Simulation results from FLOW-3D highlighting the droplet formation and the input pressure pulse

연속 잉크젯 인쇄

Continuous Inkjets

연속 잉크젯 인쇄는 약 150 년 동안 축적 된 기술입니다. 간단히 말해, 프린트 헤드가 작동하면 연속적인 유체 흐름이있는 액적 생성 방법입니다. 이 개념은 1867 년 Lord Kelvin에 의해 처음 특허를 받았지만 80 년 이상 지난 1951 년 Siemens가 최초의 상용 장치를 선보였습니다. 처음에 이 기술은 만료일, 배치 코드, 이름 및 제품 로고와 같은 가변 정보의 비접촉식 고속 인쇄에 사용되었습니다.

물방울 생성

노즐 크기 선택

액적 생성을위한 시스템 매개 변수를 계산하기 위해 Rayleigh 제트 불안정성 이론을 사용할 수 있습니다. 이 이론에 따르면 물방울 형성으로 이어지는 제트 분리에 대한 자극의 최적 파장 (λ)은 대략 다음과 같습니다.

Nozzle size selection
Nozzle size selection

작동 주파수 선택

최적의 드롭 생성 주파수는 최적의 파장에서 직접 계산할 수 있습니다. 위의 이론과 알려진 산업 매개 변수를 사용하여 FLOW-3D 에서 계산 모델을 설정하는 동안 125μm의 노즐 반경과 10kHz의 주파수가 사용되었습니다

FLOW-3D 결과 검증

FLOW-3D 는 강력하고 정확한 표면 장력 모델로 인해 연속 잉크젯 인쇄와 같은 액적 기반 공정을 시뮬레이션하는 데 적합합니다.

아래 시뮬레이션 결과에서 10kHz의 주파수에서 진동하는 입력 압력 펄스를 볼 수 있습니다. 평균 액적 크기는 약 240 μm이며 이론적으로 추정 된 액적 크기 약 250 μm와 잘 일치합니다.

Simulation results from FLOW-3D highlighting the droplet formation and the input pressure pulse
Simulation results from FLOW-3D highlighting the droplet formation and the input pressure pulse

OLED Mura Problem

이론적으로는 정확히 동일한 진폭으로 압력 펄스를 생성 할 수 있습니다. 그러나 OLED의 잉크젯 인쇄와 같은 산업 응용 분야에서 모든 노즐은 본질적으로 불완전한 제조 또는 작동 매개 변수로 인해 약간 다릅니다. 이러한 모든 결함은 액적 부피의 변동을 일으켜 OLED 패널의 각 하위 픽셀에 증착 된 유기 화합물의 부피를 변화시켜 증착 된 필름 두께의 비례적인 변화를 초래합니다. 이러한 두께 변화는 잉크젯 인쇄 OLED 디스플레이에서 패널 휘도 불균일의 가장 중요한 원인 중 하나입니다 (Madigan et al. ). 이러한 패널 휘도의 불균일성을 “무라 효과”라고합니다.

무라 문제를 해결하는 한 가지 접근 방식은 평균 법칙을 사용하는 것입니다. 이것이 의미하는 바는 서로 다른 노즐 (픽셀 내 혼합)의 방울을 무작위로 결합하여 방울 부피의 양 및 음 오류를 평균화하여 방울 부피 오류를 거의 0에 가깝게 만드는 것입니다.

FLOW-3D 에서 픽셀 내 혼합 과정을 시뮬레이션하기 위해 입력 압력 펄스 진폭에 약간의 임의성이 추가되었습니다. 최대 변동의 크기는 1.7MPa의 원래 압력 진폭에 더하여 200kPa로 설정되었습니다. 아래 애니메이션은 무작위성이있는 케이스와 무작위성이없는 초기 케이스의 비교를 보여줍니다.

압력 펄스의 무작위성 대 일정한 진폭의 경우를 비교하는 애니메이션.

예상대로 액적 생성은 액적 모양, 액적 크기, 액적 간 간격 및 비행 속도 측면에서 균일하지 않습니다. 그러나 오른쪽의 일정한 진폭 케이스는 균일 한 모양과 크기의 균일 한 간격의 물방울을 생성합니다.

연속 잉크젯 인쇄는 저장소에서 마이크로 미터 크기의 노즐 뱅크로 액체를 보내는 고압 펌프로 시작하여 진동하는 압전 결정의 진동에 의해 결정되는 주파수에서 연속적인 물방울 흐름을 생성합니다. 특히 인쇄 응용 분야의 경우, 잉크 방울은 외부 전기장의 존재로 인해 연속 흐름에서 편향됩니다. 이것은 인쇄 매체의 표면에 패턴을 생성합니다. 이 기술의 장점 중 일부는 높은 처리량, 높은 액적 속도, 프린트 헤드에서 기판까지의 거리 증가, 연속 작동으로 인한 노즐 막힘 없음입니다. 이러한 긍정적 인 특성 덕분에이 기술은 오늘날 종이에 일반 인쇄 잉크에서 다양한 재료 (생존 세포 포함)를 증착하는 것으로 발전했습니다.

Continuous inkjet animation

결론

FLOW-3D 는 연속 잉크젯 인쇄 프로세스와 관련된 물리학에 대한 이해를 촉진하는 데 사용되었습니다. 강력한 표면 장력 모델 덕분에 FLOW-3D 는 다양한 고급 액적 생성 및 증착 응용 분야에서도 유용 할 수 있습니다. 예를 들어 OLED 프린팅의 경우 FLOW-3D 를 사용하여 픽셀 내 혼합 중에 발생하는 액 적의 변화를 효과적으로 이해하여 OLED 패널의 품질을 높일 수 있습니다.

References

Madigan C. F., Hauf C. R., Barkley L. D., Harjee N., Vronsky E., Slyke S. A. V., Advancements in Inkjet Printing for OLED Mass Production. Kateeva, Inc.

CFD가 레이저 용접을 만나면 : 불꽃이 어떻게 날아갑니까?

Pareekshith Allu Senior CFD Engineer | Additive Manufacturing | Laser Welding | Business Development

When CFD meets laser welding: How sparks fly!

CFD 또는 전산 유체 역학은 수치적 방법을 사용하여 유체 흐름을 연구하는 것입니다. 유체 흐름의 기본 방정식에는 솔루션 해가 없으므로 컴퓨터를 사용하여 방정식을 반복적으로 계산하는 수치해석 방법으로 해결합니다. 일반적으로 CFD 도구는 공기 역학, 엔진 연소, 물 및 환경 흐름, 미세 유체 및 제조 공정에서 광범위한 연구 및 엔지니어링 문제에 적용될 수 있습니다. CFD가 개발에 중요한 역할을 한 기술을 매일 접할 가능성이 있습니다. FLOW-3D 소프트웨어 제품 제조업체인 Flow Science Inc.에서는 자유 표면 흐름 문제 라고하는 특수한 문제 해결에 중점을 둡니다 . 

자유 표면 흐름이란 무엇입니까? 밀도 차이가 큰 두 유체간에 인터페이스가 공유되는 분야는 자유 표면 흐름입니다. 예를 들어, 기체-액체 경계면이 제한되지 않고 시간에 따라 자유롭게 움직이고 변경할 수 있다는 점에서 강의 물과 주변 공기 사이에 자유 표면이 존재합니다. FLOW-3D 솔버의 기본 DNA 인 Volume of Fluid 또는 VoF 방법 은 자유 표면의 진화를 추적하는 강력한 계산 기술입니다. 우리는 지난 40 년 동안 이 문제에 거의 전적으로 집중했습니다.

자유 표면 흐름은 제조산업 분야에서도 널리 사용됩니다. 금속 주조에서는 용융 금속과 용융 금속이 채우는 금형 또는 다이의 공기 사이에 자유 표면이 존재합니다. L-PBF ( Laser Powder Bed fusion) 라고하는 적층 제조 공정에서 레이저를 사용하여 분말 입자를 녹이고 융합하여 공정에서 자유 표면 용융 풀을 만듭니다. 그리고 레이저 용접에서는 레이저 빔에 의해 녹아서 두 개의 금속 부품 / 부품을 함께 융합 할 때 형성되는 자유 표면 용융 풀이 있습니다. 

이 게시물에서는 레이저 용접 공정에 대한 CFD 시뮬레이션이 유용한 이유를 설명합니다.

레이저 기술은 지난 몇 년 동안 상당히 발전했으며 이제 다른 레이저 제조업체는 다양한 파장에서 펄싱 기능이 있는 고출력 레이저를 제공 할 수 있습니다. 레이저와 로봇 자동화 시스템, 컨트롤러 및 프로세스 센서의 통합은 다양한 제조 산업에서 사용을 확대하여 열 입력이 적고 열 영향 영역이 더 작은 레이저 용접 조인트를 가능하게합니다. 

레이저-재료 상호 작용은 복잡하며이를 정확하게 모델링하려면 이러한 시간적 및 공간적 규모와 관련된 물리학을 구현해야합니다. 레이저 열원은 표면에 에너지를 축적하여 기판을 녹이고 용융 금속 풀을 만듭니다. 용융 풀은 전력, 속도 및 스캔 경로와 같은 레이저 가공 매개 변수와 용융 풀의 자유 표면에 동적 증기압을 적용하는 차폐 가스의 영향을 더 많이받습니다. 또한 용접되는 기판의 재료 특성이 중요한 역할을합니다. 용융된 풀의 상 변화와 증발은 용융 풀을 더욱 압박하는 반동 압력을 유발할 수있는 반면 표면 장력은 풀 내의 유체 대류에 영향을줍니다. 키홀 링이있는 경우 레이저 광선이 키홀 내에 갇혀 추가 반사 영향을 받을 수 있습니다. 기판에 더 많은 에너지를 전달합니다. 불안정한 키홀이 붕괴되면 갇힌 공극이 진행되는 응고 경계에 의해 포착되는 다공성 형성으로 이어질 수 있습니다. 

분명히 많은 일이 진행되고 있습니다. 이것이 CFD 시뮬레이션이 강력 할 수있는 곳이며 FLOW-3D WELD를 개발할 때 레이저-재료 상호 작용을 이해하는 데 많은 노력을 기울이는 이유입니다. 자유 표면 추적 및 레이저 에너지 증착, 차폐 가스 역학, 상 변화, 반동 압력, 표면 장력, 레이저 광선 추적 및 응고와 함께 유체 및 열 흐름 방정식을 통합하는 물리 기반 모델은 레이저의 복잡한 상호 작용을 캡처하는 데 매우 정확합니다. 용접과정을 해석하는 기능은 용융 풀의 안정성에 대한 다양한 공정 매개 변수의 영향을 분리하고 엔지니어와 연구원이 용접 일정을 최적화하는 데 도움이 될 수 있습니다.

CFD 시뮬레이션은 레이저 용접 프로세스를 분석하고 개선하는데 도움이되는 프레임 워크를 제공 할 수 있습니다. 불안정한 용융 풀은 키홀 유발 다공성, 파열 및 스패 터와 같은 결함을 초래할 수 있기 때문에 용융 풀의 작동 방식을 이해하는 것은 조인트의 품질에 매우 중요합니다. 그 후, FLOW-3D WELD 모델의 출력인 응고된 용융 풀 데이터 및 열 구배와 같은 결과를 미세 구조 또는 유한 요소 분석 모델에 입력하여 각각 결정 성장 및 열 응력 진화를위한 길을 닦을 수 있습니다.

이 게시물이 CFD를 사용하여 레이저 용접 프로세스를 시뮬레이션하는 이점을 이해하는데 도움이 되기를 바랍니다.

레이저 용접 공정을 더 잘 이해하기 위해 CFD 시뮬레이션 적용을 고려해 보셨습니까? 어떤 특징 / 물리 현상이 모델링되기를 원하십니까? 질문과 의견이 있으면 언제든지 flow3d@stikorea.co.kr 또는 미국 본사의 paree.allu@flow3d.com에게 연락하십시오.

FLOW-3D 분말 소결 적층 조형 프로세스 해석

FLOW-3D 분말 소결 적층 조형 프로세스 해석

FLOW-3D DEM

FLOW-3D@ DEM을 이용하여 분말 적층 공정(파우더 베드 방식) 해석이 가능합니다. 여기에서는 재질: Ni 합금 (Inconel 718), 적층 피치 60μm 정도를 실시한 사례입니다. 지름 20um의 입자를 기준으로 지정하고, 자유낙하에 의해 베드를 형성합니다. 입자는 높이 방향으로 3개 정도로 적층되었습니다. 일정한 입경(case 1)에 미세한 입자를 섞은 것(case2)은 충전율이 높아졌습니다. 한편 굵은 입자를 지정한 케이스(case3)는 충전율이 나빠지는 결과를 확인할 수 있었습니다.

FLOW-3D DEM을 이용한 분말적층공정
FLOW-3D DEM을 이용한 분말적층공정

FLOW-3D WELD 용융지 형성 후 다시 응고되어 가는 모습 확인

FLOW-3D@ DEM에서 얻은 입자 배드에 레이저를 조사하여 용융 해석을 실시한 사례입니다. FLOW-3D@ WELD에서는 레이저에 의한 에너지 밀도 분포를 부여하여 열, 유동 해석을 실시합니다. 용융지가 형성되었다가 다시 응고되어 가는 모습을 확인할 수 있습니다.

입자 충전율이 높은 경우(case2)에서는 용융지가 비교적 직선으로 늘어나지만 충전율이 낮은 경우에 구불구불한 형태로 용융지가 형성되었습니다. 입자가 형성되는 표면 형상, 틈새가 비드 형성에 영향을 준다는 것을 알 수 있습니다.

FLOW-3D WELD 온도  Contour Map
FLOW-3D WELD 온도 Contour Map

F.SAI를 이용한 열응력 해석

FEM mesh 데이터와 FLOW-3D@ 결과 파일에서 구조 인터페이스 F.SAI를 이용하여 온도 데이터를 추출합니다.

여기에서는 case2의 결과를 이용하여 온도 데이터를 추출하여 얻을 수 있고, 온도 데이터를 하중 데이터로 하여 각종 구조해석 소프트웨어에서 열응력 해석을 실시했습니다.

오른쪽 그림에 NX Nastran, MSC Nastran, Marc의 결과를 보여 줍니다. 수축에 의한 응력의 발생과 변위의 모습을 확인할 수 있습니다.

FEM 메시  데이터와 FLOW-3D결과 파일에서 구조 인터페이스를 통한 열응력해석
FEM 메시 데이터와 FLOW-3D결과 파일에서 구조 인터페이스를 통한 열응력해석
Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

NUMERICAL ANALYSIS AND THE REAL WORLD : IT LOOKS PRETTY BUT IS IT RIGHT?

D. K. H. Ho, S. M. Donohoo, K. M. Boyes and C. C. Lock
Advanced Analysis, Worley Pty Limited
L7, 116 Miller Street, North Sydney, NSW 2060 Australia
Tel: +61 2 8923 6817 e-mail: david.ho@worley.com.au

Abstract

엔지니어링 설계에서 유한 요소, 유한 차분 및 전산 유체 역학 분석 소프트웨어와 같은 수치 도구의 일상적인 사용이 최근 몇 년 동안 증가했습니다. 소프트웨어 및 하드웨어 기술의 발전은보다 비선형적이고 복잡한 3 차원 분석이 수행되고 있음을 의미합니다.

그러나 본질적으로 “블랙 박스”인 이러한 강력한 소프트웨어는 “컴퓨팅”기술을 보유하고 있지만 광범위한 엔지니어링 경험이 필요하지 않은 분석가의 손에 “컴퓨터 보조 재해”로 이어질 수 있습니다. 품질 보증 절차의 엄격한 구현은 수치 모델이나 분석 기법이 정확한지 확인할 필요가 없을 수 있습니다.

이 백서에서는 복잡성이 증가하는 세 가지 실제 토목 공학 응용 프로그램에서 수치 분석 결과를 검증하는 방법을 설명합니다. 여기에는 유한 요소법을 이용한 수조 탱크의 구조 해석, 전산 유체 역학법을 이용한 수력 구조물 위의 홍수 조사, 유한 ​​차분법을 이용한 안벽 시공 시뮬레이션 등이 있습니다. 입력 데이터의 불확실성 수준과 각 사례에 대한 계산 결과의 신뢰성에 대해 논의합니다. 분석 과정에서 몇 가지 흥미로운 결과가 발견되었습니다.

첫 번째 사례 연구는 시공의 질이 구조물의 성능에 상당한 영향을 미친다는 것을 보여주었습니다. 그러나 설계자는 설계 단계에서 이러한 상황을 수량화하고 분석하지 못할 수도 있습니다. 필요할 경우 향후 역분석은 물론 설계 검증의 기준점이 될 수 있도록 공사 종료 시 모니터링의 중요성이 필수적입니다. 유한 요소 분석은 복잡한 문제를 분석할 수 있는 강력한 수치 도구이지만, 분석가들은 문제의 행동이 단순하고 잘 이해되는 것처럼 보일 수 있는 상황에서 예상치 못한 결과를 만날 수 있도록 준비해야 합니다.

두 번째 사례 연구에서는 중요한 배수로 구조에 전산 유체 역학 분석이 처음으로 적용 되었기 때문에 엄격한 검증 프로세스가 강조됩니다. 그것은 2D ogee 방수로 프로파일로 시작하여 문제의 방수로의 3D 모델을 분석하기 위해 진행되는 방식으로 수행되었습니다.
계산된 결과를 각 단계에서 이론 및 물리적 테스트 데이터와 비교했습니다. 유체 흐름 문제의 비선형적 특성에도 불구하고, 분석은 확신을 가지고 실제 설계 목적에 적합한 결과를 제공할 수 있었습니다.

최종 사례 연구에서는 안벽의 거동이 시공 이력과 매립 방식에 영향을 받은 것으로 나타났습니다. 벽의 움직임은 매우 가변적인 토양 속성에도 불구하고 질적으로도 단순한 비선형 토양 모델을 사용하여 정확하게 예측되었습니다. 지속적인 모니터링 기록이 없기 때문에 검증은 어려웠습니다. 계산된 결과를 검증하는 열쇠는 수치 소프트웨어 도구를 사용하지 않는 독립적인 계산을 찾는 것입니다. 대부분의 경우 이러한 솔루션을 사용할 수 있습니다. 그러나 다른 경우에는 실험실 또는 현장 관찰에만 의존할 수 있습니다.

Introduction

오늘날 수치 해석은 대부분의 엔지니어링 설계에서 필수적인 부분을 형성합니다. 따라서 결과 검증의 필요성은 분석 기술 / 방법론을 신뢰할 수 있고 설계자가 계산 된 결과에 대한 확신을 가질 수 있도록 설계 프로세스 전반에 걸쳐 매우 중요합니다.

일반적인 관행은 고전 이론, 실험 데이터, 게시 된 데이터, 유사한 구조의 성능 및 다른 사람이 수행 한 수치 계산에 대해 결과를 검증하는 것입니다. 때때로 소프트웨어 개발자가 제공 한 벤치 마크 또는 검증 예제가 이러한 목적으로 사용될 수 있지만 전체 범위의 문제를 포괄 할만큼 포괄적 인 경우는 거의 없습니다.

수치 해석을 시작하기 전에 분석가는 입력 데이터의 신뢰성, 소프트웨어 도구가 문제의 문제를 해결할 수 있는지 여부 및 결과를 검증하는 방법을 결정해야합니다. 검증 프로세스가 많은 실무자들에 의해 품질 보증 절차의 일부로 채택되었지만 비용이 많이 드는 실패가 여전히 발생했습니다 [1].

Validation

결과 검증의 필요성은 수치 분석의 사용 (남용)에서 일부 나쁜 업계 관행을 관찰함으로써 강화 될 수 있습니다. 수치 계산을 수행하기 위해 고용 된 일부 엔지니어 / 분석가는 계산 뒤에있는 기본 이론을 완전히 이해하지 못하거나 숨겨진 함정을 처리 할 수있는 실제 엔지니어링 경험이 충분하지 않을 수 있습니다.

일부 소프트웨어가 “CAD와 유사”해지고 많은 사람들이 작동하기 쉽다고 주장하기 때문에 엔지니어링 회사가 대학원 엔지니어 대신 초보를 고용하여 수치 모델링 및 분석을 수행하는 경향이 점차 증가하고 있습니다.

사용자는 복잡한 지오메트리 모델을 생성하고, 적절한 요소와 메시를 만들고, 각 하중 케이스에 대한 경계 조건 (접촉, 하중 및 고정)을 적용하고, 속성을 할당하고, 제출에 필요한 모든 플래그 / 스위치 / 버튼을 설정하는 데 상당한 노력을 기울일 것입니다.

분석이 실행됩니다. 자체 검사를위한 일부 품질 보증 절차는 전처리 단계에서 따를 수 있지만 계산이 완료되고 결과가 후 처리 될 때까지 많은 사용자는 출력이 어느 정도 정확하다고 쉽게 믿을 것입니다. 지오메트리 생성은 수치 모델링 프로세스의 일부일뿐입니다. 가장 어려운 문제 중 하나는 전체 설계 프로세스에서 불확실성을 다루는 것입니다. 재료 속성 및 로딩 순서와 같은 입력과 관련된 불확실성이 있습니다.

예를 들어 모델이 선형 또는 비선형 방식으로 동작하는지 여부와 같이 솔루션 유형의 적절성과 관련된 불확실성이 있습니다. 마지막으로 결과 해석과 관련된 불확실성이 있습니다. 수치 분석에서 결과를 검증하고 문제를 발견하는 데있어 분석가를위한 좋은 방법에 대한 간단한 지침은 없습니다. 그러나 다음 방법을 통해 점차적으로 달성 할 수 있습니다.

• 수치 적 방법 과정에 대한 좋은 이해 – 이것은 학부 및 / 또는 대학원 수준의 공식 교육을 통해 얻을 수 있으며 지속적인 전문성 개발의 일환으로 자습을 통해 더욱 향상 될 수 있습니다.
• 특정 유형의 문제에 대한 기본 이론과 해결책의 범위를 잘 이해합니다. 이 역시 위와 같은 교육을 통해 이루어질 수 있습니다.
• 실제 문제를 해결하는 데 공학적 판단을 사용하고 수치 분석을 수행 한 경험이 있습니다. 이는 숙련 된 엔지니어가 분석가를 적절하게 감독하는 환경에서 작업함으로써 얻을 수 있습니다.

품질 보증 시스템의 구현이 실행 가능한 솔루션으로 이어지는 엔지니어링 판단을 대체하는 것은 아니라는 점에 유의해야합니다. 복잡한 대규모 모델을 분석하기 전에 시뮬레이션 기술과 문제의 근본적인 동작을 완전히 이해하기 위해 간단한 테스트 모델을 사용하여 수치 “실험”을 수행해야하는 경우가 매우 많습니다.

경험에 따르면 때때로 테스트 모델 자체가 분석가가 최종 설계 솔루션에 도달 할 수있는 충분한 정보를 제공 할 수 있습니다. 해당 대형 복합 모델의 분석은 설계 기대치를 확인하는 것입니다. 다음 사례 연구는 결과 검증이 수행 된 방법과 신뢰 수준 및 불확실성이 해결된 방법을 보여줍니다.

Applications

일반적인 토목 공학 프로젝트에서 수치 분석은 구조 역학, 기하학 및 유체 역학의 세 가지 기본 분야 중 하나 또는 조합을 포함 할 수 있습니다. 문제의 성격은 토양-구조 상호 작용, 유체-구조 상호 작용 또는 토양-유체 상호 작용 중 하나로 분류 될 수 있습니다.

어떤 경우에는 세 가지 모두를 포함 할 수 있습니다. 잠재적 인 복잡성을 고려하여, 정확도를 잃지 않고 실제 목적을 위해 중요한 동작을 캡처하지 않고 문제를 단순화하기 위해 몇 가지 가정과 이상화가 이루어져야합니다. 이러한 문제를 해결할 수있는 범용 및 특수 수치 분석 소프트웨어가 있습니다. 두 가지 유형의 소프트웨어가 사례 연구에 사용되었습니다.

Case 1 – Deflection of a steel water tank

직경 약 90m의 대형 원형 강철 물 탱크는 처음 채울 때 큰 벽면이 휘어지면서 탱크의 장기적인 구조적 무결성에 대한 우려를 불러 일으켰습니다.

물의 높이는 전체 저장 용량에서 약 10m였습니다. 지붕 구조는 탱크 내부에있는 기둥으로 거의 전적으로지지되었습니다. 스트레이크(strakes)는 벽의 바닥 1/3이 더 두꺼운 고급 강판으로 구성되었습니다. 1 차 윈드 거더는 탱크 상단 주위에 용접되었고 2 차 윈드 거더는베이스 위 2/3에 위치했습니다. 하단 스트레이 크는 환형베이스 플레이트에 필렛 용접되었습니다. 내부 기둥의 기초를 제외한 전체 바닥은 용접 된 강판으로 덮여있었습니다.

이 탱크는 유능한 중간층 사암과 미사암 기반암 위에 압축된 채움물 위에 세워졌습니다. 일련의 축 대칭 유한 요소 분석 (FEA)을 수행하여 관찰된 처짐을 예측할 수 있는지 여부를 결정하고 매일 물을 채우고 비울 때 피로 파괴가 발생할 가능성으로 인해 벽 바닥의 응력 상태를 계산했습니다.

내부 기둥과 지붕 빔을 포함하는 탱크의 12 분의 1 섹터에 대한 3 차원 모델을 처음에 분석하여 벽이 얼마나 많은 지붕 자중을지지하고 축 대칭 가정의 타당성을 조사했는지 조사했습니다. 이 분석의 결과는 지붕 구조의 강성 기여도가 중요하지 않아 후속 축 대칭 모델에 포함되지 않았 음을 보여주었습니다.

그러나 지붕 자체 무게의 작은 부분이 벽에 적용됩니다. 축 대칭 모델은 모든 강철 섹션, 필렛 및 맞대기 용접 및 기초로 구성되었습니다 (그림 1). 그것들은 몇 개의 3 노드 삼각형 축 대칭 요소가있는 4 노드 비 호환 모드 사변형으로 이산화되었습니다.

용접 재료를 통해서만 하중 전달이 허용되도록 용접이 모델링되었습니다. 용접 연결부에 미세한 메시를 사용하여 응력 상태를 정확하게 포착했습니다. 롤러 지지대는 모델의 측면 및 하단 경계에 적용되었습니다. 다음과 같은 하중이 적용되었습니다 :

철골 구조물의 자중, 지붕 자중, 벽의 정수압, 수위에 따른 바닥의 균일 한 압력. 한 모델은 용접 또는베이스의 강판이 플라스틱 힌지를 형성하기 위해 항복되었다고 가정했습니다. 이 경우 벽 바닥에서 핀 연결이 모델링되었습니다.

Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base
그림2 Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base

벽 처짐은 그림 2에 나와 있습니다. 측정 범위와 계산 된 결과는 비교 목적으로 표시됩니다. 계산 된 벽 처짐을 검증하기 위해 두 벽 두께에 대한 Timoshenko 및 Woinowsky-Krieger [2]에 기반한 고전 이론도 그림에 표시되었습니다. 계산 된 편향은 이론적 계산에 의해 제한됨을 관찰 할 수 있습니다.

벽 두께의 변화로 인한 전이가 분석에서 포착되었습니다. 이것은 유한 요소 모델에 대한 확신을 제공했습니다. 윈드 거더와 구속 된베이스의 영향도 볼 수 있습니다. 윈드 거더 설치로 인해 초기 변형이 발생하여 공사가 끝날 때 벽 상단이 안쪽으로 당겨질 수 있습니다. 굽힘 동작이 발생한베이스 근처를 제외하고는 후프 동작이 벽 동작을 지배했습니다.

계산된 최대 처짐이 측정된 순서와 동일하더라도 최대 돌출이 발생한 높이는 예측되지 않았습니다. 실제로 조사 데이터는 몇 가지 가능한 시나리오를 제안했습니다.베이스에 플라스틱 힌지 형성 (그러나이 영역에서 계산 된 응력은 항복 강도를 초과하지 않았습니다). 지반 재료의 국부적 인 베어링 고장 (다시 현장에서 균열과 같은 명백한 지시 신호가 보이지 않음); 또는 탱크 건설이 끝날 때 내장 된 기하학적 결함이있었습니다. 사전 변형 된 탱크에서 역 분석을 수행하여 측정 된 처짐이 정수압 하에서 “회복”되었습니다. 그러나 계산된 응력은 수율을 훨씬 초과했습니다. 불행히도 탱크는 완성 후 첫 번째 충전 전에 즉시 조사되지 않았습니다.

Figure 2 Wall deflection of water tank
Figure 2 Wall deflection of water tank

탱크의 원래 디자인과 건설이 2000 년대 초에 수행되었다는 점은 흥미 롭습니다. 설계 계산에 관련 표준 [3]을 사용했습니다. 이 표준은 탱크 벽이 후프 동작만으로 작용한다고 가정하고이 구조의 경우가 아닌베이스의 제약 조건을 무시합니다. 벽 처짐의 크기는 기초 강성을 고려한 Rish [4]가 개발 한 고전 이론 [2] 또는 FEA와 같은 수치 분석에 의해 결정될 수 있습니다. 고급 강철을 사용하면 설계자는 강도에는 적합하지만 서비스 가능성에는 필요하지 않은 더 얇은 섹션을 선택해야합니다. 굽힘 강성은 큐브 두께에 의해 결정됩니다. 수중 부하에서 후속 벽 변형 프로파일은 제작 품질에 영향을받습니다. 이것은 설계 단계에서 추정하기 어려웠을 것입니다.

사례 2 – 배수로 배출

호주의 많은 댐 구조는 제한된 수 문학적 정보로 1950 년대와 60 년대에 설계 및 건설되었습니다. 이러한 기존 방수로 구조는 수정 된 가능한 최대 홍수 수준에 대처하기 위해 크기가 작습니다. 증가 된 홍수 조건 하에서 방수로 꼭대기에 대한 음압 생성과 같은 잠재적 인 문제가 발생할 수 있습니다. 이는 방수로 및 게이트 구조에 불안정성 또는 캐비테이션 손상을 유발할 수 있습니다. 역사적으로 스케일링 된 물리적 모델은 이러한 동작을 연구하기 위해 수력 학 실험실에서 구성되었지만 비용이 많이 들고 시간이 많이 걸리며 스케일링 효과와 관련된 많은 어려움이 있습니다. 오늘날 고성능 컴퓨터와보다 효율적인 전산 유체 역학 (CFD) 코드를 사용하여 수리적 구조의 동작을 합리적인 시간과 비용으로 수치 적으로 조사 할 수 있습니다. 이 분석 기법은 대도시 지역에 주요 상수원을 제공하는 가장 큰 콘크리트 중력 댐에 호주에서 처음으로 적용 되었기 때문에 검증을 수행 할 필요가있었습니다. 이것은 그림 3과 같이 조사 프로세스에 통합되었습니다. 순서도는 간단한 2D에서 상세한 3D 방수로 모델로 어떻게 발전했는지 보여줍니다.

Figure 3 Flowchart showing the validation process
Figure 3 Flowchart showing the validation process

미 육군 공병대 [5]에서 발표 한 광범위한 데이터가 있기 때문에 검증을 위해 ogee 방수로 프로필 (그림 4 참조)이 선택되었습니다. 계산 된 결과는 조사의 각 단계에서 검토되었습니다. 게시 된 데이터에서 크게 벗어나면 프로젝트가 중단됩니다. 이것은 프로젝트가 시작되기 전에 고객과 상호 합의되었습니다.

Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model
Figure 4 A view of the ogee spillway and Type 2 piers in the 3D CFD model

이러한 종류의 분석의 초기 어려움 중 하나는 개방 채널 중력 흐름 문제에서 자유 표면의 정확한 계산이었습니다. 자유 표면을 추적하는 데 적응 형 메싱 및 반복 방법을 사용하는 것은 일부 유한 체적 CFD 코드에서 사용되었지만 성공은 제한적이었습니다. 본 연구에 사용 된 코드는 SOLA-VOF 방법으로 Navier-Stokes 방정식을 해결합니다. 유체 운동의 과도 동작을 해결하기 위해 유한 차분 방법이 사용되었습니다. 유체의 부피 (VOF) 함수는 자유 표면 운동을 계산하는 데 사용됩니다 [6].

분석에 대한 자세한 내용은 [7]에 설명되어 있습니다. 계산 된 파고 압력 분포, 자유 표면 프로파일 및 정상 상태에서의 배출 속도는 검증 목적으로 사용되었습니다. 다른 상류 수두 (H) 아래의 배수로 꼭대기를 따라 압력 분포가 그림 5에 나와 있습니다. 일부 압력 진동은 코드가 일반 메시와 곡선 배수로 장애물 사이의 인터페이스에서 계산을 처리하는 방식에 기인 할 수 있습니다. 훨씬 더 미세한 메쉬는 이러한 불규칙성을 부드럽게 만들었습니다. 압력 분포에 대한 교각의 영향은 3D 모델에서 올바르게 예측되었습니다 (그림 6).

계산된 자유 표면 프로파일 (그림 7)도 게시 된 데이터와 잘 일치했습니다. Savage와 Johnson [8]은 분석 기법에 대한 신뢰도를 높이는 동일한 CFD 코드를 사용하여 유사한 유효성 검사를 수행했습니다. 문제의 배수로에 대한 후속 분석은 스케일링 된 물리적 모델 테스트에서 얻은 결과와 비교할 때 상당히 좋은 결과를 제공했습니다.

Figure 5 Comparison of crest pressure for various heads (2D model), Hd is the design head
Figure 5 Comparison of crest pressure for various heads (2D model), Hd is the design head
Figure 6 Comparison of crest pressure next to pier (3D model)
Figure 6 Comparison of crest pressure next to pier (3D model)
Figure 7 Upper nappe profile next to pier
Figure 7 Upper nappe profile next to pier

분석에서 배수로의 기하학적 구조와 물 속성이 잘 정의되었습니다. 물은 비압축성이며 고정 된 온도에서 일정한 특성을 가지고 있다고 가정했습니다. 실제로 좋은 품질의 콘크리트 표면 마감을 얻을 수 있기 때문에 배수로 경계는 매끄럽다 고 가정했습니다. 불확실성은 메쉬 밀도와 적절한 난류 모델의 선택이라는 두 가지 소스에서 비롯됩니다. 메쉬 크기는 메모리 양과 컴퓨터의 클럭 속도에 의해 제한됩니다.

높은 레이놀즈 수의 난류 흐름은 소용돌이와 소용돌이의 형성을 포착 할 수있는 매우 미세한 메시로 계산할 수 있지만 현재 메시 밀도는 검증 및 설계 목적에 필요한 변수를 예측하기에 충분히 미세했습니다. 조사 결과는 큰 와류, k-ε 및 RNG 모델과 같은 난류 모델의 선택에 의해 크게 영향을받지 않는 것으로 나타났습니다. 분명히 벽 거칠기와 난류 모델의 도입은 방전율을 감소시킬 것입니다. 그러나 다시 분석 결과는 사용 된 메시에 거의 영향을 미치지 않음을 보여줍니다. 향후 분석은 다른 메쉬 밀도로 인한 이산화 오류를 조사 할 것입니다.

사례 3 – 안벽 건설
주요 컨테이너 항구 시설은 설계 단계에서 최소한의 수치 분석을 수행하여 약 25 년 전에 건설되었습니다. 당시에는 이러한 분석 도구를 사용하는 것이 비용 효율적이지 않은 것으로 간주되었습니다. 다수의 컨테이너 크레인이 측면을 따라 이어지는 2km 길이의 안벽을 건설하기 위해 광범위한 준설 및 매립 작업이 수행되었습니다.

시설이 완공 된 이후 일련의 콘크리트 카운터 포트 유닛으로 구성된 안벽과 후방 크레인 빔은 크레인이 할 수 있도록 후방 빔에 대한 레벨 조정 작업이 수행 될 정도로 지속적으로 이동하고 있습니다. 정상적으로 작동합니다. 그러나 영향을받는 두 구조물의 움직임을 저지하기 위해보다 영구적 인 해결책을 모색했습니다. 토양-구조 상호 작용 및 시공 시뮬레이션을 처리 할 수있는 명시 적 유한 차이 분석을 사용하여 다양한 교정 옵션의 순위를 지정했습니다.

그라우트 기둥, 타이백 앵커 및 말뚝 지지대와 같은 다양한 제안 된 개선을 분석하기 전에, 토양 및 구조적 특성과 시공 과정의 선택이 적절하도록 계산 모델을 관찰에 대해 보정해야한다고 결정했습니다. 지질 및 지질 공학 정보는 현장 및 실험실 테스트 데이터를 포함하는 현장 조사 보고서에서 평가되었습니다. 시설의 범위를 고려할 때 현장에서 만나는 특정 토양 유형에 대해 상당한 분산 테스트 데이터가 예상됩니다. 수력 모래 충전재에 대한 표준 침투 테스트 (SPT) 블로우 횟수 (N) 및 콘 침투 테스트 (CPT) 저항 (qc)에 대한 몇 가지 일반적인 기록이 그림 8과 9에 나와 있습니다.

Figure 8 SPT ‘N’ profiles
Figure 8 SPT ‘N’ profiles
Figure 9 CPT profiles
Figure 9 CPT profiles

이 결과로부터 평균 해수면 위와 아래에있는 모래 채우기의 강도와 강성의 대비를 관찰 할 수 있습니다. 이 현상은 배치 방법에 기인한다고 제안되었다 [9]. 또한 기초 수준에서 진동 압축 된 모래의 특성에도 변동이있었습니다. 분석을 위해 선택된 토양 특성은 테스트 데이터, 인근 사이트의 경험 및 유사한 토양 조건에 대한 발표 된 데이터를 기반으로합니다. 그것들은 표 1에 요약되어 있습니다. 일반적으로 시설의 건설 순서는 다음과 같습니다.

  1. Removal of pockets of soft marine clay by dredging
  2. Dredging of sand to the required level
  3. Vibro-compaction of the sand on which the counterfort units were to be founded
  4. Placement of gravel for the quay wall foundation.
  5. Placement of concrete counterfort units weighing 360 tonne each
  6. Placement of hydraulic sand fill behind the units
  7. Surcharging the fill just behind the capping beam
  8. Construct capping beam and place more sand fill to the finished level
  9. Additional surcharge prior to the operation of container cranes.

Table 1 Soil properties used in the construction
simulation of the quay wall

Table 1 Soil properties used in the construction simulation of the quay wal
Table 1 Soil properties used in the construction simulation of the quay wal

2D 평면 변형 모델의 수치 시뮬레이션에서 구성 순서 (그림 10)와 하중은 다음 단계에 따라 단순화 / 이상적입니다.

  1. The starting condition of the seabed consisted of the vibrocompacted sand, gravel bed, native sand, clay and fissured clay at depth. The “in-situ” stresses were also switched on in this step.
  2. Placement of counterfort unit (using equivalent linear elastic beam elements) with a vertical force applied through the centre of gravity of the unit to represent the buoyant self-weight.
  3. Sequentially placing hydraulic sand fill behind the unit to the level prior to surcharging.
  4. Apply an equivalent trapezoidal pressure to represent the surcharge.
  5. Placement of capping beam and the sand fill to the required level.
  6. Apply additional surcharge.
  7. Application of repeated loads from the crane seaward and landward legs.
Figure 10 Construction sequence
Figure 10 Construction sequence

분석에서는 침수 된 물질과 평균 해수면 위에있는 물질을 나타 내기 위해 적절한 밀도를 사용했습니다. 안벽의 장기적인 움직임이 중요했기 때문에 배수 된 토양 매개 변수가 사용되었습니다. 토양은 분석에서 Mohr-Coulomb 실패 기준을 따르는 것으로 가정되었습니다. 단순한 탄성-완전 소성 응력-변형 거동이 가정되었습니다. 일련의 강체 다이어그램으로 표현 된 안벽 이동의 역사는 그림 11에 나와 있습니다. 벽의 상단과 바닥에서 계산 된 수직 및 수평 이동은 그림 12와 13에 표시됩니다. 수치는 모니터링 된 데이터와 해당 상한 및 하한 (해당 상자에 표시됨)입니다. 측정에서 산란의 양에도 불구하고 벽 건설에 대해 계산 된 움직임은 합리적으로 잘 비교되었습니다. 조사 데이터와 예측을 일치시키기 위해 분석에서 토양 속성을 변경하려는 시도가 없었습니다. 반복되는 크레인 하중의 래칫 효과를 관찰 할 수 있습니다. 불행히도 반복적 인 크레인 하중 하에서 벽 이동에 대한 기준이 없었기 때문에 이러한 예상 이동을 비교할 수 없었습니다. 문제의 복잡성과 고도로 가변적 인 토양 특성을 고려할 때 계산 된 결과는 매우 고무적입니다.

Figure 11 Wall deformations
Figure 11 Wall deformations

토양에서 플라스틱 구역의 발달도 분석에서 계산되었습니다. 벽의 발가락 아래의 토양이 여러 번 과도하게 압박을받는 것으로 밝혀졌습니다. 접촉 압력은 경사 하중으로 인한 베어링 고장에 대한 안전 지표 (FOS)를 결정하는 데 사용되었습니다. 지지력은 계산 방법에 의해 크게 영향을 받았다고보고되었습니다 [10]. 원래의 기초 디자인은 덴마크 코드 [11]를 기반으로했기 때문에이 경우 일관성을 위해 사용되었습니다. 편심의 함수로서 FOS의 발전과 수평 대 수직 추력 (H / V)의 비율이 각각 그림 14와 15에 나와 있습니다.

Figure 12 Wall top movements
Figure 12 Wall top movements
Figure 13 Wall base movements
Figure 13 Wall base movements
Figure 14 ‘FOS’ vs. eccentricity
Figure 14 ‘FOS’ vs. eccentricity
Figure 15 ‘FOS’ vs. H/V ratio
Figure 15 ‘FOS’ vs. H/V ratio

그림은 벽이 추가 요금과 반복적 인 적재 단계 동안 국부적 인 베어링 고장에 가까웠음을 보여줍니다. 크레인 하중 하에서 FOS의 명백한 증가는 벽에 대한 수직 하중이 증가하는 반면 유지된 토양의 수평 압력이 다소 일정하게 유지됨에 따라 편심이 감소했기 때문입니다.

끝 맺는 말
세 가지 매우 다른 실제 응용 프로그램의 유효성 검사 프로세스가 설명되었습니다. 각 사례의 주요 특징과 결과는 표 2에 요약되어 있습니다. 재료 및 하중 불확도 및 예상 결과가 강조 표시됩니다. 건설 품질은 구조의 성능에 상당한 영향을 미치는 것으로 나타났습니다.

이는 분석가가 프로젝트의 설계 단계에서 정량화하고 정확하게 분석하지 못할 수도 있습니다. 구조가 완료된 직후 모니터링의 중요성을 간과해서는 안됩니다. 이것은 미래의 역 분석을위한 유용한 자료가 될 것입니다. 수치 도구가 이러한 복잡한 문제를 분석 할 수 있다는 사실에도 불구하고 분석가는 어떤 매개 변수가 중요하거나 중요하지 않은지 식별 할 준비가되어 있어야합니다.

익숙하지 않은 문제를 분석 할 때 유효성 검사 프로세스를 점진적으로 수행해야합니다. 아마도 검증 방법을 찾는 핵심은 수치 분석 도구를 사용하지 않고 솔루션에 도달 할 수있는 다른 방법이 있는지 묻는 것입니다. 많은 경우 이러한 솔루션은 광범위한 문헌 검색 후에 존재합니다. 그러나 다른 경우에는 실험실 테스트와 현장 관찰이 유일한 대안이 될 것입니다.

자세한 내용은 원문을 참고하시기 바랍니다.

References
[1] Puri, S.P.S. (1998) “Avoiding Engineering Failures Caused by Computer-Related Errors”, J. Comp. in Civil Engineering, ASCE, 12(4), 170-172.
[2] Timoshenko, S.P. and Woinowsky-Krieger, S. (1959) Theory of Plates and Shells, 2nd edition, McGraw-Hill Kogakusha. p.580.
[3] BS2654 (1989) Manufacturing of vertical steel welded non-refrigerated storage tanks with butt-welded shells for the petroleum industry.
[4] Rish, R.F. (1977) “Design of Cylindrical Tanks on Elastic Foundations”, Civil Engineering Transactions, The Institution of Engineers, Australia, 192-195.
[5] US Army Corps of Engineers (1990) Hydraulic Design of Spillways, Engineer Manual No. 1110-2-1603.
[6] Hirt, C.W. and Nichols, B.D. (1981) “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, J. Comp. Phys. 39, 201- 225.
[7] Ho, D.K.H., Boyes, K.M and Donohoo, S.M. (2001) “Investigation of Spillway Behaviour under Increased Maximum Flood by Computational Fluid Dynamics Technique”, Proc. Conf. 14th Australasian Fluid Mechanics, Adelaide, December, 577-580.
[8] Savage, B.M. and Johnson, M.C. (2001) “Flow over Ogee Spillway: Physical and Numerical Model Case Study”, J. Hydraulic Engineering, ASCE, 127(8), 640-649.
[9] Lee, K.M., Shen, C.K., Leung, D.H.K. and Mitchell, J.K. (1999) “Effects of placement method on geotechnical behaviour of hydraulic fill sands” J. Geotech. and Geoenviron. Engineering, ASCE, 125(10), 832-846.
[10] Sieffert, J.G. and Bay-Gress, Ch. (2000) “Comparison of European bearing capacity calculation methods for shallow foundations”, Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 143, April, 65-74.
[11] DS 415 (1984) Code of Practice for Foundation Engineering. Table 2 Summary of findings for the three case studies

FLOW-3D 해석용컴퓨터 선택 가이드

Hardware Selection for FLOW-3D Products – FLOW-3D

2020-09-08 업데이트 / ㈜에스티아이씨앤디 솔루션사업부

In this blog, Flow Science’s IT Manager Matthew Taylor breaks down the different hardware components and suggests some ideal configurations for getting the most out of your FLOW-3D products.

본 자료는 Flow Science의 IT 매니저 Matthew Taylor가 작성한 자료를 기반으로 STI C&D에서 일부 자료를 보완한 자료입니다. 본 자료를 통해 FLOW-3D 사용자는 최상의 해석용 컴퓨터를 선택할 때 도움을 받을 수 있을 것으로 기대합니다.

수치해석을 하는 엔지니어들은 사용하는 컴퓨터의 성능에 무척 민감합니다. 그 이유는 수치해석을 하기 위해 여러 준비단계와 분석 시간들이 필요하지만 당연히 압도적으로 시간을 소모하는 것이 계산 시간이기 때문일 것입니다.

따라서 수치해석용 컴퓨터의 선정을 위해서 단위 시간당 시스템이 처리하는 작업의 수나 처리량, 응답시간, 평균 대기 시간 등의 요소를 복합적으로 검토하여 결정하게 됩니다.

또한 수치해석에 적합한 성능을 가진 컴퓨터를 선별하는 방법으로 CPU 계산 처리속도인 Flops/sec 성능도 중요하지만 수치해석을 수행할 때 방대한 계산 결과를 디스크에 저장하고, 해석결과를 분석할 때는 그래픽 성능도 크게 좌우하기 때문에 SSD 디스크와 그래픽카드에도 관심을 가져야 합니다.

FLOW SCIENCE, INC. 에서는 일반적인 FLOW-3D를 지원하는 최소 컴퓨터 사양과 O/S 플랫폼 가이드를 제시하지만, 도입 담당자의 경우, 최상의 조건에서 해석 업무를 수행해야 하기 때문에 가능하면 최고의 성능을 제공하는 해석용 장비 도입이 필요합니다. 이 자료는 2020 현재 FLOW-3D 제품을 효과적으로 사용하기 위한 하드웨어 선택에 대해 사전에 검토되어야 할 내용들에 대해 자세히 설명합니다. 그리고 실행 중인 시뮬레이션 유형에 따라 다양한 구성에 대한 몇 가지 아이디어를 제공합니다.

CPU의 선택

CPU는 전반적인 성능에 큰 영향을 미치며, 대부분의 경우 컴퓨터의 가장 중요한 구성 요소입니다. 그러나 데스크탑 프로세서를 구입할 때가 되면 인텔과 AMD의 모델 번호와 사양이 어려워 보일 것입니다.
그리고, CPU 성능을 평가하는 방법에 의해 가장 좋은 CPU를 고른다고 해도 보드와, 메모리, 주변 Chip 등 여러가지 조건에 의해 성능이 달라질 수 있기 때문에 성능평가 결과를 기준으로 시스템을 구입할 경우, 단일 CPU나 부품으로 순위가 정해진 자료보다는 시스템 전체를 대상으로 평가한 순위표를 보고 선정하는 지혜가 필요합니다.

고급 사용자를 위한 하이엔드 CPU 시장은 AMD Ryzen Threadripper 3970X(Cores: 32 Threads: 64), AMD Ryzen Threadripper 3990X (Cores: 64 Threads: 128)Intel Xeon Gold 6248R (@3GHz Cores: 24 Threads: 48) , Intel 18코어 i9-10980XE가 장악하고 있다. 특히 AMD 제품이 인텔의 최상위 제품을 가격에서 압도한다. 모든 코어를 다 활용할 정도로 어마어마한 프로덕션 수준의 워크로드를 다루는 게 아니라면 보통 이 정도 수준의 CPU까지는 필요하지 않다. 하지만 필요할 경우를 대비해 말해두자면 AMD 두 제품 모두 눈부시게 빠른 게이밍 속도를 보장할 것이다. ‘파 크라이 5’처럼 쓰레드리퍼만의 멀티 다이 아키텍처 때문에 반응이 느린 게임도 있지만 어디까지나 극소수의 예외에 불과하다. editor@itworld.co.kr

2020-08-20일 현재

<출처> https://www.cpubenchmark.net/high_end_cpus.html

CPU 성능 분석 방법

부동소수점 계산을 하는 수치해석과 밀접한 Computer의 연산 성능 벤치마크 방법은 대표적으로 널리 사용되는 아래와 같은 방법이 있습니다.

FLOW-3D의 CFD 솔버 성능은 CPU의 부동 소수점 성능에 전적으로 좌우되기 때문에 계산 집약적인 프로그램입니다. FlowSight 또한 CPU에 크게 의존합니다. 현재 출시된 사용 가능한 모든 CPU를 벤치마킹할 수는 없지만 상대적인 성능을 합리적으로 비교할 수는 있습니다.

특히, 수치해석 분야에서 주어진 CPU에 대해 FLOW-3D 성능을 추정하거나 여러 CPU 옵션 간의 성능을 비교하기 위한 최상의 옵션은 Standard Performance Evaluation Corporation의 SPEC CPU2017 벤치마크(현재까지 개발된 가장 최신 평가기준임)이며, 특히 SPECspeed 2017 Floating Point 결과가 CFD Solver 성능을 매우 잘 예측합니다.

이는 유료 벤치마크이므로 제공된 결과는 모든 CPU 테스트 결과를 제공하지 않습니다. 보통 제조사가 ASUS, Dell, Lenovo, HP, Huawei 정도의 제품에 대해 RAM이 많은 멀티 소켓 Intel Xeon 기계와 같은 값비싼 구성으로 된 장비 결과들을 제공합니다.

CPU 비교를 위한 또 다른 옵션은 Passmark Software의 CPU 벤치마크입니다. PerformanceTest 제품군은 유료 소프트웨어이지만 무료 평가판을 사용할 수 있습니다. 대부분의 CPU는 저렴한 옵션을 포함하여 나열됩니다. 부동 소수점 성능은 전체 벤치마크의 한 측면에 불과하지만 다양한 워크로드에서 전반적인 성능을 제대로 테스트합니다.

예산을 결정하고 해당 예산에 해당하는 CPU를 선택한 후에는 벤치마크를 사용하여 가격에 가장 적합한 성능을 결정할 수 있습니다.

<참고>

SPEC의 벤치 마크https://www.spec.org/benchmarks.html#cpu )

SPEC CPU 2017 (현재까지 가장 최근에 개발된 CPU 성능측정 기준)

다른 컴퓨터 시스템에서 컴퓨팅 계산에 대한 집약적인 워크로드를 비교하는데 사용할 수 있는 성능 측정을 제공하도록 설계된 SPEC CPU 2017에는 SPECspeed 2017 정수, SPECspeed 2017 부동 소수점, SPECrate 2017 정수 및 SPECrate 2017 부동 소수점의 4 가지 제품군으로 구성된 43 개의 벤치 마크가 포함되어 있습니다. SPEC CPU 2017에는 에너지 소비 측정을 위한 선택적 메트릭도 포함되어 있습니다.

<SPEC CPU 벤치마크 보고서>

벤치마크 결과보고서는 제조사별, 모델별로 테스트한 결과를 아래 사이트에 가면 볼 수 있습니다.

https://www.spec.org/cgi-bin/osgresults

<보고서 샘플>

  • SPEC CPU 2017

Designed to provide performance measurements that can be used to compare compute-intensive workloads on different computer systems, SPEC CPU 2017 contains 43 benchmarks organized into four suites: SPECspeed 2017 Integer, SPECspeed 2017 Floating Point, SPECrate 2017 Integer, and SPECrate 2017 Floating Point. SPEC CPU 2017 also includes an optional metric for measuring energy consumption.

클럭 대 코어

일반적으로 클럭 속도가 높은 칩은 CPU 코어를 더 적게 포함합니다. FLOW-3D는 병렬화가 잘되어 있지만, 디스크 쓰기와 같이 일부 작업은 기본적으로 단일 스레드 방식으로 수행됩니다. 따라서 데이터 출력이 빈번하거나 큰 시뮬레이션은 종종 더 많은 코어가 아닌, 더 높은 클럭 속도를 활용합니다. 마찬가지로 코어 및 소켓의 다중 스레딩은 오버헤드를 발생시키므로 작은 문제의 해석일 경우 사용되는 코어 수를 제한하면 성능이 향상될 수 있습니다.

CPU 아키텍처

CPU 아키텍처는 중요합니다. 최신 CPU는 일반적으로 사이클당 더 많은 기능을 제공합니다. 즉, 현재 세대의 CPU는 일반적으로 동일한 클럭 속도에서 이전 CPU보다 성능이 우수합니다. 또한 전력 효율이 높아져 와트당 성능이 향상될 수 있습니다. Flow Science에는 구형 멀티 소켓 12, 16, 24 코어 Xeon보다 성능이 뛰어난 최근 세대 10~12 Core i9 CPU 시스템을 보유하고 있습니다.

오버클럭

해석용 장비에서는 CPU를 오버클럭 하지 않는 것이 좋습니다. 하드웨어를 다년간의 투자라고 생각한다면, 오버클럭화는 발열을 증가시켜 수명을 단축시킵니다. CPU에 따라 안정성도 저하될 수 있습니다. CPU를 오버클럭 할 때는 세심한 열 관리가 권장됩니다.

하이퍼스레딩

<이미지출처:https://gameabout.com/krum3/4586040>

하이퍼스레딩은 물리적으로 1개의 CPU를 가상으로 2개의 CPU처럼 작동하게 하는 기술로 파이프라인의 단계수가 많고 각 단계의 길이가 짧을때 유리합니다. 다만 수치해석 처럼 모든 코어의 CPU를 100% 사용중인 장시간 수행 시뮬레이션은 일반적으로 Hyper Threading이 비활성화 된 상태에서 더 잘 수행됩니다. FLOW-3D는 100% CPU 사용률이 일반적이므로 새 하드웨어를 구성할 때 Hyper Threading을 비활성화하는 것이 좋습니다. 설정은 시스템의 BIOS 설정에서 수행합니다.

몇 가지 워크로드의 경우에는 Hyper Threading을 사용하여 약간 더 나은 성능을 보이는 경우가 있습니다. 따라서, 최상의 런타임을 위해서는 두 가지 구성중에서 어느 구성이 더 적합한지 시뮬레이션 유형을 테스트하는 것이 좋습니다.

스케일링

여러 코어를 사용할 때 성능은 선형적이지 않습니다. 예를 들어 12 코어 CPU에서 24 코어 CPU로 업그레이드해도 시뮬레이션 런타임이 절반으로 줄어들지 않습니다. 시뮬레이션 유형에 따라 16~32개 이상의 CPU 코어를 선택할 때는 FLOW-3D 및 FLOW-3D CAST의 HPC 버전을 사용하거나 FLOW-3D CLOUD로 이동하는 것을 고려하여야 합니다.

AMD Ryzen 또는 Epyc CPU

AMD는 일부 CPU로 벤치마크 차트를 석권하고 있으며 그 가격은 매우 경쟁력이 있습니다. FLOW SCIENCE, INC. 에서는 소수의 AMD CPU로 FLOW-3D를 테스트했습니다. 현재 Epyc CPU는 이상적이지 않고 Ryzen은 성능이 상당히 우수합니다. 발열은 여전히 신중하게 다뤄져야 할 문제입니다. 현재 32 코어 옵션에 영향을 주는 Windows 버그가 초기 버전에서 성능을 크게 저하시키는 것으로 알려져 있습니다. Bug Fix가 되었는지 업데이트 하여 확인하고, 해결되지 않은 경우 이러한 CPU에는 Linux를 권장됩니다.

<관련 기사>

https://www.techspot.com/news/78122-report-software-fix-can-double-threadripper-2990wx-performance.html

Graphics 고려 사항

FLOW-3D는 OpenGL 드라이버가 만족스럽게 수행되는 최신 그래픽 카드가 필요합니다. 최소한 OpenGL 3.0을 지원하는 것이 좋습니다. FlowSight는 DirectX 11 이상을 지원하는 그래픽 카드에서 가장 잘 작동합니다. 권장 옵션은 엔비디아의 쿼드로 K 시리즈와 AMD의 파이어 프로 W 시리즈입니다.

특히 엔비디아 쿼드로(NVIDIA Quadro)는 엔비디아가 개발한 전문가 용도(워크스테이션)의 그래픽 카드입니다. 일반적으로 지포스 그래픽 카드가 게이밍에 초점이 맞춰져 있지만, 쿼드로는 다양한 산업 분야의 전문가가 필요로 하는 영역에 광범위한 용도로 사용되고 있습니다. 주로 산업계의 그래픽 디자인 분야, 영상 콘텐츠 제작 분야, 엔지니어링 설계 분야, 과학 분야, 의료 분석 분야 등의 전문가 작업용으로 사용되고 있습니다. 따라서 일반적인 소비자를 대상으로 하는 지포스 그래픽 카드와는 다르계 산업계에 포커스 되어 있으며 가격이 매우 비싸서 도입시 예산을 고려해야 합니다.

유의할 점은 엔비디아의 GTX 게이밍 하드웨어는 볼륨 렌더링의 속도가 느리거나 오동작 등 몇 가지 제한 사항이 있습니다. 일반적으로 노트북에 내장된 통합 그래픽 카드보다는 개별 그래픽 카드를 강력하게 추천합니다. 최소한 그래픽 메모리는 512MB 이상을 권장합니다.

원격데스크탑 사용시 고려 사항

Flow Science는 nVidia 드라이버 버전이 341.05 이상인 nVidia Quadro K, M 또는 P 시리즈 그래픽 하드웨어를 권장합니다. 이 카드와 드라이버 조합을 사용하면 원격 데스크톱 연결이 완전한 3D 가속 기능을 갖춘 기본 하드웨어에서 자동으로 실행됩니다.

원격 데스크톱 세션에 연결할 때 nVidia Quadro 그래픽 카드가 설치되어 있지 않으면 Windows는 소프트웨어 렌더링을 사용합니다. 이는 FLOW-3D 및 FlowSight 모두 성능에 부정적인 영향을 미칩니다. FLOW-3D 가 소프트웨어 렌더링을 사용하고 있는지 확인하려면 FLOW-3D 도움말 메뉴에서 정보를 선택하십시오. GDI Generic을 소프트웨어 렌더링으로 사용하는 경우 GL_RENDERER 항목에 표시됩니다.

하드웨어 렌더링을 활성화하는 몇 가지 옵션이 있습니다. 쉬운 방법 중 하나는 실제 콘솔에서 FLOW-3D를 시작한 다음 원격 데스크톱 세션을 연결하는 것입니다. Nice Software DCV 와 같은 일부 VNC 소프트웨어는 기본적으로 하드웨어 렌더링을 사용합니다.

RAM 고려 사항

프로세서 코어당 최소 4GB의 RAM은 FLOW-3D의 좋은 출발입니다. FlowSight POST Processor를 사용하여 후처리 작업을 할 경우 상당한 양의 RAM을 사용하는 것이 좋습니다.

현재 주력제품인 DDR4보다 2배 빠른 DDR5가 곧 출시된다는 소식도 있습니다.

일반적으로 FLOW-3D를 이용하여 해석을 할 경우 격자(Mesh)수에 따라 소요되는 적정 메모리 크기는 아래와 같습니다.페이지 보기

  • 초대형 (2억개 이상의 셀) : 최소 128GB
  • 대형 (60 ~ 1억 5천만 셀) : 64 ~ 128GB
  • 중간 (30-60백만 셀) : 32-64GB
  • 작음 (3 천만 셀 이하) : 최소 32GB

HDD 고려 사항

수치해석은 해석결과 파일의 데이터 양이 매우 크기 때문에 읽고 쓰는데, 속도면에서 매우 빠른 SSD를 적용하면 성능면에서 큰 도움이 됩니다. 다만 SSD 가격이 비싸서 가성비 측면을 고려하여 적정수준에서 결정이 필요합니다.

CPU와 저장장치 간 데이터가 오고 가는 통로가 그림과 같이 3가지 방식이 있습니다. 이를 인터페이스라 부르며 SSD는 흔히 PCI-Express 와 SATA 통로를 이용합니다.

흔히 말하는 NVMe는 PCI-Express3.0 지원 SSD의 경우 SSD에 최적화된 NVMe (NonVolatile Memory Express) 전송 프로토콜을 사용합니다. 주의할 점은 MVMe중에서 SATA3 방식도 있기 때문에 잘 구별하여 구입하시기 바랍니다.

그리고 SSD를 선택할 경우에도 SSD 종류 중에서 PCI Express 타입은 매우 빠르고 가격이 고가였지만 최근에는 많이 저렴해졌습니다. 따라서 예산 범위내에서 NVMe SSD등 가장 효과적인 선택을 하는 것이 좋습니다.
( 참고 : 해석용 컴퓨터 SSD 고르기 참조 )

기존의 물리적인 하드 디스크의 경우, 디스크에 기록된 데이터를 읽기 위해서는 데이터를 읽어내는 헤드(바늘)가 물리적으로 데이터가 기록된 위치까지 이동해야 하므로 이동에 일정한 시간이 소요됩니다. (이러한 시간을 지연시간, 혹은 레이턴시 등으로 부름) 따라서 하드 디스크의 경우 데이터를 읽기 위한 요청이 주어진 뒤에 데이터를 실제로 읽기까지 일정한 시간이 소요되는데, 이 시간을 일정한 한계(약 10ms)이하로 줄이는 것이 불가능에 가까우며, 데이터가 플래터에 실제 기록된 위치에 따라서 이러한 데이터에의 접근시간 역시 차이가 나게 됩니다.

하지만 HDD의 최대 강점은 가격대비 용량입니다. 현재 상용화되어 판매하는 대용량 HDD는 12TB ~ 15TB가 공급되고 있으며, 이는 데이터 저장이나 백업용으로 가장 좋은 선택이 됩니다.
결론적으로 데이터를 직접 읽고 쓰는 드라이브는 SSD를 사용하고 보관하는 용도의 드라이브는 기존의 HDD를 사용하는 방법이 효과적인 선택이 될 수 있습니다.

페이지 보기

Rivulet Formation in Slide Coating

Simulation of Transient and Three-Dimensional Coating Flows Using a Volume-of-Fluid Technique

Volume-of-Fluid 기법을 사용한 과도 및 3 차원 코팅 흐름 시뮬레이션

슬라이드 코팅 흐름은 정밀 필름 코팅 제품의 제조에 널리 사용됩니다. 코팅 속도를 높이고 코팅 필름의 성능을 향상시키기 위해 슬라이드 코팅 공정을 더 잘 이해하기 위해 상당한 노력을 기울이고 있습니다. 예를 들어 Chen1과 같이 잘 정의 된 한계 이상으로 코팅 속도를 높이면 코팅 비드가 완전히 파손될 수 있음이 입증되었습니다.

이 논문에서는 유체 표면의 임의, 3 차원 및 시간에 따른 변형을 설명 할 수있는 계산 방법에서 얻은 슬라이드 코팅 흐름의 시뮬레이션 결과를 제시합니다. 상용 프로그램에서 사용할 수있는이 방법은 VOF (Volume-of-Fluid) 기술 3,4로 유체를 추적하는 고정 그리드를 사용합니다. 표면 장력, 벽 접착력, 유체 운동량 및 점성 응력은 분석에서 완전히 설명됩니다.

기본 방법은 딥 코팅 데이터와의 비교를 통해 설명됩니다 5. 그런 다음 접촉 선과 동적 접촉각이 우리의 방법에서 암시 적으로 처리되는 방법에 대한 논의를 제시합니다. VOF 기술을 사용하기 때문에 유체를 포함하는 각 제어 볼륨에 작용하는 힘의 합계 만 필요합니다. 그러면 접촉 선의 위치와 동적 접촉각이 계산 된 힘 균형에서 자동으로 발생합니다. 우리의 기술은 코팅 흐름에서 시작 및 비드 분해 현상의 예와 함께 설명됩니다.

그림에서 볼 수 있듯이 신속한 공정의 경우 당사의 접근 방식은 기존 분석 방법으로는 달성하기 어려운 코팅 공정 설계 및 최적화 시뮬레이션을위한 효율성과 견고성을 제공합니다.

Introduction

모든 코팅 공정에는 일정한 조건을 달성하기 전에 코팅 재료가 큰 변형을 겪는 일종의 시작 기간이 포함됩니다. 시작 프로세스의 우수한 특성화는 낭비를 줄이고 프로세스가 원하는 한계 내에서 작동하는지 확인하는 데 종종 중요합니다.

다양한 섭동에 대한 코팅 흐름의 과도 ​​응답에 대한 유사한 이해가 또한 바람직하여 코팅 비드의 파손 및 코팅의 불균일성을 피할 수 있습니다. 코팅 흐름의 역학은 일반적으로 비선형이고 다양한 경쟁 물리적 프로세스의 결합 된 상호 작용을 포함하기 때문에 이론적 조사를 수행하기 위해 특수한 계산 도구에 의존해야합니다.

이 작업을 위해 선택한 모델링 도구의 장점은 고정 그리드를 통해 임의의 유체 변형을 추적 할 수있는 강력한 수치 기법 인 VOF (Volume-of-Fluid) 방법을 사용한다는 것입니다. 코팅 흐름 분석에 중요한 프로그램의 다른 기능과 함께 이것이 수행되는 방식은 다음 섹션에서 설명합니다.

Overview of Numerical Method

여기에 사용 된 수치 프로그램 FLOW-3D®는 1960 년대 중반 Los Alamos National Laboratory에서 개발 된 Marker-and-Cell (MAC) 방법 6에서 유래되었습니다. 원래 MAC 방법에 대한 많은 개선이 수년에 걸쳐 이루어졌습니다.

본 출원에서 가장 흥미로운 것은 유체 영역을 찾기 위해 연속적인 유체 부피 함수에 의해 개별 마커 입자를 대체하는 것입니다. VOF 방법에서는 관심있는 계산 영역을 포함하는 사각형 제어 볼륨의 고정 그리드가 구성됩니다. 각 제어 볼륨에 대해 숫자 F는 액체가 차지하는 볼륨의 비율을 표시하기 위해 유지됩니다.

F 함수를 사용하는 것 외에도 VOF 방법은 날카로운 액체-가스 인터페이스를 유지하는 방식으로 직사각형 셀의 고정 그리드를 통해 F 함수를 전진시키기 위해 특수 수치 기법을 사용합니다. 마지막으로 VOF 방법은 경계면에서 적절한 법선 및 접선 응력 조건을 충족하기 위해 신중하게 구현 된 자유 표면 경계 조건 세트를 사용합니다. 접근 방식의 또 다른 특징은 복잡한 기하학적 영역을 정의하는 방식입니다.

장애물은 제어 볼륨의 일부를 차단할 수 있도록하여 고정 그리드에 포함됩니다. 각 제어 볼륨에서 흐름을 위해 열린 분수 영역 및 볼륨은 지오메트리 표현으로 저장됩니다. FAVOR 방법 7이라고하는이 방법은 형상을 질량, 운동량 및 에너지에 대한 이산화 된 방정식에 자동으로 통합합니다. VOF 및 FAVOR 방법을 사용하면 코팅 문제에 대한 지오메트리 및 초기 유체 구성을 정의하는 데 필요한 복잡한 그리드 생성 프로세스가 없기 때문에 시간과 노력이 절약됩니다.

다음 섹션에서는 플랫 시트에 코팅을 담그는 응용 프로그램과 함께 기본적인 수치 방법의 유용성을 설명합니다.

Dip Coating – A Validation Test

Lee와 Tallmadge는 액체 수조에서 수직으로 인출 된 평판에 딥 코팅하는 과정에 대해 광범위한 조사를 수행했습니다.

이 프로세스는 다양한 상업용 응용 프로그램에서 널리 사용됩니다. 그들의 연구는 2 차원 흐름 (즉, 가장자리 효과 없음)에 초점을 맞추고 실험 데이터에 맞는 경험적 매개 변수를 포함하는 분석 표면 프로파일로 구성되었습니다. 0.085에서 23.9 사이의 모세관 수에 대한 실험 데이터가 수집되었으며, 레이놀즈 수는 0.044에서 12.7 사이입니다. 필름 두께에 대한 실험 데이터는 약 10 % 이하로 추정되는 오류를 가졌습니다.

이 실험에 대한 계산 모델은 코팅 할 시트의 수직 (접선) 속도와 동일한 수직 (접선) 속도가 주어진 직사각형 욕조로 구성되어 매우 간단합니다. 처음에 코팅액은 수평면을 가지며 시트는 충동 적으로 시작됩니다 (그림 1c 참조). 다양한 모세관 수 사례가 시뮬레이션되었으며 모든 경우에 예측 된 필름 두께는 실험 오차 범위 내에있었습니다. 예를 들어 모세관 번호 1.17에 해당하는 경우를 고려하십시오. 시트를 3.31cm / s에서 수조 (밀도 0.885gm / cc, 표면 장력 32.7dynes / cm 및 점도 1159.4cp를 갖는 점성 윤활유)에서 꺼냈다. 우리는 2.5cm의 욕조 너비와 2.0cm의 깊이 (35 x 25 그리드 셀)를 사용했습니다.

필름 흐름을 캡처하기 위해 욕조 위의 2.0cm 영역이 모델에 포함되었습니다 (수직으로 추가 25 개 셀 필요). 수조의 오른쪽은 유체 높이가 일정하게 유지되고 압력이 수압이고 흐름이 계산 영역으로 들어갈 수있는 열린 경계 였지만 휴식에서 시작해야했습니다. 이른바 “정체”경계 조건은 움직이는 시트의 오른쪽으로 충분히 멀리 떨어져있는 경우 수평 무한 욕조에 대한 좋은 근사치입니다. 모델링이 필요한 수조의 폭을 설정하기 위해 여러 가지 계산이 수행되었으며, 필름 두께가이 폭에 크게 민감하지 않다는 것이 밝혀졌으며 그 결과는 실험에서도 발견되었습니다.

그림 1a는 초기 조건, 그림 1b는 계산 된 과도 상태의 스냅 샷, 그림 1c는 최종 정상 상태 결과를 보여줍니다. 처음에 시트에 의해 그려지는 액체 팁의 모양은 정적 접촉각 (즉, 시트와 액체 사이의 접착력)에 따라 달라지며 임의로 10 도로 취해졌습니다. 액체가 끌어 올려짐에 따라, 배출되는 액체 필름을 대체하기 위해 시트쪽으로 흐름이 시작되어야한다는 신호로서 함몰 파가 나머지 수조에 대한 신호로 오른쪽으로 이동합니다. 약 5.0 초만에 정상 상태에 도달합니다. 필름 두께는 0.145cm로 계산되었으며, 이는 0.142cm의 측정 값과 매우 일치합니다.

Rivulet Formation in Slide Coating
Rivulet Formation in Slide Coating

자세한 내용은 본문을 참고하시기 바랍니다.

Advances in Magnetohydrodynamic Liquid Metal Jet Printing

Advances in Magnetohydrodynamic Liquid Metal Jet Printing

Scott Vader1, Zachary Vader1, Ioannis H. Karampelas2 and Edward P. Furlani2, 3
1Vader Systems, Buffalo, NY
2Dept. of Chemical and Biological Engineering, 3 Dept. of Electrical Engineering,
University at Buffalo SUNY, NY 14260, Office: (716) 645-1194, Fax: (716) 645-3822, efurlani@buffalo.edu

ABSTRACT

자기유체역학적 액체 금속 제트 프린팅

우리는 용해된 금속 방울을 3D 물체로 만드는 새로운 주문형 DOD(Drop-on-Demand) 인쇄 방법을 제안합니다. 이 접근 방식에서는 단단한 금속 와이어가 인쇄 헤드 내에서 용해된 다음 펄스 자기장에 노출됩니다.

적용된 필드가 챔버에 침투하여 액상 금속 내에 자기 유압(MHD) 기반 압력 펄스를 유도하여 금속 일부가 노즐 챔버를 통해 이동된 후 배출됩니다. 표면 장력은 분출된 금속 위에 작용하여 가해진 압력에 따라 초 당 수 미터 범위의 속도로 구형 방울을 형성합니다.

잠시 비행한 후 방울이 기질에 충돌하여 냉각되어 고체 덩어리를 형성합니다. 따라서 패턴이 있는 증착 및 드롭 방식의 고형화를 통해 3D 솔리드 구조를 인쇄할 수 있습니다.

현재 연구에서는 샘플 프린팅 구조와 함께 시제품 MHD 프린팅 시스템 개발에 대한 발전된 점을 제시합니다. 또한 드롭 생성을 관리하는 기본 물리학에 대해 논의하고 장치 성능을 예측하기 위한 새로운 컴퓨팅 모델을 소개합니다.

Computational model of magnetohydrodynamic-based drop generation
Computational model of magnetohydrodynamic-based drop generation (printhead reservoir and ejection chamber
not shown): (a) the magnetic field generated by a pulsed coil is shown

INTRODUCTION

주문형 드롭온 잉크젯 프린팅은 상업 및 소비자 이미지 재현을 위한 잘 확립된 방법입니다. 이 기술을 추진하는 원리와 동일한 원리가 기능 인쇄 및 적층 제조 분야에도 적용될 수 있습니다.

Early stage prototype of a single nozzle printhead
Early stage prototype of a single nozzle printhead

기존의 잉크젯 기술은 폴리머에서 살아있는 세포에 이르는 다양한 재료를 증착하고 패터링하여 다양한 기능성 매체, 조직 및 장치를 프린팅하는 데 사용되어 왔습니다. 현재 진행 중인 작업을 통해 잉크젯 인쇄를 3D 금속 부품으로 확장하려고 시도하고 있습니다.

현재, 대부분의 3D 금속 인쇄 애플리케이션은 고체 물체를 형성하기 위해 레이저(예: 선택적 레이저 소거 [1] 및 직접 금속 소거[2]) 또는 전자 빔(예: 전자 빔 용해 [3])과 같은 외부 유도 에너지원에 의해 소거 또는 녹는 퇴적 금속 분말을 포함합니다.

그러나 이러한 방법은 비용과 복잡성, 즉 3D 프린팅 공정에 앞서 금속을 분쇄해야 한다는 점에서 일정한 단점이 있을 수 있습니다.

이 프레젠테이션에서는 자기 유압 역학 원리를 기반으로 하는 금속 적층 제조의 근본적으로 다른 접근 방식을 제안합니다. 이 방법은 스풀링된 고체 금속 와이어를 인쇄 헤드에 공급하고 노즐에서 업스트림을 예열하여 노즐 챔버에 공급되는 액체 금속 저장소를 형성하는 것입니다. 챔버가 채워지면 액체 금속 내에서 과도 전류를 유도하는 펄스 자기장이 인가됩니다. 유도 전류가 인가된 필드에 결합되어 로렌츠 힘 밀도를 생성하여, 인가된 압력에 따라 속도가 달라지는 용융 금속 방울을 배출하는 작용을 하는 챔버 내의 유사 압력을 제공합니다.

방울은 냉각된 기질에 투영되어 고체 덩어리를 형성합니다. 3D 솔리드 구조를 패터닝으로 인쇄할 수 있습니다. 방울의 침적과 방울의 현명한 응고입니다. 이 유망한 신기술은 낮은 재료 비용, 높은 제조율 및 매력적인 재료 특성 때문에 적층 제조 애플리케이션에 광범위한 영향을 미칠 수 있습니다.

현재 작업에서는 새로운 3D 인쇄 시스템을 도입하고 기기 개발의 진보를 설명하고 샘플 인쇄 구조를 시연합니다. 또한 드롭 생성-배출 메커니즘에 대해 설명하고 인쇄 성능을 예측하기 위한 일련의 새로운 컴퓨팅 모델을 제시합니다.

자세한 내용은 본문을 참고하시기 바랍니다.

[FLOW-3D 이론] 1. 개요

  1. 개요

FLOW-3D는 범용 전산 유체 역학(CFD) 소프트웨어입니다. 유체의 운동 방정식을 계산하기 위해 특별히 개발된 수치 기법을 사용하여 다중 스케일, 다중 물리 흐름 문제에 대해 과도적 3차원 해결책을 얻습니다. 다양한 물리적 및 수치 옵션을 통해 사용자는 다양한 유체 흐름 및 열 전달 현상 분석을 위해 FLOW-3D를 적용할 수 있습니다.

유체 운동은 비선형, 과도, 2차 미분 방정식으로 설명됩니다. 이러한 방정식을 풀기 위해 유체 운동 방정식을 사용해야합니다. 이러한 방법을 개발하는 과학을 전산 유체 역학이라고 합니다. 이 방정식의 수치해는 대수적 표현으로 다양한 항을 근사화 합니다. 그런 다음 결과 방정식을 해결하여 원래 문제에 대한 대략적인 해결책을 제시합니다. 이 과정을 시뮬레이션이라고 합니다. FLOW-3D에서 사용할 수 있는 수치해석 알고리즘의 개요는 운동 방정식에 대한 섹션에 나옵니다.

일반적으로 수치 모델은 계산 Mesh 또는 그리드로 시작합니다. 이것은 여러 개의 서로 연결된 요소 또는 셀로 구성됩니다. 이러한 셀은 물리적 공간을 해당 볼륨과 관련된 여러 노드가 있는 작은 볼륨으로 세분화합니다. 노드는 압력, 온도 및 속도와 같은 미지수의 값을 저장하는데 사용됩니다. Mesh는 사실상 원래의 물리적 공간을 대체하는 숫자 공간입니다. 또한 별도의 위치에서 흐름 파라미터를 정의하고, 경계 조건을 설정하고, 유체 운동 방정식의 수치 근사치를 개발하는 방법을 제공합니다. FLOW-3D 접근 방식은 흐름 영역을 직사각형 셀의 격자로 세분하는 것입니다. 이 격자는 brick elements라고도 합니다.

계산 Mesh는 물리적 공간을 효과적으로 이산화 시킵니다. 각 유체 매개 변수는 불연속 지점에서 값 배열에 의해 Mesh로 표시됩니다. 실제 물리적 파라미터는 공간에서 연속적으로 변하기 때문에 노드 사이의 간격이 미세한 Mesh는 더 거친 Mesh보다 현실을 더욱 잘 표현해줍니다. 그런 다음 수치 근사치의 기본 속성에 도달합니다. 그리드 간격이 줄어들면 유효한 모든 유효한 수치 근사가 원래 방정식에 접근합니다. 근사치가 이 조건을 만족하지 않으면 올바르지 않은 것으로 간주해야 합니다.

동일한 물리적 공간에 대해 격자 간격을 줄이거나 Mesh를 조정하면 더 많은 요소와 노드가 생겨 수치 모델의 크기가 커집니다. 그러나 유체 흐름 및 열 전달의 실제 현실과는 별도로, 시뮬레이션 엔지니어들이 적절한 크기의 Mesh를 선택하도록 하는것과 밀접한 관계에 있는 설계 주기, 컴퓨터 하드웨어 및 마감일의 현실적인 문제도 있습니다. 이러한 제약 조건을 만족시키는 것과 사용자가 정확한 결과를 얻는 것 사이에서 타협점을 찾는 것은, CFD 모델 개발 못지않은 중요한 균형 잡힌 행위입니다.

직사각형 그리드는 규칙적이거나 구조적인 특성 때문에 생성 및 저장이 매우 쉽습니다. 균일하지 않은 그리드 간격은 복잡한 흐름 도메인을 매칭할 때 유연성을 더합니다. 연산 셀은 세 개의 지수를 사용하여 연속적으로 번호가 매겨집니다. 즉, x 방향은 i, y 방향은 j, z 방향은 k입니다. 이 방법으로 3차원 Mesh의 각 셀은 물리적 공간의 점의 좌표와 유사한 고유한 주소(i, j, k)로 식별할 수 있습니다.

구조화된 직사각형 그리드는 수치적 방법의 개발의 상대적 용이성, 원래의 물리적 문제와의 관계에 대한 후자의 투명성, 그리고 마지막으로 수치적 해결의 정확성과 안정성의 추가적인 이점을 가지고 있습니다. 유한 차분법과 유한 체적법에 기초한 가장 오래된 수치 알고리즘은 원래 이러한 Mesh에서 개발되었습니다. 이것은 FLOW-3D에서 수치적 접근방식의 핵심을 형성합니다. 유한차분법은 테일러 확장의 특성과 파생된 정의의 직접적인 적용에 기초합니다. 미분 방정식에 대한 수치적 해결책을 얻기 위해 적용된 방법 중 가장 오래된 방법이며, 첫 번째 적용은 1768년 오일러에 의해 개발된 것으로 간주됩니다. 유한체적법은 유체 운동을 위한 보존법의 일체형태에서 직접 파생되므로 자연적으로 보존 특성을 보유합니다.

FLOW-3D는 일반적인 유체 방정식의 다른 제한 사례에 해당하는 여러 모드에서 작동할 수 있습니다. 예를 들어, 하나의 모드는 압축 가능한 흐름을 위한 것이고 다른 하나는 압축할 수 없는 흐름 상황을 위한 것입니다. 후자의 경우 유체의 밀도와 에너지가 일정하다고 가정할 수 있으므로 계산할 필요가 없습니다. 또한 1유체 모드와 2유체 모드가 있습니다. 자유 표면은 단일 유체 비압축 모드에 포함될 수 있습니다. 이러한 작동 모드는 동작 방정식에 대한 다양한 선택에 해당합니다.

자유 표면은 FLOW-3D로 수행된 많은 시뮬레이션에서 존재합니다. 유량 매개변수와 재료 특성(밀도, 속도, 압력 등)이 불연속성을 경험하기 때문에 모든 계산 환경에서 자유 표면을 모델링하는 것은 어렵습니다. FLOW-3D에서는, 액체에 인접한 가스의 관성이 무시되고, 가스에 의해 점유되는 부피는 균일한 압력과 온도로만 표현되는 빈 공간, 질량의 공백으로 대체됩니다. 대부분의 경우 가스 모션의 세부 사항은 훨씬 무거운 액체의 움직임에 중요하지 않기 때문에 이 접근 방식은 계산 노력을 줄이는 이점이 있습니다. 자유 표면은 액체의 외부 경계 중 하나가 됩니다. 자유 표면의 경계 조건에 대한 적절한 정의는 자유 표면 역학을 정확하게 포착하기 위해 중요합니다.

VOF(Volume of Fluid) 방법은 이러한 목적으로 FLOW-3D에 사용됩니다. 유체 함수의 볼륨 정의, VOF 전송 방정식 해결 방법, 자유 표면의 경계 조건 설정 등 세 가지 주요 구성요소로 구성됩니다.

일부 물리 및 수치 모델은 Flow Science의 기술 노트: http://users.flow3d.com/technical-notes/ 에 자세히 설명되어 있으며, 여기에는 예제도 포함되어 있습니다.

접촉선의 고정(Contact Line Pinning)

접촉선의 고정(Contact Line Pinning)

증발하는 빗방울에서 남은 잔류의 물은 새로 씻은 자동차에서 좋지 못할 수 있습니다. 그러나, 동일한 증발 공정은, 예를 들어, 드롭 잔류 물이 인쇄 된 이미지 또는 텍스트의 일부가되는 잉크젯 인쇄에서 유리할 수있다. 그러나 동일한 증발 과정이 어떤 경우엔 도움이 될 수 있습니다 예를 들면, 잉크 찌꺼기가 인쇄 된 이미지나 텍스트의 일부가 되는 잉크젯 인쇄가 그렇습니다.

액체 방울의 증발로 인한 잔류의 물이 예상치 못한 방식으로 나타날 수 있습니다. 커피 링 얼룩이 잘 알려진 예이며, 커피의 잔류의 물이 물방울의 바깥 쪽 가장자리에 모여 얇은 원형 링 얼룩이 남습니다. 이 현상은 흥미로운 유체역학적인 과정의 결과입니다. 커피 링 얼룩이 형성 되려면 액체가 증착 된 고체 표면에 고정 된 접촉선이 있어야합니다. 고정 된 접촉선은 액체 방울이 고체 기판과 교차하는 액체 방울의 외부의 가장자리가 방울이 증발함에 따라 정지 상태를 유지함을 의미합니다. 증발은 기판의 열에 의해 발생하며 방울의 얇은 외부의 가장자리에서 가장 크게 생깁니다. 표면 장력은 액체가 증발하면서 손실 된 액체를 대체하기 위해 가장자리를 향해 발생하게 됩니다. 이는 결국 더 많은 용질을 가장자리로 운반하며 모든 액체가 증발 한 후, 결과적으로 커피 링 얼룩을 형성하게하는 더 높은 농도의 용질 잔류 물을 생성합니다.

모델링 접근법

FLOW-3D v12.0의 최신 업데이트로 인해 ‘접촉선의 고정’ 모델이 개발되었으며, 소프트웨어의 기능이 표면 장력 중심의 애플리케이션으로도 광범위하게 확장되었습니다. 표면 접촉의 고정 및 비고정 특성은 잉크젯 인쇄, 코팅 및 스프레이 냉각에서 중요한 역할을 합니다. 습윤 특성에 대한 표면 공법은 미세 유체 장치에서 액체 샘플의 이동을 제어하는 ​​데 사용될 수 있습니다. 모델의 주요 특징은 방울의 가장자리를 고정 위치에 고정하는 수단을 제공하는 것입니다. 형상 구성 요소 및 하위 구성 요소중에 표면에 ‘고정’ 속성을 지정할 수 있습니다. 유체의 접촉선은 처음 표면과 접촉하는 곳에 고정됩니다. 전방 속도를 0으로 유지하면 고정이 적용됩니다. 유체는 접촉선과 표면을 따라 이동하는 것이 아니라 롤오버하여 접촉점을 지나야만 이동할 수 있습니다.

커피 링 얼룩 검증

그림 1은 평평한 수평 표면에 놓인 원형 물방울의 결과를 보여줍니다. 표면은 30 ℃의 일정한 온도로 유지됩니다. 초기 유체 온도는 20 ℃이고 주변 공극의 온도는 일정한 20 ℃입니다. 유체는 밀도 0.967 g/cm3, 점도 0.02022 poise, 비열 1.645e+07 cm2/s/K, 열전도도 1.2964e+4 g*cm/s3/K, 표면 장력 계수 33.15 g/cm2의 일반적인 잉크를 나타냅니다.

그림 1. 고정 된 접촉선을 사용하여 건조 공정 중의 물방울 모양의 변화.

액적 표면의 초기 곡률 반경은 7.5e-03 cm이고, 차지하는 공간은 반경 4.5e-03 cm의 원이며, 겉보기의 초기 접촉각은 37.87 도입니다. 그림 1-a를 참조하시기 바랍니다. 지정된 정적 접촉각은 0 도입니다.

정압에 의한 상변화 모델이 활성화됩니다. 공극 내의 증기 분압은 0이고 상변화 수용 계수는 Rsize = 0.01 입니다.

잉크가 건조될 때 기판 상에 고체가 잔류하는 물이 형성되는 것을 포착하기 위해 잔류 물 모델도 켜집니다. 유체에 용해 된 안료의 농도는 초기 농도 0.01 g/cm3 이고 최대 농도 rmax = 1.1625 g/cm3 에서 운반이 가능한 스칼라로 표시됩니다. 용해 된 안료는 질량 평균을 기준으로 안료의 단위질량당 0.05 poise의 속도로 유체의 순 점도를 향상시킵니다.

이 공정은 3.0 도의 방위 방향으로 하나의 셀에 걸쳐있는 축 대칭 원통형 메쉬로 모델링됩니다. (x 간격 = 6e-05 cm, z 간격 = 4e-05 cm.)

그림 1은 유체가 증발함에 따라 접촉선이 고정 된 상태를 유지하고 있음을 보여줍니다. 0 도의 정적 접촉각 조건은 액적의 중심을 향한 압력 구배를 가져오고, 이는 접촉선 방향으로의 유동을 생성합니다. 용해 된 안료의 농도는 증발로 인해 자유 표면 근처에서 증가하며, 흐름을 따라 농도는 접촉선을 향해 더욱 재분배합니다. (그림 2). 액체가 계속 증발함에 따라, 남아있는 액체의 안료 농도는 증가합니다. 농도가 최대 rmax에 도달하면, 과잉된 안료는 고체가 잔류하는 물로 전환됩니다.

그림2. g / cm3 단위의 안료 농도 및 t = 2.0ms에서의 흐름 패턴. 흐름은 고정 된 접촉선을 향하여 안료 농도가 증가합니다.

접촉선 근처의 유체가 먼저 건조되어 고체가 잔류하는 물이 남습니다. 해당 영역의 유체에 안료 농도가 높기 때문에 고체가 잔류하는 물의 특징인 ‘커피 링’ 패턴이 기판 표면에 생성됩니다. (그림 3 및 4). 안료의 총 질량(용해 + 건조 잔류 물)은 초기 질량의 0.025 % 이내로 보존됩니다.

그림 3. 모든 유체가 증발 된 후 기판 표면에 건조된 잔류 물의 분포 (단위 : g / cm3) .
가장 높은 농도는 고정 된 접촉선의 위치에 있으며, 이는 ‘커피 링’ 효과를 만들어냅니다.
그림 4. 유체가 완전히 증발 한 후 초기 액적의 반경을 따라 건조된 잔류 물의 예상 분포.

물방울 벽의 검증

그림5. 수직 벽에 고정 된 물방울의 변형 : t = 0 ms (파란색), t = 4e-02 ms (연한 파랑) t = 0.2 ms (빨간색).
해당 이미지는 “Effects of microscale topography”, Y.V.Kalinin, V.Berejnov and R. E. Thorne, Langmuir 25, 5391-5397. (2009). 에서의 이미지입니다.

접촉선 고정 응용의 두 번째 예는 수직의 벽에 고정 된 한 방울의 액체 알루미늄의 거동입니다. 유체 밀도는 2.7 g / cm3, 표면 장력 계수 200 g / cm2 및 점도 0.27 poise입니다. 정적 접촉각은 0 도입니다.

초기의 겉보기의 접촉각이 90도가 되도록 반경 0.5cm의 물방울을 수직 벽에 놓습니다 (그림 5). 7e+06 cm/s2의 중력 크기는 표면 장력의 복원 작용을 없애고 액적이 눈에 띄도록 변형시키기 위하여 인위적으로 향상되었습니다. 결과들은 비슷한 크기의 물방울에 대한 실험 결과와의 질적 비교를 포함하여 그림 5에서 보여줍니다.

요약

FLOW-3D의 접촉선 고정 모델은 표면 장력 및 벽의 접착 기능을 확장하여 표면 공법에서 복잡한 상호 작용을 모델링합니다. 접촉선 고정이 실제로 응용되는 분야에 관하여 더 많은 예시와 추가적인 참조를 찾으신다면 여기에서 찾을 수 있습니다.

Cell Behavior

Cell Behavior

정밀하고 신중하게 제어되는 화학 반응성 구배를 생성 할 수있는 능력은 미세 유체학을 운동성, 화학성 및 소수의 미생물 집단에서 항생제에 대한 내성을 단기간에 진화시키고 개발하는 능력을 연구하는 이상적인 도구가 됩니다. FLOW-3D는 연구자들이 아래 예제에 표시된 것처럼 새롭고 더 나은 gradient generators를 고안하는 데 도움이 될 수 있습니다.

1-D Gradient generator with de-coupled convection and diffusion

FLOW-3D를 사용한 이 1-D 미세유체 팔레트 시뮬레이션에서는 표시된 흐름선을 통해 주 중앙 마이크로 채널에서 대류 셀의 깨끗한 디커플링을 확인할 수 있습니다. 이 흐름은 모두 대류 단위로만 제한되며 마이크로 채널로 유출되는 단 한 개의 흐름도 없어 대류 및 확산의 디커플링이 우수합니다. 소스 농도의 진화는 그림에서 볼 수 있으며, 애니메이션이 끝날 때쯤이면 눈에 띄게 일정해집니다.

This FLOW-3D simulation of a 2-D microfluidic palette demonstrates a spatio-temporal control on the generated gradients. The source and sink are rotated at an angular velocity. Also, after every t seconds, the active access port is deactivated and the next port is turned on. To see the live status of the diffusion inside the chamber, three line probes are placed in the simulation (marked in red, blue and black, respectively, in the bottom right window of the simulation).2-D 마이크로 유체 팔레트의 이  FLOW-3D 시뮬레이션은 생성된 그라데이션에 대한 spatio-temporal 제어를 보여줍니다. 소스 및 sink는 각 속도로 회전합니다. 또한 t초마다 활성 액세스 포트가 비활성화되고 다음 포트가 켜집니다. 챔버 내부의 확산 상태를 확인하기 위해 시뮬레이션에 세 개의 라인 프로브가 배치됩니다(시뮬레이션의 오른쪽 하단 창에 각각 빨간색, 파란색 및 검은색 표시).

Read the Microfluidic Palette – A Gradient Generator blog.

FLOW-3D 튜토리얼 V12

FLOW-3D 튜토리얼 V12

빠른 시작

이 튜토리얼 매뉴얼은 FLOW-3D 처음 사용하는 사용자에게 그래픽 사용자 인터페이스(GUI)의 주요 구성 요소를 쉽게 익히도록 하고, 다양한 시뮬레이션의 설정 및 실행 방법을 안내하기 위한 것입니다.

이 매뉴얼에 있는 실습과정은 FLOW-3D의 기본 사항을 다루기 위한 것입니다. 이 매뉴얼에서 제시하는 문제는 다양한 주제를 설명하고, 발생할 수 있는 많은 질문을 해결하기 위해 선정되었습니다. 이 매뉴얼의 실습과정은 FLOW-3D실행하는 컴퓨터에 앉아 사용하는 것이 가장 좋습니다.

CFD 사용 철학에 대한 간단한 섹션 다음에는 중요 파일과 시뮬레이션 파일을 실행하는 방법이 소개되어 있습니다. 이 소개 섹션 다음에는 모델 설정, 시뮬레이션 실행 및 포스트 프로세스, Simulation Manager 탐색 방법에 대한 설명이 있습니다. 이러한 각 단계에 대한 자세한 내용은 모델 설정, 컴퓨팅 결과 및 후처리 장에서 확인할 수 있습니다.

1.CFD 사용에 대한 철학

CFD (Computational Fluid Dynamics)는 유체 흐름(질량, 운동량 및 에너지 보존)에 대한 지배 방정식의 컴퓨터 솔루션입니다. 지정된 지배방정식은 이론 장에 설명된 Numerical방법을 사용하여 이산화되고 계산됩니다.

CFD 소프트웨어를 사용하는 것은 여러 면에서 실험을 설정하는 것과 유사합니다. 실제 상황을 시뮬레이션하기 위해 실험을 올바르게 설정하지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 같은 방법으로 수치 모델이 실제 상황을 정확하게 나타내지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 사용자는 어떤 것이 중요한지, 어떻게 표현해야 하는지를 결정해야 합니다. 시작하기 전에 다음과 같은 질문을 하는 것이 중요합니다.

  • CFD 계산에서 무엇을 알고 싶습니까?
  • 중요한 현상을 포착하기 위해 규모와 Mesh는 어떻게 설계되어야 하는가?
  • 실제 물리적 상황을 가장 잘 나타내는 경계 조건은 무엇입니까?
  • 어떤 종류의 유체를 사용해야합니까?
  • 이 문제에 어떤 유체 특성이 중요합니까?
  • 다른 어떤 물리적 현상이 중요합니까?
  • 초기 유체 상태는 어떻게 됩니까?
  • 어떤 단위 시스템을 사용해야합니까?

모델링 되는 문제가 실제 상황을 가능한 한 유사하게 나타내는지 확인하는 것이 중요합니다. 사용자는 복잡한 시뮬레이션 작업을 해결 가능한 부분으로 나누는 것이 좋습니다.

복잡한 물리 효과를 추가하기 전에, 간단하고 쉽게 이해할 수 있는 근사값으로 점차적으로 시작하여 프로세스 진행하십시오. 간단한 손 계산(베르누이 방정식, 에너지 균형, 파동
전파, 경계층 성장 등)은 물리 및 매개 변수를 선택하는데 도움이 되고, 결과와 비교할 수 있는 점검항목을 제공합니다.

CFD의 장단점을 이해하면 분석을 진행하는데 도움이 될 수 있습니다. CFD는 다음과 같은 경우 탁월한 분석 옵션입니다.

  • 기하 구조, 물리학 또는 필요한 상세 수준으로 인해 표준 엔지니어링 계산이 유용하지 않은 경우가 많습니다.
  • 실제 실험은 비용이 많이 소요됩니다.
  • 실험에서 수집할 수 있는 것보다 유체흐름에 대한 자세한 정보가 필요한 경우 유용합니다.
  • 위험하거나 적대적인 조건, 확장이 잘되지 않는 프로세스 등으로 인해 정확한 실험 측정을 하기가 어려운 경우
  • 복잡한 흐름 정보에 대한 커뮤니케이션

CFD는 다음과 같은 경우에 덜 효과적입니다.

  • 솔루션이 계산 리소스가 매우 많이 소요되거나, 도메인 크기를 줄이기 위한 가정 또는 해결되지 않은 물리적 현상을 설명하기 위한 반 임계 모델이 필요한 경우
  • CFD 시뮬레이션에 대한 입력이 되는 중요한 물리적 현상이 알려지지 않은 경우
  • 물리적 현상이 잘 이해되지 않거나 매우 복잡한 경우

CFD를 사용할 때 명심해야 할 몇 가지 중요한 참고 사항이 있습니다.

  • CFD는 규정된 초기 및 경계 조건에 따라 지정된 지배 방정식의 수치해석 솔루션입니다. 따라서 모델 설정, 즉 어떤 방정식을 풀어야 하는지, 재료 특성, 초기 조건 및 경계 조건이, 가능한 한 물리적 상황과 최대한 일치해야 합니다.
  • 방정식의 수치 해는 일반적으로 어떤 종류의 근사치를 필요로 합니다. 물리적 모델에 대한 가정과 해결방법을 검토한 후 사용하는 것이 좋습니다.
  • 디지털 컴퓨터는 숫자가 유한 정밀도로 이진수로 표시되는 방식으로 인해 반올림 오류가 발생합니다. 이는 문제를 악화시키기 때문에 매우 근소한 숫자의 차이를 계산해야 하는 상황을 피하십시오. 이러한 상황의 예는 시뮬레이션 도메인이 원점에서 멀리 떨어져 있을 때입니다.

 

2.중요한 파일

FLOW-3D 시뮬레이션과 관련된 많은 파일이 있습니다. 가장 중요한 것들이 아래에 설명되어 있습니다. 모든 prepin.* 파일의 명칭에서 prepin는 파일 형식을 의미하며, 별표시* 위치는 시뮬레이션 이름을 의미합니다. ( : prepin.example_simulation.)

  • ·prepin.*: 시뮬레이션용 입력 파일입니다. 시뮬레이션 설정을 설명하는 모든 입력 변수가 포함되어 있습니다.
  • ·prpgrf.*: 이것은 전 처리기 출력 파일입니다. 여기에는 계산된 초기 조건이 포함되며 시뮬레이션을 실행하기 전에 설정을 확인하는 데 사용될 수 있습니다.
  • ·flsgrf.*: 솔버 출력 파일입니다. 시뮬레이션의 최종 결과가 포함됩니다.
  • ·prperr.*, report.*, prpout.*: 이 파일들은 Preprocessor Diagnostic Files.
  • ·hd3err.*, hd3msg.*, hd3out.*: 이 파일들은 Solver Diagnostic Files.

모든 시뮬레이션 파일은 단일 폴더에 함께 유지하므로, 설명이 될 수 있는 시뮬레이션 이름을 사용하는 것이 좋습니다. 그러나 매우 긴 파일 이름은 운영 체제에 따라 문제가 될 수 있습니다.

노트

  • 시뮬레이션 이름이 inp(즉, 입력 파일이 있다면 prepin.inp) 출력 및 진단 파일은 모두 .dat이름을 갖습니다. 예: flsgrf.dat.
  • 모든 입력 파일은 네트워크 위치의 컴퓨터 대신 로컬 디렉토리에 저장하는 것이 좋습니다. 이것은 솔버가 더 빠르게 실행되고 GUI의 응답 속도가 빨라지며 실행중인 시뮬레이션을 방해하는 네트워크 문제 가능성을 제거합니다.

3.시뮬레이션 관리자

FLOW-3D 시뮬레이션 관리자의 탭은 주로 시뮬레이션을 실행할 수 있도록 시뮬레이션 환경을 구성하고 실행 시뮬레이션에 대한 상태 정보를 표시하는데 사용됩니다.

작업 공간 (Workspaces)

작업 공간(Workspaces)Simulation Manager의 필수 부분이며 파일을 FLOW-3D에서 처리하는 방식입니다. 기본적으로 시뮬레이션을 포함하고 구성하는 폴더입니다. 몇 가지 예를 들면 시뮬레이션과 또 다른 작업 공간인 검증 사례를 포함하도록 할 수 있습니다:

포트폴리오의 작업 공간

새로운 작업 공간 만들기

튜토리얼에서는 작성하려는 시뮬레이션을 포함할 작업 공간(Workspaces)을 작성하십시오.

1.File -> New workspace 이동

2.작업 공간 이름으로 Tutorial를 입력하십시오.

3.기본 위치는 현재 사용자의 홈 디렉토리에 있습니다. 다른 곳에서 찾을 수 있지만 기본 위치가 우리의 목적에 적합합니다.

4.하위 디렉토리를 사용하여 작업 공간 이름 만들기 확인란을 선택합니다. 이렇게 하면 파일 시스템에서 작업 공간에 대한 새로운 하위 디렉토리가 만들어져 시뮬레이션 파일을 훨씬 쉽게 구성할 수 있습니다.

새로운 작업 공간 만들기

5.확인을 눌러 새 작업 공간을 작성하십시오. 이제 포트폴리오에 표시됩니다.

새로운 작업 공간 만들기

작업 공간 닫기

포트폴리오를 정리하고 탐색하기 쉽도록 필요 없는 작업공간을 닫는 것이 편리합니다. 작업 공간을 닫으면 포트폴리오에서 해당 작업 공간만 제거됩니다. 그러나, 컴퓨터에서 작업 공간을 삭제하지는 않습니다.

작업 공간을 닫으려면

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 작업 Close Workspace 선택하십시오. 또는 포트폴리오에서 작업 공간을 선택 (왼쪽 클릭) 하고 Delete 키를 누를 수 있습니다.

2.작업 공간을 닫을 것인지 묻는 메세지가 표시됩니다. 예를 선택하십시오.

3.포트폴리오는 더 이상 닫힌 작업 공간을 포함하지 않습니다.

기존 작업 공간 열기

오래된 작업 공간을 열어야 할 때가 있을 것입니다. 예를 들어, 새 프로젝트에 유사한 시뮬레이션을 작성하기 전에 기존 시뮬레이션의 설정을 검토할 수 있습니다. 기존 작업 공간을 열려면

1.File -> Open Workspace를 선택하십시오

2.작업 공간 파일이 있는 디렉토리를 찾으십시오. Tutorial.FLOW-3D_Workspace.

작업 공간 열기

3.작업 공간을 로드 하려면 OK누르십시오.

작업 공간에서 시뮬레이션 작업

작업 공간을 사용하는 방법을 알았으니, 여기에 시뮬레이션을 추가해 봅시다.

Example를 추가하십시오

작업 공간에 작업 시뮬레이션을 추가하는 가장 간단한 방법은 포함된 예제 시뮬레이션 중 하나를 추가하는 것입니다. FLOW-3D의 다양한 기능을 사용하는
방법을 보여주기 위해 설계된 간단하고 빠른 시뮬레이션입니다. 기존 작업 공간에 예제를 추가하려면 다음을 수행하십시오.

1.포트폴리오에서 원하는 작업 공간을 강조 표시하십시오

2.File -> Add example 선택하십시오. 또는 작업공간을 마우스 오른쪽 버튼으로 클릭하고 예제 추가선택할 수 있습니다.

3.예제 대화 상자에서 예제를 선택하고 열기를 누르십시오. 자연 대류(Natural Convection) 예제를 선택했습니다.

시뮬레이션 예제 추가

4.새 시뮬레이션 대화 상자가 열립니다.

5.디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋으므로 기본 시뮬레이션 이름과 위치를 잘 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 쉽게 만들어 줍니다.

6.시뮬레이션을 위한 단위 시스템을 선택하십시오. 표준 단위 시스템이 권장되지만 각 단위를 독립적으로 선택하기 위해 사용자 지정 단위 시스템을 선택할 수 있습니다.

7.확인을 눌러 새 시뮬레이션을 작업 공간에 추가하십시오.

작업 공간에서의 시뮬레이션

작업 공간에서 시뮬레이션 제거

작업 공간에서 시뮬레이션을 제거해야 하는 경우가 있습니다 (이는 작업 공간에서 시뮬레이션을 제거만 하며, 컴퓨터에서 시뮬레이션을 삭제하지는 않습니다). 작업 공간에서 시뮬레이션을 제거하려면 다음을 수행하십시오.

1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 시뮬레이션 제거를 선택하십시오. 또는 작업 공간에서 시뮬레이션을 선택 (왼쪽 클릭)하고 Delete 키를 누를 수 있습니다.

2.작업 공간에는 더 이상 시뮬레이션이 포함되지 않습니다.

모든 작업 공간 및 디스크에서 시뮬레이션 삭제

작업 공간에서 시뮬레이션을 제거하는 것 외에도 디스크에서 모든 시뮬레이션 파일을 삭제해야 할 수도 있습니다. 작업 공간에서 시뮬레이션을 제거하고 디스크에서 시뮬레이션
파일을 삭제하려면 다음을 수행하십시오.

1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 단추로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 모든 작업 공간 및 디스크에서 시뮬레이션
삭제를
선택하십시오.

2.시뮬레이션 디렉토리에서 삭제할 파일을 선택할 수 있는 창이 나타납니다. 삭제할 파일을 선택한 다음 확인을 눌러 해당 파일을 삭제하거나 취소를 눌러 작업을 중단하십시오.

3.OK를 선택한 경우 선택한 작업 공간은 더 이상 시뮬레이션을 포함하지 않습니다. 선택한 작업 공간의 모든 시뮬레이션 파일은 디렉토리에서 삭제됩니다.

경고

이 작업은 취소할 수 없으므로 계속하기 확인 후 파일을 삭제해야 합니다.

작업 공간에 기존 시뮬레이션 추가

기존 시뮬레이션을 작업 공간에 추가하려면 다음을 수행하십시오.

1.열린 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 기존 시뮬레이션 추가 선택합니다. 작업 공간을 선택한 다음 File->Add Existing Simulation 을 선택할 수도 있습니다.

2.prepin.*파일 위치로 이동하여 열기를 선택하십시오.

작업 공간에 기존 시뮬레이션 추가

3.시뮬레이션이 이제 작업 공간에 나타납니다.

작업 공간에 새로운 시뮬레이션 추가

대부분의 경우 기존 시뮬레이션을 사용하는 대신 새 시뮬레이션을 작성하게 됩니다. 작업 공간에 새로운 시뮬레이션을 추가하려면:

1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 새 시뮬레이션 추가 선택하십시오.

2.시뮬레이션 이름을 입력하라는 message가 표시됩니다. 이 예제에서는 heat transfer example 불러오십시오.

3.그런 다음 드롭다운 목록을 사용하여 시뮬레이션을 위한 단위 시스템을 결정합니다. 사용 가능한 옵션은 질량, 길이, 시간, 전기요금
각각 g, cm, s, coul기준의 Kg, m, s, CGS입니다. 또한 엔지니어링 단위도 사용할 수 있으며, slug, ft, s의 기초 단위가 있지만, 전기
충전을 위한 단위는 없습니다. 이러한 옵션 중 어느 것도 해당되지 않는 경우, 질량, 길이, 시간 및 전기요금에 대한 기준 등을 사용자 정의하여 사용자 지정 단위 시스템을 사용할 수 있습니다.

4.온도 단위는 드롭다운 목록을 사용하여 지정해야 합니다. 사용 가능한 옵션은 SI CGS 단위의 경우 Celsius
Kelvin, 엔지니어링 단위의 경우 Fahrenheit Rankine입니다. Custom units(사용자 정의 단위) 옵션을 선택한 경우, 사용 가능한 온도 단위는 질량
및 길이에 대해 선택한 기본 단위에 따라 변경됩니다.

노트

새 시뮬레이션의 시뮬레이션 단위는 신중하게 선택하십시오. 일단 설정하면 단위를 변경할 수 없습니다.

5.이 시뮬레이션에 사용된 템플릿이 기본 템플릿이 됩니다. 템플릿은 포함된 설정을 새 시뮬레이션에 적용하는 저장된 값 세트입니다. 다른 템플릿을 사용해야하는 경우
찾아보기 아이콘 (
browse_icon_v12)을 클릭하여 사용 가능한 템플릿 목록에서 선택하십시오.

6.기본 시뮬레이션 이름과 위치는 디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 훨씬 쉽게 만듭니다. 시뮬레이션을 다른 위치에 저장하려면 찾아보기 아이콘 ( browse_icon_v12)을 사용하여 원하는 위치로 이동하십시오.

7.확인을 클릭하여 작업 공간에 새 시뮬레이션을 추가하십시오.

heat transfer example

새로운 시뮬레이션 추가

다른 옵션

우리는 지금 이러한 옵션을 사용하지 않는 동안, 이 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하여 추가 옵션에 대한 액세스를 제공합니다.

일반적으로 사용되는 Add Simulation Copy… 그리고 Add Restart Simulation…을 추가합니다. 첫 번째 옵션은 기존 시뮬레이션의 사본을
작성하고, 두 번째 옵션은 기존 시뮬레이션을 복사하고 원래 시뮬레이션의 결과를 다시 시작 시뮬레이션의 초기 조건으로 사용하도록 다시 시작 옵션을 구성합니다.

추가 정보

재시작 시뮬레이션에 대한 자세한 내용은 도움말에서 모델 설정 장의 재시작 섹션을 참조하십시오.

전처리 및 시뮬레이션 실행

시뮬레이션 전처리

시뮬레이션 전처리는 초기 조건을 계산하고 입력 파일에서 일부 진단 테스트를 실행합니다. 문제가 올바르게 구성되었는지 확인하거나 전 처리기의 진단 정보가 필요한 경우에
유용합니다. 시뮬레이션을 실행하기 전에 전처리할 필요가 없습니다. 시뮬레이션을 전처리 하려면

1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Preprocess Simulation->Local 선택합니다. 이 경우 입력 파일 heat transfer example이 아직 완전히 정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.

2.전처리 프로세스가 시작되고 Simulation Manager 하단의 텍스트 창에 일부 정보가 인쇄된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의 아이콘도 시뮬레이션이 성공적으로 처리되었음을 나타내도록 변경됩니다.

추가 정보

자세한 내용은 도움말의 컴퓨팅 결과 장의 전처리 섹션을 참조하십시오.

시뮬레이션 실행

시뮬레이션을 실행하면 입력 파일에 정의된 문제에 대한 지배 방정식(물리적 모델, 형상, 초기 조건, 경계 조건 등)이 해석됩니다. 시뮬레이션을 실행하려면

1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Run Simulation->Local을 선택하십시오. 이 경우 입력 파일 heat transfer example이 아직 완전히
정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.

2.솔버가 시작되고 시뮬레이션 관리자 하단의 텍스트 창에 일부 정보가 인쇄되고 플롯이 업데이트 된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의
아이콘도 시뮬레이션이 성공적으로 실행되었음을 나타내도록 변경됩니다. 또한 솔버가 실행되는 동안 큐에 시뮬레이션이 나타나는 것을 볼 수 있으며, 완료되면 사라집니다
.

추가 정보

시뮬레이션 실행 및 진단 읽기에 대한 자세한 내용은 도움말의 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.

작업 공간에서 모든 시뮬레이션 실행

작업 공간을 마우스 오른쪽 버튼으로 클릭하고 Simulate Workspace->Local을 선택하여 작업 공간에서 모든 시뮬레이션을 실행할 수도 있습니다.

추가 정보

자세한 내용은 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.

대기열

사전 처리 또는 실행에 작업이 제출되면 큐의 맨 아래에 시뮬레이션이 자동으로 추가됩니다. 그런 다음 솔버에 사용 가능한 라이센스 및 계산 리소스가 있으면 시뮬레이션이 사전 처리되거나 실행됩니다. 대기열에 있지만 아직 전처리 또는 실행되지 않은 시뮬레이션은 대기열 맨 아래의 컨트롤을 사용하여 대기열에서 다시 정렬하거나 대기열에서 제거할 수 있습니다.

추가 정보

자세한 내용은 컴퓨팅 결과 장을 참조하십시오.

파일 시스템에서 파일 찾기

어떤 이유로 구조물 파일에 액세스해야 하는 경우 (아마 *.STL 폴더에 파일을 배치해야 함) 표시된 파일 경로를 시뮬레이션 입력 파일로 클릭하여 파일 시스템의 해당 위치로 이동할 수 있습니다.

파일 링크

4.모델 설정

Model Setup(모델 설정) 탭은 시뮬레이션 관리자에서 현재 선택한 시뮬레이션에 대한 입력 매개 변수를 정의하는 곳입니다. 여기에는 전역설정, 물리학 모델, 유체,
기하학, 메싱, 구성요소 특성, 초기 조건, 경계 조건, 출력 옵션 및 숫자가 포함된다.

이 섹션은 물에 잠긴 모래(; 파랑)의 바닥에서 가열된 구리 블록(; 빨간색)에 의해 발생하는 열 기둥(아래)을 보여주는 간단한 시뮬레이션 설정 방법을 안내합니다.

예제 문제

이 튜토리얼은 방법이나 모델이 어떻게 작동하는지, 옵션을 선택한 이유 등에 대한 포괄적인 논의를 의도한 것이 아니며, 이 특정 시뮬레이션을 설정하기 위해 수행해야 할 사항에
대한 간략한 개요일 뿐입니다. 여기서 행해지는 것에 대한 방법/모델과 추론의 세부사항은 사용 설명서의 다른 장에서 확인할 수 있습니다.

시작하려면 새 작업 공간을 작성하고 새 시뮬레이션을 추가하십시오. 이를 수행하는 방법에 대한 지침은 새 작업 공간 작성 및 작업 공간에 새 시뮬레이션 추가를 참조하십시오.

탐색

모델 설정은 주로 빨간색으로 표시된 처음 9 개의 아이콘의 탐색을 통해 수행됩니다. 각 아이콘은 시뮬레이션의 특정 측면을 구성하기 위한 위젯을 엽니다. Global에서 시작하여 Numerics로 끝나는 다음 섹션은 각 위젯의 목적을 보여줍니다.

시뮬레이션의 다양한 측면을 정의하기위한 탐색 아이콘

통제 수단

다음은 FLOW-3D 사용자 인터페이스의 그래픽 디스플레이 영역에서 사용되는 마우스 컨트롤입니다.

행동

버튼/

동작

기술

회전

왼쪽

길게 클릭

마우스 왼쪽 버튼을 클릭 한 채로 Meshing & Geometry 창에서
마우스를 움직입니다. 그에 따라 모델이 회전합니다.

중간 버튼/스크롤

스크롤/클릭 한
상태

마우스를 앞뒤로 움직여 확대/축소하려면 가운데 휠을 굴리거나 마우스 가운데 버튼을 클릭
한 상태로 유지하십시오.

우측

길게 클릭

마우스 오른쪽 버튼을 클릭 한 채로 창에서 마우스를 움직입니다. 모델이 마우스와 함께 움직입니다.

객체에 초점 설정

해당 없음

객체 위에 커서를 놓기

커서를 개체 위로 가져 가면 마우스 오른쪽 버튼 클릭 메뉴를
통해 추가 조작을 위해 개체가 활성화됩니다. 개체가 활성화되면 강조 표시됩니다. Meshing & Geometry 탭에서 Tools->
Mouse Hover
Selection
환경 설정 이 활성화된 경우에만
수행됩니다.

선택

왼쪽

더블 클릭

객체를 두 번 클릭하면 마우스 오른쪽 버튼 메뉴를 통해 추가
조작을 위해 객체를 선택하고 활성화합니다. Meshing
& Geometry
탭에서 Tools
->Mouse Hover Selection 환경 설정 이
비활성화 된 경우에만 활성화됩니다.

액세스 객체 속성

우측

딸깍 하는 소리

강조 표시된 객체를 마우스 오른쪽 버튼으로 클릭하면 객체
식별, 표시/숨기기, 활성화/비활성화, 투명도 조정 등의 옵션 목록이 표시됩니다.

커서 좌표 반환 (프로브)

왼쪽

Shift + 클릭

Shift 키를 누르면 커서가 대상으로 바뀝니다. Shift 키를 누른 상태에서 클릭하면 화면의 왼쪽 하단에 표시된 표면의 좌표가 표시됩니다.

피벗 점 배치

왼쪽

cntrl + 클릭

Ctrl 키를 누르고 있으면 커서가 피벗 아이콘으로 바뀝니다. Ctrl 키를 누른 상태에서 클릭하여 피벗 점을 설정하십시오. 뷰가
피벗 점을 중심으로 회전합니다. 토글 사용자 정의 피벗 피벗 점을 끕니다.
보기 창 위의 버튼을 누릅니다.

도움이
되는 툴바 옵션도 있습니다. 옵션의 목적을 찾으려면 아이콘 위로 마우스를 가져갑니다.

메시 및 지오메트리 탭의 컨트롤

글로벌

이 매뉴얼에 대한 시뮬레이션을 만들려면 원하는 작업 공간을 마우스 오른쪽 단추로 클릭하고 새 시뮬레이션 추가를 선택하십시오. 매뉴얼 섹션의 새 시뮬레이션 추가 작업 공간에 설명된 대로 이름을 ‘heat transfer example’로 지정하고 작업 공간에 추가하십시오. SI Kelvin을 각각 단위 시스템과 온도로 선택합니다. 일단 설정되면
시뮬레이션을 위한 단위는 변경할 수 없다는 점을 기억하십시오.

글로벌 아이콘 f3d_global_icon을 클릭하여 글로벌 위젯을 여십시오. 여기에서 정의된 단위가 표시되고 시뮬레이션 완료 시간이 설정됩니다. 이 시뮬레이션의 경우 완료 시간을 200 초로 설정하십시오. 시뮬레이션에 대한 중요한 세부 정보는 여기 노트 필드에도 추가할 수 있습니다.

글로벌 탭 예를 들어 문제

추가 정보

자세한 내용은 모델 설정 장의 전역 섹션을 참조하십시오.

물리

물리 f3d_models_icon아이콘을 클릭하여 물리 위젯을 엽니다.

모델 선택을위한 물리 위젯

이 문제의 경우, 하나의 유체, 자유 표면, 경계 및 비압축/제한 압축의 기본 설정이 모두 정확합니다.

관련 물리 메커니즘(, 추가 지배 방정식 또는 지배 방정식 용어)은 물리 위젯에서 정의됩니다. 모델을 활성화하려면 해당 모델의 아이콘을 마우스 왼쪽 버튼으로 클릭하고활성화 선택하십시오. 이 시뮬레이션을 위해서는 다음 모델을 활성화해야 합니다.

·Density evaluation(밀도 평가): 이 모델은 열 기둥을 생성하는 밀도 변화를 설명합니다. 다른 양(: 온도 또는 스칼라)의 함수로 평가된 밀도를 선택하고 Include volumetric thermal expansion 상자를 선택하십시오.

문제 평가를위한 밀도 평가 모델

·Gravity and non-inertial reference frame(중력 및 비 관성 기준 프레임): 중력을 나타내는 힘이 추가되므로 Z 중력 성분에 -9.81을 입력하십시오.

예를 들어 중력 모델

·
Heat transfer(열 전달): 이 모델은 유체와 고체 물체 사이의 열 전달을 설명합니다. 이 시뮬레이션의 경우 First order for the Fluid internal Energy advection를 선택하고 Fluid to solid heat transfer를 활성화하려면 확인란을 선택하십시오. 나머지 옵션은 기본값으로 두어야합니다.

열전달 모델 예 : 문제

·
Viscosity and turbulence(점성 및 난류): 이 모델은 유체의 점성 응력을 설명합니다. Viscous flow 옵션을 선택하고 나머지 옵션은 기본값으로 두십시오.

예를 들어 문제의 점도 모델

추가 정보

자세한 내용은 모델 설정 장의 물리 섹션을 참조하십시오.

유체

유체의 속성은 모델 설정 탭의 유체 위젯에 정의되어 있습니다. 유체 위젯은 수직 도구 모음에서 Fluids f3d_fluids_icon f3d_fluids_icon아이콘을 클릭하여 액세스할 수 있습니다. 먼저 유체 옵션 1 이 속성 옵션으로 선택되어 있는지 확인하십시오. 유체 1의 속성은 수동으로 입력할 수 있지만 일반적인 유체의 속성을 설정하는 빠른 방법은 재료 속성로드 버튼Matdatbas을 클릭하여 재료 데이터베이스에서 유체를 로드하는 것입니다. 다음으로, 원하는 재료를 탐색하십시오. 이 경우 Fluids->Liquids->Water_at_20_C를 선택하고 Load를 클릭하십시오.

이 시뮬레이션에는 데이터베이스에 없는 특성인 체적 열 팽창 계수가 필요합니다. 밀도 하위 탭에서 207e-6을 입력하십시오. 최종 속성 세트는 다음과 같아야 합니다.

유체 특성 (예 : 문제)

추가 정보

자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.

Geometry(기하)

기하형상 f3d_geometry_icon아이콘을 클릭하여 물리 위젯을 엽니다.

이 시뮬레이션을 위해 생성해야 하는 두 가지 형상은 구리 블록과 모래층이 있습니다. 둘 다 프리미티브를 사용하여 작성합니다. 보다 현실적인 시뮬레이션은 Primitives, Stereolithography(STL) Geometry File (s)/또는 Raster File (s)을 사용하여 지오메트리를 정의할 수 있습니다.

구리 블록을 만들려면 먼저 지정된 상자 형상 아이콘을 클릭하여 작성합니다. 구리 블록을 x y 방향 원점에서 +/- 2cm 연장하고 z 방향으로 0-4cm 연장합니다. 나머지 옵션은 그대로 두고 블럭을 솔리드로 만들고 새 구성 요소에 추가합니다.

예제 문제에 대한 구리 블록 정의

하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 자동으로 열린 구성요소 추가 대화상자에서 Type as General(솔리드)을 그대로 두고 Name(이름) 필드에 Copper block을 입력한 다음 OK(확인)를 선택하여 구성요소 정의를 완료하십시오.

상자아이콘을 다시 클릭하여 베드 하위 구성 요소를 작성하십시오. 아래 표시된 범위를 사용하고 컴포넌트에 추가 선택 사항을 새 컴포넌트(2)로 설정하십시오.

예를 들어 침대 문제 정의

하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 대화 형으로 이름 필드에서Bed를 입력한 후 구성요소 정의를 마칩니다. 최종 형상은 다음과 같이 표시됩니다.

예제 문제에 대한 형상 정의

새 구성 요소를 추가하면 가로 및 세로 방향으로 그래픽 표시 창에 길이 스케일이 자동으로 생성됩니다. 눈금자 도구를 사용하여 생성된 기하학적 객체의 범위를 빠르게 측정할 수 있습니다.

노트

표시 영역에는 지오메트리 모양 정의만 표시되므로 객체가 솔리드인지 구멍인지에 대한 정보는 표시되지 않습니다. 즐겨 찾기옵션을 사용하여 Mesh 후에 나중에 수행할 수 있습니다.

추가 정보

자세한 내용은 도움말 모델 설정 장의 형상 섹션을 참조하십시오.

구성 요소 속성

열전달 모델은 고체 구성 요소의 전도 방정식을 해결하기 위해 재료 특성이 필요합니다. 이러한 속성은 이 아이콘f3d_geometry_icon을 클릭하여 구성 요소 속성 위젯에서 설정합니다.

구성 요소 특성 위젯

각 구성 요소에는 솔리드 특성 및 표면 특성이 정의 되어 있어야합니다. 구리 블록에 대해 이를 설정하려면 먼저 형상 위젯에서 구성 요소 1: copper block 요소를 선택하십시오. 그런 다음 컴포넌트 특성 위젯에서 솔리드 특성을 선택하고 다음과 같이 특성을 정의하십시오.

구리 블록 고체 특성

여기에서 두 번째 구성 요소(베드)에 대해 설명된 구성 요소 특성 정의를 위한 대체 방법을 사용할 수 있습니다. 이 방법에서는 구성 요소 2: 베드 구성 요소를 클릭하고 재료 필드 옆에 있는 재료 특성로드 Matdatbas 아이콘을 선택하여 시작합니다. 다음으로 재료를 탐색합니다. 이 경우 Solids->Sands->Sand_Quartz 선택하고 Load를 선택하십시오.

베드 솔리드 속성

추가 정보

l 자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.

l 주어진 물리적 모델에 필요한 속성에 대한 자세한 내용은 모델 참조 장을 참조하십시오.

Meshing(메싱)

Mesh Mesh 위젯에서 생성 및 정의되며, 위젯을 통해 액세스 할 수 있습니다. f3d_mesh_icon아이콘을 눌러 add_iconMesh를 추가합니다. Mesh의 범위를 형상에 빠르게 적용하려면 형상에 맞추기 라디오 버튼을 선택하고 오프셋 라디오 버튼을 백분율로 유지합니다. 블록 속성에서 셀 크기를 0.004로 설정하십시오.

메시 블록을 형상에 맞추기

Mesh 상단은 z 방향으로 위쪽으로 확장해야 합니다. Z-Direciton 탭을 선택하고 Mesh Plane 2 0.2를 입력합니다.

z 높이 조정

이 시뮬레이션은 2D가 될 것입니다. 동일한 프로세스에 따라 Y 방향 범위를 -0.005 0.005 로 설정하십시오. 그리고 합계 셀을 1로 설정하십시오.

y 메쉬 평면 조정

최종 Mesh는 그래픽 디스플레이 창 바로 위의 Mesh->Flow Mesh->View 모드 드롭 다운 메뉴에서 옵션을 변경하여 다른 방식으로 볼 수 있습니다. 그리드 라인 마다 그리드 선을 표시합니다 옵션은 Mesh Plane의 옵션만 표시됩니다 Plane Mesh 및 개요 옵션은 Mesh의 범위를 보여줍니다.

또한 솔버가 Mesh의 최종 지오메트리를 인식하는 방법은 FAVOR TM 알고리즘을 사용하여 형상 정의를 면적 분수 및 부피 분수로 변환합니다. 이렇게 하려면 즐겨 찾기아이콘을 클릭한 다음 생성을 선택하십시오.

호의

잠시 후 회색 영역이 고체 물질을 나타내는 아래와 같은 형상을 표시해야 합니다.

선호하는 결과

추가 정보

l Mesh에 대한 자세한 내용은 모델 설정 장의 Mesh 섹션을 참조하십시오.

l FAVORTM FAVORize
옵션에 대한 자세한 내용은 모델 설정 즐겨 찾기장의 Reviewing the FAVORized Geometry and Mesh 섹션을 참조하십시오.

경계 조건

FLOW-3D는 구성 요소 유형 및 활성 물리적 모델에 기초한 구성 요소에 적절한 경계 조건을 자동으로 적용합니다. 그러나 경계 조건 위젯에서 Mesh 블록면의 경계 조건은 각 Mesh 블록에 대해 수동으로 설정해야 합니다(f3d_bc_icon ).

이 매뉴얼의 경우 경계 조건 중 3 가지가 경계조건( X Min , X Max, Z Max 경계)을 기본 대칭 조건조건부터 변경해야 합니다.

·X Min :

o경계 조건 위젯의 경계 섹션 아래에 있는 X Min 목록을 클릭하십시오. Type에서 경계 유형을 Velocity로 설정하고 X 속도에 대해 0.001을 입력하십시오.

XMIN 경계 조건

·다음으로, 유체 분율 사용에서 유체 표고 사용으로 드롭다운 상자를 변경하고 유체 높이를 0.15로 설정하십시오.

·마지막으로 온도를 298K로 설정하십시오.

XMIN 경계 조건

·
X Max :

o경계 조건 위젯의 경계 섹션 아래에 있는 X 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.

o다음으로, 유체 분율 사용에서 유체 높이 사용으로 드롭다운 상자를 변경하고 유체 높이를 0.15로 설정하십시오.

o마지막으로 온도를 298K로 맞춥니다.

oXMAX 경계 조건

·
Z 최대 :

o경계 조건 위젯의 경계 섹션 아래에 있는 Z 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.

o다음으로 유체 분율을 0.0으로 설정하십시오.

o마지막으로 온도를 298K로 맞춘다.

ZMAX 경계 조건

추가 정보

자세한 내용은 모델 설정 장의 Mesh 경계 조건 섹션을 참조하십시오.

초기 조건

도메인 내부의 솔리드 객체(구성 요소)와 유체 모두에 대해 초기 조건을 설정해야 합니다.

·
구성 요소 :이 시뮬레이션에서 솔리드 객체에 필요한 유일한 초기 조건은 초기 온도입니다. 이것은 각 구성 요소에 대한 위젯에 설정되어 있는 구성 요소 속성에 대해 수행한 것과 유사한 방식으로 구성 요소를 등록합니다. 구성 요소 속성을 설정할 때 이전과 동일한 방법으로 구성 요소 1의 초기 온도를 350K로 설정하고 구성 요소 2의 초기 온도를 298K로 설정하십시오.

유체 초기 조건

유체: 유체의 초기 조건을 설정하기 위해 조금 더 설정해야 합니다. 이 경우 유체 구성, 온도, 속도 및 압력 분포를 모두 설정해야 합니다. 유체 초기 조건은 초기 위젯을 설정하고 초기 f3d_initial_icon를 클릭하면 열립니다.

f3d_initial_icon 아이콘을 선택한 후 유체 목록에서 압력을 선택하고 온도를 298K로 설정합니다. x, y, z 속도를 0.0으로 설정하십시오.

유체 초기 조건

다음으로, 높이/볼륨 목록과 유체 높이 사용 드롭다운 버튼을 선택합니다. 유체 높이를 0.15로 설정하십시오.

유체 초기 조건 계속

추가 정보

자세한 내용은 모델 설정 장의 초기 조건 섹션을 참조하십시오.

출력

FLOW-3D 옵션에는 결과 파일에 기록될 데이터와 출력 위젯에서 발견된 빈도를 제어하는 7가지 데이터 유형이 있습니다. 출력 f3d_output_icon 아이콘을 클릭합니다.

다른 데이터 유형은 다음과 같습니다.

·Restart: 모든 흐름 변수. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.

·Selected: 사용자가 선택한 흐름 변수 만. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.

·History: 하나의 변수와 시간의 변화를 보여주는 데이터. 예는 시간 단계 크기, 평균 운동 에너지, 배플에서의 유속 등을 포함합니다. 기본 출력 주기 = 시뮬레이션 시간의 1/100.

·Short print: hd3msg.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.

·Long print : hd3out.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.

·Solidification: 응고 모델이 활성화 된 경우에만 사용 가능합니다.

·FSI TSE: 변형 가능한 솔리드에 대한 추가 출력 옵션.

일반적으로 이 시뮬레이션에는 기본 출력 속도가 적합합니다. 그러나 Selected Data의 일부 추가 구성은 유용합니다. Selected data interval 0.5로 설정한 다음 Fluid 온도, Fluid velocity, Macroscopic density Wall 온도 옆에 있는 상자를 선택합니다. 그러면 이러한 값이 0.5초마다 출력됩니다.

출력 탭 설정

추가 정보

자세한 내용은 모델 설정 장의 출력 섹션을 참조하십시오.

Numerics

기본 Numerics 옵션은 대부분의 시뮬레이션에서 잘 작동하므로 기본 옵션에서 벗어나야 하는 충분한 이유가 없는 경우에는 현재 그대로 두는 것이 가장 좋습니다.

이것으로 모델 설정 섹션에서 시작된 예제 문제의 설정을 마칩니다. 이제 실행할 준비가 되었으므로 전처리 및 시뮬레이션 실행의 단계에 따라 시뮬레이션을 실행하십시오.

추가 정보

자세한 내용은 모델 설정 장의 Numerics 옵션 섹션을 참조하십시오.

일반 시뮬레이션 설정 점검 목록

시뮬레이션을 설정하는 데 필요한 단계에 대한 개략적인 개요가 아래에 나와 있습니다. 이 목록은 포괄적인 목록이 아닙니다. 일반적인 단계, 고려해야 할 몇 가지 중요한 사항 및 권장되는 설정 순서를 간단히 설명하는 안내서일 뿐입니다.

시작하기 전에

1.물리적 문제의 다이어그램을 그리기 및 주석 달기 : 이 다이어그램에는 기하학적 치수, 유체의 위치, 관련 힘, 움직이는 물체의 속도, 관련 열 전달 메커니즘 등이 포함되어야 합니다. 완성된 다이어그램은 문제에 대한 모든 관련 엔지니어링 정보로 인한 물리적 문제에 대한 이미지여야 합니다.

2.모델링 접근법 결정: 주석이 달린 다이어그램을 가이드로 사용하여 문제점에 접근하는 방법을 결정 : 문제가 되는 유체의 수, 혼화 가능한 경우, 하나 이상의 유체에서 방정식을 풀어야하는 경우 및 압축성이 중요한지 파악하여 시작하십시오. 그런 다음 어떤 물리적 메커니즘이 중요한지 결정하십시오. 이러한 각 옵션 (: 유체 유형, 열 전달 메커니즘 등)에 대한 관련 엔지니어링 정보를 다이어그램에 추가하십시오. 물리적 메커니즘이 포함되거나 무시된 이유를 정당화하려고 합니다. 이를 통해 시뮬레이션 프로세스 초기에 오류를 수정하는 데 시간이 거의 걸리지 않는 초기에 실수를 잡을 수 있습니다.

3.다이어그램에 계산 영역을 그리고, 계산 영역의 가장자리에 있는 물리적 상황 설명 : 경계의 물리적 상황을 가장 잘 나타내는 경계 조건 유형을 기록합니다. 사용 가능한 경계 조건 유형이 경계의 물리적 상황에 대한 합리적인 근사치가 아닌 경우 이 경계를 다른 곳으로 이동해야 합니다.

모델 설정 : 일반

1.문제, 시뮬레이션의 목적, 사례 번호 등을 설명하는 메모를 추가하십시오. 메모는 향후 사용자 또는 나중에 참조할 수 있도록 설정을 설명하고 정당화하는 데 도움이 됩니다. 시뮬레이션의 목적, 분석 방법 등을 논의해야합니다.

2.사용할 솔버와 프로세서 수를 선택하십시오.

3.단위 시스템 선택: 소규모 문제를 모델링 할 때는 작은 단위 ( : mm-gm-msec)사용하고 규모가 큰 문제는 큰 단위 ( : SI)를 사용하십시오. 이를 통해 기계 정밀도로 인한 반올림 오류를 방지할 수 있습니다.

4.유체 수, 인터페이스 추적 옵션 및 유량 모드를 선택하십시오. 주석이 달린 다이어그램을 이 단계의 지침으로 사용하십시오. 유체의 수는 질량, 운동량 및 에너지 보존을 관장하는 방정식이 유체 분율 f> 0(유체 1을 나타내는) 또는 유체 분획 f \ geq 0(유체 1 및 유체 2)이 있는 영역에서 해결되는지 여부를 나타냅니다. 인터페이스
추적 옵션은 유체 분율의 변화가 급격한지 또는 확산되어야 하는지 여부를 정의하는 반면, 흐름 모드는 f = 0두 유체 문제에서 처리되는 영역을 정의합니다.

5.마감 조건 정의: 시뮬레이션 종료 시점을 선택합니다. 시간, 채우기 비율 또는 기타 정상 상태 측정을 기반으로 할 수 있습니다.

6.기존 결과에서 시뮬레이션을 다시 시작하는 방법 정의 (선택 사항): 기존 결과 파일에서 시뮬레이션을 다시 시작할 때 다시 시작 옵션이 적용됩니다. 재시작 옵션은 재시작 소스 파일에서 가져온 정보와 시뮬레이션의 초기 조건을 사용하여 재설정되는 정보를 정의합니다.

모델 설정 : 물리

1.주석이 달린 다이어그램을 기반으로 관련 실제 모델 활성화

모델 설정 : 유체

1.유체의 속성 정의 1: 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 대한 적절한 물리적 속성을 정의하십시오.

2.유체 2의 속성 정의 (사용하는 경우): 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 적절한 물리적 속성을 정의하십시오.

3.인터페이스의 속성 정의: f = 1 f = 0의 영역 사이의 인터페이스 속성을 정의하십시오. 여기에는 표면 장력, 상 변화 및 확산에 대한 특성이 포함됩니다.

모델 설정 : Mesh 및 형상

1.모든 STL 파일의 오류 점검: ADmesh, netfabb Studio 또는 유사한 프로그램을 사용하여 모든 STL 파일의 오류를 점검하십시오. 이는 모델 설정에 시간을 소비하기 전에 형상
정의와 관련된 문제를 파악하는 데 도움이 됩니다.

2.모든 하위 구성 요소 및 구성 요소 가져 오기 및 정의 : 주석이 달린 다이어그램에 설명 된 대로 실제 사례와 일치하도록 3D 솔리드 형상을 정의합니다. 최종 결과는 물리적 형상의 정확한 복제본이어야 합니다. 각 부분에 설명적인 이름을 사용하고 대량 소스가 될 구성 요소를 포함하십시오.

3.모든 구성 요소의 속성 정의: 주석이 달린 다이어그램에 그려진 내용을 기반으로 각 구성 요소의 모든 재료 속성, 표면 속성, 모션 속성 등을 정의합니다. 경계 조건이 정의될 때까지 질량 소스 특성을 정의하기를 기다리십시오.

4.스프링과 로프 및 각각에 대한 관련 속성을 정의합니다.

5.주석이 달린 다이어그램에 설명된 시뮬레이션 도메인과 일치하도록 Mesh를 정의하십시오. 도메인의 모서리가 다이어그램에서 식별된 위치에 있는지 확인하십시오. 또한 인터페이스 (셀이 0 <f <1있는 셀과 셀이 f = 1다른 셀 이 있는 셀)를 식별하려면 세 개의 셀이 필요합니다.f = 0 ). 최소 5 개의 셀이 예상되는 가장 얇은 연속 영역에 맞도록 충분히 작은 셀을 사용하십시오. f = 1 f = 0 .

6.지오메트리를 정의하는 모든 배플 정의

7.경계 조건, 질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 정의: 경계 조건 (질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 포함)은 모든 방정식을 풀기 위해 주어진 위치에서 솔루션을 규정합니다. 주석이 달린 다이어그램을 사용하여 각 경계 (또는 소스 등)에 지정된 내용이 유동 솔루션, 열 전달 솔루션, 전위 등에 대한 현실과 일치하는지 확인하십시오.

8.유체 및 구성 요소의 초기 조건을 정의합니다. 초기 조건은 모든 방정식 (유량 솔루션, 열 전달 솔루션, 전위 등)에 대해 모든 영역에서 솔루션을 규정합니다.t = 0 .주석이
달린 다이어그램을 사용하여 초기 조건에 지정된 내용이 현재 현실에 대한 근사치인지 확인하십시오. 유체 영역뿐만 아니라 구성 요소의 초기 조건을 설정해야 합니다.

9.모든 측정 장치 정의 (샘플링 볼륨, 플럭스 표면 및 히스토리 프로브)

모델 설정 : 출력

1.출력 기준 (시간, 채우기 비율 또는 응고된 비율)을 선택하십시오.

2.재시작 데이터에 추가할 출력을 선택하십시오.

3.선택한 데이터에 기록할 정보를 선택하십시오.

4.재시작, 선택, 히스토리, 짧은 인쇄 및 긴 인쇄 데이터의 출력 속도 정의 : 기본 속도는 재시작 및 긴 인쇄 데이터의 경우 (10개 출력)/(시뮬레이션 종료 시간) 및 선택한 기록, 짧은 인쇄 데이터의 경우 (100개 출력)/(시뮬레이션 종료 시간)입니다.

모델 설정 : 숫자

1.기본값이 아닌 필수 숫자 옵션을 선택 FLOW-3D의 숫자 옵션은 고급 사용자를 대상으로 하며, 지배 방정식을 해결하는 데 사용되는 숫자 근사치 및 방법을 상당히 제어할 수 있습니다. 이러한 옵션 중 일부를 잘못 사용하면 솔루션에 문제가 발생할 수 있으므로 일반적으로 이 옵션의 기능을 먼저 이해하고 조정의 정당성을 갖추지 않고는 이러한 설정을 조정하지 않습니다.

5.FLOW-3D에서 후 처리

이 섹션에서는 FLOW-3D에 통합된 포스트 프로세서를 사용하는 방법에 대해 설명합니다. 보다 강력한 외부 포스트프로세서 FlowSight에 대한 튜토리얼은 FlowSight 설명서를 참조하십시오. 또한 이 섹션에서는 Flow Over A Weir 예제 문제를 실행하여 생성된 결과 파일을 사용합니다. 이 예제 문제를 실행하는 방법에 대한 지침은 예제 추가 및 시뮬레이션 사전 처리 및 실행을 참조합니다.

FlowSight 사용에 대한 기본 참조는 FlowSight Help->helpLocal Help 메뉴에서 액세스하는 FlowSight 사용자 설명서입니다.

추가 정보

기존 플롯

기존 플롯은 솔버가 자동으로 생성하는 사전 정의된 플롯입니다. 사용자 정의 플롯은 아래의 사용자 정의 플롯 섹션에 설명되어 있습니다.

1.분석 탭을 클릭하십시오. FLOW-3D 결과 대화 상자가 표시됩니다; 메세지가 나타나지 않으면 (분석 탭이 열림) 결과 파일 열기를 선택하여 동일한 대화 상자를 엽니다.

2.기존 라디오 버튼을 선택하십시오. 데이터 파일 경로 상자에 두 가지 유형의 파일이 표시됩니다 (있는 경우). 이름이 prpplt.*있는 파일 에는 전처리 flsplt.*기에 의해 자동으로 작성된 플롯이 포함되고 이름이 있는 파일에는 입력 파일에 사전 지정된 플롯 뿐만 아니라 후 처리기에 의해 자동으로 작성된 플롯이 포함됩니다.

3. 확인을 선택 flsplt.Flow_Over_A_Weir하고 클릭하십시오. 그러면 디스플레이 탭이 자동으로 열립니다.

기존 결과 대화 상자

4.사용 가능한 플롯 목록이 오른쪽에 나타납니다. 목록에서 해당 플롯의 이름을 클릭하면 특정 플롯을 볼 수 있습니다. 플롯 26 이 아래에 나와 있습니다.

기존 플롯보기

커스텀 플롯

1.분석 탭으로 돌아갑니다. 대화 상자를 열려면 결과 파일 열기를 선택하십시오.

2.전체 출력 파일을 보려면 사용자 정의 단일 선택 단추를 선택하십시오. 전체 출력 파일에는 prpgrf.*파일과 파일이 포함됩니다 flsgrf.*. 시뮬레이션이 실행되었으므로 전 처리기 출력 파일이 삭제되어 flsgrf파일에 통합되었습니다.

3.flsgrf.Flow_Over_A_Weir대화 상자 에서 파일을 선택하고 확인을 클릭하십시오.

FLOW-3D 결과 대화 상자

이제 분석 탭이 표시됩니다. 시뮬레이션 결과를 시각화 하는 방법에는 여러 가지가 있습니다. 사용 가능한 플롯 유형은 다음과 같습니다.

·Custom : 이 매뉴얼 의 FLSINP 파일을 사용하여 플롯합니다. 사용자 정의 섹션의 출력 코드를 사용하여 출력 플롯을 수동으로 수정하는 데 사용할 수 있습니다. 이것은 고급 옵션입니다.

·프로브 : 개별 셀, 경계, 구성 요소 및 도메인 전체(전역) 변수 대 시간에 대한 그래픽 및 텍스트 출력을 표시합니다. 자세한 내용은 프로브 플롯 프로브 : 특정 시점의 데이터와 시간 을 참조하십시오.

·1-D : 셀 데이터는 X, Y 또는 Z 방향의 셀 라인을 따라 볼 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 자세한 내용은 1-D 플롯 1-D : 라인을 따른 데이터 시간 을 참조하십시오.

·2-D : 셀 데이터는 XY, YZ 또는 XZ 평면에서 볼 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 속도 벡터 및 입자를 추가할 수 있습니다. 자세한 내용은 2 차원 플롯 2 차원 : 평면의 데이터와 시간의 데이터 를 참조하십시오.

·3-D : 유체와 고체의 표면 플롯을 생성하고 셀 데이터로 채색 할 수 있습니다. 속도 벡터, 입자 (있는 경우) 및 유선과 같은 추가 정보를 추가할 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 자세한 내용은 3D 플롯 3D : 표면의 데이터 시간 을 참조하십시오.

·텍스트 출력 : cell-by-cell 재시작, 선택 및 응고 데이터를 텍스트 파일에 쓸 수 있습니다. 자세한 내용은 텍스트 출력 텍스트 : ASCII 형식의 공간 데이터 출력 시간 을 참조하십시오.

·중립 파일 : 재시작 및 선택된 데이터는 별도의 텍스트 파일에 정의 된 지정된 지점(보간 또는 셀 중심)에서 출력 될 수 있습니다. 자세한 내용은 중립 파일 : 사용자 정의 좌표에서의 공간 데이터 출력 시간 을 참조하십시오.

·FSI TSE : 유한 요소 유체 / 고체 상호 작용 및 열 응력 진화 물리학 패키지에서 출력됩니다. 자세한 내용은 FSI / TSE : 표면의 구조 데이터와 시간 을 참조하십시오.

3 차원 도표

1.Analyze -> 3-D 탭을 선택하십시오.

2.Iso-surface = Fraction of fluid 선택하십시오. 이것은 표면을 그리는 데 사용되는 변수입니다. 선택한 등면 변수에 대한 등고선 값 기준을 충족하는 모든 셀을 통해 표면이 그려집니다. 유체의 분율이 기본값이며 유체 표면이 표시됩니다.

등 면형

3.색상 변수 = 압력을 선택하십시오. 이 선택은 등위면의 색을 지정하는 데 사용되는 변수를 결정합니다 (이 경우 유체 표면은 압력에 의해 색이 그려집니다).

색상 변수 유형

4.Component iso-surface overlay = Solid volume 선택하십시오. 솔리드 볼륨 은 유체와 함께 솔리드 구성 요소를 표시합니다. 이전 단계에서는 체적 분수의 보완을 등위면으로 선택하여 이 작업을 수행했지만 이 옵션을 사용하면 유체와 고체 표면을 동시에 플롯 할 수 있습니다.

등표면 옵션

5.이동 시간 프레임의 최소 및 최대 위치들 (0 내지 1.25 )에 슬라이더 위치.

시간대 옵션

6.렌더 버튼을 클릭하여 디스플레이 탭으로 전환하고 t = 0.0에서 1.25 초 사이에 일련의 11 플롯을 생성하여 압력에 의해 채색된 유체 표면과 위어 구조를 보여줍니다. 데이터 다시 시작 이 선택되었으므로 11 개의 플롯이 있습니다.

7.사용 가능한 플롯이 사용 가능한 시간 프레임 목록에 나열됩니다. 다음을 클릭하여 시간 프레임 사이를 이동하거나 시간 프레임을 두 번 클릭하여 표시하십시오. 첫 번째 및 마지막 시간 프레임은 다음과 같아야 합니다.

위어 구조 렌더링

8.Analyze -> 3-D 탭으로 돌아가서 Data Source 그룹에서 Selected data 라디오 버튼을 선택하십시오.

데이터 소스

9.시간 프레임 선택기의 두 슬라이더가 모두 오른쪽에 있으므로 마지막 시간 프레임 만 생성됩니다. 사용 가능한 시간 프레임이 많고 렌더링하는데 시간이 오래 걸리므로 선택한 데이터를 선택하면 인터페이스에서 자동으로 수행됩니다. 사용 가능한 모든 시간 프레임을 렌더링 하려면 왼쪽 슬라이더를 Time Frame Min = 0 으로 이동하십시오.

10. 렌더링 버튼을 클릭하십시오. 몇 초 안에 뷰가 디스플레이 창으로 전환되고 101 개의 플롯이 사용 가능한 시간 프레임 목록에 나열됩니다. 시간 프레임 사이를 이동하려면 다음을 반복해서 클릭하십시오.

대칭 흐름 표시

위어 중심 아래로 대칭 평면을 사용하여 시뮬레이션을 설정했으므로 위어 구조의 절반만 시뮬레이션되고 표시됩니다. 프리젠테이션 목적으로 대칭 모델의 두 반쪽을 모두 표시할
수 있습니다.

1.아래와 같이 Analyze -> 3-D 탭으로 돌아가서 Open Symmetry Boundaries 확인란을 선택하십시오.

열린 대칭 경계

2.렌더링을 클릭하십시오. 유체 표면이 디스플레이 탭의 대칭 경계에서 열린 상태로 나타납니다.

3.화면 위의 도구 모음 메뉴에서 도구 -> 대칭을 선택하십시오.

4.대화 상자에서 Y 방향 확인란을 선택하여 Y = 0 평면에서 결과를 미러링합니다.

대조

5.적용 닫기를 선택하십시오.

6.마지막 시간 프레임을 두 번 클릭하십시오. 디스플레이는 아래와 같이 전체 위어 구조를 보여줍니다.

전체 위어 구조

3 차원 애니메이션 만들기

다음 단계는 3 차원 유체 표면의 애니메이션을 만드는 것입니다. 애니메이션은 사용 가능한 시간 프레임 목록의 프레임에서 만든 동영상입니다. 애니메이션의 시각적 효과를 향상시키려면 모든 프레임에 공통 색상 스케일을 적용하는 것이 좋습니다.

1.분석 -> 3-D 탭으로 돌아갑니다.

2.윤곽 제한 그룹 상자에서 전역 라디오 버튼을 모두 선택하십시오.

윤곽 제한

3.렌더 클릭 하여 다시 그리고 디스플레이 탭으로 돌아갑니다.

4.도구 -> 대칭 -> Y 방향 -> 적용 선택을 반복하여 Y = 0 평면에서 결과를 반영합니다.

5.선택 도구 -> 애니메이션 -> 러버 밴드 캡처를 다음과 같이 선택 확인 Mesh지가 나타납니다 그것을 읽은 후.

러버 밴드 캡처

6.마우스 왼쪽 버튼을 클릭 한 상태에서 드래그하여 애니메이션을 적용할 화면 부분을 선택하십시오. 선택한 영역 주위에 선택 상자가 나타납니다.

X, Y, 너비 및 높이 상자

7.디스플레이 창 위에서 빨간색 캡처 버튼을 선택하십시오. 애니메이션을 시작하는 대화 상자가 나타납니다.

8.애니메이션의 기본 이름은 out.avi입니다. 아래에 표시된 것처럼 보다 구체적인 이름이 권장됩니다.

9.기본 프레임 속도는 초당 10 프레임입니다. 이 시뮬레이션의 마감 시간은 1.25 초이고, 일정한 시간 간격으로 100 개의 플롯이 있으므로실제속도는 초당 80 프레임입니다. 너무 빠를 수 있으므로 대신 5 입력 하고 확인을 누르십시오.

AVI 캡처

10. 각 시간 프레임이 표시 창에 렌더링 되고 비트 맵 파일이 시뮬레이션 디렉토리에 작성됩니다. 이 프로세스가 완료되면 다음 대화 상자가 나타납니다.

생성 된 이미지 소스 파일

  1. 프로세스의 다음 단계를 시작하려면 확인 버튼을 클릭하십시오. 새로운 프로세스 (BMP2VAI.exe)가 시작되고 압축 방법을 선택할 수 있는 새로운 비디오 압축 창이 나타납니다. 다른 창 뒤에 숨겨져 있으면 앞으로 가져옵니다.
  2. 애니메이션의 기본 압축은 압축되지 않습니다. 파일 크기가 너무 커서 뷰어에 로드 할 수 없으므로 대부분의 애니메이션에는 권장되지 않습니다. Windows를 사용하는 경우 Microsoft Video 1, Linux를 사용하는 경우 Cinepak 선택하십시오. 여기에서 선택하는 것은 컴퓨터에서 사용할 수 있는 비디오 코덱과 비디오를 표시하는 데 사용하는 기계에서 사용할 수 있는 것입니다.
  3. 애니메이션 속도가 데이터 속도에 의해 제한되지 않도록 데이터 속도 확인란을 선택 취소하십시오.
비디오 압축

  1. 압축 프로세스를 시작하려면 확인을 클릭하십시오. 압축이 완료되면 다음 대화 상자가 나타납니다.
AVI 파일 생성

  1. 확인을 클릭하십시오. 애니메이션 프로세스가 완료되었습니다.
  2. Windows 탐색기에서 .avi 파일을 찾는 가장 빠른 방법 은 시뮬레이션 관리자 탭으로 이동하여 시뮬레이션 입력 파일 링크를 클릭하는 것 입니다.
  3. .avi파일 을 두 번 클릭하여 애니메이션을 재생 하십시오. 이전에 선택한 압축 형식을 읽을 수 있는 올바른 코덱이 설치되어 있지 않으면 오픈 소스 다중 코덱 비디오 플레이어 설치를 고려하십시오.

2 차원 도표

1.Analyze -> 2-D 탭을 선택하십시오. 이 시뮬레이션의 결과를 보는 데 가장 유용한 평면은 평면 Y = 0.0에있는 위어 중심선의 XZ 평면입니다.

2.XZ 평면 라디오 버튼을 선택하십시오.

3.Y 제한 슬라이더를 모두 Y = 0.25 (Y = 0.0에 가장 가까운 셀 중심 y 좌표)로 드래그 합니다. 또한 동일한 위치가 J = 2 로 식별되어 해당 셀이 도메인에서 두 번째임을 나타냅니다. 첫 번째 셀 (J = 1) Mesh 외부에 있으며 경계
조건 속성을 계산하는 데 사용됩니다. 기본
윤곽 변수는 압력이며 기본 속도 벡터는 기본적으로 선택됩니다. 솔리드 형상은 모든 2D 플롯과 함께 자동으로 표시되므로 3D 플롯과 같이 활성화 할 필요가 없습니다.

4.벡터 옵션을 클릭하고 X = 2 Z = 2 입력하십시오. 벡터는 이제 다른 모든 셀에 플롯 됩니다. 벡터 옵션을 적용하려면 확인을 선택하십시오.

벡터 옵션

5.Y = 0 평면에서 2 차원 압력 플롯의 시간 시퀀스를 생성하려면 렌더링을 클릭하십시오. T = 0.0 (왼쪽) 인 다음과 유사한 그래픽이 나타납니다. T = 0.125 (중간); 그리고 T = 1.25 (오른쪽).

2D 결과

6.디스플레이 화면의 오른쪽 상단에 있는 형식 버튼을 선택하십시오.

형식 옵션

7.선 색상, 벡터 길이 및 화살촉 크기 변경과 같은 다양한 옵션을 시험해보십시오. 변경 사항을 보려면 적용을 선택하십시오. 완료되면 재설정 확인을 선택하여
기본 설정으로 돌아가서 대화 상자를 닫습니다. 모든 플롯에 대해 선호하는 옵션 세트가 있는 경우
저장 버튼을 선택하여 저장할 수 있습니다.

1 차원 도표

  1. 분석 -> 1-D 탭을 선택하십시오. 이 탭에서는 하나 이상의 플롯 시간에서 셀 행을 따라 압력, 유체 깊이, 유체 상승 및 속도와 같은 셀별 출력 변수의 꺾은 선형
    차트 플롯을 사용할 수 있습니다.
  2. 데이터 소스 로 선택을 선택합니다. 사용 가능한 변수는 이제 더 빈번한 플로팅을 위해 선택된 변수 만 표시합니다.
  3. 자유 변수 표고데이터 변수 로 선택하십시오. 유압 데이터출력 탭에서 선택되었으므로 사용할 수 있습니다.
ID 그래픽을 위해 선택된 데이터

  1. 이 시뮬레이션의 흐름 방향은 주로 x 축과 평행하므로 X 방향을 선택하십시오.
  2. Y 방향 슬라이더를 0.25(J = 2)로 이동하여 Y 방향에서 흐름 중심선에 가장 가까운 셀이 표시됩니다.
  3. 기본적으로 전체 X 범위가 표시됩니다. 플롯의 범위를 제한하려는 경우 X 방향 슬라이더를 이동할 수 있습니다. Z 방향 슬라이더의 위치는 주어진 x, y 위치에서 z 셀의 각 열에 대해 하나의 자유 표면 높이만 기록되므로 중요하지 않습니다. 시간 프레임 슬라이더는 0초와 1.25초여야 합니다.
흘러가는 방향

  1. 렌더링을 클릭하십시오. t = 0.0에서 t = 1.25s까지의 시리즈 플롯이 디스플레이 탭의 플롯 목록에 나열됩니다. 이러한 플롯을 볼 수 있는 여러 가지 모드가
    있습니다. 기본 모드는
    단일 모드이며 형식 버튼 아래의 드롭 다운 상자에 표시됩니다.
기본 단일 모드

  1. 다양한 시간에 유체 표면 높이의 플롯을 비교하려면 드롭 다운 상자에서 오버레이 모드를 선택하십시오.
  2. 오른쪽 창에서 플롯 1, 13 101 선택하려면 클릭하십시오. 플롯 이름에는 또한 기록된 시간이 표시됩니다 (t = 0.0, 0.15s 1.25 ). 출력은 아래와 같이 나타납니다.
자유 표면 고도

  1. 이 플롯을 비트 맵 또는 포스트 스크립트 파일에 저장하려면 출력 버튼을 선택하십시오.
  2. 확인 화면에 플롯 오버레이 플롯을 캡처하는 확인란을 (그리고 단 하나의 출력 파일을).
  3. 쓰기 버튼을 선택하여 이미지 파일을 만듭니다.
  4. 결과 이미지 파일은 시뮬레이션 디렉토리에 있으며 (시뮬레이션 관리자 탭 에서이 파일을 찾는 방법을 기억하십시오) 이름이 지정한 plots_on_screen.bmp됩니다.
출력 사진

프로브 플롯

1.
분석 -> 프로브 탭을 선택하십시오. 시간 기록 플롯은이 탭에서 변수 대 시간의 라인 그래프 또는 텍스트 출력으로 생성됩니다. FLOW-3D 에는 데이터 소스 그룹에서 선택되는 세 가지 유형의 시간 종속 데이터가 있습니다.

·공간 데이터 : 재시작 선택된 데이터 소스. 단일 x, y, z 셀 중심 좌표의 시간 종속 값이 표시됩니다. 값은 시간과 관련하여 통합되거나 시간과 관련하여 차별화되거나 이동 평균 (시간)으로 통합될 수 있습니다.

·일반 history 데이터 :. 글로벌 수량은 시간에 따라 다릅니다. 일반적인 양은 평균 운동 에너지, 시간 단계 및 대류 볼륨 오류입니다. 또한 이 데이터 유형에는 모델 설정 -> 메싱 및 지오메트리 탭에서 이러한 옵션을 선택한 경우 지정된 측정 위치(배플, 샘플링 볼륨, 히스토리 프로브)의 모든 데이터와 이동 또는 정지 상태의 솔리드 및 스프링/로프를
위한 통합 출력이 포함됩니다.

·Mesh-dependent data : 메쉬 경계에서 시간에 따른 수량(계산 또는 사용자 지정)입니다. 일반적인 수량은 경계에서의 유량 및 경계에서의 지정된 유체 높이입니다.

2.데이터 원본에서 일반 기록 라디오 버튼을 선택합니다. X, Y Z 데이터 점 슬라이더가 회색으로 바뀝니다. 이는 일반 기록 데이터가 특정 셀과 연결되어 있지 않기 때문입니다.

3.목록에서 질량  평균 유체 평균 운동 에너지를 선택하십시오.

그래픽 데이터 출력

4. 단위를 선택하여 플로팅 단위 대화 상자를 엽니다.

5. 플롯에 단위 표시를 선택하십시오.

6. SI, CGS, slugs/feet/seconds 또는 pounds/inches/seconds를 선택하여 원하는 단위 시스템으로 결과를 변환하고 출력합니다. 장치를 표시하고 변환하려면 모델 설정 -> 일반 탭에서 장치 시스템을 선택해야 합니다. 이전 단계에서 이 항목을 확인했으며, 지오메트리 및 유체 특성은 centimeters/grams/seconds 시스템에서 지정되었습니다.

플로팅 단위

7.Plotting Units 대화 상자를 닫으려면 OK를 선택하십시오.

8.데이터의 그래픽 출력을 생성하려면 렌더를 선택하십시오. 출력은 시간에 따른 영역의 모든 유체에 대한 질량 평균 평균 운동 에너지를 보여줍니다. 이전 단계에서 선택한 사항에 따라 단위 레이블과 함께 그림이 나타납니다. 플롯은 총 운동 에너지가 일부 평균값 주위에서 진동하고 있음을 나타냅니다. 진동이 작아짐에 따라 시뮬레이션은 정상 상태 흐름에 접근합니다.

프로브 MKE 출력

9.분석 -> 프로브 탭으로 돌아갑니다.

10. 출력 양식 그룹에서 텍스트를 선택하여 그래프를 텍스트 데이터로 출력한 다음 렌더링을 다시 선택하십시오.

출력 형태

11. 나타나는 텍스트 대화 상자에서 다른 이름으로 저장 버튼을 선택하여 출력을 텍스트 파일로 저장할 수 있습니다.

12. 출력 창을 닫으려면 계속을 선택하십시오.

텍스트 출력

1.Analyze -> Text Output 탭을 선택하십시오.

2.텍스트 출력 은 셀별 데이터 ( 다시 시작 또는 선택됨 ) 만 출력 할 수 있고 (구성 요소, 측정 스테이션 또는 글로벌 데이터 없음) 둘 이상의 셀을 선택할 수 있다는 점을 제외하고 프로브 탭 과 동일한 방식으로 작동합니다. 각 플롯 시간에 대한 출력 데이터. 셀은 슬라이더를 사용하여 3D 블록에서 선택됩니다. 기본 공간 범위는 전체 도메인으로 설정됩니다.

3.직접 텍스트 데이터를 출력해보십시오.

 

FLOW-3D TruVOF는 미국 및 기타 국가에서 등록 상표입니다.

자유 표면 흐름을 위한 정상 상태 가속기

자유 표면 흐름을 위한 정상 상태 가속기

이 기사에서 Tony Hirt 박사는 곧 출시 될 FLOW-3D v12.0릴리스에서 사용할 수 있는 새로운 Steady-State Accelerator에 대해 설명합니다.

일시적인 흐름의 점근적 상태를 계산하는 것보다 안정적인 자유 표면 흐름을 더 빠르게 생성하는 방법이 필요한 경우가 종종 있습니다. 그러한 상황은 압축 가능한 흐름 솔버를 사용하여 압축할 수 없는 흐름을 해결하는 것과 유사합니다. 후자의 경우에는 압축파가 붕괴되고 압축되지 않은 결과물을 남기는 데 시간이 오래 걸릴 수 있습니다. 이에 따라 자유 표면 흐름에서 유체는 압축되지 않지만 표면파는 안정적인 자유 표면 구성을 생성하기 위해 댐핑하는데 시간이 오래 걸릴 수 있습니다.

비압축 흐름의 경우 압축파를 크게 감쇠시키는 반복 프로세스(즉, 압력 속도 반복)를 사용합니다. 물리적으로, 반복은 가까운 거리에 영향을 미치는 짧게 이동하는 파장과 같은 압력을 허용합니다. 그러나 압력 장에 상당한 소음을 유발할 수 있는 장거리 전파 및 반사는 피할 수 있을 정도로 빠르게 감쇠합니다.

이 노트에서 자유 표면 셀에 적용된 간단한 압력 조정은 표면 방해에 대한 감쇠력으로 작용합니다. 이 감쇠는 안정적인 자유 표면 구성에 대한 접근 방식을 가속화합니다.

 

정상 상태 가속기 아이디어

유체 인터페이스 또는 자유 표면은 VOF (Volume-of-Fluid) 기술을 사용하여 FLOW-3D에서 추적됩니다. 유체 변수 F의 분율은 유체가 차지하는 영역을 찾습니다. 유체에 고정 자유 표면이 있는 경우 유체를 정의하는 F 값도 안정된 값을 유지해야합니다. F가 일정하려면 표면에 수직인 유체 속도가 0이어야 합니다. 물론, 표면에서의 접선 유체 속도는 0 일 필요는 없습니다. 예를 들어, 위어 위의 흐름에는 일정한 흐름이 있지만 계단에서 나오는 흐름의 위치와 모양은 변하지 않습니다.

자유 표면 흐름을 위한 정상 상태 솔버를 가지려면 흐름의 비압축성을 유지하면서 정상 표면 속도를 0으로 만드는 방법을 찾아야 합니다.

이를 달성하는 한 가지 방법은 정상 속도를 0으로 향하게 하는 방식으로 표면 압력을 조정하는 것입니다.  특히 정상 속도에 비례하는 총 표면 압력에 “댐핑” 압력 기여를 추가하여 속도는 표면에서 나오고 그렇지 않으면 음수입니다.

정상 속도가 0에 가까워지면 표면이 고정 위치를 오버 슈트하지 않도록 수정 압력도 0으로 가야합니다. 물론 보정이 너무 크면 오버 슈트가 발생할 수 있습니다. 이러한 이유로 보정을 안정적으로 적용하려면 몇 가지 제한 요소가 있어야 합니다.

Steady-State Accelerator를 나타내는 계수 약어인 ssacc가 이 새로운 옵션을 활성화하기 위해 프로그램 입력에 추가되었습니다. ssacc의 값은 편리한 상한 인 1.0보다 작거나 같아야 합니다. 프로그램 내에 댐핑 압력에 자동으로 적용되는 몇 가지 리미터가 있어서 불안정성이 발생하거나 일시적 현상에 악영향을 미치지 않도록 합니다.

안정성 및 댐핑 리미터에 대한 이전의 문제는 강조 될 만합니다. 정상 상태 가속기를 사용하면 자유 표면 흐름의 모든 과도를 더 이상 완전히 볼 수 없습니다. 댐핑 압력은 물리적 힘이 아니라 파동의 전파 및 반사를 감소시키는 메커니즘입니다. 댐퍼는 큰 과도 현상의 진화를 방해하지 않도록 고안되었으며 흐름이 안정화됨에 따라 보다 빠르게 꾸준한 결과를 얻는데 기여해야 합니다. 그러나 사용자는 리미터가 예상하지 못했던 과도한 댐핑에 주의해야하며 댐핑 계수 ssacc의 입력 값을 줄이면 제거 할 수 있습니다.

정상 상태 가속기의 감쇠 메커니즘이 작동하는 방식을 설명하는 두 가지 예가 있습니다.

 

정상 상태 가속기의 예

상승된 유체의 열 축소

첫 번째 예는 길이 100cm, 깊이 5cm의 2 차원 수영장으로 구성됩니다. 물을 포함하는 탱크의 모든 경계는 대칭 경계입니다. 수영장 중앙에는 10cm 너비와 3cm 높이의 수영장 위에 물 블록이 있습니다. 이 블록은 중력으로 인해 물에 빠지고 충격 지점에서 멀어지고 탱크 끝에서 반사되는 파도를 생성합니다. 100초 이후에도 반복되는 반사로 인해 여전히 상당한 파동이 발생합니다 (그림 1).

새로운 정상 상태 가속기가 계수 ssacc = 1.0과 함께 사용되면 모든 파도가 빠르게 감쇠되어 표면이 거의 평평 해집니다. 일부 잔류 흐름은 표면 아래에 남아 있지만 점성 작용으로 천천히 감쇠됩니다 (그림 2). 이 예에서 추가 된 감쇠는 특히 인상적입니다.

그림 1. 댐핑없이 열 축소. 흐름 도표의 시간은 0.0, 10.0 및 100.0입니다. 아래 그림은 평균 운동 에너지 대 시간입니다.
그림 2. 0.0, 10.0 및 100.0s에서 감쇠 계수 ssacc = 1.0으로 열 축소. 아래 그림은 평균 운동 에너지 대 시간입니다.

사각형 격자에서 45 °의 정사각형 채널에서 모세관 상승

수직 채널에서 유체의 모세관 상승은 간단한 분석할 수 있으며 솔루션이 있는 양호한 정상 상태 문제입니다. 중력에 대해 상승 된 유체의 양은 벽의 접착력, 즉 접촉각의 코사인에 표면 장력 곱하기 접촉 선 길이에 의해 결정됩니다. 이 예에서 유체는 물이며 표면 장력은 70 dynes / cm이고 접촉각은 30 °입니다. 채널은 단면이 정사각형이며 가장자리 길이가 0.707cm이고 직사각형 격자에서 45 ° 회전합니다. 문제가 x 및 y 방향으로 대칭을 이루기 때문에 그리드의 사분면 만 모델링됩니다. 그리드의 바닥에는 제로 게이지 압력의 물이 있으며 그리드의 가장자리 길이는 0.0125cm (41x41x80 셀)입니다. 상승시켜야하는 이론적 유체 량은 0.04373cc입니다. 그림 3a는 정상 상태 결과를 보여줍니다. 이는 감쇠 사용 여부와 비슷합니다. 댐핑없이 계산된 유체의 양은 이론 값보다 1.74 % 높습니다. 그림 3b와 같이 댐핑이 있는 경우에는 2.24 %가 너무 높습니다. 가속기를 사용하면 정상 상태는 약 0.15 초에 도달하는 반면 표준 솔버는 0.8 초 후에 만 ​​정상 상태 솔루션을 생성하므로 5 배 이상 더 오래 걸립니다.

그림 3a. 댐핑 압력이없는 정사각형 채널의 모세관 상승.
그림 3b. 두 시뮬레이션에서 유체 체적 이력 (파란색은 감쇠)입니다.

ssacc가 1.0보다 작으면 댐핑이 적어 수렴에 더 빨리 도달합니다. 1.0을 포함한 모든 ssacc 값은 댐핑되지 않은 ssacc = 0.0 경우와 비교하여 이론과 밀접하게 일치하고 후면 벽에 적은 양의 유체를 나타내는 수렴 된 솔루션을 만듭니다.

후면 벽의 작은 유체는 평형 위치를 초과하는 유체의 오버 슈트 (overshoot)로부터 발생하며, 그 후 다시 점성력으로 인해 정착하는데 오랜 시간이 걸리는 벽에 적은 양의 유체가 남습니다. 이 오버 슈트는 ssacc가 0이 아닌 경우 제거됩니다.

A vertical jet flowing into a moving cross stream

공기 유입 / Air Entrainment

Air Entrainment / 공기 유입

A vertical jet flowing into a moving cross stream

FLOW-3D 의 공기 혼입 모델(air entrainment model)은 자유 표면에서 용해되지 않은 공기 혼입을 시뮬레이션하는 강력한 도구입니다. 제트 및 방수로 충돌시 관찰되는 국부적이고 난류가없는 자유 표면 혼입 기능이 있습니다. 이러한 기능은 엔지니어가 설계시 공기 유입을 예측하고, 공기유입이 안전하게 작동하도록 적절한 수정을 할 수 있게 합니다.

Spillway hydraulics / 여수로 수리장치

여수로 구조는 다양한 작동 조건을 처리 할 수 ​​있도록 설계되어야 합니다. 유동 조건이 설계 범위의 상단에 도달하면 여수로 표면의 불규칙성으로 인해 유동이 분리 될 수 있습니다. 이는 여수로 표면의 압력이 캐비테이션을 일으킬 정도로 낮아지게 합니다. 캐비테이션은 구조물의 강도에 매우 해로우며 치명적인 손상을 초래할 수 있습니다.

공기 유입은 캐비테이션의 가능성을 줄이는 수단입니다. 물이 공기에 존재하면 캐비테이션 영역의 붕괴하는 기포에 감쇠 효과를 추가하여 캐비테이션 손상을 줄입니다. 여수로의 속도가 충분히 높으면 공기를 동반시키고 캐비테이션을 줄이기 위해 폭기 장치를 추가해야합니다.

폭기 흐름의 시뮬레이션과 폭기 장치에서 포획된 공기의 예측.

왼쪽 이미지는 거시적 인 밀도에 의해 착색됩니다. 오른쪽 그래프는 폭기 장치에 유입 된 수분의 일정한 부피와 폭기 장치 이후의 수분 및 공기의 양을 비교 한 것입니다.

아래 동영상은 FLOW-3D에서 공기 유입 과정을 시뮬레이션하는 방법을 보여줍니다. 여기에는 공기혼입 및 드리프트 플럭스 모델의 이론에 대한 세부 정보와 FLOW-3D에서 기본 공기혼입 시뮬레이션을 설정하는 방법에 대한 데모가 포함되어 있습니다.

Fish passage design / 물고기 개체수 유지를 위한 어도 설계

공기가 물로 혼입되면 미생물의 성장을 유지하고 건강한 어류 개체군의 생존을 보장 할 수 있습니다. 그러나 과포화 상태의 용존 기체는 수생 생물에 부정적인 영향을 미치는 수질 문제가 됩니다. 공기 동반 모델의 또 다른 용도는 강의 하류로 방출되는 배수로에서 동반되는 공기의 농도를 결정하기 위해 해양 생물학에서 사용됩니다.
이 모델에 대한 더 자세한 정보는 Air Entrainment 의 Flow Science Report를 다운로드하십시오.

폐수 처리에서 생물막에 대한 표면 왜곡 효과

Surface Skew Effects on Biofilms in Wastewater Treatment

이 연구는 뉴 멕시코 대학교와 플로우 사이언스의 협력입니다. Flow Science는 연구 지원 프로그램의 일환으로 무료 CFD 소프트웨어 및 CFD 전문 지식을 제공했습니다 .

물리적, 화학적 및 환경 적 장애에 대한 박테리아의 민감성은 폐수 처리장에서 미생물 질화를 유지하는 데 어려움을줍니다. 뉴 멕시코 대학교의 연구원들은 고리 형 질화 생물막 반응기에 대한 표면 거칠기의 영향을 이해하기 위해 일련의 실험을 수행했습니다 (Roveto et al., 2019). 그들의 팀은 FLOW-3D 를 사용 하여 실험 관찰에 대한 가능한 설명을 찾았습니다.

  1. Nitrifying Biofilms

생물막은 세포가 서로 그리고 표면에 달라 붙는 박테리아 세포의 공동체입니다. 생물막은 만성 감염 및 질병을 유발할 수 있으며 근절이 어렵고 농업과 의학에서 문제가됩니다. 그러나 폐수 처리 산업에서는 생물막을 활용하여 하수에서 유기 화합물을 추출하고 소화 할 수 있습니다.

최근, 암모니아 산화 박테리아를 포함하는 특정 유형의 생물막이 폐수 시스템에서 확인되었습니다. 이러한 질화 생물막은 폐수 처리 시스템에서 질화 공정의 효율성을 개선하는 데 사용됩니다. 그들은 또한 살수 필터 (van den Akker et al., 2011) 및 이동 층 생물막 반응기 (MBBRs, Song et al., 2019)에도 사용됩니다.

  • Annular Biofilm Reactors with Skewness

환형 생물막 반응기는 표준 Taylor-Couette 흐름 설정 (그림 1, 왼쪽 하단) 인 수중 회전 내부 실린더가있는 원통형 반응기로 구성됩니다. 이 반응기는 식수 시스템에서 미생물 군집 역학을 연구하고 회전 속도 증가에 대한 성장률을 결정하는 데 사용되었습니다 (Gomez-Alvarez et al., 2014). 이 연구로 인해 고리 형 생물막 반응기는 반응기의 내부 실린더에 추가 된 스큐와 함께 사용됩니다.

‘Skewness’는 표면 특징 분포의 비대칭 성을 설명하는 거칠기 매개 변수이며 생물막 형성에 영향을 미치는 것으로 생각됩니다. 왜도의 영향을 정량화하기 위해 잘 정의 된 양수 및 음수 왜곡 표면 (그림 1, 오른쪽 하단)을 평평한 (비뚤어지지 않은) 표면에서의 생물막 성장과 비교했습니다.

Figure 1. Annular reactors (top), plan view of annular bioreactor scheme (bottom left) and detail of rotating attachment surface, and outer stationary cylinder illustrating cylindrical Couette flow (bottom right).

  • CFD 모델링

FLOW-3D 는 포지티브 및 네거티브 스큐 표면의 전단력 분포를 계산하는 데 사용되었습니다. 기울어 진 표면의 누적 전단 응력을 평평한 제어 표면과 서로 비교하기 위해 각 기울어 진 표면의 대표적인 300 마이크로 미터 단면을 길이에 따른 벽 전단 응력에 대해 평가했습니다 (그림 2). 실험적으로 관찰 된 0.35 Pa의 일정한 평면 값 이상의 값은 “고 전단”으로 분류되고 아래 값은 “저 전단”으로 지정되었습니다.

그림 2. 정상 상태 흐름에서 (a) 포지티브 및 (b) 네거티브 스큐 표면을 따라 CFD 생성 2D 전단 응력 프로파일 및 (c) 포지티브 및 (d) 네거티브 스큐 표면에 대한 표면에서 예측 된 로그 전단 응력 값 대표 피처 길이 (300 m). 
수평 빨간색 선은 평평한 표면의 전단 응력 (0.35 Pa)을 나타냅니다. 
노란색 및 빨간색 음영 섹션은 각각 평평한 표면 전단보다 작거나 큰 전단 값을 나타냅니다.

낮은 전단 응력 값은 대부분의 포지티브 스큐 표면을 따라 예측되었으며 대표 섹션의 86 %는 0.35 Pa 미만의 값과 높은 전단 범위에서 14 %를 나타냅니다 (그림 2c). 네거티브 스큐 표면의 경우 62 %가 평평한 표면보다 낮은 전단 값을 가졌고 38 %는 고전 단으로 분류되었습니다 (그림 2d). 음의 스큐 표면은 양의 스큐 표면에 걸쳐 높은 전단 범위에서 예측 된 전단 벽 응력 값으로 2.5 배 더 많은 면적을 가졌습니다.

  • 결론

실험적으로 음의 비대칭 표면은 생물막 성장 중에 가장 높은 완전 질화 속도를 나타냅니다. FLOW-3D의 CFD 시뮬레이션은 이 현상에 대한 가능한 설명을 제공합니다. 그들은 음의 기울기 표면이 양의 기울기 표면보다 전단력이 큰 영역이 더 크다는 것을 보여줍니다. 이러한 고전 단 영역은 부착 속도와 질량 전달 속도를 증가시켜 생물막의 질화 속도를 증가시킵니다.

이 연구는 폐수 처리장에서 생물막의 질화 효율을 높이는 방법을 제안합니다.

이 연구의 계산 모델링 측면에 대해 자세히 알아 보거나 현재 프로젝트에 FLOW-3D 를 통합하는 방법에 대해 논의하려면 adwaith@flow3d.com 으로 저에게 연락하십시오 .

참조

Roveto, P.M., Gupta, A., Schuler, A.J., 2019. Effects of Attachment Surface Skew on Growth and Community Dynamics of Nitrifying Biofilms. Water Research (in review)

Van den Akker, B., Holmes, M., Pearce, P., Cromar, N.J., Fallowfield, H.J., 2011. Structure of nitrifying biofilms in a high-rate trickling filter designed for potable water pre-treatment. Water Res. 45, 3489–3498. https://doi.org/10.1016/j.watres.2011.04.017

Song, Z., Zhang, X., Ngo, H.H., Guo, W., Song, P., Zhang, Y., Wen, H., Guo, J., 2019. Zeolite powder based polyurethane sponges as biocarriers in moving bed biofilm reactor for improving nitrogen removal of municipal wastewater. Sci. Total Environ. 651, 1078–1086. https://doi.org/10.1016/j.scitotenv.2018.09.173

Gomez-Alvarez, V., Schrantz, K.A., Pressman, J.G., Wahman, D.G., 2014. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification. Environ. Sci. Technol. 48, 5448–5457. https://doi.org/10.1021/es5005208

What’s happening at the melt pool?/레이저 가공

Laser keyhole welding

레이저 키홀(Keyhole) 가공(No oscillations/진동 고려하지 않을 경우)

높은 속도에서 다공성을 감소시키는 경우(Reduced porosity at high speed-mechanism)

고속 레이저 가공(진동 고려하지 않음)해석 시 고려사항

  • 틈새 조건에 대한 허용 오차가 낮아지는 좁은 조인트(Joint) 너비
  • 레이저가 꺼질 때 큰 끝 분화구(Large end crater)
  • 속도가 높을 때 불충분한 침투(Penetration)
  • 제한된 사용가능한 레이저 출력 : 6kW

진동을 고려한 레이저 랩(Lap) 용접

  • 키홀(Keyhole) 붕괴를 방지하는 고속 스캐닝 가능
    – 다공성(Porosity) 최소화
  • 인터페이스 간극(Interface gaps)에서 브리지 간격(Bridge gaps)을 조정하여 조인트(Joint) 폭을 조정할 수 있는 유연성 제공

진동을 고려한 레이저 용접 : 실험 결과와 비교

모델 검증

사이클(One cycle) 내에서 키홀(Keyhole) 역학

  • 진동을 고려하지 않을 경우 : 일관된 전도 또는 키홀 용접
  • 진동을 고려할 경우 : 경로와 일정에 따라 한 번의 주기내에서 전도 용접, 얕은 키홀(Keyhole)과 깊은 키홀(Keyhole) 용접 간 전환 가능

진동을 고려한 레이저 가공의 이점

  • 진동을 통한 최초 품질 향상
  • 키홀(Keyhole)로 인한 다공성(Porosity)을 피하면서 높은 용접 속도 가능
  • 전력 변조가 사용되지 않는 경우, 각 주기내에서 키홀(Keyhole) 및 전도 모델간 전환
  • 진동 매개 변수 변경을 통해 중요 용접 너겟(Nugget) 치수 및 강도 조정 가능
  • 시트 간 틈 브리징(Gap gridging) 개선

Liquid Metal 3D Printing

Liquid Metal 3D Printing

This article was contributed by V.Sukhotskiy1,2, I. H. Karampelas3, G. Garg 1, A. Verma1, M. Tong 1, S. Vader2, Z. Vader2, and E. P. Furlani1
1
University at Buffalo SUNY, 2Vader Systems, 3Flow Science, Inc.

이 연구의 초점은 3D 고체 금속 구조의 인쇄에 잉크젯 기술의 확장에 있습니다 [3, 4]. 현재 대부분의 3D 금속 인쇄 프로그램에는 금속 물체를 형성하는 레이저 [6] 또는 전자빔 [7]과 같은 외부 지향 에너지 소스를 이용한 금속 분말 소결 또는 용해를 포함합니다. 그러나, 이러한 방법은 비용 및 공정 복잡성, 예를 들어, 3D 인쇄 공정에 앞서 분말을 생성하는 시간 및 에너지 집약적 기술에 대한 필요성과 같은 단점을 갖고 있습니다.

이 기사에서는 움직이는 기판에서의 MHD (magnetohydrodynamic) Drop-on-demand 방출 및 액체 방울 증착에 기반한 3D 금속 구조의 첨가제 제조에 대한 새로운 접근 방시에 대해 설명합니다.

이 과정의 각 부분을 연구하기 위해 많은 시뮬레이션을 수행했습니다. 단순화를 위해 이 연구는 두 부분으로 나누었습니다.

첫 번째 부분에서는 MHD 분석을 사용하여 프린트 헤드 내부의 로렌츠 힘 밀도에 의해 생성 된 압력을 추정한 다음 FLOW-3D 모델의 경계 조건으로 사용합니다. 그것은 방울 분사 동력학을 연구하는 데 사용되었습니다.
두 번째 부분에서는 FLOW-3D 파라 메트릭 분석을 수행하여 이상적인 액적 증착 조건을 확인했습니다.

모델링 노력의 결과는 위 그림에 표시된 장치 설계를 가이드하는데 사용되었습니다. 코일은 분사 챔버를 둘러싸고 전기적으로 펄싱되어 액체 금속을 투과시키고, 순환 루프를 유도하는 과도 자기장을 생성합니다. 그것 내의 일시적인 전기장. 전기장은 순환 전류 밀도를 발생 시키며, 이는 일시적인 전계에 다시 커플 링되고 챔버 내에서 마젠 토 히드로 다이나믹 로렌츠 힘 밀도를 생성한다. 힘의 반경 방향 성분은 오리피스에서 금속 액체를 배출하는 역할을하는 압력을 생성합니다. 방출된 금속 액체 방울은 기판으로 이동하여 합체되고 응고되어 확장된 견고한 구조를 형성합니다. 임의 형상의 3 차원 구조는 방출하는 금속 방울의 정확한 패턴화 증착을 가능하게하는 움직이는 기판을 사용하여 층별로 인쇄 할 수 있습니다. 이 기술은 MagnadoJet라는 상품명으로 Vader Systems (www.vadersystems.com)에 의해 특허 및 상용화되었습니다.

MagnetoJet 프린팅 공정의 장점은 상대적으로 높은 증착 속도와 낮은 재료 비용으로 임의 형상의 3D 금속 구조를 인쇄하는 것입니다 [8, 9]. 또한 고유한 금속 입자 구조가 존재하기 때문에 기계적 특성이 개선 된 부품을 인쇄 할 수 있습니다.

프로토타입 디바이스 개발

Vader Systems의 3D 인쇄 시스템의 핵심 구성 요소는 두 부분의 노즐과 솔레노이드 코일로 구성된 프린트 헤드 어셈블리입니다. 액체화는 노즐의 상부에서 발생합니다. 하부에는 직경이 100μm ~ 500μm 인 서브 밀리미터 오리피스가 있습니다. 수냉식 솔레노이드 코일은 위 그림에 표시된 바와 같이 오리피스 챔버를 둘러싸고있습니다 (냉각 시스템은 도시되지 않음). 다수의 프린트 헤드 디자인의 반복적인 개발은 액체 금속 배출 거동뿐만 아니라, 액체 금속 충전 거동에 대한 사출 챔버 기하적인 효과를 분석하기 위해 연구되었습니다. 이 프로토타입 시스템은 일반적인 알루미늄 합금으로 만들어진 견고한 3D 구조를 성공적으로 인쇄했습니다 (아래 그림 참조). 액적 직경, 기하학, 토출 빈도 및 기타 매개 변수에 따라 직경이 50 μm에서 500 μm까지 다양합니다. 짧은 버스트에서 최대 5000 Hz까지 40-1000 Hz의 지속적인 방울 분사 속도가 달성되었습니다.

전산 모델

프로토 타입 디바이스 개발의 일부로서, 프로토 타입 제작에 앞서 계산 시뮬레이션을 수행하여 성능, 즉 액적 방출 동역학, 액적 – 공기 및 액적 – 기판 상호 작용에 대한 설계 개념을 선별했습니다. 분석을 단순화하기 위해 CFD 분석뿐만 아니라, 전산 전자기 (CE)를 사용하는 두 가지 상보 모델이 개발되었습니다. 첫 번째 모델에서는 2 단계 CE 및 CFD 분석을 사용하여 MHD 기반의 액적 방출 동작과 효과적인 압력 생성을 연구했습니다. 두 번째 모델에서, 열 유동성 CFD 분석은 기판상의 물방울의 패터닝, 유착 및 고형화를 연구하기 위해 사용되었습니다.

MHD 분석에 이어 등가 압력 프로파일을 첫 번째 모델에서 추출하고, FLOW-3D 모델의 입력으로 사용하여 액적 배출 및 액적 – 기판 상호 작용의 일시적인 동력학을 탐구하도록 설계되었습니다. 플로우 – 3D 시뮬레이션은 액적 분사에 대한 오리피스 내부 및 주변의 습윤 효과를 이해하기 위해 수행되었습니다. 오리피스 내부 및 외부의 유체 초기화 레벨을 변경하고 펄싱 주파수에 의해 결정된 펄스 사이의 시간 간격을 허용함으로써, 크기 및 속도를 포함하여 방출 된 액 적의 특성 차이를 확인할 수있었습니다.

Droplet 생성

MagnetoJet 인쇄 프로세스에서, 방울은 전압 펄스 매개 변수에 따라 일반적으로 1 – 10m/s 범위의 속도로 배출되고 기판에 충돌하기 전에 비행 중에 약간 냉각됩니다. 기판상의 액적들의 패터닝 및 응고를 제어하는 ​​능력은 정밀한 3D 솔리드 구조의 형성에 중요합니다. 고해상도 3D 모션베이스를 사용하여 패터닝을 위한 정확한 Droplet 배치가 이루어집니다. 그러나 낮은 다공성과 원하지 않는 레이어링 artifacts가 없는 잘 형성된 3D 구조를 만들기 위해 응고를 제어하는 ​​것은 다음과 같은 제어를 필요로하기 때문에 어려움이 있습니다.

  • 냉각시 액체 방울로부터 주변 물질로의 열 확산,
  • 토출된 액 적의 크기,
  • 액적 분사 빈도 및
  • 이미 형성된 3D 물체로부터의 열 확산.

이들 파라미터를 최적화함으로써, 인쇄 된 형상의 높은 공간 분해능을 제공하기에 충분히 작으며, 인접한 액적들 및 층들 사이의 매끄러운 유착을 촉진하기에 충분한 열 에너지를 보유 할 것입니다. 열 관리 문제에 직면하는 한 가지 방법은 가열된 기판을 융점보다 낮지만 상대적으로 가까운 온도에서 유지하는 것입니다. 이는 액체 금속방울과 그 주변 사이의 온도 구배를 감소시켜 액체 금속방울로부터의 열의 확산을 늦춤으로써 유착을 촉진시키고 고형화하여 매끄러운 입체 3D 덩어리를 형성합니다. 이 접근법의 실행 가능성을 탐구하기 위해 FLOW-3D를 사용한 파라 메트릭 CFD 분석이 수행되었습니다.

액체 금속방울 응집과 응고

우리는 액체 금속방울 분사 주파수뿐만 아니라 액체 금속방울 사이의 중심 간 간격의 함수로서 가열된 기판에서 내부 층의 금속방울 유착 및 응고를 조사했습니다. 이 분석에서 액체 알루미늄의 구형 방울은 3mm 높이에서 가열 된 스테인리스 강 기판에 충돌합니다. 액적 분리 거리 (100)로 변화 될 때 방울이 973 K의 초기 온도를 가지고, 기판이 다소 943 K.도 3의 응고 온도보다 900 K로 유지됩니다. 실선의 인쇄 중에 액적 유착 및 응고를 도시 50㎛의 간격으로 500㎛에서 400㎛까지 연속적으로 유지하고, 토출 주파수는 500Hz에서 일정하게 유지 하였습니다.

방울 분리가 250μm를 초과하면 선을 따라 입자가 있는 응고된 세그먼트가 나타납니다. 350μm 이상의 거리에서는 세그먼트가 분리되고 선이 채워지지 않은 간극이 있어 부드러운 솔리드 구조를 형성하는데 적합하지 않습니다. 낮은 온도에서 유지되는 기질에 대해서도 유사한 분석을 수행했습니다(예: 600K, 700K 등). 3D 구조물이 쿨러 기질에 인쇄될 수 있지만, 그것들은 후속적인 퇴적 금속 층들 사이에 강한 결합의 결여와 같은 바람직하지 않은 공예품을 보여주는 것이 관찰되었습니다. 이는 침전된 물방울의 열 에너지 손실률이 증가했기 때문입니다. 기판 온도의 최종 선택은 주어진 용도에 대해 물체의 허용 가능한 인쇄 품질에 따라 결정될 수 있습니다. 인쇄 중에 부품이 커짐에 따라 더 높은 열 확산에 맞춰 동적으로 조정할 수도 있습니다.

FLOW-3D 결과 검증

위 그림은 가열된 기판 상에 인쇄된 컵 구조 입니다. 인쇄 과정에서 가열된 인쇄물의 온도는 인쇄 된 부분의 순간 높이를 기준으로 실시간으로 733K (430 ° C)에서 833K (580 ° C)로 점차 증가했습니다. 이것은 물체 표면적이 증가함에 따라 국부적 인 열 확산의 증가를 극복하기 위해 행해졌습니다. 알루미늄의 높은 열전도율은 국부적 인 온도 구배에 대한 조정이 신속하게 이루어져야하기 때문에 특히 어렵습니다. 그렇지 않으면 온도가 빠르게 감소하고 층내 유착을 저하시킵니다.

결론

시뮬레이션 결과를 바탕으로, Vader System의 프로토 타입 마그네슘 유체 역학 액체 금속 Drop-on-demand 3D 프린터 프로토 타입은 임의의 형태의 3D 솔리드 알루미늄 구조를 인쇄 할 수 있었습니다. 이러한 구조물은 서브 밀리미터의 액체 금속방울을 층 단위로 패턴화하여 성공적으로 인쇄되었습니다. 시간당 540 그램 이상의 재료 증착 속도는 오직 하나의 노즐을 사용하여 달성되었습니다. 이 기술의 상업화는 잘 진행되고 있지만 처리량, 효율성, 해상도 및 재료 선택면에서 최적의 인쇄 성능을 실현하는 데는 여전히 어려움이 있습니다. 추가 모델링 작업은 인쇄 과정 중 과도 열 영향을 정량화하고, 메니스커스 동작뿐만 아니라 인쇄된 부품의 품질을 평가하는 데 초점을 맞출 것입니다.

References
[1] Roth, E.A., Xu, T., Das, M., Gregory, C., Hickman, J.J. and Boland, T., “Inkjet printing for high-throughput cell patterning,” Biomaterials 25(17), 3707-3715 (2004).

[2] Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E.P., “High-resolution inkjet printing of all-polymer transistor circuits,” Science 290(5499), 2123-2126 (2000).

[3] Tseng, A.A., Lee, M.H. and Zhao, B., “Design and operation of a droplet deposition system for freeform fabrication of metal parts,” Transactions-American Society of Mechanical Engineers Journal of Engineering Materials and Technology 123(1), 74-84 (2001).

[4] Suter, M., Weingärtner, E. and Wegener, K., “MHD printhead for additive manufacturing of metals,” Procedia CIRP 2, 102-106 (2012).

[5] Loh, L.E., Chua, C.K., Yeong, W.Y., Song, J., Mapar, M., Sing, S.L., Liu, Z.H. and Zhang, D.Q., “Numerical investigation and an effective modelling on the Selective Laser Melting (SLM) process with aluminium alloy 6061,” International Journal of Heat and Mass Transfer 80, 288-300 (2015).

[6] Simchi, A., “Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features,” Materials Science and Engineering: A 428(1), 148-158 (2006).

[7] Murr, L.E., Gaytan, S.M., Ramirez, D.A., Martinez, E., Hernandez, J., Amato, K.N., Shindo, P.W., Medina, F.R. and Wicker, R.B., “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” Journal of Materials Science & Technology, 28(1), 1-14 (2012).

[8] J. Jang and S. S. Lee, “Theoretical and experimental study of MHD (magnetohydrodynamic) micropump,” Sensors & Actuators: A. Physical, 80(1), 84-89 (2000).

[9] M. Orme and R. F. Smith, “Enhanced aluminum properties by means of precise droplet deposition,” Journal of Manufacturing Science and Engineering, Transactions of the ASME, 122(3), 484-493, (2000)

FLOW-3D CAST 사양

FLOW-3D CAST Feature

CAST virtual foundry conference banner

Active Simulation Control

실행중인 해석의 제어 파라미터는 History probes에서 사용자가 정의한 조건에 따라, 런타임 동안에 자동으로 변경 될 수 있습니다. History probes에 의해 기록된 시뮬레이션 변수는 경계 조건, mass source 및 General Moving Object 기능을 이용하여, 시간에 따른 개체의 동작을 제어하기 위해 사용될 수있습니다. 예를 들어, 고압다이캐스팅 해석에서 게이트에 설정한 History probes에 유체가 도달하면, 그 정보를 캡처하는 데이터 출력 주파수를 증가시켜 플런저의 속도를 고속으로 자동 전환 될 수있습니다. 고압다이캐스팅 해석은 유체가 게이트에 도달 할 때 자동으로 고속 전환됩니다. 이 프로세스는 새로운 실행 시뮬레이션 제어 기능을 통해 자동으로 진행됩니다. 저속 구간에서 플런저의 움직임은 trigger 슬리브의 용융물에 혼입되는 공기의 양을 최소화하기 위해 Barkhudarov 방법 1을 사용하여 계산됩니다. 이 결과는 훨씬 더 높은 품질의 주조품이 나올수 있도록 설계하는데 도움이 될 수 있습니다. Read the development note > Read the blog post >

Batch Postprocessing & Report Generation

Batch 후처리 및 보고서 생성은 해석 결과 분석시 사용자의 해석 처리 시간을 절약하기 위해 개발되었습니다. Batch 후처리는, 해석이 완료된 후, 사용자가 애니메이션, 시나리오, 그래프, 텍스트 데이터 시리즈를 정의하여 자동으로 생성되도록 할 수 있습니다. 그래픽 요청은 백그라운드에서 FlowSight를 실행하여 처리되도록 FLOW-3D Cast에 정의되어 있습니다. 원하는 해석 결과를 생성할 수 있는 컨텍스트 파일을 사용하면 Batch 후처리 기능을 사용할 수 있습니다. Batch 후처리가 완료되면, 사용자는 쉽게 자신의 관리자, 동료, 또는 클라이언트에 보낼 수있는 HTML5 형식의 완벽한 기능을 갖춘 보고서를 만들 수 있습니다. 이미지 및 동영상도 보고서에 포함 할 수 있고, 사용자는 텍스트, 캡션, 참고 문헌의 형식을 완벽하게 제어 하고 유지할 수 있습니다. Read the blog post >

Metal Casting Models

Squeeze Pin Model

스퀴즈 핀은 주조시 주입 공급이 어려운 영역에서, 응고하는 동안 금속 수축을 보상하기 위해 사용되는 실제의 다이 캐스팅 머신의 동작을 모델링하는 해석을 할 수 있습니다. 스퀴즈 핀은 선택된 표면에 cylinderical squeeze pin을 추가하여, STL 파일 또는 대화식으로 생성 될 수 있습니다. Read the development note >

Intensification Pressure Model

새로운 플런저 타입 형상이 추가 되었습니다. 강화된 압력 조건으로 macro-shrinkage 와 micro-porosity 제거를 지정할 수 있습니다.

Thermal Die Cycling model

FLOW-3D Cast v4.1's full process thermal die cycling model

다이싸이클링 (Thermal die cycling, TDC) 모델에 새로운 두 가지의 단계가 추가되었습니다. 금형이 열린 상태에서 제품이 여전히 금형 내부에 있는 ejection 단계와, 금형이 닫혔지만 사출 바로전의 preparation 단계가 추가되었습니다. 또한, 마지막 싸이클만이 아닌 모든 금형 싸이클 모두 수렴된 결과를 전달하기 위해 TDC 솔버가 성능 손실 없이 최적화 되었습니다. Read the blog post >

Valves and Vents

Modeling valves and vents in FLOW-3D Cast v4.1

밸브와 밴트의 외부 압력과 온도는 이제 사용자가 다이 캐스팅 공정에서 충진중에 보다 실제적인 동작을 정의 할 수 있도록, 시간의 표 함수로서 정의 할 수있습니다. 밸브 및 벤트의 압력 및 온도는 프로세스 설계 단계에서 유용한 제품 내부에 설정된 프로브에 의해 제어 될 수 있습니다.

PQ2 Diagram

PQ2다이어그램의 사용은 사용자가 더 나은 슬리브의 플런저 실제 움직임과 유사하게 적용 할 수 있습니다. 새로운 기능은 실제 공정 변수가 아직 알려져 있지 않았을 때 다이캐스팅 설계 단계 중에 특히 유용합니다. Read the blog post >

Cooling Channels

냉각 채널은 금형 각각의 냉각 유로에 의해 제거되거나 추가된 열의 총량에 의해 제어 될 수 있습니다. Read the development note >

Air Entrainment Model

Air entrainment 모델에 compressibility를 입력하는 새로운 옵션이 추가되었습니다. 고압 다이캐스팅의 충진 공정과 같은 경우, 공기 압축성은 유체 압력의 변화로 인한 유체의 흐름에 중요한 인자가 됩니다.
 

Cavitation Model

캐비테이션 모델은 유동 조건의 더 넓은 범위에 걸쳐 유체의 캐비테이션 거동을 나타내도록 개선되었습니다. 캐비테이션 생성에 대한 새로운 옵션은 경험적 관계를 기반으로, 기존의 일정한 속도로 생성되는 방식에서 보완되었습니다. 새로운 passive gas model 옵션은 open bubbles이 아닌 유체내에 cavitationg gas를 추적하여, 계산에 필요한 격자와 계산시간을 줄일 수 있습니다. Read the development note >

Two-fluid Phase Change Model

Two-fluid phase change model 은 과냉각을 포함하도록 확장되었습니다. 일정한 과냉각 온도를 정의하고 가스 온도가 응축이 일어나기 전에 포화점 이하로 내려갈 수 있게 함으로써 구현됩니다.

Simulation Results and Analysis

Simulation Results File Editor

사용자가 FLOW-3D Cast v4.1 결과 파일들을 병합 및 제거 할 수 있는 편집 유틸리티

Linking flsgrf.* files

Restart 해석 결과 파일들(flsgrf.*)은 FlowSight 에서 하나의 연속적인 애니메이션 결과를 표시하기 위해 restart source 결과로 링크될 수 있습니다.

Fluid/wall Contact Time

A new spatial quantity has been added to the solution output that stores the time that metal spent in contact with each geometric component, as well as the time spent by each component with metal.

용탕이 각 geometry 컴포넌트를 접촉한 시간과 각 컴포넌트가 용탕과의 접촉 시간을 나타내는 새로운 공간적 양이 해석 아웃풋에 추가 되었습니다.

Performance and Usability

Calculators

열전달 계수, 열 침투 깊이, 밸브 손실 계수, 슬리브에 용탕량(깊이), 플런저의 속도를 계산할 수 있는 Calculators 기능이 Model Setup 창에서 바로 가능해졌습니다. 또한 유틸리티 메뉴에서도 가능합니다.

Thermal Die Cycling

Heat transfer database in FLOW-3D Cast v4.1

열전달 계수 데이터베이스와 각 싸이클 단계들이 입력되어있어 간편하게 다이싸이클링 해석을 하실 수 있습니다.

GMRES Pressure Solver

GMRES pressure solver의 속도가 솔버 데이터 구조의 최적화로 인해 2배까지 향상되었습니다. 이로 인해 메모리 사용량이 20% 미만으로 증가할 수 있습니다. Read the blog post >

Sampling Volumes

Sampling volume 기능은 STL로 정의할 수 있습니다. 각 sampling volume에 의해 계산된 양들의 목록은 유체의 부피, 최대/최소 온도, 파티클의 갯수와 같은 전체 해석 영역에 대해 모두 같은 양이 되도록 확장되었습니다.

 

FSI/TSE Model

구조분석 모델의 성능이 부분적인 coupling으로 해석 솔버의 병렬화와 최적화를 통해 향상되었습니다.

Workspaces

Workspaces 를 이전에 설치된 FLOW-3D에서 가져올 수 있습니다. Workspaces 와 사용자가 선택한 시뮬레이션들을 복사할 수 있습니다.

Expanded Simulation Pre-check

Simulation pre-check 기능은 preprocessor checks를 포함하고, 문제가 발생하는 경우 링크됩니다.

Improved Transparency

Depth-peeling 옵션은 transparent geometries 를 좀 더 잘 표현하고, v4.0보다 10배 빨라졌습니다.

Interactive Tools

Baffles, history probes, void/fluid pointers, valves, mass-momentum sources, squeeze pins에 대한 새로운 대화형 생성 기능이 추가되었습니다. 또한 probing과 clipping 도구들이 대화형으로 개선되었습니다.

General Enable/Disable

모든 objects (e.g., mesh blocks)은 활성화/비활성화 할 수 있습니다.

Estimated Remaining Simulation Time

솔버 메세지 파일에 short-print로 추정된 잔여 해석 시간이 추가 되었습니다.

Tabular Data

테이블 형식의 데이터에서 선택된 데이터를 마우스 오른쪽 버튼을 클릭하여 csv파일 또는 외부 파일에 복사, 저장할 수 있습니다.

1 23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

[FLOW-3D 물리모델] Mass Sources / 질량소스

Mass Sources / 질량소스

질량소스는 형상요소와 연관되어 있다. 요소가 질량소스로 정의될 때 유체는 사용자가 지정한 체적이나 질량 유량으로 오픈된 표면(다른요소 또는 계산영역의 경계에 의해 막혀있지 않은 표면)을 통해 계산영역으로 들어온다. 음의 유량을 갖는 질량소스는 유체를 계산영역에서 제거하며 싱크(이 이후로 소스는 단지 양의 유량을 갖는 질량소스를 뜻한다)라고 불린다. 정지 및 이동요소 모두 질량 또는 체적유량소스로 정의될 수 있다. 이 모델에서는 각기 질량 또는 체적 유량, 유체형태(유체 1, 2 또는 이들의 혼합물), 유체밀도 그리고 온도 같은 고유한 물성 그룹으로 특화되는 다수의 소스 및 싱크를 사용할 수 있다.

정리하면

  • 질량/체적 유량은 시간에 따라 변할 수 있다. 결과적으로 모사(simulate)동안에 소스는 싱크로 변할 수 있고 반대도 마찬가지이다.
  • 두 유체문제에서 하나의 유체는 소스/싱크에서 추가/제거될 수 있다. 추가로 두 유체 혼합물은 싱크에서 제거될 수 있다.
  • 1-유체문제에서 유체가아닌 공간이 소스/싱크에서 추가/제거되면 추가되거나 제거된 공간체적은 소스/싱크에 인접한 공간에서의 상응하는 압력변화로 변환될 수 있다.
  • 유체1 과 2(또는 공간)이 싱크에서 제거될 때 제거된 각 유체의 양은 자동적으로 싱크에 인접한 인근 체적율에 비례하여 결정된다. 예를들면, 인근 체적율이1이면 체적으로 유체1의 10% 와 유체2의90%가 싱크에서 제거된다. 인근 체적율이 1.0이면 단지 유체1만이 제거된다. 유체분율은 시간에 따라 변하므로 각 유체의 제거율 또한 시간에 따라 변할 것이다.
  • 열전달을 갖는 모사(simulate)에서 싱크에서의 온도는 자동적으로 싱크에 인접한 셀 내의 평균온도로 계산되므로 사용자가 지정할 필요가 없다.

밑의 예제는 다른 모사(simulate)의 경우에 대한 질량 소스/싱크 모델의 사용을 기술한다.

경우1, 일정한 밀도를가지며 자유표면 이있으나 열전달이 없는 1-유체유동,

  • 소스는 유체(액체)또는기공(가스)를 방출할 수 있지만 둘 다 동시에 방출할 수 는 없다. 유체1이 방출되면 소스 유체밀도는 유체1의 밀도가되며 사용자가 지정할 수 없다. 기공이 방출되고 질량 유량이 정의되면 소스/싱크에서의 기공에 대한 가스밀도가 지정되어야 한다. 기공이 방출되고 체적유량이 정의되면 소스에서의 기공의 가스밀도는 필요하지 않다.
  • 싱크는 유체1(액체)기공 또는 이들의 혼합물을 제거할 수 있다. 질량 유량이 정의되고 기공 또는 유체1과 기공의 혼합물이 제거되면 이때 싱크에서 기공을 위한 기체 밀도는 정의되어야 한다. 모든 다른 경우에 싱크에서의 기공의 기체밀도는 필요하지 않다.
  • 기공이 소스에서 방출되거나 기공 또는 이와 유체1의 혼합물이 싱크에서 제거되면 기포 모델이 Physics Bubbles and phase change 에서 활성화되어야 한다.

경우2, 변동밀도(밀도전달방정식이 해석된다)와 자유표면이 있으나 열전달이 없는 1-유체유동,

  • 소스는 유체(액체) 또는기공(가스)를 방출할 수 있지만 둘 다 동시에 방출할 수는 없다. 유체1이 방출되면 소스 유체밀도가 정의되어야 한다. 기공이 방출되고 질량 유량이 정의되면 소스에서의 기공에 대한 가스밀도가 지정되어야 한다. 기공이 방출되고 체적유량이 정의되면 소스에서의 기공의 가스밀도는 필요하지 않다.
  • 싱크는 유체1(액체)기공 또는 이들의 혼합물을 제거할 수 있다. 질량 유량이 정의되고 기공 또는 유체1과 기공의 혼합물이 제거되면 이때 싱크에서 기공을 위한 기체 밀도가 정의되어야 한다. 모든 다른 경우에 싱크에서의 기공의 기체밀도는 필요하지 않다.
  • 기공이 소스에서 방출되거나 기공 또는 이와 유체1의 혼합물이 싱크에서 제거되면 기포 모델이 Physics Bubbles and phase change 에서 활성화되어야 한다.

경우3, 일정 또는 변동 밀도(온도의 함수), 자유표면 그리고 열전달이 있는 1-유체유동,

  • 소스는 유체(액체) 또는 기공(가스)를 방출할 수 있지만 둘 다 동시에 방출할 수는 없다. 유체1이 방출되면 소스 유체밀도는 상수(유체밀도와 같은)이거나 온도에 의존하기 때문에 사용자가 정의할 수 없다. 기공이 방출되고 질량 유량이 정의되면 소스에서의 기공에 대한 가스밀도가 지정되어야 한다.
  • 싱크는 유체1(액체)기공 또는 이 둘의 혼합물을 제거할 수 있다. 질량 유량이 정의되고 기공이 제거되면 이때 싱크에서 기공을 위한 기체 밀도가 정의되어야 한다. 모든 다른 경우에 싱크에서의 기공의 기체 밀도는 필요하지 않다.
  • 기공이 소스에서 방출되거나 기공 또는 이와 유체1의 혼합물이 싱크에서 제거되면 기포 모델이 Physics Bubbles and phase change 에서 활성화되어야 한다.
  • 유체의 온도는 소스에서 정의되어야 하나 싱크에서는 필요하지 않다.

경우4, 일정한 밀도를 가지나  자유표면과 열전달이 없는 1-유체유동,

  • 소스는 유체 #1만 방출할 수 있다. 소스유체밀도는 디폴트로 유체 #1의 밀도이며 사용자가 변경할 수 없다.
  • 싱크는 지 유체#1 만 제거할 수 있다. 싱크에서의 밀도는 유체#1의 밀도이며 사용자가 정의할 수 없다.

경우5, 일정한밀도와 열전달이 있으나 자유표면이 없는 1-유체유동,

  • 소스는 유체#1만 방출할 수 있다. 소스 유체 밀도는 디폴트로 유체#1의 밀도이며 사용자가 변경할 수 없다.
  • 싱크는 단지 유체#1 만 제거할 수 있다. 싱크에서의 유체 밀도는 유체#1의 밀도이며 사용자가 정의할 수 없다.
  • 온도는 소스에서 정의되어야 하나 싱크에서는 필요하지 않다.

경우6, 변동밀도(밀도전달방정식이 해석된다)를가지나, 자유표면 과 열전달이 없는 1-유체유동

  • 소스는 유체#1만 방출할 수 있다. 소스 유체 밀도는 사용자가 정의해야 한다.
  • 소스는 유체#1만 방출할 수 있다. 싱크에서의 유체 밀도는 디폴트로 그 지역의 값을 가지며 사용자가 정의할 수 없다.

경우7, 변동밀도 (온도의 함수)와 열전달이있으나 자유표면이 없는 1-유체유동,

  • 소스는 유체#1만 방출할 수 있다. 소스 유체 밀도는 온도에 의존하므로 정의될 수 없다.
  • 싱크는 단지 유체#1 만 제거할 수 있다. 싱크에서의 유체 밀도는 지역의 값을 가지므로 사용자가 정의할 수 없다.
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

경우8, 열전달이 없고 현저한 경계면을 갖는2 -압축성유체

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 소스에서의 유체밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다.

경우9, 열전달과 현저한 경계면을 갖는2-압축성유체

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 소스에서의 유체밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 사용자가 정의할 수 없다
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

경우10, 열전달과 현저한 경계면이 없는 2-압축성유체

  • 소스는 유체#1, 유체#2 또는 이의 혼합물을 방출할 수 있다. 소스에서의 유체 밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다.

경우11, 열전달은 있으나 현저한 경계면이 없는 2-압축성유체

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 소스에서의 유체밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다.
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

경우12, 현저한 경계면을 갖는 두 유체이며 유체#2 는 압축성

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 유체#1이 방출되면 소스 유체밀도는 유체#1의 값이 되며 사용자가 변경할 수 없다. 유체#2가 방출되면 소스 유체밀도는 정의되어야 한다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

Activate Mass Source / 질량소스 활성화

질량소스모델은 Activate fluid source model. 을 체크함으로써 in Model Setup Physics Fluid sources 에서 활성화된다.

질량소스/싱크를 정의하기 위해 Meshing & Geometry Geometry Component (원하는 요소). 로간다. Component properties 창에서 Mass Source Properties 로 간다. Mass Source 체크상자를 체크한다. 질량소스 정의를 위한 변수들은 아래 그림에서 보여지는 것 같이 펄쳐질 수 있다.

Define Source Properties / 소스물성정의

사용자는 문제 정의에 따라 소스에서 유체 유형(유체 1,2 또는 이의 혼합물), 압력유형 밀도 및 온도, 그리고 싱크에서 유체유형과 밀도를 지정할 수 있다.

압력유형은 Stagnation pressure Static pressure 를 포함하고 단지소스에만 적용된다(즉 질량유량이 양의 수 일 경우에). 정체 압력소스(디폴트)일 경우, 유체는 0의 속도로 들어온다고 가정된다. 결과적으로 압력은 소스로부터 유체를 밀어내기 위해 소스에서 증가되어야 한다. 이러한 소스는 로켓 끝이나 수축하는 풍선에서 나오는 유체 모델을 목적으로 한다.

정압소스에서 유체속도는 질량유량과 소스의 표면적으로부터 계산된다. 이 경우 소스에서 유체를 밀어내기 위한 추가압력이 필요 없다. 이런 소스 예제는 긴 직선의 파이프로부터 나오는 유체의 경우이다.

일반적으로 질량소스의 두 유형의 차이는 결합운동을 하는 GMO 요소와 관련된 소스에서만 중요한데 이는 소스에서 유체압력, 즉 움직이는 물체에 작용하는 수압에 영향을 미치기 때문이다.

Define Flow Rate / 질량유동정의

유량 밑에 펼쳐지는 상자에서 소스/싱크를 위해 Mass flow rate Volume flow rate 를 정의하기 위해 선택할 수 있다. 두 유량은 모두 소스 요소의 전체유량 또는 단위면적당 유량으로 선택할 수 있다.

전체 유량은 소스 요소의 개표면상에 균일하게 분포될 수 있다. 단위 면적당 유량이 사용되면 전체유량은 단위 면적당 지정된 유량에 소스요소의 개방된 표면 면적을 곱한 양이다. 개방된 표면 면적이 시간에 따라 변하면 전체 유량도 변한다. 예를 들면 이동체의 개방된 표면 면적은 격자 크기와 분포에 달려있고 각 시간마다 새롭게 되므로 시간에 따라 변하며 전체 유량 역시 시간에 따라 변하게 된다.

전체 유량이 이동체에서 지정되면 개방된 표면을 통한 유속은 정의된 전체 질량 유량을 유지하기 위해 매시간 단계에 조절된다.

유량이 일정하면 그 때는 단순히 그 값을 Total flow rate 또는 Per unit area flow rate 밑에 상응하는 편집상자에 넣는다. 그렇지 않으면 데이터 표를 불러오기 위해 Tabular 를 클릭하고 일련의 시간대 유량의 데이터를 입력한다. 유량은 소스에서는 양이고 싱크에서는 음이며 시간에 따라 변할 수 있다. 다른 방법으로는 사용자가 Import Values 버튼을 사용하여 기존의 데이터 파일을 읽어 들임으로써 유량 대 시간을 정의할 수 있다. 파일은 두열의 데이터를 갖는데 좌에서 우로 각기 시간과 유량을 나타낸다. 파일은 csv 확장자를 필요로 한다. FLOW-3D 데이터에서의 다른 시간변동 입력과 같이 데이터는 시간 점들 사이에서는 구간별 선형형태를 이용하여 보간 된다.

유량은 능동모사(simulate) 조절을 이용해 모사(simulate) 동안에 변경될 수 있다, 또 더 상세한 내용은 Active Simulation Control 를 참조하라.

Define Scalars at Source / 소스에서의 스칼라정의

스칼라는 우선 Physics 탭 밑 Scalars 에서 활성화되어야 한다. 질량소스에서 유체에 있는 스칼라 량은 소스에서의 스칼라농도로 정의될 수 있는데 이는 계산영역 내로 들어오는 유체체적당 스칼라질량이다. 영역내로 들어오는 한 스칼라의 질량유량은 지정된 스칼라농도에 소스에서의 소스유체 체적유량을 곱한 값이다. Mass Source Properties Source Scalars User defined scalar 에서 스칼라 농도를 넣는다.

[FLOW-3D 물리모델]General Moving Objects / 일반이동물체

General Moving Objects / 일반이동물체

Basics / 기초

The general moving objects (GMO) model in FLOW-3D can simulate rigid body motion, which is either userprescribed (prescribed motion) or dynamically coupled with fluid flow (coupled motion). If an object’s motion is prescribed, fluid flow is affected by the object’s motion, but the object’s motion is not affected by fluid flow. If an object has coupled motion, however, the object’s motion and fluid flow are coupled dynamically and affect each other. In both cases, a moving object can possess six degrees of freedom (DOF), or rotate about a fixed point or a fixed axis. The GMO model allows the location of the fixed point or axis to be arbitrary (it can be inside or outside the object and the computational domain), but the fixed axis must be parallel to one of the three coordinate axes of the space reference system. In one simulation, multiple moving objects with independent motion types can exist (the total number of moving and non-moving components cannot exceed 500). Any object under coupled motion can undergo simultaneous collisions with other moving and non-moving objects and wall and symmetry mesh boundaries (See Collision). The model also allows the existence of multiple (up to 100) elastic linear and torsion springs, elastic ropes and mooring lines which are attached to moving objects and apply forces or torques to them (See Elastic Springs & Ropes and Mooring Lines).

FLOW-3D에서 일반 이동물체인 GMO 모델은 강체운동을 모사(simulate)할 수 있는데, 이는 사용자가 기술하는 운동(지정운동)이거나 유체 유동과 동력학적인(결합된) 운동일 수 있다. 물체의 운동이 지정되면 유체 유동은 이 운동에 의해 영향을 받으나, 물체의 운동은 유체에 의해 영향을 받지 않는다. 그러나 물체가 결합된 운동을 하면 물체와 유체는 동역학적으로 연결되어 서로 영향을 미친다.

이 두 경우에 물체는6 자유도 운동을 할 수 있고, 고정된 점이나 축에 대해 회전할 수가 있다. GMO모델은 고정점이나 고정축의 위치를 임의로 설정할 수 있으나(이는 물체나 계산영역의 내부 또는 외부가 될 수 있다) 고정축은 공간좌표계의 좌표중의 하나에 평행하여야 한다.

어떤 모사(simulate)에서 고유의 운동형태를 갖는 다수의 운동물체가 존재할 수 있다(이동 및 고정된 물체의 전체수는500개를 초과하지 못한다). 결합운동을 하는 물체는 다른 이동/비이동 물체 그리고 벽과 대칭 경계 격자면에서 충돌할 수가 있다(충돌참조). 이 모델은 (100개까지) 다수의 탄성선형과 비틀림 스프링, 탄성로프와 이동 물체에 부착된 탄성력과 회전력을 갖는 계류선들을 표현할 수 있다(Elastic Springs & Ropes 와 Mooring Lines참조). .

In general, the motion of a rigid body can be described with six velocity components: three for translation and three for rotation. In the most general cases of coupled motion, all the available velocity components are coupled with fluid flow. However, the velocity components can also be partially prescribed and partially coupled in complex coupledmotion problems (e.g., a ship in a stream can have its pitch, roll and heave to be coupled but yaw, sway and surge prescribed). For coupled motion only, in addition to the hydraulic, gravitational, inertial and spring forces and torques which are calculated by the code, additional control forces can be prescribed by the user. The control forces can be defined either as up to five forces with their application points fixed on the object or as a net control force and torque. The net control force is applied to the GMO’s mass center, while the control torque is applied about the mass center for 6-DOF motion, and about the fixed point or fixed axis for those kinds of motions. The inertial force and torque exist only if the Non-inertial Reference Frame model is activated.

일반적으로 강체의 운동은 6개의 속도 성분으로 기술될 수 있다: 3개의 이동과3개의 회전. 가장 일반적인 결합 운동의 경우에, 모든 가능한 속도성분들은 유동과 연결되어 있다. 그러나 속도 성분들은 복잡한 결합운동 문제에서는 부분적으로 지정되고 일부는 결합될 수 있다(즉 유속내의 선박에서 pitch, roll and heave는 결합된 운동을 하고 yaw, sway and surge 는 지정될 수있다). 단 결합운동 문제에서는 코드 내에서 계산되는 수력, 중력, 관성 그리고 스프링 힘과 토크에 추가적인 조절할 수 있는 힘(control force) 들이 사용자에 의해 기술될 수 있다. 조절 힘(control force)들은 물체의 지정된 위치에 작용하는5개까지의 힘이나 또는 순수 힘과 토크로 정의 될 수 있다. 순수 조절힘은 GMO의 질량 중심에 작용하지만, 조절토크는6 자유도 운동의 질량중심에 대해 이런 운동을 하기 위한 고정축이나 점들에 대해 적용된다. 관성력과 토크는 단지 비 관성계 모델이 활성화되면 존재한다.

In FLOW-3D, a GMO is classified as a geometry component that is either porous or non-porous. As with stationary components, a GMO can be composed of a number of geometry subcomponents. Each subcomponent can be defined either by quadratic functions and primitives, or by STL data, and can be solid, hole or complement. If STL files are used, since GMO geometry is re-generated at every time step in the computation, the user should strive to minimize the number of triangle facets used to define the GMO to achieve faster execution of the solver while maintaining the necessary level of the geometry resolution. For mass properties, different subcomponents of an object can possess different mass densities.

FLOW-3D 에서 한 개의 GMO 는 다공질 또는 비 다공질의 형상요소로 간주된다. 정지된 구성요소에서와 같이 한 개의 GMO 는 다수의 형상 서브구성요소로 구성될 수 있다. 각 서브구성요소는 2차 함수와 기초 요소 또는 STL 데이터로 정의될 수 있고 고체, 공간 또는 이의 보완일 수 있다. 만약 STL 파일이 사용된다면 GMO 형상은 계산 중에 매 시간에서 재 생성되므로 사용자는 형상 정밀도에 필요한 수준을 유지하는 한편, 빠른 계산을 위해 GMO를 정의하는데 사용되는 삼각면의 수를 줄이려고 노력해야 한다. 질량물성을 위해 한 물체의 다른 서브구성요소는 다른 질량밀도를 가질 수 있다.

In order to define the motion of a GMO and interpret the computational results correctly, the user needs to understand the body-fixed reference system (body system) which is always fixed on the object and experiences the same motion. In the FLOW-3D preprocessor, the body system (x’, y’, z’) is automatically set up for each GMO. The initial directions of its coordinate axes (at t = 0) are the same as those of the space system (x, y, z). The origin of the body system is fixed at the GMO’s reference point which is a point automatically set on each moving object in accordance with the object’s motion type.

GMO 의 운동을 정의하고 계산결과를 정확히 이해하기 위해, 사용자는 항상 물체에 고정되고, 물체와 같은 운동을 하는 물체에, 고정된 기준계(물체계)를 이해할 필요가 있다. FLOW-3D 의 전처리에서 물체계(x’, y’, z’) 가 자동으로 각 GMO 에 대해 설정된다. 좌표축(t = 0에서) 의 초기방향은 공간계(x, y, z) 의 것과 같다. 물체계의 원점은 물체의 이동형상에 일치하는 각 이동체 상에 자동으로 설정된 GMO 의 기준점에 고정되어 있다.

 

The reference point is: 기준점은 다음과 같다.

  • the object’s mass center for the coupled 6-DOF motion;

결합된6자유도 운동의 질량중심

  • the fixed point for the fixed-point motion;

고정점 운동을 위한 고정점

  • a point on the fixed axis for the fixed-axis rotation;

고정축 회전을 위한 고정축 상의 점

  • a user-defined reference point for the prescribed 6-DOF motion.

기술된6자유도 운동을 위한 사용자 지정의 기준점

  • If the reference point is not given by users for the prescribed 6-DOF motion, it is set by the code at the mass center (if mass properties are given) or the geometry center (if mass properties are not given) of the object.

기준점이 기술된6자유도 운동을 위해 사용자가 지정하지 않으면 코드에 의해 질량중심 (질량물성이 주어지면) 또는 형상중심(질량물성이 안 주어지면)에 지정된다.

 

The GMO’s motion can be defined through the GUI using four steps:

GMO 운동은 4단계를 거쳐 GUI 를통하여 정의될수있다.

  1. Activate the GMO model;

GMO 모델을 활성화한다

  1. Create the GMO’s initial geometry;

GMO의 초기형상을 생성한다

  1. Specify the GMO’s motion-related parameters, and

GMO의 운동관련 변수들을 지정하고.

  1. Define the GMO’s mass properties.

GMO 질량물성을 정의한다

Without the activation of the GMO model in step 1, the object created as a GMO will be treated as a non-moving object, even if steps 2 to 4 are accomplished.

1단계의 GMO 모델 활성화가 없으면 2~4의 단계가 이루어져도 GMO 로 생성된 물체는 비 이동 물체로 간주될 것이다.

Step 1: Activate the GMO Model GMO 모델활성화

To activate the GMO model, go to Model Setup Physics Moving and simple deforming objects and check the Activate general moving objects (GMO) model box.

GMO 모델을 활성화하기 위해 Model Setup Physics Moving and simple deforming objects 로 가서 Activate general moving objects (GMO) model 박스를 체크한다.

The GMO model has two numerical methods to treat the interaction between fluid and moving objects: an explicit and an implicit method. If no coupled motion exists, the two methods are identical. For coupled motion, the explicit method, in general, works only for heavy GMO problem, i.e., all moving objects under coupled motion have larger mass densities than that of fluid and their added mass is relatively small. The implicit method, however, works for both heavy and light GMO problems. A light GMO problem means at least one of the moving objects under coupled motion has smaller mass densities than that of fluid or their added mass is large. The user may change the selection on the Moving and deforming objects panel or on the Numerics tab Moving object/fluid coupling.

GMO 모델은 유체와 움직이는 물체간의 상호작용을 다루기위해 두 수치해석법을 이용한다: explicit 방법과implicit 방법. 결합 운동이 없으면 두 방법은 동일하다. 결합된 운동에서는 외재적 방법은 일반적으로 무거운 GMO 문제에 사용된다, 즉 결합된 운동을 하는 모든 이동물체는 유체밀도보다 크고 이의 부가질량이 작을 경우이다. 그러나 내재적 방법은 무겁거나 가벼운 GMO 문제에 모두 사용된다. 가벼운 GMO 문제는 결합운동 시에 최소한 하나의 이동물체가 유체밀도보다 작고 이의 부가질량이 클 경우이다. 사용자는 Moving and deforming objects패널이나 Numerics tab Moving object/fluid coupling 상에서 선택을 바꿀 수 있다.

  1. Step 2: Create the GMO’s Initial Geometry GMO의 초기형상을 생성한다

 

In the Meshing & Geometry tab, create the desired geometry for the GMO components using either primitives and/or imported STL files in the same way as is done for any stationary component. The component can be either standard or porous. To set up a porous component, refer to Porous Media. Note that the Copy function cannot be used with geometry components representing GMOs.

정지상태의 구성요소 생성의 경우와 마찬가지로 Meshing & Geometry 탭에서 기초 요소와/또는 외부로부터의 STL 파일을 이용하여 GMO 구성요소의 원하는 형상을 생성한다. 구성요소는 standard이거나porous일 수 있다. 다공성요소를 설정하기 위해 Porous Media 를 참조하라. Copy 기능은 GMO를 나타내는 형상 구성요소에 사용할 수 없음에 주목한다.

Step 3: Specify the GMO’s Motion Related Parameters GMO의 운동관련변수들을 지정한다

The following section discusses how to set up parameters for prescribed and coupled 6-DOF motion, fixed-point motion and fixed-axis motion. The user can go directly to the appropriate part.

다음 섹션은 “지정되고 결합된 6자유도운동”, “고정점 운동과 고정축 운동을 위한 매개변수를 어떻게 설정하는지”에 대해 논한다. 사용자는 직접 해당부분을 참조할 수 있다.

Prescribed 6-DOF Motion 지정된 6자유도운동

In Meshing & Geometry Geometry Component (the desired GMO component) Type of Moving Object, select Prescribed motion. Go to Component Properties Type of Moving Object Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select 6 Degrees of Freedom in the combo box.

Meshing & Geometry Geometry Component (the desired GMO component) Type of Moving Object 에서 Prescribed motion 을 선택한다. Component Properties Type of Moving Object Moving Object Properties Edit Motion Constraints 로 가서 Type of Constraint 밑에서 combo 박스에 있는 6 Degrees of Freedom 를 선택한다.

To define the object’s velocity, go to the Initial/Prescribed Velocities tab in the Moving object setup window. The prescribed 6-DOF motion is described as a superimposition of a translation of a reference point and a rotation about the reference point. The reference point can be anywhere inside or outside the moving object and the computational domain. The user needs to enter its initial x, y and z coordinates (at t = 0) in the provided edit boxes. By default, the reference point is determined by the preprocessor in two different ways depending on whether the object’s mass properties are given: if mass properties (either mass density or integrated mass properties) are given, then the mass center of the moving object is used as the reference point; otherwise, the object’s geometric center will be calculated and used as the reference point.

물체의 속도를 정의하기 위해 Moving object setup 의 창에 있는 Initial/Prescribed Velocities 탭으로 이동한다. 지정된 6자유도 운동은 기준점의 이동과 기준점에 대한 회전의 중첩으로 기술된다. 기준점은 이동체의 내부 또는 외부 그리고 계산영역 외부일 수도 있다. 사용자는 주어진 편집박스 내에 이의 초기 x, y 와 z 좌표값(t = 0에서)을 입력할 필요가 있다. 디폴트로 기준점은 물체의 질량 물성이 주어지는가에 따라 두 가지로 전처리 과정에서 결정된다: 질량물성(질량밀도나 전체질량물성)이 주어지면 이동체의 질량중심이 기준점으로 사용되고 아니면 이동체의 형상중심이 계산되고 기준점으로 이용된다.

With the reference point provided (or left for the code to calculate), users can define the translational velocity components for the reference point in space system and the angular velocity components (in radians/time) in body system. Each velocity component can be defined either as a sinusoidal or a piecewise linear function of time by making a selection in the corresponding combo box. For a constant velocity component, choose Non-Sinusoidal and simply enter its value in the corresponding input box (the default value is 0.0). If a velocity component is Non-sinusoidal and time-dependent, click on the corresponding Tabular button to open a data table and enter values for the velocity component and time. Alternatively, the user can also import a data file for the velocity component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and velocity from left to right and must have a csv extension. If the velocity component is sinusoidal in time, then enter the values for Amplitude, Frequency (in Hz) and Initial Phase (in degrees) in the input boxes.

기준점이 주어지면(또는 코드 내에서 계산이 되면) 사용자는 공간계 기준점에 대해 translational velocity components 를 그리고 물체계에서angular velocity components (radians/시간으로)를 정의할 수 있다. 각 속도 성분은 상응하는 combo box 에서 선택함으로써 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정 속도 성분에 대해서 Non-Sinusoidal 을 선택하고 단순히 상응하는 combo 박스에 값을 넣는다(디폴트 값은0이다). 속도성분이 Non-Sinusoidal 이고 시간의 함수이면 데이터 테이블을 열고 상응하는 Tabular 버튼을 클릭하고 속도성분과 시간을 넣는다. 다른 방법으로는 사용자가 Tabular Import Values를 클릭함으로써 속도성분대 시간의 데이터파일을 읽어 들일 수가 있다. 이 파일은 시간과 속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 속도 성분이 시간에 따른 사인파이면 입력박스에서의 Amplitude, Frequency (in Hz) 그리고 Initial Phase (in degrees) 값을 입력한다.

The expression for the sinusoidal velocity component is

사인파 속도의 식은

v = Asin(2πft + ϕ0)

where: 여기서

  • A is the amplitude, 진폭
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다.
  •  
  • Users can set limits for the translational displacements of the object’s reference point in both negative and positive x, y and z directions in space system. The displacements are measured from the initial location of the reference point. During motion, the reference point cannot go beyond these limits but can move back to the allowed range after it reaches a limit. To set the limits for translation, go to the Motion Constraints tab and enter the maximum displacements allowed in the corresponding input boxes, using absolute values. By default, these values are infinite. Note the Limits for rotation is only for fixed-axis rotation thus cannot be set for 6-DOF motion.사용자는 공간계에서 음이나 양의 x, y 그리고 z 방향으로 물체 기준점의 이동변위를 제한할 수 있다. 변위는 기준점의 초기위치로부터 정해진다. 운동중에 기준점은 이 제한을 넘어갈 수 없지만 이 제한에 도달한 후에 허용된 범위만큼 돌아올 수 있다. 이동의 제한을 설정하기 위해 Motion Constraints 탭으로가서 절대값을 사용하여 상응하는 입력박스 안에 허용된 최대변위를 넣는다. the Limits for rotation 는 고정축 회전에만 해당하므로 6자유도 운동에는 지정될 수 없다.Prescribed Fixed-point Motion지정된 고정점운동In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Prescribed motion. Go to Moving object properties Edit Motion Constraints. Under Type of Constraint, select Fixed point rotation in the combo box and enter the x, y and z coordinates of the fixed point in the corresponding input boxes.Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object 에서 Prescribed motion 을 선택한다. Moving object properties Edit Motion Constraints 로 가서 Type of Constraint 밑에서 combo box 에있는 Fixed point rotation을 선택하고 상응하는 입력박스에서 고정점의 the x, y 및 z 좌표를 입력한다.To define the velocity of the object, go to the Initial/Prescribed Velocities tab in the Moving object setup window. The velocity components to be defined are the x, y and z components of the angular velocity (in radians/time) in the body system. Each velocity component can be defined as either a sinusoidal or a piecewise linear function of time by making a selection in the corresponding combo box. For a constant velocity component, choose Non-Sinusoidal and simply enter its value in its input box (the default value is 0.0). If a velocity component is time-variant and Non-sinusoidal, click on the Tabular button to open a data table and enter the values for the velocity component and time. Alternatively, the user can also import a data file for the velocity component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and velocity component from left to right and must have a csv extension. If the velocity component is sinusoidal in time, then enter the values for Amplitude, Frequency (in cycles/time) and Initial Phase (in degrees) in the corresponding input boxes.

    물체의 속도를 정의하기 위해 Moving object setup 의 창에 있는 Initial/Prescribed Velocities 탭으로 간다. 정의되어야 할 속도성분은 물체계에서 각속도  (radians/시간으로) 를 x, y 및 z 성분으로 정의할 수 있다

    각 속도 성분은 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다.

    일정속도 성분에 대해서 Non-Sinusoidal 을 선택하고 단순히 상응하는 combo box 박스에 값을 넣는다(디폴트 값은0이다). 속도성분이 Non-Sinusoidal 이고 시간의 함수이면 데이터 테이블을 열고 상응하는 Tabular 버튼을 클릭하고 속도성분과 시간을 넣는다. 그렇지 않으면 사용자가 Tabular Import Values 를 클릭함으로써 속도성분대 시간의 데이터 파일을 읽어 들일 수가 있다. 이 파일은 시간과 속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 속도성분이 시간에 따른 사인파이면 상응하는 입력박스에서 Amplitude, Frequency (in Hz) 와 Initial Phase (in degrees) 값을 입력한다.

    The expression for a sinusoidal angular velocity component is

    ω = Asin(2πft + ϕ0)

    where: 여기서

    • A is the amplitude, 진폭
    • f is the frequency, and주기이며
    • ϕ0 is the initial phase. 초기위상이다.

    Prescribed Fixed-Axis Motion

    In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Prescribed motion. Go to Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select Fixed X-Axis Rotation or Fixed Y-Axis Rotation or Fixed Z-Axis Rotation in the combo box depending on which coordinate axis the rotational axis is parallel to.

    Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object 에서 Prescribed motion 을 선택한다. Moving object properties Edit Motion Constraints 로 가서Type of Constraint밑에서 회전축이 어떤 좌표축에 평행인가에 따라 combo box 에있는 Fixed X-Axis Rotation 또는 Fixed Y-Axis Rotation 또는 Fixed Z-Axis Rotation 를 선택한다.

    Coordinates of the rotational axis need be given in two of the three input boxes for Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate and Fixed Axis/Point Z Coordinate. For example, if the rotational axis is parallel to the z-axis, then the x and y coordinates for the rotational axis must be defined. Users can also set limits for the object’s rotational angle in both positive and negative directions. The rotational angle (i.e., angular displacement) is a vector and measured from the object’s initial orientation based on the right-hand rule. Its value is positive if it points in the positive direction of the coordinate axis which the rotational axis is parallel to. The object cannot rotate beyond these limits but can rotate back to the allowed angular range after it reaches a limit. To set the limits for rotation, in Motion Constraints Limits for rotation, enter the Maximum rotational angle allowed in negative and positive directions in the corresponding input boxes, using absolute values in degrees. By default, these values are infinite.

    회전축 좌표는 3개 Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate Fixed Axis/Point Z Coordinate 중 2개의 입력박스에서 주어져야 한다. 예를 들면 회전축이 z 축에 평행 하다면 이 회전축의 the x 와 y 좌표가 정의 되어야 한다. 사용자는 물체의 양음 방향의 회전각도를 제한할 수 있다. 회전각 (즉, 각변위)은 벡터이며 오른손 법칙에 따른 물체의 초기 방향으로부터 측정된다. 이는 회전축에 평행한 좌표축의 양방향을 가리키면 양의 값이다. 물체는 제한 값을 지나 회전할 수 없지만 이 값에 도달한 후 허용된 각변위로 되돌아갈 수 있다. 회전의 제한을 설정하기 위해 Motion Constraints Limits for rotation 내에서 상응하는 입력박스에서 음이나 양의방향으로 허용된 Maximum rotational angle 을 입력한다. 이의 디폴트 값은 무한대이다.

To define the angular velocity of an object (in radians/time), go to Initial/Prescribed Velocities. The angular velocity can be defined either as a sinusoidal or a piecewise linear function of time by making a selection in the corresponding combo box. For a constant angular velocity, choose Non-Sinusoidal and simply enter its value in its input box (the default value is 0.0). If it is Non-sinusoidal in time, click on the corresponding Tabular button to open a data table and enter the values for the angular velocity and time. Alternatively, the user can also import a data file for the velocity component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and angular velocity from left to right and must have a csv extension. If the angular velocity is sinusoidal in time, then enter the values for Amplitude, Frequency (in cycles/time) and Initial Phase (in degrees) in the corresponding input boxes.

물체의 각속도(radians/시간으로)를 정의하기 위해 Initial/Prescribed Velocities 탭으로 간다. 각속도는 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정 각속도에 대해서 Non-Sinusoidal 을 선택하고, 이에 상응하는 combo box 에 단순히 값을 넣는다(디폴트 값은0.0이다). 이것이 Non-Sinusoidal 이고 시간의 함수이면 데이터 테이블을 불러와, 상응하는 Tabular 버튼을 클릭하고 각속도와 시간을 넣는다. 그렇지 않으면 사용자가 Tabular Import Values 를 클릭함으로써 속도 성분대 시간의 데이터 파일을 읽어 들일 수가 있다. 이 파일은 시간과 각속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 각속도가 시간에 따른 사인파이면 입력박스에서의 Amplitude, Frequency (in Hz) 그리고 Initial Phase (in degrees) 값을 입력한다.

 

The expression for a sinusoidal angular velocity is사인파 각속도식은

ω = Asin(2πft + ϕ0)

where: 여기서

  • A is the amplitude, 진폭
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다.

Coupled 6-DOF motion 결합된 6자유도운동

In Meshing & Geometry → Geometry → Component (the desired GMO component) → Component Properties → Type of Moving Object, select Coupled motion. Go to Moving Object Properties → Edit → Motion Constraints. Under Type of Constraint, select 6 Degrees of Freedom in the combo box.

Meshing & Geometry → Geometry → Component (the desired GMO component) → Type of Moving Object 에서 Coupled motion 을 선택한다. Moving Object Properties → Edit → Motion Constraints 로가서 Type of Constraint 밑에서 combo 박스에 있는 6 Degrees of Freedom 를 선택한다.

 

Users need to define the initial velocities for the object. Go to the Initial/Prescribed Velocities tab. Enter the x, y, and z components of the initial velocity of the GMO’s mass center in X Initial Velocity, Y Initial Velocity and Z Initial Velocity, respectively. Enter the x’, y’ and z’ components of the initial angular velocity (in radians/time) in the body system in X Initial Angular Velocity, Y Initial Angular Velocity and Z Initial Angular Velocity, respectively. By default, the initial velocity components are zero.

사용자는 물체에 대한 초기속도를 정의해야 한다. Initial/Prescribed Velocities 탭으로 간다. 각 X Initial Velocity, Y Initial Velocity 그리고 Z Initial Velocity 로 GMO 질량중심의 초기속도의 x, y 와 z 성분값(t = 0에서)을 입력한다. 물체 계에서의 X Initial Angular Velocity, Y Initial Angular Velocity 그리고 Z Initial Angular Velocity (radians/시간으로)로 초기 각속도의 x’, y’ 및 z’ 성분값을 입력한다.

 

For coupled 6-DOF motion, user-prescribed control force(s) and torque exerting on the object can be defined either in the space system or the body system. They are combined with the hydraulic, gravitational, inertial and spring forces and torques to determine the object’s motion. There are two different ways to define control force(s) and torque: prescribe either a total force and a total torque about the object’s mass center or multiple forces with their application points fixed on the object. By default, all the control force(s) and torque are equal to zero.

결합된6자유도운동에서 물체에 미치는 사용자 지정 조절 힘과 토크는 물체계 또는 공간계에서 정의될 수 있다. 이들은 물체의 운동을 결정하는 수력, 중력, 관성력 스프링 힘 그리고 토크이다. 이 조절 힘과 토크를 정의하는 두 가지 방법이 있다: 물체의 질량중심에 대한 전체의 힘과 토크를 지정하거나 물체에 고정된 점들에 작용하는 다수의 힘들을 지정하는 것이다. 디폴트는 모든 조절 힘과 토크가0이다.

To prescribe total force and total torque, in the Control Forces and Torques tab, choose Define Total Force and Total Torque in the combo box. Further select In Space System or In Body System depending on which reference system the control force and torque are define in. If a component of the force or the torque is a constant, it can be specified in the corresponding edit box (default is zero). If it varies with time, then click on the Tabular button to bring up a data input table and enter the values for the component and time. The time-variant force and torque are treated as piecewise-linear functions of time during simulation. Alternatively, instead of filling the data table line by line, the user can also import a data file for the force/torque component versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and the force/torque component from left to right and must have a csv extension.

전체의 힘과 토크를 지정하기 위해 Control Forces and Torques 탭 안의 combo box 에서 Define Total Force and Total Torque 를 선택한다. 추가로 조절 힘과 토크가 정의되는 기준계에 따른 In Space System 이나 In Body System 을 선택한다. 힘 또는 토크의 한 성분이 상수이면 상응하는 편집박스에 지정된다(디폴트는0). 이것이 시간에 따라 변하면 데이터 테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 성분과 시간 값을 넣는다. 그렇지 않으면 한 줄씩 데이터 테이블을 채우는 대신에 사용자가 Tabular Import Values 를 클릭함으로써 force/torque component versus time 을 읽어 들일 수가 있다. 이 파일은 시간과 힘/토크를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다

If, instead, control forces and their application points need to be defined, then in the Control Forces and Torques tab choose Define Multiple Forces and Application Points in the combo box. Users can specify up to five forces. For each force, in the editor boxes, choose the force index (1 to 5) and then select Force components in Space System or Body System depending on which reference system the force is defined in. In field on the left, enter the initial coordinates (at t = 0) for the force’s application point. In the field on the right, prescribe components of the force in x, y and z directions of the body or space system. For a constant force component, enter its value in the corresponding edit box. If it varies with time, then click on the Tabular button to bring up a data input table and enter values for the force component versus time. Tabular force input is approximated with a piecewise-linear function of time. Alternatively, the user can import a data file for the force versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and from left to right and must have a csv extension.

대신에 조절힘과 그 적용점들이 정의되어야 한다면 Control Forces and Torques 탭에서 combo box 안에 있는 Define Multiple Forces and Application Points 를 선택한다. 사용자는5개까지의 힘을 지정할 수 있다. 각 힘에 대해, 편집박스 내에서, force index(1에서 5) 를 선정하고 힘이 정의되는 기준계에 따라 Force components in 에서 Space System Body System 을 선택한다. 좌측 칸에 힘 적용점의 초기좌표(t=0에서)를 입력한다. 우측 칸에 물체 또는 공간계에 따른 x, y 그리고 z 방향에서의 힘의 성분을 넣는다. 힘 성분이 상수이면 그 값을 상응하는 편집박스에서 입력한다. 이것이 시간에 따라 변하면 데이터 테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 힘성분 대 시간값을 넣는다. 이렇게 입력된 값들은 구간별 선형함수로 근사 된다.  다른 방법으로 사용자가 Tabular Import Values 를 클릭함으로써 힘과 시간에 대한 데이터파일을 읽어 들일 수가 있다. 이파일은 시간과 힘/토크를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다.

 

Motion constraints can be imposed to the object to decrease the number of the degrees of freedom to less than six. This selection is made by setting part of its translational and rotational velocity components as Prescribed motion while leaving the other components to coupled motion in Motion Constraints tab Translational and Rotational Options. Note that the translational and rotational components are in the space system and the body system, respectively. Then go to the Initial/Prescribed Velocities tab to define their values. A prescribed velocity component can be defined as either a sinusoidal or piecewise linear function of time in the combo box. For a constant velocity component, choose Non-Sinusoidal and enter its value in its input box (the default value is 0.0). If the velocity component is timedependent and non-sinusoidal, click on the Tabular button to open a data table and enter the values for the velocity component and time. Alternatively, the user can import a data file for the velocity component versus time by clicking Tabular Import values. The file must have two columns of data which represent time and the angular velocity component from left to right and must have a csv extension. It is treated as a piecewise-linear function of time in the code. If it is a sinusoidal function of time, instead, enter its Amplitude, Frequency (in Hz) and Initial Phase (in degrees) in the edit boxes.

6자유도 보다 운동의 자유도를 줄이기 위해 운동의 제약이 물체에 가해질 수 있다. 이 선택은 일부의 이동과 회전속도 성분을 Prescribed motion 으로 다른 성분들은 Motion Constraints tab Translational and Rotational Options 에서 coupled motion 결합운동으로 설정함으로써 이루어진다. 이동과 회전은 각기 공간계와 물체계로 되어있다는 것에 주목한다. 이 때에 Initial/Prescribed Velocities 탭으로 가서 이 값을 정의한다. 지정속도 성분은 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정속도 성분에 대해서 Non-Sinusoidal 을 선택하고 입력박스에서 값을 넣는다(디폴트 값은0이다). 속도성분이 시간의 함수이고 Non-Sinusoidal 이면 데이터 테이블을 열고 Tabular 버튼을 클릭하고 속도 성분과 시간 값을 넣는다. 다른 방법으로는 사용자가 Tabular Import Values 를 클릭함으로써 속도성분 대 시간의 데이터 파일을 읽어 들일 수가 있다. 이 파일은 좌로부터 우로의 시간과 각속도 성분을 나타내는 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 이렇게 입력된 값들은 코드 내에서 구간별 선형함수로 근사 된다. 대신에 시간의 함수이면 편집박스에서의 Amplitude, Frequency (in Hz) 그리고 Initial Phase (in degrees) 값을 입력한다.

 

The expression for a sinusoidal velocity component is사인파 속도식은

v = Asin(2πft + ϕ0)

where:

  • A is the amplitude, 진폭
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다.

Users can also set limits for displacements of the object’s mass center in both negative and positive x, y and z directions in the space system, measured from its initial location. The mass center cannot go beyond these limits but can move back to the allowed motion range after it reaches a limit. To specify these limits, open the Motion Constraints tab and in the Limits for translation area, enter the absolute values of maximum displacements in the desired coordinate directions. There are no Limits for rotation for an object with 6-DOF coupled motion.

사용자는 초기 조건으로부터 측정된 공간계에서의 음이나 양의 x, y 그리고 z 방향으로 물체 질량중심의 변위를 제한할 수 있다. 질량중심은 이 제한을 지나갈 수 없지만 이 제한에 도달한 후에 허용된 범위로 돌아올 수 있다. 이동의 제한을 설정하기 위해 Motion Constraints 탭을 열고 Limits for translation에서 원하는 좌표방향에서의 최대 절대변위 값을 넣는다. 6자유도 운동을 갖는 물체에 대한 Limits for rotation 은 없다.

 

Coupled Fixed-Point Motion 결합된 고정점운동

In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Coupled motion. Go to Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select Fixed point rotation in the combo box and enter the x, y and z coordinates of the fixed point in the corresponding input boxes. The Limits for rotation and Limits for translation cannot be set for fixed-point motion.

Meshing & Geometry → Geometry → Component (the desired GMO component) → Component Properties → Type of Moving Object 에서 Coupled motion 을 선택한다. Moving Object Properties → Edit → Motion Constraints 로 가서 Type of Constraint 밑에서 combo 박스에있는 Fixed point rotation 를 선택하고 상응하는 입력 상자 안에 있는 고정점의 x, y 및 z 좌표를 입력한다. Limits for rotation 와 Limits for translation 는 고정점 운동에 대해 선택될 수 없다.

 

Definition of the initial velocity for the object is required. Go to the Initial/Prescribed Velocities tab and enter the x, y and z components of initial angular velocity (in rad/time) in the boxes for X Initial Angular velocity, Y Initial Angular velocity and Z Initial Angular velocity. Their default values are zero.

물체의 초기속도 정의가 필요하다. Initial/Prescribed Velocities 탭으로 가서 X Initial Angular velocity, Y Initial Angular velocity 그리고 Z Initial Angular velocity 를 위한 상자에서 초기 각속도  (rad/시간) 의 the x, y 및 z 성분을 넣는다.

 

Further constraints of motion can be imposed to the object to decrease its number of degrees of freedom. This is done in the Motion Constraints tab by setting part of its rotational components as prescribed motion while leaving the others as coupled motion in the combo box for Translational and rotational options. Note that the rotational components are in the body system. By default, the prescribed velocity components are equal to zero. To specify a non-zero velocity component, go to the Initial/Prescribed Velocities tab. It can be defined as either a sinusoidal or a piecewise linear function of time by making selection in the corresponding combo box. For a constant velocity component, choose Non-Sinusoidal and simply enter its value in the input box (the default value is 0.0). If it is non-sinusoidal timedependent, click on the Tabular button to open a data table and enter the values for the velocity component and time. Alternatively, the user can import a data file for the velocity component versus time by clicking Tabular Import values. The file must have two columns of data which represent time and the angular velocity component from left to right and must have a csv extension. If the velocity component is a sinusoidal function of time, enter the values for Amplitude, Frequency (in Hz) and Initial Phase (in degrees) in the input boxes.

운동의 자유도를 줄이기 위해 운동의 제약이 물체에 가해질 수 있다. 이 선택은 일부의 회전속도 성분을 Prescribed motion 으로 다른 성분들은 Translational and rotational options를 위한 상자에서 coupled motion 으로 Motion Constraints 탭에서 설정함으로써 이루어진다. 회전성분은 물체계로 되어있다는 것에 주목한다. 디폴트로 지정속도 성분들은 0이다. 0이 아닌 속도성분을 지정하기 위해 Initial/Prescribed Velocities탭으로 간다. 지정속도 성분은 상응하는 combo box 에서 사인파 또는 구간적 시간함수로써 정의될 수 있다. 일정속도 성분에 대해서 Non-Sinusoidal 을 선택하고 단순히 입력박스에서 값을 넣는다(디폴트 값은0이다). 속도성분이 시간의 함수이고 Non-Sinusoidal 이면 데이터 테이블을 열고 Tabular 버튼을 클릭하고 속도 성분과 시간 값을 넣는다. 다른 방법으로는   사용자가 Tabular Import Values 를 클릭함으로써 속도 성분 대 시간의 데이터파일을 읽어들일 수 가 있다. 이 파일은 좌로부터 우로의 시간과 각속도 성분을 나타내는 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 속도성분이 사인파의 시간의 함수이면 입력상자에서 Amplitude, Frequency (in Hz) and Initial Phase (in degrees) 값을 넣는다.

The expression for a sinusoidal velocity component is사인파속도성분식은

ω = Asin(2πft + ϕ0)

where: 여기서

  • A is the amplitude진폭,
  • f is the frequency, and주기이며
  • ϕ0 is the initial phase. 초기위상이다

 

User-prescribed total torque exerting on the object can also be defined. They are combined with the hydraulic, gravitational, inertial and spring torques to determine the object’s rotation.

또한 사용자에 의해 지정된 물체에 작용하는 전체 토크가 지정될 수 있다. 이들은 물체의 회전을 결정하기 위해 수력, 중력, 관성력과 스프링에 의한 토크와 결합되어 있다.

In the Control Forces and Torques tab, choose Define Total Force and Total Torque in the combo box. Further, select In Space System or In Body System depending on which reference system the control torque is define in. If the torque is constant, it can be simply set in the provided edit box for its x, y and z components. For a time-dependent control torque, click the Tabular button to bring up data tables and then enter the values of time and the torque components. The control torque is treated as a piecewise-linear function of time. As an option, instead of filling the data table line by line, the user can also import a data file for the angular velocity versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and velocity from left to right and must have a csv extension.

Control Forces and Torques 탭에서 combo box 상자 안의 Define Total Force and Total Torque 를 선택한다. 추가로 조절 토크가 정의되는 기준계에 따른 공간계 In Space System 나 물체계 In Body System 을 선택한다.  토크가 상수이면 its x, y 및 z 성분을 위한 주어진 편집상자에서 지정된다. 이것이   시간에 따라 변하는 조절 토크이면 데이터 테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 성분과 토크 성분값을 넣는다. 제어토크는 구간 내 시간의 선형함수로 간주된다. 선택으로 한 줄씩 데이터 테이블을 채우는 대신에 사용자가 Tabular Import Values 을 클릭함으로써 각속도 대 시간 읽어 들일 수가 있다. 이 파일은 시간과 속도를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며  csv 확장자를 가져야 한다

 

Coupled Fixed-Axis Motion  결합된 고정축운동

In Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object, select Coupled motion. Go to Moving Object Properties Edit Motion Constraints. Under Type of Constraint, select Fixed X-Axis Rotation or Fixed Y-Axis Rotation or Fixed Z-Axis Rotation in the combo box depending on which coordinate axis the rotational axis is parallel to.

Meshing & Geometry Geometry Component (the desired GMO component) Component Properties Type of Moving Object 에서 Coupled motion 을 선택한다. Moving Object Properties Edit Motion Constraints 로 가서 Type of Constraint 밑에서 회전축이 어느 좌표축과 평행한지에 따라 combo 박스에있는 Fixed X-Axis Rotation또는Fixed Y-Axis Rotation 또는 Fixed Z-Axis Rotation 를 선택한다.

 

Coordinates of the rotational axis need be given in two of the three input boxes for Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate and Fixed Axis/Point Z Coordinate. For example, if the rotational axis is parallel to the z-axis, then the x and y coordinates for the rotational axis must be defined. Users can also set limits for the object’s rotational angle in both positive and negative directions. The rotational angle (i.e., angular displacement) is a vector and measured from the object’s initial orientation based on the right-hand rule. Its value is positive if it points to the positive direction of the coordinate axis which the rotational axis is parallel to. The object cannot rotate beyond these limits but can rotate back to the allowed angular range after it reaches a limit. To set the limits for rotation, in Motion Constraints Limits for rotation, enter the maximum rotational allowed in negative and positive directions in the corresponding input boxes, using absolute values in degrees. By default, these values are infinite.

회전축좌표는 3개 Fixed Axis/Point X Coordinate, Fixed Axis/Point Y Coordinate Fixed Axis/Point Z Coordinate 중 2개의 입력박스에서 주어져야 한다. 예를들면 회전축이 z 축에 평행하다면 이 회전축의 the x 와 y 좌표가 정의되어야 한다. 사용자는 물체의 양과 음 방향의 회전각도를 제한할 수 있다. 회전각 (즉, 각변위)은 벡터이며 오른손 법칙에 따라 물체의 초기 방향으로 부터 측정된다. 이것이 회전축에 평행한 좌표축의 양방향을 가리키면 양의 값이다. 물체는 제한 값을 지나 회전할 수 없지만 이 값에 도달한 후 허용된 각 변위로 되돌아갈 수 있다. 회전의 제한을 설정하기 위해 Motion Constraints Limits for rotation 내에서 상응하는 입력박스에서 음이나 양의방향으로 허용된 Maximum rotational angle 을 입력한다. 이의 디폴트 값은 무한대이다.

 

A definition of the initial angular velocity for the object is required. In the Initial/Prescribed Velocities tab, enter the initial angular velocity (in radians per time) in x, y or z direction in the corresponding input box in the Angular velocity components area, depending on the orientation of the rotational axis. The default value is zero.

User-prescribed total torque exerting on the object can be defined. They are combined with the hydraulic, gravitational, inertial and spring torques to determine the object’s rotation. In the Control Forces and Torques tab, choose Define Total Force and Total Torque in the combo box. If the torque is constant, it can be simply set in the provided edit box for x, y or z component of the torque, depending on direction of the coordinate axis which the rotational axis is parallel to. For a time-dependent control torque, click the corresponding Tabular button to bring up a data table and then enter the values of time and the torque. The control torque is treated as a piecewise-linear function of time in computation. As an option, instead of filling the data table line by line, the user can also import a data file for the torque versus time by clicking Tabular Import Values. The file must have two columns of data which represent time and torque from left to right and must have a csv extension. The torque about the fixed axis is the same in the space and body systems, thus the choice of In space system or In body system options makes no difference to the computation. User-prescribed total control force and multiple forces are not allowed for the fixed-axis motion.

물체의 초기 각속도 정의가 필요하다. Initial/Prescribed Velocities 탭에서 회전축의 방향에 따라 the Angular velocity components 면에서 x, y 및 z 방향으로 초기 각속도(시간당radians으로)를 넣는다. 디폴트는0이다. 사용자에 의해 지정된 물체에 작용하는 전체 토크가 정의될 수 있다, 이들은 물체의 회전을 결정하기 위해 수력, 중력, 관성력과 스프링에 의한 토크와 결합되어 있다. Control Forces and Torques 탭 안의 combo box 에서 Define Total Force and Total Torque 을 선택한다.  토크가 상수이면 회전축이 평행한 좌표축의 방향에 따라, 토크의 x, y 또는 z 성분을 위한 주어진 편집박스에서 단순히 지정된다. 따라 변하면 데이터테이블을 불러오기 위해 상응하는 Tabular 버튼을 클릭하고 시간과 토크를 넣는다. 제어토크는 계산시 구간 내 시간의 함수로 간주된다. 선택으로 한 줄씩 데이터 테이블을 채우는 대신에 사용자가 Tabular Import Values 를 클릭함으로써 토크대 시간의 파일을 읽어 들일 수 가 있다. 이 파일은 시간과 토크를 나타내는 좌로부터 우로의 두 데이터 열이 있어야 하며 csv 확장자를 가져야 한다. 고정축에 대한 토크는 공간과 시간계에서 같으므로 In space system 이나 In body system 의 선택은 계산에 차이가 없다. 사용자가 지정하는 전체 제어 힘과 다중의 힘은 고정축 운동에서는 허용되지 않는다.

Step 4: Specify the GMO’s Mass Properties GMO 질량물성을 정의한다

Definition of the mass properties is required for any moving object with coupled motion and is optional for objects with prescribed motion. If the mass properties are provided for a prescribed-motion object, the solver will calculate and output the residual control force and torque, which complement the gravitational, hydraulic, spring, inertial and user-prescribed control forces and torques to maintain the prescribed motion. To specify the mass properties, click on Mass Properties to open the dialog window. Two options are available for the mass properties definition: provide mass density or the integrated mass properties including the total mass, mass center and the moment of inertia tensor.

질량물성의 정의가 결합운동을 하는 이동체에 대해 필요하지만 지정운동을 하는 이동체에는 선택적이다. 지정운동체에 대해 질량 물성이 주어지면 solver 는 지정 운동을 유지하기 위해 중력, 수력, 관성력, 스프링 힘과 사용자 지정의 힘과 토크를 보완하는 잔여 조절 힘과 토크를 계산하고 출력할 것이다. 질량물성을 지정하기 위한 대화창을 열기 위해 Mass Properties를 클릭한다. 이를 위해 두 가지 선택이 있다: 질량밀도 또는 전체질량, 질량중심과 관성모멘트텐서를 포함하는 통합 질량 물성을 제공한다.

The option to provide mass density is convenient if the object has a uniform density or all its subcomponents have uniform densities. In this case, the preprocessor will calculate the integrated mass properties for the object. In the Mass Properties tab, select Define Density in the combo box and enter the density value in the Mass Density input box. By default, each subcomponent of the object takes this value as its own mass density. If a subcomponent has a different density, define it under that subcomponent in the geometry tree, Geometry Component Subcomponents Subcomponent (the desired component) Mass Density.

물체나 이 물체의 소 구성요소가 균일한 밀도를 가지면 질량밀도를 주는 선택이 편하다. 이 경우 전처리과정이 이에 대한 모든 통합 질량물성을 계산할 것이다. Mass Properties 탭에서 combo 박스에 있는 Define Density 를 선택하고 Mass Density 입력박스에서 밀도 값을 넣는다. 디폴트로 물체의 소 구성 요소의 밀도는 물체의 밀도와 같다. 만약에 소 구성요소가 다른 밀도를 가지면 이를 형상체계에 있는 Geometry Component Subcomponents Subcomponent (the desired component) Mass Density 소구성요소에서 정의한다.

 

The option to provide integrated mass properties is useful if the object’s mass, mass center and moment of inertia tensor are known parameters regardless of whether the object’s density is uniform or not. In the Mass Properties tab, choose Define Integrated Mass Properties in the combo box and enter the following parameters in the input boxes depending on the type of motion: Total mass, initial mass center location (at t = 0) and moment of inertia tensor about mass center for 6-DOF and fixed-point motion types;

통합 질량 물성의 사용은 물체의 밀도가 균일한지와 무관하게 물체의 질량, 질량중심, 관성모멘트 텐서 등이 알려진 변수일 경우에 유용하다. Mass Properties 탭에서 combo 박스에있는 Define Integrated Mass Properties 을 선택하고 운동형태에 따라 입력상자 안에 다음 변수들을 넣는다:

 

  • Total mass, initial mass center location (at t = 0) and moment of inertia about fixed axis for fixed-axis motion type.

전체 질량, 초기 질량중심 위치(t=0에서), 그리고 6자유도 및 고정점 운동 형태를 위한 질량중심에 관한 관성모멘트텐서

Output출력

For each GMO component, the solver outputs time variations of several solution variables that characterize the object’s motion. These variables can be accessed during post-processing in the General history data catalog and can be viewed either graphically or in a text format. For both prescribed and coupled types of motion with the mass properties provided, the user can find the following variables:

각 GMO 요소에 대해solver는 물체의 운동 특성을 보여주는 대여섯 개의 해석변수의 시간에 대한 변화를 출력한다. 이 변수들은 General history 데이터카탈로그에서 후처리중에 텍스트나 도식으로 볼 수 있다. 주어진 질량을 갖는 지정과 결합운동에 대해 사용자는 다음 변수들을 이용할 수가 있다.

  1. Mass center coordinates in space system공간계 내의 질량중심좌표
  2. Mass center velocity in space system공간계 내의 질량중심 속도
  3. Angular velocity in body system물체계 내의 각속도
  4. Hydraulic force in space system공간계 내의 수리력
  5. Hydraulic torque in body system물체계 내의 수리토크
  6. Combined kinetic energy of translation and rotation 이동과 회전의 결합운동에너지

There will be no output for items 1, 2 and 6 for any prescribed-motion GMO if the mass properties are not provided. Additional output of history data include:

질량물성이 주어지지 않으면 지정운동을 하는 GMO 에대해 상기 1,2와6에대한 출력은없다. 추가적이력데이터의 출력은

  • Location and velocity of the reference point for a prescribed 6-DOF motion지정된6자유도운동을 위한 기준점의 위치와 속도
  • Rotational angle for a fixed-axis motion

고정축 운동을 위한 회전각

  • Residual control force and torque in both space and body systems for any prescribed motion and a coupled motion with constraints (fixed axis, fixed point and prescribed velocity components)

지정운동 및 구속을 갖는 결합운동(고정축, 고정점, 그리고 지정속도성분)에 대한 두 공간과 물체계에서의 잔여 제어 힘과 토크

  • Spring force/torque and deformation

스프링 힘과 토크 및 변형

  • Mooring line extension and maximum tension force

계류선 신장 및 최대인장력

  • Mooring line tension forces at two ends in the x, y and z directions

x, y 및 z 방향에서 양끝에 작용하는 계류선 인장력

 

As an option, the history data for a GMO with 6-DOF motion can also include the buoyancy center and the metacentric heights for rotations about x and y axes of the space system, which is useful for stability analysis of a floating object. Go to Geometry Component (the desired moving object) Output Buoyancy Center and Metacentric Height, and select Yes. The buoyancy center is defined as the mass center of the fluid displaced by the object. The metacentric height (GM) is the distance from the gravitational center (point G) to the metacenter (point M). It is positive (negative) if point G is below (above) M.

선택사항으로 GMO 6자유도의 이력데이터는 부력중심과 부력물체의 안정성 해석에 유용한 공간계의 x와 y 축에 대한 회전을 위한 metacentric 높이를 포함한다. Geometry Component (the desired moving object) Output Buoyancy Center and Metacentric Height 로가서 Yes 를 선택한다. 부력 중심은 물체에 의해 배수된 부분을 차지하는 유체의 질량중심으로 정의된다. The metacentric height (GM) 은 중력중심(점 G) 에서 metacenter (점M)까지이다. 점 G가 M보다 밑(위)이면 양(음)이다.

 

GMO components can participate in heat transfer just like any stationary solid component. When defining specific heat of a GMO component, Component Properties Solid Properties Density*Specific Heat must be given.

GMO 요소는 여느 정지 고체 요소와 같이 열전달을 포함 할 수 있다. GMO 요소의 비열을 정의할 때 Component Properties Solid Properties Density*Specific Heat 가 주어져야 한다.

 

Two options are available when defining heat sources for a GMO component: use the specific heat flux, or the total power. When the total power is used, the heat fluxes along the open surface of the moving object are adjusted at every time step to maintain a constant total power. If the surface area varies significantly with time, so will the heat fluxes. When the specific heat is used instead, then the fluxes will be constant, but the total power may vary as the surface area changes during the object’s motion. To define heat source for a GMO component, go to Component Properties Solid Properties Heat Source type Total amount or Specific amount.

GMO 요소의 열 소스를 정의할 때 두 가지 선택이 있다: 비열유속 또는 전체 일률(power)를 사용하는 것이다. 전체 일률이 사용되면 이동체의 개표면을 통한 열 유속은 일정 전체 일률을 유지하기 위해 매 시간 단계 마다 조정된다. 표면적이 시간에 따라 상당히 변하면 열유속도 그러할 것이다. 대신에 비열이 사용되면 열 유속은 일정할 것이고 전체일률은 표면적이 이동체의 운동에 따라 변할 때 변할 수도 있다. GMO 요소의 열소스를 정의하기 위해 to Component Properties Solid Properties Heat Source type Total amount or Specific amount 로 간다.

 

Mass sources/sinks can also be defined on the open surfaces of a GMO component. Details can be found in Mass

Sources. 질량소스나 싱크 또한 GMO 요소의 개표면 상에 정의될 수 있다. 자세한 것은 in Mass Sources 에서 볼 수 있다.

Although the GMO model can be used with most physical models and numerical options, limitations exist. To use the model properly, it is noted that

GMO 모델은 대부분의 다른 물리적 모델이나 수치해석 선택과 같이 사용될 수 있지만 제한이 따른다. 모델을 제대로 사용하기 위해 다음 사항들에 유의한다.

  • For coupled motion, the explicit and implicit GMO methods perform differently. The implicit GMO method works for both heavy and light moving objects. The explicit GMO method, however, only works for heavy object problems (i.e., the density of moving object is higher than the fluid density).

결합운동에 대해 내재적과 외재적 GMO 방법은 다르게 작동한다. 내재적 GMO 방법은 무겁거나 가벼운 이동물체에 이용될 수 있지만 외재적 GMO 방법은 무거운 물체의 이동에만 이용한다(즉, 이동물체의 밀도가 유체의 밀도보다 크다).

  • When the explicit GMO method is used, solution for fully coupled moving objects may become unstable if the added mass of the fluid surrounding the object exceeds the object’s mass.

외재적 GMO 방법이 사용될 때 물체 주위 유체의 부가질량이 물체의 질량보다 크면 완전결합 이동물체의 해석은 불안정하게 된다.

  • If there are no GMO components with coupled motion, then the implicit and explicit methods are identical and the choice of one makes no difference to the computational results.

결합운동을 하는 GMO 요소가 없으면 내재적과 외재적 방법은 같고 어느 하나를 사용해도 계산결과에 차이가 없다.

  • The implicit method does not necessarily take more CPU time than the explicit method, even though the former required more computational work, because it improves numerical stability and convergence, and allows for larger time step. It is thus recommended for all GMO problems.

내재적 방법은 수치(해석) 안정성과 수렴이 개선되고 더 큰 시간 단계를 가능하게 해주기 때문에 더 많은 계산을 필요로 하지만 외재적 방법보다 항상 더 많이 CPU시간을 필요로 하지는 않는다. 따라서 모든 문제에 권장된다.

  • It is recommended that the limited compressibility be specified in the fluid properties to improve numerical stability by reducing pressure fluctuations in the fluid.

유체내의 압력 변동을 줄임으로써 수치해석안정성을 증가시키기 위해 제한된 압축성이 유체 물성에서 지정되도록 권장된다.

  • In the simulation result, fluctuations of hydraulic force may exist due to numerical reasons. To reduce these fluctuations, the user can set No f-packing for free-surface problems in Numerics Volume of fluid advection Advanced options and set FAVOR tolerance to 0.0001 in Numerics Time-step controls Advanced Options Stability enhancement. It is noted that an unnecessarily small FAVORTM tolerance factor can cause small time steps and slow down the computation.

모사(simulate)결과에서 수리력의 변동이 수치적인 이유로 존재할 수 있다. 이 변동을 줄이기 위해 사용자는 Numerics Volume of fluid advection Advanced options 에서 자유표면 문제에 대해 No f-packing 을 지정하고 FAVOR tolerance Numerics Time-step controls Advanced Options Stability enhancement 에서 0.0001로 지정할 수 있다. 불필요하게 작은 FAVORTM tolerance 인자는 작은시간 단계를 발생시키고 계산을 더디게 할 수 있다.

  • In order to calculate the fluid force on a moving object accurately, the computational mesh needs to be reasonably fine in every part of the domain where the moving object is expected to be in contact with fluid.

이동물체에 대한 유체의 힘을 정확히 계산하기 위해 이동체가 유체와 접촉할 것으로 예상되는 영역내의 모든 부분에서 적절히 미세한 계산격자를 사용해야한다.

  • An object can move completely outside the computational domain during a computation. When this happens, the hydraulic forces and torques vanish, but the object still moves under actions of gravitational, spring, inertial and control forces and torques. For example, an object experiences free fall outside the domain under the gravitational force in the absence of all other forces and torques.

물체는 계산 동안에 완전히 계산영역 외부로 이동할 수 있다. 이럴 경우 수리력과 토크는 사라지지만 물체는 중력, 스프링힘, 관성력 및 조절 힘과 토크의 영향으로 움직인다. 예를 들면 물체는 모든 다른 힘과 토크가 없는 경우에 중력장 안에 있는 영역외부에서 자유낙하를 할 것이다.

  • If mass density is given, then the moving object must initially be placed completely within the computational domain and the mesh around it should be reasonably fine so that its integrated mass properties (the total mass, mass center and moment of inertia tensor) can be calculated accurately by the code

질량밀도가 주어지면 초기에 물체가 완전히 계산영역 내에 위치하고 있어야 하고 이 주변의 격자는 적절히 미세하게 하여 이의 통합 질량물성(전체질량, 질량중심 그리고 관성모멘트텐서)이 이 코드에 의해 정확히 계산될 수 있어야 한다.

  • If a moving object is composed of multiple subcomponents, they should have overlap in places of contact so that no unphysical gaps are created during motion when the original geometry is converted to area and volume fractions. If different subcomponents are given with different mass densities, this overlap should be small to avoid big errors in mass property calculation.

이동체가 다수의 소 구성요소로 이루어져 있다면 원래 형상이 면적과 체적율로 전환될 때 이들은 접촉부에 중첩이 있어야만 이동 시에 실제로 존재하지 않은 간격이 발생 안 한다. 다른 소구성요소가 다른 질량밀도로 주어지면 이 간격은 질량물성 계산시 큰 에러를 줄이기 위해 작아야 한다.

  • A moving object cannot be of a phantom component type like lost foam or a deforming object.

이동체는 lost foam 이나 변형물체 같은 phantom 구성요소가 될 수 없다.

  • The GMO model works with the electric field model the same way as the stationary objects, but no additional forces associated with electrical field are computed for moving objects.

GMO 모델은 정지 물체와 같은 전장모델과 이용할 수 있으나, 전장 관련 추가적 힘은 계산되지 않는다.

  • If a GMO is porous, light in density and high in porous media drag coefficients, then the simulation may experience convergence difficulties.

GMO가 밀도가 가볍고 다공매질 저항계수가 큰 다공질이면 모사(simulate)에 수렴의 어려움이 있을 수 있다.

  • A Courant-type stability criterion is used to calculate the maximum allowed time-step size for GMO components. The stability limit ensures that the object does not move more than one computational cell in a single time step for accuracy and stability of the solution. Thus the time step is also limited by the speed of the moving objects during computation.

GMO 구성요소에 대해 Courant 형의 안정성 기준이 최대허용 시간 단계 크기를 계산하도록 이용된다. 안정성 제한은 해석의 정확성과 안정성을 위해 물체가 하나의 시간 단계에 하나 이상의 계산 셀을 지나가지 않도록 보장하는 것이다. 그러므로 시간 단계는 계산시 또한 이동체의 속도에 의해 제한된다.

Note:

  • Time-Saving Tip: For prescribed motion, users can preview the object motion in a so-called “dry run” prior to the full flow simulation. To do so, simply remove all fluid from the computational domain to allow for faster execution. Upon the completion of the simulation the motion of the GMO objects can be previewed by post-processing the results. 시간절약팁: 지정운동에서 사용자는 실제 전체 유동 계산 전에 소위 “dry run” 이라는 형태로 GMO 물체의 운동을 미리 볼 수 있다. 이러기 위해 빠른 계산을 하기 위해 계산영역 내로부터 모든 유체를 단순히 제거한다. 모사(simulate)가 끝나면 운동은 결과를 후처리함으로써 미리 볼 수 있다.
  • The residual forces (and torques) are computed for the directions in which the motion of the object is prescribed/constrained. They are defined as the difference between the total force on an object (computed from the prescribed mass*acceleration) and the computed forces on the object from pressure, shear, gravity, specified control forces, etc. As such, they represent the force required to move the object as prescribed.

잔류력(그리고 토크)은 물체의 이동이 지정되거나 제약되는 방향으로 계산된다. 이들은 물체에 작용하는 전체 힘(지정 질량*가속도로부터 구해지는)과 압력, 전단력, 중력, 지정된 조절력 등으로부터 물체에 가해지는 계산된 힘과의 차이로 정의된다.

Collision충돌

The GMO model allows users to have multiple moving objects in one problem, and each of them can possess independent type of coupled or prescribed motion. At any moment of time, each object under coupled motion can collide with any other moving objects (of a coupled- or prescribed-motion type), non-moving objects as well as wall- and symmetry-type mesh boundaries. Without the collision model, objects may penetrate and overlap each other.

GMO 모델에서 사용자는 한 문제에서 다수의 이동체를 지정할 수 있고 각 이동체는 결합 또는 지정된 별도 운동을 할 수가 있다. 어느 순간에서 결합 운동을 하는 각 물체는 벽 또는 대칭형 격자 경계뿐만 아니라 다른 이동체들(결합운동 이나 지정운동을 하는), 그리고 정지하고 있는 물체와 충돌할 수 있다.  충돌모델 없으면 물체는 각기 침투하거나 중첩될 수가 있다.

The GMO collision model is activated by selecting Physics Moving and simple deforming objects Activate collision model. It requires the activation of the GMO model first, done in the same panel. For a GMO problem with only prescribed-motion objects, it is noted that the collision model has no effect on the computation: interpenetration of the objects can still happen.

GMO 충돌모델은 Physics Moving and simple deforming objects Activate collision model 를 선택함으로써 활성화된다. 먼저 같은 패널에서 GMO 모델을 활성화한다. 단지 지정된 운동을 하는 GMO 물체 문제에 대해 충돌모델은 계산에 영향을 안 미친다는 것을 주목한다: 그래도 물체의 침투는 가능하다.

The model allows each individual collision to be fully elastic, completely plastic, or partially elastic, depending on the value of Stronge’s energetic restitution coefficient, which is an input parameter. In general, a collision experiences two phases: compression and restitution, which are associated with loss and recovery of kinetic energy. The Stronge’s restitution coefficient is a measure of kinetic energy recovery in the restitution phase. It depends on the material, surface geometry and impact velocity of the colliding objects. The range of its values is from zero to one. The value of one corresponds to a fully elastic collision, i.e., all kinetic energy lost in the compression is recovered in the restitution (if the collision is frictionless). Conversely, a zero restitution coefficient means a fully plastic collision, that is, there is no restitution phase after compression thus recovery of the kinetic energy cannot occur. A rough estimate of the restitution coefficient can be conducted through a simple experiment. Drop a sphere from height h0 onto a level anvil made of the same material and measure the rebound height h. The restitution coefficient can be obtained as h/h0. In this model, the restitution coefficient is an object-specific constant. A global value of the restitution coefficient that applies to all moving and non-moving objects is set in Physics Moving and simple deforming objects Coefficient of restitution.

입력 변수인 Stronge 의 에너지 반발계수의 값에 따라 모델은 물체의 완전탄성, 완전소성 또는 탄성의 각기 충돌을 다룰 수 있다. 일반적으로 충돌은 두 단계로 나뉜다: 압축과 반발이며 이들은 운동에너지의 손실및 회복과 연관되어 있다. Stronge 의 반발계수는 반발단계에서의 에너지회복의 척도이다. 이는 물질, 표면형상 그리고 충돌하는 물체의 충격속도에 의존한다.

이값은 0과1사이이다. 1은 완전탄성충돌이며 압축에서 손실된 모든 운동에너지가 반발에서 회복된다(충돌에마찰이없다면). 역으로, 0의 반발계수는 완전소성충돌로 즉 압축 후에 반발이 없으며 운동에너지의 회복은 일어나지 않는다. 반발계수의 개략 추정치는 단순한 실험을 통해 얻어질 수 있다.

높이 h0에서 구를 같은 재질로 만들어진 anvil (모루?)위로 떨어뜨려 반발높이 h 를 측정한다. 반발계수는 h/h0로얻어진다. 이모델에서 반발계수는 물질에 특정한 상수이다. 모든 이동과 비 이동물체에 적용되는 반발계수의 포괄적인 값은 Physics Moving and simple deforming objects Coefficient of restitution 에서 지정된다.

 

Friction can be included at the contact point of each pair of colliding bodies by defining the Coulomb’s friction coefficient. A global value of the friction coefficient that applies to all collisions is set in Physics General moving objects Coefficient of friction. Friction forces apply when the friction coefficient is positive; a collision is frictionless for the zero value of the friction coefficient, which is the default. The existence of friction in a collision always causes a loss of kinetic energy.

마찰은 Coulomb 마찰계수를 정의함으로써 충돌하는 각 물체의 접촉 점에 작용한다. 모든 충돌에 적용되는 마찰계수의 포괄적 값은 Physics General moving objects Coefficient of friction 에서 설정된다. 마찰력은 마찰계수가 양일 경우 작용한다; 충돌시 마찰계수가0일 경우 마찰력이 없고, 이는 디폴트이다. 충돌 시 마찰력의 존재는 항상 운동에너지의 손실을 뜻한다.

 

The global values of the restitution and friction coefficients are also used in the collisions at the wall-type mesh boundaries, while collisions of the moving objects with the symmetry mesh boundaries are always fully elastic and frictionless.

포괄적 마찰 및 반발계수는 또한 벽 형태의 경계에서 충돌이 발생할 경우에도 사용될 수 있으나 이동체의 대칭격자 경계와의 충돌은 항상 완전탄성이고 마찰이 없다.

 

The object-specific values for the restitution and friction coefficients are defined in the tab Model Setup Meshing & Geometry. In the geometry tree on the left, click on Geometry Component (the desired component) Component Properties Collision Properties and then enter their values in the corresponding data boxes. If an impact occurs between two objects with different values of restitution coefficients, the smaller value is used in that collision calculation. The same is true for the friction coefficient.

물체에 특정한 반발 및 마찰계수는 탭 Model Setup Meshing & Geometry 에서 정의된다. 좌측의 형상체계에서 on Geometry Component (the desired component) Component Properties Collision Properties 를 클릭하고 상응하는 데이터박스에 그 값들을 입력한다. 다른 반발계수를 갖는 두 물체 사이에 충격이 발생하면 그 충돌 계산에 작은 마찰계수 값이 이용된다. 이는 마찰의 경우에도 마찬가지이다.

Continuous contact, including sliding, rolling and resting of an object on top of another object, is simulated through a series of small-amplitude collisions, called micro-collisions. Micro-collisions are calculated in the same way as the ordinary collisions thus no additional parameters are needed. The amplitude of the micro-collisions is usually small and negligible. In case the collsion strength is obvious in continuous contact, using smaller time step may reduce the collision amplitude.

미끄러짐, 회전, 및 타물체상에 정지하고 있는 물체를 포함하는 지속적인 접촉은 미세충돌이라고 불리는 일련의 소 진폭 충돌에 의해 모사(simulate)된다. 미세 충돌은 추가적인 매개변수 필요 없이 보통충돌과 같은 방식으로 계산된다. 충돌강도가 지속적 접촉에서 현저한 경우 더 작은 시간간격을 시용하는 것이 충돌 진촉을 감소시킬지도 모른다.

 

If the collision model is activated but the user needs two specific objects to have no collision throughout the computation, he can open the text editor (File Edit Simulation) and set ICLIDOB(m,n) = 0 in namelist OBS, where m and n are the corresponding component indexes. An example of such a case is when an object (component index m) rotates about a pivot – another object (component index n). If the former has a fixed-axis motion type, then calculating the collisions with the pivot is not necessary. Moreover, ignoring these collisions makes the computation more accurate and more efficient. If no collisions between a GMO component m with all other objects and mesh boundaries are desired, then set ICLIDOB(m,m) to be zero. By default, ICLIDOB(m,n) = 1 and ICLIDOB(m,m) = 1, which means collision is allowed.

충돌모델이 활성화되고 시용자가 모사(simulate)동안에 충돌하지 않는 두 특정 물체를 필요로 하면 텍스트편집(File Edit Simulation) 을 열어 namelist OBS 에서 ICLIDOB(m,n) = 0 를 지정하는데, 여기서 m n 은 상응하는 구성 요소 색인이다.

이런 예는 한 물체(component index m)가 경첩축인 다른 물체(component index n)에대해 회전할 경우이다. 전자가 고정축에 대한 운동형태이면 경첩 축과의 충돌은 계산할 필요가 없다. 더구나 이런 충돌을 무시하는 것이 계산상 더 정확하고 효율적이다.

한 GMO component 구성요소 m 과 모든 다른 물체나 격자 경계와의 충돌이 없다면 ICLIDOB(m,m) 를 0으로 지정한다. 디폴트는 ICLIDOB(m,n) = 1 이며 이는 충돌이 허용됨을 뜻한다.

 

To use the model prpperly, users should be noted that

모델을 적절히 사용하기 위해서 사용자는 다음에 주목한다.

  • The collision model is based on the impact theory for two colliding objects with one contact point. If multiple contact points exist for two colliding objects (e.g. surface contact) or one object has simultaneous contact with more than one objects, object overlap may and may not occur if the model is used, varing from case to case.

충돌모델은 한 접촉점을 갖는 두 물체의 충돌이론에 의거한다. 이 모델 사용시 두 물체의 충돌에 다수의 접촉점이 존재(즉 표면접촉같이)하거나 한 물체가 동시에 다른 물체들과 충돌하면 경우에 따라 중첩이 발생할 수도 있고 안 할 수도 있다.

  • To use the model, one of the two colliding object must be under coupled motion, and the other can have coupled or prescribed motion or no motion. The coupled motion can be 6-DOF motion, translation, fixed-axis rotation or fixed-point rotation. For other constrained motion, (e.g., rotation is coupled in one direction but prescribed in another direction), the model is not valid, and mechanical energy of the colliding objects may have conservation problem.

이 모델사용 시 두 충돌 물체중의 하나는 결합운동을 하여야 하고 다른 물체는 결합 또는 지정 운동 또는 정지하고 있을 수 있다. 결합운동은 6자유도 운동일 수 있다(이동, 고정축 또는 고정점 회전). 다른 구속 운동(즉, 한 방향에서는 결합 운동이지만 다른 방향에서는 지정 운동)에서 이 모델은 유효하지 않고 충돌물체의 역학에너지는 보존문제가 발생할는지도 모른다.

  • The model works with and without existence of fluid in the computational domain. It is required, however, that the contact point for a collision be within the computational domain, whereas the colliding bodies can be partially outside the domain at the moment of the collision. If two objects are completely outside the domain, their collision is not detected although their motions are still tracked.

이 모델은 계산 영역 내 유체의 존재 유무에 상관없이 작동한다. 그러나 충돌 시 접촉점은 계산 영역 내에 존재해야 하나 충돌체는 충돌 시 부분적으로 영역외부에 있어도 된다. 두 물체가 완전히 영역 외부에 있으면 이들의 운동은 그래도 추적되지만 충돌은 감지되지 못한다.

  • Collisions are not calculated between a baffle and a moving object: they can overlap when they contact.

이동물체와 배플간의 충돌은 계산되지 않는다: 이들이 접촉하면 중첩될 수 있다.

The model does not calculate impact force and collision time. Instead, it calculates impulse that is the product of the two quantities. Therefore, there is no output of impact force and collision time.

이 모델은 충격 힘과 충돌시간은 계산하지 않는다. 대신에 두 양의 곱인 impulse 를계산한다. 그러므로 충격 힘과 충돌시간에 대한 출력이 없다.

PQ2 Analysis PQ2 해석

PQ2 analysis is important for high pressure die casting. The goal of the PQ2 analysis is to optimally match the die’s designed gating system to the part requirements and the machine’s capability. PQ2 diagram is the basic tool used for PQ2 analysis.

PQ2 해석은 고압주조에서 중요하다. 이 해석의 목적은 부품 요건 및 기계의 용량에 따른 다이의 설계된 게이트 시스템을 최적화시키기 위한 것이다. PQ2 도표는 PQ2해석을 위한 기본 도구이다.

According to the Bernoulli’s equation, the metal pressure at the gate is proportional to the flow rate squared:

베르누이 정리에 의하면 게이트에서의 금속압력은 유량의 제곱에 비례한다.

P Q2                                                                                     (11.5)

where: 여기서

  • P is the metal pressure at the gate, and P 는 게이트에서의 압력이며
  • Q is the metal flow rate at the gate. Q 는 게이트에서의 유량이다.
  • The machine performance line follows the same relationship. 기계성능 곡선도 같은 관계를 따른다.

Based on the die resistance, machine performance, and the part requirements, an operating windows can be determined from the PQ2 diagram, as shown below. The die and the machine has to operate within the operating windows.

다이 저항, 기계성능, 그리고 부품 요건에 따라 운영범위가 밑에 보여진 바와 같이 PQ2 도표에서 결정될 수 있다. 다이와 기계는 운영범위 내에서 작동되어야 한다.

Model Setup모델설정

PQ2 analysis can only be performed on moving object with prescribed motion. The PQ2 analysis can be activated in Meshing & Geometry Component Properties Moving Object. PQ2 analysis can only be performed on one component.

PQ2해석은 단지 지정운동을 하는 이동체에서만 실행될 수 있다. 이는 Meshing & Geometry Component Properties Moving Object 에서 활성화된다. 또 이는 단지 한 개의 구성요소에 대해서만 실행될 수 있다.

The parameters Maximum pressure and Maximum flow rate define the machine performance line.

매개변수 Maximum pressure Maximum flow rate 는 기계성능 곡선을 정의한다.

During the design stage, the process parameters specified might not optimal, such that the resulting pressure is beyond the machine capability. If this happens, the option Adjust velocity can be selected so that the piston velocity is automatically adjusted to match the machine capability. If Adjust velocity is selected, at every time step the pressure at the piston head will be compared with the machine performance pressure to see if it is beyond the machine capability. If it is beyond the machine capability, the flow rate is then reduced to match the machine capability. The reduction is instantaneous and no machine inertia is considered. Once the pressure drops below the machine performance line, the piston will then accelerate to the prescribed velocity. The acceleration has to be less than the machine Maximum acceleration specified.

설계시에 초래된 압력이 기계 성능 이상으로 되는 것같이 지정된 공정 변수들이 최적화가 되지 않았을지도 모른다.  이런 경우에 Adjust velocity 를 선택할 수 가 있고 피스톤속도는 기계성능에 맞게끔 자동적으로 조절될 수 있다. 만약 Adjust velocity 가 선택되면 매 시간단계에서 피스톤헤드의 압력이 기계 성능 이상인지를 알기 위해 기계성능 압력과 비교될 것이다. 압력이 기계 성능 이상이라면 유량은 기계성능을 맞추기 위해 감소될 것이다. 감소는 순간적으로 이루어지고 기계의 관성은 고려되지 않는다. 일단 압력이 성능 이하로 줄어들면 피스톤은 지정속도로 가속할 것이다. 가속도는 기계의 지정된 Maximum acceleration 보다 작아야 할 것이다. .

 

If Adjust velocity is selected, the machine parameters Maximum pressure and Maximum flow rate have to be provided. The Maximum acceleration is also required, however, it is by default to be infinite if not provided.

Adjust velocity 가 선택되면 기계시스템 변수 Maximum pressure Maximum flow rate 가 주어져야 한다. 또한 Maximum acceleration 가 필요하나 주어지지 않으면 디폴트 값은0이다.

 

For high pressure die casting, the fast shot stage is very short. But it is this stage that is of interest. The pressure and flow rate are written as general history data. The data output interval has to be very small to capture all the features in this stage. To reduce FLSGRF file size, only when flow rate reaches Minimum flow rate, the history data output interval is reduced to every two time steps. If Minimum flow rate is not provided, it is default to 1/3 of the Maximum flow rate. Note that the only purpose of Minimum flow rate is to change the history data output frequency.

고압주조에서 고속충진단계는 아주 짧은데 우리는 이 단계에 관심이 있다. 압력과 유량은 일반 이력 데이터로 기록된다. 데이터출력 간격은 이 단계에서의 모든 양상을 보기 위해 아주 작아야 한다. FLSGRF 파일 크기를 줄이기 위해 유량이 Minimum flow rate 에 도달했을 때만 이력데이터 출력 간격은 두 시간 간격에 한번으로 감소된다. Minimum flow rate 가 주어지지 않으면 Maximum flow rate 의 1/3이 디폴트값이다. 단지, Minimum flow rate 를 사용하는 목적은 이력 데이터 출력 간격을 변경하는 것임에 주목한다.

 

Due to the limitation of the FAVORTM, the piston head area computed may fluctuate as piston pushing through the shot sleeve. As a result, the metal flow rate computed may also fluctuate. To reduce the fluctuation, Shot sleeve diameter is recommended to be provided, so that it can be used to correct the metal flow rate. If only half of the domain is modeled, the diameter needs to be scaled to reflect the real cross section area in the simulation.

FAVORTM 제약에 따라 계산된 피스톤헤드 면적은 피스톤이 shot sleeve 를 통해 움직일 때 변할 수 있다. 결과적으로 계산된 액체금속 유량이 변할 수 있다. 이를 줄이기 위해 Shot sleeve diameter 를 주는 것이 필요하고, 이로부터 액체금속 유량을 정정할 수 있다.  만약에 단지 영역의 반만 모델이 되면 직경은 모사(simulate)시에 실제 단면적을 나타내기 위해 비례되어야 한다.

Postprocessing 후처리

If PQ2 analysis is chosen, the pressure, flow rate, and prescribed velocity of the specified moving object will be written to FLSGRF file as General history data. If Adjust velocity is selected, the adjusted velocity will also be written as General history data. In addition, the PQ2 diagram can be drawn directly from the history data in FlowSight.

PQ2해석이 선택되면 압력, 유량 그리고 특정 이동체의 지정속도가 General history 데이터로 FLSGRF 파일에 쓰여질 것이다. Adjust velocity 가 선택되면 조절된 속도 또한 General history 데이터로 쓰여질 것이다. 추가로 PQ2 도표는 직접 Flow Sight에서 이력데이터로 그려질 수 있다.

Elastic Springs & Ropes 탄성 스프링과 로프

The GMO model allows existence of elastic springs (linear and torsion springs) and ropes which exert forces or torques on objects under coupled motion. Users can define up to 100 springs and ropes in one simulation, and each moving object can be arbitrarily connected to multiple springs and ropes. For a linear spring, the elastic restoring force Fe is along the length of the spring and satisfies Hooke’s law of elasticity,

GMO 모델은 결합운동하는 물체에 힘과 토크를 미치는 탄성스프링(선형과 비틀림 스프링)과 로프로 이용될 수 있다. 사용자는 한 모사(simulate)에서 100개까지의 스프링과 로프를 정의할 수 있고 각 이동체는 임의로 다수의 스프링과 로프에 연결될 수 있다. 선형 스프링에서 탄성회복력 Fe 는 스프링의 길이 방향을 따라서 작용하며 Hooke 의 탄성법을 만족한다.

Fe = kl l

where: 여기서

  • kl is the spring coefficient,

kl 는스프링상수

  • l is the spring’s length change from its free condition,

l 는 스프링의 길이 변화량

  • Fe is a pressure force when the spring is compressed, and a tension force when stretched.

Fe 는 스프링이 압축되었을 때는 압축힘이며 늘어났을 때는 인장력이다.

An elastic rope also obeys Hooke’s law. It generates tension force only if stretched, but when compressed it is relaxed and the restoring force vanishes as would be the case of a slack rope.

탄성 로프 또한 Hooke 의 탄성법칙을 따른다. 단지 인장의 경우에만 인장력을   발생시키나 압축의 경우 느슨한 로프의 경우에서와 같이 느슨해지고 복원력은 사라진다.

A torsion spring produces a restoring torque T on a moving object with fixed-axis when the spring is twisted, following the angular form of Hooke’s law,

비틀림 스프링은 스프링이 비틀렸을 때 의 각 형태의 Hooke 법칙을 따라 고정 회전축을 갖는 이동체에 복원 토크 T 를 일으킨다.

Te = kθ θ

where: 여기서

  • kθ is the spring coefficient in the unit of [torque]/degree, and

kθ  [torque]/degree 는 단위의 스프링상수 그리고

  • θ is the angular deformation of the spring.

θ 는 스프링의 각변형

  • It is assumed that there is no elastic limit for the springs and ropes, namely Hooke’s law always holds no matter how big the deformation is.

스프링과 로프에는 탄성한계가 없다고 가정된다. 즉 아무리 스프링과 로프의 변형이 커도 Hooke 의 법칙이 작용한다고 가정된다.

A linear damping force associated with a spring/rope and a damping torque associated with a torsion spring may also be defined. The damping force Fd is exerted on the moving object at the attachment point of the spring/rope. Its line of action is along the spring/rope, and its value is proportional to the time rate of the spring/rope length,

스프링/로프에서의 선형 감쇠력 그리고 비틀림 스프링에서의 감쇠토크가 또한 정의된다. 감쇠력 Fd 는 스프링/로프의 부착점이 있는 이동체에 작용한다. 이의 작용선은 스프링/로프를 따라서이며 그 값은 스프링/로프 길이의 시간당 변화율에 비례한다.

dl

Fd = −cl

dt

Note the damping force for a rope vanishes when the rope is relaxed.

로프의 감쇠력은 로프가 느슨해질 때 없어진다.

The damping torque Td can only be applied on an object with a fixed-axis rotation. Its direction is opposite to the angular velocity, and its value is proportional to the angular velocity value,

감쇠 토크 Td 는 단지 고정축 회전을 하는 물체에만 적용된다. 그 방향은 각속도에 반대방향이고 값은 각속도 값에 비례한다.

Td = −cdω

where ω (in rad/time) is the angular velocity of the moving object.

여기서 ω (in rad/time) 는 이동체의 각속도이다.

 

In this model, a linear spring or rope can have one end attached to a moving object under coupled motion and the other end fixed in space or attached to another moving object under either prescribed or coupled motion. A torsion spring, however, must have one end attached to an object under coupled fixed-axis motion and the other end fixed in space. It is assumed that the rotation axis of the object and the axis of the torsion spring are the same. As a result, the torque applied by the spring on the object is around the object’s rotation axis, and the deformation angle of the spring is equal to the angular displacement of the object from where the spring is in free condition.

이 모델에서 선형 스프링 또는 로프는 한쪽 끝은 결합 운동하는 물체에 그리고 다른 끝은 공간에 고정되어 있거나 지정 또는 결합 운동을 하는 다른 이동체에 연결될 수 있다. 그러나 비틀림 스프링은 한 끝은 결합된 운동을 하는 물체에, 그리고 다른 한끝은 공간에 고정되어 있어야 한다. 물체의 회전축 및 비틀림 스프링의 축은 같다고 가정된다. 결과적으로 물체에 스프링에 의해 가해진 토크는 물체의 회전축둘레로 작용하며 스프링의 각 변형은 스프링의 자유위치로부터의 각변위와 같다.

 

A linear spring has a block length due to the thickness of the spring coil. It is the length of the spring at which the spring’s compression motion is blocked by its coil and cannot be compressed any further. This model allows for three types of linear springs:

선형스프링은 스프링 코일의 두께에 의한 차단 거리가 있다. 이는 스프링의 압축 운동이 그 코일에 의해 방해되어 더 이상 압축될 수 없는 스프링의 길이이다. 이 모델은 3가지의 선형 스프링을 고려할 수 있다.

  • Compression and extension spring: a spring that can be both compressed and extended. Its block length, by default, is 10% of its free length (the length of the spring in the force-free condition).

압축 및 확장스프링: 압축되거나 확장될 수 있는 스프링이며 이의 차단거리는 디폴트로 자유길이(힘을 받지 않을 때의 스프링의 길이) 의 10%이다

  • Extension spring: a spring that can only be extended. Its block length is always equal to its free length.

확장스프링: 확장될 수 있는 스프링이며 차단거리는 항상 자유 길이와 같다.

  • Compression spring: a spring that applies force only when it is compressed. When it is stretched, the force on the connected object vanishes. Its default block length is 10% of its free length.

압축스프링: 단지 압축되었을 경우에만 힘이 작용한다.  늘어날 경우 연결된 물체에 힘은 없고, 이의 디폴트 길이는 자유 길이의 10%이다.

To define a spring or rope, go to Model Setup Meshing Geometry. Click on the spring icon to bring up the Springs and Ropes window. Right click on Springs and Ropes to add a spring or rope. In the combo box for Type, select the type for the spring or rope.

스프링이나 로프를 정의하기 위해 Model Setup Meshing Geometry 로 가서 Springs and Ropes 창을 불러오기 위해 스프링 아이콘을 클릭한다. 스프링이나 로프를 추가하기 위해 Springs and Ropes 를 오른쪽 클릭한다. Type 을위한 combo 상자에서 스프링이나 로프를 선택한다.

  • Linear spring and rope: Click to open the branches for End 1 and End 2 which represent the initial coordinates of the ends of the spring/rope. In each branch, go to Component # and select the index of the moving object which the spring end is connected to. If the end is not connected to any moving component, i.e., is fixed in space, select None. In the X, Y and Z edit boxes, enter the initial coordinates of the spring’s end. Each end can be placed anywhere inside or outside the moving object and the computational domain. Enter Free Length (the length of the spring/rope in the force-free condition), Block Length, Spring Coefficient (required) and Damping Coefficient (default is 0.0). Note that the Block Length is deactivated for rope and extension spring because the former has no block length while the latter always has its block length equal to its free length. By default, the free length is set equal to the initial distance between the two ends.

선형 스프링과 로프: 스프링/로프의 양쪽 끝의 초기좌표를 나타내는 End 1 End 2 를 위한 branches를 열기 위해 클릭한다. 각 branch 에서 Component #로 가서 스프링의 끝이 연결되어 있는 이동체의 색인을 설정한다. 끝이 어떤 이동체에 연결되어 있지 않다면, 즉 공간에 고정되어 있다면 None 을 선택한다. X, Y Z 편집상자에서 스프링 끝의 초기좌표를 입력한다. 각 끝은 이동체나 계산 영역의 내, 외부 어디에도 놓여질 수 있다.

Free Length (힘이없는상태에서의 스프링/로프의 길이), Block Length, Spring Coefficient (필요함) 그리고 Damping Coefficient (디폴트는0.0)를 입력한다. 로프와 인장스프링에서는 Block Length 가 비 활성화됨을 주목하는데 그 이유는 전자는 Block Length 가 없고 후자는 항상 자유 길이와 같은 Block Length 를 가지기 때문이다.

디폴트로 자유길이는 양쪽 끝 사이의 초기길이와 같게 설정된다.

  • Torsion spring: End 1 represents the spring’s end that is attached to a moving object under fixed-axis rotation, and End 2 the end fixed in space. Click to open the branch for End 1. In the combo box for Component #, select the index of the moving object which End 1 is attached to. Then enter Spring Coefficient (required, in unit of [torque]/degree) and Damping Coefficient (default is 0.0). Finally enter the Initial Torque in the input box. The initial torque is the torque of the spring applied on the moving object at t = 0. It is positive if it is in the positive direction of the coordinate axis which the rotation axis of the moving object is parallel to.

비틀림 스프링: End 1은 고정축 회전을 하는 이동체에 연결된 스프링의 끝을 나타내고 End 2는 공간에 고정된 끝을 나타낸다. End 1의 branch 를 열기 위해 클릭한다. Component #를위한 combo 상자에서 End 1 이 연결된 이동체의 색인을 선택한다. 그런 후에 Spring Coefficient ([torque]/degree의 단위로 필요) 와 Damping Coefficient (디폴트는0.0)를 입력한다.

마지막으로 입력 상자에서 Initial Torque 를 넣는다. 초기토크는 t = 0일 때 이동체에 적용된 스프링의 토크이다. 이동체의 회전축이 평행한 좌표축의 양의 방향이면 양의 값이다.

After the simulation is complete, users can display the calculated deformation and force (or torque) of each spring and rope as functions of time. Go to Analyze Probe Data source and check General history. In the variable list under Data variables, find the Spring/rope index followed by spring/rope length extension from free state, spring/rope force and/or spring torque. Then check Output form Text or Graphical and click Render to display the data. Positive/negative values of spring force and length extension mean the linear spring or rope is stretched/compressed relative to its free state and the restoring force is a tension/pressure force. Positive/negative values of the torque of a torsion spring means its deformation angle (a vector) measured from its free state is in the negative/positive direction of the coordinate axis which its axis is parallel to.

모사(simulate)가 끝난 후에 사용자는 시간의 함수로 각 스프링의 계산된 변형과 힘(토크)를 나타낼 수 있다. Analyze Probe Data source 로가서 General history 를 체크한다. Data variables 에 있는 변수 목록에서 spring/rope length extension from free state, spring/rope force 과/또는 spring torque 로 이어지는 스프링/로프의 색인을 찾는다. 그리고 Output form Text 또는 Graphical 를 체크하고 데이터를 나타내기 위해 Render 를 클릭한다.

스프링 힘과 인장길이의 양/음의 값은 선 스프링과 로프가 자유상태에 대해 상대적으로 늘어나거나 압축된 것을 뜻한다. 비틀림스프링 토크의 양/음의값은 축에 평행한 좌표 축의 양/음의 방향에 대해 측정된 변형각(벡터)을 뜻한다.

 

It is noted that the spring/rope calculation is explicitly coupled with GMO motion calculation. If a numerical instability occurs it is recommended that users activate the implicit GMO model, define limited compressibility of fluid, or decrease time step.

스프링/로프 계산은 GMO 운동계산과 외재적으로 결합되어 있음에 주목한다. 수치 불안정성이 발생하면 사용자는 내재적 GMO모델을 활성화하고 유체의 제한적 압축성을 정의하던가 또는 시간간격을 줄이는 것을 추천한다.

Mooring Lines 계류선

The mooring line model allows moving objects with prescribed or coupled motion to be connected to fixed anchors or other moving or non-moving objects via compliant mooring lines. Multiple mooring lines are allowed in one simulation, and their connections to the moving objects are arbitrary. The mooring lines can be taut or slack and may fully or partially rest on sea/river floor. The model considers gravity, buoyancy, fluid drag and tension force on the mooring lines. The mooring lines are assumed to be cylinders with uniform diameter and material distributions, and each line can have its own length, diameter, mass density and other physical properties. The model numerically calculates the full 3D dynamics of the mooring lines and their dynamic interactions with the tethered moving objects.

계류선 모델링은 유연한 계류선을 이용하여 지정 또는 결합운동을 하는 이동체가 고정 닻 또는 다른 이동 또는 고정물체에 연결되는 것을 가능하게 해준다. 다수의 계류선도 한 모사(simulate)내에서 가능하며 이들의 이동체에의 연결은 인위적이다.

계류선은 팽팽하거나 느슨할 수 있고 전체 또는 부분이 해저나 하상에 위치할 수 있다. 이 모델은 계류선에 작용하는 중력, 부력, 유체저항 및 인장력을 고려할 수 있다. 계류선은 일정직경과 균일분포의 원통형으로 가정되고 각 선은 각 길이, 직경, 밀도 및 기타 물리적 물성을 가질 수 있다. 이 모델은 수치적으로 3차원계류선 운동 및 선에 의해 묶여진 이동체와의 동적 상호작용을 계산한다.

 

The model allows the mooring lines to be partially or completely outside the computational domain. When a line is anchored deep in water, depending on the vertical size of the domain, the lower part of the line can be located below the domain bottom where there is no computation of fluid flow. In this case, it is assumed that uniform water current exists below the domain for that part of mooring line, and the corresponding drag force is evaluated based on the uniform deep water velocity. Limitations exist for the model. It does not consider bending stiffness of mooring lines. Interactions between mooring lines are ignored. When simulating mooring line networks, free nodes are not allowed.

이 모델은 계류선이 계산 영역의 완전히 또는 부분적으로 외부에 위치하게 할 수 있다. 계류선은 영역의 심해에 앵커되어 있을 때 수직(세로)크기에 따라 선의 하부는 유동 계산이 없는 영역 바닥에 위치할 수 있다. 이 경우 계류선의 하부가 있는 영역하부에는 균일한 유속이 존재한다고 가정되고 이에 상응하는 유속저항은 균일한 심해유속에 근거하여 계산된다.

이모델은 제약이 있는데 선의 굽힘 강도는 고려하지 않는다. 선간의 상호작용도 무시된다. 선간의 관계를 모사(simulate)활 때 자유접속점은 허용되지 않는다.

 

To define a mooring line, go to Model Setup Meshing & Geometry. Click on the spring icon to bring up the Springs, Ropes and Mooring Lines window. Right click on Springs / Ropes / Mooring Lines to add a mooring line. Click on Mooring Lines Deep Water Velocity and enter x, y and z components of the deep water velocity (default value is zero). Click on Mooring Line # and enter the physical and numerical properties of the mooring line.

계류선을 정의하기위해 Model Setup Meshing & Geometry 로간다. Springs, Ropes and Mooring Lines 창을 불러오기 위해 스프링 아이콘을 클릭한다. 계류선을 추가하기위해 Springs / Ropes / Mooring Lines 에서 오른쪽 클릭을 하고 Mooring Lines Deep Water Velocity 를클릭해서 심해속도의 x, y 및 z 성분을 입력한다(디폴트는0이다). Mooring Line # 를 클릭하고 선의 물리적 및 수치적 물성들을 입력한다.

 

다이 스프레이 냉각 / Die Spray Cooling

열 다이 사이클링 시뮬레이션에서 다이의 온도 분포를 정확하게 예측하려면 스프레이 냉각의 공간 변화를 모델링해야 합니다. 새로운 다이 스프레이 냉각 모델은 이러한 목적으로 개발되었으며 현재 FLOW-3D의 최신 버전에서 사용할 수 있습니다. 이 모델은 전체 다이 캐비티에 걸쳐 일정한 열 전달 계수를 가정하는 대신 각 스프레이의 냉각을 명시적으로 계산합니다. 다이 표면의 스프레이 영역은 스프레이 노즐의 움직임으로 인해 지속적으로 계산되고 업데이트됩니다. 또한 모델은 분무되는 유체의 차단을 고려하여 살수 각도와 다이 표면의 형태로 인해 냉각에 미치는 영향을 고려한다. 새로운 모델은 안정적이고 현실적인 입력 매개 변수를 사용하여 다이 표면에 정확한 온도 분포를 제공하여 엔지니어가 냉각 프로세스를 보다 효율적으로 설계하고 최적화하여 핫 스팟을 제거할 수 있도록 도와 줍니다.

스프레이 구역 계산 / Spray Area Computation

새 모델에서는 다이 표면의 형상과 분무 노즐 위치가 살수 냉각에 미치는 영향을 고려합니다. 아래 그림과 같이 다이 표면에 분사되는 일부 영역은 막히고 일부 영역은 2개 이상의 스프레이로 덮여 있습니다. 이러한 영역은 다양한 스프레이 냉각 효과를 구별하기 위해 광선 추적 알고리즘을 사용하여 계산하고 식별합니다. 스프레이 영역은 FlowSightTM에서 시각화할 수 있으며, 스프레이 냉각을 통해 유닛 영역별로 제거된 총 분사 시간 및 총 열 등의 다른 특성도 확인할 수 있습니다.

Spray area computation

열 전달 계수 결정 / Heat Transfer Coefficient Determination

스프레이 냉각 메커니즘은 복잡하며 스프레이 냉각 열전달 계수 (HTC)는 스프레이 모양, 냉각수 유량, 스프레이 압력, 금형 온도, 스프레이 각도 및 스프레이 거리와 같은 다양한 변수에 따라 달라집니다. 스프레이 냉각 HTC 계산을 단순화하기 위해, 모든 스프레이 표면 요소에 대해 HTC는 기본 요소 HTC에 종속 요소 ( : 원추형 스프레이)를 곱하여 계산됩니다.

스프레이 냉각 메커니즘은 복잡하며, 스프레이 냉각 열 전달 계수(HTC)는 스프레이 형태, 냉각수 유량, 스프레이 압력, 금형 온도, 스프레이 각도, 스프레이 거리 등 다양한 변수에 따라 달라집니다. 스프레이 냉각 HTC의 계산을 단순화하기 위해 모든 스프레이 표면 요소에 대해 HTC는 기본 HTC에 원뿔형 스프레이의 경우와 같은 의존성 요인을 곱한 후 계산됩니다.

\displaystyle HTC=HT{{C}_{0}}(T)\cdot {{f}_{d}}(d)\cdot {{f}_{b}}(\beta )\cdot {{f}_{e}}(\varepsilon )

여기에서

  • 0HTCHTC는 노즐이 지정된 거리에서 몰드에 분사할 때 기본 스프레이 열 전달 계수입니다. 기준 열 전달 계수는 분무 콘의 특성, 살수 매체 및 살수 압력 등에 따라 달라지며, 주형 표면 온도의 함수입니다.
  • dff는 거리 d종속 인자 함수이다.
  • bff는 살수 각도β의존적 인자 함수이다.
  • eff는(표면 법선과 살수 방향 사이의)살수 각도이며, Eu의존적 인자 함수이다.

스프레이 거리 d와 스프레이 각도 β 및 ε의 의미는 아래 그림과 같습니다

Spray distance and angle

기본 열 전달 계수 및 의존 계수 함수는 이론 또는 경험으로부터 유도 된 실험 측정으로부터 곡선 맞춤을 할 수 있습니다. 스프레이가 원추형이 아닌 경우 종속 요소가 다를 수 있습니다.

스프레이 노즐 정의 / Spray Nozzles Definition

분무 노즐은 뱅크로 분류된다. 동일한 뱅크의 노즐은 스프레이 콘 각도와 같은 특성을 가지고 있다. 또한, 동일한 살수 매체 온도와 동일한 그룹의 다이 구성 요소에 분사하고, 동일한 상태 제어 표를 공유하며, 동일한 열 전달 계수 기능을 가진다.

모든 스프레이 노즐 뱅크는 사실상 동일한 로봇 암에 장착됩니다. 로봇 암의 변환 및 회전 이동은 FLOW3D 에서 지정할 수 있습니다. 모션 데이터가 외부 파일에 저장된 경우 외부 파일에서 가져오거나 연결할 수 있습니다. 스프레이 기계에 프로그래밍된 제어 데이터를 모델에 직접 사용할 수 있기 때문에 외부 파일을 가져오거나 연결할 수 있으면 입력이 상당히 간단해 집니다.

노즐 속성은 노즐 데이터베이스에서 직접 읽을 수 있습니다. 열 전달 계수 기능은 스프레이 콘 각도를 포함한 스프레이 콘 특성에 따라 달라지기 때문에 노즐 데이터베이스에 포함된 모든 노즐 특성의 일부입니다. 데이터베이스에 노즐이 정의되어 있지 않으면 그 속성을 직접 입력할 수 있습니다. 열 전달 계수 기능은 상수이거나 표로 정의할 수 있습니다. 다른 테이블 입력과 마찬가지로 데이터를 외부 파일에 연결할 수 있습니다. 동일한 노즐을 자주 사용하는 경우 재료 데이터베이스에 새 재료를 추가하는 것과 유사하게 해당 특성을 노즐 데이터베이스에 쉽게 추가할 수 있습니다.

각 노즐에 대해 스프레이 출처 및 엔드 좌표 또는 스프레이 방향을 정의해야 합니다. 노즐 위치가 미리 설계되어 있고 데이터를 사용할 수 있거나 노즐 수가 상대적으로 많을 경우 외부 파일에서 이 위치를 읽을 수 있습니다. 노즐 수가 적으면 위치를 대화식으로 선택하고 표 형식으로 입력할 수 있습니다.

Sample Results

새로운 모델의 성능과 다이 스프레이 프로세스를 명시적으로 시뮬레이션하는 것의 중요성을 입증하기 위해 사례 연구가 수행되었습니다. 이는 큰 치수와 얇은 벽 두께를 가진 차량 구조 부품의 생산에 기초한다. 이젝터 다이의 다이 표면 안에 세개의 열전대가 배치됩니다. 위치는 다음 그림에 나와 있습니다. 첫번째 열전대는 주조 영역의 다이 표면에 배치됩니다. 두번째 열전대는 캐비티 밖에서 정의됩니다. 따라서 용해된 부분은 접촉하지 않지만 분사 과정 중에는 냉각되는 부분이 있습니다. 세번째 열전대는 비스킷에 있는데, 이것은 다이 내부의 핫 스폿입니다.

Thermocouples die spray cooling model

시뮬레이션은 5개의 사이클을 기반으로 하며, 각 사이클은 응고, 방출, 스프레이 냉각 및 주거라는 4개의 세그먼트로 정의됩니다. 전체 다이 캐비티에 걸쳐 일정한 열 전달 계수를 가정하는 암시적 다이 스프레이 냉각 시뮬레이션에서는 실제 공정 값을 사용할 수 없으므로 항상 스프레이의 평균 시간을 추정하기가 어렵습니다. 이 사례 연구에서는 열전대 1의 온도가 측정과 일치하도록 평균 시간을 추정하고 조정합니다. 반대로 각 스프레이 노즐의 냉각을 명시적으로 시뮬레이션하는 새로운 스프레이 냉각 모델의 경우, 실제 분사 프로세스에는 모든 시간 값이 포함되어 있어 시뮬레이션에 직접 전달될 수 있습니다. 이는 새로운 다이 스프레이 냉각 모델의 장점 중 하나입니다.

아래의 첫번째 애니메이션은 스프레이 냉각 중 다이 표면의 스프레이 영역을 보여 줍니다. 두번째 애니메이션은 다섯번째 주기에서 스프레이 냉각 중의 다이 표면 온도를 보여 줍니다. 글로벌 스프레이 및 핫 스팟 스프레이의 효과를 명확하게 확인할 수 있습니다.

Spray area during spray cooling. Simulation courtesy of Audi AG.

Die surface temperature at the fifth cycle of spray cooling. Simulation courtesy of Audi AG.

다섯번째 사이클 동안 세개의 열전대 온도가 다음 그림에 표시되어 있습니다. 실선은 암시적 모델의 결과를 나타내고 점선은 새로운 다이 스프레이 냉각 모델의 결과를 나타냅니다. 사이클이 끝날 때 세개의 열전대의 온도 차이도 표시됩니다. 암시적 모델에서 열전대 1의 온도를 일치시키기 위해 비스킷 영역이 지나치게 냉각되어 열전대 3에서 다이 온도의 90°C차이가 발생한다는 것을 알 수 있습니다. 이는 극적인 차이입니다. 다이 캐스터의 경우 비스킷의 온도는 다이 캐스팅 프로세스에서 매우 민감한 온도입니다. 사이클이 끝날 때 캐비티(열전대 2)외부의 온도 차이는 20°C입니다. 이러한 값은 실제 공정에서 우수한 품질의 주물이 생산되거나 사출 중에 다이에 응고되는지 여부를 결정합니다. 다이 스프레이 냉각 프로세스의 명확한 시뮬레이션은 정확한 다이 온도 분포를 예측하는 데 매우 중요합니다.

Temperatures thermocouples - die spray cooling model

Conclusions

새로운 다이 스프레이 냉각 모델은 몰드 표면 형태의 영향과 스프레이 노즐의 위치 및 움직임을 고려하여 FLOW-3D 사용자에게 다이 준비의 모든 측면을 모델링 할 수 있는 능력을 제공합니다. 또한 열 다이 사이클 시뮬레이션을 위한 신뢰할 수 있고 사실적인 입력 파라미터를 사용하여 다이 표면의 정확한 온도 분포를 정확하게 예측할 수 있습니다. 이를 통해 금속 주물 엔지니어는 다이의 내부 냉각 구조와 스프레이 냉각 매개 변수를 보다 효율적으로 설계하고 평가할 수 있습니다.

References

  1. Müller, et al., A die spray cooling model for thermal die cycling simulations, Transactions of NADCA 2015 Die Casting Congress & Exposition, Indianapolis, T15-101, 2015
실험 (위) 및 FLOW-3D 결과 (아래)의 비교. x 축은 거리입니다 (실험 사례에 대해 정규화 됨). y 축은 소스 농도 (실험 사례의 경우 형광 강도)입니다.

Microfluidic palette – A gradient generator / 미소유동 팔레트 – 그라디언트 생성기

Microfluidic 팔레트 – 그라디언트 생성기

Microfluidics 모델링 , 그래디언트 생성 장치 시뮬레이션 및 검증 작업을 계속하는 것은 Flow Science의 최신 연구분야입니다. 확산 기반 그라디언트는 많은 복잡한 생물학적 과정에서 없어서는 안될 부분입니다. 한 예로 세포가 화학적 구배를 따라 이동하는 화학 주성 (chemotaxis )으로 인한 상처의 치료 방법입니다. 지난 몇 년 동안 확산 구배를 설정하고 연구하기 위한 다양한 접근법이 등장했지만 모두 문제 해결에 어려움을 겪고 있습니다.

Atencia 등은 이전 접근법의 알려진 문제점을 극복하기 위해 혁신적인 미세 유체 구배 생성기 (마이크로 유체 팔레트)를 제안했습니다.

이전 접근법 및 관련 문제

확산 그라디언트를 설정하는 세 가지 주요 접근법으로 층류, 멤브레인 및 하이드로 겔 및 자유 확산 방법이 있으며 각각의 특징이 았습니다. 그러나, 언급한 것처럼 문제를 해결하는데 동반되는 어려움이 있습니다.
microfluidic 장치에서 그라디언트를 연구하고 확립하기 위한 표준 접근법은 층류의 사용을 포함합니다. 이 접근법은 매우 간단하지만 대류로 인해 전단 응력이 발생합니다. 전단 응력은 세포 반응을 변화시킬 수 있습니다. 예를 들어, 바이어스 된 세포 이동 및 비대칭 대량 수송이 발생할 수있습니다.

보다 최근의 개발은 강성 멤브레인 및 하이드로 겔을 사용하는 것을 포함하여 확산 구배를 설정하여 대류 흐름을 피하는 것입니다. 그러나 막과 겔은 확산 속도를 감소시켜 그라데이션의 일시적인 현상에 영향을줍니다.

마지막으로, 2 개의 유체 플러그를 접촉시켜 자유로운 확산을 가능하게 하는 접근법이 개발되었습니다. 그러나 이 접근 방식은 1-D 흐름에만 국한됩니다. 또한, 일단 그래디언트가 설정되면, 확산류 구배를 수정하기 위해 대류 흐름을 사용해야 하며, 이는 층류 유동에서 전단 응력 발생의 초기 문제로 되돌아갑니다.

여기에서는 Atencia 등이 제안한 확산성 구배 생성에 대한 새로운 접근법의 원리에 대해 논의하고 FLOW-3D 시뮬레이션 결과를 제시합니다.

Microfluidic 팔레트
미세 유체 팔레트 뒤에있는 원리는 멤브레인이나 젤을 사용하지 않고 확산으로부터 대류 흐름을 분리하여 다음과 같은 이점을 제공합니다.
  • 전단 응력없이 재료 (셀 또는 용해성 물질)의 전달
  • 서로 다른 공간 위치를 갖는 중첩 그라데이션 생성
  • 그라데이션에 대한 동적 제어

Atencia 등이 제안한 미세 유체 팔레트의 디자인은 위에 나와 있습니다. 1-D의 경우, 대류 장치 1의 질량 균형은 입구 1과 출구 1의 유속을 일치 시키면 확산을 통해 전달을 허용하면서 주 마이크로 채널을 통한 흐름을 방지합니다. 대류 장치 1은 완벽한 소스 역할을 합니다. 2 차원의 경우는 2 차원 이상의 대류 단위가있는 1 차원의 경우를 단순히 확장한 것입니다.

FLOW-3D 시뮬레이션

아래의 1 차원 마이크로 유체 팔레트 애니메이션에서 주 중앙 마이크로 채널로부터의 대류 세포의 깨끗한 분리는 플롯 된 유선을 통해 볼 수 있습니다. 유선형은 모두 대류 단위에만 제한되며 단일 채널도 마이크로 채널로 누출되지 않아 대류와 확산의 탁월한 분리를 나타냅니다. 소스 농도의 진화는 플롯에서 볼 수 있습니다. 플롯은 애니메이션이 끝날 때까지 일정하게 보입니다.

1 차원 마이크로 유체 팔레트의 FLOW-3D 시뮬레이션 결과

2D 마이크로 유체 팔레트는 생성 된 그라데이션에 대한 시공간 제어를 보여줍니다. 소스와 싱크는 각속도로 회전합니다. 또한 매 초마다 활성 액세스 포트가 비활성화되고 다음 포트가 켜집니다. 챔버 내부의 확산 상태를 확인하기 위해 3 개의 라인 프로브가 시뮬레이션에 배치됩니다 (아래 시뮬레이션의 오른쪽 하단 창에서 각각 빨간색, 파란색 및 검은 색으로 표시됨).

2D 3D 마이크로 유체 팔레트의 FLOW-3D 시뮬레이션 결과.

실험 결과와의 비교

FLOW-3D 결과는 챔버 내부의 농도 변화 측면에서 실험 결과와 잘 일치합니다. 아래 이미지는 실험 결과와 시뮬레이션 결과 모두에 대한 시간 스냅 샷을 보여줍니다. 실험 결과가 정규화되었습니다. 또한 실험은 형광 강도를 사용하여 소스의 농도를 나타냅니다. 시뮬레이션에서 FlowSight 의 라인 프로브는 3 개의 액세스 포트 사이의 농도를 연구하는 데 사용됩니다.

실험 (위) 및 FLOW-3D 결과 (아래)의 비교. x 축은 거리입니다 (실험 사례에 대해 정규화 됨). y 축은 소스 농도 (실험 사례의 경우 형광 강도)입니다.
실험 (위) 및 FLOW-3D 결과 (아래)의 비교. x 축은 거리입니다 (실험 사례에 대해 정규화 됨). y 축은 소스 농도 (실험 사례의 경우 형광 강도)입니다.

References

Atencia J, Morrow J, Locascio L.E., The microfluidic palette: A diffusive gradient generator with spatio-temporal control, The Royal Society of Chemistry 2009

VOF (Volume of Fluid) 란 무엇인가?

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

VOF – What’s in a Name?

A free surface is an interface between a liquid and a gas in which the gas can only apply a pressure on the liquid. Free surfaces are generally excellent approximations when the ratio of liquid to gas densities is large, e.g., for water to air the ratio is 1000.

자유 표면은 액체와 기체 사이의 계면이며, 기체에서만 액체에 대해 압력을 가할 수 있습니다.  자유 표면은 일반적으로 액체 대 기체의 밀도의 비율이 큰 경우 우수한 근사를 합니다.  예를 들어, 물 대 공기의 비율은 1,000입니다.

VOF Method Components

In FLOW-3D free surfaces are modeled with the Volume of Fluid (VOF) technique, which was first reported in Nichols and Hirt (1975), and more completely in Hirt and Nichols (1981). The VOF method consists of three ingredients: a scheme to locate the surface, an algorithm to track the surface as a sharp interface moving through a computational grid, and a means of applying boundary conditions at the surface.

FLOW-3D 의 자유 표면은 VOF (Volume of Fluid) 법을 사용하여 모델링됩니다.  이 기술은 Nichols 와 Hirt 에 의해 1975 년에 처음 보고된 Hirt 와 Nichols에 의해 1981년에 더 완전한 형태로 보고되었습니다.  VOF 법은 표면의 위치를 특정하는 방식, 계산 격자 내를 이동하는 명확한 계면으로 표면을 추적하는 알고리즘, 표면에서 경계 조건을 적용하는 방법 3가지 성분으로 구성되어 있습니다.

Pseudo VOF

In the past, a number of commercial CFD programs have claimed a VOF capability, when in reality they are only implementing one or two of the three VOF ingredients. Users of these programs should be aware that these pseudo-VOF schemes sometimes give incorrect results.

과거에도 많은 상용 CFD 프로그램이 VOF 기능을 주장했지만, 실제로는 세 가지 VOF 요소 중 하나 또는 두 개만 구현했습니다. 이들 프로그램 사용자는 이러한 pseudo VOF 체계는 때때로 잘못된 결과를 제공할 수 있다는 점에 유의해야 합니다.

Most pseudo-VOF methods use a fluid volume fraction to locate surfaces, but they then attempt to compute flow in both the liquid and gas regions instead of accounting for the gas by a boundary condition. This practice produces an incorrect motion of the surface since it is assumed to move with the average velocity of gas and liquid. In reality, the two fluids generally move independently of one another except for a thin viscous boundary layer.

많은 pseudo VOF 법은 유체의 체적 점유율을 사용하여, 표면의 위치를 파악하고 있으며, 경계 조건에 따라 기체를 처리하는 것이 아니라, 액체와 기체의 두 영역에서 흐름을 계산하려고합니다 .  이 방법에서는 표면은 기체와 액체의 평균 속도로 이동한다고 가정되기 때문에 표면의 움직임이 잘못 표시됩니다.  사실, 경계층이 가늘고 점성이있는 경우를 제외하고, 이 2 개의 유체는 일반적으로 서로 독립적으로 이동합니다.

VOF - What's in a name

Left: Correct jet shape predicted by TruVOF technique used in FLOW-3D.
Right: Incorrect jet shape predicted by pseudo-VOF technique used by other CFD codes.

그림 1 🙁 왼쪽) FLOW-3D 에 사용되는 TruVOF 법에 의해 예측되는 올바른 분류 모양
그림 2 🙁 우) 기타 CFD 코드에서 사용되는 의사 VOF 법에 의해 예측되는 잘못된 분류 형상

Comparing VOF methods

Left: FLOW-3D‘s TruVOF technique predicts jet impingement on wall and some outflow.
Right: Pseudo-VOF methods don’t predict realistic jetting of fluid on side walls.

그림 3 🙁 왼쪽) FLOW-3D TruVOF 법으로 분류 벽에 충돌과 유출을 예측
도표 4 🙁 우) 의사 VOF 법은 밀도가 높은 유체가 챔버에서 나가는 모습을 잘못 예측

VOF vs. Pseudo VOF Example

The consequences of trying to compute both gas and liquid flow can be illustrated with a simple example. All the computed results shown here were produced with FLOW-3D, which has a two-fluid option that can be run in a pseudo-VOF mode. Imagine a jet of water issuing at constant velocity from a long slit into air. If we neglect gravity and keep the velocity of the jet low (say 10.0 cm/s), we expect the jet to move more or less unimpeded by the air (see the FLOW-3D results in Fig. 1), obtained with its VOF free-surface model).

기체와 액체의 두 흐름을 계산하려고 한 결과는 간단한 예로 설명 할 수 있습니다.  여기에 표시된 계산 결과는 모든 FLOW-3D를 사용하여 요구한 것입니다.  FLOW-3D는 pseudo VOF 모드에서 실행할 수있는 2 유체 옵션이 있습니다.  물 분사를 일정한 속도로 가늘고 긴 슬릿에서 공기 중에 방출하는 경우를 상상해보십시오.  중력을 무시하고 분류 속도를 저속 (예 : 1.0cm / sec)으로 유지하면 기류는 공기에 전혀 구애받지 않고 자유롭게 이동할 것으로 예상됩니다 (그림 1, FLOW-3D의 VOF 자유 표면 모델에서 얻어진 결과 참조).

Pseudo-VOF methods produce a growth at the tip of the jet (Fig. 2). This growth is numerical, not physical, because it is independent of the density of air (e.g., the growth remains largely unchanged for air densities 100, 1000 and 10,000 times smaller than the liquid density).
At later times the FLOW-3D jet (Fig. 3) strikes the right-hand wall and a small portion of the flow has entered a slot in the wall.

Pseudo-VOF 방법은 제트의 끝에서 확산됩니다(그림 2). 이 확산은 공기 밀도와 무관하기 때문에 물리적인 현상이 아니라 수치적입니다 (예 : 액체 밀도보다 100, 1000 및 10,000 배 더 작은 공기 밀도의 경우 확산은 크게 변하지 않습니다).
그 후, FLOW-3D의 기류 (그림 3)는 오른쪽 벽에 충돌하고 흐름의 일부가 벽의 틈새에 들어갑니다.

In contrast, the lower density air flow in the pseudo-VOF method is pulling liquid into the slot just before the jet strikes the wall (Fig. 4). Also, because of the incompressibility of the air remaining in the chamber, the amount of liquid flowing out the slot in the pseudo-VOF method must be equal to the amount injected, which is more than would be expected under most physical conditions.

대조적으로, pseudo-VOF 방법의 저밀도 기류는 제트가 벽에 부딪히기 직전에 액체를 슬롯으로 끌어 당깁니다 (그림 4). 또한 챔버에 남아있는 공기의 비압축성으로 인해 pseudo-VOF 방법에서 슬롯 밖으로 흘러 나오는 액체의 양은 주입되는 양과 같아야 하며, 이는 대부분의 물리적 조건에서 전혀 예상할 수 없슨 것입니다.

Another pseudo-VOF practice is to use some type of higher-order advection scheme to track interfaces. The interface is represented as a rapid change in density. Such schemes result in smoothed transition regions between gas and liquid that cover several control volumes rather than sharp interfaces localized in one control volume as in the original VOF method. The reason that most people don’t implement free-surface boundary conditions is that it requires major changes to the structure of existing programs, and it must be done carefully to avoid numerical instabilities.

pseudo VOF 또 하나의 관례는 어떤 유형의 고차 이류(advection) 구성표를 사용하여 계면을 추적하는 것입니다.  계면 밀도의 급격한 변화로 표현됩니다.  이러한 방식은 기체와 액체 사이의 매끄러운 전환 영역이 복수의 컨트롤 볼륨에 펼쳐지는 결과가되어, 원형의 VOF 법처럼 하나의 컨트롤 볼륨에 명확한 계면이 국소화되는 것은 아닙니다 .  대부분의 사람들이 자유 표면 경계 조건을 구현하지 않는 이유는 기존의 프로그램의 구조를 크게 변경해야 하므로, 수치적 불안정을 피하기 위해 매우 신중하게 이루어져야 하기 때문입니다.

FLOW-3D has all the ingredients recommended for the successful treatment of free surfaces. Moreover, it incorporates major improvements beyond the original VOF method in each of its three major ingredients.

FLOW-3D는 자유 표면을 제대로 처리하기 위해 권장되는 모든 성분이 포함되어 있습니다.  또한 원형의 VOF 법의 3 가지 주성분에 대해 상당한 개선처리를 진행하였습니다.

References

Nichols, B.D. and Hirt, C.W., “Methods for Calculating Multi-Dimensional, Transient Free Surface Flows Past Bodies,” Proc. First Intern. Conf. Num. Ship Hydrodynamics, Gaithersburg, ML, Oct. 20-23, 1975

Hirt, C.W. and Nichols, B.D., “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Computational Physics 39, 201, 1981.

난류 모델링

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Turbulence Modeling

The majority of flows in nature are turbulent. This raises the question, is it necessary to represent turbulence in computational models of flow processes? Unfortunately, there is no simple answer to this question, and the modeler must exercise some engineering judgment. The following remarks cover some things to consider when faced with this question.

난류 모델링

자연에서의 흐름은 대부분은 난류입니다. 이것은 유동의 수치해석 모델에서 난류를 표현할 필요가 있는가? 에 대한 의문이 생깁니다.  불행히도이 질문에 대한 답은 모델링을 할 경우 엔지니어가 공학적인 판단을 내려야합니다.  다음에 이 질문에 직면했을 때 고려해야 할  몇 가지를 설명합니다.

Definitions and Orders of Magnitude

The possibility that turbulence may occur is generally measured by the flow Reynolds number:

난류가 발생할 가능성은 일반적으로 흐름의 레이놀즈 수에 의해 측정됩니다.

where ρ is fluid density and μ is the dynamic viscosity of the fluid. The parameters L and U are a characteristic length and speed for the flow. Obviously, the choice of L and U are somewhat arbitrary, and there may not be single values that characterize all the important features of an entire flow field. The important point to remember is that Re is meant to measure the relative importance of fluid inertia to viscous forces. When viscous forces are negligible the Reynolds number is large.

여기서 ρ는 유체 밀도이고 μ는 유체의 동적 점도입니다. 매개 변수 L과 U는 흐름의 특성 길이와 속도입니다. 분명히 L과 U의 선택은 다소 임의적이며, 전체 유동장의 모든 중요한 특징을 특징 짓는 단일 값이 없을 수도 있습니다. 기억해야 할 중요한 점은 Re가 점성력에 대한 유체 관성의 상대적 중요성을 측정한다는 것입니다. 점성력을 무시할 수있는 경우 레이놀즈 수가 큽니다.

A good choice for L and U is usually one that characterizes the region showing the strongest shear flow, that is, where viscous forces would be expected to have the most influence.

L과 U에 대한 좋은 선택은 일반적으로 가장 강한 전단 흐름을 나타내는 영역, 즉 점성 힘이 가장 큰 영향을 미칠 것으로 예상되는 영역을 특징 짓는 것입니다.

Roughly speaking, a Reynolds number well above 1000 is probably turbulent, while a Reynolds number below 100 is not. The actual value of a critical Reynolds number that separates laminar and turbulent flow can vary widely depending on the nature of the surfaces bounding the flow and the magnitude of perturbations in the flow.

대략적으로 말하면, 1000을 훨씬 넘는 레이놀즈 수는 아마도 난류 일 수 있지만 100 미만의 레이놀즈 수는 그렇지 않습니다. 층류와 난류를 분리하는 임계 레이놀즈 수의 실제 값은 유동을 경계하는 표면의 특성과 유동의 섭동의 크기에 따라 크게 달라질 수 있습니다.

In a fully turbulent flow a range of scales exist for fluctuating velocities that are often characterized as collections of different eddy structures. If L is a characteristic macroscopic length scale and l is the diameter of the smallest turbulent eddies, defined as the scale on which viscous effects are dominant, then the ratio of these scales can be shown to be of order L/l≈Re3/4. This relation follows from the assumption that, in steady-state, the smallest eddies must dissipate turbulent energy by converting it into heat.

완전 난류 흐름에서는 다양한 와류 구조의 집합으로 특징 지어지는 변동 속도에 대해 다양한 스케일이 존재합니다. L이 거시적 길이 특성 척도이고, l을 점성 효과가 우세한 척도로 정의되는 가장 작은 난류 소용돌이의 직경인 경우, 이러한 척도의 비율은L/l≈Re3/4 정도인 것으로 표시 될 수 있습니다.  이 관계는 정상 상태에서 가장 작은 소용돌이가 난류 에너지를 열로 변환하여 발산해야한다는 가정에서 비롯됩니다.

Turbulence Models

From the above relation for the range of scales it is easy to see that even for a modest Reynolds number, say Re=104, the range spans three orders of magnitude, L/l=103. In this case, the number of control volumes needed to resolve all the eddies in a three-dimensional computation would be greater than 109. Numbers of this size are well beyond current computational capabilities. For this reason, considerable effort has been devoted to the construction of approximate models for turbulence.

난류 모델

스케일의 범위에 대한 위의 관계를 보면 적당한 레이놀즈 수 (예 : Re = 10 4 )에서도 범위가 세 자릿수인 L/l=103에 걸쳐 있음을 쉽게 알 수 있습니다. 이 경우 3 차원 계산에서 모든 소용돌이를 해결하는데 필요한 제어 볼륨의 수는 109보다 커집니다.이 크기의 수는 현재 계산 능력을 훨씬 뛰어 넘습니다. 이러한 이유로 난류에 대한 대략적인 모델을 구성하는 데 상당한 노력을 기울였습니다.

We cannot describe turbulence modeling in any detail in this short article. Instead, we will simply make some basic observations about the types of models available. Be forewarned, however, that no models exist for general use. Every model must be employed with discretion and its results cautiously treated.

이 짧은 기사에서는 난류 모델링에 대해 구체적으로 설명 할 수 없습니다.  대신 사용 가능한 모델의 유형에 대한 몇 가지 기본적인 설명만 합니다.  그러므로 일반 모델은 존재하지 않는 것을 미리 양해 바랍니다.  어떤 모델도 신중하게 선택하고 결과를 주의 깊게 처리해야 합니다.

The original turbulence modeler was Osborne Reynolds. Anyone interested in this subject should read his groundbreaking work (Phil. Trans. Royal Soc. London, Series A, Vol.186, p.123, 1895). Reynolds’s insights and approach were both fundamental and practical.

난류를 처음으로 모델링 한 인물은 Osborne Reynolds 입니다.  이 건에 관심이있는 분은 Reynolds 의 획기적인 저서 (Phil. Trans. Royal Soc. London, Series A, Vol.186, p.123,1895)를 참조하십시오.  Reynolds 의 통찰력과 접근 방식은 기본이며 동시에 실용적인 것입니다.

The Pseudo-Fluid Approximation

In a fully turbulent flow it is sometimes possible to define an effective turbulent viscosity, μeff, that roughly approximates the turbulent mixing processes contributing to a diffusion of momentum (and other properties). Thinking of a turbulent flow as a pseudo-fluid having increased viscosity leads to the observation that the effective Reynolds number for a turbulent flow is generally less than 100:

의사 유체 근사

완전 난류 흐름에서는 운동량 (및 기타 특성)의 확산에 기여하는 난류 혼합 공정에 대략적으로 근접하는 효과적인 난류 점도 μ eff를 정의 할 수 있습니다. 난류 흐름을 점도가 증가 된 유사 유체로 생각하면 난류 흐름에 대한 유효 레이놀즈 수가 일반적으로 100 미만이라는 관찰이 가능합니다.

This observation is particularly useful because it suggests a simple way to approximate some turbulent flows. In particular, when the details of the turbulence are not important, but the general mixing behavior associated with the turbulence is, it is often possible to use an effective turbulent (eddy) viscosity in place of the molecular viscosity. The effective viscosity can often be expressed as

이 관찰 결과는 몇 가지 난류를 근사하는 간단한 방법을 제시하고 있기 때문에 특히 유용합니다.  특히 난류 대한 자세한 내용은 중요하지 난류와 관련된 일반적인 혼합 거동이 중요한 경우에는 분자 점성 대신 사용 난류 (소용돌이) 점성을 사용할 수있는 경우가 있습니다.  유효 점성은 다음의 식으로 나타낼 수 있습니다.

where α is a number between 0.02 and 0.04. This expression works well for the turbulence associated with plane and cylindrical jets entering a stagnant fluid. The effective Reynolds number associated with this model is Re=1/α, a number between 25 and 50.

α는 0.02에서 0.04 사이의 숫자입니다.  이 수식은 정체 유체에 들어가는 평면 제트 및 원통형 분류 관련 난류에 대하여 효과가 있습니다.  이 모델에 대한 사용 레이놀즈 수는 Re = 1 / α 25에서 50 사이의 숫자입니다.

While this model is often adequate for predicting the gross features of a turbulent flow, it may not be suitable for predicting local details. For example, it would predict a parabolic flow (i.e., laminar) profile in a pipe instead of the measured logarithmic profile.

이 모델은 종종 난류의 전반적인 특징을 예측하는데는 적합하지만, 로컬 세부 사항을 예측하는 데는 적합하지 않을 수 있습니다.  예를 들어, 측정된 대수 프로필 대신 파이프의 포물선 흐름 (층류 등)의 프로파일을 예측합니다.

Local Viscosity Model

The next level of complexity beyond a constant eddy viscosity is to compute an effective viscosity that is a function of local conditions. This is the basis of Prandtl’s mixing-length hypothesis where it is assumed that the viscosity is proportional to the local rate of shear. The proportionality constant has the dimensions of a length squared. The square root of this constant is referred to as the “mixing length.”

This model offers an improvement over a simple constant viscosity. For example, it predicts the logarithmic velocity profile in a pipe. However, it is not used much because it doesn’t account for important transport effects.

국소 점성 모델

일정한 소용돌이 점성보다 복잡한 것은 국소적 조건의 함수인 유효 점성을 계산하는 것입니다.  이것은 점성이 국소적 전단 속도에 비례한다고 가정된다는 프란틀 혼합 길이 가설(Prandtl’s mixing-length hypothesis )의 기초가됩니다.  비례 상수의 차원은 길이의 제곱입니다.  이 상수의 제곱근은 “혼합 장”이라고합니다.

이 모델은 간단한 일정한 점성 개선을 제공합니다.  예를 들어, 파이프의 대수 속도 프로파일을 예측할 수 있습니다.  그러나 중요한 수송 효과를 지원하지 않기 때문에 그다지 많이 사용되지 않습니다.

Turbulence Transport Models

For practical engineering purposes the most successful computational models have two or more transport equations. A minimum of two equations is desirable because it takes two quantities to characterize the length and time scales of turbulent processes. The use of transport equations to describe these variables allows turbulence creation and destruction processes to have localized rates. For instance, a region of strong shear at the corners of a building may generate strong eddies, while little turbulence is generated in the building’s wake region. The strong mixing observed in the wakes of buildings (or automobiles and airplanes) is caused by the advection of upstream generated eddies into the wake. Without transport mechanisms, turbulence would have to instantly adjust to local conditions, implying unrealistically large creation and destruction rates.

난류 수송 모델

실용 공학의 목적인 가장 뛰어난 수치 모델에는 2 개 이상의 수송 방정식이 있습니다.  난류 과정의 길이와 시간의 스케일을 특징으로는 2 개 분량이 필요하므로 최소한 2 개의 방정식이있는 것이 바람직 할 것입니다.  수송 방정식을 사용하여 이러한 변수를 표현하면 난류의 생성 속도와 파괴율을 국소적으로 할 수 있습니다.  예를 들어, 건물의 모서리의 전단력이 강한 영역에서 강력한 소용돌이가 생성 된 건축물의 후류 영역에서 난류는 거의 생성되지 않습니다.  건축물 (또는 자동차 나 비행기)의 후류에서 관찰되는 강력한 혼합은 상류에서 생성된 소용돌이 후류의 이류에 의해 발생합니다.  수송 메커니즘이 없는 경우, 난류는 국소적 조건에 즉시 적응해야하므로 생성 속도와 파괴율이 비현실적인 크기입니다.

Nearly all transport models invoke one or more gradient assumptions in which a correlation between two fluctuating quantities is approximated by an expression proportional to the gradient of one of the terms. This captures the diffusion-like character of turbulent mixing associated with many small eddy structures, but such approximations can lead to errors when there is significant transport by large eddy structures.

거의 모든 수송 모델에서 하나 이상의 경사 가정을 이루어 두 변동하는 양의 상관 관계가 하나의 항 기울기에 비례하는 식으로 근사됩니다.  이를 통해 다수의 작은 소용돌이 구조와 관련된 난류 혼합 확산적인 특징을 파악할 수 있지만, 큰 소용돌이 구조에 의해 상당한 전송이 존재하는 경우, 이러한 근사 오류가 발생할 수 있습니다.

Large Eddy Simulation

Most models of turbulence are designed to approximate a smoothed out or time-averaged effect of turbulence. An exception is the Large Eddy Simulation model (or Subgrid Scale model). The idea behind this model is that computations should be directly capable of modeling all the fluctuating details of a turbulent flow except for those too small to be resolved by the grid. The unresolved eddies are then treated by approximating their effect using a local eddy viscosity. Generally, this eddy viscosity is made proportional to the local grid size and some measure of the local flow velocity, such as the magnitude of the rate of strain.

Large Eddy 시뮬레이션

난류의 대부분의 모델은 매끄럽게 또는 시간 평균된 난류의 효과를 근사하도록 설계되어 있습니다.  예외는 큰 에디 시뮬레이션 모델 (또는 서브 그리드 스케일 모델)입니다.  이 모델의 배경에는 너무 작은 격자에 의해 해결할 수 없는 것을 제외하고는 난류의 모든 변동 내용은 계산에 의해 직접 모델링 할 수 있어야 한다는 생각이 있습니다.  미해결 소용돌이는 로컬 점성을 사용하여 효과를 근사하여 처리됩니다.  일반적으로이 소용돌이 점성은 국소적인 격자 크기 및 어떤 국소적인 흐름의 속도 측정 (변형 속도의 크기 등)에 비례합니다.

대부분의 난류 모델은 난류의 평활화 또는 시간 평균 효과에 근접하도록 설계되었습니다. 예외는 Large Eddy Simulation 모델 (또는 Subgrid Scale 모델)입니다. 이 모델의 이면에있는 아이디어는 계산이 격자에 의해 해결 되기에는 너무 작은 것을 제외하고, 난류 흐름의 모든 변동 세부 사항을 직접 모델링 할 수 있어야 한다는 것입니다. 해결되지 않은 소용돌이는 로컬 소용돌이 점도를 사용하여 효과를 근사화하여 처리됩니다. 일반적으로, 이 와류 점도는 로컬 격자 크기와 변형률의 크기와 같은 로컬 유속 측정치에 비례하여 만들어집니다.

Such an approach might be expected to give good results if the unresolved scales are small enough, for example, in the viscous sub-range. Unfortunately, this is still an uncomfortably small size. When these models are used with a minimum scale size that is above the viscous sub-range, they are then referred to as Coherent Structure Capturing models.

이러한 접근 방식은 미해결 스케일이 충분히 작은 경우, 예를 들어 점성이 작은 영역에 있는 경우에 좋은 결과를 얻을 수 있을 것으로 기대됩니다.  불행히도 아직은 여전히 불편한 작은 크기 입니다.  이러한 모델을 점성 작은 영역보다 높은 최소 스케일 사이즈로 사용하는 경우는 CSC (Coherent Structure Capturing) 모델이라고합니다.

The advantage of these more realistic models is that they provide information not only about the average effects of turbulence but also about the magnitude of fluctuations. But, this advantage is also a disadvantage, because averages must actually be computed over many fluctuations, and some means must be provided to introduce meaningful fluctuations at the start of a computation and at boundaries where flow enters the computational region.

이보다 현실적인 모델의 장점은 난류의 평균 효과에 대한 정보뿐만 아니라 변동의 크기에 대한 정보도 제공 될 것입니다.  그러나 이와같은 장점은 단점도 있습니다.  평균적으로 실제로 다수의 변동에 대해 계산해야 하며, 계산의 시작 및 흐름이 계산 영역에 들어가는 경계에서 상당한 변화를 도입하기위한 수단을 제공 할 필요가 있기 때문입니다.

Turbulence from an Engineering Perspective

We have seen that it is probably not reasonable to attempt to compute all the details of a turbulent flow. Furthermore, from the perspective of most applications, it’s not likely that we would be interested in the local details of individual fluctuations. The question then is how should we deal with turbulence, when should we employ a turbulence model, and how complex should that model be?

공학적 관점에서의 난류

지금까지 난류의 모든 세부 사항을 계산하려고하는 것은 아마도 합리적이지 않다는 것을 확인했습니다.  또한 많은 적용례의 관점에서 개별 변동의 국소적인 세부 사항이 관심의 대상이 될 수는 없을 것입니다.  거기서 생기는 의문은 난류를 어떻게 처리해야 할지 난류 모델을 언제 선택할지 그 모델이 얼마나 복잡할지에 있다는 것입니다.

Experimental observations suggest that many flows become independent of Reynolds number once a certain minimum value is exceeded. If this were not so, wind tunnels, wave tanks, and other experimental tools would not be as useful as they are. One of the principal effects of a Reynolds number change is to relocate flow separation points. In laboratory experiments this fact sometimes requires the use of trip wires or other devices to induce separation at desired locations. A similar treatment may be used in a numerical simulation.

실험적 관찰에 따르면 특정 최소값이 초과되면 많은 흐름이 레이놀즈 수와 무관하게됩니다. 그렇지 않다면 풍동, 파도 탱크 및 기타 실험 도구는 그다지 유용하지 않을 것입니다. 레이놀즈 수 변경의 주요 효과 중 하나는 흐름 분리 지점을 재배치하는 것입니다. 실험실 실험에서이 사실은 때때로 원하는 위치에서 분리를 유도하기 위해 트립 와이어 또는 기타 장치를 사용해야합니다. 유사한 처리가 수치 시뮬레이션에서 사용될 수 있습니다.

Most often a simulation is done to determine the dominant flow patterns that develop in some specified situation. These patterns consist of the mean flow and the largest eddy structures containing the majority of the kinetic energy of the flow. The details of how this energy is removed from the larger eddies and dissipated into heat by the smallest eddies may not be important. In such cases the dissipation mechanisms inherent in numerical methods may alone be sufficient to produce reasonable results. In other cases it is possible to supply additional dissipation with a simple turbulence model such as a constant eddy viscosity or a mixing length assumption.

대부분의 경우 특정 상황에서 발생하는 지배적 인 흐름 패턴을 결정하기 위해 시뮬레이션이 수행됩니다. 이러한 패턴은 평균 흐름과 흐름의 대부분의 운동 에너지를 포함하는 가장 큰 소용돌이 구조로 구성됩니다. 이 에너지가 더 큰 소용돌이에서 제거되고 가장 작은 소용돌이에 의해 열로 소산되는 방법에 대한 세부 사항은 중요하지 않을 수 있습니다. 그러한 경우 수치 적 방법에 내재 된 소산 메커니즘만으로도 합리적인 결과를 얻을 수 있습니다. 다른 경우에는 일정한 소용돌이 점도 또는 혼합 길이 가정과 같은 간단한 난류 모델을 사용하여 추가 소산을 제공 할 수 있습니다.

Turbulence transport equations require more CPU resources and should only be used when there are strong, localized sources of turbulence and when that turbulence is likely to be advected into other important regions of the flow.  When there is reason to seriously question the results of a computation, it is always desirable to seek experimental confirmation.

An excellent introduction to fluid turbulence can be found in the book Elementary Mechanics of Fluids by Hunter Rouse, Dover Publications, Inc., New York (1978).

난류 전송 방정식은 더 많은 CPU 리소스를 필요로하며 강력하고 국부 화 된 난기류 소스가 있고 그 난류가 흐름의 다른 중요한 영역으로 전파 될 가능성이있는 경우에만 사용해야합니다. 계산 결과에 매우 의문이 생길 경우는 실험에 의해 확인하는 것이 좋습니다.

유체 난류에 대한 훌륭한 소개는 Hunter Rouse, Dover Publications, Inc., New York (1978)의 책 Elementary Mechanics of Fluids에서 찾을 수 있습니다.

사각형 격자

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Rectangular Grids

Useful Extensions to Rectangular Gridding

Most techniques for doing computational fluid dynamics rely on the subdivision of space into a grid of discrete volume elements in which average values of flow variables can be defined. The simplest kind of grid is one composed of rectangular elements defined by a set of planes perpendicular to each of the coordinate axes (x,y,z). The spacing between parallel planes may be constant or variable. The former is often referred to as a “uniform” rectangular grid, while the latter is a “non-uniform” rectangular grid.

사각형 격자의 유용한 확장

전산 유체 역학 기법의 대부분은 공간을 세분화하여 흐름 변수의 평균 값을 정의 할 수있는 이산화된 체적 요소의 격자 수에 의존하고 있습니다. 가장 간단한 격자는 각 좌표축 (x, y, z)에 수직인 일련의 평면에 의해 정의되는 사각형 요소로 구성되어 있는 것입니다.  평행하는 평면 사이의 간격은 일정한 경우와 가변의 경우가 있습니다.  많은 경우, 전자를 “균일”사각형 격자라고 부르며, 후자를 “불균일”사각형 격자라고합니다.

Why are Rectangular Grids Simple?

Rectangular grids are simple because they are very easy to generate. It is only necessary to define the beginning and ending coordinate of the grid in each coordinate direction, and in the spacing between the planes subdividing the space to be modeled.

사각형 격자가 간단한 이유

사각형 격자가 간단한 것은 매우 쉽게 생성 할 수 있기 때문입니다.  필요한 것은 좌표 방향에 따라 그리고 모델링 대상의 공간을 세분화하고 있는 평면 사이에서 격자의 시작 좌표와 끝 좌표를 정의하는 것 뿐 입니다.

Pros and Cons of Rectangular Grids

As with any gridding system, there are pros and cons to contend with (see, for example, Free Gridding Saves Time). One pro for rectangular grids is that the amount of information to be stored for describing the grid is minimal. A con is that a region to be modeled may not fit into a rectangular region. For example, think of a bird’s eye view of a winding river, which when set in a rectangular region, may only occupy a small portion of the area of the rectangle. In such a case, most of the grid elements lie outside the river and would be a computational burden.

사각형 격자의 장점과 단점

어떤 격자 생성 시스템에서도 마찬가지이지만 해결해야 할 장단점이 있습니다 ( ” Free Gridding Saves Time “참조).  사각형 격자의 장점 중 하나는 격자를 설명하기 위해 저장되는 정보량을 최소화하는 것입니다.  단점은 모델링 대상의 영역이 사각형 영역에 들어 가지 않는 경우가 있는 것입니다.  예를 들어, 구불 구불한 강 조감도에 대해 생각하면, 직사각형 영역으로 설정 한 경우, 직사각형의 아주 작은 부분만을 차지하게되는 경우가 있습니다.  이러한 경우에는 격자의 대부분의 요소가 강 바깥에 존재하고 계산에서 부담으로 작용합니다.

Difference Equations are Simpler

Another pro for a rectangular grid is that difference equations are generally simpler than they are in a non-rectangular grid. For instance, in three dimensions an approximation to the Navier-Stokes equation for the velocity in an element need only involve the six adjacent elements, that is, two neighbors in each of three coordinate directions. In contrast, a non-rectangular grid typically requires a coupling to all the surrounding elements in a 3x3x3=27 array surrounding the central element.

차분 방정식의 단순화

사각형 격자의 또 다른 장점은 일반적으로 사각형이 아닌 격자에 비해 차분 방정식이 간단하다는 것입니다.  예를 들어, 3 차원에서는 요소의 속도에 관한 나비에 – 스토크스 방정식의 근사에 필요한 것은 인접한 6 개의 요소, 즉 3 개의 좌표 각각의 방향에있는 2 개의 이웃 요소만 포함하면됩니다. 이에 대해 사각형이 아닌 격자의 경우, 중심 요소를 둘러싸는 3x3x3 = 27의 배열에 있는 모든 주변 요소에 결합해야합니다.

Numerical Accuracy is Best When Grid Elements are Uniform

As a general rule, numerical accuracy associated with finite difference equations is best when grid elements are uniform. This is because numerical approximations to partial differential equations, by definition, involve the rate of change of spatial and temporal values of physical quantities. Evaluating the change between values of quantities on either side of an element is most accurate when the elements are uniform because higher order terms will then, as a rule, cancel by symmetry. When non-uniform grid elements are used, more complicated numerical approximations are usually needed to preserve accuracy (see the Appendix for an example).

수치적 정확도는 격자 요소가 균일한 경우가 최적의 상태

일반적으로 격자 요소가 균일 한 때 유한 차분 방정식에 관련된 수치적 정확도가 최적의 상태로됩니다.  이것은 편미분 방정식의 수치 근사 정의에 의해 물리량의 공간과 임시값의 변화율이 관계되기 때문입니다.  하나의 요소 양쪽의 양 사이의 값의 변화를 평가하는 요소가 균일 한 때 가장 정확도가 높아집니다.  이것은 높은값 다음 항목은 일반적으로 대칭에 의해 상쇄되기 때문입니다.  균일 격자 요소를 사용하면 정확도를 유지하기 위해서는 일반적으로 더 복잡한 수치 근사가 필요합니다 (부록 참조).

Weighing the Pros and Cons of Rectangular Grids

By weighing the pros and cons it can be seen that simple rectangular grids have many good properties, but the limitations they have for accommodating complex geometric shapes can limit their usefulness. In the remainder of this article, several conceptually simple techniques are described that greatly extend the usefulness of rectangular grids without sacrificing their good properties. For simplicity of presentation only two-dimensional situations will be described, however, the extension to three-dimensions is completely straightforward.

사각형 격자의 장단점 비교 검토

장단점을 비교 검토해보면 간단한 직사각형 격자에 우수한 특성이 많은 것을 알 수 있을 것입니다.  그러나 복잡한 기하학적 형상에 대응하기 위해 부과되는 제한으로 인해 유용성이 제한 될 수 있습니다.  이 책의 나머지 부분에서는 우수한 특성을 희생하지 않고 사각형 격자의 유용성을 크게 확대하기위한 개념적으로 간단한 기법들을 설명합니다.  알기 쉽게하기 위해 2차원의 경우만 설명하고 있지만, 3차원으로의 확장도 매우 간단합니다.

Notation for Rectangular Grids

In a rectangular (2D) grid, the elements are typically labeled by integers i and j in the x and y coordinate directions, respectively. An element (i,j) has principal neighbors (i-1,j), (i+1,j), (i,j-1) and (i,j+1). Physical properties in a cell are stored as values of two-dimensional arrays such as p(i,j) for the pressure of element (i,j). When programming difference equations, the use of repeated indexed arrays requires the compiler to perform the index shifts, e.g., i+1 or j-1, as arithmetic operations in order to evaluate the memory locations of these quantities.

To save computational time it is useful to replace multiple-indexed quantities by single-indexed arrays. Multiple array locations are computed only once at the beginning of a string of computations, for instance, the notation ipj=i+1,j or ijm=i,j-1 are short, simple and easy to read single indices. They are easy to read by remembering that ip means i plus 1 and jm means j minus 1, etc. Thus, a double-indexed quantity P(i+1,j-1) would be replaced by the single-indexed quantity P(ipjm), and so forth. Not only is this notation easy to use and saves computational time, it will be seen below that it has another very useful property.

사각형 격자의 표기법

직사각형 (2D) 격자 요소에는 일반적으로 x와 y 좌표 방향에 대해 각각 정수 i와 j의 라벨을 붙일 수 있습니다.  요소 (i, j)의 주요 인접 요소는 (i-1, j) (i + 1, j), (i, j-1) (i, j + 1)입니다.  셀의 물리적 특성은 2 차원 배열의 값으로 저장됩니다.  예를 들어, 요소 (i, j)의 압력은 p (i, j)입니다.  차분 방정식을 프로그래밍할 때 인덱스 배열을 반복 사용하는 경우는 이러한 양의 메모리 위치를 구하기 위해 산술로 i + 1과 j-1과 같은 인덱스 변화를 컴파일러에서 실행해야 할 수 있습니다.

계산 시간을 단축하기 위해 여러 인덱스 양을 단일 인덱싱 된 배열로 대체하면 편리합니다.  여러 배열 위치는 인스턴스 계산의 처음 한 번만 계산됩니다.  예를 들어, ipj = i + 1, j와 ijm = i, j-1 등의 표기는 짧고 간단하고 읽기 쉬운 단일 인덱스입니다.  이들은 ip가 i 플러스 1을 의미하고 jm이 j 마이너스 1을 의미하는 것 등을 기억해두면 쉽게 읽을 수 있습니다.  이처럼 이중 인덱스 첨부의 양 P (i + 1, j-1)은 단일 인덱스의 양 P (ipjm)로 대체되며 기타의 경우도 마찬가지 입니다.  이 표기법은 사용하기 쉽고, 계산 시간을 단축 할 뿐만 아니라 아래에서 보는 것과 같이 매우 유용한 특성을 가지고 있습니다.

Multiple Grid Blocks

A good way to extend the usefulness of rectangular grids is to employ multiple rectangular grids that are coupled at their boundaries. There are two simple possibilities as illustrated in Fig. 1A and Fig. 1B. The linked blocks are connected by boundary conditions where the blocks are adjacent to one another. The nested blocks are superimposed on one another and use boundary conditions to couple the nested block to the containing block.

여러 격자 블록

사각형 격자의 유용성을 확장하는 좋은 방법은 경계에 결합되는 복수의 사각형 격자를 사용하는 것입니다.  그림 1A 및 그림 1B와 같이 간단한 방법은 두 가지 가능성이 있습니다.  연결 블록은 블록이 서로 인접하는 경계 조건에 의해 결합됩니다.  중첩 블록은 서로 겹쳐져 있는 경계 조건을 사용하여 중첩 측의 블록이 외부의 블록에 결합됩니다.

Figure 1. (A) Linked mesh blocks and (B) Nested mesh blocks.

The simplest case has all the grid lines at block boundaries aligned, but this is not necessary provided an interpolation scheme is used to connect overlapping elements. The advantage of this type of grid enhancement is that numerical solver routines remain the same as what is used for a single grid block. Only boundary conditions coupling the blocks are new, and, any data connected to individual block must be updated when passing between blocks. Both of these requirements can be wrapped around the basic solver algorithms for a single block.

This multi-block capability greatly extends the usefulness of rectangular grids, as the linked-block feature allows for more extended geometric regions to be modeled with fewer grid elements. The nested-block feature is very useful for locally increasing the resolution of a simulation without having to endure the cost of simulating the finer resolution throughout the full region.

가장 간단한 경우에는 블록 경계 격자선이 모두 갖추어져 있지만 겹치는 요소를 보간법을 사용하여 결합하는 경우는  필요 없습니다.  이 유형의 격자 강화의 장점은 수치 해법 루틴이 단일 격자 블록에 사용되는 것과 동일한 것입니다.  블록을 결합하는 경계 조건만 새로하고, 개별 블록에 결합되어있는 데이터는 블록 사이를 왕래 할 때 업데이트해야 합니다.  이러한 요구 사항은 모두 단일 블록의 기본 해법 알고리즘에 추가 할 수 있습니다.

이 멀티 블록 기능은 사각형 격자의 유용성을 크게 확대합니다.  연결 차단 기능을 통해, 보다 광범위한 기하 영역을 적은 격자 요소로 모델링 할 수있게 되기 때문입니다.  중첩 블록 기능은 시뮬레이션의 해상도를 국소적으로 높이는데 매우 유용합니다.  높은 비용을 들여 전 영역에 걸쳐 높은 해상도로 시뮬레이션 할 필요가 없습니다.

Distributed Memory Parallelization

The multi-block feature also offers a natural way of domain decomposition for distributed memory parallelization. Updating of solution data at inter-block boundaries then requires an exchange of that data between compute nodes of the cluster using an interconnect.

분산 메모리 병렬 처리

멀티 블록 기능을 사용하면 분산 메모리 병렬 처리를위한 영역 분할을 자연적인 방법으로 할 수 있습니다.  그 후, 블록 간의 경계에서 계산 데이터를 업데이트하려면 클러스터의 계산 노드 간의 상호 연결을 사용하여 데이터를 교환해야합니다.

Unstructured Grid Blocks

A further generalization can be made that allows considerably more efficiency in the gridding of complex geometric regions. If the simple, rectangular ordering of elements is replaced by lists that define which elements are adjacent to one another, then all unneeded elements can be eliminated from the grid. This frees up memory and forces solver routines to simply run through a list of active grid elements, further saving computational time. A simple illustration of such an “unstructured” grid is illustrated in Fig. 2.

비 구조 격자 블록

좀 더 일반화함으로써 복잡한 기하 영역의 격자 생성의 효율을 크게 향상시킬 수 있습니다.  요소의 단순한 직사각형 순서는 요소가 서로 인접하여 있는지를 정의하는 목록에 옮겨 놓으면 불필요한 요소는 모든 격자에서 제거 할 수 있습니다.  이에 따라 메모리가 해제되고 솔버 루틴은 유효한 격자 요소의 목록만 처리하면 되기 때문에 계산 시간은 더욱 단축됩니다.  이런 ‘비 구조”격자를 간단한 그림으로 그림 2에 나타냅니다.

Figure 2. Unstructured rectangular grid example.

Changing from a structured, rectangular grid, where neighboring elements have memory locations that are easy to compute, to an unstructured set of elements may seem at first sight to be a daunting task. However, using the single index notation described earlier where, for example, location (i, j+1) is replace by ijp, makes this transition quite easy. All that is necessary is to redefine the single-indexed values using the list of neighboring elements and then all solver algorithms and routines can be used without further changes.

구조화 사각형 격자는 인접하는 요소의 메모리 위치를 쉽게 계산할 수 있지만, 그때 비 구조 요소에 변경하는 것은보기 어려운 작업이라고 생각 될지도 모릅니다.  그러나, 앞에서 설명한 단일 인덱스 표기법을 사용하면, 예를 들어 (i, j + 1)라는 곳이 ijp로 대체하여 매우 쉽게 전환 할 수 있습니다.  필요한 것은 인접한 요소 목록을 사용하여 단일 인덱스 값을 재 정의하는 것뿐입니다.  그러면 솔버의 알고리즘과 루틴 모두 더 이상의 변경없이 사용할 수 있습니다.

As with any unstructured grid, additional storage is required to be able to quickly find neighbor cell indices and other mesh-related quantities. A two-way mapping of the structured and unstructured grids onto each other provides an efficient way to navigate the unstructured grid without using significant memory resources.

어떤 비 구조 격자에서도 마찬가지입니다 만, 인접 셀의 인덱스 및 기타 메쉬 관련 양을 신속하게 찾을 수 있도록 하려면 추가 스토리지가 필요합니다.  구조 격자와 비 구조 격자 사이의 양방향 매핑을 사용하면 대량의 메모리 리소스를 사용하지 않고, 비 구조 격자에 효율적으로 탐색 할 수 있습니다.

Other variations of this idea are easy to imagine. For instance, if more than one set of physical properties are required in a given element, because it contains some mixture of materials (e.g., both fluid and solid), then an additional element could be added to the element list that is defined at the same location. The coincident elements would be identified in a special list intended for processing mixed elements.

이 아이디어의 다른 변형은 쉽게 상상할 수 있습니다.  예를 들어, 특정 요소에 물질이 혼합되어 포함되어 있기 때문에 (유체와 고체 등) 여러 물리적 특성이 필요한 경우에는 같은 장소에서 정의 된 다른 요소를 요소 목록에 추가 할 수 있습니다.  일치하는 요소는 혼합 요소의 처리를 목적으로하는 특수 목록에서 식별됩니다.

Summary of the Simplest Gridding System

A short discussion has been given of what might be viewed as an evolutionary development of the simplest gridding system, a rectangular grid. Several stages of relatively easy adaptations are outlined as a means of addressing the demands for more sophisticated simulations while maintaining the many advantages of the original simple grid system.

가장 간단한 격자 시스템 정리

가장 간단한 격자 생성 시스템의 진화적 발전 형으로 간주 될 것이다 직사각형 격자 대해 여기까지 간단하게 설명했습니다.  원래 간단한 격자 시스템의 많은 장점을 유지하면서 보다 정교한시뮬레이션을 요구를 해결하기 위한 수단으로 여러 단계의 비교적 쉽게 적응하는 방법의 개요가 기술되어 있습니다.

Appendix: Illustration of Accuracy Considerations for Non-Uniform Grids

The following account has been adapted from the paper “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” by C.W. Hirt and B.D. Nichols, J. Comp. Phys. 39, 201 (1981).

다음 설명은 C.W. Hirt 및 B.D.의 “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,”  논문에서 채택되었습니다. Nichols, J. Comp. Phys. 39, 201 (1981).

A simple illustration of the difficulties that can occur in non-uniform grids is given by numerically approximating the term for advection of momentum of an incompressible fluid, which in divergence form is ∇•uuThe constant density of the fluid has been divided out from this expression. 

불균일 그리드에서 발생할 수있는 어려움에 대한 간단한 설명은 비압축성 유체의 운동량 이류 항을 수치 적으로 근사화하여 제공되며, 발산 형태는 ∇•uu입니다. 유체의 일정한 밀도는이 표현에서 분리되었습니다.

In one dimension this term is

Here u is the fluid velocity in the x-direction. The divergence form is usually desirable because it is a simple way to insure a conservation of momentum. This may be seen by considering the control volume used for the discrete value of u located at the boundary between two grid elements as shown in Fig. A1 by the dashed lines. Placing the velocity at the boundary between two elements is referred to as the staggered grid arrangement often used for incompressible flow modeling.

여기서 u는 x 방향의 유체 속도입니다. 발산 형태는 운동량 보존을 보장하는 간단한 방법이기 때문에 일반적으로 바람직합니다. 이는 그림 A1에서 점선으로 표시된 두 그리드 요소 사이의 경계에 있는 u의 이산 값에 사용되는 제어 볼륨을 고려하여 볼 수 있습니다. 두 요소 사이의 경계에 속도를 배치하는 것을 비압축성 흐름 모델링에 자주 사용되는 엇갈린 격자 배열이라고합니다.

Figure A1. Control volume (dashed rectangle) used for constructing a difference approximation for the u velocity at the boundary of an element.
Figure A1. Control volume (dashed rectangle) used for constructing a difference approximation for the u velocity at the boundary of an element.

In the divergence form, Gauss’ theorem may be used to convert the integrated values of the advective flux over the control volume to boundary fluxes at its sides. Then, the flux leaving one control volume will automatically be gained by the adjacent one and conservation during advection is guaranteed.
발산 형태에서 가우스 정리를 사용하여 제어 체적에 대한 능동 플럭스의 통합 값을 측면의 경계 플럭스로 변환 할 수 있습니다. 그런 다음 하나의 제어 볼륨을 떠나는 플럭스는 인접한 볼륨에 의해 자동으로 얻어지고 이류 중 보존이 보장됩니다.

However, conservation in a non-uniform grid, does not automatically imply accuracy. To see this, suppose an upstream or donor difference approximation is used to approximate the advective flux (assuming all u values are positive for simplicity), which is known to provide a conditionally stable algorithm,

The notation ui+1/2 stands for the velocity assigned to the right edge of the ith element.

그러나 균일하지 않은 그리드의 보존이 자동으로 정확도를 의미하지는 않습니다. 이를 확인하기 위해 업스트림 또는 기증자 차이 근사를 사용하여 조건부 안정 알고리즘을 제공하는 것으로 알려진 전방 플럭스 (모든 u 값이 단순성을 위해 양수라고 가정)를 근사한다고 가정합니다.

표기법 ui + 1 / 2는 i 번째 요소의 오른쪽 가장자리에 할당 된 속도를 나타냅니다.

To check that this approximation is “consistent” with the original partial differential equation we expand all terms in the difference equation in a Taylor series about the location x=xi+1/2  where the u equation is evaluated (see Heuristic Analysis),

Clearly, the right side does not agree with the left side to order δx when the element sizes are not equal. In other words, the difference approximation is not “consistent” since it does not agree with the original differential expression at zeroth order. It may be noted that, if instead of the upstream or donor approximation, a centered value for the fluxed velocity had been used, then the approximation would be first-order accurate in a non-uniform grid, instead of second-order as it is in a uniform grid. In other words, what seems like a straightforward approximation is one order less accurate in a non-uniform grid than in one that is uniform.

이 근사가 원래 편미분 방정식과 “일치”하는지 확인하기 위해 u 방정식이 평가되는 위치 x = xi + 1 / 2에 대한 Taylor 시리즈의 차이 방정식의 모든 항을 확장합니다 (휴리스틱 분석 참조).

분명히 오른쪽은 요소 크기가 같지 않을 때 δx를 주문하는 왼쪽과 일치하지 않습니다. 즉, 차이 근사는 0 차에서 원래의 미분 표현과 일치하지 않기 때문에 “일관되지”않습니다. 상류 또는 기증자 근사 대신 유속에 대한 중심 값이 사용 된 경우 근사치는 2 차가 아닌 불균일 그리드에서 1 차 정확할 것입니다. 균일 한 그리드에서. 다시 말해서, 간단한 근사처럼 보이는 것은 균일하지 않은 그리드보다 균일하지 않은 그리드에서 1 차 덜 정확합니다.

It does not necessarily follow that non-uniform grids are always less accurate because they may allow for finer zoning in localized regions where flow variables are expected to vary most rapidly. Nevertheless, non-uniform grids must be used with care. It is best, for example, to allow for gradual variations in element sizes to minimize the reduction in approximation order. It is also worthwhile to look for other approximations that do not lose their accuracy in a non-uniform grid. In this regard, it should be observed that the reason the conservation form of the advection term is less accurate is because the control volume is not centered about the position where the u variable is located. To avoid losing one order of approximation, the numerical approximation should have been corrected to account for the difference in locations of the variable being updated and the centroid of its control volume.

유동 변수가 가장 빠르게 변할 것으로 예상되는 지역화 된 지역에서 더 미세한 구역화를 허용 할 수 있기 때문에 불균일 그리드가 항상 덜 정확하다는 것을 반드시 따르는 것은 아닙니다. 그럼에도 불구하고 균일하지 않은 그리드는 주의해서 사용해야합니다.

예를 들어, 근사 순서의 감소를 최소화하기 위해 요소 크기의 점진적인 변화를 허용하는 것이 가장 좋습니다. 균일하지 않은 그리드에서 정확도를 잃지 않는 다른 근사치를 찾는 것도 가치가 있습니다.

이와 관련하여, 이류 항의 보존 형태가 덜 정확한 이유는 제어 볼륨이 u 변수가 위치한 위치를 중심으로하지 않기 때문입니다. 하나의 근사 차수를 잃지 않으려면 업데이트되는 변수의 위치와 제어 볼륨의 중심의 차이를 고려하여 수치 근사를 수정해야합니다.

Free Surface Fluid Flow

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Free Surface Fluid Flow

Fluid flow problems often involve free surfaces in complex geometry and in many cases are highly transient. Examples in hydraulics are flows over spillways, in rivers, around bridge pilings, flood overflows, flows in sluices, locks, and a host of other structures. A capability to computationally model these types of flows is attractive if such computations can be done accurately and with reasonable computational resources. To be useful, simulations should be much faster and less expensive than using physical models.

자유 표면 유체 흐름

유체 흐름 문제는 복잡한 기하학적 구조의 자유 표면과 관련되는 경우가 많으며 대부분 매우 일시적입니다. 수력학의 예로는 배수로, 강, 교각 주변, 홍수 범람, 수문, 잠금 장치 및 다수의 기타 구조물의 흐름이 있습니다. 이러한 유형의 흐름을 계산적으로 모델링 하는 능력은 이러한 계산이 정확하고 합리적인 계산 자원으로 수행될 수 있다면 매력적입니다. 유용하게 사용하려면 시뮬레이션은 물리적 모델을 사용하는 것보다 훨씬 빠르고 저렴해야 합니다.

Many computer programs can solve the partial differential equations describing the dynamics of fluids. Not many programs are capable of including free surfaces in their simulations. The difficulty is a classical mathematical one often referred to as the free-boundary problem. A free boundary poses the difficulty that on the one hand the solution region changes when its surface moves, and on the other hand, the motion of the surface is in turn determined by the solution. Changes in the solution region include not only changes in size and shape, but in some cases, may also include the coalescence and break up of regions (i.e., the loss and gain of free surfaces).

많은 컴퓨터 프로그램은 유체의 역학을 설명하는 편미분 방정식을 풀 수 있습니다. 시뮬레이션에 자유 표면을 포함 할 수있는 프로그램은 많지 않습니다.  그 이유는 Free Surface 경계 문제로 잘 알려진 수학적인 문제입니다.  자유 경계 문제는 다루기 어려운 표면이 이동함에 따라 계산 영역이 변화하는 한편, 그 표면 이동 자체가 계산에 의해 결정된다는 점에 있습니다.  계산 영역의 변화는 그 크기와 모양의 변화뿐만 아니라, 경우에 따라서는 영역의 결합과 분리(즉, 자유 표면의 발생과 소멸)을 포함합니다.

In this note a computational modeling technique for fluid flows with arbitrary free surfaces is discussed. The technique is based on the Volume-of-Fluid (VOF) technique. This technique has many unique properties that make it especially applicable to flows having free surfaces. The goal of this discussion is to show why the VOF approach offers a natural way to capture free surfaces and their evolution with great efficiency.

이 책에서는 모든 자유 표면을 고려한 유체흐름 현상을 수치 해석용으로 모델링하는 방법에 대해 설명합니다.  이 기술은 VOF (Volume-of-Fluid) 법에 근거한 것으로, 특히 자유 표면 흐름에 적합한 다양한 기능을 제공합니다.  이 책에서는 VOF 법이 자유 표면과 그 발생과 소멸을 해석하는데 가장 자연스럽고 매우 효율적인 방법을 제시합니다.

A good recommendation for the VOF method is to demonstrate its capabilities on a simple hydraulic flow problem, one that is far from trivial. The example selected is of flow over a step. This flow has conceptual simplicity and good experimental data available for validation (see N. Rajaratnam and M.R. Chamani, “Energy Loss at Drops,” J. Hydraulic Res. Vol. 33, p.373, 1995).

VOF 법의 특징을 잘 보여주기 위해 간단하지만 매우 중요한 유동 현상에 관한 문제를 다룹니다.  여기에서는 계단 낙차형상의 낙하류를 예로 들어 있습니다.  개념적으로 간단한 흐름인 동시에 결과의 타당성을 확인하기위한 좋은 실험 데이터도 제공되어 있습니다 (N. Rajaratnam and MR Chamani “Energy Loss at Drops”J. Hydraulic Res. Vol. 33 p.373,1995 참조).

Prototype Hydraulic Flow with Free Surfaces

Figure 1a shows the flow problem after it has reached a steady-state condition. The overflow (sheet of liquid or nappe) leaving the top of the step has both an upper and lower free surface. At the bottom of the overflow a pool has formed between the overflow and the face of the step, while downstream, liquid is flowing to the right with a flat, steady surface. Strictly speaking, the flow conditions in the pool region are not steady because turbulent mixing is generated in the pool by the impinging fluid. There is, however, an average configuration and that is what is reported in the experiments.

자유 표면을포함한 유동 현상의 프로토타입

그림 1a는 정상 상태에 도달 한 후 흐름의 문제를 보여줍니다.  계단 낙차형상 상부로부터의 월류(액체 또는 스냅 시트)에는 상하 모두의 자유 표면이 있습니다.  월류의 아래쪽에는 월류와 계단 가공면 사이에 웅덩이가 형성되어 있으며, 하류에서는 액체는 평평한 정상 표면에서 오른쪽으로 흐르고 있습니다.  엄밀히 말하면, 웅덩이 영역의 흐름 상태는 정상입니다.  이것은 충돌하는 액체에 의해 풀에 난류 혼합이 발생하고 있기 때문입니다.  그러나 평균적인 구성이 존재하고 그것은 실험에서도 보고됩니다.

For all practical purposes the flow is two-dimensional, that is, it does not have any significant variation in the direction normal to the illustration in Fig. 1a. In actuality, to have an air space above the pool there must be some opening to the atmosphere otherwise it would close up.

실용 목적은 흐름은 항상 2 차원입니다.  즉, 그림 1a에서 수직 방향에서는 큰 변화는 없습니다.  현실에서는 웅덩이 위쪽으로 공간을 만들기 위해서는 대기에 여유공간이 필요하고, 그게 없으면 닫힐 것입니다.

The flow speed at the top of the step is critical, that is, it has a speed equal to or greater than the speed of surface waves, so that no disturbances from downstream can penetrate through this region to affect flow upstream (to the left of the step), which is why the flow is exceptionally smooth and steady in that region.

계단 낙차형상 상단의 유속은 중요합니다.  즉, 이것은 표면파와 같거나 그 이상의 속도이기 때문에 하류에서의 교란이 영역을 관통하고 상류 흐름 (계단 낙차형상의 왼쪽)에 영향을 줄 수 없습니다.  따라서 이 영역에서의 흐름은 예외적으로 원활하고 정상입니다.

There are many geometric features in this problem that can be compared with a numerical simulation; such as flow heights before and after the step, the angle of the overflow stream when it strikes the bottom and the depth of the pool formed under the overflow. Additionally, an important comparison for practical applications is the amount of energy (i.e., kinetic plus potential) lost by the flow in passing over the step.

이 문제는 수치 시뮬레이션과 비교할 수 있는 기하 형상 기능이 많이 있습니다.  예를 들어, 계단 낙차형상의 전후 흐름의 높이, 월류가 바닥에 충돌 할 때의 각도, 월류 아래에 형성되는 웅덩이의 깊이 등입니다.  또한 실용화를 위한 중요한 비교 항목으로는, 계단 낙차형상을 통해 떨어지는 낙하 류에 의해 손실되는 에너지의 양 (운동 에너지와 위치 에너지의 합)가 있습니다.

Simulation of Prototype Problem

Figure 1a is from a simulation. For this example all of the geometric and material properties used in the experiments were used in the simulation. The height of the step used in the laboratory test is 62cm and the fluid is ordinary water (density=1.0 gm/cc and dynamic viscosity=0.01dynes/cm). The depth of water entering the computational region was 15.5cm and was given a near critical velocity of 123.0cm/s. Of course, gravity was in the vertical direction with magnitude g=-980cm/s^2.

프로토 타입 문제의 시뮬레이션

그림 1a는 시뮬레이션의 결과입니다.  이 예에서는 실험에 사용된 모든 기하 형상 및 물질의 특성이 시뮬레이션에 사용되었습니다.  실험실 테스트에서 사용한 계단 낙차형상의 높이가 62cm에서 액체는 보통의 물 (밀도 = 1.0gm / cc 어떻게 점성 = 0.01dynes / cm)입니다.  계산 영역에 들어가는 물의 깊이는 15.5cm에서 속도가 임계에 가까운 123.0cm/s 였습니다.  물론, 중력은 수직 방향으로 크기는 g = -980cm / s^2입니다.

 

Figure 1a. Simulation of flow over a step.
Figure 1b. Grid used in simulation.

Because some turbulence was expected to develop in the pool to the left of the overflow, a turbulence model (the Renormalization Group or RNG model) was used in the simulation. Subsequent simulations without a turbulence model produced very similar results, which is not too surprising since most of the important elements of the flow are smooth (i.e., non-turbulent) inflow, overflow and outflow streams.

월류 왼쪽에 있는 웅덩이에 난류가 발생 할 것으로 예상 되었기 때문에, 시뮬레이션에서는 난류 모델 (the Renormalization Group, 즉 RNG 모델)을 사용했습니다.  그 후, 난류 모델을 사용하지 않고 한 시뮬레이션에서도 비슷한 결과를 얻을 수 있었지만, 이것은 그다지 놀라운 일이 아닙니다.  흐름의 중요한 요소의 대부분은 매끄러운 (즉 난류가 아닌) 유입, 유출, 월류 때문입니다.

The simulation region shown in Fig. 1b is 170cm wide and 100cm high and has been subdivided into a grid of equal sized rectangular cells consisting of 80 cells in the horizontal direction and 60 cells in the vertical direction, for a total of 4800 cells. This grid is used as the basis for finite-difference approximations of the governing differential equations of fluid dynamics (the Navier-Stokes equations). The number and size of the grid cells was chosen with the goal of capturing the smallest expected features of the flow. The number can be easily increased or decreased if the results seem to warrant some adjustment. In fact, it is often a good idea to repeat a simulation with a change of resolution to make sure that the solution is not too sensitive to such changes.

그림 1b 시뮬레이션 영역은 폭 170cm, 높이 100cm에 가로 80 개, 세로 60 개, 총 4800 개의 셀로 구성되는 같은 크기의 사각형 셀의 격자로 세분화되어 있습니다.  이 격자는 유체 역학의 지배 미분 방정식 (나비에 – 스토크스 방정식)의 유한 차분 근사의 기초로 사용됩니다.  격자 셀의 수와 크기는 흐름 속에서 예측되는 최소의 특성을 파악하는 목적으로 선택되었습니다.  결과를보고 어떤 조정이 필요하다고 생각되는 경우는 숫자를 쉽게 늘리거나 줄일 수 있습니다.  사실, 해상도를 바꾸어 시뮬레이션을 반복하여 계산이 그러한 변화에 영향을 많이 들어 있지 않은지 확인하는 것이 좋습니다.

The left boundary was a specified velocity boundary (also with a specified fluid height). The right boundary was an outflow boundary where all flow quantities have a zero gradient normal to the boundary to encourage a uniform outflow. The top and bottom boundaries are rigid walls, while in the third direction the boundaries were treated as planes of symmetry (i.e., walls with zero viscous drag). The surface of the step was also treated as a free-slip boundary.

왼쪽의 경계는 지정된 속도 경계입니다 (유체의 높이도 지정).  오른쪽의 경계는 유출 경계에서 모든 유량이 경계에 수직 제로 기울기이며, 균일 한 유출이 촉진됩니다.  상하 경계는 단단한 벽으로 세 번째 방향의 경계는 대칭면 (점성 저항 제로의 벽)으로 처리되었습니다.  계단 낙차형상의 표면도 자유-미끄럼(free slip) 경계로 처리되었습니다.

Initial conditions could have been set to roughly approximate the expected flow arrangement, but since the flow configuration is one of the things that one would like to compute, especially for situations where one doesn’t know what the distribution of fluid is likely to be, a simpler approach is needed. Because a transient flow simulator was used for this example a simple initial condition could be defined that consisted of just a block of fluid on top of the step, Fig. 1a with the same horizontal velocity and height assigned to the left boundary. The simulation then followed the development of the steady flow, which occurs after about 8.0s. The simulation was run out to a time of 10.0s to assure that steady conditions had been reached. Figure 2 shows two intermediate times; 2.b at 0.2s and 2.c at 0.5s plus the final time in 2.d at 10.0s.

초기 조건은 예측되는 흐름의 배열을 대략적으로 근사하도록 설정할 수 있었지만, 흐름의 구성은 계산하고 싶은 것 중 하나이기 때문에 유체가 어떻게 분포되는지를 모르는 경우에는 간단한 방법이 필요합니다.  이 예제에서는 비정상 흐름 시뮬레이터를 사용했기 때문에 그림 1a의 계단 낙차형상에 유체의 블록만 있고 왼쪽 경계의 같은 수평 속도와 높이가 할당된 간단한 초기 조건을 정의할 수 있습니다.  시뮬레이션은 이후 정상 흐름으로 발전하고 있지만, 이것은 약 8.0 초 후에 발생합니다.  시뮬레이션은 정상 상태에 도달 한 것을 보장하기 위해, 10.0 초의 시간까지 실행되었습니다.  그림 2는 중간 시간을 두 보여줍니다.  도 2b는 0.2 초, 그림 2c는 0.5 초 시점에서 그림 2d는 마지막 10.0 초 시점을 보여줍니다.

 

Figures 2a-2d. Simulation times of 0.0, 0.2, 0.5 and 10.0s.

It should be noted that what starts as a single, connected free surface changes to two independent free surfaces (upper and lower nappe surfaces) after the fluid strikes the bottom. No difficulties are experienced with this separation of the flow into portions flowing to the left and right of the impact point on the bottom boundary. This will be discussed at further length in the next section.

처음에는 단일 결합하고 있는 자유 표면이었던 것이 액체가 바닥에 충돌한 후 2 개의 독립적인 자유 표면 (상하 스냅 표면)으로 변화하는 것에 주목하십시오.  아래 경계의 충격점의 좌우로 흐름이 분리되도 문제는 없습니다.  이에 대해서는 다음 섹션에서 자세히 설명합니다.

Comparisons between experiment and simulation are given in the following table and are in excellent agreement.

실험과 시뮬레이션의 비교는 다음 표와 같으며 매우 잘 일치하고 있습니다.

Comparison Table Experimental Results Simulation Results
Outflow Height/Step Height 0.094 0.094
Pool Height/Step Height 0.41 0.41
Angle of Nappe at Bottom 57° 59°
Energy Loss/Initial Energy 0.29 0.296

In view of these results it might be expected that a considerable amount of computational time would be required to achieve such accuracy. In fact, the total cpu time on a desktop Pentium 4, 3.20GHz computer was only 88s. Such a short computational time requires explanation and that is the purpose of the following sections.

이러한 결과를 고려하면이 같은 정밀도를 달성하려면 상당한 계산시간이 필요할 것으로 생각될지도 모릅니다.  그러나 실제로는 Pentium 4, 3.20GHz의 데스크톱 컴퓨터의 총 CPU 시간은 단 88 초였습니다. 계산시간이 너무 짧은 것은 설명이 필요하며, 이것은 다음 섹션의 목적입니다.

 

Figures 2a-2d. Simulation times of 0.0, 0.2, 0.5 and 10.0s.

Why the VOF Technique Works Well / VOF 법이 적합한 이유

There are a few general concepts about computational methods and the VOF technique in particular that can be used to gain an understanding of how and why VOF works so efficiently.

VOF 법의 구조와 그것이 매우 효율적인 방법인 이유를 이해하기 위해 다양한 계산법 중에서도 특히 VOF 법에 대한 몇 가지 기본 개념을 나타냅니다.

Basic Theory

All numerical methods must use some simplification to reduce a fluid flow problem to a finite set of numerical values that can then be manipulated using elementary arithmetical operations. A typical procedure for approximating a continuous fluid by a discrete set of numerical values is to subdivide the space occupied by the fluid into a grid consisting of a set of small, often rectangular “bricks.” Within each element an averaging process is applied to obtain representative element values for the fluid’s pressure, density, velocity and temperature.

모든 수치해석 방법에서 흐름의 문제를 단순하게 산술 계산하도록 유한의 수치 세트로 단순화해야합니다.  연속 유체를 이산화된 수치 세트에 근사하기 위해서 일반적으로 사용되는 것이 유체가 차지하는 공간을 격자로 분할하는 방법입니다.  이 격자는 일반적으로 다수의 작은 직사각형의 블록(요소)로 구성됩니다.  이러한 각 요소에 대해 평균화 처리를 실시함으로써 그 요소의 유체의 압력, 밀도, 속도 및 온도의 대표 값을 얻을 수 있습니다.

Simple equations can be devised to approximate how each element’s values interact with neighboring elements over time. For instance, the density of an element can only change when there is a net flow of mass exchanged between an element and its neighbors (i.e., conservation of mass). The material velocity that carries mass between elements is computed from the conservation of momentum principal, usually expressed in the form of the Navier-Stokes equations, which uses the pressures and viscous stresses acting between neighboring elements to approximate the changing fluid velocities in the elements.

간단한 수식을 사용해, 어느 시간에 걸친 각 요소 값과 인접한 요소의 상호 작용을 근사할 수 있습니다.  예를 들어, 요소의 밀도는 그 요소와 인접 요소 사이에서 (질량 보존에 의한) 질량 유량이 교환된 경우에만 변경됩니다.  요소 사이에서 질량이 교환되는 물질의 속도는 운동량 보존 법칙에 의해 계산되며 일반적으로 나비에-스토크스 방정식으로 표현됩니다.  나비에-스토크스 방정식은 인접한 요소 사이에 작용하는 압력과 점성 응력을 이용하여 요소에서 변화하는 유체 속도를 근사합니다.

This idea of an element interacting with its neighbors is essentially what is meant by a partial differential equation; that is, evaluating the effects of small changes caused by the variation in quantities nearby. Partial differential equations are typically derived in engineering text books as the limit of approximations made with small control volumes whose sizes are then reduced to infinitesimal values. In a numerical simulation the same thing is done except that the control volume sizes cannot be taken to the limit because that would require too many elements to keep track of. In practice, the goal is to use enough elements to resolve the phenomena of interest, and no more, so that computing times are kept to a minimum.

이러한 요소와 인접 요소 사이의 상호 작용에 따른 아이디어는 편미분 방정식 근방의 양의 변화에 의해 생기는 작은 변화의 효과를 평가하는 것과 본질적으로 동일합니다.  공학계의 교과서에서 파생된 작은 컨트롤 볼륨을 사용하여 그 크기를 무한대까지 작게 한 근사치의 극한으로 편미분 방정식이 유도됩니다.  수치 시뮬레이션에서도 같은 방식을 취하고 있지만, 요소 수가 너무 많으면 추적이 어렵게  되어 컨트롤 볼륨의 크기를 최대한 작게 만들 수 없습니다.  실제 시뮬레이션 현상을 해결하는데 충분하고 계산 시간을 최소한으로 억제 할 수 있는 요소수를 설정하는 것이 목표입니다.

Arithmetical operations associated with an element generally involve only simple addition, subtraction, multiplication and division. For instance, the change of mass in an element involves the addition and subtraction of mass entering and leaving through the faces of the element over a fixed interval of time. A simulation requires that these operations be done for thousands or even millions of elements as well as repeated for many small time intervals. Computers are ideal for performing these types of repetitive operations very rapidly.

요소에 사용되는 연산은 기본적으로 더하기, 빼기, 곱하기 및 나누기만 포함된 간단한 것입니다.  예를 들어, 요소의 질량의 변화는 일정한 시간 간격에 걸쳐 요소의 측면에서 유입 및 유출된 질량의 가산 및 감산에서 구할 수 있습니다. 그러나 시뮬레이션에서는 이러한 연산을 수천, 때로는 수백만 요소에 대해 매우 짧은 시간 간격에 대해 반복 계산해야합니다.  따라서 이러한 반복 계산의 고속 처리는 컴퓨터가 적합합니다.

Simulating fluid motion with free surfaces introduces the complexity of having to deal with solution regions whose shapes are changing. A convenient way to deal with this is to use the Volume of Fluid (VOF) technique described next.

자유 표면을 수반하는 유체 운동의 시뮬레이션에서는 형상이 변화하는 계산 영역을 다루어야합니다.  이 복잡성에 대응할 수있는 분석 방법이 아래에서 설명하는 VOF 법입니다.

The VOF Concept

The VOF technique is based on the idea of recording in each grid cell the fractional portion of the cell volume that is occupied by liquid. Typically the fractional volume is represented by the quantity F. Because it is a fractional volume, F must have a value between 0.0 and 1.0.

VOF 법은 각 격자 셀의 체적 중 액체가 차지하는 비율, 즉 체적 점유율을 기록한다는 생각에 근거합니다.  일반적으로 부피 점유율은  F로 표시됩니다.  F는 부피 점유율이기 때문에 값이 취할 수있는 범위는 0.0 ~ 1.0입니다.

In interior regions of liquid the value of F would be 1.0, while outside of the liquid, in regions of gas (air for example), the value of F is zero. The location of a free surface is where F changes from 0.0 to 1.0. Thus, any element having an F value lying between 0.0 and 1.0 must contain a surface.

액체 내부의 영역에서는 F 값은 1.0이 액체의 외부, 즉 (공기 등) 기체 영역에서 F 값은 0입니다.  F 값이 0.0과 1.0 사이에서 변화하는 장소가 자유 표면이 존재하는 위치입니다.  즉 0.0보다 크고 1.0보다 작은 F 값을 가지는 요소는 반드시 표면을 가지고 있습니다.

It is important to emphasize that the VOF technique does not directly define a free surface, but rather defines the location of bulk fluid. It is for this reason that fluid regions can coalesce or break up without causing computational difficulties. Free surfaces are simply a consequence of where the fluid volume fraction passes from 1.0 to 0.0. This is a very desirable feature that makes the VOF technique applicable to just about any kind of free surface problem.

여기서 유의해야 할 것은 VOF 법에서 자유 표면을 직접적으로 정의하는 것이 아니라 벌크 유체의 위치를 정의한다는 점입니다.  이렇게하면 계산상의 어려움을 초래하지 않고 유체 영역을 결합 또는 분할 할 수 있습니다.  자유 표면은 단순히 유체의 체적 점유율이 1.0과 0.0 사이에서 변화하는 장소로 정의됩니다.  이것은 자유 표면을 수반하는 거의 모든 문제에 적용 할 수 VOF 법의 뛰어난 특징이기도합니다.

Another important feature of the VOF technique is that it records the location of fluid by assigning a single numerical value (F) to each grid element. This is completely consistent with the recording of all other fluid properties in an element such as pressure and velocity components by their average values.

또한 격자의 각 요소에 단일 수치 (F)를 할당하여 유체의 위치를 기록 할 수 있는 점도 VOF 법의 중요한 특징입니다.  이것은 평균값을 기준으로 압력과 속도 등 다른 모든 유체 물성의 기록과 완전히 일치합니다.

Some Details of the VOF Technique

 

Figure 3. Surface in 1D column of elements.

For accuracy purposes it is desirable to have a way to locate a free surface within an element. Considering the F values in neighboring elements can easily do this. For example, imagine a one-dimensional column of elements in which a portion of the column is filled with liquid, Fig. 3. The liquid surface is in an element in the central region of the column, which will be referred to as the surface element. Because we assume the values of F must be either 0.0 or 1.0, except in the surface element, we can use this to locate the exact position of the surface. First a test is made to see if the surface is a top or bottom surface. If the element above the surface element is empty of liquid, the surface must be a top surface. It the element above is full of liquid then, of course, the surface is a bottom surface. For a top surface we compute its exact location as lying above the bottom edge of the surface element by a distance equal to F times the vertical size of the element. A bottom surface is similarly located a distance equal to F times the vertical size of the element below the top edge of the surface element. Locating the surface within an element in this way follows from the definition of F as a fractional volume of liquid in the element.

정확도를 위해 요소 내에 자유 표면을 배치하는 방법을 갖는 것이 바람직합니다. 인접 요소의 F 값을 고려하면 이를 쉽게 할 수 있습니다.  예를 들어, 열의 일부에 액체가 충전되어있는 1 차원 요소를 상상하십시오 (그림 3).  액체의 표면은 열 중앙 영역의 요소에 있습니다.  이것을 표면 요소라고합니다.  여기에서는 표면 요소를 제외하고 F 값은 0.0 또는 1.0이어야한다고 가정하고 있기 때문에 이를 사용하여 표면의 정확한 위치를 파악할 수 있습니다.  우선, 표면이 표면 또는 바닥을 확인하는 테스트를 실시합니다.  표면요소에 대해 액체가 없을 경우에는 표면으로 간주합니다.  위의 요소에 액체가 들어있는 경우는 물론, 그 표면은 바닥입니다.  윗면에 관해서는 정확한 위치는 표면 요소의 아래쪽에서 위쪽으로 요소의 세로 크기를 F 배 한 거리에있는로 계산합니다.  바닥도 마찬가지로 표면 요소의 상단에서 아래로, 요소의 세로 크기를 F 배 한 거리에 있습니다.  이 방법에 의한 요소의 표면 위치의 특정은 요소 내의 액체의 부피 점유율로 F를 정의한 후에 합니다.

Calculating surface locations in one-dimensional columns is simple, accurate and requires very little arithmetic. In two and three dimensional situations, however, computing a location is a little more complicated because there is a continuous range of surface orientations possible within a surface cell. Nevertheless, dealing with this is not difficult. A two-dimensional example, Fig. 4, will illustrate a simple way to not only compute the location of the surface, but also to get a good idea of its slope and curvature.

1 차원 열의 표면 위치 계산은 간단하고 정확하며 계산이 거의 필요없습니다. 그러나 2 차원 및 3 차원의 경우 하나의 표면 셀에 연속적인 표면 방향이 존재할 가능성이 있기 때문에 위치 계산은 조금 복잡해집니다.  그럼에도 불구하고 이를 취급하는 것은 어렵지 않습니다.  그림 4의 이차원의 예는 표면의 위치를 계산할 뿐만 아니라 경사와 곡률도 이해할 수 있는 쉬운 방법을 보여줍니다.

 

Figure 4. Surface in 2D grid of elements.

As in the one-dimensional case, it is first necessary to find the approximate orientation of the surface by testing the neighboring elements. In Fig. 4 the outward normal would be closest to the upward direction because the difference in neighboring values in that direction is larger than in any other direction. Next, local heights of the surface are computed in element columns that lie in the approximate normal direction. For the two-dimensional case in Fig. 4 these heights are indicated by arrows. Finally, the height in the column containing the surface element gives the location of the surface in that element, while the other two heights can be used to compute the local surface slope and surface curvature.

1 차원의 경우처럼 먼저 인근 요소를 테스트하여 표면의 대략적인 방향을 찾아야합니다.  그림 4는 바깥 쪽의 법선이 상승 방향에 가장 가깝게 됩니다.  이것은 그 방향 밖의 값의 차이가 다른 방향보다 크기 때문입니다.  그럼 거의 수직으로 있는 요소 열에서 표면의 국소적인 높이가 계산됩니다.  그림 4의 2 차원의 경우에는 이러한 높이가 화살표로 표시되어 있습니다.  마지막으로, 표면 요소를 포함하는 컬럼의 높이에 따라 그 요소의 표면의 위치를 확인합니다.  다른 2 개의 높이를 사용하면 국소적인 표면 경사와 표면 곡률을 계산할 수 있습니다.

In three-dimensions the same procedure is used although column heights must be evaluated for nine columns around the surface element. Although a little more computation is needed, it consists primarily of simple summations in the columns and then sums and differences of column heights for evaluating the slope and curvature. Based on this discussion, the reader should now see how the fractional fluid volume can be used to quickly and easily evaluate all the information needed to define free surfaces.

3 차원에서도 동일한 절차를 사용하지만, 표면 요소의 주위에 있는 9개의 열에 대해 열 높이를 요구해야합니다.  필요한 계산은 조금 더 걸리지만, 주된 내용은 열의 간단한 덧셈과 경사와 곡률을 추구하는 열의 높이의 합과 차이가 있습니다.  이 토론을 토대로, 이제 자유 표면을 정의하는 데 필요한 모든 정보를 빠르고 쉽게 평가하기 위해 부분 유체 체적을 사용하는 방법을 알아야합니다.

There are two remaining issues to deal with. One issue is that a simulation like that in Figs. 1 and 2 is only solving for the fluid dynamics in regions where there is fluid. This is another reason for the computational efficiency of the VOF method. The region occupied by fluid in the flow over a step problem is much less than half of the open region in the computational grid. If it were necessary to also solve for the flow of gas surrounding the liquid, then considerably more computational time would be required. In order to perform solutions only in the liquid, however, it is necessary to specify boundary conditions at free surfaces. These conditions are the vanishing of the tangential stress and application of a normal pressure at the surface that equals the pressure of the gas.

다루어야 할 문제가 앞으로 2 개 남아 있습니다.  하나는 그림 1 및 2와 같은 시뮬레이션은 유체가 존재하는 영역에는 유체 역학만으로 해결합니다.  이것은 VOF 법의 계산 효율이 높은 또 하나의 이유입니다.  계단 형상의 낙하류의 문제로 유체가 차지하는 영역은 계산 격자의 오픈 공간의 절반 이하입니다.  액체를 둘러싼 기체의 흐름을 계산할 필요가 있다면 필요한 계산 시간이 크게 늘어납니다.  그러나 액체만으로 계산을 할 경우 자유 표면 경계 조건을 지정해야합니다.  이 조건은 접선 응력의 소실과 기체의 압력에 동일한 표준 압력을 표면에 추가하는 것입니다.

A second issue is that movement and deformation of a free surface must be computed by solving for the fraction of fluid variable, F, as it moves with the fluid. Because the variable F is discontinuous (i.e., primarily 0.0 or 1.0) some care must be taken to maintain this discontinuity as it moves through a computational grid. In the VOF method, special advection algorithms are used for this purpose.

두 번째 문제는 자유 표면이 유체와 함께 움직일 때의 움직임과 변형을 유체 점유율 변수 F를 구함으로써 계산해야 한다는 것입니다.  변수 F는 불연속 (주로 0.0 또는 1.0)이기 때문에 계산 격자를 이동할 때 이 불연속성이 유지되도록주의해야합니다.  VOF 법은이 목적으로 특수 이류(advection) 알고리즘이 사용되고 있습니다.

Illustration of Free-Surface Tracking by VOF Technique

Figure 6a is an illustration of how well this works; the fluid volume fraction is colored uniformly in each grid element to represent its value in that element. The free surface is sharply defined nearly everywhere. Only in the lowest and narrowest part of the nappe is there any noticeable loss of a sharp fluid fraction distribution, Fig. 5b. This was expected because in this region the nappe is less than three elements in thickness and this allows some of the smaller F values associated with partially filled surface elements to mix in with the central element, which should have a value of 1.0. For computational purposes this doesn’t really matter because the simulation method treats elements interior to the liquid as though they are pure liquid elements.

그림 6a는 이것의 적합 여부를 보여줍니다.  유체의 체적 점유율은 격자 요소마다 균일하게 분류되고 그 요소의 값을 나타냅니다.  자유 표면은 거의 모든 곳에서 선명하게 정의되어 있습니다.  스냅의 가장 낮은 가장 좁은 부분에만 선명한 유체 분포의 손실을 확인할 수 있습니다 (그림 5b).  이것은 예상대로입니다.  이 영역에서는 스냅의 두께는 3 가지 요소보다 작고, 따라서 부분 충전된 표면 요소에 연결된 작은 F 값이 어떤 중심 요소 (값 1.0)에 혼입하기 때문입니다.  계산 목적으로 이 것은 별로 문제가 되지 않습니다.  이 시뮬레이션 방법은 액체 내부의 요소는 순수한 액체 성분과 같은 방식으로 처리되기 때문입니다.

It should also be pointed out that in the region shown in Fig. 5b turbulence and air entrainment are observed in actual experiments. Thus, the appearance of fluid fraction values a little less than unity is somewhat realistic. This is not entirely accidental because the intersection of jet of liquid with a pool, which is responsible for turbulence and air entrainment, is also responsible for the “entrainment” of fluid fraction values into the interior of the liquid.

그림 5b에 나타내는 영역에서는 실제 실험에서 난류 및 공기 혼입이 관찰된 것도 지적해 두지 않으면 안됩니다.  따라서 유체 점유율의 값을 1보다 조금 작게 보이는 것이 다소 현실적입니다.  이것은 전혀 의외라는 것은 없습니다.  난류와 공기 유입을 담당하는 풀의 액체 제트의 교점은 난류와 공기 유입의 원인이 되지만, 유체 점유율 값(fluid fraction values )은 액체 내부에 “유입” 원인이 되기 때문에 실수가 아닙니다.

 

Figure 5a (left): Fluid fraction values in elements, showing sharpness of surface definition. Figure 5b (right): Close up of fluid fraction values where the overflow hits bottom.

Summary

At first it may seem somewhat magical that a computer can simply perform repeated arithmetic operations on arrays of numbers and produce a realistic simulation of a complex, time-dependent, fluid dynamics problem. It was the purpose of this discussion to explain an approach that does this with relatively elementary procedures.

Using a simple, but non-trivial, hydraulic flow example it has been demonstrated that computational simulations can produce detailed results in excellent agreement with physical measurements. It has been further demonstrated that the simulation, which was based on the Volume of Fluid (VOF) technique, uses simple approximation methods that are both accurate and efficient.

Clearly, real world examples involving complex hydraulic structures such as those used in hydroelectric power stations, must consume more than the few seconds of computational time used in our example to obtain useful results. Nevertheless, those results can be generated in reasonable times (both man and computer) and contain a richness of detail rarely possible in physical experiments. For examples visit our water and environmental application pages. In addition, the ability to easily test the influence of just about any kind of change in geometry, flow condition or fluid property is another powerful reason to employ simulations. Current software and hardware for hydraulic flow simulations offer a significant cost advantage over traditional physical modeling.

처음에는 컴퓨터가 단순히 반복적인 산술 연산을 수행하고, 복잡하고 시간에 의존적인 유체 역학 문제에 대해, 현실적인 시뮬레이션을 할 수 있다는 것이 다소 마술처럼 보일 수 있습니다. 이 논의의 목적은 비교적 기본적인 절차로 이를 수행하는 접근법을 설명하는 것입니다.

간단하지만 사소한 유압 흐름 예제를 사용하여 계산된 시뮬레이션이 물리적인 측정 결과와 매우 일치하는 세부 결과를 생성 할 수 있음이 입증되었습니다. VOF (Volume of Fluid) 기술을 기반으로 한 시뮬레이션은 정확하고, 매우 효율적인 것이 추가로 입증되었습니다.

분명하게, 수력 발전소에서 사용되는 것과 같은 복잡한 유압 구조와 관련된 실제 예는 유용한 결과를 얻기 위해서는 이 예에서 사용되는 몇 초 이상의 많은 계산 시간을 소비해야합니다. 그럼에도 불구하고 이러한 결과는 합리적인 시간 (사람과 컴퓨터 모두)에서 수행 될 수 있으며, 실제 실험에서는 거의 불가능한 세부 사항들을 포함합니다. 또한, 지오메트리, 유동 조건 또는 유체 특성의 거의 모든 종류의 변화의 영향을 쉽게 테스트 할 수있는 능력은 시뮬레이션을 사용하는 또 다른 강력한 이유입니다. 기술의 발전에 따라 hydraulic flow 시뮬레이션을 위한 현재 소프트웨어 및 하드웨어는 기존의 물리적 모델링에 비해 상당한 비용 이점을 제공합니다.

Postscript

The first detailed description of the VOF method was in 1981 by C.W. Hirt and B.D. Nichols, J. Comp. Phys., 39, p.201. All simulations appearing in this article were performed with the commercial software package FLOW-3D developed by Flow Science, Inc. This program uses an enhanced variant of the VOF concept called TruVOF.

Slide Coating

Slide Coating

모든 코팅 공정은 코팅 물질이 정상 상태에 도달하기 전에 큰 변형을 겪게 되는 초기 전개 시기(startup period)를 가집니다. 초기 전개 시기의 좋은 특성들은 유체의 낭비를 감소시