Lost Foam Casting Workspace, 소실모형주조

Lost Foam Casting Workspace Highlights, 소실모형주조

  • 최첨단 Foam 잔여물 추적
  • 진보된 Foam 증발 및 금속 유동 모델링
  • 응고, 다공성 및 표면 결함 분석

Workspace Overview

Lost Foam Casting Workspace(소실모형주조) 는 Lost Foam Casting에 필요한 충진, 응고 및 냉각 하위 프로세스를 시뮬레이션하는 모든 도구를 제공합니다. 각 하위 프로세스는 해석 엔지니어가 사용하기 쉬운 인터페이스를 제공하도록 맞춤화된 템플릿 디자인을 기반으로합니다.

Lost Foam Casting 의 결함은 충진 프로파일에서 추적할 수 있기 때문에  FLOW-3D  CAST 의 용탕유동 및 소실모형(foam)의 연소 시뮬레이션의 탁월한 정확도는 고품질의 Lost Foam Casting 주물을 생산하는 데 귀중한 통찰력을 제공합니다. 기포. 잔류물 형성과 같은 주입 결함은 최종 주조에서 정확하게 추적되고 처리됩니다.

Lost Foam Casting Workspace | FLOW-3D CAST
Lost Foam Residue Tracking – Filling Simulation | FLOW-3D CAST
Lost Foam Impeller Tree – Filling Simulation | FLOW-3D CAST
Lost Foam Residue Simulation | FLOW-3D CAST

PROCESSES MODELED

  • Filling
  • Solidification
  • Cooling

FLEXIBLE MESHING

  • Structured meshing for fast, easy generation
  • Multi-block meshing for localized accuracy control
  • Foam-conforming meshes for memory optimization

MOLD MODELING

  • Ceramic filters
  • Inserts – standard and porous
  • Air vents
  • Chills
  • Insulating and exothermic sleeves
  • Moving ladles and stoppers

ADVANCED SOLIDIFICATION

  • Chemistry-based solidification
  • Dimensionless Niyama criteria
  • Cooling rates, SDAS, grain size mechanical properties

FILLING ACCURACY

  • Foam/melt interface tracking
  • Gas/bubble entrapment
  • Automatic melt flow drag calculation in filters

DEFECT PREDICTION

  • Foam residue defect tracking
  • Cold shuts
  • Porosity prediction
  • Shrinkage
  • Hot spots

DYNAMIC SIMULATION CONTROL

  • Probe-controlled pouring control

COMPLETE ANALYSIS PACKAGE

  • Animations with multi-viewports – 3D, 2D, history plots, volume rendering
  • Porosity analysis tool
  • Side-by-side simulation results comparison
  • Sensors for measuring melt temperature, solid fraction
  • Particle tracers
  • Batch post-processing
  • Report generation

Investment Casting Workspace, 정밀주조

Workspace Highlights

  • 주조 패턴으로 쉘 생성을 능률적으로 수행할 수 있습니다.
  • 고급 방사 모델은 쉘 표면 사이의 완전한 복사 열 전달을 계산합니다.
  • 고급 모션 컨트롤에는 Bridgman, 레들 및 스핀 모션이 포함됩니다.

Workspace Overview

Investment Casting Workspace는 쉘 생성, 충전, 응고 (정적 또는 움직이는 Bridgman 쉘 금형) 및 냉각을 포함한 Investment Casting 주조의 모든 측면을 시뮬레이션하기 위한 사용하기 쉬운 도구를 Investment Casting 엔지니어에게 제공합니다.

쉘 몰드 생성 도구는 빠르고 신뢰할 수 있는 쉘 형상 생성을 위해 제공되며, radiative heat 및 view factor 모델은 쉘의 여러 부분 간의 복사 열전달(radiation heat transfer)을 정확하게 재현합니다. Directional solidification를 위해 쿨러 하부 단면과 분리된 뜨거운 상부 섹션이 있는 moving oven은 Bridgman 프로세스를 재현합니다. 용융 표면 진행 뿐만 아니라 몰드의 이동, 충진 양상 및 응고 패턴은 직관적인 후처리 도구를 통해 쉽게 평가되므로 공정 조건을 수정하여 주조 공정을 구현할 수 있습니다.

 프로세스 모델링

  • 유동
  • 고화 -고정 및 브리지먼
  • 냉각
 

쉘 몰드 생성

 

열 금형 모델링

  • 뷰 인자를 가진 전체 방사 모델링
  • 대류 및 전도 열 전달
 

멀티 블록 메시

 

유동 해석의 탁월한 정확도

  • 가스/버블 고립
  • 표면 산화물 계산
  • RNG 및 LES 난류 모델
 

래들 주입

 응고해석
  • 기공 예측
  • 수축 예측
  • 방향성 응고
 

결함 예측

  • 기공 예측
  • 공기 고립 예측
  • 조기 응고
  • 산화물 형성
 

동적 시뮬레이션 제어

  • 용탕 주입 제어
 

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 여러가지 해석 결과 비교
  • 용융 온도, 응고 분율 측정을 위한 센서 추가 기능
  • 파티클 트레이서
  • 일괄 후 처리
  • 보고서 생성

Continuous Casting Workspace, 연속주조

연속 주조 Workspace Highlights

  • 고급 모션 컨트롤에는 수직 빌릿, 수평 파이프 및 롤러 시트 캐스팅이 포함됨
  • 열 및 냉각 동적 제어는 타의 추종을 불허하는 열 관리 분석 제공
  • 유체의 완전한 시뮬레이션 – 고급 열 응력 해석을 통해 동작중의 고체 전환

Workspace Overview

Continuous Casting Workspace는 연속형 빌릿 주조 및 직접 냉간 연속 주조 등 일반적으로 사용되는 모든 주조 공장 공정을 시뮬레이션할 수 있는 사용하기 쉬운 도구를 지속적으로 주조 사용자에게 제공합니다. 새로운 Continuous Casting Workspace를 통해 사용자는 연속 주조 공정을 모델링하고 공정 파라미터를 최적화하는 데 필요한 도구를 찾을 수 있습니다.

멀티 블록 메쉬는 주조물의 높은 전단 및 고온 구배 영역에서 훨씬 더 높은 정확도를 제공하는 효율적인 방법을 제공합니다. Mold 및 Billlet 냉각, 용해 유량, 과열 및 Mold 형상과 같은 공정 매개변수가 분석에 포함됩니다. 용탕 표면의 운동과 몰드의 온동은 후처리 중에 빠르게 시각화되며, 이 과정에서 충진 및 응고 패턴도 쉽게 평가되므로 공정 수정을 자신 있게 구현할 수 있습니다.

 

 

모델링된 프로세스

  • 연속 빌릿 및 시트 캐스팅
  • 직접 냉각 연속 주조

유연한 메시

  • 다중 블록 메시는 흐름과 온도 그라데이션을 캡처합니다.

열 금형 모델링

  • 난방 및 냉각 요소와 지역화 된 다이 가열 제어
  • 용융 및 금형에서 대류 및 복사 열 전달

고급 응고

  • 수축
  • 방향 응고

결함 예측

  • 다공성 예측
  • 실내 공기
  • 조기 응고
  • 산화물 형성

동적 시뮬레이션 제어

  • 흐름 역학에 따라 제어 부기

전체 분석 패키지

  • 다중 뷰포트가 있는 애니메이션 – 3D, 2D, 기록 플롯, 볼륨 렌더링
  • 다공성 분석 도구
  • 나란히 시뮬레이션 결과 비교
  • 용융 온도, 고체 분획 측정을 위한 센서
  • 파티클 트레이서
  • 배치 후 처리
  • 보고서 생성

HPDC Part II : Filling

주입에서의 결함

  • 공기 혼입
    -부적절한 환기
    -샷 슬리브 변수의 부족
    -과도한 표면 난류
  • 표면 산화
    -공기로의 노출 시간
    -금속 전면 집중
  • 공동 현상
    -높은 속도, 낮은 압력
    -부식으로 이어짐
  • 이른 응고
    -덜 채워진 부분, 이른 동결

시뮬레이션의 필요성

  • 러너 디자인 최적화
    -흐름이 동시에 게이트에 도달
    -금속은 공동을 가로 질러 가장 짧은 거리를 이동
    -최소 수렴과 발산 흐름
    -흐름은 중요 지점으로 향함
  • 샷 슬리브의 최적
    -느린 샷, 빠른 샷 및 전환 시간 설계
    -샷 슬리브 내부의 금속 흐름 세부 사항 분석
    -사전 주입 단계에서 난류 및 공기 유입을 최소화함
    -게이트 속도
  • 배압 : 통풍구 위치 및 정확하게 채우기
  • 주입 과정에서 포착되는 결함을 추적
  • 흘러 넘치는 위치
  • 이른 응고 추적
  • 중요한 위치에서의 금속 속도
  • 주입 시간 및 기계 매개 변수

매우 정확한 유체역학

  • TruVOF : “Volume of Fluid 방법”은 유체 전면을 추적하는 가장 정교한 수치기법
  • 용탕 충진 전면의 매우 정확한 모델링 및 충진 결함 추적하여 HPDC에 이상적임

전체를 채우는 과정의 모델링이 중요한 이유

  • 부족한 부분을 알 수 있음

배기 및 배압

  • 배압은 충분히 환기되는 밸브(배기 지점)가 동시에 모델링 되어야 함
  • 단열 버블 모델을 통해 다이의 공극 영역을 가압할 수 있음.
  • 밸브 객체가 배출구 역학을 모델링함
  • 플롯은 밸브 외부(파란색 -1기압에서 0.1기압으로 이동) 및 밸브 내부의 압력을 나타냄(빨간색)

ALL NEW FLOW-3D CAST v5

ALL NEW FLOW-3D CAST v5

HPC version of FLOW-3D CAST v5 releasedALL NEW FLOW-3D CAST v5 는 금속 주조 시뮬레이션 및 공정 모델링에 있어 큰 발전입니다. 이제 FLOW-3D CAST는 시뮬레이션 할 프로세스를 선택할 수 있으며, 소프트웨어는 적절한 프로세스 매개 변수, 지오메트리 유형 및 합리적인 기본 값을 제공합니다. 이렇게 하면 시뮬레이션 설정이 상당히 간소화됩니다. 또한 FLOW-3D CAST의 강력한 시뮬레이션 엔진과 결함 예측을 위한 새로운 도구는 설계 주기를 단축하고 비용을 절감하는 통찰력을 제공합니다. 대표적인 개발 기능으로 응고 시뮬레이션을 위한 열 계수 및 핫 스팟 식별 출력, 갇혀 있는 가스를 식별하고 환기 효율을 예측하기 위한 결함 채우기 도구 등이 포함됩니다. 그리고 더 빠르고 더 강력한 압력과 및 응력 해소 기능이 모두 포함합니다.

ALL NEW FLOW-3D CAST v5 는 관련 프로세스가 포함된 Suite제품으로 제공됩니다. 영구 금형 제품군은 중력 다이 캐스팅, 저압 다이캐스팅(LPDC), 틸트 주입 주조와 같은 프로세스 작업 공간을 포함합니다. 각 프로세스에 대해 사용자 인터페이스는 특정 프로세스와 관련된 내용만 표시합니다. 모래 주조 Suite에는 중력 사형 주조 및 저압 사형 주조(LPSC)와 같은 프로세스가 포함되어 있습니다. 소실 폼 제품 군에는 사형 주조 Suite의 모든 것과 소실 폼 공정 작업 공간이 포함됩니다. HPDC 제품군은 열 응력 및 변형을 포함하여 고압 다이 캐스팅과 관련된 모든 것을 포함합니다. 각 프로세스 작업 공간 내에서 채우기, 응고 및 냉각과 같은 하위 프로세스는 서로 연결된 시뮬레이션으로, 처음부터 끝까지 차례로 전체 프로세스를 모델링 합니다. 사용자가 그것을 작업장 바닥에서 하는 것처럼. 사용자는 레들을 용융 풀 안에 담갔다가, 숏 슬리브 또는 주입 컵에 옮겨, 전체 이동 및 주입과 같은 단계를 포함하도록 프로세스를 확장할 수 있습니다. LPDC의 경우 프로세스 엔지니어는 도가니의 가압 및 금속 흐름을 주형으로 모델링 할 수 있습니다.  FLOW-3D CAST v5를 사용하면 가능성이 무한해 집니다.

WYSIWYN Process Workspaces

What-You-See-Is-What-You-Need (WYSIWYN) 프로세스 작업 공간은 FLOW-3D CAST의 다기능성을 간소화하여 사용 편의성과 탁월한 솔루션입니다. 대부분의 인터페이스는 사용자가 제공해야 하는 정보만을 요구하고, 사용자 설계 원칙을 적용하여 단순화되었습니다.

FLOW-3D CAST v4.2에 도입된 프로세스 중심 작업 공간은 중력 다이 주조, 저압 주조 및 경사 주입, 모래 등과 같은 영구 금형 공정으로 확장되었습니다. 중력 모래 주조, 저압 모래 주조 및 소실 폼과 같은 주조 공정 지속적인 주조, 투자 주조, 모래 코어 제작, 원심 주조를 포함한 더 많은 공정 작업 공간이 현재 진행 중에 있습니다.

Simulation setup is simplified by only showing the components applicable for a given process.

Types of casting components available in a HPDC simulation. Mold pieces available in a high pressure die casting include cover and ejector dies, sliders, and shot sleeves.

Defect Prediction / 결함 예측

Identify Filling Defects using Particles  결함 예측 및 입자를 이용한 주입 결함 식별

파티클을 사용하는 FLOW-3D CAST v5를 통해 유입된 가스로 인한 충전 결함을 식별하는 것이 훨씬 쉬워 졌습니다. 결함을 식별하기가 훨씬 용이할 뿐만 아니라, 결함 예측에 따른 계산 비용도 크게 절감되었습니다.

붕괴된 가스 지역을 나타내는 보이드 입자가 도입되었습니다. 이전에 붕괴된 가스 영역은 너무 압축되어 수치 메쉬에서 해결할 수 없으면 시뮬레이션에서 사라졌습니다. 보이드 입자는 작은 기포처럼 작용하며 드래그와 압력을 통해 금속과 상호 작용합니다. 주변의 금속 압력에 따라 크기가 변하며, 주입이 끝난 후 최종 위치를 보면 공기 침투 및 산화물로 인한 잠재적인 결함이 있음을 알 수 있습니다.

Predict filling defects caused by entrapped gas using the Particle Model.

Metal/Wall Contact Time 금속/벽 접촉 시간

벽면 접촉 시간은 금형 표면에서 다른 부위보다 금속에 더 오래 노출된 부위를 식별하는 데 유용합니다. 금속 접촉 시간은 금속이 고체 구성 요소와 접촉한 시간을 나타냅니다. 예를 들어 모래 입자가 핵분해 부위의 역할을 하기 때문에 미세 먼지가 발생할 수 있습니다. 개별 솔리드 구성 요소와의 금속 접촉 시간 출력이 모든 구성 요소와의 접촉 시간을 포함하도록 확장되었습니다. 접촉 시간 계산은 출력 탭에서 벽 접촉 시간을 선택하여 활성화합니다.

Identify solidification defects with the new Thermal Modulus output.

Solidification Defect Identification 응고 결함 식별

일반적으로 라이저 크기 조정에 사용되는 열 모듈은 이제 응고 시뮬레이션에서 출력됩니다.

Risers will likely need to be placed on the circled regions.

Hot Spots  핫 스팟

또 다른 결과인 “핫 스팟”은 라이저를 찾고 크기를 조정하며, 응고 관련 결함의 가능성을 식별하는 데 유용합니다. 핫 스팟은 최종적으로 응고된 부위를 나타냅니다. 이것들은 입자들로 표현되고 뜨거운 점 크기에 의해 색깔이 변하기도 합니다. 라이저는 핫 스팟 크기가 가장 큰 곳에 배치해야 합니다.

Porosity Analysis Tool

FlowSight의 새로운 Porosity Analysis Tool은 실제적인 측면에서 porosity-related 결점을 식별합니다. 결점은 이제 순 볼륨, 최대 선형 범위, 모양 인자 및 total count로 식별됩니다.

New defect identification tools allow users to analyze porosity.

Arbitrary 2D Clips 임의 2D 클립

기능 지향적인 2D 클립은 결함을 찾기 위해 전면적으로 살펴 볼 때 유용합니다. 이전에는 클립에 표시된 금속 영역이 솔리드에 의해 점유된 셀로 확장되었습니다. 잡식의 FLOW-3D CAST v5에서 이 클립은 구성 요소를 숨기는 옵션을 선택해야만 열린 공간(예:주조 부품)의 금속을 보여 줄 수 있습니다.

Intensification Pressure 강화 압력

고압 주조 시뮬레이션에 지정된 강화 압력은 이제 매크로 및 마이크로 Porosity모델 모두에 결합되어 형성 사이의 보다 현실적인 관계를 형성합니다. 이러한 결함의 크기 및 플런저에 의해 가해지는 압력의 크기입니다.

Adjusting Shrinkage Porosity 수축 기공 조절

사용자가 금속의 특성을 수정할 필요 없이 수축 다공성의 양과 크기를 미세 조정할 수 있도록 수축 조정 계수가 추가되었습니다. 계수를 사용하면 응고 중에 체적 수축의 양을 전화로 설정하거나 줄일 수 있습니다.

Gas Pressure and Venting Efficiency  가스 압력 및 밴트 효율성 검토

사용자가 충전 결함을 식별하고 다이캐스트에서 밴트 시스템을 설계하는 데 도움을 주기 위해 마지막 국부적인 가스 압력 및 밴트 효율성 검토 결과가 주조 시뮬레이션 출력에 추가되었습니다. 가스 압력은 셀이 금속으로 채워지기 전에 셀의 마지막 보이드 압력을 기록하며, 밴트 효율은 환기구를 배치하는 것이 밴트 위치에서 공기를 배출하는 데 가장 효율적인 영역을 보여 줍니다.

Databases 데이터베이스

주조 공정에서 일반적으로 사용되는 정보의 데이터베이스는 설정 오류를 줄이고 시뮬레이션 workflow 를 개선합니다.

Configurable Simulation Monitor 구성 가능한 시뮬레이션 모니터

시뮬레이션을 실행할 때 발생하는 중요하지만 종종 힘든 작업은 시뮬레이션을 모니터링하는 것입니다. FLOW-3D CAST를 사용하면 다음과 같은 일반적인 시뮬레이션 목표를 모니터링할 수 있습니다.

  • 게이트 속도
    주형 내 고상 분율
    최저/최고 용탕 온도 및 금형 온도
    다양한 프로브 위치에서의 온도
    시뮬레이션 진단(예:시간 스텝, 안정성 한계)

Plotting Capabilities  Plotting기능

이제 시뮬레이션 관리자에는 더 많은 플롯 기능이 포함됩니다. 플롯은 사용자가 구성할 수 있으며 구성은 다른 시뮬레이션에서 사용하기 위해 데이터베이스에 저장됩니다. 사용자는 시뮬레이션 런타임 그래프와 history-data 에서 모니터링할 이력 데이터 변수를 지정할 수 있습니다. 다중 변수를 각 그래프에 입력합니다.

Conforming Meshes

임의 형상의 활성 계산 영역을 정의할 수 있도록 적합한 메쉬 기능이 확장되었습니다. 이는 메쉬 블록이 준수할 수 있는 열린 볼륨과 솔리드 볼륨을 모두 포함하여 계산 도메인의 영역을 정의하는 meshing구성 요소라고 하는 새로운 유형의 지오메트리 구성 요소를 사용합니다.
메쉬 블록은 냉각 채널이나 공동에 선택적으로 조합할 수 있어 사용자가 이러한 기하학적 객체에 대해 최적의 해상도를 선택할 수 있습니다. 이제 확인할 수 있는 메쉬가 FAVORize 탭에 표시될 수 있습니다.

Summary Views of Components/Cooling Channels

FLOW-3D CAST v5의 인터페이스는 주조 시뮬레이션에서 다양한 형상 구성 요소를 꽉 차게 보여줍니다. 2개의 새로운 형상 요약 뷰인 구성 요소 요약 뷰와 냉각 채널 요약 뷰는 기하학적 구성 요소 및 냉각 채널의 플라이 아웃을 제공하여 사용자가 신속하게 수행할 수 있도록 합니다. 중요 설정을 한 눈에 파악하고 필요한 경우 변경 할 수 있습니다.

Under the Hood

FLOW-3D CAST의 많은 강력한 구성 요소들은 Solver Engine이라고 부르는 것 들에서 중요합니다. 아래에서는 이면에서 무거운 작업을 수행하는 데 도움이 되는 몇가지 중요한 사항을 설명합니다.

Thermal Die Cycling (TDC) Model TDC(열 다이 사이클)모델

열 다이 사이클 시뮬레이션의 주입/응고 단계는 균일하지 않은 캐비티 온도를 사용하여 개선할 수 있습니다. 이제 캐비티에 있는 금속의 초기 온도는 재시작 중에 채우기 시뮬레이션을 통해 지정하거나 초기 유체 영역을 사용하는 사용자 정의 분포에서 지정할 수 있습니다. 이 기능은 옵션으로 사용할 수 있는 균일한 초기 금속 온도에 비해 다이 사이클링의 열해석의 정확성과 현실성을 높여줍니다.

Melt temperatures in the casting cavity read from a filling simulation are applied to ejector die during filling/solidification stage of thermal die cycling simulation.

Heat Transfer Coefficient Calculator for Spray Cooling 분사 냉각을 위한 열 전달 계수 계산기

스프레이 유체와 다이 표면 사이의 열 전달 계수(HTC)를 추정하는 것은 어려운 일입니다. 계산 또는 측정을 통해 값을 사용할 수 있는 경우 사용자는 이러한 값을 스프레이 거리 및 각도의 함수로 직접 지정할 수 있습니다. 새로운 기능을 통해 노즐의 스프레이 액의 유량을 기준으로 HTC를 동적으로 계산할 수 있습니다. 단일 조정 계수를 통해 스프레이 유출량을 기준으로 HTC를 미세 조정할 수 있습니다.

Micro-porosity(=Micro-shrinkage) Defects, (미세기포(=미세수축공)에 의한 결함)

Micro-porosity(=Mirco-shrinkage) Defects (미세기포(=미세수축공)에 의한 결함)

FLOW-3D는 특별히 응고 과정 후반에  발생하는 미세수축공의 발생 위치를 예측하기 위한 모델을 갖고 있습니다. 이 정보를 이용하여 설계방안을 조정하고 중요한 결함을 방지 할 수 있습니다. 어떤 주조 부품들은 용탕이 응고하는 동안의 수축에 의한 gas pocket이나 porosity(or shrinkage)이 표면에 드러나면 불량품으로 판정받게 됩니다. 대부분의 크기가 큰 수축공은 응고중 피딩(feeding)을 가능하게 하는 적절한 금형 설계 방법에 의해 제거될 수 있습니다. 용탕의 응고수축을 보상하도록 충분한 feeding이 발생할 때, 미세수축공(micro-porosity, micro-shrinkage)은 일반적으로 발생하지 않습니다. 미세수축공은 충진시 공기혼입에 의한 기포와 발생원인이 상이한 것으로 응고말기 수지상(dendrite)조직에 충분한 용탕이 공급되지 않을 경우 주로 발생하며 일반적으로 부피 비율이 1 % 이하 정도의 작은 기포의 분포의미합니다. 그러므로 미세수축공이 나타날 수 있는 위치 및 가능성을 예측하는 수단을 갖는다는 것은 고품질 주조품의 생산에 매우 중요합니다. FLOW-3D의 미세수축공 모델(micro-porosity model )은 이러한 목적을 위해 개발되었습니다.

FLOW-3D CAST 사양

FLOW-3D CAST Feature

CAST virtual foundry conference banner

Active Simulation Control

실행중인 해석의 제어 파라미터는 History probes에서 사용자가 정의한 조건에 따라, 런타임 동안에 자동으로 변경 될 수 있습니다. History probes에 의해 기록된 시뮬레이션 변수는 경계 조건, mass source 및 General Moving Object 기능을 이용하여, 시간에 따른 개체의 동작을 제어하기 위해 사용될 수있습니다. 예를 들어, 고압다이캐스팅 해석에서 게이트에 설정한 History probes에 유체가 도달하면, 그 정보를 캡처하는 데이터 출력 주파수를 증가시켜 플런저의 속도를 고속으로 자동 전환 될 수있습니다. 고압다이캐스팅 해석은 유체가 게이트에 도달 할 때 자동으로 고속 전환됩니다. 이 프로세스는 새로운 실행 시뮬레이션 제어 기능을 통해 자동으로 진행됩니다. 저속 구간에서 플런저의 움직임은 trigger 슬리브의 용융물에 혼입되는 공기의 양을 최소화하기 위해 Barkhudarov 방법 1을 사용하여 계산됩니다. 이 결과는 훨씬 더 높은 품질의 주조품이 나올수 있도록 설계하는데 도움이 될 수 있습니다. Read the development note > Read the blog post >

Batch Postprocessing & Report Generation

Batch 후처리 및 보고서 생성은 해석 결과 분석시 사용자의 해석 처리 시간을 절약하기 위해 개발되었습니다. Batch 후처리는, 해석이 완료된 후, 사용자가 애니메이션, 시나리오, 그래프, 텍스트 데이터 시리즈를 정의하여 자동으로 생성되도록 할 수 있습니다. 그래픽 요청은 백그라운드에서 FlowSight를 실행하여 처리되도록 FLOW-3D Cast에 정의되어 있습니다. 원하는 해석 결과를 생성할 수 있는 컨텍스트 파일을 사용하면 Batch 후처리 기능을 사용할 수 있습니다. Batch 후처리가 완료되면, 사용자는 쉽게 자신의 관리자, 동료, 또는 클라이언트에 보낼 수있는 HTML5 형식의 완벽한 기능을 갖춘 보고서를 만들 수 있습니다. 이미지 및 동영상도 보고서에 포함 할 수 있고, 사용자는 텍스트, 캡션, 참고 문헌의 형식을 완벽하게 제어 하고 유지할 수 있습니다. Read the blog post >

Metal Casting Models

Squeeze Pin Model

스퀴즈 핀은 주조시 주입 공급이 어려운 영역에서, 응고하는 동안 금속 수축을 보상하기 위해 사용되는 실제의 다이 캐스팅 머신의 동작을 모델링하는 해석을 할 수 있습니다. 스퀴즈 핀은 선택된 표면에 cylinderical squeeze pin을 추가하여, STL 파일 또는 대화식으로 생성 될 수 있습니다. Read the development note >

Intensification Pressure Model

새로운 플런저 타입 형상이 추가 되었습니다. 강화된 압력 조건으로 macro-shrinkage 와 micro-porosity 제거를 지정할 수 있습니다.

Thermal Die Cycling model

FLOW-3D Cast v4.1's full process thermal die cycling model

다이싸이클링 (Thermal die cycling, TDC) 모델에 새로운 두 가지의 단계가 추가되었습니다. 금형이 열린 상태에서 제품이 여전히 금형 내부에 있는 ejection 단계와, 금형이 닫혔지만 사출 바로전의 preparation 단계가 추가되었습니다. 또한, 마지막 싸이클만이 아닌 모든 금형 싸이클 모두 수렴된 결과를 전달하기 위해 TDC 솔버가 성능 손실 없이 최적화 되었습니다. Read the blog post >

Valves and Vents

Modeling valves and vents in FLOW-3D Cast v4.1

밸브와 밴트의 외부 압력과 온도는 이제 사용자가 다이 캐스팅 공정에서 충진중에 보다 실제적인 동작을 정의 할 수 있도록, 시간의 표 함수로서 정의 할 수있습니다. 밸브 및 벤트의 압력 및 온도는 프로세스 설계 단계에서 유용한 제품 내부에 설정된 프로브에 의해 제어 될 수 있습니다.

PQ2 Diagram

PQ2다이어그램의 사용은 사용자가 더 나은 슬리브의 플런저 실제 움직임과 유사하게 적용 할 수 있습니다. 새로운 기능은 실제 공정 변수가 아직 알려져 있지 않았을 때 다이캐스팅 설계 단계 중에 특히 유용합니다. Read the blog post >

Cooling Channels

냉각 채널은 금형 각각의 냉각 유로에 의해 제거되거나 추가된 열의 총량에 의해 제어 될 수 있습니다. Read the development note >

Air Entrainment Model

Air entrainment 모델에 compressibility를 입력하는 새로운 옵션이 추가되었습니다. 고압 다이캐스팅의 충진 공정과 같은 경우, 공기 압축성은 유체 압력의 변화로 인한 유체의 흐름에 중요한 인자가 됩니다.
 

Cavitation Model

캐비테이션 모델은 유동 조건의 더 넓은 범위에 걸쳐 유체의 캐비테이션 거동을 나타내도록 개선되었습니다. 캐비테이션 생성에 대한 새로운 옵션은 경험적 관계를 기반으로, 기존의 일정한 속도로 생성되는 방식에서 보완되었습니다. 새로운 passive gas model 옵션은 open bubbles이 아닌 유체내에 cavitationg gas를 추적하여, 계산에 필요한 격자와 계산시간을 줄일 수 있습니다. Read the development note >

Two-fluid Phase Change Model

Two-fluid phase change model 은 과냉각을 포함하도록 확장되었습니다. 일정한 과냉각 온도를 정의하고 가스 온도가 응축이 일어나기 전에 포화점 이하로 내려갈 수 있게 함으로써 구현됩니다.

Simulation Results and Analysis

Simulation Results File Editor

사용자가 FLOW-3D Cast v4.1 결과 파일들을 병합 및 제거 할 수 있는 편집 유틸리티

Linking flsgrf.* files

Restart 해석 결과 파일들(flsgrf.*)은 FlowSight 에서 하나의 연속적인 애니메이션 결과를 표시하기 위해 restart source 결과로 링크될 수 있습니다.

Fluid/wall Contact Time

A new spatial quantity has been added to the solution output that stores the time that metal spent in contact with each geometric component, as well as the time spent by each component with metal.

용탕이 각 geometry 컴포넌트를 접촉한 시간과 각 컴포넌트가 용탕과의 접촉 시간을 나타내는 새로운 공간적 양이 해석 아웃풋에 추가 되었습니다.

Performance and Usability

Calculators

열전달 계수, 열 침투 깊이, 밸브 손실 계수, 슬리브에 용탕량(깊이), 플런저의 속도를 계산할 수 있는 Calculators 기능이 Model Setup 창에서 바로 가능해졌습니다. 또한 유틸리티 메뉴에서도 가능합니다.

Thermal Die Cycling

Heat transfer database in FLOW-3D Cast v4.1

열전달 계수 데이터베이스와 각 싸이클 단계들이 입력되어있어 간편하게 다이싸이클링 해석을 하실 수 있습니다.

GMRES Pressure Solver

GMRES pressure solver의 속도가 솔버 데이터 구조의 최적화로 인해 2배까지 향상되었습니다. 이로 인해 메모리 사용량이 20% 미만으로 증가할 수 있습니다. Read the blog post >

Sampling Volumes

Sampling volume 기능은 STL로 정의할 수 있습니다. 각 sampling volume에 의해 계산된 양들의 목록은 유체의 부피, 최대/최소 온도, 파티클의 갯수와 같은 전체 해석 영역에 대해 모두 같은 양이 되도록 확장되었습니다.

 

FSI/TSE Model

구조분석 모델의 성능이 부분적인 coupling으로 해석 솔버의 병렬화와 최적화를 통해 향상되었습니다.

Workspaces

Workspaces 를 이전에 설치된 FLOW-3D에서 가져올 수 있습니다. Workspaces 와 사용자가 선택한 시뮬레이션들을 복사할 수 있습니다.

Expanded Simulation Pre-check

Simulation pre-check 기능은 preprocessor checks를 포함하고, 문제가 발생하는 경우 링크됩니다.

Improved Transparency

Depth-peeling 옵션은 transparent geometries 를 좀 더 잘 표현하고, v4.0보다 10배 빨라졌습니다.

Interactive Tools

Baffles, history probes, void/fluid pointers, valves, mass-momentum sources, squeeze pins에 대한 새로운 대화형 생성 기능이 추가되었습니다. 또한 probing과 clipping 도구들이 대화형으로 개선되었습니다.

General Enable/Disable

모든 objects (e.g., mesh blocks)은 활성화/비활성화 할 수 있습니다.

Estimated Remaining Simulation Time

솔버 메세지 파일에 short-print로 추정된 잔여 해석 시간이 추가 되었습니다.

Tabular Data

테이블 형식의 데이터에서 선택된 데이터를 마우스 오른쪽 버튼을 클릭하여 csv파일 또는 외부 파일에 복사, 저장할 수 있습니다.

1 23-10 Michael R. Barkhudarov, Minimizing Air Entrainment, The Canadian Die Caster, June 2010

Tilt Pour Casting (경동주조)

ilt Pour Casting (경동주조)

Simulation of the tilt pour process using FLOW-3D Cast.

경동주조는 수평 위치에 있는 금형에 용탕을 주입하는 공정입니다.  미리 세팅된 회전조건으로 주조 기계를 수직 위치로 회전시켜 용탕을 천천히 금형 안에 들어가게 합니다.

Temperature profile during a tilt pour filling cycle

경동주조 공정의 해석에서  금형의 회전을 완료하는 데 걸리는 시간은 매우 중요합니다. 회전속도는 사용자가 쉽게 최적화 할 수 있도록 FLOW-3D안에서 변경 가능합니다.  금형의 회전속도가 너무 빠르면 공기가 용탕에 포집되고, 너무 느리면 표면에 결함이 있을 것입니다. 온도 프로파일은 각각 액상 및 고상 온도로 최대 및 최소값을 그래프로 설정하여 가시화 됩니다. 여기는 제품이 절반 부분 채워지고 용탕 온도는 응고 온도에 접근하지 않아 초기 응고 현상이 일어나지 않을 것입니다.

Tilt pour casting animations

Surface oxide and entrained air defects (표면산화물과 공기의 혼입 결함)

수상 스포츠와 래프팅 장비에 사용되는 경량 알루미늄 부품은 높은 품질의 마무리가 필요로 하며 표면의 결함도 거의 없도록 주조 됩니다. 이 경동주조 시뮬레이션은 충진 과정에서의 표면 산화물과 공기가 포집될 가능성이 있는 영역을 보여 줍니다. 이러한 결함의 움직임을 아는 것은 주조 엔지니어가 결함을 제거하고자 게이트, 러너 및 라이저를 설계하는 데 도움이 됩니다. FLOW-3D는  6자유도(x,y,z 방향의 이동과 회전) 기능을 복합하여 금형의 모든 운동을 기술할 수 있으며 금형의 각 가속도 / 감속도을 시뮬레이션 할 수 있는 기능을 가지고 있습니다.

Velocity contours and thermal gradients

합금 속도의 정확한 제어는 turbulent gas porosity 같은 주조 결함을 최소화 시킬 수 있습니다.이 애니메이션은 자동 틸팅 순서를 통해 sprue 와 gate 설계 내 속도 윤곽을 보여줍니다. 온도 구배의 분석은 초기 응고와 뜨거운 금속을 나타냅니다. 더 나은 금형 설계를 위해 수축 결함 및 응고 볼륨 보상을 위한 금형을 설계합니다.

LPDC (Low Pressure Die Casting, 저압주조)

LPDC (Low Pressure Die Casting, 저압주조)

저압주조는 금형 하부에 위치한 스토크(stoke)가 용탕이 들어있는 보온로(furnace)와 금형을 연결하여 주조하는 공정입니다. 또한, 보온로는 탕구를 통해 용탕을 채우기 위한 압력을 제공합니다. 금형의 제품이 응고되면 스토크안의 미응고 용탕이 보온로 회수되도록 보온로의 공기압은 감소합니다. FLOW-3D는 금형온도분포해석, 충진, 응고, 열응력를 연속적이고 효과적으로 해석에서 재현할 수 있어 더 나은 설계를 할 수 있도록 해 줍니다.

Example of a low pressure die casting, predicting an incorrect fill pattern. Courtesy Form Stampi, SRL.

HPDC (High Pressure Die Casting, 고압다이캐스팅)

HPDC (High Pressure Die Casting, 고압다이캐스팅)

주조 기술 중 하나인 고압 다이 캐스팅 해석시 다른 많은 주조해석 소프트웨어에서 큰 문제들이 나타납니다. 충진되어야 할 부분은 대부분 매우 얇은 두께를 가지고 있어서 형상 구현에 필요한 격자의 수가 크게 증가되어야 합니다. 무엇보다도 금속은 높은 압력과 매우 빠른 속도로 금형안의 빈 공간에 충진됩니다. 금형 내부로 분사되고 비산하는 유동은 이 과정에서 혼입 된 공기로 인한 기포결함, 제품이 완전히 충진되기 전에 냉각이 시작하면서 발생하는 탕주름과 산화물 결함으로 이어질 수 있습니다.  FLOW-3D는 실질적인 금형 충진 해석의 정밀도를 향상시키기 위해 정확성이 고도로 향상된 TruVOF™ 추적기법과 복잡한 형상을 모델링하는FAVOR ™ 기법을 포함하고 있습니다. 또한 FLOW-3D는 혼입 된 공기, 열 응력, 미세 결함 영역을 검출하기 위한 다양한 모델을 가지고 있습니다.

Thermal Die Cycling (금형온도분포,  금형싸이클링)

Die cycling 해석은 다이캐스팅 금형이 수천 개의 제품 생산에 반복적으로 사용되기 때문에 고압 다이 캐스팅에 필수적인 공정입니다. 생산시 모든 주조품에 대해서 동일한 금형 온도를 유지하는 것은 매우 중요한데, 이는 금형온도에 따라 주조품의 결괌이 발생할 수 있기 때문입니다. FLOW-3D는 다이캐스팅 싸이클에서 발생하는  금형 가열(충진, 응고), 스프레이, 에어 블로우로부터 온도 분포를 해석하므로 사용자는 냉각 채널의 위치를 정확하고 효과적으로 예측할 수 있습니다.

Shot Sleeve Optimization (슬리브 유동 최적화)

고압다이캐스팅에서 슬리브는 금형 속에 용탕을 빠르게 밀어넣는 데 사용됩니다. 일반적으로 슬리브는 수평으로 위치되고, 용탕은 슬리브 상면의 주입구를 통해 부어집니다. 플런저는 금형 반대편에서 슬리브를 통해 금형 안쪽으로 용탕을 밀어 넣게 됩니다. 적절하게 설계된  플런저 이동조건은 슬리브 내부의 공기 혼입을 최소화하고 슬리브에서의 응고를 피하기 위해 가능한 한 빨리 금형에 용탕을 충진하게 설계되어야 합니다. 하지만,  피스톤이 너무 빨리 이동하는 경우, 슬리브 내에서 용탕의 겹침현상이 발생하여 주조품에 공기 갇힘 결함이 나타날 수 있습니다. FLOW-3D는 다이캐스팅 해석시 플런저 이동에 따른 슬리브 내부의 유동을 실제와 동일하게 반영하여 이와 같은 기포 결함을 최소화할 수 있습니다.

Filling Simulations (충진해석)

고압 다이 캐스팅을 해석할 때, 가장 어려운 과제는 고압 및 고속으로 금형에 충진되는 용탕의 유동을 정확하게 추적하는 것입니다. 많은 주조해석 소프트웨어에서 용탕의 분사와 비산을 정확하게 모사하지 못하는 것이 제품의 결함 예측에 가장 큰 장애물이됩니다. FLOW-3D의 TruVOF™ method는 설계 엔지니어들이 금형내부에서 최적의 유동 패턴을 유도하기 위해 게이트의 위치를 확인하고, 오버 플로우의 위치를 확인하는데 핵심적인 역할을 할 수 있습니다.

Modeling Solidification (응고모델링)


Courtesy of Littler Diecast Corporation

FLOW-3D는 엔지니어로 하여금 최종 제품의 품질에 영향을 미칠 수 있는 내부 기공(porosity)의 발생을 알수 있도록 합니다. FLOW-3D는 2원계합금(binary alloy)의 편석(segregation)을 해석할 수 있습니다. 해석에 의한 온도 이력은 냉금(chill)  또는 냉각라인(cooling line)이 추가되거나 수정 될 필요가 있는지, 초기 용탕 온도를 변경해야 하는지 등을 결정하는데 도움을 줍니다. FLOW-3D는 내부 미세수축공의 형성, 열응력 및 2원계합금의 편석을 예측할 수 있습니다.

HPDC Videos

Surface Oxides Defects (표면산화물 결함)

Surface Oxide Defects (표면산화물 결함)

FLOW-3D 결함 추적 기능은 주조 엔지니어로 하여금 충진 공정에서 발생할 수 있는 표면 산화물 결함(surface oxide defect)을 예측하는데 도움을 줍니다. 산화물은 공기에 노출 된 용탕표면에서 매우 짧은 시간에 형성되고 바람직하지 않은 위치에서 모일 수 있습니다. 산화물 결함의 최종 위치는 전체 유동 조건, 난류 혼합, 유체 간의 충돌에 의존합니다. FLOW-3D는 금형디자인 개선을 위한 산화물의 양과 최종 위치를 정확하게 추적할 수 있습니다.

Surface Oxide Defects Videos

Die Erosion Defects (다이캐스팅 금형침식 및 결함)

Die Erosion Defects (다이캐스팅 금형침식 및 결함)

FLOW-3D는 고압 다이캐스팅의 충진해석 시 공동현상(cavitation)으로 인한 금형 침식 결함(die erosion defect)을 정확히 예측할 수 있습니다. 충진 시 매우 빠른 유동 면에서 용탕압력(Metal pressure)가 금형재료의 증기압(metal vapor pressure) 아래 떨어질 수 있습니다 이는 공동현상과(cavitation)과 침식(erosion)을 일으키게 됩니다. 공동현상으로 인한 침식결함을 예측하는 간단한 방법은 실제로는 공동현상을 재현하지 않고 공동현상의 가능성을 예측하는 것 입니다. FLOW-3D는 cavitation pressure와 국지적인 용탕 압력의 차이를 관찰함으로써 잠재적으로 공동현상(cavitation)이 나타날 수 있는 영역을 계산할 수 있습니다. 지정된 어떤 위치에서 캐비테이션 이나 금형 부침식에 대한 가능성은 이 두 압력의 차이가 큰 경우에 존재하는 것으로 해석됩니다. 금형 침식이 가장 있을 만한 곳의 신뢰할 수 있는 지표는 이 차이가 가장 큰 값을 가지는 국소적인 “hot spot” 입니다.

Core Gas Defects (사형중자 가스에 의한 기포결함)

Core Gas Defects (사형중자 가스에 의한 기포결함)

FLOW-3D의 Core Gas model은 주조물의 코어 가스에 의한 기포 결함을 제거 하기 위한 기능으로 충진되는 용탕에 의해 사형중자의 점결제가 연소하면서 발생하는 가스를 예측합니다. 사형중자의 수지 점결제의 연소와 코어 가스 방출의 진행 상황을 모니터링 할 수 있습니다. 점결제의 연소는 코어 강도의 손실을 의미합니다. 주조과정에서 충진현상과 응고현상을 동시에 같이 모니터 할 때, 이 모델을 통해서 용융 금속안으로 들어가는 가스를 예측할 수 있습니다. 이 모델의 core gas flow 와 core gas pressure가 가스 결함의 가능성을 알게하여 줍니다.

Binder loss in two internal cores of a valve iron casting

Core Gas Defect Videos

Air Entrapment Defects (공기혼입, 기포결함)

Air Entrapment Defects (공기혼입, 기포결함)

FLOW-3D 내의 Air entrapment model은 충진 동안 금형내에서 혼입되는 공기의 양을 추정하기 위해 사용됩니다. 이 모델은 기본적인 물리적 메커니즘을 기반으로 하고 있으며 정확한 미세기포의 예측이 가능합니다. 고속으로 분사되는 용탕과 공기의 혼합을 예측하는 모델로 사용자는 공기 혼입 결함을 방지하기 위한 시뮬레이션을 수행할 수 있으며, 여러 시행 착오 과정을 줄일 수 있습니다. Air entrapment model에 대한 자세한 내용은 모델링 기능 섹션을 방문하십시오.

Defect Prediction (주조결함 예측)

Defect Prediction (주조결함 예측)

Prevent Defects in Your Castings

금형 설계 시 항상 마주치게 되는 문제는 최종 주조품이 결함을 가져는지 아닌지를 판단하는 것입니다. 설계자는 설계기준과 경험, 양호한 설계사례(gate, runner, riser, 용탕의 온도, 냉각범위 등)을 참조하여 좋은 품질의 부품을 생산할 수도 있습니다. 그러나, 오늘날의 비즈니스 환경에서, 이와 같은 방법으로는 경쟁사를 이기기에 충분하지 않습니다. FLOW-3D의 강력한 결함 예측 기능은 설계자에게 신속하고 정확하게 판단할 수 있게 하고, 짧은 시간에 더 높은 품질로 제품을 제조 할 수 있도록 주조결함을 판단하고 찾을 수 있게 해 줍니다.

HPDC filling colored by surface defect concentration. Final locations of defects such as oxides are shown at the end the filling.

제품 소개 요청

FLOW-3D 소개 요청

    회사/기관명* :
    제목* :
    성명* :
    이메일 주소* :
    연락 전화번호* :
    내용 :

    산업 분야별 해석 사례

    FLOW-3D 를 이용한 각각의 산업분야 적용 가능성을 살펴보십시오.
    경험이 풍부한 당사 FLOW-3D  Engineer가 귀하의 궁금하신 사항에 대해 언제든지 답변해 드립니다.

    주조분야
    • Gravity Pour 중력 주조
    • High Pressure Die Casting 고압 다이캐스팅
    • Tilt Casting 경동 주조
    • Centrifugal Casting 원심 주조
    • Investment Casting 정밀 주조
    • Vacuum Casting 진공 주조
    • Continuous Casting 연속 주조
    • Lost Foam Casting 소실 모형 주조
    • Fill and Defects Tracking 용탕 주입 및 결함 추적
    • Solidification and Shrinkage 응고 및 수축 해석
    • Thermal Stress Evolution and Deformation 열응력 및 변형 해석
    물 및 환경 응용 분야
    • Wastewater Treatment and Recovery 폐수 처리 및 복구
    • Pump Stations 펌프장
    • Dams, Weirs, Spillways 댐, 위어, 여수로
    • River Hydraulics 강 유역
    • Inundation & Flooding 침수 및 범람
    • Open Channel Flow 개수로 흐름
    • Sediment and Scour 퇴적 및 세굴(쇄굴)
    • Plumes, Hydraulic Zones of Influence 기둥, 수리 영향 구역
    • Coastal and Critical Infrastructure Wave Run-Up 연안 및 핵심 인프라 웨이브 런업

    에너지 분야
    • Fuel/cargo sloshing in oceangoing containers 해양 컨테이너 용 연료 /화물 슬로싱
    • Offshore platform wave effects 근해 플랫폼 파 영향
    • Separation devices undergoing 6 DOF motion 6 자유도 운동을하는 분리 장치
    • Wave energy converters 파동 에너지 변환기
    미세유체
    • Continuous-Flow 연속 흐름
    • Droplet, Digital 물방울, 디지털
    • Molecular Biology 분자 생물학
    • Opto-Microfluidics 광 마이크로 유체
    • Cell Behavior 세포 행동
    • Fuel Cells 연료 전지들
    용접 제조
    • Laser Welding 레이저 용접
    • Laser Metal Deposition 레이저 금속 증착
    • Additive Manufacturing 첨가제 제조
    • Multi-Layer Build 다중 레이어 빌드
    • Polymer 3D Printing 폴리머 3D 프린팅
    코팅 분야
    • Curtain Coating 커튼 코팅
    • Dip Coating 딥 코팅
    • Gravure Printing 그라비아 코팅
    • Roll Coating 롤 코팅
    • Slide Coating 슬라이드 코팅
    • Slot Coating 슬롯 코팅
    • Contact Insights 접촉면 분석
    연안 / 해양분야
    • Breakwater Structures 방파제 구조물
    • Offshore Structures 항만 연안 구조물
    • Ship Hydrodynamics 선박 유체 역학
    • Sloshing & Slamming 슬로싱 & 슬래 밍
    • Tsunamis 쓰나미 해석
    생명공학 분야
    • Active Mixing 액티브 믹싱
    • Chemical Reactions 화학 반응
    • Dissolution 용해
    • Drug Delivery 약물 전달
    • Drug Particles 마약 입자
    • Microdispensers 마이크로 디스펜서
    • Passive Mixing 패시브 믹싱
    • Piezo Driven Pumps 피에조 구동 펌프
    자동차 분야
    • Fuel Tanks 연료 탱크
    • Early Fuel Shut-Off 초기 연료 차단
    • Gear Interaction 기어 상호 작용
    • Filters 필터
    • Degas Bottles 병의 가스제거
    우주 항공 분야
    • Sloshing Dynamics 슬로싱 동역학
    • Electric Charge Distribution 전기 충전 배분
    • PMDs PMD