Influences of the Powder Size and Process Parameters on the Quasi-Stability of Molten Pool Shape in Powder Bed Fusion-Laser Beam of Molybdenum

Influences of the Powder Size and Process Parameters on the Quasi-Stability of Molten Pool Shape in Powder Bed Fusion-Laser Beam of Molybdenum

몰리브덴 분말층 융합-레이저 빔의 용융 풀 형태의 준안정성에 대한 분말 크기 및 공정 매개변수의 영향

Abstract

Formation of a quasi-steady molten pool is one of the necessary conditions for achieving excellent quality in many laser processes. The influences of distribution characteristics of powder sizes on quasi-stability of the molten pool shape during single-track powder bed fusion-laser beam (PBF-LB) of molybdenum and the underlying mechanism were investigated.

The feasibility of improving quasi-stability of the molten pool shape by increasing the laser energy conduction effect and preheating was explored. Results show that an increase in the range of powder sizes does not significantly influence the average laser energy conduction effect in PBF-LB process. Whereas, it intensifies fluctuations of the transient laser energy conduction effect.

It also leads to fluctuations of the replenishment rate of metals, difficulty in formation of the quasi-steady molten pool, and increased probability of incomplete fusion and pores defects. As the laser power rises, the laser energy conduction effect increases, which improves the quasi-stability of the molten pool shape. When increasing the laser scanning speed, the laser energy conduction effect grows.

However, because the molten pool size reduces due to the decreased heat input, the replenishment rate of metals of the molten pool fluctuates more obviously and the quasi-stability of the molten pool shape gets worse. On the whole, the laser energy conduction effect in the PBF-LB process of Mo is low (20-40%). The main factor that affects quasi-stability of the molten pool shape is the amount of energy input per unit length of the scanning path, rather than the laser energy conduction effect.

Moreover, substrate preheating can not only enlarge the molten pool size, particularly the length, but also reduce non-uniformity and discontinuity of surface morphologies of clad metals and inhibit incomplete fusion and pores defects.

준안정 용융 풀의 형성은 많은 레이저 공정에서 우수한 품질을 달성하는 데 필요한 조건 중 하나입니다. 몰리브덴의 단일 트랙 분말층 융합 레이저 빔(PBF-LB) 동안 용융 풀 형태의 준안정성에 대한 분말 크기 분포 특성의 영향과 그 기본 메커니즘을 조사했습니다.

레이저 에너지 전도 효과와 예열을 증가시켜 용융 풀 형태의 준안정성을 향상시키는 타당성을 조사했습니다. 결과는 분말 크기 범위의 증가가 PBF-LB 공정의 평균 레이저 에너지 전도 효과에 큰 영향을 미치지 않음을 보여줍니다. 반면, 과도 레이저 에너지 전도 효과의 변동이 강화됩니다.

이는 또한 금속 보충 속도의 변동, 준안정 용융 풀 형성의 어려움, 불완전 융합 및 기공 결함 가능성 증가로 이어집니다. 레이저 출력이 증가함에 따라 레이저 에너지 전도 효과가 증가하여 용융 풀 모양의 준 안정성이 향상됩니다. 레이저 스캐닝 속도를 높이면 레이저 에너지 전도 효과가 커집니다.

그러나 열 입력 감소로 인해 용융 풀 크기가 줄어들기 때문에 용융 풀의 금속 보충 속도의 변동이 더욱 뚜렷해지고 용융 풀 형태의 준안정성이 악화됩니다.

전체적으로 Mo의 PBF-LB 공정에서 레이저 에너지 전도 효과는 낮다(20~40%). 용융 풀 형상의 준안정성에 영향을 미치는 주요 요인은 레이저 에너지 전도 효과보다는 스캐닝 경로의 단위 길이당 입력되는 에너지의 양입니다.

또한 기판 예열은 용융 풀 크기, 특히 길이를 확대할 수 있을 뿐만 아니라 클래드 금속 표면 형태의 불균일성과 불연속성을 줄이고 불완전한 융합 및 기공 결함을 억제합니다.

References

  1. M. Sharifitabar, F.O. Sadeq, and M.S. Afarani, Synthesis and Kinetic Study of Mo (Si, Al)2 Coatings on the Surface of Molybdenum Through Hot Dipping into a Commercial Al-12 wt.% Si Alloy Melt, Surf. Interfaces, 2021, 24, p 101044.Article CAS Google Scholar 
  2. Z. Zhang, X. Li, and H. Dong, Response of a Molybdenum Alloy to Plasma Nitriding, Int. J. Refract. Met. Hard Mater., 2018, 72, p 388–395.Article CAS Google Scholar 
  3. C. Tan, K. Zhou, M. Kuang, W. Ma, and T. Kuang, Microstructural Characterization and Properties of Selective Laser Melted Maraging Steel with Different Build Directions, Sci. Technol. Adv. Mater., 2018, 19(1), p 746–758.Article CAS Google Scholar 
  4. C. Tan, F. Weng, S. Sui, Y. Chew, and G. Bi, Progress and Perspectives in Laser Additive Manufacturing of Key Aeroengine Materials, Int. J. Mach. Tools Manuf, 2021, 170, p 103804.Article Google Scholar 
  5. S.A. Khairallah and A. Anderson, Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder, J. Mater. Process. Technol., 2014, 214(11), p 2627–2636.Article CAS Google Scholar 
  6. S.A. Khairallah, A.T. Anderson, A. Rubenchik, and W.E. King, Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones, Acta Mater., 2016, 108, p 36–45.Article CAS ADS Google Scholar 
  7. K.Q. Le, C. Tang, and C.H. Wong, On the Study of Keyhole-Mode Melting in Selective Laser Melting Process, Int. J. Therm. Sci., 2019, 145, p 105992.Article Google Scholar 
  8. M. Bayat, A. Thanki, S. Mohanty, A. Witvrouw, S. Yang, J. Thorborg, N.S. Tiedje, and J.H. Hattel, Keyhole-Induced Porosities in Laser-Based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-Fidelity Modelling and Experimental Validation, Addit. Manuf., 2019, 30, p 100835.CAS Google Scholar 
  9. B. Liu, G. Fang, L. Lei, and X. Yan, Predicting the Porosity Defects in Selective Laser Melting (SLM) by Molten Pool Geometry, Int. J. Mech. Sci., 2022, 228, p 107478.Article Google Scholar 
  10. W. Ge, J.Y.H. Fuh, and S.J. Na, Numerical Modelling of Keyhole Formation in Selective Laser Melting of Ti6Al4V, J. Manuf. Process., 2021, 62, p 646–654.Article Google Scholar 
  11. W. Ge, S. Han, S.J. Na, and J.Y.H. Fuh, Numerical Modelling of Surface Morphology in Selective Laser Melting, Comput. Mater. Sci., 2021, 186, p 110062.Article Google Scholar 
  12. Y.-C. Wu, C.-H. San, C.-H. Chang, H.-J. Lin, R. Marwan, S. Baba, and W.-S. Hwang, Numerical Modeling of Melt-Pool Behavior In Selective Laser Melting with Random Powder Distribution and Experimental Validation, J. Mater. Process. Technol., 2018, 254, p 72–78.Article Google Scholar 
  13. C. Tang, J.L. Tan, and C.H. Wong, A Numerical Investigation on the Physical Mechanisms of Single Track Defects in Selective Laser Melting, Int. J. Heat Mass Transf., 2018, 126, p 957–968.Article CAS Google Scholar 
  14. X. Zhou, X. Liu, D. Zhang, Z. Shen, and W. Liu, Balling Phenomena in Selective Laser Melted Tungsten, J. Mater. Process. Technol., 2015, 222, p 33–42.Article CAS Google Scholar 
  15. J.D.K. Monroy and J. Ciurana, Study of the Pore Formation on CoCrMo Alloys by Selective Laser Melting Manufacturing Process, Procedia Eng., 2013, 63, p 361–369.Article CAS Google Scholar 
  16. L. Kaserer, J. Braun, J. Stajkovic, K.H. Leitz, B. Tabernig, P. Singer, I. Letofsky-Papst, H. Kestler, and G. Leichtfried, Fully Dense and Crack Free Molybdenum Manufactured by Selective Laser Melting Through Alloying with Carbon, Int. J. Refract. Met. Hard Mater., 2019, 84, p 105000.Article CAS Google Scholar 
  17. T.B.T. Majumdar, E.M.C. Ribeiro, J.E. Frith, and N. Birbilis, Understanding the Effects of PBF Process Parameter Interplay on Ti-6Al-4V Surface Properties, PLoS ONE, 2019, 14, p e0221198.Article CAS PubMed PubMed Central Google Scholar 
  18. A.K.J.-R. Poulin, P. Terriault, and V. Brailovski, Long Fatigue Crack Propagation Behavior of Laser Powder Bed-Fused Inconel 625 with Intentionally- Seeded Porosity, Int. J. Fatigue, 2019, 127, p 144–156.Article CAS Google Scholar 
  19. P. Rebesan, M. Ballan, M. Bonesso, A. Campagnolo, S. Corradetti, R. Dima, C. Gennari, G.A. Longo, S. Mancin, M. Manzolaro, G. Meneghetti, A. Pepato, E. Visconti, and M. Vedani, Pure Molybdenum Manufactured by Laser Powder Bed Fusion: Thermal and Mechanical Characterization at Room and High Temperature, Addit. Manuf., 2021, 47, p 102277.CAS Google Scholar 
  20. D. Wang, C. Yu, J. Ma, W. Liu, and Z. Shen, Densification and Crack Suppression in Selective Laser Melting of Pure Molybdenum, Mater. Des., 2017, 129, p 44–52.Article CAS Google Scholar 
  21. K.-H. Leitz, P. Singer, A. Plankensteiner, B. Tabernig, H. Kestler, and L.S. Sigl, Multi-physical Simulation of Selective Laser Melting, Met. Powder Rep., 2017, 72, p 331–338.Article Google Scholar 
  22. D.G.J. Zhang, Y. Yang, H. Zhang, H. Chen, D. Dai, and K. Lin, Influence of Particle Size on Laser Absorption and Scanning Track Formation Mechanisms of Pure Tungsten Powder During Selective Laser Melting, Engineering, 2019, 5, p 736–745.Article CAS Google Scholar 
  23. L. Caprio, A.G. Demir, and B. Previtali, Influence of Pulsed and Continuous Wave Emission on Melting Efficiency in Selective Laser Melting, J. Mater. Process. Technol., 2019, 266, p 429–441.Article CAS Google Scholar 
  24. D. Gu, M. Xia, and D. Dai, On the Role of Powder Flow Behavior in Fluid Thermodynamics and Laser Processability of Ni-based Composites by Selective Laser Melting, Int. J. Mach. Tools Manuf, 2018, 137, p 67–78.Article Google Scholar 
  25. W.-I. Cho, S.-J. Na, C. Thomy, and F. Vollertsen, Numerical Simulation of Molten Pool Dynamics in High Power Disk Laser Welding, J. Mater. Process. Technol., 2012, 212(1), p 262–275.Article CAS Google Scholar 
  26. S.W. Han, J. Ahn, and S.J. Na, A Study on Ray Tracing Method for CFD Simulations of Laser Keyhole Welding: Progressive Search Method, Weld. World, 2016, 60, p 247–258.Article CAS Google Scholar 
  27. W. Ge, S. Han, Y. Fang, J. Cheon, and S.J. Na, Mechanism of Surface Morphology in Electron Beam Melting of Ti6Al4V Based on Computational Flow Patterns, Appl. Surf. Sci., 2017, 419, p 150–158.Article CAS ADS Google Scholar 
  28. W.-I. Cho, S.-J. Na, C. Thomy, and F. Vollertsen, Numerical Simulation of Molten Pool Dynamics in High Power Disk Laser Welding, J. Mater. Process. Technol., 2012, 212, p 262–275.Article CAS Google Scholar 
  29. W. Ma, J. Ning, L.-J. Zhang, and S.-J. Na, Regulation of Microstructures and Properties of Molybdenum-Silicon-Boron Alloy Subjected to Selective Laser Melting, J. Manuf. Process., 2021, 69, p 593–601.Article Google Scholar 
  30. S. Haeri, Y. Wang, O. Ghita, and J. Sun, Discrete Element Simulation and Experimental Study of Powder Spreading Process in Additive Manufacturing, Powder Technol., 2016, 306, p 45–54.Article Google Scholar 
  31. D. Yao, X. Liu, J. Wang, W. Fan, M. Li, H. Fu, H. Zhang, X. Yang, Q. Zou, and X. An, Numerical Insights on the Spreading of Practical 316 L Stainless Steel Powder in SLM Additive Manufacturing, Powder Technol., 2021, 390, p 197–208.Article CAS Google Scholar 
  32. S. Vock, B. Klöden, A. Kirchner, T. Weißgärber, and B. Kieback, Powders for Powder Bed Fusion: A Review, Prog. Addit. Manuf., 2019, 4, p 383–397.Article Google Scholar 
  33. X. Luo, C. Yang, Z.Q. Fu, L.H. Liu, H.Z. Lu, H.W. Ma, Z. Wang, D.D. Li, L.C. Zhang, and Y.Y. Li, Achieving Ultrahigh-Strength in Beta-Type Titanium Alloy by Controlling the Melt Pool Mode in Selective Laser Melting, Mater. Sci. Eng. A, 2021, 823, p 141731.Article CAS Google Scholar 
  34. J. Braun, L. Kaserer, J. Stajkovic, K.-H. Leitz, B. Tabernig, P. Singer, P. Leibenguth, C. Gspan, H. Kestler, and G. Leichtfried, Molybdenum and Tungsten Manufactured by Selective Laser Melting: Analysis of Defect Structure and Solidification Mechanisms, Int. J. Refract. Met. Hard Mater., 2019, 84, p 104999.Article CAS Google Scholar 
  35. L. Kaserera, J. Brauna, J. Stajkovica, K.-H. Leitzb, B. Tabernigb, P. Singerb, I. Letofsky-Papstc, H. Kestlerb, and G. Leichtfried, Fully Dense and Crack Free Molybdenum Manufactured by Selective Laser Melting Through Alloying with Carbon, Int. J. Refract Metal Hard Mater., 2019, 84, p 105000.Article Google Scholar 
Figure 5. Simulation of the molten pool under low-speed scanning (1.06 m/s). (a) Sequential solidification of the molten pool at the end of the melt track for laser powers of 190 and 340 W, respectively. (b) Recoil pressure on the molten pool at the keyhole for laser powers of 190 and 340 W, respectively. (c) The force diagram of the melt at the back of the keyhole at t = 750 μs in case B. (d) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case A. (e) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case B.

Revealing formation mechanism of end of processdepression in laser powder bed fusion by multiphysics meso-scale simulation

다중물리 메조 규모 시뮬레이션을 통해 레이저 분말층 융합에서 공정 종료의 함몰 형성 메커니즘 공개

Haodong Chen a,b, Xin Lin a,b,c, Yajing Sund, Shuhao Wanga,b, Kunpeng Zhu a,b,c and Binbin Dana,b

To link to this article: https://doi.org/10.1080/17452759.2024.2326599

ABSTRACT

Unintended end-of-process depression (EOPD) commonly occurs in laser powder bed fusion (LPBF), leading to poor surface quality and lower fatigue strength, especially for many implants. In this study, a high-fidelity multi-physics meso-scale simulation model is developed to uncover the forming mechanism of this defect. A defect-process map of the EOPD phenomenon is obtained using this simulation model. It is found that the EOPD formation mechanisms are different under distinct regions of process parameters. At low scanning speeds in keyhole mode, the long-lasting recoil pressure and the large temperature gradient easily induce EOPD. While at high scanning speeds in keyhole mode, the shallow molten pool morphology and the large solidification rate allow the keyhole to evolve into an EOPD quickly. Nevertheless, in the conduction mode, the Marangoni effects along with a faster solidification rate induce EOPD. Finally, a ‘step’ variable power strategy is proposed to optimise the EOPD defects for the case with high volumetric energy density at low scanning speeds. This work provides a profound understanding and valuable insights into the quality control of LPBF fabrication.

의도하지 않은 공정 종료 후 함몰(EOPD)은 LPBF(레이저 분말층 융합)에서 흔히 발생하며, 특히 많은 임플란트의 경우 표면 품질이 떨어지고 피로 강도가 낮아집니다. 본 연구에서는 이 결함의 형성 메커니즘을 밝히기 위해 충실도가 높은 다중 물리학 메조 규모 시뮬레이션 모델을 개발했습니다.

이 시뮬레이션 모델을 사용하여 EOPD 현상의 결함 프로세스 맵을 얻습니다. EOPD 형성 메커니즘은 공정 매개변수의 별개 영역에서 서로 다른 것으로 밝혀졌습니다.

키홀 모드의 낮은 스캔 속도에서는 오래 지속되는 반동 압력과 큰 온도 구배로 인해 EOPD가 쉽게 유발됩니다. 키홀 모드에서 높은 스캐닝 속도를 유지하는 동안 얕은 용융 풀 형태와 큰 응고 속도로 인해 키홀이 EOPD로 빠르게 진화할 수 있습니다.

그럼에도 불구하고 전도 모드에서는 더 빠른 응고 속도와 함께 마랑고니 효과가 EOPD를 유발합니다. 마지막으로, 낮은 스캐닝 속도에서 높은 체적 에너지 밀도를 갖는 경우에 대해 EOPD 결함을 최적화하기 위한 ‘단계’ 가변 전력 전략이 제안되었습니다.

이 작업은 LPBF 제조의 품질 관리에 대한 심오한 이해와 귀중한 통찰력을 제공합니다.

Figure 5. Simulation of the molten pool under low-speed scanning (1.06 m/s). (a) Sequential solidification of the molten pool at the
end of the melt track for laser powers of 190 and 340 W, respectively. (b) Recoil pressure on the molten pool at the keyhole for laser
powers of 190 and 340 W, respectively. (c) The force diagram of the melt at the back of the keyhole at t = 750 μs in case B. (d) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case A. (e) Temperature
gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case B.
Figure 5. Simulation of the molten pool under low-speed scanning (1.06 m/s). (a) Sequential solidification of the molten pool at the end of the melt track for laser powers of 190 and 340 W, respectively. (b) Recoil pressure on the molten pool at the keyhole for laser powers of 190 and 340 W, respectively. (c) The force diagram of the melt at the back of the keyhole at t = 750 μs in case B. (d) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case A. (e) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case B.

References

[1] Zhang C, Li Z, Zhang J, et al. Additive manufacturing of magnesium matrix composites: comprehensive review of recent progress and research perspectives. J Mag
Alloys. 2023. doi:10.1016/j.jma.2023.02.005
[2] Webster S, Lin H, Carter III FM, et al. Physical mechanisms in hybrid additive manufacturing: a process design framework. J Mater Process Technol. 2022;291:117048. doi:10. 1016/j.jmatprotec.2021.117048
[3] Wang S, Ning J, Zhu L, et al. Role of porosity defects in metal 3D printing: formation mechanisms, impacts on properties and mitigation strategies. Mater Today. 2022. doi:10.1016/j.mattod.2022.08.014
[4] Wei C, Li L. Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion. Virtual Phys Prototyp. 2021;16 (3):347–371. doi:10.1080/17452759.2021.1928520
[5] Lin X, Wang Q, Fuh JYH, et al. Motion feature based melt pool monitoring for selective laser melting process. J Mater Process Technol. 2022;303:117523. doi:10.1016/j. jmatprotec.2022.117523
[6] Gockel J, Sheridan L, Koerper B, et al. The influence of additive manufacturing processing parameters on surface roughness and fatigue life. Int J Fatigue. 2019;124:380–388. doi:10.1016/j.ijfatigue.2019.03.025
[7] Nicoletto G. Influence of rough as-built surfaces on smooth and notched fatigue behavior of L-PBF AlSi10Mg. Addit Manuf. 2020;34:101251. doi:10.1016/j. addma.2020.101251
[8] Spece H, Yu T, Law AW, et al. 3D printed porous PEEK created via fused filament fabrication for osteoconductive orthopaedic surfaces. J Mech Behav Biomed Mater. 2020;109:103850. doi:10.1115/1.0004270v
[9] Andrukhov O, Huber R, Shi B, et al. Proliferation, behavior, and differentiation of osteoblasts on surfaces of different microroughness. Dent Mater. 2016;32(11):1374–1384. doi:10.1016/j.dental.2016.08.217
[10] Dai N, Zhang LC, Zhang J, et al. Corrosion behavior of selective laser melted Ti-6Al-4 V alloy in NaCl solution. Corros Sci. 2016;102:484–489. doi:10.1016/j.corsci.2015. 10.041
[11] Li EL, Wang L, Yu AB, et al. A three-phase model for simulation of heat transfer and melt pool behaviour in laser powder bed fusion process. Powder Technol. 2021;381:298–312. doi:10.1016/j.powtec.2020.11.061
[12] Liao B, Xia RF, Li W, et al. 3D-printed ti6al4v scaffolds with graded triply periodic minimal surface structure for bone tissue engineering. J Mater Eng Perform. 2021;30:4993– 5004. doi:10.1007/s11665-021-05580-z
[13] Li E, Zhou Z, Wang L, et al. Melt pool dynamics and pores formation in multi-track studies in laser powder bed fusion process. Powder Technol. 2022;405:117533. doi:10.1016/j.powtec.2022.117533
[14] Guo L, Geng S, Gao X, et al. Numerical simulation of heat transfer and fluid flow during nanosecond pulsed laser processing of Fe78Si9B13 amorphous alloys. Int J Heat Mass Transfer. 2021;170:121003. doi:10.1016/j.ijheatma sstransfer.2021.121003
[15] Guo L, Li Y, Geng S, et al. Numerical and experimental analysis for morphology evolution of 6061 aluminum alloy during nanosecond pulsed laser cleaning. Surf Coat Technol. 2022;432:128056. doi:10.1016/j.surfcoat. 2021.128056
[16] Li S, Liu D, Mi H, et al. Numerical simulation on evolution process of molten pool and solidification characteristics of melt track in selective laser melting of ceramic powder. Ceram Int. 2022;48(13):18302–18315. doi:10. 1016/j.ceramint.2022.03.089
[17] Aboulkhair NT, Maskery I, Tuck C, et al. On the formation of AlSi10Mg single tracks and layers in selective laser melting: microstructure and nano-mechanical properties. J Mater Process Technol. 2016;230:88–98. doi:10.1016/j. jmatprotec.2015.11.016
[18] Thijs L, Kempen K, Kruth JP, et al. Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater. 2013;61(5):1809–1819. doi:10.1016/j.actamat.2012.11.052
[19] Qiu C, Adkins NJE, Attallah MM. Microstructure and tensile properties of selectively laser-melted and of HIPed laser-melted Ti–6Al–4 V. Mater Sci Eng A. 2013;578:230–239. doi:10.1016/j.msea.2013.04.099
[20] Kazemi Z, Soleimani M, Rokhgireh H, et al. Melting pool simulation of 316L samples manufactured by selective laser melting method, comparison with experimental results. Int J Therm Sci. 2022;176:107538. doi:10.1016/j. ijthermalsci.2022.107538
[21] Cao L. Workpiece-scale numerical simulations of SLM molten pool dynamic behavior of 316L stainless steel. Comput Math Appl. 2021;96:209–228. doi:10.1016/j. camwa.2020.04.020
[22] Liu B, Fang G, Lei L, et al. Predicting the porosity defects in selective laser melting (SLM) by molten pool geometry. Int J Mech Sci. 2022;228:107478. doi:10.1016/j.ijmecsci. 2022.107478
[23] Ur Rehman A, Pitir F, Salamci MU. Full-field mapping and flow quantification of melt pool dynamics in laser powder bed fusion of SS316L. Materials. 2021;14(21):6264. doi:10. 3390/ma14216264
[24] Chia HY, Wang L, Yan W. Influence of oxygen content on melt pool dynamics in metal additive manufacturing: high-fidelity modeling with experimental validation. Acta Mater. 2023;249:118824. doi:10.1016/j.actamat. 2023.118824
[25] Cheng B, Loeber L, Willeck H, et al. Computational investigation of melt pool process dynamics and pore formation in laser powder bed fusion. J Mater Eng Perform. 2019;28:6565–6578. doi:10.1007/s11665-019- 04435-y
[26] Li X, Guo Q, Chen L, et al. Quantitative investigation of gas flow, powder-gas interaction, and powder behavior under different ambient pressure levels in laser powder bed fusion. Int J Mach Tools Manuf. 2021;170:103797. doi:10.1016/j.ijmachtools.2021.103797
[27] Wu Y, Li M, Wang J, et al. Powder-bed-fusion additive manufacturing of molybdenum: process simulation, optimization, and property prediction. Addit Manuf. 2022;58:103069. doi:10.1016/j.addma.2022.103069
[28] Wu S, Yang Y, Huang Y, et al. Study on powder particle behavior in powder spreading with discrete element method and its critical implications for binder jetting additive manufacturing processes. Virtual Phys Prototyp. 2023;18(1):e2158877. doi:10.1080/17452759.2022.2158877
[29] Klassen A, Schakowsky T, Kerner C. Evaporation model for beam based additive manufacturing using free surface lattice Boltzmann methods. J Phys D Appl Phys. 2014;47 (27):275303. doi:10.1088/0022-3727/47/27/275303
[30] Cao L. Mesoscopic-scale numerical simulation including the influence of process parameters on slm single-layer multi-pass formation. Metall Mater Trans A. 2020;51:4130–4145. doi:10.1007/s11661-020-05831-z
[31] Zhuang JR, Lee YT, Hsieh WH, et al. Determination of melt pool dimensions using DOE-FEM and RSM with process window during SLM of Ti6Al4V powder. Opt Laser Technol. 2018;103:59–76. doi:10.1016/j.optlastec.2018. 01.013
[32] Li Y, Gu D. Thermal behavior during selective laser melting of commercially pure titanium powder: numerical simulation and experimental study. Addit Manuf. 2014;1–4:99–109. doi:10.1016/j.addma.2014.09.001
[33] Dai D, Gu D. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments. Mater Des. 2014;55 (0):482–491. doi:10.1016/j.matdes.2013.10.006
[34] Wang S, Zhu L, Dun Y, et al. Multi-physics modeling of direct energy deposition process of thin-walled structures: defect analysis. Comput Mech. 2021;67:c1229– c1242. doi:10.1007/s00466-021-01992-9
[35] Wu J, Zheng J, Zhou H, et al. Molten pool behavior and its mechanism during selective laser melting of polyamide 6 powder: single track simulation and experiments. Mater Res Express. 2019;6. doi:10.1088/2053-1591/ab2747
[36] Cho JH, Farson DF, Milewski JO, et al. Weld pool flows during initial stages of keyhole formation in laser welding. J Phys D Appl Phys. 2009;42. doi:10.1088/0022- 3727/42/17/175502
[37] Sinha KN. Identification of a suitable volumetric heat source for modelling of selective laser melting of Ti6Al4V powder using numerical and experimental validation approach. Int J Adv Manuf Technol. 2018;99:2257–2270. doi:10.1007/s00170-018-2631-4
[38] Fu CH, Guo YB. Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V. J Manuf Sci Eng. 2014;136(6):061004. doi:10.1115/1.4028539
[39] Ansari P, Rehman AU, Pitir F, et al. Selective laser melting of 316 l austenitic stainless steel: detailed process understanding using multiphysics simulation and experimentation. Metals. 2021;11(7):1076. doi:10.3390/met11071076
[40] Zhao C, Shi B, Chen S, et al. Laser melting modes in metal powder bed fusion additive manufacturing. Rev Mod Phys. 2022;94(4):045002. doi:10.1103/revmodphys.94. 045002
[41] Bertoli US, Wolfer AJ, Matthews MJ, et al. On the limitations of volumetric energy density as a design parameter for selective laser melting. Mater Des. 2017;113:331–340. doi:10.1016/j.matdes.2016.10.037
[42] Dash A, Kamaraj A. Prediction of the shift in melting mode during additive manufacturing of 316L stainless steel. Mater Today Commun. 2023: 107238. doi:10.1016/j. mtcomm.2023.107238
[43] Majeed M, Khan HM, Rasheed I. Finite element analysis of melt pool thermal characteristics with passing laser in SLM process. Optik. 2019;194:163068. doi:10.1016/j.ijleo. 2019.163068

Schematic diagram of HP-LPBF melting process.

Modeling and numerical studies of high-precision laser powder bed fusion

Yi Wei ;Genyu Chen;Nengru Tao;Wei Zhou
https://doi.org/10.1063/5.0191504

In order to comprehensively reveal the evolutionary dynamics of the molten pool and the state of motion of the fluid during the high-precision laser powder bed fusion (HP-LPBF) process, this study aims to deeply investigate the specific manifestations of the multiphase flow, solidification phenomena, and heat transfer during the process by means of numerical simulation methods. Numerical simulation models of SS316L single-layer HP-LPBF formation with single and double tracks were constructed using the discrete element method and the computational fluid dynamics method. The effects of various factors such as Marangoni convection, surface tension, vapor recoil, gravity, thermal convection, thermal radiation, and evaporative heat dissipation on the heat and mass transfer in the molten pool have been paid attention to during the model construction process. The results show that the molten pool exhibits a “comet” shape, in which the temperature gradient at the front end of the pool is significantly larger than that at the tail end, with the highest temperature gradient up to 1.69 × 108 K/s. It is also found that the depth of the second track is larger than that of the first one, and the process parameter window has been determined preliminarily. In addition, the application of HP-LPBF technology helps to reduce the surface roughness and minimize the forming size.

Topics

Heat transferNonequilibrium thermodynamicsSolidification processComputer simulationDiscrete element methodLasersMass transferFluid mechanicsComputational fluid dynamicsMultiphase flows

I. INTRODUCTION

Laser powder bed fusion (LPBF) has become a research hotspot in the field of additive manufacturing of metals due to its advantages of high-dimensional accuracy, good surface quality, high density, and high material utilization.1,2 With the rapid development of electronics, medical, automotive, biotechnology, energy, communication, and optics, the demand for microfabrication technology is increasing day by day.3 High-precision laser powder bed fusion (HP-LPBF) is one of the key manufacturing technologies for tiny parts in the fields of electronics, medical, automotive, biotechnology, energy, communication, and optics because of its process characteristics such as small focal spot diameter, small powder particle size, and thin powder layup layer thickness.4–13 Compared with LPBF, HP-LPBF has the significant advantages of smaller focal spot diameter, smaller powder particle size, and thinner layer thickness. These advantages make HP-LPBF perform better in producing micro-fine parts, high surface quality, and parts with excellent mechanical properties.

HP-LPBF is in the exploratory stage, and researchers have already done some exploratory studies on the focal spot diameter, the amount of defocusing, and the powder particle size. In order to explore the influence of changing the laser focal spot diameter on the LPBF process characteristics of the law, Wildman et al.14 studied five groups of different focal spot diameter LPBF forming 316L stainless steel (SS316L) processing effect, the smallest focal spot diameter of 26 μm, and the results confirm that changing the focal spot diameter can be achieved to achieve the energy control, so as to control the quality of forming. Subsequently, Mclouth et al.15 proposed the laser out-of-focus amount (focal spot diameter) parameter, which characterizes the distance between the forming plane and the laser focal plane. The laser energy density was controlled by varying the defocusing amount while keeping the laser parameters constant. Sample preparation at different focal positions was investigated, and their microstructures were characterized. The results show that the samples at the focal plane have finer microstructure than those away from the focal plane, which is the effect of higher power density and smaller focal spot diameter. In order to explore the influence of changing the powder particle size on the characteristics of the LPBF process, Qian et al.16 carried out single-track scanning simulations on powder beds with average powder particle sizes of 70 and 40 μm, respectively, and the results showed that the melt tracks sizes were close to each other under the same process parameters for the two particle-size distributions and that the molten pool of powder beds with small particles was more elongated and the edges of the melt tracks were relatively flat. In order to explore the superiority of HP-LPBF technology, Xu et al.17 conducted a comparative analysis of HP-LPBF and conventional LPBF of SS316L. The results showed that the average surface roughness of the top surface after forming by HP-LPBF could reach 3.40 μm. Once again, it was verified that HP-LPBF had higher forming quality than conventional LPBF. On this basis, Wei et al.6 comparatively analyzed the effects of different laser focal spot diameters on different powder particle sizes formed by LPBF. The results showed that the smaller the laser focal spot diameter, the fewer the defects on the top and side surfaces. The above research results confirm that reducing the laser focal spot diameter can obtain higher energy density and thus better forming quality.

LPBF involves a variety of complex systems and mechanisms, and the final quality of the part is influenced by a large number of process parameters.18–24 Some research results have shown that there are more than 50 factors affecting the quality of the specimen. The influencing factors are mainly categorized into three main groups: (1) laser parameters, (2) powder parameters, and (3) equipment parameters, which interact with each other to determine the final specimen quality. With the continuous development of technologies such as computational materials science and computational fluid dynamics (CFD), the method of studying the influence of different factors on the forming quality of LPBF forming process has been shifted from time-consuming and laborious experimental characterization to the use of numerical simulation methods. As a result, more and more researchers are adopting this approach for their studies. Currently, numerical simulation studies on LPBF are mainly focused on the exploration of molten pool, temperature distribution, and residual stresses.

  1. Finite element simulation based on continuum mechanics and free surface fluid flow modeling based on fluid dynamics are two common approaches to study the behavior of LPBF molten pool.25–28 Finite element simulation focuses on the temperature and thermal stress fields, treats the powder bed as a continuum, and determines the molten pool size by plotting the elemental temperature above the melting point. In contrast, fluid dynamics modeling can simulate the 2D or 3D morphology of the metal powder pile and obtain the powder size and distribution by certain algorithms.29 The flow in the molten pool is mainly affected by recoil pressure and the Marangoni effect. By simulating the molten pool formation, it is possible to predict defects, molten pool shape, and flow characteristics, as well as the effect of process parameters on the molten pool geometry.30–34 In addition, other researchers have been conducted to optimize the laser processing parameters through different simulation methods and experimental data.35–46 Crystal growth during solidification is studied to further understand the effect of laser parameters on dendritic morphology and solute segregation.47–54 A multi-scale system has been developed to describe the fused deposition process during 3D printing, which is combined with the conductive heat transfer model and the dendritic solidification model.55,56
  2. Relevant scholars have adopted various different methods for simulation, such as sequential coupling theory,57 Lagrangian and Eulerian thermal models,58 birth–death element method,25 and finite element method,59 in order to reveal the physical phenomena of the laser melting process and optimize the process parameters. Luo et al.60 compared the LPBF temperature field and molten pool under double ellipsoidal and Gaussian heat sources by ANSYS APDL and found that the diffusion of the laser energy in the powder significantly affects the molten pool size and the temperature field.
  3. The thermal stresses obtained from the simulation correlate with the actual cracks,61 and local preheating can effectively reduce the residual stresses.62 A three-dimensional thermodynamic finite element model investigated the temperature and stress variations during laser-assisted fabrication and found that powder-to-solid conversion increases the temperature gradient, stresses, and warpage.63 Other scholars have predicted residual stresses and part deflection for LPBF specimens and investigated the effects of deposition pattern, heat, laser power, and scanning strategy on residual stresses, noting that high-temperature gradients lead to higher residual stresses.64–67 

In short, the process of LPBF forming SS316L is extremely complex and usually involves drastic multi-scale physicochemical changes that will only take place on a very small scale. Existing literature employs DEM-based mesoscopic-scale numerical simulations to investigate the effects of process parameters on the molten pool dynamics of LPBF-formed SS316L. However, a few studies have been reported on the key mechanisms of heating and solidification, spatter, and convective behavior of the molten pool of HP-LPBF-formed SS316L with small laser focal spot diameters. In this paper, the geometrical properties of coarse and fine powder particles under three-dimensional conditions were first calculated using DEM. Then, numerical simulation models for single-track and double-track cases in the single-layer HP-LPBF forming SS316L process were developed at mesoscopic scale using the CFD method. The flow genesis of the melt in the single-track and double-track molten pools is discussed, and their 3D morphology and dimensional characteristics are discussed. In addition, the effects of laser process parameters, powder particle size, and laser focal spot diameter on the temperature field, characterization information, and defects in the molten pool are discussed.

II. MODELING

A. 3D powder bed modeling

HP-LPBF is an advanced processing technique for preparing target parts layer by layer stacking, the process of which involves repetitive spreading and melting of powders. In this process, both the powder spreading and the morphology of the powder bed are closely related to the results of the subsequent melting process, while the melted surface also affects the uniform distribution of the next layer of powder. For this reason, this chapter focuses on the modeling of the physical action during the powder spreading process and the theory of DEM to establish the numerical model of the powder bed, so as to lay a solid foundation for the accuracy of volume of fluid (VOF) and CFD.

1. DEM

DEM is a numerical technique for calculating the interaction of a large number of particles, which calculates the forces and motions of the spheres by considering each powder sphere as an independent unit. The motion of the powder particles follows the laws of classical Newtonian mechanics, including translational and rotational,38,68–70 which are expressed as follows:����¨=���+∑��ij,

(1)����¨=∑�(�ij×�ij),

(2)

where �� is the mass of unit particle i in kg, ��¨ is the advective acceleration in m/s2, And g is the gravitational acceleration in m/s2. �ij is the force in contact with the neighboring particle � in N. �� is the rotational inertia of the unit particle � in kg · m2. ��¨ is the unit particle � angular acceleration in rad/s2. �ij is the vector pointing from unit particle � to the contact point of neighboring particle �⁠.

Equations (1) and (2) can be used to calculate the velocity and angular velocity variations of powder particles to determine their positions and velocities. A three-dimensional powder bed model of SS316L was developed using DEM. The powder particles are assumed to be perfect spheres, and the substrate and walls are assumed to be rigid. To describe the contact between the powder particles and between the particles and the substrate, a non-slip Hertz–Mindlin nonlinear spring-damping model71 was used with the following expression:�hz=��������+��[(�����ij−�eff����)−(�����+�eff����)],

(3)

where �hz is the force calculated using the Hertzian in M. �� and �� are the radius of unit particles � and � in m, respectively. �� is the overlap size of the two powder particles in m. ��⁠, �� are the elastic constants in the normal and tangential directions, respectively. �ij is the unit vector connecting the centerlines of the two powder particles. �eff is the effective mass of the two powder particles in kg. �� and �� are the viscoelastic damping constants in the normal and tangential directions, respectively. �� and �� are the components of the relative velocities of the two powder particles. ��� is the displacement vector between two spherical particles. The schematic diagram of overlapping powder particles is shown in Fig. 1.

FIG. 1.

VIEW LARGEDOWNLOAD SLIDE

Schematic diagram of overlapping powder particles.

Because the particle size of the powder used for HP-LPBF is much smaller than 100 μm, the effect of van der Waals forces must be considered. Therefore, the cohesive force �jkr of the Hertz–Mindlin model was used instead of van der Waals forces,72 with the following expression:�jkr=−4��0�*�1.5+4�*3�*�3,

(4)1�*=(1−��2)��+(1−��2)��,

(5)1�*=1��+1��,

(6)

where �* is the equivalent Young’s modulus in GPa; �* is the equivalent particle radius in m; �0 is the surface energy of the powder particles in J/m2; α is the contact radius in m; �� and �� are the Young’s modulus of the unit particles � and �⁠, respectively, in GPa; and �� and �� are the Poisson’s ratio of the unit particles � and �⁠, respectively.

2. Model building

Figure 2 shows a 3D powder bed model generated using DEM with a coarse powder geometry of 1000 × 400 × 30 μm3. The powder layer thickness is 30 μm, and the powder bed porosity is 40%. The average particle size of this spherical powder is 31.7 μm and is normally distributed in the range of 15–53 μm. The geometry of the fine powder was 1000 × 400 × 20 μm3, with a layer thickness of 20 μm, and the powder bed porosity of 40%. The average particle size of this spherical powder is 11.5 μm and is normally distributed in the range of 5–25 μm. After the 3D powder bed model is generated, it needs to be imported into the CFD simulation software for calculation, and the imported geometric model is shown in Fig. 3. This geometric model is mainly composed of three parts: protective gas, powder bed, and substrate. Under the premise of ensuring the accuracy of the calculation, the mesh size is set to 3 μm, and the total number of coarse powder meshes is 1 704 940. The total number of fine powder meshes is 3 982 250.

FIG. 2.

VIEW LARGEDOWNLOAD SLIDE

Three-dimensional powder bed model: (a) coarse powder, (b) fine powder.

FIG. 3.

VIEW LARGEDOWNLOAD SLIDE

Geometric modeling of the powder bed computational domain: (a) coarse powder, (b) fine powder.

B. Modeling of fluid mechanics simulation

In order to solve the flow, melting, and solidification problems involved in HP-LPBF molten pool, the study must follow the three governing equations of conservation of mass, conservation of energy, and conservation of momentum.73 The VOF method, which is the most widely used in fluid dynamics, is used to solve the molten pool dynamics model.

1. VOF

VOF is a method for tracking the free interface between the gas and liquid phases on the molten pool surface. The core idea of the method is to define a volume fraction function F within each grid, indicating the proportion of the grid space occupied by the material, 0 ≤ F ≤ 1 in Fig. 4. Specifically, when F = 0, the grid is empty and belongs to the gas-phase region; when F = 1, the grid is completely filled with material and belongs to the liquid-phase region; and when 0 < F < 1, the grid contains free surfaces and belongs to the mixed region. The direction normal to the free surface is the direction of the fastest change in the volume fraction F (the direction of the gradient of the volume fraction), and the direction of the gradient of the volume fraction can be calculated from the values of the volume fractions in the neighboring grids.74 The equations controlling the VOF are expressed as follows:𝛻����+�⋅(��→)=0,

(7)

where t is the time in s and �→ is the liquid velocity in m/s.

FIG. 4.

VIEW LARGEDOWNLOAD SLIDE

Schematic diagram of VOF.

The material parameters of the mixing zone are altered due to the inclusion of both the gas and liquid phases. Therefore, in order to represent the density of the mixing zone, the average density �¯ is used, which is expressed as follows:72�¯=(1−�1)�gas+�1�metal,

(8)

where �1 is the proportion of liquid phase, �gas is the density of protective gas in kg/m3, and �metal is the density of metal in kg/m3.

2. Control equations and boundary conditions

Figure 5 is a schematic diagram of the HP-LPBF melting process. First, the laser light strikes a localized area of the material and rapidly heats up the area. Next, the energy absorbed in the region is diffused through a variety of pathways (heat conduction, heat convection, and surface radiation), and this process triggers complex phase transition phenomena (melting, evaporation, and solidification). In metals undergoing melting, the driving forces include surface tension and the Marangoni effect, recoil due to evaporation, and buoyancy due to gravity and uneven density. The above physical phenomena interact with each other and do not occur independently.

FIG. 5.

VIEW LARGEDOWNLOAD SLIDE

Schematic diagram of HP-LPBF melting process.

  1. Laser heat sourceThe Gaussian surface heat source model is used as the laser heat source model with the following expression:�=2�0����2exp(−2�12��2),(9)where � is the heat flow density in W/m2, �0 is the absorption rate of SS316L, �� is the radius of the laser focal spot in m, and �1 is the radial distance from the center of the laser focal spot in m. The laser focal spot can be used for a wide range of applications.
  2. Energy absorptionThe formula for calculating the laser absorption �0 of SS316L is as follows:�0=0.365(�0[1+�0(�−20)]/�)0.5,(10)where �0 is the direct current resistivity of SS316L at 20 °C in Ω m, �0 is the resistance temperature coefficient in ppm/°C, � is the temperature in °C, and � is the laser wavelength in m.
  3. Heat transferThe basic principle of heat transfer is conservation of energy, which is expressed as follows:𝛻𝛻𝛻�(��)��+�·(��→�)=�·(�0����)+��,(11)where � is the density of liquid phase SS316L in kg/m3, �� is the specific heat capacity of SS316L in J/(kg K), 𝛻� is the gradient operator, t is the time in s, T is the temperature in K, 𝛻�� is the temperature gradient, �→ is the velocity vector, �0 is the coefficient of thermal conduction of SS316L in W/(m K), and  �� is the thermal energy dissipation term in the molten pool.
  4. Molten pool flowThe following three conditions need to be satisfied for the molten pool to flow:
    • Conservation of mass with the following expression:𝛻�·(��→)=0.(12)
    • Conservation of momentum (Navier–Stokes equation) with the following expression:𝛻𝛻𝛻𝛻���→��+�(�→·�)�→=�·[−pI+�(��→+(��→)�)]+�,(13)where � is the pressure in Pa exerted on the liquid phase SS316L microelement, � is the unit matrix, � is the fluid viscosity in N s/m2, and � is the volumetric force (gravity, atmospheric pressure, surface tension, vapor recoil, and the Marangoni effect).
    • Conservation of energy, see Eq. (11)
  5. Surface tension and the Marangoni effectThe effect of temperature on the surface tension coefficient is considered and set as a linear relationship with the following expression:�=�0−��dT(�−��),(14)where � is the surface tension of the molten pool at temperature T in N/m, �� is the melting temperature of SS316L in K, �0 is the surface tension of the molten pool at temperature �� in Pa, and σdσ/ dT is the surface tension temperature coefficient in N/(m K).In general, surface tension decreases with increasing temperature. A temperature gradient causes a gradient in surface tension that drives the liquid to flow, known as the Marangoni effect.
  6. Metal vapor recoilAt higher input energy densities, the maximum temperature of the molten pool surface reaches the evaporation temperature of the material, and a gasification recoil pressure occurs vertically downward toward the molten pool surface, which will be the dominant driving force for the molten pool flow.75 The expression is as follows:��=0.54�� exp ���−���0���,(15)where �� is the gasification recoil pressure in Pa, �� is the ambient pressure in kPa, �� is the latent heat of evaporation in J/kg, �0 is the gas constant in J/(mol K), T is the surface temperature of the molten pool in K, and Te is the evaporation temperature in K.
  7. Solid–liquid–gas phase transitionWhen the laser hits the powder layer, the powder goes through three stages: heating, melting, and solidification. During the solidification phase, mutual transformations between solid, liquid, and gaseous states occur. At this point, the latent heat of phase transition absorbed or released during the phase transition needs to be considered.68 The phase transition is represented based on the relationship between energy and temperature with the following expression:�=�����,(�<��),�(��)+�−����−����,(��<�<��)�(��)+(�−��)����,(��<�),,(16)where �� and �� are solid and liquid phase density, respectively, of SS316L in kg/m3. �� and �� unit volume of solid and liquid phase-specific heat capacity, respectively, of SS316L in J/(kg K). �� and ��⁠, respectively, are the solidification temperature and melting temperature of SS316L in K. �� is the latent heat of the phase transition of SS316L melting in J/kg.

3. Assumptions

The CFD model was computed using the commercial software package FLOW-3D.76 In order to simplify the calculation and solution process while ensuring the accuracy of the results, the model makes the following assumptions:

  1. It is assumed that the effects of thermal stress and material solid-phase thermal expansion on the calculation results are negligible.
  2. The molten pool flow is assumed to be a Newtonian incompressible laminar flow, while the effects of liquid thermal expansion and density on the results are neglected.
  3. It is assumed that the surface tension can be simplified to an equivalent pressure acting on the free surface of the molten pool, and the effect of chemical composition on the results is negligible.
  4. Neglecting the effect of the gas flow field on the molten pool.
  5. The mass loss due to evaporation of the liquid metal is not considered.
  6. The influence of the plasma effect of the molten metal on the calculation results is neglected.

It is worth noting that the formulation of assumptions requires a trade-off between accuracy and computational efficiency. In the above models, some physical phenomena that have a small effect or high difficulty on the calculation results are simplified or ignored. Such simplifications make numerical simulations more efficient and computationally tractable, while still yielding accurate results.

4. Initial conditions

The preheating temperature of the substrate was set to 393 K, at which time all materials were in the solid state and the flow rate was zero.

5. Material parameters

The material used is SS316L and the relevant parameters required for numerical simulations are shown in Table I.46,77,78

TABLE I.

SS316L-related parameters.

PropertySymbolValue
Density of solid metal (kg/m3�metal 7980 
Solid phase line temperature (K) �� 1658 
Liquid phase line temperature (K) �� 1723 
Vaporization temperature (K) �� 3090 
Latent heat of melting (⁠ J/kg⁠) �� 2.60×105 
Latent heat of evaporation (⁠ J/kg⁠) �� 7.45×106 
Surface tension of liquid phase (N /m⁠) � 1.60 
Liquid metal viscosity (kg/m s) �� 6×10−3 
Gaseous metal viscosity (kg/m s) �gas 1.85×10−5 
Temperature coefficient of surface tension (N/m K) ��/�T 0.80×10−3 
Molar mass (⁠ kg/mol⁠) 0.05 593 
Emissivity � 0.26 
Laser absorption �0 0.35 
Ambient pressure (kPa) �� 101 325 
Ambient temperature (K) �0 300 
Stefan–Boltzmann constant (W/m2 K4� 5.67×10−8 
Thermal conductivity of metals (⁠ W/m K⁠) � 24.55 
Density of protective gas (kg/m3�gas 1.25 
Coefficient of thermal expansion (/K) �� 16×10−6 
Generalized gas constant (⁠ J/mol K⁠) 8.314 

III. RESULTS AND DISCUSSION

With the objective of studying in depth the evolutionary patterns of single-track and double-track molten pool development, detailed observations were made for certain specific locations in the model, as shown in Fig. 6. In this figure, P1 and P2 represent the longitudinal tangents to the centers of the two melt tracks in the XZ plane, while L1 is the transverse profile in the YZ plane. The scanning direction is positive and negative along the X axis. Points A and B are the locations of the centers of the molten pool of the first and second melt tracks, respectively (x = 1.995 × 10−4, y = 5 × 10−7, and z = −4.85 × 10−5).

FIG. 6.

VIEW LARGEDOWNLOAD SLIDE

Schematic diagram of observation position.

A. Single-track simulation

A series of single-track molten pool simulation experiments were carried out in order to investigate the influence law of laser power as well as scanning speed on the HP-LPBF process. Figure 7 demonstrates the evolution of the 3D morphology and temperature field of the single-track molten pool in the time period of 50–500 μs under a laser power of 100 W and a scanning speed of 800 mm/s. The powder bed is in the natural cooling state. When t = 50 μs, the powder is heated by the laser heat and rapidly melts and settles to form the initial molten pool. This process is accompanied by partial melting of the substrate and solidification together with the melted powder. The molten pool rapidly expands with increasing width, depth, length, and temperature, as shown in Fig. 7(a). When t = 150 μs, the molten pool expands more obviously, and the temperature starts to transfer to the surrounding area, forming a heat-affected zone. At this point, the width of the molten pool tends to stabilize, and the temperature in the center of the molten pool has reached its peak and remains largely stable. However, the phenomenon of molten pool spatter was also observed in this process, as shown in Fig. 7(b). As time advances, when t = 300 μs, solidification begins to occur at the tail of the molten pool, and tiny ripples are produced on the solidified surface. This is due to the fact that the melt flows toward the region with large temperature gradient under the influence of Marangoni convection and solidifies together with the melt at the end of the bath. At this point, the temperature gradient at the front of the bath is significantly larger than at the end. While the width of the molten pool was gradually reduced, the shape of the molten pool was gradually changed to a “comet” shape. In addition, a slight depression was observed at the top of the bath because the peak temperature at the surface of the bath reached the evaporation temperature, which resulted in a recoil pressure perpendicular to the surface of the bath downward, creating a depressed region. As the laser focal spot moves and is paired with the Marangoni convection of the melt, these recessed areas will be filled in as shown in Fig. 7(c). It has been shown that the depressed regions are the result of the coupled effect of Marangoni convection, recoil pressure, and surface tension.79 By t = 500 μs, the width and height of the molten pool stabilize and show a “comet” shape in Fig. 7(d).

FIG. 7.

VIEW LARGEDOWNLOAD SLIDE

Single-track molten pool process: (a) t = 50  ��⁠, (b) t = 150  ��⁠, (c) t = 300  ��⁠, (d) t = 500  ��⁠.

Figure 8 depicts the velocity vector diagram of the P1 profile in a single-track molten pool, the length of the arrows represents the magnitude of the velocity, and the maximum velocity is about 2.36 m/s. When t = 50 μs, the molten pool takes shape, and the velocities at the two ends of the pool are the largest. The variation of the velocities at the front end is especially more significant in Fig. 8(a). As the time advances to t = 150 μs, the molten pool expands rapidly, in which the velocity at the tail increases and changes more significantly, while the velocity at the front is relatively small. At this stage, the melt moves backward from the center of the molten pool, which in turn expands the molten pool area. The melt at the back end of the molten pool center flows backward along the edge of the molten pool surface and then converges along the edge of the molten pool to the bottom center, rising to form a closed loop. Similarly, a similar closed loop is formed at the front end of the center of the bath, but with a shorter path. However, a large portion of the melt in the center of the closed loop formed at the front end of the bath is in a nearly stationary state. The main cause of this melt flow phenomenon is the effect of temperature gradient and surface tension (the Marangoni effect), as shown in Figs. 8(b) and 8(e). This dynamic behavior of the melt tends to form an “elliptical” pool. At t = 300 μs, the tendency of the above two melt flows to close the loop is more prominent and faster in Fig. 8(c). When t = 500 μs, the velocity vector of the molten pool shows a stable trend, and the closed loop of melt flow also remains stable. With the gradual laser focal spot movement, the melt is gradually solidified at its tail, and finally, a continuous and stable single track is formed in Fig. 8(d).

FIG. 8.

VIEW LARGEDOWNLOAD SLIDE

Vector plot of single-track molten pool velocity in XZ longitudinal section: (a) t = 50  ��⁠, (b) t = 150  ��⁠, (c) t = 300  ��⁠, (d) t = 500  ��⁠, (e) molten pool flow.

In order to explore in depth the transient evolution of the molten pool, the evolution of the single-track temperature field and the melt flow was monitored in the YZ cross section. Figure 9(a) shows the state of the powder bed at the initial moment. When t = 250 μs, the laser focal spot acts on the powder bed and the powder starts to melt and gradually collects in the molten pool. At this time, the substrate will also start to melt, and the melt flow mainly moves in the downward and outward directions and the velocity is maximum at the edges in Fig. 9(b). When t = 300 μs, the width and depth of the molten pool increase due to the recoil pressure. At this time, the melt flows more slowly at the center, but the direction of motion is still downward in Fig. 9(c). When t = 350 μs, the width and depth of the molten pool further increase, at which time the intensity of the melt flow reaches its peak and the direction of motion remains the same in Fig. 9(d). When t = 400 μs, the melt starts to move upward, and the surrounding powder or molten material gradually fills up, causing the surface of the molten pool to begin to flatten. At this time, the maximum velocity of the melt is at the center of the bath, while the velocity at the edge is close to zero, and the edge of the melt starts to solidify in Fig. 9(e). When t = 450 μs, the melt continues to move upward, forming a convex surface of the melt track. However, the melt movement slows down, as shown in Fig. 9(f). When t = 500 μs, the melt further moves upward and its speed gradually becomes smaller. At the same time, the melt solidifies further, as shown in Fig. 9(g). When t = 550 μs, the melt track is basically formed into a single track with a similar “mountain” shape. At this stage, the velocity is close to zero only at the center of the molten pool, and the flow behavior of the melt is poor in Fig. 9(h). At t = 600 μs, the melt stops moving and solidification is rapidly completed. Up to this point, a single track is formed in Fig. 9(i). During the laser action on the powder bed, the substrate melts and combines with the molten state powder. The powder-to-powder fusion is like the convergence of water droplets, which are rapidly fused by surface tension. However, the fusion between the molten state powder and the substrate occurs driven by surface tension, and the molten powder around the molten pool is pulled toward the substrate (a wetting effect occurs), which ultimately results in the formation of a monolithic whole.38,80,81

FIG. 9.

VIEW LARGEDOWNLOAD SLIDE

Evolution of single-track molten pool temperature and melt flow in the YZ cross section: (a) t = 0  ��⁠, (b) t = 250  ��⁠, (c) t = 300  ��⁠, (d) t = 350  ��⁠, (e) t = 400  ��⁠, (f) t = 450  ��⁠, (g) t = 500  ��⁠, (h) t = 550  ��⁠, (i) t = 600  ��⁠.

The wetting ability between the liquid metal and the solid substrate in the molten pool directly affects the degree of balling of the melt,82,83 and the wetting ability can be measured by the contact angle of a single track in Fig. 10. A smaller value of contact angle represents better wettability. The contact angle α can be calculated by�=�1−�22,

(17)

where �1 and �2 are the contact angles of the left and right regions, respectively.

FIG. 10.

VIEW LARGEDOWNLOAD SLIDE

Schematic of contact angle.

Relevant studies have confirmed that the wettability is better at a contact angle α around or below 40°.84 After measurement, a single-track contact angle α of about 33° was obtained under this process parameter, which further confirms the good wettability.

B. Double-track simulation

In order to deeply investigate the influence of hatch spacing on the characteristics of the HP-LPBF process, a series of double-track molten pool simulation experiments were systematically carried out. Figure 11 shows in detail the dynamic changes of the 3D morphology and temperature field of the double-track molten pool in the time period of 2050–2500 μs under the conditions of laser power of 100 W, scanning speed of 800 mm/s, and hatch spacing of 0.06 mm. By comparing the study with Fig. 7, it is observed that the basic characteristics of the 3D morphology and temperature field of the second track are similar to those of the first track. However, there are subtle differences between them. The first track exhibits a basically symmetric shape, but the second track morphology shows a slight deviation influenced by the difference in thermal diffusion rate between the solidified metal and the powder. Otherwise, the other characteristic information is almost the same as that of the first track. Figure 12 shows the velocity vector plot of the P2 profile in the double-track molten pool, with a maximum velocity of about 2.63 m/s. The melt dynamics at both ends of the pool are more stable at t = 2050 μs, where the maximum rate of the second track is only 1/3 of that of the first one. Other than that, the rest of the information is almost no significant difference from the characteristic information of the first track. Figure 13 demonstrates a detailed observation of the double-track temperature field and melts flow in the YZ cross section, and a comparative study with Fig. 9 reveals that the width of the second track is slightly wider. In addition, after the melt direction shifts from bottom to top, the first track undergoes four time periods (50 μs) to reach full solidification, while the second track takes five time periods. This is due to the presence of significant heat buildup in the powder bed after the forming of the first track, resulting in a longer dynamic time of the melt and an increased molten pool lifetime. In conclusion, the level of specimen forming can be significantly optimized by adjusting the laser power and hatch spacing.

FIG. 11.

VIEW LARGEDOWNLOAD SLIDE

Double-track molten pool process: (a) t = 2050  ��⁠, (b) t = 2150  ��⁠, (c) t = 2300  ��⁠, (d) t = 2500  ��⁠.

FIG. 12.

VIEW LARGEDOWNLOAD SLIDE

Vector plot of double-track molten pool velocity in XZ longitudinal section: (a) t = 2050  ��⁠, (b) t = 2150  ��⁠, (c) t = 2300  ��⁠, (d) t = 2500  ��⁠.

FIG. 13.

VIEW LARGEDOWNLOAD SLIDE

Evolution of double-track molten pool temperature and melt flow in the YZ cross section: (a) t = 2250  ��⁠, (b) t = 2300  ��⁠, (c) t = 2350  ��⁠, (d) t = 2400  ��⁠, (e) t = 2450  ��⁠, (f) t = 2500  ��⁠, (g) t = 2550  ��⁠, (h) t = 2600  ��⁠, (i) t = 2650  ��⁠.

In order to quantitatively detect the molten pool dimensions as well as the remolten region dimensions, the molten pool characterization information in Fig. 14 is constructed by drawing the boundary on the YZ cross section based on the isothermal surface of the liquid phase line. It can be observed that the heights of the first track and second track are basically the same, but the depth of the second track increases relative to the first track. The molten pool width is mainly positively correlated with the laser power as well as the scanning speed (the laser line energy density �⁠). However, the remelted zone width is negatively correlated with the hatch spacing (the overlapping ratio). Overall, the forming quality of the specimens can be directly influenced by adjusting the laser power, scanning speed, and hatch spacing.

FIG. 14.

VIEW LARGEDOWNLOAD SLIDE

Double-track molten pool characterization information on YZ cross section.

In order to study the variation rule of the temperature in the center of the molten pool with time, Fig. 15 demonstrates the temperature variation curves with time for two reference points, A and B. Among them, the red dotted line indicates the liquid phase line temperature of SS316L. From the figure, it can be seen that the maximum temperature at the center of the molten pool in the first track is lower than that in the second track, which is mainly due to the heat accumulation generated after passing through the first track. The maximum temperature gradient was calculated to be 1.69 × 108 K/s. When the laser scanned the first track, the temperature in the center of the molten pool of the second track increased slightly. Similarly, when the laser scanned the second track, a similar situation existed in the first track. Since the temperature gradient in the second track is larger than that in the first track, the residence time of the liquid phase in the molten pool of the first track is longer than that of the second track.

FIG. 15.

VIEW LARGEDOWNLOAD SLIDE

Temperature profiles as a function of time for two reference points A and B.

C. Simulation analysis of molten pool under different process parameters

In order to deeply investigate the effects of various process parameters on the mesoscopic-scale temperature field, molten pool characteristic information and defects of HP-LPBF, numerical simulation experiments on mesoscopic-scale laser power, scanning speed, and hatch spacing of double-track molten pools were carried out.

1. Laser power

Figure 16 shows the effects of different laser power on the morphology and temperature field of the double-track molten pool at a scanning speed of 800 mm/s and a hatch spacing of 0.06 mm. When P = 50 W, a smaller molten pool is formed due to the lower heat generated by the Gaussian light source per unit time. This leads to a smaller track width, which results in adjacent track not lapping properly and the presence of a large number of unmelted powder particles, resulting in an increase in the number of defects, such as pores in the specimen. The surface of the track is relatively flat, and the depth is small. In addition, the temperature gradient before and after the molten pool was large, and the depression location appeared at the biased front end in Fig. 16(a). When P = 100 W, the surface of the track is flat and smooth with excellent lap. Due to the Marangoni effect, the velocity field of the molten pool is in the form of “vortex,” and the melt has good fluidity, and the maximum velocity reaches 2.15 m/s in Fig. 16(b). When P = 200 W, the heat generated by the Gaussian light source per unit time is too large, resulting in the melt rapidly reaching the evaporation temperature, generating a huge recoil pressure, forming a large molten pool, and the surface of the track is obviously raised. The melt movement is intense, especially the closed loop at the center end of the molten pool. At this time, the depth and width of the molten pool are large, leading to the expansion of the remolten region and the increased chance of the appearance of porosity defects in Fig. 16(c). The results show that at low laser power, the surface tension in the molten pool is dominant. At high laser power, recoil pressure is its main role.

FIG. 16.

VIEW LARGEDOWNLOAD SLIDE

Simulation results of double-track molten pool under different laser powers: (a) P = 50 W, (b) P = 100 W, (c) P = 200 W.

Table II shows the effect of different laser powers on the characteristic information of the double-track molten pool at a scanning speed of 800 mm/s and a hatch spacing of 0.06 mm. The negative overlapping ratio in the table indicates that the melt tracks are not lapped, and 26/29 indicates the melt depth of the first track/second track. It can be seen that with the increase in laser power, the melt depth, melt width, melt height, and remelted zone show a gradual increase. At the same time, the overlapping ratio also increases. Especially in the process of laser power from 50 to 200 W, the melting depth and melting width increased the most, which increased nearly 2 and 1.5 times, respectively. Meanwhile, the overlapping ratio also increases with the increase in laser power, which indicates that the melting and fusion of materials are better at high laser power. On the other hand, the dimensions of the molten pool did not change uniformly with the change of laser power. Specifically, the depth-to-width ratio of the molten pool increased from about 0.30 to 0.39 during the increase from 50 to 120 W, which further indicates that the effective heat transfer in the vertical direction is greater than that in the horizontal direction with the increase in laser power. This dimensional response to laser power is mainly affected by the recoil pressure and also by the difference in the densification degree between the powder layer and the metal substrate. In addition, according to the experimental results, the contact angle shows a tendency to increase and then decrease during the process of laser power increase, and always stays within the range of less than 33°. Therefore, in practical applications, it is necessary to select the appropriate laser power according to the specific needs in order to achieve the best processing results.

TABLE II.

Double-track molten pool characterization information at different laser powers.

Laser power (W)Depth (μm)Width (μm)Height (μm)Remolten region (μm)Overlapping ratio (%)Contact angle (°)
50 16 54 11 −10 23 
100 26/29 74 14 18 23.33 33 
200 37/45 116 21 52 93.33 28 

2. Scanning speed

Figure 17 demonstrates the effect of different scanning speeds on the morphology and temperature field of the double-track molten pool at a laser power of 100 W and a hatch spacing of 0.06 mm. With the gradual increase in scanning speed, the surface morphology of the molten pool evolves from circular to elliptical. When � = 200 mm/s, the slow scanning speed causes the material to absorb too much heat, which is very easy to trigger the overburning phenomenon. At this point, the molten pool is larger and the surface morphology is uneven. This situation is consistent with the previously discussed scenario with high laser power in Fig. 17(a). However, when � = 1600 mm/s, the scanning speed is too fast, resulting in the material not being able to absorb sufficient heat, which triggers the powder particles that fail to melt completely to have a direct effect on the bonding of the melt to the substrate. At this time, the molten pool volume is relatively small and the neighboring melt track cannot lap properly. This result is consistent with the previously discussed case of low laser power in Fig. 17(b). Overall, the ratio of the laser power to the scanning speed (the line energy density �⁠) has a direct effect on the temperature field and surface morphology of the molten pool.

FIG. 17.

VIEW LARGEDOWNLOAD SLIDE

Simulation results of double-track molten pool under different scanning speed: (a)  � = 200 mm/s, (b)  � = 1600 mm/s.

Table III shows the effects of different scanning speed on the characteristic information of the double-track molten pool under the condition of laser power of 100 W and hatch spacing of 0.06 mm. It can be seen that the scanning speed has a significant effect on the melt depth, melt width, melt height, remolten region, and overlapping ratio. With the increase in scanning speed, the melt depth, melt width, melt height, remelted zone, and overlapping ratio show a gradual decreasing trend. Among them, the melt depth and melt width decreased faster, while the melt height and remolten region decreased relatively slowly. In addition, when the scanning speed was increased from 200 to 800 mm/s, the decreasing speeds of melt depth and melt width were significantly accelerated, while the decreasing speeds of overlapping ratio were relatively slow. When the scanning speed was further increased to 1600 mm/s, the decreasing speeds of melt depth and melt width were further accelerated, and the un-lapped condition of the melt channel also appeared. In addition, the contact angle increases and then decreases with the scanning speed, and both are lower than 33°. Therefore, when selecting the scanning speed, it is necessary to make reasonable trade-offs according to the specific situation, and take into account the factors of melt depth, melt width, melt height, remolten region, and overlapping ratio, in order to achieve the best processing results.

TABLE III.

Double-track molten pool characterization information at different scanning speeds.

Scanning speed (mm/s)Depth (μm)Width (μm)Height (μm)Remolten region (μm)Overlapping ratio (%)Contact angle (°)
200 55/68 182 19/32 124 203.33 22 
1600 13 50 11 −16.67 31 

3. Hatch spacing

Figure 18 shows the effect of different hatch spacing on the morphology and temperature field of the double-track molten pool under the condition of laser power of 100 W and scanning speed of 800 mm/s. The surface morphology and temperature field of the first track and second track are basically the same, but slightly different. The first track shows a basically symmetric morphology along the scanning direction, while the second track shows a slight offset due to the difference in the heat transfer rate between the solidified material and the powder particles. When the hatch spacing is too small, the overlapping ratio increases and the probability of defects caused by remelting phenomenon grows. When the hatch spacing is too large, the neighboring melt track cannot overlap properly, and the powder particles are not completely melted, leading to an increase in the number of holes. In conclusion, the ratio of the line energy density � to the hatch spacing (the volume energy density E) has a significant effect on the temperature field and surface morphology of the molten pool.

FIG. 18.

VIEW LARGEDOWNLOAD SLIDE

Simulation results of double-track molten pool under different hatch spacings: (a) H = 0.03 mm, (b) H = 0.12 mm.

Table IV shows the effects of different hatch spacing on the characteristic information of the double-track molten pool under the condition of laser power of 100 W and scanning speed of 800 mm/s. It can be seen that the hatch spacing has little effect on the melt depth, melt width, and melt height, but has some effect on the remolten region. With the gradual expansion of hatch spacing, the remolten region shows a gradual decrease. At the same time, the overlapping ratio also decreased with the increase in hatch spacing. In addition, it is observed that the contact angle shows a tendency to increase and then remain stable when the hatch spacing increases, which has a more limited effect on it. Therefore, trade-offs and decisions need to be made on a case-by-case basis when selecting the hatch spacing.

TABLE IV.

Double-track molten pool characterization information at different hatch spacings.

Hatch spacing (mm)Depth (μm)Width (μm)Height (μm)Remolten region (μm)Overlapping ratio (%)Contact angle (°)
0.03 25/27 82 14 59 173.33 30 
0.12 26 78 14 −35 33 

In summary, the laser power, scanning speed, and hatch spacing have a significant effect on the formation of the molten pool, and the correct selection of these three process parameters is crucial to ensure the forming quality. In addition, the melt depth of the second track is slightly larger than that of the first track at higher line energy density � and volume energy density E. This is mainly due to the fact that a large amount of heat accumulation is generated after the first track, forming a larger molten pool volume, which leads to an increase in the melt depth.

D. Simulation analysis of molten pool with powder particle size and laser focal spot diameter

Figure 19 demonstrates the effect of different powder particle sizes and laser focal spot diameters on the morphology and temperature field of the double-track molten pool under a laser power of 100 W, a scanning speed of 800 mm/s, and a hatch spacing of 0.06 mm. In the process of melting coarse powder with small laser focal spot diameter, the laser energy cannot completely melt the larger powder particles, resulting in their partial melting and further generating excessive pore defects. The larger powder particles tend to generate zigzag molten pool edges, which cause an increase in the roughness of the melt track surface. In addition, the molten pool is also prone to generate the present spatter phenomenon, which can directly affect the quality of forming. The volume of the formed molten pool is relatively small, while the melt depth, melt width, and melt height are all smaller relative to the fine powder in Fig. 19(a). In the process of melting fine powders with a large laser focal spot diameter, the laser energy is able to melt the fine powder particles sufficiently, even to the point of overmelting. This results in a large number of fine spatters being generated at the edge of the molten pool, which causes porosity defects in the melt track in Fig. 19(b). In addition, the maximum velocity of the molten pool is larger for large powder particle sizes compared to small powder particle sizes, which indicates that the temperature gradient in the molten pool is larger for large powder particle sizes and the melt motion is more intense. However, the size of the laser focal spot diameter has a relatively small effect on the melt motion. However, a larger focal spot diameter induces a larger melt volume with greater depth, width, and height. In conclusion, a small powder size helps to reduce the surface roughness of the specimen, and a small laser spot diameter reduces the minimum forming size of a single track.

FIG. 19.

VIEW LARGEDOWNLOAD SLIDE

Simulation results of double-track molten pool with different powder particle size and laser focal spot diameter: (a) focal spot = 25 μm, coarse powder, (b) focal spot = 80 μm, fine powder.

Table V shows the maximum temperature gradient at the reference point for different powder sizes and laser focal spot diameters. As can be seen from the table, the maximum temperature gradient is lower than that of HP-LPBF for both coarse powders with a small laser spot diameter and fine powders with a large spot diameter, a phenomenon that leads to an increase in the heat transfer rate of HP-LPBF, which in turn leads to a corresponding increase in the cooling rate and, ultimately, to the formation of finer microstructures.

TABLE V.

Maximum temperature gradient at the reference point for different powder particle sizes and laser focal spot diameters.

Laser power (W)Scanning speed (mm/s)Hatch spacing (mm)Average powder size (μm)Laser focal spot diameter (μm)Maximum temperature gradient (×107 K/s)
100 800 0.06 31.7 25 7.89 
11.5 80 7.11 

IV. CONCLUSIONS

In this study, the geometrical characteristics of 3D coarse and fine powder particles were first calculated using DEM and then numerical simulations of single track and double track in the process of forming SS316L from monolayer HP-LPBF at mesoscopic scale were developed using CFD method. The effects of Marangoni convection, surface tension, recoil pressure, gravity, thermal convection, thermal radiation, and evaporative heat dissipation on the heat and mass transfer in the molten pool were considered in this model. The effects of laser power, scanning speed, and hatch spacing on the dynamics of the single-track and double-track molten pools, as well as on other characteristic information, were investigated. The effects of the powder particle size on the molten pool were investigated comparatively with the laser focal spot diameter. The main conclusions are as follows:

  1. The results show that the temperature gradient at the front of the molten pool is significantly larger than that at the tail, and the molten pool exhibits a “comet” morphology. At the top of the molten pool, there is a slightly concave region, which is the result of the coupling of Marangoni convection, recoil pressure, and surface tension. The melt flow forms two closed loops, which are mainly influenced by temperature gradients and surface tension. This special dynamic behavior of the melt tends to form an “elliptical” molten pool and an almost “mountain” shape in single-track forming.
  2. The basic characteristics of the three-dimensional morphology and temperature field of the second track are similar to those of the first track, but there are subtle differences. The first track exhibits a basically symmetrical shape; however, due to the difference in thermal diffusion rates between the solidified metal and the powder, a slight asymmetry in the molten pool morphology of the second track occurs. After forming through the first track, there is a significant heat buildup in the powder bed, resulting in a longer dynamic time of the melt, which increases the life of the molten pool. The heights of the first track and second track remained essentially the same, but the depth of the second track was greater relative to the first track. In addition, the maximum temperature gradient was 1.69 × 108 K/s during HP-LPBF forming.
  3. At low laser power, the surface tension in the molten pool plays a dominant role. At high laser power, recoil pressure becomes the main influencing factor. With the increase of laser power, the effective heat transfer in the vertical direction is superior to that in the horizontal direction. With the gradual increase of scanning speed, the surface morphology of the molten pool evolves from circular to elliptical. In addition, the scanning speed has a significant effect on the melt depth, melt width, melt height, remolten region, and overlapping ratio. Too large or too small hatch spacing will lead to remelting or non-lap phenomenon, which in turn causes the formation of defects.
  4. When using a small laser focal spot diameter, it is difficult to completely melt large powder particle sizes, resulting in partial melting and excessive porosity generation. At the same time, large powder particles produce curved edges of the molten pool, resulting in increased surface roughness of the melt track. In addition, spatter occurs, which directly affects the forming quality. At small focal spot diameters, the molten pool volume is relatively small, and the melt depth, the melt width, and the melt height are correspondingly small. Taken together, the small powder particle size helps to reduce surface roughness, while the small spot diameter reduces the forming size.

REFERENCES

  1. S. L. Sing and W. Y. Yeong , “ Laser powder bed fusion for metal additive manufacturing: Perspectives on recent developments,” Virtual Phys. Prototyping. 15, 359–370 (2020).https://doi.org/10.1080/17452759.2020.1779999
    Google ScholarCrossref
  2. A. M. Khorasani , I. G. Jithin , J. K. Veetil , and A. H. Ghasemi , “ A review of technological improvements in laser-based powder bed fusion of metal printers,” Int. J. Adv. Manuf. Technol. 108, 191–209 (2020).https://doi.org/10.1007/s00170-020-05361-3
    Google ScholarCrossref
  3. Y. Qin , A. Brockett , Y. Ma , A. Razali , J. Zhao , C. Harrison , W. Pan , X. Dai , and D. Loziak , “ Micro-manufacturing: Research, technology outcomes and development issues,” Int. J. Adv. Manuf. Technol. 47, 821–837 (2010).https://doi.org/10.1007/s00170-009-2411-2
    Google ScholarCrossref
  4. B. Nagarajan , Z. Hu , X. Song , W. Zhai , and J. Wei , “ Development of micro selective laser melting: The state of the art and future perspectives,” Engineering. 5, 702–720 (2019).https://doi.org/10.1016/j.eng.2019.07.002
    Google ScholarCrossref
  5. Y. Wei , G. Chen , W. Li , Y. Zhou , Z. Nie , J. Xu , and W. Zhou , “ Micro selective laser melting of SS316L: Single tracks, defects, microstructures and thermal/mechanical properties,” Opt. Laser Technol. 145, 107469 (2022).https://doi.org/10.1016/j.optlastec.2021.107469
    Google ScholarCrossref
  6. Y. Wei , G. Chen , W. Li , M. Li , Y. Zhou , Z. Nie , and J. Xu , “ Process optimization of micro selective laser melting and comparison of different laser diameter for forming different powder,” Opt. Laser Technol. 150, 107953 (2022).https://doi.org/10.1016/j.optlastec.2022.107953
    Google ScholarCrossref
  7. H. Zhiheng , B. Nagarajan , X. Song , R. Huang , W. Zhai , and J. Wei , “ Formation of SS316L single tracks in micro selective laser melting: Surface, geometry, and defects,” Adv. Mater. Sci. Eng. 2019, 9451406.https://doi.org/10.1155/2019/9451406
    Crossref
  8. B. Nagarajan , Z. Hu , S. Gao , X. Song , R. Huang , M. Seita , and J. Wei , “ Effect of in-situ laser remelting on the microstructure of SS316L fabricated by micro selective laser melting,” in Advanced Surface Enhancement, edited by Sho Itoh and Shashwat Shukla , Lecture Notes in Mechanical Engineering ( Springer Singapore, Singapore, 2020), pp. 330–336.
    Google ScholarCrossref
  9. H. Zhiheng , B. Nagarajan , X. Song , R. Huang , W. Zhai , and J. Wei , “ Tailoring surface roughness of micro selective laser melted SS316L by in-situ laser remelting,” in Advanced Surface Enhancement, edited by Sho Itoh and Shashwat Shukla , Lecture Notes in Mechanical Engineering ( Springer Singapore, Singapore, 2020), pp. 337–343.
    Google Scholar
  10. J. Fu , Z. Hu , X. Song , W. Zhai , Y. Long , H. Li , and M. Fu , “ Micro selective laser melting of NiTi shape memory alloy: Defects, microstructures and thermal/mechanical properties,” Opt. Laser Technol. 131, 106374 (2020).https://doi.org/10.1016/j.optlastec.2020.106374
    Google ScholarCrossref
  11. E. Abele and M. Kniepkamp , “ Analysis and optimisation of vertical surface roughness in micro selective laser melting,” Surf. Topogr.: Metrol. Prop. 3, 034007 (2015).https://doi.org/10.1088/2051-672X/3/3/034007
    Google ScholarCrossref
  12. S. Qu , J. Ding , J. Fu , M. Fu , B. Zhang , and X. Song , “ High-precision laser powder bed fusion processing of pure copper,” Addit. Manuf. 48, 102417 (2021).https://doi.org/10.1016/j.addma.2021.102417
    Google ScholarCrossref
  13. Y. Wei , G. Chen , M. Li , W. Li , Y. Zhou , J. Xu , and Z. wei , “ High-precision laser powder bed fusion of 18Ni300 maraging steel and its SiC reinforcement composite materials,” J. Manuf. Process. 84, 750–763 (2022).https://doi.org/10.1016/j.jmapro.2022.10.049
    Google ScholarCrossref
  14. B. Liu , R. Wildman , T. Christopher , I. Ashcroft , and H. Richard , “ Investigation the effect of particle size distribution on processing parameters optimisation in selective laser melting process,” in 2011 International Solid Freeform Fabrication Symposium ( University of Texas at Austin, 2011).
    Google Scholar
  15. T. D. McLouth , G. E. Bean , D. B. Witkin , S. D. Sitzman , P. M. Adams , D. N. Patel , W. Park , J.-M. Yang , and R. J. Zaldivar , “ The effect of laser focus shift on microstructural variation of Inconel 718 produced by selective laser melting,” Mater. Des. 149, 205–213 (2018).https://doi.org/10.1016/j.matdes.2018.04.019
    Google ScholarCrossref
  16. Y. Qian , Y. Wentao , and L. Feng , “ Mesoscopic simulations of powder bed fusion: Research progresses and conditions,” Electromachining Mould 06, 46–52 (2017).https://doi.org/10.3969/j.issn.1009-279X.2017.06.012
    Google Scholar
  17. J. Fu , S. Qu , J. Ding , X. Song , and M. W. Fu , “ Comparison of the microstructure, mechanical properties and distortion of stainless Steel 316L fabricated by micro and conventional laser powder bed fusion,” Addit. Manuf. 44, 102067 (2021).https://doi.org/10.1016/j.addma.2021.102067
    Google ScholarCrossref
  18. N. T. Aboulkhair , I. Maskery , C. Tuck , I. Ashcroft , and N. M. Everitt , “ The microstructure and mechanical properties of selectively laser Melted AlSi10Mg: The effect of a conventional T6-like heat treatment,” Mater. Sci. Eng. A 667, 139–146 (2016).https://doi.org/10.1016/j.msea.2016.04.092
    Google ScholarCrossref
  19. S. Y. Chen , J. C. Huang , C. T. Pan , C. H. Lin , T. L. Yang , Y. S. Huang , C. H. Ou , L. Y. Chen , D. Y. Lin , H. K. Lin , T. H. Li , J. S. C. Jang , and C. C. Yang , “ Microstructure and mechanical properties of open-cell porous Ti-6Al-4V fabricated by selective laser melting,” J. Alloys Compd. 713, 248–254 (2017).https://doi.org/10.1016/j.jallcom.2017.04.190
    Google ScholarCrossref
  20. Y. Bai , Y. Yang , D. Wang , and M. Zhang , “ Influence mechanism of parameters process and mechanical properties evolution mechanism of Maraging steel 300 by selective laser melting,” Mater. Sci. Eng. A 703, 116–123 (2017).https://doi.org/10.1016/j.msea.2017.06.033
    Google ScholarCrossref
  21. Y. Bai , Y. Yang , Z. Xiao , M. Zhang , and D. Wang , “ Process optimization and mechanical property evolution of AlSiMg0.75 by selective laser melting,” Mater. Des. 140, 257–266 (2018).https://doi.org/10.1016/j.matdes.2017.11.045
    Google ScholarCrossref
  22. Y. Liu , M. Zhang , W. Shi , Y. Ma , and J. Yang , “ Study on performance optimization of 316L stainless steel parts by high-efficiency selective laser melting,” Opt. Laser Technol. 138, 106872 (2021).https://doi.org/10.1016/j.optlastec.2020.106872
    Google ScholarCrossref
  23. D. Gu , Y.-C. Hagedorn , W. Meiners , G. Meng , R. J. S. Batista , K. Wissenbach , and R. Poprawe , “ Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium,” Acta Mater. 60, 3849–3860 (2012).https://doi.org/10.1016/j.actamat.2012.04.006
    Google ScholarCrossref
  24. N. Read , W. Wang , K. Essa , and M. M. Attallah , “ Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development,” Mater. Des. 65, 417–424 (2015).https://doi.org/10.1016/j.matdes.2014.09.044
    Google ScholarCrossref
  25. I. A. Roberts , C. J. Wang , R. Esterlein , M. Stanford , and D. J. Mynors , “ A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing,” Int. J. Mach. Tools Manuf. 49(12–13), 916–923 (2009).https://doi.org/10.1016/j.ijmachtools.2009.07.004
    Google ScholarCrossref
  26. K. Dai and L. Shaw , “ Finite element analysis of the effect of volume shrinkage during laser densification,” Acta Mater. 53(18), 4743–4754 (2005).https://doi.org/10.1016/j.actamat.2005.06.014
    Google ScholarCrossref
  27. K. Carolin , E. Attar , and P. Heinl , “ Mesoscopic simulation of selective beam melting processes,” J. Mater. Process. Technol. 211(6), 978–987 (2011).https://doi.org/10.1016/j.jmatprotec.2010.12.016
    Google ScholarCrossref
  28. F.-J. Gürtler , M. Karg , K.-H. Leitz , and M. Schmidt , “ Simulation of laser beam melting of steel powders using the three-dimensional volume of fluid method,” Phys. Procedia 41, 881–886 (2013).https://doi.org/10.1016/j.phpro.2013.03.162
    Google ScholarCrossref
  29. P. Meakin and R. Jullien , “ Restructuring effects in the rain model for random deposition,” J. Phys. France 48(10), 1651–1662 (1987).https://doi.org/10.1051/jphys:0198700480100165100
    Google ScholarCrossref
  30. J-m Wang , G-h Liu , Y-l Fang , and W-k Li , “ Marangoni effect in nonequilibrium multiphase system of material processing,” Rev. Chem. Eng. 32(5), 551–585 (2016).https://doi.org/10.1515/revce-2015-0067
    Google ScholarCrossref
  31. W. Ye , S. Zhang , L. L. Mendez , M. Farias , J. Li , B. Xu , P. Li , and Y. Zhang , “ Numerical simulation of the melting and alloying processes of elemental titanium and boron powders using selective laser alloying,” J. Manuf. Process. 64, 1235–1247 (2021).https://doi.org/10.1016/j.jmapro.2021.02.044
    Google ScholarCrossref
  32. U. S. Bertoli , A. J. Wolfer , M. J. Matthews , J.-P. R. Delplanque , and J. M. Schoenung , “ On the limitations of volumetric energy density as a design parameter for selective laser melting,” Mater. Des. 113, 331–340 (2017).https://doi.org/10.1016/j.matdes.2016.10.037
    Google ScholarCrossref
  33. W. E. King , H. D. Barth , V. M. Castillo , G. F. Gallegos , J. W. Gibbs , D. E. Hahn , C. Kamath , and A. M. Rubenchik , “ Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing,” J. Mater. Process. Technol. 214(12), 2915–2925 (2014).https://doi.org/10.1016/j.jmatprotec.2014.06.005
    Google ScholarCrossref
  34. L. Cao , “ Numerical simulation of the impact of laying powder on selective laser melting single-pass formation,” Int. J. Heat Mass Transfer 141, 1036–1048 (2019).https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.053
    Google ScholarCrossref
  35. L. Huang , X. Hua , D. Wu , and F. Li , “ Numerical study of keyhole instability and porosity formation mechanism in laser welding of aluminum alloy and steel,” J. Mater. Process. Technol. 252, 421–431 (2018).https://doi.org/10.1016/j.jmatprotec.2017.10.011
    Google ScholarCrossref
  36. K. Q. Le , C. Tang , and C. H. Wong , “ On the study of keyhole-mode melting in selective laser melting process,” Int. J. Therm. Sci. 145, 105992 (2019).https://doi.org/10.1016/j.ijthermalsci.2019.105992
    Google ScholarCrossref
  37. J.-H. Cho and S.-J. Na , “ Theoretical analysis of keyhole dynamics in polarized laser drilling,” J. Phys. D: Appl. Phys. 40(24), 7638 (2007).https://doi.org/10.1088/0022-3727/40/24/007
    Google ScholarCrossref
  38. W. Ye , “ Mechanism analysis of selective laser melting and metallurgy process based on base element powder of titanium and boron,” Ph.D. dissertation ( Nanchang University, 2021).
    Google Scholar
  39. R. Ammer , M. Markl , U. Ljungblad , C. Körner , and U. Rüde , “ Simulating fast electron beam melting with a parallel thermal free surface lattice Boltzmann method,” Comput. Math. Appl. 67(2), 318–330 (2014).https://doi.org/10.1016/j.camwa.2013.10.001
    Google ScholarCrossref
  40. H. Chen , Q. Wei , S. Wen , Z. Li , and Y. Shi , “ Flow behavior of powder particles in layering process of selective laser melting: Numerical modeling and experimental verification based on discrete element method,” Int. J. Mach. Tools Manuf. 123, 146–159 (2017).https://doi.org/10.1016/j.ijmachtools.2017.08.004
    Google ScholarCrossref
  41. F. Verhaeghe , T. Craeghs , J. Heulens , and L. Pandelaers , “ A pragmatic model for selective laser melting with evaporation,” Acta Mater. 57(20), 6006–6012 (2009).https://doi.org/10.1016/j.actamat.2009.08.027
    Google ScholarCrossref
  42. C. H. Fu and Y. B. Guo , “ Three-dimensional temperature gradient mechanism in selective laser melting of Ti-6Al-4V,” J. Manuf. Sci. Eng. 136(6), 061004 (2014).https://doi.org/10.1115/1.4028539
    Google ScholarCrossref
  43. Y. Xiang , Z. Shuzhe , L. Junfeng , W. Zhengying , Y. Lixiang , and J. Lihao , “ Numerical simulation and experimental verification for selective laser single track melting forming of Ti6Al4V,” J. Zhejiang Univ. (Eng. Sci.) 53(11), 2102–2109 + 2117 (2019).https://doi.org/10.3785/j.issn.1008-973X.2019.11.007
    Google Scholar
  44. Q. He , H. Xia , J. Liu , X. Ao , and S. Lin , “ Modeling and numerical studies of selective laser melting: Multiphase flow, solidification and heat transfer,” Mater. Des. 196, 109115 (2020).https://doi.org/10.1016/j.matdes.2020.109115
    Google ScholarCrossref
  45. L. Cao , “ Mesoscopic-scale numerical simulation including the influence of process parameters on SLM single-layer multi-pass formation,” Metall. Mater. Trans. A 51, 4130–4145 (2020).https://doi.org/10.1007/s11661-020-05831-z
    Google ScholarCrossref
  46. L. Cao , “ Mesoscopic-scale numerical investigation including the influence of process parameters on LPBF multi-layer multi-path formation,” Comput. Model. Eng. Sci. 126(1), 5–23 (2021).https://doi.org/10.32604/cmes.2021.014693
    Google ScholarCrossref
  47. H. Yin and S. D. Felicelli , “ Dendrite growth simulation during solidification in the LENS process,” Acta Mater. 58(4), 1455–1465 (2010).https://doi.org/10.1016/j.actamat.2009.10.053
    Google ScholarCrossref
  48. P. Nie , O. A. Ojo , and Z. Li , “ Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy,” Acta Mater. 77, 85–95 (2014).https://doi.org/10.1016/j.actamat.2014.05.039
    Google ScholarCrossref
  49. Z. Liu and H. Qi , “ Effects of substrate crystallographic orientations on crystal growth and microstructure formation in laser powder deposition of nickel-based superalloy,” Acta Mater. 87, 248–258 (2015).https://doi.org/10.1016/j.actamat.2014.12.046
    Google ScholarCrossref
  50. L. Wei , L. Xin , W. Meng , and H. Weidong , “ Cellular automaton simulation of the molten pool of laser solid forming process,” Acta Phys. Sin. 64(01), 018103–018363 (2015).https://doi.org/10.7498/aps.64.018103
    Google ScholarCrossref
  51. R. Acharya , J. A. Sharon , and A. Staroselsky , “ Prediction of microstructure in laser powder bed fusion process,” Acta Mater. 124, 360–371 (2017).https://doi.org/10.1016/j.actamat.2016.11.018
    Google ScholarCrossref
  52. M. R. Rolchigo and R. LeSar , “ Modeling of binary alloy solidification under conditions representative of additive manufacturing,” Comput. Mater. Sci. 150, 535–545 (2018).https://doi.org/10.1016/j.commatsci.2018.04.004
    Google ScholarCrossref
  53. S. Geng , P. Jiang , L. Guo , X. Gao , and G. Mi , “ Multi-scale simulation of grain/sub-grain structure evolution during solidification in laser welding of aluminum alloys,” Int. J. Heat Mass Transfer 149, 119252 (2020).https://doi.org/10.1016/j.ijheatmasstransfer.2019.119252
    Google ScholarCrossref
  54. W. L. Wang , W. Q. Liu , X. Yang , R. R. Xu , and Q. Y. Dai , “ Multi-scale simulation of columnar-to-equiaxed transition during laser selective melting of rare earth magnesium alloy,” J. Mater. Sci. Technol. 119, 11–24 (2022).https://doi.org/10.1016/j.jmst.2021.12.029
    Google ScholarCrossref
  55. Q. Xia , J. Yang , and Y. Li , “ On the conservative phase-field method with the N-component incompressible flows,” Phys. Fluids 35, 012120 (2023).https://doi.org/10.1063/5.0135490
    Google ScholarCrossref
  56. Q. Xia , G. Sun , J. Kim , and Y. Li , “ Multi-scale modeling and simulation of additive manufacturing based on fused deposition technique,” Phys. Fluids 35, 034116 (2023).https://doi.org/10.1063/5.0141316
    Google ScholarCrossref
  57. A. Hussein , L. Hao , C. Yan , and R. Everson , “ Finite element simulation of the temperature and stress fields in single layers built without-support in selective laser melting,” Mater. Des. 52, 638–647 (2013).https://doi.org/10.1016/j.matdes.2013.05.070
    Google ScholarCrossref
  58. J. Ding , P. Colegrove , J. Mehnen , S. Ganguly , P. M. Sequeira Almeida , F. Wang , and S. Williams , “ Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts,” Comput. Mater. Sci. 50(12), 3315–3322 (2011).https://doi.org/10.1016/j.commatsci.2011.06.023
    Google ScholarCrossref
  59. Y. Du , X. You , F. Qiao , L. Guo , and Z. Liu , “ A model for predicting the temperature field during selective laser melting,” Results Phys. 12, 52–60 (2019).https://doi.org/10.1016/j.rinp.2018.11.031
    Google ScholarCrossref
  60. X. Luo , M. Liu , L. Zhenhua , H. Li , and J. Shen , “ Effect of different heat-source models on calculated temperature field of selective laser melted 18Ni300,” Chin. J. Lasers 48(14), 1402005–1402062 (2021).https://doi.org/10.3788/CJL202148.1402005
    Google ScholarCrossref
  61. J. F. Li , L. Li , and F. H. Stott , “ Thermal stresses and their implication on cracking during laser melting of ceramic materials,” Acta Mater. 52(14), 4385–4398 (2004).https://doi.org/10.1016/j.actamat.2004.06.005
    Google ScholarCrossref
  62. P. Aggarangsi and J. L. Beuth , “ Localized preheating approaches for reducing residual stress in additive manufacturing,” paper presented at the 2006 International Solid Freeform Fabrication Symposium, The University of Texas in Austin on August 14–16, 2006.
  63. K. Dai and L. Shaw , “ Thermal and mechanical finite element modeling of laser forming from metal and ceramic powders,” Acta Mater. 52(1), 69–80 (2004).https://doi.org/10.1016/j.actamat.2003.08.028
    Google ScholarCrossref
  64. A. H. Nickel , D. M. Barnett , and F. B. Prinz , “ Thermal stresses and deposition patterns in layered manufacturing,” Mater. Sci. Eng. A 317(1–2), 59–64 (2001).https://doi.org/10.1016/S0921-5093(01)01179-0
    Google ScholarCrossref
  65. M. F. Zaeh and G. Branner , “ Investigations on residual stresses and deformations in selective laser melting,” Prod. Eng. 4(1), 35–45 (2010).https://doi.org/10.1007/s11740-009-0192-y
    Google ScholarCrossref
  66. P. Bian , J. Shi , Y. Liu , and Y. Xie , “ Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel,” Opt. Laser Technol. 132, 106477 (2020).https://doi.org/10.1016/j.optlastec.2020.106477
    Google ScholarCrossref
  67. B. M. Marques , C. M. Andrade , D. M. Neto , M. C. Oliveira , J. L. Alves , and L. F. Menezes , “ Numerical analysis of residual stresses in parts produced by selective laser melting process,” Procedia Manuf. 47, 1170–1177 (2020).https://doi.org/10.1016/j.promfg.2020.04.167
    Google ScholarCrossref
  68. W. Mu , “ Numerical simulation of SLM forming process and research and prediction of forming properties,” MA thesis ( Anhui Jianzhu University, 2022).
    Google Scholar
  69. Y. Zhang , “ Multi-scale multi-physics modeling of laser powder bed fusion process of metallic materials with experiment validation,” Ph.D. dissertation ( Purdue University, 2018).
    Google Scholar
  70. Y. Qian , “ Mesoscopic simulation studies of key processing issues for powder bed fusion technology,” Ph.D. dissertation ( Tsinghua University, 2019).
    Google Scholar
  71. N. V. Brilliantov , S. Frank , J.-M. Hertzsch , and T. Pöschel , “ Model for collisions in granular gases,” Phys. Rev. E 53(5), 5382–5392 (1996).https://doi.org/10.1103/PhysRevE.53.5382
    Google ScholarCrossref
  72. Z. Xiao , “ Research on microscale selective laser melting process of high strength pure copper specimens,” MA thesis ( Hunan University, 2022).
    Google Scholar
  73. Z. Li , K. Mukai , M. Zeze , and K. C. Mills , “ Determination of the surface tension of liquid stainless steel,” J. Mater. Sci. 40(9–10), 2191–2195 (2005).https://doi.org/10.1007/s10853-005-1931-x
    Google ScholarCrossref
  74. R. Scardovelli and S. Zaleski , “ Analytical relations connecting linear interfaces and volume fractions in rectangular grids,” J. Comput. Phys. 164(1), 228–237 (2000).https://doi.org/10.1006/jcph.2000.6567
    Google ScholarCrossref
  75. D.-W. Cho , W.-I. Cho , and S.-J. Na , “ Modeling and simulation of arc: Laser and hybrid welding process,” J. Manuf. Process. 16(1), 26–55 (2014).https://doi.org/10.1016/j.jmapro.2013.06.012
    Google ScholarCrossref
    76.Flow3D. Version 11.1.0: User Manual ( FlowScience, Santa Fe, NM, USA, 2015).
  76. Y. Tian , L. Yang , D. Zhao , Y. Huang , and J. Pan , “ Numerical analysis of powder bed generation and single track forming for selective laser melting of ss316l stainless steel,” J. Manuf. Process. 58, 964–974 (2020).https://doi.org/10.1016/j.jmapro.2020.09.002
    Google ScholarCrossref
  77. C. Tang , K. Q. Le , and C. H. Wong , “ Physics of humping formation in laser powder bed fusion,” Int. J. Heat Mass Transfer 149, 119172 (2020).https://doi.org/10.1016/j.ijheatmasstransfer.2019.119172
    Google ScholarCrossref
  78. L. Cao , “ Mesoscopic-scale simulation of pore evolution during laser powder bed fusion process,” Comput. Mater. Sci. 179, 109686 (2020).https://doi.org/10.1016/j.commatsci.2020.109686
    Google ScholarCrossref
  79. R. Li , J. Liu , Y. Shi , W. Li , and W. Jiang , “ Balling behavior of stainless steel and nickel powder during selective laser melting process,” Int. J. Adv. Manuf. Technol. 59(9–12), 1025–1035 (2012).https://doi.org/10.1007/s00170-011-3566-1
    Google ScholarCrossref
  80. S. A. Khairallah and A. Anderson , “ Mesoscopic simulation model of selective laser melting of stainless steel powder,” J. Mater. Process. Technol. 214(11), 2627–2636 (2014).https://doi.org/10.1016/j.jmatprotec.2014.06.001
    Google ScholarCrossref
  81. J. Liu , D. Gu , H. Chen , D. Dai , and H. Zhang , “ Influence of substrate surface morphology on wetting behavior of tracks during selective laser melting of aluminum-based alloys,” J. Zhejiang Univ. Sci. A 19(2), 111–121 (2018).https://doi.org/10.1631/jzus.A1700599
    Google ScholarCrossref
  82. L. Li , J. Li , and T. Fan , “ Phase-field modeling of wetting and balling dynamics in powder bed fusion process,” Phys. Fluids 33, 042116 (2021).https://doi.org/10.1063/5.0046771
    Google ScholarCrossref
  83. X. Nie , Z. Hu , H. Zhu , Z. Hu , L. Ke , and X. Zeng , “ Analysis of processing parameters and characteristics of selective laser melted high strength Al-Cu-Mg alloys: from single tracks to cubic samples,” J. Mater. Process. Technol. 256, 69–77 (2018).https://doi.org/10.1016/j.jmatprotec.2018.01.030
    Google ScholarCrossref
Numerical simulation on molten pool behavior of narrow gap gas tungsten arc welding

좁은 간격 가스 텅스텐 아크 용접의 용융 풀 거동에 대한 수치 시뮬레이션

Numerical simulation on molten pool behavior of narrow gap gas tungsten arc welding

The International Journal of Advanced Manufacturing Technology (2023)Cite this article

Abstract

As a highly efficient thick plate welding resolution, narrow gap gas tungsten arc welding (NG-GTAW) is in the face of a series of problems like inter-layer defects like pores, lack of fusion, inclusion of impurity, and the sensitivity to poor sidewall fusion, which is hard to be repaired after the welding process. This study employs numerical simulation to investigate the molten pool behavior in NG-GTAW root welding. A 3D numerical model was established, where a body-fitted coordinate system was applied to simulate the electromagnetic force, and a bridge transition model was developed to investigate the wire–feed root welding. The simulated results were validated experimentally. Results show that the molten pool behavior is dominated by electromagnetic force when the welding current is relatively high, and the dynamic change of the vortex actually determines the molten pool morphology. For self-fusion welding, there are two symmetric inward vortices in the cross-section and one clockwise vortex in the longitudinal section. With the increasing welding current, the vortices in the cross-section gradually move to the arc center with a decreasing range, while the vortex in the longitudinal section moves backward. With the increasing traveling speed, the vortices in the cross-section move toward the surface of the molten pool with a decreasing range, and the horizontal component of liquid metal velocity changes in the longitudinal section. For wire–feed welding, the filling metal strengthens the downward velocity component; as a result, the vortex formation is blocked in the cross-section and is strengthened in the longitudinal section.

This is a preview of subscription content, access via your institution.

Data availability

The raw/processed data required cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Wang X, Nan Y, Xie Z, Tsai Y, Yang J, Shang C (2017) Influence of welding pass on microstructure and toughness in the reheated zone of multi-pass weld metal of 550 MPa offshore engineering steel. Mater Sci Eng : A 702:196–205. https://doi.org/10.1016/j.msea.2017.06.081Article Google Scholar 
  2. Bunaziv I, Akselsen OM, Frostevarg J, Kaplan AFH (2018) Deep penetration fiber laser-arc hybrid welding of thick HSLA steel. J Mater Process Technol 256:216–228. https://doi.org/10.1016/j.jmatprotec.2018.02.026Article Google Scholar 
  3. Josefson BL, Karlsson CT (1989) FE-calculated stresses in a multi-pass butt-welded pipe-a simplified approach. Int J Pressure Vessels Pip 38:227–243. https://doi.org/10.1016/0308-0161(89)90017-3Article Google Scholar 
  4. Mitra A, Rajan Babu V, Puthiyavinayagam P, Varier NV, Ghosh M, Desai H, Chellapandi P, Chetal SC (2012) Design and development of thick plate concept for rotatable plugs and technology development for future Indian FBR. Nucl Eng Des 246:245–255. https://doi.org/10.1016/j.nucengdes.2012.01.008Article Google Scholar 
  5. Alemdar ASA, Jalal SR, Mulapeer MMS (2022) Influence of friction stir welding process on the mechanical characteristics of the hybrid joints aa2198-t8 to aa2024-t3. Adv Mater Sci Eng 2022:1–11. https://doi.org/10.1155/2022/7055446Article Google Scholar 
  6. Anant R, Ghosh PK (2017) Advancement in narrow gap GMA weld joint of thick section of austenitic stainless steel to HSLA steel. Mater Today: Proc 4:10169–10173. https://doi.org/10.1016/j.matpr.2017.06.342Article Google Scholar 
  7. Wang J, Zhu J, Fu P, Su R, Han W, Yang F (2012) A swing arc system for narrow gap GMA welding. ISIJ Int 52:110–114. https://doi.org/10.2355/isijinternational.52.110Article Google Scholar 
  8. Jiang L, Shi L, Lu Y, Xiang Y, Zhang C, Gao M (2022) Effects of sidewall grain growth on pore formation in narrow gap oscillating laser welding. Optics Laser Technol 156:108483. https://doi.org/10.1016/j.optlastec.2022.108483Article Google Scholar 
  9. Ohnishi T, Kawahito Y, Mizutani M, Katayama S (2013) Butt welding of thick, high strength steel plate with a high power laser and hot wire to improve tolerance to gap variance and control weld metal oxygen content. Sci Technol Welding Join 18:314–322. https://doi.org/10.1179/1362171813Y.0000000108Article Google Scholar 
  10. Cai C, Li L, Tai L (2017) Narrow-gap laser-MIG hybrid welding of thick-section steel with different shielding gas nozzles. Int J Adv Manuf Technol 92:909–916. https://doi.org/10.1007/s00170-017-0179-3Article Google Scholar 
  11. Yang T, Liu J, Zhuang Y, Sun K, Chen W (2020) Studies on the formation mechanism of incomplete fusion defects in ultra-narrow gap laser wire filling welding. Optics Laser Technol 129:106275. https://doi.org/10.1016/j.optlastec.2020.106275Article Google Scholar 
  12. Miao R, Shan Z, Zhou Q, Wu Y, Ge L, Zhang J, Hu H (2022) Real-time defect identification of narrow overlap welds and application based on convolutional neural networks. J Manuf Syst 62:800–810. https://doi.org/10.1016/j.jmsy.2021.01.012Article Google Scholar 
  13. Näsström J, Brueckner F, Kaplan AFH (2020) Imperfections in narrow gap multi-layer welding – potential causes and countermeasures. Optics Lasers Eng 129:106011. https://doi.org/10.1016/j.optlaseng.2020.106011Article Google Scholar 
  14. Li W, Yu R, Huang D, Wu J, Wang Y, Hu T, Wang J (2019) Numerical simulation of multi-layer rotating arc narrow gap MAG welding for medium steel plate. J Manuf Proc 45:460–471. https://doi.org/10.1016/j.jmapro.2019.07.035Article Google Scholar 
  15. Han S, Liu G, Tang X, Xu L, Cui H, Shao C (2022) Effect of molten pool behaviors on welding defects in tandem NG-GMAW based on CFD simulation. Int J Heat Mass Transf 195:123165. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123165Article Google Scholar 
  16. Mikihito H, Yoshito I (2016) A simplified Fe simulation method with shell element for welding deformation and residual stress generated by multi-pass butt welding. Int J Steel Struct 16:51–58. https://doi.org/10.1007/s13296-016-3005-0Article Google Scholar 
  17. Cai W, Saez M, Spicer P, Chakraborty D, Skurkis R, Carlson B, Okigami F, Robertson J (2023) Distortion simulation of gas metal arc welding (gmaw) processes for automotive body assembly. Weld World 67:109–139. https://doi.org/10.1007/s40194-022-01369-3Article Google Scholar 
  18. Pazilova UA, Il In AV, Kruglova AA, Motovilina GD, Khlusova EI (2015) Influence of the temperature and strain rate on the structure and fracture mode of high-strength steels upon the simulation of the thermal cycle of welding and post-welding tempering. Phys Metals Metallogr 116:606–614. https://doi.org/10.1134/S0031918X1506006XArticle Google Scholar 
  19. Zhang Z, Wu Q, Grujicic M et al (2016) Monte Carlo simulation of grain growth and welding zones in friction stir welding of aa6082-t6. J Mater Sci 51:1882–1895. https://doi.org/10.1007/s10853-015-9495-xArticle Google Scholar 
  20. Ikram A, Chung H (2021) Numerical simulation of arc, metal transfer and its impingement on weld pool in variable polarity gas metal arc welding. J Manuf Process 64:1529–1543. https://doi.org/10.1016/j.jmapro.2021.03.001Article Google Scholar 
  21. Zhao B, Chen J, Wu C, Shi L (2020) Numerical simulation of bubble and arc dynamics during underwater wet flux-cored arc welding. J Manuf Process 59:167–185. https://doi.org/10.1016/j.jmapro.2020.09.054Article Google Scholar 
  22. Zeng Z, Wang Z, Hu S, Wu S (2022) Dynamic molten pool behavior of pulsed gas tungsten arc welding with filler wire in horizontal position and its characterization based on arc voltage. J Manuf Proc 75:1–12. https://doi.org/10.1016/j.jmapro.2021.12.051Article Google Scholar 
  23. Zhu C, Cheon J, Tang X, Na S, Cui H (2018) Molten pool behaviors and their influences on welding defects in narrow gap GMAW of 5083 Al-alloy. Int J Heat Mass Transf 126:1206–1221. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.132Article Google Scholar 
  24. Gu H, Väistö T, Li L (2020) Numerical and experimental study on the molten pool dynamics and fusion zone formation in multi-pass narrow gap laser welding. Optics Laser Technol 126:106081. https://doi.org/10.1016/j.optlastec.2020.106081Article Google Scholar 
  25. Ma C, Chen B, Meng Z, Tan C, Song X, Li Y (2023) Characteristic of keyhole, molten pool and microstructure of oscillating laser TIG hybrid welding. Optics Laser Technol. https://doi.org/10.1016/j.optlastec.2023.109142.161:109142
  26. Ai Y, Liu X, Huang Y, Yu L (2020) Numerical analysis of the influence of molten pool instability on the weld formation during the high speed fiber laser welding. Int J Heat Mass Trans 160:120103. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120103Article Google Scholar 
  27. Meng X, Artinov A, Bachmann M, Üstündağ Ö, Gumenyuk A, Rethmeier M (2022) The detrimental molten pool narrowing phenomenon in wire feed laser beam welding and its suppression by magnetohydrodynamic technique. Int J Heat Mass Transf 193:122913. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122913Article Google Scholar 
  28. Li X, Wei X, Zhang L, Lv Q (2023) Numerical simulation for the effect of scanning speed and in situ laser shock peening on molten pool and solidification characteristics. Int J Adv Manuf Technol 125:5031–5046. https://doi.org/10.1007/s00170-023-10897-1Article Google Scholar 
  29. Ye W, Bao J, Lei J Huang Y, Li Z, Li P, Zhang Y (2022) Multiphysics modeling of thermal behavior of commercial pure titanium powder during selective laser melting. Met Mater Int 28:282-296. https://doi.org/10.1007/s12540-021-01019-1.
  30. Cheng H, Kang L, Wang C, Li Q, Chang B, Chang B (2022) Dynamic behavior of molten pool backside during full-penetration laser welding of Ni-based superalloys. Int J Adv Manuf Technol 119:4587–4598. https://doi.org/10.1007/s00170-021-08187-9Article Google Scholar 
  31. Jeong H, Park K, Cho J (2016) Numerical analysis of variable polarity arc weld pool. J Mech Sci Technol 30:4307–4313. https://doi.org/10.1007/s12206-016-0845-7Article Google Scholar

이종 금속 인터커넥트의 펄스 레이저 용접을 위한 가공 매개변수 최적화

Optimization of processing parameters for pulsed laser welding of dissimilar metal interconnects

본 논문은 독자의 편의를 위해 기계번역된 내용이어서 자세한 내용은 원문을 참고하시기 바랍니다.

NguyenThi TienaYu-LungLoabM.Mohsin RazaaCheng-YenChencChi-PinChiuc

aNational Cheng Kung University, Department of Mechanical Engineering, Tainan, Taiwan

bNational Cheng Kung University, Academy of Innovative Semiconductor and Sustainable Manufacturing, Tainan, Taiwan

cJum-bo Co., Ltd, Xinshi District, Tainan, Taiwan

Abstract

워블 전략이 포함된 펄스 레이저 용접(PLW) 방법을 사용하여 알루미늄 및 구리 이종 랩 조인트의 제조를 위한 최적의 가공 매개변수에 대해 실험 및 수치 조사가 수행됩니다. 피크 레이저 출력과 접선 용접 속도의 대표적인 조합 43개를 선택하기 위해 원형 패킹 설계 알고리즘이 먼저 사용됩니다.

선택한 매개변수는 PLW 프로세스의 전산유체역학(CFD) 모델에 제공되어 용융 풀 형상(즉, 인터페이스 폭 및 침투 깊이) 및 구리 농도를 예측합니다. 시뮬레이션 결과는 설계 공간 내에서 PLW 매개변수의 모든 조합에 대한 용융 풀 형상 및 구리 농도를 예측하기 위해 3개의 대리 모델을 교육하는 데 사용됩니다.

마지막으로, 대체 모델을 사용하여 구성된 처리 맵은 용융 영역에 균열이나 기공이 없고 향상된 기계적 및 전기적 특성이 있는 이종 조인트를 생성하는 PLW 매개변수를 결정하기 위해 세 가지 품질 기준에 따라 필터링됩니다.

제안된 최적화 접근법의 타당성은 최적의 용접 매개변수를 사용하여 생성된 실험 샘플의 전단 강도, 금속간 화합물(IMC) 형성 및 전기 접촉 저항을 평가하여 입증됩니다.

결과는 최적의 매개변수가 1209N의 높은 전단 강도와 86µΩ의 낮은 전기 접촉 저항을 생성함을 확인합니다. 또한 용융 영역에는 균열 및 기공과 같은 결함이 없습니다.

An experimental and numerical investigation is performed into the optimal processing parameters for the fabrication of aluminum and copper dissimilar lap joints using a pulsed laser welding (PLW) method with a wobble strategy. A circle packing design algorithm is first employed to select 43 representative combinations of the peak laser power and tangential welding speed. The selected parameters are then supplied to a computational fluidic dynamics (CFD) model of the PLW process to predict the melt pool geometry (i.e., interface width and penetration depth) and copper concentration. The simulation results are used to train three surrogate models to predict the melt pool geometry and copper concentration for any combination of the PLW parameters within the design space. Finally, the processing maps constructed using the surrogate models are filtered in accordance with three quality criteria to determine the PLW parameters that produce dissimilar joints with no cracks or pores in the fusion zone and enhanced mechanical and electrical properties. The validity of the proposed optimization approach is demonstrated by evaluating the shear strength, intermetallic compound (IMC) formation, and electrical contact resistance of experimental samples produced using the optimal welding parameters. The results confirm that the optimal parameters yield a high shear strength of 1209 N and a low electrical contact resistance of 86 µΩ. Moreover, the fusion zone is free of defects, such as cracks and pores.

Fig. 1. Schematic illustration of Al-Cu lap-joint arrangement
Fig. 1. Schematic illustration of Al-Cu lap-joint arrangement
Fig. 2. Machine setup (MFQS-150W_1500W
Fig. 2. Machine setup (MFQS-150W_1500W
Fig. 5. Lap-shear mechanical tests: (a) experimental setup and specimen dimensions, and (b) two different failures of lap-joint welding.
N. Thi Tien et al.
Fig. 5. Lap-shear mechanical tests: (a) experimental setup and specimen dimensions, and (b) two different failures of lap-joint welding. N. Thi Tien et al.
Fig. 9. Simulation and experimental results for melt pool profile. (a) Simulation results for melt pool cross-section, and (b) OM image of melt pool cross-section.
(Note that laser processing parameter of 830 W and 565 mm/s is chosen.).
Fig. 9. Simulation and experimental results for melt pool profile. (a) Simulation results for melt pool cross-section, and (b) OM image of melt pool cross-section. (Note that laser processing parameter of 830 W and 565 mm/s is chosen.).

References

[1]

G. Santos

Road transport and CO2 emissions: What are the challenges?

Transport Policy, 59 (2017), pp. 71-74

ArticleDownload PDFView Record in ScopusGoogle Scholar[2]

A. Das, D. Li, D. Williams, D. Greenwood

Joining technologies for automotive battery systems manufacturing

World Electric Veh. J., 9 (2) (2018), p. 22 View PDF

CrossRefGoogle Scholar[3]

M. Zwicker, M. Moghadam, W. Zhang, C. Nielsen

Automotive battery pack manufacturing–a review of battery to tab joining

J. Adv. Joining Process., 1 (2020), Article 100017

ArticleDownload PDFView Record in ScopusGoogle Scholar[4]

T. Mai, A. Spowage

Characterisation of dissimilar joints in laser welding of steel–kovar, copper–steel and copper–aluminium

Mater. Sci. Eng. A, 374 (1–2) (2004), pp. 224-233

ArticleDownload PDFView Record in ScopusGoogle Scholar[5]

S.S. Lee, T.H. Kim, S.J. Hu, W.W. Cai, J. Li, J.A. Abell

Characterization of joint quality in ultrasonic welding of battery tabs

International Manufacturing Science and Engineering Conference, vol. 54990, American Society of Mechanical Engineers (2012), pp. 249-261

Google Scholar[6]

Y. Zhou, P. Gorman, W. Tan, K. Ely

Weldability of thin sheet metals during small-scale resistance spot welding using an alternating-current power supply

J. Electron. Mater., 29 (9) (2000), pp. 1090-1099 View PDF

CrossRefView Record in ScopusGoogle Scholar[7]

S. Katayama

Handbook of laser welding technologies

Elsevier (2013)

Google Scholar[8]

A. Sadeghian, N. Iqbal

A review on dissimilar laser welding of steel-copper, steel-aluminum, aluminum-copper, and steel-nickel for electric vehicle battery manufacturing

Opt. Laser Technol., 146 (2022), Article 107595

ArticleDownload PDFView Record in ScopusGoogle Scholar[9]

M.J. Brand, P.A. Schmidt, M.F. Zaeh, A. Jossen

Welding techniques for battery cells and resulting electrical contact resistances

J. Storage Mater., 1 (2015), pp. 7-14

ArticleDownload PDFView Record in ScopusGoogle Scholar[10]

M. Jarwitz, F. Fetzer, R. Weber, T. Graf

Weld seam geometry and electrical resistance of laser-welded, aluminum-copper dissimilar joints produced with spatial beam oscillation

Metals, 8 (7) (2018), p. 510 View PDF

CrossRefView Record in ScopusGoogle Scholar[11]S. Smith, J. Blackburn, M. Gittos, P. de Bono, and P. Hilton, “Welding of dissimilar metallic materials using a scanned laser beam,” in International Congress on Applications of Lasers & Electro-Optics, 2013, vol. 2013, no. 1: Laser Institute of America, pp. 493-502.

Google Scholar[12]

P. Schmitz, J.B. Habedank, M.F. Zaeh

Spike laser welding for the electrical connection of cylindrical lithium-ion batteries

J. Laser Appl., 30 (1) (2018), Article 012004 View PDF

CrossRefView Record in ScopusGoogle Scholar[13]

P. Kah, C. Vimalraj, J. Martikainen, R. Suoranta

Factors influencing Al-Cu weld properties by intermetallic compound formation

Int. J. Mech. Mater. Eng., 10 (1) (2015), pp. 1-13

Google Scholar[14]

Z. Lei, X. Zhang, J. Liu, P. Li

Interfacial microstructure and reaction mechanism with various weld fillers on laser welding-brazing of Al/Cu lap joint

J. Manuf. Process., 67 (2021), pp. 226-240

ArticleDownload PDFView Record in ScopusGoogle Scholar[15]

T. Solchenbach, P. Plapper

Mechanical characteristics of laser braze-welded aluminium–copper connections

Opt. Laser Technol., 54 (2013), pp. 249-256

ArticleDownload PDFView Record in ScopusGoogle Scholar[16]

T. Solchenbach, P. Plapper, W. Cai

Electrical performance of laser braze-welded aluminum–copper interconnects

J. Manuf. Process., 16 (2) (2014), pp. 183-189

ArticleDownload PDFView Record in ScopusGoogle Scholar[17]

S.J. Lee, H. Nakamura, Y. Kawahito, S. Katayama

Effect of welding speed on microstructural and mechanical properties of laser lap weld joints in dissimilar Al and Cu sheets

Sci. Technol. Weld. Join., 19 (2) (2014), pp. 111-118

Google Scholar[18]

Z. Xue, S. Hu, D. Zuo, W. Cai, D. Lee, K.-A. Elijah Jr

Molten pool characterization of laser lap welded copper and aluminum

J. Phys. D Appl. Phys., 46 (49) (2013), Article 495501 View PDF

CrossRefView Record in ScopusGoogle Scholar[19]

S. Zhao, G. Yu, X. He, Y. Zhang, W. Ning

Numerical simulation and experimental investigation of laser overlap welding of Ti6Al4V and 42CrMo

J. Mater. Process. Technol., 211 (3) (2011), pp. 530-537

ArticleDownload PDFView Record in ScopusGoogle Scholar[20]

W. Huang, H. Wang, T. Rinker, W. Tan

Investigation of metal mixing in laser keyhole welding of dissimilar metals

Mater. Des., 195 (2020), Article 109056

ArticleDownload PDFView Record in ScopusGoogle Scholar[21]

E. Kaiser, G. Ambrosy, E. Papastathopoulos

Welding strategies for joining copper and aluminum by fast oscillating, high quality laser beam

High-Power Laser Materials Processing: Applications, Diagnostics, and Systems IX, vol. 11273, International Society for Optics and Photonics (2020), p. 112730C

View Record in ScopusGoogle Scholar[22]

V. Dimatteo, A. Ascari, A. Fortunato

Continuous laser welding with spatial beam oscillation of dissimilar thin sheet materials (Al-Cu and Cu-Al): Process optimization and characterization

J. Manuf. Process., 44 (2019), pp. 158-165

ArticleDownload PDFView Record in ScopusGoogle Scholar[23]

V. Dimatteo, A. Ascari, E. Liverani, A. Fortunato

Experimental investigation on the effect of spot diameter on continuous-wave laser welding of copper and aluminum thin sheets for battery manufacturing

Opt. Laser Technol., 145 (2022), Article 107495

ArticleDownload PDFView Record in ScopusGoogle Scholar[24]

D. Wu, X. Hua, F. Li, L. Huang

Understanding of spatter formation in fiber laser welding of 5083 aluminum alloy

Int. J. Heat Mass Transf., 113 (2017), pp. 730-740

ArticleDownload PDFView Record in ScopusGoogle Scholar[25]

R. Ducharme, K. Williams, P. Kapadia, J. Dowden, B. Steen, M. Glowacki

The laser welding of thin metal sheets: an integrated keyhole and weld pool model with supporting experiments

J. Phys. D Appl. Phys., 27 (8) (1994), p. 1619 View PDF

CrossRefView Record in ScopusGoogle Scholar[26]

C.W. Hirt, B.D. Nichols

Volume of fluid (VOF) method for the dynamics of free boundaries

J. Comput. Phys., 39 (1) (1981), pp. 201-225

ArticleDownload PDFGoogle Scholar[27]

W. Piekarska, M. Kubiak

Three-dimensional model for numerical analysis of thermal phenomena in laser–arc hybrid welding process

Int. J. Heat Mass Transf., 54 (23–24) (2011), pp. 4966-4974

ArticleDownload PDFView Record in ScopusGoogle Scholar[28]J. Zhou, H.-L. Tsai, and P.-C. Wang, “Transport phenomena and keyhole dynamics during pulsed laser welding,” 2006.

Google Scholar[29]

D. Harrison, D. Yan, S. Blairs

The surface tension of liquid copper

J. Chem. Thermodyn., 9 (12) (1977), pp. 1111-1119

ArticleDownload PDFView Record in ScopusGoogle Scholar[30]

M. Leitner, T. Leitner, A. Schmon, K. Aziz, G. Pottlacher

Thermophysical properties of liquid aluminum

Metall. Mater. Trans. A, 48 (6) (2017), pp. 3036-3045 View PDF

This article is free to access.

CrossRefView Record in ScopusGoogle Scholar[31]

H.-C. Tran, Y.-L. Lo

Systematic approach for determining optimal processing parameters to produce parts with high density in selective laser melting process

Int. J. Adv. Manuf. Technol., 105 (10) (2019), pp. 4443-4460 View PDF

CrossRefView Record in ScopusGoogle Scholar[32]A. Ascari, A. Fortunato, E. Liverani, and A. Lutey, “Application of different pulsed laser sources to dissimilar welding of Cu and Al alloys,” in Proceedings of Lasers in Manufacturing Conference (LIM), 2019.

Google Scholar[33]

A. Fortunato, A. Ascari

Laser welding of thin copper and aluminum sheets: feasibility and challenges in continuous-wave welding of dissimilar metals

Lasers in Manufacturing and Materials Processing, 6 (2) (2019), pp. 136-157 View PDF

CrossRefView Record in ScopusGoogle Scholar[34]

A. Boucherit, M.-N. Avettand-Fènoël, R. Taillard

Effect of a Zn interlayer on dissimilar FSSW of Al and Cu

Mater. Des., 124 (2017), pp. 87-99

ArticleDownload PDFView Record in ScopusGoogle Scholar[35]

N. Kumar, I. Masters, A. Das

In-depth evaluation of laser-welded similar and dissimilar material tab-to-busbar electrical interconnects for electric vehicle battery pack

J. Manuf. Process., 70 (2021), pp. 78-96

ArticleDownload PDFView Record in ScopusGoogle Scholar[36]

M. Abbasi, A.K. Taheri, M. Salehi

Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process

J. Alloy. Compd., 319 (1–2) (2001), pp. 233-241

ArticleDownload PDFGoogle Scholar[37]

D. Zuo, S. Hu, J. Shen, Z. Xue

Intermediate layer characterization and fracture behavior of laser-welded copper/aluminum metal joints

Mater. Des., 58 (2014), pp. 357-362

ArticleDownload PDFView Record in ScopusGoogle Scholar[38]

S. Yan, Y. Shi

Influence of Ni interlayer on microstructure and mechanical properties of laser welded joint of Al/Cu bimetal

J. Manuf. Process., 59 (2020), pp. 343-354

ArticleDownload PDFView Record in ScopusGoogle Scholar[39]

S. Yan, Y. Shi

Influence of laser power on microstructure and mechanical property of laser-welded Al/Cu dissimilar lap joints

J. Manuf. Process., 45 (2019), pp. 312-321

ArticleDownload PDFView Record in ScopusGoogle Scholar

Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.

알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

린 첸 가오 양 미시 옹 장 춘밍 왕
Lin Chen , Gaoyang Mi , Xiong Zhang , Chunming Wang *
중국 우한시 화중과학기술대학 재료공학부, 430074

Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

Abstract

A numerical model of 1.5 mm 6061/5182 aluminum alloys thin sheets lap joints under laser sinusoidal oscillation (sine) welding and laser welding (SLW) weld was developed to simulate temperature distribution and melt flow. Unlike the common energy distribution of SLW, the sinusoidal oscillation of laser beam greatly homogenized the energy distribution and reduced the energy peak. The energy peaks were located at both sides of the sine weld, resulting in the tooth-shaped sectional formation. This paper illustrated the effect of the temperature gradient (G) and solidification rate (R) on the solidification microstructure by simulation. Results indicated that the center of the sine weld had a wider area with low G/R, promoting the formation of a wider equiaxed grain zone, and the columnar grains were slenderer because of greater GR. The porosity-free and non-penetration welds were obtained by the laser sinusoidal oscillation. The reasons were that the molten pool volume was enlarged, the volume proportion of keyhole was reduced and the turbulence in the molten pool was gentled, which was observed by the high-speed imaging and simulation results of melt flow. The tensile test of both welds showed a tensile fracture form along the fusion line, and the tensile strength of sine weld was significantly better than that of the SLW weld. This was because that the wider equiaxed grain area reduced the tendency of cracks and the finer grain size close to the fracture location. Defect-free and excellent welds are of great significance to the new energy vehicles industry.

온도 분포 및 용융 흐름을 시뮬레이션하기 위해 레이저 사인파 진동 (사인) 용접 및 레이저 용접 (SLW) 용접에서 1.5mm 6061/5182 알루미늄 합금 박판 랩 조인트 의 수치 모델이 개발되었습니다. SLW의 일반적인 에너지 분포와 달리 레이저 빔의 사인파 진동은 에너지 분포를 크게 균질화하고 에너지 피크를 줄였습니다. 에너지 피크는 사인 용접의 양쪽에 위치하여 톱니 모양의 단면이 형성되었습니다. 이 논문은 온도 구배(G)와 응고 속도 의 영향을 설명했습니다.(R) 시뮬레이션에 의한 응고 미세 구조. 결과는 사인 용접의 중심이 낮은 G/R로 더 넓은 영역을 가짐으로써 더 넓은 등축 결정립 영역의 형성을 촉진하고 더 큰 GR로 인해 주상 결정립 이 더 가늘다는 것을 나타냅니다. 다공성 및 비관통 용접은 레이저 사인파 진동에 의해 얻어졌습니다. 그 이유는 용융 풀의 부피가 확대되고 열쇠 구멍의 부피 비율이 감소하며 용융 풀의 난류가 완만해졌기 때문이며, 이는 용융 흐름의 고속 이미징 및 시뮬레이션 결과에서 관찰되었습니다. 두 용접부 의 인장시험 은 융착선을 따라 인장파괴형태를인장강도사인 용접의 경우 SLW 용접보다 훨씬 우수했습니다. 이는 등축 결정립 영역이 넓을수록 균열 경향이 감소하고 파단 위치에 근접한 입자 크기가 미세 하기 때문입니다. 결함이 없고 우수한 용접은 신에너지 자동차 산업에 매우 중요합니다.

Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.
Fig. 1. Schematic of lap welding for 6061/5182 aluminum alloys.
Fig. 2. Finite element mesh.
Fig. 2. Finite element mesh.
Fig. 3. Weld morphologies of cross-section and upper surface for the two welds: (a) sine pattern weld; (b) SLW weld.
Fig. 3. Weld morphologies of cross-section and upper surface for the two welds: (a) sine pattern weld; (b) SLW weld.
Fig. 4. Calculation of laser energy distribution: (a)-(c) sine pattern weld; (d)-(f) SLW weld.
Fig. 4. Calculation of laser energy distribution: (a)-(c) sine pattern weld; (d)-(f) SLW weld.
Fig. 5. The partially melted region of zone A.
Fig. 5. The partially melted region of zone A.
Fig. 6. The simulated profiles of melted region for the two welds: (a) SLW weld; (b) sine pattern weld.
Fig. 6. The simulated profiles of melted region for the two welds: (a) SLW weld; (b) sine pattern weld.
Fig. 7. The temperature field simulation results of cross section for sine pattern weld.
Fig. 7. The temperature field simulation results of cross section for sine pattern weld.
Fig. 8. Dynamic behavior of the molten pool at the same time interval of 0.004 s within one oscillating period: (a) SLW weld; (b) sine pattern weld.
Fig. 8. Dynamic behavior of the molten pool at the same time interval of 0.004 s within one oscillating period: (a) SLW weld; (b) sine pattern weld.
Fig. 9. The temperature field and flow field of the molten pool for the SLW weld: (a)~(f) t = 80 ms~100 ms.
Fig. 9. The temperature field and flow field of the molten pool for the SLW weld: (a)~(f) t = 80 ms~100 ms.
Fig. 10. The temperature field and flow field of the molten pool for the sine pattern weld: (a)~(f) t = 151 ms~171 ms.
Fig. 10. The temperature field and flow field of the molten pool for the sine pattern weld: (a)~(f) t = 151 ms~171 ms.
Fig. 11. The evolution of the molten pool volume and keyhole depth within one period.
Fig. 11. The evolution of the molten pool volume and keyhole depth within one period.
Fig. 12. The X-ray inspection results for the two welds: (a) SLW weld, (b) sine pattern weld.
Fig. 12. The X-ray inspection results for the two welds: (a) SLW weld, (b) sine pattern weld.
Fig. 13. Comparison of the solidification parameters for sine and SLW patterns: (a) the temperature field simulated results of the molten pool upper surfaces; (b) temperature gradient G and solidification rate R along the molten pool boundary isotherm from weld centerline to the fusion boundary; (c) G/R; (d) GR.
Fig. 13. Comparison of the solidification parameters for sine and SLW patterns: (a) the temperature field simulated results of the molten pool upper surfaces; (b) temperature gradient G and solidification rate R along the molten pool boundary isotherm from weld centerline to the fusion boundary; (c) G/R; (d) GR.
Fig. 14. The EBSD results of equiaxed grain zone in the weld center of: (a) sine pattern weld; (b) SLW weld; (c) grain size.
Fig. 14. The EBSD results of equiaxed grain zone in the weld center of: (a) sine pattern weld; (b) SLW weld; (c) grain size.
Fig. 15. (a) EBSD results of horizontal sections of SLW weld and sine pattern weld; (b) The columnar crystal widths of SLW weld and sine pattern weld.
Fig. 15. (a) EBSD results of horizontal sections of SLW weld and sine pattern weld; (b) The columnar crystal widths of SLW weld and sine pattern weld.
Fig. 16. (a) The tensile test results of the two welds; (b) Fracture location of SLW weld; (b) Fracture location of sine pattern weld.
Fig. 16. (a) The tensile test results of the two welds; (b) Fracture location of SLW weld; (b) Fracture location of sine pattern weld.

Keywords

Laser welding, Sinusoidal oscillating, Energy distribution, Numerical simulation, Molten pool flow, Grain structure

References

Chen, X., 2014. Study on laser-MAG Hybrid Weaving Welding Charateristics. Master
thesis. Harbin Institute of Technology, China.
Chen, G., Wang, B., Mao, S., Zhong, P., He, J., 2019. Research on the “∞”-shaped laser
scanning welding process for aluminum alloy. Opt. Laser Technol. 115, 32–41.
Cho, W.-I., Na, S.-J., Cho, M.-H., Lee, J.-S., 2010. Numerical study of alloying element
distribution in CO2 laser–GMA hybrid welding. Comput. Mater. Sci. 49, 792–800.
Cho, W.-I., Na, S.-J., Thomy, C., Vollertsen, F., 2012. Numerical simulation of molten
pool dynamics in high power disk laser welding. J. Mater. Process. Technol. 212,
262–275.
Das, A., Butterworth, I., Masters, I., Williams, D., 2018. Microstructure and mechanical
properties of gap-bridged remote laser welded (RLW) automotive grade AA 5182
joints. Mater. Charact. 145, 697–712.
Fetzer, F., Sommer, M., Weber, R., Weberpals, J.-P., Graf, T., 2018. Reduction of pores by
means of laser beam oscillation during remote welding of AlMgSi. Opt. Lasers Eng.
108, 68–77.
Geng, S., Jiang, P., Shao, X., Guo, L., Gao, X., 2020. Heat transfer and fluid flow and their
effects on the solidification microstructure in full-penetration laser welding of
aluminum sheet. J. Mater. Sci. Technol. 46, 50–63.
Hagenlocher, C., Sommer, M., Fetzer, F., Weber, R., Graf, T., 2018a. Optimization of the
solidification conditions by means of beam oscillation during laser beam welding of
aluminum. Mater. Des. 160, 1178–1185.
Hagenlocher, C., Weller, D., Weber, R., Graf, T., 2018b. Reduction of the hot cracking
susceptibility of laser beam welds in AlMgSi alloys by increasing the number of grain
boundaries. Sci. Technol. Weld. Join. 24, 313–319.
Hagenlocher, C., Fetzer, F., Weller, D., Weber, R., Graf, T., 2019. Explicit analytical
expressions for the influence of welding parameters on the grain structure of laser
beam welds in aluminium alloys. Mater. Des. 174, 107791.
Han, X., Tang, X., Wang, T., Shao, C., Lu, F., Cui, H., 2018. Role of ambient pressure in
keyhole dynamics based on beam transmission path method for laser welding on Al
alloy. Int. J. Adv. Manuf. Technol. 99, 1639–1651.
Hao, K., Li, G., Gao, M., Zeng, X., 2015. Weld formation mechanism of fiber laser
oscillating welding of austenitic stainless steel. J. Mater. Process. Technol. 225,
77–83.
Hirt, C.W., Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys. 39, 201–225.
Jiang, Z., Chen, X., Li, H., Lei, Z., Chen, Y., Wu, S., Wang, Y., 2020. Grain refinement and
laser energy distribution during laser oscillating welding of Invar alloy. Mater. Des.
186, 108195.
Kaplan, A., 1994. A model of deep penetration laser welding based on calculation of the
keyhole profile. J. Phys. D Appl. Phys. 27, 1805–1814.
Kou, S., 2002. Welding Metallurgy, 2nd ed. Wiley-Interscience, New Jersey, USA.
Kuryntsev, S.V., Gilmutdinov, A.K., 2015. The effect of laser beam wobbling mode in
welding process for structural steels. Int. J. Adv. Manuf. Technol. 81, 1683–1691.
Li, P., Nie, F., Dong, H., Li, S., Yang, G., Zhang, H., 2018. Pulse MIG welding of 6061-T6/
A356-T6 aluminum alloy dissimilar T-joint. J. Mater. Eng. Perform. 27, 4760–4769.
Liu, T., Mu, Z., Hu, R., Pang, S., 2019. Sinusoidal oscillating laser welding of 7075
aluminum alloy: hydrodynamics, porosity formation and optimization. Int. J. Heat
Mass Transf. 140, 346–358.
Seto, N., Katayama, S., Matsunawa, A., 2000. High-speed simultaneous observation of
plasma and keyhole behavior during high power CO2 laser welding: effect of
shielding gas on porosity formation. J. Laser Appl. 12, 245–250.
Tang, Z., Vollertsen, F., 2014. Influence of grain refinement on hot cracking in laser
welding of aluminum. Weld. World 58, 355–366.
Wang, L., Gao, M., Zhang, C., Zeng, X., 2016. Effect of beam oscillating pattern on weld
characterization of laser welding of AA6061-T6 aluminum alloy. Mater. Des. 108,
707–717.
Wang, L., Gao, M., Zeng, X., 2018. Experiment and prediction of weld morphology for
laser oscillating welding of AA6061 aluminium alloy. Sci. Technol. Weld. Join. 24,
334–341.
Yamazaki, Y., Abe, Y., Hioki, Y., Nakatani, M., Kitagawa, A., Nakata, K., 2016.
Fundamental study of narrow-gap welding with oscillation laser beam. Weld. Int. 30,
699–707.
Yuan, Z., Tu, Y., Yuan, T., Zhang, Y., Huang, Y., 2021. Size effects on mechanical
properties of pure industrial aluminum sheet for micro/meso scale plastic
deformation: experiment and modeling. J. Alloys. Compd. 859, 157752.
Zou, J., 2016. Characteristics of laser scanning welding process for 5A06 aluminum alloy
thick plate with narrow gap. Materials Processing Engineering. Harbin Welding
Institute, China. Master thesis.

Fig. 1 Multi-physics phenomena in the laser-material interaction zone

COMPARISON BETWEEN GREEN AND
INFRARED LASER IN LASER POWDER BED
FUSION OF PURE COPPER THROUGH HIGH
FIDELITY NUMERICAL MODELLING AT MESOSCALE

316-L 스테인리스강의 레이저 분말 베드 융합 중 콜드 스패터 형성의 충실도 높은 수치 모델링

W.E. ALPHONSO1*, M. BAYAT1 and J.H. HATTEL1
*Corresponding author
1Technical University of Denmark (DTU), 2800, Kgs, Lyngby, Denmark

ABSTRACT

L-PBF(Laser Powder Bed Fusion)는 금속 적층 제조(MAM) 기술로, 기존 제조 공정에 비해 부품 설계 자유도, 조립품 통합, 부품 맞춤화 및 낮은 툴링 비용과 같은 여러 이점을 산업에 제공합니다.

전기 코일 및 열 관리 장치는 일반적으로 높은 전기 및 열 전도성 특성으로 인해 순수 구리로 제조됩니다. 따라서 순동의 L-PBF가 가능하다면 기하학적으로 최적화된 방열판과 자유형 전자코일을 제작할 수 있습니다.

그러나 L-PBF로 조밀한 순동 부품을 생산하는 것은 적외선에 대한 낮은 광 흡수율과 높은 열전도율로 인해 어렵습니다. 기존의 L-PBF 시스템에서 조밀한 구리 부품을 생산하려면 적외선 레이저의 출력을 500W 이상으로 높이거나 구리의 광흡수율이 높은 녹색 레이저를 사용해야 합니다.

적외선 레이저 출력을 높이면 후면 반사로 인해 레이저 시스템의 광학 구성 요소가 손상되고 렌즈의 열 광학 현상으로 인해 공정이 불안정해질 수 있습니다. 이 작업에서 FVM(Finite Volume Method)에 기반한 다중 물리학 중간 규모 수치 모델은 Flow-3D에서 개발되어 용융 풀 역학과 궁극적으로 부품 품질을 제어하는 ​​물리적 현상 상호 작용을 조사합니다.

녹색 레이저 열원과 적외선 레이저 열원은 기판 위의 순수 구리 분말 베드에 단일 트랙 증착을 생성하기 위해 개별적으로 사용됩니다.

용융 풀 역학에 대한 레이저 열원의 유사하지 않은 광학 흡수 특성의 영향이 탐구됩니다. 수치 모델을 검증하기 위해 단일 트랙이 구리 분말 베드에 증착되고 시뮬레이션된 용융 풀 모양과 크기가 비교되는 실험이 수행되었습니다.

녹색 레이저는 광흡수율이 높아 전도 및 키홀 모드 용융이 가능하고 적외선 레이저는 흡수율이 낮아 키홀 모드 용융만 가능하다. 레이저 파장에 대한 용융 모드의 변화는 궁극적으로 기계적, 전기적 및 열적 특성에 영향을 미치는 열 구배 및 냉각 속도에 대한 결과를 가져옵니다.

Laser Powder Bed Fusion (L-PBF) is a Metal Additive Manufacturing (MAM) technology which offers several advantages to industries such as part design freedom, consolidation of assemblies, part customization and low tooling cost over conventional manufacturing processes. Electric coils and thermal management devices are generally manufactured from pure copper due to its high electrical and thermal conductivity properties. Therefore, if L-PBF of pure copper is feasible, geometrically optimized heat sinks and free-form electromagnetic coils can be manufactured. However, producing dense pure copper parts by L-PBF is difficult due to low optical absorptivity to infrared radiation and high thermal conductivity. To produce dense copper parts in a conventional L-PBF system either the power of the infrared laser must be increased above 500W, or a green laser should be used for which copper has a high optical absorptivity. Increasing the infrared laser power can damage the optical components of the laser systems due to back reflections and create instabilities in the process due to thermal-optical phenomenon of the lenses. In this work, a multi-physics meso-scale numerical model based on Finite Volume Method (FVM) is developed in Flow-3D to investigate the physical phenomena interaction which governs the melt pool dynamics and ultimately the part quality. A green laser heat source and an infrared laser heat source are used individually to create single track deposition on pure copper powder bed above a substrate. The effect of the dissimilar optical absorptivity property of laser heat sources on the melt pool dynamics is explored. To validate the numerical model, experiments were conducted wherein single tracks are deposited on a copper powder bed and the simulated melt pool shape and size are compared. As the green laser has a high optical absorptivity, a conduction and keyhole mode melting is possible while for the infrared laser only keyhole mode melting is possible due to low absorptivity. The variation in melting modes with respect to the laser wavelength has an outcome on thermal gradient and cooling rates which ultimately affect the mechanical, electrical, and thermal properties.

Keywords

Pure Copper, Laser Powder Bed Fusion, Finite Volume Method, multi-physics

Fig. 1 Multi-physics phenomena in the laser-material interaction zone
Fig. 1 Multi-physics phenomena in the laser-material interaction zone
Fig. 2 Framework for single laser track simulation model including powder bed and substrate (a) computational domain with boundaries (b) discretization of the domain with uniform quad mesh.
Fig. 2 Framework for single laser track simulation model including powder bed and substrate (a) computational domain with boundaries (b) discretization of the domain with uniform quad mesh.
Fig. 3 2D melt pool contours from the numerical model compared to experiments [16] for (a) VED = 65 J/mm3 at 7 mm from the beginning of the single track (b) VED = 103 J/mm3 at 3 mm from the beginning of the single track (c) VED = 103 J/mm3 at 7 mm from the beginning of the single track. In the 2D contour, the non-melted region is indicated in blue, and the melted region is indicated by red and green when the VED is 65 J/mm3 and 103 J/mm3 respectively.
Fig. 3 2D melt pool contours from the numerical model compared to experiments [16] for (a) VED = 65 J/mm3 at 7 mm from the beginning of the single track (b) VED = 103 J/mm3 at 3 mm from the beginning of the single track (c) VED = 103 J/mm3 at 7 mm from the beginning of the single track. In the 2D contour, the non-melted region is indicated in blue, and the melted region is indicated by red and green when the VED is 65 J/mm3 and 103 J/mm3 respectively.
Fig. 4 3D temperature contour plots of during single track L-PBF process at time1.8 µs when (a) VED = 65 J/mm3 (b) VED = 103 J/mm3 along with 2D melt pool contours at 5 mm from the laser initial position. In the 2D contour, the non-melted region is indicated in blue, and the melted region is indicated by red and green when the VED is 65 J/mm3 and 103 J/mm3 respectively.
Fig. 4 3D temperature contour plots of during single track L-PBF process at time1.8 µs when (a) VED = 65 J/mm3 (b) VED = 103 J/mm3 along with 2D melt pool contours at 5 mm from the laser initial position. In the 2D contour, the non-melted region is indicated in blue, and the melted region is indicated by red and green when the VED is 65 J/mm3 and 103 J/mm3 respectively.

References

[1] L. Jyothish Kumar, P. M. Pandey, and D. I. Wimpenny, 3D printing and additive
manufacturing technologies. Springer Singapore, 2018. doi: 10.1007/978-981-13-0305-0.
[2] T. DebRoy et al., “Additive manufacturing of metallic components – Process, structure
and properties,” Progress in Materials Science, vol. 92, pp. 112–224, 2018, doi:
10.1016/j.pmatsci.2017.10.001.
[3] C. S. Lefky, B. Zucker, D. Wright, A. R. Nassar, T. W. Simpson, and O. J. Hildreth,
“Dissolvable Supports in Powder Bed Fusion-Printed Stainless Steel,” 3D Printing and
Additive Manufacturing, vol. 4, no. 1, pp. 3–11, 2017, doi: 10.1089/3dp.2016.0043.
[4] J. L. Bartlett and X. Li, “An overview of residual stresses in metal powder bed fusion,”
Additive Manufacturing, vol. 27, no. January, pp. 131–149, 2019, doi:
10.1016/j.addma.2019.02.020.
[5] I. H. Ahn, “Determination of a process window with consideration of effective layer
thickness in SLM process,” International Journal of Advanced Manufacturing
Technology, vol. 105, no. 10, pp. 4181–4191, 2019, doi: 10.1007/s00170-019-04402-w.

[6] R. McCann et al., “In-situ sensing, process monitoring and machine control in Laser
Powder Bed Fusion: A review,” Additive Manufacturing, vol. 45, no. May, 2021, doi:
10.1016/j.addma.2021.102058.
[7] M. Bayat et al., “Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF)
of Ti6Al4V: High-fidelity modelling and experimental validation,” Additive
Manufacturing, vol. 30, no. August, p. 100835, 2019, doi: 10.1016/j.addma.2019.100835.
[8] M. Bayat, S. Mohanty, and J. H. Hattel, “Multiphysics modelling of lack-of-fusion voids
formation and evolution in IN718 made by multi-track/multi-layer L-PBF,” International
Journal of Heat and Mass Transfer, vol. 139, pp. 95–114, 2019, doi:
10.1016/j.ijheatmasstransfer.2019.05.003.
[9] S. D. Jadhav, L. R. Goossens, Y. Kinds, B. van Hooreweder, and K. Vanmeensel, “Laserbased powder bed fusion additive manufacturing of pure copper,” Additive Manufacturing,
vol. 42, no. March, 2021, doi: 10.1016/j.addma.2021.101990.
[10] S. D. Jadhav, S. Dadbakhsh, L. Goossens, J. P. Kruth, J. van Humbeeck, and K.
Vanmeensel, “Influence of selective laser melting process parameters on texture evolution
in pure copper,” Journal of Materials Processing Technology, vol. 270, no. January, pp.
47–58, 2019, doi: 10.1016/j.jmatprotec.2019.02.022.
[11] H. Siva Prasad, F. Brueckner, J. Volpp, and A. F. H. Kaplan, “Laser metal deposition of
copper on diverse metals using green laser sources,” International Journal of Advanced
Manufacturing Technology, vol. 107, no. 3–4, pp. 1559–1568, 2020, doi: 10.1007/s00170-
020-05117-z.
[12] L. R. Goossens, Y. Kinds, J. P. Kruth, and B. van Hooreweder, “On the influence of
thermal lensing during selective laser melting,” Solid Freeform Fabrication 2018:
Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium – An
Additive Manufacturing Conference, SFF 2018, no. December, pp. 2267–2274, 2020.
[13] M. Bayat, V. K. Nadimpalli, D. B. Pedersen, and J. H. Hattel, “A fundamental investigation
of thermo-capillarity in laser powder bed fusion of metals and alloys,” International
Journal of Heat and Mass Transfer, vol. 166, p. 120766, 2021, doi:
10.1016/j.ijheatmasstransfer.2020.120766.
[14] H. Chen, Q. Wei, Y. Zhang, F. Chen, Y. Shi, and W. Yan, “Powder-spreading mechanisms
in powder-bed-based additive manufacturing: Experiments and computational modeling,”
Acta Materialia, vol. 179, pp. 158–171, 2019, doi: 10.1016/j.actamat.2019.08.030.
[15] S. K. Nayak, S. K. Mishra, C. P. Paul, A. N. Jinoop, and K. S. Bindra, “Effect of energy
density on laser powder bed fusion built single tracks and thin wall structures with 100 µm
preplaced powder layer thickness,” Optics and Laser Technology, vol. 125, May 2020, doi:
10.1016/j.optlastec.2019.106016.
[16] G. Nordet et al., “Absorptivity measurements during laser powder bed fusion of pure
copper with a 1 kW cw green laser,” Optics & Laser Technology, vol. 147, no. April 2021,
p. 107612, 2022, doi: 10.1016/j.optlastec.2021.107612.
[17] M. Hummel, C. Schöler, A. Häusler, A. Gillner, and R. Poprawe, “New approaches on
laser micro welding of copper by using a laser beam source with a wavelength of 450 nm,”
Journal of Advanced Joining Processes, vol. 1, no. February, p. 100012, 2020, doi:
10.1016/j.jajp.2020.100012.
[18] M. Hummel, M. Külkens, C. Schöler, W. Schulz, and A. Gillner, “In situ X-ray
tomography investigations on laser welding of copper with 515 and 1030 nm laser beam
sources,” Journal of Manufacturing Processes, vol. 67, no. April, pp. 170–176, 2021, doi:
10.1016/j.jmapro.2021.04.063.
[19] L. Gargalis et al., “Determining processing behaviour of pure Cu in laser powder bed
fusion using direct micro-calorimetry,” Journal of Materials Processing Technology, vol.
294, no. March, p. 117130, 2021, doi: 10.1016/j.jmatprotec.2021.117130.
[20] A. Mondal, D. Agrawal, and A. Upadhyaya, “Microwave heating of pure copper powder
with varying particle size and porosity,” Journal of Microwave Power and
Electromagnetic Energy, vol. 43, no. 1, pp. 4315–43110, 2009, doi:
10.1080/08327823.2008.11688599.

Fig. 3. Experimental angled top-view setup for laser welding of zinc-coated steel with a laser illumination.

Effect of zinc vapor forces on spattering in partial penetration laser welding of zinc-coated steels

Yu Hao a, Nannan Chen a,b, Hui-Ping Wang c,*, Blair E. Carlson c, Fenggui Lu a,*
a Shanghai Key Laboratory of Materials Laser Processing and Modification, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai,
200240, PR China b Department of Industrial and Manufacturing Eng

ABSTRACT

A three-dimensional thermal-fluid numerical model considering zinc vapor interaction with the molten pool was developed to study the occurrence of zinc vapor-induced spatter in partial penetration laser overlap welding of zinc-coated steels. The zinc vapor effect was represented by two forces: a jet pressure force acting on the keyhole rear wall as the vapor bursts into the keyhole and a drag force on the upper keyhole wall as the vapor escapes upwards. The numerical model was calibrated by comparing the predicted keyhole shape with the keyhole shape observed by high-speed X-ray imaging and applied for various weld schedules. The study showed that large jet pressure forces induced violent fluctuations of the keyhole rear wall, resulting in an unstable keyhole and turbulent melt flow. A large drag force pushed the melt adjacent to the keyhole surface upward and accelerated the movement of the melt whose velocities reached 1 m/s or even higher, potentially inducing spatter. Increased heat input facilitated the occurrence of large droplets of spatter, which agreed with experimental observations captured by high-speed camera.

아연도금강의 부분용입 레이저 겹침용접에서 아연증기유도 스패터의 발생을 연구하기 위하여 용융풀과의 아연증기 상호작용을 고려한 3차원 열유체 수치모델을 개발하였습니다.

아연 증기 효과는 증기가 열쇠 구멍으로 폭발할 때 키홀 뒤쪽 벽에 작용하는 제트 압력력과 증기가 위쪽으로 빠져나갈 때 위쪽 키홀 벽에 작용하는 항력의 두 가지 힘으로 표시됩니다.

수치 모델은 예측된 열쇠 구멍 모양과 고속 X선 영상으로 관찰된 키홀 모양을 비교하여 보정하고 다양한 용접 일정에 적용했습니다.

이 연구는 큰 제트 압력이 키홀 뒷벽의 격렬한 변동을 유발하여 불안정한 열쇠 구멍과 난류 용융 흐름을 초래한다는 것을 보여주었습니다. 큰 항력은 키홀 표면에 인접한 용융물을 위로 밀어올리고 속도가 1m/s 이상에 도달한 용융물의 이동을 가속화하여 잠재적으로 스패터를 유발할 수 있습니다.

증가된 열 입력은 고속 카메라로 포착한 실험적 관찰과 일치하는 큰 방울의 스패터 발생을 촉진했습니다.

Fig. 1. Schematic of zero-gap laser welding of zinc-coated steel.
Fig. 1. Schematic of zero-gap laser welding of zinc-coated steel.
Fig. 2. Experimental setup for capturing a side view of the laser welding of zinc-coated steel enabled by use of high-temperature glass.
Fig. 2. Experimental setup for capturing a side view of the laser welding of zinc-coated steel enabled by use of high-temperature glass.
Fig. 3. Experimental angled top-view setup for laser welding of zinc-coated steel with a laser illumination.
Fig. 3. Experimental angled top-view setup for laser welding of zinc-coated steel with a laser illumination.
Fig. 4. Schematic of the rotating Gaussian body heat source.
Fig. 4. Schematic of the rotating Gaussian body heat source.
Fig. 5. Schematic of jet pressure force caused by zinc vapor: (a) locating the outlet of zinc vapor (point A), (b) schematic of assigning the jet pressure force.
Fig. 5. Schematic of jet pressure force caused by zinc vapor: (a) locating the outlet of zinc vapor (point A), (b) schematic of assigning the jet pressure force.
Fig. 6. Schematic of drag force caused by zinc vapor.
Fig. 6. Schematic of drag force caused by zinc vapor.
Fig. 7. Procedure for calculating the outgassing velocity of zinc vapor.
Fig. 7. Procedure for calculating the outgassing velocity of zinc vapor.
Fig. 8. Schematic related to calculating the zone of vaporized zinc.
Fig. 8. Schematic related to calculating the zone of vaporized zinc.
Fig. 9. The meshed domains for the thermal-fluid simulation of laser welding.
Fig. 9. The meshed domains for the thermal-fluid simulation of laser welding.
Fig. 10. The calculated temperature field and validation: (a) 3-D temperature field; (b)-(f) Comparison of experimental and simulated weld cross section: (b) P = 2000 W, v = 50 mm/s; (c) P = 2500 W, v = 50 mm/s; (d) P = 3000 W, v = 50 mm/s; (e) P = 3000 W, v = 60 mm/s; (f) P = 3000 W, v = 70 mm/s.
Fig. 10. The calculated temperature field and validation: (a) 3-D temperature field; (b)-(f) Comparison of experimental and simulated weld cross section: (b) P = 2000 W, v = 50 mm/s; (c) P = 2500 W, v = 50 mm/s; (d) P = 3000 W, v = 50 mm/s; (e) P = 3000 W, v = 60 mm/s; (f) P = 3000 W, v = 70 mm/s.
Fig. 11. Comparison of X-Ray images of in-process keyhole profiles and the numerical predictions: (a) Single sheet penetration (P = 480 W, v = 150 mm/s); (b) Two sheet penetration (P = 532 W, v = 150 mm/s).
Fig. 11. Comparison of X-Ray images of in-process keyhole profiles and the numerical predictions: (a) Single sheet penetration (P = 480 W, v = 150 mm/s); (b) Two sheet penetration (P = 532 W, v = 150 mm/s).
Fig. 12. High-speed images of dynamic keyhole in laser welding of steels: (a) without zinc coating (b) with zinc coating.
Fig. 12. High-speed images of dynamic keyhole in laser welding of steels: (a) without zinc coating (b) with zinc coating.
Fig. 13. Mass loss and molten pool observation under different laser power and welding velocity for 1.2 mm + 1.2 mm HDG 420LA stack-up
Fig. 13. Mass loss and molten pool observation under different laser power and welding velocity for 1.2 mm + 1.2 mm HDG 420LA stack-up
Fig. 14. Numerical results of keyhole and flow field in molten pool: (a) without zinc vapor forces, (b) with zinc vapor forces.
Fig. 14. Numerical results of keyhole and flow field in molten pool: (a) without zinc vapor forces, (b) with zinc vapor forces.
Fig. 18. Calculated velocity fields for different welding parameters: (a) P = 2 kW, v = 50 mm/s, (b) P = 2.5 kW, v = 50 mm/s, (c) P = 3 kW, v = 50 mm/s, (d) P = 3 kW, v = 60 mm/s, (e) P = 3 kW, v = 70 mm/s.
Fig. 18. Calculated velocity fields for different welding parameters: (a) P = 2 kW, v = 50 mm/s, (b) P = 2.5 kW, v = 50 mm/s, (c) P = 3 kW, v = 50 mm/s, (d) P = 3 kW, v = 60 mm/s, (e) P = 3 kW, v = 70 mm/s.
Fig. 19. Schematic of the generation of spatter in different sizes: (a) small size, (b) large size.
Fig. 19. Schematic of the generation of spatter in different sizes: (a) small size, (b) large size.

References

Ai, Y., Jiang, P., Wang, C., et al., 2018. Experimental and numerical analysis of molten
pool and keyhole profile during high-power deep-penetration laser welding. Int. J.
Heat Mass Transf. 126 (part-A), 779–789.
Chen, Z., Yang, S., Wang, C., et al., 2014. A study of fiber laser welding of galvanized
steel using a suction method. J. Mater. Process. Technol. 214 (7), 1456–1465.
Cho, W.I., Na, S.J., Thomy, C., et al., 2012. Numerical simulation of molten pool
dynamics in high power disk laser welding. J. Mater. Process. Technol. 212 (1),
262–275.
Deng, S., Wang, H.P., Lu, F., et al., 2019. Investigation of spatter occurrence in remote
laser spiral welding of zinc-coated steels. Int. J. Heat Mass Transf. 140 (9), 269–280.
Fabbro, R., Coste, F., Goebels, D., et al., 2006. Study of CW Nd-Yag laser welding of Zncoated steel sheets. J. Phys. D Appl. Phys. 39 (2), 401.
Gao, Z., Wu, Y., Huang, J., 2009. Analysis of weld pool dynamic during stationary
laser–MIG hybrid welding. Int. J. Adv. Manuf. Technol. 44 (9), 870–879.
Kaplan, A., 1994. A model of deep penetration laser welding based on calculation of the
keyhole profile. J. Phys. D Appl. Phys. 27 (9), 1805.
Kim, J., Oh, S., Ki, H., 2015. A study of keyhole geometry in laser welding of zinc-coated
and uncoated steels using a coaxial observation method. J. Mater. Process. Technol.
225, 451–462.
Kim, J., Oh, S., Ki, H., 2016. Effect of keyhole geometry and dynamics in zero-gap laser
welding of zinc-coated steel sheets. J. Mater. Process. Technol. 232, 131–141.
Koch, H., KaGeler, C., Otto, A., et al., 2011. Analysis of welding zinc coated steel sheets
in zero gap configuration by 3D simulations and high-speed imaging. Phys. Procedia
12 (part-B), 428–436.
Kouraytem, N., Li, X., Cunningham, R., et al., 2019. Effect of laser-matter interaction on
molten pool flow and keyhole dynamics. Phys. Rev. Appl. 11 (6), 54–64.
Li, S., Chen, G., Katayama, S., et al., 2014. Relationship between spatter formation and
dynamic molten pool during high-power deep-penetration laser welding. Appl. Surf.
Sci. 303 (6), 481–488.
Ma, J., 2013. Experimental and Numerical Studies on the Issues in Laser Welding of
Galvanized High-Strength Dual-Phase Steels in a Zero-Gap Lap Joint Configuration,
PhD Thesis. Southern Methodist University.
Pan, Y., 2011. Laser Welding of Zinc Coated Steel Without a Pre-Set Gap, PhD Thesis.
Delft University of Technology.
Schmidt, M., Otto, A., 2008. Analysis of YAG laser lap-welding of zinc coated steel sheets.
CIRP Ann. Manuf. Technol. 57, 213–216.
Semak, V., Matsunawa, A., 1999. The role of recoil pressure in energy balance during
laser materials processing. J. Phys. D Appl. Phys. 30 (18), 2541.
Wu, S., Zhao, H., Wang, Y., Zhang, X., 2004. A new heat source model in numerical
simulation of high energy beam welding. Trans. China Weld. 21, 99–102.
Yaws, C.L., 2015. The Yaws Handbook of Vapor Pressure: Antoine Coefficients.
Zhou, J., Tsai, H.L., 2008. Modeling of transport phenomena in hybrid laser-MIG keyhole
welding. Int. J. Heat Mass Transf. 51 (17–18), 4353–4366.

Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition

Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition

Xiang WangLin-Jie ZhangJie Ning, and Suck-Joo Na
Published Online:8 Apr 2022https://doi.org/10.1089/3dp.2021.0159

Abstract

A 3D numerical model of heat transfer and fluid flow of molten pool in the process of laser wire deposition was presented by computational fluid dynamics technique. The simulation results of the deposition morphology were also compared with the experimental results under the condition of liquid bridge transfer mode. Moreover, they showed a good agreement. Considering the effect of recoil pressure, the morphology of the deposit metal obtained by the simulation was similar to the experiment result. Molten metal at the wire tip was peeled off and flowed into the molten pool, and then spread to both sides of the deposition layer under the recoil pressure. In addition, the results of simulation and high-speed charge-coupled device presented that a wedge transition zone, with a length of ∼6 mm, was formed behind the keyhole in the liquid bridge transfer process, where the height of deposited metal decreased gradually. After solidification, metal in the transition zone retained the original melt morphology, resulting in a decrease in the height of the tail of the deposition layer.

Keywords

LWD, CFD, liquid bridge transfer, fluid dynamics, wedge transition zone

Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition
Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition
Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition
Fluid Thermodynamic Simulation of Ti-6Al-4V Alloy in Laser Wire Deposition

References

1. Matthews MJ, Guss G, Khairallah SA, et al. Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater 2016;114:33–42. CrossrefGoogle Scholar

2. Ge WJ, Han SW, Fang YC, et al. Mechanism of surface morphology in electron beam melting of Ti6Al4V based on computational flow patterns. Appl Surf Sci 2017;419:150–158. CrossrefGoogle Scholar

3. Bai XW, Colegrove P, Ding JL, et al. Numerical analyswas of heat transfer and fluid flow in multilayer deposition of PAW-based wire and arc additive manufacturing. Int J Heat Mass Transf 2018;124:504–516. CrossrefGoogle Scholar

4. Torkamany MJ, Kaplan AFH, Ghaini FM. Wire deposition by a laser-induced boiling front. Opt Laser Technol 2015;69:104–112. CrossrefGoogle Scholar

5. Yu Y, Huang W, Wang G. Investigation of melting dynamics of filler wire during wire feed laser welding. J Mec Sci Technol 2013;27:1097–1108. CrossrefGoogle Scholar

6. Ma G, Li L, Chen Y. Effects of beam confgurations on wire melting and transfer behaviors in dual beam laser welding with fller wire. Opt Laser Technol 2017;91:138–148. CrossrefGoogle Scholar

7. Abioye TE, Folkes J, Clare AT. A parametric study of Inconel 625 wire laser deposition. J Mater Process Tech 2013;213:2145–2151. CrossrefGoogle Scholar

8. Wei S, Wang G, Shin YC, et al. Comprehensive modeling of transport phenomena in laser hot-wire deposition process. Int J Heat Mass Transf 2018;125:1356–1368. CrossrefGoogle Scholar

9. Gu H, Li L. Computational fluid dynamic simulation of gravity and pressure effects in laser metal deposition for potential additive manufacturing in space. Int J Heat Mass Transf 2019;140:51–65. CrossrefGoogle Scholar

10. Hu R, Luo M, Liu T, et al. Thermal fluid dynamics of liquid bridge transfer in laser wire deposition 3D printing. Sci Technolf Weld Join 2019;24:1–11. Google Scholar

11. Chatterjee D, Chakraborty S. A hybrid lattice Boltzmann model for solid–liquid phase transition in presence of fluid flow. Phys Lett A 2006;351:359–367. CrossrefGoogle Scholar

12. Wu L, Cheon J, Kiran DV, et al. CFD simulations of GMA welding of horizontal fillet joints based on coordinate rotation of arc models. J Mater Process Tech 2016;231:221–238. CrossrefGoogle Scholar

13. Gerhard W, Boyer RR, Collings EW. Materials Properties Handbook: Titanium Alloys. ASM International: Almere, The Netherlands, 1994. Google Scholar

14. Colegrove P, Simiand PE, Varughese A, et al. Evaluation of a drilling model approach to represent laser spot microwelding. In: ASM Proceedings of the international conference: trends in welding research; 2009. Google Scholar

15. Boivineau M, Cagran C, Doytier D, et al. Thermophysical properties of solid and liquid Ti-6Al-4V (TA6V) alloy. Int J Thermophys 2006;27:507–529. CrossrefGoogle Scholar

16. Shejndlin AE, Kenisarin MM, Chekhovskoj VY. Melting point of yttrium oxide. AN SSSR 1974;216:582–584. Google Scholar

17. Cho JH, Na SJ. Teflection and Fresnel absorption of laser beam in keyhole. J Phys D Appl Phys 2006;39:5372–5378. CrossrefGoogle Scholar

18. Han SW, Ahn J, Na SJ. A study on ray tracing method for CFD simulations of laser keyhole welding: Progressive search method. Weld World 2016;60:247–258. CrossrefGoogle Scholar

19. Allmen MV. Laser-Beam Interactions with Materials. Springer, Berlin-Heidelberg, 1995. Google Scholar

20. Dobson PJ. Absorption and scattering of light by small particles. Phys Bull 1984;35:104. CrossrefGoogle Scholar

21. Greses J, Hilton PA, Barlow CY. Plume attenuation under high power Nd:yttritium aluminum garnet laser welding. J Laser Appl 2004;16:9–15. CrossrefGoogle Scholar

22. Shcheglov PY, Uspenskiy SA, Gumenyuk AV, et al. Plume attenuation of laser radiation during high power fiber laser welding. Laser Phys Lett 2011;8:475–480. CrossrefGoogle Scholar

23. Yang P, Liou KN. Effective refractive index for determining ray propagation in an absorbing dielectric particle. J Quant Spectrosc Radiat Transf 2009;110:300–306. CrossrefGoogle Scholar

24. Barber PW. Absorption and scattering of light by small particles. J Colloid Interface Sci 1984;98:290–291. Google Scholar

25. Hu ZR, Chen X, Yang G, et al. Metal transfer in wire feeding-based electron beam 3D printing: Modes, dynamics, and transition criterion. Int J Heat Mass Transf 2018;126:877–887. CrossrefGoogle Scholar

26. David SA, Babu SS, Vitek JM. Welding: Solidification and microstructure. JOM 2013;55:14–20. CrossrefGoogle Scholar

27. Zhong ML, Liu W. Laser surface cladding: The state of the art and challenges. Proc Inst Mech Eng Part C J Mech Eng Sci 2010;224:1041–1060. CrossrefGoogle Scholar

28. Kobryn PA, Semiatin S. Microstructure and texture evolution during solidification processing of Ti-6Al-4V. J Mater Process Technol 2003;135:330–339. CrossrefGoogle Scholar

29. Debroy T, David S. Physical processes in fusion welding. Rev Mod Phys 1995;67:85–112. CrossrefGoogle Scholar

30. Lee YS, Nordin M, Babu SS, et al. Effect of fluid convection on dendrite arm spacing in laser deposition. Metall Trans B 2014;45:1520–1528. CrossrefGoogle Scholar

31. Rappaz M, David SA, Vitek JM, et al. Development of microstructures in Fe15Ni15Cr single crystal electron beam welds. Metall Trans A 1989;20:1125–1138. CrossrefGoogle Scholar

Figure 3.10: Snapshots of Temperature Profile for Single Track in Keyhole Regime (P = 250W and V = 0.5m/s) at the Preheating Temperature of 100 °C

Multiscale Process Modeling of Residual Deformation and Defect Formation for Laser Powder Bed Fusion Additive Manufacturing

Qian Chen, PhD
University of Pittsburgh, 2021

레이저 분말 베드 퓨전(L-PBF) 적층 제조(AM)는 우수한 기계적 특성으로 그물 모양에 가까운 복잡한 부품을 생산할 수 있습니다. 그러나 빌드 실패 및 다공성과 같은 결함으로 이어지는 원치 않는 잔류 응력 및 왜곡이 L-PBF의 광범위한 적용을 방해하고 있습니다.

L-PBF의 잠재력을 최대한 실현하기 위해 잔류 변형, 용융 풀 및 다공성 형성을 예측하는 다중 규모 모델링 방법론이 개발되었습니다. L-PBF의 잔류 변형 및 응력을 부품 규모에서 예측하기 위해 고유 변형 ​​방법을 기반으로 하는 다중 규모 프로세스 모델링 프레임워크가 제안됩니다.

고유한 변형 벡터는 마이크로 스케일에서 충실도가 높은 상세한 다층 프로세스 시뮬레이션에서 추출됩니다. 균일하지만 이방성인 변형은 잔류 왜곡 및 응력을 예측하기 위해 준 정적 평형 유한 요소 분석(FEA)에서 레이어별로 L-PBF 부품에 적용됩니다.

부품 규모에서의 잔류 변형 및 응력 예측 외에도 분말 규모의 다중물리 모델링을 수행하여 공정 매개변수, 예열 온도 및 스패터링 입자에 의해 유도된 용융 풀 변동 및 결함 형성을 연구합니다. 이러한 요인과 관련된 용융 풀 역학 및 다공성 형성 메커니즘은 시뮬레이션 및 실험을 통해 밝혀졌습니다.

제안된 부품 규모 잔류 응력 및 왜곡 모델을 기반으로 경로 계획 방법은 큰 잔류 변형 및 건물 파손을 방지하기 위해 주어진 형상에 대한 레이저 스캐닝 경로를 조정하기 위해 개발되었습니다.

연속 및 아일랜드 스캐닝 전략을 위한 기울기 기반 경로 계획이 공식화되고 공식화된 컴플라이언스 및 스트레스 최소화 문제에 대한 전체 감도 분석이 수행됩니다. 이 제안된 경로 계획 방법의 타당성과 효율성은 AconityONE L-PBF 시스템을 사용하여 실험적으로 입증되었습니다.

또한 기계 학습을 활용한 데이터 기반 프레임워크를 개발하여 L-PBF에 대한 부품 규모의 열 이력을 예측합니다. 본 연구에서는 실시간 열 이력 예측을 위해 CNN(Convolutional Neural Network)과 RNN(Recurrent Neural Network)을 포함하는 순차적 기계 학습 모델을 제안합니다.

유한 요소 해석과 비교하여 100배의 예측 속도 향상이 달성되어 실제 제작 프로세스보다 빠른 예측이 가능하고 실시간 온도 프로파일을 사용할 수 있습니다.

Laser powder bed fusion (L-PBF) additive manufacturing (AM) is capable of producing complex parts near net shape with good mechanical properties. However, undesired residual stress and distortion that lead to build failure and defects such as porosity are preventing broader applications of L-PBF. To realize the full potential of L-PBF, a multiscale modeling methodology is developed to predict residual deformation, melt pool, and porosity formation. To predict the residual deformation and stress in L-PBF at part-scale, a multiscale process modeling framework based on inherent strain method is proposed.

Inherent strain vectors are extracted from detailed multi-layer process simulation with high fidelity at micro-scale. Uniform but anisotropic strains are then applied to L-PBF part in a layer-by-layer fashion in a quasi-static equilibrium finite element analysis (FEA) to predict residual distortion and stress. Besides residual distortion and stress prediction at part scale, multiphysics modeling at powder scale is performed to study the melt pool variation and defect formation induced by process parameters, preheating temperature and spattering particles. Melt pool dynamics and porosity formation mechanisms associated with these factors are revealed through simulation and experiments.

Based on the proposed part-scale residual stress and distortion model, path planning method is developed to tailor the laser scanning path for a given geometry to prevent large residual deformation and building failures. Gradient based path planning for continuous and island scanning strategy is formulated and full sensitivity analysis for the formulated compliance- and stress-minimization problem is performed.

The feasibility and effectiveness of this proposed path planning method is demonstrated experimentally using the AconityONE L-PBF system. In addition, a data-driven framework utilizing machine learning is developed to predict the thermal history at part-scale for L-PBF.

In this work, a sequential machine learning model including convolutional neural network (CNN) and recurrent neural network (RNN), long shortterm memory unit, is proposed for real-time thermal history prediction. A 100x prediction speed improvement is achieved compared to the finite element analysis which makes the prediction faster than real fabrication process and real-time temperature profile available.

Figure 1.1: Schematic Overview of Metal Laser Powder Bed Fusion Process [2]
Figure 1.1: Schematic Overview of Metal Laser Powder Bed Fusion Process [2]
Figure 1.2: Commercial Powder Bed Fusion Systems
Figure 1.2: Commercial Powder Bed Fusion Systems
Figure 1.3: Commercial Metal Components Fabricated by Powder Bed Fusion Additive Manufacturing: (a) GE Fuel Nozzle; (b) Stryker Hip Biomedical Implant.
Figure 1.3: Commercial Metal Components Fabricated by Powder Bed Fusion Additive Manufacturing: (a) GE Fuel Nozzle; (b) Stryker Hip Biomedical Implant.
Figure 2.1: Proposed Multiscale Process Simulation Framework
Figure 2.1: Proposed Multiscale Process Simulation Framework
Figure 2.2: (a) Experimental Setup for In-situ Thermocouple Measurement in the EOS M290 Build Chamber; (b) Themocouple Locations on the Bottom Side of the Substrate.
Figure 2.2: (a) Experimental Setup for In-situ Thermocouple Measurement in the EOS M290 Build Chamber; (b) Themocouple Locations on the Bottom Side of the Substrate.
Figure 2.3: (a) Finite Element Model for Single Layer Thermal Analysis; (b) Deposition Layer
Figure 2.3: (a) Finite Element Model for Single Layer Thermal Analysis; (b) Deposition Layer
Figure 2.4: Core-skin layer: (a) Surface Morphology; (b) Scanning Strategy; (c) Transient Temperature Distribution and Temperature History at (d) Point 1; (e) Point 2 and (f) Point 3
Figure 2.4: Core-skin layer: (a) Surface Morphology; (b) Scanning Strategy; (c) Transient Temperature Distribution and Temperature History at (d) Point 1; (e) Point 2 and (f) Point 3
Figure 2.5: (a) Scanning Orientation of Each Layer; (b) Finite Element Model for Micro-scale Representative Volume
Figure 2.5: (a) Scanning Orientation of Each Layer; (b) Finite Element Model for Micro-scale Representative Volume
Figure 2.6: Bottom Layer (a) Thermal History; (b) Plastic Strain and (c) Elastic Strain Evolution History
Figure 2.6: Bottom Layer (a) Thermal History; (b) Plastic Strain and (c) Elastic Strain Evolution History
Figure 2.7: Bottom Layer Inherent Strain under Default Process Parameters along Horizontal Scanning Path
Figure 2.7: Bottom Layer Inherent Strain under Default Process Parameters along Horizontal Scanning Path
Figure 2.8: Snapshots of the Element Activation Process
Figure 2.8: Snapshots of the Element Activation Process
Figure 2.9: Double Cantilever Beam Structure Built by the EOS M290 DMLM Process (a) Before and (b) After Cutting off; (c) Faro Laser ScanArm V3 for Distortion Measurement
Figure 2.9: Double Cantilever Beam Structure Built by the EOS M290 DMLM Process (a) Before and (b) After Cutting off; (c) Faro Laser ScanArm V3 for Distortion Measurement
Figure 2.10: Square Canonical Structure Built by the EOS M290 DMLM Process
Figure 2.10: Square Canonical Structure Built by the EOS M290 DMLM Process
Figure 2.11: Finite Element Mesh for the Square Canonical and Snapshots of Element Activation Process
Figure 2.11: Finite Element Mesh for the Square Canonical and Snapshots of Element Activation Process
Figure 2.12: Simulated Distortion Field for the Double Cantilever Beam before Cutting off the Supports: (a) Inherent Strain Method; (b) Simufact Additive 3.1
Figure 2.12: Simulated Distortion Field for the Double Cantilever Beam before Cutting off the Supports: (a) Inherent Strain Method; (b) Simufact Additive 3.1
Figure 3.10: Snapshots of Temperature Profile for Single Track in Keyhole Regime (P = 250W and V = 0.5m/s) at the Preheating Temperature of 100 °C
Figure 3.10: Snapshots of Temperature Profile for Single Track in Keyhole Regime (P = 250W and V = 0.5m/s) at the Preheating Temperature of 100 °C
s) at the Preheating Temperature of 500 °C
s) at the Preheating Temperature of 500 °C
Figure 3.15: Melt Pool Cross Section Comparison Between Simulation and Experiment for Single Track
Figure 3.15: Melt Pool Cross Section Comparison Between Simulation and Experiment for Single Track

Bibliography

[1] I. Astm, ASTM52900-15 Standard Terminology for Additive Manufacturing—General
Principles—Terminology, ASTM International, West Conshohocken, PA 3(4) (2015) 5.
[2] W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M.
Rubenchik, Laser powder bed fusion additive manufacturing of metals; physics, computational,
and materials challenges, Applied Physics Reviews 2(4) (2015) 041304.
[3] W. Yan, Y. Lu, K. Jones, Z. Yang, J. Fox, P. Witherell, G. Wagner, W.K. Liu, Data-driven
characterization of thermal models for powder-bed-fusion additive manufacturing, Additive
Manufacturing (2020) 101503.
[4] K. Dai, L. Shaw, Thermal and stress modeling of multi-material laser processing, Acta
Materialia 49(20) (2001) 4171-4181.
[5] K. Dai, L. Shaw, Distortion minimization of laser-processed components through control of
laser scanning patterns, Rapid Prototyping Journal 8(5) (2002) 270-276.
[6] S.S. Bo Cheng, Kevin Chou, Stress and deformation evaluations of scanning strategy effect in
selective laser melting, Additive Manufacturing (2017).
[7] C. Fu, Y. Guo, Three-dimensional temperature gradient mechanism in selective laser melting
of Ti-6Al-4V, Journal of Manufacturing Science and Engineering 136(6) (2014) 061004.
[8] P. Prabhakar, W.J. Sames, R. Dehoff, S.S. Babu, Computational modeling of residual stress
formation during the electron beam melting process for Inconel 718, Additive Manufacturing 7
(2015) 83-91.
[9] A. Hussein, L. Hao, C. Yan, R. Everson, Finite element simulation of the temperature and
stress fields in single layers built without-support in selective laser melting, Materials & Design
(1980-2015) 52 (2013) 638-647.
[10] P.Z. Qingcheng Yang, Lin Cheng, Zheng Min, Minking Chyu, Albert C. To, articleFinite
element modeling and validation of thermomechanicalbehavior of Ti-6Al-4V in directed energy
deposition additivemanufacturing, Additive Manufacturing (2016).
[11] E.R. Denlinger, J. Irwin, P. Michaleris, Thermomechanical Modeling of Additive
Manufacturing Large Parts, Journal of Manufacturing Science and Engineering 136(6) (2014)
061007.
[12] E.R. Denlinger, M. Gouge, J. Irwin, P. Michaleris, Thermomechanical model development
and in situ experimental validation of the Laser Powder-Bed Fusion process, Additive
Manufacturing 16 (2017) 73-80.
[13] V.J. Erik R Denlinger, G.V. Srinivasan, Tahany EI-Wardany, Pan Michaleris, Thermal
modeling of Inconel 718 processed with powder bed fusionand experimental validation using in
situ measurements, Additive Manufacturing 11 (2016) 7-15.
[14] N. Patil, D. Pal, H.K. Rafi, K. Zeng, A. Moreland, A. Hicks, D. Beeler, B. Stucker, A
Generalized Feed Forward Dynamic Adaptive Mesh Refinement and Derefinement Finite Element
Framework for Metal Laser Sintering—Part I: Formulation and Algorithm Development, Journal
of Manufacturing Science and Engineering 137(4) (2015) 041001.
[15] D. Pal, N. Patil, K.H. Kutty, K. Zeng, A. Moreland, A. Hicks, D. Beeler, B. Stucker, A
Generalized Feed-Forward Dynamic Adaptive Mesh Refinement and Derefinement FiniteElement Framework for Metal Laser Sintering—Part II: Nonlinear Thermal Simulations and
Validations, Journal of Manufacturing Science and Engineering 138(6) (2016) 061003.
[16] N. Keller, V. Ploshikhin, New method for fast predictions of residual stress and distortion of
AM parts, Solid Freeform Fabrication Symposium, Austin, Texas, 2014, pp. 1229-1237.
[17] S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Laser powder-bed fusion additive
manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and
denudation zones, Acta Materialia 108 (2016) 36-45.
[18] M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King,
Denudation of metal powder layers in laser powder bed fusion processes, Acta Materialia 114
(2016) 33-42.
[19] A.A. Martin, N.P. Calta, S.A. Khairallah, J. Wang, P.J. Depond, A.Y. Fong, V. Thampy, G.M.
Guss, A.M. Kiss, K.H. Stone, Dynamics of pore formation during laser powder bed fusion additive
manufacturing, Nature communications 10(1) (2019) 1987.
[20] R. Shi, S.A. Khairallah, T.T. Roehling, T.W. Heo, J.T. McKeown, M.J. Matthews,
Microstructural control in metal laser powder bed fusion additive manufacturing using laser beam
shaping strategy, Acta Materialia (2019).
[21] S.A. Khairallah, A.A. Martin, J.R. Lee, G. Guss, N.P. Calta, J.A. Hammons, M.H. Nielsen,
K. Chaput, E. Schwalbach, M.N. Shah, Controlling interdependent meso-nanosecond dynamics
and defect generation in metal 3D printing, Science 368(6491) (2020) 660-665.
[22] W. Yan, W. Ge, Y. Qian, S. Lin, B. Zhou, W.K. Liu, F. Lin, G.J. Wagner, Multi-physics
modeling of single/multiple-track defect mechanisms in electron beam selective melting, Acta
Materialia 134 (2017) 324-333.
[23] S. Shrestha, Y. Kevin Chou, A Numerical Study on the Keyhole Formation During Laser
Powder Bed Fusion Process, Journal of Manufacturing Science and Engineering 141(10) (2019).
[24] S. Shrestha, B. Cheng, K. Chou, An Investigation into Melt Pool Effective Thermal
Conductivity for Thermal Modeling of Powder-Bed Electron Beam Additive Manufacturing.
[25] D. Rosenthal, Mathematical theory of heat distribution during welding and cutting, Welding
journal 20 (1941) 220-234.
[26] P. Promoppatum, S.-C. Yao, P.C. Pistorius, A.D. Rollett, A comprehensive comparison of the
analytical and numerical prediction of the thermal history and solidification microstructure of
Inconel 718 products made by laser powder-bed fusion, Engineering 3(5) (2017) 685-694.
[27] M. Tang, P.C. Pistorius, J.L. Beuth, Prediction of lack-of-fusion porosity for powder bed
fusion, Additive Manufacturing 14 (2017) 39-48.
[28] T. Moran, P. Li, D. Warner, N. Phan, Utility of superposition-based finite element approach
for part-scale thermal simulation in additive manufacturing, Additive Manufacturing 21 (2018)
215-219.
[29] Y. Yang, M. Knol, F. van Keulen, C. Ayas, A semi-analytical thermal modelling approach
for selective laser melting, Additive Manufacturing 21 (2018) 284-297.
[30] B. Cheng, S. Shrestha, K. Chou, Stress and deformation evaluations of scanning strategy
effect in selective laser melting, Additive Manufacturing 12 (2016) 240-251.
[31] L.H. Ahmed Hussein, Chunze Yan, Richard Everson, Finite element simulation of the
temperature and stress fields in single layers built without-support in selective laser melting,
Materials and Design 52 (2013) 638-647.
[32] H. Peng, D.B. Go, R. Billo, S. Gong, M.R. Shankar, B.A. Gatrell, J. Budzinski, P. Ostiguy,
R. Attardo, C. Tomonto, Part-scale model for fast prediction of thermal distortion in DMLS
additive manufacturing; Part 2: a quasi-static thermo-mechanical model, Austin, Texas (2016).
[33] M.F. Zaeh, G. Branner, Investigations on residual stresses and deformations in selective laser
melting, Production Engineering 4(1) (2010) 35-45.
[34] C. Li, C. Fu, Y. Guo, F. Fang, A multiscale modeling approach for fast prediction of part
distortion in selective laser melting, Journal of Materials Processing Technology 229 (2016) 703-
712.
[35] C. Li, Z. Liu, X. Fang, Y. Guo, On the Simulation Scalability of Predicting Residual Stress
and Distortion in Selective Laser Melting, Journal of Manufacturing Science and Engineering
140(4) (2018) 041013.
[36] S. Afazov, W.A. Denmark, B.L. Toralles, A. Holloway, A. Yaghi, Distortion Prediction and
Compensation in Selective Laser Melting, Additive Manufacturing 17 (2017) 15-22.
[37] Y. Lee, W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of
nickel-base superalloy fabricated by laser powder bed fusion, Additive Manufacturing 12 (2016)
178-188.
[38] L. Scime, J. Beuth, A multi-scale convolutional neural network for autonomous anomaly
detection and classification in a laser powder bed fusion additive manufacturing process, Additive
Manufacturing 24 (2018) 273-286.
[39] L. Scime, J. Beuth, Using machine learning to identify in-situ melt pool signatures indicative
of flaw formation in a laser powder bed fusion additive manufacturing process, Additive
Manufacturing 25 (2019) 151-165.
[40] X. Xie, J. Bennett, S. Saha, Y. Lu, J. Cao, W.K. Liu, Z. Gan, Mechanistic data-driven
prediction of as-built mechanical properties in metal additive manufacturing, npj Computational
Materials 7(1) (2021) 1-12.
[41] C. Wang, X. Tan, S. Tor, C. Lim, Machine learning in additive manufacturing: State-of-theart and perspectives, Additive Manufacturing (2020) 101538.
[42] J. Li, R. Jin, Z.Y. Hang, Integration of physically-based and data-driven approaches for
thermal field prediction in additive manufacturing, Materials & Design 139 (2018) 473-485.
[43] M. Mozaffar, A. Paul, R. Al-Bahrani, S. Wolff, A. Choudhary, A. Agrawal, K. Ehmann, J.
Cao, Data-driven prediction of the high-dimensional thermal history in directed energy deposition
processes via recurrent neural networks, Manufacturing letters 18 (2018) 35-39.
[44] A. Paul, M. Mozaffar, Z. Yang, W.-k. Liao, A. Choudhary, J. Cao, A. Agrawal, A real-time
iterative machine learning approach for temperature profile prediction in additive manufacturing
processes, 2019 IEEE International Conference on Data Science and Advanced Analytics (DSAA),
IEEE, 2019, pp. 541-550.
[45] S. Clijsters, T. Craeghs, J.-P. Kruth, A priori process parameter adjustment for SLM process
optimization, Innovative developments on virtual and physical prototyping, Taylor & Francis
Group., 2012, pp. 553-560.
[46] R. Mertens, S. Clijsters, K. Kempen, J.-P. Kruth, Optimization of scan strategies in selective
laser melting of aluminum parts with downfacing areas, Journal of Manufacturing Science and
Engineering 136(6) (2014) 061012.
[47] J.-P. Kruth, J. Deckers, E. Yasa, R. Wauthlé, Assessing and comparing influencing factors of
residual stresses in selective laser melting using a novel analysis method, Proceedings of the
institution of mechanical engineers, Part B: Journal of Engineering Manufacture 226(6) (2012)
980-991.
[48] Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie, J. Lin, Study on the microstructure,
mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing
island scanning strategy, Optics & Laser Technology 75 (2015) 197-206.
[49] E. Foroozmehr, R. Kovacevic, Effect of path planning on the laser powder deposition process:
thermal and structural evaluation, The International Journal of Advanced Manufacturing
Technology 51(5-8) (2010) 659-669.
[50] L.H. Ahmed Hussein, Chunze Yan, Richard Everson, Finite element simulation of the
temperature and stress fields in single layers built without-support in selective laser melting,
Materials and Design (2013).
[51] J.-P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, J. Van Humbeeck, Part and
material properties in selective laser melting of metals, Proceedings of the 16th international
symposium on electromachining, 2010, pp. 1-12.
[52] L. Thijs, K. Kempen, J.-P. Kruth, J. Van Humbeeck, Fine-structured aluminium products with
controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder, Acta Materialia
61(5) (2013) 1809-1819.
[53] D. Ding, Z.S. Pan, D. Cuiuri, H. Li, A tool-path generation strategy for wire and arc additive
manufacturing, The international journal of advanced manufacturing technology 73(1-4) (2014)
173-183.
[54] B.E. Carroll, T.A. Palmer, A.M. Beese, Anisotropic tensile behavior of Ti–6Al–4V
components fabricated with directed energy deposition additive manufacturing, Acta Materialia
87 (2015) 309-320.
[55] D. Ding, Z. Pan, D. Cuiuri, H. Li, A practical path planning methodology for wire and arc
additive manufacturing of thin-walled structures, Robotics and Computer-Integrated
Manufacturing 34 (2015) 8-19.
[56] D. Ding, Z. Pan, D. Cuiuri, H. Li, S. van Duin, N. Larkin, Bead modelling and implementation
of adaptive MAT path in wire and arc additive manufacturing, Robotics and Computer-Integrated
Manufacturing 39 (2016) 32-42.
[57] R. Ponche, O. Kerbrat, P. Mognol, J.-Y. Hascoet, A novel methodology of design for Additive
Manufacturing applied to Additive Laser Manufacturing process, Robotics and ComputerIntegrated Manufacturing 30(4) (2014) 389-398.
[58] D.E. Smith, R. Hoglund, Continuous fiber angle topology optimization for polymer fused
fillament fabrication, Annu. Int. Solid Free. Fabr. Symp. Austin, TX, 2016.
[59] J. Liu, J. Liu, H. Yu, H. Yu, Concurrent deposition path planning and structural topology
optimization for additive manufacturing, Rapid Prototyping Journal 23(5) (2017) 930-942.
[60] Q. Xia, T. Shi, Optimization of composite structures with continuous spatial variation of fiber
angle through Shepard interpolation, Composite Structures 182 (2017) 273-282.
[61] C. Kiyono, E. Silva, J. Reddy, A novel fiber optimization method based on normal distribution
function with continuously varying fiber path, Composite Structures 160 (2017) 503-515.
[62] C.J. Brampton, K.C. Wu, H.A. Kim, New optimization method for steered fiber composites
using the level set method, Structural and Multidisciplinary Optimization 52(3) (2015) 493-505.
[63] J. Liu, A.C. To, Deposition path planning-integrated structural topology optimization for 3D
additive manufacturing subject to self-support constraint, Computer-Aided Design 91 (2017) 27-
45.
[64] H. Shen, J. Fu, Z. Chen, Y. Fan, Generation of offset surface for tool path in NC machining
through level set methods, The International Journal of Advanced Manufacturing Technology
46(9-12) (2010) 1043-1047.
[65] C. Zhuang, Z. Xiong, H. Ding, High speed machining tool path generation for pockets using
level sets, International Journal of Production Research 48(19) (2010) 5749-5766.
[66] K.C. Mills, Recommended values of thermophysical properties for selected commercial
alloys, Woodhead Publishing2002.
[67] S.S. Sih, J.W. Barlow, The prediction of the emissivity and thermal conductivity of powder
beds, Particulate Science and Technology 22(4) (2004) 427-440.
[68] L. Dong, A. Makradi, S. Ahzi, Y. Remond, Three-dimensional transient finite element
analysis of the selective laser sintering process, Journal of materials processing technology 209(2)
(2009) 700-706.
[69] J.J. Beaman, J.W. Barlow, D.L. Bourell, R.H. Crawford, H.L. Marcus, K.P. McAlea, Solid
freeform fabrication: a new direction in manufacturing, Kluwer Academic Publishers, Norwell,
MA 2061 (1997) 25-49.
[70] G. Bugeda Miguel Cervera, G. Lombera, Numerical prediction of temperature and density
distributions in selective laser sintering processes, Rapid Prototyping Journal 5(1) (1999) 21-26.
[71] T. Mukherjee, W. Zhang, T. DebRoy, An improved prediction of residual stresses and
distortion in additive manufacturing, Computational Materials Science 126 (2017) 360-372.
[72] A.J. Dunbar, E.R. Denlinger, M.F. Gouge, P. Michaleris, Experimental validation of finite
element modeling for laser powderbed fusion deformation, Additive Manufacturing 12 (2016)
108-120.
[73] J. Goldak, A. Chakravarti, M. Bibby, A new finite element model for welding heat sources,
Metallurgical and Materials Transactions B 15(2) (1984) 299-305.
[74] J. Liu, Q. Chen, Y. Zhao, W. Xiong, A. To, Quantitative Texture Prediction of Epitaxial
Columnar Grains in Alloy 718 Processed by Additive Manufacturing, Proceedings of the 9th
International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial
Applications, Springer, 2018, pp. 749-755.
[75] J. Irwin, P. Michaleris, A line heat input model for additive manufacturing, Journal of
Manufacturing Science and Engineering 138(11) (2016) 111004.
[76] M. Gouge, J. Heigel, P. Michaleris, T. Palmer, Modeling forced convection in the thermal
simulation of laser cladding processes, International Journal of Advanced Manufacturing
Technology 79 (2015).
[77] J. Heigel, P. Michaleris, E. Reutzel, Thermo-mechanical model development and validation
of directed energy deposition additive manufacturing of Ti–6Al–4V, Additive manufacturing 5
(2015) 9-19.
[78] E.R. Denlinger, J.C. Heigel, P. Michaleris, Residual stress and distortion modeling of electron
beam direct manufacturing Ti-6Al-4V, Proceedings of the Institution of Mechanical Engineers,
Part B: Journal of Engineering Manufacture 229(10) (2015) 1803-1813.
[79] X. Liang, Q. Chen, L. Cheng, Q. Yang, A. To, A modified inherent strain method for fast
prediction of residual deformation in additive manufacturing of metal parts, 2017 Solid Freeform
Fabrication Symposium Proceedings, Austin, Texas, 2017.
[80] X. Liang, L. Cheng, Q. Chen, Q. Yang, A. To, A Modified Method for Estimating Inherent
Strains from Detailed Process Simulation for Fast Residual Distortion Prediction of Single-Walled
Structures Fabricated by Directed Energy Deposition, Additive Manufacturing 23 (2018) 471-486.
[81] L. Sochalski-Kolbus, E.A. Payzant, P.A. Cornwell, T.R. Watkins, S.S. Babu, R.R. Dehoff,
M. Lorenz, O. Ovchinnikova, C. Duty, Comparison of residual stresses in Inconel 718 simple parts
made by electron beam melting and direct laser metal sintering, Metallurgical and Materials
Transactions A 46(3) (2015) 1419-1432.
[82] P. Mercelis, J.-P. Kruth, Residual stresses in selective laser sintering and selective laser
melting, Rapid Prototyping Journal 12(5) (2006) 254-265.
[83] N. Hodge, R. Ferencz, J. Solberg, Implementation of a thermomechanical model for the
simulation of selective laser melting, Computational Mechanics 54(1) (2014) 33-51.
[84] A.S. Wu, D.W. Brown, M. Kumar, G.F. Gallegos, W.E. King, An experimental investigation
into additive manufacturing-induced residual stresses in 316L stainless steel, Metallurgical and
Materials Transactions A 45(13) (2014) 6260-6270.
[85] C. Li, J. liu, Y. Guo, Efficient predictive model of part distortion and residual stress in
selective laser melting, Solid Freeform Fabrication 2016, 2017.
[86] Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka, A. Chiba, Molten pool behavior and
effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a
biomedical Co-Cr-Mo alloy, Additive Manufacturing 26 (2019) 202-214.
[87] J.-H. Cho, S.-J. Na, Implementation of real-time multiple reflection and Fresnel absorption of
laser beam in keyhole, Journal of Physics D: Applied Physics 39(24) (2006) 5372.
[88] Q. Guo, C. Zhao, M. Qu, L. Xiong, L.I. Escano, S.M.H. Hojjatzadeh, N.D. Parab, K. Fezzaa,
W. Everhart, T. Sun, In-situ characterization and quantification of melt pool variation under
constant input energy density in laser powder-bed fusion additive manufacturing process, Additive
Manufacturing (2019).
[89] E. Assuncao, S. Williams, D. Yapp, Interaction time and beam diameter effects on the
conduction mode limit, Optics and Lasers in Engineering 50(6) (2012) 823-828.
[90] R. Cunningham, C. Zhao, N. Parab, C. Kantzos, J. Pauza, K. Fezzaa, T. Sun, A.D. Rollett,
Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging,
Science 363(6429) (2019) 849-852.
[91] W. Tan, N.S. Bailey, Y.C. Shin, Investigation of keyhole plume and molten pool based on a
three-dimensional dynamic model with sharp interface formulation, Journal of Physics D: Applied
Physics 46(5) (2013) 055501.
[92] W. Tan, Y.C. Shin, Analysis of multi-phase interaction and its effects on keyhole dynamics
with a multi-physics numerical model, Journal of Physics D: Applied Physics 47(34) (2014)
345501.
[93] R. Fabbro, K. Chouf, Keyhole modeling during laser welding, Journal of applied Physics
87(9) (2000) 4075-4083.
[94] Q. Guo, C. Zhao, M. Qu, L. Xiong, S.M.H. Hojjatzadeh, L.I. Escano, N.D. Parab, K. Fezzaa,
T. Sun, L. Chen, In-situ full-field mapping of melt flow dynamics in laser metal additive
manufacturing, Additive Manufacturing 31 (2020) 100939.
[95] Y. Ueda, K. Fukuda, K. Nakacho, S. Endo, A new measuring method of residual stresses with
the aid of finite element method and reliability of estimated values, Journal of the Society of Naval
Architects of Japan 1975(138) (1975) 499-507.
[96] M.R. Hill, D.V. Nelson, The inherent strain method for residual stress determination and its
application to a long welded joint, ASME-PUBLICATIONS-PVP 318 (1995) 343-352.
[97] H. Murakawa, Y. Luo, Y. Ueda, Prediction of welding deformation and residual stress by
elastic FEM based on inherent strain, Journal of the society of Naval Architects of Japan 1996(180)
(1996) 739-751.
[98] M. Yuan, Y. Ueda, Prediction of residual stresses in welded T-and I-joints using inherent
strains, Journal of Engineering Materials and Technology, Transactions of the ASME 118(2)
(1996) 229-234.
[99] L. Zhang, P. Michaleris, P. Marugabandhu, Evaluation of applied plastic strain methods for
welding distortion prediction, Journal of Manufacturing Science and Engineering 129(6) (2007)
1000-1010.
[100] M. Bugatti, Q. Semeraro, Limitations of the Inherent Strain Method in Simulating Powder
Bed Fusion Processes, Additive Manufacturing 23 (2018) 329-346.
[101] L. Cheng, X. Liang, J. Bai, Q. Chen, J. Lemon, A. To, On Utilizing Topology Optimization
to Design Support Structure to Prevent Residual Stress Induced Build Failure in Laser Powder Bed
Metal Additive Manufacturing, Additive Manufacturing (2019).
[102] Q. Chen, X. Liang, D. Hayduke, J. Liu, L. Cheng, J. Oskin, R. Whitmore, A.C. To, An
inherent strain based multiscale modeling framework for simulating part-scale residual
deformation for direct metal laser sintering, Additive Manufacturing 28 (2019) 406-418.
[103] S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based
on Hamilton-Jacobi formulations, Journal of computational physics 79(1) (1988) 12-49.
[104] M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization,
Computer methods in applied mechanics and engineering 192(1) (2003) 227-246.
[105] G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a
level-set method, Journal of computational physics 194(1) (2004) 363-393.
[106] Y. Wang, Z. Luo, Z. Kang, N. Zhang, A multi-material level set-based topology and shape
optimization method, Computer Methods in Applied Mechanics and Engineering 283 (2015)
1570-1586.
[107] P. Dunning, C. Brampton, H. Kim, Simultaneous optimisation of structural topology and
material grading using level set method, Materials Science and Technology 31(8) (2015) 884-894.
[108] P. Liu, Y. Luo, Z. Kang, Multi-material topology optimization considering interface
behavior via XFEM and level set method, Computer methods in applied mechanics and
engineering 308 (2016) 113-133.
[109] J. Liu, Q. Chen, Y. Zheng, R. Ahmad, J. Tang, Y. Ma, Level set-based heterogeneous object
modeling and optimization, Computer-Aided Design (2019).
[110] J. Liu, Q. Chen, X. Liang, A.C. To, Manufacturing cost constrained topology optimization
for additive manufacturing, Frontiers of Mechanical Engineering 14(2) (2019) 213-221.
[111] Z. Kang, Y. Wang, Integrated topology optimization with embedded movable holes based
on combined description by material density and level sets, Computer methods in applied
mechanics and engineering 255 (2013) 1-13.
[112] P.D. Dunning, H. Alicia Kim, A new hole insertion method for level set based structural
topology optimization, International Journal for Numerical Methods in Engineering 93(1) (2013)
118-134.
[113] J.A. Sethian, A fast marching level set method for monotonically advancing fronts,
Proceedings of the National Academy of Sciences 93(4) (1996) 1591-1595.
[114] J.A. Sethian, Level set methods and fast marching methods: evolving interfaces in
computational geometry, fluid mechanics, computer vision, and materials science, Cambridge
university press1999.
[115] C. Le, J. Norato, T. Bruns, C. Ha, D. Tortorelli, Stress-based topology optimization for
continua, Structural and Multidisciplinary Optimization 41(4) (2010) 605-620.
[116] A. Takezawa, G.H. Yoon, S.H. Jeong, M. Kobashi, M. Kitamura, Structural topology
optimization with strength and heat conduction constraints, Computer Methods in Applied
Mechanics and Engineering 276 (2014) 341-361.
[117] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation 9(8) (1997)
1735-1780.
[118] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional
neural networks, Advances in neural information processing systems 25 (2012) 1097-1105.
[119] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition, arXiv preprint arXiv:1409.1556 (2014).
[120] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proceedings
of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.
[121] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A.
Khosla, M. Bernstein, Imagenet large scale visual recognition challenge, International journal of
computer vision 115(3) (2015) 211-252.
[122] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object detection with
region proposal networks, Advances in neural information processing systems 28 (2015) 91-99.
[123] E.J. Schwalbach, S.P. Donegan, M.G. Chapman, K.J. Chaput, M.A. Groeber, A discrete
source model of powder bed fusion additive manufacturing thermal history, Additive
Manufacturing 25 (2019) 485-498.
[124] D.G. Duffy, Green’s functions with applications, Chapman and Hall/CRC2015.
[125] J. Martínez-Frutos, D. Herrero-Pérez, Efficient matrix-free GPU implementation of fixed
grid finite element analysis, Finite Elements in Analysis and Design 104 (2015) 61-71.
[126] F. Dugast, P. Apostolou, A. Fernandez, W. Dong, Q. Chen, S. Strayer, R. Wicker, A.C. To,
Part-scale thermal process modeling for laser powder bed fusion with matrix-free method and GPU
computing, Additive Manufacturing 37 (2021) 101732.
[127] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł. Kaiser, I.
Polosukhin, Attention is all you need, Advances in neural information processing systems, 2017,
pp. 5998-6008.
[128] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep bidirectional
transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018).

Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling

Laser Powder Bed에서 Laser Drilling에 의한 Keyhole 형성 Ti6Al4V 생체 의학 합금의 융합: 메조스코픽 전산유체역학 시뮬레이션 대 경험적 검증을 사용한 수학적 모델링

Keyhole Formation by Laser Drilling in Laser Powder Bed Fusion of Ti6Al4V Biomedical Alloy: Mesoscopic Computational Fluid Dynamics Simulation versus Mathematical Modelling Using Empirical Validation

Asif Ur Rehman 1,2,3,*
,† , Muhammad Arif Mahmood 4,*
,† , Fatih Pitir 1
, Metin Uymaz Salamci 2,3
,
Andrei C. Popescu 4 and Ion N. Mihailescu 4

Abstract

LPBF(Laser Powder Bed fusion) 공정에서 작동 조건은 열 분포를 기반으로 레이저 유도 키홀 영역을 결정하는 데 필수적입니다. 얕은 구멍과 깊은 구멍으로 분류되는 이러한 영역은 LPBF 프로세스에서 확률과 결함 형성 강도를 제어합니다.

LPBF 프로세스의 핵심 구멍을 연구하고 제어하기 위해 수학적 및 CFD(전산 유체 역학) 모델이 제공됩니다. CFD의 경우 이산 요소 모델링 기법을 사용한 유체 체적 방법이 사용되었으며, 분말 베드 보이드 및 표면에 의한 레이저 빔 흡수를 포함하여 수학적 모델이 개발되었습니다.

동적 용융 풀 거동을 자세히 살펴봅니다. 실험적, CFD 시뮬레이션 및 분석적 컴퓨팅 결과 간에 정량적 비교가 수행되어 좋은 일치를 얻습니다.

LPBF에서 레이저 조사 영역 주변의 온도는 높은 내열성과 분말 입자 사이의 공기로 인해 분말층 주변에 비해 급격히 상승하여 레이저 횡방향 열파의 이동이 느려집니다. LPBF에서 키홀은 에너지 밀도에 의해 제어되는 얕고 깊은 키홀 모드로 분류될 수 있습니다. 에너지 밀도를 높이면 얕은 키홀 구멍 모드가 깊은 키홀 구멍 모드로 바뀝니다.

깊은 키홀 구멍의 에너지 밀도는 다중 반사와 키홀 구멍 내의 2차 반사 빔의 집중으로 인해 더 높아져 재료가 빠르게 기화됩니다.

깊은 키홀 구멍 모드에서는 온도 분포가 높기 때문에 액체 재료가 기화 온도에 가까우므로 얕은 키홀 구멍보다 구멍이 형성될 확률이 훨씬 높습니다. 온도가 급격히 상승하면 재료 밀도가 급격히 떨어지므로 비열과 융해 잠열로 인해 유체 부피가 증가합니다.

그 대가로 표면 장력을 낮추고 용융 풀 균일성에 영향을 미칩니다.

In the laser powder bed fusion (LPBF) process, the operating conditions are essential in determining laser-induced keyhole regimes based on the thermal distribution. These regimes, classified into shallow and deep keyholes, control the probability and defects formation intensity in the LPBF process. To study and control the keyhole in the LPBF process, mathematical and computational fluid dynamics (CFD) models are presented. For CFD, the volume of fluid method with the discrete element modeling technique was used, while a mathematical model was developed by including the laser beam absorption by the powder bed voids and surface. The dynamic melt pool behavior is explored in detail. Quantitative comparisons are made among experimental, CFD simulation and analytical computing results leading to a good correspondence. In LPBF, the temperature around the laser irradiation zone rises rapidly compared to the surroundings in the powder layer due to the high thermal resistance and the air between the powder particles, resulting in a slow travel of laser transverse heat waves. In LPBF, the keyhole can be classified into shallow and deep keyhole mode, controlled by the energy density. Increasing the energy density, the shallow keyhole mode transforms into the deep keyhole mode. The energy density in a deep keyhole is higher due to the multiple reflections and concentrations of secondary reflected beams within the keyhole, causing the material to vaporize quickly. Due to an elevated temperature distribution in deep keyhole mode, the probability of pores forming is much higher than in a shallow keyhole as the liquid material is close to the vaporization temperature. When the temperature increases rapidly, the material density drops quickly, thus, raising the fluid volume due to the specific heat and fusion latent heat. In return, this lowers the surface tension and affects the melt pool uniformity.

Keywords: laser powder bed fusion; computational fluid dynamics; analytical modelling; shallow
and deep keyhole modes; experimental correlation

Figure 1. Powder bed schematic with voids.
Figure 1. Powder bed schematic with voids.
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 2. (a) Scanning electron microscopy images of Ti6Al4V powder particles and (b) simulated powder bed using discrete element modelling
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 3. Temperature field contour formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 4. Detailed view of shallow depth melt mode with temperature field at 0.695 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 5. Melt flow stream traces formation at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 6. Density evolution of the melt pool at various time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms.
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 7. Un-melted and melted regions at different time intervals (a) 0.695 ms, (b) 0.795 ms, (c) 0.995 ms and (d) 1.3 ms
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 8. Transformation from shallow depth melt flow to deep keyhole formation when laser power increased from (a) 170 W to (b) 200 W
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 9. Stream traces and laser beam multiple reflections in deep keyhole melt flow mode
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 10. A comparison between analytical and CFD simulation results for peak thermal distribution value in the deep keyhole formation
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width
Figure 11. A comparison among experiments [49], CFD and analytical simulations for deep keyhole top width and bottom width

References

  1. Kok, Y.; Tan, X.P.; Wang, P.; Nai, M.L.S.; Loh, N.H.; Liu, E.; Tor, S.B. Anisotropy and heterogeneity of microstructure and
    mechanical properties in metal additive manufacturing: A critical review. Mater. Des. 2018, 139, 565–586. [CrossRef]
  2. Ansari, P.; Salamci, M.U. On the selective laser melting based additive manufacturing of AlSi10Mg: The process parameter
    investigation through multiphysics simulation and experimental validation. J. Alloys Compd. 2022, 890, 161873. [CrossRef]
  3. Guo, N.; Leu, M.C. Additive manufacturing: Technology, applications and research needs. Front. Mech. Eng. 2013, 8, 215–243.
    [CrossRef]
  4. Mohsin Raza, M.; Lo, Y.L. Experimental investigation into microstructure, mechanical properties, and cracking mechanism of
    IN713LC processed by laser powder bed fusion. Mater. Sci. Eng. A 2021, 819, 141527. [CrossRef]
  5. Dezfoli, A.R.A.; Lo, Y.L.; Raza, M.M. Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated
    Finite Element and Cellular Automaton Approach. Materials 2021, 14, 5202. [CrossRef]
  6. Tiwari, S.K.; Pande, S.; Agrawal, S.; Bobade, S.M. Selection of selective laser sintering materials for different applications. Rapid
    Prototyp. J. 2015, 21, 630–648. [CrossRef]
  7. Liu, F.H. Synthesis of bioceramic scaffolds for bone tissue engineering by rapid prototyping technique. J. Sol-Gel Sci. Technol.
    2012, 64, 704–710. [CrossRef]
  8. Ur Rehman, A.; Sglavo, V.M. 3D printing of geopolymer-based concrete for building applications. Rapid Prototyp. J. 2020, 26,
    1783–1788. [CrossRef]
  9. Ur Rehman, A.; Sglavo, V.M. 3D printing of Portland cement-containing bodies. Rapid Prototyp. J. 2021. ahead of print. [CrossRef]
  10. Popovich, A.; Sufiiarov, V. Metal Powder Additive Manufacturing. In New Trends in 3D Printing; InTech: Rijeka, Croatia, 2016.
  11. Jia, T.; Zhang, Y.; Chen, J.K.; He, Y.L. Dynamic simulation of granular packing of fine cohesive particles with different size
    distributions. Powder Technol. 2012, 218, 76–85. [CrossRef]
  12. Ansari, P.; Ur Rehman, A.; Pitir, F.; Veziroglu, S.; Mishra, Y.K.; Aktas, O.C.; Salamci, M.U. Selective Laser Melting of 316L
    Austenitic Stainless Steel: Detailed Process Understanding Using Multiphysics Simulation and Experimentation. Metals 2021,
    11, 1076. [CrossRef]
  13. Ur Rehman, A.; Tingting, L.; Liao, W. 4D Printing; Printing Ceramics from Metals with Selective Oxidation. Patent No.
    W0/2019/052128, 21 March 2019.
  14. Ullah, A.; Wu, H.; Ur Rehman, A.; Zhu, Y.; Liu, T.; Zhang, K. Influence of laser parameters and Ti content on the surface
    morphology of L-PBF fabricated Titania. Rapid Prototyp. J. 2021, 27, 71–80. [CrossRef]
  15. Ur Rehman, A. Additive Manufacturing of Ceramic Materials and Combinations with New Laser Strategies. Master’s Thesis,
    Nanjing University of Science and Technology, Nanjing, China, 2017.
  16. Wong, K.V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 1–10. [CrossRef]
  17. Körner, C. Additive manufacturing of metallic components by selective electron beam melting—A review. Int. Mater. Rev. 2016,
    61, 361–377. [CrossRef]
  18. Fayazfar, H.; Salarian, M.; Rogalsky, A.; Sarker, D.; Russo, P.; Paserin, V.; Toyserkani, E. A critical review of powder-based additive
    manufacturing of ferrous alloys: Process parameters, microstructure and mechanical properties. Mater. Des. 2018, 144, 98–128.
    [CrossRef]
  19. Everton, S.K.; Hirsch, M.; Stavroulakis, P.I.; Leach, R.K.; Clare, A.T. Review of in-situ process monitoring and in-situ metrology
    for metal additive manufacturing. Mater. Des. 2016, 95, 431–445. [CrossRef]
  20. Sing, S.L.; An, J.; Yeong, W.Y.; Wiria, F.E. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A
    review on processes, materials and designs. J. Orthop. Res. 2016, 34, 369–385. [CrossRef] [PubMed]
  21. Olakanmi, E.O.; Cochrane, R.F.; Dalgarno, K.W. A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy
    powders: Processing, microstructure, and properties. Prog. Mater. Sci. 2015, 74, 401–477. [CrossRef]
  22. Mahmood, M.A.; Popescu, A.C.; Hapenciuc, C.L.; Ristoscu, C.; Visan, A.I.; Oane, M.; Mihailescu, I.N. Estimation of clad geometry
    and corresponding residual stress distribution in laser melting deposition: Analytical modeling and experimental correlations.
    Int. J. Adv. Manuf. Technol. 2020, 111, 77–91. [CrossRef]
  23. Mahmood, M.A.; Popescu, A.C.; Oane, M.; Ristoscu, C.; Chioibasu, D.; Mihai, S.; Mihailescu, I.N. Three-jet powder flow
    and laser–powder interaction in laser melting deposition: Modelling versus experimental correlations. Metals 2020, 10, 1113.
    [CrossRef]
  24. King, W.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A. Overview of modelling and simulation of
    metal powder bed fusion process at Lawrence Livermore National Laboratory. Mater. Sci. Technol. 2015, 31, 957–968. [CrossRef]
  1. Gong, H.; Rafi, K.; Gu, H.; Starr, T.; Stucker, B. Analysis of defect generation in Ti-6Al-4V parts made using powder bed fusion
    additive manufacturing processes. Addit. Manuf. 2014, 1, 87–98. [CrossRef]
  2. Frazier, W.E. Metal additive manufacturing: A review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [CrossRef]
  3. Panwisawas, C.; Qiu, C.L.; Sovani, Y.; Brooks, J.W.; Attallah, M.M.; Basoalto, H.C. On the role of thermal fluid dynamics into the
    evolution of porosity during selective laser melting. Scr. Mater. 2015, 105, 14–17. [CrossRef]
  4. Yan, W.; Ge, W.; Qian, Y.; Lin, S.; Zhou, B.; Liu, W.K.; Lin, F.; Wagner, G.J. Multi-physics modeling of single/multiple-track defect
    mechanisms in electron beam selective melting. Acta Mater. 2017, 134, 324–333. [CrossRef]
  5. Qian, Y.; Yan, W.; Lin, F. Parametric study and surface morphology analysis of electron beam selective melting. Rapid Prototyp. J.
    2018, 24, 1586–1598. [CrossRef]
  6. Panwisawas, C.; Perumal, B.; Ward, R.M.; Turner, N.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C. Keyhole formation and thermal
    fluid flow-induced porosity during laser fusion welding in titanium alloys: Experimental and modelling. Acta Mater. 2017, 126,
    251–263. [CrossRef]
  7. King, W.E.; Barth, H.D.; Castillo, V.M.; Gallegos, G.F.; Gibbs, J.W.; Hahn, D.E.; Kamath, C.; Rubenchik, A.M. Observation of
    keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J. Mater. Process. Technol. 2014, 214, 2915–2925.
    [CrossRef]
  8. Panwisawas, C.; Sovani, Y.; Turner, R.P.; Brooks, J.W.; Basoalto, H.C.; Choquet, I. Modelling of thermal fluid dynamics for fusion
    welding. J. Mater. Process. Technol. 2018, 252, 176–182. [CrossRef]
  9. Martin, A.A.; Calta, N.P.; Hammons, J.A.; Khairallah, S.A.; Nielsen, M.H.; Shuttlesworth, R.M.; Sinclair, N.; Matthews, M.J.;
    Jeffries, J.R.; Willey, T.M.; et al. Ultrafast dynamics of laser-metal interactions in additive manufacturing alloys captured by in situ
    X-ray imaging. Mater. Today Adv. 2019, 1, 100002. [CrossRef]
  10. Cunningham, R.; Zhao, C.; Parab, N.; Kantzos, C.; Pauza, J.; Fezzaa, K.; Sun, T.; Rollett, A.D. Keyhole threshold and morphology
    in laser melting revealed by ultrahigh-speed x-ray imaging. Science 2019, 363, 849–852. [CrossRef] [PubMed]
  11. Tang, C.; Tan, J.L.; Wong, C.H. A numerical investigation on the physical mechanisms of single track defects in selective laser
    melting. Int. J. Heat Mass Transf. 2018, 126, 957–968. [CrossRef]
  12. Mirkoohi, E.; Ning, J.; Bocchini, P.; Fergani, O.; Chiang, K.-N.; Liang, S. Thermal Modeling of Temperature Distribution in Metal
    Additive Manufacturing Considering Effects of Build Layers, Latent Heat, and Temperature-Sensitivity of Material Properties. J.
    Manuf. Mater. Process. 2018, 2, 63. [CrossRef]
  13. Oane, M.; Sporea, D. Temperature profiles modeling in IR optical components during high power laser irradiation. Infrared Phys.
    Technol. 2001, 42, 31–40. [CrossRef]
  14. Cleary, P.W.; Sawley, M.L. DEM modelling of industrial granular flows: 3D case studies and the effect of particle shape on hopper
    discharge. Appl. Math. Model. 2002, 26, 89–111. [CrossRef]
  15. Parteli, E.J.R.; Pöschel, T. Particle-based simulation of powder application in additive manufacturing. Powder Technol. 2016, 288,
    96–102. [CrossRef]
  16. Cao, L. Numerical simulation of the impact of laying powder on selective laser melting single-pass formation. Int. J. Heat Mass
    Transf. 2019, 141, 1036–1048. [CrossRef]
  17. Tian, Y.; Yang, L.; Zhao, D.; Huang, Y.; Pan, J. Numerical analysis of powder bed generation and single track forming for selective
    laser melting of SS316L stainless steel. J. Manuf. Process. 2020, 58, 964–974. [CrossRef]
  18. Lee, Y.S.; Zhang, W. Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by
    laser powder bed fusion. Addit. Manuf. 2016, 12, 178–188. [CrossRef]
  19. Tang, M.; Pistorius, P.C.; Beuth, J.L. Prediction of lack-of-fusion porosity for powder bed fusion. Addit. Manuf. 2017, 14, 39–48.
    [CrossRef]
  20. Promoppatum, P.; Yao, S.C.; Pistorius, P.C.; Rollett, A.D. A Comprehensive Comparison of the Analytical and Numerical
    Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion.
    Engineering 2017, 3, 685–694. [CrossRef]
  21. Rosenthal, D. Mathematical Theory of Heat Distribution During Welding and Cutting. Weld. J. 1941, 20, 220–234.
  22. Chen, Q.; Zhao, Y.Y.; Strayer, S.; Zhao, Y.Y.; Aoyagi, K.; Koizumi, Y.; Chiba, A.; Xiong, W.; To, A.C. Elucidating the Effect
    of Preheating Temperature on Melt Pool Morphology Variation in Inconel 718 Laser Powder Bed Fusion via Simulation and
    Experiment. Available online: https://www.sciencedirect.com/science/article/pii/S2214860420310149#bb8 (accessed on 30
    April 2021).
  23. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Laser Powder Bed Fusion (LPBF) of In718 and the Impact of Pre-Heating at 500 and
    1000 ◦C: Operando Study. Materials 2021, 14, 6683. [CrossRef] [PubMed]
  24. Ur Rehman, A.; Pitir, F.; Salamci, M.U. Full-Field Mapping and Flow Quantification of Melt Pool Dynamics in Laser Powder Bed
    Fusion of SS316L. Materials 2021, 14, 6264. [CrossRef] [PubMed]
  25. Gong, H.; Gu, H.; Zeng, K.; Dilip, J.J.S.; Pal, D.; Stucker, B.; Christiansen, D.; Beuth, J.; Lewandowski, J.J. Melt Pool Characterization
    for Selective Laser Melting of Ti-6Al-4V Pre-alloyed Powder. In Proceedings of the International Solid Freeform Fabrication
    Symposium, Austin, TX, USA, 10–12 August 2014; 2014; pp. 256–267.
  26. Song, B.; Dong, S.; Liao, H.; Coddet, C. Process parameter selection for selective laser melting of Ti6Al4V based on temperature
    distribution simulation and experimental sintering. Int. J. Adv. Manuf. Technol. 2012, 61, 967–974. [CrossRef]
  27. Guo, Q.; Zhao, C.; Qu, M.; Xiong, L.; Hojjatzadeh, S.M.H.; Escano, L.I.; Parab, N.D.; Fezzaa, K.; Sun, T.; Chen, L. In-situ full-field
  28. mapping of melt flow dynamics in laser metal additive manufacturing. Addit. Manuf. 2020, 31, 100939. [CrossRef]
  29. Messler, J.R.W. Principles of Welding: Processes, Physics, Chemistry, and Metallurgy; John Wiley & Sons: New York, NY, USA, 2008;
  30. ISBN 9783527617494.
  31. Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.M.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of
  32. complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [CrossRef]
  33. Ur Rehman, A.; Mahmood, M.A.; Pitir, F.; Salamci, M.U.; Popescu, A.C.; Mihailescu, I.N. Mesoscopic Computational Fluid
  34. Dynamics Modelling for the Laser-Melting Deposition of AISI 304 Stainless Steel Single Tracks with Experimental Correlation: A
  35. Novel Study. Metals 2021, 11, 1569. [CrossRef]
  36. Paul, A.; Debroy, T. Free surface flow and heat transfer in conduction mode laser welding. Metall. Trans. B 1988, 19, 851–858.
  37. [CrossRef]
  38. Aucott, L.; Dong, H.; Mirihanage, W.; Atwood, R.; Kidess, A.; Gao, S.; Wen, S.; Marsden, J.; Feng, S.; Tong, M.; et al. Revealing
  39. internal flow behaviour in arc welding and additive manufacturing of metals. Nat. Commun. 2018, 9, 5414. [CrossRef]
  40. Abderrazak, K.; Bannour, S.; Mhiri, H.; Lepalec, G.; Autric, M. Numerical and experimental study of molten pool formation
  41. during continuous laser welding of AZ91 magnesium alloy. Comput. Mater. Sci. 2009, 44, 858–866. [CrossRef]
  42. Bayat, M.; Thanki, A.; Mohanty, S.; Witvrouw, A.; Yang, S.; Thorborg, J.; Tiedje, N.S.; Hattel, J.H. Keyhole-induced porosities in
  43. Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation. Addit. Manuf. 2019,
  44. 30, 100835. [CrossRef]
Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

Lin Chen, Gaoyang Mi, Xiong Zhang, Chunming Wang
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

Abstract

레이저 사인파 진동(사인) 용접 및 레이저 용접(SLW)에서 1.5mm 6061/5182 알루미늄 합금 박판 랩 조인트의 수치 모델이 온도 분포와 용융 흐름을 시뮬레이션하기 위해 개발되었습니다.

SLW의 일반적인 에너지 분포와 달리 레이저 빔의 사인파 진동은 에너지 분포를 크게 균질화하고 에너지 피크를 줄였습니다. 에너지 피크는 사인 용접의 양쪽에 위치하여 톱니 모양의 단면이 형성되었습니다. 이 논문은 시뮬레이션을 통해 응고 미세구조에 대한 온도 구배(G)와 응고 속도(R)의 영향을 설명했습니다.

결과는 사인 용접의 중심이 낮은 G/R로 더 넓은 영역을 가짐으로써 더 넓은 등축 결정립 영역의 형성을 촉진하고 더 큰 GR로 인해 주상 결정립이 더 가늘다는 것을 나타냅니다. 다공성 및 비관통 용접은 레이저 사인파 진동에 의해 얻어졌습니다.

그 이유는 용융 풀의 부피가 확대되고 열쇠 구멍의 부피 비율이 감소하며 용융 풀의 난류가 완만해졌기 때문이며, 이는 용융 흐름의 고속 이미징 및 시뮬레이션 결과에서 관찰되었습니다. 두 용접부의 인장시험에서 융착선을 따라 인장파괴 형태를 보였고 사인 용접부의 인장강도가 SLW 용접부보다 유의하게 우수하였습니다.

이는 등축 결정립 영역이 넓을수록 균열 경향이 감소하고 파단 위치에 근접한 입자 크기가 미세하기 때문입니다. 결함이 없고 우수한 용접은 신에너지 자동차 산업에 매우 중요합니다.

A numerical model of 1.5 mm 6061/5182 aluminum alloys thin sheets lap joints under laser sinusoidal oscillation (sine) welding and laser welding (SLW) weld was developed to simulate temperature distribution and melt flow. Unlike the common energy distribution of SLW, the sinusoidal oscillation of laser beam greatly homogenized the energy distribution and reduced the energy peak. The energy peaks were located at both sides of the sine weld, resulting in the tooth-shaped sectional formation. This paper illustrated the effect of the temperature gradient (G) and solidification rate (R) on the solidification microstructure by simulation. Results indicated that the center of the sine weld had a wider area with low G/R, promoting the formation of a wider equiaxed grain zone, and the columnar grains were slenderer because of greater GR. The porosity-free and non-penetration welds were obtained by the laser sinusoidal oscillation. The reasons were that the molten pool volume was enlarged, the volume proportion of keyhole was reduced and the turbulence in the molten pool was gentled, which was observed by the high-speed imaging and simulation results of melt flow. The tensile test of both welds showed a tensile fracture form along the fusion line, and the tensile strength of sine weld was significantly better than that of the SLW weld. This was because that the wider equiaxed grain area reduced the tendency of cracks and the finer grain size close to the fracture location. Defect-free and excellent welds are of great significance to the new energy vehicles industry.

Keywords

Laser weldingSinusoidal oscillatingEnergy distributionNumerical simulationMolten pool flowGrain structure

Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Fig. 1. Schematic description of the laser welding process considered in this study.

Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding

Won-Ik Cho, Peer Woizeschke
Bremer Institut für angewandte Strahltechnik GmbH, Klagenfurter Straße 5, Bremen 28359, Germany

Received 30 July 2020, Revised 3 October 2020, Accepted 18 October 2020, Available online 1 November 2020.

Abstract

Molten pool flow and heat transfer in a laser welding process using beam oscillation and filler wire feeding were calculated using computational fluid dynamics (CFD). There are various indirect methods used to analyze the molten pool dynamics in fusion welding. In this work, based on the simulation results, the surface fluctuation was directly measured to enable a more intuitive analysis, and then the signal was analyzed using the Fourier transform and wavelet transform in terms of the beam oscillation frequency and buttonhole formation. The 1st frequency (2 x beam oscillation frequency, the so-called chopping frequency), 2nd frequency (4 x beam oscillation frequency), and beam oscillation frequency components were the main components found. The 1st and 2nd frequency components were caused by the effect of the chopping process and lumped line energy. The beam oscillation frequency component was related to rapid, unstable molten pool behavior. The wavelet transform effectively analyzed the rapid behaviors based on the change of the frequency components over time.

Korea Abstract

빔 진동 및 필러 와이어 공급을 사용하는 레이저 용접 공정에서 용융 풀 흐름 및 열 전달은 CFD (전산 유체 역학)를 사용하여 계산되었습니다. 용융 용접에서 용융 풀 역학을 분석하는 데 사용되는 다양한 간접 방법이 있습니다.

본 연구에서는 시뮬레이션 결과를 바탕으로 보다 직관적 인 분석이 가능하도록 표면 변동을 직접 측정 한 후 빔 발진 주파수 및 버튼 홀 형성 측면에서 푸리에 변환 및 웨이블릿 변환을 사용하여 신호를 분석했습니다.

1 차 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2 차 주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분이 발견 된 주요 구성 요소였습니다. 1 차 및 2 차 주파수 성분은 쵸핑 공정과 집중 라인 에너지의 영향으로 인해 발생했습니다.

빔 진동 주파수 성분은 빠르고 불안정한 용융 풀 동작과 관련이 있습니다. 웨이블릿 변환은 시간 경과에 따른 주파수 구성 요소의 변화를 기반으로 빠른 동작을 효과적으로 분석했습니다.

1 . 소개

융합 용접에서 용융 풀 역학은 용접 결함과 시각적 이음새 품질에 직접적인 영향을 미칩니다. 이러한 역학을 연구하기 위해 고속 카메라를 사용하는 직접 방법과 광학 또는 음향 신호를 사용하는 간접 방법과 같은 다양한 측정 방법을 사용하여 여러 실험 방법을 고려했습니다. 시간 도메인의 원래 신호는 특별히 주파수 도메인에서 변환 된 신호로 변환되어 용융 풀 동작에 영향을 미치는 주파수 성분을 분석합니다. Kotecki et al. (1972)는 고속 카메라를 사용하여 가스 텅스텐 아크 용접에서 용융 풀을 관찰했습니다. [1]. 그들은 120Hz 리플 DC 출력을 가진 용접 전원을 사용할 때 용융 풀 진동 주파수가 120Hz임을 보여주었습니다. 전원을 끈 후 진동 주파수는 용융 풀의 고유 주파수를 나타내는 용융 풀 크기와 관련이 있습니다. 진동은 응고 중에 용접 표면 스케일링을 생성했습니다. Zacksenhouse and Hardt (1983)는 레이저 섀도 잉 동작 측정 기술을 사용하여 가스 텅스텐 아크 용접에서 완전히 관통 된 용융 풀의 동작을 측정했습니다 [2] . 그들은 2.5mm 두께의 강판에서 6mm 풀 반경 (고정 용접)에 대해 용융 풀의 고유 주파수가 18.9Hz라는 것을 발견했습니다. Semak et al. (1995) 고속 카메라를 사용하여 레이저 스폿 용접에서 용융 풀 및 키홀 역학 조사 [3]. 그들은 깊이가 약 3mm이고 반경이 약 3mm 인 용융 풀에서 200Hz의 낮은 체적 진동 주파수를 관찰했습니다. 0.45mm Aendenroomer와 den Ouden (1998)은 강철의 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동을보고했습니다 [4] . 그들은 침투 깊이에 따라 진동 모드 변화를 보였고 주파수는 50Hz에서 150Hz 사이에서 변화했습니다. 주파수는 완전히 침투 된 용융 풀에서 더 낮았습니다. Hermans와 den Ouden (1999)은 단락 가스 금속 아크 용접에서 용융 풀 진동을 분석했습니다. [5]. 그들은 용융 풀의 단락 주파수와 고유 주파수가 같을 때 부분적으로 침투 된 용융 풀의 경우 공정 안정성이 향상되었음을 보여주었습니다. Yudodibroto et al. (2004)는 가스 텅스텐 아크 용접에서 용융 풀 진동에 대한 필러 와이어의 영향을 조사했습니다 [6] . 그들은 금속 전달이 특히 부분적으로 침투 된 용융 풀에서 진동 거동을 방해한다는 것을 보여주었습니다. Geiger et al. (2009) 레이저 키홀 용접에서 발광 분석 [7]. 신호의 주파수 분석을 사용하여 용융 풀 (1.5kHz 미만)과 키홀 (약 3kHz)에 해당하는 진동 주파수 범위를 찾았습니다. Kägeler와 Schmidt (2010)는 레이저 용접에서 용융 풀 크기의 변화를 관찰하기 위해 고속 카메라를 사용했습니다 [8] . 그들은 용융 풀에서 지배적 인 저주파 진동 성분 (100Hz 미만)을 발견했습니다. Shi et al. (2015) 고속 카메라를 사용하여 펄스 가스 텅스텐 아크 용접에서 용융 풀 진동 주파수 분석 [9]. 그들은 용접 침투 깊이가 작을수록 용융 풀의 진동 빈도가 더 높다는 것을 보여주었습니다. 추출 된 진동 주파수는 완전 용입 용접의 경우 85Hz 미만 이었지만 부분 용입 용접의 경우 110Hz에서 125Hz 사이였습니다. Volpp와 Vollertsen (2016)은 레이저 키홀 역학을 분석하기 위해 광학 신호를 사용했습니다 [10] . 그들은 공간 레이저 강도 분포로 인해 0.8에서 154 kHz 사이의 고주파 범위에서 피크를 발견했습니다. 위에서 언급 한 실험적 접근법은 공정 조건, 측정 방법 및 측정 된 위치에 따라 수십 Hz에서 수십 kHz까지 광범위한 용융 풀 역학에 대한 결과를 보여 주었다는 점에 유의해야합니다.

융합 용접에서 용융 풀 역학을 연구하기 위해 분석 접근 방식도 사용되었습니다. Zacksenhouse와 Hardt (1983)는 2.5mm 두께의 강판에서 대칭형 완전 관통 용융 풀의 고유 진동수를 계산했습니다 [2] . 매스 스프링 해석 모델을 사용하여 용융 풀 반경 6mm (고정 용접)에 대해 20.4Hz (실험에서 18.9Hz)의 고유 진동수와 3mm 풀 반경 (연속 용접)에 대해 40Hz의 고유 진동수를 예측했습니다. ). Postacioglu et al. (1989)는 원통형 용융 풀과 키홀을 가정하여 레이저 용접의 용융 풀에서 키홀 진동의 고유 진동수를 계산했습니다 .. 특정 열쇠 구멍 모양의 경우 약 900Hz의 기본 주파수가 계산되었습니다. Postacioglu et al. (1991)은 또한 레이저 용접에서 용접 속도를 고려하기 위해 타원형 용융 풀의 고유 진동수를 계산했습니다 [12] . 그들은 타원형 용융 풀의 모양이 고유 진동수에 영향을 미친다는 것을 보여주었습니다. 고유 진동수는 축의 길이 비율이 낮았으며, 즉 타원의 반장 축과 반 단축의 비율이 낮았습니다. Kroos et al. (1993)은 축 대칭 용융 풀과 키홀을 가정하여 레이저 키홀 용접의 동적 거동에 대한 이론적 모델을 개발했습니다 .. 키홀 폐쇄 시간은 0.1ms였으며 안정성 분석은 약 500Hz의 주파수에서 공진과 같은 진동을 예측했습니다. Maruo와 Hirata (1993)는 완전 관통 아크 용접에서 용융 풀을 모델링했습니다 [14] . 그들은 녹은 웅덩이가 정적 타원 모양을 가지고 있다고 가정했습니다. 그들은 고유 진동수와 진동 모드 사이의 관계를 조사하고 용융 풀 크기가 감소함에 따라 고유 진동수가 증가한다는 것을 보여주었습니다. Klein et al. (1994)는 원통형 키홀 모양을 사용하여 완전 침투 레이저 용접에서 키홀 진동을 연구했습니다 [15] . 그들은 점성 감쇠로 인해 키홀 진동이 낮은 kHz 범위로 제한된다는 것을 보여주었습니다. Klein et al. (1996)은 또한 레이저 출력의 작은 변동이 강한 키홀 진동으로 이어질 수 있음을 보여주었습니다[16] . 그들은 키홀 진동의 주요 공진 주파수 범위가 500 ~ 3500Hz라는 것을 발견했습니다. Andersen et al. (1997)은 고정 가스 텅스텐 아크 용접 [17] 에서 고정 된 원통형 모양을 가정하여 용융 풀의 고유 진동수를 예측 했으며 완전 용입 용접에서 용융 풀 폭이 증가함에 따라 감소하는 것으로 나타났습니다. 3.175mm 두께의 강판의 경우 주파수는 20Hz ~ 100Hz 범위였습니다. 위에 표시된 분석 방법은 일반적으로 단순한 용융 풀 모양을 가정하고 고유 진동수를 계산했습니다. 이것은 단순한 용융 풀 모양으로 고정 용접 공정을 분석하는 데 충분하지만 대부분의 용접 사례를 설명하는 과도 용접 공정에서 용융 풀 역학 분석에는 적합하지 않습니다.

반면에 수치 접근 방식은 고온 및 강한 빛과 같은 실험적 제한없이 자세한 정보를 제공하기 때문에 용융 풀 역학을 분석하는 이점이 있습니다. 전산 유체 역학 (CFD)의 수치 시뮬레이션 기술이 발전함에 따라 용융 풀 역학 분석에 대한 많은 연구가 수행되었습니다. 실제 용융 표면 변화는 VOF (체적 부피) 방법을 사용하여 계산할 수 있습니다. Cho et al. (2010) CO 2 레이저-아크 하이브리드 용접 공정을 위한 수학적 모델 개발 [18], 구형 방울이 생성 된 금속 와이어의 용융 과정이 와이어 공급 속도와 일치한다고 가정합니다. 그들은 필러 와이어가 희석되는 용융 풀 동작을 보여주었습니다. Cho et al. (2012)는 높은 빔 품질과 높은 금속 흡수율로 인해 업계에서 널리 사용되는 디스크 레이저 키홀 용접으로 수학적 모델을 확장했습니다 [19] . 그들은 열쇠 구멍에서 레이저 광선 번들의 다중 반사를 고려하고 용융 풀에서 keyholing과 같은 빠른 표면 변화를 자세히보고했습니다. 최근 CFD 시뮬레이션은 험핑 (Otto et al., 2016 [20] ) 및 기공 (Lin et al., 2017 [21] )과 같은보다 구체적인 현상을 분석하는데도 사용되었습니다 .) 레이저 용접에서. 그러나 용융 풀 역학과 관련된 연구는 거의 수행되지 않았습니다. Ko et al. (2000)은 수치 시뮬레이션을 사용하여 가스 텅스텐 아크 용접 풀의 동적 거동을 조사했습니다 [22] . 그들은 완전히 침투 된 용융 풀이 부분적으로 침투 된 풀보다 낮은 주파수에서 진동한다는 것을 보여주었습니다. 진동은 수십 분의 1 초 내에 무시할 수있는 크기로 감쇠되었습니다. Geiger et al. (2009)는 또한 수치 시뮬레이션을 사용하여 레이저 용접에서 용융 풀 거동을 보여주었습니다 [7]. 그들은 계산 된 증발 속도를 주파수 분석에 사용하여 공정에서 나오는 빛의 실험 결과와 비교했습니다. 판금 레이저 용접에서 중요한 공간 빔 진동 및 추가 필러 재료가있는 공정에 대한 용융 풀 역학에 대한 연구도 불충분합니다. Hu et al. (2018)은 금속 전달 메커니즘을 밝히기 위해 전자빔 3D 프린팅에서 와이어 공급 모델링을 수행했습니다. 그들은 주로 열 입력에 의해 결정되는 액체 브리지 전이, 액적 전이 및 중간 전이의 세 가지 유형의 금속 전달 모드를 보여주었습니다 .. Meng et al. (2020)은 레이저 빔 용접에서 용융 풀에 필러 와이어에 의해 추가 된 추가 요소의 전자기 교반 효과를 모델링했습니다. 용가재의 연속적인 액체 브릿지 이동이 가정되었고, 그 결과 전자기 교반의 영향이 키홀 깊이에 미미한 반면 필러 와이어 혼합을 향상 시켰습니다 [24] . Cho et al. (2017) 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하여 레이저 용접을위한 시뮬레이션 모델 개발 [25]. 그들은 시뮬레이션을 사용하여 특정 용접 현상, 즉 용융 풀의 단추 구멍 형성을 보여주었습니다. Cho et al. (2018)은 다중 반사 수와 전력 흡수량의 푸리에 변환을 사용하여 주파수 영역에서 소위 쵸핑 주파수 (2 x 빔 발진 주파수) 성분을 발견했습니다 [26] . 그러나 그들은 용융 풀 역학을 분석하기 위해 간접 신호를 사용했습니다. 따라서보다 직관적 인 분석을 위해서는 표면의 변동을 직접 측정해야합니다.

이 연구는 이전 연구에서 개발 된 레이저 용접 모델을 사용하여 3 차원 과도 CFD 시뮬레이션을 수행하여 빔 진동 및 필러 와이어 공급을 포함한 레이저 용접 공정에서 용융 풀 역학을 조사합니다. 용융 된 풀 표면의 시간적 변화는 시뮬레이션 결과에서 추출되었습니다. 추출 된 데이터는 주파수 영역뿐만 아니라 시간-주파수 영역에서도 분석되었습니다. 신호 처리를 통해 도출 된 결과는 특징적인 용융 풀 역학을 나타내며 빔 진동 주파수 및 단추 구멍 형성 측면에서 레이저 용접의 역학을 줄일 수있는 잠재력을 제공합니다.

2 . 방법론

그림 1도 1은 용접 방향에 수직 인 1 차원 빔 진동과 용접 라인을 따라 공급되는 필러 와이어를 사용하는 레이저 용접 프로세스의 개략적 설명을 보여줍니다. 1mm 두께의 알루미늄 합금 (AlSi1MgMn) 시트는 시트 표면에 초점을 맞춘 멀티 kW 파이버 레이저 (YLR-8000S, IPG Photonics, USA)를 사용하여 용접되었습니다. 시트는 에어 갭이있는 맞대기 이음으로 정렬되었습니다. 1 차원 스캐너 (ILV DC-Scanner, Ingenieurbüro für Lasertechnik + Verschleiss-Schutz (ILV), 독일)를 사용하여 레이저 빔의 1 차원 정현파 진동을 실현했습니다. 이 스캔 시스템에서 최대 진동 폭은 250Hz의 진동 주파수에서 1.4mm입니다. 오정렬에 대한 공차를 개선하기 위해 동일한 최대 너비 값이 사용되었습니다. 와이어 공급 시스템은 1을 공급했습니다. 2mm 직경의 알루미늄 합금 (AlSi5) 필러 와이어를 일정한 공급 속도로 에어 갭을 채 웁니다. 1mm 에어 갭의 경우 와이어 이송 속도는 용접 속도의 1.5 배 값으로 설정되었으며 참조 실험 조건은 문헌에서 얻었습니다 (Schultz, 2015 참조).[27] ).

그림 1

CFD 시뮬레이션은 레이저 용접에서 열 전달 및 용융 풀 동작을 계산하기 위해 수행되었습니다. 그림 2 는 CFD 시뮬레이션을위한 계산 영역을 보여줍니다. 실온에서 1.2mm 직경의 필러 와이어가 공급되고 레이저 빔이 진동했습니다. 1mm 두께의 공작물이 용접 속도로 왼쪽에서 오른쪽으로 이동했습니다. 0.1mm의 최소 메쉬 크기가 도메인에서 생성되었습니다. 침투 깊이가 더 깊은 이전 연구의 메쉬 테스트 결과는 0.2mm 이하의 메쉬 크기로 시뮬레이션 정확도가 확보 된 것으로 나타 났으므로 [28] 본 연구에서 사용 된 메쉬 크기가 적절할 수 있습니다. 도메인을 구성하는 세포의 수는 약 120 만 개였습니다. 1 번 테이블사용 된 레이저 용접 매개 변수를 보여줍니다. 용융 풀 역학 측면에서 다양한 진동 주파수와 에어 갭 크기가 고려되었으며 12 개의 용접 사례가 표 2 에 나와 있습니다. 표 3 은 시뮬레이션에 사용 된 알루미늄 합금과 순수 알루미늄 (Cho et al., 2018 [26] )의 표면 장력 계수를 제외하고 온도와 무관 한 열-물리적 재료 특성을 보여줍니다 . 여기서 표면 장력 계수는 액체 온도에서 온도와 표면 장력 계수 사이의 선형 관계를 가진 유일한 온도 의존적 ​​특성이었습니다.

그림 2

표 1 . . 레이저 용접 매개 변수.

레이저 용접 매개 변수
레이저 빔 파워3.0kW
빔 허리 반경50µm *
용접 속도6.0m / 분
와이어 공급 속도9.0m / 분
빔 진동 폭1.4mm
빔 진동 주파수100Hz, 150Hz, 200Hz, 250Hz
에어 갭 크기0.8mm, 0.9mm, 1.0mm, 1.1mm

반경은 1.07μm의 파장, 4.2mm • mrad의 빔 품질, 시준 초점 거리 및 초점 렌즈 200mm, 광섬유 직경 100μm의 원형 빔을 가정하여 계산되었습니다.

표 2 . 이 연구에서 고려한 용접 사례.

에어 갭 크기 [mm]진동 주파수 [Hz]
100150200250
0.9사례 1엑스엑스엑스
1.0사례 2사례 4사례 7사례 10
1.1사례 3사례 5사례 8사례 11
1.2엑스사례 6사례 912면

표 3 . 시뮬레이션에 사용 된 열 물리적 재료 특성 (Cho et al., 2018 [26] ).

특성상징
밀도ρ2700kg / m3
열 전도성케이1.7×102Wm K
점도ν1.15×10−삼kg / ms
표면 장력 계수 티엘*γ엘0.871 J / m2
표면 장력 온도 구배 *−1.55×10−4J / m 2 K
표면 장력 계수γγ엘−ㅏ(티−티엘)
비열8.5×102J / kg K
융합 잠열h에스엘3.36×105J / kg
기화 잠열 *hV1.05×107J / kg
Solidus 온도티에스847K
Liquidus 온도티엘905K
끓는점 *티비2743K

순수한 알루미늄.

시뮬레이션을 위해 단상 뉴턴 유체와 비압축성 층류가 가정되었습니다. 질량, 운동량 및 에너지 보존의 지배 방정식을 해결하여 계산 영역에서 속도, 압력 및 온도 분포를 얻었습니다. VOF 방법은 자유 표면 경계를 찾는 데 사용되었습니다. 스칼라 보존 방정식을 추가로 도입하여 용융 풀에서 충전재의 부피 분율을 계산했습니다. 시뮬레이션에 사용 된 레이저 용접의 수학적 모델은 다음과 같습니다. 레이저 빔은 가우스와 같은 전력 밀도 분포를 기반으로 697 개의 광선 에너지 번들로 나뉩니다. 광선 추적 방법을 사용하여 다중 반사를 고려했습니다. 재료에 대한 레이저 빔의 반사 (또는 흡수) 에너지는 프레 넬 반사 모델을 사용하여 계산되었습니다. 온도에 따른 흡수율의 변화를 고려 하였다. 혼합물의 흡수율은베이스 및 충전제 물질 분획의 가중 평균을 사용하여 계산되었습니다. 반동 압력과 부력도 고려되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다. 경계 조건으로 에너지와 압력의 균형은 VOF 방법으로 계산 된 자유 표면에서 고려되었습니다. 레이저 용접 모델과 지배 방정식은 FLOW-3D v.11.2 (2017), Flow Science, Inc.에서 유한 차분 방법과 유한 체적 방법을 사용하여 이산화되고 해결되었습니다.[29] . 계산에는 48GB RAM이 장착 된 Intel® Xeon® 프로세서 E5649로 구성된 워크 스테이션이 사용되었습니다. 계산 시스템을 사용하여 0.2 초 레이저 용접을 시뮬레이션하는 데 약 18 시간이 걸렸습니다. 지배 방정식 (Cho and Woizeschke, 2020 [30] ) 및 레이저 용접 모델 (Cho et al., 2018 [26] )에 대한 자세한 설명은 부록 A 에서 확인할 수 있습니다 .

그림 3 은 용융 풀 변동의 직접 측정에 대한 개략적 설명을 보여줍니다. 용융 풀의 역학을 분석하기 위해 시뮬레이션 중에 용융 풀 표면의 시간적 변동 운동을 측정했습니다. 상단 및 하단 표면 모두에서 10kHz의 샘플링 주파수로 변동을 측정 한 반면, 측정 위치는 X 축의 레이저 빔 위치에서 2mm 떨어진 용접 중심선에있었습니다. 그림 4시간 신호를 분석하는 데 사용되는 푸리에 변환 및 웨이블릿 변환의 개략적 설명을 보여줍니다. 측정 된 시간 신호는 고속 푸리에 변환 (FFT) 방법을 사용하여 주파수 영역으로 변환되었습니다. 결과는 측정 기간 동안 평균화 된 주파수 성분의 크기를 보여줍니다. 웨이블릿 변환 방법은 시간-주파수 영역에서 국부적 인 특성을 찾는 데 사용되었습니다. 결과는 주파수 구성 요소의 크기뿐만 아니라 시간 변화도 보여줍니다.

그림 3
그림 4

3 . 결과

이 연구 에서는 표 2에 표시된 12 가지 용접 사례 를 시뮬레이션했습니다. 그림 5 는 3 차원 시뮬레이션 결과를 평면도 와 바닥면으로 보여줍니다. 결과는 용융 된 풀의 거동에 따라 분류 할 수 있습니다 : 단추 구멍 형성 없음 (녹색), 안정 또는 불안정 단추 구멍 있음 (파란색), 불안정한 단추 구멍으로 인한 구멍 결함 (빨간색). 일반적인 열쇠 구멍보다 훨씬 큰 직경을 가진 단추 구멍은 레이저 용접의 특정 진동 조건에서 나타날 수 있습니다 (Vollertsen, 2016 [31]). 진동 주파수가 증가함에 따라 용접 이음 부 코스 및 스케일링 측면에서 시각적 이음새 품질이 향상되었습니다. 고주파에서 스케일링은 무시할 수있을 정도 였고 코스는 균질했습니다. 언더컷 결함의 발생도 감소했습니다. 그러나 관통 결함 부족 (case 7, case 10)이 나타났다. 에어 갭은 단추 구멍 형성에 중요했습니다. 에어 갭 크기가 증가함에 따라 단추 구멍이 더 쉽게 형성되었지만 구멍 결함으로 더 쉽게 남아 있습니다. 안정적인 단추 구멍 형성은 고려 된 공극 조건의 좁은 영역에서만 나타납니다.

그림 5

그림 6 은 시뮬레이션과 실험에서 융합 영역의 모양을 보여줍니다. 버튼 홀이없는 경우 1, 불안정한 버튼 홀 형성이있는 경우 8, 안정적인 버튼 홀 형성이있는 경우 11의 3 가지 경우에 대해 시뮬레이션 결과와 실험 결과를 비교하여 유사성을 나타냈다. 본 연구에서 고려한 용접 조건의 경우 표면 품질 결과는 Fig. 5 와 같이 큰 차이를 보였으 나 단면 융착 영역 [26] 과 형상은 큰 차이를 보이지 않았다.

그림 6

무화과. 7 과 8 은 각각 100Hz와 250Hz의 진동 주파수에서 시뮬레이션 결과를 기반으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여줍니다. 이전 연구에서 볼 수 있듯이 레이저 빔의 진동 주파수는 단추 구멍 형성과 밀접한 관련이 있습니다 (Cho et al., 2018 [26] 참조 ). 그림 7 (a) 및 (b)는 각각 시뮬레이션 및 실험을 기반으로 한 진동 주파수 100Hz에서 대표적인 용융 풀 동작을 보여줍니다. 완전히 관통 된 키홀 및 버튼 홀 형성은 관찰되지 않았으며 응고 후 거친 비드 표면이 남았습니다. 그림 7(c)와 (d)는 각각 윗면과 바닥면의 표면 변동에 대한 시뮬레이션 결과를 기반으로 한 용융 풀 역학 분석을 보여줍니다. 샘플링 데이터는 상단 표면이 공작물의 상단 표면 위치에서 평균적으로 변동하는 반면 하단 표면은 공작물의 하단 표면 위치에서 평균적으로 변동하는 것으로 나타났습니다. 표면 변동의 푸리에 변환 및 웨이블릿 변환 결과는 명확한 1  주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수, Cho et al., 2018 [26] 참조 ) 및 2  주파수 (4 x 빔 발진)를 보여줍니다. 주파수) 두 표면의 구성 요소, 그러나 바닥 표면과 첫 번째에 대한 결과주파수 성분이 더 강합니다. 반면 그림 8 (a)와 (b)에서 보는 바와 같이 250Hz의 진동 주파수에서 시뮬레이션과 실험 결과는 안정된 버튼 홀 형성과 응고 후 매끄러운 비드 표면을 나타냈다. 그림 8 의 샘플링 신호의 진폭은 그림 7 의 진폭 보다 작으며 푸리에 변환 및 웨이블릿 변환의 결과에서 중요한 주파수 성분이 발견되지 않았습니다.

Fi 7
그림 8

Fig. 9 는 진동 주파수 200Hz에서 시뮬레이션 결과를 바탕으로 분석 된 용융 풀 역학과 시뮬레이션 및 실험 결과를 보여준다. 이 주파수에서 Fig. 9 (a)와 (b) 에서 보는 바와 같이 , 시뮬레이션과 실험 모두에서 불안정한 buttonhole 거동이 관찰되었다. 바닥면에서 샘플링 데이터의 푸리에 변환 및 웨이블릿 변환의 결과 빔 발진 주파수 성분이 발견되었습니다.

그림 9

4 . 토론

시뮬레이션 및 실험 결과는 비드 표면 품질이 향상되고 빔 진동 주파수가 증가함에 따라 버튼 홀이 형성되는 것으로 나타났습니다. 표면의 변동 데이터에 대한 푸리에 변환 및 웨이블릿 변환의 결과에 따라 다음과 같은 주요 주파수 구성 요소가 발견되었습니다. 1  및 2 버튼 홀 형성이없는 주파수, 불안정한 용융 풀 거동이있는 빔 진동 주파수, 안정적인 버튼 홀 형성이있는 중요한 주파수 성분이 없습니다. 이들 중 불안정한 용융 풀 동작과 관련된 빔 진동 주파수 성분은 완전히 관통 된 키홀과 반복적으로 생성 및 붕괴되는 불안정한 버튼 홀의 특성으로 인해 웨이블릿 변환 결과에서 명확한 실선 형태로 나타나지 않았습니다. 분석 결과는 윗면보다 바닥면에서 더 분명했습니다. 이는 필러 와이어 공급 및 키홀 링 공정에서 강한 하향 흐름으로 인해 용융 풀 역학이 바닥 표면 영역에서 더 강했기 때문입니다. 진동 주파수가 증가함에 따라 용융 풀 역학과 상단 표면과 하단 표면 간의 차이가 감소했습니다.

첫 번째 주파수 (2 x 빔 진동 주파수)는이 연구에서 관찰 된 가장 분명한 구성 요소였습니다. Schultz et al. (2018)은 또한 실험을 통해 동일한 성분을 발견했습니다 [32] , 용융 풀 표면 운동에 대한 푸리에 분석을 수행했습니다. 첫 번째 주파수 성분은 빔 발진주기 당 두 개의 주요 이벤트가 있음을 의미합니다. 이것은 레이저 빔이 빔 진동주기 당 두 번 와이어를 절단하거나 절단하는 프로세스와 일치합니다. 용융 된 와이어 팁은 낮은 진동 주파수에서 고르지 않고 날카로운 모서리를 갖는 것으로 나타났습니다 (Cho et al., 2018 [26] ). 이것은 첫 번째 원인이 될 수 있습니다.용융 된 풀에서 지배적이되는 주파수 성분. 진동 주파수가 증가하면 용융 된 와이어 팁이 더 균일 해 지므로 효과가 감소합니다. 용접 방향으로의 정현파 횡 방향 빔 진동을 통한 에너지 집중도 빔 진동주기 당 두 번 발생합니다. 그림 10 은 발진 주파수에 따른 레이저 빔의 라인 에너지 (단위 길이 당 에너지)의 변화를 보여줍니다. 그림 10 b) 의 라인 에너지 는 레이저 출력을 공정 속도로 나누어 계산했습니다. 여기서 처리 속도는(w이자형엘디나는엔지에스피이자형이자형디)2+(디(에스나는엔유에스영형나는디ㅏ엘wㅏV이자형나는엔에프나는지.10ㅏ))디티)2. 낮은 발진 주파수에서 라인 에너지는 발진 폭의 양쪽 끝에 과도하게 집중됩니다. 이러한 집중된 에너지는 과도한 키홀 링 프로세스를 초래하므로 언더컷 결함이 나타날 수있는 높은 흐름 역학이 발생합니다. 진동 주파수가 증가함에 따라 집중 에너지는 더 작은 조각으로 나뉩니다. 따라서 높은 진동 주파수에서 과도한 키홀 링 및 수반되는 언더컷 결함의 발생이 감소되었습니다. 위에서 언급 한 두 가지 현상 (불균일 한 와이어 팁과 집중된 라인 에너지)은 빔 발진주기 당 두 번 발생하며 발진 주파수가 증가하면 그 효과가 감소합니다. 따라서 저주파 에서 2  주파수 성분 (4 x 빔 발진 주파수)이 나타나는 것은이 두 현상의 동시 작용입니다.

그림 10

두 가지 현상 중 첫 번째 주파수 에 대한 주된 효과 는 집중된 라인 에너지입니다. Cho et al. (2018)은 전력 흡수 데이터를 푸리에 변환을 사용하여 분석했을 때 1  주파수 성분이 더 우세 해졌고, 2  주파수 성분은 발진 주파수가 증가함에 따라 상대적으로 약화 되었음을 보여주었습니다 [26] . 용융 된 와이어 팁은 또한 빈도가 증가함에 따라 더욱 균일 해졌습니다. 결과는 진동 주파수의 증가가 용융 풀에 대한 와이어의 영향을 제거하는 것으로 나타났습니다. 따라서 발진 주파수가 증가함에 따라 라인 에너지 집중의 영향 만 남을 수 있습니다. 그림 10 과 같이, 집중 선 에너지가 작은 조각으로 분할되기 때문에 효과도 감소하지만 최대 값이 변경되지 않았기 때문에 여전히 효과적입니다.

빔 진동 주파수 성분은 불안정한 단추 구멍 및 열쇠 구멍 붕괴를 수반하는 불안정한 용융 풀 동작과 관련이 있습니다. 언더컷 결함이있는 케이스 8 (발진 주파수 200Hz)에서 발진 주파수 성분이 관찰되었습니다. 이것은 특히 완전히 관통 된 열쇠 구멍과 불안정한 단추 구멍에서 불안정한 용융 풀 동작을 보여주었습니다. 경우 10 (진동 주파수 250Hz)의 경우 상대적으로 건강한 비드가 형성 되었으나, 도 11 (a) 와 같이 웨이블릿 변환 결과에서 t1의 시간 간격으로 진동 주파수 성분이 관찰되었다 . 이 시간 간격 t1의 용융 풀 거동은 그림 11에 나와 있습니다.(비). 완전히 관통 된 열쇠 구멍이 즉시 무너지는 것이 분명하게 관찰되었습니다. 이것은 진동 주파수 성분이 불안정한 용융 풀 거동과 밀접한 관련이 있음을 보여줍니다. 발견 된 주파수 성분으로부터 완전히 관통 된 열쇠 구멍과 같은 불안정한 용융 풀 거동을 예측할 수 있습니다. 완전히 관통 된 키홀이 반복적으로 붕괴되기 때문에 빔 진동 주파수 성분은 그림 9 (d) 와 같이 웨이블릿 변환 결과에서 명확한 실선 형태로 보이지 않습니다 .

그림 11

Cho and Woizeschke (2020)에 따르면 단추 구멍 형성은 자체 지속 가능한 카테 노이드처럼 작용하기 때문에 용융 풀 역학을 감소시킬 수 있습니다 [30] . 그림 12 는 버튼 홀 형성 측면에서 t2의 시간 간격에서 용융 풀 거동의 변화를 보여줍니다. 단추 구멍은 t2의 간헐적 인 부분에만 형성되었습니다. 1st 이후이 시간 동안 웨이블릿 변환의 결과로 주파수 성분이 사라졌고, 버튼 홀 형성은 용융 풀 역학을 줄이는 데 효과적이었습니다. 따라서, 웨이블릿 변환의 결과로 주파수 성분이 지워지는 것을 관찰함으로써 버튼 홀 형성을 예측할 수있다. 이와 관련하여 웨이블릿 변환 기술은 시간에 따른 용융 풀 변화를 나타낼 수 있습니다. 이 기술은 향후 용융 풀 동작을 모니터링하는 데 사용될 수 있습니다.

그림 12

5 . 결론

CFD 시뮬레이션 결과를 사용하여 빔 진동 및 필러 와이어 공급을 통한 레이저 용접에서 용융 풀 역학을 분석 할 수있었습니다. 용융 풀 표면의 변동 데이터의 푸리에 변환 및 웨이블릿 변환은 여기서 용융 풀 역학을 분석하는 데 사용되었습니다. 결과는 다음과 같은 결론으로 ​​이어집니다.1.

 주파수 (2 x 빔 발진 주파수, 이른바 초핑 주파수), 2  주파수 (4 x 빔 발진 주파수) 및 빔 발진 주파수 성분은 푸리에 변환 및 웨이블릿 변환 분석에서 발견 된 주요 성분이었습니다.2.

 주파수와 2  주파수 성분 의 출현은 두 가지 사건, 즉 레이저 빔에 의한 필러 와이어의 절단 공정과 집중된 레이저 라인 에너지의 효과의 결과였습니다. 이는 빔 진동주기 당 두 번 발생했습니다. 따라서 두 번째 주파수 성분은 동시 작용으로 인해 발생했습니다. 빔 진동 주파수 성분은 불안정한 용융 풀 동작과 관련이 있습니다. 구성 요소는 열쇠 구멍과 단추 구멍의 붕괴와 함께 나타났습니다.삼.

낮은 발진 주파수에서는 1  주파수와 2  주파수 성분이 함께 나타 났지만 발진 주파수가 증가함에 따라 그 크기가 함께 감소했습니다. 집중 선 에너지는 주파수가 증가함에 따라 최대 값이 변하지 않는 반면, 잘게 잘린 선단이 평평 해져 그 효과가 사라졌기 때문에 쵸핑 프로세스보다 더 큰 영향을 미쳤습니다.4.

용융 풀 거동의 빠른 시간적 변화는 웨이블릿 변환 방법을 사용하여 분석되었습니다. 따라서이 방법은 열쇠 구멍 및 단추 구멍의 형성 및 붕괴와 같은 일시적인 용융 풀 변화를 해석하는 데 사용할 수 있습니다.

CRediT 저자 기여 성명

조원익 : 개념화, 방법론, 소프트웨어, 검증, 형식 분석, 조사, 데이터 큐 레이션, 글쓰기-원고, 글쓰기-검토 및 편집. Peer Woizeschke : 감독, 프로젝트 관리, 작문-검토 및 편집.

경쟁 관심의 선언

저자는이 논문에보고 된 작업에 영향을 미칠 수있는 경쟁적인 재정적 이해 관계 나 개인적 관계가 없다고 선언합니다.

감사의 말

이 작업은 알루미늄 합금 용접 역량 센터 (Centr-Al)에서 수행되었습니다. Deutsche Forschungsgemeinschaft (DFG, 프로젝트 번호 290705638 , “용접 풀 캐비티를 생성하여 레이저 깊은 용입 용접에서 매끄러운 이음매 표면”) 의 자금은 감사하게도 인정됩니다.

부록 A . 사용 된 지배 방정식 및 레이저 용접 모델

1 . 지배 방정식 (Cho 및 Woizeschke [ 30 ])

-대량 보존 방정식,(A1)∇·V→=미디엄˙에스ρ어디, V→속도 벡터입니다. ρ밀도이고 미디엄˙에스필러 와이어를 공급하여 질량 소스의 비율입니다. 단위미디엄에스단위 부피당 질량입니다. WFS (와이어 공급 속도) 및 필러 와이어의 직경과 같은 매스 소스 및 필러 와이어 조건,디w계산 영역에서 다음과 같은 관계가 있습니다.(A2)미디엄=∫미디엄에스디V=미디엄0+씨×ρ×W에프에스×π디w24×티어디, 미디엄총 질량, 미디엄0초기 총 질량, V볼륨입니다.씨단위 변환 계수입니다. 티시간입니다.

-운동량 보존 방정식,(A3)∂V→∂티+V→·∇V→=−1ρ∇피+ν∇2V→−케이V→+미디엄˙에스ρ(V에스→−V→)+지어디, 피압력입니다. ν동적 점도입니다. 케이뭉툭한 영역의 다공성 매체 모델에 대한 항력 계수, V에스→질량 소스에 대한 속도 벡터입니다. 지신체 힘으로 인한 신체 가속도입니다.

-에너지 절약 방정식,(A4)∂h∂티+V→·∇h=1ρ∇·(케이∇티)+h˙에스어디, h특정 엔탈피입니다. 케이열전도율, 티온도이고 h˙에스특정 엔탈피 소스로, Eq 의 질량 소스와 연관됩니다 (A1) . 계산 영역의 총 에너지,이자형다음과 같이 계산됩니다.(A5)이자형=∫미디엄에스h에스디V=∫미디엄에스씨Vw티w디V어디, 씨Vw질량 원의 비열, 티w질량 소스의 온도입니다.

또한, 엔탈피 기반 연속체 모델을 사용하여 고체-액체 상 전이를 고려했습니다.

-VOF 방정식,(A6)∂에프∂티+∇·(V→에프)=에프˙에스어디, 에프유체가 차지하는 부피 분율이며 0과 1 사이의 값을 가지며 에프˙에스질량의 소스와 연결된 유체의 체적 분율의 비율 식. (A1) . 질량 공급원에 해당하는 부피 분율은 다음에 할당됩니다.에프에스.

-스칼라 보존 방정식,(A7)∂Φ∂티+∇·(V→Φ)=Φ˙에스어디, Φ필러 와이어의 스칼라 값입니다. 셀의 유체가 전적으로 필러 와이어로 구성된 경우Φ1이고 유체에 대한 필러 와이어의 부피 분율에 따라 0과 1 사이에서 변경됩니다. Φ˙에스Eq 에서 질량 소스에 연결된 스칼라 소스의 비율입니다 (A1) . 스칼라 소스는 전적으로 필러 와이어이기 때문에 1에 할당됩니다. 확산 효과는 고려되지 않았습니다.

2 . 레이저 용접 모델 (Cho et al. [26] )

흡수율을 계산하기 위해 프레 넬 반사 모델을 사용했습니다. ㅏ=1−ρ씨재료의 표면 상에 도시 된 바와 같이 수학 식. (A8) 원 편광 빔의 경우.(A8)ㅏ=1−ρ씨=1−12(ρ에스+ρ피)어디,ρ에스=(엔1씨영형에스θ−피)2+큐2(엔1씨영형에스θ+피)2+큐2,ρ에스=(피−엔1에스나는엔θ티ㅏ엔θ)2+큐2(피+엔1에스나는엔θ티ㅏ엔θ)2+큐2,피2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22+[엔22−케이22−(엔1에스나는엔θ)2]},큐2=12{[엔22−케이22−(엔1에스나는엔θ)2]2+2엔22케이22−[엔22−케이22−(엔1에스나는엔θ)2]}.어디, 복잡한 인덱스 엔1과 케이1반사 지수와 공기의 흡수 지수이며 엔2과 케이2공작물을위한 것입니다. θ입사각입니다. 도시 된 바와 같이 수학 식. (A9)에서 , 혼합물의 흡수율은 식에서 얻은 모재 및 필러 와이어 분획의 가중 평균이됩니다 . (A7) .(A9)ㅏ미디엄나는엑스티유아르 자형이자형=Φㅏw나는아르 자형이자형+(1−Φ)ㅏ비ㅏ에스이자형어디, ㅏ비ㅏ에스이자형과 ㅏw나는아르 자형이자형각각 비금속과 필러 와이어의 흡수율입니다.

자유 표면 경계에서의 반동 압력 에이 싱은 Eq. (A10) .(A10)피아르 자형(티)≅0.54피에스ㅏ티(티)=0.54피0이자형엑스피(엘V티−티비아르 자형¯티티비)어디, 피에스ㅏ티포화 압력, 피0대기압입니다. 엘V기화의 잠열, 티비끓는 온도이고 아르 자형¯보편적 인 기체 상수입니다.

참고 문헌

D.J. Kotecki, D.L. Cheever, D.G. Howden
Mechanism of ripple formation during weld solidification
Weld. J., 51 (8) (1972), pp. 386s-391s
Google Scholar
[2]
M. Zacksenhouse, D.E. Hardt
Weld pool impedance identification for size measurement and control
J. Dyn. Syst. Meas. Control, 105 (3) (1983), pp. 179-184
CrossRefView Record in ScopusGoogle Scholar
[3]
V.V. Semak, J.A. Hopkins, M.H. McCay, T.D. McCay
Melt pool dynamics during laser welding
J. Phys. D, 28 (1995), pp. 2443-2450
CrossRefView Record in ScopusGoogle Scholar
[4]
A.J.R. Aendenroomer, G. den Ouden
Weld pool oscillation as a tool for penetration sensing during pulsed GTA welding
Weld. J., 77 (5) (1998), pp. 181s-187s
Google Scholar
[5]
M.J.M. Hermans, G. den Ouden
Process behavior and stability in short circuit gas metal arc welding
Weld. J., 78 (4) (1999), pp. 137-141
View Record in ScopusGoogle Scholar
[6]
B.Y.B. Yudodibroto, M.J.M. Hermans, Y. Hirata, G. den Ouden
Influence of filler wire addition on weld pool oscillation during gas tungsten arc welding
Sci. Technol. Weld. Join., 9 (2) (2004), pp. 163-168
View Record in ScopusGoogle Scholar
[7]
M. Geiger, K.-H. Leitz, H. Koch, A. Otto
A 3D transient model of keyhole and melt pool dynamics in laser beam welding applied to the joining of zinc coated sheets
Prod. Eng. Res. Dev., 3 (2009), pp. 127-136
CrossRefView Record in ScopusGoogle Scholar
[8]
C. Kägeler, M. Schmidt
Frequency-based analysis of weld pool dynamics and keyhole oscillations at laser beam welding of galvanized steel sheets
Phys. Procedia, 5 (2010), pp. 447-453
ArticleDownload PDFView Record in ScopusGoogle Scholar
[9]
Y. Shi, G. Zhang, X.J. Ma, Y.F. Gu, J.K. Huang, D. Fan
Laser-vision-based measurement and analysis of weld pool oscillation frequency in GTAW-P
Weld. J., 94 (2015), pp. 176s-187s
Google Scholar
[10]
J. Volpp, F. Vollertsen
Keyhole stability during laser welding—part I: modelling and evaluation
Prod. Eng.-Res. Dev., 10 (2016), pp. 443-457
CrossRefView Record in ScopusGoogle Scholar
[11]
N. Postacioglu, P. Kapadia, J. Dowden
Capillary waves on the weld pool in penetration welding with a laser
J. Phys. D, 22 (1989), pp. 1050-1061
CrossRefView Record in ScopusGoogle Scholar
[12]
N. Postacioglu, P. Kapadia, J. Dowden
Theory of the oscillations of an ellipsoidal weld pool in laser welding
J. Phys. D, 24 (1991), pp. 1288-1292
CrossRefView Record in ScopusGoogle Scholar
[13]
J. Kroos, U. Gratzke, M. Vicanek, G. Simon
Dynamic behaviour of the keyhole in laser welding
J. Phys. D, 26 (1993), pp. 481-486
View Record in ScopusGoogle Scholar
[14]
H. Maruo, Y. Hirata
Natural frequency and oscillation modes of weld pools. 1st Report: weld pool oscillation in full penetration welding of thin plate
Weld. Int., 7 (8) (1993), pp. 614-619
CrossRefView Record in ScopusGoogle Scholar
[15]
T. Klein, M. Vicanek, J. Kroos, I. Decker, G. Simon
Oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 27 (1994), pp. 2023-2030
CrossRefView Record in ScopusGoogle Scholar
[16]
T. Klein, M. Vicanek, G. Simon
Forced oscillations of the keyhole in penetration laser beam welding
J. Phys. D, 29 (1996), pp. 322-332
View Record in ScopusGoogle Scholar
[17]
K. Andersen, G.E. Cook, R.J. Barnett, A.M. Strauss
Synchronous weld pool oscillation for monitoring and control
IEEE Trans. Ind. Appl., 33 (2) (1997), pp. 464-471
View Record in ScopusGoogle Scholar
[18]
W.-I. Cho, S.-J. Na, M.-H. Cho, J.-S. Lee
Numerical study of alloying element distribution in CO2 laser-GMA hybrid welding
Comput. Mater. Sci., 49 (2010), pp. 792-800
ArticleDownload PDFView Record in ScopusGoogle Scholar
[19]
W.-I. Cho, S.-J. Na, C. Thomy, F. Vollertsen
Numerical simulation of molten pool dynamics in high power disk laser welding
J. Mater. Process. Technol., 212 (2012), pp. 262-275
ArticleDownload PDFView Record in ScopusGoogle Scholar
[20]
A. Otto, A. Patschger, M. Seiler
Numerical and experimental investigations of humping phenomena in laser micro welding
Phys. Procedia, 83 (2016), pp. 1415-1423
ArticleDownload PDFView Record in ScopusGoogle Scholar
[21]
R. Lin, H.-P. Wang, F. Lu, J. Solomon, B.E. Carlson
Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys
Int. J. Heat Mass Trans., 108 (2017), pp. 244-256
ArticleDownload PDFView Record in ScopusGoogle Scholar
[22]
S.H. Ko, C.D. Yoo, D.F. Farson, S.K. Choi
Mathematical modeling of the dynamic behavior of gas tungsten arc weld pools
Metall. Mater. Trans. B., 31B (2000), pp. 1465-1473
CrossRefView Record in ScopusGoogle Scholar
[23]
R. Hu, X. Chen, G. Yang, S. Gong, S. Pang
Metal transfer in wire feeding-based electron beam 3D printing: modes, dynamics, and transition criterion
Int. J. Heat Mass Transf., 126 (2018), pp. 877-887
ArticleDownload PDFView Record in ScopusGoogle Scholar
[24]
X. Meng, A. Artinov, M. Bachmann, M. Rethmeier
Theoretical study of influence of electromagnetic stirring on transport phenomena in wire feed laser beam welding
J. Laser Appl., 32 (2020), Article 022026
CrossRefGoogle Scholar
[25]
W.-I. Cho, V. Schultz, F. Vollertsen
Simulation of the buttonhole formation during laser welding with wire feeding and beam oscillation
L. Overmeyer, U. Reisgen, A. Ostendorf, M. Schmidt (Eds.), Proceedings of the Lasers in Manufacturing, German Scientific Laser Society, Munich, Germany (2017)
Google Scholar
[26]
W.-I. Cho, V. Schultz, P. Woizeschke
Numerical study of the effect of the oscillation frequency in buttonhole welding
J. Mater. Process. Technol., 261 (2018), pp. 202-212
ArticleDownload PDFView Record in ScopusGoogle Scholar
[27]
V. Schultz, T. Seefeld, F. Vollertsen
Bridging Large Air Gaps by Laser Welding with Beam Oscillation
International Conference on Application of Lasers in Manufacturing, New Delhi, India (2015), pp. 31-32
CrossRefGoogle Scholar
[28]
W.-I. Cho, S.-J. Na
Impact of wavelengths of CO2, disk, and green lasers on fusion zone shape in laser welding of steel
J. Weld. Join., 38 (3) (2020), pp. 235-240
CrossRefView Record in ScopusGoogle Scholar
[29]
FLOW-3D User Manual. 2017. Version 11.2.1.06, Flow Science Inc.
Google Scholar
[30]
W.-I. Cho, P. Woizeschke
Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal
Int. J. Heat Mass Transf., 152 (2020), Article 119528
ArticleDownload PDFView Record in ScopusGoogle Scholar
[31]
F. Vollertsen
Loopless production: definition and examples from joining
69th IIW Annual Assembly and International Conference, Melbourne, Australia (2016)
Google Scholar
[32]
V. Schultz, W.-I. Cho, A. Merkel, P. Woizeschke
Deep penetration laser welding with high seam surface quality due to buttonhole welding
Proc. of the IIW Annual Assembly, Com. IV, Bali, Indonesia (2018)
IIW-Doc. IV-1390-18

Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.

Investigation on Laser Welding of Al Ribbon to Cu Sheet: Weldability, Microstructure, and Mechanical and Electrical Properties

알루미늄 리본과 구리 시트의 레이저 용접에 대한 조사 : 용접성, 미세 구조, 기계적 및 전기적 특성

Won‐Sang Shin 1,†, Dae‐Won Cho 2,†, Donghyuck Jung 1, Heeshin Kang 3, Jeng O Kim 3, Yoon‐Jun Kim 1,*
and Changkyoo Park 3,*

Al 리본과 Cu 시트의 펄스 레이저 용접은 전력 전자 모듈의 전기적 상호 연결에 대해 조사되었습니다. 결함 없는 Al / Cu 조인트를 얻기 위해 레이저 출력, 스캔 속도 및 열 입력이 서로 다른 다양한 실험 조건이 사용되었습니다. Al / Cu 레이저 용접 중에 금속 간 화합물이 용접 영역에 형성되었습니다. 전자 탐침 마이크로 분석기와 투과 전자 현미경으로 Al4Cu9, Al2Cu, AlCu 등으로 밝혀진 금속 간 화합물의 상을 확인했습니다. 전산 유체 역학 시뮬레이션은 Marangoni 효과가 용융 풀의 순환을 유도하여 혼합물을 생성하는 것으로 나타났습니다. Al과 Cu의 결합과 Al / Cu 조인트에서 소용돌이 모양의 구조 형성. Al / Cu 접합부의 인장 전단강도와 전기 저항을 측정하였으며 용접 면적과 강한 상관 관계를 보였다. Al / Cu 접합부의 용접 면적이 증가함에 따라 기계적 강도의 감소와 전기 저항의 증가가 측정 되었습니다. 또한 무결점 Al / Cu 접합을 위한 공정 창을 개발하고 Al / Cu 레이저 브레이즈 용접을 위한 실험 조건을 조사하여 Al / Cu 접합에서 금속 간 화합물 형성을 최소화했습니다.

Introduction

전기 상호 연결은 전력 전자 모듈을 패키징하는 데 중요합니다. 우수한 기계적 및 전기적 특성을 가진 견고한 전기적 상호 연결은 전력 전자 모듈의 전기적 고장을 방지하는 데 필수적입니다. 저항 스폿 용접, 브레이징, 납땜 및 초음파 용접 (USW)이 전기 상호 연결에 사용되었습니다.

납땜과 납땜 모두 저온 공정으로 인해 접합부에서 한계 변형과 잔류 응력이 발생합니다 [1]. 필러 합금은 두 공정 모두 견고한 전기 접촉을 달성하는 데 필수적입니다. 따라서 조인트는 서로 접촉하는 서로 다른 금속으로 구성됩니다.

결과적으로 조인트는 부식 환경에서 갈바닉 부식에 취약 할 수 있습니다 [2,3]. 더욱이, 비금속과 충전재 사이의 친화도를 고려해야 하기 때문에 제한된 충전재 만 특정 조인트에 사용할 수 있습니다 [1]. USW는 용접 온도가 낮고 용접 시간이 짧기 때문에 접합부의 변형이 비교적 적습니다.

따라서 이는 특히 연질 재료 (예 : Al, Cu, Ag, Au 및 Ni)의 경우 기존 접합 방법을 대체하고 있습니다 [4–6]. 그러나 Cu를위한 USW 공정의 경우, 표면 산화물이 강해 용접성이 저하되는 것을 방지하기 위해 Cu 표면에 Sn 또는 Ni 코팅이 필요하며, 이는 공정 속도를 늦추고 산업적 응용을위한 경제적 측면을 악화시킨다 [7 , 8].

레이저 용접은 쉬운 제어, 고정밀 및 원격 처리의 특성으로 인해 전력 전자 모듈의 전기 연결에 대한 유망한 후보입니다. 열의 영향을 받는 작은 영역과 변형은 전기 접점의 손상을 최소화 할 것으로 예상됩니다 [9-11]. 또한 레이저 용접을 위해 추가 표면 준비가 필요하지 않습니다.

이종 재료의 용접은 산업 응용 분야에서 중요했습니다. 더욱이 그림 1 [12,13]에서 볼 수 있듯이 전기 연결을위한 와이어 또는 리본 본딩에 여러 다른 조인트가 필요하기 때문에 전력 전자 모듈에서 필수적인 기술이되고 있습니다.

전기 접점의 다양한 조합 중에서 Al과 Cu는 높은 전기 전도성으로 인해 전기 연결에 중요한 재료로 종종 간주됩니다 [14]. 그러나 Al과 Cu의 서로 다른 용접은 금속 간 화합물 (IMC)의 형성을 촉진하고 동시에 Al / Cu 조인트의 기계적 및 전기적 특성에 영향을 줍니다. 일반적으로 Al / Cu 조인트 내부에 IMC가 있으면 연성 및 전기 저항에 해를 끼치므로 균열이 쉽게 발생하고 용접을 통한 전기 전도도를 방해합니다 [15,16].

따라서 견고한 Al / Cu 조인트를 얻으려면 IMC의 형성을 피해야합니다. 여러 연구에서 Al 및 Cu 시트의 레이저 빔 용접을 조사했습니다. 연속파 (CW) 레이저가 Al / Cu 조인트에 사용되었습니다 [17-23]. 큰 열 입력과 상당한 IMC 형성으로 인해 용접 영역에서 많은 균열이 관찰되었습니다 [18,19].

CW 레이저 빔의 공간 진동은 Al / Cu 조인트의 용접 품질을 향상시키는 것으로 나타났습니다. 직선 CW 레이저 빔 [18-20]과 비교하여 용접 영역에서 IMC 크기가 더 작은 기공과 균열이 더 적습니다.

Al과 Cu 시트의 겹침 접합에는 CW 단일 모드 파이버 레이저를 사용했으며, IMC 형성을 억제하여 높은 용접 속도 (즉, 50m / min)에서 견고한 Al / Cu 접합을 얻었습니다 [22]. Mai et al. [23]은 다른 Al / Cu 용접을 달성하기 위해 펄스 레이저를 사용했습니다.

그들은 Al / Cu 용접성이 레이저 공정 매개 변수에 크게 의존한다는 것을 밝혔으며 100mm / min 미만의 스캔 속도에서 균열없는 Al / Cu 접합을 달성하는 데 성공했습니다.

본문 내용 생략 : 문서 하단부의 원문보기를 참고하시기 바랍니다.

Figure 1. Schematic diagram of the insulated gate bipolar transistors (IGBT) power module. Red‐dotted box indicated the electrical connections
Figure 1. Schematic diagram of the insulated gate bipolar transistors (IGBT) power module. Red‐dotted box indicated the electrical connections
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.
Figure 2. Experimental setups for the (a) Al/Cu overlap joint and (b) laser welding process.
Figure 3. Schematic diagram of the numerical simulation domain and boundary conditions.
Figure 3. Schematic diagram of the numerical simulation domain and boundary conditions.
Figure 4. Experimental setup for the four‐point electrical resistance measurement.
Figure 4. Experimental setup for the four‐point electrical resistance measurement.
Figure 5. Cross‐sectional OM image of the Al/Cu joints in parallel to the laser welding direction. The laser power and scan speed were set at 2300 W and 20 mm/s, respectively.
Figure 5. Cross‐sectional OM image of the Al/Cu joints in parallel to the laser welding direction. The laser power and scan speed were set at 2300 W and 20 mm/s, respectively.
Figure 6 shows the cross‐sectional SEM images of the Al/Cu joints, and corresponding EPMA element mapping of Al and Cu for the (a) 23/20, (b) 25/28.6, (c) 25/15.4, and (d) 27/20.
Figure 6 shows the cross‐sectional SEM images of the Al/Cu joints, and corresponding EPMA element mapping of Al and Cu for the (a) 23/20,
Figure 6. Cross‐sectional SEM image and elemental distribution mapping of Al and Cu elements for the (a) 23/20, (b) 25/28.6, (c) 25/15.4, and (d) 27/20.
Figure 6. Cross‐sectional SEM image and elemental distribution mapping of Al and Cu elements for the (d) 27/20.
Figure 7. EPMA line scan analysis and identification of the IMCs for the (a) 23/20 and (b) 25/15.4.
Figure 7. EPMA line scan analysis and identification of the IMCs for the (a) 23/20 and (b) 25/15.4.
Figure 8. TEM analysis for the 25/28.6. (a) Indicating the location of TEM analysis in SEM image of the welding zone. (b) TEM bright‐field image and SAED pattern insets, examined at the location (1) in figure (a), confirmed Al‐rich phase (white globular shape) and Al2Cu eutectic phase (gray region), and (c) TEM bright‐field image and SAED pattern inset of Al4Cu9, examined at the location (2) in figure (a).
Figure 8. TEM analysis for the 25/28.6. (a) Indicating the location of TEM analysis in SEM image of the welding zone. (b) TEM bright‐field image and SAED pattern insets, examined at the location (1) in figure (a), confirmed Al‐rich phase (white globular shape) and Al2Cu eutectic phase (gray region), and (c) TEM bright‐field image and SAED pattern inset of Al4Cu9, examined at the location (2) in figure (a).
Figure 9. Temperature profiles and molten pool flow on transverse cross‐section (y–z plane at x = 1.23 cm): (a) Negative surface tension gradient for the 23/20 (Case 1), (b) negative surface tension gradient for the 25/15.4 (Case 2), (c) positive surface tension gradient for the 25/15.4 (Case 3), and (d) without surface tension for the 25/15.4 (Case 4).
Figure 9. Temperature profiles and molten pool flow on transverse cross‐section (y–z plane at x = 1.23 cm): (a) Negative surface tension gradient for the 23/20 (Case 1), (b) negative surface tension gradient for the 25/15.4 (Case 2), (c) positive surface tension gradient for the 25/15.4 (Case 3), and (d) without surface tension for the 25/15.4 (Case 4).
Figure 12. Results of the tensile shear tests for the (a) 23/20: fracture at the Al ribbon and (b) 25/15.4: fracture at the weld
Figure 12. Results of the tensile shear tests for the (a) 23/20: fracture at the Al ribbon and (b) 25/15.4: fracture at the weld
Figure 13. Stress–strain curves obtained by the tensile shear tests.
Figure 13. Stress–strain curves obtained by the tensile shear tests.

References

  1. Schwartz, M.M.; Aircraft, S. Introduction to Brazing and Soldering. ASM Int. 2018, 6, doi.org/10.31399/asm.hb.v06.a0001344.
  2. Vianco, P.T. Corrosion issues in solder joint design and service. Weld. J. 1999, 78, 39–46.
  3. Shi, Y.; Li, J.; Zhang, G.; Huang, J.; Gu, Y. Corrosion Behavior of Aluminum‐Steel Weld‐Brazing Joint. J. Mater. Eng. Perform.
    2016, 25, 1916–1923, doi:10.1007/s11665‐016‐2020‐9.
  4. Harman, G.G. Wire Bonding in Microelectronics: Materials, Processes, Reliability and Yield, 3rd ed; McGraw‐Hill Education: New
    York, NY, USA, 2010; ISBN 9780071642651.
  5. Aonuma, M.; Nakata, K. Dissimilar metal joining of ZK60 magnesium alloy and titanium by friction stir welding. Mater. Sci.
    Eng. B Solid State Mater. Adv. Technol. 2012, 177, 543–548, doi:10.1016/j.mseb.2011.12.031.
  6. Sasaki, T.; Watanabe, T.; Hosokawa, Y.; Yanagisawa, A. Analysis for relative motion in ultrasonic welding of aluminium sheet.
    Sci. Technol. Weld. Jt. 2012, 18, 19–24, doi:10.1179/1362171812Y.0000000066.
  7. Maeda, M.; Sato, T.; Inoue, N.; Yagi, D.; Takahashi, Y. Anomalous microstructure formed at the interface between copper ribbon
    and tin‐deposited copper plate by ultrasonic bonding. Microelectron. Reliab. 2011, 51, 130–136, doi:10.1016/j.microrel.2010.05.009.
  8. Maeda, M.; Yagi, D.; Takahashi, Y. Interfacial microstructure between copper ribbon and nickel‐coated copper plate formed by
    ultrasonic bonding. Q. J. Jpn. Weld. Soc. 2013, 31, 188–191, doi:10.2207/qjjws.31.188s.
  9. Sun, Z.; Ion, J.C. Laser welding of dissimilar metal combinations. J. Mater. Sci. 1995, 30, 4205–4214, doi:10.1007/BF00361499.
  10. Yan, S.; Hong, Z.; Watanabe, T.; Jingguo, T. CW/PW dual‐beam YAG laser welding of steel/aluminum alloy sheets. Opt. Lasers
    Eng. 2010, 48, 732–736, doi:10.1016/j.optlaseng.2010.03.015.
  11. Mehlmann, B.; Gehlen, E.; Olowinsky, A.; Gillner, A. Laser micro welding for ribbon bonding. Phys. Procedia 2014, 56, 776–781,
    doi:10.1016/j.phpro.2014.08.085.
  12. Nwanoro, K.C.; Lu, H.; Yin, C.; Bailey, C. An analysis of the reliability and design optimization of aluminium ribbon bonds in
    power electronics modules using computer simulation method. Microelectron. Reliab. 2018, 87, 1–14,
    doi:10.1016/j.microrel.2018.05.013.
  13. Li, H.; Cao, B.; Yang, J.W.; Liu, J. Modeling of resistance heat assisted ultrasonic welding of Cu‐Al joint. J. Mater. Process. Technol.
    2018, 256, 121–130, doi:10.1016/j.jmatprotec.2018.02.008.
  14. Davis, J.R. Copper and Copper Alloys. In ASM Speciality Handbook; ASM International: Almere, The Netherlands, 2001; ISBN
    2001022956
  1. Rabkin, D.M.; Ryabov, V.R.; Lozovskaya, A.V.; Dovzhenko, V.A. Preparation and properties of copper‐aluminum intermetallic
    compounds. Sov. Powder Metall. Met. Ceram. 1970, 9, 695–700, doi:10.1007/BF00803820.
  2. Chen, C.Y.; Chen, H.L.; Hwang, W.S. Influence of interfacial structure development on the fracture mechanism and bond
    strength of aluminum/copper bimetal plate. Mater. Trans. 2006, 47, 1232–1239, doi:10.2320/matertrans.47.1232.
  3. Schmidt, P.A.; Schweier, M.; Zaeh, M.F. Joining of lithium‐ion batteries using laser beam welding: Electrical losses of welded
    aluminum and copper joints. J. Laser Appl. 2012, 915, doi:10.2351/1.5062563.
  4. Smith, S.; Blackburn, J.; Gittos, M.; De Bono, P.; Hilton, P. Welding of dissimilar metallic materials using a scanned laser beam.
    J. Laser Appl. 2013, 493, doi:10.2351/1.5062921.
  5. Solchenbach, T.; Plapper, P. Mechanical characteristics of laser braze‐welded aluminium‐copper connections. Opt. Laser Technol.
    2013, 54, 249–256, doi:10.1016/j.optlastec.2013.06.003.
  6. Kraetzsch, M.; Standfuss, J.; Klotzbach, A.; Kaspar, J.; Brenner, B.; Beyer, E. Laser Beam Welding with High‐Frequency Beam
    Oscillation: Welding of Dissimilar Materials with Brilliant Fiber Lasers. Phys. Procedia 2011, 12, 142–149,
    doi:10.1016/j.phpro.2011.03.018.
  7. Solchenbach, T.; Plapper, P.; Cai, W. Electrical performance of laser braze‐welded aluminum‐copper interconnects. J. Manuf.
    Process. 2014, 16, 183–189, doi:10.1016/j.jmapro.2013.12.002.
  8. Lee, S.J.; Nakamura, H.; Kawahito, Y.; Katayama, S. Effect of welding speed on microstructural and mechanical properties of
    laser lap weld joints in dissimilar Al and Cu sheets. Sci. Technol. Weld. Jt. 2014, 19, 111–118, doi:10.1179/1362171813Y.0000000168.
  9. Mai, T.A.; Spowage, A.C. Characterisation of dissimilar joints in laser welding of steel‐kovar, copper‐steel and copper‐
    aluminium. Mater. Sci. Eng. A 2004, 374, 224–233, doi:10.1016/j.msea.2004.02.025.
  10. Zhang, G.; Takahashi, Y.; Heng, Z.; Takashima, K.; Misawa, K. Ultrasonic weldability of al ribbon to cu sheet and the dissimilar
    joint formation mode. Mater. Trans. 2015, 56, 1842–1851, doi:10.2320/matertrans.M2015251.
  11. Zhu, B.; Zhen, L.; Xia, H.; Su, J.; Niu, S.; Wu, L.; Tan, C.; Chen, B. Effect of the scanning path on the nanosecond pulse laser
    welded Al/Cu lapped joint. Opt. Laser Technol. 2021, 139, 106945, doi.org/10.1016/j.optlastec.2021.106945.
  12. Kumar, A.; Gupta, M.P.; Banerjee, J.; Neogy, S.; Keskar, N.; Bhatt, R.B.; Behere, P.G.; Biswas, D.J. Micro‐Welding of Stainless
    Steel and Copper Foils Using a Nano‐Second Pulsed Fiber Laser. Lasers Manuf. Mater. Process. 2019, 6, 158–172,
    doi.org/10.1007/s40516‐019‐00088‐w.
  13. Trinh, L.N.; Lee, D. The Characteristics of Laser Welding of a Thin Aluminum Tab and Steel Battery Case for Lithium‐Ion
    Battery. Metals 2020, 10, 842, doi.org/10.3390/met10060842.
  14. Cho, D.W.; Park, J.H.; Moon, H.S. A study on molten pool behavior in the one pulse one drop GMAW process using
    computational fluid dynamics. Int. J. Heat Mass Transf. 2019, 139, 848–859, doi:10.1016/j.ijheatmasstransfer.2019.05.038.
  15. Cho, W.I.; Na, S.J.; Cho, M.H.; Lee, J.S. Numerical study of alloying element distribution in CO2 laser‐GMA hybrid welding.
    Comput. Mater. Sci. 2010, 49, 792–800, doi:10.1016/j.commatsci.2010.06.025.
  16. Cho, D.W.; Kiran, D.V.; Na, S.J. Analysis of molten pool behavior by flux‐wall guided metal transfer in low‐current submerged
    arc welding process. Int. J. Heat Mass Transf. 2017, 110, 104–112, doi:10.1016/j.ijheatmasstransfer.2017.02.060.
  17. Cho, W.‐I.; Na, S.‐J. Impact of Wavelengths of CO2, Disk, and Green Lasers on Fusion Zone Shape in Laser Welding of Steel. J.
    Weld. Jt. 2020, 38, 235–240, doi:10.5781/jwj.2020.38.3.1.
  18. Sim, A.; Chun, E.J.; Cho, D.W. Numerical Simulation of Surface Softening Behavior for Laser Heat Treated Cu‐Bearing Medium
    Carbon Steel. Met. Mater. Int. 2020, 26, 1207–1217, doi:10.1007/s12540‐019‐00577‐9.
  19. Jarwitz, M.; Fetzer, F.; Weber, R.; Graf, T. Weld seam geometry and electrical resistance of laser‐welded, aluminum‐copper
    dissimilar joints produced with spatial beam oscillation. Metals 2018, 8, 510, doi:10.3390/met8070510.
  20. Weigl, M.; Albert, F.; Schmidt, M. Enhancing the ductility of laser‐welde copper‐aluminum connections by using adapted filler
    materia. Phys. Procedia 2011, 12, 335–341, doi:10.1016/j.phpro.2011.03.141.
  21. Chen, J.; Lai, Y.S.; Wang, Y.W.; Kao, C.R. Investigation of growth behavior of Al‐Cu intermetallic compounds in Cu wire
    bonding. Microelectron. Reliab. 2011, 51, 125–129, doi:10.1016/j.microrel.2010.09.034.
  22. Chen, H.; Yang, L.; Long, J. First‐principles investigation of the elastic, Vickers hardness and thermodynamic properties of Al‐
    Cu intermetallic compounds. Superlattices Microstruct. 2015, 79, 156–165, doi:10.1016/j.spmi.2014.11.005.
  23. Liu, H.J.; Shen, J.J.; Zhou, L.; Zhao, Y.Q.; Liu, C.; Kuang, L.Y. Microstructural characterisation and mechanical properties of
    friction stir welded joints of aluminium alloy to copper. Sci. Technol. Weld. Jt. 2011, 16, 92–99,
    doi:10.1179/1362171810Y.0000000007.
  24. Hug, E.; Bellido, N. Brittleness study of intermetallic (Cu, Al) layers in copper‐clad aluminium thin wires. Mater. Sci. Eng. A
    2011, 528, 7103–7106, doi:10.1016/j.msea.2011.05.077.
  25. Braunović, M.; Alexandrov, N. Intermetallic Compounds At Aluminum‐To‐Copper Electrical Interfaces: Effect of Temperature
    And Electric Current. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 1994, 17, 78–85, doi:10.1109/95.296372.
  26. Lee, W.B.; Bang, K.S.; Jung, S.B. Effects of intermetallic compound on the electrical and mechanical properties of friction welded
    Cu/Al bimetallic joints during annealing. J. Alloys Compd. 2005, 390, 212–219, doi:10.1016/j.jallcom.2004.07.057.
Simulation Gallery

Simulation Gallery

Simulation Gallery | 시뮬레이션 갤러리

시뮬레이션 비디오 갤러리에서 FLOW-3D  제품군으로 모델링 할 수 있는 다양한 가능성을 살펴보십시오 .

적층 제조 시뮬레이션 갤러리

FLOW-3D AM 은 레이저 파우더 베드 융합, 바인더 제트 및 직접 에너지 증착과 같은 적층 제조 공정을 시뮬레이션하고 분석합니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대한 매우 정확한 시뮬레이션을 제공합니다. 

Multi-material Laser Powder Bed Fusion | FLOW-3D AM

Micro and meso scale simulations using FLOW-3D AM help us understand the mixing of different materials in the melt pool and the formation of potential defects such as lack of fusion and porosity. In this simulation, the stainless steel and aluminum powders have independently-defined temperature dependent material properties that FLOW-3D AM tracks to accurately capture the melt pool dynamics. Learn more about FLOW-3D AM’s mutiphysics simulation capabilities at https://www.flow3d.com/products/flow3…

YouTube Gallery로 이동하기

Laser Welding Simulation Gallery

FLOW-3D WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하여 공정 최적화를 달성합니다. 더 나은 공정 제어로 다공성, 열 영향 영역을 최소화하고 미세 구조 진화를 제어 할 수 있습니다. 레이저 용접 공정을 정확하게 시뮬레이션하기 위해 FLOW-3D WELD 는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화를 특징으로 합니다.

Keyhole welding simulation | FLOW-3D WELD

YouTube Gallery로 이동하기

물 및 환경 시뮬레이션 갤러리

FLOW-3D 는 물고기 통로, 댐 파손, 배수로, 눈사태, 수력 발전 및 기타 수자원 및 환경 공학 과제 모델링을 포함하여 유압 산업에 대한 많은 응용 분야를 가지고 있습니다. 엔지니어는 수력 발전소의 기존 인프라 용량을 늘리고, 어류 통로, 수두 손실을 최소화하는 흡입구, 포 이베이 설계 및 테일 레이스 흐름을위한 개선 된 설계를 개발하고, 수세 및 퇴적 및 공기 유입을 분석 할 수 있습니다.

금속 주조 시뮬레이션 갤러리

FLOW-3D CAST  에는 캐스팅을 위해 특별히 설계된 광범위하고 강력한 물리적 모델이 포함되어 있습니다. 이러한 특수 모델에는 lost foam casting, non-Newtonian fluids, and die cycling에 대한 알고리즘이 포함됩니다. FLOW-3D CAST 의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계주기를 단축하고 비용을 절감 할 수 있는 통찰력을 제공합니다.

HPDC |Comparison of slow shot profiles and entrained air during a filling simulation |FLOW-3D CAST

Shown is a video comparing two slow shot profiles. The graphs highlight the shot profiles through time and the difference in entrained air between the slow shots. Note the lack of air entrained in shot sleeve with calculated shot profile which yields a much better controlled flow within the shot sleeve.

YouTube Gallery로 이동하기

Coastal & Maritime Applications | FLOW-3D

FLOW-3D는 선박 설계, 슬로싱 다이내믹스, 파동 충격 및 환기 등 연안 및 해양 애플리케이션에 이상적인 소프트웨어입니다. 연안 애플리케이션의 경우 FLOW-3D는 연안 구조물에 심각한 폭풍과 쓰나미 파장의 세부 정보를 정확하게 예측하고 플래시 홍수 및 중요 구조물 홍수 및 손상 분석에 사용됩니다.

Laser Welding and Additive Manufacturing

Melt Pool Modeling: Innovation in Laser Welding & Additive Manufacturing

Melt Pool Modeling - Innovation in Laser Welding & Additive Manufacturing Webinar

Additive Manufacturing 기술이 새로운 제조 방식을 계속 발전시키면서 CFD 모델링은 공정 개발 및 최적화와, 재료의 변화를 이해하고, 설계 및 연구를 수행하는 매우 유용한 도구가 되었습니다. 이 웨비나에서는 최첨단 CFD 소프트웨어 FLOW-3D AM이 레이저 파우더 베드 융합 및 직접 에너지 증착 공정에서 용융 풀 역학을 모델링하는데 어떻게 사용되는지 살펴볼 것입니다. 그런 다음 유용한 정보를 얻기 위해 모델 데이터의 추출 및 분석에 집중하고 FLOW-3D AM에서 최근에 구현된 기능에 대해 논의합니다. 마지막으로 레이저 용접 및 적층 제조 응용 분야 모두에 적용할 수 있는 관련 산업 사례 연구를 검토하여 산업 응용 분야에 소프트웨어 사용을 보여줍니다.

https://www.facebook.com/FLOW3D.CFD.Software/videos/359103388813376/

Laser Metal Deposition Simulation | FLOW-3D AM | Facebook
Laser Metal Deposition Simulation | FLOW-3D AM | Facebook
FLOW-3D - We'll be presenting and exhibiting at the 2021
FLOW-3D – We’ll be presenting and exhibiting at the 2021

등록 링크https://zoom.us/webinar/register/7516034917241/WN_tik88gXJRzult2_HDNIzPA
산지 표준시(미국 및 캐나다)의 2021년 5월 5일 11:00 오전 (현지 시간)
이벤트 주최: FLOW-3D

발표자

photo of Paree Allu

Paree AlluSenior CFD Engineer @Flow Science, Inc.Paree Allu is a Senior CFD Engineer with Flow Science, where he leads the technical and business strategy for Flow Science’s additive manufacturing and laser welding software solutions. Paree holds a Master’s Degree in Mechanical Engineering from The Ohio State University.

photo of Allyce Jackman

Allyce JackmanCFD Engineer @Flow Science, Inc.Allyce Jackman is a CFD Engineer with Flow Science, where she specializes in laser welding, coating, and complex multiphysics applications. Allyce holds a Bachelor’s Degree in Mechanical Engineering from the University of New Mexico.

Pulsed Laser Welding

Pulsed Laser Welding | 펄스 레이저 용접

Pulsed Laser Welding

시뮬레이션 설명

펄스 레이저 용접은 레이저의 고출력 및 고속 주파수 펄스를 생성합니다. 이는 무엇보다도 열에 민감한 장비 주변의 용도에 도움이 될 수 있습니다. 이 예제는 FLOW-3D AM에서 이 효과를 모델링하는 방법을 보여줍니다. 이 시뮬레이션을 실행하려면 FLOW-3D WELD가 필요합니다.

시뮬레이션 세부 정보

버전#: FLOW-3D v11.2와 FLOW-3D WELD가 결합됨

본 사례에 대해 궁금하신 사항이 있으시면 언제든지 기술지원팀에 연락주세요.

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D WELD Products

레이저 용접 수치해석 (FLOW-3D WELD)

FLOW-3D@ WELD는 레이저 용접 공정에 대한 정확한 시뮬레이션 기능을 제공하여 최적화된 공정을 개발하게 합니다. 더 나은 공정 제어를 통해 기공, 열 영향 영역을 최소화하고 미세 구조 변화를 제어할 수 있습니다.

레이저 용접 프로세스를 정확하게 시뮬레이션하기 위해 FLOW-3D@ WELD는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화와 같은 모든 관련 물리 모델을 제공합니다.

Laser Welding

최근에는 뛰어난 생산성과 속도, 낮은 열 입력이 결합되어 기존의 용접 프로세스를 대체하는 레이저 용접 프로세스가 주목 받고 있습니다. 레이저 용접이 제공하는 장점은 용접강도가 좋고, 열 영향 부위가 작으며, 정밀도가 낮고 변형이 적으며, 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접 할 수 있는 기능이 있습니다.

FLOW-3D@는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 프로세스 최적화를 달성하는 데 도움이 됩니다.

보다 나은 프로세스 제어를 통해 기공을 최소화할 수 있습니다. 열 영향부위 및 미세조직을 제어가 가능합니다. FLOW-3D는 자유표면 추적 알고리즘을 통해 매우 복잡한 용접 POOL 시뮬레이션을 해석하는데 매우 적합합니다.

용접 모듈은 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발압력, shield gas 효과, 용융 풀의 반동압력 및 다중 레이저 반사와 같은 물리적 모델을 FLOW-3D에 적용하기 위해 개발되었습니다. 키홀 용접과 같은 현실적인 프로세스 시뮬레이션을 위해서는 모든 관련 물리적 현상을 적용하는 것이 중요합니다.

FLOW-3D는 레이저 용접의 conduction and keyhole 방식을 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D를 사용하여 용접역학을 분석하고, 공정 매개 변수를 최적화하여 기공을 최소화하며, 레이저 용접공정에서의 dendrite 결정 성장 양상을 예측합니다.

Shallow penetration weld (top left); deep penetration weld with shield gas effects (top right); deep penetration weld with shield gas and evaporation pressure (bottom left); and deep penetration weld with shield gas, evaporation pressure and multiple laser reflections effects (bottom right).

Full Penetration Laser Welding Experiments

한국 카이스트와 독일 BAM은 16K kW레이저를 사용하여 10mm강판에 완전 침투 레이저 용접 실험을 수행하였습니다. CCD카메라의 도움을 받아 완전 용입 레이저 용접으로 형성된 상단 및 하단 용융풀 거동을 확인할 수 있었습니다. 그들은 또한 FLOW-3D 로 용접 공정 해석으로 해석과 실험결과의 경향이 일치하는 것을 알 수 있었습니다.

Experimental setup with CCD cameras observing the top and bottom molten pools
Schematic of computation domain in FLOW-3D

 

Simulation results at the top show melt pool lengths of 8mm and 15mm, whereas experiments indicated melt pool lengths of 7mm and 13mm

Laser Welding Porosity Case Study

General Motors, Michigan, 중국의 상하이 대학교는 용접 공정 변수, 즉 keyhole 용접에서 기공의 발생에 대해 용접 속도 및 용접 각도와 같은 공정 매개 변수가 미치는 영향을 알아보기 위해 협력하여 연구를 진행하였습니다.

레이저 용접된 Al 접합부 단면의 기공을 분석합니다. Keyhole이 유도 된 기공들은 유동 역학으로 인해 발생되고 균열을 일으킬 수 있습니다. 최적화 공정의 매개변수는 이러한 종류의 기공을 완화할 수 있습니다. FLOW-3D를 사용하여 연구원들은 증발 및 반동 압력, 용융풀, 온도에 따른 표면장력 및 Keyhole내의 다중 레이저 반사, 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

연구진은 시뮬레이션 모델을 기반으로 Keyhole 용접에서 생성된 기공들의 주요 원인으로 불안정한 Keyhole을 규정하였습니다. 아래 이미지에서 볼 수 있듯이 뒤쪽 용융 풀의 과도한 재순환은 뒤쪽 용융 풀이 앞쪽 용융 풀 경계를 무너뜨리며 기공들을 생성시킵니다. 갇힌 공간이 증가하는 응고 전면에 의해 갇혔을때 기공들이 발생되었습니다.

Distribution of porosity in longitudinal welding sections as seen in simulations (top) and experiments (bottom)

용접 속도가 빠를수록 더 큰 keyhole이 생성되며 이로 인해, 보다 안정적인 keyhole이 생성됩니다. 연구진은 FLOW-3D를 사용하여 용접 속도와 용접 경사각으로 기공들의 생성을 완화시킬 수 있었습니다.


관련 기술자료

Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition

Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition

텅스텐 카바이드의 초고속 레이저 제거: 임계값 범위의 정량화 및 특징 전환 해석 Xiong Zhang, Chunjin Wang, Benny C. F. Cheung, Gaoyang Mi, Chunming WangFirst ...
Figure 1: Scheme of liquid metal printing process

Effect of Aging Heat Treatment in an Al-4008 Produced byLiquid Metal Printing

C. M. LadeiroDepartment of Metallurgical and Materials Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. RobertoFrias, 4200-465 PORTO, Portugal ...
Coupled CFD-DEM simulation of interfacial fluid–particle interaction during binder jet 3D printing

Coupled CFD-DEM simulation of interfacial fluid–particle interaction during binder jet 3D printing

바인더 제트 3D 프린팅 중 계면 유체-입자 상호 작용에 대한 CFD-DEM 결합 시뮬레이션 Joshua J. Wagner, C. Fred Higgs III https://doi.org/10.1016/j.cma.2024.116747 Abstract The coupled ...
Influences of the Powder Size and Process Parameters on the Quasi-Stability of Molten Pool Shape in Powder Bed Fusion-Laser Beam of Molybdenum

Influences of the Powder Size and Process Parameters on the Quasi-Stability of Molten Pool Shape in Powder Bed Fusion-Laser Beam of Molybdenum

몰리브덴 분말층 융합-레이저 빔의 용융 풀 형태의 준안정성에 대한 분말 크기 및 공정 매개변수의 영향 Feipeng An, Linjie Zhang, Wei ...
Figure 3. The simulated temperature distribution and single-layer multi-track isothermograms of LPBF Hastelloy X, located at the bottom of the powder bed, are presented for various laser energy densities. (a) depicts the single-point temperature distribution at the bottom of the powder bed, followed by the isothermograms corresponding to laser energy densities of (b) 31 J/mm3 , (c) 43 J/mm3 , (d) 53 J/mm3 , (e) 67 J/mm3 , and (f) 91 J/mm3 .

An integrated multiscale simulation guiding the processing optimisation for additively manufactured nickel-based superalloys

적층 가공된 니켈 기반 초합금의 가공 최적화를 안내하는 통합 멀티스케일 시뮬레이션 Xing He, Bing Yang, Decheng Kong, Kunjie Dai, Xiaoqing ...
Figure 1. Experimental setup and materials. (a) Schematic of the DED process, where three types of base materials were adopted—B1 (IN718), B2 (IN625), and B3 (SS316L), and two types of powder materials were adopted—P1 (IN718) and P2 (SS316L). (b) In situ high-speed imaging of powder flow and the SEM images of IN718 and SS316L powder particle. (c) Powder size statistics, and (d) element composition of powder IN718 (P1) and SS316L (P2).

Printability disparities in heterogeneous materialcombinations via laser directed energy deposition:a comparative stud

Jinsheng Ning1,6, Lida Zhu1,6,∗, Shuhao Wang2, Zhichao Yang1, Peihua Xu1,Pengsheng Xue3, Hao Lu1, Miao Yu1, Yunhang Zhao1, Jiachen Li4, Susmita ...
Fig. 3. (a–c) Snapshots of the CtFD simulation of laser-beam irradiation: (a) Top, (b) longitudinal vertical cross-sectional, and (c) transversal vertical cross-sectional views. (d) z-position of the solid/liquid interface during melting and solidification.

Solute segregation in a rapidly solidified Hastelloy-X Ni-based superalloy during laser powder bed fusion investigated by phase-field simulations and computational thermal-fluid dynamics

Masayuki Okugawa ab, Kenji Saito a, Haruki Yoshima a, Katsuhiko Sawaizumi a, Sukeharu Nomoto c, Makoto Watanabe c, Takayoshi Nakano ...
Figure 5. Simulation of the molten pool under low-speed scanning (1.06 m/s). (a) Sequential solidification of the molten pool at the end of the melt track for laser powers of 190 and 340 W, respectively. (b) Recoil pressure on the molten pool at the keyhole for laser powers of 190 and 340 W, respectively. (c) The force diagram of the melt at the back of the keyhole at t = 750 μs in case B. (d) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case A. (e) Temperature gradient at the solid–liquid interface of the molten pool at the moment the laser is deactivated in case B.

Revealing formation mechanism of end of processdepression in laser powder bed fusion by multiphysics meso-scale simulation

다중물리 메조 규모 시뮬레이션을 통해 레이저 분말층 융합에서 공정 종료의 함몰 형성 메커니즘 공개 Haodong Chen a,b, Xin Lin a,b,c, ...
Schematic diagram of HP-LPBF melting process.

Modeling and numerical studies of high-precision laser powder bed fusion

Yi Wei ;Genyu Chen;Nengru Tao;Wei Zhouhttps://doi.org/10.1063/5.0191504 In order to comprehensively reveal the evolutionary dynamics of the molten pool and the ...
Predicting solid-state phase transformations during metal additive manufacturing: A case study on electron-beam powder bed fusion of Inconel-738

Predicting solid-state phase transformations during metal additive manufacturing: A case study on electron-beam powder bed fusion of Inconel-738

금속 적층 제조 중 고체 상 변형 예측: Inconel-738의 전자빔 분말층 융합에 대한 사례 연구 Nana Kwabena Adomako a, Nima Haghdadi a, James F.L. Dingle bc, Ernst Kozeschnik d, Xiaozhou Liao bc, Simon P. Ringer bc, Sophie Primig a Abstract ...

CFD가 레이저 용접을 만나면 : 불꽃이 어떻게 날아갑니까?

Pareekshith Allu Senior CFD Engineer | Additive Manufacturing | Laser Welding | Business Development

When CFD meets laser welding: How sparks fly!

CFD 또는 전산 유체 역학은 수치적 방법을 사용하여 유체 흐름을 연구하는 것입니다. 유체 흐름의 기본 방정식에는 솔루션 해가 없으므로 컴퓨터를 사용하여 방정식을 반복적으로 계산하는 수치해석 방법으로 해결합니다. 일반적으로 CFD 도구는 공기 역학, 엔진 연소, 물 및 환경 흐름, 미세 유체 및 제조 공정에서 광범위한 연구 및 엔지니어링 문제에 적용될 수 있습니다. CFD가 개발에 중요한 역할을 한 기술을 매일 접할 가능성이 있습니다. FLOW-3D 소프트웨어 제품 제조업체인 Flow Science Inc.에서는 자유 표면 흐름 문제 라고하는 특수한 문제 해결에 중점을 둡니다 . 

자유 표면 흐름이란 무엇입니까? 밀도 차이가 큰 두 유체간에 인터페이스가 공유되는 분야는 자유 표면 흐름입니다. 예를 들어, 기체-액체 경계면이 제한되지 않고 시간에 따라 자유롭게 움직이고 변경할 수 있다는 점에서 강의 물과 주변 공기 사이에 자유 표면이 존재합니다. FLOW-3D 솔버의 기본 DNA 인 Volume of Fluid 또는 VoF 방법 은 자유 표면의 진화를 추적하는 강력한 계산 기술입니다. 우리는 지난 40 년 동안 이 문제에 거의 전적으로 집중했습니다.

자유 표면 흐름은 제조산업 분야에서도 널리 사용됩니다. 금속 주조에서는 용융 금속과 용융 금속이 채우는 금형 또는 다이의 공기 사이에 자유 표면이 존재합니다. L-PBF ( Laser Powder Bed fusion) 라고하는 적층 제조 공정에서 레이저를 사용하여 분말 입자를 녹이고 융합하여 공정에서 자유 표면 용융 풀을 만듭니다. 그리고 레이저 용접에서는 레이저 빔에 의해 녹아서 두 개의 금속 부품 / 부품을 함께 융합 할 때 형성되는 자유 표면 용융 풀이 있습니다. 

이 게시물에서는 레이저 용접 공정에 대한 CFD 시뮬레이션이 유용한 이유를 설명합니다.

레이저 기술은 지난 몇 년 동안 상당히 발전했으며 이제 다른 레이저 제조업체는 다양한 파장에서 펄싱 기능이 있는 고출력 레이저를 제공 할 수 있습니다. 레이저와 로봇 자동화 시스템, 컨트롤러 및 프로세스 센서의 통합은 다양한 제조 산업에서 사용을 확대하여 열 입력이 적고 열 영향 영역이 더 작은 레이저 용접 조인트를 가능하게합니다. 

레이저-재료 상호 작용은 복잡하며이를 정확하게 모델링하려면 이러한 시간적 및 공간적 규모와 관련된 물리학을 구현해야합니다. 레이저 열원은 표면에 에너지를 축적하여 기판을 녹이고 용융 금속 풀을 만듭니다. 용융 풀은 전력, 속도 및 스캔 경로와 같은 레이저 가공 매개 변수와 용융 풀의 자유 표면에 동적 증기압을 적용하는 차폐 가스의 영향을 더 많이받습니다. 또한 용접되는 기판의 재료 특성이 중요한 역할을합니다. 용융된 풀의 상 변화와 증발은 용융 풀을 더욱 압박하는 반동 압력을 유발할 수있는 반면 표면 장력은 풀 내의 유체 대류에 영향을줍니다. 키홀 링이있는 경우 레이저 광선이 키홀 내에 갇혀 추가 반사 영향을 받을 수 있습니다. 기판에 더 많은 에너지를 전달합니다. 불안정한 키홀이 붕괴되면 갇힌 공극이 진행되는 응고 경계에 의해 포착되는 다공성 형성으로 이어질 수 있습니다. 

분명히 많은 일이 진행되고 있습니다. 이것이 CFD 시뮬레이션이 강력 할 수있는 곳이며 FLOW-3D WELD를 개발할 때 레이저-재료 상호 작용을 이해하는 데 많은 노력을 기울이는 이유입니다. 자유 표면 추적 및 레이저 에너지 증착, 차폐 가스 역학, 상 변화, 반동 압력, 표면 장력, 레이저 광선 추적 및 응고와 함께 유체 및 열 흐름 방정식을 통합하는 물리 기반 모델은 레이저의 복잡한 상호 작용을 캡처하는 데 매우 정확합니다. 용접과정을 해석하는 기능은 용융 풀의 안정성에 대한 다양한 공정 매개 변수의 영향을 분리하고 엔지니어와 연구원이 용접 일정을 최적화하는 데 도움이 될 수 있습니다.

CFD 시뮬레이션은 레이저 용접 프로세스를 분석하고 개선하는데 도움이되는 프레임 워크를 제공 할 수 있습니다. 불안정한 용융 풀은 키홀 유발 다공성, 파열 및 스패 터와 같은 결함을 초래할 수 있기 때문에 용융 풀의 작동 방식을 이해하는 것은 조인트의 품질에 매우 중요합니다. 그 후, FLOW-3D WELD 모델의 출력인 응고된 용융 풀 데이터 및 열 구배와 같은 결과를 미세 구조 또는 유한 요소 분석 모델에 입력하여 각각 결정 성장 및 열 응력 진화를위한 길을 닦을 수 있습니다.

이 게시물이 CFD를 사용하여 레이저 용접 프로세스를 시뮬레이션하는 이점을 이해하는데 도움이 되기를 바랍니다.

레이저 용접 공정을 더 잘 이해하기 위해 CFD 시뮬레이션 적용을 고려해 보셨습니까? 어떤 특징 / 물리 현상이 모델링되기를 원하십니까? 질문과 의견이 있으면 언제든지 flow3d@stikorea.co.kr 또는 미국 본사의 paree.allu@flow3d.com에게 연락하십시오.

The realm of operations of FLOW-3D

ADDITIVE MANUFACTURING SIMULATIONS

Capabilities of FLOW-3D

FLOW-3D는 자유 표면 유체 흐름 시뮬레이션을 전문으로하는 다중 물리 CFD 소프트웨어입니다. 자유 표면의 동적 진화를 추적하는 소프트웨어의 알고리즘인 VOF (Volume of Fluid) 방법은 Flow Science의 설립자인 Tony Hirt 박사가 개척했습니다.

또한 FLOW-3D에는 금속 주조, 잉크젯 인쇄, 레이저 용접 및 적층 제조 (AM)와 같은 광범위한 응용 분야를 시뮬레이션하기위한 물리 모델이 내장되어 있습니다.
적층 제조 시뮬레이션 소프트웨어, 특히 L-PBF (레이저 파우더 베드 융합 공정)의 현상 유지는 열 왜곡, 잔류 응력 및지지 구조 생성과 같은 부분 규모 모델링에 도움이되는 열 기계 시뮬레이션에 초점을 맞추고 있습니다.

유용하지만 용융 풀 역학 및 볼링 및 다공성과 같은 관련 결함에 대한 정보는 일반적으로 이러한 접근 방식의 영역 밖에 있습니다. 용융 풀 내의 유체 흐름, 열 전달 및 표면 장력이 열 구배 및 냉각 속도에 영향을 미치며 이는 다시 미세 구조 진화에 영향을 미친다는 점을 명심하는 것도 중요합니다.

FLOW-3D와 이산 요소법 (DEM) 및 WELD 모듈을 사용하여 분말 및 용융 풀 규모에서 시뮬레이션 할 수 있습니다.
구현되는 관련 물리학에는 점성 흐름, 열 전달, 응고, 상 변화, 반동 압력, 차폐 가스 압력, 표면 장력, 움직이는 물체 및 분말 / 입자 역학이 포함됩니다. 이러한 접근 방식은 합금에 대한 공정을 성공적으로 개발할 수 있게 하고, AM 기계 제조업체와 AM 기술의 최종 사용자 모두에게 관심있는 미세 구조 진화에 대한 통찰력을 제공하는데 도움이 됩니다.

The realm of operations of FLOW-3D
The realm of operations of FLOW-3D

FLOW-3D는 레이저 분말 베드 융합 (L-PBF), 직접 에너지 증착 (DED) 및 바인더 제트 공정으로 확장되는 기능을 가지고 있습니다.
FLOW-3D를 사용하면 분말 확산 및 패킹, 레이저 / 입자 상호 작용, 용융 풀 역학, 표면 형태 및 후속 미세 구조 진화를 정확하게 시뮬레이션 할 수 있습니다. 이러한 기능은 FLOW-3D에 고유하며 계산 효율성이 높은 방식으로 달성됩니다.

예를 들어 1.0mm x 0.4mm x 0.3mm 크기의 계산 영역에서 레이저 빔의 단일 트랙을 시뮬레이션하기 위해 레이저 용융 모델은 단 8 개의 물리적 코어에서 약 2 시간이 걸립니다.
FLOW-3D는 모든 관련 물리 구현 간의 격차를 해소하는 동시에 업계 및 연구 표준에서 허용하는 시간 프레임으로 결과를 생성합니다. 분말 패킹, 롤러를 통한 파워 확산, 분말의 레이저 용융, 용융 풀 형성 및 응고를 고려하고 다층 분말 베드 융합 공정을 위해 이러한 단계를 순차적으로 반복하여 FLOW-3D에서 전체 AM 공정을 시뮬레이션 할 수 있습니다.

FLOW-3D의 다층 시뮬레이션은 이전에 응고된 층의 열 이력을 저장한다는 점에서 독특하며, 열 전달을 고려하여 이전에 응고된 층에 확산된 새로운 분말 입자 세트에 대해 시뮬레이션이 수행됩니다.
또한, 응고 된 베드의 열 왜곡 및 잔류 응력은 FLOW-3D를 사용하여 평가할 수 있으며, 보다 복잡한 분석을 수행하기 위해 FLOW-3D의 압력 및 온도 데이터를 Abaqus 및 MSC Nastran과 같은 FEA 소프트웨어로 내보낼 수 있습니다.

Sequence of a multi-layer L-PBF simulation setup in FLOW-3D

Ease of Use

FLOW-3D는 다양한 응용 분야에서 거의 40 년 동안 사용되어 왔습니다. 사용자 피드백을 기반으로 UI 개발자는 소프트웨어를 사용하기 매우 직관적으로 만들었으며 새로운 사용자는 시뮬레이션 설정의 순서를 거의 또는 전혀 어려움없이 이해합니다.
사용자는 FLOW3D에서 구현 된 다양한 모델의 이론에 정통하며 새로운 실험을 설계 할 수 있습니다. 실습 튜토리얼, 비디오 강의, 예제 시뮬레이션 및 기술 노트의 저장소도 사용할 수 있습니다.
사용자가 특정 수준의 경험에 도달하면 고급 수치 교육 및 소프트웨어 사용자 지정 교육을 사용할 수 있습니다.

Available Literature

실험 데이터에 대해 FLOW-3D 모델을 검증하는 몇 가지 독립적으로 발표된 연구가 있습니다. 여기에서 수록된 저널 논문은 레이저 용접 및 적층 제조 공정으로 제한됩니다. 더 많은 참조는 당사 웹 사이트에서 확인할 수 있습니다.

Laser Welding

  1. L.J.Zhang, J.X.Zhang, A.Gumenyuk, M.Rethmeier, S.J.Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology, Volume 214, Issue 8, 2014.
    A study by researchers from BAM in Germany, KAIST in Korea, and State Key Laboratory of Mechanical Behavior of Materials in China that focuses on keyhole dynamics and full penetration laser welding of steel plates.
  2. Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E.
    Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer, Volume 108, Part A, 2017.
    General Motors (GM) and Shangai University collaborated on a study on the influence of welding speed and weld angle of inclination on porosity occurrence in laser keyhole welding.
  3. Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser Welding Repair for Single Crystal Blades, International Gas Turbine Congress, Tokyo, 2015.
    Mitsubishi Heavy Industry’s study on laser welding repair using laser cladding for single Ni crystal alloys used in gas turbine blades.

Additive Manufacturing

  1. Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba, Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Technology, Volume 254, 2018
    This paper discusses powder bed compaction with random packing for different powder-size distributions, and the importance of considering evaporation effects in the melting process to validate the melt pool dimensions.
  2. Lee, Y.S., and W.Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA. 2015
    A study conducted by Ohio State University researchers to understand the influence of process parameters in formation of balling defects.
  3. Y.S. Lee, W.Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Additive Manufacturing, Volume 12, Part B, 2016
    A study conducted by Ohio State University researchers to understand the influence of solidification parameters, calculated from the temperature fields, on solidification morphology and grain size using existing theoretical models in laser powder bed fusion processes.

 

 

Laser Keyhole Welding (레이저 키홀 용접)

진동이 없는 레이저 키홀 용접


진동이 없는 레이저 용접의 문제점

  • 틈새 조건에서 허용 오차가 낮아지는 좁은 조인트 폭
  • 레이저가 꺼질 때 끝의 큰 구멍
  • 속도가 높아 침투가 불충분 할 수 있음
  • 사용 가능한 레이저 출력으로부터 제한을 받음

진동이 있는 레이저 랩 용접

  • 키홀의 붕괴를 방지하는 고속 스캐닝이 가능
    – 다공성을 최소화함
  • 인터페이스 간극에서 브리지 간격을 조정하여 조인트 폭을 조정할 수 있는 유연성을 제공함

진동이 있는 레이저 용접의 장점

  • 성능 및 스타일링을 위한 제품을 개선
  • 최초의 품질에서 요구를 충족시키기위해 결함을 감소
  • 성능의 요구 사항을 충족시킬 수 있는 맞춤형 용접 형상

진동 용접 : 실험 결과


모델 검증


한 사이클 내의 키홀의 움직임

  • 진동이 없을 때 : 일관된 전도 또는 키홀 용접
  • 진동이 있을 때 : 전도 용접을 하며 경로 및 시간에 따라 한 번의 주기 내에서 얕은 키홀과 깊은 키홀이 용접 간 전환 가능

진동을 이용한 레이저 용접의 장점

  • 진동을 이용한 최초 품질이 향상됨
  • 키홀로 인한 다공성을 피하면서 빠른 용접 속도를 가능하게 함
  • 전력 변조가 사용되지 않는 경우에 각 주기 내에서 키홀과 전도 모델 간의 전환이 가능
  • 진동의 매개 변수를 변경하여 중요한 용접의 너겟 치수 및 강도의 조정이 가능
  • 시트 간의 틈 브리징을 개선

Fluid dynamics modelling for additive manufacturing

페이지 편집

Switch to draft
미리보기(새탭에서 열기)
업데이트

코드 편집 중
코드 에디터 나가기
제목 추가
Fluid dynamics modelling for additive manufacturing
텍스트 또는 HTML 입력

AM프로세스에 CFD를 사용해야하는 이유

  • AM의 용융 풀(Melt pool) 분해능(0.01 – 0.001mm 길이 스케일)에서 유체 흐름을 정확하게 표현
    – 파우더 페드 퍼짐(Powder bed spreading) : DEM(Discrete Element Method)을 통해 파우더 베드 압축 및 흡수 특성을 예측하는데 도움
    – 선택적 레이저 용해 : 결함 설계 공간 및 용융 풀(Melt pooe) 형상 매핑 및 예측
    – 빠른 응고(Solidification) : 구성 분리 및 위상 핵(Phase nucleation) 형성 및 예측

파우더 증착 및 레이저 용융(Powder deposition and laser melting)

  • 모델 입력 : 파우더 크기 분포, 합금 재료 특성 및 레이저 공정 매개 변수
  • 모델 출력 : 가열/냉각 프로파일, 결함 밀도, 조성 변화

연속 및 펄스 레이저 용융

  • Takeaway : 두 매개 변수 세트 모두 고밀도 재료를 생산하지만 열 이력(History)은 상당히 다름

모델 정확도 및 검증

NiTi, Ti64 및 316L에서 수행된 모델 검증

용융 풀(Melt pool) 형태 및 키홀링(Keyholing)

공정 공간에서 열분해에 대한 경향

패널 토글: All In One SEO Pack
메인 설정소셜 설정
Help
프로 버전으로 업그레이드 하기
스니펫 미리보기
Fluid dynamics modelling for additive manufacturing | FLOW-3D
/fluid-dynamics-modelling-for-additive-manufacturing/
타이틀
Fluid dynamics modelling for additive manufacturing

61
문자. 대부분의 검색 엔진은 60의 최대 타이틀 문자를 사용합니다.
설명

0
문자. 대부분의 검색 엔진은 160의 최대 설명 문자를 사용합니다.
키워드 (쉼표로 분리)
사용자 정의 대표(canonical) URL
NOINDEX이 페이지/게시물

NOFOLLOW 페이지/게시물

사이트 맵에서 제외

Sitemap Priority

오버라이드 안 함
Upgrade to Pro to unlock this feature.
Sitemap Frequency

오버라이드 안 함
페이지/포스트에 비활성화

패널 토글: EME Membership
Limit access to EME members of

Allow access after the membership has been active for this many days (drip content):
0

Access denied message
No templates defined yet!

The format of the text shown if access to the page is denied. If left empty, a default message will be shown.

패널 토글: Suggested tags
Choose a provider to get suggested tags (local, yahoo or tag the net).
패널 토글: Click tags
Display click tags
문서
블럭

Status & visibility
가시성
공개
공개
2020-04-01 9:17 오전
글쓴이

관리자
휴지통으로 이동

고유주소
URL 슬러그
fluid-dynamics-modelling-for-additive-manufacturing
URL의 마지막 부분 고유주소에 대해 읽기(새탭에서 열기)

페이지 보기

:443/fluid-dynamics-modelling-for-additive-manufacturing/(새탭에서 열기)

카테고리
TechnicalNote
Slide
Uncategorized
공지사항
물리모델 매뉴얼
이론 매뉴얼
새 카테고리 추가

Featured image

이미지 교체특성 이미지 제거

요약

토론

페이지 속성
패널 토글: Sidebars – Quick Select
우측 사이드바
3D 프린팅 / 적층제조 SidebarCFD-101 SidebarFLOW-3D Cast SidebarFLOW-3D SidebarFLOW-3D 기술자료 SidebarFLOW-3D 물리모델 적용사례 SidebarFLOW-3D 해석예제 SidebarFLOW-3D/MP SidebarFlowsight SidebarLaser Welding SidebarMEMS Sidebar공지사항교육안내 Sidebar구매 문의구매문의 Sidebar기술자료 Sidebar논문자료 Sidebar뉴스레터 Sidebar물리모델 매뉴얼 Sidebar바이오분야 Sidebar분야별적용사례 Sidebar수자원분야 Sidebar수처리분야 Sidebar에너지분야 Sidebar이론 매뉴얼 Sidebar자동차분야 Sidebar전용프로그램개발 Sidebar제품소개 Sidebar조선해양분야 Applications주조분야 Sidebar코팅분야 Sidebar항공분야 Sidebar해석용 컴퓨터 sidebar해석컨설팅/용역 SidebarType to Add New Sidebar
좌측 사이드바
Type to Add New Sidebar
헤더 사이드바
Type to Add New Sidebar

Note: Selected Sidebars are displayed on this 페이지 specifically.Display sidebars per 글쓴이, child page, page template etc. with the Sidebar Manager.

패널 토글: Tags (Simple Tags)
Separate tags with commas

패널 토글: Simple Tags – Settings
패널 토글: Hide Featured Image?
Yes No
패널 토글: 레이아웃 선택
기본 레이아웃
우측 사이드바
좌측 사이드바
사이드바 없는 전체 폭
사이드바 없는 콘텐츠 중앙
No Sidebar Content Stretched
공개하기 패널 열기

What’s happening at the melt pool?/레이저 가공

Laser keyhole welding

레이저 키홀(Keyhole) 가공(No oscillations/진동 고려하지 않을 경우)

높은 속도에서 다공성을 감소시키는 경우(Reduced porosity at high speed-mechanism)

고속 레이저 가공(진동 고려하지 않음)해석 시 고려사항

  • 틈새 조건에 대한 허용 오차가 낮아지는 좁은 조인트(Joint) 너비
  • 레이저가 꺼질 때 큰 끝 분화구(Large end crater)
  • 속도가 높을 때 불충분한 침투(Penetration)
  • 제한된 사용가능한 레이저 출력 : 6kW

진동을 고려한 레이저 랩(Lap) 용접

  • 키홀(Keyhole) 붕괴를 방지하는 고속 스캐닝 가능
    – 다공성(Porosity) 최소화
  • 인터페이스 간극(Interface gaps)에서 브리지 간격(Bridge gaps)을 조정하여 조인트(Joint) 폭을 조정할 수 있는 유연성 제공

진동을 고려한 레이저 용접 : 실험 결과와 비교

모델 검증

사이클(One cycle) 내에서 키홀(Keyhole) 역학

  • 진동을 고려하지 않을 경우 : 일관된 전도 또는 키홀 용접
  • 진동을 고려할 경우 : 경로와 일정에 따라 한 번의 주기내에서 전도 용접, 얕은 키홀(Keyhole)과 깊은 키홀(Keyhole) 용접 간 전환 가능

진동을 고려한 레이저 가공의 이점

  • 진동을 통한 최초 품질 향상
  • 키홀(Keyhole)로 인한 다공성(Porosity)을 피하면서 높은 용접 속도 가능
  • 전력 변조가 사용되지 않는 경우, 각 주기내에서 키홀(Keyhole) 및 전도 모델간 전환
  • 진동 매개 변수 변경을 통해 중요 용접 너겟(Nugget) 치수 및 강도 조정 가능
  • 시트 간 틈 브리징(Gap gridging) 개선

해석예제 및 적용사례

당사에서 오랜 기간 동안 FLOW-3D를 적용한 분야별 프로젝트 적용사례와 간단한 소개 자료를 제공합니다.
아래 분야별 적용사례 다운로드 링크를 클릭하여 자유롭게 활용하시기 바랍니다.

castinghydraulicswatermems
Casting 분야
적용사례
다운로드
Hydraulics 분야
적용사례
다운로드
WaterTreatments 분야
적용사례
다운로드
MEMS 분야
적용사례
다운로드
maritime 
Maritime 분야
적용사례
다운로드
Laser Welding 분야 적용사례 다운로드Metal 3D printing 분야 적용사례 다운로드

레이저 용접 수치해석(FLOW WELD)

Laser Welding

뛰어난 생산성과 속도, 낮은 열 입력이 결합되어 기존의 용접 프로세스를 대체하는 레이저 용접 프로세스가 있습니다. 레이저 용접이 제공하는 장점은 용접강도가 좋고, 열 영향 부위가 작으며, 정밀도가 높고 변형이 적으며 강철, 알루미늄, 티타늄 및 이종 금속을 포함한 광범위한 금속 및 합금을 용접 할 수 있는 기능이 있습니다.

FLOW-3D는 레이저 용접 공정에 대한 강력한 통찰력을 제공하고 궁극적으로 프로세스 최적화를 달성하는 데 도움이 됩니다. 보다 나은 프로세스 제어를 통해 다공성을 최소화할 수 있습니다. 열 영향부위 및 마이크로-구조를 제어합니다. FLOW-3D는 자유표면 추적 알고리즘으로 인해 매우 복잡한 용접 풀 시뮬레이션을 해석하는데 적합합니다. 용접의 추가 모듈은 레이저 소스에 의해 생성된 Heat flux, 용융 금속에 대한 증발압력, shield gas효과, 용융 풀의 반동압력 및 다중 레이저반사와 같은 물리적 모델을 FLOW-3D에 통합하기 위해 개발되었습니다. Keyhole 용접과 같은 현실적인 프로세스 시뮬레이션을 위해서는 모든 관련 물리적 현상을 포착하는 것이 중요합니다.

FLOW-3D는 레이저 용접의 conduction and keyhole 방식을 시뮬레이션 할 수 있습니다. 전 세계의 연구원들은 FLOW-3D를 사용하여 용접역학을 분석하고, 공정 매개 변수를 최적화하여 다공성을 최소화하며, 레이저 용접공정의 수지결정 성장을 예측합니다.

Shallow penetration weld (top left); deep penetration weld with shield gas effects (top right); deep penetration weld with shield gas and evaporation pressure (bottom left); and deep penetration weld with shield gas, evaporation pressure and multiple laser reflections effects (bottom right).

Full Penetration Laser Welding Experiments

한국 카이스트와 독일 BAM은 16KW레이저를 사용하여 10mm강판에 완전 침투 레이저 용접 실험을 수행하였습니다. CCD카메라의 도움을 받아 완전 용입 레이저 용접으로 형성된 상단 및 하단 용융지 역학을 포착할 수 있었습니다. 그들은 또한 FLOW-3D공정을 시뮬레이션하여 해석과 실험결과가 경향이 일치하는 것을 나타내었습니다.

Experimental setup with CCD cameras observing the top and bottom molten pools
 
Simulation results at the top show melt pool lengths of 8mm and 15mm, whereas experiments indicated melt pool lengths of 7mm and 13mm
 
 
 
 
Schematic of computation domain in FLOW-3D

 

Laser Welding Porosity Case Study

General Motors, Michigan, 중국의 상하이 대학교는 공정변수, 즉 keyhole 용접에서 다공성 발생 에 대해 용접속도 및 용접각도와 같은 공정 매개 변수가 미치는 영향을 이해하기 위해 협력하여 연구를 진행하였습니다.

 
레이저 용접된 Al 접합부 단면의 다공성을 용접합니다. Keyhole 유도 된 다공성은 유동 역학으로 인해 발생되고 균열을 일으킬 수 있습니다. 최적화 공정의 매개변수는 이러한 종류의 다공성을 완화할 수 있습니다. FLOW-3D를 사용하여 연구원들은 증발 및 반동 압력, 용융풀, 온도에 따른 표면장력 및 Keyhole내의 다중 레이저 반사, 프레넬 흡수를 포함한 모든 중요한 물리적 현상을 설명했습니다.

연구진은 시뮬레이션 모델을 기반으로 Keyhole용접에서 유도된 다공성의 주요 원인으로 불안정한Keyhole을 규정하였습니다. 아래 이미지에서 볼 수 있듯이 뒤쪽 용융 풀의 과도한 재순환은 뒤쪽 용융 풀이 앞쪽 용융 풀 경계를 무너뜨리며 다공성을 초래시킵니다. 갇힌 공간이 증가하는 응고 전면에 의해 포착되었을 때 다공성이 유도되었습니다.

용접 속도가 빠를수록 더 큰 keyhole이 생성되며 이로 인해보다 안정적인 keyhole이 구성됩니다. 연구진은 FLOW-3D를 사용하여 높은 용접 속도와 큰 용접 경사각으로 다공성을 완화시킬 수 있다고 예측했습니다.

 
 
Distribution of porosity in longitudinal welding sections as seen in simulations (top) and experiments (bottom)

용접분야 활용

Conduction 용접

하이브리드 레이저 용접

깊은 용접 레이저용접

레이저 적층 공법

TIG 용접

이종소재 레이저 용접

Additive Manufacturing & Welding Bibliography

Additive Manufacturing & Welding Bibliography

다음은 적층 제조 및 용접 참고 문헌의 기술 문서 모음입니다. 이 모든 논문에는 FLOW-3D AM 결과가 나와 있습니다. FLOW-3D AM을 사용하여 적층 제조, 레이저 용접 및 기타 용접 기술에서 발견되는 프로세스를 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

2024년 8월 12일 update

78-24 An Wang, Qianglong Wei, Zijue Tang, J.P. Oliviera, Chu Lun Alex Leung, Pengyuan Ren, Xiaolin Zhang, Yi Wu, Haowei Wang, Hongze Wang, Effects of hatch spacing on pore segregation and mechanical properties during blue laser directed energy deposition of AlSi10Mg, Additive Manufacturing, 85; 104147, 2024. doi.org/10.1016/j.addma.2024.104147

77-24 Jeongho Yang, Seonghun Ji, Du-Rim Eo, Jongcheon Yoon, Parviz Kahhal, Hyub Lee, Sang Hu Park, Effect of abnormal powder feeding on mechanical properties of fabricated part in directed energy deposition, International Journal of Precision Engineering and Manufacturing – Green Technology, 2024. doi.org/10.1007/s40684-024-00620-0

72-24 Minglei Qu, Jiandong Yuan, Ali Nabaa, Junye Huang, Chihpin Andrew Chuang, Lianyi Chen, Melting and solidification dynamics during laser melting of reaction-based metal matrix composites uncovered by in-situ synchrotron X-ray diffraction, Acta Materialia, 271; 119875, 2024. doi.org/10.1016/j.actamat.2024.119875

71-24 Chenze Li, Manish Jain, Qian Liu, Zhuohan Cao, Michael Ferry, Jamie J. Kruzic, Bernd Gludovatz, Xiaopeng Li, Multi-scale microstructure manipulation of an additively manufactured CoCrNi medium entropy alloy for superior mechanical properties and tunable mechanical anisotropy, Additive Manufacturing, 84; 104104, 2024. doi.org/10.1016/j.addma.2024.104104

68-24 Jialu Wang, Shuaicheng Zhu, Miaojin Jiang, Yunwei Gui, Huadong Fu, Jianxin Xie, Solidification track morphology, residual stress behavior, and microstructure evolution mechanism of FGH96-R nickel-based superalloys during laser powder bed fusion process, Journal of Materials Engineering and Performance, 2024. doi.org/10.1007/s11665-024-09326-5

66-24 Erik Holmen Olofsson, Ashley Dan, Michael Roland, Ninna Halberg Jokil, Rohit Ramachandran, Jesper Henri Hattel, Numerical modeling of fill-level and residence time in starve-fed single-screw extrusion: a dimensionality reduction study from a 3D CFD model to a 2D convection-diffusion model, The International Journal of Advanced Manufacturing Technology, 132; pp. 1111-1125, 2024. doi.org/10.1007/s00170-024-13378-1

64-24 Feipeng An, Linjie Zhang, Wei Ma, Suck Joo Na, Influences of the powder size and process parameters on the quasi-stability of molten pool shape in powder bed fusion-laser beam of molybdenum, Journal of Materials Engineering and Performance, 2024. doi.org/10.1007/s11665-024-09328-3

63-24 Haodong Chen, Xin Lin, Yajing Sun, Shuhao Wang, Kunpeng Zhu, Binbin Dan, Revealing formation mechanism of end of process depression in laser powder bed fusion by multi-physics meso-scale simulation, Virtual and Physical Prototyping, 19.1; e2326599, 2024. doi.org/10.1080/17452759.2024.2326599

57-24 Masayuki Okugawa, Kenji Saito, Haruki Yoshima, Katsuhiko Sawaizumi, Sukeharu Nomoto, Makoto Watanabe, Takayoshi Nakano, Yuichiro Koizumi, Solute segregation in a rapidly solidified Hastelloy-X Ni-based superalloy during laser powder bed fusion investigated by phase-field and computational thermal-fluid dynamics simulations, Additive Manufacturing, 84; 104079, 2024. doi.org/10.1016/j.addma.2024.104079

51-24 Jeongho Yang, Dongseok Kang, Si Mo Yeon, Yong Son, Sang Hu Park, Interval island laser-scanning strategy of Ti–6Al–4V part additively manufactured for anisotropic stress reduction, International Journal of Precision Engineering and Manufacturing, 25; pp. 1087-1099, 2024. doi.org/10.1007/s12541-024-00967-z

50-24 James Lamb, Ruben Ochoa, Adriana Eres-Castellanos, Jonah Klemm-Toole, McLean P. Echlin, Tao Sun, Kamel Fezzaa, Amy Clarke, Tresa M. Pollack, Quantification of melt pool dynamics and microstructure during simulated additive manufacturing, Scripta Materialia, 245; 116036, 2024. doi.org/10.1016/j.scriptamat.2024.116036

41-24 Xiong Zhang, Chunjin Wang, Benny C.F. Cheung, Gaoyang Mi, Chunming Wang, Ultrafast laser ablation of tungsten carbide: Quantification of threshold range and interpretation of feature transition, Journal of the American Ceramic Society, 107.6; pp. 3724-3734, 2024. doi.org/10.1111/jace.19718

38-24 Hao-Ping Yeh, Mohamad Bayat, Amirhossein Arzani, Jesper H. Hattel, Accelerated process parameter selection of polymer-based selective laser sintering via hybrid physics-informed neural network and finite element surrogate modelling, Applied Mathematical Modelling, 130; pp. 693-712, 2024. doi.org/10.1016/j.apm.2024.03.030

34-24 Khalid El Abbaoui, Issam Al Korachi, Mostapha El Jai, Berin Šeta, Md. Tusher Mollah, 3D concrete printing using computational fluid dynamics: Modeling of material extrusion with slip boundaries, Journal of Manufacturing Processes, 118; pp. 448-459, 2024. doi.org/10.1016/j.jmapro.2024.03.042

33-24 Hao Lu, Lida Zhu, Pengsheng Xue, Boling Yan, Yanpeng Hao, Zhichao Yang, Jinsheng Ning, Chuanliang Shi, Hao Wang, Ultrasonic machining response and improvement mechanism for differentiated bio-CoCrMo alloys manufactured by directed energy deposition, Journal of Materials Science & Technology, 193; pp. 226-243, 2024. doi.org/10.1016/j.jmst.2023.12.037

32-24 Yinghang Liu, Zhe Song, Yi Guo, Gaoming Zhu, Yunhao Fan, Huamiao Wang, Wentao Yan, Xiaoqin Zeng, Leyun Wang, Simultaneously enhancing strength and ductility of LPBF Ti alloy via trace Y2O3 nanoparticle addition, Journal of Materials Science & Technology, 191; pp. 146-156, 2024. doi.org/10.1016/j.jmst.2024.01.011

27-24 Zehui Liu, Yiyang Hu, Mingyang Zhang, Wei Zhang, Jun Wang, Wenbo Lei, Chunming Wang, Surface morphology evolution mechanisms of pulse laser polishing mold steel, International Journal of Mechanical Sciences, 269; 109039, 2024. doi.org/10.1016/j.ijmecsci.2024.109039

25-24 Muhammad Arif Mahmood, Kashif Ishfaq, Marwan Khraisheh, Inconel-718 processing windows by directed energy deposition: a framework combining computational fluid dynamics and machine learning models with experimental validation, The International Journal of Advanced Manufacturing Technology, 130; pp. 3997-4011, 2024. doi.org/10.1007/s00170-024-12980-7

24-24   Jinsheng Ning, Lida Zhu, Shuhao Wang, Zhichao Yang, Peihua Xu, Pengsheng Xue, Hao Lu, Miao Yu, Yunhang Zhao, Jiachen Li, Susmita Bose, Amit Bandyopadhyay, Printability disparities in heterogeneous material combinations via laser directed energy deposition: a comparative study, International Journal of Extreme Manufacturing, 6; 025001, 2024. doi.org/10.1088/2631-7990/ad172f

18-24   Delong Jia, Dong Zhou, Peng Yi, Chuanwei Zhang, Junru Li, Yankuo Guo, Shengyue Zhang, Yanhui Li, Splat deposition stress formation mechanism of droplets impacting onto texture, International Journal of Mechanical Sciences, 266; 109002, 2024. doi.org/10.1016/j.ijmecsci.2024.109002

11-24   Dae Gune Jung, Ji Young Park, Choong Mo Ryu, Jong Jin Hwang, Seung Jae Moon, Numerical study of laser welding of 270 μm thick silicon-steel sheets for electrical motors, Metals, 14.1; 24, 2024. doi.org/10.3390/met14010024

8-24   Zhifu Yao, Longke Bao, Mujin Yang, Yuechao Chen, Minglin He, Jiang Yi, Xintong Yang, Tao Yang, Yilu Zhao, Cuiping Wang, Zheng Zhong, Shuai Wang, Xingjun Liu, Thermally stabe strong <101> texture in additively manufactured cobalt-based superalloys, Scripta Materialia, 242; 115942, 2024. doi.org/10.1016/j.scriptamat.2023.115942

5-24   Xi Shu, Chunyu Wang, Guoqing Chen, Chunju Wang, Lining Sun, Pre-melted electron beam freeform fabrication additive manufacturing: modeling and numerical simulation, Welding in the World, 68; pp. 163-176, 2024. doi.org/10.1007/s40194-023-01647-8

4-24   Lin Gao, Andrew C. Chuang, Peter Kenesei, Zhongshu Ren, Lilly Balderson, Tao Sun, An operando synchrotron study on the effect of wire melting state on solidification microstructures of Inconel 718 in wire-laser directed energy deposition, International Journal of Machine Tools and Manufacture, 194; 104089, 2024. doi.org/10.1016/j.ijmachtools.2023.104089

3-24 Kunjie Dai, Xing He, Decheng Kong, Chaofang Dong, Multi-physical field simulation to yield defect-free IN718 alloy fabricated by laser powder bed fusion, Materials Letters, 355; 135437, 2024. doi.org/10.1016/j.matlet.2023.135437

2-24 You Wang, Yinkai Xie, Huaixue Li, Caiyou Zeng, Ming Xu, Hongqiang Zhang, In-situ monitoring plume, spattering behavior and revealing their relationship with melt flow in laser powder bed fusion of nickel-based superalloy, Journal of Materials Science & Technology, 177; pp. 44-58, 2024. doi.org/10.1016/j.jmst.2023.07.068

1-24 Yukai Chen, Hongtu Xu, Yu Lu, Yin Wang, Shuangyuzhou Wang, Ke Huang, Qi Zhang, Prediction of microstructure for Inconel 718 laser welding process using multi-scale model, Proceedings of the 14th International Conference on the Technology of Plasticity – Current Trends in the Technology of Plasticity, pp. 713-722, 2024. doi.org/10.1007/978-3-031-41341-4_75

211-23 Giovanni Chianese, Qamar Hayat, Sharhid Jabar, Pasquale Franciosa, Darek Ceglarek, Stanislao Patalano, A multi-physics CFD study to investigate the impact of laser beam shaping on metal mixing and molten pool dynamics during laser welding of copper to steel for battery terminal-to-casing connections, Journal of Materials Processing Technology, 322; 118202, 2023. doi.org/10.1016/j.jmatprotec.2023.118202

207-23 Dong Liu, Jiaqi Pei, Hua Hou, Xiaofeng Niu, Yuhong Zhao, Optimizing solidification dendrites and process parameters for laser powder bed fusion additive manufacturing of GH3536 superalloy by finite volume and phase-field method, Journal of Materials Research and Technology, 27; pp. 3323-3338, 2023. doi.org/10.1016/j.jmrt.2023.10.188

206-23 Houshang Yin, Jingfan Yang, Ralf D. Fischer, Zilong Zhang, Bart Prorok, Lang Yuan, Xiaoyuan Lou, Pulsed laser additive manufacturing for 316L stainless steel: a new approach to control subgrain cellular structure, JOM, 75; pp. 5027-5036, 2023. doi.org/10.1007/s11837-023-06177-8

205-23 Francis Ogoke, William Lee, Ning-Yu Kao, Alexander Myers, Jack Beuth, Jonathan Malen, Amir Barati Farimani, Convolutional neural networks for melt depth prediction and visualization in laser powder bed fusion, The International Journal of Advanced Manufacturing Technology, 129; pp. 3047-3062, 2023. doi.org/10.1007/s00170-023-12384-z

202-23 Habib Hamed Zargari, Kazuhiro Ito, Abhay Sharma, Effect of workpiece vibration frequency on heat distribution and material flow in the molten pool in tandem-pulsed gas metal arc welding, The International Journal of Advanced Manufacturing Technology, 129; pp. 2507-2522, 2023. doi.org/10.1007/s00170-023-12424-8

199-23 Yukai Chen, Yin Wang, Hao Li, Yu Lu, Bin Han, Qi Zhang, Effects of process parameters on the microstructure of Inconel 718 during powder bed fusion based on cellular automata approach, Virtual and Physical Prototyping, 18.1; e2251032, 2023. doi.org/10.1080/17452759.2023.2251032

197-23 Qiong Wu, Chuang Qiao, Yuhang Wu, Zhe Liu, Xiaodan Li, Ju Wang, Xizhong An, Aijun Huang, Chao Voon Samuel Lim, Numerical investigation on the reuse of recycled powders in powder bed fusion additive manufacturing, Additive Manufacturing, 77; 103821, 2023. doi.org/10.1016/j.addma.2023.103821

196-23 Daicong Zhang, Chunhui Jing, Wei Guo, Yuan Xiao, Jun Luo, Lehua Qi, Microchannels formed using metal microdroplets, Micromachines, 14.10; 1922, 2023. doi.org/10.3390/mi14101922

195-23 Trong-Nhan Le, Santosh Rauniyar, V.H. Nismath, Kevin Chou, An investigation into the effects of contouring process parameters on the up-skin surface characteristics in laser powder-bed fusion process, Manufacturing Letters, 35; Supplement, pp. 707-716, 2023. doi.org/10.1016/j.mfglet.2023.08.085

194-23 Kyubok Lee, Teresa J. Rinker, Masoud M. Pour, Wayne Cai, Wenkang Huang, Wenda Tan, Jennifer Bracey, Jingjing Li, A study on cracks and IMCs in laser welding of Al and Cu, Manufacturing Letters, 35; Supplement, pp. 221-231, 2023. doi.org/10.1016/j.mfglet.2023.08.026

192-23 Kunjie Dai, Xing He, Wei Zhang, Decheng Kong, Rong Guo, Minlei Hu, Ketai He, Chaofang Dong, Tailoring the microstructure and mechanical properties for Hastelloy X alloy by laser powder bed fusion via scanning strategy, Materials & Design, 235; 112386, 2023. doi.org/10.1016/j.matdes.2023.112386

191-23 Jun Du, Daqing Wang, Jimiao He, Yongheng Zhang, Zhike Peng, Influence of droplet size and ejection frequency on molten pool dynamics and deposition morphology in TIG-aided droplet deposition manufacturing, International Communications in Heat and Mass Transfer, 148; 107075, 2023. doi.org/10.1016/j.icheatmasstransfer.2023.107075

188-23 Jin-Hyeong Park, Du-Song Kim, Dae-Won Cho, Jaewoong Kim, Changmin Pyo, Influence of thermal flow and predicting phase transformation on various welding positions, Heat and Mass Transfer, 2023. doi.org/10.1007/s00231-023-03429-w

184-23 Lin Gao, Jishnu Bhattacharyya, Wenhao Lin, Zhongshu Ren, Andrew C. Chuang, Pavel D. Shevchenko, Viktor Nikitin, Ji Ma, Sean R. Agnew, Tao Sun, Tailoring material microstructure and property in wire-laser directed energy deposition through a wiggle deposition strategy, Additive Manufacturing, 77; 103801, 2023. doi.org/10.1016/j.addma.2023.103801

182-23 Liping Guo, Hanjie Liu, Hongze Wang, Qianglong Wei, Jiahui Zhang, Yingyan Chen, Chu Lun Alex Leung, Qing Lian, Yi Wu, Yu Zou, Haowei Wang, A high-fidelity comprehensive framework for the additive manufacturing printability assessment, Journal of Manufacturing Processes, 105; pp. 219-231, 2023. doi.org/10.1016/j.jmapro.2023.09.041

172-23 Liping Guo, Hanjie Liu, Hongze Wang, Qianglong Wei, Yakai Xiao, Zijue Tang, Yi Wu, Haowei Wang, Identifying the keyhole stability and pore formation mechanisms in laser powder bed fusion additive manufacturing, Journal of Materials Processing Technology, 321; 118153, 2023. doi.org/10.1016/j.jmatprotec.2023.118153

171-23 Yuhang Wu, Qiong Wu, Meng Li, Ju Wang, Dengzhi Yao, Hao Luo, Xizhong An, Haitao Fu, Hao Zhang, Xiaohong Yang, Qingchuan Zou, Shujun Li, Haibin Ji, Xing Zhang, Numerical investigation on effects of operating conditions and final dimension predictions in laser powder bed fusion of molybdenum, Additive Manufacturing, 76; 103783, 2023. doi.org/10.1016/j.addma.2023.103783

158-23 K. El Abbaoui, I. Al Korachi, M.T. Mollah, J. Spangenberg, Numerical modelling of planned corner deposition in 3D concrete printing, Archives of Materials Science and Engineering, 121.2; pp. 71-79, 2023. doi.org/10.5604/01.3001.0053.8488

156-23 Liping Guo, Hanjie Liu, Hongze Wang, Valentino A.M. Cristino, C.T. Kwok, Qianglong Wei, Zijue Tang, Yi Wu, Haowei Wang, Deepening the scientific understanding of different phenomenology in laser powder bed fusion by an integrated framework, International Journal of Heat and Mass Transfer, 216; 124596, 2023. doi.org/10.1016/j.ijheatmasstransfer.2023.124596

154-23 Zhiyong Li, Xiuli He, Shaoxia Li, Xinfeng Kan, Yanjun Yin, Gang Yu, Sulfur-induced transitions of thermal behavior and flow dynamics in laser powder bed fusion of 316L powders, Thermal Science and Engineering Progress, 45; 102072, 2023. doi.org/10.1016/j.tsep.2023.102072

149-23 Shardul Kamat, Wayne Cai, Teresa J. Rinker, Jennifer Bracey, Liang Xi, Wenda Tan, A novel integrated process-performance model for laser welding of multi-layer battery foils and tabs, Journal of Materials Processing Technology, 320; 118121, 2023. doi.org/10.1016/j.jmatprotec.2023.118121

148-23 Reza Ghomashchi, Shahrooz Nafisi, Solidification of Al12Si melt pool in laser powder bed fusion, Journal of Materials En gineering and Performance, 2023. doi.org/10.1007/s11665-023-08502-3

133-23 Hesam Moghadasi, Md Tusher Mollah, Deepak Marla, Hamid Saffari, Jon Spangenberg, Computational fluid dynamics modeling of top-down digital light processing additive manufacturing, Polymers, 15.11; 2459, 2023. doi.org/10.3390/polym15112459

131-23 Luca Santoro, Raffaella Sesana, Rosario Molica Nardo, Francesca Curà, In line defect detection in steel welding process by means of thermography, Experimental Mechanics in Engineering and Biomechanics – Proceedings ICEM20, 19981, 2023.

128-23 Md Tusher Mollah, Raphaël Comminal, Wilson Ricardo Leal da Silva, Berin Šeta, Jon Spangenberg, Computational fluid dynamics modelling and experimental analysis of reinforcement bar integration in 3D concrete printing, Cement and Concrete Research, 173; 107263, 2023. doi.org/10.1016/j.cemconres.2023.107263

123-23 Arash Samaei, Zhongsheng Sang, Jennifer A. Glerum, Jon-Erik Mogonye, Gregory J. Wagner, Multiphysics modeling of mixing and material transport in additive manufacturing with multicomponent powder beds, Additive Manufacturing, 67; 103481, 2023. doi.org/10.1016/j.addma.2023.103481

122-23 Chu Han, Ping Jiang, Shaoning Geng, Lingyu Guo, Kun Liu, Inhomogeneous microstructure distribution and its formation mechanism in deep penetration laser welding of medium-thick aluminum-lithium alloy plates, Optics & Laser Technology, 167; 109783, 2023. doi.org/10.1016/j.optlastec.2023.109783

111-23 Alexander J. Myers, Guadalupe Quirarte, Francis Ogoke, Brandon M. Lane, Syed Zia Uddin, Amir Barati Farimani, Jack L. Beuth, Jonathan A. Malen, High-resolution melt pool thermal imaging for metals additive manufacturing using the two-color method with a color camera, Additive Manufacturing, 73; 103663, 2023. doi.org/10.1016/j.addma.2023.103663

107-23 M. Mohsin Raza, Yu-Lung Lo, Hua-Bin Lee, Chang Yu-Tsung, Computational modeling of laser welding for aluminum–copper joints using a circular strategy, Journal of Materials Research and Technology, 25; pp. 3350-3364, 2023. doi.org/10.1016/j.jmrt.2023.06.122

106-23 H.Z. Lu, L.H. Liu, X. Luo, H.W. Ma, W.S. Cai, R. Lupoi, S. Yin, C. Yang, Formation mechanism of heterogeneous microstructures and shape memory effect in NiTi shape memory alloy fabricated via laser powder bed fusion, Materials & Design, 232; 112107, 2023. doi.org/10.1016/j.matdes.2023.112107

105-23 Harun Kahya, Hakan Gurun, Gokhan Kucukturk, Experimental and analytical investigation of the re-melting effect in the manufacturing of 316L by direct energy deposition (DED) method, Metals, 13.6; 1144, 2023. doi.org/10.3390/met13061144

100-23 Dongju Chen, Gang Li, Peng Wang, Zhiqiang Zeng, Yuhang Tang, Numerical simulation of melt pool size and flow evolution for laser powder bed fusion of powder grade Ti6Al4V, Finite Elements in Analysis and Design, 223; 103971, 2023. doi.org/10.1016/j.finel.2023.103971

97-23 Mahyar Khorasani, Martin Leary, David Downing, Jason Rogers, Amirhossein Ghasemi, Ian Gibson, Simon Brudler, Bernard Rolfe, Milan Brandt, Stuart Bateman, Numerical and experimental investigations on manufacturability of Al–Si–10Mg thin wall structures made by LB-PBF, Thin-Walled Structures, 188; 110814, 2023. doi.org/10.1016/j.tws.2023.110814

95-23 M.S. Serdeczny, Laser welding of dissimilar materials – simulation driven optimization of process parameters, IOP Conference Series: Materials Science and Engineering, 1281; 012018, 2023. doi.org/10.1088/1757-899X/1281/1/012018

90-23 Lin Liu, Tubin Liu, Xi Dong, Min Huang, Fusheng Cao, Mingli Qin, Numerical simulation of thermal dynamic behavior and morphology evolution of the molten pool of selective laser melting BN/316L stainless steel composite, Journal of Materials Engineering and Performance, 2023. doi.org/10.1007/s11665-023-08210-y

89-23 M. P. Serdeczny, A. Jackman, High fidelity modelling of bead geometry in directed energy deposition – simulation driven optimization, Journal of Physics: Conference Series, NOLAMP19, 2023.

88-23 Lu Wang, Shuhao Wang, Yanming Zhang, Wentao Yan, Multi-phase flow simulation of powder streaming in laser-based directed energy deposition, International Journal of Heat and Mass Transfer, 212; 124240, 2023. doi.org/10.1016/j.ijheatmasstransfer.2023.124240

80-23 Mahyar Khorasani, AmirHossein Ghasemi, Martin Leary, David Downing, Ian Gibson, Elmira G. Sharabian, Jithin Kozuthala Veetil, Milan Brandt, Stuart Batement, Bernard Rolfe, Benchmark models for conduction and keyhole modes in laser-based powder bed fusion of Inconel 718, Optics & Laser Technology, 164; 109509, 2023. doi.org/10.1016/j.optlastec.2023.109509

78-23   Md. Tusher Mollah, Raphaël Comminal, Marcin P. Serdeczny, Berin Šeta, Jon Spangenberg, Computational analysis of yield stress buildup and stability of deposited layers in material extrusion additive manufacturing, Additive Manufacturing, 71; 103605, 2023. doi.org/10.1016/j.addma.2023.103605

76-23   Asif Ur Rehman, Kashif Azher, Abid Ullah, Celal Sami Tüfekci, Metin Uymaz Salamci, Binder jetting of SS316L: a computational approach for droplet-powder interaction, Rapid Prototyping Journal, 2023. doi.org/10.1108/RPJ-08-2022-0264

75-23   Dengzhi Yao, Ju Wang, Hao Luo, Yuhang Wu, Xizhong An, Thermal behavior and control during multi-track laser powder bed fusion of 316 L stainless steel, Additive Manufacturing, 70; 103562, 2023. doi.org/10.1016/j.addma.2023.103562

61-23   Yaqing Hou, Hang Su, Hao Zhang, Fafa Li, Xuandong Wang, Yazhou He, Dupeng He, An integrated simulation model towards laser powder bed fusion in-situ alloying technology, Materials & Design, 228; 111795, 2023. doi.org/10.1016/j.matdes.2023.111795

56-23   Maohong Yang, Guiyi Wu, Xiangwei Li, Shuyan Zhang, Honghong Wang, Jiankang Huang, Influence of heat source model on the behavior of laser cladding pool, Journal of Laser Applications, 35.2; 2023. doi.org/10.2351/7.0000963

45-23   Daniel Martinez, Philip King, Santosh Reddy Sama, Jay Sim, Hakan Toykoc, Guha Manogharan, Effect of freezing range on reducing casting defects through 3D sand-printed mold designs, The International Journal of Advanced Manufacturing Technology, 2023. doi.org/10.1007/s00170-023-11112-x

39-23   Peter S. Cook, David J. Ritchie, Determining the laser absorptivity of Ti-6Al-4V during laser powder bed fusion by calibrated melt pool simulation, Optics & Laser Technology, 162; 109247. 2023. doi.org/10.1016/j.optlastec.2023.109247

36-23   Yixuan Chen, Weihao Wang, Yao Ou, Yingna Wu, Zirong Zhai, Rui Yang, Impact of laser power and scanning velocity on microstructure and mechanical properties of Inconel 738LC alloys fabricated by laser powder bed fusion, TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings, pp. 138-149, 2023. doi.org/10.1007/978-3-031-22524-6_15

34-23   Chao Kang, Ikki Ikeda, Motoki Sakaguchi, Recoil and solidification of a paraffin droplet impacted on a metal substrate: Numerical study and experimental verification, Journal of Fluids and Structures, 118; 103839, 2023. doi.org/10.1016/j.jfluidstructs.2023.103839

30-23   Fei Wang, Tiechui Yuan, Ruidi Li, Shiqi Lin, Zhonghao Xie, Lanbo Li, Valentino Cristino, Rong Xu, Bing liu, Comparative study on microstructures and mechanical properties of ultra ductility single-phase Nb40Ti40Ta20 refractory medium entropy alloy by selective laser melting and vacuum arc melting, Journal of Alloys and Compounds, 942; 169065, 2023. doi.org/10.1016/j.jallcom.2023.169065

29-23   Haejin Lee, Yeonghwan Song, Seungkyun Yim, Kenta Aoyagi, Akihiko Chiba, Byoungsoo Lee, Influence of linear energy on side surface roughness in powder bed fusion electron beam melting process: Coupled experimental and simulation study, Powder Technology, 418; 118292, 2023.

27-23   Yinan Chen, Bo Li, Double-phase refractory medium entropy alloy NbMoTi via selective laser melting (SLM) additive manufacturing, Journal of Physics: Conference Series, 2419; 012074, 2023. doi.org/10.1088/1742-6596/2419/1/012074

23-23   Yunwei Gui, Kenta Aoyagi, Akihiko Chiba, Development of macro-defect-free PBF-EB-processed Ti–6Al–4V alloys with superior plasticity using PREP-synthesized powder and machine learning-assisted process optimization, Materials Science and Engineering: A, 864; 144595, 2023. doi.org/10.1016/j.msea.2023.144595

21-23   Tatsuhiko Sakai, Yasuhiro Okamoto, Nozomi Taura, Riku Saito, Akira Okada, Effect of scanning speed on molten metal behaviour under angled irradiation with a continuous-wave laser, Journal of Materials Processing Technology, 313; 117866, 2023. doi.org/10.1016/j.jmatprotec.2023.117866

19-23   Gianna M. Valentino, Arunima Banerjee, Alexander lark, Christopher M. Barr, Seth H. Myers, Ian D. McCue, Influence of laser processing parameters on the density-ductility tradeoff in additively manufactured pure tantalum, Additive Manufacturing Letters, 4; 100117, 2023. doi.org/10.1016/j.addlet.2022.100117

15-23   Runbo Jiang, Zhongshu Ren, Joseph Aroh, Amir Mostafaei, Benjamin Gould, Tao Sun, Anthony D. Rollett, Quantifying equiaxed vs epitaxial solidification in laser melting of CMSX-4 single crystal superalloy, Metallurgical and Materials Transactions A, 54; pp. 808-822, 2023. doi.org/10.1007/s11661-022-06929-2

14-23   Nguyen Thi Tien, Yu-Lung Lo, M. Mohsin Raza, Cheng-Yen Chen, Chi-Pin Chiu, Optimization of processing parameters for pulsed laser welding of dissimilar metal interconnects, Optics & Laser Technology, 159; 109022, 2023. doi.org/10.1016/j.optlastec.2022.109022

9-23 Hou Yi Chia, Wentao Yan, High-fidelity modeling of metal additive manufacturing, Additive Manufacturing Technology: Design, Optimization, and Modeling, Ed. Kun Zhou, 2023.

8-23 Akash Aggarwal, Yung C. Shin, Arvind Kumar, Investigation of the transient coupling between the dynamic laser beam absorptance and the melt pool – vapor depression morphology in laser powder bed fusion process, International Journal of Heat and Mass Transfer, 201.2; 123663, 2023. doi.org/10.1016/j.ijheatmasstransfer.2022.123663

199-22 Md. Tusher Mollah, Raphaël Comminal, Marcin P. Serdeczny, David B. Pedersen, Jon Spangenberg, Numerical predictions of bottom layer stability in material extrusion additive manufacturing, JOM, 74; pp. 1096-1101, 2022. doi.org/10.1007/s11837-021-05035-9

198-22 Md. Tusher Mollah, Amirpasha Moetazedian, Andy Gleadall, Jiongyi Yan, Wayne Edgar Alphonso, Raphael Comminal, Berin Seta, Tony Lock, Jon Spangenberg, Investigation on corner precision at different corner angles in material extrusion additive manufacturing: An experimental and computational fluid dynamics analysis, Proceedings of the 33rd Annual Solid Freeform Fabrication Symposium, 2022.

197-22 Md. Tusher Mollah, Marcin P. Serdeczny, Raphaël Comminal, Berin Šeta, Marco Brander, David B. Pedersen, Jon Spangenberg, A numerical investigation of the inter-layer bond and surface roughness during the yield stress buildup in wet-on-wet material extrusion additive manufacturing, ASPE and euspen Summer Topical Meeting, 77, 2022.

182-22   Chan Kyu Kim, Dae-Won Cho, Seok Kim, Sang Woo Song, Kang Myung Seo, Young Tae Cho, High-throughput metal 3D printing pen enabled by a continuous molten droplet transfer, Advanced Science, 2205085, 2022. doi.org/10.1002/advs.202205085

180-22 Xu Kaikai, Gong Yadong, Zhang Qiang, Numerical simulation of dynamic analysis of molten pool in the process of direct energy deposition, The International Journal of Advanced Manufacturing Technology, 2022. doi.org/10.1007/s00170-022-10271-7

179-22 Yasuhiro Okamoto, Nozomi Taura, Akira Okada, Study on laser drilling process of solid metal on its liquid, International Journal of Electrical Machining, 27; 2022. doi.org/10.2526/ijem.27.35

175-22 Lu Min, Xhi Xiaojie, Lu Peipei, Wu Meiping, Forming quality and wettability of surface texture on CuSn10 fabricated by laser powder bed fusion, AIP Advances, 12.12; 125114, 2022. doi.org/10.1063/5.0122076

174-22 Thinus Van Rhijn, Willie Du Preez, Maina Maringa, Dean Kouprianoff, An investigation into the optimization of the selective laser melting process parameters for Ti6Al4V through numerical modelling, JOM, 2022. doi.org/10.1007/s11837-022-05608-2

171-22 Jonathan Yoshioka, Mohsen Eshraghi, Temporal evolution of temperature gradient and solidification rate in laser powder bed fusion additive manufacturing, Heat and Mass Transfer, 2022. doi.org/10.1007/s00231-022-03318-8

170-22 Subin Shrestha and Kevin Chou, Residual heat effect on the melt pool geometry during the laser powder bed fusion process, Journal of Manufacturing and Materials Processing, 6.6; 153, 2022. doi.org/10.3390/jmmp6060153

169-22 Aryan Aryan, Obinna Chukwubuzo, Desmond Bourgeois, Wei Zhang, Hardness prediction by incorporating heat transfer and molten pool fluid flow in a mult-pass, multi-layer weld for onsite repair of Grade 91 steel, U.S. Department of Energy Office of Scientific and Technical Information, DOE-OSU-0032067, 2022. doi.org/10.2172/1898594

158-22 Dafan Du, Lu Wang, Anping Dong, Wentao Yan, Guoliang Zhu, Baode Sun, Promoting the densification and grain refinement with assistance of static magnetic field in laser powder bed fusion, International Journal of Machine Tools and Manufacture, 183; 103965, 2022. doi.org/10.1016/j.ijmachtools.2022.103965

157-22 Han Chu, Jiang Ping, Geng Shaoning, Liu Kun, Nucleation mechanism in oscillating laser welds of 2024 aluminium alloy: A combined experimental and numerical study, Optics & Laser Technology, 158.A; 108812, 2022. doi.org/10.1016/j.optlastec.2022.108812

153-22 Zixiang Li, Yinan Cui, Baohua Chang, Guan Liu, Ze Pu, Haoyu Zhang, Zhiyue Liang, Changmeng Liu, Li Wang, Dong Du, Manipulating molten pool in in-situ additive manufacturing of Ti-22Al-25 Nb through alternating dual-electron beams, Additive Manufacturing, 60.A; 103230, 2022. doi.org/10.1016/j.addma.2022.103230

149-22   Qian Chen, Yao Fu, Albert C. To, Multiphysics modeling of particle spattering and induced defect formation mechanism in Inconel 718 laser powder bed fusion, The International Journal of Advanced Manufacturing Technology, 123; pp. 783-791, 2022. doi.org/10.1007/s00170-022-10201-7

146-22   Zixuan Wan, Hui-ping Wang, Jingjing Li, Baixuan Yang, Joshua Solomon, Blair Carlson, Effect of welding mode on remote laser stitch welding of zinc-coated steel with different sheet thickness combinations, Journal of Manufacturing Science and Engineering, MANU-21-1598, 2022. doi.org/10.1115/1.4055792

143-22   Du-Rim Eo, Seong-Gyu Chung, JeongHo Yang, Won Tae Cho, Sun-Hong Park, Jung-Wook Cho, Surface modification of high-Mn steel via laser-DED: Microstructural characterization and hot crack susceptibility of clad layer, Materials & Design, 223; 111188, 2022. doi.org/10.1016/j.matdes.2022.111188

142-22   Zichuan Fu, Xiangman Zhou, Bin Luo, Qihua Tian, Numerical simulation study of the effect of weld current on WAAM welding pool dynamic and weld bead morphology, International Conference on Mechanical Design and Simulation, Proceedings, 12261; 122614G, 2022. doi.org/10.1117/12.2639074

132-22   Yiyu Huang, Zhonghao Xie, Wenshu Li, Haoyu Chen, Bin Liu, Bingfeng Wang, Dynamic mechanical properties of the selective laser melting NiCrFeCoMo0.2 high entropy alloy and the microstructure of molten pool, Journal of Alloys and Compounds, 927; 167011, 2022. doi.org/10.1016/j.jallcom.2022.167011

126-22   Jingqi Zhang, Yingang Liu, Gang Sha, Shenbao Jin, Ziyong Hou, Mohamad Bayat, Nan Yang, Qiyang Tan, Yu Yin, Shiyang Liu, Jesper Henri Hattel, Matthew Dargusch, Xiaoxu Huang, Ming-Xing Zhang, Designing against phase and property heterogeneities in additively manufactured titanium alloys, Nature Communications, 13; 4660, 2022. doi.org/10.1038/s41467-022-32446-2

119-22   Xu Kaikai, Gong Yadong, Zhao Qiang, Numerical simulation on molten pool flow of Inconel718 alloy based on VOF during additive manufacturing, Materials Today Communications, 33; 104147, 2022. doi.org/10.1016/j.mtcomm.2022.104147

118-22   AmirPouya Hemmasian, Francis Ogoke, Parand Akbari, Jonathan Malen, Jack Beuth, Amir Barati Farimani, Surrogate modeling of melt pool thermal field using deep learning, SSRN, 2022. doi.org/10.2139/ssrn.4190835

117-22   Chiara Ransenigo, Marialaura Tocci, Filippo Palo, Paola Ginestra, Elisabetta Ceretti, Marcello Gelfi, Annalisa Pola, Evolution of melt pool and porosity during laser powder bed fusion of Ti6Al4V alloy: Numerical modelling and experimental validation, Lasers in Manufacturing and Materials Processing, 2022. doi.org/10.1007/s40516-022-00185-3

112-22   Chris Jasien, Alec Saville, Chandler Gus Becker, Jonah Klemm-Toole, Kamel Fezzaa, Tao Sun, Tresa Pollock, Amy J. Clarke, In situ x-ray radiography and computational modeling to predict grain morphology in β-titanium during simulated additive manufacturing, Metals, 12.7; 1217, 2022. doi.org/10.3390/met12071217

110-22   Haotian Zhou, Haijun Su, Yinuo Guo, Peixin Yang, Yuan Liu, Zhonglin Shen, Di Zhao, Haifang Liu, Taiwen Huang, Min Guo, Jun Zhang, Lin Liu, Hengzhi Fu, Formation and evolution mechanisms of pores in Inconel 718 during selective laser melting: Meso-scale modeling and experimental investigations, Journal of Manufacturing Processes, 81; pp. 202-213, 2022. doi.org/10.1016/j.jmapro.2022.06.072

109-22   Yufan Zhao, Huakang Bian, Hao Wang, Aoyagi Kenta, Yamanaka Kenta, Akihiko Chiba, Non-equilibrium solidification behavior associated with powder characteristics during electron beam additive manufacturing, Materials & Design, 221; 110915, 2022. doi.org/10.1016/j.matdes.2022.110915

107-22   Dan Lönn, David Spångberg, Study of process parameters in laser beam welding of copper hairpins, Thesis, University of Skövde, 2022.

106-22   Liping Guo, Hongze Wang, Qianglong Wei, Hanjie Liu, An Wang, Yi Wu, Haowei Wang, A comprehensive model to quantify the effects of additional nano-particles on the printability in laser powder bed fusion of aluminum alloy and composite, Additive Manufacturing, 58; 103011, 2022. doi.org/10.1016/j.addma.2022.103011

104-22   Hongjiang Pan, Thomas Dahmen, Mohamad Bayat, Kang Lin, Xiaodan Zhang, Independent effects of laser power and scanning speed on IN718’s precipitation and mechanical properties produced by LBPF plus heat treatment, Materials Science and Engineering: A, 849; 143530, 2022. doi.org/10.1016/j.msea.2022.143530

101-22   Yufan Zhao, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba, A survey on basic influencing factors of solidified grain morphology during electron beam melting, Materials & Design, 221; 110927, 2022. doi.org/10.1016/j.matdes.2022.110927

98-22   Jon Spangenberg, Wilson Ricardo Leal da Silva, Md. Tusher Mollah, Raphaël Comminal, Thomas Juul Andersen, Henrik Stang, Integrating reinforcement with 3D concrete printing: Experiments and numerical modelling, Third RILEM International Conference on Concrete and Digital Fabrication, Eds. Ana Blanco, Peter Kinnell, Richard Buswell, Sergio Cavalaro, pp. 379-384, 2022.

93-22   Minglei Qu, Qilin Guo, Luis I. Escano, Samuel J. Clark Kamel Fezzaa, Lianyi Chen, Mitigating keyhole pore formation by nanoparticles during laser powder bed fusion additive manufacturing, Additive Manufacturing Letters, 100068, 2022. doi.org/10.1016/j.addlet.2022.100068

86-22   Patiparn Ninpetch, Prasert Chalermkarnnon, Pruet Kowitwarangkul, Multiphysics simulation of thermal-fluid behavior in laser powder bed fusion of H13 steel: Influence of layer thickness and energy input, Metals and Materials International, 2022. doi.org/10.1007/s12540-022-01239-z

85-22   Merve Biyikli, Taner Karagoz, Metin Calli, Talha Muslim, A. Alper Ozalp, Ali Bayram, Single track geometry prediction of laser metal deposited 316L-Si via multi-physics modelling and regression analysis with experimental validation, Metals and Materials International, 2022. doi.org/10.1007/s12540-022-01243-3

76-22   Zhichao Yang, Shuhao Wang, Lida Zhu, Jinsheng Ning, Bo Xin, Yichao Dun, Wentao Yan, Manipulating molten pool dynamics during metal 3D printing by ultrasound, Applied Physics Reviews, 9; 021416, 2022. doi.org/10.1063/5.0082461

73-22   Yu Sun, Liqun Li, Yu Hao, Sanbao Lin, Xinhua Tang, Fenggui Lu, Numerical modeling on formation of periodic chain-like pores in high power laser welding of thick steel plate, Journal of Materials Processing Technology, 306; 117638, 2022. doi.org/10.1016/j.jmatprotec.2022.117638

67-22   Yu Hao, Hiu-Ping Wang, Yu Sun, Liqun Li, Yihan Wu, Fenggui Lu, The evaporation behavior of zince and its effect on spattering in laser overlap welding of galvanized steels, Journal of Materials Processing Technology, 306; 117625, 2022. doi.org/10.1016/j.jmatprotec.2022.117625

65-22   Yanhua Zhao, Chuanbin Du, Peifu Wang, Wei Meng, Changming Li, The mechanism of in-situ laser polishing and its effect on the surface quality of nickel-based alloy fabricated by selective laser melting, Metals, 12.5; 778, 2022. doi.org/10.3390/met12050778

58-22   W.E. Alphonso, M. Bayat, M. Baier, S. Carmignato, J.H. Hattel, Multi-physics numerical modelling of 316L Austenitic stainless steel in laser powder bed fusion process at meso-scale, 17th UK Heat Transfer Conference (UKHTC2021), Manchester, UK, April 4-6, 2022.

57-22   Brandon Hayes, Travis Hainsworth, Robert MacCurdy, Liquid-solid co-printing of multi-material 3D fluidic devices via material jetting, Additive Manufacturing, in press, 102785, 2022. doi.org/10.1016/j.addma.2022.102785

55-22   Xiang Wang, Lin-Jie Zhang, Jie Ning, Suck-joo Na, Fluid thermodynamic simulation of Ti-6Al-4V alloy in laser wire deposition, 3D Printing and Additive Manufacturing, 2022. doi.org/10.1089/3dp.2021.0159

54-22   Junhao Zhao, Binbin Wang, Tong Liu, Liangshu Luo, Yanan Wang, Xiaonan Zheng, Liang Wang, Yanqing Su, Jingjie Guo, Hengzhi Fu, Dayong Chen, Study of in situ formed quasicrystals in Al-Mn based alloys fabricated by SLM, Journal of Alloys and Compounds, 909; 164847, 2022. doi.org/10.1016/j.jallcom.2022.164847

48-22   Yueming Sun, Jianxing Ma, Fei Peng, Konstantin G. Kornev, Making droplets from highly viscous liquids by pushing a wire through a tube, Physics of Fluids, 34; 032119, 2022. doi.org/10.1063/5.0082003

46-22   H.Z. Lu, T. Chen, H. Liu, H. Wang, X. Luo, C.H. Song, Constructing function domains in NiTi shape memory alloys by additive manufacturing, Virtual and Physical Prototyping, 17.3; 2022. doi.org/10.1080/17452759.2022.2053821

42-22   Islam Hassan, P. Ravi Selvaganapathy, Microfluidic printheads for highly switchable multimaterial 3D printing of soft materials, Advanced Materials Technologies, 2101709, 2022. doi.org/10.1002/admt.202101709

41-22   Nan Yang, Youping Gong, Honghao Chen, Wenxin Li, Chuanping Zhou, Rougang Zhou, Huifeng Shao, Personalized artificial tibia bone structure design and processing based on laser powder bed fusion, Machines, 10.3; 205, 2022. doi.org/10.3390/machines10030205

31-22   Bo Shen, Raghav Gnanasambandam, Rongxuan Wang, Zhenyu (James) Kong, Multi-Task Gaussian process upper confidence bound for hyperparameter tuning and its application for simulation studies of additive manufacturing, IISE Transactions, 2022. doi.org/10.1080/24725854.2022.2039813

27-22   Lida Zhu, Shuhao Wang, Hao Lu, Dongxing Qi, Dan Wang, Zhichao Yang, Investigation on synergism between additive and subtractive manufacturing for curved thin-walled structure, Virtual and Physical Prototyping, 17.2; 2022. doi.org/10.1080/17452759.2022.2029009

24-22   Hoon Sohn, Peipei Liu, Hansol Yoon, Kiyoon Yi, Liu Yang, Sangjun Kim, Real-time porosity reduction during metal directed energy deposition using a pulse laser, Journal of Materials Science & Technology, 116; pp. 214-223. doi.org/10.1016/j.jmst.2021.12.013

18-22   Yaohong Xiao, Zixuan Wan, Pengwei Liu, Zhuo Wang, Jingjing Li, Lei Chen, Quantitative simulations of grain nucleation and growth at additively manufactured bimetallic interfaces of SS316L and IN625, Journal of Materials Processing Technology, 302; 117506, 2022. doi.org/10.1016/j.jmatprotec.2022.117506

06-22   Amal Charles, Mohamad Bayat, Ahmed Elkaseer, Lore Thijs, Jesper Henri Hattel, Steffen Scholz, Elucidation of dross formation in laser powder bed fusion at down-facing surfaces: Phenomenon-oriented multiphysics simulation and experimental validation, Additive Manufacturing, 50; 102551, 2022. doi.org/10.1016/j.addma.2021.102551

05-22   Feilong Ji, Xunpeng Qin, Zeqi Hu, Xiaochen Xiong, Mao Ni, Mengwu Wu, Influence of ultrasonic vibration on molten pool behavior and deposition layer forming morphology for wire and arc additive manufacturing, International Communications in Heat and Mass Transfer, 130; 105789, 2022. doi.org/10.1016/j.icheatmasstransfer.2021.105789

150-21   Daniel Knüttel, Stefano Baraldo, Anna Valente, Konrad Wegener, Emanuele Carpanzano, Model based learning for efficient modelling of heat transfer dynamics, Procedia CIRP, 102; pp. 252-257, 2021. doi.org/10.1016/j.procir.2021.09.043

149-21   T. van Rhijn, W. du Preez, M. Maringa, D. Kouprianoff, Towards predicting process parameters for selective laser melting of titanium alloys through the modelling of melt pool characteristics, Suid-Afrikaanse Tydskrif vir Natuurwetenskap en Tegnologie, 40.1; 2021. 

148-21   Qian Chen, Multiscale process modeling of residual deformation and defect formation for laser powder bed fusion additive manufacturing, Thesis, University of Pittsburgh, Pittsburgh, PA USA, 2021. 

147-21   Pareekshith Allu, Developing process parameters through CFD simulations, Lasers in Manufacturing Conference, 2021.

143-21   Asif Ur Rehman, Muhammad Arif Mahmood, Fatih Pitir, Metin Uymaz Salamci, Andrei C. Popescu, Ion N. Mihailescu, Spatter formation and splashing induced defects in laser-based powder bed fusion of AlSi10Mg alloy: A novel hydrodynamics modelling with empirical testing, Metals, 11.12; 2023, 2021. doi.org/10.3390/met11122023

142-21   Islam Hassan, Ponnambalam Ravi Selvaganapathy, A microfluidic printhead with integrated hybrid mixing by sequential injection for multimaterial 3D printing, Additive Manufacturing, 102559, 2021. doi.org/10.1016/j.addma.2021.102559

137-21   Ting-Yu Cheng, Ying-Chih Liao, Enhancing drop mixing in powder bed by alternative particle arrangements with contradictory hydrophilicity, Journal of the Taiwan Institute of Chemical Engineers, 104160, 2021. doi.org/10.1016/j.jtice.2021.104160

134-21   Asif Ur Rehman, Muhammad Arif Mahmood, Fatih Pitir, Metin Uymaz Salamci, Andrei C. Popescu, Ion N. Mihailescu, Keyhole formation by laser drilling in laser powder bed fusion of Ti6Al4V biomedical alloy: Mesoscopic computational fluid dynamics simulation versus mathematical modelling using empirical validation, Nanomaterials, 11.2; 3284, 2021. doi.org/10.3390/nano11123284

128-21   Sang-Woo Han, Won-Ik Cho, Lin-Jie Zhang, Suck-Joo Na, Coupled simulation of thermal-metallurgical-mechanical behavior in laser keyhole welding of AH36 steel, Materials & Design, 212; 110275, 2021. doi.org/10.1016/j.matdes.2021.110275

127-21   Jiankang Huang, Zhuoxuan Li, Shurong Yu, Xiaoquan Yu, Ding Fan, Real-time observation and numerical simulation of the molten pool flow and mass transfer behavior during wire arc additive manufacturing, Welding in the World, 2021. doi.org/10.1007/s40194-021-01214-z

123-21   Boxue Song, Tianbiao Yu, Xingyu Jiang, Wenchao Xi, Xiaoli Lin, Zhelun Ma, ZhaoWang, Development of the molten pool and solidification characterization in single bead multilayer direct energy deposition, Additive Manufacturing, 102479, 2021. doi.org/10.1016/j.addma.2021.102479

112-21   Kathryn Small, Ian D. McCue, Katrina Johnston, Ian Donaldson, Mitra L. Taheri, Precision modification of microstructure and properties through laser engraving, JOM, 2021. doi.org/10.1007/s11837-021-04959-6

111-21   Yongki Lee, Jason Cheon, Byung-Kwon Min, Cheolhee Kim, Modelling of fume particle behaviour and coupling glass contamination during vacuum laser beam welding, Science and Technology of Welding and Joining, 2021. doi.org/10.1080/13621718.2021.1990658

110-21   Menglin Liu, Hao Yi, Huajun Cao, Rufeng Huang, Le Jia, Heat accumulation effect in metal droplet-based 3D printing: Evolution mechanism and elimination strategy, Additive Manufacturing, 48.A; 102413, 2021. doi.org/10.1016/j.addma.2021.102413

108-21   Nozomi Taura, Akiya Mitsunobu, Tatsuhiko Sakai, Yasuhiro Okamoto, Akira Okada, Formation and its mechanism of high-speed micro-grooving on metal surface by angled CW laser irradiation, Journal of Laser Micro/Nanoengineering, 16.2, 2021. doi.org/10.2961/jlmn.2021.02.2006

105-21   Jon Spangenberg, Wilson Ricardo Leal da Silva, Raphaël Comminal, Md. Tusher Mollah, Thomas Juul Andersen, Henrik Stang, Numerical simulation of multi-layer 3D concrete printing, RILEM Technical Letters, 6; pp. 119-123, 2021. doi.org/10.21809/rilemtechlett.2021.142

104-21   Lin Chen, Chunming Wang, Gaoyang Mi, Xiong Zhang, Effects of laser oscillating frequency on energy distribution, molten pool morphology and grain structure of AA6061/AA5182 aluminum alloys lap welding, Journal of Materials Research and Technology, 15; pp. 3133-3148, 2021. doi.org/10.1016/j.jmrt.2021.09.141

101-21   R.J.M. Wolfs, T.A.M. Salet, N. Roussel, Filament geometry control in extrusion-based additive manufacturing of concrete: The good, the bad and the ugly, Cement and Concrete Research, 150; 106615, 2021. doi.org/10.1016/j.cemconres.2021.106615

89-21   Wenlin Ye, Jin Bao, Jie Lei, Yichang Huang, Zhihao Li, Peisheng Li, Ying Zhang, Multiphysics modeling of thermal behavior of commercial pure titanium powder during selective laser melting, Metals and Materials International, 2021. doi.org/10.1007/s12540-021-01019-1

81-21   Lin Chen, Gaoyang Mi, Xiong Zhang, Chunming Wang, Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding, Journals of Materials Processing Technology, 298; 117314, 2021. doi.org/10.1016/j.jmatprotec.2021.117314

77-21   Yujie Cui, Yufan Zhao, Haruko Numata, Kenta Yamanaka, Huakang Bian, Kenta Aoyagi, Akihiko Chiba, Effects of process parameters and cooling gas on powder formation during the plasma rotating electrode process, Powder Technology, 393; pp. 301-311, 2021. doi.org/10.1016/j.powtec.2021.07.062

76-21   Md Tusher Mollah, Raphaël Comminal, Marcin P. Serdeczny, David B. Pedersen, Jon Spangenberg, Stability and deformations of deposited layers in material extrusion additive manufacturing, Additive Manufacturing, 46; 102193, 2021. doi.org/10.1016/j.addma.2021.102193

72-21   S. Sabooni, A. Chabok, S.C. Feng, H. Blaauw, T.C. Pijper, H.J. Yang, Y.T. Pei, Laser powder bed fusion of 17–4 PH stainless steel: A comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties, Additive Manufacturing, 46; 102176, 2021. doi.org/10.1016/j.addma.2021.102176

71-21   Yu Hao, Nannan Chena, Hui-Ping Wang, Blair E. Carlson, Fenggui Lu, Effect of zinc vapor forces on spattering in partial penetration laser welding of zinc-coated steels, Journal of Materials Processing Technology, 298; 117282, 2021. doi.org/10.1016/j.jmatprotec.2021.117282

67-21   Lu Wang, Wentao Yan, Thermoelectric magnetohydrodynamic model for laser-based metal additive manufacturing, Physical Review Applied, 15.6; 064051, 2021. doi.org/10.1103/PhysRevApplied.15.064051

61-21   Ian D. McCue, Gianna M. Valentino, Douglas B. Trigg, Andrew M. Lennon, Chuck E. Hebert, Drew P. Seker, Salahudin M. Nimer, James P. Mastrandrea, Morgana M. Trexler, Steven M. Storck, Controlled shape-morphing metallic components for deployable structures, Materials & Design, 208; 109935, 2021. doi.org/10.1016/j.matdes.2021.109935

60-21   Mahyar Khorasani, AmirHossein Ghasemi, Martin Leary, William O’Neil, Ian Gibson, Laura Cordova, Bernard Rolfe, Numerical and analytical investigation on meltpool temperature of laser-based powder bed fusion of IN718, International Journal of Heat and Mass Transfer, 177; 121477, 2021. doi.org/10.1016/j.ijheatmasstransfer.2021.121477

57-21   Dae-Won Cho, Yeong-Do Park, Muralimohan Cheepu, Numerical simulation of slag movement from Marangoni flow for GMAW with computational fluid dynamics, International Communications in Heat and Mass Transfer, 125; 105243, 2021. doi.org/10.1016/j.icheatmasstransfer.2021.105243

55-21   Won-Sang Shin, Dae-Won Cho, Donghyuck Jung, Heeshin Kang, Jeng O Kim, Yoon-Jun Kim, Changkyoo Park, Investigation on laser welding of Al ribbon to Cu sheet: Weldability, microstructure and mechanical and electrical properties, Metals, 11.5; 831, 2021. doi.org/10.3390/met11050831

50-21   Mohamad Bayat, Venkata K. Nadimpalli, Francesco G. Biondani, Sina Jafarzadeh, Jesper Thorborg, Niels S. Tiedje, Giuliano Bissacco, David B. Pedersen, Jesper H. Hattel, On the role of the powder stream on the heat and fluid flow conditions during directed energy deposition of maraging steel—Multiphysics modeling and experimental validation, Additive Manufacturing, 43;102021, 2021. doi.org/10.1016/j.addma.2021.102021

47-21   Subin Shrestha, Kevin Chou, An investigation into melting modes in selective laser melting of Inconel 625 powder: single track geometry and porosity, The International Journal of Advanced Manufacturing Technology, 2021. doi.org/10.1007/s00170-021-07105-3

34-21   Haokun Sun, Xin Chu, Cheng Luo, Haoxiu Chen, Zhiying Liu, Yansong Zhang, Yu Zou, Selective laser melting for joining dissimilar materials: Investigations ofiInterfacial characteristics and in situ alloying, Metallurgical and Materials Transactions A, 52; pp. 1540-1550, 2021. doi.org/10.1007/s11661-021-06178-9

32-21   Shanshan Zhang, Subin Shrestha, Kevin Chou, On mesoscopic surface formation in metal laser powder-bed fusion process, Supplimental Proceedings, TMS 150th Annual Meeting & Exhibition (Virtual), pp. 149-161, 2021. doi.org/10.1007/978-3-030-65261-6_14

22-21   Patiparn Ninpetch, Pruet Kowitwarangkul, Sitthipong Mahathanabodee, Prasert Chalermkarnnon, Phadungsak Rattanadecho, Computational investigation of thermal behavior and molten metal flow with moving laser heat source for selective laser melting process, Case Studies in Thermal Engineering, 24; 100860, 2021. doi.org/10.1016/j.csite.2021.100860

19-21   M.B. Abrami, C. Ransenigo, M. Tocci, A. Pola, M. Obeidi, D. Brabazon, Numerical simulation of laser powder bed fusion processes, La Metallurgia Italiana, February; pp. 81-89, 2021.

16-21   Wenjun Ge, Jerry Y.H. Fuh, Suck Joo Na, Numerical modelling of keyhole formation in selective laser melting of Ti6Al4V, Journal of Manufacturing Processes, 62; pp. 646-654, 2021. doi.org/10.1016/j.jmapro.2021.01.005

11-21   Mohamad Bayat, Venkata K. Nadimpalli, David B. Pedersen, Jesper H. Hattel, A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys, International Journal of Heat and Mass Transfer, 166; 120766, 2021. doi.org/10.1016/j.ijheatmasstransfer.2020.120766

10-21   Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba, Thermal properties of powder beds in energy absorption and heat transfer during additive manufacturing with electron beam, Powder Technology, 381; pp. 44-54, 2021. doi.org/10.1016/j.powtec.2020.11.082

9-21   Subin Shrestha, Kevin Chou, A study of transient and steady-state regions from single-track deposition in laser powder bed fusion, Journal of Manufacturing Processes, 61; pp. 226-235, 2021. doi.org/10.1016/j.jmapro.2020.11.023

6-21   Qian Chen, Yunhao Zhao, Seth Strayer, Yufan Zhao, Kenta Aoyagi, Yuichiro Koizumi, Akihiko Chiba, Wei Xiong, Albert C. To, Elucidating the effect of preheating temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment, Additive Manufacturing, 37; 101642, 2021. doi.org/10.1016/j.addma.2020.101642

04-21   Won-Ik Cho, Peer Woizeschke, Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding, International Journal of Heat and Mass Transfer, 164; 120623, 2021. doi.org/10.1016/j.ijheatmasstransfer.2020.120623

128-20   Mahmood Al Bashir, Rajeev Nair, Martina M. Sanchez, Anil Mahapatro, Improving fluid retention properties of 316L stainless steel using nanosecond pulsed laser surface texturing, Journal of Laser Applications, 32.4, 2020. doi.org/10.2351/7.0000199

127-20   Eric Riedel, Niklas Bergedieck, Stefan Scharf, CFD simulation based investigation of cavitation cynamics during high intensity ultrasonic treatment of A356, Metals, 10.11; 1529, 2020. doi.org/10.3390/met10111529

126-20   Benjamin Himmel, Material jetting of aluminium: Analysis of a novel additive manufacturing process, Thesis, Technical University of Munich, Munich, Germany, 2020. 

121-20   Yufan Zhao, Yujie Cui, Haruko Numata, Huakang Bian, Kimio Wako, Kenta Yamanaka, Kenta Aoyagi, Akihiko Chiba, Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process, Scientific Reports, 10; 18446, 2020. doi.org/10.1038/s41598-020-75503-w

116-20   Raphael Comminal, Wilson Ricardo Leal da Silva, Thomas Juul Andersen, Henrik Stang, Jon Spangenberg, Modelling of 3D concrete printing based on computational fluid dynamics, Cement and Concrete Research, 138; 106256, 2020. doi.org/10.1016/j.cemconres.2020.106256

112-20   Peng Liu, Lijin Huan, Yu Gan, Yuyu Lei, Effect of plate thickness on weld pool dynamics and keyhole-induced porosity formation in laser welding of Al alloy, The International Journal of Advanced Manufacturing Technology, 111; pp. 735-747, 2020. doi.org/10.1007/s00170-020-05818-5

108-20   Fan Chen, Wentao Yan, High-fidelity modelling of thermal stress for additive manufacturing by linking thermal-fluid and mechanical models, Materials & Design, 196; 109185, 2020. doi.org/10.1016/j.matdes.2020.109185

104-20   Yunfu Tian, Lijun Yang, Dejin Zhao, Yiming Huang, Jiajing Pan, Numerical analysis of powder bed generation and single track forming for selective laser melting of SS316L stainless steel, Journal of Manufacturing Processes, 58; pp. 964-974, 2020. doi.org/10.1016/j.jmapro.2020.09.002

100-20   Raphaël Comminal, Sina Jafarzadeh, Marcin Serdeczny, Jon Spangenberg, Estimations of interlayer contacts in extrusion additive manufacturing using a CFD model, International Conference on Additive Manufacturing in Products and Applications (AMPA), Zurich, Switzerland, September 1-3: Industrializing Additive Manufacturing, pp. 241-250, 2020. doi.org/10.1007/978-3-030-54334-1_17

97-20   Paree Allu, CFD simulation for metal Additive Manufacturing: Applications in laser- and sinter-based processes, Metal AM, 6.4; pp. 151-158, 2020.

95-20   Yufan Zhao, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba, Role of operating and environmental conditions in determining molten pool dynamics during electron beam melting and selective laser melting, Additive Manufacturing, 36; 101559, 2020. doi.org/10.1016/j.addma.2020.101559

94-20   Yan Zeng, David Himmler, Peter Randelzhofer, Carolin Körner, Processing of in situ Al3Ti/Al composites by advanced high shear technology: influence of mixing speed, The International Journal of Advanced Manufacturing Technology, 110; pp. 1589-1599, 2020. doi.org/10.1007/s00170-020-05956-w

93-20   H. Hamed Zargari, K. Ito, M. Kumar, A. Sharma, Visualizing the vibration effect on the tandem-pulsed gas metal arc welding in the presence of surface tension active elements, International Journal of Heat and Mass Transfer, 161; 120310, 2020. doi.org/10.1016/j.ijheatmasstransfer.2020.120310

90-20   Guangxi Zhao, Jun Du, Zhengying Wei, Siyuan Xu, Ruwei Geng, Numerical analysis of aluminum alloy fused coating process, Journal of the Brazilian Society of Mechanical Science and Engineering, 42; 483, 2020. doi.org/10.1007/s40430-020-02569-y

85-20   Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, Investigation of metal mixing in laser keyhold welding of dissimilar metals, Materials & Design, 195; 109056, 2020. doi.org/10.1016/j.matdes.2020.109056

82-20   Pan Lu, Zhang Cheng-Lin, Wang Liang, Liu Tong, Liu Jiang-lin, Molten pool structure, temperature and velocity flow in selective laser melting AlCu5MnCdVA alloy, Materials Research Express, 7; 086516, 2020. doi.org/10.1088/2053-1591/abadcf

80-20   Yujie Cui, Yufan Zhao, Haruko Numata, Huakang Bian, Kimio Wako, Kento Yamanaka, Kenta Aoyagi, Chen Zhang, Akihiko Chiba, Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4 V alloy powder, Powder Technology, 376; pp. 363-372, 2020. doi.org/10.1016/j.powtec.2020.08.027

78-20   F.Q. Liu, L. Wei, S.Q. Shi, H.L. Wei, On the varieties of build features during multi-layer laser directed energy deposition, Additive Manufacturing, 36; 101491, 2020. doi.org/10.1016/j.addma.2020.101491

75-20   Nannan Chen, Zixuan Wan, Hui-Ping Wang, Jingjing Li, Joshua Solomon, Blair E. Carlson, Effect of Al single bond Si coating on laser spot welding of press hardened steel and process improvement with annular stirring, Materials & Design, 195; 108986, 2020. doi.org/10.1016/j.matdes.2020.108986

72-20   Yujie Cui, Kenta Aoyagi, Yufan Zhao, Kenta Yamanaka, Yuichiro Hayasaka, Yuichiro Koizumi, Tadashi Fujieda, Akihiko Chiba, Manufacturing of a nanosized TiB strengthened Ti-based alloy via electron beam powder bed fusion, Additive Manufacturing, 36; 101472, 2020. doi.org/10.1016/j.addma.2020.101472

64-20   Dong-Rong Liu, Shuhao Wang, Wentao Yan, Grain structure evolution in transition-mode melting in direct energy deposition, Materials & Design, 194; 108919, 2020. doi.org/10.1016/j.matdes.2020.108919

61-20   Raphael Comminal, Wilson Ricardo Leal da Silva, Thomas Juul Andersen, Henrik Stang, Jon Spangenberg, Influence of processing parameters on the layer geometry in 3D concrete printing: Experiments and modelling, 2nd RILEM International Conference on Concrete and Digital Fabrication, RILEM Bookseries, 28; pp. 852-862, 2020. doi.org/10.1007/978-3-030-49916-7_83

60-20   Marcin P. Serdeczny, Raphaël Comminal, Md. Tusher Mollah, David B. Pedersen, Jon Spangenberg, Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing, Additive Manufacturing, 36; 101454, 2020. doi.org/10.1016/j.addma.2020.101454

58-20   H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy, Mechanistic models for additive manufacturing of metallic components, Progress in Materials Science, 116; 100703, 2020. doi.org/10.1016/j.pmatsci.2020.100703

55-20   Masoud Mohammadpour, Experimental study and numerical simulation of heat transfer and fluid flow in laser welded and brazed joints, Thesis, Southern Methodist University, Dallas, TX, US; Available in Mechanical Engineering Research Theses and Dissertations, 24, 2020.

48-20   Masoud Mohammadpour, Baixuan Yang, Hui-Ping Wang, John Forrest, Michael Poss, Blair Carlson, Radovan Kovacevica, Influence of laser beam inclination angle on galvanized steel laser braze quality, Optics and Laser Technology, 129; 106303, 2020. doi.org/10.1016/j.optlastec.2020.106303

34-20   Binqi Liu, Gang Fang, Liping Lei, Wei Liu, A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM), Applied Mathematical Modeling, 79; pp. 506-520, 2020. doi.org/10.1016/j.apm.2019.10.049

27-20   Xuesong Gao, Guilherme Abreu Farira, Wei Zhang and Kevin Wheeler, Numerical analysis of non-spherical particle effect on molten pool dynamics in laser-powder bed fusion additive manufacturing, Computational Materials Science, 179, art. no. 109648, 2020. doi.org/10.1016/j.commatsci.2020.109648

26-20   Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka and Akihiko Chiba, Isothermal γ → ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing, Journal of Materials Science & Technology, 50, pp. 162-170, 2020. doi.org/10.1016/j.jmst.2019.11.040

21-20   Won-Ik Cho and Peer Woizeschke, Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal, International Journal of Heat and Mass Transfer, 152, art. no. 119528, 2020. doi.org/10.1016/j.ijheatmasstransfer.2020.119528

06-20  Wei Xing, Di Ouyang, Zhen Chen and Lin Liu, Effect of energy density on defect evolution in 3D printed Zr-based metallic glasses by selective laser melting, Science China Physics, Mechanics & Astronomy, 63, art. no. 226111, 2020. doi.org/10.1007/s11433-019-1485-8

04-20   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

02-20   Dongsheng Wu, Shinichi Tashiro, Ziang Wu, Kazufumi Nomura, Xueming Hua, and Manabu Tanaka, Analysis of heat transfer and material flow in hybrid KPAW-GMAW process based on the novel three dimensional CFD simulation, International Journal of Heat and Mass Transfer, 147, art. no. 118921, 2020. doi.org/10.1016/j.ijheatmasstransfer.2019.118921

01-20   Xiang Huang, Siying Lin, Zhenxiang Bu, Xiaolong Lin, Weijin Yi, Zhihong Lin, Peiqin Xie, and Lingyun Wang, Research on nozzle and needle combination for high frequency piezostack-driven dispenser, International Journal of Adhesion and Adhesives, 96, 2020. doi.org/10.1016/j.ijadhadh.2019.102453

88-19   Bo Cheng and Charles Tuffile, Numerical study of porosity formation with implementation of laser multiple reflection in selective laser melting, Proceedings Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing, ASME 2019 14th International Manufacturing Science and Engineering Conference, Erie, Pennsylvania, USA, June 10-14, 2019. doi.org/10.1115/MSEC2019-2891

87-19   Shuhao Wang, Lida Zhu, Jerry Ying His Fuh, Haiquan Zhang, and Wentao Yan, Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition, Optics and Lasers in Engineering, 127:105950, 2019. doi.org/10.1016/j.optlaseng.2019.105950

78-19   Bo Cheng, Lukas Loeber, Hannes Willeck, Udo Hartel, and Charles Tuffile, Computational investigation of melt pool process dynamics and pore formation in laser powder bed fusion, Journal of Materials Engineering and Performance, 28:11, 6565-6578, 2019. doi.org/10.1007/s11665-019-04435-y

77-19   David Souders, Pareekshith Allu, Anurag Chandorkar, and Ruendy Castillo, Application of computational fluid dynamics in developing process parameters for additive manufacturing, Additive Manufacturing Journal, 9th International Conference on 3D Printing and Additive Manufacturing Technologies (AM 2019), Bangalore, India, September 7-9, 2019.

75-19   Raphaël Comminal, Marcin Piotr Serdeczny, Navid Ranjbar, Mehdi Mehrali, David Bue Pedersen, Henrik Stang, Jon Spangenberg, Modelling of material deposition in big area additive manufacturing and 3D concrete printing, Proceedings, Advancing Precision in Additive Manufacturing, Nantes, France, September 16-18, 2019.

73-19   Baohua Chang, Zhang Yuan, Hao Cheng, Haigang Li, Dong Du 1, and Jiguo Shan, A study on the influences of welding position on the keyhole and molten pool behavior in laser welding of a titanium alloy, Metals, 9:1082, 2019. doi.org/10.3390/met9101082

57-19     Shengjie Deng, Hui-Ping Wang, Fenggui Lu, Joshua Solomon, and Blair E. Carlson, Investigation of spatter occurrence in remote laser spiral welding of zinc-coated steels, International Journal of Heat and Mass Transfer, Vol. 140, pp. 269-280, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.06.009

53-19     Mohamad Bayat, Aditi Thanki, Sankhya Mohanty, Ann Witvrouw, Shoufeng Yang, Jesper Thorborg, Niels Skat Tieldje, and Jesper Henri Hattel, Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation, Additive Manufacturing, Vol. 30, 2019. doi.org/10.1016/j.addma.2019.100835

51-19     P. Ninpetch, P. Kowitwarangkul, S. Mahathanabodee, R. Tongsri, and P. Ratanadecho, Thermal and melting track simulations of laser powder bed fusion (L-PBF), International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi.org/10.1088/1757-899X/526/1/012030

46-19     Hongze Wang and Yu Zou, Microscale interaction between laser and metal powder in powder-bed additive manufacturing: Conduction mode versus keyhole mode, International Journal of Heat and Mass Transfer, Vol. 142, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.118473

45-19     Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, and Akihiko Chiba, Manipulating local heat accumulation towards controlled quality and microstructure of a Co-Cr-Mo alloy in powder bed fusion with electron beam, Materials Letters, Vol. 254, pp. 269-272, 2019. doi.org/10.1016/j.matlet.2019.07.078

44-19     Guoxiang Xu, Lin Li, Houxiao Wang, Pengfei Li, Qinghu Guo, Qingxian Hu, and Baoshuai Du, Simulation and experimental studies of keyhole induced porosity in laser-MIG hybrid fillet welding of aluminum alloy in the horizontal position, Optics & Laser Technology, Vol. 119, 2019. doi.org/10.1016/j.optlastec.2019.105667

38-19     Subin Shrestha and Y. Kevin Chou, A numerical study on the keyhole formation during laser powder bed fusion process, Journal of Manufacturing Science and Engineering, Vol. 141, No. 10, 2019. doi.org/10.1115/1.4044100

34-19     Dae-Won Cho, Jin-Hyeong Park, and Hyeong-Soon Moon, A study on molten pool behavior in the one pulse one drop GMAW process using computational fluid dynamics, International Journal of Heat and Mass Transfer, Vol. 139, pp. 848-859, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.05.038

30-19     Mohamad Bayat, Sankhya Mohanty, and Jesper Henri Hattel, Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF, International Journal of Heat and Mass Transfer, Vol. 139, pp. 95-114, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.05.003

29-19     Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Daixiu Wei, Kenta Yamanaka, and Akihiko Chiba, Comprehensive study on mechanisms for grain morphology evolution and texture development in powder bed fusion with electron beam of Co–Cr–Mo alloy, Materialia, Vol. 6, 2019. doi.org/10.1016/j.mtla.2019.100346

28-19     Pareekshith Allu, Computational fluid dynamics modeling in additive manufacturing processes, The Minerals, Metals & Materials Society (TMS) 148th Annual Meeting & Exhibition, San Antonio, Texas, USA, March 10-14, 2019.

24-19     Simulation Software: Use, Advantages & Limitations, The Additive Manufacturing and Welding Magazine, Vol. 2, No. 2, 2019

22-19     Hunchul Jeong, Kyungbae Park, Sungjin Baek, and Jungho Cho, Thermal efficiency decision of variable polarity aluminum arc welding through molten pool analysis, International Journal of Heat and Mass Transfer, Vol. 138, pp. 729-737, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.04.089

07-19   Guangxi Zhao, Jun Du, Zhengying Wei, Ruwei Geng and Siyuan Xu, Numerical analysis of arc driving forces and temperature distribution in pulsed TIG welding, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 41, No. 60, 2019. doi.org/10.1007/s40430-018-1563-0

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

03-19   Dongsheng Wu, Anh Van Nguyen, Shinichi Tashiro, Xueming Hua and Manabu Tanaka, Elucidation of the weld pool convection and keyhole formation mechanism in the keyhold plasma arc welding, International Journal of Heat and Mass Transfer, Vol. 131, pp. 920-931, 2019. doi.org/10.1016/j.ijheatmasstransfer.2018.11.108

97-18   Wentao Yan, Ya Qian, Wenjun Ge, Stephen Lin, Wing Kam Liu, Feng Lin, Gregory J. Wagner, Meso-scale modeling of multiple-layer fabrication process in Selective Electron Beam Melting: Inter-layer/track voids formation, Materials & Design, 2018. doi.org/10.1016/j.matdes.2017.12.031

84-18   Bo Cheng, Xiaobai Li, Charles Tuffile, Alexander Ilin, Hannes Willeck and Udo Hartel, Multi-physics modeling of single track scanning in selective laser melting: Powder compaction effect, Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, pp. 1887-1902, 2018.

81-18 Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Daixiu Wei, Kenta Yamanaka and Akihiko Chiba, Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy, Additive Manufacturing, Vol. 26, pp. 202-214, 2019. doi.org/10.1016/j.addma.2018.12.002

77-18   Jun Du and Zhengying Wei, Numerical investigation of thermocapillary-induced deposited shape in fused-coating additive manufacturing process of aluminum alloy, Journal of Physics Communications, Vol. 2, No. 11, 2018. doi.org/10.1088/2399-6528/aaedc7

76-18   Yu Xiang, Shuzhe Zhang, Zhengying We, Junfeng Li, Pei Wei, Zhen Chen, Lixiang Yang and Lihao Jiang, Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V, Applied Physics A, 124:685, 2018. doi.org/10.1007/s00339-018-2056-9

74-18   Paree Allu, CFD simulations for laser welding of Al Alloys, Proceedings, Die Casting Congress & Exposition, Indianapolis, IN, October 15-17, 2018.

72-18   Hunchul Jeong, Kyungbae Park, Sungjin Baek, Dong-Yoon Kim, Moon-Jin Kang and Jungho Cho, Three-dimensional numerical analysis of weld pool in GMAW with fillet joint, International Journal of Precision Engineering and Manufacturing, Vol. 19, No. 8, pp. 1171-1177, 2018. doi.org/10.1007/s12541-018-0138-4

60-18   R.W. Geng, J. Du, Z.Y. Wei and G.X. Zhao, An adaptive-domain-growth method for phase field simulation of dendrite growth in arc preheated fused-coating additive manufacturing, IOP Conference Series: Journal of Physics: Conference Series 1063, 012077, 2018. doi.org/10.1088/1742-6596/1063/1/012077

59-18   Guangxi Zhao, Jun Du, Zhengying Wei, Ruwei Geng and Siyuan Xu, Coupling analysis of molten pool during fused coating process with arc preheating, IOP Conference Series: Journal of Physics: Conference Series 1063, 012076, 2018. doi.org/10.1088/1742-6596/1063/1/012076 (Available at http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012076/pdf and in shared drive)

58-18   Siyuan Xu, Zhengying Wei, Jun Du, Guangxi Zhao and Wei Liu, Numerical simulation and analysis of metal fused coating forming, IOP Conference Series: Journal of Physics: Conference Series 1063, 012075, 2018. doi.org/10.1088/1742-6596/1063/1/012075

55-18   Jason Cheon, Jin-Young Yoon, Cheolhee Kim and Suck-Joo Na, A study on transient flow characteristic in friction stir welding with realtime interface tracking by direct surface calculation, Journal of Materials Processing Tech., vol. 255, pp. 621-634, 2018.

54-18   V. Sukhotskiy, P. Vishnoi, I. H. Karampelas, S. Vader, Z. Vader, and E. P. Furlani, Magnetohydrodynamic drop-on-demand liquid metal additive manufacturing: System overview and modeling, Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer, Niagara Falls, Canada, June 7 – 9, 2018; Paper no. 155, 2018. doi.org/10.11159/ffhmt18.155

52-18   Michael Hilbinger, Claudia Stadelmann, Matthias List and Robert F. Singer, Temconex® – Kontinuierliche Pulverextrusion: Verbessertes Verständnis mit Hilfe der numerischen Simulation, Hochleistungsmetalle und Prozesse für den Leichtbau der Zukunft, Tagungsband 10. Ranshofener Leichtmetalltage, 13-14 Juni 2018, Linz, pp. 175-186, 2018.

38-18   Zhen Chen, Yu Xiang, Zhengying Wei, Pei Wei, Bingheng Lu, Lijuan Zhang and Jun Du, Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification, Applied Physics A, vol. 124, pp. 313, 2018. doi.org/10.1007/s00339-018-1737-8

19-18   Chenxiao Zhu, Jason Cheon, Xinhua Tang, Suck-Joo Na, and Haichao Cui, Molten pool behaviors and their influences on welding defects in narrow gap GMAW of 5083 Al-alloy, International Journal of Heat and Mass Transfer, vol. 126:A, pp.1206-1221, 2018. doi.org/10.1016/j.ijheatmasstransfer.2018.05.132

16-18   P. Schneider, V. Sukhotskiy, T. Siskar, L. Christie and I.H. Karampelas, Additive Manufacturing of Microfluidic Components via Wax Extrusion, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 162 – 165, 2018.

09-18   The Furlani Research Group, Magnetohydrodynamic Liquid Metal 3D Printing, Department of Chemical and Biological Engineering, © University at Buffalo, May 2018.

08-18   Benjamin Himmel, Dominik Rumschöttel and Wolfram Volk, Thermal process simulation of droplet based metal printing with aluminium, Production Engineering, March 2018 © German Academic Society for Production Engineering (WGP) 2018.

07-18   Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba and Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Tech. 254 (2018) 72–78.

60-17   Pei Wei, Zhengying Wei, Zhen Chen, Yuyang He and Jun Du, Thermal behavior in single track during selective laser melting of AlSi10Mg powder, Applied Physics A: Materials Science & Processing, 123:604, 2017. doi.org/10.1007/z00339-017-1194-9

51-17   Koichi Ishizaka, Keijiro Saitoh, Eisaku Ito, Masanori Yuri, and Junichiro Masada, Key Technologies for 1700°C Class Ultra High Temperature Gas Turbine, Mitsubishi Heavy Industries Technical Review, vol. 54, no. 3, 2017.

49-17   Yu-Che Wu, Weng-Sing Hwang, Cheng-Hung San, Chih-Hsiang Chang and Huey-Jiuan Lin, Parametric study of surface morphology for selective laser melting on Ti6Al4V powder bed with numerical and experimental methods, International Journal of Material Forming, © Springer-Verlag France SAS, part of Springer Nature 2017. doi.org/10.1007/s12289-017-1391-2.

37-17   V. Sukhotskiy, I. H. Karampelas, G. Garg, A. Verma, M. Tong, S. Vader, Z. Vader, and E. P. Furlani, Magnetohydrodynamic Drop-on-Demand Liquid Metal 3D Printing, Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

15-17   I.H. Karampelas, S. Vader, Z. Vader, V. Sukhotskiy, A. Verma, G. Garg, M. Tong and E.P. Furlani, Drop-on-Demand 3D Metal Printing, Informatics, Electronics and Microsystems TechConnect Briefs 2017, Vol. 4

14-17   Jason Cheon and Suck-Joo Na, Prediction of welding residual stress with real-time phase transformation by CFD thermal analysis, International Journal of Mechanical Sciences 131–132 (2017) 37–51.

91-16   Y. S. Lee and D. F. Farson, Surface tension-powered build dimension control in laser additive manufacturing process, Int J Adv Manuf Technol (2016) 85:1035–1044, doi.org/10.1007/s00170-015-7974-5.

84-16   Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E. Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer 108 (2017) 244–256, Available online December 2016.

68-16   Dongsheng Wu, Xueming Hua, Dingjian Ye and Fang Li, Understanding of humping formation and suppression mechanisms using the numerical simulation, International Journal of Heat and Mass Transfer, Volume 104, January 2017, Pages 634–643, Published online 2016.

39-16   Chien-Hsun Wang, Ho-Lin Tsai, Yu-Che Wu and Weng-Sing Hwang, Investigation of molten metal droplet deposition and solidification for 3D printing techniques, IOP Publishing, J. Micromech. Microeng. 26 (2016) 095012 (14pp), doi: 10.1088/0960-1317/26/9/095012, July 8, 2016

29-16   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Advances in Magnetohydrodynamic Liquid Metal Jet Printing, Nanotech 2016 Conference & Expo, May 22-25, Washington, DC.

26-16   Y.S. Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, S2214-8604(16)30087-2, doi.org/10.1016/j.addma.2016.05.003, ADDMA 86.

123-15   Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser welding repair for single crystal blades, Proceedings of International Gas Turbine Congress, pp. 1354-1358, 2015.

122-15   Y.S. Lee, W. Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, Proceedings, 26th Solid Freeform Fabrication Symposium, Austin, Texas, 2015. 

116-15   Yousub Lee, Simulation of Laser Additive Manufacturing and its Applications, Ph.D. Thesis: Graduate Program in Welding Engineering, The Ohio State University, 2015, Copyright by Yousub Lee 2015

103-15   Ligang Wu, Jason Cheon, Degala Venkata Kiran, and Suck-Joo Na, CFD Simulations of GMA Welding of Horizontal Fillet Joints based on Coordinate Rotation of Arc Models, Journal of Materials Processing Technology, Available online December 29, 2015

96-15   Jason Cheon, Degala Venkata Kiran, and Suck-Joo Na, Thermal metallurgical analysis of GMA welded AH36 steel using CFD – FEM framework, Materials & Design, Volume 91, February 5 2016, Pages 230-241, published online November 2015

86-15   Yousub Lee and Dave F. Farson, Simulation of transport phenomena and melt pool shape for multiple layer additive manufacturing, J. Laser Appl. 28, 012006 (2016). doi: 10.2351/1.4935711, published online 2015.

63-15   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Magnetohydrodynamic Liquid Metal Jet Printing, TechConnect World Innovation Conference & Expo, Washington, D.C., June 14-17, 2015

46-15   Adwaith Gupta, 3D Printing Multi-Material, Single Printhead Simulation, Advanced Qualification of Additive Manufacturing Materials Workshop, July 20 – 21, 2015, Santa Fe, NM

25-15   Dae-Won Cho and Suck-Joo Na, Molten pool behaviors for second pass V-groove GMAW, International Journal of Heat and Mass Transfer 88 (2015) 945–956.

21-15   Jungho Cho, Dave F. Farson, Kendall J. Hollis and John O. Milewski, Numerical analysis of weld pool oscillation in laser welding, Journal of Mechanical Science and Technology 29 (4) (2015) 1715~1722, www.springerlink.com/content/1738-494x, doi.org/10.1007/s12206-015-0344-2.

82-14  Yousub Lee, Mark Nordin, Sudarsanam Suresh Babu, and Dave F. Farson, Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition, Metallurgical and Materials Transactions B, August 2014, Volume 45, Issue 4, pp 1520-1529

59-14   Y.S. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Influence of Fluid Convection on Weld Pool Formation in Laser Cladding, Welding Research/ August 2014, VOL. 93

18-14  L.J. Zhang, J.X. Zhang, A. Gumenyuk, M. Rethmeier, and S.J. Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology (2014), doi.org/10.1016/j.jmatprotec.2014.03.016.

36-13  Dae-Won Cho,Woo-Hyun Song, Min-Hyun Cho, and Suck-Joo Na, Analysis of Submerged Arc Welding Process by Three-Dimensional Computational Fluid Dynamics Simulations, Journal of Materials Processing Technology, 2013. doi.org/10.1016/j.jmatprotec.2013.06.017

12-13 D.W. Cho, S.J. Na, M.H. Cho, J.S. Lee, A study on V-groove GMAW for various welding positions, Journal of Materials Processing Technology, April 2013, doi.org/10.1016/j.jmatprotec.2013.02.015.

01-13  Dae-Won Cho & Suck-Joo Na & Min-Hyun Cho & Jong-Sub Lee, Simulations of weld pool dynamics in V-groove GTA and GMA welding, Weld World, doi.org/10.1007/s40194-012-0017-z, © International Institute of Welding 2013.

63-12  D.W. Cho, S.H. Lee, S.J. Na, Characterization of welding arc and weld pool formation in vacuum gas hollow tungsten arc welding, Journal of Materials Processing Technology, doi.org/10.1016/j.jmatprotec.2012.09.024, September 2012.

77-10  Lim, Y. C.; Yu, X.; Cho, J. H.; et al., Effect of magnetic stirring on grain structure refinement Part 1-Autogenous nickel alloy welds, Science and Technology of Welding and Joining, Volume: 15 Issue: 7, Pages: 583-589, doi.org/10.1179/136217110X12720264008277, October 2010

18-10 K Saida, H Ohnishi, K Nishimoto, Fluxless laser brazing of aluminium alloy to galvanized steel using a tandem beam–dissimilar laser brazing of aluminium alloy and steels, Welding International, 2010

58-09  Cho, Jung-Ho; Farson, Dave F.; Milewski, John O.; et al., Weld pool flows during initial stages of keyhole formation in laser welding, Journal of Physics D-Applied Physics, Volume: 42 Issue: 17 Article Number: 175502 ; doi.org/10.1088/0022-3727/42/17/175502, September 2009

57-09  Lim, Y. C.; Farson, D. F.; Cho, M. H.; et al., Stationary GMAW-P weld metal deposit spreading, Science and Technology of Welding and Joining, Volume: 14 Issue: 7 ;Pages: 626-635, doi.org/10.1179/136217109X441173, October 2009

1-09 J.-H. Cho and S.-J. Na, Three-Dimensional Analysis of Molten Pool in GMA-Laser Hybrid Welding, Welding Journal, February 2009, Vol. 88

52-07   Huey-Jiuan Lin and Wei-Kuo Chang, Design of a sheet forming apparatus for overflow fusion process by numerical simulation, Journal of Non-Crystalline Solids 353 (2007) 2817–2825.

50-07  Cho, Min Hyun; Farson, Dave F., Understanding bead hump formation in gas metal arc welding using a numerical simulation, Metallurgical and Mateials Transactions B-Process Metallurgy and Materials Processing Science, Volume: 38, Issue: 2, Pages: 305-319, doi.org/10.1007/s11663-007-9034-5, April 2007

49-07  Cho, M. H.; Farson, D. F., Simulation study of a hybrid process for the prevention of weld bead hump formation, Welding Journal Volume: 86, Issue: 9, Pages: 253S-262S, September 2007

48-07  Cho, M. H.; Farson, D. F.; Lim, Y. C.; et al., Hybrid laser/arc welding process for controlling bead profile, Science and Technology of Welding and Joining, Volume: 12 Issue: 8, Pages: 677-688, doi.org/10.1179/174329307X236878, November 2007

47-07   Min Hyun Cho, Dave F. Farson, Understanding Bead Hump Formation in Gas Metal Arc Welding Using a Numerical Simulation, Metallurgical and Materials Transactions B, Volume 38, Issue 2, pp 305-319, April 2007

36-06  Cho, M. H.; Lim, Y. C.; Farson, D. F., Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape, Welding Journal, Volume: 85 Issue: 12, Pages: 271S-283S, December 2006

회사 소개

소개

company_banner
  • 설립일 : 1997 년 11 월
  • 위치 : ( 본사 ) 서울시 금천구 가산동 우림라이온스밸리 B 동 301~2 호

사업 영역

당사는 엔지니어링 전문 기술서비스 업체로 다음과 같은 분야에서 탁월한 기술 서비스를 제공하고 있습니다 .

  • 국내유일의 수치해석 프로그램 (FLOW-3D) 공급 및 기술지원 – 한국총판
  • 수치해석 기술 컨설팅 전문 회사로 오랜 경험과 노하우를 바탕으로 차별화된 전문 기술 서비스 제공
  • 해양, 댐, 수처리, 주조, 철강, 조선, 항공/우주 분야, MEMS, 바이오 등 다양한 산업분야의 전문 해석
  • 용접 , Laser Welding, 3D 프린팅 해석
  • 첨단 제조 , 제철 , 우주항공 , 바이오 분야 수치해석컨설팅 및 연구용역
  • 엔지니어링 소프트웨어 개발
  • 사이펀 여수로 , 취수사이펀 시공설치

대표이사 인사말

(주)에스티아이C&D는 고품질 엔지니어링 서비스인 수치해석, 엔지니어링 S/W 개발 등 선진 기술개발에 힘쓰고 있습니다.

국내 최고의 기술력과 수치해석 경험을 통해 수처리분야의 댐해석, 강과 하천, 정수장, 하폐수처리장, 바이오 배양시설 및 첨단 제품 개발을 위한 자동차 부품개발, 전자, 주조, 철강 등 고난이도 수치해석 컨설팅 및 엔지니어링 소프트웨어를 개발 제공하고 있습니다.

고객의 성공이 최상의 가치임을 알기에 언제나 고객 여러분의 의견에 귀 기울이고 고객과 함께 성장하도록 최선을 다하겠습니다. 여러분의 관심과 조언을 부탁 드립니다.

대표이사 홍기원

주요 고객사

STI C&D 주요 고객사
STI C&D 주요 고객사

수치해석 (CFD) 분야 소개

FLOW-3D 공급 기술지원

  • FLOW-3D 의 국내 독점 공급 및 기술지원
  • FLOW-3D 의 정기 및 비정기 교육지원과 기술지원
  • 국내 대학 및 국가연구기관 교육 및 세미나

엔지니어링 수치해석 기술 컨설팅 용역

  • 홍수 시 하천 , 수리구조물의 3 차원적 영향검토
  • 댐 , 여수로 , 갑문 등 수리구조물의 다양한 설계안 3 차원 동수역학적 검토 및 최적 설계안 도출
  • 정수장 , 하수처리장 3 차원 유량분배 , 유동현상 등의 검토
  • 발전소 취배수로의 3 차원 유동해석을 통한 평면배치 및 적정규모 검토 , 증설 영향등 검토
  • 기계 , MEMS, 항공 , 조선 등 다양한 분야의 열전달 및 유체 유동에 대한 해석
  • 금형설계 및 주조품 결함예측에 관련된 Die Casting 분야 해석
  • 제강 , 연주 공정 , 열유동 , 응고해석 등 철강분야 3 차원 유동해석

오시는 길

제품 소개 요청

FLOW-3D 소개 요청

    회사/기관명* :

    제목* :

    성명* :

    이메일 주소* :

    연락 전화번호* :

    내용 :

    산업 분야별 해석 사례

    FLOW-3D 를 이용한 각각의 산업분야 적용 가능성을 살펴보십시오.
    경험이 풍부한 당사 FLOW-3D  Engineer가 귀하의 궁금하신 사항에 대해 언제든지 답변해 드립니다.

    주조분야
    • Gravity Pour 중력 주조
    • High Pressure Die Casting 고압 다이캐스팅
    • Tilt Casting 경동 주조
    • Centrifugal Casting 원심 주조
    • Investment Casting 정밀 주조
    • Vacuum Casting 진공 주조
    • Continuous Casting 연속 주조
    • Lost Foam Casting 소실 모형 주조
    • Fill and Defects Tracking 용탕 주입 및 결함 추적
    • Solidification and Shrinkage 응고 및 수축 해석
    • Thermal Stress Evolution and Deformation 열응력 및 변형 해석
    물 및 환경 응용 분야
    • Wastewater Treatment and Recovery 폐수 처리 및 복구
    • Pump Stations 펌프장
    • Dams, Weirs, Spillways 댐, 위어, 여수로
    • River Hydraulics 강 유역
    • Inundation & Flooding 침수 및 범람
    • Open Channel Flow 개수로 흐름
    • Sediment and Scour 퇴적 및 세굴(쇄굴)
    • Plumes, Hydraulic Zones of Influence 기둥, 수리 영향 구역
    • Coastal and Critical Infrastructure Wave Run-Up 연안 및 핵심 인프라 웨이브 런업

    에너지 분야
    • Fuel/cargo sloshing in oceangoing containers 해양 컨테이너 용 연료 /화물 슬로싱
    • Offshore platform wave effects 근해 플랫폼 파 영향
    • Separation devices undergoing 6 DOF motion 6 자유도 운동을하는 분리 장치
    • Wave energy converters 파동 에너지 변환기
    미세유체
    • Continuous-Flow 연속 흐름
    • Droplet, Digital 물방울, 디지털
    • Molecular Biology 분자 생물학
    • Opto-Microfluidics 광 마이크로 유체
    • Cell Behavior 세포 행동
    • Fuel Cells 연료 전지들
    용접 제조
    • Laser Welding 레이저 용접
    • Laser Metal Deposition 레이저 금속 증착
    • Additive Manufacturing 첨가제 제조
    • Multi-Layer Build 다중 레이어 빌드
    • Polymer 3D Printing 폴리머 3D 프린팅
    코팅 분야
    • Curtain Coating 커튼 코팅
    • Dip Coating 딥 코팅
    • Gravure Printing 그라비아 코팅
    • Roll Coating 롤 코팅
    • Slide Coating 슬라이드 코팅
    • Slot Coating 슬롯 코팅
    • Contact Insights 접촉면 분석
    연안 / 해양분야
    • Breakwater Structures 방파제 구조물
    • Offshore Structures 항만 연안 구조물
    • Ship Hydrodynamics 선박 유체 역학
    • Sloshing & Slamming 슬로싱 & 슬래 밍
    • Tsunamis 쓰나미 해석
    생명공학 분야
    • Active Mixing 액티브 믹싱
    • Chemical Reactions 화학 반응
    • Dissolution 용해
    • Drug Delivery 약물 전달
    • Drug Particles 마약 입자
    • Microdispensers 마이크로 디스펜서
    • Passive Mixing 패시브 믹싱
    • Piezo Driven Pumps 피에조 구동 펌프
    자동차 분야
    • Fuel Tanks 연료 탱크
    • Early Fuel Shut-Off 초기 연료 차단
    • Gear Interaction 기어 상호 작용
    • Filters 필터
    • Degas Bottles 병의 가스제거

    Fuel Tank Simulation
    Fuel Tank Simulation
    우주 항공 분야
    • Sloshing Dynamics 슬로싱 동역학
    • Electric Charge Distribution 전기 충전 배분
    • PMDs PMD

    aerospace-sloshing-simulation
    aerospace-sloshing-simulation