상대 유동속도의 존재를 기술한다. 일반적으로 표면조건은 no-slip, partial-slip 그리고 free-slip 으로 기술된다.

Free-slip 표면은 표면에 수직한 속도 분포에 변화가 없는 표면이며 가끔 밀도의 자리 수가 차이가 나는 두 유체(물과 공기같이)간의 경계면을 기술하는데 이용된다. Partial-slip 경계는 경계에서의 유체속도가 부분적으로 감소되는 것을 기술하며, 예를 들면, 파이프 내 유화 처리된 파이프 내의 기름유동을 기술하는데 이용된다. 단연코 가장 흔한 경계조건 형태는 no-slip boundaries 경계이며 거의 모든 유체/고체 경계를 기술한다.

형상요소와 격자 벽에서의 점성경계조건은 벽 전단응력(상세내용은 이론 매뉴얼의 Wall-Shear Stress 참조)에 선형으로 비례하는 slip 속도를 포함한다. 비례계수는 마찰계수이며 지정되지 않은 마찰계수나 벽 형태의 영역 경계를 가지는 고체요소에 전반적으로 적용된다. 이 전반적 계수는 Model Setup → Physics tab → Viscosity and Turbulence dialog → Wall Shear Boundary Conditions → Friction Coefficient 에서 지정될 수 있다. 전반적 마찰계수는 모든 벽 형태의 경계에 적용되고 모든 고체요소에 대한 디폴트 값을 정의한다.

일반적 값 보다 우선하는 요소 특정 마찰계수가 정의될 수 있다: Model Setup → Meshing & Geometry → Component → Surface Properties → Static Friction Coefficient.

 

마찰계수가 무한대에 이를 때, 벽 slip 속도는 0(no-slip)에 근접한다. 임의의 큰 값을 지정하는 것을 피하기 위해 no-slip 선정이 마찰계수에 음의 값을 정의함으로써 활성화된다. 유한한 양의 값은 partial-slip 경계를 뜻한다. 0은 free-slip 경계조건을 지정한다. 유한한 양의 마찰계수는 부분-slip 경계가 된다. 디폴트로 Static friction coefficient = -1.0이며 모든 지정되지 않은 요소는 no-slip 표면을 갖는다.

각주: 부분 slip 이 난류모델 사용 시 기존요소에 대해 정의되면 경고가 나타날 것이다.

No-slip 과 partial-slip 표면은 Model Setup Fluids Properties Fluid # Viscosity 하에서 정의된 동적 점성을 필요로 한다.

 

Wall Shear 

벽 전단응력은 유동이 없는 면적부분에서 접선속도를 0으로 가정함으로써 모델링 된다. 0인 접선속도는 접선속도를 가지는 격자경계에서 그리고 이동체의 표면에 대해 수정될 수 있다.

벽 전단응력은 Viscous Flow Model Setup Physics Viscosity and Turbulence 보조 창에서 활성화되고 양의 유체 ViscosityModel Setup Fluids 탭에서 지정될 때 계산된다.

전단응력은 요소 Surface Roughness 계수(Model Setup Meshing & Geometry Component Surface Properties) 가 음수가 아닌 한(즉, 0이아닌 마찰계수에 대해) 자동적으로(하지만 자동적으로 출력되지는 않는다)요소 no-slip 과 partial-slip 요소에 대해 계산된다. 전단응력은 Model Setup Output Activate Shear Stress 에서 Activate Shear Stress 를 선택하고 General Critical Shear Stress = 0으로 지정함으로써 출력될 수 있다.

요소 특정 전단응력은 관심요소에 대해 Output 탭 하단에서 Pressure and Shear Force Output 를 선택함으로 출력될 수 있다.

전단응력과 밀접하게 연결되어 있는 변형률은 Model Setup Output Additional Output Strain Rate 를 선택함으로써 Restart Selected Data 출력에 추가될 수 있다.

전단응력, 변형률, 그리고 벽 근처 속도 분포를 정확히 모델링 하는 것은 격자가 적절히 해결되어야 한다는 것을 필요로 한다.  고체요소 또는 벽면에 인접한 첫 번째 셀은 로그 또는 층류의 벽 속도 분포가 적용되는 지역에 있어야 한다.  벽을 따라 셀들은 표면이 격자선상에 있으면 표면에 수직이거나 벽면을 포함한다.

유동이 Laminar(Viscosity and Turbulence physics 보조창에서 지정되는)이면 속도분포는 직접 미분에 의해 계산된다. 셀의 평균속도는 항상 정확하고 속도분포는 격자가 정련되면 더 잘 해석된다. 최적 셀 크기는 단지 필요한 분포 정확성과 허용되는 계산시간에 달려있으며 셀의 크기가 작아질수록 증가한다.

Turbulence 모델이 활성화되면 벽이나 고체요소 가까운 첫 번째 셀은 항상 밑에 보여진 로그법칙 구역에 상응하는 로그 분포에 따라 속도를 가지게 된다. 벽을 따르는 첫 번째 셀은 점성 sub-layer 를 포함하고 충분히 경계층의 로그법칙 구역 내에 있도록 크기가 정해져야 한다. 만약에 첫 번째 셀의 바깥쪽이 점성 sub-layer나 외부 또는 자유흐름 지역까지 포함한다면 그 때는 계산된 로그법칙 벽 근처 속도와 전단응력이  물리적 양으로부터 벗어나서 이들은 로그법칙관계와 일치하지 않는다.

 

적절한 범위의 셀 크기를 찾는 것은 고체 표면에 수직한 경계층의 높이(두께)를 추정하는 문제이다. 이에 대한 도움이 되는 값은 벽으로부터의 무차원 수직거리 y+, 가끔 viscous length 라고도 불리며 위의 무차원 속도 u+ 와 관련하여 보여진다. 아래 식에서 uτ 는 전단속도, τw 는 고체상의 전단응력, y 는 고체로부터의 수직거리, ρf 는 유체밀도 그리고 µf 는 유체의 동적(분자) 점도이다.

y+를 추정하기 위해 전단응력 τw 가 수동으로 추정되어야 하고 관심 있는 독자는 이를 위해 수리학 문헌을 참조한다. 일반적으로 y+(셀 크기의 함수로)는 30(이 값에서 내부 층이 로그법칙구역으로 부드럽게 변화하고) 보다 커야 하고 유동의 Reynolds 수와 경계층의 두께에 의존하는 값보다 작아야 한다(일반적으로 100 – 500 합당한 상한이다). τw의 수작업추정이 불가능하면 여러 번의 모사가 관찰값(전단응력 또는 속도)이 안정화되는”최적값”을 위해 반복되어야 한다. 고체표면에서 변수값을 계산하기 위해 이용된 근사값은 유체가 충분히 발달한 유동이라는 것을 가정하고 충분히 발달하지 못한 유동에 대한 결과를 해석할 때는 유의하여야 한다.

요소표면이 격자선 방향과 일치하면 고정점들이 표면에서 그리고 표면으로부터 적절한 거리에서 사용되어야 한다(막 설명된 바와 같이 첫 셀 거리 yy+ 기준을 맞추도록). 물체표면이 격자선과 평행하지 않으면 nested 격자블록을 적절한 곳에서 사용하여 표면에 가장 가까운 셀들이 적절한 간격을 가지도록 한다.

 

Component Roughness

요소표면에서의 벽 전단응력은 표면조도를 정의함으로써 수정할 수 있다. 조도는 길이의 단위를 가지며 분자점도에 fluid_density × roughness × relative velocity의 곱을 더함으로써 통상 전단응력 계산에 포함되고 있는데 여기서 relative velocity는 지역 유체속도와 벽 속도(정지된 벽이나 요소는 0)간의 차이이다. 이를 이행하면 laminar 유동모델의 벽 전단응력은 다음과 같다.

여기서

  • k 는 조도
  • ν 는 동점성계수
  • u 는 상대속도이며
  • δy 는 표면에 interest(관련된) 수직한 길이 규모이다.

조도가 충분히 클 때 응력은 다음에 비례한다.

Turbulent 유동모델에서 벽의 법칙 관계는 점도의 변화(즉 ν 에서 ν + ku로)가 ν/u 에 의해 정의된 특정길이 규모로부터 로그의존도를 k로 자동적으로 변환하는 것을 제외하고는 부드러운 벽에서와 마찬가지의 같은 형태를 지니며 k 는 두 특정 길이 중 큰 것이다.

수치해석에서 의미가 있기 위해 조도는 비록 큰 값이 사용될 수도 있지만 요소경계에서의 격자 셀 크기 보다 작아야 한다. 조도를 가지는 요소는 no-slip 표면(음의 static friction coefficient 를 통해)으로 주어져야 한다.

FLOW-3D 에서 조도변수 k 는 개별적으로 Meshing and Geometry Geometry Component Properties Surface Properties Surface Roughness 의 각 요소에서 지정될 수 있다.

Surface Roughness는 Moody diagrams 에서 기준된 조도처럼 균일하게 분포된 표면조도 요소의 평균 높이로 정의된다. 실제표면이 균일한 조도를 가지면 이 높이가 직접적으로 적용되나 균일하지 않으면 정확한 결과를 줄 equivalent 조도 값이 선정되어야 한다. 예를 들면 일반적인 평균속도, 수력반경, 그리고 수력 구배와 관련된 Manning 방정식은 Manning 계수와 관련된 수리반경이 알려질 때 FLOW-3DSurface Roughness 로 변환될 수 있는 등가의 조도변수(Manning의 n)를 사용한다.

여기서

  • V 는 채널 및 도관 내 평균유속
  • Rh 는 수력반경(윤변에 의해 나누어진 유체 단면적)
  • S 는 유동이 수력 구배, 특히(그리고 가끔 부정확하게) 도관이나 채널의 물리적 구배로 가정되며 1.49는 변화인자이고 모든 다른 단위는 미터/킬로그램/초(SI단위로)이며
  • n 은 Manning 조도이다.

균일하지 않은 표면에서 등가 균일조도는 밑에 보여진 것과 같이 Manning의 n 그리고 추정된 수력반경 또는 직경으로부터 계산될 수 있다. 여기서 Surface RoughnessFLOW-3D 에서 이용되는 조도변수이며 모든 변수들은SI 단위(미터) 이고 유동은 완전한 난류유동이며 수리학적으로 고르지 않다. 수력직경 DhRh 의 4배수로 정의된다(Dh = 4 Rh).

위에서 주어진 환원은 파이프와 등가 도관에 대한 Swamee-Jain 방정식으로부터 유도 된다.

여기서 다음 가정이 적용된다.

  • αmanning 는 feet 일 경우 1.486, meter 일 경우 1.0
  • 는Manning 방정식 가정이 옳을 때 1.0
  • ReD 는 5.74보다 훨씬 크다.이는 Manning의 n이 원래 측정된 유동단계에 상응하는 수리직경에 대해서만 기술적으로 유효하다. 이 변환은 다음과 같이 체크된다: mortar콘크리트에 대한 일반적 문헌 값은 0.013이다. n 이 수력반경 1.25ft(수력직경 5ft)인 채널에서 측정되었고 이때 는 0.0033ft또는 1mm인데 이는 mortar cement의 전형적인 문헌 값이다. 계산된 Surface Roughness 값은 대략 1과 10ft사이의 수력직경에 대한 값이다. 수력직경범위에 대한 제약은 항상 체크되어야 한다.각주: Surface Roughness > 0 는 상 변화 모델에서 요소표면 가까이의 액체에 의한 과열 발생 기능을 정지시킨다(Cavitation and Bubble Formation (Nucleation)를 참조한다).Surface Roughness의 값은 요소/유체 열 전달에 영향이 없다. 요소 – 유체로의 열 유속이 표면조도에 따라 증가되려면 요소에 대한 열 전달 면적의 승수가 되는 Surface Area Multiplier 변수를 사용한다. 디폴트로 Surface Area Multiplier = 1.0이다. Surface Area Multiplier = 0 은 유체와 요소 간 열교환 뿐만 아니라 요소 Mass source (사용되면)기능도 불가능하게 한다.
  • Temperature and Strain Rate Dependent Viscosity

    비뉴튼 유체는 점도가 변하는 유동조건에 따라 일정하지 않은 유체이다. 어떤 유체는 shear-thickening 즉 전단 하에서 농축되고 다른 유체는 shear-thinning(전단유동화), 즉 높은 전단 하에서 점도가 감소한다. 또한 온도가 변하는 모사에서 점도는 일반적으로 온도에 의존한다. 어떤 유체의 점도는 이력에 의존한다; 이런 유체는 thixotropic 이며 Thixotropic Fluids 모델을 필요로 한다.

    FLOW-3D 에서는 유체1만 비뉴튼일 수 있다. 2유체모사에서 비뉴튼 유체를 설정하기 위해 Viscous flow in Physics Viscosity and turbulence 를 활성화시킨다. 난류는 일반적으로 비뉴튼 유동에서 중요하지 않다; 그러나 난류선택은 할 수 있다. Turbulence Models은 비뉴튼 유체거동에 고려되지 않는 경험론에 의존한다. 그러므로 난류모델은 보통 비뉴튼 유동에는 유효하지 않으며 비뉴튼 유체에 대해서는 주의하여 사용되어야 한다.

    Fluids Properties Fluid 1 Viscosity 에서 펼쳐지는 메뉴로부터 점도 모델을 선택할 수 있다. 기본값은 상수이다. 비뉴튼 모델은 Temperature Dependent Table, Strain Rate Dependent Table, Strain Rate Dependent Function, Strain Rate and Temperature Dependent Function, Carreau Function, 그리고 Power Law를 포함한다:

Temperature Dependent Table이나 Strain Rate Dependent Table이 선택되면 온도나 변형률의 함수로 점도의 표 데이터를 입력하게 하는 Tabular 버튼을 클릭한다.

각주: 사용자 정의 표 데이터는 전처리에서 솔버가 최적으로 사용하게 내부데이터 구조로 전환된다. 전환은 입력표의 등 간격을 가지는 새 표로의 remapping(재사상)을 포함한다. 온도 또는 변형률 의존 점도를 위한 내부표의 처음과 마지막 점은 각 입력 표로부터 취해지며 그사이의 점들의 수는 10000으로 고정된다.  선형 보간이 전환 중 이용된다.

이 접근은 일반적으로 부드럽게 변하는 데이터에 대해서는 적합하다. 그러나 점도가 온도나 내부표의 간격에 비교될만하게 변형률의 범주에서 상당히 변하는 경우에 변환은 에러를 발생시킬 수도 있다. 이를 피하는 방법은 가능한 한 최대로 입력 표에서 온도와 변형률의 범위를 줄이는 것이다. 그래서 정확도를 높이기 위해 내부표의 간격을 줄이게 된다.

Strain Rate and Temperature Dependent Function 또는 Strain Rate Dependent Function이 선택되면 유체점도는 사용자지정 계수 λ00, λ0, λ1, λ2, n 그리고 µ를 가지는 변형률 및/또는 온도의 함수로 정의된다. 온도 의존도는 상수 a, b c 로 정의된다.

이 계수들은 다음 구성요소 관계를 가지는 점도를 정의한다.

Where 여기서

그리고 µ0 는 정상 상수 점도값(GUI 에서 Viscosity 옆의)으로 정의되는 전단이 없을 경우의 점도며 T* Fluids Properties Reference Temperature 로 정의된다. 적절한 계수의 선정은 사용자가 비뉴튼 유체거동에 대한 다양한 근사치를 사용하게 한다.

Carreau Function 선택을 택하면 점도를 변형률에 연관시키는 단순한 함수가 사용된다:

 

여기서는 Carreau 모델에 연관된 변수들만 정의되어야 한다; 이들은 GUI에서 활성화 된 것으로 보여진다. 이들은 Carreau 형태 유체의 점도 정의를 단순화한다.

Power Law 모델이 선정되면 또 다른 점도를 변형률에 연관시키는 단순한 함수가 사용된다:

여기서는 power-law 모델에 연관된 변수들만이 정의되어야 한다; 이 들은 GUI 에서 활성화 된 것으로 보여진다. 이들은 power-law 형태 유체의 점도정의를 단순화한다.

어떤 비뉴튼 유체모델이 사용될 때 전처리는 두 개의 추가 그림을 prpplt 파일에 그린다. 하나는 주어진 온도에서의 동적 점도 대 변형률이고 다른 하나는 주어진 변형률에서의 점도 대 온도이다. 전처리가 그림의 범위와 변형률 및 온도의 값을 선택하는 것이 어려우므로 사용자는 Input Variable Summary and Units 장의 User Defined Variables 절에서 기술된 바와 같이 4개의 소위 임시변수를 사용하는 환경을 정의할 수 있다.

  • DUM1은 점도 대 변형률이 그려지는 온도를 정의하며 이는 또한 점도 대 온도 그림을 위한 중앙 온도 값이다;
  • DUM2는 점도 대 온도 그림을 위한 DUM1-0.5*DUM2 로부터 DUM1 + 0.5*DUM2까지의 그림 범위를 정의한다.
  • DUM3는 은 점도 대 온도가 그려지는 변형률을 정의하며 또한 점도 대 변형률 그림을 위한 중앙 변형률 값이다;
  • DUM4는 점도 대 변형률 그림을 위한 DUM3-0.5*DUM4 부터 DUM3 + 0.5*DUM4까지의 그림 범위를 정의한다.

각주:

  • 변형률 의존점도에서 1차변수는 ‖eij‖ = 로 정의되는 변형률 크기이다. 같은 변수가 모사 중에 Strain rate magnitude로 출력된다.
  • 비뉴튼 유체유동은 낮은 Reynolds 수에서 가끔 발생한다. 결과적으로 시간간격 크기는 Explicit viscous stress solver가 사용되면 점성전단응력에 의해 조절된다. 모사속도를 상당히 낮추는 제약을 피하기 위해 Numerics Viscous stress solver options Successive under-relaxation또는Line implicit 를 지정함으로써 Implicit 점성응력 솔버가 대신 이용될 수 있다. 그러나 유동에 커다란 점성 구배가 존재하면 수렴은 늦어질 수도 있다.
  • 수치해석 문제점을 방지하기 위해 최대 점성을 약 1E + 15 로 제한하는 점도 계산 내에 추가  방편이 있다.

또한 다음을 참조한다

  • Outflow Boundary Conditions 에서 격자 경계조건의 논의
  • Thixotropic Fluids
  • Wall Slip. 벽 Slip

Thixotropic Fluids / 요변성 유체

요변성 유체의 겉보기 점도는 시간의 직접 함수이다. 겉보기 유체점도가 국부적 정상상태에 도달하는 속도를 조절하는 묽어짐 과 농축율의 관점에서 시간 의존도가 FLOW-3D에서 기술된다. 정상상태점도는 일반적으로 전단율과 온도의 함수일 것이다. 정상상태의 점도가 겉보기 점도보다 클 때 후자는 농축율에 따라 유동시점에서 증가할 것이다. 반대로 겉보기 점도가 정상상태 점도보다 클 때 묽어지는 율에 따라 겉보기점도는 감소할 것이다. 요변성 유체는 항상 비뉴튼성이고 또한 FLOW-3D 에서 정의되어야 한다 (Temperature and Strain Rate Dependent Viscosity참조).

요변성 점도 모델은 Physics Viscosity and Turbulence Thixotropic viscosity 를 선택함으로써 활성화된다.

묽어짐, Fluids Properties Viscosity Thixotropic Constant Thinning Rate, 그리고 농축, Constant Thickening Rate에 의한 이완율을 위한 두 개의 상수가 있다.

 

 

Strain Rate Sensitivity 계수가 정의되면 묽어지는 비율 α 또한 변형률에 의존할 수 있다.

where:여기서

  • µ0 Constant Thinning Rate 이고
  • µ1 Strain Rate Sensitivity 이다

Constant Thinning rate Constant Thickening rate 는 시간의 역수인 차원을 가지며 Strain Rate Sensitivity 는 무차원이다. 모든 율 계수는 기본값으로0이다. – 즉, 비요변성 효과.

정상상태에서 원하는 재료 거동을 근사하는 비뉴튼 점도모델(see Temperature and Strain Rate Dependent Viscosity참조)을 정의해야 한다. 물질을 정의하기 위해 Fluids Properties Viscosity 가지에서 변수들을 사용한다. 또 트리에서 Initial and boundary viscosity 값을 지정한다.

요변성 모사에서 점도는 매우 커질 수 있으므로 고점도 유동을 위한 외재적 알고리즘에 의해 요구되는 작은 시간단계 크기를 피하기 위해 Numerics Viscous stress solver options 로부터 Successive under-relaxation이나 Line implicit 를 선택할 수 있다.

각주: 입력 및 출력 변형률은 실제로는 변형률의 크기이다.

또한 Wall Slip Temperature and Strain Rate Dependent Viscosity 를 참조한다.

Turbulence

점성 평가(난류 종결)를 위한 6개의 옵션이 FLOW-3D 에 존재한다. 원하는 평가를 Physics > Viscosity and turbulence 에서 선정한다. 모든 모델에서 점성모델이 활성화되어야 하고 약의 동점성 값을 필요로 한다. 먼저 viscous flow 를 활성화한 후 유체 1 (그리고 있으면 유체 2 )의 점도를 Fluids Properties Viscosity 에서 입력한다.

이 모델 각각의 상세내용은 Theory 장의 Turbulence Models 절을 참조한다.

난류의 초기나 경계조건이 지정되지 않으면 초기나 경계에서의 난류운동에너지의 값은 프로그램에 의해 작은 값으로 지정되는데 이는 층류를 나타낸다. 유입유동이 난류이면 경험에 의해 상류유동의 난류 정도는 평균유동속도의 10%에 상응하는 잔잔한 유동에서의 난류유동변동이 가정된다. 예를 들면, 20m/s의 평균상류유동에서 난류속도변동의 크기가 2m/s이고, 난류운동에너지(단위 질량당)의 경계 값은 다음과 같다.

프로그램 기본값은 난류모델에서 나타나는 상수들을 지정하는 데 이용된다. 이 계수 값들은 일반적으로 권고되지 않지만 필요에 따라 변경될 수도 있다.

가장 작은 영역 차원(한 셀을 가지는 방향을 제외한)의 기본값0.07인 형상효과나 실제유동장의 규모를  반영하지 않으므로 Turbulent mixing length가 1방정식 난류에너지모델 사용자에 의해 지정되어야 한다. 이 변수는 유동에 존재하는 난류 와류의 특정규모를 기술하고 난류점도계수 최대 허용치를 정의하는데 이용된다.

Maximum turbulent mixing length는 계산된 난류의 점도가 너무 크지 않게 하도록 난류소산 ε 의 최소제한을 정하기 위해 Two-equation k ε model, the Renormalized group (RNG) model, 그리고 Two-equation k ω model에 의해 이용된다. 이 값은 Dynamically computed 선택이 Fluids Properties Viscosity window(상기 참조)로부터 자동적으로 모사 중에 시간과 위치의 함수로 계산된다. 다른 방법으로는 사용자가 Maximum turbulent mixing length 값을 Constant를 선택하여 옆의 편집상자에 값을 입력함으로써 기술할 수 있다.

Maximum turbulent mixing length가 클수록 모사 중 난류소산은 작아진다.  난류소산은 난류 점도 식의 분모에 나타나므로 난류점도는 특히 작은 전단율을 가지는 유동지역에서 커지게 된다. 역으로 작은 Maximum turbulent mixing length값은 작은 난류점도를 유발할 것이므로 난류를 과도하게 감쇠시킬 것이다.

예를 들면, 여수로 모사에서 Maximum turbulent mixing length 를 계산하는데 이용된 길이 규모가 여수로 상의 유동의 깊이일 수 있다; 고압 주조에서 길이규모는 러너의 가장 작은 폭일 수도 있다; 파이프 및 관 유동에서는 길이 규모는 유동채널의 수력직경일 수 있다. 일단 길이규모가 결정되면 Maximum turbulent mixing length는 길이 규모의 0.07, 또는 7%로 결정된다.

유입경계에서, 사용자는 난류 운동에너지와 소산을 직접 지정할 수 있다. 소산 없이 난류 운동에너지의 값이 주어지면 그 때의 소산 값은 자동적으로 편집상자 내에 정의된 Maximum turbulent mixing length 의 값에 의해 계산되거나 주어지지 않으면 기본값이다.

각주: 난류 평가를 위해 사용된 공식이 프로그램 시작 시 바뀔 수도 있다(General Restart Turbulence 참조). 난류이송방정식  (k ε, RNG, k ω 또는 One-equation) 을 포함하는 난류모델에서 이 방정식에서의 점성 확산 항은 항상 외재적으로 근사되므로 내재적 점성 알고리즘을 사용하는 것은 추천되지 않는다.

See also:

이론 매뉴얼 Turbulence Models 을 참조한다.

Viscous Heating

점성가열 모델은 Physics Viscosity and turbulence Activate viscous heating를 체크함으로써 활성화 된다. Viscous flow Turbulence options 아래서 선택되어야 함에 주의한다.

See also:

이 기능에 대한 상세정보를 위해 Theory 매뉴얼의 Thermal Diffusion and Sources를 참조한다.

Note:

  • 이 옵션은 Physics Heat transfer 가 활성화되어야 한다.
  • 0이아닌 유체 동점성이 Fluids 의 유체 입력에서 정의되는 경우만 사용된다.

Viscosity Output점성 출력

유체점도는 온도, 변형률 또는 난류 같은 다른 변수의 함수일 때 마다 자동적으로 후처리에서 저장된다. 반대로 점도가 상수이면 예를 들어 뉴튼 유체의 층류 유동에서는 일반적으로 후처리에서 이용 하지 못 한다. 사용자는 Output 탭의 Additional Output 절에서 Dynamic Viscosity 를 요청함으로써 디폴트 거동을 무효화할 수 있다. 이 기능은 특히 유체점도가 계산되는 FORTRAN routine mucal.F가 사용자에 의해 수정될 때 유용하다.

 

 

 

[FLOW-3D 물리모델]Granular Flow / 입상유동

 Granular Flow / 입상유동

입상유동은 고상입자와 기체나 액체(예를 들어 모래와 공기 또는 모래와 물)인 유체와의 혼합물이다. 입상고체와 유체의 혼합물은 자유표면 경계에 의해 경계가 정해질수 있는 비압축성유체로 간주된다. 혼합 유체에서의 밀도변화는 초기에 존재할 수 있고 Drift-Flux 모델을 사용하여 계산되는 고체와 유체의 상대속도 때문에 유동중에 발생할 수도 있다. 자유표면에서의 가스의 방출은 고체가 입상간의 가스를 밀어내며 단단해질 때 발생할수있다. 액체의경우 고상이 단단해질 때 순수액체지역이 형성될수있다,

이 모델을 활성화하기 위해 General One fluid option Physics Granular Flow Granular Flow in Gas 또는 Physics Granular Flow Granular Flow in Liquid (Slurry)를 선택한다. 입상유동 창이 보이는데 여기서 입자의 직경 및 미시적 밀도와 유체의 밀도 및 점도가 정의되어야 한다. 필요하다면 고상의 최대 close packing 체적율 과 mechanical jamming 체적율이 각기 디폴트인 0.36과 0.61로부터 변경될 수 있다. 또한 자유표면의 an angle of repose(안식각?) 은 디폴트 값인 34도가 모델링하는 고상에 대해 맞지 않으면 변경될 수 있다.

입상유동을 선택하면 이는 자동으로 이 모델에서 사용되는 프로그램 내의 대 여섯 가지 모델을 활성화 시킨다. 또한 혼합물의 점도는 이 모델에서 계산되므로 정의하는 것이 불필요함에 주목한다. 사실 Fluids tab 에있는 어떤 유체물성도 정의할 필요가 없다.

입상물질이 격자 경계를 통해 계산 영역으로 들어오면 close packing 의 밀도보다 작은 고상율을 갖는 고상/기체 혼합물의 밀도를 정의하는 것이 중요하다. 그렇지 않으면 유동이 없을 것이다.

두 개의 보조 입력변수들이 있다. 하나는 Multiplier in threshold packing velocity 이고 다른 하나는 Multiplier in packing drag 이다. Multiplier in threshold packing velocity 는 이 속도 이상에서 packed solid material 의 유동을 결정하고 Multiplier in packing drag 는 입상이 충분히 높은 밀도로 packing될 때 유동을 정지시키는데 이용된다. 이 두 변수 모두 사용자가 입상체가 이 값을 변형시키는 응집력이나 다른 힘을 알지 못한다면 디폴트 값으로 남겨져야 한다.

또 다른 보조 입력 량은 마찰 각도인데 이는 보존각도보다 2~8도정도 크다. 마찰 각도는 액체인 유체의 경우에 중요하며 이 경우 마찰각도는 고상간의 충돌로 인한 전단유동 시 발생하는 분산압력에 영향을 미친다.

Granular flow application example: Core Blowing / 입상유동응용예제: 코어블로잉

코어블로잉 공정은 공기/모래 혼합물을 코어몰드에 고속 충진하는 것을 포함한다. FLOW-3D 는 코어블로잉을 각 모래 입자가 아닌 2상 연속체로 모델링 한다. 2상의 영향(공기/모래 결합)은 Drift Flux 모델을 사용하여 모델링 된다. 공기/모래 혼합물은 순수 공기와 선명한 경계면을 갖는 1유체로서 모델링 된다. 순수공기는 단열 기포로 나타내진다. 벤트는 밸브로 정의된다. 어떻게 이 모델이 실행되는지에 대한 더 많은 정보는 Flow Science Technical Note 88 at 테크니컬 노트notes/default.asp를 참조하라.

코어블로잉 모사(simulate)를 시작하는 단계는

  1. STL 파일로부터 관련 형상을 읽어 들여 생성하거나 Model Setup –> Meshing & Geometry 탭에있는 FLOW-3D 기초요소를 사용하여 형상을 생성한다.
  2. 다음 물리적 특성을 활성화하고 Model Setup Physics 탭에있는 변수들을 정의한다.

(a)   올바른 방향에서 중력을 정의하기 위해 Gravity and non-inertial reference frame 모델을 사용한다.

(b)   Viscosity and Turbulence 대화창에서 Viscosity and Laminar flow 를 활성화한다.

(c)    Activate the Granular Flow model.  Granular Flow 모델을 활성화한다.

  • Granular Flow in Gas 선택은 모래입자가 주위 매질보다 훨씬 밀도가 높다고 가정하는 Granular Flow 모델을 활성화한다.
  • Global vent 는 모래를 통과하는 공기의 전반적 배출을 조절한다. Global vent coefficient 는 모래 와 모래의 막힘에 의한 출구면적 감소에 따른 평균 손실을 나타내는 승수이다. 또한 모든 밸브의 외부압력과 모든 밸브 승수의 평균을 취한다. 추정치는 다음 식으로부터 계산될 수 있다.

여기서 Cv,g Global vent coefficient,  는 최대가능 고상율, L 은 공기 기포와 출구사이의 평균거리, 그리고 dgAverage grain diameter 이다.

  • Mechanical jamming volume fraction 은 모래의 체적율로 이 값 이상에서는 입상간의 상호작용에 의해 유동에 저항이 발생한다. 사용하기에 맞는 값은 0.61이다.
  • Close packing volume fraction 은 유동이 정지하게 되는 모래의 체적율을 기술한다. 체적율이 0.995(Close packing volume fraction) 를 넘게 되면 그 요소내의 속도는0으로 된다. 모래입자가 구형일 때 이는 일반적으로0.63이다.
  • Average grain diameter Grain density 는 정의되어야 하고 제조사로부터 알 수 있다. Gas density Gas viscosity 또한 정의되어야 한다. CGS 단위로 공기의 표준값은 각기 0.001225 g/cm3 와0.00017 poise 이다.
  • Multiplier in threshold packing velocity 와 Angle of repose 는 코어블로잉 모델링에는 필요하지 않다.
  • 입상 반발계수는 고체표면과 충돌 후에 모래입자가 유지하는 에너지의 양을 추정하는데 사용된다.

(d)    Density Evaluation 모델을 활성화한다. 일단 Granular Flow 가 활성화되면 First order approximation to density transport equation 이 자동적으로 가능하게 된다. 이는 모래의 전달을 계산하는데 필요하다. 더 나은 공간적 정확성을 위해 Second order monotonicity-preserving approximation to density transport equation 이 선택될 수 있다. 이는 모래의 농도가 급격히 변할 것으로 예측되는 모사(simulate)에 유용할 수 있다.

(e)   가스를 배출시키기 위해서는 Bubble and Phase Change 모델을 활성화시킨다. 이는 배출구와 밸브를 사용하기 위한 필요조건이다.

  1. 초기조건과 경계조건은 Meshing & Geometry 탭에서 추가될 수 있다. 공간 또는 기포영역의 초기조건은 이미 Adiabatic bubble 모델이 Bubble and phase change 모델에서 활성화될 때 정의된다. 경계조건은 Meshing Mesh Block 1 Boundaries 에서 정의된다. 모래는 공기압에 의해 코어상자를 통해 이동되므로 압력경계조건과 공기/모래 혼합물의 밀도가 경계에서 적용되어야 한다. S(대칭경계를뜻하는)를 갖는 적절한 경계상자를 택하면 경계대화상자가 나타날 것이다. Specified pressure 무선 버튼을 선택하고 입구압력, 유체율 1.0, 그리고 밀도를 정의한다.

  1. 단지 몇 개의 배출구만 있다면 밸브를 추가하거나 배출구가 너무 많아 수의 밸브로 추가할 수 없으면 Granular Flow Vent 로 정의된 형상을 사용한다. 밸브유동손실은 Bernoulli 의 차단 이론으로부터 유도된다. 밸브 생성에 관한 세부내용은 Valves 에서 찾아볼 수 있다. 배출구를 형상요소로 추가하기 위해 Meshing & Geometry 가지에서 별도 구성요소를 생성한다. 이는 배출구는 독자적 물성을 가지며, 형상요소는 그들의 물성과 운동에 따라 분류되어 있기 때문이다.

이렇게 모델링 될 때 배출구는 체적이 없다. 배출구가 같은 크기이면 이들은 하나의 STL 로써 또는 같은 구성요소의 기초요소를 사용하여 모델링 될 수 있다. 다른 크기라면 이들은 별도로 모델링 되어야 한다. 이들을 배출구로 정의하기 위해 Component Type drop down Granular Flow Vent 로부터 선택한다. 일단 형태가 정해지면 물성이 정의되어야 한다. Model Setup Meshing & Geometry Component Component Properties Granular Flow Vent Properties 에서 the Vent Flow Area, Diameter of Vent Channel 그리고 Vent External Pressure 를 정의한다.

See also: 또한 참조하라

  • Adiabatic Bubbles 단열기포
  • Flows with Density Variations 밀도 변화를 갖는 유동
  • Granular Flow. 입상유동

Granular Media

Granular 미디어

가공 및 제조 업계에서는 다양한 유형의 세분화된 미디어를 접할 수 있습니다. 특이한 특성 때문에, 미세한 재료는 유용한 목적을 위해 그것을 전송, 혼합 또는 다른 방법으로 조작하고자 하는 엔지니어들에게 종종 어려운 문제를 제기할 수 있습니다. 세분화된 흐름 공정의 좋은 예는 금속 주물 용도의 모래 코어를 만드는 데 있습니다.

Granular미디어 모델링

고도로 농축된 미세한 물질의 흐름을 위한 모델이 개발되었습니다. 이 모델은 “연속적인 “접근 방식을 사용합니다. 즉, 모래의 연속적인 유체 표현에 기초하고 있어 개별 모래 입자를 처리하려는 시도가 없습니다.

모래와 공기의 혼합물은 공기 및 모래 물질이 개별 속도에 따라 흐르지만 압력 및 점성 스트레스로 인한 가속도 교환을 통해 결합되는 2상 흐름입니다. 전형적인 코어 모래의 경우 모래 입자의 지름은 10/10밀리미터이고, 코어 상자에 부어 들어가는 모래의 부피는 일반적으로 50%이상입니다. 이 범위에서 모래와 공기 사이에는 강력한 결합이 존재하므로 혼합물을 단일 복합 유체로 모델링 할 수 있습니다. 두 재료의 속도 차이로 인한 2상 효과는 드리프트-플럭스라고 하는 상대 속도에 대한 근사치를 사용하여 설명됩니다.

이러한 복합 및 상대 속도 접근 방식은 세분화된 매체 모델의 기초로 선택되었습니다. 모래/공기 혼합물은 주변 공기와의 경계에 날카로운 자유 표면이 있는 단일 유체로 표현될 수 있다고 가정합니다. 그러나 복합 유체는 모래 압축 정도에 따라 균일하지 않은 밀도를 가질 수 있습니다. 혼합물의 점도는 밀도와 전단 응력의 함수입니다. 운동량 전달의 대부분은 부분 입자 충돌에 의한 것이기 때문에 모래-공기 혼합물은 전단 두께가 얇은 물질의 특성을 가지고 있습니다.

환기구를 코어 박스에 포함시키기 위해 모든 순수 공기 영역(보이드 영역이라고도 함)은 아디아바틱 버블(adiabatic bubble)로 취급됩니다. 아디아바틱 qjqmf(adiabatic bubble)은 액체나 고체의 벽으로 둘러싸인 공기의 영역이다. 버블의 압력은 버블 볼륨의 함수이며 버블에 의해 점유된 지역 위에 균일한 값을 가지고 있습니다. 코어 상자의 환기구를 통해 버블 내의 공기가 박스 외부로 배출됩니다.

Sand Core Blowing Applications

유체와 달리 입상매질에서는 발생할 수 있는 몇 가지 차이점을 설명하기 위해 간단한 2 차원 쐐기 모양 호퍼가 바닥에 1cm 너비 튜브로 설치되었습니다. 시뮬레이션은 바닥 튜브가 비어있는 채로 시작됩니다.

Granular media model
Figures 1-4 (From left to right): Initial 2D hopper configuration; Time 1.75s — Vectors are black; Time 3.0s; Time 5.0s

모래는 0.63 부피의 근접 포장 한계에서 초기화되었습니다. 배출 튜브 입구의 하단에 있는 모래는 중력의 작용을 받기 시작하지만 그림 1-4에 있는 거의 모든 모래는 정지 상태를 유지합니다. 여기서 색상은 패킹에 의한 흐름 저항입니다( 빨간 색은 완벽하게 견고함). 짧은 시간 안에 지역과 같은 거품이 형성되고 모래의 가장 높은 표면을 향해요. 거품이 꼭대기에 도달할 때까지 거품의 표면 주위를 흐르는 것만이 표면의 붕괴를 일으킨다. 상단 표면의 함몰은 특정한 각도인 34°까지 측면을 감소시키는 현지화된 흐름을 가집니다. 한편 바닥에는 이 패턴을 반복하기 위해 또 다른 거품이 형성된다.

모래 코어 송풍에 이 새로운 모델의 적용을 설명하기 위해 D가 작성한 ” 끊어진 코어와 연체 동물의 설계에서의 시뮬레이션 개발 및 사용”논문의 데이터와 비교하기 위해 시뮬레이션을 수행했습니다( D. Lefebvre, A. Mackenbrock, V.Vidal, V.Pavan, PM. 2004년 12월, Hommes&Fonderie, Haigh). 데이터는 하나의 채우기 포트가 있는 2차원 다이 형상에 대한 것입니다. 다이의 주형 제작은 균일하지 않아서 충전 패턴에 대한 환기구의 영향을 연구할 수 있었습니다.

시뮬레이션 영역(코어 상자)의 크기는 너비 30cm, 높이 15cm, 두께 1cm였다. 밀도 1.508 g/m2cc의 모래/공기 혼합물이 박스 입구에서 절대 2기압의 압력으로 박스 안으로 들어갔습니다. 상자의 오른쪽에는 다섯개의 열린 구멍이 있었고 상자의 아래쪽과 왼쪽에는 여섯개가 더 닫혀 있습니다. 이러한 배치는 비대칭적인 상자 채우기로 이어집니다.

Sand core blowing continuum model simulation
Figure 5:  연속체 모델 시뮬레이션과 실험 데이터의 비교 시뮬레이션 결과는 0.035s, 0.047s 및 0.055s입니다. 색조는 혼합 농도를 나타냅니다.

계산 그리드는 수평으로 80개의 메쉬 셀과 수직으로 40개의 메쉬 셀로 구성되었습니다. 시뮬레이션이 완전히 채워진 코어 상자에 도달하는 데 걸리는 시간은 0.07초였으며 3.2에서 직렬 모드로 실행되는 약 8.7초의 CPU시간이 필요했습니다. GHzPentium4PC컴퓨터(만족스러울 정도로 작지만, 물론 컴퓨터 영역에 3200개의 셀 이 있는 2D케이스에 불과했습니다.)

연속 모델 시뮬레이션 결과와 Lefe브re, 기타 논문의 사진을 비교한 결과는 그림. 5와 같습니다. 시각적 일치는 많은 부분에서 매우 좋은 것으로 보입니다. 시뮬레이션은 왼쪽에 통풍구가 닫혔을 때의 비대칭적인 영향을 보여 줍니다.

For more information about this model, download the Flow Science Report on Granular Media.

난류 모델링

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Turbulence Modeling

The majority of flows in nature are turbulent. This raises the question, is it necessary to represent turbulence in computational models of flow processes? Unfortunately, there is no simple answer to this question, and the modeler must exercise some engineering judgment. The following remarks cover some things to consider when faced with this question.

난류 모델링

자연에서의 흐름은 대부분은 난류입니다. 이것은 유동의 수치해석 모델에서 난류를 표현할 필요가 있는가? 에 대한 의문이 생깁니다.  불행히도이 질문에 대한 답은 모델링을 할 경우 엔지니어가 공학적인 판단을 내려야합니다.  다음에 이 질문에 직면했을 때 고려해야 할  몇 가지를 설명합니다.

Definitions and Orders of Magnitude

The possibility that turbulence may occur is generally measured by the flow Reynolds number:

난류가 발생할 가능성은 일반적으로 흐름의 레이놀즈 수에 의해 측정됩니다.

where ρ is fluid density and μ is the dynamic viscosity of the fluid. The parameters L and U are a characteristic length and speed for the flow. Obviously, the choice of L and U are somewhat arbitrary, and there may not be single values that characterize all the important features of an entire flow field. The important point to remember is that Re is meant to measure the relative importance of fluid inertia to viscous forces. When viscous forces are negligible the Reynolds number is large.

여기서 ρ는 유체 밀도이고 μ는 유체의 동적 점도입니다. 매개 변수 L과 U는 흐름의 특성 길이와 속도입니다. 분명히 L과 U의 선택은 다소 임의적이며, 전체 유동장의 모든 중요한 특징을 특징 짓는 단일 값이 없을 수도 있습니다. 기억해야 할 중요한 점은 Re가 점성력에 대한 유체 관성의 상대적 중요성을 측정한다는 것입니다. 점성력을 무시할 수있는 경우 레이놀즈 수가 큽니다.

A good choice for L and U is usually one that characterizes the region showing the strongest shear flow, that is, where viscous forces would be expected to have the most influence.

L과 U에 대한 좋은 선택은 일반적으로 가장 강한 전단 흐름을 나타내는 영역, 즉 점성 힘이 가장 큰 영향을 미칠 것으로 예상되는 영역을 특징 짓는 것입니다.

Roughly speaking, a Reynolds number well above 1000 is probably turbulent, while a Reynolds number below 100 is not. The actual value of a critical Reynolds number that separates laminar and turbulent flow can vary widely depending on the nature of the surfaces bounding the flow and the magnitude of perturbations in the flow.

대략적으로 말하면, 1000을 훨씬 넘는 레이놀즈 수는 아마도 난류 일 수 있지만 100 미만의 레이놀즈 수는 그렇지 않습니다. 층류와 난류를 분리하는 임계 레이놀즈 수의 실제 값은 유동을 경계하는 표면의 특성과 유동의 섭동의 크기에 따라 크게 달라질 수 있습니다.

In a fully turbulent flow a range of scales exist for fluctuating velocities that are often characterized as collections of different eddy structures. If L is a characteristic macroscopic length scale and l is the diameter of the smallest turbulent eddies, defined as the scale on which viscous effects are dominant, then the ratio of these scales can be shown to be of order L/l≈Re3/4. This relation follows from the assumption that, in steady-state, the smallest eddies must dissipate turbulent energy by converting it into heat.

완전 난류 흐름에서는 다양한 와류 구조의 집합으로 특징 지어지는 변동 속도에 대해 다양한 스케일이 존재합니다. L이 거시적 길이 특성 척도이고, l을 점성 효과가 우세한 척도로 정의되는 가장 작은 난류 소용돌이의 직경인 경우, 이러한 척도의 비율은L/l≈Re3/4 정도인 것으로 표시 될 수 있습니다.  이 관계는 정상 상태에서 가장 작은 소용돌이가 난류 에너지를 열로 변환하여 발산해야한다는 가정에서 비롯됩니다.

Turbulence Models

From the above relation for the range of scales it is easy to see that even for a modest Reynolds number, say Re=104, the range spans three orders of magnitude, L/l=103. In this case, the number of control volumes needed to resolve all the eddies in a three-dimensional computation would be greater than 109. Numbers of this size are well beyond current computational capabilities. For this reason, considerable effort has been devoted to the construction of approximate models for turbulence.

난류 모델

스케일의 범위에 대한 위의 관계를 보면 적당한 레이놀즈 수 (예 : Re = 10 4 )에서도 범위가 세 자릿수인 L/l=103에 걸쳐 있음을 쉽게 알 수 있습니다. 이 경우 3 차원 계산에서 모든 소용돌이를 해결하는데 필요한 제어 볼륨의 수는 109보다 커집니다.이 크기의 수는 현재 계산 능력을 훨씬 뛰어 넘습니다. 이러한 이유로 난류에 대한 대략적인 모델을 구성하는 데 상당한 노력을 기울였습니다.

We cannot describe turbulence modeling in any detail in this short article. Instead, we will simply make some basic observations about the types of models available. Be forewarned, however, that no models exist for general use. Every model must be employed with discretion and its results cautiously treated.

이 짧은 기사에서는 난류 모델링에 대해 구체적으로 설명 할 수 없습니다.  대신 사용 가능한 모델의 유형에 대한 몇 가지 기본적인 설명만 합니다.  그러므로 일반 모델은 존재하지 않는 것을 미리 양해 바랍니다.  어떤 모델도 신중하게 선택하고 결과를 주의 깊게 처리해야 합니다.

The original turbulence modeler was Osborne Reynolds. Anyone interested in this subject should read his groundbreaking work (Phil. Trans. Royal Soc. London, Series A, Vol.186, p.123, 1895). Reynolds’s insights and approach were both fundamental and practical.

난류를 처음으로 모델링 한 인물은 Osborne Reynolds 입니다.  이 건에 관심이있는 분은 Reynolds 의 획기적인 저서 (Phil. Trans. Royal Soc. London, Series A, Vol.186, p.123,1895)를 참조하십시오.  Reynolds 의 통찰력과 접근 방식은 기본이며 동시에 실용적인 것입니다.

The Pseudo-Fluid Approximation

In a fully turbulent flow it is sometimes possible to define an effective turbulent viscosity, μeff, that roughly approximates the turbulent mixing processes contributing to a diffusion of momentum (and other properties). Thinking of a turbulent flow as a pseudo-fluid having increased viscosity leads to the observation that the effective Reynolds number for a turbulent flow is generally less than 100:

의사 유체 근사

완전 난류 흐름에서는 운동량 (및 기타 특성)의 확산에 기여하는 난류 혼합 공정에 대략적으로 근접하는 효과적인 난류 점도 μ eff를 정의 할 수 있습니다. 난류 흐름을 점도가 증가 된 유사 유체로 생각하면 난류 흐름에 대한 유효 레이놀즈 수가 일반적으로 100 미만이라는 관찰이 가능합니다.

This observation is particularly useful because it suggests a simple way to approximate some turbulent flows. In particular, when the details of the turbulence are not important, but the general mixing behavior associated with the turbulence is, it is often possible to use an effective turbulent (eddy) viscosity in place of the molecular viscosity. The effective viscosity can often be expressed as

이 관찰 결과는 몇 가지 난류를 근사하는 간단한 방법을 제시하고 있기 때문에 특히 유용합니다.  특히 난류 대한 자세한 내용은 중요하지 난류와 관련된 일반적인 혼합 거동이 중요한 경우에는 분자 점성 대신 사용 난류 (소용돌이) 점성을 사용할 수있는 경우가 있습니다.  유효 점성은 다음의 식으로 나타낼 수 있습니다.

where α is a number between 0.02 and 0.04. This expression works well for the turbulence associated with plane and cylindrical jets entering a stagnant fluid. The effective Reynolds number associated with this model is Re=1/α, a number between 25 and 50.

α는 0.02에서 0.04 사이의 숫자입니다.  이 수식은 정체 유체에 들어가는 평면 제트 및 원통형 분류 관련 난류에 대하여 효과가 있습니다.  이 모델에 대한 사용 레이놀즈 수는 Re = 1 / α 25에서 50 사이의 숫자입니다.

While this model is often adequate for predicting the gross features of a turbulent flow, it may not be suitable for predicting local details. For example, it would predict a parabolic flow (i.e., laminar) profile in a pipe instead of the measured logarithmic profile.

이 모델은 종종 난류의 전반적인 특징을 예측하는데는 적합하지만, 로컬 세부 사항을 예측하는 데는 적합하지 않을 수 있습니다.  예를 들어, 측정된 대수 프로필 대신 파이프의 포물선 흐름 (층류 등)의 프로파일을 예측합니다.

Local Viscosity Model

The next level of complexity beyond a constant eddy viscosity is to compute an effective viscosity that is a function of local conditions. This is the basis of Prandtl’s mixing-length hypothesis where it is assumed that the viscosity is proportional to the local rate of shear. The proportionality constant has the dimensions of a length squared. The square root of this constant is referred to as the “mixing length.”

This model offers an improvement over a simple constant viscosity. For example, it predicts the logarithmic velocity profile in a pipe. However, it is not used much because it doesn’t account for important transport effects.

국소 점성 모델

일정한 소용돌이 점성보다 복잡한 것은 국소적 조건의 함수인 유효 점성을 계산하는 것입니다.  이것은 점성이 국소적 전단 속도에 비례한다고 가정된다는 프란틀 혼합 길이 가설(Prandtl’s mixing-length hypothesis )의 기초가됩니다.  비례 상수의 차원은 길이의 제곱입니다.  이 상수의 제곱근은 “혼합 장”이라고합니다.

이 모델은 간단한 일정한 점성 개선을 제공합니다.  예를 들어, 파이프의 대수 속도 프로파일을 예측할 수 있습니다.  그러나 중요한 수송 효과를 지원하지 않기 때문에 그다지 많이 사용되지 않습니다.

Turbulence Transport Models

For practical engineering purposes the most successful computational models have two or more transport equations. A minimum of two equations is desirable because it takes two quantities to characterize the length and time scales of turbulent processes. The use of transport equations to describe these variables allows turbulence creation and destruction processes to have localized rates. For instance, a region of strong shear at the corners of a building may generate strong eddies, while little turbulence is generated in the building’s wake region. The strong mixing observed in the wakes of buildings (or automobiles and airplanes) is caused by the advection of upstream generated eddies into the wake. Without transport mechanisms, turbulence would have to instantly adjust to local conditions, implying unrealistically large creation and destruction rates.

난류 수송 모델

실용 공학의 목적인 가장 뛰어난 수치 모델에는 2 개 이상의 수송 방정식이 있습니다.  난류 과정의 길이와 시간의 스케일을 특징으로는 2 개 분량이 필요하므로 최소한 2 개의 방정식이있는 것이 바람직 할 것입니다.  수송 방정식을 사용하여 이러한 변수를 표현하면 난류의 생성 속도와 파괴율을 국소적으로 할 수 있습니다.  예를 들어, 건물의 모서리의 전단력이 강한 영역에서 강력한 소용돌이가 생성 된 건축물의 후류 영역에서 난류는 거의 생성되지 않습니다.  건축물 (또는 자동차 나 비행기)의 후류에서 관찰되는 강력한 혼합은 상류에서 생성된 소용돌이 후류의 이류에 의해 발생합니다.  수송 메커니즘이 없는 경우, 난류는 국소적 조건에 즉시 적응해야하므로 생성 속도와 파괴율이 비현실적인 크기입니다.

Nearly all transport models invoke one or more gradient assumptions in which a correlation between two fluctuating quantities is approximated by an expression proportional to the gradient of one of the terms. This captures the diffusion-like character of turbulent mixing associated with many small eddy structures, but such approximations can lead to errors when there is significant transport by large eddy structures.

거의 모든 수송 모델에서 하나 이상의 경사 가정을 이루어 두 변동하는 양의 상관 관계가 하나의 항 기울기에 비례하는 식으로 근사됩니다.  이를 통해 다수의 작은 소용돌이 구조와 관련된 난류 혼합 확산적인 특징을 파악할 수 있지만, 큰 소용돌이 구조에 의해 상당한 전송이 존재하는 경우, 이러한 근사 오류가 발생할 수 있습니다.

Large Eddy Simulation

Most models of turbulence are designed to approximate a smoothed out or time-averaged effect of turbulence. An exception is the Large Eddy Simulation model (or Subgrid Scale model). The idea behind this model is that computations should be directly capable of modeling all the fluctuating details of a turbulent flow except for those too small to be resolved by the grid. The unresolved eddies are then treated by approximating their effect using a local eddy viscosity. Generally, this eddy viscosity is made proportional to the local grid size and some measure of the local flow velocity, such as the magnitude of the rate of strain.

Large Eddy 시뮬레이션

난류의 대부분의 모델은 매끄럽게 또는 시간 평균된 난류의 효과를 근사하도록 설계되어 있습니다.  예외는 큰 에디 시뮬레이션 모델 (또는 서브 그리드 스케일 모델)입니다.  이 모델의 배경에는 너무 작은 격자에 의해 해결할 수 없는 것을 제외하고는 난류의 모든 변동 내용은 계산에 의해 직접 모델링 할 수 있어야 한다는 생각이 있습니다.  미해결 소용돌이는 로컬 점성을 사용하여 효과를 근사하여 처리됩니다.  일반적으로이 소용돌이 점성은 국소적인 격자 크기 및 어떤 국소적인 흐름의 속도 측정 (변형 속도의 크기 등)에 비례합니다.

대부분의 난류 모델은 난류의 평활화 또는 시간 평균 효과에 근접하도록 설계되었습니다. 예외는 Large Eddy Simulation 모델 (또는 Subgrid Scale 모델)입니다. 이 모델의 이면에있는 아이디어는 계산이 격자에 의해 해결 되기에는 너무 작은 것을 제외하고, 난류 흐름의 모든 변동 세부 사항을 직접 모델링 할 수 있어야 한다는 것입니다. 해결되지 않은 소용돌이는 로컬 소용돌이 점도를 사용하여 효과를 근사화하여 처리됩니다. 일반적으로, 이 와류 점도는 로컬 격자 크기와 변형률의 크기와 같은 로컬 유속 측정치에 비례하여 만들어집니다.

Such an approach might be expected to give good results if the unresolved scales are small enough, for example, in the viscous sub-range. Unfortunately, this is still an uncomfortably small size. When these models are used with a minimum scale size that is above the viscous sub-range, they are then referred to as Coherent Structure Capturing models.

이러한 접근 방식은 미해결 스케일이 충분히 작은 경우, 예를 들어 점성이 작은 영역에 있는 경우에 좋은 결과를 얻을 수 있을 것으로 기대됩니다.  불행히도 아직은 여전히 불편한 작은 크기 입니다.  이러한 모델을 점성 작은 영역보다 높은 최소 스케일 사이즈로 사용하는 경우는 CSC (Coherent Structure Capturing) 모델이라고합니다.

The advantage of these more realistic models is that they provide information not only about the average effects of turbulence but also about the magnitude of fluctuations. But, this advantage is also a disadvantage, because averages must actually be computed over many fluctuations, and some means must be provided to introduce meaningful fluctuations at the start of a computation and at boundaries where flow enters the computational region.

이보다 현실적인 모델의 장점은 난류의 평균 효과에 대한 정보뿐만 아니라 변동의 크기에 대한 정보도 제공 될 것입니다.  그러나 이와같은 장점은 단점도 있습니다.  평균적으로 실제로 다수의 변동에 대해 계산해야 하며, 계산의 시작 및 흐름이 계산 영역에 들어가는 경계에서 상당한 변화를 도입하기위한 수단을 제공 할 필요가 있기 때문입니다.

Turbulence from an Engineering Perspective

We have seen that it is probably not reasonable to attempt to compute all the details of a turbulent flow. Furthermore, from the perspective of most applications, it’s not likely that we would be interested in the local details of individual fluctuations. The question then is how should we deal with turbulence, when should we employ a turbulence model, and how complex should that model be?

공학적 관점에서의 난류

지금까지 난류의 모든 세부 사항을 계산하려고하는 것은 아마도 합리적이지 않다는 것을 확인했습니다.  또한 많은 적용례의 관점에서 개별 변동의 국소적인 세부 사항이 관심의 대상이 될 수는 없을 것입니다.  거기서 생기는 의문은 난류를 어떻게 처리해야 할지 난류 모델을 언제 선택할지 그 모델이 얼마나 복잡할지에 있다는 것입니다.

Experimental observations suggest that many flows become independent of Reynolds number once a certain minimum value is exceeded. If this were not so, wind tunnels, wave tanks, and other experimental tools would not be as useful as they are. One of the principal effects of a Reynolds number change is to relocate flow separation points. In laboratory experiments this fact sometimes requires the use of trip wires or other devices to induce separation at desired locations. A similar treatment may be used in a numerical simulation.

실험적 관찰에 따르면 특정 최소값이 초과되면 많은 흐름이 레이놀즈 수와 무관하게됩니다. 그렇지 않다면 풍동, 파도 탱크 및 기타 실험 도구는 그다지 유용하지 않을 것입니다. 레이놀즈 수 변경의 주요 효과 중 하나는 흐름 분리 지점을 재배치하는 것입니다. 실험실 실험에서이 사실은 때때로 원하는 위치에서 분리를 유도하기 위해 트립 와이어 또는 기타 장치를 사용해야합니다. 유사한 처리가 수치 시뮬레이션에서 사용될 수 있습니다.

Most often a simulation is done to determine the dominant flow patterns that develop in some specified situation. These patterns consist of the mean flow and the largest eddy structures containing the majority of the kinetic energy of the flow. The details of how this energy is removed from the larger eddies and dissipated into heat by the smallest eddies may not be important. In such cases the dissipation mechanisms inherent in numerical methods may alone be sufficient to produce reasonable results. In other cases it is possible to supply additional dissipation with a simple turbulence model such as a constant eddy viscosity or a mixing length assumption.

대부분의 경우 특정 상황에서 발생하는 지배적 인 흐름 패턴을 결정하기 위해 시뮬레이션이 수행됩니다. 이러한 패턴은 평균 흐름과 흐름의 대부분의 운동 에너지를 포함하는 가장 큰 소용돌이 구조로 구성됩니다. 이 에너지가 더 큰 소용돌이에서 제거되고 가장 작은 소용돌이에 의해 열로 소산되는 방법에 대한 세부 사항은 중요하지 않을 수 있습니다. 그러한 경우 수치 적 방법에 내재 된 소산 메커니즘만으로도 합리적인 결과를 얻을 수 있습니다. 다른 경우에는 일정한 소용돌이 점도 또는 혼합 길이 가정과 같은 간단한 난류 모델을 사용하여 추가 소산을 제공 할 수 있습니다.

Turbulence transport equations require more CPU resources and should only be used when there are strong, localized sources of turbulence and when that turbulence is likely to be advected into other important regions of the flow.  When there is reason to seriously question the results of a computation, it is always desirable to seek experimental confirmation.

An excellent introduction to fluid turbulence can be found in the book Elementary Mechanics of Fluids by Hunter Rouse, Dover Publications, Inc., New York (1978).

난류 전송 방정식은 더 많은 CPU 리소스를 필요로하며 강력하고 국부 화 된 난기류 소스가 있고 그 난류가 흐름의 다른 중요한 영역으로 전파 될 가능성이있는 경우에만 사용해야합니다. 계산 결과에 매우 의문이 생길 경우는 실험에 의해 확인하는 것이 좋습니다.

유체 난류에 대한 훌륭한 소개는 Hunter Rouse, Dover Publications, Inc., New York (1978)의 책 Elementary Mechanics of Fluids에서 찾을 수 있습니다.

Free Surface Fluid Flow

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Free Surface Fluid Flow

Fluid flow problems often involve free surfaces in complex geometry and in many cases are highly transient. Examples in hydraulics are flows over spillways, in rivers, around bridge pilings, flood overflows, flows in sluices, locks, and a host of other structures. A capability to computationally model these types of flows is attractive if such computations can be done accurately and with reasonable computational resources. To be useful, simulations should be much faster and less expensive than using physical models.

자유 표면 유체 흐름

유체 흐름 문제는 복잡한 기하학적 구조의 자유 표면과 관련되는 경우가 많으며 대부분 매우 일시적입니다. 수력학의 예로는 배수로, 강, 교각 주변, 홍수 범람, 수문, 잠금 장치 및 다수의 기타 구조물의 흐름이 있습니다. 이러한 유형의 흐름을 계산적으로 모델링 하는 능력은 이러한 계산이 정확하고 합리적인 계산 자원으로 수행될 수 있다면 매력적입니다. 유용하게 사용하려면 시뮬레이션은 물리적 모델을 사용하는 것보다 훨씬 빠르고 저렴해야 합니다.

Many computer programs can solve the partial differential equations describing the dynamics of fluids. Not many programs are capable of including free surfaces in their simulations. The difficulty is a classical mathematical one often referred to as the free-boundary problem. A free boundary poses the difficulty that on the one hand the solution region changes when its surface moves, and on the other hand, the motion of the surface is in turn determined by the solution. Changes in the solution region include not only changes in size and shape, but in some cases, may also include the coalescence and break up of regions (i.e., the loss and gain of free surfaces).

많은 컴퓨터 프로그램은 유체의 역학을 설명하는 편미분 방정식을 풀 수 있습니다. 시뮬레이션에 자유 표면을 포함 할 수있는 프로그램은 많지 않습니다.  그 이유는 Free Surface 경계 문제로 잘 알려진 수학적인 문제입니다.  자유 경계 문제는 다루기 어려운 표면이 이동함에 따라 계산 영역이 변화하는 한편, 그 표면 이동 자체가 계산에 의해 결정된다는 점에 있습니다.  계산 영역의 변화는 그 크기와 모양의 변화뿐만 아니라, 경우에 따라서는 영역의 결합과 분리(즉, 자유 표면의 발생과 소멸)을 포함합니다.

In this note a computational modeling technique for fluid flows with arbitrary free surfaces is discussed. The technique is based on the Volume-of-Fluid (VOF) technique. This technique has many unique properties that make it especially applicable to flows having free surfaces. The goal of this discussion is to show why the VOF approach offers a natural way to capture free surfaces and their evolution with great efficiency.

이 책에서는 모든 자유 표면을 고려한 유체흐름 현상을 수치 해석용으로 모델링하는 방법에 대해 설명합니다.  이 기술은 VOF (Volume-of-Fluid) 법에 근거한 것으로, 특히 자유 표면 흐름에 적합한 다양한 기능을 제공합니다.  이 책에서는 VOF 법이 자유 표면과 그 발생과 소멸을 해석하는데 가장 자연스럽고 매우 효율적인 방법을 제시합니다.

A good recommendation for the VOF method is to demonstrate its capabilities on a simple hydraulic flow problem, one that is far from trivial. The example selected is of flow over a step. This flow has conceptual simplicity and good experimental data available for validation (see N. Rajaratnam and M.R. Chamani, “Energy Loss at Drops,” J. Hydraulic Res. Vol. 33, p.373, 1995).

VOF 법의 특징을 잘 보여주기 위해 간단하지만 매우 중요한 유동 현상에 관한 문제를 다룹니다.  여기에서는 계단 낙차형상의 낙하류를 예로 들어 있습니다.  개념적으로 간단한 흐름인 동시에 결과의 타당성을 확인하기위한 좋은 실험 데이터도 제공되어 있습니다 (N. Rajaratnam and MR Chamani “Energy Loss at Drops”J. Hydraulic Res. Vol. 33 p.373,1995 참조).

Prototype Hydraulic Flow with Free Surfaces

Figure 1a shows the flow problem after it has reached a steady-state condition. The overflow (sheet of liquid or nappe) leaving the top of the step has both an upper and lower free surface. At the bottom of the overflow a pool has formed between the overflow and the face of the step, while downstream, liquid is flowing to the right with a flat, steady surface. Strictly speaking, the flow conditions in the pool region are not steady because turbulent mixing is generated in the pool by the impinging fluid. There is, however, an average configuration and that is what is reported in the experiments.

자유 표면을포함한 유동 현상의 프로토타입

그림 1a는 정상 상태에 도달 한 후 흐름의 문제를 보여줍니다.  계단 낙차형상 상부로부터의 월류(액체 또는 스냅 시트)에는 상하 모두의 자유 표면이 있습니다.  월류의 아래쪽에는 월류와 계단 가공면 사이에 웅덩이가 형성되어 있으며, 하류에서는 액체는 평평한 정상 표면에서 오른쪽으로 흐르고 있습니다.  엄밀히 말하면, 웅덩이 영역의 흐름 상태는 정상입니다.  이것은 충돌하는 액체에 의해 풀에 난류 혼합이 발생하고 있기 때문입니다.  그러나 평균적인 구성이 존재하고 그것은 실험에서도 보고됩니다.

For all practical purposes the flow is two-dimensional, that is, it does not have any significant variation in the direction normal to the illustration in Fig. 1a. In actuality, to have an air space above the pool there must be some opening to the atmosphere otherwise it would close up.

실용 목적은 흐름은 항상 2 차원입니다.  즉, 그림 1a에서 수직 방향에서는 큰 변화는 없습니다.  현실에서는 웅덩이 위쪽으로 공간을 만들기 위해서는 대기에 여유공간이 필요하고, 그게 없으면 닫힐 것입니다.

The flow speed at the top of the step is critical, that is, it has a speed equal to or greater than the speed of surface waves, so that no disturbances from downstream can penetrate through this region to affect flow upstream (to the left of the step), which is why the flow is exceptionally smooth and steady in that region.

계단 낙차형상 상단의 유속은 중요합니다.  즉, 이것은 표면파와 같거나 그 이상의 속도이기 때문에 하류에서의 교란이 영역을 관통하고 상류 흐름 (계단 낙차형상의 왼쪽)에 영향을 줄 수 없습니다.  따라서 이 영역에서의 흐름은 예외적으로 원활하고 정상입니다.

There are many geometric features in this problem that can be compared with a numerical simulation; such as flow heights before and after the step, the angle of the overflow stream when it strikes the bottom and the depth of the pool formed under the overflow. Additionally, an important comparison for practical applications is the amount of energy (i.e., kinetic plus potential) lost by the flow in passing over the step.

이 문제는 수치 시뮬레이션과 비교할 수 있는 기하 형상 기능이 많이 있습니다.  예를 들어, 계단 낙차형상의 전후 흐름의 높이, 월류가 바닥에 충돌 할 때의 각도, 월류 아래에 형성되는 웅덩이의 깊이 등입니다.  또한 실용화를 위한 중요한 비교 항목으로는, 계단 낙차형상을 통해 떨어지는 낙하 류에 의해 손실되는 에너지의 양 (운동 에너지와 위치 에너지의 합)가 있습니다.

Simulation of Prototype Problem

Figure 1a is from a simulation. For this example all of the geometric and material properties used in the experiments were used in the simulation. The height of the step used in the laboratory test is 62cm and the fluid is ordinary water (density=1.0 gm/cc and dynamic viscosity=0.01dynes/cm). The depth of water entering the computational region was 15.5cm and was given a near critical velocity of 123.0cm/s. Of course, gravity was in the vertical direction with magnitude g=-980cm/s^2.

프로토 타입 문제의 시뮬레이션

그림 1a는 시뮬레이션의 결과입니다.  이 예에서는 실험에 사용된 모든 기하 형상 및 물질의 특성이 시뮬레이션에 사용되었습니다.  실험실 테스트에서 사용한 계단 낙차형상의 높이가 62cm에서 액체는 보통의 물 (밀도 = 1.0gm / cc 어떻게 점성 = 0.01dynes / cm)입니다.  계산 영역에 들어가는 물의 깊이는 15.5cm에서 속도가 임계에 가까운 123.0cm/s 였습니다.  물론, 중력은 수직 방향으로 크기는 g = -980cm / s^2입니다.

 

Figure 1a. Simulation of flow over a step.
Figure 1b. Grid used in simulation.

Because some turbulence was expected to develop in the pool to the left of the overflow, a turbulence model (the Renormalization Group or RNG model) was used in the simulation. Subsequent simulations without a turbulence model produced very similar results, which is not too surprising since most of the important elements of the flow are smooth (i.e., non-turbulent) inflow, overflow and outflow streams.

월류 왼쪽에 있는 웅덩이에 난류가 발생 할 것으로 예상 되었기 때문에, 시뮬레이션에서는 난류 모델 (the Renormalization Group, 즉 RNG 모델)을 사용했습니다.  그 후, 난류 모델을 사용하지 않고 한 시뮬레이션에서도 비슷한 결과를 얻을 수 있었지만, 이것은 그다지 놀라운 일이 아닙니다.  흐름의 중요한 요소의 대부분은 매끄러운 (즉 난류가 아닌) 유입, 유출, 월류 때문입니다.

The simulation region shown in Fig. 1b is 170cm wide and 100cm high and has been subdivided into a grid of equal sized rectangular cells consisting of 80 cells in the horizontal direction and 60 cells in the vertical direction, for a total of 4800 cells. This grid is used as the basis for finite-difference approximations of the governing differential equations of fluid dynamics (the Navier-Stokes equations). The number and size of the grid cells was chosen with the goal of capturing the smallest expected features of the flow. The number can be easily increased or decreased if the results seem to warrant some adjustment. In fact, it is often a good idea to repeat a simulation with a change of resolution to make sure that the solution is not too sensitive to such changes.

그림 1b 시뮬레이션 영역은 폭 170cm, 높이 100cm에 가로 80 개, 세로 60 개, 총 4800 개의 셀로 구성되는 같은 크기의 사각형 셀의 격자로 세분화되어 있습니다.  이 격자는 유체 역학의 지배 미분 방정식 (나비에 – 스토크스 방정식)의 유한 차분 근사의 기초로 사용됩니다.  격자 셀의 수와 크기는 흐름 속에서 예측되는 최소의 특성을 파악하는 목적으로 선택되었습니다.  결과를보고 어떤 조정이 필요하다고 생각되는 경우는 숫자를 쉽게 늘리거나 줄일 수 있습니다.  사실, 해상도를 바꾸어 시뮬레이션을 반복하여 계산이 그러한 변화에 영향을 많이 들어 있지 않은지 확인하는 것이 좋습니다.

The left boundary was a specified velocity boundary (also with a specified fluid height). The right boundary was an outflow boundary where all flow quantities have a zero gradient normal to the boundary to encourage a uniform outflow. The top and bottom boundaries are rigid walls, while in the third direction the boundaries were treated as planes of symmetry (i.e., walls with zero viscous drag). The surface of the step was also treated as a free-slip boundary.

왼쪽의 경계는 지정된 속도 경계입니다 (유체의 높이도 지정).  오른쪽의 경계는 유출 경계에서 모든 유량이 경계에 수직 제로 기울기이며, 균일 한 유출이 촉진됩니다.  상하 경계는 단단한 벽으로 세 번째 방향의 경계는 대칭면 (점성 저항 제로의 벽)으로 처리되었습니다.  계단 낙차형상의 표면도 자유-미끄럼(free slip) 경계로 처리되었습니다.

Initial conditions could have been set to roughly approximate the expected flow arrangement, but since the flow configuration is one of the things that one would like to compute, especially for situations where one doesn’t know what the distribution of fluid is likely to be, a simpler approach is needed. Because a transient flow simulator was used for this example a simple initial condition could be defined that consisted of just a block of fluid on top of the step, Fig. 1a with the same horizontal velocity and height assigned to the left boundary. The simulation then followed the development of the steady flow, which occurs after about 8.0s. The simulation was run out to a time of 10.0s to assure that steady conditions had been reached. Figure 2 shows two intermediate times; 2.b at 0.2s and 2.c at 0.5s plus the final time in 2.d at 10.0s.

초기 조건은 예측되는 흐름의 배열을 대략적으로 근사하도록 설정할 수 있었지만, 흐름의 구성은 계산하고 싶은 것 중 하나이기 때문에 유체가 어떻게 분포되는지를 모르는 경우에는 간단한 방법이 필요합니다.  이 예제에서는 비정상 흐름 시뮬레이터를 사용했기 때문에 그림 1a의 계단 낙차형상에 유체의 블록만 있고 왼쪽 경계의 같은 수평 속도와 높이가 할당된 간단한 초기 조건을 정의할 수 있습니다.  시뮬레이션은 이후 정상 흐름으로 발전하고 있지만, 이것은 약 8.0 초 후에 발생합니다.  시뮬레이션은 정상 상태에 도달 한 것을 보장하기 위해, 10.0 초의 시간까지 실행되었습니다.  그림 2는 중간 시간을 두 보여줍니다.  도 2b는 0.2 초, 그림 2c는 0.5 초 시점에서 그림 2d는 마지막 10.0 초 시점을 보여줍니다.

 

Figures 2a-2d. Simulation times of 0.0, 0.2, 0.5 and 10.0s.

It should be noted that what starts as a single, connected free surface changes to two independent free surfaces (upper and lower nappe surfaces) after the fluid strikes the bottom. No difficulties are experienced with this separation of the flow into portions flowing to the left and right of the impact point on the bottom boundary. This will be discussed at further length in the next section.

처음에는 단일 결합하고 있는 자유 표면이었던 것이 액체가 바닥에 충돌한 후 2 개의 독립적인 자유 표면 (상하 스냅 표면)으로 변화하는 것에 주목하십시오.  아래 경계의 충격점의 좌우로 흐름이 분리되도 문제는 없습니다.  이에 대해서는 다음 섹션에서 자세히 설명합니다.

Comparisons between experiment and simulation are given in the following table and are in excellent agreement.

실험과 시뮬레이션의 비교는 다음 표와 같으며 매우 잘 일치하고 있습니다.

Comparison Table Experimental Results Simulation Results
Outflow Height/Step Height 0.094 0.094
Pool Height/Step Height 0.41 0.41
Angle of Nappe at Bottom 57° 59°
Energy Loss/Initial Energy 0.29 0.296

In view of these results it might be expected that a considerable amount of computational time would be required to achieve such accuracy. In fact, the total cpu time on a desktop Pentium 4, 3.20GHz computer was only 88s. Such a short computational time requires explanation and that is the purpose of the following sections.

이러한 결과를 고려하면이 같은 정밀도를 달성하려면 상당한 계산시간이 필요할 것으로 생각될지도 모릅니다.  그러나 실제로는 Pentium 4, 3.20GHz의 데스크톱 컴퓨터의 총 CPU 시간은 단 88 초였습니다. 계산시간이 너무 짧은 것은 설명이 필요하며, 이것은 다음 섹션의 목적입니다.

 

Figures 2a-2d. Simulation times of 0.0, 0.2, 0.5 and 10.0s.

Why the VOF Technique Works Well / VOF 법이 적합한 이유

There are a few general concepts about computational methods and the VOF technique in particular that can be used to gain an understanding of how and why VOF works so efficiently.

VOF 법의 구조와 그것이 매우 효율적인 방법인 이유를 이해하기 위해 다양한 계산법 중에서도 특히 VOF 법에 대한 몇 가지 기본 개념을 나타냅니다.

Basic Theory

All numerical methods must use some simplification to reduce a fluid flow problem to a finite set of numerical values that can then be manipulated using elementary arithmetical operations. A typical procedure for approximating a continuous fluid by a discrete set of numerical values is to subdivide the space occupied by the fluid into a grid consisting of a set of small, often rectangular “bricks.” Within each element an averaging process is applied to obtain representative element values for the fluid’s pressure, density, velocity and temperature.

모든 수치해석 방법에서 흐름의 문제를 단순하게 산술 계산하도록 유한의 수치 세트로 단순화해야합니다.  연속 유체를 이산화된 수치 세트에 근사하기 위해서 일반적으로 사용되는 것이 유체가 차지하는 공간을 격자로 분할하는 방법입니다.  이 격자는 일반적으로 다수의 작은 직사각형의 블록(요소)로 구성됩니다.  이러한 각 요소에 대해 평균화 처리를 실시함으로써 그 요소의 유체의 압력, 밀도, 속도 및 온도의 대표 값을 얻을 수 있습니다.

Simple equations can be devised to approximate how each element’s values interact with neighboring elements over time. For instance, the density of an element can only change when there is a net flow of mass exchanged between an element and its neighbors (i.e., conservation of mass). The material velocity that carries mass between elements is computed from the conservation of momentum principal, usually expressed in the form of the Navier-Stokes equations, which uses the pressures and viscous stresses acting between neighboring elements to approximate the changing fluid velocities in the elements.

간단한 수식을 사용해, 어느 시간에 걸친 각 요소 값과 인접한 요소의 상호 작용을 근사할 수 있습니다.  예를 들어, 요소의 밀도는 그 요소와 인접 요소 사이에서 (질량 보존에 의한) 질량 유량이 교환된 경우에만 변경됩니다.  요소 사이에서 질량이 교환되는 물질의 속도는 운동량 보존 법칙에 의해 계산되며 일반적으로 나비에-스토크스 방정식으로 표현됩니다.  나비에-스토크스 방정식은 인접한 요소 사이에 작용하는 압력과 점성 응력을 이용하여 요소에서 변화하는 유체 속도를 근사합니다.

This idea of an element interacting with its neighbors is essentially what is meant by a partial differential equation; that is, evaluating the effects of small changes caused by the variation in quantities nearby. Partial differential equations are typically derived in engineering text books as the limit of approximations made with small control volumes whose sizes are then reduced to infinitesimal values. In a numerical simulation the same thing is done except that the control volume sizes cannot be taken to the limit because that would require too many elements to keep track of. In practice, the goal is to use enough elements to resolve the phenomena of interest, and no more, so that computing times are kept to a minimum.

이러한 요소와 인접 요소 사이의 상호 작용에 따른 아이디어는 편미분 방정식 근방의 양의 변화에 의해 생기는 작은 변화의 효과를 평가하는 것과 본질적으로 동일합니다.  공학계의 교과서에서 파생된 작은 컨트롤 볼륨을 사용하여 그 크기를 무한대까지 작게 한 근사치의 극한으로 편미분 방정식이 유도됩니다.  수치 시뮬레이션에서도 같은 방식을 취하고 있지만, 요소 수가 너무 많으면 추적이 어렵게  되어 컨트롤 볼륨의 크기를 최대한 작게 만들 수 없습니다.  실제 시뮬레이션 현상을 해결하는데 충분하고 계산 시간을 최소한으로 억제 할 수 있는 요소수를 설정하는 것이 목표입니다.

Arithmetical operations associated with an element generally involve only simple addition, subtraction, multiplication and division. For instance, the change of mass in an element involves the addition and subtraction of mass entering and leaving through the faces of the element over a fixed interval of time. A simulation requires that these operations be done for thousands or even millions of elements as well as repeated for many small time intervals. Computers are ideal for performing these types of repetitive operations very rapidly.

요소에 사용되는 연산은 기본적으로 더하기, 빼기, 곱하기 및 나누기만 포함된 간단한 것입니다.  예를 들어, 요소의 질량의 변화는 일정한 시간 간격에 걸쳐 요소의 측면에서 유입 및 유출된 질량의 가산 및 감산에서 구할 수 있습니다. 그러나 시뮬레이션에서는 이러한 연산을 수천, 때로는 수백만 요소에 대해 매우 짧은 시간 간격에 대해 반복 계산해야합니다.  따라서 이러한 반복 계산의 고속 처리는 컴퓨터가 적합합니다.

Simulating fluid motion with free surfaces introduces the complexity of having to deal with solution regions whose shapes are changing. A convenient way to deal with this is to use the Volume of Fluid (VOF) technique described next.

자유 표면을 수반하는 유체 운동의 시뮬레이션에서는 형상이 변화하는 계산 영역을 다루어야합니다.  이 복잡성에 대응할 수있는 분석 방법이 아래에서 설명하는 VOF 법입니다.

The VOF Concept

The VOF technique is based on the idea of recording in each grid cell the fractional portion of the cell volume that is occupied by liquid. Typically the fractional volume is represented by the quantity F. Because it is a fractional volume, F must have a value between 0.0 and 1.0.

VOF 법은 각 격자 셀의 체적 중 액체가 차지하는 비율, 즉 체적 점유율을 기록한다는 생각에 근거합니다.  일반적으로 부피 점유율은  F로 표시됩니다.  F는 부피 점유율이기 때문에 값이 취할 수있는 범위는 0.0 ~ 1.0입니다.

In interior regions of liquid the value of F would be 1.0, while outside of the liquid, in regions of gas (air for example), the value of F is zero. The location of a free surface is where F changes from 0.0 to 1.0. Thus, any element having an F value lying between 0.0 and 1.0 must contain a surface.

액체 내부의 영역에서는 F 값은 1.0이 액체의 외부, 즉 (공기 등) 기체 영역에서 F 값은 0입니다.  F 값이 0.0과 1.0 사이에서 변화하는 장소가 자유 표면이 존재하는 위치입니다.  즉 0.0보다 크고 1.0보다 작은 F 값을 가지는 요소는 반드시 표면을 가지고 있습니다.

It is important to emphasize that the VOF technique does not directly define a free surface, but rather defines the location of bulk fluid. It is for this reason that fluid regions can coalesce or break up without causing computational difficulties. Free surfaces are simply a consequence of where the fluid volume fraction passes from 1.0 to 0.0. This is a very desirable feature that makes the VOF technique applicable to just about any kind of free surface problem.

여기서 유의해야 할 것은 VOF 법에서 자유 표면을 직접적으로 정의하는 것이 아니라 벌크 유체의 위치를 정의한다는 점입니다.  이렇게하면 계산상의 어려움을 초래하지 않고 유체 영역을 결합 또는 분할 할 수 있습니다.  자유 표면은 단순히 유체의 체적 점유율이 1.0과 0.0 사이에서 변화하는 장소로 정의됩니다.  이것은 자유 표면을 수반하는 거의 모든 문제에 적용 할 수 VOF 법의 뛰어난 특징이기도합니다.

Another important feature of the VOF technique is that it records the location of fluid by assigning a single numerical value (F) to each grid element. This is completely consistent with the recording of all other fluid properties in an element such as pressure and velocity components by their average values.

또한 격자의 각 요소에 단일 수치 (F)를 할당하여 유체의 위치를 기록 할 수 있는 점도 VOF 법의 중요한 특징입니다.  이것은 평균값을 기준으로 압력과 속도 등 다른 모든 유체 물성의 기록과 완전히 일치합니다.

Some Details of the VOF Technique

 

Figure 3. Surface in 1D column of elements.

For accuracy purposes it is desirable to have a way to locate a free surface within an element. Considering the F values in neighboring elements can easily do this. For example, imagine a one-dimensional column of elements in which a portion of the column is filled with liquid, Fig. 3. The liquid surface is in an element in the central region of the column, which will be referred to as the surface element. Because we assume the values of F must be either 0.0 or 1.0, except in the surface element, we can use this to locate the exact position of the surface. First a test is made to see if the surface is a top or bottom surface. If the element above the surface element is empty of liquid, the surface must be a top surface. It the element above is full of liquid then, of course, the surface is a bottom surface. For a top surface we compute its exact location as lying above the bottom edge of the surface element by a distance equal to F times the vertical size of the element. A bottom surface is similarly located a distance equal to F times the vertical size of the element below the top edge of the surface element. Locating the surface within an element in this way follows from the definition of F as a fractional volume of liquid in the element.

정확도를 위해 요소 내에 자유 표면을 배치하는 방법을 갖는 것이 바람직합니다. 인접 요소의 F 값을 고려하면 이를 쉽게 할 수 있습니다.  예를 들어, 열의 일부에 액체가 충전되어있는 1 차원 요소를 상상하십시오 (그림 3).  액체의 표면은 열 중앙 영역의 요소에 있습니다.  이것을 표면 요소라고합니다.  여기에서는 표면 요소를 제외하고 F 값은 0.0 또는 1.0이어야한다고 가정하고 있기 때문에 이를 사용하여 표면의 정확한 위치를 파악할 수 있습니다.  우선, 표면이 표면 또는 바닥을 확인하는 테스트를 실시합니다.  표면요소에 대해 액체가 없을 경우에는 표면으로 간주합니다.  위의 요소에 액체가 들어있는 경우는 물론, 그 표면은 바닥입니다.  윗면에 관해서는 정확한 위치는 표면 요소의 아래쪽에서 위쪽으로 요소의 세로 크기를 F 배 한 거리에있는로 계산합니다.  바닥도 마찬가지로 표면 요소의 상단에서 아래로, 요소의 세로 크기를 F 배 한 거리에 있습니다.  이 방법에 의한 요소의 표면 위치의 특정은 요소 내의 액체의 부피 점유율로 F를 정의한 후에 합니다.

Calculating surface locations in one-dimensional columns is simple, accurate and requires very little arithmetic. In two and three dimensional situations, however, computing a location is a little more complicated because there is a continuous range of surface orientations possible within a surface cell. Nevertheless, dealing with this is not difficult. A two-dimensional example, Fig. 4, will illustrate a simple way to not only compute the location of the surface, but also to get a good idea of its slope and curvature.

1 차원 열의 표면 위치 계산은 간단하고 정확하며 계산이 거의 필요없습니다. 그러나 2 차원 및 3 차원의 경우 하나의 표면 셀에 연속적인 표면 방향이 존재할 가능성이 있기 때문에 위치 계산은 조금 복잡해집니다.  그럼에도 불구하고 이를 취급하는 것은 어렵지 않습니다.  그림 4의 이차원의 예는 표면의 위치를 계산할 뿐만 아니라 경사와 곡률도 이해할 수 있는 쉬운 방법을 보여줍니다.

 

Figure 4. Surface in 2D grid of elements.

As in the one-dimensional case, it is first necessary to find the approximate orientation of the surface by testing the neighboring elements. In Fig. 4 the outward normal would be closest to the upward direction because the difference in neighboring values in that direction is larger than in any other direction. Next, local heights of the surface are computed in element columns that lie in the approximate normal direction. For the two-dimensional case in Fig. 4 these heights are indicated by arrows. Finally, the height in the column containing the surface element gives the location of the surface in that element, while the other two heights can be used to compute the local surface slope and surface curvature.

1 차원의 경우처럼 먼저 인근 요소를 테스트하여 표면의 대략적인 방향을 찾아야합니다.  그림 4는 바깥 쪽의 법선이 상승 방향에 가장 가깝게 됩니다.  이것은 그 방향 밖의 값의 차이가 다른 방향보다 크기 때문입니다.  그럼 거의 수직으로 있는 요소 열에서 표면의 국소적인 높이가 계산됩니다.  그림 4의 2 차원의 경우에는 이러한 높이가 화살표로 표시되어 있습니다.  마지막으로, 표면 요소를 포함하는 컬럼의 높이에 따라 그 요소의 표면의 위치를 확인합니다.  다른 2 개의 높이를 사용하면 국소적인 표면 경사와 표면 곡률을 계산할 수 있습니다.

In three-dimensions the same procedure is used although column heights must be evaluated for nine columns around the surface element. Although a little more computation is needed, it consists primarily of simple summations in the columns and then sums and differences of column heights for evaluating the slope and curvature. Based on this discussion, the reader should now see how the fractional fluid volume can be used to quickly and easily evaluate all the information needed to define free surfaces.

3 차원에서도 동일한 절차를 사용하지만, 표면 요소의 주위에 있는 9개의 열에 대해 열 높이를 요구해야합니다.  필요한 계산은 조금 더 걸리지만, 주된 내용은 열의 간단한 덧셈과 경사와 곡률을 추구하는 열의 높이의 합과 차이가 있습니다.  이 토론을 토대로, 이제 자유 표면을 정의하는 데 필요한 모든 정보를 빠르고 쉽게 평가하기 위해 부분 유체 체적을 사용하는 방법을 알아야합니다.

There are two remaining issues to deal with. One issue is that a simulation like that in Figs. 1 and 2 is only solving for the fluid dynamics in regions where there is fluid. This is another reason for the computational efficiency of the VOF method. The region occupied by fluid in the flow over a step problem is much less than half of the open region in the computational grid. If it were necessary to also solve for the flow of gas surrounding the liquid, then considerably more computational time would be required. In order to perform solutions only in the liquid, however, it is necessary to specify boundary conditions at free surfaces. These conditions are the vanishing of the tangential stress and application of a normal pressure at the surface that equals the pressure of the gas.

다루어야 할 문제가 앞으로 2 개 남아 있습니다.  하나는 그림 1 및 2와 같은 시뮬레이션은 유체가 존재하는 영역에는 유체 역학만으로 해결합니다.  이것은 VOF 법의 계산 효율이 높은 또 하나의 이유입니다.  계단 형상의 낙하류의 문제로 유체가 차지하는 영역은 계산 격자의 오픈 공간의 절반 이하입니다.  액체를 둘러싼 기체의 흐름을 계산할 필요가 있다면 필요한 계산 시간이 크게 늘어납니다.  그러나 액체만으로 계산을 할 경우 자유 표면 경계 조건을 지정해야합니다.  이 조건은 접선 응력의 소실과 기체의 압력에 동일한 표준 압력을 표면에 추가하는 것입니다.

A second issue is that movement and deformation of a free surface must be computed by solving for the fraction of fluid variable, F, as it moves with the fluid. Because the variable F is discontinuous (i.e., primarily 0.0 or 1.0) some care must be taken to maintain this discontinuity as it moves through a computational grid. In the VOF method, special advection algorithms are used for this purpose.

두 번째 문제는 자유 표면이 유체와 함께 움직일 때의 움직임과 변형을 유체 점유율 변수 F를 구함으로써 계산해야 한다는 것입니다.  변수 F는 불연속 (주로 0.0 또는 1.0)이기 때문에 계산 격자를 이동할 때 이 불연속성이 유지되도록주의해야합니다.  VOF 법은이 목적으로 특수 이류(advection) 알고리즘이 사용되고 있습니다.

Illustration of Free-Surface Tracking by VOF Technique

Figure 6a is an illustration of how well this works; the fluid volume fraction is colored uniformly in each grid element to represent its value in that element. The free surface is sharply defined nearly everywhere. Only in the lowest and narrowest part of the nappe is there any noticeable loss of a sharp fluid fraction distribution, Fig. 5b. This was expected because in this region the nappe is less than three elements in thickness and this allows some of the smaller F values associated with partially filled surface elements to mix in with the central element, which should have a value of 1.0. For computational purposes this doesn’t really matter because the simulation method treats elements interior to the liquid as though they are pure liquid elements.

그림 6a는 이것의 적합 여부를 보여줍니다.  유체의 체적 점유율은 격자 요소마다 균일하게 분류되고 그 요소의 값을 나타냅니다.  자유 표면은 거의 모든 곳에서 선명하게 정의되어 있습니다.  스냅의 가장 낮은 가장 좁은 부분에만 선명한 유체 분포의 손실을 확인할 수 있습니다 (그림 5b).  이것은 예상대로입니다.  이 영역에서는 스냅의 두께는 3 가지 요소보다 작고, 따라서 부분 충전된 표면 요소에 연결된 작은 F 값이 어떤 중심 요소 (값 1.0)에 혼입하기 때문입니다.  계산 목적으로 이 것은 별로 문제가 되지 않습니다.  이 시뮬레이션 방법은 액체 내부의 요소는 순수한 액체 성분과 같은 방식으로 처리되기 때문입니다.

It should also be pointed out that in the region shown in Fig. 5b turbulence and air entrainment are observed in actual experiments. Thus, the appearance of fluid fraction values a little less than unity is somewhat realistic. This is not entirely accidental because the intersection of jet of liquid with a pool, which is responsible for turbulence and air entrainment, is also responsible for the “entrainment” of fluid fraction values into the interior of the liquid.

그림 5b에 나타내는 영역에서는 실제 실험에서 난류 및 공기 혼입이 관찰된 것도 지적해 두지 않으면 안됩니다.  따라서 유체 점유율의 값을 1보다 조금 작게 보이는 것이 다소 현실적입니다.  이것은 전혀 의외라는 것은 없습니다.  난류와 공기 유입을 담당하는 풀의 액체 제트의 교점은 난류와 공기 유입의 원인이 되지만, 유체 점유율 값(fluid fraction values )은 액체 내부에 “유입” 원인이 되기 때문에 실수가 아닙니다.

 

Figure 5a (left): Fluid fraction values in elements, showing sharpness of surface definition. Figure 5b (right): Close up of fluid fraction values where the overflow hits bottom.

Summary

At first it may seem somewhat magical that a computer can simply perform repeated arithmetic operations on arrays of numbers and produce a realistic simulation of a complex, time-dependent, fluid dynamics problem. It was the purpose of this discussion to explain an approach that does this with relatively elementary procedures.

Using a simple, but non-trivial, hydraulic flow example it has been demonstrated that computational simulations can produce detailed results in excellent agreement with physical measurements. It has been further demonstrated that the simulation, which was based on the Volume of Fluid (VOF) technique, uses simple approximation methods that are both accurate and efficient.

Clearly, real world examples involving complex hydraulic structures such as those used in hydroelectric power stations, must consume more than the few seconds of computational time used in our example to obtain useful results. Nevertheless, those results can be generated in reasonable times (both man and computer) and contain a richness of detail rarely possible in physical experiments. For examples visit our water and environmental application pages. In addition, the ability to easily test the influence of just about any kind of change in geometry, flow condition or fluid property is another powerful reason to employ simulations. Current software and hardware for hydraulic flow simulations offer a significant cost advantage over traditional physical modeling.

처음에는 컴퓨터가 단순히 반복적인 산술 연산을 수행하고, 복잡하고 시간에 의존적인 유체 역학 문제에 대해, 현실적인 시뮬레이션을 할 수 있다는 것이 다소 마술처럼 보일 수 있습니다. 이 논의의 목적은 비교적 기본적인 절차로 이를 수행하는 접근법을 설명하는 것입니다.

간단하지만 사소한 유압 흐름 예제를 사용하여 계산된 시뮬레이션이 물리적인 측정 결과와 매우 일치하는 세부 결과를 생성 할 수 있음이 입증되었습니다. VOF (Volume of Fluid) 기술을 기반으로 한 시뮬레이션은 정확하고, 매우 효율적인 것이 추가로 입증되었습니다.

분명하게, 수력 발전소에서 사용되는 것과 같은 복잡한 유압 구조와 관련된 실제 예는 유용한 결과를 얻기 위해서는 이 예에서 사용되는 몇 초 이상의 많은 계산 시간을 소비해야합니다. 그럼에도 불구하고 이러한 결과는 합리적인 시간 (사람과 컴퓨터 모두)에서 수행 될 수 있으며, 실제 실험에서는 거의 불가능한 세부 사항들을 포함합니다. 또한, 지오메트리, 유동 조건 또는 유체 특성의 거의 모든 종류의 변화의 영향을 쉽게 테스트 할 수있는 능력은 시뮬레이션을 사용하는 또 다른 강력한 이유입니다. 기술의 발전에 따라 hydraulic flow 시뮬레이션을 위한 현재 소프트웨어 및 하드웨어는 기존의 물리적 모델링에 비해 상당한 비용 이점을 제공합니다.

Postscript

The first detailed description of the VOF method was in 1981 by C.W. Hirt and B.D. Nichols, J. Comp. Phys., 39, p.201. All simulations appearing in this article were performed with the commercial software package FLOW-3D developed by Flow Science, Inc. This program uses an enhanced variant of the VOF concept called TruVOF.

Contact Line Insights

Contact Line Insights

FLOW-3D의 수치 모델링 기능은 코팅 성능 향상에 관심이 있는 엔지니어에게 이상적입니다. 계산 시뮬레이션은 코팅 흐름에 영향을 미치는 다양한 물리적 공정의 상대적 중요성과 효과를 연구하는 훌륭한 방법입니다. 물리적 테스트에서 프로세스를 분리하거나 해당 프로세스의 규모를 임의로 조정하는 것이 항상 가능한 것은 아닙니다. 이 섹션에서는 리 블릿 형성(rivulet formation), 핑거링(fingering), 증발, 거친 표면 위의 접촉선 이동 및 유체 흡수와 관련하여 FLOW-3D의 정적 및 동적 접촉각 처리에 대해 설명합니다.

Static and Dynamic Contact Angles

FLOW-3D는 입력으로 설정된 정적 접촉각의 함수로 동적 접촉각과 자유 표면 인터페이스에서 작용하는 관련 힘을 정확하게 계산하여 유체의 소수성을 캡처 할 수 있습니다. 아래 시뮬레이션은 물방울이 경사면 아래로 이동함에 따라 정적 접촉각이 동적 접촉각에 미치는 영향을 보여줍니다.

L.M. Hocking 박사는 그의 저서 [“A moving fluid interface on a rough surface,” J. Fluid Mech., 76, 801, (1976)]에서 표면에 미세한 요철이 흐름 구조를 유도하기 때문에 Contact line이 고체 표면을 통해 이동할 수 있으며 이는 거시적 관점에서 “velocity slip”로 해석 될 수 있다고 했습니다.

이 가설에 대한 전산 해석은 FLOW-3D를 이용하여 쉽게 수행됩니다. 선택된 테스트는 가로, 규칙적으로 이격 된 직사각형 슬롯 패턴 이차원 고체 표면 구성됩니다. 슬롯은 2mm 깊이 10mm 폭, 그리고 그들 사이 폭 10mm 고체 조각을 갖고 이격 됩니다. 이 크기는 전형적으로 상대적으로 부드러운 표면에 긁힌 모양입니다. 액체와 고체 사이의 정적인 접촉각이 60 °가 되도록 선택 하였습니다. 작동 유체는 물로 선정되었고 시험은 채널을 통해 속도30cm / s의 평균 물높이 15mm의 채널의 바닥에 있는 거친 표면을 두고 구동 이루어져 있습니다. 채널의 상단은 free-slip boundary로 정해집니다.

Hocking의 주장대로 micro-scale 교란이 Large scale 관점에서 보았을 때 계산된 속도장으로 보면 velocity slip의 한 종류로서 해석 될 수 있습니다. 아래는 계산된 수평 속도 분포를 나타내고 있습니다. 이것은 표면 바로 위에 제어 볼륨 층의 계산 된 수평 속도 분포를 제공하는 X-Y 플롯에 그래픽으로 보여 주고 있습니다. 격자 미세화에 의해 표면의 고체 부분의 윗쪽 속도가 영이 되는 경향이 있지만, 슬롯들 위에 있는 속도는 영이 안되게 유지됩니다. 많은 요철 위의 이러한 속도의 평균은 효과적인 슬립으로 해석 될 수 있는 non-zero 수평 이송 속도를 일으킵니다.

Evaporative Effects

분산된 고체 물질을 포함하는 액체 방울이 고체 표면에서 건조되면 고체 물질이 침전물로 남습니다. 이 퇴적물의 패턴은 많은 인쇄, 청소 및 코팅 공정에 중요한 의미를 갖습니다. 한 가지 유형의 침전물의 전형적인 예는 왼쪽 이미지와 같이 유출 된 커피 조각의 둘레를 따라 링 얼룩이 형성되는 “커피 링”문제입니다. 이러한 유형의 링 침전물은 액체의 증발로 인한 표면 장력 구동 흐름의 결과로 발생하며, 특히 방울 주변에서 발생합니다 [1].

Drying

건조는 코팅 공정의 중요한 부분입니다. 잘 도포된 코팅은 건조 결함으로 인해 완전히 손상될 수 있습니다. 건조 중에 온도 및 용질 구배는 밀도 및 표면 장력 구배로 인해 코팅 내 흐름을 유도 할 수 있으며, 이로 인해 잠재적으로 코팅 품질이 손상 될 수 있습니다. FLOW-3D의 증발 잔류물 모델을 통해 사용자는 건조로 인한 흐름을 시뮬레이션하고 값 비싼 물리적 실험에 소요되는 시간을 줄일 수 있습니다.

FLOW-3D’s evaporation residue model simulates a 3D view of residue formed from toluene after drying (magnified 30x)

Modeling Ring Formation

FLOW-3D는 증발이 가장 큰 접촉 라인에서의 증착으로 인해 에지 고정이 발생 함을 보여줍니다.

링 형성 모델링
증발에 의해 접촉 라인에서 생성 된 흐름 시뮬레이션
증발은 증발로 인한 열 손실로 인해 액체를 냉각시킵니다 (색상은 온도를 나타냄). 동시에 고체 표면은 전도에 의해 액체를 가열합니다. 증발은 접촉 라인 근처에서 가장 크므로 액체가 접촉 라인을 향해 흐르게하여 정적 상태를 다시 설정합니다. 최종 결과는 액체가 완전히 증발하는 액체 가장자리에 부유 고체가 증착됩니다.

FLOW-3D의 접촉 선 고정 모델에 대해 자세히 알아보십시오.

Simulation of flow generated at a contact line by evaporation

Absorption

Absorption

paper substrate에 대한 물방울의 충격 및 흡수는 전산 유체 역학 소프트웨어로 연구 할 수 있습니다. 여기에서 FLOW-3D는 표면 장력, 접촉각 및 점도와 관련하여 유체 전면의 전파를 살펴보면서 섬유층에 액적 충돌을 시뮬레이션하는 데 사용됩니다.

아래의 FLOW-3D 시뮬레이션에서 물방울 직경이 40 마이크론이며 초기 하향 속도는 300cm / s입니다. 기판은 종이이며 두께는 20 미크론이며 주어진 다공성은 30 %입니다.

Slot Coating

Slot Die Coating

FLOW-3D는 슬롯 다이 코팅의 산업 연구 및 설계에 사용됩니다. 슬롯 다이 코팅에서 유체는 슬롯에서 슬롯에 매우 가까운 곳에 위치한 빠르게 움직이는 기판 위로 강제 배출됩니다. 때로는 여러 슬롯을 사용하여 여러 재료의 레이어드 코팅을 만들기도 합니다. 많은 산업에서 슬롯 다이 코팅 기계는 상대적으로 단순하기 때문에 슬롯 다이코팅이 사용됩니다. 슬롯 다이 코팅의 또 다른 이점은 나노미터 단위로 측정한 코팅 두께에서도 높은 코팅 균일성 비율입니다.

아래 예에서, 한 슬롯은 120미크론 두께의 뉴턴이 아닌 재료를 오른쪽에서 왼쪽으로 움직이는 기질에 적용하고 있습니다.

FLOW-3D에서 유체-솔리드 접촉 선과 접촉각은 흐름의 전체 역학의 일부로 자동으로 계산됩니다. 이것은 슬롯과 웹(Web) 사이의 영역에서 세 개의 개별 접촉 선이 발생하는이 예에서 잘 설명됩니다.

Case Study

Roche Diagnostics GmbH가 2014년 FLOW-3D 유럽 사용자 컨퍼런스에서 발표한 산업 사례 연구의 이 이미지는 진공 보조 장치가 없는 슬롯 다이 코팅의 3D 모델을 보여줍니다. 왼쪽 상단에 그려진 실험과 FLOW-3D로 수행된 시뮬레이션 사이에는 훌륭하게 일치하고 있습니다.

Simulation of a slot die coating without vacuum assist, courtesy Roche Diagnostics GmbH

Slot Die Design

아래에 표시된 3M의 FLOW-3D 시뮬레이션은 슬롯 다이의 내부 캐비티 내부의 유체 체류 시간을 보여줍니다. 슬롯 다이 설계는 코팅 프로세스의 성공에 매우 중요하며 코팅 액의 유변학(rheology)에 따라 다릅니다.

Simulation courtesy of 3M

Two-Layer Slot Coating

왼쪽의 시계열 이미지에서 보면 웹(web)이 이동되고, 슬롯 코팅 다이는 두 개의 슬롯에서 서로 다른 물성의 두 유체가 나오고 있습니다. two-layer slot die를 사용하는 이점은 코팅기의 die station의 수를 감소시킬 수 있는 것입니다. 그러나, 단일 층의 경우에는 존재하지 않는 이층 슬롯 코팅에 존재하는 많은 문제점들이 나타납니다. 두 개의 유체 층 사이의 계면(interface), 보통은 혼합될 수 있는 물성을 가진 Interlayer 는 die surfae에 안정적으로 잘 고정되어야 합니다. 그리고 Interlayer 부근이 순환은 두 유체의 혼합을 막기 위해 최소화 되어야만 합니다. 일반적으로 이것들은 각각의 유체의 밀도, 점도 및 유량이 배출율을 조작함으로써 제어될 수 있습니다.

Start-Up of Slot Coating

슬롯 코터를 이용하여 연속 코팅 공정을 시작하면 시작부터 폐기해야 불완전한 재료의 양을 감소시키기 위해, 가능한 한 빨리 균일한 wettig을 수립하는 것이 바람직합니다. Wet start 기술은 잉크가 웹에 가까워지기 전에 슬롯에서 잘 빠져 나오는 것 보장하는 중요한 기술중의 하나입니다. 이 예에서, web은 액체의 상류 및 하류 모두 압착 슬롯을 향해 이동된다.

슬롯 장치의 경사진 앞쪽면에 유체를 위로 밀어올리는 약간 늦은 적당한 접근 속도는 슬롯장치의 더 나은 성능을 제공합니다.

 

 

Roll Coating

Roll Coating

롤 코팅 공정은 직물, 접착제 및 실란트를 다루는 산업을 포함한 다양한 산업에서 일반적으로 많이 사용하는 공정입니다. FLOW-3D는 공정 엔지니어와 과학자에게 다양한 재료 특성과 코팅 방식을 평가하여 결함의 원인을 식별하고 롤 코팅 공정 매개 변수를 최적화 할 수있는 기능을 제공합니다.

1-D Gradient generator with de-coupled convection and diffusion

이러한 예에서 속도 유선은 롤 코팅 공정에서 흔히 볼 수있는 전방 (상단), 후방 (중간) 및 고갈 (하단) 작동 방식에 대해 플롯됩니다. FLOW-3D는 연구자들에게 롤 속도 및 재료 특성과 같은 요소와 동적 접촉 라인의 안정성에 미치는 영향뿐만 아니라 공기 혼입, 리브 및 비 균일 에지 프로파일과 같은 결함에 대한 기여도를 분석 할 수있는 기능을 제공합니다.

인쇄 공정 중 산업에서는 종종 인쇄면에 잉크를 전달하고 적용하는 롤 코팅(roll coating) 이라고 불리는 기술을 사용합니다. 이 공정에서 통상적으로 잉크 유액은 두 개의 회전하는 실린더 사이의 좁은 갭(gap)으로 흘러 들어갑니다.

FLOW-3D를 사용하는 이 1D microfluidic palette 시뮬레이션에서 주 중앙 마이크로 채널에서 대류 Cells의 clean decoupling을 플롯된 유선을 통해 확인할 수 있습니다. 이 흐름은 모두 대류 장치에만 제한되며 단일 장치조차도 마이크로 채널로 누출되지 않아 대류 및 확산의 탁월한 분리를 나타냅니다. 소스 농도의 변화는 플롯에서 볼 수 있으며 애니메이션이 끝날 때까지 시각적으로 일정해집니다.

Ribbing Instabilities

아래에 표시된 전 방향 롤 코팅 시뮬레이션에서 FLOW-3D는 Lee, et al [1]에 설명 된대로 증가 된 롤 속도와 관련된 리브 불안정성의 시작을 정확하게 포착합니다. 이 모델은 단일 유체 VOF, 표면 장력 및 점도를 구현하여 생산에서 볼 수있는 이러한 불안정성의 복잡한 특성을 포착합니다.

Cascade Defects

아래 시뮬레이션에서 FLOW-3D는 포워드 롤 코팅 공정에서 cascade defect을 포착합니다. 상단 웹 롤러의 증가된 롤 속도로 인해, 동적 접촉 라인이 불안정해져 공기가 코팅액에 유입 될 수 있습니다.

Reference

[1] Lee, J. H., Han, S. K., Lee, J. S., Jung, H. W., & Hyun, J. C. (2010). Ribbing instability in rigid and deformable forward roll coating flows. Korea Australia Rheology Journal, 22(1), 75-80.

코팅분야

Coating

FLOW-3D는 산업계 및 학계의 코팅 연구원들이 기계 설계 연구, Display 공정개발 및 최적화를 위해 사용했습니다. 미크론 규모의 코팅 물리학을 이해하는 것은 코팅 유체 유변학의 복잡한 특성과 기판 및 Die와의 상호 작용으로 인해 어려울 수 있습니다.

FLOW-3D 는 비용이 많이 드는 실제 실험에 의존하지 않고, 코팅 프로세스를 분석할 수 있는 편리한 방법을 제공합니다. FLOW-3D는 표면 장력, Wall 접착, 용액 운반, 밀도 기반 흐름 및 상 변화의 영향을 이해하기위한 고밀도 모델링을 제공합니다.

Forward roll coating 공정에 대한 FLOW-3D의 시뮬레이션은 high capillary number수로 인한ribbing 결함을 포착합니다. 이 모델은 backing rollers가 400 micron nip을 통해 유체를 끌어 당길 때 표면 장력과 점도의 효과를 통합합니다. 시뮬레이션은 Lee, et al [1]의 연구를 기반으로합니다.

ribbing 시작에 대한 정확한 예측을 통해 엔지니어는 결함을 방지하기 위한 공정 매개 변수를 식별하고 수정할 수 있습니다.

Reference

[1] Lee, J. H., Han, S. K., Lee, J. S., Jung, H. W., & Hyun, J. C. (2010). Ribbing instability in rigid and deformable forward roll coating flows. Korea Australia Rheology Journal, 22(1), 75-80.

Bibliography

Models

Conference Proceedings