Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.

Investigation on Laser Welding of Al Ribbon to Cu Sheet: Weldability, Microstructure, and Mechanical and Electrical Properties

알루미늄 리본과 구리 시트의 레이저 용접에 대한 조사 : 용접성, 미세 구조, 기계적 및 전기적 특성

Won‐Sang Shin 1,†, Dae‐Won Cho 2,†, Donghyuck Jung 1, Heeshin Kang 3, Jeng O Kim 3, Yoon‐Jun Kim 1,*
and Changkyoo Park 3,*

Al 리본과 Cu 시트의 펄스 레이저 용접은 전력 전자 모듈의 전기적 상호 연결에 대해 조사되었습니다. 결함 없는 Al / Cu 조인트를 얻기 위해 레이저 출력, 스캔 속도 및 열 입력이 서로 다른 다양한 실험 조건이 사용되었습니다. Al / Cu 레이저 용접 중에 금속 간 화합물이 용접 영역에 형성되었습니다. 전자 탐침 마이크로 분석기와 투과 전자 현미경으로 Al4Cu9, Al2Cu, AlCu 등으로 밝혀진 금속 간 화합물의 상을 확인했습니다. 전산 유체 역학 시뮬레이션은 Marangoni 효과가 용융 풀의 순환을 유도하여 혼합물을 생성하는 것으로 나타났습니다. Al과 Cu의 결합과 Al / Cu 조인트에서 소용돌이 모양의 구조 형성. Al / Cu 접합부의 인장 전단강도와 전기 저항을 측정하였으며 용접 면적과 강한 상관 관계를 보였다. Al / Cu 접합부의 용접 면적이 증가함에 따라 기계적 강도의 감소와 전기 저항의 증가가 측정 되었습니다. 또한 무결점 Al / Cu 접합을 위한 공정 창을 개발하고 Al / Cu 레이저 브레이즈 용접을 위한 실험 조건을 조사하여 Al / Cu 접합에서 금속 간 화합물 형성을 최소화했습니다.

Introduction

전기 상호 연결은 전력 전자 모듈을 패키징하는 데 중요합니다. 우수한 기계적 및 전기적 특성을 가진 견고한 전기적 상호 연결은 전력 전자 모듈의 전기적 고장을 방지하는 데 필수적입니다. 저항 스폿 용접, 브레이징, 납땜 및 초음파 용접 (USW)이 전기 상호 연결에 사용되었습니다.

납땜과 납땜 모두 저온 공정으로 인해 접합부에서 한계 변형과 잔류 응력이 발생합니다 [1]. 필러 합금은 두 공정 모두 견고한 전기 접촉을 달성하는 데 필수적입니다. 따라서 조인트는 서로 접촉하는 서로 다른 금속으로 구성됩니다.

결과적으로 조인트는 부식 환경에서 갈바닉 부식에 취약 할 수 있습니다 [2,3]. 더욱이, 비금속과 충전재 사이의 친화도를 고려해야 하기 때문에 제한된 충전재 만 특정 조인트에 사용할 수 있습니다 [1]. USW는 용접 온도가 낮고 용접 시간이 짧기 때문에 접합부의 변형이 비교적 적습니다.

따라서 이는 특히 연질 재료 (예 : Al, Cu, Ag, Au 및 Ni)의 경우 기존 접합 방법을 대체하고 있습니다 [4–6]. 그러나 Cu를위한 USW 공정의 경우, 표면 산화물이 강해 용접성이 저하되는 것을 방지하기 위해 Cu 표면에 Sn 또는 Ni 코팅이 필요하며, 이는 공정 속도를 늦추고 산업적 응용을위한 경제적 측면을 악화시킨다 [7 , 8].

레이저 용접은 쉬운 제어, 고정밀 및 원격 처리의 특성으로 인해 전력 전자 모듈의 전기 연결에 대한 유망한 후보입니다. 열의 영향을 받는 작은 영역과 변형은 전기 접점의 손상을 최소화 할 것으로 예상됩니다 [9-11]. 또한 레이저 용접을 위해 추가 표면 준비가 필요하지 않습니다.

이종 재료의 용접은 산업 응용 분야에서 중요했습니다. 더욱이 그림 1 [12,13]에서 볼 수 있듯이 전기 연결을위한 와이어 또는 리본 본딩에 여러 다른 조인트가 필요하기 때문에 전력 전자 모듈에서 필수적인 기술이되고 있습니다.

전기 접점의 다양한 조합 중에서 Al과 Cu는 높은 전기 전도성으로 인해 전기 연결에 중요한 재료로 종종 간주됩니다 [14]. 그러나 Al과 Cu의 서로 다른 용접은 금속 간 화합물 (IMC)의 형성을 촉진하고 동시에 Al / Cu 조인트의 기계적 및 전기적 특성에 영향을 줍니다. 일반적으로 Al / Cu 조인트 내부에 IMC가 있으면 연성 및 전기 저항에 해를 끼치므로 균열이 쉽게 발생하고 용접을 통한 전기 전도도를 방해합니다 [15,16].

따라서 견고한 Al / Cu 조인트를 얻으려면 IMC의 형성을 피해야합니다. 여러 연구에서 Al 및 Cu 시트의 레이저 빔 용접을 조사했습니다. 연속파 (CW) 레이저가 Al / Cu 조인트에 사용되었습니다 [17-23]. 큰 열 입력과 상당한 IMC 형성으로 인해 용접 영역에서 많은 균열이 관찰되었습니다 [18,19].

CW 레이저 빔의 공간 진동은 Al / Cu 조인트의 용접 품질을 향상시키는 것으로 나타났습니다. 직선 CW 레이저 빔 [18-20]과 비교하여 용접 영역에서 IMC 크기가 더 작은 기공과 균열이 더 적습니다.

Al과 Cu 시트의 겹침 접합에는 CW 단일 모드 파이버 레이저를 사용했으며, IMC 형성을 억제하여 높은 용접 속도 (즉, 50m / min)에서 견고한 Al / Cu 접합을 얻었습니다 [22]. Mai et al. [23]은 다른 Al / Cu 용접을 달성하기 위해 펄스 레이저를 사용했습니다.

그들은 Al / Cu 용접성이 레이저 공정 매개 변수에 크게 의존한다는 것을 밝혔으며 100mm / min 미만의 스캔 속도에서 균열없는 Al / Cu 접합을 달성하는 데 성공했습니다.

본문 내용 생략 : 문서 하단부의 원문보기를 참고하시기 바랍니다.

Figure 1. Schematic diagram of the insulated gate bipolar transistors (IGBT) power module. Red‐dotted box indicated the electrical connections
Figure 1. Schematic diagram of the insulated gate bipolar transistors (IGBT) power module. Red‐dotted box indicated the electrical connections
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.
Figure 3. Schematic diagram of the numerical simulation domain and boundary conditions.
Figure 3. Schematic diagram of the numerical simulation domain and boundary conditions.
Figure 4. Experimental setup for the four‐point electrical resistance measurement.
Figure 4. Experimental setup for the four‐point electrical resistance measurement.
Figure 5. Cross‐sectional OM image of the Al/Cu joints in parallel to the laser welding direction. The laser power and scan speed were set at 2300 W and 20 mm/s, respectively.
Figure 5. Cross‐sectional OM image of the Al/Cu joints in parallel to the laser welding direction. The laser power and scan speed were set at 2300 W and 20 mm/s, respectively.
Figure 6 shows the cross‐sectional SEM images of the Al/Cu joints, and corresponding EPMA element mapping of Al and Cu for the (a) 23/20, (b) 25/28.6, (c) 25/15.4, and (d) 27/20.
Figure 6 shows the cross‐sectional SEM images of the Al/Cu joints, and corresponding EPMA element mapping of Al and Cu for the (a) 23/20,
Figure 6. Cross‐sectional SEM image and elemental distribution mapping of Al and Cu elements for the (a) 23/20, (b) 25/28.6, (c) 25/15.4, and (d) 27/20.
Figure 6. Cross‐sectional SEM image and elemental distribution mapping of Al and Cu elements for the (d) 27/20.
Figure 7. EPMA line scan analysis and identification of the IMCs for the (a) 23/20 and (b) 25/15.4.
Figure 7. EPMA line scan analysis and identification of the IMCs for the (a) 23/20 and (b) 25/15.4.
Figure 8. TEM analysis for the 25/28.6. (a) Indicating the location of TEM analysis in SEM image of the welding zone. (b) TEM bright‐field image and SAED pattern insets, examined at the location (1) in figure (a), confirmed Al‐rich phase (white globular shape) and Al2Cu eutectic phase (gray region), and (c) TEM bright‐field image and SAED pattern inset of Al4Cu9, examined at the location (2) in figure (a).
Figure 8. TEM analysis for the 25/28.6. (a) Indicating the location of TEM analysis in SEM image of the welding zone. (b) TEM bright‐field image and SAED pattern insets, examined at the location (1) in figure (a), confirmed Al‐rich phase (white globular shape) and Al2Cu eutectic phase (gray region), and (c) TEM bright‐field image and SAED pattern inset of Al4Cu9, examined at the location (2) in figure (a).
Figure 9. Temperature profiles and molten pool flow on transverse cross‐section (y–z plane at x = 1.23 cm): (a) Negative surface tension gradient for the 23/20 (Case 1), (b) negative surface tension gradient for the 25/15.4 (Case 2), (c) positive surface tension gradient for the 25/15.4 (Case 3), and (d) without surface tension for the 25/15.4 (Case 4).
Figure 9. Temperature profiles and molten pool flow on transverse cross‐section (y–z plane at x = 1.23 cm): (a) Negative surface tension gradient for the 23/20 (Case 1), (b) negative surface tension gradient for the 25/15.4 (Case 2), (c) positive surface tension gradient for the 25/15.4 (Case 3), and (d) without surface tension for the 25/15.4 (Case 4).
Figure 12. Results of the tensile shear tests for the (a) 23/20: fracture at the Al ribbon and (b) 25/15.4: fracture at the weld
Figure 12. Results of the tensile shear tests for the (a) 23/20: fracture at the Al ribbon and (b) 25/15.4: fracture at the weld
Figure 13. Stress–strain curves obtained by the tensile shear tests.
Figure 13. Stress–strain curves obtained by the tensile shear tests.

References

  1. Schwartz, M.M.; Aircraft, S. Introduction to Brazing and Soldering. ASM Int. 2018, 6, doi.org/10.31399/asm.hb.v06.a0001344.
  2. Vianco, P.T. Corrosion issues in solder joint design and service. Weld. J. 1999, 78, 39–46.
  3. Shi, Y.; Li, J.; Zhang, G.; Huang, J.; Gu, Y. Corrosion Behavior of Aluminum‐Steel Weld‐Brazing Joint. J. Mater. Eng. Perform.
    2016, 25, 1916–1923, doi:10.1007/s11665‐016‐2020‐9.
  4. Harman, G.G. Wire Bonding in Microelectronics: Materials, Processes, Reliability and Yield, 3rd ed; McGraw‐Hill Education: New
    York, NY, USA, 2010; ISBN 9780071642651.
  5. Aonuma, M.; Nakata, K. Dissimilar metal joining of ZK60 magnesium alloy and titanium by friction stir welding. Mater. Sci.
    Eng. B Solid State Mater. Adv. Technol. 2012, 177, 543–548, doi:10.1016/j.mseb.2011.12.031.
  6. Sasaki, T.; Watanabe, T.; Hosokawa, Y.; Yanagisawa, A. Analysis for relative motion in ultrasonic welding of aluminium sheet.
    Sci. Technol. Weld. Jt. 2012, 18, 19–24, doi:10.1179/1362171812Y.0000000066.
  7. Maeda, M.; Sato, T.; Inoue, N.; Yagi, D.; Takahashi, Y. Anomalous microstructure formed at the interface between copper ribbon
    and tin‐deposited copper plate by ultrasonic bonding. Microelectron. Reliab. 2011, 51, 130–136, doi:10.1016/j.microrel.2010.05.009.
  8. Maeda, M.; Yagi, D.; Takahashi, Y. Interfacial microstructure between copper ribbon and nickel‐coated copper plate formed by
    ultrasonic bonding. Q. J. Jpn. Weld. Soc. 2013, 31, 188–191, doi:10.2207/qjjws.31.188s.
  9. Sun, Z.; Ion, J.C. Laser welding of dissimilar metal combinations. J. Mater. Sci. 1995, 30, 4205–4214, doi:10.1007/BF00361499.
  10. Yan, S.; Hong, Z.; Watanabe, T.; Jingguo, T. CW/PW dual‐beam YAG laser welding of steel/aluminum alloy sheets. Opt. Lasers
    Eng. 2010, 48, 732–736, doi:10.1016/j.optlaseng.2010.03.015.
  11. Mehlmann, B.; Gehlen, E.; Olowinsky, A.; Gillner, A. Laser micro welding for ribbon bonding. Phys. Procedia 2014, 56, 776–781,
    doi:10.1016/j.phpro.2014.08.085.
  12. Nwanoro, K.C.; Lu, H.; Yin, C.; Bailey, C. An analysis of the reliability and design optimization of aluminium ribbon bonds in
    power electronics modules using computer simulation method. Microelectron. Reliab. 2018, 87, 1–14,
    doi:10.1016/j.microrel.2018.05.013.
  13. Li, H.; Cao, B.; Yang, J.W.; Liu, J. Modeling of resistance heat assisted ultrasonic welding of Cu‐Al joint. J. Mater. Process. Technol.
    2018, 256, 121–130, doi:10.1016/j.jmatprotec.2018.02.008.
  14. Davis, J.R. Copper and Copper Alloys. In ASM Speciality Handbook; ASM International: Almere, The Netherlands, 2001; ISBN
    2001022956
  1. Rabkin, D.M.; Ryabov, V.R.; Lozovskaya, A.V.; Dovzhenko, V.A. Preparation and properties of copper‐aluminum intermetallic
    compounds. Sov. Powder Metall. Met. Ceram. 1970, 9, 695–700, doi:10.1007/BF00803820.
  2. Chen, C.Y.; Chen, H.L.; Hwang, W.S. Influence of interfacial structure development on the fracture mechanism and bond
    strength of aluminum/copper bimetal plate. Mater. Trans. 2006, 47, 1232–1239, doi:10.2320/matertrans.47.1232.
  3. Schmidt, P.A.; Schweier, M.; Zaeh, M.F. Joining of lithium‐ion batteries using laser beam welding: Electrical losses of welded
    aluminum and copper joints. J. Laser Appl. 2012, 915, doi:10.2351/1.5062563.
  4. Smith, S.; Blackburn, J.; Gittos, M.; De Bono, P.; Hilton, P. Welding of dissimilar metallic materials using a scanned laser beam.
    J. Laser Appl. 2013, 493, doi:10.2351/1.5062921.
  5. Solchenbach, T.; Plapper, P. Mechanical characteristics of laser braze‐welded aluminium‐copper connections. Opt. Laser Technol.
    2013, 54, 249–256, doi:10.1016/j.optlastec.2013.06.003.
  6. Kraetzsch, M.; Standfuss, J.; Klotzbach, A.; Kaspar, J.; Brenner, B.; Beyer, E. Laser Beam Welding with High‐Frequency Beam
    Oscillation: Welding of Dissimilar Materials with Brilliant Fiber Lasers. Phys. Procedia 2011, 12, 142–149,
    doi:10.1016/j.phpro.2011.03.018.
  7. Solchenbach, T.; Plapper, P.; Cai, W. Electrical performance of laser braze‐welded aluminum‐copper interconnects. J. Manuf.
    Process. 2014, 16, 183–189, doi:10.1016/j.jmapro.2013.12.002.
  8. Lee, S.J.; Nakamura, H.; Kawahito, Y.; Katayama, S. Effect of welding speed on microstructural and mechanical properties of
    laser lap weld joints in dissimilar Al and Cu sheets. Sci. Technol. Weld. Jt. 2014, 19, 111–118, doi:10.1179/1362171813Y.0000000168.
  9. Mai, T.A.; Spowage, A.C. Characterisation of dissimilar joints in laser welding of steel‐kovar, copper‐steel and copper‐
    aluminium. Mater. Sci. Eng. A 2004, 374, 224–233, doi:10.1016/j.msea.2004.02.025.
  10. Zhang, G.; Takahashi, Y.; Heng, Z.; Takashima, K.; Misawa, K. Ultrasonic weldability of al ribbon to cu sheet and the dissimilar
    joint formation mode. Mater. Trans. 2015, 56, 1842–1851, doi:10.2320/matertrans.M2015251.
  11. Zhu, B.; Zhen, L.; Xia, H.; Su, J.; Niu, S.; Wu, L.; Tan, C.; Chen, B. Effect of the scanning path on the nanosecond pulse laser
    welded Al/Cu lapped joint. Opt. Laser Technol. 2021, 139, 106945, doi.org/10.1016/j.optlastec.2021.106945.
  12. Kumar, A.; Gupta, M.P.; Banerjee, J.; Neogy, S.; Keskar, N.; Bhatt, R.B.; Behere, P.G.; Biswas, D.J. Micro‐Welding of Stainless
    Steel and Copper Foils Using a Nano‐Second Pulsed Fiber Laser. Lasers Manuf. Mater. Process. 2019, 6, 158–172,
    doi.org/10.1007/s40516‐019‐00088‐w.
  13. Trinh, L.N.; Lee, D. The Characteristics of Laser Welding of a Thin Aluminum Tab and Steel Battery Case for Lithium‐Ion
    Battery. Metals 2020, 10, 842, doi.org/10.3390/met10060842.
  14. Cho, D.W.; Park, J.H.; Moon, H.S. A study on molten pool behavior in the one pulse one drop GMAW process using
    computational fluid dynamics. Int. J. Heat Mass Transf. 2019, 139, 848–859, doi:10.1016/j.ijheatmasstransfer.2019.05.038.
  15. Cho, W.I.; Na, S.J.; Cho, M.H.; Lee, J.S. Numerical study of alloying element distribution in CO2 laser‐GMA hybrid welding.
    Comput. Mater. Sci. 2010, 49, 792–800, doi:10.1016/j.commatsci.2010.06.025.
  16. Cho, D.W.; Kiran, D.V.; Na, S.J. Analysis of molten pool behavior by flux‐wall guided metal transfer in low‐current submerged
    arc welding process. Int. J. Heat Mass Transf. 2017, 110, 104–112, doi:10.1016/j.ijheatmasstransfer.2017.02.060.
  17. Cho, W.‐I.; Na, S.‐J. Impact of Wavelengths of CO2, Disk, and Green Lasers on Fusion Zone Shape in Laser Welding of Steel. J.
    Weld. Jt. 2020, 38, 235–240, doi:10.5781/jwj.2020.38.3.1.
  18. Sim, A.; Chun, E.J.; Cho, D.W. Numerical Simulation of Surface Softening Behavior for Laser Heat Treated Cu‐Bearing Medium
    Carbon Steel. Met. Mater. Int. 2020, 26, 1207–1217, doi:10.1007/s12540‐019‐00577‐9.
  19. Jarwitz, M.; Fetzer, F.; Weber, R.; Graf, T. Weld seam geometry and electrical resistance of laser‐welded, aluminum‐copper
    dissimilar joints produced with spatial beam oscillation. Metals 2018, 8, 510, doi:10.3390/met8070510.
  20. Weigl, M.; Albert, F.; Schmidt, M. Enhancing the ductility of laser‐welde copper‐aluminum connections by using adapted filler
    materia. Phys. Procedia 2011, 12, 335–341, doi:10.1016/j.phpro.2011.03.141.
  21. Chen, J.; Lai, Y.S.; Wang, Y.W.; Kao, C.R. Investigation of growth behavior of Al‐Cu intermetallic compounds in Cu wire
    bonding. Microelectron. Reliab. 2011, 51, 125–129, doi:10.1016/j.microrel.2010.09.034.
  22. Chen, H.; Yang, L.; Long, J. First‐principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al‐
    Cu intermetallic compounds. Superlattices Microstruct. 2015, 79, 156–165, doi:10.1016/j.spmi.2014.11.005.
  23. Liu, H.J.; Shen, J.J.; Zhou, L.; Zhao, Y.Q.; Liu, C.; Kuang, L.Y. Microstructural characterisation and mechanical properties of
    friction stir welded joints of aluminium alloy to copper. Sci. Technol. Weld. Jt. 2011, 16, 92–99,
    doi:10.1179/1362171810Y.0000000007.
  24. Hug, E.; Bellido, N. Brittleness study of intermetallic (Cu, Al) layers in copper‐clad aluminium thin wires. Mater. Sci. Eng. A
    2011, 528, 7103–7106, doi:10.1016/j.msea.2011.05.077.
  25. Braunović, M.; Alexandrov, N. Intermetallic Compounds At Aluminum‐To‐Copper Electrical Interfaces: Effect of Temperature
    And Electric Current. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1994, 17, 78–85, doi:10.1109/95.296372.
  26. Lee, W.B.; Bang, K.S.; Jung, S.B. Effects of intermetallic compound on the electrical and mechanical properties of friction welded
    Cu/Al bimetallic joints during annealing. J. Alloys Compd. 2005, 390, 212–219, doi:10.1016/j.jallcom.2004.07.057.
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section

A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process

Keyhole에 대한 수치적 연구 : 레이저 분말 중 형성 베드 퓨전 공정

Subin Shrestha1
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: subin.shrestha@louisville.edu

Y. Kevin Chou
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: kevin.chou@louisville.edu

LPBF (Laser Powder Bed fusion) 공정 중 용융 풀의 동적 현상은 복잡하고 공정 매개 변수에 민감합니다. 에너지 밀도 입력이 특정 임계 값을 초과하면 키홀이라고 하는 거대한 증기 함몰이 형성 될 수 있습니다.

이 연구는 수치 분석을 통해 LPBF 과정에서 키홀 거동 및 관련 기공 형성을 이해하는 데 중점을 둡니다. 이를 위해 이산 분말 입자가 있는 열 유동 모델이 개발되었습니다.

이산 요소 방법 (DEM)에서 얻은 분말 분포는 계산 영역에 통합되어 FLOW-3D를 사용하는 3D 프로세스 물리학 모델을 개발합니다.

전도 모드 중 용융 풀 형성과 용융의 키홀 모드가 식별되고 설명되었습니다. 높은 에너지 밀도는 증기 기둥의 형성으로 이어지고 결과적으로 레이저 스캔 트랙 아래에 구멍이 생깁니다.

또한 다양한 레이저 출력과 스캔 속도로 인한 Keyhole 모양을 조사합니다. 수치 결과는 동일한 에너지 밀도에서도 레이저 출력이 증가함에 따라 Keyhole크기가 증가 함을 나타냅니다. Keyhole은 더 높은 출력에서 ​​안정되어 레이저 스캔 중 Keyhole 발생을 줄일 수 있습니다.

The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.

Keywords: additive manufacturing, keyhole, laser powder bed fusion, porosity

Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 2 3D computational domain used for single-track simulation
Fig. 2 3D computational domain used for single-track simulation
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 4 Powder and substrate melting during laser application
Fig. 4 Powder and substrate melting during laser application
Fig. 5 Melt region formed after complete melting and solidification
Fig. 5 Melt region formed after complete melting and solidification
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 12 Melt region formed after complete melting and solidification
Fig. 12 Melt region formed after complete melting and solidification
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm

References

[1] Bauereiß, A., Scharowsky, T., and Körner, C., 2014, “Defect Generation and
Propagation Mechanism During Additive Manufacturing by Selective Beam
Melting,” J. Mater. Process. Technol., 214(11), pp. 2522–2528.
[2] Gong, H., Rafi, K., Gu, H., Starr, T., and Stucker, B., 2014, “Analysis of Defect
Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive
Manufacturing Processes,” Add. Manuf., 1(2014), pp. 87–98.
[3] Wang, Y., Kamath, C., Voisin, T., and Li, Z., 2018, “A Processing Diagram for
High-Density Ti-6Al-4V by Selective Laser Melting,” Rapid Prototyping J., 24
(9), pp. 1469–1478.
[4] Khairallah, S. A., and Anderson, A., 2014, “Mesoscopic Simulation Model of
Selective Laser Melting of Stainless Steel Powder,” J. Mater. Process. Technol.,
214(11), pp. 2627–2636.
[5] Yadroitsev, I., Gusarov, A., Yadroitsava, I., and Smurov, I., 2010, “Single Track
Formation in Selective Laser Melting of Metal Powders,” J. Mater. Process.
Technol., 210(12), pp. 1624–1631.
[6] Xia, M., Gu, D., Yu, G., Dai, D., Chen, H., and Shi, Q., 2016, “Influence of Hatch
Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability
During Additive Manufacturing of Inconel 718 Alloy,” Int. J. Mach. Tools
Manuf., 109(2016), pp. 147–157.
[7] Lee, Y., and Zhang, W., 2016, “Modeling of Heat Transfer, Fluid Flow and
Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser
Powder bed Fusion,” Add. Manuf., 12(2016), pp. 178–188.
[8] Wu, Y.-C., San, C.-H., Chang, C.-H., Lin, H.-J., Marwan, R., Baba, S., and
Hwang, W.-S., 2018, “Numerical Modeling of Melt-Pool Behavior in Selective
Laser Melting with Random Powder Distribution and Experimental
Validation,” J. Mater. Process. Technol., 254(2018), pp. 72–78.
[9] Khairallah, S. A., Anderson, A. T., Rubenchik, A., and King, W. E., 2016, “Laser
Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and
Formation Mechanisms of Pores, Spatter, and Denudation Zones,” Acta
Materialia, 108(2016), pp. 36–45.
[10] Tan, J., Tang, C., and Wong, C., 2018, “A Computational Study on Porosity
Evolution in Parts Produced by Selective Laser Melting,” Metall. Mater. Trans.
A, 49A(8), pp. 3663–3673.
[11] Leitz, K.-H., Singer, P., Plankensteiner, A., Tabernig, B., Kestler, H., and Sigl,
L. J. M. P. R., 2017, “Multi-Physical Simulation of Selective Laser Melting,”
Metal Powder Report, 72(5), pp. 331–338.
[12] Zhao, C., Fezzaa, K., Cunningham, R. W., Wen, H., Carlo, F., Chen, L., Rollett,
A. D., and Sun, T., 2017, “Real-time Monitoring of Laser Powder Bed Fusion
Process Using High-Speed X-ray Imaging and Diffraction,” Sci. Rep., 7(1),
p. 3602.
[13] Parab, N. D., Zhao, C., Cunningham, R., Escano, L. I., Fezzaa, K., Everhart, W.,
Rollett, A. D., Chen, L., and Sun, T., 2018, “Ultrafast X-ray Imaging of Laser–
Metal Additive Manufacturing Processes,” J. Synchrotron Radiat., 25(5),
pp. 1467–1477.
[14] Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T.,
and Rollett, A. D., 2019, “Keyhole Threshold and Morphology in Laser Melting
Revealed by Ultrahigh-Speed X-Ray Imaging,” Science, 363(6429), pp. 849–852.
[15] Shrestha, S., Starr, T., and Chou, K., 2019, “A Study of Keyhole Porosity in
Selective Laser Melting: Single Track Scanning With Micro-CT Analysis,”
ASME J. Manuf. Sci. Eng., 141(7), pp. 1–23.
[16] Ye, J., Rubenchik, A. M., Crumb, M. F., Guss, G., and Matthews, M. J., 2018,
“Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive
Manufacturing of Metals,” Proceedings of the CLEO: Science and Innovations,
Optical Society of America, San Jose, CA, May 13–18, Optical Society of
America, p. JW2A.117.
[17] Mishra, B., and Rajamani, R. K., 1992, “The Discrete Element Method for the
Simulation of Ball Mills,” Appl. Math. Modell., 16(11), pp. 598–604.
[18] Yan, W., Qian, Y., Ge, W., Lin, S., Liu, W. K., Lin, F., and Wagner, G. J., 2018,
“Meso-Scale Modeling of Multiple-Layer Fabrication Process in Selective
Electron Beam Melting: Inter-Layer/Track Voids Formation,” Materials and
Design, 141(2018), pp. 210–219.
[19] Kloss, C., Goniva, C., Hager, A., Amberger, S., and Pirker, S., 2012, “Models,
Algorithms and Validation for Opensource DEM and CFD–DEM,” Prog.
Comput. Fluid Dynam. Int. J., 12(2–3), pp. 140–152.
[20] Escano, L. I., Parab, N. D., Xiong, L., Guo, Q., Zhao, C., Fezzaa, K., Everhart,
W., Sun, T., and Chen, L., 2018, “Revealing Particle-Scale Powder Spreading
Dynamics in Powder-Bed-Based Additive Manufacturing Process by
High-Speed X-Ray Imaging,” Sci. Rep., 8(1), p. 15079.
[21] Gong, H., Gu, H., Zeng, K., Dilip, J., Pal, D., Stucker, B., Christiansen, D., Beuth,
J., and Lewandowski, J. J., 2014, “Melt Pool Characterization for Selective Laser
Melting of Ti-6Al-4V Pre-Alloyed Powder,” Proceedings of the Solid Freeform
Fabrication Symposium, Austin, TX, Aug. 4–6, pp. 256–267.
[22] Mills, K. C., 2002, Recommended Values of Thermophysical Properties for
Selected Commercial Alloys, Woodhead Publishing, Cambridge, UK.
[23] Shrestha, S., and Chou, K., 2017, “A Build Surface Study of Powder-Bed
Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and
White-Light Interferometry,” Int. J. Mach. Tools Manuf., 121(2017), pp. 37–49.
[24] Cho, J.-H., and Na, S.-J., 2006, “Implementation of Real-Time Multiple
Reflection and Fresnel Absorption of Laser Beam in Keyhole,” J. Phys. D:
Appl. Phys., 39(24), p. 5372.
[25] Dilip, J., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., and Stucker, B.,
2017, “Influence of Processing Parameters on the Evolution of Melt Pool,
Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective
Laser Melting,” Prog. Add. Manuf., 2(3), pp. 157–167.
[26] Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J.-P. R., and Schoenung,
J. M., 2017, “On the Limitations of Volumetric Energy Density as a Design
Parameter for Selective Laser Melting,” Mater. Des., 113(2017), pp. 331–340.
[27] Kroos, J., Gratzke, U., and Simon, G., 1993, “Towards a Self-Consistent Model of
the Keyhole in Penetration Laser Beam Welding,” J. Phys. D: Appl. Phys., 26(3),
p. 474.
[28] Martin, A., Calta, N., Hammons, J., Khairallah, S., Nielsen, M., Shuttlesworth, R.,
Sinclair, N., Matthews, M., Jeffries, J., and Willey, T., 2019, “Ultrafast Dynamics
of Laser-Metal Interactions in Additive Manufacturing Alloys Captured by In Situ
X-Ray Imaging,” Mater. Today Adv., 1(2019), p. 100002.
[29] Shrestha, S., Starr, T., and Chou, K., 2018, “Individual and coupled contributions
of laser power and scanning speed towards process-induced porosity in selective
laser melting,” Proceedings of the Solid Freeform Fabrication Symposium,
Austin, TX, Aug. 13–15, pp. 1400–1409.
[30] Hann, D., Iammi, J., and Folkes, J., 2011, “A Simple Methodology for Predicting
Laser-Weld Properties From Material and Laser Parameters,” J. Phys. D: Appl.
Phys., 44(44), p. 445401.
[31] Trapp, J., Rubenchik, A. M., Guss, G., and Matthews, M. J., 2017, “In Situ
Absorptivity Measurements of Metallic Powders During Laser Powder-bed
Fusion Additive Manufacturing,” Appl. Mat. Today, 9(2017), pp. 341–349.

Simulation of EPS foam decomposition in the lost foam casting process

X.J. Liu a,∗, S.H. Bhavnani b,1, R.A. Overfelt c,2
a United States Steel Corporation, Great Lakes Works, #1 Quality Drive, Ecorse, MI 48229, United States b 213 Ross Hall, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341, United States c 202 Ross Hall, Department of Mechanical Engineering, Materials Engineering Program, Auburn University, Auburn, AL 36849-5341, United States
Received 17 April 2006; received in revised form 14 July 2006; accepted 21 August 2006

Keywords: Lost foam casting; Heat transfer coefficient; Gas pressure; VOF-FAVOR

LFC (Loss Foam Casting) 공정에서 부드러운 몰드 충진의 중요성은 오랫동안 인식되어 왔습니다. 충진 공정이 균일할수록 생산되는 주조 제품의 품질이 향상됩니다. 성공적인 컴퓨터 시뮬레이션은 금형 충전 공정에서 복잡한 메커니즘과 다양한 공정 매개 변수의 상호 작용을 더 잘 이해함으로써 새로운 주조 제품 설계의 시도 횟수를 줄이고 리드 타임을 줄이는데 도움이 될 수 있습니다.

이 연구에서는 용융 알루미늄의 유체 흐름과 금속과 발포 폴리스티렌 (EPS) 폼 패턴 사이의 계면 갭에 관련된 열 전달을 시뮬레이션하기 위해 전산 유체 역학 (CFD) 모델이 개발되었습니다.

상업용 코드 FLOW-3D는 VOF (Volume of Fluid) 방법으로 용융 금속의 전면을 추적 할 수 있고 FAVOR (Fractional Area / Volume Ratios) 방법으로 복잡한 부품을 모델링 할 수 있기 때문에 사용되었습니다. 이 코드는 폼 열화 및 코팅 투과성과 관련된 기체 갭 압력을 기반으로 다양한 계면 열 전달 계수 (VHTC)의 효과를 포함하도록 수정되었습니다.

수정은 실험 연구에 대해 검증되었으며 비교는 FLOW-3D의 기본 상수 열 전달 (CHTC) 모델보다 더 나은 일치를 보여주었습니다. 금속 전면 온도는 VHTC 모델에 의해 실험적 불확실성 내에서 예측되었습니다. 몰드 충전 패턴과 1-4 초의 충전 시간 차이는 여러 형상에 대해 CHTC 모델보다 VHTC 모델에 의해 더 정확하게 포착되었습니다. 이 연구는 전통적으로 매우 경험적인 분야에서 중요한 프로세스 및 설계 변수의 효과에 대한 추가 통찰력을 제공했습니다.

지난 20 년 동안 LFC (Loss Foam Casting) 공정은 코어가 필요없는 복잡한 부품을 제조하기 위해 널리 채택되었습니다. 이는 자동차 제조업체가 현재 LFC 기술을 사용하여 광범위한 엔진 블록과 실린더 헤드를 생산하기 때문에 알루미늄 주조 산업에서 특히 그렇습니다.

기본 절차, 적용 및 장점은 [1]에서 찾을 수 있습니다. LFC 프로세스는 주로 숙련 된 실무자의 경험적 지식을 기반으로 개발되었습니다. 발포 폴리스티렌 (EPS) 발포 분해의 수치 모델링은 최근에야 설계 및 공정 변수를 최적화하는 데 유용한 통찰력을 제공 할 수있는 지점에 도달했습니다. LFC 공정에서 원하는 모양의 발포 폴리스티렌 폼 패턴을 적절한 게이팅 시스템이있는 모래 주형에 배치합니다.

폼 패턴은 용융 금속 전면이 패턴으로 진행될 때 붕괴, 용융, 기화 및 열화를 겪습니다. 전진하는 금속 전면과 후퇴하는 폼 패턴 사이의 간격 인 운동 영역은 Warner et al. [2] LFC 프로세스를 모델링합니다. 금형 충진 과정에서 분해 산물은 운동 영역에서 코팅층을 통해 모래로 빠져 나갑니다.

용융 금속과 폼 패턴 사이의 복잡한 반응은 LFC 공정의 시뮬레이션을 극도로 어렵게 만듭니다. SOLA-VOF (SOLution AlgorithmVolume of Fluid) 방법이 Hirt와 Nichols [3]에 의해 처음 공식화 되었기 때문에 빈 금형을 사용한 전통적인 모래 주조 시뮬레이션은 광범위하게 연구되었습니다.

Lost foam 주조 공정은 기존의 모래 주조와 많은 특성을 공유하기 때문에이 새로운 공정을 모델링하는 데 적용된 이론과 기술은 대부분 기존의 모래 주조를 위해 개발 된 시뮬레이션 방법에서 비롯되었습니다. 패턴 분해 속도가 금속성 헤드와 금속 전면 온도의 선형 함수라고 가정함으로써 Wang et al. [4]는 기존의 모래 주조의 기존 컴퓨터 프로그램을 기반으로 복잡한 3D 형상에서 Lost foam 주조 공정을 시뮬레이션했습니다.

Liu et al. [5]는 금속 앞쪽 속도를 예측하기 위한 간단한 1D 수학적 모델과 함께 운동 영역의 배압을 포함했습니다. Mirbagheri et al. [6]은 SOLA-VOF 기술을 기반으로 금속 전면의 자유 표면에 대한 압력 보정 방식을 사용하는 Foam 열화 모델을 개발했습니다.

Kuo et al.에 의해 유사한 배압 방식이 채택되었습니다. [7] 운동량 방정식에서이 힘의 값은 실험 결과에 따라 패턴의 충전 순서를 연구하기 위해 조정되었습니다.

이러한 시뮬레이션의 대부분은 LFC 공정의 충전 속도가 기존의 모래 주조 공정보다 훨씬 느린 것으로 성공적으로 예측합니다. 그러나 Foam 분해의 역할은 대부분 모델의 일부가 아니며 시뮬레이션을 수행하려면 실험 데이터 또는 경험적 함수가 필요합니다.

현재 연구는 일정한 열전달 계수 (CHTC)를 사용하는 상용 코드 FLOW-3D의 기본 LFC 모델을 수정하여 Foam 열화와 관련된 기체 갭 압력에 따라 다양한 열전달 계수 (VHTC)의 영향을 포함합니다. 코팅 투과성. 수정은 여러 공정 변수에 대한 실험 연구에 대해 검증되었습니다.

또한, 손실 된 폼 주조에서 가장 중요한 문제인 결함 형성은 문헌에서 인용 된 수치 작업에서 모델링되지 않았습니다. 접힘, 내부 기공 및 표면 기포와 같은 열분해 결함은 LFC 작업에서 많은 양의 스크랩을 설명합니다. FLOW-3D의 결함 예측 기능은 프로세스를 이해하고 최적화하는데 매우 중요합니다.

Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).

References

[1] S. Shivkumar, L. Wang, D. Apelian, The lost-foam casting of aluminum alloy components, JOM 42 (11) (1990) 38–44.
[2] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyrolysis defect reduction in lost foam castings, AFS Trans. 106 (1998) 777–785.
[3] C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1) (1981) 201–225.
[4] C. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Computational analysis of fluid flow and heat transfer during the EPC process, AFS Trans. 101 (1993) 897–904.
[5] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, J. Mater. Sci. 37 (14) (2002) 2997–3003.
[6] S.M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami, Simulation of melt flow in coated mould cavity in the lost foam casting process, J. Mater. Process. Technol. 142 (2003) 493–507.
[7] J.-H. Kuo, J.-C. Chen, Y.-N. Pan, W.-S. Hwang, Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation, Mater. Trans. 44 (10) (2003) 2169–2174.
[8] C.W. Hirt, Flow-3D User’s Manual, Flow Science Inc., 2005.
[9] E.S. Duff, Fluid flow aspects of solidification modeling: simulation of low pressure die casting, The University of Queensland, Ph.D. Thesis, 1999.
[10] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, The effects of foam density and metal velocity on the heat and mass transfer in the lost foam casting process, in: Proceedings of the ASME Summer Heat Transfer Conference, 2003,
pp. 317–323.
[11] W. Sun, P. Scarber Jr., H. Littleton, Validation and improvement of computer modeling of the lost foam casting process via real time X-ray technology, in: Multiphase Phenomena and CFD Modeling and Simulation in
Materials Processes, Minerals, Metals and Materials Society, 2004, pp. 245–251.
[12] T.V. Molibog, Modeling of metal/pattern replacement in the lost foam casting process, Materials Engineering, University of Alabama, Birmingham, Ph.D. Thesis, 2002.
[13] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Measurement of kinetic zone temperature and heat transfer coefficient in the lost foam casting process, ASME Int. Mech. Eng. Congr. (2004) 411–418.
[14] X. Yao, An experimental analysis of casting formation in the expendable
pattern casting (EPC) process, Department of Materials Science and Engineering, Worcester Polytechnic Institute, M.S. Thesis, 1994.
[15] M.R. Barkhudarov, C.W. Hirt, Tracking defects, Die Casting Engineer 43 (1) (1999) 44–52.
[16] C.W. Hirt, Modeling the Lost Foam Process with Defect PredictionsProgress Report: Lost-Foam Model Extensions, Wicking, Flow Science Inc., 1999.
[17] D. Wang, Thermophysical Properties, Solidification Design Center, Auburn University, 2001.
[18] S. Shivkumar, B. Gallois, Physico-chemical aspects of the full mold casting of aluminum alloys, part II: metal flow in simple patterns, AFS Trans. 95 (1987) 801–812.

FLOW-3D Weld

FLOW-3D Weld

FLOW-3D  WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하여 공정 최적화를 달성합니다. 더 나은 공정 제어를 통해 다공성, 열 영향 영역을 최소화하고, 미세 구조 변화를 제어 할 수 있습니다. 레이저 용접 프로세스를 정확하게 시뮬레이션하기 위해 FLOW-3D WELD 는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화와 같은 모든 관련 물리학을 구현합니다.

 

낮은 열 입력,  뛰어난 생산성, 속도는 기존의 용접 방법을 대체하는 레이저 용접 프로세스로 이어집니다. 레이저 용접이 제공하는 장점 중 일부는 더 나은 용접 강도, 더 작은 열 영향 영역, 더 정밀한 정밀도, 최소 변형 및 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 / 합금을 용접 할 수있는 능력을 포함합니다.

공정 최적화

FLOW-3D WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 공정 최적화를 달성하는 데 도움이됩니다. 더 나은 공정 제어로 다공성을 최소화하고 열 영향을받는 영역을 제한하며 미세 구조 변화를 제어 할 수 있습니다. FLOW-3D WELD 는 자유 표면 추적 알고리즘으로 인해 매우 복잡한 용접 풀을 시뮬레이션하는 데 매우 적합합니다. FLOW-3D WELD 는 관련 물리적 모델을 FLOW-3D 에 추가로 통합하여 개발되었습니다.  레이저 소스에 의해 생성된 열유속, 용융 금속의 증발 압력, 차폐 가스 효과, 용융 풀의 반동 압력 및 키홀 용접의 다중 레이저 반사. 현실적인 공정 시뮬레이션을 위해 모든 관련 물리 현상을 포착하는 것이 중요합니다.

 

얕은 용입 용접 (왼쪽 상단); 실드 가스 효과가 있는 깊은 용입 용접 (오른쪽 상단); 쉴드 가스 및 증발 압력을 사용한 심 용입 용접 (왼쪽 하단); 쉴드 가스, 증발 압력 및 다중 레이저 반사 효과 (오른쪽 하단)를 사용한 깊은 침투 용접.

FLOW-3D WELD 는 레이저 용접의 전도 모드와 키홀 모드를 모두 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D WELD 를 사용하여 용융 풀 역학을 분석하고 공정 매개 변수를 최적화하여 다공성을 최소화하며 레이저 용접 수리 공정에서 결정 성장을 예측합니다.

완전 관통 레이저 용접 실험

한국의 KAIST와 독일의 BAM은 16K kW 레이저를 사용하여 10mm 강판에 완전 침투 레이저 용접 실험을 수행했습니다. CCD 카메라의 도움으로 그들은 완전 침투 레이저 용접으로 인해 형성된 상단 및 하단 용융 풀 역학을 포착 할 수있었습니다. 그들은 또한 FLOW-3D WELD 에서 프로세스를  시뮬레이션하고 시뮬레이션과 실험 결과 사이에 좋은 일치를 얻었습니다.

실험 설정 레이저 용접
CCD 카메라로 상단 및 하단 용융 풀을 관찰하는 실험 설정
레이저 용접 회로도
FLOW-3D의 계산 영역 개략도
레이저 용접 시뮬레이션 실험 결과
상단의 시뮬레이션 결과는 용융 풀 길이가 8mm 및 15mm 인 반면 실험에서는 용융 풀 길이가 7mm 및 13mm임을 나타냅니다.
 

레이저 용접 다공성 사례 연구

General Motors, Michigan 및 Shanghai University는 중국의 공정 매개 변수, 즉 용접 속도 및 용접 경사각이 키홀 용접에서 다공성 발생에 미치는 영향을 이해하기 위해 상세한 연구를 공동으로 진행했습니다.

키홀 유도 용접 다공성
레이저 용접된 알루미늄 조인트 단면의 용접 다공성, 키홀 유도 다공성은 유동 역학으로 인해 발생하며 균열을 일으킬 수 있습니다. 최적화 된 공정 매개 변수는 이러한 종류의 다공성을 완화 할 수 있습니다.

연구원들은 FLOW-3D WELD를 사용 하여 증발 및 반동 압력, 용융풀 역학, 온도 의존적 ​​표면 장력 및 키홀 내에서 여러 번의 레이저 반사 동안 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

시뮬레이션 모델을 기반으로 연구진은 키홀 용접에서 유도 다공성의 주요 원인으로 불안정한 키홀을 식별했습니다. 아래 이미지에서 볼 수 있듯이 후방 용융 풀의 과도한 재순환으로 인해 후방 용융 풀이 전방 용융 풀 벽에서 붕괴되고 공극이 발생하여 다공성이 발생합니다. 이러한 갇힌 공극이 진행되는 응고 경계에 의해 포착되었을 때 다공성이 유도되었습니다.

높은 용접 속도에서는 더 큰 키홀 개구부가 있으며 이는 일반적으로 더 안정적인 키홀 구성을 가져옵니다. 사용 FLOW-3D 용접 , 연구진은 그 높은 용접 속도와 경사도 완화 다공성의 큰 용접 각도를 예측했습니다.

레이저 용접 수치 실험 결과
시뮬레이션 (위) 및 실험 (아래)에서 볼 수있는 세로 용접 섹션의 다공성 분포

FLOW Weld

FLOW Weld  모듈은 용접 해석에 필요한 모델을 FLOW-3D 에 추가하는 추가 모듈입니다.

FLOW-3D 의 표면 장력 자유 표면 분석, 용융, 응고, 증발, 상 변화 모델 등의 기본 기능을

응용하여 각종 용접 현상을 분석 할 수 있습니다.

주요 기능 :열원 모델 (출력 지정, 가우스분포, 디 포커스 등) 열원의 자유로운 이동 증발 압력 (그에 따른 반력) 실드 가스 압력 다중 반사 용접에 관한 대표적인 출력 (온도 구배 냉각 속도, 에너지 분포 등)
분석 용도 :높은 방사선 강도와 고온에 의해 직접 관찰이 어려운 현상을 시각화 온도, 열, 용접 속도, 위치 관계, 재료 물성 등의 매개 변수 연구 결함 예측 (기공, 응고, 수축 등)

FLOW -3D Weld 분석 기능

weld_flow
  1. 열원 모델의 이동
      출력량 지정, 가우스분포
  2. 에너지 밀도의 분포 , 가공 속도
      가우스 테이블 입력
  3. 증발 압력
      온도 의존성
  4. 다중 반사
      용해 깊이에 미치는 영향
  5. 결과 처리
      용해 모양, 에너지 분포, 온도 구배 냉각 속도
  6. 다양항형상의 레이저와 거동 (+ csv 파일로드)
      다양한 모양을 csv 파일 형식으로 정의 회전 + 이동
      임의 형상 이동을 csv 파일로 로드 (나선형)
  7.  이종 재료
      이종 재료의 용접
  8.  3D Printing Method  
      Cladding 적층공정

1. 열원 모델의 이동

weld16-1weld16-2
에너지 밀도공간 분포

2. 에너지 밀도의 분포, 가공 속도

열 플럭스 r 방향의 분포 단면은 원형으로, r 방향으로 열유속 분포를 제공합니다.

에너지 밀도의 공간적 분포

가우스 : 원추형의 경우는 조사 방향으로 변화하고 열유속의 면적 분은 동일합니다.

가공 속도

가공 노즐을 x, y, z 방향, 시간 – 속도의 테이블에서 지정합니다.
또한 노즐 (광원) 위치 좌표 조사 방향 벡터 성분을 지정합니다.

3. 증발 압력

에너지 밀도가 높은 경우, 용융 부 계면이 증발하고 그 반력에 의해 계면에 함몰이 발생합니다.
특히 깊은 용융부를 포함한 레이저 용접은 증발 압력을 고려한 모델링이 필요합니다.

증발 압력의 평가는 일반적인 수학적 모델이 없기 때문에 다음 모델 식을 사용합니다.

증발 가스의 상승 효과 (키 홀, 스퍼터 등)

증기의 상승 흐름의 영향을 동압, 전단력으로 평가합니다.

weld5-1 

4. 다중 반사

키홀 거동의 비교

weld9
다중 반사 없음다중 반사 있음

다중 반사를 고려한 레이저

weld10

5. 결과 처리

용접 기능에 관한 대표적인 출력 예입니다.

6. 다양한 형상의 레이저와 거동 (+ csv 파일 읽기)

weld17weld18

7. 이종 재료

이종 재료 간이 분석

재료 : 철, 구리

밀도고상율
weld19

이종 재료를 이용한 레이저 용접

재료 : 구리, 철

재료 체적 비율온도
weld20

8. 금속 3D 프린팅 기법  

– 적층 제조 (Additive Manufacturing) 공정

– DED(Direct Energy Deposition) 공정 

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D WELD Products

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D@ WELD는 레이저 용접 공정에 대한 정확한 시뮬레이션 기능을 제공하여 최적화된 공정을 개발하게 합니다. 더 나은 공정 제어를 통해 기공, 열 영향 영역을 최소화하고 미세 구조 변화를 제어할 수 있습니다.

레이저 용접 프로세스를 정확하게 시뮬레이션하기 위해 FLOW-3D@ WELD는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화와 같은 모든 관련 물리 모델을 제공합니다.

Laser Welding

최근에는 뛰어난 생산성과 속도, 낮은 열 입력이 결합되어 기존의 용접 프로세스를 대체하는 레이저 용접 프로세스가 주목 받고 있습니다. 레이저 용접이 제공하는 장점은 용접강도가 좋고, 열 영향 부위가 작으며, 정밀도가 낮고 변형이 적으며, 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접 할 수 있는 기능이 있습니다.

FLOW-3D@는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 프로세스 최적화를 달성하는 데 도움이 됩니다.

보다 나은 프로세스 제어를 통해 기공을 최소화할 수 있습니다. 열 영향부위 및 미세조직을 제어가 가능합니다. FLOW-3D는 자유표면 추적 알고리즘을 통해 매우 복잡한 용접 POOL 시뮬레이션을 해석하는데 매우 적합합니다.

용접 모듈은 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발압력, shield gas 효과, 용융 풀의 반동압력 및 다중 레이저 반사와 같은 물리적 모델을 FLOW-3D에 적용하기 위해 개발되었습니다. 키홀 용접과 같은 현실적인 프로세스 시뮬레이션을 위해서는 모든 관련 물리적 현상을 적용하는 것이 중요합니다.

FLOW-3D는 레이저 용접의 conduction and keyhole 방식을 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D를 사용하여 용접역학을 분석하고, 공정 매개 변수를 최적화하여 기공을 최소화하며, 레이저 용접공정에서의 dendrite 결정 성장 양상을 예측합니다.

Shallow penetration weld (top left); deep penetration weld with shield gas effects (top right); deep penetration weld with shield gas and evaporation pressure (bottom left); and deep penetration weld with shield gas, evaporation pressure and multiple laser reflections effects (bottom right).

Full Penetration Laser Welding Experiments

한국 카이스트와 독일 BAM은 16K kW레이저를 사용하여 10mm강판에 완전 침투 레이저 용접 실험을 수행하였습니다. CCD카메라의 도움을 받아 완전 용입 레이저 용접으로 형성된 상단 및 하단 용융풀 거동을 확인할 수 있었습니다. 그들은 또한 FLOW-3D 로 용접 공정 해석으로 해석과 실험결과의 경향이 일치하는 것을 알 수 있었습니다.

Experimental setup with CCD cameras observing the top and bottom molten pools
Schematic of computation domain in FLOW-3D

 

Simulation results at the top show melt pool lengths of 8mm and 15mm, whereas experiments indicated melt pool lengths of 7mm and 13mm

Laser Welding Porosity Case Study

General Motors, Michigan, 중국의 상하이 대학교는 용접 공정 변수, 즉 keyhole 용접에서 기공의 발생에 대해 용접 속도 및 용접 각도와 같은 공정 매개 변수가 미치는 영향을 알아보기 위해 협력하여 연구를 진행하였습니다.

레이저 용접된 Al 접합부 단면의 기공을 분석합니다. Keyhole이 유도 된 기공들은 유동 역학으로 인해 발생되고 균열을 일으킬 수 있습니다. 최적화 공정의 매개변수는 이러한 종류의 기공을 완화할 수 있습니다. FLOW-3D를 사용하여 연구원들은 증발 및 반동 압력, 용융풀, 온도에 따른 표면장력 및 Keyhole내의 다중 레이저 반사, 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

연구진은 시뮬레이션 모델을 기반으로 Keyhole 용접에서 생성된 기공들의 주요 원인으로 불안정한 Keyhole을 규정하였습니다. 아래 이미지에서 볼 수 있듯이 뒤쪽 용융 풀의 과도한 재순환은 뒤쪽 용융 풀이 앞쪽 용융 풀 경계를 무너뜨리며 기공들을 생성시킵니다. 갇힌 공간이 증가하는 응고 전면에 의해 갇혔을때 기공들이 발생되었습니다.

Distribution of porosity in longitudinal welding sections as seen in simulations (top) and experiments (bottom)

용접 속도가 빠를수록 더 큰 keyhole이 생성되며 이로 인해, 보다 안정적인 keyhole이 생성됩니다. 연구진은 FLOW-3D를 사용하여 용접 속도와 용접 경사각으로 기공들의 생성을 완화시킬 수 있었습니다.


관련 기술자료

Effect of Y2O3 on microstructure

Hierarchical grain refinement during the laser additive manufacturing of Ti-6Al-4V alloys by the addition of micron-sized refractory particles

미크론 크기의 내화물 입자를 추가하여 Ti-6Al-4V 합금의 레이저 적층 제조중 계층적 입자 미세 조정 Xiang Wang, Lin-Jie Zhang, Jie Ning, ...
더 보기
Review on the evolution and technology of State-of-the-Art metal additive manufacturing processes

Review on the evolution and technology of State-of-the-Art metal additive manufacturing processes

최첨단 금속 적층 제조 공정의 진화 및 기술 검토 S.Pratheesh KumarS.ElangovanR.MohanrajJ.R.Ramakrishna Abstract Nowadays, the requirements of customers undergo dynamic changes ...
더 보기
Numerical simulation of slag movement from Marangoni flow for GMAW with computational fluid dynamics Figures

Numerical simulation of slag movement from Marangoni flow for GMAW with computational fluid dynamics

전산 유체 역학을 사용하여 GMAW에 대한 Marangoni 흐름에서 슬래그 이동의 수치 시뮬레이션 Dae-WonChoaYeong-DoParkbMuralimohanCheepucaBusan Machinery Research Center, Korea Institute of Machinery ...
더 보기
Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.

The effect of alloying elements of gas metal arc welding (GMAW) wire on weld pool flow and slag formation location in cold metal transfer (CMT)

가스 금속 아크 용접 (GMAW) 와이어의 합금 원소가 CMT (Cold Metal Transfer)에서 용접 풀 흐름 및 슬래그 형성 위치에 미치는 ...
더 보기
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.

Investigation on Laser Welding of Al Ribbon to Cu Sheet: Weldability, Microstructure, and Mechanical and Electrical Properties

알루미늄 리본과 구리 시트의 레이저 용접에 대한 조사 : 용접성, 미세 구조, 기계적 및 전기적 특성 Won‐Sang Shin 1,†, Dae‐Won ...
더 보기
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section

A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process

Keyhole에 대한 수치적 연구 : 레이저 분말 중 형성 베드 퓨전 공정 Subin Shrestha1J.B. Speed School of Engineering,University of Louisville,Louisville, ...
더 보기
Figure 5.6 Experimental set-up equipped with high-speed camera system

COMPUTATIONAL FLUID DYNAMIC MODELLING OF LASER ADDITIVE MANUFACTURING PROCESS AND EFFECT OF GRAVITY

전산 유체 역학 레이저 첨가제 모델링 제조 공정 및 중력의 영향 A thesis submitted to The University of ManchesterFor the ...
더 보기
마란 고니 효과 있음

Ti-6Al-4V 금속 분말에 의한 선택적 레이저 용융법 수치 해석

Ti-6Al-4V 금속 분말에 의한 선택적 레이저 용융법 수치 해석 선택적 레이저 용융법(SLM: Selective Laser Melting)은 3D 프린팅 기술의 하나로 최근 ...
더 보기
CASE2-실험 결과와 FLOW-3D WELD에 의한 해석 결과와의 비교(단면 형상)

FLOW-3D WELD 용접 사례

FLOW-3D WELD를 이용한 용접 해석 사례를 소개합니다. 열전도 형 용접 (레이저)  두께가 다른 모재 맞대기하이브리드  레이저 / 아크 하이브리드깊이 용해 형 ...
더 보기
분석 모델 (위)과 실측 결과 (아래)

납땜(Soldering) 영역 제어

납땜 후 납땜 형상은 기본적으로 용융 상태에서 형성된 형상이 유지됩니다.특히 납땜의 미세화에 따라 용융 상태의 납땜 형상을 결정하는 요인으로서 표면 ...
더 보기

FLOW-3D 용접해석 개요

FLOW-3D 용접해석 개요

자료 제공: FLOW Science Japan

용접은 금속의 상변화, 용융시의 유동, 방열에 의한 응고 등을 포함한 복잡한 물리 현상입니다. FLOW-3D@에는 그 현상을 정밀하게 모델링하는 기능이 있고, 용접 현상을 충실하게 재현할 수 있습니다.

특히 용융 금속의 유동은 표면 장력의 영향이 강하고, 그 해석은 정확한 자유 계면의 추적이 필요합니다.

FLOW-3D@의 정확한 계면 추적 기능인 TruVOF®는 그 현상을 파악하기에 매우 적합합니다.

해석 조건으로 레이저의 power, spot size, distance, 움직임(분사방향) 등을 입력할 수 있으며, 보호가스는 밀도와 유속으로 설정 할 수 있습니다. 스패터의 분출 해석은 현재 지원되지 않습니다.

해석 결과로 용접 비드의 폭, 깊이, 기공의 유무 등 관찰할 수 있습니다.

열응력 해석은 FLOW-3D 유동 해석 결과를 Abaqus 등의 구조해석 프로그램에서 불러와서 별도로 열응력 해석을 수행해야 합니다.

해석 필요성

FLOW-3D 를 이용한 용접해석은

  • 높은 방사 강도와 고온으로 직접 관찰하기 어려운 내부 현상의 상세 내용을 가시화
  • 온도, 열, 용접 속도, 위치 관계, 재료 물성 등의 파라미터 연구 검토
  • 결함 예측 (공기연행, 응고 수축, 금속 산화) 등의 필요성

해석을 통해 얻는 이점

금속의 상변화, 용융시의 유체의 힘, 방열에 의한 응고 등의 물리모델 용접 현상을 분석할 수 있습니다.

또한 용융시에는 표면장력의 영향이 강하고, 자유계면을 추적하는 수치해석 방법에 대해 높은 정밀도가 요구됩니다. FLOW-3D@는 이러한 요구사항을 잘 처리할 수 있는 장점을 가지고 있어, 용접 용융-응고의 연속적인 현상을 정확하게 파악합니다.

Capillary Flows/Capillary Filling/Thermocapillary Switch/Capillary Absorption/Marangoni flow

Capillary Flows

모세관 흐름은 일반적으로 미세 유체 장치에서 발생합니다. 예를 들어, 바이오 칩 설계에서는 한 곳에서 다른 곳으로 액체 용액을 전달하기 위해 긴 마이크로 채널이 자주 사용됩니다. 입구 채널은 액체 저장소에 연결되고 표면 장력은 액체를 마이크로 채널로 끌어 당깁니다 (액체가 칩 표면에 “젖은”경우). 이 페이지에서는 충진, 흡수 및 전환과 같은 모세관 흐름 분석에서 FLOW-3D의 특정 응용 분야를 다룹니다.

Marangoni flow in a dish of water that is heated at its center.

Marangoni flow는 중앙에서 데워진 물이 담긴 접시에 흐릅니다. 불균일한 표면 장력에 의해 생성 된 흐름은 20ºC의 초기 온도에서 0.75cm 깊이의 얕은 8.0cm 직경의 물 접시에 의해 입증됩니다. 원형 접시의 중앙에는 직경 0.5cm의 원통형 막대가 있습니다. 80 Cº의 온도로 가열하고 0.05 cm 깊이까지 수면에 담근다. 핫로드 근처의 물이 가열됨에 따라 표면 장력이 0.1678 dyne / cm / ºC만큼 감소하여 표면이 접시의 바깥 쪽 테두리쪽으로 후퇴합니다. Retraction는 처음에 표면에 뿌려진 질량없는 마커 입자로 표시됩니다.

Capillary Absorption

고체 물질의 기공에 모세관 흡수 때문에 액체와 고체 사이의 접착 발생합니다. 이 같은 흡수의 간단하면서도 유용한 시험은 핀란드 ABO Akademi 대학의 마르티 Toivakka에 의해 제안되었습니다. 테스트 기공은 ± 1.0 μm의 측면 벽 1.0 μm의 반경 원호입니다. 팽창 목에 연결된 넓은 2차원 채널로 구성되어 있습니다. 체적력의 부재 하에서, 표면장력 과 wall adhesion pull liquid 는 액체와 고체 사이의 static contact angle에 의해 결정됩니다. 첨부된 그림은 FLOW-3D가 올바르게 특정 접촉 각도 (유체는 적색표현) 충전 레벨을 계산하는 것을 나타냅니다.

Thermocapillary Switch

액체의 작은 덩어리나 가벼운 빔의 경로에서 움직이는 굴절, 혹은 반사로 다른 길로 리디렉션 할 수 있습니다. 이 개념은 특히나 한번 빔 내부 반사로 인해 갇혀 있는 섬유에 들어가 광학 섬유로 연결에서 매력적입니다. 어떠한 복잡성의 광 회로를 만들려면, 하나의 광섬유에서 다른 가벼운 방향을 바꿀 수 있는“스위치”를 둘 필요가 있습니다.

The animation above shows a FLOW-3D simulation of a drop of water in a 14mm-wide channel that is being heated at the bottom.

Capillary Filling

모세관 충전 과정을 이해하는 것은 칩 설계에 중요합니다.. 액체 흐름 통로의 다른 형상 포획 기포의 가능성 등의 충전 공정의 기술은, 같은 챔버와 칩의 내부 구조를 배치 기둥 분할하고, 밸브 결합에 설계자 안내 등 다양한 모세관 충전 동작이 발생할 수 있습니다.

시뮬레이션은 아래의 모세관 작용의 분석 예측의 유효성을 검사합니다. 모세관 채우기는 정확하게 표면 장력과 중력에 의해 균형을 잡습니다.이것은 FLOW-3D에 의해서 정확하게 예측되는 기본적인 과정입니다.

접촉선의 이해(Contact Line Insights)

접촉선의 이해(Contact Line Insights)

FLOW-3D는 코팅 성능 향상에 관심이있는 엔지니어에게 이상적인 수치 모델링 기능을 많이 갖추고 있습니다. 전산 시뮬레이션은 코팅 흐름에 영향을 미치는 여러 물리적 과정의 상대적 중요성과 효과를 연구 할 수있는 훌륭한 방법입니다. 물리적인 테스트에서 항상 프로세스를 분리하거나 해당 프로세스의 크기를 임의로 조정할 수있는 것은 아닙니다. 여기에서는 리 볼렛 형성(rivulet formation), 핑거링(fingering), 증발, 거친 표면에서의 접촉선 이동 및 유체 흡수와  관련하여 정적 및 동적 접촉각에 대하여 FLOW-3D의 처리에 대해 설명합니다.

 

정적 및 동적 접촉각(Static and Dynamic Contact Angles)

FLOW-3D는 정적 접촉각의 함수로 동적 접촉각을 정확하게 계산하고 입력으로 설정하며 자유 표면 인터페이스에서 작용하는 관련된 힘을 정확하게 계산하여 유체의 소수성을 캡처 할 수 있습니다. 아래 시뮬레이션은 물방울이 경사를 따라 내려갈 때 정적 접촉각이 동적 접촉각에 미치는 영향을 보여줍니다.

 

흡수(Absorption)

종이 기판에 액 적의 충격 및 흡수는 전산 유체 역학 소프트웨어를 사용하여 연구 할 수 있습니다. 여기서 FLOW-3D는 섬유층에서 물방울 충돌을 시뮬레이션하는데 사용되며 표면 장력, 접촉각 및 점도와 관련된 유체 전면의 전파를 살펴 봅니다.

 

 

아래의 FLOW-3D 시뮬레이션에서, 낙하는 직경이 40 미크론이며 초기 하향 속도는 300 cm / s입니다. 기재는 종이이고, 기공률이 30 % 인 20 미크론 두께입니다.

 

 

액체 필름의 핑거링(Fingering in Liquid Films)

FLOW-3D에서 동적 접촉선은 동적 접촉각이나 접촉선의 위치를 ​​지정할 필요없이 직접 모델링됩니다. 이는 소량의 유체에서 유체에 영향을 미치는 모든 동적 힘을 포함하는 수치 모델을 사용하여 수행됩니다. 정적 접촉각은 액체-고체 접착력을 특성화 하는데 사용됩니다.

액체 시트의 핑거링. 왼쪽은 0 °, 오른쪽은 70 °

여기서, 이러한 접근법의 힘의 적용은 경사 표면 아래로 흐르는 액체 필름에서 관찰 된 핑거링에 의해 제공됩니다. 실험적 관찰에 따르면 두 가지 뚜렷한 핑거링 패턴이 발생합니다. 첫 번째 패턴은 작은 정적 접촉각(즉, 습윤 조건)이며 상하한이 모두 하향으로 움직이는 쐐기형 핑거를 나타냅니다. 두 번째 패턴은 큰 정적 접촉각(즉, 습윤 조건이 열악함)이며 가장 균일한 폭을 가진 긴 핑거이고 가장 큰 한계점은 하향으로 움직이지 않는 것이 특징입니다.

 

 

증발 효과(Evaporative Effects)

퇴적(Deposit)

분산 된 고체 물질을 함유하는 액 적은 고체 표면에서 건조 될 때, 함유하고 있는 고체 물질을 침전물로서 남깁니다. 이 침전물의 형상이 많은 인쇄 공정, 청소 및 코팅 공정에 중요한 영향을 미칩니다. 한 종류의 퇴적물의 전형적인 예는 위의 이미지와 같이 엎질러 진 커피 패치의 둘레를 따라 링 얼룩이 형성되는 “커피 링” 문제입니다. 이 유형의 링 침전물은 액체의 증발로 인한 표면 장력 구동 흐름의 결과로, 특히 낙하 둘레에서 발생합니다.

 

건조(Drying)

FLOW-3D의 증발 잔류 액체 모델은 건조 후 톨루엔으로 형성된 잔류된 물의 3D형상을 시뮬레이션합니다. (30 배 확대)

건조는 코팅 공정의 중요한 부분입니다. 하지만 건조의 결함으로 잘 도포 된 코팅을 완전히 취소 할 수도 있습니다. 건조 중에 온도 및 용질 구배는 밀도 및 표면 장력 구배로 인해 코팅 내 유동을 유도 할 수 있으며, 이는 코팅 품질을 잠재적으로 파괴 할 수 있습니다. FLOW-3D의 증발 잔류 물 모델을 사용하면 건조로 인한 흐름을 시뮬레이션하고 값 비싼 물리적 실험에 소요되는 시간을 줄일 수 있습니다.

 

모델링 링 형성(Modeling Ring Formation)

증발에 의해 접촉 라인에서 생성 된 흐름 시뮬레이션

윗쪽 그림에서 FLOW-3D는 증발이 가장 큰 접촉선에서의 증착으로 인해 에지 피닝(edge pinning)이 발생함을 보여줍니다. 증발은 증발로 인한 열 손실로 인해 액체를 냉각시킵니다 (색상은 온도를 나타냄). 동시에 고체 표면은 전도에 의해 액체를 가열합니다. 접촉선 주변에서 증발이 가장 커서, 액체가 접촉선을 향해 흘러 정적 조건을 재설정합니다. 최종 결과는 액체가 완전히 증발하는 액체 가장자리에 현탁 된 고체의 증착입니다.

 

 

참고
[1] Deegan, R., Bakajin, O., Dupont, T. et al. Capillary flow as the cause of ring stains from dried liquid drops, Nature 389, 827–829 (1997).

 

Tilt Pour Casting Workspace, 경동주조

Tilt Pour Casting Workspace Highlights, 경동주조

  • 금형의 모션 제어
  • 최첨단 금형온도관리, 동적 냉각 채널, 스프레이 냉각, 금형온도 싸이클링
  • 정확한 가스 고립 및 기공 예측

Workspace Overview

경동주조(Tilt Pour Casting) Workspace는 엔지니어가 FLOW-3D  CAST로 경동주조(Tilt Pour Casting)을 성공적으로 모델링 할 수 있도록 설계된 직관적인 모델링 환경입니다 . 작업 공간에는 프로세스별 특정 다이 및 재료 유형이 포함되어 있으며, 정확한 기계 기능에 맞게 회전 동작을 쉽게 정의 할 수 있습니다. 

기포 결함의 완전한 분석을 위해 충진 분석에 벤트 및 배압이 포함되어 있으며, 다이사이클링 및 최신 응고 모델은 작업 공간의 하위 프로세스 아키텍처를 통해 충진시 매끄럽게 연결됩니다. Tilt Pour Casting Workspace는 단순하지만 다양한 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

Tilt Pour Simulation | FLOW-3D CAST
Tilt Pour Casting | FLOW-3D CAST
8-Cavity Tilt Pour | FLOW-3D CAST v5.1

프로세스 모델링

  • 틸트 주입
  • 역 틸트 주입

유연한 격자 생성

  • FAVOR ™ 단순 격자 생성 도구
  • 멀티 블록
  • Conforming mesh

금형 온도 관리

  • 다이 사이클링
  • 열 포화
  • 완전 열전달 모델링

고급 응고

  • 다공성 예측
  • 수축
  • 핫스팟 식별
  • 열 계수
  • 기계적 특성 예측

모래 코어

  • 핵심 가스 진화
  • 코어 특성에 대한 재료 정의

금형 동작 제어

  • 6 개의 회전축
  • 회전 속도를위한 테이블 형식 입력

결함 예측

  • 매크로 및 미세 다공성
  • 가스 다공성
  • 조기 응고
  • 산화물 형성
  • 표면 결함 분석

다이나믹 시뮬레이션 제어

  • 모션 제어를위한 이벤트 프로브 기반 트리거

완벽한 분석 패키지

  • 다중 뷰포트가있는 애니메이션-3D, 2D, 히스토리 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 병렬 시뮬레이션 결과 비교
  • 용융 온도, 고체 분율 측정 용 센서
  • 입자 추적기
  • 일괄 배치 처리
  • 보고서 생성

Investment Casting Workspace, 정밀주조

Workspace Highlights

  • 주조 패턴으로 쉘 생성을 능률적으로 수행할 수 있습니다.
  • 고급 방사 모델은 쉘 표면 사이의 완전한 복사 열 전달을 계산합니다.
  • 고급 모션 컨트롤에는 Bridgman, 레들 및 스핀 모션이 포함됩니다.

Workspace Overview

Investment Casting Workspace는 쉘 생성, 충전, 응고 (정적 또는 움직이는 Bridgman 쉘 금형) 및 냉각을 포함한 Investment Casting 주조의 모든 측면을 시뮬레이션하기 위한 사용하기 쉬운 도구를 Investment Casting 엔지니어에게 제공합니다.

쉘 몰드 생성 도구는 빠르고 신뢰할 수 있는 쉘 형상 생성을 위해 제공되며, radiative heat 및 view factor 모델은 쉘의 여러 부분 간의 복사 열전달(radiation heat transfer)을 정확하게 재현합니다. Directional solidification를 위해 쿨러 하부 단면과 분리된 뜨거운 상부 섹션이 있는 moving oven은 Bridgman 프로세스를 재현합니다. 용융 표면 진행 뿐만 아니라 몰드의 이동, 충진 양상 및 응고 패턴은 직관적인 후처리 도구를 통해 쉽게 평가되므로 공정 조건을 수정하여 주조 공정을 구현할 수 있습니다.

 프로세스 모델링

  • 유동
  • 고화 -고정 및 브리지먼
  • 냉각
 

쉘 몰드 생성

 

열 금형 모델링

  • 뷰 인자를 가진 전체 방사 모델링
  • 대류 및 전도 열 전달
 

멀티 블록 메시

 

유동 해석의 탁월한 정확도

  • 가스/버블 고립
  • 표면 산화물 계산
  • RNG 및 LES 난류 모델
 

래들 주입

 응고해석
  • 기공 예측
  • 수축 예측
  • 방향성 응고
 

결함 예측

  • 기공 예측
  • 공기 고립 예측
  • 조기 응고
  • 산화물 형성
 

동적 시뮬레이션 제어

  • 용탕 주입 제어
 

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 여러가지 해석 결과 비교
  • 용융 온도, 응고 분율 측정을 위한 센서 추가 기능
  • 파티클 트레이서
  • 일괄 후 처리
  • 보고서 생성

Aluminum Integral Foam Molding Process

Aluminum Integral Foam Molding Process

This application note was contributed by Johannes Hartmann and Vera Jüchter, Department of Materials Science, Chair of Metals Science and Technology, University of Erlangen-Nuremberg

 

알루미늄 폼은 우수한 댐핑 및 높은 에너지 흡수율 및 굴곡 강성과 같은 예외적인 특성을 보여줍니다[1]. 강성은 특히 하중 지지 및 경량 구조에 사용하기에 특히 매력적입니다. 중량별 강성을 높이고 보다 우수한 하중 전달을 위해 알 Aluminum Foam Sandwiches (AFS)와 같은 컴팩트한 특성이 필요합니다 [2].

Erlangen-Nuremberg 대학의 금속 공학과 기술 위원장은 알루미늄 발포 특성을 점차적으로 생산하기 위해 다이캐스팅 공정인 Integral Foam Molding 개발하였습니다(그림 1 참조). 이 공정은 폴리머의 사출 성형으로 개발되었으며 따라서 컴팩트한 층을 가진 복잡한 폼을 비용 효율적으로 대량 생산에 적합합니다. 이 노트에 설명 된 시뮬레이션 기법은 프로세스 매개 변수를 선택하는데 도움을 주기 위한 모델링프로세스를 확인할 수 있습니다.

Figure 1. Cross section of an aluminum integral foam with a compact skin, a transition region with decreasing relative density and smaller pores, as well as a foamed core.

Aluminum Integral Foam Molding Technology

일정량의 발포제 (수소화 마그네슘, MgH2)가 러너 시스템에 배치되고 샷 챔버는 알루미늄 용융물로 채워진다 (공정은 그림 2에 묘사되어 있으며, 공정은 [3]에 자세히 설명되어있다). 피스톤이 진행됨에 따라, 분말은 난류 방식으로 주형에 이송된다. 기술 변형 “고압 일체형 폼 몰딩 (HP-IFM)”의 경우 표준 다이캐스팅 공정에서 알 수 있듯이 이 부품은 주변의 높은 압력에서 완전히 채워져 우수한 표면 품질을 보장합니다. 템퍼링된 금형 표면에서 시작하여 용융물은 일체형으로 고형화되기 시작합니다. 몇 밀리 초가 지나면 금형은 코어 풀러 시스템 위에 열리고 부피는 국부적으로 증가하고 압력은 감소하여 열분해 및 수소화 마그네슘 입자의 수소 방출로 인해 여전히 반고체 내부 영역에서 기공 성장을 시작합니다. 모든 발포제 입자는 이웃하는 공극의 역압에 의해 멈추어 질 때까지 공극의 성장을 지속합니다. 발포된 입자의 벽은 알루미늄 합금의 응고된 입자에 의해 안정화가 되며 이를 endogenous stabilization이라고 합니다[4].

Figure 2. Schematic process cycle of “High Pressure Integral Foam Molding (HP-IFM)” of aluminum.

주조 부품의 전체 부피에서 균일한 형태에 대한 전제조건은 분해 순간의 양호한 입자분포입니다. 또한, 발포제 유입시의 용융물의 온도는 수소화 마그네슘의 분해를 결정하며 (그림 3 참조), 게다가 발포시 solid phase의 양을 결정한다. 그러나 고상의 양이 너무 많으면 기공의 강성이 증가하고 현상 기공의 구형화를 방해하여 구조가 파괴된다 [2].

Microcellular Aluminum Integral Foams – Approaching the Process Limits

일체형 발포 성형 공정시뮬레이션은 새로운 부품 설계의 몰드 충진 특성을 조사하는 데 도움이 될 뿐만 아니라 입자 침투도 예측하고 비용을 절약할 수 있게 발포 공정 조건을 결정할 수 있는 강력한 도구입니다. 현재 연구의 목표는 다공성 수준을 일정하게 유지하면서 기공 크기를 줄이는 것입니다. 전산 유체 역학 (CFD) 시뮬레이션은 가능한 한 현재의 프로세스 한계에 가깝게 접근할 수 있습니다. 발포 형태의 개선은 기계적 물성에서 균질 한 구조를 유도 할뿐만 아니라 기계적 성질에 의해 더 얇은 부품의 생산이 가능할 것입니다. 이 목적은 용융물 내에서의 높은 입자 분포 밀도와 동시에 응집 현상의 감소와 함께 완전히 안정된 기공 성장에 의해서만 달성 될 수 있다.

Figure 3. Schematic curves of decomposition of magnesium hydride as a function of the melt temperature, calculated by the Johnson-Mehl-Avrami approach [2]

Figure 4. Adjustment of heat transfer by comparisons of a real solidification curve (black) to the growth rate of the solidified skin in simulation (red).

Adapting the Simulation Parameters to Practical Integral Foam Molding Experiments

입자 거동이나 온도장에 대한 신뢰성 있는 예측을 위한 CFD 시뮬레이션을 사용할 수 있으려면 실제 실험과 일치하도록 매개 변수를 결정해야 합니다. 이를 위해, 30-130 ms의 지연 시간을 갖는 일체형 발포 부품을 제작하였으며 성형 팽창 및 기공 성장 개시 순간에 고상분율 때문에 발포 형성이 불가능한 다른 밀도의 형상을 만들었습니다. 열 전달 계수 (완전한 액체 용융물과 완전 응고된 용융물)를 변화시켜 합금 AlSi9Cu3 (Fe)의 주조 사이클을 시뮬레이션하면 응고 곡선을 적용할 수 있습니다. 이러한 목표를 달성하기 위해 시뮬레이션을 피스톤 이동이 시작되기 전에 실제 온도분포를 묘사해야 합니다. 온도는 배치된 열에 의해 숏 챔버에서 국부적으로 측정되었으며 시뮬레이션 내 실제 데이터와 잘 일치하여 성공적으로 묘사 될 수 있었습니다. 금형 충진 중에 금형 표면에서 온도 측정을 참조 할 수도 있습니다. 시간 경과에 따른 그 변화는 시뮬레이션 결과와 잘 일치합니다.

표면장력이나 응고 항력계수와 같은 용융의 유동을 정의하는 추가 매개 변수 단계에서는 다른 설정과 시뮬레이션을 비교하여 조정됩니다. 시뮬레이션 내에서 용융물의 흐름이 실제 시험과 일치하는 즉시 매개 변수가 설정됩니다

Figure 5. Adjustment of melt flow defining parameters such as the surface tension by comparisons of real experiments (left) to simulations (right)

냉각 및 용해 흐름 특성을 정의한 후 입자의 유입을 시뮬레이션 합니다. 입자 / 유체 의 상호 작용에 대한 시뮬레이션을 조정하기 위해 매개 변수계수의 X 선 샘플과 비교가 되며 구리선 입자에서는 수산화 마그네슘보다 높은 함량 입자가 적용됩니다. (그림 6 참조). 시뮬레이션 결과는 실험과 매우 잘 어울리므로 프로세스 매개 변수의 함수로서 입자 분포의 신뢰할 수 있습니다.

Figure 6. Adjustment of parameters influencing particle/melt-interactions by comparisons of x-rayed samples left); produced by the entrainment of copper particles) to simulations (right)

Conclusion

전체적으로 FLOW-3D는 실제 생산 전에 새로운 부품 제조의 잠재적 결함을 조사하는 중요한 수단이 될 수 있다는 것을 증명할 수 있었습니다. 이러한 방식으로, 차가운 흐름 또는 데드 존이 없는 성공적인 충전 및 발포제 분포가 보장 될 수 있다. 또한, 예상되는 온도 필드의 정확한 묘사로, 수소화 마그네슘의 분해 특성 및 기공형성을 예측할 수 있습니다. 이는 일체형 폼 구조와 관련하여 고객의 요구를 충족시키기 위한 공정 변수를 정의 할 수 있는 가능성을 제공합니다

1 Criterion is the solid phase fraction where the shear strength and therefore the resistance to pore evolution increases drastically.

References

[1] C. Körner, R. F. Singer, Adv. Eng. Mater. 20002 (4), pp. 159-165.
[2] C. Körner, in Integral Foam Molding of Light Metals – Technology, Foam Physics and Foam Simulation, Springer, Berlin, Heidelberg, Germany 2008.
[3] H. Wiehler, C. Körner, R. F. Singer, Adv. Eng. Mater. 200810 (3), pp. 171-178.
[4] J. Hartmann, A. Trepper, C. Körner, Adv. Eng. Mater. 201113 (11), pp. 1050-1055.

Learn more about the versatility and power of modeling metal casting processes with FLOW-3D Cast>

 

Metal Casting Models

Metal Casting Models

FLOW-3D CAST는 금속 주조를 위해 특별히 설계된 다양한 물리적 모델을 포함하고 있습니다. 이는 모든 종류의 금속 주조 용도와 관련된 문제에 대한 가장 정확한 해결책을 제공합니다. 이를 통해 고객은 보다 적은 시간과 비용으로 지속적으로 주조 수율과 품질을 개선할 수 있습니다.

자유 표면 흐름을 정확하게 예측할 수 있는 특수 기능을 갖춘 FLOW-3D CAST는 금형 용탕 충진 및 공기 주입과 같은 관련된 결함을 시뮬레이션하는 데 가장 적합합니다. 강력하고 유연한 열전달 모델은 응고, 냉각 채널, 열 다이 사이클 시뮬레이션과 같은 금속과 금형 사이의 열 교환을 빠르고 정확하게 예측할 수 있습니다. 금형 용탕 충진과 결합할 수 있는 응고 및 수축 모델은 과도한 수축공과 기공 영역을 정확히 찾아내어 결함이 완화됩니다. granular media 모델과 수분 건조 모델을 사용하여 모래 코어의 blowing과 건조 공정을 시뮬레이션 할 수 있습니다. FLOW-3D CAST의 유한 요소 기반 열 응력 모델을 사용하면, 고객이 응력이 발생하는 위치와 주조 변형이 일어나는 이유를 정확하게 예측할 수 있으므로 열 변형 결함을 제거할 수 있습니다. 주철 모델은 공정 반응하는 동안 흑연, 감마 – 철 및 탄화물 형성을 예측하여, FLOW-3D CAST의 적용 범위를 확장합니다. 코어 가스 제품 군의 고유한 특징은 코어 가스 생성 및 모래 코어에서의 흐름을 모델링 하여 금속 주물의 코어 가스 관련 결함을 예측하는 데 사용할 수 있습니다.

FLOW-3D CAST는 금속 주조 모델링 및 시뮬레이션 분야의 선두 프로그램입니다. 금속 주조 업계에 대한 당사의 헌신은 금속 주조와 관련된 모델과 용도에 대한 당사의 지속적인 개발로 입증되었습니다. 당사는 고객과 지속적으로 협력하여 실제 애플리케이션을 위해 개발하여 품질과 생산성을 향상시키고 지속적으로 혁신할 수 있도록 지원할 것입니다.

Jewelry Casting

Gravity Pour

Gravity Pour

중력 주조는 큰 부품(일반적으로 철, 청동, 황동 또는 알루미늄)을 만드는 데 사용됩니다. 사형 주조 및 영구 금형을 포함한 대부분의 주조 공장 주조 공정은 FLOW-3D CAST를 사용하여 모델링 할 수 있습니다. 주입 프로세스는 고압 다이 캐스팅에 비해 덜하지만 과도한 공기 주입으로 인한 공기 유입으로 인해 품질이 저하될 수 있습니다. 주입하는 동안 잠재적 결함의 위치와 온도의 변화 뿐만 아니라, 용탕 표면의 움직임도 정확하게 예측됩니다. 충진이 완료된 후 용탕의 응고 및 수축을 모델링 할 수도 있습니다.

 

Accurate Filling Simulations

주조 공정에서 주입 작업은 결함들이 라이저로 이동하는지, 또는 부품에 갇힌 채로 남아 있는지 여부와 같은 주입 패턴 및 관련 결함을 분석하는 작업으로 이루어집니다. 시뮬레이션 분석을 사용하면 설계의 효율성을 검증하고 비용을 절감하면서 생산에 들어가기 전에 설계를 테스트할 수 있습니다. 주입의 정확성은 산화물의 결함과 갇힌 공기의 위치를 추적하는 데 중요할 뿐만 아니라, 응고 결과의 핵심입니다. 올바른 주입 패턴은 주입 마지막의 올바른 열 분포를 의미합니다. 이 열 분포는 응고 분석의 기초가 됩니다.

Solidification of Castings for Foundry Applications

편석, 열응력, 마이크로 및 매크로 기공 등 응고와 관련된 다양한 결함들이 있습니다. 정확한 응고 결과를 얻기 위한 중요한 첫번째 단계는, 정확한 주입입니다. 정확한 주입은 응고 모델링의 초기 조건인 올바른 열 프로필을 캡처하는데, FLOW-3D CAST는 주조 부품을 보다 신속하게 설계하고 폐기율을 낮출 수 있는 많은 응고 관련 결함을 감지할 수 있습니다.

High Pressure Die Casting

ALL NEW FLOW-3D CAST v5

ALL NEW FLOW-3D CAST v5

HPC version of FLOW-3D CAST v5 releasedALL NEW FLOW-3D CAST v5 는 금속 주조 시뮬레이션 및 공정 모델링에 있어 큰 발전입니다. 이제 FLOW-3D CAST는 시뮬레이션 할 프로세스를 선택할 수 있으며, 소프트웨어는 적절한 프로세스 매개 변수, 지오메트리 유형 및 합리적인 기본 값을 제공합니다. 이렇게 하면 시뮬레이션 설정이 상당히 간소화됩니다. 또한 FLOW-3D CAST의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계 주기를 단축하고 비용을 절감하는 통찰력을 제공합니다. 대표적인 개발 기능으로 응고 시뮬레이션을 위한 열 계수 및 핫 스팟 식별 출력, 갇혀 있는 가스를 식별하고 환기 효율을 예측하기 위한 결함 채우기 도구 등이 포함됩니다. 그리고 더 빠르고 더 강력한 압력과 및 응력 해소 기능이 모두 포함합니다.

ALL NEW FLOW-3D CAST v5 는 관련 프로세스가 포함된 Suite제품으로 제공됩니다. 영구 금형 제품군은 중력 다이 캐스팅, 저압 다이캐스팅(LPDC), 틸트 주입 주조와 같은 프로세스 작업 공간을 포함합니다. 각 프로세스에 대해 사용자 인터페이스는 특정 프로세스와 관련된 내용만 표시합니다. 모래 주조 Suite에는 중력 사형 주조 및 저압 사형 주조(LPSC)와 같은 프로세스가 포함되어 있습니다. 소실 폼 제품 군에는 사형 주조 Suite의 모든 것과 소실 폼 공정 작업 공간이 포함됩니다. HPDC 제품군은 열 응력 및 변형을 포함하여 고압 다이 캐스팅과 관련된 모든 것을 포함합니다. 각 프로세스 작업 공간 내에서 채우기, 응고 및 냉각과 같은 하위 프로세스는 서로 연결된 시뮬레이션으로, 처음부터 끝까지 차례로 전체 프로세스를 모델링 합니다. 사용자가 그것을 작업장 바닥에서 하는 것처럼. 사용자는 레들을 용융 풀 안에 담갔다가, 숏 슬리브 또는 주입 컵에 옮겨, 전체 이동 및 주입과 같은 단계를 포함하도록 프로세스를 확장할 수 있습니다. LPDC의 경우 프로세스 엔지니어는 도가니의 가압 및 금속 흐름을 주형으로 모델링 할 수 있습니다.  FLOW-3D CAST v5를 사용하면 가능성이 무한해 집니다.

WYSIWYN Process Workspaces

What-You-See-Is-What-You-Need (WYSIWYN) 프로세스 작업 공간은 FLOW-3D CAST의 다기능성을 간소화하여 사용 편의성과 탁월한 솔루션입니다. 대부분의 인터페이스는 사용자가 제공해야 하는 정보만을 요구하고, 사용자 설계 원칙을 적용하여 단순화되었습니다.

FLOW-3D CAST v4.2에 도입된 프로세스 중심 작업 공간은 중력 다이 주조, 저압 주조 및 경사 주입, 모래 등과 같은 영구 금형 공정으로 확장되었습니다. 중력 모래 주조, 저압 모래 주조 및 소실 폼과 같은 주조 공정 지속적인 주조, 투자 주조, 모래 코어 제작, 원심 주조를 포함한 더 많은 공정 작업 공간이 현재 진행 중에 있습니다.

Simulation setup is simplified by only showing the components applicable for a given process.

Types of casting components available in a HPDC simulation. Mold pieces available in a high pressure die casting include cover and ejector dies, sliders, and shot sleeves.

Defect Prediction / 결함 예측

Identify Filling Defects using Particles  결함 예측 및 입자를 이용한 주입 결함 식별

파티클을 사용하는 FLOW-3D CAST v5를 통해 유입된 가스로 인한 충전 결함을 식별하는 것이 훨씬 쉬워 졌습니다. 결함을 식별하기가 훨씬 용이할 뿐만 아니라, 결함 예측에 따른 계산 비용도 크게 절감되었습니다.

붕괴된 가스 지역을 나타내는 보이드 입자가 도입되었습니다. 이전에 붕괴된 가스 영역은 너무 압축되어 수치 메쉬에서 해결할 수 없으면 시뮬레이션에서 사라졌습니다. 보이드 입자는 작은 기포처럼 작용하며 드래그와 압력을 통해 금속과 상호 작용합니다. 주변의 금속 압력에 따라 크기가 변하며, 주입이 끝난 후 최종 위치를 보면 공기 침투 및 산화물로 인한 잠재적인 결함이 있음을 알 수 있습니다.

Predict filling defects caused by entrapped gas using the Particle Model.

Metal/Wall Contact Time 금속/벽 접촉 시간

벽면 접촉 시간은 금형 표면에서 다른 부위보다 금속에 더 오래 노출된 부위를 식별하는 데 유용합니다. 금속 접촉 시간은 금속이 고체 구성 요소와 접촉한 시간을 나타냅니다. 예를 들어 모래 입자가 핵분해 부위의 역할을 하기 때문에 미세 먼지가 발생할 수 있습니다. 개별 솔리드 구성 요소와의 금속 접촉 시간 출력이 모든 구성 요소와의 접촉 시간을 포함하도록 확장되었습니다. 접촉 시간 계산은 출력 탭에서 벽 접촉 시간을 선택하여 활성화합니다.

Identify solidification defects with the new Thermal Modulus output.

Solidification Defect Identification 응고 결함 식별

일반적으로 라이저 크기 조정에 사용되는 열 모듈은 이제 응고 시뮬레이션에서 출력됩니다.

Risers will likely need to be placed on the circled regions.

Hot Spots  핫 스팟

또 다른 결과인 “핫 스팟”은 라이저를 찾고 크기를 조정하며, 응고 관련 결함의 가능성을 식별하는 데 유용합니다. 핫 스팟은 최종적으로 응고된 부위를 나타냅니다. 이것들은 입자들로 표현되고 뜨거운 점 크기에 의해 색깔이 변하기도 합니다. 라이저는 핫 스팟 크기가 가장 큰 곳에 배치해야 합니다.

Porosity Analysis Tool

FlowSight의 새로운 Porosity Analysis Tool은 실제적인 측면에서 porosity-related 결점을 식별합니다. 결점은 이제 순 볼륨, 최대 선형 범위, 모양 인자 및 total count로 식별됩니다.

New defect identification tools allow users to analyze porosity.

Arbitrary 2D Clips 임의 2D 클립

기능 지향적인 2D 클립은 결함을 찾기 위해 전면적으로 살펴 볼 때 유용합니다. 이전에는 클립에 표시된 금속 영역이 솔리드에 의해 점유된 셀로 확장되었습니다. 잡식의 FLOW-3D CAST v5에서 이 클립은 구성 요소를 숨기는 옵션을 선택해야만 열린 공간(예:주조 부품)의 금속을 보여 줄 수 있습니다.

Intensification Pressure 강화 압력

고압 주조 시뮬레이션에 지정된 강화 압력은 이제 매크로 및 마이크로 Porosity모델 모두에 결합되어 형성 사이의 보다 현실적인 관계를 형성합니다. 이러한 결함의 크기 및 플런저에 의해 가해지는 압력의 크기입니다.

Adjusting Shrinkage Porosity 수축 기공 조절

사용자가 금속의 특성을 수정할 필요 없이 수축 다공성의 양과 크기를 미세 조정할 수 있도록 수축 조정 계수가 추가되었습니다. 계수를 사용하면 응고 중에 체적 수축의 양을 전화로 설정하거나 줄일 수 있습니다.

Gas Pressure and Venting Efficiency  가스 압력 및 밴트 효율성 검토

사용자가 충전 결함을 식별하고 다이캐스트에서 밴트 시스템을 설계하는 데 도움을 주기 위해 마지막 국부적인 가스 압력 및 밴트 효율성 검토 결과가 주조 시뮬레이션 출력에 추가되었습니다. 가스 압력은 셀이 금속으로 채워지기 전에 셀의 마지막 보이드 압력을 기록하며, 밴트 효율은 환기구를 배치하는 것이 밴트 위치에서 공기를 배출하는 데 가장 효율적인 영역을 보여 줍니다.

Databases 데이터베이스

주조 공정에서 일반적으로 사용되는 정보의 데이터베이스는 설정 오류를 줄이고 시뮬레이션 workflow 를 개선합니다.

Configurable Simulation Monitor 구성 가능한 시뮬레이션 모니터

시뮬레이션을 실행할 때 발생하는 중요하지만 종종 힘든 작업은 시뮬레이션을 모니터링하는 것입니다. FLOW-3D CAST를 사용하면 다음과 같은 일반적인 시뮬레이션 목표를 모니터링할 수 있습니다.

  • 게이트 속도
    주형 내 고상 분율
    최저/최고 용탕 온도 및 금형 온도
    다양한 프로브 위치에서의 온도
    시뮬레이션 진단(예:시간 스텝, 안정성 한계)

Plotting Capabilities  Plotting기능

이제 시뮬레이션 관리자에는 더 많은 플롯 기능이 포함됩니다. 플롯은 사용자가 구성할 수 있으며 구성은 다른 시뮬레이션에서 사용하기 위해 데이터베이스에 저장됩니다. 사용자는 시뮬레이션 런타임 그래프와 history-data 에서 모니터링할 이력 데이터 변수를 지정할 수 있습니다. 다중 변수를 각 그래프에 입력합니다.

Conforming Meshes

임의 형상의 활성 계산 영역을 정의할 수 있도록 적합한 메쉬 기능이 확장되었습니다. 이는 메쉬 블록이 준수할 수 있는 열린 볼륨과 솔리드 볼륨을 모두 포함하여 계산 도메인의 영역을 정의하는 meshing구성 요소라고 하는 새로운 유형의 지오메트리 구성 요소를 사용합니다.
메쉬 블록은 냉각 채널이나 공동에 선택적으로 조합할 수 있어 사용자가 이러한 기하학적 객체에 대해 최적의 해상도를 선택할 수 있습니다. 이제 확인할 수 있는 메쉬가 FAVORize 탭에 표시될 수 있습니다.

Summary Views of Components/Cooling Channels

FLOW-3D CAST v5의 인터페이스는 주조 시뮬레이션에서 다양한 형상 구성 요소를 꽉 차게 보여줍니다. 2개의 새로운 형상 요약 뷰인 구성 요소 요약 뷰와 냉각 채널 요약 뷰는 기하학적 구성 요소 및 냉각 채널의 플라이 아웃을 제공하여 사용자가 신속하게 수행할 수 있도록 합니다. 중요 설정을 한 눈에 파악하고 필요한 경우 변경 할 수 있습니다.

Under the Hood

FLOW-3D CAST의 많은 강력한 구성 요소들은 Solver Engine이라고 부르는 것 들에서 중요합니다. 아래에서는 이면에서 무거운 작업을 수행하는 데 도움이 되는 몇가지 중요한 사항을 설명합니다.

Thermal Die Cycling (TDC) Model TDC(열 다이 사이클)모델

열 다이 사이클 시뮬레이션의 주입/응고 단계는 균일하지 않은 캐비티 온도를 사용하여 개선할 수 있습니다. 이제 캐비티에 있는 금속의 초기 온도는 재시작 중에 채우기 시뮬레이션을 통해 지정하거나 초기 유체 영역을 사용하는 사용자 정의 분포에서 지정할 수 있습니다. 이 기능은 옵션으로 사용할 수 있는 균일한 초기 금속 온도에 비해 다이 사이클링의 열해석의 정확성과 현실성을 높여줍니다.

Melt temperatures in the casting cavity read from a filling simulation are applied to ejector die during filling/solidification stage of thermal die cycling simulation.

Heat Transfer Coefficient Calculator for Spray Cooling 분사 냉각을 위한 열 전달 계수 계산기

스프레이 유체와 다이 표면 사이의 열 전달 계수(HTC)를 추정하는 것은 어려운 일입니다. 계산 또는 측정을 통해 값을 사용할 수 있는 경우 사용자는 이러한 값을 스프레이 거리 및 각도의 함수로 직접 지정할 수 있습니다. 새로운 기능을 통해 노즐의 스프레이 액의 유량을 기준으로 HTC를 동적으로 계산할 수 있습니다. 단일 조정 계수를 통해 스프레이 유출량을 기준으로 HTC를 미세 조정할 수 있습니다.

FLOW-3D의 활용 및 설계 적용 사례 (3)

주조, 기계 분야의 활용

주조 분야 사용자들에게 제공되는 FLOW-3D 제품은 주조해석에 전문화된 FLOW-3D Cast이다. 이는 범용인 FLOW-3D를 주조분야에만 국한시켜 이 분야의 사용자가 가장 쉽게 접근, 활용할 수 있도록 사용자 환경을 재구성하였고, 공정 설계자로부터 전문 해석자까지 제품을 사용하는데 어려움이 없도록 최대한 접근성을 높여 개발되었다. <그림 1>은 FLOW-3D Cast의 GUI와 그에 따른 절차 설명을 간단히 보여주고 있다. 

그림 1. FLOW-3D Cast의 GUI

FLOW-3D Cast는 대표적으로 고압 다이캐스팅, 저압 다이캐스팅, 경동주조, 중력주조, 중자성형 등 거의 주조 전분야에 대한 해석을 수행할 수 있으며, 주조 합금과 금형, 몰드 모두에 대해 유동 및 열응력 솔루션을 제공해 줄뿐만 아니라, 제품 생산 시 발생하는 불량 문제 등을 빠르게 파악하고 개선해 나갈 수 있는 방향을 제시해 줄 수 있다.
FLOW-3D Cast의 각 기능에는 앞서 말한 주조 과정에서 사용되는 공정을 모델링할 수 있도록 개발되었고, 정확한 유동과 응고 결과는 물론 제품의 표면산화물, 혼입된 공기, 매크로 및 마이크로 기공, 수축공과 같은 중요한 주조 결함을 포착할 수 있는 기능이 탑재되어 있다. 또 다른 독특한 모델링 기능으로는 로봇 스프레이 냉각을 적용할 수 있는 열 다이 사이클링 기능 및 샷 슬리브 흐름 프로필, 스퀴즈 핀 및 열응력을 모델링할 수 있는 기능도 탑재되어 있다.


그림 2. FLOW-3D Cast의 주조해석 종류

이번 호에서는 대표적인 실물 예제로 여러 주조 공법 중 고압 다이캐스팅, 중력주조의 실례를 들어 설명하고 제철 및 제강 공정에서 활용된 몇 가지 사례를 덧붙여 소개하고자 한다.

1. 고압 다이캐스팅 해석
FLOW-3D Cast가 수행할 수 있는 주조 분야 중 대표적인 주조 해석은 용탕의 충진 현상이 최대 관점인 고압 다이캐스팅 해석이다. 고압 다이캐스팅은 FLOW-3D Cast 내의 GMO(General Moving Object)라는 기능을 이용하여 플런저 운동에 의한 슬리브 내의 용탕(액체화된 용융된 금속)을 제품 캐비티 안에 고속으로 밀어 넣는 공정이다. FLOW-3D Cast는 용탕의 충진 과정뿐 아니라 온도, 압력, 속도 등 사용자가 원하는 결과들을 얻을 수 있으며, 또한 용탕의 충진 과정에서 불가피하게 나타날 수 있는 표면 산화물의 생성, 혼입된 공기로 인한 미세 기공의 생성, 응고 과정 중의 수축공 등 다양한  불량 원인을 찾아 준다.
해석 사례로서 센터 블록이라는 실제 제품에 대해서 고압 다이캐스팅 해석을 수행하여 충진 및 응고 해석을 수행하여 보았다. 이 제품은 각종 유압장치들이 연결되는 부품으로 기밀성이 필수적인 제품이다. 기존에는 사각형의 알루미늄 덩어리를 가공하여 제품을 생산하였으나, 생산성 면에서 매우 뛰어나고 가벼운 고압 다이캐스팅 공법을 적용하여 생산하고 있다.

그림 3. 센터 블록의 제품 형상

다운로드 : [ 3회_201803_analysis_flow3d ]

작성자 | 조애령_에스티아이C&D 솔루션 사업부 차장
이메일 | joal@stikorea.co.kr
홈페이지 | www.flow3d.co.kr

출처 : CAD&Graphics 2018년 03월호

컨설팅 절차

컨설팅 절차

  • 해석 컨설팅을 저희에게 의뢰하시면, 상세한 상담 후 견적을 작성하여 보내 드립니다. 상담은 전화, 이메일, 방문 등의 방법으로 진행됩니다.
  • 계약이 체결된 후 수치해석을 위한 자료 및 데이터를 받아, 협의된 안으로 수치해석을 수행합니다.
  • 컨설팅 진행 과정 중에 수시로 해석 결과 및 진행 상황에 대해 연락 드리며, 변경, 수정 사항을 협의하여 반영할 수 있습니다.
  • 수치해석이 완료되면 최종 보고서를 작성하여 제출하며, 필요시 방문하여 결과를 상세히 설명 드립니다.
  • 수치해석 기술 전수가 포함된 계약일 경우, 최종 보고서 제출 이후에 기술 전수 교육을 진행합니다.
  • 모든 기술 자료는 대외비로 취급되며, 철저하게 보안을 유지해드립니다.

컨설팅 분야

수자원 분야

  • 댐체, 수문, 제반 구조물 안정성 검토
  • 댐, 여수로 유동 해석
  • 여수로 수위별 방류량 해석
  • 여수로 월류 및 수위 검토 해석
  • 발전소 취수로 유동 해석
  • 배수터널 방류향 해석
  • 취수탑 유입 유량 해석
  • 교각주위 세굴 해석
  • 수문 수차 유량 해석
  • 저수지 수위별 유동해석
  • 배수암거 부정류 해석
  • 저수지 연결 터널 유동 해석
  • 교각 유동 작용 힘 검토
  • 도수터널 통수 능력 해석
  • 부유사 확산 검토
  • 냉각수 취수로 유량 해석
  • 수문 유동 양상 분석
  • 배수터널 방류량 해석
  • 월류 수위별 유량 유속 해석

수처리 분야

  • 정수지 유동해석
  • 분배수로 유량분배 해석
  • 침전지 유동 및 유속 분포 해석
  • 반응조 농도 및 반응시간 해석
  • 응집지 유동해석
  • 하수처리시설 슬러지 농도 해석
  • DAF 응집제 농도 해석
  • 수조 최적 교반 해석
  • 여과지 유동해석
  • 혼화지 유동해석
  • 호기조 담체 거동해석
  • 수처리 구조물 유동 양상 분석
  • 하수처리시설 유동해석
  • 분말활성탄 접촉조 해석
  • PSBR 반응조 해석
  • 지하수 ICE RING 형성 해석
  • 절리면 모세관 열유동 해석
  • DAF 실증시설 부상조 해석
  • 착수정 유량 분배 해석

우주 항공분야

  • 발사체 탱크 슬로싱 댐핑 평가 해석
  • 항공기 비행 및 급유 시 연료 탱크 내부 유동 해석
  • 항공기 날개 연료 탱크 내부 유동 해석
  • 항공기 연료 탱크 내부 유동 해석
  • 추진체 관리 장치 내부 유동 해석
  • 엔진 및 터빈 노즐 내부 유동 및 캐비테이션 해석

자동차 분야

FLOW-3D POST Gears
  • 자동차 연료 탱크에 연료 주입 시 탱크 내부 유동 해석
  • 피스톤 쿨링젯 시스템 해석
  • 전착 도장 해석
  • 자동차 연료 주입구의 주입 유량별 유동 특성 분석
  • 기어 펌프의 로터 회전에 따른 오일 유동 양상 분석
  • 엔진 실린더 내 피스톤 운동과 배기가스 유동 패턴 해석
  • 베어링 내 윤활을 위한 오일의 유동 양상 해석

해양분야

  • 해양 컨테이너 연료 탱크 슬로싱 해석
  • 방파제 구조물 주변 유동 해석
  • 선박 운항에 따른 항주파 및 유동 특성 분석
  • 사석 방파제 등 구조물 주변 유동 해석
  • 진동수주형 파력 발전 구조물 최적화 모델 해석
  • 선박 및 부유체 계류 시 계류 안정성 및 계류력 해석
  • 발전소 부근 해역 온배수 영향 예측
  • 지진 해일에 의한 영향 해석

주조 분야

  • 고압다이캐스팅  충진 거동 및 응고 해석
  • 저압주조 충진 거동 및 응고 해석
  • 경동주조 충진 거동 및 응고 해석
  • 중력주조 충진 거동 및 응고 해석
  • 원심주조 충진 거동 및 응고 해석
  • 금형온도 분포 해석
  • 제품 및 금형 열응력, 변형 해석
  • 주조 공법 별 온도 분포, 산화물 분포 및 결함 분석
  • 금형 및 몰드 냉각방안 최적화 검토

Micro/Bio/Nano Fluidics 분야

  • Slit 및 Slot 코팅 해석
  • Roll 코팅 해석
  • Gravure / Gravure-offset 프린팅 해석
  • Curtain 코팅 해석
  • Multi-layer Slide 코팅 해석
  • 전기 삼투를 이용한 마이크로 펌프 전위 및 유동해석
  • 마이크로 채널 액적 생성 연속성 및 혼합 해석
  • 잉크젯 헤드 조건에 따른 잉크 분사 성능 해석
  • 열모데관 유동해석과 모세관 충진 해석
  • 유전 영동 현상을 이용한 액적 융합 해석

레이저 용접 분야

  • 이종재 레이저 용접 해석
  • 용접속도와 경사도에 따른 키홀 내부의 기공 거동 해석
  • 이종재의 레이저 용접 시 wobbling 해석
  • 레이저 용접 Melt Pool 거동 해석
  • 레이저 파워, 속도에 따른 balling 결함 영향 해석

HVAC System Designs

HVAC(난방, 냉방 및 환기)시스템 엔지니어가 고려해야 하는 최적 설계 배치에 대한 검토를 수행

발전소의 경우 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있어서 여러가지 시설물의 상황을 고려할 수 있음

건물 내 공기를 올바르게 분배하고 적절한 쾌적한 온도를 확보하기 위해 건물 구조와 흡입그 크기 등의 검토 가능

수치해석 기술 컨설팅 안내

FLOW-3D Case Studies

수치해석 기술 컨설팅 안내

(주)에스티아이씨앤디에서는 고객이 수치해석을 직접 수행하고 싶지만 경험이 없거나, 시간이 없어서 용역을 통해 수치해석 결과를 얻고자 하는 경우 전문 엔지니어를 통해 CFD 컨설팅 서비스를 제공합니다. 귀하께서 당면하고 있는 연구프로젝트를 최소의 비용으로, 최적의 해결방안을 찾을 수 있도록 지원합니다.
상담에는 비용은 전혀 들지 않습니다.

CFD는 엔지니어가 공기, 물 또는 모든 유체와의 상호 작용을 이해할 수 있게 하는 매우 효과적인 기술로 대부분의 유동현상에 해답을 제시 할 수있는 막대한 잠재력을 가지고 있습니다.
다양한 유체 흐름 현상이나 온도 및 열전달 분석 등 필요한 시나리오에 대한 맞춤 솔루션을 제공합니다.

당사에는 20년 이상 수치해석 연구에 전념하고 있는 전문 연구인력과 다양한 기술적 경험과 전문 시뮬레이션 기술을 제공하는 숙련된 기술컨설팅팀이 준비되어 있습니다.
귀하의 프로젝트 성공 가능성을 기술시연을 통해 제공 할 수 있습니다.
프로그램 소개나 자문이 필요하신 분들은 언제든지 아래 연락처로 문의하시기 바랍니다.

  • 전화 :   02-2026-0455
  • Email : flow3d@stikorea.co.kr

컨설팅 형태

수치해석 의뢰

  • 고객이 당면한 문제를 분석 /검토/협의 후, 가장 적절한 수치해석 방법을 수립합니다.
  • 주로 상호 협의된 설계안 및 해석 조건에 대해 수치해석을 수행하여 결과를 도출 분석, 검토합니다.
  • 설계 변경 인자 및 해석 횟수는 고객과 협의하여 진행합니다. 수치해석 결과를 분석 검토하여 설계에 반영하기 위한 의견을 제시하여 드립니다.

해석 대행 의뢰

  • 고객사에 해석 프로세스가 정립되어 있는 경우에 대해, 계산 장비와 수치해석 인력을 이용하여 해석 대행 및 해석 결과물을 제출합니다.

컨설팅 절차

  • 해석 컨설팅을 저희에게 의뢰하시면, 상세한 상담 후 견적을 작성하여 보내 드립니다. 상담은 전화, 이메일, 방문 등의 방법으로 진행됩니다.
  • 계약이 체결된 후 수치해석을 위한 자료 및 데이터를 받아, 협의된 안으로 수치해석을 수행합니다.
  • 컨설팅 진행 과정 중에 수시로 해석 결과 및 진행 상황에 대해 연락 드리며, 변경, 수정 사항을 협의하여 반영할 수 있습니다.
  • 수치해석이 완료되면 최종 보고서를 작성하여 제출하며, 필요시 방문하여 결과를 상세히 설명 드립니다.
  • 수치해석 기술 전수가 포함된 계약일 경우, 최종 보고서 제출 이후에 기술 전수 교육을 진행합니다.
  • 모든 기술 자료는 대외비로 취급되며, 철저하게 보안을 유지해드립니다.

주요 컨설팅 의뢰 분야

수자원 분야

  • 댐체, 수문, 제반 구조물 안정성 검토
  • 댐, 여수로 유동 해석
  • 여수로 수위별 방류량 해석
  • 여수로 월류 및 수위 검토 해석
  • 발전소 취수로 유동 해석
  • 배수터널 방류향 해석
  • 취수탑 유입 유량 해석
  • 교각주위 세굴 해석
  • 수문 수차 유량 해석
  • 저수지 수위별 유동해석
  • 배수암거 부정류 해석
  • 저수지 연결 터널 유동 해석
  • 교각 유동 작용 힘 검토
  • 도수터널 통수 능력 해석
  • 부유사 확산 검토
  • 냉각수 취수로 유량 해석
  • 수문 유동 양상 분석
  • 배수터널 방류량 해석
  • 월류 수위별 유량 유속 해석

수처리 분야

Wastewater Treatment Plant
Wastewater Treatment Plant
  • 정수지 유동해석
  • 분배수로 유량분배 해석
  • 침전지 유동 및 유속 분포 해석
  • 반응조 농도 및 반응시간 해석
  • 응집지 유동해석
  • 하수처리시설 슬러지 농도 해석
  • DAF 응집제 농도 해석
  • 수조 최적 교반 해석
  • 여과지 유동해석
  • 혼화지 유동해석
  • 호기조 담체 거동해석
  • 수처리 구조물 유동 양상 분석
  • 하수처리시설 유동해석
  • 분말활성탄 접촉조 해석
  • PSBR 반응조 해석
  • 지하수 ICE RING 형성 해석
  • 절리면 모세관 열유동 해석
  • DAF 실증시설 부상조 해석
  • 착수정 유량 분배 해석

우주 항공분야

  • 발사체 탱크 슬로싱 댐핑 평가 해석
  • 항공기 비행 및 급유 시 연료 탱크 내부 유동 해석
  • 항공기 날개 연료 탱크 내부 유동 해석
  • 항공기 연료 탱크 내부 유동 해석
  • 추진체 관리 장치 내부 유동 해석
  • 엔진 및 터빈 노즐 내부 유동 및 캐비테이션 해석

자동차 분야

FLOW-3D POST Gears
  • 자동차 연료 탱크에 연료 주입 시 탱크 내부 유동 해석
  • 피스톤 쿨링젯 시스템 해석
  • 전착 도장 해석
  • 자동차 연료 주입구의 주입 유량별 유동 특성 분석
  • 기어 펌프의 로터 회전에 따른 오일 유동 양상 분석
  • 엔진 실린더 내 피스톤 운동과 배기가스 유동 패턴 해석
  • 베어링 내 윤활을 위한 오일의 유동 양상 해석

해양분야

  • 해양 컨테이너 연료 탱크 슬로싱 해석
  • 방파제 구조물 주변 유동 해석
  • 선박 운항에 따른 항주파 및 유동 특성 분석
  • 사석 방파제 등 구조물 주변 유동 해석
  • 진동수주형 파력 발전 구조물 최적화 모델 해석
  • 선박 및 부유체 계류 시 계류 안정성 및 계류력 해석
  • 발전소 부근 해역 온배수 영향 예측
  • 지진 해일에 의한 영향 해석

주조 해석 분야

  • 고압다이캐스팅  충진 거동 및 응고 해석
  • 저압주조 충진 거동 및 응고 해석
  • 경동주조 충진 거동 및 응고 해석
  • 중력주조 충진 거동 및 응고 해석
  • 원심주조 충진 거동 및 응고 해석
  • 금형온도 분포 해석
  • 제품 및 금형 열응력, 변형 해석
  • 주조 공법 별 온도 분포, 산화물 분포 및 결함 분석
  • 금형 및 몰드 냉각방안 최적화 검토

Micro/Bio/Nano Fluidics 분야

  • Slit 및 Slot 코팅 해석
  • Roll 코팅 해석
  • Gravure / Gravure-offset 프린팅 해석
  • Curtain 코팅 해석
  • Multi-layer Slide 코팅 해석
  • 전기 삼투를 이용한 마이크로 펌프 전위 및 유동해석
  • 마이크로 채널 액적 생성 연속성 및 혼합 해석
  • 잉크젯 헤드 조건에 따른 잉크 분사 성능 해석
  • 열모데관 유동해석과 모세관 충진 해석
  • 유전 영동 현상을 이용한 액적 융합 해석

레이저 용접 분야

  • 이종재 레이저 용접 해석
  • 용접속도와 경사도에 따른 키홀 내부의 기공 거동 해석
  • 이종재의 레이저 용접 시 wobbling 해석
  • 레이저 용접 Melt Pool 거동 해석
  • 레이저 파워, 속도에 따른 balling 결함 영향 해석

공기/열 흐름 분야 (HVAC System Designs)

HVAC(난방, 냉방 및 환기)시스템 엔지니어가 고려해야 하는 최적 설계 배치에 대한 검토를 수행

발전소의 경우 대형(길이 90m, 너비 33m, 높이 26m)건물로 변압기, 전력선, 조명 등 열 발생 장비를 갖추고 있어서 여러가지 시설물의 상황을 고려할 수 있음

건물 내 공기를 올바르게 분배하고 적절한 쾌적한 온도를 확보하기 위해 건물 구조와 흡입그 크기 등의 검토 가능

[FLOW-3D 물리모델] Mass Sources / 질량소스

Mass Sources / 질량소스

질량소스는 형상요소와 연관되어 있다. 요소가 질량소스로 정의될 때 유체는 사용자가 지정한 체적이나 질량 유량으로 오픈된 표면(다른요소 또는 계산영역의 경계에 의해 막혀있지 않은 표면)을 통해 계산영역으로 들어온다. 음의 유량을 갖는 질량소스는 유체를 계산영역에서 제거하며 싱크(이 이후로 소스는 단지 양의 유량을 갖는 질량소스를 뜻한다)라고 불린다. 정지 및 이동요소 모두 질량 또는 체적유량소스로 정의될 수 있다. 이 모델에서는 각기 질량 또는 체적 유량, 유체형태(유체 1, 2 또는 이들의 혼합물), 유체밀도 그리고 온도 같은 고유한 물성 그룹으로 특화되는 다수의 소스 및 싱크를 사용할 수 있다.

정리하면

  • 질량/체적 유량은 시간에 따라 변할 수 있다. 결과적으로 모사(simulate)동안에 소스는 싱크로 변할 수 있고 반대도 마찬가지이다.
  • 두 유체문제에서 하나의 유체는 소스/싱크에서 추가/제거될 수 있다. 추가로 두 유체 혼합물은 싱크에서 제거될 수 있다.
  • 1-유체문제에서 유체가아닌 공간이 소스/싱크에서 추가/제거되면 추가되거나 제거된 공간체적은 소스/싱크에 인접한 공간에서의 상응하는 압력변화로 변환될 수 있다.
  • 유체1 과 2(또는 공간)이 싱크에서 제거될 때 제거된 각 유체의 양은 자동적으로 싱크에 인접한 인근 체적율에 비례하여 결정된다. 예를들면, 인근 체적율이1이면 체적으로 유체1의 10% 와 유체2의90%가 싱크에서 제거된다. 인근 체적율이 1.0이면 단지 유체1만이 제거된다. 유체분율은 시간에 따라 변하므로 각 유체의 제거율 또한 시간에 따라 변할 것이다.
  • 열전달을 갖는 모사(simulate)에서 싱크에서의 온도는 자동적으로 싱크에 인접한 셀 내의 평균온도로 계산되므로 사용자가 지정할 필요가 없다.

밑의 예제는 다른 모사(simulate)의 경우에 대한 질량 소스/싱크 모델의 사용을 기술한다.

경우1, 일정한 밀도를가지며 자유표면 이있으나 열전달이 없는 1-유체유동,

  • 소스는 유체(액체)또는기공(가스)를 방출할 수 있지만 둘 다 동시에 방출할 수 는 없다. 유체1이 방출되면 소스 유체밀도는 유체1의 밀도가되며 사용자가 지정할 수 없다. 기공이 방출되고 질량 유량이 정의되면 소스/싱크에서의 기공에 대한 가스밀도가 지정되어야 한다. 기공이 방출되고 체적유량이 정의되면 소스에서의 기공의 가스밀도는 필요하지 않다.
  • 싱크는 유체1(액체)기공 또는 이들의 혼합물을 제거할 수 있다. 질량 유량이 정의되고 기공 또는 유체1과 기공의 혼합물이 제거되면 이때 싱크에서 기공을 위한 기체 밀도는 정의되어야 한다. 모든 다른 경우에 싱크에서의 기공의 기체밀도는 필요하지 않다.
  • 기공이 소스에서 방출되거나 기공 또는 이와 유체1의 혼합물이 싱크에서 제거되면 기포 모델이 Physics Bubbles and phase change 에서 활성화되어야 한다.

경우2, 변동밀도(밀도전달방정식이 해석된다)와 자유표면이 있으나 열전달이 없는 1-유체유동,

  • 소스는 유체(액체) 또는기공(가스)를 방출할 수 있지만 둘 다 동시에 방출할 수는 없다. 유체1이 방출되면 소스 유체밀도가 정의되어야 한다. 기공이 방출되고 질량 유량이 정의되면 소스에서의 기공에 대한 가스밀도가 지정되어야 한다. 기공이 방출되고 체적유량이 정의되면 소스에서의 기공의 가스밀도는 필요하지 않다.
  • 싱크는 유체1(액체)기공 또는 이들의 혼합물을 제거할 수 있다. 질량 유량이 정의되고 기공 또는 유체1과 기공의 혼합물이 제거되면 이때 싱크에서 기공을 위한 기체 밀도가 정의되어야 한다. 모든 다른 경우에 싱크에서의 기공의 기체밀도는 필요하지 않다.
  • 기공이 소스에서 방출되거나 기공 또는 이와 유체1의 혼합물이 싱크에서 제거되면 기포 모델이 Physics Bubbles and phase change 에서 활성화되어야 한다.

경우3, 일정 또는 변동 밀도(온도의 함수), 자유표면 그리고 열전달이 있는 1-유체유동,

  • 소스는 유체(액체) 또는 기공(가스)를 방출할 수 있지만 둘 다 동시에 방출할 수는 없다. 유체1이 방출되면 소스 유체밀도는 상수(유체밀도와 같은)이거나 온도에 의존하기 때문에 사용자가 정의할 수 없다. 기공이 방출되고 질량 유량이 정의되면 소스에서의 기공에 대한 가스밀도가 지정되어야 한다.
  • 싱크는 유체1(액체)기공 또는 이 둘의 혼합물을 제거할 수 있다. 질량 유량이 정의되고 기공이 제거되면 이때 싱크에서 기공을 위한 기체 밀도가 정의되어야 한다. 모든 다른 경우에 싱크에서의 기공의 기체 밀도는 필요하지 않다.
  • 기공이 소스에서 방출되거나 기공 또는 이와 유체1의 혼합물이 싱크에서 제거되면 기포 모델이 Physics Bubbles and phase change 에서 활성화되어야 한다.
  • 유체의 온도는 소스에서 정의되어야 하나 싱크에서는 필요하지 않다.

경우4, 일정한 밀도를 가지나  자유표면과 열전달이 없는 1-유체유동,

  • 소스는 유체 #1만 방출할 수 있다. 소스유체밀도는 디폴트로 유체 #1의 밀도이며 사용자가 변경할 수 없다.
  • 싱크는 지 유체#1 만 제거할 수 있다. 싱크에서의 밀도는 유체#1의 밀도이며 사용자가 정의할 수 없다.

경우5, 일정한밀도와 열전달이 있으나 자유표면이 없는 1-유체유동,

  • 소스는 유체#1만 방출할 수 있다. 소스 유체 밀도는 디폴트로 유체#1의 밀도이며 사용자가 변경할 수 없다.
  • 싱크는 단지 유체#1 만 제거할 수 있다. 싱크에서의 유체 밀도는 유체#1의 밀도이며 사용자가 정의할 수 없다.
  • 온도는 소스에서 정의되어야 하나 싱크에서는 필요하지 않다.

경우6, 변동밀도(밀도전달방정식이 해석된다)를가지나, 자유표면 과 열전달이 없는 1-유체유동

  • 소스는 유체#1만 방출할 수 있다. 소스 유체 밀도는 사용자가 정의해야 한다.
  • 소스는 유체#1만 방출할 수 있다. 싱크에서의 유체 밀도는 디폴트로 그 지역의 값을 가지며 사용자가 정의할 수 없다.

경우7, 변동밀도 (온도의 함수)와 열전달이있으나 자유표면이 없는 1-유체유동,

  • 소스는 유체#1만 방출할 수 있다. 소스 유체 밀도는 온도에 의존하므로 정의될 수 없다.
  • 싱크는 단지 유체#1 만 제거할 수 있다. 싱크에서의 유체 밀도는 지역의 값을 가지므로 사용자가 정의할 수 없다.
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

경우8, 열전달이 없고 현저한 경계면을 갖는2 -압축성유체

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 소스에서의 유체밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다.

경우9, 열전달과 현저한 경계면을 갖는2-압축성유체

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 소스에서의 유체밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 사용자가 정의할 수 없다
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

경우10, 열전달과 현저한 경계면이 없는 2-압축성유체

  • 소스는 유체#1, 유체#2 또는 이의 혼합물을 방출할 수 있다. 소스에서의 유체 밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다.

경우11, 열전달은 있으나 현저한 경계면이 없는 2-압축성유체

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 소스에서의 유체밀도는 소스 유체의 값으로 정해지고 사용자가 정의할 수 없다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다.
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

경우12, 현저한 경계면을 갖는 두 유체이며 유체#2 는 압축성

  • 소스는 유체#1 이나 유체#2를 방출할 수 있으나 둘 다는 못한다. 유체#1이 방출되면 소스 유체밀도는 유체#1의 값이 되며 사용자가 변경할 수 없다. 유체#2가 방출되면 소스 유체밀도는 정의되어야 한다.
  • 싱크는 유체#1, 유체#2 또는 이의 혼합물을 제거할 수 있다. 싱크에서의 유체 밀도는 지역에서의 값을 가지므로 사용자가 정의할 수 없다
  • 온도는 소스에서 정의되어야 하며 싱크에서는 정의될 수 없다.

Activate Mass Source / 질량소스 활성화

질량소스모델은 Activate fluid source model. 을 체크함으로써 in Model Setup Physics Fluid sources 에서 활성화된다.

질량소스/싱크를 정의하기 위해 Meshing & Geometry Geometry Component (원하는 요소). 로간다. Component properties 창에서 Mass Source Properties 로 간다. Mass Source 체크상자를 체크한다. 질량소스 정의를 위한 변수들은 아래 그림에서 보여지는 것 같이 펄쳐질 수 있다.

Define Source Properties / 소스물성정의

사용자는 문제 정의에 따라 소스에서 유체 유형(유체 1,2 또는 이의 혼합물), 압력유형 밀도 및 온도, 그리고 싱크에서 유체유형과 밀도를 지정할 수 있다.

압력유형은 Stagnation pressure Static pressure 를 포함하고 단지소스에만 적용된다(즉 질량유량이 양의 수 일 경우에). 정체 압력소스(디폴트)일 경우, 유체는 0의 속도로 들어온다고 가정된다. 결과적으로 압력은 소스로부터 유체를 밀어내기 위해 소스에서 증가되어야 한다. 이러한 소스는 로켓 끝이나 수축하는 풍선에서 나오는 유체 모델을 목적으로 한다.

정압소스에서 유체속도는 질량유량과 소스의 표면적으로부터 계산된다. 이 경우 소스에서 유체를 밀어내기 위한 추가압력이 필요 없다. 이런 소스 예제는 긴 직선의 파이프로부터 나오는 유체의 경우이다.

일반적으로 질량소스의 두 유형의 차이는 결합운동을 하는 GMO 요소와 관련된 소스에서만 중요한데 이는 소스에서 유체압력, 즉 움직이는 물체에 작용하는 수압에 영향을 미치기 때문이다.

Define Flow Rate / 질량유동정의

유량 밑에 펼쳐지는 상자에서 소스/싱크를 위해 Mass flow rate Volume flow rate 를 정의하기 위해 선택할 수 있다. 두 유량은 모두 소스 요소의 전체유량 또는 단위면적당 유량으로 선택할 수 있다.

전체 유량은 소스 요소의 개표면상에 균일하게 분포될 수 있다. 단위 면적당 유량이 사용되면 전체유량은 단위 면적당 지정된 유량에 소스요소의 개방된 표면 면적을 곱한 양이다. 개방된 표면 면적이 시간에 따라 변하면 전체 유량도 변한다. 예를 들면 이동체의 개방된 표면 면적은 격자 크기와 분포에 달려있고 각 시간마다 새롭게 되므로 시간에 따라 변하며 전체 유량 역시 시간에 따라 변하게 된다.

전체 유량이 이동체에서 지정되면 개방된 표면을 통한 유속은 정의된 전체 질량 유량을 유지하기 위해 매시간 단계에 조절된다.

유량이 일정하면 그 때는 단순히 그 값을 Total flow rate 또는 Per unit area flow rate 밑에 상응하는 편집상자에 넣는다. 그렇지 않으면 데이터 표를 불러오기 위해 Tabular 를 클릭하고 일련의 시간대 유량의 데이터를 입력한다. 유량은 소스에서는 양이고 싱크에서는 음이며 시간에 따라 변할 수 있다. 다른 방법으로는 사용자가 Import Values 버튼을 사용하여 기존의 데이터 파일을 읽어 들임으로써 유량 대 시간을 정의할 수 있다. 파일은 두열의 데이터를 갖는데 좌에서 우로 각기 시간과 유량을 나타낸다. 파일은 csv 확장자를 필요로 한다. FLOW-3D 데이터에서의 다른 시간변동 입력과 같이 데이터는 시간 점들 사이에서는 구간별 선형형태를 이용하여 보간 된다.

유량은 능동모사(simulate) 조절을 이용해 모사(simulate) 동안에 변경될 수 있다, 또 더 상세한 내용은 Active Simulation Control 를 참조하라.

Define Scalars at Source / 소스에서의 스칼라정의

스칼라는 우선 Physics 탭 밑 Scalars 에서 활성화되어야 한다. 질량소스에서 유체에 있는 스칼라 량은 소스에서의 스칼라농도로 정의될 수 있는데 이는 계산영역 내로 들어오는 유체체적당 스칼라질량이다. 영역내로 들어오는 한 스칼라의 질량유량은 지정된 스칼라농도에 소스에서의 소스유체 체적유량을 곱한 값이다. Mass Source Properties Source Scalars User defined scalar 에서 스칼라 농도를 넣는다.

주철 / Cast Iron

 Carbide (red) and graphite (blue) rich areas in a solidified gray iron casting.

Cast iron model

FLOW-3D‘의 주철 모델은 hypo 및 hyper-eutectic 철-탄소-실리콘 합금의 응고를 설명합니다. FLOW-3D‘는 융해하는 혼합반응(eutectic reaction) 동안 흑연, 오스테나이트 (또는 감마 – 철) 및 탄화물 상(유동) 형성을 예측합니다. 냉각 및 고형화 동안의 용적 변화는 수축 및 다공성 형성 모델과 결합됩니다. 주철 모델은 실제 철 동결 경로와 냉각 취약성 기준을 사용하여 현장의 탄화 수소 형성을 제어합니다.

주조 공장 엔지니어의 주요 관심사 중 하나는 응고 중에 형성될 수 있는 과도한 수축 다공성입니다. 주철의 체적 변화는 대부분 액체 합금을 주입 온도에서 고체로 냉각할 때, 그리고 더욱 중요하게는 감마선, 흑연 및 탄화물 형태로 응고할 때 발생합니다. 라이저(or risering)를 배치하면 수축을 유도할 수 있는 추가 금속이 제공됩니다. 최소 비용으로 우수한 품질의 주물을 달성하기 위해서는 최적의 하역이 중요합니다. 또한 금속의 적절한 합금과 냉각을 통해 수축의 양을 제어할 수 있습니다. FLOW-3D의 주철 모델은 이러한 모든 요소를 고려하여 용융, 응고 동안 기공 형성 및 위상 개발을 예측합니다.

주철 모델 개요 / Overview of the Cast Iron Model

주철은 탄소와 실리콘이 합금 된 용융 철입니다. 탄소는 전형적으로 2.5 wt % 내지 4.5 wt % 범위로 존재하고 실리콘은 1 wt % 내지 3 wt % 범위로 존재합니다. 흑연을 안정화하고 “냉각”경향 (즉, 탄소 철의 형성)을 줄이기 위해 실리콘이 첨가됩니다. 다른 원소 및 화합물은 미량으로 존재하며 일반적으로 흑연 모양 (예 : 연성 철의 마그네슘)을 제어하거나, 추가 탈산제 (예 : 인)로 작용하거나, 흑연의 주입제 (예 : 페로 실리콘) 역할을합니다.

FLOW-3D  의 주철 모델은 주입 온도에서 응고까지 발생하는 부피 변화를 설명합니다. 액체 상태에서 냉각 중 수축; 사전 용융 감마 철 형성 동안 추가 수축; 용융 반응 동안 후속 수축 또는 팽창; 그리고 용융 반응의 끝에서 고형 선으로의 2 차 수축. 주철은 일반적으로 탄화물의 형성에 영향을 미칠 수있는 비철 상을 포함하기 때문에, 응고된 금속의 밀도에 대한 이러한상의 영향에 대해 휴리스틱 허용치 (냉각 민감성 매개 변수의 형태)가 만들어집니다.

주철 응고 모델의 잠열 방출은 초기 용융물에서 탄소와 실리콘의 농도를 사용하여 Fe-C 위상 다이어그램 [1] 에서 결정된 온도 함수 (소위 동결 경로)로 계산됩니다 . 이 모델은 유동 유무에 관계없이 일반 응고 모델과 함께 사용할 수 있습니다. 그러나 다른 단계의 형성과 관련된 체적 변화는 흐름을 포함하지 않는 단순화된 수축 모델에만 결합됩니다.

철 확장 중 금형 벽 이동의 효과는 현재 모델에 포함되지 않습니다. 금형에서 사용 가능한 공간으로 수용 할 수없는 순 체적 확장은 무시됩니다.

융해 영역에서는 융해 경계의 속도를 사용하여 국부적인 냉각 경향을 계산하고, 따라서 국부적인 탄화물의 양을 계산하므로 금형 벽 근처의 냉각 영역을 모델링 할 수 있습니다. 고체 유전체 변환 중에는 더 이상의 공기상 변화를 추적하려는 시도가 없습니다. 즉, 최종 물질 미세 구조가 예측되지 않습니다.

hyper-eutectic cast irons의 경우, 회색 및 연성 주철과 같이 초기 경화전 공정 단계에서 흑연만 형성되는 것으로 가정합니다. 즉, 이 모델은 주로 탄화물이 형성되는 사전 융해 단계에서 hyper-eutectic white irons의 응고를 포함하지 않습니다.

Cast Iron Freezing Path

주철 동결 경로는 공융 합금의 경로입니다. 이는 액상 선 온도, 공융 온도, 공융 – 시작 및 공융 – 말단 고체 분율 및 고 상면 온도에 의해 특징 지어 질 수 있습니다. 모두지만, 마지막 두 양은 평형 3 원 Fe-C-Si 상 다이어그램 [1]에서 계산됩니다.
(The cast iron freezing path is that of a eutectic alloy. It can be characterized by the liquidus temperature, eutectic temperature, the eutectic-start and eutectic-end solid fractions and the solidus temperature. All, but the last two quantities are computed from the equilibrium ternary Fe-C-Si phase diagram [1].)

감마상의 탄소 용해도는 다음에 따라 중량 % 단위 Si 함량 에 따라 달라집니다 .

(1)     \displaystyle {{C}_{{\gamma ,mx}}}=2.07-0.098Si,

이는 Stefanescu [2]에 의해 보고된 용해도와 밀접한 관련이 있습니다. 합금의 액상 점 (섭씨 온도)은 hypo-eutectic liquidus plane :

(2)     \displaystyle {{T}_{i}}=1636-113\left( {C+0.25Si} \right)

또는 초정밀 액상 평면 [2] :

(3)     \displaystyle {{T}_{i}}=-505.8+389.1\left( {C+0.31Si} \right),

그리고 공융 혼합물 및 온도는 이들 평면의 교차점에 의해 주어집니다.

(4)     \displaystyle {{C}_{e}}=4.26-0.296Si,     \displaystyle {{T}_{e}}=1154.6+5.2Si

공융 반응의 시작은 레버 규칙에 의해 주어진 파생된 양입니다.

(5)     \displaystyle {{f}_{e}}=\frac{{c-{{c}_{\varepsilon }}}}{{{{c}_{{\gamma ,mx}}}-{{c}_{\varepsilon }}}}.

[3]의 측정은 이 근사가 많은 주철에 적합 함을 암시합니다.

흑연 공융 반응의 끝, 수수료 및 solidus Ts는 사용자 정의 수량으로 남습니다. 액체에서 인의 양의 분리를 고려하면 실제 고 상선 온도는 흑연 공융 온도보다 낮고 1100 ° C 정도로 낮습니다. 이 경우, 흑연 침전은 동결이 끝나기 전에 완료되고 동결되는 금속의 마지막 부분은 공융 밀도와 다른 밀도 ρei 에서 수행된다고 가정합니다.

흑연 공융 반응의 끝 f ee 및 고형 선 T s 는 사용자 정의 수량으로 남습니다. 액체에서 인의 양의 분리를 고려하면 실제 고 상선 온도는 흑연 공융 온도보다 낮으며 1100 ° C까지 낮습니다. 이 경우, 흑연 침전이 동결이 끝나기 전에 완료되고 동결 할 마지막 금속 부분 인 1- f ee 가 공융 밀도와 다른 밀도 ρ ei 에서 그렇게 한다고 가정합니다.
( The end of graphitic eutectic reaction, fee , and the solidus Ts, are left as user-defined quantities. If one considers positive segregation of phosphorous in the liquid, the actual solidus temperature is below the graphitic eutectic temperature, and is as low as 1100 °C. For this case, it is assumed that graphite precipitation is complete before the end of freezing, and that the last fraction of metal to freeze, 1-fee, does so at a density ρei different from the eutectic density. )

밀도 변화 / Density Changes

일반적으로 주철 주물의 과열은 크며 응고가 시작되기 전에 냉각 중 수축이 중요합니다. 액체 철 밀도의 온도 의존성은 선형 형태로 모델링됩니다 :

(6)     \displaystyle \rho \left( T \right)={{\rho }_{0}}\left[ {1-\alpha \left( {T-{{T}_{0}}} \right)} \right]

또는 테이블 형식으로 함수 ρ (T) 를 정의하여 .

일단 동결 범위에 들어가면 감마철은 고형분수에 도달할 때까지 형성됩니다. 이 단계의 농도 값인 ,ϒ은 7.2 g/cc입니다 [4,5,6]. 고형분수에 도달하면, 일반(흰색) 공극과 불규칙한 회색 공극이 경쟁적으로 성장하는 동안 공극 반응이 시작됩니다. 높은 동결률과 높은 황동-전방 속도에서 백색 황동은 부분적으로 황동 전방에 앞서 탄소 농도 구배가 더 낮기 때문에 안정적입니다. 낮은 Eutectic-front 속도에서는 회색 Eutectic이 안정적입니다.
( Once in the freezing range, gamma iron forms until fe solid fraction is reached. The density value of this phase, ρϒ, is a 7.2 g/cc [4,5,6]. Upon reaching fe solid fraction, the eutectic reaction begins during which a regular (white) eutectic and an irregular grey eutectic grow competitively. At high freezing rates and high eutectic-freezing-front speeds the white eutectic is stable in part due to shallower carbon concentration gradients ahead of the eutectic front. At lower eutectic-front speeds the grey eutectic is stable. )

냉기 형성을 설명하기 위해 간단한 접근 방식이 사용됩니다.  In a range of eutectic freezing front speeds,

(7)     \displaystyle {{\nu }_{e}}\in \left[ {\frac{{\nu -}}{{{{X}_{{eut}}}}},\frac{{\nu +}}{{{{X}_{{eut}}}}}} \right]

형성되는 냉기의 양은 주어진 탄소 구성에서 허용되는 최대치에서 0까지 다양합니다. 파라미터 ν-=30μ/ms, ν+=60μ/ms, Xeut은 사용자 정의 파라미터인 쿨링 취약성 기준이며, 값이 0.0 ~ 1.0 범위이고 기본값은 1입니다. 잘 절연된 철이나 특정 표면적이 높은 회색 광택제의 경우 Xeut는 0에 가깝고 추위는 형성되지 않습니다. 반면, 철이 절연되지 않은 경우 기본값인 1이 더 적합해야 합니다. Xeut의 실제 값은 예를 들어 ASTM 쿨웨지 테스트(그림 1)에서 실험적으로 결정해야 합니다.
( the amount of chill formed varies from zero to the maximum allowed for a given carbon composition. The parameters ν-=30 μ/ms, and ν+=60 μ/ms, and Xeut is the chilling susceptibility criterion, a user-defined parameter, with values in the range from 0.0 to 1.0 with the default of one. For well-inoculated iron, or for a grey eutectic with a high specific surface area, Xeut is close to zero, and no chill will form. On the other hand, if the iron is un-inoculated the default value of one should be more appropriate. The actual value of Xeut must be determined experimentally, for example, from an ASTM chill-wedge test (Fig 1.).)

Figure 1. Carbide (left) and graphite (right) content in a 3.4 wt% C, 1.7 wt% Si iron with Xeut=0.25 (top) and Xeut=0.40 (bottom)

주조물의 순 체적 변화는 응고 과정에서 형성되는 서로 다른 상의 양과 액체 수축의 결합 효과입니다. 그림 2는 3.4wt %의 탄소와 2.5wt %의 실리콘을 갖는 합금에 대한 3 가지 상이한 과열 온도에 대한 금속 부피의 변화를 보여줍니다. 더 큰 과열은 금속 체적의 순수한 감소로 이어. 그래파이트 형성으로 인해 응고 동안 나중에 팽창은 체적의 손실을 보상 할 수 없습니다.

Figure 2. Computed volume vs. time for three pouring temperatures for a 3.4 wt % C, 2.5 wt % Si cast iron. From top to bottom: 1250, 1400 and 1550°C pouring temperatures.

Summary

동결시 철의 밀도 변화를 추적하고 흑연, 오스테나이트 및 탄화물 상을 포함하는 미세 구조를 예측하기 위한 주철 모델을 기술하였습니다. 이 모델은 단순 응고 수축 및 미세 다공성 모델에 대한 옵션입니다. 고형물 (> 2 %)을 함유 한 철의 변성 열을 정의하기 위해 유동이 있건, 없건 응고 중에 사용할 수 있습니다. 수축 및 팽창 모두 흐름없이 모델에 포함됩니다. 팽창을 위한 공간이 없는 경우를 제외하고 팽창은 무시됩니다.

References

[1] G. Goodrich and John Svoboda, “Basic Concepts of Ferrous Metallurgy,” Cast Metals Institute, Inc., American Foundry Society, Inc., 1997.

[2] D. M. Stefanescu, S. Katz, “Thermodynamic Properties of Iron-Base Alloys,” ASM Handbook Volume 15, Casting (ASM International), 2008.

[3] K.G. Upadhya, D.M. Stefanescu, K. Lieu and D.P. Yeager, “Computer-Aided Cooling Curve Analysis: Principles and Applications in Metal Casting,” AFS Transactions, Vol. 97, 1989, 61-66.

[4] AFS, “Gating Calculations for Iron Castings,” spreadsheet, 2009.

[5] Von Alfred Holzmuller, VDG and Robert Wlodawer, VDG, “Zehn Jahre Speiser-Eingrs-Verfahren fur Guseisen,” Giesserei, 1963.

[6] G. Goodrich, “Introduction to Cast Irons,” ASM Handbook, Volume 15: Casting, 2008, pp 794-795.

[7] A. Starobin, M.C. Carter, “Modeling Volume Changes and High Temperature Microstructure in Cast Iron,” Flow Science Technical Note FSI-11-TN89, 2011.

Modeling shrinkage induced microporosity [마이크로 미세기공 발생 예측]

Overview
Cast metal parts are sometimes unusable because they have internal gas pockets, or bubbles, which develop when the metal shrinks during solidification. A general term describing such bubbles or voids is “porosity.” When these bubbles are relatively large and localized the porosity is called macro-porosity. Prediction of macro-porosity in the interior of cast parts is a capability of most software packages currently used for the modeling of metal casting processes.
Another type of porosity, characterized by a more uniform distribution of small bubbles with a total average volume fraction on the order of one percent, is referred to as micro-porosity. This type of porosity is also caused by metal shrinkage during solidification, but its character is different from macro-porosity because it develops at a later stage in the solidification process. This distinction in types of porosity is important because each type requires a different modeling approach.
In this note we propose a new model that has been implemented in FLOW-3D® for predicting the occurrence of micro-porosity. The model is simple, requires only basic material property data, and adds virtually no noticeable CPU time to a solidification simulation. Best of all, the model is complimentary to macro-porosity models and may be used in conjunction with either a complete hydrodynamic shrinkage simulation that includes fluid flow or with simpler heat-transfer and shrinkage simulation having no fluid flow.
The new model has been checked using three sets of experimental test data. A final test, involving only qualitative results for the influence of pressure on micro-porosity formation has also been conducted.

HPDC (High Pressure Die Casting, 고압다이캐스팅)

HPDC (High Pressure Die Casting, 고압다이캐스팅)

주조 기술 중 하나인 고압 다이 캐스팅 해석시 다른 많은 주조해석 소프트웨어에서 큰 문제들이 나타납니다. 충진되어야 할 부분은 대부분 매우 얇은 두께를 가지고 있어서 형상 구현에 필요한 격자의 수가 크게 증가되어야 합니다. 무엇보다도 금속은 높은 압력과 매우 빠른 속도로 금형안의 빈 공간에 충진됩니다. 금형 내부로 분사되고 비산하는 유동은 이 과정에서 혼입 된 공기로 인한 기포결함, 제품이 완전히 충진되기 전에 냉각이 시작하면서 발생하는 탕주름과 산화물 결함으로 이어질 수 있습니다.  FLOW-3D는 실질적인 금형 충진 해석의 정밀도를 향상시키기 위해 정확성이 고도로 향상된 TruVOF™ 추적기법과 복잡한 형상을 모델링하는FAVOR ™ 기법을 포함하고 있습니다. 또한 FLOW-3D는 혼입 된 공기, 열 응력, 미세 결함 영역을 검출하기 위한 다양한 모델을 가지고 있습니다.

Thermal Die Cycling (금형온도분포,  금형싸이클링)

Die cycling 해석은 다이캐스팅 금형이 수천 개의 제품 생산에 반복적으로 사용되기 때문에 고압 다이 캐스팅에 필수적인 공정입니다. 생산시 모든 주조품에 대해서 동일한 금형 온도를 유지하는 것은 매우 중요한데, 이는 금형온도에 따라 주조품의 결괌이 발생할 수 있기 때문입니다. FLOW-3D는 다이캐스팅 싸이클에서 발생하는  금형 가열(충진, 응고), 스프레이, 에어 블로우로부터 온도 분포를 해석하므로 사용자는 냉각 채널의 위치를 정확하고 효과적으로 예측할 수 있습니다.

Shot Sleeve Optimization (슬리브 유동 최적화)

고압다이캐스팅에서 슬리브는 금형 속에 용탕을 빠르게 밀어넣는 데 사용됩니다. 일반적으로 슬리브는 수평으로 위치되고, 용탕은 슬리브 상면의 주입구를 통해 부어집니다. 플런저는 금형 반대편에서 슬리브를 통해 금형 안쪽으로 용탕을 밀어 넣게 됩니다. 적절하게 설계된  플런저 이동조건은 슬리브 내부의 공기 혼입을 최소화하고 슬리브에서의 응고를 피하기 위해 가능한 한 빨리 금형에 용탕을 충진하게 설계되어야 합니다. 하지만,  피스톤이 너무 빨리 이동하는 경우, 슬리브 내에서 용탕의 겹침현상이 발생하여 주조품에 공기 갇힘 결함이 나타날 수 있습니다. FLOW-3D는 다이캐스팅 해석시 플런저 이동에 따른 슬리브 내부의 유동을 실제와 동일하게 반영하여 이와 같은 기포 결함을 최소화할 수 있습니다.

Filling Simulations (충진해석)

고압 다이 캐스팅을 해석할 때, 가장 어려운 과제는 고압 및 고속으로 금형에 충진되는 용탕의 유동을 정확하게 추적하는 것입니다. 많은 주조해석 소프트웨어에서 용탕의 분사와 비산을 정확하게 모사하지 못하는 것이 제품의 결함 예측에 가장 큰 장애물이됩니다. FLOW-3D의 TruVOF™ method는 설계 엔지니어들이 금형내부에서 최적의 유동 패턴을 유도하기 위해 게이트의 위치를 확인하고, 오버 플로우의 위치를 확인하는데 핵심적인 역할을 할 수 있습니다.

Modeling Solidification (응고모델링)


Courtesy of Littler Diecast Corporation

FLOW-3D는 엔지니어로 하여금 최종 제품의 품질에 영향을 미칠 수 있는 내부 기공(porosity)의 발생을 알수 있도록 합니다. FLOW-3D는 2원계합금(binary alloy)의 편석(segregation)을 해석할 수 있습니다. 해석에 의한 온도 이력은 냉금(chill)  또는 냉각라인(cooling line)이 추가되거나 수정 될 필요가 있는지, 초기 용탕 온도를 변경해야 하는지 등을 결정하는데 도움을 줍니다. FLOW-3D는 내부 미세수축공의 형성, 열응력 및 2원계합금의 편석을 예측할 수 있습니다.

HPDC Videos

수처리 분야

Municipal

FLOW-3D는아래 시설물과 같은 도시의 수처리 시설물 설계와 분석에 매우 활발하게 사용되고 있습니다:

  • Mixing, settling, and contact tanks
  • Control structures like weirs, gates, ramps, and orifices
  • Combined sewer (CSO) and stormwater sewer (SSO) overflow facilities
  • Pump and lift stations
  • Treatment plant headworks
  • Filtration systems and passive earth and stone filters
  • Baffle and wall placement
  • Hydraulic efficiency and short-circuiting

Vortex simulation municipal application with FLOW-3D

Vortex formation simulated with FLOW-3D

FLOW-3D는 자유표면, 가압(pressurized), 미임계(sub-critical)와 초임계(super-critical) 흐름조건 등을 전환하는 자유표면과 제한된 흐름패턴 모두와 균일한 모델 상태에 최적화되어 있습니다. 추가 물리 패키지를 포함하여 대부분의 복잡한 상황을 모델링 FLOW-3D에 포함되어 있습니다 :

  • Flow bulking due to air entrainment
  • Air bubble escape and air pocket pressurization
  • Drifting and settling particulate matter and the effect on the flow pattern of sediment accumulation
  • Chemical reactions
  • Moving gates and paddles
  • Fast-spinning bladed objects, pumps, and impellers
  • Dissolving and eroding solids
  • Granular flow (slurries)

적용사례

정수장 : DAF SYSTEMS

  • 용존공기부상법 (DAF Systems: Dissolved Air Floation )
    • 가압상태에서 과포화된 물을 감압시키면, 미세기포가 발생되어 상승하면서 수중의콜로이드물질과 충돌/부착되는 원리를 이용하여 수중의 부유물질을 제거하는 수처리 방법
  • Two Phase(Water+Air)/Drift Flux을 이용 기포에 의한 지내의 유동양상을 파악
  • 해석을 통한 기존 구조물의 문제점 파악하여 개선
  • 정수장_DAF_시스템

정수장 : 펌프장 해석

정수장_펌프장_모델해석결과

정수장_펌프장_모델

정수장 : 분말활성탄접촉조

  • v분말활성탄 접촉조 : 유입구의 구조, 수로의 장폭비, 도류벽구조에 의한 변화 -> 최적형상 도출
  • v해석을 통해 각종 Index(Morill Index, Modal Index 등) 분석

분말활성탄접촉초

정수장 : 응집제의 확산

  • G, 혼화지 구조에 따른 turn over time, 지내 속도 분포, 체류시간(t), 등 분석
  • 완속 혼화기, 급속혼화기에서 응집제의 혼화 및 분산 효과 파악

고속분사기_응집제확산

정수장 : 분배수로 유량분배

  • 분배수로의 기능 : 응집지 및 침전비 별로 균일하게 물을 분배함
  • 분배수로의 구조에 따른 응집지 유입수의 유량분배 해석
  • 구조별 유량분배 문제점 파악 및 개선방안 제시
  • 구조별 유량분배를 정량화하여 정수장 효율 향상에 기여함.

분배수로_유량분배

정수장 : 응집지 속도구배(du/dy) 검증

  • 응집기내부의 유동양상 및 속도구배(G)를 규명하여 최적의 운영조건 도출

응집지속도구배

정수장 : 여과지 역세척

  • Strainer를 통한 역세척수 유입 시 유동양상 해석 실시
  • 역세척 시 압력분포의 균일성, 사수부, 침전수의 월류여부 파악
  • 여과 및 역세척의 문제점 파악하여 효율향상 극대화

여과지_역세척

정수장 : 정수지 실험해석 비교

  • 정수지의 기능 : 염소를 균일하게 혼화
  • 정수지 유동양상 및 염소 농도, 체류시간 해석으로 CT 값 예측 및 문제점 개선
  • 실험과의 비교를 통하여 정확성 확보
  • 기존 정수지의 효율향상 및 최적 정수지 형태 제안
  • 정수지는 분말활성탄접촉조와 기능과 형상 유사

정수장_정수지해석

정수장 : 침전지대기온도, 일사량 등 외부조건 고려

  • 대기온도, 일사량 등 외부조건을 고려한 침전지 유동해석 실시
  • 침전지 내부의 밀도류 발생 원인 분석 및 Floc의 운동양상, 제거효율을 해석
  • 실험과의 비교를 통하여 정확성 확보

정수장_침전지_외부조건고려해석

정수장 : 취수탑 선택취수

  • v취수탑 : 상수도·관개·수력발전용 물을 저수지나 하천으로부터 끌어들이기 위한 구조물
  • v취수탑의 선택취수 문제 해석 사례
  • v취수탑 개도 조건에 따른 유출수온도, 조류 유입, 수심별 유입량 등을 예측

취수탑해석

 

하수처리장 : 침전지

  • 침전지 : 하수와 슬러지의 분리 및 배출 기능
    • 해석목적
    • 2차 침전지에서 유량 분배 문제점 파악
    • 2차 침전지에서 유입부 개선안 도출
    • 2차 침전지내의 슬러지 배출 개선안 도출

하수처리장_침전지_모델 하수처리장_침전지_모델_해석결과

 

하수처리장 : 침전지 유량분배 및 유속

  • 구조물의 형상, 유량에 따른 침전지 유동해석
  • 각 지별 유량 분배 균등 여부 파악
  • 슬러지의 재부상(scouring) 여부 예측 및 방지 방안 검토
  • 월류형식, 유입부의 위치 및 규격, 등 설계 요소를 조절하여 균등 분배 유도
    • 하수처리장_침전지_유량분배_해석결과

하수처리장 : 침전지 월류부 해석

  • 침전지 월류부 유동양상 파악
  • 침전지 형상, 월류부 형상에 따른 유속분포 비교
  • 사수부 파악 및 단락류 최소화를 위한 월류부 형상 결정
  • 슬러지의 월류부 개선을 통한 효율 향상

하수처리장_침전지_월류부해석

하수처리장 : 침전지 침전효율

  • 구조물의 형상별, 처리 유량별 침전효율, 사수부 평가
  • 균일한 유속분포에 의한 침전효율 향상
  • 침전지 형상, 유입부 위치, 등을 변경하여 효율 비교
  • 체류시간 검토를 통한 효율 비교
  • 슬러지 침전형태의 비교

하수처리장_침전지_침전효율

하수처리장 : 무산소조

  • 하수처리장 : 무산소조
  • 하수 및 반송슬러지의 혼합, 임펠러의 회전에 의한 혼합양상 해석 실시
  • 유입수 및 내부반송수의 유속분포, 혼합농도 평가
  • 단락류 발생정도 파악 및 완전교반 유도에 유리한 설계방안 검토
  • 내부반송량, 반송슬러지 유입관의 위치 개선으로 효율 향상

하수처리장_무산소조

하수처리장 : 담체의 부상

  • 설계 요소에 따른 담체의 분포 및 흐름 양상 예측
  • 해석 설계 요소 : 조의 형상, 펌프의 용량 및 위치, 내부 배플의 형상

하수처리장_담체의부상

하수처리장 : 호기조 (Aerator)

  • 호기조내 체류시간 분석
  • 기포의 분포, 조내 위치별 D.O 예측
  • 단락류 발생 정도 및 사수부 파악
  • 폭기량 및 폭기 방식에 따른 내부 유동양상을 통한 효율예측

하수처리장_호기조

하수처리장 : 호기조 (D.O 예측)

  • 용존산소량 (Dissolved Oxygen) : 물 속에 녹아 있는 산소량 è 수온이 높아지거나 오염되면 DO감소
  • 조내 산기관에 의해 오염수를 전체적으로 용존산소량 증가 목적 è 조내 사수부, 체류시간 분석
  • 산기관에 의한 공기 방울의 분포 및 D.O 분포를 수류의 흐름을 고려하여 예측
  • 호기조의 구조 및 산기관의 배치에 따른 효율 분석

하수처리장_호기조_용존산소량

하수처리장 : 막분리조

  • 막분리조내의 수류순환 유동해석 실시
  • Air 유입과 Membrane내의 수류순환 유동 검토
  • 사수부 최소화를 위한 구조 변경 (유입부 방식, 위치 및 산기관 위치, 등)
  • 처리 유량에 따른 내부 효율 변화 검토 – 운영조건 제시

하수처리장_막분리조

 

하수처리장 : SBR/PSBR 호기공정

  • 송풍기 작동시 원수와 슬러지의 혼합양상 분석
  • 수중포기기와 송풍기의 작동에 의해 조 내의 슬러지 혼합 활성화 여부 판단 : 수중포기기와 송풍기의 적절한 위치 및 회전수 조절에 의해 개선안 제시 가능

하수처리장_SBR_호기공정

하수처리장 : SBR/PSBR 배출공정

  • 조 내의 유출게이트 OPEN하여 조 내의 상등수 배출양상 분석
  • 바닥의 슬러지 유출없이 배출가능 여부 해석을 통하여 파악 슬러지가 배출되지 않도록 내의 형상 및 문제점 개서안 제시

하수처리장_SBR_배출공정