PCI-Express(또는 PCI-E) 표준을 사용하는 최근 출시된 AMD 비디오 카드(예: AMD RX 6950 XT)와 nVidia 그래픽 카드(예: nVidia GeForce RTX 3090)는 하이엔드 비디오 카드 차트에서 흔히 볼 수 있습니다.
PassMark – G3D Mark High End Videocards / Price
FLOW-3D POST 성능과 밀접한 그래픽카드의 이해
FLOW Science, inc의 최첨단 POST Processor인 FLOW-3D POST를 최대한 활용하려면 좋은 하드웨어가 있어야 합니다. 이 블로그에서 소프트웨어 엔지니어링의 GUI 개발자/관리자인 Stephen Sanchez는 이러한 하드웨어 권장 사항에 따라 최적의 FLOW-3D POST 경험을 얻을 수 있는 방법에 대해 정보를 제공 합니다.
고품질 그래픽 하드웨어
최소 3GB의 VRAM 이 있는 그래픽 카드로 시작하는 것이 좋습니다 . 이것은 많은 볼륨 렌더링을 수행할 경우 특히 중요합니다. 볼륨 렌더링은 FLOW-3D POST 의 고급 기능으로 iso-surface가 아닌 유체 도메인 전체에서 변수의 세부 사항을 시각화합니다. 이 기능은 매우 통찰력 있지만 후 처리 중에 효과적으로 사용하려면 좋은 하드웨어가 필요합니다.
다음으로 Intel 통합 그래픽을 기본 그래픽 하드웨어로 사용해서는 안됩니다. 인텔 통합 그래픽은 전용 그래픽 하드웨어가 있는 랩톱에서도 대부분의 랩톱에서 일반적입니다(자세한 내용은 아래 참조).
대부분의 FLOW-3D POST 기능은 이 구성에서 작동하지 않으므로 Intel 통합 그래픽을 지원하지 않습니다.
FLOW-3D POST 는 NVIDIA 그래픽 카드 와 함께 사용할 때 가장 잘 수행됩니다. FLOW-3D POST 가 잘 작동하는 것으로 확인되었으므로 Maxwell 아키텍처 제품군 이상의 NVIDIA 그래픽 하드웨어를 적극 권장 합니다.
NVIDIA Quadro 카드는 가장 안정적인 것으로 입증되었습니다. 고급 AMD 카드도 작동해야 하지만 NVIDIA 하드웨어 및 드라이버만큼 안정적이지 않다는 사실을 발견 했으므로 항상 AMD보다 NVIDIA를 권장합니다.
노트북의 듀얼 그래픽 카드 – 간단하지만 숨겨진 솔루션
이제 많은 노트북에 NVIDIA 그래픽 카드와 Intel 통합 그래픽 간에 전환 할 수 있는 기능이 있습니다. NVIDIA 카드로 FLOW-3D POST 가 실행되고 있는지 확인하는 것이 중요합니다 . NVIDIA 제어판을 통해 NVIDIA 카드로 노트북을 강제로 실행할 수 있습니다.
비디오 드라이버 업데이트
비디오 드라이버가 업데이트 되었는지 확인하는 것이 좋습니다. FLOW-3D POST 에서 비디오 드라이버를 업데이트하여 쉽게 해결할 수 있는 아티팩트 및 디스플레이 문제에 대한 보고가 있었습니다 . 비디오 드라이버를 최신 상태로 유지하는 것은 이러한 문제를 방지하는 좋은 방법입니다.
RAM, RAM, RAM!
메모리가 충분하지 않으면 시뮬레이션 후 처리가 불가능할뿐만 아니라 메모리 요구 사항을 인식하는 것이 중요합니다. 최대 10 배의 성능 저하로 이어질 수 있습니다! FLOW-3D POST 에 필요한 RAM 양은 여러 요소, 특히 시뮬레이션 크기에 따라 다릅니다. 사용자에게 최대한의 유연성을 제공하기 위해 메시의 셀 수에 따라 다음과 같은 RAM 권장 사항이 있습니다.
초대형 (2 억 개 이상의 셀) : 최소 128GB
대용량 (6 천 ~ 1 억 5 천만 셀) : 64-128GB
중간 (3 천만 ~ 6 천만 셀) : 32-64GB
소형 (3,000 만 셀 이하) : 최소 32GB
FLOW-3D POST 는 메모리 집약적 일 수 있습니다. 실행할 시뮬레이션 크기에 대한 대략적인 아이디어가 있는 경우, 이 지침을 가능한 한 잘 따르는 것이 좋습니다. 즉, 유연성을 극대화하고 가장 원활한 FLOW-3D POST 경험을 보장하기 위해 문제 크기에 관계없이 가능한 한 많은 RAM을 확보하는 것이 좋습니다.
그래픽 카드를 업그레이드 교체 설치하는 방법
그래픽 카드를 업그레이드하는 것은 성능 향상을 위한 좋은 방법이다. 그래픽 카드 업그레이드를 통해 시각적으로 고사양을 요구하는 POST 작업을 쉽게 소화할 수 있는 컴퓨터로 진화할 수 있다.
업그레이드를 위한 그래픽 카드 구매시 고려 사항, 기존 PC에 적합한가?
원하는 그래픽 카드를 결정하는 것은 복잡하고 미묘한 문제다. AMD와 엔비디아는 200달러 미만에서부터 최대 1,500달러에 이르는 지포스(GeForce) RTX 3090에 이르기까지 거의 모든 예산에 대한 선택지를 제공하기 때문이다.
카드의 소음, 발열, 전력 소비 등과 같은 사항을 고려할 수 있겠지만, 일반적으로는 비용 대비 가장 큰 효과를 제공하는 그래픽 카드를 원한다.
컴퓨터가 새 그래픽 카드를 지원하는 적절한 하드웨어인지 확인한다.
사용자가 겪는 가장 일반적인 문제는 부적절한 파워 서플라이(power supply)다. 충분한 전력을 공급할 수 없거나 사용 가능한 PCI-E 전원 커넥터가 충분하지 않을 수 있다. 필자의 경험상 파워 서플라이는 적어도 제조업체에서 권장하는 파워 서플라이의 요구 사항을 충족해야 한다. 예를 들어, 350W를 소비하는 지포스 GTX 3090을 구입했다면 8핀 전원 커넥터 한 쌍과 함께 엔비디아에서 제안한 최소 750W의 전력 공급 장치를 갖춰야 한다.
현재 파워 서플라이가 얼마나 많은 전력을 제공하는지 알아보려면 PC 본체를 열고 모든 파워 서플라이에 기본 정보가 나열된 표준 식별 스티커를 확인하면 된다. 또한 사용 가능한 6핀 및 8핀 PCI-E 커넥터의 수를 확인할 수 있다.
ⓒ Thomas Ryan 파워서플라이
마지막으로 본체 내부에 새 그래픽 카드를 넣을 충분한 공간이 있는지 확인한다. 일부 고급 그래픽 카드는 길이가 상당히 길어 30Cm 이상일 수 있으며, 확장 슬롯이 2개 또는 3개가 될 수 있다. 해당 그래픽 카드의 실제 크기는 제조업체 웹사이트에서 찾을 수 있다.
여기까지 해결했다면 이제 본격적으로 설치 작업에 착수한다.
생각보다 간단한 그래픽 카드 설치 작업
그래픽 카드 설치에는 새 그래픽 카드, 컴퓨터, 그리고 십자 드라이버 3가지만 있으면 된다. 설치하기 전 PC를 끄고 전원 플러그를 뽑는다.
기존 GPU를 제거해야 하는 경우가 아니면, 먼저 프로세서의 방열판에 가장 가까운 긴 PCI-E x16 슬롯을 찾아야 한다. 이 슬롯은 메인보드의 첫 번째 또는 두 번째 확장 슬롯이다.
이 슬롯에 접근을 차단하는 느슨한 전선이 없는지 확인한다. 기존 그래픽 카드를 교체하는 경우, 연결된 케이블을 모두 분리하고, PC 본체 후면 내부에 고정 브래킷에서 나사를 제거한 다음, 카드를 제거한다. 대부분의 메인보드에는 그래픽 카드를 제자리에 고정하는 PCI-E 슬롯 끝에 작은 플라스틱 걸쇠(latch)가 있다. 이 걸쇠를 눌러 이전 그래픽 카드의 잠금을 해제하고 분리한다.
ⓒ Thomas Ryan PCI-E x16 슬롯에 설치
이제 새 그래픽 카드를 개방형 PCI-E x16 슬롯에 설치할 수 있다. 카드를 슬롯에 완전히 삽입한 다음, PCI-E 슬롯 끝에 있는 플라스틱 걸쇠를 눌러 제자리에 고정한다. 그런 다음 나사를 사용해 그래픽 카드의 금속 고정 브래킷을 PC 본체에 고정한다. 덮개 브래킷 또는 이전 그래픽 카드를 고정했던 나사를 재사용할 수 있다.
ⓒ Thomas Ryan 그래픽 카드에는 추가 전원 커넥터 연결
대부분의 게임용 그래픽 카드에는 추가 전원 커넥터가 필요하다. 추가 전원이 필요한 경우, 해당 PCI-E 전원 케이블을 연결했는지 확인한다. 전원이 제대로 공급되지 않으면 그래픽 카드가 제대로 작동하지 않는다. 이 PCI-E 전원 케이블을 연결하지 않으면 PC 자체가 부팅되지 않을 수 있다.
그래픽 카드를 고정하고 난 후, 전원을 켠 상태에서 본체 측면 패널을 제자리로 밀어넣고 디스플레이 케이블을 새 그래픽 카드에 연결해 작업을 완료한다. 이제 컴퓨터를 켠다.
이제 그래픽 카드의 소프트웨어를 업그레이드할 단계가 왔다.
새 그래픽 카드가 이전 카드와 동일한 브랜드일 경우에는 절차가 간단하다. 제조업체의 웹사이트로 이동해 운영체제에 맞는 최신 드라이버 패키지를 다운로드한다. 그래픽 드라이버는 일반적으로 약 500MB로, 상당히 크다. 인터넷 연결 속도에 따라 다운로드하는 데 시간이 걸릴 수도 있다. 드라이버를 설치하고 컴퓨터를 다시 시작하면 이제 새 그래픽 카드가 제공하는 부드럽고 매끄러운 프레임 속도를 즐길 수 있다.
그래픽 카드 제조업체가 바뀐 경우(인털에서 AMD로, 혹은 AMD에서 인텔로), 새 그래픽 카드용 드라이버를 설치하기 전에 이전 그래픽 드라이버를 제거하고 컴퓨터를 다시 시작해야 한다. 이전 드라이버를 제거하지 않으면 새 드라이버와 충돌할 수 있다.
editor@itworld.co.kr 기사 일부 발췌 인용
그래픽 카드 GPU 온도 확인하는 방법
그래픽 카드 온도 확인은 아주 쉽다. 윈도우에서 바로 온도를 확인할 수 있는 내장 도구도 추가됐다. 또한, 무료 GPU 모니터링 도구가 많이 있고 그중 대다수가 온도를 측정해준다. 조금 더 자세히 알아보자.
ⓒ MARK HACHMAN / IDG 그래픽카드 온도 확인
마이크로소프트가 윈도우 10 2020년 5월 업데이트에서 GPU 온도 모니터링 툴을 작업 관리자에 추가했다. 무려 24년이나 걸렸다.
Ctrl+Shift+Esc를 열어 작업 관리자 대화창을 열거나 Ctrl+Alt+Delete에서 ‘작업 관리자’를 선택하거나 윈도우 시작 메뉴 아이콘을 오른쪽 클릭해서 ‘작업 관리자’를 선택한다. 여기에서 ‘성능’ 탭으로 들어가면 왼쪽에 GPU를 확인할 수 있을 것이다. 윈도우 10 2020년 5월 업데이트 혹은 그 이후 버전의 윈도우가 설치되어 있을 때만 사용할 수 있는 기능이다.
하지만 이 기능은 매우 단순하다. 시간 흐름에 따른 온도 변화를 추적하지 않고, 현재의 온도만을 보여준다. 그리고 업무를 하거나 오버클럭 조정 중에 작업 관리자를 여는 것도 귀찮을 수 있다. 마침내 윈도우에 GPU 온도를 확인할 수 있는 기능이 들어간 것은 환영하지만, 뒤이어 설명할 서드파티 도구가 훨씬 더 나은 GPU 온도 확인 옵션을 제공한다.
AMD 라데온 그래픽 카드 사용자가 라데온 세팅(Radeon Setting) 앱을 최신 버전으로 유지하고 있다면 방법은 쉽다. 2017년 AMD는 시각 설정을 변경할 수 있는 라데온 오버레이(Radeon Overlay)를 출시했다. 여기에도 GPU 온도와 다른 중요한 정보를 확인할 수 있는 성능 모니터 기능이 있다.
프로그램을 활성화하려면 Alt+R 키를 눌러 라데온 오버레이를 불러온다. 성능 모니터링 섹션에서 원하는 탭을 선택한다. Ctrl+Shift + 0을 눌러서 성능 모니터링 도구 설정을 단독으로 불러올 수 있다.
라데온 세팅 앱에서 오버클럭 도구인 와트맨(Wattman)으로 이동해 GPU 온도를 확인할 수 있다. 윈도우 바탕 화면을 우클릭하고, 라데온 설정을 선택한 후 게이밍(Gaming) > 글로벌 세팅(Global Setting) > 글로벌 와트맨(Global Wattman) 항목으로 이동한다. 도구를 사용해 지나친 오버클럭으로 그래픽 카드를 날려버리지 않겠다고 서약한 후에는 와트맨에 액세스하고 GPU 온도, 그리고 그래프 형태로 된 핵심적 통계 수치를 볼 수 있다. 여기까지가 전부다.
라데온 사용자가 아닌 사람도 많을 것이다. 스팀의 하드웨어 설문 조사는 전체 응답자 PC 중 75%가 엔비디아 지포스 그래픽 카드를 탑재했다는 결과를 발표했다. 그리고 지포스 익스피리언스 소프트웨어는 GPU 온도 확인 기능을 제공하지 않아서 서드파티 소프트웨어의 손을 빌려야 한다.
그래픽 카드 제조 업체는 보통 GPU 오버 클럭을 위한 특수한 소프트웨어를 제공한다. 이 도구에는 라데온 오버레이처럼 가장 중요한 측정을 실행할 때 OSD(On-Screen Display)를 지속하는 옵션 등이 있다. 여러 종류 중에서 가장 추천하는 것은 다재다능함을 갖춘 MSI의 애프터버너(Afterburner) 도구다. 이 제품은 오랫동안 인기를 얻었는데 엔비디아 지포스, AMD 라데온 그래픽 카드 두 제품 모두에서 잘 작동하고, 반길 만한 다른 기능도 더했다.
이제 그래픽 카드를 모니터링하는 소프트웨어를 갖췄다. 하지만 화면을 채우는 숫자는 맥락이 없이는 아무것도 아니다. 그래픽 카드 온도는 어디까지 괜찮은 것일까?
쉬운 대답은 없다. 제품마다 다르다. 이럴 때는 구글이 친구가 된다. 대다수 칩은 섭씨 90도 중반에도 작동하고, 게이밍 노트북에서도 90도까지 온도가 올라가는 경우가 흔히 있다. 그러나 일반 데스크톱 PC 온도가 90도 이상으로 올라간다면 구조 신호나 다름없다. 공기 흐름이 원활한 GPU 1대 시스템에서는 80도 이상 올라가면 위험하다. 팬이 여러 개 달린 커스텀 그래픽 카드는 무거운 워크로드 하에서도 60~70도가 적당하고, 수냉쿨러가 달린 GPU라면 온도가 더 낮아야 할 것이다.
그래픽 카드가 최근 5년 안에 생산된 제품이고 90도 이상으로 뜨거워진다면, 또는 최근 몇 주간 온도가 급격히 상승했다면 다음의 냉각 방법을 고려해보자.
그래픽 카드 온도 낮추는 법
그래픽 카드 온도가 높아졌을 때 하드웨어 업그레이드에 돈을 들이지 않고 개선하지 않기란 어렵다. 그러나 돈을 쏟아붓기 전에 정말 그래야 하는지 필요성을 점검해 보자. 다시 한번 강조하지만 그래픽 카드는 뜨거운 온도를 버틸 수 있도록 설계되어 있다. PC가 무거운 게임이나 영상 편집 중에 강제 종료되는 경우가 아니라면 아마도 걱정할 필요가 없을 것이다.
우선, 시스템의 케이블을 깨끗하게 정리해 GPU 주변의 공기가 원활하게 순환되는지 확인하라. 케이블이 깔끔하게 정리됐다면 케이스에 팬을 추가하는 것도 고려한다. 모든 PC는 최적의 성능을 위해 공기를 빨아들이고 내보내는 팬이 여럿 달려 있는데, POST PC라면 팬은 더 많아야 한다. 저렴한 팬은 10달러부터 구입할 수 있고, RGB 조명이 붙은 화려한 제품은 조금 더 가격이 높다.
마지막으로, GPU와 히트싱크의 써멀 페이스트가 오래되어 말라 있다면 효율이 떨어질 수 있다. 특히 오래된 그래픽 카드라면 더더욱 그렇다. 그리고 아주 드문 경우지만 품질이 좋지 않은 써멀 페이스트가 발라져서 출시되는 경우도 있다. 다른 방법이 모두 효과가 없다면 써멀 페이스트를 다시 바르는 것을 시도해보자. 그러나 과정이 매우 어려울 수 있고 카드마다 조금씩 다르고, 잘못 손댈 경우 사용자 보증 기한의 보호를 받을 수 없게 된다.
온도를 확실하게 낮추려면 수랭 쿨러를 위한 쿨링 시스템을 고려한다. 대다수 사용자에게는 지나친 모험이지만 대부분 수냉쿨러는 발열과 노이즈 감소 효과가 확실하고 공기 냉각에 있어 병목 현상도 없다.
“업무 효율 향상의 기본” 멀티 모니터 구축 가이드
듀얼 모니터를 사용하면 업무 생산성이 높아진다는 연구 결과가 있지만, 모니터가 많을수록 생산성이 높아지는지 여부에 대해서는 아직 이렇다 할 근거는 없다. 그러나 업무 생산성을 생각하지 않더라도 모니터를 여러 대(3대~6대까지) 사용하는 것은 멋진 일이며, 많은 화면을 봐야 하는 엔지니어는 정말 필요할지도 모른다.
모니터를 세로로 세워두면 긴 문서를 볼 때 스크롤을 적게 해도 된다는 장점이 있다. 멀티 디스플레이 환경을 구축하기 위해 고려해야 할 모든 것들을 살펴보겠다.
멀티 모니터 구축 가이드(www.itworld.co.kr)
1단계 : 그래픽 카드 확인하기
보조 모니터를 구입하기 전에 컴퓨터가 물리적으로 이 모든 모니터들을 감당할 수 있을지 점검해 봐야 한다. 가장 쉬운 방법은 PC의 뒷면을 보고, 그래픽 포트(DVI, HDMI, 디스플레이포트, VGA 등)가 몇 개나 있는지 확인하는 것이다.
별도의 그래픽 카드가 없다면 포트를 2개밖에 발견하지 못할 것이다. 그래픽이 통합된 대부분의 마더보드는 모니터 2개 밖에 설치하지 못한다. 별도의 그래픽 카드가 있다면, 마더보드의 포트를 제외하고 최소 3개의 포트를 발견할 수 있을 것이다.
팁 : 마더보드와 별도 그래픽 카드의 포트를 모두 이용해서 멀티 모니터를 설치할 수도 있지만, 이 경우 성능 저하와 모니터끼리의 속도 차이가 발생할 것이다. 그래도 이렇게 하고 싶다면, PC의 BIOS에서 Configuration > Video > Integrated graphics 로 진입한 다음, ‘always enable’로 설정한다.
그러나 별도의 그래픽 카드에 3개 이상의 포트가 있다고 해서 이것을 모두 동시에 사용할 수 있다는 의미는 아니다. 예를 들어서 구형 엔비디아 카드는 포트가 2개 이상이어도 하나의 카드에 모니터를 2개 이상 연결할 수 없다. 자신의 그래픽 카드가 멀티 모니터를 지원하는지 판단하는 가장 좋은 방법은 그래픽 카드 모델명을 찾아서 원하는 모니터 개수와 함께 검색하는 것이다. 예를 들어, ‘엔비디아 GTX 1660 모니터 4대’라고 검색하면 된다.
EVGA 지포스 RTX 2060 KO 같은 현대적인 그래픽카드는 여러 디스플레이를 동시에 연결할 수 있다. ⓒ BRAD CHACOS/IDG
그래픽 카드가 원하는 만큼 충분히 모니터를 지원할 수 있으면 좋지만, 그렇지 않다면 추가 그래픽 카드를 구입해야 한다. 그래픽 카드를 추가로 구입하기 전 타워 안에 충분한 공간(PCI 슬롯)이 있는지, 전원 공급은 충분한지 확인해야 한다.
멀티 모니터용으로만 그래픽 카드를 구입한다면 최신 그래픽 카드 중에서도 저렴한 옵션을 선택하는 것이 좋다.
아니면 멀티 스트리밍이 지원되는 디스플레이포트를 탑재한 신형 모니터를 사용하는 방법도 있다. 그래픽 카드의 디스플레이포트 1.2에 연결하고, 디스플레이포트 케이블을 사용해 다음 모니터로 연결하는 것이다. 모니터의 크기나 해상도가 같지 않아도 된다. 뷰소닉(ViewSonic)의 VP2468이 이런 제품 중 하나다. 아마존에서 약 210달러에 판매되는 이 24인치 모니터는 디스플레이포트 아웃 외에도 프리미엄 IPS 스크린, 아주 얇은 베젤 등 멀티 모니터 설정에 이상적인 특징을 제공한다.
2단계 : 모니터 선택하기
그래픽 카드에 대해서 파악했다면 이제 추가 모니터를 구입할 차례다. 사용자에 따라서 기존에 사용하고 있는 모니터, 책상 크기, 추가 모니터 용도 등에 따라서 완벽한 모니터가 달라질 것이다.
필자의 경우, 이미 24인치 모니터 2대를 가지고 있었기 때문에 중앙에 설치할 더 큰 모니터가 필요해서 27인치 모니터를 선택했다. 게임을 하지 않기 때문에 모니터 크기 차이는 상관없었다. 하지만 사용자에 따라서 멀티 모니터로 POST를 하거나 동영상을 보기 위해서는 이러한 구성보다 같은 모니터를 연결하는 것이 더 좋을 것이다.
모니터를 구입하기 전에 PC와 모니터의 포트 호환성을 설펴야 한다. DVI-HDMI 혹은 디스플레이포트-DVI 등 전환해주는 케이블을 이용할 수도 있지만 다소 귀찮다. 그러나 PC나 모니터에 VGA 포트가 있다면, 교체를 권한다. VGA는 아날로그 커넥터이기 때문에 선명도가 떨어진다.
3단계 : PC설정
모니터를 구입하고 나면 PC에 연결하고 PC의 전원을 켠다. 이것으로 모니터 설치가 끝났다. 하지만 완전히 끝난 것은 아니다.
윈도우가 멀티 모니터 환경에서 잘 동작하게 만들어야 하는데, 윈도우 7이나 윈도우 8 사용자라면 바탕화면에서 오른쪽 클릭하고 ‘화면 해상도’를 선택한다. 윈도우 10 사용자라면 ‘디스플레이 설정’을 클릭한다. 그러면 디스플레이를 정렬할 수 있는 창이 나타난다.
ⓒ ITWorld 디스플레이 설정
여기서 모니터들이 모두 탐지되는지 확인할 수 있다. ‘식별’을 클릭하면 각 디스플레이에 큰 숫자가 나타난다. 주 모니터(작업 표시줄과 시작 버튼이 나타나는 모니터)로 사용할 모니터에 1번이 나타나야 하는데, 원하는 것을 선택한 다음 아래 여러 디스플레이 설정에서 ‘이 디스플레이를 주 모니터로 만들기’를 클릭한다. 그 다음 ‘다중 디스플레이’ 드롭다운 메뉴에서 복제할 것인지 확장할 것인지를 선택하면 되는데, 대부분의 경우 ‘디스플레이 확장’이 적합하다.
GPU 제어판에서도 다중 모니터를 설정할 수 있다. 바탕화면에서 오른쪽 클릭을 하고 엔비디아, AMD, 인텔 등 그래픽 제조사의 제어판 메뉴를 열어 윈도우와 유사한 방식으로 디스플레이를 설정할 수 있다.
멀티 디스플레이를 구축할 경우에는 같은 모델을 이용하는 것이 해상도나 선명도, 색보정 등의 문제가 발생하지 않아 ‘끊김 없는’ 경험을 할 수 있다.
선박의 동력 요구 사항을 설계할 때 고려해야 할 가장 중요한 요소는 선박 저항 또는 선박에 작용하는 항력입니다. 항력을 극복하는 데 필요한 동력이 추진 시스템의 ‘손실’에 기여하기 때문에 추진 시스템을 설계하는 동안 선박 저항을 추정하는 것이 중요합니다. 선박 저항을 계산하는 세 가지 주요 방법이 있습니다:
Holtrop-Mennen(HM) 방법과 같은 통계적 방법, 수치 분석 또는 CFD(전산 유체 역학) 시뮬레이션 및 모델 테스트, 즉 예인 탱크에서 축소된 모델 테스트. 설계 단계 초기에는 기본 선박 매개변수만 사용할 수 있을 때 HM 방법과 같은 통계 모델만 사용할 수 있습니다.
수치 해석/CFD 시뮬레이션 및 모델 테스트는 선박의 완전한 3D 설계가 완료된 경우에만 수행할 수 있습니다. 본 논문은 Flow-3D 소프트웨어 패키지를 사용하여 CFD 시뮬레이션을 사용하여 잔잔한 수상 선박 저항을 예측하는 것을 목표로 합니다.
롤온/롤오프 승객(RoPax) 페리에 대한 사례 연구를 조사했습니다. 선박 저항은 다양한 선박 속도에서 계산되었습니다. 메쉬는 모든 CFD 시뮬레이션의 결과에 영향을 미치기 때문에 메쉬 민감도를 확인하기 위해 여러 개의 메쉬가 사용되었습니다. 시뮬레이션의 결과를 HM 방법의 추정치와 비교했습니다.
시뮬레이션 결과는 낮은 선박 속도에 대한 HM 방법과 잘 일치했습니다. 더 높은 선속을 위한 HM 방법에 비해 결과의 차이가 상당히 컸다. 선박 저항 분석을 수행하는 Flow-3D의 기능이 시연되었습니다.
While designing the power requirements of a ship, the most important factor to be considered is the ship resistance, or the sea drag forces acting on the ship. It is important to have an estimate of the ship resistance while designing the propulsion system since the power required to overcome the sea drag forces contribute to ‘losses’ in the propulsion system. There are three main methods to calculate ship resistance: Statistical methods like the Holtrop-Mennen (HM) method, numerical analysis or CFD (Computational Fluid Dynamics) simulations, and model testing, i.e. scaled model tests in towing tanks. At the start of the design stage, when only basic ship parameters are available, only statistical models like the HM method can be used. Numerical analysis/ CFD simulations and model tests can be performed only when the complete 3D design of the ship is completed. The present paper aims at predicting the calm water ship resistance using CFD simulations, using the Flow-3D software package. A case study of a roll-on/roll-off passenger (RoPax) ferry was investigated. Ship resistance was calculated at various ship speeds. Since the mesh affects the results in any CFD simulation, multiple meshes were used to check the mesh sensitivity. The results from the simulations were compared with the estimate from the HM method. The results from simulations agreed well with the HM method for low ship speeds. The difference in the results was considerably high compared to the HM method for higher ship speeds. The capability of Flow-3D to perform ship resistance analysis was demonstrated.
Figure 1: Simplified ship geometryFigure 3: Wave pattern at sea surface at 20 knots (10.29 m/s) for mesh 1Figure 4: Ship Resistance (kN) vs Ship Speed (knots)
Publisher
International Society of Multiphysics
Citation
Deshpande SR, Sundsbø P, Das S. Ship resistance analysis using CFD simulations in Flow-3D. The International Journal of Multiphysics. 2020;14(3):227-236
REFERENCES
[1] K. Min and S. Kang, “Study on the form factor and full-scale ship resistance prediction method,” Journal of Marine Science and Technology, vol. 15, pp. 108-118, June 2010. [2] A. Molland, S. Turnock and D. Hudson, “Ship Resistance and Propulsion” Second Edition. In Ship Resistance and Propulsion: Practical Estimation of Ship Propulsive Power (pp. 12-69), August 2017, Cambridge University Press. [3] K. Niklas and H. Pruszko, “Full-scale CFD simulations for the determination of ship resistance as a rational, alternative method to towing tank experiments,” Ocean Engineering, vol. 190, October 2019. [4] A. Elkafas, M. Elgohary and A. Zeid, “Numerical study on the hydrodynamic drag force of a container ship model,” Alexandria Engineering Journal, vol. 58, no. 3, pp. 849-859, September 2019. [5] J. Holtrop and G. Mennen, “An approximate power prediction method,” International Shipbuilding Progress, vol. 29, no. 335, pp. 166-170, July 1982. [6] E. Bøckmann and S. Steen, “Model test and simulation of a ship with wavefoils,” Applied Ocean research, vol. 57, pp. 8-18, April 2016. [7] K. Atreyapurapu, B. Tallapragada and K. Voonna, “Simulation of a Free Surface Flow over a Container Vessel Using CFD,” International Journal of Engineering Trends and Technology (IJETT), vol. 18, no. 7, pp. 334-339, December 2014. [8] J. Petersen, D. Jacobsen and O. Winther, “Statistical modelling for ship propulsion efficiency,” Journal of Marine Science and Technology, vol. 17, pp. 30-39, December 2011. [9] H. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method (second edition), Harlow, England: Pearson Education Ltd, 2007. [10]C. Hirth and B. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,” Journal of Computational Physics, vol. 39, no. 1, pp. 201-225, January 1981. [11] A. Nordli and H. Khawaja, “Comparison of Explicit Method of Solution for CFD Euler Problems using MATLAB® and FORTRAN 77,” International Journal of Multiphysics, vol. 13, no. 2, 2019. [12] FLOW-3D® Version 12.0 User’s Manual (2018). FLOW-3D [Computer software]. Santa Fe, NM: Flow Science, Inc. https://www.flow3d.com. [13] D. McCluskey and A. Holdø, “Optimizing the hydrocyclone for ballast water treatment using computational fluid dynamics,” International Journal of Multiphysics, vol. 3, no. 3, 2009. [14]M. Breuer, D. Lakehal and W. Rodi, “Flow around a Surface Mounted Cubical Obstacle: Comparison of Les and Rans-Results,” Computation of Three-Dimensional Complex Flows. Notes on Numerical Fluid Mechanics, vol. 49, p. 1996. [15] G. Wei, “A Fixed-Mesh Method for General Moving Objects in Fluid Flow”, Modern Physics Letters B, vol. 19, no. 28, pp. 1719-1722, 2005. [16]J. Michell, “The wave-resistance of a ship,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vols. 45, 1898, no. 272, pp. 106-123, May 2009.
1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University 2Director, Water Resources & Environment Department, HECOREA 3Director, Water Resources Department, ISAN 4Professor, Dept. of Civil & Environmental Engineering, Hongik University
1홍익대학교 건설환경공학과 박사과정 2㈜헥코리아 수자원환경사업부 이사 3㈜이산 수자원부 이사 4홍익대학교 건설환경공학과 교수
ABSTRACT
최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다. 그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다. 이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다. 수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다. 따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다. 이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다. 그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.
키워드 : 보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력
1. 서 론
최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.
기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006; Kim, 2007; Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.
그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.
2. 본 론
2.1 이론적 배경
2.1.1 3차원 수치모형의 기본이론
FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.
2.1.2 유동해석의 지배방정식
1) 연속 방정식(Continuity Equation)
FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1), (2)와 같다.
(1)
∇·v=0
(2)
∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ
여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.
2) 운동량 방정식(Momentum Equation)
각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3), (4), (5)와 같다.
여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.
2.1.3 소류력 산정
호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6), (7)과 같다.
여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.
2) Manning 조도계수를 고려한 공식
Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.
(7)
τ=γn2V2R1/3
여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.
FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.
2.2 하천호안 설계기준
하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.
Table 1.
Standard of Permissible Velocity and Shear on Revetment
Country (Reference)
Material
Permissible velocity (Vp, m/s)
Permissible Shear (τp, kN/m2)
Korea
River Construction Design Practice Guidelines (MOLIT, 2016)
Vegetated
5.0
0.50
Stone
5.0
0.80
USA
ASTM D’6460
Vegetated
6.1
0.81
Unvegetated
5.0
0.28
JAPAN
Dynamic Design Method of Revetment
–
5.0
–
2.3. 보조여수로 운영에 따른 하류하천 영향 분석
2.3.1 모형의 구축 및 경계조건
본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2, Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).
수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.
(8)
n=ks1/68.1g1/2
여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.
시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.
Table 2.
Mesh sizes and numerical conditions
Mesh
Numbers
49,102,500 EA
Increment (m)
Direction
Existing Spillway
Auxiliary Spillway
∆X
0.99 ~ 4.30
1.00 ~ 4.30
∆Y
0.99 ~ 8.16
1.00 ~ 5.90
∆Z
0.50 ~ 1.22
0.50 ~ 2.00
Boundary Conditions
Xmin / Ymax
Inflow / Water Surface Elevation
Xmax, Ymin, Zmin / Zmax
Wall / Symmetry
Turbulence Model
RNG model
Table 3.
Case of numerical simulation (Qp : Design flood discharge)
Case
Existing Spillway (Qe, m3/s)
Auxiliary Spillway (Qa, m3/s)
Remarks
1
Qp
0
Reference case
2
0
Qp
3
0
0.58Qp
Review of discharge capacity on auxiliary spillway
4
0
0.48Qp
5
0
0.45Qp
6
0
0.32Qp
7
0.50Qp
0.50Qp
Determination of optimal division ratio on Spillways
8
0.61Qp
0.39Qp
9
0.39Qp
0.61Qp
10
0.42Qp
0.58Qp
11
0.32Qp
0.45Qp
Determination of permissible division on Spillways
12
0.35Qp
0.48Qp
13
0.38Qp
0.53Qp
14
0.41Qp
0.56Qp
Table 4.
Roughness coefficient and roughness height
Criteria
Roughness coefficient (n)
Roughness height (ks, m)
Structure (Concrete)
0.014
0.00061
River
0.033
0.10496
Fig. 1
Layout of spillway and river in this study
2.3.2 보조 여수로의 방류능 검토
본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.
보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.
하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.
Fig. 2
Region of interest in this study
Fig. 3
Maximum velocity and location of Vmax according to Qa
Fig. 4
Maximum shear according to Qa
Fig. 5
Maximum water surface elevation and location of ηmax according to Qa
Table 5.
Numerical results for each cases (Case 1 ~ Case 6)
Case
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
1 (Qa = 0)
9.15
0.54
No Good
No Good
2 (Qa = Qp)
8.87
0.56
No Good
No Good
3 (Qa = 0.58Qp)
6.53
0.40
No Good
No Good
4 (Qa = 0.48Qp)
6.22
0.36
No Good
No Good
5 (Qa = 0.45Qp)
4.22
0.12
Accpet
Accpet
6 (Qa = 0.32Qp)
4.04
0.14
Accpet
Accpet
2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토
기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).
따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.
Fig. 6
Maximum velocity on section 1 & 2 according to Qa
Fig. 7
Maximum shear on section 1 & 2 according to Qa
Fig. 8
Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)
Fig. 9
Maximum water surface elevation on section 1 & 2 according to Qa
Table 6.
Numerical results for each cases (Case 7 ~ Case 10)
Case (Qe & Qa)
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
7 Qe : 0.50QpQa : 0.50Qp
8.10
6.23
0.64
0.30
No Good
No Good
No Good
No Good
8 Qe : 0.61QpQa : 0.39Qp
8.88
6.41
0.61
0.34
No Good
No Good
No Good
No Good
9 Qe : 0.39QpQa : 0.61Qp
6.22
7.33
0.24
0.35
No Good
No Good
Accept
No Good
10 Qe : 0.42QpQa : 0.58Qp
6.39
4.79
0.30
0.19
No Good
Accept
No Good
Accept
2.3.4 방류량 배분 비율의 허용 방류량 검토
계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).
호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10, Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).
Table 7.
Numerical results for each cases (Case 11 ~ Case 14)
Case (Qe & Qa)
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
11 Qe : 0.32QpQa : 0.45Qp
3.63
4.53
0.09
0.26
Accept
Accept
Accept
Accept
12 Qe : 0.35QpQa : 0.48Qp
5.74
5.18
0.23
0.22
No Good
No Good
Accept
Accept
13 Qe : 0.38QpQa : 0.53Qp
6.70
4.21
0.28
0.11
No Good
Accept
Accept
Accept
14 Qe : 0.41QpQa : 0.56Qp
6.54
5.24
0.28
0.24
No Good
No Good
Accept
Accept
Fig. 10
Maximum velocity on section 1 & 2 according to total outflow
Fig. 11
Maximum shear on section 1 & 2 according to total outflow
Fig. 12
Maximum water surface elevation on section 1 & 2 according to total outflow
3. 결 론
본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.
수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.
본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.
Acknowledgements
본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.
References
1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA.
2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York.
3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM.
4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731.
5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608.
6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81.
7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
8 K-water (2021). Regulations of Dam Management. Daejeon: K-water.
9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT.
10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593
11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279
12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT.
13 MOLIT (2019). Standards of River Design. Sejong: MOLIT.
14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS.
15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7.
16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230
17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112
Korean References Translated from the English
1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부.
2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실.
3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부.
4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부.
5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608.
6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537
7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81.
이 작업의 목적은 FLOW-3D 를 검증하는 것입니다. 밀폐된 좁은 스팬 직사각형 탱크의 출렁거림 문제에 대비하여 탱크의 내부 파동 공명 주기에 가깝거나 같은 주기로 롤 운동을 하여 측면 및 지붕 파동 충격 이벤트가 발생합니다.
탱크는 물이나 해바라기 기름으로 두 가지 다른 수준으로 채워졌고 위의 공간은 공기로 채워졌습니다. 압력 센서는 여러 장소의 벽에 설치되었으며 처음 4개의 출렁이는 기간 동안 기록된 롤 각도와 시간 이력이 있습니다. 오일을 사용하는 경우의 흐름은 레이놀즈 수가 1748인 층류인 반면, 물로 채워진 경우의 흐름은 레이놀즈 수가 97546인 난류입니다.
CFD 시뮬레이션은 탱크의 고조파 롤 운동을 복제하기 위해 본체력 방법을 사용했으며, 난류 및 공기 압축성을 설명하기 위해 다른 모델링 가정과 함께 그리드 의존성 테스트를 수행했습니다.
The objective of this work is to validate FLOW-3D against a sloshing problem in a sealed narrow span rectangular tank, subjected to roll motion at periods close to or equal to the tank’s internal wave resonance period, such that side and roof wave impact events occur. The tank was filled to two different levels with water or sunflower oil, with the space above filled by air. Pressure sensors were installed in the walls at several places and their time histories, along with the roll angle, recorded for the first four sloshing periods. For the cases using oil, the flow is laminar with a Reynolds number of 1748, while for the cases filled with water the flow is turbulent with a Reynolds number of 97546. The CFD simulations used the body force method to replicate the harmonic roll motion of the tank, while grid dependence tests were performed along with different modelling assumptions to account for turbulence and air compressibility.
Experimental Problem Setup
원래 실험은 Souto-Iglesias 및 Botia-Vera[1]에 의해 수행되었으며 모든 실험 데이터 파일은 문제 설명, 비디오 및 불확실성 분석과 함께 사용할 수 있습니다. 그림 1에 표시된 형상은 길이 900mm, 높이 508mm, 스팬 62mm의 직사각형 탱크로 구성되어 있으며 물이나 해바라기 기름으로 93mm 또는 355.3mm로 채워져 있으므로 4가지 경우가 고려됩니다. 탱크 벽과 같은 높이로 설치된 압력 센서의 위치도 표시됩니다. 탱크 회전 중심은 수평에 대한 회전 각도와 함께 그림 1에 나와 있습니다. 각 실험 실행은 반복성을 평가할 수 있도록 100번 수행되었습니다.
The original experiment was performed by Souto-Iglesias and Botia-Vera [1] and all experimental data files are available along with problem description, videos and an uncertainty analysis. The geometry shown in Fig. 1 consists of a rectangular tank of 900mm length, 508mm height and 62mm span, filled to either 93mm or 355.3 mm with either water or sunflower oil, hence four cases are considered. The locations of the pressure sensors that were installed flush with the tank walls are also shown. The tank rotation center is shown in Fig. 1, along with the rotation angle relative to the horizontal. Each of the experimental runs was performed 100 times to enable their repeatability to be assessed.
Figure 1. Tank dimensions and locations of pressure sensors
Numerical Simulation
문제는 FLOW-3D 내에서 비관성 기준 좌표계 모델을 사용하여 비교적 간단하게 설정할 수 있으며 , 이는 로컬 기준 좌표계의 가속도에 따라 유체에 체력 을 적용합니다. Z축 회전 속도는 탱크의 롤 운동을 시뮬레이션하기 위한 주기 함수로 정의되었으며 음의 수직 방향으로 작용하는 일정한 중력이 가해졌습니다.
메쉬 미세화, 운동량 이류에 대한 수치 근사 순서, 층류 대 난류 모델 및 탱크 내 공기에 대한 세 가지 다른 처리(즉, 일정 압력, 압축성 기체 및 비압축성 기체)와 같은 것을 조사하기 위해 여러 시뮬레이션을 수행했습니다.
93mm 깊이로 채워진 모든 케이스에 대해 압력은 압력 센서 P1에서만 실험 값과 비교되었으며, 355.3mm 깊이로 채워진 모든 케이스에서는 P3 센서의 데이터만 비교되었습니다.
The problem was relatively simple to set up using the non-inertial reference frame model within FLOW-3D, which applies a body force to the fluid depending on the acceleration of the local reference frame. The Z axis rotational velocity was defined as a periodic function to simulate a roll motion of the tank, and a constant gravity force acting in the negative vertical direction was applied.
Multiple simulations were performed to investigate such things as mesh refinement, the numerical approximation order for momentum advection, laminar versus turbulent models and three different treatments for the air in the tank (i.e., constant pressure, compressible gas and incompressible gas).
For all 93mm depth-filled cases, the pressure was compared to the experimental values at pressure sensor P1 only, while for all 355.3mm depth-filled cases, only data at the P3 sensor was compared.
Results
P1에서 측정된 측면 워터 슬로싱에 대한 메쉬 해상도의 영향은 그림 2에서 볼 수 있습니다. 피크 값 예측 측면에서 특별한 편향을 보이지 않습니다. 모든 측면 사례에서 초기 피크 직후의 압력은 시뮬레이션에서 일관되게 과대 평가되었습니다. 모든 메쉬는 피크의 타이밍 측면에서 우수한 일치를 보입니다. 100회 실행에서 보고된 실험 시간 기록은 평균 값에 가장 가까운 최고 압력을 가진 기록입니다.
The effect of mesh resolution on lateral water sloshing measured at P1 is seen in Fig. 2. It shows no particular bias in terms of the prediction of peak values. In all the Lateral cases, the pressures immediately after the initial peaks are consistently over estimated in the simulations. All meshes have excellent agreement in terms of the timing of the peaks. The experimental time histories reported from the 100 runs made are those with peak pressures closest to the average values.
Figure 2. Tank dimensions and locations of pressure sensors
실험 결과의 반복성은 Souto-Iglesias & Elkin Botia-Vera[1]에 의해 각 테스트를 100번 실행하고 처음 4개의 피크 압력의 평균 및 표준 편차를 측정하여 평가했습니다. CFD 실행이 다른 실험 실행으로 간주되는 경우 오류 막대 내에 있을 확률이 95%입니다. 그러나 CFD 결과의 16개 피크 압력 중 9개만 실험 결과의 2 표준 편차 내에 있으므로 CFD 모델이 실험을 대표하지 않거나 피크 압력이 정규 분포를 따르지 않는다는 결론을 내려야 합니다.
어쨌든 표준 편차는 피크 자체에 비해 상당히 크며, 수성 케이스와 측면 오일의 비율이 가장 작은 피크 값에 대한 표준 편차의 비율이 가장 큰 것으로 나타났습니다. 이러한 결과는 그림 1과 2에서 볼 수 있는 벽 충격 역학의 복잡성을 고려할 때 그리 놀라운 일이 아닙니다. 3,4.
The repeatability of the experimental results was assessed by Souto-Iglesias & Elkin Botia-Vera [1] running each test 100 times and measuring the average and standard deviation of the first four peak pressures. If a CFD run is considered to be another experimental run there is a 95% chance it will lie within the error bars. However, only nine of the 16 peak pressures from the CFD results fall within two standard deviations of the experimental results, so we must conclude that either the CFD model is not representative of the experiment or that the peak pressures are not normally distributed.
In any event, the standard deviations are quite large compared to the peaks themselves, with the largest ratio of standard deviation to peak values occurring for the water-based cases and the lateral oil having the smallest ratio. These results are perhaps not too surprising when one considers the complexity of the wall impact dynamics as seen in Figs. 3,4.
Figure 3. 4th Lateral Wave Impact in Water
Figure 4. 4th Wave Impact of Water on Roof
Conclusions
좁은 탱크 슬로싱 문제의 네 가지 구성은 자유 표면 흐름을 위해 설계된 상용 CFD 코드를 사용하여 수치적으로 시뮬레이션되었습니다. 대략 2 X 10 3 및 1 X 10 5 의 Reynolds 수에 해당하는 두 가지 다른 유체 와 두 가지 유체 깊이가 네 가지 경우를 정의하는 데 사용되었습니다. 4가지 경우 모두에 대해 메쉬 셀 크기 독립성 테스트를 수행했지만 메쉬 해상도가 증가함에 따라 실험 결과에 대해 약한 수렴만 발견되었습니다. 조사는 또한 두 가지 다른 운동량 이류 수치 차분 계획을 테스트했으며 두 번째 방법을 사용하여 더 가까운 일치를 발견했습니다 1차 체계를 사용하는 것보다 차수 단조성 보존 체계. 기본 층류 흐름을 포함한 세 가지 난류 모델이 테스트되었지만 더 낮은 계산 비용으로 인해 층류 이외의 모델에 대한 선호도가 발견되지 않았습니다. 실험 데이터와 공기 감소 일치의 압축성을 포함하여 그 이유는 불분명합니다.
실험 압력 프로브 시간 이력 데이터 세트에는 100회 반복 테스트에서 파생된 각 압력 피크에 대해 100개의 값이 포함되어 있으므로 CFD 시뮬레이션과의 일치의 통계적 유의성을 조사할 수 있었습니다. 수치 시뮬레이션과 실험 모두 출렁이는 파동 충격에 해당하는 매우 가파른 압력 펄스를 발생시켰고 실험 결과는 피크 값에서 높은 정도의 자연적 변동성을 갖는 것으로 나타났습니다. CFD 시뮬레이션의 감도 테스트(예: 약간 다른 초기 시작 조건 사용)는 공식적으로 수행되지 않았지만 수치 솔루션은 또한 다른 메쉬, 차분 체계 및 난류 모델,
모든 경우에 압력 피크가 발생하는 수치해의 타이밍은 매우 정확함을 알 수 있었다. 그러나 가장 난이도가 낮은 Lateral Oil의 경우에도 압력 피크와 바로 뒤따르는 압력 값이 과대 평가되어 수치 모델링의 단점이 나타났습니다. 실험적 피크 압력 변동성을 고려할 때 CFD 생성 값은 CFD 솔루션이 통계적 유의성을 나타내기 위해 필요한 15개 이상이 아니라 16개 피크 중 9개에서 2개의 표준편차 한계 내에 떨어졌습니다. 실험을 대표했다. 이것은 피크가 정규 분포를 따르지 않거나 CFD 모델이 피크를 예측하는 데 어떤 식으로든 결함이 있음을 나타냅니다.
Four configurations of a narrow tank sloshing problem were numerically simulated using a commercial CFD code designed for free surface flow. Two different fluids corresponding to Reynolds numbers of approximately 2 X 103 and 1 X 105 and two fluid depths were used to define the four cases. Mesh cell size independence tests were conducted for all four cases, but only a weak convergence towards the experimental results with increasing mesh resolution was found. The investigation also tested two different momentum advection numerical differencing schemes and found closer agreement using the 2nd order monotonicity preserving scheme than by using a first order scheme. Three turbulence models, including the default laminar flow, were tested but no preference was found for any model other than the laminar by virtue of its lower computational cost. Including the compressibility of the air-reduced agreement with the experimental data, the reasons for this are unclear.
The experimental pressure probe time history data sets included 100 values for each of the pressure peaks derived from 100 repeat tests, and thus we were able to examine the statistical significance of the agreement with the CFD simulations. Both the numerical simulations and the experiments gave rise to very steep pressure pulses corresponding to the sloshing wave impacts, and the experimental results were found to have a high degree of natural variability in the peak values. Although sensitivity tests of the CFD simulations (using, for example, slightly different initial starting conditions) were not formally conducted, the numerical solutions also showed a high degree of variability in the pressure peak magnitudes resulting from the use of different meshes, differencing schemes and turbulence models, which could be considered to show that the numerical solution also had a high degree of natural variability.
In all cases, the numerical solutions’ timing of the occurrence of the pressure peaks were found to be very accurate. However, even for the least challenging Lateral Oil case, the pressure peaks and the immediately following pressure values were overestimated, which indicated a shortcoming in the numerical modelling. When the experimental peak pressure variability was taken into account, the CFD-generated values fell inside the two Standard Deviation margin in nine of the 16 peaks rather than the 15 or more that would be required to show statistical significance in the sense that the CFD solution was representative of the experiment. This indicates that either the peaks are not normally distributed and/or the CFD model is in some way deficient at predicting them. Further work is required to establish how the peak pressures are distributed and/or to establish the physical reasons why the CFD model is overestimating the pressure peaks for even the least challenging Lateral Oil configuration.
References
Spheric Benchmark Test Case, Sloshing Wave Impact Problem, Antonio Souto-Iglesias & Elkin Botia-Vera, https://wiki.manchester.ac.uk/spheric/index.php/Test10
Peregrine DH (1993). Water-wave impact on walls. Annual Review of Fluid Mechanics. Vol 35, pp 23-43.
Editor’s Note
The complete document from which this note was extracted and the related data and input files are available on our Users Site. Readers are encouraged to read the original validation to get a full appreciation of the detail in this work investigating comparisons between simulation and experimental data. This study is especially noteworthy since it deals with highly non-linear sloshing of fluids interacting with the boundaries of a confining tank.
With regard to the author’s conclusions, it should be mentioned that the over prediction of fluid impact pressures in simulations could be the result of not allowing for sufficient compressibility effects in the liquids. For instance, in Fig. 3, it appears that there has been some air entrained in the liquid near the side wall. Also, negative pressures (i.e., below atmospheric) recorded experimentally might result from liquid drops remaining on the pressure sensors after the main body of liquid has drained away. Such details, which may be hard to quantify, only emphasize the difficulties involved in undertaking detailed validation studies. The author is commended for his excellent work.
Effect of carrier gases on the entrainment defects within AZ91 alloy castings
Tian Liab J.M.T.Daviesa Xiangzhen Zhuc aUniversity of Birmingham, Birmingham B15 2TT, United Kingdom bGrainger and Worrall Ltd, Bridgnorth WV15 5HP, United Kingdom cBrunel Centre for Advanced Solidification Technology, Brunel University London, Kingston Ln, London, Uxbridge UB8 3PH, United Kingdom
Abstract
An entrainment defect (also known as a double oxide film defect or bifilm) acts a void containing an entrapped gas when submerged into a light-alloy melt, thus reducing the quality and reproducibility of the final castings. Previous publications, carried out with Al-alloy castings, reported that this trapped gas could be subsequently consumed by the reaction with the surrounding melt, thus reducing the void volume and negative effect of entrainment defects. Compared with Al-alloys, the entrapped gas within Mg-alloy might be more efficiently consumed due to the relatively high reactivity of magnesium. However, research into the entrainment defects within Mg alloys has been significantly limited. In the present work, AZ91 alloy castings were produced under different carrier gas atmospheres (i.e., SF6/CO2, SF6/air). The evolution processes of the entrainment defects contained in AZ91 alloy were suggested according to the microstructure inspections and thermodynamic calculations. The defects formed in the different atmospheres have a similar sandwich-like structure, but their oxide films contained different combinations of compounds. The use of carrier gases, which were associated with different entrained-gas consumption rates, affected the reproducibility of AZ91 castings.
연행 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)은 경합금 용융물에 잠길 때 갇힌 가스를 포함하는 공극으로 작용하여 최종 주물의 품질과 재현성을 저하시킵니다. Al-합금 주조로 수행된 이전 간행물에서는 이 갇힌 가스가 주변 용융물과의 반응에 의해 후속적으로 소모되어 공극 부피와 연행 결함의 부정적인 영향을 줄일 수 있다고 보고했습니다. Al-합금에 비해 마그네슘의 상대적으로 높은 반응성으로 인해 Mg-합금 내에 포집된 가스가 더 효율적으로 소모될 수 있습니다. 그러나 Mg 합금 내 연행 결함에 대한 연구는 상당히 제한적이었습니다. 현재 작업에서 AZ91 합금 주물은 다양한 캐리어 가스 분위기(즉, SF 6 /CO2 , SF 6 / 공기). AZ91 합금에 포함된 엔트레인먼트 결함의 진화 과정은 미세조직 검사 및 열역학적 계산에 따라 제안되었습니다. 서로 다른 분위기에서 형성된 결함은 유사한 샌드위치 구조를 갖지만 산화막에는 서로 다른 화합물 조합이 포함되어 있습니다. 다른 동반 가스 소비율과 관련된 운반 가스의 사용은 AZ91 주물의 재현성에 영향을 미쳤습니다.
키워드
마그네슘 합금주조Oxide film, Bifilm, Entrainment 불량, 재현성
1 . 소개
지구상에서 가장 가벼운 구조용 금속인 마그네슘은 지난 수십 년 동안 가장 매력적인 경금속 중 하나가 되었습니다. 결과적으로 마그네슘 산업은 지난 20년 동안 급속한 발전을 경험했으며 [1 , 2] , 이는 전 세계적으로 Mg 합금에 대한 수요가 크게 증가했음을 나타냅니다. 오늘날 Mg 합금의 사용은 자동차, 항공 우주, 전자 등의 분야에서 볼 수 있습니다. [3 , 4] . Mg 금속의 전 세계 소비는 특히 자동차 산업에서 앞으로 더욱 증가할 것으로 예측되었습니다. 기존 자동차와 전기 자동차 모두의 에너지 효율성 요구 사항이 설계를 경량화하도록 더욱 밀어붙이기 때문입니다 [3 , 5, 6] .
Mg 합금에 대한 수요의 지속적인 성장은 Mg 합금 주조의 품질 및 기계적 특성 개선에 대한 광범위한 관심을 불러일으켰습니다. Mg 합금 주조 공정 동안 용융물의 표면 난류는 소량의 주변 대기를 포함하는 이중 표면 필름의 포획으로 이어질 수 있으므로 동반 결함(이중 산화막 결함 또는 이중막 결함이라고도 함)을 형성합니다. ) [7] , [8] , [9] , [10] . 무작위 크기, 수량, 방향 및 연행 결함의 배치는 주조 특성의 변화와 관련된 중요한 요인으로 널리 받아들여지고 있습니다 [7] . 또한 Peng et al. [11]AZ91 합금 용융물에 동반된 산화물 필름이 Al 8 Mn 5 입자에 대한 필터 역할을 하여 침전될 때 가두는 것을 발견했습니다 . Mackie et al. [12]는 또한 동반된 산화막이 금속간 입자를 트롤(trawl)하는 작용을 하여 입자가 클러스터링되어 매우 큰 결함을 형성할 수 있다고 제안했습니다. 금속간 화합물의 클러스터링은 비말동반 결함을 주조 특성에 더 해롭게 만들었습니다.
연행 결함에 관한 이전 연구의 대부분은 Al-합금에 대해 수행되었으며 [7 , [13] , [14] , [15] , [16] , [17] , [18] 몇 가지 잠재적인 방법이 제안되었습니다. 알루미늄 합금 주물의 품질에 대한 부정적인 영향을 줄이기 위해. Nyahumwa et al., [16] 은 연행 결함 내의 공극 체적이 열간 등방압 압축(HIP) 공정에 의해 감소될 수 있음을 보여줍니다. Campbell [7] 은 결함 내부의 동반된 가스가 주변 용융물과의 반응으로 인해 소모될 수 있다고 제안했으며, 이는 Raiszedeh와 Griffiths [19]에 의해 추가로 확인되었습니다 ..혼입 가스 소비가 Al-합금 주물의 기계적 특성에 미치는 영향은 [8 , 9]에 의해 조사되었으며 , 이는 혼입 가스의 소비가 주조 재현성의 개선을 촉진함을 시사합니다.
Al-합금 내 결함에 대한 조사와 비교하여 Mg-합금 내 연행 결함에 대한 연구는 상당히 제한적입니다. 연행 결함의 존재는 Mg 합금 주물 [20 , 21] 에서 입증 되었지만 그 거동, 진화 및 연행 가스 소비는 여전히 명확하지 않습니다.
Mg 합금 주조 공정에서 용융물은 일반적으로 마그네슘 점화를 피하기 위해 커버 가스로 보호됩니다. 따라서 모래 또는 매몰 몰드의 공동은 용융물을 붓기 전에 커버 가스로 세척해야 합니다 [22] . 따라서, Mg 합금 주물 내의 연행 가스는 공기만이 아니라 주조 공정에 사용되는 커버 가스를 포함해야 하며, 이는 구조 및 해당 연행 결함의 전개를 복잡하게 만들 수 있습니다.
SF 6 은 Mg 합금 주조 공정에 널리 사용되는 대표적인 커버 가스입니다 [23] , [24] , [25] . 이 커버 가스는 유럽의 마그네슘 합금 주조 공장에서 사용하도록 제한되었지만 상업 보고서에 따르면 이 커버는 전 세계 마그네슘 합금 산업, 특히 다음과 같은 글로벌 마그네슘 합금 생산을 지배한 국가에서 여전히 인기가 있습니다. 중국, 브라질, 인도 등 [26] . 또한, 최근 학술지 조사에서도 이 커버가스가 최근 마그네슘 합금 연구에서 널리 사용된 것으로 나타났다 [27] . SF 6 커버 가스 의 보호 메커니즘 (즉, 액체 Mg 합금과 SF 6 사이의 반응Cover gas)에 대한 연구는 여러 선행연구자들에 의해 이루어졌으나 표면 산화막의 형성과정이 아직 명확하게 밝혀지지 않았으며, 일부 발표된 결과들도 상충되고 있다. 1970년대 초 Fruehling [28] 은 SF 6 아래에 형성된 표면 피막이 주로 미량의 불화물과 함께 MgO 임을 발견 하고 SF 6 이 Mg 합금 표면 피막에 흡수 된다고 제안했습니다 . Couling [29] 은 흡수된 SF 6 이 Mg 합금 용융물과 반응하여 MgF 2 를 형성함을 추가로 확인했습니다 . 지난 20년 동안 아래에 자세히 설명된 것처럼 Mg 합금 표면 필름의 다양한 구조가 보고되었습니다.(1)
단층 필름 . Cashion [30 , 31] 은 X선 광전자 분광법(XPS)과 오제 분광법(AES)을 사용하여 표면 필름을 MgO 및 MgF 2 로 식별했습니다 . 그는 또한 필름의 구성이 두께와 전체 실험 유지 시간에 걸쳐 일정하다는 것을 발견했습니다. Cashion이 관찰한 필름은 10분에서 100분의 유지 시간으로 생성된 단층 구조를 가졌다.(2)
이중층 필름 . Aarstad et. al [32] 은 2003년에 이중층 표면 산화막을 보고했습니다. 그들은 예비 MgO 막에 부착된 잘 분포된 여러 MgF 2 입자를 관찰 하고 전체 표면적의 25-50%를 덮을 때까지 성장했습니다. 외부 MgO 필름을 통한 F의 내부 확산은 진화 과정의 원동력이었습니다. 이 이중층 구조는 Xiong의 그룹 [25 , 33] 과 Shih et al. 도 지지했습니다 . [34] .(삼)
트리플 레이어 필름 . 3층 필름과 그 진화 과정은 Pettersen [35]에 의해 2002년에 보고되었습니다 . Pettersen은 초기 표면 필름이 MgO 상이었고 F의 내부 확산에 의해 점차적으로 안정적인 MgF 2 상 으로 진화한다는 것을 발견했습니다 . 두꺼운 상부 및 하부 MgF 2 층.(4)
산화물 필름은 개별 입자로 구성 됩니다. Wang et al [36] 은 Mg-alloy 표면 필름을 SF 6 커버 가스 하에서 용융물에 교반 한 다음 응고 후 동반된 표면 필름을 검사했습니다. 그들은 동반된 표면 필름이 다른 연구자들이 보고한 보호 표면 필름처럼 계속되지 않고 개별 입자로 구성된다는 것을 발견했습니다. 젊은 산화막은 MgO 나노 크기의 산화물 입자로 구성되어 있는 반면, 오래된 산화막은 한쪽 면에 불화물과 질화물이 포함된 거친 입자(평균 크기 약 1μm)로 구성되어 있습니다.
Mg 합금 용융 표면의 산화막 또는 동반 가스는 모두 액체 Mg 합금과 커버 가스 사이의 반응으로 인해 형성되므로 Mg 합금 표면막에 대한 위에서 언급한 연구는 진화에 대한 귀중한 통찰력을 제공합니다. 연행 결함. 따라서 SF 6 커버 가스 의 보호 메커니즘 (즉, Mg-합금 표면 필름의 형성)은 해당 동반 결함의 잠재적인 복잡한 진화 과정을 나타냅니다.
그러나 Mg 합금 용융물에 표면 필름을 형성하는 것은 용융물에 잠긴 동반된 가스의 소비와 다른 상황에 있다는 점에 유의해야 합니다. 예를 들어, 앞서 언급한 연구에서 표면 성막 동안 충분한 양의 커버 가스가 담지되어 커버 가스의 고갈을 억제했습니다. 대조적으로, Mg 합금 용융물 내의 동반된 가스의 양은 유한하며, 동반된 가스는 완전히 고갈될 수 있습니다. Mirak [37] 은 3.5% SF 6 /기포를 특별히 설계된 영구 금형에서 응고되는 순수한 Mg 합금 용융물에 도입했습니다. 기포가 완전히 소모되었으며, 해당 산화막은 MgO와 MgF 2 의 혼합물임을 알 수 있었다.. 그러나 Aarstad [32] 및 Xiong [25 , 33]에 의해 관찰된 MgF 2 스팟 과 같은 핵 생성 사이트 는 관찰되지 않았습니다. Mirak은 또한 조성 분석을 기반으로 산화막에서 MgO 이전에 MgF 2 가 형성 되었다고 추측했는데 , 이는 이전 문헌에서 보고된 표면 필름 형성 과정(즉, MgF 2 이전에 형성된 MgO)과 반대 입니다. Mirak의 연구는 동반된 가스의 산화막 형성이 표면막의 산화막 형성과 상당히 다를 수 있음을 나타내었지만 산화막의 구조와 진화에 대해서는 밝히지 않았습니다.
또한 커버 가스에 캐리어 가스를 사용하는 것도 커버 가스와 액체 Mg 합금 사이의 반응에 영향을 미쳤습니다. SF 6 /air 는 용융 마그네슘의 점화를 피하기 위해 SF 6 /CO 2 운반 가스 [38] 보다 더 높은 함량의 SF 6을 필요로 하여 다른 가스 소비율을 나타냅니다. Liang et.al [39] 은 CO 2 가 캐리어 가스로 사용될 때 표면 필름에 탄소가 형성된다고 제안했는데 , 이는 SF 6 /air 에서 형성된 필름과 다릅니다 . Mg 연소 [40]에 대한 조사 에서 Mg 2 C 3 검출이 보고되었습니다.CO 2 연소 후 Mg 합금 샘플 에서 이는 Liang의 결과를 뒷받침할 뿐만 아니라 이중 산화막 결함에서 Mg 탄화물의 잠재적 형성을 나타냅니다.
여기에 보고된 작업은 다양한 커버 가스(즉, SF 6 /air 및 SF 6 /CO 2 )로 보호되는 AZ91 Mg 합금 주물에서 형성된 연행 결함의 거동과 진화에 대한 조사 입니다. 이러한 캐리어 가스는 액체 Mg 합금에 대해 다른 보호성을 가지며, 따라서 상응하는 동반 가스의 다른 소비율 및 발생 프로세스와 관련될 수 있습니다. AZ91 주물의 재현성에 대한 동반 가스 소비의 영향도 연구되었습니다.
2 . 실험
2.1 . 용융 및 주조
3kg의 AZ91 합금을 700 ± 5 °C의 연강 도가니에서 녹였습니다. AZ91 합금의 조성은 표 1 에 나타내었다 . 가열하기 전에 잉곳 표면의 모든 산화물 스케일을 기계가공으로 제거했습니다. 사용 된 커버 가스는 0.5 %이었다 SF 6 / 공기 또는 0.5 % SF 6 / CO 2 (부피. %) 다른 주물 6L / 분의 유량. 용융물은 15분 동안 0.3L/min의 유속으로 아르곤으로 가스를 제거한 다음 [41 , 42] , 모래 주형에 부었습니다. 붓기 전에 샌드 몰드 캐비티를 20분 동안 커버 가스로 플러싱했습니다 [22] . 잔류 용융물(약 1kg)이 도가니에서 응고되었습니다.
표 1 . 본 연구에 사용된 AZ91 합금의 조성(wt%).
알
아연
미네소타
시
철
니
마그네슘
9.4
0.61
0.15
0.02
0.005
0.0017
잔여
그림 1 (a)는 러너가 있는 주물의 치수를 보여줍니다. 탑 필링 시스템은 최종 주물에서 연행 결함을 생성하기 위해 의도적으로 사용되었습니다. Green과 Campbell [7 , 43] 은 탑 필링 시스템이 바텀 필링 시스템에 비해 주조 과정에서 더 많은 연행 현상(즉, 이중 필름)을 유발한다고 제안했습니다. 이 금형의 용융 흐름 시뮬레이션(Flow-3D 소프트웨어)은 연행 현상에 관한 Reilly의 모델 [44] 을 사용하여 최종 주조에 많은 양의 이중막이 포함될 것이라고 예측했습니다( 그림 1 에서 검은색 입자로 표시됨) . NS).
수축 결함은 또한 주물의 기계적 특성과 재현성에 영향을 미칩니다. 이 연구는 주조 품질에 대한 이중 필름의 영향에 초점을 맞추었기 때문에 수축 결함이 발생하지 않도록 금형을 의도적으로 설계했습니다. ProCAST 소프트웨어를 사용한 응고 시뮬레이션은 그림 1c 와 같이 최종 주조에 수축 결함이 포함되지 않음을 보여주었습니다 . 캐스팅 건전함도 테스트바 가공 전 실시간 X-ray를 통해 확인했다.
모래 주형은 1wt를 함유한 수지 결합된 규사로 만들어졌습니다. % PEPSET 5230 수지 및 1wt. % PEPSET 5112 촉매. 모래는 또한 억제제로 작용하기 위해 2중량%의 Na 2 SiF 6 을 함유했습니다 .. 주입 온도는 700 ± 5 °C였습니다. 응고 후 러너바의 단면을 Sci-Lab Analytical Ltd로 보내 H 함량 분석(LECO 분석)을 하였고, 모든 H 함량 측정은 주조 공정 후 5일째에 실시하였다. 각각의 주물은 인장 강도 시험을 위해 클립 신장계가 있는 Zwick 1484 인장 시험기를 사용하여 40개의 시험 막대로 가공되었습니다. 파손된 시험봉의 파단면을 주사전자현미경(SEM, Philips JEOL7000)을 이용하여 가속전압 5~15kV로 조사하였다. 파손된 시험 막대, 도가니에서 응고된 잔류 Mg 합금 및 주조 러너를 동일한 SEM을 사용하여 단면화하고 연마하고 검사했습니다. CFEI Quanta 3D FEG FIB-SEM을 사용하여 FIB(집속 이온 빔 밀링 기술)에 의해 테스트 막대 파괴 표면에서 발견된 산화막의 단면을 노출했습니다. 분석에 필요한 산화막은 백금층으로 코팅하였다. 그런 다음 30kV로 가속된 갈륨 이온 빔이 산화막의 단면을 노출시키기 위해 백금 코팅 영역을 둘러싼 재료 기판을 밀링했습니다. 산화막 단면의 EDS 분석은 30kV의 가속 전압에서 FIB 장비를 사용하여 수행되었습니다.
2.2 . 산화 세포
전술 한 바와 같이, 몇몇 최근 연구자들은 마그네슘 합금의 용탕 표면에 형성된 보호막 조사 [38 , 39 , [46] , [47] , [48] , [49] , [50] , [51] , [52 ] . 이 실험 동안 사용된 커버 가스의 양이 충분하여 커버 가스에서 불화물의 고갈을 억제했습니다. 이 섹션에서 설명하는 실험은 엔트레인먼트 결함의 산화막의 진화를 연구하기 위해 커버 가스의 공급을 제한하는 밀봉된 산화 셀을 사용했습니다. 산화 셀에 포함된 커버 가스는 큰 크기의 “동반된 기포”로 간주되었습니다.
도 2에 도시된 바와 같이 , 산화셀의 본체는 내부 길이가 400mm, 내경이 32mm인 폐쇄형 연강관이었다. 수냉식 동관을 전지의 상부에 감았습니다. 튜브가 가열될 때 냉각 시스템은 상부와 하부 사이에 온도 차이를 만들어 내부 가스가 튜브 내에서 대류하도록 했습니다. 온도는 도가니 상단에 위치한 K형 열전대로 모니터링했습니다. Nieet al. [53] 은 Mg 합금 용융물의 표면 피막을 조사할 때 SF 6 커버 가스가 유지로의 강철 벽과 반응할 것이라고 제안했습니다 . 이 반응을 피하기 위해 강철 산화 전지의 내부 표면(그림 2 참조)) 및 열전대의 상반부는 질화붕소로 코팅되었습니다(Mg 합금은 질화붕소와 접촉하지 않았습니다).
실험 중에 고체 AZ91 합금 블록을 산화 셀 바닥에 위치한 마그네시아 도가니에 넣었습니다. 전지는 1L/min의 가스 유속으로 전기 저항로에서 100℃로 가열되었다. 원래의 갇힌 대기(즉, 공기)를 대체하기 위해 셀을 이 온도에서 20분 동안 유지했습니다. 그런 다음, 산화 셀을 700°C로 더 가열하여 AZ91 샘플을 녹였습니다. 그런 다음 가스 입구 및 출구 밸브가 닫혀 제한된 커버 가스 공급 하에서 산화를 위한 밀폐된 환경이 생성되었습니다. 그런 다음 산화 전지를 5분 간격으로 5분에서 30분 동안 700 ± 10°C에서 유지했습니다. 각 유지 시간이 끝날 때 세포를 물로 켄칭했습니다. 실온으로 냉각한 후 산화된 샘플을 절단하고 연마한 다음 SEM으로 검사했습니다.
3 . 결과
3.1 . SF 6 /air 에서 형성된 엔트레인먼트 결함의 구조 및 구성
0.5 % SF의 커버 가스 하에서 AZ91 주물에 형성된 유입 결함의 구조 및 조성 6 / 공기는 SEM 및 EDS에 의해 관찰되었다. 결과는 그림 3에 스케치된 엔트레인먼트 결함의 두 가지 유형이 있음을 나타냅니다 . (1) 산화막이 전통적인 단층 구조를 갖는 유형 A 결함 및 (2) 산화막이 2개 층을 갖는 유형 B 결함. 이러한 결함의 세부 사항은 다음에 소개되었습니다. 여기에서 비말동반 결함은 생물막 또는 이중 산화막으로도 알려져 있기 때문에 B형 결함의 산화막은 본 연구에서 “다층 산화막” 또는 “다층 구조”로 언급되었습니다. “이중 산화막 결함의 이중층 산화막”과 같은 혼란스러운 설명을 피하기 위해.
그림 4 (ab)는 약 0.4μm 두께의 조밀한 단일층 산화막을 갖는 Type A 결함을 보여줍니다. 이 필름에서 산소, 불소, 마그네슘 및 알루미늄이 검출되었습니다( 그림 4c). 산화막은 마그네슘과 알루미늄의 산화물과 불화물의 혼합물로 추측됩니다. 불소의 검출은 동반된 커버 가스가 이 결함의 형성에 포함되어 있음을 보여주었습니다. 즉, Fig. 4 (a)에 나타난 기공 은 수축결함이나 수소기공도가 아니라 연행결함이었다. 알루미늄의 검출은 Xiong과 Wang의 이전 연구 [47 , 48] 와 다르며 , SF 6으로 보호된 AZ91 용융물의 표면 필름에 알루미늄이 포함되어 있지 않음을 보여주었습니다.커버 가스. 유황은 원소 맵에서 명확하게 인식할 수 없었지만 해당 ESD 스펙트럼에서 S-피크가 있었습니다.
도 5 (ab)는 다층 산화막을 갖는 Type B 엔트레인먼트 결함을 나타낸다. 산화막의 조밀한 외부 층은 불소와 산소가 풍부하지만( 그림 5c) 상대적으로 다공성인 내부 층은 산소만 풍부하고(즉, 불소가 부족) 부분적으로 함께 성장하여 샌드위치 모양을 형성합니다. 구조. 따라서 외층은 불화물과 산화물의 혼합물이며 내층은 주로 산화물로 추정된다. 황은 EDX 스펙트럼에서만 인식될 수 있었고 요소 맵에서 명확하게 식별할 수 없었습니다. 이는 커버 가스의 작은 S 함량(즉, SF 6 의 0.5% 부피 함량 때문일 수 있음)커버 가스). 이 산화막에서는 이 산화막의 외층에 알루미늄이 포함되어 있지만 내층에서는 명확하게 검출할 수 없었다. 또한 Al의 분포가 고르지 않은 것으로 보입니다. 결함의 우측에는 필름에 알루미늄이 존재하지만 그 농도는 매트릭스보다 높은 것으로 식별할 수 없음을 알 수 있다. 그러나 결함의 왼쪽에는 알루미늄 농도가 훨씬 높은 작은 영역이 있습니다. 이러한 알루미늄의 불균일한 분포는 다른 결함(아래 참조)에서도 관찰되었으며, 이는 필름 내부 또는 아래에 일부 산화물 입자가 형성된 결과입니다.
무화과 도 4 및 5 는 SF 6 /air 의 커버 가스 하에 주조된 AZ91 합금 샘플에서 형성된 연행 결함의 횡단면 관찰을 나타낸다 . 2차원 단면에서 관찰된 수치만으로 연행 결함을 특성화하는 것만으로는 충분하지 않습니다. 더 많은 이해를 돕기 위해 테스트 바의 파단면을 관찰하여 엔트레인먼트 결함(즉, 산화막)의 표면을 더 연구했습니다.
Fig. 6 (a)는 SF 6 /air 에서 생산된 AZ91 합금 인장시험봉의 파단면을 보여준다 . 파단면의 양쪽에서 대칭적인 어두운 영역을 볼 수 있습니다. 그림 6 (b)는 어두운 영역과 밝은 영역 사이의 경계를 보여줍니다. 밝은 영역은 들쭉날쭉하고 부서진 특징으로 구성되어 있는 반면, 어두운 영역의 표면은 비교적 매끄럽고 평평했습니다. 또한 EDS 결과( Fig. 6 c-d 및 Table 2) 불소, 산소, 황 및 질소는 어두운 영역에서만 검출되었으며, 이는 어두운 영역이 용융물에 동반된 표면 보호 필름임을 나타냅니다. 따라서 어두운 영역은 대칭적인 특성을 고려할 때 연행 결함이라고 제안할 수 있습니다. Al-합금 주조물의 파단면에서 유사한 결함이 이전에 보고되었습니다 [7] . 질화물은 테스트 바 파단면의 산화막에서만 발견되었지만 그림 1과 그림 4에 표시된 단면 샘플에서는 검출되지 않았습니다 . 4 및 5 . 근본적인 이유는 이러한 샘플에 포함된 질화물이 샘플 연마 과정에서 가수분해되었을 수 있기 때문입니다 [54] .
표 2 . EDS 결과(wt.%)는 그림 6에 표시된 영역에 해당합니다 (커버 가스: SF 6 /공기).
도 1 및 도 2에 도시된 결함의 단면 관찰과 함께 . 도 4 및 도 5 를 참조하면, 인장 시험봉에 포함된 연행 결함의 구조를 도 6 (e) 와 같이 스케치하였다 . 결함에는 산화막으로 둘러싸인 동반된 가스가 포함되어 있어 테스트 바 내부에 보이드 섹션이 생성되었습니다. 파괴 과정에서 결함에 인장력이 가해지면 균열이 가장 약한 경로를 따라 전파되기 때문에 보이드 섹션에서 균열이 시작되어 연행 결함을 따라 전파됩니다 [55] . 따라서 최종적으로 시험봉이 파단되었을 때 Fig. 6 (a) 와 같이 시험봉의 양 파단면에 연행결함의 산화피막이 나타났다 .
3.2 . SF 6 /CO 2 에 형성된 연행 결함의 구조 및 조성
SF 6 /air 에서 형성된 엔트레인먼트 결함과 유사하게, 0.5% SF 6 /CO 2 의 커버 가스 아래에서 형성된 결함 도 두 가지 유형의 산화막(즉, 단층 및 다층 유형)을 가졌다. 도 7 (a)는 다층 산화막을 포함하는 엔트레인먼트 결함의 예를 도시한다. 결함에 대한 확대 관찰( 그림 7b )은 산화막의 내부 층이 함께 성장하여 SF 6 /air 의 분위기에서 형성된 결함과 유사한 샌드위치 같은 구조를 나타냄을 보여줍니다 ( 그림 7b). 5 나 ). EDS 스펙트럼( 그림 7c) 이 샌드위치형 구조의 접합부(내층)는 주로 산화마그네슘을 함유하고 있음을 보여주었다. 이 EDS 스펙트럼에서는 불소, 황, 알루미늄의 피크가 확인되었으나 그 양은 상대적으로 적었다. 대조적으로, 산화막의 외부 층은 조밀하고 불화물과 산화물의 혼합물로 구성되어 있습니다( 그림 7d-e).
Fig. 8 (a)는 0.5%SF 6 /CO 2 분위기에서 제작된 AZ91 합금 인장시험봉의 파단면의 연행결함을 보여준다 . 상응하는 EDS 결과(표 3)는 산화막이 불화물과 산화물을 함유함을 보여주었다. 황과 질소는 검출되지 않았습니다. 게다가, 확대 관찰( 도 8b)은 산화막 표면에 반점을 나타내었다. 반점의 직경은 수백 나노미터에서 수 마이크론 미터까지 다양했습니다.
산화막의 구조와 조성을 보다 명확하게 나타내기 위해 테스트 바 파단면의 산화막 단면을 FIB 기법을 사용하여 현장에서 노출시켰다( 그림 9 ). 도 9a에 도시된 바와 같이 , 백금 코팅층과 Mg-Al 합금 기재 사이에 연속적인 산화피막이 발견되었다. 그림 9 (bc)는 다층 구조( 그림 9c 에서 빨간색 상자로 표시)를 나타내는 산화막에 대한 확대 관찰을 보여줍니다 . 바닥층은 불소와 산소가 풍부하고 불소와 산화물의 혼합물이어야 합니다 . 5 와 7, 유일한 산소가 풍부한 최상층은 도 1 및 도 2에 도시 된 “내층”과 유사하였다 . 5 및 7 .
연속 필름을 제외하고 도 9 에 도시된 바와 같이 연속 필름 내부 또는 하부에서도 일부 개별 입자가 관찰되었다 . 그림 9( b) 의 산화막 좌측에서 Al이 풍부한 입자가 검출되었으며, 마그네슘과 산소 원소도 풍부하게 함유하고 있어 스피넬 Mg 2 AlO 4 로 추측할 수 있다 . 이러한 Mg 2 AlO 4 입자의 존재는 Fig. 5 와 같이 관찰된 필름의 작은 영역에 높은 알루미늄 농도와 알루미늄의 불균일한 분포의 원인이 된다 .(씨). 여기서 강조되어야 할 것은 연속 산화막의 바닥층의 다른 부분이 이 Al이 풍부한 입자보다 적은 양의 알루미늄을 함유하고 있지만, 그림 9c는 이 바닥층의 알루미늄 양이 여전히 무시할 수 없는 수준임을 나타냅니다 . , 특히 필름의 외층과 비교할 때. 도 9b에 도시된 산화막의 우측 아래에서 입자가 검출되어 Mg와 O가 풍부하여 MgO인 것으로 추측되었다. Wang의 결과에 따르면 [56], Mg 용융물과 Mg 증기의 산화에 의해 Mg 용융물의 표면에 많은 이산 MgO 입자가 형성될 수 있다. 우리의 현재 연구에서 관찰된 MgO 입자는 같은 이유로 인해 형성될 수 있습니다. 실험 조건의 차이로 인해 더 적은 Mg 용융물이 기화되거나 O2와 반응할 수 있으므로 우리 작업에서 형성되는 MgO 입자는 소수에 불과합니다. 또한 필름에서 풍부한 탄소가 발견되어 CO 2 가 용융물과 반응하여 탄소 또는 탄화물을 형성할 수 있음을 보여줍니다 . 이 탄소 농도는 표 3에 나타낸 산화막의 상대적으로 높은 탄소 함량 (즉, 어두운 영역) 과 일치하였다 . 산화막 옆 영역.
표 3 . 도 8에 도시된 영역에 상응하는 EDS 결과(wt.%) (커버 가스: SF 6 / CO 2 ).
테스트 바 파단면( 도 9 ) 에서 산화막의 이 단면 관찰은 도 6 (e)에 도시된 엔트레인먼트 결함의 개략도를 추가로 확인했다 . SF 6 /CO 2 와 SF 6 /air 의 서로 다른 분위기에서 형성된 엔트레인먼트 결함 은 유사한 구조를 가졌지만 그 조성은 달랐다.
3.3 . 산화 전지에서 산화막의 진화
섹션 3.1 및 3.2 의 결과 는 SF 6 /air 및 SF 6 /CO 2 의 커버 가스 아래에서 AZ91 주조에서 형성된 연행 결함의 구조 및 구성을 보여줍니다 . 산화 반응의 다른 단계는 연행 결함의 다른 구조와 조성으로 이어질 수 있습니다. Campbell은 동반된 가스가 주변 용융물과 반응할 수 있다고 추측했지만 Mg 합금 용융물과 포획된 커버 가스 사이에 반응이 발생했다는 보고는 거의 없습니다. 이전 연구자들은 일반적으로 개방된 환경에서 Mg 합금 용융물과 커버 가스 사이의 반응에 초점을 맞췄습니다 [38 , 39 , [46] , [47], [48] , [49] , [50] , [51] , [52] , 이는 용융물에 갇힌 커버 가스의 상황과 다릅니다. AZ91 합금에서 엔트레인먼트 결함의 형성을 더 이해하기 위해 엔트레인먼트 결함의 산화막의 진화 과정을 산화 셀을 사용하여 추가로 연구했습니다.
.도 10 (a 및 d) 0.5 % 방송 SF 보호 산화 셀에서 5 분 동안 유지 된 표면 막 (6) / 공기. 불화물과 산화물(MgF 2 와 MgO) 로 이루어진 단 하나의 층이 있었습니다 . 이 표면 필름에서. 황은 EDS 스펙트럼에서 검출되었지만 그 양이 너무 적어 원소 맵에서 인식되지 않았습니다. 이 산화막의 구조 및 조성은 도 4 에 나타낸 엔트레인먼트 결함의 단층막과 유사하였다 .
10분의 유지 시간 후, 얇은 (O,S)가 풍부한 상부층(약 700nm)이 예비 F-농축 필름에 나타나 그림 10 (b 및 e) 에서와 같이 다층 구조를 형성했습니다 . ). (O, S)가 풍부한 최상층의 두께는 유지 시간이 증가함에 따라 증가했습니다. Fig. 10 (c, f) 에서 보는 바와 같이 30분간 유지한 산화막도 다층구조를 가지고 있으나 (O,S)가 풍부한 최상층(약 2.5μm)의 두께가 10분 산화막의 그것. 도 10 (bc) 에 도시 된 다층 산화막 은 도 5에 도시된 샌드위치형 결함의 막과 유사한 외관을 나타냈다 .
도 10에 도시된 산화막의 상이한 구조는 커버 가스의 불화물이 AZ91 합금 용융물과의 반응으로 인해 우선적으로 소모될 것임을 나타내었다. 불화물이 고갈된 후, 잔류 커버 가스는 액체 AZ91 합금과 추가로 반응하여 산화막에 상부 (O, S)가 풍부한 층을 형성했습니다. 따라서 도 1 및 도 3에 도시된 연행 결함의 상이한 구조 및 조성 . 4 와 5 는 용융물과 갇힌 커버 가스 사이의 진행 중인 산화 반응 때문일 수 있습니다.
이 다층 구조는 Mg 합금 용융물에 형성된 보호 표면 필름에 관한 이전 간행물 [38 , [46] , [47] , [48] , [49] , [50] , [51] 에서 보고되지 않았습니다 . . 이는 이전 연구원들이 무제한의 커버 가스로 실험을 수행했기 때문에 커버 가스의 불화물이 고갈되지 않는 상황을 만들었기 때문일 수 있습니다. 따라서 엔트레인먼트 결함의 산화피막은 도 10에 도시된 산화피막과 유사한 거동특성을 가지나 [38 ,[46] , [47] , [48] , [49] , [50] , [51] .
SF 유지 산화막와 마찬가지로 6 / 공기, SF에 형성된 산화물 막 (6) / CO 2는 또한 세포 산화 다른 유지 시간과 다른 구조를 가지고 있었다. .도 11 (a)는 AZ91 개최 산화막, 0.5 %의 커버 가스 하에서 SF 표면 용융 도시 6 / CO 2, 5 분. 이 필름은 MgF 2 로 이루어진 단층 구조를 가졌다 . 이 영화에서는 MgO의 존재를 확인할 수 없었다. 30분의 유지 시간 후, 필름은 다층 구조를 가졌다; 내부 층은 조밀하고 균일한 외관을 가지며 MgF 2 로 구성 되고 외부 층은 MgF 2 혼합물및 MgO. 0.5%SF 6 /air 에서 형성된 표면막과 다른 이 막에서는 황이 검출되지 않았다 . 따라서, 0.5%SF 6 /CO 2 의 커버 가스 내의 불화물 도 막 성장 과정의 초기 단계에서 우선적으로 소모되었다. SF 6 /air 에서 형성된 막과 비교하여 SF 6 /CO 2 에서 형성된 막에서 MgO 는 나중에 나타났고 황화물은 30분 이내에 나타나지 않았다. 이는 SF 6 /air 에서 필름의 형성과 진화 가 SF 6 /CO 2 보다 빠르다 는 것을 의미할 수 있습니다 . CO 2 후속적으로 용융물과 반응하여 MgO를 형성하는 반면, 황 함유 화합물은 커버 가스에 축적되어 반응하여 매우 늦은 단계에서 황화물을 형성할 수 있습니다(산화 셀에서 30분 후).
4 . 논의
4.1 . SF 6 /air 에서 형성된 연행 결함의 진화
Outokumpu HSC Chemistry for Windows( http://www.hsc-chemistry.net/ )의 HSC 소프트웨어를 사용하여 갇힌 기체와 액체 AZ91 합금 사이에서 발생할 수 있는 반응을 탐색하는 데 필요한 열역학 계산을 수행했습니다. 계산에 대한 솔루션은 소량의 커버 가스(즉, 갇힌 기포 내의 양)와 AZ91 합금 용융물 사이의 반응 과정에서 어떤 생성물이 가장 형성될 가능성이 있는지 제안합니다.
실험에서 압력은 1기압으로, 온도는 700°C로 설정했습니다. 커버 가스의 사용량은 7 × 10으로 가정 하였다 -7 약 0.57 cm의 양으로 kg 3 (3.14 × 10 -6 0.5 % SF위한 kmol) 6 / 공기, 0.35 cm (3) (3.12 × 10 – 8 kmol) 0.5%SF 6 /CO 2 . 포획된 가스와 접촉하는 AZ91 합금 용융물의 양은 모든 반응을 완료하기에 충분한 것으로 가정되었습니다. SF 6 의 분해 생성물 은 SF 5 , SF 4 , SF 3 , SF 2 , F 2 , S(g), S 2(g) 및 F(g) [57] , [58] , [59] , [60] .
그림 12 는 AZ91 합금과 0.5%SF 6 /air 사이의 반응에 대한 열역학적 계산의 평형 다이어그램을 보여줍니다 . 다이어그램에서 10 -15 kmol 미만의 반응물 및 생성물은 표시되지 않았습니다. 이는 존재 하는 SF 6 의 양 (≈ 1.57 × 10 -10 kmol) 보다 5배 적 으므로 영향을 미치지 않습니다. 실제적인 방법으로 과정을 관찰했습니다.
이 반응 과정은 3단계로 나눌 수 있다.
1단계 : 불화물의 형성. AZ91 용융물은 SF 6 및 그 분해 생성물과 우선적으로 반응하여 MgF 2 , AlF 3 및 ZnF 2 를 생성 합니다. 그러나 ZnF 2 의 양 이 너무 적어서 실제적으로 검출되지 않았을 수 있습니다( MgF 2 의 3 × 10 -10 kmol에 비해 ZnF 2 1.25 × 10 -12 kmol ). 섹션 3.1 – 3.3에 표시된 모든 산화막 . 한편, 잔류 가스에 황이 SO 2 로 축적되었다 .
2단계 : 산화물의 형성. 액체 AZ91 합금이 포획된 가스에서 사용 가능한 모든 불화물을 고갈시킨 후, Mg와의 반응으로 인해 AlF 3 및 ZnF 2 의 양이 빠르게 감소했습니다. O 2 (g) 및 SO 2 는 AZ91 용융물과 반응하여 MgO, Al 2 O 3 , MgAl 2 O 4 , ZnO, ZnSO 4 및 MgSO 4 를 형성 합니다. 그러나 ZnO 및 ZnSO 4 의 양은 EDS에 의해 실제로 발견되기에는 너무 적었을 것입니다(예: 9.5 × 10 -12 kmol의 ZnO, 1.38 × 10 -14 kmol의 ZnSO 4 , 대조적으로 4.68 × 10−10 kmol의 MgF 2 , X 축의 AZ91 양 이 2.5 × 10 -9 kmol일 때). 실험 사례에서 커버 가스의 F 농도는 매우 낮고 전체 농도 f O는 훨씬 높습니다. 따라서 1단계와 2단계, 즉 불화물과 산화물의 형성은 반응 초기에 동시에 일어나 그림 1과 2와 같이 불화물과 산화물의 가수층 혼합물이 형성될 수 있다 . 4 및 10 (a). 내부 층은 산화물로 구성되어 있지만 불화물은 커버 가스에서 F 원소가 완전히 고갈된 후에 형성될 수 있습니다.
산화막 내의 MgAl 2 O 4 및 Al 2 O 3 의 양은 도 4에 도시된 산화막과 일치하는 검출하기에 충분한 양이었다 . 그러나, 도 10 에 도시된 바와 같이, 산화셀에서 성장된 산화막에서는 알루미늄의 존재를 인식할 수 없었다 . 이러한 Al의 부재는 표면 필름과 AZ91 합금 용융물 사이의 다음 반응으로 인한 것일 수 있습니다.(1)
Al 2 O 3 + 3Mg + = 3MgO + 2Al, △G(700°C) = -119.82 kJ/mol(2)
Mg + MgAl 2 O 4 = MgO + Al, △G(700°C) = -106.34 kJ/mol이는 반응물이 서로 완전히 접촉한다는 가정 하에 열역학적 계산이 수행되었기 때문에 HSC 소프트웨어로 시뮬레이션할 수 없었습니다. 그러나 실제 공정에서 AZ91 용융물과 커버 가스는 보호 표면 필름의 존재로 인해 서로 완전히 접촉할 수 없습니다.
3단계 : 황화물과 질화물의 형성. 30분의 유지 시간 후, 산화 셀의 기상 불화물 및 산화물이 고갈되어 잔류 가스와 용융 반응을 허용하여 초기 F-농축 또는 (F, O )이 풍부한 표면 필름, 따라서 그림 10 (b 및 c)에 표시된 관찰된 다층 구조를 생성합니다 . 게다가, 질소는 모든 반응이 완료될 때까지 AZ91 용융물과 반응했습니다. 도 6 에 도시 된 산화막 은 질화물 함량으로 인해 이 반응 단계에 해당할 수 있다. 그러나, 그 결과는 도 1 및 도 5에 도시 된 연마된 샘플에서 질화물이 검출되지 않음을 보여준다. 4 와 5, 그러나 테스트 바 파단면에서만 발견됩니다. 질화물은 다음과 같이 샘플 준비 과정에서 가수분해될 수 있습니다 [54] .(삼)
Mg 3 N 2 + 6H 2 O = 3Mg(OH) 2 + 2NH 3 ↑(4)
AlN+ 3H 2 O = Al(OH) 3 + NH 3 ↑
또한 Schmidt et al. [61] 은 Mg 3 N 2 와 AlN이 반응하여 3원 질화물(Mg 3 Al n N n+2, n=1, 2, 3…) 을 형성할 수 있음을 발견했습니다 . HSC 소프트웨어에는 삼원 질화물 데이터베이스가 포함되어 있지 않아 계산에 추가할 수 없습니다. 이 단계의 산화막은 또한 삼원 질화물을 포함할 수 있습니다.
4.2 . SF 6 /CO 2 에서 형성된 연행 결함의 진화
도 13 은 AZ91 합금과 0.5%SF 6 /CO 2 사이의 열역학적 계산 결과를 보여준다 . 이 반응 과정도 세 단계로 나눌 수 있습니다.
1단계 : 불화물의 형성. SF 6 및 그 분해 생성물은 AZ91 용융물에 의해 소비되어 MgF 2 , AlF 3 및 ZnF 2 를 형성했습니다 . 0.5% SF 6 /air 에서 AZ91의 반응에서와 같이 ZnF 2 의 양 이 너무 작아서 실제적으로 감지되지 않았습니다( 2.67 x 10 -10 kmol의 MgF 2 에 비해 ZnF 2 1.51 x 10 -13 kmol ). S와 같은 잔류 가스 트랩에 축적 유황 2 (g) 및 (S)의 일부분 (2) (g)가 CO와 반응하여 2 SO 형성하는 2및 CO. 이 반응 단계의 생성물은 도 11 (a)에 도시된 필름과 일치하며 , 이는 불화물만을 함유하는 단일 층 구조를 갖는다.
2단계 : 산화물의 형성. ALF 3 및 ZnF 2 MgF로 형성 용융 AZ91 마그네슘의 반응 2 , Al 및 Zn으로한다. SO 2 는 소모되기 시작하여 표면 필름에 산화물을 생성 하고 커버 가스에 S 2 (g)를 생성했습니다. 한편, CO 2 는 AZ91 용융물과 직접 반응하여 CO, MgO, ZnO 및 Al 2 O 3 를 형성 합니다. 도 1에 도시 된 산화막 . 9 및 11 (b)는 산소가 풍부한 층과 다층 구조로 인해 이 반응 단계에 해당할 수 있습니다.
커버 가스의 CO는 AZ91 용융물과 추가로 반응하여 C를 생성할 수 있습니다. 이 탄소는 온도가 감소할 때(응고 기간 동안) Mg와 추가로 반응하여 Mg 탄화물을 형성할 수 있습니다 [62] . 이것은 도 4에 도시된 산화막의 탄소 함량이 높은 이유일 수 있다 . 8 – 9 . Liang et al. [39] 또한 SO 2 /CO 2 로 보호된 AZ91 합금 표면 필름에서 탄소 검출을 보고했습니다 . 생성된 Al 2 O 3 는 MgO와 더 결합하여 MgAl 2 O 4 [63]를 형성할 수 있습니다 . 섹션 4.1 에서 논의된 바와 같이, 알루미나 및 스피넬은 도 11 에 도시된 바와 같이 표면 필름에 알루미늄 부재를 야기하는 Mg와 반응할 수 있다 .
3단계 : 황화물의 형성. AZ91은 용융물 S 소비하기 시작 2 인 ZnS와 MGS 형성 갇힌 잔류 가스 (g)를. 이러한 반응은 반응 과정의 마지막 단계까지 일어나지 않았으며, 이는 Fig. 7 (c)에 나타난 결함의 S-함량 이 적은 이유일 수 있다 .
요약하면, 열역학적 계산은 AZ91 용융물이 커버 가스와 반응하여 먼저 불화물을 형성한 다음 마지막에 산화물과 황화물을 형성할 것임을 나타냅니다. 다른 반응 단계에서 산화막은 다른 구조와 조성을 가질 것입니다.
4.3 . 운반 가스가 동반 가스 소비 및 AZ91 주물의 재현성에 미치는 영향
SF 6 /air 및 SF 6 /CO 2 에서 형성된 연행 결함의 진화 과정은 4.1절 과 4.2 절 에서 제안되었습니다 . 이론적인 계산은 실제 샘플에서 발견되는 해당 산화막과 관련하여 검증되었습니다. 연행 결함 내의 대기는 Al-합금 시스템과 다른 시나리오에서 액체 Mg-합금과의 반응으로 인해 효율적으로 소모될 수 있습니다(즉, 연행된 기포의 질소가 Al-합금 용융물과 효율적으로 반응하지 않을 것입니다 [64 , 65] 그러나 일반적으로 “질소 연소”라고 하는 액체 Mg 합금에서 질소가 더 쉽게 소모될 것입니다 [66] ).
동반된 가스와 주변 액체 Mg-합금 사이의 반응은 동반된 가스를 산화막 내에서 고체 화합물(예: MgO)로 전환하여 동반 결함의 공극 부피를 감소시켜 결함(예: 공기의 동반된 가스가 주변의 액체 Mg 합금에 의해 고갈되면 용융 온도가 700 °C이고 액체 Mg 합금의 깊이가 10 cm라고 가정할 때 최종 고체 제품의 총 부피는 0.044가 됩니다. 갇힌 공기가 취한 초기 부피의 %).
연행 결함의 보이드 부피 감소와 해당 주조 특성 사이의 관계는 알루미늄 합금 주조에서 널리 연구되었습니다. Nyahumwa와 Campbell [16] 은 HIP(Hot Isostatic Pressing) 공정이 Al-합금 주물의 연행 결함이 붕괴되고 산화물 표면이 접촉하게 되었다고 보고했습니다. 주물의 피로 수명은 HIP 이후 개선되었습니다. Nyahumwa와 Campbell [16] 도 서로 접촉하고 있는 이중 산화막의 잠재적인 결합을 제안했지만 이를 뒷받침하는 직접적인 증거는 없었습니다. 이 결합 현상은 Aryafar et.al에 의해 추가로 조사되었습니다. [8], 그는 강철 튜브에서 산화물 스킨이 있는 두 개의 Al-합금 막대를 다시 녹인 다음 응고된 샘플에 대해 인장 강도 테스트를 수행했습니다. 그들은 Al-합금 봉의 산화물 스킨이 서로 강하게 결합되어 용융 유지 시간이 연장됨에 따라 더욱 강해짐을 발견했으며, 이는 이중 산화막 내 동반된 가스의 소비로 인한 잠재적인 “치유” 현상을 나타냅니다. 구조. 또한 Raidszadeh와 Griffiths [9 , 19] 는 연행 가스가 반응하는 데 더 긴 시간을 갖도록 함으로써 응고 전 용융 유지 시간을 연장함으로써 Al-합금 주물의 재현성에 대한 연행 결함의 부정적인 영향을 성공적으로 줄였습니다. 주변이 녹습니다.
앞서 언급한 연구를 고려할 때, Mg 합금 주물에서 혼입 가스의 소비는 다음 두 가지 방식으로 혼입 결함의 부정적인 영향을 감소시킬 수 있습니다.
(1) 이중 산화막의 결합 현상 . 도 5 및 도 7 에 도시 된 샌드위치형 구조 는 이중 산화막 구조의 잠재적인 결합을 나타내었다. 그러나 산화막의 결합으로 인한 강도 증가를 정량화하기 위해서는 더 많은 증거가 필요합니다.
(2) 연행 결함의 보이드 체적 감소 . 주조품의 품질에 대한 보이드 부피 감소의 긍정적인 효과는 HIP 프로세스 [67]에 의해 널리 입증되었습니다 . 섹션 4.1 – 4.2 에서 논의된 진화 과정과 같이 , 동반된 가스와 주변 AZ91 합금 용융물 사이의 지속적인 반응으로 인해 동반 결함의 산화막이 함께 성장할 수 있습니다. 최종 고체 생성물의 부피는 동반된 기체에 비해 상당히 작았다(즉, 이전에 언급된 바와 같이 0.044%).
따라서, 혼입 가스의 소모율(즉, 산화막의 성장 속도)은 AZ91 합금 주물의 품질을 향상시키는 중요한 매개변수가 될 수 있습니다. 이에 따라 산화 셀의 산화막 성장 속도를 추가로 조사했습니다.
도 14 는 상이한 커버 가스(즉, 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 ) 에서의 표면 필름 성장 속도의 비교를 보여준다 . 필름 두께 측정을 위해 각 샘플의 15개의 임의 지점을 선택했습니다. 95% 신뢰구간(95%CI)은 막두께의 변화가 가우시안 분포를 따른다는 가정하에 계산하였다. 0.5%SF 6 /air 에서 형성된 모든 표면막이 0.5%SF 6 /CO 2 에서 형성된 것보다 빠르게 성장함을 알 수 있다 . 다른 성장률은 0.5%SF 6 /air 의 연행 가스 소비율 이 0.5%SF 6 /CO 2 보다 더 높음 을 시사했습니다., 이는 동반된 가스의 소비에 더 유리했습니다.
산화 셀에서 액체 AZ91 합금과 커버 가스의 접촉 면적(즉, 도가니의 크기)은 많은 양의 용융물과 가스를 고려할 때 상대적으로 작았다는 점에 유의해야 합니다. 결과적으로, 산화 셀 내에서 산화막 성장을 위한 유지 시간은 비교적 길었다(즉, 5-30분). 하지만, 실제 주조에 함유 된 혼입 결함은 (상대적으로 매우 적은, 즉, 수 미크론의 크기에 도시 된 바와 같이 ,도 3. – 6 및 [7]), 동반된 가스는 주변 용융물로 완전히 둘러싸여 상대적으로 큰 접촉 영역을 생성합니다. 따라서 커버 가스와 AZ91 합금 용융물의 반응 시간은 비교적 짧을 수 있습니다. 또한 실제 Mg 합금 모래 주조의 응고 시간은 몇 분일 수 있습니다(예: Guo [68] 은 직경 60mm의 Mg 합금 모래 주조가 응고되는 데 4분이 필요하다고 보고했습니다). 따라서 Mg-합금 용융주조 과정에서 포획된 동반된 가스는 특히 응고 시간이 긴 모래 주물 및 대형 주물의 경우 주변 용융물에 의해 쉽게 소모될 것으로 예상할 수 있습니다.
따라서, 동반 가스의 다른 소비율과 관련된 다른 커버 가스(0.5%SF 6 /air 및 0.5%SF 6 /CO 2 )가 최종 주물의 재현성에 영향을 미칠 수 있습니다. 이 가정을 검증하기 위해 0.5%SF 6 /air 및 0.5%SF 6 /CO 2 에서 생산된 AZ91 주물 을 기계적 평가를 위해 테스트 막대로 가공했습니다. Weibull 분석은 선형 최소 자승(LLS) 방법과 비선형 최소 자승(비 LLS) 방법을 모두 사용하여 수행되었습니다 [69] .
그림 15 (ab)는 LLS 방법으로 얻은 UTS 및 AZ91 합금 주물의 연신율의 전통적인 2-p 선형 Weibull 플롯을 보여줍니다. 사용된 추정기는 P= (i-0.5)/N이며, 이는 모든 인기 있는 추정기 중 가장 낮은 편향을 유발하는 것으로 제안되었습니다 [69 , 70] . SF 6 /air 에서 생산된 주물 은 UTS Weibull 계수가 16.9이고 연신율 Weibull 계수가 5.0입니다. 대조적으로, SF 6 /CO 2 에서 생산된 주물의 UTS 및 연신 Weibull 계수는 각각 7.7과 2.7로, SF 6 /CO 2 에 의해 보호된 주물의 재현성이 SF 6 /air 에서 생산된 것보다 훨씬 낮음을 시사합니다. .
또한 저자의 이전 출판물 [69] 은 선형화된 Weibull 플롯의 단점을 보여주었으며, 이는 Weibull 추정 의 더 높은 편향과 잘못된 R 2 중단을 유발할 수 있습니다 . 따라서 그림 15 (cd) 와 같이 Non-LLS Weibull 추정이 수행되었습니다 . SF 6 /공기주조물 의 UTS Weibull 계수 는 20.8인 반면, SF 6 /CO 2 하에서 생산된 주조물의 UTS Weibull 계수는 11.4로 낮아 재현성에서 분명한 차이를 보였다. 또한 SF 6 /air elongation(El%) 데이터 세트는 SF 6 /CO 2 의 elongation 데이터 세트보다 더 높은 Weibull 계수(모양 = 5.8)를 가졌습니다.(모양 = 3.1). 따라서 LLS 및 Non-LLS 추정 모두 SF 6 /공기 주조가 SF 6 /CO 2 주조 보다 더 높은 재현성을 갖는다고 제안했습니다 . CO 2 대신 공기를 사용 하면 혼입된 가스의 더 빠른 소비에 기여하여 결함 내의 공극 부피를 줄일 수 있다는 방법을 지원합니다 . 따라서 0.5%SF 6 /CO 2 대신 0.5%SF 6 /air를 사용 하면(동반된 가스의 소비율이 증가함) AZ91 주물의 재현성이 향상되었습니다.
그러나 모든 Mg 합금 주조 공장이 현재 작업에서 사용되는 주조 공정을 따랐던 것은 아니라는 점에 유의해야 합니다. Mg의 합금 용탕 본 작업은 탈기에 따라서, 동반 가스의 소비에 수소의 영향을 감소 (즉, 수소 잠재적 동반 가스의 고갈 억제, 동반 된 기체로 확산 될 수있다 [7 , 71 , 72] ). 대조적으로, 마그네슘 합금 주조 공장에서는 마그네슘을 주조할 때 ‘가스 문제’가 없고 따라서 인장 특성에 큰 변화가 없다고 널리 믿어지기 때문에 마그네슘 합금 용융물은 일반적으로 탈기되지 않습니다 [73] . 연구에 따르면 Mg 합금 주물의 기계적 특성에 대한 수소의 부정적인 영향 [41 ,42 , 73] , 탈기 공정은 마그네슘 합금 주조 공장에서 여전히 인기가 없습니다.
또한 현재 작업에서 모래 주형 공동은 붓기 전에 SF 6 커버 가스 로 플러싱되었습니다 [22] . 그러나 모든 Mg 합금 주조 공장이 이러한 방식으로 금형 캐비티를 플러싱한 것은 아닙니다. 예를 들어, Stone Foundry Ltd(영국)는 커버 가스 플러싱 대신 유황 분말을 사용했습니다. 그들의 주물 내의 동반된 가스 는 보호 가스라기 보다는 SO 2 /공기일 수 있습니다 .
따라서 본 연구의 결과는 CO 2 대신 공기를 사용 하는 것이 최종 주조의 재현성을 향상시키는 것으로 나타났지만 다른 산업용 Mg 합금 주조 공정과 관련하여 캐리어 가스의 영향을 확인하기 위해서는 여전히 추가 조사가 필요합니다.
7 . 결론
1.
AZ91 합금에 형성된 연행 결함이 관찰되었습니다. 그들의 산화막은 단층과 다층의 두 가지 유형의 구조를 가지고 있습니다. 다층 산화막은 함께 성장하여 최종 주조에서 샌드위치 같은 구조를 형성할 수 있습니다.2.
실험 결과와 이론적인 열역학적 계산은 모두 갇힌 가스의 불화물이 황을 소비하기 전에 고갈되었음을 보여주었습니다. 이중 산화막 결함의 3단계 진화 과정이 제안되었습니다. 산화막은 진화 단계에 따라 다양한 화합물 조합을 포함했습니다. SF 6 /air 에서 형성된 결함 은 SF 6 /CO 2 에서 형성된 것과 유사한 구조를 갖지만 산화막의 조성은 달랐다. 엔트레인먼트 결함의 산화막 형성 및 진화 과정은 이전에 보고된 Mg 합금 표면막(즉, MgF 2 이전에 형성된 MgO)의 것과 달랐다 .삼.
산화막의 성장 속도는 SF하에 큰 것으로 입증되었다 (6) / SF보다 공기 6 / CO 2 손상 봉입 가스의 빠른 소비에 기여한다. AZ91 합금 주물의 재현성은 SF 6 /CO 2 대신 SF 6 /air를 사용할 때 향상되었습니다 .
감사의 말
저자는 EPSRC LiME 보조금 EP/H026177/1의 자금 지원 과 WD Griffiths 박사와 Adrian Carden(버밍엄 대학교)의 도움을 인정합니다. 주조 작업은 University of Birmingham에서 수행되었습니다.
참조 [1] MK McNutt , SALAZAR K. 마그네슘, 화합물 및 금속, 미국 지질 조사국 및 미국 내무부 레 스톤 , 버지니아 ( 2013 ) Google 학술검색 [2] 마그네슘 화합물 및 금속, 미국 지질 조사국 및 미국 내무부 ( 1996 ) Google 학술검색 [삼] I. Ostrovsky , Y. Henn ASTEC’07 International Conference-New Challenges in Aeronautics , Moscow ( 2007 ) , pp. 1 – 5 8월 19-22일 Scopus에서 레코드 보기Google 학술검색 [4] Y. Wan , B. Tang , Y. Gao , L. Tang , G. Sha , B. Zhang , N. Liang , C. Liu , S. Jiang , Z. Chen , X. Guo , Y. Zhao 액타 메이터. , 200 ( 2020 ) , 274 – 286 페이지 기사PDF 다운로드Scopus에서 레코드 보기 [5] JTJ Burd , EA Moore , H. Ezzat , R. Kirchain , R. Roth 적용 에너지 , 283 ( 2021 ) , 제 116269 조 기사PDF 다운로드Scopus에서 레코드 보기 [6] AM 루이스 , JC 켈리 , 조지아주 Keoleian 적용 에너지 , 126 ( 2014 ) , pp. 13 – 20 기사PDF 다운로드Scopus에서 레코드 보기 [7] J. 캠벨 주물 버터워스-하이네만 , 옥스퍼드 ( 2004 ) Google 학술검색 [8] M. Aryafar , R. Raiszadeh , A. Shalbafzadeh J. 메이터. 과학. , 45 ( 2010 년 ) , PP. (3041) – 3051 교차 참조Scopus에서 레코드 보기 [9] R. 라이자데 , WD 그리피스 메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 42 ( 2011 ) , 133 ~ 143페이지 교차 참조Scopus에서 레코드 보기 [10] R. 라이자데 , WD 그리피스 J. 합금. Compd. , 491 ( 2010 ) , 575 ~ 580 쪽 기사PDF 다운로드Scopus에서 레코드 보기 [11] L. Peng , G. Zeng , TC Su , H. Yasuda , K. Nogita , CM Gourlay JOM , 71 ( 2019 ) , pp. 2235 – 2244 교차 참조Scopus에서 레코드 보기 [12] S. Ganguly , AK Mondal , S. Sarkar , A. Basu , S. Kumar , C. Blawert 코로스. 과학. , 166 ( 2020 ) [13] GE Bozchaloei , N. Varahram , P. Davami , SK 김 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 548 ( 2012 ) , 99 ~ 105페이지 Scopus에서 레코드 보기 [14] S. 폭스 , J. 캠벨 Scr. 메이터. , 43 ( 2000 ) , PP. 881 – 886 기사PDF 다운로드Scopus에서 레코드 보기 [15] M. 콕스 , RA 하딩 , J. 캠벨 메이터. 과학. 기술. , 19 ( 2003 ) , 613 ~ 625페이지 Scopus에서 레코드 보기 [16] C. Nyahumwa , NR Green , J. Campbell 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 32 ( 2001 ) , 349 ~ 358 쪽 Scopus에서 레코드 보기 [17] A. Ardekhani , R. Raiszadeh J. 메이터. 영어 공연하다. , 21 ( 2012 ) , pp. 1352 – 1362 교차 참조Scopus에서 레코드 보기 [18] X. Dai , X. Yang , J. Campbell , J. Wood 메이터. 과학. 기술. , 20 ( 2004 ) , 505 ~ 513 쪽 Scopus에서 레코드 보기 [19] EM 엘갈라드 , MF 이브라힘 , HW 도티 , FH 사무엘 필로스. 잡지. , 98 ( 2018 ) , PP. 1337 – 1359 교차 참조Scopus에서 레코드 보기 [20] WD 그리피스 , NW 라이 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. 190 – 196 교차 참조Scopus에서 레코드 보기 [21] AR Mirak , M. Divandari , SMA Boutorabi , J. 캠벨 국제 J. 캐스트 만났습니다. 해상도 , 20 ( 2007 ) , PP. 215 – 220 교차 참조Scopus에서 레코드 보기 [22] C. 칭기 주조공학 연구실 Helsinki University of Technology , Espoo, Finland ( 2006 ) Google 학술검색 [23] Y. Jia , J. Hou , H. Wang , Q. Le , Q. Lan , X. Chen , L. Bao J. 메이터. 프로세스. 기술. , 278 ( 2020 ) , 제 116542 조 기사PDF 다운로드Scopus에서 레코드 보기 [24] S. Ouyang , G. Yang , H. Qin , S. Luo , L. Xiao , W. Jie 메이터. 과학. 영어 A , 780 ( 2020 ) , 제 139138 조 기사PDF 다운로드Scopus에서 레코드 보기 [25] 에스엠. Xiong , X.-F. 왕 트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234 기사PDF 다운로드Scopus에서 레코드 보기 [26] 지브이리서치 그랜드뷰 리서치 ( 2018 ) 미국 Google 학술검색 [27] T. 리 , J. 데이비스 메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 5,389 – (5400) 교차 참조Scopus에서 레코드 보기 [28] JF Fruehling, 미시간 대학, 1970. Google 학술검색 [29] S. 쿨링 제36회 세계 마그네슘 연례 회의 , 노르웨이 ( 1979 ) , pp. 54 – 57 Scopus에서 레코드 보기Google 학술검색 [30] S. Cashion , N. Ricketts , P. Hayes J. 가벼운 만남. , 2 ( 2002 ) , 43 ~ 47페이지 기사PDF 다운로드Scopus에서 레코드 보기 [31] S. Cashion , N. Ricketts , P. Hayes J. 가벼운 만남. , 2 ( 2002 ) , PP. 37 – 42 기사PDF 다운로드Scopus에서 레코드 보기 [32] K. Aarstad , G. Tranell , G. Pettersen , TA Engh SF6에 의해 보호되는 마그네슘의 표면을 연구하는 다양한 기술 TMS ( 2003년 ) Google 학술검색 [33] 에스엠 Xiong , X.-L. 리우 메탈. 메이터. 트랜스. , 38 ( 2007 년 ) , PP. (428) – (434) 교차 참조Scopus에서 레코드 보기 [34] T.-S. 시 , J.-B. Liu , P.-S. 웨이 메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지 기사PDF 다운로드Scopus에서 레코드 보기 [35] G. Pettersen , E. Øvrelid , G. Tranell , J. Fenstad , H. Gjestland 메이터. 과학. 영어 , 332 ( 2002 ) , PP. (285) – (294) 기사PDF 다운로드Scopus에서 레코드 보기 [36] H. Bo , LB Liu , ZP Jin J. 합금. Compd. , 490 ( 2010 ) , 318 ~ 325 쪽 기사PDF 다운로드Scopus에서 레코드 보기 [37] A. 미락 , C. 데이비슨 , J. 테일러 코로스. 과학. , 52 ( 2010 ) , PP. 1992 년 – 2000 기사PDF 다운로드Scopus에서 레코드 보기 [38] BD 리 , UH 부리 , KW 리 , GS 한강 , JW 한 메이터. 트랜스. , 54 ( 2013 ) , 66 ~ 73페이지 Scopus에서 레코드 보기 [39] WZ Liang , Q. Gao , F. Chen , HH Liu , ZH Zhao China Foundry , 9 ( 2012 ) , pp. 226 – 230 교차 참조Scopus에서 레코드 보기 [40] UI 골드슐레거 , EY 샤피로비치 연소. 폭발 충격파 , 35 ( 1999 ) , 637 ~ 644페이지 Scopus에서 레코드 보기 [41] A. Elsayed , SL Sin , E. Vandersluis , J. Hill , S. Ahmad , C. Ravindran , S. Amer Foundry 트랜스. 오전. 파운드리 Soc. , 120 ( 2012 ) , 423 ~ 429페이지 Scopus에서 레코드 보기 [42] E. Zhang , GJ Wang , ZC Hu 메이터. 과학. 기술. , 26 ( 2010 ) , 1253 ~ 1258페이지 Scopus에서 레코드 보기 [43] NR 그린 , J. 캠벨 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 173 ( 1993 ) , 261 ~ 266 쪽 기사PDF 다운로드Scopus에서 레코드 보기 [44] C 라일리 , MR 졸리 , NR 그린 MCWASP XII 논문집 – 주조, 용접 및 고급 Solidifcation 프로세스의 12 모델링 , 밴쿠버, 캐나다 ( 2009 ) Google 학술검색 [45] HE Friedrich, BL Mordike, Springer, 독일, 2006. Google 학술검색 [46] C. Zheng , BR Qin , XB Lou 기계, 산업 및 제조 기술에 관한 2010 국제 회의 , ASME ( 2010 ) , pp. 383 – 388 2010년 미트 교차 참조Scopus에서 레코드 보기Google 학술검색 [47] SM Xiong , XF 왕 트랜스. 비철금속 사회 중국 , 20 ( 2010 ) , pp. 1228 – 1234 기사PDF 다운로드Scopus에서 레코드 보기 [48] SM Xiong , XL Liu 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 38A ( 2007 ) , PP. (428) – (434) 교차 참조Scopus에서 레코드 보기 [49] TS Shih , JB Liu , PS Wei 메이터. 화학 물리. , 104 ( 2007 ) , 497 ~ 504페이지 기사PDF 다운로드Scopus에서 레코드 보기 [50] K. Aarstad , G. Tranell , G. Pettersen , TA Engh 매그. 기술. ( 2003 ) , PP. (5) – (10) Scopus에서 레코드 보기 [51] G. Pettersen , E. Ovrelid , G. Tranell , J. Fenstad , H. Gjestland 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 332 ( 2002 ) , 285 ~ 294페이지 기사PDF 다운로드Scopus에서 레코드 보기 [52] XF 왕 , SM Xiong 코로스. 과학. , 66 ( 2013 ) , PP. 300 – 307 기사PDF 다운로드Scopus에서 레코드 보기 [53] SH Nie , SM Xiong , BC Liu 메이터. 과학. 영어 A-구조체. 메이터. 소품 Microstruct. 프로세스. , 422 ( 2006 ) , 346 ~ 351페이지 기사PDF 다운로드Scopus에서 레코드 보기 [54] C. Bauer , A. Mogessie , U. Galovsky Zeitschrift 모피 Metallkunde , 97 ( 2006 ) , PP. (164) – (168) 교차 참조Scopus에서 레코드 보기 [55] QG 왕 , D. Apelian , DA Lados J. 가벼운 만남. , 1 ( 2001 ) , PP. (73) – 84 기사PDF 다운로드Scopus에서 레코드 보기 [56] S. Wang , Y. Wang , Q. Ramasse , Z. Fan 메탈. 메이터. 트랜스. , 51 ( 2020 ) , PP. 2957 – 2974 교차 참조Scopus에서 레코드 보기 [57] S. Hayashi , W. Minami , T. Oguchi , HJ Kim 카그. 코그. 론분슈 , 35 ( 2009 ) , 411 ~ 415페이지 교차 참조Scopus에서 레코드 보기 [58] K. 아르스타드 노르웨이 과학 기술 대학교 ( 2004년 ) Google 학술검색 [59] RL 윌킨스 J. Chem. 물리. , 51 ( 1969 ) , p. 853 -& Scopus에서 레코드 보기 [60] O. Kubaschewski , K. Hesselemam 무기물의 열화학적 성질 Springer-Verlag , 벨린 ( 1991 ) Google 학술검색 [61] R. Schmidt , M. Strobele , K. Eichele , HJ Meyer 유로 J. Inorg. 화학 ( 2017 ) , PP. 2727 – 2735 교차 참조Scopus에서 레코드 보기 [62] B. Hu , Y. Du , H. Xu , W. Sun , WW Zhang , D. Zhao 제이민 메탈. 분파. B-금속. , 46 ( 2010 ) , 97 ~ 103페이지 Scopus에서 레코드 보기 [63] O. Salas , H. Ni , V. Jayaram , KC Vlach , CG Levi , R. Mehrabian J. 메이터. 해상도 , 6 ( 1991 ) , 1964 ~ 1981페이지 Scopus에서 레코드 보기 [64] SSS Kumari , UTS Pillai , BC 빠이 J. 합금. Compd. , 509 ( 2011 ) , pp. 2503 – 2509 기사PDF 다운로드Scopus에서 레코드 보기 [65] H. Scholz , P. Greil J. 메이터. 과학. , 26 ( 1991 ) , 669 ~ 677 쪽 Scopus에서 레코드 보기 [66] P. Biedenkopf , A. Karger , M. Laukotter , W. Schneider 매그. 기술. , 2005년 ( 2005년 ) , 39 ~ 42 쪽 Scopus에서 레코드 보기 [67] HV 앳킨슨 , S. 데이비스 메탈. 메이터. 트랜스. , 31 ( 2000 ) , PP. 2981 – 3000 교차 참조Scopus에서 레코드 보기 [68] EJ Guo , L. Wang , YC Feng , LP Wang , YH Chen J. 썸. 항문. 칼로리. , 135 ( 2019 ) , PP. 2001 년 – 2008 년 교차 참조Scopus에서 레코드 보기 [69] T. Li , WD Griffiths , J. Chen 메탈. 메이터. 트랜스. A-Phys. 메탈. 메이터. 과학. , 48A ( 2017 ) , PP. 5516 – 5528 교차 참조Scopus에서 레코드 보기 [70] M. Tiryakioglu , D. Hudak는 J. 메이터. 과학. , 42 ( 2007 ) , pp. 10173 – 10179 교차 참조Scopus에서 레코드 보기 [71] Y. Yue , WD Griffiths , JL Fife , NR Green 제1회 3d 재료과학 국제학술대회 논문집 ( 2012 ) , pp. 131 – 136 교차 참조Scopus에서 레코드 보기Google 학술검색 [72] R. 라이자데 , WD 그리피스 메탈. 메이터. 트랜스. B-프로세스 메탈. 메이터. 프로세스. 과학. , 37 ( 2006 ) , PP. (865) – (871) Scopus에서 레코드 보기 [73] ZC Hu , EL Zhang , SY Zeng 메이터. 과학. 기술. , 24 ( 2008 ) , 1304 ~ 1308페이지 교차 참조Scopus에서 레코드 보기
A comparative performance analysis of the CFD platforms OpenFOAM and FLOW-3D is presented, focusing on a 3D swirling turbulent flow: a steady hydraulic jump at low Reynolds number. Turbulence is treated using RANS approach RNG k-ε. A Volume Of Fluid (VOF) method is used to track the air–water interface, consequently aeration is modeled using an Eulerian–Eulerian approach. Structured meshes of cubic elements are used to discretize the channel geometry. The numerical model accuracy is assessed comparing representative hydraulic jump variables (sequent depth ratio, roller length, mean velocity profiles, velocity decay or free surface profile) to experimental data. The model results are also compared to previous studies to broaden the result validation. Both codes reproduced the phenomenon under study concurring with experimental data, although special care must be taken when swirling flows occur. Both models can be used to reproduce the hydraulic performance of energy dissipation structures at low Reynolds numbers.
CFD 플랫폼 OpenFOAM 및 FLOW-3D의 비교 성능 분석이 3D 소용돌이치는 난류인 낮은 레이놀즈 수에서 안정적인 유압 점프에 초점을 맞춰 제시됩니다. 난류는 RANS 접근법 RNG k-ε을 사용하여 처리됩니다.
VOF(Volume Of Fluid) 방법은 공기-물 계면을 추적하는 데 사용되며 결과적으로 Eulerian-Eulerian 접근 방식을 사용하여 폭기가 모델링됩니다. 입방체 요소의 구조화된 메쉬는 채널 형상을 이산화하는 데 사용됩니다. 수치 모델 정확도는 대표적인 유압 점프 변수(연속 깊이 비율, 롤러 길이, 평균 속도 프로파일, 속도 감쇠 또는 자유 표면 프로파일)를 실험 데이터와 비교하여 평가됩니다.
모델 결과는 또한 결과 검증을 확장하기 위해 이전 연구와 비교됩니다. 소용돌이 흐름이 발생할 때 특별한 주의가 필요하지만 두 코드 모두 실험 데이터와 일치하는 연구 중인 현상을 재현했습니다. 두 모델 모두 낮은 레이놀즈 수에서 에너지 소산 구조의 수리 성능을 재현하는 데 사용할 수 있습니다.
Keywords
CFDRANS, OpenFOAM, FLOW-3D ,Hydraulic jump, Air–water flow, Low Reynolds number
Ahmed, F., Rajaratnam, N., 1997. Three-dimensional turbulent boundary layers: a review. J. Hydraulic Res. 35 (1), 81e98. Ashgriz, N., Poo, J., 1991. FLAIR: Flux line-segment model for advection and interface reconstruction. Elsevier J. Comput. Phys. 93 (2), 449e468. Bakhmeteff, B.A., Matzke, A.E., 1936. .The hydraulic jump in terms dynamic similarity. ASCE Trans. Am. Soc. Civ. Eng. 101 (1), 630e647. Balachandar, S., Eaton, J.K., 2010. Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (2010), 111e133. Bayon, A., Lopez-Jimenez, P.A., 2015. Numerical analysis of hydraulic jumps using
OpenFOAM. J. Hydroinformatics 17 (4), 662e678. Belanger, J., 1841. Notes surl’Hydraulique, Ecole Royale des Ponts et Chaussees (Paris, France). Bennett, N.D., Crok, B.F.W., Guariso, G., Guillaume, J.H.A., Hamilton, S.H., Jakeman, A.J., Marsili-Libelli, S., Newhama, L.T.H., Norton, J.P., Perrin, C., Pierce, S.A., Robson, B., Seppelt, R., Voinov, A.A., Fath, B.D., Andreassian, V., 2013. Characterising performance of environmental models. Environ. Model. Softw. 40, 1e20. Berberovic, E., 2010. Investigation of Free-surface Flow Associated with Drop Impact: Numerical Simulations and Theoretical Modeling. Imperial College of Science, Technology and Medicine, UK. Bidone, G., 1819. Report to Academie Royale des Sciences de Turin, s eance. Le Remou et sur la Propagation des Ondes, 12, pp. 21e112. Biswas, R., Strawn, R.C., 1998. Tetrahedral and hexahedral mesh adaptation for CFD problems. Elsevier Appl. Numer. Math. 26 (1), 135e151. Blocken, B., Gualtieri, C., 2012. Ten iterative steps for model development and evaluation applied to computational fluid dynamics for environmental fluid mechanics. Environ. Model. Softw. 33, 1e22. Bombardelli, F.A., Meireles, I., Matos, J., 2011. Laboratory measurements and multiblock numerical simulations of the mean flow and turbulence in the nonaerated skimming flow region of steep stepped spillways. Springer Environ. Fluid Mech. 11 (3), 263e288. Bombardelli, F.A., 2012. Computational multi-phase fluid dynamics to address flows past hydraulic structures. In: 4th IAHR International Symposium on Hydraulic Structures, 9e11 February 2012, Porto, Portugal, 978-989-8509-01-7. Borges, J.E., Pereira, N.H., Matos, J., Frizell, K.H., 2010. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in airewater flows. Exp. fluids 48 (1), 17e31. Borue, V., Orszag, S., Staroslesky, I., 1995. Interaction of surface waves with turbulence: direct numerical simulations of turbulent open channel flow. J. Fluid Mech. 286, 1e23. Boussinesq, J., 1871. Theorie de l’intumescence liquide, applelee onde solitaire ou de translation, se propageantdans un canal rectangulaire. Comptes Rendus l’Academie Sci. 72, 755e759. Bradley, J.N., Peterka, A.J., 1957. The hydraulic design of stilling Basins : hydraulic jumps on a horizontal Apron (Basin I). In: Proceedings ASCE, J. Hydraulics Division. Bradshaw, P., 1996. Understanding and prediction of turbulent flow. Elsevier Int. J. heat fluid flow 18 (1), 45e54. Bung, D.B., 2013. Non-intrusive detection of airewater surface roughness in selfaerated chute flows. J. Hydraulic Res. 51 (3), 322e329. Bung, D., Schlenkhoff, A., 2010. Self-aerated Skimming Flow on Embankment Stepped Spillways-the Effect of Additional Micro-roughness on Energy Dissipation and Oxygen Transfer. IAHR European Congress. Caisley, M.E., Bombardelli, F.A., Garcia, M.H., 1999. Hydraulic Model Study of a Canoe Chute for Low-head Dams in Illinois. Civil Engineering Studies, Hydraulic Engineering Series No-63. University of Illinois at Urbana-Champaign. Carvalho, R., Lemos, C., Ramos, C., 2008. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraulic Res. 46 (6), 739e752. Celik, I.B., Ghia, U., Roache, P.J., 2008. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. ASME J. Fluids Eng. 130 (7), 1e4. Chachereau, Y., Chanson, H., 2011. .Free-surface fluctuations and turbulence in hydraulic jumps. Exp. Therm. Fluid Sci. 35 (6), 896e909. Chanson, H. (Ed.), 2015. Energy Dissipation in Hydraulic Structures. CRC Press. Chanson, H., 2007. Bubbly flow structure in hydraulic jump. Eur. J. Mechanics-B/ Fluids 26.3(2007) 367e384. Chanson, H., Carvalho, R., 2015. Hydraulic jumps and stilling basins. Chapter 4. In: Chanson, H. (Ed.), Energy Dissipation in Hydraulic Structures. CRC Press, Taylor & Francis Group, ABalkema Book. Chanson, H., Gualtieri, C., 2008. Similitude and scale effects of air entrainment in hydraulic jumps. J. Hydraulic Res. 46 (1), 35e44. Chanson, H., Lubin, P., 2010. Discussion of “Verification and validation of a computational fluid dynamics (CFD) model for air entrainment at spillway aerators” Appears in the Canadian Journal of Civil Engineering 36(5): 826-838. Can. J. Civ. Eng. 37 (1), 135e138. Chanson, H., 1994. Drag reduction in open channel flow by aeration and suspended load. Taylor & Francis J. Hydraulic Res. 32, 87e101. Chanson, H., Montes, J.S., 1995. Characteristics of undular hydraulic jumps: experimental apparatus and flow patterns. J. hydraulic Eng. 121 (2), 129e144. Chanson, H., Brattberg, T., 2000. Experimental study of the airewater shear flow in a hydraulic jump. Int. J. Multiph. Flow 26 (4), 583e607. Chanson, H., 2013. Hydraulics of aerated flows: qui pro quo? Taylor & Francis J. Hydraulic Res. 51 (3), 223e243. Chaudhry, M.H., 2007. Open-channel Flow, Springer Science & Business Media. Chen, L., Li, Y., 1998. .A numerical method for two-phase flows with an interface. Environ. Model. Softw. 13 (3), 247e255. Chow, V.T., 1959. Open Channel Hydraulics. McGraw-Hill Book Company, Inc, New York. Daly, B.J., 1969. A technique for including surface tension effects in hydrodynamic calculations. Elsevier J. Comput. Phys. 4 (1), 97e117. De Padova, D., Mossa, M., Sibilla, S., Torti, E., 2013. 3D SPH modeling of hydraulic jump in a very large channel. Taylor & Francis J. Hydraulic Res. 51 (2), 158e173. Dewals, B., Andre, S., Schleiss, A., Pirotton, M., 2004. Validation of a quasi-2D model for aerated flows over stepped spillways for mild and steep slopes. Proc. 6th Int. Conf. Hydroinformatics 1, 63e70. Falvey, H.T., 1980. Air-water flow in hydraulic structures. NASA STI Recon Tech. Rep. N. 81, 26429. Fawer, C., 1937. Etude de quelquesecoulements permanents a filets courbes (‘Study of some Steady Flows with Curved Streamlines’). Thesis. Imprimerie La Concorde, Lausanne, Switzerland, 127 pages (in French). Gualtieri, C., Chanson, H., 2007. .Experimental analysis of Froude number effect on air entrainment in the hydraulic jump. Springer Environ. Fluid Mech. 7 (3), 217e238. Gualtieri, C., Chanson, H., 2010. Effect of Froude number on bubble clustering in a hydraulic jump. J. Hydraulic Res. 48 (4), 504e508. Hager, W., Sinniger, R., 1985. Flow characteristics of the hydraulic jump in a stilling basin with an abrupt bottom rise. Taylor & Francis J. Hydraulic Res. 23 (2), 101e113. Hager, W.H., 1992. Energy Dissipators and Hydraulic Jump, Springer. Hager, W.H., Bremen, R., 1989. Classical hydraulic jump: sequent depths. J. Hydraulic Res. 27 (5), 565e583. Hartanto, I.M., Beevers, L., Popescu, I., Wright, N.G., 2011. Application of a coastal modelling code in fluvial environments. Environ. Model. Softw. 26 (12), 1685e1695. Hirsch, C., 2007. Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics. Butterworth-Heinemann, 1. Hirt, C., Nichols, B., 1981. .Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201e225. Hyman, J.M., 1984. Numerical methods for tracking interfaces. Elsevier Phys. D. Nonlinear Phenom. 12 (1), 396e407. Juez, C., Murillo, J., Garcia-Navarro, P., 2013. Numerical assessment of bed-load discharge formulations for transient flow in 1D and 2D situations. J. Hydroinformatics 15 (4). Keyes, D., Ecer, A., Satofuka, N., Fox, P., Periaux, J., 2000. Parallel Computational Fluid Dynamics’ 99: towards Teraflops, Optimization and Novel Formulations. Elsevier. Kim, J.J., Baik, J.J., 2004. A numerical study of the effects of ambient wind direction on flow and dispersion in urban street canyons using the RNG keε turbulence model. Atmos. Environ. 38 (19), 3039e3048. Kim, S.-E., Boysan, F., 1999. Application of CFD to environmental flows. Elsevier J. Wind Eng. Industrial Aerodynamics 81 (1), 145e158. Liu, M., Rajaratnam, N., Zhu, D.Z., 2004. Turbulence structure of hydraulic jumps of low Froude numbers. J. Hydraulic Eng. 130 (6), 511e520. Lobosco, R., Schulz, H., Simoes, A., 2011. Analysis of Two Phase Flows on Stepped Spillways, Hydrodynamics – Optimizing Methods and Tools. Available from. : http://www.intechopen.com/books/hyd rodynamics-optimizing-methods-andtools/analysis-of-two-phase-flows-on-stepped-spillways. Accessed February 27th 2014. Long, D., Rajaratnam, N., Steffler, P.M., Smy, P.R., 1991. Structure of flow in hydraulic jumps. Taylor & Francis J. Hydraulic Res. 29 (2), 207e218. Ma, J., Oberai, A.A., Lahey Jr., R.T., Drew, D.A., 2011. Modeling air entrainment and transport in a hydraulic jump using two-fluid RANS and DES turbulence models. Heat Mass Transf. 47 (8), 911e919. Matos, J., Frizell, K., Andre, S., Frizell, K., 2002. On the performance of velocity measurement techniques in air-water flows. Hydraulic Meas. Exp. Methods 2002, 1e11. http://dx.doi.org/10.1061/40655(2002)58. Meireles, I.C., Bombardelli, F.A., Matos, J., 2014. .Air entrainment onset in skimming flows on steep stepped spillways: an analysis. J. Hydraulic Res. 52 (3), 375e385. McDonald, P., 1971. The Computation of Transonic Flow through Two-dimensional Gas Turbine Cascades. Mossa, M., 1999. On the oscillating characteristics of hydraulic jumps, Journal of Hydraulic Research. Taylor &Francis 37 (4), 541e558. Murzyn, F., Chanson, H., 2009a. Two-phase Gas-liquid Flow Properties in the Hydraulic Jump: Review and Perspectives. Nova Science Publishers. Murzyn, F., Chanson, H., 2009b. Experimental investigation of bubbly flow and turbulence in hydraulic jumps. Environ. Fluid Mech. 2, 143e159. Murzyn, F., Mouaze, D., Chaplin, J.R., 2007. Airewater interface dynamic and free surface features in hydraulic jumps. J. Hydraulic Res. 45 (5), 679e685. Murzyn, F., Mouaze, D., Chaplin, J., 2005. Optical fiber probe measurements of bubbly flow in hydraulic jumps. Elsevier Int. J. Multiph. Flow 31 (1), 141e154. Nagosa, R., 1999. Direct numerical simulation of vortex structures and turbulence scalar transfer across a free surface in a fully developed turbulence. Phys. Fluids 11, 1581e1595. Noh, W.F., Woodward, P., 1976. SLIC (Simple Line Interface Calculation), Proceedings of the Fifth International Conference on Numerical Methods in Fluid Dynamics June 28-July 2. 1976 Twente University, Enschede, pp. 330e340. Oertel, M., Bung, D.B., 2012. Initial stage of two-dimensional dam-break waves: laboratory versus VOF. J. Hydraulic Res. 50 (1), 89e97. Olivari, D., Benocci, C., 2010. Introduction to Mechanics of Turbulence. Von Karman Institute for Fluid Dynamics. Omid, M.H., Omid, M., Varaki, M.E., 2005. Modelling hydraulic jumps with artificial neural networks. Thomas Telford Proc. ICE-Water Manag. 158 (2), 65e70. OpenFOAM, 2011. OpenFOAM: the Open Source CFD Toolbox User Guide. The Free Software Foundation Inc. Peterka, A.J., 1984. Hydraulic design of spillways and energy dissipators. A water resources technical publication. Eng. Monogr. 25. Pope, S.B., 2000. Turbulent Flows. Cambridge university press. Pfister, M., 2011. Chute aerators: steep deflectors and cavity subpressure, Journal of hydraulic engineering. Am. Soc. Civ. Eng. 137 (10), 1208e1215. Prosperetti, A., Tryggvason, G., 2007. Computational Methods for Multiphase Flow. Cambridge University Press. Rajaratnam, N., 1965. The hydraulic jump as a Wall Jet. Proc. ASCE, J. Hydraul. Div. 91 (HY5), 107e132. Resch, F., Leutheusser, H., 1972. Reynolds stress measurements in hydraulic jumps. Taylor & Francis J. Hydraulic Res. 10 (4), 409e430. Romagnoli, M., Portapila, M., Morvan, H., 2009. Computational simulation of a hydraulic jump (original title, in Spanish: “Simulacioncomputacional del resaltohidraulico”), MecanicaComputacional, XXVIII, pp. 1661e1672. Rouse, H., Siao, T.T., Nagaratnam, S., 1959. Turbulence characteristics of the hydraulic jump. Trans. ASCE 124, 926e966. Rusche, H., 2002. Computational Fluid Dynamics of Dispersed Two-phase Flows at High Phase Fractions. Imperial College of Science, Technology and Medicine, UK. Saint-Venant, A., 1871. Theorie du movement non permanent des eaux, avec application aux crues des riviereset a l’introduction de mareesdansleurslits. Comptesrendus des seances de l’Academie des Sciences. Schlichting, H., Gersten, K., 2000. Boundary-layer Theory. Springer. Spalart, P.R., 2000. Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21 (3), 252e263. Speziale, C.G., Thangam, S., 1992. Analysis of an RNG based turbulence model for separated flows. Int. J. Eng. Sci. 30 (10), 1379eIN4. Toge, G.E., 2012. The Significance of Froude Number in Vertical Pipes: a CFD Study. University of Stavanger, Norway. Ubbink, O., 1997. Numerical Prediction of Two Fluid Systems with Sharp Interfaces. Imperial College of Science, Technology and Medicine, UK. Valero, D., García-Bartual, R., 2016. Calibration of an air entrainment model for CFD spillway applications. Adv. Hydroinformatics 571e582. http://dx.doi.org/ 10.1007/978-981-287-615-7_38. P. Gourbesville et al. Springer Water. Valero, D., Bung, D.B., 2015. Hybrid investigations of air transport processes in moderately sloped stepped spillway flows. In: E-Proceedings of the 36th IAHR World Congress, 28 June e 3 July, 2015 (The Hague, the Netherlands). Van Leer, B., 1977. Towards the ultimate conservative difference scheme III. Upstream-centered finite-difference schemes for ideal compressible flow. J. Comput. Phys 23 (3), 263e275. Von Karman, T., 1930. MechanischeAhnlichkeit und Turbulenz, Nachrichten von der Gesellschaft der WissenschaftenzuGottingen. Fachgr. 1 Math. 5, 58 € e76. Wang, H., Murzyn, F., Chanson, H., 2014a. Total pressure fluctuations and two-phase flow turbulence in hydraulic jumps. Exp. Fluids 55.11(2014) Pap. 1847, 1e16 (DOI: 10.1007/s00348-014-1847-9). Wang, H., Felder, S., Chanson, H., 2014b. An experimental study of turbulent twophase flow in hydraulic jumps and application of a triple decomposition technique. Exp. Fluids 55.7(2014) Pap. 1775, 1e18. http://dx.doi.org/10.1007/ s00348-014-1775-8. Wang, H., Chanson, H., 2015a. .Experimental study of turbulent fluctuations in hydraulic jumps. J. Hydraul. Eng. 141 (7) http://dx.doi.org/10.1061/(ASCE) HY.1943-7900.0001010. Paper 04015010, 10 pages. Wang, H., Chanson, H., 2015b. Integral turbulent length and time scales in hydraulic jumps: an experimental investigation at large Reynolds numbers. In: E-Proceedings of the 36th IAHR World Congress 28 June e 3 July, 2015, The Netherlands. Weller, H., Tabor, G., Jasak, H., Fureby, C., 1998. A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12, 620e631. Wilcox, D., 1998. Turbulence Modeling for CFD, DCW Industries. La Canada, California (USA). Witt, A., Gulliver, J., Shen, L., June 2015. Simulating air entrainment and vortex dynamics in a hydraulic jump. Int. J. Multiph. Flow 72, 165e180. ISSN 0301-
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2015.02.012. http://www. sciencedirect.com/science/article/pii/S0301932215000336. Wood, I.R., 1991. Air Entrainment in Free-surface Flows, IAHR Hydraulic Design Manual No.4, Hydraulic Design Considerations. Balkema Publications, Rotterdam, The Netherlands. Yakhot, V., Orszag, S., Thangam, S., Gatski, T., Speziale, C., 1992. Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A: fluid Dynamics (1989-1993). AIP Publ. 4 (7), 1510e1520. Youngs, D.L., 1984. An interface tracking method for a 3D Eulerian hydrodynamics code. Tech. Rep. 44 (92), 35e35. Zhang, G., Wang, H., Chanson, H., 2013. Turbulence and aeration in hydraulic jumps: free-surface fluctuation and integral turbulent scale measurements. Environ. fluid Mech. 13 (2), 189e204. Zhang, W., Liu, M., Zhu, D.Z., Rajaratnam, N., 2014. Mean and turbulent bubble velocities in free hydraulic jumps for small to intermediate froude numbers. J. Hydraulic Eng.
Hyung Ju Yoo1 Sung Sik Joo2 Beom Jae Kwon3 Seung Oh Lee4* 유 형주1 주 성식2 권 범재3 이 승오4* 1Ph.D Student, Dept. of Civil & Environmental Engineering, Hongik University2Director, Water Resources & Environment Department, HECOREA3Director, Water Resources Department, ISAN4Professor, Dept. of Civil & Environmental Engineering, Hongik University 1홍익대학교 건설환경공학과 박사과정 2㈜헥코리아 수자원환경사업부 이사 3㈜이산 수자원부 이사 4홍익대학교 건설환경공학과 교수*Corresponding Author
ABSTRACT
최근 기후변화로 인해 강우강도 및 빈도의 증가에 따른 집중호우의 영향 및 기존 여수로의 노후화에 대비하여 홍수 시 하류 하천의 영향을 최소화할 수 있는 보조 여수로 활용방안 구축이 필요한 실정이다. 이를 위해, 수리모형 실험 및 수치모형 실험을 통하여 보조 여수로 운영에 따른 흐름특성 변화 검토에 관한 연구가 많이 진행되어 왔다.
그러나 대부분의 연구는 여수로에서의 흐름특성 및 기능성에 대한 검토를 수행하였을 뿐 보조 여수로의 활용방안에 따른 하류하천 영향 검토 및 호안 안정성 검토에 관한 연구는 미비한 실정이다.
이에 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류영향 분석 및 호안 안정성 측면에서 최적 방류 시나리오 검토를 3차원 수치모형인 FLOW-3D를 사용하여 검토하였다. 또한 FLOW-3D 수치모의 수행을 통한 유속, 수위 결과와 소류력 산정 결과를 호안 설계허용 기준과 비교하였다.
수문 완전 개도 조건으로 가정하고 계획홍수량 유입 시 다양한 보조 여수로 활용방안에 대하여 수치모의를 수행한 결과, 보조 여수로 단독 운영 시 기존 여수로 단독운영에 비하여 최대유속 및 최대 수위의 감소효과를 확인하였다. 다만 계획홍수량의 45% 이하 방류 조건에서 대안부의 호안 안정성을 확보하였고 해당 방류량 초과 경우에는 처오름 현상이 발생하여 월류에 대한 위험성 증가를 확인하였다.
따라서 기존 여수로와의 동시 운영 방안 도출이 중요하다고 판단하였다. 여수로의 배분 비율 및 총 허용 방류량에 대하여 검토한 결과 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 흐름이 중심으로 집중되어 대안부의 유속 저감 및 수위 감소를 확인하였고, 계획 홍수량의 77% 이하의 조건에서 호안의 허용 유속 및 허용 소류력 조건을 만족하였다.
이를 통하여 본 연구에서 제안한 보조 여수로 활용방안으로는 기존 여수로와 동시 운영 시 총 방류량에 대하여 보조 여수로의 배분량이 기존 여수로의 배분량보다 크게 설정하는 것이 하류하천의 영향을 최소화 할 수 있는 것으로 나타났다.
그러나 본 연구는 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토한다면 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출이 가능할 것으로 기대 된다.
키워드
보조 여수로, FLOW-3D, 수치모의, 호안 안정성, 소류력
Recently, as the occurrence frequency of sudden floods due to climate change increased and the aging of the existing spillway, it is necessary to establish a plan to utilize an auxiliary spillway to minimize the flood damage of downstream rivers. Most studies have been conducted on the review of flow characteristics according to the operation of auxiliary spillway through the hydraulic experiments and numerical modeling. However, the studies on examination of flood damage in the downstream rivers and the stability of the revetment according to the operation of the auxiliary spillway were relatively insufficient in the literature. In this study, the stability of the revetment on the downstream river according to the outflow conditions of the existing and auxiliary spillway was examined by using 3D numerical model, FLOW-3D. The velocity, water surface elevation and shear stress results of FLOW-3D were compared with the permissible velocity and shear stress of design criteria. It was assumed the sluice gate was fully opened. As a result of numerical simulations of various auxiliary spillway operations during flood season, the single operation of the auxiliary spillway showed the reduction effect of maximum velocity and the water surface elevation compared with the single operation of the existing spillway. The stability of the revetment on downstream was satisfied under the condition of outflow less than 45% of the design flood discharge. However, the potential overtopping damage was confirmed in the case of exceeding the 45% of the design flood discharge. Therefore, the simultaneous operation with the existing spillway was important to ensure the stability on design flood discharge condition. As a result of examining the allocation ratio and the total allowable outflow, the reduction effect of maximum velocity was confirmed on the condition, where the amount of outflow on auxiliary spillway was more than that on existing spillway. It is because the flow of downstream rivers was concentrated in the center due to the outflow of existing spillway. The permissible velocity and shear stress were satisfied under the condition of less than 77% of the design flood discharge with simultaneous operation. It was found that the flood damage of downstream rivers can be minimized by setting the amount allocated to the auxiliary spillway to be larger than the amount allocated to the existing spillway for the total outflow with simultaneous operation condition. However, this study only reviewed the flow characteristics around the revetment according to the outflow of spillway under the full opening of the sluice gate condition. Therefore, the various sluice opening conditions and outflow scenarios will be asked to derive more efficient utilization of the auxiliary spillway in th future.KeywordsAuxiliary spillway FLOW-3D Numerical simulation Revetment stability Shear stress
1. 서 론
최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로 유입되는 홍수량이 설계 홍수량보다 증가하여 댐 안정성 확보가 필요한 실정이다(Office for Government Policy Coordination, 2003). MOLIT & K-water(2004)에서는 기존댐의 수문학적 안정성 검토를 수행하였으며 이상홍수 발생 시 24개 댐에서 월류 등으로 인한 붕괴위험으로 댐 하류지역의 극심한 피해를 예상하여 보조여수로 신설 및 기존여수로 확장 등 치수능력 증대 기본계획을 수립하였고 이를 통하여 극한홍수 발생 시 홍수량 배제능력을 증대하여 기존댐의 안전성 확보 및 하류지역의 피해를 방지하고자 하였다. 여기서 보조 여수로는 기존 여수로와 동시 또는 별도 운영하는 여수로로써 비상상황 시 방류 기능을 포함하고 있고(K-water, 2021), 최근에는 기존 여수로의 노후화에 따라 보조여수로의 활용방안에 대한 관심이 증가하고 있다. 따라서 본 연구에서는 3차원 수치해석을 수행하여 기존 및 보조 여수로의 방류량 조합에 따른 하류 영향을 분석하고 하류 호안 안정성 측면에서 최적 방류 시나리오를 검토하고자 한다.
기존의 댐 여수로 검토에 관한 연구는 주로 수리실험을 통하여 방류조건 별 흐름특성을 검토하였으나 최근에는 수치모형 실험결과가 수리모형실험과 비교하여 근사한 것을 확인하는 등 점차 수치모형실험을 수리모형실험의 대안으로 활용하고 있다(Jeon et al., 2006; Kim, 2007; Kim et al., 2008). 국내의 경우, Jeon et al.(2006)은 수리모형 실험과 수치모의를 이용하여 임하댐 바상여수로의 기본설계안을 도출하였고, Kim et al.(2008)은 가능최대홍수량 유입 시 비상여수로 방류에 따른 수리학적 안정성과 기능성을 3차원 수치모형인 FLOW-3D를 활용하여 검토하였다. 또한 Kim and Kim(2013)은 충주댐의 홍수조절 효과 검토 및 방류량 변화에 따른 상·하류의 수위 변화를 수치모형을 통하여 검토하였다. 국외의 경우 Zeng et al.(2017)은 3차원 수치모형인 Fluent를 활용한 여수로 방류에 따른 흐름특성 결과와 측정결과를 비교하여 수치모형 결과의 신뢰성을 검토하였다. Li et al.(2011)은 가능 최대 홍수량(Probable Maximum Flood, PMF)조건에서 기존 여수로와 신규 보조 여수로 유입부 주변의 흐름특성에 대하여 3차원 수치모형 Fluent를 활용하여 검토하였고, Lee et al.(2019)는 서로 근접해있는 기존 여수로와 보조여수로 동시 운영 시 방류능 검토를 수리모형 실험 및 수치모형 실험(FLOW-3D)을 통하여 수행하였으며 기존 여수로와 보조 여수로를 동시운영하게 되면 배수로 간섭으로 인하여 총 방류량이 7.6%까지 감소되어 댐의 방류능력이 감소하였음을 확인하였다.
그러나 대부분의 여수로 검토에 대한 연구는 여수로 내에서의 흐름특성 및 기능성에 대한 검토를 수행하였고. 이에 기존 여수로와 보조 여수로 방류운영에 따른 하류하천의 흐름특성 변화 및 호안 안정성 평가에 관한 추가적인 검토가 필요한 실정이다. 따라서 본 연구에서는 기존 여수로 및 보조 여수로 방류 조건에 따른 하류하천의 흐름특성 및 호안 안정성분석을 3차원 수치모형인 FLOW-3D를 이용하여 검토하였다. 또한 다양한 방류 배분 비율 및 허용 방류량 조건 변화에 따른 하류하천의 흐름특성 및 소류력 분석결과를 호안 설계 허용유속 및 허용 소류력 기준과 비교하여 하류하천의 영향을 최소화 할 수 있는 최적의 보조 여수로 활용방안을 도출하고자 한다.
2. 본 론
2.1 이론적 배경
2.1.1 3차원 수치모형의 기본이론
FLOW-3D는 미국 Flow Science, Inc에서 개발한 범용 유체역학 프로그램(CFD, Computational Fluid Dynamics)으로 자유 수면을 갖는 흐름모의에 사용되는 3차원 수치해석 모형이다. 난류모형을 통해 난류 해석이 가능하고, 댐 방류에 따른 하류 하천의 흐름 해석에도 많이 사용되어 왔다(Flow Science, 2011). 본 연구에서는 FLOW-3D(version 12.0)을 이용하여 홍수 시 기존 여수로의 노후화에 대비하여 보조 여수로의 활용방안에 대한 검토를 하류하천의 호안 안정성 측면에서 검토하였다.
2.1.2 유동해석의 지배방정식
1) 연속 방정식(Continuity Equation)
FLOW-3D는 비압축성 유체에 대하여 연속방정식을 사용하며, 밀도는 상수항으로 적용된다. 연속 방정식은 Eqs. (1), (2)와 같다.
(1)
∇·v=0
(2)
∂∂x(uAx)+∂∂y(vAy)+∂∂z(wAz)=RSORρ
여기서, ρ는 유체 밀도(kg/m3), u, v, w는 x, y, z방향의 유속(m/s), Ax, Ay, Az는 각 방향의 요소면적(m2), RSOR는 질량 생성/소멸(mass source/sink)항을 의미한다.
2) 운동량 방정식(Momentum Equation)
각 방향 속도성분 u, v, w에 대한 운동방정식은 Navier-Stokes 방정식으로 다음 Eqs. (3), (4), (5)와 같다.
여기서, Gx, Gy, Gz는 체적력에 의한 가속항, fx, fy, fz는 점성에 의한 가속항, bx, by, bz는 다공성 매체에서의 흐름손실을 의미한다.
2.1.3 소류력 산정
호안설계 시 제방사면 호안의 안정성 확보를 위해서는 하천의 흐름에 의하여 호안에 작용하는 소류력에 저항할 수 있는 재료 및 공법 선택이 필요하다. 국내의 경우 하천공사설계실무요령(MOLIT, 2016)에서 계획홍수량 유하 시 소류력 산정 방법을 제시하고 있다. 소류력은 하천의 평균유속을 이용하여 산정할 수 있으며, 소류력 산정식은 Eqs. (6), (7)과 같다.
여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), I는 에너지경사, C는 Chezy 유속계수, V는 평균유속(m/s)을 의미한다.
2) Manning 조도계수를 고려한 공식
Chezy 유속계수를 대신하여 Manning의 조도계수를 고려하여 소류력을 산정할 수 있다.
(7)
τ=γn2V2R1/3
여기서, τ는 소류력(N/m2), R은 동수반경(m), γ는 물의 단위중량(10.0 kN/m3), n은 Manning의 조도계수, V는 평균유속(m/s)을 의미한다.
FLOW-3D 수치모의 수행을 통하여 하천의 바닥 유속을 도출할 수 있으며, 본 연구에서는 Maning 조도계수롤 고려하여 소류력을 산정하고자 한다. 소류력을 산정하기 위해서 여수로 방류에 따른 대안부의 바닥유속 변화를 검토하여 최대 유속 값을 이용하였다. 최종적으로 산정한 소류력과 호안의 재료 및 공법에 따른 허용 소류력과 비교하여 제방사면 호안의 안정성 검토를 수행하게 된다.
2.2 하천호안 설계기준
하천 호안은 계획홍수위 이하의 유수작용에 대하여 안정성이 확보되도록 계획하여야 하며, 호안의 설계 시에는 사용재료의 확보용이성, 시공상의 용이성, 세굴에 대한 굴요성(flexibility) 등을 고려하여 호안의 형태, 시공방법 등을 결정한다(MOLIT, 2019). 국내의 경우, 하천공사설계실무요령(MOLIT, 2016)에서는 다양한 호안공법에 대하여 비탈경사에 따라 설계 유속을 비교하거나, 허용 소류력을 비교함으로써 호안의 안정성을 평가한다. 호안에 대한 국외의 설계기준으로 미국의 경우, ASTM(미국재료시험학회)에서 호안블록 및 식생매트 시험방법을 제시하였고 제품별로 ASTM 시험에 의한 허용유속 및 허용 소류력을 제시하였다. 일본의 경우, 호안 블록에 대한 축소실험을 통하여 항력을 측정하고 이를 통해서 호안 블록에 대한 항력계수를 제시하고 있다. 설계 시에는 항력계수에 의한 블록의 안정성을 평가하고 있으나, 최근에는 세굴의 영향을 고려할 수 있는 호안 안정성 평가의 필요성을 제기하고 있다(MOLIT, 2019). 관련된 국내·외의 하천호안 설계기준은 Table 1에 정리하여 제시하였고, 본 연구에서 하천 호안 안정성 평가 시 하천공사설계실무요령(MOLIT, 2016)과 ASTM 시험에서 제시한 허용소류력 및 허용유속 기준을 비교하여 각각 0.28 kN/m2, 5.0 m/s 미만일 경우 호안 안정성을 확보하였다고 판단하였다.
Table 1.
Standard of Permissible Velocity and Shear on Revetment
Country (Reference)
Material
Permissible velocity (Vp, m/s)
Permissible Shear (τp, kN/m2)
Korea
River Construction Design Practice Guidelines (MOLIT, 2016)
Vegetated
5.0
0.50
Stone
5.0
0.80
USA
ASTM D’6460
Vegetated
6.1
0.81
Unvegetated
5.0
0.28
JAPAN
Dynamic Design Method of Revetment
–
5.0
–
2.3. 보조여수로 운영에 따른 하류하천 영향 분석
2.3.1 모형의 구축 및 경계조건
본 연구에서는 기존 여수로의 노후화에 대비하여 홍수 시 보조여수로의 활용방안에 따른 하류하천의 흐름특성 및 호안안정성 평가를 수행하기 위해 FLOW-3D 모형을 이용하였다. 기존 여수로 및 보조 여수로는 치수능력 증대사업(MOLIT & K-water, 2004)을 통하여 완공된 ○○댐의 제원을 이용하여 구축하였다. ○○댐은 설계빈도(100년) 및 200년빈도 까지는 계획홍수위 이내로 기존 여수로를 통하여 운영이 가능하나 그 이상 홍수조절은 보조여수로를 통하여 조절해야 하며, 또한 2011년 기존 여수로 정밀안전진단 결과 사면의 표층 유실 및 옹벽 밀림현상 등이 확인되어 노후화에 따른 보수·보강이 필요한 상태이다. 이에 보조여수로의 활용방안 검토가 필요한 것으로 판단하여 본 연구의 대상댐으로 선정하였다. 하류 하천의 흐름특성을 예측하기 위하여 격자간격을 0.99 ~ 8.16 m의 크기로 하여 총 격자수는 49,102,500개로 구성하였으며, 여수로 방류에 따른 하류하천의 흐름해석을 위한 경계조건으로 상류는 유입유량(inflow), 바닥은 벽면(wall), 하류는 수위(water surface elevation)조건으로 적용하도록 하였다(Table 2, Fig. 1 참조). FLOW-3D 난류모형에는 혼합길이 모형, 난류에너지 모형, k-ϵ모형, RNG(Renormalized Group Theory) k-ϵ모형, LES 모형 등이 있으며, 본 연구에서는 여수로 방류에 따른 복잡한 난류 흐름 및 높은 전단흐름을 정확하게 모의(Flow Science, 2011)할 수 있는 RNG k-ϵ모형을 사용하였고, 하류하천 호안의 안정성 측면에서 보조여수로의 활용방안을 검토하기 위하여 방류시나리오는 Table 3에 제시된 것 같이 설정하였다. Case 1 및 Case 2를 통하여 계획홍수량에 대하여 기존 여수로와 보조 여수로의 단독 운영이 하류하천에 미치는 영향을 확인하였고 보조 여수로의 방류량 조절을 통하여 호안 안정성 측면에서 보조 여수로 방류능 검토를 수행하였다(Case 3 ~ Case 6). 또한 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천의 영향 검토(Case 7 ~ Case 10) 및 방류 배분에 따른 허용 방류량을 호안 안정성 측면에서 검토를 수행하였다(Case 11 ~ Case 14).
수문은 완전개도 조건으로 가정하였으며 하류하천의 계획홍수량에 대한 기존 여수로와 보조여수로의 배분량을 조절하여 모의를 수행하였다. 여수로는 콘크리트의 조도계수 값(Chow, 1959)을 채택하였고, 댐 하류하천의 조도계수는 하천기본계획(Busan Construction and Management Administration, 2009) 제시된 조도계수 값을 채택하였으며 FLOW-3D의 적용을 위하여 Manning-Strickler 공식(Vanoni, 2006)을 이용하여 조도계수를 조고값으로 변환하여 사용하였다. Manning-Strickler 공식은 Eq. (8)과 같으며, FLOW-3D에 적용한 조도계수 및 조고는 Table 4와 같다.
(8)
n=ks1/68.1g1/2
여기서, kS는 조고 (m), n은 Manning의 조도계수, g는 중력가속도(m/s2)를 의미한다.
시간에 따라 동일한 유량이 일정하게 유입되도록 모의를 수행하였으며, 시간간격(Time Step)은 0.0001초로 설정(CFL number < 1.0) 하였다. 또한 여수로 수문을 통한 유량의 변동 값이 1.0%이내일 경우는 연속방정식을 만족하고 있다고 가정하였다. 이는, 유량의 변동 값이 1.0%이내일 경우 유속의 변동 값 역시 1.0%이내이며, 수치모의 결과 1.0%의 유속변동은 호안의 유속설계기준에 크게 영향을 미치지 않는다고 판단하였다. 그 결과 모든 수치모의 Case에서 2400초 이내에 결과 값이 수렴하는 것을 확인하였다.
Table 2.
Mesh sizes and numerical conditions
Mesh
Numbers
49,102,500 EA
Increment (m)
Direction
Existing Spillway
Auxiliary Spillway
∆X
0.99 ~ 4.30
1.00 ~ 4.30
∆Y
0.99 ~ 8.16
1.00 ~ 5.90
∆Z
0.50 ~ 1.22
0.50 ~ 2.00
Boundary Conditions
Xmin / Ymax
Inflow / Water Surface Elevation
Xmax, Ymin, Zmin / Zmax
Wall / Symmetry
Turbulence Model
RNG model
Table 3.
Case of numerical simulation (Qp : Design flood discharge)
Case
Existing Spillway (Qe, m3/s)
Auxiliary Spillway (Qa, m3/s)
Remarks
1
Qp
0
Reference case
2
0
Qp
3
0
0.58Qp
Review of discharge capacity on auxiliary spillway
4
0
0.48Qp
5
0
0.45Qp
6
0
0.32Qp
7
0.50Qp
0.50Qp
Determination of optimal division ratio on Spillways
8
0.61Qp
0.39Qp
9
0.39Qp
0.61Qp
10
0.42Qp
0.58Qp
11
0.32Qp
0.45Qp
Determination of permissible division on Spillways
12
0.35Qp
0.48Qp
13
0.38Qp
0.53Qp
14
0.41Qp
0.56Qp
Table 4.
Roughness coefficient and roughness height
Criteria
Roughness coefficient (n)
Roughness height (ks, m)
Structure (Concrete)
0.014
0.00061
River
0.033
0.10496
Fig. 1
Layout of spillway and river in this study
2.3.2 보조 여수로의 방류능 검토
본 연구에서는 기존 여수로와 보조 여수로의 방류량 배분에 따른 하류하천 대안부의 유속분포 및 수위분포를 검토하기 위해 수치모의 Case 별 다음과 같이 관심구역을 설정하였다(Fig. 2 참조). 관심구역(대안부)의 길이(L)는 총 1.3 km로 10 m 등 간격으로 나누어 검토하였으며, Section 1(0 < X/L < 0.27)은 기존 여수로 방류에 따른 영향이 지배적인 구간, Section 2(0.27 < X/L < 1.00)는 보조 여수로 방류에 따른 영향이 지배적인 구간으로 각 구간에서의 수위, 유속, 수심결과를 확인하였다. 기존 여수로의 노후화에 따른 보조 여수로의 방류능 검토를 위하여 Case 1 – Case 6까지의 결과를 비교하였다.
보조 여수로의 단독 운영 시 기존 여수로 운영 시 보다 하류하천의 대안부의 최대 유속(Vmax)은 약 3% 감소하였으며, 이는 보조 여수로의 하천 유입각이 기존 여수로 보다 7°작으며 유입하천의 폭이 증가하여 유속이 감소한 것으로 판단된다. 대안부의 최대 유속 발생위치는 하류 쪽으로 이동하였으며 교량으로 인한 단면의 축소로 최대유속이 발생하는 것으로 판단된다. 또한 보조 여수로의 배분량(Qa)이 증가함에 따라 하류하천 대안부의 최대 유속이 증가하였다. 하천호안 설계기준에서 제시하고 있는 허용유속(Vp)과 비교한 결과, 계획홍수량(Qp)의 45% 이하(Case 5 & 6)를 보조 여수로에서 방류하게 되면 허용 유속(5.0 m/s)조건을 만족하여 호안안정성을 확보하였다(Fig. 3 참조). 허용유속 외에도 대안부에서의 소류력을 산정하여 하천호안 설계기준에서 제시한 허용 소류력(τp)과 비교한 결과, 유속과 동일하게 보조 여수로의 방류량이 계획홍수량의 45% 이하일 경우 허용소류력(0.28 kN/m2) 조건을 만족하였다(Fig. 4 참조). 각 Case 별 호안설계조건과 비교한 결과는 Table 5에 제시하였다.
하류하천의 수위도 기존 여수로 운영 시 보다 보조 여수로 단독 운영 시 최대 수위(ηmax)가 약 2% 감소하는 효과를 보였으며 최대 수위 발생위치는 수충부로 여수로 방류시 처오름에 의한 수위 상승으로 판단된다. 기존 여수로의 단독운영(Case 1)의 수위(ηref)를 기준으로 보조 여수로의 방류량이 증가함에 따라 수위는 증가하였으나 계획홍수량의 58%까지 방류할 경우 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보되었다(Fig. 5 참조). 그러나 계획홍수량 조건에서는 월류에 대한 위험성이 존재하기 때문에 기존여수로와 보조여수로의 적절한 방류량 배분 조합을 도출하는 것이 중요하다고 판단되어 진다.
Fig. 2
Region of interest in this study
Fig. 3
Maximum velocity and location of Vmax according to Qa
Fig. 4
Maximum shear according to Qa
Fig. 5
Maximum water surface elevation and location of ηmax according to Qa
Table 5.
Numerical results for each cases (Case 1 ~ Case 6)
Case
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
1 (Qa = 0)
9.15
0.54
No Good
No Good
2 (Qa = Qp)
8.87
0.56
No Good
No Good
3 (Qa = 0.58Qp)
6.53
0.40
No Good
No Good
4 (Qa = 0.48Qp)
6.22
0.36
No Good
No Good
5 (Qa = 0.45Qp)
4.22
0.12
Accpet
Accpet
6 (Qa = 0.32Qp)
4.04
0.14
Accpet
Accpet
2.3.3 기존 여수로와 보조 여수로 방류량 배분 검토
기존 여수로 및 보조 여수로 단독운영에 따른 하류하천 및 호안의 안정성 평가를 수행한 결과 계획홍수량 방류 시 하류하천 대안부에서 호안 설계 조건(허용유속 및 허용 소류력)을 초과하였으며, 처오름에 의한 수위 상승으로 월류에 대한 위험성 증가를 확인하였다. 따라서 계획 홍수량 조건에서 기존 여수로와 보조 여수로의 방류량 배분을 통하여 호안 안정성을 확보하고 하류하천에 방류로 인한 피해를 최소화할 수 있는 배분조합(Case 7 ~ Case 10)을 검토하였다. Case 7은 기존 여수로와 보조여수로의 배분 비율을 균등하게 적용한 경우이고, Case 8은 기존 여수로의 배분량이 보조 여수로에 비하여 많은 경우, Case 9는 보조 여수로의 배분량이 기존 여수로에 비하여 많은 경우를 의미한다. 최대유속을 비교한 결과 보조 여수로의 배분 비율이 큰 경우 기존 여수로의 배분량에 의하여 흐름이 하천 중심에 집중되어 대안부의 유속을 저감하는 효과를 확인하였다. 보조여수로의 방류량 배분 비율이 증가할수록 기존 여수로 대안부 측(0.00<X/L<0.27, Section 1) 유속 분포는 감소하였으나, 신규여수로 대안부 측(0.27<X/L<1.00, Section 2) 유속은 증가하는 것을 확인하였다(Fig. 6 참조). 그러나 유속 저감 효과에도 대안부 전구간에서 설계 허용유속 조건을 초과하여 제방의 안정성을 확보하지는 못하였다. 소류력 산정 결과 유속과 동일하게 보조 여수로의 방류량이 기존 여수로의 방류량 보다 크면 감소하는 것을 확인하였고 일부 구간에서는 허용 소류력 조건을 만족하는 것을 확인하였다(Fig. 7 참조).
따라서 유속 저감효과가 있는 배분 비율 조건(Qa>Qe)에서 Section 2에 유속 저감에 영향을 미치는 기존 여수로 방류량 배분 비율을 증가시켜 추가 검토(Case 10)를 수행하였다. 단독운영과 비교 시 하류하천에 유입되는 유량은 증가하였음에도 불구하고 기존 여수로 방류량에 의해 흐름이 하천 중심으로 집중되는 현상에 따라 대안부의 유속은 단독 운영에 비하여 감소하는 것을 확인하였고(Fig. 8 참조), 호안 설계 허용유속 및 허용 소류력 조건을 만족하는 구간이 발생하여 호안 안정성도 확보한 것으로 판단되었다. 최종적으로 각 Case 별 수위 결과의 경우 여수로 동시 운영을 수행하게 되면 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 9 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 6에 제시하였다.
Fig. 6
Maximum velocity on section 1 & 2 according to Qa
Fig. 7
Maximum shear on section 1 & 2 according to Qa
Fig. 8
Velocity results of FLOW-3D (a: auxiliary spillway operation only , b : simultaneous operation of spillways)
Fig. 9
Maximum water surface elevation on section 1 & 2 according to Qa
Table 6.
Numerical results for each cases (Case 7 ~ Case 10)
Case (Qe & Qa)
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
7 Qe : 0.50QpQa : 0.50Qp
8.10
6.23
0.64
0.30
No Good
No Good
No Good
No Good
8 Qe : 0.61QpQa : 0.39Qp
8.88
6.41
0.61
0.34
No Good
No Good
No Good
No Good
9 Qe : 0.39QpQa : 0.61Qp
6.22
7.33
0.24
0.35
No Good
No Good
Accept
No Good
10 Qe : 0.42QpQa : 0.58Qp
6.39
4.79
0.30
0.19
No Good
Accept
No Good
Accept
2.3.4 방류량 배분 비율의 허용 방류량 검토
계획 홍수량 방류 시 기존 여수로와 보조 여수로의 배분 비율 검토 결과 Case 10(Qe = 0.42Qp, Qa = 0.58Qp)에서 방류에 따른 하류 하천의 피해를 최소화시킬 수 있는 것을 확인하였다. 그러나 대안부 전 구간에 대하여 호안 설계조건을 만족하지 못하였다. 따라서 기존 여수로와 보조 여수로의 방류 배분 비율을 고정시킨 후 총 방류량을 조절하여 허용 방류량을 검토하였다(Case 11 ~ Case 14).
호안 안정성 측면에서 검토한 결과 계획홍수량 대비 총 방류량이 감소하면 최대 유속 및 최대 소류력이 감소하고 최종적으로 계획 홍수량의 77%를 방류할 경우 하류하천의 대안부에서 호안 설계조건을 모두 만족하는 것을 확인하였다(Fig. 10, Fig. 11 참조). 각 Case 별 대안부에서 최대 유속결과 및 산정한 소류력은 Table 7에 제시하였다. 또한 Case 별 수위 검토 결과 처오름으로 인한 대안부 전 구간에서 월류에 대한 안정성(ηmax/ηref<0.97(=기설제방고))은 확보하였다(Fig. 12 참조).
Table 7.
Numerical results for each cases (Case 11 ~ Case 14)
Case (Qe & Qa)
Maximum Velocity (Vmax, m/s)
Maximum Shear (τmax, kN/m2)
Evaluation in terms of Vp
Evaluation in terms of τp
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
Section 1
Section 2
11 Qe : 0.32QpQa : 0.45Qp
3.63
4.53
0.09
0.26
Accept
Accept
Accept
Accept
12 Qe : 0.35QpQa : 0.48Qp
5.74
5.18
0.23
0.22
No Good
No Good
Accept
Accept
13 Qe : 0.38QpQa : 0.53Qp
6.70
4.21
0.28
0.11
No Good
Accept
Accept
Accept
14 Qe : 0.41QpQa : 0.56Qp
6.54
5.24
0.28
0.24
No Good
No Good
Accept
Accept
Fig. 10
Maximum velocity on section 1 & 2 according to total outflow
Fig. 11
Maximum shear on section 1 & 2 according to total outflow
Fig. 12
Maximum water surface elevation on section 1 & 2 according to total outflow
3. 결 론
본 연구에서는 홍수 시 기존 여수로의 노후화로 인한 보조 여수로의 활용방안에 대하여 하류하천의 호안 안정성 측면에서 검토하였다. 여수로 방류로 인한 하류하천의 흐름특성을 검토하기 위하여 3차원 수치모형인 FLOW-3D를 활용하였고, 여수로 지형은 치수능력 증대사업을 통하여 완공된 ○○댐의 제원을 이용하였다. 하류하천 조도 계수 및 여수로 방류량은 하천기본계획을 참고하여 적용하였다. 최종적으로 여수로 방류로 인한 하류하천의 피해를 최소화 시킬 수 있는 적절한 보조 여수로의 활용방안을 도출하기 위하여 보조 여수로 단독 운영과 기존 여수로와의 동시 운영에 따른 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다.
수문은 완전 개도 상태에서 방류한다는 가정으로 계획 홍수량 조건에서 보조 여수로 단독 운영 시 하류하천 대안부의 유속 및 수위를 검토한 결과 기존 여수로 단독운영에 비하여 최대 유속 및 최대 수위가 감소하는 것을 확인할 수 있었으며, 이는 보조 여수로 단독 운영 시 하류하천으로 유입각도가 작아지고, 유입되는 하천의 폭이 증가되기 때문이다. 그러나 계획 홍수량 조건에서 하천호안 설계기준에서 제시한 허용 유속(5.0 m/s)과 허용 소류력(0.28 kN/m2)과 비교하였을 때 호안 안정성을 확보하지 못하였으며, 계획홍수량의 45% 이하 방류 시에 대안부의 호안 안정성을 확보하였다. 수위의 경우 여수로 방류에 따른 대안부에서 처오름 현상이 발생하여 월류에 대한 위험성을 확인하였고 이를 통하여 기존 여수로와의 동시 운영 방안을 도출하는 것이 중요하다고 판단된다. 따라서 기존 여수로와의 동시 운영 측면에서 기존 여수로와 보조 여수로의 배분 비율 및 총 방류량을 변화시켜가며 하류 하천의 흐름특성 및 소류력의 변화를 검토하였다. 배분 비율의 경우 기존 여수로와 보조 여수로의 균등 배분(Case 7) 및 편중 배분(Case 8 & Case 9)을 검토하여 보조 여수로의 방류량이 기존 여수로의 방류량보다 큰 경우 하류하천의 중심부로 집중되어 대안부의 최대유속, 최대소류력 및 최대수위가 감소하는 것을 확인하였다. 이를 근거로 기존 여수로의 방류 비율을 증가(Qe=0.42Qp, Qa=0.58Qp)시켜 검토한 결과 대안부 일부 구간에서 허용 유속 및 허용소류력 조건을 만족하는 것을 확인하였다. 이를 통하여 기존 여수로와 보조 여수로의 동시 운영을 통하여 적절한 방류량 배분 비율을 도출하는 것이 방류로 인한 하류하천의 피해를 저감하는데 효과적인 것으로 판단된다. 그러나 설계홍수량 방류 시 전 구간에서 허용 유속 및 소류력 조건을 만족하지 못하였다. 최종적으로 전체 방류량에서 기존 여수로의 방류 비율을 42%, 보조 여수로의 방류 비율을 58%로 설정하여 허용방류량을 검토한 결과, 계획홍수량의 77%이하로 방류 시 대안부의 최대유속은 기존여수로 방류의 지배영향구간(section 1)에서 3.63 m/s, 기존 여수로와 보조 여수로 방류의 영향구간(section 2)에서 4.53 m/s로 허용유속 조건을 만족하였고, 산정한 소류력도 각각 0.09 kN/m2 및 0.26 kN/m2로 허용 소류력 조건을 만족하여 대안부 호안의 안정성을 확보하였다고 판단된다.
본 연구 결과는 기후변화 및 기존여수로의 노후화로 인하여 홍수 시 기존여수로의 단독운영으로 하류하천의 피해가 발생할 수 있는 현시점에서 치수증대 사업으로 완공된 보조 여수로의 활용방안에 대한 기초자료로 활용될 수 있고, 향후 계획 홍수량 유입 시 최적의 배분 비율 및 허용 방류량 도출에 이용할 수 있다. 다만 본 연구는 여수로 방류에 따른 제방에 작용하는 수충력은 검토하지 못하고, 허용 유속 및 허용소류력은 제방과 유수의 방향이 일정한 구간에 대하여 검토하였다. 또한 여수로 방류에 따른 대안부에서의 영향에 대해서만 검토하였고 수문 전면 개도 조건에서 검토하였다는 한계점은 분명히 있다. 이에 향후에는 다양한 수문 개도 조건 및 방류 시나리오를 적용 및 검토하여 보다 효율적이고, 효과적인 보조 여수로 활용방안을 도출하고자 한다.
Acknowledgements
본 결과물은 K-water에서 수행한 기존 및 신규 여수로 효율적 연계운영 방안 마련(2021-WR-GP-76-149)의 지원을 받아 연구되었습니다.
References
1 Busan Construction and Management Administration (2009). Nakdonggang River Master Plan. Busan: BCMA. 2 Chow, V. T. (1959). Open-channel Hydraulics. McGraw-Hill. New York. 3 Flow Science (2011). Flow3D User Manual. Santa Fe: NM. 4 Jeon, T. M., Kim, H. I., Park, H. S., and Baek, U. I. (2006). Design of Emergency Spillway Using Hydraulic and Numerical Model-ImHa Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1726-1731. 5 Kim, D. G., Park, S. J., Lee, Y. S., and Hwang, J. H. (2008). Spillway Design by Using Numerical Model Experiment – Case Study of AnDong Multipurpose Dam. Proceedings of the Korea Water Resources Association Conference. 1604-1608. 6 Kim, J. S. (2007). Comparison of Hydraulic Experiment and Numerical Model on Spillway. Water for Future. 40(4): 74-81. 7 Kim, S. H. and Kim, J. S. (2013). Effect of Chungju Dam Operation for Flood Control in the Upper Han River. Journal of the Korean Society of Civil Engineers. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537 8 K-water (2021). Regulations of Dam Management. Daejeon: K-water. 9 K-water and MOLIT (2004). Report on the Establishment of Basic Plan for the Increasing Flood Capacity and Review of Hydrological Stability of Dams. Sejong: K-water and MOLIT. 10 Lee, J. H., Julien, P. Y., and Thornton, C. I. (2019). Interference of Dual Spillways Operations. Journal of Hydraulic Engineering. 145(5): 1-13. 10.1061/(ASCE)HY.1943-7900.0001593 11 Li, S., Cain, S., Wosnik, M., Miller, C., Kocahan, H., and Wyckoff, R. (2011). Numerical Modeling of Probable Maximum Flood Flowing through a System of Spillways. Journal of Hydraulic Engineering. 137(1): 66-74. 10.1061/(ASCE)HY.1943-7900.0000279 12 MOLIT (2016). Practice Guidelines of River Construction Design. Sejong: MOLIT. 13 MOLIT (2019). Standards of River Design. Sejong: MOLIT. 14 Prime Minister’s Secretariat (2003). White Book on Flood Damage Prevention Measures. Sejong: PMS. 15 Schoklitsch, A. (1934). Der Geschiebetrieb und Die Geschiebefracht. Wasserkraft Wasserwirtschaft. 4: 1-7. 16 Vanoni, V. A. (Ed.). (2006). Sedimentation Engineering. American Society of Civil Engineers. Virginia: ASCE. 10.1061/9780784408230 17 Zeng, J., Zhang, L., Ansar, M., Damisse, E., and González-Castro, J. A. (2017). Applications of Computational Fluid Dynamics to Flow Ratings at Prototype Spillways and Weirs. I: Data Generation and Validation. Journal of Irrigation and Drainage Engineering. 143(1): 1-13. 10.1061/(ASCE)IR.1943-4774.0001112
Korean References Translated from the English
1 건설교통부·한국수자원공사 (2004). 댐의 수문학적 안정성 검토 및 치수능력증대방안 기본계획 수립 보고서. 세종: 국토교통부. 2 국무총리실 수해방지대책단 (2003). 수해방지대책 백서. 세종: 국무총리실. 3 국토교통부 (2016). 하천공사 설계실무요령. 세종: 국토교통부. 4 국토교통부 (2019). 하천설계기준해설. 세종: 국토교통부. 5 김대근, 박선중, 이영식, 황종훈 (2008). 수치모형실험을 이용한 여수로 설계 – 안동다목적댐. 한국수자원학회 학술발표회. 1604-1608. 6 김상호, 김지성 (2013). 충주댐 방류에 따른 댐 상하류 홍수위 영향 분석. 대한토목학회논문집. 33(2): 537-548. 10.12652/Ksce.2013.33.2.537 7 김주성 (2007). 댐 여수로부 수리 및 수치모형실험 비교 고찰. Water for Future. 40(4): 74-81. 8 부산국토관리청 (2009). 낙동강수계 하천기본계획(변경). 부산: 부산국토관리청. 9 전태명, 김형일, 박형섭, 백운일 (2006). 수리모형실험과 수치모의를 이용한 비상여수로 설계-임하댐. 한국수자원학회 학술발표회. 1726-1731. 10 한국수자원공사 (2021). 댐관리 규정. 대전: 한국수자원공사.
Triangular Macroroughnesses 대한 잠긴 수압 점프의 유동장 수치 시뮬레이션
by Amir Ghaderi 1,2,Mehdi Dasineh 3,Francesco Aristodemo 2 andCostanza Aricò 4,*1Department of Civil Engineering, Faculty of Engineering, University of Zanjan, Zanjan 537138791, Iran2Department of Civil Engineering, University of Calabria, Arcavacata, 87036 Rende, Italy3Department of Civil Engineering, Faculty of Engineering, University of Maragheh, Maragheh 8311155181, Iran4Department of Engineering, University of Palermo, Viale delle Scienze, 90128 Palermo, Italy*Author to whom correspondence should be addressed.Academic Editor: Anis YounesWater2021, 13(5), 674; https://doi.org/10.3390/w13050674
Abstract
The submerged hydraulic jump is a sudden change from the supercritical to subcritical flow, specified by strong turbulence, air entrainment and energy loss. Despite recent studies, hydraulic jump characteristics in smooth and rough beds, the turbulence, the mean velocity and the flow patterns in the cavity region of a submerged hydraulic jump in the rough beds, especially in the case of triangular macroroughnesses, are not completely understood. The objective of this paper was to numerically investigate via the FLOW-3D model the effects of triangular macroroughnesses on the characteristics of submerged jump, including the longitudinal profile of streamlines, flow patterns in the cavity region, horizontal velocity profiles, streamwise velocity distribution, thickness of the inner layer, bed shear stress coefficient, Turbulent Kinetic Energy (TKE) and energy loss, in different macroroughness arrangements and various inlet Froude numbers (1.7 < Fr1 < 9.3). To verify the accuracy and reliability of the present numerical simulations, literature experimental data were considered.
수중 유압 점프는 강한 난류, 공기 동반 및 에너지 손실로 지정된 초임계에서 아임계 흐름으로의 급격한 변화입니다. 최근 연구에도 불구하고, 특히 삼각형 거시적 거칠기의 경우, 평활 및 거친 베드에서의 수압 점프 특성, 거친 베드에서 잠긴 수압 점프의 공동 영역에서 난류, 평균 속도 및 유동 패턴이 완전히 이해되지 않았습니다.
이 논문의 목적은 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 두께를 포함하여 서브머지드 점프의 특성에 대한 삼각형 거시 거칠기의 영향을 FLOW-3D 모델을 통해 수치적으로 조사하는 것이었습니다.
내부 층의 층 전단 응력 계수, 난류 운동 에너지(TKE) 및 에너지 손실, 다양한 거시 거칠기 배열 및 다양한 입구 Froude 수(1.7 < Fr1 < 9.3). 현재 수치 시뮬레이션의 정확성과 신뢰성을 검증하기 위해 문헌 실험 데이터를 고려했습니다.
Introduction
격렬한 난류 혼합과 기포 동반이 있는 수압 점프는 초임계에서 아임계 흐름으로의 변화 과정으로 간주됩니다[1]. 자유 및 수중 유압 점프는 일반적으로 게이트, 배수로 및 둑과 같은 수력 구조 아래의 에너지 손실에 적합합니다. 매끄러운 베드에서 유압 점프의 특성은 널리 연구되었습니다[2,3,4,5,6,7,8,9].
베드의 거칠기 요소가 매끄러운 베드와 비교하여 수압 점프의 특성에 어떻게 영향을 미치는지 예측하기 위해 거시적 거칠기에 대한 자유 및 수중 수력 점프에 대해 여러 실험 및 수치 연구가 수행되었습니다. Ead와 Rajaratnam[10]은 사인파 거대 거칠기에 대한 수리학적 점프의 특성을 조사하고 무차원 분석을 통해 수면 프로파일과 배출을 정규화했습니다.
Tokyayet al. [11]은 두 사인 곡선 거대 거칠기에 대한 점프 길이 비율과 에너지 손실이 매끄러운 베드보다 각각 35% 더 작고 6% 더 높다는 것을 관찰했습니다. Abbaspur et al. [12]는 6개의 사인파형 거대 거칠기에 대한 수력학적 점프의 특성을 연구했습니다. 그 결과, 꼬리수심과 점프길이는 평상보다 낮았고 Froude 수는 점프길이에 큰 영향을 미쳤습니다.
Shafai-Bejestan과 Neisi[13]는 수압 점프에 대한 마름모꼴 거대 거칠기의 영향을 조사했습니다. 결과는 마름모꼴 거시 거칠기를 사용하면 매끄러운 침대와 비교하여 꼬리 수심과 점프 길이를 감소시키는 것으로 나타났습니다. Izadjoo와 Shafai-Bejestan[14]은 다양한 사다리꼴 거시 거칠기에 대한 수압 점프를 연구했습니다.
그들은 전단응력계수가 평활층보다 10배 이상 크고 점프길이가 50% 감소하는 것을 관찰하였습니다. Nikmehr과 Aminpour[15]는 Flow-3D 모델 버전 11.2[16]를 사용하여 사다리꼴 블록이 있는 거시적 거칠기에 대한 수력학적 점프의 특성을 조사했습니다. 결과는 거시 거칠기의 높이와 거리가 증가할수록 전단 응력 계수뿐만 아니라 베드 근처에서 속도가 감소하는 것으로 나타났습니다.
Ghaderi et al. [17]은 다양한 형태의 거시 거칠기(삼각형, 정사각형 및 반 타원형)에 대한 자유 및 수중 수력 점프 특성을 연구했습니다. 결과는 Froude 수의 증가에 따라 자유 및 수중 점프에서 전단 응력 계수, 에너지 손실, 수중 깊이, 미수 깊이 및 상대 점프 길이가 증가함을 나타냅니다.
자유 및 수중 점프에서 가장 높은 전단 응력과 에너지 손실은 삼각형의 거시 거칠기가 존재할 때 발생했습니다. Elsebaie와 Shabayek[18]은 5가지 형태의 거시적 거칠기(삼각형, 사다리꼴, 2개의 측면 경사 및 직사각형이 있는 정현파)에 대한 수력학적 점프의 특성을 연구했습니다. 결과는 모든 거시적 거칠기에 대한 에너지 손실이 매끄러운 베드에서보다 15배 이상이라는 것을 보여주었습니다.
Samadi-Boroujeni et al. [19]는 다양한 각도의 6개의 삼각형 거시 거칠기에 대한 수력 점프를 조사한 결과 삼각형 거시 거칠기가 평활 베드에 비해 점프 길이를 줄이고 에너지 손실과 베드 전단 응력 계수를 증가시키는 것으로 나타났습니다.
Ahmed et al. [20]은 매끄러운 베드와 삼각형 거시 거칠기에서 수중 수력 점프 특성을 조사했습니다. 결과는 부드러운 침대와 비교할 때 잠긴 깊이와 점프 길이가 감소했다고 밝혔습니다. 표 1은 다른 연구자들이 제시한 과거의 유압 점프에 대한 실험 및 수치 연구의 세부 사항을 나열합니다.
Table 1. Main characteristics of some past experimental and numerical studies on hydraulic jumps.
-Smooth and rough beds-Rectangular channel-With side slopes of 45 degrees for two trapezoidal and triangular macroroughnesses and of 60 degrees for other trapezoidal macroroughnesses-Free jump
CL = 9 CW = 0.295 CH = 0.32
-Sinusoidal-Triangular-Trapezoidal with two side-Rectangular-(RH = 18 and corrugation wavelength = 65)
-Smooth and rough beds-Rectangular channel-Free and submerged jump
CL = 4.50 CW = 0.75 CH = 0.70
-Triangular, square and semi-oval macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)
1.70–9.30
-Horizontal velocity distributions-Bed shear stress coefficient-Sequent depth ratio and submerged depth ratio-Jump length-Energy loss
Present study
Rectangular channel Smooth and rough beds Submerged jump
CL = 4.50 CW = 0.75 CH = 0.70
-Triangular macroroughnesses (RH = 40 and distance of roughness of I = 40, 80, 120, 160 and 200)
1.70–9.30
-Longitudinal profile of streamlines-Flow patterns in the cavity region-Horizontal velocity profiles-Streamwise velocity distribution-Bed shear stress coefficient-TKE-Thickness of the inner layer-Energy loss
이전에 논의된 조사의 주요 부분은 실험실 접근 방식을 기반으로 하며 사인파, 마름모꼴, 사다리꼴, 정사각형, 직사각형 및 삼각형 매크로 거칠기가 공액 깊이, 잠긴 깊이, 점프 길이, 에너지 손실과 같은 일부 자유 및 수중 유압 점프 특성에 어떻게 영향을 미치는지 조사합니다.
베드 및 전단 응력 계수. 더욱이, 저자[17]에 의해 다양한 형태의 거시적 거칠기에 대한 수력학적 점프에 대한 이전 발표된 논문을 참조하면, 삼각형의 거대조도는 가장 높은 층 전단 응력 계수 및 에너지 손실을 가지며 또한 가장 낮은 잠긴 깊이, tailwater를 갖는 것으로 관찰되었습니다.
다른 거친 모양, 즉 정사각형 및 반 타원형과 부드러운 침대에 비해 깊이와 점프 길이. 따라서 본 논문에서는 삼각형 매크로 거칠기를 사용하여(일정한 거칠기 높이가 T = 4cm이고 삼각형 거칠기의 거리가 I = 4, 8, 12, 16 및 20cm인 다른 T/I 비율에 대해), 특정 캐비티 영역의 유동 패턴, 난류 운동 에너지(TKE) 및 흐름 방향 속도 분포와 같은 연구가 필요합니다.
CFD(Computational Fluid Dynamics) 방법은 자유 및 수중 유압 점프[21]와 같은 복잡한 흐름의 모델링 프로세스를 수행하는 중요한 도구로 등장하며 수중 유압 점프의 특성은 CFD 시뮬레이션을 사용하여 정확하게 예측할 수 있습니다 [22,23 ].
본 논문은 초기에 수중 유압 점프의 주요 특성, 수치 모델에 대한 입력 매개변수 및 Ahmed et al.의 참조 실험 조사를 제시합니다. [20], 검증 목적으로 보고되었습니다. 또한, 본 연구에서는 유선의 종방향 프로파일, 캐비티 영역의 유동 패턴, 수평 속도 프로파일, 내부 층의 두께, 베드 전단 응력 계수, TKE 및 에너지 손실과 같은 특성을 조사할 것입니다.
Figure 1. Definition sketch of a submerged hydraulic jump at triangular macroroughnesses.
Table 2. Effective parameters in the numerical model.
Bed Type
Q (l/s)
I (cm)
T (cm)
d (cm)
y1 (cm)
y4 (cm)
Fr1= u1/(gy1)0.5
S
Re1= (u1y1)/υ
Smooth
30, 45
–
–
5
1.62–3.83
9.64–32.10
1.7–9.3
0.26–0.50
39,884–59,825
Triangular macroroughnesses
30, 45
4, 8, 12, 16, 20
4
5
1.62–3.84
6.82–30.08
1.7–9.3
0.21–0.44
39,884–59,825
Figure 2. Longitudinal profile of the experimental flume (Ahmed et al. [20]).
Table 3. Main flow variables for the numerical and physical models (Ahmed et al. [20]).
Models
Bed Type
Q (l/s)
d (cm)
y1 (cm)
u1 (m/s)
Fr1
Numerical and Physical
Smooth
45
5
1.62–3.83
1.04–3.70
1.7–9.3
T/I = 0.5
45
5
1.61–3.83
1.05–3.71
1.7–9.3
T/I = 0.25
45
5
1.60–3.84
1.04–3.71
1.7–9.3
Figure 3. The boundary conditions governing the simulations.Figure 4. Sketch of mesh setup.
Table 4. Characteristics of the computational grids.
Mesh
Nested Block Cell Size (cm)
Containing Block Cell Size (cm)
1
0.55
1.10
2
0.65
1.30
3
0.85
1.70
Table 5. The numerical results of mesh convergence analysis.
Parameters
Amounts
fs1 (-)
7.15
fs2 (-)
6.88
fs3 (-)
6.19
K (-)
5.61
E32 (%)
10.02
E21 (%)
3.77
GCI21 (%)
3.03
GCI32 (%)
3.57
GCI32/rp GCI21
0.98
Figure 5. Time changes of the flow discharge in the inlet and outlet boundaries conditions (A): Q = 0.03 m3/s (B): Q = 0.045 m3/s.Figure 6. The evolutionary process of a submerged hydraulic jump on the smooth bed—Q = 0.03 m3/s.Figure 7. Numerical versus experimental basic parameters of the submerged hydraulic jump. (A): y3/y1; and (B): y4/y1.Figure 8. Velocity vector field and flow pattern through the gate in a submerged hydraulic jump condition: (A) smooth bed; (B) triangular macroroughnesses.Figure 9. Velocity vector distributions in the x–z plane (y = 0) within the cavity region.Figure 10. Typical vertical distribution of the mean horizontal velocity in a submerged hydraulic jump [46].Figure 11. Typical horizontal velocity profiles in a submerged hydraulic jump on smooth bed and triangular macroroughnesses.Figure 12. Horizontal velocity distribution at different distances from the sluice gate for the different T/I for Fr1 = 6.1Figure 13. Stream-wise velocity distribution for the triangular macroroughnesses with T/I = 0.5 and 0.25.Figure 14. Dimensionless horizontal velocity distribution in the submerged hydraulic jump for different Froude numbers in triangular macroroughnesses.Figure 15. Spatial variations of (umax/u1) and (δ⁄y1).Figure 16. The shear stress coefficient (ε) versus the inlet Froude number (Fr1).Figure 17. Longitudinal turbulent kinetic energy distribution on the smooth and triangular macroroughnesses: (A) Y/2; (B) Y/6.Figure 18. The energy loss (EL/E3) of the submerged jump versus inlet Froude number (Fr1).
Conclusions
본 논문에서는 유선의 종방향 프로파일, 공동 영역의 유동 패턴, 수평 속도 프로파일, 스트림 방향 속도 분포, 내부 층의 두께, 베드 전단 응력 계수, 난류 운동 에너지(TKE)를 포함하는 수중 유압 점프의 특성을 제시하고 논의했습니다. ) 및 삼각형 거시적 거칠기에 대한 에너지 손실. 이러한 특성은 FLOW-3D® 모델을 사용하여 수치적으로 조사되었습니다. 자유 표면을 시뮬레이션하기 위한 VOF(Volume of Fluid) 방법과 난류 RNG k-ε 모델이 구현됩니다. 본 모델을 검증하기 위해 평활층과 삼각형 거시 거칠기에 대해 수치 시뮬레이션과 실험 결과를 비교했습니다. 본 연구의 다음과 같은 결과를 도출할 수 있다.
개발 및 개발 지역의 삼각형 거시 거칠기의 흐름 패턴은 수중 유압 점프 조건의 매끄러운 바닥과 비교하여 더 작은 영역에서 동일합니다. 삼각형의 거대 거칠기는 거대 거칠기 사이의 공동 영역에서 또 다른 시계 방향 와류의 형성으로 이어집니다.
T/I = 1, 0.5 및 0.33과 같은 거리에 대해 속도 벡터 분포는 캐비티 영역에서 시계 방향 소용돌이를 표시하며, 여기서 속도의 크기는 평균 유속보다 훨씬 작습니다. 삼각형 거대 거칠기(T/I = 0.25 및 0.2) 사이의 거리를 늘리면 캐비티 영역에 크기가 다른 두 개의 소용돌이가 형성됩니다.
삼각형 거시조도 사이의 거리가 충분히 길면 흐름이 다음 조도에 도달할 때까지 속도 분포가 회복됩니다. 그러나 짧은 거리에서 흐름은 속도 분포의 적절한 회복 없이 다음 거칠기에 도달합니다. 따라서 거시 거칠기 사이의 거리가 감소함에 따라 마찰 계수의 증가율이 감소합니다.
삼각형의 거시적 거칠기에서, 잠수 점프의 지정된 섹션에서 최대 속도는 자유 점프보다 높은 값으로 이어집니다. 또한, 수중 점프에서 두 가지 유형의 베드(부드러움 및 거친 베드)에 대해 깊이 및 와류 증가로 인해 베드로부터의 최대 속도 거리는 감소합니다. 잠수 점프에서 경계층 두께는 자유 점프보다 얇습니다.
매끄러운 베드의 난류 영역은 게이트로부터의 거리에 따라 생성되고 자유 표면 롤러 영역 근처에서 발생하는 반면, 거시적 거칠기에서는 난류가 게이트 근처에서 시작되어 더 큰 강도와 제한된 스위프 영역으로 시작됩니다. 이는 반시계 방향 순환의 결과입니다. 거시 거칠기 사이의 공간에서 자유 표면 롤러 및 시계 방향 와류.
삼각 거시 거칠기에서 침지 점프의 베드 전단 응력 계수와 에너지 손실은 유입구 Froude 수의 증가에 따라 증가하는 매끄러운 베드에서 발견된 것보다 더 큽니다. T/I = 0.50 및 0.20에서 최고 및 최저 베드 전단 응력 계수 및 에너지 손실이 평활 베드에 비해 거칠기 요소의 거리가 증가함에 따라 발생합니다.
거의 거칠기 요소가 있는 삼각형 매크로 거칠기의 존재에 의해 주어지는 점프 길이와 잠긴 수심 및 꼬리 수심의 감소는 결과적으로 크기, 즉 길이 및 높이가 감소하는 정수조 설계에 사용될 수 있습니다.
일반적으로 CFD 모델은 다양한 수력 조건 및 기하학적 배열을 고려하여 잠수 점프의 특성 예측을 시뮬레이션할 수 있습니다. 캐비티 영역의 흐름 패턴, 흐름 방향 및 수평 속도 분포, 베드 전단 응력 계수, TKE 및 유압 점프의 에너지 손실은 수치적 방법으로 시뮬레이션할 수 있습니다. 그러나 거시적 차원과 유동장 및 공동 유동의 변화에 대한 다양한 배열에 대한 연구는 향후 과제로 남아 있다.
References
White, F.M. Viscous Fluid Flow, 2nd ed.; McGraw-Hill University of Rhode Island: Montreal, QC, Canada, 1991. [Google Scholar]
Launder, B.E.; Rodi, W. The turbulent wall jet. Prog. Aerosp. Sci.1979, 19, 81–128. [Google Scholar] [CrossRef]
McCorquodale, J.A. Hydraulic jumps and internal flows. In Encyclopedia of Fluid Mechanics; Cheremisinoff, N.P., Ed.; Golf Publishing: Houston, TX, USA, 1986; pp. 120–173. [Google Scholar]
Federico, I.; Marrone, S.; Colagrossi, A.; Aristodemo, F.; Antuono, M. Simulating 2D open-channel flows through an SPH model. Eur. J. Mech. B Fluids2012, 34, 35–46. [Google Scholar] [CrossRef]
Khan, S.A. An analytical analysis of hydraulic jump in triangular channel: A proposed model. J. Inst. Eng. India Ser. A2013, 94, 83–87. [Google Scholar] [CrossRef]
Mortazavi, M.; Le Chenadec, V.; Moin, P.; Mani, A. Direct numerical simulation of a turbulent hydraulic jump: Turbulence statistics and air entrainment. J. Fluid Mech.2016, 797, 60–94. [Google Scholar] [CrossRef]
Daneshfaraz, R.; Ghahramanzadeh, A.; Ghaderi, A.; Joudi, A.R.; Abraham, J. Investigation of the effect of edge shape on characteristics of flow under vertical gates. J. Am. Water Works Assoc.2016, 108, 425–432. [Google Scholar] [CrossRef]
Azimi, H.; Shabanlou, S.; Kardar, S. Characteristics of hydraulic jump in U-shaped channels. Arab. J. Sci. Eng.2017, 42, 3751–3760. [Google Scholar] [CrossRef]
De Padova, D.; Mossa, M.; Sibilla, S. SPH numerical investigation of characteristics of hydraulic jumps. Environ. Fluid Mech.2018, 18, 849–870. [Google Scholar] [CrossRef]
Ead, S.A.; Rajaratnam, N. Hydraulic jumps on corrugated beds. J. Hydraul. Eng.2002, 128, 656–663. [Google Scholar] [CrossRef]
Tokyay, N.D. Effect of channel bed corrugations on hydraulic jumps. In Proceedings of the World Water and Environmental Resources Congress 2005, Anchorage, AK, USA, 15–19 May 2005; pp. 1–9. [Google Scholar]
Abbaspour, A.; Dalir, A.H.; Farsadizadeh, D.; Sadraddini, A.A. Effect of sinusoidal corrugated bed on hydraulic jump characteristics. J. Hydro-Environ. Res.2009, 3, 109–117. [Google Scholar] [CrossRef]
Shafai-Bejestan, M.S.; Neisi, K. A new roughened bed hydraulic jump stilling basin. Asian J. Appl. Sci.2009, 2, 436–445. [Google Scholar] [CrossRef]
Izadjoo, F.; Shafai-Bejestan, M. Corrugated bed hydraulic jump stilling basin. J. Appl. Sci.2007, 7, 1164–1169. [Google Scholar] [CrossRef]
Nikmehr, S.; Aminpour, Y. Numerical Simulation of Hydraulic Jump over Rough Beds. Period. Polytech. Civil Eng.2017, 64, 396–407. [Google Scholar] [CrossRef]
Flow Science Inc. FLOW-3D V 11.2 User’s Manual; Flow Science Inc.: Santa Fe, NM, USA, 2016. [Google Scholar]
Ghaderi, A.; Dasineh, M.; Aristodemo, F.; Ghahramanzadeh, A. Characteristics of free and submerged hydraulic jumps over different macroroughnesses. J. Hydroinform.2020, 22, 1554–1572. [Google Scholar] [CrossRef]
Elsebaie, I.H.; Shabayek, S. Formation of hydraulic jumps on corrugated beds. Int. J. Civil Environ. Eng. IJCEE–IJENS2010, 10, 37–47. [Google Scholar]
Samadi-Boroujeni, H.; Ghazali, M.; Gorbani, B.; Nafchi, R.F. Effect of triangular corrugated beds on the hydraulic jump characteristics. Can. J. Civil Eng.2013, 40, 841–847. [Google Scholar] [CrossRef]
Ahmed, H.M.A.; El Gendy, M.; Mirdan, A.M.H.; Ali, A.A.M.; Haleem, F.S.F.A. Effect of corrugated beds on characteristics of submerged hydraulic jump. Ain Shams Eng. J.2014, 5, 1033–1042. [Google Scholar] [CrossRef]
Viti, N.; Valero, D.; Gualtieri, C. Numerical simulation of hydraulic jumps. Part 2: Recent results and future outlook. Water2019, 11, 28. [Google Scholar] [CrossRef]
Gumus, V.; Simsek, O.; Soydan, N.G.; Akoz, M.S.; Kirkgoz, M.S. Numerical modeling of submerged hydraulic jump from a sluice gate. J. Irrig. Drain. Eng.2016, 142, 04015037. [Google Scholar] [CrossRef]
Jesudhas, V.; Roussinova, V.; Balachandar, R.; Barron, R. Submerged hydraulic jump study using DES. J. Hydraul. Eng.2017, 143, 04016091. [Google Scholar] [CrossRef]
Rajaratnam, N. The hydraulic jump as a wall jet. J. Hydraul. Div.1965, 91, 107–132. [Google Scholar] [CrossRef]
Hager, W.H. Energy Dissipaters and Hydraulic Jump; Kluwer Academic Publisher: Dordrecht, The Netherlands, 1992; pp. 185–224. [Google Scholar]
Long, D.; Steffler, P.M.; Rajaratnam, N. LDA study of flow structure in submerged Hydraulic jumps. J. Hydraul. Res.1990, 28, 437–460. [Google Scholar] [CrossRef]
Chow, V.T. Open Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries, Inc.: La Canada, CA, USA, 2006. [Google Scholar]
Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.1981, 39, 201–225. [Google Scholar] [CrossRef]
Pourshahbaz, H.; Abbasi, S.; Pandey, M.; Pu, J.H.; Taghvaei, P.; Tofangdar, N. Morphology and hydrodynamics numerical simulation around groynes. ISH J. Hydraul. Eng.2020, 1–9. [Google Scholar] [CrossRef]
Choufu, L.; Abbasi, S.; Pourshahbaz, H.; Taghvaei, P.; Tfwala, S. Investigation of flow, erosion, and sedimentation pattern around varied groynes under different hydraulic and geometric conditions: A numerical study. Water2019, 11, 235. [Google Scholar] [CrossRef]
Zhenwei, Z.; Haixia, L. Experimental investigation on the anisotropic tensorial eddy viscosity model for turbulence flow. Int. J. Heat Technol.2016, 34, 186–190. [Google Scholar]
Carvalho, R.; Lemos Ramo, C. Numerical computation of the flow in hydraulic jump stilling basins. J. Hydraul. Res.2008, 46, 739–752. [Google Scholar] [CrossRef]
Bayon, A.; Valero, D.; García-Bartual, R.; López-Jiménez, P.A. Performance assessment of Open FOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environ. Model. Softw.2016, 80, 322–335. [Google Scholar] [CrossRef]
Daneshfaraz, R.; Ghaderi, A.; Akhtari, A.; Di Francesco, S. On the Effect of Block Roughness in Ogee Spillways with Flip Buckets. Fluids2020, 5, 182. [Google Scholar] [CrossRef]
Ghaderi, A.; Abbasi, S. CFD simulation of local scouring around airfoil-shaped bridge piers with and without collar. Sādhanā2019, 44, 216. [Google Scholar] [CrossRef]
Ghaderi, A.; Daneshfaraz, R.; Dasineh, M.; Di Francesco, S. Energy Dissipation and Hydraulics of Flow over Trapezoidal–Triangular Labyrinth Weirs. Water2020, 12, 1992. [Google Scholar] [CrossRef]
Yakhot, V.; Orszag, S.A. Renormalization group analysis of turbulence. I. basic theory. J. Sci. Comput.1986, 1, 3–51. [Google Scholar] [CrossRef] [PubMed]
Biscarini, C.; Di Francesco, S.; Ridolfi, E.; Manciola, P. On the simulation of floods in a narrow bending valley: The malpasset dam break case study. Water2016, 8, 545. [Google Scholar] [CrossRef]
Ghaderi, A.; Daneshfaraz, R.; Abbasi, S.; Abraham, J. Numerical analysis of the hydraulic characteristics of modified labyrinth weirs. Int. J. Energy Water Resour.2020, 4, 425–436. [Google Scholar] [CrossRef]
Alfonsi, G. Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl. Mech. Rev.2009, 62. [Google Scholar] [CrossRef]
Abbasi, S.; Fatemi, S.; Ghaderi, A.; Di Francesco, S. The Effect of Geometric Parameters of the Antivortex on a Triangular Labyrinth Side Weir. Water2021, 13, 14. [Google Scholar] [CrossRef]
Celik, I.B.; Ghia, U.; Roache, P.J. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng.2008, 130, 0780011–0780013. [Google Scholar]
Khan, M.I.; Simons, R.R.; Grass, A.J. Influence of cavity flow regimes on turbulence diffusion coefficient. J. Vis.2006, 9, 57–68. [Google Scholar] [CrossRef]
Javanappa, S.K.; Narasimhamurthy, V.D. DNS of plane Couette flow with surface roughness. Int. J. Adv. Eng. Sci. Appl. Math.2020, 1–13. [Google Scholar] [CrossRef]
Nasrabadi, M.; Omid, M.H.; Farhoudi, J. Submerged hydraulic jump with sediment-laden flow. Int. J. Sediment Res.2012, 27, 100–111. [Google Scholar] [CrossRef]
Pourabdollah, N.; Heidarpour, M.; Abedi Koupai, J. Characteristics of free and submerged hydraulic jumps in different stilling basins. In Water Management; Thomas Telford Ltd.: London, UK, 2019; pp. 1–11. [Google Scholar]
Rajaratnam, N. Turbulent Jets; Elsevier Science: Amsterdam, The Netherlands, 1976. [Google Scholar]
Aristodemo, F.; Marrone, S.; Federico, I. SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng.2015, 105, 160–175. [Google Scholar] [CrossRef]
Shekari, Y.; Javan, M.; Eghbalzadeh, A. Three-dimensional numerical study of submerged hydraulic jumps. Arab. J. Sci. Eng.2014, 39, 6969–6981. [Google Scholar] [CrossRef]
Khan, A.A.; Steffler, P.M. Physically based hydraulic jump model for depth-averaged computations. J. Hydraul. Eng.1996, 122, 540–548. [Google Scholar] [CrossRef]
De Dios, M.; Bombardelli, F.A.; García, C.M.; Liscia, S.O.; Lopardo, R.A.; Parravicini, J.A. Experimental characterization of three-dimensional flow vortical structures in submerged hydraulic jumps. J. Hydro-Environ. Res.2017, 15, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
일부 연구자들은 부품을 만들기 위해 더 넓은 범위의 처리 조건을 사용하여 하이브리드 와이어 분말 기반 DED 시스템을 찾고 있습니다. 예를 들어, 이 시뮬레이션은 다양한 분말 및 와이어 이송 속도를 가진 하이브리드 시스템을 살펴봅니다.
와이어 기반 DED | Wire Based DED
와이어 기반 DED는 분말 기반 DED보다 처리량이 높고 낭비가 적지만 재료 구성 및 증착 방향 측면에서 유연성이 떨어집니다. FLOW-3D AM 은 와이어 기반 DED의 처리 결과를 이해하는데 유용하며 최적화 연구를 통해 빌드에 대한 와이어 이송 속도 및 직경과 같은 최상의 처리 매개 변수를 찾을 수 있습니다.
FLOW-3D AM은 레이저 파우더 베드 융합 (L-PBF), 바인더 제트 및 DED (Directed Energy Deposition)와 같은 적층 제조 공정 ( additive manufacturing )을 시뮬레이션하고 분석하는 CFD 소프트웨어입니다. FLOW-3D AM 의 다중 물리 기능은 공정 매개 변수의 분석 및 최적화를 위해 분말 확산 및 압축, 용융 풀 역학, L-PBF 및 DED에 대한 다공성 형성, 바인더 분사 공정을 위한 수지 침투 및 확산에 대해 매우 정확한 시뮬레이션을 제공합니다.
3D 프린팅이라고도하는 적층 제조(additive manufacturing)는 일반적으로 층별 접근 방식을 사용하여, 분말 또는 와이어로 부품을 제조하는 방법입니다. 금속 기반 적층 제조 공정에 대한 관심은 지난 몇 년 동안 시작되었습니다. 오늘날 사용되는 3 대 금속 적층 제조 공정은 PBF (Powder Bed Fusion), DED (Directed Energy Deposition) 및 바인더 제트 ( Binder jetting ) 공정입니다. FLOW-3D AM 은 이러한 각 프로세스에 대한 고유 한 시뮬레이션 통찰력을 제공합니다.
파우더 베드 융합 및 직접 에너지 증착 공정에서 레이저 또는 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF용 분말 형태와 DED 공정용 분말 또는 와이어 형태의 금속을 완전히 녹여 융합하여 층별로 부품을 형성합니다. 그러나 바인더 젯팅(Binder jetting)에서는 결합제 역할을 하는 수지가 금속 분말에 선택적으로 증착되어 층별로 부품을 형성합니다. 이러한 부품은 더 나은 치밀화를 달성하기 위해 소결됩니다.
FLOW-3D AM 의 자유 표면 추적 알고리즘과 다중 물리 모델은 이러한 각 프로세스를 높은 정확도로 시뮬레이션 할 수 있습니다. 레이저 파우더 베드 융합 (L-PBF) 공정 모델링 단계는 여기에서 자세히 설명합니다. DED 및 바인더 분사 공정에 대한 몇 가지 개념 증명 시뮬레이션도 표시됩니다.
레이저 파우더 베드 퓨전 (L-PBF)
LPBF 공정에는 유체 흐름, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리학 현상이 포함되어 공정 및 궁극적으로 빌드 품질에 상당한 영향을 미칩니다. FLOW-3D AM 의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하는 동시에 입자 크기 분포 및 패킹 비율을 고려하여 중규모에서 용융 풀 현상을 시뮬레이션합니다.
FLOW-3D DEM 및 FLOW-3D WELD 는 전체 파우더 베드 융합 공정을 시뮬레이션하는 데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 놓기, 분말 용융 및 응고,이어서 이전에 응고 된 층에 신선한 분말을 놓는 것, 그리고 다시 한번 새 층을 이전 층에 녹이고 융합시키는 것입니다. FLOW-3D AM 은 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.
파우더 베드 부설 공정
FLOW-3D DEM을 통해 분말 크기 분포, 재료 특성, 응집 효과는 물론 롤러 또는 블레이드 움직임 및 상호 작용과 같은 기하학적 효과와 관련된 분말 확산 및 압축을 이해할 수 있습니다. 이러한 시뮬레이션은 공정 매개 변수가 후속 인쇄 공정에서 용융 풀 역학에 직접적인 영향을 미치는 패킹 밀도와 같은 분말 베드 특성에 어떻게 영향을 미치는지에 대한 정확한 이해를 제공합니다.
다양한 파우더 베드 압축을 달성하는 한 가지 방법은 베드를 놓는 동안 다양한 입자 크기 분포를 선택하는 것입니다. 아래에서 볼 수 있듯이 세 가지 크기의 입자 크기 분포가 있으며, 이는 가장 높은 압축을 제공하는 Case 2와 함께 다양한 분말 베드 압축을 초래합니다.
세 가지 다른 입자 크기 분포를 사용하여 파우더 베드 배치세 가지 다른 입자 크기 분포를 사용한 분말 베드 압축
입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 물체 상호 작용은 FLOW-3D DEM을 사용하여 자세히 분석 할 수도 있습니다 . 또한 입자간 힘을 지정하여 분말 살포 응용 분야를 보다 정확하게 연구 할 수도 있습니다.
이 FLOW-3D AM 시뮬레이션은 이산 요소 방법 (DEM)을 사용하여 역 회전하는 원통형 롤러로 인한 분말 확산을 연구합니다. 비디오 시작 부분에서 빌드 플랫폼이 위로 이동하는 동안 분말 저장소가 아래로 이동합니다. 그 직후, 롤러는 분말 입자 (초기 위치에 따라 색상이 지정됨)를 다음 층이 녹고 구축 될 준비를 위해 구축 플랫폼으로 펼칩니다. 이러한 시뮬레이션은 저장소에서 빌드 플랫폼으로 전송되는 분말 입자의 선호 크기에 대한 추가 통찰력을 제공 할 수 있습니다.
Melting | 파우더 베드 용해
DEM 시뮬레이션에서 파우더 베드가 생성되면 STL 파일로 추출됩니다. 다음 단계는 CFD를 사용하여 레이저 용융 공정을 시뮬레이션하는 것입니다. 여기서는 레이저 빔과 파우더 베드의 상호 작용을 모델링 합니다. 이 프로세스를 정확하게 포착하기 위해 물리학에는 점성 흐름, 용융 풀 내의 레이저 반사 (광선 추적을 통해), 열 전달, 응고, 상 변화 및 기화, 반동 압력, 차폐 가스 압력 및 표면 장력이 포함됩니다. 이 모든 물리학은 이 복잡한 프로세스를 정확하게 시뮬레이션하기 위해 TruVOF 방법을 기반으로 개발되었습니다.
레이저 출력 200W, 스캔 속도 3.0m / s, 스폿 반경 100μm에서 파우더 베드의 용융 풀 분석.
용융 풀이 응고되면 FLOW-3D AM 압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 가져와 응력 윤곽 및 변위 프로파일을 분석 할 수도 있습니다.
Multilayer | 다층 적층 제조
용융 풀 트랙이 응고되면 DEM을 사용하여 이전에 응고된 층에 새로운 분말 층의 확산을 시뮬레이션 할 수 있습니다. 유사하게, 레이저 용융은 새로운 분말 층에서 수행되어 후속 층 간의 융합 조건을 분석 할 수 있습니다.
해석 진행 절차는 첫 번째 용융층이 응고되면 입자의 두 번째 층이 응고 층에 증착됩니다. 새로운 분말 입자 층에 레이저 공정 매개 변수를 지정하여 용융 풀 시뮬레이션을 다시 수행합니다. 이 프로세스를 여러 번 반복하여 연속적으로 응고된 층 간의 융합, 빌드 내 온도 구배를 평가하는 동시에 다공성 또는 기타 결함의 형성을 모니터링 할 수 있습니다.
LPBF의 키홀 링 | Keyholing in LPBF
키홀링 중 다공성은 어떻게 형성됩니까? 이것은 TU Denmark의 연구원들이 FLOW-3D AM을 사용하여 답변한 질문이었습니다. 레이저 빔의 적용으로 기판이 녹으면 기화 및 상 변화로 인한 반동 압력이 용융 풀을 압박합니다. 반동 압력으로 인한 하향 흐름과 레이저 반사로 인한 추가 레이저 에너지 흡수가 공존하면 폭주 효과가 발생하여 용융 풀이 Keyholing으로 전환됩니다. 결국, 키홀 벽을 따라 온도가 변하기 때문에 표면 장력으로 인해 벽이 뭉쳐져서 진행되는 응고 전선에 의해 갇힐 수 있는 공극이 생겨 다공성이 발생합니다. FLOW-3D AM 레이저 파우더 베드 융합 공정 모듈은 키홀링 및 다공성 형성을 시뮬레이션 하는데 필요한 모든 물리 모델을 보유하고 있습니다.
바인더 분사 (Binder jetting)
Binder jetting 시뮬레이션은 모세관 힘의 영향을받는 파우더 베드에서 바인더의 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미칩니다.
Scan Strategy | 스캔 전략
스캔 전략은 온도 구배 및 냉각 속도에 영향을 미치기 때문에 미세 구조에 직접적인 영향을 미칩니다. 연구원들은 FLOW-3D AM 을 사용하여 결함 형성과 응고된 금속의 미세 구조에 영향을 줄 수 있는 트랙 사이에서 발생하는 재 용융을 이해하기 위한 최적의 스캔 전략을 탐색하고 있습니다. FLOW-3D AM 은 하나 또는 여러 레이저에 대해 시간에 따른 방향 속도를 구현할 때 완전한 유연성을 제공합니다.
Beam Shaping | 빔 형성
레이저 출력 및 스캔 전략 외에도 레이저 빔 모양과 열유속 분포는 LPBF 공정에서 용융 풀 역학에 큰 영향을 미칩니다. AM 기계 제조업체는 공정 안정성 및 처리량에 대해 다중 코어 및 임의 모양의 레이저 빔 사용을 모색하고 있습니다. FLOW-3D AM을 사용하면 멀티 코어 및 임의 모양의 빔 프로파일을 구현할 수 있으므로 생산량을 늘리고 부품 품질을 개선하기 위한 최상의 구성에 대한 통찰력을 제공 할 수 있습니다.
이 시뮬레이션에서 스테인리스 강 및 알루미늄 분말은 FLOW-3D AM 이 용융 풀 역학을 정확하게 포착하기 위해 추적하는 독립적으로 정의 된 온도 의존 재료 특성을 가지고 있습니다. 시뮬레이션은 용융 풀에서 재료 혼합을 이해하는 데 도움이됩니다.
다중 재료 용접 사례 연구
이종 금속의 레이저 키홀 용접에서 금속 혼합 조사
GM과 University of Utah의 연구원들은 FLOW-3D WELD 를 사용 하여 레이저 키홀 용접을 통한 이종 금속의 혼합을 이해했습니다. 그들은 반동 압력 및 Marangoni 대류와 관련하여 구리와 알루미늄의 혼합 농도에 대한 레이저 출력 및 스캔 속도의 영향을 조사했습니다. 그들은 시뮬레이션을 실험 결과와 비교했으며 샘플 내의 절단 단면에서 재료 농도 사이에 좋은 일치를 발견했습니다.
이종 금속의 레이저 키홀 용접에서 금속 혼합 조사참조 : Wenkang Huang, Hongliang Wang, Teresa Rinker, Wenda Tan, 이종 금속의 레이저 키홀 용접에서 금속 혼합 조사 , Materials & Design, Volume 195, (2020). https://doi.org/10.1016/j.matdes.2020.109056
방향성 에너지 증착
FLOW-3D AM 의 내장 입자 모델 을 사용하여 직접 에너지 증착 프로세스를 시뮬레이션 할 수 있습니다. 분말 주입 속도와 고체 기질에 입사되는 열유속을 지정함으로써 고체 입자는 용융 풀에 질량, 운동량 및 에너지를 추가 할 수 있습니다. 다음 비디오에서 고체 금속 입자가 용융 풀에 주입되고 기판에서 용융 풀의 후속 응고가 관찰됩니다.
cellladen 마이크로 겔 구조의 온칩 제작 및 인플 로우 3D 프린팅 : 하나의 통합 프로세스에서 칩에서 스캐폴드 재료까지
Benjamin Reineke 1,2, Ilona Paulus 3, Jonas Hazur 6, Madita Vollmer 4, Gültekin Tamgüney 4,5, Stephan Hauschild1 , Aldo R. Boccacini 6, Jürgen Groll 3, Stephan Förster *1,2 1 Jülich Centre for Neutron Science (JCNS-1/IBI-8), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany 2 Institute of Physical Chemistry, RWTH Aachen University, 52074 Aachen, Germany 3 Department of Functional Materials in Medicine and Dentistry (FMZ) and Bavarian Polymer Institute (BPI), University of Würzburg, 97070 Würzburg, Germany 4 Forschungszentrum Jülich GmbH, Institute of Biological Information Processing – Structural Biochemistry (IBI7), Jülich, Germany 5 Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie, Düsseldorf, Germany 6 Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstr. 6, 91058, Erlangen, Germany
Summary
Bioprinting has evolved into a thriving technology for the fabrication of cell-laden scaffolds. Bioinks are the most critical component for bioprinting. Recently, microgels have been introduced as a very promising bioink enabling cell protection and the control of the cellular microenvironment. However, their microfluidic fabrication inherently seemed to be a limitation. Here we introduce a direct coupling of microfluidics and 3D-printing for the microfluidic production of cell-laden microgels with direct in-flow bioprinting into stable scaffolds. The methodology enables the continuous on-chip encapsulation of cells into monodisperse microdroplets with subsequent in-flow cross-linking to produce cell-laden microgels, which after exiting a microtubing are automatically jammed into thin continuous microgel filaments. The integration into a 3D printhead allows direct in-flow printing of the filaments into free-standing three-dimensional scaffolds. The method is demonstrated for different cross-linking methods and cell lines. With this advancement, microfluidics is no longer a bottleneck for biofabrication.
Bioprinting은 세포가있는 스캐 폴드 제작을 위한 번성하는 기술로 진화했습니다. 바이오 잉크는 바이오 프린팅에 가장 중요한 구성 요소입니다. 최근 마이크로 젤은 세포 보호 및 세포 미세 환경 제어를 가능하게 하는 매우 유망한 바이오 잉크로 도입되었습니다.
그러나 이들의 미세 유체 제작은 본질적으로 한계로 보였습니다. 여기에서 우리는 안정적인 스캐 폴드에 직접 유입 바이오 프린팅을 사용하여 세포가 실린 마이크로 겔의 미세 유체 생산을 위한 미세 유체 및 3D 프린팅의 직접 결합을 소개합니다.
이 방법론은 세포를 단 분산 미세 방울로 연속 온칩 캡슐화하고 후속 유입 교차 연결을 통해 세포가 가득한 마이크로 겔을 생성 할 수 있으며, 이는 마이크로 튜브를 종료 한 후 얇은 연속 마이크로 겔 필라멘트에 자동으로 걸린다. 3D 프린트 헤드에 통합되어 필라멘트를 독립형 3 차원 스캐 폴드로 직접 유입 인쇄 할 수 있습니다.
이 방법은 다양한 가교 방법 및 세포주에 대해 설명됩니다. 이러한 발전으로 미세 유체 학은 더 이상 바이오 패브리 케이션의 병목 현상이 아닙니다.
Bioprinting은 신체 조직을 모방하거나 대체하기위한 3 차원 세포 실장 구조를 제작하는 새로운 기술입니다.
(1) 조직 공학 및 약물 전달뿐만 아니라 질병 연구 및 치료 개발에 중요한 역할을합니다. 바이오 프린팅에서 세포와 물질은 바이오 잉크 (2,3)로 공식화되어 계층 적으로 구조화 된 3D 스캐 폴드로 직접 인쇄됩니다. 바이오 프린팅의 궁극적 인 목표는 3 차원 적으로 제작 된 구조적 배열이 생물학적 성숙을 촉진하고 가속화한다는 근거를 바탕으로 표적 조직 또는 기관의 전체 또는 부분 기능을 나타내는 세포가있는 스캐 폴드를 생산하는 것입니다.
(4) 따라서 바이오 잉크는 바이오 프린팅 기술의 중요한 구성 요소입니다. 그들은 주로 세포와 생물 활성 분자를 캡슐화 할 수있는 물질, 즉 하이드로 겔에 의존하며 압출 인쇄와 같은 적합한 인쇄 기술에 사용하여 원하는 3 차원 스캐 폴드 또는 구조물을 제작할 수 있습니다. 바이오 잉크의 설계는 유동성 및 탄성 특성을 미세 조정하여 압출 중에 충분히 전단 얇게 만들고,이어서 응고 후 원하는 기계적 안정성과 탄성을 빠르게 개발하여 안정적인 스캐 폴드를 형성해야하기 때문에 까다롭습니다.
또한, 바이오 잉크는 생체 적합성이어야하며 세포 생존력과 적절한 제조 후 행동을 촉진 할 수있을만큼 충분히 생체 기능적이어야하며 충분한 영양분과 산소를 공급할 수 있어야합니다. 바이오 잉크로 가장 두드러진 하이드로 겔 전구체 용액이 사용되며, 때로는 약간 사전 가교된 형태로 사용되며, 프린팅 후 가교되어 구조를 안정화합니다.
종종 발생하는 문제는 세포 침강, 불균일 혼합 및 생체 적합성 제형과 인쇄 사이의 상충 관계이며, 세포가 유동 제형에서 전단력을 직접 경험하기 때문에 결과적인 모양 충실도입니다. 이러한 한계를 극복하기 위해 Highley et al.
(5) 최근 microgel bioinks의 사용을 제안했습니다. 콜로이드 특성으로 인해 마이크로 겔 바이오 잉크는 전단 얇아지고 정지 상태에서 빠르게 응고되는 반면 부드러운 콜로이드에로드 된 세포는 전단 보호됩니다. 인쇄 된 마이크로 겔 스캐 폴드는 계면 중합체 얽힘이 충분하지 않은 경우 2 차 가교에 의해 추가로 안정화 될 수 있습니다.
Microgels는 세포 미세 환경을 조정하는 이점을 더 제공합니다. 따라서, 세포가 가득 찬 마이크로 겔을 제조하는 방법은 이미 개발되었으며, 특히 매우 균일 한 크기의 마이크로 겔을 연속 공정으로 제작할 수있는 마이크로 유체 학 분야에서 이미 개발되었습니다. (6-8) 마이크로 겔은 EDTA- 복합체 (11,12) 또는 열 유도에 의해 조절 될 수있는 알기 네이트 / Ca2 + 이온 복합체 형성 (9,10)과 같은 물리적 가교에 의해 형성 될 수 있음이 입증되었습니다. 젤라틴 용액을 20 ° C 이하로 냉각하는 것과 같은 겔화. (9,13) 화학적 가교 반응은 마이크로 겔의 더 큰 안정성과 더 나은 기계적 특성을 제공합니다.
예를 들면 기능화 된 젤라틴, 히알루 노 레이트, 폴리에틸렌 글리콜 또는 폴리 글리세롤 (12, 14-16)에 대한 마이클 유형 반응, 폴리 글리세롤 (17) 및 광 가교 (18)에 대한 아 지드-알킨 클릭 반응은 다음과 같은 광개시제 및 가교기를 필요로 합니다. 폴리에틸렌 글리콜에 대해 나타났습니다.
캡슐화된 세포에는 줄기 세포 (9,12,14,15), 크립트 및 페 이어 세포 (10), 간 세포 (HepG2) 및 내피 세포 (HUVEC) (18), NIH 3T3 섬유 아세포 (6)가 포함됩니다. 지금까지 Fan et al.에 의해 세포가 실린 마이크로 겔을 기반으로하는 기능성 스캐 폴드의 제작이 보여졌습니다.
(19) 겔 -MA 마이크로 겔의 에멀젼 기반 제조 및 Compaan et al. (20) 젤라틴 마이크로 겔 충전제 입자. 미세 유체 생성 마이크로 겔의 경우 이것은 최근 Highley et al.에 의해 처음으로 입증되었습니다. (5). 마이크로 겔 기반 바이오 잉크 및 스캐 폴드에 대한 바이오 프린팅에 대한 지금까지 제한된 수의 연구에 대한 이유는 소량의 마이크로 겔을 생성하는 마이크로 유체의 필수 조합과 교차 결합, 준비를 포함하는 여러 포스트 칩 배치 공정 단계가 뒤 따르기 때문입니다. bioink의, 그리고 원하는 스캐 폴드에 후속 bioprinting.
이것은 현재 microgel biofabrication을 시간 소모적이고 생산성이 낮은 다단계 공정으로 만듭니다. 따라서 원하는 스캐 폴드의 제조를위한 마이크로 겔 및 바이오 프린팅을위한 미세 유체가 하나의 연속적이고 자동화 가능한 프로세스에 통합 될 수 있다면 매우 바람직 할 것입니다.
여기에서 우리는 미세 유체 칩이 세포를 방울로 온칩 캡슐화하도록 설계 될 수 있음을 보여줍니다. 이는 마이크로 겔을 생성하기 위해 흐름에서 광 가교 결합 된 다음 다운 스트림 마이크로 튜브에서 자동으로 잼되어 얇은 마이크로 겔 필라멘트를 지속적으로 형성합니다. 마이크로 튜브는 3D 프린터의 프린트 헤드에 통합되어 필라멘트를 독립형 3 차원으로 직접 유입 인쇄합니다.
Results and discussion
Microfluidic device and controlled droplet production
우리의 목표는 (i) 낮은 전단 응력 세포 캡슐화, (ii) 물리적 또는 화학적 가교에 대한 가변성, (iii) 미세 액적 직경의 큰 변화, (iv)이를 결합 할 수 있는 기능을 위한 미세 유체 칩을 3D 프린터로 설계하는 것이었습니다.
따라서 디자인은 높은 세포 생존력을 위해 좁은 채널 섹션 내의 세포에 대한 전단력을 최소화해야 합니다. 다양한 물리적 및 화학적 가교 반응을 수행 할 수 있도록 입구 채널 설계는 세포, 폴리머, 가교 및 추가 제제를 포함하는 용액의 순차적 혼합을 허용해야 합니다. 단일 세포 캡슐화가 필요한 경우 미세 방울은 300 µm에서 50 µm까지 제어 가능한 직경을 가져야 106 / ml의 세포 밀도에 도달 할 수 있습니다.
Fig. 1: Three-dimensional schematic view of the multilayer double 3D-focusing microfluidic channel
system, (b) control of droplet diameter via the Capiilary number Ca, and accessible hydrodynamic regimes
for droplet production: squeezing (c), dripping (d) and jetting (e). The scale bars are 200 µm.
따라서 우리는 두 개의 후속 혼합 교차로 3 차원 흐름 초점을 허용 한 다음 제어 된 액적 형성을위한 하류 좁은 오리피스가 뒤 따르는 채널 설계를 사용했습니다. 디자인은 그림 1에 개략적으로 표시되어 있습니다. 여기에는 세포와 전구체 폴리머를 포함하는 중앙 스트림 용액을위한 입구 채널과 완충 용액, 배양 배지, 생리 활성 물질 또는 가교제를 포함 할 수있는 두 개의 측면 채널이 있습니다. 측면 채널 흐름은 입구 채널 흐름을 세포에 대한 전단력이 최소 인 채널의 중앙에 3 차원 적으로 집중시킵니다. 그 후, 수성 스트림은 액적 형성을 제어하는 좁은 오리피스 섹션으로 들어가기 위해 오일 상으로 3 차원 적으로 집중됩니다. 좁은 섹션은 다양한 유체 역학 체제에 액세스하여 다양한 범위에 걸쳐 액적 크기를 변경할 수 있습니다. 다운 스트림 채널은 방울이 채널 중심 유선에서 안정적인 방울 트레인을 형성하도록 충분히 좁게 유지됩니다. 3D 이중 초점 칩은 다층 기술을 사용하는 소프트 리소그래피로 제작되었으며 지원 정보 (그림 S2-S4, S7)에 설명 된대로 흐름이 시뮬레이션되었습니다. 액적 분해는 외부 유체에 의해 가해지는 점성 전단력 𝐹𝑠ℎ𝑒ar 표면 장력에서 발생하는 고정 계면 력 𝐹𝐹𝛾𝛾을 초과 할 때 발생합니다. 두 힘은 직접 연속 유상 η 평균 유입 흐름 속도 (V)의 점도 환산 수 무차 모세관 수가 CA = 𝐹𝑠ℎ𝑒ar/𝐹γ, 그리고 CA = 𝐹𝑠ℎ𝑒ar/𝐹γ = 같은 표면 장력 γ가 관련 𝜂𝜂 𝛾. 캐 필러 리 수에 따라 액적 생성을위한 다양한 유체 역학 체제를 구별 할 수 있습니다. c) 분사 체제 (Ca> 1). (21-25) 그림 1에서 볼 수 있듯이 가변 3D 수축 설계를 사용하면 액적 생산을위한 세 가지 유체 역학 체제에 모두 액세스 할 수 있으며 모세관 수는 액적 생산을위한 주요 제어 매개 변수입니다. 체적 유량, 오일 점도 및 계면 장력을 조정하여 50 ~ 300 µm 범위의 목표 범위에서 액적 직경을 정밀하게 제어 할 수 있습니다. 각 점도 및 계면 장력은 지원 정보의 표 SI에 요약되어 있습니다.
Fig. 2: Scheme of the LED photo-crosslinking and 3D-printing section of the microfluidic/3D-printing
device. The droplet train is transferred from the chip microchannel into a microtubing in a straight section
with nearly identical inner channel and inner microtubing diameter. Further downstream, the microtubing
passes an LED-section for fast photo cross-linking to generate the microgels. This section is contained in
an aluminum encasing to avoid premature crosslinking of polymer precursor in upstream channel sections
by stray light. Subsequently, the microtubing is integrated into a 3D-printhead, where the microgels are
jammed into a filament that is directly 3D-printed into the scaffold.Fig. 3: a) Photograph of a standard meander-shaped layer fabricated by microgel filament deposition
printing. The lines have a thickness of 300 µm. b) photograph of a cross-bar pattern obtained by on-top
deposition of several microgel filaments. The average linewidth is 1 mm. c) photograph of a donut-shaped
microgel construct. The microgels have been fluorescently labelled by FITC-dextran to demonstrate the
intrinsic microporosity corresponding to the black non-fluorescent regions, d) light microscopy image of
a construct edge showing that fused adhesive microgels form a continuous, three-dimensional selfsupporting scaffold with intrinsic micropores.Fig. 4: a) Scheme of the perfusion chamber consisting of an upstream and downstream chamber, perfusion
ports, and removable scaffolds to stabilize the microgel construct during 3D-printing, b) photograph of a
microgel construct in the perfusion chamber directly after printing and removal of the scaffolds, c)
confocal microscopy image of the permeation front of a fluorescent dye, where the high dye concentration
in the micropores can be clearly seen, d) confocal microscopy image of YFP-labelled HEK-cells within a
microgel construct.Fig. 5: a) Layer-by-layer printing of microgel construct with integrated perfusion channel. After printing
of the first layer, a hollow perfusion channel is inserted. Subsequently, the second and third layers are
printed. b) The construct is directly printed into a perfusion chamber. The perfusion chamber provides
whole construct permeation via flows cin and cout, as well as independent flow through the perfusion
channel via flows vin and vout. c) Photograph of a perfusion chamber containing the construct directly after
printing. The flow of the fluorescein solution through the integrated PVA hollow channel is clearly visible.Fig. 6: a) Photograph of an alginate capsule fiber formed after exiting the microtube. b) Confocal
fluorescence microscopy image of part of a 3D-printed alginate capsule construct. The fluorescence arises
from encapsulated fluorescently labelled polystyrene microbeads to demonstrate the integrity and stability
of the alginate capsules.
A. Atala, Chem. Rev. 2020, 120, 10545-10546.
J. Groll, J. A. Burdick, D. W. Cho, B. Derby, M. Gelinsky, S. C. Heilshorn, T. Jüngst, J. Malda, V. A Mironov, K. Nakayama, A. Ovisanikov, W. Sun, S. Takeuchi, J. J. Yoo, T. B. F. Woodfield, Biofabrication 2019, 11, 013001.
W. Sun, B. Starly, A. C. Daly, J. A. Burdick, J. Groll, G. Skeldon, W. Shu, Y. Sakai, M. Shinohara, M. Nishikawa, J. Jang, D.-W. Cho, M. Nie, S. Takeuchi, S. Ostrovidov, A. Khademhosseini, R. D. Kamm, V. Mironov, L. Moroni, I. T. Ozbolat, Biofabrication 2020, 12, 022002.
R. Levato, T. Juengst, R. G. Scheuring, T. Blunk, J. Groll, J. Malda, Adv. Mater. 2020, 32, 1906423.
C. B. Highley, K. H. Song, A. C. Daly, J. A. Burdick, Adv. Sci. 2019, 6, 1801076.
D. Velasco, E. Tumarkin, E. Kumacheva, Small 2012, 8, 1633-1642.
W. Jiang, M. Li, Z. Chen, K. W. Leong, Lab Chip 2016, 16, 4482-4506.
A. C. Daly, L. Riley, T. Segura, J. A. Burdick, Nat. Rev. 2020, 5, 20-43.
A. S. Mao, B. Özkale, N. J. Shah, K. H. Vining, T. Descombes, L. Zhang, C. M. Tringides, S.-W. Wong, J.-W. Shin, D. T. Scadden, D. A. Weitz, D. J. Mooney, Proc. Natl. Acad. Sci. 2019, 116, 15392- 15397.
S. R. Pajoumshariati, M. Azizi, D. Wesner, P. G. Miller, M. L. Shuler, A. Abbaspourrad, ACS Appl. Mater. Interfaces 2018, 10, 9235-9246.
A. S. Mao, J.-W. Shin, S. Utech, H. Wang, O. Uzun, W. Li, M. Cooper, Y. Hu, L. Zhang, D. A. Weitz, D. J. Mooney, Nat. Mater. 2017, 16, 236-243.
P. S. Lienemann, T. Rossow, A. S. Mao, Q. Vallmajo-Martin, M. Ehrbar, D. J. Mooney, Lab Chip, 2017, 17, 727.
F. Chen, J. Xue, J. Zhang, M. Bai, X. Yu, X.; C. Fan, Y. Zhao, J. Am. Chem. Soc. 2020, 142, 2889- 2896.
Q. Feng, Q. Li, H. Wen, J. Chen, M. Liang, H. Huang, D. Lan, H. Dong, X. Cao, Adv. Funct. Mater., 2019, 29, 1096690.
L. P. B. Guerzoni, T. Yoshinari, D. B. Gehlen, D. Rommel, T. Haraszti, M. Akashi, L. De Laporte, Biomacromolecules 2019, 20, 3746-3754
T. Rossow, J. A. Heyman, A. J. Ehrlicher, A. Langhoff, D. A. Weitz, R. Haag, S. Seiffert, J. Am. Chem. Soc. 2012, 134, 4983-4989.
E. Kapourani, F. Neumann, K. Achazi, J. Dernedde, R. Haag, Macromol. Bioscience 2018, 18, 1800116
H. Wang, H. Liu, H. Liu, W. Su, W. Chen, J. Qin, Adv. Mater. Technol. 2019, 4, 1800632.
C. Fan, S.-H. Zhan, Z.-X. Dong, W. Yang, W.-S. Deng, X. Liu, P. Suna, D.-A. Wang, Mater. Sci. Eng. C 2019, 108, 110399.
A. M. Compaan, K. Song, W. Chai, Y. Huang, ACS Appl. Mater. Interfaces 2020, 12, 7855-7868.
S. L. Anna, H. C. Mayer, Phys. Fluids 2006, 18, 121512.
T. Ward, M. Faivre, M. Abkarian, H. A. Stone, Electrophoresis 2005, 26, 3716-3724.
F. Lapierre, N. Wu, Y. Zhu, Proc. SPIE 2011, 8204, 82040H-1.
C. A. Stan, S. K. Y. Tang, G. M. Whitesides, Anal. Chem. 2009, 81, 2399-2402.
J. Tan, J. H. Xu, S. W. Li, G. S. Luo, Chem. Eng. J. 2008, 136, 306-311.
R.-C. Luo, C.-H. Chen, Soft 2012, 1, 1-23.
C. H. Choi, J. H. Jung, T. S. Hwang, C. S. Lee, Macromol. Res. 2009, 17, 163-167.
A. J. D. Krüger, O. Bakirman, P. B. Guerzoni, A. Jans, D. B. Gehlen, D. Rommel, T. Haraszti, A. J. C. Kuehne, L. De Laporte, Adv. Mater. 2019, 31, 1903668.
D. B. Kolesky, K. A. Homan, M. A. Skylar-Scott, J. A. Lewis, Proc. Natl. Acad. Sci. 2016, 113, 3179-3184
A. K. Miri, I. Mirzaee, S. Hassan, S. M. Oskui, D. Nieto, A. Khademhosseini, Y. S. Zhang, Lab Chip 2019, 19, 2019.
F. A. Plamper, W. Richtering Acc. Chem. Res. 2017, 50, 131-140.
S. Sun, M. Li, A. Liu, Int. J. Adhesion Adhesives 2013, 41, 98-106.
Spillways are constructed to evacuate flood discharge safely so that a flood wave does not overtop the dam body. There are different types of spillways, with the ogee type being the conventional one. A stepped spillway is an example of a nonconventional spillway. The turbulent flow over a stepped spillway was studied numerically by using the Flow-3D package. Different fluid flow characteristics such as longitudinal flow velocity, temperature distribution, density and chemical concentration can be well simulated by Flow-3D. In this study, the influence of slope changes on flow characteristics such as air entrainment, velocity distribution and dynamic pressures distribution over a stepped spillway was modelled by Flow-3D. The results from the numerical model were compared with an experimental study done by others in the literature. Two models of a stepped spillway with different discharge for each model were simulated. The turbulent flow in the experimental model was simulated by the Renormalized Group (RNG) turbulence scheme in the numerical model. A good agreement was achieved between the numerical results and the observed ones, which are exhibited in terms of graphics and statistical tables.
배수로는 홍수가 댐 몸체 위로 넘치지 않도록 안전하게 홍수를 피할 수 있도록 건설되었습니다. 다른 유형의 배수로가 있으며, ogee 유형이 기존 유형입니다. 계단식 배수로는 비 전통적인 배수로의 예입니다. 계단식 배수로 위의 난류는 Flow-3D 패키지를 사용하여 수치적으로 연구되었습니다.
세로 유속, 온도 분포, 밀도 및 화학 농도와 같은 다양한 유체 흐름 특성은 Flow-3D로 잘 시뮬레이션 할 수 있습니다. 이 연구에서는 계단식 배수로에 대한 공기 혼입, 속도 분포 및 동적 압력 분포와 같은 유동 특성에 대한 경사 변화의 영향을 Flow-3D로 모델링 했습니다.
수치 모델의 결과는 문헌에서 다른 사람들이 수행한 실험 연구와 비교되었습니다. 각 모델에 대해 서로 다른 배출이 있는 계단식 배수로의 두 모델이 시뮬레이션되었습니다. 실험 모델의 난류 흐름은 수치 모델의 Renormalized Group (RNG) 난류 계획에 의해 시뮬레이션되었습니다. 수치 결과와 관찰 된 결과 사이에 좋은 일치가 이루어졌으며, 이는 그래픽 및 통계 테이블로 표시됩니다.
댐 구조는 물 보호가 생활의 핵심이기 때문에 물을 저장하거나 물을 운반하는 전 세계에서 가장 중요한 프로젝트입니다. 그리고 여수로는 댐의 가장 중요한 부분 중 하나로 분류됩니다. 홍수로 인한 파괴 나 피해로부터 댐을 보호하기 위해 여수로가 건설됩니다.
수력 발전, 항해, 레크리에이션 및 어업의 중요성을 감안할 때 댐 건설 및 홍수 통제는 전 세계적으로 매우 중요한 문제로 간주 될 수 있습니다. 많은 유형의 배수로가 있지만 가장 일반적인 유형은 다음과 같습니다 : ogee 배수로, 자유 낙하 배수로, 사이펀 배수로, 슈트 배수로, 측면 채널 배수로, 터널 배수로, 샤프트 배수로 및 계단식 배수로.
그리고 모든 여수로는 입구 채널, 제어 구조, 배출 캐리어 및 출구 채널의 네 가지 필수 구성 요소로 구성됩니다. 특히 롤러 압축 콘크리트 (RCC) 댐 건설 기술과 더 쉽고 빠르며 저렴한 건설 기술로 분류 된 계단식 배수로 건설과 관련하여 최근 수십 년 동안 많은 계단식 배수로가 건설되었습니다 (Chanson 2002; Felder & Chanson 2011).
계단식 배수로 구조는 캐비테이션 위험을 감소시키는 에너지 소산 속도를 증가시킵니다 (Boes & Hager 2003b). 계단식 배수로는 다양한 조건에서 더 매력적으로 만드는 장점이 있습니다.
계단식 배수로의 흐름 거동은 일반적으로 낮잠, 천이 및 스키밍 흐름 체제의 세 가지 다른 영역으로 분류됩니다 (Chanson 2002). 유속이 낮을 때 nappe 흐름 체제가 발생하고 자유 낙하하는 낮잠의 시퀀스로 특징 지워지는 반면, 스키밍 흐름 체제에서는 물이 외부 계단 가장자리 위의 유사 바닥에서 일관된 흐름으로 계단 위로 흐릅니다.
또한 주요 흐름에서 3 차원 재순환 소용돌이가 발생한다는 것도 분명합니다 (예 : Chanson 2002; Gonzalez & Chanson 2008). 계단 가장자리 근처의 의사 바닥에서 흐름의 방향은 가상 바닥과 가상으로 정렬됩니다. Takahashi & Ohtsu (2012)에 따르면, 스키밍 흐름 체제에서 주어진 유속에 대해 흐름은 계단 가장자리 근처의 수평 계단면에 영향을 미치고 슈트 경사가 감소하면 충돌 영역의 면적이 증가합니다. 전이 흐름 체제는 나페 흐름과 스키밍 흐름 체제 사이에서 발생합니다. 계단식 배수로를 설계 할 때 스키밍 흐름 체계를 고려해야합니다 (예 : Chanson 1994, Matos 2000, Chanson 2002, Boes & Hager 2003a).
CFD (Computational Fluid Dynamics), 즉 수력 공학의 수치 모델은 일반적으로 물리적 모델에 소요되는 총 비용과 시간을 줄여줍니다. 따라서 수치 모델은 실험 모델보다 빠르고 저렴한 것으로 분류되며 동시에 하나 이상의 목적으로 사용될 수도 있습니다. 사용 가능한 많은 CFD 소프트웨어 패키지가 있지만 가장 널리 사용되는 것은 FLOW-3D입니다. 이 연구에서는 Flow 3D 소프트웨어를 사용하여 유량이 서로 다른 두 모델에 대해 계단식 배수로에서 공기 농도, 속도 분포 및 동적 압력 분포를 시뮬레이션합니다.
Roshan et al. (2010)은 서로 다른 수의 계단 및 배출을 가진 계단식 배수로의 두 가지 물리적 모델에 대한 흐름 체제 및 에너지 소산 조사를 연구했습니다. 실험 모델의 기울기는 각각 19.2 %, 12 단계와 23 단계의 수입니다. 결과는 23 단계 물리적 모델에서 관찰 된 흐름 영역이 12 단계 모델보다 더 수용 가능한 것으로 간주되었음을 보여줍니다. 그러나 12 단계 모델의 에너지 손실은 23 단계 모델보다 더 많았습니다. 그리고 실험은 스키밍 흐름 체제에서 23 단계 모델의 에너지 소산이 12 단계 모델보다 약 12 % 더 적다는 것을 관찰했습니다.
Ghaderi et al. (2020a)는 계단 크기와 유속이 다른 정련 매개 변수의 영향을 조사하기 위해 계단식 배수로에 대한 실험 연구를 수행했습니다. 그 결과, 흐름 체계가 냅페 흐름 체계에서 발생하는 최소 scouring 깊이와 같은 scouring 구멍 치수에 영향을 미친다는 것을 보여주었습니다. 또한 테일 워터 깊이와 계단 크기는 최대 scouring깊이에 대한 실제 매개 변수입니다. 테일 워터의 깊이를 6.31cm에서 8.54 및 11.82cm로 늘림으로써 수세 깊이가 각각 18.56 % 및 11.42 % 증가했습니다. 또한 이 증가하는 테일 워터 깊이는 scouring 길이를 각각 31.43 % 및 16.55 % 감소 시킵니다. 또한 유속을 높이면 Froude 수가 증가하고 흐름의 운동량이 증가하면 scouring이 촉진됩니다. 또한 결과는 중간의 scouring이 횡단면의 측벽보다 적다는 것을 나타냅니다. 계단식 배수로 하류의 최대 scouring 깊이를 예측 한 후 실험 결과와 비교하기 위한 실험식이 제안 되었습니다. 그리고 비교 결과 제안 된 공식은 각각 3.86 %와 9.31 %의 상대 오차와 최대 오차 내에서 scouring 깊이를 예측할 수 있음을 보여주었습니다.
Ghaderi et al. (2020b)는 사다리꼴 미로 모양 (TLS) 단계의 수치 조사를 했습니다. 결과는 이러한 유형의 배수로가 확대 비율 LT / Wt (LT는 총 가장자리 길이, Wt는 배수로의 폭)를 증가시키기 때문에 더 나은 성능을 갖는 것으로 관찰되었습니다. 또한 사다리꼴 미로 모양의 계단식 배수로는 더 큰 마찰 계수와 더 낮은 잔류 수두를 가지고 있습니다. 마찰 계수는 다양한 배율에 대해 0.79에서 1.33까지 다르며 평평한 계단식 배수로의 경우 대략 0.66과 같습니다. 또한 TLS 계단식 배수로에서 잔류 수두의 비율 (Hres / dc)은 약 2.89이고 평평한 계단식 배수로의 경우 약 4.32와 같습니다.
Shahheydari et al. (2015)는 Flow-3D 소프트웨어, RNG k-ε 모델 및 VOF (Volume of Fluid) 방법을 사용하여 배출 계수 및 에너지 소산과 같은 자유 표면 흐름의 프로파일을 연구하여 스키밍 흐름 체제에서 계단식 배수로에 대한 흐름을 조사했습니다. 실험 결과와 비교했습니다. 결과는 에너지 소산 율과 방전 계수율의 관계가 역으로 실험 모델의 결과와 잘 일치 함을 보여 주었다.
Mohammad Rezapour Tabari & Tavakoli (2016)는 계단 높이 (h), 계단 길이 (L), 계단 수 (Ns) 및 단위 폭의 방전 (q)과 같은 다양한 매개 변수가 계단식 에너지 소산에 미치는 영향을 조사했습니다. 방수로. 그들은 해석에 FLOW-3D 소프트웨어를 사용하여 계단식 배수로에서 에너지 손실과 임계 흐름 깊이 사이의 관계를 평가했습니다. 또한 유동 난류에 사용되는 방정식과 표준 k-ɛ 모델을 풀기 위해 유한 체적 방법을 적용했습니다. 결과에 따르면 스텝 수가 증가하고 유량 배출량이 증가하면 에너지 손실이 감소합니다. 얻은 결과를 다른 연구와 비교하고 경험적, 수학적 조사를 수행하여 결국 합격 가능한 결과를 얻었습니다.
METHODOLOGY
ListenReadSpeaker webReader: ListenFor all numerical models the basic principle is very similar: a set of partial differential equations (PDE) present the physical problems. The flow of fluids (gas and liquid) are governed by the conservation laws of mass, momentum and energy. For Computational Fluid Dynamics (CFD), the PDE system is substituted by a set of algebraic equations which can be worked out by using numerical methods (Versteeg & Malalasekera 2007). Flow-3D uses the finite volume approach to solve the Reynolds Averaged Navier-Stokes (RANS) equation, by applying the technique of Fractional Area/Volume Obstacle Representation (FAVOR) to define an obstacle (Flow Science Inc. 2012). Equations (1) and (2) are RANS and continuity equations with FAVOR variables that are applied for incompressible flows.
(1)
(2)where is the velocity in xi direction, t is the time, is the fractional area open to flow in the subscript directions, is the volume fraction of fluid in each cell, p is the hydrostatic pressure, is the density, is the gravitational force in subscript directions and is the Reynolds stresses.
Turbulence modelling is one of three key elements in CFD (Gunal 1996). There are many types of turbulence models, but the most common are Zero-equation models, One-equation models, Two-equation models, Reynolds Stress/Flux models and Algebraic Stress/Flux models. In FLOW-3D software, five turbulence models are available. The formulation used in the FLOW-3D software differs slightly from other formulations that includes the influence of the fractional areas/volumes of the FAVORTM method and generalizes the turbulence production (or decay) associated with buoyancy forces. The latter generalization, for example, includes buoyancy effects associated with non-inertial accelerations.
The available turbulence models in Flow-3D software are the Prandtl Mixing Length Model, the One-Equation Turbulent Energy Model, the Two-Equation Standard Model, the Two-Equation Renormalization-Group (RNG) Model and large Eddy Simulation Model (Flow Science Inc. 2012).In this research the RNG model was selected because this model is more commonly used than other models in dealing with particles; moreover, it is more accurate to work with air entrainment and other particles. In general, the RNG model is classified as a more widely-used application than the standard k-ɛ model. And in particular, the RNG model is more accurate in flows that have strong shear regions than the standard k-ɛ model and it is defined to describe low intensity turbulent flows. For the turbulent dissipation it solves an additional transport equation:
(3)where CDIS1, CDIS2, and CDIS3 are dimensionless parameters and the user can modify them. The diffusion of dissipation, Diff ɛ, is
(4)where u, v and w are the x, y and z coordinates of the fluid velocity; , , and , are FLOW-3D’s FAVORTM defined terms; and are turbulence due to shearing and buoyancy effects, respectively. R and are related to the cylindrical coordinate system. The default values of RMTKE, CDIS1 and CNU differ, being 1.39, 1.42 and 0.085 respectively. And CDIS2 is calculated from turbulent production () and turbulent kinetic energy ().The kinematic turbulent viscosity is the same in all turbulence transport models and is calculated from
(5)where : is the turbulent kinematic viscosity. is defined as the numerical challenge between the RNG and the two-equation k-ɛ models, found in the equation below. To avoid an unphysically large result for in Equation (3), since this equation could produce a value for very close to zero and also because the physical value of may approach to zero in such cases, the value of is calculated from the following equation:
(6)where : the turbulent length scale.
VOF and FAVOR are classifications of volume-fraction methods. In these two methods, firstly the area should be subdivided into a control volume grid or a small element. Each flow parameter like velocity, temperature and pressure values within the element are computed for each element containing liquids. Generally, these values represent the volumetric average of values in the elements.Numerous methods have been used recently to solve free infinite boundaries in the various numerical simulations. VOF is an easy and powerful method created based on the concept of a fractional intensity of fluid. A significant number of studies have confirmed that this method is more flexible and efficient than others dealing with the configurations of a complex free boundary. By using VOF technology the Flow-3D free surface was modelled and first declared in Hirt & Nichols (1981). In the VOF method there are three ingredients: a planner to define the surface, an algorithm for tracking the surface as a net mediator moving over a computational grid, and application of the boundary conditions to the surface. Configurations of the fluids are defined in terms of VOF function, F (x, y, z, t) (Hirt & Nichols 1981). And this VOF function shows the volume of flow per unit volume
(7)
(8)
(9)where is the density of the fluid, is a turbulent diffusion term, is a mass source, is the fractional volume open to flow. The components of velocity (u, v, w) are in the direction of coordinates (x, y, z) or (r, ). in the x-direction is the fractional area open to flow, and are identical area fractions for flow in the y and z directions. The R coefficient is based on the selection of the coordinate system.
The FAVOR method is a different method and uses another volume fraction technique, which is only used to define the geometry, such as the volume of liquid in each cell used to determine the position of fluid surfaces. Another fractional volume can be used to define the solid surface. Then, this information is used to determine the boundary conditions of the wall that the flow should be adapted for.
In this study, the experimental results of Ostad Mirza (2016) was simulated. In a channel composed of two 4 m long modules, with a transparent sidewall of height 0.6 m and 0.5 m width. The upstream chute slope (i.e. pseudo-bottom angle) Ɵ1 = 50°, the downstream chute slope Ɵ2 = 30° or 18.6°, the step heights h = 0.06 m, the total number of steps along the 50° chute 41 steps, the total number of steps along the 30° chute 34 steps and the total number of steps along the 18.6° chute 20 steps.
The flume inflow tool contained a jetbox with a maximum opening set to 0.12 meters, designed for passing the maximum unit discharge of 0.48 m2/s. The measurements of the flow properties (i.e. air concentration and velocity) were computed perpendicular to the pseudo-bottom as shown in Figure 1 at the centre of twenty stream-wise cross-sections, along the stepped chute, (i.e. in five steps up on the slope change and fifteen steps down on the slope change, namely from step number −09 to +23 on 50°–30° slope change, or from −09 to +15 on 50°–18.6° slope change, respectively).
Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).
Sketch of the air concentration C and velocity V measured perpendicular to the pseudo-bottom used by Mirza (Ostad Mirza 2016).
Pressure sensors were arranged with the x/l values for different slope change as shown in Table 1, where x is the distance from the step edge, along the horizontal step face, and l is the length of the horizontal step face. The location of pressure sensors is shown in Table 1.Table 1
Location of pressure sensors on horizontal step faces
Θ(°)
L(m)
x/l (–)
50.0
0.050
0.35
0.64
–
–
–
30.0
0.104
0.17
0.50
0.84
–
–
18.6
0.178
0.10
0.30
0.50
0.7
0.88
Location of pressure sensors on horizontal step faces
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.
Inlet boundary condition for Q = 0.235 m3/s and fluid elevation 4.21834 m.
A 3D numerical model of hydraulic phenomena was simulated based on an experimental study by Ostad Mirza (2016). The water surcharge and flow pressure over the stepped spillway was computed for two models of a stepped spillway with different discharge for each model. In this study, the package was used to simulate the flow parameters such as air entrainment, velocity distribution and dynamic pressures. The solver uses the finite volume technique to discretize the computational domain. In every test run, one incompressible fluid flow with a free surface flow selected at 20̊ was used for this simulation model. Table 2 shows the variables used in test runs.Table 2
Variables used in test runs
Test no.
Θ1 (°)
Θ2 (°)
h(m)
d0
q (m3s−1)
dc/h (–)
1
50
18.6
0.06
0.045
0.1
2.6
2
50
18.6
0.06
0.082
0.235
4.6
3
50
30.0
0.06
0.045
0.1
2.6
4
50
30.0
0.06
0.082
0.235
4.6
Table 2 Variables used in test runs
For stepped spillway simulation, several parameters should be specified to get accurate simulations, which is the scope of this research. Viscosity and turbulent, gravity and non-inertial reference frame, air entrainment, density evaluation and drift-flux should be activated for these simulations. There are five different choices in the ‘viscosity and turbulent’ option, in the viscosity flow and Renormalized Group (RNG) model. Then a dynamical model is selected as the second option, the ‘gravity and non-inertial reference frame’. Only the z-component was inputted as a negative 9.81 m/s2 and this value represents gravitational acceleration but in the same option the x and y components will be zero. Air entrainment is selected. Finally, in the drift-flux model, the density of phase one is input as (water) 1,000 kg/m3 and the density of phase two (air) as 1.225 kg/m3. Minimum volume fraction of phase one is input equal to 0.1 and maximum volume fraction of phase two to 1 to allow air concentration to reach 90%, then the option allowing gas to escape at free surface is selected, to obtain closer simulation.
The flow domain is divided into small regions relatively by the mesh in Flow-3D numerical model. Cells are the smallest part of the mesh, in which flow characteristics such as air concentration, velocity and dynamic pressure are calculated. The accuracy of the results and simulation time depends directly on the mesh block size so the cell size is very important. Orthogonal mesh was used in cartesian coordinate systems. A smaller cell size provides more accuracy for results, so we reduced the number of cells whilst including enough accuracy. In this study, the size of cells in x, y and z directions was selected as 0.015 m after several trials.
Figure 3 shows the 3D computational domain model 50–18.6 slope change, that is 6.0 m length, 0.50 m width and 4.23 m height. The 3D model of the computational domain model 50–30 slope changes this to 6.0 m length, 0.50 m width and 5.068 m height and the size of meshes in x, y, and z directions are 0.015 m. For the 50–18.6 slope change model: both total number of active and passive cells = 4,009,952, total number of active cells = 3,352,307, include real cells (used for solving the flow equations) = 3,316,269, open real cells = 3,316,269, fully blocked real cells equal to zero, external boundary cells were 36,038, inter-block boundary cells = 0 (Flow-3D report). For 50–30 slope change model: both total number of active and passive cells = 4,760,002, total number of active cells equal to 4,272,109, including real cells (used for solving the flow equations) were 3,990,878, open real cells = 3,990,878 fully blocked real cells = zero, external boundary cells were 281,231, inter-block boundary cells = 0 (Flow-3D report).
Figure3 The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.
The 3D computational domain model (50–18.6) slope change, and boundary condition for (50–30 slope change) model.
When solving the Navier-Stokes equation and continuous equations, boundary conditions should be applied. The most important work of boundary conditions is to create flow conditions similar to physical status. The Flow-3D software has many types of boundary condition; each type can be used for the specific condition of the models. The boundary conditions in Flow-3D are symmetry, continuative, specific pressure, grid overlay, wave, wall, periodic, specific velocity, outflow, and volume flow rate.
There are two options to input finite flow rate in the Flow-3D software either for inlet discharge of the system or for the outlet discharge of the domain: specified velocity and volume flow rate. In this research, the X-minimum boundary condition, volume flow rate, has been chosen. For X-maximum boundary condition, outflow was selected because there is nothing to be calculated at the end of the flume. The volume flow rate and the elevation of surface water was set for Q = 0.1 and 0.235 m3/s respectively (Figure 2).
The bottom (Z-min) is prepared as a wall boundary condition and the top (Z-max) is computed as a pressure boundary condition, and for both (Y-min) and (Y-max) as symmetry.
The air concentration distribution profiles in two models of stepped spillway were obtained at an acquisition time equal to 25 seconds in skimming flow for both upstream and downstream of a slope change 50°–18.6° and 50°–30° for different discharge as in Table 2, and as shown in Figure 4 for 50°–18.6° slope change and Figure 5 for 50°–30° slope change configuration for dc/h = 4.6. The simulation results of the air concentration are very close to the experimental results in all curves and fairly close to that predicted by the advection-diffusion model for the air bubbles suggested by Chanson (1997) on a constant sloping chute.
Figure 4
Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
VIEW LARGEDOWNLOAD SLIDE
Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
Experimental and simulated air concentration distribution for steps number −5, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 4.6.
Figure5 Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.
Experimental and simulated air concentration distribution for steps number −5, +1, +5, +11, +19 and +22 along the 50°–30° slope change, for dc/h = 4.6.
Figure 6 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.
Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5, +8, +11 and +15 along the 50°–18.6° slope change for dc/h = 2.6.
Figure 7 Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.
Experimental and simulated dimensionless velocity distribution for steps number −5, −1, +1, +5. +11, +15 and +22 along the 50°–30° slope change for dc/h = 2.6.
But as is shown in all above mentioned figures it is clear that at the pseudo-bottom the CFD results of air concentration are less than experimental ones until the depth of water reaches a quarter of the total depth of water. Also the direction of the curves are parallel to each other when going up towards the surface water and are incorporated approximately near the surface water. For all curves, the cross-section is separate between upstream and downstream steps. Therefore the (-) sign for steps represents a step upstream of the slope change cross-section and the (+) sign represents a step downstream of the slope change cross-section.
The dimensionless velocity distribution (V/V90) profile was acquired at an acquisition time equal to 25 seconds in skimming flow of the upstream and downstream slope change for both 50°–18.6° and 50°–30° slope change. The simulation results are compared with the experimental ones showing that for all curves there is close similarity for each point between the observed and experimental results. The curves increase parallel to each other and they merge near at the surface water as shown in Figure 6 for slope change 50°–18.6° configuration and Figure 7 for slope change 50°–30° configuration. However, at step numbers +1 and +5 in Figure 7 there are few differences between the simulated and observed results, namely the simulation curves ascend regularly meaning the velocity increases regularly from the pseudo-bottom up to the surface water.
Figure 8 (50°–18.6° slope change) and Figure 9 (50°–30° slope change) compare the simulation results and the experimental results for the presented dimensionless dynamic pressure distribution for different points on the stepped spillway. The results show a good agreement with the experimental and numerical simulations in all curves. For some points, few discrepancies can be noted in pressure magnitudes between the simulated and the observed ones, but they are in the acceptable range. Although the experimental data do not completely agree with the simulated results, there is an overall agreement.
Figure 8 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 +3 and +20 on the horizontal step faces of 50°–18.6° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Figure 9 Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
Comparison between simulated and experimental results for the dimensionless pressure for steps number −1, −2, −3 and +1, +2 and +30, +31 on the horizontal step face of 50°–30° slope change configuration, for dc/h = 4.6, x is the distance from the step edge.
The pressure profiles were acquired at an acquisition time equal to 70 seconds in skimming flow on 50°–18.6°, where p is the measured dynamic pressure, h is step height and ϒ is water specific weight. A negative sign for steps represents a step upstream of the slope change cross-section and a positive sign represents a step downstream of the slope change cross-section.
Figure 10 shows the experimental streamwise development of dimensionless pressure on the 50°–18.6° slope change for dc/h = 4.6, x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute compared with the numerical simulation. It is obvious from Figure 10 that the streamwise development of dimensionless pressure before slope change (steps number −1, −2 and −3) both of the experimental and simulated results are close to each other. However, it is clear that there is a little difference between the results of the streamwise development of dimensionless pressure at step numbers +1, +2 and +3. Moreover, from step number +3 to the end, the curves get close to each other.
Figure 10 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.
Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–18.6° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.3 on 18.6° sloping chute.
Figure 11 compares the experimental and the numerical results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute. It is apparent that the outcomes of the experimental work are close to the numerical results, however, the results of the simulation are above the experimental ones before the slope change, but the results of the simulation descend below the experimental ones after the slope change till the end.
Figure 11 Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.
Comparison between experimental and simulated results for the streamwise development of the dimensionless pressure on the 50°–30° slope change, for dc/h = 4.6, and x/l = 0.35 on 50° sloping chute and x/l = 0.17 on 30° sloping chute.
In this research, numerical modelling was attempted to investigate the effect of abrupt slope change on the flow properties (air entrainment, velocity distribution and dynamic pressure) over a stepped spillway with two different models and various flow rates in a skimming flow regime by using the CFD technique. The numerical model was verified and compared with the experimental results of Ostad Mirza (2016). The same domain of the numerical model was inputted as in experimental models to reduce errors as much as possible.
Flow-3D is a well modelled tool that deals with particles. In this research, the model deals well with air entrainment particles by observing their results with experimental results. And the reason for the small difference between the numerical and the experimental results is that the program deals with particles more accurately than the laboratory. In general, both numerical and experimental results showed that near to the slope change the flow bulking, air entrainment, velocity distribution and dynamic pressure are greatly affected by abrupt slope change on the steps. Although the extent of the slope change was relatively small, the influence of the slope change was major on flow characteristics.
The Renormalized Group (RNG) model was selected as a turbulence solver. For 3D modelling, orthogonal mesh was used as a computational domain and the mesh grid size used for X, Y, and Z direction was equal to 0.015 m. In CFD modelling, air concentration and velocity distribution were recorded for a period of 25 seconds, but dynamic pressure was recorded for a period of 70 seconds. The results showed that there is a good agreement between the numerical and the physical models. So, it can be concluded that the proposed CFD model is very suitable for use in simulating and analysing the design of hydraulic structures.
이 연구에서 수치 모델링은 두 가지 다른 모델과 다양한 유속을 사용하여 스키밍 흐름 영역에서 계단식 배수로에 대한 유동 특성 (공기 혼입, 속도 분포 및 동적 압력)에 대한 급격한 경사 변화의 영향을 조사하기 위해 시도되었습니다. CFD 기술. 수치 모델을 검증하여 Ostad Mirza (2016)의 실험 결과와 비교 하였다. 오차를 최대한 줄이기 위해 실험 모형과 동일한 수치 모형을 입력 하였다.
Flow-3D는 파티클을 다루는 잘 모델링 된 도구입니다. 이 연구에서 모델은 실험 결과를 통해 결과를 관찰하여 공기 혼입 입자를 잘 처리합니다. 그리고 수치와 실험 결과의 차이가 작은 이유는 프로그램이 실험실보다 입자를 더 정확하게 다루기 때문입니다. 일반적으로 수치 및 실험 결과는 경사에 가까워지면 유동 벌킹, 공기 혼입, 속도 분포 및 동적 압력이 계단의 급격한 경사 변화에 크게 영향을받는 것으로 나타났습니다. 사면 변화의 정도는 상대적으로 작았지만 사면 변화의 영향은 유동 특성에 큰 영향을 미쳤다.
Renormalized Group (RNG) 모델이 난류 솔버로 선택되었습니다. 3D 모델링의 경우 계산 영역으로 직교 메쉬가 사용되었으며 X, Y, Z 방향에 사용 된 메쉬 그리드 크기는 0.015m입니다. CFD 모델링에서 공기 농도와 속도 분포는 25 초 동안 기록되었지만 동적 압력은 70 초 동안 기록되었습니다. 결과는 수치 모델과 물리적 모델간에 좋은 일치가 있음을 보여줍니다. 따라서 제안 된 CFD 모델은 수력 구조물의 설계 시뮬레이션 및 해석에 매우 적합하다는 결론을 내릴 수 있습니다.
Prepared byGlenn R. WendelSteven T. GreenRussell C. Burkey
Abstract:
차량 동력학의 컴퓨터 시뮬레이션은 차량 설계에서 귀중한 도구가 되었다. 그러나 그들은 차량의 탱크에서 유체 슬로싱의 복잡한 역학을 정확하게 시뮬레이션할 수 없다.
유체 슬로쉬를 예측할 수 있는 컴퓨터 유체역학 CFD 분석 소프트웨어를 이용할 수 있지만, 군용 차량 애플리케이션용 유체 슬로쉬를 정확하게 예측하는데 이 소프트웨어의 사용은 입증되지 않았다. 이것은 차량 역학 분석과 결합된 CFD 분석의 사용을 개발 및 입증하여 유체 수송 시스템의 역학을 보다 정확하게 예측하는 다중 효소 프로그램의 첫 번째 단계다.
이 단계의 목적은 일반적인 기동에 직면한 차량의 움직임에 따른 탱크에서 슬로시 역학을 예측하는 CFD 분석을 검증하는 것이다. 이를 위해, 5톤 FMTV 트럭을 시뮬레이션하는 시험 설비뿐만 아니라, 1/4 규모의 TOD 탱크 모델이 건설되었다. CFD 분석과 실험실 시험의 반응력과 유동 운동을 차선 변경과 요철을 포함한 6가지 모의 차량 기동에서 비교했다.
CFD 분석은 상용 소프트웨어 패키지인 FLOW-3D-로 수행되었다. 테스트 탱크의 해당 측정값과 비교하기 위해 빈 탱크의 강체 동적 해석의 힘과 모멘트 예측에 순유체 힘과 모멘트 예측이 추가되었다.
전반적으로, 그 결과는 CFD가 트럭에 탑재된 수상 수송 탱크의 유체 운동 및 유체 구조 상호작용 연구에 성공적으로 적용될 수 있음을 보여준다. 예측된 롤 모멘트와 측정된 롤 모멘트 사이에는 좋은 상관관계가 있다.
여기에 제시된 CFD 시뮬레이션의 빠른 전환 시간을 감안할 때, 전술에 대한 전체 차량 반응의 높은 충실도 시뮬레이션을 위해 차량 강체 차체 동적 분석을 유체 역학 분석과 결합하는 것이 바람직하다는 전망이 나온다.
Computer simulation of vehicle dynamics has become a valuable tool in the design of vehicles. They are, however, unable to accurately simulate the complex dynamics of fluid sloshing in a tank on the vehicle. Computational Fluid Dynamics CFD analysis software is available that can predict fluid slosh, however, the use of this software in accurately predicting fluid slosh for a military vehicle application has not been demonstrated. This is the first phase of a multiphase program to develop and demonstrate the use of CFD analysis, coupled with vehicle dynamics analysis, to more accurately predict the dynamics of a fluid transport system. The objective of this phase is to validate the CFD analysis in predicting slosh dynamics on a tank subjected to motions of a vehicle encountering typical maneuvers. To accomplish this, a one-quarter-scale model of a TOLD tank was constructed, as well as a test fixture to simulate a five-ton FMTV truck. The reaction forces and the fluid motions of the CFD analysis and the laboratory test were compared for six simulated vehicle maneuvers including lane changes and bumps. The CFD analysis was conducted with the commercially available software package, FLOW-3D-. The net fluid force and moment predictions were added to the force and moment predictions of a rigid body dynamic analysis of the empty tank alone to compare to the corresponding measured values for the test tank. Overall, the results show that CFD can successfully be applied to the study of fluid motions and the fluid- structure interactions in truck-mounted water transport tanks. There is good correlation between the predicted and measured roll moment. Given the rapid turnaround time for the CFD simulations presented here, the outlook is encouraging for coupling a vehicle rigid body dynamics analysis to a fluid dynamics analysis for a high fidelity simulation of the complete vehicle response to maneuvers.
CFD 분석과 실험실 테스트의 작용력과 유체 운동은 다음과 같은 시뮬레이션 된 차량 기동에 대해 비교되었습니다.
AVTP Lane Change at 20 mph
AVTP Lane Change at 40 mph
9” Half-Round Symmetric Bump at 10 mph
12” Half-Round Symmetric Bump at 5 mph
9” Trapezoidal Asymmetric Bump at 15 mph
12” Trapezoidal Asymmetric Bump at 10 mph
CFD 분석은 상용 소프트웨어 패키지 FLOW-3D를 사용하여 수행되었습니다.
Rear Axle Roll Moment, 40-mph Lane Change.Figure 2.1. Test Setup.The test setup consists of a clear plastic scale model tank attached to a rigid aluminum frame by three multi-axis load cells driven by a position-controlled servo hydraulic system.(Data acquisition cabling removed for clarity).Figure 2.2. Test Setup Drawing.The load cell locations and the coordinate systems used in the testing and analysis are defined as shown.Figure 3.1. Computational Mesh DefinitionFigure 3.2. Rear Axle Roll Moment, 20-mph Lane ChangeFigure 3.3. Rear Axle Roll Moment, 40-mph Lane ChangeFigure 3.4. Rear Axle Roll Moment, 9” Trapezoidal Bump at 15 mphFigure 3.5. Rear Axle Roll Moment, 12” Trapezoidal Bump at 10 mphFigure 3.8. Fluid Configuration for 20-mph Lane Change.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction. Theinset in the video image is viewing the tank from the left side of the vehicle.Figure 3.9. Fluid Configuration for 12” Trapezoidal Bump at 10 mph.The viewpoint in these images is from the front of the vehicle looking in the negative y-direction. Theinset in the video image is viewing the tank from the left side of the vehicle.
REFERENCES
Abramson, H.N. [1966], The Dynamic Behavior of Liquids in Moving Containers,NASA SP-106.Flow Science, Inc. [2001], FLOW-3D, Version 8.0.1, Santa Fe, New Mexico.Working Model, Inc. [1997], Working Model 3D, Version 2.0, San Mateo, California.Coleman, H.W., Steele, W.G. [1989], Experimentation and Uncertainty Analysis forEngineers, John Wiley and Sons, New York, 1989
산업 박사 프로젝트의 초점은 주조 부품에 최종 기하학적 모양을 제공하는 모래 주형 (녹색 모래)의 생산에 집중되었습니다. 주조 부품의 고품질을 보장하기 위해서는 금형 자체의 제조 공정을 균일하고 안정적으로 제어하는 것이 중요합니다.
따라서 녹사(주물사)의 흐름과 퇴적을 특성화하고 모델링하는 방법에 대한 기본적인 이해를 얻는 것이 중요했기 때문에 모래 주형의 제조 공정 시뮬레이션에 사용할 수 있었습니다. 녹색 모래의 유동성은 모래 샷 중에 모래로 챔버를 채우는 호퍼를 통해 모래가 아래로 흐를 때 중요합니다.
녹색 모래의 유동성은 주로 물과 벤토나이트의 양에 의해 좌우되며 둘 다 감소 시킵니다. 따라서 유동성과 내부 힘은 리브 및 기타 기하학적 장애물로 인한 그림자가 있을 수 있는 복잡한 금형 형상을 얼마나 잘 채울 수 있는지 제어합니다.
흐름이 조기에 중단되면 금형이 완전히 채워지지 않거나 재료 밀도의 변동이 너무 높아 주조 부품의 최종 표면에 영향을 미칠 수 있습니다. 벤토나이트에 의해 생성된 습식 다리는 벤토나이트와 물이 녹색 모래를 매우 응집력 있게 만드는 모래 알갱이를 서로 달라붙게 하고 혼합물을 짜 냄으로써 주조 공정을 위한 강력한 금형을 얻기 위해 금형을 안정시키는 기계적 특성을 얻습니다.
따라서 생사 유동성은 챔버의 적절한 충진을 위해 샌드 샷 중에 중요하며, 후속적으로 압착 공정 동안의 견고한 기계적 특성은 금형의 최종 강도에 중요합니다. 이는 이러한 기계적 거동이 역 관계를 갖기 때문에 문제가 됩니다.
예를 들어 녹색 모래가 너무 건조하면 녹색 모래의 유동성이 매우 높고,특정 수분 함량 수준에 따라 곰팡이의 강도가 낮고 그 반대도 마찬가지입니다. 따라서 정확한 생사 상태를 확보하고 샌드 샷 중에 금형 충진을 개선하는 것이 매우 중요합니다.
이산 요소 방법 (DEM)은 방법의 이산적인 특성이 녹색 모래의 입상 구조를 잘 모의하기 때문에 수치 모델로 선택되었습니다. DEM 모델은 롤링 저항 모델을 사용하여 비 구형 석영 모래 입자의 롤링 저항을 에뮬레이션하고 응집성 모델을 사용하여 벤토나이트에서 석영 모래 입자의 결합을 에뮬레이트합니다.
그린 샌드는 항복 궤적이 발견된 링 전단 테스터로 특성화되었으며 유동성을 정의하는 새로운 방법이 제안 되었습니다. 링 전단 시험기는 DEM 모델의 정적 마찰 계수를 얻기 위해 사용되었습니다.
측정된 높이에서 녹색 모래의 단순한 기계적 거동을 조사하기 위해 모래 더미 실험이 사용되었습니다. 이 높이에서 DEM 모델은 구름 저항 값을 얻고 응집 모델에서 매개 변수를 얻는 것과 관련하여 보정 되었습니다.
이 프로젝트는 DISAMATIC 공정에서 샌드 샷을 사용하여 모래 주형을 생산하는 동안 모래 입자의 흐름과 모래 퇴적을 처리했습니다. 챔버의 녹색 모래 퇴적은 캐비티 내부에 통풍구가 배치된 특수 캐비티 설계로 조사되었습니다.
에어 벤트는 샌드 샷 중에 공기 흐름과 함께 녹색 모래를 운반하는 데 사용됩니다. 챔버와 캐비티의 에어 벤트 설정을 변경함으로써 캐비티 설계에서 좁은 통로의 충진을 개선하여 최종 샌드 몰드도 개선 할 수 있었습니다.
캐비티 디자인을 사용한 샌드 샷은 챔버의 공기 흐름과 통풍구를 통한 공기 흐름을 모델링하기 위해 고전적인 전산 유체 역학 (CFD)과 결합 된 녹색 모래의 흐름을 모델링하는 이산 요소 방법 (DEM)으로 시뮬레이션되었습니다.
이러한 실험과 시뮬레이션은 DISAMATIC 프로세스와이를 개선하는 방법에 대한 유익한 통찰력을 제공했습니다. 또한 유동층을 사용하여 생사의 유동화 특성을 조사하고 새로 개발 된 Anton Paar Powder Cell을 사용하여 유동 점도를 얻었습니다.
상업적 측면 특수 설계된 캐비티 지오메트리에서 그린 샌드로 몰드 챔버를 채우는 것에 대한 지식을 얻었습니다. 에어 탱크에 초기에 적용된 공기 압력과 함께 에어 벤트의 설정은 캐비티의 충진을 개선하여 최종 금형을 개선하는 데 유용한 아이디어를 제공했습니다.
또한, 결합 된CFD-DEM 모델을 사용하여 STAR-CCM +의 상용 소프트웨어를 적용하여 형상의 3D 슬라이스 표현으로 프로세스를 성공적으로 시뮬레이션 할 수있었습니다. 따라서 향후 DISAMATIC 프로세스를 시뮬레이션하기 위한 독립형 코드를 개발하는 것이 더 가능해집니다. DISAMATIC 프로세스의 샌드 샷은 링 전단 테스터가 다음의 견고한 기계적 거동을 나타낼 수 있는 연속체 모델로 모델링 될 수도 있습니다.
Figure 1.1: The DISAMATIC process: 1. The sand shot. 2. Squeezing the mold. 3.
Moving the mold to the chamber front and stripping off the swing plate (SP). 4. Mold
close-up where the pressure plate (PP) pushes the mold out of the molding chamber. 5.
Stripping off the PP where the PP is stripped from the mold and returns to its starting
position in the molding chamber. 6. Closing the molding chamber and repeating a new
cycle. The edited figure and text are from [8]Figure 2.1: The green sand mixture. The figure is from [8]Figure 2.2: The size distribution of the green sand applied in the project. The figure is
from [9]Figure 2.3: The wet bridges created in the bentonite from the water make the bentonite cohesive and thereby the sand grains will stick togetherFigure 2.11: The density as a function of compactability with respect to the number of
rammings 1-10. The first ramming starts from the left indicated by the number. The cross
placed in the middle shows the average value of the batches with an individual color. The
dotted lines are the standard deviations of compactability % as a horizontal line and the
standard deviations of density [ kg
m3 ] as a vertical line.Figure 2.12: (Top) The sequence in the DISAMATIC process (1)-(5). (Middle) The
performed experiments placed on the Mohr circle (I)-(V). (Bottom) The five names of the
mechanical behaviours.Figure 2.13: The high load flow in the DISAMATIC process and the ring shear test placed
on the Mohr circleFigure 2.27: (Left side) The low load flow in the DISAMATIC process. (Right side) The
performed experiments placed on the Mohr circle.
이 논문에서는 시멘트와 충전제의 비 중복 입자 분포를 사용하여 유변학에 대한 분쇄 모래 충전제의 형상 효과를 분리했습니다. 실험 결과는 필러의 종횡비가 증가함에 따라 매트릭스의 유동성이 감소하고 두 종류의 필러에 따라 최대 부피 분율 임계 값이 다양 함을 보여주었습니다. DEM 모델을 사용하여 슬럼프 흐름 테스트를 시뮬레이션하고 실험 결과의 10 % 이내 인 수치 예측을 얻었습니다. 불일치로 인해 모델에 의해 부피 분율 임계 값이 약간 검증되었습니다. 그럼에도 불구하고 수치 결과는 유망 해 보이며 우리는 이산화를 개선하고 다른 상호 작용 모델을 탐색하여 DEM 모델을 추가로 개발할 계획입니다.
CFD (전산 유체 역학) 전문가가 필요하고 때로는 실행하는데 몇 주가 걸리는 믹싱 시뮬레이션의 시대는 오래 전입니다. 컴퓨팅 및 관련 기술의 엄청난 도약에 힘 입어 Ansys, Comsol 및 Flow Science와 같은 회사는 엔지니어의 데스크톱에 사용하기 쉬운 믹싱 시뮬레이션을 제공하고 있습니다.
“병렬화 및 고성능 컴퓨팅의 발전과 템플릿화는 비전문 화학 엔지니어에게 정확한 CFD 시뮬레이션을 제공했습니다.”라고 펜실베이니아 주 피츠버그에있는 Ansys Inc.의 수석 제품 마케팅 관리자인 Bill Kulp는 말합니다 .
흐름 개선을위한 실용적인 지침이 필요하십니까? 다운로드 화학 처리의 eHandbook을 지금 흐름 도전 싸우는 방법!
예를 들어, 회사는 휴스턴에있는 Nalco Champion과 함께 프로젝트를 시작했습니다. 이 프로젝트는 시뮬레이션 전문가가 아닌 화학 엔지니어에게 Ansys Fluent 및 ACT (분석 제어 기술) 템플릿 기반 시뮬레이션 앱에 대한 액세스 권한을 부여합니다. 새로운 화학 물질을위한 프로세스를 빠르고 효율적으로 확장합니다.
Giving Mixing Its Due
“화학 산업은 CFD와 같은 계산 도구를 사용하여 많은 것을 얻을 수 있지만 혼합 프로세스는 단순하다고 가정하기 때문에 간과되는 경우가 있습니다. 그러나 최신 수치 기법을 사용하여 우수한 성능을 달성하는 흥미로운 방법이 많이 있습니다.”라고 Flow Science Inc. , Santa Fe, NM의 CFD 엔지니어인 Ioannis Karampelas는 말합니다 .
이러한 많은 기술이 회사의 Flow-3D Multiphysics 모델링 소프트웨어 패키지와 전용 포스트 프로세서 시각화 도구 인 FlowSight에 포함되어 있습니다.
“모든 상업용 CFD 패키지는 어떤 형태의 시각화 도구와 번들로 제공되지만 FlowSight는 매우 강력하고 사용하기 쉽고 이해하기 쉽게 설계되었습니다. 예를 들어, 프로세스를 재 설계하려는 엔지니어는 다양한 설계 변경의 효과를 평가하기 위해 매우 직관적인 시각화 도구가 필요합니다.”라고 그는 설명합니다.
이 접근 방식은 실험 측정을 얻기 어려운 공정 (예 : 쉽게 측정 할 수없는 매개 변수 및 독성 물질의 존재로 인해 본질적으로 위험한 공정)을 더 잘 이해하고 최적화하는데 특히 효과적입니다.
동일한 접근 방식은 또한 믹서 관련 장비 공급 업체가 고객 요구에 맞게 제품을보다 정확하게 개발하고 맞춤화하는 데 도움이되었습니다. “이는 불필요한 프로토 타이핑 비용이나 잠재적 인 과도한 엔지니어링을 방지합니다. 두 가지 모두 일부 공급 업체의 문제였습니다.”라고 Karampelas는 말합니다.
CFD 기술 자체는 계속해서 발전하고 있습니다. 예를 들어, 수치 알고리즘의 관점에서 볼 때 구형 입자의 상호 작용이 열 전달을 적절하게 모델링하는 데 중요한 다양한 문제에 대해 이산 요소 모델링을 쉽게 적용 할 수있는 반면, LES 난류 모델은 난류 흐름 패턴을 정확하게 시뮬레이션하는 데 이상적입니다.
컴퓨팅 리소스에 대한 비용과 수요에도 불구하고 Karampelas는 난류 모델의 전체 제품군을 제공 할 수있는 것이 중요하다고 생각합니다. 특히 LES는 이미 대부분의 학계와 일부 산업 (예 : 전력 공학)에서 선택하는 방법이기 때문입니다. .
그럼에도 불구하고 CFD의 사용이 제한적이거나 비실용적 일 수있는 경우는 확실히 있습니다. 여기에는 나노 입자에서 벌크 유체 증발을 모델링하는 것과 같이 관심의 규모가 다른 규모에 따라 달라질 수있는 문제와 중요한 물리적 현상이 아직 알려지지 않았거나 제대로 이해되지 않았거나 아마도 매우 복잡한 문제 (예 : 모델링)가 포함됩니다. 음 펨바 효과”라고 Karampelas는 경고합니다.
반면에 더욱 강력한 하드웨어와 업데이트 된 수치 알고리즘의 출현은 CFD 소프트웨어를 사용하여 과다한 설계 및 최적화 문제를 해결하기위한 최적의 접근 방식이 될 것이라고 그는 믿습니다.
“복잡한 열교환 시스템 및 새로운 혼합 기술과 같이 점점 더 복잡한 공정을 모델링 할 수있는 능력은 가까운 장래에 가능할 수있는 일을 간단히 보여줍니다. 수치적 방법 사용의 주요 이점은 설계자가 상상력에 의해서만 제한되어 소규모 믹서에서 대규모 반응기 및 증류 컬럼에 이르기까지 다양한 화학 플랜트 공정을 최적화 할 수있는 길을 열어 준다는 것입니다. 실험적 또는 경험적 접근 방식은 항상 관련성이 있지만 CFD가 미래의 엔지니어를위한 선택 도구가 될 것이라고 확신합니다.”라고 그는 결론을 내립니다.
Tien-Li Chang a,*, Jung-Chang Wang b , Chun-Chi Chen c , Ya-Wei Lee d , Ta-Hsin Chou a a Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Rm. 125, Building 22, 195 Section 4, Chung Hsing Road, Chutung, Hsinchu 310, Taiwan, ROC bDepartment of Manufacturing Research and Development, ADDA Corporation, Taiwan cNational Nano Device Laboratories, Taiwan d Research and Development Division, Ordnance Readiness Development Center, Taiwan
Abstract
이 연구는 나노 임프린트 공정에서 Ni 몰드 스탬프와 PMMA (폴리 메틸 메타 크릴 레이트) 기판 사이의 접착 방지 층으로서 새로운 재료를 제시합니다. 폴리 벤족 사진 ((6,6′-bis (2,3-dihydro3-methyl-4H-1,3-benzoxazinyl))) 분자 자기 조립 단층 (PBO-SAM)은 점착 방지 코팅제로 간주되어 불소 함유 화합물은 Ni / PMMA 기판의 나노 임프린트 공정을 개선 할 수 있습니다. 이 작업에서 나노 구조 기반 Ni 스탬프와 각인 된 PMMA 몰드는 각각 전자빔 석판화 (EBL)와 수제 나노 임프린트 장비에 의해 수행됩니다. 제작 된 나노 패턴의 형성을 제어하기 위해 시뮬레이션은 HEL (hot embossing lithography) 공정 동안 PBO-SAM / PMMA 기판의 변형에 대한 온도 분포의 영향을 분석 할 수 있습니다. 여기서 기둥 패턴의 직경은 Ni 스탬프 표면에 200nm 및 400nm 피치입니다. 이 적합성 조건에서 소수성 PBO-SAM 표면을 기반으로하여 Ni 몰드 스탬프의 결과는 품질 및 수량 제어에서 90 % 이상의 개선을 추론합니다.
Introduction
나노 임프린트 리소그래피 (NIL)는 초 미세 패터닝 기판 기술을 대량 생산할 수있는 가장 큰 잠재력입니다 [1,2]. 최근에는 광전자 장치 [3], 양자 컴퓨팅 장치 [4], 바이오 센서 [5] 및 전자 장치 [6]에 요구 될 수있는 NEMS / MEMS 기술의 빠른 개발이 이루어지고 있습니다.
따라서 기존의 포토 리소 그래프는 할당에 적합한 방법이 아닐 수 있습니다 [7]. X 선, 이온빔, 전자빔 리소그래피의 경우 LCD의 도광판 초박막 판과 같은 대 면적 패턴 제작에 적합하지 않습니다. 제어하기 어렵습니다. 일부 제작된 문제를 기반으로 NIL 프로세스는 재료, 패턴 크기, 구조 및 기판 지형면에서 유연성을 제공합니다 [8].
오늘날 NIL 제조 방법은 낮은 비용과 높은 처리량의 높은 패터닝 해상도의 조합으로 학제 간 나노 스케일 연구 및 상용 제품의 새로운 문을 열 수 있는 큰 관심을 받고 있습니다. 그러나 이 나노 임프린트 기술이 산업 규모 공정을 위해 충분히 성숙하기 전에 몇 가지 응용 문제를 해결해야 합니다.
각인된 몰드 공정은 종종 고온 (폴리머의 유리 전이 온도에 대해> 100oC)과 고압 (> 100bar)에서 수행되기 때문에 분명히 바람직하지 않습니다. 가열 및 냉각 공정의 열주기는 금형 및 각인 된 기판의 왜곡을 유발할 수 있습니다. 한 가지 특별한 문제는 스탬프와 폴리머 사이의 접착 방지 층 처리를 제어하여 기계적 결함이 임프린트 품질과 스탬프 수명에 영향을 미칠 수있는 중요한 패턴 결함이되는 것을 방지하는 것입니다.
Schift et al. 플루오르화 트리클로로 실란을 마이크로 미터 체제에서 실리콘에 대한 접착 방지 코팅으로 사용하는 것으로 입증되었습니다 [9]. 또한 Park et al. Ni 몰드 스탬프에 더 나은 접착 방지 코팅 공정을 달성하기 위해 불소화 실란제를 사용했습니다 [10].
그러나 지금까지 Ni 스탬프에 대한 접착 방지 코팅 처리의 NIL 공정에서 비 불소 물질에 대한 시도는 거의 이루어지지 않았습니다. 우리의 생활 환경은 그것을 유지하기 위해 불소가 아닌 물질이 필요합니다. 또한 Ni 계 소재의 부드러운 특성을 바탕으로 가장 중요한 롤러 나노 임프린트 기술을 개발할 수 있습니다.
본 연구의 목적은 Ni 스탬프와 PMMA 기판 사이의 점착 방지 코팅제로 PBO-SAM을 개발하여 나노 제조 기술, 즉 NIL을 향상시키는 것입니다.
Experiment
먼저 4,4′- 이소 프로필 리 덴디 페놀 (비스페놀 -A, BA-m), 포름 알데히드 및 메틸 아민을 반응시켜 폴리 벤족 사진을 제조 하였다. 미국 Aldrich Chemical company, Inc.에서 구입 한 모든 화학 물질. 합성 과정에서 포름 알데히드/디 옥산 및 메틸 아민 / 디 옥산 물질을 10 o C에서 항아리에서 10분 동안 측정하는 벤족 사진 단량체가 필요했습니다.
디 에틸 에테르를 기화시킨 후, 벤족 사진 전구체가 완성되었다. benzoxazine 전구체를 140 o C에서 1 시간 동안 가열하면 BA-m 폴리 벤족 사진을 얻을 수 있습니다. 다음으로 4 인치입니다.
이 연구에서는 p 형 Si (10 0) 웨이퍼를 사용할 수 있습니다. SiO2 기반 Ni (원자량 5.87g / mole) 기판의 제조를 위해 Ti (5nm) 및 SiO2 (20nm)를 순차적으로 증착 한 후 O2- 플라즈마 처리를 수행했습니다. Ni 기판과 SiO2 층 사이의 접착력을 높이기 위해 Ti 중간층이 사용되었습니다. 아세톤, 이소프로판올 및 탈 이온수를 사용하여 세척 한 후 샘플을 포토 레지스트 (ZEP520A-7, Nippon Zeon Co., Ltd.)로 스핀 코팅했습니다.
Fig. 1. Schematic diagram of nanostructures using NIL process: (A) EBL equipment for fabricated mold stamp. (B) HEL equipment for nanoimprint pattern with computer
controlled electronics. (C) A nickel-based pillar mold can imprint into a PBO-SAM polymer resist layer; afterward, the mold removal and pattern transfer are based on
anisotropic etching to remove reside.
마스터 몰드는 그림 1 (A)에서 Ni 필름의 반응성 이온 에칭 (RIE)과 함께 Crestec CABL8210 전자 빔 직접 쓰기 도구 (30 keV, 100 pA)를 사용하여 제작되었습니다. 그런 다음 시뮬레이션된 결과는 NIL 프로세스에서 엠보싱 압력으로 기계적 고장의 효과를 제공할 수 있으며, 이는 우리가 원하는 나노 패턴 설계 및 연구에 도움이 될 수 있습니다.
PBOSAM / PMMA 기판 모델의 변형은 3 차원 접근법에 기반한 유한 체적 방법 (FVM)을 통해 예측할 수 있습니다. Navier-Stokes 방정식 [11]에서 압력과 속도 사이의 결합은 SIMPLE 알고리즘을 사용하여 이루어집니다. 2 차 상향 이산화 방식은 대류 플럭스 및 운동량의 확산 플럭스, 유체의 질량 분율에 대한 중심 차이 방식에 대해 구현됩니다. 완화 부족 요인의 일반적인 값은 0.5입니다.
수렴 기준이 1105로 설정된 연속성을 제외한 모든 변수에 대해 잔차가 1103 미만인 경우 솔루션이 수렴된 것으로 간주됩니다. 여기서 각인된 나노 패턴은 그림 1 (B)와 같이 수제 장비에서 수행한 HEL 공정을 통해 사용할 수 있습니다. PBO-SAM 코팅 방법으로 HEL 절차를 활용 한 나노 패턴의 제작은 그림 1 (C)에 개략적으로 표시되었습니다.
200nm의 얇은 PMMA 필름 (분자량 15kg / mole)을 SiO2 기판에 스핀 코팅 한 후 160oC에서 30 분 동안 핫 플레이트에서 베이킹했습니다. 또한 PBO-SAM 코팅은 접착 방지제입니다. CVD 공정에 의해 증착되었습니다. 마스터는 150oC 및 50bar에서 10 분 동안 PBO-SAM / PMMA 기판 필름에 엠보싱하여 복제되었습니다.
마지막으로, 엠보싱 된 나노 구조물의 바닥에 남아 있던 PBO-SAM / PMMA 층은 RIE 처리로 제거되었습니다. 각 임프린트 후 스탬프 및 기판의 품질이 제작 된 후 현미경을 사용하여 관찰하고 물 접촉각 (CA) 측정을 사용하여 습윤 및 접착 특성을 알아낼 수 있습니다.
Fig. 2. FTIR absorption spectrum of polybenzoxazines indicates the vibrational
modes of molecular bonds.Fig. 3. FE-SEM micrograph of Ni stamps before imprinted PMMA substrate. The
pillar diameter is 200 nm, and its period is 400 nm.Fig. 5. Contact angles of water drops on (A) a PMMA polymer film surface, and (B) a smooth PBO-SAM coating film surfaceFig. 6. Simulation of Ni stamps and PBO-SAM/PMMA substrate in NIL process: (A) A
nanoimprint system geometry, and (B) its grid plot.Fig. 7. Simulation results of temperature distribution between Ni stamps and
PBO-SAM/PMMA substrate in NIL process: (A) stamp cross-sectional, (B) PMMA
substrate cross-sectional, (C) 3-dimensional and (D) intrinsic 3-dimensional views,
respectively. The study of computed condition in nanoimprint process is at 150 o
C
and 50 bar during 10 min. Note that for NIL experimental parameters, the simulated
results have already decided before doing nanoimprint experiment.
References
[1] M.D. Austin, H.X. Ge, W. Wu, M.T. Li, Z.N. Yu, D. Wasserman, S.A. Lyon, S.Y. Chou, Nature 417 (2002) 835. [2] S.Y. Chou, C. Keimel, J. Gu, Appl. Phys. Lett. 84 (2004) 5299. [3] Q. Wang, G. Farrell, P. Wang, G. Rajan, T. Thomas, Sensor Actuator A 134 (2007) 405. [4] C. Kentsch, W. Henschel, D. Wharam, D.P. Kern, Microelectron. Eng. 83 (2006) 1753. [5] T.L. Chang, Y.W. Lee, C.C. Chen, F.H. Ko, Microelectron. Eng. 84 (2007) 1689. [6] S. Tisa, F. Zappa, A. Tosi, S. Cova, Sensor Actuator A 140 (2007) 113. [7] M. Agirregabiria, F.J. Blanco, J. Berganzo, M.T. Arroyo, A. Fullaondo, K. Mayora, J.M. Ruano-López, Lab Chip 5 (2005) 5545. [8] W. Hu, E.K.F. Yim, R.M. Reano, K.W. Leong, S.W. Pang, J. Vac. Sci. Technol. B 84 (2005) 2984. [9] H. Schift, L.J. Heyderman, C. Padeste, J. Gobrecht, Microelectron. Eng. 423 (2002) 61. [10] S. Park, H. Schift, C. Padeste, B. Schnyder, R. Kötz, J. Gobrecht, Microelectron. Eng. 73–74 (2004) 196. [11] A. Yokoo, M. Nakao, H. Yoshikawa, H. Masuda, T. Tamamura, Jpn. J. Appl. Phys. 38 (1999) 7268.
Ink-jet is part of the non impact printing that shooting the ink drop from the nozzle to paper. It is very silence and express good color. There are two types of printing that continuous and drop on demand. But drop on demand process is becoming the mainstream. these days, LCD, PDP is passed more than semiconductor industry. And we expect organic EL, FED as a next display. But product equipment, main component and technology have a gap between an advanced country and us nevertheless physical development. Expecially, previous process part is depended on imports. Ink-jet printing technology that there isn’t complicated photo lithography process is attracted, so ink-jet printing resolution is more embossed. But there were not many of ink-jet resolution thesis but ink-jet head or nozzle. Because, to out of the ink from the nozzle is unseeable and hard to experiment. Therefore this thesis was experimented and simulated how can ink-jet printer improved resolution by flow-3d simulation package program.
잉크젯은 노즐에서 종이로 잉크 방울을 분사하는 비 충격 인쇄의 일부입니다. 매우 조용하고 좋은 색상을 표현합니다. 연속 및 요청시 드롭되는 두 가지 유형의 인쇄가 있습니다. 그러나 주문형 드롭 프로세스가 주류가되고 있습니다. 요즘 LCD, PDP는 반도체 산업을 넘어서고 있습니다. 그리고 우리는 유기 EL, FED를 다음 디스플레이로 기대합니다. 그러나 제품 장비, 주요 부품 및 기술은 선진국과 우리의 물리적 발달 사이에 격차가 있습니다. 특히 이전 공정 부분은 수입품에 의존합니다. 복잡한 포토 리소그래피 공정이없는 잉크젯 프린팅 기술이 매료되어 잉크젯 프린팅 해상도가 더욱 강조됩니다. 하지만 잉크젯 해상도 논문은 많지 않고 잉크젯 헤드 나 노즐이 많았습니다. 왜냐하면 노즐에서 잉크가 빠져 나가는 것은 보이지 않고 실험하기 어렵 기 때문입니다. 따라서이 논문은 flow-3d 시뮬레이션 패키지 프로그램을 통해 잉크젯 프린터가 해상도를 향상시킬 수있는 방법을 실험하고 시뮬레이션했습니다.
국내 및 해외에 다양한 인쇄 기술이 보급되어 있는 상황에서 잉크젯 기술은 1990년대 후반부터 궤도에 올랐다. 잉크젯은 비접촉성 인쇄 기술의 하나로 인쇄 표면에 잉크 방울 들을 투사해 전자적으로 조정하기 때문에 여러 가지 장점들이 있다. 원하는 양을 원하는 때 제작 가능하고 2,400dpi이상의 높은 해상도를 가지며 잉크 방울의 크기를 조절하여 보다 정확한 이미지인 그레이 스케일 이미지를 얻을 수 있다. 따라서 사진과 같은 이미 지를 만들 수 있다. 또한 기존의 붓을 이용한 디자인에 비해 높은 해상도의 이미지를 손 쉽게 만들 수 있으므로 그래픽 디자인에 대한 적용 범위를 확장할 수 있다. 그리고 카트 리지에 저장되어 있는 잉크를 이미지에 필요한 양만큼 소비하기 때문에 생산비 절감에 유리하다. 이는 코팅 기술이 가지고 있는 원료의 소모를 획기적으로 개선할 수 있다.또 한 코팅 방법과는 달리 기판에 영향을 주지 않는다. 거칠거나 민감한 모든 종류의 표면 위에 인쇄가 가능하며, 1분당 100,000라인의 인쇄 속도로 고속 처리에 적합하다. 현재 잉 크젯 프린터의 성능을 평가하는 방법 중에 가장 기본적인 것은 해상도이다. 그렇기 때문 에 인쇄물의 해상도에서는 dpi가 무척 중요하다. dpi는 dot per inch의 약자로 1인치당 찍은 점의 수이다. dpi는 인쇄물의 해상력을 결정하는 단위이다. 예를 들어 300dpi는 1인 치에 300개의 점을 찍는 밀도로 잉크 점을 찍어 인쇄를 한다는 뜻이다. 당연히 dpi는 숫 자가 클수록 인쇄물이 더 정교해진다. 그러나 제조업체에 따라 출력 dpi 수가 다르며 요 구되는 최적의 해상도도 프린터 엔진의 특성에 따라 다르다. 일반적인 인쇄물은 200dpi 면 좋은 품질이며, 300dpi를 넘으면 매우 우수한 품질이 된다. 우리가 일상생활에서 보 는 대부분의 인쇄물은 100~300dpi 정도롤 사용한다. 잉크젯 프린터에 1,440dpi라고 쓰여 있는 것은 dot의 실질적인 것을 말하는 것이 아니라, 이상적인 종이에 잉크 방울을 려 구현할 수 있는 이론상의 수치이다. 종이에 작은 잉크 입자돌을 뿌려 번지게 하는 방법 으로 인해, 표시된 해상력만큼 재현하지 못하는 경우가 많다. 따라서 실제로는 600dpi 잉크젯 프린터라고 해도 인쇄소에서 300dpi로 출력한 것보다 품질이 떨어지기도 한다. 그러므로 좋은 품질을 얻기 위해서는 목표로 한 해상력 보다 높게 인쇄해야 하는데 그 러기 위해서는 잉크젯의 해상력에 관한 연구가 필수적이다. 잉크에서는 주로 헤드와 노즐에 관한 연구들이 많이 있지만,~9 본 논문에서는 잉크젯의 해상력에 관한 연구를 하고자 한다. 본 연구의 목적은 FLOW-3D 시뮬레이션 프로그램을 이용하여 액적의 비산 모양을 시뮬레이션 함으로서 해상력에 대한 예측을 하기 위한 것이다. 잉크 방울의 크기가 해상 력에 미친다는 것을 알고, 잉크의 물성을 변화시켜가며 액적을 줄이기 위한 시뮬레이션 을 하였다.
ZSimulation of the bubble jet printing by FLOW-3DResult of simulation by changing surface tension
ISEEP (In Situ Erosion Evaluation Probe 2)를 사용한 교량 기초의 세굴 평가
M. Kayser1 and M. A. Gabr2
Abstract
이 논문의 요약 작업은 교각에서 세굴 깊이를 평가하기 위해 현장 침식 평가 프로브 (ISEEP)의 사용을 제시합니다. 2011 년 허리케인 아이린으로 피해를 입은 노스 캐롤라이나 아우터 뱅크스 부지의 수치 모델링 및 장치 배치는 제안 된 개념의 적용 가능성을 보여줍니다.
CFD (Computational Fluid Dynamics) 소프트웨어 인 FLOW-3D는 교각에서 세굴 깊이를 평가하는 데 사용되며, 그 결과는 과도한 흐름 전력 모델을 사용하여 ISEEP 추정 매개 변수를 기반으로 한 값과 비교됩니다. 세굴 깊이는 수치 분석에 사용된 것과 동일한 조건을 가정하는 경험적 방정식을 사용하여 계산됩니다.
FLOW-3D를 사용한 파라 메트릭 분석은 세굴 깊이를 정의하는 데 사용되는 매개 변수 중 연행 계수 (Ce)가 가장 큰 영향을 미치는 반면 항력 계수 (Cd)는 분석에 사용 된 값 범위 내에서 가장 작은 영향을 미친다는 것을 나타냅니다. ISEEP 데이터는 깊이 측면에서 모래층의 특성 변화를 반영하기 때문에 ISEEP 데이터를 기반으로하는 추정 된 세굴 깊이는 수치 분석에서 얻은 세굴 크기와 비교적 잘 일치합니다.
대조적으로, 경험적 방정식에서 계산 된 세굴 깊이는 주로 세굴 깊이를 과소 평가했는데, 이는 주로 방정식에 층상 토양 프로파일에 대한 규정이 없기 때문입니다. 따라서 ISEEP 데이터를 사용하면 토양층의 특성이 깊이에 따라 달라지기 때문에 세굴 매개 변수의 현장 평가의 이점을 제공합니다. 상당한 비율의 정교함을 포함하는 토양의 적용 가능성 평가를 포함하여 현장 테스트 절차와 데이터 감소 접근법에 대한 추가 검증이 권장됩니다.
INTRODUCTION
Lagasse et al. (1), 미국에는 하천과 강을 가로 지르는 488,750 개의 교량이 있었고, 수색 관련 교량 고장에 대한 연간 비용은 3 천만 달러로 추산되었습니다. 또한 지난 30 년 동안 미국에서 1,000 개 이상의 교량이 붕괴되었으며, 이러한 고장의 약 60 %는지지 기반 시스템의 과도한 수색으로 인해 발생하는 것으로보고되었습니다 (2). 따라서 이러한 구조를 지원하는 토양의 침식률과 수력 구조의 설계, 작동 및 수명 기간 동안 수색 가능성의 모니터링 및 평가와 토양 침식률 결정이 필요합니다. 초기 설계 단계에서 중요 할뿐만 아니라 이러한 침식 크기 및 비율 데이터는 유지 보수 우선 순위를 개발하고 교체 일정을 수립하는데도 필요합니다. 깊이에 따른 현장 침식 가능성을 평가하기위한 현재 기술은 Briaud 등이 개발 한 Erosion Function Apparatus (EFA)와 같은 장치에서 실험실 테스트를 위해 토양 샘플을 제거해야합니다. (2) 또는 시간에 따른 머드 라인 고도의 변화를 모니터링하여 이미 발생한 침식 만 측정합니다. 이러한 기술에 사용되는 기기는 단순한 강철 사운 딩로드에서 전자파 및 / 또는 음파 전파가있는 소나를 사용하는 원격 감지 장치에 이르기까지 다양합니다. Lu et al. (3) 음향 도플러 및 지상 침투 레이더와 같은 정교한 접근 방식은 비용이 많이 들고 빈번한 유지 보수 및 수리가 필요합니다. Hanson et al. (4)와 Hanson과 Cook (5)은 현장에서 침식 가능성의 표면 측정을 위해 수직 제트의 사용을보고했습니다. 이 저자들은 적용된 전단 응력의 형태로 충돌 제트로 인해 발생하는 응력을 렌더링하는 프레임 워크를 제시했습니다. 이 경우 잠재적 인 코어는 물이 원래 상태를 유지하는 제트의 일부로 정의됩니다.
FIGURE 1. (a) Temporary bridge along NC-12, and (b) ISEEP set-up for field testing.FIGURE 2. Grain size distribution of test site: Pea Island.
브라질에서는 지난 150 년 동안 지표수의 사용이 지속적으로 증가했습니다. 항행성을 유지하고, 수력을 생성하고, 홍수를 방지하기 위해 자연 흐름을 방해하는 많은 장애물과 우회로가 세워졌습니다. 강에 서식하는 물고기 및 기타 작은 동물은 이러한 변화로 고통 받습니다. 일부 종의 멸종 시점까지 어류 수가 크게 감소한 것이 관찰되었습니다. 어류, 조류 및 포유류 개체수가 동시에 감소함에 따라 먹이 사슬에 대한 인간의 엄청난 영향이 분명해졌습니다.
강을 물고기를 위해 개방하기 위해 브라질에 많은 수의 물고기 통로가 건설되었지만 생물학적 및 기술적 측면에서 효율성이 떨어지는 경우가 많았습니다. 종종 1 차원적이고 경험적인 가정을 사용하여 설계된 통로의 흐름 상황은 과도한 선택과 열악한 위치를 초래합니다. 전통적인 1 차원 디자인의 물고기 통로와 달리 오늘날 더 적절한 도구를 사용할 수 있습니다. CFD (전산 유체 역학) 시뮬레이션을 사용하면 평균 속도 필드 뿐만 아니라 물고기 통로의 유용성에 상당한 영향을 미치는 과도 흐름 효과를 조사 할 수 있습니다. 최적의 결과를 얻으려면 설계 프로세스에서 수력 학적 고려 사항과 생물학적 고려 사항의 결합이 필수적입니다.
이 연구에서는주기적인 수직 수문 물고기 통로 내부의 난류 응집 구조에 대해 논의합니다. 길이가 4.50m이고 너비가 각각 3.30 인 두 개의 웅덩이 사이에서 흐름은 0.50m의 확장이 있는 작은 수직 개구부를 통과해야 합니다 (그림 1).
CFD 시뮬레이션은 FLOW-3D 로 수행되었습니다 . 흐름 방향의 주기적 경계 조건에서 달성 가능한 해상도는 약 2.5cm입니다. 두 웅덩이 사이의 수면 Δh의 레벨 차이는 20cm였다. 따라서 절대 속도의 최대 값은 약 2m / s ≈ Δh * 2g입니다. 전체 위치 에너지는 운동 에너지로 변환되고 나중에 풀에서 소멸됩니다. 제트가 벽에서 분리되는 고속 영역이 형성됩니다.
그림 1. 오른쪽 : 수직 수문 물고기 통과의 절대 속도. 수영장 사이의 레벨 차이는 0.20m입니다. 왼쪽 : 표면 구조의 등면 (파란색), 오른쪽 및 왼쪽 : 절대 속도 1.50m / s (노란색)의 등면
LES (Large Eddy Simulation)를 통해 순간 흐름 영역에 대한 자세한 분석이 가능했습니다. 속도 및 난류 장의 분포와 풀 내의 일관된 난류 구조는 물고기의 행동을 더 잘 이해할 수있게했습니다.
난류 압력 변동
순간 속도 또는 압력 필드는 평균 값과 해당 변동으로 나눌 수 있습니다. 변동 압력에 대한 각 방정식은 다음과 같습니다.
난류 압력 장을 살펴보면 와류 내부의 난류 압력이 음수임을 알 수 있습니다. 난류 압력의 국부적 최소값은 그림 2와 같이 대규모 와류의 코어를 나타냅니다. 물고기 통로에서 여러 개의 수평 롤러가 관찰 될 수 있습니다. 와류는 수 문의 전 단층 내부에 형성됩니다. 정점의 주행 거리가 증가하면 와류 직경이 증가하고 난류 압력 진폭이 감소하여 롤러 내부의 난류 압력이 증가합니다.
일관된 구조와 관련하여 개방 채널 흐름의 난류 압력을 분석하는 것은 매우 어렵습니다. 대규모 와류는 직접 관찰로 거의 감지 할 수 없습니다. 이는 수면의 변동과 전체 전류 내부의 관련 압력 변동 때문입니다. 표면파에 의해 유발 된 압력 변동은 다음 지수 법칙에 따라 수심 z에 따라 감소합니다 [Kundu, 2004] :
\({p}’\propto {{e}^{{-kz}}}\)
난류 압력 장을 살펴보면 와류 내부의 난류 압력이 음수임을 알 수 있습니다. 난류 압력의 국부적 최소값은 그림 2와 같이 대규모 와류의 코어를 나타냅니다. 물고기 통로에서 여러 개의 수평 롤러가 관찰 될 수 있습니다. 와류는 수 문의 전 단층 내부에 형성됩니다. 정점의 주행 거리가 증가하면 와류 직경이 증가하고 난류 압력 진폭이 감소하여 롤러 내부의 난류 압력이 증가합니다.
그림 2 : 난류 압력 변동의 등면 = -500 Pa.
일관된 구조와 관련하여 개방 채널 흐름의 난류 압력을 분석하는 것은 매우 어렵습니다. 대규모 와류는 직접 관찰로 거의 감지 할 수 없습니다. 이는 수면의 변동과 전체 전류 내부의 관련 압력 변동 때문입니다. 표면파에 의해 유발 된 압력 변동은 다음 지수 법칙에 따라 수심 z에 따라 감소합니다 [Kundu, 2004] :
서로 다른 압력 변동의 중첩으로 인해 표면 근처의 대규모 일관된 구조를 감지하기가 어렵습니다.
Q- 기준
와류 감지를위한 또 다른 도구는 Dubrief (2000)와 Hunt (1988)가 제안했으며, 이들은 압력, 와도 및 Q- 기준의 등면을 비교했습니다. Q- 기준은 다음과 같이 계산됩니다.
공간적으로 필터링 된 속도 구배의 비대칭 및 대칭 부분. 그림 3에서는 Q ~ = 50s-2의 계산 된 등가 곡면이 표시됩니다. Q- 기준으로 소규모 와류가 감지됩니다. 난류 압력 변동과는 달리, Q- 기준 계산을 위해 자유 표면 상태는 탐지 가능성을 방해하지 않습니다. 이는 ∇²p 계산에 선형 정압 분포가 사용되지 않기 때문 입니다. 흐름에서 흐름 방향으로 작은 헤어 라인 소용돌이를 볼 수 있습니다.
그림 3 : 난류 압력 변동의 등면
토론
다른 스케일의 소용돌이를 시각화하면 엔지니어는 물고기가 수로를 통과해야하는 일관된 구조에 대해 좋은 느낌을 갖게됩니다. 감지 된 대규모 롤러가 주요 구조입니다. 물고기는 이러한 구조에 대한 흐름에서 안정화되어야합니다. 이 롤러의 축은 메인 스트림 방향에 부분적으로 수직이므로 물고기가 안정화를 위해 메인 핀을 사용할 수 있습니다.
소규모 구조물은 물고기의 수영 방향과 평행합니다. 물고기는 이러한 와류에서 안정화를 위해 수직 지느러미 만 사용할 수 있기 때문에 대규모 롤러보다 안정화를 위해 더 많은 노력을 기울여야합니다.
계산 된 LES 결과를 사용하여 물고기 통과 내부의 흐름 조건에 대한 생물 학자와 엔지니어 간의 예비 토론을 시작할 수 있습니다. 감지 된 난류 구조는 물고기 통과의 성공에 중요합니다. 이러한 구조를 통과하는 데는 고속 영역을 통과하는 것보다 더 많은 에너지가 필요할 수 있습니다.
다음 달에 브라질 벨루 오리 존치에있는 미나스 제 라이스 연방 대학교에서 이러한 난류 구조와 물고기가 이러한 구조를 탐색하는 능력 사이의 상관 관계를 확인하기 위해 일련의 실험실 실험이 수행 될 것입니다.
참고 문헌
Dubrief, Yves; Delcayre, Frank: On Coherent-vortex identification in turbulence. In: Journal of Turbulence 1 (2000), pp. 1-22
Haselbauer M.: Geräuscharme Fischaufstiegsgerinne – Experimentelle und numerische Analyse des Fischpasses vom Typ periodische Schütze. PhD-Thesis, Fachgebiet Hydromechanik, TU München, 2008
Hunt, J.C.R.; Wray, A.A.; Moin, P.: Eddies, streams, and convergence zones in turbulent flows. In: CTR-S88 (1988), pp. 193-208
Kundu, Pijush K; Cohen, Ira M: Fluid Mechanics. San Diego: Elsevier Academic Press, 2004
Wilczak, J. M: Large-scale eddies in the unstably stratified atmospheric surface layer. Part I: Velocity and temperature structure. In: J. Atmos. Sci. 41 (1984), pp. 3537-3550
Acknowledgement: All results were post-processed with Paraview.
본 자료는 ITWORLD 기사에서 2021년 3월과 05일 자료와 2021년 12월 14일 자료에서 발췌 인용된 자료입니다. (출처 : www.itworld.co.kr)
수치해석을 하는 경우 계산과정에서 생성되는 결과 파일 사이즈는 매우 크기 때문에, 빠른 디스크 속도는 사용자의 총 해석시간을 줄이는데 큰 도움이 됩니다.
수치해석에서 SSD가 필요한가?
수치해석 업무를 담당하는 사용자에게 SSD가 필요한가? 한마디로 말하면 수치해석을 하는 모든 사람은 보유하고 있는 수치해석 장비의 디스크를 SSD로 업그레이드하는 것이 좋다. 가장 빠른 기계식 하드 드라이브도 SSD 속도에는 미치지 못한다.
기존 노트북, 또는 데스크톱의 하드 드라이브를 SSD로 교체하면 완전히 새로운 시스템처럼 느낄 수 있다. 수치해석을 하는 사용자는 SSD를 구입하는 것은 컴퓨터를 업그레이드하는데 가장 적합한 옵션이다.
SSD는 기계식 하드 드라이브보다 기가바이트 당 비용이 더 많이 들기 때문에 초 고용량으로 제공되지 않는 경우가 많다. 속도와 저장 공간이 필요한 경우, 128GB 나 256GB의 SSD를 구입해 부팅 드라이브로 사용하고, 기존 하드 드라이브를 PC의 보조 저장 장치로 사용하면 최선의 선택이 된다.
하드 드라이브는 가격 대비 용량 측면에서 여전히 큰 이점을 제공하며, 자주 사용되지 않는 데이터를 저장하는 용도로 적합하다. 그러나 운영체제, 프로그램, 자주 사용하는 데이터에는 보유하고 있는 시스템이 지원한다면 NVMe SSD, 지원하지 않는다면 SATA SSD를 사용하는 것이 좋다.
아래 그래프를 보면 SSD를 왜 사용해야 하는지 명확해진다.
SSD Speed compare
NVMe/M.2/SATA SSD 비교 정리
NVMe SSD
M.2 SSD
SATA SSD
속도
PCIe 3.0 최대 3,500MBps
PCIe 4.0 최대 7,500MBps
SATA 최대 550MBps
NVMe PCIe 3.0 최대 3,500MBps
NVMe PCIe 4.0 최대 7,500MBps
최대 550MBps
폼팩터 종류
M.2 U.2* PCIe 카드* *일반적이지 않은 종류
N/A
2.5인치 드라이브 M.2
인터페이스 종류
N/A
SATA NVMe
N/A
장점
속도가 빠름
공간을 덜 차지함
속도와 가격의 균형
단점
가격이 비쌈
SATA M.2가 2.5인치 SATA보다 비싼 경우가 있음
속도가 느리고 공간을 많이 차지함
SATA SSD vs. NVMe SSD
시장에 SATA SSD와 NVMe SSD가 아직 공존하는 데는 이유가 있다. 메모리 기반 SSD의 잠재력을 감안할 때 결국 새로운 버스와 프로토콜이 필요할 수밖에 없으리란 점은 초기부터 명확했다. 그러나 초창기 SSD는 비교적 속도가 느렸으므로 기존 SATA 스토리지 인프라를 사용하는 편이 훨씬 더 편리했다.
SATA 버스는 버전 3.3에 이르러 16Gbps까지 발전했지만 거의 모든 상용 제품은 여전히 6Gbps에 머물러 있다(오버헤드를 더해 대략 550MBps). 버전 3.3이라 해도 현재 SSD 기술, 특히 RAID 구성으로 낼 수 있는 속도에 비하면 한참 느리다.
그 다음으로 등장한 방법은 역시 기존 기술이지만 대역폭이 훨씬 더 높은 버스 기술인 PCI 익스프레스, 즉 PCIe 활용이다. PCIe는 그래픽 및 기타 애드온 카드를 위한 기본 데이터 전송 계층이다. 3.x 세대 PCIe는 복수의 레인(대부분의 PC에서 최대 16개)을 제공하며, 각 레인은 1GBps(985MBps)에 가까운 속도로 작동한다.
PCIe는 썬더볼트 인터페이스의 기반이기도 하다. 썬더볼트는 게임용 외장 그래픽 카드, 그리고 내장 NVMe와 거의 대등한 속도를 내는 외장형 NVMe 스토리지에서 진가를 발휘하기 시작했다. 많은 사용자들이 이제 느끼고 있지만, 인텔이 썬더볼트를 버리지 않은 것은 현명한 판단이었다.
물론 PCIe 스토리지는 NVMe보다 몇 년 전에 나왔다. 그러나 이전 솔루션은 SATA, SCSI, AHCI와 같은 하드 드라이브가 스토리지 기술의 정점이었던 시절에 개발된 오래된 데이터 전송 프로토콜에 발목을 잡혔다. NVMe는 저지연 명령과 다수의 큐(최대 6만 4,000개)를 제공함으로써 스토리지의 발목을 잡았던 제약을 없앤다. 지속적인 원을 그리며 데이터가 기록되는 하드 드라이브와 달리 SSD에서는 마치 산탄처럼 데이터가 흩어져 저장되므로 특히 후자, 즉 다수의 큐가 큰 효과를 발휘한다.
가격 : NVMe > SATA
예상했겠지만, SSD는 속도가 빠를수록 가격이 비싸다. 시중에 판매되는 1TB SATA SSD의 가격은 10만 원 초반대이며, 1TB NVMe PCIe 3.0 드라이브의 가격은 10만 원 중후반대다. 1TB PCIe 4.0 드라이브 가격은 10만 원 초반대부터 20만 원대까지 다양하다. 조금 저렴한 1TB PCIe 4.0 드라이브는 최대 속도가 5,000MBps 정도다.
폼팩터 종류에 따라 가격 차이가 나지는 않는다. 2.5인치 SATA SSD와 M.2 모델의 가격이 동일한 경우가 대부분이다. 가끔 2.5인치 모델이 M.2 모델보다 저렴한 경우가 있는데, 일반적이지는 않다.
SSD 선택 시 유의해서 봐야할 것
물론 저장 용량과 가격이 중요하다. 또한 긴 보증기간은 조기 데이터 사망에 대한 우려를 완화시킬 수 있다. 대부분의 SSD 제조업체는 3년 보증을 제공하며 일부 더 좋은 모델은 5년을 보증한다. 그러나 이전 세대의 SSD와는 달리, 몇 년 전에 혹독한 내구성 테스트로 입증한 것처럼 최신 SSD는 일반 소비자가 어지간히 사용해서는 마모되지 않는다.
SSD는 NVMe 혹은 SATA를 사용해 PC의 나머지 부분과 통신한다. 일반적으로 SATA는 NVMe보다 속도가 느리다. 반면 M.2는 사실상 폼팩터에 가까우므로 시중에는 NVMe M.2 SSD와 SATA M.2 SSD가 모두 출시되어 있다.
다만 제품 광고나 설명서에서 가끔 NVMe 드라이브임을 나타내기 위해 ‘M.2 SSD’라는 표현을 사용하고, 2.5인치 폼팩터 SSD임을 나타내기 위해 ‘SATA SSD’라는 표현을 사용한다. 따라서 ‘M.2 SSD’나 ‘SATA SSD’라는 표현을 액면 그대로 받아들이면 안 된다. 반드시 기술 사양을 확인하고 노트북 또는 데스크톱 PC의 스토리지 드라이브의 대략적인 속도를 확인해야 한다.
유의해야 할 것은 SSD를 PC에 연결하는 데 사용되는 기술이다.
SATA: 연결 유형과 전송 프로토콜을 나타내며, 대부분의 2.5인치 및 3.5인치 하드 드라이브와 SSD를 PC에 연결한다. SATA III 속도는 약 600MBps에 달할 수 있으며, 대부분의 현대 드라이브는 최대 속도를 제공한다.
PCIe: 이 인터페이스는 컴퓨터의 4개의 PCIe 레인을 활용해 SATA 속도를 훨씬 능가해 거의 4GBps를 제공한다(PCIe 3세대). 이런 파괴적인 속도는 강력한 NVMe 드라이브와 잘 어울린다. 메인보드의 PCIe 레인과 M.2 슬롯 모두 PCIe 인터페이스를 지원하도록 유선으로 연결할 수 있으며, “검정” M.2 드라이브를 PCIe 레인에 슬롯화할 수 있는 어댑터를 구입할 수 있다.
NVMe: 비휘발성 메모리 익스프레스(Non-Volatile Memory Express) 기술은 PCIe의 풍부한 대역폭을 활용해 SATA 기반 드라이브를 비교조차 못할 정도로 매우 빠른 SSD를 만든다. NVMe에 대해 더 자세히 알고 싶다면 여기를 클릭하라.
M.2: 설명이 쉽지 않다. 많은 사람이 M.2 드라이브가 모두 NVMe 기술과 PCIe 속도를 사용한다고 생각하지만 사실이 아니다. M.2는 단순히 폼 팩터에 불과하다. 물론 대부분의 M.2 SSD는 NVMe를 사용하지만 일부는 여전히 SATA를 사용한다. 많은 최신 울트라북이 저장을 위해 M.2를 사용한다.
U.2 및 mSATA: mSATA 및 U.2 SSD에서도 문제가 발생할 수 있지만, 이 형식을 지원하는 메인보드와 제품 가용성은 드물다. M.2가 대중화되기 전에 일부 구형 울트라북에 mSATA가 포함되어 있으며, 필요할 경우 드라이브를 사용할 수 있다.
물론 속도도 중요하지만, 대부분의 최신 SSD는 SATA III 인터페이스를 지원한다. 그러나 전부 다 그런 것은 아니다.
구입전 사용자가 알아야 할 NVMe SSD
NVMe 드라이브는 구입하기 전에 어떤 특징을 갖고 있는지 알고 있어야 한다. 표준 SATA SSD는 이미 PC 부팅 시간과 로딩 시간을 대폭 단축하고 훨씬 저렴하다. NVMe 드라이브는 특히 대량으로 데이터를 정기적으로 전송하는 경우, 삼성 960 프로와 같은 M.2 폼 팩터나 또는 PCIe 드라이브가 가장 많은 효과를 누릴 수 있다. 그렇지 않으면 NVMe 드라이브는 가격만 비쌀뿐 가치도 없다.
NVMe SSD를 구입하기로 결정한 경우, PC에서 SSD를 처리할 수 있는지 확인해야 한다. 이는 비교적 새로운 기술이므로, 지난 몇 년 내에 제작한 메인보드만이 M.2 연결이 가능하다. 스카이레이크 시대의 AMD 라이젠과 주류 인텔 칩을 고려하라. PCIe 어댑터에 탑재된 NVMe SSD는 M.2 채택이 확산되기 전인 초기에 널리 사용됐지만 지금은 매우 드물다. NVMe SSD를 구입하기 전에 실제로 NVMe를 사용할 수 있는지 확인하고 최대한 활용하기 위해서는 4개의 PCIe 레인이 필요하다는 점에 유의해야 한다.
NVMe 드라이브를 최대한 활용하려면 운영체제를 실행해야 하기 때문에 드라이브를 인식하고 부팅할 수 있는 시스템이 있어야 한다. 지난 1~2년 전에 구입한 PC는 NVMe 드라이브에서 부팅하는데 아무런 문제가 없지만, 좀 더 오래된 메인보드는 지원하지 않을 수 있다. 구글에서 자신의 메인보드를 검색하고 NVMe 부팅을 지원하는지 확인하라. 보드의 BIOS 업데이트를 설치해야 할 수도 있다. 하드웨어가 NVMe SSD에서 부팅할 수 없는 경우에도 보조 드라이브로 사용할 수 있어야 한다.
2021 최고의 SSD 선택 가이드
Brad Chacos | PCWorldSSD(Solid-State Drive)로 전환하는 것은 PC를 위한 최상의 업그레이드다. SSD는 긴 부팅 시간을 없애고, 프로그램과 게임 로드 속도를 높이는 등 일반적으로 컴퓨터를 빠르게 한다. 그러나 모든 SSD가 동일한 것은 아니다. 최고의 SSD는 합리적인 가격으로 훌륭한 성능을 제공한다. 가격에 고민하지 않을 경우, 놀라울 정도의 빠른 읽기 및 쓰기 속도를 제공하는 제품도 있다.
많은 SSD가 2.5인치 폼 팩터로 제공되며 기존 하드 드라이브에서 사용하는 것과 동일한 SATA 포트를 통해 PC와 통신한다. 그러나 최첨단 NVMe(Non-Volatile Memory Express) 드라이브는 메인보드의 M.2에 직접 연결하는 작은 스틱 형태의 SSD다. PCIe 어댑터에 장착되는 이 드라이브는 구입하기 전에 메인보드에 슬롯이 있는지 확인해야 한다. 그래픽 카드나 사운드 카드처럼 메인보드에 꽂을 수 있는 SSD와 미래형 3D 크로스포인트(3D XPoint) 드라이브 등이 등장함에 따라 완벽한 SSD를 선택하는 것은 예전처럼 간단하지 않다.
그래서 이 가이드가 필요하다. 본지는 사용자 상황에 적합한 SSD를 찾기 위해 수많은 SSD를 테스트했다. 본지가 선정한 최고 인기 제품과 SSD 선택 시 무엇을 고려해야 하는지 알아보자. 참고로, 이번 가이드는 내장형 SSD만 적용한 것이다.
최신 SSD 뉴스
구입해야 하는 SSD에 대한 가이드를 확인하고, 각 시스템에서 가장 적합한 SSD의 종류에 대해 알아보자.
인텔은 모든 데스크톱 소비자 버전의 옵테인(Optane) 드라이브를 단종시켰지만, 이 기술은 노트북과 서버에 그대로 남아있다. 옵테인 SSD는 엄청난 랜덤 액세스 성능과 놀라운 내구성을 제공했지만, 용량이 제한적이면서도 가격은 매우 높았다. 향후 노트북에서 느린 NAND SSD 속도를 높이기 위한 캐싱 형태의 기능으로 사용될 것이다.
스토리지 제조업체는 공급망 문제로 인해 출시 후 구성 요소를 조정하는 경우가 많지만, 한 PC하드웨어 전문매체는 최근 에이데이타(Adata)가 훨씬 느린 버전으로 XPG 8200 프로의 컨트롤러를 교체한 것을 포착했다.
대부분 사용자를 위한 최고의 SSD, SK 하이닉스 골드 S31 SATA SSD
ⓒ SK Hynix
삼성의 주력인 EVO SSD 제품군은 2014년 이래로 줄곧 본지의 권장 목록에서 1위를 차지했으며, 현재 삼성 860 EVO는 여전히 속도, 가격, 호환성 및 5년 보증 및 뛰어난 마법사 관리 소프트웨어의 안정성 등 조화를 원하는 사람들에게 좋은 선택지다. 그러나 대부분의 사람들은 SK 하이닉스 골드 S31을 사는 것이 낫다.
골드 S31은 지금까지 본지가 테스트 한 가장 빠른 SATA SSD 가운데 하나일뿐만 아니라 동급 최강의 870 EVO와 견줄 수 있을만한 거리에 있다. 하지만 이 드라이브의 가격은 놀랍다. 250GB 드라이브의 경우 44달러, 500GB 드라이브의 경우 57달러, 1TB의 경우 105달러인 골드 S31은 500GB 모델에 70달러를 청구하는 삼성 제품보다 훨씬 저렴하다(국내에서는 1T 13만 5,000원, 500G 7만 5,000원, 250G 4만 8,000원에 판매하고 있다. 편집자 주). .
리뷰 당시 본지는 “실제 48GB 사본 테스트 수행시 골드 S31은 지속적인 읽기 및 쓰기 작업에서 테스트한 제품 가운데 가장 빠른 드라이브임을 입증했다”라고 평가했다. 이 제품은 이 평가로 충분하다.
SK 하이닉스는 정확히 제품 이름이 아니기 때문에 브랜드 자체에 대해 조금 딴지를 걸 수도 있다. 그럼에도 불구하고 SK 하이닉스는 지구상에서 가장 큰 반도체 제조업체 가운데 하나다. SK 하이닉스는 시작부터 NAND 및 컨트롤러 기술을 개발해왔으며, 수많은 컴퓨터 업체의 SSD 제조업체였지만 판매선상에는 자리하지 못했다. 이제 그 선상에 섰고, 결과는 훌륭했다.
더 큰 용량이 필요하거나 단순히 검증된 브랜드를 고수하고 싶다면, 250GB, 500GB, 1TB 및 2TB 모델로 제공하는 삼성 870 EVO를 선택하면 된다. 이 제품은 SK 하이닉스보다 조금 더 빠르지만, 그 대가로 비용이 더 많이 든다. 삼성 870 EVO는 대부분의 SSD에 비해 매우 매력적이고 저렴한 패키지를 제공하고 있기 때문에 골드 S31이 얼마나 더 좋은 것인지 알 수 있다. 삼성 870 QVO는 1TB에서 무려 8TB에 이르는 용량을 가진 또 다른 강력한 경쟁 제품이지만 다음 세션에서 논의할 것이다.
가성비 최고의 SSD: 애드링크(AddLink) S22 QLC SATA 2.5인치 SSD
ⓒ Addlink
매우 저렴한 가격에 훌륭한 성능을 제공하는 SK하이닉스 골드 S31은 최고의 가성비 SSD로, 대부분의 사용자에게 최고의 SSD다. 하지만 어떤 이유로든 골드 S31에 관심이 없는 이들에겐 더 많은 선택지가 있다.
이제 기존의 MLC(Multi-Level Cell)와 TLC(Triple-Level Cell) SSD 가격이 급락함에 따라 제조업체는 SSD 가격을 더욱 낮출 수 있는 새로운 QLC(Quad-Level Cell) 드라이브를 출시했다.
이 새로운 기술을 통해 제조업체는 매우 빠른 SSD에 버금가는 속도와 함께 하드 드라이브와 같은 수준의 용량을 가진 SSD를 출시할 수 있었다. 다만 삼성 860 QVO를 포함한 1차 QLC 드라이브는 수십 기가바이트의 데이터를 한번에 전송할 때 쓰기 속도가 하드 드라이브 수준으로 떨어졌다.
애드링크(Addlink) S22 QLC SSD는 이 같은 어려움을 겪지 않는다. 기존 TLC SSD는 여전히 QLC 드라이브에 비해 속도 우위를 유지하고 있지만, 애드링크 S22는 512GB에 59달러, 1TB에 99달러의 저렴한 가격에 판매하고 있다. 하지만 SK 하이닉스 골드 S31이 거의 같은 금액으로 판매되고 있다는 사실에 주목할 필요가 있다.
대량의 데이터를 한번에 이동할 계획이 없고, 더 많은 저장공간이 필요하다면 삼성의 2세대 QLC 제품인 삼성 870 QVO가 좋은 선택이다. 실제로 애드링크의 SSD보다 조금 더 빠르다. 그러나 아마존에서 1TB가 110달러, 2TB의 경우 205달러, 4TB 450달러, 8TB 900달러로 더 비싸다. 1TB보다 적은 용량은 판매하지 않는다. 구형 삼성 860 QVO도 여전히 좋은 선택이긴 하지만 최신 870 QVO는 모든 면에서 최고다.
하지만 메인보드가 더 빠르고 새로운 NVMe M.2 드라이브를 지원한다면 선택지는 달라진다.
최고의 NVMe SSD: SK 하이닉스 골드 P31 M.2 NVMe SSD(1TB)
ⓒ SK Hynix
성능이 가장 중요하다면 삼성 970 프로 또는 씨게이트 파이어쿠다(Seagate FireCuda) 510이 가장 빠른 NVMe SSD이지만, 대부분의 사람은 SK 하이닉스 골드 P31을 구입하는 것이 좋다. SK 하이닉스는 가성비 범주에서 전체 SSD를 장악하고 있다.
SK 하이닉스 골드 P31은 128비트 TLC NAND를 탑재한 최초의 NVMe SSD이며, 96 NAND 레이어를 사용하는 다른 제품들을 뛰어넘었다. 본지가 테스트한 모델은 크리스탈디스크마크(CrystalDiskMark) 6와 AS SSD의 종합 벤치마크에서도 완전히 인정받았으며, 보도자료에서 주장했던 3.5Gbps 읽기 및 쓰기 속도에 거의 도달했다.
또한 실제 48GB 및 450GB 파일 전송 테스트에서 더 비싼 SSD에 비교했을 때도 뒤지지 않았다. SK 하이닉스 골드 P31은 최상급 드라이브처럼 작동하지만, 저렴한 드라이브보다 조금 더 비쌀 뿐이다. 500G 제품은 75달러에, 1TB 제품은 125달러에 구입할 수 있다(국내에서는 1T 19만 8,000원, 500G 9만 8,000원에 판매하고 있다. 편집자 주).
마이크론 크루셜(Crucial) P5는 비용 효율적인 NVMe SSD로, 만약 SK 하이닉스 골드 P31이 없었다면, 최고의 선택지가 될 수 있었다. 하지만 골드 P31가 조금 더 빠르고, 조금 더 저렴하다. 그래도 크루셜 P5는 대안 제품이 될 수 있다.
하지만 예산이 빠듯하다면, 약간 더 적은 비용으로 매력적인 선택지를 찾을 수 있다. 웨스턴 디지털 블루(Western Digital Blue) SN550 NVMe SSD는 앞서 언급한 제품처럼 빠르거나 화려한 성능을 갖고 있진 않다. 하지만 가격이 훨씬 저렴하다. 250GB의 경우 45달러, 500GB의 경우 65달러, 1TB의 경우 130달러와 같은 보급형 가격에도 불구하고 WD 블루 SN550은 고가의 제품 성능을 충분히 발휘할 수 있다. 신뢰성에 대한 좋은 이력을 가진 기존 브랜드를 이은 제품이며, 평균보다 긴 5년 보증을 제공한다.
또 다른 훌륭한 NVMe SSD
– 애드링크 S70 NVMe SSD: 좀 더 높은 성능을 원한다면 애드링크(Addlink) S70 NVMe SSD 또한 탁월한 선택지가 될 수 있다. 이 제품은 WD 드라이브보다 성능이 약간 우수하다. 하지만 본지는 이 제품의 가격이 인상된 후부터는 일상적인 컴퓨터 사용자에게 WD 블루 SN550을 추천한다. 애드링크는 WD만큼 잘 알려져 있지 않지만, S70 NVMe SSD에 대해 5년 보증을 제공한다.
– PNY XLR8 CS 3030: 이 제품은 좋은 가격에 빠른 성능을 제공하는 또 다른 선택지다. 하지만 일상적인 사용에는 탁월하지만, 긴 쓰기 작업에서는 수렁에 빠질 수 있다.
– 에이데이타의 XPG SX8200 프로와 킹스톤(Kingston) KC2500: 더 빠른 속도를 위해 좀더 많은 비용을 써도 괜찮다면 삼성 970 프로 수준의 성능을 지닌 에이데이타의 XPG SX8200 프로와 킹스톤 KC2500도 있다. 킹스톤 KC2500은 한번의 테스트에서 최고 등급에 도달하지 못했지만, 항상 선두권을 유지하고 있었다. 경쟁 제품과 거의 동일한 가격으로 구입할 수 있으며, 고성능 NVMe SSD를 구입하는 경우 고려해볼 만한 제품이다.
새로운 유형의 대용량 SSD 덕분에 충분한 저장용량과 함께 엄청난 NVMe 속도를 얻을 수 있게 됐지만, 이에 대한 비용은 감수해야 한다. OWC 아우라 P12는 NVMe 평균 이상의 쓰기 성능과 4TB 제품을 929달러에 제공한다. 최고의 세이브런트 로켓(Sabrent Rocket) Q는 최고의 성능과 놀라운 8TB 용량으로 모든 것을 만족시키지만, 1,500달러라는 놀라운 가격이 기다리고 있다. 최첨단은 저렴하지 않다.
최고의 PCIe 4.0 SSD: 삼성 980 프로 PCIe 4.0 NVMe SSD(1TB)
ⓒ samsung
대부분의 NVMe SSD는 표준 PCIe 3.0 인터페이스를 사용하지만, 최첨단 기술을 지원하는 일부 제품에는 훨씬 더 빠른 PCIe 4.0 드라이브가 있다. 현재 AMD의 라이젠 3000 프로세서만 PCIe 4.0을 지원하며 X570 또는 B550 메인보드에 장착하는 경우에만 지원한다. 하지만 이 기준을 충족하면 PCIe 4.0 SSD는 가장 빠른 PCIe 3.0 NVMe SSD가 따라오지 못할 성능을 보여준다.
커세어(Corsair), 기가바이트(Gigabyte), 세이브런트는 최초의 PCIe 4.0 SSD를 출시했으며, 모두 약 200달러에 1TB 용량과 유사한 성능을 제공했다. 하지만 본지가 선정한 최고의 PCIe 4.0 SSD는 조금 더 비싸다.
본지는 최근에서야 PCIe 4.0 SSD 테스트를 추가했지만, 지금까지 테스트한 제품 가운데 최고는 삼성 980 프로였다. 이 제품은 테스트에서 삼성이 주장한 7Gbps 읽기 속도와 5Gbps 쓰기 속도를 초과했다. 이 제품은 실제 파일 전송 테스트를 통과했지만, 450GB 전송 테스트에서 발견한 것처럼 막대한 양의 데이터를 전송하는 경우 속도가 약간 느려질 수 있다. 하지만 대부분의 사용자가 SSD를 이렇게 힘들게 다루진 않는다.
하지만 모든 성능은 프리미엄급이다. 그럼에도 불구하고 250GB 90달러, 500GB 150달러, 1TB 용량은 230달러이다.
WD 블랙 SN850은 삼성 980 프로의 성능에 뒤처져 있지만, 거의 같은 가격으로 판매한다. 본지는 리뷰에서 “최강의 단일 SSD PCIe4 스토리지 성능을 찾는다면 어느 쪽도 문제가 되지 않을 것”이라고 평가했다.
PCIe 4.0 속도가 빠른 SSD를 원하지만 삼성의 동급 최고의 성능을 위해 많은 비용을 소비하고 싶지 않다면 XPG 겜믹스 S50 라이트를 고려한다. 본지는 “XPG 겜믹스 S50 라이트는 우리가 테스트한 최초의 PCIe 4 SSD로, 차세대라는 추가 비용이 들지 않는다. 실제로 시스템을 실행하는 시스템에서는 삼성 980 프로와 차이를 구분하기 어려울 것이다”라고 설명했다.
겜믹스 S50 라이트는 1TB의 경우 140달러, 2TB의 경우 260달러다.
NVMe SSD 설정시 알아야 할 사항
NVMe 드라이브는 구입하기 전에 어떤 특징을 갖고 있는지 알고 있어야 한다. 표준 SATA SSD는 이미 PC 부팅 시간과 로딩 시간을 대폭 단축하고 훨씬 저렴하다. NVMe 드라이브는 특히 대량으로 데이터를 정기적으로 전송하는 경우, 삼성 960 프로와 같은 M.2 폼 팩터나 또는 PCIe 드라이브를 가장 많은 효과를 누릴 수 있다. 그렇지 않으면 NVMe 드라이브는 가격만 비쌀뿐 가치도 없다.
NVMe SSD를 구입하기로 결정한 경우, PC에서 SSD를 처리할 수 있는지 확인해야 한다. 이는 비교적 새로운 기술이므로, 지난 몇 년 내에 제작한 메인보드만 M.2 연결이 가능하다. 스카이레이크 시대의 AMD 라이젠과 주류 인텔 칩을 고려한다. PCIe 어댑터에 탑재된 NVMe SSD는 M.2 채택이 확산되기 전인 초기에 널리 사용됐지만 지금은 매우 드물다. NVMe SSD를 구입하기 전에 실제로 NVMe를 사용할 수 있는지 확인하고 최대한 활용하기 위해서는 4개의 PCIe 레인이 필요하다는 점에 유의해야 한다.
NVMe 드라이브를 최대한 활용하려면 운영체제를 실행해야 하므로 드라이브를 인식하고 부팅할 수 있는 시스템이 있어야 한다. 지난 1~2년동안 구입한 PC라면 NVMe 드라이브를 부팅하는 데 문제가 없어야하지만, 이전 메인보드에서는 지원이 어려울 수 있다. 구글에서 메인보드를 검색하고 NVMe에서 부팅을 지원하는지 확인한다. 보드에서 BIOS 업데이트를 설치해야 할 수도 있다. 하드웨어가 NVMe SSD에서 부팅할 수 없는 경우에도 시스템은 이를 보조 드라이브로 사용할 수 있어야 한다.
SSD 선택에서 고려해야 할 것
물론 저장 용량과 가격이 중요하다. 또한 긴 보증기간은 조기 데이터 사망에 대한 우려를 완화시킬 수 있다. 대부분의 SSD 제조업체는 3년 보증을 제공하며 일부 더 좋은 모델은 5년을 보증한다. 그러나 이전 세대의 SSD와는 달리, 몇 년 전에 혹독한 내구성 테스트로 입증한 것처럼 최신 SSD는 일반 소비자가 어지간히 사용해서는 마모되지 않는다.
가장 유의해야 할 것은 SSD를 PC에 연결하는 데 사용되는 기술이다. – SATA: 연결 유형과 전송 프로토콜을 나타내며, 대부분의 2.5인치 및 3.5인치 하드 드라이브와 SSD를 PC에 연결한다. SATA III 속도는 약 600MBps에 달할 수 있으며, 대부분의 현대 드라이브는 최대 속도를 제공한다.
– PCIe: 이 인터페이스는 컴퓨터의 4개의 PCIe 레인을 활용해 SATA 속도를 훨씬 능가해 거의 4GBps를 제공한다(PCIe 3세대). 이런 파괴적인 속도는 강력한 NVMe 드라이브와 잘 어울린다. 메인보드의 PCIe 레인과 M.2 슬롯 모두 PCIe 인터페이스를 지원하도록 유선으로 연결할 수 있으며, M.2 드라이브를 PCIe 레인에 슬롯화할 수 있는 어댑터를 구입할 수 있다.
– NVMe: 비휘발성 메모리 익스프레스(Non-Volatile Memory Express) 기술은 PCIe의 풍부한 대역폭을 활용해 SATA 기반 드라이브와는 비교조차 못할 정도로 매우 빠른 SSD를 만든다. NVMe에 대해 더 자세히 알고 싶다면 여기를 클릭하라.
– M.2: 설명이 쉽지 않다. 많은 사람이 M.2 드라이브가 모두 NVMe 기술과 PCIe 속도를 사용한다고 생각하지만 사실이 아니다. M.2는 단순히 폼 팩터에 불과하다. 물론 대부분의 M.2 SSD는 NVMe를 사용하지만 일부는 여전히 SATA를 사용한다. 많은 최신 울트라북이 저장을 위해 M.2를 사용한다.
– U.2 및 mSATA: mSATA 및 U.2 SSD에서도 문제가 발생할 수 있지만, 이 형식을 지원하는 메인보드와 제품 가용성은 드물다. M.2가 대중화되기 전에 일부 구형 울트라북에 mSATA가 포함되어 있으며, 필요할 경우 드라이브를 사용할 수 있다.
물론 속도도 중요하지만, 대부분의 최신 SSD는 SATA 3 인터페이스를 지원한다. 그러나 전부 다 그런 것은 아니다.
SSD vs. 하드 드라이브
SSD가 필요한가? “필요하다.” 본지는 모든 사람이 SSD로 업그레이드할 것으로 진심으로 권장한다. 가장 빠른 기계식 하드드라이브도 SSD 속도에는 미치지 못한다. 기존 노트북, 데스크톱의 하드드라이브를 SSD로 교체하면 완전히 새로운 시스템처럼 느낄 수 있다. SSD를 구입하는 것은 컴퓨터를 업그레이드하는 데 가장 적합한 선택이다.
SSD는 기계식 하드드라이브보다 기가바이트 당 저장 비용이 많이 들기 때문에 대용량으로 제공하지 않는 경우가 많다. 속도와 저장 공간이 동시에 필요한 경우, 128GB 크루셜 BX300과 같은 제한된 용량의 SSD를 구입해 부팅 드라이브로 사용하고, 기존 하드드라이브를 PC의 보조 저장장치로 설정한다. 프로그램을 부팅 드라이브에 넣고 미디어 및 기타 파일을 하드드라이브에 저장하면 준비가 다 된 것이다. editor@itworld.co.kr
이 기사는 Laurent Bilodeau, ing에 의해 기고되었습니다. Conception des aménagements de production Hydro-Québec Équipement .
이 내용은 특히 유압 에너지 소산율 평가를 위해 FLOW-3D가 제공하는 유압 에너지 흐름과 총 수두의 연산을 검토한다. FLOW-3D 에서는 모델 출력에서 직접 시각화할 수 있는 변수 중 총 유압 헤드가 포함되었다. 그림 1은 강 우회 터널(a river diversion tunnel)을 통한 절토에 걸친 총 유압 헤드 분포(total hydraulic head distribution)를 보여준다. 버전 10에서 FLOW-3D는 플럭스 배플로 계산하고 시계열로 시각화하고 외부 도구로 분석할 수 있는 일체형 값으로 유압 에너지 흐름과 총 수두를 도입했다.
그림 1. 하천변환터널을 통한 단면내 총 유압높이 분포
총 유압 에너지
베르누이의 방정식
수압 에너지, eG는 흐름에서 물의 입자의 잠재력과 운동 에너지의 합이다. 에너지 밀도로서 J/m³으로 표현되며, 베르누이의 방정식(Eq. 1)에 의해 주어진다.
일반적으로 에너지는 스스로를 변형시키지만 결코 손실되지 않는 전통적인 양으로 간주된다. 토목 공학에서 물의 흐름을 나타내기 위해, 에너지 변환을 중력 전위 에너지로 시작하여 운동 에너지로 변환한 다음 열 에너지로 변환하는 계단식 에너지로 상상하기에 충분한 경우가 많다. 또한 처음 두 형태(잠재성과 운동성)의 양만을 명시적으로 모델링하여 에너지 캐스케이드의 범위를 더욱 제한하는 것이 일반적이다.
그림 2. 상층 분지에서 보를 거쳐 정지 분지로 이동하는 물 입자의 일부 궤적.
수압 에너지 캐스케이드는 그림 2와 같이 보에서 풀로의 유량이 떨어지는 경우에 잘 나타난다.
그림에 표시된 입자의 트랙을 따라가십시오.
위치 A에서는 저수지의 상류에서 물 입자는 거의 움직이지 않고 있다.
위치 B에서 입자는 B 위의 자유 표면이 약간 낮아짐에 따라 일부 위치 에너지를 희생하여 속도를 얻었다.
위치 C에서는 입자가 자유 낙하 궤적으로 유체를 따르므로 더 많은 위치 에너지가 운동에너지로 변형되었다.
하강 흐름이 하부 풀의 물과 접촉하면 활발한 모멘텀 교환이 이루어지며 초기 유압 에너지의 상당 부분이 격동의 에너지 폭포와 점성 공정을 통해 열로 손실되었다.
위치 D에서 입자는 위치 A, B, C에 비해 낮은 유압 에너지로 영역을 떠난다.
A에서 B, C로 이동하는 동안, 점성과 난류 과정은 대개 흐름에 거의 영향을 미치지 않는다. 총 유압 에너지 eG는 필요시 작은 손실 조건을 고려하여 질량처럼 보존된 양으로 취급될 수 있다. C의 다운 스트림에서, 이 전통적인 수력 에너지(conservative hydraulic energy)의 모델은 더 큰 규모의 에너지 손실 조건과 흐름에 미치는 영향을 고려함으로써 확장될 수 있다.
질량 및 에너지 예산
볼륨 컨트롤
eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단순히 당연하게 여겨지고 있다.
흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.
eG와 질량 밀도 ρ의 수송은 모두 나중에 분명해질 이유로 감시되어야 한다; 이것은 단지 지금 당연하게 여겨지고 있다. 흐름에 의한 eG와 질량밀도 ρ의 수송은 아래 CV로 표기된 제어량 및 가우스의 발산 법칙의 도움으로 분석하기 쉽다.
CV는 다음 규칙을 따르는 한 하나의 선택사항의 정의 표면으로 둘러싸인 볼륨이다.
정의 표면은 스스로 교차하지 않는 한 임의의 형태를 가질 수 있다.
표면은 각 패치가 다른 패치와 물샐틈없는 가장자리로 연결되어 있는 한 패치로 구성될 수 있다.
CV의 부피는 밀폐된 질량이나 에너지와 같은 적분, 자체 보존 수량을 계산하는 데 사용된다.
CV의 표면은 들어오고 나가는 플럭스를 정의하기 위해 사용되며, 밀폐된 수량에 대한 예산을 세우고 그 시간 이력을 감시할 수 있다.
그림 3은 떨어지는 물 분사기의 특성을 분석하는 데 사용할 수 있는 제어 부피의 예를 제시한다. 이 제어 볼륨으로 유입되고 유출되는 유일한 것은 제트기 자체로서 왼쪽 상단에서 들어오고 오른쪽 하단에서 떠난다.
FLOW-3D의 고정형상 제어량
FLOW-3D를 사용하면 고정된 형태와 위치의 CV를 세 가지 기본 형태의 플럭스 배플의 도움을 받아 쉽게 정의할 수 있다.
구(Sphere)들은 닫힌 표면이다.
실린더는 양끝이 개방되어 있으므로, 실린더의 끝이 흐르지 않도록 유량 한계 밖으로 뻗어나가도록 주의해야 한다.
전체 흐름 영역 또는 하위 도메인을 교차시켜 CV를 조립하는 데 사용할 수 있는 평면 직사각형 패치
그림 4는 세 가지 유형의 플럭스 배플을 계산 메쉬로 렌더링한 후에 볼 수 있는 실제 모델에서 그린 예다. 그것들은 불투명한 것으로 렌더링되지만 그것들이 배플을 측정하는 유일한 플럭스로 정의된다면 흐름에 완전히 스며들 수 있다.
(2) hG≡eG/-gρ
(3) hG=z+
그림 4. 표본 망사 내에 렌더링된 평면, 원통형 및 구형 형상의 플럭스 배플 예제그림 5. 튜브 또는 펜스톡을 절단하는 수직 단면 쌍을 결합하여 정의된 두 개의 제어 볼륨. 흐름은 총 유압 헤드에 따라 색상이 지정된다.
그림 5는 평면 배플 표면을 사용하여 두 가지 제어 볼륨을 정의하는 방법을 보여준다.
제어 볼륨 DC, 긴 입방형 모양은 6개의 면으로 구성되어 있다. 반대편 두 면은 C와 D라고 불리는 배플이다. 밑면과 윗면이 그려지고 그 위치는 흐름 영역보다 훨씬 위아래 있는 한 중요하지 않다. 앞면과 뒷면은 큐브의 남은 두 면이며, 그들의 위치 또한 앞과 뒤가 잘 있는 한 중요하지 않다. 흐름 영역의
제어 볼륨 BA도 마찬가지로 정의된다. 그것은 자유로운 표면 흐름을 포함하는 하위 도메인인 입구 포탈의 일부를 둘러싸고 있다. 자유 표면 흐름은 면 B와 A의 유입량 차이가 수위(및 수량)에 변화 속도를 부여하고 진동을 유발하여 천천히 감쇠하거나 전혀 감쇠하지 않기 때문에 진정한 안정 상태에 이르기 더 어렵다. 이 경우, 질량과 에너지의 신뢰할 수 있는 예산은 성질의 진화가 정지해 있는 에피소드를 식별하고 평균화를 수행하기 위해 흐름의 시계열을 처리함으로써 이루어진다.
그림 5의 수직 플럭스 배플은 사용 가능한 수직 표면(DB, DA, CB, CA)의 순열을 사용하여 몇 개의 다른 CV를 정의하는데 사용할 수 있다.
에너지 예산
수력 에너지 균형은 점성 열 생성을 손실로 명시적으로 표시하기 때문에 정의에 따라 누출된다. 이상적으로, 수력 에너지 캐스케이드는 다른 원인으로 인해 에너지를 잃지 않아야 하며 어떤 것도 얻지 않아야 한다. 여기서 다시 수치 모델로 연습하면 약간 다른 그림이 그려진다. 모든 수치 모델에는 인위적인 소스 또는 수력 에너지 싱크가 있다.
예를 들어, 셀 크기가 에너지 전달 흐름 특징보다 훨씬 작을 때 계산 메쉬에 흐름 간섭이 발생한다. 셀 크기가 충분히 작지 않을 때, 속도 대비는 자연 흐름에서보다 더 큰 공간 범위에 걸쳐 확산된다. 그 확산은 운동 에너지를 약간 작게 만들고 자연 현상보다는 그리드 효과에 기인하는 에너지 방산 역할을 한다.
에너지 예산을 모니터링하면 모델의 신뢰성에 대한 단서를 얻을 수 있으며 다른 매개변수 값이나 그리드 셀 크기를 사용하는 런을 비교하는 데 사용할 수 있다. 인위적인 손익이 관리되고 있을 때 유압 에너지 소산 속도는 종종 수치 모델에서 얻은 중요한 결과 중 하나이며 설계 변동을 구별하는 데 중요하다.
총 유압 헤드
에너지 밀도로서의 총 유압 헤드
아래 hG로 상징되는 총 유압 헤드는 Eq. 1의 총 유압 에너지 eG를 단순히 (-gρ )로 나눈 값이다.
유량에서 측정한 입압 헤드는 물의 국부적 자유 표면 고도를 잘 측정할 수 있는 것으로 간주된다.
저수지 및 강의 평온한 범위에서는 흐름 속도가 운동 에너지 헤드가 무시해도 될 정도로 충분히 낮아서 때때로 hG가 입압 헤드와 동일하다고 간주될 수 있다.
총 유압 헤드 hG는 때로 정체 높이라고 불리기도 한다. 흐름 내에 유체의 입자가 있는 경우, 모든 속도가 갑자기 위쪽으로 향하게 되고 주변 유체가 장애물이 되지 않을 경우 입자가 도달하는 최종 높이다.
총 유압 헤드 hG는 교각과 교대 등 유압 설계에 있어 유비쿼터스 변수다. 그것은 또한 채널과 펜스탁과 같이 에너지가 관리된 방식으로 전달되거나 소멸되어야 할 때마다 흐름의 수압 에너지를 나타낸다. hG는 다른 엔지니어링 작업의 키 높이와 동일한 고도 척도를 사용하여 엔지니어링 도면에 주석으로 나타날 수 있기 때문에 선택의 변수다.
총 유압헤드의 통합값으로부터의 유압에너지 소산
두 흐름 단면 A와 B 사이에 발생하는 에너지 소산에 대한 일체적 접근방식은 흐름의 하향 방향에서 HG의 감소로부터 계산된다.
HG의 도움을 받아 A와 B 사이의 에너지 소산을 계산하기 위해 각 단면에서의 HG 값을 먼저 –ρg에 곱하여 에너지 밀도 흐름으로 만든 다음 Q에 곱하여 총 유압 에너지 흐름으로 주조한다. 두 횡단면의 에너지 흐름의 차이를 보면, 두 횡단면에서 부피 흐름 Q가 동일한 상황에서, 아래와 같이 상류 횡단면에서 다운스트림 단면으로 이동하는 흐름에서 발생하는 유압 에너지 손실을 산출한다.
그림 6. 터널을 통해 흐르는 강물 회항, 왼쪽에서 오른쪽으로 흐르는 흐름 속도에 따라 채색된다.그림 7. 같은 강물 전환, 교차점을 측정하는 물과 유동성만 보여준다.
업스트림 리치는 유입과 배출 흐름의 차이에 따라 수위가 변동하는 볼륨 밸런스의 예를 제시한다. 동시에, 터널을 통과하는 유량의 비율은 상류와 하류 사이의 압력 균형에서 기인하며, 터널 벽의 마찰과 분리된 구조물에서의 흐름 에너지 손실과 통로를 따라의 전환이 큰 역할을 한다. 그림 10은 FLOW-3D에서 플럭스 배플로 알려진 수많은 흐름 측정 단면을 보여준다. 이들의 용도는 다음과 같다.
추가 분석을 위한 유용한 기준으로 특정 모델 실행의 흐름 체계의 안정성 평가
종단 종단 수위 및 수력 에너지 흐름의 그래프 작성 및 분석(수력 에너지 소산율 포함)
설계 변이 간 미세 비교 허용
일반적으로 흐름 동작이 예상에 부합하는지 검증하고, 체크하지 않을 경우 흐름의 진부도를 감소시킬 수 있는 수치적 아티팩트를 검출하고 수정한다.
예제 2 – 자연 암석 표면을 통한 고속 자유 주행
그림 8은 자연 암석의 유유히트레이스와 자유 주행의 예를 보여준다.
이 모델은 지표면의 단위 면적당 수압 에너지 소산율을 평가하는 것을 목적으로 했다. 이 속도는 W/m² 단위로, 자유 주행을 따라 암석 표면의 침식 잠재력을 평가하기 위한 입력값이었다.
그림 8. 플럭스 배플이 어떻게 사용될 수 있는가에 대한 예는 자연 암석에 대한 유출로의 꼬리표에서 찾을 수 있다. 목적은 지표면의 단위 면적당 유압 에너지 소산율을 평가하는 것이다.그림 9. 이 시뮬레이션은 에너지 소산의 추정치를 제공하기 위해 평면과 원통형 흐름 배플이 어디에 위치했는지를 나타낸다.
그림 9는 도구 자체를 확인하고 소산율 평가를 수행하는 데 사용된 계량장치를 나타낸다. 망사블록도 윤곽이 잡힌다.
원하는 소산 속도를 측정하고, 마찬가지로 중요한 것은 흐름의 품질 및 측정 도구의 평가를 위해 평면 및 원통형 플럭스 배플의 종류가 배치되었다.
평면 플럭스 배플은 제어 볼륨을 구성하고 이를 사용하여 CV 내에서 볼륨 흐름의 안정성과 에너지 소산을 모니터링할 수 있다. 테일레이스에서는 사이드월(sidewall)에 의해 흐름이 잘 담겨 있고 횡단면을 가로질러 상당히 균일하다. 에너지 소산율은 25~50kW/m²이었다.
배출 관문 발치에 원통형 유동 배플이 위치한다. 실린더를 통과하는 평균 체적 유량은 정상적인 유량 변동 때문에 시간 경과에 따라 가변적이었지만 적절한 평균 구간을 취할 때 0이 되는 경향이 있었다. 배플을 통한 순유압 에너지 흐름에 대해 동일한 평균을 취했을 때, 예상대로 음의 값이 산출되었고, 이는 면적으로 나누면 30 kW/m²에 가까웠다. 타원형 수평 단면으로 확장된 또 다른 원통형 흐름 배플도 꼬리 경주가 끝날 무렵에 위치했다. 거기서 만들어진 유사한 검증도 비슷한 합의를 보여주었다.
원통형 유동 배플이 유압 에너지 소산 측정에 예상대로 작용했다는 결론이 나왔다. 그런 다음 방산이 가장 높을 것으로 예상되었던 아래쪽 경사면에 놓인 원통형 배플에 주의를 돌렸다.
그림 10은 자유 주행 위에 위치한 원통형 배플 번호 3을 통해 순 부피와 에너지 흐름의 시계열로, 꼬리표에서 자연 암석 표면으로의 전환 근처를 보여준다. 그림은 두 흐름의 높은 진폭 변동이 존재하며 그 흐름들에 의해 어떤 경향도 잘 숨겨져 있음을 보여준다.
그림 10. 시간의 함수로서, 두 번째 예제의 원통형 플럭스 배플 번호 3을 통한 순 부피 흐름(m³/s) 및 순 유압 에너지 흐름(W)
그림 11은 그림 10의 순 부피와 에너지 플럭스의 시간 통합을 나타낸다. 시간 통합은 부피(m³)와 에너지(J)의 값을 산출한다. 볼륨 시계열은 정권이 정지해 있는 시간 간격을 선택할 수 있고, 순 볼륨 변화가 0에 가까워지도록 통합 시간 경계를 선택할 수 있다. 에너지 시계열은 에너지 소산의 예상대로 정기적으로 하향 추세를 보여준다. W/s 단위의 추세의 기울기는 소산율을 추정한다. 그런 다음 원통형 배플 인클로저 베이스의 표면적 영역으로 나누어 면적 단위당 원하는 산란율을 얻을 수 있다. 실린더의 반지름을 선택하여 면적이 100m²에 가까울 수 있도록 했다. 이 경우 소산율이 286kW/m²로 나타났다.
그림 11. 원통형 배플의 부피와 총 에너지는 시간 통합에 의해 얻어진 시간의 함수로써, 임의의 값으로 상쇄되어 영값이 단순히 존재하는 초기 수량이며 알 수 없다.
이러한 결과는 다른 분야의 엔지니어들과의 토론에서 사용되었다. 다른 요인 중에서도 암석 표면이 예비 추정에서 비롯된 공기 주입식 개미가 아니었기 때문에 불확실성의 여백이 크다는 것이 명백해졌다. 또한 수압 에너지가 바위가 아닌 물 속에서 소멸되고, 최대 소산의 위치가 반드시 바위에 대한 최대 작용의 위치가 아니라는 것도 모듈러에 의해 지적되었다. 위에 제시된 분석의 미니어처는 상당한 부담이었지만, 배플이 모델러에게 참신한 방법으로 사용되고 있기 때문에 필요하다고 여겨졌다. 학문 간 논의와 값의 규모 순서는 수치 그 자체보다는 모형의 가장 유용한 결과였다.
결론
FLOW-3D의 플럭스 배플은 이를 통과하는 부피와 유압 에너지 순 흐름에 대한 정밀한 평가를 제공한다. 이들의 연산 알고리즘은 제어 볼륨 접근방식과 함께 사용되는 FLOW-3D의 기본 수치 체계로 정교하게 조정되며, 높은 수준의 일관성이 요구되는 상황에서 대량 보존에 관한 FLOW-3D 자체의 성능 검증을 포함한 수많은 측정을 위해 잘 설계되어 있다.
토탈 유압 헤드의 연산은 수많은 방법으로 이루어질 수 있는데, 토목 및 유압 엔지니어에게 수량의 매우 높은 유용성을 볼 때 놀라운 일이 아니다. FLOW-3D가 제공하는 방법 중 하나는 플럭스 평균 총 유압 헤드의 배플 유량 면적에 대한 계산이다. 여기에서 주어진 유량관을 가로지르는 두 플럭스 배플에서의 값 사이의 차이로 측정한 유량에서의 수압 에너지 손실률은 가우스 발산 정리에 의해 원시 유량 변수와 연결된 제어 볼륨 접근법으로 계산될 수 있는 유량 손실률이 정확히 여기에 나타난다.
Pareekshith Allu Senior CFD Engineer | Additive Manufacturing | Laser Welding | Business Development
When CFD meets laser welding: How sparks fly!
CFD 또는 전산 유체 역학은 수치적 방법을 사용하여 유체 흐름을 연구하는 것입니다. 유체 흐름의 기본 방정식에는 솔루션 해가 없으므로 컴퓨터를 사용하여 방정식을 반복적으로 계산하는 수치해석 방법으로 해결합니다. 일반적으로 CFD 도구는 공기 역학, 엔진 연소, 물 및 환경 흐름, 미세 유체 및 제조 공정에서 광범위한 연구 및 엔지니어링 문제에 적용될 수 있습니다. CFD가 개발에 중요한 역할을 한 기술을 매일 접할 가능성이 있습니다. FLOW-3D 소프트웨어 제품 제조업체인 Flow Science Inc.에서는 자유 표면 흐름 문제 라고하는 특수한 문제 해결에 중점을 둡니다 .
자유 표면 흐름이란 무엇입니까? 밀도 차이가 큰 두 유체간에 인터페이스가 공유되는 분야는 자유 표면 흐름입니다. 예를 들어, 기체-액체 경계면이 제한되지 않고 시간에 따라 자유롭게 움직이고 변경할 수 있다는 점에서 강의 물과 주변 공기 사이에 자유 표면이 존재합니다. FLOW-3D 솔버의 기본 DNA 인 Volume of Fluid 또는 VoF 방법 은 자유 표면의 진화를 추적하는 강력한 계산 기술입니다. 우리는 지난 40 년 동안 이 문제에 거의 전적으로 집중했습니다.
자유 표면 흐름은 제조산업 분야에서도 널리 사용됩니다. 금속 주조에서는 용융 금속과 용융 금속이 채우는 금형 또는 다이의 공기 사이에 자유 표면이 존재합니다. L-PBF ( Laser Powder Bed fusion) 라고하는 적층 제조 공정에서 레이저를 사용하여 분말 입자를 녹이고 융합하여 공정에서 자유 표면 용융 풀을 만듭니다. 그리고 레이저 용접에서는 레이저 빔에 의해 녹아서 두 개의 금속 부품 / 부품을 함께 융합 할 때 형성되는 자유 표면 용융 풀이 있습니다.
이 게시물에서는 레이저 용접 공정에 대한 CFD 시뮬레이션이 유용한 이유를 설명합니다.
레이저 기술은 지난 몇 년 동안 상당히 발전했으며 이제 다른 레이저 제조업체는 다양한 파장에서 펄싱 기능이 있는 고출력 레이저를 제공 할 수 있습니다. 레이저와 로봇 자동화 시스템, 컨트롤러 및 프로세스 센서의 통합은 다양한 제조 산업에서 사용을 확대하여 열 입력이 적고 열 영향 영역이 더 작은 레이저 용접 조인트를 가능하게합니다.
레이저-재료 상호 작용은 복잡하며이를 정확하게 모델링하려면 이러한 시간적 및 공간적 규모와 관련된 물리학을 구현해야합니다. 레이저 열원은 표면에 에너지를 축적하여 기판을 녹이고 용융 금속 풀을 만듭니다. 용융 풀은 전력, 속도 및 스캔 경로와 같은 레이저 가공 매개 변수와 용융 풀의 자유 표면에 동적 증기압을 적용하는 차폐 가스의 영향을 더 많이받습니다. 또한 용접되는 기판의 재료 특성이 중요한 역할을합니다. 용융된 풀의 상 변화와 증발은 용융 풀을 더욱 압박하는 반동 압력을 유발할 수있는 반면 표면 장력은 풀 내의 유체 대류에 영향을줍니다. 키홀 링이있는 경우 레이저 광선이 키홀 내에 갇혀 추가 반사 영향을 받을 수 있습니다. 기판에 더 많은 에너지를 전달합니다. 불안정한 키홀이 붕괴되면 갇힌 공극이 진행되는 응고 경계에 의해 포착되는 다공성 형성으로 이어질 수 있습니다.
분명히 많은 일이 진행되고 있습니다. 이것이 CFD 시뮬레이션이 강력 할 수있는 곳이며 FLOW-3D WELD를 개발할 때 레이저-재료 상호 작용을 이해하는 데 많은 노력을 기울이는 이유입니다. 자유 표면 추적 및 레이저 에너지 증착, 차폐 가스 역학, 상 변화, 반동 압력, 표면 장력, 레이저 광선 추적 및 응고와 함께 유체 및 열 흐름 방정식을 통합하는 물리 기반 모델은 레이저의 복잡한 상호 작용을 캡처하는 데 매우 정확합니다. 용접과정을 해석하는 기능은 용융 풀의 안정성에 대한 다양한 공정 매개 변수의 영향을 분리하고 엔지니어와 연구원이 용접 일정을 최적화하는 데 도움이 될 수 있습니다.
CFD 시뮬레이션은 레이저 용접 프로세스를 분석하고 개선하는데 도움이되는 프레임 워크를 제공 할 수 있습니다. 불안정한 용융 풀은 키홀 유발 다공성, 파열 및 스패 터와 같은 결함을 초래할 수 있기 때문에 용융 풀의 작동 방식을 이해하는 것은 조인트의 품질에 매우 중요합니다. 그 후, FLOW-3D WELD 모델의 출력인 응고된 용융 풀 데이터 및 열 구배와 같은 결과를 미세 구조 또는 유한 요소 분석 모델에 입력하여 각각 결정 성장 및 열 응력 진화를위한 길을 닦을 수 있습니다.
이 게시물이 CFD를 사용하여 레이저 용접 프로세스를 시뮬레이션하는 이점을 이해하는데 도움이 되기를 바랍니다.
레이저 용접 공정을 더 잘 이해하기 위해 CFD 시뮬레이션 적용을 고려해 보셨습니까? 어떤 특징 / 물리 현상이 모델링되기를 원하십니까? 질문과 의견이 있으면 언제든지 flow3d@stikorea.co.kr 또는 미국 본사의 paree.allu@flow3d.com에게 연락하십시오.
D. K. H. Ho, S. M. Donohoo, K. M. Boyes and C. C. Lock Advanced Analysis, Worley Pty Limited L7, 116 Miller Street, North Sydney, NSW 2060 Australia Tel: +61 2 8923 6817 e-mail: david.ho@worley.com.au
Abstract
엔지니어링 설계에서 유한 요소, 유한 차분 및 전산 유체 역학 분석 소프트웨어와 같은 수치 도구의 일상적인 사용이 최근 몇 년 동안 증가했습니다. 소프트웨어 및 하드웨어 기술의 발전은보다 비선형적이고 복잡한 3 차원 분석이 수행되고 있음을 의미합니다.
그러나 본질적으로 “블랙 박스”인 이러한 강력한 소프트웨어는 “컴퓨팅”기술을 보유하고 있지만 광범위한 엔지니어링 경험이 필요하지 않은 분석가의 손에 “컴퓨터 보조 재해”로 이어질 수 있습니다. 품질 보증 절차의 엄격한 구현은 수치 모델이나 분석 기법이 정확한지 확인할 필요가 없을 수 있습니다.
이 백서에서는 복잡성이 증가하는 세 가지 실제 토목 공학 응용 프로그램에서 수치 분석 결과를 검증하는 방법을 설명합니다. 여기에는 유한 요소법을 이용한 수조 탱크의 구조 해석, 전산 유체 역학법을 이용한 수력 구조물 위의 홍수 조사, 유한 차분법을 이용한 안벽 시공 시뮬레이션 등이 있습니다. 입력 데이터의 불확실성 수준과 각 사례에 대한 계산 결과의 신뢰성에 대해 논의합니다. 분석 과정에서 몇 가지 흥미로운 결과가 발견되었습니다.
첫 번째 사례 연구는 시공의 질이 구조물의 성능에 상당한 영향을 미친다는 것을 보여주었습니다. 그러나 설계자는 설계 단계에서 이러한 상황을 수량화하고 분석하지 못할 수도 있습니다. 필요할 경우 향후 역분석은 물론 설계 검증의 기준점이 될 수 있도록 공사 종료 시 모니터링의 중요성이 필수적입니다. 유한 요소 분석은 복잡한 문제를 분석할 수 있는 강력한 수치 도구이지만, 분석가들은 문제의 행동이 단순하고 잘 이해되는 것처럼 보일 수 있는 상황에서 예상치 못한 결과를 만날 수 있도록 준비해야 합니다.
두 번째 사례 연구에서는 중요한 배수로 구조에 전산 유체 역학 분석이 처음으로 적용 되었기 때문에 엄격한 검증 프로세스가 강조됩니다. 그것은 2D ogee 방수로 프로파일로 시작하여 문제의 방수로의 3D 모델을 분석하기 위해 진행되는 방식으로 수행되었습니다. 계산된 결과를 각 단계에서 이론 및 물리적 테스트 데이터와 비교했습니다. 유체 흐름 문제의 비선형적 특성에도 불구하고, 분석은 확신을 가지고 실제 설계 목적에 적합한 결과를 제공할 수 있었습니다.
최종 사례 연구에서는 안벽의 거동이 시공 이력과 매립 방식에 영향을 받은 것으로 나타났습니다. 벽의 움직임은 매우 가변적인 토양 속성에도 불구하고 질적으로도 단순한 비선형 토양 모델을 사용하여 정확하게 예측되었습니다. 지속적인 모니터링 기록이 없기 때문에 검증은 어려웠습니다. 계산된 결과를 검증하는 열쇠는 수치 소프트웨어 도구를 사용하지 않는 독립적인 계산을 찾는 것입니다. 대부분의 경우 이러한 솔루션을 사용할 수 있습니다. 그러나 다른 경우에는 실험실 또는 현장 관찰에만 의존할 수 있습니다.
Introduction
오늘날 수치 해석은 대부분의 엔지니어링 설계에서 필수적인 부분을 형성합니다. 따라서 결과 검증의 필요성은 분석 기술 / 방법론을 신뢰할 수 있고 설계자가 계산 된 결과에 대한 확신을 가질 수 있도록 설계 프로세스 전반에 걸쳐 매우 중요합니다.
일반적인 관행은 고전 이론, 실험 데이터, 게시 된 데이터, 유사한 구조의 성능 및 다른 사람이 수행 한 수치 계산에 대해 결과를 검증하는 것입니다. 때때로 소프트웨어 개발자가 제공 한 벤치 마크 또는 검증 예제가 이러한 목적으로 사용될 수 있지만 전체 범위의 문제를 포괄 할만큼 포괄적 인 경우는 거의 없습니다.
수치 해석을 시작하기 전에 분석가는 입력 데이터의 신뢰성, 소프트웨어 도구가 문제의 문제를 해결할 수 있는지 여부 및 결과를 검증하는 방법을 결정해야합니다. 검증 프로세스가 많은 실무자들에 의해 품질 보증 절차의 일부로 채택되었지만 비용이 많이 드는 실패가 여전히 발생했습니다 [1].
Validation
결과 검증의 필요성은 수치 분석의 사용 (남용)에서 일부 나쁜 업계 관행을 관찰함으로써 강화 될 수 있습니다. 수치 계산을 수행하기 위해 고용 된 일부 엔지니어 / 분석가는 계산 뒤에있는 기본 이론을 완전히 이해하지 못하거나 숨겨진 함정을 처리 할 수있는 실제 엔지니어링 경험이 충분하지 않을 수 있습니다.
일부 소프트웨어가 “CAD와 유사”해지고 많은 사람들이 작동하기 쉽다고 주장하기 때문에 엔지니어링 회사가 대학원 엔지니어 대신 초보를 고용하여 수치 모델링 및 분석을 수행하는 경향이 점차 증가하고 있습니다.
사용자는 복잡한 지오메트리 모델을 생성하고, 적절한 요소와 메시를 만들고, 각 하중 케이스에 대한 경계 조건 (접촉, 하중 및 고정)을 적용하고, 속성을 할당하고, 제출에 필요한 모든 플래그 / 스위치 / 버튼을 설정하는 데 상당한 노력을 기울일 것입니다.
분석이 실행됩니다. 자체 검사를위한 일부 품질 보증 절차는 전처리 단계에서 따를 수 있지만 계산이 완료되고 결과가 후 처리 될 때까지 많은 사용자는 출력이 어느 정도 정확하다고 쉽게 믿을 것입니다. 지오메트리 생성은 수치 모델링 프로세스의 일부일뿐입니다. 가장 어려운 문제 중 하나는 전체 설계 프로세스에서 불확실성을 다루는 것입니다. 재료 속성 및 로딩 순서와 같은 입력과 관련된 불확실성이 있습니다.
예를 들어 모델이 선형 또는 비선형 방식으로 동작하는지 여부와 같이 솔루션 유형의 적절성과 관련된 불확실성이 있습니다. 마지막으로 결과 해석과 관련된 불확실성이 있습니다. 수치 분석에서 결과를 검증하고 문제를 발견하는 데있어 분석가를위한 좋은 방법에 대한 간단한 지침은 없습니다. 그러나 다음 방법을 통해 점차적으로 달성 할 수 있습니다.
• 수치 적 방법 과정에 대한 좋은 이해 – 이것은 학부 및 / 또는 대학원 수준의 공식 교육을 통해 얻을 수 있으며 지속적인 전문성 개발의 일환으로 자습을 통해 더욱 향상 될 수 있습니다. • 특정 유형의 문제에 대한 기본 이론과 해결책의 범위를 잘 이해합니다. 이 역시 위와 같은 교육을 통해 이루어질 수 있습니다. • 실제 문제를 해결하는 데 공학적 판단을 사용하고 수치 분석을 수행 한 경험이 있습니다. 이는 숙련 된 엔지니어가 분석가를 적절하게 감독하는 환경에서 작업함으로써 얻을 수 있습니다.
품질 보증 시스템의 구현이 실행 가능한 솔루션으로 이어지는 엔지니어링 판단을 대체하는 것은 아니라는 점에 유의해야합니다. 복잡한 대규모 모델을 분석하기 전에 시뮬레이션 기술과 문제의 근본적인 동작을 완전히 이해하기 위해 간단한 테스트 모델을 사용하여 수치 “실험”을 수행해야하는 경우가 매우 많습니다.
경험에 따르면 때때로 테스트 모델 자체가 분석가가 최종 설계 솔루션에 도달 할 수있는 충분한 정보를 제공 할 수 있습니다. 해당 대형 복합 모델의 분석은 설계 기대치를 확인하는 것입니다. 다음 사례 연구는 결과 검증이 수행 된 방법과 신뢰 수준 및 불확실성이 해결된 방법을 보여줍니다.
Applications
일반적인 토목 공학 프로젝트에서 수치 분석은 구조 역학, 기하학 및 유체 역학의 세 가지 기본 분야 중 하나 또는 조합을 포함 할 수 있습니다. 문제의 성격은 토양-구조 상호 작용, 유체-구조 상호 작용 또는 토양-유체 상호 작용 중 하나로 분류 될 수 있습니다.
어떤 경우에는 세 가지 모두를 포함 할 수 있습니다. 잠재적 인 복잡성을 고려하여, 정확도를 잃지 않고 실제 목적을 위해 중요한 동작을 캡처하지 않고 문제를 단순화하기 위해 몇 가지 가정과 이상화가 이루어져야합니다. 이러한 문제를 해결할 수있는 범용 및 특수 수치 분석 소프트웨어가 있습니다. 두 가지 유형의 소프트웨어가 사례 연구에 사용되었습니다.
Case 1 – Deflection of a steel water tank
직경 약 90m의 대형 원형 강철 물 탱크는 처음 채울 때 큰 벽면이 휘어지면서 탱크의 장기적인 구조적 무결성에 대한 우려를 불러 일으켰습니다.
물의 높이는 전체 저장 용량에서 약 10m였습니다. 지붕 구조는 탱크 내부에있는 기둥으로 거의 전적으로지지되었습니다. 스트레이크(strakes)는 벽의 바닥 1/3이 더 두꺼운 고급 강판으로 구성되었습니다. 1 차 윈드 거더는 탱크 상단 주위에 용접되었고 2 차 윈드 거더는베이스 위 2/3에 위치했습니다. 하단 스트레이 크는 환형베이스 플레이트에 필렛 용접되었습니다. 내부 기둥의 기초를 제외한 전체 바닥은 용접 된 강판으로 덮여있었습니다.
이 탱크는 유능한 중간층 사암과 미사암 기반암 위에 압축된 채움물 위에 세워졌습니다. 일련의 축 대칭 유한 요소 분석 (FEA)을 수행하여 관찰된 처짐을 예측할 수 있는지 여부를 결정하고 매일 물을 채우고 비울 때 피로 파괴가 발생할 가능성으로 인해 벽 바닥의 응력 상태를 계산했습니다.
내부 기둥과 지붕 빔을 포함하는 탱크의 12 분의 1 섹터에 대한 3 차원 모델을 처음에 분석하여 벽이 얼마나 많은 지붕 자중을지지하고 축 대칭 가정의 타당성을 조사했는지 조사했습니다. 이 분석의 결과는 지붕 구조의 강성 기여도가 중요하지 않아 후속 축 대칭 모델에 포함되지 않았 음을 보여주었습니다.
그러나 지붕 자체 무게의 작은 부분이 벽에 적용됩니다. 축 대칭 모델은 모든 강철 섹션, 필렛 및 맞대기 용접 및 기초로 구성되었습니다 (그림 1). 그것들은 몇 개의 3 노드 삼각형 축 대칭 요소가있는 4 노드 비 호환 모드 사변형으로 이산화되었습니다.
용접 재료를 통해서만 하중 전달이 허용되도록 용접이 모델링되었습니다. 용접 연결부에 미세한 메시를 사용하여 응력 상태를 정확하게 포착했습니다. 롤러 지지대는 모델의 측면 및 하단 경계에 적용되었습니다. 다음과 같은 하중이 적용되었습니다 :
철골 구조물의 자중, 지붕 자중, 벽의 정수압, 수위에 따른 바닥의 균일 한 압력. 한 모델은 용접 또는베이스의 강판이 플라스틱 힌지를 형성하기 위해 항복되었다고 가정했습니다. 이 경우 벽 바닥에서 핀 연결이 모델링되었습니다.
그림2 Partial FE mesh of tank/foundation. Insert shows mesh and stress distribution at wall base
벽 처짐은 그림 2에 나와 있습니다. 측정 범위와 계산 된 결과는 비교 목적으로 표시됩니다. 계산 된 벽 처짐을 검증하기 위해 두 벽 두께에 대한 Timoshenko 및 Woinowsky-Krieger [2]에 기반한 고전 이론도 그림에 표시되었습니다. 계산 된 편향은 이론적 계산에 의해 제한됨을 관찰 할 수 있습니다.
벽 두께의 변화로 인한 전이가 분석에서 포착되었습니다. 이것은 유한 요소 모델에 대한 확신을 제공했습니다. 윈드 거더와 구속 된베이스의 영향도 볼 수 있습니다. 윈드 거더 설치로 인해 초기 변형이 발생하여 공사가 끝날 때 벽 상단이 안쪽으로 당겨질 수 있습니다. 굽힘 동작이 발생한베이스 근처를 제외하고는 후프 동작이 벽 동작을 지배했습니다.
계산된 최대 처짐이 측정된 순서와 동일하더라도 최대 돌출이 발생한 높이는 예측되지 않았습니다. 실제로 조사 데이터는 몇 가지 가능한 시나리오를 제안했습니다.베이스에 플라스틱 힌지 형성 (그러나이 영역에서 계산 된 응력은 항복 강도를 초과하지 않았습니다). 지반 재료의 국부적 인 베어링 고장 (다시 현장에서 균열과 같은 명백한 지시 신호가 보이지 않음); 또는 탱크 건설이 끝날 때 내장 된 기하학적 결함이있었습니다. 사전 변형 된 탱크에서 역 분석을 수행하여 측정 된 처짐이 정수압 하에서 “회복”되었습니다. 그러나 계산된 응력은 수율을 훨씬 초과했습니다. 불행히도 탱크는 완성 후 첫 번째 충전 전에 즉시 조사되지 않았습니다.
Figure 2 Wall deflection of water tank
탱크의 원래 디자인과 건설이 2000 년대 초에 수행되었다는 점은 흥미 롭습니다. 설계 계산에 관련 표준 [3]을 사용했습니다. 이 표준은 탱크 벽이 후프 동작만으로 작용한다고 가정하고이 구조의 경우가 아닌베이스의 제약 조건을 무시합니다. 벽 처짐의 크기는 기초 강성을 고려한 Rish [4]가 개발 한 고전 이론 [2] 또는 FEA와 같은 수치 분석에 의해 결정될 수 있습니다. 고급 강철을 사용하면 설계자는 강도에는 적합하지만 서비스 가능성에는 필요하지 않은 더 얇은 섹션을 선택해야합니다. 굽힘 강성은 큐브 두께에 의해 결정됩니다. 수중 부하에서 후속 벽 변형 프로파일은 제작 품질에 영향을받습니다. 이것은 설계 단계에서 추정하기 어려웠을 것입니다.
사례 2 – 배수로 배출
호주의 많은 댐 구조는 제한된 수 문학적 정보로 1950 년대와 60 년대에 설계 및 건설되었습니다. 이러한 기존 방수로 구조는 수정 된 가능한 최대 홍수 수준에 대처하기 위해 크기가 작습니다. 증가 된 홍수 조건 하에서 방수로 꼭대기에 대한 음압 생성과 같은 잠재적 인 문제가 발생할 수 있습니다. 이는 방수로 및 게이트 구조에 불안정성 또는 캐비테이션 손상을 유발할 수 있습니다. 역사적으로 스케일링 된 물리적 모델은 이러한 동작을 연구하기 위해 수력 학 실험실에서 구성되었지만 비용이 많이 들고 시간이 많이 걸리며 스케일링 효과와 관련된 많은 어려움이 있습니다. 오늘날 고성능 컴퓨터와보다 효율적인 전산 유체 역학 (CFD) 코드를 사용하여 수리적 구조의 동작을 합리적인 시간과 비용으로 수치 적으로 조사 할 수 있습니다. 이 분석 기법은 대도시 지역에 주요 상수원을 제공하는 가장 큰 콘크리트 중력 댐에 호주에서 처음으로 적용 되었기 때문에 검증을 수행 할 필요가있었습니다. 이것은 그림 3과 같이 조사 프로세스에 통합되었습니다. 순서도는 간단한 2D에서 상세한 3D 방수로 모델로 어떻게 발전했는지 보여줍니다.
Figure 3 Flowchart showing the validation
process
미 육군 공병대 [5]에서 발표 한 광범위한 데이터가 있기 때문에 검증을 위해 ogee 방수로 프로필 (그림 4 참조)이 선택되었습니다. 계산 된 결과는 조사의 각 단계에서 검토되었습니다. 게시 된 데이터에서 크게 벗어나면 프로젝트가 중단됩니다. 이것은 프로젝트가 시작되기 전에 고객과 상호 합의되었습니다.
Figure 4 A view of the ogee spillway and Type 2
piers in the 3D CFD model
이러한 종류의 분석의 초기 어려움 중 하나는 개방 채널 중력 흐름 문제에서 자유 표면의 정확한 계산이었습니다. 자유 표면을 추적하는 데 적응 형 메싱 및 반복 방법을 사용하는 것은 일부 유한 체적 CFD 코드에서 사용되었지만 성공은 제한적이었습니다. 본 연구에 사용 된 코드는 SOLA-VOF 방법으로 Navier-Stokes 방정식을 해결합니다. 유체 운동의 과도 동작을 해결하기 위해 유한 차분 방법이 사용되었습니다. 유체의 부피 (VOF) 함수는 자유 표면 운동을 계산하는 데 사용됩니다 [6].
분석에 대한 자세한 내용은 [7]에 설명되어 있습니다. 계산 된 파고 압력 분포, 자유 표면 프로파일 및 정상 상태에서의 배출 속도는 검증 목적으로 사용되었습니다. 다른 상류 수두 (H) 아래의 배수로 꼭대기를 따라 압력 분포가 그림 5에 나와 있습니다. 일부 압력 진동은 코드가 일반 메시와 곡선 배수로 장애물 사이의 인터페이스에서 계산을 처리하는 방식에 기인 할 수 있습니다. 훨씬 더 미세한 메쉬는 이러한 불규칙성을 부드럽게 만들었습니다. 압력 분포에 대한 교각의 영향은 3D 모델에서 올바르게 예측되었습니다 (그림 6).
계산된 자유 표면 프로파일 (그림 7)도 게시 된 데이터와 잘 일치했습니다. Savage와 Johnson [8]은 분석 기법에 대한 신뢰도를 높이는 동일한 CFD 코드를 사용하여 유사한 유효성 검사를 수행했습니다. 문제의 배수로에 대한 후속 분석은 스케일링 된 물리적 모델 테스트에서 얻은 결과와 비교할 때 상당히 좋은 결과를 제공했습니다.
Figure 5 Comparison of crest pressure for
various heads (2D model), Hd is the design head
Figure 6 Comparison of crest pressure next to
pier (3D model)
Figure 7 Upper nappe profile next to pier
분석에서 배수로의 기하학적 구조와 물 속성이 잘 정의되었습니다. 물은 비압축성이며 고정 된 온도에서 일정한 특성을 가지고 있다고 가정했습니다. 실제로 좋은 품질의 콘크리트 표면 마감을 얻을 수 있기 때문에 배수로 경계는 매끄럽다 고 가정했습니다. 불확실성은 메쉬 밀도와 적절한 난류 모델의 선택이라는 두 가지 소스에서 비롯됩니다. 메쉬 크기는 메모리 양과 컴퓨터의 클럭 속도에 의해 제한됩니다.
높은 레이놀즈 수의 난류 흐름은 소용돌이와 소용돌이의 형성을 포착 할 수있는 매우 미세한 메시로 계산할 수 있지만 현재 메시 밀도는 검증 및 설계 목적에 필요한 변수를 예측하기에 충분히 미세했습니다. 조사 결과는 큰 와류, k-ε 및 RNG 모델과 같은 난류 모델의 선택에 의해 크게 영향을받지 않는 것으로 나타났습니다. 분명히 벽 거칠기와 난류 모델의 도입은 방전율을 감소시킬 것입니다. 그러나 다시 분석 결과는 사용 된 메시에 거의 영향을 미치지 않음을 보여줍니다. 향후 분석은 다른 메쉬 밀도로 인한 이산화 오류를 조사 할 것입니다.
사례 3 – 안벽 건설 주요 컨테이너 항구 시설은 설계 단계에서 최소한의 수치 분석을 수행하여 약 25 년 전에 건설되었습니다. 당시에는 이러한 분석 도구를 사용하는 것이 비용 효율적이지 않은 것으로 간주되었습니다. 다수의 컨테이너 크레인이 측면을 따라 이어지는 2km 길이의 안벽을 건설하기 위해 광범위한 준설 및 매립 작업이 수행되었습니다.
시설이 완공 된 이후 일련의 콘크리트 카운터 포트 유닛으로 구성된 안벽과 후방 크레인 빔은 크레인이 할 수 있도록 후방 빔에 대한 레벨 조정 작업이 수행 될 정도로 지속적으로 이동하고 있습니다. 정상적으로 작동합니다. 그러나 영향을받는 두 구조물의 움직임을 저지하기 위해보다 영구적 인 해결책을 모색했습니다. 토양-구조 상호 작용 및 시공 시뮬레이션을 처리 할 수있는 명시 적 유한 차이 분석을 사용하여 다양한 교정 옵션의 순위를 지정했습니다.
그라우트 기둥, 타이백 앵커 및 말뚝 지지대와 같은 다양한 제안 된 개선을 분석하기 전에, 토양 및 구조적 특성과 시공 과정의 선택이 적절하도록 계산 모델을 관찰에 대해 보정해야한다고 결정했습니다. 지질 및 지질 공학 정보는 현장 및 실험실 테스트 데이터를 포함하는 현장 조사 보고서에서 평가되었습니다. 시설의 범위를 고려할 때 현장에서 만나는 특정 토양 유형에 대해 상당한 분산 테스트 데이터가 예상됩니다. 수력 모래 충전재에 대한 표준 침투 테스트 (SPT) 블로우 횟수 (N) 및 콘 침투 테스트 (CPT) 저항 (qc)에 대한 몇 가지 일반적인 기록이 그림 8과 9에 나와 있습니다.
Figure 8 SPT ‘N’ profiles
Figure 9 CPT profiles
이 결과로부터 평균 해수면 위와 아래에있는 모래 채우기의 강도와 강성의 대비를 관찰 할 수 있습니다. 이 현상은 배치 방법에 기인한다고 제안되었다 [9]. 또한 기초 수준에서 진동 압축 된 모래의 특성에도 변동이있었습니다. 분석을 위해 선택된 토양 특성은 테스트 데이터, 인근 사이트의 경험 및 유사한 토양 조건에 대한 발표 된 데이터를 기반으로합니다. 그것들은 표 1에 요약되어 있습니다. 일반적으로 시설의 건설 순서는 다음과 같습니다.
Removal of pockets of soft marine clay by dredging
Dredging of sand to the required level
Vibro-compaction of the sand on which the counterfort units were to be founded
Placement of gravel for the quay wall foundation.
Placement of concrete counterfort units weighing 360 tonne each
Placement of hydraulic sand fill behind the units
Surcharging the fill just behind the capping beam
Construct capping beam and place more sand fill to the finished level
Additional surcharge prior to the operation of container cranes.
Table 1 Soil properties used in the construction simulation of the quay wall
Table 1 Soil properties used in the construction
simulation of the quay wal
2D 평면 변형 모델의 수치 시뮬레이션에서 구성 순서 (그림 10)와 하중은 다음 단계에 따라 단순화 / 이상적입니다.
The starting condition of the seabed consisted of the vibrocompacted sand, gravel bed, native sand, clay and fissured clay at depth. The “in-situ” stresses were also switched on in this step.
Placement of counterfort unit (using equivalent linear elastic beam elements) with a vertical force applied through the centre of gravity of the unit to represent the buoyant self-weight.
Sequentially placing hydraulic sand fill behind the unit to the level prior to surcharging.
Apply an equivalent trapezoidal pressure to represent the surcharge.
Placement of capping beam and the sand fill to the required level.
Apply additional surcharge.
Application of repeated loads from the crane seaward and landward legs.
Figure 10 Construction sequence
분석에서는 침수 된 물질과 평균 해수면 위에있는 물질을 나타 내기 위해 적절한 밀도를 사용했습니다. 안벽의 장기적인 움직임이 중요했기 때문에 배수 된 토양 매개 변수가 사용되었습니다. 토양은 분석에서 Mohr-Coulomb 실패 기준을 따르는 것으로 가정되었습니다. 단순한 탄성-완전 소성 응력-변형 거동이 가정되었습니다. 일련의 강체 다이어그램으로 표현 된 안벽 이동의 역사는 그림 11에 나와 있습니다. 벽의 상단과 바닥에서 계산 된 수직 및 수평 이동은 그림 12와 13에 표시됩니다. 수치는 모니터링 된 데이터와 해당 상한 및 하한 (해당 상자에 표시됨)입니다. 측정에서 산란의 양에도 불구하고 벽 건설에 대해 계산 된 움직임은 합리적으로 잘 비교되었습니다. 조사 데이터와 예측을 일치시키기 위해 분석에서 토양 속성을 변경하려는 시도가 없었습니다. 반복되는 크레인 하중의 래칫 효과를 관찰 할 수 있습니다. 불행히도 반복적 인 크레인 하중 하에서 벽 이동에 대한 기준이 없었기 때문에 이러한 예상 이동을 비교할 수 없었습니다. 문제의 복잡성과 고도로 가변적 인 토양 특성을 고려할 때 계산 된 결과는 매우 고무적입니다.
Figure 11 Wall deformations
토양에서 플라스틱 구역의 발달도 분석에서 계산되었습니다. 벽의 발가락 아래의 토양이 여러 번 과도하게 압박을받는 것으로 밝혀졌습니다. 접촉 압력은 경사 하중으로 인한 베어링 고장에 대한 안전 지표 (FOS)를 결정하는 데 사용되었습니다. 지지력은 계산 방법에 의해 크게 영향을 받았다고보고되었습니다 [10]. 원래의 기초 디자인은 덴마크 코드 [11]를 기반으로했기 때문에이 경우 일관성을 위해 사용되었습니다. 편심의 함수로서 FOS의 발전과 수평 대 수직 추력 (H / V)의 비율이 각각 그림 14와 15에 나와 있습니다.
Figure 12 Wall top movements
Figure 13 Wall base movements
Figure 14 ‘FOS’ vs. eccentricity
Figure 15 ‘FOS’ vs. H/V ratio
그림은 벽이 추가 요금과 반복적 인 적재 단계 동안 국부적 인 베어링 고장에 가까웠음을 보여줍니다. 크레인 하중 하에서 FOS의 명백한 증가는 벽에 대한 수직 하중이 증가하는 반면 유지된 토양의 수평 압력이 다소 일정하게 유지됨에 따라 편심이 감소했기 때문입니다.
끝 맺는 말 세 가지 매우 다른 실제 응용 프로그램의 유효성 검사 프로세스가 설명되었습니다. 각 사례의 주요 특징과 결과는 표 2에 요약되어 있습니다. 재료 및 하중 불확도 및 예상 결과가 강조 표시됩니다. 건설 품질은 구조의 성능에 상당한 영향을 미치는 것으로 나타났습니다.
이는 분석가가 프로젝트의 설계 단계에서 정량화하고 정확하게 분석하지 못할 수도 있습니다. 구조가 완료된 직후 모니터링의 중요성을 간과해서는 안됩니다. 이것은 미래의 역 분석을위한 유용한 자료가 될 것입니다. 수치 도구가 이러한 복잡한 문제를 분석 할 수 있다는 사실에도 불구하고 분석가는 어떤 매개 변수가 중요하거나 중요하지 않은지 식별 할 준비가되어 있어야합니다.
익숙하지 않은 문제를 분석 할 때 유효성 검사 프로세스를 점진적으로 수행해야합니다. 아마도 검증 방법을 찾는 핵심은 수치 분석 도구를 사용하지 않고 솔루션에 도달 할 수있는 다른 방법이 있는지 묻는 것입니다. 많은 경우 이러한 솔루션은 광범위한 문헌 검색 후에 존재합니다. 그러나 다른 경우에는 실험실 테스트와 현장 관찰이 유일한 대안이 될 것입니다.
References [1] Puri, S.P.S. (1998) “Avoiding Engineering Failures Caused by Computer-Related Errors”, J. Comp. in Civil Engineering, ASCE, 12(4), 170-172. [2] Timoshenko, S.P. and Woinowsky-Krieger, S. (1959) Theory of Plates and Shells, 2nd edition, McGraw-Hill Kogakusha. p.580. [3] BS2654 (1989) Manufacturing of vertical steel welded non-refrigerated storage tanks with butt-welded shells for the petroleum industry. [4] Rish, R.F. (1977) “Design of Cylindrical Tanks on Elastic Foundations”, Civil Engineering Transactions, The Institution of Engineers, Australia, 192-195. [5] US Army Corps of Engineers (1990) Hydraulic Design of Spillways, Engineer Manual No. 1110-2-1603. [6] Hirt, C.W. and Nichols, B.D. (1981) “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries”, J. Comp. Phys. 39, 201- 225. [7] Ho, D.K.H., Boyes, K.M and Donohoo, S.M. (2001) “Investigation of Spillway Behaviour under Increased Maximum Flood by Computational Fluid Dynamics Technique”, Proc. Conf. 14th Australasian Fluid Mechanics, Adelaide, December, 577-580. [8] Savage, B.M. and Johnson, M.C. (2001) “Flow over Ogee Spillway: Physical and Numerical Model Case Study”, J. Hydraulic Engineering, ASCE, 127(8), 640-649. [9] Lee, K.M., Shen, C.K., Leung, D.H.K. and Mitchell, J.K. (1999) “Effects of placement method on geotechnical behaviour of hydraulic fill sands” J. Geotech. and Geoenviron. Engineering, ASCE, 125(10), 832-846. [10] Sieffert, J.G. and Bay-Gress, Ch. (2000) “Comparison of European bearing capacity calculation methods for shallow foundations”, Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, 143, April, 65-74. [11] DS 415 (1984) Code of Practice for Foundation Engineering. Table 2 Summary of findings for the three case studies
FLOW-3D는 자유 표면 유체 흐름 시뮬레이션을 전문으로하는 다중 물리 CFD 소프트웨어입니다. 자유 표면의 동적 진화를 추적하는 소프트웨어의 알고리즘인 VOF (Volume of Fluid) 방법은 Flow Science의 설립자인 Tony Hirt 박사가 개척했습니다.
또한 FLOW-3D에는 금속 주조, 잉크젯 인쇄, 레이저 용접 및 적층 제조 (AM)와 같은 광범위한 응용 분야를 시뮬레이션하기위한 물리 모델이 내장되어 있습니다. 적층 제조 시뮬레이션 소프트웨어, 특히 L-PBF (레이저 파우더 베드 융합 공정)의 현상 유지는 열 왜곡, 잔류 응력 및지지 구조 생성과 같은 부분 규모 모델링에 도움이되는 열 기계 시뮬레이션에 초점을 맞추고 있습니다.
유용하지만 용융 풀 역학 및 볼링 및 다공성과 같은 관련 결함에 대한 정보는 일반적으로 이러한 접근 방식의 영역 밖에 있습니다. 용융 풀 내의 유체 흐름, 열 전달 및 표면 장력이 열 구배 및 냉각 속도에 영향을 미치며 이는 다시 미세 구조 진화에 영향을 미친다는 점을 명심하는 것도 중요합니다.
FLOW-3D와 이산 요소법 (DEM) 및 WELD 모듈을 사용하여 분말 및 용융 풀 규모에서 시뮬레이션 할 수 있습니다. 구현되는 관련 물리학에는 점성 흐름, 열 전달, 응고, 상 변화, 반동 압력, 차폐 가스 압력, 표면 장력, 움직이는 물체 및 분말 / 입자 역학이 포함됩니다. 이러한 접근 방식은 합금에 대한 공정을 성공적으로 개발할 수 있게 하고, AM 기계 제조업체와 AM 기술의 최종 사용자 모두에게 관심있는 미세 구조 진화에 대한 통찰력을 제공하는데 도움이 됩니다.
The realm of operations of FLOW-3D
FLOW-3D는 레이저 분말 베드 융합 (L-PBF), 직접 에너지 증착 (DED) 및 바인더 제트 공정으로 확장되는 기능을 가지고 있습니다. FLOW-3D를 사용하면 분말 확산 및 패킹, 레이저 / 입자 상호 작용, 용융 풀 역학, 표면 형태 및 후속 미세 구조 진화를 정확하게 시뮬레이션 할 수 있습니다. 이러한 기능은 FLOW-3D에 고유하며 계산 효율성이 높은 방식으로 달성됩니다.
예를 들어 1.0mm x 0.4mm x 0.3mm 크기의 계산 영역에서 레이저 빔의 단일 트랙을 시뮬레이션하기 위해 레이저 용융 모델은 단 8 개의 물리적 코어에서 약 2 시간이 걸립니다. FLOW-3D는 모든 관련 물리 구현 간의 격차를 해소하는 동시에 업계 및 연구 표준에서 허용하는 시간 프레임으로 결과를 생성합니다. 분말 패킹, 롤러를 통한 파워 확산, 분말의 레이저 용융, 용융 풀 형성 및 응고를 고려하고 다층 분말 베드 융합 공정을 위해 이러한 단계를 순차적으로 반복하여 FLOW-3D에서 전체 AM 공정을 시뮬레이션 할 수 있습니다.
FLOW-3D의 다층 시뮬레이션은 이전에 응고된 층의 열 이력을 저장한다는 점에서 독특하며, 열 전달을 고려하여 이전에 응고된 층에 확산된 새로운 분말 입자 세트에 대해 시뮬레이션이 수행됩니다. 또한, 응고 된 베드의 열 왜곡 및 잔류 응력은 FLOW-3D를 사용하여 평가할 수 있으며, 보다 복잡한 분석을 수행하기 위해 FLOW-3D의 압력 및 온도 데이터를 Abaqus 및 MSC Nastran과 같은 FEA 소프트웨어로 내보낼 수 있습니다.
Sequence of a multi-layer L-PBF simulation setup in FLOW-3D
Ease of Use
FLOW-3D는 다양한 응용 분야에서 거의 40 년 동안 사용되어 왔습니다. 사용자 피드백을 기반으로 UI 개발자는 소프트웨어를 사용하기 매우 직관적으로 만들었으며 새로운 사용자는 시뮬레이션 설정의 순서를 거의 또는 전혀 어려움없이 이해합니다. 사용자는 FLOW3D에서 구현 된 다양한 모델의 이론에 정통하며 새로운 실험을 설계 할 수 있습니다. 실습 튜토리얼, 비디오 강의, 예제 시뮬레이션 및 기술 노트의 저장소도 사용할 수 있습니다. 사용자가 특정 수준의 경험에 도달하면 고급 수치 교육 및 소프트웨어 사용자 지정 교육을 사용할 수 있습니다.
Available Literature
실험 데이터에 대해 FLOW-3D 모델을 검증하는 몇 가지 독립적으로 발표된 연구가 있습니다. 여기에서 수록된 저널 논문은 레이저 용접 및 적층 제조 공정으로 제한됩니다. 더 많은 참조는 당사 웹 사이트에서 확인할 수 있습니다.
L.J.Zhang, J.X.Zhang, A.Gumenyuk, M.Rethmeier, S.J.Na, Numerical simulation of full penetration laser welding of thick steel plate with high power high brightness laser, Journal of Materials Processing Technology, Volume 214, Issue 8, 2014. A study by researchers from BAM in Germany, KAIST in Korea, and State Key Laboratory of Mechanical Behavior of Materials in China that focuses on keyhole dynamics and full penetration laser welding of steel plates.
Runqi Lin, Hui-ping Wang, Fenggui Lu, Joshua Solomon, Blair E. Carlson, Numerical study of keyhole dynamics and keyhole-induced porosity formation in remote laser welding of Al alloys, International Journal of Heat and Mass Transfer, Volume 108, Part A, 2017. General Motors (GM) and Shangai University collaborated on a study on the influence of welding speed and weld angle of inclination on porosity occurrence in laser keyhole welding.
Koji Tsukimoto, Masashi Kitamura, Shuji Tanigawa, Sachio Shimohata, and Masahiko Mega, Laser Welding Repair for Single Crystal Blades, International Gas Turbine Congress, Tokyo, 2015. Mitsubishi Heavy Industry’s study on laser welding repair using laser cladding for single Ni crystal alloys used in gas turbine blades.
Additive Manufacturing
Yu-Che Wu, Cheng-Hung San, Chih-Hsiang Chang, Huey-Jiuan Lin, Raed Marwan, Shuhei Baba, Weng-Sing Hwang, Numerical modeling of melt-pool behavior in selective laser melting with random powder distribution and experimental validation, Journal of Materials Processing Technology, Volume 254, 2018 This paper discusses powder bed compaction with random packing for different powder-size distributions, and the importance of considering evaporation effects in the melting process to validate the melt pool dimensions.
Lee, Y.S., and W.Zhang, Mesoscopic simulation of heat transfer and fluid flow in laser powder bed additive manufacturing, Proceedings of the Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA. 2015 A study conducted by Ohio State University researchers to understand the influence of process parameters in formation of balling defects.
Y.S. Lee, W.Zhang, Modeling of heat transfer, fluid flow and solidification microstructure of nickel-base superalloy fabricated by laser powder bed fusion, Additive Manufacturing, Volume 12, Part B, 2016 A study conducted by Ohio State University researchers to understand the influence of solidification parameters, calculated from the temperature fields, on solidification morphology and grain size using existing theoretical models in laser powder bed fusion processes.
본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.
Free Surface Modeling Methods
An interface between a gas and liquid is often referred to as a free surface. The reason for the “free” designation arises from the large difference in the densities of the gas and liquid (e.g., the ratio of density for water to air is 1000). A low gas density means that its inertia can generally be ignored compared to that of the liquid. In this sense the liquid moves independently, or freely, with respect to the gas. The only influence of the gas is the pressure it exerts on the liquid surface. In other words, the gas-liquid surface is not constrained, but free.
자유 표면 모델링 방법
기체와 액체 사이의 계면은 종종 자유 표면이라고합니다. ‘자유’라는 호칭이 된 것은 기체와 액체의 밀도가 크게 다르기 때문입니다 (예를 들어, 물 공기에 대한 밀도 비는 1000입니다). 기체의 밀도가 낮다는 것은 액체의 관성에 비해 기체의 관성은 일반적으로 무시할 수 있다는 것을 의미합니다. 이러한 의미에서, 액체는 기체에 대해 독립적으로, 즉 자유롭게 움직입니다. 기체의 유일한 효과는 액체의 표면에 대한 압력입니다. 즉, 기체와 액체의 표면은 제약되어있는 것이 아니라 자유롭다는 것입니다.
In heat-transfer texts the term ‘Stephen Problem’ is often used to describe free boundary problems. In this case, however, the boundaries are phase boundaries, e.g., the boundary between ice and water that changes in response to the heat supplied from convective fluid currents.
열전달에 관한 문서는 자유 경계 문제를 묘사할 때 “Stephen Problem’”라는 용어가 자주 사용됩니다. 그러나 여기에서 경계는 상(phase) 경계, 즉 대류적인 유체의 흐름에 의해 공급된 열에 반응하여 변화하는 얼음과 물 사이의 경계 등을 말합니다.
Whatever the name, it should be obvious that the presence of a free or moving boundary introduces serious complications for any type of analysis. For all but the simplest of problems, it is necessary to resort to numerical solutions. Even then, free surfaces require the introduction of special methods to define their location, their movement, and their influence on a flow.
이름이 무엇이든, 자유 또는 이동 경계가 존재한다는 것은 어떤 유형의 분석에도 복잡한 문제를 야기한다는 것은 분명합니다. 가장 간단한 문제를 제외한 모든 문제에 대해서는 수치 해석에 의존할 필요가 있습니다. 그 경우에도 자유 표면은 위치, 이동 및 흐름에 미치는 영향을 정의하기 위한 특별한 방법이 필요합니다.
In the following discussion we will briefly review the types of numerical approaches that have been used to model free surfaces, indicating the advantages and disadvantages of each method. Regardless of the method employed, there are three essential features needed to properly model free surfaces:
A scheme is needed to describe the shape and location of a surface,
An algorithm is required to evolve the shape and location with time, and
Free-surface boundary conditions must be applied at the surface.
다음 설명에서는 자유 표면 모델링에 사용되어 온 다양한 유형의 수치적 접근에 대해 간략하게 검토하고 각 방법의 장단점을 설명합니다. 어떤 방법을 사용하는지에 관계없이 자유롭게 표면을 적절히 모델화하는 다음의 3 가지 기능이 필요합니다.
표면의 형상과 위치를 설명하는 방식
시간에 따라 모양과 위치를 업데이트 하는 알고리즘
표면에 적용할 자유 표면 경계 조건
Lagrangian Grid Methods
Conceptually, the simplest means of defining and tracking a free surface is to construct a Lagrangian grid that is imbedded in and moves with the fluid. Many finite-element methods use this approach. Because the grid and fluid move together, the grid automatically tracks free surfaces.
라그랑주 격자 법
개념적으로 자유 표면을 정의하고 추적하는 가장 간단한 방법은 유체와 함께 이동하는 라그랑주 격자를 구성하는 것입니다. 많은 유한 요소 방법이 이 접근 방식을 사용합니다. 격자와 유체가 함께 움직이기 때문에 격자는 자동으로 자유 표면을 추적합니다.
At a surface it is necessary to modify the approximating equations to include the proper boundary conditions and to account for the fact that fluid exists only on one side of the boundary. If this is not done, asymmetries develop that eventually destroy the accuracy of a simulation.
표면에서 적절한 경계 조건을 포함하고 유체가 경계의 한면에만 존재한다는 사실을 설명하기 위해 근사 방정식을 수정해야합니다. 이것이 수행되지 않으면 결국 시뮬레이션의 정확도를 훼손하는 비대칭이 발생합니다.
The principal limitation of Lagrangian methods is that they cannot track surfaces that break apart or intersect. Even large amplitude surface motions can be difficult to track without introducing regridding techniques such as the Arbitrary-Lagrangian-Eulerian (ALE) method. References 1970 and 1974 may be consulted for early examples of these approaches.
라그랑지안 방법의 주요 제한은 분리되거나 교차하는 표면을 추적 할 수 없다는 것입니다. ALE (Arbitrary-Lagrangian-Eulerian) 방법과 같은 격자 재생성 기법을 도입하지 않으면 진폭이 큰 표면 움직임도 추적하기 어려울 수 있습니다. 이러한 접근법의 초기 예를 보려면 참고 문헌 1970 및 1974를 참조하십시오.
The remaining free-surface methods discussed here use a fixed, Eulerian grid as the basis for computations so that more complicated surface motions may be treated.
여기에서 논의된 나머지 자유 표면 방법은 보다 복잡한 표면 움직임을 처리할 수 있도록 고정된 오일러 그리드를 계산의 기준으로 사용합니다.
Surface Height Method
Low amplitude sloshing, shallow water waves, and other free-surface motions in which the surface does not deviate too far from horizontal, can be described by the height, H, of the surface relative to some reference elevation. Time evolution of the height is governed by the kinematic equation, where (u,v,w) are fluid velocities in the (x,y,z) directions. This equation is a mathematical expression of the fact that the surface must move with the fluid:
표면 높이 법
낮은 진폭의 슬로 싱, 얕은 물결 및 표면이 수평에서 너무 멀리 벗어나지 않는 기타 자유 표면 운동은 일부 기준 고도에 대한 표면의 높이 H로 설명 할 수 있습니다. 높이의 시간 진화는 운동학 방정식에 의해 제어되며, 여기서 (u, v, w)는 (x, y, z) 방향의 유체 속도입니다. 이 방정식은 표면이 유체와 함께 움직여야한다는 사실을 수학적으로 표현한 것입니다.
Finite-difference approximations to this equation are easy to implement. Further, only the height values at a set of horizontal locations must be recorded so the memory requirements for a three-dimensional numerical solution are extremely small. Finally, the application of free-surface boundary conditions is also simplified by the condition on the surface that it remains nearly horizontal. Examples of this technique can be found in References 1971 and 1975.
이 방정식의 유한 차분 근사를 쉽게 실행할 수 있습니다. 또한 3 차원 수치 해법의 메모리 요구 사항이 극도로 작아지도록 같은 높이의 위치 값만을 기록해야합니다. 마지막으로 자유 표면 경계 조건의 적용도 거의 수평을 유지하는 표면의 조건에 의해 간소화됩니다. 이 방법의 예는 참고 문헌의 1971 및 1975을 참조하십시오.
Marker-and-Cell (MAC) Method
The earliest numerical method devised for time-dependent, free-surface, flow problems was the Marker-and-Cell (MAC) method (see Ref. 1965). This scheme is based on a fixed, Eulerian grid of control volumes. The location of fluid within the grid is determined by a set of marker particles that move with the fluid, but otherwise have no volume, mass or other properties.
MAC 방법
시간 의존성을 가지는 자유 표면 흐름의 문제에 대해 처음 고안된 수치 법이 MAC (Marker-and-Cell) 법입니다 (참고 문헌 1965 참조). 이 구조는 컨트롤 볼륨 고정 오일러 격자를 기반으로합니다. 격자 내의 유체의 위치는 유체와 함께 움직이고, 그 이외는 부피, 질량, 기타 특성을 갖지 않는 일련의 마커 입자에 의해 결정됩니다.
Grid cells containing markers are considered occupied by fluid, while those without markers are empty (or void). A free surface is defined to exist in any grid cell that contains particles and that also has at least one neighboring grid cell that is void. The location and orientation of the surface within the cell was not part of the original MAC method.
마커를 포함한 격자 셀은 유체로 채워져있는 것으로 간주되며 마커가 없는 격자 셀은 빈(무효)것입니다. 입자를 포함하고, 적어도 하나의 인접 격자 셀이 무효인 격자의 자유 표면은 존재하는 것으로 정의됩니다. 셀 표면의 위치와 방향은 원래의 MAC 법에 포함되지 않았습니다.
Evolution of surfaces was computed by moving the markers with locally interpolated fluid velocities. Some special treatments were required to define the fluid properties in newly filled grid cells and to cancel values in cells that are emptied.
표면의 발전(개선)은 국소적으로 보간된 유체 속도로 마커를 이동하여 계산되었습니다. 새롭게 충전된 격자 셀의 유체 특성을 정의하거나 비어있는 셀의 값을 취소하거나 하려면 특별한 처리가 필요했습니다.
The application of free-surface boundary conditions consisted of assigning the gas pressure to all surface cells. Also, velocity components were assigned to all locations on or immediately outside the surface in such a way as to approximate conditions of incompressibility and zero-surface shear stress.
자유 표면 경계 조건의 적용은 모든 표면 셀에 가스 압력을 할당하는 것으로 구성되었습니다. 또한 속도 성분은 비압축성 및 제로 표면 전단 응력의 조건을 근사화하는 방식으로 표면 위 또는 외부의 모든 위치에 할당되었습니다.
The extraordinary success of the MAC method in solving a wide range of complicated free-surface flow problems is well documented in numerous publications. One reason for this success is that the markers do not track surfaces directly, but instead track fluid volumes. Surfaces are simply the boundaries of the volumes, and in this sense surfaces may appear, merge or disappear as volumes break apart or coalesce.
폭넓게 복잡한 자유 표면 흐름 문제 해결에 MAC 법이 놀라운 성공을 거두고 있는 것은 수많은 문헌에서 충분히 입증되고 있습니다. 이 성공 이유 중 하나는 마커가 표면을 직접 추적하는 것이 아니라 유체의 체적을 추적하는 것입니다. 표면은 체적의 경계에 불과하며, 그러한 의미에서 표면은 분할 또는 합체된 부피로 출현(appear), 병합, 소멸 할 가능성이 있습니다.
A variety of improvements have contributed to an increase in the accuracy and applicability of the original MAC method. For example, applying gas pressures at interpolated surface locations within cells improves the accuracy in problems driven by hydrostatic forces, while the inclusion of surface tension forces extends the method to a wider class of problems (see Refs. 1969, 1975).
다양한 개선으로 인해 원래 MAC 방법의 정확성과 적용 가능성이 증가했습니다. 예를 들어, 셀 내 보간 된 표면 위치에 가스 압력을 적용하면 정 수력으로 인한 문제의 정확도가 향상되는 반면 표면 장력의 포함은 방법을 더 광범위한 문제로 확장합니다 (참조 문헌. 1969, 1975).
In spite of its successes, the MAC method has been used primarily for two-dimensional simulations because it requires considerable memory and CPU time to accommodate the necessary number of marker particles. Typically, an average of about 16 markers in each grid cell is needed to ensure an accurate tracking of surfaces undergoing large deformations.
수많은 성공에도 불구하고 MAC 방법은 필요한 수의 마커 입자를 수용하기 위해 상당한 메모리와 CPU 시간이 필요하기 때문에 주로 2 차원 시뮬레이션에 사용되었습니다. 일반적으로 큰 변형을 겪는 표면의 정확한 추적을 보장하려면 각 그리드 셀에 평균 약 16 개의 마커가 필요합니다.
Another limitation of marker particles is that they don’t do a very good job of following flow processes in regions involving converging/diverging flows. Markers are usually interpreted as tracking the centroids of small fluid elements. However, when those fluid elements get pulled into long convoluted strands, the markers may no longer be good indicators of the fluid configuration. This can be seen, for example, at flow stagnation points where markers pile up in one direction, but are drawn apart in a perpendicular direction. If they are pulled apart enough (i.e., further than one grid cell width) unphysical voids may develop in the flow.
마커 입자의 또 다른 한계는 수렴 / 발산 흐름이 포함된 영역에서 흐름 프로세스를 따라가는 작업을 잘 수행하지 못한다는 것입니다. 마커는 일반적으로 작은 유체 요소의 중심을 추적하는 것으로 해석됩니다. 그러나 이러한 유체 요소가 길고 복잡한 가닥으로 당겨지면 마커가 더 이상 유체 구성의 좋은 지표가 될 수 없습니다. 예를 들어 마커가 한 방향으로 쌓여 있지만 수직 방향으로 떨어져 있는 흐름 정체 지점에서 볼 수 있습니다. 충분히 분리되면 (즉, 하나의 그리드 셀 너비 이상) 비 물리적 공극이 흐름에서 발생할 수 있습니다.
Surface Marker Method
One way to limit the memory and CPU time consumption of markers is to keep marker particles only on surfaces and not in the interior of fluid regions. Of course, this removes the volume tracking property of the MAC method and requires additional logic to determine when and how surfaces break apart or coalesce.
표면 마커 법
마커의 메모리 및 CPU 시간의 소비를 제한하는 방법 중 하나는 마커 입자를 유체 영역의 내부가 아니라 표면에만 보존하는 것입니다. 물론 이는 MAC 법의 체적 추적 특성이 배제되기 때문에 표면이 분할 또는 합체하는 방식과 시기를 특정하기위한 논리를 추가해야합니다.
In two dimensions the marker particles on a surface can be arranged in a linear order along the surface. This arrangement introduces several advantages, such as being able to maintain a uniform particle spacing and simplifying the computation of intersections between different surfaces. Surface markers also provide a convenient way to locate the surface within a grid cell for the application of boundary conditions.
2 차원의 경우 표면 마커 입자는 표면을 따라 선형으로 배치 할 수 있습니다. 이 배열은 입자의 간격을 균일하게 유지할 수있는 별도의 표면이 교차하는 부분의 계산이 쉽다는 등 몇 가지 장점이 있습니다. 또한 표면 마커를 사용하여 경계 조건을 적용하면 격자 셀의 표면을 간단한 방법으로 찾을 수 있습니다.
Unfortunately, in three-dimensions there is no simple way to order particles on surfaces, and this leads to a major failing of the surface marker technique. Regions may exist where surfaces are expanding and no markers fill the space. Without markers the configuration of the surface is unknown, consequently there is no way to add markers. Reference 1975 contains examples that show the advantages and limitations of this method.
불행히도 3 차원에서는 표면에 입자를 정렬하는 간단한 방법이 없으며 이로 인해 표면 마커 기술이 크게 실패합니다. 표면이 확장되고 마커가 공간을 채우지 않는 영역이 존재할 수 있습니다. 마커가 없으면 표면의 구성을 알 수 없으므로 마커를 추가 할 방법이 없습니다. 참고 문헌 1975이 방법의 장점과 한계를 보여주는 예제가 포함되어 있습니다.
Volume-of-Fluid (VOF) Method
The last method to be discussed is based on the concept of a fluid volume fraction. The idea for this approach originated as a way to have the powerful volume-tracking feature of the MAC method without its large memory and CPU costs.
VOF (Volume-of-Fluid) 법
마지막으로 설명하는 방법은 유체 부피 분율의 개념을 기반으로합니다. 이 접근 방식에 대한 아이디어는 대용량 메모리 및 CPU 비용없이 MAC 방식의 강력한 볼륨 추적 기능을 갖는 방법에서 시작되었습니다.
Within each grid cell (control volume) it is customary to retain only one value for each flow quantity (e.g., pressure, velocity, temperature, etc.) For this reason it makes little sense to retain more information for locating a free surface. Following this reasoning, the use of a single quantity, the fluid volume fraction in each grid cell, is consistent with the resolution of the other flow quantities.
각 격자 셀 (제어 체적) 내에서 각 유량 (예 : 압력, 속도, 온도 등)에 대해 하나의 값만 유지하는 것이 일반적입니다. 이러한 이유로 자유 표면을 찾기 위해 더 많은 정보를 유지하는 것은 거의 의미가 없습니다. 이러한 추론에 따라 각 격자 셀의 유체 부피 분율인 단일 수량의 사용은 다른 유량의 해상도와 일치합니다.
If we know the amount of fluid in each cell it is possible to locate surfaces, as well as determine surface slopes and surface curvatures. Surfaces are easy to locate because they lie in cells partially filled with fluid or between cells full of fluid and cells that have no fluid.
각 셀 내의 유체의 양을 알고 있는 경우, 표면의 위치 뿐만 아니라 표면 경사와 표면 곡률을 결정하는 것이 가능합니다. 표면은 유체 가 부분 충전 된 셀 또는 유체가 전체에 충전 된 셀과 유체가 전혀없는 셀 사이에 존재하기 때문에 쉽게 찾을 수 있습니다.
Slopes and curvatures are computed by using the fluid volume fractions in neighboring cells. It is essential to remember that the volume fraction should be a step function, i.e., having a value of either one or zero. Knowing this, the volume fractions in neighboring cells can then be used to locate the position of fluid (and its slope and curvature) within a particular cell.
경사와 곡률은 인접 셀의 유체 체적 점유율을 사용하여 계산됩니다. 체적 점유율은 계단 함수(step function)이어야 합니다, 즉, 값이 1 또는 0 인 것을 기억하는 것이 중요합니다. 이 것을 안다면, 인접 셀의 부피 점유율을 사용하여 특정 셀 내의 유체의 위치 (및 그 경사와 곡률)을 찾을 수 있습니다.
Free-surface boundary conditions must be applied as in the MAC method, i.e., assigning the proper gas pressure (plus equivalent surface tension pressure) as well as determining what velocity components outside the surface should be used to satisfy a zero shear-stress condition at the surface. In practice, it is sometimes simpler to assign velocity gradients instead of velocity components at surfaces.
자유 표면 경계 조건을 MAC 법과 동일하게 적용해야 합니다. 즉, 적절한 기체 압력 (및 대응하는 표면 장력)을 할당하고, 또한 표면에서 제로 전단 응력을 충족 시키려면 표면 외부의 어떤 속도 성분을 사용할 필요가 있는지를 확인합니다. 사실, 표면에서의 속도 성분 대신 속도 구배를 지정하는 것이보다 쉬울 수 있습니다.
Finally, to compute the time evolution of surfaces, a technique is needed to move volume fractions through a grid in such a way that the step-function nature of the distribution is retained. The basic kinematic equation for fluid fractions is similar to that for the height-function method, where F is the fraction of fluid function:
마지막으로, 표면의 시간 변화를 계산하려면 분포의 계단 함수의 성질이 유지되는 방법으로 격자를 통과하고 부피 점유율을 이동하는 방법이 필요합니다. 유체 점유율의 기본적인 운동학방정식은 높이 함수(height-function) 법과 유사합니다. F는 유체 점유율 함수입니다.
A straightforward numerical approximation cannot be used to model this equation because numerical diffusion and dispersion errors destroy the sharp, step-function nature of the F distribution.
이 방정식을 모델링 할 때 간단한 수치 근사는 사용할 수 없습니다. 수치의 확산과 분산 오류는 F 분포의 명확한 계단 함수(step-function)의 성질이 손상되기 때문입니다.
It is easy to accurately model the solution to this equation in one dimension such that the F distribution retains its zero or one values. Imagine fluid is filling a column of cells from bottom to top. At some instant the fluid interface is in the middle region of a cell whose neighbor below is filled and whose neighbor above is empty. The fluid orientation in the neighboring cells means the interface must be located above the bottom of the cell by an amount equal to the fluid fraction in the cell. Then the computation of how much fluid to move into the empty cell above can be modified to first allow the empty region of the surface-containing cell to fill before transmitting fluid on to the next cell.
F 분포가 0 또는 1의 값을 유지하는 같은 1 차원에서이 방정식의 해를 정확하게 모델링하는 것은 간단합니다. 1 열의 셀에 위에서 아래까지 유체가 충전되는 경우를 상상해보십시오. 어느 순간에 액체 계면은 셀의 중간 영역에 있고, 그 아래쪽의 인접 셀은 충전되어 있고, 상단 인접 셀은 비어 있습니다. 인접 셀 내의 유체의 방향은 계면과 셀의 하단과의 거리가 셀 내의 유체 점유율과 같아야 한다는 것을 의미합니다. 그 다음 먼저 표면을 포함하는 셀의 빈 공간을 충전 한 후 다음 셀로 유체를 보내도록 위쪽의 빈 셀에 이동하는 유체의 양의 계산을 변경할 수 있습니다.
In two or three dimensions a similar procedure of using information from neighboring cells can be used, but it is not possible to be as accurate as in the one-dimensional case. The problem with more than one dimension is that an exact determination of the shape and location of the surface cannot be made. Nevertheless, this technique can be made to work well as evidenced by the large number of successful applications that have been completed using the VOF method. References 1975, 1980, and 1981 should be consulted for the original work on this technique.
2 차원과 3 차원에서 인접 셀의 정보를 사용하는 유사한 절차를 사용할 수 있지만, 1 차원의 경우만큼 정확하게 하는 것은 불가능합니다. 2 차원 이상의 경우의 문제는 표면의 모양과 위치를 정확히 알 수없는 것입니다. 그래도 VOF 법을 사용하여 달성 된 다수의 성공 사례에서 알 수 있듯이 이 방법을 잘 작동시킬 수 있습니다. 이 기법에 관한 초기의 연구 내용은 참고 문헌 1975,1980,1981를 참조하십시오.
The VOF method has lived up to its goal of providing a method that is as powerful as the MAC method without the overhead of that method. Its use of volume tracking as opposed to surface-tracking function means that it is robust enough to handle the breakup and coalescence of fluid masses. Further, because it uses a continuous function it does not suffer from the lack of divisibility that discrete particles exhibit.
VOF 법은 MAC 법만큼 강력한 기술을 오버 헤드없이 제공한다는 목표를 달성 해 왔습니다. 표면 추적이 아닌 부피 추적 기능을 사용하는 것은 유체 질량의 분할과 합체를 처리하는 데 충분한 내구성을 가지고 있다는 것을 의미합니다. 또한 연속 함수를 사용하기 때문에 이산된 입자에서 발생하는 숫자를 나눌 수 없는 문제를 겪지 않게 됩니다.
Variable-Density Approximation to the VOF Method
One feature of the VOF method that requires special treatment is the application of boundary conditions. As a surface moves through a grid, the cells containing fluid continually change, which means that the solution region is also changing. At the free boundaries of this changing region the proper free surface stress conditions must also be applied.
VOF 법의 가변 밀도 근사
VOF 법의 특수 처리가 필요한 기능 중 하나는 경계 조건의 적용입니다. 표면이 격자를 통과하여 이동할 때 유체를 포함하는 셀은 끊임없이 변화합니다. 즉, 계산 영역도 변화하고 있다는 것입니다. 이 변화하고있는 영역의 자유 경계에는 적절한 자유 표면 응력 조건도 적용해야합니다.
Updating the flow region and applying boundary conditions is not a trivial task. For this reason some approximations to the VOF method have been used in which flow is computed in both liquid and gas regions. Typically, this is done by treating the flow as a single fluid having a variable density. The F function is used to define the density. An argument is then made that because the flow equations are solved in both liquid and gas regions there is no need to set interfacial boundary conditions.
유체 영역의 업데이트 및 경계 조건의 적용은 중요한 작업입니다. 따라서 액체와 기체의 두 영역에서 흐름이 계산되는 VOF 법에 약간의 근사가 사용되어 왔습니다. 일반적으로 가변 밀도를 가진 단일 유체로 흐름을 처리함으로써 이루어집니다. 밀도를 정의하려면 F 함수를 사용합니다. 그리고, 흐름 방정식은 액체와 기체의 두 영역에서 계산되기 때문에 계면의 경계 조건을 설정할 필요가 없다는 논증이 이루어집니다.
Unfortunately, this approach does not work very well in practice for two reasons. First, the sensitivity of a gas region to pressure changes is generally much greater than that in liquid regions. This makes it difficult to achieve convergence in the coupled pressure-velocity solution. Sometimes very large CPU times are required with this technique.
공교롭게도 이 방법은 두 가지 이유로 인해 실제로는 그다지 잘 작동하지 않습니다. 하나는 압력의 변화에 대한 기체 영역의 감도가 일반적으로 액체 영역보다 훨씬 큰 것입니다. 따라서 압력 – 속도 결합 해법 수렴을 달성하는 것은 어렵습니다. 이 기술은 필요한 CPU 시간이 매우 커질 수 있습니다.
The second, and more significant, reason is associated with the possibility of a tangential velocity discontinuity at interfaces. Because of their different responses to pressure, gas and liquid velocities at an interface are usually quite different. In the Variable-Density model interfaces are moved with an average velocity, but this often leads to unrealistic movement of the interfaces.
두 번째 더 중요한 이유는 계면에서 접선 속도가 불연속이되는 가능성에 관련이 있습니다. 압력에 대한 반응이 다르기 때문에 계면에서 기체와 액체의 속도는 일반적으로 크게 다릅니다. 가변 밀도 모델은 계면은 평균 속도로 동작하지만, 이는 계면의 움직임이 비현실적으로 되는 경우가 많습니다.
Even though the Variable-Density method is sometimes referred to as a VOF method, because is uses a fraction-of-fluid function, this designation is incorrect. For accurately tracking sharp liquid-gas interfaces it is necessary to actually treat the interface as a discontinuity. This means it is necessary to have a technique to define an interface discontinuity, as well as a way to impose the proper boundary conditions at that interface. It is also necessary to use a special numerical method to track interface motions though a grid without destroying its character as a discontinuity.
가변 밀도 방법은 유체 분율 함수를 사용하기 때문에 VOF 방법이라고도하지만 이것은 올바르지 않습니다. 날카로운 액체-가스 인터페이스를 정확하게 추적하려면 인터페이스를 실제로 불연속으로 처리해야합니다. 즉, 인터페이스 불연속성을 정의하는 기술과 해당 인터페이스에서 적절한 경계 조건을 적용하는 방법이 필요합니다. 또한 불연속성으로 특성을 훼손하지 않고 격자를 통해 인터페이스 동작을 추적하기 위해 특수한 수치 방법을 사용해야합니다.
Summary
A brief discussion of the various techniques used to numerically model free surfaces has been given here with some comments about their relative advantages and disadvantages. Readers should not be surprised to learn that there have been numerous variations of these basic techniques proposed over the years. Probably the most successful of the methods is the VOF technique because of its simplicity and robustness. It is this method, with some refinement, that is used in the FLOW-3D program.
여기에서는 자유 표면을 수치적으로 모델링 할 때 사용하는 다양한 방법에 대해 상대적인 장점과 단점에 대한 설명을 포함하여 쉽게 설명하였습니다. 오랜 세월에 걸쳐 이러한 기본적인 방법이 많이 제안되어 온 것을 알고도 독자 여러분은 놀라지 않을 것입니다. 아마도 가장 성과를 거둔 방법은 간결하고 강력한 VOF 법 입니다. 이 방법에 일부 개량을 더한 것이 현재 FLOW-3D 프로그램에서 사용되고 있습니다.
Attempts to improve the VOF method have centered on better, more accurate, ways to move fluid fractions through a grid. Other developments have attempted to apply the method in connection with body-fitted grids and to employ more than one fluid fraction function in order to model more than one fluid component. A discussion of these developments is beyond the scope of this introduction.
VOF 법의 개선은 더 나은, 더 정확한 방법으로 유체 점유율을 격자를 통과하여 이동하는 것에 중점을 두어 왔습니다. 기타 개발은 물체 적합 격자(body-fitted grids) 관련 기법을 적용하거나 여러 유체 성분을 모델링하기 위해 여러 유체 점유율 함수를 채용하기도 했습니다. 이러한 개발에 대한 논의는 여기에서의 설명 범위를 벗어납니다.
References
1965 Harlow, F.H. and Welch, J.E., Numerical Calculation of Time-Dependent Viscous Incompressible Flow, Phys. Fluids 8, 2182.
1969 Daly, B.J., Numerical Study of the Effect of Surface Tension on Interface Instability, Phys. Fluids 12, 1340.
1970 Hirt, C.W., Cook, J.L. and Butler, T.D., A Lagrangian Method for Calculating the Dynamics of an Incompressible Fluid with Free Surface, J. Comp. Phys. 5, 103.
1971 Nichols, B.D. and Hirt, C.W.,Calculating Three-Dimensional Free Surface Flows in the Vicinity of Submerged and Exposed Structures, J. Comp. Phys. 12, 234.
1974 Hirt, C.W., Amsden, A.A., and Cook, J.L.,An Arbitrary Lagrangian-Eulerian Computing Method for all Flow Speeds, J. Comp. Phys., 14, 227.
1975 Nichols, B.D. and Hirt, C.W., Methods for Calculating Multidimensional, Transient Free Surface Flows Past Bodies, Proc. of the First International Conf. On Num. Ship Hydrodynamics, Gaithersburg, ML, Oct. 20-23.
1980 Nichols, B.D. and Hirt, C.W., Numerical Simulation of BWR Vent-Clearing Hydrodynamics, Nucl. Sci. Eng. 73, 196.
1981 Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comp. Phys. 39, 201.
증발하는 빗방울에서 남은 잔류의 물은 새로 씻은 자동차에서 좋지 못할 수 있습니다. 그러나, 동일한 증발 공정은, 예를 들어, 드롭 잔류 물이 인쇄 된 이미지 또는 텍스트의 일부가되는 잉크젯 인쇄에서 유리할 수있다. 그러나 동일한 증발 과정이 어떤 경우엔 도움이 될 수 있습니다 예를 들면, 잉크 찌꺼기가 인쇄 된 이미지나 텍스트의 일부가 되는 잉크젯 인쇄가 그렇습니다.
액체 방울의 증발로 인한 잔류의 물이 예상치 못한 방식으로 나타날 수 있습니다. 커피 링 얼룩이 잘 알려진 예이며, 커피의 잔류의 물이 물방울의 바깥 쪽 가장자리에 모여 얇은 원형 링 얼룩이 남습니다. 이 현상은 흥미로운 유체역학적인 과정의 결과입니다. 커피 링 얼룩이 형성 되려면 액체가 증착 된 고체 표면에 고정 된 접촉선이 있어야합니다. 고정 된 접촉선은 액체 방울이 고체 기판과 교차하는 액체 방울의 외부의 가장자리가 방울이 증발함에 따라 정지 상태를 유지함을 의미합니다. 증발은 기판의 열에 의해 발생하며 방울의 얇은 외부의 가장자리에서 가장 크게 생깁니다. 표면 장력은 액체가 증발하면서 손실 된 액체를 대체하기 위해 가장자리를 향해 발생하게 됩니다. 이는 결국 더 많은 용질을 가장자리로 운반하며 모든 액체가 증발 한 후, 결과적으로 커피 링 얼룩을 형성하게하는 더 높은 농도의 용질 잔류 물을 생성합니다.
모델링 접근법
FLOW-3D v12.0의 최신 업데이트로 인해 ‘접촉선의 고정’ 모델이 개발되었으며, 소프트웨어의 기능이 표면 장력 중심의 애플리케이션으로도 광범위하게 확장되었습니다. 표면 접촉의 고정 및 비고정 특성은 잉크젯 인쇄, 코팅 및 스프레이 냉각에서 중요한 역할을 합니다. 습윤 특성에 대한 표면 공법은 미세 유체 장치에서 액체 샘플의 이동을 제어하는 데 사용될 수 있습니다. 모델의 주요 특징은 방울의 가장자리를 고정 위치에 고정하는 수단을 제공하는 것입니다. 형상 구성 요소 및 하위 구성 요소중에 표면에 ‘고정’ 속성을 지정할 수 있습니다. 유체의 접촉선은 처음 표면과 접촉하는 곳에 고정됩니다. 전방 속도를 0으로 유지하면 고정이 적용됩니다. 유체는 접촉선과 표면을 따라 이동하는 것이 아니라 롤오버하여 접촉점을 지나야만 이동할 수 있습니다.
커피 링 얼룩 검증
그림 1은 평평한 수평 표면에 놓인 원형 물방울의 결과를 보여줍니다. 표면은 30 ℃의 일정한 온도로 유지됩니다. 초기 유체 온도는 20 ℃이고 주변 공극의 온도는 일정한 20 ℃입니다. 유체는 밀도 0.967 g/cm3, 점도 0.02022 poise, 비열 1.645e+07 cm2/s/K, 열전도도 1.2964e+4 g*cm/s3/K, 표면 장력 계수 33.15 g/cm2의 일반적인 잉크를 나타냅니다.
그림 1. 고정 된 접촉선을 사용하여 건조 공정 중의 물방울 모양의 변화.
액적 표면의 초기 곡률 반경은 7.5e-03 cm이고, 차지하는 공간은 반경 4.5e-03 cm의 원이며, 겉보기의 초기 접촉각은 37.87 도입니다. 그림 1-a를 참조하시기 바랍니다. 지정된 정적 접촉각은 0 도입니다.
정압에 의한 상변화 모델이 활성화됩니다. 공극 내의 증기 분압은 0이고 상변화 수용 계수는 Rsize = 0.01 입니다.
잉크가 건조될 때 기판 상에 고체가 잔류하는 물이 형성되는 것을 포착하기 위해 잔류 물 모델도 켜집니다. 유체에 용해 된 안료의 농도는 초기 농도 0.01 g/cm3 이고 최대 농도 rmax = 1.1625 g/cm3 에서 운반이 가능한 스칼라로 표시됩니다. 용해 된 안료는 질량 평균을 기준으로 안료의 단위질량당 0.05 poise의 속도로 유체의 순 점도를 향상시킵니다.
이 공정은 3.0 도의 방위 방향으로 하나의 셀에 걸쳐있는 축 대칭 원통형 메쉬로 모델링됩니다. (x 간격 = 6e-05 cm, z 간격 = 4e-05 cm.)
그림 1은 유체가 증발함에 따라 접촉선이 고정 된 상태를 유지하고 있음을 보여줍니다. 0 도의 정적 접촉각 조건은 액적의 중심을 향한 압력 구배를 가져오고, 이는 접촉선 방향으로의 유동을 생성합니다. 용해 된 안료의 농도는 증발로 인해 자유 표면 근처에서 증가하며, 흐름을 따라 농도는 접촉선을 향해 더욱 재분배합니다. (그림 2). 액체가 계속 증발함에 따라, 남아있는 액체의 안료 농도는 증가합니다. 농도가 최대 rmax에 도달하면, 과잉된 안료는 고체가 잔류하는 물로 전환됩니다.
그림2. g / cm3 단위의 안료 농도 및 t = 2.0ms에서의 흐름 패턴. 흐름은 고정 된 접촉선을 향하여 안료 농도가 증가합니다.
접촉선 근처의 유체가 먼저 건조되어 고체가 잔류하는 물이 남습니다. 해당 영역의 유체에 안료 농도가 높기 때문에 고체가 잔류하는 물의 특징인 ‘커피 링’ 패턴이 기판 표면에 생성됩니다. (그림 3 및 4). 안료의 총 질량(용해 + 건조 잔류 물)은 초기 질량의 0.025 % 이내로 보존됩니다.
그림 3. 모든 유체가 증발 된 후 기판 표면에 건조된 잔류 물의 분포 (단위 : g / cm3) . 가장 높은 농도는 고정 된 접촉선의 위치에 있으며, 이는 ‘커피 링’ 효과를 만들어냅니다.
그림 4. 유체가 완전히 증발 한 후 초기 액적의 반경을 따라 건조된 잔류 물의 예상 분포.
물방울 벽의 검증
그림5. 수직 벽에 고정 된 물방울의 변형 : t = 0 ms (파란색), t = 4e-02 ms (연한 파랑) t = 0.2 ms (빨간색). 해당 이미지는 “Effects of microscale topography”, Y.V.Kalinin, V.Berejnov and R. E. Thorne, Langmuir 25, 5391-5397. (2009). 에서의 이미지입니다.
접촉선 고정 응용의 두 번째 예는 수직의 벽에 고정 된 한 방울의 액체 알루미늄의 거동입니다. 유체 밀도는 2.7 g / cm3, 표면 장력 계수 200 g / cm2 및 점도 0.27 poise입니다. 정적 접촉각은 0 도입니다.
초기의 겉보기의 접촉각이 90도가 되도록 반경 0.5cm의 물방울을 수직 벽에 놓습니다 (그림 5). 7e+06 cm/s2의 중력 크기는 표면 장력의 복원 작용을 없애고 액적이 눈에 띄도록 변형시키기 위하여 인위적으로 향상되었습니다. 결과들은 비슷한 크기의 물방울에 대한 실험 결과와의 질적 비교를 포함하여 그림 5에서 보여줍니다.
요약
FLOW-3D의 접촉선 고정 모델은 표면 장력 및 벽의 접착 기능을 확장하여 표면 공법에서 복잡한 상호 작용을 모델링합니다. 접촉선 고정이 실제로 응용되는 분야에 관하여 더 많은 예시와 추가적인 참조를 찾으신다면여기에서 찾을 수 있습니다.
이 튜토리얼 매뉴얼은 FLOW-3D 를 처음 사용하는 사용자에게 그래픽 사용자 인터페이스(GUI)의 주요 구성 요소를 쉽게 익히도록 하고, 다양한 시뮬레이션의 설정 및 실행 방법을 안내하기 위한 것입니다.
이 매뉴얼에 있는 실습과정은FLOW-3D의 기본 사항을 다루기 위한 것입니다. 이 매뉴얼에서 제시하는 문제는 다양한 주제를 설명하고, 발생할 수 있는 많은 질문을 해결하기 위해 선정되었습니다. 이 매뉴얼의 실습과정은FLOW-3D를 실행하는 컴퓨터에 앉아 사용하는 것이 가장 좋습니다.
CFD 사용 철학에 대한 간단한 섹션 다음에는 중요 파일과 시뮬레이션 파일을 실행하는 방법이 소개되어 있습니다. 이 소개 섹션 다음에는 모델 설정, 시뮬레이션 실행 및 포스트 프로세스, Simulation Manager 탐색 방법에 대한 설명이 있습니다. 이러한 각 단계에 대한 자세한 내용은 모델 설정, 컴퓨팅 결과 및 후처리 장에서 확인할 수 있습니다.
1.CFD 사용에 대한 철학
CFD (Computational Fluid Dynamics)는 유체 흐름(질량, 운동량 및 에너지 보존)에 대한 지배 방정식의 컴퓨터 솔루션입니다. 지정된 지배방정식은 이론 장에 설명된 Numerical방법을 사용하여 이산화되고 계산됩니다.
CFD 소프트웨어를 사용하는 것은 여러 면에서 실험을 설정하는 것과 유사합니다. 실제 상황을 시뮬레이션하기 위해 실험을 올바르게 설정하지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 같은 방법으로 수치 모델이 실제 상황을 정확하게 나타내지 않으면, 그 결과는 실제 상황을 반영하지 않습니다. 사용자는 어떤 것이 중요한지, 어떻게 표현해야 하는지를 결정해야 합니다. 시작하기 전에 다음과 같은 질문을 하는 것이 중요합니다.
CFD 계산에서 무엇을 알고 싶습니까?
중요한 현상을 포착하기 위해 규모와 Mesh는 어떻게 설계되어야 하는가?
실제 물리적 상황을 가장 잘 나타내는 경계 조건은 무엇입니까?
어떤 종류의 유체를 사용해야합니까?
이 문제에 어떤 유체 특성이 중요합니까?
다른 어떤 물리적 현상이 중요합니까?
초기 유체 상태는 어떻게 됩니까?
어떤 단위 시스템을 사용해야합니까?
모델링 되는 문제가 실제 상황을 가능한 한 유사하게 나타내는지 확인하는 것이 중요합니다. 사용자는 복잡한 시뮬레이션 작업을 해결 가능한 부분으로 나누는 것이 좋습니다.
복잡한 물리 효과를 추가하기 전에, 간단하고 쉽게 이해할 수 있는 근사값으로 점차적으로 시작하여 프로세스 진행하십시오. 간단한 손 계산(베르누이 방정식, 에너지 균형, 파동 전파, 경계층 성장 등)은 물리 및 매개 변수를 선택하는데 도움이 되고, 결과와 비교할 수 있는 점검항목을 제공합니다.
CFD의 장단점을 이해하면 분석을 진행하는데 도움이 될 수 있습니다. CFD는 다음과 같은 경우 탁월한 분석 옵션입니다.
기하 구조, 물리학 또는 필요한 상세 수준으로 인해 표준 엔지니어링 계산이 유용하지 않은 경우가 많습니다.
실제 실험은 비용이 많이 소요됩니다.
실험에서 수집할 수 있는 것보다 유체흐름에 대한 자세한 정보가 필요한 경우 유용합니다.
위험하거나 적대적인 조건, 확장이 잘되지 않는 프로세스 등으로 인해 정확한 실험 측정을 하기가 어려운 경우
복잡한 흐름 정보에 대한 커뮤니케이션
CFD는 다음과 같은 경우에 덜 효과적입니다.
솔루션이 계산 리소스가 매우 많이 소요되거나, 도메인 크기를 줄이기 위한 가정 또는 해결되지 않은 물리적 현상을 설명하기 위한 반 임계 모델이 필요한 경우
CFD 시뮬레이션에 대한 입력이 되는 중요한 물리적 현상이 알려지지 않은 경우
물리적 현상이 잘 이해되지 않거나 매우 복잡한 경우
CFD를 사용할 때 명심해야 할 몇 가지 중요한 참고 사항이 있습니다.
CFD는 규정된 초기 및 경계 조건에 따라 지정된 지배 방정식의 수치해석 솔루션입니다. 따라서 모델 설정, 즉 어떤 방정식을 풀어야 하는지, 재료 특성, 초기 조건 및 경계 조건이, 가능한 한 물리적 상황과 최대한 일치해야 합니다.
방정식의 수치 해는 일반적으로 어떤 종류의 근사치를 필요로 합니다. 물리적 모델에 대한 가정과 해결방법을 검토한 후 사용하는 것이 좋습니다.
디지털 컴퓨터는 숫자가 유한 정밀도로 이진수로 표시되는 방식으로 인해 반올림 오류가 발생합니다. 이는 문제를 악화시키기 때문에 매우 근소한 숫자의 차이를 계산해야 하는 상황을 피하십시오. 이러한 상황의 예는 시뮬레이션 도메인이 원점에서 멀리 떨어져 있을 때입니다.
2.중요한 파일
FLOW-3D시뮬레이션과 관련된 많은 파일이 있습니다. 가장 중요한 것들이 아래에 설명되어 있습니다. 모든 prepin.*파일의 명칭에서 prepin는 파일 형식을 의미하며, 별표시*위치는 시뮬레이션 이름을 의미합니다. (예 : prepin.example_simulation.)
·prepin.*: 시뮬레이션용 입력 파일입니다. 시뮬레이션 설정을 설명하는 모든 입력 변수가 포함되어 있습니다.
·prpgrf.*: 이것은 전 처리기 출력 파일입니다. 여기에는 계산된 초기 조건이 포함되며 시뮬레이션을 실행하기 전에 설정을 확인하는 데 사용될 수 있습니다.
·flsgrf.*: 솔버 출력 파일입니다. 시뮬레이션의 최종 결과가 포함됩니다.
·prperr.*, report.*, prpout.*: 이 파일들은 Preprocessor Diagnostic Files.
·hd3err.*, hd3msg.*, hd3out.*: 이 파일들은 Solver Diagnostic Files.
모든 시뮬레이션 파일은 단일 폴더에 함께 유지하므로, 설명이 될 수 있는 시뮬레이션 이름을 사용하는 것이 좋습니다. 그러나 매우 긴 파일 이름은 운영 체제에 따라 문제가 될 수 있습니다.
노트
시뮬레이션 이름이 inp(즉, 입력 파일이 있다면 prepin.inp) 출력 및 진단 파일은 모두 .dat이름을 갖습니다. 예: flsgrf.dat.
모든 입력 파일은 네트워크 위치의 컴퓨터 대신 로컬 디렉토리에 저장하는 것이 좋습니다. 이것은 솔버가 더 빠르게 실행되고 GUI의 응답 속도가 빨라지며 실행중인 시뮬레이션을 방해하는 네트워크 문제 가능성을 제거합니다.
3.시뮬레이션 관리자
FLOW-3D시뮬레이션 관리자의 탭은 주로 시뮬레이션을 실행할 수 있도록 시뮬레이션 환경을 구성하고 실행 시뮬레이션에 대한 상태 정보를 표시하는데 사용됩니다.
작업 공간 (Workspaces)
작업 공간(Workspaces)은 Simulation Manager의 필수 부분이며 파일을FLOW-3D에서 처리하는 방식입니다. 기본적으로 시뮬레이션을 포함하고 구성하는 폴더입니다. 몇 가지 예를 들면 시뮬레이션과 또 다른 작업 공간인 검증 사례를 포함하도록 할 수 있습니다:
새로운 작업 공간 만들기
이 튜토리얼에서는 작성하려는 시뮬레이션을 포함할 작업 공간(Workspaces)을 작성하십시오.
1.File -> New workspace로이동
2.작업 공간 이름으로 Tutorial를 입력하십시오.
3.기본 위치는 현재 사용자의 홈 디렉토리에 있습니다. 다른 곳에서 찾을 수 있지만 기본 위치가 우리의 목적에 적합합니다.
4.하위 디렉토리를 사용하여 작업 공간 이름 만들기확인란을 선택합니다. 이렇게 하면 파일 시스템에서 작업 공간에 대한 새로운 하위 디렉토리가 만들어져 시뮬레이션 파일을 훨씬 쉽게 구성할 수 있습니다.
5.확인을 눌러 새 작업 공간을 작성하십시오. 이제 포트폴리오에표시됩니다.
작업 공간 닫기
포트폴리오를 정리하고 탐색하기 쉽도록 필요 없는 작업공간을 닫는 것이 편리합니다. 작업 공간을 닫으면 포트폴리오에서 해당 작업 공간만 제거됩니다. 그러나, 컴퓨터에서 작업 공간을 삭제하지는 않습니다.
작업 공간을 닫으려면
1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 작업 Close Workspace를선택하십시오. 또는 포트폴리오에서 작업 공간을 선택 (왼쪽 클릭) 하고 Delete 키를 누를 수 있습니다.
2.작업 공간을 닫을 것인지 묻는 메세지가 표시됩니다. 예를선택하십시오.
3.포트폴리오는더 이상 닫힌 작업 공간을 포함하지 않습니다.
기존 작업 공간 열기
오래된 작업 공간을 열어야 할 때가 있을 것입니다. 예를 들어, 새 프로젝트에 유사한 시뮬레이션을 작성하기 전에 기존 시뮬레이션의 설정을 검토할 수 있습니다. 기존 작업 공간을 열려면
1.File -> Open Workspace…를 선택하십시오
2.작업 공간 파일이 있는 디렉토리를 찾으십시오. Tutorial.FLOW-3D_Workspace.
3.작업 공간을 로드 하려면 OK을 누르십시오.
작업 공간에서 시뮬레이션 작업
작업 공간을 사용하는 방법을 알았으니, 여기에 시뮬레이션을 추가해 봅시다.
Example를 추가하십시오
작업 공간에 작업 시뮬레이션을 추가하는 가장 간단한 방법은 포함된 예제 시뮬레이션 중 하나를 추가하는 것입니다. FLOW-3D의 다양한 기능을 사용하는 방법을 보여주기 위해 설계된 간단하고 빠른 시뮬레이션입니다. 기존 작업 공간에 예제를 추가하려면 다음을 수행하십시오.
1.포트폴리오에서 원하는 작업 공간을 강조 표시하십시오
2.File -> Add example…을선택하십시오. 또는 작업공간을 마우스 오른쪽 버튼으로 클릭하고 예제 추가…를 선택할 수 있습니다.
3.예제대화 상자에서 예제를 선택하고 열기를누르십시오. 자연 대류(Natural Convection)예제를 선택했습니다.
4.새 시뮬레이션대화 상자가 열립니다.
5.디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋으므로 기본 시뮬레이션 이름과 위치를 잘 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 쉽게 만들어 줍니다.
6.시뮬레이션을 위한 단위 시스템을 선택하십시오. 표준 단위 시스템이 권장되지만 각 단위를 독립적으로 선택하기 위해 사용자 지정 단위 시스템을 선택할 수 있습니다.
7.확인을 눌러 새 시뮬레이션을 작업 공간에 추가하십시오.
작업 공간에서 시뮬레이션 제거
작업 공간에서 시뮬레이션을 제거해야 하는 경우가 있습니다 (이는 작업 공간에서 시뮬레이션을 제거만 하며, 컴퓨터에서 시뮬레이션을 삭제하지는 않습니다). 작업 공간에서 시뮬레이션을 제거하려면 다음을 수행하십시오.
1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 시뮬레이션 제거를선택하십시오. 또는 작업 공간에서 시뮬레이션을 선택 (왼쪽 클릭)하고 Delete 키를 누를 수 있습니다.
2.작업 공간에는 더 이상 시뮬레이션이 포함되지 않습니다.
모든 작업 공간 및 디스크에서 시뮬레이션 삭제
작업 공간에서 시뮬레이션을 제거하는 것 외에도 디스크에서 모든 시뮬레이션 파일을 삭제해야 할 수도 있습니다. 작업 공간에서 시뮬레이션을 제거하고 디스크에서 시뮬레이션 파일을 삭제하려면 다음을 수행하십시오.
1.작업 공간에서 기존 시뮬레이션을 마우스 오른쪽 단추로 클릭하고 (이 경우 이전 섹션에서 추가 한 예제 사용) 모든 작업 공간 및 디스크에서 시뮬레이션 삭제를선택하십시오.
2.시뮬레이션 디렉토리에서 삭제할 파일을 선택할 수 있는 창이 나타납니다. 삭제할 파일을 선택한 다음 확인을 눌러 해당 파일을 삭제하거나 취소를 눌러 작업을 중단하십시오.
3.OK를 선택한 경우 선택한 작업 공간은 더 이상 시뮬레이션을 포함하지 않습니다. 선택한 작업 공간의 모든 시뮬레이션 파일은 디렉토리에서 삭제됩니다.
경고
이 작업은 취소할 수 없으므로 계속하기 확인 후 파일을 삭제해야 합니다.
작업 공간에 기존 시뮬레이션 추가
기존 시뮬레이션을 작업 공간에 추가하려면 다음을 수행하십시오.
1.열린 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 기존 시뮬레이션 추가…를선택합니다. 작업 공간을 선택한 다음 File->Add Existing Simulation…을 선택할 수도있습니다.
2.prepin.*파일 위치로 이동하여 열기를선택하십시오.
3.시뮬레이션이 이제 작업 공간에 나타납니다.
작업 공간에 새로운 시뮬레이션 추가
대부분의 경우 기존 시뮬레이션을 사용하는 대신 새 시뮬레이션을 작성하게 됩니다. 작업 공간에 새로운 시뮬레이션을 추가하려면:
1.기존 작업 공간을 마우스 오른쪽 버튼으로 클릭하고 새 시뮬레이션 추가…를선택하십시오.
2.시뮬레이션 이름을 입력하라는 message가 표시됩니다. 이 예제에서는 heat transfer example불러오십시오.
3.그런 다음 드롭다운 목록을 사용하여 시뮬레이션을 위한 단위 시스템을 결정합니다. 사용 가능한 옵션은 질량, 길이, 시간, 전기요금 각각 g, cm, s, coul기준의 Kg, m, s, CGS입니다. 또한 엔지니어링 단위도 사용할 수 있으며, slug, ft, s의 기초 단위가 있지만, 전기 충전을 위한 단위는 없습니다. 이러한 옵션 중 어느 것도 해당되지 않는 경우, 질량, 길이, 시간 및 전기요금에 대한 기준 등을 사용자 정의하여 사용자 지정 단위 시스템을 사용할 수 있습니다.
4.온도 단위는 드롭다운 목록을 사용하여 지정해야 합니다. 사용 가능한 옵션은 SI 및 CGS 단위의 경우 Celsius 및 Kelvin, 엔지니어링 단위의 경우 Fahrenheit 및 Rankine입니다. Custom units(사용자 정의 단위) 옵션을 선택한 경우, 사용 가능한 온도 단위는 질량 및 길이에 대해 선택한 기본 단위에 따라 변경됩니다.
노트
새 시뮬레이션의 시뮬레이션 단위는 신중하게 선택하십시오. 일단 설정하면 단위를 변경할 수 없습니다.
5.이 시뮬레이션에 사용된 템플릿이 기본 템플릿이 됩니다. 템플릿은 포함된 설정을 새 시뮬레이션에 적용하는 저장된 값 세트입니다. 다른 템플릿을 사용해야하는 경우 찾아보기 아이콘 ( )을 클릭하여 사용 가능한 템플릿 목록에서 선택하십시오.
6.기본 시뮬레이션 이름과 위치는 디렉토리가 작업 공간 위치에 있는지 확인하는 것이 좋습니다. FLOW-3D는 모든 시뮬레이션 파일을 이 작업 공간 디렉토리의 별도 하위 디렉토리에 배치하여 파일 구성을 훨씬 쉽게 만듭니다. 시뮬레이션을 다른 위치에 저장하려면 찾아보기 아이콘 ( )을 사용하여 원하는 위치로 이동하십시오.
7.확인을 클릭하여 작업 공간에 새 시뮬레이션을 추가하십시오.
heat transfer example
다른 옵션
우리는 지금 이러한 옵션을 사용하지 않는 동안, 이 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하여 추가 옵션에 대한 액세스를 제공합니다.
일반적으로 사용되는 Add Simulation Copy…그리고 Add Restart Simulation…을 추가합니다. 첫 번째 옵션은 기존 시뮬레이션의 사본을 작성하고, 두 번째 옵션은 기존 시뮬레이션을 복사하고 원래 시뮬레이션의 결과를 다시 시작 시뮬레이션의 초기 조건으로 사용하도록 다시 시작 옵션을 구성합니다.
추가 정보
재시작 시뮬레이션에 대한 자세한 내용은 도움말에서 모델 설정 장의 재시작 섹션을 참조하십시오.
전처리 및 시뮬레이션 실행
시뮬레이션 전처리
시뮬레이션 전처리는 초기 조건을 계산하고 입력 파일에서 일부 진단 테스트를 실행합니다. 문제가 올바르게 구성되었는지 확인하거나 전 처리기의 진단 정보가 필요한 경우에 유용합니다. 시뮬레이션을 실행하기 전에 전처리할 필요가 없습니다. 시뮬레이션을 전처리 하려면
1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Preprocess Simulation->Local을선택합니다. 이 경우 입력 파일 heat transfer example이 아직 완전히 정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.
2.전처리 프로세스가 시작되고 Simulation Manager 하단의 텍스트 창에 일부 정보가 인쇄된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의 아이콘도 시뮬레이션이 성공적으로 처리되었음을 나타내도록 변경됩니다.
추가 정보
자세한 내용은 도움말의 컴퓨팅 결과 장의 전처리 섹션을 참조하십시오.
시뮬레이션 실행
시뮬레이션을 실행하면 입력 파일에 정의된 문제에 대한 지배 방정식(물리적 모델, 형상, 초기 조건, 경계 조건 등)이 해석됩니다. 시뮬레이션을 실행하려면
1.작업 공간에서 시뮬레이션을 마우스 오른쪽 버튼으로 클릭하고 Run Simulation->Local을 선택하십시오. 이 경우 입력 파일 heat transfer example이 아직 완전히 정의되지 않았으므로 작업 공간에서 예제 문제를 선택하십시오.
2.솔버가 시작되고 시뮬레이션 관리자 하단의 텍스트 창에 일부 정보가 인쇄되고 플롯이 업데이트 된 후 성공적으로 완료됩니다. 포트폴리오에서 시뮬레이션 이름 옆의 아이콘도 시뮬레이션이 성공적으로 실행되었음을 나타내도록 변경됩니다. 또한 솔버가 실행되는 동안 큐에 시뮬레이션이 나타나는 것을 볼 수 있으며, 완료되면 사라집니다.
추가 정보
시뮬레이션 실행 및 진단 읽기에 대한 자세한 내용은 도움말의 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.
작업 공간에서 모든 시뮬레이션 실행
작업 공간을 마우스 오른쪽 버튼으로 클릭하고 Simulate Workspace->Local을 선택하여 작업 공간에서 모든 시뮬레이션을 실행할 수도 있습니다.
추가 정보
자세한 내용은 컴퓨팅 결과 장에서 솔버 실행 섹션을 참조하십시오.
대기열
사전 처리 또는 실행에 작업이 제출되면 큐의 맨 아래에 시뮬레이션이 자동으로 추가됩니다. 그런 다음 솔버에 사용 가능한 라이센스 및 계산 리소스가 있으면 시뮬레이션이 사전 처리되거나 실행됩니다. 대기열에 있지만 아직 전처리 또는 실행되지 않은 시뮬레이션은 대기열 맨 아래의 컨트롤을 사용하여 대기열에서 다시 정렬하거나 대기열에서 제거할 수 있습니다.
추가 정보
자세한 내용은 컴퓨팅 결과 장을 참조하십시오.
파일 시스템에서 파일 찾기
어떤 이유로 구조물 파일에 액세스해야 하는 경우 (아마 *.STL 폴더에 파일을 배치해야 함) 표시된 파일 경로를 시뮬레이션 입력 파일로 클릭하여 파일 시스템의 해당 위치로 이동할 수 있습니다.
4.모델 설정
Model Setup(모델 설정) 탭은 시뮬레이션 관리자에서 현재 선택한 시뮬레이션에 대한 입력 매개 변수를 정의하는 곳입니다. 여기에는 전역설정, 물리학 모델, 유체, 기하학, 메싱, 구성요소 특성, 초기 조건, 경계 조건, 출력 옵션 및 숫자가 포함된다.
이 섹션은 물에 잠긴 모래(위; 파랑)의 바닥에서 가열된 구리 블록(위; 빨간색)에 의해 발생하는 열 기둥(아래)을 보여주는 간단한 시뮬레이션 설정 방법을 안내합니다.
이 튜토리얼은 방법이나 모델이 어떻게 작동하는지, 옵션을 선택한 이유 등에 대한 포괄적인 논의를 의도한 것이 아니며, 이 특정 시뮬레이션을 설정하기 위해 수행해야 할 사항에 대한 간략한 개요일 뿐입니다. 여기서 행해지는 것에 대한 방법/모델과 추론의 세부사항은 사용 설명서의 다른 장에서 확인할 수 있습니다.
시작하려면 새 작업 공간을 작성하고 새 시뮬레이션을 추가하십시오. 이를 수행하는 방법에 대한 지침은 새 작업 공간 작성 및 작업 공간에 새 시뮬레이션 추가를 참조하십시오.
탐색
모델 설정은 주로 빨간색으로 표시된 처음 9 개의 아이콘의 탐색을 통해 수행됩니다. 각 아이콘은 시뮬레이션의 특정 측면을 구성하기 위한 위젯을 엽니다. Global에서 시작하여Numerics로 끝나는 다음 섹션은 각 위젯의 목적을 보여줍니다.
통제 수단
다음은 FLOW-3D 사용자 인터페이스의 그래픽 디스플레이 영역에서 사용되는 마우스 컨트롤입니다.
행동
버튼/키
동작
기술
회전
왼쪽
길게 클릭
마우스 왼쪽 버튼을 클릭 한 채로Meshing & Geometry창에서 마우스를 움직입니다. 그에 따라 모델이 회전합니다.
줌
중간 버튼/스크롤 휠
스크롤/클릭 한 상태
마우스를 앞뒤로 움직여 확대/축소하려면 가운데 휠을 굴리거나 마우스 가운데 버튼을 클릭 한 상태로 유지하십시오.
팬
우측
길게 클릭
마우스 오른쪽 버튼을 클릭 한 채로 창에서 마우스를 움직입니다. 모델이 마우스와 함께 움직입니다.
객체에 초점 설정
해당 없음
객체 위에 커서를 놓기
커서를 개체 위로 가져 가면 마우스 오른쪽 버튼 클릭 메뉴를 통해 추가 조작을 위해 개체가 활성화됩니다. 개체가 활성화되면 강조 표시됩니다. Meshing & Geometry탭에서Tools->Mouse Hover Selection환경 설정 이 활성화된 경우에만 수행됩니다.
선택
왼쪽
더블 클릭
객체를 두 번 클릭하면 마우스 오른쪽 버튼 메뉴를 통해 추가 조작을 위해 객체를 선택하고 활성화합니다. Meshing & Geometry탭에서Tools->Mouse Hover Selection환경 설정 이 비활성화 된 경우에만 활성화됩니다.
액세스 객체 속성
우측
딸깍 하는 소리
강조 표시된 객체를 마우스 오른쪽 버튼으로 클릭하면 객체 식별, 표시/숨기기, 활성화/비활성화, 투명도 조정 등의 옵션 목록이 표시됩니다.
커서 좌표 반환 (프로브)
왼쪽
Shift + 클릭
Shift 키를 누르면 커서가 대상으로 바뀝니다. Shift 키를 누른 상태에서 클릭하면 화면의 왼쪽 하단에 표시된 표면의 좌표가 표시됩니다.
피벗 점 배치
왼쪽
cntrl + 클릭
Ctrl 키를 누르고 있으면 커서가 피벗 아이콘으로 바뀝니다. Ctrl 키를 누른 상태에서 클릭하여 피벗 점을 설정하십시오. 뷰가 피벗 점을 중심으로 회전합니다. 토글사용자 정의 피벗피벗 점을 끕니다. 보기 창 위의 버튼을 누릅니다.
도움이 되는 툴바 옵션도 있습니다. 옵션의 목적을 찾으려면 아이콘 위로 마우스를 가져갑니다.
글로벌
이 매뉴얼에 대한 시뮬레이션을 만들려면 원하는 작업 공간을 마우스 오른쪽 단추로 클릭하고 새 시뮬레이션 추가…를 선택하십시오. 매뉴얼 섹션의 새 시뮬레이션 추가 작업 공간에 설명된 대로 이름을 ‘heat transfer example’로 지정하고 작업 공간에 추가하십시오. SI와 Kelvin을 각각 단위 시스템과 온도로 선택합니다. 일단 설정되면 시뮬레이션을 위한 단위는 변경할 수 없다는 점을 기억하십시오.
글로벌 아이콘을 클릭하여 글로벌 위젯을 여십시오. 여기에서 정의된 단위가 표시되고 시뮬레이션 완료 시간이 설정됩니다. 이 시뮬레이션의 경우 완료 시간을 200 초로 설정하십시오. 시뮬레이션에 대한 중요한 세부 정보는 여기 노트 필드에도 추가할 수 있습니다.
추가 정보
자세한 내용은 모델 설정 장의 전역 섹션을 참조하십시오.
물리
물리아이콘을 클릭하여 물리 위젯을 엽니다.
이 문제의 경우, 하나의 유체, 자유 표면, 경계 및 비압축/제한 압축의 기본 설정이 모두 정확합니다.
관련 물리 메커니즘(즉, 추가 지배 방정식 또는 지배 방정식 용어)은 물리 위젯에서 정의됩니다. 모델을 활성화하려면 해당 모델의 아이콘을 마우스 왼쪽 버튼으로 클릭하고 ‘활성화‘를 선택하십시오. 이 시뮬레이션을 위해서는 다음 모델을 활성화해야 합니다.
·Density evaluation(밀도 평가): 이 모델은 열 기둥을 생성하는 밀도 변화를 설명합니다. 다른 양(예: 온도 또는 스칼라)의 함수로 평가된 밀도를 선택하고 Include volumetric thermal expansion 상자를 선택하십시오.
·Gravity and non-inertial reference frame(중력 및 비 관성 기준 프레임): 중력을 나타내는 힘이 추가되므로 Z 중력 성분에 -9.81을 입력하십시오.
· Heat transfer(열 전달): 이 모델은 유체와 고체 물체 사이의 열 전달을 설명합니다. 이 시뮬레이션의 경우 First order for the Fluid internal Energy advection를 선택하고 Fluid to solid heat transfer를 활성화하려면 확인란을 선택하십시오. 나머지 옵션은 기본값으로 두어야합니다.
· Viscosity and turbulence(점성 및 난류): 이 모델은 유체의 점성 응력을 설명합니다. Viscous flow 옵션을 선택하고 나머지 옵션은 기본값으로 두십시오.
추가 정보
자세한 내용은 모델 설정 장의 물리 섹션을 참조하십시오.
유체
유체의 속성은 모델 설정 탭의 유체 위젯에 정의되어 있습니다. 유체 위젯은 수직 도구 모음에서 Fluids f3d_fluids_icon 아이콘을 클릭하여 액세스할 수 있습니다. 먼저 유체 옵션 1 이 속성 옵션으로 선택되어 있는지 확인하십시오. 유체 1의 속성은 수동으로 입력할 수 있지만 일반적인 유체의 속성을 설정하는 빠른 방법은 재료 속성로드 버튼을 클릭하여 재료 데이터베이스에서 유체를 로드하는 것입니다. 다음으로, 원하는 재료를 탐색하십시오. 이 경우 Fluids->Liquids->Water_at_20_C를 선택하고 Load를 클릭하십시오.
이 시뮬레이션에는 데이터베이스에 없는 특성인 체적 열 팽창 계수가 필요합니다. 밀도 하위 탭에서 을 입력하십시오. 최종 속성 세트는 다음과 같아야 합니다.
추가 정보
자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.
Geometry(기하)
기하형상아이콘을 클릭하여 물리 위젯을 엽니다.
이 시뮬레이션을 위해 생성해야 하는 두 가지 형상은 구리 블록과 모래층이 있습니다. 둘 다 프리미티브를 사용하여 작성합니다. 보다 현실적인 시뮬레이션은 Primitives, Stereolithography(STL) Geometry File (s)/또는 Raster File (s)을 사용하여 지오메트리를 정의할 수 있습니다.
구리 블록을 만들려면 먼저 지정된 형상 아이콘을 클릭하여 작성합니다. 구리 블록을 x 및 y 방향 원점에서 +/- 2cm 연장하고 z 방향으로 0-4cm 연장합니다. 나머지 옵션은 그대로 두고 블럭을 솔리드로 만들고 새 구성 요소에 추가합니다.
하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 자동으로 열린 구성요소 추가 대화상자에서 Type as General(솔리드)을 그대로 두고 Name(이름) 필드에 Copper block을 입력한 다음 OK(확인)를 선택하여 구성요소 정의를 완료하십시오.
아이콘을 다시 클릭하여 베드 하위 구성 요소를 작성하십시오. 아래 표시된 범위를 사용하고 컴포넌트에 추가 선택 사항을 새 컴포넌트(2)로 설정하십시오.
하위 구성 요소 정의를 마치고 구성 요소 정의로 이동하려면 확인을 선택하십시오. 대화 형으로 이름 필드에서Bed를 입력한 후 구성요소 정의를 마칩니다. 최종 형상은 다음과 같이 표시됩니다.
새 구성 요소를 추가하면 가로 및 세로 방향으로 그래픽 표시 창에 길이 스케일이 자동으로 생성됩니다. 이 눈금자 도구를 사용하여 생성된 기하학적 객체의 범위를 빠르게 측정할 수 있습니다.
노트
표시 영역에는 지오메트리 모양 정의만 표시되므로 객체가 솔리드인지 구멍인지에 대한 정보는 표시되지 않습니다. 옵션을 사용하여 Mesh 후에 나중에 수행할 수 있습니다.
추가 정보
자세한 내용은 도움말 모델 설정 장의 형상 섹션을 참조하십시오.
구성 요소 속성
열전달 모델은 고체 구성 요소의 전도 방정식을 해결하기 위해 재료 특성이 필요합니다. 이러한 속성은 이 아이콘을 클릭하여 구성 요소 속성 위젯에서 설정합니다.
각 구성 요소에는 솔리드 특성 및 표면 특성이 정의 되어 있어야합니다. 구리 블록에 대해 이를 설정하려면 먼저 형상 위젯에서 구성 요소 1: copper block 요소를 선택하십시오. 그런 다음 컴포넌트 특성 위젯에서 솔리드 특성을 선택하고 다음과 같이 특성을 정의하십시오.
여기에서 두 번째 구성 요소(베드)에 대해 설명된 구성 요소 특성 정의를 위한 대체 방법을 사용할 수 있습니다. 이 방법에서는 구성 요소 2: 베드 구성 요소를 클릭하고 재료 필드 옆에 있는 재료 특성로드아이콘을 선택하여 시작합니다. 다음으로 재료를 탐색합니다. 이 경우 Solids->Sands->Sand_Quartz를 선택하고 Load를 선택하십시오.
추가 정보
l 자세한 내용은 모델 설정 장의 유체 섹션을 참조하십시오.
l 주어진 물리적 모델에 필요한 속성에 대한 자세한 내용은 모델 참조 장을 참조하십시오.
Meshing(메싱)
Mesh는 Mesh 위젯에서 생성 및 정의되며, 위젯을 통해 액세스 할 수 있습니다. 이 아이콘을 눌러새 Mesh를 추가합니다. Mesh의 범위를 형상에 빠르게 적용하려면 형상에 맞추기 라디오 버튼을 선택하고 오프셋 라디오 버튼을 백분율로 유지합니다. 블록 속성에서 셀 크기를 0.004로 설정하십시오.
Mesh 상단은 z 방향으로 위쪽으로 확장해야 합니다. Z-Direciton탭을 선택하고 Mesh Plane 2에 0.2를 입력합니다.
이 시뮬레이션은 2D가 될 것입니다. 동일한 프로세스에 따라 Y 방향 범위를 -0.005 및 0.005 로 설정하십시오. 그리고 합계 셀을 1로 설정하십시오.
최종 Mesh는 그래픽 디스플레이 창 바로 위의 Mesh->Flow Mesh->View 모드 드롭 다운 메뉴에서 옵션을 변경하여 다른 방식으로 볼 수 있습니다. 그리드 라인 마다 그리드 선을 표시합니다 옵션은 Mesh Plane의 옵션만 표시됩니다 Plane Mesh 및 개요 옵션은 Mesh의 범위를 보여줍니다.
또한 솔버가Mesh의 최종 지오메트리를 인식하는 방법은 FAVOR TM 알고리즘을 사용하여 형상 정의를 면적 분수 및 부피 분수로 변환합니다. 이렇게 하려면아이콘을 클릭한 다음 생성을 선택하십시오.
잠시 후 회색 영역이 고체 물질을 나타내는 아래와 같은 형상을 표시해야 합니다.
추가 정보
l Mesh에 대한 자세한 내용은 모델 설정 장의 Mesh 섹션을 참조하십시오.
l FAVORTM및FAVORize 옵션에 대한 자세한 내용은 모델 설정 장의 Reviewing the FAVORized Geometry and Mesh 섹션을 참조하십시오.
경계 조건
FLOW-3D는 구성 요소 유형 및 활성 물리적 모델에 기초한 구성 요소에 적절한 경계 조건을 자동으로 적용합니다. 그러나 경계 조건 위젯에서 Mesh 블록면의 경계 조건은 각 Mesh 블록에 대해 수동으로 설정해야 합니다( ).
이 매뉴얼의 경우 경계 조건 중 3 가지가 경계조건( X Min , X Max, Z Max 경계)을 기본 대칭 조건조건부터 변경해야 합니다.
·X Min :
o경계 조건 위젯의 경계 섹션 아래에 있는 X Min 목록을 클릭하십시오. Type에서 경계 유형을 Velocity로 설정하고 X 속도에 대해 0.001을 입력하십시오.
o경계 조건 위젯의 경계 섹션 아래에 있는 Z 최대 목록을 클릭하십시오. 경계 유형을 압력으로 설정하고 압력에 대해 0을 입력하십시오.
o다음으로 유체 분율을 0.0으로 설정하십시오.
o마지막으로 온도를 298K로 맞춘다.
추가 정보
자세한 내용은 모델 설정 장의 Mesh 경계 조건 섹션을 참조하십시오.
초기 조건
도메인 내부의 솔리드 객체(구성 요소)와 유체 모두에 대해 초기 조건을 설정해야 합니다.
· 구성 요소 :이 시뮬레이션에서 솔리드 객체에 필요한 유일한 초기 조건은 초기 온도입니다. 이것은 각 구성 요소에 대한 위젯에 설정되어 있는 구성 요소 속성에 대해 수행한 것과 유사한 방식으로 구성 요소를 등록합니다. 구성 요소 속성을 설정할 때 이전과 동일한 방법으로 구성 요소 1의 초기 온도를 350K로 설정하고 구성 요소 2의 초기 온도를 298K로 설정하십시오.
유체: 유체의 초기 조건을 설정하기 위해 조금 더 설정해야 합니다. 이 경우 유체 구성, 온도, 속도 및 압력 분포를 모두 설정해야 합니다. 유체 초기 조건은 초기 위젯을 설정하고 초기 f3d_initial_icon를 클릭하면 열립니다.
아이콘을 선택한 후 유체 목록에서 압력을 선택하고 온도를 298K로 설정합니다. x, y, z 속도를 0.0으로 설정하십시오.
다음으로, 높이/볼륨 목록과 유체 높이 사용 드롭다운 버튼을 선택합니다. 유체 높이를 0.15로 설정하십시오.
추가 정보
자세한 내용은 모델 설정 장의 초기 조건 섹션을 참조하십시오.
출력
FLOW-3D 옵션에는 결과 파일에 기록될 데이터와 출력 위젯에서 발견된 빈도를 제어하는 7가지 데이터 유형이 있습니다. 출력아이콘을 클릭합니다.
다른 데이터 유형은 다음과 같습니다.
·Restart: 모든 흐름 변수. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.
·Selected: 사용자가 선택한 흐름 변수 만. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.
·History: 하나의 변수와 시간의 변화를 보여주는 데이터. 예는 시간 단계 크기, 평균 운동 에너지, 배플에서의 유속 등을 포함합니다. 기본 출력 주기 = 시뮬레이션 시간의 1/100.
·Short print: hd3msg.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/100입니다.
·Long print : hd3out.*파일에 텍스트 진단 데이터가 기록 됩니다. 기본 출력 주기는 시뮬레이션 시간의 1/10입니다.
·Solidification: 응고 모델이 활성화 된 경우에만 사용 가능합니다.
·FSI TSE: 변형 가능한 솔리드에 대한 추가 출력 옵션.
일반적으로 이 시뮬레이션에는 기본 출력 속도가 적합합니다. 그러나 Selected Data의 일부 추가 구성은 유용합니다. Selected data interval을 0.5로 설정한 다음 Fluid 온도, Fluid velocity, Macroscopic density 및 Wall 온도 옆에 있는 상자를 선택합니다. 그러면 이러한 값이 0.5초마다 출력됩니다.
추가 정보
자세한 내용은 모델 설정 장의 출력 섹션을 참조하십시오.
Numerics
기본 Numerics 옵션은 대부분의 시뮬레이션에서 잘 작동하므로 기본 옵션에서 벗어나야 하는 충분한 이유가 없는 경우에는 현재 그대로 두는 것이 가장 좋습니다.
이것으로 모델 설정 섹션에서 시작된 예제 문제의 설정을 마칩니다. 이제 실행할 준비가 되었으므로 전처리 및 시뮬레이션 실행의 단계에 따라 시뮬레이션을 실행하십시오.
추가 정보
자세한 내용은 모델 설정 장의Numerics옵션 섹션을 참조하십시오.
일반 시뮬레이션 설정 점검 목록
시뮬레이션을 설정하는 데 필요한 단계에 대한 개략적인 개요가 아래에 나와 있습니다. 이 목록은 포괄적인 목록이 아닙니다. 일반적인 단계, 고려해야 할 몇 가지 중요한 사항 및 권장되는 설정 순서를 간단히 설명하는 안내서일 뿐입니다.
시작하기 전에
1.물리적 문제의 다이어그램을 그리기 및 주석 달기 : 이 다이어그램에는 기하학적 치수, 유체의 위치, 관련 힘, 움직이는 물체의 속도, 관련 열 전달 메커니즘 등이 포함되어야 합니다. 완성된 다이어그램은 문제에 대한 모든 관련 엔지니어링 정보로 인한 물리적 문제에 대한 이미지여야 합니다.
2.모델링 접근법 결정: 주석이 달린 다이어그램을 가이드로 사용하여 문제점에 접근하는 방법을 결정 : 문제가 되는 유체의 수, 혼화 가능한 경우, 하나 이상의 유체에서 방정식을 풀어야하는 경우 및 압축성이 중요한지 파악하여 시작하십시오. 그런 다음 어떤 물리적 메커니즘이 중요한지 결정하십시오. 이러한 각 옵션 (예: 유체 유형, 열 전달 메커니즘 등)에 대한 관련 엔지니어링 정보를 다이어그램에 추가하십시오. 물리적 메커니즘이 포함되거나 무시된 이유를 정당화하려고 합니다. 이를 통해 시뮬레이션 프로세스 초기에 오류를 수정하는 데 시간이 거의 걸리지 않는 초기에 실수를 잡을 수 있습니다.
3.다이어그램에 계산 영역을 그리고, 계산 영역의 가장자리에 있는 물리적 상황 설명 : 경계의 물리적 상황을 가장 잘 나타내는 경계 조건 유형을 기록합니다. 사용 가능한 경계 조건 유형이 경계의 물리적 상황에 대한 합리적인 근사치가 아닌 경우 이 경계를 다른 곳으로 이동해야 합니다.
모델 설정 : 일반
1.문제, 시뮬레이션의 목적, 사례 번호 등을 설명하는 메모를 추가하십시오. 메모는 향후 사용자 또는 나중에 참조할 수 있도록 설정을 설명하고 정당화하는 데 도움이 됩니다. 시뮬레이션의 목적, 분석 방법 등을 논의해야합니다.
2.사용할 솔버와 프로세서 수를 선택하십시오.
3.단위 시스템 선택: 소규모 문제를 모델링 할 때는 작은 단위 (예 : mm-gm-msec)를 사용하고 규모가 큰 문제는 큰 단위 (예 : SI)를 사용하십시오. 이를 통해 기계 정밀도로 인한 반올림 오류를 방지할 수 있습니다.
4.유체 수, 인터페이스 추적 옵션 및 유량 모드를 선택하십시오. 주석이 달린 다이어그램을 이 단계의 지침으로 사용하십시오. 유체의 수는 질량, 운동량 및 에너지 보존을 관장하는 방정식이 유체 분율 1을 나타내는) 또는 유체 분획(유체 1 및 유체 2)이 있는 영역에서 해결되는지 여부를 나타냅니다. 인터페이스 추적 옵션은 유체 분율의 변화가 급격한지 또는 확산되어야 하는지 여부를 정의하는 반면, 흐름 모드는두 유체 문제에서 처리되는 영역을 정의합니다.
5.마감 조건 정의: 시뮬레이션 종료 시점을 선택합니다. 시간, 채우기 비율 또는 기타 정상 상태 측정을 기반으로 할 수 있습니다.
6.기존 결과에서 시뮬레이션을 다시 시작하는 방법 정의 (선택 사항): 기존 결과 파일에서 시뮬레이션을 다시 시작할 때 다시 시작 옵션이 적용됩니다. 재시작 옵션은 재시작 소스 파일에서 가져온 정보와 시뮬레이션의 초기 조건을 사용하여 재설정되는 정보를 정의합니다.
모델 설정 : 물리
1.주석이 달린 다이어그램을 기반으로 관련 실제 모델 활성화
모델 설정 : 유체
1.유체의 속성 정의 1: 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 대한 적절한 물리적 속성을 정의하십시오.
2.유체 2의 속성 정의 (사용하는 경우): 주석이 달린 다이어그램을 가이드로 사용하여 활성 물리적 모델에 적절한 물리적 속성을 정의하십시오.
3.인터페이스의 속성 정의: f = 1과 f = 0의 영역 사이의 인터페이스 속성을 정의하십시오. 여기에는 표면 장력, 상 변화 및 확산에 대한 특성이 포함됩니다.
모델 설정 : Mesh 및 형상
1.모든 STL 파일의 오류 점검: ADmesh, netfabb Studio 또는 유사한 프로그램을 사용하여 모든 STL 파일의 오류를 점검하십시오. 이는 모델 설정에 시간을 소비하기 전에 형상 정의와 관련된 문제를 파악하는 데 도움이 됩니다.
2.모든 하위 구성 요소 및 구성 요소 가져 오기 및 정의 : 주석이 달린 다이어그램에 설명 된 대로 실제 사례와 일치하도록 3D 솔리드 형상을 정의합니다. 최종 결과는 물리적 형상의 정확한 복제본이어야 합니다. 각 부분에 설명적인 이름을 사용하고 대량 소스가 될 구성 요소를 포함하십시오.
3.모든 구성 요소의 속성 정의: 주석이 달린 다이어그램에 그려진 내용을 기반으로 각 구성 요소의 모든 재료 속성, 표면 속성, 모션 속성 등을 정의합니다. 경계 조건이 정의될 때까지 질량 소스 특성을 정의하기를 기다리십시오.
4.스프링과 로프 및 각각에 대한 관련 속성을 정의합니다.
5.주석이 달린 다이어그램에 설명된 시뮬레이션 도메인과 일치하도록 Mesh를 정의하십시오. 도메인의 모서리가 다이어그램에서 식별된 위치에 있는지 확인하십시오. 또한 인터페이스 (셀이있는 셀과 셀이다른 셀 이 있는 셀)를 식별하려면 세 개의 셀이 필요합니다. ). 최소 5 개의 셀이 예상되는 가장 얇은 연속 영역에 맞도록 충분히 작은 셀을 사용하십시오. 과 .
6.지오메트리를 정의하는 모든 배플 정의
7.경계 조건, 질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 정의: 경계 조건 (질량 소스, 질량 모멘텀 소스, 밸브 및 벤트 포함)은 모든 방정식을 풀기 위해 주어진 위치에서 솔루션을 규정합니다. 주석이 달린 다이어그램을 사용하여 각 경계 (또는 소스 등)에 지정된 내용이 유동 솔루션, 열 전달 솔루션, 전위 등에 대한 현실과 일치하는지 확인하십시오.
8.유체 및 구성 요소의 초기 조건을 정의합니다. 초기 조건은 모든 방정식 (유량 솔루션, 열 전달 솔루션, 전위 등)에 대해 모든 영역에서 솔루션을 규정합니다. .주석이 달린 다이어그램을 사용하여 초기 조건에 지정된 내용이 현재 현실에 대한 근사치인지 확인하십시오. 유체 영역뿐만 아니라 구성 요소의 초기 조건을 설정해야 합니다.
9.모든 측정 장치 정의 (샘플링 볼륨, 플럭스 표면 및 히스토리 프로브)
모델 설정 : 출력
1.출력 기준 (시간, 채우기 비율 또는 응고된 비율)을 선택하십시오.
2.재시작 데이터에 추가할 출력을 선택하십시오.
3.선택한 데이터에 기록할 정보를 선택하십시오.
4.재시작, 선택, 히스토리, 짧은 인쇄 및 긴 인쇄 데이터의 출력 속도 정의 : 기본 속도는 재시작 및 긴 인쇄 데이터의 경우 (10개 출력)/(시뮬레이션 종료 시간) 및 선택한 기록, 짧은 인쇄 데이터의 경우 (100개 출력)/(시뮬레이션 종료 시간)입니다.
모델 설정 : 숫자
1.기본값이 아닌 필수 숫자 옵션을 선택 FLOW-3D의 숫자 옵션은 고급 사용자를 대상으로 하며, 지배 방정식을 해결하는 데 사용되는 숫자 근사치 및 방법을 상당히 제어할 수 있습니다. 이러한 옵션 중 일부를 잘못 사용하면 솔루션에 문제가 발생할 수 있으므로 일반적으로 이 옵션의 기능을 먼저 이해하고 조정의 정당성을 갖추지 않고는 이러한 설정을 조정하지 않습니다.
5.FLOW-3D에서 후 처리
이 섹션에서는 FLOW-3D에 통합된 포스트 프로세서를 사용하는 방법에 대해 설명합니다. 보다 강력한 외부 포스트프로세서FlowSight에 대한 튜토리얼은FlowSight설명서를 참조하십시오. 또한 이 섹션에서는 Flow Over A Weir 예제 문제를 실행하여 생성된 결과 파일을 사용합니다. 이 예제 문제를 실행하는 방법에 대한 지침은 예제 추가 및 시뮬레이션 사전 처리 및 실행을 참조합니다.
FlowSight 사용에 대한 기본 참조는FlowSight의 Help->helpLocal Help 메뉴에서 액세스하는FlowSight사용자 설명서입니다.
추가 정보
기존 플롯
기존 플롯은 솔버가 자동으로 생성하는 사전 정의된 플롯입니다. 사용자 정의 플롯은 아래의 사용자 정의 플롯 섹션에 설명되어 있습니다.
1.분석 탭을 클릭하십시오. FLOW-3D 결과 대화 상자가 표시됩니다; 메세지가 나타나지 않으면 (분석 탭이 열림) 결과 파일 열기를 선택하여 동일한 대화 상자를 엽니다.
2.기존 라디오 버튼을 선택하십시오. 데이터 파일 경로 상자에 두 가지 유형의 파일이 표시됩니다 (있는 경우). 이름이 prpplt.*있는 파일 에는 전처리flsplt.*기에 의해 자동으로 작성된 플롯이 포함되고 이름이 있는 파일에는 입력 파일에 사전 지정된 플롯 뿐만 아니라 후 처리기에 의해 자동으로 작성된 플롯이 포함됩니다.
3. 확인을 선택flsplt.Flow_Over_A_Weir하고 클릭하십시오. 그러면 디스플레이 탭이 자동으로 열립니다.
4.사용 가능한 플롯 목록이 오른쪽에 나타납니다. 목록에서 해당 플롯의 이름을 클릭하면 특정 플롯을 볼 수 있습니다. 플롯 26 이 아래에 나와 있습니다.
커스텀 플롯
1.분석탭으로 돌아갑니다. 대화 상자를 열려면 결과 파일 열기를선택하십시오.
2.전체 출력 파일을 보려면 사용자 정의단일 선택 단추를 선택하십시오. 전체 출력 파일에는 prpgrf.*파일과 파일이 포함됩니다 flsgrf.*. 시뮬레이션이 실행되었으므로 전 처리기 출력 파일이 삭제되어 flsgrf파일에 통합되었습니다.
3.flsgrf.Flow_Over_A_Weir대화 상자 에서 파일을 선택하고 확인을클릭하십시오.
이제 분석 탭이 표시됩니다. 시뮬레이션 결과를 시각화 하는 방법에는 여러 가지가 있습니다. 사용 가능한 플롯 유형은 다음과 같습니다.
·Custom : 이 매뉴얼 의 FLSINP 파일을사용하여플롯합니다. 사용자정의섹션의 출력 코드를 사용하여 출력 플롯을 수동으로 수정하는 데 사용할 수 있습니다. 이것은 고급 옵션입니다.
·프로브 :개별 셀, 경계, 구성 요소 및 도메인 전체(전역) 변수 대 시간에 대한 그래픽 및 텍스트 출력을 표시합니다. 자세한 내용은 프로브플롯및 프로브 : 특정시점의데이터와시간을 참조하십시오.
·1-D :셀 데이터는 X, Y 또는 Z 방향의 셀 라인을 따라 볼 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 자세한 내용은 1-D 플롯및 1-D : 라인을따른데이터대시간을 참조하십시오.
·2-D :셀 데이터는 XY, YZ 또는 XZ 평면에서 볼 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 속도 벡터 및 입자를 추가할 수 있습니다. 자세한 내용은 2 차원플롯및 2 차원 : 평면의데이터와시간의데이터를 참조하십시오.
·3-D :유체와 고체의 표면 플롯을 생성하고 셀 데이터로 채색 할 수 있습니다. 속도 벡터, 입자 (있는 경우) 및 유선과 같은 추가 정보를 추가할 수 있습니다. 플롯 제한은 공간 및 시간에 모두 적용할 수 있습니다. 자세한 내용은 3D 플롯및 3D : 표면의데이터대시간을 참조하십시오.
·텍스트 출력 :cell-by-cell 재시작, 선택 및 응고 데이터를 텍스트 파일에 쓸 수 있습니다. 자세한 내용은 텍스트출력및 텍스트 : ASCII 형식의공간데이터출력대시간을 참조하십시오.
·중립 파일 :재시작 및 선택된 데이터는 별도의 텍스트 파일에 정의 된 지정된 지점(보간 또는 셀 중심)에서 출력 될 수 있습니다. 자세한 내용은 중립파일 : 사용자정의좌표에서의공간데이터출력대시간을 참조하십시오.
·FSI TSE :유한 요소 유체 / 고체 상호 작용 및 열 응력 진화 물리학 패키지에서 출력됩니다. 자세한 내용은 FSI / TSE : 표면의구조데이터와시간을 참조하십시오.
3 차원 도표
1.Analyze -> 3-D탭을 선택하십시오.
2.Iso-surface = Fraction of fluid를선택하십시오. 이것은 표면을 그리는 데 사용되는 변수입니다. 선택한 등면변수에 대한 등고선 값기준을 충족하는 모든 셀을 통해 표면이 그려집니다. 유체의 분율이기본값이며 유체 표면이 표시됩니다.
3.색상 변수 = 압력을선택하십시오. 이 선택은 등위면의 색을 지정하는 데 사용되는 변수를 결정합니다 (이 경우 유체 표면은 압력에 의해 색이 그려집니다).
4.Component iso-surface overlay = Solid volume을선택하십시오. 솔리드 볼륨은 유체와 함께 솔리드 구성 요소를 표시합니다. 이전 단계에서는 체적 분수의 보완을등위면으로 선택하여 이 작업을 수행했지만 이 옵션을 사용하면 유체와 고체 표면을 동시에 플롯 할 수 있습니다.
5.이동 시간 프레임의최소 및 최대 위치들 (0 내지 1.25 초)에 슬라이더 위치.
6.렌더버튼을 클릭하여 디스플레이탭으로 전환하고 t = 0.0에서 1.25 초 사이에 일련의 11 플롯을 생성하여 압력에 의해 채색된 유체 표면과 위어 구조를 보여줍니다. 데이터 다시 시작이 선택되었으므로 11 개의 플롯이 있습니다.
7.사용 가능한 플롯이 사용 가능한 시간 프레임목록에 나열됩니다. 다음을 클릭하여 시간 프레임 사이를 이동하거나 시간 프레임을 두 번 클릭하여 표시하십시오. 첫 번째 및 마지막 시간 프레임은 다음과 같아야 합니다.
8.Analyze -> 3-D 탭으로돌아가서 Data Source그룹에서 Selected data라디오 버튼을 선택하십시오.
9.시간 프레임선택기의 두 슬라이더가 모두 오른쪽에 있으므로 마지막 시간 프레임 만 생성됩니다. 사용 가능한 시간 프레임이 많고 렌더링하는데 시간이 오래 걸리므로 선택한 데이터를 선택하면 인터페이스에서 자동으로 수행됩니다. 사용 가능한 모든 시간 프레임을 렌더링 하려면 왼쪽 슬라이더를 Time Frame Min = 0 으로이동하십시오.
10. 렌더링버튼을 클릭하십시오. 몇 초 안에 뷰가 디스플레이창으로 전환되고 101 개의 플롯이 사용 가능한 시간 프레임목록에 나열됩니다. 시간 프레임 사이를 이동하려면 다음을반복해서 클릭하십시오.
대칭 흐름 표시
위어 중심 아래로 대칭 평면을 사용하여 시뮬레이션을 설정했으므로 위어 구조의 절반만 시뮬레이션되고 표시됩니다. 프리젠테이션 목적으로 대칭 모델의 두 반쪽을 모두 표시할 수 있습니다.
1.아래와 같이 Analyze -> 3-D탭으로 돌아가서 Open Symmetry Boundaries확인란을 선택하십시오.
2.렌더링을클릭하십시오. 유체 표면이 디스플레이탭의 대칭 경계에서 열린 상태로 나타납니다.
3.화면 위의 도구 모음 메뉴에서 도구 -> 대칭을 선택하십시오.
4.대화 상자에서 Y 방향확인란을 선택하여 Y = 0 평면에서 결과를 미러링합니다.
5.적용및 닫기를선택하십시오.
6.마지막 시간 프레임을 두 번 클릭하십시오. 디스플레이는 아래와 같이 전체 위어 구조를 보여줍니다.
3 차원 애니메이션 만들기
다음 단계는 3 차원 유체 표면의 애니메이션을 만드는 것입니다. 애니메이션은 사용 가능한 시간 프레임 목록의 프레임에서 만든 동영상입니다. 애니메이션의 시각적 효과를 향상시키려면 모든 프레임에 공통 색상 스케일을 적용하는 것이 좋습니다.
1.분석 -> 3-D탭으로 돌아갑니다.
2.윤곽 제한그룹 상자에서 전역라디오 버튼을 모두 선택하십시오.
3.렌더를클릭 하여 다시 그리고 디스플레이탭으로 돌아갑니다.
4.도구 -> 대칭 -> Y 방향 -> 적용선택을 반복하여 Y = 0 평면에서 결과를 반영합니다.
5.선택 도구 -> 애니메이션 ->러버 밴드 캡처를다음과 같이 선택 확인 Mesh지가 나타납니다 그것을 읽은 후.
6.마우스 왼쪽 버튼을 클릭 한 상태에서 드래그하여 애니메이션을 적용할 화면 부분을 선택하십시오. 선택한 영역 주위에 선택 상자가 나타납니다.
7.디스플레이 창 위에서 빨간색 캡처버튼을 선택하십시오. 애니메이션을 시작하는 대화 상자가 나타납니다.
8.애니메이션의 기본 이름은 out.avi입니다. 아래에 표시된 것처럼 보다 구체적인 이름이 권장됩니다.
9.기본 프레임 속도는 초당 10 프레임입니다. 이 시뮬레이션의 마감 시간은 1.25 초이고, 일정한 시간 간격으로 100 개의 플롯이 있으므로 ‘실제‘속도는 초당 80 프레임입니다. 너무 빠를 수 있으므로 대신 5를입력 하고 확인을누르십시오.
10. 각 시간 프레임이 표시창에 렌더링 되고 비트 맵 파일이 시뮬레이션 디렉토리에 작성됩니다. 이 프로세스가 완료되면 다음 대화 상자가 나타납니다.
프로세스의 다음 단계를 시작하려면 확인버튼을 클릭하십시오. 새로운 프로세스 (BMP2VAI.exe)가 시작되고 압축 방법을 선택할 수 있는 새로운 비디오 압축창이 나타납니다. 다른 창 뒤에 숨겨져 있으면 앞으로 가져옵니다.
애니메이션의 기본 압축은 압축되지 않습니다. 파일 크기가 너무 커서 뷰어에 로드 할 수 없으므로 대부분의 애니메이션에는 권장되지 않습니다. Windows를 사용하는 경우 Microsoft Video 1을, Linux를 사용하는 경우 Cinepak을선택하십시오. 여기에서 선택하는 것은 컴퓨터에서 사용할 수 있는 비디오 코덱과 비디오를 표시하는 데 사용하는 기계에서 사용할 수 있는 것입니다.
애니메이션 속도가 데이터 속도에 의해 제한되지 않도록 데이터 속도확인란을 선택 취소하십시오.
압축 프로세스를 시작하려면 확인을 클릭하십시오. 압축이 완료되면 다음 대화 상자가 나타납니다.
확인을클릭하십시오. 애니메이션 프로세스가 완료되었습니다.
Windows 탐색기에서 .avi파일을 찾는 가장 빠른 방법 은 시뮬레이션 관리자탭으로 이동하여 시뮬레이션 입력 파일링크를 클릭하는 것 입니다.
.avi파일 을 두 번 클릭하여 애니메이션을 재생 하십시오. 이전에 선택한 압축 형식을 읽을 수 있는 올바른 코덱이 설치되어 있지 않으면 오픈 소스 다중 코덱 비디오 플레이어 설치를 고려하십시오.
2 차원 도표
1.Analyze -> 2-D탭을 선택하십시오. 이 시뮬레이션의 결과를 보는 데 가장 유용한 평면은 평면 Y = 0.0에있는 위어 중심선의 XZ 평면입니다.
2.XZ 평면라디오 버튼을 선택하십시오.
3.Y 제한 슬라이더를 모두 Y = 0.25 (Y = 0.0에 가장 가까운 셀 중심 y 좌표)로 드래그 합니다. 또한 동일한 위치가 J = 2로 식별되어 해당 셀이 도메인에서 두 번째임을 나타냅니다. 첫 번째 셀 (J = 1)은 Mesh 외부에 있으며 경계 조건 속성을 계산하는 데 사용됩니다. 기본 윤곽 변수는 압력이며 기본 속도 벡터는 기본적으로 선택됩니다. 솔리드 형상은 모든 2D 플롯과 함께 자동으로 표시되므로 3D 플롯과 같이 활성화 할 필요가 없습니다.
4.벡터 옵션을클릭하고 X = 2및 Z = 2를입력하십시오. 벡터는 이제 다른 모든 셀에 플롯 됩니다. 벡터 옵션을 적용하려면 확인을 선택하십시오.
5.Y = 0 평면에서 2 차원 압력 플롯의 시간 시퀀스를 생성하려면 렌더링을 클릭하십시오. T = 0.0 초 (왼쪽) 인 다음과 유사한 그래픽이 나타납니다. T = 0.125 초 (중간); 그리고 T = 1.25 초 (오른쪽).
6.디스플레이화면의 오른쪽 상단에 있는 형식버튼을 선택하십시오.
7.선 색상, 벡터 길이 및 화살촉 크기 변경과 같은 다양한 옵션을 시험해보십시오. 변경 사항을 보려면 적용을 선택하십시오.완료되면 재설정및 확인을 선택하여 기본 설정으로 돌아가서 대화 상자를 닫습니다. 모든 플롯에 대해 선호하는 옵션 세트가 있는 경우 저장버튼을 선택하여 저장할 수 있습니다.
1 차원 도표
분석 -> 1-D탭을 선택하십시오. 이 탭에서는 하나 이상의 플롯 시간에서 셀 행을 따라 압력, 유체 깊이, 유체 상승 및 속도와 같은 셀별 출력 변수의 꺾은 선형 차트 플롯을 사용할 수 있습니다.
데이터 소스로 선택을 선택합니다. 사용 가능한 변수는 이제 더 빈번한 플로팅을 위해 선택된 변수 만 표시합니다.
자유 변수 표고를 데이터 변수로 선택하십시오. 유압 데이터는 출력탭에서 선택되었으므로 사용할 수 있습니다.
이 시뮬레이션의 흐름 방향은 주로 x 축과 평행하므로 X 방향을선택하십시오.
Y 방향 슬라이더를 0.25(J = 2)로 이동하여 Y 방향에서 흐름 중심선에 가장 가까운 셀이 표시됩니다.
기본적으로 전체 X 범위가 표시됩니다. 플롯의 범위를 제한하려는 경우 X 방향슬라이더를 이동할 수 있습니다. Z 방향슬라이더의 위치는 주어진 x, y 위치에서 z 셀의 각 열에 대해 하나의 자유 표면 높이만 기록되므로 중요하지 않습니다.시간 프레임 슬라이더는 0초와 1.25초여야 합니다.
렌더링을클릭하십시오. t = 0.0에서 t = 1.25s까지의 시리즈 플롯이 디스플레이탭의 플롯 목록에 나열됩니다. 이러한 플롯을 볼 수 있는 여러 가지 모드가 있습니다. 기본 모드는 단일 모드이며 형식버튼 아래의 드롭 다운 상자에 표시됩니다.
다양한 시간에 유체 표면 높이의 플롯을 비교하려면 드롭 다운 상자에서 오버레이 모드를 선택하십시오.
오른쪽 창에서 플롯 1, 13및 101을 선택하려면 클릭하십시오. 플롯 이름에는 또한 기록된 시간이 표시됩니다 (t = 0.0, 0.15s 및 1.25 초). 출력은 아래와 같이 나타납니다.
이 플롯을 비트 맵 또는 포스트 스크립트 파일에 저장하려면 출력버튼을 선택하십시오.
확인 화면에 플롯오버레이 플롯을 캡처하는 확인란을 (그리고 단 하나의 출력 파일을).
쓰기버튼을 선택하여 이미지 파일을 만듭니다.
결과 이미지 파일은 시뮬레이션 디렉토리에 있으며 (시뮬레이션 관리자탭 에서이 파일을 찾는 방법을 기억하십시오) 이름이 지정한 plots_on_screen.bmp됩니다.
프로브 플롯
1. 분석 -> 프로브탭을 선택하십시오. 시간 기록 플롯은이 탭에서 변수 대 시간의 라인 그래프 또는 텍스트 출력으로 생성됩니다. FLOW-3D에는 데이터 소스그룹에서 선택되는 세 가지 유형의 시간 종속 데이터가 있습니다.
·공간 데이터 :재시작및 선택된 데이터소스. 단일 x, y, z 셀 중심 좌표의 시간 종속 값이 표시됩니다. 값은 시간과 관련하여 통합되거나 시간과 관련하여 차별화되거나 이동 평균 (시간)으로 통합될 수 있습니다.
·일반 history 데이터 :.글로벌 수량은 시간에 따라 다릅니다. 일반적인 양은 평균 운동 에너지, 시간 단계 및 대류 볼륨 오류입니다. 또한 이 데이터 유형에는 모델 설정 -> 메싱 및 지오메트리 탭에서 이러한 옵션을 선택한 경우 지정된 측정 위치(배플, 샘플링 볼륨, 히스토리 프로브)의 모든 데이터와 이동 또는 정지 상태의 솔리드 및 스프링/로프를 위한 통합 출력이 포함됩니다.
·Mesh-dependent data :메쉬 경계에서 시간에 따른 수량(계산 또는 사용자 지정)입니다. 일반적인 수량은 경계에서의 유량 및 경계에서의 지정된 유체 높이입니다.
2.데이터 원본에서 일반 기록 라디오 버튼을 선택합니다. X, Y 및 Z 데이터 점 슬라이더가 회색으로 바뀝니다. 이는 일반 기록 데이터가 특정 셀과 연결되어 있지 않기 때문입니다.
3.목록에서 질량 평균 유체 평균 운동 에너지를 선택하십시오.
4. 단위를 선택하여 플로팅 단위 대화 상자를 엽니다.
5. 플롯에 단위 표시를 선택하십시오.
6. SI, CGS, slugs/feet/seconds 또는 pounds/inches/seconds를 선택하여 원하는 단위 시스템으로 결과를 변환하고 출력합니다. 장치를 표시하고 변환하려면 모델 설정 -> 일반 탭에서 장치 시스템을 선택해야 합니다. 이전 단계에서 이 항목을 확인했으며, 지오메트리 및 유체 특성은 centimeters/grams/seconds 시스템에서 지정되었습니다.
7.Plotting Units 대화 상자를 닫으려면 OK를 선택하십시오.
8.데이터의 그래픽 출력을 생성하려면 렌더를 선택하십시오. 출력은 시간에 따른 영역의 모든 유체에 대한 질량 평균 평균 운동 에너지를 보여줍니다. 이전 단계에서 선택한 사항에 따라 단위 레이블과 함께 그림이 나타납니다. 플롯은 총 운동 에너지가 일부 평균값 주위에서 진동하고 있음을 나타냅니다. 진동이 작아짐에 따라 시뮬레이션은 정상 상태 흐름에 접근합니다.
9.분석 -> 프로브 탭으로 돌아갑니다.
10. 출력 양식 그룹에서 텍스트를 선택하여 그래프를 텍스트 데이터로 출력한 다음 렌더링을 다시 선택하십시오.
11. 나타나는 텍스트 대화 상자에서 다른 이름으로 저장 버튼을 선택하여 출력을 텍스트 파일로 저장할 수 있습니다.
12. 출력 창을 닫으려면 계속을 선택하십시오.
텍스트 출력
1.Analyze -> Text Output 탭을 선택하십시오.
2.텍스트 출력 은 셀별 데이터 ( 다시 시작 또는 선택됨 ) 만 출력 할 수 있고 (구성 요소, 측정 스테이션 또는 글로벌 데이터 없음) 둘 이상의 셀을 선택할 수 있다는 점을 제외하고 프로브 탭 과 동일한 방식으로 작동합니다. 각 플롯 시간에 대한 출력 데이터. 셀은 슬라이더를 사용하여 3D 블록에서 선택됩니다. 기본 공간 범위는 전체 도메인으로 설정됩니다.
저압 사형 주조(LPSC) Workspace 는 주조 공장에서 일반적으로 사용되는 모든 공정을 시뮬레이션할 수 있는 간편한 도구를 제공합니다. 새로운 LPSC Workspace를 통해 사용자는 프로세스 파라미터를 모델링하고 최적화하는 데 필요한 도구를 사용할 수 있습니다.
필터는 하단 충진 스프로(sprues)에 삽입하여 충진 패턴을 추가로 제어하고, 용해 시 불순물을 제거할 수 있습니다. FLOW-3D CAST는 충전 중 흐름에 미치는 영향을 모델링하기 위한 세라믹 필터를 제공합니다. LPSC Workspace는 응고중의 수축 및 미세수축결함을 해결하기 위해 발열 압탕어셈블리 및 단열 슬리브를 제공합니다.
FLOW-3D CAST의 틸트 기능을 사용하면 응고 전에 몰드를 거꾸로 뒤집어 충전 스프루(sprues)가 라이저 역할을 할 수 있습니다. 이 접근 방식은 충진 스프루(sprues)가 적절하게 설계된 경우 추가 라이저가 필요하지 않습니다.
Investment Casting Workspace는 쉘 생성, 충전, 응고 (정적 또는 움직이는 Bridgman 쉘 금형) 및 냉각을 포함한 Investment Casting 주조의 모든 측면을 시뮬레이션하기 위한 사용하기 쉬운 도구를 Investment Casting 엔지니어에게 제공합니다.
쉘 몰드 생성 도구는 빠르고 신뢰할 수 있는 쉘 형상 생성을 위해 제공되며, radiative heat 및 view factor 모델은 쉘의 여러 부분 간의 복사 열전달(radiation heat transfer)을 정확하게 재현합니다. Directional solidification를 위해 쿨러 하부 단면과 분리된 뜨거운 상부 섹션이 있는 moving oven은 Bridgman 프로세스를 재현합니다. 용융 표면 진행 뿐만 아니라 몰드의 이동, 충진 양상 및 응고 패턴은 직관적인 후처리 도구를 통해 쉽게 평가되므로 공정 조건을 수정하여 주조 공정을 구현할 수 있습니다.
Continuous Casting Workspace는 연속형 빌릿 주조 및 직접 냉간 연속 주조 등 일반적으로 사용되는 모든 주조 공장 공정을 시뮬레이션할 수 있는 사용하기 쉬운 도구를 지속적으로 주조 사용자에게 제공합니다. 새로운 Continuous Casting Workspace를 통해 사용자는 연속 주조 공정을 모델링하고 공정 파라미터를 최적화하는 데 필요한 도구를 찾을 수 있습니다.
멀티 블록 메쉬는 주조물의 높은 전단 및 고온 구배 영역에서 훨씬 더 높은 정확도를 제공하는 효율적인 방법을 제공합니다. Mold 및 Billlet 냉각, 용해 유량, 과열 및 Mold 형상과 같은 공정 매개변수가 분석에 포함됩니다. 용탕 표면의 운동과 몰드의 온동은 후처리 중에 빠르게 시각화되며, 이 과정에서 충진 및 응고 패턴도 쉽게 평가되므로 공정 수정을 자신 있게 구현할 수 있습니다.
원심 주조 Workspace는 원심 주조 사용자에게 수평 및 수직 진정한 원심 주조, 부분 원심 주조 및 원심 주조 시뮬레이션을 위한 편리한 도구를 제공합니다. 새로운 원심 주조 Workspace를 사용하면 사용자가 프로세스를 모델링하고 설계 매개 변수를 최적화하는데 필요한 모든 도구를 찾을 수 있습니다. 금형을 고정시키고 회전하는 메쉬를 통해 사용자는 ladle 붓기를 포함하여 상상할 수 있는 모든 금형 모션을 모델링할 수 있는 유연성을 제공합니다.
원통형 메싱은 가능한 최고의 흐름 모델링 정확도를 제공하는 반면, 다중 블록 메싱은 주조물의 높은 전단 및 고온 구배 영역에서 훨씬 더 높은 정확도를 위한 효율적인 방법을 제공합니다. 이 솔루션은 적합하지 않은 금형 회전 속도에 따라 비처럼 떨어지는 것과 같은 흐름 관련 문제, 공기 유입 또는 응고 부위의 재용해과 같은 결함을 예측합니다. 몰드 예열 온도, 냉각 구성 및 금형 회전률과 같은 프로세스 매개변수는 모두 모델 설정의 일부가 될 수 있습니다.
고성능 컴퓨팅(HPC)은 과학, 공학 또는 거대한 비지니스 요구 사항들을 해결하기 위해, 우리가 흔히 사용하는 일반적인 데스크탑 컴퓨터나 워크스테이션보다 훨씬 더 높은 성능을 발휘하도록 컴퓨팅 파워를 결합하여 고성능을 발휘하도록 하는 것을 의미합니다. 시뮬레이션이나 분석과 같은 HPC 워크로드는 계산 속도, 메모리 사용 및 데이터 관리가 매우 중요합니다. 클러스터나 슈퍼컴퓨터라고도 불리는 일반적인 HPC 시스템은 고속의 네트워크에 연결된 다수의 서버를 이용한 확장을 통해, 여러 애플리케이션들을 병렬 실행하도록 설계됩니다. HPC 시스템에는 관련 소프트웨어, 도구, 구성요소, 스토리지 및 서비스가 포함된 경우가 많습니다.
고성능 컴퓨팅은 일반적으로
100Gbps의 초고속 네트워킹
확장 가능한 고성능 스토리지
고성능 컴퓨팅 소프트웨어 스텍 (최근에는 거의 Linux가 대세로 자리 잡음)
에너지 효율성
GPU 가속지원
등이 핵심 성능지표로 고려되어 개발됩니다. 이러한 컴퓨터는 매우 고가이고 특별한 관리환경과 전문가들이 필요하여, 일반인들은 쉽게 접하기가 어렵습니다. 그러나 최근에는 시스템 구성은 전문가들이 하고, 시스템 사용은 일반 엔지니어들이 사용할 수 있도록 UI나 시스템 사용환경이 많이 편리해져서 대기업이나 국책 연구기관의 연구원들이 쉽게 사용할 수 있는 기반이 많이 갖추어져 있습니다.
이러한 HPC와는 스케일 규모면에서는 차이가 많지만, 최근에는 단일 컴퓨터에서도 많은 core로 구성된, 수퍼컴에 가까운 단일 컴퓨팅 고성능 PC가 판매되고 있습니다. 따라서 본 기사에서는 고성능 PC 하드웨어를 통해 수치해석을 수행할 수 있는 전세계의 최신 컴퓨터 기술을 소개하는 PC 기반 하드웨어 기사를 소개합니다. 본 기사는 itworld 에서 작성된 자료입니다.
업데이트 기사에서는 성능 테스트 결과 중 3D 뷰포트와 시너지 시네스코어(Cinescore) 성능 결과를 더했다. 또한, 게임 외적인 이유로 데이터에 나타나지 않았던 파 크라이(Far Cry) 5와 데우스 엑스: 맨카인드 유나이티드(Deus Ex: Mankind United)에서의 구형 라이젠 칩 게이밍 벤치마크 차트도 추가했다.
AMD의 12코어 라이젠 9 3900X CPU 리뷰를 한마디로 요약한 문장은 이렇지 않을까?“와, 이 CPU 진짜 빠르다.”
그러나 결론만 보기는 아쉽다. 라이젠 9 3900X는 1GHz를 처음으로 넘어섰던 AMD의 오리지널 K7 애슬론 시리즈 CPU, 데스크톱 PC의 64비트 시대를 열었던 애슬론 64 CPU만큼이나 중요한, 시장을 바꾸는 CPU가 될 물건이기 때문이다.
라이젠 9 3900X가 앞으로 저런 제품이 세운 위대함을 달성하기 어려울 것이라고 생각할지 모른다. 이전 세대의 무시무시한 게이밍 성능 지표를 모두 넘어서는 정도는 아니다. 그러나 발매 직후의 혼란이 가라앉으면 AMD 라이젠 3000 시리즈는 단숨에 가장 인기 있는 CPU가 될 것이다.
라이젠 3000 시리즈는 어찌됐든 7나노 공정으로 생산된 최초의 사용자 x86 칩이다. 인텔의 현재 데스크톱 칩은 모두 아직도 14나노 공정으로 제작된다. 올해 말쯤 되어야 10나노 공정으로의 이전이 시작될 것이다. AMD가 7나노 공정에 먼저 도달한 것을 부러워하면서 말이다.
기술적인 우위를 바탕으로 AMD는 라이젠 3000을 위해 재설계된 2세대 젠 코어를 발표했다. 이전 라이젠 2000 시리즈에 비해 부동 소수점 성능이 2배 증가했고, 클럭당 명령어 처리 횟수가 15% 향상되었다.
AMD는 명령 프리-패치를 개선했고, 명령 캐시를 한층 강화했고, 마이크로-op 캐시를 2배로 늘렸다고 말했다. AMD는 부동 소수점 성능을 2배로 늘린 것에 더해 이제 AVX-256까지 도입했다(256비트 고급 벡터 확장). 인텔 코어는 AVX-512이다. 오늘날 AVX는 주로 동영상 인코딩 분야에 영향을 주지만, 다른 분야에서도 진가를 발휘한다.
AMD는 기본적으로 라이젠 3000 칩에서 L3 캐시를 2배 늘리고, 이것을 게임 캐시라고 부르면서 애플과 비슷한 마케팅을 펼치고 있다. 라이젠 9 3900X에서 70MB를 차지하는 이 캐시는 라이젠 3000 시리즈의 메모리 지연성을 크게 줄인다. 또 CPU의 게이밍 성능을 극적으로 향상한다. 그래서 게임 캐시라고 부르면서 일반 사용자의 이해를 돕고 있다. 게임 캐시는 애플리케이션 성능 개선에도 유용하지만, 앱 캐시라고 불렀을 때 기뻐할 사람은 아무도 없을 테니까.
라이젠 3000 시리즈에는 7나노 CCD가 2개 들어간다. ⓒAMD
코어와 함께 칩셋 설계도 크게 손을 보았다. 처음의 젠 기반 라이젠은 메모리 및 PCIe 컨트롤러가 인피니티 패브릭으로 결합된 2개의 14 나노 CCD를 특징으로 했다. 젠 2에 기반한 라이젠 3000은 메모리 컨트롤러와 PCIe 4.0 컨트롤러를 별개의 IO 다이로 분리한다. 7나노 연산 코어와 달리 IO 다이는 12나노 공정으로 제작된다. 이는 CPU의 전체 원가 절감에 기여한다. 7나노 공정 웨이퍼가 훨씬 가치 있는데, AMD의 팹 협력사인 TSMC가 IO 다를 제작에 사용하지 않아도 되기 때문이다.
여기서 중요한 질문은 GPU가 제한 요소가 아닌 상황에서, 오랫동안 라이젠 성능의 발목을 잡았던 게이밍 문제가 마침내 해소되었느냐는 것이다. 차이는 이제 매우 근소해졌다. 심지어 엔비디아의 무자비하게 빠른 RTX 2080 Ti를 구동하더라도 거의 99% 문제가 없을 것이다.
PCIe4.0?!
그렇다. PCIe4.0이다. PCIe의 차세대 버전 PCIe4.0은 기본적으로 클럭 속도와 스루풋을 PCIe3.0보다 2배로 늘린다. AMD가 PCIe4.0으로 이동한 것도 또 한가지 유리한 점이다. 인텔은 CPU에서 PCIe3.0 속도로 정체되어 있고, 마찬가지로 엔비디아도 PCIe3.0 기반 GPU만을 보유한 상황이다.
현재 PCIe 4.0 실제 성능은 SSD를 제외하고 손쉽게 구현하기 어려울 것이다. 그러나 새 표준은 PC에서 더 많은 경로와 더 많은 포트를 지원한다. PCIe4.0 SSD의 혜택을 원한다면 AMD의 라이젠 3000과 새 X570 칩셋이 유일한 수단이다.
PCIe의 설명 자료는 여기서 소개한다(all about PCIe 4.0). 개발 초기 단계인 PCIe5.0과 PCIe6.0이 동시에 존재해 혼란을 준다면, 초기 사양이 실제 하드웨어로 구현되기까지는 시간이 걸린다는 점을 기억하기 바란다. 기본적으로 PCIe 4.0가 현재의 유일한 해법이고, AMD는 이 성과를 자랑할만하다.
가격
아직 가격이 남았다. 인텔의 플래그십 제품인 8코어의 코어 i9-9900K는 488달러인 반면, 더 빠르지는 않더라도 최소한 같다고 주장하는 AMD의 12코어는 499달러에 RGB 쿨러를 더했다.
AMD 라이젠 3000 제품군은 가격으로 인텔 제품을 압박한다. ⓒAMD
쓰레드당 가격은 AMD가 인텔보다 우세하다. 각종 CPU의 쓰레드당 가격 차트를 보면 라이젠 9 3900X는 쓰레드당 21달러이고, 코어 i9-9900K는 31달러로 게임이 되지 않는 지경이다.
ⓒAMD
그러나 쓰레드당 가격, 환상적인 7나노 공정도 성능이 뒷받침되지 않는다면 가치가 없다. 그럼 이제부터 라이젠 9 3900X가 얼마나 빠른지 살펴보자.
테스트 방법
이번 리뷰에는 대표적 CPU 3개를 선택했다. AMD의 2세대 라이젠 7 2700X가 테스트의 기준으로 활용된다. 두 번째는 최고의 경쟁자인 488달러의 인텔의 코어 i9-9900K이다. 마지막은 AMD의 499달러짜리 라이젠 9 3900K이다.
CPU는 나란히 테스트되었다. 라이젠 7 2700X는 MSI X470 게이밍 M7 AC에, 코어 i9-9900K는 아수스 막스무스 XI 히어로에, 라이젠 9 3900X는 MSI X5700 가드라이크에 각각 탑재했다.
그래픽의 경우 초반 CPU와 게임 테스트는 파운더스 에디션 지포스 GTX 1080를 사용하였다. 추가적 게임 테스트에서는 파운더스 에디션 지포스 RTX2080 Ti 카드를 이용하였다.
세 PC 모두 최신 UEFI/BIOS와 드라이버를 이용하고, 윈도우 10 프로페셔널 1903을 새로 설치하였다. 윈도우 버전은 특히 중요하다. AMD가 이제 버전 1903에 스케줄 최적화가 포함되어 라이젠 3000에서 더 효율적으로 쓰레드를 전송할 수 있다고 말했기 때문이다.
기억할 점은 AMD의 CPU는 CPU 코어의 작은 집단과 빠른 속도를 갖도록 구축되지만 CPU 코어 집단 사이의 액세스 속도는 더 느리다는 것이다. 구 버전 윈도우에서 스케줄러는 클러스터 내의 한 집단으로 한 쓰레드를 전송한다. 윈도우는 멀티 다이 설계를 감안하여 설계되지 않았기 때문에 두 번째 쓰레드를 다른 CPU 코어 클러스터로 전송할 것이고 이는 성능을 낮추는 원인이 된다.
단순히 두 쓰레드를 같은 CPU 코어 클러스터로 전송하는 경우가 아니면, 두 코어 클러스터 사이의 교차를 처리해야 하기 때문에 속도가 느려지는 것이다. 이제 이 문제가 해소되었다. 윈도우 1903은 가능한 경우 동일한 CPU 코어 클러스터로 쓰레드를 전송할 것이다. AMD의 주장에 따르면 윈도우의 변화를 통해 최대 15%의 성능 향상을 가져올 수 있다. 다만, 모든 애플리케이션에서 적용되는 것은 아니므로 애플리케이션마다 차이가 있을 것이라고 전했다.
ⓒAMD
세 빌드에서 모두 듀얼 채널 모드의 DDR4를 동일하게 이용했지만, 한 가지 차이를 두었다. 코어i9-9900K와 라이젠 7 2700X는 16GB DDR4/3200 CL 14를 이용했고, 라이젠 9 3900K는 16GB DDR4/3600 CL 15를 이용했다. 라이젠 9를 최적의 메모리 클럭인 3,600MHz로 테스트하고 싶었기 때문이다. 3,200 MHz에서도 역시 테스트할 예정이다. 시간적 제약으로 인해 먼저 DDR4/3600 성능만 제시하고, 시간이 허락하면 DDR4/3200 테스트 결과를 추가로 업데이트할 예정이다. 그러나 AMD가 PCWorld에 밝힌 바에 따르면 DDR4/3200CL14는 DDR4/3600CL15에 비해 성능에서 큰 차이가 없다고 한다.
여기서 다른 변수는 저장 공간이다. 라이젠 7과 코어 i9은 초고속 MLC 기반의 삼성 960 프로 512GB SSD을 사용해 PCIe3의 3세대 속도로 테스트되었다. 라이젠 9 3900X는 PCIe4.0을 지원하는 최초의 CPU이자 플랫폼이다. PCIe4.0은 새 플랫폼의 핵심 기능이므로 CPU의 PCI 레인으로 직접 연결된 2TB의 커세어 MP600 PCIe 4.0 SSD를 이용하였다. 이번에 PCWorld가 실행한 테스트에서 스토리지는 CPU 성능에 영향을 주지 않을 것이다.
커세어 MP600 ⓒAMD
MCE인가, 아닌가?
코어 i9-9900K 리뷰와 마찬가지로 이번에도 ‘다중 코어 강화(Multi-Core Enhancement, MCE)’ 기능을 이용할 것인지를 놓고 의견이 엇갈렸다. MCE는 메인보드 지원 기능으로, 인텔 ‘K’ CPU를 더 높은 클럭 속도로 실행한다. 하지만, 전력 소비도 더 크고 열도 더 많이 발생한다. MCE는 기술적으로 인텔의 표준 규격을 넘긴 ‘오버클럭’으로 간주된다.
그렇다면 이 기능을 끄면 되지 않느냐고 생각할 수 있을 것이다. 그런데 문제는 거의 모든 중급 이상의 인텔 메인보드는 즉시 사용할 수 있도록 MCE가 자동으로 설정되어 있다는 점이다. 이 기능을 끈 상태로 새 CPU를 테스트한 결과는 대부분의 사용자가 경험하게 될 코어 i9-9900K의 진정한 속도와는 거리가 멀 것이다.
켠 상태로 두는 것은 더 난감하다. 왜냐하면 메인보드 업체마다 이 설정을 조금씩 다르게 구현하기 때문이다. MCE가 켜진 상태에서 성능을 정확히 측정할 수 있는 쉬운 방법은 없다.
결국 인텔 CPU에 대해 MCE를 끈 채로 테스트를 했고, AMD의 유사한 정밀 부스트 오버드라이브(Precision Boost Overdrive) 역시 끈 상태로 테스트했다. 다른 기사에서 이 부분을 한층 깊이 있게 다룰 것이다. 그러나 현재까지는 MCE를 끈 채 인텔 CPU를 실행하는 것은 PBO를 끈 채 AMD CPU를 실행하는 것보다 인텔 CPU에 훨씬 불리하다는 점은 유의해야 한다.
그렇다면 이제부터 차트의 세계로 나가도록 하자.
라이젠 9 3900x 3D 모델링 성능
12코어 CPU가 8코어를 쉽게 압도할 것이라는 점은 그다지 놀랍지 않다. ⓒIDG라이젠 9 3900X의 싱글 쓰레드 성능이 인상적이다. ⓒIDG시네벤치 R20으로 옮겨가면 라이젠 9 3900X의 싱글 쓰레드 성능이 더 돋보인다. ⓒIDG라이젠 9 3900X가 인텔 코어 i9를 멀티 쓰레드 성능에서 압도하는 것은 어쩌면 당연하다. ⓒIDG코로나 모델러 테스트 결과도 8코어보다 12코어 성능이 더 높게 나왔다. ⓒIDG비슷한 결과다. V레이 넥스트 테스트에서도 다른 모델링 앱과 별반 다르지 않은 결과를 냈다. ⓒIDGⓒIDG놀랍지도 않다. 라이젠 9가 코어 i9을 가지고 노는 수준이다. ⓒIDG5GHz 클럭이라는 강점을 지닌 코어 i9가 라이젠 9를 싱글 쓰레드로 설정된 POV레이 테스트에서 근소하게 앞섰다. ⓒIDGH.265 코덱을 활용한 4K 인코딩 작업에서도 라이젠 9 3900X가 월등했다. ⓒ
라이젠 9 3900X 인코딩 성능
라이젠 9 3900X는 H.265 코덱을 사용한 4K 인코딩에서 코어i9를 간단히 앞질렀다. ⓒIDG시너지 시네스코어 10.4 테스트에서도 라이젠 9의 성능이 코어 i9 칩을 상당히 앞섰다. ⓒIDG프리미어 CC 2019 작업에서는 코어 i9가 더 우세하다. ⓒIDG프리미어 HEVC 인코더 프로젝트에서도 코어 i9가 우세했지만 차이는 조금 줄어들었다. ⓒIDG
포토샵 성능 테스트
포토샵 성능에서는 라이젠 9 2900X가 근소하게 앞섰다. ⓒIDG
압축 테스트
압축 테스트 결과. 라이젠 9 3900X와 라이젠 7 2700X의 성능 차가 크다. ⓒIDGWinRAR결과는 좋게도 나쁘게도 해석할 수 있다. 라이젠 7 2700X 결과에서 보듯, WinRAR는 전통적으로 인텔 CPU와 상성이 좋았는데, 라이젠 9 3900X가 코어 i9와 크게 차이나지 않는 수준의 결과를 냈다. ⓒIDG7ZIP 압축 테스트에서의 싱글 쓰레드 성능은 코어 i9가 조금 더 앞섰다. ⓒIDG멀티쓰레드 성능은 라이젠 9가 압도적이었다. ⓒIDG압축 풀기 테스트는 전통적으로 성능 확인의 정수이자 CPU가 브랜치 오예측을 얼마나 잘 감당하는지와 관련이 있었다. ⓒIDG7Zip 압축 풀기 테스트에서는 3개 제품이 모두 엇비슷한 성능을 나타냈다. 가장 우수한 것은 코어 i9였다. ⓒIDG
라이젠 9 3900X의 게이밍 성능 테스트
섀도우 오브 툼 레이더는 1,920×1,080 해상도에서 플레이했는데도 GPU에 의한 병목 현상이 나타났다. ⓒIDG최신 게임을 플레이할 때는 두 제품 모두 빠른 GPU가 필요하다. ⓒIDG조금 더 오래된 라이즈 오브 더 툼레이더로 옮겨 가면 역시 구형인 지포스 GTX 1080 FE가 병목 현상임을 알 수 있다. ⓒIDG라이젠 9 3900X가 코어 i9를 앞서지는 못했지만, 차이는 아주 근소하다. ⓒIDGⓒIDG파 크라이 5는 코어 i9가 라이젠 시리즈를 앞선 성능을 보인 게임 중 하나다. ⓒIDG데우스 엑스 맨카인드 디바이디드 결과. 라이젠 7과 라이젠 9의 차이에서 게임 성능 개선 폭을 짐작할 수 있다. ⓒIDG레인보우 식스 시지 결과 ⓒIDGCPU 포커스드 테스트 결과는 전적으로 CPU 테스트나 다름 없다. 지포스 GTX 1080과 RTX 2080Ti에서의 프레임 차이가 거의 없었기 때문이다. ⓒIDG
결론
1쓰레드에서 24 쓰레드까지의 시네벤치 테스트로 리뷰를 마치고 싶다. 시네벤치 R20은 3D 모델링 벤치마크로서 게이밍 성능이나 여타 애플리케이션 성능을 예측하지 않는다. 그러나 수많은 게임과 애플리케이션이 현대 CPU의 쓰레드를 모두 활용하는 혜택을 누릴 수는 없다. 그런 면에서 시네벤치 R20이 가치가 있다. CPU를 1개 쓰레드에서 시작해 끝까지 로딩 했을 때의 성능을 살펴볼 수 있기 때문이다.
아래의 차트에서 AMD는 통상적으로 차트 우측에서 두드러진다. 거의 언제나 인텔 칩에 비해 코어 수에서 우세하기 때문이다.
반면 인텔은 통상적으로 우측에서는 패배하지만, 좌측에서는 승리한다. 인텔 칩은 AMD 칩에 비해 클럭 속도와 IPC가 우세하기 때문이다. 인텔의 코어 칩이 강점을 지닌 부분은 기본적으로 여기뿐이다. 대다수 애플리케이션과 게임은 차트의 좌측에 있는 성능에 의존한다. 라이젠 9 3900K와 코어 i9-9900K 사이의 차트를 보면 그 강점은 이제 사라졌다.
시네벤치 r20을 1쓰레드에서 24쓰레드까지 돌리자, 전 구간에서 라이젠 9 3900x의 진정한 강점이 드러났다. ⓒIDG
동일 데이터를 다른 관점으로 보기 위해 성능 우세 정도를 비율로 보여주는 차트를 만들었다. 차트에서 알 수 있듯이 12코어는 8코어를 간단히 압도한다.
이번에도 인텔의 코어 i9에 있어 가장 나쁜 소식은 차트의 좌측에 있다. 여기서도 인텔의 우위가 사라졌다. 두 CPU는 6쓰레드까지 거의 대등하고 이후부터 라이젠 9가 앞서기 시작한다.
라이젠 9는 8쓰레드 이후부터 코어 수로 인텔 코어 i9를 제압했다. ⓒIDG
쓰레드 수가 적은 경우를 봐도 라이젠 9 3900K는 언제나 코어 i9 9900K만큼이나 빠르다. 이는 기본적으로 이제 코어 i9을 사야 할 이유가 거의 없음을 의미한다. 남은 이유도 분명 존재하지만, 고급 CPU를 구입하려는 사용자 10명 중 9명은 라이젠 9 3900X를 선택할 것이 틀림없다. editor@itworld.co.kr
컴퓨텍스 2018에서 소개된 강력한 PC 하드웨어 소개
본 기사는 PCWorld 및 itworld에서 부분 발췌된 내용입니다.
컴퓨텍스 2018에서는 게이밍이 뜨겁다. PC의 핵심 칩들이 크게 발전하면서 성능을 크게 높였다.
스레드리퍼(Threadripper) 2 인텔의 발표 직후, AMD는 32코어 64스레드 플래그십인 스레드리퍼 2를 소개하면서 코어 전쟁에 불을 붙였다. 새 24코어 CPU도 출시되며 새 칩들은 2세대 라이젠(Ryzen)과 같은 기본 기술에 기초하여 개발되었다. 또한 AMD는 쿨러 마스터와 협력하여 32코어의 온도를 관리할 수 있는 거대한 공냉식 쿨러인 레이스 리퍼(Wraith Ripper)를 제작했다.
AMD를 전격 채용한 에이서 헬리오스(Acer Helios) 500 컴퓨텍스에서 AMD의 기술이 예상치 못한 곳에서 공개되었다. AMD를 전격 채용한 이 모델에는 6코어 12스레드 라이젠 7 2700 데스크톱 프로세서뿐만이 아니라 라데온 베가(Radeon Vega) 56 그래픽이 탑재되어 있으며, 외장 베가 GPU가 탑재된 노트북은 이번이 처음이다. 에이서는 이 노트북에 144Hz 프리싱크 디스플레이를 매치하여 베가의 성능을 최대한 발휘할 수 있도록 했다.
MSI 노트북(치터(Cheater) 모드 적용) MSI는 컴퓨텍스에서 모든 가격 대의 노트북을 선보였다. MSI가 엔비디아 GTX 1050 그래픽을 내장한 프레스티지(Prestige) PS42가 있다. 매우 인상적일 것이며 기록을 달성할 수 있을지 기대된다. 보급형의 경우 MSI GF63은 999달러란 저렴한 가격에 6코어 8세대 인텔 코어 CPU와 GTX 1050이 내장되어 있다.
독특한 에이수스 노트북 에이수스는 컴퓨텍스에서 프로젝트 프리코그 외에도 혁신적인 하드웨어를 선보였다. 또한 기본적으로 트랙패드(Trackpad)를 상황에 따라 PC용 보조 화면으로 변신시키는 “스크린패드(ScreenPad)” 기술이 포함된 젠북 프로(ZenBook Pro) 15의 새로운 버전을 공개했다.
2017년 수치해석 분야에 기대되는 최신 컴퓨터 소식
수치해석을 하는 많은 분들은 대부분 시간과의 전쟁을 치루고 있습니다. 좀 더 빨리, 좀 더 상세한 결과를 얻어야 하기 때문에, 많은 분들이 예산이 허락하는 한 성능 좋은 컴퓨터를 확보하는 것이 최대의 목표가 되고 있습니다.
한 동안 AMD가 인텔의 경쟁자로 존재하면서 두 회사는 선의의 성능 경쟁을 치열하게 전개해 왔는데, AMD가 서서히 경쟁력을 잃고 있다가 최근에 젠 CPU를 통해 다시 경쟁에 불을 지피고 있습니다. 여기에 두 회사의 최신 주력 CPU 의 내용을 기사에서 인용하여 소개합니다.
인텔, 18코어 36스레드 갖춘 코어 i9 칩 발표 “AMD 쓰레드리퍼와 전면전” (기사 출처 : itworld)
인텔이 코어 i9을 무기로 본격적인 AMD와의 전쟁에 돌입했다. 인텔은 30일 대만 컴퓨텍스에서 하이엔드 PC시장에서 AMD의 16코어 32스레드 스레드리퍼(Threadripper)와 경쟁할 18코어 36스레드의 ‘몬스터 마이크로프로세서’를 발표했다.
이 프로세서에는 코어 i9 익스트림 에디션 i9-7980XE라는 이름이 붙었다. 첫 번째 테라플롭(Teraflop) 데스크톱 PC프로세스로 아주 고가이다. 올해 말 출하되는 프로세서의 가격은 1,999달러이다. 한 단계 낮은 코어 i9 제품군 제품들은 가격이 조금 더 저렴하다. 10코어, 12코어, 14코어, 16코어로 구성된 코어 i9 X 시리즈 가격은 999~1,699달러 사이다. 모두 스카이레이크 기반 프로세스이며, 기존 브로드웰-E보다 높은 성능을 제공한다. 인텔에 따르면, 싱글스레드 앱은 15%, 멀티스레드는 10% 빠르다.
인텔은 ‘베이진 폴스(Basin Falls)”라는 코드 네임을 가진 코어 i9 X 시리즈가 너무 비싼 사람들을 위해 3종의 새로운 코어 i7 X 시리즈 칩(339~599달러)과 1종의 쿼드 코어 코어 i5(242달러)도 공개했다. 인텔은 몇 주 이내에 신제품 칩을 출하할 예정이라고 설명했다.
대부분의 코어 i9칩에 터보 부스트 맥스 기술 업데이트(Updated Turbo Boost Max Technology) 3.0이 탑재될 예정이다. 터보 부스트 맥스는 칩이 최고의 코어 2개를 파악하고, 필요할 때 가변적으로 속도를 높여 오버클러킹을 하는 기능이다. 옵테인 메모리도 지원한다. 인텔은 130개 이상의 옵테인 지원 메인보드가 출시될 예정이라고 설명했다.
신제품 165W, 140W, 112W 칩은 역시 새로운 소켓인 R4에 맞춰 설계되어 있다. 2,066핀 LGA 소켓과 호환되는 인텔 칩셋은 X299가 유일하다.
다시 한번, 인텔과 AMD가 제대로 한 판 붙을 전망이다. 둘 중 누가 승리할지 지켜보는 사용자들의 관심도 뜨겁다. 인텔은 코어 i9을 발표하면서 하이엔드 시장에 공격적으로 접근했다. AMD도 스레드리퍼의 10코어, 12코어, 14코어 버전과 가격을 공개할 수밖에 없는 실정이다. 인텔이 먼저 패를 공개했다. 게임은 이제부터가 시작이다.
인텔의 새 코어 i9 칩은 모든 PC관련 제품이 전시되는 종합 전시회로 발전한 컴퓨텍스에서 가장 중요한 발표 중 하나로 꼽혔다. 기대되는 소식은 아직 많이 남아있다. 홍보 담당자에 따르면, 인텔 경영진이 차세대 10nm 칩인 캐논 레이크에 대해 발표할 예정이라고 한다. 기존 케이비 레이크 칩보다 30% 높은 성능을 자랑하는 제품이다.
또, HTC 바이브 VR 헤드셋을 WiGig 기술을 이용해 무선 연결하는 기술에 대해 더 자세한 정보가 발표될 계획이다. 인텔과 HTC는 지난 1월 CES에서 파트너십 체결을 발표했다. 인텔은 또 8월부터 컴퓨트 카드(Compute Card)를 출시한다고 발표할 계획이다.
코어 i9의 속도와 피드 클록 속도가 4GHz를 넘으면서, 제조업체들이 직면한 도전 과제는 추가된 코어를 모두 사용하는 방법을 찾는 것이었다. 앞서 링크된 기사에서 설명했듯, 하나의 프로세스 코어만 집중적으로 사용하는 게임들이 여전히 많다. 인텔은 게임 플레이는 물론, 게임에 이용하지 않는 다른 코어로 트위치나 유튜브 스트리밍을 인코딩하고, 더 나아가 백그라운드에서 음악도 재생할 수 있는 새로운 세대의 ‘스트리머(Streamer)’로 눈길을 돌렸다. 인텔은 이런 동시다발 작업에 ‘메가태스킹’이라는 명칭을 붙였다. 이 회사는 이를 갈수록 증가하는 코어 수에 맞게 ‘수요’를 유지하는 아주 좋은 방법으로 판단하고 있다.
이와 관련, X시리즈 마케팅 매니저인 토니 베라는 “게이머가 콘텐츠 창작자로 변모하는 추세”라고 강조했다.
제품 가격은 자연스럽게 최고 2,000달러로 아주 비싸고, 경제력이 있거나 기업의 후원을 받는 사용자만 최신 코어 i9 제품들을 구입할 수 있을 전망이다. 다음은 제품 별 가격과 코어, 스레드 수를 정리한 내용이다.
인텔은 또 한정된 예산에 제약 받는 사용자를 대상으로 3종의 새로운 코어 i7 X 시리즈 칩을 판매할 계획이다.
Core i7 7820X (3.6GHZ), 8코어/ 16스레드, 599달러 Core i7-7800X (3.5GHz), 6코어/ 12스레드, 389달러 Core i7-7740X (4.3GHz), 4코어/ 8스레드, 339달러 케이비 레이크 코어에 맞춰 설계된 i7-7740X를 제외한 모든 칩이 인텔의 ‘스카이레이크-X’에 기반을 두고 있다.
새 칩에서 가장 큰 관심을 끄는 기능은 터보 부스트 맥스 기술 업데이트 3.0이다. 고든 마 웅이 인텔 브로드웰-E 리뷰에서 설명한 것처럼, 터보 부스트 맥스 기술 3.0은 (칩에 따라 차이가 있지만) 최고의 코어를 식별한다. 그리고 CPU 집약적 싱글 스레드 애플리케이션을 이 코어로 연결해 전체 성능을 향상한다. 또, 최고의 코어 2개를 식별하고, 가장 CPU 집약적인 스레드에 할당한다. 더 많은 코어를 더 효과적으로 활용하는 게임과 애플리케이션에 도움을 주는 기능이다. 그러나 이 새로운 기능을 탑재하지 않은 칩도 있다. 새 6코어, 2종의 4코어 X시리즈 칩이 여기에 포함된다.
다음은 속도와 피드를 요약 설명한 표다.
오버클럭이 포인트 인텔은 새 X시리즈에 공냉 쿨러를 추천하지 않는다. 인텔은 165W와 140W의 새 칩이 방출할 열을 효과적으로 냉각시킬 수 있는 TS13X 쿨러를 판매할 예정이다.
TS13X는 PG(Propylene Glycol)을 이용, 열을 73.84-CFM 팬으로 보낸다. 이 팬의 소음은 21~35dBA이고, 회전 속도는 800~2,200rpm이다. 별도 판매될 TS13X의 가격은 85~100달러 사이이다.
인텔은 또 XTU(Extreme Tuning Utility)를 이용, 코어 당 오버클러킹과 전압 조절을 계속 지원할 계획이다. AVX 512 비율 오프셋, 메모리 전압 조절, PEG/DMI 오버클러킹 등 새 기능이 포함되어 있다. 또 ‘성능 튜닝 보증 서비스(Performance tuning protection plan)’를 제공할 계획이다. 이는 오버클로킹 사용자를 위한 일종의 ‘보험’이다. 칩이 고장 날 경우, 1회 교체를 해주는 보증 서비스이며, 두 번째부터는 유료로 진행된다.
데이터 전송 성능을 향상한 새 X299 칩셋 테라플롭급 연산력을 갖춘 PC의 경우, 다른 부품과의 데이터 전송 성능이 아주 중요하다. x299 칩셋은 최신 DMI 3.0을 도입해 SATA 3.0포트와 USB 포트 연결 대역폭을 2배로 증가시킨다. X299 칩셋에는 최대 8개의 SATA 3.0포트, 10개의 USB 3.0 포트가 장착되어 있다. 기존 X99 칩셋의 USB 3.0포트 수는 최대 6개였다.
브로드웰-E X99 칩셋은 8개의 PCIe 레인을 지원했었다. 그러나 X299은 최대 24개의 PCIe 3.0 레인을 지원한다. 고속 PCIe NVM3 드라이브 등 추가 PCIe를 CPU와 연결된 PCI3에 직접 연결할 수 있다. 코어가 10개 이상인 CPU의 경우, 최대 44개의 PCIe 3.0 레인을 이용할 수 있다.
X299는 속도가 빨라진 DDR4-2066을 지원한다. 그러나 어느 정도 RAM 용량을 지원하는지 확실하지 않다. 인텔은 캐시 계층(Cache Hierarchy)을 조정했다. 이를 통해 개별 프로세서 근처에 더 많은 캐시를 배치하는 방법보다 캐시 크기를 더 많이 줄일 수 있다. 인텔은 새로운 캐시의 ‘히트(Hit)’ 레이트가 더 높다고 설명한다. 칩 크기를 줄였지만 캐시 성능을 유지할 수 있었다는 의미이다.
이번 신제품 소식은 코어 i9, 코어 i7 X 시리즈 사용자 모두 크게 기뻐할 기능 및 성능 향상이다. 메인보드와 PC 제조사도 하이엔드 시장에서 수익을 증대하기 위해 코어 i9 제품들을 출시할 것으로 예상된다. 이번 주 컴퓨텍스에서 전해질 더 많은 소식에 사용자들의 관심이 쏠리고 있다. editor@itworld.co.kr
2018년 인텔 6코어 코어 i9 CPU 발표
본 기사는 itworld.co.kr 기사를 인용하였습니다.
아래 기사를 보면 이젠 해석용 컴퓨터도 고성능 노트북으로 가능하게 되어 가는 것 같습니다. ItWorld의 기사를 게재합니다.
인텔의 새로운 6코어 모바일 코어 i9 칩은 가장 빠른 노트북 CPU로, 새로운 코어 i9-8950HK의 기본 클럭 속도는 2.9GHz이며 여기에 “열 속도 가속(Thermal Velocity Boost)”이라는 신기술을 사용해 최대 4.8GHz까지 올라간다. 새로운 언락 8세대 코어 i9를 최상위 제품으로, 그 아래에 5개의 신형 코어 i5와 코어 i7 고성능 모바일 H 시리즈 칩, 그리고 저전력 시스템을 위한 4개의 U 시리즈 코어 칩이 포진한다. 모두 14나노 커피레이크 칩이다. 인텔은 새로운 데스크톱 코어 프로세서 제품군과 노트북 PC 내의 하드 드라이브 성능을 강화하는 옵테인 메모리 내장을 나타내기 위한 브랜드 로고(코어 i7+)도 새로 발표했다.
인텔에 따르면 코어 i9는 7세대 코어 프로세서에 비해 게임 프레임 재생률 기준 최대 41% 더 우수하며, 게임 플레이 스트리밍 및 녹화 성능은 32% 더 빠르다. 인텔은 새로운 코어 i9는 언락 상태로 제공되므로 게임 PC 제조 업계에서 5GHz 시스템도 출시하게 될 것이라고 밝혔다. 옵테인 메모리가 포함되면 성능 향상 폭은 더욱 커진다. 다만 인텔이 성능 비교에 사용한 7세대 시스템에는 SSD가 아닌 느린 기계식 하드 드라이브가 탑재돼 있어 SSD에서의 성능 향상이 어느 정도인지는 정확히 알 수 없다.
인텔 프리미엄 및 게이밍 노트북 부문 총괄 책임자인 프레드릭 햄버거는 “코어 i9는 인텔이 지금까지 발표한 가장 빠른 게이밍 프로세서”라며, “데스크톱에 거의 근접한 성능을 노트북에서 얻을 수 있다”고 강조했다.
새로운 모바일 코어 칩은 인텔이 스펙터 및 멜트다운 취약점을 수정하기 위해 패치한 소프트웨어 완화책을 지원한다(이후 나올 하드웨어 재설계는 적용되지 않는다). 인텔 측은 제시된 성능 수치가 이러한 완화책으로 인한 성능 감소를 반영한 것이라고 밝혔다.
인텔이 출시하는 모든 모바일 프로세스가 그렇듯이, 중요한 점은 가격이다. 인텔은 보통 모바일 칩 가격을 공개하지 않으며, 이번에도 마찬가지다. 다만 새로운 제품군 중에서 코어 i9 칩의 경우 게임 노트북 중에서도 상위 기종에만 들어갈 것으로 보인다. 그 외의 다른 칩은 훨씬 더 폭넓게 보급될 전망이다.
인텔 코어 H 시리즈 CPU
인텔은 현재 폭발적으로 성장 중인 PC 게임 시장을 노골적으로 정조준하고 있다. 햄버거는 인텔 코어 칩을 내장한 일반 판매용 게임 노트북이 전년 대비 45% 성장했다고 말했다.
인텔의 새로운 45W H 시리즈에는 각각 2종의 새로운 코어 i7과 코어 i5 칩 및 신형 제온이 포함된다. 사실 모바일 코어 i9 칩은 제온 E-2186과 상당히 흡사해 보인다. 클럭 속도, 코어 수, 열 설계 전력 등이 동일하다. 그러나 코어 i9의 클럭 속도는 완전히 언락된 상태로 제공된다. 코어 i9의 가격이 너무 부담스럽다면, 동일한 6개의 코어와 12개 쓰레드를 탑재한 새로운 코어 i7-8850H이 있다.
새로 출시되는 칩은 모두 인텔이 노트북을 대상으로 밀고 있는 옵테인 메모리를 지원하며, 기업용 시스템을 위한 vPro 기술이 옵션으로 제공된다. 인텔의 라데온 RX 베가(“케이비레이크-G”) 칩은 울트라북 수준에서 1080p 성능을 제공하도록 설계됐지만, 신형 8세대 코어 i9 칩은 햄버거의 표현대로라면 “머슬북(Musclebook)”에 맞게 설계돼 노트북에서 얻을 수 있는 절대적인 최고의 성능을 제공한다. 햄버거는 “이 칩으로 만족할 수 없다면 어떤 칩으로도 만족하지 못할 것”이라고 덧붙였다.
Intel
인텔은 이번에 처음으로 이른바 “열 속도 가속” 기능을 포함했다. 이 기능은 클럭 속도를 정상보다 더 높여준다. 평상시 코어 i9-8950HK에서 터보 부스트가 활성화된 후 최대 클럭 속도는 4.6GHz다. 그러나 햄버거는 칩의 온도가 충분히 낮은 상태에서 최대 속도로 작동 중이라면, 클럭 속도가 한층 더 올라간다면서 단일 코어를 200MHz 더 높여 4.8GHz로 작동하거나 모든 코어를 약 100MHz 높여 작동하게 된다고 설명했다.
다만 햄버거는 열 속도 가속 기술이 “자동적인 기능이 아닌 기회에 따라 작동하는 기능”이며, 인텔은 시스템 온도 섭씨 50도 이하에서 이 기능이 작동하도록 설계했다고 거듭 강조했다. 햄버거는 “OEM 파트너와 함께 전력 성능을 최적화하고 열 특성을 조정해 성능을 더 끌어올리기 위해 많은 시간을 투자했다”면서 “지금의 추세는 가장 얇게 만들기 위해 성능을 희생하는 게 아니라, 더 오래 지속되는 더 얇은 규격에 더 효율적인 성능을 집어넣는 것”이라고 말했다.
인텔 코어 U 시리즈 CPU
성능은 좀 낮아도 배터리가 오래 가는 제품을 찾는 사용자를 위해 인텔은 새로운 U 시리즈 칩 4종도 함께 출시했다. 28W TDP 저전력 8세대 코어 칩은 모두 4코어 8스레드 구성이 적용되며 모바일 구성의 옵테인 메모리 기술을 지원한다.
Intel
모든 칩은 인텔이 선보인 새로운 300 시리즈 칩셋인 H370, H310, Q370, B360에 연결된다. 또한 인텔 대변인에 따르면 모든 칩은 향상된 오디오 및 I/O, 기가비트 처리량을 갖춘 통합 인텔 802.11ac 와이파이, 10Gbit/s 통합 2세대 USB 3.1 I/O 등 플랫폼 수준에서 더 많은 기능을 제공한다.
게이밍 노트북 판매가 “폭증”하고 시장 성장에 보조를 맞춰 유통업체들도 매장 진열대에서 이런 제품의 비중을 계속 늘리고 있다. 인텔도 투자를 지속할 계획이다. 게이밍 노트북에서 코어 수를 늘리고 5GHz 벽을 돌파하게 되면 인텔은 성능의 한계를 확실히 더 높이게 될 것이다. editor@itworld.co.kr
“40% 성능 향상”이라는 말은 보수적인 자체 평가였다. AMD는 첫 번째 라이젠 프로세서 3가지를 오는 3월 2일 출시할 계획이라고 밝혔다. 인텔 코어 제품군을 능가하는 성능으로 기대를 받고 있는 라이젠 프로세서는 가격도 절반 가까이 저렴하다.
22일 열린 라이젠 출시 행사에서 발표에 나선 AMD 임원들은 인텔 코어 i7을 공략하기 위한 세 가지 데스크톱용 CPU를 공개했다. 신형 라이젠 CPU는 여러 곳의 주요 메인보드 업체와 전문가용 맞춤형 PC 업체가 지원한다. 특히 AMD는 신형 라이젠 프로세서가 더 적은 비용으로 더 높은 성능을 제공한다는 점을 강조했다. 최고 성능 제품인 라이젠 7 1800X는 인텔의 1,000달러짜리 코어 i7-6900K의 절반에도 못 미치는 가격이지만, 성능은 더 뛰어나다.
인텔과 마찬가지로 AMD의 라이젠 프로세서 역시 역시 3가지 제품군으로 구성되어 있는데, 고급형 라이젠 7, 중급형 라이젠 5, 가장 저렴한 보급형 라이젠 3이 그것이다. AMD는 고성능 라이젠 7부터 먼저 출시하는데, 1800X(499달러), 1700X(399달러), 1700(329달러)의 세 가지 모델이다. 라이젠 5와 라이젠 3은 올해 하반기에 출시할 예정인데, 구체적인 출시 일정은 밝히지 않았다.
이번 행사 직전까지 공개되지 않은 라이젠 관련 정보는 가격과 정확한 출시일이었다. 애널리스트들은 AMD가 그간의 실책을 모두 개선한 것 같다고 평가했으며, 인텔은 자칫 기반이 되는 PC용 마이크로프로세서 시장의 점유율을 잃을 수 있는 위험에 처했다. 물론 인텔도 대응책은 있다. 가격 인하도 그중 하나일 가능성이 있고, 더 많은 코어를 가진 신제품이나 옵테인 기술을 적극 내세우는 것도 방법이 될 수 있다.
인텔이 지난 1월 케이비 레이크 칩 40가지를 대대적으로 출시한 것과는 달리 AMD는 서두르지 않고 있다. 이번에 출시된 라이젠 7 칩의 세부 사양을 살펴보자.
Mark Hachman
라이젠 7 1800X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.6GHz, 부스트 모드에서는 4GHz로 동작한다. 499달러 1800X의 대응 제품은 8코어 인텔 코어 i7-6900K로 무려 1,089달러짜리이다. AMD에 따르면, 1800X는 시네벤치 상에서 단일 쓰레드 점수가 162로 동점을 기록했다. 하지만 코어를 모두 구동하자 1,601점으로 6900K보다 9% 높은 점수를 기록했다.
라이젠 7 1700X. 95와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3.4GHz, 부스트 모드에서는 3.8GHz로 동작한다. AMD에 따르면, 399달러 1700X는 시네벤치 멀티코어 벤치마크 테스트에서 1,537점을 기록해 6900K보다 4% 높은 성능을 보였다.
라이젠 7 1700. 655와트 8코어 16쓰레드 프로세서로, 기본 클럭 속도는 3GHz, 부스트 모드에서는 3.7GHz로 동작한다. AMD에 따르면, 1700은 시네벤치 멀티코어 테스트에서 1,410점으로 339달러짜리 코어 i7 7700K보다 46% 더 높은 성능을 기록했다. 핸드브레이크 비디오 인코딩 테스트에서는 1700은 61.8초를, 7700K는 71.8초를 기록했다.
Mark Hachman
AMD에 따르면 라이젠 7 1700은 신형 레이스 스파이어(Wraith Spire) 쿨러를 기본 쿨러로 제공해 소음이 32데시벨에 불과하다.
라이젠의 눈에 띄는 성능 향상에는 설계팀의 역할이 컸다. AMD는 자사의 목표 중 하나가 젠 아키텍처의 클럭당 명령어 처리수(IPC, instructions per clock)를 40% 늘리는 것이라고 밝힌 바 있다. 그리고 실제로 AMD는 IPC를 52% 향상했다. CEO 리사 수는 “단지 목표를 맞춘 것이 아니라 크게 초과 달성했다”라고 강조했다. editor@itworld.co.kr
AMD가 2세대 라이젠 쓰레드리퍼(Ryzen Threadrippers, 또는 쓰레드리퍼 2)를 공식 발표했다. 코어수도 놀랍지만 가격이 인텔을 정조준하고 있다.
2세대 라이젠 쓰레드리퍼 2990WX는 32코어 64쓰레드로, 권장 가격은 1,799달러(뉴에그나 아마존 예약 주문 가격)이다. 물론 엄청난 가격이지만, 인텔의 최상위 제품과 비교하면 상당히 저렴하다. 지난 해 출시된 인텔의 코어 i9-7980XE는 18코어 제품이지만 가격은 2,000달러이다.
쓰레드당 가격으로 따지면, 인텔의 코어 i9-7980XE는 약 55달러인데 반해 쓰레드리퍼 2는 약 28달러에 불과하다.
IDG
마치 대형 할인판매점과 같다. 쓰레드가 많을수록, 쓰레드당 가격은 떨어진다.
32코어 2990WX는 주력 제품이며, AMD는 다음과 같은 다양한 쓰레드리퍼 제품을 발표했다.
– 2세대 라이젠 쓰레드리퍼 2920X, 12코어 24쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.3GHz, 가격 649달러. – 2세대 라이젠 쓰레드리퍼 2950X, 16코어 32쓰레드, 기본 클럭속도 3.5GHz, 부스트 클럭속도 4.4GHz, 가격 899달러. – 2세대 라이젠 쓰레드리퍼 2970WX, 24코어 48쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,299달러. – 2세대 라이젠 쓰레드리퍼 2990WX, 32코어 64쓰레드, 기본 클럭속도 3.0GHz, 부스트 클럭속도 4.2GHz, 가격 1,799달러.
32코어 쓰레드리퍼 2990WX는 현재 예약 주문이 가능하며, 정식 출하일은 8월 13일로 예상된다. 16코어 2950X의 출시일은 8월 31일이며, 나머지 24코어, 12코어 제품은 10월에 출시된다.
2세대 쓰레드리퍼는 모두 AMD가 올해 초 2세대 라이젠 칩과 함께 내놓은 향상된 12나노 젠+ 아키텍처를 기반으로 한다. 또한 모든 CPU는 기존 X399 메인보드와 호환되며, 구형 CPU 없이도 BIOS 업데이트를 지원한다.
신형 CPU는 1세대 제품과 비교해 확연한 성능 향상을 제공하며, 동급 인텔 제품과의 비교를 불허한다. AMD는 32코어 쓰레드리퍼 2990WX가 시네벤치 R15를 기준으로 인텔의 18코어 코어 i9-7980XE보다 50% 더 빠르다고 밝혔다. POV-Ray 같은 다른 멀티쓰레드 기반 테스트에서도 47% 앞섰다.
모델명에 추가된 W 사실 AMD가 일부 2세대 쓰레드리퍼의 모델명에 W를 추가한 것도 이 때문이다. AMD는 많은 애플리케이션과 게임이 쓰레드나 코어수보다는 더 높은 클럭속도를 선호한다며, W가 없는 두 모델은 바로 이런 사용자를 위한 것이라고 설명했다.
24코어와 32코어 제품의 모델명에 WX를 붙인 것은 이들 CPU가 창작자나 혁신가를 정조준하고 있음을 나타내기 위한 것이다. 즉 W가 추가된 모델은 픽셀이나 프레임, 그리고 광선을 극한까지 추구하는 사람들을 위한 것으로, 이들은 가능한 많은 코어와 쓰레드를 필요로 한다.
주요 이정표 일반 소비자용 CPU에 32코어를 도입하면서 CPU 전쟁은 새로운 전기를 맞이한다. 불과 2년 전, 인텔은 10코어 코어 i7-6950X를 무려 1,723달러에 출시했는데, 지금은 32코어 CPU가 1,799달러에 나왔다.
IDG
날로 치열해지는 코어 전쟁
조만간 나올 인텔의 대응 기대 물론 인텔이 한가로이 앉아 레모네이드나 홀짝거리는 것은 아니지만, 경쟁은 치열하다. AMD가 지난 컴퓨텍스에서 32코어 괴물을 공개하기 하루 전날, 인텔은 28코어에 클럭속도 5GHz짜리 괴물을 소개했다. 이 제품은 올해말 출시될 것으로 예상된다.
인텔의 문제는 이 CPU의 시연을 솔직하게 보여주지 않은 것이다. 인텔 임원은 28코어 CPU가 5GHz로 동작한다고 밝혔지만, 이를 위해 산업용 수랭 시스템을 사용했는지를 밝히지 않았다. 나중에 인텔은 시연이란 것이 언제나 그렇듯이 오버클러킹 시연처럼 가능성을 확인하기 위한 것이라고 설명했다.
이런 논란과 관계없이 AMD 쓰레드리퍼 2990WX는 몇 개월 먼저 출시된 상태이다. 더구나 인텔이 28코어 CPU를 어떤가격에 판매해야 AMD의 신작과 경쟁할 수 있을지도 의문이다. 기업 사용자와의 형평성이 걸림돌이 되는데, 현재 28코어 제온 플래티넘 8176의 가격은 8,719달러이다.
기존 워크스테이션 고객을 걱정할 필요가 없는 AMD는 다시 한 번 가격 파괴 전략을 펼치고있다. 이런 식으로 AMD는 인텔과 코어와 가격으로 정면 대결하기를 원하지만, 인텔은 이런 직접 대결을 최대한 피하고자 한다. editor@itworld.co.kr
This article was contributed by Diego David Baptista de Souza, Alexandre Charles Allain, and Anaximandro Steckling Muller of Engevix Engenharia S/A.
The São Roque hydroplant project는 브라질의 카노아스 강 산타 카타리나 주에 있습니다. 롤러 압축 콘크리트 댐은 141,9MW의 설치 용량을 허용합니다. 그림 1은 프로젝트의 위치를 보여 줍니다.
Figure 1 – São Roque hydro power plant location
제트 편향은 낮은 홍수에 대해 배수로의 첫번째 단계에서 발생하며 불안전한 흐름과 진동을 일으킵니다. 수치 모델링은 제트 편향을 제한하는 첫 단계의 형상을 최적화하는데 사용될 수 있습니다. 편향이 발생하는 임계 방전을 최소화하는 기하학적 구조를 찾기 위해 여러 번의 시뮬레이션이 수행되었습니다. 처음 계단식 배수로를 따라 설치된 흐름을 스키핑 흐름이라 한다. 유량 시스템이 불안정성을 보이기 시작하면서 결국 제트가 임계 유량으로 비상할 때까지 저수지의 수위가 점차적으로 낮아지게 됩니다.
시뮬레이션한 모든 기하학적 구조는 고정 매개변수인 1.2m의 정규 계단높이와 53°의 경사를 포함합니다. 그림 2와 3은 두개의 기하학적 구조를 보여 줍니다. 수치 모델에는 TruVOF 기법을 이용한 공기 침투 및 자유 표면 추적이 포함됩니다. 색상 범례는 물의 농도를 나타내며, 물 1은 100% 물이고 0은 100% 공기입니다. 분석은 y축에 있는 단일 2D블록인 spillway의 단면 모델을 사용하여 수행되었습니다. jet takeoff 에 따라 해당되는 유량을 사용해 관련 형상을 비교하고 가장 효율적인 형상을 결정할 수 있습니다. 제트 편향에 해당하는 임계 유량은 탱크 레벨이 낮아지는 속도와 시뮬레이션에 사용되는 메쉬의 크기에 따라 달라지게 됩니다.
Spillway Water Profile and Energy Dissipation
Jet Deflection on Upper Spillway
그림 2는 ‘생성자’ 프로파일과 단계별 섹션 사이의 전환 위치에 대한 2개의 기하학적 설계(상단과 하단)를 비교하여 보여줍니다. 좌측에는 흐름이 스키밍 체제에 있고 중앙에서 탱크 레벨이 점차 낮아지면서 플럭스가 동요되기 시작합니다. 우측에는 지속적인 상태 방출과 함께 jet takeoff 가 표시되어 있습니다.
Figure 2 – Comparison of 2 geometric designs
Figure 3 – Spillway water and energy profiles
Figure 4 – Turbulent energy dissipation on stepped spillway
발생 가능한 최대 홍수의 양에 대해 계단식 배수로와 에너지 분산이 평가되었습니다. 표준 단계는 공기 침투 모델과 함께 FLOW-3D와 비교했습니다. 그림 3은 수치 모델과 이론 모델 모두의 결과를 나타내는데 이 현상을 평가하기 위해 FLOW-3D에 단면 모델이 적용되었습니다. 수치 시뮬레이션으로 얻은 Water의 프로필은 공기 흡입을 고려할 때 이론적 모델과 잘 맞습니다. 에너지 프로필은 이론적 모델에서 수렴적인 결과로 약간의 차이가 나타납니다. 이러한 차이는 단계별 채널이 시작되기 전에 Creager프로필의 수두손실을 무시하는 것과 같은 일부 이론적 가정의 결과일 수 있습니다. 다운 스트림에서 유출되는 에너지 프로필은 유출되는 유압 점프로 인해 떨어지게 됩니다. 그림 4는 FLOW-3D의 난류 에너지 소산을 나타냅니다.
물의 Head 높이는53m이고 총 방출량이333 m3/s인 동일한 3개의 강철 penstock를 통해 전달됩니다. 그 터빈들은 수직 축을 가진 Francis 타입입니다. penstock하단에는 플럭스가 터빈으로 유도되기 전 마지막 커브 뒤에 수평 부분이 남아 있습니다. 이 수평 부분은 터빈에 도달하기 전에 흐름을 안정화시키는데 필요합니다. 필요한 길이와 속도 및 압력 분포의 작동 방식을 결정하기 위해 수치 모델링이 사용되었습니다. 업 스트림 경계 조건은 유량 소스로 설정되며 물 취수구 끝에 위치합니다. 하류인 터빈 입구에는 특정 압력이 설정되어 있어 Bernoulli 방정식이 사용됩니다. 수두 손실은 이론적으로 계산되었고 이 등식에서 제외되었습니다. 마지막으로, 거칠기를 보정하여 수치모델과 이론 계산에서 헤드 손실이 동일하도록 2mm의 거칠기가 설정되었습니다. 이는 강철 penstock의 거칠기와 잘 일치합니다. 또한 메쉬 크기는 0.5m의 셀로 설정되었습니다.
이 세가지 구성은 모두 터빈 입구 바로 앞에 위치한 크로스 섹션의 하부에서 더 높은 속도를 보여 줍니다. 흐름은 단면 1과 단면 2사이에서 많은 변화는 없었습니다. 실제로 깊이 평균 속도와 압력 분포 측면에서 전체 결과는 직경이 전환된 직후에 흐름이 이미 안정화되었음을 나타냅니다. 구성 3에서 속도 분포는 수평 단면을 따라 계속 발전한다는 것은 흥미로운 사실입니다. 따라서, 이 수평적인 penstock의 길이를 증가시킬 필요가 없는 것처럼 보였습니다. 또한, 이것은 비용과 수두손실을 상당히 증가시킬 것입니다. 따라서 초기 프로젝트의 개요는 최종 프로젝트를 위해 그대로 유지되었습니다. 이 시뮬레이션은 수치 모델이 의사 결정 지원을 위한 효율적이고 빠른 도구임을 입증하게 됩니다.
Draft Tube Exit
그 draft tube는 운하의 흐름을 분산시킵니다. 하지만, 갑작스런 단면의 확장으로 인해, 흐름 체제는 난류와 수두 손실의 상당한 확산으로 인해 변화하게 됩니다. 수치 모델을 사용하여 수두손실을 확인할 수 있습니다.
상류 경계조건은 체적 흐름 속도로 설정되었고 draft tube의 수문에 위치합니다. 하류에서는 정상 작동 수위와 동등한 압력이 설정되었습니다. 메쉬 크기는 0.5m로 설정되었습니다.
이 수치 모델은 14cm의 수두 손실을 초래하는 반면, 이론적인 계산은 16.7cm로 비교적으로 수렴하고 있습니다. 3D수치 해석을 사용하면 수두손실을 최소화하는 기하학적인 최적화를 할 수 있습니다.
Figure 6 – Downstream view of the 3 units’ draft tube exit with the FAVOR™ option
Figure 7 – Cross section of the draft tube exit and tailrace channel in terms of velocity magnitude and vectors
Conclusions
수치 모델링은 수력학 엔지니어에게 유용한 도구이고 FLOW-3D와 같은 패키지는 매우 효율적인 도구입니다. 또한 솔루션 및 최적화를 통해 비용을 절감할 수 있습니다. 저자들의 경험에 따르면 다양한 문제에 있어 3차원 모델링은 훌륭한 옵션이며 물리적 모델링과 함께 추가 도구로 사용될 수 있습니다. 때때로, 그것은 실제 모델을 대체할 수도 있는데, 그것은 São Roque HPP의 경우였습니다. 또한 3D 수치해석 최적화를 통해 물리적 모델을 설계하는데 도움이 될 수 있습니다.
적층 가공법은 3D프린팅이라고도 하며, 일반적으로 분말 또는 와이어를 층별로 적층제조하는 방법입니다. 금속기반 적층제조공정에 대한 관심이 지난 몇년간 크게 높아졌습니다. 오늘날 사용되는 3개의 주요 금속 적층 제조 공정은 파우더 베드 융접(PBF), 직접 에너지 증착(DED) 및 바인더 분사 공정입니다. FLOW-3D는 이러한 각 프로세스에 대해 고유한 시뮬레이션 통찰력을 제공합니다
파우더 베드 융합 및 직접 에너지 증착 공정에서는 레이저나 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF의 분말 형태와 DED공정의 분말 또는 와이어 형태의 금속은 완전히 용해되고 함께 융합되어 층별 부품을 형성합니다. 그러나 바인더 분사에서, 결합제 역할을 하는 수지는 금속 분말에 선택적으로 침전되어 층별로 부품을 형성합니다. 이들 부품은 더 나은 밀도를 얻기 위해 중앙에 배치됩니다.
FLOW-3D의 자유 표면 추적 알고리즘과 물리적 모델은 이러한 각 프로세스를 매우 정확하게 시뮬레이션할 수 있습니다. 레이저 파우더 베드 퓨전(L-LPF)모델링 단계에 대해서는 여기에서 자세히 설명합니다. DED 및 바인더 분사 프로세스에 대한 개념 증명 시뮬레이션도 몇 가지 보여줍니다.
Laser-powder bed fusion processes
L-PBF 공정은 유체 유동, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리 현상을 포함하며, 이는 공정 및 궁극적으로 품질에 영향을 미칩니다. FLOW-3D의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하면서, 입자 크기 분포 및 충진 분율을 고려하여 메소 스케일에서 용융 풀 현상을 시뮬레이션합니다.
FLOW-3D의 추가 모듈인 DEM및 WELD는 전체 파우더 베드 융접 프로세스를 시뮬레이션하는데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 적층, 분말 용융 및 응고 및이어서 이전에 응고 된 층 상에 새로운 분말을 놓고 새로운 층을 이전 층에 다시 융해 및 융합시키는 단계입니다. FLOW-3D는 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.
Powder bed laying process
FLOW-3D와 통합된 DEM모듈을 사용하면 다음과 같이 입자의 랜덤화된 분포를 삭제하고 포장하여 파우더 베드 배치 프로세스를 아래 영상처럼 시뮬레이션 할 수 있습니다.
One way to achieve different powder bed compactions is to choose different particle size distributions while laying the bed. As seen below, there are three different sized particle size distributions, which result in varying powder bed compactions with Case 2 giving the highest compaction.
입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 객체 상호 작용은 DEM 모듈을 사용하여 자세히 분석할 수 있습니다. 또한 입자 간 힘을 특정하여 분말을 넓게 펴서 뿌리는 현상에 대한 응용을 보다 정확하게 연구할 수도 있습니다.
FLOW-3D 시뮬레이션은 DEM 모델을 사용하여, 회전하는 원통형 롤러로 인해 퍼지는 분말을 해석한 결과입니다. 영상의 시작 부분에서는 분말 저장소가 아래로 이동하는 반면, 빌드 플랫폼은 위쪽으로 이동합니다. 그 직후 롤러는 초기 위치에 따라 컬러 분말 입자를 빌드 플랫폼으로 분산시켜 다음 층의 용해 및 제작을 준비합니다. 그러한 시뮬레이션은 탱크에서 빌드 플랫폼으로 전달되는 분말 입자의 바람직한 크기에 대해 예측할 수 있습니다.
Powder bed melting
파우더 베드를 배치한 후에는 FLOW-3D 에 레이저 빔 프로세스 매개 변수를 지정하여 고 밀도의 용융지 시뮬레이션을 수행할 수 있습니다. 온도, 속도, 고상 분율, 온도 구배 및 응고 속도에 대한 그림을 자세히 분석할 수 있습니다
Melt pool analysis of the powder bed under a laser power output of 200W, scan speed of 3.0m/s and a spot radius of 100μm.
용해 풀이 굳으면 FLOW-3D 압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 데이터를 가져와 응력 등고선 및 변위 프로필을 분석할 수 있습니다.
Multi-layer additive manufacturing
첫번째 용해 층이 굳으면 두번째 입자 층이 응고된 베드에 쌓입니다. 새로운 분말 입자 층에 레이저 프로세스 파라미터를 지정함으로써, 용해지 시뮬레이션을 다시 수행할 수 있습니다. 이 과정을 여러 번 반복하여 연속적으로 형성된 층 사이의 결합을 평가할 수 있습니다.
Binder jetting
바인더 분사 시뮬레이션은 모세관 힘의 영향을 받는 파우더 베드의 바인더 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미친다.
Direct energy deposition
FLOW-3D의 Particle 모델을 사용하여 직접 에너지 증착 공정을 시뮬레이션 할 수도 있습니다. 고체 기판에 분말 주입 속도와 열유속 입사를 지정함으로써, 고체 입자는 용융지를 통해 질량, 추진력 및 에너지를 추가할 수 있습니다. 다음 동영상에서는 용융지을 통해 고체 금속 입자가 주입되고 이어서 기판에 용융지를 응고시키는 과정이 관찰됩니다.
적층 제조법은 3D프린팅이라고도 하며, 일반적으로 분말 또는 와이어를 층별로 적층제조하는 방법입니다. 금속기반 적층제조공정에 대한 관심이 지난 몇년간 크게 높아졌습니다. 오늘날 사용되는 3개의 주요 금속 적층 제조 공정은 파우더 베드 융접(PBF), 직접 에너지 증착(DED) 및 바인더 분사 공정입니다. FLOW-3D는 이러한 각 프로세스에 대해 높은 정확도의 시뮬레이션 기능을 제공합니다
파우더 베드 융합 및 직접 에너지 증착 공정에서는 레이저나 전자 빔을 열원으로 사용할 수 있습니다. 두 경우 모두 PBF의 분말 형태와 DED공정의 분말 또는 와이어 형태의 금속은 완전히 용해되고 함께 융합되어 층별 부품을 형성합니다. 그러나, 결합제 분사에서, 결합제로서 작용하는 수지는 금속 분말 위에 선택적으로 증착되어 층별로 부품을 형성합니다.그런 다음 이러한 부품을 소결하여 밀도를 높이게 됩니다.
FLOW-3D의 자유 표면 추적 알고리즘과 물리적 모델은 이러한 각 프로세스를 매우 정확하게 시뮬레이션할 수 있습니다. 레이저 파우더 베드 퓨전(L-LPF)모델링 단계에 대해서는 여기에서 자세히 설명합니다. DED 및 바인더 분사 프로세스에 대한 개념 증명 시뮬레이션도 몇 가지 보여줍니다.
Laser-powder bed fusion processes
L-PBF 공정은 유체 유동, 열 전달, 표면 장력, 상 변화 및 응고와 같은 복잡한 다중 물리 현상을 포함하며, 이는 공정 및 궁극적으로 품질에 영향을 미칩니다. FLOW-3D의 물리적 모델은 질량, 운동량 및 에너지 보존 방정식을 동시에 해결하면서, 입자 크기 분포 및 충진 분율을 고려하여 메소 스케일에서 용융 풀 현상을 시뮬레이션합니다.
FLOW-3D의 추가 모듈인 DEM및 WELD는 전체 파우더 베드 융접 프로세스를 시뮬레이션하는데 사용됩니다. L-PBF 공정의 다양한 단계는 분말 베드 적층, 분말 용융 및 응고 및이어서 이전에 응고 된 층 상에 새로운 분말을 놓고 새로운 층을 이전 층에 다시 융해 및 융합시키는 단계입니다. FLOW-3D는 이러한 각 단계를 시뮬레이션하는 데 사용할 수 있습니다.
Powder bed laying process
FLOW-3D와 통합된 DEM모듈을 사용하면 다음과 같이 입자의 랜덤화된 분포를 삭제하고 포장하여 파우더 베드 배치 프로세스를 아래 영상처럼 시뮬레이션 할 수 있습니다.
One way to achieve different powder bed compactions is to choose different particle size distributions while laying the bed. As seen below, there are three different sized particle size distributions, which result in varying powder bed compactions with Case 2 giving the highest compaction.
입자-입자 상호 작용, 유체-입자 결합 및 입자 이동 객체 상호 작용은 DEM 모듈을 사용하여 자세히 분석할 수 있습니다. 또한 입자 간 힘을 특정하여 분말을 넓게 펴서 뿌리는 현상에 대한 응용을 보다 정확하게 연구할 수도 있습니다.
FLOW-3D 시뮬레이션은 DEM 모델을 사용하여, 회전하는 원통형 롤러로 인해 퍼지는 분말을 해석한 결과입니다. 비디오의 시작 부분에서는 분말 저장소가 아래로 이동하는 반면, 빌드 플랫폼은 위쪽으로 이동합니다. 그 직후 롤러는 초기 위치에 따라 컬러 분말 입자를 빌드 플랫폼으로 분산시켜 다음 층의 용해 및 제작을 준비합니다. 그러한 시뮬레이션은 탱크에서 빌드 플랫폼으로 전달되는 분말 입자의 바람직한 크기에 대한 예측할 수 있습니다.
Powder bed melting
파우더 베드를 배치한 후에는 FLOW-3D WELD에 레이저 빔 프로세스 매개 변수를 지정하여 고 밀도의 용융 풀 시뮬레이션을 수행할 수 있습니다. 온도, 속도, 고상 분율, 온도 구배 및 응고 속도에 대한 그림을 자세히 분석할 수 있습니다
Melt pool analysis of the powder bed under a laser power output of 200W, scan speed of 3.0m/s and a spot radius of 100μm.
용해 풀이 굳으면 FLOW-3D 압력 및 온도 데이터를 Abaqus 또는 MSC Nastran과 같은 FEA 도구로 데이터를 가져와 응력 등고선 및 변위 프로필을 분석할 수 있습니다.
Multi-layer additive manufacturing
첫번째 용해 층이 굳으면 두번째 입자 층이 응고된 베드에 쌓입니다. 새로운 분말 입자 층에 레이저 프로세스 파라미터를 지정함으로써, 용해 풀 시뮬레이션을 다시 수행할 수 있습니다. 이 과정을 여러 번 반복하여 연속적으로 형성된 층 사이의 결합을 평가할 수 있습니다.
Binder jetting
바인더 분사 시뮬레이션은 모세관 힘의 영향을 받는 파우더 베드의 바인더 확산 및 침투에 대한 통찰력을 제공합니다. 공정 매개 변수와 재료 특성은 증착 및 확산 공정에 직접적인 영향을 미친다.
Direct energy deposition
FLOW-3D의 Particle 모델을 사용하여 직접 에너지 축적 프로세스를 시뮬레이션 할 수도 있습니다. 고체 기판에 분말 주입 속도와 열유속 입사를 지정함으로써, 고체 입자는 용융풀을 통해 질량, 추진력 및 에너지를 추가할 수 있습니다. 다음 동영상에서는 용융풀을 통해 고체 금속 입자가 주입되고 이어서 기판에 용융풀응 응고시키는 과정이 관찰됩니다.
C. M. LadeiroDepartment of Metallurgical and Materials Engineering, Faculdade de Engenharia, Universidade do Porto, Rua Dr. RobertoFrias, 4200-465 PORTO, Portugal ...
바인더 제트 3D 프린팅 중 계면 유체-입자 상호 작용에 대한 CFD-DEM 결합 시뮬레이션 Joshua J. Wagner, C. Fred Higgs III https://doi.org/10.1016/j.cma.2024.116747 Abstract The coupled ...
What You Should Know About CFD Modeling when Selecting a CFD Package
유체 흐름 및 열 전달 해석용 소프트웨어 패키지에는 여러 형태가 있습니다. 물리적 근사와 수치 해법의 기법이 패키지마다 크게 다르기 때문에 적절한 패키지를 선택하는 것은 매우 어렵습니다. 다음 설명에서는 열유동 시뮬레이션 소프트웨어를 선택할 때 고려해야 할 중요한 몇 가지를 소개합니다.
Software packages for fluid flow and heat transfer analysis come in many forms. These packages differ greatly in their physical approximations and numerical solution techniques, which makes the selection of a suitable package a challenging proposition. The following discussion covers some important items to consider when choosing flow simulation software.
Meshing and Geometry
유한 요소 또는 “body-fitted coordinates”를 채용하고 있는 수치해석 방법은 유체 영역의 기하학적 형상에 적합한 격자를 생성해야 합니다. 정확한 수치 근사치를 얻기 위해 허용 할 수 있는 요소 크기 및 형상에서 이러한 격자를 생성하는 것은 매우 중요한 작업입니다.
복잡한 경우에는 이와 같은 방법으로 격자를 생성하면 며칠 또는 몇 주가 걸릴 수 있습니다. 어떤 프로그램은 사각형의 격자 요소만을 사용함으로써 문제를 해결하려고 하지만, 그럴 경우에는 경계부분에 계단이 생기고 흐름과 열전달 특성이 달라지는 문제에 직면하게 됩니다.
FLOW-3D는 FAVOR™(면적율 / 부피 비율)법 을 사용하여 지오메트리의 특성을 원활하게 포함하므로써, 간단한 사각형 격자만으로도 두 문제를 해결할 수 있습니다. 또한, 간단하고 강력한 솔리드 모델러가 FLOW-3D 패키지에 기본 포함되어 있으며, CAD 프로그램에서 생성한 기하형상 데이터를 가져올 수 있습니다.
Solution methods that employ finite-element or “body-fitted coordinates” require the generation of a solution grid that conforms to the geometry of the flow region. It is a non-trivial task to generate these grids with acceptable element sizes and shapes for accurate numerical approximations. In complicated cases this type of grid generation may consume days or even weeks of effort. Some programs attemptto eliminate this generation problem by using only rectangular grid elements, but then they must contend with “stair-step” boundaries that alter flow and heat-transfer properties. FLOW-3D solves both problems by using easy-to-generate rectangular grids in which geometric features are smoothly embedded using the FAVOR™ (fractional area/volume) method. A simple and powerful solids modeler is packaged with FLOW-3D or users may import geometric data from a CAD program.
Momentum Equation vs. Approximate Flow Models
유체 운동량의 정확한 처리가 중요한 몇 가지 이유가 있습니다. 첫째, 이것은 복잡한 기하학적 형상에서 유체가 어떻게 흐르는지를 예측하는 유일한 방법입니다. 둘째, 액체에 의하여 걸린 동적인 힘(압력)은 운동량에서만 계산할 수 있습니다. 마지막으로, 열 에너지의 대류 수송을 계산하려면 다른 유체 입자 및 경계에 대한 개별 유체 입자의 상대적인 움직임을 정확하게 파악하는 것이 필요합니다. 이것은 운동량의 정확한 처리를 의미합니다. 운동량 보존을 대충 근사하기만 한 CFD 모델은 FLOW-3D에서는 사용되지 않습니다. 이러한 모델은 현실적인 유체 구성 및 온도 분포 예측에 사용할 수 없기 때문입니다.
An accurate treatment of fluid momentum is important for several reasons. First, it is the only way to predict how fluid will flow through complicated geometry. Second, the dynamic forces (i.e., pressures) exerted by the fluid can only be computed from momentum considerations. Finally, to compute the convective transport of thermal energy, it is necessary to have an accurate picture of how individual fluid particles move in relation to other fluid particles and confining boundaries. This implies an accurate treatment of momentum. Simplified flow models that only crudely approximate the conservation of momentum are not used in FLOW-3D because they cannot be used to predict realistic fluid configurations and temperature distributions.
Liquid-Solid Heat Transfer Area
액체와 고체 사이 (금속 주형 등)의 열전달은 경계면 면적의 정확한 추정이 필요합니다. 경계가 계단 모양으로 되어 있는 경우, 보통 이 면적이 크게 추정됩니다. 예를 들어, 실린더의 표면적은 약 27 %정도 크게 추정됩니다. FLOW-3D의 경우 정확한 경계면 면적은 FAVOR™법에 따라 FLOW-3D 전처리기에서 컨트롤 볼륨마다 자동으로 계산됩니다.
Heat transfer between a liquid and a solid (e.g., metal-to-mold) requires an accurate estimate of the interfacial area. Stair-step boundaries over-estimate this area; for example, the surface area of a cylinder would be over-estimated by a factor of 27%. Accurate interfacial areas are automatically computed by the FAVOR™ method for each control volume in the FLOW-3D pre-processor.
Control Volume Effects on Liquid-Solid Heat Transfer
컨트롤 볼륨의 크기가 액체와 고체 사이에서 교환되는 열 비율과 양에 영향을 줄 수 있습니다. 이것은 열이 액체와 고체의 경계면을 포함하는 컨트롤 볼륨을 흐를 필요가 있기 때문입니다. FLOW-3D는 액체와 고체의 경계면에 걸쳐 열 전달률을 계산할 때 컨트롤 볼륨의 크기와 전도율이 고려됩니다.
The size of control volumes can influence the rate and amount of heat exchanged between a liquid and solid because heat must also flow in the control volumes containing the liquid/solid interface. In FLOW-3D control volume sizes and their conductivities are accounted for when computing heat transfer rates across liquid-solid interfaces.
Implicitness and Accuracy
비선형 방정식과 결합 방정식의 Implicit 방법은 반복 될 때마다 under-relaxation 특성을 갖는 반복적 해법이 필요합니다. 이 동작은 상황에 따라 심각한 오류 (또는 수렴 속도의 급격한 하락)가 발생할 수 있습니다. 예를 들어, 비율이 큰 컨트롤 볼륨을 사용하는 경우나, 실제로는 중요하지 않은 효과를 예상하고 암시적인 해법을 사용하는 경우 등입니다. FLOW-3D는 가능한 명시적인 수치해법이 사용되고 있습니다. 이것은 필요한 계산량이 적고, 수치 안정성의 요구 사항이 요구된 정밀도에 상응하기 때문입니다. 자세한 내용은 “암시적인 수치해법과 명시적인 수치해법“을 참조하십시오.
Implicit methods for nonlinear and coupled equations require iterative solution methods that have the character of an under-relaxation in each iteration. This behavior can cause significant errors (or very slow convergence) in some situations, for example, when using control volumes with large aspect ratios or when the implicitness is used in anticipation of an effect that is not actually significant. In FLOW-3D explicit numerical methods are used whenever possible because they require less computational effort, and their numerical stability requirements are equivalent to accuracy requirements. Read more in the Implicit vs. Explicit Numerical Methods article.
Implicit Numerical Methods For Convective Transport
모든 크기의 타임 스텝 크기를 계산에 사용할 수 있는 암시적인 수치 기법은 CPU 시간을 줄이기 위해 많이 사용되는 방법입니다. 불행하게도, 이 방법은 대류 현상 해석에 대해 정확하지 않습니다. 암시적인 해법은 근사 방정식에 확산 효과를 도입함으로써 시간 단계의 독립성을 획득합니다. 수치 확산을 물리적 확산 (열전도 등)에 추가해도 확산율이 변경될 뿐이므로 심각한 문제가 되지 않을 수 있습니다. 그러나 수치 확산(발산)을 대류 과정에 추가하면 모델링 대상의 물리 현상의 특성은 완전히 다르게 됩니다. FLOW-3D는 시간의 정확한 근사치를 보장하기 위해 프로그램에 의해 time step이 자동으로 제어됩니다.
Implicit numerical techniques that allow arbitrarily large time-step sizes to be used in calculations are a popular way to reduce CPU time requirements. Unfortunately, these methods are not accurate for convective processes. Implicit methods gain their time-step independence by introducing diffusive effects into the approximating equations. The addition of numerical diffusion to physical diffusion, e.g., to heat conduction, may not cause a serious problem as it only modifies the diffusion rate. However, adding numerical diffusion to convective processes completely changes the character of the physical phenomena being modeled. In FLOW-3D time steps are automatically controlled by the program to ensure time-accurate approximations.
Relaxation and Convergence Parameters
암시적으로 근사치를 사용하는 수치법은 하나 이상의 수렴 및 완화(이완)의 매개 변수를 선택해야 합니다. 이러한 매개 변수를 신중하게 선택하지 않으면 발산하거나 수렴에 시간이 걸리는 경우가 있습니다. FLOW-3D를 융합하는 매개 변수와 완화(이완) 매개 변수를 하나씩만 사용하여 두 매개 변수는 프로그램에 의해 동적으로 선택됩니다. 수치 해법을 제어하는 매개 변수를 사용자가 설정할 필요는 없습니다.
Numerical methods that use implicit approximations also require the selection of one or more convergence and relaxation parameters. Making poor choices for these parameters can lead to either divergences or slow convergence rates. Only one convergence and one relaxation parameter are used in FLOW-3D, and both parameters are dynamically selected by the program. Users are not required to set any parameters controlling the numerical solver.
Free-Surface Tracking
액체와 기체의 경계면 (자유 표면 등)의 모델링에 사용되는 방법은 두 가지가 있습니다. 하나는 액체, 기체 두 영역의 흐름을 계산하고 경계면을 유체 밀도의 급격한 변화로 처리하는 방법입니다.
일반적으로 밀도의 불연속은 고차 수치 근사를 사용하여 모델링됩니다. 불행하게도 이 프로세스는 소수의 격자 셀에서 경계면이 평탄화되고, 이러한 경계면에 보통 존재하는 유체흐름의 접선 속도의 급격한 변화는 고려되지 않습니다.
기체가 계산 영역에 들어가는 액체로 대체되는 경우에는 이 방법에는 기체의 출구 포트 또는 출구 싱크도 보충 할 필요가 있습니다. 또한 이러한 방법은 일반적으로 유체의 비압축성를 충족하기 위해 더 많은 노력이 필요합니다. 이것이 발생하는 기체 영역에 거의 균일 한 압력 조정이 필요하며, 이를 통해 계산 수렴 시간이 소요되기 때문입니다.
FLOW-3D는 VOF (Volume-of-Fluid) 법 이라는 독창적인 방법이 사용되고 있습니다. 이것은 진정한 3 차원 경계면 추적 방식으로, 경계면을 3 차원 인터페이스로 추적하는 체계입니다. 또한 옵션의 표면 장력을 포함한 일반적인 접선 응력 경계 조건은 경계면에 적용됩니다. 기체 영역은 모델에 포함하도록 사용자가 요청하지 않는 한 계산되지 않습니다.
There are two methods used to model liquid-gas interfaces (i.e., free surfaces). One of these is to compute flow in both the liquid and gas regions and to treat the interface as a sharp change in fluid density. Typically, the density discontinuity is modeled using higher-order numerical approximations. Unfortunately, this treatment allows the interface to smooth out over a few grid cells and does not account for a corresponding sharp change in tangential flow velocity that generally exists at such interfaces. This technique must also be supplemented with escape ports or sinks for the gas if it is to be replaced by liquid entering a computational region. Further, such methods must typically work harder to satisfy the incompressibility of the fluids. This happens because gas regions must have nearly uniform pressure adjustments which tend to slow down the solution convergence rate. A different technique, the Volume-of-Fluid (VOF) method, is used in FLOW-3D. This is a true three-dimensional interface tracking scheme in which the interface is closely maintained as a step discontinuity. Moreover, normal and tangential stress boundary conditions, including optional surface tension forces, are applied at the interface. Gas regions are not computed unless the user requests these regions to be included in the model.
본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.
본 자료는 전산유체역학(CFD)를 처음 접하시는 분들의 이해를 돕기 위해 작성되었습니다. 보통 열유동해석, 그냥 유동해석 또는 수치해석 중에서 유체를 다루는 해석이라고 쉽게 이해할 수 있겠습니다.
내용 안내
A general description of how to think about computational fluid dynamics (CFD) is given in the article, Simulating Fluid Flow with Free Surfaces. This article introduces the idea of reducing a simulation region into small volume control elements for which algebraic equations are constructed to describe the conservation of mass, momentum and energy exchanges with neighboring elements. Additionally, a simple method is introduced for a means of describing the motion of free fluid interfaces within the region of control elements.
전산 유체 역학 (CFD)의 개념에 대한 일반적인 설명은 자유 표면의 유동 시뮬레이션에 기술되어 있습니다. 이 절에서는 시뮬레이션 영역을 미소 체적 제어 요소로 세분화하는 아이디어를 적용하여, 볼륨 컨트롤 요소에 대해 질량 및 운동량 보존, 인접 요소와의 에너지 교환을 설명하는 대수 방정식이 구성됩니다. 또한 컨트롤 요소의 영역 내에서 자유롭게 유체 계면의 운동을 설명하는 간단한 방법도 설명되어 있습니다.
Also for beginners, the article, What you should know about CFD modeling when selecting a CFD software, contains brief summaries of a variety of issues that are important considerations for constructing numerical solutions to fluid dynamic problems. Many of these issues, such as meshing, geometry representation, implicit versus explicit numerical methods and relaxation/convergence parameters are explored in greater detail in the remaining articles in CFD-101.
또한 CFD를 처음 접하시는 분들을 위해, CFD 소프트웨어 선택시 전산 유체 역학 모델링에 대해 알아야 할 것에는 유체 역학 문제에서 수치 해석을 수행하기위한 중요하게 고려하는 다양한 이슈에 대한 내용도 포함되어 있습니다. 이러한 많은 이슈에는 메쉬, 기하 형상 표현, implicit 방법과 explicit 방법, relaxation/convergence 매개 변수 등이 있는데 본 CFD-101에 상세히 설명되어 있습니다.
CFD 해석 | 격자(Mesh) 공간
본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.
Computational Analysis of Drop Formation and Detachment
Introduction and Problem Statement
신속, 반복, 작은 물방울의 생성 및 증착, 작은 형상의 프린팅 또는 패터닝 (예 : l = 10-3-1 mm), 스프레이로 균일한 두께의 박막 형성은 다양한 산업에 매우 중요합니다(1-5). 액체 이동과 액적 형성 / 증착 공정은 복잡한 자유 표면 흐름, 자연적인 모세관운동 형성, thinning, pinch-off를 수반한다 (1-5). 단순한 뉴턴 및 비탄성 유체에 대해 액적 생성 및 액적 이동을 분석하기위한 실험적, 이론적 및 1 차원 시뮬레이션 연구가 진행되었지만 프린팅 또는 패터닝에 대한 기계론적인 이해는 여전히 과제로 남아 있습니다. 현재의 계산에 대한 주된 목표는 뉴턴 유체의 pinch-off에 대한 기계론적 이해를 얻기 위해 FLOW-3D에 내장된 VOF(volume-of-fluid) 접근법으로 시험하는 것입니다. 전산해석은 모세관, 관성, 점성 응력의 복잡한 상호 작용을 포착하여 자기유사 모세관의 thinning and pinch-off를 결정합니다. 뉴턴 유체의 물방울 형성 및 분리현상은 전산해석으로부터 얻어진 자기유사 모세관현상 이론, 보편적인 축소화 기법인 1D 시뮬레이션 (1-7)과 실험 (1, 2, 8-12)을 이용하여 설명될 수 있음을 보여준다. 이러한 우리가 진행한 원형흐름 시뮬레이션은 유한한 시간의 비선형 역학, 위성 낙하현상, 복잡한 형상의 프린팅과 같이 어려운 전산해석의 기반이 될 것 입니다.
그림 1 : FLOW-3D를 사용하여 시뮬레이션 한 저점도 유체의 드롭 형성 및 분리에 대한 전산해석 : (a) 5개의 저점도 유체에 대한 물방울의 necking에 대한 반경이 시간변화에 따라 표시됩니다. 물방울 necking의 반지름이 오른쪽에서 왼쪽으로 시간에 따른 전개를 보여줍니다. 마찬가지로 스냅 샷은 necking의 반경이 오른쪽에서 왼쪽으로 줄어듭니다. 속도의 크기 (단위 : cm/s) 와 화살표의 방향에 대한 컬러 맵을 사용하면 변형장을 결정할 수 있으며 Fluid 5 (표 1 참조)의 경우에는 순식간에 신장이됩니다. 이미지 II에 캡처 된 pinch-off 하기 전에 형성된 원추형 necking은 실험을 통해 얻은 necking 모양과 유사합니다.
Modeling Approach and Parameter Space
표면 장력 및 중력 모델을 적용한 FLOW-3D 에서 균일한 메쉬 크기를 사용하여 노즐에서 드롭 형성 및 분리에 대한 시뮬레이션을 수행하였습니다. 유한 체적의 유체를 떨어뜨리거나 분리하는 일은 물방울의 성장과 드롭, 노즐에 연결되는 모세관 현상, 관성, 점도 및 중력에 대한 상호 작용을 수반합니다. 시뮬레이션에서 스테인레스 강 노즐 ( ) 에서 유한 체적의 뉴턴 유체가 발생합니다. 표면 장력이 중력을 겪으면 새로 형성된 액적 분리가 발생합니다 (). 시뮬레이션은 유체점도의 영향을 설명하기 위해 두 그룹으로 나누어져 있습니다: 저점도 유체 (글리세롤 함량이 40 % 미만인 물과 글리세롤/물 혼합물) 및 점도가 높은 유체 (예 : 글리세롤과 글리세롤/물 혼합물 점도 > 100x 물 점도). 두 그룹의 유체 특성은 각각 표 1과 2에 나와 있습니다.
그림 2 : FLOW-3D를 사용하여 시뮬레이션 한 저점도 유체의 드롭형성 및 분리에 대한 전산 해석 : 반경 플롯에서 4개의 고점도 뉴톤유체에 대해 necking 반경을 시간변화에 따라 표시합니다. 낙하 분리 중 모세관 현상이 스냅 샷으로 표시됩니다. 컬러 맵은 Fluid 8의 속도 크기 (단위 : cm/s)의 변화를 포착합니다 (표2 참조). 화살표는 성장하는 물방울과 얇아지는 물방울내에서 흐름방향을 나타냅니다. FLOW-3D 시뮬레이션으로 얻은 necking 모양은 고점도의 뉴턴유체에 대한 특징인 원통형 유체요소로 이어집니다.
<표 1 : FLOW-3D를 사용하여 시뮬레이션 된 저점도 유체의 특성>
Fluid Property
Fluid 1
Fluid 2
Fluid 3
Fluid 4
Fluid 5
Viscosity [Pa · s]
0.05
0.02
0.01
0.0075
0.005
Surface Tension [mN / m]
68
68
68
68
68
Density [g / cm 3 ]
1
1
1
1
1
Ohnesorge Number
0.21
0.08
0.04
0.03
0.021
저점도 유체 (표 1의 유체 2) 가 노즐에서 떨어지는 것을 시뮬레이션 합니다. 색상변수는 속도크기 (단위 : cm / s)이며 속도벡터가 표시됩니다.
<표 2 : FLOW-3D를 사용하여 시뮬레이션 된 고점도 유체의 특성>
Fluid Property
Fluid 6
Fluid 7
Fluid 8
Fluid 9
Viscosity [Pa · s]
1.5
0.8
0.5
0.25
Surface Tension [mN / m ]
68
68
68
68
Density [g / cm 3 ]
1
1
1
1
Ohnesorge Number
6.24
3.33
2.08
1.04
고점도 유체 (표 2의 유체 8) 가 노즐에서 떨어지는 것을 시뮬레이션 합니다. 색상변수는 속도크기 (단위 : cm / s) 이며 속도 벡터가 표시됩니다.
Discussion of the Simulation Results
드롭 형성 및 분리는 표1과 표2에 열거 된 유체에 대해 FLOW-3D 를 사용하여 시뮬레이션 하였고, 시간 경과에 따른 necking 모양, 반경을 분석하였습니다. 물방울의 necking 모양과 저점도에서의 necking에 대한 역학(그림 1 참조)은 실험, 흐름 이론, 1D 시뮬레이션, 자기유사 관성에 대한 모세현상의 특성을 나타냅니다 (1, 2, 6, 7, 13) :
(1)
여기서 R (t)가 necking의 순간 반경이고, R0는 노즐의 외부반경이며, 는 표면 장력, 는 유체의 밀도 tC 는 pinch-off 시간이다. 마찬가지로, 이러한 더 높은 점도의 뉴턴유체에 대한 반경 변화데이터는 시간에 따른 반경의 감소를 나타내는 것이며, Papageorgiou’s visco-capillary scaling (8, 9)은 아래의 식으로 표현된다.
(2)
모세관 속도(표면 장력과 점도의 비)의 측정 값은 McKinley와 Tripathi (8)에 의해 Capillary Break-Up Extensional Rheometer (CaBER)라고 불리는 상업적으로 이용 가능한 장비를 사용하여 얻은 값과 모세관 속도는 공칭 표면 장력과 점도를 사용하여 계산됩니다.
FLOW-3D 는 물방울의 necking부분을 속도 벡터로 시각화하여 유체의 흐름을 나타낼 수 있습니다. 또한, 이는 그림 1과 같이 전단, 확장을 겪은 후 얇아지는 물방울이 흐르는 과정의 순간을 결정할 수 있는 가능성을 줍니다. 추가로, 낮은 점도의 뉴턴유체는 높은 점도의 뉴턴 유체에 비해 질적으로 다른 거동을 보여준다(그림 2참조). 낮은 점도의 뉴턴 유체에 대한 necking 프로파일은 이론(6,13)에 따라 자기 유사성이 됩니다.
Conclusions, Outlook and Ongoing work
우리의 예비결과는 FLOW-3D 기반의 전산해석이 액적 형성과 탈착의 기초가 되는 프로토타입의 자유 표면흐름을 시뮬레이션하는데 사용될 수 있음을 보여줍니다 . 시뮬레이션된 반경변화 프로파일이 실험적으로 관찰된 높은 유체 및 이론적으로 예측된 유체인 스케일링 법칙 및 pinch-off dynamics과 일치하는 것을 발견하였습니다.
자주 사용되는 1D 또는 2D 모델과 달리 FLOW-3D 는 기본 응력 및 확장 유동장 (균일도 및 크기)의 강도와 얇은 액체 필라멘트 내 흐름에 대한 시각화를 나타낼 수 있습니다(그림1과 2 참조). 확장 유동장과 연관된 흐름 방향 속도 구배는 모세관현상이 나타나는 물방울의 얇은 부분 내에서 발생합니다. 유동학적으로 복잡한 유체에서 non Newtonian shear 및 신장, 점도뿐만 아니라 그외의 탄성 응력이 nonlinear pinch-off dynamics을 급격하게 변화시킵니다(2, 10-12). 우리는 현재 점탄성과 non-Newtonian 유동학을 사용하여 FLow-3D에 복합 유체의 처리 성능평가를 위한 강력한 연산 프로토콜을 개발하고 있습니다.
References
J. Eggers, Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865-929 (1997).
G. H. McKinley, Visco-elasto-capillary thinning and break-up of complex fluids. Rheology Reviews, 1-48 (2005).
B. Derby, Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annual Review of Materials Research 40, 395-414 (2010).
O. A. Basaran, H. Gao, P. P. Bhat, Nonstandard Inkjets. Annual Review of Fluid Mechanics 45, 85-113 (2013).
S. Kumar, Liquid Transfer in Printing Processes: Liquid Bridges with Moving Contact Lines. Annual Review of Fluid Mechanics 47, 67-94 (2014).
R. F. Day, E. J. Hinch, J. R. Lister, Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett. 80, 704-707 (1998).
J. Eggers, M. A. Fontelos, Singularities: Formation, Structure, and Propagation. (Cambridge University Press, Cambridge, UK, 2015), vol. 53.
G. H. McKinley, A. Tripathi, How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J. Rheol. 44, 653-670 (2000).
D. T. Papageorgiou, On the breakup of viscous liquid threads. Phys. Fluids 7, 1529-1544 (1995).
J. Dinic, L. N. Jimenez, V. Sharma, Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids. Lab on a Chip 17, 460-473 (2017).
J. Dinic, Y. Zhang, L. N. Jimenez, V. Sharma, Extensional Relaxation Times of Dilute, Aqueous Polymer Solutions. ACS Macro Letters 4, 804-808 (2015).
V. Sharma et al., The rheology of aqueous solutions of Ethyl Hydroxy-Ethyl Cellulose (EHEC) and its hydrophobically modified Analogue (hmEHEC): Extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer. Soft Matter 11, 3251-3270 (2015).
J. R. Castrejón-Pita et al., Plethora of transitions during breakup of liquid filaments. Proc. Natl. Acad. Sci. U.S.A. 112, 4582-4587 (2015).
응고 모델은 열전달이 활성화되고(Physics → Heat Transfer → Fluid internal energy advection) 유체비열(Fluids → Fluid 1 → Thermal Properties → Specific heat)과 전도도(Fluids → Fluid 1 → Thermal Properties → Thermal Conductivity) 이 지정될 때 사용될 수 있다. 단지 유체 1만 상 변화를 겪을 수 있다.
응고모델을 활성화하기 위해 Fluids → Fluid 1 → Solidification Model 을 체크하고 물성 Fluids → Fluid 1 → Solidification Model 가지에서 Liquidus temperature, Solidus temperature, 그리고 Latent heat of fusion 를 지정한다. 가장 간단한 모델(Latent Heat Release Definition 에 펼쳐지는 메뉴에서 Linearly with constant 를 선택)에서, 잠열은 물체가 Liquidus 에서 Solidus 온도로 냉각될 때 선형적으로 방출된다. 고상에서의 상변화열을 포함하는, 잠열 방출의 더 자세한 모델을 위해 온도의 함수로 잠열방출을 정의하기 위해 Specific energy vs. temperature 또는 Solid fraction vs. temperature 선택을 사용한다. 이 지정에 대한 더 자세한 내용은 이론 매뉴얼의 Heat of Transformation 를 참조한다.
응고는 유체의 강직성 및 유동저항을 뜻한다. 이 강직성은 두 가지로 모델링 된다. 낮은 고상율에 대해 즉 Fluids → Fluid 1 → Solidification Model → Solidified Fluid 1 Properties → Coherent Solid Fraction 의 coherency 점 밑에서는 점도는 고상율의 함수이다. 간섭 고상율보다 큰 고상율에 대해서는 고상율의 함수에 비례하는 항력계수를 갖는 Darcy 형태의 항력이 이용된다. 이 항력은 모멘텀 방정식에 (bx,by,bz) 로써 추가된다- Momentum Equations 를 보라. 이 항력의 계산은 Solidification Drag Model 에서 기술된다. 항력계수는 사용자가 유동저항에 양을 조절할 수 있는 Coefficient of Solidification Drag 인자를 포함한다. 항력계수는 FLOW-3D 출력에서 기록된 속도에 상응하는 지역 상 평균 속도에 의해 곱해진다.
Fluid 1 Properties)을 지나면 항력은 무한대가 되고 계산격자 관련하여 유동이 있을 수 없다(단 예외로 Moving Solid Phase를 참조).
Note
모든 유체가 완전히 응고하면 모사를 정지시키기 위해 General → Finish condition → Solidified fluid fraction 를 이용한다. General → Finish condition → Finish fraction 은 모사를 중지하기 위한 고상율 값을 정한다.
주조 시 mushy zone 은 액상과 고상이 혼합물로 존재하는 지역이다. 이 지역 혼합점도는 동축의 수지상 조직(과냉각된 액체 안에서 방사상으로 자라는 결정으로 된 구조) 이 액체 안에서 자유롭게 부유할 때 영향을 미친다.
일단 수지상 조직의 간섭성이 발생하여 고정된 고상 망이 형성되면 액상이 고정된 다공 수지상 구조를 통과해야 하므로 추가의 유동손실이 발생한다. 다른 방법으로는 간섭점을 지난 액/고상 혼합물은 다공물질을 통한 유동 대신에 고점도의 유체로 간주될 수 있다. 점성유체로 간주하는 접근은 예를 들면 연속 이중 롤 주조 과정같이 고상이 계속 이동 및 변형할 때 유용하다.
Solidification Drag Models in FLOW-3D, FLOW-3D 내 응고 항력모델
응고에 의한 항력계수를 정의하기 위해 사용자는 우선 열전달 및 응고모델을 활성화 해야 한다. 이들은 Model Setup → Physics 탭 에서 활성화될 수 있다. 수축모델 또한 응고모델 창에서 활성화될 수 있다.
일단 Solidification 모델이 활성화되면 항력의 공식이 지정될 필요가 있다. Solidification대화의 밑 좌측 모퉁이에서 Porous media drag-based 와 Viscosity-based 의 항력공식 중의 선택을 한다.
Viscosity-based 공식은 점성 유체로 취급하며 Viscosity 영역 내Flow model for solidified metal 입력 밑에서 지정되는 순수 고상 점성을 갖는 고상화된 유체로 간주된다. 이 접근법은 경직성의 항력모델(즉, 응고 금속이 롤러 사이로 압착될 때)을 사용할 수 없는 경우의 모사에 이용된다. 이 점성은 고상율에 따라 선형으로 변한다.고상율이0일 때 점도는 유체1의 점도이다.고상율이1이면 점도는 Solidification 패널에서 지정된 값과 같다.
Porous media drag-based 공식은 응고상태를 결정하기 위해 고상율을 사용한다. 고상율이 Critical Solid Fraction 이거나 초과하면 이때 항력은 무한대가 된다-즉, 액상/고상 혼합물은 고체같이 거동한다. 고상율이 Coherent Solid Fraction 보다 작으면 항력은 0이다. 이 두 값 사이에서 유동은 mushy 지역에 있고 이를 통한 유동은 마치 다공질 내에서의 유동같이 처리된다. 또한 모델은 고상율이 Coherent Solid Fraction 보다 작을 때 자동적으로 용융 금속의 점도를 조절한다. 이 상태에서 고상결정은 점도를 올리지만 결합하지는 않는다(즉, 간섭 없음). 일단 유체가 Coherent Solid Fraction 에 도달하면 항력방정식이 고려되고 점도는 간섭성에 도달하기 전의 값으로 일정하게 된다. 임계 및 간섭 고상율은 사용자가 정의하며 논문이나 책 등에서 찾을 수 있다. 이 식에서는 Coefficient of Solidification Drag 가 정의되어야 한다. 이는 Solidification 창 또는 Fluid 1 → Solidification Model→Solidified Fluid 1 Properties tree → Other 트리를열어 Model Setup →Fluids 탭에서 될 수 있다.
How to Calculate Permeability 투과성 계산법
밑에 주어진 Darcy법칙은 수지상 구조를 위한 다공매질내의 수학적 유동기술이다.[Poi87].
(19)
여기서 u 는 수지상 구조 내 유동의 속도이고 ∇P 는 지역 압력구배, 그리고 K 는 mushy 구역의 특정 투수성이다. 이 방정식은 단지 유동이 거의 정상 상태이고, 관성효과가 없으며 유체의 체적율이 일정하고 균일하며 액체-액체의 상호작용 힘이 없을 때 유효하다. 투수성을 정의하는데 이용될 수 있는 대 여섯 개의 모델이 있으나 FLOW-3D 는 밑에 보여주는 Blake-Kozeny 을 이용한다. 다른 모델들은 코드와 함께 제공되는 소스코드를 사용자 사양에 맞게 수정하여 추가할 수 있다.
(20)
여기서
C2 는 전형적으로 와 같은 비틀림
fs 는 고상율이고
λ1는 유동을 위한 특정 치수
이 응용에서 수지상 가지 간격(DAS)이 이용된다.
식 (11.19) 을 식(11.20) 에 적용하면 투수성을 위한 다음 식을 얻는다.
(21)
수지상 가지 간격(DAS)에 대한 일반적인 값들은 밑에 주어져 있다.
Range of Cooling Rates in Solidification Processes¶
COOLING RATE, K/s
PRODUCTION PROCESSES
DENDRITE ARM SPACING,
to
large castings
5000 to 200
to
small castings, continuous castings, die castings, strip castings, coarse powder atomization
200 to 5
to
fine powder atomization, melt spinning, spray deposition, electron beam or laser surface melting
5 to 0.05
Range of cooling rates in solidification processes [CF85]
How FLOW-3D Defines the Coefficient of Solidification Drag FLOW-3D 가 응고 항력계수를 결정하는법
FLOW-3D 는 액고상 변화를 모델링하기 위해 다공매질항력을 이용한다. 항력은 고상율의 함수이다. 사용자에게 두 수축모델이 이용 가능하다; 급속 수축 모델 과 완전 유동모델. 급속 수축 모델은 상변화와 연관된 체적변화를 고려하지 않으며 유체는 정지해 있다고 가정한다. 완전 유동모델은 상변화가 관련된 체적변화를 고려한다. 항력은 투수성에 역으로 비례하므로 다음과 같이 표현될 수 있다.
(22)
여기서, Fd 는 FLOW-3D 에서 사용된 항력계수이다. 이 항력계수는 지역 속도에 의해 곱해지고 모멘텀 방정식의 오른쪽에서 차감된다 (Momentum Equations 참조). 식 (11.22) 를 재정리하고 식 (11.21) 로부터의 투수성에 치환하면 다음을 얻는다.
Macro-Segregation during Alloy Solidification 합금응고시 거시적 편절
편절 모델은 대류와 확산에 의한 용질 이동에 따른 이원합금 요소에서의 변화를 모델링 하도록 되어 있다. 이 모델링은 Physics → Solidification 로 부터 될 수 있다.
Activate binary alloy segregation model 을 체크하고 편절 모델을 활성화한다.
여러 온도에서 평형에 있는2원합금 요소농도를 정의하는 상태도는 직선의 고상선 및 액상선을 가진다고 가정된다. 상태도는 입력데이터에 의해 구성되고 전처리 그림파일 prpplt 에 포함된다. Analyze → Existing 에서 이용 가능하다
Macro-Segregation Model (under Fluids → Fluid 1 → Solidification Model)에 관련된 일부 유체물성 트리가 밑에 보여진다. 상태도는 Reference Solute Concentration 에서의 the Solidus 와 Liquidus Temperatures 값들에 의해 정의된다. 추가로 Concentration Variables 밑의 Partition coefficient 도 정의되어야 한다. 그렇지 않으면 Pure Solvent Melting Temperature 가 정의될 수 있다. Partition coefficient 와 Pure Solvent Melting Temperature 둘 다가 지정되면 용매 용융 온도는 상태도로부터 재 정의된다.
Eutectic Temperature 또는 Eutectic Concentration 는 융해작용을 정의하기 위해 지정될 수 있다. 또 이 두 변수가 다 지정되면 Eutectic Concentration 은 상태도에서 재 정의된다.
Diffusion Coefficients 는 고상과 액상 사이의 용질의 확산계수 비율을 정의한다. 액체 내의 용질의 분자 확산계수는 Physics → Solidification 에서 specifying Solute diffusion coefficient 를 지정함으로써 정해진다. RMSEG 는 용질의 난류 확산계수 승수를 정의한다; 이는 입력파일에서 직접 지정된다.
용질 재 분배에 의한 농도변화가 중요하면 Physics → Density evaluation → Density evaluated as a function of other quantities를 정하고 용질농도의 선형함수로써 금속농도를 정의하기 위해 Fluids → Segregation model 밑의 Solutal Expansion Coefficient 를 용질 확장계수로 지정한다. 이 경우 Reference Solute Concentration 이 기준농도로 사용될 것이다. 추가로 Fluids → Fluid 1 → Density Properties → Volumetric Thermal Expansion 은 액체 내 열부력 효과를 참작하기 위해 지정될 수 있다(또한 Buoyant Flow참조).
초기 용질농도는 Meshing & Geometry → Initial → Global → Uniform alloy solute concentration 에서 지정될 수 있다. 불 균일한 초기 분포는 Alloy solute concentration 밑의 초기유체 구역 안에서 정의될 수 있다. 추가로 농도는 Initial Conditions: Region Values 에서 기술된 바와 같이 2차함수를 사용하는 부분을 편집하여 공간상의2차함수로 변화할 수 있다. 압력과속도 경계에서 용질 경계조건을 정하기 위해 Boundaries → Boundary face → Solute concentration 를 이용한다.
액상 및 고상 구성은 후처리에서 데이터 변환을 이용하여 그려질 수 있다. 용융 응고금속은 금속 내 용융의 질량 분율을 저장하는 SLDEUT 를 그림으로써 가시화될 수 있다.
액상 내 열구배가 크면 Physics → Heat Transfer → Second order monotonicity preserving 를 지정함으로써 더 나은 정확성을 위해 고차원 이류법을 사용한다.
mushy 지역에서의 유동손실은 수지상 가지 간격(DAS)의 함수인 Fluids → Fluid 1 → Solidification Model → Solidified Fluid 1 Properties → Coefficient of Solidification Drag 에 의해 조절된다. 후자는 이 모델에 의해 계산되지 않으므로 사용자는 Coefficient of Solidification Drag 를 지정해야 한다
Note
표준 응고모델 과는 달리 상태도상의 용융점을 지나 고상선을 외삽하여 정의되므로 여기서 응고선의 값은 음수일 수 있다.
Microporosity Formation 미세다공형성
미세다공모델은 단지 응고(Solidification참조)를 모델링할 때 사용될 수 있고 Physics → Solidification → Activate micro-porosity model 에서 활성화된다. 필요한 입력은 Fluids → Densities → Fluid 1 and Fluids → Solidification Properties → Solidified Fluid 1 Properties → Density 에서 정의되는 액체와 고상 유체밀도이며 고상유체밀도는 액체밀도보다 크다. 또한 Fluids → Fluid 1 → Solidification Model → Solidified Fluid 1 Properties 안에 있는 Critical Solid Fraction 은 1.0보다작게 설정되어야 한다.
Square of the speed of sound at critical solid fraction 값이 정의될 수 있다. 이는 수축에 의해 mushy 지역에서 전개되는 커다란 음압에서의 응고유체의 압축성을 기술한다. Critical pressure at which gas pores can form 값은 모델이 Initial tab 탭에서 또는 재 시작 데이터에서 정의되는 유체내의 초기 압력과 결합되도록 한다.
Intensification pressure 또한 다공 생성을 지연시키기 위해 응고 시 shot sleeve plunger 에 의해 형성되는 추가압력을 고려하기 위한 고압 주조모사를 위해 정의될 수 있다. Intensification pressure 가 클수록 더 적은 양의 다공이 주조 시 응고 과정에서 발생할 것이다.
미세 다공 모델은 응고 모델의 활성화 이외의 어떤 다른 설정을 필요로 하지 않는다. 이는 완전 유동방정식이나 속도장이 0인 경우, 즉 순수한 열 문제에서도 함께 사용될 수 있다.
이 모델은 후처리 과정의 공간 및 이력에서 사용 가능한 Percent micro-porosity 라고 불리는 추가 출력 양을 생성한다.
이동고상 선택은 연속주조 모델링을 가능하게 한다. Continuous Casting Phantom 요소는 응고된 이동 유체가 있는 지역에서 정의된다. 이는 지정된 영역을 차지하지만 정의에만 존재하므로 환영요소라고 한다. 이는 실제로 면적이나 체적을 차지하지 않으므로 체적이 없고 결과에서도 고체요소로 보이지 않는다. 이는 Meshing & Geometry → Geometry → Component → Component Type 옆 펼쳐지는 메뉴에서 정의된다.
다른 방법으로는 입력파일(prepin.*)에서 IFOB(N) 변수가 4로 지정되고 N 은 요소 번호이다. 이 파일은 File → Edit Simulation…. 을 선택하여 이용될 수 있다. 또한 입력파일에서 시간의 함수(TOBS(t) 에 의해 지정되는)일 수 있는 가상 요소의 속도성분 UTOBS(t,N), VTOBS(t,N) 그리고 WTOBS(t,N) 이 지정된다.
Fluids → Fluid 1 → Solidification Properties → Solidified Fluid 1 Properties → Coherent Solid Fraction 에 의해 정의된 간섭 고상율 보다 큰 고상율에 대해서는 Darcy 형태의 항력 이 유체를 가상 요소의 속도로 움직이게 하는데 사용된다. 고상율이 Fluids → Fluid 1 → Solidification Properties → Solidified Fluid 1 Properties → Critical Solid Fraction 에서 지정된 경직점을 능가하게 되면 가상 요소의 속도를 따라 움직일 것이다.
Note
가상 요소는 요소 그림에 안 나타나나 Component number 를 그릴 때는 보여진다.가상 요소는 균일속도가 요소의 전체에 적용되므로 평평해야 한다.
Solidification Shrinkage 응고수축
체적 수축은 소재가 응고하고 응고소재의 밀도가 액체소재의 밀도보다 클 때 나타난다(즉, Fluids → Fluid 1 → Solidification Model → Solidified Fluid 1 Properties → Density > Fluids → Fluid 1 → Density Properties → Density). 수축모델은 그러므로 Solidification 모델이 활성화되어야 하고 고상/액상의 두 밀도가 정의되어야 한다. 수축은 단지 1유체의 뚜렷한 경계면 문제에서만 모델링 될 수 있다.
두 가지 수축모델이 있다. Shrinkage model with flow effects 를 선택하면 완전 열 유체방정식을 해석한다(이론 매뉴얼의Solidification Shrinkage and Porosity Models 참조). 그러나 이 모델은 특히 장시간의 응고가 고려되면 컴퓨터 계산시간이 많이 소요된다. 다른 방법으로 사용자 Interface 에 Shrinkage model 이라고 불리는 단순모델이 있다.
이 모델은 단지 열전달 방정식의 해석에 의존하며 특히 내재적 열전달 모델 (Numerics → Explicit/implicit options → Heat transfer → Implicit –Thermal solution 참조)과 사용시에 빨리 해석할 수 있다. 액체 체적 내로의 유동 통로가 없을 때 내부공동이 발생한다.
이 두 모델에서 유입은 mushy 지역 유동에 대한 항력계수를 계산함으로써 정의된다. 격자 내 모든 점에서의 항력함수는 상수승수 Fluids → Solidification properties → Other → Coefficient of Solidification Drag (Solidification Drag Model 참조)를 가지는 지역 고상율의 함수로 계산된다. 항력함수의 역의 값은 공간 그림에서 가시화 될 수 있다: 이 그림을 위한 변수이름은 ‘drag coefficient’ 이다.
Mushy 지역에서의 커다란 유동 손실에 따른 부분적 유입이 Shrinkage model with flow effects 에서 발생할 수 있지만 단순화된 Shrinkage model 은 완전 유입이 아니면 유입이 없게 된다. 후자는 유입 통로를 따라 지역 고상율이 Fluids → Fluid 1 → Solidification Model → Solidified Fluid 1 Properties → Critical Solid Fraction (디폴트는1.0)에서 정의된 임계값보다 커질 때 발생한다. 추가로 고립된 액체 내의 금속의 고상율이 Coherent Solid Fraction 에 도달할 때까지 단순모델에서의 유입은 고립부 상부로부터 발생한다. 그 후로는 유입이 고립부의 가장 뜨거운 부분에서부터 발생한다.
모든 유체가 완전히 응고되면 모사가 정지하도록 General → Additional finish condition → Solidified fluid fraction 를 사용한다. 변수 Finish fraction 는 유체가 지정된 고상율에 도달할 때 모사가 정지하도록 하는데 사용될 수 있다.
Note
이송 방향을 결정하기 위해 단순 수축 모델에서 중력이 필요하며 좌표축 중 하나를 따라야합니다. 둘 이상의 중력 구성 요소가 0이 아닌 경우, 가장 큰 중력 구성 요소가 공급 방향을 결정하는 데 사용됩니다.
본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.
VOF – What’s in a Name?
A free surface is an interface between a liquid and a gas in which the gas can only apply a pressure on the liquid. Free surfaces are generally excellent approximations when the ratio of liquid to gas densities is large, e.g., for water to air the ratio is 1000.
자유 표면은 액체와 기체 사이의 계면이며, 기체에서만 액체에 대해 압력을 가할 수 있습니다. 자유 표면은 일반적으로 액체 대 기체의 밀도의 비율이 큰 경우 우수한 근사를 합니다. 예를 들어, 물 대 공기의 비율은 1,000입니다.
VOF Method Components
In FLOW-3D free surfaces are modeled with the Volume of Fluid (VOF) technique, which was first reported in Nichols and Hirt (1975), and more completely in Hirt and Nichols (1981). The VOF method consists of three ingredients: a scheme to locate the surface, an algorithm to track the surface as a sharp interface moving through a computational grid, and a means of applying boundary conditions at the surface.
FLOW-3D 의 자유 표면은 VOF (Volume of Fluid) 법을 사용하여 모델링됩니다. 이 기술은 Nichols 와 Hirt 에 의해 1975 년에 처음 보고된 Hirt 와 Nichols에 의해 1981년에 더 완전한 형태로 보고되었습니다. VOF 법은 표면의 위치를 특정하는 방식, 계산 격자 내를 이동하는 명확한 계면으로 표면을 추적하는 알고리즘, 표면에서 경계 조건을 적용하는 방법 3가지 성분으로 구성되어 있습니다.
Pseudo VOF
In the past, a number of commercial CFD programs have claimed a VOF capability, when in reality they are only implementing one or two of the three VOF ingredients. Users of these programs should be aware that these pseudo-VOF schemes sometimes give incorrect results.
과거에도 많은 상용 CFD 프로그램이 VOF 기능을 주장했지만, 실제로는 세 가지 VOF 요소 중 하나 또는 두 개만 구현했습니다. 이들 프로그램 사용자는 이러한 pseudo VOF 체계는 때때로 잘못된 결과를 제공할 수 있다는 점에 유의해야 합니다.
Most pseudo-VOF methods use a fluid volume fraction to locate surfaces, but they then attempt to compute flow in both the liquid and gas regions instead of accounting for the gas by a boundary condition. This practice produces an incorrect motion of the surface since it is assumed to move with the average velocity of gas and liquid. In reality, the two fluids generally move independently of one another except for a thin viscous boundary layer.
많은 pseudo VOF 법은 유체의 체적 점유율을 사용하여, 표면의 위치를 파악하고 있으며, 경계 조건에 따라 기체를 처리하는 것이 아니라, 액체와 기체의 두 영역에서 흐름을 계산하려고합니다 . 이 방법에서는 표면은 기체와 액체의 평균 속도로 이동한다고 가정되기 때문에 표면의 움직임이 잘못 표시됩니다. 사실, 경계층이 가늘고 점성이있는 경우를 제외하고, 이 2 개의 유체는 일반적으로 서로 독립적으로 이동합니다.
Left: Correct jet shape predicted by TruVOF technique used in FLOW-3D. Right: Incorrect jet shape predicted by pseudo-VOF technique used by other CFD codes.
그림 1 🙁 왼쪽) FLOW-3D 에 사용되는 TruVOF 법에 의해 예측되는 올바른 분류 모양 그림 2 🙁 우) 기타 CFD 코드에서 사용되는 의사 VOF 법에 의해 예측되는 잘못된 분류 형상
Left: FLOW-3D‘s TruVOF technique predicts jet impingement on wall and some outflow. Right: Pseudo-VOF methods don’t predict realistic jetting of fluid on side walls.
그림 3 🙁 왼쪽) FLOW-3D TruVOF 법으로 분류 벽에 충돌과 유출을 예측 도표 4 🙁 우) 의사 VOF 법은 밀도가 높은 유체가 챔버에서 나가는 모습을 잘못 예측
VOF vs. Pseudo VOF Example
The consequences of trying to compute both gas and liquid flow can be illustrated with a simple example. All the computed results shown here were produced with FLOW-3D, which has a two-fluid option that can be run in a pseudo-VOF mode. Imagine a jet of water issuing at constant velocity from a long slit into air. If we neglect gravity and keep the velocity of the jet low (say 10.0 cm/s), we expect the jet to move more or less unimpeded by the air (see the FLOW-3D results in Fig. 1), obtained with its VOF free-surface model).
기체와 액체의 두 흐름을 계산하려고 한 결과는 간단한 예로 설명 할 수 있습니다. 여기에 표시된 계산 결과는 모든 FLOW-3D를 사용하여 요구한 것입니다. FLOW-3D는 pseudo VOF 모드에서 실행할 수있는 2 유체 옵션이 있습니다. 물 분사를 일정한 속도로 가늘고 긴 슬릿에서 공기 중에 방출하는 경우를 상상해보십시오. 중력을 무시하고 분류 속도를 저속 (예 : 1.0cm / sec)으로 유지하면 기류는 공기에 전혀 구애받지 않고 자유롭게 이동할 것으로 예상됩니다 (그림 1, FLOW-3D의 VOF 자유 표면 모델에서 얻어진 결과 참조).
Pseudo-VOF methods produce a growth at the tip of the jet (Fig. 2). This growth is numerical, not physical, because it is independent of the density of air (e.g., the growth remains largely unchanged for air densities 100, 1000 and 10,000 times smaller than the liquid density). At later times the FLOW-3D jet (Fig. 3) strikes the right-hand wall and a small portion of the flow has entered a slot in the wall.
Pseudo-VOF 방법은 제트의 끝에서 확산됩니다(그림 2). 이 확산은 공기 밀도와 무관하기 때문에 물리적인 현상이 아니라 수치적입니다 (예 : 액체 밀도보다 100, 1000 및 10,000 배 더 작은 공기 밀도의 경우 확산은 크게 변하지 않습니다). 그 후, FLOW-3D의 기류 (그림 3)는 오른쪽 벽에 충돌하고 흐름의 일부가 벽의 틈새에 들어갑니다.
In contrast, the lower density air flow in the pseudo-VOF method is pulling liquid into the slot just before the jet strikes the wall (Fig. 4). Also, because of the incompressibility of the air remaining in the chamber, the amount of liquid flowing out the slot in the pseudo-VOF method must be equal to the amount injected, which is more than would be expected under most physical conditions.
대조적으로, pseudo-VOF 방법의 저밀도 기류는 제트가 벽에 부딪히기 직전에 액체를 슬롯으로 끌어 당깁니다 (그림 4). 또한 챔버에 남아있는 공기의 비압축성으로 인해 pseudo-VOF 방법에서 슬롯 밖으로 흘러 나오는 액체의 양은 주입되는 양과 같아야 하며, 이는 대부분의 물리적 조건에서 전혀 예상할 수 없슨 것입니다.
Another pseudo-VOF practice is to use some type of higher-order advection scheme to track interfaces. The interface is represented as a rapid change in density. Such schemes result in smoothed transition regions between gas and liquid that cover several control volumes rather than sharp interfaces localized in one control volume as in the original VOF method. The reason that most people don’t implement free-surface boundary conditions is that it requires major changes to the structure of existing programs, and it must be done carefully to avoid numerical instabilities.
pseudo VOF 또 하나의 관례는 어떤 유형의 고차 이류(advection) 구성표를 사용하여 계면을 추적하는 것입니다. 계면 밀도의 급격한 변화로 표현됩니다. 이러한 방식은 기체와 액체 사이의 매끄러운 전환 영역이 복수의 컨트롤 볼륨에 펼쳐지는 결과가되어, 원형의 VOF 법처럼 하나의 컨트롤 볼륨에 명확한 계면이 국소화되는 것은 아닙니다 . 대부분의 사람들이 자유 표면 경계 조건을 구현하지 않는 이유는 기존의 프로그램의 구조를 크게 변경해야 하므로, 수치적 불안정을 피하기 위해 매우 신중하게 이루어져야 하기 때문입니다.
FLOW-3D has all the ingredients recommended for the successful treatment of free surfaces. Moreover, it incorporates major improvements beyond the original VOF method in each of its three major ingredients.
FLOW-3D는 자유 표면을 제대로 처리하기 위해 권장되는 모든 성분이 포함되어 있습니다. 또한 원형의 VOF 법의 3 가지 주성분에 대해 상당한 개선처리를 진행하였습니다.
References
Nichols, B.D. and Hirt, C.W., “Methods for Calculating Multi-Dimensional, Transient Free Surface Flows Past Bodies,” Proc. First Intern. Conf. Num. Ship Hydrodynamics, Gaithersburg, ML, Oct. 20-23, 1975
Hirt, C.W. and Nichols, B.D., “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Computational Physics 39, 201, 1981.
본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.
FAVOR™ vs. Body-Fitted Coordinates
The simplicity of the fractional area/volume method FAVOR™ for modeling complex geometric regions is very attractive. But, can it compete in terms of accuracy with deformed grids such as those employed by finite-element or body-fitted coordinate methods? A comparison between these methods shows that there are only small differences between the capabilities of the two approaches.
복잡한 기하 영역을 모델링하기 위해 면적/체적 점유율을 측정하는 FAVOR TM 법의 간결함은 매우 매력적입니다. 그러나 유한 요소법과 BFC (body-fitted coordinate : 물체 적합 좌표) 법에서 사용되는 변형 격자와 비교할 때 정확도면에서 경쟁 할 수 있을까요? 이러한 기술을 비교함으로써 이 두 가지 방법의 기능의 차이는 매우 적다는 것을 알 수 있습니다.
In the absence of solid boundaries there is little fundamental difference between grids of differently shaped control volumes. Some methods require users to store more information (e.g., node locations and various geometric factors) and some exhibit differing levels of accuracy depending on the amount of element distortion. In all cases, however, the underlying idea is a discrete approximation in which fluid forces and fluxes are computed for each element in the grid.
고체 경계가 존재하지 않는 경우, 형상이 다른 컨트롤 볼륨 격자 사이에는 근본적인 차이는 거의 없습니다. 어떤 방법이 더 많은 정보를 저장하도록 요구할 경우 (노드 위치, 다양한 기하학적 형상 요소 등)나 요소의 왜곡의 양에 따라 정확도 수준은 다를 수 있습니다. 그러나 어떤 경우에도 기초가 되는 개념은 격자의 각 요소마다 유체의 힘과 플럭스가 계산된 근사치입니다.
It is the issue of obstacle boundaries that is most often raised as an advantage of deformable grids because they can be constructed to fit the geometry. Two consequences come with this flexibility. One consequence is that these grids must be unstructured for general use. This is because structured grids can only undergo limited distortion before elements are turned inside out. The other consequence is that the distortion of an element makes it more difficult to construct accurate numerical approximations.
이것은 기하학적 형상에 적합하도록 구축 될 수있는 변형 가능한 격자의 장점으로 거론되는 가장 흔한 장애물 경계의 문제입니다. 이러한 유연성은 2 개의 결과가 포함됩니다. 하나는 이러한 격자는 범용으로 비구조이어야한다는 것입니다. 구조 격자의 경우 조금 왜곡을 더한 것만으로 요소가 뒤집어지기 때문입니다. 또 하나는 요소의 왜곡에 의해 정확한 수치 근사를 구축하는 것이 더욱 어려워 질 것입니다.
Structured FAVOR™ Grids vs. Unstructured Grids
The FAVOR™ concept can be used in connection with any type of grid including grids consisting of rectangular or distorted elements and whether the grid is structured or unstructured. Structured grids are best because they are easy to generate and the indices for neighboring elements are known. Rectangular grid elements make it easy to compute the fractional areas and volumes of elements used by the FAVOR™ method.
FAVOR TM의 개념은 사각형 요소와 왜곡 요소로 이루어진 격자를 포함하여, 또한 구조 격자 또는 비구조 격자 여부에 관계없이 모든 종류의 격자와 관련시켜 사용할 수 있습니다. 그 중에서도 구조 격자가 좋습니다. 구조 격자는 쉽게 생성 할 수 인접한 요소의 인덱스를 알고 있기 때문입니다. 직사각형의 격자 요소를 사용하면 FAVOR TM 법에서 사용되는 요소의 면적 점유율과 체적 점유율을 쉽게 계산할 수 있습니다.
The ease with which structured, rectangular grids can be generated makes this an obvious choice for the FAVOR™ method. However, the specification of open and closed grid regions implicit in the FAVOR™ method introduces a type of unstructured computing environment, because only those elements having a finite amount of open volume are actually computed. This results in a computation that is analogous to an unstructured grid computation.
직사각형 구조 격자를 쉽게 생성 할 수 있기 때문에 FAVOR TM 법에서는이를 선택하는 것이 당연하게되어 있습니다. 그러나 FAVOR TM 법에서는 열린 격자 공간과 닫힌 격자 영역의 지정을 잠재적하는 일종의 비구조 계산 환경입니다. 이것은 열린 체적의 크기가 유한한 요소만 실제로 계산되어 그 결과, 비 구조 격자의 계산과 비슷한 계산이 되기 때문입니다.
The analogy with a true unstructured grid is not perfect. For example, the FAVOR™ method requires storage for all elements whether they are blocked or not, while unstructured grids require storage of neighbor lists. Storing all elements is the price paid for automatically knowing which elements are neighbors. Of course, if heat conduction is to be computed in the solid regions surrounding a fluid, then blocked elements must be kept anyway.
진짜 비구조 격자와 유사하지만 완전하지 않습니다. 예를 들어, FAVOR TM 법은 차단되어 있는지 여부에 관계없이 모든 요소의 스토리지가 필요하지만, 비 구조 격자는 인접리스트의 스토리지가 필요합니다. 어떤 요소가 인접해 있는지를 자동으로 알 수 있는 대신 모든 요소를 저장해야 합니다. 물론, 유체를 둘러싼 고체 영역에서 열전도가 계산되는 경우 차단되는 요소는 어느쪽으로도 유지해야합니다.
One disadvantage associated with rectangular, structured grids is that they cannot be distorted to increase resolution in a localized region. Grid lines can be constructed closer together in a particular region for increased resolution, but these grid lines then extend across the entire grid. As a result, the number of elements in a grid may become large. Offsetting this disadvantage is the simplicity of grid generation. There is also the possibility of introducing multiple grid blocks joined at their boundaries to provide increased local resolution without a large increase in the number of grid cells.
직사각형 구조 격자와 관련된 단점 중 하나는 국소화된 영역에서 변형시켜 해상도를 올릴 수 없는 것입니다. 격자선은 특정 영역에서 해상도를 높이기 위해 세밀하게 만들 수 있지만, 이러한 격자는 그 격자 전체에 퍼집니다. 그 결과 하나의 격자 내의 요소의 수가 증가 할 수 있습니다. 이 단점을 상쇄하는 것이 격자 생성의 간단함입니다. 또한 경계에 결합된 복수의 격자 블록을 도입하여 격자 셀의 수를 크게 증가시키지 않고 국소적인 해상도를 올릴 가능성도 있습니다.
The FAVOR™ method is seen to have properties analogous to unstructured grids but without the overhead associated with the construction of unstructured body-fitted or finite-element grids. Since grid generation often requires a major investment of time and effort, the elimination of this task makes FAVOR™ a very desirable alternative.
FAVOR TM 법은 비 구조 격자와 유사한 특성을 가진 것으로 볼 수 있지만, 비 구조의 물체 적합 격자와 유한 요소 격자의 구축과 관련된 오버 헤드는 없습니다. 격자 생성에 시간과 노력을 많이 투자해야하는 경우가 많기 때문에이 작업이 불필요하게 됨으로써 FAVOR TM은 매우 바람직한 선택이 되고 있습니다.
FAVOR™ Elements vs. Body-Fitted Coordinate Elements
A second issue with deformed grids is that their deformation can be used to fit a bounding solid surface. This is accomplished by moving the nodes of elements closest to the surface onto the surface. In contrast, in the FAVOR™ method a surface is allowed to cut through an element and its location is recorded not by moving the edges of the element but in terms of the fractional face areas and fractional volume of the element that are not covered by the solid.
변형 격자의 두 번째 문제는 경계의 고체 표면에 대한 적합성에 변형을 사용할 수 있는 것입니다. 이것은 표면에 가장 가까운 요소 노드를 표면으로 이동함으로써 달성됩니다. 반대로 FAVOR TM 법에서는 표면에서 요소를 자를 수 있도록 허용되고 그 위치는 요소의 끝을 이동함으로써가 아니라 고체로 덮여 있지 않은 요소의 표면적 점유율 및 볼륨 점유율로 기록됩니다.
What we wish to show is that this fractional area/volume technique for defining solid boundaries has the same consequences for numerical approximation as does a deformed (i.e., body-fitted coordinates) grid technique.
우리가 보여주고 싶은 것은 경계를 정의하는 면적/체적 점유율 기법의 수치 근사의 결과가 변형 (BFC) 격자 기법과 동일한 결과를 가지고 있다는 것 입니다.
The most important point to recognize about the FAVOR™ method is that approximations of fluid-dynamic quantities are restricted to the open regions of elements. This restriction introduces fractional areas and volumes of elements as factors directly into the discrete approximations. For example, the flux of a quantity from one element to another has the fractional area of the fluxing boundary that is open to flow as a multiplier.
FAVOR ™ 법에 대해 이해하는 가장 중요한 점은 유체 역학의 유량의 근사치는 요소가 열려있는 영역에 한정되는 것입니다. 이 제한은 요소의 면적/체적 점유율은 인자로 분리된 사치에 직접 도입됩니다. 예를 들어, 요소 요소에 유량의 플럭스는 승수(multiplier)로 흐름에 대해 열려있는 플럭스 경계의 면적 점유율을 가지고 있습니다.
In this way FAVOR™ and body-fitted coordinates both compute fluxes across the faces of elements that employ the same areas. In FAVOR™ the areas are stored as fractions of the original element face areas. In a BFC method the areas are computed from the coordinates of the nodes defining the faces, and often times they are also stored so they don’t have to be recomputed.
이처럼 FAVOR TM과 BFC는 모두 동일한 면적을 사용하는 요소의 면을 통과하는 유량을 계산합니다. FAVOR TM는 면적은 원래 요소 표면적의 비율로 저장됩니다. BFC 법에서는 면적은 표면을 정의하는 노드의 좌표에서 계산됩니다. 많은 경우 저장도 되기 때문에 재 계산의 필요가 없습니다.
Figure 1: FAVOR™ blocked cell left (a) and BFC cell right (b). Solid region is shaded.
When constructing difference approximations in a grid of non-uniform elements it is necessary to know the effective element widths in different directions. A simple example is given in Fig. 1, which shows an element with a solid boundary. In this case the solid boundary is parallel with the vertical sides of the element. For a deformed element, Fig. 1b, the width of the cell would be h and this width would be used for computing differences in the horizontal direction.
불균일 요소 격자에서 차분 근사를 구축 할 때 다양한 방향의 유효 성분 폭을 알고 있어야 합니다. 간단한 예를 그림 1에 나타냅니다. 이것은 고체 경계를 가지는 요소를 보여줍니다. 이 경우 고체 경계 요소의 수직 측면과 평행하고 있습니다. 변형 된 요소 (그림 1b)에 대해 셀의 폭은 h되어,이 폭을 사용하여 가로 방향의 차이가 계산됩니다.
In FAVOR™ the width of the open portion of the cell is equal to the product of the open volume fraction and the original cell width. It is this product that is used in FAVOR™ for difference approximations in the horizontal direction and it is the same as the width of the deformed cell, h.
FAVOR TM에서 셀의 열 부분의 폭은 열린 체적 점유율과 원래의 셀 폭의 곱 같습니다. 이것은 수평방향에서의 근사 차이에 대한 FAVOR TM이 사용된 제품이며 이는 변형 된 셀의 폭 h와 같습니다.
When differences are computed in a vertical direction, for example, across the top of the element (i.e., parallel to the solid boundary in Fig. 1) the FAVOR™ method approximation involves a ratio of the fractional area at the top divided by the fractional volume. This ratio has a value of unity because the solid boundary blocks the same fraction of area horizontally as it does volume, which again makes the approximation similar to that of a BFC cell. Thus, there is no difference between the effective cell widths used in making difference approximations in FAVOR™ and body-fitted coordinate cells.
세로 방향, 예를 들어 요소의 표면과 교차 (그림 1의 고체 경계와 평행) 방향으로 차이를 계산하는 경우 FAVOR TM 법의 근사치는 윗면의 면적 점유율을 체적 점유율로 나눈 비율이 관계 합니다. 이 비율의 값은 1입니다. 이것은 고체 경계에 따라 부피와 마찬가지로 동일한 면적 점유율이 옆으로 차단되기 때문입니다. 따라서 여기서도 근사 BFC 셀과 비슷합니다. 이처럼 FAVOR TM 셀과 BFC 셀에서 차등 근사 할 때 사용하는 유효한 셀 폭에 차이는 없습니다.
Figure 2: FAVOR™ cell left (a) and body-fitted coordinate cell right (b). Solid region is shaded.
If the solid surface is slanted as shown in Fig. 2, then the top and bottom face areas are different but are still known quantities in either case. Further, the average horizontal width of the open portion of the cell (h) is still the same because the volume fraction does not change when the solid surface is rotated about a midpoint within the cell (see dashed line). Here again there is little to distinguish between a FAVOR™ and a body-fitted coordinate cell.
그림 2와 같이 고체 표면이 경사져있는 경우에는 위 아래의 표면적은 다르지만 두 경우 모두 알려진 양입니다. 또한 셀의 열 부분의 가로 방향의 평균 폭 (h)도 마찬가지입니다. 이것은 셀의 중간 지점 (점선 참조)을 중심으로 단단한 표면을 회전해도, 체적 점유율은 변하지 않기 때문입니다. 여기서도 FAVOR TM 셀과 BFC 셀을 구별 할 수있는 것은 거의 없습니다.
Summary
It is well known that body-fitted coordinate grids can be difficult to construct, and there has been a huge effort devoted to the development of “automatic” grid generators. It is also well known that even with the best of grid generators it still takes a significant amount of time to establish a workable and well-behaved grid.
The simple rectangular construction of FAVOR™ grids makes them extremely easy to generate. Fractional areas and fractional volumes must be computed to define obstacles placed within a grid, but theses computations are well defined and easy to automate using simple algorithms.
Numerical accuracy is not sacrificed when selecting FAVOR™ over a body-fitted coordinate gridding method. The two approaches simply represent different ways to approximate bounding surfaces.
Finally, the numerical advantages inherent in the structured, smoothly varying, strictly orthogonal grids used by the FAVOR™ method should not be overlooked. These advantages, as well as the ability to automatically represent porous media (i.e., another example of a fractional area/volume region) are additional reasons why the FAVOR™ method was selected as the basis of FLOW-3D.
BFC 격자의 구축이 어려운 것은 잘 알려져 있으며 “자동”격자 생성 기능의 개발에 많은 노력을 쏟고 있습니다. 또한 최고 수준의 격자 생성 기능을 사용하더라도 유효하고 적절한 기능을 수행 격자를 조합하려면 상당한 시간이 걸릴 수 있다는 것이 잘 알려져 있습니다.
FAVOR TM 격자는 간단한 직사각형 구조이기 때문에 매우 쉽게 생성 할 수 있습니다. 격자에 배치 장애물을 정의하는 면적 점유율과 체적 점유율을 계산해야 하지만, 이러한 계산은 잘 정의되어 있으며, 간단한 알고리즘을 사용하여 쉽게 자동화 할 수 있습니다.
격자 생성 기법으로 BFC 대신 FAVOR TM을 선택하여 수치적 정확성이 희생되는 것은 아닙니다. 이 두 가지 방법은 경계 표면의 근사 방법이 다를 뿐입니다.
마지막으로, FAVOR TM 법에서 사용되는 구조화 된 변동이 부드럽고 엄격한 직교 격자 고유의 수많은 장점은 간과해서는 안됩니다. 이러한 장점과 다공성 매체 (면적 / 체적 점유율 영역의 또 다른 예)를 자동으로 표현하는 기능은 FAVOR TM 법이 FLOW-3D의 기초로 뽑힌 또 하나의 이유입니다.
People who are new to computational modeling may be a little bewildered—even intimidated—by the process known as grid generation. This note describes the most common types of three-dimensional grids with comments on their advantages and disadvantages.
격자 시스템
수치해석 모델링에 익숙하지 않은 사람들은 격자를 생성하는 작업은 조금 당황스럽거나 혼란스러워 할지도 모릅니다. 여기에서는 가장 일반적인 유형의 3차원 격자에 대하여 각각의 장점과 단점을 포함하여 설명합니다.
Fixed, Orthogonal and Fixed, Non-Orthogonal
Gridding is the process of subdividing a region to be modeled into a set of small control volumes. Associated with each control volume are one or more values of the dependent flow variables (e.g., velocity, pressure, temperature, etc.) Usually these represent some type of locally averaged values. Numerical algorithms representing approximations to the conservation laws of mass, momentum, and energy are then used to compute these variables in each control volume.
고정 직교 격자와 고정 비 직교 격자 격자 생성은 모델링 대상 영역을 일련의 작은 컨트롤 볼륨으로 세분화하는 과정입니다. 각각의 컨트롤 볼륨은 하나 이상의 종속 흐름 변수 (속도, 압력, 온도 등)의 값이 연결됩니다. 일반적으로 이들은 어떤 유형의 국소적인 평균값을 나타냅니다. 질량, 운동량, 에너지 보존 법칙에 근사치를 나타내는 수치 알고리즘을 사용하여 컨트롤 볼륨마다 이 변수가 계산됩니다.
Control Volume Choices
Uniform Rectangular
Some computational schemes use grids that deform to follow the motion of a fluid (Lagrangian grids) while others use fixed grids (Eulerian grids). Sometimes a combination is used so that moving grids don’t become too distorted (Arbitrary-Lagrangian-Eulerian grids). In this note we will only address issues associated with the subdivision of space into a set of control volumes and leave the question of moving versus stationary grids for another note.
컨트롤 볼륨의 선택
계산법에 의해 유체의 움직임에 따라 변형 격자 (라그랑주 격자)를 사용하는 경우와 고정 격자 (오일러 격자)를 사용하는 경우가 있습니다. 경우에 따라서는 가동 격자가 변형을 초과하지 않도록 두 종류의 격자를 함께 사용합니다(ALE (Arbitrary-Lagrangian-Eulerian : 모든 – 라그랑주 – 오일러) 격자). 여기에서는 공간을 일련의 컨트롤 볼륨으로 세분화하는 것과 관련된 문제만을 취급하며 움직이는 격자와 고정 격자의 문제에 대해서는 다른 기사에서 설명합니다.
Variable Rectangular
Grids may be structured or unstructured. A structured grid means that the volume elements are well ordered, and a simple scheme (e.g., I,J,K indices) can be used to label elements and identify neighbors. In unstructured grids, volume elements can be joined in any manner, and special lists must be kept to identify neighboring elements.
격자는 구조 격자와 비 구조 격자가 있습니다. 구조 격자는 체적 요소가 정연하게 배열되어 있고, 간단한 구조 (I, J, K 인덱스 등)를 사용하여 요소에 레이블을 지정하거나 인접 요소를 식별 할 수있는 것을 의미합니다 . 비 구조 격자는 체적 요소는 어떤 방법으로도 결합 할 수 있도록 인접한 요소를 식별하는 데 필요한 특별한 목록을 유지해야합니다.
Structured Meshing of Control Volumes
Structured grids come in several varieties, depending on the shape of their elements. The simplest grid is generated from a rectangular box by subdividing it into a set of rectangular elements whose faces are parallel to the faces of the box. Most often the elements are ordered by counting in the x then y and finally the z-direction, so that grid element (I,J,K) would be the ith element in the x-direction, etc.
컨트롤 볼륨의 구조 메쉬
구조 격자 요소의 형상에 따라 다양한 종류가 있습니다. 가장 간단한 격자는 사각형의 상자를 상자의 측면과 병행면을 가지는 일련의 직사각형 요소로 세분화하여 생성됩니다. 종종 요소의 순서는 x 방향, y 방향 및 z 방향의 순서로 계산 격자 요소 (I, J, K)가 x 방향의 i 번째 요소가 되도록 하는 등 정해져 있습니다.
Grids composed of regular brick elements have the simplest structure since it is only necessary to define three one-dimensional arrays for the x, y, and z values of the surfaces defining the element surfaces. If I,J, and K are the maximum indices in the x, y, and z directions, then the total number of values needed to define the grid is I+J+K. Rectangular grids with slowly varying element sizes also exhibit a regularity that helps to maintain numerical accuracy.
일정한 블록 요소로 구성되어있는 격자는 가장 간단한 구조입니다. 이것은 요소의 표면을 정의하는 표면의 x, y, z 값에 대한 1 차원 배열을 3 개 정의하는 것만으로 좋기 때문입니다. I, J, K는 x, y, z 방향의 최대의 인덱스 인 경우, 격자를 정의하는 데 필요한 값의 합계는 I + J + K입니다. 요소의 크기가 천천히 변화하는 사각형 격자도 규칙 성을 나타내고 숫자의 정밀도를 유지할 수 있습니다.
One limitation of rectangular elements is that geometric surfaces are usually approximated by blocking out entire elements, which leads to boundaries having discrete steps. These steps introduce flow losses and produce other undesirable effects (No Loss With FAVOR™).
사각형 요소의 제한의 하나는 기하 형상의 표면이 일반적으로 요소 전체를 블록으로 분할하여 근사 될 것입니다. 그러면 경계가 불연속 계단입니다. 이러한 계단 부분에 따라 유동 손실이 생겨 바람직하지 않은 다른 효과도 발생합니다 ( “FAVOR TM를 사용하여 손실 제로”참조).
There are two ways to get better geometric representations of curved obstacle surfaces. One is to deform the grid elements to conform with specified geometric shapes. The resulting elements then have general hexahedral shapes, and the grid is often referred to as a body-fitted grid. Another technique is to keep the rectangular elements but supplement them with some means of defining obstacles cutting through their interiors. A technique of this type, called FAVOR™, is used in the FLOW-3D program. The FAVOR™ method is described in more detail below.
장애물이있는 곡면을 더 정확하게 기하학적 형상으로 표현하는 두 가지 방법이 있습니다. 하나는 지정된 기하 형상에 맞게 격자 요소를 변형하는 것입니다. 이 경우 요소는 일반적인 육면체의 형상이 많은 경우 격자는 물체 적합 격자( body-fitted grid)라고합니다. 또 다른 기법은 사각형 요소를 유지하면서 내부를 잘라 장애물을 정의하는 방법을 보충하는 것입니다. 이 유형의 기술은 FAVOR™이라고, FLOW-3D 프로그램에서 사용되고 있습니다. FAVOR™법에 대해서는 다음에 자세히 설명합니다.
Hexahedral elements require three coordinates to locate each corner point, or 3*(I+1)*(J+1)*(K+1) values for the entire grid, which is much larger than the I+J+K values needed for rectangular grids. In addition, other three-dimensional arrays are usually kept, such as their face areas and volumes, so these quantities don’t have to be constantly recomputed.
This uses a large amount of stored memory and increases memory retrieval times. Although memory is becoming inexpensive, the amount of memory to be retrieved is becoming an important consideration in parallel computing.
사각형 메쉬 변형 메쉬의 비교
육각형 요소는 각 정점의 위치를 결정하는데 3 개의 좌표가 필요합니다. 격자 전체에서는 3 * (I + 1) * (J + 1) * (K + 1) 개의 값이 필요 직사각형 격자에 필요한 I + J + K 개의 값보다 훨씬 많아집니다. 또한 표면적과 체적 등 기타 3 차원 배열은 일반적으로 유지되기 때문에이 금액은 수시로 재 계산할 필요는 없습니다.
이를 통해 대량의 저장 메모리가 사용 된 메모리의 검색 시간이 길어집니다. 메모리의 비용은 내려오고 있지만 검색 할 메모리의 양은 병렬 컴퓨팅을위한 중요한 문제가되어 가고 있습니다.
1. Requires 10 or more 3D Arrays 2. Complex Mesh Generation 3. Algorithms More Complex
The distortion of elements away from a purely rectangular shape has several consequences. For one thing, distortion may reduce numerical accuracy because numerical approximations are no longer centered (or symmetric) about the centroid of the volume element. This drawback, however, may be balanced by the increase in local grid resolution afforded by the distortion.
순수한 직사각형 모양에서 요소를 왜곡하면 다양한 효과가 있습니다. 그 중 하나는 왜곡하여 수치 근사가 체적 요소의 중심이 없게되면 (또는 대칭) 수치적 정확도가 저하 될 수 있습니다. 그러나 이 문제는 왜곡으로 인한 국소적인 격자 해상도의 증가에 의해 상쇄될 수 있습니다.
Another consequence of distortion is that numerical approximations become more complex. Not only must forces and fluxes be converted to normal and tangential components at element faces, but it is generally necessary to include data from all surrounding elements (i.e., the 26 face, edge, and corner neighbors of a hexahedral) in the approximations for a given element. In purely rectangular grids, only the six neighbors having a common face with a given element must be directly coupled.
왜곡에 의한 또 다른 영향은 수치 근사가 더 복잡해질 것입니다. 요소의 각면에서 힘과 플럭스를 법선 성분과 접선 성분으로 변환해야 할 뿐만 아니라 일반적으로 주어진 요소의 근사치에 주위의 모든 요소 (육면체의 26 개면, 모서리, 정점의 인접 요소)에서 데이터를 포함 할 필요가 있습니다. 순수한 사각형 격자에서 직접 결합할 필요가있는 것은 주어진 요소와 일치하는 면을 가진 6 개의 인접 요소뿐입니다.
Finally, it should be noted that it is not always possible to deform a structured rectangular grid into any shape. For example, attempts to deform a straight section into an L-shape results in collapsed or inverted elements in the inside corner. Solutions to this limitation consist of either coupling together more than one structured grid block for a simple kind of unstructuring or resorting to fully unstructured grids.
마지막으로, 구조화된 사각형 격자를 어떤 모양으로 변형 할 수 없는 경우도 있다는 점에 유의하십시오. 예를 들어, 직선 부분을 L 자형으로 변형하려고하면 몸쪽으로 요소가 손상되거나 반전합니다. 이 제한을 해결하려면 여러 구조 격자 블록을 결합하여 간단한 비정형으로 하거나 완전한 비 구조 격자를 사용합니다.
Unstructured Meshing of Control Volumes
Polyhedral Elements
Unstructured grids have the advantage of generality in that they can be made to conform to nearly any desired geometry. This generality, however, comes with a price. The grid generation process is not completely automatic and may require considerable user interaction to produce grids with acceptable degrees of local resolution while at the same time having a minimum of element distortion. Unstructured grids require more information to be stored and recovered than structured grids (e.g., the neighbor connectivity list), and changing element types and sizes can increase numerical approximation errors.
비 구조 격자는 일반적인 장점이 있어 필요한 거의 모든 기하학적 모양에 맞게 만들 수 있습니다. 그러나 이 일반성에는 대가가 따릅니다. 격자 생성 절차는 완전 자동이 아닌 요소의 왜곡을 최소화 경우에도 허용 수준의 국소 해상도를 가지는 격자를 생성하려면 사용자 개입이 상당히 필요할 수 있습니다. 비 구조 격자는 구조 격자보다 많은 정보를 저장하고 복구해야합니다 (인접 결합 목록 등). 또한 요소의 종류와 크기를 변경하면 숫자 근사 오류가 증가할 가능성이 있습니다.
A popular type of unstructured grid consists of tetrahedral elements. These grids tend to be easier to generate than those composed of hexahedral elements, but they generally have poorer numerical accuracy. For example, it is difficult to construct approximations that maintain an accurate propagation of one-dimensional flow disturbances because tetrahedral grid elements have no parallel faces.
일반적인 유형의 비 구조 격자는 사면체 요소로 구성되어 있습니다. 이러한 격자는 육면체 요소로 구성되어있는 것보다 쉽게 생성 할 수있는 경향이 있지만, 수치적 정확도는 일반적으로 낮습니다. 예를 들어 사면체 격자 요소에 평행하는면이 없기 때문에 1 차원 흐름의 교란의 정확한 전달을 유지하는 근사치를 구축하는 것은 어렵습니다.
In summary, the best choice for a grid system depends on several factors: convenience in generation, memory requirements, numerical accuracy, flexibility to conform to complex geometries, and flexibility for localized regions of high or low resolution.
즉, 격자 시스템으로 무엇이 최선의 선택 인지 결정은 생산의 용이성, 메모리 요구 사항, 수치적 정확성, 복잡한 기하학적 형상에 대응하는 유연성, 국소적인 해상도의 높낮이에 대응하는 유연성 등 다양한 요인이 있습니다.
Mesh Subdivision and/or Multiblock
In FLOW-3D a compromise is employed, which is called Free Gridding. The program uses a simple grid of rectangular elements, so it has the advantages of ease of generation, regularity for improved numerical accuracy, and requires very little memory storage.
FLOW-3D 프로그램은 Free Gridding 으로 불리는 타협안이 선택되고 있습니다. 이 프로그램은 사각형 요소로 구성된 간단한 격자를 사용하고 있기 때문에 생성이 간단하고 규칙적으로 수치적 정확도가 향상된다는 장점이 있으며, 매우 적은 메모리 저장소를 요구합니다.
Geometry is then defined within the grid by computing the fractional face areas and fractional volumes of each element that are blocked by obstacles. This Fractional Area Volume Obstacle Representation (FAVOR™) method requires that we store three area fractions and one volume fraction for each element, which is relatively little information compared with body-fitted grids.
기하형상은 장애물에 의해 차단된 각 요소의 표면적 점유율 및 볼륨 점유율을 계산하여 격자에서 정의됩니다. 이 FAVOR™(Fractional Area Volume Obstacle Representation) 법 에서는 요소마다 3개의 면적 점유율과 1개의 부피 점유율을 저장해야합니다. 이것은 body-fitted 격자에 비하면 상대적으로 적은 정보입니다.
The philosophy behind FAVOR™ is that the numerical algorithms are based on information consisting of only one pressure, one velocity, one temperature, etc. for each control volume, so it is inconsistent to use an excessive amount of information to define geometry. Thus, the FAVOR™ technique retains the simplicity of rectangular elements while representing complex geometric shapes at a level consistent with the use of averaged flow quantities within each volume element.
FAVOR™법의 배경에 있는 원리는 각 컨트롤 볼륨에 대해 수치 알고리즘은 하나의 압력 단일 속도, 1 개의 온도 등으로 구성된 정보에 근거하는 것입니다. 따라서 지오메트리를 정의하기 위해 과도한 정보를 사용한다는 것은 모순입니다. 따라서 FAVOR™법은 사각형 요소를 단순 유지하면서 각 체적 요소에서 평균된 유량을 사용하는 것과 모순되지 않는 수준에서 복잡한 기하학적 형상을 표현합니다.
Grids and geometry are free to be defined independently of one another with the FAVOR™ method. We refer to this as Free Gridding. The advantages of Free Gridding are that grids and geometries can be generated and modified with very little time or effort on the part of a user. It is the computer that does all the work of computing the intersections between a grid and an obstacle description, which is what automated computing is all about.
FAVOR™법을 사용하면 격자 와 기하학적 형상을 서로 독립적으로 자유롭게 정의 할 수 있습니다. 여기에서는 이것을 Free Gridding이라고 합니다. Free Gridding의 장점은 사용자 측이 격자와 기하학적 형상을 매우 쉽고 빠르게 생성하고 수정할 수 있다는 것입니다. 격자와 obstacle description이 만나는 부분의 계산 작업은 모든 컴퓨터가 합니다. 이것이 자동 컴퓨팅이라는 것입니다.
본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.
유체 흐름 문제는 복잡한 기하학적 구조의 자유 표면과 관련되는 경우가 많으며 대부분 매우 일시적입니다. 수력학의 예로는 배수로, 강, 교각 주변, 홍수 범람, 수문, 잠금 장치 및 다수의 기타 구조물의 흐름이 있습니다. 이러한 유형의 흐름을 계산적으로 모델링 하는 능력은 이러한 계산이 정확하고 합리적인 계산 자원으로 수행될 수 있다면 매력적입니다. 유용하게 사용하려면 시뮬레이션은 물리적 모델을 사용하는 것보다 훨씬 빠르고 저렴해야 합니다.
Fluid flow problems often involve free surfaces in complex geometry and in many cases are highly transient. Examples in hydraulics are flows over spillways, in rivers, around bridge pilings, flood overflows, flows in sluices, locks, and a host of other structures. A capability to computationally model these types of flows is attractive if such computations can be done accurately and with reasonable computational resources. To be useful, simulations should be much faster and less expensive than using physical models.
많은 컴퓨터 프로그램은 유체의 역학을 설명하는 편미분 방정식을 풀 수 있습니다. 시뮬레이션에 자유 표면을 포함 할 수있는 프로그램은 많지 않습니다. 그 이유는 Free Surface 경계 문제로 잘 알려진 수학적인 문제입니다. 자유 경계 문제는 다루기 어려운 표면이 이동함에 따라 계산 영역이 변화하는 한편, 그 표면 이동 자체가 계산에 의해 결정된다는 점에 있습니다. 계산 영역의 변화는 그 크기와 모양의 변화뿐만 아니라, 경우에 따라서는 영역의 결합과 분리(즉, 자유 표면의 발생과 소멸)을 포함합니다.
Many computer programs can solve the partial differential equations describing the dynamics of fluids. Not many programs are capable of including free surfaces in their simulations. The difficulty is a classical mathematical one often referred to as the free-boundary problem. A free boundary poses the difficulty that on the one hand the solution region changes when its surface moves, and on the other hand, the motion of the surface is in turn determined by the solution. Changes in the solution region include not only changes in size and shape, but in some cases, may also include the coalescence and break up of regions (i.e., the loss and gain of free surfaces).
이 책에서는 모든 자유 표면을 고려한 유체흐름 현상을 수치 해석용으로 모델링하는 방법에 대해 설명합니다. 이 기술은 VOF (Volume-of-Fluid) 법에 근거한 것으로, 특히 자유 표면 흐름에 적합한 다양한 기능을 제공합니다. 이 책에서는 VOF 법이 자유 표면과 그 발생과 소멸을 해석하는데 가장 자연스럽고 매우 효율적인 방법을 제시합니다.
In this note a computational modeling technique for fluid flows with arbitrary free surfaces is discussed. The technique is based on the Volume-of-Fluid (VOF) technique. This technique has many unique properties that make it especially applicable to flows having free surfaces. The goal of this discussion is to show why the VOF approach offers a natural way to capture free surfaces and their evolution with great efficiency.
VOF 법의 특징을 잘 보여주기 위해 간단하지만 매우 중요한 유동 현상에 관한 문제를 다룹니다. 여기에서는 계단 낙차형상의 낙하류를 예로 들어 있습니다. 개념적으로 간단한 흐름인 동시에 결과의 타당성을 확인하기위한 좋은 실험 데이터도 제공되어 있습니다 (N. Rajaratnam and MR Chamani “Energy Loss at Drops”J. Hydraulic Res. Vol. 33 p.373,1995 참조).
A good recommendation for the VOF method is to demonstrate its capabilities on a simple hydraulic flow problem, one that is far from trivial. The example selected is of flow over a step. This flow has conceptual simplicity and good experimental data available for validation (see N. Rajaratnam and M.R. Chamani, “Energy Loss at Drops,” J. Hydraulic Res. Vol. 33, p.373, 1995).
Prototype Hydraulic Flow with Free Surfaces
그림 1a는 정상 상태에 도달 한 후 흐름의 문제를 보여줍니다. 계단 낙차형상 상부로부터의 월류(액체 또는 스냅 시트)에는 상하 모두의 자유 표면이 있습니다. 월류의 아래쪽에는 월류와 계단 가공면 사이에 웅덩이가 형성되어 있으며, 하류에서는 액체는 평평한 정상 표면에서 오른쪽으로 흐르고 있습니다. 엄밀히 말하면, 웅덩이 영역의 흐름 상태는 정상입니다. 이것은 충돌하는 액체에 의해 풀에 난류 혼합이 발생하고 있기 때문입니다. 그러나 평균적인 구성이 존재하고 그것은 실험에서도 보고됩니다.
Figure 1a shows the flow problem after it has reached a steady-state condition. The overflow (sheet of liquid or nappe) leaving the top of the step has both an upper and lower free surface. At the bottom of the overflow a pool has formed between the overflow and the face of the step, while downstream, liquid is flowing to the right with a flat, steady surface. Strictly speaking, the flow conditions in the pool region are not steady because turbulent mixing is generated in the pool by the impinging fluid. There is, however, an average configuration and that is what is reported in the experiments.
실용적인 목적 유동 흐름은 항상 2 차원입니다. 즉, 그림 1a에서 수직 방향에서는 큰 변화는 없습니다. 현실에서는 웅덩이 위쪽으로 공간을 만들기 위해서는 대기에 여유공간이 필요하고, 그게 없으면 닫힐 것입니다.
For all practical purposes the flow is two-dimensional, that is, it does not have any significant variation in the direction normal to the illustration in Fig. 1a. In actuality, to have an air space above the pool there must be some opening to the atmosphere otherwise it would close up.
계단 낙차형상 상단의 유속은 중요합니다. 즉, 이것은 표면파와 같거나 그 이상의 속도이기 때문에 하류에서의 교란이 영역을 관통하고 상류 흐름 (계단 낙차형상의 왼쪽)에 영향을 줄 수 없습니다. 따라서 이 영역에서의 흐름은 예외적으로 원활하고 정상입니다.
The flow speed at the top of the step is critical, that is, it has a speed equal to or greater than the speed of surface waves, so that no disturbances from downstream can penetrate through this region to affect flow upstream (to the left of the step), which is why the flow is exceptionally smooth and steady in that region.
이 문제는 수치 시뮬레이션과 비교할 수 있는 기하 형상 기능이 많이 있습니다. 예를 들어, 계단 낙차형상의 전후 흐름의 높이, 월류가 바닥에 충돌 할 때의 각도, 월류 아래에 형성되는 웅덩이의 깊이 등입니다. 또한 실용화를 위한 중요한 비교 항목으로는, 계단 낙차형상을 통해 떨어지는 낙하 류에 의해 손실되는 에너지의 양 (운동 에너지와 위치 에너지의 합)가 있습니다.
There are many geometric features in this problem that can be compared with a numerical simulation; such as flow heights before and after the step, the angle of the overflow stream when it strikes the bottom and the depth of the pool formed under the overflow. Additionally, an important comparison for practical applications is the amount of energy (i.e., kinetic plus potential) lost by the flow in passing over the step.
Simulation of Prototype Problem
그림 1a는 시뮬레이션의 결과입니다. 이 예에서는 실험에 사용된 모든 기하 형상 및 물질의 특성이 시뮬레이션에 사용되었습니다. 실험실 테스트에서 사용한 계단 낙차형상의 높이가 62cm에서 액체는 보통의 물 (밀도 = 1.0gm / cc 어떻게 점성 = 0.01dynes / cm)입니다. 계산 영역에 들어가는 물의 깊이는 15.5cm에서 속도가 임계에 가까운 123.0cm/s 였습니다. 물론, 중력은 수직 방향으로 크기는 g = -980cm / s^2입니다.
Figure 1a is from a simulation. For this example all of the geometric and material properties used in the experiments were used in the simulation. The height of the step used in the laboratory test is 62cm and the fluid is ordinary water (density=1.0 gm/cc and dynamic viscosity=0.01dynes/cm). The depth of water entering the computational region was 15.5cm and was given a near critical velocity of 123.0cm/s. Of course, gravity was in the vertical direction with magnitude g=-980cm/s^2.
Figure 1a. Simulation of flow over a step.
Figure 1b. Grid used in simulation.
월류 왼쪽에 있는 웅덩이에 난류가 발생 할 것으로 예상 되었기 때문에, 시뮬레이션에서는 난류 모델 (the Renormalization Group, 즉 RNG 모델)을 사용했습니다. 그 후, 난류 모델을 사용하지 않고 한 시뮬레이션에서도 비슷한 결과를 얻을 수 있었지만, 이것은 그다지 놀라운 일이 아닙니다. 흐름의 중요한 요소의 대부분은 매끄러운 (즉 난류가 아닌) 유입, 유출, 월류 때문입니다.
Because some turbulence was expected to develop in the pool to the left of the overflow, a turbulence model (the Renormalization Group or RNG model) was used in the simulation. Subsequent simulations without a turbulence model produced very similar results, which is not too surprising since most of the important elements of the flow are smooth (i.e., non-turbulent) inflow, overflow and outflow streams.
그림 1b 시뮬레이션 영역은 폭 170cm, 높이 100cm에 가로 80 개, 세로 60 개, 총 4800 개의 셀로 구성되는 같은 크기의 사각형 셀의 격자로 세분화되어 있습니다. 이 격자는 유체 역학의 지배 미분 방정식 (나비에 – 스토크스 방정식)의 유한 차분 근사의 기초로 사용됩니다. 격자 셀의 수와 크기는 흐름 속에서 예측되는 최소의 특성을 파악하는 목적으로 선택되었습니다. 결과를보고 어떤 조정이 필요하다고 생각되는 경우는 숫자를 쉽게 늘리거나 줄일 수 있습니다. 사실, 해상도를 바꾸어 시뮬레이션을 반복하여 계산이 그러한 변화에 영향을 많이 들어 있지 않은지 확인하는 것이 좋습니다.
The simulation region shown in Fig. 1b is 170cm wide and 100cm high and has been subdivided into a grid of equal sized rectangular cells consisting of 80 cells in the horizontal direction and 60 cells in the vertical direction, for a total of 4800 cells. This grid is used as the basis for finite-difference approximations of the governing differential equations of fluid dynamics (the Navier-Stokes equations). The number and size of the grid cells was chosen with the goal of capturing the smallest expected features of the flow. The number can be easily increased or decreased if the results seem to warrant some adjustment. In fact, it is often a good idea to repeat a simulation with a change of resolution to make sure that the solution is not too sensitive to such changes.
왼쪽의 경계는 지정된 속도 경계입니다 (유체의 높이도 지정). 오른쪽의 경계는 유출 경계에서 모든 유량이 경계에 수직 제로 기울기이며, 균일 한 유출이 촉진됩니다. 상하 경계는 단단한 벽으로 세 번째 방향의 경계는 대칭면 (점성 저항 제로의 벽)으로 처리되었습니다. 계단 낙차형상의 표면도 자유-미끄럼(free slip) 경계로 처리되었습니다.
The left boundary was a specified velocity boundary (also with a specified fluid height). The right boundary was an outflow boundary where all flow quantities have a zero gradient normal to the boundary to encourage a uniform outflow. The top and bottom boundaries are rigid walls, while in the third direction the boundaries were treated as planes of symmetry (i.e., walls with zero viscous drag). The surface of the step was also treated as a free-slip boundary.
초기 조건은 예측되는 흐름의 배열을 대략적으로 근사하도록 설정할 수 있었지만, 흐름의 구성은 계산하고 싶은 것 중 하나이기 때문에 유체가 어떻게 분포되는지를 모르는 경우에는 간단한 방법이 필요합니다. 이 예제에서는 비정상 흐름 시뮬레이터를 사용했기 때문에 그림 1a의 계단 낙차형상에 유체의 블록만 있고 왼쪽 경계의 같은 수평 속도와 높이가 할당된 간단한 초기 조건을 정의할 수 있습니다. 시뮬레이션은 이후 정상 흐름으로 발전하고 있지만, 이것은 약 8.0 초 후에 발생합니다. 시뮬레이션은 정상 상태에 도달 한 것을 보장하기 위해, 10.0 초의 시간까지 실행되었습니다. 그림 2는 중간 시간을 두 보여줍니다. 도 2b는 0.2 초, 그림 2c는 0.5 초 시점에서 그림 2d는 마지막 10.0 초 시점을 보여줍니다.
Initial conditions could have been set to roughly approximate the expected flow arrangement, but since the flow configuration is one of the things that one would like to compute, especially for situations where one doesn’t know what the distribution of fluid is likely to be, a simpler approach is needed. Because a transient flow simulator was used for this example a simple initial condition could be defined that consisted of just a block of fluid on top of the step, Fig. 1a with the same horizontal velocity and height assigned to the left boundary. The simulation then followed the development of the steady flow, which occurs after about 8.0s. The simulation was run out to a time of 10.0s to assure that steady conditions had been reached. Figure 2 shows two intermediate times; 2.b at 0.2s and 2.c at 0.5s plus the final time in 2.d at 10.0s.
Figures 2a-2d. Simulation times of 0.0, 0.2, 0.5 and 10.0s.
처음에는 단일 결합하고 있는 자유 표면이었던 것이 액체가 바닥에 충돌한 후 2 개의 독립적인 자유 표면 (상하 스냅 표면)으로 변화하는 것에 주목하십시오. 아래 경계의 충격점의 좌우로 흐름이 분리되도 문제는 없습니다. 이에 대해서는 다음 섹션에서 자세히 설명합니다.
It should be noted that what starts as a single, connected free surface changes to two independent free surfaces (upper and lower nappe surfaces) after the fluid strikes the bottom. No difficulties are experienced with this separation of the flow into portions flowing to the left and right of the impact point on the bottom boundary. This will be discussed at further length in the next section.
실험과 시뮬레이션의 비교는 다음 표와 같으며 매우 잘 일치하고 있습니다.
Comparisons between experiment and simulation are given in the following table and are in excellent agreement.
Comparison Table
Experimental Results
Simulation Results
Outflow Height/Step Height
0.094
0.094
Pool Height/Step Height
0.41
0.41
Angle of Nappe at Bottom
57°
59°
Energy Loss/Initial Energy
0.29
0.296
이러한 결과를 고려하면이 같은 정밀도를 달성하려면 상당한 계산시간이 필요할 것으로 생각될지도 모릅니다. 그러나 실제로는 Pentium 4, 3.20GHz의 데스크톱 컴퓨터의 총 CPU 시간은 단 88 초였습니다. 계산시간이 너무 짧은 것은 설명이 필요하며, 이것은 다음 섹션의 목적입니다.
In view of these results it might be expected that a considerable amount of computational time would be required to achieve such accuracy. In fact, the total cpu time on a desktop Pentium 4, 3.20GHz computer was only 88s. Such a short computational time requires explanation and that is the purpose of the following sections.
Figures 2a-2d. Simulation times of 0.0, 0.2, 0.5 and 10.0s.
Why the VOF Technique Works Well / VOF 법이 적합한 이유
VOF 법의 구조와 그것이 매우 효율적인 방법인 이유를 이해하기 위해 다양한 계산법 중에서도 특히 VOF 법에 대한 몇 가지 기본 개념을 나타냅니다.
There are a few general concepts about computational methods and the VOF technique in particular that can be used to gain an understanding of how and why VOF works so efficiently.
Basic Theory
모든 수치해석 방법에서 흐름의 문제를 단순하게 산술 계산하도록 유한의 수치 세트로 단순화해야합니다. 연속 유체를 이산화된 수치 세트에 근사하기 위해서 일반적으로 사용되는 것이 유체가 차지하는 공간을 격자로 분할하는 방법입니다. 이 격자는 일반적으로 다수의 작은 직사각형의 블록(요소)로 구성됩니다. 이러한 각 요소에 대해 평균화 처리를 실시함으로써 그 요소의 유체의 압력, 밀도, 속도 및 온도의 대표 값을 얻을 수 있습니다.
All numerical methods must use some simplification to reduce a fluid flow problem to a finite set of numerical values that can then be manipulated using elementary arithmetical operations. A typical procedure for approximating a continuous fluid by a discrete set of numerical values is to subdivide the space occupied by the fluid into a grid consisting of a set of small, often rectangular “bricks.” Within each element an averaging process is applied to obtain representative element values for the fluid’s pressure, density, velocity and temperature.
간단한 수식을 사용해, 어느 시간에 걸친 각 요소 값과 인접한 요소의 상호 작용을 근사할 수 있습니다. 예를 들어, 요소의 밀도는 그 요소와 인접 요소 사이에서 (질량 보존에 의한) 질량 유량이 교환된 경우에만 변경됩니다. 요소 사이에서 질량이 교환되는 물질의 속도는 운동량 보존 법칙에 의해 계산되며 일반적으로 나비에-스토크스 방정식으로 표현됩니다. 나비에-스토크스 방정식은 인접한 요소 사이에 작용하는 압력과 점성 응력을 이용하여 요소에서 변화하는 유체 속도를 근사합니다.
Simple equations can be devised to approximate how each element’s values interact with neighboring elements over time. For instance, the density of an element can only change when there is a net flow of mass exchanged between an element and its neighbors (i.e., conservation of mass). The material velocity that carries mass between elements is computed from the conservation of momentum principal, usually expressed in the form of the Navier-Stokes equations, which uses the pressures and viscous stresses acting between neighboring elements to approximate the changing fluid velocities in the elements.
이러한 요소와 인접 요소 사이의 상호 작용에 따른 아이디어는 편미분 방정식 근방의 양의 변화에 의해 생기는 작은 변화의 효과를 평가하는 것과 본질적으로 동일합니다. 공학계의 교과서에서 파생된 작은 컨트롤 볼륨을 사용하여 그 크기를 무한대까지 작게 한 근사치의 극한으로 편미분 방정식이 유도됩니다. 수치 시뮬레이션에서도 같은 방식을 취하고 있지만, 요소 수가 너무 많으면 추적이 어렵게 되어 컨트롤 볼륨의 크기를 최대한 작게 만들 수 없습니다. 실제 시뮬레이션 현상을 해결하는데 충분하고 계산 시간을 최소한으로 억제 할 수 있는 요소수를 설정하는 것이 목표입니다.
This idea of an element interacting with its neighbors is essentially what is meant by a partial differential equation; that is, evaluating the effects of small changes caused by the variation in quantities nearby. Partial differential equations are typically derived in engineering text books as the limit of approximations made with small control volumes whose sizes are then reduced to infinitesimal values. In a numerical simulation the same thing is done except that the control volume sizes cannot be taken to the limit because that would require too many elements to keep track of. In practice, the goal is to use enough elements to resolve the phenomena of interest, and no more, so that computing times are kept to a minimum.
요소에 사용되는 연산은 기본적으로 더하기, 빼기, 곱하기 및 나누기만 포함된 간단한 것입니다. 예를 들어, 요소의 질량의 변화는 일정한 시간 간격에 걸쳐 요소의 측면에서 유입 및 유출된 질량의 가산 및 감산에서 구할 수 있습니다. 그러나 시뮬레이션에서는 이러한 연산을 수천, 때로는 수백만 요소에 대해 매우 짧은 시간 간격에 대해 반복 계산해야합니다. 따라서 이러한 반복 계산의 고속 처리는 컴퓨터가 적합합니다.
Arithmetical operations associated with an element generally involve only simple addition, subtraction, multiplication and division. For instance, the change of mass in an element involves the addition and subtraction of mass entering and leaving through the faces of the element over a fixed interval of time. A simulation requires that these operations be done for thousands or even millions of elements as well as repeated for many small time intervals. Computers are ideal for performing these types of repetitive operations very rapidly.
자유 표면을 수반하는 유체 운동의 시뮬레이션에서는 형상이 변화하는 계산 영역을 다루어야합니다. 이 복잡성에 대응할 수있는 분석 방법이 아래에서 설명하는 VOF 법입니다.
Simulating fluid motion with free surfaces introduces the complexity of having to deal with solution regions whose shapes are changing. A convenient way to deal with this is to use the Volume of Fluid (VOF) technique described next.
The VOF Concept
VOF 법은 각 격자 셀의 체적 중 액체가 차지하는 비율, 즉 체적 점유율을 기록한다는 생각에 근거합니다. 일반적으로 부피 점유율은 F로 표시됩니다. F는 부피 점유율이기 때문에 값이 취할 수있는 범위는 0.0 ~ 1.0입니다.
The VOF technique is based on the idea of recording in each grid cell the fractional portion of the cell volume that is occupied by liquid. Typically the fractional volume is represented by the quantity F. Because it is a fractional volume, F must have a value between 0.0 and 1.0.
액체 내부의 영역에서는 F 값은 1.0이 액체의 외부, 즉 (공기 등) 기체 영역에서 F 값은 0입니다. F 값이 0.0과 1.0 사이에서 변화하는 장소가 자유 표면이 존재하는 위치입니다. 즉 0.0보다 크고 1.0보다 작은 F 값을 가지는 요소는 반드시 표면을 가지고 있습니다.
In interior regions of liquid the value of F would be 1.0, while outside of the liquid, in regions of gas (air for example), the value of F is zero. The location of a free surface is where F changes from 0.0 to 1.0. Thus, any element having an F value lying between 0.0 and 1.0 must contain a surface.
여기서 유의해야 할 것은 VOF 법에서 자유 표면을 직접적으로 정의하는 것이 아니라 벌크 유체의 위치를 정의한다는 점입니다. 이렇게하면 계산상의 어려움을 초래하지 않고 유체 영역을 결합 또는 분할 할 수 있습니다. 자유 표면은 단순히 유체의 체적 점유율이 1.0과 0.0 사이에서 변화하는 장소로 정의됩니다. 이것은 자유 표면을 수반하는 거의 모든 문제에 적용 할 수 VOF 법의 뛰어난 특징이기도합니다.
It is important to emphasize that the VOF technique does not directly define a free surface, but rather defines the location of bulk fluid. It is for this reason that fluid regions can coalesce or break up without causing computational difficulties. Free surfaces are simply a consequence of where the fluid volume fraction passes from 1.0 to 0.0. This is a very desirable feature that makes the VOF technique applicable to just about any kind of free surface problem.
또한 격자의 각 요소에 단일 수치 (F)를 할당하여 유체의 위치를 기록 할 수 있는 점도 VOF 법의 중요한 특징입니다. 이것은 평균값을 기준으로 압력과 속도 등 다른 모든 유체 물성의 기록과 완전히 일치합니다.
Another important feature of the VOF technique is that it records the location of fluid by assigning a single numerical value (F) to each grid element. This is completely consistent with the recording of all other fluid properties in an element such as pressure and velocity components by their average values.
Some Details of the VOF Technique
Figure 3. Surface in 1D column of elements.
정확도를 위해 요소 내에 자유 표면을 배치하는 방법을 갖는 것이 바람직합니다. 인접 요소의 F 값을 고려하면 이를 쉽게 할 수 있습니다. 예를 들어, 열의 일부에 액체가 충전되어있는 1 차원 요소를 상상하십시오 (그림 3). 액체의 표면은 열 중앙 영역의 요소에 있습니다. 이것을 표면 요소라고합니다. 여기에서는 표면 요소를 제외하고 F 값은 0.0 또는 1.0이어야한다고 가정하고 있기 때문에 이를 사용하여 표면의 정확한 위치를 파악할 수 있습니다. 우선, 표면이 표면 또는 바닥을 확인하는 테스트를 실시합니다. 표면요소에 대해 액체가 없을 경우에는 표면으로 간주합니다. 위의 요소에 액체가 들어있는 경우는 물론, 그 표면은 바닥입니다. 윗면에 관해서는 정확한 위치는 표면 요소의 아래쪽에서 위쪽으로 요소의 세로 크기를 F 배 한 거리에있는로 계산합니다. 바닥도 마찬가지로 표면 요소의 상단에서 아래로, 요소의 세로 크기를 F 배 한 거리에 있습니다. 이 방법에 의한 요소의 표면 위치의 특정은 요소 내의 액체의 부피 점유율로 F를 정의한 후에 합니다.
For accuracy purposes it is desirable to have a way to locate a free surface within an element. Considering the F values in neighboring elements can easily do this. For example, imagine a one-dimensional column of elements in which a portion of the column is filled with liquid, Fig. 3. The liquid surface is in an element in the central region of the column, which will be referred to as the surface element. Because we assume the values of F must be either 0.0 or 1.0, except in the surface element, we can use this to locate the exact position of the surface. First a test is made to see if the surface is a top or bottom surface. If the element above the surface element is empty of liquid, the surface must be a top surface. It the element above is full of liquid then, of course, the surface is a bottom surface. For a top surface we compute its exact location as lying above the bottom edge of the surface element by a distance equal to F times the vertical size of the element. A bottom surface is similarly located a distance equal to F times the vertical size of the element below the top edge of the surface element. Locating the surface within an element in this way follows from the definition of F as a fractional volume of liquid in the element.
1 차원 열의 표면 위치 계산은 간단하고 정확하며 계산이 거의 필요없습니다. 그러나 2 차원 및 3 차원의 경우 하나의 표면 셀에 연속적인 표면 방향이 존재할 가능성이 있기 때문에 위치 계산은 조금 복잡해집니다. 그럼에도 불구하고 이를 취급하는 것은 어렵지 않습니다. 그림 4의 이차원의 예는 표면의 위치를 계산할 뿐만 아니라 경사와 곡률도 이해할 수 있는 쉬운 방법을 보여줍니다.
Calculating surface locations in one-dimensional columns is simple, accurate and requires very little arithmetic. In two and three dimensional situations, however, computing a location is a little more complicated because there is a continuous range of surface orientations possible within a surface cell. Nevertheless, dealing with this is not difficult. A two-dimensional example, Fig. 4, will illustrate a simple way to not only compute the location of the surface, but also to get a good idea of its slope and curvature.
Figure 4. Surface in 2D grid of elements.
1 차원의 경우처럼 먼저 인근 요소를 테스트하여 표면의 대략적인 방향을 찾아야합니다. 그림 4는 바깥 쪽의 법선이 상승 방향에 가장 가깝게 됩니다. 이것은 그 방향 밖의 값의 차이가 다른 방향보다 크기 때문입니다. 그럼 거의 수직으로 있는 요소 열에서 표면의 국소적인 높이가 계산됩니다. 그림 4의 2 차원의 경우에는 이러한 높이가 화살표로 표시되어 있습니다. 마지막으로, 표면 요소를 포함하는 컬럼의 높이에 따라 그 요소의 표면의 위치를 확인합니다. 다른 2 개의 높이를 사용하면 국소적인 표면 경사와 표면 곡률을 계산할 수 있습니다.
As in the one-dimensional case, it is first necessary to find the approximate orientation of the surface by testing the neighboring elements. In Fig. 4 the outward normal would be closest to the upward direction because the difference in neighboring values in that direction is larger than in any other direction. Next, local heights of the surface are computed in element columns that lie in the approximate normal direction. For the two-dimensional case in Fig. 4 these heights are indicated by arrows. Finally, the height in the column containing the surface element gives the location of the surface in that element, while the other two heights can be used to compute the local surface slope and surface curvature.
3 차원에서도 동일한 절차를 사용하지만, 표면 요소의 주위에 있는 9개의 열에 대해 열 높이를 요구해야합니다. 필요한 계산은 조금 더 걸리지만, 주된 내용은 열의 간단한 덧셈과 경사와 곡률을 추구하는 열의 높이의 합과 차이가 있습니다. 이 토론을 토대로, 이제 자유 표면을 정의하는 데 필요한 모든 정보를 빠르고 쉽게 평가하기 위해 부분 유체 체적을 사용하는 방법을 알아야합니다.
In three-dimensions the same procedure is used although column heights must be evaluated for nine columns around the surface element. Although a little more computation is needed, it consists primarily of simple summations in the columns and then sums and differences of column heights for evaluating the slope and curvature. Based on this discussion, the reader should now see how the fractional fluid volume can be used to quickly and easily evaluate all the information needed to define free surfaces.
다루어야 할 문제가 앞으로 2 개 남아 있습니다. 하나는 그림 1 및 2와 같은 시뮬레이션은 유체가 존재하는 영역에는 유체 역학만으로 해결합니다. 이것은 VOF 법의 계산 효율이 높은 또 하나의 이유입니다. 계단 형상의 낙하류의 문제로 유체가 차지하는 영역은 계산 격자의 오픈 공간의 절반 이하입니다. 액체를 둘러싼 기체의 흐름을 계산할 필요가 있다면 필요한 계산 시간이 크게 늘어납니다. 그러나 액체만으로 계산을 할 경우 자유 표면 경계 조건을 지정해야합니다. 이 조건은 접선 응력의 소실과 기체의 압력에 동일한 표준 압력을 표면에 추가하는 것입니다.
There are two remaining issues to deal with. One issue is that a simulation like that in Figs. 1 and 2 is only solving for the fluid dynamics in regions where there is fluid. This is another reason for the computational efficiency of the VOF method. The region occupied by fluid in the flow over a step problem is much less than half of the open region in the computational grid. If it were necessary to also solve for the flow of gas surrounding the liquid, then considerably more computational time would be required. In order to perform solutions only in the liquid, however, it is necessary to specify boundary conditions at free surfaces. These conditions are the vanishing of the tangential stress and application of a normal pressure at the surface that equals the pressure of the gas.
두 번째 문제는 자유 표면이 유체와 함께 움직일 때의 움직임과 변형을 유체 점유율 변수 F를 구함으로써 계산해야 한다는 것입니다. 변수 F는 불연속 (주로 0.0 또는 1.0)이기 때문에 계산 격자를 이동할 때 이 불연속성이 유지되도록주의해야합니다. VOF 법은이 목적으로 특수 이류(advection) 알고리즘이 사용되고 있습니다.
A second issue is that movement and deformation of a free surface must be computed by solving for the fraction of fluid variable, F, as it moves with the fluid. Because the variable F is discontinuous (i.e., primarily 0.0 or 1.0) some care must be taken to maintain this discontinuity as it moves through a computational grid. In the VOF method, special advection algorithms are used for this purpose.
Illustration of Free-Surface Tracking by VOF Technique
그림 6a는 이것의 적합 여부를 보여줍니다. 유체의 체적 점유율은 격자 요소마다 균일하게 분류되고 그 요소의 값을 나타냅니다. 자유 표면은 거의 모든 곳에서 선명하게 정의되어 있습니다. 스냅의 가장 낮은 가장 좁은 부분에만 선명한 유체 분포의 손실을 확인할 수 있습니다 (그림 5b). 이것은 예상대로입니다. 이 영역에서는 스냅의 두께는 3 가지 요소보다 작고, 따라서 부분 충전된 표면 요소에 연결된 작은 F 값이 어떤 중심 요소 (값 1.0)에 혼입하기 때문입니다. 계산 목적으로 이 것은 별로 문제가 되지 않습니다. 이 시뮬레이션 방법은 액체 내부의 요소는 순수한 액체 성분과 같은 방식으로 처리되기 때문입니다.
Figure 6a is an illustration of how well this works; the fluid volume fraction is colored uniformly in each grid element to represent its value in that element. The free surface is sharply defined nearly everywhere. Only in the lowest and narrowest part of the nappe is there any noticeable loss of a sharp fluid fraction distribution, Fig. 5b. This was expected because in this region the nappe is less than three elements in thickness and this allows some of the smaller F values associated with partially filled surface elements to mix in with the central element, which should have a value of 1.0. For computational purposes this doesn’t really matter because the simulation method treats elements interior to the liquid as though they are pure liquid elements.
그림 5b에 나타내는 영역에서는 실제 실험에서 난류 및 공기 혼입이 관찰된 것도 지적해 두지 않으면 안됩니다. 따라서 유체 점유율의 값을 1보다 조금 작게 보이는 것이 다소 현실적입니다. 이것은 전혀 의외라는 것은 없습니다. 난류와 공기 유입을 담당하는 풀의 액체 제트의 교점은 난류와 공기 유입의 원인이 되지만, 유체 점유율 값(fluid fraction values )은 액체 내부에 “유입” 원인이 되기 때문에 실수가 아닙니다.
It should also be pointed out that in the region shown in Fig. 5b turbulence and air entrainment are observed in actual experiments. Thus, the appearance of fluid fraction values a little less than unity is somewhat realistic. This is not entirely accidental because the intersection of jet of liquid with a pool, which is responsible for turbulence and air entrainment, is also responsible for the “entrainment” of fluid fraction values into the interior of the liquid.
Figure 5a (left): Fluid fraction values in elements, showing sharpness of surface definition. Figure 5b (right): Close up of fluid fraction values where the overflow hits bottom.
Summary
처음에는 컴퓨터가 단순히 반복적인 산술 연산을 수행하고, 복잡하고 시간에 의존적인 유체 역학 문제에 대해, 현실적인 시뮬레이션을 할 수 있다는 것이 다소 마술처럼 보일 수 있습니다. 이 논의의 목적은 비교적 기본적인 절차로 이를 수행하는 접근법을 설명하는 것입니다.
간단하지만 사소한 유압 흐름 예제를 사용하여 계산된 시뮬레이션이 물리적인 측정 결과와 매우 일치하는 세부 결과를 생성 할 수 있음이 입증되었습니다. VOF (Volume of Fluid) 기술을 기반으로 한 시뮬레이션은 정확하고, 매우 효율적인 것이 추가로 입증되었습니다.
분명하게, 수력 발전소에서 사용되는 것과 같은 복잡한 유압 구조와 관련된 실제 예는 유용한 결과를 얻기 위해서는 이 예에서 사용되는 몇 초 이상의 많은 계산 시간을 소비해야합니다. 그럼에도 불구하고 이러한 결과는 합리적인 시간 (사람과 컴퓨터 모두)에서 수행 될 수 있으며, 실제 실험에서는 거의 불가능한 세부 사항들을 포함합니다. 또한, 지오메트리, 유동 조건 또는 유체 특성의 거의 모든 종류의 변화의 영향을 쉽게 테스트 할 수있는 능력은 시뮬레이션을 사용하는 또 다른 강력한 이유입니다. 기술의 발전에 따라 hydraulic flow 시뮬레이션을 위한 현재 소프트웨어 및 하드웨어는 기존의 물리적 모델링에 비해 상당한 비용 이점을 제공합니다.
At first it may seem somewhat magical that a computer can simply perform repeated arithmetic operations on arrays of numbers and produce a realistic simulation of a complex, time-dependent, fluid dynamics problem. It was the purpose of this discussion to explain an approach that does this with relatively elementary procedures.
Using a simple, but non-trivial, hydraulic flow example it has been demonstrated that computational simulations can produce detailed results in excellent agreement with physical measurements. It has been further demonstrated that the simulation, which was based on the Volume of Fluid (VOF) technique, uses simple approximation methods that are both accurate and efficient.
Clearly, real world examples involving complex hydraulic structures such as those used in hydroelectric power stations, must consume more than the few seconds of computational time used in our example to obtain useful results. Nevertheless, those results can be generated in reasonable times (both man and computer) and contain a richness of detail rarely possible in physical experiments. For examples visit our water and environmental application pages. In addition, the ability to easily test the influence of just about any kind of change in geometry, flow condition or fluid property is another powerful reason to employ simulations. Current software and hardware for hydraulic flow simulations offer a significant cost advantage over traditional physical modeling.
Postscript
The first detailed description of the VOF method was in 1981 by C.W. Hirt and B.D. Nichols, J. Comp. Phys., 39, p.201. All simulations appearing in this article were performed with the commercial software package FLOW-3D developed by Flow Science, Inc. This program uses an enhanced variant of the VOF concept called TruVOF.
본 자료는 국내 사용자들의 편의를 위해 원문 번역을 해서 제공하기 때문에 일부 오역이 있을 수 있어서 원문과 함께 수록합니다. 자료를 이용하실 때 참고하시기 바랍니다.
롤 코팅 공정은 직물, 접착제 및 실란트를 다루는 산업을 포함한 다양한 산업에서 일반적으로 많이 사용하는 공정입니다. FLOW-3D는 공정 엔지니어와 과학자에게 다양한 재료 특성과 코팅 방식을 평가하여 결함의 원인을 식별하고 롤 코팅 공정 매개 변수를 최적화 할 수있는 기능을 제공합니다.
1-D Gradient generator with de-coupled convection and diffusion
이러한 예에서 속도 유선은 롤 코팅 공정에서 흔히 볼 수있는 전방 (상단), 후방 (중간) 및 고갈 (하단) 작동 방식에 대해 플롯됩니다. FLOW-3D는 연구자들에게 롤 속도 및 재료 특성과 같은 요소와 동적 접촉 라인의 안정성에 미치는 영향뿐만 아니라 공기 혼입, 리브 및 비 균일 에지 프로파일과 같은 결함에 대한 기여도를 분석 할 수있는 기능을 제공합니다.
인쇄 공정 중 산업에서는 종종 인쇄면에 잉크를 전달하고 적용하는 롤 코팅(roll coating) 이라고 불리는 기술을 사용합니다. 이 공정에서 통상적으로 잉크 유액은 두 개의 회전하는 실린더 사이의 좁은 갭(gap)으로 흘러 들어갑니다.
FLOW-3D를 사용하는 이 1D microfluidic palette 시뮬레이션에서 주 중앙 마이크로 채널에서 대류 Cells의 clean decoupling을 플롯된 유선을 통해 확인할 수 있습니다. 이 흐름은 모두 대류 장치에만 제한되며 단일 장치조차도 마이크로 채널로 누출되지 않아 대류 및 확산의 탁월한 분리를 나타냅니다. 소스 농도의 변화는 플롯에서 볼 수 있으며 애니메이션이 끝날 때까지 시각적으로 일정해집니다.
Ribbing Instabilities
아래에 표시된 전 방향 롤 코팅 시뮬레이션에서 FLOW-3D는 Lee, et al [1]에 설명 된대로 증가 된 롤 속도와 관련된 리브 불안정성의 시작을 정확하게 포착합니다. 이 모델은 단일 유체 VOF, 표면 장력 및 점도를 구현하여 생산에서 볼 수있는 이러한 불안정성의 복잡한 특성을 포착합니다.
Cascade Defects
아래 시뮬레이션에서 FLOW-3D는 포워드 롤 코팅 공정에서 cascade defect을 포착합니다. 상단 웹 롤러의 증가된 롤 속도로 인해, 동적 접촉 라인이 불안정해져 공기가 코팅액에 유입 될 수 있습니다.
Reference
[1] Lee, J. H., Han, S. K., Lee, J. S., Jung, H. W., & Hyun, J. C. (2010). Ribbing instability in rigid and deformable forward roll coating flows. Korea Australia Rheology Journal, 22(1), 75-80.
그라비아 코팅(Gravure coating)은 그라비아 롤이라고하는 홈이 새겨진 실린더에서 움직이는 기판으로 유체를 전달합니다. 그라비아 롤은 표면에 새겨진 작은 홈 또는 cells로 패턴이 지정됩니다. 실린더는 유체의 소스 주위를 회전하고, 마지막으로 doctor blade에 의해 불필요하게 남겨진 잉크가 제거되게 됩니다. 각 cell의 컵 모양은 실린더가 닥터 블레이드를 지나갈 때 유체를 제자리에 고정합니다. cell의 패턴, 깊이 및 모양은 기판에 코팅의 무게와 모양을 결정합니다.
아래에 표시된 FLOW-3D 시뮬레이션은 증착에 대한 셀 깊이의 영향을 보여줍니다. 이 모델은 30 미크론과 53.3 미크론의 두 셀 깊이를 비교합니다. 30 마이크론 셀 깊이는 훨씬 더 균일한 증착을 가능하게 하여 결과적인 코팅으로 전달됩니다.
Gravure Printing Example
아래의 예는 하나의 사각형 셀과 하나의 피라미드 모양의 그라비아 셀의 3D 이미지를 시간 배열로 보여줍니다. 주의해서 보면 코팅 비드(coating bead)가 컨텍 라인이 셀 안으로 움직일 수 있는 것보다 빠르게 블레이드(brade)의 움직임으로 인해 진행되는 것을 볼 수 있습니다. 그 결과로 공기 기포가 포획되며 이는 셀 안이 부분적으로는 유체로 체워지고, 부분적으로는 공기로 채워지는 현상을 나타나게 됩니다.
Reference
[1] Lee, J. H., Han, S. K., Lee, J. S., Jung, H. W., & Hyun, J. C. (2010). Ribbing instability in rigid and deformable forward roll coating flows. Korea Australia Rheology Journal, 22(1), 75-80.
FLOW-3D는 엔지니어들에게 다양한 분야의 유동해석에 대해 귀중한 통찰력을 제공하는 강력한 모델링 도구입니다. 정확하게 자유 표면 흐름을 예측하는 특별한 기능을 통해 FLOW-3D는 설계 단계에서뿐만 아니라, 생산 공정 개선에도 사용할 수 있는 이상적인 전산 유체 역학 (CFD) 소프트웨어입니다.
TruVOF and Free Surface Modeling
FLOW-3D 는 다른 유동해석 프로그램과는 유체 계면을 다루는 기법이 확연하게 다릅니다. FLOW-3D 는 자유표면의 위치를 추적하고, 그 자유표면에 적절한 동적 경계 조건을 적용하는 특수한 수치기법(numerical method)을 사용합니다. FLOW-3D 에서 모델링된 자유표면은 로스알라모스 국립 연구소에서 Flow Science의 설립자인 C. W. Hirt 박사와 함께 소속한 과학자 그룹에 의해서 개발된 VOF(Volume of Fluid) 기법으로 모델링됩니다. CFD 프로그램의 대부분은 세 가지 기본 VOF 성분 중 실제로는 단지 하나 또는 두 가지만 구현하여 VOF 기능을 통합 구현한 것으로 주장하고 있습니다. CFD 사용자는 이러한 유사 VOF 기법으론 종종 잘못된 결과를 얻을 수 있음을 알고 있어야 합니다. FLOW-3D는 자유표면의 성공적인 해석에 필요한 모든 요소를 포함하고 있습니다. 또한, FLOW-3D는 경계 조건과 계면 추적의 정확도를 증가시키기 위해 원래의 VOF 방법을 크게 향상 시키고 있습니다. 좀더 자세한 사항은 TruVOF 방법을 참고하시기 바랍니다.
Free Gridding Separates Meshing from Geometry Construction
Gridding에 대한FLOW-3D’의 기본 접근 방식은 deformed, body-fitted grids의 유연성과 단순한 직사각형 그리드의 장점을 결합합니다. 직사각형 컨트롤 요소의 고정 그리드는 간단하고 매우 바람직한 특성을 갖도록(예를 들어, 향상된 정확도, 작은 메모리 크기 요구, 간단한 수치 근사치) 생성 처리됩니다. 이 접근법은 그리드나 형상을 각각 서로 독립적으로 자유롭게 변경 할 수 있기 때문에 “free-gridding”으로 지칭합니다.
이 기능은 body-fitted 또는 유한 요소 격자를 생성하는 지루한 작업을 하지 않도록 해 줍니다.
Rectangular gridding 의 유연성과 효율은 multi-block 과 conforming meshing 같은 고급 기능에 의해 강화됩니다. 연결되어 있고 부분적으로 중첩된 메쉬 블록은 복잡한 멀티 스케일 유동 도메인과 관심 영역에서 효과적으로 높은 해상도를 가질 수 있는 수단을 제공합니다. Conforming mesh는 직사각형 gridding 구조와 관계 없이 특별한 기하학적 형상, cavities, 얇은 구조물, 경계층 등에 적합한 고품질의 grids를 생성할 수 있습니다.
Read more about FLOW-3D‘s free-gridding approach in CFD-101 >
Modeling Fluid Flow in Complex Geometry is Easy with FAVOR™
FLOW-3D 는 직사각형 격자 내에서 일반 기하학적 영역을 정의하는데 사용되는 FAVOR™ (Fractional Area Volume Obstacle Representation) 방법으로 알려진 특별한 기술을 사용합니다.FAVOR™ 기본 철학은 수치 알고리즘이 각 제어 체적(control volume)에 대해 하나의 압력, 하나의 속도, 하나의 온도 등으로 이루어지는 정보를 기반으로 하므로 형상을 정의하는 데 많은 정보를 사용하는 것이 적합하지 않는다는 것입니다. 따라서, FAVOR ™ 기술은 직사각형 격자의 단순성을 유지하면서 각 제어 체적 내의 유동 값의 정밀도와 일치하는 수준으로 복잡한 기하학적 형상을 나타냅니다.
Read more about FLOW-3D‘s FAVOR™ technique in CFD-101 >
Meshing Capabilities
FLOW-3D 는 복잡한 유체 해석 모델링시 간단하면서도 효율적이고 견고한 대규모 격자 생성 능력을 제공합니다. 특히, FLOW-3D의 효율좋은 단순한 메쉬 구조와 다중 블록 메쉬의 다양한 특징에 의해 최고의 메싱 효율과 견고성을 자랑합니다. 여러개의 메쉬 블록 사용은 관심 영역의 최적화를 허용하고 주어진 시뮬레이션에 필요한 연산 리소스를 훨씬 감소시킵니다. 작은 장애물(Small obstacles), 복잡한 형상 그리고 전체 영역 크기에 비해 좁은 통로(channel)는 다음과 같은 linked, nested, conforming, 그리고/또는 부분 중첩 mesh blocks등의 여러 다중 블록 메싱능력 중 하나를 사용하여 정확히 해결 될 수있습니다. Linked mesh blocks은 관심영역의 격자 생성과 계산 격자의 총 수를 제한하는 데에만 사용될 수 있습니다. Nested mesh blocks은 관심영역 주위의 해상도를 향상시키기 위해 사용될 수 있습니다. Conforming 과 partially overlapping mesh blocks은 단순히 중첩된 급격한 변화와 불규칙한 형상을 해결하기 위해사용될 수 있습니다. FLOW-3D 는 또한 Fluid-Structure Interaction에 필요한 body-fitted 유한요소 격자를 허용합니다. 이 body-fitted 격자는 FLOW-3D 또는 외부 CAD 패키지 S/W로 부터 가져와 자동으로 생성할 수 있습니다. 이 모든 메쉬 기술은 사용자에게 간단하면서 효율적으로 메쉬를 생성하게 하여 솔버 성능 향상 및 해석시간을 줄이는 유연성을 제공합니다.