Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s.

Optimization Algorithms and Engineering: Recent Advances and Applications

Mahdi Feizbahr,1 Navid Tonekaboni,2Guang-Jun Jiang,3,4 and Hong-Xia Chen3,4Show moreAcademic Editor: Mohammad YazdiReceived08 Apr 2021Revised18 Jun 2021Accepted17 Jul 2021Published11 Aug 2021

Abstract

Vegetation along the river increases the roughness and reduces the average flow velocity, reduces flow energy, and changes the flow velocity profile in the cross section of the river. Many canals and rivers in nature are covered with vegetation during the floods. Canal’s roughness is strongly affected by plants and therefore it has a great effect on flow resistance during flood. Roughness resistance against the flow due to the plants depends on the flow conditions and plant, so the model should simulate the current velocity by considering the effects of velocity, depth of flow, and type of vegetation along the canal. Total of 48 models have been simulated to investigate the effect of roughness in the canal. The results indicated that, by enhancing the velocity, the effect of vegetation in decreasing the bed velocity is negligible, while when the current has lower speed, the effect of vegetation on decreasing the bed velocity is obviously considerable.


강의 식생은 거칠기를 증가시키고 평균 유속을 감소시키며, 유속 에너지를 감소시키고 강의 단면에서 유속 프로파일을 변경합니다. 자연의 많은 운하와 강은 홍수 동안 초목으로 덮여 있습니다. 운하의 조도는 식물의 영향을 많이 받으므로 홍수시 유동저항에 큰 영향을 미칩니다. 식물로 인한 흐름에 대한 거칠기 저항은 흐름 조건 및 식물에 따라 다르므로 모델은 유속, 흐름 깊이 및 운하를 따라 식생 유형의 영향을 고려하여 현재 속도를 시뮬레이션해야 합니다. 근관의 거칠기의 영향을 조사하기 위해 총 48개의 모델이 시뮬레이션되었습니다. 결과는 유속을 높임으로써 유속을 감소시키는 식생의 영향은 무시할 수 있는 반면, 해류가 더 낮은 유속일 때 유속을 감소시키는 식생의 영향은 분명히 상당함을 나타냈다.

1. Introduction

Considering the impact of each variable is a very popular field within the analytical and statistical methods and intelligent systems [114]. This can help research for better modeling considering the relation of variables or interaction of them toward reaching a better condition for the objective function in control and engineering [1527]. Consequently, it is necessary to study the effects of the passive factors on the active domain [2836]. Because of the effect of vegetation on reducing the discharge capacity of rivers [37], pruning plants was necessary to improve the condition of rivers. One of the important effects of vegetation in river protection is the action of roots, which cause soil consolidation and soil structure improvement and, by enhancing the shear strength of soil, increase the resistance of canal walls against the erosive force of water. The outer limbs of the plant increase the roughness of the canal walls and reduce the flow velocity and deplete the flow energy in vicinity of the walls. Vegetation by reducing the shear stress of the canal bed reduces flood discharge and sedimentation in the intervals between vegetation and increases the stability of the walls [3841].

One of the main factors influencing the speed, depth, and extent of flood in this method is Manning’s roughness coefficient. On the other hand, soil cover [42], especially vegetation, is one of the most determining factors in Manning’s roughness coefficient. Therefore, it is expected that those seasonal changes in the vegetation of the region will play an important role in the calculated value of Manning’s roughness coefficient and ultimately in predicting the flood wave behavior [4345]. The roughness caused by plants’ resistance to flood current depends on the flow and plant conditions. Flow conditions include depth and velocity of the plant, and plant conditions include plant type, hardness or flexibility, dimensions, density, and shape of the plant [46]. In general, the issue discussed in this research is the optimization of flood-induced flow in canals by considering the effect of vegetation-induced roughness. Therefore, the effect of plants on the roughness coefficient and canal transmission coefficient and in consequence the flow depth should be evaluated [4748].

Current resistance is generally known by its roughness coefficient. The equation that is mainly used in this field is Manning equation. The ratio of shear velocity to average current velocity  is another form of current resistance. The reason for using the  ratio is that it is dimensionless and has a strong theoretical basis. The reason for using Manning roughness coefficient is its pervasiveness. According to Freeman et al. [49], the Manning roughness coefficient for plants was calculated according to the Kouwen and Unny [50] method for incremental resistance. This method involves increasing the roughness for various surface and plant irregularities. Manning’s roughness coefficient has all the factors affecting the resistance of the canal. Therefore, the appropriate way to more accurately estimate this coefficient is to know the factors affecting this coefficient [51].

To calculate the flow rate, velocity, and depth of flow in canals as well as flood and sediment estimation, it is important to evaluate the flow resistance. To determine the flow resistance in open ducts, Manning, Chézy, and Darcy–Weisbach relations are used [52]. In these relations, there are parameters such as Manning’s roughness coefficient (n), Chézy roughness coefficient (C), and Darcy–Weisbach coefficient (f). All three of these coefficients are a kind of flow resistance coefficient that is widely used in the equations governing flow in rivers [53].

The three relations that express the relationship between the average flow velocity (V) and the resistance and geometric and hydraulic coefficients of the canal are as follows:where nf, and c are Manning, Darcy–Weisbach, and Chézy coefficients, respectively. V = average flow velocity, R = hydraulic radius, Sf = slope of energy line, which in uniform flow is equal to the slope of the canal bed,  = gravitational acceleration, and Kn is a coefficient whose value is equal to 1 in the SI system and 1.486 in the English system. The coefficients of resistance in equations (1) to (3) are related as follows:

Based on the boundary layer theory, the flow resistance for rough substrates is determined from the following general relation:where f = Darcy–Weisbach coefficient of friction, y = flow depth, Ks = bed roughness size, and A = constant coefficient.

On the other hand, the relationship between the Darcy–Weisbach coefficient of friction and the shear velocity of the flow is as follows:

By using equation (6), equation (5) is converted as follows:

Investigation on the effect of vegetation arrangement on shear velocity of flow in laboratory conditions showed that, with increasing the shear Reynolds number (), the numerical value of the  ratio also increases; in other words the amount of roughness coefficient increases with a slight difference in the cases without vegetation, checkered arrangement, and cross arrangement, respectively [54].

Roughness in river vegetation is simulated in mathematical models with a variable floor slope flume by different densities and discharges. The vegetation considered submerged in the bed of the flume. Results showed that, with increasing vegetation density, canal roughness and flow shear speed increase and with increasing flow rate and depth, Manning’s roughness coefficient decreases. Factors affecting the roughness caused by vegetation include the effect of plant density and arrangement on flow resistance, the effect of flow velocity on flow resistance, and the effect of depth [4555].

One of the works that has been done on the effect of vegetation on the roughness coefficient is Darby [56] study, which investigates a flood wave model that considers all the effects of vegetation on the roughness coefficient. There are currently two methods for estimating vegetation roughness. One method is to add the thrust force effect to Manning’s equation [475758] and the other method is to increase the canal bed roughness (Manning-Strickler coefficient) [455961]. These two methods provide acceptable results in models designed to simulate floodplain flow. Wang et al. [62] simulate the floodplain with submerged vegetation using these two methods and to increase the accuracy of the results, they suggested using the effective height of the plant under running water instead of using the actual height of the plant. Freeman et al. [49] provided equations for determining the coefficient of vegetation roughness under different conditions. Lee et al. [63] proposed a method for calculating the Manning coefficient using the flow velocity ratio at different depths. Much research has been done on the Manning roughness coefficient in rivers, and researchers [496366] sought to obtain a specific number for n to use in river engineering. However, since the depth and geometric conditions of rivers are completely variable in different places, the values of Manning roughness coefficient have changed subsequently, and it has not been possible to choose a fixed number. In river engineering software, the Manning roughness coefficient is determined only for specific and constant conditions or normal flow. Lee et al. [63] stated that seasonal conditions, density, and type of vegetation should also be considered. Hydraulic roughness and Manning roughness coefficient n of the plant were obtained by estimating the total Manning roughness coefficient from the matching of the measured water surface curve and water surface height. The following equation is used for the flow surface curve:where  is the depth of water change, S0 is the slope of the canal floor, Sf is the slope of the energy line, and Fr is the Froude number which is obtained from the following equation:where D is the characteristic length of the canal. Flood flow velocity is one of the important parameters of flood waves, which is very important in calculating the water level profile and energy consumption. In the cases where there are many limitations for researchers due to the wide range of experimental dimensions and the variety of design parameters, the use of numerical methods that are able to estimate the rest of the unknown results with acceptable accuracy is economically justified.

FLOW-3D software uses Finite Difference Method (FDM) for numerical solution of two-dimensional and three-dimensional flow. This software is dedicated to computational fluid dynamics (CFD) and is provided by Flow Science [67]. The flow is divided into networks with tubular cells. For each cell there are values of dependent variables and all variables are calculated in the center of the cell, except for the velocity, which is calculated at the center of the cell. In this software, two numerical techniques have been used for geometric simulation, FAVOR™ (Fractional-Area-Volume-Obstacle-Representation) and the VOF (Volume-of-Fluid) method. The equations used at this model for this research include the principle of mass survival and the magnitude of motion as follows. The fluid motion equations in three dimensions, including the Navier–Stokes equations with some additional terms, are as follows:where  are mass accelerations in the directions xyz and  are viscosity accelerations in the directions xyz and are obtained from the following equations:

Shear stresses  in equation (11) are obtained from the following equations:

The standard model is used for high Reynolds currents, but in this model, RNG theory allows the analytical differential formula to be used for the effective viscosity that occurs at low Reynolds numbers. Therefore, the RNG model can be used for low and high Reynolds currents.

Weather changes are high and this affects many factors continuously. The presence of vegetation in any area reduces the velocity of surface flows and prevents soil erosion, so vegetation will have a significant impact on reducing destructive floods. One of the methods of erosion protection in floodplain watersheds is the use of biological methods. The presence of vegetation in watersheds reduces the flow rate during floods and prevents soil erosion. The external organs of plants increase the roughness and decrease the velocity of water flow and thus reduce its shear stress energy. One of the important factors with which the hydraulic resistance of plants is expressed is the roughness coefficient. Measuring the roughness coefficient of plants and investigating their effect on reducing velocity and shear stress of flow is of special importance.

Roughness coefficients in canals are affected by two main factors, namely, flow conditions and vegetation characteristics [68]. So far, much research has been done on the effect of the roughness factor created by vegetation, but the issue of plant density has received less attention. For this purpose, this study was conducted to investigate the effect of vegetation density on flow velocity changes.

In a study conducted using a software model on three density modes in the submerged state effect on flow velocity changes in 48 different modes was investigated (Table 1).Table 1 The studied models.

The number of cells used in this simulation is equal to 1955888 cells. The boundary conditions were introduced to the model as a constant speed and depth (Figure 1). At the output boundary, due to the presence of supercritical current, no parameter for the current is considered. Absolute roughness for floors and walls was introduced to the model (Figure 1). In this case, the flow was assumed to be nonviscous and air entry into the flow was not considered. After  seconds, this model reached a convergence accuracy of .

Figure 1 The simulated model and its boundary conditions.

Due to the fact that it is not possible to model the vegetation in FLOW-3D software, in this research, the vegetation of small soft plants was studied so that Manning’s coefficients can be entered into the canal bed in the form of roughness coefficients obtained from the studies of Chow [69] in similar conditions. In practice, in such modeling, the effect of plant height is eliminated due to the small height of herbaceous plants, and modeling can provide relatively acceptable results in these conditions.

48 models with input velocities proportional to the height of the regular semihexagonal canal were considered to create supercritical conditions. Manning coefficients were applied based on Chow [69] studies in order to control the canal bed. Speed profiles were drawn and discussed.

Any control and simulation system has some inputs that we should determine to test any technology [7077]. Determination and true implementation of such parameters is one of the key steps of any simulation [237881] and computing procedure [8286]. The input current is created by applying the flow rate through the VFR (Volume Flow Rate) option and the output flow is considered Output and for other borders the Symmetry option is considered.

Simulation of the models and checking their action and responses and observing how a process behaves is one of the accepted methods in engineering and science [8788]. For verification of FLOW-3D software, the results of computer simulations are compared with laboratory measurements and according to the values of computational error, convergence error, and the time required for convergence, the most appropriate option for real-time simulation is selected (Figures 2 and 3 ).

Figure 2 Modeling the plant with cylindrical tubes at the bottom of the canal.

Figure 3 Velocity profiles in positions 2 and 5.

The canal is 7 meters long, 0.5 meters wide, and 0.8 meters deep. This test was used to validate the application of the software to predict the flow rate parameters. In this experiment, instead of using the plant, cylindrical pipes were used in the bottom of the canal.

The conditions of this modeling are similar to the laboratory conditions and the boundary conditions used in the laboratory were used for numerical modeling. The critical flow enters the simulation model from the upstream boundary, so in the upstream boundary conditions, critical velocity and depth are considered. The flow at the downstream boundary is supercritical, so no parameters are applied to the downstream boundary.

The software well predicts the process of changing the speed profile in the open canal along with the considered obstacles. The error in the calculated speed values can be due to the complexity of the flow and the interaction of the turbulence caused by the roughness of the floor with the turbulence caused by the three-dimensional cycles in the hydraulic jump. As a result, the software is able to predict the speed distribution in open canals.

2. Modeling Results

After analyzing the models, the results were shown in graphs (Figures 414 ). The total number of experiments in this study was 48 due to the limitations of modeling.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 4 Flow velocity profiles for canals with a depth of 1 m and flow velocities of 3–3.3 m/s. Canal with a depth of 1 meter and a flow velocity of (a) 3 meters per second, (b) 3.1 meters per second, (c) 3.2 meters per second, and (d) 3.3 meters per second.

Figure 5 Canal diagram with a depth of 1 meter and a flow rate of 3 meters per second.

Figure 6 Canal diagram with a depth of 1 meter and a flow rate of 3.1 meters per second.

Figure 7 Canal diagram with a depth of 1 meter and a flow rate of 3.2 meters per second.

Figure 8 Canal diagram with a depth of 1 meter and a flow rate of 3.3 meters per second.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 9 Flow velocity profiles for canals with a depth of 2 m and flow velocities of 4–4.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

Figure 10 Canal diagram with a depth of 2 meters and a flow rate of 4 meters per second.

Figure 11 Canal diagram with a depth of 2 meters and a flow rate of 4.1 meters per second.

Figure 12 Canal diagram with a depth of 2 meters and a flow rate of 4.2 meters per second.

Figure 13 Canal diagram with a depth of 2 meters and a flow rate of 4.3 meters per second.(a)
(a)(b)
(b)(c)
(c)(d)
(d)(a)
(a)(b)
(b)(c)
(c)(d)
(d)Figure 14 Flow velocity profiles for canals with a depth of 3 m and flow velocities of 5–5.3 m/s. Canal with a depth of 2 meters and a flow rate of (a) 4 meters per second, (b) 4.1 meters per second, (c) 4.2 meters per second, and (d) 4.3 meters per second.

To investigate the effects of roughness with flow velocity, the trend of flow velocity changes at different depths and with supercritical flow to a Froude number proportional to the depth of the section has been obtained.

According to the velocity profiles of Figure 5, it can be seen that, with the increasing of Manning’s coefficient, the canal bed speed decreases.

According to Figures 5 to 8, it can be found that, with increasing the Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the models 1 to 12, which can be justified by increasing the speed and of course increasing the Froude number.

According to Figure 10, we see that, with increasing Manning’s coefficient, the canal bed speed decreases.

According to Figure 11, we see that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 510, which can be justified by increasing the speed and, of course, increasing the Froude number.

With increasing Manning’s coefficient, the canal bed speed decreases (Figure 12). But this deceleration is more noticeable than the deceleration of the higher models (Figures 58 and 1011), which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 13, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of Figures 5 to 12, which can be justified by increasing the speed and, of course, increasing the Froude number.

According to Figure 15, with increasing Manning’s coefficient, the canal bed speed decreases.

Figure 15 Canal diagram with a depth of 3 meters and a flow rate of 5 meters per second.

According to Figure 16, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher model, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 16 Canal diagram with a depth of 3 meters and a flow rate of 5.1 meters per second.

According to Figure 17, it is clear that, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 17 Canal diagram with a depth of 3 meters and a flow rate of 5.2 meters per second.

According to Figure 18, with increasing Manning’s coefficient, the canal bed speed decreases. But this deceleration is more noticeable than the deceleration of the higher models, which can be justified by increasing the speed and, of course, increasing the Froude number.

Figure 18 Canal diagram with a depth of 3 meters and a flow rate of 5.3 meters per second.

According to Figure 19, it can be seen that the vegetation placed in front of the flow input velocity has negligible effect on the reduction of velocity, which of course can be justified due to the flexibility of the vegetation. The only unusual thing is the unexpected decrease in floor speed of 3 m/s compared to higher speeds.(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 19 Comparison of velocity profiles with the same plant densities (depth 1 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 1 m; (b) plant densities of 50%, depth 1 m; and (c) plant densities of 75%, depth 1 m.

According to Figure 20, by increasing the speed of vegetation, the effect of vegetation on reducing the flow rate becomes more noticeable. And the role of input current does not have much effect in reducing speed.(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 20 Comparison of velocity profiles with the same plant densities (depth 2 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 2 m; (b) plant densities of 50%, depth 2 m; and (c) plant densities of 75%, depth 2 m.

According to Figure 21, it can be seen that, with increasing speed, the effect of vegetation on reducing the bed flow rate becomes more noticeable and the role of the input current does not have much effect. In general, it can be seen that, by increasing the speed of the input current, the slope of the profiles increases from the bed to the water surface and due to the fact that, in software, the roughness coefficient applies to the channel floor only in the boundary conditions, this can be perfectly justified. Of course, it can be noted that, due to the flexible conditions of the vegetation of the bed, this modeling can show acceptable results for such grasses in the canal floor. In the next directions, we may try application of swarm-based optimization methods for modeling and finding the most effective factors in this research [27815188994]. In future, we can also apply the simulation logic and software of this research for other domains such as power engineering [9599].(a)
(a)(b)
(b)(c)
(c)(a)
(a)(b)
(b)(c)
(c)Figure 21 Comparison of velocity profiles with the same plant densities (depth 3 m). Comparison of velocity profiles with (a) plant densities of 25%, depth 3 m; (b) plant densities of 50%, depth 3 m; and (c) plant densities of 75%, depth 3 m.

3. Conclusion

The effects of vegetation on the flood canal were investigated by numerical modeling with FLOW-3D software. After analyzing the results, the following conclusions were reached:(i)Increasing the density of vegetation reduces the velocity of the canal floor but has no effect on the velocity of the canal surface.(ii)Increasing the Froude number is directly related to increasing the speed of the canal floor.(iii)In the canal with a depth of one meter, a sudden increase in speed can be observed from the lowest speed and higher speed, which is justified by the sudden increase in Froude number.(iv)As the inlet flow rate increases, the slope of the profiles from the bed to the water surface increases.(v)By reducing the Froude number, the effect of vegetation on reducing the flow bed rate becomes more noticeable. And the input velocity in reducing the velocity of the canal floor does not have much effect.(vi)At a flow rate between 3 and 3.3 meters per second due to the shallow depth of the canal and the higher landing number a more critical area is observed in which the flow bed velocity in this area is between 2.86 and 3.1 m/s.(vii)Due to the critical flow velocity and the slight effect of the roughness of the horseshoe vortex floor, it is not visible and is only partially observed in models 1-2-3 and 21.(viii)As the flow rate increases, the effect of vegetation on the rate of bed reduction decreases.(ix)In conditions where less current intensity is passing, vegetation has a greater effect on reducing current intensity and energy consumption increases.(x)In the case of using the flow rate of 0.8 cubic meters per second, the velocity distribution and flow regime show about 20% more energy consumption than in the case of using the flow rate of 1.3 cubic meters per second.

Nomenclature

n:Manning’s roughness coefficient
C:Chézy roughness coefficient
f:Darcy–Weisbach coefficient
V:Flow velocity
R:Hydraulic radius
g:Gravitational acceleration
y:Flow depth
Ks:Bed roughness
A:Constant coefficient
:Reynolds number
y/∂x:Depth of water change
S0:Slope of the canal floor
Sf:Slope of energy line
Fr:Froude number
D:Characteristic length of the canal
G:Mass acceleration
:Shear stresses.

Data Availability

All data are included within the paper.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China under Contract no. 71761030 and Natural Science Foundation of Inner Mongolia under Contract no. 2019LH07003.

References

  1. H. Yu, L. Jie, W. Gui et al., “Dynamic Gaussian bare-bones fruit fly optimizers with abandonment mechanism: method and analysis,” Engineering with Computers, vol. 20, pp. 1–29, 2020.View at: Publisher Site | Google Scholar
  2. X. Zhao, D. Li, B. Yang, C. Ma, Y. Zhu, and H. Chen, “Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton,” Applied Soft Computing, vol. 24, pp. 585–596, 2014.View at: Publisher Site | Google Scholar
  3. J. Hu, H. Chen, A. A. Heidari et al., “Orthogonal learning covariance matrix for defects of grey wolf optimizer: insights, balance, diversity, and feature selection,” Knowledge-Based Systems, vol. 213, Article ID 106684, 2021.View at: Publisher Site | Google Scholar
  4. C. Yu, M. Chen, K. Chen et al., “SGOA: annealing-behaved grasshopper optimizer for global tasks,” Engineering with Computers, vol. 4, pp. 1–28, 2021.View at: Publisher Site | Google Scholar
  5. W. Shan, Z. Qiao, A. A. Heidari, H. Chen, H. Turabieh, and Y. Teng, “Double adaptive weights for stabilization of moth flame optimizer: balance analysis, engineering cases, and medical diagnosis,” Knowledge-Based Systems, vol. 8, Article ID 106728, 2020.View at: Google Scholar
  6. J. Tu, H. Chen, J. Liu et al., “Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance,” Knowledge-Based Systems, vol. 212, Article ID 106642, 2021.View at: Publisher Site | Google Scholar
  7. Y. Zhang, R. Liu, X. Wang et al., “Towards augmented kernel extreme learning models for bankruptcy prediction: algorithmic behavior and comprehensive analysis,” Neurocomputing, vol. 430, 2020.View at: Google Scholar
  8. H.-L. Chen, G. Wang, C. Ma, Z.-N. Cai, W.-B. Liu, and S.-J. Wang, “An efficient hybrid kernel extreme learning machine approach for early diagnosis of Parkinson׳s disease,” Neurocomputing, vol. 184, pp. 131–144, 2016.View at: Publisher Site | Google Scholar
  9. J. Xia, H. Chen, Q. Li et al., “Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach,” Computer Methods and Programs in Biomedicine, vol. 147, pp. 37–49, 2017.View at: Publisher Site | Google Scholar
  10. C. Li, L. Hou, B. Y. Sharma et al., “Developing a new intelligent system for the diagnosis of tuberculous pleural effusion,” Computer Methods and Programs in Biomedicine, vol. 153, pp. 211–225, 2018.View at: Publisher Site | Google Scholar
  11. X. Xu and H.-L. Chen, “Adaptive computational chemotaxis based on field in bacterial foraging optimization,” Soft Computing, vol. 18, no. 4, pp. 797–807, 2014.View at: Publisher Site | Google Scholar
  12. M. Wang, H. Chen, B. Yang et al., “Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses,” Neurocomputing, vol. 267, pp. 69–84, 2017.View at: Publisher Site | Google Scholar
  13. L. Chao, K. Zhang, Z. Li, Y. Zhu, J. Wang, and Z. Yu, “Geographically weighted regression based methods for merging satellite and gauge precipitation,” Journal of Hydrology, vol. 558, pp. 275–289, 2018.View at: Publisher Site | Google Scholar
  14. F. J. Golrokh, G. Azeem, and A. Hasan, “Eco-efficiency evaluation in cement industries: DEA malmquist productivity index using optimization models,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  15. D. Zhao, L. Lei, F. Yu et al., “Chaotic random spare ant colony optimization for multi-threshold image segmentation of 2D Kapur entropy,” Knowledge-Based Systems, vol. 8, Article ID 106510, 2020.View at: Google Scholar
  16. Y. Zhang, R. Liu, X. Wang, H. Chen, and C. Li, “Boosted binary Harris hawks optimizer and feature selection,” Engineering with Computers, vol. 517, pp. 1–30, 2020.View at: Publisher Site | Google Scholar
  17. L. Hu, G. Hong, J. Ma, X. Wang, and H. Chen, “An efficient machine learning approach for diagnosis of paraquat-poisoned patients,” Computers in Biology and Medicine, vol. 59, pp. 116–124, 2015.View at: Publisher Site | Google Scholar
  18. L. Shen, H. Chen, Z. Yu et al., “Evolving support vector machines using fruit fly optimization for medical data classification,” Knowledge-Based Systems, vol. 96, pp. 61–75, 2016.View at: Publisher Site | Google Scholar
  19. X. Zhao, X. Zhang, Z. Cai et al., “Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients,” Computational Biology and Chemistry, vol. 78, pp. 481–490, 2019.View at: Publisher Site | Google Scholar
  20. Y. Xu, H. Chen, J. Luo, Q. Zhang, S. Jiao, and X. Zhang, “Enhanced Moth-flame optimizer with mutation strategy for global optimization,” Information Sciences, vol. 492, pp. 181–203, 2019.View at: Publisher Site | Google Scholar
  21. M. Wang and H. Chen, “Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis,” Applied Soft Computing Journal, vol. 88, Article ID 105946, 2020.View at: Publisher Site | Google Scholar
  22. Y. Chen, J. Li, H. Lu, and P. Yan, “Coupling system dynamics analysis and risk aversion programming for optimizing the mixed noise-driven shale gas-water supply chains,” Journal of Cleaner Production, vol. 278, Article ID 123209, 2020.View at: Google Scholar
  23. H. Tang, Y. Xu, A. Lin et al., “Predicting green consumption behaviors of students using efficient firefly grey wolf-assisted K-nearest neighbor classifiers,” IEEE Access, vol. 8, pp. 35546–35562, 2020.View at: Publisher Site | Google Scholar
  24. H.-J. Ma and G.-H. Yang, “Adaptive fault tolerant control of cooperative heterogeneous systems with actuator faults and unreliable interconnections,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp. 3240–3255, 2015.View at: Google Scholar
  25. H.-J. Ma and L.-X. Xu, “Decentralized adaptive fault-tolerant control for a class of strong interconnected nonlinear systems via graph theory,” IEEE Transactions on Automatic Control, vol. 66, 2020.View at: Google Scholar
  26. H. J. Ma, L. X. Xu, and G. H. Yang, “Multiple environment integral reinforcement learning-based fault-tolerant control for affine nonlinear systems,” IEEE Transactions on Cybernetics, vol. 51, pp. 1–16, 2019.View at: Publisher Site | Google Scholar
  27. J. Hu, M. Wang, C. Zhao, Q. Pan, and C. Du, “Formation control and collision avoidance for multi-UAV systems based on Voronoi partition,” Science China Technological Sciences, vol. 63, no. 1, pp. 65–72, 2020.View at: Publisher Site | Google Scholar
  28. C. Zhang, H. Li, Y. Qian, C. Chen, and X. Zhou, “Locality-constrained discriminative matrix regression for robust face identification,” IEEE Transactions on Neural Networks and Learning Systems, vol. 99, pp. 1–15, 2020.View at: Publisher Site | Google Scholar
  29. X. Zhang, D. Wang, Z. Zhou, and Y. Ma, “Robust low-rank tensor recovery with rectification and alignment,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 238–255, 2019.View at: Google Scholar
  30. X. Zhang, J. Wang, T. Wang, R. Jiang, J. Xu, and L. Zhao, “Robust feature learning for adversarial defense via hierarchical feature alignment,” Information Sciences, vol. 560, 2020.View at: Google Scholar
  31. X. Zhang, R. Jiang, T. Wang, and J. Wang, “Recursive neural network for video deblurring,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 03, p. 1, 2020.View at: Publisher Site | Google Scholar
  32. X. Zhang, T. Wang, J. Wang, G. Tang, and L. Zhao, “Pyramid channel-based feature attention network for image dehazing,” Computer Vision and Image Understanding, vol. 197-198, Article ID 103003, 2020.View at: Publisher Site | Google Scholar
  33. X. Zhang, T. Wang, W. Luo, and P. Huang, “Multi-level fusion and attention-guided CNN for image dehazing,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 3, p. 1, 2020.View at: Publisher Site | Google Scholar
  34. L. He, J. Shen, and Y. Zhang, “Ecological vulnerability assessment for ecological conservation and environmental management,” Journal of Environmental Management, vol. 206, pp. 1115–1125, 2018.View at: Publisher Site | Google Scholar
  35. Y. Chen, W. Zheng, W. Li, and Y. Huang, “Large group Activity security risk assessment and risk early warning based on random forest algorithm,” Pattern Recognition Letters, vol. 144, pp. 1–5, 2021.View at: Publisher Site | Google Scholar
  36. J. Hu, H. Zhang, Z. Li, C. Zhao, Z. Xu, and Q. Pan, “Object traversing by monocular UAV in outdoor environment,” Asian Journal of Control, vol. 25, 2020.View at: Google Scholar
  37. P. Tian, H. Lu, W. Feng, Y. Guan, and Y. Xue, “Large decrease in streamflow and sediment load of Qinghai-Tibetan Plateau driven by future climate change: a case study in Lhasa River Basin,” Catena, vol. 187, Article ID 104340, 2020.View at: Publisher Site | Google Scholar
  38. A. Stokes, C. Atger, A. G. Bengough, T. Fourcaud, and R. C. Sidle, “Desirable plant root traits for protecting natural and engineered slopes against landslides,” Plant and Soil, vol. 324, no. 1, pp. 1–30, 2009.View at: Publisher Site | Google Scholar
  39. T. B. Devi, A. Sharma, and B. Kumar, “Studies on emergent flow over vegetative channel bed with downward seepage,” Hydrological Sciences Journal, vol. 62, no. 3, pp. 408–420, 2017.View at: Google Scholar
  40. G. Ireland, M. Volpi, and G. Petropoulos, “Examining the capability of supervised machine learning classifiers in extracting flooded areas from Landsat TM imagery: a case study from a Mediterranean flood,” Remote Sensing, vol. 7, no. 3, pp. 3372–3399, 2015.View at: Publisher Site | Google Scholar
  41. L. Goodarzi and S. Javadi, “Assessment of aquifer vulnerability using the DRASTIC model; a case study of the Dezful-Andimeshk Aquifer,” Computational Research Progress in Applied Science & Engineering, vol. 2, no. 1, pp. 17–22, 2016.View at: Google Scholar
  42. K. Zhang, Q. Wang, L. Chao et al., “Ground observation-based analysis of soil moisture spatiotemporal variability across a humid to semi-humid transitional zone in China,” Journal of Hydrology, vol. 574, pp. 903–914, 2019.View at: Publisher Site | Google Scholar
  43. L. De Doncker, P. Troch, R. Verhoeven, K. Bal, P. Meire, and J. Quintelier, “Determination of the Manning roughness coefficient influenced by vegetation in the river Aa and Biebrza river,” Environmental Fluid Mechanics, vol. 9, no. 5, pp. 549–567, 2009.View at: Publisher Site | Google Scholar
  44. M. Fathi-Moghadam and K. Drikvandi, “Manning roughness coefficient for rivers and flood plains with non-submerged vegetation,” International Journal of Hydraulic Engineering, vol. 1, no. 1, pp. 1–4, 2012.View at: Google Scholar
  45. F.-C. Wu, H. W. Shen, and Y.-J. Chou, “Variation of roughness coefficients for unsubmerged and submerged vegetation,” Journal of Hydraulic Engineering, vol. 125, no. 9, pp. 934–942, 1999.View at: Publisher Site | Google Scholar
  46. M. K. Wood, “Rangeland vegetation-hydrologic interactions,” in Vegetation Science Applications for Rangeland Analysis and Management, vol. 3, pp. 469–491, Springer, 1988.View at: Publisher Site | Google Scholar
  47. C. Wilson, O. Yagci, H.-P. Rauch, and N. Olsen, “3D numerical modelling of a willow vegetated river/floodplain system,” Journal of Hydrology, vol. 327, no. 1-2, pp. 13–21, 2006.View at: Publisher Site | Google Scholar
  48. R. Yazarloo, M. Khamehchian, and M. R. Nikoodel, “Observational-computational 3d engineering geological model and geotechnical characteristics of young sediments of golestan province,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  49. G. E. Freeman, W. H. Rahmeyer, and R. R. Copeland, “Determination of resistance due to shrubs and woody vegetation,” International Journal of River Basin Management, vol. 19, 2000.View at: Google Scholar
  50. N. Kouwen and T. E. Unny, “Flexible roughness in open channels,” Journal of the Hydraulics Division, vol. 99, no. 5, pp. 713–728, 1973.View at: Publisher Site | Google Scholar
  51. S. Hosseini and J. Abrishami, Open Channel Hydraulics, Elsevier, Amsterdam, Netherlands, 2007.
  52. C. S. James, A. L. Birkhead, A. A. Jordanova, and J. J. O’Sullivan, “Flow resistance of emergent vegetation,” Journal of Hydraulic Research, vol. 42, no. 4, pp. 390–398, 2004.View at: Publisher Site | Google Scholar
  53. F. Huthoff and D. Augustijn, “Channel roughness in 1D steady uniform flow: Manning or Chézy?,,” NCR-days, vol. 102, 2004.View at: Google Scholar
  54. M. S. Sabegh, M. Saneie, M. Habibi, A. A. Abbasi, and M. Ghadimkhani, “Experimental investigation on the effect of river bank tree planting array, on shear velocity,” Journal of Watershed Engineering and Management, vol. 2, no. 4, 2011.View at: Google Scholar
  55. A. Errico, V. Pasquino, M. Maxwald, G. B. Chirico, L. Solari, and F. Preti, “The effect of flexible vegetation on flow in drainage channels: estimation of roughness coefficients at the real scale,” Ecological Engineering, vol. 120, pp. 411–421, 2018.View at: Publisher Site | Google Scholar
  56. S. E. Darby, “Effect of riparian vegetation on flow resistance and flood potential,” Journal of Hydraulic Engineering, vol. 125, no. 5, pp. 443–454, 1999.View at: Publisher Site | Google Scholar
  57. V. Kutija and H. Thi Minh Hong, “A numerical model for assessing the additional resistance to flow introduced by flexible vegetation,” Journal of Hydraulic Research, vol. 34, no. 1, pp. 99–114, 1996.View at: Publisher Site | Google Scholar
  58. T. Fischer-Antze, T. Stoesser, P. Bates, and N. R. B. Olsen, “3D numerical modelling of open-channel flow with submerged vegetation,” Journal of Hydraulic Research, vol. 39, no. 3, pp. 303–310, 2001.View at: Publisher Site | Google Scholar
  59. U. Stephan and D. Gutknecht, “Hydraulic resistance of submerged flexible vegetation,” Journal of Hydrology, vol. 269, no. 1-2, pp. 27–43, 2002.View at: Publisher Site | Google Scholar
  60. F. G. Carollo, V. Ferro, and D. Termini, “Flow resistance law in channels with flexible submerged vegetation,” Journal of Hydraulic Engineering, vol. 131, no. 7, pp. 554–564, 2005.View at: Publisher Site | Google Scholar
  61. W. Fu-sheng, “Flow resistance of flexible vegetation in open channel,” Journal of Hydraulic Engineering, vol. S1, 2007.View at: Google Scholar
  62. P.-f. Wang, C. Wang, and D. Z. Zhu, “Hydraulic resistance of submerged vegetation related to effective height,” Journal of Hydrodynamics, vol. 22, no. 2, pp. 265–273, 2010.View at: Publisher Site | Google Scholar
  63. J. K. Lee, L. C. Roig, H. L. Jenter, and H. M. Visser, “Drag coefficients for modeling flow through emergent vegetation in the Florida Everglades,” Ecological Engineering, vol. 22, no. 4-5, pp. 237–248, 2004.View at: Publisher Site | Google Scholar
  64. G. J. Arcement and V. R. Schneider, Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains, US Government Printing Office, Washington, DC, USA, 1989.
  65. Y. Ding and S. S. Y. Wang, “Identification of Manning’s roughness coefficients in channel network using adjoint analysis,” International Journal of Computational Fluid Dynamics, vol. 19, no. 1, pp. 3–13, 2005.View at: Publisher Site | Google Scholar
  66. E. T. Engman, “Roughness coefficients for routing surface runoff,” Journal of Irrigation and Drainage Engineering, vol. 112, no. 1, pp. 39–53, 1986.View at: Publisher Site | Google Scholar
  67. M. Feizbahr, C. Kok Keong, F. Rostami, and M. Shahrokhi, “Wave energy dissipation using perforated and non perforated piles,” International Journal of Engineering, vol. 31, no. 2, pp. 212–219, 2018.View at: Publisher Site | Google Scholar
  68. M. Farzadkhoo, A. Keshavarzi, H. Hamidifar, and M. Javan, “Sudden pollutant discharge in vegetated compound meandering rivers,” Catena, vol. 182, Article ID 104155, 2019.View at: Publisher Site | Google Scholar
  69. V. T. Chow, Open-channel Hydraulics, Mcgraw-Hill Civil Engineering Series, Chennai, TN, India, 1959.
  70. X. Zhang, R. Jing, Z. Li, Z. Li, X. Chen, and C.-Y. Su, “Adaptive pseudo inverse control for a class of nonlinear asymmetric and saturated nonlinear hysteretic systems,” IEEE/CAA Journal of Automatica Sinica, vol. 8, no. 4, pp. 916–928, 2020.View at: Google Scholar
  71. C. Zuo, Q. Chen, L. Tian, L. Waller, and A. Asundi, “Transport of intensity phase retrieval and computational imaging for partially coherent fields: the phase space perspective,” Optics and Lasers in Engineering, vol. 71, pp. 20–32, 2015.View at: Publisher Site | Google Scholar
  72. C. Zuo, J. Sun, J. Li, J. Zhang, A. Asundi, and Q. Chen, “High-resolution transport-of-intensity quantitative phase microscopy with annular illumination,” Scientific Reports, vol. 7, no. 1, pp. 7654–7722, 2017.View at: Publisher Site | Google Scholar
  73. B.-H. Li, Y. Liu, A.-M. Zhang, W.-H. Wang, and S. Wan, “A survey on blocking technology of entity resolution,” Journal of Computer Science and Technology, vol. 35, no. 4, pp. 769–793, 2020.View at: Publisher Site | Google Scholar
  74. Y. Liu, B. Zhang, Y. Feng et al., “Development of 340-GHz transceiver front end based on GaAs monolithic integration technology for THz active imaging array,” Applied Sciences, vol. 10, no. 21, p. 7924, 2020.View at: Publisher Site | Google Scholar
  75. J. Hu, H. Zhang, L. Liu, X. Zhu, C. Zhao, and Q. Pan, “Convergent multiagent formation control with collision avoidance,” IEEE Transactions on Robotics, vol. 36, no. 6, pp. 1805–1818, 2020.View at: Publisher Site | Google Scholar
  76. M. B. Movahhed, J. Ayoubinejad, F. N. Asl, and M. Feizbahr, “The effect of rain on pedestrians crossing speed,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 6, no. 3, 2020.View at: Google Scholar
  77. A. Li, D. Spano, J. Krivochiza et al., “A tutorial on interference exploitation via symbol-level precoding: overview, state-of-the-art and future directions,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp. 796–839, 2020.View at: Publisher Site | Google Scholar
  78. W. Zhu, C. Ma, X. Zhao et al., “Evaluation of sino foreign cooperative education project using orthogonal sine cosine optimized kernel extreme learning machine,” IEEE Access, vol. 8, pp. 61107–61123, 2020.View at: Publisher Site | Google Scholar
  79. G. Liu, W. Jia, M. Wang et al., “Predicting cervical hyperextension injury: a covariance guided sine cosine support vector machine,” IEEE Access, vol. 8, pp. 46895–46908, 2020.View at: Publisher Site | Google Scholar
  80. Y. Wei, H. Lv, M. Chen et al., “Predicting entrepreneurial intention of students: an extreme learning machine with Gaussian barebone harris hawks optimizer,” IEEE Access, vol. 8, pp. 76841–76855, 2020.View at: Publisher Site | Google Scholar
  81. A. Lin, Q. Wu, A. A. Heidari et al., “Predicting intentions of students for master programs using a chaos-induced sine cosine-based fuzzy K-Nearest neighbor classifier,” Ieee Access, vol. 7, pp. 67235–67248, 2019.View at: Publisher Site | Google Scholar
  82. Y. Fan, P. Wang, A. A. Heidari et al., “Rationalized fruit fly optimization with sine cosine algorithm: a comprehensive analysis,” Expert Systems with Applications, vol. 157, Article ID 113486, 2020.View at: Publisher Site | Google Scholar
  83. E. Rodríguez-Esparza, L. A. Zanella-Calzada, D. Oliva et al., “An efficient Harris hawks-inspired image segmentation method,” Expert Systems with Applications, vol. 155, Article ID 113428, 2020.View at: Publisher Site | Google Scholar
  84. S. Jiao, G. Chong, C. Huang et al., “Orthogonally adapted Harris hawks optimization for parameter estimation of photovoltaic models,” Energy, vol. 203, Article ID 117804, 2020.View at: Publisher Site | Google Scholar
  85. Z. Xu, Z. Hu, A. A. Heidari et al., “Orthogonally-designed adapted grasshopper optimization: a comprehensive analysis,” Expert Systems with Applications, vol. 150, Article ID 113282, 2020.View at: Publisher Site | Google Scholar
  86. A. Abbassi, R. Abbassi, A. A. Heidari et al., “Parameters identification of photovoltaic cell models using enhanced exploratory salp chains-based approach,” Energy, vol. 198, Article ID 117333, 2020.View at: Publisher Site | Google Scholar
  87. M. Mahmoodi and K. K. Aminjan, “Numerical simulation of flow through sukhoi 24 air inlet,” Computational Research Progress in Applied Science & Engineering (CRPASE), vol. 03, 2017.View at: Google Scholar
  88. F. J. Golrokh and A. Hasan, “A comparison of machine learning clustering algorithms based on the DEA optimization approach for pharmaceutical companies in developing countries,” ENG Transactions, vol. 1, 2020.View at: Google Scholar
  89. H. Chen, A. A. Heidari, H. Chen, M. Wang, Z. Pan, and A. H. Gandomi, “Multi-population differential evolution-assisted Harris hawks optimization: framework and case studies,” Future Generation Computer Systems, vol. 111, pp. 175–198, 2020.View at: Publisher Site | Google Scholar
  90. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “Bayesian hierarchical model-based information fusion for degradation analysis considering non-competing relationship,” IEEE Access, vol. 7, pp. 175222–175227, 2019.View at: Publisher Site | Google Scholar
  91. J. Guo, H. Zheng, B. Li, and G.-Z. Fu, “A Bayesian approach for degradation analysis with individual differences,” IEEE Access, vol. 7, pp. 175033–175040, 2019.View at: Publisher Site | Google Scholar
  92. M. M. A. Malakoutian, Y. Malakoutian, P. Mostafapour, and S. Z. D. Abed, “Prediction for monthly rainfall of six meteorological regions and TRNC (case study: north Cyprus),” ENG Transactions, vol. 2, no. 2, 2021.View at: Google Scholar
  93. H. Arslan, M. Ranjbar, and Z. Mutlum, “Maximum sound transmission loss in multi-chamber reactive silencers: are two chambers enough?,,” ENG Transactions, vol. 2, no. 1, 2021.View at: Google Scholar
  94. N. Tonekaboni, M. Feizbahr, N. Tonekaboni, G.-J. Jiang, and H.-X. Chen, “Optimization of solar CCHP systems with collector enhanced by porous media and nanofluid,” Mathematical Problems in Engineering, vol. 2021, Article ID 9984840, 12 pages, 2021.View at: Publisher Site | Google Scholar
  95. Z. Niu, B. Zhang, J. Wang et al., “The research on 220GHz multicarrier high-speed communication system,” China Communications, vol. 17, no. 3, pp. 131–139, 2020.View at: Publisher Site | Google Scholar
  96. B. Zhang, Z. Niu, J. Wang et al., “Four‐hundred gigahertz broadband multi‐branch waveguide coupler,” IET Microwaves, Antennas & Propagation, vol. 14, no. 11, pp. 1175–1179, 2020.View at: Publisher Site | Google Scholar
  97. Z.-Q. Niu, L. Yang, B. Zhang et al., “A mechanical reliability study of 3dB waveguide hybrid couplers in the submillimeter and terahertz band,” Journal of Zhejiang University Science, vol. 1, no. 1, 1998.View at: Google Scholar
  98. B. Zhang, D. Ji, D. Fang, S. Liang, Y. Fan, and X. Chen, “A novel 220-GHz GaN diode on-chip tripler with high driven power,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 780–783, 2019.View at: Publisher Site | Google Scholar
  99. M. Taleghani and A. Taleghani, “Identification and ranking of factors affecting the implementation of knowledge management engineering based on TOPSIS technique,” ENG Transactions, vol. 1, no. 1, 2020.View at: Google Scholar
Fig. 1. (a) Dimensions of the casting with runners (unit: mm), (b) a melt flow simulation using Flow-3D software together with Reilly's model[44], predicted that a large amount of bifilms (denoted by the black particles) would be contained in the final casting. (c) A solidification simulation using Pro-cast software showed that no shrinkage defect was contained in the final casting.

AZ91 합금 주물 내 연행 결함에 대한 캐리어 가스의 영향

Effect of carrier gases on the entrainment defects within AZ91 alloy castings

Tian Liab J.M.T.Daviesa Xiangzhen Zhuc
aUniversity of Birmingham, Birmingham B15 2TT, United Kingdom
bGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United Kingdom
cBrunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Ln, London, Uxbridge UB8 3PH, United Kingdom

Abstract

An entrainment defect (also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final castings. Previous publications, carried out with Al-alloy castings, reported that this trapped gas could be subsequently consumed by the reaction with the surrounding melt, thus reducing the void volume and negative effect of entrainment defects. Compared with Al-alloys, the entrapped gas within Mg-alloy might be more efficiently consumed due to the relatively high reactivity of magnesium. However, research into the entrainment defects within Mg alloys has been significantly limited. In the present work, AZ91 alloy castings were produced under different carrier gas atmospheres (i.e., SF6/CO2, SF6/air). The evolution processes of the entrainment defects contained in AZ91 alloy were suggested according to the microstructure inspections and thermodynamic calculations. The defects formed in the different atmospheres have a similar sandwich-like structure, but their oxide films contained different combinations of compounds. The use of carrier gases, which were associated with different entrained-gas consumption rates, affected the reproducibility of AZ91 castings.

Keywords

Magnesium alloyCastingOxide film, Bifilm, Entrainment defect, Reproducibility

연행 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)은 경합금 용융물에 잠길 때 갇힌 가스를 포함하는 공극으로 작용하여 최종 주물의 품질과 재현성을 저하시킵니다. Al-합금 주조로 수행된 이전 간행물에서는 이 갇힌 가스가 주변 용융물과의 반응에 의해 후속적으로 소모되어 공극 부피와 연행 결함의 부정적인 영향을 줄일 수 있다고 보고했습니다. Al-합금에 비해 마그네슘의 상대적으로 높은 반응성으로 인해 Mg-합금 내에 포집된 가스가 더 효율적으로 소모될 수 있습니다. 그러나 Mg 합금 내 연행 결함에 대한 연구는 상당히 제한적이었습니다. 현재 작업에서 AZ91 합금 주물은 다양한 캐리어 가스 분위기(즉, SF 6 /CO2 , SF 6 / 공기). AZ91 합금에 포함된 엔트레인먼트 결함의 진화 과정은 미세조직 검사 및 열역학적 계산에 따라 제안되었습니다. 서로 다른 분위기에서 형성된 결함은 유사한 샌드위치 구조를 갖지만 산화막에는 서로 다른 화합물 조합이 포함되어 있습니다. 다른 동반 가스 소비율과 관련된 운반 가스의 사용은 AZ91 주물의 재현성에 영향을 미쳤습니다.

키워드

마그네슘 합금주조Oxide film, Bifilm, Entrainment 불량, 재현성

1 . 소개

지구상에서 가장 가벼운 구조용 금속인 마그네슘은 지난 수십 년 동안 가장 매력적인 경금속 중 하나가 되었습니다. 결과적으로 마그네슘 산업은 지난 20년 동안 급속한 발전을 경험했으며 [1 , 2] , 이는 전 세계적으로 Mg 합금에 대한 수요가 크게 증가했음을 나타냅니다. 오늘날 Mg 합금의 사용은 자동차, 항공 우주, 전자 등의 분야에서 볼 수 있습니다. [3 , 4] . Mg 금속의 전 세계 소비는 특히 자동차 산업에서 앞으로 더욱 증가할 것으로 예측되었습니다. 기존 자동차와 전기 자동차 모두의 에너지 효율성 요구 사항이 설계를 경량화하도록 더욱 밀어붙이기 때문입니다 [3 , 56] .

Mg 합금에 대한 수요의 지속적인 성장은 Mg 합금 주조의 품질 및 기계적 특성 개선에 대한 광범위한 관심을 불러일으켰습니다. Mg 합금 주조 공정 동안 용융물의 표면 난류는 소량의 주변 대기를 포함하는 이중 표면 필름의 포획으로 이어질 수 있으므로 동반 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)을 형성합니다. ) [7] , [8] , [9] , [10] . 무작위 크기, 수량, 방향 및 연행 결함의 배치는 주조 특성의 변화와 관련된 중요한 요인으로 널리 받아들여지고 있습니다 [7] . 또한 Peng et al. [11]AZ91 합금 용융물에 동반된 산화물 필름이 Al 8 Mn 5 입자에 대한 필터 역할을 하여 침전될 때 가두는 것을 발견했습니다 . Mackie et al. [12]는 또한 동반된 산화막이 금속간 입자를 트롤(trawl)하는 작용을 하여 입자가 클러스터링되어 매우 큰 결함을 형성할 수 있다고 제안했습니다. 금속간 화합물의 클러스터링은 비말동반 결함을 주조 특성에 더 해롭게 만들었습니다.

연행 결함에 관한 이전 연구의 대부분은 Al-합금에 대해 수행되었으며 [7 , [13] , [14] , [15] , [16] , [17] , [18] 몇 가지 잠재적인 방법이 제안되었습니다. 알루미늄 합금 주물의 품질에 대한 부정적인 영향을 줄이기 위해. Nyahumwa et al., [16] 은 연행 결함 내의 공극 체적이 열간 등방압 압축(HIP) 공정에 의해 감소될 수 있음을 보여줍니다. Campbell [7] 은 결함 내부의 동반된 가스가 주변 용융물과의 반응으로 인해 소모될 수 있다고 제안했으며, 이는 Raiszedeh와 Griffiths [19]에 의해 추가로 확인되었습니다 ..혼입 가스 소비가 Al-합금 주물의 기계적 특성에 미치는 영향은 [8 , 9]에 의해 조사되었으며 , 이는 혼입 가스의 소비가 주조 재현성의 개선을 촉진함을 시사합니다.

Al-합금 내 결함에 대한 조사와 비교하여 Mg-합금 내 연행 결함에 대한 연구는 상당히 제한적입니다. 연행 결함의 존재는 Mg 합금 주물 [20 , 21] 에서 입증 되었지만 그 거동, 진화 및 연행 가스 소비는 여전히 명확하지 않습니다.

Mg 합금 주조 공정에서 용융물은 일반적으로 마그네슘 점화를 피하기 위해 커버 가스로 보호됩니다. 따라서 모래 또는 매몰 몰드의 공동은 용융물을 붓기 전에 커버 가스로 세척해야 합니다 [22] . 따라서, Mg 합금 주물 내의 연행 가스는 공기만이 아니라 주조 공정에 사용되는 커버 가스를 포함해야 하며, 이는 구조 및 해당 연행 결함의 전개를 복잡하게 만들 수 있습니다.

SF 6 은 Mg 합금 주조 공정에 널리 사용되는 대표적인 커버 가스입니다 [23] , [24] , [25] . 이 커버 가스는 유럽의 마그네슘 합금 주조 공장에서 사용하도록 제한되었지만 상업 보고서에 따르면 이 커버는 전 세계 마그네슘 합금 산업, 특히 다음과 같은 글로벌 마그네슘 합금 생산을 지배한 국가에서 여전히 인기가 있습니다. 중국, 브라질, 인도 등 [26] . 또한, 최근 학술지 조사에서도 이 커버가스가 최근 마그네슘 합금 연구에서 널리 사용된 것으로 나타났다 [27] . SF 6 커버 가스 의 보호 메커니즘 (즉, 액체 Mg 합금과 SF 6 사이의 반응Cover gas)에 대한 연구는 여러 선행연구자들에 의해 이루어졌으나 표면 산화막의 형성과정이 아직 명확하게 밝혀지지 않았으며, 일부 발표된 결과들도 상충되고 있다. 1970년대 초 Fruehling [28] 은 SF 6 아래에 형성된 표면 피막이 주로 미량의 불화물과 함께 MgO 임을 발견 하고 SF 6 이 Mg 합금 표면 피막에 흡수 된다고 제안했습니다 . Couling [29] 은 흡수된 SF 6 이 Mg 합금 용융물과 반응하여 MgF 2 를 형성함을 추가로 확인했습니다 . 지난 20년 동안 아래에 자세히 설명된 것처럼 Mg 합금 표면 필름의 다양한 구조가 보고되었습니다.(1)

단층 필름 . Cashion [30 , 31] 은 X선 광전자 분광법(XPS)과 오제 분광법(AES)을 사용하여 표면 필름을 MgO 및 MgF 2 로 식별했습니다 . 그는 또한 필름의 구성이 두께와 전체 실험 유지 시간에 걸쳐 일정하다는 것을 발견했습니다. Cashion이 관찰한 필름은 10분에서 100분의 유지 시간으로 생성된 단층 구조를 가졌다.(2)

이중층 필름 . Aarstad et. al [32] 은 2003년에 이중층 표면 산화막을 보고했습니다. 그들은 예비 MgO 막에 부착된 잘 분포된 여러 MgF 2 입자를 관찰 하고 전체 표면적의 25-50%를 덮을 때까지 성장했습니다. 외부 MgO 필름을 통한 F의 내부 확산은 진화 과정의 원동력이었습니다. 이 이중층 구조는 Xiong의 그룹 [25 , 33] 과 Shih et al. 도 지지했습니다 . [34] .(삼)

트리플 레이어 필름 . 3층 필름과 그 진화 과정은 Pettersen [35]에 의해 2002년에 보고되었습니다 . Pettersen은 초기 표면 필름이 MgO 상이었고 F의 내부 확산에 의해 점차적으로 안정적인 MgF 2 상 으로 진화한다는 것을 발견했습니다 . 두꺼운 상부 및 하부 MgF 2 층.(4)

산화물 필름은 개별 입자로 구성 됩니다. Wang et al [36] 은 Mg-alloy 표면 필름을 SF 6 커버 가스 하에서 용융물에 교반 한 다음 응고 후 동반된 표면 필름을 검사했습니다. 그들은 동반된 표면 필름이 다른 연구자들이 보고한 보호 표면 필름처럼 계속되지 않고 개별 입자로 구성된다는 것을 발견했습니다. 젊은 산화막은 MgO 나노 크기의 산화물 입자로 구성되어 있는 반면, 오래된 산화막은 한쪽 면에 불화물과 질화물이 포함된 거친 입자(평균 크기 약 1μm)로 구성되어 있습니다.

Mg 합금 용융 표면의 산화막 또는 동반 가스는 모두 액체 Mg 합금과 커버 가스 사이의 반응으로 인해 형성되므로 Mg 합금 표면막에 대한 위에서 언급한 연구는 진화에 대한 귀중한 통찰력을 제공합니다. 연행 결함. 따라서 SF 6 커버 가스 의 보호 메커니즘 (즉, Mg-합금 표면 필름의 형성)은 해당 동반 결함의 잠재적인 복잡한 진화 과정을 나타냅니다.

그러나 Mg 합금 용융물에 표면 필름을 형성하는 것은 용융물에 잠긴 동반된 가스의 소비와 다른 상황에 있다는 점에 유의해야 합니다. 예를 들어, 앞서 언급한 연구에서 표면 성막 동안 충분한 양의 커버 가스가 담지되어 커버 가스의 고갈을 억제했습니다. 대조적으로, Mg 합금 용융물 내의 동반된 가스의 양은 유한하며, 동반된 가스는 완전히 고갈될 수 있습니다. Mirak [37] 은 3.5% SF 6 /기포를 특별히 설계된 영구 금형에서 응고되는 순수한 Mg 합금 용융물에 도입했습니다. 기포가 완전히 소모되었으며, 해당 산화막은 MgO와 MgF 2 의 혼합물임을 알 수 있었다.. 그러나 Aarstad [32] 및 Xiong [25 , 33]에 의해 관찰된 MgF 2 스팟 과 같은 핵 생성 사이트 는 관찰되지 않았습니다. Mirak은 또한 조성 분석을 기반으로 산화막에서 MgO 이전에 MgF 2 가 형성 되었다고 추측했는데 , 이는 이전 문헌에서 보고된 표면 필름 형성 과정(즉, MgF 2 이전에 형성된 MgO)과 반대 입니다. Mirak의 연구는 동반된 가스의 산화막 형성이 표면막의 산화막 형성과 상당히 다를 수 있음을 나타내었지만 산화막의 구조와 진화에 대해서는 밝히지 않았습니다.

또한 커버 가스에 캐리어 가스를 사용하는 것도 커버 가스와 액체 Mg 합금 사이의 반응에 영향을 미쳤습니다. SF 6 /air 는 용융 마그네슘의 점화를 피하기 위해 SF 6 /CO 2 운반 가스 [38] 보다 더 높은 함량의 SF 6을 필요로 하여 다른 가스 소비율을 나타냅니다. Liang et.al [39] 은 CO 2 가 캐리어 가스로 사용될 때 표면 필름에 탄소가 형성된다고 제안했는데 , 이는 SF 6 /air 에서 형성된 필름과 다릅니다 . Mg 연소 [40]에 대한 조사 에서 Mg 2 C 3 검출이 보고되었습니다.CO 2 연소 후 Mg 합금 샘플 에서 이는 Liang의 결과를 뒷받침할 뿐만 아니라 이중 산화막 결함에서 Mg 탄화물의 잠재적 형성을 나타냅니다.

여기에 보고된 작업은 다양한 커버 가스(즉, SF 6 /air 및 SF 6 /CO 2 )로 보호되는 AZ91 Mg 합금 주물에서 형성된 연행 결함의 거동과 진화에 대한 조사 입니다. 이러한 캐리어 가스는 액체 Mg 합금에 대해 다른 보호성을 가지며, 따라서 상응하는 동반 가스의 다른 소비율 및 발생 프로세스와 관련될 수 있습니다. AZ91 주물의 재현성에 대한 동반 가스 소비의 영향도 연구되었습니다.

2 . 실험

2.1 . 용융 및 주조

3kg의 AZ91 합금을 700 ± 5 °C의 연강 도가니에서 녹였습니다. AZ91 합금의 조성은 표 1 에 나타내었다 . 가열하기 전에 잉곳 표면의 모든 산화물 스케일을 기계가공으로 제거했습니다. 사용 된 커버 가스는 0.5 %이었다 SF 6 / 공기 또는 0.5 % SF 6 / CO 2 (부피. %) 다른 주물 6L / 분의 유량. 용융물은 15분 동안 0.3L/min의 유속으로 아르곤으로 가스를 제거한 다음 [41 , 42] , 모래 주형에 부었습니다. 붓기 전에 샌드 몰드 캐비티를 20분 동안 커버 가스로 플러싱했습니다 [22] . 잔류 용융물(약 1kg)이 도가니에서 응고되었습니다.

표 1 . 본 연구에 사용된 AZ91 합금의 조성(wt%).

아연미네소타마그네슘
9.40.610.150.020.0050.0017잔여

그림 1 (a)는 러너가 있는 주물의 치수를 보여줍니다. 탑 필링 시스템은 최종 주물에서 연행 결함을 생성하기 위해 의도적으로 사용되었습니다. Green과 Campbell [7 , 43] 은 탑 필링 시스템이 바텀 필링 시스템에 비해 주조 과정에서 더 많은 연행 현상(즉, 이중 필름)을 유발한다고 제안했습니다. 이 금형의 용융 흐름 시뮬레이션(Flow-3D 소프트웨어)은 연행 현상에 관한 Reilly의 모델 [44] 을 사용하여 최종 주조에 많은 양의 이중막이 포함될 것이라고 예측했습니다( 그림 1 에서 검은색 입자로 표시됨) . NS).

그림 1

수축 결함은 또한 주물의 기계적 특성과 재현성에 영향을 미칩니다. 이 연구는 주조 품질에 대한 이중 필름의 영향에 초점을 맞추었기 때문에 수축 결함이 발생하지 않도록 금형을 의도적으로 설계했습니다. ProCAST 소프트웨어를 사용한 응고 시뮬레이션은 그림 1c 와 같이 최종 주조에 수축 결함이 포함되지 않음을 보여주었습니다 . 캐스팅 건전함도 테스트바 가공 전 실시간 X-ray를 통해 확인했다.

모래 주형은 1wt를 함유한 수지 결합된 규사로 만들어졌습니다. % PEPSET 5230 수지 및 1wt. % PEPSET 5112 촉매. 모래는 또한 억제제로 작용하기 위해 2중량%의 Na 2 SiF 6 을 함유했습니다 .. 주입 온도는 700 ± 5 °C였습니다. 응고 후 러너바의 단면을 Sci-Lab Analytical Ltd로 보내 H 함량 분석(LECO 분석)을 하였고, 모든 H 함량 측정은 주조 공정 후 5일째에 실시하였다. 각각의 주물은 인장 강도 시험을 위해 클립 신장계가 있는 Zwick 1484 인장 시험기를 사용하여 40개의 시험 막대로 가공되었습니다. 파손된 시험봉의 파단면을 주사전자현미경(SEM, Philips JEOL7000)을 이용하여 가속전압 5~15kV로 조사하였다. 파손된 시험 막대, 도가니에서 응고된 잔류 Mg 합금 및 주조 러너를 동일한 SEM을 사용하여 단면화하고 연마하고 검사했습니다. CFEI Quanta 3D FEG FIB-SEM을 사용하여 FIB(집속 이온 빔 밀링 기술)에 의해 테스트 막대 파괴 표면에서 발견된 산화막의 단면을 노출했습니다. 분석에 필요한 산화막은 백금층으로 코팅하였다. 그런 다음 30kV로 가속된 갈륨 이온 빔이 산화막의 단면을 노출시키기 위해 백금 코팅 영역을 둘러싼 재료 기판을 밀링했습니다. 산화막 단면의 EDS 분석은 30kV의 가속 전압에서 FIB 장비를 사용하여 수행되었습니다.

2.2 . 산화 세포

전술 한 바와 같이, 몇몇 최근 연구자들은 마그네슘 합금의 용탕 표면에 형성된 보호막 조사 [38 , 39 , [46] , [47] , [48] , [49] , [50] , [51] , [52 ] . 이 실험 동안 사용된 커버 가스의 양이 충분하여 커버 가스에서 불화물의 고갈을 억제했습니다. 이 섹션에서 설명하는 실험은 엔트레인먼트 결함의 산화막의 진화를 연구하기 위해 커버 가스의 공급을 제한하는 밀봉된 산화 셀을 사용했습니다. 산화 셀에 포함된 커버 가스는 큰 크기의 “동반된 기포”로 간주되었습니다.

도 2에 도시된 바와 같이 , 산화셀의 본체는 내부 길이가 400mm, 내경이 32mm인 폐쇄형 연강관이었다. 수냉식 동관을 전지의 상부에 감았습니다. 튜브가 가열될 때 냉각 시스템은 상부와 하부 사이에 온도 차이를 만들어 내부 가스가 튜브 내에서 대류하도록 했습니다. 온도는 도가니 상단에 위치한 K형 열전대로 모니터링했습니다. Nieet al. [53] 은 Mg 합금 용융물의 표면 피막을 조사할 때 SF 6 커버 가스가 유지로의 강철 벽과 반응할 것이라고 제안했습니다 . 이 반응을 피하기 위해 강철 산화 전지의 내부 표면(그림 2 참조)) 및 열전대의 상반부는 질화붕소로 코팅되었습니다(Mg 합금은 질화붕소와 ​​접촉하지 않았습니다).

그림 2

실험 중에 고체 AZ91 합금 블록을 산화 셀 바닥에 위치한 마그네시아 도가니에 넣었습니다. 전지는 1L/min의 가스 유속으로 전기 저항로에서 100℃로 가열되었다. 원래의 갇힌 대기(즉, 공기)를 대체하기 위해 셀을 이 온도에서 20분 동안 유지했습니다. 그런 다음, 산화 셀을 700°C로 더 가열하여 AZ91 샘플을 녹였습니다. 그런 다음 가스 입구 및 출구 밸브가 닫혀 제한된 커버 가스 공급 하에서 산화를 위한 밀폐된 환경이 생성되었습니다. 그런 다음 산화 전지를 5분 간격으로 5분에서 30분 동안 700 ± 10°C에서 유지했습니다. 각 유지 시간이 끝날 때 세포를 물로 켄칭했습니다. 실온으로 냉각한 후 산화된 샘플을 절단하고 연마한 다음 SEM으로 검사했습니다.

3 . 결과

3.1 . SF 6 /air 에서 형성된 엔트레인먼트 결함의 구조 및 구성

0.5 % SF의 커버 가스 하에서 AZ91 주물에 형성된 유입 결함의 구조 및 조성 6 / 공기는 SEM 및 EDS에 의해 관찰되었다. 결과는 그림 3에 스케치된 엔트레인먼트 결함의 두 가지 유형이 있음을 나타냅니다 . (1) 산화막이 전통적인 단층 구조를 갖는 유형 A 결함 및 (2) 산화막이 2개 층을 갖는 유형 B 결함. 이러한 결함의 세부 사항은 다음에 소개되었습니다. 여기에서 비말동반 결함은 생물막 또는 이중 산화막으로도 알려져 있기 때문에 B형 결함의 산화막은 본 연구에서 “다층 산화막” 또는 “다층 구조”로 언급되었습니다. “이중 산화막 결함의 이중층 산화막”과 같은 혼란스러운 설명을 피하기 위해.

그림 3

그림 4 (ab)는 약 0.4μm 두께의 조밀한 단일층 산화막을 갖는 Type A 결함을 보여줍니다. 이 필름에서 산소, 불소, 마그네슘 및 알루미늄이 검출되었습니다( 그림 4c). 산화막은 마그네슘과 알루미늄의 산화물과 불화물의 혼합물로 추측됩니다. 불소의 검출은 동반된 커버 가스가 이 결함의 형성에 포함되어 있음을 보여주었습니다. 즉, Fig. 4 (a)에 나타난 기공 은 수축결함이나 수소기공도가 아니라 연행결함이었다. 알루미늄의 검출은 Xiong과 Wang의 이전 연구 [47 , 48] 와 다르며 , SF 6으로 보호된 AZ91 용융물의 표면 필름에 알루미늄이 포함되어 있지 않음을 보여주었습니다.커버 가스. 유황은 원소 맵에서 명확하게 인식할 수 없었지만 해당 ESD 스펙트럼에서 S-피크가 있었습니다.

그림 4

도 5 (ab)는 다층 산화막을 갖는 Type B 엔트레인먼트 결함을 나타낸다. 산화막의 조밀한 외부 층은 불소와 산소가 풍부하지만( 그림 5c) 상대적으로 다공성인 내부 층은 산소만 풍부하고(즉, 불소가 부족) 부분적으로 함께 성장하여 샌드위치 모양을 형성합니다. 구조. 따라서 외층은 불화물과 산화물의 혼합물이며 내층은 주로 산화물로 추정된다. 황은 EDX 스펙트럼에서만 인식될 수 있었고 요소 맵에서 명확하게 식별할 수 없었습니다. 이는 커버 가스의 작은 S 함량(즉, SF 6 의 0.5% 부피 함량 때문일 수 있음)커버 가스). 이 산화막에서는 이 산화막의 외층에 알루미늄이 포함되어 있지만 내층에서는 명확하게 검출할 수 없었다. 또한 Al의 분포가 고르지 않은 것으로 보입니다. 결함의 우측에는 필름에 알루미늄이 존재하지만 그 농도는 매트릭스보다 높은 것으로 식별할 수 없음을 알 수 있다. 그러나 결함의 왼쪽에는 알루미늄 농도가 훨씬 높은 작은 영역이 있습니다. 이러한 알루미늄의 불균일한 분포는 다른 결함(아래 참조)에서도 관찰되었으며, 이는 필름 내부 또는 아래에 일부 산화물 입자가 형성된 결과입니다.

그림 5

무화과 도 4 및 5 는 SF 6 /air 의 커버 가스 하에 주조된 AZ91 합금 샘플에서 형성된 연행 결함의 횡단면 관찰을 나타낸다 . 2차원 단면에서 관찰된 수치만으로 연행 결함을 특성화하는 것만으로는 충분하지 않습니다. 더 많은 이해를 돕기 위해 테스트 바의 파단면을 관찰하여 엔트레인먼트 결함(즉, 산화막)의 표면을 더 연구했습니다.

Fig. 6 (a)는 SF 6 /air 에서 생산된 AZ91 합금 인장시험봉의 파단면을 보여준다 . 파단면의 양쪽에서 대칭적인 어두운 영역을 볼 수 있습니다. 그림 6 (b)는 어두운 영역과 밝은 영역 사이의 경계를 보여줍니다. 밝은 영역은 들쭉날쭉하고 부서진 특징으로 구성되어 있는 반면, 어두운 영역의 표면은 비교적 매끄럽고 평평했습니다. 또한 EDS 결과( Fig. 6 c-d 및 Table 2) 불소, 산소, 황 및 질소는 어두운 영역에서만 검출되었으며, 이는 어두운 영역이 용융물에 동반된 표면 보호 필름임을 나타냅니다. 따라서 어두운 영역은 대칭적인 특성을 고려할 때 연행 결함이라고 제안할 수 있습니다. Al-합금 주조물의 파단면에서 유사한 결함이 이전에 보고되었습니다 [7] . 질화물은 테스트 바 파단면의 산화막에서만 발견되었지만 그림 1과 그림 4에 표시된 단면 샘플에서는 검출되지 않았습니다 4 및 5 . 근본적인 이유는 이러한 샘플에 포함된 질화물이 샘플 연마 과정에서 가수분해되었을 수 있기 때문입니다 [54] .

그림 6

표 2 . EDS 결과(wt.%)는 그림 6에 표시된 영역에 해당합니다 (커버 가스: SF 6 /공기).

영형마그네슘NS아연NSNS
그림 6 (b)의 어두운 영역3.481.3279.130.4713.630.570.080.73
그림 6 (b)의 밝은 영역3.5884.4811.250.68

도 1 및 도 2에 도시된 결함의 단면 관찰과 함께 도 4 및 도 5 를 참조하면, 인장 시험봉에 포함된 연행 결함의 구조를 도 6 (e) 와 같이 스케치하였다 . 결함에는 산화막으로 둘러싸인 동반된 가스가 포함되어 있어 테스트 바 내부에 보이드 섹션이 생성되었습니다. 파괴 과정에서 결함에 인장력이 가해지면 균열이 가장 약한 경로를 따라 전파되기 때문에 보이드 섹션에서 균열이 시작되어 연행 결함을 따라 전파됩니다 [55] . 따라서 최종적으로 시험봉이 파단되었을 때 Fig. 6 (a) 와 같이 시험봉의 양 파단면에 연행결함의 산화피막이 나타났다 .

3.2 . SF 6 /CO 2 에 형성된 연행 결함의 구조 및 조성

SF 6 /air 에서 형성된 엔트레인먼트 결함과 유사하게, 0.5% SF 6 /CO 2 의 커버 가스 아래에서 형성된 결함 도 두 가지 유형의 산화막(즉, 단층 및 다층 유형)을 가졌다. 도 7 (a)는 다층 산화막을 포함하는 엔트레인먼트 결함의 예를 도시한다. 결함에 대한 확대 관찰( 그림 7b )은 산화막의 내부 층이 함께 성장하여 SF 6 /air 의 분위기에서 형성된 결함과 유사한 샌드위치 같은 구조를 나타냄을 보여줍니다 ( 그림 7b). 5 나 ). EDS 스펙트럼( 그림 7c) 이 샌드위치형 구조의 접합부(내층)는 주로 산화마그네슘을 함유하고 있음을 보여주었다. 이 EDS 스펙트럼에서는 불소, 황, 알루미늄의 피크가 확인되었으나 그 양은 상대적으로 적었다. 대조적으로, 산화막의 외부 층은 조밀하고 불화물과 산화물의 혼합물로 구성되어 있습니다( 그림 7d-e).

그림 7

Fig. 8 (a)는 0.5%SF 6 /CO 2 분위기에서 제작된 AZ91 합금 인장시험봉의 파단면의 연행결함을 보여준다 . 상응하는 EDS 결과(표 3)는 산화막이 불화물과 산화물을 함유함을 보여주었다. 황과 질소는 검출되지 않았습니다. 게다가, 확대 관찰(  8b)은 산화막 표면에 반점을 나타내었다. 반점의 직경은 수백 나노미터에서 수 마이크론 미터까지 다양했습니다.

그림 8

산화막의 구조와 조성을 보다 명확하게 나타내기 위해 테스트 바 파단면의 산화막 단면을 FIB 기법을 사용하여 현장에서 노출시켰다( 그림 9 ). 도 9a에 도시된 바와 같이 , 백금 코팅층과 Mg-Al 합금 기재 사이에 연속적인 산화피막이 발견되었다. 그림 9 (bc)는 다층 구조( 그림 9c 에서 빨간색 상자로 표시)를 나타내는 산화막에 대한 확대 관찰을 보여줍니다 . 바닥층은 불소와 산소가 풍부하고 불소와 산화물의 혼합물이어야 합니다 . 5 와 7, 유일한 산소가 풍부한 최상층은 도 1 및 도 2에 도시 된 “내층”과 유사하였다 5 및 7 .

그림 9

연속 필름을 제외하고 도 9 에 도시된 바와 같이 연속 필름 내부 또는 하부에서도 일부 개별 입자가 관찰되었다 . 그림 9( b) 의 산화막 좌측에서 Al이 풍부한 입자가 검출되었으며, 마그네슘과 산소 원소도 풍부하게 함유하고 있어 스피넬 Mg 2 AlO 4 로 추측할 수 있다 . 이러한 Mg 2 AlO 4 입자의 존재는 Fig. 5 와 같이 관찰된 필름의 작은 영역에 높은 알루미늄 농도와 알루미늄의 불균일한 분포의 원인이 된다 .(씨). 여기서 강조되어야 할 것은 연속 산화막의 바닥층의 다른 부분이 이 Al이 풍부한 입자보다 적은 양의 알루미늄을 함유하고 있지만, 그림 9c는 이 바닥층의 알루미늄 양이 여전히 무시할 수 없는 수준임을 나타냅니다 . , 특히 필름의 외층과 비교할 때. 도 9b에 도시된 산화막의 우측 아래에서 입자가 검출되어 Mg와 O가 풍부하여 MgO인 것으로 추측되었다. Wang의 결과에 따르면 [56], Mg 용융물과 Mg 증기의 산화에 의해 Mg 용융물의 표면에 많은 이산 MgO 입자가 형성될 수 있다. 우리의 현재 연구에서 관찰된 MgO 입자는 같은 이유로 인해 형성될 수 있습니다. 실험 조건의 차이로 인해 더 적은 Mg 용융물이 기화되거나 O2와 반응할 수 있으므로 우리 작업에서 형성되는 MgO 입자는 소수에 불과합니다. 또한 필름에서 풍부한 탄소가 발견되어 CO 2 가 용융물과 반응하여 탄소 또는 탄화물을 형성할 수 있음을 보여줍니다 . 이 탄소 농도는 표 3에 나타낸 산화막의 상대적으로 높은 탄소 함량 (즉, 어두운 영역) 과 일치하였다 . 산화막 옆 영역.

표 3 . 도 8에 도시된 영역에 상응하는 EDS 결과(wt.%) (커버 가스: SF 6 / CO 2 ).

영형마그네슘NS아연NSNS
그림 8 (a)의 어두운 영역7.253.6469.823.827.030.86
그림 8 (a)의 밝은 영역2.100.4482.8313.261.36

테스트 바 파단면( 도 9 ) 에서 산화막의 이 단면 관찰은 도 6 (e)에 도시된 엔트레인먼트 결함의 개략도를 추가로 확인했다 . SF 6 /CO 2 와 SF 6 /air 의 서로 다른 분위기에서 형성된 엔트레인먼트 결함 은 유사한 구조를 가졌지만 그 조성은 달랐다.

3.3 . 산화 전지에서 산화막의 진화

섹션 3.1 및 3.2 의 결과 는 SF 6 /air 및 SF 6 /CO 2 의 커버 가스 아래에서 AZ91 주조에서 형성된 연행 결함의 구조 및 구성을 보여줍니다 . 산화 반응의 다른 단계는 연행 결함의 다른 구조와 조성으로 이어질 수 있습니다. Campbell은 동반된 가스가 주변 용융물과 반응할 수 있다고 추측했지만 Mg 합금 용융물과 포획된 커버 가스 사이에 반응이 발생했다는 보고는 거의 없습니다. 이전 연구자들은 일반적으로 개방된 환경에서 Mg 합금 용융물과 커버 가스 사이의 반응에 초점을 맞췄습니다 [38 , 39 , [46] , [47][48] , [49] , [50] , [51] , [52] , 이는 용융물에 갇힌 커버 가스의 상황과 다릅니다. AZ91 합금에서 엔트레인먼트 결함의 형성을 더 이해하기 위해 엔트레인먼트 결함의 산화막의 진화 과정을 산화 셀을 사용하여 추가로 연구했습니다.

.도 10 (a 및 d) 0.5 % 방송 SF 보호 산화 셀에서 5 분 동안 유지 된 표면 막 (6) / 공기. 불화물과 산화물(MgF 2 와 MgO) 로 이루어진 단 하나의 층이 있었습니다 . 이 표면 필름에서. 황은 EDS 스펙트럼에서 검출되었지만 그 양이 너무 적어 원소 맵에서 인식되지 않았습니다. 이 산화막의 구조 및 조성은 도 4 에 나타낸 엔트레인먼트 결함의 단층막과 유사하였다 .

그림 10

10분의 유지 시간 후, 얇은 (O,S)가 풍부한 상부층(약 700nm)이 예비 F-농축 필름에 나타나 그림 10 (b 및 e) 에서와 같이 다층 구조를 형성했습니다 . ). (O, S)가 풍부한 최상층의 두께는 유지 시간이 증가함에 따라 증가했습니다. Fig. 10 (c, f) 에서 보는 바와 같이 30분간 유지한 산화막도 다층구조를 가지고 있으나 (O,S)가 풍부한 최상층(약 2.5μm)의 두께가 10분 산화막의 그것. 도 10 (bc) 에 도시 된 다층 산화막 은 도 5에 도시된 샌드위치형 결함의 막과 유사한 외관을 나타냈다 .

도 10에 도시된 산화막의 상이한 구조는 커버 가스의 불화물이 AZ91 합금 용융물과의 반응으로 인해 우선적으로 소모될 것임을 나타내었다. 불화물이 고갈된 후, 잔류 커버 가스는 액체 AZ91 합금과 추가로 반응하여 산화막에 상부 (O, S)가 풍부한 층을 형성했습니다. 따라서 도 1 및 도 3에 도시된 연행 결함의 상이한 구조 및 조성 4 와 5 는 용융물과 갇힌 커버 가스 사이의 진행 중인 산화 반응 때문일 수 있습니다.

이 다층 구조는 Mg 합금 용융물에 형성된 보호 표면 필름에 관한 이전 간행물 [38 , [46] , [47] , [48] , [49] , [50] , [51] 에서 보고되지 않았습니다 . . 이는 이전 연구원들이 무제한의 커버 가스로 실험을 수행했기 때문에 커버 가스의 불화물이 고갈되지 않는 상황을 만들었기 때문일 수 있습니다. 따라서 엔트레인먼트 결함의 산화피막은 도 10에 도시된 산화피막과 유사한 거동특성을 가지나 [38 ,[46] , [47] , [48] , [49] , [50] , [51] .

SF 유지 산화막와 마찬가지로 6 / 공기, SF에 형성된 산화물 막 (6) / CO 2는 또한 세포 산화 다른 유지 시간과 다른 구조를 가지고 있었다. .도 11 (a)는 AZ91 개최 산화막, 0.5 %의 커버 가스 하에서 SF 표면 용융 도시 6 / CO 2, 5 분. 이 필름은 MgF 2 로 이루어진 단층 구조를 가졌다 . 이 영화에서는 MgO의 존재를 확인할 수 없었다. 30분의 유지 시간 후, 필름은 다층 구조를 가졌다; 내부 층은 조밀하고 균일한 외관을 가지며 MgF 2 로 구성 되고 외부 층은 MgF 2 혼합물및 MgO. 0.5%SF 6 /air 에서 형성된 표면막과 다른 이 막에서는 황이 검출되지 않았다 . 따라서, 0.5%SF 6 /CO 2 의 커버 가스 내의 불화물 도 막 성장 과정의 초기 단계에서 우선적으로 소모되었다. SF 6 /air 에서 형성된 막과 비교하여 SF 6 /CO 2 에서 형성된 막에서 MgO 는 나중에 나타났고 황화물은 30분 이내에 나타나지 않았다. 이는 SF 6 /air 에서 필름의 형성과 진화 가 SF 6 /CO 2 보다 빠르다 는 것을 의미할 수 있습니다 . CO 2 후속적으로 용융물과 반응하여 MgO를 형성하는 반면, 황 함유 화합물은 커버 가스에 축적되어 반응하여 매우 늦은 단계에서 황화물을 형성할 수 있습니다(산화 셀에서 30분 후).

그림 11

4 . 논의

4.1 . SF 6 /air 에서 형성된 연행 결함의 진화

Outokumpu HSC Chemistry for Windows( http://www.hsc-chemistry.net/ )의 HSC 소프트웨어를 사용하여 갇힌 기체와 액체 AZ91 합금 사이에서 발생할 수 있는 반응을 탐색하는 데 필요한 열역학 계산을 수행했습니다. 계산에 대한 솔루션은 소량의 커버 가스(즉, 갇힌 기포 내의 양)와 AZ91 합금 용융물 사이의 반응 과정에서 어떤 생성물이 가장 형성될 가능성이 있는지 제안합니다.

실험에서 압력은 1기압으로, 온도는 700°C로 설정했습니다. 커버 가스의 사용량은 7 × 10으로 가정 하였다 -7  약 0.57 cm의 양으로 kg 3 (3.14 × 10 -6  0.5 % SF위한 kmol) 6 / 공기, 0.35 cm (3) (3.12 × 10 – 8  kmol) 0.5%SF 6 /CO 2 . 포획된 가스와 접촉하는 AZ91 합금 용융물의 양은 모든 반응을 완료하기에 충분한 것으로 가정되었습니다. SF 6 의 분해 생성물 은 SF 5 , SF 4 , SF 3 , SF 2 , F 2 , S(g), S 2(g) 및 F(g) [57] , [58] , [59] , [60] .

그림 12 는 AZ91 합금과 0.5%SF 6 /air 사이의 반응에 대한 열역학적 계산의 평형 다이어그램을 보여줍니다 . 다이어그램에서 10 -15  kmol 미만의 반응물 및 생성물은 표시되지 않았습니다. 이는 존재 하는 SF 6 의 양 (≈ 1.57 × 10 -10  kmol) 보다 5배 적 으므로 영향을 미치지 않습니다. 실제적인 방법으로 과정을 관찰했습니다.

그림 12

이 반응 과정은 3단계로 나눌 수 있다.

1단계 : 불화물의 형성. AZ91 용융물은 SF 6 및 그 분해 생성물과 우선적으로 반응하여 MgF 2 , AlF 3 및 ZnF 2 를 생성 합니다. 그러나 ZnF 2 의 양 이 너무 적어서 실제적으로 검출되지  않았을 수 있습니다(  MgF 2 의 3 × 10 -10 kmol에 비해 ZnF 2 1.25 × 10 -12 kmol ). 섹션 3.1 – 3.3에 표시된 모든 산화막 . 한편, 잔류 가스에 황이 SO 2 로 축적되었다 .

2단계 : 산화물의 형성. 액체 AZ91 합금이 포획된 가스에서 사용 가능한 모든 불화물을 고갈시킨 후, Mg와의 반응으로 인해 AlF 3 및 ZnF 2 의 양이 빠르게 감소했습니다. O 2 (g) 및 SO 2 는 AZ91 용융물과 반응하여 MgO, Al 2 O 3 , MgAl 2 O 4 , ZnO, ZnSO 4 및 MgSO 4 를 형성 합니다. 그러나 ZnO 및 ZnSO 4 의 양은 EDS에 의해 실제로 발견되기에는 너무 적었을 것입니다(예: 9.5 × 10 -12  kmol의 ZnO, 1.38 × 10 -14  kmol의 ZnSO 4 , 대조적으로 4.68 × 10−10  kmol의 MgF 2 , X 축의 AZ91 양 이 2.5 × 10 -9  kmol일 때). 실험 사례에서 커버 가스의 F 농도는 매우 낮고 전체 농도 f O는 훨씬 높습니다. 따라서 1단계와 2단계, 즉 불화물과 산화물의 형성은 반응 초기에 동시에 일어나 그림 1과 2와 같이 불화물과 산화물의 가수층 혼합물이 형성될 수 있다 . 4 및 10 (a). 내부 층은 산화물로 구성되어 있지만 불화물은 커버 가스에서 F 원소가 완전히 고갈된 후에 형성될 수 있습니다.

단계 1-2는 도 10 에 도시 된 다층 구조의 형성 과정을 이론적으로 검증하였다 .

산화막 내의 MgAl 2 O 4 및 Al 2 O 3 의 양은 도 4에 도시된 산화막과 일치하는 검출하기에 충분한 양이었다 . 그러나, 도 10 에 도시된 바와 같이, 산화셀에서 성장된 산화막에서는 알루미늄의 존재를 인식할 수 없었다 . 이러한 Al의 부재는 표면 필름과 AZ91 합금 용융물 사이의 다음 반응으로 인한 것일 수 있습니다.(1)

Al 2 O 3  + 3Mg + = 3MgO + 2Al, △G(700°C) = -119.82 kJ/mol(2)

Mg + MgAl 2 O 4  = MgO + Al, △G(700°C) = -106.34 kJ/mol이는 반응물이 서로 완전히 접촉한다는 가정 하에 열역학적 계산이 수행되었기 때문에 HSC 소프트웨어로 시뮬레이션할 수 없었습니다. 그러나 실제 공정에서 AZ91 용융물과 커버 가스는 보호 표면 필름의 존재로 인해 서로 완전히 접촉할 수 없습니다.

3단계 : 황화물과 질화물의 형성. 30분의 유지 시간 후, 산화 셀의 기상 불화물 및 산화물이 고갈되어 잔류 가스와 용융 반응을 허용하여 초기 F-농축 또는 (F, O )이 풍부한 표면 필름, 따라서 그림 10 (b 및 c)에 표시된 관찰된 다층 구조를 생성합니다 . 게다가, 질소는 모든 반응이 완료될 때까지 AZ91 용융물과 반응했습니다. 도 6 에 도시 된 산화막 은 질화물 함량으로 인해 이 반응 단계에 해당할 수 있다. 그러나, 그 결과는 도 1 및 도 5에 도시 된 연마된 샘플에서 질화물이 검출되지 않음을 보여준다. 4 와 5, 그러나 테스트 바 파단면에서만 발견됩니다. 질화물은 다음과 같이 샘플 준비 과정에서 가수분해될 수 있습니다 [54] .(삼)

Mg 3 N 2  + 6H 2 O = 3Mg(OH) 2  + 2NH 3 ↑(4)

AlN+ 3H 2 O = Al(OH) 3  + NH 3 ↑

또한 Schmidt et al. [61] 은 Mg 3 N 2 와 AlN이 반응하여 3원 질화물(Mg 3 Al n N n+2, n=1, 2, 3…) 을 형성할 수 있음을 발견했습니다 . HSC 소프트웨어에는 삼원 질화물 데이터베이스가 포함되어 있지 않아 계산에 추가할 수 없습니다. 이 단계의 산화막은 또한 삼원 질화물을 포함할 수 있습니다.

4.2 . SF 6 /CO 2 에서 형성된 연행 결함의 진화

도 13 은 AZ91 합금과 0.5%SF 6 /CO 2 사이의 열역학적 계산 결과를 보여준다 . 이 반응 과정도 세 단계로 나눌 수 있습니다.

그림 13

1단계 : 불화물의 형성. SF 6 및 그 분해 생성물은 AZ91 용융물에 의해 소비되어 MgF 2 , AlF 3 및 ZnF 2 를 형성했습니다 . 0.5% SF 6 /air 에서 AZ91의 반응에서와 같이 ZnF 2 의 양 이 너무 작아서 실제적으로 감지되지  않았습니다( 2.67 x 10 -10  kmol의 MgF 2 에 비해 ZnF 2 1.51 x 10 -13 kmol ). S와 같은 잔류 가스 트랩에 축적 유황 2 (g) 및 (S)의 일부분 (2) (g)가 CO와 반응하여 2 SO 형성하는 2및 CO. 이 반응 단계의 생성물은 도 11 (a)에 도시된 필름과 일치하며 , 이는 불화물만을 함유하는 단일 층 구조를 갖는다.

2단계 : 산화물의 형성. ALF 3 및 ZnF 2 MgF로 형성 용융 AZ91 마그네슘의 반응 2 , Al 및 Zn으로한다. SO 2 는 소모되기 시작하여 표면 필름에 산화물을 생성 하고 커버 가스에 S 2 (g)를 생성했습니다. 한편, CO 2 는 AZ91 용융물과 직접 반응하여 CO, MgO, ZnO 및 Al 2 O 3 를 형성 합니다. 도 1에 도시 된 산화막 9 및 11 (b)는 산소가 풍부한 층과 다층 구조로 인해 이 반응 단계에 해당할 수 있습니다.

커버 가스의 CO는 AZ91 용융물과 추가로 반응하여 C를 생성할 수 있습니다. 이 탄소는 온도가 감소할 때(응고 기간 동안) Mg와 추가로 반응하여 Mg 탄화물을 형성할 수 있습니다 [62] . 이것은 도 4에 도시된 산화막의 탄소 함량이 높은 이유일 수 있다 8 – 9 . Liang et al. [39] 또한 SO 2 /CO 2 로 보호된 AZ91 합금 표면 필름에서 탄소 검출을 보고했습니다 . 생성된 Al 2 O 3 는 MgO와 더 결합하여 MgAl 2 O [63]를 형성할 수 있습니다 . 섹션 4.1 에서 논의된 바와 같이, 알루미나 및 스피넬은 도 11 에 도시된 바와 같이 표면 필름에 알루미늄 부재를 야기하는 Mg와 반응할 수 있다 .

3단계 : 황화물의 형성. AZ91은 용융물 S 소비하기 시작 2 인 ZnS와 MGS 형성 갇힌 잔류 가스 (g)를. 이러한 반응은 반응 과정의 마지막 단계까지 일어나지 않았으며, 이는 Fig. 7 (c)에 나타난 결함의 S-함량 이 적은 이유일 수 있다 .

요약하면, 열역학적 계산은 AZ91 용융물이 커버 가스와 반응하여 먼저 불화물을 형성한 다음 마지막에 산화물과 황화물을 형성할 것임을 나타냅니다. 다른 반응 단계에서 산화막은 다른 구조와 조성을 가질 것입니다.

4.3 . 운반 가스가 동반 가스 소비 및 AZ91 주물의 재현성에 미치는 영향

SF 6 /air 및 SF 6 /CO 2 에서 형성된 연행 결함의 진화 과정은 4.1절 과 4.2  에서 제안되었습니다 . 이론적인 계산은 실제 샘플에서 발견되는 해당 산화막과 관련하여 검증되었습니다. 연행 결함 내의 대기는 Al-합금 시스템과 다른 시나리오에서 액체 Mg-합금과의 반응으로 인해 효율적으로 소모될 수 있습니다(즉, 연행된 기포의 질소가 Al-합금 용융물과 효율적으로 반응하지 않을 것입니다 [64 , 65] 그러나 일반적으로 “질소 연소”라고 하는 액체 Mg 합금에서 질소가 더 쉽게 소모될 것입니다 [66] ).

동반된 가스와 주변 액체 Mg-합금 사이의 반응은 동반된 가스를 산화막 내에서 고체 화합물(예: MgO)로 전환하여 동반 결함의 공극 부피를 감소시켜 결함(예: 공기의 동반된 가스가 주변의 액체 Mg 합금에 의해 고갈되면 용융 온도가 700 °C이고 액체 Mg 합금의 깊이가 10 cm라고 가정할 때 최종 고체 제품의 총 부피는 0.044가 됩니다. 갇힌 공기가 취한 초기 부피의 %).

연행 결함의 보이드 부피 감소와 해당 주조 특성 사이의 관계는 알루미늄 합금 주조에서 널리 연구되었습니다. Nyahumwa와 Campbell [16] 은 HIP(Hot Isostatic Pressing) 공정이 Al-합금 주물의 연행 결함이 붕괴되고 산화물 표면이 접촉하게 되었다고 보고했습니다. 주물의 피로 수명은 HIP 이후 개선되었습니다. Nyahumwa와 Campbell [16] 도 서로 접촉하고 있는 이중 산화막의 잠재적인 결합을 제안했지만 이를 뒷받침하는 직접적인 증거는 없었습니다. 이 결합 현상은 Aryafar et.al에 의해 추가로 조사되었습니다. [8], 그는 강철 튜브에서 산화물 스킨이 있는 두 개의 Al-합금 막대를 다시 녹인 다음 응고된 샘플에 대해 인장 강도 테스트를 수행했습니다. 그들은 Al-합금 봉의 산화물 스킨이 서로 강하게 결합되어 용융 유지 시간이 연장됨에 따라 더욱 강해짐을 발견했으며, 이는 이중 산화막 내 동반된 가스의 소비로 인한 잠재적인 “치유” 현상을 나타냅니다. 구조. 또한 Raidszadeh와 Griffiths [9 , 19] 는 연행 가스가 반응하는 데 더 긴 시간을 갖도록 함으로써 응고 전 용융 유지 시간을 연장함으로써 Al-합금 주물의 재현성에 대한 연행 결함의 부정적인 영향을 성공적으로 줄였습니다. 주변이 녹습니다.

앞서 언급한 연구를 고려할 때, Mg 합금 주물에서 혼입 가스의 소비는 다음 두 가지 방식으로 혼입 결함의 부정적인 영향을 감소시킬 수 있습니다.

(1) 이중 산화막의 결합 현상 . 도 5 및 도 7 에 도시 된 샌드위치형 구조 는 이중 산화막 구조의 잠재적인 결합을 나타내었다. 그러나 산화막의 결합으로 인한 강도 증가를 정량화하기 위해서는 더 많은 증거가 필요합니다.

(2) 연행 결함의 보이드 체적 감소 . 주조품의 품질에 대한 보이드 부피 감소의 긍정적인 효과는 HIP 프로세스 [67]에 의해 널리 입증되었습니다 . 섹션 4.1 – 4.2 에서 논의된 진화 과정과 같이 , 동반된 가스와 주변 AZ91 합금 용융물 사이의 지속적인 반응으로 인해 동반 결함의 산화막이 함께 성장할 수 있습니다. 최종 고체 생성물의 부피는 동반된 기체에 비해 상당히 작았다(즉, 이전에 언급된 바와 같이 0.044%).

따라서, 혼입 가스의 소모율(즉, 산화막의 성장 속도)은 AZ91 합금 주물의 품질을 향상시키는 중요한 매개변수가 될 수 있습니다. 이에 따라 산화 셀의 산화막 성장 속도를 추가로 조사했습니다.

도 14 는 상이한 커버 가스(즉, 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 ) 에서의 표면 필름 성장 속도의 비교를 보여준다 . 필름 두께 측정을 위해 각 샘플의 15개의 임의 지점을 선택했습니다. 95% 신뢰구간(95%CI)은 막두께의 변화가 가우시안 분포를 따른다는 가정하에 계산하였다. 0.5%SF 6 /air 에서 형성된 모든 표면막이 0.5%SF 6 /CO 2 에서 형성된 것보다 빠르게 성장함을 알 수 있다 . 다른 성장률은 0.5%SF 6 /air 의 연행 가스 소비율 이 0.5%SF 6 /CO 2 보다 더 높음 을 시사했습니다., 이는 동반된 가스의 소비에 더 유리했습니다.

그림 14

산화 셀에서 액체 AZ91 합금과 커버 가스의 접촉 면적(즉, 도가니의 크기)은 많은 양의 용융물과 가스를 고려할 때 상대적으로 작았다는 점에 유의해야 합니다. 결과적으로, 산화 셀 내에서 산화막 성장을 위한 유지 시간은 비교적 길었다(즉, 5-30분). 하지만, 실제 주조에 함유 된 혼입 결함은 (상대적으로 매우 적은, 즉, 수 미크론의 크기에 도시 된 바와 같이 ,도 3. – 6 및 [7]), 동반된 가스는 주변 용융물로 완전히 둘러싸여 상대적으로 큰 접촉 영역을 생성합니다. 따라서 커버 가스와 AZ91 합금 용융물의 반응 시간은 비교적 짧을 수 있습니다. 또한 실제 Mg 합금 모래 주조의 응고 시간은 몇 분일 수 있습니다(예: Guo [68] 은 직경 60mm의 Mg 합금 모래 주조가 응고되는 데 4분이 필요하다고 보고했습니다). 따라서 Mg-합금 용융주조 과정에서 포획된 동반된 가스는 특히 응고 시간이 긴 모래 주물 및 대형 주물의 경우 주변 용융물에 의해 쉽게 소모될 것으로 예상할 수 있습니다.

따라서, 동반 가스의 다른 소비율과 관련된 다른 커버 가스(0.5%SF 6 /air 및 0.5%SF 6 /CO 2 )가 최종 주물의 재현성에 영향을 미칠 수 있습니다. 이 가정을 검증하기 위해 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 에서 생산된 AZ91 주물 을 기계적 평가를 위해 테스트 막대로 가공했습니다. Weibull 분석은 선형 최소 자승(LLS) 방법과 비선형 최소 자승(비 LLS) 방법을 모두 사용하여 수행되었습니다 [69] .

그림 15 (ab)는 LLS 방법으로 얻은 UTS 및 AZ91 합금 주물의 연신율의 전통적인 2-p 선형 Weibull 플롯을 보여줍니다. 사용된 추정기는 P= (i-0.5)/N이며, 이는 모든 인기 있는 추정기 중 가장 낮은 편향을 유발하는 것으로 제안되었습니다 [69 , 70] . SF 6 /air 에서 생산된 주물 은 UTS Weibull 계수가 16.9이고 연신율 Weibull 계수가 5.0입니다. 대조적으로, SF 6 /CO 2 에서 생산된 주물의 UTS 및 연신 Weibull 계수는 각각 7.7과 2.7로, SF 6 /CO 2 에 의해 보호된 주물의 재현성이 SF 6 /air 에서 생산된 것보다 훨씬 낮음을 시사합니다. .

그림 15

또한 저자의 이전 출판물 [69] 은 선형화된 Weibull 플롯의 단점을 보여주었으며, 이는 Weibull 추정 의 더 높은 편향과 잘못된 2 중단을 유발할 수 있습니다 . 따라서 그림 15 (cd) 와 같이 Non-LLS Weibull 추정이 수행되었습니다 . SF 6 /공기주조물 의 UTS Weibull 계수 는 20.8인 반면, SF 6 /CO 2 하에서 생산된 주조물의 UTS Weibull 계수는 11.4로 낮아 재현성에서 분명한 차이를 보였다. 또한 SF 6 /air elongation(El%) 데이터 세트는 SF 6 /CO 2 의 elongation 데이터 세트보다 더 높은 Weibull 계수(모양 = 5.8)를 가졌습니다.(모양 = 3.1). 따라서 LLS 및 Non-LLS 추정 모두 SF 6 /공기 주조가 SF 6 /CO 2 주조 보다 더 높은 재현성을 갖는다고 제안했습니다 . CO 2 대신 공기를 사용 하면 혼입된 가스의 더 빠른 소비에 기여하여 결함 내의 공극 부피를 줄일 수 있다는 방법을 지원합니다 . 따라서 0.5%SF 6 /CO 2 대신 0.5%SF 6 /air를 사용 하면(동반된 가스의 소비율이 증가함) AZ91 주물의 재현성이 향상되었습니다.

그러나 모든 Mg 합금 주조 공장이 현재 작업에서 사용되는 주조 공정을 따랐던 것은 아니라는 점에 유의해야 합니다. Mg의 합금 용탕 본 작업은 탈기에 따라서, 동반 가스의 소비에 수소의 영향을 감소 (즉, 수소 잠재적 동반 가스의 고갈 억제, 동반 된 기체로 확산 될 수있다 [7 , 71 , 72] ). 대조적으로, 마그네슘 합금 주조 공장에서는 마그네슘을 주조할 때 ‘가스 문제’가 없고 따라서 인장 특성에 큰 변화가 없다고 널리 믿어지기 때문에 마그네슘 합금 용융물은 일반적으로 탈기되지 않습니다 [73] . 연구에 따르면 Mg 합금 주물의 기계적 특성에 대한 수소의 부정적인 영향 [41 ,42 , 73] , 탈기 공정은 마그네슘 합금 주조 공장에서 여전히 인기가 없습니다.

또한 현재 작업에서 모래 주형 공동은 붓기 전에 SF 6 커버 가스 로 플러싱되었습니다 [22] . 그러나 모든 Mg 합금 주조 공장이 이러한 방식으로 금형 캐비티를 플러싱한 것은 아닙니다. 예를 들어, Stone Foundry Ltd(영국)는 커버 가스 플러싱 대신 유황 분말을 사용했습니다. 그들의 주물 내의 동반된 가스 는 보호 가스라기 보다는 SO 2 /공기일 수 있습니다 .

따라서 본 연구의 결과는 CO 2 대신 공기를 사용 하는 것이 최종 주조의 재현성을 향상시키는 것으로 나타났지만 다른 산업용 Mg 합금 주조 공정과 관련하여 캐리어 가스의 영향을 확인하기 위해서는 여전히 추가 조사가 필요합니다.

7 . 결론

1.

AZ91 합금에 형성된 연행 결함이 관찰되었습니다. 그들의 산화막은 단층과 다층의 두 가지 유형의 구조를 가지고 있습니다. 다층 산화막은 함께 성장하여 최종 주조에서 샌드위치 같은 구조를 형성할 수 있습니다.2.

실험 결과와 이론적인 열역학적 계산은 모두 갇힌 가스의 불화물이 황을 소비하기 전에 고갈되었음을 보여주었습니다. 이중 산화막 결함의 3단계 진화 과정이 제안되었습니다. 산화막은 진화 단계에 따라 다양한 화합물 조합을 포함했습니다. SF 6 /air 에서 형성된 결함 은 SF 6 /CO 2 에서 형성된 것과 유사한 구조를 갖지만 산화막의 조성은 달랐다. 엔트레인먼트 결함의 산화막 형성 및 진화 과정은 이전에 보고된 Mg 합금 표면막(즉, MgF 2 이전에 형성된 MgO)의 것과 달랐다 .삼.

산화막의 성장 속도는 SF하에 큰 것으로 입증되었다 (6) / SF보다 공기 6 / CO 2 손상 봉입 가스의 빠른 소비에 기여한다. AZ91 합금 주물의 재현성은 SF 6 /CO 2 대신 SF 6 /air를 사용할 때 향상되었습니다 .

감사의 말

저자는 EPSRC LiME 보조금 EP/H026177/1의 자금 지원 과 WD Griffiths 박사와 Adrian Carden(버밍엄 대학교)의 도움을 인정합니다. 주조 작업은 University of Birmingham에서 수행되었습니다.

참조
[1]
MK McNutt , SALAZAR K.
마그네슘, 화합물 및 금속, 미국 지질 조사국 및 미국 내무부
레 스톤 , 버지니아 ( 2013 )
Google 학술검색
[2]
마그네슘
화합물 및 금속, 미국 지질 조사국 및 미국 내무부
( 1996 )
Google 학술검색
[삼]
I. Ostrovsky , Y. Henn
ASTEC’07 International Conference-New Challenges in Aeronautics , Moscow ( 2007 ) , pp. 1 – 5
8월 19-22일
Scopus에서 레코드 보기Google 학술검색
[4]
Y. Wan , B. Tang , Y. Gao , L. Tang , G. Sha , B. Zhang , N. Liang , C. Liu , S. Jiang , Z. Chen , X. Guo , Y. Zhao
액타 메이터. , 200 ( 2020 ) , 274 – 286 페이지
기사PDF 다운로드Scopus에서 레코드 보기
[5]
JTJ Burd , EA Moore , H. Ezzat , R. Kirchain , R. Roth
적용 에너지 , 283 ( 2021 ) , 제 116269 조
기사PDF 다운로드Scopus에서 레코드 보기
[6]
AM 루이스 , JC 켈리 , 조지아주 Keoleian
적용 에너지 , 126 ( 2014 ) , pp. 13 – 20
기사PDF 다운로드Scopus에서 레코드 보기
[7]
J. 캠벨
주물
버터워스-하이네만 , 옥스퍼드 ( 2004 )
Google 학술검색
[8]
M. Aryafar , R. Raiszadeh , A. Shalbafzadeh
J. 메이터. 과학. , 45 ( 2010 년 ) , PP. (3041) – 3051
교차 참조Scopus에서 레코드 보기
[9]
R. 라이자데 , WD 그리피스
메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 42 ( 2011 ) , 133 ~ 143페이지
교차 참조Scopus에서 레코드 보기
[10]
R. 라이자데 , WD 그리피스
J. 합금. Compd. , 491 ( 2010 ) , 575 ~ 580 쪽
기사PDF 다운로드Scopus에서 레코드 보기
[11]
L. Peng , G. Zeng , TC Su , H. Yasuda , K. Nogita , CM Gourlay
JOM , 71 ( 2019 ) , pp. 2235 – 2244
교차 참조Scopus에서 레코드 보기
[12]
S. Ganguly , AK Mondal , S. Sarkar , A. Basu , S. Kumar , C. Blawert
코로스. 과학. , 166 ( 2020 )
[13]
GE Bozchaloei , N. Varahram , P. Davami , SK 김
메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 548 ( 2012 ) , 99 ~ 105페이지
Scopus에서 레코드 보기
[14]
S. 폭스 , J. 캠벨
Scr. 메이터. , 43 ( 2000 ) , PP. 881 – 886
기사PDF 다운로드Scopus에서 레코드 보기
[15]
M. 콕스 , RA 하딩 , J. 캠벨
메이터. 과학. 기술. , 19 ( 2003 ) , 613 ~ 625페이지
Scopus에서 레코드 보기
[16]
C. Nyahumwa , NR Green , J. Campbell
메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 32 ( 2001 ) , 349 ~ 358 쪽
Scopus에서 레코드 보기
[17]
A. Ardekhani , R. Raiszadeh
J. 메이터. 영어 공연하다. , 21 ( 2012 ) , pp. 1352 – 1362
교차 참조Scopus에서 레코드 보기
[18]
X. Dai , X. Yang , J. Campbell , J. Wood
메이터. 과학. 기술. , 20 ( 2004 ) , 505 ~ 513 쪽
Scopus에서 레코드 보기
[19]
EM 엘갈라드 , MF 이브라힘 , HW 도티 , FH 사무엘
필로스. 잡지. , 98 ( 2018 ) , PP. 1337 – 1359
교차 참조Scopus에서 레코드 보기
[20]
WD 그리피스 , NW 라이
메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. 190 – 196
교차 참조Scopus에서 레코드 보기
[21]
AR Mirak , M. Divandari , SMA Boutorabi , J. 캠벨
국제 J. 캐스트 만났습니다. 해상도 , 20 ( 2007 ) , PP. 215 – 220
교차 참조Scopus에서 레코드 보기
[22]
C. 칭기
주조공학 연구실
Helsinki University of Technology , Espoo, Finland ( 2006 )
Google 학술검색
[23]
Y. Jia , J. Hou , H. Wang , Q. Le , Q. Lan , X. Chen , L. Bao
J. 메이터. 프로세스. 기술. , 278 ( 2020 ) , 제 116542 조
기사PDF 다운로드Scopus에서 레코드 보기
[24]
S. Ouyang , G. Yang , H. Qin , S. Luo , L. Xiao , W. Jie
메이터. 과학. 영어 A , 780 ( 2020 ) , 제 139138 조
기사PDF 다운로드Scopus에서 레코드 보기
[25]
에스엠. Xiong , X.-F. 왕
트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234
기사PDF 다운로드Scopus에서 레코드 보기
[26]
지브이리서치
그랜드뷰 리서치
( 2018 )
미국
Google 학술검색
[27]
T. 리 , J. 데이비스
메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 5,389 – (5400)
교차 참조Scopus에서 레코드 보기
[28]
JF Fruehling, 미시간 대학, 1970.
Google 학술검색
[29]
S. 쿨링
제36회 세계 마그네슘 연례 회의 , 노르웨이 ( 1979 ) , pp. 54 – 57
Scopus에서 레코드 보기Google 학술검색
[30]
S. Cashion , N. Ricketts , P. Hayes
J. 가벼운 만남. , 2 ( 2002 ) , 43 ~ 47페이지
기사PDF 다운로드Scopus에서 레코드 보기
[31]
S. Cashion , N. Ricketts , P. Hayes
J. 가벼운 만남. , 2 ( 2002 ) , PP. 37 – 42
기사PDF 다운로드Scopus에서 레코드 보기
[32]
K. Aarstad , G. Tranell , G. Pettersen , TA Engh
SF6에 의해 보호되는 마그네슘의 표면을 연구하는 다양한 기술
TMS ( 2003년 )
Google 학술검색
[33]
에스엠 Xiong , X.-L. 리우
메탈. 메이터. 트랜스. , 38 ( 2007 년 ) , PP. (428) – (434)
교차 참조Scopus에서 레코드 보기
[34]
T.-S. 시 , J.-B. Liu , P.-S. 웨이
메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지
기사PDF 다운로드Scopus에서 레코드 보기
[35]
G. Pettersen , E. Øvrelid , G. Tranell , J. Fenstad , H. Gjestland
메이터. 과학. 영어 , 332 ( 2002 ) , PP. (285) – (294)
기사PDF 다운로드Scopus에서 레코드 보기
[36]
H. Bo , LB Liu , ZP Jin
J. 합금. Compd. , 490 ( 2010 ) , 318 ~ 325 쪽
기사PDF 다운로드Scopus에서 레코드 보기
[37]
A. 미락 , C. 데이비슨 , J. 테일러
코로스. 과학. , 52 ( 2010 ) , PP. 1992 년 – 2000
기사PDF 다운로드Scopus에서 레코드 보기
[38]
BD 리 , UH 부리 , KW 리 , GS 한강 , JW 한
메이터. 트랜스. , 54 ( 2013 ) , 66 ~ 73페이지
Scopus에서 레코드 보기
[39]
WZ Liang , Q. Gao , F. Chen , HH Liu , ZH Zhao
China Foundry , 9 ( 2012 ) , pp. 226 – 230
교차 참조Scopus에서 레코드 보기
[40]
UI 골드슐레거 , EY 샤피로비치
연소. 폭발 충격파 , 35 ( 1999 ) , 637 ~ 644페이지
Scopus에서 레코드 보기
[41]
A. Elsayed , SL Sin , E. Vandersluis , J. Hill , S. Ahmad , C. Ravindran , S. Amer Foundry
트랜스. 오전. 파운드리 Soc. , 120 ( 2012 ) , 423 ~ 429페이지
Scopus에서 레코드 보기
[42]
E. Zhang , GJ Wang , ZC Hu
메이터. 과학. 기술. , 26 ( 2010 ) , 1253 ~ 1258페이지
Scopus에서 레코드 보기
[43]
NR 그린 , J. 캠벨
메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 173 ( 1993 ) , 261 ~ 266 쪽
기사PDF 다운로드Scopus에서 레코드 보기
[44]
C 라일리 , MR 졸리 , NR 그린
MCWASP XII 논문집 – 주조, 용접 및 고급 Solidifcation 프로세스의 12 모델링 , 밴쿠버, 캐나다 ( 2009 )
Google 학술검색
[45]
HE Friedrich, BL Mordike, Springer, 독일, 2006.
Google 학술검색
[46]
C. Zheng , BR Qin , XB Lou
기계, 산업 및 제조 기술에 관한 2010 국제 회의 , ASME ( 2010 ) , pp. 383 – 388
2010년 미트
교차 참조Scopus에서 레코드 보기Google 학술검색
[47]
SM Xiong , XF 왕
트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234
기사PDF 다운로드Scopus에서 레코드 보기
[48]
SM Xiong , XL Liu
메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. (428) – (434)
교차 참조Scopus에서 레코드 보기
[49]
TS Shih , JB Liu , PS Wei
메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지
기사PDF 다운로드Scopus에서 레코드 보기
[50]
K. Aarstad , G. Tranell , G. Pettersen , TA Engh
매그. 기술. ( 2003 ) , PP. (5) – (10)
Scopus에서 레코드 보기
[51]
G. Pettersen , E. Ovrelid , G. Tranell , J. Fenstad , H. Gjestland
메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 332 ( 2002 ) , 285 ~ 294페이지
기사PDF 다운로드Scopus에서 레코드 보기
[52]
XF 왕 , SM Xiong
코로스. 과학. , 66 ( 2013 ) , PP. 300 – 307
기사PDF 다운로드Scopus에서 레코드 보기
[53]
SH Nie , SM Xiong , BC Liu
메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 422 ( 2006 ) , 346 ~ 351페이지
기사PDF 다운로드Scopus에서 레코드 보기
[54]
C. Bauer , A. Mogessie , U. Galovsky
Zeitschrift 모피 Metallkunde , 97 ( 2006 ) , PP. (164) – (168)
교차 참조Scopus에서 레코드 보기
[55]
QG 왕 , D. Apelian , DA Lados
J. 가벼운 만남. , 1 ( 2001 ) , PP. (73) – 84
기사PDF 다운로드Scopus에서 레코드 보기
[56]
S. Wang , Y. Wang , Q. Ramasse , Z. Fan
메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 2957 – 2974
교차 참조Scopus에서 레코드 보기
[57]
S. Hayashi , W. Minami , T. Oguchi , HJ Kim
카그. 코그. 론분슈 , 35 ( 2009 ) , 411 ~ 415페이지
교차 참조Scopus에서 레코드 보기
[58]
K. 아르스타드
노르웨이 과학 기술 대학교
( 2004년 )
Google 학술검색
[59]
RL 윌킨스
J. Chem. 물리. , 51 ( 1969 ) , p. 853
-&
Scopus에서 레코드 보기
[60]
O. Kubaschewski , K. Hesselemam
무기물의 열화학적 성질
Springer-Verlag , 벨린 ( 1991 )
Google 학술검색
[61]
R. Schmidt , M. Strobele , K. Eichele , HJ Meyer
유로 J. Inorg. 화학 ( 2017 ) , PP. 2727 – 2735
교차 참조Scopus에서 레코드 보기
[62]
B. Hu , Y. Du , H. Xu , W. Sun , WW Zhang , D. Zhao
제이민 메탈. 분파. B-금속. , 46 ( 2010 ) , 97 ~ 103페이지
Scopus에서 레코드 보기
[63]
O. Salas , H. Ni , V. Jayaram , KC Vlach , CG Levi , R. Mehrabian
J. 메이터. 해상도 , 6 ( 1991 ) , 1964 ~ 1981페이지
Scopus에서 레코드 보기
[64]
SSS Kumari , UTS Pillai , BC 빠이
J. 합금. Compd. , 509 ( 2011 ) , pp. 2503 – 2509
기사PDF 다운로드Scopus에서 레코드 보기
[65]
H. Scholz , P. Greil
J. 메이터. 과학. , 26 ( 1991 ) , 669 ~ 677 쪽
Scopus에서 레코드 보기
[66]
P. Biedenkopf , A. Karger , M. Laukotter , W. Schneider
매그. 기술. , 2005년 ( 2005년 ) , 39 ~ 42 쪽
Scopus에서 레코드 보기
[67]
HV 앳킨슨 , S. 데이비스
메탈. 메이터. 트랜스. , 31 ( 2000 ) , PP. 2981 – 3000
교차 참조Scopus에서 레코드 보기
[68]
EJ Guo , L. Wang , YC Feng , LP Wang , YH Chen
J. 썸. 항문. 칼로리. , 135 ( 2019 ) , PP. 2001 년 – 2008 년
교차 참조Scopus에서 레코드 보기
[69]
T. Li , WD Griffiths , J. Chen
메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 48A ( 2017 ) , PP. 5516 – 5528
교차 참조Scopus에서 레코드 보기
[70]
M. Tiryakioglu , D. Hudak는
J. 메이터. 과학. , 42 ( 2007 ) , pp. 10173 – 10179
교차 참조Scopus에서 레코드 보기
[71]
Y. Yue , WD Griffiths , JL Fife , NR Green
제1회 3d 재료과학 국제학술대회 논문집 ( 2012 ) , pp. 131 – 136
교차 참조Scopus에서 레코드 보기Google 학술검색
[72]
R. 라이자데 , WD 그리피스
메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 37 ( 2006 ) , PP. (865) – (871)
Scopus에서 레코드 보기
[73]
ZC Hu , EL Zhang , SY Zeng
메이터. 과학. 기술. , 24 ( 2008 ) , 1304 ~ 1308페이지
교차 참조Scopus에서 레코드 보기

Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

알루미늄 합금 겹침 용접 중 용접 형성, 용융 흐름 및 입자 구조에 대한 사인파 발진 레이저 빔의 영향

Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding

Lin Chen, Gaoyang Mi, Xiong Zhang, Chunming Wang
School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

Abstract

레이저 사인파 진동(사인) 용접 및 레이저 용접(SLW)에서 1.5mm 6061/5182 알루미늄 합금 박판 랩 조인트의 수치 모델이 온도 분포와 용융 흐름을 시뮬레이션하기 위해 개발되었습니다.

SLW의 일반적인 에너지 분포와 달리 레이저 빔의 사인파 진동은 에너지 분포를 크게 균질화하고 에너지 피크를 줄였습니다. 에너지 피크는 사인 용접의 양쪽에 위치하여 톱니 모양의 단면이 형성되었습니다. 이 논문은 시뮬레이션을 통해 응고 미세구조에 대한 온도 구배(G)와 응고 속도(R)의 영향을 설명했습니다.

결과는 사인 용접의 중심이 낮은 G/R로 더 넓은 영역을 가짐으로써 더 넓은 등축 결정립 영역의 형성을 촉진하고 더 큰 GR로 인해 주상 결정립이 더 가늘다는 것을 나타냅니다. 다공성 및 비관통 용접은 레이저 사인파 진동에 의해 얻어졌습니다.

그 이유는 용융 풀의 부피가 확대되고 열쇠 구멍의 부피 비율이 감소하며 용융 풀의 난류가 완만해졌기 때문이며, 이는 용융 흐름의 고속 이미징 및 시뮬레이션 결과에서 관찰되었습니다. 두 용접부의 인장시험에서 융착선을 따라 인장파괴 형태를 보였고 사인 용접부의 인장강도가 SLW 용접부보다 유의하게 우수하였습니다.

이는 등축 결정립 영역이 넓을수록 균열 경향이 감소하고 파단 위치에 근접한 입자 크기가 미세하기 때문입니다. 결함이 없고 우수한 용접은 신에너지 자동차 산업에 매우 중요합니다.

A numerical model of 1.5 mm 6061/5182 aluminum alloys thin sheets lap joints under laser sinusoidal oscillation (sine) welding and laser welding (SLW) weld was developed to simulate temperature distribution and melt flow. Unlike the common energy distribution of SLW, the sinusoidal oscillation of laser beam greatly homogenized the energy distribution and reduced the energy peak. The energy peaks were located at both sides of the sine weld, resulting in the tooth-shaped sectional formation. This paper illustrated the effect of the temperature gradient (G) and solidification rate (R) on the solidification microstructure by simulation. Results indicated that the center of the sine weld had a wider area with low G/R, promoting the formation of a wider equiaxed grain zone, and the columnar grains were slenderer because of greater GR. The porosity-free and non-penetration welds were obtained by the laser sinusoidal oscillation. The reasons were that the molten pool volume was enlarged, the volume proportion of keyhole was reduced and the turbulence in the molten pool was gentled, which was observed by the high-speed imaging and simulation results of melt flow. The tensile test of both welds showed a tensile fracture form along the fusion line, and the tensile strength of sine weld was significantly better than that of the SLW weld. This was because that the wider equiaxed grain area reduced the tendency of cracks and the finer grain size close to the fracture location. Defect-free and excellent welds are of great significance to the new energy vehicles industry.

Keywords

Laser weldingSinusoidal oscillatingEnergy distributionNumerical simulationMolten pool flowGrain structure

Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Figures-Effects of sinusoidal oscillating laser beam on weld formation, melt flow and grain structure during aluminum alloys lap welding
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively

추가 생산용 전자빔 조사에 의한 316L 스테인리스 용융 · 응고 거동

Melting and Solidification Behavior of 316L Steel Induced by Electron-Beam Irradiation for Additive Manufacturing

付加製造用電子ビーム照射による 316L ステンレス鋼の溶融・凝固挙動

奥 川 将 行*・宮 田 雄一朗*・王     雷*・能 勢 和 史*
小 泉 雄一郎*・中 野 貴 由*
Masayuki OKUGAWA, Yuichiro MIYATA, Lei WANG, Kazufumi NOSE,
Yuichiro KOIZUMI and Takayoshi NAKANO

Abstract

적층 제조(AM) 기술은 복잡한 형상의 3D 부품을 쉽게 만들고 미세 구조 제어를 통해 재료 특성을 크게 제어할 수 있기 때문에 많은 관심을 받았습니다. PBF(Powderbed fusion) 방식의 AM 공정에서는 금속 분말을 레이저나 전자빔으로 녹이고 응고시키는 과정을 반복하여 3D 부품을 제작합니다.

일반적으로 응고 미세구조는 Hunt[Mater. 과학. 영어 65, 75(1984)]. 그러나 CET 이론이 일반 316L 스테인리스강에서도 높은 G와 R로 인해 PBF형 AM 공정에 적용될 수 있을지는 불확실하다.

본 연구에서는 미세구조와 응고 조건 간의 관계를 밝히기 위해 전자빔 조사에 의해 유도된 316L 강의 응고 미세구조를 분석하고 CtFD(Computational Thermal-Fluid Dynamics) 방법을 사용하여 고체/액체 계면에서의 응고 조건을 평가했습니다.

CET 이론과 반대로 높은 G 조건에서 등축 결정립이 종종 형성되는 것으로 밝혀졌다. CtFD 시뮬레이션은 약 400 mm s-1의 속도까지 유체 흐름이 있음을 보여 주며 수상 돌기의 파편 및 이동의 영향으로 등축 결정립이 형성됨을 시사했습니다.

Additive manufacturing(AM)technologies have attracted much attention because it enables us to build 3D parts with complicated geometry easily and control material properties significantly via the control of microstructures. In the powderbed fusion(PBF)type AM process, 3D parts are fabricated by repeating a process of melting and solidifying metal powders by laser or electron beams. In general, the solidification microstructures can be predicted from solidification conditions defined by the combination of temperature gradient G and solidification rate R on the basis of columnar-equiaxed transition(CET)theory proposed by Hunt [Mater. Sci. Eng. 65, 75(1984)]. However, it is unclear whether the CET theory can be applied to the PBF type AM process because of the high G and R, even for general 316L stainless steel. In this study, to reveal relationships between microstructures and solidification conditions, we have analyzed solidification microstructures of 316L steel induced by electronbeam irradiation and evaluated solidification conditions at the solid/liquid interface using a computational thermal-fluid dynamics (CtFD)method. It was found that equiaxed grains were often formed under high G conditions contrary to the CET theory. CtFD simulation revealed that there is a fluid flow up to a velocity of about 400 mm s-1, and suggested that equiaxed grains are formed owing to the effect of fragmentations and migrations of dendrites.

Keywords

Additive Manufacturing, 316L Stainless Steel, Powder Bed Fusion, Electron Beam Melting, Computational Thermal
Fluid Dynamics Simulation

Fig. 1 Width, height, and height differences calculated from laser microscope analysis of melt tracks formed by scanning electron beam. Fig. 2(a)Scanning electron microscope(SEM)image and(b) corresponding electron back-scattering diffraction(EBSD) IPF-map taken from the electron-beam irradiated region in P900-V100 sample. Fig. 3 Average grain size and their aspect ratio calculated from EBSD IPF-map taken from the electron-beam irradiated region.
Fig. 1 Width, height, and height differences calculated from laser microscope analysis of melt tracks formed by scanning electron beam. Fig. 2(a)Scanning electron microscope(SEM)image and(b) corresponding electron back-scattering diffraction(EBSD) IPF-map taken from the electron-beam irradiated region in P900-V100 sample. Fig. 3 Average grain size and their aspect ratio calculated from EBSD IPF-map taken from the electron-beam irradiated region.
Fig. 4 Comparison of experimental SEM image and computational thermal fluid dynamics(CtFD)simulated melt pool with a beam diameter of 700 μm and absorption rates of(a)0.3,(b)0.5, and (c)0.7. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively.
Fig. 4 Comparison of experimental SEM image and computational thermal fluid dynamics(CtFD)simulated melt pool with a beam diameter of 700 μm and absorption rates of(a)0.3,(b)0.5, and (c)0.7. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively.
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively
Fig. 5 Comparison of experimental SEM image and CtFD simulated melt pool with beam diameters of(a)700 μm,(b)1000 μm, and(c)1300 μm and an absorption rate of 0.3. Electron beam power and scan speed are 900 W and 100 mm s-1, respectively
Fig. 6 Depth of melt tracks calculated from experimental SEM image and CtFD simulation results.
Fig. 6 Depth of melt tracks calculated from experimental SEM image and CtFD simulation results.
Fig. 7 G-R plots of 316L steel colored by(a)aspect ratio of crystalline grains and(b)fluid velocity.
Fig. 7 G-R plots of 316L steel colored by(a)aspect ratio of crystalline grains and(b)fluid velocity.
Fig. 8 Comparison of solidification microstructure(EBSD IPF-map)of melt region formed by scanning electron beam and corresponding snap shot of CtFD simulation colored by fluid velocity
Fig. 8 Comparison of solidification microstructure(EBSD IPF-map)of melt region formed by scanning electron beam and corresponding snap shot of CtFD simulation colored by fluid velocity

References

1) M.C. Sow, T. De Terris, O. Castelnau, Z. Hamouche, F. Coste, R.
Fabbro and P. Peyre: “Influence of beam diameter on Laser Powder

Bed Fusion(L-PBF)process”, Addit. Manuf. 36(2020), 101532.
2) J.C. Simmons, X. Chen, A. Azizi, M.A. Daeumer, P.Y. Zavalij, G.
Zhou and S.N. Schiffres: “Influence of processing and microstructure
on the local and bulk thermal conductivity of selective laser melted
316L stainless steel”, Addit. Manuf. 32(2020), 100996.
3) S. Dryepondt, P. Nandwana, P. Fernandez-Zelaia and F. List:
“Microstructure and High Temperature Tensile properties of 316L
Fabricated by Laser Powder-Bed Fusion”, Addit. Manuf. 37(2020),
101723.
4) S.H. Sun, T. Ishimoto, K. Hagihara, Y. Tsutsumi, T. Hanawa and T.
Nakano: “Excellent mechanical and corrosion properties of austenitic
stainless steel with a unique crystallographic lamellar microstructure
via selective laser melting”, Scr. Mater. 159(2019), 89-93.
5) T. Ishimoto, S. Wu, Y. Ito, S.H. Sun, H. Amano and T. Nakano:
“Crystallographic orientation control of 316L austenitic stainless
steel via selective laser melting”, ISIJ Int. 60(2020), 1758-1764.
6) T. Ishimoto, K. Hagihara, K. Hisamoto, S.H. Sun and T. Nakano:
“Crystallographic texture control of beta-type Ti-15Mo-5Zr3Al alloy by selective laser melting for the development of novel
implants with a biocompatible low Young’s modulus”, Scr. Mater.
132(2017), 34-38.
7) X. Ding, Y. Koizumi, D. Wei and A. Chiba: “Effect of process
parameters on melt pool geometry and microstructure development
for electron beam melting of IN718: A systematic single bead
analysis study”, Addit. Manuf. 26(2019), 215-226.
8) K. Karayagiz, L. Johnson, R. Seede, V. Attari, B. Zhang, X. Huang,
S. Ghosh, T. Duong, I. Karaman, A. Elwany and R. Arróyave: “Finite
interface dissipation phase field modeling of Ni-Nb under additive
manufacturing conditions”, Acta Mater. 185(2020), 320-339.
9) M.M. Kirka, Y. Lee, D.A. Greeley, A. Okello, M.J. Goin, M.T.
Pearce and R.R. Dehoff: “Strategy for Texture Management in
Metals Additive Manufacturing”, JOM, 69(2017), 523-531.
10) S.S. Babu, N. Raghavan, J. Raplee, S.J. Foster, C. Frederick, M.
Haines, R. Dinwiddie, M.K. Kirka, A. Plotkowski, Y. Lee and
R.R. Dehoff: “Additive Manufacturing of Nickel Superalloys:
Opportunities for Innovation and Challenges Related to
Qualification”, Metall. Mater. Trans. A. 49(2018), 3764-3780.
11) M.R. Gotterbarm, A.M. Rausch and C. Körner: “Fabrication of
Single Crystals through a μ-Helix Grain Selection Process during
Electron Beam Metal Additive Manufacturing”, Metals, 10(2020),
313.
12) J.D.D. Hunt: “Steady state columnar and equiaxed growth of
dendrites and eutectic”, Mater. Sci. Eng. 65(1984), 75-83.
13) S. Bontha, N.W. Klingbeil, P.A. Kobryn and H.L. Fraser: “Effects of
process variables and size-scale on solidification microstructure in
beam-based fabrication of bulky 3D structures”, Mater. Sci. Eng. A.
513-514(2009), 311-318.
14) J. Gockel and J. Beuth: “Understanding Ti-6Al-4V microstructure
control in additive manufacturing via process maps”, 24th Int. SFF
Symp. – An Addit. Manuf. Conf. SFF 2013.(2013), 666-674.
15) B. Schoinochoritis, D. Chantzis and K. Salonitis: “Simulation of
metallic powder bed additive manufacturing processes with the finite
element method: A critical review”, Proc. of Instit. Mech. Eng., Part
B: J. Eng. Manuf. 231(2017), 96-117.
16)小泉雄一郎: “計算機シミュレーションを用いたAdditive
Manufacturing プロセス最適化予測”, スマートプロセス学会誌,
8-4(2019), 132-138.
17) Y. Zhao, Y. Koizumi, K. Aoyagi, D. Wei, K. Yamanaka and A. Chiba:
“Molten pool behavior and effect of fluid flow on solidification
conditions in selective electron beam melting(SEBM)of a
biomedical Co-Cr-Mo alloy”, Addit. Manuf. 26(2019), 202-214.
18) C. Tang, J.L. Tan and C.H. Wong: “A numerical investigation on
the physical mechanisms of single track defects in selective laser
melting”, Int. J. Heat Mass Transf. 126(2018), 957-968.
19) Technical data for Iron, [Online]. Available: http://periodictable.com/
Elements/026/data.html. [Accessed: 8-Feb-2021].
20) N. Raghavan, R. Dehoff, S. Pannala, S. Simunovic, M. Kirka, J.
Turner, N. Carl-son and S.S. Babu: “Numerical modeling of heattransfer and the influence of process parameters on tailoring the grain
morphology of IN718 in electron beam additive manufacturing”,
Acta Mater. 112(2016), 303-314.
21) S. Morita, Y. Miki and K. Toishi: “Introduction of Dendrite
Fragmentation to Microstructure Calculation by Cellular Automaton
Method”, Tetsu-to-Hagane. 104(2018), 559-566.
22) H. Esaka and M. Tamura: “Model Experiment Using Succinonitrile
on the Formation of Equiaxed Grains caused by Forced Convection”,
Tetsu-to-Hagane. 86(2000), 252-258.

Fig. 1. Schematic of (a) geometry of the simulation model, (b) A-A cross-section presenting the locations of point probes for recording temperature history (unit: µm).

Laser powder bed fusion of 17-4 PH stainless steel: a comparative study on the effect of heat treatment on the microstructure evolution and mechanical properties

17-4 PH 스테인리스강의 레이저 분말 베드 융합: 열처리가 미세조직의 진화 및 기계적 특성에 미치는 영향에 대한 비교 연구

panelS.Saboonia, A.Chaboka, S.Fenga,e, H.Blaauwb, T.C.Pijperb,c, H.J.Yangd, Y.T.Peia
aDepartment of Advanced Production Engineering, Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
bPhilips Personal Care, Oliemolenstraat 5, 9203 ZN, Drachten, The Netherlands
cInnovation Cluster Drachten, Nipkowlaan 5, 9207 JA, Drachten, The Netherlands
dShi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China
eSchool of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, P.R. China

Abstract

17-4 PH (precipitation hardening) stainless steel is commonly used for the fabrication of complicated molds with conformal cooling channels using laser powder bed fusion process (L-PBF). However, their microstructure in the as-printed condition varies notably with the chemical composition of the feedstock powder, resulting in different age-hardening behavior. In the present investigation, 17-4 PH stainless steel components were fabricated by L-PBF from two different feedstock powders, and subsequently subjected to different combinations of post-process heat treatments. It was observed that the microstructure in as-printed conditions could be almost fully martensitic or ferritic, depending on the ratio of Creq/Nieq of the feedstock powder. Aging treatment at 480 °C improved the yield and ultimate tensile strengths of the as-printed components. However, specimens with martensitic structures exhibited accelerated age-hardening response compared with the ferritic specimens due to the higher lattice distortion and dislocation accumulation, resulting in the “dislocation pipe diffusion mechanism”. It was also found that the martensitic structures were highly susceptible to the formation of reverted austenite during direct aging treatment, where 19.5% of austenite phase appeared in the microstructure after 15 h of direct aging. Higher fractions of reverted austenite activates the transformation induced plasticity and improves the ductility of heat treated specimens. The results of the present study can be used to tailor the microstructure of the L-PBF printed 17-4 PH stainless steel by post-process heat treatments to achieve a good combination of mechanical properties.

17-4 PH(석출 경화) 스테인리스강은 레이저 분말 베드 융합 공정(L-PBF)을 사용하여 등각 냉각 채널이 있는 복잡한 금형 제작에 일반적으로 사용됩니다. 그러나 인쇄된 상태의 미세 구조는 공급원료 분말의 화학적 조성에 따라 크게 달라지므로 시효 경화 거동이 다릅니다.

현재 조사에서 17-4 PH 스테인리스강 구성요소는 L-PBF에 의해 두 가지 다른 공급원료 분말로 제조되었으며, 이후에 다양한 조합의 후처리 열처리를 거쳤습니다. 인쇄된 상태의 미세구조는 공급원료 분말의 Creq/Nieq 비율에 따라 거의 완전히 마르텐사이트 또는 페라이트인 것으로 관찰되었습니다.

480 °C에서 노화 처리는 인쇄된 구성 요소의 수율과 극한 인장 강도를 개선했습니다. 그러나 마텐자이트 구조의 시편은 격자 변형 및 전위 축적이 높아 페라이트 시편에 비해 시효 경화 반응이 가속화되어 “전위 파이프 확산 메커니즘”이 발생합니다.

또한 마르텐사이트 구조는 직접 시효 처리 중에 복귀된 오스테나이트의 형성에 매우 민감한 것으로 밝혀졌으며, 여기서 15시간의 직접 시효 후 미세 조직에 19.5%의 오스테나이트 상이 나타났습니다.

복귀된 오스테나이트의 비율이 높을수록 변형 유도 가소성이 활성화되고 열처리된 시편의 연성이 향상됩니다. 본 연구의 결과는 기계적 특성의 우수한 조합을 달성하기 위해 후처리 열처리를 통해 L-PBF로 인쇄된 17-4 PH 스테인리스강의 미세 구조를 조정하는 데 사용할 수 있습니다.

Keywords

Laser powder bed fusion17-4 PH stainless steelPost-process heat treatmentAge hardeningReverted austenite

Fig. 1. Schematic of (a) geometry of the simulation model, (b) A-A cross-section presenting the locations of point probes for recording temperature history (unit: µm).
Fig. 1. Schematic of (a) geometry of the simulation model, (b) A-A cross-section presenting the locations of point probes for recording temperature history (unit: µm).
Fig. 2. Optical (a, b) and TEM (c) micrographs of the wrought 17-4 PH stainless steel.
Fig. 2. Optical (a, b) and TEM (c) micrographs of the wrought 17-4 PH stainless steel.
Fig. 3. EBSD micrographs of the as-printed 17-4 PH steel fabricated with “powder A” (a, b) and “powder B” (c, d) on two different cross sections: (a, c) perpendicular to the building direction, and (b, d) parallel to the building direction.
Fig. 3. EBSD micrographs of the as-printed 17-4 PH steel fabricated with “powder A” (a, b) and “powder B” (c, d) on two different cross sections: (a, c) perpendicular to the building direction, and (b, d) parallel to the building direction.
Fig. 4. Microstructure of the as-printed 17-4 PH stainless steel fabricated with “powder A” (a) and “powder B” (b).
Fig. 4. Microstructure of the as-printed 17-4 PH stainless steel fabricated with “powder A” (a) and “powder B” (b).
Fig. 5. Simulated temperature history of the probes located at the cross section of the L-PBF 17-4 PH steel sample.
Fig. 5. Simulated temperature history of the probes located at the cross section of the L-PBF 17-4 PH steel sample.
Fig. 6. Dependency of the volume fraction of delta ferrite in the final microstructure of L-PBF printed 17-4 PH steel as a function of Creq/Nieq.
Fig. 6. Dependency of the volume fraction of delta ferrite in the final microstructure of L-PBF printed 17-4 PH steel as a function of Creq/Nieq.
Fig. 7. IQ + IPF (left column), parent austenite grain maps (middle column) and phase maps (right column, green color = martensite, red color = austenite) of the post-process heat treated 17-4 PH stainless steel: (a-c) direct aged, (d-f) HIP + aging, (g-i) SA + Aging, and (j-l) HIP + SA + aging (all sample were printed with “powder A”).
Fig. 7. IQ + IPF (left column), parent austenite grain maps (middle column) and phase maps (right column, green color = martensite, red color = austenite) of the post-process heat treated 17-4 PH stainless steel: (a-c) direct aged, (d-f) HIP + aging, (g-i) SA + Aging, and (j-l) HIP + SA + aging (all sample were printed with “powder A”).
Fig. 8. TEM micrographs of the post process heat treated 17-4 PH stainless steel: (a) direct aging and (b) HIP + aging (printed with “powder A”).
Fig. 8. TEM micrographs of the post process heat treated 17-4 PH stainless steel: (a) direct aging and (b) HIP + aging (printed with “powder A”).
Fig. 9. XRD patterns of the post-process heat treated 17-4 PH stainless steel printed with “powder A”.
Fig. 9. XRD patterns of the post-process heat treated 17-4 PH stainless steel printed with “powder A”.
Fig. 10. (a) Volume fraction of reverted austenite as a function of aging time for “direct aging” condition, (b) phase map (green color = martensite, red color = austenite) of the 15 h direct aged specimen printed with “powder A”.
Fig. 10. (a) Volume fraction of reverted austenite as a function of aging time for “direct aging” condition, (b) phase map (green color = martensite, red color = austenite) of the 15 h direct aged specimen printed with “powder A”.
Fig. 11. Microhardness variations of the “direct aged” specimens as a function of aging time at 480 °C.
Fig. 11. Microhardness variations of the “direct aged” specimens as a function of aging time at 480 °C.
Fig. 12. Kernel average misorientation graphs of the as-printed 17-4 PH steel with (a) martensitic structure (printed with “powder A”) and (b) ferritic structure (printed with “powder b”).
Fig. 12. Kernel average misorientation graphs of the as-printed 17-4 PH steel with (a) martensitic structure (printed with “powder A”) and (b) ferritic structure (printed with “powder b”).
Fig. 13. Typical stress-strain curves (a) along with the yield and ultimate tensile strengths (b) and elongation (c) of the as-printed and post-process heat treated 17-4 PH stainless steel (all sample are fabricated with “powder A”).
Fig. 13. Typical stress-strain curves (a) along with the yield and ultimate tensile strengths (b) and elongation (c) of the as-printed and post-process heat treated 17-4 PH stainless steel (all sample are fabricated with “powder A”).
Fig. 14. (a) IQ + IPF and (b) phase map (green color = martensite, red color = austenite) of the “direct aged” specimen after tensile test at a location nearby the rupture point (tension direction from left to right).
Fig. 14. (a) IQ + IPF and (b) phase map (green color = martensite, red color = austenite) of the “direct aged” specimen after tensile test at a location nearby the rupture point (tension direction from left to right).

References

[1]

P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, E.A. Jagle

Steels in additive manufacturing: A review of their microstructure and properties

Materials Science and Engineering: A, 772 (2020), Article 138633

ArticleDownload PDFView Record in ScopusGoogle Scholar

[2]

Y. Sun, R.J. Hebert, M. Aindow

Effect of heat treatments on microstructural evolution of additively manufactured and wrought 17-4PH stainless steel

Mater. Des., 156 (2018), pp. 429-440

ArticleDownload PDFView Record in ScopusGoogle Scholar

[3]

Zemin Wang, Xulei Fang, Hui Li, Wenqing Liu

Atom Probe Tomographic Characterization of nanoscale cu-rich Precipitates in 17-4 precipitate hardened stainless steel tempered at different temperatures

Microsc. Microanal., 23 (2017), pp. 340-349

View Record in ScopusGoogle Scholar

[4]

C.N. Hsiao, C.S. Chiou, J.R. Yang

Aging reactions in a 17-4 PH stainless steel

Mater. Chem. Phys., 74 (2002), pp. 134-142

ArticleDownload PDFView Record in ScopusGoogle Scholar

[5]

Hamidreza Riazi, Fakhreddin Ashrafizadeh, Sayed Rahman Hosseini, Reza Ghomashchi

Influence of simultaneous aging and plasma nitriding on fatigue performance of 17-4 PH stainless steel

Mater. Sci. Eng. A, 703 (2017), pp. 262-269

ArticleDownload PDFView Record in ScopusGoogle Scholar

[6]

M.S. Shinde, K.M. Ashtankar

Additive manufacturing–assisted conformal cooling channels in mold manufacturing processes

Adv. Mech. Eng., 9 (2017), pp. 1-14

View Record in ScopusGoogle Scholar

[7]

A. Armillotta, R. Baraggi, S. Fasoli

SLM tooling for die casting with conformal cooling channels

Int. J. Adv. Manuf. Technol., 71 (2014), pp. 573-583

CrossRefView Record in ScopusGoogle Scholar

[8]

Amar M. Kamat, Yutao Pei

An analytical method to predict and compensate for residual stress-induced deformation in overhanging regions of internal channels fabricated using powder bed fusion

Additive Manufacturing, 29 (2019), Article 100796

ArticleDownload PDFView Record in ScopusGoogle Scholar

[9]

K.S. Prakash, T. Nancharaih, V.V. Subba Rao

Additive Manufacturing Techniques in Manufacturing – An Overview

Materials Today: Proceedings, 5 (2018), pp. 3873-3882

ArticleDownload PDFView Record in ScopusGoogle Scholar

[10]

R. Singh, A. Gupta, O. Tripathi, S. Srivastava, B. Singh, A. Awasthi, S.K. Rajput, P. Sonia, P. Singhal, K.K. Saxena

Powder bed fusion process in additive manufacturing: An overview

Materials Today: Proceedings, 26 (2020), pp. 3058-3070

ArticleDownload PDFGoogle Scholar

[11]

L. Zai, Ch Zhang, Y. Wang, W. Guo, D. Wellmann, X. Tong, Y. Tian

Laser Powder Bed Fusion of Precipitation-Hardened Martensitic Stainless Steels: A Review

Metals, 10 (2020), p. 255

CrossRefView Record in ScopusGoogle Scholar

[12]

H. Khalid Rafi, Deepankar Pal, Nachiket Patil, Thomas L. Starr, Brent E. Stucker

Microstructure and Mechanical Behavior of 17-4 Precipitation Hardenable Steel Processed by Selective Laser Melting

J. Mater. Eng. Perf, 23 (2014), pp. 4421-4428

Google Scholar

[13]

A. Yadollahi, N. Shamsaei, S.M. Thompson, A. Elwany, L. Bian

Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel

Int. J. Fatigue, 94 (2017), pp. 218-235

ArticleDownload PDFView Record in ScopusGoogle Scholar

[14]

M. Alnajjar, Frederic Christien, Cedric Bosch, Krzysztof Wolski

A comparative study of microstructure and hydrogen embrittlement of selective laser melted and wrought 17–4 PH stainless steel

Materials Science and Engineering: A, 785 (2020), Article 139363

ArticleDownload PDFView Record in ScopusGoogle Scholar

[15]

M. Alnajjar, F. Christien, K. Wolski, C. Bosch

Evidence of austenite by-passing in a stainless steel obtained from laser melting additive manufacturing

Addit. Manuf, 25 (2019), pp. 187-195

ArticleDownload PDFView Record in ScopusGoogle Scholar

[16]

P.D. Nezhadfar, K. Anderson-Wedge, S.R. Daniewicz, N. Phan, Sh Shao, N. Shamsaei

Improved high cycle fatigue performance of additively manufactured 17-4 PH stainless steel via in-process refining micro-/defect-structure

Additive Manufacturing, 36 (2020), Article 101604

ArticleDownload PDFView Record in ScopusGoogle Scholar

[17]

S. Feng, A.M. Kamat, S. Sabooni, Y. Pei

Experimental and numerical investigation of the origin of surface roughness in laser powder bed fused overhang regions

Virtual and Physical Prototyping, 16 (2021), pp. S66-S84, 10.1080/17452759.2021.1896970

CrossRefView Record in ScopusGoogle Scholar

[18]

W. Liu, J. Ma, M. Mazar Atabaki, R. Pillai, B. Kumar, U. Vasudevan, H. Sreshta, R. Kovacevic

Hybrid Laser-arc Welding of 17-4 PH Martensitic Stainless Steel

Lasers in Manufacturing and Materials Processing, 2 (2015), pp. 74-90

CrossRefView Record in ScopusGoogle Scholar

[19]

J.C. Lippold, D.J. Kotecki

Welding metallurgy and weldability of stainless steels

Wiley (2005)

Google Scholar

[20]

M. Shirdel, H. Mirzadeh, M.H. Parsa

Nano/ultrafine grained austenitic stainless steel through the formation and reversion of deformation-induced martensite: Mechanisms, microstructures, mechanical properties, and TRIP effect

Mater. Charact., 103 (2015), pp. 150-161

ArticleDownload PDFView Record in ScopusGoogle Scholar

[21]

S. Kou

Solidification and liquation cracking issues in welding

JOM, 55 (2003), pp. 37-42

CrossRefView Record in ScopusGoogle Scholar

[22]

T.J. Lienert, J.C. Lippold

Improved Weldability Diagram for Pulsed Laser Welded Austenitic Stainless Steels

Sci. Technol. Weld. Join., 8 (2003), pp. 1-9

CrossRefView Record in ScopusGoogle Scholar

[23]

Ch Qiu, M. Al Kindi, A.S. Aladawi, I. Al Hatmi

A comprehensive study on microstructure and tensile behaviour of a selectively laser melted stainless steel

Sci. Rep., 8 (2018), p. 7785

View Record in ScopusGoogle Scholar

[24]

P.A. Hooper

Melt pool temperature and cooling rates in laser powder bed fusion

Addit. Manuf, 22 (2018), pp. 548-559

ArticleDownload PDFView Record in ScopusGoogle Scholar

[25]

T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. Ded, W. Zhang

Additive manufacturing of metallic components – Process, structure and properties

Prog. Mater. Sci., 92 (2018), pp. 112-224

ArticleDownload PDFView Record in ScopusGoogle Scholar

[26]

S. Vunnam, A. Saboo, Ch Sudbrack, T.L. Starr

Effect of powder chemical composition on the as-built microstructure of 17- 4 PH stainless steel processed by selective laser melting

Additive Manufacturing, 30 (2019), Article 100876

ArticleDownload PDFView Record in ScopusGoogle Scholar

[27]

L. Couturier, F. De Geuser, M. Descoins, A. Deschamps

Evolution of the microstructure of a 15-5PH martensitic stainless steel during precipitation hardening heat treatment

Mater. Des., 107 (2016), pp. 416-425

ArticleDownload PDFView Record in ScopusGoogle Scholar

[28]

C. Cayron, B. Artaud, L. Briottet

Reconstruction of parent grains from EBSD data

Mater. Charact., 57 (2006), pp. 386-401

ArticleDownload PDFView Record in ScopusGoogle Scholar

[29]

R. Bhambroo, S. Roychowdhury, V. Kain, V.S. Raja

Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainless steel

Mater. Sci. Eng. A, 568 (2013), pp. 127-133

ArticleDownload PDFView Record in ScopusGoogle Scholar

[30]

T. LeBrun, T. Nakamoto, K. Horikawa, H. Kobayashi

Effect of retained austenite on subsequent thermal processing and resultant mechanical properties of selective laser melted 17–4 PH stainless steel

Mater. Des., 81 (2015), pp. 44-53

ArticleDownload PDFView Record in ScopusGoogle Scholar

[31]

T.H. Hsu, Y.J. Chang, C.Y. Huang, H.W. Yen, C.P. Chen, K.K. Jen, A.Ch Yeh

Microstructure and property of a selective laser melting process induced oxide dispersion strengthened 17-4 PH stainless steel

J. Alloys. Compd., 803 (2019), pp. 30-41

ArticleDownload PDFView Record in ScopusGoogle Scholar

[32]

Li Wang, Chaofang Dong, Cheng Man, Decheng Kong, Kui Xiao, Xiaogang Li

Enhancing the corrosion resistance of selective laser melted 15-5 PH martensite stainless steel via heat treatment

Corrosion Science, 166 (2020), Article 108427

ArticleDownload PDFView Record in ScopusGoogle Scholar

[33]

H. Kimura

Precipitation Behavior and 2-step Aging of 17-4PH Stainless Steel

Tetsu-to-Hagane, 86 (2000), pp. 343-348

CrossRefView Record in ScopusGoogle Scholar

[34]

G. Yeli, M.A. Auger, K. Wilford, G.D.W. Smith, P.A.J. Bagot, M.P. Moody

Sequential nucleation of phases in a 17-4PH steel: Microstructural characterisation and mechanical properties

Acta. Mater., 125 (2017), pp. 38-49

ArticleDownload PDFView Record in ScopusGoogle Scholar

[35]

J.B. Ferguson, Benjamin F. Schultz, Dev Venugopalan1, Hugo F. Lopez, Pradeep K. Rohatgi, Kyu Cho, Chang-Soo Kim

On the Superposition of Strengthening Mechanisms in Dispersion Strengthened Alloys and Metal-Matrix Nanocomposites: Considerations of Stress and Energy

Met. Mater. Int., 20 (2014), pp. 375-388

CrossRefView Record in ScopusGoogle Scholar

[36]

H. Mirzadeh, A. Najafizadeh

Aging kinetics of 17-4 PH stainless steel

Mater. Chem. Phys., 116 (2009), pp. 119-124

ArticleDownload PDFView Record in ScopusGoogle Scholar

[37]

L.E. Murr, E. Martinez, J. Hernandez, Sh Collins, K.N. Amato, S.M. Gaytan, P.W. Shindo

Microstructures and Properties of 17-4 PH Stainless Steel Fabricated by Selective Laser Melting

J. Mater. Res. Technol, 1 (2012), pp. 167-177

ArticleDownload PDFView Record in ScopusGoogle Scholar

[38]

Y.F. Shen, L.N. Qiu, X. Sun, L. Zuo, P.K. Liaw, D. Raabe

Effects of retained austenite volume fraction, morphology, and carbon content on strength and ductility of nanostructured TRIP-assisted steels

Mater. Sci. Eng. A, 636 (2015), pp. 551-564

ArticleDownload PDFView Record in ScopusGoogle Scholar

electromagnetic metal casting computation designs Fig1

A survey of electromagnetic metal casting computation designs, present approaches, future possibilities, and practical issues

The European Physical Journal Plus volume 136, Article number: 704 (2021) Cite this article

Abstract

Electromagnetic metal casting (EMC) is a casting technique that uses electromagnetic energy to heat metal powders. It is a faster, cleaner, and less time-consuming operation. Solid metals create issues in electromagnetics since they reflect the electromagnetic radiation rather than consume it—electromagnetic energy processing results in sounded pieces with higher-ranking material properties and a more excellent microstructure solution. For the physical production of the electromagnetic casting process, knowledge of electromagnetic material interaction is critical. Even where the heated material is an excellent electromagnetic absorber, the total heating quality is sometimes insufficient. Numerical modelling works on finding the proper coupled effects between properties to bring out the most effective operation. The main parameters influencing the quality of output of the EMC process are: power dissipated per unit volume into the material, penetration depth of electromagnetics, complex magnetic permeability and complex dielectric permittivity. The contact mechanism and interference pattern also, in turn, determines the quality of the process. Only a few parameters, such as the environment’s temperature, the interference pattern, and the rate of metal solidification, can be controlled by AI models. Neural networks are used to achieve exact outcomes by stimulating the neurons in the human brain. Additive manufacturing (AM) is used to design mold and cores for metal casting. The models outperformed the traditional DFA optimization approach, which is susceptible to local minima. The system works only offline, so real-time analysis and corrections are not yet possible.

Korea Abstract

전자기 금속 주조 (EMC)는 전자기 에너지를 사용하여 금속 분말을 가열하는 주조 기술입니다. 더 빠르고 깨끗하며 시간이 덜 소요되는 작업입니다.

고체 금속은 전자기 복사를 소비하는 대신 반사하기 때문에 전자기학에서 문제를 일으킵니다. 전자기 에너지 처리는 더 높은 등급의 재료 특성과 더 우수한 미세 구조 솔루션을 가진 사운드 조각을 만듭니다.

전자기 주조 공정의 물리적 생산을 위해서는 전자기 물질 상호 작용에 대한 지식이 중요합니다. 가열된 물질이 우수한 전자기 흡수재인 경우에도 전체 가열 품질이 때때로 불충분합니다. 수치 모델링은 가장 효과적인 작업을 이끌어 내기 위해 속성 간의 적절한 결합 효과를 찾는데 사용됩니다.

EMC 공정의 출력 품질에 영향을 미치는 주요 매개 변수는 단위 부피당 재료로 분산되는 전력, 전자기의 침투 깊이, 복합 자기 투과성 및 복합 유전율입니다. 접촉 메커니즘과 간섭 패턴 또한 공정의 품질을 결정합니다. 환경 온도, 간섭 패턴 및 금속 응고 속도와 같은 몇 가지 매개 변수 만 AI 모델로 제어 할 수 있습니다.

신경망은 인간 뇌의 뉴런을 자극하여 정확한 결과를 얻기 위해 사용됩니다. 적층 제조 (AM)는 금속 주조용 몰드 및 코어를 설계하는 데 사용됩니다. 모델은 로컬 최소값에 영향을 받기 쉬운 기존 DFA 최적화 접근 방식을 능가했습니다. 이 시스템은 오프라인에서만 작동하므로 실시간 분석 및 수정은 아직 불가능합니다.

electromagnetic metal casting computation designs Fig1
electromagnetic metal casting computation designs Fig1
electromagnetic metal casting computation designs Fig2
electromagnetic metal casting computation designs Fig2
electromagnetic metal casting computation designs Fig3
electromagnetic metal casting computation designs Fig3
electromagnetic metal casting computation designs Fig4
electromagnetic metal casting computation designs Fig4
electromagnetic metal casting computation designs Fig5
electromagnetic metal casting computation designs Fig5
electromagnetic metal casting computation designs Fig6
electromagnetic metal casting computation designs Fig6
electromagnetic metal casting computation designs Fig7
electromagnetic metal casting computation designs Fig7
electromagnetic metal casting computation designs Fig8
electromagnetic metal casting computation designs Fig8
electromagnetic metal casting computation designs Fig9
electromagnetic metal casting computation designs Fig9

References

  1. 1.J. Sun, W. Wang, Q. Yue, Review on electromagnetic-matter interaction fundamentals and efficient electromagnetic-associated heating strategies. Materials 9(4), 231 (2016). https://doi.org/10.3390/ma9040231ADS Article Google Scholar 
  2. 2.E. Ghasali, A. Fazili, M. Alizadeh, K. Shirvanimoghaddam, T. Ebadzadeh, Evaluation of microstructure and mechanical properties of Al-TiC metal matrix composite prepared by conventional, electromagnetic and spark plasma sintering methods. Materials 10(11), 1255 (2017). https://doi.org/10.3390/ma10111255ADS Article Google Scholar 
  3. 3.D. Agrawal, Latest global developments in electromagnetic materials processing. Mater. Res. Innov. 14(1), 3–8 (2010). https://doi.org/10.1179/143307510×12599329342926Article Google Scholar 
  4. 4.S. Singh, P. Singh, D. Gupta, V. Jain, R. Kumar, S. Kaushal, Development and characterization of electromagnetic processed cast iron joint. Eng. Sci. Technol. Int. J. (2018). https://doi.org/10.1016/j.jestch.2018.10.012Article Google Scholar 
  5. 5.S. Singh, D. Gupta, V. Jain, Electromagnetic melting and processing of metal–ceramic composite castings. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 232(7), 1235–1243 (2016). https://doi.org/10.1177/0954405416666900Article Google Scholar 
  6. 6.S. Singh, D. Gupta, V. Jain, Novel electromagnetic composite casting process: theory, feasibility and characterization. Mater. Des. 111, 51–59 (2016). https://doi.org/10.1016/j.matdes.2016.08.071Article Google Scholar 
  7. 7.J. Lucas, J, What are electromagnetics? LiveScience. (2018). https://www.livescience.com/50259-Electromagnetics.html
  8. 8.R. Samyal, A.K. Bagha, R. Bedi, the casting of materials using electromagnetic energy: a review. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.02.255Article Google Scholar 
  9. 9.S. Singh, D. Gupta, V. Jain, Processing of Ni-WC-8Co MMC casting through electromagnetic melting. Mater. Manuf. Process. (2017). https://doi.org/10.1080/10426914.2017.1291954Article Google Scholar 
  10. 10.R. Singh, S. Singh, V. Mahajan, Investigations for dimensional accuracy of investment casting process after cycle time reduction by advancements in shell moulding. Procedia Mater. Sci. 6, 859–865 (2014). https://doi.org/10.1016/j.mspro.2014.07.103Article Google Scholar 
  11. 11.R.R. Mishra, A.K. Sharma, On melting characteristics of bulk Al-7039 alloy during in-situ electromagnetic casting. Appl. Therm. Eng. 111, 660–675 (2017). https://doi.org/10.1016/j.applthermaleng.2016.09.122Article Google Scholar 
  12. 12.S. Zhang, 10 Different types of casting process. (2021). MachineMfg.com, https://www.machinemfg.com/types-of-casting/
  13. 13.Envirocare, Foundry health risks. (2013). https://envirocare.org/foundry-health-risks/
  14. 14.S.S. Gajmal, D.N. Raut, A review of opportunities and challenges in electromagnetic assisted casting. Recent Trends Product. Eng. 2(1) (2019)
  15. 15.R.R. Mishra, A.K. Sharma, Electromagnetic-material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Compos. Part A (2015). https://doi.org/10.1016/j.compositesa.2015.10.035Article Google Scholar 
  16. 16.S. Chandrasekaran, T. Basak, S. Ramanathan, Experimental and theoretical investigation on electromagnetic melting of metals. J. Mater. Process. Technol. 211(3), 482–487 (2011). https://doi.org/10.1016/j.jmatprotec.2010.11.001Article Google Scholar 
  17. 17.C.R. Bird, J.M. Mertz, U.S. Patent No. 4655276. (U.S. Patent and Trademark Office, Washington, DC, 1987)
  18. 18.R.R. Mishra, A.K. Sharma, Experimental investigation on in-situ electromagnetic casting of copper. IOP Conf. Ser. Mater. Sci. Eng. 346, 012052 (2018). https://doi.org/10.1088/1757-899x/346/1/012052Article Google Scholar 
  19. 19.V. Gangwar, S. Kumar, V. Singh, H. Singh, Effect of process parameters on hardness of AA-6063 in-situ electromagnetic casting by using taguchi method, in IOP Conference Series: Materials Science and Engineering, vol. 804(1) (IOP Publishing, 2020), p. 012019
  20. 20.X. Ye, S. Guo, L. Yang, J. Gao, J. Peng, T. Hu, L. Wang, M. Hou, Q. Luo, New utilization approach of electromagnetic thermal energy: preparation of metallic matrix diamond tool bit by electromagnetic hot-press sintering. J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.03.183Article Google Scholar 
  21. 21.S. Das, A.K. Mukhopadhyay, S. Datta, D. Basu, Prospects of Electromagnetic processing: an overview. Bull. Mater. Sci. 32(1), 1–13 (2009). https://doi.org/10.1007/s12034-009-0001-4Article Google Scholar 
  22. 22.K.L. Glass, D.M. Ashby, U.S. Patent No. 9050656. (U.S. Patent and Trademark Office, Washington, DC, 2015)
  23. 23.S. Verma, P. Gupta, S. Srivastava, S. Kumar, A. Anand, An overview: casting/melting of non ferrous metallic materials using domestic electromagnetic oven. J. Mater. Sci. Mech. Eng. 4(4), (2017). p-ISSN: 2393-9095; e-ISSN: 2393-9109
  24. 24.S.S. Panda, V. Singh, A. Upadhyaya, D. Agrawal, Sintering response of austenitic (316L) and ferritic (434L) stainless steel consolidated in conventional and electromagnetic furnaces. Scripta Mater. 54(12), 2179–2183 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.034Article Google Scholar 
  25. 25.Y. Zhang, S. Yang, S. Wang, X. Liu, L. Li, Microwave/freeze casting assisted fabrication of carbon frameworks derived from embedded upholder in tremella for superior performance supercapacitors. Energy Storage Mater. (2018). https://doi.org/10.1016/j.ensm.2018.08.006Article Google Scholar 
  26. 26.D. Thomas, P. Abhilash, M.T. Sebastian, Casting and characterization of LiMgPO4 glass free LTCC tape for electromagnetic applications. J. Eur. Ceram. Soc. 33(1), 87–93 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.08.002Article Google Scholar 
  27. 27.M.H. Awida, N. Shah, B. Warren, E. Ripley, A.E. Fathy, Modeling of an industrial Electromagnetic furnace for metal casting applications. 2008 IEEE MTT-S Int. Electromagn. Symp. Digest. (2008). https://doi.org/10.1109/mwsym.2008.4633143Article Google Scholar 
  28. 28.P.K. Loharkar, A. Ingle, S. Jhavar, Parametric review of electromagnetic-based materials processing and its applications. J. Market. Res. 8(3), 3306–3326 (2019). https://doi.org/10.1016/j.jmrt.2019.04.004Article Google Scholar 
  29. 29.E.B. Ripley, J.A. Oberhaus, WWWeb search power page-melting and heat treating metals using electromagnetic heating-the potential of electromagnetic metal processing techniques for a wide variety of metals and alloys is. Ind. Heat. 72(5), 65–70 (2005)Google Scholar 
  30. 30.J. Campbell, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques and Design (Butterworth-Heinemann, 2015)Google Scholar 
  31. 31.B. Ravi, Metal Casting: Computer-Aided Design and Analysis, 1st edn. (PHI Learning Ltd, 2005)Google Scholar 
  32. 32.D.E. Clark, W.H. Sutton, Electromagnetic processing of materials. Annu. Rev. Mater. Sci. 26(1), 299–331 (1996)ADS Article Google Scholar 
  33. 33.A.D. Abdullin, New capabilities of software package ProCAST 2011 for modeling foundry operations. Metallurgist 56(5–6), 323–328 (2012). https://doi.org/10.1007/s11015-012-9578-8Article Google Scholar 
  34. 34.J. Ha, P. Cleary, V. Alguine, T. Nguyen, Simulation of die filling in gravity die casting using SPH and MAGMAsoft, in Proceedings of 2nd International Conference on CFD in Minerals & Process Industries (1999) pp. 423–428
  35. 35.M. Sirviö, M. Woś, Casting directly from a computer model by using advanced simulation software FLOW-3D Cast Ž. Arch. Foundry Eng. 9(1), 79–82 (2009)Google Scholar 
  36. 36.NOVACAST Systems, Nova-Solid/Flow Brochure, NOVACAST, Ronneby (2015)
  37. 37.AutoCAST-X1 Brochure, 3D Foundry Tech, Mumbai
  38. 38.EKK, Inc. Metal Casting Simulation Software and Consulting Services, CAPCAST Brochure
  39. 39.P. Muenprasertdee, Solidification modeling of iron castings using SOLIDCast (2007)
  40. 40.CasCAE, CT-CasTest Inc. Oy, Kerava
  41. 41.E. Dominguez-Tortajada, J. Monzo-Cabrera, A. Diaz-Morcillo, Uniform electric field distribution in electromagnetic heating applicators by means of genetic algorithms optimization of dielectric multilayer structures. IEEE Trans. Electromagn. Theory Tech. 55(1), 85–91 (2007). https://doi.org/10.1109/tmtt.2006.886913ADS Article Google Scholar 
  42. 42.B. Warren, M.H. Awida, A.E. Fathy, Electromagnetic heating of metals. IET Electromagn. Antennas Propag. 6(2), 196–205 (2012)Article Google Scholar 
  43. 43.S. Ashouri, M. Nili-Ahmadabadi, M. Moradi, M. Iranpour, Semi-solid microstructure evolution during reheating of aluminum A356 alloy deformed severely by ECAP. J. Alloy. Compd. 466(1–2), 67–72 (2008). https://doi.org/10.1016/j.jallcom.2007.11.010Article Google Scholar 
  44. 44.Penn State, Metal Parts Made In The Electromagnetic Oven. ScienceDaily. (1999) Retrieved May 8, 2021, from www.sciencedaily.com/releases/1999/06/990622055733.htm
  45. 45.R.R. Mishra, A.K. Sharma, A review of research trends in electromagnetic processing of metal-based materials and opportunities in electromagnetic metal casting. Crit. Rev. Solid State Mater. Sci. 41(3), 217–255 (2016). https://doi.org/10.1080/10408436.2016.1142421ADS Article Google Scholar 
  46. 46.D.K. Ghodgaonkar, V.V. Varadan, V.K. Varadan, Free-space measurement of complex permittivity and complex permeability of magnetic materials at Electromagnetic frequencies. IEEE Trans. Instrum. Meas. 39(2), 387–394 (1990). https://doi.org/10.1109/19.52520Article Google Scholar 
  47. 47.J. Baker-Jarvis, E.J. Vanzura, W.A. Kissick, Improved technique for determining complex permittivity with the transmission/reflection method. Microw. Theory Tech. IEEE Trans. 38, 1096–1103 (1990)ADS Article Google Scholar 
  48. 48.M. Bologna, A. Petri, B. Tellini, C. Zappacosta, Effective magnetic permeability measurementin composite resonator structures. Instrum. Meas. IEEE Trans. 59, 1200–1206 (2010)Article Google Scholar 
  49. 49.B. Ravi, G.L. Datta, Metal casting–back to future, in 52nd Indian Foundry Congress, (2004)
  50. 50.D. El Khaled, N. Novas, J.A. Gazquez, F. Manzano-Agugliaro. Microwave dielectric heating: applications on metals processing. Renew. Sustain. Energy Rev. 82, 2880–2892 (2018). https://doi.org/10.1016/j.rser.2017.10.043Article Google Scholar 
  51. 51.H. Sekiguchi, Y. Mori, Steam plasma reforming using Electromagnetic discharge. Thin Solid Films 435, 44–48 (2003)ADS Article Google Scholar 
  52. 52.J. Sun, W. Wang, C. Zhao, Y. Zhang, C. Ma, Q. Yue, Study on the coupled effect of wave absorption and metal discharge generation under electromagnetic irradiation. Ind. Eng. Chem. Res. 53, 2042–2051 (2014)Article Google Scholar 
  53. 53.K.I. Rybakov, E.A. Olevsky, E.V. Krikun, Electromagnetic sintering: fundamentals and modeling. J. Am. Ceram. Soc. 96(4), 1003–1020 (2013). https://doi.org/10.1111/jace.12278Article Google Scholar 
  54. 54.A.K. Shukla, A. Mondal, A. Upadhyaya, Numerical modeling of electromagnetic heating. Sci. Sinter. 42(1), 99–124 (2010)Article Google Scholar 
  55. 55.M. Chiumenti, C. Agelet de Saracibar, M. Cervera, On the numerical modeling of the thermomechanical contact for metal casting analysis. J. Heat Transf. 130(6), (2008). https://doi.org/10.1115/1.2897923Article MATH Google Scholar 
  56. 56.B. Ravi, Metal Casting: Computer-Aided Design and Analysis. (PHI Learning Pvt. Ltd., 2005)
  57. 57.J.H. Lee, S.D. Noh, H.-J. Kim, Y.-S. Kang, Implementation of cyber-physical production systems for quality prediction and operation control in metal casting. Sensors 18, 1428 (2018). https://doi.org/10.3390/s18051428ADS Article Google Scholar 
  58. 58.B. Aksoy, M. Koru, Estimation of casting mold interfacial heat transfer coefficient in pressure die casting process by artificial intelligence methods. Arab. J. Sci. Eng. 45, 8969–8980 (2020). https://doi.org/10.1007/s13369-020-04648-7Article Google Scholar 
  59. 59.S.S. Miriyala, V.R. Subramanian, K. Mitra, TRANSFORM-ANN for online optimization of complex industrial processes: casting process as case study. Eur. J. Oper. Res. 264(1), 294–309 (2018). https://doi.org/10.1016/j.ejor.2017.05.026MathSciNet Article MATH Google Scholar 
  60. 60.J.K. Kittu, G.C.M. Patel, M. Parappagoudar, Modeling of pressure die casting process: an artificial intelligence approach. Int. J. Metalcast. (2015). https://doi.org/10.1007/s40962-015-0001-7Article Google Scholar 
  61. 61.W. Chen, B. Gutmann, C.O. Kappe, Characterization of electromagnetic-induced electric discharge phenomena in metal-solvent mixtures. ChemistryOpen 1, 39–48 (2012)Article Google Scholar 
  62. 62.J. Walker, A. Prokop, C. Lynagh, B. Vuksanovich, B. Conner, K. Rogers, J. Thiel, E. MacDonald, Real-time process monitoring of core shifts during metal casting with wireless sensing and 3D sand printing. Addit. Manuf. (2019). https://doi.org/10.1016/j.addma.2019.02.018Article Google Scholar 
  63. 63.G.C. Manjunath Patel, A.K. Shettigar, M.B. Parappagoudar, A systematic approach to model and optimize wear behaviour of castings produced by squeeze casting process. J. Manuf. Process. 32, 199–212 (2018). https://doi.org/10.1016/j.jmapro.2018.02.004Article Google Scholar 
  64. 64.G.C. Manjunath Patel, P. Krishna, M.B. Parappagoudar, An intelligent system for squeeze casting process—soft computing based approach. Int. J. Adv. Manuf. Technol. 86, 3051–3065 (2016). https://doi.org/10.1007/s00170-016-8416-8Article Google Scholar 
  65. 65.M. Ferguson, R. Ak, Y.T. Lee, K.H. Law, Automatic localization of casting defects with convolutional neural networks, in 2017 IEEE International Conference on Big Data (Big Data) (Boston, MA, USA, 2017), pp. 1726–1735. https://doi.org/10.1109/BigData.2017.8258115.
  66. 66.P.K.D.V. Yarlagadda, Prediction of die casting process parameters by using an artificial neural network model for zinc alloys. Int. J. Prod. Res. 38(1), 119–139 (2000). https://doi.org/10.1080/002075400189617Article MATH Google Scholar 
  67. 67.G.C. ManjunathPatel, A.K. Shettigar, P. Krishna, M.B. Parappagoudar, Back propagation genetic and recurrent neural network applications in modelling and analysis of squeeze casting process. Appl. Soft Comput. 59, 418–437 (2017). https://doi.org/10.1016/j.asoc.2017.06.018Article Google Scholar 
  68. 68.J. Zheng, Q. Wang, P. Zhao et al., Optimization of high-pressure die-casting process parameters using artificial neural network. Int. J. Adv. Manuf. Technol. 44, 667–674 (2009). https://doi.org/10.1007/s00170-008-1886-6Article Google Scholar 
  69. 69.E. Mares, J. Sokolowski, Artificial intelligence-based control system for the analysis of metal casting properties. J. Achiev. Mater. Manuf. Eng. 40, 149–154 (2010)Google Scholar 
  70. 70.K.S. Senthil, S. Muthukumaran, C. Chandrasekhar Reddy, Suitability of friction welding of tube to tube plate using an external tool process for different tube diameters—a study. Exp. Tech. 37(6), 8–14 (2013)Article Google Scholar 
  71. 71.N.K. Bhoi, H. Singh, S. Pratap, P.K. Jain, Electromagnetic material processing: a clean, green, and sustainable approach. Sustain. Eng. Prod. Manuf. Technol. (2019). https://doi.org/10.1016/b978-0-12-816564-5.00001-3Article Google Scholar 
  72. 72.K.S. Senthil, D.A. Daniel, An investigation of boiler grade tube and tube plate without block by using friction welding process. Mater. Today Proc. 5(2), 8567–8576 (2018)Article Google Scholar 
  73. 73.E. Hetmaniok, D. Słota, A. Zielonka, Restoration of the cooling conditions in a three-dimensional continuous casting process using artificial intelligence algorithms. Appl. Math. Modell. 39(16), 4797–4807 (2015). https://doi.org/10.1016/j.apm.2015.03.056Article MATH Google Scholar 
  74. 74.C.V. Kumar, S. Muthukumaran, A. Pradeep, S.S. Kumaran, Optimizational study of friction welding of steel tube to aluminum tube plate using an external tool process. Int. J. Mech. Mater. Eng. 6(2), 300–306 (2011)Google Scholar 
  75. 75.T. Adithiyaa, D. Chandramohan, T. Sathish, Optimal prediction of process parameters by GWO-KNN in stirring-squeeze casting of AA2219 reinforced metal matrix composites. Mater. Today Proc. 150, 1598 (2020). https://doi.org/10.1016/j.matpr.2019.10.051Article Google Scholar 
  76. 76.B.P. Pehrson, A.F. Moore (2014). U.S. Patent No. 8708031 (U.S. Patent and Trademark Office, Washington, DC, 2014)
  77. 77.Liu, J., & Rynerson, M. L. (2008). U.S. Patent No. 7,461,684. Washington, DC: U.S. Patent and Trademark Office.
  78. 78.K. Salonitis, B. Zeng, H.A. Mehrabi, M. Jolly, The challenges for energy efficient casting processes. Procedia CIRP 40, 24–29 (2016). https://doi.org/10.1016/j.procir.2016.01.043Article Google Scholar 
  79. 79.R.R. Mishra, A.K. Sharma, Effect of solidification environment on microstructure and indentation hardness of Al–Zn–Mg alloy casts developed using electromagnetic heating. Int. J. Metal Cast. 10, 1–13 (2017). https://doi.org/10.1007/s40962-017-0176-1Article Google Scholar 
  80. 80.R.R. Mishra, A.K. Sharma, Effect of susceptor and Mold material on microstructure of in-situ electromagnetic casts of Al–Zn–Mg alloy. Mater. Des. 131, 428–440 (2017). https://doi.org/10.1016/j.matdes.2017.06.038Article Google Scholar 
  81. 81.S. Kaushal, S. Bohra, D. Gupta, V. Jain, On processing and characterization of Cu–Mo-based castings through electromagnetic heating. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00481-8Article Google Scholar 
  82. 82.S. Nandwani, S. Vardhan, A.K. Bagha, A literature review on the exposure time of electromagnetic based welding of different materials. Mater. Today Proc. (2019). https://doi.org/10.1016/j.matpr.2019.10.056Article Google Scholar 
  83. 83.F.J.B. Brum, S.C. Amico, I. Vedana, J.A. Spim, Electromagnetic dewaxing applied to the investment casting process. J. Mater. Process. Technol. 209(7), 3166–3171 (2009). https://doi.org/10.1016/j.jmatprotec.2008.07.024Article Google Scholar 
  84. 84.M.P. Reddy, R.A. Shakoor, G. Parande, V. Manakari, F. Ubaid, A.M.A. Mohamed, M. Gupta, Enhanced performance of nano-sized SiC reinforced Al metal matrix nanocomposites synthesized through electromagnetic sintering and hot extrusion techniques. Prog. Nat. Sci. Mater. Int. 27(5), 606–614 (2017). https://doi.org/10.1016/j.pnsc.2017.08.015Article Google Scholar 
  85. 85.V.R. Kalamkar, K. Monkova, (Eds.), Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering. (2021) https://doi.org/10.1007/978-981-15-3639-7
  86. 86.V. Bist, A.K. Sharma, P. Kumar, Development and microstructural characterisations of the lead casting using electromagnetic technology. Manager’s J. Mech. Eng. 4(4), 6 (2014). https://doi.org/10.26634/jme.4.4.2840Article Google Scholar 
  87. 87.A. Sharma, A. Chouhan, L. Pavithran, U. Chadha, S.K. Selvaraj, Implementation of LSS framework in automotive component manufacturing: a review, current scenario and future directions. Mater Today: Proc. (2021). https://doi.org/10.1016/J.MATPR.2021.02.374Article Google Scholar 
Fig. 2 Temperature distributions of oil pans (Cycling)

내열마그네슘 합금을 이용한 자동차용 오일팬의 다이캐스팅 공정 연구

A Study on Die Casting Process of the Automobile Oil Pan Using the Heat Resistant Magnesium Alloy

한국자동차공학회논문집 = Transactions of the Korean Society of Automotive Engineersv.17 no.3 = no.99 , 2009년, pp.45 – 53  신현우 (두원공과대학 메카트로닉스과 ) ;  정연준 ( 현대자동차(주) ) ;  강승구 ( 인지AMT(주))

Abstract

Die casting process of Mg alloys for high temperature applications was studied to produce an engine oil pan. The aim of this paper is to evaluate die casting processes of the Aluminium oil pan and in parallel to apply new Mg alloy for die casting the oil pan. Temperature distributions of the die and flow pattern of the alloys in cavity were simulated to diecast a new Mg alloy by the flow simulation software. Dies have to be modified according to material characteristics because melting temperature and heat capacity are different. We changed the shape and position of runner, gate, vent hole and overflow by the simulation results. After several trial and error, oil pans of AE44 and MRI153M Mg alloys are produced successfully without defect. Sleeve filling ratio, cavity filling time and shot speed of die casting machine are important parameter to minimize the defect for die casting Magnesium alloy.

Keywords: 오일팬 , 내열마그네슘합금, 알루미늄 합금,  다이캐스팅, 유동해석

서론

크랭크케이스의 하부에 부착되는 오일팬은 오일 펌프에 의해 펌핑된 오일이 윤활작용을 마치고 다시 모이는 부품이다. 오일의 온도에 의해 가열되므로 일반적으로 사용되는 마그네슘 합금인 AZ나 AM계열의 합금은 사용이 불가하며 내열소재의 적용이 불가피하다.

현재 ADC12종 알루미늄 오일팬 둥이 적용되고 있으며, 이를 마그네슘으로 대체할 경우 밀도가 알루미늄 2.8g/cm3‘, 마그네슘 1.8g/cm3‘이므로 약 35%의 경량화가 가능하다고 단순하게 말할 수 있다.

그러나 탄성계수는 알루미늄 73GPa이 고 마그네슘 45GPa이므로 외부 하중을 지지하고 있는 부품의 경우는 단순한 재질의 변경만으로는 알루미늄과 같은 정도의 강성을 나타내지 못하므로 형상의 변경 등을 통한 설계 최적화가 요구된다.

마그네슘은 현재까지 개발된 여러 가지 구조용 합금들 중에서 최소의 밀도를 가지고 있으며 동시에 우수한 비강도 및 비탄성 계수를 가지고 있다.1.2)

그러나 이러한 우수한 특성을 가지는 마그네슘 합금은 경쟁 재료에 비해 절대 강도 및 인성이 낮으며 고온에서 인장 강도가 급격히 감소하고 내부식 성능이 떨어지는 등의 문제점이 있다. 현재까지 자동차 부품 중 마그네슘 합금은 Cylinder head cover, Steering wheel, Instrument panel, Seat frame 등 비교적 내열성이 요구되지 않는 부분에만 한정적으로 적용되고 있다.
자동차 산업에서 좀 더 많은 부품에 마그네슘 합금을 적용하기 위해서는 내열성을 향상 시키고 고온강도를 향상시키기 위한 새로운 합금의 개발이 이루어져야 한다. 최근 마그네슘 합금개발에 대한 연구동향은 비교적 저가인 원소를 값비싼 원소가 첨가된 합금계에 부분적으로 첨가하거나 대체함으로써 비슷한 내열 특성을 가지는 합금을 개발하고,34) 이를 자동차 산업이나 전자 산업의 내열 부품 적용으로 확대하기 위하여 진행되고 있다. 현재 마그네슘 내열 부품은 선진국에서 자동차 부품으로 개발되고 있으나6-8)

국내에서는 아직 자동차 부품에 폭 넓게 적용되고 있지 않다. 그러므로 국내 자동차 산업이 치열한 국제 시장에서 생존하기 위해서는 마그네슘 합금의 내열 부품 제조기술을 조기에 개발하여 선진국보다 기술적, 경제적 우위를 확보하는 것이 절실히 요구된다.

본 연구에서는 내열 마그네슘합금을 이용하여 알루미늄 오일팬을 대체할 수 있는 새로운 오일팬의 개발올 위한 적절한 다이캐스팅 공정방안을 도출하고자 한다.

<중략>…….

Fig. 1 Current Al oil pan and cooling lines
Fig. 1 Current Al oil pan and cooling lines
Fig. 2 Temperature distributions of oil pans (Cycling)
Fig. 2 Temperature distributions of oil pans (Cycling)
Fig. 3 Developed Mg oil pan and cooling lines
Fig. 3 Developed Mg oil pan and cooling lines
Fig. 4 Temperature distributions of Mg oil pan for new cooling lines (Cycling)
Fig. 4 Temperature distributions of Mg oil pan for new cooling lines (Cycling)
Fig. 5 Filling pattern of current Al oil pan
Fig. 5 Filling pattern of current Al oil pan
Fig. 11 Temperature distribution at t-=1.825sec
Fig. 11 Temperature distribution at t-=1.825sec

<중략>…….

결론

오일팬은 엔진 내부에서 순환되어 돌아오는 오일의 열을 외부로 발산하는 냉각기능 및 엔진으로부터 발생하는 소음이 외부로 전달되지 않도록 소음을 차단하는 역할을 수행하는 매우 중요한 부품 중의 하나이다. 본 연구에서는 현재 개발 중에 있는 새로운 내열 마그네슘 합금을 이용하여 현재 사용하고 있는 알루미늄 오일팬을 대체할 마그네슘 오일팬을 개발하고 시험 생산하였으며 다음과 같은 결론을 얻었다.

  1. 알루미늄 합금과 마그네슘 합금의 단위 부피당 열 용량은 각각 3.07x10J/m/K, 2.38x10J/m/K로서 동일 주조 조건 시 응고 속도 차이가 제품 성형에 영향을 미칠 것으로 예상되었으며, 주조해석 및 제품분석을 통해 확인하였다. 따라서 주조 조건에 가장 큰 영향을 미치는 것으로 확인된 용탕, 금형온도, 주조속도 등을 변경하여 최적 주조공정 조건을 확립하였다.
  2. 제품 및 시험편 성형에 영향을 미치는 것으로 확인된 런너의 곡률 반경을 증대시키고 게이트의 갯수 및 오버플로우 위치와 형상을 조절함으로서 제품 및 시험편의 용탕 흐름을 원활하게 조절 할 수 있었다.
  3. MRI153M 합금은 AE44 합금에 비해 응고 시작점에서 완료점까지의 응고시간이 길어 응고 완료 후, 내부 수축기포가 보다 많이 관찰되었다.
    따라서 MRI153M 합금 주조시 슬리브 충진율, 게이트 통과속도, 충진시간 등을 달리하여 최적 주조 품을 생산할 수 있었다.

Reference

  1. W. Sebastian, K. Droder and S. Schumann, Properties and Processing of Magnesium Wrought Products for Automotive Applications; Conference Paper at Magnesium Alloys and Their Applications,Munich, Germany, 2000 
  2. J. Hwang and D. Kang, “FE Analysis on the press forging of AZ31 Magnesium alloys,” Transactions ofKSAE, Vo1.14, No.1, pp.86-91, 2006  원문보기 
  3. S. Koike, K. Washizu, S. Tanaka, K. Kikawa and T. Baba, “Development of Lightweight Oil Pans Made of a Heat-Resistant Magnesium Alloy for Hybrid Engines,” SAE 2000-01-1117, 2000 
  4. D.M. Kim, H.S. Kim and S.I. Park, “Magnesium for Automotive Application,” Journal ofKSAE, Vo1.18, No.5, pp.53-67, 1996 
  5. P. Lyon, J. F. King and K. Nuttal, “A New Magnesium HPDC Alloy for Elevated Temperature Use,” Proceedings of the 3rd International Magnesium Conference, ed. G. W. Lorimer, Manchester, UK, pp.1 0-12, 1996 
  6. S. Schumann and H. Friedrich, The Use ofMg in Cars – Today and in Future, Conference Paper at Mg Alloys and Their Applications, Wolfsburg, Germany, 1998 
  7. F. von Buch, S. Schumann, H. Friedrich, E. Aghion, B. Bronfin, B. L. Mordike, M. Bamberger and D. Eliezer, “New Die Casting Alloy MRI 153 for Power Train Applications,” Magnesium Technology 2002, pp.61-68, 2002 
  8. M.C. Kang and K.Y. Sohn, “The Trend and Prospects of Magnesium Alloys Consumption for Automotive Parts in Europe,” Proceedings of KSAE Autumn Conference, pp.1569-l576, 2003 
Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.

The effect of alloying elements of gas metal arc welding (GMAW) wire on weld pool flow and slag formation location in cold metal transfer (CMT)

가스 금속 아크 용접 (GMAW) 와이어의 합금 원소가 CMT (Cold Metal Transfer)에서 용접 풀 흐름 및 슬래그 형성 위치에 미치는 영향

Md. R. U. Ahsan1,3, Muralimohan. Cheepu2, Yeong-Do Park* 2,3
1Department of Mechanical Engineering, International University of Business, Agriculture and Technology,
Dhaka 1230, Bangladesh.
r.ahsan06me@gmail.com
2Department of Advanced Materials and Industrial Management Engineering, Dong-Eui University, Busan
47340, Republic of Korea.
muralicheepu@gmail.com
3Department of Advanced Materials Engineering, Dong-Eui University, B

Abstract

용접시 표면 장력 구동 흐름 또는 마랑고니 흐름은 용접 비드 모양을 제어하는데 중요한 역할을 하므로 용접 접합 품질에 영향을 미칩니다. 용해된 금속의 표면 장력은 보통 음의 온도 계수를 가지므로 용접 풀이 중심에서 토우 방향으로 흐르게 됩니다.

표면 장력의 이 온도 계수는 황(S), 산소(O), 셀레늄(Se) 및 텔루륨(Te)과 같은 표면 활성 요소가 있는 경우 양의 계수로 변경할 수 있습니다. 소모품에 존재하는 탈산화 원소의 양이 용접 금속에 존재하는 산소량을 결정합니다. 탈산화제 양이 적으면 용접 금속에 산소 농도가 높아집니다.

적절한 양의 산소가 있으면 용융지에 표면 장력 구배의 양의 온도 계수가 발생할 수 있습니다. 이 경우 용접 풀은 토우에서 중앙 방향으로 흐릅니다. 그 결과, 아크와 용융지에 있는 화농성 반응의 경우, 합금 요소의 다양한 산화물이 슬래그(slag)라고 합니다. 슬래그는 용융지 표면에 떠서 용융지 흐름 패턴에 따라 누적됩니다.

그 결과, 슬래그는 용융지 흐름 패턴에 따라 용접 비드 중심 또는 토우 중심을 따라 형성됩니다. 슬래그는 용접 비드의 외관과 도장 접착력을 저하시키므로 제거해야 합니다. 쉽게 분리할 수 있기 때문에 용접 비드 중심 부근에서 슬래그가 형성되는 것이 좋습니다.

용접 풀의 현장 고속 비디오 촬영, 용접 금속 화학 성분 분석, 소모품 합금 요소가 용접 풀 흐름 패턴 및 슬래그 형성 위치에 미치는 영향이 공개되어 CMT-GMAW의 생산성 향상을 위해 용접 소모품 선택을 용이하게 할 수 있습니다.

The surface tension driven flow or Marangoni flow in welding plays an important role in governing weld bead shape hence affecting the weld joint quality. The surface tension of molten metal usually has a negative temperature coefficient causing the weld pool to flow from the center towards the toe.

This temperature coefficient of the surface tension can be altered to be a positive one in the presence of surface-active elements like sulfur (S), oxygen (O), selenium (Se) and tellurium (Te). The amount of deoxidizing elements present in the consumables governs the amount of oxygen present in the weld metal. The presence of a lower amount of deoxidizers results in higher concentration of oxygen in the weld metal.

The presence of adequate amount of oxygen can result in a positive temperature coefficient of surface tension gradient in the weld pool. In such situation, the weld pool flows from the toe towards the direction of the center. As a result, of pyrometallurgical reactions in the arc and the weld pool various oxides of the alloying elements are former which are referred as slag.

The slags float on the weld pool surface and accumulate following the weld pool flow pattern. As a result, slags form either along the center of the weld bead or the toe depending on the weld pool flow pattern. The slags need to be removed as they degrade the weld bead appearance and paint adhesiveness.

Due to easy detachability, slag formation near the center of the weld bead is desired. From in-situ high-speed videography of weld pool, weld metal chemical composition analysis, the effect of consumables alloying elements on weld pool flow pattern and slag formation location are disclosed, which can facilitate the selection of the welding consumables for better productivity in CMT-GMAW.

Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.
Weld bead surface images showing the slag formation location for (a) wire 1 and (b) wire 2.
Fig. 2: High-speed movie frames and schematic showing the weld pool flow pattern and the slag formation location for wire 1 and wire 2.
Fig. 2: High-speed movie frames and schematic showing the weld pool flow pattern and the slag formation location for wire 1 and wire 2.
Fig. 3: Quantitative analysis data on slag formation for different wire.
Fig. 3: Quantitative analysis data on slag formation for different wire.

References

[1] S. Lu, H. Fujii, and K. Nogi: “Marangoni convection and weld shape variations in He-CO2 shielded gas
tungsten arc welding on SUS304 stainless steel,” J. Mater. Sci., Vol. 43, No. 13 (2008), pp. 4583–4591.
[2] Y. Wang and H. L. Tsai: “Effects of surface active elements on weld pool fluid flow and weld penetration in
gas metal arc welding,” Metall. Mater. Trans. B, Vol. 32, No. 3 (2001), pp. 501–515.
[3] P. Sahoo, T. Debroy, and M. J. McNallan: “Surface tension of binary metal-surface active solute systems under
conditions relevant to welding metallurgy,” Metall. Trans. B, Vol. 19, No. 2 (1988), pp. 483–491.
[4] M. J. Mcnallan and T. Debroy: “Effect of Temperature and in Fe-Ni-Cr Alloys Containing Sulfur,”Metall.
Trans. B,Vol. 22, No. 4 (1991) pp. 557-560.
[5] S. Kou, C. Limmaneevichitr, and P. S. Wei: “Oscillatory Marangoni flow: A fundamental study by conductionmode laser spot welding,” Weld. J., Vol. 90, No. 12 (2011), pp. 229–240.
[6] M. Hasegawa, M. Watabe, and W. H. Young: “Theory of the surface tension of liquid metals,” J. Phys. F Met.
Phys., Vol. 11, No. 8 (2000), pp. 173–177.
[7] C. Heiple and J. Roper: “Effect of selenium on GTAW fusion zone geometry,” Weld. J., (1981), pp. 143–145.
[8] C. R. Heiple and J. R. Roper: “Mechanism for Minor Element Effect on {GTA} Fusion Zone Geometry,”
Weld. J., Vol. 61, (1982)pp. 97–102.
[9] C. Heiple, J. Roper, R. Stagner, and R. Aden: “Surface active element effects on the shape of GTA, laser and
electron beam welds,” Weld. J., (1983) pp. 72–77.
[10] C. R. Heiple and P. Burgardt: “Effects of SO2 Shielding Gas Additions on GTA Weld Shape,” Weld. J., (1985)
pp. 159–162.
[11] P. F. Mendez, and T. W. Eagar: “Penetration and Defect Formation in High-Current Arc Welding,” Weld. J.,
(2003) pp. 296–306.
[12] B. Ribic, S. Tsukamoto, R. Rai, and T. DebRoy: “Role of surface-active elements during keyhole-mode laser
welding,” J. Phys. D. Appl. Phys., Vol. 44, No. 48 (2011), pp. 485–203.
[13] C. Limmaneevichitr and S. Kou, “Experiments to simulate effect of Marangoni convection on weld pool shape,”
Weld. J., Vol. 79, (2000)pp. 231–237.
[14] C. Limmaneevichitr and S. Kou: “Visualization of Marangoni convection in simulated weld pools containing a
surface-active agent,” Weld. J., vol. 79, No. 11 (2000), pp. 324–330.
[15] Y. Wang and H. L. Tsai: “Impingement of filler droplets and weld pool dynamics during gas metal arc welding
process,” Int. J. Heat Mass Transf., Vol. 44, No. 11 (2001), pp. 2067–2080.
[16] S. Liu: “Pyrometallurgical Studies of Molten Metal Droplets for the Characterization of Gas Metal Arc
Welding,” Proc 9thTrends in Welding Research Conf., Chicago, Illinois, June 2012, pp. 353–361.
[17] Y. Umehara, R. Suzuki and T. Nakano: “Development of the innovative GMA wire improving the flow
direction of molten pool” Quart. J. Japan Weld. Soc., Vol. 27, NO. 2 (2009), pp. 163–168.

Fig. 6: Proposed Pattern Layout

Casting Defect Analysis on Caliper Bracket using Mold flow Simulation

금형 흐름 시뮬레이션을 사용한 캘리퍼 브래킷의 주조 결함 분석

Abstract

이 작업에서는 컴퓨터 보조 주조 시뮬레이션 기술을 사용하여 Green sand 주조의 모래, 기계 및 설계 관련 결함을 분석합니다. 자동차 브레이크 드럼에 사용되는 캘리퍼 브래킷이 분석을 위해 선택됩니다.

캘리퍼 브래킷을 제조하는 동안 수축, 블로우 홀, 몰드 크러쉬 및 샌드 드롭과 같은 결함이 대량 생산에서 발생합니다. 여기에서는 주조 결함 식별, 분석 및 수정에 대한 3 단계 접근 방식을 제시합니다.

모래 관련 결함에서 테스트 매개 변수 및 모래 속성이 수집된 다음 해당 속성을 저널 및 기타 표준과 비교합니다. 기계 관련 주조 결함에서 기계 유지 보수를 관찰 한 다음 유지 보수 일정을 변경하여 브레이크 다운 시간과 유지 보수 비용을 줄입니다.

패턴 관련에서는 “Autodesk 금형 흐름 시뮬레이션 소프트웨어”를 사용하여 패턴에서 결함이 있는 영역을 찾은 다음 패턴을 재 설계하여 결함을 줄입니다.

Keywords: Casting defects, Mold flow, Simulation, Caliper Bracket

Background

이 작업에서 컴퓨터 보조 주조 시뮬레이션 기술을 사용하여 모래, 기계 및 설계 관련 결함을 분석하는 것은 원하는 부품 형상을 제조하는 직접적인 방법 중 하나입니다. 주조 결함으로 인해 단위 비용이 증가하고 작업 현장 직원의 사기가 낮아집니다. Vijaya Ramnath (2014)는 제조 리드 타임을 대폭 단축하는 게이팅 시스템의 최적화를 다루었습니다.

Prabhakara Rao et al (2011)은 ProCAST 소프트웨어의 도움으로 주조 응고 시뮬레이션 프로세스에 대해 논의했습니다. Kermanpur et al (2010)은 FLOW-3D 시뮬레이션 소프트웨어를 사용하여 두 자동차 주조 부품의 다중 캐비티 주조 금형에서 금속 흐름 및 응고 거동을 연구하고 시뮬레이션 모델을 검증했습니다.

Nandi 등 (2914)은 기존 방법과 컴퓨터 시뮬레이션 기술을 기반으로 다양한 크기의 피더를 사용하는 알루미늄 합금 (LM6)의 응고 거동을 조사하기 위해 플레이트 주조를 연구했습니다. Gajbhiye (2014)는 허용치, 게이팅 시스템 및 피더가있는 패턴에 대해 얻은 설계 치수에 따라 AutoCAST-X 환경에서 응고 시뮬레이션 분석을 수행했습니다. Masoumi (2005)는 금형 충진의 흐름 패턴을 실험적으로 관찰하기 위해 직접 관찰을 사용했습니다.

Dabade (2013)는 실험 설계법 (Taguchi 법)과 컴퓨터 지원 주조 시뮬레이션 기법을 결합한 새로운 주조 결함 분석 방법을 제안하고 연구하여 모래, 몰딩, 녹색 모래 주조의 방법, 충전 및 응고. Rajesh Rajkolhe (2014)와 Vipul Vasava (2013)는 주조 시뮬레이션 기술이 주조 결함 문제 해결 및 방법 최적화를 위한 강력한 도구가 된다고 발표했습니다.

Guharaja (2006)는 가능한 가장 낮은 비용으로 매개 변수 설계의 Taguchis 방법으로 품질을 개선함으로써이를 입증했습니다. 검토를 기반으로이 작업에서는 컴퓨터 지원 주조 시뮬레이션 기술을 사용하여 그린 샌드 주조의 설계 관련 결함을 분석합니다. 주조. 자동차 브레이크 드럼에 사용되는 캘리퍼 브래킷이 분석을 위해 선택됩니다.

캘리퍼 브래킷을 제조하는 동안 수축, 블로우 홀, 몰드 크러쉬 및 샌드 드롭과 같은 결함이 대량 생산에서 발생합니다. 여기에서는 주조 결함 식별, 분석 및 수정에 대한 3 단계 접근 방식을 제시합니다. 모래 관련 결함에서 테스트 매개 변수 및 모래 속성이 수집된 다음 해당 속성을 저널 및 기타 표준과 비교합니다.

기계 관련 주조 결함에서 기계 유지 보수를 관찰 한 다음 유지 보수 일정을 변경하여 브레이크 다운 시간과 유지 보수 비용을 줄입니다. 패턴 관련에서는 “Autodesk 금형 흐름 시뮬레이션 소프트웨어”를 사용하여 패턴의 결함 영역을 찾은 다음 패턴의 재 설계를 수행하여 결함을 줄입니다.

본문 내용 생략 : 문서 하단부의 원문보기를 참고하시기 바랍니다.

Fig. 5: Existing Pattern Layout
Fig. 5: Existing Pattern Layout
Fig. 6: Proposed Pattern Layout
Fig. 6: Proposed Pattern Layout

Conclusions

이 작업은 산업 부품의 결함을 줄이기 위해 시뮬레이션 기술을 사용하여 주조 결함을 식별하는 것을 목표로합니다. 주조 부품의 품질을 향상시키기 위해 여러 가지 장점과 지능형 도구 형태를 제공합니다. 이것은 주조의 품질과 수율을 향상시키는 데 확실히 도움이 될 것입니다. 이러한 기술적 인 방법으로 주조 결함을 검사하면 주조 산업에서 불량품 관리 조건을 경고 할 수 있습니다. 이 프로젝트에서는 자동차 브레이크 드럼에 사용되는 캘리퍼 브래킷을 분석을 위해 선택합니다. 캘리퍼 브라켓을 제작하는 동안 양산시 수축, 블로우 홀, 몰드 크러쉬, 샌드 드롭과 같은 결함이 발생합니다. 더 나은 품질의 주조를 얻기 위해 다양한 매개 변수를 찾기 위해 많은 테스트가 수행되었습니다. 모래 매개 변수를 적절하게 선택함으로써 주조 결함을 성공적으로 줄였습니다. 거부가 통제 될 때까지 모래 혼합 공정 매개 변수의 변화를 위해 지속적으로 노력할 수 있습니다. 그런 다음 적절한 유지 보수 정책을 제공하여 CASTING 기계의 성능 수준을 높였습니다. 이로 인해 CASTING 기계의 OEE가 향상되었습니다. 마지막으로 세 가지 이상의 수정 사항이있는 새로운 패턴 디자인이 제안됩니다. 이 새로운 패턴 디자인은 주조 결함을 성공적으로 줄였습니다. 더 나은 품질을 위해 주조 결함에 근거한 주조품의 거부를 가능한 한 줄여야합니다.
분석 결과는 제품 품질의 향상을 보여줍니다. 마지막으로 캐스팅 거부율이 감소합니다.

Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section

A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process

Keyhole에 대한 수치적 연구 : 레이저 분말 중 형성 베드 퓨전 공정

Subin Shrestha1
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: subin.shrestha@louisville.edu

Y. Kevin Chou
J.B. Speed School of Engineering,University of Louisville,Louisville, KY 40292
e-mail: kevin.chou@louisville.edu

LPBF (Laser Powder Bed fusion) 공정 중 용융 풀의 동적 현상은 복잡하고 공정 매개 변수에 민감합니다. 에너지 밀도 입력이 특정 임계 값을 초과하면 키홀이라고 하는 거대한 증기 함몰이 형성 될 수 있습니다.

이 연구는 수치 분석을 통해 LPBF 과정에서 키홀 거동 및 관련 기공 형성을 이해하는 데 중점을 둡니다. 이를 위해 이산 분말 입자가 있는 열 유동 모델이 개발되었습니다.

이산 요소 방법 (DEM)에서 얻은 분말 분포는 계산 영역에 통합되어 FLOW-3D를 사용하는 3D 프로세스 물리학 모델을 개발합니다.

전도 모드 중 용융 풀 형성과 용융의 키홀 모드가 식별되고 설명되었습니다. 높은 에너지 밀도는 증기 기둥의 형성으로 이어지고 결과적으로 레이저 스캔 트랙 아래에 구멍이 생깁니다.

또한 다양한 레이저 출력과 스캔 속도로 인한 Keyhole 모양을 조사합니다. 수치 결과는 동일한 에너지 밀도에서도 레이저 출력이 증가함에 따라 Keyhole크기가 증가 함을 나타냅니다. Keyhole은 더 높은 출력에서 ​​안정되어 레이저 스캔 중 Keyhole 발생을 줄일 수 있습니다.

The dynamic phenomenon of a melt pool during the laser powder bed fusion (LPBF) process is complex and sensitive to process parameters. As the energy density input exceeds a certain threshold, a huge vapor depression may form, known as the keyhole. This study focuses on understanding the keyhole behavior and related pore formation during the LPBF process through numerical analysis. For this purpose, a thermo-fluid model with discrete powder particles is developed. The powder distribution, obtained from a discrete element method (DEM), is incorporated into the computational domain to develop a 3D process physics model using flow-3d. The melt pool formation during the conduction mode and the keyhole mode of melting has been discerned and explained. The high energy density leads to the formation of a vapor column and consequently pores under the laser scan track. Further, the keyhole shape resulted from different laser powers and scan speeds is investigated. The numerical results indicated that the keyhole size increases with the increase in the laser power even with the same energy density. The keyhole becomes stable at a higher power, which may reduce the occurrence of pores during laser scanning.

Keywords: additive manufacturing, keyhole, laser powder bed fusion, porosity

Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 1 (a) Powder added to the dispenser platform and (b) powder particles settled over build plate after the recoating process
Fig. 2 3D computational domain used for single-track simulation
Fig. 2 3D computational domain used for single-track simulation
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 3 Temperature-dependent material properties of Ti-6Al-4V
Fig. 4 Powder and substrate melting during laser application
Fig. 4 Powder and substrate melting during laser application
Fig. 5 Melt region formed after complete melting and solidification
Fig. 5 Melt region formed after complete melting and solidification
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 6 Melt pool boundary comparison between the experiment [25] and the simulation
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 7 Equilibrium points during the formation of vapor column [27]
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 8 Multiple reflection vectors from the keyhole wall
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 9 (a) Velocity field, keyhole profile, and breakage of the keyhole to form bubble and (b) 2D temperature and velocity field along the longitudinal section
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 10 Fluid flow in the transverse direction during keyhole melting
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 11 Melt pool boundary compared with the experiment [21] for 195 W laser power and 400 mm/s scan speed
Fig. 12 Melt region formed after complete melting and solidification
Fig. 12 Melt region formed after complete melting and solidification
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 13 2D images of the pores formed at the beginning of the single track and their 3D-rendered morphology
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 14 Pore number and volume from a different level of power with LED = 0.4 J/mm [29]
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 15 Keyhole shape at different time steps from different parameters: (a) P = 100 W, v = 250 mm/s, (b) P = 200 W, v = 500 mm/s, (c) P = 300 W, v = 750 mm/s, and (d) P = 400 W, v = 1000 mm/s
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 16 Intensity dependence in the relationship between vapor column and evaporation pressure [27]
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 17 Temperature distribution when laser has moved 0.8 mm with P = 300 W, v = 750 mm/s and P = 400 W, v = 1000 mm/s
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm
Fig. 18 Melt region with different level of power with LED of 0.4 J/mm

References

[1] Bauereiß, A., Scharowsky, T., and Körner, C., 2014, “Defect Generation and
Propagation Mechanism During Additive Manufacturing by Selective Beam
Melting,” J. Mater. Process. Technol., 214(11), pp. 2522–2528.
[2] Gong, H., Rafi, K., Gu, H., Starr, T., and Stucker, B., 2014, “Analysis of Defect
Generation in Ti–6Al–4V Parts Made Using Powder Bed Fusion Additive
Manufacturing Processes,” Add. Manuf., 1(2014), pp. 87–98.
[3] Wang, Y., Kamath, C., Voisin, T., and Li, Z., 2018, “A Processing Diagram for
High-Density Ti-6Al-4V by Selective Laser Melting,” Rapid Prototyping J., 24
(9), pp. 1469–1478.
[4] Khairallah, S. A., and Anderson, A., 2014, “Mesoscopic Simulation Model of
Selective Laser Melting of Stainless Steel Powder,” J. Mater. Process. Technol.,
214(11), pp. 2627–2636.
[5] Yadroitsev, I., Gusarov, A., Yadroitsava, I., and Smurov, I., 2010, “Single Track
Formation in Selective Laser Melting of Metal Powders,” J. Mater. Process.
Technol., 210(12), pp. 1624–1631.
[6] Xia, M., Gu, D., Yu, G., Dai, D., Chen, H., and Shi, Q., 2016, “Influence of Hatch
Spacing on Heat and Mass Transfer, Thermodynamics and Laser Processability
During Additive Manufacturing of Inconel 718 Alloy,” Int. J. Mach. Tools
Manuf., 109(2016), pp. 147–157.
[7] Lee, Y., and Zhang, W., 2016, “Modeling of Heat Transfer, Fluid Flow and
Solidification Microstructure of Nickel-Base Superalloy Fabricated by Laser
Powder bed Fusion,” Add. Manuf., 12(2016), pp. 178–188.
[8] Wu, Y.-C., San, C.-H., Chang, C.-H., Lin, H.-J., Marwan, R., Baba, S., and
Hwang, W.-S., 2018, “Numerical Modeling of Melt-Pool Behavior in Selective
Laser Melting with Random Powder Distribution and Experimental
Validation,” J. Mater. Process. Technol., 254(2018), pp. 72–78.
[9] Khairallah, S. A., Anderson, A. T., Rubenchik, A., and King, W. E., 2016, “Laser
Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and
Formation Mechanisms of Pores, Spatter, and Denudation Zones,” Acta
Materialia, 108(2016), pp. 36–45.
[10] Tan, J., Tang, C., and Wong, C., 2018, “A Computational Study on Porosity
Evolution in Parts Produced by Selective Laser Melting,” Metall. Mater. Trans.
A, 49A(8), pp. 3663–3673.
[11] Leitz, K.-H., Singer, P., Plankensteiner, A., Tabernig, B., Kestler, H., and Sigl,
L. J. M. P. R., 2017, “Multi-Physical Simulation of Selective Laser Melting,”
Metal Powder Report, 72(5), pp. 331–338.
[12] Zhao, C., Fezzaa, K., Cunningham, R. W., Wen, H., Carlo, F., Chen, L., Rollett,
A. D., and Sun, T., 2017, “Real-time Monitoring of Laser Powder Bed Fusion
Process Using High-Speed X-ray Imaging and Diffraction,” Sci. Rep., 7(1),
p. 3602.
[13] Parab, N. D., Zhao, C., Cunningham, R., Escano, L. I., Fezzaa, K., Everhart, W.,
Rollett, A. D., Chen, L., and Sun, T., 2018, “Ultrafast X-ray Imaging of Laser–
Metal Additive Manufacturing Processes,” J. Synchrotron Radiat., 25(5),
pp. 1467–1477.
[14] Cunningham, R., Zhao, C., Parab, N., Kantzos, C., Pauza, J., Fezzaa, K., Sun, T.,
and Rollett, A. D., 2019, “Keyhole Threshold and Morphology in Laser Melting
Revealed by Ultrahigh-Speed X-Ray Imaging,” Science, 363(6429), pp. 849–852.
[15] Shrestha, S., Starr, T., and Chou, K., 2019, “A Study of Keyhole Porosity in
Selective Laser Melting: Single Track Scanning With Micro-CT Analysis,”
ASME J. Manuf. Sci. Eng., 141(7), pp. 1–23.
[16] Ye, J., Rubenchik, A. M., Crumb, M. F., Guss, G., and Matthews, M. J., 2018,
“Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive
Manufacturing of Metals,” Proceedings of the CLEO: Science and Innovations,
Optical Society of America, San Jose, CA, May 13–18, Optical Society of
America, p. JW2A.117.
[17] Mishra, B., and Rajamani, R. K., 1992, “The Discrete Element Method for the
Simulation of Ball Mills,” Appl. Math. Modell., 16(11), pp. 598–604.
[18] Yan, W., Qian, Y., Ge, W., Lin, S., Liu, W. K., Lin, F., and Wagner, G. J., 2018,
“Meso-Scale Modeling of Multiple-Layer Fabrication Process in Selective
Electron Beam Melting: Inter-Layer/Track Voids Formation,” Materials and
Design, 141(2018), pp. 210–219.
[19] Kloss, C., Goniva, C., Hager, A., Amberger, S., and Pirker, S., 2012, “Models,
Algorithms and Validation for Opensource DEM and CFD–DEM,” Prog.
Comput. Fluid Dynam. Int. J., 12(2–3), pp. 140–152.
[20] Escano, L. I., Parab, N. D., Xiong, L., Guo, Q., Zhao, C., Fezzaa, K., Everhart,
W., Sun, T., and Chen, L., 2018, “Revealing Particle-Scale Powder Spreading
Dynamics in Powder-Bed-Based Additive Manufacturing Process by
High-Speed X-Ray Imaging,” Sci. Rep., 8(1), p. 15079.
[21] Gong, H., Gu, H., Zeng, K., Dilip, J., Pal, D., Stucker, B., Christiansen, D., Beuth,
J., and Lewandowski, J. J., 2014, “Melt Pool Characterization for Selective Laser
Melting of Ti-6Al-4V Pre-Alloyed Powder,” Proceedings of the Solid Freeform
Fabrication Symposium, Austin, TX, Aug. 4–6, pp. 256–267.
[22] Mills, K. C., 2002, Recommended Values of Thermophysical Properties for
Selected Commercial Alloys, Woodhead Publishing, Cambridge, UK.
[23] Shrestha, S., and Chou, K., 2017, “A Build Surface Study of Powder-Bed
Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and
White-Light Interferometry,” Int. J. Mach. Tools Manuf., 121(2017), pp. 37–49.
[24] Cho, J.-H., and Na, S.-J., 2006, “Implementation of Real-Time Multiple
Reflection and Fresnel Absorption of Laser Beam in Keyhole,” J. Phys. D:
Appl. Phys., 39(24), p. 5372.
[25] Dilip, J., Zhang, S., Teng, C., Zeng, K., Robinson, C., Pal, D., and Stucker, B.,
2017, “Influence of Processing Parameters on the Evolution of Melt Pool,
Porosity, and Microstructures in Ti-6Al-4V Alloy Parts Fabricated by Selective
Laser Melting,” Prog. Add. Manuf., 2(3), pp. 157–167.
[26] Bertoli, U. S., Wolfer, A. J., Matthews, M. J., Delplanque, J.-P. R., and Schoenung,
J. M., 2017, “On the Limitations of Volumetric Energy Density as a Design
Parameter for Selective Laser Melting,” Mater. Des., 113(2017), pp. 331–340.
[27] Kroos, J., Gratzke, U., and Simon, G., 1993, “Towards a Self-Consistent Model of
the Keyhole in Penetration Laser Beam Welding,” J. Phys. D: Appl. Phys., 26(3),
p. 474.
[28] Martin, A., Calta, N., Hammons, J., Khairallah, S., Nielsen, M., Shuttlesworth, R.,
Sinclair, N., Matthews, M., Jeffries, J., and Willey, T., 2019, “Ultrafast Dynamics
of Laser-Metal Interactions in Additive Manufacturing Alloys Captured by In Situ
X-Ray Imaging,” Mater. Today Adv., 1(2019), p. 100002.
[29] Shrestha, S., Starr, T., and Chou, K., 2018, “Individual and coupled contributions
of laser power and scanning speed towards process-induced porosity in selective
laser melting,” Proceedings of the Solid Freeform Fabrication Symposium,
Austin, TX, Aug. 13–15, pp. 1400–1409.
[30] Hann, D., Iammi, J., and Folkes, J., 2011, “A Simple Methodology for Predicting
Laser-Weld Properties From Material and Laser Parameters,” J. Phys. D: Appl.
Phys., 44(44), p. 445401.
[31] Trapp, J., Rubenchik, A. M., Guss, G., and Matthews, M. J., 2017, “In Situ
Absorptivity Measurements of Metallic Powders During Laser Powder-bed
Fusion Additive Manufacturing,” Appl. Mat. Today, 9(2017), pp. 341–349.

Simulation of EPS foam decomposition in the lost foam casting process

X.J. Liu a,∗, S.H. Bhavnani b,1, R.A. Overfelt c,2
a United States Steel Corporation, Great Lakes Works, #1 Quality Drive, Ecorse, MI 48229, United States b 213 Ross Hall, Department of Mechanical Engineering, Auburn University, Auburn, AL 36849-5341, United States c 202 Ross Hall, Department of Mechanical Engineering, Materials Engineering Program, Auburn University, Auburn, AL 36849-5341, United States
Received 17 April 2006; received in revised form 14 July 2006; accepted 21 August 2006

Keywords: Lost foam casting; Heat transfer coefficient; Gas pressure; VOF-FAVOR

LFC (Loss Foam Casting) 공정에서 부드러운 몰드 충진의 중요성은 오랫동안 인식되어 왔습니다. 충진 공정이 균일할수록 생산되는 주조 제품의 품질이 향상됩니다. 성공적인 컴퓨터 시뮬레이션은 금형 충전 공정에서 복잡한 메커니즘과 다양한 공정 매개 변수의 상호 작용을 더 잘 이해함으로써 새로운 주조 제품 설계의 시도 횟수를 줄이고 리드 타임을 줄이는데 도움이 될 수 있습니다.

이 연구에서는 용융 알루미늄의 유체 흐름과 금속과 발포 폴리스티렌 (EPS) 폼 패턴 사이의 계면 갭에 관련된 열 전달을 시뮬레이션하기 위해 전산 유체 역학 (CFD) 모델이 개발되었습니다.

상업용 코드 FLOW-3D는 VOF (Volume of Fluid) 방법으로 용융 금속의 전면을 추적 할 수 있고 FAVOR (Fractional Area / Volume Ratios) 방법으로 복잡한 부품을 모델링 할 수 있기 때문에 사용되었습니다. 이 코드는 폼 열화 및 코팅 투과성과 관련된 기체 갭 압력을 기반으로 다양한 계면 열 전달 계수 (VHTC)의 효과를 포함하도록 수정되었습니다.

수정은 실험 연구에 대해 검증되었으며 비교는 FLOW-3D의 기본 상수 열 전달 (CHTC) 모델보다 더 나은 일치를 보여주었습니다. 금속 전면 온도는 VHTC 모델에 의해 실험적 불확실성 내에서 예측되었습니다. 몰드 충전 패턴과 1-4 초의 충전 시간 차이는 여러 형상에 대해 CHTC 모델보다 VHTC 모델에 의해 더 정확하게 포착되었습니다. 이 연구는 전통적으로 매우 경험적인 분야에서 중요한 프로세스 및 설계 변수의 효과에 대한 추가 통찰력을 제공했습니다.

지난 20 년 동안 LFC (Loss Foam Casting) 공정은 코어가 필요없는 복잡한 부품을 제조하기 위해 널리 채택되었습니다. 이는 자동차 제조업체가 현재 LFC 기술을 사용하여 광범위한 엔진 블록과 실린더 헤드를 생산하기 때문에 알루미늄 주조 산업에서 특히 그렇습니다.

기본 절차, 적용 및 장점은 [1]에서 찾을 수 있습니다. LFC 프로세스는 주로 숙련 된 실무자의 경험적 지식을 기반으로 개발되었습니다. 발포 폴리스티렌 (EPS) 발포 분해의 수치 모델링은 최근에야 설계 및 공정 변수를 최적화하는 데 유용한 통찰력을 제공 할 수있는 지점에 도달했습니다. LFC 공정에서 원하는 모양의 발포 폴리스티렌 폼 패턴을 적절한 게이팅 시스템이있는 모래 주형에 배치합니다.

폼 패턴은 용융 금속 전면이 패턴으로 진행될 때 붕괴, 용융, 기화 및 열화를 겪습니다. 전진하는 금속 전면과 후퇴하는 폼 패턴 사이의 간격 인 운동 영역은 Warner et al. [2] LFC 프로세스를 모델링합니다. 금형 충진 과정에서 분해 산물은 운동 영역에서 코팅층을 통해 모래로 빠져 나갑니다.

용융 금속과 폼 패턴 사이의 복잡한 반응은 LFC 공정의 시뮬레이션을 극도로 어렵게 만듭니다. SOLA-VOF (SOLution AlgorithmVolume of Fluid) 방법이 Hirt와 Nichols [3]에 의해 처음 공식화 되었기 때문에 빈 금형을 사용한 전통적인 모래 주조 시뮬레이션은 광범위하게 연구되었습니다.

Lost foam 주조 공정은 기존의 모래 주조와 많은 특성을 공유하기 때문에이 새로운 공정을 모델링하는 데 적용된 이론과 기술은 대부분 기존의 모래 주조를 위해 개발 된 시뮬레이션 방법에서 비롯되었습니다. 패턴 분해 속도가 금속성 헤드와 금속 전면 온도의 선형 함수라고 가정함으로써 Wang et al. [4]는 기존의 모래 주조의 기존 컴퓨터 프로그램을 기반으로 복잡한 3D 형상에서 Lost foam 주조 공정을 시뮬레이션했습니다.

Liu et al. [5]는 금속 앞쪽 속도를 예측하기 위한 간단한 1D 수학적 모델과 함께 운동 영역의 배압을 포함했습니다. Mirbagheri et al. [6]은 SOLA-VOF 기술을 기반으로 금속 전면의 자유 표면에 대한 압력 보정 방식을 사용하는 Foam 열화 모델을 개발했습니다.

Kuo et al.에 의해 유사한 배압 방식이 채택되었습니다. [7] 운동량 방정식에서이 힘의 값은 실험 결과에 따라 패턴의 충전 순서를 연구하기 위해 조정되었습니다.

이러한 시뮬레이션의 대부분은 LFC 공정의 충전 속도가 기존의 모래 주조 공정보다 훨씬 느린 것으로 성공적으로 예측합니다. 그러나 Foam 분해의 역할은 대부분 모델의 일부가 아니며 시뮬레이션을 수행하려면 실험 데이터 또는 경험적 함수가 필요합니다.

현재 연구는 일정한 열전달 계수 (CHTC)를 사용하는 상용 코드 FLOW-3D의 기본 LFC 모델을 수정하여 Foam 열화와 관련된 기체 갭 압력에 따라 다양한 열전달 계수 (VHTC)의 영향을 포함합니다. 코팅 투과성. 수정은 여러 공정 변수에 대한 실험 연구에 대해 검증되었습니다.

또한, 손실 된 폼 주조에서 가장 중요한 문제인 결함 형성은 문헌에서 인용 된 수치 작업에서 모델링되지 않았습니다. 접힘, 내부 기공 및 표면 기포와 같은 열분해 결함은 LFC 작업에서 많은 양의 스크랩을 설명합니다. FLOW-3D의 결함 예측 기능은 프로세스를 이해하고 최적화하는데 매우 중요합니다.

Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 7. Comparison of mold filling times for a plate pattern with three ingates: (a) measured values by thermometric technique [18]; (b) predicted filling times based on basic CHTC model with gravity effect; and (c) predicted filing times based on the VHTC model with heat transfer coefficient changing with gas pressure; (d) mold filling time at the right-and wall of the mold for the plate pattern with three ingates.
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).
Fig. 10. Defects formation predicted by (a) basic CHTC model with gravity effect; (b) VHTC model with heat transfer coefficient based on both gas pressure and coating thickness; and (c) improved model for two ingates. Color represents probability for defects (blue is the lowest and red highest).

References

[1] S. Shivkumar, L. Wang, D. Apelian, The lost-foam casting of aluminum alloy components, JOM 42 (11) (1990) 38–44.
[2] M.H. Warner, B.A. Miller, H.E. Littleton, Pattern pyrolysis defect reduction in lost foam castings, AFS Trans. 106 (1998) 777–785.
[3] C.W. Hirt, B.D. Nichols, Volume of Fluid (VOF) method for the dynamics of free boundaries, J. Comp. Phys. 39 (1) (1981) 201–225.
[4] C. Wang, A.J. Paul, W.W. Fincher, O.J. Huey, Computational analysis of fluid flow and heat transfer during the EPC process, AFS Trans. 101 (1993) 897–904.
[5] Y. Liu, S.I. Bakhtiyarov, R.A. Overfelt, Numerical modeling and experimental verification of mold filling and evolved gas pressure in lost foam casting process, J. Mater. Sci. 37 (14) (2002) 2997–3003.
[6] S.M.H. Mirbagheri, H. Esmaeileian, S. Serajzadeh, N. Varahram, P. Davami, Simulation of melt flow in coated mould cavity in the lost foam casting process, J. Mater. Process. Technol. 142 (2003) 493–507.
[7] J.-H. Kuo, J.-C. Chen, Y.-N. Pan, W.-S. Hwang, Mold filling analysis in lost foam casting process for aluminum alloys and its experimental validation, Mater. Trans. 44 (10) (2003) 2169–2174.
[8] C.W. Hirt, Flow-3D User’s Manual, Flow Science Inc., 2005.
[9] E.S. Duff, Fluid flow aspects of solidification modeling: simulation of low pressure die casting, The University of Queensland, Ph.D. Thesis, 1999.
[10] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, The effects of foam density and metal velocity on the heat and mass transfer in the lost foam casting process, in: Proceedings of the ASME Summer Heat Transfer Conference, 2003,
pp. 317–323.
[11] W. Sun, P. Scarber Jr., H. Littleton, Validation and improvement of computer modeling of the lost foam casting process via real time X-ray technology, in: Multiphase Phenomena and CFD Modeling and Simulation in
Materials Processes, Minerals, Metals and Materials Society, 2004, pp. 245–251.
[12] T.V. Molibog, Modeling of metal/pattern replacement in the lost foam casting process, Materials Engineering, University of Alabama, Birmingham, Ph.D. Thesis, 2002.
[13] X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Measurement of kinetic zone temperature and heat transfer coefficient in the lost foam casting process, ASME Int. Mech. Eng. Congr. (2004) 411–418.
[14] X. Yao, An experimental analysis of casting formation in the expendable
pattern casting (EPC) process, Department of Materials Science and Engineering, Worcester Polytechnic Institute, M.S. Thesis, 1994.
[15] M.R. Barkhudarov, C.W. Hirt, Tracking defects, Die Casting Engineer 43 (1) (1999) 44–52.
[16] C.W. Hirt, Modeling the Lost Foam Process with Defect PredictionsProgress Report: Lost-Foam Model Extensions, Wicking, Flow Science Inc., 1999.
[17] D. Wang, Thermophysical Properties, Solidification Design Center, Auburn University, 2001.
[18] S. Shivkumar, B. Gallois, Physico-chemical aspects of the full mold casting of aluminum alloys, part II: metal flow in simple patterns, AFS Trans. 95 (1987) 801–812.

Simulation Gallery

Simulation Gallery

Simulation Gallery | 시뮬레이션 갤러리

시뮬레이션 비디오 갤러리에서 FLOW-3D  제품군으로 모델링 할 수 있는 다양한 가능성을 살펴보십시오 .

적층 제조 시뮬레이션 갤러리

FLOW-3D AM 은 레이저 파우더 베드 융합, 바인더 제트 및 직접 에너지 증착과 같은 적층 제조 공정을 시뮬레이션하고 분석합니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대한 매우 정확한 시뮬레이션을 제공합니다. 

Multi-material Laser Powder Bed Fusion | FLOW-3D AM

Micro and meso scale simulations using FLOW-3D AM help us understand the mixing of different materials in the melt pool and the formation of potential defects such as lack of fusion and porosity. In this simulation, the stainless steel and aluminum powders have independently-defined temperature dependent material properties that FLOW-3D AM tracks to accurately capture the melt pool dynamics. Learn more about FLOW-3D AM’s mutiphysics simulation capabilities at https://www.flow3d.com/products/flow3…

Laser Welding Simulation Gallery

FLOW-3D WELD 는 레이저 용접 공정에 대한 강력한 통찰력을 제공하여 공정 최적화를 달성합니다. 더 나은 공정 제어로 다공성, 열 영향 영역을 최소화하고 미세 구조 진화를 제어 할 수 있습니다. 레이저 용접 공정을 정확하게 시뮬레이션하기 위해 FLOW-3D WELD 는 레이저 열원, 레이저-재료 상호 작용, 유체 흐름, 열 전달, 표면 장력, 응고, 다중 레이저 반사 및 위상 변화를 특징으로 합니다.

Keyhole welding simulation | FLOW-3D WELD

물 및 환경 시뮬레이션 갤러리

FLOW-3D 는 물고기 통로, 댐 파손, 배수로, 눈사태, 수력 발전 및 기타 수자원 및 환경 공학 과제 모델링을 포함하여 유압 산업에 대한 많은 응용 분야를 가지고 있습니다. 엔지니어는 수력 발전소의 기존 인프라 용량을 늘리고, 어류 통로, 수두 손실을 최소화하는 흡입구, 포 이베이 설계 및 테일 레이스 흐름을위한 개선 된 설계를 개발하고, 수세 및 퇴적 및 공기 유입을 분석 할 수 있습니다.

금속 주조 시뮬레이션 갤러리

FLOW-3D CAST  에는 캐스팅을 위해 특별히 설계된 광범위하고 강력한 물리적 모델이 포함되어 있습니다. 이러한 특수 모델에는 lost foam casting, non-Newtonian fluids, and die cycling에 대한 알고리즘이 포함됩니다. FLOW-3D CAST 의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계주기를 단축하고 비용을 절감 할 수 있는 통찰력을 제공합니다.

HPDC |Comparison of slow shot profiles and entrained air during a filling simulation |FLOW-3D CAST

Shown is a video comparing two slow shot profiles. The graphs highlight the shot profiles through time and the difference in entrained air between the slow shots. Note the lack of air entrained in shot sleeve with calculated shot profile which yields a much better controlled flow within the shot sleeve.

Coastal & Maritime Applications | FLOW-3D

FLOW-3D는 선박 설계, 슬로싱 다이내믹스, 파동 충격 및 환기 등 연안 및 해양 애플리케이션에 이상적인 소프트웨어입니다. 연안 애플리케이션의 경우 FLOW-3D는 연안 구조물에 심각한 폭풍과 쓰나미 파장의 세부 정보를 정확하게 예측하고 플래시 홍수 및 중요 구조물 홍수 및 손상 분석에 사용됩니다.

코어 가스(Core Gas)

코어 가스(Core Gas)

 

코어로 주조 모델링 (Modeling Castings with Cores)

모래 속의 화학 결합제는 용융 된 금속에 의해 가열 될 때 가스를 생성 할 수 있으며 적절하게 환기되지 않으면 가스가 금속으로 흘러 가스의 다공성 결함이 발생할 수 있습니다. 이것은 빠르게 가열되고 긴 환기 경로를 갖는 주물의 얇은 내부 특징을 형성하는 코어에서 가장 가능성이 높습니다. FLOW-3D CAST의 코어 가스 모델은 이러한 가스 결함의 가능성을 예측하고 코어에서 모든 갇히는 가스들을 안전하게 배출 할 수있는 코어 벤팅을 설계하는 데 도움이됩니다.

 

알루미늄 및 철 주조의 결함 모델링 (Modeling Defects in Aluminum and Iron Castings)

‘Core Gas’ 모델은 철 주물 (그림 1)과 알루미늄 주물 (그림 2) 모두에서 수지 결합 코어의 결함을 예측합니다. 충전 및 응고 모델과 동시에 작동이 가능하며 주조의 충전 중 및 충전 후 갇히는 가스 생성 및 흐름을 계산합니다.

 

그림 1 : 열린 플라스크 부분 V8 Al 블록 어셈블리의 채우기. 두 개의 코어는 블록의 워터 재킷 공동을 형성합니다. 플라스크 바닥에 Al이 20 초 안에 채워집니다.

그림 2 : 환기가 되지 않을 때 워터 재킷 코어는 충전 중에 금속에 가스를 불어 넣습니다.
The realm of operations of FLOW-3D

ADDITIVE MANUFACTURING SIMULATIONS

Capabilities of FLOW-3D

FLOW-3D는 자유 표면 유체 흐름 시뮬레이션을 전문으로하는 다중 물리 CFD 소프트웨어입니다. 자유 표면의 동적 진화를 추적하는 소프트웨어의 알고리즘인 VOF (Volume of Fluid) 방법은 Flow Science의 설립자인 Tony Hirt 박사가 개척했습니다.

또한 FLOW-3D에는 금속 주조, 잉크젯 인쇄, 레이저 용접 및 적층 제조 (AM)와 같은 광범위한 응용 분야를 시뮬레이션하기위한 물리 모델이 내장되어 있습니다.
적층 제조 시뮬레이션 소프트웨어, 특히 L-PBF (레이저 파우더 베드 융합 공정)의 현상 유지는 열 왜곡, 잔류 응력 및지지 구조 생성과 같은 부분 규모 모델링에 도움이되는 열 기계 시뮬레이션에 초점을 맞추고 있습니다.

유용하지만 용융 풀 역학 및 볼링 및 다공성과 같은 관련 결함에 대한 정보는 일반적으로 이러한 접근 방식의 영역 밖에 있습니다. 용융 풀 내의 유체 흐름, 열 전달 및 표면 장력이 열 구배 및 냉각 속도에 영향을 미치며 이는 다시 미세 구조 진화에 영향을 미친다는 점을 명심하는 것도 중요합니다.

FLOW-3D와 이산 요소법 (DEM) 및 WELD 모듈을 사용하여 분말 및 용융 풀 규모에서 시뮬레이션 할 수 있습니다.
구현되는 관련 물리학에는 점성 흐름, 열 전달, 응고, 상 변화, 반동 압력, 차폐 가스 압력, 표면 장력, 움직이는 물체 및 분말 / 입자 역학이 포함됩니다. 이러한 접근 방식은 합금에 대한 공정을 성공적으로 개발할 수 있게 하고, AM 기계 제조업체와 AM 기술의 최종 사용자 모두에게 관심있는 미세 구조 진화에 대한 통찰력을 제공하는데 도움이 됩니다.

The realm of operations of FLOW-3D
The realm of operations of FLOW-3D

FLOW-3D는 레이저 분말 베드 융합 (L-PBF), 직접 에너지 증착 (DED) 및 바인더 제트 공정으로 확장되는 기능을 가지고 있습니다.
FLOW-3D를 사용하면 분말 확산 및 패킹, 레이저 / 입자 상호 작용, 용융 풀 역학, 표면 형태 및 후속 미세 구조 진화를 정확하게 시뮬레이션 할 수 있습니다. 이러한 기능은 FLOW-3D에 고유하며 계산 효율성이 높은 방식으로 달성됩니다.

예를 들어 1.0mm x 0.4mm x 0.3mm 크기의 계산 영역에서 레이저 빔의 단일 트랙을 시뮬레이션하기 위해 레이저 용융 모델은 단 8 개의 물리적 코어에서 약 2 시간이 걸립니다.
FLOW-3D는 모든 관련 물리 구현 간의 격차를 해소하는 동시에 업계 및 연구 표준에서 허용하는 시간 프레임으로 결과를 생성합니다. 분말 패킹, 롤러를 통한 파워 확산, 분말의 레이저 용융, 용융 풀 형성 및 응고를 고려하고 다층 분말 베드 융합 공정을 위해 이러한 단계를 순차적으로 반복하여 FLOW-3D에서 전체 AM 공정을 시뮬레이션 할 수 있습니다.

FLOW-3D의 다층 시뮬레이션은 이전에 응고된 층의 열 이력을 저장한다는 점에서 독특하며, 열 전달을 고려하여 이전에 응고된 층에 확산된 새로운 분말 입자 세트에 대해 시뮬레이션이 수행됩니다.
또한, 응고 된 베드의 열 왜곡 및 잔류 응력은 FLOW-3D를 사용하여 평가할 수 있으며, 보다 복잡한 분석을 수행하기 위해 FLOW-3D의 압력 및 온도 데이터를 Abaqus 및 MSC Nastran과 같은 FEA 소프트웨어로 내보낼 수 있습니다.

Sequence of a multi-layer L-PBF simulation setup in FLOW-3D

Ease of Use

FLOW-3D는 다양한 응용 분야에서 거의 40 년 동안 사용되어 왔습니다. 사용자 피드백을 기반으로 UI 개발자는 소프트웨어를 사용하기 매우 직관적으로 만들었으며 새로운 사용자는 시뮬레이션 설정의 순서를 거의 또는 전혀 어려움없이 이해합니다.
사용자는 FLOW3D에서 구현 된 다양한 모델의 이론에 정통하며 새로운 실험을 설계 할 수 있습니다. 실습 튜토리얼, 비디오 강의, 예제 시뮬레이션 및 기술 노트의 저장소도 사용할 수 있습니다.
사용자가 특정 수준의 경험에 도달하면 고급 수치 교육 및 소프트웨어 사용자 지정 교육을 사용할 수 있습니다.

Available Literature

실험 데이터에 대해 FLOW-3D 모델을 검증하는 몇 가지 독립적으로 발표된 연구가 있습니다. 여기에서 수록된 저널 논문은 레이저 용접 및 적층 제조 공정으로 제한됩니다. 더 많은 참조는 당사 웹 사이트에서 확인할 수 있습니다.

Laser Welding

  1. L.J.Zhang, J.X.Zhang, A.Gumenyuk, M.Rethmeier, S.J.Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology, Volume 214, Issue 8, 2014.
    A study by researchers from BAM in Germany, KAIST in Korea, and State Key Laboratory of Mechanical Behavior of Materials in China that focuses on keyhole dynamics and full penetration laser welding of steel plates.
  2. Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E.
    Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer, Volume 108, Part A, 2017.
    General Motors (GM) and Shangai University collaborated on a study on the influence of welding speed and weld angle of inclination on porosity occurrence in laser keyhole welding.
  3. Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser Welding Repair for Single Crystal Blades, International Gas Turbine Congress, Tokyo, 2015.
    Mitsubishi Heavy Industry’s study on laser welding repair using laser cladding for single Ni crystal alloys used in gas turbine blades.

Additive Manufacturing

  1. Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba, Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Technology, Volume 254, 2018
    This paper discusses powder bed compaction with random packing for different powder-size distributions, and the importance of considering evaporation effects in the melting process to validate the melt pool dimensions.
  2. Lee, Y.S., and W.Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA. 2015
    A study conducted by Ohio State University researchers to understand the influence of process parameters in formation of balling defects.
  3. Y.S. Lee, W.Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Additive Manufacturing, Volume 12, Part B, 2016
    A study conducted by Ohio State University researchers to understand the influence of solidification parameters, calculated from the temperature fields, on solidification morphology and grain size using existing theoretical models in laser powder bed fusion processes.

 

 

Casting Case Study

Casting Case Study

금속 주조물의 결함을 식별하고, 가볍고 튼튼한 주조 부품을 위해 새로운 재료로 부품을 설계하거나, 최적의 설계를 위해 반복적인 설계 작업을 수행하는 것은 고객이 당사의 소프트웨어를 사용하여 작업 요구 사항을 충족하고, 고철 비율을 줄임으로써 조직의 비용을 절감하는 일부 방법입니다.

이를 통해 제품 개발 시간을 단축함으로써 제품의 시장 출시 및 경쟁 우위를 위한 시간 확보가 용이해 집니다.

Customer Case Studies

Increasing Productivity by Reducing Ejection Times
Realizing Da Vinci’s Il Cavallo
Aluminum Integral Foam Molding Process

Solidification model

Solidification model

FLOW-3D CAST v5.1 solidification model

FLOW-3D CAST v5.1의 새로운 최첨단 화학 기반 고체화 모델은 주조 시뮬레이션을 새로운 단계로 발전시킬것 입니다. 사용자는 주조 부품의 강도와 무결성을 예측하면서도 고철을 줄이고 제품 안전 및 성능 요구사항을 충족할 수 있습니다.

Solidification model capabilities

새로운 응고모델은 핵, 분리, 냉각 조건을 고려한 온도와 화학의 진화로 인한 잠열, 열전도도, 열 용량, 밀도, 점성 등을 포함한 고체화 경로와 재료 특성을 계산합니다.

응고모델은 이차 덴드라이트 암 사핑(SDAS) 및 입자 크기와 같은 구성 및 냉각 조건에 기반한 미세 구조 진화를 예측합니다. 또한 확산과 집착으로 인한 매크로 분리를 예측합니다. 기계적 특성과 미세구조 사이의 경험적 관계는 실험 측정을 기반으로 합니다. 독특하고 강력한 마이크로 구조와 기계적 특성 예측 기능을 갖춘 새로운 고체화 모델은 마이크로도 예측을 위한 차원 없는 니야마 기준과 같은 다른 모델의 기초를 제공합니다.

응고 미세 구조와 다공성 결함은 주물의 기계적 특성에 영향을 미치는 주요 요소입니다. 또한, 국소 미세 구조는 합금 원소의 분리에 따른 합금의 화학적 구성, 응고율 및 화학적 비동종성에 의해 결정됩니다. 공정 설계자는 새로운 응고 모델을 사용하여 다양한 공정 매개변수 및 합금 조합이 기계적 특성에 미치는 영향을 판단하여 주조물의 성능을 최적화하여 가능한 최고 품질의 안전한 제품을 생산할 수 있습니다.

Solidification of A356

 

Solidification of A206

MICROSTRUCTURE OUTPUT

  • Secondary dendrite arm spacing (SDAS)
  • Grain size

MECHANICAL PROPERTY OUTPUT

  • Ultimate tensile strength (UTS)
  • Elongation
  • Quality index
  • Yield strength for heat treated properties

DEFECT INDICATORS

  • Dimensionless Niyama criterion
  • Microporosity

완전하고 단순화된 화학 기반 응고 모델

유연성 모델

솔리드화 모델에는 전체 모델과 단순화된 모델이 모두 포함되어 있어 사용자가 시뮬레이션 워크플로우를 보다 효과적으로 제어할 수 있습니다. 전체 모델은 용융이 응고될 때 화응고 모델에는 전체 모델과 단순 모델이 모두 포함되어 있어 사용자가 시뮬레이션 워크 플로우를 보다 효과적으로 제어할 수 있습니다. 전체 모델은 용해가 응고됨에 따라 화학적 구성과 위상 변화를 고려하는 반면, 단순화된 모델은 보다 빠른 런트를 제공하고 전체 모델만큼 많은 메모리를 필요로 하지 않습니다. 전체 모델을 기반으로 한 재시작 시뮬레이션은 단순화된 모델에서 시작하거나 그 반대로 시작할 수 있습니다. 이를 통해 다양한 시뮬레이션 유형과 시뮬레이션 단계에 적합한 모델을 사용할 수 있는 완전한 유연성을 제공합니다.

사용할 모델

자원을 적게 사용하는 것의 명백한 이점 때문에 사용자는 가능한 단순화된 모델을 많이 사용할 것을 권장한다. 매크로 분리가 중요한 경우에는 사용자가 전체 모델을 사용하는 것이 좋습니다. 열 다이 사이클 시뮬레이션의 경우, 이러한 모델링 시나리오에서는 완전한 분석이 필요하지 않기 때문에 소프트웨어가 단순화된 모델을 적용합니다.

일부 박막형 주조물의 경우 확산 및 홍보에 기반한 매크로 세그멘테이션은 중요하지 않습니다. 이러한 주조물에서 응고 경로는 전체적으로 거의 동일합니다. 따라서 각 개별 계산 셀에 대해 응고 중에 조성 및 위상 변화를 추적할 필요가 없습니다. 이러한 유형의 시나리오에서는 사용자가 간소화된 응고 모델을 사용하여 솔루션에 더 빨리 도달하는 것이 좋습니다.

FLOW-3D CAST Bibliography

FLOW-3D CAST bibliography

아래는 FSI의 금속 주조 참고 문헌에 수록된 기술 논문 모음입니다. 이 모든 논문에는 FLOW-3D CAST 해석 결과가 수록되어 있습니다. FLOW-3D CAST를 사용하여 금속 주조 산업의 응용 프로그램을 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

Below is a collection of technical papers in our Metal Casting Bibliography. All of these papers feature FLOW-3D CAST results. Learn more about how FLOW-3D CAST can be used to successfully simulate applications for the Metal Casting Industry.

33-20     Eric Riedel, Martin Liepe Stefan Scharf, Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum, Metals, 10.4; 476, 2020. doi.org/10.3390/met10040476

20-20   Wu Yue, Li Zhuo and Lu Rong, Simulation and visual tester verification of solid propellant slurry vacuum plate casting, Propellants, Explosives, Pyrotechnics, 2020. doi.org/10.1002/prep.201900411

17-20   C.A. Jones, M.R. Jolly, A.E.W. Jarfors and M. Irwin, An experimental characterization of thermophysical properties of a porous ceramic shell used in the investment casting process, Supplimental Proceedings, pp. 1095-1105, TMS 2020 149th Annual Meeting and Exhibition, San Diego, CA, February 23-27, 2020. doi.org/10.1007/978-3-030-36296-6_102

12-20   Franz Josef Feikus, Paul Bernsteiner, Ricardo Fernández Gutiérrez and Michal Luszczak , Further development of electric motor housings, MTZ Worldwide, 81, pp. 38-43, 2020. doi.org/10.1007/s38313-019-0176-z

09-20   Mingfan Qi, Yonglin Kang, Yuzhao Xu, Zhumabieke Wulabieke and Jingyuan Li, A novel rheological high pressure die-casting process for preparing large thin-walled Al–Si–Fe–Mg–Sr alloy with high heat conductivity, high plasticity and medium strength, Materials Science and Engineering: A, 776, art. no. 139040, 2020. doi.org/10.1016/j.msea.2020.139040

07-20   Stefan Heugenhauser, Erhard Kaschnitz and Peter Schumacher, Development of an aluminum compound casting process – Experiments and numerical simulations, Journal of Materials Processing Technology, 279, art. no. 116578, 2020. doi.org/10.1016/j.jmatprotec.2019.116578

05-20   Michail Papanikolaou, Emanuele Pagone, Mark Jolly and Konstantinos Salonitis, Numerical simulation and evaluation of Campbell running and gating systems, Metals, 10.1, art. no. 68, 2020. doi.org/10.3390/met10010068

102-19   Ferencz Peti and Gabriela Strnad, The effect of squeeze pin dimension and operational parameters on material homogeneity of aluminium high pressure die cast parts, Acta Marisiensis. Seria Technologica, 16.2, 2019. doi.org/0.2478/amset-2019-0010

94-19   E. Riedel, I. Horn, N. Stein, H. Stein, R. Bahr, and S. Scharf, Ultrasonic treatment: a clean technology that supports sustainability incasting processes, Procedia, 26th CIRP Life Cycle Engineering (LCE) Conference, Indianapolis, Indiana, USA, May 7-9, 2019. 

93-19   Adrian V. Catalina, Liping Xue, Charles A. Monroe, Robin D. Foley, and John A. Griffin, Modeling and Simulation of Microstructure and Mechanical Properties of AlSi- and AlCu-based Alloys, Transactions, 123rd Metalcasting Congress, Atlanta, GA, USA, April 27-30, 2019. 

84-19   Arun Prabhakar, Michail Papanikolaou, Konstantinos Salonitis, and Mark Jolly, Sand casting of sheet lead: numerical simulation of metal flow and solidification, The International Journal of Advanced Manufacturing Technology, pp. 1-13, 2019. doi.org/10.1007/s00170-019-04522-3

72-19   Santosh Reddy Sama, Eric Macdonald, Robert Voigt, and Guha Manogharan, Measurement of metal velocity in sand casting during mold filling, Metals, 9:1079, 2019. doi.org/10.3390/met9101079

71-19   Sebastian Findeisen, Robin Van Der Auwera, Michael Heuser, and Franz-Josef Wöstmann, Gießtechnische Fertigung von E-Motorengehäusen mit interner Kühling (Casting production of electric motor housings with internal cooling), Geisserei, 106, pp. 72-78, 2019 (in German).

58-19     Von Malte Leonhard, Matthias Todte, and Jörg Schäffer, Realistic simulation of the combustion of exothermic feeders, Casting, No. 2, pp. 28-32, 2019. In English and German.

52-19     S. Lakkum and P. Kowitwarangkul, Numerical investigations on the effect of gas flow rate in the gas stirred ladle with dual plugs, International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi.org/10.1088/1757-899X/526/1/012028

47-19     Bing Zhou, Shuai Lu, Kaile Xu, Chun Xu, and Zhanyong Wang, Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling, International Journal of Metalcasting, Online edition, pp. 1-13, 2019. doi.org/10.1007/s40962-019-00357-6

31-19     Zihao Yuan, Zhipeng Guo, and S.M. Xiong, Skin layer of A380 aluminium alloy die castings and its blistering during solution treatment, Journal of Materials Science & Technology, Vol. 35, No. 9, pp. 1906-1916, 2019. doi.org/10.1016/j.jmst.2019.05.011

25-19     Stefano Mascetti, Raul Pirovano, and Giulio Timelli, Interazione metallo liquido/stampo: Il fenomeno della metallizzazione, La Metallurgia Italiana, No. 4, pp. 44-50, 2019. In Italian.

20-19     Fu-Yuan Hsu, Campbellology for runner system design, Shape Casting: The Minerals, Metals & Materials Series, pp. 187-199, 2019. doi.org/10.1007/978-3-030-06034-3_19

19-19     Chengcheng Lyu, Michail Papanikolaou, and Mark Jolly, Numerical process modelling and simulation of Campbell running systems designs, Shape Casting: The Minerals, Metals & Materials Series, pp. 53-64, 2019. doi.org/10.1007/978-3-030-06034-3_5

18-19     Adrian V. Catalina, Liping Xue, and Charles Monroe, A solidification model with application to AlSi-based alloys, Shape Casting: The Minerals, Metals & Materials Series, pp. 201-213, 2019. doi.org/10.1007/978-3-030-06034-3_20

17-19     Fu-Yuan Hsu and Yu-Hung Chen, The validation of feeder modeling for ductile iron castings, Shape Casting: The Minerals, Metals & Materials Series, pp. 227-238, 2019. doi.org/10.1007/978-3-030-06034-3_22

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

02-19   Jingying Sun, Qichi Le, Li Fu, Jing Bai, Johannes Tretter, Klaus Herbold and Hongwei Huo, Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting-process, Journal of Materials Processing Technology, Vol. 266, pp. 274-282, 2019. doi.org/10.1016/j.jmatprotec.2018.11.016

92-18   Fast, Flexible… More Versatile, Foundry Management Technology, March, 2018. 

82-18   Xu Zhao, Ping Wang, Tao Li, Bo-yu Zhang, Peng Wang, Guan-zhou Wang and Shi-qi Lu, Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation, China Foundry, Vol. 15, no. 6, pp. 436-442, 2018. doi: 10.1007/s41230-018-8052-z

80-18   Michail Papanikolaou, Emanuele Pagone, Konstantinos Salonitis, Mark Jolly and Charalampos Makatsoris, A computational framework towards energy efficient casting processes, Sustainable Design and Manufacturing 2018: Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SDM-18), Gold Coast, Australia, June 24-26 2018, SIST 130, pp. 263-276, 2019. doi.org/10.1007/978-3-030-04290-5_27

64-18   Vasilios Fourlakidis, Ilia Belov and Attila Diószegi, Strength prediction for pearlitic lamellar graphite iron: Model validation, Metals, Vol. 8, No. 9, 2018. doi.org/10.3390/met8090684

51-18   Xue-feng Zhu, Bao-yi Yu, Li Zheng, Bo-ning Yu, Qiang Li, Shu-ning Lü and Hao Zhang, Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting, China Foundry, vol. 15, no. 3, pp.196-202, 2018. doi.org/10.1007/s41230-018-7256-6

47-18   Santosh Reddy Sama, Jiayi Wang and Guha Manogharan, Non-conventional mold design for metal casting using 3D sand-printing, Journal of Manufacturing Processes, vol. 34-B, pp. 765-775, 2018. doi.org/10.1016/j.jmapro.2018.03.049

42-18   M. Koru and O. Serçe, The Effects of Thermal and Dynamical Parameters and Vacuum Application on Porosity in High-Pressure Die Casting of A383 Al-Alloy, International Journal of Metalcasting, pp. 1-17, 2018. doi.org/10.1007/s40962-018-0214-7

41-18   Abhilash Viswanath, S. Savithri, U.T.S. Pillai, Similitude analysis on flow characteristics of water, A356 and AM50 alloys during LPC process, Journal of Materials Processing Technology, vol. 257, pp. 270-277, 2018. doi.org/10.1016/j.jmatprotec.2018.02.031

29-18   Seyboldt, Christoph and Liewald, Mathias, Investigation on thixojoining to produce hybrid components with intermetallic phase, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi.org/10.1063/1.5034992

28-18   Laura Schomer, Mathias Liewald and Kim Rouven Riedmüller, Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi.org/10.1063/1.5034991

41-17   Y. N. Wu et al., Numerical Simulation on Filling Optimization of Copper Rotor for High Efficient Electric Motors in Die Casting Process, Materials Science Forum, Vol. 898, pp. 1163-1170, 2017.

12-17   A.M.  Zarubin and O.A. Zarubina, Controlling the flow rate of melt in gravity die casting of aluminum alloys, Liteynoe Proizvodstvo (Casting Manufacturing), pp 16-20, 6, 2017. In Russian.

10-17   A.Y. Korotchenko, Y.V. Golenkov, M.V. Tverskoy and D.E. Khilkov, Simulation of the Flow of Metal Mixtures in the Mold, Liteynoe Proizvodstvo (Casting Manufacturing), pp 18-22, 5, 2017. In Russian.

08-17   Morteza Morakabian Esfahani, Esmaeil Hajjari, Ali Farzadi and Seyed Reza Alavi Zaree, Prediction of the contact time through modeling of heat transfer and fluid flow in compound casting process of Al/Mg light metals, Journal of Materials Research, © Materials Research Society 2017

04-17   Huihui Liu, Xiongwei He and Peng Guo, Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment, AIP Conference Proceedings 1829, 020037 (2017); doi.org/10.1063/1.4979769.

100-16  Robert Watson, New numerical techniques to quantify and predict the effect of entrainment defects, applied to high pressure die casting, PhD Thesis: University of Birmingham, 2016.

88-16   M.C. Carter, T. Kauffung, L. Weyenberg and C. Peters, Low Pressure Die Casting Simulation Discovery through Short Shot, Cast Expo & Metal Casting Congress, April 16-19, 2016, Minneapolis, MN, Copyright 2016 American Foundry Society.

61-16   M. Koru and O. Serçe, Experimental and numerical determination of casting mold interfacial heat transfer coefficient in the high pressure die casting of a 360 aluminum alloy, ACTA PHYSICA POLONICA A, Vol. 129 (2016)

59-16   R. Pirovano and S. Mascetti, Tracking of collapsed bubbles during a filling simulation, La Metallurgia Italiana – n. 6 2016

43-16   Kevin Lee, Understanding shell cracking during de-wax process in investment casting, Ph.D Thesis: University of Birmingham, School of Engineering, Department of Chemical Engineering, 2016.

35-16   Konstantinos Salonitis, Mark Jolly, Binxu Zeng, and Hamid Mehrabi, Improvements in energy consumption and environmental impact by novel single shot melting process for casting, Journal of Cleaner Production, doi.org/10.1016/j.jclepro.2016.06.165, Open Access funded by Engineering and Physical Sciences Research Council, June 29, 2016

20-16   Fu-Yuan Hsu, Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum, Metallurgical and Materials Transactions B, 2016, Band: 47, Heft 3, 1634-1648.

15-16   Mingfan Qia, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Lib,and Weirong Li, A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys, Journal of Materials Processing Technology 234 (2016) 353–367

112-15   José Miguel Gonçalves Ledo Belo da Costa, Optimization of filling systems for low pressure by FLOW-3D, Dissertação de mestrado integrado em Engenharia Mecânica, 2015.

89-15   B.W. Zhu, L.X. Li, X. Liu, L.Q. Zhang and R. Xu, Effect of Viscosity Measurement Method to Simulate High Pressure Die Casting of Thin-Wall AlSi10MnMg Alloy Castings, Journal of Materials Engineering and Performance, Published online, November 2015, doi.org/10.1007/s11665-015-1783-8, © ASM International.

88-15   Peng Zhang, Zhenming Li, Baoliang Liu, Wenjiang Ding and Liming Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Materials Science & Engineering A651(2016)376–390, Available online, November 2015.

83-15   Zu-Qi Hu, Xin-Jian Zhang and Shu-Sen Wu, Microstructure, Mechanical Properties and Die-Filling Behavior of High-Performance Die-Cast Al–Mg–Si–Mn Alloy, Acta Metall. Sin. (Engl. Lett.), doi.org/10.1007/s40195-015-0332-7, © The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015.

82-15   J. Müller, L. Xue, M.C. Carter, C. Thoma, M. Fehlbier and M. Todte, A Die Spray Cooling Model for Thermal Die Cycling Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

81-15   M. T. Murray, L.F. Hansen, L. Chilcott, E. Li and A.M. Murray, Case Studies in the Use of Simulation- Improved Yield and Reduced Time to Market, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

80-15   R. Bhola, S. Chandra and D. Souders, Predicting Castability of Thin-Walled Parts for the HPDC Process Using Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

76-15   Prosenjit Das, Sudip K. Samanta, Shashank Tiwari and Pradip Dutta, Die Filling Behaviour of Semi Solid A356 Al Alloy Slurry During Rheo Pressure Die Casting, Transactions of the Indian Institute of Metals, pp 1-6, October 2015

74-15   Murat KORU and Orhan SERÇE, Yüksek Basınçlı Döküm Prosesinde Enjeksiyon Parametrelerine Bağlı Olarak Döküm Simülasyon, Cumhuriyet University Faculty of Science, Science Journal (CSJ), Vol. 36, No: 5 (2015) ISSN: 1300-1949, May 2015

69-15   A. Viswanath, S. Sivaraman, U. T. S. Pillai, Computer Simulation of Low Pressure Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 45-48, September 2015

68-15   J. Aneesh Kumar, K. Krishnakumar and S. Savithri, Computer Simulation of Centrifugal Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 53-56, September 2015

59-15   F. Hosseini Yekta and S. A. Sadough Vanini, Simulation of the flow of semi-solid steel alloy using an enhanced model, Metals and Materials International, August 2015.

44-15   Ulrich E. Klotz, Tiziana Heiss and Dario Tiberto, Platinum investment casting material properties, casting simulation and optimum process parameters, Jewelry Technology Forum 2015

41-15   M. Barkhudarov and R. Pirovano, Minimizing Air Entrainment in High Pressure Die Casting Shot Sleeves, GIFA 2015, Düsseldorf, Germany

40-15   M. Todte, A. Fent, and H. Lang, Simulation in support of the development of innovative processes in the casting industry, GIFA 2015, Düsseldorf, Germany

19-15   Bruce Morey, Virtual casting improves powertrain design, Automotive Engineering, SAE International, March 2015.

15-15   K.S. Oh, J.D. Lee, S.J. Kim and J.Y. Choi, Development of a large ingot continuous caster, Metall. Res. Technol. 112, 203 (2015) © EDP Sciences, 2015, doi.org/10.1051/metal/2015006, www.metallurgical-research.org

14-15   Tiziana Heiss, Ulrich E. Klotz and Dario Tiberto, Platinum Investment Casting, Part I: Simulation and Experimental Study of the Casting Process, Johnson Matthey Technol. Rev., 2015, 59, (2), 95, doi.org/10.1595/205651315×687399

138-14 Christopher Thoma, Wolfram Volk, Ruben Heid, Klaus Dilger, Gregor Banner and Harald Eibisch, Simulation-based prediction of the fracture elongation as a failure criterion for thin-walled high-pressure die casting components, International Journal of Metalcasting, Vol. 8, No. 4, pp. 47-54, 2014. doi.org/10.1007/BF03355594

107-14  Mehran Seyed Ahmadi, Dissolution of Si in Molten Al with Gas Injection, ProQuest Dissertations And Theses; Thesis (Ph.D.), University of Toronto (Canada), 2014; Publication Number: AAT 3637106; ISBN: 9781321195231; Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.; 191 p.

99-14   R. Bhola and S. Chandra, Predicting Castability for Thin-Walled HPDC Parts, Foundry Management Technology, December 2014

92-14   Warren Bishenden and Changhua Huang, Venting design and process optimization of die casting process for structural components; Part II: Venting design and process optimization, Die Casting Engineer, November 2014

90-14   Ken’ichi Kanazawa, Ken’ichi Yano, Jun’ichi Ogura, and Yasunori Nemoto, Optimum Runner Design for Die-Casting using CFD Simulations and Verification with Water-Model Experiments, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE2014, November 14-20, 2014, Montreal, Quebec, Canada, IMECE2014-37419

89-14   P. Kapranos, C. Carney, A. Pola, and M. Jolly, Advanced Casting Methodologies: Investment Casting, Centrifugal Casting, Squeeze Casting, Metal Spinning, and Batch Casting, In Comprehensive Materials Processing; McGeough, J., Ed.; 2014, Elsevier Ltd., 2014; Vol. 5, pp 39–67.

77-14   Andrei Y. Korotchenko, Development of Scientific and Technological Approaches to Casting Net-Shaped Castings in Sand Molds Free of Shrinkage Defects and Hot Tears, Post-doctoral thesis: Russian State Technological University, 2014. In Russian.

69-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Predicting, Preventing Core Gas Defects in Steel Castings, Modern Casting, September 2014

68-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Numerical Simulation of Core Gas Defects in Steel Castings, Copyright 2014 American Foundry Society, 118th Metalcasting Congress, April 8 – 11, 2014, Schaumburg, IL

51-14   Jesus M. Blanco, Primitivo Carranza, Rafael Pintos, Pedro Arriaga, and Lakhdar Remaki, Identification of Defects Originated during the Filling of Cast Pieces through Particles Modelling, 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), E. Oñate, J. Oliver and A. Huerta (Eds)

47-14   B. Vijaya Ramnatha, C.Elanchezhiana, Vishal Chandrasekhar, A. Arun Kumarb, S. Mohamed Asif, G. Riyaz Mohamed, D. Vinodh Raj , C .Suresh Kumar, Analysis and Optimization of Gating System for Commutator End Bracket, Procedia Materials Science 6 ( 2014 ) 1312 – 1328, 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014)

42-14  Bing Zhou, Yong-lin Kang, Guo-ming Zhu, Jun-zhen Gao, Ming-fan Qi, and Huan-huan Zhang, Forced convection rheoforming process for preparation of 7075 aluminum alloy semisolid slurry and its numerical simulation, Trans. Nonferrous Met. Soc. China 24(2014) 1109−1116

37-14    A. Karwinski, W. Lesniewski, P. Wieliczko, and M. Malysza, Casting of Titanium Alloys in Centrifugal Induction Furnaces, Archives of Metallurgy and Materials, Volume 59, Issue 1, doi.org/10.2478/amm-2014-0068, 2014.

26-14    Bing Zhou, Yonglin Kang, Mingfan Qi, Huanhuan Zhang and Guoming ZhuR-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy, Materials 2014, 7, 3084-3105; doi.org/10.3390/ma7043084

20-14  Johannes Hartmann, Tobias Fiegl, Carolin Körner, Aluminum integral foams with tailored density profile by adapted blowing agents, Applied Physics A, doi.org/10.1007/s00339-014-8377-4, March 2014.

19-14    A.Y. Korotchenko, N.A. Nikiforova, E.D. Demjanov, N.C. Larichev, The Influence of the Filling Conditions on the Service Properties of the Part Side Frame, Russian Foundryman, 1 (January), pp 40-43, 2014. In Russian.

11-14 B. Fuchs and C. Körner, Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process, Progress in Computational Fluid Dynamics, Vol. 14, No. 1, 2014, Copyright © 2014 Inderscience Enterprises Ltd.

08-14 FY Hsu, SW Wang, and HJ Lin, The External and Internal Shrinkages in Aluminum Gravity Castings, Shape Casting: 5th International Symposium 2014. Available online at Google Books

103-13  B. Fuchs, H. Eibisch and C. Körner, Core Viability Simulation for Salt Core Technology in High-Pressure Die Casting, International Journal of Metalcasting, July 2013, Volume 7, Issue 3, pp 39–45

94-13    Randall S. Fielding, J. Crapps, C. Unal, and J.R.Kennedy, Metallic Fuel Casting Development and Parameter Optimization Simulations, International Conference on Fast reators and Related Fuel Cycles (FR13), 4-7 March 2013, Paris France

90-13  A. Karwińskia, M. Małyszaa, A. Tchórza, A. Gila, B. Lipowska, Integration of Computer Tomography and Simulation Analysis in Evaluation of Quality of Ceramic-Carbon Bonded Foam Filter, Archives of Foundry Engineering, doi.org/10.2478/afe-2013-0084, Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences, ISSN, (2299-2944), Volume 13, Issue 4/2013

88-13  Litie and Metallurgia (Casting and Metallurgy), 3 (72), 2013, N.V.Sletova, I.N.Volnov, S.P.Zadrutsky, V.A.Chaikin, Modeling of the Process of Removing Non-metallic Inclusions in Aluminum Alloys Using the FLOW-3D program, pp 138-140. In Russian.

85-13    Michał Szucki,Tomasz Goraj, Janusz Lelito, Józef S. Suchy, Numerical Analysis of Solid Particles Flow in Liquid Metal, XXXVII International Scientific Conference Foundryman’ Day 2013, Krakow, 28-29 November 2013

84-13  Körner, C., Schwankl, M., Himmler, D., Aluminum-Aluminum compound castings by electroless deposited zinc layers, Journal of Materials Processing Technology (2014), doi.org/10.1016/j.jmatprotec.2013.12.01483-13.

77-13  Antonio Armillotta & Raffaello Baraggi & Simone Fasoli, SLM tooling for die casting with conformal cooling channels, The International Journal of Advanced Manufacturing Technology, doi.org/10.1007/s00170-013-5523-7, December 2013.

64-13   Johannes Hartmann, Christina Blümel, Stefan Ernst, Tobias Fiegl, Karl-Ernst Wirth, Carolin Körner, Aluminum integral foam castings with microcellular cores by nano-functionalization, J Mater Sci, doi.org/10.1007/s10853-013-7668-z, September 2013.

46-13  Nicholas P. Orenstein, 3D Flow and Temperature Analysis of Filling a Plutonium Mold, LA-UR-13-25537, Approved for public release; distribution is unlimited. Los Alamos Annual Student Symposium 2013, 2013-07-24 (Rev.1)

42-13   Yang Yue, William D. Griffiths, and Nick R. Green, Modelling of the Effects of Entrainment Defects on Mechanical Properties in a Cast Al-Si-Mg Alloy, Materials Science Forum, 765, 225, 2013.

39-13  J. Crapps, D.S. DeCroix, J.D Galloway, D.A. Korzekwa, R. Aikin, R. Fielding, R. Kennedy, C. Unal, Separate effects identification via casting process modeling for experimental measurement of U-Pu-Zr alloys, Journal of Nuclear Materials, 15 July 2013.

35-13   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, © Die Casting Engineer, July 2013.

34-13  Martin Lagler, Use of Simulation to Predict the Viability of Salt Cores in the HPDC Process – Shot Curve as a Decisive Criterion, © Die Casting Engineer, July 2013.

24-13    I.N.Volnov, Optimizatsia Liteynoi Tekhnologii, (Casting Technology Optimization), Liteyshik Rossii (Russian Foundryman), 3, 2013, 27-29. In Russian

23-13  M.R. Barkhudarov, I.N. Volnov, Minimizatsia Zakhvata Vozdukha v Kamere Pressovania pri Litie pod Davleniem, (Minimization of Air Entrainment in the Shot Sleeve During High Pressure Die Casting), Liteyshik Rossii (Russian Foundryman), 3, 2013, 30-34. In Russian

09-13  M.C. Carter and L. Xue, Simulating the Parameters that Affect Core Gas Defects in Metal Castings, Copyright 2012 American Foundry Society, Presented at the 2013 CastExpo, St. Louis, Missouri, April 2013

08-13  C. Reilly, N.R. Green, M.R. Jolly, J.-C. Gebelin, The Modelling Of Oxide Film Entrainment In Casting Systems Using Computational Modelling, Applied Mathematical Modelling, http://dx.doi.org/10.1016/j.apm.2013.03.061, April 2013.

03-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part II. Model validation and parametric study, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.061.

02-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part I: Model development using lubrication approximation, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.060.

116-12  Jufu Jianga, Ying Wang, Gang Chena, Jun Liua, Yuanfa Li and Shoujing Luo, “Comparison of mechanical properties and microstructure of AZ91D alloy motorcycle wheels formed by die casting and double control forming, Materials & Design, Volume 40, September 2012, Pages 541-549.

107-12  F.K. Arslan, A.H. Hatman, S.Ö. Ertürk, E. Güner, B. Güner, An Evaluation for Fundamentals of Die Casting Materials Selection and Design, IMMC’16 International Metallurgy & Materials Congress, Istanbul, Turkey, 2012.

103-12 WU Shu-sen, ZHONG Gu, AN Ping, WAN Li, H. NAKAE, Microstructural characteristics of Al−20Si−2Cu−0.4Mg−1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment, Transactions of Nonferrous Metals Society of China, 22 (2012) 2863-2870, November 2012. Full paper available online.

109-12 Alexandre Reikher, Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation, Ph.D. Thesis: The University of Wisconsin Milwaukee, Engineering Department (2012) Theses and Dissertations. Paper 65.

97-12 Hong Zhou and Li Heng Luo, Filling Pattern of Step Gating System in Lost Foam Casting Process and its Application, Advanced Materials Research, Volumes 602-604, Progress in Materials and Processes, 1916-1921, December 2012.

93-12  Liangchi Zhang, Chunliang Zhang, Jeng-Haur Horng and Zichen Chen, Functions of Step Gating System in the Lost Foam Casting Process, Advanced Materials Research, 591-593, 940, DOI: 10.4028/www.scientific.net/AMR.591-593.940, November 2012.

91-12  Hong Yan, Jian Bin Zhu, Ping Shan, Numerical Simulation on Rheo-Diecasting of Magnesium Matrix Composites, 10.4028/www.scientific.net/SSP.192-193.287, Solid State Phenomena, 192-193, 287.

89-12  Alexandre Reikher and Krishna M. Pillai, A Fast Numerical Simulation for Modeling Simultaneous Metal Flow and Solidification in Thin Cavities Using the Lubrication Approximation, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 63:2, 75-100, November 2012.

82-12  Jufu Jiang, Gang Chen, Ying Wang, Zhiming Du, Weiwei Shan, and Yuanfa Li, Microstructure and mechanical properties of thin-wall and high-rib parts of AM60B Mg alloy formed by double control forming and die casting under the optimal conditions, Journal of Alloys and Compounds, http://dx.doi.org/10.1016/j.jallcom.2012.10.086, October 2012.

78-12   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

77-12  Y. Wang, K. Kabiri-Bamoradian and R.A. Miller, Rheological behavior models of metal matrix alloys in semi-solid casting process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

76-12  A. Reikher and H. Gerber, Analysis of Solidification Parameters During the Die Cast Process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

75-12 R.A. Miller, Y. Wang and K. Kabiri-Bamoradian, Estimating Cavity Fill Time, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012Indianapolis, IN.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

55-12  Hejun Li, Pengyun Wang, Lehua Qi, Hansong Zuo, Songyi Zhong, Xianghui Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Computational Materials Science, Volume 65, December 2012, Pages 291–301.

52-12 Hongbing Ji, Yixin Chen and Shengzhou Chen, Numerical Simulation of Inner-Outer Couple Cooling Slab Continuous Casting in the Filling Process, Advanced Materials Research (Volumes 557-559), Advanced Materials and Processes II, pp. 2257-2260, July 2012.

47-12    Petri Väyrynen, Lauri Holappa, and Seppo Louhenkilpi, Simulation of Melting of Alloying Materials in Steel Ladle, SCANMET IV – 4th International Conference on Process Development in Iron and Steelmaking, Lulea, Sweden, June 10-13, 2012.

46-12  Bin Zhang and Dave Salee, Metal Flow and Heat Transfer in Billet DC Casting Using Wagstaff® Optifill™ Metal Distribution Systems, 5th International Metal Quality Workshop, United Arab Emirates Dubai, March 18-22, 2012.

45-12 D.R. Gunasegaram, M. Givord, R.G. O’Donnell and B.R. Finnin, Improvements engineered in UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner geometry and plunger velocity, Materials Science & Engineering.

44-12    Antoni Drys and Stefano Mascetti, Aluminum Casting Simulations, Desktop Engineering, September 2012

42-12   Huizhen Duan, Jiangnan Shen and Yanping Li, Comparative analysis of HPDC process of an auto part with ProCAST and FLOW-3D, Applied Mechanics and Materials Vols. 184-185 (2012) pp 90-94, Online available since 2012/Jun/14 at www.scientific.net, © (2012) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.184-185.90.

41-12    Deniece R. Korzekwa, Cameron M. Knapp, David A. Korzekwa, and John W. Gibbs, Co-Design – Fabrication of Unalloyed Plutonium, LA-UR-12-23441, MDI Summer Research Group Workshop Advanced Manufacturing, 2012-07-25/2012-07-26 (Los Alamos, New Mexico, United States)

29-12  Dario Tiberto and Ulrich E. Klotz, Computer simulation applied to jewellery casting: challenges, results and future possibilities, IOP Conf. Ser.: Mater. Sci. Eng.33 012008. Full paper available at IOP.

28-12  Y Yue and N R Green, Modelling of different entrainment mechanisms and their influences on the mechanical reliability of Al-Si castings, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33,012072.Full paper available at IOP.

27-12  E Kaschnitz, Numerical simulation of centrifugal casting of pipes, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33 012031, Issue 1. Full paper available at IOP.

15-12  C. Reilly, N.R Green, M.R. Jolly, The Present State Of Modeling Entrainment Defects In The Shape Casting Process, Applied Mathematical Modelling, Available online 27 April 2012, ISSN 0307-904X, 10.1016/j.apm.2012.04.032.

12-12   Andrei Starobin, Tony Hirt, Hubert Lang, and Matthias Todte, Core drying simulation and validation, International Foundry Research, GIESSEREIFORSCHUNG 64 (2012) No. 1, ISSN 0046-5933, pp 2-5

10-12  H. Vladimir Martínez and Marco F. Valencia (2012). Semisolid Processing of Al/β-SiC Composites by Mechanical Stirring Casting and High Pressure Die Casting, Recent Researches in Metallurgical Engineering – From Extraction to Forming, Dr Mohammad Nusheh (Ed.), ISBN: 978-953-51-0356-1, InTech

07-12     Amir H. G. Isfahani and James M. Brethour, Simulating Thermal Stresses and Cooling Deformations, Die Casting Engineer, March 2012

06-12   Shuisheng Xie, Youfeng He and Xujun Mi, Study on Semi-solid Magnesium Alloys Slurry Preparation and Continuous Roll-casting Process, Magnesium Alloys – Design, Processing and Properties, ISBN: 978-953-307-520-4, InTech.

04-12 J. Spangenberg, N. Roussel, J.H. Hattel, H. Stang, J. Skocek, M.R. Geiker, Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2012.01.007, February 2012.

01-12   Lee, B., Baek, U., and Han, J., Optimization of Gating System Design for Die Casting of Thin Magnesium Alloy-Based Multi-Cavity LCD Housings, Journal of Materials Engineering and Performance, Springer New York, Issn: 1059-9495, 10.1007/s11665-011-0111-1, Volume 1 / 1992 – Volume 21 / 2012. Available online at Springer Link.

104-11  Fu-Yuan Hsu and Huey Jiuan Lin, Foam Filters Used in Gravity Casting, Metall and Materi Trans B (2011) 42: 1110. doi:10.1007/s11663-011-9548-8.

99-11    Eduardo Trejo, Centrifugal Casting of an Aluminium Alloy, thesis: Doctor of Philosophy, Metallurgy and Materials School of Engineering University of Birmingham, October 2011. Full paper available upon request.

93-11  Olga Kononova, Andrejs Krasnikovs ,Videvuds Lapsa,Jurijs Kalinka and Angelina Galushchak, Internal Structure Formation in High Strength Fiber Concrete during Casting, World Academy of Science, Engineering and Technology 59 2011

76-11  J. Hartmann, A. Trepper, and C. Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials 2011, Volume 13 (2011) No. 11, © Wiley-VCH

71-11  Fu-Yuan Hsu and Yao-Ming Yang Confluence Weld in an Aluminum Gravity Casting, Journal of Materials Processing Technology, Available online 23 November 2011, ISSN 0924-0136, 10.1016/j.jmatprotec.2011.11.006.

65-11     V.A. Chaikin, A.V. Chaikin, I.N.Volnov, A Study of the Process of Late Modification Using Simulation, in Zagotovitelnye Proizvodstva v Mashinostroenii, 10, 2011, 8-12. In Russian.

54-11  Ngadia Taha Niane and Jean-Pierre Michalet, Validation of Foundry Process for Aluminum Parts with FLOW-3D Software, Proceedings of the 2011 International Symposium on Liquid Metal Processing and Casting, 2011.

51-11    A. Reikher and H. Gerber, Calculation of the Die Cast parameters of the Thin Wall Aluminum Cast Part, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

50-11   Y. Wang, K. Kabiri-Bamoradian, and R.A. Miller, Runner design optimization based on CFD simulation for a die with multiple cavities, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

48-11 A. Karwiński, W. Leśniewski, S. Pysz, P. Wieliczko, The technology of precision casting of titanium alloys by centrifugal process, Archives of Foundry Engineering, ISSN: 1897-3310), Volume 11, Issue 3/2011, 73-80, 2011.

46-11  Daniel Einsiedler, Entwicklung einer Simulationsmethodik zur Simulation von Strömungs- und Trocknungsvorgängen bei Kernfertigungsprozessen mittels CFD (Development of a simulation methodology for simulating flow and drying operations in core production processes using CFD), MSc thesis at Technical University of Aalen in Germany (Hochschule Aalen), 2011.

44-11  Bin Zhang and Craig Shaber, Aluminum Ingot Thermal Stress Development Modeling of the Wagstaff® EpsilonTM Rolling Ingot DC Casting System during the Start-up Phase, Materials Science Forum Vol. 693 (2011) pp 196-207, © 2011 Trans Tech Publications, July, 2011.

43-11 Vu Nguyen, Patrick Rohan, John Grandfield, Alex Levin, Kevin Naidoo, Kurt Oswald, Guillaume Girard, Ben Harker, and Joe Rea, Implementation of CASTfill low-dross pouring system for ingot casting, Materials Science Forum Vol. 693 (2011) pp 227-234, © 2011 Trans Tech Publications, July, 2011.

40-11  A. Starobin, D. Goettsch, M. Walker, D. Burch, Gas Pressure in Aluminum Block Water Jacket Cores, © 2011 American Foundry Society, International Journal of Metalcasting/Summer 2011

37-11 Ferencz Peti, Lucian Grama, Analyze of the Possible Causes of Porosity Type Defects in Aluminum High Pressure Diecast Parts, Scientific Bulletin of the Petru Maior University of Targu Mures, Vol. 8 (XXV) no. 1, 2011, ISSN 1841-9267

31-11  Johannes Hartmann, André Trepper, Carolin Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials, 13: n/a. doi: 10.1002/adem.201100035, June 2011.

27-11  A. Pari, Optimization of HPDC Process using Flow Simulation Case Studies, Die Casting Engineer, July 2011

26-11    A. Reikher, H. Gerber, Calculation of the Die Cast Parameters of the Thin Wall Aluminum Die Casting Part, Die Casting Engineer, July 2011

21-11 Thang Nguyen, Vu Nguyen, Morris Murray, Gary Savage, John Carrig, Modelling Die Filling in Ultra-Thin Aluminium Castings, Materials Science Forum (Volume 690), Light Metals Technology V, pp 107-111, 10.4028/www.scientific.net/MSF.690.107, June 2011.

19-11 Jon Spangenberg, Cem Celal Tutum, Jesper Henri Hattel, Nicolas Roussel, Metter Rica Geiker, Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study, © IEEE Congress on Evolutionary Computation, 2011, New Orleans, USA

16-11  A. Starobin, C.W. Hirt, H. Lang, and M. Todte, Core Drying Simulation and Validations, AFS Proceedings 2011, © American Foundry Society, Presented at the 115th Metalcasting Congress, Schaumburg, Illinois, April 2011.

15-11  J. J. Hernández-Ortega, R. Zamora, J. López, and F. Faura, Numerical Analysis of Air Pressure Effects on the Flow Pattern during the Filling of a Vertical Die Cavity, AIP Conf. Proc., Volume 1353, pp. 1238-1243, The 14th International Esaform Conference on Material Forming: Esaform 2011; doi:10.1063/1.3589686, May 2011. Available online.

10-11 Abbas A. Khalaf and Sumanth Shankar, Favorable Environment for Nondentric Morphology in Controlled Diffusion Solidification, DOI: 10.1007/s11661-011-0641-z, © The Minerals, Metals & Materials Society and ASM International 2011, Metallurgical and Materials Transactions A, March 11, 2011.

08-11 Hai Peng Li, Chun Yong Liang, Li Hui Wang, Hong Shui Wang, Numerical Simulation of Casting Process for Gray Iron Butterfly Valve, Advanced Materials Research, 189-193, 260, February 2011.

04-11  C.W. Hirt, Predicting Core Shooting, Drying and Defect Development, Foundry Management & Technology, January 2011.

76-10  Zhizhong Sun, Henry Hu, Alfred Yu, Numerical Simulation and Experimental Study of Squeeze Casting Magnesium Alloy AM50, Magnesium Technology 2010, 2010 TMS Annual Meeting & ExhibitionFebruary 14-18, 2010, Seattle, WA.

68-10  A. Reikher, H. Gerber, K.M. Pillai, T.-C. Jen, Natural Convection—An Overlooked Phenomenon of the Solidification Process, Die Casting Engineer, January 2010

54-10    Andrea Bernardoni, Andrea Borsi, Stefano Mascetti, Alessandro Incognito and Matteo Corrado, Fonderia Leonardo aveva ragione! L’enorme cavallo dedicato a Francesco Sforza era materialmente realizzabile, A&C – Analisis e Calcolo, Giugno 2010. In  Italian.

48-10  J. J. Hernández-Ortega, R. Zamora, J. Palacios, J. López and F. Faura, An Experimental and Numerical Study of Flow Patterns and Air Entrapment Phenomena During the Filling of a Vertical Die Cavity, J. Manuf. Sci. Eng., October 2010, Volume 132, Issue 5, 05101, doi:10.1115/1.4002535.

47-10  A.V. Chaikin, I.N. Volnov, and V.A. Chaikin, Development of Dispersible Mixed Inoculant Compositions Using the FLOW-3D Program, Liteinoe Proizvodstvo, October, 2010, in Russian.

42-10  H. Lakshmi, M.C. Vinay Kumar, Raghunath, P. Kumar, V. Ramanarayanan, K.S.S. Murthy, P. Dutta, Induction reheating of A356.2 aluminum alloy and thixocasting as automobile component, Transactions of Nonferrous Metals Society of China 20(20101) s961-s967.

41-10  Pamela J. Waterman, Understanding Core-Gas Defects, Desktop Engineering, October 2010. Available online at Desktop Engineering. Also published in the Foundry Trade Journal, November 2010.

39-10  Liu Zheng, Jia Yingying, Mao Pingli, Li Yang, Wang Feng, Wang Hong, Zhou Le, Visualization of Die Casting Magnesium Alloy Steering Bracket, Special Casting & Nonferrous Alloys, ISSN: 1001-2249, CN: 42-1148/TG, 2010-04. In Chinese.

37-10  Morris Murray, Lars Feldager Hansen, and Carl Reinhardt, I Have Defects – Now What, Die Casting Engineer, September 2010

36-10  Stefano Mascetti, Using Flow Analysis Software to Optimize Piston Velocity for an HPDC Process, Die Casting Engineer, September 2010. Also available in Italian: Ottimizzare la velocita del pistone in pressofusione.  A & C, Analisi e Calcolo, Anno XII, n. 42, Gennaio 2011, ISSN 1128-3874.

32-10  Guan Hai Yan, Sheng Dun Zhao, Zheng Hui Sha, Parameters Optimization of Semisolid Diecasting Process for Air-Conditioner’s Triple Valve in HPb59-1 Alloy, Advanced Materials Research (Volumes 129 – 131), Vol. Material and Manufacturing Technology, pp. 936-941, DOI: 10.4028/www.scientific.net/AMR.129-131.936, August 2010.

29-10 Zheng Peng, Xu Jun, Zhang Zhifeng, Bai Yuelong, and Shi Likai, Numerical Simulation of Filling of Rheo-diecasting A357 Aluminum Alloy, Special Casting & Nonferrous Alloys, DOI: CNKI:SUN:TZZZ.0.2010-01-024, 2010.

27-10 For an Aerospace Diecasting, Littler Uses Simulation to Reveal Defects, and Win a New Order, Foundry Management & Technology, July 2010

23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

15-10 David H. Kirkwood, Michel Suery, Plato Kapranos, Helen V. Atkinson, and Kenneth P. Young, Semi-solid Processing of Alloys, 2010, XII, 172 p. 103 illus., 19 in color., Hardcover ISBN: 978-3-642-00705-7.

09-10  Shannon Wetzel, Fullfilling Da Vinci’s Dream, Modern Casting, April 2010.

08-10 B.I. Semenov, K.M. Kushtarov, Semi-solid Manufacturing of Castings, New Industrial Technologies, Publication of Moscow State Technical University n.a. N.E. Bauman, 2009 (in Russian)

07-10 Carl Reilly, Development Of Quantitative Casting Quality Assessment Criteria Using Process Modelling, thesis: The University of Birmingham, March 2010 (Available upon request)

06-10 A. Pari, Optimization of HPDC Process using Flow Simulation – Case Studies, CastExpo ’10, NADCA, Orlando, Florida, March 2010

05-10 M.C. Carter, S. Palit, and M. Littler, Characterizing Flow Losses Occurring in Air Vents and Ejector Pins in High Pressure Die Castings, CastExpo ’10, NADCA, Orlando, Florida, March 2010

04-10 Pamela Waterman, Simulating Porosity Factors, Foundry Management Technology, March 2010, Article available at Foundry Management Technology

03-10 C. Reilly, M.R. Jolly, N.R. Green, JC Gebelin, Assessment of Casting Filling by Modeling Surface Entrainment Events Using CFD, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

02-10 P. Väyrynen, S. Wang, J. Laine and S.Louhenkilpi, Control of Fluid Flow, Heat Transfer and Inclusions in Continuous Casting – CFD and Neural Network Studies, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

60-09   Somlak Wannarumon, and Marco Actis Grande, Comparisons of Computer Fluid Dynamic Software Programs applied to Jewelry Investment Casting Process, World Academy of Science, Engineering and Technology 55 2009.

59-09   Marco Actis Grande and Somlak Wannarumon, Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations, World Academy of Science, Engineering and Technology, Vol:3 2009-07-24

56-09  Jozef Kasala, Ondrej Híreš, Rudolf Pernis, Start-up Phase Modeling of Semi Continuous Casting Process of Brass Billets, Metal 2009, 19.-21.5.2009

51-09  In-Ting Hong, Huan-Chien Tung, Chun-Hao Chiu and Hung-Shang Huang, Effect of Casting Parameters on Microstructure and Casting Quality of Si-Al Alloy for Vacuum Sputtering, China Steel Technical Report, No. 22, pp. 33-40, 2009.

42-09  P. Väyrynen, S. Wang, S. Louhenkilpi and L. Holappa, Modeling and Removal of Inclusions in Continuous Casting, Materials Science & Technology 2009 Conference & Exhibition, Pittsburgh, Pennsylvania, USA, October 25-29, 2009

41-09 O.Smirnov, P.Väyrynen, A.Kravchenko and S.Louhenkilpi, Modern Methods of Modeling Fluid Flow and Inclusions Motion in Tundish Bath – General View, Proceedings of Steelsim 2009 – 3rd International Conference on Simulation and Modelling of Metallurgical Processes in Steelmaking, Leoben, Austria, September 8-10, 2009

21-09 A. Pari, Case Studies – Optimization of HPDC Process Using Flow Simulation, Die Casting Engineer, July 2009

20-09 M. Sirvio, M. Wos, Casting directly from a computer model by using advanced simulation software, FLOW-3D Cast, Archives of Foundry Engineering Volume 9, Issue 1/2009, 79-82

19-09 Andrei Starobin, C.W. Hirt, D. Goettsch, A Model for Binder Gas Generation and Transport in Sand Cores and Molds, Modeling of Casting, Welding, and Solidification Processes XII, TMS (The Minerals, Metals & Minerals Society), June 2009

11-09 Michael Barkhudarov, Minimizing Air Entrainment in a Shot Sleeve during Slow-Shot Stage, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

10-09 A. Reikher, H. Gerber, Application of One-Dimensional Numerical Simulation to Optimize Process Parameters of a Thin-Wall Casting in High Pressure Die Casting, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

7-09 Andrei Starobin, Simulation of Core Gas Evolution and Flow, presented at the North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

6-09 A.Pari, Optimization of HPDC PROCESS: Case Studies, North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

2-09 C. Reilly, N.R. Green and M.R. Jolly, Oxide Entrainment Structures in Horizontal Running Systems, TMS 2009, San Francisco, California, February 2009

30-08 I.N.Volnov, Computer Modeling of Casting of Pipe Fittings, © 2008, Pipe Fittings, 5 (38), 2008. Russian version

28-08 A.V.Chaikin, I.N.Volnov, V.A.Chaikin, Y.A.Ukhanov, N.R.Petrov, Analysis of the Efficiency of Alloy Modifiers Using Statistics and Modeling, © 2008, Liteyshik Rossii (Russian Foundryman), October, 2008

27-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Castings, American Foundry Society, © 2008, AFS Lost Foam Conference, Asheville, North Carolina, October, 2008

25-08 FMT Staff, Forecasting Core Gas Pressures with Computer Simulation, Foundry Management and Technology, October 28, 2008 © 2008 Penton Media, Inc. Online article

24-08 Core and Mold Gas Evolution, Foundry Management and Technology, January 24, 2008 (excerpted from the FM&T May 2007 issue) © 2008 Penton Media, Inc.

22-08 Mark Littler, Simulation Eliminates Die Casting Scrap, Modern Casting/September 2008

21-08 X. Chen, D. Penumadu, Permeability Measurement and Numerical Modeling for Refractory Porous Materials, AFS Transactions © 2008 American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

20-08 Rolf Krack, Using Solidification Simulations for Optimising Die Cooling Systems, FTJ July/August 2008

19-08 Mark Littler, Simulation Software Eliminates Die Casting Scrap, ECS Casting Innovations, July/August 2008

13-08 T. Yoshimura, K. Yano, T. Fukui, S. Yamamoto, S. Nishido, M. Watanabe and Y. Nemoto, Optimum Design of Die Casting Plunger Tip Considering Air Entrainment, Proceedings of 10th Asian Foundry Congress (AFC10), Nagoya, Japan, May 2008

08-08 Stephen Instone, Andreas Buchholz and Gerd-Ulrich Gruen, Inclusion Transport Phenomena in Casting Furnaces, Light Metals 2008, TMS (The Minerals, Metals & Materials Society), 2008

07-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Casting, AFS Transactions 2008 © American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

06-08 A. Reikher, H. Gerber and A. Starobin, Multi-Stage Plunger Deceleration System, CastExpo ’08, NADCA, Atlanta, Georgia, May 2008

05-08 Amol Palekar, Andrei Starobin, Alexander Reikher, Die-casting end-of-fill and drop forge viscometer flow transients examined with a coupled-motion numerical model, 68th World Foundry Congress, Chennai, India, February 2008

03-08 Petri J. Väyrynen, Sami K. Vapalahti and Seppo J. Louhenkilpi, On Validation of Mathematical Fluid Flow Models for Simulation of Tundish Water Models and Industrial Examples, AISTech 2008, May 2008

53-07   A. Kermanpur, Sh. Mahmoudi and A. Hajipour, Three-dimensional Numerical Simulation of Metal Flow and Solidification in the Multi-cavity Casting Moulds of Automotive Components, International Journal of Iron & Steel Society of Iran, Article 2, Volume 4, Issue 1, Summer and Autumn 2007, pages 8-15.

36-07 Duque Mesa A. F., Herrera J., Cruz L.J., Fernández G.P. y Martínez H.V., Caracterización Defectológica de Piezas Fundida por Lost Foam Casting Mediante Simulación Numérica, 8° Congreso Iberoamericano de Ingenieria Mecanica, Cusco, Peru, 23 al 25 de Octubre de 2007 (in Spanish)

27-07 A.Y. Korotchenko, A.M. Zarubin, I.A.Korotchenko, Modeling of High Pressure Die Casting Filling, Russian Foundryman, December 2007, pp 15-19. (in Russian)

26-07 I.N. Volnov, Modeling of Casting Processes with Variable Geometry, Russian Foundryman, November 2007, pp 27-30. (in Russian)

16-07 P. Väyrynen, S. Vapalahti, S. Louhenkilpi, L. Chatburn, M. Clark, T. Wagner, Tundish Flow Model Tuning and Validation – Steady State and Transient Casting Situations, STEELSIM 2007, Graz/Seggau, Austria, September 12-14 2007

11-07 Marco Actis Grande, Computer Simulation of the Investment Casting Process – Widening of the Filling Step, Santa Fe Symposium on Jewelry Manufacturing Technology, May 2007

09-07 Alexandre Reikher and Michael Barkhudarov, Casting: An Analytical Approach, Springer, 1st edition, August 2007, Hardcover ISBN: 978-1-84628-849-4. U.S. Order FormEurope Order Form.

07-07 I.N. Volnov, Casting Modeling Systems – Current State, Problems and Perspectives, (in Russian), Liteyshik Rossii (Russian Foundryman), June 2007

05-07 A.N. Turchin, D.G. Eskin, and L. Katgerman, Solidification under Forced-Flow Conditions in a Shallow Cavity, DOI: 10.1007/s1161-007-9183-9, © The Minerals, Metals & Materials Society and ASM International 2007

04-07 A.N. Turchin, M. Zuijderwijk, J. Pool, D.G. Eskin, and L. Katgerman, Feathery grain growth during solidification under forced flow conditions, © Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. DOI: 10.1016/j.actamat.2007.02.030, April 2007

03-07 S. Kuyucak, Sponsored Research – Clean Steel Casting Production—Evaluation of Laboratory Castings, Transactions of the American Foundry Society, Volume 115, 111th Metalcasting Congress, May 2007

02-07 Fu-Yuan Hsu, Mark R. Jolly and John Campbell, The Design of L-Shaped Runners for Gravity Casting, Shape Casting: 2nd International Symposium, Edited by Paul N. Crepeau, Murat Tiryakioðlu and John Campbell, TMS (The Minerals, Metals & Materials Society), Orlando, FL, Feb 2007

30-06 X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Simulation of EPS foam decomposition in the lost foam casting process, Journal of Materials Processing Technology 182 (2007) 333–342, © 2006 Elsevier B.V. All rights reserved.

25-06 Michael Barkhudarov and Gengsheng Wei, Modeling Casting on the Move, Modern Casting, August 2006; Modeling of Casting Processes with Variable Geometry, Russian Foundryman, December 2007, pp 10-15. (in Russian)

24-06 P. Scarber, Jr. and C.E. Bates, Simulation of Core Gas Production During Mold Fill, © 2006 American Foundry Society

7-06 M.Y.Smirnov, Y.V.Golenkov, Manufacturing of Cast Iron Bath Tubs Castings using Vacuum-Process in Russia, Russia’s Foundryman, July 2006. In Russian.

6-06 M. Barkhudarov, and G. Wei, Modeling of the Coupled Motion of Rigid Bodies in Liquid Metal, Modeling of Casting, Welding and Advanced Solidification Processes – XI, May 28 – June 2, 2006, Opio, France, eds. Ch.-A. Gandin and M. Bellet, pp 71-78, 2006.

2-06 J.-C. Gebelin, M.R. Jolly and F.-Y. Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, Int. J. Cast Met. Res., 2006, Vol.19 No.1

1-06 Michael Barkhudarov, Using Simulation to Control Microporosity Reduces Die Iterations, Die Casting Engineer, January 2006, pp. 52-54

30-05 H. Xue, K. Kabiri-Bamoradian, R.A. Miller, Modeling Dynamic Cavity Pressure and Impact Spike in Die Casting, Cast Expo ’05, April 16-19, 2005

22-05 Blas Melissari & Stavros A. Argyropoulous, Measurement of Magnitude and Direction of Velocity in High-Temperature Liquid Metals; Part I, Mathematical Modeling, Metallurgical and Materials Transactions B, Volume 36B, October 2005, pp. 691-700

21-05 M.R. Jolly, State of the Art Review of Use of Modeling Software for Casting, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 337-346

20-05 J-C Gebelin, M.R. Jolly & F-Y Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 355-364

19-05 F-Y Hsu, M.R. Jolly & J Campbell, Vortex Gate Design for Gravity Castings, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 73-82

18-05 M.R. Jolly, Modelling the Investment Casting Process: Problems and Successes, Japanese Foundry Society, JFS, Tokyo, Sept. 2005

13-05 Xiaogang Yang, Xiaobing Huang, Xiaojun Dai, John Campbell and Joe Tatler, Numerical Modelling of the Entrainment of Oxide Film Defects in Filling of Aluminium Alloy Castings, International Journal of Cast Metals Research, 17 (6), 2004, 321-331

10-05 Carlos Evaristo Esparza, Martha P. Guerro-Mata, Roger Z. Ríos-Mercado, Optimal Design of Gating Systems by Gradient Search Methods, Computational Materials Science, October 2005

6-05 Birgit Hummler-Schaufler, Fritz Hirning, Jurgen Schaufler, A World First for Hatz Diesel and Schaufler Tooling, Die Casting Engineer, May 2005, pp. 18-21

4-05 Rolf Krack, The W35 Topic—A World First, Die Casting World, March 2005, pp. 16-17

3-05 Joerg Frei, Casting Simulations Speed Up Development, Die Casting World, March 2005, p. 14

2-05 David Goettsch and Michael Barkhudarov, Analysis and Optimization of the Transient Stage of Stopper-Rod Pour, Shape Casting: The John Campbell Symposium, The Minerals, Metals & Materials Society, 2005

36-04  Ik Min Park, Il Dong Choi, Yong Ho Park, Development of Light-Weight Al Scroll Compressor for Car Air Conditioner, Materials Science Forum, Designing, Processing and Properties of Advanced Engineering Materials, 449-452, 149, March 2004.

32-04 D.H. Kirkwood and P.J Ward, Numerical Modelling of Semi-Solid Flow under Processing Conditions, steel research int. 75 (2004), No. 8/9

30-04 Haijing Mao, A Numerical Study of Externally Solidified Products in the Cold Chamber Die Casting Process, thesis: The Ohio State University, 2004 (Available upon request)

28-04 Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Supplement to the Welding Journal, June 2004.

23-04 State of the Art Use of Computational Modelling in the Foundry Industry, 3rd International Conference Computational Modelling of Materials III, Sicily, Italy, June 2004, Advances in Science and Technology,  Eds P. Vincenzini & A Lami, Techna Group Srl, Italy, ISBN: 88-86538-46-4, Part B, pp 479-490

22-04 Jerry Fireman, Computer Simulation Helps Reduce Scrap, Die Casting Engineer, May 2004, pp. 46-49

21-04 Joerg Frei, Simulation—A Safe and Quick Way to Good Components, Aluminium World, Volume 3, Issue 2, pp. 42-43

20-04 J.-C. Gebelin, M.R. Jolly, A. M. Cendrowicz, J. Cirre and S. Blackburn, Simulation of Die Filling for the Wax Injection Process – Part II Numerical Simulation, Metallurgical and Materials Transactions, Volume 35B, August 2004

14-04 Sayavur I. Bakhtiyarov, Charles H. Sherwin, and Ruel A. Overfelt, Hot Distortion Studies In Phenolic Urethane Cold Box System, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

13-04 Sayavur I. Bakhtiyarov and Ruel A. Overfelt, First V-Process Casting of Magnesium, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

5-04 C. Schlumpberger & B. Hummler-Schaufler, Produktentwicklung auf hohem Niveau (Product Development on a High Level), Druckguss Praxis, January 2004, pp 39-42 (in German).

3-04 Charles Bates, Dealing with Defects, Foundry Management and Technology, February 2004, pp 23-25

1-04 Laihua Wang, Thang Nguyen, Gary Savage and Cameron Davidson, Thermal and Flow Modeling of Ladling and Injection in High Pressure Die Casting Process, International Journal of Cast Metals Research, vol. 16 No 4 2003, pp 409-417

2-03 J-C Gebelin, AM Cendrowicz, MR Jolly, Modeling of the Wax Injection Process for the Investment Casting Process – Prediction of Defects, presented at the Third International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, December 10-12, 2003, Melbourne, Australia, pp. 415-420

29-03 C. W. Hirt, Modeling Shrinkage Induced Micro-porosity, Flow Science Technical Note (FSI-03-TN66)

28-03 Thixoforming at the University of Sheffield, Diecasting World, September 2003, pp 11-12

26-03 William Walkington, Gas Porosity-A Guide to Correcting the Problems, NADCA Publication: 516

22-03 G F Yao, C W Hirt, and M Barkhudarov, Development of a Numerical Approach for Simulation of Sand Blowing and Core Formation, in Modeling of Casting, Welding, and Advanced Solidification Process-X”, Ed. By Stefanescu et al pp. 633-639, 2003

21-03 E F Brush Jr, S P Midson, W G Walkington, D T Peters, J G Cowie, Porosity Control in Copper Rotor Die Castings, NADCA Indianapolis Convention Center, Indianapolis, IN September 15-18, 2003, T03-046

12-03 J-C Gebelin & M.R. Jolly, Modeling Filters in Light Alloy Casting Processes,  Trans AFS, 2002, 110, pp. 109-120

11-03 M.R. Jolly, Casting Simulation – How Well Do Reality and Virtual Casting Match – A State of the Art Review, Intl. J. Cast Metals Research, 2002, 14, pp. 303-313

10-03 Gebelin., J-C and Jolly, M.R., Modeling of the Investment Casting Process, Journal of  Materials Processing Tech., Vol. 135/2-3, pp. 291 – 300

9-03 Cox, M, Harding, R.A. and Campbell, J., Optimised Running System Design for Bottom Filled Aluminium Alloy 2L99 Investment Castings, J. Mat. Sci. Tech., May 2003, Vol. 19, pp. 613-625

8-03 Von Alexander Schrey and Regina Reek, Numerische Simulation der Kernherstellung, (Numerical Simulation of Core Blowing), Giesserei, June 2003, pp. 64-68 (in German)

7-03 J. Zuidema Jr., L Katgerman, Cyclone separation of particles in aluminum DC Casting, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 607-614

6-03 Jean-Christophe Gebelin and Mark Jolly, Numerical Modeling of Metal Flow Through Filters, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 431-438

5-03 N.W. Lai, W.D. Griffiths and J. Campbell, Modelling of the Potential for Oxide Film Entrainment in Light Metal Alloy Castings, Proceedings from the Tenth International Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Destin, FL, May 2003, pp. 415-422

21-02 Boris Lukezic, Case History: Process Modeling Solves Die Design Problems, Modern Casting, February 2003, P 59

20-02 C.W. Hirt and M.R. Barkhudarov, Predicting Defects in Lost Foam Castings, Modern Casting, December 2002, pp 31-33

19-02 Mark Jolly, Mike Cox, Ric Harding, Bill Griffiths and John Campbell, Quiescent Filling Applied to Investment Castings, Modern Casting, December 2002 pp. 36-38

18-02 Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Foundry Management and Technology, October 2002, pp 13-15

17-02 G Messmer, Simulation of a Thixoforging Process of Aluminum Alloys with FLOW-3D, Institute for Metal Forming Technology, University of Stuttgart

16-02 Barkhudarov, Michael, Computer Simulation of Lost Foam Process, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 319-324

15-02 Barkhudarov, Michael, Computer Simulation of Inclusion Tracking, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 341-346

14-02 Barkhudarov, Michael, Advanced Simulation of the Flow and Heat Transfer of an Alternator Housing, Casting Simulation Background and Examples from Europe and the USA, World Foundrymen Organization, 2002, pp 219-228

8-02 Sayavur I. Bakhtiyarov, and Ruel A. Overfelt, Experimental and Numerical Study of Bonded Sand-Air Two-Phase Flow in PUA Process, Auburn University, 2002 American Foundry Society, AFS Transactions 02-091, Kansas City, MO

7-02 A Habibollah Zadeh, and J Campbell, Metal Flow Through a Filter System, University of Birmingham, 2002 American Foundry Society, AFS Transactions 02-020, Kansas City, MO

6-02 Phil Ward, and Helen Atkinson, Final Report for EPSRC Project: Modeling of Thixotropic Flow of Metal Alloys into a Die, GR/M17334/01, March 2002, University of Sheffield

5-02 S. I. Bakhtiyarov and R. A. Overfelt, Numerical and Experimental Study of Aluminum Casting in Vacuum-sealed Step Molding, Auburn University, 2002 American Foundry Society, AFS Transactions 02-050, Kansas City, MO

4-02 J. C. Gebelin and M. R. Jolly, Modelling Filters in Light Alloy Casting Processes, University of Birmingham, 2002 American Foundry Society AFS Transactions 02-079, Kansas City, MO

3-02 Mark Jolly, Mike Cox, Jean-Christophe Gebelin, Sam Jones, and Alex Cendrowicz, Fundamentals of Investment Casting (FOCAST), Modelling the Investment Casting Process, Some preliminary results from the UK Research Programme, IRC in Materials, University of Birmingham, UK, AFS2001

49-01   Hua Bai and Brian G. Thomas, Bubble formation during horizontal gas injection into downward-flowing liquid, Metallurgical and Materials Transactions B, Vol. 32, No. 6, pp. 1143-1159, 2001. doi.org/10.1007/s11663-001-0102-y

45-01 Jan Zuidema; Laurens Katgerman; Ivo J. Opstelten;Jan M. Rabenberg, Secondary Cooling in DC Casting: Modelling and Experimental Results, TMS 2001, New Orleans, Louisianna, February 11-15, 2001

43-01 James Andrew Yurko, Fluid Flow Behavior of Semi-Solid Aluminum at High Shear Rates,Ph.D. thesis; Massachusetts Institute of Technology, June 2001. Abstract only; full thesis available at http://dspace.mit.edu/handle/1721.1/8451 (for a fee).

33-01 Juang, S.H., CAE Application on Design of Die Casting Dies, 2001 Conference on CAE Technology and Application, Hsin-Chu, Taiwan, November 2001, (article in Chinese with English-language abstract)

32-01 Juang, S.H. and C. M. Wang, Effect of Feeding Geometry on Flow Characteristics of Magnesium Die Casting by Numerical Analysis, The Preceedings of 6th FADMA Conference, Taipei, Taiwan, July 2001, Chinese language with English abstract

26-01 C. W. Hirt., Predicting Defects in Lost Foam Castings, December 13, 2001

21-01 P. Scarber Jr., Using Liquid Free Surface Areas as a Predictor of Reoxidation Tendency in Metal Alloy Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

20-01 P. Scarber Jr., J. Griffin, and C. E. Bates, The Effect of Gating and Pouring Practice on Reoxidation of Steel Castings, presented at the Steel Founders’ Society of American, Technical and Operating Conference, October 2001

19-01 L. Wang, T. Nguyen, M. Murray, Simulation of Flow Pattern and Temperature Profile in the Shot Sleeve of a High Pressure Die Casting Process, CSIRO Manufacturing Science and Technology, Melbourne, Victoria, Australia, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, To1-014

18-01 Rajiv Shivpuri, Venkatesh Sankararaman, Kaustubh Kulkarni, An Approach at Optimizing the Ingate Design for Reducing Filling and Shrinkage Defects, The Ohio State University, Columbus, OH, Presented by North American Die Casting Association, Oct 29-Nov 1, 2001, Cincinnati, TO1-052

5-01 Michael Barkhudarov, Simulation Helps Overcome Challenges of Thin Wall Magnesium Diecasting, Diecasting World, March 2001, pp. 5-6

2-01 J. Grindling, Customized CFD Codes to Simulate Casting of Thermosets in Full 3D, Electrical Manufacturing and Coil Winding 2000 Conference, October 31-November 2, 20

20-00 Richard Schuhmann, John Carrig, Thang Nguyen, Arne Dahle, Comparison of Water Analogue Modelling and Numerical Simulation Using Real-Time X-Ray Flow Data in Gravity Die Casting, Australian Die Casting Association Die Casting 2000 Conference, September 3-6, 2000, Melbourne, Victoria, Australia

15-00 M. Sirvio, Vainola, J. Vartianinen, M. Vuorinen, J. Orkas, and S. Devenyi, Fluid Flow Analysis for Designing Gating of Aluminum Castings, Proc. NADCA Conf., Rosemont, IL, Nov 6-8, 1999

14-00 X. Yang, M. Jolly, and J. Campbell, Reduction of Surface Turbulence during Filling of Sand Castings Using a Vortex-flow Runner, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

13-00 H. S. H. Lo and J. Campbell, The Modeling of Ceramic Foam Filters, Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August 2000

12-00 M. R. Jolly, H. S. H. Lo, M. Turan and J. Campbell, Use of Simulation Tools in the Practical Development of a Method for Manufacture of Cast Iron Camshafts,” Conference for Modeling of Casting, Welding, and Advanced Solidification Processes IX, Aachen, Germany, August, 2000

14-99 J Koke, and M Modigell, Time-Dependent Rheological Properties of Semi-solid Metal Alloys, Institute of Chemical Engineering, Aachen University of Technology, Mechanics of Time-Dependent Materials 3: 15-30, 1999

12-99 Grun, Gerd-Ulrich, Schneider, Wolfgang, Ray, Steven, Marthinusen, Jan-Olaf, Recent Improvements in Ceramic Foam Filter Design by Coupled Heat and Fluid Flow Modeling, Proc TMS Annual Meeting, 1999, pp. 1041-1047

10-99 Bongcheol Park and Jerald R. Brevick, Computer Flow Modeling of Cavity Pre-fill Effects in High Pressure Die Casting, NADCA Proceedings, Cleveland T99-011, November, 1999

8-99 Brad Guthrie, Simulation Reduces Aluminum Die Casting Cost by Reducing Volume, Die Casting Engineer Magazine, September/October 1999, pp. 78-81

7-99 Fred L. Church, Virtual Reality Predicts Cast Metal Flow, Modern Metals, September, 1999, pp. 67F-J

19-98 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Numerical Modeling of Fluid Flow Phenomena in the Launder-integrated Tool Within Casting Unit Development, Proc TMS Annual Meeting, 1998, pp. 1175-1182

18-98 X. Yang & J. Campbell, Liquid Metal Flow in a Pouring Basin, Int. J. Cast Metals Res, 1998, 10, pp. 239-253

15-98 R. Van Tol, Mould Filling of Horizontal Thin-Wall Castings, Delft University Press, The Netherlands, 1998

14-98 J. Daughtery and K. A. Williams, Thermal Modeling of Mold Material Candidates for Copper Pressure Die Casting of the Induction Motor Rotor Structure, Proc. Int’l Workshop on Permanent Mold Casting of Copper-Based Alloys, Ottawa, Ontario, Canada, Oct. 15-16, 1998

10-98 C. W. Hirt, and M.R. Barkhudarov, Lost Foam Casting Simulation with Defect Prediction, Flow Science Inc, presented at Modeling of Casting, Welding and Advanced Solidification Processes VIII Conference, June 7-12, 1998, Catamaran Hotel, San Diego, California

9-98 M. R. Barkhudarov and C. W. Hirt, Tracking Defects, Flow Science Inc, presented at the 1st International Aluminum Casting Technology Symposium, 12-14 October 1998, Rosemont, IL

5-98 J. Righi, Computer Simulation Helps Eliminate Porosity, Die Casting Management Magazine, pp. 36-38, January 1998

3-98 P. Kapranos, M. R. Barkhudarov, D. H. Kirkwood, Modeling of Structural Breakdown during Rapid Compression of Semi-Solid Alloy Slugs, Dept. Engineering Materials, The University of Sheffield, Sheffield S1 3JD, U.K. and Flow Science Inc, USA, Presented at the 5th International Conference Semi-Solid Processing of Alloys and Composites, Colorado School of Mines, Golden, CO, 23-25 June 1998

1-98 U. Jerichow, T. Altan, and P. R. Sahm, Semi Solid Metal Forming of Aluminum Alloys-The Effect of Process Variables Upon Material Flow, Cavity Fill and Mechanical Properties, The Ohio State University, Columbus, OH, published in Die Casting Engineer, p. 26, Jan/Feb 1998

8-97 Michael Barkhudarov, High Pressure Die Casting Simulation Using FLOW-3D, Die Casting Engineer, 1997

15-97 M. R. Barkhudarov, Advanced Simulation of the Flow and Heat Transfer Process in Simultaneous Engineering, Flow Science report, presented at the Casting 1997 – International ADI and Simulation Conference, Helsinki, Finland, May 28-30, 1997

14-97 M. Ranganathan and R. Shivpuri, Reducing Scrap and Increasing Die Life in Low Pressure Die Casting through Flow Simulation and Accelerated Testing, Dept. Welding and Systems Engineering, Ohio State University, Columbus, OH, presented at 19th International Die Casting Congress & Exposition, November 3-6, 1997

13-97 J. Koke, Modellierung und Simulation der Fließeigenschaften teilerstarrter Metallegierungen, Livt Information, Institut für Verfahrenstechnik, RWTH Aachen, October 1997

10-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics – Part 2 Fiber Orientation, Body-in-White Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 6, June 1997

9-97 J. P. Greene and J. O. Wilkes, Numerical Analysis of Injection Molding of Glass Fiber Reinforced Thermoplastics. Part 1 – Injection Pressures and Flow, Manufacturing Center, General Motors Corp. and Dept. Chemical Engineering, University of Michigan, Polymer Engineering and Science, Vol. 37, No. 3, March 1997

8-97 H. Grazzini and D. Nesa, Thermophysical Properties, Casting Simulation and Experiments for a Stainless Steel, AT Systemes (Renault) report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

7-97 R. Van Tol, L. Katgerman and H. E. A. Van den Akker, Horizontal Mould Filling of a Thin Wall Aluminum Casting, Laboratory of Materials report, Delft University, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

6-97 M. R. Barkhudarov, Is Fluid Flow Important for Predicting Solidification, Flow Science report, presented at the Solidification Processing ’97 Conference, July 7-10, 1997, Sheffield, U.K.

22-96 Grun, Gerd-Ulrich & Schneider, Wolfgang, 3-D Modeling of the Start-up Phase of DC Casting of Sheet Ingots, Proc TMS Annual Meeting, 1996, pp. 971-981

9-96 M. R. Barkhudarov and C. W. Hirt, Thixotropic Flow Effects under Conditions of Strong Shear, Flow Science report FSI96-00-2, to be presented at the “Materials Week ’96” TMS Conference, Cincinnati, OH, 7-10 October 1996

4-96 C. W. Hirt, A Computational Model for the Lost Foam Process, Flow Science final report, February 1996 (FSI-96-57-R2)

3-96 M. R. Barkhudarov, C. L. Bronisz, C. W. Hirt, Three-Dimensional Thixotropic Flow Model, Flow Science report, FSI-96-00-1, published in the proceedings of (pp. 110- 114) and presented at the 4th International Conference on Semi-Solid Processing of Alloys and Composites, The University of Sheffield, 19-21 June 1996

1-96 M. R. Barkhudarov, J. Beech, K. Chang, and S. B. Chin, Numerical Simulation of Metal/Mould Interfacial Heat Transfer in Casting, Dept. Mech. & Process Engineering, Dept. Engineering Materials, University of Sheffield and Flow Science Inc, 9th Int. Symposium on Transport Phenomena in Thermal-Fluid Engineering, June 25-28, 1996, Singapore

11-95 Barkhudarov, M. R., Hirt, C.W., Casting Simulation Mold Filling and Solidification-Benchmark Calculations Using FLOW-3D, Modeling of Casting, Welding, and Advanced Solidification Processes VII, pp 935-946

10-95 Grun, Gerd-Ulrich, & Schneider, Wolfgang, Optimal Design of a Distribution Pan for Level Pour Casting, Proc TMS Annual Meeting, 1995, pp. 1061-1070

9-95 E. Masuda, I. Itoh, K. Haraguchi, Application of Mold Filling Simulation to Die Casting Processes, Honda Engineering Co., Ltd., Tochigi, Japan, presented at the Modelling of Casting, Welding and Advanced Solidification Processes VII, The Minerals, Metals & Materials Society, 1995

6-95 K. Venkatesan, Experimental and Numerical Investigation of the Effect of Process Parameters on the Erosive Wear of Die Casting Dies, presented for Ph.D. degree at Ohio State University, 1995

5-95 J. Righi, A. F. LaCamera, S. A. Jones, W. G. Truckner, T. N. Rouns, Integration of Experience and Simulation Based Understanding in the Die Design Process, Alcoa Technical Center, Alcoa Center, PA 15069, presented by the North American Die Casting Association, 1995

2-95 K. Venkatesan and R. Shivpuri, Numerical Simulation and Comparison with Water Modeling Studies of the Inertia Dominated Cavity Filling in Die Casting, NUMIFORM, 1995

1-95 K. Venkatesan and R. Shivpuri, Numerical Investigation of the Effect of Gate Velocity and Gate Size on the Quality of Die Casting Parts, NAMRC, 1995.

15-94 D. Liang, Y. Bayraktar, S. A. Moir, M. Barkhudarov, and H. Jones, Primary Silicon Segregation During Isothermal Holding of Hypereutectic AI-18.3%Si Alloy in the Freezing Range, Dept. of Engr. Materials, U. of Sheffield, Metals and Materials, February 1994

13-94 Deniece Korzekwa and Paul Dunn, A Combined Experimental and Modeling Approach to Uranium Casting, Materials Division, Los Alamos National Laboratory, presented at the Symposium on Liquid Metal Processing and Casting, El Dorado Hotel, Santa Fe, New Mexico, 1994

12-94 R. van Tol, H. E. A. van den Akker and L. Katgerman, CFD Study of the Mould Filling of a Horizontal Thin Wall Aluminum Casting, Delft University of Technology, Delft, The Netherlands, HTD-Vol. 284/AMD-Vol. 182, Transport Phenomena in Solidification, ASME 1994

11-94 M. R. Barkhudarov and K. A. Williams, Simulation of ‘Surface Turbulence’ Fluid Phenomena During the Mold Filling Phase of Gravity Castings, Flow Science Technical Note #41, November 1994 (FSI-94-TN41)

10-94 M. R. Barkhudarov and S. B. Chin, Stability of a Numerical Algorithm for Gas Bubble Modelling, University of Sheffield, Sheffield, U.K., International Journal for Numerical Methods in Fluids, Vol. 19, 415-437 (1994)

16-93 K. Venkatesan and R. Shivpuri, Numerical Simulation of Die Cavity Filling in Die Castings and an Evaluation of Process Parameters on Die Wear, Dept. of Industrial Systems Engineering, Presented by: N.A. Die Casting Association, Cleveland, Ohio, October 18-21, 1993

15-93 K. Venkatesen and R. Shivpuri, Numerical Modeling of Filling and Solidification for Improved Quality of Die Casting: A Literature Survey (Chapters II and III), Engineering Research Center for Net Shape Manufacturing, Report C-93-07, August 1993, Ohio State University

1-93 P-E Persson, Computer Simulation of the Solidification of a Hub Carrier for the Volvo 800 Series, AB Volvo Technological Development, Metals Laboratory, Technical Report No. LM 500014E, Jan. 1993

13-92 D. R. Korzekwa, M. A. K. Lewis, Experimentation and Simulation of Gravity Fed Lead Castings, in proceedings of a TMS Symposium on Concurrent Engineering Approach to Materials Processing, S. N. Dwivedi, A. J. Paul and F. R. Dax, eds., TMS-AIME Warrendale, p. 155 (1992)

12-92 M. A. K. Lewis, Near-Net-Shaiconpe Casting Simulation and Experimentation, MST 1992 Review, Los Alamos National Laboratory

2-92 M. R. Barkhudarov, H. You, J. Beech, S. B. Chin, D. H. Kirkwood, Validation and Development of FLOW-3D for Casting, School of Materials, University of Sheffield, Sheffield, UK, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

1-92 D. R. Korzekwa and L. A. Jacobson, Los Alamos National Laboratory and C.W. Hirt, Flow Science Inc, Modeling Planar Flow Casting with FLOW-3D, presented at the TMS/AIME Annual Meeting, San Diego, CA, March 3, 1992

12-91 R. Shivpuri, M. Kuthirakulathu, and M. Mittal, Nonisothermal 3-D Finite Difference Simulation of Cavity Filling during the Die Casting Process, Dept. Industrial and Systems Engineering, Ohio State University, presented at the 1991 Winter Annual ASME Meeting, Atlanta, GA, Dec. 1-6, 1991

3-91 C. W. Hirt, FLOW-3D Study of the Importance of Fluid Momentum in Mold Filling, presented at the 18th Annual Automotive Materials Symposium, Michigan State University, Lansing, MI, May 1-2, 1991 (FSI-91-00-2)

11-90 N. Saluja, O.J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Melts, accepted in J. Appl. Physics, 1990

10-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, On the Calculation of the Electromagnetic Force Field in the Circular Stirring of Metallic Molds in Continuous Castings, presented at the 6th Iron and Steel Congress of the Iron and Steel Institute of Japan, Nagoya, Japan, October 1990

9-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, Fluid Flow in Phenomena in the Electromagnetic Stirring of Continuous Casting Systems, Part I. The Behavior of a Cylindrically Shaped, Laboratory Scale Installation, accepted for publication in Steel Research, 1990

8-89 C. W. Hirt, Gravity-Fed Casting, Flow Science Technical Note #20, July 1989 (FSI-89-TN20)

6-89 E. W. M. Hansen and F. Syvertsen, Numerical Simulation of Flow Behaviour in Moldfilling for Casting Analysis, SINTEF-Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology, Trondheim, Norway, Report No. STS20 A89001, June 1989

1-88 C. W. Hirt and R. P. Harper, Modeling Tests for Casting Processes, Flow Science report, Jan. 1988 (FSI-88-38-01)

2-87 C. W. Hirt, Addition of a Solidification/Melting Model to FLOW-3D, Flow Science report, April 1987 (FSI-87-33-1)

Lost Foam Casting Workspace, 소실모형주조

Lost Foam Casting Workspace Highlights, 소실모형주조

  • 최첨단 Foam 잔여물 추적
  • 진보된 Foam 증발 및 금속 유동 모델링
  • 응고, 다공성 및 표면 결함 분석

Workspace Overview

Lost Foam Casting Workspace(소실모형주조) 는 Lost Foam Casting에 필요한 충진, 응고 및 냉각 하위 프로세스를 시뮬레이션하는 모든 도구를 제공합니다. 각 하위 프로세스는 해석 엔지니어가 사용하기 쉬운 인터페이스를 제공하도록 맞춤화된 템플릿 디자인을 기반으로합니다.

Lost Foam Casting 의 결함은 충진 프로파일에서 추적할 수 있기 때문에  FLOW-3D  CAST 의 용탕유동 및 소실모형(foam)의 연소 시뮬레이션의 탁월한 정확도는 고품질의 Lost Foam Casting 주물을 생산하는 데 귀중한 통찰력을 제공합니다. 기포. 잔류물 형성과 같은 주입 결함은 최종 주조에서 정확하게 추적되고 처리됩니다.

Lost Foam Casting Workspace | FLOW-3D CAST
Lost Foam Residue Tracking – Filling Simulation | FLOW-3D CAST
Lost Foam Impeller Tree – Filling Simulation | FLOW-3D CAST
Lost Foam Residue Simulation | FLOW-3D CAST

PROCESSES MODELED

  • Filling
  • Solidification
  • Cooling

FLEXIBLE MESHING

  • Structured meshing for fast, easy generation
  • Multi-block meshing for localized accuracy control
  • Foam-conforming meshes for memory optimization

MOLD MODELING

  • Ceramic filters
  • Inserts – standard and porous
  • Air vents
  • Chills
  • Insulating and exothermic sleeves
  • Moving ladles and stoppers

ADVANCED SOLIDIFICATION

  • Chemistry-based solidification
  • Dimensionless Niyama criteria
  • Cooling rates, SDAS, grain size mechanical properties

FILLING ACCURACY

  • Foam/melt interface tracking
  • Gas/bubble entrapment
  • Automatic melt flow drag calculation in filters

DEFECT PREDICTION

  • Foam residue defect tracking
  • Cold shuts
  • Porosity prediction
  • Shrinkage
  • Hot spots

DYNAMIC SIMULATION CONTROL

  • Probe-controlled pouring control

COMPLETE ANALYSIS PACKAGE

  • Animations with multi-viewports – 3D, 2D, history plots, volume rendering
  • Porosity analysis tool
  • Side-by-side simulation results comparison
  • Sensors for measuring melt temperature, solid fraction
  • Particle tracers
  • Batch post-processing
  • Report generation

Gravity Die Casting Workspace, 중력주조

Gravity Die Casting Workspace Highlights, 중력주조

  • 최첨단 다이 열 관리, 동적 냉각 채널, 분무 냉각 및 열 순환
  • Ladle 주입 조건에 따라 동적 Ladle 모션이 있는 Ladle 주입
  • 첨단 유량 솔루션으로 정확한 가스 갇힘 및 가스 다공성 제공

Workspace Overview

Gravity Die Casting Workspace(중력주조)는 엔지니어가 FLOW-3D CAST를 사용하여 중력주조 제품을 성공적으로 모델링할 수 있도록 설계된 직관적인 모델링 환경입니다.

Ladle 모션, 벤트 및 배압이 충진해석에 포함되어 공기 갇힘 및 미세 응고수축공의 정확한 예측과 금형온도분포 및 상태 예측이 가능합니다.-첨단 응고 모델은 Workspace의 하위 프로세스 아키텍처를 통해 충준해석기능에 원활하게 연결됩니다. Gravity Die Casting Workspace는 다목적 모델링 환경에서 시뮬레이션의 모든 측면을 위한 완전하고 정확한 솔루션을 제공합니다.

PROCESSES MODELED

  • Gravity die casting
  • Vacuum die casting

FLEXIBLE MESHING

  • FAVOR™ simple mesh generation tool
  • Multi-block meshing
  • Nested meshing

MOLD MODELING

  • Localized die heating elements and cooling channels
  • Spray cooling of the die surface
  • Ceramic filters
  • Air vents

ADVANCED SOLIDIFICATION

  • Porosity
  • Shrinkage
  • Hot spots
  • Mechanical property
  • Microstructure

SAND CORES

  • Core gas evolution
  • Material definitions for core properties

DIE THERMAL MANAGEMENT

  • Thermal die cycling
  • Heat saturation
  • Full heat transfer

LADLE MOTION

  • 6 degrees of freedom motion definition

DEFECT PREDICTION

  • Macro and micro porosity
  • Gas porosity
  • Early solidification
  • Oxide formation
  • Surface defect analysis

VACUUM AND VENTING

  • Interactive probe placement
  • Area and loss coefficient calculator

MACRO AND MICRO POROSITY

  • Gas porosity
  • Early solidification
  • Oxide formation
  • Surface defect analysis

FILLING ACCURACY

  • Gas and bubble entrapment
  • Surface oxide calculation
  • RNG and LES turbulence models
  • Backpressure

COMPLETE ANALYSIS PACKAGE

  • Animations with multi-viewports – 3D, 2D, history plots, volume rendering
  • Porosity analysis tool
  • Side-by-side simulation results comparison
  • Sensors for measuring melt temperature, solid fraction
  • Particle tracers
  • Batch post-processing
  • Report generation

Prediction of Shrinkage Defects During Investment Casting Process

Indianapolis Storm-Water System

하수도 시스템은 액션영화의 도피 루트로 사용되지 않는 한 흥미롭지 않을 것입니다. 폭우로 인해 이산화탄소 수치가 올라갈 때까지 여러분은 그것에 대해 생각조차 하지 않을 것입니다. 불행하게도, 770개 이상의 오래 된 미국 도시들 아래에 있는 하수구 시스템은 심한 폭풍으로 오염 문제를 일으킵니다. 이러한 구형 설계는 하수 및 폭풍 유실을 위한 비용 효율적인 단일 스타일 파이프를 사용했으며 연결된 파이프로 강 및 호수에 하수를 내보냅니다(CSO).

1994년 미국 환경보호청(EPA)은 주로 북동부 및 그레이트 레이크 지역의 관련 지방 자치 단체들에게 CSO관련 문제를 줄이거나 제거하도록 하는 정책을 발표했습니다. (2000년 “Clean Water Act”의 일부로 법률화된 정책). 인디애나 폴리스(Indianapolis)는 가벼운 비 폭풍으로 인해 하수 오물의 백업 및 범람이 발생할 수 있는 도시 중 하나였으므로, 주요 건설 조건에서 2025년까지 문제를 해결하는 것이 필요하였습니다.

인디애나 폴리스는 국제 디자인 회사인 AECOM에 Citizens Energy Group이 건설하고 있는 3개의 깊은 암석 저장 터널 중 첫 번째를 설계할 것을 요청했습니다. 총 25마일인 이 시스템은 대규모 지하 펌프장과 기존의 하수구에서 CSO를 수직으로 떨어뜨리는 연결 구조물을 포함합니다. 첫 번째 터널의 경우, 강우가 가라 앉은 후에 3 개의 커다란 강하 구조물이 CSO를 저장 터널로 전환하여 후속 처리를 수행했습니다.

프로젝트를 해결하기 위해 AECOM은 여러 가능한 낙하 구조물 설계의 동작을 시뮬레이션하기 위해 FLOW-3D를 선택하여, 구축 및 평가 예산이 책정 된 물리적 모델에 대한 재 작업의 필요성을 최소화했습니다. 테스트 결과는 예측 값과 일치하였으므로 재설계가 필요하지 않았습니다. 또한, 이제 AECOM은 유압 설계작업의 첫 번째 단계를 일반적으로 CFD시뮬레이션을 사용합니다.

Large Scale Project on a Tight Delivery Schedule

촉박한 납품 일정에 따른 대규모 프로젝트

20세기에 건설된 하수 처리장은 주거용, 상업용, 환경유출물의 유출로 무엇을 해야 할 것인지에 대한 새로운 인식을 가져다 주었습니다. CSO 방전은 정상적으로 운영되는 동안 처리시설로 직접 이동되며 모든 과정이 양호하게 운영됩니다. 불행하게도, 대규모 폭풍이 발생하는 동안, 발전소들의 초과 용량문제를 피하기 위해 인근 수역으로 과도한 유량을 방출합니다. 이들 배출은 기름과 살충제, 야생동물 배설물에 이르기까지 다양한 오염 물질을 포함합니다.
고무적인 성공의 신호로, 1990 년대에 착공된 새로운 CSO 분리, 저장 및 처리 시설로 오염의 영향에 대해 67 %의 개선을 이루었지만, 여전히 많은 연구가 이루어져야 합니다. 인디애나 폴리스의 경우, 인디애나 폴리스시 공공사업부가 CSO 장기 통제계획을 준비한 2008년에 그러한 노력이 시작되었습니다. 정상적인 처리 공장에서 처리 할 수 있을 때까지 오버플로우가 발생하는 “저장 및 운송”접근법의 핵심은 인디애나 폴리스 터널 저장 시스템 또는 인디애나라고 합니다.

이 시스템의 첫번째 단계는 딥 록 터널 커넥터(DRTC)라고 불리는 1억 8천만달러 가치의 프로젝트입니다. DRTC는 길이 7마일의 18피트 직경의 지하 터널로, 기존의 인디애나 폴리스의 3개의 서버 대 계층 유출 연결의 흐름 경로를 다시 만들 것입니다(그림 1). 목표는 과잉 강우 유출을 기존 하수구와 새 터널 사이의 낙하 구조를 통해 이들 대피소에서 거대한 터널로 안전하게 재배치하고, 폭풍 후 처리를 위해 처리장으로 펌핑 될 수있을 때까지 유지합니다.

Fig. 1. City of Indianapolis Deep Rock Tunnel Connector (DRTC), a “storage and transport” concept being built to handle combined sewage overflow (CSO) during heavy storms. Three vertical drop structures will capture this flow and divert it downwards to 18-foot-diameter storage tunnels running more than 250 feet underground; the tunnels store the CSO until sewage treatment plant capacity becomes available. (Image courtesy Citizens Energy Group)

평균적으로 지표면 아래 250피트 깊이에서, DRTC는 건설과 궁극적인 운영 동안 위의 주변 지역에 대한 혼란을 최소화하도록 설계되었습니다. 그러나 이 프로젝트의 규모와 복잡성은 AECOM의 과제에 긴급성을 더했습니다. 세 장소 각각에 대한 가능한 낙하 구조 설계와 평가, 구조물 설계의 60%를 7개월 이내에 마무리 지었습니다.

이러한 구조물의 목적은 표준 도시 하수 시스템에서 깊은 저장 터널로 하수 흐름을 전달하는 동시에, 효율적 손실( 느린 속도 또는 백업)과 장기적인 도심을 방지하는 것입니다. 각 섹션의 크기와 모양이 유입 흐름의 볼륨 및 속도와 세심하게 일치하지 않을 경우 발생할 수 있는 구조적 손상입니다.
AECOM의 수석 기술 전문가인 라이언 에디슨 컨설턴트는 계약의 스케줄링 요구 사항이 유효성 검사를 위해서는, 단 하나의 모델에만 물리적 건물과 테스트 활동을 제한할 것이라는 것을 알게되었습니다. 다른 주요 건설 프로젝트에 15년간 FLOW-3D 시뮬레이션 소프트웨어를 사용해 왔기 때문에, 난류, 과전압 및 에너지 낭비를 예측하는 능력은 충분하지 않고 디자인 프로젝트에 적합하다고 자신했습니다. 또한 여러 검증(what-if) 시나리오를 실행하기 위한 소프트웨어 옵션을 통해 설계 세부 사항을 다시 실행해야 하는 위험을 최소화할 수 있었습니다. 변경 사항이 적용될 경우 상당한 이점은 여러개의 병렬 시공 트랙이 있는 프로젝트에 있습니다.
시간 제약에도 불구하고, 에디슨은 특히 이 도전에 만족했습니다. 왜냐하면 “CFD로 드롭 구조 설계를 만들고 물리학에서 이것들은 너무 큰 구조이기 때문입니다.”라고 그는 말합니다. 그것들은 CFD는 실제로 사용되지 않는데 보통 물리적 모델이나 손으로 계산하는 것으로 이루어집니다.

DRTC 프로젝트를 위해서, 그는 먼저 시뮬레이션된 작동 조건에 대해서 컴퓨터 설계를 테스트할 것입니다. 에디슨은 3차원의 일시적이고 격동적인 흐름 조건을 모델링 할 수 있는 소프트웨어 패키지인 FLOW-3D를 사용했습니다. 각 설계에 대한 계산 메쉬를 변경하지 않고도 여러 설계 지오 메트리를 모델링 할 수 있는 기능이였습니다.
시뮬레이션 데이터로 무장한 에디슨은 그 결과를 아이오와 대학교 II. 시설에서 시험한 1:10 크기의 물리적 모델의 작동 데이터와 비교하였습니다. (후자는 원래 아이오와 유압 연구소라고 불렸지만, 지금은 그룹의 다양한 범위를 반영하여 IIHR-Hydroscience & Engineering으로 알려져 있습니다.)

Zeroing in on the Drop-Structure Challenge

드롭 구조 과제에서 영점 조정

가장 제한적인 DRTC 사이트의 지오 메트리는 CSO 008로 지정된 레귤레이터에서 발생합니다. 기존 CSO 레귤레이터(기울기 약 75피트 아래)를 새 18피트 직경의 수집 터널과 연결하려면, 이 위치에서 150피트 이상의 수직 방향 주행이 필요합니다. 각 낙하 구조에 7백만달러 이상이 소요되는 경우, 프로젝트 관리자들은 물리적 모델이 구축된 후 비용과 시간이 많이 소요되는 재설계가 필요한 가능성을 낮추려고 애썼습니다.

역사적으로 낙하 구조는 이전 프로젝트를 적용하여 설계된 후 축소 모델로 구축되었으며, 테스트만으로도 6개월 이상이 소요될 수 있습니다. 가속화된 이 프로젝트에서, 2009년 가을에 시작한 AECOM의 초기 과제는 두가지 표준 개념 중에서 하나를 선택하는 것이었습니다. 포장-파운드 스타일과 접선 vortex버전, 둘 다 시속 35마일의 폭풍이 몰아치는 물 속에서 속도를 늦추고 통제하기 위해서 직접 계산 및 FLOW-3D에서 결정한 일반 구조 직경 및 구성 요소 크기를 사용한 초기 CFD분석으로, AECOM은 시공 가능성 및 비용 고려 사항을 평가하는 데 사용했습니다.
CSO 008의 현장 요구 사항과 비용 효율성을 고려할 때, 시 당국과 AECOM은 접선 소용돌이 낙하 구조를 선택했습니다. 이 설계의 핵심 요소는 흐름을 먼저 환상적인 제트로 유도한 다음, vortex 유도 나선형 흐름을 생성하는 테이퍼(확대) 접근 채널에 의해 공급되는 수직 튜브(드롭 샤프트)입니다. 이 통제 된 하강은 속도가 느려지고 하루 3 억 갤런 (mgd) 이상에 이르는 흐름을 안전하게 처리합니다. 스토리지 터널의 파괴적인 난류를 방지하는 것이 핵심 목표이므로 드롭 샤프트 흐름의 사전 차단이 설계의 핵심입니다.

구조 자체는 6 개의 주요 부분으로 구성됩니다. 1) 접근 채널 (기존의 하수 터널에서 나온 것), 2) 수평 흐름을 넓히고 수직 드롭 샤프트로 수평 흐름을 전달하는 직사각형 전이 테이퍼 채널, 3) 드롭 샤프트 자체 4) 탈 기실 (유량을 수평 방향으로 방향을 바꾸고 공기 유입을 감소시키는), 5) 수직 공기 배출구를 통해 낙하에서 유입 된 공기를 제거하고 적하 유체의 공기 코어가 열려 있고 6) 탈기 챔버와 저장 터널 챔버를 연결하는 파이프 (adit) (그림 2).

Fig. 2. CAD diagram of proposed Indianapolis DRTC combined sewage overflow (CSO) vertical drop structure, showing approach channel, taper channel and vortex dropshaft. Using FLOW-3D CFD analysis software, AECOM simulated the flow behavior, gaining confidence in the system performance prior to physical model testing. (Image courtesy AECOM)
Prediction of Shrinkage Defects During Investment Casting Process

This article was contributed by Dr. S. Savithri, Senior Principal Scientist at CSIR-NIIST

 

인베스트먼트 주조공정은 가장 오래된 주조 공정 중 하나로 기원전 4000년 이후에 보편화되었습니다. 이 과정은 용해된 금속을 소모품패턴으로 생성된 세라믹 쉘에 주입하는 과정을 수반합니다. 일찍이 그것은 금, 은, 구리와 청동 합금으로 장신구와 우상을 만드는데 사용되었습니다.

인베스트먼트 주조공정은 1897년 아이오와 주, 위원회 블러프스의 Barabas Frederick Philbrook이 묘사한 대로 치과의사들이 왕관과 인레이를 만들기 위해 그것을 사용하기 시작한 19세기 말 현대 산업공정으로 사용되기 시작했다. 1940년대에는 제2차 세계대전 당시 기존 방법으로는 형성될 수 없거나 지나치게 많은 가공이 필요한 특수 합금의 정밀 순모형 제조 기술에 대한 수요로 인해 투자 주조 공정이 증가하였다.

오늘날 투자 주조 공정은 표면 마감 및 치수 정확도가 우수하여 거의 순 형태에 가까운 철, 비철 및 초합금의 소형 산업용 부품을 생산하는데 주로 사용됩니다.

인베스트먼트 주조 공정은 다음 네 가지 주요 단계로 구성됩니다.

  • 왁스 패턴 생성 후, 패턴 클러스터를 만들기 위해 게이트 시스템으로 청소 및 조립합니다.
  • 나무는 세라믹 쉘을 얻기 위해 미세 모래와 Course한 모래 입자의 슬러리로 번갈아 코팅됩니다.
  • 용기는 건조되고, 왁스를 녹이기 위해 가열되며, 강도를 높이고 주입 준비합니다.
  • 마침내 주조 합금이 용해되어 예열된 쉘에 주입됩니다. 응고 후에 쉘이 파손되어 주조 부품을 얻습니다.

Figure 1. Solid model of the casting geometry

인베스트먼트 주조 공정에서 얻은 부품은 많은 중요한 용도에 사용되므로 내부적인 결함이 없어야 합니다. 투자 주조 공정에서 발생하는 주요 결함은 세라믹 포함, 균열, 변형, 플래시, 주탕불량, 수축, 슬래그 포함, 탕경계등입니다. 얻은 주조물의 품질을 예측하려면 금속-몰드 열 전달계수, 주입 온도 등 다양한 주조 공정 매개 변수의 영향을 연구해야 합니다. 즉, 쉘 두께 및 쉘 열 전달계수가 그것입니다. 현대 컴퓨터 시스템 및 시뮬레이션 소프트웨어의 출현과 함께 금형 충진 및 응고 시뮬레이션은 주조공장에서 결함을 예측하고 설계를 최적화하는데 점점 더 많이 사용되고 있습니다.

이 연구의 주요 목적은 투자 주조 공정에서 주요 요소인 복사 열 전달과 인베스트먼트 주조공정에 고유한 쉘 금형이 FLOW-3D에서 효과적으로 구현될 수 있는지를 조사하는 것입니다. FLOW-3D를 사용하여 간단한 형상을 위한 인베스트먼트 주조공정의 주입 및 응고 시뮬레이션을 수행함으로써 두 구성요소의 서로 다른 효과를 조사합니다. 다양한 위치에서 얻은 온도의 수치는 문헌 [1]에보고 된 실험 결과로 검증됩니다. 복사 열 전달계수, 쉘 몰드 두께, 탕구 및 게이트의 위치에 대한 영향도 조사했습니다.

Figure 2. Shell mold

 

Methodology

현재 연구에서 사용된 계산 형상은 그림 1에 나와 있습니다. 쉘 몰드는 다음 단계를 사용하여 작성되었습니다.

  • 구성 요소 1로 형상을 FLOW-3D로 가져오고 지정된 셀 크기로 가져온 형상을 중심으로 메쉬 블록을 작성합니다.
  • “보완”유형의 component1의 첫 번째 하위 구성 요소를 만들어 하위 구성 요소 외부의 모든 항목을 메쉬의 범위까지 확고하게 만듭니다.
  • 솔리드 데이터베이스에서 이 솔리드 블록의 금형 재질 특성을 정의하십시오.
  • 솔리드 특성 GUI의 구성 요소 특성에서 “열 침투 깊이”를 정의하는 옵션이 있습니다. 여기서 쉘 두께 값을 정의 할 수 있습니다.
  • 이제 전처리기를 실행하십시오.
  • 분석 탭> 3D 탭으로 이동 한 다음 이전 단계에서 생성 한 prpgrf 파일을 엽니다. ‘Iso-surface’와 ‘color variable’에서 “열 활성화 구성 요소 볼륨”을 선택하고 “렌더링”을 선택하십시오.
  • Display에 이제 형상의 셸 부분 만 표시됩니다.
  • 개체 목록 (창의 왼쪽 하단)에서 “구성 요소 1″을 선택하고 “구성 요소 1″을 마우스 오른쪽 단추로 클릭 한 다음 “stl로 내보내기”를 선택하여 이 곡면을 STL 파일로 저장하십시오.

Figure 3. The view of the two mesh blocks for the creation of a void with discretization

쉘 몰드 용 STL 파일을 만든 후 파일을 구성 요소 1로 새 시뮬레이션으로 가져오고 이전에 작성한 주조 형상을 하위 구성 요소로 가져오고 유형을 ‘hole’으로 선택합니다. 쉘 몰드와 함께 주조 형상이 그림 2에 나와 있습니다. 이것은 우리의 계산 영역으로 사용됩니다. 다음은 계산 영역을 cubical/rectangular셀로 분할하기 위한 메쉬를 만드는 것입니다. 메쉬 블록을 작성하여 FLOW-3D에서 메쉬를 생성합니다. 현재의 작업을 위해 우리는 2.5mm의 고정된 셀 크기가 선택된 그림 3에 표시된 균일한 메쉬 옵션을 선택했습니다. 입력 위치 주변에 메시 블록 2가 사용되는 현재 시뮬레이션을 위해 메시 블록 2개가 생성되었습니다. 쉘과 주변 공기 사이의 30°C에서의 열 전달을 고려하여 쉘 주위에 보이드 영역이 정의됩니다. 이 영역은 ‘열 전달 유형 1’이 있는 보이드 영역으로 선택되며 셸과 주변 공기 사이에 열 전달 계수 값이 지정됩니다. 열 전달 유형 1은 방사선을 포함한 종합 열 전달 계수가 됩니다.

쉘 주형에 선택된 재료는 zircon이며 열 특성은 Sabau and Vishwanathan에 의해 수행된 실험에서 얻을 수 있습니다[2]. 표 1은 연구에 사용된 재료에 대해 지정된 값을 보여 줍니다.

MATERIAL PROPERTY  VALUE UNIT
Fluid –AluminiumA356

alloy

Density   2437 kg/m³
Thermal conductivity 116.8 W/(mK)
Specific heat  1074 J/(kgK)
Latent heat  433.22 kJ/m³
Liquidus temperature 608 °C
Solidus temperature 552.4 °C
Zircon Mold Thermal conductivity 1.09 W/(mK)
Specific heat* Density 1.63E+06 J/( m³K)

Initial and boundary conditions used are show in Table 2.      

 

Mold temperature  430°C
Melt pouring temperature  680°C
Filling time  7 s
Interface heat transfer coefficient  850 W/m2K
Heat transfer coefficient between ambient and mold (radiation effect) 30 -100 W/m2K

Table 2. Initial and boundary conditions used for the simulation

 

탕구저에 들어가는 용융물의 초기 속도와 온도는 메시 블록 2의 상단 경계에서 속도 경계 조건으로 주어집니다. 기본적으로 다른 모든 경계는 대칭 유형으로 설정됩니다.

 

Results & Discussion

Validation with reported experimental results

충전 및 응고 동안 냉각 곡선을 얻기 위한 실험에서 Sabuet.al[1]에 의해 선택된 네 개의 위치가 검증 목적으로 사용되었습니다. 그들은 C1, C2, S11, S12및 S21로 언급됩니다. C1과 C2지점은 주물의 플레이트의 중심에 있으며 S11, S12및 S21은 모두 쉘에 위치합니다. 이러한 위치에서의 온도 변화는 그림 4와 같습니다.

온도 프로파일의 수치 및 실험결과의 차이가 허용한계 안에 있음을 알 수 있습니다. 프로브 포인트 C1과 C2의 경우, 수치와 실험 결과 사이의 차이는 응고 중에 5%, 응고 후 냉각 시 12% 이내입니다. 쉘의 점에 대한 수치 결과는 실험 결과보다 약 5% 높습니다. 이는 쉘 재료에 열 물리학적 특성을 할당할 때 발생하는 가정과 쉘 열 전달 계수의 값 때문일 수 있습니다.

 

Fill sequence & solidification pattern for two different sprue locations

두 가지 다른 스프 루 위치의 채우기 순서 및 응고 패턴

2 개의 상이한 탕구 위치에 주물충전 순서는5a 및5b에 나와 있습니다. 최종 탕구가 더 많은 스플라인을 생성하므로 결함으로 이어질 수 있습니다. 탕구가 중간에 놓여지면 흐름은 보다 균일 해지고 두 주조 단면에서 비슷한 온도 분포를 보입니다. 50 % 응고 후의 온도 프로파일의 2D 도면은 두 경우 모두 그림 5c 및 5d에 나와 있습니다. 수축 위치에서 볼 때 두 탕구 위치가 결함을 일으키는 것은 분명합니다.

Figure 5a. Fill sequence at different time intervals when the sprue is located at one end

Figure 5b. Fill sequence at different time intervals when the sprue is located in the middle

Figure 5c. 2D temperature profile after 50% solidification when the sprue is located at one end

Figure 5d. 2D temperature profile after 50% solidification when the sprue is located in the middle

Effect of shell thickness

인베스트먼트 주조에 대한 쉘 두께의 효과를 연구하기 위해 두께가 7.2, 10, 15 및 20 mm인 주물을 선정하였습니다. 그림 6a 및 6b는 주조품의 특정 위치에서 냉각 곡선을 나타내며, 이는 C1으로 나타내고 쉘 몰드 내의 특정 위치에 있으며, 응고 중에 S11로 나타납니다. 세라믹 쉘의 두께가 7.2 mm에서 15 mm로 증가하면 냉각 속도가 감소하여 응고 시간이 길어지는 것을 볼 수 있습니다.

Effect of shell heat transfer coefficient

셸 열 전달 계수는 열이 셸 금형의 외부 벽에서 방사선을 통해 주변 공기로 열을 방출하는 속도를 나타냅니다. 이 효과를 조사하기 위해 열 전달 계수의 값을 20에서 80W/m2K까지 다양하게 했습니다. 7a 및 7b로부터, h의 변화는 주조 재료 및 쉘의 냉각 속도에 중요한 영향을 미친다는 것을 알 수 있습니다. 열 전달 계수가 20에서 80W/m2K로 증가하면 C1에서의 응고 시간이 812 초에서 334 초 (약 44 %)로 감소되었음을 알 수 있습니다. 따라서, h의 값을 변화시키는 것은 주물의 미세 구조에 영향을 미칩니다.

Figure 6a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various shell thickness values

 

F

Figure 6b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various shell thickness values

Figure 7a. Temperature profile at location C1 (casting) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient

Figure 7b. Temperature profile at location S11 (shell) for the casting geometry where the sprue is located at one end for various heat transfer coefficient values between the shell mold & ambient

Conclusions

인베스트먼트 주조 공정의 몰드 충진 및 응고 시뮬레이션은 FLOW-3D를 사용하여 수행되었습니다. 주조 공정에 대한 주조 매개변수의 영향을 연구하기 위해 파라메트릭 연구가 수행되었습니다. 본 연구에서 다음과 같은 결론을 도출 할 수 있습니다.

  • FLOW-3D는 멀티 캐비티 몰드의 주입 및 응고 모델링이 가능합니다. 프로브 위치의 예측 온도 프로파일은 실험 데이터의 허용오차 이내였다.
  • 쉘 두께의 경우, 두 경우 모두 셸의 임계 두께가 있으며, 그 이상으로 열 전달 특성이 역행하는 것으로 확인되었습니다. 셸 두께가 증가함에 따라 응고 시간이 임계 두께까지 증가하여 감소하기 시작했습니다. 원래 형상의 경우 임계 두께는 15~20mm인 반면 수정된 형상의 경우 10mm와 15mm 사이에 있다.
  • 쉘과 대기 사이의 열 전달 계수 h는 열 전달 특성에 가장 큰 영향을 미치는 것으로 나타났습니다. h가 20에서 80W/m2K로 4 배 증가할 때 탕구의 중심에서 응고 시간이 40 % 이상 감소했습니다.

References

Sabau, A.S., Numerical Simulation of the Investment Casting Process, Transactions of the American Foundry Society, vol. 113, Paper No. 05-160, 2005.

Sabau, A.S., and Viswanathan, S., Thermophysical Properties of Zircon and Fused Silica-based Shells used in the Investment Casting ProcessTransactions of the American Foundry Society, vol. 112, Paper No. 04-081, 2004.

 
Design and CFD Analysis

설계 및 CFD분석

일반적인 소용돌이 설계는 널리 받아들여지고 있지만, 각 낙하 구조는 최적의 접선 흐름 특성을 보장하기 위해 인디애나 폴리스의 위상에 맞는 적절한 크기를 가져야 했습니다. 특히, 가능한 설계에 대한 AECOM의 계획은 세가지 목표를 가지고 있었습니다. 결합된 접근법과 테이퍼 채널을 짧은 길이로 제한하는 현장, 고유의 제약이 있었는지를 결정합니다. 허용 가능하지만 접근 방식에서 과도한 난류 조건이 발생하지 않았습니다. 테이퍼 채널에 안정적인 흐름 조건이 존재하는지 확인하고 다양한 흐름 조건에서 흐름 안정성을 평가했고, 논리적 기준점은 밀워키 인라인 스토리지 프로젝트라고 불리는 잘 알려지고 문서화된 시스템이었습니다.

Edison은 DRTC 프로젝트 규모에 맞춰 H-4로 지정된 Milwaukee 드롭 구조 설계를 기반으로 초기 설계를 기반으로했습니다.
166 피트의 기본 낙하 길이를 포함하고 체적 유량, 벽, 대칭 및 기타 초기 매개 변수를 지정하는 FLOW-3D 분석을 설정합니다.
그는 우리가 CFD를 통해 발견한 것은 밀워키에서 이 디자인을 사용하면 우리의 어플리케이션에 잘 맞지 않는다는 것이라고 말합니다. FLOW-3D는 이것을 보여 주고 있었기 때문에 CFD를 사용하여 변형을 시도하고 우리의 수정된 디자인을 고안했습니다.
더 넓은 접근 경로, 더 넓은 테이퍼 및/또는 더 깊은 테이퍼 깊이를 사용한 수정은 에디슨은 FLOW-3D에서 각 변동 사항을 설정하는 것이 매우 빠르다고 말합니다. (그림 3,4,5). 개선의 진전은 고무적이었습니다. 시뮬레이션 결과의 높은 수준은 심지어 절삭(침식)을 개선하기 위해 드롭 축의 바닥에 의문스러운 플레이트가 수직 흐름이 수평으로 전환되는 난류 분리 및 감소가되도록 기능을 추가하도록 설득했습니다.

Figs. 3, 4 and 5. Tangential drop structure flow simulated with FLOW-3D. Structure dimensions were optimized through multiple design iterations. (Image courtesy AECOM)

9번째 설계 변동에 대한 FLOW-3D 출력 동작인 V9는 접근 섹션을 확장했으며, 모든 흐름 볼륨 레벨에서 300mg/d까지 양호한 흐름 안정성을 보였으며 유압식 점프는 없었습니다. 그리고 양호한 Froude numners(유체 움직임에 미치는 중력의 영향을 나타내기 위해 사용되는 치수 없는 수량), 2010년 2월부터 AECOM이 물리적 시험과 검증을 위해 선택하였습니다(그림 6). 그 계획은 아이오와 연구소의 시험 결과에 기초하여 CFD와 최적화를 추가하는 것이였습니다.

Fig. 6. Scale model (1:10) of vertical drop structure, tested at University of Iowa IIHR Hydroscience & Engineering facility. (Image courtesy AECOM)

에디슨은 V9에서 결정된 치수 매개 변수에 대해 그 디자인을 아이오와 주에 가져가서 CFD를 이용해 만들었는데 완벽하게 작동했습니다. (II.)직원들은 실제로 무언가를 설치한 것은 이번이 처음이며, 변경하라고 말할 만한 것이 아무것도 없다고 말했습니다. 측정된 데이터는 드롭 샤프트 연결 구조 내의 수면 높이, Adit내 공기 침투의 정량, 벤트 샤프트 위로 공기 흐름을 포함했습니다. 흐름이 증가함에 따라 와류량이 증가함에 따라 축 벽에 부착되어 탈산소까지 원활하게 회전하는 모습이 포착되었습니다(그림 7).

에디슨은 후속 실험을 위해 여러번 시험장을 돌아다녔습니다. 물리적 모델이 처음부터 올바르게 작동했기 때문에 시험 프로그램을 확장할 시간이 있었습니다. “재미 있는 것은 환기구를 움직이는 것과 같이 우리가 궁금했던 것들을 탐구해서 지적으로 그것을 가지고 놀 시간이 있었다는 것입니다.” 에디슨은 예정보다 앞서 있었기 때문에 잔여 프로젝트 시간을 이용해 탈염소와 adit 내의 유압 장치를 조사할 수 있었습니다.

Fig. 7. Operation of scale-model vertical drop structure, showing test run of 300 million gallons per day (mgd). Flow vortex development shows good rotation and attachment to the shaft wall all the way down to the de-aeration chamber. No design modifications were necessary to the simulated design. (Image courtesy AECOM)

Final Results

AECOM은 2010년 7월 DRTC에 대한 전반적인 작업을 마쳤습니다. 2013년 3월부터 18구경 터널을 굴착하기 시작했고, CSO드롭 구조 3개(CFD로 설계된 나머지 2개의 구조물만 있음)는 모두 현재 공사 중입니다.

에디슨의 의견으로는, 토목 공학은 전체적으로 CFD를 채택하는 데 느린 편이었습니다. 이를 입증하기 위해 그는 인천 국제 공항을 처음 방문한 당시 접선 소용돌이 모형의 소위 “묘지”에서 본것을 기술했습니다. 그러나 그는 이들을 다시 처리해야 했다고 말했습니다.  그는 유압 설계를 위한 시뮬레이션 사용으로 판매되는 것을 권장하고 있습니다.

에디슨은 DRTC노력을 요약하면서 “정말 재미 있었습니다. 물리적 모델링이 필요한 위치에 대해 더 자세히 알아보았고, 그렇다면 어떤 경우에는 순수한 RAID기반 설계를 수행할 수 있습니다. 많은 DRTC작업들이 그것의 증거입니다. 물리적 모델은 실제로 필요하지 않았지만 검증을 통해 위험을 줄일 수 있었습니다. 프로젝트에서 이 두가지를 모두 수행할 수 있었다는 것은 믿을 수 없는 일입니다.”라고 말했습니다.

This article first appeared in WaterWorld Magazine.

Additive Manufacturing & Welding Bibliography

Additive Manufacturing & Welding Bibliography

다음은 적층 제조 및 용접 참고 문헌의 기술 문서 모음입니다. 이 모든 논문에는 FLOW-3D AM 결과가 나와 있습니다. FLOW-3D AM을 사용하여 적층 제조, 레이저 용접 및 기타 용접 기술에서 발견되는 프로세스를 성공적으로 시뮬레이션하는 방법에 대해 자세히 알아보십시오.

2021년 8월 26일 update

67-21   Lu Wang, Wentao Yan, Thermoelectric magnetohydrodynamic model for laser-based metal additive manufacturing, Physical Review Applied, 15.6; 064051, 2021. doi.org/10.1103/PhysRevApplied.15.064051

61-21   Ian D. McCue, Gianna M. Valentino, Douglas B. Trigg, Andrew M. Lennon, Chuck E. Hebert, Drew P. Seker, Salahudin M. Nimer, James P. Mastrandrea, Morgana M. Trexler, Steven M. Storck, Controlled shape-morphing metallic components for deployable structures, Materials & Design, 208; 109935, 2021. doi.org/10.1016/j.matdes.2021.109935

60-21   Mahyar Khorasani, AmirHossein Ghasemi, Martin Leary, William O’Neil, Ian Gibson, Laura Cordova, Bernard Rolfe, Numerical and analytical investigation on meltpool temperature of laser-based powder bed fusion of IN718, International Journal of Heat and Mass Transfer, 177; 121477, 2021. doi.org/10.1016/j.ijheatmasstransfer.2021.121477

57-21   Dae-Won Cho, Yeong-Do Park, Muralimohan Cheepu, Numerical simulation of slag movement from Marangoni flow for GMAW with computational fluid dynamics, International Communications in Heat and Mass Transfer, 125; 105243, 2021. doi.org/10.1016/j.icheatmasstransfer.2021.105243

55-21   Won-Sang Shin, Dae-Won Cho, Donghyuck Jung, Heeshin Kang, Jeng O Kim, Yoon-Jun Kim, Changkyoo Park, Investigation on laser welding of Al ribbon to Cu sheet: Weldability, microstructure and mechanical and electrical properties, Metals, 11.5; 831, 2021. doi.org/10.3390/met11050831

50-21   Mohamad Bayat, Venkata K. Nadimpalli, Francesco G. Biondani, Sina Jafarzadeh, Jesper Thorborg, Niels S. Tiedje, Giuliano Bissacco, David B. Pedersen, Jesper H. Hattel, On the role of the powder stream on the heat and fluid flow conditions during directed energy deposition of maraging steel—Multiphysics modeling and experimental validation, Additive Manufacturing, 43;102021, 2021. doi.org/10.1016/j.addma.2021.102021

47-21   Subin Shrestha, Kevin Chou, An investigation into melting modes in selective laser melting of Inconel 625 powder: single track geometry and porosity, The International Journal of Advanced Manufacturing Technology, 2021. doi.org/10.1007/s00170-021-07105-3

34-21   Haokun Sun, Xin Chu, Cheng Luo, Haoxiu Chen, Zhiying Liu, Yansong Zhang, Yu Zou, Selective laser melting for joining dissimilar materials: Investigations ofiInterfacial characteristics and in situ alloying, Metallurgical and Materials Transactions A, 52; pp. 1540-1550, 2021. doi.org/10.1007/s11661-021-06178-9

32-21   Shanshan Zhang, Subin Shrestha, Kevin Chou, On mesoscopic surface formation in metal laser powder-bed fusion process, Supplimental Proceedings, TMS 150th Annual Meeting & Exhibition (Virtual), pp. 149-161, 2021. doi.org/10.1007/978-3-030-65261-6_14

22-21   Patiparn Ninpetch, Pruet Kowitwarangkul, Sitthipong Mahathanabodee, Prasert Chalermkarnnon, Phadungsak Rattanadecho, Computational investigation of thermal behavior and molten metal flow with moving laser heat source for selective laser melting process, Case Studies in Thermal Engineering, 24; 100860, 2021. doi.org/10.1016/j.csite.2021.100860

19-21   M.B. Abrami, C. Ransenigo, M. Tocci, A. Pola, M. Obeidi, D. Brabazon, Numerical simulation of laser powder bed fusion processes, La Metallurgia Italiana, February; pp. 81-89, 2021.

16-21   Wenjun Ge, Jerry Y.H. Fuh, Suck Joo Na, Numerical modelling of keyhole formation in selective laser melting of Ti6Al4V, Journal of Manufacturing Processes, 62; pp. 646-654, 2021. doi.org/10.1016/j.jmapro.2021.01.005

11-21   Mohamad Bayat, Venkata K. Nadimpalli, David B. Pedersen, Jesper H. Hattel, A fundamental investigation of thermo-capillarity in laser powder bed fusion of metals and alloys, International Journal of Heat and Mass Transfer, 166; 120766, 2021. doi.org/10.1016/j.ijheatmasstransfer.2020.120766

10-21   Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba, Thermal properties of powder beds in energy absorption and heat transfer during additive manufacturing with electron beam, Powder Technology, 381; pp. 44-54, 2021. doi.org/10.1016/j.powtec.2020.11.082

9-21   Subin Shrestha, Kevin Chou, A study of transient and steady-state regions from single-track deposition in laser powder bed fusion, Journal of Manufacturing Processes, 61; pp. 226-235, 2021. doi.org/10.1016/j.jmapro.2020.11.023

6-21   Qian Chen, Yunhao Zhao, Seth Strayer, Yufan Zhao, Kenta Aoyagi, Yuichiro Koizumi, Akihiko Chiba, Wei Xiong, Albert C. To, Elucidating the effect of preheating temperature on melt pool morphology variation in Inconel 718 laser powder bed fusion via simulation and experiment, Additive Manufacturing, 37; 101642, 2021. doi.org/10.1016/j.addma.2020.101642

04-21   Won-Ik Cho, Peer Woizeschke, Analysis of molten pool dynamics in laser welding with beam oscillation and filler wire feeding, International Journal of Heat and Mass Transfer, 164; 120623, 2021. doi.org/10.1016/j.ijheatmasstransfer.2020.120623

121-20   Yufan Zhao, Yujie Cui, Haruko Numata, Huakang Bian, Kimio Wako, Kenta Yamanaka, Kenta Aoyagi, Akihiko Chiba, Centrifugal granulation behavior in metallic powder fabrication by plasma rotating electrode process, Scientific Reports, 10; 18446, 2020. doi.org/10.1038/s41598-020-75503-w

116-20   Raphael Comminal, Wilson Ricardo Leal da Silva, Thomas Juul Andersen, Henrik Stang, Jon Spangenberg, Modelling of 3D concrete printing based on computational fluid dynamics, Cement and Concrete Research, 138; 106256, 2020. doi.org/10.1016/j.cemconres.2020.106256

112-20   Peng Liu, Lijin Huan, Yu Gan, Yuyu Lei, Effect of plate thickness on weld pool dynamics and keyhole-induced porosity formation in laser welding of Al alloy, The International Journal of Advanced Manufacturing Technology, 111; pp. 735-747, 2020. doi.org/10.1007/s00170-020-05818-5

108-20   Fan Chen, Wentao Yan, High-fidelity modelling of thermal stress for additive manufacturing by linking thermal-fluid and mechanical models, Materials & Design, 196; 109185, 2020. doi.org/10.1016/j.matdes.2020.109185

104-20   Yunfu Tian, Lijun Yang, Dejin Zhao, Yiming Huang, Jiajing Pan, Numerical analysis of powder bed generation and single track forming for selective laser melting of SS316L stainless steel, Journal of Manufacturing Processes, 58; pp. 964-974, 2020. doi.org/10.1016/j.jmapro.2020.09.002

100-20   Raphaël Comminal, Sina Jafarzadeh, Marcin Serdeczny, Jon Spangenberg, Estimations of interlayer contacts in extrusion additive manufacturing using a CFD model, International Conference on Additive Manufacturing in Products and Applications (AMPA), Zurich, Switzerland, September 1-3: Industrializing Additive Manufacturing, pp. 241-250, 2020. doi.org/10.1007/978-3-030-54334-1_17

97-20   Paree Allu, CFD simulation for metal Additive Manufacturing: Applications in laser- and sinter-based processes, Metal AM, 6.4; pp. 151-158, 2020.

95-20   Yufan Zhao, Kenta Aoyagi, Kenta Yamanaka, Akihiko Chiba, Role of operating and environmental conditions in determining molten pool dynamics during electron beam melting and selective laser melting, Additive Manufacturing, 36; 101559, 2020. doi.org/10.1016/j.addma.2020.101559

94-20   Yan Zeng, David Himmler, Peter Randelzhofer, Carolin Körner, Processing of in situ Al3Ti/Al composites by advanced high shear technology: influence of mixing speed, The International Journal of Advanced Manufacturing Technology, 110; pp. 1589-1599, 2020. doi.org/10.1007/s00170-020-05956-w

93-20   H. Hamed Zargari, K. Ito, M. Kumar, A. Sharma, Visualizing the vibration effect on the tandem-pulsed gas metal arc welding in the presence of surface tension active elements, International Journal of Heat and Mass Transfer, 161; 120310, 2020. doi.org/10.1016/j.ijheatmasstransfer.2020.120310

90-20   Guangxi Zhao, Jun Du, Zhengying Wei, Siyuan Xu, Ruwei Geng, Numerical analysis of aluminum alloy fused coating process, Journal of the Brazilian Society of Mechanical Science and Engineering, 42; 483, 2020. doi.org/10.1007/s40430-020-02569-y

85-20   Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, Investigation of metal mixing in laser keyhold welding of dissimilar metals, Materials & Design, 195; 109056, 2020. doi.org/10.1016/j.matdes.2020.109056

82-20   Pan Lu, Zhang Cheng-Lin, Wang Liang, Liu Tong, Liu Jiang-lin, Molten pool structure, temperature and velocity flow in selective laser melting AlCu5MnCdVA alloy, Materials Research Express, 7; 086516, 2020. doi.org/10.1088/2053-1591/abadcf

80-20   Yujie Cui, Yufan Zhao, Haruko Numata, Huakang Bian, Kimio Wako, Kento Yamanaka, Kenta Aoyagi, Chen Zhang, Akihiko Chiba, Effects of plasma rotating electrode process parameters on the particle size distribution and microstructure of Ti-6Al-4 V alloy powder, Powder Technology, 376; pp. 363-372, 2020. doi.org/10.1016/j.powtec.2020.08.027

78-20   F.Q. Liu, L. Wei, S.Q. Shi, H.L. Wei, On the varieties of build features during multi-layer laser directed energy deposition, Additive Manufacturing, 36; 101491, 2020. doi.org/10.1016/j.addma.2020.101491

75-20   Nannan Chen, Zixuan Wan, Hui-Ping Wang, Jingjing Li, Joshua Solomon, Blair E. Carlson, Effect of Al single bond Si coating on laser spot welding of press hardened steel and process improvement with annular stirring, Materials & Design, 195; 108986, 2020. doi.org/10.1016/j.matdes.2020.108986

72-20   Yujie Cui, Kenta Aoyagi, Yufan Zhao, Kenta Yamanaka, Yuichiro Hayasaka, Yuichiro Koizumi, Tadashi Fujieda, Akihiko Chiba, Manufacturing of a nanosized TiB strengthened Ti-based alloy via electron beam powder bed fusion, Additive Manufacturing, 36; 101472, 2020. doi.org/10.1016/j.addma.2020.101472

64-20   Dong-Rong Liu, Shuhao Wang, Wentao Yan, Grain structure evolution in transition-mode melting in direct energy deposition, Materials & Design, 194; 108919, 2020. doi.org/10.1016/j.matdes.2020.108919

61-20   Raphael Comminal, Wilson Ricardo Leal da Silva, Thomas Juul Andersen, Henrik Stang, Jon Spangenberg, Influence of processing parameters on the layer geometry in 3D concrete printing: Experiments and modelling, 2nd RILEM International Conference on Concrete and Digital Fabrication, RILEM Bookseries, 28; pp. 852-862, 2020. doi.org/10.1007/978-3-030-49916-7_83

60-20   Marcin P. Serdeczny, Raphaël Comminal, Md. Tusher Mollah, David B. Pedersen, Jon Spangenberg, Numerical modeling of the polymer flow through the hot-end in filament-based material extrusion additive manufacturing, Additive Manufacturing, 36; 101454, 2020. doi.org/10.1016/j.addma.2020.101454

58-20   H.L. Wei, T. Mukherjee, W. Zhang, J.S. Zuback, G.L. Knapp, A. De, T. DebRoy, Mechanistic models for additive manufacturing of metallic components, Progress in Materials Science, preprint, 2020. doi.org/10.1016/j.pmatsci.2020.100703

55-20   Masoud Mohammadpour, Experimental study and numerical simulation of heat transfer and fluid flow in laser welded and brazed joints, Thesis, Southern Methodist University, Dallas, TX, US; Available in Mechanical Engineering Research Theses and Dissertations, 24, 2020.

48-20   Masoud Mohammadpour, Baixuan Yang, Hui-Ping Wang, John Forrest, Michael Poss, Blair Carlson, Radovan Kovacevica, Influence of laser beam inclination angle on galvanized steel laser braze quality, Optics and Laser Technology, 129; 106303, 2020. doi.org/10.1016/j.optlastec.2020.106303

34-20   Binqi Liu, Gang Fang, Liping Lei, Wei Liu, A new ray tracing heat source model for mesoscale CFD simulation of selective laser melting (SLM), Applied Mathematical Modeling, 79; pp. 506-520, 2020. doi.org/10.1016/j.apm.2019.10.049

27-20   Xuesong Gao, Guilherme Abreu Farira, Wei Zhang and Kevin Wheeler, Numerical analysis of non-spherical particle effect on molten pool dynamics in laser-powder bed fusion additive manufacturing, Computational Materials Science, 179, art. no. 109648, 2020. doi.org/10.1016/j.commatsci.2020.109648

26-20   Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka and Akihiko Chiba, Isothermal γ → ε phase transformation behavior in a Co-Cr-Mo alloy depending on thermal history during electron beam powder-bed additive manufacturing, Journal of Materials Science & Technology, 50, pp. 162-170, 2020. doi.org/10.1016/j.jmst.2019.11.040

21-20   Won-Ik Cho and Peer Woizeschke, Analysis of molten pool behavior with buttonhole formation in laser keyhole welding of sheet metal, International Journal of Heat and Mass Transfer, 152, art. no. 119528, 2020. doi.org/10.1016/j.ijheatmasstransfer.2020.119528

06-20  Wei Xing, Di Ouyang, Zhen Chen and Lin Liu, Effect of energy density on defect evolution in 3D printed Zr-based metallic glasses by selective laser melting, Science China Physics, Mechanics & Astronomy, 63, art. no. 226111, 2020. doi.org/10.1007/s11433-019-1485-8

04-20   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

02-20   Dongsheng Wu, Shinichi Tashiro, Ziang Wu, Kazufumi Nomura, Xueming Hua, and Manabu Tanaka, Analysis of heat transfer and material flow in hybrid KPAW-GMAW process based on the novel three dimensional CFD simulation, International Journal of Heat and Mass Transfer, 147, art. no. 118921, 2020. doi.org/10.1016/j.ijheatmasstransfer.2019.118921

01-20   Xiang Huang, Siying Lin, Zhenxiang Bu, Xiaolong Lin, Weijin Yi, Zhihong Lin, Peiqin Xie, and Lingyun Wang, Research on nozzle and needle combination for high frequency piezostack-driven dispenser, International Journal of Adhesion and Adhesives, 96, 2020. doi.org/10.1016/j.ijadhadh.2019.102453

88-19   Bo Cheng and Charles Tuffile, Numerical study of porosity formation with implementation of laser multiple reflection in selective laser melting, Proceedings Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing, ASME 2019 14th International Manufacturing Science and Engineering Conference, Erie, Pennsylvania, USA, June 10-14, 2019. doi.org/10.1115/MSEC2019-2891

87-19   Shuhao Wang, Lida Zhu, Jerry Ying His Fuh, Haiquan Zhang, and Wentao Yan, Multi-physics modeling and Gaussian process regression analysis of cladding track geometry for direct energy deposition, Optics and Lasers in Engineering, 127:105950, 2019. doi.org/10.1016/j.optlaseng.2019.105950

78-19   Bo Cheng, Lukas Loeber, Hannes Willeck, Udo Hartel, and Charles Tuffile, Computational investigation of melt pool process dynamics and pore formation in laser powder bed fusion, Journal of Materials Engineering and Performance, 28:11, 6565-6578, 2019. doi.org/10.1007/s11665-019-04435-y

77-19   David Souders, Pareekshith Allu, Anurag Chandorkar, and Ruendy Castillo, Application of computational fluid dynamics in developing process parameters for additive manufacturing, Additive Manufacturing Journal, 9th International Conference on 3D Printing and Additive Manufacturing Technologies (AM 2019), Bangalore, India, September 7-9, 2019.

75-19   Raphaël Comminal, Marcin Piotr Serdeczny, Navid Ranjbar, Mehdi Mehrali, David Bue Pedersen, Henrik Stang, Jon Spangenberg, Modelling of material deposition in big area additive manufacturing and 3D concrete printing, Proceedings, Advancing Precision in Additive Manufacturing, Nantes, France, September 16-18, 2019.

73-19   Baohua Chang, Zhang Yuan, Hao Cheng, Haigang Li, Dong Du 1, and Jiguo Shan, A study on the influences of welding position on the keyhole and molten pool behavior in laser welding of a titanium alloy, Metals, 9:1082, 2019. doi.org/10.3390/met9101082

57-19     Shengjie Deng, Hui-Ping Wang, Fenggui Lu, Joshua Solomon, and Blair E. Carlson, Investigation of spatter occurrence in remote laser spiral welding of zinc-coated steels, International Journal of Heat and Mass Transfer, Vol. 140, pp. 269-280, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.06.009

53-19     Mohamad Bayat, Aditi Thanki, Sankhya Mohanty, Ann Witvrouw, Shoufeng Yang, Jesper Thorborg, Niels Skat Tieldje, and Jesper Henri Hattel, Keyhole-induced porosities in Laser-based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-fidelity modelling and experimental validation, Additive Manufacturing, Vol. 30, 2019. doi.org/10.1016/j.addma.2019.100835

51-19     P. Ninpetch, P. Kowitwarangkul, S. Mahathanabodee, R. Tongsri, and P. Ratanadecho, Thermal and melting track simulations of laser powder bed fusion (L-PBF), International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi.org/10.1088/1757-899X/526/1/012030

46-19     Hongze Wang and Yu Zou, Microscale interaction between laser and metal powder in powder-bed additive manufacturing: Conduction mode versus keyhole mode, International Journal of Heat and Mass Transfer, Vol. 142, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.118473

45-19     Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Kenta Yamanaka, and Akihiko Chiba, Manipulating local heat accumulation towards controlled quality and microstructure of a Co-Cr-Mo alloy in powder bed fusion with electron beam, Materials Letters, Vol. 254, pp. 269-272, 2019. doi.org/10.1016/j.matlet.2019.07.078

44-19     Guoxiang Xu, Lin Li, Houxiao Wang, Pengfei Li, Qinghu Guo, Qingxian Hu, and Baoshuai Du, Simulation and experimental studies of keyhole induced porosity in laser-MIG hybrid fillet welding of aluminum alloy in the horizontal position, Optics & Laser Technology, Vol. 119, 2019. doi.org/10.1016/j.optlastec.2019.105667

38-19     Subin Shrestha and Y. Kevin Chou, A numerical study on the keyhole formation during laser powder bed fusion process, Journal of Manufacturing Science and Engineering, Vol. 141, No. 10, 2019. doi.org/10.1115/1.4044100

34-19     Dae-Won Cho, Jin-Hyeong Park, and Hyeong-Soon Moon, A study on molten pool behavior in the one pulse one drop GMAW process using computational fluid dynamics, International Journal of Heat and Mass Transfer, Vol. 139, pp. 848-859, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.05.038

30-19     Mohamad Bayat, Sankhya Mohanty, and Jesper Henri Hattel, Multiphysics modelling of lack-of-fusion voids formation and evolution in IN718 made by multi-track/multi-layer L-PBF, International Journal of Heat and Mass Transfer, Vol. 139, pp. 95-114, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.05.003

29-19     Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Daixiu Wei, Kenta Yamanaka, and Akihiko Chiba, Comprehensive study on mechanisms for grain morphology evolution and texture development in powder bed fusion with electron beam of Co–Cr–Mo alloy, Materialia, Vol. 6, 2019. doi.org/10.1016/j.mtla.2019.100346

28-19     Pareekshith Allu, Computational fluid dynamics modeling in additive manufacturing processes, The Minerals, Metals & Materials Society (TMS) 148th Annual Meeting & Exhibition, San Antonio, Texas, USA, March 10-14, 2019.

24-19     Simulation Software: Use, Advantages & Limitations, The Additive Manufacturing and Welding Magazine, Vol. 2, No. 2, 2019

22-19     Hunchul Jeong, Kyungbae Park, Sungjin Baek, and Jungho Cho, Thermal efficiency decision of variable polarity aluminum arc welding through molten pool analysis, International Journal of Heat and Mass Transfer, Vol. 138, pp. 729-737, 2019. doi.org/10.1016/j.ijheatmasstransfer.2019.04.089

07-19   Guangxi Zhao, Jun Du, Zhengying Wei, Ruwei Geng and Siyuan Xu, Numerical analysis of arc driving forces and temperature distribution in pulsed TIG welding, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 41, No. 60, 2019. doi.org/10.1007/s40430-018-1563-0

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi.org/10.1016/j.addma.2018.12.009

03-19   Dongsheng Wu, Anh Van Nguyen, Shinichi Tashiro, Xueming Hua and Manabu Tanaka, Elucidation of the weld pool convection and keyhole formation mechanism in the keyhold plasma arc welding, International Journal of Heat and Mass Transfer, Vol. 131, pp. 920-931, 2019. doi.org/10.1016/j.ijheatmasstransfer.2018.11.108

97-18   Wentao Yan, Ya Qian, Wenjun Ge, Stephen Lin, Wing Kam Liu, Feng Lin, Gregory J. Wagner, Meso-scale modeling of multiple-layer fabrication process in Selective Electron Beam Melting: Inter-layer/track voids formation, Materials & Design, 2018. doi.org/10.1016/j.matdes.2017.12.031

84-18   Bo Cheng, Xiaobai Li, Charles Tuffile, Alexander Ilin, Hannes Willeck and Udo Hartel, Multi-physics modeling of single track scanning in selective laser melting: Powder compaction effect, Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium, pp. 1887-1902, 2018.

81-18 Yufan Zhao, Yuichiro Koizumi, Kenta Aoyagi, Daixiu Wei, Kenta Yamanaka and Akihiko Chiba, Molten pool behavior and effect of fluid flow on solidification conditions in selective electron beam melting (SEBM) of a biomedical Co-Cr-Mo alloy, Additive Manufacturing, Vol. 26, pp. 202-214, 2019. doi.org/10.1016/j.addma.2018.12.002

77-18   Jun Du and Zhengying Wei, Numerical investigation of thermocapillary-induced deposited shape in fused-coating additive manufacturing process of aluminum alloy, Journal of Physics Communications, Vol. 2, No. 11, 2018. doi.org/10.1088/2399-6528/aaedc7

76-18   Yu Xiang, Shuzhe Zhang, Zhengying We, Junfeng Li, Pei Wei, Zhen Chen, Lixiang Yang and Lihao Jiang, Forming and defect analysis for single track scanning in selective laser melting of Ti6Al4V, Applied Physics A, 124:685, 2018. doi.org/10.1007/s00339-018-2056-9

74-18   Paree Allu, CFD simulations for laser welding of Al Alloys, Proceedings, Die Casting Congress & Exposition, Indianapolis, IN, October 15-17, 2018.

72-18   Hunchul Jeong, Kyungbae Park, Sungjin Baek, Dong-Yoon Kim, Moon-Jin Kang and Jungho Cho, Three-dimensional numerical analysis of weld pool in GMAW with fillet joint, International Journal of Precision Engineering and Manufacturing, Vol. 19, No. 8, pp. 1171-1177, 2018. doi.org/10.1007/s12541-018-0138-4

60-18   R.W. Geng, J. Du, Z.Y. Wei and G.X. Zhao, An adaptive-domain-growth method for phase field simulation of dendrite growth in arc preheated fused-coating additive manufacturing, IOP Conference Series: Journal of Physics: Conference Series 1063, 012077, 2018. doi.org/10.1088/1742-6596/1063/1/012077 (Available at http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012077/pdf and in shared drive)

59-18   Guangxi Zhao, Jun Du, Zhengying Wei, Ruwei Geng and Siyuan Xu, Coupling analysis of molten pool during fused coating process with arc preheating, IOP Conference Series: Journal of Physics: Conference Series 1063, 012076, 2018. doi.org/10.1088/1742-6596/1063/1/012076 (Available at http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012076/pdf and in shared drive)

58-18   Siyuan Xu, Zhengying Wei, Jun Du, Guangxi Zhao and Wei Liu, Numerical simulation and analysis of metal fused coating forming, IOP Conference Series: Journal of Physics: Conference Series 1063, 012075, 2018. doi.org/10.1088/1742-6596/1063/1/012075

55-18   Jason Cheon, Jin-Young Yoon, Cheolhee Kim and Suck-Joo Na, A study on transient flow characteristic in friction stir welding with realtime interface tracking by direct surface calculation, Journal of Materials Processing Tech., vol. 255, pp. 621-634, 2018.

54-18   V. Sukhotskiy, P. Vishnoi, I. H. Karampelas, S. Vader, Z. Vader, and E. P. Furlani, Magnetohydrodynamic drop-on-demand liquid metal additive manufacturing: System overview and modeling, Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer, Niagara Falls, Canada, June 7 – 9, 2018; Paper no. 155, 2018. doi.org/10.11159/ffhmt18.155

52-18   Michael Hilbinger, Claudia Stadelmann, Matthias List and Robert F. Singer, Temconex® – Kontinuierliche Pulverextrusion: Verbessertes Verständnis mit Hilfe der numerischen Simulation, Hochleistungsmetalle und Prozesse für den Leichtbau der Zukunft, Tagungsband 10. Ranshofener Leichtmetalltage, 13-14 Juni 2018, Linz, pp. 175-186, 2018.

38-18   Zhen Chen, Yu Xiang, Zhengying Wei, Pei Wei, Bingheng Lu, Lijuan Zhang and Jun Du, Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification, Applied Physics A, vol. 124, pp. 313, 2018. doi.org/10.1007/s00339-018-1737-8

19-18   Chenxiao Zhu, Jason Cheon, Xinhua Tang, Suck-Joo Na, and Haichao Cui, Molten pool behaviors and their influences on welding defects in narrow gap GMAW of 5083 Al-alloy, International Journal of Heat and Mass Transfer, vol. 126:A, pp.1206-1221, 2018. doi.org/10.1016/j.ijheatmasstransfer.2018.05.132

16-18   P. Schneider, V. Sukhotskiy, T. Siskar, L. Christie and I.H. Karampelas, Additive Manufacturing of Microfluidic Components via Wax Extrusion, Biotech, Biomaterials and Biomedical TechConnect Briefs, vol. 3, pp. 162 – 165, 2018.

09-18   The Furlani Research Group, Magnetohydrodynamic Liquid Metal 3D Printing, Department of Chemical and Biological Engineering, © University at Buffalo, May 2018.

08-18   Benjamin Himmel, Dominik Rumschöttel and Wolfram Volk, Thermal process simulation of droplet based metal printing with aluminium, Production Engineering, March 2018 © German Academic Society for Production Engineering (WGP) 2018.

07-18   Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba and Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Tech. 254 (2018) 72–78.

60-17   Pei Wei, Zhengying Wei, Zhen Chen, Yuyang He and Jun Du, Thermal behavior in single track during selective laser melting of AlSi10Mg powder, Applied Physics A: Materials Science & Processing, 123:604, 2017. doi.org/10.1007/z00339-017-1194-9

51-17   Koichi Ishizaka, Keijiro Saitoh, Eisaku Ito, Masanori Yuri, and Junichiro Masada, Key Technologies for 1700°C Class Ultra High Temperature Gas Turbine, Mitsubishi Heavy Industries Technical Review, vol. 54, no. 3, 2017.

49-17   Yu-Che Wu, Weng-Sing Hwang, Cheng-Hung San, Chih-Hsiang Chang and Huey-Jiuan Lin, Parametric study of surface morphology for selective laser melting on Ti6Al4V powder bed with numerical and experimental methods, International Journal of Material Forming, © Springer-Verlag France SAS, part of Springer Nature 2017. doi.org/10.1007/s12289-017-1391-2.

37-17   V. Sukhotskiy, I. H. Karampelas, G. Garg, A. Verma, M. Tong, S. Vader, Z. Vader, and E. P. Furlani, Magnetohydrodynamic Drop-on-Demand Liquid Metal 3D Printing, Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference

15-17   I.H. Karampelas, S. Vader, Z. Vader, V. Sukhotskiy, A. Verma, G. Garg, M. Tong and E.P. Furlani, Drop-on-Demand 3D Metal Printing, Informatics, Electronics and Microsystems TechConnect Briefs 2017, Vol. 4

14-17   Jason Cheon and Suck-Joo Na, Prediction of welding residual stress with real-time phase transformation by CFD thermal analysis, International Journal of Mechanical Sciences 131–132 (2017) 37–51.

91-16   Y. S. Lee and D. F. Farson, Surface tension-powered build dimension control in laser additive manufacturing process, Int J Adv Manuf Technol (2016) 85:1035–1044, doi.org/10.1007/s00170-015-7974-5.

84-16   Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E. Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer 108 (2017) 244–256, Available online December 2016.

68-16   Dongsheng Wu, Xueming Hua, Dingjian Ye and Fang Li, Understanding of humping formation and suppression mechanisms using the numerical simulation, International Journal of Heat and Mass Transfer, Volume 104, January 2017, Pages 634–643, Published online 2016.

39-16   Chien-Hsun Wang, Ho-Lin Tsai, Yu-Che Wu and Weng-Sing Hwang, Investigation of molten metal droplet deposition and solidification for 3D printing techniques, IOP Publishing, J. Micromech. Microeng. 26 (2016) 095012 (14pp), doi: 10.1088/0960-1317/26/9/095012, July 8, 2016

29-16   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Advances in Magnetohydrodynamic Liquid Metal Jet Printing, Nanotech 2016 Conference & Expo, May 22-25, Washington, DC.

26-16   Y.S. Lee and W. Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, S2214-8604(16)30087-2, doi.org/10.1016/j.addma.2016.05.003, ADDMA 86.

123-15   Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser welding repair for single crystal blades, Proceedings of International Gas Turbine Congress, pp. 1354-1358, 2015.

116-15   Yousub Lee, Simulation of Laser Additive Manufacturing and its Applications, Ph.D. Thesis: Graduate Program in Welding Engineering, The Ohio State University, 2015, Copyright by Yousub Lee 2015

103-15   Ligang Wu, Jason Cheon, Degala Venkata Kiran, and Suck-Joo Na, CFD Simulations of GMA Welding of Horizontal Fillet Joints based on Coordinate Rotation of Arc Models, Journal of Materials Processing Technology, Available online December 29, 2015

96-15   Jason Cheon, Degala Venkata Kiran, and Suck-Joo Na, Thermal metallurgical analysis of GMA welded AH36 steel using CFD – FEM framework, Materials & Design, Volume 91, February 5 2016, Pages 230-241, published online November 2015

86-15   Yousub Lee and Dave F. Farson, Simulation of transport phenomena and melt pool shape for multiple layer additive manufacturing, J. Laser Appl. 28, 012006 (2016). doi: 10.2351/1.4935711, published online 2015.

63-15   Scott Vader, Zachary Vader, Ioannis H. Karampelas and Edward P. Furlani, Magnetohydrodynamic Liquid Metal Jet Printing, TechConnect World Innovation Conference & Expo, Washington, D.C., June 14-17, 2015

46-15   Adwaith Gupta, 3D Printing Multi-Material, Single Printhead Simulation, Advanced Qualification of Additive Manufacturing Materials Workshop, July 20 – 21, 2015, Santa Fe, NM

25-15   Dae-Won Cho and Suck-Joo Na, Molten pool behaviors for second pass V-groove GMAW, International Journal of Heat and Mass Transfer 88 (2015) 945–956.

21-15   Jungho Cho, Dave F. Farson, Kendall J. Hollis and John O. Milewski, Numerical analysis of weld pool oscillation in laser welding, Journal of Mechanical Science and Technology 29 (4) (2015) 1715~1722, www.springerlink.com/content/1738-494x, doi.org/10.1007/s12206-015-0344-2.

82-14  Yousub Lee, Mark Nordin, Sudarsanam Suresh Babu, and Dave F. Farson, Effect of Fluid Convection on Dendrite Arm Spacing in Laser Deposition, Metallurgical and Materials Transactions B, August 2014, Volume 45, Issue 4, pp 1520-1529

59-14   Y.S. Lee, M. Nordin, S.S. Babu, and D.F. Farson, Influence of Fluid Convection on Weld Pool Formation in Laser Cladding, Welding Research/ August 2014, VOL. 93

18-14  L.J. Zhang, J.X. Zhang, A. Gumenyuk, M. Rethmeier, and S.J. Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology (2014), doi.org/10.1016/j.jmatprotec.2014.03.016.

36-13  Dae-Won Cho,Woo-Hyun Song, Min-Hyun Cho, and Suck-Joo Na, Analysis of Submerged Arc Welding Process by Three-Dimensional Computational Fluid Dynamics Simulations, Journal of Materials Processing Technology, 2013. doi.org/10.1016/j.jmatprotec.2013.06.017

12-13 D.W. Cho, S.J. Na, M.H. Cho, J.S. Lee, A study on V-groove GMAW for various welding positions, Journal of Materials Processing Technology, April 2013, doi.org/10.1016/j.jmatprotec.2013.02.015.

01-13  Dae-Won Cho & Suck-Joo Na & Min-Hyun Cho & Jong-Sub Lee, Simulations of weld pool dynamics in V-groove GTA and GMA welding, Weld World, doi.org/10.1007/s40194-012-0017-z, © International Institute of Welding 2013.

63-12  D.W. Cho, S.H. Lee, S.J. Na, Characterization of welding arc and weld pool formation in vacuum gas hollow tungsten arc welding, Journal of Materials Processing Technology, doi.org/10.1016/j.jmatprotec.2012.09.024, September 2012.

77-10  Lim, Y. C.; Yu, X.; Cho, J. H.; et al., Effect of magnetic stirring on grain structure refinement Part 1-Autogenous nickel alloy welds, Science and Technology of Welding and Joining, Volume: 15 Issue: 7, Pages: 583-589, doi.org/10.1179/136217110X12720264008277, October 2010

18-10 K Saida, H Ohnishi, K Nishimoto, Fluxless laser brazing of aluminium alloy to galvanized steel using a tandem beam–dissimilar laser brazing of aluminium alloy and steels, Welding International, 2010

58-09  Cho, Jung-Ho; Farson, Dave F.; Milewski, John O.; et al., Weld pool flows during initial stages of keyhole formation in laser welding, Journal of Physics D-Applied Physics, Volume: 42 Issue: 17 Article Number: 175502 ; doi.org/10.1088/0022-3727/42/17/175502, September 2009

57-09  Lim, Y. C.; Farson, D. F.; Cho, M. H.; et al., Stationary GMAW-P weld metal deposit spreading, Science and Technology of Welding and Joining, Volume: 14 Issue: 7 ;Pages: 626-635, doi.org/10.1179/136217109X441173, October 2009

1-09 J.-H. Cho and S.-J. Na, Three-Dimensional Analysis of Molten Pool in GMA-Laser Hybrid Welding, Welding Journal, February 2009, Vol. 88

52-07   Huey-Jiuan Lin and Wei-Kuo Chang, Design of a sheet forming apparatus for overflow fusion process by numerical simulation, Journal of Non-Crystalline Solids 353 (2007) 2817–2825.

50-07  Cho, Min Hyun; Farson, Dave F., Understanding bead hump formation in gas metal arc welding using a numerical simulation, Metallurgical and Mateials Transactions B-Process Metallurgy and Materials Processing Science, Volume: 38, Issue: 2, Pages: 305-319, doi.org/10.1007/s11663-007-9034-5, April 2007

49-07  Cho, M. H.; Farson, D. F., Simulation study of a hybrid process for the prevention of weld bead hump formation, Welding Journal Volume: 86, Issue: 9, Pages: 253S-262S, September 2007

48-07  Cho, M. H.; Farson, D. F.; Lim, Y. C.; et al., Hybrid laser/arc welding process for controlling bead profile, Science and Technology of Welding and Joining, Volume: 12 Issue: 8, Pages: 677-688, doi.org/10.1179/174329307X236878, November 2007

47-07   Min Hyun Cho, Dave F. Farson, Understanding Bead Hump Formation in Gas Metal Arc Welding Using a Numerical Simulation, Metallurgical and Materials Transactions B, Volume 38, Issue 2, pp 305-319, April 2007

36-06  Cho, M. H.; Lim, Y. C.; Farson, D. F., Simulation of weld pool dynamics in the stationary pulsed gas metal arc welding process and final weld shape, Welding Journal, Volume: 85 Issue: 12, Pages: 271S-283S, December 2006

Investigation of Mould Leakages in a Gravity Casting

Investigation of Mould Leakages in a Gravity Casting

 

This article was contributed by Gabriele Taricco of CM Taricco and Stefano Mascetti of XC Engineering.

Metal leakages in the original gravity casting mould

몰드 설계는 유체 역학과 금속 응고 패턴뿐만 아니라 주형 자체에서 발생할 수 있는 문제와 응력에 대한 반응을 고려해야 하는 매우 복잡한 작업입니다. 이탈리아에 본사를 둔 주형 제작 업체인 CMTaricco 사는 최근에 새로운 주형 중 하나의 하부에서 금속 누출 문제에 직면했습니다. 주형 누출의 원인은 처음에는 분명하지 않았으며 몇 번의 공정 주기 후에만 나타났습니다. 제작 일정에 차질이 생기고 부품 주조 비용이 급격히 증가하기 때문에 문제가 중요한 것은 분명했습니다.

Investigation of an idea

공정 자체는 주입과 오버플로우 설계인 중력 주조 방식이었기 때문에 유체 역학 부분에서는 문제가 발생할 수 없었습니다. GabrieleTaricco (CMTaricco의 소유주)의 가설은 금속 누출이 주형의 열 손실의 설계 불량에서 기인하여 균일하지 않은 분포를 초래한다는 것이었습니다. 변형률과 그에 따라 주형 바닥에서 크고 원하지 않는 변형이 순환하면서 금속이 유출될 수 있는 중요한 영역의 개방까지 주기적으로 시행되었습니다. 이를 확인하고 문제에 대한 신속한 해결책을 찾기 위해 FLOW-3D시뮬레이션을 실행하여 주형이 가열될 때 발생하는 현상을 정확하게 파악했습니다.

Schematic of a critical area where metal was flowing out of the mould

 

A careful setup, to achieve a fast resolution of the issue

문제의 원인은 신속하게 파악할 수 있어야 했기 때문에 최신 Flow-3D기능을 모두 활용하여 정확한 설정이 필요했습니다. 특히, 채택된 meshing기법은 전통적인 설정과 거의 동일한 정확도를 유지하면서 전산 셀의 수를 크게 줄이는데 매우 도움이 되었습니다. 빠른 시뮬레이션으로 주형 세척에 사용된 첫 번째 방법은 주형 내부의 얇은 캐비티를 직교 축과 정렬하기 위해 주형을 수직 축 주위로 회전시키는 것이었습니다.

Rotating the mould around the vertical axis in order to align the inner thin cavity of the mould

 

두 번째 트릭은 내부 공동 (얇은 벽)에 new conformal mesh기능을 사용하는 한편 전체 도메인에 대해 기존의 더 큰 메쉬 블록을 유지하는 것 이었습니다. The conformal mesh는 open volume과 일치하고, 작은 간극을 갖는 cavity로 제한됩니다.

A global view of the mould with cores and its alignment with the mesh blocks

 

마지막으로, 외부 공간을 주형에 제한하기 위해(현재 구두 상자 모양이 되고, 20도 회전하며, 모델 축과 정렬상태) 일부’ 도메인제거’ 요소가 사용되었습니다.즉, FLOW-3D의 내부 솔리드 모델을 통해 직접 연결됩니다

Domain removing components (yellow) were used to limit the space externally to the mould.

 

나머지 설정은 소프트웨어의 권장 기본값 대부분을 이용하여 기존 체계를 따랐습니다. 이러한 기능과 FLOW-3D의 새로운 하위 도메인 분해 기능 덕분에 설계된 9 000 000 셀을 유체 하위 도메인의 경우에만 1 840 000 셀로, 고체 서브 도메인의 경우 2 430 000 셀로 줄이는 것이 가능했습니다.

 

The analysis

주입 시뮬레이션 후, 양호한 주입 패턴을 보장하기 위해 시뮬레이션의 초점이 열 다이 사이클링 분석으로 리디렉션 되었습니다. 이 경우 설정은 일반 데스크 톱 컴퓨터에서 10개의 생산 사이클을 재현하는 데 1시간이면 간단하고 빠릅니다(i7930 K, 상업적 가치 1500달러). 그 결과 CM의 초기 가설이 확인되었습니다. FlowSight를 사용하여 단일 이미지에서 여러 시점과 횡단면에서 온도 필드를 관찰한 결과 온도가 d라는 것이 분명했습니다. 주형의 침입은 예상되는 변형과 금속 누출을 쉽게 유발할 수 있습니다.

Simulation of the mould’s temperature during the die cyclings

 

Further analysis with the Fluid-Structure Interaction module

 

일단 문제가 확인되고 기술 요원이 향상된 금형 설계를 시작하면 CM Taricco는 다이 상의 응력 및 변형에 대한 FEM 해석을 실행하는 최종 확인을 원했습니다. 이 분석을 수행하기 위해 XC Engineering Srl은 CM이 계산을 설정하고 수행하는 것을 도왔습니다. 분석의 결과는 정확히 CM이 생각하고 있는 것을 보여주었습니다. FLOW-3D는 붓기가 거의 걸리지 않은 금형에서 발견 된 실제 변형과 동일한 위치와 크기를 극도의 정확도로 재현 할 수 있었습니다. 이것은 CM에 대한 좋은 소식이었으며, 실제 주조 조건을 기반으로 실제 금형 변형을 예측하기 위해 설계 단계에서 FSI 모듈을 사용하는 추가 권장 사항을 시행했습니다.

Deformation of the mould during the die cyclings, simulated using the Fluid Structure Interaction model. Deformations are amplified x20.

 

Conclusion

해석결과, CM직원은 CFD솔루션의 온도영역에 대한 모든정보를 사용하여 최적화된 새로운 주형을 설계할 수 있었습니다. 새로운 주형은 열 에너지를 보다 효율적인 방법으로 방출할 수 있었으며 주조물은 수 십번의 공정 주기 후에도 금속 누출의 영향을 받지 않았습니다.

The cast part after mould optimization. No critical leak defects are present.

 

Sand Core Making / 모래 코어 제작

Sand Core Making / 모래 코어 제작

This article on sand core making was contributed by Dr. Matthias Todte and Frieder Semler, Flow Science Deutschland GmbH.

주조 품질에 대한 수요가 증가하고 고성능 구성 요소에 대한 박막형 구조로의 추세로 인해 품질에 대한 요구가 강화되었으며 동시에 모래 코어의 기하학적 복잡성도 증가했습니다. 시뮬레이션은 코어 박스의 설계를 최적화하는 데 도움이 되며, 저온 및 고온 코어 박스를 위한 유기 및 무기 바인더 시스템의 촬영, 가스 처리 및 경화를 위한 강력한 공정 조건을 확립합니다.

기체 주입, 건조 및 템퍼링의 기본 프로세스에 대한 논의는 실험적 검증을 거쳐야 합니다. 그런 다음 주물 결함을 방지하기 위해 코어 사격 공정 시뮬레이션이 필수적이었는지를 보여 줍니다. 마지막으로 코어 박스의 마모와 수명을 예측하는 수치모델을 개발한 연구 프로젝트를 소개합니다.

Water jacket core

Simulation of sand core making processes

Shooting

Shooting Simulation에서 모래로 채워진 타격 헤드가 공기를 통해 가압되고, 이로 인해 공기/모래/실린더/바인더 혼합물로 구성된 “유체”가 생성됩니다. 이 유체는 분사 노즐을 통해 코어 박스로 흐르고 배출 노즐을 통해 상자 밖으로 공기가 배출됩니다. Shooting Simulation의 목적은 코어 박스에 있는 모래의 밀도분포를 높히고 균일하게 하는 것입니다.

촬영 과정에서 모래로 채워진 블로 헤드가 공기를 통해 가압되어 공기/모래/바인더 혼합물로 구성된 “유체”가 생성됩니다. 이 유체는 블로우 헤드에서 분사 노즐을 통해 코어 박스로 흘러 나와 공기를 환기 노즐을 통해 박스 밖으로 밀어냅니다. Shooting 의 목표는 가능한 한 높고 균일하게 코어 박스에 있는 모래의 밀도 분포를 달성하는 것입니다. 변경할 수 있는 프로세스 매개 변수는 분사 압력과 발사 및 배기 노즐의 수와 위치입니다. 시간과 비용을 절약하기 위해 코어의 품질을 저하시키지 않고 가능한 한 노즐을 적게 사용하는 것이 바람직합니다.

Sand density distribution

Sand density distribution after the shooting

시뮬레이션을 사용하여 다양한 사격 및 환기 노즐 구성과 그 구성이 결과 모래 밀도 분포에 미치는 영향을 분석할 수 있습니다. 엔지니어는 속도와 전단 응력을 예측하여 코어 상자의 마모 및 이에 따른 수명에 대한 결론을 도출할 수 있습니다.

Gassing

유기 바인더 시스템에서는 모래가 유기 수지로 코팅됩니다. 이 수지의 경화는 보통 아민이라는 기체에 의해 이루어지는데, 이것은 일반적으로 분사에 사용된 노즐을 통해 주입됩니다. 이 가스는 코어가 모든 부분에서 경화되도록 하기위해 모든부분에 도달할 만큼 길어야 한다. 반면에, 유독 가스를 줄이기 위해서는 가스 배출이 필요이상으로 길어서는 안됩니다.

유기 바인더 시스템에서는 모래가 유기 레진으로 코팅되어 있습니다. 이 레진의 경화는 보통 아민 가스 작용제에 의해 이루어지는데, 아민은 주로 인젝션에 사용되는 노즐을 통해 분사됩니다. 이 가스 주입은 가스가 코어의 모든 부분에 도달할 수 있도록 충분히 길어야 합니다. 코어가 모든 곳에서 경화되도록 하기 위해서입니다. 반면, 가스 배출은 독성 가스를 절약하기 위해 필요 이상으로 길지 않아야 합니다.

Amine concentration core

Amine concentration in a core

시뮬레이션은 시간 경과에 따른 코어의 아민 농도 분포를 예측하며, 이는 코어의 경도와 동일하다. 이를 통해 엔지니어들은 가스 생성 공정에 대한 합리적인 시간 규모를 결정할 수 있습니다.

Drying

주조물의 수가 증가하는 경우, 독성이 있는 유기적 시스템 대신 무기, 수성-기반 바인더 시스템이 사용됩니다. 배기 가스 배출이 없는 코어 생산 공정의 이점 외에도 이 시스템은 주조 공정 중 코어 가스 생산량을 줄여 주조 품질을 향상시킵니다.

모래 코어의 경화를 위해서는 일반적으로 뜨거운 공기가 주입되어 이루어지는 코어에서 물을 제거해야 합니다. 이러한 바인더 시스템의 경우, 코어의 잔류 수분은 경도에 대한 측정 값입니다. 시뮬레이션은 코어를 통과하는 공기의 흐름뿐만 아니라 물이나 증기의 증발과 응축, 뜨거운 공기와 함께 증기의 이동을 모델링 해야 합니다.

아래 이미지는 예측된 잔류 수분과 실제 코어의 강도(또는 손상)의 상관 관계를 보여 줍니다.

Correlation of predicted residual moisture and the damage of a real core

Tempering of core boxes                                                                    

핫 박스 및 크로닝과 같은 특정 코어 제조 공정에서는 가열된 코어 박스에 있는 바인더의 열 반응을 통해 코어의 경화가 이루어집니다. 상자의 가열은 가열 채널과 전기 가열 요소를 사용하여 수행됩니다. 좋은 코어 품질을 위해서는 코어 상자의 균일한 온도 분포가 바람직합니다. 시뮬레이션은 특정 가열 소자 구성에 대한 온도 분포를 시간 경과에 따른 예측하고 발열의 균일성과 원하는 온도에 도달하는 데 필요한 시간을 표시합니다.

Heated core box

Temperature distribution in a heated core box

Validation of the core blowing model

Experiments and simulations for a water jacket core

핵심 shooting 실험은 TU 뮌헨의 파운드리 연구소에서 실시되었습니다. shooting  시간과 압력, 흡입구와 환기구의 수 등의 공정 매개 변수들이 다양하였으며 이들 매개 변수들이 분석된 코어 품질에 미치는 영향이 다양하였다. 실제 코어에서 발생한 결점은 시뮬레이션에서 모래 밀도가 낮은 영역과 상관 관계가 있습니다(아래 그림 참조).

Core blowing validation

Core defects compared to simulated density distribution

Application of the core blowing model : 리어 액슬 하우징의 주조 품질 개선

품질 보증에서 리어 액슬 하우징의 주물 결함을 감지했습니다(아래 그림 참조). 그 결함들은 중심부의 표면 결함의 결과인 것처럼 보였다. 이 가설을 뒷받침하고 코어 표면 품질을 개선하기 위한 조치를 권고하기 위해 시뮬레이션이 수행되었다. 마지막으로, 코어 박스 환기구의 다른 구성(숫자 및 위치)을 통해 주조 품질을 개선할 수 있었습니다.

Casting defects of a rear axle housing

Casting defects of a rear axle housing

Validation surface defects

Correlation of surface defects and simulated density distribution

Research project: Prediction of the lifetime of core boxes

코어 박스는 대부분 폴리우레탄 수지 코팅의 알루미늄으로 제작된다. 사격 과정에서 모래에 의한 코어 박스 표면의 침식은 코어 박스의 수명을 제한하는 요인이다. 프로젝트 목표는 표면 처리가 수명에 미치는 영향을 이해하고 단일 시뮬레이션에서 다수의 샷에 의해 발생하는 침식을 예측할 수 있는 연산 모델을 개발하는 침식 프로세스를 분석하는 것이었다.

일반적인 코어 상자(아래 참조)는 다른 모양의 삽입물로 제작되었습니다.

Core box with different inserts

Core box with different inserts

수치 모델은 코어 박스 벽의 압력과 전단력의 공간적, 시간적 통합에 기초하여 부식에 대한 양을 도출한다. 모형에 의해 예측된 침식은 실험 값과 일치했습니다(아래 그림 참조).

Measured and simulated erosion

Comparison of measured and simulated erosion

Tilt Pour

Tilt Pour

경동 주조에서는 금형이 수평 위치에 있는 동안 용탕이 주입 래들에 주입됩니다. 그런 다음 사전에 설정된 사이클 시간을 사용하여 주조 기계가 수직 위치로 상승하고, 용탕이 느리고 연속적인 주입 속도로 금형으로 들어갈 수 있습니다. 경동 주조 방법은 다양한 주조 형태를 가능하게 하는 런너-게이트 유연성 때문에 일반적인 주조 용도에 적합합니다.

Temperature profile during a tilt pour filling cycle

아래와 같은 예에서는 케이블 탭으로 연결되는 알루미늄 커플러 케이블에 대해 경동 주조의 시뮬레이션을 수행하여, 부품의 무결성과 표면 품질을 보장했습니다. 경동 회전을 완료하는 데 걸리는 시간은 중요합니다. 회전 속도는 FLOW-3D CAST에서 쉽게 수정할 수 있으므로 사용자가 이 속도를 최적화할 수 있습니다. 회전 속도가 너무 빠르면 공기가 유입되어 더 느리게 표면 결함이 나타날 수 있습니다. 온도 프로파일은 최대 및 최소 그래프 값을 각각 액상과 고상 온도로 설정하여 시각화 합니다. 여기서 부품이 반쯤 채워져 있고 용탕 온도가 고상 온도에 가깝지 않기 때문에 조기 응고는 나타나지 않습니다.

Simulation of the tilt pour process using FLOW-3D Cast.

Tilt pour casting simulations

수상 래프팅 장비에 사용되는 경량 알루미늄 부품은 고품질의 마감이 필요하며, 이상적으로 표면이 없고 결함이 없도록 주조됩니다. 이러한 경동 주조 프로세스의 시뮬레이션은 주입 프로세스를 통해 갇힌 표면 산화물 및 침입 공기의 잠재적 영역을 보여줍니다. 이러한 결점의 움직임을 알면 주조 엔지니어가 더 나은 게이트, 런너 및 라이저를 설계하여, 주물 내의 결점을 제거하는 데 도움이 됩니다. FLOW-3D CAST는 독자적인 6자유도 이동 기능을 통해, 금형의 복잡한 경사 순서와 각도 가속도를 시뮬레이션하는 데 사용할 수 있습니다.

Predicting metal casting defects

Surface oxide and entrained air defects in a tilt pour casting

Visualizing non-inertial reference frame motion

 casting with non-inertial reference frame motion on the left and stationary motion on the right

 

 blog 에서 FLOW-3D CAST v4.2의 FlowSight 에 대해 자세히 알아보십시오.

 

Validations

Validations

금속 주조 설계 과정에서 FLOW-3D CAST의 사용은 회사의 비용 절감 방안을 제시하여 수익성을 개선할 수 있습니다. FLOW-3D CAST 는 엔지니어와 설계자에게 경험과 전문지식을 향상시킬 수 있는 강력한 도구가 될 수 있습니다. 보통 수익성은 비용 절감과 비용 회피에서 찾을 수 있습니다. 지금, 품질과 생산성 문제는 제품개발 단계에서 다양한 시뮬레이션 통해 짧은 공정시간, 낮은 비용으로 해결 할 수 있는 방안을 찾을 수 있습니다. 새로운 개발도구인 FLOW-3D CAST의 효율성은 생산이 시작되기 전에 문제를 해결할 수 있는 방안을 제시하여 생산성을 크게 개선할 수 있습니다.

Ladle Pour

샷 슬리브 공정을 최적화하는 것은 고품질 부품을 확보하는 데 필수적입니다. FLOW-3D CAST의 시뮬레이션 결과와 실제 사례의 비교를 통해, 시뮬레이션을 사용하여 엔지니어가 값 비싼 툴링을 제작하기 전에 설계를 개선하는 방법을 강조합니다. FLOW-3D CAST는 프로세스 전반에 걸쳐 유체의 움직임을 정확하게 포착할 수 있으므로, 엔지니어가 실제 레들 주입 공정에서 신속하게 파악할 수 있습니다. 시뮬레이션은 Nemak Poland Sp. z o.o로부터 제공받았습니다.

Gravity Casting

열전대 데이터를 기반으로 한 실제 충진 재구성과 비교 한 중력 주조 시뮬레이션. Courtesy of XC Engineering and Peugeot PSA.

Foundry: Simulating a Flow Fill Pattern


사형 주조 충진중의 X- 레이 검증

X -레이 결과와 FLOW-3D CAST 시뮬레이션 결과를 나란히 비교합니다. A356 알루미늄 합금으로 사형 주조의 3 차원 충진 색상은 금속의 압력을 나타냅니다. 시뮬레이션 결과는 수직 대칭 평면에 표시됩니다. Modeling of Casting, Welding, and Advanced Solidification Processes VII, London, 1995.

HPDC: Flow Pattern


Short sleeve validation – 시뮬레이션 결과와 주조 부품, Littler Diecast Corporation의 예

Modeling Air Entrapment


디젤 엔진 용 오일 필터 하우징의 X-ray vs. FLOW-3D CAST 검증.

디젤 엔진 용 오일 필터 하우징의 X- 레이 검증, 380 다이캐스팅 합금. 결과는 혼입 된 공기의 비율로 표시됩니다. X- 레이의 상세한 영역은 최대 다공도 농도를 나타냅니다.

HPDC Filling


FLOW-3D 결과를 실제 부품과 비교하는 HPDC 캐스팅 검증

Short Shot Simulation


실제 주조 부품의 유효성 검사. 스냅 샷과 FLOW-3D CAST 시뮬레이션 결과. 왼쪽에서 오른쪽으로 : 변속기 하우징, 오일 팬 및 자동차 부품.

HPDC Air Entrapment Defects


Antrametal에 의한 주조 시뮬레이션 대 실험 결과의 성공적인 비교.

Antmetetal의 고객 검증은 FLOW-3D CAST의 Air Entrapment 모델을 사용하여 실험 결과와 시뮬레이션을 비교 한 결과를 보여줍니다. 세탁기 용 전동 모터의 앞 커버의 HPDC입니다. 공기 관련 결함은 이미지의 색상에 정 성적으로 표시됩니다. FLOW-3D CAST 내의 다른 수치 기능에 의해 포착 된 물리적 공기 포켓 또한 명확하게 표현됩니다.

Core Drying


시뮬레이션과 무기 코어의 건조 실험 사이의 BMW에 의한 비교.

Predicting Die Erosion


캐비테이션으로 인한 다이 침식 영역은 FLOW-3D CAST 결과를 실제 사례와 비교하여 올바르게 배치되었습니다.

Predicting Lost Foam Filling


Lost foam L850 블록 벌크 헤드 슬라이스에 대한 실시간 X-ray 및 FLOW-3D CAST 유동 시뮬레이션 결과의 비교. 시뮬레이션은 GM Powertrain의 예입니다.

Porosity Defects


Porosity due to entrained air

Predicting Shrinkage Porosity


A380 diesel engine block casting

 

Defect Prediction

Defect Prediction

주조 설계 시 주요 당면 과제는 최종 부품에 결함이 있는지 여부를 결정하는 것입니다. 설계자는 종종 게이트, 러너, 라이저, 주입 온도 및 냉각 크기 조정을 위한 모범 사례를 따름으로써 우수한 품질의 부품을 생산할 수 있습니다. 하지만 오늘날의 비즈니스 환경에서는 이 제품의 장점이 경쟁에서 이길 만큼 좋지 않을 수도 있습니다. 하지만 FLOW-3D CAST의 강력한 결점 예측 도구를 통해 주조 설계자는  짧은시간안에 보다 높은품질을 얻을 수 있을 것입니다.

Air Entrapment

FLOW-3D CAST의 공기 침투 모델은 채우는 동안 금속 주조 시스템에서 발생하는 공기 침입량을 추정하는 데 사용됩니다. 이 모델은 단순한 물리적 메커니즘을 기반으로 하며 뛰어난 예측 변수 또는 다공성입니다. 사용자는 시뮬레이션을 사용하여 공기 침투 결함을 방지하고, 시험 및 오류 과정을 제거할 수 있습니다. Air Entrapment Model에 대한 자세한 내용은 모델링 기능 섹션을 참조하십시오.

FLOW-3D Cast accurately predicts defects due to air entrapment 

Core Gas Defects

Binder loss in two internal cores of a valve iron casting 

FLOW-3D CAST의 코어 가스 모델을 사용하면, 금속 가열로 인한 모래 코어의 수지 바인더 분해 및 코어 가스 진화 과정을 모니터링하여, 코어 가스 배출을 제거할 수 있습니다. 주조물의 일부 바인더 손실은 코어 강도의 손실에 해당합니다. 또한 주조물의 주입 및 동결과 함께 모니터링할 때 이 모델은 용해된 금속에 대한 잠재적인 가스 폭발의 예측 변수이기도 합니다. 이러한 가스 결함 생성 가능성은 코어 가스 흐름 및 코어 가스 압력과 함께 계산됩니다.

 

Die Erosion Defects

FLOW-3D CAST는 고압 다이 캐스팅을 채우는 동안, 공동 현상으로 인한 금형 침식 결함을 정확하게 예측합니다. 금속 압력은 매우 빠른 흐름의 영역에서 금속 증기 압력 아래로 몇 개의 대기를 떨어뜨릴 수 있으며, 이는 공동 현상과 부식을 일으킬 수 있습니다. 공동 현상으로 인한 손상을 예측하는 간단한 방법은 실제로 흐름에 공동 현상 거품을 도입하지 않고도 공동 현상 또는 공동 현상의 가능성을 예측하는 것입니다. FLOW-3D CAST는 공동 현상 압력과 국소 유체 압력의 차이를 살펴봄으로써, 공동 현상의 가능성을 평가합니다. 셀의 위치에서 공동 현상과 금형 침식의 가능성은 이 차이가 클 때 존재하는 것으로 간주되는데, 금형 침식 가능성의 가장 신뢰할 수 있는 징후는 높은 위치의 “핫 스팟” 영역으로, 이 양의 값이 높은 작은 영역입니다.

Microporosity

FLOW-3D CAST는 응고 단계 후반에 발생하는 미세 기공 결함의 발생과 위치를 예측하기 위해 특별히 설계된 모델을 가지고 있습니다. 이 정보를 사용하여 설계를 조정하고 심각한 결점을 방지할 수 있습니다. 주조된 금속 부품은 응고 과정에서 금속이 수축할 때 발생하는 큰 내부 가스 포켓 또는 다공성을 가지고 있기 때문에 사용할 수 없는 경우가 있습니다. 대부분의 대형 다공성은 주조 몰드의 세심한 설계를 통해 제거할 수 있으므로, 특수 영역에 여분의 액체 금속을 보관하여 수축을 촉진할 수 있습니다. 금속이 수축을 보상하기 위해 흐를 수 있는 경우에는 대개 다공성이 발생하지 않습니다. 다공성의 또 다른 유형은 미세 다공성이라고도 하는데, 일반적으로 총 체적이 1%이하인 작은 기포의 분포로 나타나기 때문입니다. 따라서 미세한 기공의 위치와 크기를 예측할 수 있는 수단을 갖는 것이 상당히 흥미로운데, FLOW-3D CAST의 Microporosity 모델은 이러한 목적을 위해 개발되었습니다.

 

Solidification & Shrinkage

FLOW-3D CAST에는 과도한 수축이나 다공성의 응고 및 핀 포인트 영역을 모델링 하기 위한 전체 도구 모음이 있으므로, 이러한 결함을 확인할 수 있는 라이저 위치를 결정할 수 있습니다. 편석을 포함하여, 열로 인한 응력, 마이크로 및 매크로 다공성 등 응고와 관련된 다양한 결점이 있습니다. 정확한 응고 분석을 얻기 위한 중요한 첫번째 단계는 정확한 채우기입니다. 정확한 채우기는 응고 모델링의 초기 조건인 올바른 열 프로필을 캡처합니다. FLOW-3D CAST는 주조 공장이 주조 부품을 보다 신속하게 설계하고 폐기율을 낮출 수 있는 많은 응고 관련 결함을 감지할 수 있습니다.

Surface Oxides

FLOW-3D CAST의 결점 추적 기능을 통해 주조 엔지니어는 주입 공정에서 표면 산화물 결함이 발생할 가능성이 가장 높은 부위를 예측할 수 있습니다. 산화물은 용해된 금속 표면이 공기 중으로 노출되어 형성되며 바람직하지 않은 위치에 놓일 수 있습니다. 결함의 최종 위치는 전체 흐름 조건, 난류 혼합, 유체 분사 및 주입에 따라 달라집니다. FLOW-3D CAST는 이러한 산화물과 최종 위치를 정확하게 추적하여 설계를 개선합니다.

 

Thermal Stress Defect Prediction

FLOW-3D CAST의 열응력 모델을 사용하면 열응력 결점이 발생하는 위치와 주조물이 왜곡되는 방식을 정확하게 예측할 수 있습니다. 강도는 금형과 금속의 응고 과정에서 동시에 계산되며 이들 사이의 상호 작용을 위한 간단한 옵션을 제공합니다. 금속 주조물에서 열응력 결함을 제거할 수 있도록 모델링 기능 섹션에서 Thermal stress evolution 시뮬레이션에 대해 자세히 알아보십시오.

FLOW-3D CAST Suites

FLOW-3D CAST Suites

FLOW-3D CAST v5 comes in Suites of relevant casting processes: 

HIGH PRESSURE DIE CASTING SUITE

Process Workspace

High Pressure Die Casting

Features

Thermal Die Cycling
– Cooling/heating channels
– Spray cooling
Filling
– Shot sleeve with Plunger
– Shot motion
– Ladles, stoppers
– Venting efficiency
– PQ^2 analysis
– HPDC machine database
Solidification
– Squeeze pins
Cooling


PERMANENT MOLD CASTING SUITE

Process Workspaces

Permanent Mold Casting
Low Pressure Die Casting
Tilt Pour Casting

Features

Thermal Die Cycling
– Cooling/heating channels
Filling
– Tilt pouring
Solidification
– Squeeze pins
Cooling


SAND CASTING SUITE

Process Workspaces

Sand Casting
Low Pressure Sand Casting

Features

Filling
– Permeable molds
– Moisture evaporation in molds
– Gas generation in cores
– Ladle model
Solidification
– Exothermic sleeves
– Chills
– Cast iron solidification
Cooling


LOST FOAM CASTING SUITE

Process Workspaces

Lost Foam
Sand Casting
Low Pressure Sand Casting

Features

Filling
– Permeable molds
– Moisture evaporation in molds
– Gas generation in cores
– Ladle model
– Lost foam pattern evaporation models (Fast model and Full model)
– Lost foam defect prediction
Solidification
– Exothermic sleeves
– Chills
– Cast iron solidification
Cooling

 


ALL SUITES INCLUDE THESE CORE FEATURES:

Solver Engine

  • TruVOF – The most accurate filling simulation tool in the industry
  • Heat transfer and solidification
  • Shrinkage – Rapid Shrinkage model and Shrinkage with flow model
  • Temperature dependent properties
  • Multi-block meshing including conforming meshes
  • Turbulence models
  • Non-Newtonian viscosity (shear thinning/thickening, thixotropic)
  • Flow tracers
  • Active Simulation Control with Global Conditions
  • Surface tension model
  • Thermal stress analysis with warpage
  • General moving geometry w/6 DOF

FlowSight

  • Multi-case analysis
  • Porosity analysis tool

Defect Prediction Tools

  • Gas entrainment model
  • Thermal Modulus output
  • Hot Spot identification
  • Micro and macro porosity prediction
  • Surface defect prediction
  • Shrinkage
  • Cavitation and Cavitation Potential
  • Particle models (Inclusion modeling, collapsed bubble tracking)

User Conveniences

  • Process-oriented workspaces
  • Configurable Simulation Monitor
  • Metal and solid material databases
  • Heat transfer database
  • Filter database
  • Remote solving queues
  • Quick Analyze/Display tool

ALL NEW FLOW-3D CAST v5

ALL NEW FLOW-3D CAST v5

HPC version of FLOW-3D CAST v5 releasedALL NEW FLOW-3D CAST v5 는 금속 주조 시뮬레이션 및 공정 모델링에 있어 큰 발전입니다. 이제 FLOW-3D CAST는 시뮬레이션 할 프로세스를 선택할 수 있으며, 소프트웨어는 적절한 프로세스 매개 변수, 지오메트리 유형 및 합리적인 기본 값을 제공합니다. 이렇게 하면 시뮬레이션 설정이 상당히 간소화됩니다. 또한 FLOW-3D CAST의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계 주기를 단축하고 비용을 절감하는 통찰력을 제공합니다. 대표적인 개발 기능으로 응고 시뮬레이션을 위한 열 계수 및 핫 스팟 식별 출력, 갇혀 있는 가스를 식별하고 환기 효율을 예측하기 위한 결함 채우기 도구 등이 포함됩니다. 그리고 더 빠르고 더 강력한 압력과 및 응력 해소 기능이 모두 포함합니다.

ALL NEW FLOW-3D CAST v5 는 관련 프로세스가 포함된 Suite제품으로 제공됩니다. 영구 금형 제품군은 중력 다이 캐스팅, 저압 다이캐스팅(LPDC), 틸트 주입 주조와 같은 프로세스 작업 공간을 포함합니다. 각 프로세스에 대해 사용자 인터페이스는 특정 프로세스와 관련된 내용만 표시합니다. 모래 주조 Suite에는 중력 사형 주조 및 저압 사형 주조(LPSC)와 같은 프로세스가 포함되어 있습니다. 소실 폼 제품 군에는 사형 주조 Suite의 모든 것과 소실 폼 공정 작업 공간이 포함됩니다. HPDC 제품군은 열 응력 및 변형을 포함하여 고압 다이 캐스팅과 관련된 모든 것을 포함합니다. 각 프로세스 작업 공간 내에서 채우기, 응고 및 냉각과 같은 하위 프로세스는 서로 연결된 시뮬레이션으로, 처음부터 끝까지 차례로 전체 프로세스를 모델링 합니다. 사용자가 그것을 작업장 바닥에서 하는 것처럼. 사용자는 레들을 용융 풀 안에 담갔다가, 숏 슬리브 또는 주입 컵에 옮겨, 전체 이동 및 주입과 같은 단계를 포함하도록 프로세스를 확장할 수 있습니다. LPDC의 경우 프로세스 엔지니어는 도가니의 가압 및 금속 흐름을 주형으로 모델링 할 수 있습니다.  FLOW-3D CAST v5를 사용하면 가능성이 무한해 집니다.

WYSIWYN Process Workspaces

What-You-See-Is-What-You-Need (WYSIWYN) 프로세스 작업 공간은 FLOW-3D CAST의 다기능성을 간소화하여 사용 편의성과 탁월한 솔루션입니다. 대부분의 인터페이스는 사용자가 제공해야 하는 정보만을 요구하고, 사용자 설계 원칙을 적용하여 단순화되었습니다.

FLOW-3D CAST v4.2에 도입된 프로세스 중심 작업 공간은 중력 다이 주조, 저압 주조 및 경사 주입, 모래 등과 같은 영구 금형 공정으로 확장되었습니다. 중력 모래 주조, 저압 모래 주조 및 소실 폼과 같은 주조 공정 지속적인 주조, 투자 주조, 모래 코어 제작, 원심 주조를 포함한 더 많은 공정 작업 공간이 현재 진행 중에 있습니다.

Simulation setup is simplified by only showing the components applicable for a given process.

Types of casting components available in a HPDC simulation. Mold pieces available in a high pressure die casting include cover and ejector dies, sliders, and shot sleeves.

Defect Prediction / 결함 예측

Identify Filling Defects using Particles  결함 예측 및 입자를 이용한 주입 결함 식별

파티클을 사용하는 FLOW-3D CAST v5를 통해 유입된 가스로 인한 충전 결함을 식별하는 것이 훨씬 쉬워 졌습니다. 결함을 식별하기가 훨씬 용이할 뿐만 아니라, 결함 예측에 따른 계산 비용도 크게 절감되었습니다.

붕괴된 가스 지역을 나타내는 보이드 입자가 도입되었습니다. 이전에 붕괴된 가스 영역은 너무 압축되어 수치 메쉬에서 해결할 수 없으면 시뮬레이션에서 사라졌습니다. 보이드 입자는 작은 기포처럼 작용하며 드래그와 압력을 통해 금속과 상호 작용합니다. 주변의 금속 압력에 따라 크기가 변하며, 주입이 끝난 후 최종 위치를 보면 공기 침투 및 산화물로 인한 잠재적인 결함이 있음을 알 수 있습니다.

Predict filling defects caused by entrapped gas using the Particle Model.

Metal/Wall Contact Time 금속/벽 접촉 시간

벽면 접촉 시간은 금형 표면에서 다른 부위보다 금속에 더 오래 노출된 부위를 식별하는 데 유용합니다. 금속 접촉 시간은 금속이 고체 구성 요소와 접촉한 시간을 나타냅니다. 예를 들어 모래 입자가 핵분해 부위의 역할을 하기 때문에 미세 먼지가 발생할 수 있습니다. 개별 솔리드 구성 요소와의 금속 접촉 시간 출력이 모든 구성 요소와의 접촉 시간을 포함하도록 확장되었습니다. 접촉 시간 계산은 출력 탭에서 벽 접촉 시간을 선택하여 활성화합니다.

Identify solidification defects with the new Thermal Modulus output.

Solidification Defect Identification 응고 결함 식별

일반적으로 라이저 크기 조정에 사용되는 열 모듈은 이제 응고 시뮬레이션에서 출력됩니다.

Risers will likely need to be placed on the circled regions.

Hot Spots  핫 스팟

또 다른 결과인 “핫 스팟”은 라이저를 찾고 크기를 조정하며, 응고 관련 결함의 가능성을 식별하는 데 유용합니다. 핫 스팟은 최종적으로 응고된 부위를 나타냅니다. 이것들은 입자들로 표현되고 뜨거운 점 크기에 의해 색깔이 변하기도 합니다. 라이저는 핫 스팟 크기가 가장 큰 곳에 배치해야 합니다.

Porosity Analysis Tool

FlowSight의 새로운 Porosity Analysis Tool은 실제적인 측면에서 porosity-related 결점을 식별합니다. 결점은 이제 순 볼륨, 최대 선형 범위, 모양 인자 및 total count로 식별됩니다.

New defect identification tools allow users to analyze porosity.

Arbitrary 2D Clips 임의 2D 클립

기능 지향적인 2D 클립은 결함을 찾기 위해 전면적으로 살펴 볼 때 유용합니다. 이전에는 클립에 표시된 금속 영역이 솔리드에 의해 점유된 셀로 확장되었습니다. 잡식의 FLOW-3D CAST v5에서 이 클립은 구성 요소를 숨기는 옵션을 선택해야만 열린 공간(예:주조 부품)의 금속을 보여 줄 수 있습니다.

Intensification Pressure 강화 압력

고압 주조 시뮬레이션에 지정된 강화 압력은 이제 매크로 및 마이크로 Porosity모델 모두에 결합되어 형성 사이의 보다 현실적인 관계를 형성합니다. 이러한 결함의 크기 및 플런저에 의해 가해지는 압력의 크기입니다.

Adjusting Shrinkage Porosity 수축 기공 조절

사용자가 금속의 특성을 수정할 필요 없이 수축 다공성의 양과 크기를 미세 조정할 수 있도록 수축 조정 계수가 추가되었습니다. 계수를 사용하면 응고 중에 체적 수축의 양을 전화로 설정하거나 줄일 수 있습니다.

Gas Pressure and Venting Efficiency  가스 압력 및 밴트 효율성 검토

사용자가 충전 결함을 식별하고 다이캐스트에서 밴트 시스템을 설계하는 데 도움을 주기 위해 마지막 국부적인 가스 압력 및 밴트 효율성 검토 결과가 주조 시뮬레이션 출력에 추가되었습니다. 가스 압력은 셀이 금속으로 채워지기 전에 셀의 마지막 보이드 압력을 기록하며, 밴트 효율은 환기구를 배치하는 것이 밴트 위치에서 공기를 배출하는 데 가장 효율적인 영역을 보여 줍니다.

Databases 데이터베이스

주조 공정에서 일반적으로 사용되는 정보의 데이터베이스는 설정 오류를 줄이고 시뮬레이션 workflow 를 개선합니다.

Configurable Simulation Monitor 구성 가능한 시뮬레이션 모니터

시뮬레이션을 실행할 때 발생하는 중요하지만 종종 힘든 작업은 시뮬레이션을 모니터링하는 것입니다. FLOW-3D CAST를 사용하면 다음과 같은 일반적인 시뮬레이션 목표를 모니터링할 수 있습니다.

  • 게이트 속도
    주형 내 고상 분율
    최저/최고 용탕 온도 및 금형 온도
    다양한 프로브 위치에서의 온도
    시뮬레이션 진단(예:시간 스텝, 안정성 한계)

Plotting Capabilities  Plotting기능

이제 시뮬레이션 관리자에는 더 많은 플롯 기능이 포함됩니다. 플롯은 사용자가 구성할 수 있으며 구성은 다른 시뮬레이션에서 사용하기 위해 데이터베이스에 저장됩니다. 사용자는 시뮬레이션 런타임 그래프와 history-data 에서 모니터링할 이력 데이터 변수를 지정할 수 있습니다. 다중 변수를 각 그래프에 입력합니다.

Conforming Meshes

임의 형상의 활성 계산 영역을 정의할 수 있도록 적합한 메쉬 기능이 확장되었습니다. 이는 메쉬 블록이 준수할 수 있는 열린 볼륨과 솔리드 볼륨을 모두 포함하여 계산 도메인의 영역을 정의하는 meshing구성 요소라고 하는 새로운 유형의 지오메트리 구성 요소를 사용합니다.
메쉬 블록은 냉각 채널이나 공동에 선택적으로 조합할 수 있어 사용자가 이러한 기하학적 객체에 대해 최적의 해상도를 선택할 수 있습니다. 이제 확인할 수 있는 메쉬가 FAVORize 탭에 표시될 수 있습니다.

Summary Views of Components/Cooling Channels

FLOW-3D CAST v5의 인터페이스는 주조 시뮬레이션에서 다양한 형상 구성 요소를 꽉 차게 보여줍니다. 2개의 새로운 형상 요약 뷰인 구성 요소 요약 뷰와 냉각 채널 요약 뷰는 기하학적 구성 요소 및 냉각 채널의 플라이 아웃을 제공하여 사용자가 신속하게 수행할 수 있도록 합니다. 중요 설정을 한 눈에 파악하고 필요한 경우 변경 할 수 있습니다.

Under the Hood

FLOW-3D CAST의 많은 강력한 구성 요소들은 Solver Engine이라고 부르는 것 들에서 중요합니다. 아래에서는 이면에서 무거운 작업을 수행하는 데 도움이 되는 몇가지 중요한 사항을 설명합니다.

Thermal Die Cycling (TDC) Model TDC(열 다이 사이클)모델

열 다이 사이클 시뮬레이션의 주입/응고 단계는 균일하지 않은 캐비티 온도를 사용하여 개선할 수 있습니다. 이제 캐비티에 있는 금속의 초기 온도는 재시작 중에 채우기 시뮬레이션을 통해 지정하거나 초기 유체 영역을 사용하는 사용자 정의 분포에서 지정할 수 있습니다. 이 기능은 옵션으로 사용할 수 있는 균일한 초기 금속 온도에 비해 다이 사이클링의 열해석의 정확성과 현실성을 높여줍니다.

Melt temperatures in the casting cavity read from a filling simulation are applied to ejector die during filling/solidification stage of thermal die cycling simulation.

Heat Transfer Coefficient Calculator for Spray Cooling 분사 냉각을 위한 열 전달 계수 계산기

스프레이 유체와 다이 표면 사이의 열 전달 계수(HTC)를 추정하는 것은 어려운 일입니다. 계산 또는 측정을 통해 값을 사용할 수 있는 경우 사용자는 이러한 값을 스프레이 거리 및 각도의 함수로 직접 지정할 수 있습니다. 새로운 기능을 통해 노즐의 스프레이 액의 유량을 기준으로 HTC를 동적으로 계산할 수 있습니다. 단일 조정 계수를 통해 스프레이 유출량을 기준으로 HTC를 미세 조정할 수 있습니다.

Solidification & Shrinkage Defects (응고, 수축결함)

Solidification & Shrinkage Defects (응고, 수축결함)

FLOW-3D는 수축결함을 완화시키기 위해 압탕(riser)의 위치를 확인할 수 있는 응고 모델링 툴과 수축공(shrinkage)과 미세수축공(mirco-porosity) 영역을 정확히 파악하기 위한 모든 기능을 보유하고 있습니다. 거기에는 편석( segregation), 열응력(thermal stress)응력 등 응고와 연관된 광범위한 결함 예측기능들이 있습니다. 정확한 응고 현사을 분석하기 위해 중요한 첫 번째 단계는 정확한 충진 해석입니다. 정확한 온도분포(thermal profile)를 예측하기 위해서는 정확한 유동해석이 필요하고, 이는 응고해석의 초기조건이 됩니다. FLOW-3D는 보다 신속한 주물 설계 및 불량률을 줄일 수 있도록 응고와 관련된 많은 결함을 예측할 수 있습니다.

Solidification & Shrinkage Videos

Micro-porosity(=Micro-shrinkage) Defects, (미세기포(=미세수축공)에 의한 결함)

Micro-porosity(=Mirco-shrinkage) Defects (미세기포(=미세수축공)에 의한 결함)

FLOW-3D는 특별히 응고 과정 후반에  발생하는 미세수축공의 발생 위치를 예측하기 위한 모델을 갖고 있습니다. 이 정보를 이용하여 설계방안을 조정하고 중요한 결함을 방지 할 수 있습니다. 어떤 주조 부품들은 용탕이 응고하는 동안의 수축에 의한 gas pocket이나 porosity(or shrinkage)이 표면에 드러나면 불량품으로 판정받게 됩니다. 대부분의 크기가 큰 수축공은 응고중 피딩(feeding)을 가능하게 하는 적절한 금형 설계 방법에 의해 제거될 수 있습니다. 용탕의 응고수축을 보상하도록 충분한 feeding이 발생할 때, 미세수축공(micro-porosity, micro-shrinkage)은 일반적으로 발생하지 않습니다. 미세수축공은 충진시 공기혼입에 의한 기포와 발생원인이 상이한 것으로 응고말기 수지상(dendrite)조직에 충분한 용탕이 공급되지 않을 경우 주로 발생하며 일반적으로 부피 비율이 1 % 이하 정도의 작은 기포의 분포의미합니다. 그러므로 미세수축공이 나타날 수 있는 위치 및 가능성을 예측하는 수단을 갖는다는 것은 고품질 주조품의 생산에 매우 중요합니다. FLOW-3D의 미세수축공 모델(micro-porosity model )은 이러한 목적을 위해 개발되었습니다.

Predicting Defects Lform [Lost Form 결함 예측]

Introduction

There is increasing interest in the lost foam casting technique because of its ability to produce near-net-shaped components of high complexity. The idea is to first make a prototype of the part to be cast in foam. This is then used as a pattern that can be placed in a box and surrounded by sand. Finally, metal is poured such that it smoothly replaces the foam by melting and/or evaporating it.

The stiffness of the foam makes it possible to cast parts having thin walls or other fine-scale features, and since the foam does not have to be removed at the end of the casting process, parts can be made that require fewer gaskets to assemble. Furthermore, because the foam pattern holds the sand (mold) in place there is little need to use binders in the sand, which means that the sand doesn’t have to be disposed of and can be used again. All these features make the lost foam process highly attractive to manufacturers.

Unfortunately, one rarely gets a free lunch and lost foam casting is no exception. For the process to be successful there must be a high degree of process control. Foams must have the proper characteristics and be coated with just the right material, and pouring sprues and gates for delivering metal to the mold must be carefully arranged. Metal pour temperatures must be sufficiently high to prevent premature solidification. And finally, the filling pattern of a mold should be such that metal fronts do not merge in a way that traps liquefied foam material, which could cause internal defects in the cast part.

To help casters address some of these difficult problems the computational fluid dynamics (CFD) program FLOW-3DÒ has been outfitted with special modeling capabilities to simulate the lost foam process. Using these models, it is possible to simulate the filling of a lost foam mold and the subsequent solidification of the metal. An extra feature in FLOW-3DÒ is the capability to predict where folds or other defects associated with trapped foam products are likely to be located.

The purpose of this paper is to demonstrate the usefulness and accuracy of lost foam predictions made with FLOW-3DÒ by presenting a direct comparison between experimental and computational results. The example chosen for this comparison is described in the next section. Subsequent sections present the comparisons with an emphasis on how the computational results can be used to understand why things happened as they did. This last point is most important, because it offers the user direct evidence and insight into how a casting could be improved.

 

[다운로드]

Predicting Defects Lform

Binder Gas Generation and Transport in Sand Cores and Molds

Overview
The making of resin-bonded sand castings has made great strides in quality over its long history. Even so, there remain some process-related defects that are not fully understood and can cause quality issues. For instance, chemical binders in the sand can produce gas when heated by the molten metal and if not vented adequately, the gas may flow into the metal resulting in a gas porosity defect. This is most likely with cores that form thin interior features of castings that heat up quickly and have long venting paths.

The core gas model in FLOW-3D1 is designed to predict the possibility of such gas defects and is intended to help design core venting that would evacuate safely all the binder product gas
from the cores.
Two major types of binders are used in core making practice: resin-based organic binders and inorganic binders such as sodium silicate [1]. The organic binders are either thermosetting, or cured at room temperature with an aid of a catalyst. These are favored in many applications due to their complete degradation even at aluminum casting temperatures and for the ease of subsequent sand shake out. The core gas model is developed with these binders in mind, but can be extended to inorganic binders if appropriate data on their decomposition is available.

Lost Foam Variable Pattern Density

Overview
Making foam patterns for use in the lost foam casting process is a difficult business. To make a pattern foam beads are blown into a mold containing discrete vent locations for the displaced air and steam. This makes the density of the packed beads difficult to control. Patterns typically show final density variations of ±20%. Much larger variations are not uncommon.
One goal of the Lost Foam Consortium is to evaluate techniques for improving the uniformity of patterns. A related goal is to determine to what extent density variations in patterns are significant with respect to the quality of the parts produced.
Recent real-time X-Ray observations of the metal filling process reported by Dr. Wayne Sun (Advanced Lost Foam Casting Technology-Phase V Meeting, June 20-21, 2001) revealed several interesting facts about the behavior of foam patterns. In particular, when the foam has a low degree of fusion metal is observed to move very fast into the foam (e.g., 4 to 5 times faster than in normal fusion foam). The advancement of the metal is typically in the form of fingers, which subsequently spread sideways causing the meeting of metal fronts that result in many fold defects. Furthermore, the location of the fingering is significantly affected by density variations in the foam pattern.
In contrast, when the foam patterns consisted of normal fusion foam, the metal front moved smoothly (i.e., no fingering) and considerably fewer fold defects occur. Also, the presence of density variations in the foam has little effect on the propagation of the metal fronts.
Based on these findings it was concluded that no attempt should be made to model low fusion foam because this in not likely to be choice for production work. Instead, we report here the development and testing of a model for adding a variable foam density to the FLOW-3D® software package from Flow Science, Inc.

물리 모델 소개

FLOW-3D 는 고도의 정확성이 필요한 항공, 자동차,  수자원 및 환경, 금속 산업분야의 세계적인 선진 기업에서 사용됩니다.

FLOW-3D의 광범위한 다중 물리 기능(multiphysics )은 자유 표면 흐름, 표면 장력, 열전달, 난류, 움직이는 물체, 단순 변형 고체, 전기 기계, 캐비테이션, 탄/소성, 점성, 가소성, 입자, 고체 연료, 연소 및 위상 변화를 포함합니다.
이러한 모델은 FLOW-3D를 사용하는 사용자들이 기술 및 과학의 광범위한 문제를 해결하도록 설계를 최적화하고 복잡한 프로세스 흐름에 대한 통찰력을 얻을 수 있도록 합니다.

flow-3d-multiphysics-model
Physics Models
Flow/Fluid Modes

Materials Databases

  • Fluids Database
  • Solids Database

매우 정확한
시뮬레이션 결과

FAVOR, 으로 알려진 특별한 메쉬 프로세스는 데카르트 구조의 단순함을 유지하면서 복잡한 형상을 효율적으로 구현합니다.

Optimized Setup
and Workflow

TruVOF 표면 추적 방법은 유동시뮬레이션을 위해 알려진 유체 체적을 사용하는 동안 가장 높은 정확도를 제공합니다.

FlowSight
Postprocessing

산업계에서 최고의 시각화 postprocessor인 FlowSight 는 사용자에게 2차원 및 3차원에 대한 심층 분석 기능을 제공합니다.

 

Core gas defects in steel castings

Abstract

Porosity is a common but serious casting defect. One type of porosity is a result of core gas that has evolved and been trapped in the casting during solidification. In order to reduce or eliminate core gas related defects, detailed information regarding the core gas generation, flow, and venting in the core, and the metal flow and solidification behavior in the mold is needed. In this paper, numerical simulations are conducted based on a prototype design, which is a steel casting part from Caterpillar. The core gas in the core and the porosity defects in the casting are analyzed and discussed, and then compared with the real casting results. Using simulations to determine porosity defects can help in optimizing the design.

Keywords: Porosity, Core Gas Defects, Steel Castings, Numerical Simulation, PUCB

General Applications Bibliography

다음은 일반 응용 분야의 기술 문서 모음입니다.
이 모든 논문은 FLOW-3D  결과를 포함하고 있습니다. 복잡한 다중 물리와 관련된 문제를 성공적으로 시뮬레이션하기 위해 FLOW-3D를 사용 하는 방법에 대해 자세히 알아보십시오.

Below is a collection of technical papers in our General Applications Bibliography. All of these papers feature FLOW-3D results. Learn more about how FLOW-3D can be used to successfully simulate problems that involve complex multiphysics.

2021년 8월 26일 Upate

58-21   Ruizhe Liu, Haidong Zhao, Experimental study and numerical simulation of infiltration of AlSi12 alloys into Si porous preforms with micro-computed tomography inspection characteristics, Journal of the Ceramic Society of Japan, 129.6; pp. 315-322, 2021. doi.org/10.2109/jcersj2.21018

56-20   Nils Steinau, CFD modeling of ascending Strombolian gas slugs through a constricted volcanic conduit considering a non-linear rheology, Thesis, Universität Hamburg, Hamburg, Germany, 2020.

30-20   Bita Bayatsarmadi, Mike Horne, Theo Rodopoulos and Dayalan Gunasegaram, Intensifying diffusion-limited reactions by using static mixer electrodes in a novel electrochemical flow cell, Journal of The Electrochemical Society, 167.6, 2020. doi.org/10.1149/1945-7111/ab7e8f

75-19   Raphaël Comminal, Marcin Piotr Serdeczny, Navid Ranjbar, Mehdi Mehrali, David Bue Pedersen, Henrik Stang, Jon Spangenberg, Modelling of material deposition in big area additive manufacturing and 3D concrete printing, Proceedings, Advancing Precision in Additive Manufacturing, Nantes, France, September 16-18, 2019.

35-19     Sung-Won Ha, Tae-Won Kim, Joo-Hwan Choi, and Young-Jin Park, Study for flow phenomenon in the circulation water pump chamber using the Flow-3D model, Journal of the Korea Academia-Industrial Cooperation Society, Vol. 20, No. 4, pp. 580-589, 2019. doi: 10.5762/KAIS.2019.20.4.580

27-19     Rolands Cepuritis, Elisabeth L. Skare, Evgeny Ramenskiy, Ernst Mørtsell, Sverre Smeplass, Shizhao Li, Stefan Jacobsen, and Jon Spangeberg, Analysing limitations of the FlowCyl as a one-point viscometer test for cement paste, Construction and Building Materials, Vol. 218, pp. 333-340, 2019. doi: 10.1016.j.conbuildmat.2019.05.127

26-19     Shanshan Hu, Lunliang Duan, Qianbing Wan, and Jian Wang, Evaluation of needle movement effect on root canal irrigation using a computational fluid dynamics model, BioMedical Engineering OnLine, Vol. 18, No. 52, 2019. doi: 10.1186/s12938-019-0679-5

83-18   Elisabeth Leite Skare, Stefan Jacobsen, Rolands Cepuritis, Sverre Smeplass and Jon Spangenberg, Decreasing the magnitude of shear rates in the FlowCyl, Proceedings of the 12th fib International PhD Symposium in Civil Engineering, Prague, Czech Republic, August 29-31, 2018.

71-18   Marc Bascompta, Jordi Vives, Lluís Sanmiqeul and José Juan de Felipe, CFD friction factors verification in an underground mine, Proceedings of the 4th World Congress on Mechanical, Chemical, and Material Engineering, August 16 – 18, 2018, Madrid, Spain, Paper No. MMME 105, 2018. doi.org/10.11159/mmme18.105

56-18   J. Spangenberg, A. Uzala, M.W. Nielsen and J.H. Hattel, A robustness analysis of the bonding process of joints in wind turbine blades, International Journal of Adhesion and Adhesives, vol. 85, pp. 281-285, 2018. doi.org/10.1016/j.ijadhadh.2018.06.009

21-18   Zhang Weikang and Gong Hongwei, Numerical Simulation Study on Characteristics of Airtight Water Film with Flow Deflectors, IOP Conference Series: Earth and Environmental Science vol. 153, no. 3, pp. 032025, 2018. doi.org/10.1088/1755-1315/153/3/032025

59-17  Han Eol Park and In Cheol Bang, Design study on mixing performance of rotational vanes in subchannel with fuel rod bundles, Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, October 26-27, 2017.

58-17  Jian Zhou, Claudia Cenedese, Tim Williams and Megan Ball, On the propagation of gravity currents over and through a submerged array of circular cylinders, Journal of Fluid Mechanics, Vol. 831, pp. 394-417, 2017. doi.org/10.1017/jfm.2017.604

24-17   Zhiyuan Ge, Wojciech Nemec, Rob L. Gawthorpe, Atle Rotevatn and Ernst W.M. Hansen, Response of unconfined turbidity current to relay-ramp topography: insights from process-based numerical modelling, doi: 10.1111/bre.12255 This article is protected by copyright. All rights reserved.

06-17   Masoud Hosseinpoor, Kamal H. Khayat, Ammar Yahia, Numerical simulation of self-consolidating concrete flow as a heterogeneous material in L-Box set-up: coupled effect of reinforcing bars and aggregate content on flow characteristics, A. Mater Struct (2017) 50: 163. doi:10.1617/s11527-017-1032-8

94-16   Mehran Seyed Ahmadi, Markus Bussmann and Stavros A. Argyropoulos, Mass transfer correlations for dissolution of cylindrical additions in liquid metals with gas agitation, International Journal of Heat and Mass Transfer, Volume 97, June 2016, Pages 767-778

83-16   Masoud Hosseinpoor, Numerical simulation of fresh SCC flow in wall and beam elements using flow dynamics models, Ph.D. Thesis: University of Sherbrooke, September 2016.

51-16   Aditi Verma, Application of computational transport analysis – Oil spill dynamics, Master Thesis: State University of New York at Buffalo, 2016, 56 pages; 1012775

37-16   Hannah Dietterich, Einat Lev, and Jiangzhi Chen, Benchmarking computational fluid dynamics models for lava flow simulation, Geophysical Research Abstracts, Vol. 18, EGU2016-2202, 2016, EGU General Assembly 2016, © Author(s) 2016. CC Attribution 3.0 License.

 19-16   A.J. Vellinga, M.J.B. Cartigny, E.W.M. Hansen, P.J. Tallinga, M.A. Clare, E.J. Sumner and J.T. Eggenhuisen, Process-based Modelling of Turbidity Currents – From Computational Fluid-dynamics to Depositional Signature, Second Conference on Forward Modelling of Sedimentary Systems, 25 April 2016, DOI: 10.3997/2214-4609.201600374

106-15    Hidetaka Oguma, Koji Tsukimoto, Saneyuki Goya, Yoshifumi Okajima, Kouichi Ishizaka, and Eisaku Ito, Development of Advanced Materials and Manufacturing Technologies for High-efficiency Gas Turbines, Mitsubishi Heavy Industries Technical Review Vol. 52 No. 4, December 2015

93-15   James M. Brethour, Modelling of Cavitation within Highly Transient Flows with the Volume of Fluid Method, 1st Pan-American Congress on Computational Mechanics, April 27-29, 2015

90-15   Troy Shinbrot, Matthew Rutala, Andrea Montessori, Pietro Prestininzi and Sauro Succi, Paradoxical ratcheting in cornstarch, Phys. Fluids 27, 103101 (2015); http://dx.doi.org/10.1063/1.4934709

84-15   Nicolas Roussel, Annika Gram, Massimiliano Cremonesi, Liberato Ferrara, Knut Krenzer, Viktor Mechtcherine, Sergiy Shyshko, Jan Skocec, Jon Spangenberg, Oldrich Svec, Lars Nyholm Thrane and Ksenija Vasilic, Numerical simulations of concrete flow: A benchmark comparison, Cem. Concr. Res. (2015), http://dx.doi.org/10.1016/j.cemconres.2015.09.022

02-15   David Souders, FLOW-3D Version 11 Enhances CFD Simulation, Desktop Engineering, January 2015

125-14   Herbert Obame Mve, Romuald Rullière, Rémi Goulet and Phillippe Haberschill, Numerical Analysis of Heat Transfer of a Flow Confined by Wire Screen in Lithium Bromide Absorption Process, Defect and Diffusion Forum, ISSN: 1662-9507, Vol. 348, pp 40-50, doi:10.4028/www.scientific.net/DDF.348.40, © 2014 Trans Tech Publications, Switzerland

55-14   Agni Arumugam Selvi, Effect of Linear Direction Oscillation on Grain Refinement, Master’s Thesis: The Ohio State University, Graduate Program in Mechanical Engineering, Copyright by Agni Arumugam Selvi, 2014

99-13   R. C. Givler and M. J. Martinez, Computational Model of Miniature Pulsating Heat Pipes, SANDIA REPORT, SAND2012-4750, Unlimited Release, Printed January 2013.

82-13    Shizhao Li, Jon Spangenberg, Jesper Hattel, A CFD Approach for Prediction of Unintended Porosities in Aluminum Syntactic Foam A Preliminary Study, 8th International Conference on Porous Metals and Metallic Foams (METFOAM 2013), Raleigh, NC, June 2013

81-13   S. Li, J. Spangenberg, J. H. Hattel, A CFD Model for Prediction of Unintended Porosities in Metal Matrix Composites A Preliminary Study, 19th International Conference on Composite Materials (ICCM 2013), Montreal, Canada, July 2013

78-13   Haitham A. Hussein, Rozi Abdullah, Sobri, Harun and Mohammed Abdulkhaleq, Numerical Model of Baffle Location Effect on Flow Pattern in Oil and Water Gravity Separator Tanks, World Applied Sciences Journal 26 (10): 1351-1356, 2013, ISSN 1818-4952, DOI: 10.5829/idosi.wasj.2013.26.10.1239, © IDOSI Publications, 2013

74-13  Laetitia Martinie, Jean-Francois Lataste, and Nicolas Roussel, Fiber orientation during casting of UHPFRC: electrical resistivity measurements, image analysis and numerical simulations, Materials and Structures, DOI 10.1617/s11527-013-0205-3, November 2013. Available for purchase online at SpringerLink.

67-13 Stefan Jacobsen, Rolands Cepuritis, Ya Peng, Mette R. Geiker, and Jon Spangenberg, Visualizing and simulating flow conditions in concrete form filling using Pigments, Construction and Building Materials 49 (2013) 328–342, © 2013 Elsevier Ltd. All rights reserved. Available for purchase at ScienceDirect.

60-13 Huey-Jiuan Lin, Fu-Yuan Hsu, Chun-Yu Chiu, Chien-Kuo Liu, Ruey-Yi Lee, Simulation of Glass Molding Process for Planar Type SOFC Sealing Devices, Key Engineering Materials, 573, 131, September 2013. Available for purchase at Scientific.net.

32-13 M A Rashid, I Abustan and M O Hamzah, Numerical simulation of a 3-D flow within a storage area hexagonal modular pavement systems, 4th International Conference on Energy and Environment 2013 (ICEE 2013), IOP Conf. Series: Earth and Environmental Science 16 (2013) 012056 doi:10.1088/1755-1315/16/1/012056. Full paper available at IOP.

105-12 Jon Spangenberg, Numerisk modellering af formfyldning ved støbning i selvkompakterende beton, Ph.D. Thesis: Technical University of Denmark, ID: 0eeede98-fb07-4800-86e2-0a6baeb1e7a3, 2012.

100-12 Nurul Hasan, Validation of CFD models using FLOW-3D for a Submerged Liquid Jet, Ninth International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia, 10-12 December 2012.

87-12  Abustan, Ismail, Hamzah, Meor Othman and Rashid, Mohd Aminur, A 3-Dimensional Numerical Study of a Flow within a Permeable Pavement, OIDA International Journal of Sustainable Development, Vol. 04, No. 02, pp. 37-44, April 2012.

86-12 Abustan, Ismail, Hamzah, Meor Othman and Rashid, Mohd Aminur, Review of Permeable Pavement Systems in Malaysia Conditions, OIDA International Journal of Sustainable Development, Vol. 04, No. 02, pp. 27-36, April 2012.

85-12  Mohd Aminur Rashid, Ismail Abustan, Meor Othman Hamzah, Infiltration Characteristic Modeling Using FLOW-3D within a Modular Pavement, Procedia Engineering, Volume 50, 2012, Pages 658-667, ISSN 1877-7058, 10.1016/j.proeng.2012.10.072.

73-12  Mohd Aminur Rashid, Ismail Abustan, Meor Othman Hamzah, Infiltration Characteristic Modeling Using FLOW-3D within a Modular Pavement, Procedia Engineering, Volume 50, 2012, Pages 658-667, ISSN 1877-7058, 10.1016/j.proeng.2012.10.072.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

56-12  Giancarlo Alfonsi, Agostino Lauria, Leonardo Primavera, Flow structures around large-diameter circular cylinder, Journal of Flow Visualization and Image Processing, DOI: 10.1615/JFlowVisImageProc.2012005088, 2012. Available for purchase online at Begell Digital Library.

49-12  M. Janocko, M.B.J. Cartigny, W. Nemec, E.W.M. Hansen, Turbidity current hydraulics and sediment deposition in erodible sinuous channels: laboratory experiments and numerical simulations, Marine and Petroleum Geology, Available online 17 September 2012. Available for purchase online at SciVerse.

32-12  Fatih Karadagli, Bruce E. Rittmann, Drew C. McAvoy, and John E. Richardson, Effect of Turbulence on the Disintegration Rate of Flushable Consumer Products, Water Environment Research, Volume 84, Number 5, May 2012

31-12    D. Valero Huerta and R. García-Bartual, Optimization of Air Conditioning Diffusers Location in Large Agricultural Warehouses Using CFD Techniques, International Conference of Agricultural Engineering (CIGR-AgEng2012) Valencia, Spain, July 8-12, 2012

16-12 Yi Fan Fu, Wei Dong, Ying Li, Yi Tan, Ming Hui Yi, Akira Kawasaki, Simulation of the Effects of the Physical Properties on Particle Formation of Pulsated Orifice Ejection Method (POEM), 2012, Advanced Materials Research, 509, 161. Available for purchase online at Scientific.Net.

92-11  Giancarlo Alfonsi, Agostino Lauria, Leonardo Primavera, The lower vertical structure past the Ahmed car model, International Conference on Computational Science, ICCS 2011. Available for purchase online at Begell Digital Library.

80-11  Ismail Abustan, Meor Othman Hamzah, Mohd Aminur Rashid, A 3-Dimensional Numerical Study of a Flow within a Permeable Pavement, OIDA International Conference on Sustainable Development, ISSN 1923-6670, Putrajaya, Malaysia, 5-7th December 2011

66-11   H. Kondo, T. Furukawa, Y. Hirakawa, K. Nakamura, M. Ida, K.Watanabe, T. Kanemura, E. Wakai, H. Horiike, N. Yamaoka, H. Sugiura, T. Terai, A. Suzuki, J. Yagi, S. Fukada, H. Nakamura, I. Matsushita, F. Groeschel, K. Fujishiro, P. Garin and H. Kimura, IFMIF-EVEDA lithium test loop design and fabrication technology of target assembly as a key componentNuclear Fusion Volume 51 Number 12, doi:10.1088/0029-5515/51/12/123008

49-11     N.I. Vatin, A.A. Girgidov, K.I. Strelets, Numerical modelling the three-dimensional velocity field in the cyclone, Inzhenerno-Stroitel’nyi Zhurnal, No. 4, 2011. In Russian.

41-11    Maiko Hosoda, Taichi Hirano, and Keiji Sakai, Low-Viscosity Measurement by Capillary Electromagnetically Spinning Technique, © 2011 The Japan Society of Applied Physics, Japanese Journal of Applied Physics, July 20, 2011.

18-11  Ortloff, C.R., Vogel, M., Spray cooling heat transfer — Test and CFD analysis, Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM), 2011 27th Annual IEEE, 20-24 March 2011, pp 245 – 252, San Jose, CA, 10.1109/STHERM.2011.5767208.

82-10   Dr. John Abbott, Two problems on the flow of viscous sheets of molten glass, 26th Annual Workshop on Mathematical Problems in Industry, Rensselear Polytechnic Institute, June 14-18, 2010

57-10  Chouet, B. A., Dawson, P. B., James, M. R. and Lane, S. J., Seismic source mechanism of degassing bursts at Kilauea Volcano, Hawaii: Results from waveform inversion in the 10–50 s band, J. Geophys. Res., 115, B09311, doi:10.1029/2009JB006661, September 2010. Available online at JOURNAL OF GEOPHYSICAL RESEARCH.

55-10 Pamela Waterman, FEA and CFD: Getting Better All the Time, Desktop Engineering, December 2010.

53-10  Nicolas Fries, Capillary transport processes in porous materials – experiment and model, Cuvillier Verlag Göttingen; 2010; ISBN 978-3-86955-507-2. Available at www.cuvillier.de  and www.amazon.de.

45-10  Meiring Beyers, Thomas Harms, and Johan Stander, Mitigating snowdrift at the elevated SANAE IV research station in Antarctica CFD simulation and field application, The Fifth International Symposium on Computational Wind Engineering (CWE2010), Chapel Hill, North Carolina, USA, May 23-27, 2010.

31-10 J. Spangenberg, N. Roussel, J.H. Hattel, J. Thorborg, M.R. Geiker, H. Stang and J. Skocek, Prediction of the Impact of Flow-Induced Inhomogeneities in Self-Compacting Concrete (SCC), Ch. 25 of “Design, Production and Placement of Self-Consolidating Concrete,” RILEM Bookseries, 2010, Volume 1, Part 5, 209-215, DOI: 10.1007/978-90-481-9664-7_18. Available online at Springer Link.

28-10 Sirisha Burra, Daniel P. Nicolella, W. Loren Francis, Christopher J. Freitas, Nicholas J. Mueschke, Kristin Poole, and Jean X. Jiang, Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels, Proc Natl Acad Sci U S A. 2010 Jul 19. [Epub ahead of print], Available for purchase at PNAS.

19-10 Michael T. Tolley, Michael Kalontarov, Jonas Neubert, David Erickson and Hod Lipson, Stochastic Modular Robotic Systems A Study of Fluidic Assembly Strategies, IEEE Transactions on Robotics, Vol. 26, NO. 3, June 2010

59-17   Han Eol Park and In Cheol Bang, Design study on mixing performance of rotational vanes in subchannel with fuel rod bundles, Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, October 26-27, 2017.

44-09 Micah Fuller, Fabian Bombardelli, Deb Niemeier, Particulate Matter Modeling in Near-Road Vegetation Environments, Contract AQ-04-01: Developing Effective and Quantifiable Air Quality Mitigation Measures, UC Davis, Caltrans, September 2009

28-09 D. C. Lo, Dong-Taur Su and Jan-Ming Chen (2009), Application of Computational Fluid Dynamics Simulations to the Analysis of Bank Effects in Restricted Waters, Journal of Navigation, 62, pp 477-491, doi:10.1017/S037346330900527X; Purchase the article online (clicking on this link will take you to the Cambridge Journals website).

24-09 Richard C. Givler and Mario J. Martinez, Modeling of Pulsating Heat Pipes, Sandia Report, SAND2009-4520, Sandia National Laboratories, August 2009.

45-08  J. Saeki, Seikei Kakou, Three-Dimensional Flow Analysis of a Thermosetting Compound in a Motor Stator, 20, 750-754 (2008) [in Japanese] (Zipped file contains paper and appendices)

38-08 Yoshifumi Kuriyama, Ken’ichi Yano and Masafumi Hamaguchi, Trajectory Planning for Meal Assist Robot Considering Spilling Avoidance, 17th IEEE International Conference on Control Applications, Part of 2008 1EEE Multi-conference on Systems and Control, San Antonio, Texas, September 3-5, 2008

29-08 Ernst W.M. Hansen, Wojciech Nemec and Snorre Heimsund, Numerical CFD simulations — a new tool for the modelling of turbidity currents and sand dispersal in deep-water basins, Production Geoscience 2008 in Stavanger, Norway, © 2008

17-08 James, M. R., Lane, S. J. & Corder, S. B., Modelling the rapid near-surface expansion of gas slugs in low-viscosity magmas, In Lane S. J., Gilbert J. S. (eds) Fluid Motion in Volcanic Conduits: A Source of Seismic and Acoustic Signals. Geol. Soc., London, Spec. Pub., 307, 147-167, doi: 10.1144/SP307.9. 2008

16-08 Stefano Malavasi, Nicola Trabucchi, Numerical Investigation of the Flow Around a Rectangular Cylinder Near a Solid Wall, BBAA VI International Colloquium on: Bluff Bodies Aerodynamics & Applications, Milano, Italy, July 2008

41-07 Nicolas Roussel, Mette R. Geiker, Frederic Dufour, Lars N. Thrane and Peter Szabo, Computational modeling of concrete flow General Overview, Cement and Concrete Research 37 (2007) 1298-1307, © 2007 Elsevier Ltd.

40-07 Nemec, W., Heimsund, S., Xu, J. & Hansen, E.W.M., Numerical CFD simulation of turbidity currents, British Sedimentological Research Group (BSRG) Annual Meeting, Birmingham, 17-18 December 2007

39-07 Heimsund, S, Xu, J. & Nemec, W., Numerical Simulation of Recent Turbidity Currents in the Monterey Canyon System, Offshore California, American Geophysical Union Fall Meeting, 10-14 December 2007

32-07 James, M. R., Lane, S. J. & Corder, S. B., Modeling the near-surface expansion of gas slugs in basaltic magmaEos Trans. A.G.U., 88(52), Fall Meet. Suppl.. Abs. V12B-03. 2007

31-07 James, M. R., Lane, S. J. and Corder, S. B., Degassing low-viscosity magma: Quantifying the transition between passive bubble-burst and explosive activityE.G.U. Geophys. Res. Abstr., 905336, SRef-ID: 1607-7962/gra/EGU2007-A-05336. 2007

35-06  S. Green and C. Manepally, Software Validation Report for FLOW-3D Version 9.0, Center for Nuclear Waste Regulatory Analyses, August 2006

33-06 N. Roussel, Correlation between yield stress and slump: Comparison between numerical simulations and concrete rheometers results, © RILEM 2006, Materials and Structures (2006) 39:501-509, Purchase online at Springer Link.

32-06 Heimsund, S., Möller, N. and Guargena, C., FLOW-3D simulation of the Ormen Lange field, mid-Norway, In: Hoyanagi, K., Takano, O. and Kano, K. (Ed.), Abstracts, International Association of Sedimentologists 17th International Sedimentological Congress, Fukuoka, Vol. B, p. 107, 2006

10-06 Gengsheng Wei, An Implicit Method to Solve Problems of Rigid Body Motion Coupled with Fluid Flow, Flow Science Technical Note #76, FSI-05-TN76.

8-06 Gengsheng Wei, Three-Dimensional Collision Modeling for Rigid Bodies and its Coupling with Fluid Flow Computation, Flow Science Technical Note #75, FSI-06-TN75.

34-05  Young Bae Kim, Kyung Do Kim, Sang Eui Hong, Jong Goo Kim, Man Ho Park, and Ju Hyun Kim, and Jae Keun Kweon, 3D Simulation of PU Foaming Flow in a Refrigerator Cabinet, Appliance Magazine.com, January 2005.

33-05 N. Roussel, Fifty-cent rheo-meter for yield stress measurements From slump to spreading flow, @2005 by The Society of Rheolgoy, Inc., J. Rheol. 49(3), 705-718 May/June (2005)

32-05 Heimsund, S., Möller, N., Guargena, C. and Thompson, L., Field-scale modeling of turbidity currents by FLOW-3D simulations, In: Workshop Abstracts, Modeling of Turbidity Currents and Related Gravity Currents, University of California, Santa Barbara, 2 p., (2005)

15-05 Gengsheng Wei, A Fixed-Mesh Method for General Moving Objects, Flow Science Technical Note #73, FSI-05-TN73

14-05 James M. Brethour, Incremental Thermoelastic Stress Model, Flow Science Technical Note #72, FSI-05-TN72

9-05 Gengsheng Wei, A Fixed-Mesh Method for General Moving Objects in Fluid Flow, Modern Physics Letters B, Vol. 19, Nos. 28-29 (2005) 1719-1722

1-05 C.W. Hirt, Electro-Hydrodynamics of Semi-Conductive Fluids: With Application to Electro-Spraying Flow Science Technical Note #70, FSI-05-TN70

35-04  J. Saeki, T. Kono and T. Teramae, Seikei Kakou, Formulation of Mathematical Models for Estimating Residual Stress and Strain Components Correlated with 3-D Flow of Thermosetting Compounds, 16, 5, 309-316 (2004) [in Japanese]. (Zipped file contains paper and appendices)

31-04 Heimsund, S., Möller, N., Guargena, C. and Thompson, L., The control of seafloor topography on turbidite sand dispersal in the Ormen Lange field: a large-scale application of FLOW-3D simulations, In: Martinsen, O.J. (Ed.), Abstracts and Proceedings of the Geological Society of Norway (NGF), Deep Water Sedimentary Systems of Arctic and North Atlantic Margins, Stavanger, 3, p. 25, (2004)

26-04 Beyers, J.H.M., Harms, T.M. and Sundsbø, P.A., 2004, Numerical simulation of three dimensional, transient snow drifting around a cube, Journal of wind engineering and industrial aerodynamics, vol. 92, pp. 725-747, ISSN 0167-6105

25-04 Beyers, J.H.M, Harms, T.M. and Sundsbø, P.A., 2004, Numerical simulation of snow drifting around an elevated obstacle, Proceedings of the 5th conference on snow engineering, Davos, Switzerland, pp.185-191

17-04 Michael Barkhudarov, Multi-Block Gridding Technique for FLOW-3D (Revised), Flow Science Technical Note #59-R2, FSI-00-TN59-R2

36-03 Heimsund, S., Hansen, E.W.M. and Nemec, W., Numerical CFD simulation of turbidity currents and comparison with laboratory data, In: Hodgetts, D., Hodgson, D. and Smith, R. (Ed.), Slope Modelling Workshop Abstracts, Experimental, Reservoir and Forward Modelling of Turbidity Currents and Deep-Water Sedimentary Systems, Liverpool Univ., p. 13., (2003b)

35-03 Heimsund, S., Hansen, E.W.M. and Nemec, W. Computational 3-D fluid-dynamics model for sediment transport, erosion and deposition by turbidity currents, In: Nakrem, H.A. (Ed.), Abstracts and Proceedings of the Geological Society of Norway (NGF), Den 18. Vinterkonferansen, Oslo, 1, p. 39., (2003a)

33-03 Beyers, J.H.M., Sundsbø, P.A. and Harms, T.M., 2003, Numerical simulation and verification of drifting snow around a cube, Proceedings of the 11th international conference on wind engineering, Texas Tech University, Lubbock, Texas, USA, pp. 1886-1893

27-03 Jun Zeng, Daniel Sobek and Tom Korsmeyer, Electro-Hydrodynamic Modeling of Electrospray Ionization CAD for a µFluidic Device-Mass Spectrometer Interface, Agilent Technologies Inc, paper presented at Transducers 2003, June 03 Boston (note: Reference #10 is to FLOW-3D)

25-03 J. M Brethour, Moving Boundaries an Eularian Approach, Moving Boundaries VII, Computational Modelling of Free and Moving Boundary Problems, A. A. Mammoli & C.A. Brebbia, WIT Press

19-03 James Brethour, Incremental Elastic Stress Model, Flow Science Technical Note (FSI-03-TN64)

18-03 Michael Barkhudarov, Semi-Lagrangian VOF Advection Method for FLOW-3D, Flow Science Technical Note (FSI-03-TN63)

11-02 Junichi Saeki and Tsutomu Kono, Three-Dimensional Flow Analysis of a Thermosetting Compound during Mold Filling, Polymer Processing Society 18th Annual Meeting, June 2002, Guimares, Portugal.

46-01 Yasunori Iwai, Takumi Hayashi, Toshihiko Yamanishi, Kazuhiro Kobayashi and Masataka Nishi, Simulation of Tritium Behavior after Intended Tritium Release in Ventilated Room, Journal of Nuclear Science and Technology, Vol. 38, No. 1, p. 63-75, January 2001

23-01 Borre Bang, Dag Lukkassen, Application of Homogenization Theory Related to Stokes Flow in Porous Media, Applications of Mathematics, Narvik, Norway, No 4, pp. 309-319.

15-01 Ernst Hansen, SINTEF Energy Research, Trondheim, Norway, Computer Simulation Helps Increase Flow Rate in Three-Phase Separator, Drilling Marketplace, Vol 55, No 10, May 15, 2001, pp.14

10-01 Ernst Hansen, SINTEF Energy Research, Phenomeological Modeling and Simulation of Fluid Flow and Separation Behaviour in Offshore Gravity Separators, PVP-Col 431, Emerging Technologies for Fluids, Structures and Fluids, Structures and Fluid Structure Interaction — 2001, ASME 2001, pp. 23-29

7-01 C. Bohm, D. A. Weiss, and C. Tropea, Multi-droplet Impact onto Solid Walls Droplet-droplet Interaction and Collision of Kinemeatic Discontinuities, DaimlerChrysler Research and Technology, ILASS-Europe 2000, September 11-13, 2000

6-01 Ernst Hansen, Simulation Raises Separator Flow RateEngineering Talk, March 21, 2001

3-01 M. Sick, H. Keck, G. Vullioud, and E. Parkinson, New Challenges in Pelton Research

1-01 Y. Darsht, K. Kuvanov, A. Puzanov, I. Kholkin, FLOW-3D in Designing Hydraulic Systems for Heavy Machinery  (in Russian), SAPR I Grafika (CAD and Graphics), August 2000, pp. 50-55.

22-00 A. K. Temu, O. K. Sønju and E. W. M. Hansen, Criteria for Minimum Particle Deposition onto a Cylinder in Crossflow, International Symposium on Multiphase Flow and Transport Phenomena, November 2000, Tekirova, Antalya, Turkey

21-00 Claus Maier, Stefan aus der Wiesche and Eberhard P. Hofer, Impact of Microdrops on Solid Surfaces for DNA-Synthesis, Department of Measurement, Control and Microtechnology, University of Ulm, Technical Proceedings of the 2000 International Conference on Modeling and Simulation of Microsystems, pp. 586-589

11-00 Thomas K. Thiis, A Comparison of Numerical Simulations and Full-scale Measurements of Snowdrifts around Buildings, Wind and Structures – ISSN: 1226-6116,Vol. 3, nr. 2 (2000), pp. 73-81

10-00 P.A. Sundsbo and B. Bang, Snow drift control in residential areas-Field measurements and numerical simulations, Fourth International Conference on Snow Engineering, pp. 377-382

9-00 Thomas K. Thiis and Christian Jaedicke, The Snowdrift Pattern Around Two Cubical Obstacles with Varying Distance—Measurement and Numerical Simulations, Snow Engineering, edited by Hjorth-Hansen, et al, Balkema, Rotterdam, 2000, pp.369-375.

8-00 Thomas K. Thiis and Christian Jaedicke, Changes in the Snowdrift Pattern Caused by a Building Extension—Investigations Through Scale Modeling and Numerical Simulations, Snow Engineering, edited by Hjorth-Hansen, et al, Balkema, Rotterdam, 2000, pp. 363-368

7-00 Bruce Letellier, Louis Restrepo, and Clinton Shaffer, Near-Field Dispersion of Fission Products in Complex Terrain Using a 3-D Turbulent Fluid-Flow Model, CCPS International Conference, San Francisco, CA, September 28-October 1, 1999

6-00 Bruce Letellier, Patrick McClure, and Louis Restrepo, Source-Term and Building-Wake Consequence Modeling for the GODIVA IV Reactor at Los Alamos National Laboratory, 1999 Safety Analysis Workshop, Portland, Oregon, June 13-18, 1999

11-99 Thomas K. Thiis and Yngvar Gjessing, Large-scale Measurements of Snowdrifts Around Flat-roofed and Single-pitch-roofed Buildings, Cold Regions Science and Technology 30, Narvik, Norway, May 17, 1999, pp. 175-181

3-99 A. A. Gubaidullin, Jr., T. N. Dinh, and B. R. Sehgal, Analysis of Natural Convection Heat Transfer and Flows in Internally Heated Stratified Liquid, accepted for publication 33rd Natl. Heat Transfer Conf. CD proceedings, Albuquerque, NM, August 15-17, 1999

20-98 Mark W. Silva, A Computational Study of Highly Viscous Impinging Jets, published by the Amarillo National Resource Center for Plutonium, ANRCP-1998-18, November 1998

17-98 P. A. Sundsbo and B. Bang, 1998, Calculation of Snowdrift Around Roadside Safety Barriers, Proc of the International Snow Science Workshop, Sept. 1998, Sunriver, Oregon, USA 279-283

11-98 P-A Sundsbo, Numerical simulations of wind deflection fins to control snow accumulation in building steps, Journal of Wind Engineering and Industrial Aerodynamics 74-76 (1998) 543-552

23-97  P.E. O’Donoghue, M.F. Kanninen, C.P. Leung, G. Demofonti, and S. Venzi, The development and validation of a dynamic propagation model for gas transmission pipelines, Intl J. Pres. Ves. & Piping 70 (1997) 11-25, P11 : S0308 – 0161 (96) 00012 – 9.

22-97  Christopher J. Matice, Simulation of High Speed Filling, Presented at High Speed Processing & Filling of Plastic Containers, SME, Chicago, Illinois, November 11, 1997.

12-97 B. Entezam and W. K. Van Moorhem, University of Utah, Salt Lake City, UT and J. Majdalani, Marquette University, Milwaukee, WI, Modeling of a Rijke-Tube Pulse Combustor Using Computational Fluid Dynamics, presented at 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Seattle, WA, July 6-9, 1997.

11-97 B. Entezam, Computational and Experimental Investigation of Unsteady Flowfield Inside the Rijke Tube, doctoral thesis submitted to University of Utah, Dept. Mechanical Engineering, Salt Lake City, UT, June 1997

2-97 K. Fujisaki, T. Ueyama, and K. Okazawa, Magnetohydrodynamic Calculation of In-Mold Electromagnetic Stirring, Nippon Steel Corp., IEEE Transactions on Magnetics, Vol. 33, No. 2, March 1997

1-97 P. A. Sundsbo, Four Layer Modelling and Numerical Simulations of Snow Drift, to be submitted to the Journal of Glaciology, 1997

23-96 Andy K Palmer, Computational Fluid Dynamic Software Comparison and Electrostatic Precipitator Modeling, Presented to the Faculty of California State University, Summer 1996

21-96 P. A. Sundsbo, Computer Simulation of Snow-Drift around Structures, Proceedings of the 4th Symposium on Building Physics in the Nordic Countries, Vol. 2, 533-539, Finland, 9-10 Sep. 1996

20-96 P. A. Sundsbo and E.W.M. Hansen, Modelling and Numerical Simulation of Snow-Drift around Snow Fences, Proceedings of the 3rd International Conference on Snow Engineering, Sendai, Japan, 26-31 May 1996

19-96 P. A. Sundsbo, Numerical Modelling and Simulation of Snow Accumulations around Porous FencesProceedings of the International Snow Science Workshop, Banff, Alberta, Canada, 6-10 Oct. 1996

18-96 T. Iverson, Editor, Applied Modelling and Simulation, Proceedings of the 38th SIMS Simulation Conference, Norwegian University of Science and Technology, Trondheim, Norway, June 11-13, 1996

17-96 C. L. Parish, Modeling Compressible Flow Through an Orifice Stack Using Numerical Methods, thesis submitted for M.S. Mech. Engineering, NM State University, Las Cruces, NM, December 1996

15-96 T. Wiik and R. K. Calay, A Study of Balcony on Flow-Field and Wind Loads for Low-Rise Buildings, Fourth Symposium on Building Physics in the Nordic Countries, Dipoli, Espoo, Finland, September 1996

14-96 T. Wiik, E.W.M. Hansen, The Assessment of Wind Loads on Roof Overhang of Low-Rise Buildings, Second International Symposium Wind Engineering, Fort Collins, CO, September 1996

13-96 T. Wiik, R. K. Calay, and A. Holdo, A Study of Effects of Eaves on Flow-Field and Wind Loads for Low-Rise Houses, Third International Colloquium on Bluff Body Aerodynamics and Applications, Blacksburg, Virginia, August 1996

11-96 Y. Miyamoto and M. Harada, A Flow Analysis accompanied by Formation of the Liquid Droplets shown with an Animation Display Technique, SEA Corporation, presented at Visualization Information Conference, Tokyo, Japan, July 17, 1996

8-96 J. Bakken, E. Naess, T. Engebretsen, and E. W. M. Hansen, Fluid Flow in Porous Media, proceedings of the 38th SIMS Simulations Conference, Norwegian Univ. of Science & Technology, Trondheim, Norway, June 11-13, 1996

7-96E. W. M. Hansen, Performance of Oil/Water Gravity Separators Imposed to Motion, proceedings of the 38th SIMS Simulations Conference, Norwegian Univ. of Science & Technology, Trondheim, Norway, June 11-13, 1996

8-95 J. J. Francis, Computational Hydrodynamic Study of Flow through a Vertical Slurry Heat Exchanger, NSF Summer Research Program, Dept. Mech. Engineering, Univ. of Nevada Las Vegas, August 9, 1995

4-94 J. L. Ditter and C. W. Hirt, A Scalable Model for Mixing Vessels, Flow Science report, FSI-94-00-1, presented at the 1994 ASME Fluids Engineering Summer Meeting, Incline Village, NV, June 1994

3-94 A. Nielsen, B. Bang, P. A. Sundsbo and T. Wiik, Computer Simulation of Windspeed, Windpressure and Snow Accumulation around Buildings (SNOW-SIM), 1st International Conference on HVAC in Cold Climate, Rovaniemi, Finland, from Narvik Institute of Technology, Narvik, Norway, March 1994

2-94 J. M. Sicilian, Addition of an Extended Bubble Model to FLOW-3D, Flow Science report, FSI-94-58-1, March 1994

1-94 T. Hong, C. Zhu, P. Cal and L-S Fan, Numerical Modeling of Basic Modes of Formation and Interactions of Bubbles in Liquids, Dept. Chem. Engineering, Ohio State University, Columbus, OH 43210, March 1994

14-93 J. L. Ditter and C. W. Hirt, A Scalable Model for Stir Tanks, Flow Science Technical Note #38, December 1993 (FSI-93-TN38)

13-93 J. Partinen, N. Saluja and J. K. Kirtley, Jr., Experimental and Computational Investigation of Rotary Electromagnetic Stirring in a Woods Metal System, Dept. of Math, Science and Engr. and Dept. of Electrical Engr. and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

12-93 J. Partinen, N. Saluja and J. K. Kirtley, Jr., Modeling of Surface Deformation in an Electromagnetically Stirred Metallic Melt, Dept. of Math, Science, and Engr. and Dept. of Electrical Engr. and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139-4307

10-93 C. Philippe, Summary Report on Test Calculations with FLOW-3D/CAST93, (coupled-rigid-body dynamics model), ESTEC, Noordwijk, The Netherlands, September 17, 1993

5-93 J. M. Sicilian, J. L. Ditter and C. L. Bronisz, FLOW-3D Analyses of CFD Triathlon Benchmark, Flow Science report, presented at the ASME Fluids Engineering Conference, Washington DC, June 20-24, 1993

4-93 T. Wiik, Ventilation of the Attic due to Wind Loads on Low-Rise Buildings, paper for 3rd Symposium of Building Physics in Nordic Countries, Narvik Institute of Technology, Narvik, Norway, summer 1993

3-93 E. W. M. Hansen, Modelling and Simulation of Separation Effects and Fluid Flow Behaviour in Process-Units, SIMS’93 – 35th Simulation Conference, Kongsberg, Norway, June 9-11, 1993

2-93 M. A. Briones, R. S. Brodsky and J. J. Chalmers, Computer Simulation of the Rupture of a Gas Bubble at a Gas-Liquid Interface and its Implications in Animal Cell Damage, Dept. Chemical Engineering, Ohio State University, Manuscript No. RB68, April 1993

11-92 G. Trapaga, E. F. Matthys, J. J. Valencia and J. Szekely, Fluid Flow, Heat Transfer, and Solidification of Molten Metal Droplets Impinging on Substrates: Comparison of Numerical and Experimental Results, Metallurgical Transactions B, Vol. 23B, pp. 701-718, December 1992

10-92 J. B. Dalin, J. M. Le Guilly, P. Le Roy and E. Maas, Numerical Simulations Applied to the Production of Automotive Foundry Components, Numerical Methods in Industrial Forming Processes, Wood & Zienkiewicz (eds), Balkema, Rotterdam, 1992

5-92 C. W. Hirt, Volume-Fraction Techniques: Powerful Tools for Flow Modeling, Flow Science report (FSI-92-00-02), presented at the Computational Wind Engineering Conference, University of Tokyo, August 1992

3-92 C. L. Bronisz and C.W. Hirt, Lubricant Flow in a Rotary Lip Seal, Flow Science Technical Note #33, February 1992 (FSI-92-TN33)

16-91 A. Nielsen, SNOW-SIM – Computer Model for Simulation of Wind and Snow Loads on Buildings and Structures, Building Science, Narvik Institute of Technology, Narvik, Norway, (not dated)

15-91 E. W. M. Hansen, H. Heitmann, B. Laska, A. Ellingsen, O. Ostby, T. B. Morrow and F. T. Dodge, Fluid Flow Modelling of Gravity Separators, SINTEF, Norway and Southwest Research Institute, Texas, Elsevier Science Publishers, 1991

14-91 E. W. M. Hansen, H. Heitmann, B. Laska and M. Loes, Numerical Simulation of Fluid Flow Behaviour Inside, and Redesign of a Field Separator, SINTEF, Norway and STATOIL, Norway (not dated)

13-91 G. Trapaga and J. Szekely, Mathematical Modeling of the Isothermal Impingement of Liquid Droplets in Spraying Processes, Metallurgical Transactions, Vol. 22B, pp. 901-914, December 1991

11-91 N. Saluja and J. Szekely, Velocity Fields and Free Surface Phenomena in an Inductively Stirred Mercury Pool, European Journal of Mechanics, B/Fluids, Vol. 10, No. 5, pp. 563-572, Oct. 1991

4-90 J. M. Sicilian, A Note on Implementing Specified Velocities and Momentum Sources, Flow Science report, September 1990 (FSI-90-00-5)

13-90 P. Jonsson, N. Saluja, O. J. Ilegbusi, and J. Szekely, Fluid Flow Phenomena in the Filling of Cylindrical Molds Using Newtonian (Turbulent) and Non-Newtonian (Power Law) Fluids, submitted to Trans. of the American Foundrymen’s Soc., June 1990

12-90 N. Saluja, O. J. Ilegbusi, and J. Szekely, On the Computation of the Velocity Fields and the Dynamic Free Surface Generated in a Liquid Metal Column by a Rotating Magnetic Field, submitted to J. Fluid Mech., July 1990

7-90 C. L. Bronisz and C. W. Hirt, Modeling Unsaturated Flow in Porous Media: A FLOW-3D Extension, Flow Science report, July 1990 (FSI-90-48-2)

5-90 C. L. Bronisz and C. W. Hirt, Hydrodynamic Ram Simulations Using FLOW-3D, Flow Science report, May 1990 (FSI-90-49-1)

3-90 C. W. Hirt, Turbojet Plume Flow Analysis, Flow Science report, February 1990 (FSI-90-45-1)

5-89 K. S. Eckhoff and E. W. M. Hansen, Mathematical Modelling and Numerical Investigation of Separation in Two-Phase Rotating Flow, SINTEF-Foundation for Scientific and Industrial Research at the Norwegian Institute of Technology, Trondheim, Norway, Report No. OR 22 1907.00.01.89, 29 April 1989

2-89 J. M. Sicilian and J. R. Tegart, Comparisons of FLOW-3D Calculations with Very Large Amplitude Slosh Data, presented at the Symposium on Computational Experiments, PVP ASME Conference, Honolulu, HI, July 22-27, 1989

2-88 J. M. Sicilian and C. W. Hirt, AFT Field Joint: CFD Analysis Using the FLOW-3D Program, in Redesigned Solid Rocket Motor Circumferential Flow Technical Interchange Meeting Final Report, NASA-TWR-17788, February 1988

14-87 C. J. Freitas, S. T. Green, and T. B. Morrow, Fluid Dynamics Associated with Ductile Pipeline Fracture, Southwest Research Institute report presented at ASME Winter Annual Meeting, Boston, MA, December 1987

13-87 J. Sicilian, The FLOW-3D Model for Thermal Conduction in Solids, Flow Science report, Dec. 1987 (FSI-87-00-4)

7-87 C.W. Hirt, Vectored Nozzle Flow with Turbulence Modeling, Flow Science report, Sept. 1987 (FSI-87-29-1)

4-87 J.M. Sicilian, C.W. Hirt, and R. P. Harper, FLOW-3D: Computational Modeling Power for Scientists and Engineers, Flow Science report, 1987 (FSI-87-00-1)

3-86 J. M. Sicilian, Natural-Convection Heat-Transfer Analysis, Flow Science Technical Note #4, June 1986 (FSI-86-00-TN4)

2-86 J. Navickas and C. R. Cross, Air Circulation Characteristics and Convective Losses in a 5-MW Molten Salt Cavity Solar Receiver, ASME 8th Annual Conference on Solar Engineering, Anaheim, California, April 13-16, 1986

5-85 C. W. Hirt and R. P. Harper, Calculations of Vent Clearing in a Chemical Process Tank, Flow Science report, December 1985 (FSI-85-28-1)

2-84 Applications of SOLA-3D/FSI to Fluid Slosh, Flow Science report, May 1984

Metal Casting Bibliography

다음은 금속 주조 참고 문헌의 기술 문서 모음입니다. 
이 모든 논문은 FLOW-3D  CAST  결과를 포함하고 있습니다. FLOW-3D  CAST 를 사용하여 금속 주조 산업의 어플리케이션을 성공적으로 시뮬레이션  하는 방법에 대해 자세히 알아보십시오.

2021년 8월 26일 Update

54-21   K. Munpakdee, P. Ninpetch, S. Otarawanna, R. Canyook, P. Kowitwarangkul, Effect of feed sprue size on porosity defects in Platinum 950 centrifugal investment casting via numerical modelling, IOP Conference Series: Materials Science and Engineering, 11th TSME-International Conference on Mechanical Engineering, Ubon Ratchathani, Thailand, December 1-4, 2020, 1137; 012021, 2021. doi.org/10.1088/1757-899X/1137/1/012021/

44-21   Yunxiang Zhang, Haidong Zhao, Fei Liu, Microstructure characteristics and mechanical properties improvement of gravity cast Al-7Si-0.4Mg alloys with Zr additions, Materials Characterization, 176; 111117, 2021. doi.org/10.1016/j.matchar.2021.111117

05-21   Heqian Song, Lunyong Zhang, Fuyang Cao, Xu Gu, Jianfei Sun, Oxide bifilm defects in aluminum alloy castings, Materials Letters, 285; 129089, 2021. doi.org/10.1016/j.matlet.2020.129089

127-20   Eric Riedel, Niklas Bergedieck, Stefan Scharf, CFD simulation based investigation of cavitation cynamics during high intensity ultrasonic treatment of A356, Metals, 10.11; 1529, 2020. doi.org/10.3390/met10111529

86-20       Malte Leonhard, Matthias Todte, Jörg Schäfer, Realistic simulation of the combustion of exothermic feeders, Modern Casting, August 2020; pp. 35-40, 2020. (See also 58-19)

52-20       Mingfan Qi, Yonglin Kang, Jingyuan Li, Zhumabieke Wulabieke, Yuzhao Xu, Yangde Li, Aisen Liu, Junchen Chen, Microstructures refinement and mechanical properties enhancement of aluminum and magnesium alloys by combining distributary-confluence channel process for semisolid slurry preparation with high pressure die-casting, Journal of Materials Processing Technology, 285; 116800, 2020. doi.org/10.1016/j.jmatprotec.2020.116800

46-20       Yasushi Iwata, Shuxin Dong, Yoshio Sugiyama, Jun Yaokawa, Melt permeability changes during solidification of aluminum alloys and application to feeding simulation for die castings, Materials Transactions, 61.7; pp. 1381-1386, 2020. doi.org/10.2320/matertrans.F-M2020822

45-20       Daniel Bernal, Xabier Chamorro, Iñaki Hurtado, Iñaki Madariaga, Effect of boron content and cooling rate on the microstructure and boride formation of β-solidifying γ-TiAl TNM alloy, Metals, 10.5; 698, 2020. doi.org/10.3390/met10050698

33-20     Eric Riedel, Martin Liepe Stefan Scharf, Simulation of ultrasonic induced cavitation and acoustic streaming in liquid and solidifying aluminum, Metals, 10.4; 476, 2020. doi.org/10.3390/met10040476

20-20   Wu Yue, Li Zhuo and Lu Rong, Simulation and visual tester verification of solid propellant slurry vacuum plate casting, Propellants, Explosives, Pyrotechnics, 2020. doi.org/10.1002/prep.201900411

17-20   C.A. Jones, M.R. Jolly, A.E.W. Jarfors and M. Irwin, An experimental characterization of thermophysical properties of a porous ceramic shell used in the investment casting process, Supplimental Proceedings, pp. 1095-1105, TMS 2020 149th Annual Meeting and Exhibition, San Diego, CA, February 23-27, 2020. doi.org/10.1007/978-3-030-36296-6_102

12-20   Franz Josef Feikus, Paul Bernsteiner, Ricardo Fernández Gutiérrez and Michal Luszczak , Further development of electric motor housings, MTZ Worldwide, 81, pp. 38-43, 2020. doi.org/10.1007/s38313-019-0176-z

09-20   Mingfan Qi, Yonglin Kang, Yuzhao Xu, Zhumabieke Wulabieke and Jingyuan Li, A novel rheological high pressure die-casting process for preparing large thin-walled Al–Si–Fe–Mg–Sr alloy with high heat conductivity, high plasticity and medium strength, Materials Science and Engineering: A, 776, art. no. 139040, 2020. doi.org/10.1016/j.msea.2020.139040

07-20   Stefan Heugenhauser, Erhard Kaschnitz and Peter Schumacher, Development of an aluminum compound casting process – Experiments and numerical simulations, Journal of Materials Processing Technology, 279, art. no. 116578, 2020. doi.org/10.1016/j.jmatprotec.2019.116578

05-20   Michail Papanikolaou, Emanuele Pagone, Mark Jolly and Konstantinos Salonitis, Numerical simulation and evaluation of Campbell running and gating systems, Metals, 10.1, art. no. 68, 2020. doi.org/10.3390/met10010068

102-19   Ferencz Peti and Gabriela Strnad, The effect of squeeze pin dimension and operational parameters on material homogeneity of aluminium high pressure die cast parts, Acta Marisiensis. Seria Technologica, 16.2, 2019. doi.org/0.2478/amset-2019-0010

94-19   E. Riedel, I. Horn, N. Stein, H. Stein, R. Bahr, and S. Scharf, Ultrasonic treatment: a clean technology that supports sustainability incasting processes, Procedia, 26th CIRP Life Cycle Engineering (LCE) Conference, Indianapolis, Indiana, USA, May 7-9, 2019.

93-19   Adrian V. Catalina, Liping Xue, Charles A. Monroe, Robin D. Foley, and John A. Griffin, Modeling and Simulation of Microstructure and Mechanical Properties of AlSi- and AlCu-based Alloys, Transactions, 123rd Metalcasting Congress, Atlanta, GA, USA, April 27-30, 2019.

84-19   Arun Prabhakar, Michail Papanikolaou, Konstantinos Salonitis, and Mark Jolly, Sand casting of sheet lead: numerical simulation of metal flow and solidification, The International Journal of Advanced Manufacturing Technology, pp. 1-13, 2019. doi:10.1007/s00170-019-04522-3

72-19   Santosh Reddy Sama, Eric Macdonald, Robert Voigt, and Guha Manogharan, Measurement of metal velocity in sand casting during mold filling, Metals, 9:1079, 2019. doi:10.3390/met9101079

71-19   Sebastian Findeisen, Robin Van Der Auwera, Michael Heuser, and Franz-Josef Wöstmann, Gießtechnische Fertigung von E-Motorengehäusen mit interner Kühling (Casting production of electric motor housings with internal cooling), Geisserei, 106, pp. 72-78, 2019 (in German).

58-19     Von Malte Leonhard, Matthias Todte, and Jörg Schäffer, Realistic simulation of the combustion of exothermic feeders, Casting, No. 2, pp. 28-32, 2019. In English and German.

52-19     S. Lakkum and P. Kowitwarangkul, Numerical investigations on the effect of gas flow rate in the gas stirred ladle with dual plugs, International Conference on Materials Research and Innovation (ICMARI), Bangkok, Thailand, December 17-21, 2018. IOP Conference Series: Materials Science and Engineering, Vol. 526, 2019. doi: 10.1088/1757-899X/526/1/012028

47-19     Bing Zhou, Shuai Lu, Kaile Xu, Chun Xu, and Zhanyong Wang, Microstructure and simulation of semisolid aluminum alloy castings in the process of stirring integrated transfer-heat (SIT) with water cooling, International Journal of Metalcasting, Online edition, pp. 1-13, 2019. doi: 10.1007/s40962-019-00357-6

31-19     Zihao Yuan, Zhipeng Guo, and S.M. Xiong, Skin layer of A380 aluminium alloy die castings and its blistering during solution treatment, Journal of Materials Science & Technology, Vol. 35, No. 9, pp. 1906-1916, 2019. doi: 10.1016/j.jmst.2019.05.011

25-19     Stefano Mascetti, Raul Pirovano, and Giulio Timelli, Interazione metallo liquido/stampo: Il fenomeno della metallizzazione, La Metallurgia Italiana, No. 4, pp. 44-50, 2019. In Italian.

20-19     Fu-Yuan Hsu, Campbellology for runner system design, Shape Casting: The Minerals, Metals & Materials Series, pp. 187-199, 2019. doi: 10.1007/978-3-030-06034-3_19

19-19     Chengcheng Lyu, Michail Papanikolaou, and Mark Jolly, Numerical process modelling and simulation of Campbell running systems designs, Shape Casting: The Minerals, Metals & Materials Series, pp. 53-64, 2019. doi: 10.1007/978-3-030-06034-3_5

18-19     Adrian V. Catalina, Liping Xue, and Charles Monroe, A solidification model with application to AlSi-based alloys, Shape Casting: The Minerals, Metals & Materials Series, pp. 201-213, 2019. doi: 10.1007/978-3-030-06034-3_20

17-19     Fu-Yuan Hsu and Yu-Hung Chen, The validation of feeder modeling for ductile iron castings, Shape Casting: The Minerals, Metals & Materials Series, pp. 227-238, 2019. doi: 10.1007/978-3-030-06034-3_22

04-19   Santosh Reddy Sama, Tony Badamo, Paul Lynch and Guha Manogharan, Novel sprue designs in metal casting via 3D sand-printing, Additive Manufacturing, Vol. 25, pp. 563-578, 2019. doi: 10.1016/j.addma.2018.12.009

02-19   Jingying Sun, Qichi Le, Li Fu, Jing Bai, Johannes Tretter, Klaus Herbold and Hongwei Huo, Gas entrainment behavior of aluminum alloy engine crankcases during the low-pressure-die-casting-process, Journal of Materials Processing Technology, Vol. 266, pp. 274-282, 2019. doi: 10.1016/j.jmatprotec.2018.11.016

82-18   Xu Zhao, Ping Wang, Tao Li, Bo-yu Zhang, Peng Wang, Guan-zhou Wang and Shi-qi Lu, Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation, China Foundry, Vol. 15, no. 6, pp. 436-442, 2018. doi: 10.1007/s41230-018-8052-z

80-18   Michail Papanikolaou, Emanuele Pagone, Konstantinos Salonitis, Mark Jolly and Charalampos Makatsoris, A computational framework towards energy efficient casting processes, Sustainable Design and Manufacturing 2018: Proceedings of the 5th International Conference on Sustainable Design and Manufacturing (KES-SDM-18), Gold Coast, Australia, June 24-26 2018, SIST 130, pp. 263-276, 2019. doi: 10.1007/978-3-030-04290-5_27

64-18   Vasilios Fourlakidis, Ilia Belov and Attila Diószegi, Strength prediction for pearlitic lamellar graphite iron: Model validation, Metals, Vol. 8, No. 9, 2018. doi: 10.3390/met8090684

51-18   Xue-feng Zhu, Bao-yi Yu, Li Zheng, Bo-ning Yu, Qiang Li, Shu-ning Lü and Hao Zhang, Influence of pouring methods on filling process, microstructure and mechanical properties of AZ91 Mg alloy pipe by horizontal centrifugal casting, China Foundry, vol. 15, no. 3, pp.196-202, 2018. doi: 10.1007/s41230-018-7256-6

47-18   Santosh Reddy Sama, Jiayi Wang and Guha Manogharan, Non-conventional mold design for metal casting using 3D sand-printing, Journal of Manufacturing Processes, vol. 34-B, pp. 765-775, 2018. doi: 10.1016/j.jmapro.2018.03.049

42-18   M. Koru and O. Serçe, The Effects of Thermal and Dynamical Parameters and Vacuum Application on Porosity in High-Pressure Die Casting of A383 Al-Alloy, International Journal of Metalcasting, pp. 1-17, 2018. /doi: 10.1007/s40962-018-0214-7

41-18   Abhilash Viswanath, S. Savithri, U.T.S. Pillai, Similitude analysis on flow characteristics of water, A356 and AM50 alloys during LPC process, Journal of Materials Processing Technology, vol. 257, pp. 270-277, 2018. doi: 10.1016/j.jmatprotec.2018.02.031

29-18   Seyboldt, Christoph and Liewald, Mathias, Investigation on thixojoining to produce hybrid components with intermetallic phase, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi: 10.1063/1.5034992

28-18   Laura Schomer, Mathias Liewald and Kim Rouven Riedmüller, Simulation of the infiltration process of a ceramic open-pore body with a metal alloy in semi-solid state to design the manufacturing of interpenetrating phase composites, AIP Conference Proceedings, vol. 1960, no. 1, 2018. doi: 10.1063/1.5034991

41-17   Y. N. Wu et al., Numerical Simulation on Filling Optimization of Copper Rotor for High Efficient Electric Motors in Die Casting Process, Materials Science Forum, Vol. 898, pp. 1163-1170, 2017.

12-17   A.M.  Zarubin and O.A. Zarubina, Controlling the flow rate of melt in gravity die casting of aluminum alloys, Liteynoe Proizvodstvo (Casting Manufacturing), pp 16-20, 6, 2017. In Russian.

10-17   A.Y. Korotchenko, Y.V. Golenkov, M.V. Tverskoy and D.E. Khilkov, Simulation of the Flow of Metal Mixtures in the Mold, Liteynoe Proizvodstvo (Casting Manufacturing), pp 18-22, 5, 2017. In Russian.

08-17   Morteza Morakabian Esfahani, Esmaeil Hajjari, Ali Farzadi and Seyed Reza Alavi Zaree, Prediction of the contact time through modeling of heat transfer and fluid flow in compound casting process of Al/Mg light metals, Journal of Materials Research, © Materials Research Society 2017

04-17   Huihui Liu, Xiongwei He and Peng Guo, Numerical simulation on semi-solid die-casting of magnesium matrix composite based on orthogonal experiment, AIP Conference Proceedings 1829, 020037 (2017); doi: 10.1063/1.4979769.

100-16  Robert Watson, New numerical techniques to quantify and predict the effect of entrainment defects, applied to high pressure die casting, PhD Thesis: University of Birmingham, 2016.

88-16   M.C. Carter, T. Kauffung, L. Weyenberg and C. Peters, Low Pressure Die Casting Simulation Discovery through Short Shot, Cast Expo & Metal Casting Congress, April 16-19, 2016, Minneapolis, MN, Copyright 2016 American Foundry Society.

61-16   M. Koru and O. Serçe, Experimental and numerical determination of casting mold interfacial heat transfer coefficient in the high pressure die casting of a 360 aluminum alloy, ACTA PHYSICA POLONICA A, Vol. 129 (2016)

59-16   R. Pirovano and S. Mascetti, Tracking of collapsed bubbles during a filling simulation, La Metallurgia Italiana – n. 6 2016

43-16   Kevin Lee, Understanding shell cracking during de-wax process in investment casting, Ph.D Thesis: University of Birmingham, School of Engineering, Department of Chemical Engineering, 2016.

35-16   Konstantinos Salonitis, Mark Jolly, Binxu Zeng, and Hamid Mehrabi, Improvements in energy consumption and environmental impact by novel single shot melting process for casting, Journal of Cleaner Production, doi:10.1016/j.jclepro.2016.06.165, Open Access funded by Engineering and Physical Sciences Research Council, June 29, 2016

20-16   Fu-Yuan Hsu, Bifilm Defect Formation in Hydraulic Jump of Liquid Aluminum, Metallurgical and Materials Transactions B, 2016, Band: 47, Heft 3, 1634-1648.

15-16   Mingfan Qia, Yonglin Kanga, Bing Zhoua, Wanneng Liaoa, Guoming Zhua, Yangde Lib,and Weirong Li, A forced convection stirring process for Rheo-HPDC aluminum and magnesium alloys, Journal of Materials Processing Technology 234 (2016) 353–367

112-15   José Miguel Gonçalves Ledo Belo da Costa, Optimization of filling systems for low pressure by FLOW-3D, Dissertação de mestrado integrado em Engenharia Mecânica, http://hdl.handle.net/1822/40132, 2015

89-15   B.W. Zhu, L.X. Li, X. Liu, L.Q. Zhang and R. Xu, Effect of Viscosity Measurement Method to Simulate High Pressure Die Casting of Thin-Wall AlSi10MnMg Alloy Castings, Journal of Materials Engineering and Performance, Published online, November 2015, DOI: 10.1007/s11665-015-1783-8, © ASM International.

88-15   Peng Zhang, Zhenming Li, Baoliang Liu, Wenjiang Ding and Liming Peng, Improved tensile properties of a new aluminum alloy for high pressure die casting, Materials Science & Engineering A651(2016)376–390, Available online, November 2015.

83-15   Zu-Qi Hu, Xin-Jian Zhang and Shu-Sen Wu, Microstructure, Mechanical Properties and Die-Filling Behavior of High-Performance Die-Cast Al–Mg–Si–Mn Alloy, Acta Metall. Sin. (Engl. Lett.), DOI 10.1007/s40195-015-0332-7, © The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015.

82-15   J. Müller, L. Xue, M.C. Carter, C. Thoma, M. Fehlbier and M. Todte, A Die Spray Cooling Model for Thermal Die Cycling Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

81-15   M. T. Murray, L.F. Hansen, L. Chilcott, E. Li and A.M. Murray, Case Studies in the Use of Simulation- Improved Yield and Reduced Time to Market, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

80-15   R. Bhola, S. Chandra and D. Souders, Predicting Castability of Thin-Walled Parts for the HPDC Process Using Simulations, 2015 Die Casting Congress & Exposition, Indianapolis, IN, October 2015

76-15   Prosenjit Das, Sudip K. Samanta, Shashank Tiwari and Pradip Dutta, Die Filling Behaviour of Semi Solid A356 Al Alloy Slurry During Rheo Pressure Die Casting, Transactions of the Indian Institute of Metals, pp 1-6, October 2015

74-15   Murat KORU and Orhan SERÇE, Yüksek Basınçlı Döküm Prosesinde Enjeksiyon Parametrelerine Bağlı Olarak Döküm Simülasyon, Cumhuriyet University Faculty of Science, Science Journal (CSJ), Vol. 36, No: 5 (2015) ISSN: 1300-1949, May 2015

69-15   A. Viswanath, S. Sivaraman, U. T. S. Pillai, Computer Simulation of Low Pressure Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 45-48, September 2015

68-15   J. Aneesh Kumar, K. Krishnakumar and S. Savithri, Computer Simulation of Centrifugal Casting Process Using FLOW-3D, Materials Science Forum, Vols. 830-831, pp. 53-56, September 2015

59-15   F. Hosseini Yekta and S. A. Sadough Vanini, Simulation of the flow of semi-solid steel alloy using an enhanced model, Metals and Materials International, August 2015.

44-15   Ulrich E. Klotz, Tiziana Heiss and Dario Tiberto, Platinum investment casting material properties, casting simulation and optimum process parameters, Jewelry Technology Forum 2015

41-15   M. Barkhudarov and R. Pirovano, Minimizing Air Entrainment in High Pressure Die Casting Shot Sleeves, GIFA 2015, Düsseldorf, Germany

40-15   M. Todte, A. Fent, and H. Lang, Simulation in support of the development of innovative processes in the casting industry, GIFA 2015, Düsseldorf, Germany

19-15   Bruce Morey, Virtual casting improves powertrain design, Automotive Engineering, SAE International, March 2015.

15-15   K.S. Oh, J.D. Lee, S.J. Kim and J.Y. Choi, Development of a large ingot continuous caster, Metall. Res. Technol. 112, 203 (2015) © EDP Sciences, 2015, DOI: 10.1051/metal/2015006, www.metallurgical-research.org

14-15   Tiziana Heiss, Ulrich E. Klotz and Dario Tiberto, Platinum Investment Casting, Part I: Simulation and Experimental Study of the Casting Process, Johnson Matthey Technol. Rev., 2015, 59, (2), 95, doi:10.1595/205651315×687399

138-14 Christopher Thoma, Wolfram Volk, Ruben Heid, Klaus Dilger, Gregor Banner and Harald Eibisch, Simulation-based prediction of the fracture elongation as a failure criterion for thin-walled high-pressure die casting components, International Journal of Metalcasting, Vol. 8, No. 4, pp. 47-54, 2014. doi:10.1007/BF03355594

107-14  Mehran Seyed Ahmadi, Dissolution of Si in Molten Al with Gas Injection, ProQuest Dissertations And Theses; Thesis (Ph.D.), University of Toronto (Canada), 2014; Publication Number: AAT 3637106; ISBN: 9781321195231; Source: Dissertation Abstracts International, Volume: 76-02(E), Section: B.; 191 p.

99-14   R. Bhola and S. Chandra, Predicting Castability for Thin-Walled HPDC Parts, Foundry Management Technology, December 2014

92-14   Warren Bishenden and Changhua Huang, Venting design and process optimization of die casting process for structural components; Part II: Venting design and process optimization, Die Casting Engineer, November 2014

90-14   Ken’ichi Kanazawa, Ken’ichi Yano, Jun’ichi Ogura, and Yasunori Nemoto, Optimum Runner Design for Die-Casting using CFD Simulations and Verification with Water-Model Experiments, Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, IMECE2014, November 14-20, 2014, Montreal, Quebec, Canada, IMECE2014-37419

89-14   P. Kapranos, C. Carney, A. Pola, and M. Jolly, Advanced Casting Methodologies: Investment Casting, Centrifugal Casting, Squeeze Casting, Metal Spinning, and Batch Casting, In Comprehensive Materials Processing; McGeough, J., Ed.; 2014, Elsevier Ltd., 2014; Vol. 5, pp 39–67.

77-14   Andrei Y. Korotchenko, Development of Scientific and Technological Approaches to Casting Net-Shaped Castings in Sand Molds Free of Shrinkage Defects and Hot Tears, Post-doctoral thesis: Russian State Technological University, 2014. In Russian.

69-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Predicting, Preventing Core Gas Defects in Steel Castings, Modern Casting, September 2014

68-14   L. Xue, M.C. Carter, A.V. Catalina, Z. Lin, C. Li, and C. Qiu, Numerical Simulation of Core Gas Defects in Steel Castings, Copyright 2014 American Foundry Society, 118th Metalcasting Congress, April 8 – 11, 2014, Schaumburg, IL

51-14   Jesus M. Blanco, Primitivo Carranza, Rafael Pintos, Pedro Arriaga, and Lakhdar Remaki, Identification of Defects Originated during the Filling of Cast Pieces through Particles Modelling, 11th World Congress on Computational Mechanics (WCCM XI), 5th European Conference on Computational Mechanics (ECCM V), 6th European Conference on Computational Fluid Dynamics (ECFD VI), E. Oñate, J. Oliver and A. Huerta (Eds)

47-14   B. Vijaya Ramnatha, C.Elanchezhiana, Vishal Chandrasekhar, A. Arun Kumarb, S. Mohamed Asif, G. Riyaz Mohamed, D. Vinodh Raj , C .Suresh Kumar, Analysis and Optimization of Gating System for Commutator End Bracket, Procedia Materials Science 6 ( 2014 ) 1312 – 1328, 3rd International Conference on Materials Processing and Characterisation (ICMPC 2014)

42-14  Bing Zhou, Yong-lin Kang, Guo-ming Zhu, Jun-zhen Gao, Ming-fan Qi, and Huan-huan Zhang, Forced convection rheoforming process for preparation of 7075 aluminum alloy semisolid slurry and its numerical simulation, Trans. Nonferrous Met. Soc. China 24(2014) 1109−1116

37-14    A. Karwinski, W. Lesniewski, P. Wieliczko, and M. Malysza, Casting of Titanium Alloys in Centrifugal Induction Furnaces, Archives of Metallurgy and Materials, Volume 59, Issue 1, DOI: 10.2478/amm-2014-0068, 2014.

26-14    Bing Zhou, Yonglin Kang, Mingfan Qi, Huanhuan Zhang and Guoming ZhuR-HPDC Process with Forced Convection Mixing Device for Automotive Part of A380 Aluminum Alloy, Materials 2014, 7, 3084-3105; doi:10.3390/ma7043084

20-14  Johannes Hartmann, Tobias Fiegl, Carolin Körner, Aluminum integral foams with tailored density profile by adapted blowing agents, Applied Physics A, 10.1007/s00339-014-8377-4, March 2014.

19-14    A.Y. Korotchenko, N.A. Nikiforova, E.D. Demjanov, N.C. Larichev, The Influence of the Filling Conditions on the Service Properties of the Part Side Frame, Russian Foundryman, 1 (January), pp 40-43, 2014. In Russian.

11-14 B. Fuchs and C. Körner, Mesh resolution consideration for the viability prediction of lost salt cores in the high pressure die casting process, Progress in Computational Fluid Dynamics, Vol. 14, No. 1, 2014, Copyright © 2014 Inderscience Enterprises Ltd.

08-14 FY Hsu, SW Wang, and HJ Lin, The External and Internal Shrinkages in Aluminum Gravity Castings, Shape Casting: 5th International Symposium 2014. Available online at Google Books

103-13  B. Fuchs, H. Eibisch and C. Körner, Core Viability Simulation for Salt Core Technology in High-Pressure Die Casting, International Journal of Metalcasting, July 2013, Volume 7, Issue 3, pp 39–45

94-13    Randall S. Fielding, J. Crapps, C. Unal, and J.R.Kennedy, Metallic Fuel Casting Development and Parameter Optimization Simulations, International Conference on Fast reators and Related Fuel Cycles (FR13), 4-7 March 2013, Paris France

90-13  A. Karwińskia, M. Małyszaa, A. Tchórza, A. Gila, B. Lipowska, Integration of Computer Tomography and Simulation Analysis in Evaluation of Quality of Ceramic-Carbon Bonded Foam Filter, Archives of Foundry Engineering, DOI: 10.2478/afe-2013-0084, Published quarterly as the organ of the Foundry Commission of the Polish Academy of Sciences, ISSN, (2299-2944), Volume 13, Issue 4/2013

88-13  Litie and Metallurgia (Casting and Metallurgy), 3 (72), 2013, N.V.Sletova, I.N.Volnov, S.P.Zadrutsky, V.A.Chaikin, Modeling of the Process of Removing Non-metallic Inclusions in Aluminum Alloys Using the FLOW-3D program, pp 138-140. In Russian.

85-13    Michał Szucki,Tomasz Goraj, Janusz Lelito, Józef S. Suchy, Numerical Analysis of Solid Particles Flow in Liquid Metal, XXXVII International Scientific Conference Foundryman’ Day 2013, Krakow, 28-29 November 2013

84-13  Körner, C., Schwankl, M., Himmler, D., Aluminum-Aluminum compound castings by electroless deposited zinc layers, Journal of Materials Processing Technology (2014), http://dx.doi.org/10.1016/j.jmatprotec.2013.12.01483-13.

77-13  Antonio Armillotta & Raffaello Baraggi & Simone Fasoli, SLM tooling for die casting with conformal cooling channels, The International Journal of Advanced Manufacturing Technology, DOI 10.1007/s00170-013-5523-7, December 2013.

64-13   Johannes Hartmann, Christina Blümel, Stefan Ernst, Tobias Fiegl, Karl-Ernst Wirth, Carolin Körner, Aluminum integral foam castings with microcellular cores by nano-functionalization, J Mater Sci, DOI: 10.1007/s10853-013-7668-z, September 2013.

46-13  Nicholas P. Orenstein, 3D Flow and Temperature Analysis of Filling a Plutonium Mold, LA-UR-13-25537, Approved for public release; distribution is unlimited. Los Alamos Annual Student Symposium 2013, 2013-07-24 (Rev.1)

42-13   Yang Yue, William D. Griffiths, and Nick R. Green, Modelling of the Effects of Entrainment Defects on Mechanical Properties in a Cast Al-Si-Mg Alloy, Materials Science Forum, 765, 225, 2013.

39-13  J. Crapps, D.S. DeCroix, J.D Galloway, D.A. Korzekwa, R. Aikin, R. Fielding, R. Kennedy, C. Unal, Separate effects identification via casting process modeling for experimental measurement of U-Pu-Zr alloys, Journal of Nuclear Materials, 15 July 2013.

35-13   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, © Die Casting Engineer, July 2013.

34-13  Martin Lagler, Use of Simulation to Predict the Viability of Salt Cores in the HPDC Process – Shot Curve as a Decisive Criterion, © Die Casting Engineer, July 2013.

24-13    I.N.Volnov, Optimizatsia Liteynoi Tekhnologii, (Casting Technology Optimization), Liteyshik Rossii (Russian Foundryman), 3, 2013, 27-29. In Russian

23-13  M.R. Barkhudarov, I.N. Volnov, Minimizatsia Zakhvata Vozdukha v Kamere Pressovania pri Litie pod Davleniem, (Minimization of Air Entrainment in the Shot Sleeve During High Pressure Die Casting), Liteyshik Rossii (Russian Foundryman), 3, 2013, 30-34. In Russian

09-13  M.C. Carter and L. Xue, Simulating the Parameters that Affect Core Gas Defects in Metal Castings, Copyright 2012 American Foundry Society, Presented at the 2013 CastExpo, St. Louis, Missouri, April 2013

08-13  C. Reilly, N.R. Green, M.R. Jolly, J.-C. Gebelin, The Modelling Of Oxide Film Entrainment In Casting Systems Using Computational Modelling, Applied Mathematical Modelling, http://dx.doi.org/10.1016/j.apm.2013.03.061, April 2013.

03-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part II. Model validation and parametric study, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.061.

02-13  Alexandre Reikher and Krishna M. Pillai, A fast simulation of transient metal flow and solidification in a narrow channel. Part I: Model development using lubrication approximation, Int. J. Heat Mass Transfer (2013), http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.12.060.

116-12  Jufu Jianga, Ying Wang, Gang Chena, Jun Liua, Yuanfa Li and Shoujing Luo, “Comparison of mechanical properties and microstructure of AZ91D alloy motorcycle wheels formed by die casting and double control forming, Materials & Design, Volume 40, September 2012, Pages 541-549.

107-12  F.K. Arslan, A.H. Hatman, S.Ö. Ertürk, E. Güner, B. Güner, An Evaluation for Fundamentals of Die Casting Materials Selection and Design, IMMC’16 International Metallurgy & Materials Congress, Istanbul, Turkey, 2012.

103-12 WU Shu-sen, ZHONG Gu, AN Ping, WAN Li, H. NAKAE, Microstructural characteristics of Al−20Si−2Cu−0.4Mg−1Ni alloy formed by rheo-squeeze casting after ultrasonic vibration treatment, Transactions of Nonferrous Metals Society of China, 22 (2012) 2863-2870, November 2012. Full paper available online.

109-12 Alexandre Reikher, Numerical Analysis of Die-Casting Process in Thin Cavities Using Lubrication Approximation, Ph.D. Thesis: The University of Wisconsin Milwaukee, Engineering Department (2012) Theses and Dissertations. Paper 65.

97-12 Hong Zhou and Li Heng Luo, Filling Pattern of Step Gating System in Lost Foam Casting Process and its Application, Advanced Materials Research, Volumes 602-604, Progress in Materials and Processes, 1916-1921, December 2012.

93-12  Liangchi Zhang, Chunliang Zhang, Jeng-Haur Horng and Zichen Chen, Functions of Step Gating System in the Lost Foam Casting Process, Advanced Materials Research, 591-593, 940, DOI: 10.4028/www.scientific.net/AMR.591-593.940, November 2012.

91-12  Hong Yan, Jian Bin Zhu, Ping Shan, Numerical Simulation on Rheo-Diecasting of Magnesium Matrix Composites, 10.4028/www.scientific.net/SSP.192-193.287, Solid State Phenomena, 192-193, 287.

89-12  Alexandre Reikher and Krishna M. Pillai, A Fast Numerical Simulation for Modeling Simultaneous Metal Flow and Solidification in Thin Cavities Using the Lubrication Approximation, Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 63:2, 75-100, November 2012.

82-12  Jufu Jiang, Gang Chen, Ying Wang, Zhiming Du, Weiwei Shan, and Yuanfa Li, Microstructure and mechanical properties of thin-wall and high-rib parts of AM60B Mg alloy formed by double control forming and die casting under the optimal conditions, Journal of Alloys and Compounds, http://dx.doi.org/10.1016/j.jallcom.2012.10.086, October 2012.

78-12   A. Pari, Real Life Problem Solving through Simulations in the Die Casting Industry – Case Studies, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

77-12  Y. Wang, K. Kabiri-Bamoradian and R.A. Miller, Rheological behavior models of metal matrix alloys in semi-solid casting process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

76-12  A. Reikher and H. Gerber, Analysis of Solidification Parameters During the Die Cast Process, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012, Indianapolis, IN.

75-12 R.A. Miller, Y. Wang and K. Kabiri-Bamoradian, Estimating Cavity Fill Time, 2012 Die Casting Congress & Exposition, © NADCA, October 8-10, 2012Indianapolis, IN.

65-12  X.H. Yang, T.J. Lu, T. Kim, Influence of non-conducting pore inclusions on phase change behavior of porous media with constant heat flux boundaryInternational Journal of Thermal Sciences, Available online 10 October 2012. Available online at SciVerse.

55-12  Hejun Li, Pengyun Wang, Lehua Qi, Hansong Zuo, Songyi Zhong, Xianghui Hou, 3D numerical simulation of successive deposition of uniform molten Al droplets on a moving substrate and experimental validation, Computational Materials Science, Volume 65, December 2012, Pages 291–301.

52-12 Hongbing Ji, Yixin Chen and Shengzhou Chen, Numerical Simulation of Inner-Outer Couple Cooling Slab Continuous Casting in the Filling Process, Advanced Materials Research (Volumes 557-559), Advanced Materials and Processes II, pp. 2257-2260, July 2012.

47-12    Petri Väyrynen, Lauri Holappa, and Seppo Louhenkilpi, Simulation of Melting of Alloying Materials in Steel Ladle, SCANMET IV – 4th International Conference on Process Development in Iron and Steelmaking, Lulea, Sweden, June 10-13, 2012.

46-12  Bin Zhang and Dave Salee, Metal Flow and Heat Transfer in Billet DC Casting Using Wagstaff® Optifill™ Metal Distribution Systems, 5th International Metal Quality Workshop, United Arab Emirates Dubai, March 18-22, 2012.

45-12 D.R. Gunasegaram, M. Givord, R.G. O’Donnell and B.R. Finnin, Improvements engineered in UTS and elongation of aluminum alloy high pressure die castings through the alteration of runner geometry and plunger velocity, Materials Science & Engineering.

44-12    Antoni Drys and Stefano Mascetti, Aluminum Casting Simulations, Desktop Engineering, September 2012

42-12   Huizhen Duan, Jiangnan Shen and Yanping Li, Comparative analysis of HPDC process of an auto part with ProCAST and FLOW-3D, Applied Mechanics and Materials Vols. 184-185 (2012) pp 90-94, Online available since 2012/Jun/14 at www.scientific.net, © (2012) Trans Tech Publications, Switzerland, doi:10.4028/www.scientific.net/AMM.184-185.90.

41-12    Deniece R. Korzekwa, Cameron M. Knapp, David A. Korzekwa, and John W. Gibbs, Co-Design – Fabrication of Unalloyed Plutonium, LA-UR-12-23441, MDI Summer Research Group Workshop Advanced Manufacturing, 2012-07-25/2012-07-26 (Los Alamos, New Mexico, United States)

29-12  Dario Tiberto and Ulrich E. Klotz, Computer simulation applied to jewellery casting: challenges, results and future possibilities, IOP Conf. Ser.: Mater. Sci. Eng.33 012008. Full paper available at IOP.

28-12  Y Yue and N R Green, Modelling of different entrainment mechanisms and their influences on the mechanical reliability of Al-Si castings, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33,012072.Full paper available at IOP.

27-12  E Kaschnitz, Numerical simulation of centrifugal casting of pipes, 2012 IOP Conf. Ser.: Mater. Sci. Eng. 33 012031, Issue 1. Full paper available at IOP.

15-12  C. Reilly, N.R Green, M.R. Jolly, The Present State Of Modeling Entrainment Defects In The Shape Casting Process, Applied Mathematical Modelling, Available online 27 April 2012, ISSN 0307-904X, 10.1016/j.apm.2012.04.032.

12-12   Andrei Starobin, Tony Hirt, Hubert Lang, and Matthias Todte, Core drying simulation and validation, International Foundry Research, GIESSEREIFORSCHUNG 64 (2012) No. 1, ISSN 0046-5933, pp 2-5

10-12  H. Vladimir Martínez and Marco F. Valencia (2012). Semisolid Processing of Al/β-SiC Composites by Mechanical Stirring Casting and High Pressure Die Casting, Recent Researches in Metallurgical Engineering – From Extraction to Forming, Dr Mohammad Nusheh (Ed.), ISBN: 978-953-51-0356-1, InTech

07-12     Amir H. G. Isfahani and James M. Brethour, Simulating Thermal Stresses and Cooling Deformations, Die Casting Engineer, March 2012

06-12   Shuisheng Xie, Youfeng He and Xujun Mi, Study on Semi-solid Magnesium Alloys Slurry Preparation and Continuous Roll-casting Process, Magnesium Alloys – Design, Processing and Properties, ISBN: 978-953-307-520-4, InTech.

04-12 J. Spangenberg, N. Roussel, J.H. Hattel, H. Stang, J. Skocek, M.R. Geiker, Flow induced particle migration in fresh concrete: Theoretical frame, numerical simulations and experimental results on model fluids, Cement and Concrete Research, http://dx.doi.org/10.1016/j.cemconres.2012.01.007, February 2012.

01-12   Lee, B., Baek, U., and Han, J., Optimization of Gating System Design for Die Casting of Thin Magnesium Alloy-Based Multi-Cavity LCD Housings, Journal of Materials Engineering and Performance, Springer New York, Issn: 1059-9495, 10.1007/s11665-011-0111-1, Volume 1 / 1992 – Volume 21 / 2012. Available online at Springer Link.

104-11  Fu-Yuan Hsu and Huey Jiuan Lin, Foam Filters Used in Gravity Casting, Metall and Materi Trans B (2011) 42: 1110. doi:10.1007/s11663-011-9548-8.

99-11    Eduardo Trejo, Centrifugal Casting of an Aluminium Alloy, thesis: Doctor of Philosophy, Metallurgy and Materials School of Engineering University of Birmingham, October 2011. Full paper available upon request.

93-11  Olga Kononova, Andrejs Krasnikovs ,Videvuds Lapsa,Jurijs Kalinka and Angelina Galushchak, Internal Structure Formation in High Strength Fiber Concrete during Casting, World Academy of Science, Engineering and Technology 59 2011

76-11  J. Hartmann, A. Trepper, and C. Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials 2011, Volume 13 (2011) No. 11, © Wiley-VCH

71-11  Fu-Yuan Hsu and Yao-Ming Yang Confluence Weld in an Aluminum Gravity Casting, Journal of Materials Processing Technology, Available online 23 November 2011, ISSN 0924-0136, 10.1016/j.jmatprotec.2011.11.006.

65-11     V.A. Chaikin, A.V. Chaikin, I.N.Volnov, A Study of the Process of Late Modification Using Simulation, in Zagotovitelnye Proizvodstva v Mashinostroenii, 10, 2011, 8-12. In Russian.

54-11  Ngadia Taha Niane and Jean-Pierre Michalet, Validation of Foundry Process for Aluminum Parts with FLOW-3D Software, Proceedings of the 2011 International Symposium on Liquid Metal Processing and Casting, 2011.

51-11    A. Reikher and H. Gerber, Calculation of the Die Cast parameters of the Thin Wall Aluminum Cast Part, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

50-11   Y. Wang, K. Kabiri-Bamoradian, and R.A. Miller, Runner design optimization based on CFD simulation for a die with multiple cavities, 2011 Die Casting Congress & Tabletop, Columbus, OH, September 19-21, 2011

48-11 A. Karwiński, W. Leśniewski, S. Pysz, P. Wieliczko, The technology of precision casting of titanium alloys by centrifugal process, Archives of Foundry Engineering, ISSN: 1897-3310), Volume 11, Issue 3/2011, 73-80, 2011.

46-11  Daniel Einsiedler, Entwicklung einer Simulationsmethodik zur Simulation von Strömungs- und Trocknungsvorgängen bei Kernfertigungsprozessen mittels CFD (Development of a simulation methodology for simulating flow and drying operations in core production processes using CFD), MSc thesis at Technical University of Aalen in Germany (Hochschule Aalen), 2011.

44-11  Bin Zhang and Craig Shaber, Aluminum Ingot Thermal Stress Development Modeling of the Wagstaff® EpsilonTM Rolling Ingot DC Casting System during the Start-up Phase, Materials Science Forum Vol. 693 (2011) pp 196-207, © 2011 Trans Tech Publications, July, 2011.

43-11 Vu Nguyen, Patrick Rohan, John Grandfield, Alex Levin, Kevin Naidoo, Kurt Oswald, Guillaume Girard, Ben Harker, and Joe Rea, Implementation of CASTfill low-dross pouring system for ingot casting, Materials Science Forum Vol. 693 (2011) pp 227-234, © 2011 Trans Tech Publications, July, 2011.

40-11  A. Starobin, D. Goettsch, M. Walker, D. Burch, Gas Pressure in Aluminum Block Water Jacket Cores, © 2011 American Foundry Society, International Journal of Metalcasting/Summer 2011

37-11 Ferencz Peti, Lucian Grama, Analyze of the Possible Causes of Porosity Type Defects in Aluminum High Pressure Diecast Parts, Scientific Bulletin of the Petru Maior University of Targu Mures, Vol. 8 (XXV) no. 1, 2011, ISSN 1841-9267

31-11  Johannes Hartmann, André Trepper, Carolin Körner, Aluminum Integral Foams with Near-Microcellular Structure, Advanced Engineering Materials, 13: n/a. doi: 10.1002/adem.201100035, June 2011.

27-11  A. Pari, Optimization of HPDC Process using Flow Simulation Case Studies, Die Casting Engineer, July 2011

26-11    A. Reikher, H. Gerber, Calculation of the Die Cast Parameters of the Thin Wall Aluminum Die Casting Part, Die Casting Engineer, July 2011

21-11 Thang Nguyen, Vu Nguyen, Morris Murray, Gary Savage, John Carrig, Modelling Die Filling in Ultra-Thin Aluminium Castings, Materials Science Forum (Volume 690), Light Metals Technology V, pp 107-111, 10.4028/www.scientific.net/MSF.690.107, June 2011.

19-11 Jon Spangenberg, Cem Celal Tutum, Jesper Henri Hattel, Nicolas Roussel, Metter Rica Geiker, Optimization of Casting Process Parameters for Homogeneous Aggregate Distribution in Self-Compacting Concrete: A Feasibility Study, © IEEE Congress on Evolutionary Computation, 2011, New Orleans, USA

16-11  A. Starobin, C.W. Hirt, H. Lang, and M. Todte, Core Drying Simulation and Validations, AFS Proceedings 2011, © American Foundry Society, Presented at the 115th Metalcasting Congress, Schaumburg, Illinois, April 2011.

15-11  J. J. Hernández-Ortega, R. Zamora, J. López, and F. Faura, Numerical Analysis of Air Pressure Effects on the Flow Pattern during the Filling of a Vertical Die Cavity, AIP Conf. Proc., Volume 1353, pp. 1238-1243, The 14th International Esaform Conference on Material Forming: Esaform 2011; doi:10.1063/1.3589686, May 2011. Available online.

10-11 Abbas A. Khalaf and Sumanth Shankar, Favorable Environment for Nondentric Morphology in Controlled Diffusion Solidification, DOI: 10.1007/s11661-011-0641-z, © The Minerals, Metals & Materials Society and ASM International 2011, Metallurgical and Materials Transactions A, March 11, 2011.

08-11 Hai Peng Li, Chun Yong Liang, Li Hui Wang, Hong Shui Wang, Numerical Simulation of Casting Process for Gray Iron Butterfly Valve, Advanced Materials Research, 189-193, 260, February 2011.

04-11  C.W. Hirt, Predicting Core Shooting, Drying and Defect Development, Foundry Management & Technology, January 2011.

76-10  Zhizhong Sun, Henry Hu, Alfred Yu, Numerical Simulation and Experimental Study of Squeeze Casting Magnesium Alloy AM50, Magnesium Technology 2010, 2010 TMS Annual Meeting & ExhibitionFebruary 14-18, 2010, Seattle, WA.

68-10  A. Reikher, H. Gerber, K.M. Pillai, T.-C. Jen, Natural Convection—An Overlooked Phenomenon of the Solidification Process, Die Casting Engineer, January 2010

54-10    Andrea Bernardoni, Andrea Borsi, Stefano Mascetti, Alessandro Incognito and Matteo Corrado, Fonderia Leonardo aveva ragione! L’enorme cavallo dedicato a Francesco Sforza era materialmente realizzabile, A&C – Analisis e Calcolo, Giugno 2010. In  Italian.

48-10  J. J. Hernández-Ortega, R. Zamora, J. Palacios, J. López and F. Faura, An Experimental and Numerical Study of Flow Patterns and Air Entrapment Phenomena During the Filling of a Vertical Die Cavity, J. Manuf. Sci. Eng., October 2010, Volume 132, Issue 5, 05101, doi:10.1115/1.4002535.

47-10  A.V. Chaikin, I.N. Volnov, and V.A. Chaikin, Development of Dispersible Mixed Inoculant Compositions Using the FLOW-3D Program, Liteinoe Proizvodstvo, October, 2010, in Russian.

42-10  H. Lakshmi, M.C. Vinay Kumar, Raghunath, P. Kumar, V. Ramanarayanan, K.S.S. Murthy, P. Dutta, Induction reheating of A356.2 aluminum alloy and thixocasting as automobile component, Transactions of Nonferrous Metals Society of China 20(20101) s961-s967.

41-10  Pamela J. Waterman, Understanding Core-Gas Defects, Desktop Engineering, October 2010. Available online at Desktop Engineering. Also published in the Foundry Trade Journal, November 2010.

39-10  Liu Zheng, Jia Yingying, Mao Pingli, Li Yang, Wang Feng, Wang Hong, Zhou Le, Visualization of Die Casting Magnesium Alloy Steering Bracket, Special Casting & Nonferrous Alloys, ISSN: 1001-2249, CN: 42-1148/TG, 2010-04. In Chinese.

37-10  Morris Murray, Lars Feldager Hansen, and Carl Reinhardt, I Have Defects – Now What, Die Casting Engineer, September 2010

36-10  Stefano Mascetti, Using Flow Analysis Software to Optimize Piston Velocity for an HPDC Process, Die Casting Engineer, September 2010. Also available in Italian: Ottimizzare la velocita del pistone in pressofusione.  A & C, Analisi e Calcolo, Anno XII, n. 42, Gennaio 2011, ISSN 1128-3874.

32-10  Guan Hai Yan, Sheng Dun Zhao, Zheng Hui Sha, Parameters Optimization of Semisolid Diecasting Process for Air-Conditioner’s Triple Valve in HPb59-1 Alloy, Advanced Materials Research (Volumes 129 – 131), Vol. Material and Manufacturing Technology, pp. 936-941, DOI: 10.4028/www.scientific.net/AMR.129-131.936, August 2010.

29-10 Zheng Peng, Xu Jun, Zhang Zhifeng, Bai Yuelong, and Shi Likai, Numerical Simulation of Filling of Rheo-diecasting A357 Aluminum Alloy, Special Casting & Nonferrous Alloys, DOI: CNKI:SUN:TZZZ.0.2010-01-024, 2010.

27-10 For an Aerospace Diecasting, Littler Uses Simulation to Reveal Defects, and Win a New Order, Foundry Management & Technology, July 2010

23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

15-10 David H. Kirkwood, Michel Suery, Plato Kapranos, Helen V. Atkinson, and Kenneth P. Young, Semi-solid Processing of Alloys, 2010, XII, 172 p. 103 illus., 19 in color., Hardcover ISBN: 978-3-642-00705-7.

09-10  Shannon Wetzel, Fullfilling Da Vinci’s Dream, Modern Casting, April 2010.

08-10 B.I. Semenov, K.M. Kushtarov, Semi-solid Manufacturing of Castings, New Industrial Technologies, Publication of Moscow State Technical University n.a. N.E. Bauman, 2009 (in Russian)

07-10 Carl Reilly, Development Of Quantitative Casting Quality Assessment Criteria Using Process Modelling, thesis: The University of Birmingham, March 2010 (Available upon request)

06-10 A. Pari, Optimization of HPDC Process using Flow Simulation – Case Studies, CastExpo ’10, NADCA, Orlando, Florida, March 2010

05-10 M.C. Carter, S. Palit, and M. Littler, Characterizing Flow Losses Occurring in Air Vents and Ejector Pins in High Pressure Die Castings, CastExpo ’10, NADCA, Orlando, Florida, March 2010

04-10 Pamela Waterman, Simulating Porosity Factors, Foundry Management Technology, March 2010, Article available at Foundry Management Technology

03-10 C. Reilly, M.R. Jolly, N.R. Green, JC Gebelin, Assessment of Casting Filling by Modeling Surface Entrainment Events Using CFD, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

02-10 P. Väyrynen, S. Wang, J. Laine and S.Louhenkilpi, Control of Fluid Flow, Heat Transfer and Inclusions in Continuous Casting – CFD and Neural Network Studies, 2010 TMS Annual Meeting & Exhibition (Jim Evans Honorary Symposium), Seattle, Washington, USA, February 14-18, 2010

60-09   Somlak Wannarumon, and Marco Actis Grande, Comparisons of Computer Fluid Dynamic Software Programs applied to Jewelry Investment Casting Process, World Academy of Science, Engineering and Technology 55 2009.

59-09   Marco Actis Grande and Somlak Wannarumon, Numerical Simulation of Investment Casting of Gold Jewelry: Experiments and Validations, World Academy of Science, Engineering and Technology, Vol:3 2009-07-24

56-09  Jozef Kasala, Ondrej Híreš, Rudolf Pernis, Start-up Phase Modeling of Semi Continuous Casting Process of Brass Billets, Metal 2009, 19.-21.5.2009

51-09  In-Ting Hong, Huan-Chien Tung, Chun-Hao Chiu and Hung-Shang Huang, Effect of Casting Parameters on Microstructure and Casting Quality of Si-Al Alloy for Vacuum Sputtering, China Steel Technical Report, No. 22, pp. 33-40, 2009.

42-09  P. Väyrynen, S. Wang, S. Louhenkilpi and L. Holappa, Modeling and Removal of Inclusions in Continuous Casting, Materials Science & Technology 2009 Conference & Exhibition, Pittsburgh, Pennsylvania, USA, October 25-29, 2009

41-09 O.Smirnov, P.Väyrynen, A.Kravchenko and S.Louhenkilpi, Modern Methods of Modeling Fluid Flow and Inclusions Motion in Tundish Bath – General View, Proceedings of Steelsim 2009 – 3rd International Conference on Simulation and Modelling of Metallurgical Processes in Steelmaking, Leoben, Austria, September 8-10, 2009

21-09 A. Pari, Case Studies – Optimization of HPDC Process Using Flow Simulation, Die Casting Engineer, July 2009

20-09 M. Sirvio, M. Wos, Casting directly from a computer model by using advanced simulation software, FLOW-3D Cast, Archives of Foundry Engineering Volume 9, Issue 1/2009, 79-82

19-09 Andrei Starobin, C.W. Hirt, D. Goettsch, A Model for Binder Gas Generation and Transport in Sand Cores and Molds, Modeling of Casting, Welding, and Solidification Processes XII, TMS (The Minerals, Metals & Minerals Society), June 2009

11-09 Michael Barkhudarov, Minimizing Air Entrainment in a Shot Sleeve during Slow-Shot Stage, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

10-09 A. Reikher, H. Gerber, Application of One-Dimensional Numerical Simulation to Optimize Process Parameters of a Thin-Wall Casting in High Pressure Die Casting, Die Casting Engineer (The North American Die Casting Association ISSN 0012-253X), May 2009

7-09 Andrei Starobin, Simulation of Core Gas Evolution and Flow, presented at the North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

6-09 A.Pari, Optimization of HPDC PROCESS: Case Studies, North American Die Casting Association – 113th Metalcasting Congress, April 7-10, 2009, Las Vegas, Nevada, USA

2-09 C. Reilly, N.R. Green and M.R. Jolly, Oxide Entrainment Structures in Horizontal Running Systems, TMS 2009, San Francisco, California, February 2009

30-08 I.N.Volnov, Computer Modeling of Casting of Pipe Fittings, © 2008, Pipe Fittings, 5 (38), 2008. Russian version

28-08 A.V.Chaikin, I.N.Volnov, V.A.Chaikin, Y.A.Ukhanov, N.R.Petrov, Analysis of the Efficiency of Alloy Modifiers Using Statistics and Modeling, © 2008, Liteyshik Rossii (Russian Foundryman), October, 2008

27-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Castings, American Foundry Society, © 2008, AFS Lost Foam Conference, Asheville, North Carolina, October, 2008

25-08 FMT Staff, Forecasting Core Gas Pressures with Computer Simulation, Foundry Management and Technology, October 28, 2008 © 2008 Penton Media, Inc. Online article

24-08 Core and Mold Gas Evolution, Foundry Management and Technology, January 24, 2008 (excerpted from the FM&T May 2007 issue) © 2008 Penton Media, Inc.

22-08 Mark Littler, Simulation Eliminates Die Casting Scrap, Modern Casting/September 2008

21-08 X. Chen, D. Penumadu, Permeability Measurement and Numerical Modeling for Refractory Porous Materials, AFS Transactions © 2008 American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

20-08 Rolf Krack, Using Solidification Simulations for Optimising Die Cooling Systems, FTJ July/August 2008

19-08 Mark Littler, Simulation Software Eliminates Die Casting Scrap, ECS Casting Innovations, July/August 2008

13-08 T. Yoshimura, K. Yano, T. Fukui, S. Yamamoto, S. Nishido, M. Watanabe and Y. Nemoto, Optimum Design of Die Casting Plunger Tip Considering Air Entrainment, Proceedings of 10th Asian Foundry Congress (AFC10), Nagoya, Japan, May 2008

08-08 Stephen Instone, Andreas Buchholz and Gerd-Ulrich Gruen, Inclusion Transport Phenomena in Casting Furnaces, Light Metals 2008, TMS (The Minerals, Metals & Materials Society), 2008

07-08 P. Scarber, Jr., H. Littleton, Simulating Macro-Porosity in Aluminum Lost Foam Casting, AFS Transactions 2008 © American Foundry Society, CastExpo ’08, Atlanta, Georgia, May 2008

06-08 A. Reikher, H. Gerber and A. Starobin, Multi-Stage Plunger Deceleration System, CastExpo ’08, NADCA, Atlanta, Georgia, May 2008

05-08 Amol Palekar, Andrei Starobin, Alexander Reikher, Die-casting end-of-fill and drop forge viscometer flow transients examined with a coupled-motion numerical model, 68th World Foundry Congress, Chennai, India, February 2008

03-08 Petri J. Väyrynen, Sami K. Vapalahti and Seppo J. Louhenkilpi, On Validation of Mathematical Fluid Flow Models for Simulation of Tundish Water Models and Industrial Examples, AISTech 2008, May 2008

53-07   A. Kermanpur, Sh. Mahmoudi and A. Hajipour, Three-dimensional Numerical Simulation of Metal Flow and Solidification in the Multi-cavity Casting Moulds of Automotive Components, International Journal of Iron & Steel Society of Iran, Article 2, Volume 4, Issue 1, Summer and Autumn 2007, pages 8-15.

36-07 Duque Mesa A. F., Herrera J., Cruz L.J., Fernández G.P. y Martínez H.V., Caracterización Defectológica de Piezas Fundida por Lost Foam Casting Mediante Simulación Numérica, 8° Congreso Iberoamericano de Ingenieria Mecanica, Cusco, Peru, 23 al 25 de Octubre de 2007 (in Spanish)

27-07 A.Y. Korotchenko, A.M. Zarubin, I.A.Korotchenko, Modeling of High Pressure Die Casting Filling, Russian Foundryman, December 2007, pp 15-19. (in Russian)

26-07 I.N. Volnov, Modeling of Casting Processes with Variable Geometry, Russian Foundryman, November 2007, pp 27-30. (in Russian)

16-07 P. Väyrynen, S. Vapalahti, S. Louhenkilpi, L. Chatburn, M. Clark, T. Wagner, Tundish Flow Model Tuning and Validation – Steady State and Transient Casting Situations, STEELSIM 2007, Graz/Seggau, Austria, September 12-14 2007

11-07 Marco Actis Grande, Computer Simulation of the Investment Casting Process – Widening of the Filling Step, Santa Fe Symposium on Jewelry Manufacturing Technology, May 2007

09-07 Alexandre Reikher and Michael Barkhudarov, Casting: An Analytical Approach, Springer, 1st edition, August 2007, Hardcover ISBN: 978-1-84628-849-4. U.S. Order Form; Europe Order Form.

07-07 I.N. Volnov, Casting Modeling Systems – Current State, Problems and Perspectives, (in Russian), Liteyshik Rossii (Russian Foundryman), June 2007

05-07 A.N. Turchin, D.G. Eskin, and L. Katgerman, Solidification under Forced-Flow Conditions in a Shallow Cavity, DOI: 10.1007/s1161-007-9183-9, © The Minerals, Metals & Materials Society and ASM International 2007

04-07 A.N. Turchin, M. Zuijderwijk, J. Pool, D.G. Eskin, and L. Katgerman, Feathery grain growth during solidification under forced flow conditions, © Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. DOI: 10.1016/j.actamat.2007.02.030, April 2007

03-07 S. Kuyucak, Sponsored Research – Clean Steel Casting Production—Evaluation of Laboratory Castings, Transactions of the American Foundry Society, Volume 115, 111th Metalcasting Congress, May 2007

02-07 Fu-Yuan Hsu, Mark R. Jolly and John Campbell, The Design of L-Shaped Runners for Gravity Casting, Shape Casting: 2nd International Symposium, Edited by Paul N. Crepeau, Murat Tiryakioðlu and John Campbell, TMS (The Minerals, Metals & Materials Society), Orlando, FL, Feb 2007

30-06 X.J. Liu, S.H. Bhavnani, R.A. Overfelt, Simulation of EPS foam decomposition in the lost foam casting process, Journal of Materials Processing Technology 182 (2007) 333–342, © 2006 Elsevier B.V. All rights reserved.

25-06 Michael Barkhudarov and Gengsheng Wei, Modeling Casting on the Move, Modern Casting, August 2006; Modeling of Casting Processes with Variable Geometry, Russian Foundryman, December 2007, pp 10-15. (in Russian)

24-06 P. Scarber, Jr. and C.E. Bates, Simulation of Core Gas Production During Mold Fill, © 2006 American Foundry Society

7-06 M.Y.Smirnov, Y.V.Golenkov, Manufacturing of Cast Iron Bath Tubs Castings using Vacuum-Process in Russia, Russia’s Foundryman, July 2006. In Russian.

6-06 M. Barkhudarov, and G. Wei, Modeling of the Coupled Motion of Rigid Bodies in Liquid Metal, Modeling of Casting, Welding and Advanced Solidification Processes – XI, May 28 – June 2, 2006, Opio, France, eds. Ch.-A. Gandin and M. Bellet, pp 71-78, 2006.

2-06 J.-C. Gebelin, M.R. Jolly and F.-Y. Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, Int. J. Cast Met. Res., 2006, Vol.19 No.1

1-06 Michael Barkhudarov, Using Simulation to Control Microporosity Reduces Die Iterations, Die Casting Engineer, January 2006, pp. 52-54

30-05 H. Xue, K. Kabiri-Bamoradian, R.A. Miller, Modeling Dynamic Cavity Pressure and Impact Spike in Die Casting, Cast Expo ’05, April 16-19, 2005

22-05 Blas Melissari & Stavros A. Argyropoulous, Measurement of Magnitude and Direction of Velocity in High-Temperature Liquid Metals; Part I, Mathematical Modeling, Metallurgical and Materials Transactions B, Volume 36B, October 2005, pp. 691-700

21-05 M.R. Jolly, State of the Art Review of Use of Modeling Software for Casting, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 337-346

20-05 J-C Gebelin, M.R. Jolly & F-Y Hsu, ‘Designing-in’ Controlled Filling Using Numerical Simulation for Gravity Sand Casting of Aluminium Alloys, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 355-364

19-05 F-Y Hsu, M.R. Jolly & J Campbell, Vortex Gate Design for Gravity Castings, TMS Annual Meeting, Shape Casting: The John Campbell Symposium, Eds, M. Tiryakioglu & P.N Crepeau, TMS, Warrendale, PA, ISBN 0-87339-583-2, Feb 2005, pp 73-82

18-05 M.R. Jolly, Modelling the Investment Casting Process: Problems and Successes, Japanese Foundry Society, JFS, Tokyo, Sept. 2005

13-05 Xiaogang Yang, Xiaobing Huang, Xiaojun Dai, John Campbell and Joe Tatler, Numerical Modelling of the Entrainment of Oxide Film Defects in Filling of Aluminium Alloy Castings, International Journal of Cast Metals Research, 17 (6), 2004, 321-331

10-05 Carlos Evaristo Esparza, Martha P. Guerro-Mata, Roger Z. Ríos-Mercado, Optimal Design of Gating Systems by Gradient Search Methods, Computational Materials Science, October 2005

6-05 Birgit Hummler-Schaufler, Fritz Hirning, Jurgen Schaufler, A World First for Hatz Diesel and Schaufler Tooling, Die Casting Engineer, May 2005, pp. 18-21

4-05 Rolf Krack, The W35 Topic—A World First, Die Casting World, March 2005, pp. 16-17

3-05 Joerg Frei, Casting Simulations Speed Up Development, Die Casting World, March 2005, p. 14

2-05 David Goettsch and Michael Barkhudarov, Analysis and Optimization of the Transient Stage of Stopper-Rod Pour, Shape Casting: The John Campbell Symposium, The Minerals, Metals & Materials Society, 2005

36-04  Ik Min Park, Il Dong Choi, Yong Ho Park, Development of Light-Weight Al Scroll Compressor for Car Air Conditioner, Materials Science Forum, Designing, Processing and Properties of Advanced Engineering Materials, 449-452, 149, March 2004.

32-04 D.H. Kirkwood and P.J Ward, Numerical Modelling of Semi-Solid Flow under Processing Conditions, steel research int. 75 (2004), No. 8/9

30-04 Haijing Mao, A Numerical Study of Externally Solidified Products in the Cold Chamber Die Casting Process, thesis: The Ohio State University, 2004 (Available upon request)

28-04 Z. Cao, Z. Yang, and X.L. Chen, Three-Dimensional Simulation of Transient GMA Weld Pool with Free Surface, Supplement to the Welding Journal, June 2004.

23-04 State of the Art Use of Computational Modelling in the Foundry Industry, 3rd International Conference Computational Modelling of Materials III, Sicily, Italy, June 2004, Advances in Science and Technology,  Eds P. Vincenzini & A Lami, Techna Group Srl, Italy, ISBN: 88-86538-46-4, Part B, pp 479-490

22-04 Jerry Fireman, Computer Simulation Helps Reduce Scrap, Die Casting Engineer, May 2004, pp. 46-49

21-04 Joerg Frei, Simulation—A Safe and Quick Way to Good Components, Aluminium World, Volume 3, Issue 2, pp. 42-43

20-04 J.-C. Gebelin, M.R. Jolly, A. M. Cendrowicz, J. Cirre and S. Blackburn, Simulation of Die Filling for the Wax Injection Process – Part II Numerical Simulation, Metallurgical and Materials Transactions, Volume 35B, August 2004

14-04 Sayavur I. Bakhtiyarov, Charles H. Sherwin, and Ruel A. Overfelt, Hot Distortion Studies In Phenolic Urethane Cold Box System, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

13-04 Sayavur I. Bakhtiyarov and Ruel A. Overfelt, First V-Process Casting of Magnesium, American Foundry Society, 108th Casting Congress, June 12-15, 2004, Rosemont, IL, USA

5-04 C. Schlumpberger & B. Hummler-Schaufler, Produktentwicklung auf hohem Niveau (Product Development on a High Level), Druckguss Praxis, January 2004, pp 39-42 (in German).

3-04 Charles Bates, Dealing with Defects, Foundry Management and Technology, February 2004, pp 23-25

1-04 Laihua Wang, Thang Nguyen, Gary Savage and Cameron Davidson, Thermal and Flow Modeling of Ladling and Injection in High Pressure Die Casting Process, International Journal of Cast Metals Research, vol. 16 No 4 2003, pp 409-417

2-03 J-C Gebelin, AM Cendrowicz, MR Jolly, Modeling of the Wax Injection Process for the Investment Casting Process – Prediction of Defects, presented at the Third International Conference on Computational Fluid Dynamics in the Minerals and Process Industries, December 10-12, 2003, Melbourne, Australia, pp. 415-420

29-03 C. W. Hirt, Modeling Shrinkage Induced Micro-porosity, Flow Science Technical Note (FSI-03-TN66)

28-03 Thixoforming at the University of Sheffield, Diecasting World, September 2003, pp 11-12

26-03 William Walkington, Gas Porosity-A Guide to Correcting the Problems, NADCA Publication: 516

22-03 G F Yao, C W Hirt, and M Barkhudarov, Development of a Numerical Approach for Simulation of Sand Blowing and Core Formation, in Modeling of Casting, Welding, and Advanced Solidification Process-X”, Ed. By Stefanescu et al pp. 633-639, 2003

21-03 E F Brush Jr, S P Midson, W G Walkington, D T Peters, J G Cowie, Porosity Control in Copper Rotor Die Castings, NADCA Indianapolis Convention Center, Indianapolis, IN September 15-18, 2003, T03-046

12-03 J-C Gebelin & M.R. Jolly, Modeling Filters in Light Alloy Casting Processes,  Trans AFS, 2002, 110, pp. 109-120

11-03 M.R. J