Fig. 1. (a) Dimensions of the casting with runners (unit: mm), (b) a melt flow simulation using Flow-3D software together with Reilly's model[44], predicted that a large amount of bifilms (denoted by the black particles) would be contained in the final casting. (c) A solidification simulation using Pro-cast software showed that no shrinkage defect was contained in the final casting.

AZ91 합금 주물 내 연행 결함에 대한 캐리어 가스의 영향

Effect of carrier gases on the entrainment defects within AZ91 alloy castings

Tian Liab J.M.T.Daviesa Xiangzhen Zhuc
aUniversity of Birmingham, Birmingham B15 2TT, United Kingdom
bGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United Kingdom
cBrunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Ln, London, Uxbridge UB8 3PH, United Kingdom

Abstract

An entrainment defect (also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final castings. Previous publications, carried out with Al-alloy castings, reported that this trapped gas could be subsequently consumed by the reaction with the surrounding melt, thus reducing the void volume and negative effect of entrainment defects. Compared with Al-alloys, the entrapped gas within Mg-alloy might be more efficiently consumed due to the relatively high reactivity of magnesium. However, research into the entrainment defects within Mg alloys has been significantly limited. In the present work, AZ91 alloy castings were produced under different carrier gas atmospheres (i.e., SF6/CO2, SF6/air). The evolution processes of the entrainment defects contained in AZ91 alloy were suggested according to the microstructure inspections and thermodynamic calculations. The defects formed in the different atmospheres have a similar sandwich-like structure, but their oxide films contained different combinations of compounds. The use of carrier gases, which were associated with different entrained-gas consumption rates, affected the reproducibility of AZ91 castings.

Keywords

Magnesium alloyCastingOxide film, Bifilm, Entrainment defect, Reproducibility

연행 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)은 경합금 용융물에 잠길 때 갇힌 가스를 포함하는 공극으로 작용하여 최종 주물의 품질과 재현성을 저하시킵니다. Al-합금 주조로 수행된 이전 간행물에서는 이 갇힌 가스가 주변 용융물과의 반응에 의해 후속적으로 소모되어 공극 부피와 연행 결함의 부정적인 영향을 줄일 수 있다고 보고했습니다. Al-합금에 비해 마그네슘의 상대적으로 높은 반응성으로 인해 Mg-합금 내에 포집된 가스가 더 효율적으로 소모될 수 있습니다. 그러나 Mg 합금 내 연행 결함에 대한 연구는 상당히 제한적이었습니다. 현재 작업에서 AZ91 합금 주물은 다양한 캐리어 가스 분위기(즉, SF 6 /CO2 , SF 6 / 공기). AZ91 합금에 포함된 엔트레인먼트 결함의 진화 과정은 미세조직 검사 및 열역학적 계산에 따라 제안되었습니다. 서로 다른 분위기에서 형성된 결함은 유사한 샌드위치 구조를 갖지만 산화막에는 서로 다른 화합물 조합이 포함되어 있습니다. 다른 동반 가스 소비율과 관련된 운반 가스의 사용은 AZ91 주물의 재현성에 영향을 미쳤습니다.

키워드

마그네슘 합금주조Oxide film, Bifilm, Entrainment 불량, 재현성

1 . 소개

지구상에서 가장 가벼운 구조용 금속인 마그네슘은 지난 수십 년 동안 가장 매력적인 경금속 중 하나가 되었습니다. 결과적으로 마그네슘 산업은 지난 20년 동안 급속한 발전을 경험했으며 [1 , 2] , 이는 전 세계적으로 Mg 합금에 대한 수요가 크게 증가했음을 나타냅니다. 오늘날 Mg 합금의 사용은 자동차, 항공 우주, 전자 등의 분야에서 볼 수 있습니다. [3 , 4] . Mg 금속의 전 세계 소비는 특히 자동차 산업에서 앞으로 더욱 증가할 것으로 예측되었습니다. 기존 자동차와 전기 자동차 모두의 에너지 효율성 요구 사항이 설계를 경량화하도록 더욱 밀어붙이기 때문입니다 [3 , 56] .

Mg 합금에 대한 수요의 지속적인 성장은 Mg 합금 주조의 품질 및 기계적 특성 개선에 대한 광범위한 관심을 불러일으켰습니다. Mg 합금 주조 공정 동안 용융물의 표면 난류는 소량의 주변 대기를 포함하는 이중 표면 필름의 포획으로 이어질 수 있으므로 동반 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)을 형성합니다. ) [7] , [8] , [9] , [10] . 무작위 크기, 수량, 방향 및 연행 결함의 배치는 주조 특성의 변화와 관련된 중요한 요인으로 널리 받아들여지고 있습니다 [7] . 또한 Peng et al. [11]AZ91 합금 용융물에 동반된 산화물 필름이 Al 8 Mn 5 입자에 대한 필터 역할을 하여 침전될 때 가두는 것을 발견했습니다 . Mackie et al. [12]는 또한 동반된 산화막이 금속간 입자를 트롤(trawl)하는 작용을 하여 입자가 클러스터링되어 매우 큰 결함을 형성할 수 있다고 제안했습니다. 금속간 화합물의 클러스터링은 비말동반 결함을 주조 특성에 더 해롭게 만들었습니다.

연행 결함에 관한 이전 연구의 대부분은 Al-합금에 대해 수행되었으며 [7 , [13] , [14] , [15] , [16] , [17] , [18] 몇 가지 잠재적인 방법이 제안되었습니다. 알루미늄 합금 주물의 품질에 대한 부정적인 영향을 줄이기 위해. Nyahumwa et al., [16] 은 연행 결함 내의 공극 체적이 열간 등방압 압축(HIP) 공정에 의해 감소될 수 있음을 보여줍니다. Campbell [7] 은 결함 내부의 동반된 가스가 주변 용융물과의 반응으로 인해 소모될 수 있다고 제안했으며, 이는 Raiszedeh와 Griffiths [19]에 의해 추가로 확인되었습니다 ..혼입 가스 소비가 Al-합금 주물의 기계적 특성에 미치는 영향은 [8 , 9]에 의해 조사되었으며 , 이는 혼입 가스의 소비가 주조 재현성의 개선을 촉진함을 시사합니다.

Al-합금 내 결함에 대한 조사와 비교하여 Mg-합금 내 연행 결함에 대한 연구는 상당히 제한적입니다. 연행 결함의 존재는 Mg 합금 주물 [20 , 21] 에서 입증 되었지만 그 거동, 진화 및 연행 가스 소비는 여전히 명확하지 않습니다.

Mg 합금 주조 공정에서 용융물은 일반적으로 마그네슘 점화를 피하기 위해 커버 가스로 보호됩니다. 따라서 모래 또는 매몰 몰드의 공동은 용융물을 붓기 전에 커버 가스로 세척해야 합니다 [22] . 따라서, Mg 합금 주물 내의 연행 가스는 공기만이 아니라 주조 공정에 사용되는 커버 가스를 포함해야 하며, 이는 구조 및 해당 연행 결함의 전개를 복잡하게 만들 수 있습니다.

SF 6 은 Mg 합금 주조 공정에 널리 사용되는 대표적인 커버 가스입니다 [23] , [24] , [25] . 이 커버 가스는 유럽의 마그네슘 합금 주조 공장에서 사용하도록 제한되었지만 상업 보고서에 따르면 이 커버는 전 세계 마그네슘 합금 산업, 특히 다음과 같은 글로벌 마그네슘 합금 생산을 지배한 국가에서 여전히 인기가 있습니다. 중국, 브라질, 인도 등 [26] . 또한, 최근 학술지 조사에서도 이 커버가스가 최근 마그네슘 합금 연구에서 널리 사용된 것으로 나타났다 [27] . SF 6 커버 가스 의 보호 메커니즘 (즉, 액체 Mg 합금과 SF 6 사이의 반응Cover gas)에 대한 연구는 여러 선행연구자들에 의해 이루어졌으나 표면 산화막의 형성과정이 아직 명확하게 밝혀지지 않았으며, 일부 발표된 결과들도 상충되고 있다. 1970년대 초 Fruehling [28] 은 SF 6 아래에 형성된 표면 피막이 주로 미량의 불화물과 함께 MgO 임을 발견 하고 SF 6 이 Mg 합금 표면 피막에 흡수 된다고 제안했습니다 . Couling [29] 은 흡수된 SF 6 이 Mg 합금 용융물과 반응하여 MgF 2 를 형성함을 추가로 확인했습니다 . 지난 20년 동안 아래에 자세히 설명된 것처럼 Mg 합금 표면 필름의 다양한 구조가 보고되었습니다.(1)

단층 필름 . Cashion [30 , 31] 은 X선 광전자 분광법(XPS)과 오제 분광법(AES)을 사용하여 표면 필름을 MgO 및 MgF 2 로 식별했습니다 . 그는 또한 필름의 구성이 두께와 전체 실험 유지 시간에 걸쳐 일정하다는 것을 발견했습니다. Cashion이 관찰한 필름은 10분에서 100분의 유지 시간으로 생성된 단층 구조를 가졌다.(2)

이중층 필름 . Aarstad et. al [32] 은 2003년에 이중층 표면 산화막을 보고했습니다. 그들은 예비 MgO 막에 부착된 잘 분포된 여러 MgF 2 입자를 관찰 하고 전체 표면적의 25-50%를 덮을 때까지 성장했습니다. 외부 MgO 필름을 통한 F의 내부 확산은 진화 과정의 원동력이었습니다. 이 이중층 구조는 Xiong의 그룹 [25 , 33] 과 Shih et al. 도 지지했습니다 . [34] .(삼)

트리플 레이어 필름 . 3층 필름과 그 진화 과정은 Pettersen [35]에 의해 2002년에 보고되었습니다 . Pettersen은 초기 표면 필름이 MgO 상이었고 F의 내부 확산에 의해 점차적으로 안정적인 MgF 2 상 으로 진화한다는 것을 발견했습니다 . 두꺼운 상부 및 하부 MgF 2 층.(4)

산화물 필름은 개별 입자로 구성 됩니다. Wang et al [36] 은 Mg-alloy 표면 필름을 SF 6 커버 가스 하에서 용융물에 교반 한 다음 응고 후 동반된 표면 필름을 검사했습니다. 그들은 동반된 표면 필름이 다른 연구자들이 보고한 보호 표면 필름처럼 계속되지 않고 개별 입자로 구성된다는 것을 발견했습니다. 젊은 산화막은 MgO 나노 크기의 산화물 입자로 구성되어 있는 반면, 오래된 산화막은 한쪽 면에 불화물과 질화물이 포함된 거친 입자(평균 크기 약 1μm)로 구성되어 있습니다.

Mg 합금 용융 표면의 산화막 또는 동반 가스는 모두 액체 Mg 합금과 커버 가스 사이의 반응으로 인해 형성되므로 Mg 합금 표면막에 대한 위에서 언급한 연구는 진화에 대한 귀중한 통찰력을 제공합니다. 연행 결함. 따라서 SF 6 커버 가스 의 보호 메커니즘 (즉, Mg-합금 표면 필름의 형성)은 해당 동반 결함의 잠재적인 복잡한 진화 과정을 나타냅니다.

그러나 Mg 합금 용융물에 표면 필름을 형성하는 것은 용융물에 잠긴 동반된 가스의 소비와 다른 상황에 있다는 점에 유의해야 합니다. 예를 들어, 앞서 언급한 연구에서 표면 성막 동안 충분한 양의 커버 가스가 담지되어 커버 가스의 고갈을 억제했습니다. 대조적으로, Mg 합금 용융물 내의 동반된 가스의 양은 유한하며, 동반된 가스는 완전히 고갈될 수 있습니다. Mirak [37] 은 3.5% SF 6 /기포를 특별히 설계된 영구 금형에서 응고되는 순수한 Mg 합금 용융물에 도입했습니다. 기포가 완전히 소모되었으며, 해당 산화막은 MgO와 MgF 2 의 혼합물임을 알 수 있었다.. 그러나 Aarstad [32] 및 Xiong [25 , 33]에 의해 관찰된 MgF 2 스팟 과 같은 핵 생성 사이트 는 관찰되지 않았습니다. Mirak은 또한 조성 분석을 기반으로 산화막에서 MgO 이전에 MgF 2 가 형성 되었다고 추측했는데 , 이는 이전 문헌에서 보고된 표면 필름 형성 과정(즉, MgF 2 이전에 형성된 MgO)과 반대 입니다. Mirak의 연구는 동반된 가스의 산화막 형성이 표면막의 산화막 형성과 상당히 다를 수 있음을 나타내었지만 산화막의 구조와 진화에 대해서는 밝히지 않았습니다.

또한 커버 가스에 캐리어 가스를 사용하는 것도 커버 가스와 액체 Mg 합금 사이의 반응에 영향을 미쳤습니다. SF 6 /air 는 용융 마그네슘의 점화를 피하기 위해 SF 6 /CO 2 운반 가스 [38] 보다 더 높은 함량의 SF 6을 필요로 하여 다른 가스 소비율을 나타냅니다. Liang et.al [39] 은 CO 2 가 캐리어 가스로 사용될 때 표면 필름에 탄소가 형성된다고 제안했는데 , 이는 SF 6 /air 에서 형성된 필름과 다릅니다 . Mg 연소 [40]에 대한 조사 에서 Mg 2 C 3 검출이 보고되었습니다.CO 2 연소 후 Mg 합금 샘플 에서 이는 Liang의 결과를 뒷받침할 뿐만 아니라 이중 산화막 결함에서 Mg 탄화물의 잠재적 형성을 나타냅니다.

여기에 보고된 작업은 다양한 커버 가스(즉, SF 6 /air 및 SF 6 /CO 2 )로 보호되는 AZ91 Mg 합금 주물에서 형성된 연행 결함의 거동과 진화에 대한 조사 입니다. 이러한 캐리어 가스는 액체 Mg 합금에 대해 다른 보호성을 가지며, 따라서 상응하는 동반 가스의 다른 소비율 및 발생 프로세스와 관련될 수 있습니다. AZ91 주물의 재현성에 대한 동반 가스 소비의 영향도 연구되었습니다.

2 . 실험

2.1 . 용융 및 주조

3kg의 AZ91 합금을 700 ± 5 °C의 연강 도가니에서 녹였습니다. AZ91 합금의 조성은 표 1 에 나타내었다 . 가열하기 전에 잉곳 표면의 모든 산화물 스케일을 기계가공으로 제거했습니다. 사용 된 커버 가스는 0.5 %이었다 SF 6 / 공기 또는 0.5 % SF 6 / CO 2 (부피. %) 다른 주물 6L / 분의 유량. 용융물은 15분 동안 0.3L/min의 유속으로 아르곤으로 가스를 제거한 다음 [41 , 42] , 모래 주형에 부었습니다. 붓기 전에 샌드 몰드 캐비티를 20분 동안 커버 가스로 플러싱했습니다 [22] . 잔류 용융물(약 1kg)이 도가니에서 응고되었습니다.

표 1 . 본 연구에 사용된 AZ91 합금의 조성(wt%).

아연미네소타마그네슘
9.40.610.150.020.0050.0017잔여

그림 1 (a)는 러너가 있는 주물의 치수를 보여줍니다. 탑 필링 시스템은 최종 주물에서 연행 결함을 생성하기 위해 의도적으로 사용되었습니다. Green과 Campbell [7 , 43] 은 탑 필링 시스템이 바텀 필링 시스템에 비해 주조 과정에서 더 많은 연행 현상(즉, 이중 필름)을 유발한다고 제안했습니다. 이 금형의 용융 흐름 시뮬레이션(Flow-3D 소프트웨어)은 연행 현상에 관한 Reilly의 모델 [44] 을 사용하여 최종 주조에 많은 양의 이중막이 포함될 것이라고 예측했습니다( 그림 1 에서 검은색 입자로 표시됨) . NS).

그림 1

수축 결함은 또한 주물의 기계적 특성과 재현성에 영향을 미칩니다. 이 연구는 주조 품질에 대한 이중 필름의 영향에 초점을 맞추었기 때문에 수축 결함이 발생하지 않도록 금형을 의도적으로 설계했습니다. ProCAST 소프트웨어를 사용한 응고 시뮬레이션은 그림 1c 와 같이 최종 주조에 수축 결함이 포함되지 않음을 보여주었습니다 . 캐스팅 건전함도 테스트바 가공 전 실시간 X-ray를 통해 확인했다.

모래 주형은 1wt를 함유한 수지 결합된 규사로 만들어졌습니다. % PEPSET 5230 수지 및 1wt. % PEPSET 5112 촉매. 모래는 또한 억제제로 작용하기 위해 2중량%의 Na 2 SiF 6 을 함유했습니다 .. 주입 온도는 700 ± 5 °C였습니다. 응고 후 러너바의 단면을 Sci-Lab Analytical Ltd로 보내 H 함량 분석(LECO 분석)을 하였고, 모든 H 함량 측정은 주조 공정 후 5일째에 실시하였다. 각각의 주물은 인장 강도 시험을 위해 클립 신장계가 있는 Zwick 1484 인장 시험기를 사용하여 40개의 시험 막대로 가공되었습니다. 파손된 시험봉의 파단면을 주사전자현미경(SEM, Philips JEOL7000)을 이용하여 가속전압 5~15kV로 조사하였다. 파손된 시험 막대, 도가니에서 응고된 잔류 Mg 합금 및 주조 러너를 동일한 SEM을 사용하여 단면화하고 연마하고 검사했습니다. CFEI Quanta 3D FEG FIB-SEM을 사용하여 FIB(집속 이온 빔 밀링 기술)에 의해 테스트 막대 파괴 표면에서 발견된 산화막의 단면을 노출했습니다. 분석에 필요한 산화막은 백금층으로 코팅하였다. 그런 다음 30kV로 가속된 갈륨 이온 빔이 산화막의 단면을 노출시키기 위해 백금 코팅 영역을 둘러싼 재료 기판을 밀링했습니다. 산화막 단면의 EDS 분석은 30kV의 가속 전압에서 FIB 장비를 사용하여 수행되었습니다.

2.2 . 산화 세포

전술 한 바와 같이, 몇몇 최근 연구자들은 마그네슘 합금의 용탕 표면에 형성된 보호막 조사 [38 , 39 , [46] , [47] , [48] , [49] , [50] , [51] , [52 ] . 이 실험 동안 사용된 커버 가스의 양이 충분하여 커버 가스에서 불화물의 고갈을 억제했습니다. 이 섹션에서 설명하는 실험은 엔트레인먼트 결함의 산화막의 진화를 연구하기 위해 커버 가스의 공급을 제한하는 밀봉된 산화 셀을 사용했습니다. 산화 셀에 포함된 커버 가스는 큰 크기의 “동반된 기포”로 간주되었습니다.

도 2에 도시된 바와 같이 , 산화셀의 본체는 내부 길이가 400mm, 내경이 32mm인 폐쇄형 연강관이었다. 수냉식 동관을 전지의 상부에 감았습니다. 튜브가 가열될 때 냉각 시스템은 상부와 하부 사이에 온도 차이를 만들어 내부 가스가 튜브 내에서 대류하도록 했습니다. 온도는 도가니 상단에 위치한 K형 열전대로 모니터링했습니다. Nieet al. [53] 은 Mg 합금 용융물의 표면 피막을 조사할 때 SF 6 커버 가스가 유지로의 강철 벽과 반응할 것이라고 제안했습니다 . 이 반응을 피하기 위해 강철 산화 전지의 내부 표면(그림 2 참조)) 및 열전대의 상반부는 질화붕소로 코팅되었습니다(Mg 합금은 질화붕소와 ​​접촉하지 않았습니다).

그림 2

실험 중에 고체 AZ91 합금 블록을 산화 셀 바닥에 위치한 마그네시아 도가니에 넣었습니다. 전지는 1L/min의 가스 유속으로 전기 저항로에서 100℃로 가열되었다. 원래의 갇힌 대기(즉, 공기)를 대체하기 위해 셀을 이 온도에서 20분 동안 유지했습니다. 그런 다음, 산화 셀을 700°C로 더 가열하여 AZ91 샘플을 녹였습니다. 그런 다음 가스 입구 및 출구 밸브가 닫혀 제한된 커버 가스 공급 하에서 산화를 위한 밀폐된 환경이 생성되었습니다. 그런 다음 산화 전지를 5분 간격으로 5분에서 30분 동안 700 ± 10°C에서 유지했습니다. 각 유지 시간이 끝날 때 세포를 물로 켄칭했습니다. 실온으로 냉각한 후 산화된 샘플을 절단하고 연마한 다음 SEM으로 검사했습니다.

3 . 결과

3.1 . SF 6 /air 에서 형성된 엔트레인먼트 결함의 구조 및 구성

0.5 % SF의 커버 가스 하에서 AZ91 주물에 형성된 유입 결함의 구조 및 조성 6 / 공기는 SEM 및 EDS에 의해 관찰되었다. 결과는 그림 3에 스케치된 엔트레인먼트 결함의 두 가지 유형이 있음을 나타냅니다 . (1) 산화막이 전통적인 단층 구조를 갖는 유형 A 결함 및 (2) 산화막이 2개 층을 갖는 유형 B 결함. 이러한 결함의 세부 사항은 다음에 소개되었습니다. 여기에서 비말동반 결함은 생물막 또는 이중 산화막으로도 알려져 있기 때문에 B형 결함의 산화막은 본 연구에서 “다층 산화막” 또는 “다층 구조”로 언급되었습니다. “이중 산화막 결함의 이중층 산화막”과 같은 혼란스러운 설명을 피하기 위해.

그림 3

그림 4 (ab)는 약 0.4μm 두께의 조밀한 단일층 산화막을 갖는 Type A 결함을 보여줍니다. 이 필름에서 산소, 불소, 마그네슘 및 알루미늄이 검출되었습니다( 그림 4c). 산화막은 마그네슘과 알루미늄의 산화물과 불화물의 혼합물로 추측됩니다. 불소의 검출은 동반된 커버 가스가 이 결함의 형성에 포함되어 있음을 보여주었습니다. 즉, Fig. 4 (a)에 나타난 기공 은 수축결함이나 수소기공도가 아니라 연행결함이었다. 알루미늄의 검출은 Xiong과 Wang의 이전 연구 [47 , 48] 와 다르며 , SF 6으로 보호된 AZ91 용융물의 표면 필름에 알루미늄이 포함되어 있지 않음을 보여주었습니다.커버 가스. 유황은 원소 맵에서 명확하게 인식할 수 없었지만 해당 ESD 스펙트럼에서 S-피크가 있었습니다.

그림 4

도 5 (ab)는 다층 산화막을 갖는 Type B 엔트레인먼트 결함을 나타낸다. 산화막의 조밀한 외부 층은 불소와 산소가 풍부하지만( 그림 5c) 상대적으로 다공성인 내부 층은 산소만 풍부하고(즉, 불소가 부족) 부분적으로 함께 성장하여 샌드위치 모양을 형성합니다. 구조. 따라서 외층은 불화물과 산화물의 혼합물이며 내층은 주로 산화물로 추정된다. 황은 EDX 스펙트럼에서만 인식될 수 있었고 요소 맵에서 명확하게 식별할 수 없었습니다. 이는 커버 가스의 작은 S 함량(즉, SF 6 의 0.5% 부피 함량 때문일 수 있음)커버 가스). 이 산화막에서는 이 산화막의 외층에 알루미늄이 포함되어 있지만 내층에서는 명확하게 검출할 수 없었다. 또한 Al의 분포가 고르지 않은 것으로 보입니다. 결함의 우측에는 필름에 알루미늄이 존재하지만 그 농도는 매트릭스보다 높은 것으로 식별할 수 없음을 알 수 있다. 그러나 결함의 왼쪽에는 알루미늄 농도가 훨씬 높은 작은 영역이 있습니다. 이러한 알루미늄의 불균일한 분포는 다른 결함(아래 참조)에서도 관찰되었으며, 이는 필름 내부 또는 아래에 일부 산화물 입자가 형성된 결과입니다.

그림 5

무화과 도 4 및 5 는 SF 6 /air 의 커버 가스 하에 주조된 AZ91 합금 샘플에서 형성된 연행 결함의 횡단면 관찰을 나타낸다 . 2차원 단면에서 관찰된 수치만으로 연행 결함을 특성화하는 것만으로는 충분하지 않습니다. 더 많은 이해를 돕기 위해 테스트 바의 파단면을 관찰하여 엔트레인먼트 결함(즉, 산화막)의 표면을 더 연구했습니다.

Fig. 6 (a)는 SF 6 /air 에서 생산된 AZ91 합금 인장시험봉의 파단면을 보여준다 . 파단면의 양쪽에서 대칭적인 어두운 영역을 볼 수 있습니다. 그림 6 (b)는 어두운 영역과 밝은 영역 사이의 경계를 보여줍니다. 밝은 영역은 들쭉날쭉하고 부서진 특징으로 구성되어 있는 반면, 어두운 영역의 표면은 비교적 매끄럽고 평평했습니다. 또한 EDS 결과( Fig. 6 c-d 및 Table 2) 불소, 산소, 황 및 질소는 어두운 영역에서만 검출되었으며, 이는 어두운 영역이 용융물에 동반된 표면 보호 필름임을 나타냅니다. 따라서 어두운 영역은 대칭적인 특성을 고려할 때 연행 결함이라고 제안할 수 있습니다. Al-합금 주조물의 파단면에서 유사한 결함이 이전에 보고되었습니다 [7] . 질화물은 테스트 바 파단면의 산화막에서만 발견되었지만 그림 1과 그림 4에 표시된 단면 샘플에서는 검출되지 않았습니다 4 및 5 . 근본적인 이유는 이러한 샘플에 포함된 질화물이 샘플 연마 과정에서 가수분해되었을 수 있기 때문입니다 [54] .

그림 6

표 2 . EDS 결과(wt.%)는 그림 6에 표시된 영역에 해당합니다 (커버 가스: SF 6 /공기).

영형마그네슘NS아연NSNS
그림 6 (b)의 어두운 영역3.481.3279.130.4713.630.570.080.73
그림 6 (b)의 밝은 영역3.5884.4811.250.68

도 1 및 도 2에 도시된 결함의 단면 관찰과 함께 도 4 및 도 5 를 참조하면, 인장 시험봉에 포함된 연행 결함의 구조를 도 6 (e) 와 같이 스케치하였다 . 결함에는 산화막으로 둘러싸인 동반된 가스가 포함되어 있어 테스트 바 내부에 보이드 섹션이 생성되었습니다. 파괴 과정에서 결함에 인장력이 가해지면 균열이 가장 약한 경로를 따라 전파되기 때문에 보이드 섹션에서 균열이 시작되어 연행 결함을 따라 전파됩니다 [55] . 따라서 최종적으로 시험봉이 파단되었을 때 Fig. 6 (a) 와 같이 시험봉의 양 파단면에 연행결함의 산화피막이 나타났다 .

3.2 . SF 6 /CO 2 에 형성된 연행 결함의 구조 및 조성

SF 6 /air 에서 형성된 엔트레인먼트 결함과 유사하게, 0.5% SF 6 /CO 2 의 커버 가스 아래에서 형성된 결함 도 두 가지 유형의 산화막(즉, 단층 및 다층 유형)을 가졌다. 도 7 (a)는 다층 산화막을 포함하는 엔트레인먼트 결함의 예를 도시한다. 결함에 대한 확대 관찰( 그림 7b )은 산화막의 내부 층이 함께 성장하여 SF 6 /air 의 분위기에서 형성된 결함과 유사한 샌드위치 같은 구조를 나타냄을 보여줍니다 ( 그림 7b). 5 나 ). EDS 스펙트럼( 그림 7c) 이 샌드위치형 구조의 접합부(내층)는 주로 산화마그네슘을 함유하고 있음을 보여주었다. 이 EDS 스펙트럼에서는 불소, 황, 알루미늄의 피크가 확인되었으나 그 양은 상대적으로 적었다. 대조적으로, 산화막의 외부 층은 조밀하고 불화물과 산화물의 혼합물로 구성되어 있습니다( 그림 7d-e).

그림 7

Fig. 8 (a)는 0.5%SF 6 /CO 2 분위기에서 제작된 AZ91 합금 인장시험봉의 파단면의 연행결함을 보여준다 . 상응하는 EDS 결과(표 3)는 산화막이 불화물과 산화물을 함유함을 보여주었다. 황과 질소는 검출되지 않았습니다. 게다가, 확대 관찰(  8b)은 산화막 표면에 반점을 나타내었다. 반점의 직경은 수백 나노미터에서 수 마이크론 미터까지 다양했습니다.

그림 8

산화막의 구조와 조성을 보다 명확하게 나타내기 위해 테스트 바 파단면의 산화막 단면을 FIB 기법을 사용하여 현장에서 노출시켰다( 그림 9 ). 도 9a에 도시된 바와 같이 , 백금 코팅층과 Mg-Al 합금 기재 사이에 연속적인 산화피막이 발견되었다. 그림 9 (bc)는 다층 구조( 그림 9c 에서 빨간색 상자로 표시)를 나타내는 산화막에 대한 확대 관찰을 보여줍니다 . 바닥층은 불소와 산소가 풍부하고 불소와 산화물의 혼합물이어야 합니다 . 5 와 7, 유일한 산소가 풍부한 최상층은 도 1 및 도 2에 도시 된 “내층”과 유사하였다 5 및 7 .

그림 9

연속 필름을 제외하고 도 9 에 도시된 바와 같이 연속 필름 내부 또는 하부에서도 일부 개별 입자가 관찰되었다 . 그림 9( b) 의 산화막 좌측에서 Al이 풍부한 입자가 검출되었으며, 마그네슘과 산소 원소도 풍부하게 함유하고 있어 스피넬 Mg 2 AlO 4 로 추측할 수 있다 . 이러한 Mg 2 AlO 4 입자의 존재는 Fig. 5 와 같이 관찰된 필름의 작은 영역에 높은 알루미늄 농도와 알루미늄의 불균일한 분포의 원인이 된다 .(씨). 여기서 강조되어야 할 것은 연속 산화막의 바닥층의 다른 부분이 이 Al이 풍부한 입자보다 적은 양의 알루미늄을 함유하고 있지만, 그림 9c는 이 바닥층의 알루미늄 양이 여전히 무시할 수 없는 수준임을 나타냅니다 . , 특히 필름의 외층과 비교할 때. 도 9b에 도시된 산화막의 우측 아래에서 입자가 검출되어 Mg와 O가 풍부하여 MgO인 것으로 추측되었다. Wang의 결과에 따르면 [56], Mg 용융물과 Mg 증기의 산화에 의해 Mg 용융물의 표면에 많은 이산 MgO 입자가 형성될 수 있다. 우리의 현재 연구에서 관찰된 MgO 입자는 같은 이유로 인해 형성될 수 있습니다. 실험 조건의 차이로 인해 더 적은 Mg 용융물이 기화되거나 O2와 반응할 수 있으므로 우리 작업에서 형성되는 MgO 입자는 소수에 불과합니다. 또한 필름에서 풍부한 탄소가 발견되어 CO 2 가 용융물과 반응하여 탄소 또는 탄화물을 형성할 수 있음을 보여줍니다 . 이 탄소 농도는 표 3에 나타낸 산화막의 상대적으로 높은 탄소 함량 (즉, 어두운 영역) 과 일치하였다 . 산화막 옆 영역.

표 3 . 도 8에 도시된 영역에 상응하는 EDS 결과(wt.%) (커버 가스: SF 6 / CO 2 ).

영형마그네슘NS아연NSNS
그림 8 (a)의 어두운 영역7.253.6469.823.827.030.86
그림 8 (a)의 밝은 영역2.100.4482.8313.261.36

테스트 바 파단면( 도 9 ) 에서 산화막의 이 단면 관찰은 도 6 (e)에 도시된 엔트레인먼트 결함의 개략도를 추가로 확인했다 . SF 6 /CO 2 와 SF 6 /air 의 서로 다른 분위기에서 형성된 엔트레인먼트 결함 은 유사한 구조를 가졌지만 그 조성은 달랐다.

3.3 . 산화 전지에서 산화막의 진화

섹션 3.1 및 3.2 의 결과 는 SF 6 /air 및 SF 6 /CO 2 의 커버 가스 아래에서 AZ91 주조에서 형성된 연행 결함의 구조 및 구성을 보여줍니다 . 산화 반응의 다른 단계는 연행 결함의 다른 구조와 조성으로 이어질 수 있습니다. Campbell은 동반된 가스가 주변 용융물과 반응할 수 있다고 추측했지만 Mg 합금 용융물과 포획된 커버 가스 사이에 반응이 발생했다는 보고는 거의 없습니다. 이전 연구자들은 일반적으로 개방된 환경에서 Mg 합금 용융물과 커버 가스 사이의 반응에 초점을 맞췄습니다 [38 , 39 , [46] , [47][48] , [49] , [50] , [51] , [52] , 이는 용융물에 갇힌 커버 가스의 상황과 다릅니다. AZ91 합금에서 엔트레인먼트 결함의 형성을 더 이해하기 위해 엔트레인먼트 결함의 산화막의 진화 과정을 산화 셀을 사용하여 추가로 연구했습니다.

.도 10 (a 및 d) 0.5 % 방송 SF 보호 산화 셀에서 5 분 동안 유지 된 표면 막 (6) / 공기. 불화물과 산화물(MgF 2 와 MgO) 로 이루어진 단 하나의 층이 있었습니다 . 이 표면 필름에서. 황은 EDS 스펙트럼에서 검출되었지만 그 양이 너무 적어 원소 맵에서 인식되지 않았습니다. 이 산화막의 구조 및 조성은 도 4 에 나타낸 엔트레인먼트 결함의 단층막과 유사하였다 .

그림 10

10분의 유지 시간 후, 얇은 (O,S)가 풍부한 상부층(약 700nm)이 예비 F-농축 필름에 나타나 그림 10 (b 및 e) 에서와 같이 다층 구조를 형성했습니다 . ). (O, S)가 풍부한 최상층의 두께는 유지 시간이 증가함에 따라 증가했습니다. Fig. 10 (c, f) 에서 보는 바와 같이 30분간 유지한 산화막도 다층구조를 가지고 있으나 (O,S)가 풍부한 최상층(약 2.5μm)의 두께가 10분 산화막의 그것. 도 10 (bc) 에 도시 된 다층 산화막 은 도 5에 도시된 샌드위치형 결함의 막과 유사한 외관을 나타냈다 .

도 10에 도시된 산화막의 상이한 구조는 커버 가스의 불화물이 AZ91 합금 용융물과의 반응으로 인해 우선적으로 소모될 것임을 나타내었다. 불화물이 고갈된 후, 잔류 커버 가스는 액체 AZ91 합금과 추가로 반응하여 산화막에 상부 (O, S)가 풍부한 층을 형성했습니다. 따라서 도 1 및 도 3에 도시된 연행 결함의 상이한 구조 및 조성 4 와 5 는 용융물과 갇힌 커버 가스 사이의 진행 중인 산화 반응 때문일 수 있습니다.

이 다층 구조는 Mg 합금 용융물에 형성된 보호 표면 필름에 관한 이전 간행물 [38 , [46] , [47] , [48] , [49] , [50] , [51] 에서 보고되지 않았습니다 . . 이는 이전 연구원들이 무제한의 커버 가스로 실험을 수행했기 때문에 커버 가스의 불화물이 고갈되지 않는 상황을 만들었기 때문일 수 있습니다. 따라서 엔트레인먼트 결함의 산화피막은 도 10에 도시된 산화피막과 유사한 거동특성을 가지나 [38 ,[46] , [47] , [48] , [49] , [50] , [51] .

SF 유지 산화막와 마찬가지로 6 / 공기, SF에 형성된 산화물 막 (6) / CO 2는 또한 세포 산화 다른 유지 시간과 다른 구조를 가지고 있었다. .도 11 (a)는 AZ91 개최 산화막, 0.5 %의 커버 가스 하에서 SF 표면 용융 도시 6 / CO 2, 5 분. 이 필름은 MgF 2 로 이루어진 단층 구조를 가졌다 . 이 영화에서는 MgO의 존재를 확인할 수 없었다. 30분의 유지 시간 후, 필름은 다층 구조를 가졌다; 내부 층은 조밀하고 균일한 외관을 가지며 MgF 2 로 구성 되고 외부 층은 MgF 2 혼합물및 MgO. 0.5%SF 6 /air 에서 형성된 표면막과 다른 이 막에서는 황이 검출되지 않았다 . 따라서, 0.5%SF 6 /CO 2 의 커버 가스 내의 불화물 도 막 성장 과정의 초기 단계에서 우선적으로 소모되었다. SF 6 /air 에서 형성된 막과 비교하여 SF 6 /CO 2 에서 형성된 막에서 MgO 는 나중에 나타났고 황화물은 30분 이내에 나타나지 않았다. 이는 SF 6 /air 에서 필름의 형성과 진화 가 SF 6 /CO 2 보다 빠르다 는 것을 의미할 수 있습니다 . CO 2 후속적으로 용융물과 반응하여 MgO를 형성하는 반면, 황 함유 화합물은 커버 가스에 축적되어 반응하여 매우 늦은 단계에서 황화물을 형성할 수 있습니다(산화 셀에서 30분 후).

그림 11

4 . 논의

4.1 . SF 6 /air 에서 형성된 연행 결함의 진화

Outokumpu HSC Chemistry for Windows( http://www.hsc-chemistry.net/ )의 HSC 소프트웨어를 사용하여 갇힌 기체와 액체 AZ91 합금 사이에서 발생할 수 있는 반응을 탐색하는 데 필요한 열역학 계산을 수행했습니다. 계산에 대한 솔루션은 소량의 커버 가스(즉, 갇힌 기포 내의 양)와 AZ91 합금 용융물 사이의 반응 과정에서 어떤 생성물이 가장 형성될 가능성이 있는지 제안합니다.

실험에서 압력은 1기압으로, 온도는 700°C로 설정했습니다. 커버 가스의 사용량은 7 × 10으로 가정 하였다 -7  약 0.57 cm의 양으로 kg 3 (3.14 × 10 -6  0.5 % SF위한 kmol) 6 / 공기, 0.35 cm (3) (3.12 × 10 – 8  kmol) 0.5%SF 6 /CO 2 . 포획된 가스와 접촉하는 AZ91 합금 용융물의 양은 모든 반응을 완료하기에 충분한 것으로 가정되었습니다. SF 6 의 분해 생성물 은 SF 5 , SF 4 , SF 3 , SF 2 , F 2 , S(g), S 2(g) 및 F(g) [57] , [58] , [59] , [60] .

그림 12 는 AZ91 합금과 0.5%SF 6 /air 사이의 반응에 대한 열역학적 계산의 평형 다이어그램을 보여줍니다 . 다이어그램에서 10 -15  kmol 미만의 반응물 및 생성물은 표시되지 않았습니다. 이는 존재 하는 SF 6 의 양 (≈ 1.57 × 10 -10  kmol) 보다 5배 적 으므로 영향을 미치지 않습니다. 실제적인 방법으로 과정을 관찰했습니다.

그림 12

이 반응 과정은 3단계로 나눌 수 있다.

1단계 : 불화물의 형성. AZ91 용융물은 SF 6 및 그 분해 생성물과 우선적으로 반응하여 MgF 2 , AlF 3 및 ZnF 2 를 생성 합니다. 그러나 ZnF 2 의 양 이 너무 적어서 실제적으로 검출되지  않았을 수 있습니다(  MgF 2 의 3 × 10 -10 kmol에 비해 ZnF 2 1.25 × 10 -12 kmol ). 섹션 3.1 – 3.3에 표시된 모든 산화막 . 한편, 잔류 가스에 황이 SO 2 로 축적되었다 .

2단계 : 산화물의 형성. 액체 AZ91 합금이 포획된 가스에서 사용 가능한 모든 불화물을 고갈시킨 후, Mg와의 반응으로 인해 AlF 3 및 ZnF 2 의 양이 빠르게 감소했습니다. O 2 (g) 및 SO 2 는 AZ91 용융물과 반응하여 MgO, Al 2 O 3 , MgAl 2 O 4 , ZnO, ZnSO 4 및 MgSO 4 를 형성 합니다. 그러나 ZnO 및 ZnSO 4 의 양은 EDS에 의해 실제로 발견되기에는 너무 적었을 것입니다(예: 9.5 × 10 -12  kmol의 ZnO, 1.38 × 10 -14  kmol의 ZnSO 4 , 대조적으로 4.68 × 10−10  kmol의 MgF 2 , X 축의 AZ91 양 이 2.5 × 10 -9  kmol일 때). 실험 사례에서 커버 가스의 F 농도는 매우 낮고 전체 농도 f O는 훨씬 높습니다. 따라서 1단계와 2단계, 즉 불화물과 산화물의 형성은 반응 초기에 동시에 일어나 그림 1과 2와 같이 불화물과 산화물의 가수층 혼합물이 형성될 수 있다 . 4 및 10 (a). 내부 층은 산화물로 구성되어 있지만 불화물은 커버 가스에서 F 원소가 완전히 고갈된 후에 형성될 수 있습니다.

단계 1-2는 도 10 에 도시 된 다층 구조의 형성 과정을 이론적으로 검증하였다 .

산화막 내의 MgAl 2 O 4 및 Al 2 O 3 의 양은 도 4에 도시된 산화막과 일치하는 검출하기에 충분한 양이었다 . 그러나, 도 10 에 도시된 바와 같이, 산화셀에서 성장된 산화막에서는 알루미늄의 존재를 인식할 수 없었다 . 이러한 Al의 부재는 표면 필름과 AZ91 합금 용융물 사이의 다음 반응으로 인한 것일 수 있습니다.(1)

Al 2 O 3  + 3Mg + = 3MgO + 2Al, △G(700°C) = -119.82 kJ/mol(2)

Mg + MgAl 2 O 4  = MgO + Al, △G(700°C) = -106.34 kJ/mol이는 반응물이 서로 완전히 접촉한다는 가정 하에 열역학적 계산이 수행되었기 때문에 HSC 소프트웨어로 시뮬레이션할 수 없었습니다. 그러나 실제 공정에서 AZ91 용융물과 커버 가스는 보호 표면 필름의 존재로 인해 서로 완전히 접촉할 수 없습니다.

3단계 : 황화물과 질화물의 형성. 30분의 유지 시간 후, 산화 셀의 기상 불화물 및 산화물이 고갈되어 잔류 가스와 용융 반응을 허용하여 초기 F-농축 또는 (F, O )이 풍부한 표면 필름, 따라서 그림 10 (b 및 c)에 표시된 관찰된 다층 구조를 생성합니다 . 게다가, 질소는 모든 반응이 완료될 때까지 AZ91 용융물과 반응했습니다. 도 6 에 도시 된 산화막 은 질화물 함량으로 인해 이 반응 단계에 해당할 수 있다. 그러나, 그 결과는 도 1 및 도 5에 도시 된 연마된 샘플에서 질화물이 검출되지 않음을 보여준다. 4 와 5, 그러나 테스트 바 파단면에서만 발견됩니다. 질화물은 다음과 같이 샘플 준비 과정에서 가수분해될 수 있습니다 [54] .(삼)

Mg 3 N 2  + 6H 2 O = 3Mg(OH) 2  + 2NH 3 ↑(4)

AlN+ 3H 2 O = Al(OH) 3  + NH 3 ↑

또한 Schmidt et al. [61] 은 Mg 3 N 2 와 AlN이 반응하여 3원 질화물(Mg 3 Al n N n+2, n=1, 2, 3…) 을 형성할 수 있음을 발견했습니다 . HSC 소프트웨어에는 삼원 질화물 데이터베이스가 포함되어 있지 않아 계산에 추가할 수 없습니다. 이 단계의 산화막은 또한 삼원 질화물을 포함할 수 있습니다.

4.2 . SF 6 /CO 2 에서 형성된 연행 결함의 진화

도 13 은 AZ91 합금과 0.5%SF 6 /CO 2 사이의 열역학적 계산 결과를 보여준다 . 이 반응 과정도 세 단계로 나눌 수 있습니다.

그림 13

1단계 : 불화물의 형성. SF 6 및 그 분해 생성물은 AZ91 용융물에 의해 소비되어 MgF 2 , AlF 3 및 ZnF 2 를 형성했습니다 . 0.5% SF 6 /air 에서 AZ91의 반응에서와 같이 ZnF 2 의 양 이 너무 작아서 실제적으로 감지되지  않았습니다( 2.67 x 10 -10  kmol의 MgF 2 에 비해 ZnF 2 1.51 x 10 -13 kmol ). S와 같은 잔류 가스 트랩에 축적 유황 2 (g) 및 (S)의 일부분 (2) (g)가 CO와 반응하여 2 SO 형성하는 2및 CO. 이 반응 단계의 생성물은 도 11 (a)에 도시된 필름과 일치하며 , 이는 불화물만을 함유하는 단일 층 구조를 갖는다.

2단계 : 산화물의 형성. ALF 3 및 ZnF 2 MgF로 형성 용융 AZ91 마그네슘의 반응 2 , Al 및 Zn으로한다. SO 2 는 소모되기 시작하여 표면 필름에 산화물을 생성 하고 커버 가스에 S 2 (g)를 생성했습니다. 한편, CO 2 는 AZ91 용융물과 직접 반응하여 CO, MgO, ZnO 및 Al 2 O 3 를 형성 합니다. 도 1에 도시 된 산화막 9 및 11 (b)는 산소가 풍부한 층과 다층 구조로 인해 이 반응 단계에 해당할 수 있습니다.

커버 가스의 CO는 AZ91 용융물과 추가로 반응하여 C를 생성할 수 있습니다. 이 탄소는 온도가 감소할 때(응고 기간 동안) Mg와 추가로 반응하여 Mg 탄화물을 형성할 수 있습니다 [62] . 이것은 도 4에 도시된 산화막의 탄소 함량이 높은 이유일 수 있다 8 – 9 . Liang et al. [39] 또한 SO 2 /CO 2 로 보호된 AZ91 합금 표면 필름에서 탄소 검출을 보고했습니다 . 생성된 Al 2 O 3 는 MgO와 더 결합하여 MgAl 2 O [63]를 형성할 수 있습니다 . 섹션 4.1 에서 논의된 바와 같이, 알루미나 및 스피넬은 도 11 에 도시된 바와 같이 표면 필름에 알루미늄 부재를 야기하는 Mg와 반응할 수 있다 .

3단계 : 황화물의 형성. AZ91은 용융물 S 소비하기 시작 2 인 ZnS와 MGS 형성 갇힌 잔류 가스 (g)를. 이러한 반응은 반응 과정의 마지막 단계까지 일어나지 않았으며, 이는 Fig. 7 (c)에 나타난 결함의 S-함량 이 적은 이유일 수 있다 .

요약하면, 열역학적 계산은 AZ91 용융물이 커버 가스와 반응하여 먼저 불화물을 형성한 다음 마지막에 산화물과 황화물을 형성할 것임을 나타냅니다. 다른 반응 단계에서 산화막은 다른 구조와 조성을 가질 것입니다.

4.3 . 운반 가스가 동반 가스 소비 및 AZ91 주물의 재현성에 미치는 영향

SF 6 /air 및 SF 6 /CO 2 에서 형성된 연행 결함의 진화 과정은 4.1절 과 4.2  에서 제안되었습니다 . 이론적인 계산은 실제 샘플에서 발견되는 해당 산화막과 관련하여 검증되었습니다. 연행 결함 내의 대기는 Al-합금 시스템과 다른 시나리오에서 액체 Mg-합금과의 반응으로 인해 효율적으로 소모될 수 있습니다(즉, 연행된 기포의 질소가 Al-합금 용융물과 효율적으로 반응하지 않을 것입니다 [64 , 65] 그러나 일반적으로 “질소 연소”라고 하는 액체 Mg 합금에서 질소가 더 쉽게 소모될 것입니다 [66] ).

동반된 가스와 주변 액체 Mg-합금 사이의 반응은 동반된 가스를 산화막 내에서 고체 화합물(예: MgO)로 전환하여 동반 결함의 공극 부피를 감소시켜 결함(예: 공기의 동반된 가스가 주변의 액체 Mg 합금에 의해 고갈되면 용융 온도가 700 °C이고 액체 Mg 합금의 깊이가 10 cm라고 가정할 때 최종 고체 제품의 총 부피는 0.044가 됩니다. 갇힌 공기가 취한 초기 부피의 %).

연행 결함의 보이드 부피 감소와 해당 주조 특성 사이의 관계는 알루미늄 합금 주조에서 널리 연구되었습니다. Nyahumwa와 Campbell [16] 은 HIP(Hot Isostatic Pressing) 공정이 Al-합금 주물의 연행 결함이 붕괴되고 산화물 표면이 접촉하게 되었다고 보고했습니다. 주물의 피로 수명은 HIP 이후 개선되었습니다. Nyahumwa와 Campbell [16] 도 서로 접촉하고 있는 이중 산화막의 잠재적인 결합을 제안했지만 이를 뒷받침하는 직접적인 증거는 없었습니다. 이 결합 현상은 Aryafar et.al에 의해 추가로 조사되었습니다. [8], 그는 강철 튜브에서 산화물 스킨이 있는 두 개의 Al-합금 막대를 다시 녹인 다음 응고된 샘플에 대해 인장 강도 테스트를 수행했습니다. 그들은 Al-합금 봉의 산화물 스킨이 서로 강하게 결합되어 용융 유지 시간이 연장됨에 따라 더욱 강해짐을 발견했으며, 이는 이중 산화막 내 동반된 가스의 소비로 인한 잠재적인 “치유” 현상을 나타냅니다. 구조. 또한 Raidszadeh와 Griffiths [9 , 19] 는 연행 가스가 반응하는 데 더 긴 시간을 갖도록 함으로써 응고 전 용융 유지 시간을 연장함으로써 Al-합금 주물의 재현성에 대한 연행 결함의 부정적인 영향을 성공적으로 줄였습니다. 주변이 녹습니다.

앞서 언급한 연구를 고려할 때, Mg 합금 주물에서 혼입 가스의 소비는 다음 두 가지 방식으로 혼입 결함의 부정적인 영향을 감소시킬 수 있습니다.

(1) 이중 산화막의 결합 현상 . 도 5 및 도 7 에 도시 된 샌드위치형 구조 는 이중 산화막 구조의 잠재적인 결합을 나타내었다. 그러나 산화막의 결합으로 인한 강도 증가를 정량화하기 위해서는 더 많은 증거가 필요합니다.

(2) 연행 결함의 보이드 체적 감소 . 주조품의 품질에 대한 보이드 부피 감소의 긍정적인 효과는 HIP 프로세스 [67]에 의해 널리 입증되었습니다 . 섹션 4.1 – 4.2 에서 논의된 진화 과정과 같이 , 동반된 가스와 주변 AZ91 합금 용융물 사이의 지속적인 반응으로 인해 동반 결함의 산화막이 함께 성장할 수 있습니다. 최종 고체 생성물의 부피는 동반된 기체에 비해 상당히 작았다(즉, 이전에 언급된 바와 같이 0.044%).

따라서, 혼입 가스의 소모율(즉, 산화막의 성장 속도)은 AZ91 합금 주물의 품질을 향상시키는 중요한 매개변수가 될 수 있습니다. 이에 따라 산화 셀의 산화막 성장 속도를 추가로 조사했습니다.

도 14 는 상이한 커버 가스(즉, 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 ) 에서의 표면 필름 성장 속도의 비교를 보여준다 . 필름 두께 측정을 위해 각 샘플의 15개의 임의 지점을 선택했습니다. 95% 신뢰구간(95%CI)은 막두께의 변화가 가우시안 분포를 따른다는 가정하에 계산하였다. 0.5%SF 6 /air 에서 형성된 모든 표면막이 0.5%SF 6 /CO 2 에서 형성된 것보다 빠르게 성장함을 알 수 있다 . 다른 성장률은 0.5%SF 6 /air 의 연행 가스 소비율 이 0.5%SF 6 /CO 2 보다 더 높음 을 시사했습니다., 이는 동반된 가스의 소비에 더 유리했습니다.

그림 14

산화 셀에서 액체 AZ91 합금과 커버 가스의 접촉 면적(즉, 도가니의 크기)은 많은 양의 용융물과 가스를 고려할 때 상대적으로 작았다는 점에 유의해야 합니다. 결과적으로, 산화 셀 내에서 산화막 성장을 위한 유지 시간은 비교적 길었다(즉, 5-30분). 하지만, 실제 주조에 함유 된 혼입 결함은 (상대적으로 매우 적은, 즉, 수 미크론의 크기에 도시 된 바와 같이 ,도 3. – 6 및 [7]), 동반된 가스는 주변 용융물로 완전히 둘러싸여 상대적으로 큰 접촉 영역을 생성합니다. 따라서 커버 가스와 AZ91 합금 용융물의 반응 시간은 비교적 짧을 수 있습니다. 또한 실제 Mg 합금 모래 주조의 응고 시간은 몇 분일 수 있습니다(예: Guo [68] 은 직경 60mm의 Mg 합금 모래 주조가 응고되는 데 4분이 필요하다고 보고했습니다). 따라서 Mg-합금 용융주조 과정에서 포획된 동반된 가스는 특히 응고 시간이 긴 모래 주물 및 대형 주물의 경우 주변 용융물에 의해 쉽게 소모될 것으로 예상할 수 있습니다.

따라서, 동반 가스의 다른 소비율과 관련된 다른 커버 가스(0.5%SF 6 /air 및 0.5%SF 6 /CO 2 )가 최종 주물의 재현성에 영향을 미칠 수 있습니다. 이 가정을 검증하기 위해 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 에서 생산된 AZ91 주물 을 기계적 평가를 위해 테스트 막대로 가공했습니다. Weibull 분석은 선형 최소 자승(LLS) 방법과 비선형 최소 자승(비 LLS) 방법을 모두 사용하여 수행되었습니다 [69] .

그림 15 (ab)는 LLS 방법으로 얻은 UTS 및 AZ91 합금 주물의 연신율의 전통적인 2-p 선형 Weibull 플롯을 보여줍니다. 사용된 추정기는 P= (i-0.5)/N이며, 이는 모든 인기 있는 추정기 중 가장 낮은 편향을 유발하는 것으로 제안되었습니다 [69 , 70] . SF 6 /air 에서 생산된 주물 은 UTS Weibull 계수가 16.9이고 연신율 Weibull 계수가 5.0입니다. 대조적으로, SF 6 /CO 2 에서 생산된 주물의 UTS 및 연신 Weibull 계수는 각각 7.7과 2.7로, SF 6 /CO 2 에 의해 보호된 주물의 재현성이 SF 6 /air 에서 생산된 것보다 훨씬 낮음을 시사합니다. .

그림 15

또한 저자의 이전 출판물 [69] 은 선형화된 Weibull 플롯의 단점을 보여주었으며, 이는 Weibull 추정 의 더 높은 편향과 잘못된 2 중단을 유발할 수 있습니다 . 따라서 그림 15 (cd) 와 같이 Non-LLS Weibull 추정이 수행되었습니다 . SF 6 /공기주조물 의 UTS Weibull 계수 는 20.8인 반면, SF 6 /CO 2 하에서 생산된 주조물의 UTS Weibull 계수는 11.4로 낮아 재현성에서 분명한 차이를 보였다. 또한 SF 6 /air elongation(El%) 데이터 세트는 SF 6 /CO 2 의 elongation 데이터 세트보다 더 높은 Weibull 계수(모양 = 5.8)를 가졌습니다.(모양 = 3.1). 따라서 LLS 및 Non-LLS 추정 모두 SF 6 /공기 주조가 SF 6 /CO 2 주조 보다 더 높은 재현성을 갖는다고 제안했습니다 . CO 2 대신 공기를 사용 하면 혼입된 가스의 더 빠른 소비에 기여하여 결함 내의 공극 부피를 줄일 수 있다는 방법을 지원합니다 . 따라서 0.5%SF 6 /CO 2 대신 0.5%SF 6 /air를 사용 하면(동반된 가스의 소비율이 증가함) AZ91 주물의 재현성이 향상되었습니다.

그러나 모든 Mg 합금 주조 공장이 현재 작업에서 사용되는 주조 공정을 따랐던 것은 아니라는 점에 유의해야 합니다. Mg의 합금 용탕 본 작업은 탈기에 따라서, 동반 가스의 소비에 수소의 영향을 감소 (즉, 수소 잠재적 동반 가스의 고갈 억제, 동반 된 기체로 확산 될 수있다 [7 , 71 , 72] ). 대조적으로, 마그네슘 합금 주조 공장에서는 마그네슘을 주조할 때 ‘가스 문제’가 없고 따라서 인장 특성에 큰 변화가 없다고 널리 믿어지기 때문에 마그네슘 합금 용융물은 일반적으로 탈기되지 않습니다 [73] . 연구에 따르면 Mg 합금 주물의 기계적 특성에 대한 수소의 부정적인 영향 [41 ,42 , 73] , 탈기 공정은 마그네슘 합금 주조 공장에서 여전히 인기가 없습니다.

또한 현재 작업에서 모래 주형 공동은 붓기 전에 SF 6 커버 가스 로 플러싱되었습니다 [22] . 그러나 모든 Mg 합금 주조 공장이 이러한 방식으로 금형 캐비티를 플러싱한 것은 아닙니다. 예를 들어, Stone Foundry Ltd(영국)는 커버 가스 플러싱 대신 유황 분말을 사용했습니다. 그들의 주물 내의 동반된 가스 는 보호 가스라기 보다는 SO 2 /공기일 수 있습니다 .

따라서 본 연구의 결과는 CO 2 대신 공기를 사용 하는 것이 최종 주조의 재현성을 향상시키는 것으로 나타났지만 다른 산업용 Mg 합금 주조 공정과 관련하여 캐리어 가스의 영향을 확인하기 위해서는 여전히 추가 조사가 필요합니다.

7 . 결론

1.

AZ91 합금에 형성된 연행 결함이 관찰되었습니다. 그들의 산화막은 단층과 다층의 두 가지 유형의 구조를 가지고 있습니다. 다층 산화막은 함께 성장하여 최종 주조에서 샌드위치 같은 구조를 형성할 수 있습니다.2.

실험 결과와 이론적인 열역학적 계산은 모두 갇힌 가스의 불화물이 황을 소비하기 전에 고갈되었음을 보여주었습니다. 이중 산화막 결함의 3단계 진화 과정이 제안되었습니다. 산화막은 진화 단계에 따라 다양한 화합물 조합을 포함했습니다. SF 6 /air 에서 형성된 결함 은 SF 6 /CO 2 에서 형성된 것과 유사한 구조를 갖지만 산화막의 조성은 달랐다. 엔트레인먼트 결함의 산화막 형성 및 진화 과정은 이전에 보고된 Mg 합금 표면막(즉, MgF 2 이전에 형성된 MgO)의 것과 달랐다 .삼.

산화막의 성장 속도는 SF하에 큰 것으로 입증되었다 (6) / SF보다 공기 6 / CO 2 손상 봉입 가스의 빠른 소비에 기여한다. AZ91 합금 주물의 재현성은 SF 6 /CO 2 대신 SF 6 /air를 사용할 때 향상되었습니다 .

감사의 말

저자는 EPSRC LiME 보조금 EP/H026177/1의 자금 지원 과 WD Griffiths 박사와 Adrian Carden(버밍엄 대학교)의 도움을 인정합니다. 주조 작업은 University of Birmingham에서 수행되었습니다.

참조
[1]
MK McNutt , SALAZAR K.
마그네슘, 화합물 및 금속, 미국 지질 조사국 및 미국 내무부
레 스톤 , 버지니아 ( 2013 )
Google 학술검색
[2]
마그네슘
화합물 및 금속, 미국 지질 조사국 및 미국 내무부
( 1996 )
Google 학술검색
[삼]
I. Ostrovsky , Y. Henn
ASTEC’07 International Conference-New Challenges in Aeronautics , Moscow ( 2007 ) , pp. 1 – 5
8월 19-22일
Scopus에서 레코드 보기Google 학술검색
[4]
Y. Wan , B. Tang , Y. Gao , L. Tang , G. Sha , B. Zhang , N. Liang , C. Liu , S. Jiang , Z. Chen , X. Guo , Y. Zhao
액타 메이터. , 200 ( 2020 ) , 274 – 286 페이지
기사PDF 다운로드Scopus에서 레코드 보기
[5]
JTJ Burd , EA Moore , H. Ezzat , R. Kirchain , R. Roth
적용 에너지 , 283 ( 2021 ) , 제 116269 조
기사PDF 다운로드Scopus에서 레코드 보기
[6]
AM 루이스 , JC 켈리 , 조지아주 Keoleian
적용 에너지 , 126 ( 2014 ) , pp. 13 – 20
기사PDF 다운로드Scopus에서 레코드 보기
[7]
J. 캠벨
주물
버터워스-하이네만 , 옥스퍼드 ( 2004 )
Google 학술검색
[8]
M. Aryafar , R. Raiszadeh , A. Shalbafzadeh
J. 메이터. 과학. , 45 ( 2010 년 ) , PP. (3041) – 3051
교차 참조Scopus에서 레코드 보기
[9]
R. 라이자데 , WD 그리피스
메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 42 ( 2011 ) , 133 ~ 143페이지
교차 참조Scopus에서 레코드 보기
[10]
R. 라이자데 , WD 그리피스
J. 합금. Compd. , 491 ( 2010 ) , 575 ~ 580 쪽
기사PDF 다운로드Scopus에서 레코드 보기
[11]
L. Peng , G. Zeng , TC Su , H. Yasuda , K. Nogita , CM Gourlay
JOM , 71 ( 2019 ) , pp. 2235 – 2244
교차 참조Scopus에서 레코드 보기
[12]
S. Ganguly , AK Mondal , S. Sarkar , A. Basu , S. Kumar , C. Blawert
코로스. 과학. , 166 ( 2020 )
[13]
GE Bozchaloei , N. Varahram , P. Davami , SK 김
메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 548 ( 2012 ) , 99 ~ 105페이지
Scopus에서 레코드 보기
[14]
S. 폭스 , J. 캠벨
Scr. 메이터. , 43 ( 2000 ) , PP. 881 – 886
기사PDF 다운로드Scopus에서 레코드 보기
[15]
M. 콕스 , RA 하딩 , J. 캠벨
메이터. 과학. 기술. , 19 ( 2003 ) , 613 ~ 625페이지
Scopus에서 레코드 보기
[16]
C. Nyahumwa , NR Green , J. Campbell
메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 32 ( 2001 ) , 349 ~ 358 쪽
Scopus에서 레코드 보기
[17]
A. Ardekhani , R. Raiszadeh
J. 메이터. 영어 공연하다. , 21 ( 2012 ) , pp. 1352 – 1362
교차 참조Scopus에서 레코드 보기
[18]
X. Dai , X. Yang , J. Campbell , J. Wood
메이터. 과학. 기술. , 20 ( 2004 ) , 505 ~ 513 쪽
Scopus에서 레코드 보기
[19]
EM 엘갈라드 , MF 이브라힘 , HW 도티 , FH 사무엘
필로스. 잡지. , 98 ( 2018 ) , PP. 1337 – 1359
교차 참조Scopus에서 레코드 보기
[20]
WD 그리피스 , NW 라이
메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. 190 – 196
교차 참조Scopus에서 레코드 보기
[21]
AR Mirak , M. Divandari , SMA Boutorabi , J. 캠벨
국제 J. 캐스트 만났습니다. 해상도 , 20 ( 2007 ) , PP. 215 – 220
교차 참조Scopus에서 레코드 보기
[22]
C. 칭기
주조공학 연구실
Helsinki University of Technology , Espoo, Finland ( 2006 )
Google 학술검색
[23]
Y. Jia , J. Hou , H. Wang , Q. Le , Q. Lan , X. Chen , L. Bao
J. 메이터. 프로세스. 기술. , 278 ( 2020 ) , 제 116542 조
기사PDF 다운로드Scopus에서 레코드 보기
[24]
S. Ouyang , G. Yang , H. Qin , S. Luo , L. Xiao , W. Jie
메이터. 과학. 영어 A , 780 ( 2020 ) , 제 139138 조
기사PDF 다운로드Scopus에서 레코드 보기
[25]
에스엠. Xiong , X.-F. 왕
트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234
기사PDF 다운로드Scopus에서 레코드 보기
[26]
지브이리서치
그랜드뷰 리서치
( 2018 )
미국
Google 학술검색
[27]
T. 리 , J. 데이비스
메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 5,389 – (5400)
교차 참조Scopus에서 레코드 보기
[28]
JF Fruehling, 미시간 대학, 1970.
Google 학술검색
[29]
S. 쿨링
제36회 세계 마그네슘 연례 회의 , 노르웨이 ( 1979 ) , pp. 54 – 57
Scopus에서 레코드 보기Google 학술검색
[30]
S. Cashion , N. Ricketts , P. Hayes
J. 가벼운 만남. , 2 ( 2002 ) , 43 ~ 47페이지
기사PDF 다운로드Scopus에서 레코드 보기
[31]
S. Cashion , N. Ricketts , P. Hayes
J. 가벼운 만남. , 2 ( 2002 ) , PP. 37 – 42
기사PDF 다운로드Scopus에서 레코드 보기
[32]
K. Aarstad , G. Tranell , G. Pettersen , TA Engh
SF6에 의해 보호되는 마그네슘의 표면을 연구하는 다양한 기술
TMS ( 2003년 )
Google 학술검색
[33]
에스엠 Xiong , X.-L. 리우
메탈. 메이터. 트랜스. , 38 ( 2007 년 ) , PP. (428) – (434)
교차 참조Scopus에서 레코드 보기
[34]
T.-S. 시 , J.-B. Liu , P.-S. 웨이
메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지
기사PDF 다운로드Scopus에서 레코드 보기
[35]
G. Pettersen , E. Øvrelid , G. Tranell , J. Fenstad , H. Gjestland
메이터. 과학. 영어 , 332 ( 2002 ) , PP. (285) – (294)
기사PDF 다운로드Scopus에서 레코드 보기
[36]
H. Bo , LB Liu , ZP Jin
J. 합금. Compd. , 490 ( 2010 ) , 318 ~ 325 쪽
기사PDF 다운로드Scopus에서 레코드 보기
[37]
A. 미락 , C. 데이비슨 , J. 테일러
코로스. 과학. , 52 ( 2010 ) , PP. 1992 년 – 2000
기사PDF 다운로드Scopus에서 레코드 보기
[38]
BD 리 , UH 부리 , KW 리 , GS 한강 , JW 한
메이터. 트랜스. , 54 ( 2013 ) , 66 ~ 73페이지
Scopus에서 레코드 보기
[39]
WZ Liang , Q. Gao , F. Chen , HH Liu , ZH Zhao
China Foundry , 9 ( 2012 ) , pp. 226 – 230
교차 참조Scopus에서 레코드 보기
[40]
UI 골드슐레거 , EY 샤피로비치
연소. 폭발 충격파 , 35 ( 1999 ) , 637 ~ 644페이지
Scopus에서 레코드 보기
[41]
A. Elsayed , SL Sin , E. Vandersluis , J. Hill , S. Ahmad , C. Ravindran , S. Amer Foundry
트랜스. 오전. 파운드리 Soc. , 120 ( 2012 ) , 423 ~ 429페이지
Scopus에서 레코드 보기
[42]
E. Zhang , GJ Wang , ZC Hu
메이터. 과학. 기술. , 26 ( 2010 ) , 1253 ~ 1258페이지
Scopus에서 레코드 보기
[43]
NR 그린 , J. 캠벨
메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 173 ( 1993 ) , 261 ~ 266 쪽
기사PDF 다운로드Scopus에서 레코드 보기
[44]
C 라일리 , MR 졸리 , NR 그린
MCWASP XII 논문집 – 주조, 용접 및 고급 Solidifcation 프로세스의 12 모델링 , 밴쿠버, 캐나다 ( 2009 )
Google 학술검색
[45]
HE Friedrich, BL Mordike, Springer, 독일, 2006.
Google 학술검색
[46]
C. Zheng , BR Qin , XB Lou
기계, 산업 및 제조 기술에 관한 2010 국제 회의 , ASME ( 2010 ) , pp. 383 – 388
2010년 미트
교차 참조Scopus에서 레코드 보기Google 학술검색
[47]
SM Xiong , XF 왕
트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234
기사PDF 다운로드Scopus에서 레코드 보기
[48]
SM Xiong , XL Liu
메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. (428) – (434)
교차 참조Scopus에서 레코드 보기
[49]
TS Shih , JB Liu , PS Wei
메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지
기사PDF 다운로드Scopus에서 레코드 보기
[50]
K. Aarstad , G. Tranell , G. Pettersen , TA Engh
매그. 기술. ( 2003 ) , PP. (5) – (10)
Scopus에서 레코드 보기
[51]
G. Pettersen , E. Ovrelid , G. Tranell , J. Fenstad , H. Gjestland
메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 332 ( 2002 ) , 285 ~ 294페이지
기사PDF 다운로드Scopus에서 레코드 보기
[52]
XF 왕 , SM Xiong
코로스. 과학. , 66 ( 2013 ) , PP. 300 – 307
기사PDF 다운로드Scopus에서 레코드 보기
[53]
SH Nie , SM Xiong , BC Liu
메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 422 ( 2006 ) , 346 ~ 351페이지
기사PDF 다운로드Scopus에서 레코드 보기
[54]
C. Bauer , A. Mogessie , U. Galovsky
Zeitschrift 모피 Metallkunde , 97 ( 2006 ) , PP. (164) – (168)
교차 참조Scopus에서 레코드 보기
[55]
QG 왕 , D. Apelian , DA Lados
J. 가벼운 만남. , 1 ( 2001 ) , PP. (73) – 84
기사PDF 다운로드Scopus에서 레코드 보기
[56]
S. Wang , Y. Wang , Q. Ramasse , Z. Fan
메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 2957 – 2974
교차 참조Scopus에서 레코드 보기
[57]
S. Hayashi , W. Minami , T. Oguchi , HJ Kim
카그. 코그. 론분슈 , 35 ( 2009 ) , 411 ~ 415페이지
교차 참조Scopus에서 레코드 보기
[58]
K. 아르스타드
노르웨이 과학 기술 대학교
( 2004년 )
Google 학술검색
[59]
RL 윌킨스
J. Chem. 물리. , 51 ( 1969 ) , p. 853
-&
Scopus에서 레코드 보기
[60]
O. Kubaschewski , K. Hesselemam
무기물의 열화학적 성질
Springer-Verlag , 벨린 ( 1991 )
Google 학술검색
[61]
R. Schmidt , M. Strobele , K. Eichele , HJ Meyer
유로 J. Inorg. 화학 ( 2017 ) , PP. 2727 – 2735
교차 참조Scopus에서 레코드 보기
[62]
B. Hu , Y. Du , H. Xu , W. Sun , WW Zhang , D. Zhao
제이민 메탈. 분파. B-금속. , 46 ( 2010 ) , 97 ~ 103페이지
Scopus에서 레코드 보기
[63]
O. Salas , H. Ni , V. Jayaram , KC Vlach , CG Levi , R. Mehrabian
J. 메이터. 해상도 , 6 ( 1991 ) , 1964 ~ 1981페이지
Scopus에서 레코드 보기
[64]
SSS Kumari , UTS Pillai , BC 빠이
J. 합금. Compd. , 509 ( 2011 ) , pp. 2503 – 2509
기사PDF 다운로드Scopus에서 레코드 보기
[65]
H. Scholz , P. Greil
J. 메이터. 과학. , 26 ( 1991 ) , 669 ~ 677 쪽
Scopus에서 레코드 보기
[66]
P. Biedenkopf , A. Karger , M. Laukotter , W. Schneider
매그. 기술. , 2005년 ( 2005년 ) , 39 ~ 42 쪽
Scopus에서 레코드 보기
[67]
HV 앳킨슨 , S. 데이비스
메탈. 메이터. 트랜스. , 31 ( 2000 ) , PP. 2981 – 3000
교차 참조Scopus에서 레코드 보기
[68]
EJ Guo , L. Wang , YC Feng , LP Wang , YH Chen
J. 썸. 항문. 칼로리. , 135 ( 2019 ) , PP. 2001 년 – 2008 년
교차 참조Scopus에서 레코드 보기
[69]
T. Li , WD Griffiths , J. Chen
메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 48A ( 2017 ) , PP. 5516 – 5528
교차 참조Scopus에서 레코드 보기
[70]
M. Tiryakioglu , D. Hudak는
J. 메이터. 과학. , 42 ( 2007 ) , pp. 10173 – 10179
교차 참조Scopus에서 레코드 보기
[71]
Y. Yue , WD Griffiths , JL Fife , NR Green
제1회 3d 재료과학 국제학술대회 논문집 ( 2012 ) , pp. 131 – 136
교차 참조Scopus에서 레코드 보기Google 학술검색
[72]
R. 라이자데 , WD 그리피스
메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 37 ( 2006 ) , PP. (865) – (871)
Scopus에서 레코드 보기
[73]
ZC Hu , EL Zhang , SY Zeng
메이터. 과학. 기술. , 24 ( 2008 ) , 1304 ~ 1308페이지
교차 참조Scopus에서 레코드 보기

Fig. 1. Schematic description of the laser welding process considered in this study.

Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding

Won-Ik Cho, Peer Woizeschke
Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Straße 5, Bremen 28359, Germany

Received 30 July 2020, Revised 3 October 2020, Accepted 18 October 2020, Available online 1 November 2020.

Abstract

Molten pool flow and heat transfer in a laser welding process using beam oscillation and filler wire feeding were calculated using computational fluid dynamics (CFD). There are various indirect methods used to analyze the molten pool dynamics in fusion welding. In this work, based on the simulation results, the surface fluctuation was directly measured to enable a more intuitive analysis, and then the signal was analyzed using the Fourier transform and wavelet transform in terms of the beam oscillation frequency and buttonhole formation. The 1st frequency (2 x beam oscillation frequency, the so-called chopping frequency), 2nd frequency (4 x beam oscillation frequency), and beam oscillation frequency components were the main components found. The 1st and 2nd frequency components were caused by the effect of the chopping process and lumped line energy. The beam oscillation frequency component was related to rapid, unstable molten pool behavior. The wavelet transform effectively analyzed the rapid behaviors based on the change of the frequency components over time.

Korea Abstract

빔 진동 및 필러 와이어 공급을 사용하는 레이저 용접 공정에서 용융 풀 흐름 및 열 전달은 CFD (전산 유체 역학)를 사용하여 계산되었습니다. 용융 용접에서 용융 풀 역학을 분석하는 데 사용되는 다양한 간접 방법이 있습니다.

본 연구에서는 시뮬레이션 결과를 바탕으로 보다 직관적 인 분석이 가능하도록 표면 변동을 직접 측정 한 후 빔 발진 주파수 및 버튼 홀 형성 측면에서 푸리에 변환 및 웨이블릿 변환을 사용하여 신호를 분석했습니다.

1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분이 발견 된 주요 구성 요소였습니다. 1 차 및 2 차 주파수 성분은 쵸핑 공정과 집중 라인 에너지의 영향으로 인해 발생했습니다.

빔 진동 주파수 성분은 빠르고 불안정한 용융 풀 동작과 관련이 있습니다. 웨이블릿 변환은 시간 경과에 따른 주파수 구성 요소의 변화를 기반으로 빠른 동작을 효과적으로 분석했습니다.

1 . 소개

융합 용접에서 용융 풀 역학은 용접 결함과 시각적 이음새 품질에 직접적인 영향을 미칩니다. 이러한 역학을 연구하기 위해 고속 카메라를 사용하는 직접 방법과 광학 또는 음향 신호를 사용하는 간접 방법과 같은 다양한 측정 방법을 사용하여 여러 실험 방법을 고려했습니다. 시간 도메인의 원래 신호는 특별히 주파수 도메인에서 변환 된 신호로 변환되어 용융 풀 동작에 영향을 미치는 주파수 성분을 분석합니다. Kotecki et al. (1972)는 고속 카메라를 사용하여 가스 텅스텐 아크 용접에서 용융 풀을 관찰했습니다. [1]. 그들은 120Hz 리플 DC 출력을 가진 용접 전원을 사용할 때 용융 풀 진동 주파수가 120Hz임을 보여주었습니다. 전원을 끈 후 진동 주파수는 용융 풀의 고유 주파수를 나타내는 용융 풀 크기와 관련이 있습니다. 진동은 응고 중에 용접 표면 스케일링을 생성했습니다. Zacksenhouse and Hardt (1983)는 레이저 섀도 잉 동작 측정 기술을 사용하여 가스 텅스텐 아크 용접에서 완전히 관통 된 용융 풀의 동작을 측정했습니다 [2] . 그들은 2.5mm 두께의 강판에서 6mm 풀 반경 (고정 용접)에 대해 용융 풀의 고유 주파수가 18.9Hz라는 것을 발견했습니다. Semak et al. (1995) 고속 카메라를 사용하여 레이저 스폿 용접에서 용융 풀 및 키홀 역학 조사 [3]. 그들은 깊이가 약 3mm이고 반경이 약 3mm 인 용융 풀에서 200Hz의 낮은 체적 진동 주파수를 관찰했습니다. 0.45mm Aendenroomer와 den Ouden (1998)은 강철의 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동을보고했습니다 [4] . 그들은 침투 깊이에 따라 진동 모드 변화를 보였고 주파수는 50Hz에서 150Hz 사이에서 변화했습니다. 주파수는 완전히 침투 된 용융 풀에서 더 낮았습니다. Hermans와 den Ouden (1999)은 단락 가스 금속 아크 용접에서 용융 풀 진동을 분석했습니다. [5]. 그들은 용융 풀의 단락 주파수와 고유 주파수가 같을 때 부분적으로 침투 된 용융 풀의 경우 공정 안정성이 향상되었음을 보여주었습니다. Yudodibroto et al. (2004)는 가스 텅스텐 아크 용접에서 용융 풀 진동에 대한 필러 와이어의 영향을 조사했습니다 [6] . 그들은 금속 전달이 특히 부분적으로 침투 된 용융 풀에서 진동 거동을 방해한다는 것을 보여주었습니다. Geiger et al. (2009) 레이저 키홀 용접에서 발광 분석 [7]. 신호의 주파수 분석을 사용하여 용융 풀 (1.5kHz 미만)과 키홀 (약 3kHz)에 해당하는 진동 주파수 범위를 찾았습니다. Kägeler와 Schmidt (2010)는 레이저 용접에서 용융 풀 크기의 변화를 관찰하기 위해 고속 카메라를 사용했습니다 [8] . 그들은 용융 풀에서 지배적 인 저주파 진동 성분 (100Hz 미만)을 발견했습니다. Shi et al. (2015) 고속 카메라를 사용하여 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동 주파수 분석 [9]. 그들은 용접 침투 깊이가 작을수록 용융 풀의 진동 빈도가 더 높다는 것을 보여주었습니다. 추출 된 진동 주파수는 완전 용입 용접의 경우 85Hz 미만 이었지만 부분 용입 용접의 경우 110Hz에서 125Hz 사이였습니다. Volpp와 Vollertsen (2016)은 레이저 키홀 역학을 분석하기 위해 광학 신호를 사용했습니다 [10] . 그들은 공간 레이저 강도 분포로 인해 0.8에서 154 kHz 사이의 고주파 범위에서 피크를 발견했습니다. 위에서 언급 한 실험적 접근법은 공정 조건, 측정 방법 및 측정 된 위치에 따라 수십 Hz에서 수십 kHz까지 광범위한 용융 풀 역학에 대한 결과를 보여 주었다는 점에 유의해야합니다.

융합 용접에서 용융 풀 역학을 연구하기 위해 분석 접근 방식도 사용되었습니다. Zacksenhouse와 Hardt (1983)는 2.5mm 두께의 강판에서 대칭형 완전 관통 용융 풀의 고유 진동수를 계산했습니다 [2] . 매스 스프링 해석 모델을 사용하여 용융 풀 반경 6mm (고정 용접)에 대해 20.4Hz (실험에서 18.9Hz)의 고유 진동수와 3mm 풀 반경 (연속 용접)에 대해 40Hz의 고유 진동수를 예측했습니다. ). Postacioglu et al. (1989)는 원통형 용융 풀과 키홀을 가정하여 레이저 용접의 용융 풀에서 키홀 진동의 고유 진동수를 계산했습니다 .. 특정 열쇠 구멍 모양의 경우 약 900Hz의 기본 주파수가 계산되었습니다. Postacioglu et al. (1991)은 또한 레이저 용접에서 용접 속도를 고려하기 위해 타원형 용융 풀의 고유 진동수를 계산했습니다 [12] . 그들은 타원형 용융 풀의 모양이 고유 진동수에 영향을 미친다는 것을 보여주었습니다. 고유 진동수는 축의 길이 비율이 낮았으며, 즉 타원의 반장 축과 반 단축의 비율이 낮았습니다. Kroos et al. (1993)은 축 대칭 용융 풀과 키홀을 가정하여 레이저 키홀 용접의 동적 거동에 대한 이론적 모델을 개발했습니다 .. 키홀 폐쇄 시간은 0.1ms였으며 안정성 분석은 약 500Hz의 주파수에서 공진과 같은 진동을 예측했습니다. Maruo와 Hirata (1993)는 완전 관통 아크 용접에서 용융 풀을 모델링했습니다 [14] . 그들은 녹은 웅덩이가 정적 타원 모양을 가지고 있다고 가정했습니다. 그들은 고유 진동수와 진동 모드 사이의 관계를 조사하고 용융 풀 크기가 감소함에 따라 고유 진동수가 증가한다는 것을 보여주었습니다. Klein et al. (1994)는 원통형 키홀 모양을 사용하여 완전 침투 레이저 용접에서 키홀 진동을 연구했습니다 [15] . 그들은 점성 감쇠로 인해 키홀 진동이 낮은 kHz 범위로 제한된다는 것을 보여주었습니다. Klein et al. (1996)은 또한 레이저 출력의 작은 변동이 강한 키홀 진동으로 이어질 수 있음을 보여주었습니다[16] . 그들은 키홀 진동의 주요 공진 주파수 범위가 500 ~ 3500Hz라는 것을 발견했습니다. Andersen et al. (1997)은 고정 가스 텅스텐 아크 용접 [17] 에서 고정 된 원통형 모양을 가정하여 용융 풀의 고유 진동수를 예측 했으며 완전 용입 용접에서 용융 풀 폭이 증가함에 따라 감소하는 것으로 나타났습니다. 3.175mm 두께의 강판의 경우 주파수는 20Hz ~ 100Hz 범위였습니다. 위에 표시된 분석 방법은 일반적으로 단순한 용융 풀 모양을 가정하고 고유 진동수를 계산했습니다. 이것은 단순한 용융 풀 모양으로 고정 용접 공정을 분석하는 데 충분하지만 대부분의 용접 사례를 설명하는 과도 용접 공정에서 용융 풀 역학 분석에는 적합하지 않습니다.

반면에 수치 접근 방식은 고온 및 강한 빛과 같은 실험적 제한없이 자세한 정보를 제공하기 때문에 용융 풀 역학을 분석하는 이점이 있습니다. 전산 유체 역학 (CFD)의 수치 시뮬레이션 기술이 발전함에 따라 용융 풀 역학 분석에 대한 많은 연구가 수행되었습니다. 실제 용융 표면 변화는 VOF (체적 부피) 방법을 사용하여 계산할 수 있습니다. Cho et al. (2010) CO 2 레이저-아크 하이브리드 용접 공정을 위한 수학적 모델 개발 [18], 구형 방울이 생성 된 금속 와이어의 용융 과정이 와이어 공급 속도와 일치한다고 가정합니다. 그들은 필러 와이어가 희석되는 용융 풀 동작을 보여주었습니다. Cho et al. (2012)는 높은 빔 품질과 높은 금속 흡수율로 인해 업계에서 널리 사용되는 디스크 레이저 키홀 용접으로 수학적 모델을 확장했습니다 [19] . 그들은 열쇠 구멍에서 레이저 광선 번들의 다중 반사를 고려하고 용융 풀에서 keyholing과 같은 빠른 표면 변화를 자세히보고했습니다. 최근 CFD 시뮬레이션은 험핑 (Otto et al., 2016 [20] ) 및 기공 (Lin et al., 2017 [21] )과 같은보다 구체적인 현상을 분석하는데도 사용되었습니다 .) 레이저 용접에서. 그러나 용융 풀 역학과 관련된 연구는 거의 수행되지 않았습니다. Ko et al. (2000)은 수치 시뮬레이션을 사용하여 가스 텅스텐 아크 용접 풀의 동적 거동을 조사했습니다 [22] . 그들은 완전히 침투 된 용융 풀이 부분적으로 침투 된 풀보다 낮은 주파수에서 진동한다는 것을 보여주었습니다. 진동은 수십 분의 1 초 내에 무시할 수있는 크기로 감쇠되었습니다. Geiger et al. (2009)는 또한 수치 시뮬레이션을 사용하여 레이저 용접에서 용융 풀 거동을 보여주었습니다 [7]. 그들은 계산 된 증발 속도를 주파수 분석에 사용하여 공정에서 나오는 빛의 실험 결과와 비교했습니다. 판금 레이저 용접에서 중요한 공간 빔 진동 및 추가 필러 재료가있는 공정에 대한 용융 풀 역학에 대한 연구도 불충분합니다. Hu et al. (2018)은 금속 전달 메커니즘을 밝히기 위해 전자빔 3D 프린팅에서 와이어 공급 모델링을 수행했습니다. 그들은 주로 열 입력에 의해 결정되는 액체 브리지 전이, 액적 전이 및 중간 전이의 세 가지 유형의 금속 전달 모드를 보여주었습니다 .. Meng et al. (2020)은 레이저 빔 용접에서 용융 풀에 필러 와이어에 의해 추가 된 추가 요소의 전자기 교반 효과를 모델링했습니다. 용가재의 연속적인 액체 브릿지 이동이 가정되었고, 그 결과 전자기 교반의 영향이 키홀 깊이에 미미한 반면 필러 와이어 혼합을 향상 시켰습니다 [24] . Cho et al. (2017) 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하여 레이저 용접을위한 시뮬레이션 모델 개발 [25]. 그들은 시뮬레이션을 사용하여 특정 용접 현상, 즉 용융 풀의 단추 구멍 형성을 보여주었습니다. Cho et al. (2018)은 다중 반사 수와 전력 흡수량의 푸리에 변환을 사용하여 주파수 영역에서 소위 쵸핑 주파수 (2 x 빔 발진 주파수) 성분을 발견했습니다 [26] . 그러나 그들은 용융 풀 역학을 분석하기 위해 간접 신호를 사용했습니다. 따라서보다 직관적 인 분석을 위해서는 표면의 변동을 직접 측정해야합니다.

이 연구는 이전 연구에서 개발 된 레이저 용접 모델을 사용하여 3 차원 과도 CFD 시뮬레이션을 수행하여 빔 진동 및 필러 와이어 공급을 포함한 레이저 용접 공정에서 용융 풀 역학을 조사합니다. 용융 된 풀 표면의 시간적 변화는 시뮬레이션 결과에서 추출되었습니다. 추출 된 데이터는 주파수 영역뿐만 아니라 시간-주파수 영역에서도 분석되었습니다. 신호 처리를 통해 도출 된 결과는 특징적인 용융 풀 역학을 나타내며 빔 진동 주파수 및 단추 구멍 형성 측면에서 레이저 용접의 역학을 줄일 수있는 잠재력을 제공합니다.

2 . 방법론

그림 1도 1은 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하는 레이저 용접 프로세스의 개략적 설명을 보여줍니다. 1mm 두께의 알루미늄 합금 (AlSi1MgMn) 시트는 시트 표면에 초점을 맞춘 멀티 kW 파이버 레이저 (YLR-8000S, IPG Photonics, USA)를 사용하여 용접되었습니다. 시트는 에어 갭이있는 맞대기 이음으로 정렬되었습니다. 1 차원 스캐너 (ILV DC-Scanner, Ingenieurbüro für Lasertechnik + Verschleiss-Schutz (ILV), 독일)를 사용하여 레이저 빔의 1 차원 정현파 진동을 실현했습니다. 이 스캔 시스템에서 최대 진동 폭은 250Hz의 진동 주파수에서 1.4mm입니다. 오정렬에 대한 공차를 개선하기 위해 동일한 최대 너비 값이 사용되었습니다. 와이어 공급 시스템은 1을 공급했습니다. 2mm 직경의 알루미늄 합금 (AlSi5) 필러 와이어를 일정한 공급 속도로 에어 갭을 채 웁니다. 1mm 에어 갭의 경우 와이어 이송 속도는 용접 속도의 1.5 배 값으로 설정되었으며 참조 실험 조건은 문헌에서 얻었습니다 (Schultz, 2015 참조).[27] ).

그림 1

CFD 시뮬레이션은 레이저 용접에서 열 전달 및 용융 풀 동작을 계산하기 위해 수행되었습니다. 그림 2 는 CFD 시뮬레이션을위한 계산 영역을 보여줍니다. 실온에서 1.2mm 직경의 필러 와이어가 공급되고 레이저 빔이 진동했습니다. 1mm 두께의 공작물이 용접 속도로 왼쪽에서 오른쪽으로 이동했습니다. 0.1mm의 최소 메쉬 크기가 도메인에서 생성되었습니다. 침투 깊이가 더 깊은 이전 연구의 메쉬 테스트 결과는 0.2mm 이하의 메쉬 크기로 시뮬레이션 정확도가 확보 된 것으로 나타 났으므로 [28] 본 연구에서 사용 된 메쉬 크기가 적절할 수 있습니다. 도메인을 구성하는 세포의 수는 약 120 만 개였습니다. 1 번 테이블사용 된 레이저 용접 매개 변수를 보여줍니다. 용융 풀 역학 측면에서 다양한 진동 주파수와 에어 갭 크기가 고려되었으며 12 개의 용접 사례가 표 2 에 나와 있습니다. 표 3 은 시뮬레이션에 사용 된 알루미늄 합금과 순수 알루미늄 (Cho et al., 2018 [26] )의 표면 장력 계수를 제외하고 온도와 무관 한 열-물리적 재료 특성을 보여줍니다 . 여기서 표면 장력 계수는 액체 온도에서 온도와 표면 장력 계수 사이의 선형 관계를 가진 유일한 온도 의존적 ​​특성이었습니다.

그림 2

표 1 . . 레이저 용접 매개 변수.

레이저 용접 매개 변수
레이저 빔 파워3.0kW
빔 허리 반경50µm *
용접 속도6.0m / 분
와이어 공급 속도9.0m / 분
빔 진동 폭1.4mm
빔 진동 주파수100Hz, 150Hz, 200Hz, 250Hz
에어 갭 크기0.8mm, 0.9mm, 1.0mm, 1.1mm

반경은 1.07μm의 파장, 4.2mm • mrad의 빔 품질, 시준 초점 거리 및 초점 렌즈 200mm, 광섬유 직경 100μm의 원형 빔을 가정하여 계산되었습니다.

표 2 . 이 연구에서 고려한 용접 사례.

에어 갭 크기 [mm]진동 주파수 [Hz]
100150200250
0.9사례 1엑스엑스엑스
1.0사례 2사례 4사례 7사례 10
1.1사례 3사례 5사례 8사례 11
1.2엑스사례 6사례 912면

표 3 . 시뮬레이션에 사용 된 열 물리적 재료 특성 (Cho et al., 2018 [26] ).

특성상징
밀도ρ2700kg / m3
열 전도성케이1.7×102Wm K
점도ν1.15×10−삼kg / ms
표면 장력 계수 티엘*γ엘0.871 J / m2
표면 장력 온도 구배 *−1.55×10−4J / m 2 K
표면 장력 계수γγ엘−ㅏ(티−티엘)
비열8.5×102J / kg K
융합 잠열h에스엘3.36×105J / kg
기화 잠열 *hV1.05×107J / kg
Solidus 온도티에스847K
Liquidus 온도티엘905K
끓는점 *티비2743K

순수한 알루미늄.

시뮬레이션을 위해 단상 뉴턴 유체와 비압축성 층류가 가정되었습니다. 질량, 운동량 및 에너지 보존의 지배 방정식을 해결하여 계산 영역에서 속도, 압력 및 온도 분포를 얻었습니다. VOF 방법은 자유 표면 경계를 찾는 데 사용되었습니다. 스칼라 보존 방정식을 추가로 도입하여 용융 풀에서 충전재의 부피 분율을 계산했습니다. 시뮬레이션에 사용 된 레이저 용접의 수학적 모델은 다음과 같습니다. 레이저 빔은 가우스와 같은 전력 밀도 분포를 기반으로 697 개의 광선 에너지 번들로 나뉩니다. 광선 추적 방법을 사용하여 다중 반사를 고려했습니다. 재료에 대한 레이저 빔의 반사 (또는 흡수) 에너지는 프레 넬 반사 모델을 사용하여 계산되었습니다. 온도에 따른 흡수율의 변화를 고려 하였다. 혼합물의 흡수율은베이스 및 충전제 물질 분획의 가중 평균을 사용하여 계산되었습니다. 반동 압력과 부력도 고려되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다.[29] . 계산에는 48GB RAM이 장착 된 Intel® Xeon® 프로세서 E5649로 구성된 워크 스테이션이 사용되었습니다. 계산 시스템을 사용하여 0.2 초 레이저 용접을 시뮬레이션하는 데 약 18 시간이 걸렸습니다. 지배 방정식 (Cho and Woizeschke, 2020 [30] ) 및 레이저 용접 모델 (Cho et al., 2018 [26] )에 대한 자세한 설명은 부록 A 에서 확인할 수 있습니다 .

그림 3 은 용융 풀 변동의 직접 측정에 대한 개략적 설명을 보여줍니다. 용융 풀의 역학을 분석하기 위해 시뮬레이션 중에 용융 풀 표면의 시간적 변동 운동을 측정했습니다. 상단 및 하단 표면 모두에서 10kHz의 샘플링 주파수로 변동을 측정 한 반면, 측정 위치는 X 축의 레이저 빔 위치에서 2mm 떨어진 용접 중심선에있었습니다. 그림 4시간 신호를 분석하는 데 사용되는 푸리에 변환 및 웨이블릿 변환의 개략적 설명을 보여줍니다. 측정 된 시간 신호는 고속 푸리에 변환 (FFT) 방법을 사용하여 주파수 영역으로 변환되었습니다. 결과는 측정 기간 동안 평균화 된 주파수 성분의 크기를 보여줍니다. 웨이블릿 변환 방법은 시간-주파수 영역에서 국부적 인 특성을 찾는 데 사용되었습니다. 결과는 주파수 구성 요소의 크기뿐만 아니라 시간 변화도 보여줍니다.

그림 3
그림 4

3 . 결과

이 연구 에서는 표 2에 표시된 12 가지 용접 사례 를 시뮬레이션했습니다. 그림 5 는 3 차원 시뮬레이션 결과를 평면도 와 바닥면으로 보여줍니다. 결과는 용융 된 풀의 거동에 따라 분류 할 수 있습니다 : 단추 구멍 형성 없음 (녹색), 안정 또는 불안정 단추 구멍 있음 (파란색), 불안정한 단추 구멍으로 인한 구멍 결함 (빨간색). 일반적인 열쇠 구멍보다 훨씬 큰 직경을 가진 단추 구멍은 레이저 용접의 특정 진동 조건에서 나타날 수 있습니다 (Vollertsen, 2016 [31]). 진동 주파수가 증가함에 따라 용접 이음 부 코스 및 스케일링 측면에서 시각적 이음새 품질이 향상되었습니다. 고주파에서 스케일링은 무시할 수있을 정도 였고 코스는 균질했습니다. 언더컷 결함의 발생도 감소했습니다. 그러나 관통 결함 부족 (case 7, case 10)이 나타났다. 에어 갭은 단추 구멍 형성에 중요했습니다. 에어 갭 크기가 증가함에 따라 단추 구멍이 더 쉽게 형성되었지만 구멍 결함으로 더 쉽게 남아 있습니다. 안정적인 단추 구멍 형성은 고려 된 공극 조건의 좁은 영역에서만 나타납니다.

그림 5

그림 6 은 시뮬레이션과 실험에서 융합 영역의 모양을 보여줍니다. 버튼 홀이없는 경우 1, 불안정한 버튼 홀 형성이있는 경우 8, 안정적인 버튼 홀 형성이있는 경우 11의 3 가지 경우에 대해 시뮬레이션 결과와 실험 결과를 비교하여 유사성을 나타냈다. 본 연구에서 고려한 용접 조건의 경우 표면 품질 결과는 Fig. 5 와 같이 큰 차이를 보였으 나 단면 융착 영역 [26] 과 형상은 큰 차이를 보이지 않았다.

그림 6

무화과. 7 과 8 은 각각 100Hz와 250Hz의 진동 주파수에서 시뮬레이션 결과를 기반으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여줍니다. 이전 연구에서 볼 수 있듯이 레이저 빔의 진동 주파수는 단추 구멍 형성과 밀접한 관련이 있습니다 (Cho et al., 2018 [26] 참조 ). 그림 7 (a) 및 (b)는 각각 시뮬레이션 및 실험을 기반으로 한 진동 주파수 100Hz에서 대표적인 용융 풀 동작을 보여줍니다. 완전히 관통 된 키홀 및 버튼 홀 형성은 관찰되지 않았으며 응고 후 거친 비드 표면이 남았습니다. 그림 7(c)와 (d)는 각각 윗면과 바닥면의 표면 변동에 대한 시뮬레이션 결과를 기반으로 한 용융 풀 역학 분석을 보여줍니다. 샘플링 데이터는 상단 표면이 공작물의 상단 표면 위치에서 평균적으로 변동하는 반면 하단 표면은 공작물의 하단 표면 위치에서 평균적으로 변동하는 것으로 나타났습니다. 표면 변동의 푸리에 변환 및 웨이블릿 변환 결과는 명확한 1  주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수, Cho et al., 2018 [26] 참조 ) 및 2  주파수 (4 x 빔 발진)를 보여줍니다. 주파수) 두 표면의 구성 요소, 그러나 바닥 표면과 첫 번째에 대한 결과주파수 성분이 더 강합니다. 반면 그림 8 (a)와 (b)에서 보는 바와 같이 250Hz의 진동 주파수에서 시뮬레이션과 실험 결과는 안정된 버튼 홀 형성과 응고 후 매끄러운 비드 표면을 나타냈다. 그림 8 의 샘플링 신호의 진폭은 그림 7 의 진폭 보다 작으며 푸리에 변환 및 웨이블릿 변환의 결과에서 중요한 주파수 성분이 발견되지 않았습니다.

Fi 7
그림 8

Fig. 9 는 진동 주파수 200Hz에서 시뮬레이션 결과를 바탕으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여준다. 이 주파수에서 Fig. 9 (a)와 (b) 에서 보는 바와 같이 , 시뮬레이션과 실험 모두에서 불안정한 buttonhole 거동이 관찰되었다. 바닥면에서 샘플링 데이터의 푸리에 변환 및 웨이블릿 변환의 결과 빔 발진 주파수 성분이 발견되었습니다.

그림 9

4 . 토론

시뮬레이션 및 실험 결과는 비드 표면 품질이 향상되고 빔 진동 주파수가 증가함에 따라 버튼 홀이 형성되는 것으로 나타났습니다. 표면의 변동 데이터에 대한 푸리에 변환 및 웨이블릿 변환의 결과에 따라 다음과 같은 주요 주파수 구성 요소가 발견되었습니다. 1  및 2 버튼 홀 형성이없는 주파수, 불안정한 용융 풀 거동이있는 빔 진동 주파수, 안정적인 버튼 홀 형성이있는 중요한 주파수 성분이 없습니다. 이들 중 불안정한 용융 풀 동작과 관련된 빔 진동 주파수 성분은 완전히 관통 된 키홀과 반복적으로 생성 및 붕괴되는 불안정한 버튼 홀의 특성으로 인해 웨이블릿 변환 결과에서 명확한 실선 형태로 나타나지 않았습니다. 분석 결과는 윗면보다 바닥면에서 더 분명했습니다. 이는 필러 와이어 공급 및 키홀 링 공정에서 강한 하향 흐름으로 인해 용융 풀 역학이 바닥 표면 영역에서 더 강했기 때문입니다. 진동 주파수가 증가함에 따라 용융 풀 역학과 상단 표면과 하단 표면 간의 차이가 감소했습니다.

첫 번째 주파수 (2 x 빔 진동 주파수)는이 연구에서 관찰 된 가장 분명한 구성 요소였습니다. Schultz et al. (2018)은 또한 실험을 통해 동일한 성분을 발견했습니다 [32] , 용융 풀 표면 운동에 대한 푸리에 분석을 수행했습니다. 첫 번째 주파수 성분은 빔 발진주기 당 두 개의 주요 이벤트가 있음을 의미합니다. 이것은 레이저 빔이 빔 진동주기 당 두 번 와이어를 절단하거나 절단하는 프로세스와 일치합니다. 용융 된 와이어 팁은 낮은 진동 주파수에서 고르지 않고 날카로운 모서리를 갖는 것으로 나타났습니다 (Cho et al., 2018 [26] ). 이것은 첫 번째 원인이 될 수 있습니다.용융 된 풀에서 지배적이되는 주파수 성분. 진동 주파수가 증가하면 용융 된 와이어 팁이 더 균일 해 지므로 효과가 감소합니다. 용접 방향으로의 정현파 횡 방향 빔 진동을 통한 에너지 집중도 빔 진동주기 당 두 번 발생합니다. 그림 10 은 발진 주파수에 따른 레이저 빔의 라인 에너지 (단위 길이 당 에너지)의 변화를 보여줍니다. 그림 10 b) 의 라인 에너지 는 레이저 출력을 공정 속도로 나누어 계산했습니다. 여기서 처리 속도는(w이자형엘디나는엔지에스피이자형이자형디)2+(디(에스나는엔유에스영형나는디ㅏ엘wㅏV이자형나는엔에프나는지.10ㅏ))디티)2. 낮은 발진 주파수에서 라인 에너지는 발진 폭의 양쪽 끝에 과도하게 집중됩니다. 이러한 집중된 에너지는 과도한 키홀 링 프로세스를 초래하므로 언더컷 결함이 나타날 수있는 높은 흐름 역학이 발생합니다. 진동 주파수가 증가함에 따라 집중 에너지는 더 작은 조각으로 나뉩니다. 따라서 높은 진동 주파수에서 과도한 키홀 링 및 수반되는 언더컷 결함의 발생이 감소되었습니다. 위에서 언급 한 두 가지 현상 (불균일 한 와이어 팁과 집중된 라인 에너지)은 빔 발진주기 당 두 번 발생하며 발진 주파수가 증가하면 그 효과가 감소합니다. 따라서 저주파 에서 2  주파수 성분 (4 x 빔 발진 주파수)이 나타나는 것은이 두 현상의 동시 작용입니다.

그림 10

두 가지 현상 중 첫 번째 주파수 에 대한 주된 효과 는 집중된 라인 에너지입니다. Cho et al. (2018)은 전력 흡수 데이터를 푸리에 변환을 사용하여 분석했을 때 1  주파수 성분이 더 우세 해졌고, 2  주파수 성분은 발진 주파수가 증가함에 따라 상대적으로 약화 되었음을 보여주었습니다 [26] . 용융 된 와이어 팁은 또한 빈도가 증가함에 따라 더욱 균일 해졌습니다. 결과는 진동 주파수의 증가가 용융 풀에 대한 와이어의 영향을 제거하는 것으로 나타났습니다. 따라서 발진 주파수가 증가함에 따라 라인 에너지 집중의 영향 만 남을 수 있습니다. 그림 10 과 같이, 집중 선 에너지가 작은 조각으로 분할되기 때문에 효과도 감소하지만 최대 값이 변경되지 않았기 때문에 여전히 효과적입니다.

빔 진동 주파수 성분은 불안정한 단추 구멍 및 열쇠 구멍 붕괴를 수반하는 불안정한 용융 풀 동작과 관련이 있습니다. 언더컷 결함이있는 케이스 8 (발진 주파수 200Hz)에서 발진 주파수 성분이 관찰되었습니다. 이것은 특히 완전히 관통 된 열쇠 구멍과 불안정한 단추 구멍에서 불안정한 용융 풀 동작을 보여주었습니다. 경우 10 (진동 주파수 250Hz)의 경우 상대적으로 건강한 비드가 형성 되었으나, 도 11 (a) 와 같이 웨이블릿 변환 결과에서 t1의 시간 간격으로 진동 주파수 성분이 관찰되었다 . 이 시간 간격 t1의 용융 풀 거동은 그림 11에 나와 있습니다.(비). 완전히 관통 된 열쇠 구멍이 즉시 무너지는 것이 분명하게 관찰되었습니다. 이것은 진동 주파수 성분이 불안정한 용융 풀 거동과 밀접한 관련이 있음을 보여줍니다. 발견 된 주파수 성분으로부터 완전히 관통 된 열쇠 구멍과 같은 불안정한 용융 풀 거동을 예측할 수 있습니다. 완전히 관통 된 키홀이 반복적으로 붕괴되기 때문에 빔 진동 주파수 성분은 그림 9 (d) 와 같이 웨이블릿 변환 결과에서 명확한 실선 형태로 보이지 않습니다 .

그림 11

Cho and Woizeschke (2020)에 따르면 단추 구멍 형성은 자체 지속 가능한 카테 노이드처럼 작용하기 때문에 용융 풀 역학을 감소시킬 수 있습니다 [30] . 그림 12 는 버튼 홀 형성 측면에서 t2의 시간 간격에서 용융 풀 거동의 변화를 보여줍니다. 단추 구멍은 t2의 간헐적 인 부분에만 형성되었습니다. 1st 이후이 시간 동안 웨이블릿 변환의 결과로 주파수 성분이 사라졌고, 버튼 홀 형성은 용융 풀 역학을 줄이는 데 효과적이었습니다. 따라서, 웨이블릿 변환의 결과로 주파수 성분이 지워지는 것을 관찰함으로써 버튼 홀 형성을 예측할 수있다. 이와 관련하여 웨이블릿 변환 기술은 시간에 따른 용융 풀 변화를 나타낼 수 있습니다. 이 기술은 향후 용융 풀 동작을 모니터링하는 데 사용될 수 있습니다.

그림 12

5 . 결론

CFD 시뮬레이션 결과를 사용하여 빔 진동 및 필러 와이어 공급을 통한 레이저 용접에서 용융 풀 역학을 분석 할 수있었습니다. 용융 풀 표면의 변동 데이터의 푸리에 변환 및 웨이블릿 변환은 여기서 용융 풀 역학을 분석하는 데 사용되었습니다. 결과는 다음과 같은 결론으로 ​​이어집니다.1.

 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2  주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분은 푸리에 변환 및 웨이블릿 변환 분석에서 발견 된 주요 성분이었습니다.2.

 주파수와 2  주파수 성분 의 출현은 두 가지 사건, 즉 레이저 빔에 의한 필러 와이어의 절단 공정과 집중된 레이저 라인 에너지의 효과의 결과였습니다. 이는 빔 진동주기 당 두 번 발생했습니다. 따라서 두 번째 주파수 성분은 동시 작용으로 인해 발생했습니다. 빔 진동 주파수 성분은 불안정한 용융 풀 동작과 관련이 있습니다. 구성 요소는 열쇠 구멍과 단추 구멍의 붕괴와 함께 나타났습니다.삼.

낮은 발진 주파수에서는 1  주파수와 2  주파수 성분이 함께 나타 났지만 발진 주파수가 증가함에 따라 그 크기가 함께 감소했습니다. 집중 선 에너지는 주파수가 증가함에 따라 최대 값이 변하지 않는 반면, 잘게 잘린 선단이 평평 해져 그 효과가 사라졌기 때문에 쵸핑 프로세스보다 더 큰 영향을 미쳤습니다.4.

용융 풀 거동의 빠른 시간적 변화는 웨이블릿 변환 방법을 사용하여 분석되었습니다. 따라서이 방법은 열쇠 구멍 및 단추 구멍의 형성 및 붕괴와 같은 일시적인 용융 풀 변화를 해석하는 데 사용할 수 있습니다.

CRediT 저자 기여 성명

조원익 : 개념화, 방법론, 소프트웨어, 검증, 형식 분석, 조사, 데이터 큐 레이션, 글쓰기-원고, 글쓰기-검토 및 편집. Peer Woizeschke : 감독, 프로젝트 관리, 작문-검토 및 편집.

경쟁 관심의 선언

저자는이 논문에보고 된 작업에 영향을 미칠 수있는 경쟁적인 재정적 이해 관계 나 개인적 관계가 없다고 선언합니다.

감사의 말

이 작업은 알루미늄 합금 용접 역량 센터 (Centr-Al)에서 수행되었습니다. Deutsche Forschungsgemeinschaft (DFG, 프로젝트 번호 290705638 , “용접 풀 캐비티를 생성하여 레이저 깊은 용입 용접에서 매끄러운 이음매 표면”) 의 자금은 감사하게도 인정됩니다.

부록 A . 사용 된 지배 방정식 및 레이저 용접 모델

1 . 지배 방정식 (Cho 및 Woizeschke [ 30 ])

-대량 보존 방정식,(A1)∇·V→=미디엄˙에스ρ어디, V→속도 벡터입니다. ρ밀도이고 미디엄˙에스필러 와이어를 공급하여 질량 소스의 비율입니다. 단위미디엄에스단위 부피당 질량입니다. WFS (와이어 공급 속도) 및 필러 와이어의 직경과 같은 매스 소스 및 필러 와이어 조건,디w계산 영역에서 다음과 같은 관계가 있습니다.(A2)미디엄=∫미디엄에스디V=미디엄0+씨×ρ×W에프에스×π디w24×티어디, 미디엄총 질량, 미디엄0초기 총 질량, V볼륨입니다.씨단위 변환 계수입니다. 티시간입니다.

-운동량 보존 방정식,(A3)∂V→∂티+V→·∇V→=−1ρ∇피+ν∇2V→−케이V→+미디엄˙에스ρ(V에스→−V→)+지어디, 피압력입니다. ν동적 점도입니다. 케이뭉툭한 영역의 다공성 매체 모델에 대한 항력 계수, V에스→질량 소스에 대한 속도 벡터입니다. 지신체 힘으로 인한 신체 가속도입니다.

-에너지 절약 방정식,(A4)∂h∂티+V→·∇h=1ρ∇·(케이∇티)+h˙에스어디, h특정 엔탈피입니다. 케이열전도율, 티온도이고 h˙에스특정 엔탈피 소스로, Eq 의 질량 소스와 연관됩니다 (A1) . 계산 영역의 총 에너지,이자형다음과 같이 계산됩니다.(A5)이자형=∫미디엄에스h에스디V=∫미디엄에스씨Vw티w디V어디, 씨Vw질량 원의 비열, 티w질량 소스의 온도입니다.

또한, 엔탈피 기반 연속체 모델을 사용하여 고체-액체 상 전이를 고려했습니다.

-VOF 방정식,(A6)∂에프∂티+∇·(V→에프)=에프˙에스어디, 에프유체가 차지하는 부피 분율이며 0과 1 사이의 값을 가지며 에프˙에스질량의 소스와 연결된 유체의 체적 분율의 비율 식. (A1) . 질량 공급원에 해당하는 부피 분율은 다음에 할당됩니다.에프에스.

-스칼라 보존 방정식,(A7)∂Φ∂티+∇·(V→Φ)=Φ˙에스어디, Φ필러 와이어의 스칼라 값입니다. 셀의 유체가 전적으로 필러 와이어로 구성된 경우Φ1이고 유체에 대한 필러 와이어의 부피 분율에 따라 0과 1 사이에서 변경됩니다. Φ˙에스Eq 에서 질량 소스에 연결된 스칼라 소스의 비율입니다 (A1) . 스칼라 소스는 전적으로 필러 와이어이기 때문에 1에 할당됩니다. 확산 효과는 고려되지 않았습니다.

2 . 레이저 용접 모델 (Cho et al. [26] )

흡수율을 계산하기 위해 프레 넬 반사 모델을 사용했습니다. ㅏ=1−ρ씨재료의 표면 상에 도시 된 바와 같이 수학 식. (A8) 원 편광 빔의 경우.(A8)ㅏ=1−ρ씨=1−12(ρ에스+ρ피)어디,ρ에스=(엔1씨영형에스θ−피)2+큐2(엔1씨영형에스θ+피)2+큐2,ρ에스=(피−엔1에스나는엔θ티ㅏ엔θ)2+큐2(피+엔1에스나는엔θ티ㅏ엔θ)2+큐2,피2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22+[엔22−케이22−(엔1에스나는엔θ)2]},큐2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22−[엔22−케이22−(엔1에스나는엔θ)2]}.어디, 복잡한 인덱스 엔1과 케이1반사 지수와 공기의 흡수 지수이며 엔2과 케이2공작물을위한 것입니다. θ입사각입니다. 도시 된 바와 같이 수학 식. (A9)에서 , 혼합물의 흡수율은 식에서 얻은 모재 및 필러 와이어 분획의 가중 평균이됩니다 . (A7) .(A9)ㅏ미디엄나는엑스티유아르 자형이자형=Φㅏw나는아르 자형이자형+(1−Φ)ㅏ비ㅏ에스이자형어디, ㅏ비ㅏ에스이자형과 ㅏw나는아르 자형이자형각각 비금속과 필러 와이어의 흡수율입니다.

자유 표면 경계에서의 반동 압력 에이 싱은 Eq. (A10) .(A10)피아르 자형(티)≅0.54피에스ㅏ티(티)=0.54피0이자형엑스피(엘V티−티비아르 자형¯티티비)어디, 피에스ㅏ티포화 압력, 피0대기압입니다. 엘V기화의 잠열, 티비끓는 온도이고 아르 자형¯보편적 인 기체 상수입니다.

참고 문헌

D.J. Kotecki, D.L. Cheever, D.G. Howden
Mechanism of ripple formation during weld solidification
Weld. J., 51 (8) (1972), pp. 386s-391s
Google Scholar
[2]
M. Zacksenhouse, D.E. Hardt
Weld pool impedance identification for size measurement and control
J. Dyn. Syst. Meas. Control, 105 (3) (1983), pp. 179-184
CrossRefView Record in ScopusGoogle Scholar
[3]
V.V. Semak, J.A. Hopkins, M.H. McCay, T.D. McCay
Melt pool dynamics during laser welding
J. Phys. D, 28 (1995), pp. 2443-2450
CrossRefView Record in ScopusGoogle Scholar
[4]
A.J.R. Aendenroomer, G. den Ouden
Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding
Weld. J., 77 (5) (1998), pp. 181s-187s
Google Scholar
[5]
M.J.M. Hermans, G. den Ouden
Process behavior and stability in short circuit gas metal arc welding
Weld. J., 78 (4) (1999), pp. 137-141
View Record in ScopusGoogle Scholar
[6]
B.Y.B. Yudodibroto, M.J.M. Hermans, Y. Hirata, G. den Ouden
Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding
Sci. Technol. Weld. Join., 9 (2) (2004), pp. 163-168
View Record in ScopusGoogle Scholar
[7]
M. Geiger, K.-H. Leitz, H. Koch, A. Otto
A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets
Prod. Eng. Res. Dev., 3 (2009), pp. 127-136
CrossRefView Record in ScopusGoogle Scholar
[8]
C. Kägeler, M. Schmidt
Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets
Phys. Procedia, 5 (2010), pp. 447-453
ArticleDownload PDFView Record in ScopusGoogle Scholar
[9]
Y. Shi, G. Zhang, X.J. Ma, Y.F. Gu, J.K. Huang, D. Fan
Laser-vision-based measurement and analysis of weld pool oscillation frequency in GTAW-P
Weld. J., 94 (2015), pp. 176s-187s
Google Scholar
[10]
J. Volpp, F. Vollertsen
Keyhole stability during laser welding—part I: modelling and evaluation
Prod. Eng.-Res. Dev., 10 (2016), pp. 443-457
CrossRefView Record in ScopusGoogle Scholar
[11]
N. Postacioglu, P. Kapadia, J. Dowden
Capillary waves on the weld pool in penetration welding with a laser
J. Phys. D, 22 (1989), pp. 1050-1061
CrossRefView Record in ScopusGoogle Scholar
[12]
N. Postacioglu, P. Kapadia, J. Dowden
Theory of the oscillations of an ellipsoidal weld pool in laser welding
J. Phys. D, 24 (1991), pp. 1288-1292
CrossRefView Record in ScopusGoogle Scholar
[13]
J. Kroos, U. Gratzke, M. Vicanek, G. Simon
Dynamic behaviour of the keyhole in laser welding
J. Phys. D, 26 (1993), pp. 481-486
View Record in ScopusGoogle Scholar
[14]
H. Maruo, Y. Hirata
Natural frequency and oscillation modes of weld pools. 1st Report: weld pool oscillation in full penetration welding of thin plate
Weld. Int., 7 (8) (1993), pp. 614-619
CrossRefView Record in ScopusGoogle Scholar
[15]
T. Klein, M. Vicanek, J. Kroos, I. Decker, G. Simon
Oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 27 (1994), pp. 2023-2030
CrossRefView Record in ScopusGoogle Scholar
[16]
T. Klein, M. Vicanek, G. Simon
Forced oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 29 (1996), pp. 322-332
View Record in ScopusGoogle Scholar
[17]
K. Andersen, G.E. Cook, R.J. Barnett, A.M. Strauss
Synchronous weld pool oscillation for monitoring and control
IEEE Trans. Ind. Appl., 33 (2) (1997), pp. 464-471
View Record in ScopusGoogle Scholar
[18]
W.-I. Cho, S.-J. Na, M.-H. Cho, J.-S. Lee
Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding
Comput. Mater. Sci., 49 (2010), pp. 792-800
ArticleDownload PDFView Record in ScopusGoogle Scholar
[19]
W.-I. Cho, S.-J. Na, C. Thomy, F. Vollertsen
Numerical simulation of molten pool dynamics in high power disk laser welding
J. Mater. Process. Technol., 212 (2012), pp. 262-275
ArticleDownload PDFView Record in ScopusGoogle Scholar
[20]
A. Otto, A. Patschger, M. Seiler
Numerical and experimental investigations of humping phenomena in laser micro welding
Phys. Procedia, 83 (2016), pp. 1415-1423
ArticleDownload PDFView Record in ScopusGoogle Scholar
[21]
R. Lin, H.-P. Wang, F. Lu, J. Solomon, B.E. Carlson
Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys
Int. J. Heat Mass Trans., 108 (2017), pp. 244-256
ArticleDownload PDFView Record in ScopusGoogle Scholar
[22]
S.H. Ko, C.D. Yoo, D.F. Farson, S.K. Choi
Mathematical modeling of the dynamic behavior of gas tungsten arc weld pools
Metall. Mater. Trans. B., 31B (2000), pp. 1465-1473
CrossRefView Record in ScopusGoogle Scholar
[23]
R. Hu, X. Chen, G. Yang, S. Gong, S. Pang
Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion
Int. J. Heat Mass Transf., 126 (2018), pp. 877-887
ArticleDownload PDFView Record in ScopusGoogle Scholar
[24]
X. Meng, A. Artinov, M. Bachmann, M. Rethmeier
Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding
J. Laser Appl., 32 (2020), Article 022026
CrossRefGoogle Scholar
[25]
W.-I. Cho, V. Schultz, F. Vollertsen
Simulation of the buttonhole formation during laser welding with wire feeding and beam oscillation
L. Overmeyer, U. Reisgen, A. Ostendorf, M. Schmidt (Eds.), Proceedings of the Lasers in Manufacturing, German Scientific Laser Society, Munich, Germany (2017)
Google Scholar
[26]
W.-I. Cho, V. Schultz, P. Woizeschke
Numerical study of the effect of the oscillation frequency in buttonhole welding
J. Mater. Process. Technol., 261 (2018), pp. 202-212
ArticleDownload PDFView Record in ScopusGoogle Scholar
[27]
V. Schultz, T. Seefeld, F. Vollertsen
Bridging Large Air Gaps by Laser Welding with Beam Oscillation
International Conference on Application of Lasers in Manufacturing, New Delhi, India (2015), pp. 31-32
CrossRefGoogle Scholar
[28]
W.-I. Cho, S.-J. Na
Impact of wavelengths of CO2, disk, and green lasers on fusion zone shape in laser welding of steel
J. Weld. Join., 38 (3) (2020), pp. 235-240
CrossRefView Record in ScopusGoogle Scholar
[29]
FLOW-3D User Manual. 2017. Version 11.2.1.06, Flow Science Inc.
Google Scholar
[30]
W.-I. Cho, P. Woizeschke
Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal
Int. J. Heat Mass Transf., 152 (2020), Article 119528
ArticleDownload PDFView Record in ScopusGoogle Scholar
[31]
F. Vollertsen
Loopless production: definition and examples from joining
69th IIW Annual Assembly and International Conference, Melbourne, Australia (2016)
Google Scholar
[32]
V. Schultz, W.-I. Cho, A. Merkel, P. Woizeschke
Deep penetration laser welding with high seam surface quality due to buttonhole welding
Proc. of the IIW Annual Assembly, Com. IV, Bali, Indonesia (2018)
IIW-Doc. IV-1390-18

Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.

Investigation on Laser Welding of Al Ribbon to Cu Sheet: Weldability, Microstructure, and Mechanical and Electrical Properties

알루미늄 리본과 구리 시트의 레이저 용접에 대한 조사 : 용접성, 미세 구조, 기계적 및 전기적 특성

Won‐Sang Shin 1,†, Dae‐Won Cho 2,†, Donghyuck Jung 1, Heeshin Kang 3, Jeng O Kim 3, Yoon‐Jun Kim 1,*
and Changkyoo Park 3,*

Al 리본과 Cu 시트의 펄스 레이저 용접은 전력 전자 모듈의 전기적 상호 연결에 대해 조사되었습니다. 결함 없는 Al / Cu 조인트를 얻기 위해 레이저 출력, 스캔 속도 및 열 입력이 서로 다른 다양한 실험 조건이 사용되었습니다. Al / Cu 레이저 용접 중에 금속 간 화합물이 용접 영역에 형성되었습니다. 전자 탐침 마이크로 분석기와 투과 전자 현미경으로 Al4Cu9, Al2Cu, AlCu 등으로 밝혀진 금속 간 화합물의 상을 확인했습니다. 전산 유체 역학 시뮬레이션은 Marangoni 효과가 용융 풀의 순환을 유도하여 혼합물을 생성하는 것으로 나타났습니다. Al과 Cu의 결합과 Al / Cu 조인트에서 소용돌이 모양의 구조 형성. Al / Cu 접합부의 인장 전단강도와 전기 저항을 측정하였으며 용접 면적과 강한 상관 관계를 보였다. Al / Cu 접합부의 용접 면적이 증가함에 따라 기계적 강도의 감소와 전기 저항의 증가가 측정 되었습니다. 또한 무결점 Al / Cu 접합을 위한 공정 창을 개발하고 Al / Cu 레이저 브레이즈 용접을 위한 실험 조건을 조사하여 Al / Cu 접합에서 금속 간 화합물 형성을 최소화했습니다.

Introduction

전기 상호 연결은 전력 전자 모듈을 패키징하는 데 중요합니다. 우수한 기계적 및 전기적 특성을 가진 견고한 전기적 상호 연결은 전력 전자 모듈의 전기적 고장을 방지하는 데 필수적입니다. 저항 스폿 용접, 브레이징, 납땜 및 초음파 용접 (USW)이 전기 상호 연결에 사용되었습니다.

납땜과 납땜 모두 저온 공정으로 인해 접합부에서 한계 변형과 잔류 응력이 발생합니다 [1]. 필러 합금은 두 공정 모두 견고한 전기 접촉을 달성하는 데 필수적입니다. 따라서 조인트는 서로 접촉하는 서로 다른 금속으로 구성됩니다.

결과적으로 조인트는 부식 환경에서 갈바닉 부식에 취약 할 수 있습니다 [2,3]. 더욱이, 비금속과 충전재 사이의 친화도를 고려해야 하기 때문에 제한된 충전재 만 특정 조인트에 사용할 수 있습니다 [1]. USW는 용접 온도가 낮고 용접 시간이 짧기 때문에 접합부의 변형이 비교적 적습니다.

따라서 이는 특히 연질 재료 (예 : Al, Cu, Ag, Au 및 Ni)의 경우 기존 접합 방법을 대체하고 있습니다 [4–6]. 그러나 Cu를위한 USW 공정의 경우, 표면 산화물이 강해 용접성이 저하되는 것을 방지하기 위해 Cu 표면에 Sn 또는 Ni 코팅이 필요하며, 이는 공정 속도를 늦추고 산업적 응용을위한 경제적 측면을 악화시킨다 [7 , 8].

레이저 용접은 쉬운 제어, 고정밀 및 원격 처리의 특성으로 인해 전력 전자 모듈의 전기 연결에 대한 유망한 후보입니다. 열의 영향을 받는 작은 영역과 변형은 전기 접점의 손상을 최소화 할 것으로 예상됩니다 [9-11]. 또한 레이저 용접을 위해 추가 표면 준비가 필요하지 않습니다.

이종 재료의 용접은 산업 응용 분야에서 중요했습니다. 더욱이 그림 1 [12,13]에서 볼 수 있듯이 전기 연결을위한 와이어 또는 리본 본딩에 여러 다른 조인트가 필요하기 때문에 전력 전자 모듈에서 필수적인 기술이되고 있습니다.

전기 접점의 다양한 조합 중에서 Al과 Cu는 높은 전기 전도성으로 인해 전기 연결에 중요한 재료로 종종 간주됩니다 [14]. 그러나 Al과 Cu의 서로 다른 용접은 금속 간 화합물 (IMC)의 형성을 촉진하고 동시에 Al / Cu 조인트의 기계적 및 전기적 특성에 영향을 줍니다. 일반적으로 Al / Cu 조인트 내부에 IMC가 있으면 연성 및 전기 저항에 해를 끼치므로 균열이 쉽게 발생하고 용접을 통한 전기 전도도를 방해합니다 [15,16].

따라서 견고한 Al / Cu 조인트를 얻으려면 IMC의 형성을 피해야합니다. 여러 연구에서 Al 및 Cu 시트의 레이저 빔 용접을 조사했습니다. 연속파 (CW) 레이저가 Al / Cu 조인트에 사용되었습니다 [17-23]. 큰 열 입력과 상당한 IMC 형성으로 인해 용접 영역에서 많은 균열이 관찰되었습니다 [18,19].

CW 레이저 빔의 공간 진동은 Al / Cu 조인트의 용접 품질을 향상시키는 것으로 나타났습니다. 직선 CW 레이저 빔 [18-20]과 비교하여 용접 영역에서 IMC 크기가 더 작은 기공과 균열이 더 적습니다.

Al과 Cu 시트의 겹침 접합에는 CW 단일 모드 파이버 레이저를 사용했으며, IMC 형성을 억제하여 높은 용접 속도 (즉, 50m / min)에서 견고한 Al / Cu 접합을 얻었습니다 [22]. Mai et al. [23]은 다른 Al / Cu 용접을 달성하기 위해 펄스 레이저를 사용했습니다.

그들은 Al / Cu 용접성이 레이저 공정 매개 변수에 크게 의존한다는 것을 밝혔으며 100mm / min 미만의 스캔 속도에서 균열없는 Al / Cu 접합을 달성하는 데 성공했습니다.

본문 내용 생략 : 문서 하단부의 원문보기를 참고하시기 바랍니다.

Figure 1. Schematic diagram of the insulated gate bipolar transistors (IGBT) power module. Red‐dotted box indicated the electrical connections
Figure 1. Schematic diagram of the insulated gate bipolar transistors (IGBT) power module. Red‐dotted box indicated the electrical connections
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.
Figure 3. Schematic diagram of the numerical simulation domain and boundary conditions.
Figure 3. Schematic diagram of the numerical simulation domain and boundary conditions.
Figure 4. Experimental setup for the four‐point electrical resistance measurement.
Figure 4. Experimental setup for the four‐point electrical resistance measurement.
Figure 5. Cross‐sectional OM image of the Al/Cu joints in parallel to the laser welding direction. The laser power and scan speed were set at 2300 W and 20 mm/s, respectively.
Figure 5. Cross‐sectional OM image of the Al/Cu joints in parallel to the laser welding direction. The laser power and scan speed were set at 2300 W and 20 mm/s, respectively.
Figure 6 shows the cross‐sectional SEM images of the Al/Cu joints, and corresponding EPMA element mapping of Al and Cu for the (a) 23/20, (b) 25/28.6, (c) 25/15.4, and (d) 27/20.
Figure 6 shows the cross‐sectional SEM images of the Al/Cu joints, and corresponding EPMA element mapping of Al and Cu for the (a) 23/20,
Figure 6. Cross‐sectional SEM image and elemental distribution mapping of Al and Cu elements for the (a) 23/20, (b) 25/28.6, (c) 25/15.4, and (d) 27/20.
Figure 6. Cross‐sectional SEM image and elemental distribution mapping of Al and Cu elements for the (d) 27/20.
Figure 7. EPMA line scan analysis and identification of the IMCs for the (a) 23/20 and (b) 25/15.4.
Figure 7. EPMA line scan analysis and identification of the IMCs for the (a) 23/20 and (b) 25/15.4.
Figure 8. TEM analysis for the 25/28.6. (a) Indicating the location of TEM analysis in SEM image of the welding zone. (b) TEM bright‐field image and SAED pattern insets, examined at the location (1) in figure (a), confirmed Al‐rich phase (white globular shape) and Al2Cu eutectic phase (gray region), and (c) TEM bright‐field image and SAED pattern inset of Al4Cu9, examined at the location (2) in figure (a).
Figure 8. TEM analysis for the 25/28.6. (a) Indicating the location of TEM analysis in SEM image of the welding zone. (b) TEM bright‐field image and SAED pattern insets, examined at the location (1) in figure (a), confirmed Al‐rich phase (white globular shape) and Al2Cu eutectic phase (gray region), and (c) TEM bright‐field image and SAED pattern inset of Al4Cu9, examined at the location (2) in figure (a).
Figure 9. Temperature profiles and molten pool flow on transverse cross‐section (y–z plane at x = 1.23 cm): (a) Negative surface tension gradient for the 23/20 (Case 1), (b) negative surface tension gradient for the 25/15.4 (Case 2), (c) positive surface tension gradient for the 25/15.4 (Case 3), and (d) without surface tension for the 25/15.4 (Case 4).
Figure 9. Temperature profiles and molten pool flow on transverse cross‐section (y–z plane at x = 1.23 cm): (a) Negative surface tension gradient for the 23/20 (Case 1), (b) negative surface tension gradient for the 25/15.4 (Case 2), (c) positive surface tension gradient for the 25/15.4 (Case 3), and (d) without surface tension for the 25/15.4 (Case 4).
Figure 12. Results of the tensile shear tests for the (a) 23/20: fracture at the Al ribbon and (b) 25/15.4: fracture at the weld
Figure 12. Results of the tensile shear tests for the (a) 23/20: fracture at the Al ribbon and (b) 25/15.4: fracture at the weld
Figure 13. Stress–strain curves obtained by the tensile shear tests.
Figure 13. Stress–strain curves obtained by the tensile shear tests.

References

  1. Schwartz, M.M.; Aircraft, S. Introduction to Brazing and Soldering. ASM Int. 2018, 6, doi.org/10.31399/asm.hb.v06.a0001344.
  2. Vianco, P.T. Corrosion issues in solder joint design and service. Weld. J. 1999, 78, 39–46.
  3. Shi, Y.; Li, J.; Zhang, G.; Huang, J.; Gu, Y. Corrosion Behavior of Aluminum‐Steel Weld‐Brazing Joint. J. Mater. Eng. Perform.
    2016, 25, 1916–1923, doi:10.1007/s11665‐016‐2020‐9.
  4. Harman, G.G. Wire Bonding in Microelectronics: Materials, Processes, Reliability and Yield, 3rd ed; McGraw‐Hill Education: New
    York, NY, USA, 2010; ISBN 9780071642651.
  5. Aonuma, M.; Nakata, K. Dissimilar metal joining of ZK60 magnesium alloy and titanium by friction stir welding. Mater. Sci.
    Eng. B Solid State Mater. Adv. Technol. 2012, 177, 543–548, doi:10.1016/j.mseb.2011.12.031.
  6. Sasaki, T.; Watanabe, T.; Hosokawa, Y.; Yanagisawa, A. Analysis for relative motion in ultrasonic welding of aluminium sheet.
    Sci. Technol. Weld. Jt. 2012, 18, 19–24, doi:10.1179/1362171812Y.0000000066.
  7. Maeda, M.; Sato, T.; Inoue, N.; Yagi, D.; Takahashi, Y. Anomalous microstructure formed at the interface between copper ribbon
    and tin‐deposited copper plate by ultrasonic bonding. Microelectron. Reliab. 2011, 51, 130–136, doi:10.1016/j.microrel.2010.05.009.
  8. Maeda, M.; Yagi, D.; Takahashi, Y. Interfacial microstructure between copper ribbon and nickel‐coated copper plate formed by
    ultrasonic bonding. Q. J. Jpn. Weld. Soc. 2013, 31, 188–191, doi:10.2207/qjjws.31.188s.
  9. Sun, Z.; Ion, J.C. Laser welding of dissimilar metal combinations. J. Mater. Sci. 1995, 30, 4205–4214, doi:10.1007/BF00361499.
  10. Yan, S.; Hong, Z.; Watanabe, T.; Jingguo, T. CW/PW dual‐beam YAG laser welding of steel/aluminum alloy sheets. Opt. Lasers
    Eng. 2010, 48, 732–736, doi:10.1016/j.optlaseng.2010.03.015.
  11. Mehlmann, B.; Gehlen, E.; Olowinsky, A.; Gillner, A. Laser micro welding for ribbon bonding. Phys. Procedia 2014, 56, 776–781,
    doi:10.1016/j.phpro.2014.08.085.
  12. Nwanoro, K.C.; Lu, H.; Yin, C.; Bailey, C. An analysis of the reliability and design optimization of aluminium ribbon bonds in
    power electronics modules using computer simulation method. Microelectron. Reliab. 2018, 87, 1–14,
    doi:10.1016/j.microrel.2018.05.013.
  13. Li, H.; Cao, B.; Yang, J.W.; Liu, J. Modeling of resistance heat assisted ultrasonic welding of Cu‐Al joint. J. Mater. Process. Technol.
    2018, 256, 121–130, doi:10.1016/j.jmatprotec.2018.02.008.
  14. Davis, J.R. Copper and Copper Alloys. In ASM Speciality Handbook; ASM International: Almere, The Netherlands, 2001; ISBN
    2001022956
  1. Rabkin, D.M.; Ryabov, V.R.; Lozovskaya, A.V.; Dovzhenko, V.A. Preparation and properties of copper‐aluminum intermetallic
    compounds. Sov. Powder Metall. Met. Ceram. 1970, 9, 695–700, doi:10.1007/BF00803820.
  2. Chen, C.Y.; Chen, H.L.; Hwang, W.S. Influence of interfacial structure development on the fracture mechanism and bond
    strength of aluminum/copper bimetal plate. Mater. Trans. 2006, 47, 1232–1239, doi:10.2320/matertrans.47.1232.
  3. Schmidt, P.A.; Schweier, M.; Zaeh, M.F. Joining of lithium‐ion batteries using laser beam welding: Electrical losses of welded
    aluminum and copper joints. J. Laser Appl. 2012, 915, doi:10.2351/1.5062563.
  4. Smith, S.; Blackburn, J.; Gittos, M.; De Bono, P.; Hilton, P. Welding of dissimilar metallic materials using a scanned laser beam.
    J. Laser Appl. 2013, 493, doi:10.2351/1.5062921.
  5. Solchenbach, T.; Plapper, P. Mechanical characteristics of laser braze‐welded aluminium‐copper connections. Opt. Laser Technol.
    2013, 54, 249–256, doi:10.1016/j.optlastec.2013.06.003.
  6. Kraetzsch, M.; Standfuss, J.; Klotzbach, A.; Kaspar, J.; Brenner, B.; Beyer, E. Laser Beam Welding with High‐Frequency Beam
    Oscillation: Welding of Dissimilar Materials with Brilliant Fiber Lasers. Phys. Procedia 2011, 12, 142–149,
    doi:10.1016/j.phpro.2011.03.018.
  7. Solchenbach, T.; Plapper, P.; Cai, W. Electrical performance of laser braze‐welded aluminum‐copper interconnects. J. Manuf.
    Process. 2014, 16, 183–189, doi:10.1016/j.jmapro.2013.12.002.
  8. Lee, S.J.; Nakamura, H.; Kawahito, Y.; Katayama, S. Effect of welding speed on microstructural and mechanical properties of
    laser lap weld joints in dissimilar Al and Cu sheets. Sci. Technol. Weld. Jt. 2014, 19, 111–118, doi:10.1179/1362171813Y.0000000168.
  9. Mai, T.A.; Spowage, A.C. Characterisation of dissimilar joints in laser welding of steel‐kovar, copper‐steel and copper‐
    aluminium. Mater. Sci. Eng. A 2004, 374, 224–233, doi:10.1016/j.msea.2004.02.025.
  10. Zhang, G.; Takahashi, Y.; Heng, Z.; Takashima, K.; Misawa, K. Ultrasonic weldability of al ribbon to cu sheet and the dissimilar
    joint formation mode. Mater. Trans. 2015, 56, 1842–1851, doi:10.2320/matertrans.M2015251.
  11. Zhu, B.; Zhen, L.; Xia, H.; Su, J.; Niu, S.; Wu, L.; Tan, C.; Chen, B. Effect of the scanning path on the nanosecond pulse laser
    welded Al/Cu lapped joint. Opt. Laser Technol. 2021, 139, 106945, doi.org/10.1016/j.optlastec.2021.106945.
  12. Kumar, A.; Gupta, M.P.; Banerjee, J.; Neogy, S.; Keskar, N.; Bhatt, R.B.; Behere, P.G.; Biswas, D.J. Micro‐Welding of Stainless
    Steel and Copper Foils Using a Nano‐Second Pulsed Fiber Laser. Lasers Manuf. Mater. Process. 2019, 6, 158–172,
    doi.org/10.1007/s40516‐019‐00088‐w.
  13. Trinh, L.N.; Lee, D. The Characteristics of Laser Welding of a Thin Aluminum Tab and Steel Battery Case for Lithium‐Ion
    Battery. Metals 2020, 10, 842, doi.org/10.3390/met10060842.
  14. Cho, D.W.; Park, J.H.; Moon, H.S. A study on molten pool behavior in the one pulse one drop GMAW process using
    computational fluid dynamics. Int. J. Heat Mass Transf. 2019, 139, 848–859, doi:10.1016/j.ijheatmasstransfer.2019.05.038.
  15. Cho, W.I.; Na, S.J.; Cho, M.H.; Lee, J.S. Numerical study of alloying element distribution in CO2 laser‐GMA hybrid welding.
    Comput. Mater. Sci. 2010, 49, 792–800, doi:10.1016/j.commatsci.2010.06.025.
  16. Cho, D.W.; Kiran, D.V.; Na, S.J. Analysis of molten pool behavior by flux‐wall guided metal transfer in low‐current submerged
    arc welding process. Int. J. Heat Mass Transf. 2017, 110, 104–112, doi:10.1016/j.ijheatmasstransfer.2017.02.060.
  17. Cho, W.‐I.; Na, S.‐J. Impact of Wavelengths of CO2, Disk, and Green Lasers on Fusion Zone Shape in Laser Welding of Steel. J.
    Weld. Jt. 2020, 38, 235–240, doi:10.5781/jwj.2020.38.3.1.
  18. Sim, A.; Chun, E.J.; Cho, D.W. Numerical Simulation of Surface Softening Behavior for Laser Heat Treated Cu‐Bearing Medium
    Carbon Steel. Met. Mater. Int. 2020, 26, 1207–1217, doi:10.1007/s12540‐019‐00577‐9.
  19. Jarwitz, M.; Fetzer, F.; Weber, R.; Graf, T. Weld seam geometry and electrical resistance of laser‐welded, aluminum‐copper
    dissimilar joints produced with spatial beam oscillation. Metals 2018, 8, 510, doi:10.3390/met8070510.
  20. Weigl, M.; Albert, F.; Schmidt, M. Enhancing the ductility of laser‐welde copper‐aluminum connections by using adapted filler
    materia. Phys. Procedia 2011, 12, 335–341, doi:10.1016/j.phpro.2011.03.141.
  21. Chen, J.; Lai, Y.S.; Wang, Y.W.; Kao, C.R. Investigation of growth behavior of Al‐Cu intermetallic compounds in Cu wire
    bonding. Microelectron. Reliab. 2011, 51, 125–129, doi:10.1016/j.microrel.2010.09.034.
  22. Chen, H.; Yang, L.; Long, J. First‐principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al‐
    Cu intermetallic compounds. Superlattices Microstruct. 2015, 79, 156–165, doi:10.1016/j.spmi.2014.11.005.
  23. Liu, H.J.; Shen, J.J.; Zhou, L.; Zhao, Y.Q.; Liu, C.; Kuang, L.Y. Microstructural characterisation and mechanical properties of
    friction stir welded joints of aluminium alloy to copper. Sci. Technol. Weld. Jt. 2011, 16, 92–99,
    doi:10.1179/1362171810Y.0000000007.
  24. Hug, E.; Bellido, N. Brittleness study of intermetallic (Cu, Al) layers in copper‐clad aluminium thin wires. Mater. Sci. Eng. A
    2011, 528, 7103–7106, doi:10.1016/j.msea.2011.05.077.
  25. Braunović, M.; Alexandrov, N. Intermetallic Compounds At Aluminum‐To‐Copper Electrical Interfaces: Effect of Temperature
    And Electric Current. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1994, 17, 78–85, doi:10.1109/95.296372.
  26. Lee, W.B.; Bang, K.S.; Jung, S.B. Effects of intermetallic compound on the electrical and mechanical properties of friction welded
    Cu/Al bimetallic joints during annealing. J. Alloys Compd. 2005, 390, 212–219, doi:10.1016/j.jallcom.2004.07.057.
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section

A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process

Keyhole에 대한 수치적 연구 : 레이저 분말 중 형성 베드 퓨전 공정

Subin Shrestha1
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: subin.shrestha@louisville.edu

Y. Kevin Chou
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: kevin.chou@louisville.edu

LPBF (Laser Powder Bed fusion) 공정 중 용융 풀의 동적 현상은 복잡하고 공정 매개 변수에 민감합니다. 에너지 밀도 입력이 특정 임계 값을 초과하면 키홀이라고 하는 거대한 증기 함몰이 형성 될 수 있습니다.

이 연구는 수치 분석을 통해 LPBF 과정에서 키홀 거동 및 관련 기공 형성을 이해하는 데 중점을 둡니다. 이를 위해 이산 분말 입자가 있는 열 유동 모델이 개발되었습니다.

이산 요소 방법 (DEM)에서 얻은 분말 분포는 계산 영역에 통합되어 FLOW-3D를 사용하는 3D 프로세스 물리학 모델을 개발합니다.

전도 모드 중 용융 풀 형성과 용융의 키홀 모드가 식별되고 설명되었습니다. 높은 에너지 밀도는 증기 기둥의 형성으로 이어지고 결과적으로 레이저 스캔 트랙 아래에 구멍이 생깁니다.

또한 다양한 레이저 출력과 스캔 속도로 인한 Keyhole 모양을 조사합니다. 수치 결과는 동일한 에너지 밀도에서도 레이저 출력이 증가함에 따라 Keyhole크기가 증가 함을 나타냅니다. Keyhole은 더 높은 출력에서 ​​안정되어 레이저 스캔 중 Keyhole 발생을 줄일 수 있습니다.

The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.

Keywords: additive manufacturing, keyhole, laser powder bed fusion, porosity

Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 2 3D computational domain used for single-track simulation
Fig. 2 3D computational domain used for single-track simulation
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 4 Powder and substrate melting during laser application
Fig. 4 Powder and substrate melting during laser application
Fig. 5 Melt region formed after complete melting and solidification
Fig. 5 Melt region formed after complete melting and solidification
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 12 Melt region formed after complete melting and solidification
Fig. 12 Melt region formed after complete melting and solidification
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm

References

[1] Bauereiß, A., Scharowsky, T., and Körner, C., 2014, “Defect Generation and
Propagation Mechanism During Additive Manufacturing by Selective Beam
Melting,” J. Mater. Process. Technol., 214(11), pp. 2522–2528.
[2] Gong, H., Rafi, K., Gu, H., Starr, T., and Stucker, B., 2014, “Analysis of Defect
Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive
Manufacturing Processes,” Add. Manuf., 1(2014), pp. 87–98.
[3] Wang, Y., Kamath, C., Voisin, T., and Li, Z., 2018, “A Processing Diagram for
High-Density Ti-6Al-4V by Selective Laser Melting,” Rapid Prototyping J., 24
(9), pp. 1469–1478.
[4] Khairallah, S. A., and Anderson, A., 2014, “Mesoscopic Simulation Model of
Selective Laser Melting of Stainless Steel Powder,” J. Mater. Process. Technol.,
214(11), pp. 2627–2636.
[5] Yadroitsev, I., Gusarov, A., Yadroitsava, I., and Smurov, I., 2010, “Single Track
Formation in Selective Laser Melting of Metal Powders,” J. Mater. Process.
Technol., 210(12), pp. 1624–1631.
[6] Xia, M., Gu, D., Yu, G., Dai, D., Chen, H., and Shi, Q., 2016, “Influence of Hatch
Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability
During Additive Manufacturing of Inconel 718 Alloy,” Int. J. Mach. Tools
Manuf., 109(2016), pp. 147–157.
[7] Lee, Y., and Zhang, W., 2016, “Modeling of Heat Transfer, Fluid Flow and
Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser
Powder bed Fusion,” Add. Manuf., 12(2016), pp. 178–188.
[8] Wu, Y.-C., San, C.-H., Chang, C.-H., Lin, H.-J., Marwan, R., Baba, S., and
Hwang, W.-S., 2018, “Numerical Modeling of Melt-Pool Behavior in Selective
Laser Melting with Random Powder Distribution and Experimental
Validation,” J. Mater. Process. Technol., 254(2018), pp. 72–78.
[9] Khairallah, S. A., Anderson, A. T., Rubenchik, A., and King, W. E., 2016, “Laser
Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and
Formation Mechanisms of Pores, Spatter, and Denudation Zones,” Acta
Materialia, 108(2016), pp. 36–45.
[10] Tan, J., Tang, C., and Wong, C., 2018, “A Computational Study on Porosity
Evolution in Parts Produced by Selective Laser Melting,” Metall. Mater. Trans.
A, 49A(8), pp. 3663–3673.
[11] Leitz, K.-H., Singer, P., Plankensteiner, A., Tabernig, B., Kestler, H., and Sigl,
L. J. M. P. R., 2017, “Multi-Physical Simulation of Selective Laser Melting,”
Metal Powder Report, 72(5), pp. 331–338.
[12] Zhao, C., Fezzaa, K., Cunningham, R. W., Wen, H., Carlo, F., Chen, L., Rollett,
A. D., and Sun, T., 2017, “Real-time Monitoring of Laser Powder Bed Fusion
Process Using High-Speed X-ray Imaging and Diffraction,” Sci. Rep., 7(1),
p. 3602.
[13] Parab, N. D., Zhao, C., Cunningham, R., Escano, L. I., Fezzaa, K., Everhart, W.,
Rollett, A. D., Chen, L., and Sun, T., 2018, “Ultrafast X-ray Imaging of Laser–
Metal Additive Manufacturing Processes,” J. Synchrotron Radiat., 25(5),
pp. 1467–1477.
[14] Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T.,
and Rollett, A. D., 2019, “Keyhole Threshold and Morphology in Laser Melting
Revealed by Ultrahigh-Speed X-Ray Imaging,” Science, 363(6429), pp. 849–852.
[15] Shrestha, S., Starr, T., and Chou, K., 2019, “A Study of Keyhole Porosity in
Selective Laser Melting: Single Track Scanning With Micro-CT Analysis,”
ASME J. Manuf. Sci. Eng., 141(7), pp. 1–23.
[16] Ye, J., Rubenchik, A. M., Crumb, M. F., Guss, G., and Matthews, M. J., 2018,
“Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive
Manufacturing of Metals,” Proceedings of the CLEO: Science and Innovations,
Optical Society of America, San Jose, CA, May 13–18, Optical Society of
America, p. JW2A.117.
[17] Mishra, B., and Rajamani, R. K., 1992, “The Discrete Element Method for the
Simulation of Ball Mills,” Appl. Math. Modell., 16(11), pp. 598–604.
[18] Yan, W., Qian, Y., Ge, W., Lin, S., Liu, W. K., Lin, F., and Wagner, G. J., 2018,
“Meso-Scale Modeling of Multiple-Layer Fabrication Process in Selective
Electron Beam Melting: Inter-Layer/Track Voids Formation,” Materials and
Design, 141(2018), pp. 210–219.
[19] Kloss, C., Goniva, C., Hager, A., Amberger, S., and Pirker, S., 2012, “Models,
Algorithms and Validation for Opensource DEM and CFD–DEM,” Prog.
Comput. Fluid Dynam. Int. J., 12(2–3), pp. 140–152.
[20] Escano, L. I., Parab, N. D., Xiong, L., Guo, Q., Zhao, C., Fezzaa, K., Everhart,
W., Sun, T., and Chen, L., 2018, “Revealing Particle-Scale Powder Spreading
Dynamics in Powder-Bed-Based Additive Manufacturing Process by
High-Speed X-Ray Imaging,” Sci. Rep., 8(1), p. 15079.
[21] Gong, H., Gu, H., Zeng, K., Dilip, J., Pal, D., Stucker, B., Christiansen, D., Beuth,
J., and Lewandowski, J. J., 2014, “Melt Pool Characterization for Selective Laser
Melting of Ti-6Al-4V Pre-Alloyed Powder,” Proceedings of the Solid Freeform
Fabrication Symposium, Austin, TX, Aug. 4–6, pp. 256–267.
[22] Mills, K. C., 2002, Recommended Values of Thermophysical Properties for
Selected Commercial Alloys, Woodhead Publishing, Cambridge, UK.
[23] Shrestha, S., and Chou, K., 2017, “A Build Surface Study of Powder-Bed
Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and
White-Light Interferometry,” Int. J. Mach. Tools Manuf., 121(2017), pp. 37–49.
[24] Cho, J.-H., and Na, S.-J., 2006, “Implementation of Real-Time Multiple
Reflection and Fresnel Absorption of Laser Beam in Keyhole,” J. Phys. D:
Appl. Phys., 39(24), p. 5372.
[25] Dilip, J., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., and Stucker, B.,
2017, “Influence of Processing Parameters on the Evolution of Melt Pool,
Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective
Laser Melting,” Prog. Add. Manuf., 2(3), pp. 157–167.
[26] Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J.-P. R., and Schoenung,
J. M., 2017, “On the Limitations of Volumetric Energy Density as a Design
Parameter for Selective Laser Melting,” Mater. Des., 113(2017), pp. 331–340.
[27] Kroos, J., Gratzke, U., and Simon, G., 1993, “Towards a Self-Consistent Model of
the Keyhole in Penetration Laser Beam Welding,” J. Phys. D: Appl. Phys., 26(3),
p. 474.
[28] Martin, A., Calta, N., Hammons, J., Khairallah, S., Nielsen, M., Shuttlesworth, R.,
Sinclair, N., Matthews, M., Jeffries, J., and Willey, T., 2019, “Ultrafast Dynamics
of Laser-Metal Interactions in Additive Manufacturing Alloys Captured by In Situ
X-Ray Imaging,” Mater. Today Adv., 1(2019), p. 100002.
[29] Shrestha, S., Starr, T., and Chou, K., 2018, “Individual and coupled contributions
of laser power and scanning speed towards process-induced porosity in selective
laser melting,” Proceedings of the Solid Freeform Fabrication Symposium,
Austin, TX, Aug. 13–15, pp. 1400–1409.
[30] Hann, D., Iammi, J., and Folkes, J., 2011, “A Simple Methodology for Predicting
Laser-Weld Properties From Material and Laser Parameters,” J. Phys. D: Appl.
Phys., 44(44), p. 445401.
[31] Trapp, J., Rubenchik, A. M., Guss, G., and Matthews, M. J., 2017, “In Situ
Absorptivity Measurements of Metallic Powders During Laser Powder-bed
Fusion Additive Manufacturing,” Appl. Mat. Today, 9(2017), pp. 341–349.

Simulation of EPS foam decomposition in the lost foam casting process

X.J. Liu a,∗, S.H. Bhavnani b,1, R.A. Overfelt c,2
a United States Steel Corporation, Great Lakes Works, #1 Quality Drive, Ecorse, MI 48229, United States b 213 Ross Hall, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341, United States c 202 Ross Hall, Department of Mechanical Engineering, Materials Engineering Program, Auburn University, Auburn, AL 36849-5341, United States
Received 17 April 2006; received in revised form 14 July 2006; accepted 21 August 2006

Keywords: Lost foam casting; Heat transfer coefficient; Gas pressure; VOF-FAVOR

LFC (Loss Foam Casting) 공정에서 부드러운 몰드 충진의 중요성은 오랫동안 인식되어 왔습니다. 충진 공정이 균일할수록 생산되는 주조 제품의 품질이 향상됩니다. 성공적인 컴퓨터 시뮬레이션은 금형 충전 공정에서 복잡한 메커니즘과 다양한 공정 매개 변수의 상호 작용을 더 잘 이해함으로써 새로운 주조 제품 설계의 시도 횟수를 줄이고 리드 타임을 줄이는데 도움이 될 수 있습니다.

이 연구에서는 용융 알루미늄의 유체 흐름과 금속과 발포 폴리스티렌 (EPS) 폼 패턴 사이의 계면 갭에 관련된 열 전달을 시뮬레이션하기 위해 전산 유체 역학 (CFD) 모델이 개발되었습니다.

상업용 코드 FLOW-3D는 VOF (Volume of Fluid) 방법으로 용융 금속의 전면을 추적 할 수 있고 FAVOR (Fractional Area / Volume Ratios) 방법으로 복잡한 부품을 모델링 할 수 있기 때문에 사용되었습니다. 이 코드는 폼 열화 및 코팅 투과성과 관련된 기체 갭 압력을 기반으로 다양한 계면 열 전달 계수 (VHTC)의 효과를 포함하도록 수정되었습니다.

수정은 실험 연구에 대해 검증되었으며 비교는 FLOW-3D의 기본 상수 열 전달 (CHTC) 모델보다 더 나은 일치를 보여주었습니다. 금속 전면 온도는 VHTC 모델에 의해 실험적 불확실성 내에서 예측되었습니다. 몰드 충전 패턴과 1-4 초의 충전 시간 차이는 여러 형상에 대해 CHTC 모델보다 VHTC 모델에 의해 더 정확하게 포착되었습니다. 이 연구는 전통적으로 매우 경험적인 분야에서 중요한 프로세스 및 설계 변수의 효과에 대한 추가 통찰력을 제공했습니다.

지난 20 년 동안 LFC (Loss Foam Casting) 공정은 코어가 필요없는 복잡한 부품을 제조하기 위해 널리 채택되었습니다. 이는 자동차 제조업체가 현재 LFC 기술을 사용하여 광범위한 엔진 블록과 실린더 헤드를 생산하기 때문에 알루미늄 주조 산업에서 특히 그렇습니다.

기본 절차, 적용 및 장점은 [1]에서 찾을 수 있습니다. LFC 프로세스는 주로 숙련 된 실무자의 경험적 지식을 기반으로 개발되었습니다. 발포 폴리스티렌 (EPS) 발포 분해의 수치 모델링은 최근에야 설계 및 공정 변수를 최적화하는 데 유용한 통찰력을 제공 할 수있는 지점에 도달했습니다. LFC 공정에서 원하는 모양의 발포 폴리스티렌 폼 패턴을 적절한 게이팅 시스템이있는 모래 주형에 배치합니다.

폼 패턴은 용융 금속 전면이 패턴으로 진행될 때 붕괴, 용융, 기화 및 열화를 겪습니다. 전진하는 금속 전면과 후퇴하는 폼 패턴 사이의 간격 인 운동 영역은 Warner et al. [2] LFC 프로세스를 모델링합니다. 금형 충진 과정에서 분해 산물은 운동 영역에서 코팅층을 통해 모래로 빠져 나갑니다.

용융 금속과 폼 패턴 사이의 복잡한 반응은 LFC 공정의 시뮬레이션을 극도로 어렵게 만듭니다. SOLA-VOF (SOLution AlgorithmVolume of Fluid) 방법이 Hirt와 Nichols [3]에 의해 처음 공식화 되었기 때문에 빈 금형을 사용한 전통적인 모래 주조 시뮬레이션은 광범위하게 연구되었습니다.

Lost foam 주조 공정은 기존의 모래 주조와 많은 특성을 공유하기 때문에이 새로운 공정을 모델링하는 데 적용된 이론과 기술은 대부분 기존의 모래 주조를 위해 개발 된 시뮬레이션 방법에서 비롯되었습니다. 패턴 분해 속도가 금속성 헤드와 금속 전면 온도의 선형 함수라고 가정함으로써 Wang et al. [4]는 기존의 모래 주조의 기존 컴퓨터 프로그램을 기반으로 복잡한 3D 형상에서 Lost foam 주조 공정을 시뮬레이션했습니다.

Liu et al. [5]는 금속 앞쪽 속도를 예측하기 위한 간단한 1D 수학적 모델과 함께 운동 영역의 배압을 포함했습니다. Mirbagheri et al. [6]은 SOLA-VOF 기술을 기반으로 금속 전면의 자유 표면에 대한 압력 보정 방식을 사용하는 Foam 열화 모델을 개발했습니다.

Kuo et al.에 의해 유사한 배압 방식이 채택되었습니다. [7] 운동량 방정식에서이 힘의 값은 실험 결과에 따라 패턴의 충전 순서를 연구하기 위해 조정되었습니다.

이러한 시뮬레이션의 대부분은 LFC 공정의 충전 속도가 기존의 모래 주조 공정보다 훨씬 느린 것으로 성공적으로 예측합니다. 그러나 Foam 분해의 역할은 대부분 모델의 일부가 아니며 시뮬레이션을 수행하려면 실험 데이터 또는 경험적 함수가 필요합니다.

현재 연구는 일정한 열전달 계수 (CHTC)를 사용하는 상용 코드 FLOW-3D의 기본 LFC 모델을 수정하여 Foam 열화와 관련된 기체 갭 압력에 따라 다양한 열전달 계수 (VHTC)의 영향을 포함합니다. 코팅 투과성. 수정은 여러 공정 변수에 대한 실험 연구에 대해 검증되었습니다.

또한, 손실 된 폼 주조에서 가장 중요한 문제인 결함 형성은 문헌에서 인용 된 수치 작업에서 모델링되지 않았습니다. 접힘, 내부 기공 및 표면 기포와 같은 열분해 결함은 LFC 작업에서 많은 양의 스크랩을 설명합니다. FLOW-3D의 결함 예측 기능은 프로세스를 이해하고 최적화하는데 매우 중요합니다.

Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).

References

[1] S. Shivkumar, L. Wang, D. Apelian, The lost-foam casting of aluminum alloy components, JOM 42 (11) (1990) 38–44.
[2] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyrolysis defect reduction in lost foam castings, AFS Trans. 106 (1998) 777–785.
[3] C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1) (1981) 201–225.
[4] C. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Computational analysis of fluid flow and heat transfer during the EPC process, AFS Trans. 101 (1993) 897–904.
[5] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, J. Mater. Sci. 37 (14) (2002) 2997–3003.
[6] S.M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami, Simulation of melt flow in coated mould cavity in the lost foam casting process, J. Mater. Process. Technol. 142 (2003) 493–507.
[7] J.-H. Kuo, J.-C. Chen, Y.-N. Pan, W.-S. Hwang, Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation, Mater. Trans. 44 (10) (2003) 2169–2174.
[8] C.W. Hirt, Flow-3D User’s Manual, Flow Science Inc., 2005.
[9] E.S. Duff, Fluid flow aspects of solidification modeling: simulation of low pressure die casting, The University of Queensland, Ph.D. Thesis, 1999.
[10] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, The effects of foam density and metal velocity on the heat and mass transfer in the lost foam casting process, in: Proceedings of the ASME Summer Heat Transfer Conference, 2003,
pp. 317–323.
[11] W. Sun, P. Scarber Jr., H. Littleton, Validation and improvement of computer modeling of the lost foam casting process via real time X-ray technology, in: Multiphase Phenomena and CFD Modeling and Simulation in
Materials Processes, Minerals, Metals and Materials Society, 2004, pp. 245–251.
[12] T.V. Molibog, Modeling of metal/pattern replacement in the lost foam casting process, Materials Engineering, University of Alabama, Birmingham, Ph.D. Thesis, 2002.
[13] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Measurement of kinetic zone temperature and heat transfer coefficient in the lost foam casting process, ASME Int. Mech. Eng. Congr. (2004) 411–418.
[14] X. Yao, An experimental analysis of casting formation in the expendable
pattern casting (EPC) process, Department of Materials Science and Engineering, Worcester Polytechnic Institute, M.S. Thesis, 1994.
[15] M.R. Barkhudarov, C.W. Hirt, Tracking defects, Die Casting Engineer 43 (1) (1999) 44–52.
[16] C.W. Hirt, Modeling the Lost Foam Process with Defect PredictionsProgress Report: Lost-Foam Model Extensions, Wicking, Flow Science Inc., 1999.
[17] D. Wang, Thermophysical Properties, Solidification Design Center, Auburn University, 2001.
[18] S. Shivkumar, B. Gallois, Physico-chemical aspects of the full mold casting of aluminum alloys, part II: metal flow in simple patterns, AFS Trans. 95 (1987) 801–812.

FLOW-3D Weld

FLOW-3D Weld

FLOW-3D  WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하여 공정 최적화를 달성합니다. 더 나은 공정 제어를 통해 다공성, 열 영향 영역을 최소화하고, 미세 구조 변화를 제어 할 수 있습니다. 레이저 용접 프로세스를 정확하게 시뮬레이션하기 위해 FLOW-3D WELD 는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화와 같은 모든 관련 물리학을 구현합니다.

 

낮은 열 입력,  뛰어난 생산성, 속도는 기존의 용접 방법을 대체하는 레이저 용접 프로세스로 이어집니다. 레이저 용접이 제공하는 장점 중 일부는 더 나은 용접 강도, 더 작은 열 영향 영역, 더 정밀한 정밀도, 최소 변형 및 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 / 합금을 용접 할 수있는 능력을 포함합니다.

공정 최적화

FLOW-3D WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 공정 최적화를 달성하는 데 도움이됩니다. 더 나은 공정 제어로 다공성을 최소화하고 열 영향을받는 영역을 제한하며 미세 구조 변화를 제어 할 수 있습니다. FLOW-3D WELD 는 자유 표면 추적 알고리즘으로 인해 매우 복잡한 용접 풀을 시뮬레이션하는 데 매우 적합합니다. FLOW-3D WELD 는 관련 물리적 모델을 FLOW-3D 에 추가로 통합하여 개발되었습니다.  레이저 소스에 의해 생성된 열유속, 용융 금속의 증발 압력, 차폐 가스 효과, 용융 풀의 반동 압력 및 키홀 용접의 다중 레이저 반사. 현실적인 공정 시뮬레이션을 위해 모든 관련 물리 현상을 포착하는 것이 중요합니다.

 

얕은 용입 용접 (왼쪽 상단); 실드 가스 효과가 있는 깊은 용입 용접 (오른쪽 상단); 쉴드 가스 및 증발 압력을 사용한 심 용입 용접 (왼쪽 하단); 쉴드 가스, 증발 압력 및 다중 레이저 반사 효과 (오른쪽 하단)를 사용한 깊은 침투 용접.

FLOW-3D WELD 는 레이저 용접의 전도 모드와 키홀 모드를 모두 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D WELD 를 사용하여 용융 풀 역학을 분석하고 공정 매개 변수를 최적화하여 다공성을 최소화하며 레이저 용접 수리 공정에서 결정 성장을 예측합니다.

완전 관통 레이저 용접 실험

한국의 KAIST와 독일의 BAM은 16K kW 레이저를 사용하여 10mm 강판에 완전 침투 레이저 용접 실험을 수행했습니다. CCD 카메라의 도움으로 그들은 완전 침투 레이저 용접으로 인해 형성된 상단 및 하단 용융 풀 역학을 포착 할 수있었습니다. 그들은 또한 FLOW-3D WELD 에서 프로세스를  시뮬레이션하고 시뮬레이션과 실험 결과 사이에 좋은 일치를 얻었습니다.

실험 설정 레이저 용접
CCD 카메라로 상단 및 하단 용융 풀을 관찰하는 실험 설정
레이저 용접 회로도
FLOW-3D의 계산 영역 개략도
레이저 용접 시뮬레이션 실험 결과
상단의 시뮬레이션 결과는 용융 풀 길이가 8mm 및 15mm 인 반면 실험에서는 용융 풀 길이가 7mm 및 13mm임을 나타냅니다.
 

레이저 용접 다공성 사례 연구

General Motors, Michigan 및 Shanghai University는 중국의 공정 매개 변수, 즉 용접 속도 및 용접 경사각이 키홀 용접에서 다공성 발생에 미치는 영향을 이해하기 위해 상세한 연구를 공동으로 진행했습니다.

키홀 유도 용접 다공성
레이저 용접된 알루미늄 조인트 단면의 용접 다공성, 키홀 유도 다공성은 유동 역학으로 인해 발생하며 균열을 일으킬 수 있습니다. 최적화 된 공정 매개 변수는 이러한 종류의 다공성을 완화 할 수 있습니다.

연구원들은 FLOW-3D WELD를 사용 하여 증발 및 반동 압력, 용융풀 역학, 온도 의존적 ​​표면 장력 및 키홀 내에서 여러 번의 레이저 반사 동안 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

시뮬레이션 모델을 기반으로 연구진은 키홀 용접에서 유도 다공성의 주요 원인으로 불안정한 키홀을 식별했습니다. 아래 이미지에서 볼 수 있듯이 후방 용융 풀의 과도한 재순환으로 인해 후방 용융 풀이 전방 용융 풀 벽에서 붕괴되고 공극이 발생하여 다공성이 발생합니다. 이러한 갇힌 공극이 진행되는 응고 경계에 의해 포착되었을 때 다공성이 유도되었습니다.

높은 용접 속도에서는 더 큰 키홀 개구부가 있으며 이는 일반적으로 더 안정적인 키홀 구성을 가져옵니다. 사용 FLOW-3D 용접 , 연구진은 그 높은 용접 속도와 경사도 완화 다공성의 큰 용접 각도를 예측했습니다.

레이저 용접 수치 실험 결과
시뮬레이션 (위) 및 실험 (아래)에서 볼 수있는 세로 용접 섹션의 다공성 분포

FLOW Weld

FLOW Weld  모듈은 용접 해석에 필요한 모델을 FLOW-3D 에 추가하는 추가 모듈입니다.

FLOW-3D 의 표면 장력 자유 표면 분석, 용융, 응고, 증발, 상 변화 모델 등의 기본 기능을

응용하여 각종 용접 현상을 분석 할 수 있습니다.

주요 기능 :열원 모델 (출력 지정, 가우스분포, 디 포커스 등) 열원의 자유로운 이동 증발 압력 (그에 따른 반력) 실드 가스 압력 다중 반사 용접에 관한 대표적인 출력 (온도 구배 냉각 속도, 에너지 분포 등)
분석 용도 :높은 방사선 강도와 고온에 의해 직접 관찰이 어려운 현상을 시각화 온도, 열, 용접 속도, 위치 관계, 재료 물성 등의 매개 변수 연구 결함 예측 (기공, 응고, 수축 등)

FLOW -3D Weld 분석 기능

weld_flow
  1. 열원 모델의 이동
      출력량 지정, 가우스분포
  2. 에너지 밀도의 분포 , 가공 속도
      가우스 테이블 입력
  3. 증발 압력
      온도 의존성
  4. 다중 반사
      용해 깊이에 미치는 영향
  5. 결과 처리
      용해 모양, 에너지 분포, 온도 구배 냉각 속도
  6. 다양항형상의 레이저와 거동 (+ csv 파일로드)
      다양한 모양을 csv 파일 형식으로 정의 회전 + 이동
      임의 형상 이동을 csv 파일로 로드 (나선형)
  7.  이종 재료
      이종 재료의 용접
  8.  3D Printing Method  
      Cladding 적층공정

1. 열원 모델의 이동

weld16-1weld16-2
에너지 밀도공간 분포

2. 에너지 밀도의 분포, 가공 속도

열 플럭스 r 방향의 분포 단면은 원형으로, r 방향으로 열유속 분포를 제공합니다.

에너지 밀도의 공간적 분포

가우스 : 원추형의 경우는 조사 방향으로 변화하고 열유속의 면적 분은 동일합니다.

가공 속도

가공 노즐을 x, y, z 방향, 시간 – 속도의 테이블에서 지정합니다.
또한 노즐 (광원) 위치 좌표 조사 방향 벡터 성분을 지정합니다.

3. 증발 압력

에너지 밀도가 높은 경우, 용융 부 계면이 증발하고 그 반력에 의해 계면에 함몰이 발생합니다.
특히 깊은 용융부를 포함한 레이저 용접은 증발 압력을 고려한 모델링이 필요합니다.

증발 압력의 평가는 일반적인 수학적 모델이 없기 때문에 다음 모델 식을 사용합니다.

증발 가스의 상승 효과 (키 홀, 스퍼터 등)

증기의 상승 흐름의 영향을 동압, 전단력으로 평가합니다.

weld5-1 

4. 다중 반사

키홀 거동의 비교

weld9
다중 반사 없음다중 반사 있음

다중 반사를 고려한 레이저

weld10

5. 결과 처리

용접 기능에 관한 대표적인 출력 예입니다.

6. 다양한 형상의 레이저와 거동 (+ csv 파일 읽기)

weld17weld18

7. 이종 재료

이종 재료 간이 분석

재료 : 철, 구리

밀도고상율
weld19

이종 재료를 이용한 레이저 용접

재료 : 구리, 철

재료 체적 비율온도
weld20

8. 금속 3D 프린팅 기법  

– 적층 제조 (Additive Manufacturing) 공정

– DED(Direct Energy Deposition) 공정 

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D WELD Products

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D@ WELD는 레이저 용접 공정에 대한 정확한 시뮬레이션 기능을 제공하여 최적화된 공정을 개발하게 합니다. 더 나은 공정 제어를 통해 기공, 열 영향 영역을 최소화하고 미세 구조 변화를 제어할 수 있습니다.

레이저 용접 프로세스를 정확하게 시뮬레이션하기 위해 FLOW-3D@ WELD는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화와 같은 모든 관련 물리 모델을 제공합니다.

Laser Welding

최근에는 뛰어난 생산성과 속도, 낮은 열 입력이 결합되어 기존의 용접 프로세스를 대체하는 레이저 용접 프로세스가 주목 받고 있습니다. 레이저 용접이 제공하는 장점은 용접강도가 좋고, 열 영향 부위가 작으며, 정밀도가 낮고 변형이 적으며, 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접 할 수 있는 기능이 있습니다.

FLOW-3D@는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 프로세스 최적화를 달성하는 데 도움이 됩니다.

보다 나은 프로세스 제어를 통해 기공을 최소화할 수 있습니다. 열 영향부위 및 미세조직을 제어가 가능합니다. FLOW-3D는 자유표면 추적 알고리즘을 통해 매우 복잡한 용접 POOL 시뮬레이션을 해석하는데 매우 적합합니다.

용접 모듈은 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발압력, shield gas 효과, 용융 풀의 반동압력 및 다중 레이저 반사와 같은 물리적 모델을 FLOW-3D에 적용하기 위해 개발되었습니다. 키홀 용접과 같은 현실적인 프로세스 시뮬레이션을 위해서는 모든 관련 물리적 현상을 적용하는 것이 중요합니다.

FLOW-3D는 레이저 용접의 conduction and keyhole 방식을 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D를 사용하여 용접역학을 분석하고, 공정 매개 변수를 최적화하여 기공을 최소화하며, 레이저 용접공정에서의 dendrite 결정 성장 양상을 예측합니다.

Shallow penetration weld (top left); deep penetration weld with shield gas effects (top right); deep penetration weld with shield gas and evaporation pressure (bottom left); and deep penetration weld with shield gas, evaporation pressure and multiple laser reflections effects (bottom right).

Full Penetration Laser Welding Experiments

한국 카이스트와 독일 BAM은 16K kW레이저를 사용하여 10mm강판에 완전 침투 레이저 용접 실험을 수행하였습니다. CCD카메라의 도움을 받아 완전 용입 레이저 용접으로 형성된 상단 및 하단 용융풀 거동을 확인할 수 있었습니다. 그들은 또한 FLOW-3D 로 용접 공정 해석으로 해석과 실험결과의 경향이 일치하는 것을 알 수 있었습니다.

Experimental setup with CCD cameras observing the top and bottom molten pools
Schematic of computation domain in FLOW-3D

 

Simulation results at the top show melt pool lengths of 8mm and 15mm, whereas experiments indicated melt pool lengths of 7mm and 13mm

Laser Welding Porosity Case Study

General Motors, Michigan, 중국의 상하이 대학교는 용접 공정 변수, 즉 keyhole 용접에서 기공의 발생에 대해 용접 속도 및 용접 각도와 같은 공정 매개 변수가 미치는 영향을 알아보기 위해 협력하여 연구를 진행하였습니다.

레이저 용접된 Al 접합부 단면의 기공을 분석합니다. Keyhole이 유도 된 기공들은 유동 역학으로 인해 발생되고 균열을 일으킬 수 있습니다. 최적화 공정의 매개변수는 이러한 종류의 기공을 완화할 수 있습니다. FLOW-3D를 사용하여 연구원들은 증발 및 반동 압력, 용융풀, 온도에 따른 표면장력 및 Keyhole내의 다중 레이저 반사, 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

연구진은 시뮬레이션 모델을 기반으로 Keyhole 용접에서 생성된 기공들의 주요 원인으로 불안정한 Keyhole을 규정하였습니다. 아래 이미지에서 볼 수 있듯이 뒤쪽 용융 풀의 과도한 재순환은 뒤쪽 용융 풀이 앞쪽 용융 풀 경계를 무너뜨리며 기공들을 생성시킵니다. 갇힌 공간이 증가하는 응고 전면에 의해 갇혔을때 기공들이 발생되었습니다.

Distribution of porosity in longitudinal welding sections as seen in simulations (top) and experiments (bottom)

용접 속도가 빠를수록 더 큰 keyhole이 생성되며 이로 인해, 보다 안정적인 keyhole이 생성됩니다. 연구진은 FLOW-3D를 사용하여 용접 속도와 용접 경사각으로 기공들의 생성을 완화시킬 수 있었습니다.


관련 기술자료

Design of Inductive Sensor System for Wear Particles in Oil

금속재료 표면의 잔류응력 초음파 측정법

Design of Inductive Sensor System for Wear Particles in Oil NIU Ze, LI Kai, BAI Wenbin, SUN Yuanyuan, GONG Qingqing, ...
더 보기
Multiphysics Modeling of Thermal Behavior of Commercial Pure Titanium Powder During Selective Laser Melting

Multiphysics Modeling of Thermal Behavior of Commercial Pure Titanium Powder During Selective Laser Melting

Wenlin Ye, Jin Bao, Jie Lei, Yicheng Huang, Zhihao Li, Peisheng Li & Ying Zhang Metals and Materials International (2021)Cite ...
더 보기
Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding Lin ...
더 보기
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively

추가 생산용 전자빔 조사에 의한 316L 스테인리스 용융 · 응고 거동

Melting and Solidification Behavior of 316L Steel Induced by Electron-Beam Irradiation for Additive Manufacturing 付加製造用電子ビーム照射による 316L ステンレス鋼の溶融・凝固挙動 奥 川 将 ...
더 보기
Stability and deformations of deposited layers in material extrusion additive manufacturing

Conflict resolution in the multi-stakeholder stepped spillway design under uncertainty by machine learning techniques

Md TusherMollah, Raphaël Comminal, Marcin P.Serdeczny, David B.Pedersen, Jon SpangenbergDepartment of Mechanical Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark ...
더 보기
Fig. 1. Schematic of (a) geometry of the simulation model, (b) A-A cross-section presenting the locations of point probes for recording temperature history (unit: µm).

Laser powder bed fusion of 17-4 PH stainless steel: a comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties

17-4 PH 스테인리스강의 레이저 분말 베드 융합: 열처리가 미세조직의 진화 및 기계적 특성에 미치는 영향에 대한 비교 연구 panelS.Saboonia, A.Chaboka, ...
더 보기
Laser powder bed fusion Figure

A study of transient and steady-state regions from single-track deposition in laser powder bed fusion

SubinShrestha KevinChou J.B. Speed School of Engineering, University of Louisville, Louisville, KY 40292, United States Abstract The surface morphology of ...
더 보기
참조 : YS Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion , S2214-8604 (16) 30087-2, doi.org/10.1016/j.addma .2016.05.003 , ADDMA 86.

FLOW-3D AM 미세 구조 예측 | 열 응력 해석

미세 구조 예측 냉각 속도 및 온도 구배와 같은 FLOW-3D AM 데이터를 미세 구조 모델에 입력하여 결정 성장 및 수상 ...
더 보기
electromagnetic metal casting computation designs Fig1

A survey of electromagnetic metal casting computation designs, present approaches, future possibilities, and practical issues

Aditya Raj, S Ram Kishore, Lanz Jose, Atul Kumar Karn, Utkarsh Chadha & Senthil Kumaran Selvaraj The European Physical Journal ...
더 보기
Figure 6. Evolution of melt pool in the overhang region (θ = 45°, P = 100 W, v = 1000 mm/s, the streamlines are shown by arrows).

Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions

레이저 파우더 베드 융합 오버행 영역에서 표면 거칠기의 원인에 대한 실험 및 수치 조사 Shaochuan Feng,Amar M. Kamat,Soheil Sabooni &Yutao ...
더 보기

FLOW-3D 용접해석 개요

FLOW-3D 용접해석 개요

자료 제공: FLOW Science Japan

용접은 금속의 상변화, 용융시의 유동, 방열에 의한 응고 등을 포함한 복잡한 물리 현상입니다. FLOW-3D@에는 그 현상을 정밀하게 모델링하는 기능이 있고, 용접 현상을 충실하게 재현할 수 있습니다.

특히 용융 금속의 유동은 표면 장력의 영향이 강하고, 그 해석은 정확한 자유 계면의 추적이 필요합니다.

FLOW-3D@의 정확한 계면 추적 기능인 TruVOF®는 그 현상을 파악하기에 매우 적합합니다.

해석 조건으로 레이저의 power, spot size, distance, 움직임(분사방향) 등을 입력할 수 있으며, 보호가스는 밀도와 유속으로 설정 할 수 있습니다. 스패터의 분출 해석은 현재 지원되지 않습니다.

해석 결과로 용접 비드의 폭, 깊이, 기공의 유무 등 관찰할 수 있습니다.

열응력 해석은 FLOW-3D 유동 해석 결과를 Abaqus 등의 구조해석 프로그램에서 불러와서 별도로 열응력 해석을 수행해야 합니다.

해석 필요성

FLOW-3D 를 이용한 용접해석은

  • 높은 방사 강도와 고온으로 직접 관찰하기 어려운 내부 현상의 상세 내용을 가시화
  • 온도, 열, 용접 속도, 위치 관계, 재료 물성 등의 파라미터 연구 검토
  • 결함 예측 (공기연행, 응고 수축, 금속 산화) 등의 필요성

해석을 통해 얻는 이점

금속의 상변화, 용융시의 유체의 힘, 방열에 의한 응고 등의 물리모델 용접 현상을 분석할 수 있습니다.

또한 용융시에는 표면장력의 영향이 강하고, 자유계면을 추적하는 수치해석 방법에 대해 높은 정밀도가 요구됩니다. FLOW-3D@는 이러한 요구사항을 잘 처리할 수 있는 장점을 가지고 있어, 용접 용융-응고의 연속적인 현상을 정확하게 파악합니다.

Capillary Flows/Capillary Filling/Thermocapillary Switch/Capillary Absorption/Marangoni flow

Capillary Flows

모세관 흐름은 일반적으로 미세 유체 장치에서 발생합니다. 예를 들어, 바이오 칩 설계에서는 한 곳에서 다른 곳으로 액체 용액을 전달하기 위해 긴 마이크로 채널이 자주 사용됩니다. 입구 채널은 액체 저장소에 연결되고 표면 장력은 액체를 마이크로 채널로 끌어 당깁니다 (액체가 칩 표면에 “젖은”경우). 이 페이지에서는 충진, 흡수 및 전환과 같은 모세관 흐름 분석에서 FLOW-3D의 특정 응용 분야를 다룹니다.

Marangoni flow in a dish of water that is heated at its center.

Marangoni flow는 중앙에서 데워진 물이 담긴 접시에 흐릅니다. 불균일한 표면 장력에 의해 생성 된 흐름은 20ºC의 초기 온도에서 0.75cm 깊이의 얕은 8.0cm 직경의 물 접시에 의해 입증됩니다. 원형 접시의 중앙에는 직경 0.5cm의 원통형 막대가 있습니다. 80 Cº의 온도로 가열하고 0.05 cm 깊이까지 수면에 담근다. 핫로드 근처의 물이 가열됨에 따라 표면 장력이 0.1678 dyne / cm / ºC만큼 감소하여 표면이 접시의 바깥 쪽 테두리쪽으로 후퇴합니다. Retraction는 처음에 표면에 뿌려진 질량없는 마커 입자로 표시됩니다.

Capillary Absorption

고체 물질의 기공에 모세관 흡수 때문에 액체와 고체 사이의 접착 발생합니다. 이 같은 흡수의 간단하면서도 유용한 시험은 핀란드 ABO Akademi 대학의 마르티 Toivakka에 의해 제안되었습니다. 테스트 기공은 ± 1.0 μm의 측면 벽 1.0 μm의 반경 원호입니다. 팽창 목에 연결된 넓은 2차원 채널로 구성되어 있습니다. 체적력의 부재 하에서, 표면장력 과 wall adhesion pull liquid 는 액체와 고체 사이의 static contact angle에 의해 결정됩니다. 첨부된 그림은 FLOW-3D가 올바르게 특정 접촉 각도 (유체는 적색표현) 충전 레벨을 계산하는 것을 나타냅니다.

Thermocapillary Switch

액체의 작은 덩어리나 가벼운 빔의 경로에서 움직이는 굴절, 혹은 반사로 다른 길로 리디렉션 할 수 있습니다. 이 개념은 특히나 한번 빔 내부 반사로 인해 갇혀 있는 섬유에 들어가 광학 섬유로 연결에서 매력적입니다. 어떠한 복잡성의 광 회로를 만들려면, 하나의 광섬유에서 다른 가벼운 방향을 바꿀 수 있는“스위치”를 둘 필요가 있습니다.

The animation above shows a FLOW-3D simulation of a drop of water in a 14mm-wide channel that is being heated at the bottom.

Capillary Filling

모세관 충전 과정을 이해하는 것은 칩 설계에 중요합니다.. 액체 흐름 통로의 다른 형상 포획 기포의 가능성 등의 충전 공정의 기술은, 같은 챔버와 칩의 내부 구조를 배치 기둥 분할하고, 밸브 결합에 설계자 안내 등 다양한 모세관 충전 동작이 발생할 수 있습니다.

시뮬레이션은 아래의 모세관 작용의 분석 예측의 유효성을 검사합니다. 모세관 채우기는 정확하게 표면 장력과 중력에 의해 균형을 잡습니다.이것은 FLOW-3D에 의해서 정확하게 예측되는 기본적인 과정입니다.

접촉선의 이해(Contact Line Insights)

접촉선의 이해(Contact Line Insights)

FLOW-3D는 코팅 성능 향상에 관심이있는 엔지니어에게 이상적인 수치 모델링 기능을 많이 갖추고 있습니다. 전산 시뮬레이션은 코팅 흐름에 영향을 미치는 여러 물리적 과정의 상대적 중요성과 효과를 연구 할 수있는 훌륭한 방법입니다. 물리적인 테스트에서 항상 프로세스를 분리하거나 해당 프로세스의 크기를 임의로 조정할 수있는 것은 아닙니다. 여기에서는 리 볼렛 형성(rivulet formation), 핑거링(fingering), 증발, 거친 표면에서의 접촉선 이동 및 유체 흡수와  관련하여 정적 및 동적 접촉각에 대하여 FLOW-3D의 처리에 대해 설명합니다.

 

정적 및 동적 접촉각(Static and Dynamic Contact Angles)

FLOW-3D는 정적 접촉각의 함수로 동적 접촉각을 정확하게 계산하고 입력으로 설정하며 자유 표면 인터페이스에서 작용하는 관련된 힘을 정확하게 계산하여 유체의 소수성을 캡처 할 수 있습니다. 아래 시뮬레이션은 물방울이 경사를 따라 내려갈 때 정적 접촉각이 동적 접촉각에 미치는 영향을 보여줍니다.

 

흡수(Absorption)

종이 기판에 액 적의 충격 및 흡수는 전산 유체 역학 소프트웨어를 사용하여 연구 할 수 있습니다. 여기서 FLOW-3D는 섬유층에서 물방울 충돌을 시뮬레이션하는데 사용되며 표면 장력, 접촉각 및 점도와 관련된 유체 전면의 전파를 살펴 봅니다.

 

 

아래의 FLOW-3D 시뮬레이션에서, 낙하는 직경이 40 미크론이며 초기 하향 속도는 300 cm / s입니다. 기재는 종이이고, 기공률이 30 % 인 20 미크론 두께입니다.

 

 

액체 필름의 핑거링(Fingering in Liquid Films)

FLOW-3D에서 동적 접촉선은 동적 접촉각이나 접촉선의 위치를 ​​지정할 필요없이 직접 모델링됩니다. 이는 소량의 유체에서 유체에 영향을 미치는 모든 동적 힘을 포함하는 수치 모델을 사용하여 수행됩니다. 정적 접촉각은 액체-고체 접착력을 특성화 하는데 사용됩니다.

액체 시트의 핑거링. 왼쪽은 0 °, 오른쪽은 70 °

여기서, 이러한 접근법의 힘의 적용은 경사 표면 아래로 흐르는 액체 필름에서 관찰 된 핑거링에 의해 제공됩니다. 실험적 관찰에 따르면 두 가지 뚜렷한 핑거링 패턴이 발생합니다. 첫 번째 패턴은 작은 정적 접촉각(즉, 습윤 조건)이며 상하한이 모두 하향으로 움직이는 쐐기형 핑거를 나타냅니다. 두 번째 패턴은 큰 정적 접촉각(즉, 습윤 조건이 열악함)이며 가장 균일한 폭을 가진 긴 핑거이고 가장 큰 한계점은 하향으로 움직이지 않는 것이 특징입니다.

 

 

증발 효과(Evaporative Effects)

퇴적(Deposit)

분산 된 고체 물질을 함유하는 액 적은 고체 표면에서 건조 될 때, 함유하고 있는 고체 물질을 침전물로서 남깁니다. 이 침전물의 형상이 많은 인쇄 공정, 청소 및 코팅 공정에 중요한 영향을 미칩니다. 한 종류의 퇴적물의 전형적인 예는 위의 이미지와 같이 엎질러 진 커피 패치의 둘레를 따라 링 얼룩이 형성되는 “커피 링” 문제입니다. 이 유형의 링 침전물은 액체의 증발로 인한 표면 장력 구동 흐름의 결과로, 특히 낙하 둘레에서 발생합니다.

 

건조(Drying)

FLOW-3D의 증발 잔류 액체 모델은 건조 후 톨루엔으로 형성된 잔류된 물의 3D형상을 시뮬레이션합니다. (30 배 확대)

건조는 코팅 공정의 중요한 부분입니다. 하지만 건조의 결함으로 잘 도포 된 코팅을 완전히 취소 할 수도 있습니다. 건조 중에 온도 및 용질 구배는 밀도 및 표면 장력 구배로 인해 코팅 내 유동을 유도 할 수 있으며, 이는 코팅 품질을 잠재적으로 파괴 할 수 있습니다. FLOW-3D의 증발 잔류 물 모델을 사용하면 건조로 인한 흐름을 시뮬레이션하고 값 비싼 물리적 실험에 소요되는 시간을 줄일 수 있습니다.

 

모델링 링 형성(Modeling Ring Formation)

증발에 의해 접촉 라인에서 생성 된 흐름 시뮬레이션

윗쪽 그림에서 FLOW-3D는 증발이 가장 큰 접촉선에서의 증착으로 인해 에지 피닝(edge pinning)이 발생함을 보여줍니다. 증발은 증발로 인한 열 손실로 인해 액체를 냉각시킵니다 (색상은 온도를 나타냄). 동시에 고체 표면은 전도에 의해 액체를 가열합니다. 접촉선 주변에서 증발이 가장 커서, 액체가 접촉선을 향해 흘러 정적 조건을 재설정합니다. 최종 결과는 액체가 완전히 증발하는 액체 가장자리에 현탁 된 고체의 증착입니다.

 

 

참고
[1] Deegan, R., Bakajin, O., Dupont, T. et al. Capillary flow as the cause of ring stains from dried liquid drops, Nature 389, 827–829 (1997).

 

Tilt Pour Casting Workspace, 경동주조

Tilt Pour Casting Workspace Highlights, 경동주조

  • 금형의 모션 제어
  • 최첨단 금형온도관리, 동적 냉각 채널, 스프레이 냉각, 금형온도 싸이클링
  • 정확한 가스 고립 및 기공 예측

Workspace Overview

경동주조(Tilt Pour Casting) Workspace는 엔지니어가 FLOW-3D  CAST로 경동주조(Tilt Pour Casting)을 성공적으로 모델링 할 수 있도록 설계된 직관적인 모델링 환경입니다 . 작업 공간에는 프로세스별 특정 다이 및 재료 유형이 포함되어 있으며, 정확한 기계 기능에 맞게 회전 동작을 쉽게 정의 할 수 있습니다. 

기포 결함의 완전한 분석을 위해 충진 분석에 벤트 및 배압이 포함되어 있으며, 다이사이클링 및 최신 응고 모델은 작업 공간의 하위 프로세스 아키텍처를 통해 충진시 매끄럽게 연결됩니다. Tilt Pour Casting Workspace는 단순하지만 다양한 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

Tilt Pour Simulation | FLOW-3D CAST
Tilt Pour Casting | FLOW-3D CAST
8-Cavity Tilt Pour | FLOW-3D CAST v5.1

프로세스 모델링

  • 틸트 주입
  • 역 틸트 주입

유연한 격자 생성

  • FAVOR ™ 단순 격자 생성 도구
  • 멀티 블록
  • Conforming mesh

금형 온도 관리

  • 다이 사이클링
  • 열 포화
  • 완전 열전달 모델링

고급 응고

  • 다공성 예측
  • 수축
  • 핫스팟 식별
  • 열 계수
  • 기계적 특성 예측

모래 코어

  • 핵심 가스 진화
  • 코어 특성에 대한 재료 정의

금형 동작 제어

  • 6 개의 회전축
  • 회전 속도를위한 테이블 형식 입력

결함 예측

  • 매크로 및 미세 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석

다이나믹 시뮬레이션 제어

  • 모션 제어를위한 이벤트 프로브 기반 트리거

완벽한 분석 패키지

  • 다중 뷰포트가있는 애니메이션-3D, 2D, 히스토리 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 병렬 시뮬레이션 결과 비교
  • 용융 온도, 고체 분율 측정 용 센서
  • 입자 추적기
  • 일괄 배치 처리
  • 보고서 생성

Investment Casting Workspace, 정밀주조

Workspace Highlights

  • 주조 패턴으로 쉘 생성을 능률적으로 수행할 수 있습니다.
  • 고급 방사 모델은 쉘 표면 사이의 완전한 복사 열 전달을 계산합니다.
  • 고급 모션 컨트롤에는 Bridgman, 레들 및 스핀 모션이 포함됩니다.

Workspace Overview

Investment Casting Workspace는 쉘 생성, 충전, 응고 (정적 또는 움직이는 Bridgman 쉘 금형) 및 냉각을 포함한 Investment Casting 주조의 모든 측면을 시뮬레이션하기 위한 사용하기 쉬운 도구를 Investment Casting 엔지니어에게 제공합니다.

쉘 몰드 생성 도구는 빠르고 신뢰할 수 있는 쉘 형상 생성을 위해 제공되며, radiative heat 및 view factor 모델은 쉘의 여러 부분 간의 복사 열전달(radiation heat transfer)을 정확하게 재현합니다. Directional solidification를 위해 쿨러 하부 단면과 분리된 뜨거운 상부 섹션이 있는 moving oven은 Bridgman 프로세스를 재현합니다. 용융 표면 진행 뿐만 아니라 몰드의 이동, 충진 양상 및 응고 패턴은 직관적인 후처리 도구를 통해 쉽게 평가되므로 공정 조건을 수정하여 주조 공정을 구현할 수 있습니다.

 프로세스 모델링

  • 유동
  • 고화 -고정 및 브리지먼
  • 냉각
 

쉘 몰드 생성

 

열 금형 모델링

  • 뷰 인자를 가진 전체 방사 모델링
  • 대류 및 전도 열 전달
 

멀티 블록 메시

 

유동 해석의 탁월한 정확도

  • 가스/버블 고립
  • 표면 산화물 계산
  • RNG 및 LES 난류 모델
 

래들 주입

 응고해석
  • 기공 예측
  • 수축 예측
  • 방향성 응고
 

결함 예측

  • 기공 예측
  • 공기 고립 예측
  • 조기 응고
  • 산화물 형성
 

동적 시뮬레이션 제어

  • 용탕 주입 제어
 

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 여러가지 해석 결과 비교
  • 용융 온도, 응고 분율 측정을 위한 센서 추가 기능
  • 파티클 트레이서
  • 일괄 후 처리
  • 보고서 생성

Aluminum Integral Foam Molding Process

Aluminum Integral Foam Molding Process

This application note was contributed by Johannes Hartmann and Vera Jüchter, Department of Materials Science, Chair of Metals Science and Technology, University of Erlangen-Nuremberg

 

알루미늄 폼은 우수한 댐핑 및 높은 에너지 흡수율 및 굴곡 강성과 같은 예외적인 특성을 보여줍니다[1]. 강성은 특히 하중 지지 및 경량 구조에 사용하기에 특히 매력적입니다. 중량별 강성을 높이고 보다 우수한 하중 전달을 위해 알 Aluminum Foam Sandwiches (AFS)와 같은 컴팩트한 특성이 필요합니다 [2].

Erlangen-Nuremberg 대학의 금속 공학과 기술 위원장은 알루미늄 발포 특성을 점차적으로 생산하기 위해 다이캐스팅 공정인 Integral Foam Molding 개발하였습니다(그림 1 참조). 이 공정은 폴리머의 사출 성형으로 개발되었으며 따라서 컴팩트한 층을 가진 복잡한 폼을 비용 효율적으로 대량 생산에 적합합니다. 이 노트에 설명 된 시뮬레이션 기법은 프로세스 매개 변수를 선택하는데 도움을 주기 위한 모델링프로세스를 확인할 수 있습니다.

Figure 1. Cross section of an aluminum integral foam with a compact skin, a transition region with decreasing relative density and smaller pores, as well as a foamed core.

Aluminum Integral Foam Molding Technology

일정량의 발포제 (수소화 마그네슘, MgH2)가 러너 시스템에 배치되고 샷 챔버는 알루미늄 용융물로 채워진다 (공정은 그림 2에 묘사되어 있으며, 공정은 [3]에 자세히 설명되어있다). 피스톤이 진행됨에 따라, 분말은 난류 방식으로 주형에 이송된다. 기술 변형 “고압 일체형 폼 몰딩 (HP-IFM)”의 경우 표준 다이캐스팅 공정에서 알 수 있듯이 이 부품은 주변의 높은 압력에서 완전히 채워져 우수한 표면 품질을 보장합니다. 템퍼링된 금형 표면에서 시작하여 용융물은 일체형으로 고형화되기 시작합니다. 몇 밀리 초가 지나면 금형은 코어 풀러 시스템 위에 열리고 부피는 국부적으로 증가하고 압력은 감소하여 열분해 및 수소화 마그네슘 입자의 수소 방출로 인해 여전히 반고체 내부 영역에서 기공 성장을 시작합니다. 모든 발포제 입자는 이웃하는 공극의 역압에 의해 멈추어 질 때까지 공극의 성장을 지속합니다. 발포된 입자의 벽은 알루미늄 합금의 응고된 입자에 의해 안정화가 되며 이를 endogenous stabilization이라고 합니다[4].

Figure 2. Schematic process cycle of “High Pressure Integral Foam Molding (HP-IFM)” of aluminum.

주조 부품의 전체 부피에서 균일한 형태에 대한 전제조건은 분해 순간의 양호한 입자분포입니다. 또한, 발포제 유입시의 용융물의 온도는 수소화 마그네슘의 분해를 결정하며 (그림 3 참조), 게다가 발포시 solid phase의 양을 결정한다. 그러나 고상의 양이 너무 많으면 기공의 강성이 증가하고 현상 기공의 구형화를 방해하여 구조가 파괴된다 [2].

Microcellular Aluminum Integral Foams – Approaching the Process Limits

일체형 발포 성형 공정시뮬레이션은 새로운 부품 설계의 몰드 충진 특성을 조사하는 데 도움이 될 뿐만 아니라 입자 침투도 예측하고 비용을 절약할 수 있게 발포 공정 조건을 결정할 수 있는 강력한 도구입니다. 현재 연구의 목표는 다공성 수준을 일정하게 유지하면서 기공 크기를 줄이는 것입니다. 전산 유체 역학 (CFD) 시뮬레이션은 가능한 한 현재의 프로세스 한계에 가깝게 접근할 수 있습니다. 발포 형태의 개선은 기계적 물성에서 균질 한 구조를 유도 할뿐만 아니라 기계적 성질에 의해 더 얇은 부품의 생산이 가능할 것입니다. 이 목적은 용융물 내에서의 높은 입자 분포 밀도와 동시에 응집 현상의 감소와 함께 완전히 안정된 기공 성장에 의해서만 달성 될 수 있다.

Figure 3. Schematic curves of decomposition of magnesium hydride as a function of the melt temperature, calculated by the Johnson-Mehl-Avrami approach [2]

Figure 4. Adjustment of heat transfer by comparisons of a real solidification curve (black) to the growth rate of the solidified skin in simulation (red).

Adapting the Simulation Parameters to Practical Integral Foam Molding Experiments

입자 거동이나 온도장에 대한 신뢰성 있는 예측을 위한 CFD 시뮬레이션을 사용할 수 있으려면 실제 실험과 일치하도록 매개 변수를 결정해야 합니다. 이를 위해, 30-130 ms의 지연 시간을 갖는 일체형 발포 부품을 제작하였으며 성형 팽창 및 기공 성장 개시 순간에 고상분율 때문에 발포 형성이 불가능한 다른 밀도의 형상을 만들었습니다. 열 전달 계수 (완전한 액체 용융물과 완전 응고된 용융물)를 변화시켜 합금 AlSi9Cu3 (Fe)의 주조 사이클을 시뮬레이션하면 응고 곡선을 적용할 수 있습니다. 이러한 목표를 달성하기 위해 시뮬레이션을 피스톤 이동이 시작되기 전에 실제 온도분포를 묘사해야 합니다. 온도는 배치된 열에 의해 숏 챔버에서 국부적으로 측정되었으며 시뮬레이션 내 실제 데이터와 잘 일치하여 성공적으로 묘사 될 수 있었습니다. 금형 충진 중에 금형 표면에서 온도 측정을 참조 할 수도 있습니다. 시간 경과에 따른 그 변화는 시뮬레이션 결과와 잘 일치합니다.

표면장력이나 응고 항력계수와 같은 용융의 유동을 정의하는 추가 매개 변수 단계에서는 다른 설정과 시뮬레이션을 비교하여 조정됩니다. 시뮬레이션 내에서 용융물의 흐름이 실제 시험과 일치하는 즉시 매개 변수가 설정됩니다

Figure 5. Adjustment of melt flow defining parameters such as the surface tension by comparisons of real experiments (left) to simulations (right)

냉각 및 용해 흐름 특성을 정의한 후 입자의 유입을 시뮬레이션 합니다. 입자 / 유체 의 상호 작용에 대한 시뮬레이션을 조정하기 위해 매개 변수계수의 X 선 샘플과 비교가 되며 구리선 입자에서는 수산화 마그네슘보다 높은 함량 입자가 적용됩니다. (그림 6 참조). 시뮬레이션 결과는 실험과 매우 잘 어울리므로 프로세스 매개 변수의 함수로서 입자 분포의 신뢰할 수 있습니다.

Figure 6. Adjustment of parameters influencing particle/melt-interactions by comparisons of x-rayed samples left); produced by the entrainment of copper particles) to simulations (right)

Conclusion

전체적으로 FLOW-3D는 실제 생산 전에 새로운 부품 제조의 잠재적 결함을 조사하는 중요한 수단이 될 수 있다는 것을 증명할 수 있었습니다. 이러한 방식으로, 차가운 흐름 또는 데드 존이 없는 성공적인 충전 및 발포제 분포가 보장 될 수 있다. 또한, 예상되는 온도 필드의 정확한 묘사로, 수소화 마그네슘의 분해 특성 및 기공형성을 예측할 수 있습니다. 이는 일체형 폼 구조와 관련하여 고객의 요구를 충족시키기 위한 공정 변수를 정의 할 수 있는 가능성을 제공합니다

1 Criterion is the solid phase fraction where the shear strength and therefore the resistance to pore evolution increases drastically.

References

[1] C. Körner, R. F. Singer, Adv. Eng. Mater. 20002 (4), pp. 159-165.
[2] C. Körner, in Integral Foam Molding of Light Metals – Technology, Foam Physics and Foam Simulation, Springer, Berlin, Heidelberg, Germany 2008.
[3] H. Wiehler, C. Körner, R. F. Singer, Adv. Eng. Mater. 200810 (3), pp. 171-178.
[4] J. Hartmann, A. Trepper, C. Körner, Adv. Eng. Mater. 201113 (11), pp. 1050-1055.

Learn more about the versatility and power of modeling metal casting processes with FLOW-3D Cast>

 

Metal Casting Models

Metal Casting Models

FLOW-3D CAST는 금속 주조를 위해 특별히 설계된 다양한 물리적 모델을 포함하고 있습니다. 이는 모든 종류의 금속 주조 용도와 관련된 문제에 대한 가장 정확한 해결책을 제공합니다. 이를 통해 고객은 보다 적은 시간과 비용으로 지속적으로 주조 수율과 품질을 개선할 수 있습니다.

자유 표면 흐름을 정확하게 예측할 수 있는 특수 기능을 갖춘 FLOW-3D CAST는 금형 용탕 충진 및 공기 주입과 같은 관련된 결함을 시뮬레이션하는 데 가장 적합합니다. 강력하고 유연한 열전달 모델은 응고, 냉각 채널, 열 다이 사이클 시뮬레이션과 같은 금속과 금형 사이의 열 교환을 빠르고 정확하게 예측할 수 있습니다. 금형 용탕 충진과 결합할 수 있는 응고 및 수축 모델은 과도한 수축공과 기공 영역을 정확히 찾아내어 결함이 완화됩니다. granular media 모델과 수분 건조 모델을 사용하여 모래 코어의 blowing과 건조 공정을 시뮬레이션 할 수 있습니다. FLOW-3D CAST의 유한 요소 기반 열 응력 모델을 사용하면, 고객이 응력이 발생하는 위치와 주조 변형이 일어나는 이유를 정확하게 예측할 수 있으므로 열 변형 결함을 제거할 수 있습니다. 주철 모델은 공정 반응하는 동안 흑연, 감마 – 철 및 탄화물 형성을 예측하여, FLOW-3D CAST의 적용 범위를 확장합니다. 코어 가스 제품 군의 고유한 특징은 코어 가스 생성 및 모래 코어에서의 흐름을 모델링 하여 금속 주물의 코어 가스 관련 결함을 예측하는 데 사용할 수 있습니다.

FLOW-3D CAST는 금속 주조 모델링 및 시뮬레이션 분야의 선두 프로그램입니다. 금속 주조 업계에 대한 당사의 헌신은 금속 주조와 관련된 모델과 용도에 대한 당사의 지속적인 개발로 입증되었습니다. 당사는 고객과 지속적으로 협력하여 실제 애플리케이션을 위해 개발하여 품질과 생산성을 향상시키고 지속적으로 혁신할 수 있도록 지원할 것입니다.

Jewelry Casting

Gravity Pour

Gravity Pour

중력 주조는 큰 부품(일반적으로 철, 청동, 황동 또는 알루미늄)을 만드는 데 사용됩니다. 사형 주조 및 영구 금형을 포함한 대부분의 주조 공장 주조 공정은 FLOW-3D CAST를 사용하여 모델링 할 수 있습니다. 주입 프로세스는 고압 다이 캐스팅에 비해 덜하지만 과도한 공기 주입으로 인한 공기 유입으로 인해 품질이 저하될 수 있습니다. 주입하는 동안 잠재적 결함의 위치와 온도의 변화 뿐만 아니라, 용탕 표면의 움직임도 정확하게 예측됩니다. 충진이 완료된 후 용탕의 응고 및 수축을 모델링 할 수도 있습니다.

 

Accurate Filling Simulations

주조 공정에서 주입 작업은 결함들이 라이저로 이동하는지, 또는 부품에 갇힌 채로 남아 있는지 여부와 같은 주입 패턴 및 관련 결함을 분석하는 작업으로 이루어집니다. 시뮬레이션 분석을 사용하면 설계의 효율성을 검증하고 비용을 절감하면서 생산에 들어가기 전에 설계를 테스트할 수 있습니다. 주입의 정확성은 산화물의 결함과 갇힌 공기의 위치를 추적하는 데 중요할 뿐만 아니라, 응고 결과의 핵심입니다. 올바른 주입 패턴은 주입 마지막의 올바른 열 분포를 의미합니다. 이 열 분포는 응고 분석의 기초가 됩니다.

Solidification of Castings for Foundry Applications

편석, 열응력, 마이크로 및 매크로 기공 등 응고와 관련된 다양한 결함들이 있습니다. 정확한 응고 결과를 얻기 위한 중요한 첫번째 단계는, 정확한 주입입니다. 정확한 주입은 응고 모델링의 초기 조건인 올바른 열 프로필을 캡처하는데, FLOW-3D CAST는 주조 부품을 보다 신속하게 설계하고 폐기율을 낮출 수 있는 많은 응고 관련 결함을 감지할 수 있습니다.

High Pressure Die Casting

ALL NEW FLOW-3D CAST v5

ALL NEW FLOW-3D CAST v5

HPC version of FLOW-3D CAST v5 releasedALL NEW FLOW-3D CAST v5 는 금속 주조 시뮬레이션 및 공정 모델링에 있어 큰 발전입니다. 이제 FLOW-3D CAST는 시뮬레이션 할 프로세스를 선택할 수 있으며, 소프트웨어는 적절한 프로세스 매개 변수, 지오메트리 유형 및 합리적인 기본 값을 제공합니다. 이렇게 하면 시뮬레이션 설정이 상당히 간소화됩니다. 또한 FLOW-3D CAST의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계 주기를 단축하고 비용을 절감하는 통찰력을 제공합니다. 대표적인 개발 기능으로 응고 시뮬레이션을 위한 열 계수 및 핫 스팟 식별 출력, 갇혀 있는 가스를 식별하고 환기 효율을 예측하기 위한 결함 채우기 도구 등이 포함됩니다. 그리고 더 빠르고 더 강력한 압력과 및 응력 해소 기능이 모두 포함합니다.

ALL NEW FLOW-3D CAST v5 는 관련 프로세스가 포함된 Suite제품으로 제공됩니다. 영구 금형 제품군은 중력 다이 캐스팅, 저압 다이캐스팅(LPDC), 틸트 주입 주조와 같은 프로세스 작업 공간을 포함합니다. 각 프로세스에 대해 사용자 인터페이스는 특정 프로세스와 관련된 내용만 표시합니다. 모래 주조 Suite에는 중력 사형 주조 및 저압 사형 주조(LPSC)와 같은 프로세스가 포함되어 있습니다. 소실 폼 제품 군에는 사형 주조 Suite의 모든 것과 소실 폼 공정 작업 공간이 포함됩니다. HPDC 제품군은 열 응력 및 변형을 포함하여 고압 다이 캐스팅과 관련된 모든 것을 포함합니다. 각 프로세스 작업 공간 내에서 채우기, 응고 및 냉각과 같은 하위 프로세스는 서로 연결된 시뮬레이션으로, 처음부터 끝까지 차례로 전체 프로세스를 모델링 합니다. 사용자가 그것을 작업장 바닥에서 하는 것처럼. 사용자는 레들을 용융 풀 안에 담갔다가, 숏 슬리브 또는 주입 컵에 옮겨, 전체 이동 및 주입과 같은 단계를 포함하도록 프로세스를 확장할 수 있습니다. LPDC의 경우 프로세스 엔지니어는 도가니의 가압 및 금속 흐름을 주형으로 모델링 할 수 있습니다.  FLOW-3D CAST v5를 사용하면 가능성이 무한해 집니다.

WYSIWYN Process Workspaces

What-You-See-Is-What-You-Need (WYSIWYN) 프로세스 작업 공간은 FLOW-3D CAST의 다기능성을 간소화하여 사용 편의성과 탁월한 솔루션입니다. 대부분의 인터페이스는 사용자가 제공해야 하는 정보만을 요구하고, 사용자 설계 원칙을 적용하여 단순화되었습니다.

FLOW-3D CAST v4.2에 도입된 프로세스 중심 작업 공간은 중력 다이 주조, 저압 주조 및 경사 주입, 모래 등과 같은 영구 금형 공정으로 확장되었습니다. 중력 모래 주조, 저압 모래 주조 및 소실 폼과 같은 주조 공정 지속적인 주조, 투자 주조, 모래 코어 제작, 원심 주조를 포함한 더 많은 공정 작업 공간이 현재 진행 중에 있습니다.

Simulation setup is simplified by only showing the components applicable for a given process.

Types of casting components available in a HPDC simulation. Mold pieces available in a high pressure die casting include cover and ejector dies, sliders, and shot sleeves.

Defect Prediction / 결함 예측

Identify Filling Defects using Particles  결함 예측 및 입자를 이용한 주입 결함 식별

파티클을 사용하는 FLOW-3D CAST v5를 통해 유입된 가스로 인한 충전 결함을 식별하는 것이 훨씬 쉬워 졌습니다. 결함을 식별하기가 훨씬 용이할 뿐만 아니라, 결함 예측에 따른 계산 비용도 크게 절감되었습니다.

붕괴된 가스 지역을 나타내는 보이드 입자가 도입되었습니다. 이전에 붕괴된 가스 영역은 너무 압축되어 수치 메쉬에서 해결할 수 없으면 시뮬레이션에서 사라졌습니다. 보이드 입자는 작은 기포처럼 작용하며 드래그와 압력을 통해 금속과 상호 작용합니다. 주변의 금속 압력에 따라 크기가 변하며, 주입이 끝난 후 최종 위치를 보면 공기 침투 및 산화물로 인한 잠재적인 결함이 있음을 알 수 있습니다.

Predict filling defects caused by entrapped gas using the Particle Model.

Metal/Wall Contact Time 금속/벽 접촉 시간

벽면 접촉 시간은 금형 표면에서 다른 부위보다 금속에 더 오래 노출된 부위를 식별하는 데 유용합니다. 금속 접촉 시간은 금속이 고체 구성 요소와 접촉한 시간을 나타냅니다. 예를 들어 모래 입자가 핵분해 부위의 역할을 하기 때문에 미세 먼지가 발생할 수 있습니다. 개별 솔리드 구성 요소와의 금속 접촉 시간 출력이 모든 구성 요소와의 접촉 시간을 포함하도록 확장되었습니다. 접촉 시간 계산은 출력 탭에서 벽 접촉 시간을 선택하여 활성화합니다.

Identify solidification defects with the new Thermal Modulus output.

Solidification Defect Identification 응고 결함 식별

일반적으로 라이저 크기 조정에 사용되는 열 모듈은 이제 응고 시뮬레이션에서 출력됩니다.

Risers will likely need to be placed on the circled regions.

Hot Spots  핫 스팟

또 다른 결과인 “핫 스팟”은 라이저를 찾고 크기를 조정하며, 응고 관련 결함의 가능성을 식별하는 데 유용합니다. 핫 스팟은 최종적으로 응고된 부위를 나타냅니다. 이것들은 입자들로 표현되고 뜨거운 점 크기에 의해 색깔이 변하기도 합니다. 라이저는 핫 스팟 크기가 가장 큰 곳에 배치해야 합니다.

Porosity Analysis Tool

FlowSight의 새로운 Porosity Analysis Tool은 실제적인 측면에서 porosity-related 결점을 식별합니다. 결점은 이제 순 볼륨, 최대 선형 범위, 모양 인자 및 total count로 식별됩니다.

New defect identification tools allow users to analyze porosity.

Arbitrary 2D Clips 임의 2D 클립

기능 지향적인 2D 클립은 결함을 찾기 위해 전면적으로 살펴 볼 때 유용합니다. 이전에는 클립에 표시된 금속 영역이 솔리드에 의해 점유된 셀로 확장되었습니다. 잡식의 FLOW-3D CAST v5에서 이 클립은 구성 요소를 숨기는 옵션을 선택해야만 열린 공간(예:주조 부품)의 금속을 보여 줄 수 있습니다.

Intensification Pressure 강화 압력

고압 주조 시뮬레이션에 지정된 강화 압력은 이제 매크로 및 마이크로 Porosity모델 모두에 결합되어 형성 사이의 보다 현실적인 관계를 형성합니다. 이러한 결함의 크기 및 플런저에 의해 가해지는 압력의 크기입니다.

Adjusting Shrinkage Porosity 수축 기공 조절

사용자가 금속의 특성을 수정할 필요 없이 수축 다공성의 양과 크기를 미세 조정할 수 있도록 수축 조정 계수가 추가되었습니다. 계수를 사용하면 응고 중에 체적 수축의 양을 전화로 설정하거나 줄일 수 있습니다.

Gas Pressure and Venting Efficiency  가스 압력 및 밴트 효율성 검토

사용자가 충전 결함을 식별하고 다이캐스트에서 밴트 시스템을 설계하는 데 도움을 주기 위해 마지막 국부적인 가스 압력 및 밴트 효율성 검토 결과가 주조 시뮬레이션 출력에 추가되었습니다. 가스 압력은 셀이 금속으로 채워지기 전에 셀의 마지막 보이드 압력을 기록하며, 밴트 효율은 환기구를 배치하는 것이 밴트 위치에서 공기를 배출하는 데 가장 효율적인 영역을 보여 줍니다.

Databases 데이터베이스

주조 공정에서 일반적으로 사용되는 정보의 데이터베이스는 설정 오류를 줄이고 시뮬레이션 workflow 를 개선합니다.

Configurable Simulation Monitor 구성 가능한 시뮬레이션 모니터

시뮬레이션을 실행할 때 발생하는 중요하지만 종종 힘든 작업은 시뮬레이션을 모니터링하는 것입니다. FLOW-3D CAST를 사용하면 다음과 같은 일반적인 시뮬레이션 목표를 모니터링할 수 있습니다.

  • 게이트 속도
    주형 내 고상 분율
    최저/최고 용탕 온도 및 금형 온도
    다양한 프로브 위치에서의 온도
    시뮬레이션 진단(예:시간 스텝, 안정성 한계)

Plotting Capabilities  Plotting기능

이제 시뮬레이션 관리자에는 더 많은 플롯 기능이 포함됩니다. 플롯은 사용자가 구성할 수 있으며 구성은 다른 시뮬레이션에서 사용하기 위해 데이터베이스에 저장됩니다. 사용자는 시뮬레이션 런타임 그래프와 history-data 에서 모니터링할 이력 데이터 변수를 지정할 수 있습니다. 다중 변수를 각 그래프에 입력합니다.

Conforming Meshes

임의 형상의 활성 계산 영역을 정의할 수 있도록 적합한 메쉬 기능이 확장되었습니다. 이는 메쉬 블록이 준수할 수 있는 열린 볼륨과 솔리드 볼륨을 모두 포함하여 계산 도메인의 영역을 정의하는 meshing구성 요소라고 하는 새로운 유형의 지오메트리 구성 요소를 사용합니다.
메쉬 블록은 냉각 채널이나 공동에 선택적으로 조합할 수 있어 사용자가 이러한 기하학적 객체에 대해 최적의 해상도를 선택할 수 있습니다. 이제 확인할 수 있는 메쉬가 FAVORize 탭에 표시될 수 있습니다.

Summary Views of Components/Cooling Channels

FLOW-3D CAST v5의 인터페이스는 주조 시뮬레이션에서 다양한 형상 구성 요소를 꽉 차게 보여줍니다. 2개의 새로운 형상 요약 뷰인 구성 요소 요약 뷰와 냉각 채널 요약 뷰는 기하학적 구성 요소 및 냉각 채널의 플라이 아웃을 제공하여 사용자가 신속하게 수행할 수 있도록 합니다. 중요 설정을 한 눈에 파악하고 필요한 경우 변경 할 수 있습니다.

Under the Hood

FLOW-3D CAST의 많은 강력한 구성 요소들은 Solver Engine이라고 부르는 것 들에서 중요합니다. 아래에서는 이면에서 무거운 작업을 수행하는 데 도움이 되는 몇가지 중요한 사항을 설명합니다.

Thermal Die Cycling (TDC) Model TDC(열 다이 사이클)모델

열 다이 사이클 시뮬레이션의 주입/응고 단계는 균일하지 않은 캐비티 온도를 사용하여 개선할 수 있습니다. 이제 캐비티에 있는 금속의 초기 온도는 재시작 중에 채우기 시뮬레이션을 통해 지정하거나 초기 유체 영역을 사용하는 사용자 정의 분포에서 지정할 수 있습니다. 이 기능은 옵션으로 사용할 수 있는 균일한 초기 금속 온도에 비해 다이 사이클링의 열해석의 정확성과 현실성을 높여줍니다.

Melt temperatures in the casting cavity read from a filling simulation are applied to ejector die during filling/solidification stage of thermal die cycling simulation.

Heat Transfer Coefficient Calculator for Spray Cooling 분사 냉각을 위한 열 전달 계수 계산기

스프레이 유체와 다이 표면 사이의 열 전달 계수(HTC)를 추정하는 것은 어려운 일입니다. 계산 또는 측정을 통해 값을 사용할 수 있는 경우 사용자는 이러한 값을 스프레이 거리 및 각도의 함수로 직접 지정할 수 있습니다. 새로운 기능을 통해 노즐의 스프레이 액의 유량을 기준으로 HTC를 동적으로 계산할 수 있습니다. 단일 조정 계수를 통해 스프레이 유출량을 기준으로 HTC를 미세 조정할 수 있습니다.

FLOW-3D의 활용 및 설계 적용 사례 (3)

주조, 기계 분야의 활용

주조 분야 사용자들에게 제공되는 FLOW-3D 제품은 주조해석에 전문화된 FLOW-3D Cast이다. 이는 범용인 FLOW-3D를 주조분야에만 국한시켜 이 분야의 사용자가 가장 쉽게 접근, 활용할 수 있도록 사용자 환경을 재구성하였고, 공정 설계자로부터 전문 해석자까지 제품을 사용하는데 어려움이 없도록 최대한 접근성을 높여 개발되었다. <그림 1>은 FLOW-3D Cast의 GUI와 그에 따른 절차 설명을 간단히 보여주고 있다. 

그림 1. FLOW-3D Cast의 GUI

FLOW-3D Cast는 대표적으로 고압 다이캐스팅, 저압 다이캐스팅, 경동주조, 중력주조, 중자성형 등 거의 주조 전분야에 대한 해석을 수행할 수 있으며, 주조 합금과 금형, 몰드 모두에 대해 유동 및 열응력 솔루션을 제공해 줄뿐만 아니라, 제품 생산 시 발생하는 불량 문제 등을 빠르게 파악하고 개선해 나갈 수 있는 방향을 제시해 줄 수 있다.
FLOW-3D Cast의 각 기능에는 앞서 말한 주조 과정에서 사용되는 공정을 모델링할 수 있도록 개발되었고, 정확한 유동과 응고 결과는 물론 제품의 표면산화물, 혼입된 공기, 매크로 및 마이크로 기공, 수축공과 같은 중요한 주조 결함을 포착할 수 있는 기능이 탑재되어 있다. 또 다른 독특한 모델링 기능으로는 로봇 스프레이 냉각을 적용할 수 있는 열 다이 사이클링 기능 및 샷 슬리브 흐름 프로필, 스퀴즈 핀 및 열응력을 모델링할 수 있는 기능도 탑재되어 있다.


그림 2. FLOW-3D Cast의 주조해석 종류

이번 호에서는 대표적인 실물 예제로 여러 주조 공법 중 고압 다이캐스팅, 중력주조의 실례를 들어 설명하고 제철 및 제강 공정에서 활용된 몇 가지 사례를 덧붙여 소개하고자 한다.

1. 고압 다이캐스팅 해석
FLOW-3D Cast가 수행할 수 있는 주조 분야 중 대표적인 주조 해석은 용탕의 충진 현상이 최대 관점인 고압 다이캐스팅 해석이다. 고압 다이캐스팅은 FLOW-3D Cast 내의 GMO(General Moving Object)라는 기능을 이용하여 플런저 운동에 의한 슬리브 내의 용탕(액체화된 용융된 금속)을 제품 캐비티 안에 고속으로 밀어 넣는 공정이다. FLOW-3D Cast는 용탕의 충진 과정뿐 아니라 온도, 압력, 속도 등 사용자가 원하는 결과들을 얻을 수 있으며, 또한 용탕의 충진 과정에서 불가피하게 나타날 수 있는 표면 산화물의 생성, 혼입된 공기로 인한 미세 기공의 생성, 응고 과정 중의 수축공 등 다양한  불량 원인을 찾아 준다.
해석 사례로서 센터 블록이라는 실제 제품에 대해서 고압 다이캐스팅 해석을 수행하여 충진 및 응고 해석을 수행하여 보았다. 이 제품은 각종 유압장치들이 연결되는 부품으로 기밀성이 필수적인 제품이다. 기존에는 사각형의 알루미늄 덩어리를 가공하여 제품을 생산하였으나, 생산성 면에서 매우 뛰어나고 가벼운 고압 다이캐스팅 공법을 적용하여 생산하고 있다.

그림 3. 센터 블록의 제품 형상

다운로드 : [ 3회_201803_analysis_flow3d ]

작성자 | 조애령_에스티아이C&D 솔루션 사업부 차장
이메일 | joal@stikorea.co.kr
홈페이지 | www.flow3d.co.kr

출처 : CAD&Graphics 2018년 03월호

컨설팅 절차

컨설팅 절차

  • 해석 컨설팅을 저희에게 의뢰하시면, 상세한 상담 후 견적을 작성하여 보내 드립니다. 상담은 전화, 이메일, 방문 등의 방법으로 진행됩니다.
  • 계약이 체결된 후 수치해석을 위한 자료 및 데이터를 받아, 협의된 안으로 수치해석을 수행합니다.
  • 컨설팅 진행 과정 중에 수시로 해석 결과 및 진행 상황에 대해 연락 드리며, 변경, 수정 사항을 협의하여 반영할 수 있습니다.
  • 수치해석이 완료되면 최종 보고서를 작성하여 제출하며, 필요시 방문하여 결과를 상세히 설명 드립니다.
  • 수치해석 기술 전수가 포함된 계약일 경우, 최종 보고서 제출 이후에 기술 전수 교육을 진행합니다.
  • 모든 기술 자료는 대외비로 취급되며, 철저하게 보안을 유지해드립니다.

컨설팅 분야

수자원 분야

  • 댐체, 수문, 제반 구조물 안정성 검토
  • 댐, 여수로 유동 해석
  • 여수로 수위별 방류량 해석
  • 여수로 월류 및 수위 검토 해석
  • 발전소 취수로 유동 해석
  • 배수터널 방류향 해석
  • 취수탑 유입 유량 해석
  • 교각주위 세굴 해석
  • 수문 수차 유량 해석
  • 저수지 수위별 유동해석
  • 배수암거 부정류 해석
  • 저수지 연결 터널 유동 해석
  • 교각 유동 작용 힘 검토
  • 도수터널 통수 능력 해석
  • 부유사 확산 검토
  • 냉각수 취수로 유량 해석
  • 수문 유동 양상 분석
  • 배수터널 방류량 해석
  • 월류 수위별 유량 유속 해석

수처리 분야

  • 정수지 유동해석
  • 분배수로 유량분배 해석
  • 침전지 유동 및 유속 분포 해석
  • 반응조 농도 및 반응시간 해석
  • 응집지 유동해석
  • 하수처리시설 슬러지 농도 해석
  • DAF 응집제 농도 해석
  • 수조 최적 교반 해석
  • 여과지 유동해석
  • 혼화지 유동해석
  • 호기조 담체 거동해석
  • 수처리 구조물 유동 양상 분석
  • 하수처리시설 유동해석
  • 분말활성탄 접촉조 해석
  • PSBR 반응조 해석
  • 지하수 ICE RING 형성 해석
  • 절리면 모세관 열유동 해석
  • DAF 실증시설 부상조 해석
  • 착수정 유량 분배 해석

우주 항공분야

  • 발사체 탱크 슬로싱 댐핑 평가 해석
  • 항공기 비행 및 급유 시 연료 탱크 내부 유동 해석
  • 항공기 날개 연료 탱크 내부 유동 해석
  • 항공기 연료 탱크 내부 유동 해석
  • 추진체 관리 장치 내부 유동 해석
  • 엔진 및 터빈 노즐 내부 유동 및 캐비테이션 해석

자동차 분야

FLOW-3D POST Gears
  • 자동차 연료 탱크에 연료 주입 시 탱크 내부 유동 해석
  • 피스톤 쿨링젯 시스템 해석
  • 전착 도장 해석
  • 자동차 연료 주입구의 주입 유량별 유동 특성 분석
  • 기어 펌프의 로터 회전에 따른 오일 유동 양상 분석
  • 엔진 실린더 내 피스톤 운동과 배기가스 유동 패턴 해석
  • 베어링 내 윤활을 위한 오일의 유동 양상 해석

해양분야

  • 해양 컨테이너 연료 탱크 슬로싱 해석
  • 방파제 구조물 주변 유동 해석
  • 선박 운항에 따른 항주파 및 유동 특성 분석
  • 사석 방파제 등 구조물 주변 유동 해석
  • 진동수주형 파력 발전 구조물 최적화 모델 해석
  • 선박 및 부유체 계류 시 계류 안정성 및 계류력 해석
  • 발전소 부근 해역 온배수 영향 예측
  • 지진 해일에 의한 영향 해석

주조 분야

  • 고압다이캐스팅  충진 거동 및 응고 해석
  • 저압주조 충진 거동 및 응고 해석
  • 경동주조 충진 거동 및 응고 해석
  • 중력주조 충진 거동 및 응고 해석
  • 원심주조 충진 거동 및 응고 해석
  • 금형온도 분포 해석
  • 제품 및 금형 열응력, 변형 해석
  • 주조 공법 별 온도 분포, 산화물 분포 및 결함 분석
  • 금형 및 몰드 냉각방안 최적화 검토

Micro/Bio/Nano Fluidics 분야

  • Slit 및 Slot 코팅 해석
  • Roll 코팅 해석
  • Gravure / Gravure-offset 프린팅 해석
  • Curtain 코팅 해석
  • Multi-layer Slide 코팅 해석
  • 전기 삼투를 이용한 마이크로 펌프 전위 및 유동해석
  • 마이크로 채널 액적 생성 연속성 및 혼합 해석
  • 잉크젯 헤드 조건에 따른 잉크 분사 성능 해석
  • 열모데관 유동해석과 모세관 충진 해석
  • 유전 영동 현상을 이용한 액적 융합 해석

레이저 용접 분야

  • 이종재 레이저 용접 해석
  • 용접속도와 경사도에 따른 키홀 내부의 기공 거동 해석
  • 이종재의 레이저 용접 시 wobbling 해석
  • 레이저 용접 Melt Pool 거동 해석
  • 레이저 파워, 속도에 따른 balling 결함 영향 해석

HVAC System Designs

HVAC(난방, 냉방 및 환기)시스템 엔지니어가 고려해야 하는 최적 설계 배치에 대한 검토를 수행

발전소의 경우 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있어서 여러가지 시설물의 상황을 고려할 수 있음

건물 내 공기를 올바르게 분배하고 적절한 쾌적한 온도를 확보하기 위해 건물 구조와 흡입그 크기 등의 검토 가능

수치해석 기술 컨설팅 안내

FLOW-3D Case Studies

수치해석 기술 컨설팅 안내

(주)에스티아이씨앤디에서는 고객이 수치해석을 직접 수행하고 싶지만 경험이 없거나, 시간이 없어서 용역을 통해 수치해석 결과를 얻고자 하는 경우 전문 엔지니어를 통해 CFD 컨설팅 서비스를 제공합니다. 귀하께서 당면하고 있는 연구프로젝트를 최소의 비용으로, 최적의 해결방안을 찾을 수 있도록 지원합니다.
상담에는 비용은 전혀 들지 않습니다.

CFD는 엔지니어가 공기, 물 또는 모든 유체와의 상호 작용을 이해할 수 있게 하는 매우 효과적인 기술로 대부분의 유동현상에 해답을 제시 할 수있는 막대한 잠재력을 가지고 있습니다.
다양한 유체 흐름 현상이나 온도 및 열전달 분석 등 필요한 시나리오에 대한 맞춤 솔루션을 제공합니다.

당사에는 20년 이상 수치해석 연구에 전념하고 있는 전문 연구인력과 다양한 기술적 경험과 전문 시뮬레이션 기술을 제공하는 숙련된 기술컨설팅팀이 준비되어 있습니다.
귀하의 프로젝트 성공 가능성을 기술시연을 통해 제공 할 수 있습니다.
프로그램 소개나 자문이 필요하신 분들은 언제든지 아래 연락처로 문의하시기 바랍니다.

  • 전화 :   02-2026-0455
  • Email : flow3d@stikorea.co.kr

컨설팅 형태

수치해석 의뢰

  • 고객이 당면한 문제를 분석 /검토/협의 후, 가장 적절한 수치해석 방법을 수립합니다.
  • 주로 상호 협의된 설계안 및 해석 조건에 대해 수치해석을 수행하여 결과를 도출 분석, 검토합니다.
  • 설계 변경 인자 및 해석 횟수는 고객과 협의하여 진행합니다. 수치해석 결과를 분석 검토하여 설계에 반영하기 위한 의견을 제시하여 드립니다.

해석 대행 의뢰

  • 고객사에 해석 프로세스가 정립되어 있는 경우에 대해, 계산 장비와 수치해석 인력을 이용하여 해석 대행 및 해석 결과물을 제출합니다.

컨설팅 절차

  • 해석 컨설팅을 저희에게 의뢰하시면, 상세한 상담 후 견적을 작성하여 보내 드립니다. 상담은 전화, 이메일, 방문 등의 방법으로 진행됩니다.
  • 계약이 체결된 후 수치해석을 위한 자료 및 데이터를 받아, 협의된 안으로 수치해석을 수행합니다.
  • 컨설팅 진행 과정 중에 수시로 해석 결과 및 진행 상황에 대해 연락 드리며, 변경, 수정 사항을 협의하여 반영할 수 있습니다.
  • 수치해석이 완료되면 최종 보고서를 작성하여 제출하며, 필요시 방문하여 결과를 상세히 설명 드립니다.
  • 수치해석 기술 전수가 포함된 계약일 경우, 최종 보고서 제출 이후에 기술 전수 교육을 진행합니다.
  • 모든 기술 자료는 대외비로 취급되며, 철저하게 보안을 유지해드립니다.

주요 컨설팅 의뢰 분야

수자원 분야

  • 댐체, 수문, 제반 구조물 안정성 검토
  • 댐, 여수로 유동 해석
  • 여수로 수위별 방류량 해석
  • 여수로 월류 및 수위 검토 해석
  • 발전소 취수로 유동 해석
  • 배수터널 방류향 해석
  • 취수탑 유입 유량 해석
  • 교각주위 세굴 해석
  • 수문 수차 유량 해석
  • 저수지 수위별 유동해석
  • 배수암거 부정류 해석
  • 저수지 연결 터널 유동 해석
  • 교각 유동 작용 힘 검토
  • 도수터널 통수 능력 해석
  • 부유사 확산 검토
  • 냉각수 취수로 유량 해석
  • 수문 유동 양상 분석
  • 배수터널 방류량 해석
  • 월류 수위별 유량 유속 해석

수처리 분야

Wastewater Treatment Plant
Wastewater Treatment Plant
  • 정수지 유동해석
  • 분배수로 유량분배 해석
  • 침전지 유동 및 유속 분포 해석
  • 반응조 농도 및 반응시간 해석
  • 응집지 유동해석
  • 하수처리시설 슬러지 농도 해석
  • DAF 응집제 농도 해석
  • 수조 최적 교반 해석
  • 여과지 유동해석
  • 혼화지 유동해석
  • 호기조 담체 거동해석
  • 수처리 구조물 유동 양상 분석
  • 하수처리시설 유동해석
  • 분말활성탄 접촉조 해석
  • PSBR 반응조 해석
  • 지하수 ICE RING 형성 해석
  • 절리면 모세관 열유동 해석
  • DAF 실증시설 부상조 해석
  • 착수정 유량 분배 해석

우주 항공분야

  • 발사체 탱크 슬로싱 댐핑 평가 해석
  • 항공기 비행 및 급유 시 연료 탱크 내부 유동 해석
  • 항공기 날개 연료 탱크 내부 유동 해석
  • 항공기 연료 탱크 내부 유동 해석
  • 추진체 관리 장치 내부 유동 해석
  • 엔진 및 터빈 노즐 내부 유동 및 캐비테이션 해석

자동차 분야

FLOW-3D POST Gears
  • 자동차 연료 탱크에 연료 주입 시 탱크 내부 유동 해석
  • 피스톤 쿨링젯 시스템 해석
  • 전착 도장 해석
  • 자동차 연료 주입구의 주입 유량별 유동 특성 분석
  • 기어 펌프의 로터 회전에 따른 오일 유동 양상 분석
  • 엔진 실린더 내 피스톤 운동과 배기가스 유동 패턴 해석
  • 베어링 내 윤활을 위한 오일의 유동 양상 해석

해양분야

  • 해양 컨테이너 연료 탱크 슬로싱 해석
  • 방파제 구조물 주변 유동 해석
  • 선박 운항에 따른 항주파 및 유동 특성 분석
  • 사석 방파제 등 구조물 주변 유동 해석
  • 진동수주형 파력 발전 구조물 최적화 모델 해석
  • 선박 및 부유체 계류 시 계류 안정성 및 계류력 해석
  • 발전소 부근 해역 온배수 영향 예측
  • 지진 해일에 의한 영향 해석

주조 해석 분야

  • 고압다이캐스팅  충진 거동 및 응고 해석
  • 저압주조 충진 거동 및 응고 해석
  • 경동주조 충진 거동 및 응고 해석
  • 중력주조 충진 거동 및 응고 해석
  • 원심주조 충진 거동 및 응고 해석
  • 금형온도 분포 해석
  • 제품 및 금형 열응력, 변형 해석
  • 주조 공법 별 온도 분포, 산화물 분포 및 결함 분석
  • 금형 및 몰드 냉각방안 최적화 검토

Micro/Bio/Nano Fluidics 분야

  • Slit 및 Slot 코팅 해석
  • Roll 코팅 해석
  • Gravure / Gravure-offset 프린팅 해석
  • Curtain 코팅 해석
  • Multi-layer Slide 코팅 해석
  • 전기 삼투를 이용한 마이크로 펌프 전위 및 유동해석
  • 마이크로 채널 액적 생성 연속성 및 혼합 해석
  • 잉크젯 헤드 조건에 따른 잉크 분사 성능 해석
  • 열모데관 유동해석과 모세관 충진 해석
  • 유전 영동 현상을 이용한 액적 융합 해석

레이저 용접 분야

  • 이종재 레이저 용접 해석
  • 용접속도와 경사도에 따른 키홀 내부의 기공 거동 해석
  • 이종재의 레이저 용접 시 wobbling 해석
  • 레이저 용접 Melt Pool 거동 해석
  • 레이저 파워, 속도에 따른 balling 결함 영향 해석

공기/열 흐름 분야 (HVAC System Designs)

HVAC(난방, 냉방 및 환기)시스템 엔지니어가 고려해야 하는 최적 설계 배치에 대한 검토를 수행

발전소의 경우 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있어서 여러가지 시설물의 상황을 고려할 수 있음

건물 내 공기를 올바르게 분배하고 적절한 쾌적한 온도를 확보하기 위해 건물 구조와 흡입그 크기 등의 검토 가능

[FLOW-3D 물리모델] Mass Sources / 질량소스

Mass Sources / 질량소스

질량소스는 형상요소와 연관되어 있다. 요소가 질량소스로 정의될 때 유체는 사용자가 지정한 체적이나 질량 유량으로 오픈된 표면(다른요소 또는 계산영역의 경계에 의해 막혀있지 않은 표면)을 통해 계산영역으로 들어온다. 음의 유량을 갖는 질량소스는 유체를 계산영역에서 제거하며 싱크(이 이후로 소스는 단지 양의 유량을 갖는 질량소스를 뜻한다)라고 불린다. 정지 및 이동요소 모두 질량 또는 체적유량소스로 정의될 수 있다. 이 모델에서는 각기 질량 또는 체적 유량, 유체형태(유체 1, 2 또는 이들의 혼합물), 유체밀도 그리고 온도 같은 고유한 물성 그룹으로 특화되는 다수의 소스 및 싱크를 사용할 수 있다.

정리하면

  • 질량/체적 유량은 시간에 따라 변할 수 있다. 결과적으로 모사(simulate)동안에 소스는 싱크로 변할 수 있고 반대도 마찬가지이다.
  • 두 유체문제에서 하나의 유체는 소스/싱크에서 추가/제거될 수 있다. 추가로 두 유체 혼합물은 싱크에서 제거될 수 있다.
  • 1-유체문제에서 유체가아닌 공간이 소스/싱크에서 추가/제거되면 추가되거나 제거된 공간체적은 소스/싱크에 인접한 공간에서의 상응하는 압력변화로 변환될 수 있다.
  • 유체1 과 2(또는 공간)이 싱크에서 제거될 때 제거된 각 유체의 양은 자동적으로 싱크에 인접한 인근 체적율에 비례하여 결정된다. 예를들면, 인근 체적율이1이면 체적으로 유체1의 10% 와 유체2의90%가 싱크에서 제거된다. 인근 체적율이 1.0이면 단지 유체1만이 제거된다. 유체분율은 시간에 따라 변하므로 각 유체의 제거율 또한 시간에 따라 변할 것이다.
  • 열전달을 갖는 모사(simulate)에서 싱크에서의 온도는 자동적으로 싱크에 인접한 셀 내의 평균온도로 계산되므로 사용자가 지정할 필요가 없다.

밑의 예제는 다른 모사(simulate)의 경우에 대한 질량 소스/싱크 모델의 사용을 기술한다.

경우1, 일정한 밀도를가지며 자유표면 이있으나 열전달이 없는 1-유체유동,

  • 소스는 유체(액체)또는기공(가스)를 방출할 수 있지만 둘 다 동시에 방출할 수 는 없다. 유체1이 방출되면 소스 유체밀도는 유체1의 밀도가되며 사용자가 지정할 수 없다. 기공이 방출되고 질량 유량이 정의되면 소스/싱크에서의 기공에 대한 가스밀도가 지정되어야 한다. 기공이 방출되고 체적유량이 정의되면 소스에서의 기공의 가스밀도는 필요하지 않다.
  • 싱크는 유체1(액체)기공 또는 이들의 혼합물을 제거할 수 있다. 질량 유량이 정의되고 기공 또는 유체1과 기공의 혼합물이 제거되면 이때 싱크에서 기공을 위한 기체 밀도는 정의되어야 한다. 모든 다른 경우에 싱크에서의 기공의 기체밀도는 필요하지 않다.
  • 기공이 소스에서 방출되거나 기공 또는 이와 유체1의 혼합물이 싱크에서 제거되면 기포 모델이 Physics Bubbles and phase change 에서 활성화되어야 한다.

경우2, 변동밀도(밀도전달방정식이 해석된다)와 자유표면이 있으나 열전달이 없는 1-유체유동,

  • 소스는 유체(액체) 또는기공(가스)를 방출할 수 있지만 둘 다 동시에 방출할 수는 없다. 유체1이 방출되면 소스 유체밀도가 정의되어야 한다. 기공이 방출되고 질량 유량이 정의되면 소스에서의 기공에 대한 가스밀도가 지정되어야 한다. 기공이 방출되고 체적유량이 정의되면 소스에서의 기공의 가스밀도는 필요하지 않다.
  • 싱크는 유체1(액체)기공 또는 이들의 혼합물을 제거할 수 있다. 질량 유량이 정의되고 기공 또는 유체1과 기공의 혼합물이 제거되면 이때 싱크에서 기공을 위한 기체 밀도가 정의되어야 한다. 모든 다른 경우에 싱크에서의 기공의 기체밀도는 필요하지 않다.
  • 기공이 소스에서 방출되거나 기공 또는 이와 유체1의 혼합물이 싱크에서 제거되면 기포 모델이 Physics Bubbles and phase change 에서 활성화되어야 한다.

경우3, 일정 또는 변동 밀도(온도의 함수), 자유표면 그리고 열전달이 있는 1-유체유동,

  • 소스는 유체(액체) 또는 기공(가스)를 방출할 수 있지만 둘 다 동시에 방출할 수는 없다. 유체1이 방출되면 소스 유체밀도는 상수(유체밀도와 같은)이거나 온도에 의존하기 때문에 사용자가 정의할 수 없다. 기공이 방출되고 질량 유량이 정의되면 소스에서의 기공에 대한 가스밀도가 지정되어야 한다.
  • 싱크는 유체1(액체)기공 또는 이 둘의 혼합물을 제거할 수 있다. 질량 유량이 정의되고 기공이 제거되면 이때 싱크에서 기공을 위한 기체 밀도가 정의되어야 한다. 모든 다른 경우에 싱크에서의 기공의 기체 밀도는 필요하지 않다.
  • 기공이 소스에서 방출되거나 기공 또는 이와 유체1의 혼합물이 싱크에서 제거되면 기포 모델이 Physics Bubbles and phase change 에서 활성화되어야 한다.
  • 유체의 온도는 소스에서 정의되어야 하나 싱크에서는 필요하지 않다.

경우4, 일정한 밀도를 가지나  자유표면과 열전달이 없는 1-유체유동,

  • 소스는 유체 #1만 방출할 수 있다. 소스유체밀도는 디폴트로 유체 #1의 밀도이며 사용자가 변경할 수 없다.
  • 싱크는 지 유체#1 만 제거할 수 있다. 싱크에서의 밀도는 유체#1의 밀도이며 사용자가 정의할 수 없다.

경우5, 일정한밀도와 열전달이 있으나 자유표면이 없는 1-유체유동,

  • 소스는 유체#1만 방출할 수 있다. 소스 유체 밀도는 디폴트로 유체#1의 밀도이며 사용자가 변경할 수 없다.
  • 싱크는 단지 유체#1 만 제거할 수 있다. 싱크에서의 유체 밀도는 유체#1의 밀도이며 사용자가 정의할 수 없다.
  • 온도는 소스에서 정의되어야 하나 싱크에서는 필요하지 않다.

경우6, 변동밀도(밀도전달방정식이 해석된다)를가지나, 자유표면 과 열전달이 없는 1-유체유동

  • 소스는 유체#1만 방출할 수 있다. 소스 유체 밀도는 사용자가 정의해야 한다.
  • 소스는 유체#1만 방출할 수 있다. 싱크에서의 유체 밀도는 디폴트로 그 지역의 값을 가지며 사용자가 정의할 수 없다.

경우7, 변동밀도 (온도의 함수)와 열전달이있으나 자유표면이 없는 1-유체유동,

  • 소스는 유체#1만 방출할 수 있다. 소스 유체 밀도는 온도에 의존하므로 정의될 수 없다.
  • 싱크는 단지 유체#1 만 제거할 수 있다. 싱크에서의 유체 밀도는 지역의 값을 가지므로 사용자가 정의할 수 없다.
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

경우8, 열전달이 없고 현저한 경계면을 갖는2 -압축성유체

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 소스에서의 유체밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다.

경우9, 열전달과 현저한 경계면을 갖는2-압축성유체

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 소스에서의 유체밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 사용자가 정의할 수 없다
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

경우10, 열전달과 현저한 경계면이 없는 2-압축성유체

  • 소스는 유체#1, 유체#2 또는 이의 혼합물을 방출할 수 있다. 소스에서의 유체 밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다.

경우11, 열전달은 있으나 현저한 경계면이 없는 2-압축성유체

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 소스에서의 유체밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다.
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

경우12, 현저한 경계면을 갖는 두 유체이며 유체#2 는 압축성

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 유체#1이 방출되면 소스 유체밀도는 유체#1의 값이 되며 사용자가 변경할 수 없다. 유체#2가 방출되면 소스 유체밀도는 정의되어야 한다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

Activate Mass Source / 질량소스 활성화

질량소스모델은 Activate fluid source model. 을 체크함으로써 in Model Setup Physics Fluid sources 에서 활성화된다.

질량소스/싱크를 정의하기 위해 Meshing & Geometry Geometry Component (원하는 요소). 로간다. Component properties 창에서 Mass Source Properties 로 간다. Mass Source 체크상자를 체크한다. 질량소스 정의를 위한 변수들은 아래 그림에서 보여지는 것 같이 펄쳐질 수 있다.

Define Source Properties / 소스물성정의

사용자는 문제 정의에 따라 소스에서 유체 유형(유체 1,2 또는 이의 혼합물), 압력유형 밀도 및 온도, 그리고 싱크에서 유체유형과 밀도를 지정할 수 있다.

압력유형은 Stagnation pressure Static pressure 를 포함하고 단지소스에만 적용된다(즉 질량유량이 양의 수 일 경우에). 정체 압력소스(디폴트)일 경우, 유체는 0의 속도로 들어온다고 가정된다. 결과적으로 압력은 소스로부터 유체를 밀어내기 위해 소스에서 증가되어야 한다. 이러한 소스는 로켓 끝이나 수축하는 풍선에서 나오는 유체 모델을 목적으로 한다.

정압소스에서 유체속도는 질량유량과 소스의 표면적으로부터 계산된다. 이 경우 소스에서 유체를 밀어내기 위한 추가압력이 필요 없다. 이런 소스 예제는 긴 직선의 파이프로부터 나오는 유체의 경우이다.

일반적으로 질량소스의 두 유형의 차이는 결합운동을 하는 GMO 요소와 관련된 소스에서만 중요한데 이는 소스에서 유체압력, 즉 움직이는 물체에 작용하는 수압에 영향을 미치기 때문이다.

Define Flow Rate / 질량유동정의

유량 밑에 펼쳐지는 상자에서 소스/싱크를 위해 Mass flow rate Volume flow rate 를 정의하기 위해 선택할 수 있다. 두 유량은 모두 소스 요소의 전체유량 또는 단위면적당 유량으로 선택할 수 있다.

전체 유량은 소스 요소의 개표면상에 균일하게 분포될 수 있다. 단위 면적당 유량이 사용되면 전체유량은 단위 면적당 지정된 유량에 소스요소의 개방된 표면 면적을 곱한 양이다. 개방된 표면 면적이 시간에 따라 변하면 전체 유량도 변한다. 예를 들면 이동체의 개방된 표면 면적은 격자 크기와 분포에 달려있고 각 시간마다 새롭게 되므로 시간에 따라 변하며 전체 유량 역시 시간에 따라 변하게 된다.

전체 유량이 이동체에서 지정되면 개방된 표면을 통한 유속은 정의된 전체 질량 유량을 유지하기 위해 매시간 단계에 조절된다.

유량이 일정하면 그 때는 단순히 그 값을 Total flow rate 또는 Per unit area flow rate 밑에 상응하는 편집상자에 넣는다. 그렇지 않으면 데이터 표를 불러오기 위해 Tabular 를 클릭하고 일련의 시간대 유량의 데이터를 입력한다. 유량은 소스에서는 양이고 싱크에서는 음이며 시간에 따라 변할 수 있다. 다른 방법으로는 사용자가 Import Values 버튼을 사용하여 기존의 데이터 파일을 읽어 들임으로써 유량 대 시간을 정의할 수 있다. 파일은 두열의 데이터를 갖는데 좌에서 우로 각기 시간과 유량을 나타낸다. 파일은 csv 확장자를 필요로 한다. FLOW-3D 데이터에서의 다른 시간변동 입력과 같이 데이터는 시간 점들 사이에서는 구간별 선형형태를 이용하여 보간 된다.

유량은 능동모사(simulate) 조절을 이용해 모사(simulate) 동안에 변경될 수 있다, 또 더 상세한 내용은 Active Simulation Control 를 참조하라.

Define Scalars at Source / 소스에서의 스칼라정의

스칼라는 우선 Physics 탭 밑 Scalars 에서 활성화되어야 한다. 질량소스에서 유체에 있는 스칼라 량은 소스에서의 스칼라농도로 정의될 수 있는데 이는 계산영역 내로 들어오는 유체체적당 스칼라질량이다. 영역내로 들어오는 한 스칼라의 질량유량은 지정된 스칼라농도에 소스에서의 소스유체 체적유량을 곱한 값이다. Mass Source Properties Source Scalars User defined scalar 에서 스칼라 농도를 넣는다.

주철 / Cast Iron

 Carbide (red) and graphite (blue) rich areas in a solidified gray iron casting.

Cast iron model

FLOW-3D‘의 주철 모델은 hypo 및 hyper-eutectic 철-탄소-실리콘 합금의 응고를 설명합니다. FLOW-3D‘는 융해하는 혼합반응(eutectic reaction) 동안 흑연, 오스테나이트 (또는 감마 – 철) 및 탄화물 상(유동) 형성을 예측합니다. 냉각 및 고형화 동안의 용적 변화는 수축 및 다공성 형성 모델과 결합됩니다. 주철 모델은 실제 철 동결 경로와 냉각 취약성 기준을 사용하여 현장의 탄화 수소 형성을 제어합니다.

주조 공장 엔지니어의 주요 관심사 중 하나는 응고 중에 형성될 수 있는 과도한 수축 다공성입니다. 주철의 체적 변화는 대부분 액체 합금을 주입 온도에서 고체로 냉각할 때, 그리고 더욱 중요하게는 감마선, 흑연 및 탄화물 형태로 응고할 때 발생합니다. 라이저(or risering)를 배치하면 수축을 유도할 수 있는 추가 금속이 제공됩니다. 최소 비용으로 우수한 품질의 주물을 달성하기 위해서는 최적의 하역이 중요합니다. 또한 금속의 적절한 합금과 냉각을 통해 수축의 양을 제어할 수 있습니다. FLOW-3D의 주철 모델은 이러한 모든 요소를 고려하여 용융, 응고 동안 기공 형성 및 위상 개발을 예측합니다.

주철 모델 개요 / Overview of the Cast Iron Model

주철은 탄소와 실리콘이 합금 된 용융 철입니다. 탄소는 전형적으로 2.5 wt % 내지 4.5 wt % 범위로 존재하고 실리콘은 1 wt % 내지 3 wt % 범위로 존재합니다. 흑연을 안정화하고 “냉각”경향 (즉, 탄소 철의 형성)을 줄이기 위해 실리콘이 첨가됩니다. 다른 원소 및 화합물은 미량으로 존재하며 일반적으로 흑연 모양 (예 : 연성 철의 마그네슘)을 제어하거나, 추가 탈산제 (예 : 인)로 작용하거나, 흑연의 주입제 (예 : 페로 실리콘) 역할을합니다.

FLOW-3D  의 주철 모델은 주입 온도에서 응고까지 발생하는 부피 변화를 설명합니다. 액체 상태에서 냉각 중 수축; 사전 용융 감마 철 형성 동안 추가 수축; 용융 반응 동안 후속 수축 또는 팽창; 그리고 용융 반응의 끝에서 고형 선으로의 2 차 수축. 주철은 일반적으로 탄화물의 형성에 영향을 미칠 수있는 비철 상을 포함하기 때문에, 응고된 금속의 밀도에 대한 이러한상의 영향에 대해 휴리스틱 허용치 (냉각 민감성 매개 변수의 형태)가 만들어집니다.

주철 응고 모델의 잠열 방출은 초기 용융물에서 탄소와 실리콘의 농도를 사용하여 Fe-C 위상 다이어그램 [1] 에서 결정된 온도 함수 (소위 동결 경로)로 계산됩니다 . 이 모델은 유동 유무에 관계없이 일반 응고 모델과 함께 사용할 수 있습니다. 그러나 다른 단계의 형성과 관련된 체적 변화는 흐름을 포함하지 않는 단순화된 수축 모델에만 결합됩니다.

철 확장 중 금형 벽 이동의 효과는 현재 모델에 포함되지 않습니다. 금형에서 사용 가능한 공간으로 수용 할 수없는 순 체적 확장은 무시됩니다.

융해 영역에서는 융해 경계의 속도를 사용하여 국부적인 냉각 경향을 계산하고, 따라서 국부적인 탄화물의 양을 계산하므로 금형 벽 근처의 냉각 영역을 모델링 할 수 있습니다. 고체 유전체 변환 중에는 더 이상의 공기상 변화를 추적하려는 시도가 없습니다. 즉, 최종 물질 미세 구조가 예측되지 않습니다.

hyper-eutectic cast irons의 경우, 회색 및 연성 주철과 같이 초기 경화전 공정 단계에서 흑연만 형성되는 것으로 가정합니다. 즉, 이 모델은 주로 탄화물이 형성되는 사전 융해 단계에서 hyper-eutectic white irons의 응고를 포함하지 않습니다.

Cast Iron Freezing Path

주철 동결 경로는 공융 합금의 경로입니다. 이는 액상 선 온도, 공융 온도, 공융 – 시작 및 공융 – 말단 고체 분율 및 고 상면 온도에 의해 특징 지어 질 수 있습니다. 모두지만, 마지막 두 양은 평형 3 원 Fe-C-Si 상 다이어그램 [1]에서 계산됩니다.
(The cast iron freezing path is that of a eutectic alloy. It can be characterized by the liquidus temperature, eutectic temperature, the eutectic-start and eutectic-end solid fractions and the solidus temperature. All, but the last two quantities are computed from the equilibrium ternary Fe-C-Si phase diagram [1].)

감마상의 탄소 용해도는 다음에 따라 중량 % 단위 Si 함량 에 따라 달라집니다 .

(1)     \displaystyle {{C}_{{\gamma ,mx}}}=2.07-0.098Si,

이는 Stefanescu [2]에 의해 보고된 용해도와 밀접한 관련이 있습니다. 합금의 액상 점 (섭씨 온도)은 hypo-eutectic liquidus plane :

(2)     \displaystyle {{T}_{i}}=1636-113\left( {C+0.25Si} \right)

또는 초정밀 액상 평면 [2] :

(3)     \displaystyle {{T}_{i}}=-505.8+389.1\left( {C+0.31Si} \right),

그리고 공융 혼합물 및 온도는 이들 평면의 교차점에 의해 주어집니다.

(4)     \displaystyle {{C}_{e}}=4.26-0.296Si,     \displaystyle {{T}_{e}}=1154.6+5.2Si

공융 반응의 시작은 레버 규칙에 의해 주어진 파생된 양입니다.

(5)     \displaystyle {{f}_{e}}=\frac{{c-{{c}_{\varepsilon }}}}{{{{c}_{{\gamma ,mx}}}-{{c}_{\varepsilon }}}}.

[3]의 측정은 이 근사가 많은 주철에 적합 함을 암시합니다.

흑연 공융 반응의 끝, 수수료 및 solidus Ts는 사용자 정의 수량으로 남습니다. 액체에서 인의 양의 분리를 고려하면 실제 고 상선 온도는 흑연 공융 온도보다 낮고 1100 ° C 정도로 낮습니다. 이 경우, 흑연 침전은 동결이 끝나기 전에 완료되고 동결되는 금속의 마지막 부분은 공융 밀도와 다른 밀도 ρei 에서 수행된다고 가정합니다.

흑연 공융 반응의 끝 f ee 및 고형 선 T s 는 사용자 정의 수량으로 남습니다. 액체에서 인의 양의 분리를 고려하면 실제 고 상선 온도는 흑연 공융 온도보다 낮으며 1100 ° C까지 낮습니다. 이 경우, 흑연 침전이 동결이 끝나기 전에 완료되고 동결 할 마지막 금속 부분 인 1- f ee 가 공융 밀도와 다른 밀도 ρ ei 에서 그렇게 한다고 가정합니다.
( The end of graphitic eutectic reaction, fee , and the solidus Ts, are left as user-defined quantities. If one considers positive segregation of phosphorous in the liquid, the actual solidus temperature is below the graphitic eutectic temperature, and is as low as 1100 °C. For this case, it is assumed that graphite precipitation is complete before the end of freezing, and that the last fraction of metal to freeze, 1-fee, does so at a density ρei different from the eutectic density. )

밀도 변화 / Density Changes

일반적으로 주철 주물의 과열은 크며 응고가 시작되기 전에 냉각 중 수축이 중요합니다. 액체 철 밀도의 온도 의존성은 선형 형태로 모델링됩니다 :

(6)     \displaystyle \rho \left( T \right)={{\rho }_{0}}\left[ {1-\alpha \left( {T-{{T}_{0}}} \right)} \right]

또는 테이블 형식으로 함수 ρ (T) 를 정의하여 .

일단 동결 범위에 들어가면 감마철은 고형분수에 도달할 때까지 형성됩니다. 이 단계의 농도 값인 ,ϒ은 7.2 g/cc입니다 [4,5,6]. 고형분수에 도달하면, 일반(흰색) 공극과 불규칙한 회색 공극이 경쟁적으로 성장하는 동안 공극 반응이 시작됩니다. 높은 동결률과 높은 황동-전방 속도에서 백색 황동은 부분적으로 황동 전방에 앞서 탄소 농도 구배가 더 낮기 때문에 안정적입니다. 낮은 Eutectic-front 속도에서는 회색 Eutectic이 안정적입니다.
( Once in the freezing range, gamma iron forms until fe solid fraction is reached. The density value of this phase, ρϒ, is a 7.2 g/cc [4,5,6]. Upon reaching fe solid fraction, the eutectic reaction begins during which a regular (white) eutectic and an irregular grey eutectic grow competitively. At high freezing rates and high eutectic-freezing-front speeds the white eutectic is stable in part due to shallower carbon concentration gradients ahead of the eutectic front. At lower eutectic-front speeds the grey eutectic is stable. )

냉기 형성을 설명하기 위해 간단한 접근 방식이 사용됩니다.  In a range of eutectic freezing front speeds,

(7)     \displaystyle {{\nu }_{e}}\in \left[ {\frac{{\nu -}}{{{{X}_{{eut}}}}},\frac{{\nu +}}{{{{X}_{{eut}}}}}} \right]

형성되는 냉기의 양은 주어진 탄소 구성에서 허용되는 최대치에서 0까지 다양합니다. 파라미터 ν-=30μ/ms, ν+=60μ/ms, Xeut은 사용자 정의 파라미터인 쿨링 취약성 기준이며, 값이 0.0 ~ 1.0 범위이고 기본값은 1입니다. 잘 절연된 철이나 특정 표면적이 높은 회색 광택제의 경우 Xeut는 0에 가깝고 추위는 형성되지 않습니다. 반면, 철이 절연되지 않은 경우 기본값인 1이 더 적합해야 합니다. Xeut의 실제 값은 예를 들어 ASTM 쿨웨지 테스트(그림 1)에서 실험적으로 결정해야 합니다.
( the amount of chill formed varies from zero to the maximum allowed for a given carbon composition. The parameters ν-=30 μ/ms, and ν+=60 μ/ms, and Xeut is the chilling susceptibility criterion, a user-defined parameter, with values in the range from 0.0 to 1.0 with the default of one. For well-inoculated iron, or for a grey eutectic with a high specific surface area, Xeut is close to zero, and no chill will form. On the other hand, if the iron is un-inoculated the default value of one should be more appropriate. The actual value of Xeut must be determined experimentally, for example, from an ASTM chill-wedge test (Fig 1.).)

Figure 1. Carbide (left) and graphite (right) content in a 3.4 wt% C, 1.7 wt% Si iron with Xeut=0.25 (top) and Xeut=0.40 (bottom)

주조물의 순 체적 변화는 응고 과정에서 형성되는 서로 다른 상의 양과 액체 수축의 결합 효과입니다. 그림 2는 3.4wt %의 탄소와 2.5wt %의 실리콘을 갖는 합금에 대한 3 가지 상이한 과열 온도에 대한 금속 부피의 변화를 보여줍니다. 더 큰 과열은 금속 체적의 순수한 감소로 이어. 그래파이트 형성으로 인해 응고 동안 나중에 팽창은 체적의 손실을 보상 할 수 없습니다.

Figure 2. Computed volume vs. time for three pouring temperatures for a 3.4 wt % C, 2.5 wt % Si cast iron. From top to bottom: 1250, 1400 and 1550°C pouring temperatures.

Summary

동결시 철의 밀도 변화를 추적하고 흑연, 오스테나이트 및 탄화물 상을 포함하는 미세 구조를 예측하기 위한 주철 모델을 기술하였습니다. 이 모델은 단순 응고 수축 및 미세 다공성 모델에 대한 옵션입니다. 고형물 (> 2 %)을 함유 한 철의 변성 열을 정의하기 위해 유동이 있건, 없건 응고 중에 사용할 수 있습니다. 수축 및 팽창 모두 흐름없이 모델에 포함됩니다. 팽창을 위한 공간이 없는 경우를 제외하고 팽창은 무시됩니다.

References

[1] G. Goodrich and John Svoboda, “Basic Concepts of Ferrous Metallurgy,” Cast Metals Institute, Inc., American Foundry Society, Inc., 1997.

[2] D. M. Stefanescu, S. Katz, “Thermodynamic Properties of Iron-Base Alloys,” ASM Handbook Volume 15, Casting (ASM International), 2008.

[3] K.G. Upadhya, D.M. Stefanescu, K. Lieu and D.P. Yeager, “Computer-Aided Cooling Curve Analysis: Principles and Applications in Metal Casting,” AFS Transactions, Vol. 97, 1989, 61-66.

[4] AFS, “Gating Calculations for Iron Castings,” spreadsheet, 2009.

[5] Von Alfred Holzmuller, VDG and Robert Wlodawer, VDG, “Zehn Jahre Speiser-Eingrs-Verfahren fur Guseisen,” Giesserei, 1963.

[6] G. Goodrich, “Introduction to Cast Irons,” ASM Handbook, Volume 15: Casting, 2008, pp 794-795.

[7] A. Starobin, M.C. Carter, “Modeling Volume Changes and High Temperature Microstructure in Cast Iron,” Flow Science Technical Note FSI-11-TN89, 2011.

Modeling shrinkage induced microporosity [마이크로 미세기공 발생 예측]

Overview
Cast metal parts are sometimes unusable because they have internal gas pockets, or bubbles, which develop when the metal shrinks during solidification. A general term describing such bubbles or voids is “porosity.” When these bubbles are relatively large and localized the porosity is called macro-porosity. Prediction of macro-porosity in the interior of cast parts is a capability of most software packages currently used for the modeling of metal casting processes.
Another type of porosity, characterized by a more uniform distribution of small bubbles with a total average volume fraction on the order of one percent, is referred to as micro-porosity. This type of porosity is also caused by metal shrinkage during solidification, but its character is different from macro-porosity because it develops at a later stage in the solidification process. This distinction in types of porosity is important because each type requires a different modeling approach.
In this note we propose a new model that has been implemented in FLOW-3D® for predicting the occurrence of micro-porosity. The model is simple, requires only basic material property data, and adds virtually no noticeable CPU time to a solidification simulation. Best of all, the model is complimentary to macro-porosity models and may be used in conjunction with either a complete hydrodynamic shrinkage simulation that includes fluid flow or with simpler heat-transfer and shrinkage simulation having no fluid flow.
The new model has been checked using three sets of experimental test data. A final test, involving only qualitative results for the influence of pressure on micro-porosity formation has also been conducted.

HPDC (High Pressure Die Casting, 고압다이캐스팅)

HPDC (High Pressure Die Casting, 고압다이캐스팅)

주조 기술 중 하나인 고압 다이 캐스팅 해석시 다른 많은 주조해석 소프트웨어에서 큰 문제들이 나타납니다. 충진되어야 할 부분은 대부분 매우 얇은 두께를 가지고 있어서 형상 구현에 필요한 격자의 수가 크게 증가되어야 합니다. 무엇보다도 금속은 높은 압력과 매우 빠른 속도로 금형안의 빈 공간에 충진됩니다. 금형 내부로 분사되고 비산하는 유동은 이 과정에서 혼입 된 공기로 인한 기포결함, 제품이 완전히 충진되기 전에 냉각이 시작하면서 발생하는 탕주름과 산화물 결함으로 이어질 수 있습니다.  FLOW-3D는 실질적인 금형 충진 해석의 정밀도를 향상시키기 위해 정확성이 고도로 향상된 TruVOF™ 추적기법과 복잡한 형상을 모델링하는FAVOR ™ 기법을 포함하고 있습니다. 또한 FLOW-3D는 혼입 된 공기, 열 응력, 미세 결함 영역을 검출하기 위한 다양한 모델을 가지고 있습니다.

Thermal Die Cycling (금형온도분포,  금형싸이클링)

Die cycling 해석은 다이캐스팅 금형이 수천 개의 제품 생산에 반복적으로 사용되기 때문에 고압 다이 캐스팅에 필수적인 공정입니다. 생산시 모든 주조품에 대해서 동일한 금형 온도를 유지하는 것은 매우 중요한데, 이는 금형온도에 따라 주조품의 결괌이 발생할 수 있기 때문입니다. FLOW-3D는 다이캐스팅 싸이클에서 발생하는  금형 가열(충진, 응고), 스프레이, 에어 블로우로부터 온도 분포를 해석하므로 사용자는 냉각 채널의 위치를 정확하고 효과적으로 예측할 수 있습니다.

Shot Sleeve Optimization (슬리브 유동 최적화)

고압다이캐스팅에서 슬리브는 금형 속에 용탕을 빠르게 밀어넣는 데 사용됩니다. 일반적으로 슬리브는 수평으로 위치되고, 용탕은 슬리브 상면의 주입구를 통해 부어집니다. 플런저는 금형 반대편에서 슬리브를 통해 금형 안쪽으로 용탕을 밀어 넣게 됩니다. 적절하게 설계된  플런저 이동조건은 슬리브 내부의 공기 혼입을 최소화하고 슬리브에서의 응고를 피하기 위해 가능한 한 빨리 금형에 용탕을 충진하게 설계되어야 합니다. 하지만,  피스톤이 너무 빨리 이동하는 경우, 슬리브 내에서 용탕의 겹침현상이 발생하여 주조품에 공기 갇힘 결함이 나타날 수 있습니다. FLOW-3D는 다이캐스팅 해석시 플런저 이동에 따른 슬리브 내부의 유동을 실제와 동일하게 반영하여 이와 같은 기포 결함을 최소화할 수 있습니다.

Filling Simulations (충진해석)

고압 다이 캐스팅을 해석할 때, 가장 어려운 과제는 고압 및 고속으로 금형에 충진되는 용탕의 유동을 정확하게 추적하는 것입니다. 많은 주조해석 소프트웨어에서 용탕의 분사와 비산을 정확하게 모사하지 못하는 것이 제품의 결함 예측에 가장 큰 장애물이됩니다. FLOW-3D의 TruVOF™ method는 설계 엔지니어들이 금형내부에서 최적의 유동 패턴을 유도하기 위해 게이트의 위치를 확인하고, 오버 플로우의 위치를 확인하는데 핵심적인 역할을 할 수 있습니다.

Modeling Solidification (응고모델링)


Courtesy of Littler Diecast Corporation

FLOW-3D는 엔지니어로 하여금 최종 제품의 품질에 영향을 미칠 수 있는 내부 기공(porosity)의 발생을 알수 있도록 합니다. FLOW-3D는 2원계합금(binary alloy)의 편석(segregation)을 해석할 수 있습니다. 해석에 의한 온도 이력은 냉금(chill)  또는 냉각라인(cooling line)이 추가되거나 수정 될 필요가 있는지, 초기 용탕 온도를 변경해야 하는지 등을 결정하는데 도움을 줍니다. FLOW-3D는 내부 미세수축공의 형성, 열응력 및 2원계합금의 편석을 예측할 수 있습니다.

HPDC Videos

수처리 분야

Municipal

FLOW-3D는아래 시설물과 같은 도시의 수처리 시설물 설계와 분석에 매우 활발하게 사용되고 있습니다:

  • Mixing, settling, and contact tanks
  • Control structures like weirs, gates, ramps, and orifices
  • Combined sewer (CSO) and stormwater sewer (SSO) overflow facilities
  • Pump and lift stations
  • Treatment plant headworks
  • Filtration systems and passive earth and stone filters
  • Baffle and wall placement
  • Hydraulic efficiency and short-circuiting

Vortex simulation municipal application with FLOW-3D

Vortex formation simulated with FLOW-3D

FLOW-3D는 자유표면, 가압(pressurized), 미임계(sub-critical)와 초임계(super-critical) 흐름조건 등을 전환하는 자유표면과 제한된 흐름패턴 모두와 균일한 모델 상태에 최적화되어 있습니다. 추가 물리 패키지를 포함하여 대부분의 복잡한 상황을 모델링 FLOW-3D에 포함되어 있습니다 :

  • Flow bulking due to air entrainment
  • Air bubble escape and air pocket pressurization
  • Drifting and settling particulate matter and the effect on the flow pattern of sediment accumulation
  • Chemical reactions
  • Moving gates and paddles
  • Fast-spinning bladed objects, pumps, and impellers
  • Dissolving and eroding solids
  • Granular flow (slurries)

적용사례

정수장 : DAF SYSTEMS

  • 용존공기부상법 (DAF Systems: Dissolved Air Floation )
    • 가압상태에서 과포화된 물을 감압시키면, 미세기포가 발생되어 상승하면서 수중의콜로이드물질과 충돌/부착되는 원리를 이용하여 수중의 부유물질을 제거하는 수처리 방법
  • Two Phase(Water+Air)/Drift Flux을 이용 기포에 의한 지내의 유동양상을 파악
  • 해석을 통한 기존 구조물의 문제점 파악하여 개선
  • 정수장_DAF_시스템

정수장 : 펌프장 해석

정수장_펌프장_모델해석결과

정수장_펌프장_모델

정수장 : 분말활성탄접촉조

  • v분말활성탄 접촉조 : 유입구의 구조, 수로의 장폭비, 도류벽구조에 의한 변화 -> 최적형상 도출
  • v해석을 통해 각종 Index(Morill Index, Modal Index 등) 분석

분말활성탄접촉초

정수장 : 응집제의 확산

  • G, 혼화지 구조에 따른 turn over time, 지내 속도 분포, 체류시간(t), 등 분석
  • 완속 혼화기, 급속혼화기에서 응집제의 혼화 및 분산 효과 파악

고속분사기_응집제확산

정수장 : 분배수로 유량분배

  • 분배수로의 기능 : 응집지 및 침전비 별로 균일하게 물을 분배함
  • 분배수로의 구조에 따른 응집지 유입수의 유량분배 해석
  • 구조별 유량분배 문제점 파악 및 개선방안 제시
  • 구조별 유량분배를 정량화하여 정수장 효율 향상에 기여함.

분배수로_유량분배

정수장 : 응집지 속도구배(du/dy) 검증

  • 응집기내부의 유동양상 및 속도구배(G)를 규명하여 최적의 운영조건 도출

응집지속도구배

정수장 : 여과지 역세척

  • Strainer를 통한 역세척수 유입 시 유동양상 해석 실시
  • 역세척 시 압력분포의 균일성, 사수부, 침전수의 월류여부 파악
  • 여과 및 역세척의 문제점 파악하여 효율향상 극대화

여과지_역세척

정수장 : 정수지 실험해석 비교

  • 정수지의 기능 : 염소를 균일하게 혼화
  • 정수지 유동양상 및 염소 농도, 체류시간 해석으로 CT 값 예측 및 문제점 개선
  • 실험과의 비교를 통하여 정확성 확보
  • 기존 정수지의 효율향상 및 최적 정수지 형태 제안
  • 정수지는 분말활성탄접촉조와 기능과 형상 유사

정수장_정수지해석

정수장 : 침전지대기온도, 일사량 등 외부조건 고려

  • 대기온도, 일사량 등 외부조건을 고려한 침전지 유동해석 실시
  • 침전지 내부의 밀도류 발생 원인 분석 및 Floc의 운동양상, 제거효율을 해석
  • 실험과의 비교를 통하여 정확성 확보

정수장_침전지_외부조건고려해석

정수장 : 취수탑 선택취수

  • v취수탑 : 상수도·관개·수력발전용 물을 저수지나 하천으로부터 끌어들이기 위한 구조물
  • v취수탑의 선택취수 문제 해석 사례
  • v취수탑 개도 조건에 따른 유출수온도, 조류 유입, 수심별 유입량 등을 예측

취수탑해석

 

하수처리장 : 침전지

  • 침전지 : 하수와 슬러지의 분리 및 배출 기능
    • 해석목적
    • 2차 침전지에서 유량 분배 문제점 파악
    • 2차 침전지에서 유입부 개선안 도출
    • 2차 침전지내의 슬러지 배출 개선안 도출

하수처리장_침전지_모델 하수처리장_침전지_모델_해석결과

 

하수처리장 : 침전지 유량분배 및 유속

  • 구조물의 형상, 유량에 따른 침전지 유동해석
  • 각 지별 유량 분배 균등 여부 파악
  • 슬러지의 재부상(scouring) 여부 예측 및 방지 방안 검토
  • 월류형식, 유입부의 위치 및 규격, 등 설계 요소를 조절하여 균등 분배 유도
    • 하수처리장_침전지_유량분배_해석결과

하수처리장 : 침전지 월류부 해석

  • 침전지 월류부 유동양상 파악
  • 침전지 형상, 월류부 형상에 따른 유속분포 비교
  • 사수부 파악 및 단락류 최소화를 위한 월류부 형상 결정
  • 슬러지의 월류부 개선을 통한 효율 향상

하수처리장_침전지_월류부해석

하수처리장 : 침전지 침전효율

  • 구조물의 형상별, 처리 유량별 침전효율, 사수부 평가
  • 균일한 유속분포에 의한 침전효율 향상
  • 침전지 형상, 유입부 위치, 등을 변경하여 효율 비교
  • 체류시간 검토를 통한 효율 비교
  • 슬러지 침전형태의 비교

하수처리장_침전지_침전효율

하수처리장 : 무산소조

  • 하수처리장 : 무산소조
  • 하수 및 반송슬러지의 혼합, 임펠러의 회전에 의한 혼합양상 해석 실시
  • 유입수 및 내부반송수의 유속분포, 혼합농도 평가
  • 단락류 발생정도 파악 및 완전교반 유도에 유리한 설계방안 검토
  • 내부반송량, 반송슬러지 유입관의 위치 개선으로 효율 향상

하수처리장_무산소조

하수처리장 : 담체의 부상

  • 설계 요소에 따른 담체의 분포 및 흐름 양상 예측
  • 해석 설계 요소 : 조의 형상, 펌프의 용량 및 위치, 내부 배플의 형상

하수처리장_담체의부상

하수처리장 : 호기조 (Aerator)

  • 호기조내 체류시간 분석
  • 기포의 분포, 조내 위치별 D.O 예측
  • 단락류 발생 정도 및 사수부 파악
  • 폭기량 및 폭기 방식에 따른 내부 유동양상을 통한 효율예측

하수처리장_호기조

하수처리장 : 호기조 (D.O 예측)

  • 용존산소량 (Dissolved Oxygen) : 물 속에 녹아 있는 산소량 è 수온이 높아지거나 오염되면 DO감소
  • 조내 산기관에 의해 오염수를 전체적으로 용존산소량 증가 목적 è 조내 사수부, 체류시간 분석
  • 산기관에 의한 공기 방울의 분포 및 D.O 분포를 수류의 흐름을 고려하여 예측
  • 호기조의 구조 및 산기관의 배치에 따른 효율 분석

하수처리장_호기조_용존산소량

하수처리장 : 막분리조

  • 막분리조내의 수류순환 유동해석 실시
  • Air 유입과 Membrane내의 수류순환 유동 검토
  • 사수부 최소화를 위한 구조 변경 (유입부 방식, 위치 및 산기관 위치, 등)
  • 처리 유량에 따른 내부 효율 변화 검토 – 운영조건 제시

하수처리장_막분리조

 

하수처리장 : SBR/PSBR 호기공정

  • 송풍기 작동시 원수와 슬러지의 혼합양상 분석
  • 수중포기기와 송풍기의 작동에 의해 조 내의 슬러지 혼합 활성화 여부 판단 : 수중포기기와 송풍기의 적절한 위치 및 회전수 조절에 의해 개선안 제시 가능

하수처리장_SBR_호기공정

하수처리장 : SBR/PSBR 배출공정

  • 조 내의 유출게이트 OPEN하여 조 내의 상등수 배출양상 분석
  • 바닥의 슬러지 유출없이 배출가능 여부 해석을 통하여 파악 슬러지가 배출되지 않도록 내의 형상 및 문제점 개서안 제시

하수처리장_SBR_배출공정