Casting simulation

주기적 토폴로지를 가진 셀룰러 알루미늄 제작을 위한 복제 주조 및 적층 제조: CFD 시뮬레이션을 통한 최적화

연구 목적

  • 본 연구는 적층 제조(AM) 및 정밀 주조(Investment Casting)를 활용하여 셀룰러 알루미늄을 제작하는 방법을 제시함.
  • FLOW-3D® CFD 시뮬레이션을 통해 금속 폼(metal foam)의 충진 과정 및 형성 메커니즘을 최적화함.
  • 주기적(open-cell) 구조를 가진 다공성 금속 제작의 적절한 공정 변수를 결정하여 품질을 개선하고자 함.
  • 본 연구에서 개발된 공정이 충격 방지 장치, 진동 감쇠 장치 및 열 전달 향상 장치 등의 다기능 구조물 제작에 적용 가능함을 검증함.

연구 방법

  1. 프리폼(preform) 설계 및 제작
    • ABS 및 왁스를 사용한 3D 프린팅을 활용하여 다공성 구조의 프리폼을 제작함.
    • 정밀 주조 기법을 사용하여 A356 알루미늄 합금으로 프리폼을 금속화(replication casting)하여 최종 구조를 제작함.
    • Rhino 및 FLOW-3D® 소프트웨어를 활용하여 설계 모델을 최적화함.
  2. FLOW-3D® CFD 시뮬레이션 수행
    • 용탕 충진(filling) 및 응고(solidification) 과정에서 온도 및 유동 패턴을 예측함.
    • 충진 과정에서 발생할 수 있는 기공 형성(porosity) 및 미세 구조 불균일성을 평가함.
    • 시뮬레이션 결과를 기반으로 주조 공정 변수(주조 온도, 주형 온도 등)를 조정하여 최적 조건을 도출함.
  3. 실험 검증 및 결과 분석
    • 충진 실험을 통해 시뮬레이션 결과와 실제 주조물의 품질을 비교 분석함.
    • 주조 후 X-ray 및 SEM(주사전자현미경) 분석을 통해 미세 구조 및 결함을 평가함.
    • 최적화된 조건에서 제작된 시편을 기계적 특성 시험(충격 흡수, 강도 평가 등)하여 구조적 성능을 검토함.

주요 결과

  1. 주조 충진 거동 및 품질 평가
    • FLOW-3D® 시뮬레이션 결과, 최적 충진 조건에서 금속 폼 구조의 85~100% 충진율을 확보함​.
    • 주조 온도와 주형 온도를 조정할 경우, 공기 갇힘(air entrapment) 및 기공 형성률이 감소함.
    • 온도 분포가 균일할수록 다공성 구조의 기계적 강도가 향상됨.
  2. 다공성 구조 특성 및 기계적 성능 평가
    • 주조된 알루미늄 폼의 미세 구조는 설계된 주기적 셀 구조와 일치함.
    • 720°C의 주조 온도와 500°C의 주형 온도에서 가장 높은 품질을 달성함​.
    • 충격 저항 및 기계적 강도가 높은 특성을 보여, 진동 감쇠 및 충격 방지 소재로 활용 가능함.
  3. 시뮬레이션 및 실험 결과 비교 검증
    • 실제 주조 결과와 CFD 시뮬레이션 예측 간 높은 상관관계 확인.
    • 다공성 구조 제작 시 균일한 충진 및 결함 최소화를 위한 시뮬레이션 기반 설계 최적화가 효과적임.
    • Rhino 및 FLOW-3D®를 결합한 설계-제조 프로세스가 고품질의 금속 폼 제작에 적합함.

결론

  • FLOW-3D® CFD 시뮬레이션을 활용하여 다공성 금속 폼 제작 공정을 최적화할 수 있음을 입증함.
  • 720°C 주조 온도와 500°C 주형 온도에서 가장 높은 품질을 확보할 수 있음.
  • 적층 제조와 정밀 주조를 결합한 공정이 다양한 산업 분야(충격 방지, 열 교환 등)에 활용 가능함을 확인함.
  • 향후 연구에서는 다양한 재료 및 주조 변수에 따른 기계적 성능 최적화를 추가적으로 검토할 필요가 있음.

Reference

  1. Ashby MF, Evans AG, Fleck NA, Gibson LJ, Hutchinson JW, Wadley HNG (2000) Making metal foams. Metal foams: a design guide. Butterworth-Heinemann, Woburn, pp 6–23
  2. Lázaro J, Solórzano E, Rodríguez-Pérez MA, Kennedy AR (2016) Efect of solidifcation rate on pore connectivity of aluminium foams and its consequences on mechanical properties. Mater Sci Eng A 672:236– 246. https://doi.org/10.1016/j.msea.2016.07.015
  3. Banhart J, Manufacture, (2001) Manufacture, characterisation and application of cellular metals and metal foams. Prog Mater Sci 46:559–632. https://doi.org/10.1016/S0079-6425(00)00002-5
  4. Fernández P, Cruz LJ, Coleto J (2008) Manufacturing processes of cellular metals. Part I: Liquid route processes. Rev Metal 44:540–555. https://doi.org/10.3989/revmetalm.0767
  5. Fernández P, Cruz LJ, Coleto J (2009) Procesos de fabricación de metales celulares. Parte II: Vía sólida, deposición de metales, otros procesos. Rev Metal 45:124–142. https://doi.org/10.3989/revmetalm.0806
  6. Mirzaei-Solhi A, Khalil-Allaf J, Yusef M, Yazdani M, Mohammadzadeh A (2018) Fabrication of aluminum foams by using CaCO3 foaming agent. Mater Res Express 5:096526. https://doi.org/10.1088/2053-1591/aad88a
  7. Cao D, Malakooti S, Kulkarni VN et al (2021) Nanoindentation measurement of core–skin interphase viscoelastic properties in a sandwich glass composite. Mech Time-Depend Mater 25:353–363. https://doi.org/10.1007/s11043-020-09448-y
  8. Cao D et al (2021) The effect of resin uptake on the flexural properties of compression molded sandwich composites. Wind Energy. 2022; 25:71–93. https://doi.org/10.1002/we.2661
  9. Wang X et al (2021) The interfacial shear strength of carbon nanotube sheet modified carbon fiber composites. In: Silberstein M, Amirkhizi A (eds) Challenges in mechanics of time dependent materials, Volume 2. Conference Proceedings of theSociety for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-59542-5_4
  10. García-Moreno F (2016) Commercial applications of metal foams: their properties and production. Materials 9:85. https://doi.org/10.3390/ma9020085
  11. Atwater MA, Guevara LN, Darling KA, Tschopp MA (2018) Solid state porous metal production: a review of the capabilities, characteristics, and challenges. Adv Eng Mater 20:1–33. https://doi.org/10.1002/adem.201700766
  12. Gutiérrez-Vázquez JA, Oñoro J (2008) Espumas de aluminio. Fabricación, propiedades y aplicaciones. Rev Metal 44:457– 476. https://doi.org/10.3989/revmetalm.0751
  13. Matz AM, Mocker BS, Christian U, Jost N (2014) Microstructural evolution in investment casted open-pore aluminum-based alloy foams. Procedia Materials Science: 8th International Conference on Porous Metals and Metallic Foams, Metfoam 2013:139–144. https://doi.org/10.1016/j.mspro.2014.07.551
  14. Matz A, Mocker B, Muller D, Jost N, Eggeler G (2014) Mesostructural design and manufacturing of open-pore metal foams by investment casting. Adv Mater Sci Eng 421729. https://doi.org/10.1155/2014/421729
  15. Altug Guler K (2015) Solid mold investment casting –a replication process for open cell foam metal production. Materials Testing 57:795–798. https://doi.org/10.3139/120.110769
  16. Sutygina A, Betke U, Hasemann G, Schefer M (2020) Manufacturing of open-cell metal foams by the sponge replication technique. Symposium on Materials and Joining Technology. IOP Conf Ser: Mater Sci Eng 882 012022. https://doi.org/10.1088/1757-899X/882/1/012022
  17. Cingi C, Niini E, Orkas J (2009) Foamed aluminum parts by investment casting. Colloids Surf, A 344:113–117. https://doi.org/10.1016/j.colsurfa.2009.01.006
  18. Li Y et al (2018) Additively manufactured biodegradable porous magnesium. Acta Biomater 67:378–392. https://doi.org/10.1016/j.actbio.2017.12.008
  19. Li Y et al (2019) Biodegradation-affected fatigue behavior of additively manufactured porous magnesium. Addit Manuf 28:299–311. https://doi.org/10.1016/j.addma.2019.05.013
  20. Feng X, Zhang Z, Cui X, Jin G, Zheng W, Liu H (2018) Additive manufactured closed-cell aluminum alloy foams via laser melting deposition process. Mater Lett 233:126–129. https://doi.org/10.1016/j.matlet.2018.08.146
  21. Legutko S (2018) Additive techniques of manufacturing functional products from metal materials. IOP Conf Ser Mater Sci Eng 393:012003. https://doi.org/10.1088/1757-899X/393/1/012003
  22. Chantarapanich N, Puttawibul P, Sucharitpwatskul S, Jeamwatthanachai P, Inglam S, Sitthiseripratip K (2012) Scafold library for tissue engineering: a geometric evaluation. Comput Math Methods Med 2012:407805. https://doi.org/10.1155/2012/407805
  23. Wenninger MJ (2015) Polyhedron models. Cambridge University Press. https://doi.org/10.1017/CBO9780511569746
  24. Stansbury JW, Idacavage MJ (2016) 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater 32:54–64. https://doi.org/10.1016/j.dental.2015.09.018
  25. Das S, Bourell DL, Babu SS (2016) Metallic Materials For 3D Printing. MRS Bull 41:729–741. https://doi.org/10.1557/mrs.2016.217
  26. Wei Ch, Li L, Zhang X, Chueh Y-H (2018) 3D printing of multiple metallic materials via modifed selective laser melting. CIRP Ann 67:245–248. https://doi.org/10.1016/j.cirp.2018.04.096
  27. Costanza G, Tata ME, Trillicoso G (2021) Al foams manufactured by PLA replication and sacrifice. Int J Lightweight Mater Manufac 4:62–66. https://doi.org/10.1016/j.ijlmm.2020.07.001
  28. Pinto P, Peixinho N, Soares D, Silva F (2015) Process development for manufacturing of cellular structures with controlled geometry and properties. Mat Res 18:274–282. https://doi.org/10.1590/1516-1439.286614
  29. Cheah CM, Chua CK, Lee CW, Feng C, Totong K (2005) Rapid prototyping and tooling techniques: a review of applications for rapid investment casting. Int J Adv Manuf Technol 25:308–320. https://doi.org/10.1007/s00170-003-1840-6
  30. Heiss T, Klotz UE, Tiberto D (2015) Platinum investment casting, part I: simulation and experimental study of the casting process. Johnson Matthey Technol Rev 59:95–108. https://doi.org/10.1595/205651315×687399
  31. Grande MA, Porta L, Tiberto D (2007) Computer simulation of the investment casting process: widening of the filling step. The Santa Fe Symposium Jewelry Manufacturing Technology 1-18:53658215
  32. Kader MA, Islam MA, Hazell PJ, Escobedo JP, Saadatfar M, Brown AD, Appleby-Thomas GJ (2016) Modelling and characterization of cell collapse in aluminium foams during dynamic loading. Int J Impact Eng 96:78–88. https://doi.org/10.1016/j.ijimpeng.2016.05.020
  33. Pulvirenti B, Celli M, Barletta A (2020) Flow and convection in metal foams: a survey and new CFD results. Fluids 5:155. https://doi.org/10.3390/fluids5030155
  34. Diop M, Hao H, Dong H-W, Zhang X-G, Yao S, Jin J-Z (2011) Modelling of solidification process of aluminium foams using lattice Boltzmann method. Int J Cast Met Res 24:158–162. https://doi.org/10.1179/136404611X13001912813861
  35. Hao H, Diop M, Yao S, Zhang X-G (2010) Numerical simulation of bubbles expansion and solidification of metal foams. Mater Sci Forum 654–656:1549–1552. https://doi.org/10.4028/www.scientific.net/MSF.654-656.1549
  36. Barzegari M, Bayani H, Mirbagheri SMH, Shetabivash Ha (2019) Multiphase aluminum A356 foam formation process simulation using lattice Boltzmann method. J Market Res 8:1258–1266. https://doi.org/10.1016/j.jmrt.2018.03.010
  37. Barkhudarov MR, Hirt CW (1995) Casting simulation: mold filling and solidification-benchmark calculations using flow3D. In Proceedings of the Ninth International Conference on Modeling of Casting, Welding and Advanced SolidificationProcesses. https://www.flow3d.com/wp-content/uploads/2014/08/Casting-Simulation-Mold-Filling-and-Solidification-Benchmark-Calculations-Using-FLOW-3D.pdf
  38. Dizon JRC, Espera AH, Chen Q, Advincula RC (2018) Mechanical characterization of 3D-printed polymers. Addit Manuf 20:44–67. https://doi.org/10.1016/j.addma.2017.12.002
  39. Matweb (1996) www.matweb.com
  40. Staff FMT, & Foundry Management and Technology (2015) Why infrared heating stands apart for preheating sand molds. Retrieved August 2, 2017, from http://www.foundrymag.com/moldscores/hot-idea-mold-preheating-and-more.
  41. Anglani A, Pacella M (2018) Logistic regression and response surface design for statistical modeling of investment casting process in metal foam production. Procedia CIRP 67:504–509
  42. Giannitelli SM, Accoto D, Trombetta M, Rainer A (2014) Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater 10:580–594
  43. Dumas M, Terriault P, Brailovski V (2017) Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials. Mater Des 121:383–392