filling

배관 부품 제조에서 중력 모래 주형을 이용한 용융 금속 유동 및 응고에 대한 CFD 해석


연구 배경

  • 문제 정의: 배관 부품 제조 공정에서 중력 모래 주형을 이용한 주조는 용융 금속의 복잡한 열 전달 및 응고 과정으로 인해 결함(예: 기공, 수축 결함)이 발생할 수 있어 생산 효율과 제품 품질에 영향을 준다.
  • 목표: CFD 기법(특히 FLOW 3D CAST v5.03)을 활용하여 실제 생산 라인과 동일한 주형 및 내부 챔버 형상을 기반으로 용융 금속의 충진, 응고 및 냉각 단계를 해석하고, 다양한 타설 온도와 러너 설계가 주조 결함에 미치는 영향을 평가하는 데 있다.

연구 방법

  1. CFD 시뮬레이션
    • 프로그램 및 기법: FLOW 3D CAST v5.03 사용, Volume of Fluid (VOF) 방법을 통해 용융 금속의 자유 수면을 추적.
    • 난류 모델: 두 방정식 k–ε 모델을 채택하여 난류 효과를 반영.
    • 모델 형상: 실제 생산 라인의 주형과 내부 챔버 형상을 그대로 반영.
  2. 주요 변수 및 조건
    • 타설 온도: 다양한 타설 온도(예: 1329°C, 1529°C)를 적용하여 유동 속도, 응고 시간 및 결함 발생에 미치는 영향 평가.
    • 러너 설계: 러너의 크기와 수가 용융 금속의 흐름 및 결함 위치에 어떤 영향을 미치는지 분석.
  3. 메쉬 독립성 및 시간 단계
    • 여러 메쉬 크기를 비교하여 계산 정확도와 효율성을 확보함(예: 250,000 요소 사용).

주요 결과

  • 충진 및 응고 해석: CFD 시뮬레이션을 통해 용융 금속이 주형 내에서 충진되는 과정과 이후 응고 및 냉각 단계가 상세하게 재현되었음.
  • 타설 온도의 영향:
    • 높은 타설 온도(1529°C)는 용융 금속의 유동을 빠르게 하며, 반면 응고에는 더 긴 시간이 소요됨.
    • 낮은 타설 온도(1329°C)에서는 유동 속도가 다소 느리고, 응고 과정이 상대적으로 빠르게 진행됨.
  • 러너 설계의 효과: 다양한 러너 각도 및 구조 변경 시도에도 불구하고, 현재 연구에서는 러너 설계가 기공 결함(캐비티) 감소에 큰 영향을 미치지 않음.
  • 전체 공정 소요 시간: 충진, 응고, 냉각 단계 각각의 소요 시간이 계산되어 생산 공정 개선에 활용 가능함.

결론 및 향후 연구

  • CFD 기법은 중력 모래 주형을 이용한 배관 부품 주조 공정에서 용융 금속의 충진, 응고 및 냉각 단계를 효과적으로 해석할 수 있음을 보여준다.
  • 타설 온도가 용융 금속 유동 및 응고 거동에 결정적인 영향을 미치며, 이로 인해 주조 결함 발생이 달라짐을 확인하였다.
  • 향후 연구에서는 시뮬레이션 결과와 실험 데이터를 비교 검증하고, 결함 발생 원인 및 위치에 대한 추가 분석을 통해 생산 공정의 최적화를 도모할 예정이다.

Reference

  1. Deev V.B., Ponomareva K.V., Prikhodko O.G.,and Smetanyuk S.V., Influence of temperaturesof melt overheating and pouring on the quality ofaluminum alloy lost foam castings. RussianJournal of Non-Ferrous Metals, 2017. 58(4): p.373-377.
  2. Ayar M.S., Ayar V.S., and George P.M.,Simulation and experimental validation fordefect reduction in geometry varied aluminumplates cast using sand casting. Materials Today:Proceedings, 2020. 27: p. 1422-1430.
  3. Borikar G.P., and Chavan S.T., Optimization ofCasting Yield in Multi-cavity Sand Moulds ofAl-alloy Components. Materials Today:Proceedings, 2020. 28: p. 819-824.
  4. Zhao H.-D., Bai Y.-F., Ouyang X.-X., and DongP.-Y., Simulation of mold filling and predictionof gas entrapment on practical high pressure diecastings. Transactions of Nonferrous MetalsSociety of China, 2010. 20(11): p. 2064-2070.
  5. Li Y., Liu J., Zhong G., Huang W., and Zou R.,Analysis of a diesel engine cylinder head failurecaused by casting porosity defects. EngineeringFailure Analysis, 2021. 127.
  6. Dou K., Lordan E., Zhang Y., Jacot A., and FanZ., A novel approach to optimize mechanicalproperties for aluminum alloy in High pressuredie casting (HPDC) process combiningexperiment and modeling. Journal of MaterialsProcessing Technology, 2021. 296.
  7. Pulisheru K.S. and Birru A.K., Effect of pouringtemperature on hot tearing susceptibility of AlCu cast Alloy: Casting simulation. MaterialsToday: Proceedings, 2021.
  8. Pulivarti S.R. and Birru A.K., Effect of MouldCoatings and Pouring Temperature on theFluidity of Different Thin Cross-Sections ofA206 Alloy by Sand Casting. Transactions of theIndian Institute of Metals, 2018. 71(7): p. 1735-1745.
  9. Li Y., Liu J., Zhang Q., and Huang W., Castingdefects and microstructure distributioncharacteristics of the aluminum alloy cylinderhead with complex structure. Materials TodayCommunications, 2021. 27.
  10. Sarkar C., Gawande S.H., and Keste A.A.,Design optimization of precision casting forresidual stress reduction. Journal ofComputational Design and Engineering, 2016.3(2): p. 140-150.
  11. Gopalan R. and Prabhu N.K., Oxide bifilms inaluminum alloy castings – a review. MaterialsScience and Technology, 2013. 27(12): p. 1757-1769.
  12. Luo L., Xia H.-Y., Luo L.-S., Su Y.-Q., Cai C.-J., Wang L., Guo J.-J., and Fu H.-Z., Eliminatingshrinkage defects and improving the mechanicalperformance of large thin-walled ZL205A alloycastings by coupling traveling magnetic fieldswith sequential solidification. Transactions ofNonferrous Metals Society of China, 2021.31(4): p. 865-877.
  13. Nandagopal M., Sivakumar K., andSengottuvelan M., Process parameteroptimization to reduce cold metal defect inferrous casting using Taguchi technique andregression analysis. Materials Today:Proceedings, 2021. 45: p. 7917-7921.
  14. Yang W., Luo Z., Zou Z., Zhao C., and You Y.,Modelling and analysis of bubble entrapment bysolidification shell in steel continuous castingconsidering bubble interaction with a coupledCFD-DBM approach. Powder Technology,2021. 390: p. 387-400.
  15. Loon W.L., Reddy S.S., and A.K. R.P., CFDsimulation of direct chill casting process ofmagnesium alloy billets. Journal ofManufacturing Processes, 2019. 45: p. 447-454.
  16. YIN J., Numerical modeling of the centrifugalcasting process. 2016, KTH ROYALINSTITUTE OF TECHNOLOGY.
  17. Reicher A., Numerical Analysis of Die-CastingProcess in Thin Cavities Using LubricationApproximation. 2012, University of WisconsinMilwaukee.
  18. Yuwen X.-X., Chen L., and Han Y.-J.,Numerical Simulation of Casting Filling ProcessBased on FLUENT. Energy Procedia, 2012. 17:p. 1864-1871.
  19. Kermanpur A., Mahmoudi S., and Hajipour A.,Numerical simulation of metal flow andsolidification in the multi-cavity casting molds ofautomotive components. Journal of MaterialsProcessing Technology, 2008. 206(1-3): p. 62-68.
  20. Vijayaram T.R., Sulaiman S., Hamouda A.M.S.,and Ahmad M.H.M., Numerical simulation ofcasting solidification in permanent metallicmolds. Journal of Materials ProcessingTechnology, 2006. 178(1-3): p. 29-33.
  21. Reikher A. and Pillai K.M., A fast simulation oftransient metal flow and solidification in anarrow channel. Part I: Model developmentusing lubrication approximation. InternationalJournal of Heat and Mass Transfer, 2013. 60: p.797-805.
  22. Reikher A. and Pillai K.M., A fast simulation oftransient metal flow and solidification in anarrow channel. Part II. Model validation andparametric study. International Journal of Heatand Mass Transfer, 2013. 60: p. 806-815.
  23. Wang H., Djambazov G., Pericleous K.A.,Harding R.A., and Wickins M., Modelling thedynamics of the tilt-casting process and the effectof the mould design on the casting quality.Computers & Fluids, 2011. 42(1): p. 92-101.
  24. Aravind S., Ragupathi P., and Vignesh G.,Numerical and experimental approach toeliminate defects in al alloy pump- crankcaseprocessed through gravity die casting route.Materials Today: Proceedings, 2021. 37: p.1772-1777.
  25. Barot R.P. and Ayar V.S., Casting simulation anddefect identification of geometry varied plateswith experimental validation. Materials Today:Proceedings, 2020. 26: p. 2754-2762.
  26. Promtong M., Kasemjirapatara C., Srithep P.,Masoodi Y., Namchanthra S., Priyadumkol J.,and Suvanjumrat C., Investigation ofAerodynamic Performance of Four PotentialAirfoils for a Formula SAE Car: A 2D ValidationStudy, in The 34th Conference of the MechanicalEngineering Network of Thailand. 2020: 15 – 17July 2020, Prachuap Khiri Khan, Thailand.
  27. Promtong M., Khunsri K., TeachapanitvittayaK., Trakulkumlue T., Watechagit S., andSuvanjumrat C., Experimental and NumericalInvestigations into the Natural Convection of HotGas in a Vertical Smoking Oven: A ValidationStudy, in The 34th Conference of the MechanicalEngineering Network of Thailand. 2020: 15 – 17July 2020, Prachuap Khiri Khan, Thailand.
  28. Promtong M., Cheung S., Yeoh G., Vahaji S.,and Tu J., CFD investigation of sub-cooledboiling flow using a mechanistic wall heatpartitioning approach with Wet-Steamproperties. The Journal of ComputationalMultiphase Flows, 2018. 10(4): p. 239-258.
  29. Promtong M., Cheung S., and Tu J., Numericalmodelling of subcooled boiling flow based onmechanistic approach: A validation study usingwet steam (IAPWS) as working fluid properties.Lecture notes in engineering and computerscience, 2016.
  30. Promtong M. and Tekasakul P., CFD study offlow in natural rubber smoking-room: I.Validation with the present smoking room.Applied Thermal Engineering, 2007. 27(11-12):p. 2113-2121.
  31. Hirt C.W. and Nichols B.D., Volume of Fluid(VOF) method for the dynamics of freeboundaries. Journal of Computational Physics,1981. 39(1): p. 201-225.
  32. Aniszewski W., Ménard T., and Marek M.,Volume of Fluid (VOF) type advection methodsin two-phase flow: A comparative study.Computers & Fluids, 2014. 97: p. 52-73.