Fig. 1. Hydraulic jump flow structure.

Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump

낮은 레이놀즈 수 유압 점프의 수치 모델링에서 OpenFOAM 및 FLOW-3D의 성능 평가

ArnauBayona DanielValerob RafaelGarcía-Bartuala Francisco ​JoséVallés-Morána P. AmparoLópez-Jiméneza

Abstract

A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.

CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.

VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.

모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.

Keywords

CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number

References

Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a
review. J. Hydraulic Res. 35 (1), 81e98.
Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface
reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468.
Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647.
Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev.
Fluid Mech. 42 (2010), 111e133.
Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using

OpenFOAM. J. Hydroinformatics 17 (4), 662e678.
Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees
(Paris, France).
Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H.,
Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C.,
Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013.
Characterising performance of environmental models. Environ. Model. Softw.
40, 1e20.
Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop
Impact: Numerical Simulations and Theoretical Modeling. Imperial College of
Science, Technology and Medicine, UK.
Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s  eance. Le 
Remou et sur la Propagation des Ondes, 12, pp. 21e112.
Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD
problems. Elsevier Appl. Numer. Math. 26 (1), 135e151.
Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and
evaluation applied to computational fluid dynamics for environmental fluid
mechanics. Environ. Model. Softw. 33, 1e22.
Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ.
Fluid Mech. 11 (3), 263e288.
Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows
past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic
Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7.
Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined
three-hole conductivity probe for void fraction and velocity measurement in
airewater flows. Exp. fluids 48 (1), 17e31.
Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid
Mech. 286, 1e23.
Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de
translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759.
Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic
jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics
Division.
Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J.
heat fluid flow 18 (1), 45e54.
Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329.
Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment
Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress.
Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe
Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign.
Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in
hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752.
Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of
uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130
(7), 1e4.
Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909.
Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press.
Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/
Fluids 26.3(2007) 367e384.
Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In:
Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor
& Francis Group, ABalkema Book.
Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in
hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44.
Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a
computational fluid dynamics (CFD) model for air entrainment at spillway
aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838.
Can. J. Civ. Eng. 37 (1), 135e138.
Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended
load. Taylor & Francis J. Hydraulic Res. 32, 87e101.
Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144.
Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in
a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607.
Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis
J. Hydraulic Res. 51 (3), 223e243.
Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media.
Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface.
Environ. Model. Softw. 13 (3), 247e255.
Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New
York.
Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic
calculations. Elsevier J. Comput. Phys. 4 (1), 97e117.
De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic
jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173.
Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model 
for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int.
Conf. Hydroinformatics 1, 63e70.
Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep.
N. 81, 26429.
Fawer, C., 1937. Etude de quelquesecoulements permanents 
a filets courbes (‘Study
of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French).
Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on
air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3),
217e238.
Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a
hydraulic jump. J. Hydraulic Res. 48 (4), 504e508.
Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling
basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2),
101e113.
Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer.
Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic
Res. 27 (5), 565e583.
Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal
modelling code in fluvial environments. Environ. Model. Softw. 26 (12),
1685e1695.
Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1.
Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys. 39 (1), 201e225.
Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D.
Nonlinear Phenom. 12 (1), 396e407.
Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load
discharge formulations for transient flow in 1D and 2D situations.
J. Hydroinformatics 15 (4).
Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid
Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations.
Elsevier.
Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction
on flow and dispersion in urban street canyons using the RNG keε turbulence
model. Atmos. Environ. 38 (19), 3039e3048.
Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier
J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158.
Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of
low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520.
Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped
Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. :
http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February
27th 2014.
Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic
jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218.
Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and
transport in a hydraulic jump using two-fluid RANS and DES turbulence
models. Heat Mass Transf. 47 (8), 911e919.
Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity 
measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods
2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58.
Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming
flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385.
McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional
Gas Turbine Cascades.
Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of
Hydraulic Research. Taylor &Francis 37 (4), 541e558.
Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers.
Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and
turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159.
Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free
surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685.
Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of
bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154.
Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence
scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids
11, 1581e1595.
Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings
of the Fifth International Conference on Numerical Methods in Fluid Dynamics
June 28-July 2. 1976 Twente University, Enschede, pp. 330e340.
Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves:
laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97.
Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman
Institute for Fluid Dynamics.
Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial
neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70.
OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free
Software Foundation Inc.
Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water
resources technical publication. Eng. Monogr. 25.
Pope, S.B., 2000. Turbulent Flows. Cambridge university press.
Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of
hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215.
Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow.
Cambridge University Press.
Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91
(HY5), 107e132.
Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps.
Taylor & Francis J. Hydraulic Res. 10 (4), 409e430.
Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a
hydraulic jump (original title, in Spanish: “Simulacioncomputacional del
resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672.
Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966.
Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at
High Phase Fractions. Imperial College of Science, Technology and Medicine, UK.
Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec
application aux crues des riviereset a l’introduction de mareesdansleurslits.
Comptesrendus des seances de l’Academie des Sciences.
Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer.
Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat
Fluid Flow 21 (3), 252e263.
Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for
separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4.
Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study.
University of Stavanger, Norway.
Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces.
Imperial College of Science, Technology and Medicine, UK.
Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD
spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/
10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water.
Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in
moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR
World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands).
Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J.
Comput. Phys 23 (3), 263e275.
Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der
Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76.
Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase
flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16
(DOI: 10.1007/s00348-014-1847-9).
Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition
technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/
s00348-014-1775-8.
Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in
hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE)
HY.1943-7900.0001010. Paper 04015010, 10 pages.
Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic
jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The
Netherlands.
Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys.
12, 620e631.
Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA).
Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex
dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-

  1. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www.
    sciencedirect.com/science/article/pii/S0301932215000336.
    Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design
    Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands.
    Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of
    turbulence models for shear flows by a double expansion technique, Physics of
    Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520.
    Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics
    code. Tech. Rep. 44 (92), 35e35.
    Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps:
    free-surface fluctuation and integral turbulent scale measurements. Environ.
    fluid Mech. 13 (2), 189e204.
    Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble
    velocities in free hydraulic jumps for small to intermediate froude numbers.
    J. Hydraulic Eng.
Proceedings of the 6th International Conference on Civil, Offshore and Environmental Engineering (ICCOEE2020)

Numerical Simulation to Assess Floating Instability of Small Passenger Vehicle Under Sub-critical Flow

미 임계 흐름에서 소형 승용차의 부동 불안정성을 평가하기 위한 수치 시뮬레이션

Proceedings of the International Conference on Civil, Offshore and Environmental Engineering
ICCOEE 2021: ICCOEE2020 pp 258-265| Cite as

  • Ebrahim Hamid Hussein Al-Qadami
  • Zahiraniza Mustaffa
  • Eduardo Martínez-Gomariz
  • Khamaruzaman Wan Yusof
  • Abdurrasheed S. Abdurrasheed
  • Syed Muzzamil Hussain Shah

Conference paperFirst Online: 01 January 2021

  • 355Downloads

Part of the Lecture Notes in Civil Engineering book series (LNCE, volume 132)

Abstract

Parked vehicles can be directly affected by the floods and at a certain flow velocity and depth, vehicles can be easily swept away. Therefore, studying flooded vehicles stability limits is required. Herein, an attempt has been done to assess numerically the floating instability mode of a small passenger car with a scaled-down ratio of 1:10 using FLOW-3D. The 3D car model was placed inside a closed box and the six degrees of freedom numerical simulation was conducted. Later, numerical results validated experimentally and analytically. Results showed that buoyancy depths were 3.6 and 3.8 cm numerically and experimentally, respectively with a percentage difference of 5.4%. Further, the buoyancy forces were 8.95 N and 8.97 N numerically and analytically, respectively with a percentage difference of 0.2%. With this small difference, it can be concluded that the numerical modeling for such cases using FLOW-3D software can give an acceptable prediction on the vehicle stability limits.

주차된 차량은 홍수의 직접적인 영향을 받을 수 있으며 특정 유속과 깊이에서 차량을 쉽게 쓸어 버릴 수 있습니다. 따라서 침수 차량 안정성 한계를 연구해야 합니다. 여기에서는 FLOW-3D를 사용하여 축소 비율이 1:10 인 소형 승용차의 부동 불안정 모드를 수치 적으로 평가하려는 시도가 이루어졌습니다. 3D 자동차 모델은 닫힌 상자 안에 배치되었고 6 개의 자유도 수치 시뮬레이션이 수행되었습니다. 나중에 수치 결과는 실험적으로 그리고 분석적으로 검증되었습니다. 결과는 부력 깊이가 각각 5.4 %의 백분율 차이로 수치 및 실험적으로 3.6 및 3.8 cm임을 보여 주었다. 또한 부력은 수치적으로 8.95N과 분석적으로 8.97N이었고 백분율 차이는 0.2 %였다. 이 작은 차이로 인해 FLOW-3D 소프트웨어를 사용한 이러한 경우의 수치 모델링은 차량 안정성 한계에 대한 허용 가능한 예측을 제공 할 수 있다는 결론을 내릴 수 있습니다.

Keywords

Floating instability Small passenger car Numerical simulation FLOW-3D Subcritical flowe 

References

  1. 1.Hung, C.L.J., James, L.A., Carbone, G.J., Williams, J.M.: Impacts of combined land-use and climate change on streamflow in two nested catchments in the southeastern united states. Ecol. Eng. 143, 105665 (2020)CrossRefGoogle Scholar
  2. 2.Bui, D.T., Hoang, N.D., Martínez-Álvarez, F., Ngo, P.T.T., Hoa, P.V., Pham, T.D., Samui, P., Costache, R.: A novel deep learning neural network approach for predicting flash flood susceptibility: a case study at a high frequency tropical storm area. Sci. Total Environ. 701, 134413 (2020)CrossRefGoogle Scholar
  3. 3.Shah, S.M.H., Mustaffa, Z., Martínez-Gomariz, E., Yusof, K.W., Al-Qadami, E.H.H.: A review of safety guidelines for vehicles in floodwaters. Int. J. River Basin Manage. 1–17 (2019)Google Scholar
  4. 4.Shah, S.M.H., Mustaffa, Z., Yusof, K.W.: Disasters worldwide and floods in the malaysian region: a brief review. Indian J. Sci. Technol. 10(2), (2017)Google Scholar
  5. 5.Xia, J., Falconer, R.A., Lin, B., Tan, G.: Numerical assessment of flood hazard risk to people and vehicles in flash floods. Environ. Model Softw. 26(8), 987–998 (2011)CrossRefGoogle Scholar
  6. 6.Bonham, A.J., Hattersley, R.T.: Low level causeways. Technical report, University of New South Wales, Water Research Laboratory (1967)Google Scholar
  7. 7.Gordon, A.D., Stone, P.B.: Car stability on road causeways. Technical report No. 73/12, Institution (1973)Google Scholar
  8. 8.Keller, R.J., Mitsch, B.: Safety aspects of the design of roadways as floodways. Research Report No. 69, Urban Water Research Association of Australia, Melbourne (1993)Google Scholar
  9. 9.Shah, S.M.H., Mustaffa, Z., Martinez-Gomariz, E., Kim, D.K., Yusof, K.W.: Criterion of vehicle instability in floodwaters: past, present and future. Int. J. River Basin Manage. 1–23 (2019)Google Scholar
  10. 10.Teo, F.Y.: Study of the hydrodynamic processes Ofrivers and flood- plains with obstructions. Ph.D. thesis (2010). https://orca.cf.ac.uk/54161/1/U517543.pdf
  11. 11.Xia, J., Teo, F.Y., Lin, B., Falconer, R.A.: Formula of incipient velocity for flooded vehicles. Nat. Hazards 58(1), 1–14 (2011)CrossRefGoogle Scholar
  12. 12.Shu, C., Xia, J., Falconer, R.A., Lin, B.: Incipient velocity for partially submerged vehicles in floodwaters. J. Hydraul. Res. 49(6), 709–717 (2011)CrossRefGoogle Scholar
  13. 13.Toda, K., Ishigaki, T., Ozaki, T.: Experiments study on floating car in flooding. In: International Conference on Flood Resilience: Experiences in Asia and Europe (2013)Google Scholar
  14. 14.Xia, J., Falconer, R.A., Xiao, X., Wang, Y.: Criterion of vehicle stability in floodwaters based on theoretical and experimental studies. Nat. Hazards 70(2), 1619–1630 (2014)CrossRefGoogle Scholar
  15. 15.Martínez-Gomariz, E., Gómez, M., Russo, B., Djordjević, S.: A new experiments-based methodology to define the stability threshold for any vehicle exposed to flooding. Urban Water J. 14(9), 930–939 (2017)CrossRefGoogle Scholar
  16. 16.Smith, G.P., Modra, B.D., Tucker, T.A., Cox, R.J.: Vehicle stability testing for flood flows. Technical report 7, Water Research Laboratory, School of Civil and Environmental Engineering (2017)Google Scholar
  17. 17.Xia, J., Falconer, R.A., Lin, B., Tan, G.: Modelling flash flood risk in urban areas. In: Proceedings of the Institution of Civil Engineers-Water Management, vol. 164 (6), pp. 267–282. Thomas Telford Ltd, (2011)Google Scholar
  18. 18.Arrighi, C., Alcèrreca-Huerta, J.C., Oumeraci, H., Castelli, F.: Drag and lift contribution to the incipient motion of partly submerged flooded vehicles. J. Fluids Struct. 57, 170–184 (2015)CrossRefGoogle Scholar
  19. 19.Gómez, M., Martínez, E., Russo, B.: Experimental and numerical study of stability of vehicles exposed to flooding. In: Advances in Hydroinformatics, pp. 595–605. Springer, Singapore (2018). http://doi.org/10.1007/978-981-10-7218-5_42
  20. 20.Al-Qadami, E.H.H., Abdurrasheed, A.S.I., Mustaffa, Z., Yusof, K.W., Malek, M.A., Ab Ghani, A.: Numerical modelling of flow characteristics over sharp crested triangular hump. Results Eng. 4, 100052 (2019)Google Scholar
Figure 1. The push barge model in 1:20 geometrical scale during field experiments.

Experimental Method for the Measurements and Numerical Investigations of Force Generated on the Rotating Cylinder under Water Flow

by Teresa Abramowicz-Gerigk 1,*,Zbigniew Burciu 1,Jacek Jachowski 1,Oskar Kreft 2,Dawid Majewski 3,Barbara Stachurska 3,Wojciech Sulisz 3 andPiotr Szmytkiewicz 3

1Faculty of Navigation, Gdynia Maritime University, 81-225 Gdynia, Poland
2AREX Ltd., 81-212 Gdynia, Poland
3Institute of Hydro-Engineering of Polish Academy of Sciences, 80-328 Gdansk, Poland
*Author to whom correspondence should be addressed.
Academic Editor: Remco J. WiegerinkSensors202121(6), 2216; https://doi.org/10.3390/s21062216
Received: 20 January 2021 / Revised: 9 March 2021 / Accepted: 18 March 2021 / Published: 22 March 2021(This article belongs to the Special Issue Sensing in Flow Analysis)

Abstract

본 논문은 자유 표면 효과를 포함한 균일한 흐름 하에서 회전하는 실린더 (로터)에 발생하는 유체 역학적 힘의 실험 테스트 설정 및 측정 방법을 제시합니다. 실험 테스트 설정은 고급 유량 생성 및 측정 시스템을 갖춘 수로 탱크에 설치된 고유 한 구조였습니다.

테스트 설정은 로터 드라이브가 있는 베어링 장착 플랫폼과 유체 역학적 힘을 측정하는 센서로 구성되었습니다. 낮은 길이 대 직경 비율 실린더는 얕은 흘수 강 바지선의 선수 로터 방향타 모델로 선택되었습니다. 로터 역학은 최대 550rpm의 회전 속도와 최대 0.85m / s의 수류 속도에 대해 테스트되었습니다.

실린더의 낮은 종횡비와 자유 표면 효과는 생성 된 유체 역학적 힘에 영향을 미치는 현상에 상당한 영향을 미쳤습니다. 회전자 길이 대 직경 비율, 회전 속도 대 유속 비율 및 양력에 대한 레이놀즈 수의 영향을 분석했습니다. 실험 결과에 대한 계산 모델의 유효성이 표시됩니다. 결과는 시뮬레이션 및 실험에 대한 결과의 유사한 경향을 보여줍니다.

The paper presents the experimental test setup and measurement method of hydrodynamic force generated on the rotating cylinder (rotor) under uniform flow including the free surface effect. The experimental test setup was a unique construction installed in the flume tank equipped with advanced flow generating and measuring systems.

The test setup consisted of a bearing mounted platform with rotor drive and sensors measuring the hydrodynamic force. The low length to diameter ratio cylinders were selected as models of bow rotor rudders of a shallow draft river barge. The rotor dynamics was tested for the rotational speeds up to 550 rpm and water current velocity up to 0.85 m/s. The low aspect ratio of the cylinder and free surface effect had significant impacts on the phenomena influencing the generated hydrodynamic force. The effects of the rotor length to diameter ratio, rotational velocity to flow velocity ratio, and the Reynolds number on the lift force were analyzed. The validation of the computational model against experimental results is presented. The results show a similar trend of results for the simulation and experiment.

Keywords: rotating cylinderforce sensor with built-in amplifierstrain gauge sensorCFD analysis

Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 1. The push barge model in 1:20 geometrical scale during field experiments.
Figure 2. Scheme of the measurement area.
Figure 2. Scheme of the measurement area.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 3. The force measuring part of the experimental test setup: (a) side view: 1—bearing-mounted platform, 2—drive system, 3—cylinder, 4—support frame, 5—force sensors, and 6—adjusting screw; (b) top view.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 4. Location of the rotor, rotor drive, and supporting frame in the wave flume.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 5. Lift force obtained from the measurements in the wave flume for different flow velocities and cylinder diameters.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 6. Variation of the lift coefficient with rotation rate for various free stream velocities and various cylinder diameters—experimental results.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 7. Boundary conditions for rotor-generated flow field simulation—computing domain with free surface level.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 8. General view and the close-up of the rotor wall sector applied for the rotor simulation.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 9. Structured mesh used in FLOW-3D and the FAVORTM technique—the original shape of the rotor and the shape of the object after FAVOR discretization technique for 3 mesh densities.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 10. Parameter y+ for the studied turbulence models and meshes.
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 11. Results of numerical computations in time for the cylinder with D2 diameter at 500 rpm rotational speed and current speed V = 0.82 m/s using LES model in dependence of mesh density: (a) FX and (b) FY
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 12. Results of 3D flow simulation for V = 0.40 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 13. Results of 3D flow simulation for V = 0.50 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 14. Results of 3D flow simulation for V = 0.82 m/s: (a) perspective view of velocity field on the free surface, (b) top view of velocity field on the free surface, (c) velocity field in the horizontal plane at half-length section of the rotor, and (d) velocity field in the rotor symmetry plane.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 15. Flow chart of validation of the computational model against experimental results.
Figure 16. Measured (EXP) and computed (CFD) lift force values.
Figure 16. Measured (EXP) and computed (CFD) lift force values.

결론

결론은 다음과 같습니다.
계산 결과가 일반적으로 실험 데이터와 일치하는 경우 계산 결과는 검증 된 것으로 간주되며 추가 예측에 사용할 수 있습니다. 검증 실험을 통해 메쉬 밀도와 난류 모델을 결정할 수있었습니다.
작은 전류 속도 0.4m / s 및 0.5m / s에서 직경 D3의 로터에 대해 계산 된 양력 값은 회전 속도가 200rpm 이상일 때의 실험 값과 달랐습니다. 그 이유는 실험 중에 관찰 된 강한 진동과 수치 시뮬레이션에서 모델링되지 않은 유동 분리 때문이었습니다.
D2 직경을 가진 로터의 경우 작은 rpm에서 양력의 반대 부호가 관찰되었습니다. 이 현상은 시뮬레이션 중에 관찰되지 않았습니다.
제시된 실험 테스트 설정은 드라이브,지지 구조물 및 측정 장치에 손상을 주지 않고 진동을 포함한 모든 현상을 관찰 할 수 있도록 구성되었습니다. Wang et al. [14]는 동일한 α 값에서 실린더 종횡비가 증가함에 따라 와류 유발 진동이 증가하는 것을 관찰했습니다.
실험의 원활한 진행은 장치 손상 가능성과 함께 약 4의 α에 영향을 미쳤습니다. 본 연구에서는 α = 4.8에서 시작하는 가장 큰 직경의 실린더에서 가장 강한 진동이 관찰되었습니다.
제시된 연구는 로터 생성 흐름의 능동적 제어에 대한 추가 연구의 첫 번째 부분으로 유체 역학적 힘의 신뢰할 수 있는 실험적 예측 방법을 설명했습니다 [22]. , 바람, 파도 [23].
논문의 참신함은 저상 실린더에 대해 회 전자에서 생성 된 유체 역학적 힘을 모델링 할 수있는 가능성에 대한 조사입니다.
이 방법의 주요 장점은 자유 표면 효과 및 유동 유도 회 전자 진동과 관련된 현상을 포함하여 회 전자 생성 유동장 및 유체 역학적 힘을 관찰 할 수 있다는 것입니다. 제안 된 테스트 설정 구성은 유체 역학적 힘의 매개 변수 연구, 스케일 효과 조사 및 낮은 전류 속도와 큰 회전 속도에서 큰 불일치가 확인 된 CFD 시뮬레이션 모델의 검증에 사용될 것입니다.

References

  1. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. An Innovative Steering System for a River Push Barge Operated in Environmentally Sensitive Areas. Pol. Marit. Res. 201724, 27–34. [Google Scholar] [CrossRef]
  2. Abramowicz-Gerigk, T.; Burciu, Z.; Krata, P.; Jachowski, J. Steering system for a waterborne inland unit. Patent 420664, 2017. [Google Scholar]
  3. Abramowicz-Gerigk, T.; Burciu, Z.; Jachowski, J. Parametric study on the flow field generated by river barge bow steering systems. Sci. J. Marit. Univ. Szczec. 201960, 9–17. [Google Scholar]
  4. Gerigk, M.; Wójtowicz, S. An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle. TransnavInt. J. Mar. Navig. Saf. Sea Transp. 20159, 591–596. [Google Scholar] [CrossRef]
  5. Thouault, N.; Breitsamter, C.; Adams, N.A.; Seifert, J.; Badalamenti, C.; Prince, S.A. Numerical Analysis of a Rotating Cylinder with Spanwise Disks. AIAA J. 201250, 271–283. [Google Scholar] [CrossRef]
  6. Badr, H.M.; Coutanceau, M.; Dennis, S.C.R.; Menard, C. Unsteady flow past a rotating circular cylinder at Reynolds numbers 10 3 and 10 4. J. Fluid Mech. 1990220, 459. [Google Scholar] [CrossRef]
  7. Karabelas, S.; Koumroglou, B.; Argyropoulos, C.; Markatos, N. High Reynolds number turbulent flow past a rotating cylinder. Appl. Math. Model. 201236, 379–398. [Google Scholar] [CrossRef]
  8. Chen, W.; Rheem, C.-K. Experimental investigation of rotating cylinders in flow. J. Mar. Sci. Technol. 201924, 111–122. [Google Scholar] [CrossRef]
  9. Zhou, B.; Wang, X.; Guo, W.; Gho, W.M.; Tan, S.K. Experimental study on flow past a circular cylinder with rough surface. Ocean Eng. 2015109, 7–13. [Google Scholar] [CrossRef]
  10. Tokumaru, P.T.; Dimotakis, P.E. The lift of a cylinder executing rotary motions in a uniform flow. J. Fluid Mech. 1993255, 1–10. [Google Scholar] [CrossRef]
  11. Wong, K.W.L.; Zhao, J.; Jacono, D.L.; Thompson, M.C.; Sheridan, J. Experimental investigation of flow-induced vibration of a rotating circular cylinder. J. Fluid Mech. 2017829, 486–511. [Google Scholar] [CrossRef]
  12. Bourguet, R.; Jacono, D.L. Flow-induced vibrations of a rotating cylinder. J. Fluid Mech. 2014740, 342–380. [Google Scholar] [CrossRef]
  13. Carstensen, S.; Mandviwalla, X.; Vita, L.; Schmidt, P. Lift of a Rotating Circular Cylinder in Unsteady Flows. J. Ocean Wind Energy 20141, 41–49. Available online: http://www.isope.org/publications (accessed on 15 January 2021).
  14. Wang, W.; Wang, Y.; Zhao, D.; Pang, Y.; Guo, C.; Wang, Y. Numerical and Experimental Analysis of the Hydrodynamic Performance of a Three-Dimensional Finite-Length Rotating Cylinder. J. Mar. Sci. Appl. 202019, 388–397. [Google Scholar] [CrossRef]
  15. Mobini, K.; Niazi, M. Simulation of unsteady flow around a rotating circular cylinder at various Reynolds numbers. JMEUT 201746, 249–257. Available online: https://www.researchgate.net/publication/323447030_Simulation_of_Unsteady_Flow_Around_a_Rotating_Circular_Cylinder_at_Various_Reynolds_Numbers (accessed on 15 January 2021).
  16. Babarit, A.; Delvoye, S.; Arnal, V.; Davoust, L.; Wackers, J. Wave and Current Generation in Wave Flumes Using Axial-Flow Pumps. In Proceedings of the 36th International Conference on Ocean, Offshore and Artic Engineering (OMAE2017), Trondheim, Norway, 25–30 June 2017; pp. 1–10. [Google Scholar] [CrossRef]
  17. Nortek Manuals. The Comprehensive Manual for Velocimeters. 2018. Available online: https://support.nortekgroup.com/hc/en-us/articles/360029839351-The-Comprehensive-Manual-Velocimeters (accessed on 15 January 2021).
  18. Stachurska, B.; Majewski, D. Propagation of Surface waves under currents—Analysis of measurements in wave flume of IBW PAN. IMiG 20144, 280–290. [Google Scholar]
  19. Lohrmann, A.; Cabrera, R.; Kraus, N. Acoustic-Doppler Velocimeter (ADV) for laboratory use. In Fundamentals and Advancements in Hydraulic Measuremensts and Experimentation; Buffalo: New York, NY, USA, 1994. [Google Scholar]
  20. Stachurska, B.; Majewski, D. Experimental Measurements of Current Velocity in Wave Flume of IBW PAN; Internal Report; Institute of Hydro-Engineering of Polish Academy of Sciences: Gdańsk, Poland, 2013. (In Polish) [Google Scholar]
  21. FLOW-3D. Available online: https://www.flow3d.com/ (accessed on 15 January 2021).
  22. He, J.W.; Glowinski, R.; Metcalfe, R.; Nordlander, A.; Periaux, J. Active control and drag optimization for flow past a circular cylinder: Oscillatory cylinder rotation. J. Comput. Phys. 2000163, 83–117. [Google Scholar] [CrossRef]
  23. Lebkowski, A. Analysis of the Use of Electric Drive Systems for Crew Transfer Vessels Servicing Offshore Wind Farms. Energies 202013, 1466. [Google Scholar] [CrossRef]
The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

The simulation of droplet impact on the super-hydrophobic surface with micro-pillar arrays fabricated by laser irradiation and silanization processes

레이저 조사 및 silanization 공정으로 제작된 micro-pillar arrays를 사용하여 초 소수성 표면에 대한 액적 영향 시뮬레이션

ZhenyanXiaa YangZhaoa ZhenYangabc ChengjuanYangab LinanLia ShibinWanga MengWangab
aSchool of Mechanical Engineering, Tianjin University, Tianjin, 300054, China
bKey Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin, 300072, Chinac
School of Engineering, University of Warwick, Coventry, CV4 7AL, UK

Received 23 September 2020, Revised 17 November 2020, Accepted 26 November 2020, Available online 11 December 2020.

Abstract

Super-hydrophobicity is one of the significant natural phenomena, which has inspired researchers to fabricate artificial smart materials using advanced manufacturing techniques. In this study, a super-hydrophobic aluminum surface was prepared by nanosecond laser texturing and FAS modification in sequence. The surface wettability turned from original hydrophilicity to super-hydrophilicity immediately after laser treatment. Then it changed to super-hydrophobicity showing a WCA of 157.6 ± 1.2° with a SA of 1.7 ± 0.7° when the laser-induced rough surface being coated with a layer of FAS molecules. The transforming mechanism was further explored from physical and chemical aspects based on the analyses of surface morphology and surface chemistry. Besides, the motion process of droplet impacting super-hydrophobic surface was systematically analyzed via the optimization of simulation calculation grid and the simulation method of volume of fluid (VOF). Based on this simulation method, the morphological changes, the inside pressure distribution and velocity of the droplet were further investigated. And the motion mechanism of the droplet on super-hydrophobic surface was clearly revealed in this paper. The simulation results and the images captured by high-speed camera were highly consistent, which indicated that the computational fluid dynamics (CFD) is an effective method to predict the droplet motion on super- hydrophobic surfaces. This paper can provide an explicit guidance for the selection of suitable methods for functional surfaces with different requirements in the industry.

Korea Abstract

초 소수성은 연구원들이 첨단 제조 기술을 사용하여 인공 스마트 재료를 제작하도록 영감을 준 중요한 자연 현상 중 하나 입니다. 이 연구에서 초 소수성 알루미늄 표면은 나노초 레이저 텍스처링과 FAS 수정에 의해 순서대로 준비되었습니다.

레이저 처리 직후 표면 습윤성은 원래의 친수성에서 초 친수성으로 바뀌 었습니다. 그런 다음 레이저 유도 거친 표면을 FAS 분자 층으로 코팅했을 때 WCA가 157.6 ± 1.2 °이고 SA가 1.7 ± 0.7 ° 인 초 소수성으로 변경되었습니다.

변형 메커니즘은 표면 형태 및 표면 화학 분석을 기반으로 물리적 및 화학적 측면에서 추가로 탐구 되었습니다. 또한, 초 소수성 표면에 영향을 미치는 물방울의 운동 과정은 시뮬레이션 계산 그리드의 최적화와 유체 부피 (VOF) 시뮬레이션 방법을 통해 체계적으로 분석되었습니다.

이 시뮬레이션 방법을 바탕으로 형태학적 변화, 내부 압력 분포 및 액 적의 속도를 추가로 조사했습니다. 그리고 초 소수성 표면에 있는 물방울의 운동 메커니즘이 이 논문에서 분명하게 드러났습니다.

시뮬레이션 결과와 고속 카메라로 캡처한 이미지는 매우 일관적 이었습니다. 이는 전산 유체 역학 (CFD)이 초 소수성 표면에서 액적 움직임을 예측하는 효과적인 방법임을 나타냅니다.

이 백서는 업계의 다양한 요구 사항을 가진 기능 표면에 적합한 방법을 선택하기 위한 명시적인 지침을 제공 할 수 있습니다.

Keywords: Laser irradiation; Wettability; Droplet impact; Simulation; VOF

Introduction

서식지에 적응하기 위해 많은 자연 식물과 동물에서 특별한 습윤 표면이 진화되었습니다 [1-3]. 연잎은 먼지에 의한 오염으로부터 스스로를 보호하기 위해 우수한 자가 청소 특성을 나타냅니다 [4]. 사막 딱정벌레는 공기에서 물을 수확할 수 있는 기능적 표면 때문에 건조한 사막에서 생존 할 수 있습니다 [5].

자연 세계에서 영감을 받아 고체 기질의 표면 습윤성을 수정하는데 더 많은 관심이 집중되었습니다 [6-7]. 기능성 표면의 우수한 성능은 고유 한 표면 습윤성에 기인하며, 이는 고체 표면에서 액체의 확산 능력을 반영하는 중요한 특성 중 하나입니다 [8].

일반적으로 물 접촉각 (WCA) 값에 따라 90 °는 친수성과 소수성의 경계로 간주됩니다. WCA가 90 ° 이상인 소수성 표면, WCA가 90 ° 미만인 친수성 표면 [9 ]. 특히 고체 표면은 WCA가 10 ° 미만의 슬라이딩 각도 (SA)에서 150 °를 초과 할 때 특별한 초 소수성을 나타냅니다 [10-11].

<내용 중략> ……

 The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes
The Simulation of Droplet Impact on the Super-Hydrophobic Surface with Micro-Pillar Arrays Fabricated by Laser Irradiation and Silanization Processes

References

[1] H.W. Chen, P.F. Zhang, L.W. Zhang, Y. Jiang, H.L. Liu, D.Y. Zhang, Z.W. Han, L.
Jiang, Continuous directional water transport on the peristome surface of Nepenthes
alata, Nature 532 (2016) 85-89.
[2] Y. Liu, K.T. Zhang, W.G. Yao, J.A. Liu, Z.W. Han, L.Q. Ren, Bioinspired
structured superhydrophobic and superoleophilic stainless steel mesh for efficient oilwater separation, Colloids Surf., A 500 (2016) 54-63.
[3] Y.X. Liu, W.L. Liu, G.L. Wang, J.C. Hou, H. Kong, W.L. Wang, A facile one-step
approach to superhydrophilic silica film with hierarchical structure using
fluoroalkylsilane, Colloids Surf., A 539 (2018) 109-115.
[4] F.P. Wang, S. Li, L. Wang, Fabrication of artificial super-hydrophobic lotus-leaflike bamboo surfaces through soft lithography, Colloids Surf., A 513 (2017) 389-395.
[5] W. Huang, X.Y. Tang, Z. Qiu, W.X. Zhu, Y.G. Wang, Y.L. Zhu, Z.F. Xiao, H.G.
Wang, D.X. Liang, Jian, L. Y.J Xie, Cellulose-based Superhydrophobic Surface
Decorated with Functional Groups Showing Distinct Wetting Abilities to Manipulate
Water Harvesting, ACS Appl. Mater. Interfaces DOI: 10.1021/acsami.0c12504.
[6] M.Y. Zhang, L.J. Ma, Q. Wang, P. Hao, X. Zheng, Wettability behavior of
nanodroplets on copper surfaces with hierarchical nanostructures, Colloids Surf., A
604 (2020) 125291.
[7] A.F. Pan, W.J. Wang, X.S. Mei, K.D. Wang, X.B. Yang, Rutile TiO2 flocculent
ripples with high antireflectivity and superhydrophobicity on the surface of titanium
under 10 ns laser irradiation without focusing, Langmuir 33 (2017) 9530-9538.
[8] M. Li, X.H. Liu, N. Liu, Z.H. Guo, P.K. Singh, S.Y. Fu, Effect of surface
wettability on the antibacterial activity of nanocellulose-based material with
quaternary ammonium groups, Colloids Surf., A 554 (2018) 122-128.
[9] T.C. Chen, H.T. Liu, H.F. Yang, W. Yan, W. Zhu, H. Liu, Biomimetic fabrication
of robust self-assembly superhydrophobic surfaces with corrosion resistance
properties on stainless steel substrate, RSC Adv. 6 (2016) 43937-43949.
[10] P. Zhang, F.Y. Lv, A review of the recent advances in superhydrophobic surfaces
and the emerging energy-related applications, Energy 82 (2015) 1068-1087.
[11] Z. Yang, X.P. Liu, Y.L. Tian, Novel metal-organic super-hydrophobic surface
fabricated by nanosecond laser irradiation in solution, Colloids Surf., A 587 (2020)
124343.
[12] J.Y. Peng, X.J. Zhao, W.F. Wang, X. Gong, Durable Self-Cleaning Surfaces with
Superhydrophobic and Highly Oleophobic Properties, Langmuir, 35 (2019) 8404-
8412.
[13] Z. Yang, X.P. Liu, Y.L. Tian, A contrastive investigation on anticorrosive
performance of laser-induced super-hydrophobic and oil-infused slippery coatings,
Prog. Org. Coat. 138 (2020) 105313.
[14] J.L. Yong, F. Chen, Q. Yang, J.L. Huo, X. Hou, Superoleophobic Surfaces,
Chem. Soc. Rev. 46 (2017) 4168-4217.
[15] D.W. Li, H.Y. Wang, Y. Liu, D.S. Wei, Z.X. Zhao, Large-Scale Fabrication of
Durable and Robust Super-Hydrophobic Spray Coatings with Excellent Repairable
and Anti-Corrosion Performance, Chem. Eng. J. 367 (2019) 169-179.
[16] R.J. Liao, Z.P. Zuo, C. Guo, Y. Yuan, A.Y. Zhuang, Fabrication of
superhydrophobic surface on aluminum by continuous chemical etching and its antiicing property, Appl. Surf. Sci. 317 (2014) 701-709.
[17] Z. Yang. X.P. Liu, Y.L. Tian, Hybrid laser ablation and chemical modification for
fast fabrication of bio-inspired super-hydrophobic surface with excellent selfcleaning, stability and corrosion resistance, J Bionic Eng 16 (2019) 13-26.
[18] Z. Yang, Y.L. Tian, Y.C. Zhao, C.J. Yang, Study on the fabrication of superhydrophobic surface on Inconel alloy via nanosecond laser ablation, Materials 12
(2019) 278.
[19] Y. Wang, X. Gong, Superhydrophobic Coatings with Periodic Ring Structured
Patterns for Self-Cleaning and Oil-Water Separation, Adv. Mater. Interfaces 4 (2017)
1700190.
[20] N. Chik, W.S.W.M. Zain, A.J. Mohamad, M.Z. Sidek, W.H.W. Ibrahim, A. Reif,
J.H. Rakebrandt, W. Pfleging, X. Liu, Bacterial adhesion on the titanium and
stainless-steel surfaces undergone two different treatment methods: Polishing and ultrafast laser treatment, IOP Conf. Ser.: Mater. Sci. Eng.358 (2018) 012034.
[21] N.K.K. Win, P. Jitareerat, S. Kanlayanarat, S. Sangchote, Effects of cinnamon
extract, chitosan coating, hot water treatment and their combinations on crown rot
disease and quality of banana fruit, Postharvest Biol. Technol. 45 (2007) 333–340.
[22] A. Yarin, Drop impact dynamics: splashing, spreading, receding, bouncing, Annu.
Rev. Fluid Mech. 38 (2006) 159–192.
[23] N. Wang, L.L. Tang, Y.F. Cai, W. Tong, D.S. Xiong, Scalable superhydrophobic
coating with controllable wettability and investigations of its drag reduction, Colloids
Surf. A 555 (2018) 290–295.
[24] R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel, Wetting and self-cleaning
properties of artificial superhydrophobic surfaces, Langmuir 21 (2005) 956–61.
[25] U. Trdan, M. Hočevar, P. Gregorčič, Transition from superhydrophilic to
superhydrophobic state of laser textured stainless steel surface and its effect on
corrosion resistance, Corros. Sci. 123 (2017) 21–44.
[26] A.L. Biance, C. Clanet, D. Quere, First steps in the spreading of a liquid droplet,
Phys. Rev. E 69 (2004) 016301.
[27] S. Kulju, L. Riegger, P. Koltay et al, Fluid flow simulations meet high-speed
video: computer vision comparison of droplet dynamics, J. Colloid Interface Sci. 522
(2018) 48.
[28] C.J. Yong, B. Bhushan, Dynamic effects of bouncing water droplets on
superhydrophobic surfaces, Langmuir 24.12 (2008) 6262–6269.
[29] G. Karapetsas, N.T. Chamakos, A.G. Papathanasiou, Efficient modelling of
droplet dynamics on complex surfaces, J. Phys.: Condens. Matter 28.8 (2016) 085101.
[30] D. Khojasteh, N.M. Kazerooni, S. Salarian et al, Droplet impact on
superhydrophobic surfaces: a review of recent developments, J. Ind. Eng. Chem. 42
(2016) 1–14.
[31] S.H. Kim, Y. Jiang, H. Kim, Droplet impact and LFP on wettability and
nanostructured surface, Exp. Therm. Fluid Sci. 99 (2018) 85–93.
[32] M. Rudman, Volume‐Tracking Methods for Interfacial Flow Calculations, Int.
J. Numer. Methods Fluids 24.7 (1997) 671-691.

Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.

Storm surge inundation simulations comparing three-dimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea

Jae-Seol Shim†, Jinah Kim†, Dong-Chul Kim‡, Kiyoung Heo†, Kideok Do†, Sun-Jung Park ‡
† Coastal Disaster Research Center,
Korea Institute of Ocean Science &
Technology, 426-744, Ansan, Gyeonggi,
Korea
jsshim@kiost.ac
jakim@kiost.ac
kyheo21@kiost.ac
kddo@kiost.ac
‡ Technology R&D Institute
Hyein E&C Co., Ltd., Seoul 157-861,
Korea
skkkdc@chol.com
Nayana_sj@nate.com

ABSTRACT

Shim, J., Kim, J., Kim, D., Heo, K., Do, K., Park, S., 2013. Storm surge inundation simulations comparing threedimensional with two-dimensional models based on Typhoon Maemi over Masan Bay of South Korea. In:
Conley, D.C., Masselink, G., Russell, P.E. and O’Hare, T.J. (eds.), Proceedings 12th International Coastal Symposium
(Plymouth, England), Journal of Coastal Research, Special Issue No. 65, pp. 392-397, ISSN 0749-0208.
Severe storm surge inundation was caused by the typhoon Maemi in Masan Bay, South Korea in September 2003. To
investigate the differences in the storm surge inundation simulated by three-dimensional (3D) and two-dimensional
models, we used the ADvanced CIRCulation model (ADCIRC) and 3D computational fluid dynamics (CFD) model
(FLOW3D). The simulation results were compared to the flood plain map of Masan Bay following the typhoon Maemi.
To improve the accuracy of FLOW3D, we used a high-resolution digital surface model with a few tens of centimeterresolution, produced by aerial LIDAR survey. Comparison of the results between ADCRIC and FLOW3D simulations shows that the inclusion of detailed information on buildings and topography has an impact, delaying seawater propagation and resulting in a reduced inundation depth and flooding area. Furthermore, we simulated the effect of the installation of a storm surge barrier on the storm surge inundation. The barrier acted to decrease the water volume of the inundation and delayed the arrival time of the storm surge, implying that the storm surge barrier provides more time for residents’ evacuation.

Keywords: Typhoon Maemi, digital surface elevation model, Reynolds-Averaged NavierStokes equations.

2003 년 9 월 대한민국 마산만 태풍 매미에 의해 심한 폭풍 해일 침수가 발생했습니다. 3 차원 (3D) 및 2 차원 모델로 시뮬레이션 한 폭풍 해일 침수의 차이를 조사하기 위해 ADvanced CIRCulation 모델 ( ADCIRC) 및 3D 전산 유체 역학 (CFD) 모델 (FLOW3D).

시뮬레이션 결과는 태풍 매미 이후 마산만 범람원 지도와 비교되었다. FLOW-3D의 정확도를 높이기 위해 우리는 항공 LIDAR 측량으로 생성된 수십 센티미터 해상도의 고해상도 디지털 표면 모델을 사용했습니다.

ADCRIC과 FLOW3D 시뮬레이션의 결과를 비교하면 건물과 지형에 대한 자세한 정보를 포함하면 해수 전파가 지연되고 침수 깊이와 침수 면적이 감소하는 것으로 나타났습니다.

또한, 폭풍 해일 침수에 대한 폭풍 해일 장벽 설치의 효과를 시뮬레이션했습니다. 이 장벽은 침수 물량을 줄이고 폭풍 해일 도착 시간을 지연시키는 역할을 하여 폭풍 해일 장벽이 주민들의 대피에 더 많은 시간을 제공한다는 것을 의미합니다.

INTRODUCTION

2003 년 9 월 12 일 태풍 매미로 인한 강한 폭풍 해일이 남해안을 강타했습니다. 마산 만 일대는 심한 폭풍우 침수로 인해 최악의 피해를 입었고 광범위한 홍수를 겪었습니다. 따라서 마산 만에 예방 체계를 구축하기 위해 폭풍 해일에 의한 침수에 대한 수치 예측을 시도하는 선행 연구가 수행되었다 (Park et al. 2011).

그러나 일반적인 2 차원 (2D) 또는 3 차원 (3D) 수압 가정을 사용할 때 지형의 해상도는 복잡한 해안 구조를 표현하기에 충분하지 않습니다. 따라서 우리는 마산 만의 고해상도 지형도를 통해 전산 유체 역학 (CFD)의 침수 시뮬레이션을 제시한다.

태풍 매미는 2003 년 9 월 12 일 12시 (UTC)에 한반도에 상륙하여 남동부 해안을 따라 추적했습니다 (그림 1). 2003 년 9 월 13 일 6시 (UTC)에 동 일본해로 이동하여 온대 저기압이되었습니다.

풍속과 기압면에서 한국을 강타한 가장 강력한 태풍 중 하나입니다. 특히 마산 만에 접해있는 마산시는 폭풍 해일 홍수로 최악의 피해를 입어 32 명이 사망하고 심각한 해안 피해를 입었다. 태풍이 지나가는 동안 중앙 기압은 950hPa, 진행 속도는 45kmh-1로 마산항의 조 위계를 통해 최대 약 2.3m의 서지 높이를 기록했다.

마산 만에 접한 주거 및 상업 지역은 홍수가 심했고 지하 시설은 폭풍 해일로 침수로 어려움을 겪었습니다 (Yasuda et al. 2005). 이 논문에서는 3D CFD 모델 (FLOW 3D)과 2D ADvanced CIRCulation 모델 (ADCIRC)을 사용하여 기록 된 마산 만에서 가장 큰 폭풍 해일 중 하나에 의해 생성 된 해안 침수를 시뮬레이션했습니다.

건물의 높이와 공간 정보를 포함하는 디지털 표면 모델 (DSM)은 LiDAR (Airborne Light Detection and Ranging)에 의해 만들어졌으며, 폭풍 해일 침수 모델, 즉 3D CFD 모델 (FLOW 3D)의 입력 데이터로 사용되었습니다. ). 또한 ADCIRC의 시뮬레이션 결과는 FLOW3D의 경계 조건으로 사용됩니다.

본 연구의 목적은 극심한 침수 높이와 해안 육지로의 범람을 포함하여 마산 만에서 태풍 매미로 인한 폭풍 해일 침수를 재현하는 것이다.

<중략>………………

Figure 1. The best track and the central pressures of the typhoon Maemi from the Joint Typhoon Warning Center (JTWC). Open circles indicate the locations of the typhoon in 3 h intervals. Filled circles represent locations of the cited stations; A, B, C and D indicate Jeju, Yeosu, Tongyoung, and Masan, respectively.
Figure 1. The best track and the central pressures of the typhoon Maemi from the Joint Typhoon Warning Center (JTWC). Open circles indicate the locations of the typhoon in 3 h intervals. Filled circles represent locations of the cited stations; A, B, C and D indicate Jeju, Yeosu, Tongyoung, and Masan, respectively.
Figure 2. Model domain with FEM mesh for Typhoon Maemi.
Figure 2. Model domain with FEM mesh for Typhoon Maemi.
Figure 3. Validation of surge height for the four major tidal stations on the south coast of the Korea.
Figure 3. Validation of surge height for the four major tidal stations on the south coast of the Korea.
Figure 4. Inundation depth results from (a) ADCIRC, (b) FLOW3D, and (c) inundation field surveying hazard map following typhoon Maemi.
Figure 4. Inundation depth results from (a) ADCIRC, (b) FLOW3D, and (c) inundation field surveying hazard map following typhoon Maemi.
Figure 5. Inundation depth results computed by Flow3D at each time period following arrival of storm surge wave at harbor mouth.
Figure 5. Inundation depth results computed by Flow3D at each time period following arrival of storm surge wave at harbor mouth.
Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.
Figure 6. Maximum inundation field in simulations with (a) no barrier on the seawall (red line), (b) a 1 m barrier across the entire sea wall, and (c) a 1.7 m barrier partially installed on the seawall.

LITERATURE CITED

Bunya S, Kubatko EJ, Westerink JJ, Dawson C.,2010. A wetting and drying treatment for the Runge–Kutta discontinuous Galerkin solution to the shallow water equations. Computer Methods in Applied Mechanics and Engineering, Oceanography and Coastal Research, 198, 1548-1562.
Chan, J.C.L. & Shi, J.,1996. Long term trends and interannual variability in tropical cyclone activity over the western North Pacific. Geophysical Research Letters 23, 2765-2767.
Choi, B.H., Kim, D.C., Pelinovsky, E. and Woo, S.B., 2007. Threedimensional simulation of tsunami run-up around conical island. Coastal Engineering, 54, 618-629.
Choi, B.H., Pelinovsky, E., Kim, D.C., Didenkulova, I. and Woo, S.B., Two- and three-dimensional computation of solitary wave runup on non-plane beach. Nonlinear Processes in Geophysics, 15, 489-502.
Choi B.H., Pelinovsky E., Kim D.C., Lee H.J., Min B.I. and Kim K.H., Three-dimensional simulation of 1983 central East (Japan) Sea earthquake tsunami at the Imwon Port (Korea). Ocean Engineering, 35, 1545-1559.
Choi, B.H., Eum, H.M., Kim, H.S., Jeong, W.M. & Shim, J.S., 2004. Wave-tide-surge coupled simulation for typhoon Maemi, Workshop on waves and storm surges around Korean peninsula, 121-144.
Choi, K.S., & Kim, B.J., 2007. Climatological characteristics of tropical cyclone making landfall over the Korean Peninsula. Journal of the Korean Meteorological Society 43, 97-109.
Clark, J.D. & Chu, P., 2002. Interannual variation of tropical cyclone activity over the central North Pacific. Journal of the Meteorological Society of Japan, 80, 403-418.
Davies, A.M. & Flather, R.A., 1978. Application of numerical models of the North West European continental shelf and the North Sea to the computation of the storm surges of November to December 1973.
Deutsche Hydrographische Zeitschrift Ergänzungsheft Reihe A, 14, 72. Flow Science, 2010. FLOW-3D User’s Manual. Fujita, T., 1952. Pressure distribution in a typhoon. Geophysical Magazine 23.
Garratt, J.R., 1977. Review of drag coefficients over oceans and continents. Monthly Weather Review, 105, 915-929.
Gary Padgett, 2004. Gary Padgett September 2003 Tropical Weather Summary. Typhoon 2000.
Goda Y., Kishira Y. and Kamiyama Y., 1975. Laboratory investigation on the overtopping rate of seawalls by irregular waves, Report of Port and Harbour Research Inst.,14(4), 3-44.
Heaps, N.S., 1965. Storm surges on a continental shelf. Philos. Trans. R. Soc. London, Ser. 257, 351-383.
Hirt, C.W. and Nichols, B.D., 1981. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39, 201-225.
Holland, G.J., 1980. An Analytic Model of the Wind and Pressure Profiles in Hurricanes. Monthly Weather Review, 108, 1212-1218.
Independent Levee Investigation Team, 2006. Investigation of the Performance of the New Orleans Flood Protection Systems in Hurricane Katrina on August 29, 2005
Klotzbach, P. J. , 2006. Trends in global tropical cyclone activity over the past twenty years (1986-2005). Geophysical Research Letters, 33.
Large, W.G. & Pond, S., 1981. Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography, 11, 324-336.
Landsea, C.W., Nicholls, N., Gray, W.M. & Avila, L.A., 1996. Downward trends in the frequency of intense Atlantic hurricanes during the past five decades. Geophysical Research Letters, 23, 1697-1700.
Lighthill, J., Holland, G., Gray, W., Landsea, C., Creig, G., Evans, J., Kurikara, Y. and Guard, C., 1994. Global climate change and tropical cyclones. Bulletin of the American Meteorological Society, 75, 2147- 2157.
Luettich, R.A. & Westerink, J.J., 2004. Formulation and Numerical Implementation of the 2D/3D ADCIRC finite element model version 44.XX.
Matsumoto, K., Takanezawa, T. & Ooe, M., 2000. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan, Journal of Oceanography, 56(5) 567-581.
Mitsuyasu, H. and Kusaba, T., 1984. Drag Coefficient over Water Surface Under the Action of Strong Wind. Natural Disaster Science, 6, 43-50.
Mitsuyasu, H., F. Tasai, T. Suhara, S. Mizuno, M. Ohkusu, T. Honda and K. Rikiishi, 1980. Observation of the power spectrum of ocean waves using a cloverleaf buoy. Journal of Physical Oceanography, 10, 286- 296.
Multiple Lines of Defense Assessment Team, 2007. Comprehensive Recommendations Supporting the Use of the Multiple Lines of Defense Strategy to Sustain Coastal Louisiana.
Myers, V.A. and Malkin, W., 1961. Some Properties of Hurricane Wind Fields as Deduced from Trajectories. U.S. Weather Bureau, National Hurricane Research Project, Report 49.
Saito, K., T. Fujita, Y. Yamada, J. Ishida, Y. Kumagai, K. Aranami, S. Ohmori, R. Nagasawa, S. Kumagai, C. Muroi, T. Kato, H. Eito and Y. Yamazaki, 2006. The operational JMA Nonhydrostatic Mesoscale Model. Monthly Weather Review, 134, 1266-1298.
Shibaki H., Nakai K., Suzuyama K. and Watanabe A., 2004. Multi-level storm surge model incorporating density stratification and wave-setup. Proc. of 29th Int. Conf. on Coastal Eng., ASCE, 1539-1551.JSCE (1999). Hydraulic formulas, page 245 (in Japanese).
Shibaki, H., Suzuyama, K., Kim, J.I., & Sun, L., 2007. Numerical simulation of storm surge inundation induced by overflow, overtopping and dike breach. Asian and Pacific Coasts 2007, Nanjing, China.
Smagorinsky J., 1963. General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91, 99- 164.
Smith, S.D. & Banke, E.G., 1975. Variation of the sea surface drag coefficient with wind speed. Quarterly Journal of the Royal Meteorological Society, 101, 665-673.
Versteeg, H.K., Malalasekera, W., 1995.An introduction to computational fluid dynamics. The Finite Volume Method. Prentice Hall, 257p.
Wang Xinian, Yin Qingjiang, Zhang Baoming, 1991. Research and Applications of a Forecasting Model of Typhoon Surges in China Seas. Advances In Water Science.
Wu, J., 1982. Wind-Stress Coefficients over Sea Surface from Breeze to Hurricane. Journal of Geophysical Research, 87, 9704-9706.
Yeh, H., Liu, P., Synolakis, C., 1996. Long-wave Runup Models. World Scientific.
Yakhot, V. and Orszag, S.A., 1986. Renormalization group analysis of turbulence, I. Basic theory. Journal of Scientific Computing, 1, 1-51.
Yakhot, V. and Smith, L.M., 1992. The renormalization group, the expansion and derivation of turbulence models, Journal of Scientific Computing, 7, 35-61
Yasuda, T., T. Hiraishi, H. Kawai, K. Nagase, S.W. Kang, and W.M. Jeong, 2005. Field survey and computation analysis of storm surge disaster in Masan due to Typhoon Maemi, Proceedings of Asian and Pacific Coasts 2005, Jeju, Korea.

레이놀즈 수

본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.

Reynolds Number

레이놀즈 수

주어진 수치 방법에 의해 정확하게 계산 될 수 있는 유동에 대해서 가장 높고, 가장 낮은 레이놀즈 수 무엇입니까? 이 질문은 다양한 답과 그리고 가장 기술적인 문제들로서 주어진 답을 포함하는 가정들로부터 다양한 답을 가지고 있습니다.

본 목적을 위해, 레이놀즈 수는 R = R LU / ν로 정의되며, 여기서 L과 U는 유동 특성 길이 및 스케일이고, ν는 유체의 동점도(kinematic viscosity )입니다. 즉 물체의 관성이 점성에 비해서 얼마나 큰가를 나타내는 척도로 이 레이놀즈 수가 작을수록 층류(유체의 유선이 유지되면서 흐르는 유동)가, 클수록 난류가 형성된다. 무 차원 레이놀즈 수가 점성의 관성 효과의 측정을 중요성을 상기시킵니다. 높은 레이놀즈 수에서의 흐름은 정성적으로 다른 행동을 나타내고, 난류 될 수 있습니다.

일반적으로 고려해야 할 가장 중요한 한계는 높은 레이놀즈 수입니다. 이것은 층류가 난류로의 분해 또는 경계층이 표면에서 분리되는 위치에 따라 달라지는 몸체의 양력 및 항력을 예측하는 데 계산이 사용될 수 있는 한계입니다. 유동에 대한 점성 응력의 상대적 효과를 정확하게 시뮬레이션 하는 것이 중요한 이러한 또는 다른 유형의 유동 프로세스에서는 계산에서 어떤 수준의 정확도를 기대할 수 있는지에 대한 아이디어를 갖는 것이 유용합니다.

일반적으로 고려해야 할 가장 중요한 한계는 높은 레이놀즈 수입니다. 이것은 층류에서 난류로 붕괴되는 것을 예측하곤 하는 계산의 한계치이며, 유동의 경계층이 그 표면에서부터 박리되는 곳에서의 물체의 양력과 항력을 예측하는 한계치이기도 합니다. 유동의 다양한 유형에서 유동의 점성 응력의 상대적 효과를 정확하게 시뮬레이션하는 것은 중요하며, 계산상 예측되는 정확도의 수준에 대한 어떤 아이디어를 확보하는 것 또한 매우 유용할 것입니다.

높은 레이놀즈 수 제한 – 물리적 인수

흐름을 정확하게 표현하는데 필요한 계산 요구 사항 (즉, 해상도)을 추정하기 위해 간단한 물리적 인수를 사용할 수 있습니다. 이 주장은 흐름 영역이 작은 요소로 세분화 될 때 요소 내의 모든 흐름량이 천천히 변한다는 가정을 기반으로 합니다. 이 가정은 각 요소의 평균 수량 값이 요소 내의 실제 값에 대한 좋은 근사치라는 의미를 전달합니다.

요소 내에서 느리게 변하는 속도를 가지려면 요소 크기의 척도에서 흐름의 레이놀즈 수가 작아야 합니다 (예 : 1 차 Rd = dx · du / ν ≤ 1.0). 이 표현에서 dx와 du는 요소의 길이와 속도 스케일입니다. 이 물리적 요구 사항, 요소의 흐름의 부드러움 (즉, 낮은 레이놀즈 수, 이 척도의 층류 흐름)은 정확한 수치 분해능에 필요한 요소의 크기를 정의하는데 사용될 수 있습니다.

위의 부등식은 L = Ndx 및 U = Ndu 관계에 의해 거시적 레이놀즈 수로 변환 될 수 있으며, 이는 R ≤ N 2로 이어집니다 . 즉, 개별 요소의 규모에 대한 부드러운 흐름의 물리적 정확도 요구 사항은 정확도로 계산할 수 있는 최대 레이놀즈 넘버원이 NN 2 정도라는 것을 의미합니다. 여기서 N은 특성을 해결하는 데 사용되는 요소의 수입니다. 길이 L.

대표적인 응용에서 N은 종종10 내지 20의 범위에 있는 수로서 매우 큰 수 아닙니다. 그리고 이는 단지 약400 의 정확한 계산을 위해 최대 레이놀즈 수로 변환합니다. 이 결과에 대해 해석을 달기 전에 정확한 레이놀즈 수 계산을 위한 추정을 위해서 다른 접근 방법을 시도하는 유익합니다.

High Reynolds Number Limit – A Numerical Argument

수치 근사에 의해서 계산 도입된 viscous-like smoothing의 양은 truncation error로부터 평가 될 수 있습니다. 알다시피 아이디어는 요소 크기 (그리고 적정한 시간 간격 크기) 멱함수을 미분 근사하는 테일러 급수 전개를 하는 것입니다. 물론, 일관성 있는 근사는 원래 근사환 된 편미분 방정식의 가장 낮은 차수를 이용하는 것입니다.

다음으로 높은 차수는 보통 확산 (즉, 2차 차수 공간 미분형태) 항입니다. 점성 계수와 더불어 이러한 항의 계수 비교는 점성 효과를 더 정확하게 계산 할 수 없을 때의 추정치를 제공합니다.

1차 수치 근사 (예를 들어 대류에 대한donor cell 또는upwind technique )에 대해서 정확도를 위해서 1보다 적어야만 하는 항들의 비는 다음의 판별식을 유도하게 됩니다( R ≤ 2N.) 그리고 2차 수치 근사의 결과, R ≤ N얻어지고 물리적인 인자(Physical Argument)로부터 같은 결과가 얻어 집니다.

이러한 관계의 우변을 곱하는 작은 숫자 요소가 사용되며, 이는 사용 된 특정 수치 근사에 따라 달라 지지만 N에 대한 기본 종속성은 변경되지 않습니다. 모든 2 차 방법이 1 차 방법보다 분명히 훨씬 낫지 만 결과는 고무적이지 않습니다. 정확하게 계산할 수 있는 최대 레이놀즈 수는 N을 늘리지 않는 한 매우 제한적인 것으로 보입니다. 이는 매우 큰 그리드를 처리한다는 의미입니다.

하이 레이놀즈 수에 대한 일반적인 의견

이러한 평가들은 첫 발생 시에는 실망스런 부분도 있으나 종종 완화되는 상황으로 전개됩니다. 무엇보다도 중용한 것은 대부분의 문제들은 점성 응력에 대한 정확한 처리를 요구하지 않습니다. 이러한 문제에 대해서 높은 레이놀즈 수의 상한은 점성 효과가 중요하지 않다는 것을 의도한 의미를 갖습니다.

어떤 유동이 난류에 의해 운동량 혼합이 이루워진 fully turbulent 되기 위해 충분히 높은 레이놀즈 수를 가질 때, 종종 잘 분류될 수 있는 scale을 가진 영역 내에서 100 미만의 유효한 레이놀즈 수의 평균 유동으로 진행되곤 합니다. 물론, 이것은 난류를 기술할 수 있는 적당한 난류 모델이 사용되고 있다는 것을 가정합니다.

마지막으로 점성 효과의 정확한 정보에 따라 일부 유동 특성을 가질 필요가 있을 때 인위적인 의미의 효과를 유도하는 것이 가능 할 수 있습니다. 예를 들어, 풍동 trip wire는 종종 레이놀즈 수 상사성( similarity )의 부족을 고려하여 trigger 유동의 박리에 사용되곤 합니다. 비슷한 처리가 풍동의 수치 시뮬레이션에 추가 될 수 있습니다.

결론은 CFD 방법을 사용하여 높은 레이놀즈 수 흐름을 계산하는 데 사용할 수 있지만 수치해석상의 전산 오차가 물리적인 효과를 압도 할 수 있는 상황에 대한 경고는 해당 난류 모델에 달려있다고 말할 수 있습니다.

낮은 레이놀즈 수 제한

낮은 레이놀즈 수에서 한계는 정밀도의 한계가 아니라 계산을 완료하는데 필요한 계산 시간을 기준으로 한계입니다.  점성 응력 항에 explicit 수치 근사를 사용하면 숫자의 안정성을 유지하기 위해 시간 단계의 크기에 한계가 있습니다.  이 한계는 본질적으로 점성으로 인한 운동량의 변화는 하나의 시간 단계에서 대략 1 개의 요소를 넘어 전파하는 것은 아니라는 것을 보여줍니다.  단순한 2 차원의 경우에는 이 한계는 νdt ≤ dx2/4입니다.

이것은 T = Mdt 및 TU = L이라는 대응을 작성하여 레이놀즈 수를 포함하는 식으로 변형 할 수 있습니다.  즉, 흐름의 특성 시간은 속도 U의 유체가 거리 L을 이동하는 시간이며, 시간 T를 분해 시간 단계의 수는 M입니다.  이러한 관계식에 의해 안정된 조건은 M = 4N2/R 입니다.

이 결과에서 중요한 것은 M이 R에 반비례하여 증가하는 것입니다.  레이놀즈 수가 매우 작은 흐름의 경우 explicit 수치 법에는 매우 많은 시간 단계가 필요할 수 있으며,이 숫자는 해상도의 상승에 따라 급속히 증가하고 있습니다.  낮은 레이놀즈 수의 한계를 가장 효과적으로 제거하는 방법은 implicit 수치 법을 사용하여 점성 응력을 평가하는 것입니다.


Reynolds Number

What are the highest and lowest Reynolds number flows that can be accurately computed by a given numerical method? This question has a variety of answers, and, as with most technical issues, the variety of answers arises from the assumptions involved in giving the answer.

For present purposes, the Reynolds number R is defined as R=LU/ν, where L and U are characteristic length and velocity scales for a flow, and ν is the kinematic viscosity of the fluid. It will be recalled that the non dimensional Reynolds number is a measure of the importance of inertia to viscosity effects. At high Reynolds numbers a flow may become turbulent, exhibiting qualitatively different behavior.

Generally, the most important limit to consider is that of high Reynolds numbers. This is the limit where computations might be used to predict the breakdown of a laminar flow into turbulence, or the lift and drag of a body that is dependent on where boundary layers separate from its surface. In these or other types of flow processes in which it is critical to correctly simulate the relative effect of viscous stresses on the flow, it is useful to have some idea of what level of accuracy can be expected in a computation.

The reason that a Reynolds number limitation exists in computational fluid dynamics CFD) is that the computational stability of most CFD methods relies on some type of numerical smoothing or homogenizing within the computational elements. Since viscosity is a physical mechanism for smoothing flow variations, there can be a problem differentiating between numerical and physical smoothing. This is especially important when critical Reynolds number situations are encountered, because they require an especially accurate estimate of viscous stresses.

High Reynolds Number Limit – A Physical Argument

A simple physical argument can be used to estimate the computational requirements (i.e., resolution) needed to achieve an accurate representation of a flow. The argument is based on the assumption that when a flow region is subdivided into small elements all flow quantities within an element are slowly varying. This assumption carries the implication that the average values of quantities in each element are good approximations for the actual values within the element.

To have a slowly varying velocity within an element, the Reynolds number of the flow on scales of the element size must be small, say of order one, Rd=dx·du/ν ≤ 1.0. In this expression dx and du are length and velocity scales characteristic of the element. This physical requirement, the smoothness of the flow in elements (i.e., a low Reynolds number, laminar flow on this scale), may be used to define the size of elements needed for an accurate numerical resolution.

The above inequality can be converted to a macroscopic Reynolds number by the relations, L=Ndx and U=Ndu, which leads to R ≤ N2. In other words, the physical accuracy requirement of a smooth flow on the scale of individual elements implies that the maximum Reynolds number one can expect to compute with accuracy is on the order of NN2 where N is the number of elements used to resolve a characteristic length L.

In typical applications, N is often in the range of 10 to 20, which translates to a maximum Reynolds number for accurate computations of only about 400, not a very large number! Before commenting on this result it is instructive to try a different approach for estimating the limit for accurate Reynolds number computations.

High Reynolds Number Limit – A Numerical Argument

The amount of viscous-like smoothing introduced into a computation by numerical approximations can be estimated from truncation errors. The idea is to do a Taylor Series expansion on the difference approximations in powers of the element size (and time-step size if that is appropriate). Of course, a consistent approximation should have as its lowest order terms the partial differential equation that was originally being approximated.

At the next higher order there are usually terms that have the character of a diffusion (i.e., second-order space derivatives). A comparison of the coefficients of these terms with the coefficient of viscosity gives an estimate of when viscous effects would no longer be computed accurately.

For a first-order numerical approximation (e.g., a donor cell or upwind technique for advection) the ratio of terms, which must be less than one for accuracy, leads to the criteria R ≤ 2N. With a second-order approximation the result is R ≤ N2, the same result obtained from the “Physical Argument.”

There are small numerical factors multiplying the right-hand sides of these relations, which depend on the specific numerical approximations used, but the basic dependencies on N remain unchanged. Any second-order method is clearly much better than a first-order method, but the results are not encouraging. The maximum Reynolds number that can be computed accurately appears to be quite limited, unless one is willing to increase N, which means dealing with extremely large grids.

General Comments on High Reynolds Numbers

These estimates are discouraging when first encountered, but there are frequently mitigating circumstances. Foremost is the realization that most problems do not require an accurate treatment of viscous stresses. For these problems the high Reynolds number limit has the intended meaning that viscous effects are not important.

When flows have a high enough Reynolds number to be fully turbulent the momentum mixing induced by the turbulence often leads to a mean flow with an effective Reynolds number that is less than 100, well within the range of resolvable scales. Of course, this assumes that a suitable turbulence model is available to describe the turbulence.

Finally, when it is necessary to have some flow property that depends on an accurate knowledge of viscous effects, it may be possible to induce that effect by artificial means. For example, in wind tunnels trip wires are sometimes used to trigger flow separations to account for a lack of Reynolds number similarity. A similar treatment can be added to a numerical simulation of a wind tunnel.

The bottom line is, CFD methods can be used to compute high Reynolds number flows, but it is up to the modeler to be alert for situations where numerical errors could overshadow physical effects.

Low Reynolds Number Limit

At low Reynolds numbers the limit is not one of accuracy but a limit based on the computational time necessary to complete a computation. When explicit numerical approximations are used for viscous stress terms there is a limit on the size of the time step to maintain numerical stability. That limit is essentially a statement that momentum changes caused by viscosity do not propagate more than about one element in one time step. In a simple two-dimensional case this limit is νdt ≤ dx2/4.

This can be transformed into an expression involving the Reynolds number by making the correspondences: T=Mdt and TU=L. That is, the characteristic time for a flow is the time for fluid at velocity U to move a distance L, and the number of time steps resolving time T is M. With these relations the stability condition is then, M = 4N2/R.

The importance of this result is that M increases inversely with R. For very low Reynolds number flows, explicit numerical methods may require a very large number of time steps, and this number increases rapidly with an increase in resolution. The low Reynolds number limit is best eliminated by employing an implicit numerical method for evaluating viscous stresses.

Scouring Tip2

유체유동이 일어나지 않는 경사면의 scouring 현상에 대한 이해

해석 조건

  • Inflow : velocity=1.23m/s
  • Outflow : Air pressure
  • Sediment condition
Scouring Tip1
Scouring Tip2
  1. 유체유동이 일어나지 않는 경사면에 scouring이 일어나는 이유가 무엇인가?
  2. Sediment가 점착력이 있는 경우(clay)는 어떤 변수로 입력해야 하는가?

Tip 1)유동이없는부분에 scouring이나타나는이유:

현재 scouring model은 물에잠겨있는 부분에 대해 해석을 하게되어 있으므로 packed sediment부분은 fluid region(with infinite drag)이 존재하게됩니다. 그러므로 fluid region이 없다 하더라도 packed sediment가 경사면에 존재하면 중력에 의해  내부유체의 유동이 생겨 위 예제와 같이 미소한  scouring이 표면에 물이 없는 경사면에서도 발생하는것입니다. 그러므로 이를 없애기 위해서는 물이 없는 경사면 부분은 별도의 solid로 규정하면 이 문제를 피할수 있습니다.

Tip2 ) clay가 sticky하면 일반적으로 유동의 상대운동이 감소될것이므로 drag coefficient 나 Richardson Zaki coefficient multiplier를 증가시켜 변화를 조사해 볼 수 있습니다.

<기타 Scouring 자료>

Coastal & Maritime Bibliography

Water & Environmental Bibliography

Sediment Transport Model

CFD simulation of local scour in complex piers under tidal flow

Numerical Simulations of Sediment Transport and Scour Around Mines

The Numerical Investigation of Free Falling Jet’s Effect on the Scour of Plunge Pool

Current-induced seabed scour around a pile-supported horizontal-axis tidal stream turbine

Numerical Investigation of Angle and Geometric of L-Shape Groin on the Flow and Erosion Regime at River Bends

Comparison of CFD Models for Multiphase Flow Evolution in Bridge Scour Processes

Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

중력을 사용한 미세 유체 입자 분류

Microfluidics Particle Sorting Using Gravity

미세 유체 입자 분류는 진단, 화학적 및 생물학적 분석, 식품 및 화학 처리, 환경 평가에 적용됩니다. 이전 블로그에서 유체 역학을 사용한 미세 유체 입자 분류에 대해 이야기했습니다 . 같은 주제를 바탕으로 중력을 사용하여 미세 입자를 분류하는 또 다른 방법에 대해 논의하겠습니다. 아래 애니메이션에서 볼 수 있습니다.

유비쿼터스 중력(Ubiquitous gravity)은 미세 유체 장치에서 미세 입자를 분류하는 데 사용할 수 있습니다. 중력이 입자의 움직임에 수직으로 작용할 때 입자는 반경에 따른 속도로 안정됩니다. 또한 입자의 운동은 입자의 밀도, 유체의 밀도 및 유체의 점도 사이의 차이에서 비롯된 유체 역학적 효과의 영향을받습니다. 아래 이미지는 중력 분류 기술 회로도를 보여줍니다.

Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류
Gravitational and sedimentation microfluidic technique (Huh et al. Anal Chem 2007)의 중력 회로도를 사용한 입자 분류

부력 대 항력

앞서 언급했듯이 중력은 서로 다른 입자가 서로 다른 속도로 침전되도록합니다. 모든 입자의 밀도가 같고 입자 밀도가 주변 유체의 밀도보다 낮 으면 부력 우세와 항력 우세라는 두 가지 유형의 분류를 사용할 수 있습니다. 반경이 더 큰 입자는 더 많은 부력을 경험하고 작은 입자 위의 경로를 따르는 경향이 있습니다. 그러나 외장 액체 (입자를 운반하는 용액)의 유입 속도가 충분히 높으면 항력 효과가 우세하기 시작하고 더 큰 입자가 더 작은 입자의 경로 아래로 이동하는 경향이 있습니다.

FLOW-3D 시뮬레이션 결과

경쟁하는 부력과 항력은 아래 FLOW-3D 에서 얻은 시뮬레이션 결과에서 명확하게 볼 수 있습니다 . 그림 1은 부력 지배적 인 입자 분류의 경우를 보여줍니다. 더 큰 (빨간색) 입자는 수평 채널의 상단을 향해 정렬됩니다. Fig. 2에 나타난 결과는 부력이 우세한 경우의 유입 초 속도를 20 배로 설정 한 후 얻은 것이다. 더 높은 입구 속도에서 더 큰 입자는 더 많은 운동량을 전달하므로 그 위치는 수직 부력의 영향을받지 않습니다. 따라서 입자는 수평 채널의 상단으로 올라가지 않습니다. 대신 그들은 계속해서 바닥으로 이동합니다.

부력

Buoyancy dominant sorting
Buoyancy dominant sorting

Drag

Figure 2. Drag dominant sorting
Figure 2. Drag dominant sorting

LOW-3D 의 입자 모델은입자 분류 또는 기타 입자 역학과 관련된 미세 유체 시뮬레이션에 성공적이고 쉽게 사용할 수 있습니다. 지금까지 우리는 FLOW-3D 의 입자 모델을사용하여 두 가지 입자 분류 기술을 보았습니다. 하나는 유체 역학을 사용하고 다른 하나는 중력을 사용합니다.

Magnetic Fields

Magnetic Fields

균일 한 자기장에서 자성 입자는 자화되어 쌍극자-쌍극자 상호 작용으로 인해 사슬 모양의 미세 구조로 조립됩니다. 조립된 체인은 외부 필드의 방향에 맞춰 정렬되는 경향이 있습니다. FLOW-3D를 사용한 이 분석에서는 superparamagnetic beads의 초기 무작위 분포와 베이스에 내장 된 spherical (gold colored) magnetic dipole elements 배열을 포함하는 마이크로 채널을 통해 균일한 필드가 z 방향으로 위쪽으로 적용됩니다. 적용된 필드가있는 경우 비드는 자화되어 개별 체인과 같은 구조로 조립됩니다. 이러한 구조는 고정된 쌍극자 요소에 끌립니다. 분석은 입자 체인의 자체 조립과 내장 된 쌍극자 요소에 체인의 후속 부착을 보여줍니다. 계산 모델은 유체가 입자 운동에 점성 항력을 제공하고 움직이는 입자가 차례로 유체 흐름을 변경하는 완전 결합 입자 유체 상호 작용을 고려합니다. 모델링 결과는 University of Buffalo에서 제공합니다. University at Buffalo의 FLOW-3D 작업에 대한 자세한 내용을 보려면 여기로 이동하십시오.
( In a uniform magnetic field, magnetic particles become magnetized and assemble into chain-like microstructures due to dipole-dipole interactions. The assembled chains tend to align with the direction of the external field. In this analysis using FLOW-3D, a uniform field is applied upward in the z-direction through a micro-channel that contains an initial random distribution of superparamagnetic beads and an array of spherical (gold colored) magnetic dipole elements embedded in its base. In the presence of an applied field, the beads become magnetized and assemble into discrete chain-like structures.  These structures in turn, are attracted to the anchored dipole elements. The analysis shows the self-assembly of particle chains and the subsequent attachment of the chains onto the embedded dipole elements. The computational model takes into account fully-coupled particle fluid interaction where the fluid provides a viscous drag on particle motion and the moving particles, in turn, alter the fluid flow. Modeling results courtesy of the University of Buffalo. Go here for more information about the University at Buffalo’s work with FLOW-3D. )

Lost Foam Casting Workspace, 소실모형주조

Lost Foam Casting Workspace Highlights, 소실모형주조

  • 최첨단 Foam 잔여물 추적
  • 진보된 Foam 증발 및 금속 유동 모델링
  • 응고, 다공성 및 표면 결함 분석

Workspace Overview

Lost Foam Casting Workspace(소실모형주조) 는 Lost Foam Casting에 필요한 충진, 응고 및 냉각 하위 프로세스를 시뮬레이션하는 모든 도구를 제공합니다. 각 하위 프로세스는 해석 엔지니어가 사용하기 쉬운 인터페이스를 제공하도록 맞춤화된 템플릿 디자인을 기반으로합니다.

Lost Foam Casting 의 결함은 충진 프로파일에서 추적할 수 있기 때문에  FLOW-3D  CAST 의 용탕유동 및 소실모형(foam)의 연소 시뮬레이션의 탁월한 정확도는 고품질의 Lost Foam Casting 주물을 생산하는 데 귀중한 통찰력을 제공합니다. 기포. 잔류물 형성과 같은 주입 결함은 최종 주조에서 정확하게 추적되고 처리됩니다.

Lost Foam Casting Workspace | FLOW-3D CAST
Lost Foam Residue Tracking – Filling Simulation | FLOW-3D CAST
Lost Foam Impeller Tree – Filling Simulation | FLOW-3D CAST
Lost Foam Residue Simulation | FLOW-3D CAST

PROCESSES MODELED

  • Filling
  • Solidification
  • Cooling

FLEXIBLE MESHING

  • Structured meshing for fast, easy generation
  • Multi-block meshing for localized accuracy control
  • Foam-conforming meshes for memory optimization

MOLD MODELING

  • Ceramic filters
  • Inserts – standard and porous
  • Air vents
  • Chills
  • Insulating and exothermic sleeves
  • Moving ladles and stoppers

ADVANCED SOLIDIFICATION

  • Chemistry-based solidification
  • Dimensionless Niyama criteria
  • Cooling rates, SDAS, grain size mechanical properties

FILLING ACCURACY

  • Foam/melt interface tracking
  • Gas/bubble entrapment
  • Automatic melt flow drag calculation in filters

DEFECT PREDICTION

  • Foam residue defect tracking
  • Cold shuts
  • Porosity prediction
  • Shrinkage
  • Hot spots

DYNAMIC SIMULATION CONTROL

  • Probe-controlled pouring control

COMPLETE ANALYSIS PACKAGE

  • Animations with multi-viewports – 3D, 2D, history plots, volume rendering
  • Porosity analysis tool
  • Side-by-side simulation results comparison
  • Sensors for measuring melt temperature, solid fraction
  • Particle tracers
  • Batch post-processing
  • Report generation

Particle sorting 2 (입자 분류)

항력/부력 및 중력 기반의 입자 분류

  • 중력이 입자 운동에 수직으로 작용할 때 분류
  • 분류 운동은 유체역학의 영향을 받음

부력 vs 항력

  • 부력에 지배되는 분류
    – 큰 입자는 더 많은 부력을 받으며 작은입자 위의 경로를 따르는 경향이 있음
  • 항력에 지배되는 분류
    – 입구 유체 속도가 높으면 항력 효과가 부력을 지배하여 큰 입자가 작은 입자의 경로 아래로 이동함

[FLOW-3D 물리모델] Solidification 응고

응고 모델은 열전달이 활성화되고(Physics Heat Transfer Fluid internal energy advection) 유체비열(Fluids Fluid 1 Thermal Properties Specific heat)과 전도도(Fluids Fluid 1 Thermal Properties Thermal Conductivity) 이 지정될 때 사용될 수 있다. 단지 유체 1만 상 변화를 겪을 수 있다.

Solidification - Activate solidification

응고모델을 활성화하기 위해 Fluids Fluid 1 Solidification Model 을 체크하고 물성 Fluids Fluid 1 Solidification Model 가지에서 Liquidus temperature, Solidus temperature, 그리고 Latent heat of fusion 를 지정한다. 가장 간단한 모델(Latent Heat Release Definition 에 펼쳐지는 메뉴에서 Linearly with constant 를 선택)에서, 잠열은 물체가 Liquidus 에서 Solidus 온도로 냉각될 때 선형적으로 방출된다. 고상에서의 상변화열을 포함하는, 잠열 방출의 더 자세한 모델을 위해 온도의 함수로 잠열방출을 정의하기 위해 Specific energy vs. temperature 또는 Solid fraction vs. temperature 선택을 사용한다. 이 지정에 대한 더 자세한 내용은 이론 매뉴얼의 Heat of Transformation 를 참조한다.

solidification-fluid-properties

응고는 유체의 강직성 및 유동저항을 뜻한다. 이 강직성은 두 가지로 모델링 된다. 낮은 고상율에 대해 즉 Fluids Fluid 1 Solidification Model Solidified Fluid 1 Properties Coherent Solid Fraction 의 coherency 점 밑에서는 점도는 고상율의 함수이다. 간섭 고상율보다 큰 고상율에 대해서는 고상율의 함수에 비례하는 항력계수를 갖는 Darcy 형태의 항력이 이용된다. 이 항력은 모멘텀 방정식에 (bx,by,bz) 로써 추가된다- Momentum Equations 를 보라. 이 항력의 계산은 Solidification Drag Model 에서 기술된다. 항력계수는 사용자가 유동저항에 양을 조절할 수 있는 Coefficient of Solidification Drag 인자를 포함한다. 항력계수는 FLOW-3D 출력에서 기록된 속도에 상응하는 지역 상 평균 속도에 의해 곱해진다.

Fluid 1 Properties)을 지나면 항력은 무한대가 되고 계산격자 관련하여 유동이 있을 수 없다(단 예외로 Moving Solid Phase를 참조).

Note

모든 유체가 완전히 응고하면 모사를 정지시키기 위해 General Finish condition Solidified fluid fraction 를 이용한다. General Finish condition Finish fraction 은 모사를 중지하기 위한 고상율 값을 정한다.

 

Drag in the Mushy Zone, Mushy영역 내 항력

 

주조 시 mushy zone 은 액상과 고상이 혼합물로 존재하는 지역이다. 이 지역 혼합점도는 동축의 수지상 조직(과냉각된 액체 안에서 방사상으로 자라는 결정으로 된 구조) 이 액체 안에서 자유롭게 부유할 때 영향을 미친다.

일단 수지상 조직의 간섭성이 발생하여 고정된 고상 망이 형성되면 액상이 고정된 다공 수지상 구조를 통과해야 하므로 추가의 유동손실이 발생한다. 다른 방법으로는 간섭점을 지난 액/고상 혼합물은 다공물질을 통한 유동 대신에 고점도의 유체로 간주될 수 있다. 점성유체로 간주하는 접근은 예를 들면 연속 이중 롤 주조 과정같이 고상이 계속 이동 및 변형할 때 유용하다.

 

Solidification Drag Models in FLOW-3D, FLOW-3D 내 응고 항력모델

응고에 의한 항력계수를 정의하기 위해 사용자는 우선 열전달 및 응고모델을 활성화 해야 한다. 이들은 Model Setup Physics 탭 에서 활성화될 수 있다. 수축모델 또한 응고모델 창에서 활성화될 수 있다.

Solidification model

일단 Solidification 모델이 활성화되면 항력의 공식이 지정될 필요가 있다. Solidification대화의 밑 좌측 모퉁이에서 Porous media drag-based Viscosity-based 의 항력공식 중의 선택을 한다.

    • Viscosity-based 공식은 점성 유체로 취급하며 Viscosity 영역 내Flow model for solidified metal 입력 밑에서 지정되는 순수 고상 점성을 갖는 고상화된 유체로 간주된다. 이 접근법은 경직성의 항력모델(즉, 응고 금속이 롤러 사이로 압착될 때)을 사용할 수 없는 경우의 모사에 이용된다. 이 점성은 고상율에 따라 선형으로 변한다.고상율이0일 때 점도는 유체1의 점도이다.고상율이1이면 점도는 Solidification 패널에서 지정된 값과 같다.
    • Porous media drag-based 공식은 응고상태를 결정하기 위해 고상율을 사용한다. 고상율이 Critical Solid Fraction 이거나 초과하면 이때 항력은 무한대가 된다-즉, 액상/고상 혼합물은 고체같이 거동한다. 고상율이 Coherent Solid Fraction 보다 작으면 항력은 0이다. 이 두 값 사이에서 유동은 mushy 지역에 있고 이를 통한 유동은 마치 다공질 내에서의 유동같이 처리된다. 또한 모델은 고상율이 Coherent Solid Fraction 보다 작을 때 자동적으로 용융 금속의 점도를 조절한다. 이 상태에서 고상결정은 점도를 올리지만 결합하지는 않는다(즉, 간섭 없음). 일단 유체가 Coherent Solid Fraction 에 도달하면 항력방정식이 고려되고 점도는 간섭성에 도달하기 전의 값으로 일정하게 된다. 임계 및 간섭 고상율은 사용자가 정의하며 논문이나 책 등에서 찾을 수 있다. 이 식에서는 Coefficient of Solidification Drag 가 정의되어야 한다. 이는 Solidification 창 또는 Fluid 1 Solidification ModelSolidified Fluid 1 Properties tree Other 트리를열어 Model Setup Fluids 탭에서 될 수 있다.

How to Calculate Permeability 투과성 계산법

밑에 주어진 Darcy법칙은 수지상 구조를 위한 다공매질내의 수학적 유동기술이다.[Poi87].

(19)\mathbf{u} = - \frac{K}{\mu} \nabla P

여기서 u 는 수지상 구조 내 유동의 속도이고 ∇P 는 지역 압력구배, 그리고 K 는 mushy 구역의 특정 투수성이다. 이 방정식은 단지 유동이 거의 정상 상태이고, 관성효과가 없으며 유체의 체적율이 일정하고 균일하며 액체-액체의 상호작용 힘이 없을 때 유효하다. 투수성을 정의하는데 이용될 수 있는 대 여섯 개의 모델이 있으나 FLOW-3D 는 밑에 보여주는 Blake-Kozeny 을 이용한다. 다른 모델들은 코드와 함께 제공되는 소스코드를 사용자 사양에 맞게 수정하여 추가할 수 있다.

(20)\mathbf{u} = -C_2 \left( \frac{\lambda_1^2 (1-f_s)^3}{\mu f_s^2} \right) \left( \nabla P - \rho \mathbf{g} \right)

여기서

C2 는 전형적으로 와 같은 비틀림

fs 는 고상율이고

λ1는 유동을 위한 특정 치수

이 응용에서 수지상 가지 간격(DAS)이 이용된다.

  • 식 (11.19) 을 식(11.20) 에 적용하면 투수성을 위한 다음 식을 얻는다.

(21)K = \lambda_1^2 \frac{(1-f_s)^3}{180f_s^2}

수지상 가지 간격(DAS)에 대한 일반적인 값들은 밑에 주어져 있다.

Range of Cooling Rates in Solidification Processes
COOLING RATE, K/s PRODUCTION PROCESSES DENDRITE ARM SPACING, \mu m
10^{-4} to 10^{-2} large castings 5000 to 200
10^{-2} to 10^3 small castings, continuous castings, die castings, strip castings, coarse powder atomization 200 to 5
10^3 to 10^9 fine powder atomization, melt spinning, spray deposition, electron beam or laser surface melting 5 to 0.05

Range of cooling rates in solidification processes [CF85]

 

How FLOW-3D Defines the Coefficient of Solidification Drag FLOW-3D 가 응고 항력계수를 결정하는법

FLOW-3D 는 액고상 변화를 모델링하기 위해 다공매질항력을 이용한다. 항력은 고상율의 함수이다. 사용자에게 두 수축모델이 이용 가능하다; 급속 수축 모델 과 완전 유동모델. 급속 수축 모델은 상변화와 연관된 체적변화를 고려하지 않으며 유체는 정지해 있다고 가정한다. 완전 유동모델은 상변화가 관련된 체적변화를 고려한다. 항력은 투수성에 역으로 비례하므로 다음과 같이 표현될 수 있다.

(22)K = \frac{\mu}{\rho F_d}

여기서, Fd FLOW-3D 에서 사용된 항력계수이다. 이 항력계수는 지역 속도에 의해 곱해지고 모멘텀 방정식의 오른쪽에서 차감된다 (Momentum Equations 참조). 식 (11.22) 를 재정리하고 식 (11.21) 로부터의 투수성에 치환하면 다음을 얻는다.

  • The Coefficient of Solidification Drag: \text{TSDRG}=\frac{180 \mu}{\lambda_1^2\rho },
  • The drag force: F_d = \mbox{TSDRG} \frac{ f_s^2}{(1-f_s)^3}.

 

Macro-Segregation during Alloy Solidification 합금응고시 거시적 편절

편절 모델은 대류와 확산에 의한 용질 이동에 따른 이원합금 요소에서의 변화를 모델링 하도록 되어 있다. 이 모델링은 Physics → Solidification 로 부터 될 수 있다.

Solidification

Activate binary alloy segregation model 을 체크하고 편절 모델을 활성화한다.

여러 온도에서 평형에 있는2원합금 요소농도를 정의하는 상태도는 직선의 고상선 및 액상선을 가진다고 가정된다. 상태도는 입력데이터에 의해 구성되고 전처리 그림파일 prpplt 에 포함된다. Analyze Existing 에서 이용 가능하다

Macro-Segregation Model (under Fluids Fluid 1 Solidification Model)에 관련된 일부 유체물성 트리가 밑에 보여진다. 상태도는 Reference Solute Concentration 에서의 the Solidus Liquidus Temperatures 값들에 의해 정의된다. 추가로 Concentration Variables 밑의 Partition coefficient 도 정의되어야 한다. 그렇지 않으면 Pure Solvent Melting Temperature 가 정의될 수 있다. Partition coefficient Pure Solvent Melting Temperature 둘 다가 지정되면 용매 용융 온도는 상태도로부터 재 정의된다.

Macro segregation fluid properties

 

Eutectic Temperature 또는 Eutectic Concentration 는 융해작용을 정의하기 위해 지정될 수 있다. 또 이 두 변수가 다 지정되면 Eutectic Concentration 은 상태도에서 재 정의된다.

Diffusion Coefficients 는 고상과 액상 사이의 용질의 확산계수 비율을 정의한다. 액체 내의 용질의 분자 확산계수는 Physics Solidification 에서 specifying Solute diffusion coefficient 를 지정함으로써 정해진다. RMSEG 는 용질의 난류 확산계수 승수를 정의한다; 이는 입력파일에서 직접 지정된다.

Density evaluation

용질 재 분배에 의한 농도변화가 중요하면 Physics Density evaluation Density evaluated as a function of other quantities를 정하고 용질농도의 선형함수로써 금속농도를 정의하기 위해 Fluids Segregation model 밑의 Solutal Expansion Coefficient 를 용질 확장계수로 지정한다. 이 경우 Reference Solute Concentration 이 기준농도로 사용될 것이다. 추가로 Fluids Fluid 1 Density Properties Volumetric Thermal Expansion 은 액체 내 열부력 효과를 참작하기 위해 지정될 수 있다(또한 Buoyant Flow참조).

초기 용질농도는 Meshing & Geometry Initial Global Uniform alloy solute concentration 에서 지정될 수 있다. 불 균일한 초기 분포는 Alloy solute concentration 밑의 초기유체 구역 안에서 정의될 수 있다. 추가로 농도는 Initial Conditions: Region Values 에서 기술된 바와 같이 2차함수를 사용하는 부분을 편집하여 공간상의2차함수로 변화할 수 있다. 압력과속도 경계에서 용질 경계조건을 정하기 위해 Boundaries Boundary face Solute concentration 를 이용한다.

액상 및 고상 구성은 후처리에서 데이터 변환을 이용하여 그려질 수 있다. 용융 응고금속은 금속 내 용융의 질량 분율을 저장하는 SLDEUT 를 그림으로써 가시화될 수 있다.

액상 내 열구배가 크면 Physics Heat Transfer Second order monotonicity preserving 를 지정함으로써 더 나은 정확성을 위해 고차원 이류법을 사용한다.

 

Heat Transfer

mushy 지역에서의 유동손실은 수지상 가지 간격(DAS)의 함수인 Fluids Fluid 1 Solidification Model Solidified Fluid 1 Properties Coefficient of Solidification Drag 에 의해 조절된다. 후자는 이 모델에 의해 계산되지 않으므로 사용자는 Coefficient of Solidification Drag 를 지정해야 한다

Note

  • 표준 응고모델 과는 달리 상태도상의 용융점을 지나 고상선을 외삽하여 정의되므로 여기서 응고선의 값은 음수일 수 있다.

Microporosity Formation 미세다공형성